repo_name
stringlengths
6
92
path
stringlengths
7
220
copies
stringclasses
78 values
size
stringlengths
2
9
content
stringlengths
15
1.05M
license
stringclasses
15 values
lucianocaciato/IA369Z_2017S1
deliver/21062017_LucianoECaciato_Workflow.ipynb
1
47855
{ "cells": [ { "cell_type": "markdown", "metadata": {}, "source": [ " # Workflow - Reprodutibilidade em Pesquisa Computacional" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## 1. Objetivo" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ " Este workflow tem o objetivo de demonstrar a sequência de passos necessários para automatizar a busca de informações na geração de gráfico. " ] }, { "cell_type": "markdown", "metadata": { "collapsed": true }, "source": [ "## 2. Funcionamento" ] }, { "cell_type": "markdown", "metadata": { "collapsed": false }, "source": [ "Utilizando os dados do banco de dados local ou diretamente da Internet será possível gerar uma quantidade de informações que serão extraídas e ajustadas para resultar no gráfico." ] }, { "cell_type": "code", "execution_count": 1, "metadata": { "collapsed": false }, "outputs": [ { "data": { "image/jpeg": "/9j/4AAQSkZJRgABAQEAeAB4AAD/4QBaRXhpZgAATU0AKgAAAAgABQMBAAUAAAABAAAASgMDAAEA\nAAABAAAAAFEQAAEAAAABAQAAAFERAAQAAAABAAASdFESAAQAAAABAAASdAAAAAAAAYagAACxj//b\nAEMAAgEBAgEBAgICAgICAgIDBQMDAwMDBgQEAwUHBgcHBwYHBwgJCwkICAoIBwcKDQoKCwwMDAwH\nCQ4PDQwOCwwMDP/bAEMBAgICAwMDBgMDBgwIBwgMDAwMDAwMDAwMDAwMDAwMDAwMDAwMDAwMDAwM\nDAwMDAwMDAwMDAwMDAwMDAwMDAwMDP/AABEIAaADVQMBIgACEQEDEQH/xAAfAAABBQEBAQEBAQAA\nAAAAAAAAAQIDBAUGBwgJCgv/xAC1EAACAQMDAgQDBQUEBAAAAX0BAgMABBEFEiExQQYTUWEHInEU\nMoGRoQgjQrHBFVLR8CQzYnKCCQoWFxgZGiUmJygpKjQ1Njc4OTpDREVGR0hJSlNUVVZXWFlaY2Rl\nZmdoaWpzdHV2d3h5eoOEhYaHiImKkpOUlZaXmJmaoqOkpaanqKmqsrO0tba3uLm6wsPExcbHyMnK\n0tPU1dbX2Nna4eLj5OXm5+jp6vHy8/T19vf4+fr/xAAfAQADAQEBAQEBAQEBAAAAAAAAAQIDBAUG\nBwgJCgv/xAC1EQACAQIEBAMEBwUEBAABAncAAQIDEQQFITEGEkFRB2FxEyIygQgUQpGhscEJIzNS\n8BVictEKFiQ04SXxFxgZGiYnKCkqNTY3ODk6Q0RFRkdISUpTVFVWV1hZWmNkZWZnaGlqc3R1dnd4\neXqCg4SFhoeIiYqSk5SVlpeYmZqio6Slpqeoqaqys7S1tre4ubrCw8TFxsfIycrS09TV1tfY2dri\n4+Tl5ufo6ery8/T19vf4+fr/2gAMAwEAAhEDEQA/AP38ooooAKKKKACiiigAooooAKKKKACiiigA\nooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACi\niigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKK\nKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAoooo\nAKKKKACiiigAooooAKKKKACiiigDwX/gop/wUA8I/wDBMr9me8+KvjjRfFmueG9Pv7awuIvDttBc\n3URuH2JIVmmhTZvwpO/OWHBqH9ov/go/8O/2Y/2D2/aI8Rf2xceA20uy1WGGyihk1C6S7MYgijR5\nUjMhMqjBkA681k/8Fgv2em/ak/4JlfGrwXFCs15f+GLm6sgy7sXFuvnxYHrviH51+JMv7R9x/wAF\nAf8AglD+wT+zLp90k+qeNvG39i69bM2XGnaRP5eSB28mVHGevl/kAfuT+wR/wUe+H3/BRT9k5fjF\n4Jj17S/C4nvILi31yGGC+sntifM8xIpZUHy4cYc/KR06VW/4Js/8FL/BH/BUj4Qaz46+H2heMtJ8\nO6PrMuiJP4htLa3bUJY0R3khEM8uY/nAy+w5/hr8h/h/8XY/+CPvgD/gpF8AbWSTS7HQbN/EvgWO\n4fcvkanGLVEjHdU8+3H/AAA98muzsf2jPG//AARp/wCDd39nfw38MreHTfi58eNQih069vIFkTS7\njUSblrgrIChdY2hjXeCAWBwVWgD90aK/Cb9rz4Oftvf8EP8A4Pad+0nqH7WetfGux0/VLKPxj4M1\n+3uG00JcyJEY7fzZ5V2eYwTfFHbsuQwHVa6P/gt7+2h8afFX7Yn7EQ+AnxE8S+A2+M2lNNDZLqU0\nemTveParHJeWqusdx5STEgSA8jigD9Lv+ClX/BSfwL/wSx/Z/h+JPxC0nxZrGh3Gqw6QkHh61t7i\n7E0quykrPNCuzEZyd+enFe8+HdYj8Q6HZahCrrDfwJcRhwAwV1BGcd+a/B7/AIL5fsYePv2J/wDg\nh8vh/wCI3xz8ZfHvxDqfxLs9ROueIRLGbONrecC2hjknnZYwdx/1mPm4CgAV3X/BPD9trxd/wXn/\nAOCgoXRPid4v+FHwP+BOm2ksXhDQtfudH1nxxJ/q/tF49s6E2+9Buj3HaCi9XZqAP0A/bp/4LH/D\nL9hL43+G/hlqHhv4nfEn4l+KLT+0LLwr4A8Pf21qv2bLjzmjMkYx+7k4Ul8ITtxVz4T/APBWnwD8\nWP27bb9neHwt8RtD+IE3hKHxhL/bGmW1ta2lvJHHJ9nlxcNKlwolAZPKwGDDfxX5W/tA/s9fHTxP\n/wAHTEfh3w7+0U3hfxxqng2fUtE8WN4D0+//ALB0thcsml/YpH8qfYmU+0ORI27JGa94+GcE9r/w\neA+Iobq4+1XMfwljSafYE89hBa5bavC5POO1AH7CUV+IfhHxR+1H/wAHAH7W3xsX4d/tFa9+zf8A\nBv4OeID4c0qPw7bStf6pcRu6+ZKYZ7eRg/llzvm2qHRRH9812H7BP7S37Qnxim/ax/Yk+K3xE1TV\nvi18L/D80nhb4haFdSafqsqyRqYXM0WxxIDLbOHJ34d0YvjJAP2Mor+fnxl/wVY+LnxC/wCDd/4c\n+G/Dfi7xuv7R/iTx6vwx/tCz1mdfEM1zbXBmZjdbxKJJIfJR5Gf+Nst3q94+/wCCoHxY+KH/AAQT\n+B3gnw9448b6Z+0F48+IEfwyu9bttXuF16Oa0uT5sslysnnF2Q26u+/LBzk9aAP34or5Tj/YC+Id\nv+2L8LPiPB+0F8QIvBfw/wDDMehar4Fnmu7mz8VXKxSIb66lN2EeYs6sS8EhJQfN6fVlAHyH/wAF\nGv8Agt9+z/8A8EvryHSfiN4kvr7xZdQi4i8N6Bai+1Tyj0kdSyRxKe3myJu7Zrjf+Ce3/BxT+zX/\nAMFHPiPa+C/CeteIvCvjTUt50/Q/FWnLZXGobRuZYpIpJYGfAJ2eZvPOAcGvj/8A4N3fCOlftT/8\nFQ/2xvjN46s7bXPH2heLW0nSZr+NZpNGt/tF0n7rOfLby4Io8joEwMZOf1U+I/7DXwg+MHx38O/E\n3xR8OfCuuePPCK7dJ1q7shJc2nzB1K9i6MoKMwLJztK5NAHE6T/wU88A6x/wUo1D9luHSPFy/EDT\ndA/4SSXUGtbf+xzb7UOwS+f53mfvBx5O3r81fSFfkH4H/wCVxjxV/wBkpH/oq2rz/wAI+KP2o/8A\ng4A/a2+Ni/Dv9orXv2b/AIN/BzxAfDmlR+HbaVr/AFS4jd18yUwz28jB/LLnfNtUOiiP75oA/byi\nvyn/AOCQv7dHxqsfjn+0V+yn8dvFUfjnx18EdOa+0nxhbp5c+o2bRgjzSACXCywOrt8/zsGLFd1T\nf8Gxn7Qnj74+/wDBJDxf4l8deOPGHjTxFba/qsEOq69rNzqV9FGltCURZpndwFYkgA8E0AfqlXmf\n7XP7UGgfsYfs1eMfin4ps9Yv/D3gjT21K+t9KijlvJYlIGIlkkjQtyPvOo96/Gb/AIJ6f8FYfih+\nzt/wbZfFL42eIPF/ibx98QtN8Wz6LoepeKNTuNZmtpp/ssURZ53djHGZHkCE7cj3rlv2m/2Fv20v\nCf8AwR98ffGzxl+1ZrPxCsfH3hGLVvFfw+1iykurG10+48uRja3DTFIZo0KvtggiThxkjqAfuF+y\nN+1BoH7Z/wCzV4O+Kfhaz1iw8PeN9PXUrG31WKOK8iiYkYlWOSRA3B+67D3r53/4Knf8FzfhL/wS\nK8V+ENH+JXh34ia1deNbO4vLF/DVjZ3KRJC6I4lM91AVOZBjAbv0rW/4IGf8ocf2ev8AsU4f/Rkl\nfIH/AAWy/wCU+H/BP/8A7CN5/wClENAHcfs9f8Hc/wCyb8ePiLYeHbxviP8AD1tSnS3h1DxTo9tH\nYb3OAHktbm4MYz/E6hB3YDmv09s72LUbWO4hkjmt51EkciMGV1IyCCOoIr4f/wCDi74B+EvjV/wS\nM+MF94m0nT7rUPB+iSa5o17LEPPsLuFlZDHJ1XfyhAPzB8c188/s3/FT4xeOf+DcL4I6l4P+MPw/\n+D+qSWcGma9468ZaubD+ytIhuJoSbaR4pUN20ccaJv2dyHBxQB+t1eR+KP23Phr4T/ax8OfA+48R\nQ3HxQ8TWE2q2+iW6GSS2s4kdzcTN9yJTsIQMd7nopAJH4x/Br9vu3/Z0/wCCx3wJ+HfwL/a++Kn7\nSXgP4hXp0vxtaeNdZk1y2sp3OENpO8Mcag/fAgzs2YLENiuG/aP/AOCevxO+IP8Awc7XHgXTf2k/\nHnhvxJ4m0SbxZY+K7Zbv7dodgxmkGjxbb1H8gIpj+WVEw5/d9qAP6MaK/LP/AIKfajeaf+1JNbfG\n39tiP9nP4KaT4fhOhaH8P/GLaT451q+GPNu7pfszymAnICRtIDtHQkmqP/Br/wDt6+OP2uvCXxw8\nMeKviFrHxU8P/DnxMlr4U8TayhGqajpspmETTl1WRiyRJJ+8G8eYQemAAfqhqeo2+l2E11dTQ29r\nbIZZZpXCpEqjJYk8AAc5r8zv2gv+DtX9kf4FfEqfw1aah488ffZJjb3GqeFtHhuNNiYHBIluLiAy\nqP70Sup7E16H/wAHMfxg134L/wDBGr4r33h+a4trzVlstEnnhfa0VvdXcMM3I5G6NmTj+/Xbf8EP\nf2cPBPwM/wCCV3wfsfDOj6THH4m8LWer6zdR26b9YurmESSyzH/lpksV5JwoC9BQB6r+w5/wUE+E\n/wDwUb+E8njT4S+KofEWlW0/2W+haB7a806fGfJnhkAdDg5B6N1UkV7bXznc/Az4O/8ABLv4HfFn\n4k/D34a+G/C8kenXviXWhpVoIZtWkhSScIz9Qm4thB8ibzgCv57l/wCCsnxC+N/gfWfjZrf/AAUO\n8QfDX4tRtdXuj/CfT/CGtTaGqox8m1klij+wZdVABeGYcje+S+AD+p2ivww/4KS/8FY/iV8df+Dc\nz4RfHjwv4p17wJ481jxTaafrN54a1G50k3M9ubqG4UNC6P5Mjw7jHu2/kK4L/gpZaftw/wDBMn4O\nfDz9qjXv2sta8XX2sarYwat4GtrGSx0KwWaFphbpEZHguExGYy7wRyc7gS3NAH7W/tS/tv8Awz/Y\nzl8Iw+P/ABHFpOpePtZt/D/h7T442mutWvJpY4kSONewaRNznCIDyelev1/Pv/wc3fs2eNviT+2/\n+y/4uh+LnibR7H4s6zpmiaJo8C3Bg8D3vmWqNqVri4AMrNOj/IsT5hX94eCvcf8ABXv9uH4kfsAD\n4A/slXH7TGveCFl8PG+8efGi80q/v9ZvI/MlSIpFE1xc72KHOyXcTtBkRc0AfuhRX4L/APBF3/gq\n74g8Ef8ABTrw18AYf2odU/az+FvxD02b+z/EOtaBqWm6ro+pxRSTeWft4M7KUibOZZEO5SNjAhsP\n9l7w5+1V/wAFOP8Agoz+1Z8KvDP7VXxG+FfgfwD4yfUZbuC9u9RvrdftdxFb2Nnm5ia3t9qSFkjd\nU+RMo/AoA/oEorJ8GaBL4U8I6Vpc2oXmrTabZw2j3122+4vGjRUMsh7u+Mk+pNa1ABRRRQAUUUUA\nFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAU\nUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRR\nRQAUUUUAV76xi1Kxmt5kV4biMxyIe6kYIr8Pf+CMH/BBH4vfsgf8Ff8AxV8RPiD4XXTfhb4OfWW8\nD3f9r2d1HdvdTGOF0t4pnlh/0dnJ3xpzj0r9yqKAPxW/4OOP+CG3xZ/b+/bN+Gvjz4Q+G21bT9Z0\nyLw945nj1izsDZ28V0kkUzJcSxmYBHc7UDnMCcZxX2P/AMFe/wDgki//AAUB/Yk8LeBvBOs2nhTx\nt8LLu01XwXqFzuW1huLaLyxFKVBZUdQPnCttZVO04r7iooA/Ev4xfsX/APBSb/grF4T0X4I/tCab\n8J/hj8I9P1G1uPEHiTRZ4p9Q8SxW5BBEcdzPlyw3hfLtk34J4AWvev2/f+CaHxF8bf8ABTH9iPxR\n8NPB/wDaHww+BatZ61fHU7OD+yLdGhWL91LKksvyR/8ALJH6V+nVFAH54/8AByp+xB8Uv+CgX/BP\n6w8D/CPwv/wlviiHxVZ6k9j/AGjaWGLeOOdXfzLqWOPguvG7PPSuF/au/wCCXPxC/Zq/a2/Z9/aD\n/Zb8B6dJ4g8IWNr4R8d+DNPvbLSbfVdFEaoXQzSRwF41yuA+SRERnYa/UiigD83fEf7CXxY1f/g5\nG8N/tAx+EXj+E9r8Pf7EuNabU7LMN6Y5x5Jg877QeXUbhGU+brTvCf7BvxY07/g5O8Q/H6fwr5fw\nlvfh8NEg13+07RvMvPLgXyvswl+0D5kf5jHs461+kFFAH45+Kv8Agnv+2t/wSq/az+KfjD9jvSfh\nx8Tvhz8Y9VOtXvhjxNci3m0S8d2eSQeZc2wZQZH2sk5ynBjyoJ9+/wCCMX/BLv4nfs1fF74qftA/\ntB69o2tfHT4zSoL+10g7rHRLRCGEAYABnO2MfLlEWFAGfk1+h1FAH4p/BP8A4ITfFT4c/wDBwJdf\nESXQ5If2bdN8T3vj/SJ49Vs/s39q3FsB5f2TzftCuJmPz+UFxCvOKd+zL/wQq+Kvw/8A+C/msfEb\nWtDe3/Z18PeJNU8c+GJ11e0ltpNTvIo/kFoJTPG4kY5dowP9GXnkZ/aqigD5v+JXxM/aS0r/AIKF\n+C/Dvhr4f+EdQ/ZzvtJkl8S+KZ7iMatp18BNsiijN4jFCRByLaT75+b0+kKKKAPyS/aZ/wCCWH7T\nv7DX7evjf9oz9iu68F+IV+JyGXxX4A8TsLeC6ud27fExkhRkMheQZnidGdxl1bA6P9k34S/8FJv2\nn/2uvB/j748eKvB/wD+HnhXP23wb4RlhvD4hBIJjkTzbuP59oBleclBny0BYmv1KooA/N/wn+wb8\nWNO/4OTvEPx+n8K+X8Jb34fDRINd/tO0bzLzy4F8r7MJftA+ZH+Yx7OOteJ+Kv8Agnv+2t/wSq/a\nz+KfjD9jvSfhx8Tvhz8Y9VOtXvhjxNci3m0S8d2eSQeZc2wZQZH2sk5ynBjyoJ/YyigD85f+CP3/\nAASk+JPwK+IPxg+OX7ROvaPrHxv+Oi/ZtSttGObLQ7PH+oVgAGfiNfkyiJCgDvya+Q/2Of8AgnL/\nAMFGf+CfWm/ED9nv4W6f8I1+D3jHVLu4tvHmr3guJ9GgnXyTJbQrcJMJvKVTslt5F3jh8c1+61FA\nH47/ALBX/BCn4gap/wAELvij+zP8WdPj8D+KvEfia71TRLqS6tr6ONozA9ncv9llkARpIuU37wCe\nK8t8Y/sgf8FSvjd+wV4i/Zr8UaB8KtN8EeHvD50y21y21C3m1vxnDbJut7GOQ3flxrKUjjMk8NuQ\nvJPXP7tUUAfN3/BIn4DeLP2X/wDgmt8Hfh/460r+w/F3hXw/HZapYfaYbn7LMHclfMhd424I5RiK\n+MP+C9/7GH7Tnxe/bl/Zv+MP7Ofw30n4gal8IYr27lTU9XsrOziuGmhaJJY5ru3kkVgrf6t+3UV+\nsFFAH4nfHn4H/wDBUj/grR8P5fhD8XPA/wAHPgN8N9auIW1/VNKvo57i9t0cOYgsWoXrtyoOzEYY\ngAvjNev/APBXX/gip4s+JP7C/wCz78PfgXo+k+LNP/Z91W2vG8Ha5fraw+LreJArpJLIRF5jkPnz\nCoInk5HQ/qlRQB+K/wAV/wBgr9qf45/t1/sq/GT/AIZp+H3wr8FfCXWUt7jwP4W8V6bc3mjWzSI0\n95NJi1tnThdkVsZHAjPXIruv+Cnn7Cv7W3g7/gsL4X/ai/Zn8IeBfH0yeFU8Mz2XiHUI7eHTj++S\nSSWNrm3eRNsikGOQkEHKGv1uooA/HbxF/wAE6P2iP2ev+Cu3xG+O2mfs/wDw2/aU0v4pWls2nXOv\neJrPTH8AXIjQPgXSTPtQqV/0dGLJtwU5WvS/+CBn7Avx2/YW/aH/AGl7j4xeFNHsbf4la9D4h07X\ndE1O2udL1GaSS4kmjhi8z7TEiNPx50ScD8/0+ooA8w/bF/Za8Oftsfsy+Mvhb4sWX+w/GenSWE0s\nWPNtWPMcyZ/jRwrj/dr8pvgt8Ev+Cpn/AAS9+Hdn8GvhX4Y+DPxu+HeiyPb6B4g1W6S3utJtCx2I\n0ct7aONu7ds2T7egcjAr9qKKAPhH/gn5+wl+0Pefsv8AxT8P/tafFxvHuq/FuC6tv7E08RyWPhaC\n4SRZFgm8tHL/ALziNf3UYjQJnk18Yfs+/sqf8FSP+Ccnwzk/Z6+EOn/B/wATfDmC7uF0H4gahcQN\ndaBBLIX3CGadGyCxby3tLgKxIBdcV+3tFAH5d/8ABcT/AIJ0/tCftgf8Ei/BXwv0Wf8A4XV8X9M1\nuwv9e1FX03QUv3SKfzpURzb26oryKoUYbG04JzXRf8HDf7BXxY/bk/4Jh+Fvh38LfCf/AAlHjDTd\nb0y8uNP/ALTs7Ly4obeVJD5txLHGcM4GA+T2zX6RUUAfl5/wXk/4JyfHT9qfwB+zj4s+CWh6H4k8\ncfA3WYdZfQtT1CG1W6ljFu8eHkkjjYLJbgOPNTIPBrlP21v+Cef7Xvx21j4BftVeC7TwB4c/aq+H\nOly2Pibwh9pC6NqMbySYihkaaRCNkjo6POAQ+RIGQZ/W6igD4D/4JrWP7ffxW+Pl144/ag1HwL8M\nfA1nYG0s/h14XtLK7/tC6PAuZbrfdSxqBzhLs7mx8iAHOB/wRp/YQ+K/7KX7b/7XXjDx94V/sHw7\n8T/Fg1Pwxdf2nZ3X9pW3n3T79kMrvH8sicSBDz061+jdFABRRRQAUUUUAFFFFABRRRQAUUUUAFFF\nFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUU\nAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQA\nUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABR\nRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFF\nFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUU\nAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQA\nUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABR\nRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFF\nFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUU\nAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQA\nUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABR\nRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFF\nFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUU\nAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQA\nUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABR\nRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFF\nFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUU\nAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQA\nUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABR\nRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFF\nFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUU\nAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQA\nUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABR\nRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFF\nFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUU\nAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQA\nUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABR\nRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFF\nFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABtHpR0pu/j+VJ5vPTI9RzQA/FF\nM8wgdB+fel3nP/1qAHUUxZCfoen0rK8YfEHQ/h7psN5r2s6Tolpc3MVnDNqF2lrHLPKwSKJWcgGR\n2ICqOSSABQBsUVS0LxDZeKNKt7/Tbu11Cwu08yC5tpllhmXPVWXIYe4OKsrKWI9z34oAkooooAKK\nKKACiiigAooooAKKKKACiiigAoorz743/tT/AAx/ZmgsJfiR8R/Afw9h1ZnSyfxLr9ppK3jLjeIj\nPIm8rlc7c4yKAPQaKx/BPjnRfiZ4Vstc8O6xpfiDRNSjE1nqGm3Ud1a3UZ6PHLGSrr7qah8KePtK\n8dXesR6XdSXTaFfPpl632eSONLhFVnRXdQsm3eATGWAYMpO5WAAN6iiigAooooAKKKKACiiigAoo\nooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiii\ngAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKA\nCiiigAooooAKKKKACiiigAooooAKKKKACiigdKACiiigAoblaKDyKAPD/wBvHxzqmh/BhPDmg+G/\nEPjDXPHV4mjJpGhz2kOoXFm2Xvnie6uLeBStos2GkmjG4oMkkA+A/AD40eNL/wADeC/gzNeeKPgr\nruk+JL3w7czagmlXmu2WmQ2sl7pUKMWvbFpZrXy1LhpgVtpwMSA7fsr4g654b+Hmj3PjDxAtraw+\nG7OeaTUHtTNPZ27bWl27VMm1vLQsFB3bFyDgVT8c/ArwL8WtO1CHxN4N8J+JLfWoYIL6LVNIgvEv\n44GZ4ElWRCJFjZ3ZAwIUuxGCxyAfOn7Pf7VPibWbTw7/AMJJ410vVYbjwx4t1CfUY7W2tre+fT9X\nit4blcDCosBJwGKkMC244Ycsfjh8RPFXw9vNS8O6vpsHi7XfB/gq4N3CNJ0/Vb+S8N41zHZzXcRt\nXunVSYI7gNCGJAVQxNfSWifsd/DfTvAej+G9S8I6B4m0rw5qlzrOkx65pVrfDS7ie4lnLQBo9sRR\npmVCgBVQASTybnxM8A/DLRfAr6X4p8K+FZvDfiD7B4ZnsLrRI7q1vkMohs7SSIRsrxK8u1FcbE3s\nflGaAPldf2sfFOl+Bf7eW+u5/E3hvwX4jgvLzxL4esbfU9Nu7bU7CAm6NoXhYwLJmX7LILeYx7wi\n4Cp2nx/ga4+Duk+CdX+KmqfEDXLrX7qwgu9J8J6DqniKcCwkeW2KzxNpVvMkMjGSaa2RDBKI9gaQ\nSN9HeGvgr4N8H6HY6bo/hLwvpWm6bYSaVZ2tnpUEEFpZyFTJbxoihUhYqpaNQFJQZBxmvIfhV+yn\n8OfBfw/0v4M+NNE+HPjBPtN74p0nQU8FRWujadClyhzBayG4SMxSXCYZ5S5aQldqgKgB4z+zl8b/\nABl8bPg/8NfD1n8QP+FV2tr4X1jVf7R0/StG86/Gmaj9iigZGhmsI4UgVXnW0UD5l8qSNOa+tf2a\n/iLffFz9n/wT4p1S3htNS8RaLaajdRQqyRxySxK52BvmCEkkA5OD3pPFf7Mfw18e+FLHQ9d+Hvgf\nWdF029bUrTT77QbW5tbW6LmQzxxvGVWUyMzb1AYsxOckmu2iRYkVVG1VwoUdB7celAE1FFFABRRR\nQAUUUUAFFFFABRRXjPxd/az1L4d/Fybwf4f+EvxK+JF/Y6Zb6tf3HhyfQ4bbT4biSeOIP/aGo2kj\nOTbynESScL6kCgD2aivNPA/7Wnw78e2nh/yPF2hafqfiiw/tCx0fUb6G11R4gru+bZn8zKCKXdwQ\nvlP/AHTV3w/+1B8NfF/w11TxppPxE8D6p4N0UyrqGvWmv2k2l2Bj/wBYJblZDHGU/i3MMd6AO+r5\nt/ad0X4ga/8AtgfDeH4d+JvB/hXWF8K6+0914j8M3Ov20kH2rScxpDBf2Lo+7Yd5kYYBGw5yvrHi\n39pP4c+APB2jeIte8f8AgvRPD/iSSKHSNTv9ctraz1R5RmNYJXcJKzjlQhO7tVzxD8d/A/hT4g6L\n4R1Xxl4U03xX4kQy6Ro11q9vDqGqKOrQW7OJJQPVFNAHzS/wD8QfDT4x6Docfi7xBqupR+H/ABL4\n1ntNGubjQdN1fWnv7KSIm1t5+YEeR0EEkkgcSP5hkJJPFf8ABK/4v+MvH/xXkh1TxN4X1bd4eM3i\nvT7P4naz4zv7PWN8GDc2t3pttDoUgBnBskkQHd8sP7tnr7H8PftBeA/F3ifxFomk+NvCOqa14P51\n3T7TWLea60TjP+lRq5eHj/noBWb4Q/aw+Fvj/wAD3nifQfiV4B1rw3p919hu9V0/xDZ3NlaXGceT\nJMkhjWTJA2E5yaAPRKK898D/ALU3wy+JutaPpvhv4jeAvEOpeIrJ9S0u10zxBa3U2p2sbFJLiBI5\nGaWJWBBdMqCME1Y8PftKfDvxdB4lm0nx94L1SPwZI0PiBrTW7aZdBdQSVuyjn7OwAORJt6UAd1RX\njPjz9v8A+DfgH4XyeNJviT4HvvDFrrtt4budRstfspra1vpp0hEEkvmhFdC+91LblRHOOK7bw38e\nfA3jD4jal4Q0nxp4U1TxZo8C3N/olnq9vPqVjE+NskturmSNGyMFlAORQB2FFFFABRRRQAUUUUAF\nFFFABRRRQAUV4/8Atw/HPUP2cv2ctU8VadrXhPwzcWt9p1m2s+KIGm0fSIrm+gtpLm5Rbi3JjjSV\nnP7+MfLy4FeL/B3/AIKNTRWGvXOpeL/APx90WybS7ey8Q/CTS/Is3vr68NpHp7LNqd3CZg/luWF2\nNqOdyJ8pcA+yKK8Lh/bl0keOIdKvPBXjzT9Niv7bRdU12aKwfTNC1a4ERj064Md08rTZniQyQRy2\n6u4BmBqzo37bvhvUdG8Ya1eeH/GWk+FPCcNzcR+IbrTkfTdcS2laCb7IYpHkLrMpjEc0cTydY1kT\n56APa6K8B1b9v7R/CngnV7/xF4J8deGfEGmXNlax+F9S/syPU7430jx2TRSreNZBZnjkAMl0mwoR\nJ5bcU7xJ+3np/hybwzY/8K7+Jt14i8QWt1qFxoENjZJqukWttKIZ5pIpLpPtKq5GBYm5eQENGsiE\nMQD3yivHPG/7X1v4C+Ken6DfeA/iIuh6hqltov8AwlhsrWHR4b252eTCVluEvJA7SKnmw20kKuSp\nkBVsckn/AAUb0+/15dP0v4X/ABY1qW+udTsdHktbPTUi16706eSG7t4DLex+WU8ppBJceVE68JIz\n/JQB9IUV893H/BRDwpNpml6lpXhzxt4i0GTRrXxBruq6faW32fwlZXIdopb0S3CSscRyEx2qXEiK\nhYqEwx0Lz9uXR7X4u3nhdfB/jq403TfENt4YvfE8dvZ/2PaX9zDBNbxkm5Fw6yfaYkEkcDornDlO\nCQD3Sivln4a/8FE9U8S+HZxqPwj+Ilx4mXWtbgj0TSBpU1wumadqD2rag5OoeUEB2IU8zz5JFk8q\nF1ANfRngDxvpfxM8E6T4h0W6W+0jXLOK+spwCvmwyKHVsHkcEcHkUAbVFFFABRRRQAUUUUAFFFFA\nBRRRQAUUUUAFFFFABRRRQAUVHNOtvE8jnaqAsT6AV4n8Lv8AgoP8MvjH4i0nTNHuPHFodfcJpV7r\nXgHXtD0zVWKl0S3vb6yhtpmdVLII5GLgZXdQB7hRRRQAUVg+JPH+k+ENZ0XT9Svfs954guJbXT4/\nKd/tEscMk7jKghcRxSNlsDjHUgVN4J8Y6b8RPCGl6/ot0LzSdZto72zuFRkWaGRQ6PhgCMgg8jPN\nAGxRWH4y8eaX8PrG1udYuvssF7f22nQt5Tyb57iVIYkwoJG6R1G48DOSQK3KACiiigAooooAKKKK\nACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKB0oooAKKKKACgnA\noooA+F/+ChHwmtfF3jP4iv4g+G/irxzrmq+G7eD4e6hpmgXOprpEyLN9rjjniRlsJGYqzs7R/aIy\nkYMpXyxY8a/DB7n9pjUppvAfia7+MVx420+/8PeNF0O5ltbHw6jWbTwLqwjMFtAIVuo3sXlV5XZm\nWJ94avt7yxj29O1HljFAHxD+xV8L7r4cftr+KH03wrqUlvqK6k+ta5rHga98P6xBK1yskMd1qgkN\nhrytkiGSJWkgjXBf52FVPit8I7PUP2jru51L4b+KNZ+JTfEjRtS0zxVb6Bc3NtB4djubPEY1FE8m\nO3iCyh7RpAwkDTeWRmUfdOz/AAo8sbs9/wDP+NAH5z+GPh/4j179tXTfEvhf4XyeBdck1HxFp+t6\nwvg/VE1KUyWd2bJ77XrgrHfWzSiKSNIUlghYxoJkKojng/4JSDTNRT4a/C/xx4N8TL8L7/TPEtxL\no1zosmra2biwa4UXUiolzeSqk5F6jOspKkSts+T9GFj2jjNGwflQB+fHif4IeF/FPwo+I8PgX4fe\nNPAXwhvE0QjQ4/hrctDdajBc3LXk03huaOG4vLRozbJcCKIvc7coZNpevpr/AIJ9abqWj/sxaLZa\nj4dtvDC2dzdR2Vpa6Xe6Rby2vnMYpYtPvXe40+Nw2VtJGzCuEAVQFHtoiCjv/jS7OR7UALRRRQAU\nUUUAFFFFABRRRQAV86/Ej9jGx+Nv7Weu+KPE0vjux0RfDWladp8vh/x5q/h2O6njudQeaOaLTryD\nzgFlgx56OPnYL1cV9FUUAfLPxI/Yxub2z+Lej+E/D+kaXpmueBdH8NaAkkgjtpxayXzvZvsJkjhI\nljRiRyJifmwa53xX8JPH3xN1/WviInwr1Dw41neeGpYfBV5qWltqOvDSbueaWQPDcvZKSk0a24kn\nTJgXzPKGMfZFFAHxD+0d+zx8SvGOveBvGXhrw7488Ewr4f1LQ9Q8LeAbnwjNeaeb27jmLT/21bSW\nRjdEJuPsr+YH4H2lfmqDxB+yf8QPA3jDwBZ+E/Dni+Sa10vw/Y6pqFxrOh614bvRpzDjVbe7iguU\nngXcYLjS4VLuELiMDFfctFAHwnpX7O/xU8MeKfHFr4d8AXcmgx6PrMFlo/je40LXdDnnup1mWPSZ\n4ymoeRM+55rfUfLiysaJgDeG+B/2X/ih8QvE/i3WPGXhnXri38S634K1CC38RzaEt3FDpt88lzHJ\nFprm3UQrhwvmTsQRiRz+7j+7qKAPkfxd+yN4nv5H/sfRoNJu9Q+K2p+I576CaFXisrjS7q1S8OHB\nJ3yRjYP3nt1avIfhb+wv8UT8HvE/h/xBafE7VLzSfhxd+B9Pt/Emo+D00m/Mqwfu7BNKsoJ5LcmI\n4k1GSJ0/54kyO4/RaigD5b+On7P3igeKfG2reG/Ch1KCQeDLuys7K4tYJtSOl6nJPcxR+bJGgkWA\nRhDM6IflG/g4zPgx8EfG+nePfAXh7UfAM2hWfw78T6v4iufGD6hZSW2vRXovQIoI453uvPkN3G0/\nnxRxgwtseT5DX1vRQAUUUUAFFFFABRRRQAUUUUAFFFFAHG/Gz4U/8Li8I2ek/bv7N+y6zpmriXyf\nO3fYr2C68vG5fv8Ak7M5+XdnDYwT4yfCxvi54f0uwN//AGf/AGbrmnaz5nked5v2S6iuPLxkY3+X\nt3fw5zg9K7KigDwPxH+x9rmsfEjUPJ8b29v8N9a8RW/izUvDp0UvqEt/A8EgSK/+0BIrV5beOR4j\nbu5JfEqBsChJ+wrf+IvhR43+G3iTxvDrXwz8SWV5YaZog8PwJNpyXM7Tk3M8ryi78t2KRp5cUfl/\nLIkp+evouigD5L+Fv/BMmP4T/CDxjoOir8DPDuqeLGt0nj8O/B3T9L8O3kEJfEV/pwneW8EgciQ/\na4+g8oQfPvzPEn/BK2TWfgLoHgOLxB8PX0nTZ7u4ns9Q+Hkd5p+kyXEnmCXQ4vtiS6TJBnEJ8+dI\nxt+QkZr7HooA+S/F3/BM688YfHHT/Fd94303UbbQ9f0vxBpb6r4dfUNcsms/KVrVL+S72R20iRn5\nILeJ98jF5JQXR/U/A/7K58F6h4RuP7d+1HwtqGvX+37Fs+1f2nNLLs/1h2+X5uM879v8Ga9hzRQB\n8P65/wAEXPDOq3vhe4mX4U+Ir7TNEstC1PUfFvwvsfEWoGO08zy5dNluJcWMp8zkSJcxfIp8sHJb\n36//AGUUurbXIY9cWFNY8a6b4wUCwG23Fp9i/wBGwHAO/wCx/f4x5n3Dt59izijNAHzTB+xR448G\neJL3WPBvxM0XRdTuL7Vlje98JSX0S6bqN79ukgdBex77qK4aUxXAKIqSbXgkxk+4/CT4b2Pwd+F3\nh7wnpslxNYeHNPh0+CS4ffNKsSBA7nuxxk+5rpaKACiiigAooooAKKKKACiiigAooooAKKKKACii\nigAooooAq6wjSaVdKoLM0TAAdScV8MfBL9nP4i/Cnw1+z3qnirxb8VvH3gqCLTo9R8G3uk6bbnwf\nqJgX7Jc7bLT4LuW2t5MxvHcSSNHujlkJ8tzX3jRQB+b/AOzn8B/iDpP7Vl/da4lxbeKFv9bl8Q6h\no3wo1DTdW1mxmF2tpHN4puNU/s++jUPbmGKGAvC6RDyrdVkIrfAP4Z6t8Lfh74iXQ/AOtXHh/QNZ\n8N6ze3tn8N9T8K6zfyWepCS6FxprF49UvkhBkkvrGP8A0nhB5hCV9V3H7UXxC8UXeqax4H+Fun+K\nvAug3t3YXN9ceJzYazqj2shjnOnWItJIp1EiSRr591bF2jOBgqx2PGv7bvgbw4PGFjHqN/8A254R\njSK7hl0LUntob2VIWt7Myw28gkuJDcwbbeHzJ3D/ACRvg0AeM+GPCeofGL4m/wBq3PgrxMvhvXvi\nJqd0YNc0Ca28/T5fC32ZZZoJkBjikk/d4mAOTsYB8pXy743+CIh/Zs8I+F/C3wAm0fxP4R8GaedH\nvZ/hnq15eWmo28kn23+zSiRWuk3CSCR/tG/zbvzA6R3ACb/sPxl/wUosfCfwb8Aalo2l6h428UeL\nvEMPhS7g/wCEa8QaJbaXfLF5l0bqH+z7q8sAiAukdzCCysCXWMPInp+iftmeB77VfBuj3msRQ694\n002z1K1is7O9urGIXQ/0cSXZt0jh85g6xC48mSYoQqbgVAB82/E74TW2oftES3eqfDfxXrHxMk+I\n2japp3iqDw/c3FvD4eS4sz5f9oqnlRQRbZN9m7h/MBl8th+9rQ+AfwuOlftG+GZrXwH4m0n4rWHi\nLVrnx/4tutDuLe21vSZBe/Z4zqbRrBfxl5LMwW8ckjWwQZSPYc/SXhP9rfwD46+K1x4M0zWLubXL\neWaBGk0i8h0+9mgJE8FtfSRLa3UsO1/Mjgld49jb1GDXplABRRRQAUUUUAFFFFABRRRQAUUUUAFF\nFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUU\nUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQ\nAUUUUAFFFFABRRRQAUUUUAIq7aUjNAORUN1dR2Vu8kjKsajJJ/hFTKUYrmkG47dkfd/Ol3bQa8a8\nT/tVR+GvEkkY0/7Vpq8b1bbN7kA8H6cV1Fr8Z9M8beD5rrRZLiSWRCoVoyjxnpnn8enpXy0eM8pq\nRn7OsnKN9Nm7dr7/ACPUlk+LioylDR9f8+x1GjeMNM8QSSQ2d9bzzREh4w211/A8/jWrnFfG3xEW\n6tdYj8l5rW4WTIdCUdPcHtWp4D/a58SaX4osdJj2a3HdTx28cc/+s5IXO4c+5zmvjsn8VKFassNj\naTjJu146r7t1+J7lfhGr7P22Hlddnp+O35H1xRTInaSNWYbSV5Gehp+c1+uLU+PCiiigAooooAKK\nKKACiiigAooooAKKKKACiiigAooooAKKKKAPkP41/sTeL/HXwy1b4UyeD/gl8Rvh3q2oX+paffeO\nFmuLrws91JNLuTT/ALJLFeyQyXEvlyfarRtm0dQXbpH/AGWfiJ8PPgn4y0XwPruk2+uaxr9jf2kr\nX8um/b7KCysLWW3kuVt53tJJBayDzI4pSgcY55H0xRQB8j/B79hnxt4J8P8Ak6rqOiy3U3xAufGD\n79c1DVpEt5tHey8g3N0hmmkSZ/vvgNGMgR8RL0nwR/Z0+JvwD8W+H49Hl8C3mi3/AIf0LSvEtzeX\nF19qsJdNheGQWUSxATpOjYDSSQ+SVL7Jd5QfSlFAHzR8MP2YfH3h7xt4P0XWG8Gr8P8A4c67feIN\nI1Ozu55Na1d7lbxI7ee1a3SK3Ea3r7pUuJWmMa/JHuNfS9FFABRRRQAUUUUAFFFFABRRRQAUUUUA\nFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAU\nUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRR\nRQAUUUUAFFFFABRRRQAUUUHmgBvbiuH+PV3cad4DmuoXZYrf55gB95a7gHjFea/tOeKl0L4dzWq/\n6zUP3WP9nvXzPF1WlTyfESrS5VyvVb36fiehlUJTxdOMVfU+eI9Y0/xpcTMkyOluA7oD8zZ/pU1l\n8S5vBV1JLbrGUaPy/LPyp7flXlfhnQ3s/iZHcWTPbxpHIbhAfkePHQj64qn8aPilaeAdLa4ui0k0\nhIgt0+/Kf8Pev5HXN7SE6b1P2ynl8Zy9ktUze+JXxm1LxBu+0TqqLnCINqj+tZH7Lvxb0bw1+0fo\ns2uBjbtujik/himIwpP6j8a4/wCFPjG3+NGn3Fpc2CabeW4MpyS7XEf+wexFef8AxM0uTwvrzrGz\npsfzIn+6y+n417GW4qphcZGstZRaeup639mUqlKpgZaXVtPM/YLRPFWn+Io91ldwzeoVuR9RWko4\nr8nfgt+1P4w8WftKfDzT2v8A7Jbza7YWtwLf5DdIZkDBz3UjtX6wxjgfSv6a4T4iqZthXWqQ5XF2\n0d0fiPE3DssorxpSlfmVx9FFFfWHzYUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRR\nQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFA\nBRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRQTiigAoooo\nAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooA5f4p+NpPAHh\ng30MMdxO0giRXfauSD3/AArw/wAU6/cfF9G+33C2txCp2IB8gFegftfSXcHwmMtnBPcyRXcbMsSF\n2VMNk4HavnP4P+Nv+Eg1q8tyzMy25OD9a/nnxWzTGxx31Rv9xyp26N6s++4XwNOWGeJS99PcavhE\n+FWvjJJHNNO4AdPu7R/9evDfiF4Fm+IHj6a4eNmitv3EQI+6B1/XNfQ3ihw2/B+7TPBvhrTdYvIG\n2pGbiYW7E/wvgdfqa/HcPiKk5XprXZI/QMNjHh4urLc84+CHwtPhPxZDfiBWW2t5S/HYps/ma8g/\naWvEuvHVwE/gGCP7pr7K+J+s+H/g/wCBbqS4ZHvZVwkYOJJT2A9BXyx8B/hxN+0D+0po+nzJvt5r\nv7befxKsMZDkfRuB/wACr6TL8vrVsVSoPWUrL5s6MBmDaqY+rpGK/LU9O/ZF/wCCYniIeNPCvjvx\nBq1vpsOnXdvq0NjHGXnfY4kVHJ4GcAHuK/QcD/Co7e3W2hjjVdqxqAo9MVKTkfhX9V5LkuHy2h7H\nDrffzZ+I51nmJzSv7fEvbReSHUUUV7J44UUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUV8zfHHxLr\nH7ZvjzVfhD4F1bUNH8G6NN9j+I/i7TpmhmiyAW0LT515W8kRh9omQ5tYnAUieRTEAa97/wAFK/hU\nNW1C105fih4oh0y8msJtQ8MfC3xR4g0t54nMcqRXtjp81tMySKyN5cjbXR0PIIp3/Dyz4d/9C38f\n/wDwxPjj/wCVNey+APAOi/CnwRpPhvw3pdjoegaDaR2GnafZxCG3s4I1CRxxqOAqqAK26APn/wD4\neWfDv/oW/j//AOGJ8cf/ACpo/wCHlnw7/wChb+P/AP4Ynxx/8qa+gKKAPn//AIeWfDv/AKFv4/8A\n/hifHH/ypo/4eWfDv/oW/j//AOGJ8cf/ACpr6AooA+f/APh5Z8O/+hb+P/8A4Ynxx/8AKmj/AIeW\nfDv/AKFv4/8A/hifHH/ypr6AooA+fX/4KdfB+x51XUfHHhiNesviP4feIdCiT6veWMSj8TXovwZ/\naa+HP7RtjLc/D/x74N8aQ24PnNoWtW+oeRztxIInJQg8ENgg8V3teX/Gr9jT4W/tEXsV94w8C6Dq\n2sW3NtrCwfZtWsjjG63vodlzC2O8cimgD1CivmXVfDfxe/Y1aO+0DUtf+OXw0t3Jv9D1WRZvGGhW\n4UkyWN1gf2oF729z/pBGdk8r7Yj7t8MPihoHxq8AaT4q8Lata614f1uET2d5bk7Jlzggg4KurKyM\njgMjKysAwIoA6SiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKK\nACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigDy39uP4x6p+zt+xV8YPiBo\ni27az4F8E614hsBOnmRG4tLCa4j3Lkbl3xrkZGR3rgfD/wC2z8StX0HT7u4/ZK+PtrcXUEc0kI1j\nwZ+6ZlBZf3mvRvwTj50RvVVPFaH/AAVj/wCUWP7S3/ZKvFH/AKaLqvoCgD5//wCGyPiL/wBGnftA\nf+DfwR/80NH/AA2R8Rf+jTv2gP8Awb+CP/mhr6AooA+f/wDhsj4i/wDRp37QH/g38Ef/ADQ0f8Nk\nfEX/AKNO/aA/8G/gj/5oa+gKKAPn/wD4bI+Iv/Rp37QH/g38Ef8AzQ0f8NkfEX/o079oD/wb+CP/\nAJoa+gKKAPn/AP4bI+Iv/Rp37QH/AIN/BH/zQ0f8NkfEX/o079oD/wAG/gj/AOaGvoCigD5//wCG\nyPiL/wBGnftAf+DfwR/80NH/AA2R8Rf+jTv2gP8Awb+CP/mhr6AooA+f/wDhsj4i/wDRp37QH/g3\n8Ef/ADQ0f8NkfEX/AKNO/aA/8G/gj/5oa+gKKAPn/wD4bI+Iv/Rp37QH/g38Ef8AzQ1zvxV/4KMe\nJvgf8LPEvjTxT+y/8ftM8M+DtKutb1e8/tHwZN9ks7aF5ppfLj19pH2xxudqKWOMAE8V9RV8/wD/\nAAVj/wCUWP7S3/ZKvFH/AKaLqgD6AooooAKKKKACiiigArxv9oL9rST4I/FLwn4L0n4b/ED4meJ/\nF2laprVvZ+GZtIh+yWenS6fDcSzSalf2cf8ArNTtQqozscucADNeyV8//Ef/AJSnfBv/ALJV48/9\nO/g2gA/4bI+Iv/Rp37QH/g38Ef8AzQ1zvwq/4KMeJvjh8LPDXjTwt+y/8ftT8M+MdKtdb0i8/tHw\nZD9rs7mFJoZfLk19ZE3RyIdrqGGcEA8V9RV8/wD/AASc/wCUWP7NP/ZKvC//AKaLWgA/4bI+Iv8A\n0ad+0B/4N/BH/wA0NH/DZHxF/wCjTv2gP/Bv4I/+aGvoCg9KAPnt/wBsX4hujK37J/x+I7g6v4I/\n+aGuC8ZfEm/1q/kv9R/Zl+L3gWSceXNrl7qXhT7LAD3mWz1qedh/uROfavr8Lgc1wvx2+G9/8TvC\nDWNjdQ27gltsgO2U44yR0/KvmeK8CsTllaEaKqys7LTd+vbc9LKa7pYqDc+WN9X5HxfofxQ0688R\nTaM0ywyXJLwJJ8reYOoH1H8qr+IL6axk3wyyQyI+4FDtZSOhp0/7Nuv/AA5+K02q+JNNktbaxjJt\nJ+Hhllf5chhxwM8NzzXo3wB+Dtp8YfiDNDqcckulWEJmnVHKb2Jwi5HIzyev8Ffy3h+HsVWzCll8\nIONR6WelvXrotfQ/Za+PwlGk8VGfNBK7tr939bnzf461aXULx5Lq4eaZznMj7maq3wA8X+JvA3xz\n0fUPCek32vatHIR/Z1o0ay3sX8cYMjpGMju7hFOMkV93fFH9hTwt4u0Oa20bb4fllTA8uPzI2PqQ\nef1q5+yh+yJp/wCzjpU9xcSw6l4ivOJrwR4CJ2jjz0X1r9NyXw7zXD5jB1mlGLvzJ327db+qPIxX\nHGXyy+cYK8pK3K/Pv0t8zIT9sf4jbBu/ZP8Aj9u9RrHgjH/qQ07/AIbI+Iv/AEad+0B/4N/BH/zQ\n19AUV++n4+fP/wDw2R8Rf+jTv2gP/Bv4I/8AmhrnfhV/wUY8TfHD4WeGvGnhb9l/4/an4Z8Y6Va6\n3pF5/aPgyH7XZ3MKTQy+XJr6yJujkQ7XUMM4IB4r6ir5/wD+CTn/ACix/Zp/7JV4X/8ATRa0AXfh\nL+2XfeO/j5p3w58SfCD4ofDPW9a0DUfEmmz+JLjQbm1vrewuNPt7lFbTNTvGWRX1K1IEiIGBbDfL\nivc6+f8A4j/8pTvg3/2Srx5/6d/BtfQFABRRRQAUUUUAFFFFABRRRQAUUV4H+07+0hrkPj/T/g/8\nLPst58VfEVr9tub2aH7RYeBdLLlDqt4vRnJV1trdiDcSoekcczoAZv7Svxe8V/GD4lyfBT4TahJp\nOveTFN418XxIHXwLp8o3LHBuBR9VuU/1EbZEKH7RICoijn9k+D3wh8O/AT4baP4Q8K6eml6DocHk\nW0AdnY5Yu7yO2Xkkdy8jyOS7u7MxJJNcz4C8A+DP2IfgBqJWe8h0PQYbnXde1i8El9qGqT4M13qF\n06qZJ7iQhnYhSeiooUIgqfBz9tHwL8c/F8WhaV/wm2k6tNBJc2tr4o8Ea54Xe/SPbva3/tK0txPs\n3qWEe8qGBOKAPW6KKKACisPwv460vxjqGtWum3X2m48PX/8AZ2oJ5Tp9nn8qObZlgA37uWM7lyPm\nxnINa1xMLaB5CHIUEnapduPQDk/QUATUVR0bVY9e0m1voFuY4byJZ41uLaS2mUMNwDxSBZI255Vw\nGXoQDV6gAoorD0/x3pWr+N9S8OwXXmaxottb3l5b+U6+TFOZRE24ja2TBJwpJG3nGRkA3KKKKACv\nmXxFpjfsZ/tdadr1i72/w1+OWqppWuWAAW10LxM6n7LqEYH3Fv8AZ9mmHRrj7I/35ZWb6ary/wDb\nL+C0/wC0P+y3448H2MxttY1bSpW0e5GN1jqUWJ7G4Gf4obqOCQe6CgD1CiuC/Zl+NFv+0Z+zn4B8\nf28Qt4fGnh6w11YAD+4+026TGM55BUvtIPII5rvaACiiigAooooAKKKKACiiigAooooAKKKKACii\nigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKK\nAPn/AP4Kx/8AKLH9pb/slXij/wBNF1X0BXz/AP8ABWP/AJRY/tLf9kq8Uf8Apouq9Q+Lnx78C/AD\nRbXUvHnjTwn4J0++mFrb3Wvaxb6bDPMekavM6BnP90c0AdhRVXTtQt9WsYbq1mhuLa4QSxSxOHSV\nSMhgRwQR3qG38QWN1rl1psV9ay6jYxxzXNokytNbpJvEbumdyq+x9pPXY2OhoA0KKo6jrVnpV3Zw\n3V3a20uoTfZ7ZJZlRrmTYz7IwfvNtRmwOcKT2q9QAUUVzfxO+Lfhb4JeDbrxF4y8TeH/AAj4fssf\naNU1rUYrCzgz03yysqL+JoA6SisfwV460T4leF7PXPDusaXr2i6lH51pqGm3cd1a3Sf345YyVYe4\nNbFABRRWfrOvWPhyGObUL61sYZ54raN7mZYleaRlSOMFjy7MQqr1JIAoA0KKKKACvn//AIKx/wDK\nLH9pb/slXij/ANNF1XffG/8Aab8D/s4QWMnjTXV0SPUI5pYZHtZ5kVIQDI8jRIwiTLxoGfaGkkjj\nGXdEPnX/AAVSu01D/glR+0hPHu2S/CfxM67lKsQdHuiMg8j6GgD6HooooAKKKKACiiigAr5/+I//\nAClO+Df/AGSrx5/6d/BtfQFfP/xH/wCUp3wb/wCyVePP/Tv4NoA+gK+f/wDgk5/yix/Zp/7JV4X/\nAPTRa19AV8//APBJz/lFj+zT/wBkq8L/APpotaAPoCvhLxv4dvviP+198TUv/h7+1F44tdK8Q2Vl\naaj4J+LcnhvQdKhOmWMhiey/4SGwyyvJJI5S1feJOrn5B9214P8AFL9ij4X+Nvifda5q2s/ETQPE\nHjG5XzIdC+KviTw3DqlxFbhcpaWOoQQtKIIBkpHv2R5PSgCHV/j34tf9oPVfhXpv/CO2eoWmmya9\nBq9zHJdxJp5i8uKJ4RcJI12Lggv84Qwru+UyDHkX7K/7RvxkPwf05/Eniz4X3Vn4U+G2k+JdT1nW\nNPvbD+07i8hvCnm3DXk32dI/s8TSSlJTJmTCR5G36mtfgH4UtLuO6j0tmvI9UOt/apLyd7l7sw+Q\nZGlZy7Dyf3exiU2ALjAArlNJ/ZN+Ffw78GXnhOPTVt9J8XWkegtaX2uXVxJdQxefPFbQvNM0ieUJ\nJmjEJUxqo27VjTYAeF+Av2xvFfxAl8RaB4huNB8SS6B4o8LQQ6rpvhrWfCdveW2pX3lun2a6uXll\nEYjb98sr2827BjwHSrnwl+PXjT4ea7b+I9U0n4e2/gnxRrHiLTU0zRdLuLbVLc6V9veK4a4a5eKQ\nSR2RVohBHsd87znYPbPBP7E3w48BG5ksdH1a6ur6fT7m7vdT8Q6jqd5ezWEpms5Jri5uJJZXjc/e\ndySoVWyihR0+m/AXwnpUOixwaSqr4f1C81WxU3ErCG5u/P8AtDnLfPv+0zcPkDfwBhcYyw9KU1Uc\nVdbPqvQuNSaTgnoz5eu/2nPin8PvEdn408W3PhPVrG++G194l0rRdG+02FrDNLdacsMN0ZZ5UmaP\nzgv2pBHuDyYhTv7r8AfiT45f4oeJfAfxCuvCesa5ounWWt2+qeHdOn021ntrqS5jED201xcOskb2\nz/vPNxIHBCJgiqnw+/Y1+Dvh+/19NF0WDUmks7jw1qNnc61d6pb2FpMIZZNOW3mmkjtYNvlOLeNE\nRA+VVQ53dh8GP2dPCf7PtjfxeGbXVFm1WRJLy81XWb3Wr65CAiNGubyWWYxoCQke/YgJCgZrYg+d\n/wBm/wD4KD+Lvjd+0DZ6a3h3XJfCmuanqOmQwJ8M/Etiugx2rTrHeTa7PH/Zd5HMYANkHl7DMgWS\nfBNfYleX+Ev2RPAHgj4qzeMtL0i/h1iSea7jhfWb6bTLK4m3+fcW2nyTGztp5PMk8yWGFJH8x9zH\ncc+oUAFfP/8AwSc/5RY/s0/9kq8L/wDpota+gK+f/wDgk5/yix/Zp/7JV4X/APTRa0AHxH/5SnfB\nv/slXjz/ANO/g2voCvk39rH9nzwD+0l/wUj+CuhfEbwP4R8faJa/Dbxzfw6f4j0a31W1guF1Twgi\nzJFOjoJAkkihwN2JGHQmuy/4dO/ss/8ARtP7P/8A4bzSP/kegD6Aor5//wCHTv7LP/RtP7P/AP4b\nzSP/AJHo/wCHTv7LP/RtP7P/AP4bzSP/AJHoA+gKK+f/APh07+yz/wBG0/s//wDhvNI/+R6P+HTv\n7LP/AEbT+z//AOG80j/5HoA+gKK+f/8Ah07+yz/0bT+z/wD+G80j/wCR6P8Ah07+yz/0bT+z/wD+\nG80j/wCR6APoCivn/wD4dO/ss/8ARtP7P/8A4bzSP/kej/h07+yz/wBG0/s//wDhvNI/+R6APnD4\nbf8ABwl8Ov2g7/8A4Vl4R0268MftLXOtyeFP+EC8ZD7HHo+pRmRLiW4u4yYpbaAxSnZC/wBom2JG\nsaPIMfYP7NH7NWn/ALOPhS+j+3XXiTxZ4kuzqvijxLeoFvfEV+wCtNIF4jjRQI4oE+SGJEjXhefy\nl+H/APwbm/Dv9hD4q2Px0+MGgeGPjXo13eXV/wCNNG0zQDp+ieCDPJ5q3thpkTlLnT7XdJHLbyI2\nINsqRjyTGf2a0TW7TxLo9pqGn3dvfaffwJc21zbSiSG4idQyyI68MrKQQw4INAHnf7Z/h6+8Wfsj\nfE7S9Ltby+1LUPC+o21pb2cRmnmle2dVSNAGLOSRgYOT2rxDTvgN8Svhb8ftIk1zx58Svi1Z6l4c\nv7bwnqmr6fpdungvWDbnebkabYW0ZSeP5I5p0PllHj6zDPpd/wD8FHfhFZatead/buv3l5aPdxJH\nZeEtYvPt81rK0N1b2hitWF3PC6P5kNv5kiKN5QJ81aviD9uf4XeGJtB8/wASTTReJLG31S3ubPSb\n28tLO0uMiG5vJ4YmisYZCGAkuniQsjDOVOAD4U+Bf7OHjiP4MfEzTZtLuYdUvvh7eaV4ksNF+EGq\n+ErjW9YkWHE11f3WpXQ1m+XEuy6tI5AQ8mZhlEr3D4lfstaf8LL/AMeaL4Y+Hd5D8L7yfwxqviDQ\nND0pvs2vQrcXn9p7LaMYupnQW73EaAyToMESM4D/AENrH7ZHw/0P4i6h4TfUNYm1zT1l3iDw/qM1\nnPNFA072sV2kBt5rsRKX+zRyPPgZ8uuO+DX/AAUs+GvxW8AaHrFxNr/h281Lw3F4pvbPUPDuqQro\ntnIkz+ZczSWyJFGTbzBJJNizbB5e/emQD5U+JnwL1O9+E17/AMIn4Fl8O/Cb/hY91qd34c8R/CrV\nPE9ncaa+jW0dsz+G4J7W7mtxcA7IkD+S4TMA8s+X6h8FP2W7zxFefDGXxtoF14oXwv4R8Qz6ZLqP\nhWXS7bTZ5NStZLFI7Ka4u3tXjhXFvHNOZ0jTkI4dR7zp/wC398Lb3wZrOvSaxrul2fh+9tNPv7fV\n/C2q6XqEM11Isdr/AKFc20dyyTOQI5FjKP2Y1aT9uD4bv8N4PFS6prj2NzqTaNHYDwzqh1s3yDe9\nsdL+z/bxKqAyMhgysfznCfNQB8jT/Dr4Q+JfHPwZ0v4m/AnWrjxN4N8N+Hpp/En/AApLV9cv7q9i\nijNtZjVLbTphaxW0g3y750IbCHCebud4L8B6trH7cGl+JtJ+E9x4Rum1TxDYeJr+LwZqq6ndxyWl\n2bb7brlwRHf28jhHjjgSWCF2jjEqFER/prw5/wAFCvAM3wo0TxZq82pWMPiO71CLT7TS9Lv9duZb\nezu3t3vHitLd5Y4AqxvJLIixw+YA79z3/wAUvjzpXw2+EUfjC2jm8SW+om1h0i30yWN31ia6kSO1\njidiI/3jyJ87MEAJYnAoA+OvDH7H+ofCX4N6PD8P/BGp+H9e8SfCB7bxI+n272F5rOoxvp+I7mY7\nM3xiN3HG8xEi5IBAHENt8HtBkt/iFN4C+EfjDw58KryXwrJqnh6PwjeaMdYsbe6vDqUVvp0kSSSD\nBQywpHmcb8CTzgZPprTf2j/Gfw5tda1L4weB9D8E+G9J0y51c67oHiOfxDY20FvsLpd7rK1lhmKt\nvCRxzIQj/vMgA43j7/goF4N8M+JPCRj1a+03Q9Q3XOsyX3gvXXuLC1cyQ20k+22CafHJOjEXF8Y4\n2SM7A+/egBW/ZH8F3Gi/Br4ix+B/D+peBPCepajPJ4C0a+0qXRW0uE2ECZjsZo45LOFrsTOsLxoV\nyW2KGxXiv/BK/wCDnizwB8V3uNWtodJnt/Dxs/FMVl8ItS8Hrqmq7oD9ovtRvNTuE1i7G2XF1axy\nIyvJmYZRK9u8H/t5w+Mf2ufEvw1j8Ptpmj+F72LSZNb1WLVbGS/vDYy3rJbJJpws5Y0jjz5i3nTL\nbQDF5vXeHv24vhj4o+H2t+KrPxFcNo3h+SKO5abR72CeczHFsbaCSIS3STniB4EkSc/6ovQB69RX\nI/B740eH/jp4R/trw3d3lxarM1rNDe6fcabfWMyY3RXFrcxxz28gBU+XNGj4ZTjBFddQB8+/8ExB\n9h/Y/wBO0pf9X4Y8S+J/DkQ/uR6d4h1GxQfgtuB+FfQVfP3/AATQ/e/szapdDmPUPiP49voz6xz+\nMdZmQ/8AfMgr6BoAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAo\noooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooA+f8A/grH/wAosf2lv+yVeKP/\nAE0XVZPxE+Lvgf8AZy/bD8QeJPipr2geEdL1zw1p2m+Gtb8Q3cVnYNtnuvtllFPKRGszu9s5iyHl\nGzAfy/l1v+Csf/KLH9pb/slXij/00XVfQFAHw58TPH/w902x8C2+teIPGXwP+DNzompXnh7brl34\nV+26oL1Ps6ebDOknzxF5bexc4mSQgwHZ5Y5D4o/E34maL8LfEGvMfsXiy+8LeA/+EruL3VLjw79j\ntZbi++2yTXltb3EtgNhPmTxwEwBnI8vZ5ifolRQB+bfhDxDb+LvAfwj8VeMfGMd14V8O/E2ceHdR\n8K/E7XPEVn5D6Jc+TB/bFxFZnVme7/dxmQThzN9n3yEuh6v/AIJ1/HiP4hftaNb+H/E2u6x4X1/w\nbcandLqXxFufF0z6jDd2sbefEQbPTbqNZSJLSyfYhf5448Jn75ooA/PLxf8AGj4ix/8ABQ/UNHl8\nReFdH1iDxfZ2miaXffE3WLW/vNAItfOMHhaHTJbS9jdWnzetOTC5JaaARlB9D/tJ+MPDfwb/AGnP\nBPjj4jX+maL4D0jQ9St7bW9VKw6ZoOqSSWxEs9xIfLtjJbpNGkr7B/rE35kCn6GooA+F0tbD40/t\nIWVz4O13xBpPwq8e+Mkf7V4a1W50m38UTw6FevdXENxbPG8kDyJafvYXxJJbOQTyTk/C74y2kPx3\n8Bed8R/G958SLrWdfTx34Si8QXV9Fp629nfPbxnTnJitdgjjNuEjj+0jEh88jzB9/V5x4K/Zg8I+\nBPifeeMLb/hKNQ168aVlk1rxVqusW+n+Z/rBaW93cSwWgYDBFukYxx04oA/PrwP+0heeJrb4lP4I\n8ceLF0vV/hZqerfbZfiVdeKL+31aGe3j8x0INppd5CJT5lrYybELjfHHhN/0HrUGqfAf4h+IPDOk\neL/HN5pK674JvgdY8R3mqTxSXupzQ3iLNcSPIsEyRJmEP5S7iERAcV9k0UAfnb4P+PvwMvPiB8VP\nGHgv48eJNSvtH0fVreLwppPxlvPEOsTFW/0vUE0q/v7i3tPJddsH+jxpCm+RsIyBOf8Ahb8e3vfD\nHxMtbXx1rNl8K49U8LXd5rVn8TtR8Vf2bpV3Pcpf3cWt3BEtvE3lIkj285itwsjRyIwcJ+mVZviD\nSG13QL6xjvLixa8t5IFuYEieW3LKRvUSo8ZYZyA6MnqpHFAHwr+138bfCWnfCXwDo+i+PPH2tQar\nouo3nhnUr34jXvg+PX5YpFEP+m2sYv8AU7oY/cwRpKk8WZJBLvSQ+K/8FBPjPpvjz/gnp8Rbj4pf\nEzxF4e1rU/gPHe+C7GHxHcaPbeK7240a6N9+4hkjj1ORpNiSwyJKsMZDhE3l6/UD4SfDiH4R/DbR\nfDMOpatq8Oi2y2yXupSRvdXAX+J/LRIx7JGiIgwqoqgAeS/8FY/+UWP7S3/ZKvFH/pouqAILLxr+\n1VfWULTfDf4A6fIyAtn4i6tc7Tjnj+xI/wCdTm9/amuh/wAgz4AWP/cT1e6x/wCS8dfQFFAHzq+k\n/tX3WpxbfEP7PVjZ+W/m7vD+sXUgfKbNv+mxjbjzM/8AAfek/wCEP/awNp/yUP8AZ4E3ndP+Feaw\nV8rzP+w39/y/w3e1fRdFAHzwnhT9qqG+dv8AhPP2fLi32LsQeA9Yhfdk7sn+2HGMbccetM0u1/av\ntdOt/tl7+z1fXvlp9o8iy1i1jL4+bZmWQ7c5xmvoqigD8k/+DhHx78fPB37C2m3WrR+A9J8ZQ+Lt\nNk8BXPgPxBrCeJDrf7yMCzh+zDzSbSS8DoZAPLL9TtU2v+CO3xM/a7+JX7X3wtm/ay8LafoeoW/w\nr8Y/8I1eyRR2ut6rA2q+EfON/axnbC6ERBcpG7ZfcnAd/wBW57WO4mhaSNGaF98ZIyUbaVyPQ4Yj\n6E14N8R/+Up3wb/7JV48/wDTv4NoA+gK+f8A/gk5/wAosf2af+yVeF//AE0WtfQFfP8A/wAEnP8A\nlFj+zT/2Srwv/wCmi1oA1v28fiZpfws/Zt1LVNa1LXtH0yS7tLW5vdL1mPQzbJJOgLT6hJj7Hb44\nluFZHRCdjB8V80/sj/F3xJ4g03RdLtfEGs3Wn2vxF1nStPQeLtQ8SebYjw9JdQR/2jdqlxfR+Yyy\nxyS7+qFHdAjn721C7XT7OaZgdsKlzyF4Az1JAH4kCvG/EvxX+DOo/Er4e+JvFHjDwzovjCa0UeGd\nM1PxjDCzG/j48q0juWtrid0V0SVBI23zBHJsdsgHzloP7VH/AAt34a6Lp3h34qXlrq2k/CG9/wCE\ni1CKS61BtE1aOXTopDexw5lS7hYyiTOJ4Q7udmcniPAfjvw7428NfDDWtc8Ua9caH4K+Jjx2euaF\n8WtS8U6JeyS6HdNFHZ6nIYp7zfceXH9nu/PxPM9uC6P5dfXFt/wUc+E//C3viL4WvPFvh3SbX4Up\nbDxPr2oeItKttL0u4uPuW0u67+0Ryf7UkKR5DIJC6ui+ja3+0N4B8NRaDJqHjjwhp8fioK2itc6z\nbQrq4coFNtuf99uLpjZnO8eooA/OfwP+0feeJrb4lN4I8ceK10vV/hZqerfbZfiVdeKL+31aGe3j\n8x0INppd5CJT5lrYybELjfHHhN/t/wATIb74EX/jzwvH43+IVv4Fjn8Mahr+qX3iW/vr/RLK8uLx\nNRnivZZHuLSFhBFvMbolujSPH5IGR9Ft+2p8GzDcSf8AC2vhn5dreW+nTt/wlFliG5uBut4G/e/L\nJKOUQ/M46A1u6p+0X8P9C+K9j4BvvHXg+z8dalF59n4dn1m2j1a6jxnfHal/NZcdwuKAPiHwt408\nH6P4b1hZ/id4j074G6l8SbyPVvGQ8W3dmz2o0O1ezEuuJKlxHbvMABdeeDJsiBmfzMv754C+K97o\nv/BPXxF4o1jVvGV9Yabb6udL1izMf9t3mlx3M6WV2klwChkNuInE8wwwxK/UmvX7n48eHdRi8YWX\nhrWPD/irxN4KgZ9T0Oy1m2+12c3ll44bjL/6MXxwZdoxz0ri/wBm79sjSfjf8Itf8aatdeB9D8P+\nG7l7a61TTvGtjrmlDyo0a4lN3CRHHGkhdB53lyYTc8cedtAHxj4K+Nc+vfC74yWuj/E+HQPBNjJ4\nd1Ow1S/+KOueJNNeC4kuftQfxGv+k2EExiEbz28rwWrodr/fQfZX/BPr4gSfEj9l/R75pNQulhub\nu0iu5/ER8SQ3sUc7hJLbU2jjkvrXGBFcSJ5jooLF2y563VP2rPhfovwosfH158SPAVr4H1J0jsvE\nU/iC0TSbxnO1BHdNJ5TEkEAB+SK7mwv4NUsYbi1mjuLe4USRSxOHSVSMggjggjvQBar5/wD+CTn/\nACix/Zp/7JV4X/8ATRa19AV8/wD/AASc/wCUWP7NP/ZKvC//AKaLWgA+I/8AylO+Df8A2Srx5/6d\n/BtfQFfP/wAR/wDlKd8G/wDslXjz/wBO/g2voCgAooooAKKKKACiiigAooooAK+TZpLr/gmb8RN2\nN/7Nvim8+YD/AJpZqM0nX20aeRue1lK//PvJ/o/1lVHWtHtfEukXWn39rb31jfQvb3NtPGJIbiNw\nVaN0bhlIJBUjBBoA8R+Gv7L2teEdX8C3NxcaLJH4Z1fxLqNx5UsjM66nPPLD5eYxllEo37sY5wXr\nyrw3+wv8Uvh18IbjwRpNx8P7/T/HXhKy8LeJ769vbmObQzBHPC9xZRi2cXgeOfiGV7YI6bt7byK6\nvwn4tuP+CefxE0f4f+Jrq6uPgn4ouo9N8E6/dytIfCF5IcRaFeynn7O5wllcOeDttnO7yDJ9TUAf\nLKfsd+MtM/a2XxVoi+H/AAz4dkuPP1HU9K8T6pDceIYPs3k/Zr3RDGdPlmyIz9vEol2xgCMVH8F/\n2Ufih8L/AIR+JLO31bwpoPjC48EaV4V0bUNPupbqKKbTzeIlw5ltk2eYk0TY2SeW5cYkCAv9VUUA\nfG3wt/YV+Ilj4j8Ra14ku9BW68Sat4V1R7aTxZqniN7X+y715rhPtV3bxlg6ENGI4oIw5I8tMGR+\n78T/ALNPjrw98StQ8ceFv+ET1LXLfxdc65YaZqt/cWdpeWdzpdtYyRy3EdvK9vMrweYCkUoYDacb\n8p9HUUAfKPgz9mD4ufBu10PW/Dq/DfXvFYtdZ0vV7PUdQu9P09Ir7VHv47m3ljtp5GaPdh7d41WT\nI/epsBPol7+ytc2n7KHhP4f6XryW+s+B49Kn0vVZbPfC15YSRyRvJAGGYnePDIHBCOcMCAa9qooA\n+LviZ+wX4w/aH+IHiLxlr3gX4F+BfGF54b1LQF1XQpZtU1TxH9piSKM3t9JYWskUEarnyNlxztw4\n2c7f7cv7I/xc/aV1DW9G0PXdHj8HarosNtZxXHijUdIGlXkbM0nmWtpbkX8c/wAikz3ASMD/AFEv\nIf62ooA+c/FP7IGueLvi9qOtT6hpdvpWp6/LqUixyyG5SCTw6dLIA8vHmCY78Zxs5zn5Kqaf8A/i\n9rPwE0fQdab4b2ut/D6+0i58MxWU93LZ6t/ZxGXvJGgU232hVwI4YZfsx+YSXHAH0vRQB5Z+zZ8M\nfE3gw+LPEHjKPQrXxP451ZdWvdP0S6kvLDTRHawWscUdxLFBJOdluGMjQx5LkbAAK7f4j+PNN+FX\nw717xRrEwt9I8N6dcapfSn/llBBE0kjfgimtyvm/9u+5/wCF1XfhP4B2B+0XPxQuftHigJz9g8MW\nkiSai8vot1+6sEyOTesRxG+ADpv+CdHgbUfh3+wx8KtO1qE2+vTeHbXUdXi/55X90n2q6X8J5pBX\ntVFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAU\nUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFQzTLbwtJIyoqAlmJwAB3NeB+Iv+ChfhbXNYudE\n+FWj+IPjh4itZjbzx+D44ptKsJc4K3WqyvHYQlDnfH5zzjDYhcjbQA3/AIKtXKXH/BLL9pho3Vwv\nws8UKcHOCNIusivoSv5vv+Dg/wD4I+/FPxp8bm+L/h/wD4N8H3niLwt4m8Z+Pbfwp9tk0rSbfSre\nO6kuL3UZBHFcX135sieXDbQ75I958zfJKP38/Za/Zq8N/sg/s++F/hr4RGo/2B4VtTbW8l/dvdXV\nwzu8ks0sjcmSSWSSQ4woLkKqoAoAPRaKKKACiiigAooooAKKKKACiiigAooooAK+f/8AgrH/AMos\nf2lv+yVeKP8A00XVfQFfP/8AwVj/AOUWP7S3/ZKvFH/pouqAPoCiiigAooooAKKKKACvn/4j/wDK\nU74N/wDZKvHn/p38G19AV8//ABH/AOUp3wb/AOyVePP/AE7+DaAPoCvn/wD4JOf8osf2af8AslXh\nf/00WtfQFfP/APwSc/5RY/s0/wDZKvC//potaAPbvFFrJqPhnULeFd01xbSxxjONzFSAOa+RLL9j\nvxW3wP8AG1hdeFrWTxBq3wo8PeF7MPcWzvLe2kd2ZbffvwNkkkZ3khCSCCcfL9m0UAfJ/wAQvgz4\n28KfHu++Iln4Ju/Gljo/ixdWt9Fs76yivtRhbQYbD7RbfaZ4oBNDMJBtnki+RpCDnZl/wM/Zc8T+\nFfF2g6xqnh2z0/y9A8VbLaO5ikXQ5tU1SC8hsQQ3JWMMpePMYKEBsbc/VtFAHxgP2Ktesfgoul2n\ng/TodUtvgTJ4It40ktVaLUmTJtA+/ABcA78+XnnfWJ45+Bvxo8X/ABZ0OyXwfdWHh7RfGfh7xBPP\npv8AYVvpur29t9mSaa5leR9Qmv4/LbO1II/LjQLJLjy3+6qKAPinRfhT4g8SfDf4h/BeTwDo+l+L\nLHRdTe18RX1/bhPFcF5qUlyEh8vfcfZ5t225Mnl+XK4ASQFXqp8bv2cviV+0jpPivxVpvhDxJ8Kr\n6Sbw21toUN9oUut6j/ZN5PPJLGWN5pYZkljSAXGQfIHmCL5Sn2DpPw18OaF411TxJY6Dotn4j1yO\nKHUtVgsYo73UEiBESTTKN8ioCdocnbniugoA+DYv2XvH+n/BtNdk0T48aj4yuvFdxrsV1H4h8HQ+\nMNKM1lHavI9rFbwaBIjhCskJkl+X94HeRiifW37NPhvXPBv7P/g/SfE1rpNlrmm6XDb3lvpdtHbW\nsDquNkccX7tQBgYj+TOdvy4rvKKACvn/AP4JOf8AKLH9mn/slXhf/wBNFrX0BXz/AP8ABJz/AJRY\n/s0/9kq8L/8ApotaAD4j/wDKU74N/wDZKvHn/p38G19AV8//ABH/AOUp3wb/AOyVePP/AE7+Da+g\nKACiiigAooooAKKKKACiiigAooooA5/4k/DnQfjB4E1jwv4n0mz17w/r1q9jf6feR+ZBdwuMMjj/\nACR1FeIfBj4hax+yh8RNH+D/AMQ9VvNX0XWna3+HnjG+l3y6uqKX/se/kP8AzEYY1Jjlb/j7iQv/\nAK6OXP0fXF/Hj4GeG/2kfhVq/g3xdYtfaJq0YDiOVobi2lRg8VxBKhDwzxSKskcqEOjorKQRQB2l\nFfNPgyT9qr4VeH4fDreG/g58UodHJtrXxTrPj/UPDup6zAp/dS3dlBoV3FHcbMCQxzFHcFwsYby1\n1v8AhY/7U/8A0Rv4Af8Ah49X/wDmYoA+gKK+f/8AhY/7U/8A0Rv4Af8Ah49X/wDmYo/4WP8AtT/9\nEb+AH/h49X/+ZigD6Aor5/8A+Fj/ALU//RG/gB/4ePV//mYo/wCFj/tT/wDRG/gB/wCHj1f/AOZi\ngD6Aor5//wCFj/tT/wDRG/gB/wCHj1f/AOZij/hY/wC1P/0Rv4Af+Hj1f/5mKAPoCivn5te/am17\n5B4T+AHhXd/y1/4SzV/EGz/tn/Z1ju/77FQSfssfFn4o/L8RPjxqltp7/wCt0r4daFH4VgmH9x7q\naW8vx/vwXEBJ546UAdJ+0F+2RovwZ8SWvg/RNPvPHnxR1hc6X4P0Zg10wI4uLyTlLCzH8VzPtTsg\nkk2xs/8AZk/ZuvfhbfeIPGfjDULPxB8VPHjQv4i1a2iZLW2ih3/ZtNskf5ksrcSSBA3zyPJLK/zy\ntjqPgf8As3+B/wBm/wAPXGmeCfDen6FBfS/aL6eMNJealN/z2uriQtNcS/8ATSZ3f3ruaACiiigA\nooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAK4v41/H\nzwf+zn4M/t/xt4gsPD+mGZbWF5yxku524SCCJQZJpnP3Yo1d27A1V/aV+O+n/s0fBTXvGWp2l1qS\n6YkUNlp9qB9p1e+uJUt7Oyhzx51xcywwpnjdKM4FcN+zl+yndaT4vi+KXxQks/E3xl1G2aNrpWMm\nn+EYJOW03Skf/VQqMLJPgS3JXfIcbI4wDLT4/wDxt+Nql/h38K7PwTocn+p1/wCJVzJa3Eq/89It\nHtd9wR/s3U1nJx93kVOv7Kvxa8Z/P4w/aN8YW+7/AFln4I8N6VoNk/sDdRX12o/3boH3NfQlFAHz\n+f8AgnR4Xv8A5tV+IP7QGrSN95/+FseINP3f8Bs7uBR/wECj/h294ItxusvGHx/sZOz/APC5/Fl1\nj/gNxqMi/pX0BRQB8+t+xZ4w8MDzPCf7RPxl0lk5W11b+ytfs39n+12T3JH+5cIfeoT4h/aV+DQ3\n6lofw7+N2kx/efw+8nhPXAv+zbXctxZ3D9std2ynrgdK+iKKAPKfgT+2D4M+Pmv3vh+yl1Tw/wCN\ndJhW41Lwp4hsn0zXLCMnAlNvJ/rYSeBPCZIW7SGvVq82/aK/Zg8K/tOeHrG18QW91Z6todwb3QNf\n0yf7JrHhy7xgXFpcD5o37FeY5FykiOhKnmv2S/jb4k8Uar4s+HPxCazPxK+G0tumoXdrEIbfxHp1\nyJDY6xFFk+Uk/k3Ebx5xHcWtwgyioSAe3UV4v8Wv27vh18LfGc3hGDUL7xt4+hQMfCXhKzfWdaiz\nnaZoocraI2DiW6eKPg/PXMta/tEftFBkml0X9nvwzJxstmt/EnjCVP8AroQ2m2T89At+OB8wzwAe\nufGH49eC/wBnnwp/bvjrxXoPhPSdwiW51S9jtlmlPAijDHMkjHAWNMsxIABJryNf2p/iZ8eP3Pwf\n+F99Z6PN9zxh8RBLoemlf79vpuP7RueMECWO0jcMCsx5rrvg7+w78PPg54sXxRHpd54o8dMhWTxb\n4nvJNa1wg/eSO5uCzQRn/njB5cQwMIMCvYKAPnOP/gn/AG/xUnW8+OPjTXfjNISGOhXcK6X4RhP9\n1dIhPl3Cdf8Aj+ku3G4/PjAHvnh7w7YeFNGtdN0uxs9N02yjEVva2kCww26DoiooCqo9BWhRQBzX\nxV+Fmg/HD4WeJfBfimx/tPwz4x0q60TV7MTSQ/a7O5ieGaLzIysibo5HXcjBhnIIPNeSf8O0/h3/\nANDJ8f8A/wAPt44/+W1fQFFAHz//AMO0/h3/ANDJ8f8A/wAPt44/+W1H/DtP4d/9DJ8f/wDw+3jj\n/wCW1fQFFAHz/wD8O0/h3/0Mnx//APD7eOP/AJbUf8O0/h3/ANDJ8f8A/wAPt44/+W1fQFFAHz//\nAMO0/h3/ANDJ8f8A/wAPt44/+W1H/DtP4d/9DJ8f/wDw+3jj/wCW1fQFFAHz/wD8O0/h3/0Mnx//\nAPD7eOP/AJbUf8O0/h3/ANDJ8f8A/wAPt44/+W1fQFFAHz//AMO0/h3/ANDJ8f8A/wAPt44/+W1H\n/DtP4d/9DJ8f/wDw+3jj/wCW1fQFFAHz/wD8O0/h3/0Mnx//APD7eOP/AJbUf8O0/h3/ANDJ8f8A\n/wAPt44/+W1fQFFAHz//AMO0/h3/ANDJ8f8A/wAPt44/+W1Zniz/AIJVfCfx94W1TQtc1D4361om\nsWkthqGn3/xs8aXNrfW8qlJYZYn1UpJG6MVZGBDAkGvpOigAooooAKKKKACiiigAryv48fse+Cf2\nlPFXh/XfEn/CYWut+F7W9sdM1Dw54y1nwzdQW949q9zC0um3Vu8scj2VqxWQsMwKRivVKKAPn/8A\n4dp/Dv8A6GT4/wD/AIfbxx/8tqzPCf8AwSq+E/gHwtpehaHqHxv0XRNHtIrDT9PsPjZ40trWxt4l\nCRQxRJqoSONEUKqKAFAAFfSdFAHz/wD8O0/h3/0Mnx//APD7eOP/AJbUf8O0/h3/ANDJ8f8A/wAP\nt44/+W1fQFFAHz//AMO0/h3/ANDJ8f8A/wAPt44/+W1H/DtP4d/9DJ8f/wDw+3jj/wCW1fQFFAHz\n/wD8O0/h3/0Mnx//APD7eOP/AJbUf8O0/h3/ANDJ8f8A/wAPt44/+W1fQFFAHz//AMO0/h3/ANDJ\n8f8A/wAPt44/+W1H/DtP4d/9DJ8f/wDw+3jj/wCW1fQFFAHz/wD8O0/h3/0Mnx//APD7eOP/AJbU\nf8O0/h3/ANDJ8f8A/wAPt44/+W1fQFFAHz//AMO0/h3/ANDJ8f8A/wAPt44/+W1ZnhP/AIJVfCfw\nD4W0vQtD1D436Lomj2kVhp+n2Hxs8aW1rY28ShIoYok1UJHGiKFVFACgACvpOigDxv4OfsMeAPgb\n8U4/GukP8QNU8TW+lXWi2954m+IHiDxN9js7mW1muIoY9RvbiOLzJLK1LMihj5CjOOK9koooAKKK\nKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAoooo\nAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigD5r/4KA+KNO0L4nfs\nv2etXEcGj678YbexnEhwss66BrlzZJ9ft1vaEe6ivpSvk/8A4Kd/BTQf2ivGH7NPg3xNDcTaPrXx\nPvFka3naC4tpY/BniiSG4hlX5op4Zo45Y5F5SSNGHIrW0P47fEz9ke2TSPjBoOs/EDwxZ7ltviN4\nS0l7yTyQfk/tbSrcNcQzhfvz2kctu2C5FsD5YAPpqiuF+C/7SPw//aN0aTUPAPjTwv4wtImKzvpG\npxXTWrA7THKqMWicHIKOAykEEA13VABRRRQAUUVkeM/G+i/Djw7cax4h1fTNB0mzXfPe6hdpa20A\n9XkkIUfiaAJ9dmvoNFvJNNht7rUI4Xa0huJTDFLKAdqs4ViqlsAsFbA5welfAPiH4FeJ/jJ/wVS8\nI+G/i18RftF94g+FOuatq3hrwFNeeHbOCztNY0eKyt57qOf7ZdxO97f7izxI5Qjy1Quh9+uv2+l+\nM2dO+Afhq8+LV5cHYniVS9h4LsM/8tpNUZdt0g4Pl2C3MhyM7Ad48z+D/wCzXdfBL/gqN8OvEHij\nX28ZfEvxx8MPG1z4m177P9khnMOq+D0t7W1t97/Z7OBXkEUW9zmSSR2eSSR2APrD4S/Bbwj8BPB0\nPh/wT4Z0LwnokDFksdKsY7WEsfvOwQDc7dS5yxPJJrrKKKACiiigAooooAKKKKACiiigAooooAKK\nKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooo\noAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiig\nAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKAP\nn/8AbI/5OK/ZO/7Krff+oR4rr3q6uFs7aSRskRqWOOuBXgv7ZH/JxX7J3/ZVb7/1CPFde76pC1xp\ntxGg3M8ToB6kigD48tNa+Ef7cfjTwnqHxA/Zr8ReH5vGsefCvjHxFYaIbjUv9He5VILrTdQuL21J\ngieQecIeEx9/5ateFvhB8GtZk8TJ8Of2l/Hej/8ACFZ/t6LSvi63iCLw9gci4j1KW9S2AwflcIq4\n6AV5v+yl+yh438H6r8OGtfhn8afB3iDwXZvBrN944+JkeveF9VjNhLDJb2WnJrF+sCyTmErstbby\n4wQMD90Y9P8A2W/jN8ULPxM/iLwXqWn2198K9S8GW2j3B8P2Nha3bT2xS3sobGWQrZuiP5ZuJ3cB\nMMkB/wBYAepaJorax4B1vxRoH7dHijU/CvhmSWHV9Wn/AOEJvbDSHj/1iXFxFpcaxFO4kfI71J4u\n0TUPBHgzRvEXiX9uLXfD/hvxFJFDpWqyW3gyytdUeUboxBNPpzxylx0CZ3dq0Pjl+zt4mb4j+IvE\nWgeEYdZ0+yk8Jalb6VBcWtu+unTLm6ea3j8yRIxKiSQmPzzHGXSMbwASDxZ4L8YeH/E3hfxtY/A+\nPVYbrwzqXh+58H6XqelpNoEt5dxz+bI80sFq0cioftPkvI6vjyxcDLEA0PFf7Iln4e8J3mufEH9o\nz43Xnh/T4Tc3t/f+K7Lw1aQQgZaSSbTLayEaY/i3LiuR+GXw0/ZF0vQNa+JN1a+CNQ0nwbqS2B8d\n+O/ECeIId7w286TW+qalc3B2OtxGA/mAlsj3Pc+Jf2ffFHhv9jn4a+G7ext/F2u/DmbRL680qO6W\nOPWfsJjMkEUkxVN/y74vOKoXjj3smd6+K/Eb9mP4qeJrSTxrovhvxx4E1C1+It54sj0PwreeGZvE\nEtvc6PDaCWP+0luNK+0CXzPMV3U/PIY5zx5gB9zeHtasfEuhWeoaXd2t9pt7Cs9rc2sqywTxMAUd\nHXgqRggrwa8Q+I//AClO+Df/AGSrx5/6d/BtdR+xd8K9S+DP7PGj6Hq7a4uoLPd3syavdWNzfRm4\nuZZ9spsbe3tFb95zHBH5aElVZ1UOeX+I/wDylO+Df/ZKvHn/AKd/BtAH0BRRRQAUUUUAFFFFABRR\nRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFF\nABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUA\nFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAU\nUUUAFFFFABRRRQB8/wD7ZH/JxX7J3/ZVb7/1CPFdcdD8f/jXpfgrxh8ULvWPhfqXw+8Kaxq8M3hm\nDwrfWms/2fYX81vJIupnUpIXm8qBpAv2JA7YTKffrsf2yP8Ak4r9k7/sqt9/6hHiusW3/Yx+Imoa\nZ4i8G6p8TvCcvwo8SaxqGpXOlWPgq4tdeeC8vZLuW0fUn1KSEoxleNnSzRzGeCjfPQB2/jT9r618\nCfFPTdCvvAvxCXQdS1O20UeLRaWseixXtzs8iHElwl5IHaRU86G2khDkqZAVbHMP+3guufF7wppO\nm+FdesfB+tarqVi/inVLeFdN1OKytLqSZ7Ro7hpk2S2+N1xBGJEDmPePnHPfEf8A4JvXnxL/AGio\nfG154w0Wa103xLp3iXSo7zwwbzVtLa1ePfZRXsl3sitHSMgJBbxOC5LySguj72i/sOaxa+KtEtdQ\n8dW9/wDDzwxf6nd6VoK6F5d6I7+3uoZYJ737QRKsf2p/KKQRlUGH8w4cAFnTf+Ci3hSHwrq+ta74\nZ8b+EdJs9Cl8T6VcaxbWqL4l0yMxq1zaiK4kaMZmg/d3Qt5AJkJQLkj0D4XfHSf4qfDPUtdbwn4o\n8G32niRTp3iCG3aQkRCVZEltJ57aeNlYfPBO65yhKspA838G/sZeL7C08vXviZa6vL4f8Nz+FvCc\n8PhiOFtOtJfI3yXyTTzx387C2iRnVLeNk34jVn3jY/ZL/Y6X9mT4f+KdI+2eFYpvFd211NaeFPDZ\n8PaBp7mIRk2unm5uPKL48yQ+ad7sTx0oAw9J/wCCg9jpXgLw3qOreFfE2syt4Y03xJ4u1HQba3bT\nPCMF1EXEs4muEnZPklOy2S4kREy4AwT3/hz9qLTvF3xh1TwrpvhvxheWOju9rceJYLCObRftiQpO\n9puSQziQRyId7QiIsfLEhk+SvM7/APYH1608Kx+HdB+IkGleHtc8M6f4V8XwzeHzc3OqW9pA8Hm2\nMouUFjPJG5R2kS6XCphAy7j2nhf9mbxJ4H+JXiGbR/H0ml+Bdfmn1BtEg0eM38F7LbJAzLfNIQIB\nsWVYxAJBLkmZkPl0Acl4x/b6ubPwh42WP4f+NfB3iLQ/C9x4o0NfFtnbJba5axFEMqx211JNEFeS\nMNFdC3nG/wC4Ocafj5zL/wAFRfgw3974U+Oz/wCVbwZXm/gH/glLdeG5fEV3qXjbw7cat4h8H3ng\n+5v9O8JPaXF6kssMkV5eSy3s811cr5bb2eQI5fKpF8wf0jx+nlf8FRvgynXb8KfHY/8AKv4MoA+g\n6KKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAo\noooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACii\nigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKK\nACiiigAooooAKKKKACiiigAooooAKKKKAPn/APbI/wCTiv2Tv+yq33/qEeK6+gK+ff2znFn8df2W\nbyTKW1n8Vbjz5D0j87wh4lto8/7000SfVxX0FQAUUUUAFFFFABRRRQAV8/8AxH/5SnfBv/slXjz/\nANO/g2voCvn3x44vf+Cpvwq8r5zpvwq8Z/acf8svtGr+FPJz/v8A2afH/XM0AfQVFFFABRRRQAUU\nUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRR\nQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFA\nBRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAF\nFFFABRRRQAUUUUAFFFFAHmP7WvwGm/aK+B2oeH9N1JdD8SWdxa614c1VozINJ1aynS6sp2VSGeMT\nxIJIwR5kTSR9HNUf2Xv2pLX486de6LrFmPCvxM8LBIfFfhO4lzdaTMeBLEf+W9nLgtBcp8kif3XV\n409cry/4+fsm+E/2hbvTdS1JdU0PxboQcaN4p0G8bT9c0YPjekNyvJifA3wSB4JMDzI3xQB6hRXz\nrHeftIfAv91PZeEPjxoMBwlzbzp4V8T7P+mkTh9PupP9pJLJOnydakH/AAUT8O+HPl8cfD/41/Dy\n4B+ddT8C32pW0J/2rzS1vLNfqZ8ehoA+hqK+fv8Ah6r+zbBxf/HD4a6G/ePW9cg0qRfqly0bD8RS\nf8PWv2Y5Di2/aE+DOoN2j0/xjYXsjfRYpXY/lQB9BUV89n/gpd8M9YG3wvb/ABG8e3Df6tPDPgLW\ndQgf/t6FsLVfq8yio5vjZ8fPi+3k+C/hLpvw1sZems/EjVYZ7iMf349L0uWUy+uyW8tmx1weKAPW\nvjF8aPC/7P3w+vvFXjLWrPQdD0/AkuJySZHY7Y4o0UF5ZnchEijDO7EKqkkCvL/2R/AHibxT4/8A\nGHxm8daXcaB4h8eQ2um6JoNyf9I8N6BamV7W3nAJVbuaW4uLicJ90yRREv8AZw5ufDD9imz0zx5p\n/jj4jeJNW+LHxA0xjJp2o6xFHDp3h9yCrHTdPjHkWhKnaZf3lwy8PM4r3KgAooooAKKKKACiiigA\nooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACi\niigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKK\nKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAoooo\nAKKKKAP/2Q==\n", "text/plain": [ "<IPython.core.display.Image object>" ] }, "execution_count": 1, "metadata": {}, "output_type": "execute_result" } ], "source": [ "from IPython.display import Image\n", "Image(filename='figures/WorkFlow_LucianoECaciato.jpg')" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## 3. Resultado" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "Com essas informações o administrador da nuvem poderá tomar medidas para sua melhoria." ] }, { "cell_type": "code", "execution_count": null, "metadata": { "collapsed": true }, "outputs": [], "source": [] } ], "metadata": { "kernelspec": { "display_name": "Python 3", "language": "python", "name": "python3" }, "language_info": { "codemirror_mode": { "name": "ipython", "version": 3 }, "file_extension": ".py", "mimetype": "text/x-python", "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", "version": "3.6.0" } }, "nbformat": 4, "nbformat_minor": 2 }
gpl-3.0
dedert/Brand2Vec
ParamSearch.ipynb
1
56009
{ "cells": [ { "cell_type": "code", "execution_count": 30, "metadata": { "collapsed": true }, "outputs": [], "source": [ "from parameter_search import util\n", "import numpy as np\n", "import time\n", "import matplotlib.pyplot as plt\n", "import pandas as pd\n", "from pandas import DataFrame\n", "import csv\n", "import gensim\n", "from gensim.models.doc2vec import TaggedDocument\n", "from gensim.models import Doc2Vec\n", "from gensim.models import Phrases\n", "assert gensim.models.doc2vec.FAST_VERSION == 1, \"this will be painfully slow otherwise\"\n", "import nltk, re, random\n", "import datetime\n", "import multiprocessing\n", "from ast import literal_eval\n", "import pickle\n", "from tqdm import tqdm\n", "from sklearn.cross_validation import train_test_split\n", "from sklearn.cross_validation import KFold\n", "from sklearn import linear_model\n", "import datetime\n", "from scipy.cluster.hierarchy import dendrogram, linkage\n", "#%matplotlib inline" ] }, { "cell_type": "code", "execution_count": 2, "metadata": { "collapsed": true }, "outputs": [], "source": [ "data_path = \"E:/dataset/Amazon/\"\n", "save_path = \"E:/dataset/MasterThesis/FINAL/preprocess_data/\"\n", "model_path = \"E:/dataset/MasterThesis/FINAL/doc2vec/\"\n", "category_list = [\"Electronics\",\"Beauty\",\"Clothing_Shoes_and_Jewelry\"]" ] }, { "cell_type": "code", "execution_count": 32, "metadata": { "collapsed": false }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "Electronics category is finished\n", "Beauty category is finished\n", "Clothing_Shoes_and_Jewelry category is finished\n", "Wall time: 4min 27s\n" ] } ], "source": [ "%%time\n", "documents = util.load_data(save_path, category_list, tagby=True) " ] }, { "cell_type": "code", "execution_count": 33, "metadata": { "collapsed": false }, "outputs": [ { "data": { "text/plain": [ "300000" ] }, "execution_count": 33, "metadata": {}, "output_type": "execute_result" } ], "source": [ "len(documents)" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "collapsed": true }, "outputs": [], "source": [] }, { "cell_type": "code", "execution_count": 34, "metadata": { "collapsed": false, "scrolled": true }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "start : 2016-12-12 02:19:23.873986\n", "num of epoch 1 \n", "epoch : 1, training time: 94.910786, modeling time: 7.684298, dimension size : 50, window size : 2, avg accuracy : 0.805577\n", "num of epoch 2 \n", "epoch : 2, training time: 94.926707, modeling time: 7.632461, dimension size : 50, window size : 2, avg accuracy : 0.846273\n", "num of epoch 3 \n", "epoch : 3, training time: 95.410011, modeling time: 7.764786, dimension size : 50, window size : 2, avg accuracy : 0.859070\n", "num of epoch 4 \n", "epoch : 4, training time: 95.008087, modeling time: 7.397732, dimension size : 50, window size : 2, avg accuracy : 0.864263\n", "num of epoch 5 \n", "epoch : 5, training time: 95.168256, modeling time: 7.753154, dimension size : 50, window size : 2, avg accuracy : 0.866477\n", "num of epoch 6 \n", "epoch : 6, training time: 95.471654, modeling time: 7.480951, dimension size : 50, window size : 2, avg accuracy : 0.867317\n", "num of epoch 7 \n", "epoch : 7, training time: 95.164119, modeling time: 7.908519, dimension size : 50, window size : 2, avg accuracy : 0.867590\n", "num of epoch 8 \n", "epoch : 8, training time: 94.485579, modeling time: 7.689636, dimension size : 50, window size : 2, avg accuracy : 0.867793\n", "num of epoch 9 \n", "epoch : 9, training time: 95.619172, modeling time: 7.760576, dimension size : 50, window size : 2, avg accuracy : 0.867597\n", "num of epoch 10 \n", "epoch : 10, training time: 95.648172, modeling time: 7.480480, dimension size : 50, window size : 2, avg accuracy : 0.867470\n", "num of epoch 1 \n", "epoch : 1, training time: 95.985193, modeling time: 7.708891, dimension size : 50, window size : 4, avg accuracy : 0.808720\n", "num of epoch 2 \n", "epoch : 2, training time: 95.021187, modeling time: 7.827334, dimension size : 50, window size : 4, avg accuracy : 0.840533\n", "num of epoch 3 \n", "epoch : 3, training time: 96.060538, modeling time: 7.751967, dimension size : 50, window size : 4, avg accuracy : 0.854417\n", "num of epoch 4 \n", "epoch : 4, training time: 95.407035, modeling time: 7.892474, dimension size : 50, window size : 4, avg accuracy : 0.860697\n", "num of epoch 5 \n", "epoch : 5, training time: 95.927204, modeling time: 7.829961, dimension size : 50, window size : 4, avg accuracy : 0.864157\n", "num of epoch 6 \n", "epoch : 6, training time: 101.415483, modeling time: 7.666568, dimension size : 50, window size : 4, avg accuracy : 0.865753\n", "num of epoch 7 \n", "epoch : 7, training time: 94.882056, modeling time: 7.766237, dimension size : 50, window size : 4, avg accuracy : 0.866363\n", "num of epoch 8 \n", "epoch : 8, training time: 95.370203, modeling time: 7.987982, dimension size : 50, window size : 4, avg accuracy : 0.867180\n", "num of epoch 9 \n", "epoch : 9, training time: 95.233908, modeling time: 7.689811, dimension size : 50, window size : 4, avg accuracy : 0.867413\n", "num of epoch 10 \n", "epoch : 10, training time: 94.387086, modeling time: 7.706984, dimension size : 50, window size : 4, avg accuracy : 0.867430\n", "num of epoch 1 \n", "epoch : 1, training time: 96.511691, modeling time: 7.680370, dimension size : 50, window size : 6, avg accuracy : 0.804593\n", "num of epoch 2 \n", "epoch : 2, training time: 96.043197, modeling time: 7.790175, dimension size : 50, window size : 6, avg accuracy : 0.829993\n", "num of epoch 3 \n", "epoch : 3, training time: 102.703386, modeling time: 7.772690, dimension size : 50, window size : 6, avg accuracy : 0.842697\n", "num of epoch 4 \n", "epoch : 4, training time: 101.529539, modeling time: 7.792926, dimension size : 50, window size : 6, avg accuracy : 0.849240\n", "num of epoch 5 \n", "epoch : 5, training time: 99.584792, modeling time: 8.167925, dimension size : 50, window size : 6, avg accuracy : 0.853343\n", "num of epoch 6 \n", "epoch : 6, training time: 99.338187, modeling time: 8.399225, dimension size : 50, window size : 6, avg accuracy : 0.855860\n", "num of epoch 7 \n", "epoch : 7, training time: 98.125195, modeling time: 7.654441, dimension size : 50, window size : 6, avg accuracy : 0.857293\n", "num of epoch 8 \n", "epoch : 8, training time: 99.075206, modeling time: 7.835770, dimension size : 50, window size : 6, avg accuracy : 0.858293\n", "num of epoch 9 \n", "epoch : 9, training time: 97.842523, modeling time: 7.637531, dimension size : 50, window size : 6, avg accuracy : 0.858657\n", "num of epoch 10 \n", "epoch : 10, training time: 97.481833, modeling time: 7.721786, dimension size : 50, window size : 6, avg accuracy : 0.858727\n", "num of epoch 1 \n", "epoch : 1, training time: 96.507440, modeling time: 7.857562, dimension size : 50, window size : 8, avg accuracy : 0.795573\n", "num of epoch 2 \n", "epoch : 2, training time: 96.712679, modeling time: 7.779955, dimension size : 50, window size : 8, avg accuracy : 0.816020\n", "num of epoch 3 \n", "epoch : 3, training time: 95.827857, modeling time: 7.901669, dimension size : 50, window size : 8, avg accuracy : 0.828317\n", "num of epoch 4 \n", "epoch : 4, training time: 99.162270, modeling time: 7.809842, dimension size : 50, window size : 8, avg accuracy : 0.835187\n", "num of epoch 5 \n", "epoch : 5, training time: 98.087966, modeling time: 7.810312, dimension size : 50, window size : 8, avg accuracy : 0.839383\n", "num of epoch 6 \n", "epoch : 6, training time: 98.305388, modeling time: 7.898095, dimension size : 50, window size : 8, avg accuracy : 0.841583\n", "num of epoch 7 \n", "epoch : 7, training time: 98.005543, modeling time: 7.796983, dimension size : 50, window size : 8, avg accuracy : 0.843080\n", "num of epoch 8 \n", "epoch : 8, training time: 98.287882, modeling time: 7.794000, dimension size : 50, window size : 8, avg accuracy : 0.844120\n", "num of epoch 9 \n", "epoch : 9, training time: 97.816772, modeling time: 7.767962, dimension size : 50, window size : 8, avg accuracy : 0.844610\n", "num of epoch 10 \n", "epoch : 10, training time: 98.591846, modeling time: 7.971370, dimension size : 50, window size : 8, avg accuracy : 0.844830\n", "num of epoch 1 \n", "epoch : 1, training time: 99.774295, modeling time: 7.768061, dimension size : 50, window size : 10, avg accuracy : 0.788323\n", "num of epoch 2 \n", "epoch : 2, training time: 97.926256, modeling time: 7.790662, dimension size : 50, window size : 10, avg accuracy : 0.806730\n", "num of epoch 3 \n", "epoch : 3, training time: 96.648530, modeling time: 7.849429, dimension size : 50, window size : 10, avg accuracy : 0.817787\n", "num of epoch 4 \n", "epoch : 4, training time: 97.835552, modeling time: 7.761726, dimension size : 50, window size : 10, avg accuracy : 0.824240\n", "num of epoch 5 \n", "epoch : 5, training time: 97.941299, modeling time: 7.771809, dimension size : 50, window size : 10, avg accuracy : 0.828310\n", "num of epoch 6 \n", "epoch : 6, training time: 96.320775, modeling time: 7.814663, dimension size : 50, window size : 10, avg accuracy : 0.830920\n", "num of epoch 7 \n", "epoch : 7, training time: 97.064499, modeling time: 7.749414, dimension size : 50, window size : 10, avg accuracy : 0.832387\n", "num of epoch 8 \n", "epoch : 8, training time: 97.119556, modeling time: 7.842331, dimension size : 50, window size : 10, avg accuracy : 0.833290\n", "num of epoch 9 \n", "epoch : 9, training time: 97.389316, modeling time: 7.668760, dimension size : 50, window size : 10, avg accuracy : 0.833907\n", "num of epoch 10 \n", "epoch : 10, training time: 97.477592, modeling time: 7.786455, dimension size : 50, window size : 10, avg accuracy : 0.834117\n", "num of epoch 1 \n", "epoch : 1, training time: 97.772316, modeling time: 11.367375, dimension size : 100, window size : 2, avg accuracy : 0.827743\n", "num of epoch 2 \n", "epoch : 2, training time: 97.242387, modeling time: 10.991893, dimension size : 100, window size : 2, avg accuracy : 0.853937\n", "num of epoch 3 \n", "epoch : 3, training time: 97.637961, modeling time: 11.230720, dimension size : 100, window size : 2, avg accuracy : 0.862703\n", "num of epoch 4 \n", "epoch : 4, training time: 96.849477, modeling time: 11.300398, dimension size : 100, window size : 2, avg accuracy : 0.865160\n", "num of epoch 5 \n", "epoch : 5, training time: 96.108051, modeling time: 11.131224, dimension size : 100, window size : 2, avg accuracy : 0.865563\n", "num of epoch 6 \n", "epoch : 6, training time: 96.525809, modeling time: 11.337811, dimension size : 100, window size : 2, avg accuracy : 0.864670\n", "num of epoch 7 \n", "epoch : 7, training time: 97.642301, modeling time: 11.337871, dimension size : 100, window size : 2, avg accuracy : 0.864150\n", "num of epoch 8 \n", "epoch : 8, training time: 98.295291, modeling time: 11.255976, dimension size : 100, window size : 2, avg accuracy : 0.863483\n", "num of epoch 9 \n", "epoch : 9, training time: 96.514372, modeling time: 11.369366, dimension size : 100, window size : 2, avg accuracy : 0.862893\n", "num of epoch 10 \n", "epoch : 10, training time: 97.417124, modeling time: 11.032053, dimension size : 100, window size : 2, avg accuracy : 0.862357\n", "num of epoch 1 \n", "epoch : 1, training time: 98.353335, modeling time: 11.522533, dimension size : 100, window size : 4, avg accuracy : 0.824893\n", "num of epoch 2 \n", "epoch : 2, training time: 97.102675, modeling time: 11.459244, dimension size : 100, window size : 4, avg accuracy : 0.846427\n", "num of epoch 3 \n", "epoch : 3, training time: 97.598952, modeling time: 11.301922, dimension size : 100, window size : 4, avg accuracy : 0.856550\n", "num of epoch 4 \n", "epoch : 4, training time: 97.208431, modeling time: 11.090281, dimension size : 100, window size : 4, avg accuracy : 0.860883\n", "num of epoch 5 \n", "epoch : 5, training time: 104.130908, modeling time: 11.467291, dimension size : 100, window size : 4, avg accuracy : 0.862403\n", "num of epoch 6 \n", "epoch : 6, training time: 108.637652, modeling time: 11.353493, dimension size : 100, window size : 4, avg accuracy : 0.863413\n", "num of epoch 7 \n", "epoch : 7, training time: 105.663459, modeling time: 11.386100, dimension size : 100, window size : 4, avg accuracy : 0.863420\n", "num of epoch 8 \n", "epoch : 8, training time: 105.009875, modeling time: 11.133373, dimension size : 100, window size : 4, avg accuracy : 0.863040\n", "num of epoch 9 \n", "epoch : 9, training time: 105.473003, modeling time: 11.507952, dimension size : 100, window size : 4, avg accuracy : 0.862883\n", "num of epoch 10 \n", "epoch : 10, training time: 105.659156, modeling time: 11.248288, dimension size : 100, window size : 4, avg accuracy : 0.862620\n", "num of epoch 1 \n", "epoch : 1, training time: 107.444453, modeling time: 11.588594, dimension size : 100, window size : 6, avg accuracy : 0.814113\n", "num of epoch 2 \n", "epoch : 2, training time: 107.484423, modeling time: 11.417046, dimension size : 100, window size : 6, avg accuracy : 0.833560\n", "num of epoch 3 \n", "epoch : 3, training time: 108.140485, modeling time: 11.440959, dimension size : 100, window size : 6, avg accuracy : 0.843570\n", "num of epoch 4 \n", "epoch : 4, training time: 106.278127, modeling time: 11.279302, dimension size : 100, window size : 6, avg accuracy : 0.848600\n", "num of epoch 5 \n", "epoch : 5, training time: 106.181874, modeling time: 11.461387, dimension size : 100, window size : 6, avg accuracy : 0.851437\n", "num of epoch 6 \n", "epoch : 6, training time: 108.512925, modeling time: 11.997840, dimension size : 100, window size : 6, avg accuracy : 0.852703\n", "num of epoch 7 \n", "epoch : 7, training time: 108.053198, modeling time: 11.360303, dimension size : 100, window size : 6, avg accuracy : 0.853153\n", "num of epoch 8 \n", "epoch : 8, training time: 104.034764, modeling time: 11.229464, dimension size : 100, window size : 6, avg accuracy : 0.853460\n", "num of epoch 9 \n", "epoch : 9, training time: 104.610960, modeling time: 10.910285, dimension size : 100, window size : 6, avg accuracy : 0.853377\n", "num of epoch 10 \n", "epoch : 10, training time: 104.847548, modeling time: 11.247652, dimension size : 100, window size : 6, avg accuracy : 0.853477\n", "num of epoch 1 \n", "epoch : 1, training time: 105.045554, modeling time: 11.107920, dimension size : 100, window size : 8, avg accuracy : 0.807180\n", "num of epoch 2 \n", "epoch : 2, training time: 104.211194, modeling time: 11.399123, dimension size : 100, window size : 8, avg accuracy : 0.822997\n", "num of epoch 3 \n", "epoch : 3, training time: 105.459237, modeling time: 11.078738, dimension size : 100, window size : 8, avg accuracy : 0.832733\n", "num of epoch 4 \n", "epoch : 4, training time: 104.434665, modeling time: 11.452276, dimension size : 100, window size : 8, avg accuracy : 0.837663\n", "num of epoch 5 \n", "epoch : 5, training time: 105.327762, modeling time: 11.612976, dimension size : 100, window size : 8, avg accuracy : 0.839730\n", "num of epoch 6 \n", "epoch : 6, training time: 105.590011, modeling time: 11.470301, dimension size : 100, window size : 8, avg accuracy : 0.841007\n", "num of epoch 7 \n", "epoch : 7, training time: 105.170676, modeling time: 11.298806, dimension size : 100, window size : 8, avg accuracy : 0.841413\n", "num of epoch 8 \n", "epoch : 8, training time: 105.013155, modeling time: 11.306391, dimension size : 100, window size : 8, avg accuracy : 0.841717\n", "num of epoch 9 \n", "epoch : 9, training time: 104.951044, modeling time: 11.322352, dimension size : 100, window size : 8, avg accuracy : 0.841660\n", "num of epoch 10 \n", "epoch : 10, training time: 104.690306, modeling time: 11.473388, dimension size : 100, window size : 8, avg accuracy : 0.841723\n", "num of epoch 1 \n", "epoch : 1, training time: 105.639504, modeling time: 11.330600, dimension size : 100, window size : 10, avg accuracy : 0.793840\n", "num of epoch 2 \n", "epoch : 2, training time: 106.569234, modeling time: 11.413828, dimension size : 100, window size : 10, avg accuracy : 0.806610\n", "num of epoch 3 \n", "epoch : 3, training time: 105.771199, modeling time: 11.539334, dimension size : 100, window size : 10, avg accuracy : 0.815650\n", "num of epoch 4 \n", "epoch : 4, training time: 106.860032, modeling time: 11.652927, dimension size : 100, window size : 10, avg accuracy : 0.820330\n", "num of epoch 5 \n", "epoch : 5, training time: 106.776093, modeling time: 11.471375, dimension size : 100, window size : 10, avg accuracy : 0.822817\n", "num of epoch 6 \n", "epoch : 6, training time: 107.883348, modeling time: 11.344701, dimension size : 100, window size : 10, avg accuracy : 0.823573\n", "num of epoch 7 \n", "epoch : 7, training time: 106.231408, modeling time: 11.130049, dimension size : 100, window size : 10, avg accuracy : 0.824097\n", "num of epoch 8 \n", "epoch : 8, training time: 105.778570, modeling time: 11.350393, dimension size : 100, window size : 10, avg accuracy : 0.824377\n", "num of epoch 9 \n", "epoch : 9, training time: 106.824792, modeling time: 11.278334, dimension size : 100, window size : 10, avg accuracy : 0.824317\n", "num of epoch 10 \n", "epoch : 10, training time: 108.370288, modeling time: 11.358579, dimension size : 100, window size : 10, avg accuracy : 0.824497\n", "num of epoch 1 \n", "epoch : 1, training time: 107.329733, modeling time: 17.237167, dimension size : 200, window size : 2, avg accuracy : 0.837277\n", "num of epoch 2 \n", "epoch : 2, training time: 107.028125, modeling time: 17.585290, dimension size : 200, window size : 2, avg accuracy : 0.858283\n", "num of epoch 3 \n", "epoch : 3, training time: 107.587175, modeling time: 17.818207, dimension size : 200, window size : 2, avg accuracy : 0.866237\n", "num of epoch 4 \n", "epoch : 4, training time: 109.170259, modeling time: 17.477657, dimension size : 200, window size : 2, avg accuracy : 0.868243\n", "num of epoch 5 \n", "epoch : 5, training time: 109.075440, modeling time: 17.333456, dimension size : 200, window size : 2, avg accuracy : 0.869230\n", "num of epoch 6 \n", "epoch : 6, training time: 108.200291, modeling time: 17.951704, dimension size : 200, window size : 2, avg accuracy : 0.869480\n", "num of epoch 7 \n", "epoch : 7, training time: 107.767636, modeling time: 17.556831, dimension size : 200, window size : 2, avg accuracy : 0.869440\n", "num of epoch 8 \n", "epoch : 8, training time: 107.814095, modeling time: 17.802654, dimension size : 200, window size : 2, avg accuracy : 0.869657\n", "num of epoch 9 \n", "epoch : 9, training time: 108.257390, modeling time: 17.917108, dimension size : 200, window size : 2, avg accuracy : 0.869553\n", "num of epoch 10 \n", "epoch : 10, training time: 107.581749, modeling time: 17.600928, dimension size : 200, window size : 2, avg accuracy : 0.869667\n", "num of epoch 1 \n", "epoch : 1, training time: 107.570666, modeling time: 17.502574, dimension size : 200, window size : 4, avg accuracy : 0.832107\n", "num of epoch 2 \n", "epoch : 2, training time: 108.280152, modeling time: 17.437518, dimension size : 200, window size : 4, avg accuracy : 0.852063\n", "num of epoch 3 \n", "epoch : 3, training time: 108.239809, modeling time: 17.662406, dimension size : 200, window size : 4, avg accuracy : 0.860030\n", "num of epoch 4 \n", "epoch : 4, training time: 110.264311, modeling time: 17.096394, dimension size : 200, window size : 4, avg accuracy : 0.864057\n", "num of epoch 5 \n", "epoch : 5, training time: 108.344003, modeling time: 16.929231, dimension size : 200, window size : 4, avg accuracy : 0.865640\n", "num of epoch 6 \n", "epoch : 6, training time: 109.604213, modeling time: 16.937238, dimension size : 200, window size : 4, avg accuracy : 0.866010\n", "num of epoch 7 \n", "epoch : 7, training time: 110.890055, modeling time: 17.538506, dimension size : 200, window size : 4, avg accuracy : 0.866527\n", "num of epoch 8 \n", "epoch : 8, training time: 109.344753, modeling time: 17.416225, dimension size : 200, window size : 4, avg accuracy : 0.866680\n", "num of epoch 9 \n", "epoch : 9, training time: 110.129771, modeling time: 17.538834, dimension size : 200, window size : 4, avg accuracy : 0.866550\n", "num of epoch 10 \n", "epoch : 10, training time: 107.935608, modeling time: 16.817126, dimension size : 200, window size : 4, avg accuracy : 0.866800\n", "num of epoch 1 \n", "epoch : 1, training time: 109.477087, modeling time: 17.253545, dimension size : 200, window size : 6, avg accuracy : 0.824073\n", "num of epoch 2 \n", "epoch : 2, training time: 109.356971, modeling time: 17.283575, dimension size : 200, window size : 6, avg accuracy : 0.840050\n", "num of epoch 3 \n", "epoch : 3, training time: 109.445042, modeling time: 17.063377, dimension size : 200, window size : 6, avg accuracy : 0.848910\n", "num of epoch 4 \n", "epoch : 4, training time: 109.639230, modeling time: 17.183494, dimension size : 200, window size : 6, avg accuracy : 0.853077\n", "num of epoch 5 \n", "epoch : 5, training time: 108.985616, modeling time: 17.147482, dimension size : 200, window size : 6, avg accuracy : 0.854420\n", "num of epoch 6 \n", "epoch : 6, training time: 108.942580, modeling time: 16.790099, dimension size : 200, window size : 6, avg accuracy : 0.855207\n", "num of epoch 7 \n", "epoch : 7, training time: 108.694339, modeling time: 16.917219, dimension size : 200, window size : 6, avg accuracy : 0.855990\n", "num of epoch 8 \n", "epoch : 8, training time: 108.698341, modeling time: 17.018320, dimension size : 200, window size : 6, avg accuracy : 0.856213\n", "num of epoch 9 \n", "epoch : 9, training time: 108.940573, modeling time: 16.964268, dimension size : 200, window size : 6, avg accuracy : 0.856563\n", "num of epoch 10 \n", "epoch : 10, training time: 109.083709, modeling time: 17.176472, dimension size : 200, window size : 6, avg accuracy : 0.856623\n", "num of epoch 1 \n", "epoch : 1, training time: 108.635271, modeling time: 16.831149, dimension size : 200, window size : 8, avg accuracy : 0.814420\n", "num of epoch 2 \n", "epoch : 2, training time: 108.519172, modeling time: 16.985283, dimension size : 200, window size : 8, avg accuracy : 0.826620\n", "num of epoch 3 \n", "epoch : 3, training time: 108.457107, modeling time: 16.850159, dimension size : 200, window size : 8, avg accuracy : 0.834890\n", "num of epoch 4 \n", "epoch : 4, training time: 108.337001, modeling time: 16.758063, dimension size : 200, window size : 8, avg accuracy : 0.838760\n", "num of epoch 5 \n", "epoch : 5, training time: 108.348007, modeling time: 16.953254, dimension size : 200, window size : 8, avg accuracy : 0.840683\n", "num of epoch 6 \n", "epoch : 6, training time: 108.371012, modeling time: 16.709037, dimension size : 200, window size : 8, avg accuracy : 0.841617\n", "num of epoch 7 \n", "epoch : 7, training time: 108.230896, modeling time: 16.910212, dimension size : 200, window size : 8, avg accuracy : 0.841930\n", "num of epoch 8 \n", "epoch : 8, training time: 108.363018, modeling time: 16.771091, dimension size : 200, window size : 8, avg accuracy : 0.842530\n", "num of epoch 9 \n", "epoch : 9, training time: 108.366026, modeling time: 17.229533, dimension size : 200, window size : 8, avg accuracy : 0.842727\n", "num of epoch 10 \n", "epoch : 10, training time: 108.715341, modeling time: 17.121433, dimension size : 200, window size : 8, avg accuracy : 0.842973\n", "num of epoch 1 \n", "epoch : 1, training time: 110.119672, modeling time: 16.967284, dimension size : 200, window size : 10, avg accuracy : 0.803063\n", "num of epoch 2 \n", "epoch : 2, training time: 110.046620, modeling time: 17.002320, dimension size : 200, window size : 10, avg accuracy : 0.815357\n", "num of epoch 3 \n", "epoch : 3, training time: 110.470027, modeling time: 16.983300, dimension size : 200, window size : 10, avg accuracy : 0.822557\n", "num of epoch 4 \n", "epoch : 4, training time: 110.618168, modeling time: 17.109422, dimension size : 200, window size : 10, avg accuracy : 0.825760\n", "num of epoch 5 \n", "epoch : 5, training time: 110.673221, modeling time: 16.876197, dimension size : 200, window size : 10, avg accuracy : 0.826927\n", "num of epoch 6 \n", "epoch : 6, training time: 110.679228, modeling time: 17.022338, dimension size : 200, window size : 10, avg accuracy : 0.827650\n", "num of epoch 7 \n", "epoch : 7, training time: 110.632195, modeling time: 16.839149, dimension size : 200, window size : 10, avg accuracy : 0.827737\n", "num of epoch 8 \n", "epoch : 8, training time: 110.915467, modeling time: 16.873182, dimension size : 200, window size : 10, avg accuracy : 0.828113\n", "num of epoch 9 \n", "epoch : 9, training time: 110.206775, modeling time: 17.129440, dimension size : 200, window size : 10, avg accuracy : 0.828293\n", "num of epoch 10 \n", "epoch : 10, training time: 109.847429, modeling time: 16.991308, dimension size : 200, window size : 10, avg accuracy : 0.828657\n", "num of epoch 1 \n", "epoch : 1, training time: 111.048583, modeling time: 21.936053, dimension size : 300, window size : 2, avg accuracy : 0.840590\n", "num of epoch 2 \n", "epoch : 2, training time: 110.200768, modeling time: 22.083195, dimension size : 300, window size : 2, avg accuracy : 0.863467\n", "num of epoch 3 \n", "epoch : 3, training time: 110.235802, modeling time: 22.130240, dimension size : 300, window size : 2, avg accuracy : 0.871597\n", "num of epoch 4 \n", "epoch : 4, training time: 110.751311, modeling time: 21.987088, dimension size : 300, window size : 2, avg accuracy : 0.875290\n", "num of epoch 5 \n", "epoch : 5, training time: 110.594160, modeling time: 21.873980, dimension size : 300, window size : 2, avg accuracy : 0.876917\n", "num of epoch 6 \n", "epoch : 6, training time: 110.217798, modeling time: 21.852961, dimension size : 300, window size : 2, avg accuracy : 0.877743\n", "num of epoch 7 \n", "epoch : 7, training time: 110.063652, modeling time: 22.016116, dimension size : 300, window size : 2, avg accuracy : 0.878497\n", "num of epoch 8 \n", "epoch : 8, training time: 110.145732, modeling time: 21.943043, dimension size : 300, window size : 2, avg accuracy : 0.878863\n", "num of epoch 9 \n", "epoch : 9, training time: 110.190758, modeling time: 22.255361, dimension size : 300, window size : 2, avg accuracy : 0.879070\n", "num of epoch 10 \n", "epoch : 10, training time: 110.171755, modeling time: 21.971073, dimension size : 300, window size : 2, avg accuracy : 0.879330\n", "num of epoch 1 \n", "epoch : 1, training time: 110.852379, modeling time: 22.369470, dimension size : 300, window size : 4, avg accuracy : 0.836290\n", "num of epoch 2 \n", "epoch : 2, training time: 111.582094, modeling time: 21.670800, dimension size : 300, window size : 4, avg accuracy : 0.856320\n", "num of epoch 3 \n", "epoch : 3, training time: 110.844385, modeling time: 22.144254, dimension size : 300, window size : 4, avg accuracy : 0.864713\n", "num of epoch 4 \n", "epoch : 4, training time: 110.684234, modeling time: 21.850970, dimension size : 300, window size : 4, avg accuracy : 0.868830\n", "num of epoch 5 \n", "epoch : 5, training time: 111.145671, modeling time: 21.898017, dimension size : 300, window size : 4, avg accuracy : 0.870840\n", "num of epoch 6 \n", "epoch : 6, training time: 110.854395, modeling time: 22.104215, dimension size : 300, window size : 4, avg accuracy : 0.871600\n", "num of epoch 7 \n", "epoch : 7, training time: 110.780325, modeling time: 22.195301, dimension size : 300, window size : 4, avg accuracy : 0.872793\n", "num of epoch 8 \n", "epoch : 8, training time: 111.124655, modeling time: 21.639769, dimension size : 300, window size : 4, avg accuracy : 0.873393\n", "num of epoch 9 \n", "epoch : 9, training time: 110.789333, modeling time: 22.118229, dimension size : 300, window size : 4, avg accuracy : 0.873777\n", "num of epoch 10 \n", "epoch : 10, training time: 110.829372, modeling time: 21.773898, dimension size : 300, window size : 4, avg accuracy : 0.873830\n", "num of epoch 1 \n", "epoch : 1, training time: 120.097249, modeling time: 21.948103, dimension size : 300, window size : 6, avg accuracy : 0.828160\n", "num of epoch 2 \n", "epoch : 2, training time: 115.712058, modeling time: 22.050179, dimension size : 300, window size : 6, avg accuracy : 0.844587\n", "num of epoch 3 \n", "epoch : 3, training time: 114.515905, modeling time: 22.071185, dimension size : 300, window size : 6, avg accuracy : 0.852490\n", "num of epoch 4 \n", "epoch : 4, training time: 115.119489, modeling time: 22.257378, dimension size : 300, window size : 6, avg accuracy : 0.855843\n", "num of epoch 5 \n", "epoch : 5, training time: 115.307669, modeling time: 21.646776, dimension size : 300, window size : 6, avg accuracy : 0.858407\n", "num of epoch 6 \n", "epoch : 6, training time: 118.905122, modeling time: 22.009125, dimension size : 300, window size : 6, avg accuracy : 0.859923\n", "num of epoch 7 \n", "epoch : 7, training time: 115.229595, modeling time: 21.816956, dimension size : 300, window size : 6, avg accuracy : 0.860500\n", "num of epoch 8 \n", "epoch : 8, training time: 118.748967, modeling time: 21.772897, dimension size : 300, window size : 6, avg accuracy : 0.861303\n", "num of epoch 9 \n", "epoch : 9, training time: 112.777241, modeling time: 21.805966, dimension size : 300, window size : 6, avg accuracy : 0.861703\n", "num of epoch 10 \n", "epoch : 10, training time: 115.097468, modeling time: 22.155293, dimension size : 300, window size : 6, avg accuracy : 0.862250\n", "num of epoch 1 \n", "epoch : 1, training time: 122.704766, modeling time: 22.184292, dimension size : 300, window size : 8, avg accuracy : 0.815887\n", "num of epoch 2 \n", "epoch : 2, training time: 120.538690, modeling time: 21.934052, dimension size : 300, window size : 8, avg accuracy : 0.830133\n", "num of epoch 3 \n", "epoch : 3, training time: 118.746971, modeling time: 22.047162, dimension size : 300, window size : 8, avg accuracy : 0.837787\n", "num of epoch 4 \n", "epoch : 4, training time: 120.344502, modeling time: 22.264368, dimension size : 300, window size : 8, avg accuracy : 0.841273\n", "num of epoch 5 \n", "epoch : 5, training time: 119.448644, modeling time: 21.969087, dimension size : 300, window size : 8, avg accuracy : 0.842590\n", "num of epoch 6 \n", "epoch : 6, training time: 125.674620, modeling time: 21.785910, dimension size : 300, window size : 8, avg accuracy : 0.843650\n", "num of epoch 7 \n", "epoch : 7, training time: 120.178342, modeling time: 21.832956, dimension size : 300, window size : 8, avg accuracy : 0.844500\n", "num of epoch 8 \n", "epoch : 8, training time: 125.706649, modeling time: 21.963079, dimension size : 300, window size : 8, avg accuracy : 0.845007\n", "num of epoch 9 \n", "epoch : 9, training time: 120.583732, modeling time: 22.256361, dimension size : 300, window size : 8, avg accuracy : 0.845643\n", "num of epoch 10 \n", "epoch : 10, training time: 123.345384, modeling time: 22.166274, dimension size : 300, window size : 8, avg accuracy : 0.846030\n", "num of epoch 1 \n", "epoch : 1, training time: 129.854629, modeling time: 21.793917, dimension size : 300, window size : 10, avg accuracy : 0.806173\n", "num of epoch 2 \n", "epoch : 2, training time: 126.178103, modeling time: 21.997112, dimension size : 300, window size : 10, avg accuracy : 0.818280\n", "num of epoch 3 \n", "epoch : 3, training time: 128.756577, modeling time: 22.241347, dimension size : 300, window size : 10, avg accuracy : 0.825280\n", "num of epoch 4 \n", "epoch : 4, training time: 130.074843, modeling time: 21.786911, dimension size : 300, window size : 10, avg accuracy : 0.828790\n", "num of epoch 5 \n", "epoch : 5, training time: 127.079969, modeling time: 21.710837, dimension size : 300, window size : 10, avg accuracy : 0.830280\n", "num of epoch 6 \n", "epoch : 6, training time: 129.184989, modeling time: 21.925043, dimension size : 300, window size : 10, avg accuracy : 0.830793\n", "num of epoch 7 \n", "epoch : 7, training time: 131.273991, modeling time: 22.160269, dimension size : 300, window size : 10, avg accuracy : 0.831253\n", "num of epoch 8 \n", "epoch : 8, training time: 128.116962, modeling time: 22.056169, dimension size : 300, window size : 10, avg accuracy : 0.831877\n", "num of epoch 9 \n", "epoch : 9, training time: 127.846704, modeling time: 22.188296, dimension size : 300, window size : 10, avg accuracy : 0.832160\n", "num of epoch 10 \n", "epoch : 10, training time: 131.765465, modeling time: 21.952069, dimension size : 300, window size : 10, avg accuracy : 0.832450\n", "num of epoch 1 \n", "epoch : 1, training time: 115.916268, modeling time: 26.734643, dimension size : 400, window size : 2, avg accuracy : 0.841050\n", "num of epoch 2 \n", "epoch : 2, training time: 116.631941, modeling time: 27.106015, dimension size : 400, window size : 2, avg accuracy : 0.864347\n", "num of epoch 3 \n", "epoch : 3, training time: 113.624054, modeling time: 26.956872, dimension size : 400, window size : 2, avg accuracy : 0.872817\n", "num of epoch 4 \n", "epoch : 4, training time: 112.897371, modeling time: 27.137031, dimension size : 400, window size : 2, avg accuracy : 0.877133\n", "num of epoch 5 \n", "epoch : 5, training time: 113.239685, modeling time: 26.958875, dimension size : 400, window size : 2, avg accuracy : 0.879330\n", "num of epoch 6 \n", "epoch : 6, training time: 113.891310, modeling time: 27.145053, dimension size : 400, window size : 2, avg accuracy : 0.880627\n", "num of epoch 7 \n", "epoch : 7, training time: 113.998413, modeling time: 26.734659, dimension size : 400, window size : 2, avg accuracy : 0.881543\n", "num of epoch 8 \n", "epoch : 8, training time: 112.712179, modeling time: 26.502436, dimension size : 400, window size : 2, avg accuracy : 0.881933\n", "num of epoch 9 \n", "epoch : 9, training time: 112.835297, modeling time: 26.775698, dimension size : 400, window size : 2, avg accuracy : 0.882350\n", "num of epoch 10 \n", "epoch : 10, training time: 112.773238, modeling time: 26.665592, dimension size : 400, window size : 2, avg accuracy : 0.882447\n", "num of epoch 1 \n", "epoch : 1, training time: 126.824724, modeling time: 26.757680, dimension size : 400, window size : 4, avg accuracy : 0.835687\n", "num of epoch 2 \n", "epoch : 2, training time: 121.526639, modeling time: 26.943860, dimension size : 400, window size : 4, avg accuracy : 0.858163\n", "num of epoch 3 \n", "epoch : 3, training time: 122.578648, modeling time: 26.923841, dimension size : 400, window size : 4, avg accuracy : 0.867083\n", "num of epoch 4 \n", "epoch : 4, training time: 121.258381, modeling time: 26.909827, dimension size : 400, window size : 4, avg accuracy : 0.870997\n", "num of epoch 5 \n", "epoch : 5, training time: 124.488482, modeling time: 26.853773, dimension size : 400, window size : 4, avg accuracy : 0.873297\n", "num of epoch 6 \n", "epoch : 6, training time: 120.453609, modeling time: 27.202108, dimension size : 400, window size : 4, avg accuracy : 0.874870\n", "num of epoch 7 \n", "epoch : 7, training time: 121.074205, modeling time: 26.760684, dimension size : 400, window size : 4, avg accuracy : 0.876097\n", "num of epoch 8 \n", "epoch : 8, training time: 117.043335, modeling time: 26.528462, dimension size : 400, window size : 4, avg accuracy : 0.877003\n", "num of epoch 9 \n", "epoch : 9, training time: 120.541694, modeling time: 26.871791, dimension size : 400, window size : 4, avg accuracy : 0.877447\n", "num of epoch 10 \n", "epoch : 10, training time: 124.458451, modeling time: 26.628557, dimension size : 400, window size : 4, avg accuracy : 0.877740\n", "num of epoch 1 \n", "epoch : 1, training time: 131.481347, modeling time: 26.860780, dimension size : 400, window size : 6, avg accuracy : 0.827860\n", "num of epoch 2 \n", "epoch : 2, training time: 127.888745, modeling time: 26.610539, dimension size : 400, window size : 6, avg accuracy : 0.846253\n", "num of epoch 3 \n", "epoch : 3, training time: 129.506297, modeling time: 26.818740, dimension size : 400, window size : 6, avg accuracy : 0.854320\n", "num of epoch 4 \n", "epoch : 4, training time: 131.023754, modeling time: 26.625556, dimension size : 400, window size : 6, avg accuracy : 0.858630\n", "num of epoch 5 \n", "epoch : 5, training time: 133.259899, modeling time: 26.505440, dimension size : 400, window size : 6, avg accuracy : 0.860960\n", "num of epoch 6 \n", "epoch : 6, training time: 129.569357, modeling time: 26.760684, dimension size : 400, window size : 6, avg accuracy : 0.862357\n", "num of epoch 7 \n", "epoch : 7, training time: 128.286127, modeling time: 26.813735, dimension size : 400, window size : 6, avg accuracy : 0.863353\n", "num of epoch 8 \n", "epoch : 8, training time: 131.594302, modeling time: 27.132040, dimension size : 400, window size : 6, avg accuracy : 0.864437\n", "num of epoch 9 \n", "epoch : 9, training time: 128.355192, modeling time: 26.636565, dimension size : 400, window size : 6, avg accuracy : 0.865103\n", "num of epoch 10 \n", "epoch : 10, training time: 128.552381, modeling time: 27.331233, dimension size : 400, window size : 6, avg accuracy : 0.865253\n", "num of epoch 1 \n", "epoch : 1, training time: 134.681264, modeling time: 26.960876, dimension size : 400, window size : 8, avg accuracy : 0.817293\n", "num of epoch 2 \n", "epoch : 2, training time: 135.780318, modeling time: 27.110035, dimension size : 400, window size : 8, avg accuracy : 0.832340\n", "num of epoch 3 \n", "epoch : 3, training time: 138.855269, modeling time: 26.529462, dimension size : 400, window size : 8, avg accuracy : 0.840383\n", "num of epoch 4 \n", "epoch : 4, training time: 135.313869, modeling time: 27.070982, dimension size : 400, window size : 8, avg accuracy : 0.844377\n", "num of epoch 5 \n", "epoch : 5, training time: 139.965336, modeling time: 26.852773, dimension size : 400, window size : 8, avg accuracy : 0.846367\n", "num of epoch 6 \n", "epoch : 6, training time: 139.669051, modeling time: 27.017931, dimension size : 400, window size : 8, avg accuracy : 0.848330\n", "num of epoch 7 \n", "epoch : 7, training time: 135.120686, modeling time: 26.740665, dimension size : 400, window size : 8, avg accuracy : 0.849283\n", "num of epoch 8 \n", "epoch : 8, training time: 134.033643, modeling time: 26.669597, dimension size : 400, window size : 8, avg accuracy : 0.850173\n", "num of epoch 9 \n", "epoch : 9, training time: 139.181583, modeling time: 26.897816, dimension size : 400, window size : 8, avg accuracy : 0.850833\n", "num of epoch 10 \n", "epoch : 10, training time: 134.106712, modeling time: 27.240144, dimension size : 400, window size : 8, avg accuracy : 0.851253\n", "num of epoch 1 \n", "epoch : 1, training time: 147.995026, modeling time: 26.869789, dimension size : 400, window size : 10, avg accuracy : 0.806853\n", "num of epoch 2 \n", "epoch : 2, training time: 143.137380, modeling time: 26.787710, dimension size : 400, window size : 10, avg accuracy : 0.819143\n", "num of epoch 3 \n", "epoch : 3, training time: 144.245443, modeling time: 27.034948, dimension size : 400, window size : 10, avg accuracy : 0.825770\n", "num of epoch 4 \n", "epoch : 4, training time: 147.852906, modeling time: 26.645573, dimension size : 400, window size : 10, avg accuracy : 0.829183\n", "num of epoch 5 \n", "epoch : 5, training time: 145.395548, modeling time: 27.029942, dimension size : 400, window size : 10, avg accuracy : 0.830690\n", "num of epoch 6 \n", "epoch : 6, training time: 138.243683, modeling time: 26.632561, dimension size : 400, window size : 10, avg accuracy : 0.831620\n", "num of epoch 7 \n", "epoch : 7, training time: 145.086251, modeling time: 27.181087, dimension size : 400, window size : 10, avg accuracy : 0.832400\n", "num of epoch 8 \n", "epoch : 8, training time: 144.804981, modeling time: 26.922842, dimension size : 400, window size : 10, avg accuracy : 0.832860\n", "num of epoch 9 \n", "epoch : 9, training time: 149.900871, modeling time: 27.190096, dimension size : 400, window size : 10, avg accuracy : 0.833430\n", "num of epoch 10 \n", "epoch : 10, training time: 144.064270, modeling time: 27.022936, dimension size : 400, window size : 10, avg accuracy : 0.833773\n", "num of epoch 1 \n", "epoch : 1, training time: 128.090925, modeling time: 30.756519, dimension size : 500, window size : 2, avg accuracy : 0.842500\n", "num of epoch 2 \n", "epoch : 2, training time: 131.324042, modeling time: 32.082874, dimension size : 500, window size : 2, avg accuracy : 0.866453\n", "num of epoch 3 \n", "epoch : 3, training time: 129.091899, modeling time: 30.969740, dimension size : 500, window size : 2, avg accuracy : 0.875677\n", "num of epoch 4 \n", "epoch : 4, training time: 127.358235, modeling time: 31.382135, dimension size : 500, window size : 2, avg accuracy : 0.879550\n", "num of epoch 5 \n", "epoch : 5, training time: 131.874583, modeling time: 31.465199, dimension size : 500, window size : 2, avg accuracy : 0.881727\n", "num of epoch 6 \n", "epoch : 6, training time: 126.570479, modeling time: 31.454189, dimension size : 500, window size : 2, avg accuracy : 0.882927\n", "num of epoch 7 \n", "epoch : 7, training time: 127.218101, modeling time: 31.436172, dimension size : 500, window size : 2, avg accuracy : 0.883903\n", "num of epoch 8 \n", "epoch : 8, training time: 128.807626, modeling time: 31.295037, dimension size : 500, window size : 2, avg accuracy : 0.884703\n", "num of epoch 9 \n", "epoch : 9, training time: 125.527478, modeling time: 31.357096, dimension size : 500, window size : 2, avg accuracy : 0.884937\n", "num of epoch 10 \n", "epoch : 10, training time: 123.842860, modeling time: 31.144892, dimension size : 500, window size : 2, avg accuracy : 0.885210\n", "num of epoch 1 \n", "epoch : 1, training time: 140.095460, modeling time: 31.078831, dimension size : 500, window size : 4, avg accuracy : 0.837290\n", "num of epoch 2 \n", "epoch : 2, training time: 133.409043, modeling time: 31.848582, dimension size : 500, window size : 4, avg accuracy : 0.859113\n", "num of epoch 3 \n", "epoch : 3, training time: 136.556063, modeling time: 31.190936, dimension size : 500, window size : 4, avg accuracy : 0.868120\n", "num of epoch 4 \n", "epoch : 4, training time: 135.501051, modeling time: 30.954729, dimension size : 500, window size : 4, avg accuracy : 0.873283\n", "num of epoch 5 \n", "epoch : 5, training time: 137.646108, modeling time: 31.708433, dimension size : 500, window size : 4, avg accuracy : 0.875813\n", "num of epoch 6 \n", "epoch : 6, training time: 130.510261, modeling time: 31.491238, dimension size : 500, window size : 4, avg accuracy : 0.877603\n", "num of epoch 7 \n", "epoch : 7, training time: 135.594138, modeling time: 31.219965, dimension size : 500, window size : 4, avg accuracy : 0.878750\n", "num of epoch 8 \n", "epoch : 8, training time: 137.802260, modeling time: 31.684412, dimension size : 500, window size : 4, avg accuracy : 0.879293\n", "num of epoch 9 \n", "epoch : 9, training time: 139.935306, modeling time: 31.464198, dimension size : 500, window size : 4, avg accuracy : 0.879847\n", "num of epoch 10 \n", "epoch : 10, training time: 130.431183, modeling time: 31.115864, dimension size : 500, window size : 4, avg accuracy : 0.880103\n", "num of epoch 1 \n", "epoch : 1, training time: 141.398708, modeling time: 31.273015, dimension size : 500, window size : 6, avg accuracy : 0.828493\n", "num of epoch 2 \n", "epoch : 2, training time: 142.004292, modeling time: 31.525271, dimension size : 500, window size : 6, avg accuracy : 0.847057\n", "num of epoch 3 \n", "epoch : 3, training time: 141.762059, modeling time: 31.244988, dimension size : 500, window size : 6, avg accuracy : 0.856073\n", "num of epoch 4 \n", "epoch : 4, training time: 142.534800, modeling time: 31.607336, dimension size : 500, window size : 6, avg accuracy : 0.860433\n", "num of epoch 5 \n", "epoch : 5, training time: 146.282398, modeling time: 31.027780, dimension size : 500, window size : 6, avg accuracy : 0.863293\n", "num of epoch 6 \n", "epoch : 6, training time: 141.567868, modeling time: 31.660387, dimension size : 500, window size : 6, avg accuracy : 0.865143\n", "num of epoch 7 \n", "epoch : 7, training time: 141.144465, modeling time: 31.403140, dimension size : 500, window size : 6, avg accuracy : 0.866527\n", "num of epoch 8 \n", "epoch : 8, training time: 143.775992, modeling time: 31.604347, dimension size : 500, window size : 6, avg accuracy : 0.867617\n", "num of epoch 9 \n", "epoch : 9, training time: 140.464800, modeling time: 31.928659, dimension size : 500, window size : 6, avg accuracy : 0.868190\n", "num of epoch 10 \n", "epoch : 10, training time: 140.473823, modeling time: 31.349103, dimension size : 500, window size : 6, avg accuracy : 0.868507\n", "num of epoch 1 \n", "epoch : 1, training time: 149.502474, modeling time: 31.041808, dimension size : 500, window size : 8, avg accuracy : 0.817747\n", "num of epoch 2 \n", "epoch : 2, training time: 148.986994, modeling time: 31.173933, dimension size : 500, window size : 8, avg accuracy : 0.832313\n", "num of epoch 3 \n", "epoch : 3, training time: 148.243280, modeling time: 31.292033, dimension size : 500, window size : 8, avg accuracy : 0.840477\n", "num of epoch 4 \n", "epoch : 4, training time: 153.414240, modeling time: 31.497245, dimension size : 500, window size : 8, avg accuracy : 0.844907\n", "num of epoch 5 \n", "epoch : 5, training time: 143.725945, modeling time: 31.640371, dimension size : 500, window size : 8, avg accuracy : 0.847353\n", "num of epoch 6 \n", "epoch : 6, training time: 153.472300, modeling time: 32.157864, dimension size : 500, window size : 8, avg accuracy : 0.849563\n", "num of epoch 7 \n", "epoch : 7, training time: 157.800451, modeling time: 32.215935, dimension size : 500, window size : 8, avg accuracy : 0.850723\n", "num of epoch 8 \n", "epoch : 8, training time: 146.958047, modeling time: 32.136848, dimension size : 500, window size : 8, avg accuracy : 0.851710\n", "num of epoch 9 \n", "epoch : 9, training time: 148.576600, modeling time: 31.941673, dimension size : 500, window size : 8, avg accuracy : 0.852377\n", "num of epoch 10 \n", "epoch : 10, training time: 150.039004, modeling time: 32.105828, dimension size : 500, window size : 8, avg accuracy : 0.852957\n", "num of epoch 1 \n", "epoch : 1, training time: 163.485895, modeling time: 32.045758, dimension size : 500, window size : 10, avg accuracy : 0.808430\n", "num of epoch 2 \n", "epoch : 2, training time: 161.987472, modeling time: 31.760483, dimension size : 500, window size : 10, avg accuracy : 0.820803\n", "num of epoch 3 \n", "epoch : 3, training time: 166.051273, modeling time: 31.757481, dimension size : 500, window size : 10, avg accuracy : 0.828500\n", "num of epoch 4 \n", "epoch : 4, training time: 163.170668, modeling time: 32.540428, dimension size : 500, window size : 10, avg accuracy : 0.832063\n", "num of epoch 5 \n", "epoch : 5, training time: 158.504590, modeling time: 33.070312, dimension size : 500, window size : 10, avg accuracy : 0.833460\n", "num of epoch 6 \n", "epoch : 6, training time: 168.355695, modeling time: 32.997456, dimension size : 500, window size : 10, avg accuracy : 0.835007\n", "num of epoch 7 \n", "epoch : 7, training time: 158.624243, modeling time: 33.096953, dimension size : 500, window size : 10, avg accuracy : 0.835657\n", "num of epoch 8 \n", "epoch : 8, training time: 170.299777, modeling time: 32.679254, dimension size : 500, window size : 10, avg accuracy : 0.836347\n", "num of epoch 9 \n", "epoch : 9, training time: 165.297154, modeling time: 32.554044, dimension size : 500, window size : 10, avg accuracy : 0.836950\n", "num of epoch 10 \n", "epoch : 10, training time: 161.321805, modeling time: 32.552951, dimension size : 500, window size : 10, avg accuracy : 0.837617\n", "end : 2016-12-12 13:46:24.136835\n" ] } ], "source": [ "#parameters\n", "y = np.array([1] * 100000 + [0] * 100000 + [-1] * 100000)\n", "tags = [doc.tags[0] for doc in documents]\n", "tag_dict = {}\n", "for index, tag in enumerate(tags):\n", " tag_dict[tag] = y[index]\n", " \n", "window = [2,4,6,8,10]\n", "size = [50,100,200,300,400,500]\n", "alpha, min_alpha, passes = (0.02, 0.001, 10)\n", "alpha_delta = (alpha-min_alpha)/passes\n", "\n", "df_param = pd.DataFrame(columns=[['epoch', 'training_time', 'modeling_time', 'dimension', 'window', 'avg_accuracy']])\n", "\n", "print(\"start : \", datetime.datetime.now())\n", "for s in size:\n", " for w in window:\n", " #PV_DM w/average\n", " model = Doc2Vec(dm=1, dm_mean=1, size=s, min_count=50, window=w, workers=12, \n", " alpha=alpha, min_alpha=min_alpha)\n", " model.build_vocab(documents)\n", "\n", " for epoch in range(passes):\n", " print(\"num of epoch %s \"%(epoch+1))\n", " start = time.time()\n", " random.shuffle(documents)\n", " model.train(documents)\n", " model.alpha -= alpha_delta # decrease the learning rate\n", " model.min_alpha = model.alpha # fix the learning rate, no decay\n", " end = time.time()\n", "\n", " start2 = time.time()\n", " X = np.array([model.docvecs[tag] for tag in tags])\n", " y = [tag_dict[tag] for tag in tags]\n", " y = np.array(y)\n", " \n", " accuracy = []\n", " kf = KFold(X.shape[0], n_folds=10, shuffle=True, random_state=10)\n", " for k, (train_index, test_index) in enumerate(kf):\n", " X_train, X_test = X[train_index], X[test_index]\n", " y_train, y_test = y[train_index], y[test_index]\n", " sgdreg = linear_model.SGDClassifier(loss='log', penalty='l2', n_jobs=-1, alpha=0.0001, n_iter=5, random_state =111)\n", " sgdreg.fit(X_train, y_train)\n", " accuracy.append(np.mean(sgdreg.predict(X_test) == y_test))\n", " end2 = time.time()\n", " print(\"epoch : %i, training time: %f, modeling time: %f, dimension size : %i, window size : %i, avg accuracy : %f\" %(epoch+1, end-start, end2-start2, s, w, np.mean(accuracy)))\n", " df_param.loc[len(df_param)] = [epoch+1, start-end, start2-end2, s, w, np.mean(accuracy)]\n", " #model.save(model_path + \"model_\" + str(w) + '_' + str(s) + '_' + str(epoch+1))\n", "print(\"end : \", datetime.datetime.now())" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "collapsed": true }, "outputs": [], "source": [] }, { "cell_type": "code", "execution_count": 36, "metadata": { "collapsed": false }, "outputs": [], "source": [ "df_param.to_csv('D:/Dropbox/2016-2/졸업논문/FINAL_result/ParamSearch/result.csv',index=False)" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "collapsed": true }, "outputs": [], "source": [] } ], "metadata": { "anaconda-cloud": {}, "kernelspec": { "display_name": "Python [conda root]", "language": "python", "name": "conda-root-py" }, "language_info": { "codemirror_mode": { "name": "ipython", "version": 3 }, "file_extension": ".py", "mimetype": "text/x-python", "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", "version": "3.5.2" } }, "nbformat": 4, "nbformat_minor": 1 }
mit
monicathieu/cu-psych-r-tutorial
public/tutorials/python/1_r2python-translation/3_controlFlow.ipynb
3
7482
{ "cells": [ { "cell_type": "markdown", "metadata": {}, "source": [ "# Control Flow\n", "\n", "## Goals of this lesson\n", "\n", "#### Students will learn:\n", "- How to use if/else and for loops in python\n", "- How to indent code correctly in python" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "# Indenting in python\n", "\n", "- Python, unlike R, is *strict* about indentation! \n", "- Indentations in python often have bearing on the *order* in which they are executed, and switching indentation can change how code runs (or break it)\n", "- Coming from R, indentation might seem annoying at first, but eventually this can help with code readability \n", "- Ultimately, python is trying to help us stay organized\n", "\n", "\n", "\n" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "![Indentation](https://www.python-course.eu/images/blocks.png)\n", "\n", " " ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "# If statements\n", "\n", "- If statements in python are the equivalent of the following English: \"If condition X is met, then do action Y\"\n", "- If statements in python consist of the following syntax\n", "\n", "`if (condition X):\n", " actions...`" ] }, { "cell_type": "code", "execution_count": 12, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "Above 10!\n" ] } ], "source": [ "myVar = 25\n", "if myVar > 10:\n", " print('Above 10!')" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Nesting If Statements\n", "\n", "Any conditional statements within others are called 'nested'" ] }, { "cell_type": "code", "execution_count": 13, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "Above 10!\n", "Above 20!\n" ] } ], "source": [ "if myVar > 5:\n", " print('Above 10!')\n", " if myVar > 20:\n", " print('Above 20!')" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "# Else Statements\n", "\n", "- It is also very helpful to specify code that we want to run if a condition is NOT met\n", "- Else statements in python always follow if statements, and consist of the following syntax\n", "\n", "`if (condition X):\n", " actions...\n", " else:\n", " actions...`" ] }, { "cell_type": "code", "execution_count": 14, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "woof\n" ] } ], "source": [ "myVar2 = 'dog'\n", "if myVar2 == 'cat':\n", " print('meow')\n", "else:\n", " print('woof')" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Else If & Sequential If Statements\n", "\n", "- We may also want to specify a series of conditions\n", "- Python always evaluates conditions on the same nest level in order, from top to bottom \n", "- Elif means 'else if' -- only run this statement if the previous if statement condition was not met, and the condition following is met\n", "- Sequential if statements on the same level will run if the statement condition is met, regardless of the previous" ] }, { "cell_type": "code", "execution_count": 15, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "3 letters long\n" ] } ], "source": [ "myVar2 = 'dog'\n", "if len(myVar2) == 3:\n", " print('3 letters long')\n", "elif myVar2 == 'dog':\n", " print('woof')\n", "else:\n", " print('unknown animal')" ] }, { "cell_type": "code", "execution_count": 16, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "3 letters long\n", "woof\n" ] } ], "source": [ "myVar2 = 'dog'\n", "if len(myVar2) == 3:\n", " print('3 letters long')\n", "if myVar2 == 'dog':\n", " print('woof')\n", "else:\n", " print('unknown animal')" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "# Loops\n", "\n", "- Looping is a great way to apply the same operation to many pieces of data" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "### Looping through a list" ] }, { "cell_type": "code", "execution_count": 17, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "2\n", "3\n", "4\n", "-1\n", "7\n" ] } ], "source": [ "nums = [2,3,4,-1,7]\n", "for number in nums:\n", " print(number)" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "### Looping a certain number of times\n" ] }, { "cell_type": "code", "execution_count": 18, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "0\n", "1\n", "2\n", "3\n", "4\n", "5\n", "6\n", "7\n", "8\n", "9\n" ] } ], "source": [ "for i in range(10):\n", " print(i)" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "### Fancly looping with enumerate" ] }, { "cell_type": "code", "execution_count": 19, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "0 banana\n", "1 mango\n", "2 kiwi\n", "3 blackberry\n" ] } ], "source": [ "stringList = ['banana', 'mango', 'kiwi', 'blackberry']\n", "# fancy looping with enumerate()\n", "for index, item in enumerate(stringList):\n", " print(index, item)" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "# Nested loops" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "![nested loops](https://javatutoring.com/wp-content/uploads/2016/12/loops-in-java.jpg)" ] }, { "cell_type": "code", "execution_count": 20, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "banana 0\n", "banana 1\n", "banana 2\n", "banana 3\n", "mango 0\n", "mango 1\n", "mango 2\n", "mango 3\n", "kiwi 0\n", "kiwi 1\n", "kiwi 2\n", "kiwi 3\n", "blackberry 0\n", "blackberry 1\n", "blackberry 2\n", "blackberry 3\n" ] } ], "source": [ "for i in stringList:\n", " for j in range(4):\n", " print(i, j)" ] } ], "metadata": { "kernelspec": { "display_name": "Python 3", "language": "python", "name": "python3" }, "language_info": { "codemirror_mode": { "name": "ipython", "version": 3 }, "file_extension": ".py", "mimetype": "text/x-python", "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", "version": "3.6.5" } }, "nbformat": 4, "nbformat_minor": 2 }
mit
ivukotic/ML_platform_tests
tutorial/Simple Examples/Fitting custom function.ipynb
1
13711
{ "cells": [ { "cell_type": "markdown", "metadata": {}, "source": [ "### This example shows how to fit an arbitrary function to your data" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "#### imports" ] }, { "cell_type": "code", "execution_count": 1, "metadata": {}, "outputs": [], "source": [ "%matplotlib inline\n", "import numpy as np\n", "from scipy.optimize import curve_fit\n", "import matplotlib.pyplot as plt" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "#### your function" ] }, { "cell_type": "code", "execution_count": 2, "metadata": {}, "outputs": [], "source": [ "def fit_func(x, a, b):\n", " return a*x + b" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "#### data" ] }, { "cell_type": "code", "execution_count": 3, "metadata": {}, "outputs": [], "source": [ "x = np.array([1, 2, 3, 9])\n", "y = np.array([1, 1.5, 2, 3])" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "#### fitting" ] }, { "cell_type": "code", "execution_count": 4, "metadata": {}, "outputs": [], "source": [ "params = curve_fit(fit_func, x, y)" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "#### results - parameters" ] }, { "cell_type": "code", "execution_count": 5, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "a: 0.229032258063 \tb: 1.01612903226\n" ] } ], "source": [ "[a, b] = params[0]\n", "print ('a:',a,'\\tb:',b)" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "#### results - errors" ] }, { "cell_type": "code", "execution_count": 6, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "err a: 0.0446980850234 \terr b: 0.21783152214\n" ] } ], "source": [ "pcov=params[1]\n", "[da,db] = np.sqrt(np.diag(pcov))\n", "print ('err a:',da,'\\terr b:',db)" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "#### plot data and fit" ] }, { "cell_type": "code", "execution_count": 7, "metadata": {}, "outputs": [ { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAXoAAAD8CAYAAAB5Pm/hAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMS4wLCBo\ndHRwOi8vbWF0cGxvdGxpYi5vcmcvpW3flQAAHBRJREFUeJzt3Xt01eWd7/H3NyFAuEYhCgQQFOQi\nCGiON7ygqIBSoWor2nZqx1nM6dRpnbb2SGemdjydU3vo9DLLTrtY6ql2FFGkiEqLVG3RaWUMEggX\nERAFwi1cEm6B3L7nj2drYgxkJ9nJL/ntz2utLPb+7Wfv/V2/RT48PPvZ35+5OyIiEl8ZURcgIiKt\nS0EvIhJzCnoRkZhT0IuIxJyCXkQk5hT0IiIxl3TQm1mmma02s5caeKyLmS0wsy1mttLMhqSySBER\nab6mzOi/AWw8xWP3AIfcfRjwU+BHLS1MRERSI6mgN7OBwM3Ao6cYMgN4InF7ITDZzKzl5YmISEt1\nSnLcz4DvAD1P8XgesAPA3avMrAzoA+yvO8jMZgOzAbp3737xyJEjm1OziEjaWrVq1X53z23KcxoN\nejObDuxz91VmNqm5xQG4+zxgHkB+fr4XFBS05OVERNKOmX3Y1Ocks3QzEbjFzD4AngGuM7P/rDem\nGBiUKKIT0Bs40NRiREQk9RoNenef4+4D3X0IMAt4zd2/WG/YEuDLidu3J8aoW5qISDuQ7Br9p5jZ\nQ0CBuy8BHgN+Y2ZbgIOEfxBERKQdaFLQu/sfgT8mbn+vzvETwOdSWZiIiKSGvhkrIhJzCnoRkZhT\n0IuIxJyCXkQk5hT0IiIxp6AXEYk5Bb2ISMwp6EVEYk5BLyIScwp6EZGYU9CLiMScgl5EJOYU9CIi\nMaegFxGJOQW9iEjMKehFRGJOQS8iEnMKehGRmGs06M2sq5n9t5mtMbP1ZvYvDYy528xKzKww8fM3\nrVOuiIg0VTLXjD0JXOfuR80sC3jTzH7n7m/VG7fA3e9NfYkiItISjQa9uztwNHE3K/HjrVmUiIik\nTlJr9GaWaWaFwD5gubuvbGDYbWa21swWmtmglFYpIiLNllTQu3u1u48HBgKXmNmYekNeBIa4+4XA\ncuCJhl7HzGabWYGZFZSUlLSkbhERSVKTdt24eynwOjC13vED7n4ycfdR4OJTPH+eu+e7e35ubm5z\n6hURkSZKZtdNrpnlJG5nAzcA79Yb07/O3VuAjaksUkREmi+ZXTf9gSfMLJPwD8Oz7v6SmT0EFLj7\nEuDrZnYLUAUcBO5urYJFRKRpLGyqaXv5+fleUFAQyXuLiHRUZrbK3fOb8hx9M1ZEJOYU9CIiMaeg\nFxGJOQW9iEjMKehFRGJOQS8iEnMKehGRmFPQi4jEnIJeRCTmFPQiIjGnoBcRiTkFvYhIzCnoRURi\nTkEvIhJzCnoRkZhT0IuIxJyCXkSkMdVVsPkPUFURdSXNksylBEVE0tPeDbDmaVj7LBzdC3c8BaOm\nR11VkynoRUTqOnYA1i2EwqdhdyFkdILhN8L4u8KfHVCjQW9mXYEVQJfE+IXu/mC9MV2AJ4GLgQPA\nHe7+QcqrFRFpDVUVsGV5CPf3lkFNJfS7EKY+DGNuZ/HmCua+sIldpcsZkJPN/VNGMHNCXtRVJy2Z\nGf1J4Dp3P2pmWcCbZvY7d3+rzph7gEPuPszMZgE/Au5ohXpFRFLDHfasDeFe9BwcPwDdz4JL/xbG\n3Qn9xgCweHUxcxYVUV5ZDUBxaTlzFhUBdJiwbzTo3d2Bo4m7WYkfrzdsBvD9xO2FwCNmZonnioi0\nH0f2QtGzUDgf9q2HzM4w4qawNHPeZMj8ZCzOXbbp45D/SHllNXOXbYpP0AOYWSawChgG/MLdV9Yb\nkgfsAHD3KjMrA/oA++u9zmxgNsDgwYNbVrmISLIqT8CmpbBmPmx5Fbwa8vLh5n+DC26Fbmee8qm7\nSsubdLw9Siro3b0aGG9mOcBvzWyMu69r6pu5+zxgHkB+fr5m+yLSetxh59thaWb9IjhRBr3yYOI3\nwtJM7vlJvcyAnGyKGwj1ATnZqa641TRp1427l5rZ68BUoG7QFwODgJ1m1gnoTfhQVkSkbZXthDXP\nhNn7gS3QKRtGfQbG3wlDr4GMzCa93P1TRnxijR4gOyuT+6eMSHXlrSaZXTe5QGUi5LOBGwgftta1\nBPgy8BfgduA1rc+LSJupOAYbX4LCp2DbCsDhnIkw8T4YPQO69mr2S3+0Dj932SZ2lZbHdtdNf+CJ\nxDp9BvCsu79kZg8BBe6+BHgM+I2ZbQEOArNarWIREQhLMx/+OSzNbFgMFUch5xy45n/BuFlw5tCU\nvdXMCXkdKtjrS2bXzVpgQgPHv1fn9gngc6ktTUSkAQe31S7NlH4InXvABTNh3F0w+HLIUGeX+vTN\nWBFp/04cDrP2wvmw/c+AwbnXwLX/GFoSdO4edYXtmoJeRNqnmmrY9qcQ7htfhKpy6DMMJn8PLrwD\neg+MusIOQ0EvIu3L/s1h3X3tAjhcDF17hx0z4+6CgflgFnWFHY6CXkSiV34I1j0fZu/FBWCZMOx6\nmPKvcP40yOoadYUdmoJeRKJRXQVbXw2z901LoboCzroAbvwBjP089Dw76gpjQ0EvIm1rz7qwY2bt\ns3BsH3TrA/n3hOWZfhdqaaYVKOhFpPUdLQkdItc8DXuKICMLzp8SGokNuwE6dY66wlhT0ItI66iq\ngPd+H2bvm1+BmiroPx6mzYUxt0H3PlFXmDYU9CKSOu6wa3UI96LnwoesPfrBZX8XZu9njYq6wrSk\noBeRlju8O2yHXPMMlGyEzC4w8mYY/wU4d9KnerxL29LZF5HmqSyHd18Os/etr4HXwMBLYPpPQ4/3\n7JyoK5QEBb2IJM8ddqxM9HhfDCfLoNdAuPKbocd732FRVygNUNCLSONKt9c2Ejv4PmR1C+1/x90J\nQ65SI7F2TkEvIg07eRQ2Lgmz9w/eCMeGXAVXfRtG3wJdekZbnyRNQS8itWpq4MM3QyuCDS9A5TE4\nY2joEnnhHXDGOVFXKM2goBcROLA1LMusWQBl26FLLxh7W9g1M+hSfVu1g1PQi6SrE2Ww/rdh9r7j\nLcDgvGtDG+CRN0PnblFXKCmioBdJJzXVsPX10Irg3Zeh6gT0HQHXfz8szfQaEHWF0gqSuTj4IOBJ\n4GzAgXnu/vN6YyYBLwDbEocWuftDqS1VRJpt38ZEj/dn4ege6JoDE74Yvq064CItzcRcMjP6KuBb\n7v6OmfUEVpnZcnffUG/cG+4+PfUlikizHD8IRQvD7H3X6tDjffiNoUvk+VOhU5eoK5Q2kszFwXcD\nuxO3j5jZRiAPqB/0IhK16krYvDyE+6bfQ00l9BsLU34IYz8HPXKjrlAi0KQ1ejMbAkwAVjbw8OVm\ntgbYBXzb3dc38PzZwGyAwYMHN7VWETmV3Wtre7wf3w/dc+GS2Yke72Ojrk4ilnTQm1kP4HngPnc/\nXO/hd4Bz3P2omd0ELAaG138Nd58HzAPIz8/3ZlctInB0Xwj2NfNh7zrI7ByWZMbfFS7Dl5kVdYXS\nTiQV9GaWRQj5p9x9Uf3H6wa/uy81s/8ws77uvj91pYoIlSfgvd+FLZFb/gBeDXkXw00/Dj3eu50Z\ndYXSDiWz68aAx4CN7v6TU4zpB+x1dzezS4AM4EBKKxVJV+5Q/A4UPhUuoH2iFHr2hyv+Pszec0dE\nXaG0c8nM6CcCXwKKzKwwcey7wGAAd/8VcDvwVTOrAsqBWe6upRmRligrTvR4nw/734NOXWHUZ0Ij\nsXMnQUZm1BVKB5HMrps3gdNusnX3R4BHUlWUSNqqOA7vvhT2vL//R8Bh0GXwmX+HC2ZC195RVygd\nkL4ZKxI1d9j+l9oe7xVHoPdguPp+GDcL+pwXdYXSwSnoRaJy6IPaHu+HPoCs7mHWPu5OOGeierxL\nyijoRdrSySOh/W/h/NAOGIOhV8OkOWH9vXP3qCuUGFLQi7S2mhr4YEVYmtn4IlQehzPPg+v+CS6c\nBTmDoq5QYk5BL9Ja9m8JrQjWLIDDO6FL79AhcvxdMPB/qJGYtBkFvUgqlR+CdYvCuvvOt8Ey4LzJ\ncONDMOImyMqOukJJQwp6kZaqroKtryV6vC+F6pOQOwpueAjGfh569Y+6QklzCnqR5tq7Pqy7Fz0H\nR/dC9plw8d2hkVj/8VqakXZDQS/SFMf21/Z4370GMjrB8Ckh3IdPgU6do65Q5FMU9CKNqaqAza+E\n2fvmZVBTBf3HwdQfwdjboXvfqCsUOS0FvUhD3GF3YdjvXvQclB+E7mfBZV+FcXfB2aOjrlAkaQp6\nkbqO7Ak93gufhpKNocf7yJtDuJ93HWTqV0Y6Hv2tFak8AZteDrP3ra+C14R97jf/BMbcCtlnRF2h\nSIso6CU9uYd97oVPh33vJ8ugVx5c+Q+h10zfT10gTaTDUtBLeinbWdtI7MAWyOpW2+N96NXq8S6x\npKCX+Ks4FnrMFD4N21YADudcGWbvo2dAl55RVyjSqhT0Ek81NfDhf4WZ+4YXoOIonDEEJj0Qeryf\nMSTqCkXajIJe4uXg+7VLM6XboXPP0ON9/Bdg8OX6tqqkpWQuDj4IeBI4G3Bgnrv/vN4YA34O3AQc\nB+5293dSX660hsWri5m7bBO7SssZkJPN/VNGMHNCXtRlJe9EWbgy05r54UpNWLim6nX/DCOnQ+du\nERcoEq1kZvRVwLfc/R0z6wmsMrPl7r6hzphpwPDEz6XALxN/Sju3eHUxcxYVUV5ZDUBxaTlzFhUB\ntO+wr6kO11RdMz+sv1edgL7nw+QHQyvg3u24dpE2lszFwXcDuxO3j5jZRiAPqBv0M4An3d2Bt8ws\nx8z6J54r7djcZZs+DvmPlFdWM3fZpvYZ9CXv1fZ4P7IrXCx7/BdCj/e8i7U0I9KAJq3Rm9kQYAKw\nst5DecCOOvd3Jo59IujNbDYwG2Dw4MFNq1Raxa7S8iYdj8Txg7Du+TB7L14FlgnDroep/wfOnwZZ\nXaOuUKRdSzrozawH8Dxwn7sfbs6bufs8YB5Afn6+N+c1JLUG5GRT3ECoD8iJ+AIZ1ZWw5Q9hS+R7\nv4fqCjjrArjxB6HHe8+zo61PpANJKujNLIsQ8k+5+6IGhhQDdS98OTBxTNq5+6eM+MQaPUB2Vib3\nTxkRTUF7imp7vB8rgW59If+e0Aa434VamhFphmR23RjwGLDR3X9yimFLgHvN7BnCh7BlWp/vGD5a\nh490183REih6NvSa2VsEGVkwYmpoJDb8BsjMartaRGIomRn9ROBLQJGZFSaOfRcYDODuvwKWErZW\nbiFsr/xK6kuV1jJzQl7bf/BadTIsyRTOD73evRoGTICbfgxjboNuZ7ZtPSIxlsyumzeB0/5/ObHb\n5mupKkpiyh12vRPCfd3CcCHtHv3gintDr5mzRkVdoUgs6Zux0voO74K1C0LA798EnbrW9ng/d5J6\nvIu0Mv2GSeuoLId3Xw4frL7/eujxPuhSmP4zuOCzkJ0TdYUiaUNBL6njDtvfCl9oWr8YTh6G3oPg\nqm+FpZk+50VdoUhaUtBLyx36sLaR2KFtkNU9tP8df2doB5yREXWFImlNQS/Nc/JoaP+7Zj588EY4\nNuQquOY7MOoW6NIj2vpE5GMKekleTU0I9TXzYcMSqDwGZ54L1/4TjLsDctTWQqQ9UtBL4w5sDR+q\nrl0AZTugSy8Ye3toJDboUn1bVaSdU9BLw8pLYf1vw+x9x0qwDDj3Wrj++2FrZFbEvXBEJGkKeqlV\nXRW2QhY+HbZGVp+E3JFw/b+EHu+9+kddoYg0g4JeYN/GxNLMs3B0D2SfARf9VViaGTBBSzMiHZyC\nPl0dPwhFC8Oe912rIaMTDL8x7Hc/fwp06hJ1hSKSIgr6dFJdGRqIFT4N7y2DmsrQ+nfqwzDmduiR\nG3WFItIKFPRx5w6714QPVYueg+MHoHsuXPq3Yfbeb0zUFYpIK1PQx9WRvbU93veth8zOMGJaaCQ2\nbLJ6vIukEQV9nFSegE1Lw+x9y6uhx3tePtz8b3DBrerxLpKmFPQdnTvsLAgfqq57Hk6UQc8BMPHr\nYfaee37UFYpIxBT0HVVZMax9JizNHNgMnbJh1GdCI7Gh10BGZtQVikg7oaDvSCqOw8YXw+z9/T8B\nDoOvCLP30TOha6+oKxSRdiiZi4M/DkwH9rn7p7ZomNkk4AVgW+LQInd/KJVFxtXi1cWNX5S7pga2\n/yXR4/0FqDgSmodd8x0YNys0FRMROY1kZvS/Bh4BnjzNmDfcfXpKKkoTi1cXM2dREeWV1QAUl5Yz\nZ1EREC7WzcFttT3eSz+Ezj3CrH38nWEWrx7vIpKkZC4OvsLMhrR+Kell7rJNH4f8RzIrj7Dh5V8w\nc/Vq2P5nwODca+Daf4RR06Fz92iKFZEOLVVr9Jeb2RpgF/Btd1/f0CAzmw3MBhg8OL17l+8qLQcg\ngxquyFjPbZkrmJrxNtlVFXBsGFz3z2FppvfAiCsVkY4uFUH/DnCOux81s5uAxcDwhga6+zxgHkB+\nfr6n4L07rMt6HeTK46/w2cw3GWAHKfNuPF99FSu63cC8e/+nGomJSMq0OOjd/XCd20vN7D/MrK+7\n72/pa8dO+aGw171wPvMrCqjONFbUXMi/Vn+RP9RcREZWNj+cNlYhLyIp1eKgN7N+wF53dzO7BMgA\nDrS4srioroKtr4ZGYpuWQnUFnDUabvjfvJJxNT/408HT77oREWmhZLZXzgcmAX3NbCfwIJAF4O6/\nAm4HvmpmVUA5MMvd03pZBoC962t7vB/bB936QP5fh0Zi/ceBGdOAaZdHXaiIxF0yu27ubOTxRwjb\nL+XY/tAhsvBp2LMWMrJCb/fxd8GwG6BT56grFJE0pG/GtlRVBWxeFloRbF4GNVXQfzxM+7+hx3v3\nPlFXKCJpTkHfHO7hqkxr5oerNJUfhB5nw2V/F2bvZ42KukIRkY8p6Jvi8G5YuyAEfMm7kNkFRt4E\n478A514LmTqdItL+KJkaU1kO774cwn3ra+A1MPASmP5TuOCz4ULaIiLtmIK+Ie6w478TPd5/CyfL\noNdAuPKbYddM32FRVygikjQFfV2lO2obiR3cClndYNQtoZHYkKvVSExEOiQF/cmjtT3et70BOJxz\nJVz1TRg9A7r0jLpCEZEWSd+gP7oPlj8IG16AymNwxhCYNAfG3RFui4jERPoGfecesO1PMObWsCVy\n8OXqMSMisZTGQd8N7ivStVVFJPbS+9NFhbyIpIH0DnoRkTSgoBcRiTkFvYhIzCnoRURiTkEvIhJz\nCnoRkZhT0IuIxFyjQW9mj5vZPjNbd4rHzcz+3cy2mNlaM7so9WWm3uLVxUx8+DWGPvAyEx9+jcWr\ni6MuSUSkVSQzo/81MPU0j08Dhid+ZgO/bHlZrWvx6mLmLCqiuLQcB4pLy5mzqEhhLyKx1GjQu/sK\n4OBphswAnvTgLSDHzPqnqsDWMHfZJsorqz9xrLyymrnLNkVUkYhI60nFGn0esKPO/Z2JY59iZrPN\nrMDMCkpKSlLw1s2zq7S8ScdFRDqyNv0w1t3nuXu+u+fn5ua25Vt/woCc7CYdFxHpyFIR9MXAoDr3\nByaOtVv3TxlBdtYnG5plZ2Vy/5QREVUkItJ6UhH0S4C/Suy+uQwoc/fdKXjdVjNzQh4/vHUseTnZ\nGJCXk80Pbx3LzAkNrjiJiHRojfajN7P5wCSgr5ntBB4EsgDc/VfAUuAmYAtwHPhKaxWbSjMn5CnY\nRSQtNBr07n5nI4878LWUVSQiIimlb8aKiMScgl5EJOYU9CIiMaegFxGJOQW9iEjMKehFRGJOQS8i\nEnMKehGRmFPQi4jEnIJeRCTmFPQiIjGnoBcRiTkFvYhIzCnoRURiTkEvIhJzCnoRkZhT0IuIxJyC\nXkQk5pIKejObamabzGyLmT3QwON3m1mJmRUmfv4m9aWKiEhzJHNx8EzgF8ANwE7gbTNb4u4b6g1d\n4O73tkKNIiLSAsnM6C8Btrj7++5eATwDzGjdskREJFWSCfo8YEed+zsTx+q7zczWmtlCMxuUkupE\nRKTFUvVh7IvAEHe/EFgOPNHQIDObbWYFZlZQUlKSorcWEZHTSSboi4G6M/SBiWMfc/cD7n4ycfdR\n4OKGXsjd57l7vrvn5+bmNqdeERFpomSC/m1guJkNNbPOwCxgSd0BZta/zt1bgI2pK1FERFqi0V03\n7l5lZvcCy4BM4HF3X29mDwEF7r4E+LqZ3QJUAQeBu1uxZhERaQJz90jeOD8/3wsKCiJ5bxGRjsrM\nVrl7flOeo2/GiojEnIJeRCTmFPQiIjGnoBcRiTkFvYhIzCnoRURiTkEvIhJzCnoRkZhT0IuIxJyC\nXkQk5hT0IiIxp6AXEYk5Bb2ISMwp6EVEYk5BLyIScwp6EZGYU9CLiMScgl5EJOYU9CIiMZdU0JvZ\nVDPbZGZbzOyBBh7vYmYLEo+vNLMhqS5URESap9GgN7NM4BfANGA0cKeZja437B7gkLsPA34K/CjV\nhYqISPMkM6O/BNji7u+7ewXwDDCj3pgZwBOJ2wuByWZmqStTRESaq1MSY/KAHXXu7wQuPdUYd68y\nszKgD7C/7iAzmw3MTtw9aWbrmlN0DPWl3rlKYzoXtXQuaulc1BrR1CckE/Qp4+7zgHkAZlbg7vlt\n+f7tlc5FLZ2LWjoXtXQuaplZQVOfk8zSTTEwqM79gYljDY4xs05Ab+BAU4sREZHUSybo3waGm9lQ\nM+sMzAKW1BuzBPhy4vbtwGvu7qkrU0REmqvRpZvEmvu9wDIgE3jc3deb2UNAgbsvAR4DfmNmW4CD\nhH8MGjOvBXXHjc5FLZ2LWjoXtXQuajX5XJgm3iIi8aZvxoqIxJyCXkQk5iIJ+sZaKqQLMxtkZq+b\n2QYzW29m34i6piiZWaaZrTazl6KuJWpmlmNmC83sXTPbaGaXR11TVMzsHxK/H+vMbL6ZdY26prZi\nZo+b2b663zkyszPNbLmZbU78eUZjr9PmQZ9kS4V0UQV8y91HA5cBX0vjcwHwDWBj1EW0Ez8Hfu/u\nI4FxpOl5MbM84OtAvruPIWwISWazR1z8Gpha79gDwKvuPhx4NXH/tKKY0SfTUiEtuPtud38ncfsI\n4Zc5L9qqomFmA4GbgUejriVqZtYbuJqwmw13r3D30mirilQnIDvxHZ1uwK6I62kz7r6CsJOxrrot\nZ54AZjb2OlEEfUMtFdIy3OpKdPycAKyMtpLI/Az4DlATdSHtwFCgBPh/iaWsR82se9RFRcHdi4Ef\nA9uB3UCZu78SbVWRO9vddydu7wHObuwJ+jC2HTCzHsDzwH3ufjjqetqamU0H9rn7qqhraSc6ARcB\nv3T3CcAxkvjveRwl1p9nEP7xGwB0N7MvRltV+5H4Ymqje+SjCPpkWiqkDTPLIoT8U+6+KOp6IjIR\nuMXMPiAs5V1nZv8ZbUmR2gnsdPeP/ne3kBD86eh6YJu7l7h7JbAIuCLimqK218z6AyT+3NfYE6II\n+mRaKqSFRCvnx4CN7v6TqOuJirvPcfeB7j6E8PfhNXdP21mbu+8BdpjZR10KJwMbIiwpStuBy8ys\nW+L3ZTJp+sF0HXVbznwZeKGxJ7Rp90o4dUuFtq6jnZgIfAkoMrPCxLHvuvvSCGuS9uHvgacSk6H3\nga9EXE8k3H2lmS0E3iHsUltNGrVDMLP5wCSgr5ntBB4EHgaeNbN7gA+Bzzf6OmqBICISb/owVkQk\n5hT0IiIxp6AXEYk5Bb2ISMwp6EVEYk5BLyIScwp6EZGY+/+P+ZxUROo5xgAAAABJRU5ErkJggg==\n", "text/plain": [ "<matplotlib.figure.Figure at 0x7f20d1176320>" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "x_new = np.linspace(x[0], x[-1], 50)\n", "y_new = fit_func(x_new, a, b)\n", "\n", "plt.plot(x,y,'o')\n", "plt.plot(x_new, y_new,'-')\n", "plt.xlim([x[0]-1, x[-1] + 1 ])\n", "plt.ylim([y[0]-1, y[-1] + 1 ])\n", "plt.show()" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "collapsed": true }, "outputs": [], "source": [] } ], "metadata": { "kernelspec": { "display_name": "Python 3", "language": "python", "name": "python3" }, "language_info": { "codemirror_mode": { "name": "ipython", "version": 3 }, "file_extension": ".py", "mimetype": "text/x-python", "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", "version": "3.5.2" } }, "nbformat": 4, "nbformat_minor": 2 }
gpl-3.0
ckemere/CloudShuffles
score_bayes_parallel-dask.ipynb
1
202322
{ "cells": [ { "cell_type": "markdown", "metadata": {}, "source": [ "# Score multi-session events using the replay score from Davidson et al." ] }, { "cell_type": "code", "execution_count": 1, "metadata": { "collapsed": true }, "outputs": [], "source": [ "import numpy as np\n", "import os\n", "import pandas as pd\n", "import warnings\n", "\n", "import nelpy as nel\n", "\n", "warnings.filterwarnings(\"ignore\")" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "### Load experimental data" ] }, { "cell_type": "code", "execution_count": 2, "metadata": { "collapsed": true }, "outputs": [], "source": [ "datadirs = ['/Users/ckemere/Development/Data/Buzsaki']\n", "\n", "fileroot = next( (dir for dir in datadirs if os.path.isdir(dir)), None)\n", "# conda install pandas=0.19.2\n", "if fileroot is None:\n", " raise FileNotFoundError('datadir not found')\n", "\n", "load_from_nel = True\n", "\n", "# load from nel file:\n", "if load_from_nel:\n", " jar = nel.load_pkl(os.path.join(fileroot,'gor01vvp01_processed_speed.nel'))\n", " exp_data = jar.exp_data\n", " aux_data = jar.aux_data\n", " del jar\n", " \n", " with pd.HDFStore(os.path.join(fileroot,'DibaMetadata.h5')) as store:\n", " df = store.get('Session_Metadata')\n", " df2 = store.get('Subset_Metadata')" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "collapsed": true }, "outputs": [], "source": [] }, { "cell_type": "markdown", "metadata": {}, "source": [ "### Define subset of sessions to score" ] }, { "cell_type": "code", "execution_count": 3, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "Evaluating subset of 40 sessions\n" ] }, { "data": { "text/html": [ "<div>\n", "<style>\n", " .dataframe thead tr:only-child th {\n", " text-align: right;\n", " }\n", "\n", " .dataframe thead th {\n", " text-align: left;\n", " }\n", "\n", " .dataframe tbody tr th {\n", " vertical-align: top;\n", " }\n", "</style>\n", "<table border=\"1\" class=\"dataframe\">\n", " <thead>\n", " <tr style=\"text-align: right;\">\n", " <th></th>\n", " <th>animal</th>\n", " <th>month</th>\n", " <th>day</th>\n", " <th>time</th>\n", " <th>track</th>\n", " <th>segment</th>\n", " <th>duration</th>\n", " <th>n_cells</th>\n", " <th>n_placecells</th>\n", " <th>n_PBEs</th>\n", " <th>Notes</th>\n", " <th>prescreen_z</th>\n", " </tr>\n", " </thead>\n", " <tbody>\n", " <tr>\n", " <th>58</th>\n", " <td>gor01</td>\n", " <td>6</td>\n", " <td>9</td>\n", " <td>22-24-40</td>\n", " <td>two</td>\n", " <td>short</td>\n", " <td>1620.0</td>\n", " <td>203</td>\n", " <td>61</td>\n", " <td>301</td>\n", " <td>NaN</td>\n", " <td>NaN</td>\n", " </tr>\n", " <tr>\n", " <th>58</th>\n", " <td>gor01</td>\n", " <td>6</td>\n", " <td>9</td>\n", " <td>22-24-40</td>\n", " <td>two</td>\n", " <td>short</td>\n", " <td>1620.0</td>\n", " <td>203</td>\n", " <td>61</td>\n", " <td>301</td>\n", " <td>NaN</td>\n", " <td>NaN</td>\n", " </tr>\n", " <tr>\n", " <th>35</th>\n", " <td>gor01</td>\n", " <td>6</td>\n", " <td>7</td>\n", " <td>16-40-19</td>\n", " <td>two</td>\n", " <td>short</td>\n", " <td>1330.0</td>\n", " <td>117</td>\n", " <td>46</td>\n", " <td>277</td>\n", " <td>NaN</td>\n", " <td>NaN</td>\n", " </tr>\n", " <tr>\n", " <th>35</th>\n", " <td>gor01</td>\n", " <td>6</td>\n", " <td>7</td>\n", " <td>16-40-19</td>\n", " <td>two</td>\n", " <td>short</td>\n", " <td>1330.0</td>\n", " <td>117</td>\n", " <td>46</td>\n", " <td>277</td>\n", " <td>NaN</td>\n", " <td>NaN</td>\n", " </tr>\n", " <tr>\n", " <th>36</th>\n", " <td>gor01</td>\n", " <td>6</td>\n", " <td>7</td>\n", " <td>16-40-19</td>\n", " <td>two</td>\n", " <td>long</td>\n", " <td>1180.0</td>\n", " <td>117</td>\n", " <td>43</td>\n", " <td>150</td>\n", " <td>NaN</td>\n", " <td>NaN</td>\n", " </tr>\n", " <tr>\n", " <th>36</th>\n", " <td>gor01</td>\n", " <td>6</td>\n", " <td>7</td>\n", " <td>16-40-19</td>\n", " <td>two</td>\n", " <td>long</td>\n", " <td>1180.0</td>\n", " <td>117</td>\n", " <td>43</td>\n", " <td>150</td>\n", " <td>NaN</td>\n", " <td>NaN</td>\n", " </tr>\n", " <tr>\n", " <th>73</th>\n", " <td>gor01</td>\n", " <td>6</td>\n", " <td>9</td>\n", " <td>1-22-43</td>\n", " <td>one</td>\n", " <td>long</td>\n", " <td>1012.0</td>\n", " <td>203</td>\n", " <td>62</td>\n", " <td>117</td>\n", " <td>NaN</td>\n", " <td>NaN</td>\n", " </tr>\n", " <tr>\n", " <th>73</th>\n", " <td>gor01</td>\n", " <td>6</td>\n", " <td>9</td>\n", " <td>1-22-43</td>\n", " <td>one</td>\n", " <td>long</td>\n", " <td>1012.0</td>\n", " <td>203</td>\n", " <td>62</td>\n", " <td>117</td>\n", " <td>NaN</td>\n", " <td>NaN</td>\n", " </tr>\n", " <tr>\n", " <th>59</th>\n", " <td>gor01</td>\n", " <td>6</td>\n", " <td>9</td>\n", " <td>22-24-40</td>\n", " <td>two</td>\n", " <td>long</td>\n", " <td>912.0</td>\n", " <td>203</td>\n", " <td>66</td>\n", " <td>103</td>\n", " <td>NaN</td>\n", " <td>NaN</td>\n", " </tr>\n", " <tr>\n", " <th>59</th>\n", " <td>gor01</td>\n", " <td>6</td>\n", " <td>9</td>\n", " <td>22-24-40</td>\n", " <td>two</td>\n", " <td>long</td>\n", " <td>912.0</td>\n", " <td>203</td>\n", " <td>66</td>\n", " <td>103</td>\n", " <td>NaN</td>\n", " <td>NaN</td>\n", " </tr>\n", " <tr>\n", " <th>72</th>\n", " <td>gor01</td>\n", " <td>6</td>\n", " <td>9</td>\n", " <td>1-22-43</td>\n", " <td>one</td>\n", " <td>short</td>\n", " <td>617.0</td>\n", " <td>203</td>\n", " <td>71</td>\n", " <td>91</td>\n", " <td>NaN</td>\n", " <td>NaN</td>\n", " </tr>\n", " <tr>\n", " <th>72</th>\n", " <td>gor01</td>\n", " <td>6</td>\n", " <td>9</td>\n", " <td>1-22-43</td>\n", " <td>one</td>\n", " <td>short</td>\n", " <td>617.0</td>\n", " <td>203</td>\n", " <td>71</td>\n", " <td>91</td>\n", " <td>NaN</td>\n", " <td>NaN</td>\n", " </tr>\n", " <tr>\n", " <th>6</th>\n", " <td>gor01</td>\n", " <td>6</td>\n", " <td>8</td>\n", " <td>21-16-25</td>\n", " <td>two</td>\n", " <td>long</td>\n", " <td>720.0</td>\n", " <td>171</td>\n", " <td>82</td>\n", " <td>57</td>\n", " <td>NaN</td>\n", " <td>NaN</td>\n", " </tr>\n", " <tr>\n", " <th>6</th>\n", " <td>gor01</td>\n", " <td>6</td>\n", " <td>8</td>\n", " <td>21-16-25</td>\n", " <td>two</td>\n", " <td>long</td>\n", " <td>720.0</td>\n", " <td>171</td>\n", " <td>82</td>\n", " <td>57</td>\n", " <td>NaN</td>\n", " <td>NaN</td>\n", " </tr>\n", " <tr>\n", " <th>0</th>\n", " <td>vvp01</td>\n", " <td>4</td>\n", " <td>9</td>\n", " <td>17-29-30</td>\n", " <td>one</td>\n", " <td>short</td>\n", " <td>490.0</td>\n", " <td>68</td>\n", " <td>32</td>\n", " <td>46</td>\n", " <td>NaN</td>\n", " <td>NaN</td>\n", " </tr>\n", " <tr>\n", " <th>0</th>\n", " <td>vvp01</td>\n", " <td>4</td>\n", " <td>9</td>\n", " <td>17-29-30</td>\n", " <td>one</td>\n", " <td>short</td>\n", " <td>490.0</td>\n", " <td>68</td>\n", " <td>32</td>\n", " <td>46</td>\n", " <td>NaN</td>\n", " <td>NaN</td>\n", " </tr>\n", " <tr>\n", " <th>83</th>\n", " <td>vvp01</td>\n", " <td>4</td>\n", " <td>9</td>\n", " <td>16-40-54</td>\n", " <td>two</td>\n", " <td>long</td>\n", " <td>861.0</td>\n", " <td>41</td>\n", " <td>25</td>\n", " <td>42</td>\n", " <td>NaN</td>\n", " <td>NaN</td>\n", " </tr>\n", " <tr>\n", " <th>83</th>\n", " <td>vvp01</td>\n", " <td>4</td>\n", " <td>9</td>\n", " <td>16-40-54</td>\n", " <td>two</td>\n", " <td>long</td>\n", " <td>861.0</td>\n", " <td>41</td>\n", " <td>25</td>\n", " <td>42</td>\n", " <td>NaN</td>\n", " <td>NaN</td>\n", " </tr>\n", " <tr>\n", " <th>5</th>\n", " <td>gor01</td>\n", " <td>6</td>\n", " <td>8</td>\n", " <td>21-16-25</td>\n", " <td>two</td>\n", " <td>short</td>\n", " <td>457.0</td>\n", " <td>171</td>\n", " <td>64</td>\n", " <td>37</td>\n", " <td>NaN</td>\n", " <td>NaN</td>\n", " </tr>\n", " <tr>\n", " <th>5</th>\n", " <td>gor01</td>\n", " <td>6</td>\n", " <td>8</td>\n", " <td>21-16-25</td>\n", " <td>two</td>\n", " <td>short</td>\n", " <td>457.0</td>\n", " <td>171</td>\n", " <td>64</td>\n", " <td>37</td>\n", " <td>NaN</td>\n", " <td>NaN</td>\n", " </tr>\n", " <tr>\n", " <th>82</th>\n", " <td>vvp01</td>\n", " <td>4</td>\n", " <td>9</td>\n", " <td>16-40-54</td>\n", " <td>two</td>\n", " <td>short</td>\n", " <td>485.0</td>\n", " <td>41</td>\n", " <td>16</td>\n", " <td>37</td>\n", " <td>NaN</td>\n", " <td>NaN</td>\n", " </tr>\n", " <tr>\n", " <th>82</th>\n", " <td>vvp01</td>\n", " <td>4</td>\n", " <td>9</td>\n", " <td>16-40-54</td>\n", " <td>two</td>\n", " <td>short</td>\n", " <td>485.0</td>\n", " <td>41</td>\n", " <td>16</td>\n", " <td>37</td>\n", " <td>NaN</td>\n", " <td>NaN</td>\n", " </tr>\n", " <tr>\n", " <th>14</th>\n", " <td>gor01</td>\n", " <td>6</td>\n", " <td>12</td>\n", " <td>16-53-46</td>\n", " <td>two</td>\n", " <td>long</td>\n", " <td>470.0</td>\n", " <td>81</td>\n", " <td>36</td>\n", " <td>36</td>\n", " <td>NaN</td>\n", " <td>NaN</td>\n", " </tr>\n", " <tr>\n", " <th>14</th>\n", " <td>gor01</td>\n", " <td>6</td>\n", " <td>12</td>\n", " <td>16-53-46</td>\n", " <td>two</td>\n", " <td>long</td>\n", " <td>470.0</td>\n", " <td>81</td>\n", " <td>36</td>\n", " <td>36</td>\n", " <td>NaN</td>\n", " <td>NaN</td>\n", " </tr>\n", " <tr>\n", " <th>28</th>\n", " <td>vvp01</td>\n", " <td>4</td>\n", " <td>25</td>\n", " <td>14-28-51</td>\n", " <td>one</td>\n", " <td>long</td>\n", " <td>385.0</td>\n", " <td>80</td>\n", " <td>32</td>\n", " <td>36</td>\n", " <td>NaN</td>\n", " <td>NaN</td>\n", " </tr>\n", " <tr>\n", " <th>28</th>\n", " <td>vvp01</td>\n", " <td>4</td>\n", " <td>25</td>\n", " <td>14-28-51</td>\n", " <td>one</td>\n", " <td>long</td>\n", " <td>385.0</td>\n", " <td>80</td>\n", " <td>32</td>\n", " <td>36</td>\n", " <td>NaN</td>\n", " <td>NaN</td>\n", " </tr>\n", " <tr>\n", " <th>51</th>\n", " <td>vvp01</td>\n", " <td>4</td>\n", " <td>16</td>\n", " <td>15-12-23</td>\n", " <td>one</td>\n", " <td>short</td>\n", " <td>347.0</td>\n", " <td>74</td>\n", " <td>24</td>\n", " <td>34</td>\n", " <td>NaN</td>\n", " <td>NaN</td>\n", " </tr>\n", " <tr>\n", " <th>51</th>\n", " <td>vvp01</td>\n", " <td>4</td>\n", " <td>16</td>\n", " <td>15-12-23</td>\n", " <td>one</td>\n", " <td>short</td>\n", " <td>347.0</td>\n", " <td>74</td>\n", " <td>24</td>\n", " <td>34</td>\n", " <td>NaN</td>\n", " <td>NaN</td>\n", " </tr>\n", " <tr>\n", " <th>1</th>\n", " <td>vvp01</td>\n", " <td>4</td>\n", " <td>9</td>\n", " <td>17-29-30</td>\n", " <td>one</td>\n", " <td>long</td>\n", " <td>800.0</td>\n", " <td>68</td>\n", " <td>34</td>\n", " <td>33</td>\n", " <td>NaN</td>\n", " <td>NaN</td>\n", " </tr>\n", " <tr>\n", " <th>1</th>\n", " <td>vvp01</td>\n", " <td>4</td>\n", " <td>9</td>\n", " <td>17-29-30</td>\n", " <td>one</td>\n", " <td>long</td>\n", " <td>800.0</td>\n", " <td>68</td>\n", " <td>34</td>\n", " <td>33</td>\n", " <td>NaN</td>\n", " <td>NaN</td>\n", " </tr>\n", " <tr>\n", " <th>61</th>\n", " <td>gor01</td>\n", " <td>6</td>\n", " <td>12</td>\n", " <td>15-55-31</td>\n", " <td>one</td>\n", " <td>long</td>\n", " <td>660.0</td>\n", " <td>97</td>\n", " <td>40</td>\n", " <td>32</td>\n", " <td>NaN</td>\n", " <td>NaN</td>\n", " </tr>\n", " <tr>\n", " <th>61</th>\n", " <td>gor01</td>\n", " <td>6</td>\n", " <td>12</td>\n", " <td>15-55-31</td>\n", " <td>one</td>\n", " <td>long</td>\n", " <td>660.0</td>\n", " <td>97</td>\n", " <td>40</td>\n", " <td>32</td>\n", " <td>NaN</td>\n", " <td>NaN</td>\n", " </tr>\n", " <tr>\n", " <th>75</th>\n", " <td>gor01</td>\n", " <td>6</td>\n", " <td>13</td>\n", " <td>15-22-3</td>\n", " <td>two</td>\n", " <td>long</td>\n", " <td>530.0</td>\n", " <td>82</td>\n", " <td>37</td>\n", " <td>31</td>\n", " <td>NaN</td>\n", " <td>NaN</td>\n", " </tr>\n", " <tr>\n", " <th>75</th>\n", " <td>gor01</td>\n", " <td>6</td>\n", " <td>13</td>\n", " <td>15-22-3</td>\n", " <td>two</td>\n", " <td>long</td>\n", " <td>530.0</td>\n", " <td>82</td>\n", " <td>37</td>\n", " <td>31</td>\n", " <td>NaN</td>\n", " <td>NaN</td>\n", " </tr>\n", " <tr>\n", " <th>50</th>\n", " <td>gor01</td>\n", " <td>6</td>\n", " <td>13</td>\n", " <td>14-42-6</td>\n", " <td>one</td>\n", " <td>long</td>\n", " <td>520.0</td>\n", " <td>109</td>\n", " <td>36</td>\n", " <td>29</td>\n", " <td>NaN</td>\n", " <td>NaN</td>\n", " </tr>\n", " <tr>\n", " <th>50</th>\n", " <td>gor01</td>\n", " <td>6</td>\n", " <td>13</td>\n", " <td>14-42-6</td>\n", " <td>one</td>\n", " <td>long</td>\n", " <td>520.0</td>\n", " <td>109</td>\n", " <td>36</td>\n", " <td>29</td>\n", " <td>NaN</td>\n", " <td>NaN</td>\n", " </tr>\n", " <tr>\n", " <th>41</th>\n", " <td>vvp01</td>\n", " <td>4</td>\n", " <td>17</td>\n", " <td>12-52-15</td>\n", " <td>two</td>\n", " <td>short</td>\n", " <td>328.0</td>\n", " <td>59</td>\n", " <td>26</td>\n", " <td>28</td>\n", " <td>NaN</td>\n", " <td>NaN</td>\n", " </tr>\n", " <tr>\n", " <th>41</th>\n", " <td>vvp01</td>\n", " <td>4</td>\n", " <td>17</td>\n", " <td>12-52-15</td>\n", " <td>two</td>\n", " <td>short</td>\n", " <td>328.0</td>\n", " <td>59</td>\n", " <td>26</td>\n", " <td>28</td>\n", " <td>NaN</td>\n", " <td>NaN</td>\n", " </tr>\n", " <tr>\n", " <th>60</th>\n", " <td>gor01</td>\n", " <td>6</td>\n", " <td>12</td>\n", " <td>15-55-31</td>\n", " <td>one</td>\n", " <td>short</td>\n", " <td>410.0</td>\n", " <td>97</td>\n", " <td>44</td>\n", " <td>27</td>\n", " <td>NaN</td>\n", " <td>NaN</td>\n", " </tr>\n", " <tr>\n", " <th>60</th>\n", " <td>gor01</td>\n", " <td>6</td>\n", " <td>12</td>\n", " <td>15-55-31</td>\n", " <td>one</td>\n", " <td>short</td>\n", " <td>410.0</td>\n", " <td>97</td>\n", " <td>44</td>\n", " <td>27</td>\n", " <td>NaN</td>\n", " <td>NaN</td>\n", " </tr>\n", " </tbody>\n", "</table>\n", "</div>" ], "text/plain": [ " animal month day time track segment duration n_cells \\\n", "58 gor01 6 9 22-24-40 two short 1620.0 203 \n", "58 gor01 6 9 22-24-40 two short 1620.0 203 \n", "35 gor01 6 7 16-40-19 two short 1330.0 117 \n", "35 gor01 6 7 16-40-19 two short 1330.0 117 \n", "36 gor01 6 7 16-40-19 two long 1180.0 117 \n", "36 gor01 6 7 16-40-19 two long 1180.0 117 \n", "73 gor01 6 9 1-22-43 one long 1012.0 203 \n", "73 gor01 6 9 1-22-43 one long 1012.0 203 \n", "59 gor01 6 9 22-24-40 two long 912.0 203 \n", "59 gor01 6 9 22-24-40 two long 912.0 203 \n", "72 gor01 6 9 1-22-43 one short 617.0 203 \n", "72 gor01 6 9 1-22-43 one short 617.0 203 \n", "6 gor01 6 8 21-16-25 two long 720.0 171 \n", "6 gor01 6 8 21-16-25 two long 720.0 171 \n", "0 vvp01 4 9 17-29-30 one short 490.0 68 \n", "0 vvp01 4 9 17-29-30 one short 490.0 68 \n", "83 vvp01 4 9 16-40-54 two long 861.0 41 \n", "83 vvp01 4 9 16-40-54 two long 861.0 41 \n", "5 gor01 6 8 21-16-25 two short 457.0 171 \n", "5 gor01 6 8 21-16-25 two short 457.0 171 \n", "82 vvp01 4 9 16-40-54 two short 485.0 41 \n", "82 vvp01 4 9 16-40-54 two short 485.0 41 \n", "14 gor01 6 12 16-53-46 two long 470.0 81 \n", "14 gor01 6 12 16-53-46 two long 470.0 81 \n", "28 vvp01 4 25 14-28-51 one long 385.0 80 \n", "28 vvp01 4 25 14-28-51 one long 385.0 80 \n", "51 vvp01 4 16 15-12-23 one short 347.0 74 \n", "51 vvp01 4 16 15-12-23 one short 347.0 74 \n", "1 vvp01 4 9 17-29-30 one long 800.0 68 \n", "1 vvp01 4 9 17-29-30 one long 800.0 68 \n", "61 gor01 6 12 15-55-31 one long 660.0 97 \n", "61 gor01 6 12 15-55-31 one long 660.0 97 \n", "75 gor01 6 13 15-22-3 two long 530.0 82 \n", "75 gor01 6 13 15-22-3 two long 530.0 82 \n", "50 gor01 6 13 14-42-6 one long 520.0 109 \n", "50 gor01 6 13 14-42-6 one long 520.0 109 \n", "41 vvp01 4 17 12-52-15 two short 328.0 59 \n", "41 vvp01 4 17 12-52-15 two short 328.0 59 \n", "60 gor01 6 12 15-55-31 one short 410.0 97 \n", "60 gor01 6 12 15-55-31 one short 410.0 97 \n", "\n", " n_placecells n_PBEs Notes prescreen_z \n", "58 61 301 NaN NaN \n", "58 61 301 NaN NaN \n", "35 46 277 NaN NaN \n", "35 46 277 NaN NaN \n", "36 43 150 NaN NaN \n", "36 43 150 NaN NaN \n", "73 62 117 NaN NaN \n", "73 62 117 NaN NaN \n", "59 66 103 NaN NaN \n", "59 66 103 NaN NaN \n", "72 71 91 NaN NaN \n", "72 71 91 NaN NaN \n", "6 82 57 NaN NaN \n", "6 82 57 NaN NaN \n", "0 32 46 NaN NaN \n", "0 32 46 NaN NaN \n", "83 25 42 NaN NaN \n", "83 25 42 NaN NaN \n", "5 64 37 NaN NaN \n", "5 64 37 NaN NaN \n", "82 16 37 NaN NaN \n", "82 16 37 NaN NaN \n", "14 36 36 NaN NaN \n", "14 36 36 NaN NaN \n", "28 32 36 NaN NaN \n", "28 32 36 NaN NaN \n", "51 24 34 NaN NaN \n", "51 24 34 NaN NaN \n", "1 34 33 NaN NaN \n", "1 34 33 NaN NaN \n", "61 40 32 NaN NaN \n", "61 40 32 NaN NaN \n", "75 37 31 NaN NaN \n", "75 37 31 NaN NaN \n", "50 36 29 NaN NaN \n", "50 36 29 NaN NaN \n", "41 26 28 NaN NaN \n", "41 26 28 NaN NaN \n", "60 44 27 NaN NaN \n", "60 44 27 NaN NaN " ] }, "execution_count": 3, "metadata": {}, "output_type": "execute_result" } ], "source": [ "# restrict sessions to explore to a smaller subset\n", "min_n_placecells = 16\n", "min_n_PBEs = 27 # 27 total events ==> minimum 21 events in training set\n", "\n", "df2_subset = df2[(df2.n_PBEs >= min_n_PBEs) & (df2.n_placecells >= min_n_placecells)]\n", "\n", "sessions = df2_subset['time'].values.tolist()\n", "segments = df2_subset['segment'].values.tolist()\n", "\n", "print('Evaluating subset of {} sessions'.format(len(sessions)))\n", "\n", "df2_subset.sort_values(by=['n_PBEs', 'n_placecells'], ascending=[0,0])" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "### Parallel scoring" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "**NOTE:** it is relatively easy (syntax-wise) to score each session as a parallel task, but since the Bayesian scoring takes such a long time to compute, we can be more efficient (higher % utilization) by further parallelizing over events, and not just over sessions. This further level of parallelization makes the bookkeeping a little ugly, so I provide the code for both approaches here." ] }, { "cell_type": "code", "execution_count": 4, "metadata": { "collapsed": true }, "outputs": [], "source": [ "n_jobs = 20 # set this equal to number of cores\n", "n_shuffles = 100 # 5000\n", "n_samples = 35000 # 35000\n", "w=3 # single sided bandwidth (0 means only include bin who's center is under line, 3 means a total of 7 bins)" ] }, { "cell_type": "code", "execution_count": 5, "metadata": { "collapsed": true }, "outputs": [], "source": [ "import matplotlib.pyplot as plt\n", "%matplotlib inline" ] }, { "cell_type": "code", "execution_count": 6, "metadata": {}, "outputs": [ { "name": "stderr", "output_type": "stream", "text": [ "distributed.client - WARNING - Client report stream closed to scheduler\n", "tornado.application - ERROR - Exception in callback functools.partial(<function wrap.<locals>.null_wrapper at 0x1c665c5bf8>, <tornado.concurrent.Future object at 0x1c665c1b00>)\n", "Traceback (most recent call last):\n", " File \"/Users/ckemere/anaconda3/lib/python3.6/site-packages/tornado/ioloop.py\", line 605, in _run_callback\n", " ret = callback()\n", " File \"/Users/ckemere/anaconda3/lib/python3.6/site-packages/tornado/stack_context.py\", line 277, in null_wrapper\n", " return fn(*args, **kwargs)\n", " File \"/Users/ckemere/anaconda3/lib/python3.6/site-packages/tornado/ioloop.py\", line 626, in _discard_future_result\n", " future.result()\n", " File \"/Users/ckemere/anaconda3/lib/python3.6/site-packages/tornado/concurrent.py\", line 238, in result\n", " raise_exc_info(self._exc_info)\n", " File \"<string>\", line 4, in raise_exc_info\n", " File \"/Users/ckemere/anaconda3/lib/python3.6/site-packages/tornado/gen.py\", line 1063, in run\n", " yielded = self.gen.throw(*exc_info)\n", " File \"/Users/ckemere/anaconda3/lib/python3.6/site-packages/distributed/joblib.py\", line 128, in callback_wrapper\n", " result = yield _wait([future])\n", " File \"/Users/ckemere/anaconda3/lib/python3.6/site-packages/tornado/gen.py\", line 1055, in run\n", " value = future.result()\n", " File \"/Users/ckemere/anaconda3/lib/python3.6/site-packages/tornado/concurrent.py\", line 238, in result\n", " raise_exc_info(self._exc_info)\n", " File \"<string>\", line 4, in raise_exc_info\n", " File \"/Users/ckemere/anaconda3/lib/python3.6/site-packages/tornado/gen.py\", line 1069, in run\n", " yielded = self.gen.send(value)\n", " File \"/Users/ckemere/anaconda3/lib/python3.6/site-packages/distributed/client.py\", line 2906, in _wait\n", " raise CancelledError(cancelled)\n", "concurrent.futures._base.CancelledError: ['work_events-batch-6407a9716f68431588a9af8b84f20215']\n", "tornado.application - ERROR - Exception in callback functools.partial(<function wrap.<locals>.null_wrapper at 0x1c665c8048>, <tornado.concurrent.Future object at 0x1c665c1cc0>)\n", "Traceback (most recent call last):\n", " File \"/Users/ckemere/anaconda3/lib/python3.6/site-packages/tornado/ioloop.py\", line 605, in _run_callback\n", " ret = callback()\n", " File \"/Users/ckemere/anaconda3/lib/python3.6/site-packages/tornado/stack_context.py\", line 277, in null_wrapper\n", " return fn(*args, **kwargs)\n", " File \"/Users/ckemere/anaconda3/lib/python3.6/site-packages/tornado/ioloop.py\", line 626, in _discard_future_result\n", " future.result()\n", " File \"/Users/ckemere/anaconda3/lib/python3.6/site-packages/tornado/concurrent.py\", line 238, in result\n", " raise_exc_info(self._exc_info)\n", " File \"<string>\", line 4, in raise_exc_info\n", " File \"/Users/ckemere/anaconda3/lib/python3.6/site-packages/tornado/gen.py\", line 1063, in run\n", " yielded = self.gen.throw(*exc_info)\n", " File \"/Users/ckemere/anaconda3/lib/python3.6/site-packages/distributed/joblib.py\", line 128, in callback_wrapper\n", " result = yield _wait([future])\n", " File \"/Users/ckemere/anaconda3/lib/python3.6/site-packages/tornado/gen.py\", line 1055, in run\n", " value = future.result()\n", " File \"/Users/ckemere/anaconda3/lib/python3.6/site-packages/tornado/concurrent.py\", line 238, in result\n", " raise_exc_info(self._exc_info)\n", " File \"<string>\", line 4, in raise_exc_info\n", " File \"/Users/ckemere/anaconda3/lib/python3.6/site-packages/tornado/gen.py\", line 1069, in run\n", " yielded = self.gen.send(value)\n", " File \"/Users/ckemere/anaconda3/lib/python3.6/site-packages/distributed/client.py\", line 2906, in _wait\n", " raise CancelledError(cancelled)\n", "concurrent.futures._base.CancelledError: ['work_events-batch-26da7ce53ab044509e59182ee3938f89']\n", "tornado.application - ERROR - Exception in callback functools.partial(<function wrap.<locals>.null_wrapper at 0x1c665c8400>, <tornado.concurrent.Future object at 0x1c665c1e80>)\n", "Traceback (most recent call last):\n", " File \"/Users/ckemere/anaconda3/lib/python3.6/site-packages/tornado/ioloop.py\", line 605, in _run_callback\n", " ret = callback()\n", " File \"/Users/ckemere/anaconda3/lib/python3.6/site-packages/tornado/stack_context.py\", line 277, in null_wrapper\n", " return fn(*args, **kwargs)\n", " File \"/Users/ckemere/anaconda3/lib/python3.6/site-packages/tornado/ioloop.py\", line 626, in _discard_future_result\n", " future.result()\n", " File \"/Users/ckemere/anaconda3/lib/python3.6/site-packages/tornado/concurrent.py\", line 238, in result\n", " raise_exc_info(self._exc_info)\n", " File \"<string>\", line 4, in raise_exc_info\n", " File \"/Users/ckemere/anaconda3/lib/python3.6/site-packages/tornado/gen.py\", line 1063, in run\n", " yielded = self.gen.throw(*exc_info)\n", " File \"/Users/ckemere/anaconda3/lib/python3.6/site-packages/distributed/joblib.py\", line 128, in callback_wrapper\n", " result = yield _wait([future])\n", " File \"/Users/ckemere/anaconda3/lib/python3.6/site-packages/tornado/gen.py\", line 1055, in run\n", " value = future.result()\n", " File \"/Users/ckemere/anaconda3/lib/python3.6/site-packages/tornado/concurrent.py\", line 238, in result\n", " raise_exc_info(self._exc_info)\n", " File \"<string>\", line 4, in raise_exc_info\n", " File \"/Users/ckemere/anaconda3/lib/python3.6/site-packages/tornado/gen.py\", line 1069, in run\n", " yielded = self.gen.send(value)\n", " File \"/Users/ckemere/anaconda3/lib/python3.6/site-packages/distributed/client.py\", line 2906, in _wait\n", " raise CancelledError(cancelled)\n", "concurrent.futures._base.CancelledError: ['work_events-batch-ddac9995d7e54cdca15818d8a136f560']\n", "tornado.application - ERROR - Exception in callback functools.partial(<function wrap.<locals>.null_wrapper at 0x1c665d3378>, <tornado.concurrent.Future object at 0x1c665ca5c0>)\n", "Traceback (most recent call last):\n", " File \"/Users/ckemere/anaconda3/lib/python3.6/site-packages/tornado/ioloop.py\", line 605, in _run_callback\n", " ret = callback()\n", " File \"/Users/ckemere/anaconda3/lib/python3.6/site-packages/tornado/stack_context.py\", line 277, in null_wrapper\n", " return fn(*args, **kwargs)\n", " File \"/Users/ckemere/anaconda3/lib/python3.6/site-packages/tornado/ioloop.py\", line 626, in _discard_future_result\n", " future.result()\n", " File \"/Users/ckemere/anaconda3/lib/python3.6/site-packages/tornado/concurrent.py\", line 238, in result\n", " raise_exc_info(self._exc_info)\n", " File \"<string>\", line 4, in raise_exc_info\n", " File \"/Users/ckemere/anaconda3/lib/python3.6/site-packages/tornado/gen.py\", line 1063, in run\n", " yielded = self.gen.throw(*exc_info)\n", " File \"/Users/ckemere/anaconda3/lib/python3.6/site-packages/distributed/joblib.py\", line 128, in callback_wrapper\n", " result = yield _wait([future])\n", " File \"/Users/ckemere/anaconda3/lib/python3.6/site-packages/tornado/gen.py\", line 1055, in run\n", " value = future.result()\n", " File \"/Users/ckemere/anaconda3/lib/python3.6/site-packages/tornado/concurrent.py\", line 238, in result\n", " raise_exc_info(self._exc_info)\n", " File \"<string>\", line 4, in raise_exc_info\n", " File \"/Users/ckemere/anaconda3/lib/python3.6/site-packages/tornado/gen.py\", line 1069, in run\n", " yielded = self.gen.send(value)\n", " File \"/Users/ckemere/anaconda3/lib/python3.6/site-packages/distributed/client.py\", line 2906, in _wait\n", " raise CancelledError(cancelled)\n", "concurrent.futures._base.CancelledError: ['work_events-batch-d9d69834d4294a2a85e4cac8f277f93c']\n", "tornado.application - ERROR - Exception in callback functools.partial(<function wrap.<locals>.null_wrapper at 0x1c665d3730>, <tornado.concurrent.Future object at 0x1c665ca780>)\n", "Traceback (most recent call last):\n", " File \"/Users/ckemere/anaconda3/lib/python3.6/site-packages/tornado/ioloop.py\", line 605, in _run_callback\n", " ret = callback()\n", " File \"/Users/ckemere/anaconda3/lib/python3.6/site-packages/tornado/stack_context.py\", line 277, in null_wrapper\n", " return fn(*args, **kwargs)\n", " File \"/Users/ckemere/anaconda3/lib/python3.6/site-packages/tornado/ioloop.py\", line 626, in _discard_future_result\n", " future.result()\n", " File \"/Users/ckemere/anaconda3/lib/python3.6/site-packages/tornado/concurrent.py\", line 238, in result\n", " raise_exc_info(self._exc_info)\n", " File \"<string>\", line 4, in raise_exc_info\n", " File \"/Users/ckemere/anaconda3/lib/python3.6/site-packages/tornado/gen.py\", line 1063, in run\n", " yielded = self.gen.throw(*exc_info)\n", " File \"/Users/ckemere/anaconda3/lib/python3.6/site-packages/distributed/joblib.py\", line 128, in callback_wrapper\n", " result = yield _wait([future])\n", " File \"/Users/ckemere/anaconda3/lib/python3.6/site-packages/tornado/gen.py\", line 1055, in run\n", " value = future.result()\n", " File \"/Users/ckemere/anaconda3/lib/python3.6/site-packages/tornado/concurrent.py\", line 238, in result\n", " raise_exc_info(self._exc_info)\n", " File \"<string>\", line 4, in raise_exc_info\n", " File \"/Users/ckemere/anaconda3/lib/python3.6/site-packages/tornado/gen.py\", line 1069, in run\n", " yielded = self.gen.send(value)\n", " File \"/Users/ckemere/anaconda3/lib/python3.6/site-packages/distributed/client.py\", line 2906, in _wait\n", " raise CancelledError(cancelled)\n", "concurrent.futures._base.CancelledError: ['work_events-batch-813964dd1fb74a4aa1b6ab2bb3513628']\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ "tornado.application - ERROR - Exception in callback functools.partial(<function wrap.<locals>.null_wrapper at 0x1c665d3ae8>, <tornado.concurrent.Future object at 0x1c665ca940>)\n", "Traceback (most recent call last):\n", " File \"/Users/ckemere/anaconda3/lib/python3.6/site-packages/tornado/ioloop.py\", line 605, in _run_callback\n", " ret = callback()\n", " File \"/Users/ckemere/anaconda3/lib/python3.6/site-packages/tornado/stack_context.py\", line 277, in null_wrapper\n", " return fn(*args, **kwargs)\n", " File \"/Users/ckemere/anaconda3/lib/python3.6/site-packages/tornado/ioloop.py\", line 626, in _discard_future_result\n", " future.result()\n", " File \"/Users/ckemere/anaconda3/lib/python3.6/site-packages/tornado/concurrent.py\", line 238, in result\n", " raise_exc_info(self._exc_info)\n", " File \"<string>\", line 4, in raise_exc_info\n", " File \"/Users/ckemere/anaconda3/lib/python3.6/site-packages/tornado/gen.py\", line 1063, in run\n", " yielded = self.gen.throw(*exc_info)\n", " File \"/Users/ckemere/anaconda3/lib/python3.6/site-packages/distributed/joblib.py\", line 128, in callback_wrapper\n", " result = yield _wait([future])\n", " File \"/Users/ckemere/anaconda3/lib/python3.6/site-packages/tornado/gen.py\", line 1055, in run\n", " value = future.result()\n", " File \"/Users/ckemere/anaconda3/lib/python3.6/site-packages/tornado/concurrent.py\", line 238, in result\n", " raise_exc_info(self._exc_info)\n", " File \"<string>\", line 4, in raise_exc_info\n", " File \"/Users/ckemere/anaconda3/lib/python3.6/site-packages/tornado/gen.py\", line 1069, in run\n", " yielded = self.gen.send(value)\n", " File \"/Users/ckemere/anaconda3/lib/python3.6/site-packages/distributed/client.py\", line 2906, in _wait\n", " raise CancelledError(cancelled)\n", "concurrent.futures._base.CancelledError: ['work_events-batch-d08512594b1a4edd9cc985af54da6a1a']\n", "tornado.application - ERROR - Exception in callback functools.partial(<function wrap.<locals>.null_wrapper at 0x1c665e36a8>, <tornado.concurrent.Future object at 0x1c665caf98>)\n", "Traceback (most recent call last):\n", " File \"/Users/ckemere/anaconda3/lib/python3.6/site-packages/tornado/ioloop.py\", line 605, in _run_callback\n", " ret = callback()\n", " File \"/Users/ckemere/anaconda3/lib/python3.6/site-packages/tornado/stack_context.py\", line 277, in null_wrapper\n", " return fn(*args, **kwargs)\n", " File \"/Users/ckemere/anaconda3/lib/python3.6/site-packages/tornado/ioloop.py\", line 626, in _discard_future_result\n", " future.result()\n", " File \"/Users/ckemere/anaconda3/lib/python3.6/site-packages/tornado/concurrent.py\", line 238, in result\n", " raise_exc_info(self._exc_info)\n", " File \"<string>\", line 4, in raise_exc_info\n", " File \"/Users/ckemere/anaconda3/lib/python3.6/site-packages/tornado/gen.py\", line 1063, in run\n", " yielded = self.gen.throw(*exc_info)\n", " File \"/Users/ckemere/anaconda3/lib/python3.6/site-packages/distributed/joblib.py\", line 128, in callback_wrapper\n", " result = yield _wait([future])\n", " File \"/Users/ckemere/anaconda3/lib/python3.6/site-packages/tornado/gen.py\", line 1055, in run\n", " value = future.result()\n", " File \"/Users/ckemere/anaconda3/lib/python3.6/site-packages/tornado/concurrent.py\", line 238, in result\n", " raise_exc_info(self._exc_info)\n", " File \"<string>\", line 4, in raise_exc_info\n", " File \"/Users/ckemere/anaconda3/lib/python3.6/site-packages/tornado/gen.py\", line 1069, in run\n", " yielded = self.gen.send(value)\n", " File \"/Users/ckemere/anaconda3/lib/python3.6/site-packages/distributed/client.py\", line 2906, in _wait\n", " raise CancelledError(cancelled)\n", "concurrent.futures._base.CancelledError: ['work_events-batch-67fc4ea64ce749788fc3b7ea25445668']\n", "tornado.application - ERROR - Exception in callback functools.partial(<function wrap.<locals>.null_wrapper at 0x1c665e3a60>, <tornado.concurrent.Future object at 0x1c8b899208>)\n", "Traceback (most recent call last):\n", " File \"/Users/ckemere/anaconda3/lib/python3.6/site-packages/tornado/ioloop.py\", line 605, in _run_callback\n", " ret = callback()\n", " File \"/Users/ckemere/anaconda3/lib/python3.6/site-packages/tornado/stack_context.py\", line 277, in null_wrapper\n", " return fn(*args, **kwargs)\n", " File \"/Users/ckemere/anaconda3/lib/python3.6/site-packages/tornado/ioloop.py\", line 626, in _discard_future_result\n", " future.result()\n", " File \"/Users/ckemere/anaconda3/lib/python3.6/site-packages/tornado/concurrent.py\", line 238, in result\n", " raise_exc_info(self._exc_info)\n", " File \"<string>\", line 4, in raise_exc_info\n", " File \"/Users/ckemere/anaconda3/lib/python3.6/site-packages/tornado/gen.py\", line 1063, in run\n", " yielded = self.gen.throw(*exc_info)\n", " File \"/Users/ckemere/anaconda3/lib/python3.6/site-packages/distributed/joblib.py\", line 128, in callback_wrapper\n", " result = yield _wait([future])\n", " File \"/Users/ckemere/anaconda3/lib/python3.6/site-packages/tornado/gen.py\", line 1055, in run\n", " value = future.result()\n", " File \"/Users/ckemere/anaconda3/lib/python3.6/site-packages/tornado/concurrent.py\", line 238, in result\n", " raise_exc_info(self._exc_info)\n", " File \"<string>\", line 4, in raise_exc_info\n", " File \"/Users/ckemere/anaconda3/lib/python3.6/site-packages/tornado/gen.py\", line 1069, in run\n", " yielded = self.gen.send(value)\n", " File \"/Users/ckemere/anaconda3/lib/python3.6/site-packages/distributed/client.py\", line 2906, in _wait\n", " raise CancelledError(cancelled)\n", "concurrent.futures._base.CancelledError: ['work_events-batch-748a59748cd14f23b5bc02b6332e28f6']\n", "tornado.application - ERROR - Exception in callback functools.partial(<function wrap.<locals>.null_wrapper at 0x1c665e3e18>, <tornado.concurrent.Future object at 0x1c8b899438>)\n", "Traceback (most recent call last):\n", " File \"/Users/ckemere/anaconda3/lib/python3.6/site-packages/tornado/ioloop.py\", line 605, in _run_callback\n", " ret = callback()\n", " File \"/Users/ckemere/anaconda3/lib/python3.6/site-packages/tornado/stack_context.py\", line 277, in null_wrapper\n", " return fn(*args, **kwargs)\n", " File \"/Users/ckemere/anaconda3/lib/python3.6/site-packages/tornado/ioloop.py\", line 626, in _discard_future_result\n", " future.result()\n", " File \"/Users/ckemere/anaconda3/lib/python3.6/site-packages/tornado/concurrent.py\", line 238, in result\n", " raise_exc_info(self._exc_info)\n", " File \"<string>\", line 4, in raise_exc_info\n", " File \"/Users/ckemere/anaconda3/lib/python3.6/site-packages/tornado/gen.py\", line 1063, in run\n", " yielded = self.gen.throw(*exc_info)\n", " File \"/Users/ckemere/anaconda3/lib/python3.6/site-packages/distributed/joblib.py\", line 128, in callback_wrapper\n", " result = yield _wait([future])\n", " File \"/Users/ckemere/anaconda3/lib/python3.6/site-packages/tornado/gen.py\", line 1055, in run\n", " value = future.result()\n", " File \"/Users/ckemere/anaconda3/lib/python3.6/site-packages/tornado/concurrent.py\", line 238, in result\n", " raise_exc_info(self._exc_info)\n", " File \"<string>\", line 4, in raise_exc_info\n", " File \"/Users/ckemere/anaconda3/lib/python3.6/site-packages/tornado/gen.py\", line 1069, in run\n", " yielded = self.gen.send(value)\n", " File \"/Users/ckemere/anaconda3/lib/python3.6/site-packages/distributed/client.py\", line 2906, in _wait\n", " raise CancelledError(cancelled)\n", "concurrent.futures._base.CancelledError: ['work_events-batch-a6e6dd3837c74cbea6047e5b444bfe82']\n", "tornado.application - ERROR - Exception in callback functools.partial(<function wrap.<locals>.null_wrapper at 0x1c8b89dd90>, <tornado.concurrent.Future object at 0x1c8b899cf8>)\n", "Traceback (most recent call last):\n", " File \"/Users/ckemere/anaconda3/lib/python3.6/site-packages/tornado/ioloop.py\", line 605, in _run_callback\n", " ret = callback()\n", " File \"/Users/ckemere/anaconda3/lib/python3.6/site-packages/tornado/stack_context.py\", line 277, in null_wrapper\n", " return fn(*args, **kwargs)\n", " File \"/Users/ckemere/anaconda3/lib/python3.6/site-packages/tornado/ioloop.py\", line 626, in _discard_future_result\n", " future.result()\n", " File \"/Users/ckemere/anaconda3/lib/python3.6/site-packages/tornado/concurrent.py\", line 238, in result\n", " raise_exc_info(self._exc_info)\n", " File \"<string>\", line 4, in raise_exc_info\n", " File \"/Users/ckemere/anaconda3/lib/python3.6/site-packages/tornado/gen.py\", line 1063, in run\n", " yielded = self.gen.throw(*exc_info)\n", " File \"/Users/ckemere/anaconda3/lib/python3.6/site-packages/distributed/joblib.py\", line 128, in callback_wrapper\n", " result = yield _wait([future])\n", " File \"/Users/ckemere/anaconda3/lib/python3.6/site-packages/tornado/gen.py\", line 1055, in run\n", " value = future.result()\n", " File \"/Users/ckemere/anaconda3/lib/python3.6/site-packages/tornado/concurrent.py\", line 238, in result\n", " raise_exc_info(self._exc_info)\n", " File \"<string>\", line 4, in raise_exc_info\n", " File \"/Users/ckemere/anaconda3/lib/python3.6/site-packages/tornado/gen.py\", line 1069, in run\n", " yielded = self.gen.send(value)\n", " File \"/Users/ckemere/anaconda3/lib/python3.6/site-packages/distributed/client.py\", line 2906, in _wait\n", " raise CancelledError(cancelled)\n", "concurrent.futures._base.CancelledError: ['work_events-batch-c4b043b3de264c159820fafe0b531c09']\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ "tornado.application - ERROR - Exception in callback functools.partial(<function wrap.<locals>.null_wrapper at 0x1c8b8a51e0>, <tornado.concurrent.Future object at 0x1c8b899f28>)\n", "Traceback (most recent call last):\n", " File \"/Users/ckemere/anaconda3/lib/python3.6/site-packages/tornado/ioloop.py\", line 605, in _run_callback\n", " ret = callback()\n", " File \"/Users/ckemere/anaconda3/lib/python3.6/site-packages/tornado/stack_context.py\", line 277, in null_wrapper\n", " return fn(*args, **kwargs)\n", " File \"/Users/ckemere/anaconda3/lib/python3.6/site-packages/tornado/ioloop.py\", line 626, in _discard_future_result\n", " future.result()\n", " File \"/Users/ckemere/anaconda3/lib/python3.6/site-packages/tornado/concurrent.py\", line 238, in result\n", " raise_exc_info(self._exc_info)\n", " File \"<string>\", line 4, in raise_exc_info\n", " File \"/Users/ckemere/anaconda3/lib/python3.6/site-packages/tornado/gen.py\", line 1063, in run\n", " yielded = self.gen.throw(*exc_info)\n", " File \"/Users/ckemere/anaconda3/lib/python3.6/site-packages/distributed/joblib.py\", line 128, in callback_wrapper\n", " result = yield _wait([future])\n", " File \"/Users/ckemere/anaconda3/lib/python3.6/site-packages/tornado/gen.py\", line 1055, in run\n", " value = future.result()\n", " File \"/Users/ckemere/anaconda3/lib/python3.6/site-packages/tornado/concurrent.py\", line 238, in result\n", " raise_exc_info(self._exc_info)\n", " File \"<string>\", line 4, in raise_exc_info\n", " File \"/Users/ckemere/anaconda3/lib/python3.6/site-packages/tornado/gen.py\", line 1069, in run\n", " yielded = self.gen.send(value)\n", " File \"/Users/ckemere/anaconda3/lib/python3.6/site-packages/distributed/client.py\", line 2906, in _wait\n", " raise CancelledError(cancelled)\n", "concurrent.futures._base.CancelledError: ['work_events-batch-1898167894c9431c96db172454602ff1']\n", "tornado.application - ERROR - Exception in callback functools.partial(<function wrap.<locals>.null_wrapper at 0x1c8b8a5598>, <tornado.concurrent.Future object at 0x1c8b8a1198>)\n", "Traceback (most recent call last):\n", " File \"/Users/ckemere/anaconda3/lib/python3.6/site-packages/tornado/ioloop.py\", line 605, in _run_callback\n", " ret = callback()\n", " File \"/Users/ckemere/anaconda3/lib/python3.6/site-packages/tornado/stack_context.py\", line 277, in null_wrapper\n", " return fn(*args, **kwargs)\n", " File \"/Users/ckemere/anaconda3/lib/python3.6/site-packages/tornado/ioloop.py\", line 626, in _discard_future_result\n", " future.result()\n", " File \"/Users/ckemere/anaconda3/lib/python3.6/site-packages/tornado/concurrent.py\", line 238, in result\n", " raise_exc_info(self._exc_info)\n", " File \"<string>\", line 4, in raise_exc_info\n", " File \"/Users/ckemere/anaconda3/lib/python3.6/site-packages/tornado/gen.py\", line 1063, in run\n", " yielded = self.gen.throw(*exc_info)\n", " File \"/Users/ckemere/anaconda3/lib/python3.6/site-packages/distributed/joblib.py\", line 128, in callback_wrapper\n", " result = yield _wait([future])\n", " File \"/Users/ckemere/anaconda3/lib/python3.6/site-packages/tornado/gen.py\", line 1055, in run\n", " value = future.result()\n", " File \"/Users/ckemere/anaconda3/lib/python3.6/site-packages/tornado/concurrent.py\", line 238, in result\n", " raise_exc_info(self._exc_info)\n", " File \"<string>\", line 4, in raise_exc_info\n", " File \"/Users/ckemere/anaconda3/lib/python3.6/site-packages/tornado/gen.py\", line 1069, in run\n", " yielded = self.gen.send(value)\n", " File \"/Users/ckemere/anaconda3/lib/python3.6/site-packages/distributed/client.py\", line 2906, in _wait\n", " raise CancelledError(cancelled)\n", "concurrent.futures._base.CancelledError: ['work_events-batch-1bdd41c97f33460f8cf0610c95df7809']\n", "tornado.application - ERROR - Exception in callback functools.partial(<function wrap.<locals>.null_wrapper at 0x1c8b8afb70>, <tornado.concurrent.Future object at 0x1c8b8d1940>)\n", "Traceback (most recent call last):\n", " File \"/Users/ckemere/anaconda3/lib/python3.6/site-packages/tornado/ioloop.py\", line 605, in _run_callback\n", " ret = callback()\n", " File \"/Users/ckemere/anaconda3/lib/python3.6/site-packages/tornado/stack_context.py\", line 277, in null_wrapper\n", " return fn(*args, **kwargs)\n", " File \"/Users/ckemere/anaconda3/lib/python3.6/site-packages/tornado/ioloop.py\", line 626, in _discard_future_result\n", " future.result()\n", " File \"/Users/ckemere/anaconda3/lib/python3.6/site-packages/tornado/concurrent.py\", line 238, in result\n", " raise_exc_info(self._exc_info)\n", " File \"<string>\", line 4, in raise_exc_info\n", " File \"/Users/ckemere/anaconda3/lib/python3.6/site-packages/tornado/gen.py\", line 1063, in run\n", " yielded = self.gen.throw(*exc_info)\n", " File \"/Users/ckemere/anaconda3/lib/python3.6/site-packages/distributed/joblib.py\", line 128, in callback_wrapper\n", " result = yield _wait([future])\n", " File \"/Users/ckemere/anaconda3/lib/python3.6/site-packages/tornado/gen.py\", line 1055, in run\n", " value = future.result()\n", " File \"/Users/ckemere/anaconda3/lib/python3.6/site-packages/tornado/concurrent.py\", line 238, in result\n", " raise_exc_info(self._exc_info)\n", " File \"<string>\", line 4, in raise_exc_info\n", " File \"/Users/ckemere/anaconda3/lib/python3.6/site-packages/tornado/gen.py\", line 1069, in run\n", " yielded = self.gen.send(value)\n", " File \"/Users/ckemere/anaconda3/lib/python3.6/site-packages/distributed/client.py\", line 2906, in _wait\n", " raise CancelledError(cancelled)\n", "concurrent.futures._base.CancelledError: ['work_events-batch-d83d51c8f73f488e82b2cdebc340fc46']\n", "tornado.application - ERROR - Exception in callback functools.partial(<function wrap.<locals>.null_wrapper at 0x1c8b8aff28>, <tornado.concurrent.Future object at 0x1c8b8d1b00>)\n", "Traceback (most recent call last):\n", " File \"/Users/ckemere/anaconda3/lib/python3.6/site-packages/tornado/ioloop.py\", line 605, in _run_callback\n", " ret = callback()\n", " File \"/Users/ckemere/anaconda3/lib/python3.6/site-packages/tornado/stack_context.py\", line 277, in null_wrapper\n", " return fn(*args, **kwargs)\n", " File \"/Users/ckemere/anaconda3/lib/python3.6/site-packages/tornado/ioloop.py\", line 626, in _discard_future_result\n", " future.result()\n", " File \"/Users/ckemere/anaconda3/lib/python3.6/site-packages/tornado/concurrent.py\", line 238, in result\n", " raise_exc_info(self._exc_info)\n", " File \"<string>\", line 4, in raise_exc_info\n", " File \"/Users/ckemere/anaconda3/lib/python3.6/site-packages/tornado/gen.py\", line 1063, in run\n", " yielded = self.gen.throw(*exc_info)\n", " File \"/Users/ckemere/anaconda3/lib/python3.6/site-packages/distributed/joblib.py\", line 128, in callback_wrapper\n", " result = yield _wait([future])\n", " File \"/Users/ckemere/anaconda3/lib/python3.6/site-packages/tornado/gen.py\", line 1055, in run\n", " value = future.result()\n", " File \"/Users/ckemere/anaconda3/lib/python3.6/site-packages/tornado/concurrent.py\", line 238, in result\n", " raise_exc_info(self._exc_info)\n", " File \"<string>\", line 4, in raise_exc_info\n", " File \"/Users/ckemere/anaconda3/lib/python3.6/site-packages/tornado/gen.py\", line 1069, in run\n", " yielded = self.gen.send(value)\n", " File \"/Users/ckemere/anaconda3/lib/python3.6/site-packages/distributed/client.py\", line 2906, in _wait\n", " raise CancelledError(cancelled)\n", "concurrent.futures._base.CancelledError: ['work_events-batch-941e5055b1bb46f99d568ba53da80007']\n", "tornado.application - ERROR - Exception in callback functools.partial(<function wrap.<locals>.null_wrapper at 0x1caca3d378>, <tornado.concurrent.Future object at 0x1c8b8d1cc0>)\n", "Traceback (most recent call last):\n", " File \"/Users/ckemere/anaconda3/lib/python3.6/site-packages/tornado/ioloop.py\", line 605, in _run_callback\n", " ret = callback()\n", " File \"/Users/ckemere/anaconda3/lib/python3.6/site-packages/tornado/stack_context.py\", line 277, in null_wrapper\n", " return fn(*args, **kwargs)\n", " File \"/Users/ckemere/anaconda3/lib/python3.6/site-packages/tornado/ioloop.py\", line 626, in _discard_future_result\n", " future.result()\n", " File \"/Users/ckemere/anaconda3/lib/python3.6/site-packages/tornado/concurrent.py\", line 238, in result\n", " raise_exc_info(self._exc_info)\n", " File \"<string>\", line 4, in raise_exc_info\n", " File \"/Users/ckemere/anaconda3/lib/python3.6/site-packages/tornado/gen.py\", line 1063, in run\n", " yielded = self.gen.throw(*exc_info)\n", " File \"/Users/ckemere/anaconda3/lib/python3.6/site-packages/distributed/joblib.py\", line 128, in callback_wrapper\n", " result = yield _wait([future])\n", " File \"/Users/ckemere/anaconda3/lib/python3.6/site-packages/tornado/gen.py\", line 1055, in run\n", " value = future.result()\n", " File \"/Users/ckemere/anaconda3/lib/python3.6/site-packages/tornado/concurrent.py\", line 238, in result\n", " raise_exc_info(self._exc_info)\n", " File \"<string>\", line 4, in raise_exc_info\n", " File \"/Users/ckemere/anaconda3/lib/python3.6/site-packages/tornado/gen.py\", line 1069, in run\n", " yielded = self.gen.send(value)\n", " File \"/Users/ckemere/anaconda3/lib/python3.6/site-packages/distributed/client.py\", line 2906, in _wait\n", " raise CancelledError(cancelled)\n", "concurrent.futures._base.CancelledError: ['work_events-batch-e99cfbbc14d04172963adae93ad9ee63']\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ "tornado.application - ERROR - Exception in callback functools.partial(<function wrap.<locals>.null_wrapper at 0x1caca3dea0>, <tornado.concurrent.Future object at 0x1caca3f240>)\n", "Traceback (most recent call last):\n", " File \"/Users/ckemere/anaconda3/lib/python3.6/site-packages/tornado/ioloop.py\", line 605, in _run_callback\n", " ret = callback()\n", " File \"/Users/ckemere/anaconda3/lib/python3.6/site-packages/tornado/stack_context.py\", line 277, in null_wrapper\n", " return fn(*args, **kwargs)\n", " File \"/Users/ckemere/anaconda3/lib/python3.6/site-packages/tornado/ioloop.py\", line 626, in _discard_future_result\n", " future.result()\n", " File \"/Users/ckemere/anaconda3/lib/python3.6/site-packages/tornado/concurrent.py\", line 238, in result\n", " raise_exc_info(self._exc_info)\n", " File \"<string>\", line 4, in raise_exc_info\n", " File \"/Users/ckemere/anaconda3/lib/python3.6/site-packages/tornado/gen.py\", line 1063, in run\n", " yielded = self.gen.throw(*exc_info)\n", " File \"/Users/ckemere/anaconda3/lib/python3.6/site-packages/distributed/joblib.py\", line 128, in callback_wrapper\n", " result = yield _wait([future])\n", " File \"/Users/ckemere/anaconda3/lib/python3.6/site-packages/tornado/gen.py\", line 1055, in run\n", " value = future.result()\n", " File \"/Users/ckemere/anaconda3/lib/python3.6/site-packages/tornado/concurrent.py\", line 238, in result\n", " raise_exc_info(self._exc_info)\n", " File \"<string>\", line 4, in raise_exc_info\n", " File \"/Users/ckemere/anaconda3/lib/python3.6/site-packages/tornado/gen.py\", line 1069, in run\n", " yielded = self.gen.send(value)\n", " File \"/Users/ckemere/anaconda3/lib/python3.6/site-packages/distributed/client.py\", line 2906, in _wait\n", " raise CancelledError(cancelled)\n", "concurrent.futures._base.CancelledError: ['work_events-batch-a291416f50234eb5ba627a45da48694b']\n", "tornado.application - ERROR - Exception in callback functools.partial(<function wrap.<locals>.null_wrapper at 0x1caca422f0>, <tornado.concurrent.Future object at 0x1caca3f400>)\n", "Traceback (most recent call last):\n", " File \"/Users/ckemere/anaconda3/lib/python3.6/site-packages/tornado/ioloop.py\", line 605, in _run_callback\n", " ret = callback()\n", " File \"/Users/ckemere/anaconda3/lib/python3.6/site-packages/tornado/stack_context.py\", line 277, in null_wrapper\n", " return fn(*args, **kwargs)\n", " File \"/Users/ckemere/anaconda3/lib/python3.6/site-packages/tornado/ioloop.py\", line 626, in _discard_future_result\n", " future.result()\n", " File \"/Users/ckemere/anaconda3/lib/python3.6/site-packages/tornado/concurrent.py\", line 238, in result\n", " raise_exc_info(self._exc_info)\n", " File \"<string>\", line 4, in raise_exc_info\n", " File \"/Users/ckemere/anaconda3/lib/python3.6/site-packages/tornado/gen.py\", line 1063, in run\n", " yielded = self.gen.throw(*exc_info)\n", " File \"/Users/ckemere/anaconda3/lib/python3.6/site-packages/distributed/joblib.py\", line 128, in callback_wrapper\n", " result = yield _wait([future])\n", " File \"/Users/ckemere/anaconda3/lib/python3.6/site-packages/tornado/gen.py\", line 1055, in run\n", " value = future.result()\n", " File \"/Users/ckemere/anaconda3/lib/python3.6/site-packages/tornado/concurrent.py\", line 238, in result\n", " raise_exc_info(self._exc_info)\n", " File \"<string>\", line 4, in raise_exc_info\n", " File \"/Users/ckemere/anaconda3/lib/python3.6/site-packages/tornado/gen.py\", line 1069, in run\n", " yielded = self.gen.send(value)\n", " File \"/Users/ckemere/anaconda3/lib/python3.6/site-packages/distributed/client.py\", line 2906, in _wait\n", " raise CancelledError(cancelled)\n", "concurrent.futures._base.CancelledError: ['work_events-batch-87fb012e2bfa46b9851ea426dfbfbee0']\n", "tornado.application - ERROR - Exception in callback functools.partial(<function wrap.<locals>.null_wrapper at 0x1caca426a8>, <tornado.concurrent.Future object at 0x1caca3f5c0>)\n", "Traceback (most recent call last):\n", " File \"/Users/ckemere/anaconda3/lib/python3.6/site-packages/tornado/ioloop.py\", line 605, in _run_callback\n", " ret = callback()\n", " File \"/Users/ckemere/anaconda3/lib/python3.6/site-packages/tornado/stack_context.py\", line 277, in null_wrapper\n", " return fn(*args, **kwargs)\n", " File \"/Users/ckemere/anaconda3/lib/python3.6/site-packages/tornado/ioloop.py\", line 626, in _discard_future_result\n", " future.result()\n", " File \"/Users/ckemere/anaconda3/lib/python3.6/site-packages/tornado/concurrent.py\", line 238, in result\n", " raise_exc_info(self._exc_info)\n", " File \"<string>\", line 4, in raise_exc_info\n", " File \"/Users/ckemere/anaconda3/lib/python3.6/site-packages/tornado/gen.py\", line 1063, in run\n", " yielded = self.gen.throw(*exc_info)\n", " File \"/Users/ckemere/anaconda3/lib/python3.6/site-packages/distributed/joblib.py\", line 128, in callback_wrapper\n", " result = yield _wait([future])\n", " File \"/Users/ckemere/anaconda3/lib/python3.6/site-packages/tornado/gen.py\", line 1055, in run\n", " value = future.result()\n", " File \"/Users/ckemere/anaconda3/lib/python3.6/site-packages/tornado/concurrent.py\", line 238, in result\n", " raise_exc_info(self._exc_info)\n", " File \"<string>\", line 4, in raise_exc_info\n", " File \"/Users/ckemere/anaconda3/lib/python3.6/site-packages/tornado/gen.py\", line 1069, in run\n", " yielded = self.gen.send(value)\n", " File \"/Users/ckemere/anaconda3/lib/python3.6/site-packages/distributed/client.py\", line 2906, in _wait\n", " raise CancelledError(cancelled)\n", "concurrent.futures._base.CancelledError: ['work_events-batch-cfd465e6ce7f4891946654cb5f61f624']\n", "tornado.application - ERROR - Exception in callback functools.partial(<function wrap.<locals>.null_wrapper at 0x1c96202e18>, <tornado.concurrent.Future object at 0x1c96206748>)\n", "Traceback (most recent call last):\n", " File \"/Users/ckemere/anaconda3/lib/python3.6/site-packages/tornado/ioloop.py\", line 605, in _run_callback\n", " ret = callback()\n", " File \"/Users/ckemere/anaconda3/lib/python3.6/site-packages/tornado/stack_context.py\", line 277, in null_wrapper\n", " return fn(*args, **kwargs)\n", " File \"/Users/ckemere/anaconda3/lib/python3.6/site-packages/tornado/ioloop.py\", line 626, in _discard_future_result\n", " future.result()\n", " File \"/Users/ckemere/anaconda3/lib/python3.6/site-packages/tornado/concurrent.py\", line 238, in result\n", " raise_exc_info(self._exc_info)\n", " File \"<string>\", line 4, in raise_exc_info\n", " File \"/Users/ckemere/anaconda3/lib/python3.6/site-packages/tornado/gen.py\", line 1063, in run\n", " yielded = self.gen.throw(*exc_info)\n", " File \"/Users/ckemere/anaconda3/lib/python3.6/site-packages/distributed/joblib.py\", line 128, in callback_wrapper\n", " result = yield _wait([future])\n", " File \"/Users/ckemere/anaconda3/lib/python3.6/site-packages/tornado/gen.py\", line 1055, in run\n", " value = future.result()\n", " File \"/Users/ckemere/anaconda3/lib/python3.6/site-packages/tornado/concurrent.py\", line 238, in result\n", " raise_exc_info(self._exc_info)\n", " File \"<string>\", line 4, in raise_exc_info\n", " File \"/Users/ckemere/anaconda3/lib/python3.6/site-packages/tornado/gen.py\", line 1069, in run\n", " yielded = self.gen.send(value)\n", " File \"/Users/ckemere/anaconda3/lib/python3.6/site-packages/distributed/client.py\", line 2906, in _wait\n", " raise CancelledError(cancelled)\n", "concurrent.futures._base.CancelledError: ['work_events-batch-b5673a0c21f845a5b708af3d933771d1']\n", "tornado.application - ERROR - Exception in callback functools.partial(<function wrap.<locals>.null_wrapper at 0x1c96202510>, <tornado.concurrent.Future object at 0x1c961f9d30>)\n", "Traceback (most recent call last):\n", " File \"/Users/ckemere/anaconda3/lib/python3.6/site-packages/tornado/ioloop.py\", line 605, in _run_callback\n", " ret = callback()\n", " File \"/Users/ckemere/anaconda3/lib/python3.6/site-packages/tornado/stack_context.py\", line 277, in null_wrapper\n", " return fn(*args, **kwargs)\n", " File \"/Users/ckemere/anaconda3/lib/python3.6/site-packages/tornado/ioloop.py\", line 626, in _discard_future_result\n", " future.result()\n", " File \"/Users/ckemere/anaconda3/lib/python3.6/site-packages/tornado/concurrent.py\", line 238, in result\n", " raise_exc_info(self._exc_info)\n", " File \"<string>\", line 4, in raise_exc_info\n", " File \"/Users/ckemere/anaconda3/lib/python3.6/site-packages/tornado/gen.py\", line 1063, in run\n", " yielded = self.gen.throw(*exc_info)\n", " File \"/Users/ckemere/anaconda3/lib/python3.6/site-packages/distributed/joblib.py\", line 128, in callback_wrapper\n", " result = yield _wait([future])\n", " File \"/Users/ckemere/anaconda3/lib/python3.6/site-packages/tornado/gen.py\", line 1055, in run\n", " value = future.result()\n", " File \"/Users/ckemere/anaconda3/lib/python3.6/site-packages/tornado/concurrent.py\", line 238, in result\n", " raise_exc_info(self._exc_info)\n", " File \"<string>\", line 4, in raise_exc_info\n", " File \"/Users/ckemere/anaconda3/lib/python3.6/site-packages/tornado/gen.py\", line 1069, in run\n", " yielded = self.gen.send(value)\n", " File \"/Users/ckemere/anaconda3/lib/python3.6/site-packages/distributed/client.py\", line 2906, in _wait\n", " raise CancelledError(cancelled)\n", "concurrent.futures._base.CancelledError: ['work_events-batch-dea4305e14444e4a917bc7a6ba91feda']\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ "tornado.application - ERROR - Exception in callback functools.partial(<function wrap.<locals>.null_wrapper at 0x1c8b8d2bf8>, <tornado.concurrent.Future object at 0x1c1d82f470>)\n", "Traceback (most recent call last):\n", " File \"/Users/ckemere/anaconda3/lib/python3.6/site-packages/tornado/ioloop.py\", line 605, in _run_callback\n", " ret = callback()\n", " File \"/Users/ckemere/anaconda3/lib/python3.6/site-packages/tornado/stack_context.py\", line 277, in null_wrapper\n", " return fn(*args, **kwargs)\n", " File \"/Users/ckemere/anaconda3/lib/python3.6/site-packages/tornado/ioloop.py\", line 626, in _discard_future_result\n", " future.result()\n", " File \"/Users/ckemere/anaconda3/lib/python3.6/site-packages/tornado/concurrent.py\", line 238, in result\n", " raise_exc_info(self._exc_info)\n", " File \"<string>\", line 4, in raise_exc_info\n", " File \"/Users/ckemere/anaconda3/lib/python3.6/site-packages/tornado/gen.py\", line 1063, in run\n", " yielded = self.gen.throw(*exc_info)\n", " File \"/Users/ckemere/anaconda3/lib/python3.6/site-packages/distributed/joblib.py\", line 128, in callback_wrapper\n", " result = yield _wait([future])\n", " File \"/Users/ckemere/anaconda3/lib/python3.6/site-packages/tornado/gen.py\", line 1055, in run\n", " value = future.result()\n", " File \"/Users/ckemere/anaconda3/lib/python3.6/site-packages/tornado/concurrent.py\", line 238, in result\n", " raise_exc_info(self._exc_info)\n", " File \"<string>\", line 4, in raise_exc_info\n", " File \"/Users/ckemere/anaconda3/lib/python3.6/site-packages/tornado/gen.py\", line 1069, in run\n", " yielded = self.gen.send(value)\n", " File \"/Users/ckemere/anaconda3/lib/python3.6/site-packages/distributed/client.py\", line 2906, in _wait\n", " raise CancelledError(cancelled)\n", "concurrent.futures._base.CancelledError: ['work_events-batch-e3b663a420c444c889406754456a0975']\n", "tornado.application - ERROR - Exception in callback functools.partial(<function wrap.<locals>.null_wrapper at 0x1c1d8339d8>, <tornado.concurrent.Future object at 0x1c1d82f630>)\n", "Traceback (most recent call last):\n", " File \"/Users/ckemere/anaconda3/lib/python3.6/site-packages/tornado/ioloop.py\", line 605, in _run_callback\n", " ret = callback()\n", " File \"/Users/ckemere/anaconda3/lib/python3.6/site-packages/tornado/stack_context.py\", line 277, in null_wrapper\n", " return fn(*args, **kwargs)\n", " File \"/Users/ckemere/anaconda3/lib/python3.6/site-packages/tornado/ioloop.py\", line 626, in _discard_future_result\n", " future.result()\n", " File \"/Users/ckemere/anaconda3/lib/python3.6/site-packages/tornado/concurrent.py\", line 238, in result\n", " raise_exc_info(self._exc_info)\n", " File \"<string>\", line 4, in raise_exc_info\n", " File \"/Users/ckemere/anaconda3/lib/python3.6/site-packages/tornado/gen.py\", line 1063, in run\n", " yielded = self.gen.throw(*exc_info)\n", " File \"/Users/ckemere/anaconda3/lib/python3.6/site-packages/distributed/joblib.py\", line 128, in callback_wrapper\n", " result = yield _wait([future])\n", " File \"/Users/ckemere/anaconda3/lib/python3.6/site-packages/tornado/gen.py\", line 1055, in run\n", " value = future.result()\n", " File \"/Users/ckemere/anaconda3/lib/python3.6/site-packages/tornado/concurrent.py\", line 238, in result\n", " raise_exc_info(self._exc_info)\n", " File \"<string>\", line 4, in raise_exc_info\n", " File \"/Users/ckemere/anaconda3/lib/python3.6/site-packages/tornado/gen.py\", line 1069, in run\n", " yielded = self.gen.send(value)\n", " File \"/Users/ckemere/anaconda3/lib/python3.6/site-packages/distributed/client.py\", line 2906, in _wait\n", " raise CancelledError(cancelled)\n", "concurrent.futures._base.CancelledError: ['work_events-batch-33c6ab5feecf4af596dcb04e2b27335f']\n", "tornado.application - ERROR - Exception in callback functools.partial(<function wrap.<locals>.null_wrapper at 0x1c1d8428c8>, <tornado.concurrent.Future object at 0x1c665c17b8>)\n", "Traceback (most recent call last):\n", " File \"/Users/ckemere/anaconda3/lib/python3.6/site-packages/tornado/ioloop.py\", line 605, in _run_callback\n", " ret = callback()\n", " File \"/Users/ckemere/anaconda3/lib/python3.6/site-packages/tornado/stack_context.py\", line 277, in null_wrapper\n", " return fn(*args, **kwargs)\n", " File \"/Users/ckemere/anaconda3/lib/python3.6/site-packages/tornado/ioloop.py\", line 626, in _discard_future_result\n", " future.result()\n", " File \"/Users/ckemere/anaconda3/lib/python3.6/site-packages/tornado/concurrent.py\", line 238, in result\n", " raise_exc_info(self._exc_info)\n", " File \"<string>\", line 4, in raise_exc_info\n", " File \"/Users/ckemere/anaconda3/lib/python3.6/site-packages/tornado/gen.py\", line 1063, in run\n", " yielded = self.gen.throw(*exc_info)\n", " File \"/Users/ckemere/anaconda3/lib/python3.6/site-packages/distributed/joblib.py\", line 128, in callback_wrapper\n", " result = yield _wait([future])\n", " File \"/Users/ckemere/anaconda3/lib/python3.6/site-packages/tornado/gen.py\", line 1055, in run\n", " value = future.result()\n", " File \"/Users/ckemere/anaconda3/lib/python3.6/site-packages/tornado/concurrent.py\", line 238, in result\n", " raise_exc_info(self._exc_info)\n", " File \"<string>\", line 4, in raise_exc_info\n", " File \"/Users/ckemere/anaconda3/lib/python3.6/site-packages/tornado/gen.py\", line 1069, in run\n", " yielded = self.gen.send(value)\n", " File \"/Users/ckemere/anaconda3/lib/python3.6/site-packages/distributed/client.py\", line 2906, in _wait\n", " raise CancelledError(cancelled)\n", "concurrent.futures._base.CancelledError: ['work_events-batch-2e832b4246cc475fa32c23ffe5793d6d']\n", "tornado.application - ERROR - Exception in callback functools.partial(<function wrap.<locals>.null_wrapper at 0x1c665c5620>, <tornado.concurrent.Future object at 0x1c665c1978>)\n", "Traceback (most recent call last):\n", " File \"/Users/ckemere/anaconda3/lib/python3.6/site-packages/tornado/ioloop.py\", line 605, in _run_callback\n", " ret = callback()\n", " File \"/Users/ckemere/anaconda3/lib/python3.6/site-packages/tornado/stack_context.py\", line 277, in null_wrapper\n", " return fn(*args, **kwargs)\n", " File \"/Users/ckemere/anaconda3/lib/python3.6/site-packages/tornado/ioloop.py\", line 626, in _discard_future_result\n", " future.result()\n", " File \"/Users/ckemere/anaconda3/lib/python3.6/site-packages/tornado/concurrent.py\", line 238, in result\n", " raise_exc_info(self._exc_info)\n", " File \"<string>\", line 4, in raise_exc_info\n", " File \"/Users/ckemere/anaconda3/lib/python3.6/site-packages/tornado/gen.py\", line 1063, in run\n", " yielded = self.gen.throw(*exc_info)\n", " File \"/Users/ckemere/anaconda3/lib/python3.6/site-packages/distributed/joblib.py\", line 128, in callback_wrapper\n", " result = yield _wait([future])\n", " File \"/Users/ckemere/anaconda3/lib/python3.6/site-packages/tornado/gen.py\", line 1055, in run\n", " value = future.result()\n", " File \"/Users/ckemere/anaconda3/lib/python3.6/site-packages/tornado/concurrent.py\", line 238, in result\n", " raise_exc_info(self._exc_info)\n", " File \"<string>\", line 4, in raise_exc_info\n", " File \"/Users/ckemere/anaconda3/lib/python3.6/site-packages/tornado/gen.py\", line 1069, in run\n", " yielded = self.gen.send(value)\n", " File \"/Users/ckemere/anaconda3/lib/python3.6/site-packages/distributed/client.py\", line 2906, in _wait\n", " raise CancelledError(cancelled)\n", "concurrent.futures._base.CancelledError: ['work_events-batch-6440fa3eafdf4be3a1f3b9548b833aca']\n", "tornado.application - ERROR - Exception in callback functools.partial(<function wrap.<locals>.null_wrapper at 0x1c665b1488>, <tornado.concurrent.Future object at 0x1c1d8254e0>)\n", "Traceback (most recent call last):\n", " File \"/Users/ckemere/anaconda3/lib/python3.6/site-packages/tornado/ioloop.py\", line 605, in _run_callback\n", " ret = callback()\n", " File \"/Users/ckemere/anaconda3/lib/python3.6/site-packages/tornado/stack_context.py\", line 277, in null_wrapper\n", " return fn(*args, **kwargs)\n", " File \"/Users/ckemere/anaconda3/lib/python3.6/site-packages/tornado/ioloop.py\", line 626, in _discard_future_result\n", " future.result()\n", " File \"/Users/ckemere/anaconda3/lib/python3.6/site-packages/tornado/concurrent.py\", line 238, in result\n", " raise_exc_info(self._exc_info)\n", " File \"<string>\", line 4, in raise_exc_info\n", " File \"/Users/ckemere/anaconda3/lib/python3.6/site-packages/tornado/gen.py\", line 1063, in run\n", " yielded = self.gen.throw(*exc_info)\n", " File \"/Users/ckemere/anaconda3/lib/python3.6/site-packages/distributed/joblib.py\", line 128, in callback_wrapper\n", " result = yield _wait([future])\n", " File \"/Users/ckemere/anaconda3/lib/python3.6/site-packages/tornado/gen.py\", line 1055, in run\n", " value = future.result()\n", " File \"/Users/ckemere/anaconda3/lib/python3.6/site-packages/tornado/concurrent.py\", line 238, in result\n", " raise_exc_info(self._exc_info)\n", " File \"<string>\", line 4, in raise_exc_info\n", " File \"/Users/ckemere/anaconda3/lib/python3.6/site-packages/tornado/gen.py\", line 1069, in run\n", " yielded = self.gen.send(value)\n", " File \"/Users/ckemere/anaconda3/lib/python3.6/site-packages/distributed/client.py\", line 2906, in _wait\n", " raise CancelledError(cancelled)\n", "concurrent.futures._base.CancelledError: ['work_events-batch-829131006e7a4784803d77f21e7d857e']\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ "tornado.application - ERROR - Exception in callback functools.partial(<function wrap.<locals>.null_wrapper at 0x1c9621b400>, <tornado.concurrent.Future object at 0x1c961f9630>)\n", "Traceback (most recent call last):\n", " File \"/Users/ckemere/anaconda3/lib/python3.6/site-packages/tornado/ioloop.py\", line 605, in _run_callback\n", " ret = callback()\n", " File \"/Users/ckemere/anaconda3/lib/python3.6/site-packages/tornado/stack_context.py\", line 277, in null_wrapper\n", " return fn(*args, **kwargs)\n", " File \"/Users/ckemere/anaconda3/lib/python3.6/site-packages/tornado/ioloop.py\", line 626, in _discard_future_result\n", " future.result()\n", " File \"/Users/ckemere/anaconda3/lib/python3.6/site-packages/tornado/concurrent.py\", line 238, in result\n", " raise_exc_info(self._exc_info)\n", " File \"<string>\", line 4, in raise_exc_info\n", " File \"/Users/ckemere/anaconda3/lib/python3.6/site-packages/tornado/gen.py\", line 1063, in run\n", " yielded = self.gen.throw(*exc_info)\n", " File \"/Users/ckemere/anaconda3/lib/python3.6/site-packages/distributed/joblib.py\", line 128, in callback_wrapper\n", " result = yield _wait([future])\n", " File \"/Users/ckemere/anaconda3/lib/python3.6/site-packages/tornado/gen.py\", line 1055, in run\n", " value = future.result()\n", " File \"/Users/ckemere/anaconda3/lib/python3.6/site-packages/tornado/concurrent.py\", line 238, in result\n", " raise_exc_info(self._exc_info)\n", " File \"<string>\", line 4, in raise_exc_info\n", " File \"/Users/ckemere/anaconda3/lib/python3.6/site-packages/tornado/gen.py\", line 1069, in run\n", " yielded = self.gen.send(value)\n", " File \"/Users/ckemere/anaconda3/lib/python3.6/site-packages/distributed/client.py\", line 2906, in _wait\n", " raise CancelledError(cancelled)\n", "concurrent.futures._base.CancelledError: ['work_events-batch-d37ed62f20c842c190530c19a2073328']\n", "tornado.application - ERROR - Exception in callback functools.partial(<function wrap.<locals>.null_wrapper at 0x1c1d82cd90>, <tornado.concurrent.Future object at 0x1c1d825cf8>)\n", "Traceback (most recent call last):\n", " File \"/Users/ckemere/anaconda3/lib/python3.6/site-packages/tornado/ioloop.py\", line 605, in _run_callback\n", " ret = callback()\n", " File \"/Users/ckemere/anaconda3/lib/python3.6/site-packages/tornado/stack_context.py\", line 277, in null_wrapper\n", " return fn(*args, **kwargs)\n", " File \"/Users/ckemere/anaconda3/lib/python3.6/site-packages/tornado/ioloop.py\", line 626, in _discard_future_result\n", " future.result()\n", " File \"/Users/ckemere/anaconda3/lib/python3.6/site-packages/tornado/concurrent.py\", line 238, in result\n", " raise_exc_info(self._exc_info)\n", " File \"<string>\", line 4, in raise_exc_info\n", " File \"/Users/ckemere/anaconda3/lib/python3.6/site-packages/tornado/gen.py\", line 1063, in run\n", " yielded = self.gen.throw(*exc_info)\n", " File \"/Users/ckemere/anaconda3/lib/python3.6/site-packages/distributed/joblib.py\", line 128, in callback_wrapper\n", " result = yield _wait([future])\n", " File \"/Users/ckemere/anaconda3/lib/python3.6/site-packages/tornado/gen.py\", line 1055, in run\n", " value = future.result()\n", " File \"/Users/ckemere/anaconda3/lib/python3.6/site-packages/tornado/concurrent.py\", line 238, in result\n", " raise_exc_info(self._exc_info)\n", " File \"<string>\", line 4, in raise_exc_info\n", " File \"/Users/ckemere/anaconda3/lib/python3.6/site-packages/tornado/gen.py\", line 1069, in run\n", " yielded = self.gen.send(value)\n", " File \"/Users/ckemere/anaconda3/lib/python3.6/site-packages/distributed/client.py\", line 2906, in _wait\n", " raise CancelledError(cancelled)\n", "concurrent.futures._base.CancelledError: ['work_events-batch-b7752b6a0de44d63bebe08f6495fb492']\n", "tornado.application - ERROR - Exception in callback functools.partial(<function wrap.<locals>.null_wrapper at 0x1c1d82c7b8>, <tornado.concurrent.Future object at 0x1c1d825b70>)\n", "Traceback (most recent call last):\n", " File \"/Users/ckemere/anaconda3/lib/python3.6/site-packages/tornado/ioloop.py\", line 605, in _run_callback\n", " ret = callback()\n", " File \"/Users/ckemere/anaconda3/lib/python3.6/site-packages/tornado/stack_context.py\", line 277, in null_wrapper\n", " return fn(*args, **kwargs)\n", " File \"/Users/ckemere/anaconda3/lib/python3.6/site-packages/tornado/ioloop.py\", line 626, in _discard_future_result\n", " future.result()\n", " File \"/Users/ckemere/anaconda3/lib/python3.6/site-packages/tornado/concurrent.py\", line 238, in result\n", " raise_exc_info(self._exc_info)\n", " File \"<string>\", line 4, in raise_exc_info\n", " File \"/Users/ckemere/anaconda3/lib/python3.6/site-packages/tornado/gen.py\", line 1063, in run\n", " yielded = self.gen.throw(*exc_info)\n", " File \"/Users/ckemere/anaconda3/lib/python3.6/site-packages/distributed/joblib.py\", line 128, in callback_wrapper\n", " result = yield _wait([future])\n", " File \"/Users/ckemere/anaconda3/lib/python3.6/site-packages/tornado/gen.py\", line 1055, in run\n", " value = future.result()\n", " File \"/Users/ckemere/anaconda3/lib/python3.6/site-packages/tornado/concurrent.py\", line 238, in result\n", " raise_exc_info(self._exc_info)\n", " File \"<string>\", line 4, in raise_exc_info\n", " File \"/Users/ckemere/anaconda3/lib/python3.6/site-packages/tornado/gen.py\", line 1069, in run\n", " yielded = self.gen.send(value)\n", " File \"/Users/ckemere/anaconda3/lib/python3.6/site-packages/distributed/client.py\", line 2906, in _wait\n", " raise CancelledError(cancelled)\n", "concurrent.futures._base.CancelledError: ['work_events-batch-18555c569b6547719329a8372d444421']\n", "tornado.application - ERROR - Exception in callback functools.partial(<function wrap.<locals>.null_wrapper at 0x1c7160e378>, <tornado.concurrent.Future object at 0x1c1d82f5f8>)\n", "Traceback (most recent call last):\n", " File \"/Users/ckemere/anaconda3/lib/python3.6/site-packages/tornado/ioloop.py\", line 605, in _run_callback\n", " ret = callback()\n", " File \"/Users/ckemere/anaconda3/lib/python3.6/site-packages/tornado/stack_context.py\", line 277, in null_wrapper\n", " return fn(*args, **kwargs)\n", " File \"/Users/ckemere/anaconda3/lib/python3.6/site-packages/tornado/ioloop.py\", line 626, in _discard_future_result\n", " future.result()\n", " File \"/Users/ckemere/anaconda3/lib/python3.6/site-packages/tornado/concurrent.py\", line 238, in result\n", " raise_exc_info(self._exc_info)\n", " File \"<string>\", line 4, in raise_exc_info\n", " File \"/Users/ckemere/anaconda3/lib/python3.6/site-packages/tornado/gen.py\", line 1063, in run\n", " yielded = self.gen.throw(*exc_info)\n", " File \"/Users/ckemere/anaconda3/lib/python3.6/site-packages/distributed/joblib.py\", line 128, in callback_wrapper\n", " result = yield _wait([future])\n", " File \"/Users/ckemere/anaconda3/lib/python3.6/site-packages/tornado/gen.py\", line 1055, in run\n", " value = future.result()\n", " File \"/Users/ckemere/anaconda3/lib/python3.6/site-packages/tornado/concurrent.py\", line 238, in result\n", " raise_exc_info(self._exc_info)\n", " File \"<string>\", line 4, in raise_exc_info\n", " File \"/Users/ckemere/anaconda3/lib/python3.6/site-packages/tornado/gen.py\", line 1069, in run\n", " yielded = self.gen.send(value)\n", " File \"/Users/ckemere/anaconda3/lib/python3.6/site-packages/distributed/client.py\", line 2906, in _wait\n", " raise CancelledError(cancelled)\n", "concurrent.futures._base.CancelledError: ['work_events-batch-7bf32d7bb35c4881a379a2796073b0f2']\n", "tornado.application - ERROR - Exception in callback functools.partial(<function wrap.<locals>.null_wrapper at 0x1c9621bf28>, <tornado.concurrent.Future object at 0x1c96213ac8>)\n", "Traceback (most recent call last):\n", " File \"/Users/ckemere/anaconda3/lib/python3.6/site-packages/tornado/ioloop.py\", line 605, in _run_callback\n", " ret = callback()\n", " File \"/Users/ckemere/anaconda3/lib/python3.6/site-packages/tornado/stack_context.py\", line 277, in null_wrapper\n", " return fn(*args, **kwargs)\n", " File \"/Users/ckemere/anaconda3/lib/python3.6/site-packages/tornado/ioloop.py\", line 626, in _discard_future_result\n", " future.result()\n", " File \"/Users/ckemere/anaconda3/lib/python3.6/site-packages/tornado/concurrent.py\", line 238, in result\n", " raise_exc_info(self._exc_info)\n", " File \"<string>\", line 4, in raise_exc_info\n", " File \"/Users/ckemere/anaconda3/lib/python3.6/site-packages/tornado/gen.py\", line 1063, in run\n", " yielded = self.gen.throw(*exc_info)\n", " File \"/Users/ckemere/anaconda3/lib/python3.6/site-packages/distributed/joblib.py\", line 128, in callback_wrapper\n", " result = yield _wait([future])\n", " File \"/Users/ckemere/anaconda3/lib/python3.6/site-packages/tornado/gen.py\", line 1055, in run\n", " value = future.result()\n", " File \"/Users/ckemere/anaconda3/lib/python3.6/site-packages/tornado/concurrent.py\", line 238, in result\n", " raise_exc_info(self._exc_info)\n", " File \"<string>\", line 4, in raise_exc_info\n", " File \"/Users/ckemere/anaconda3/lib/python3.6/site-packages/tornado/gen.py\", line 1069, in run\n", " yielded = self.gen.send(value)\n", " File \"/Users/ckemere/anaconda3/lib/python3.6/site-packages/distributed/client.py\", line 2906, in _wait\n", " raise CancelledError(cancelled)\n", "concurrent.futures._base.CancelledError: ['work_events-batch-4b9bc1db0b634d24aa42a7022fb0b7e7']\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ "tornado.application - ERROR - Exception in callback functools.partial(<function wrap.<locals>.null_wrapper at 0x1c1d82c378>, <tornado.concurrent.Future object at 0x1c1d8259b0>)\n", "Traceback (most recent call last):\n", " File \"/Users/ckemere/anaconda3/lib/python3.6/site-packages/tornado/ioloop.py\", line 605, in _run_callback\n", " ret = callback()\n", " File \"/Users/ckemere/anaconda3/lib/python3.6/site-packages/tornado/stack_context.py\", line 277, in null_wrapper\n", " return fn(*args, **kwargs)\n", " File \"/Users/ckemere/anaconda3/lib/python3.6/site-packages/tornado/ioloop.py\", line 626, in _discard_future_result\n", " future.result()\n", " File \"/Users/ckemere/anaconda3/lib/python3.6/site-packages/tornado/concurrent.py\", line 238, in result\n", " raise_exc_info(self._exc_info)\n", " File \"<string>\", line 4, in raise_exc_info\n", " File \"/Users/ckemere/anaconda3/lib/python3.6/site-packages/tornado/gen.py\", line 1063, in run\n", " yielded = self.gen.throw(*exc_info)\n", " File \"/Users/ckemere/anaconda3/lib/python3.6/site-packages/distributed/joblib.py\", line 128, in callback_wrapper\n", " result = yield _wait([future])\n", " File \"/Users/ckemere/anaconda3/lib/python3.6/site-packages/tornado/gen.py\", line 1055, in run\n", " value = future.result()\n", " File \"/Users/ckemere/anaconda3/lib/python3.6/site-packages/tornado/concurrent.py\", line 238, in result\n", " raise_exc_info(self._exc_info)\n", " File \"<string>\", line 4, in raise_exc_info\n", " File \"/Users/ckemere/anaconda3/lib/python3.6/site-packages/tornado/gen.py\", line 1069, in run\n", " yielded = self.gen.send(value)\n", " File \"/Users/ckemere/anaconda3/lib/python3.6/site-packages/distributed/client.py\", line 2906, in _wait\n", " raise CancelledError(cancelled)\n", "concurrent.futures._base.CancelledError: ['work_events-batch-dca11a517c3b4acda2309690cf69d276']\n", "tornado.application - ERROR - Exception in callback functools.partial(<function wrap.<locals>.null_wrapper at 0x1c961fd0d0>, <tornado.concurrent.Future object at 0x1caf97b898>)\n", "Traceback (most recent call last):\n", " File \"/Users/ckemere/anaconda3/lib/python3.6/site-packages/tornado/ioloop.py\", line 605, in _run_callback\n", " ret = callback()\n", " File \"/Users/ckemere/anaconda3/lib/python3.6/site-packages/tornado/stack_context.py\", line 277, in null_wrapper\n", " return fn(*args, **kwargs)\n", " File \"/Users/ckemere/anaconda3/lib/python3.6/site-packages/tornado/ioloop.py\", line 626, in _discard_future_result\n", " future.result()\n", " File \"/Users/ckemere/anaconda3/lib/python3.6/site-packages/tornado/concurrent.py\", line 238, in result\n", " raise_exc_info(self._exc_info)\n", " File \"<string>\", line 4, in raise_exc_info\n", " File \"/Users/ckemere/anaconda3/lib/python3.6/site-packages/tornado/gen.py\", line 1063, in run\n", " yielded = self.gen.throw(*exc_info)\n", " File \"/Users/ckemere/anaconda3/lib/python3.6/site-packages/distributed/joblib.py\", line 128, in callback_wrapper\n", " result = yield _wait([future])\n", " File \"/Users/ckemere/anaconda3/lib/python3.6/site-packages/tornado/gen.py\", line 1055, in run\n", " value = future.result()\n", " File \"/Users/ckemere/anaconda3/lib/python3.6/site-packages/tornado/concurrent.py\", line 238, in result\n", " raise_exc_info(self._exc_info)\n", " File \"<string>\", line 4, in raise_exc_info\n", " File \"/Users/ckemere/anaconda3/lib/python3.6/site-packages/tornado/gen.py\", line 1069, in run\n", " yielded = self.gen.send(value)\n", " File \"/Users/ckemere/anaconda3/lib/python3.6/site-packages/distributed/client.py\", line 2906, in _wait\n", " raise CancelledError(cancelled)\n", "concurrent.futures._base.CancelledError: ['work_events-batch-b65d8fdf16374118a97eda72a6a6dc26']\n", "tornado.application - ERROR - Exception in callback functools.partial(<function wrap.<locals>.null_wrapper at 0x1c961fd048>, <tornado.concurrent.Future object at 0x1c665c11d0>)\n", "Traceback (most recent call last):\n", " File \"/Users/ckemere/anaconda3/lib/python3.6/site-packages/tornado/ioloop.py\", line 605, in _run_callback\n", " ret = callback()\n", " File \"/Users/ckemere/anaconda3/lib/python3.6/site-packages/tornado/stack_context.py\", line 277, in null_wrapper\n", " return fn(*args, **kwargs)\n", " File \"/Users/ckemere/anaconda3/lib/python3.6/site-packages/tornado/ioloop.py\", line 626, in _discard_future_result\n", " future.result()\n", " File \"/Users/ckemere/anaconda3/lib/python3.6/site-packages/tornado/concurrent.py\", line 238, in result\n", " raise_exc_info(self._exc_info)\n", " File \"<string>\", line 4, in raise_exc_info\n", " File \"/Users/ckemere/anaconda3/lib/python3.6/site-packages/tornado/gen.py\", line 1063, in run\n", " yielded = self.gen.throw(*exc_info)\n", " File \"/Users/ckemere/anaconda3/lib/python3.6/site-packages/distributed/joblib.py\", line 128, in callback_wrapper\n", " result = yield _wait([future])\n", " File \"/Users/ckemere/anaconda3/lib/python3.6/site-packages/tornado/gen.py\", line 1055, in run\n", " value = future.result()\n", " File \"/Users/ckemere/anaconda3/lib/python3.6/site-packages/tornado/concurrent.py\", line 238, in result\n", " raise_exc_info(self._exc_info)\n", " File \"<string>\", line 4, in raise_exc_info\n", " File \"/Users/ckemere/anaconda3/lib/python3.6/site-packages/tornado/gen.py\", line 1069, in run\n", " yielded = self.gen.send(value)\n", " File \"/Users/ckemere/anaconda3/lib/python3.6/site-packages/distributed/client.py\", line 2906, in _wait\n", " raise CancelledError(cancelled)\n", "concurrent.futures._base.CancelledError: ['work_events-batch-d93b759350c740f9a61c4495e3797095']\n", "tornado.application - ERROR - Exception in callback functools.partial(<function wrap.<locals>.null_wrapper at 0x1c9620e268>, <tornado.concurrent.Future object at 0x1c96213fd0>)\n", "Traceback (most recent call last):\n", " File \"/Users/ckemere/anaconda3/lib/python3.6/site-packages/tornado/ioloop.py\", line 605, in _run_callback\n", " ret = callback()\n", " File \"/Users/ckemere/anaconda3/lib/python3.6/site-packages/tornado/stack_context.py\", line 277, in null_wrapper\n", " return fn(*args, **kwargs)\n", " File \"/Users/ckemere/anaconda3/lib/python3.6/site-packages/tornado/ioloop.py\", line 626, in _discard_future_result\n", " future.result()\n", " File \"/Users/ckemere/anaconda3/lib/python3.6/site-packages/tornado/concurrent.py\", line 238, in result\n", " raise_exc_info(self._exc_info)\n", " File \"<string>\", line 4, in raise_exc_info\n", " File \"/Users/ckemere/anaconda3/lib/python3.6/site-packages/tornado/gen.py\", line 1063, in run\n", " yielded = self.gen.throw(*exc_info)\n", " File \"/Users/ckemere/anaconda3/lib/python3.6/site-packages/distributed/joblib.py\", line 128, in callback_wrapper\n", " result = yield _wait([future])\n", " File \"/Users/ckemere/anaconda3/lib/python3.6/site-packages/tornado/gen.py\", line 1055, in run\n", " value = future.result()\n", " File \"/Users/ckemere/anaconda3/lib/python3.6/site-packages/tornado/concurrent.py\", line 238, in result\n", " raise_exc_info(self._exc_info)\n", " File \"<string>\", line 4, in raise_exc_info\n", " File \"/Users/ckemere/anaconda3/lib/python3.6/site-packages/tornado/gen.py\", line 1069, in run\n", " yielded = self.gen.send(value)\n", " File \"/Users/ckemere/anaconda3/lib/python3.6/site-packages/distributed/client.py\", line 2906, in _wait\n", " raise CancelledError(cancelled)\n", "concurrent.futures._base.CancelledError: ['work_events-batch-74029b057a084d15a2122b91fcee1818']\n", "tornado.application - ERROR - Exception in callback functools.partial(<function wrap.<locals>.null_wrapper at 0x1c665bd7b8>, <tornado.concurrent.Future object at 0x1c665ae390>)\n", "Traceback (most recent call last):\n", " File \"/Users/ckemere/anaconda3/lib/python3.6/site-packages/tornado/ioloop.py\", line 605, in _run_callback\n", " ret = callback()\n", " File \"/Users/ckemere/anaconda3/lib/python3.6/site-packages/tornado/stack_context.py\", line 277, in null_wrapper\n", " return fn(*args, **kwargs)\n", " File \"/Users/ckemere/anaconda3/lib/python3.6/site-packages/tornado/ioloop.py\", line 626, in _discard_future_result\n", " future.result()\n", " File \"/Users/ckemere/anaconda3/lib/python3.6/site-packages/tornado/concurrent.py\", line 238, in result\n", " raise_exc_info(self._exc_info)\n", " File \"<string>\", line 4, in raise_exc_info\n", " File \"/Users/ckemere/anaconda3/lib/python3.6/site-packages/tornado/gen.py\", line 1063, in run\n", " yielded = self.gen.throw(*exc_info)\n", " File \"/Users/ckemere/anaconda3/lib/python3.6/site-packages/distributed/joblib.py\", line 128, in callback_wrapper\n", " result = yield _wait([future])\n", " File \"/Users/ckemere/anaconda3/lib/python3.6/site-packages/tornado/gen.py\", line 1055, in run\n", " value = future.result()\n", " File \"/Users/ckemere/anaconda3/lib/python3.6/site-packages/tornado/concurrent.py\", line 238, in result\n", " raise_exc_info(self._exc_info)\n", " File \"<string>\", line 4, in raise_exc_info\n", " File \"/Users/ckemere/anaconda3/lib/python3.6/site-packages/tornado/gen.py\", line 1069, in run\n", " yielded = self.gen.send(value)\n", " File \"/Users/ckemere/anaconda3/lib/python3.6/site-packages/distributed/client.py\", line 2906, in _wait\n", " raise CancelledError(cancelled)\n", "concurrent.futures._base.CancelledError: ['work_events-batch-99f79e21b623420cb5b81e1ebd914fd2']\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ "tornado.application - ERROR - Exception in callback functools.partial(<function wrap.<locals>.null_wrapper at 0x1c71616bf8>, <tornado.concurrent.Future object at 0x1c961f9b70>)\n", "Traceback (most recent call last):\n", " File \"/Users/ckemere/anaconda3/lib/python3.6/site-packages/tornado/ioloop.py\", line 605, in _run_callback\n", " ret = callback()\n", " File \"/Users/ckemere/anaconda3/lib/python3.6/site-packages/tornado/stack_context.py\", line 277, in null_wrapper\n", " return fn(*args, **kwargs)\n", " File \"/Users/ckemere/anaconda3/lib/python3.6/site-packages/tornado/ioloop.py\", line 626, in _discard_future_result\n", " future.result()\n", " File \"/Users/ckemere/anaconda3/lib/python3.6/site-packages/tornado/concurrent.py\", line 238, in result\n", " raise_exc_info(self._exc_info)\n", " File \"<string>\", line 4, in raise_exc_info\n", " File \"/Users/ckemere/anaconda3/lib/python3.6/site-packages/tornado/gen.py\", line 1063, in run\n", " yielded = self.gen.throw(*exc_info)\n", " File \"/Users/ckemere/anaconda3/lib/python3.6/site-packages/distributed/joblib.py\", line 128, in callback_wrapper\n", " result = yield _wait([future])\n", " File \"/Users/ckemere/anaconda3/lib/python3.6/site-packages/tornado/gen.py\", line 1055, in run\n", " value = future.result()\n", " File \"/Users/ckemere/anaconda3/lib/python3.6/site-packages/tornado/concurrent.py\", line 238, in result\n", " raise_exc_info(self._exc_info)\n", " File \"<string>\", line 4, in raise_exc_info\n", " File \"/Users/ckemere/anaconda3/lib/python3.6/site-packages/tornado/gen.py\", line 1069, in run\n", " yielded = self.gen.send(value)\n", " File \"/Users/ckemere/anaconda3/lib/python3.6/site-packages/distributed/client.py\", line 2906, in _wait\n", " raise CancelledError(cancelled)\n", "concurrent.futures._base.CancelledError: ['work_events-batch-2ea1fdb3b0854cb3a24f9ac842c71f42']\n", "tornado.application - ERROR - Exception in callback functools.partial(<function wrap.<locals>.null_wrapper at 0x1c1d8426a8>, <tornado.concurrent.Future object at 0x1c1d82fc50>)\n", "Traceback (most recent call last):\n", " File \"/Users/ckemere/anaconda3/lib/python3.6/site-packages/tornado/ioloop.py\", line 605, in _run_callback\n", " ret = callback()\n", " File \"/Users/ckemere/anaconda3/lib/python3.6/site-packages/tornado/stack_context.py\", line 277, in null_wrapper\n", " return fn(*args, **kwargs)\n", " File \"/Users/ckemere/anaconda3/lib/python3.6/site-packages/tornado/ioloop.py\", line 626, in _discard_future_result\n", " future.result()\n", " File \"/Users/ckemere/anaconda3/lib/python3.6/site-packages/tornado/concurrent.py\", line 238, in result\n", " raise_exc_info(self._exc_info)\n", " File \"<string>\", line 4, in raise_exc_info\n", " File \"/Users/ckemere/anaconda3/lib/python3.6/site-packages/tornado/gen.py\", line 1063, in run\n", " yielded = self.gen.throw(*exc_info)\n", " File \"/Users/ckemere/anaconda3/lib/python3.6/site-packages/distributed/joblib.py\", line 128, in callback_wrapper\n", " result = yield _wait([future])\n", " File \"/Users/ckemere/anaconda3/lib/python3.6/site-packages/tornado/gen.py\", line 1055, in run\n", " value = future.result()\n", " File \"/Users/ckemere/anaconda3/lib/python3.6/site-packages/tornado/concurrent.py\", line 238, in result\n", " raise_exc_info(self._exc_info)\n", " File \"<string>\", line 4, in raise_exc_info\n", " File \"/Users/ckemere/anaconda3/lib/python3.6/site-packages/tornado/gen.py\", line 1069, in run\n", " yielded = self.gen.send(value)\n", " File \"/Users/ckemere/anaconda3/lib/python3.6/site-packages/distributed/client.py\", line 2906, in _wait\n", " raise CancelledError(cancelled)\n", "concurrent.futures._base.CancelledError: ['work_events-batch-37c2cf884e9847ccaaf427a14ea240ec']\n", "tornado.application - ERROR - Exception in callback functools.partial(<function wrap.<locals>.null_wrapper at 0x1c9621b7b8>, <tornado.concurrent.Future object at 0x1c96206208>)\n", "Traceback (most recent call last):\n", " File \"/Users/ckemere/anaconda3/lib/python3.6/site-packages/tornado/ioloop.py\", line 605, in _run_callback\n", " ret = callback()\n", " File \"/Users/ckemere/anaconda3/lib/python3.6/site-packages/tornado/stack_context.py\", line 277, in null_wrapper\n", " return fn(*args, **kwargs)\n", " File \"/Users/ckemere/anaconda3/lib/python3.6/site-packages/tornado/ioloop.py\", line 626, in _discard_future_result\n", " future.result()\n", " File \"/Users/ckemere/anaconda3/lib/python3.6/site-packages/tornado/concurrent.py\", line 238, in result\n", " raise_exc_info(self._exc_info)\n", " File \"<string>\", line 4, in raise_exc_info\n", " File \"/Users/ckemere/anaconda3/lib/python3.6/site-packages/tornado/gen.py\", line 1063, in run\n", " yielded = self.gen.throw(*exc_info)\n", " File \"/Users/ckemere/anaconda3/lib/python3.6/site-packages/distributed/joblib.py\", line 128, in callback_wrapper\n", " result = yield _wait([future])\n", " File \"/Users/ckemere/anaconda3/lib/python3.6/site-packages/tornado/gen.py\", line 1055, in run\n", " value = future.result()\n", " File \"/Users/ckemere/anaconda3/lib/python3.6/site-packages/tornado/concurrent.py\", line 238, in result\n", " raise_exc_info(self._exc_info)\n", " File \"<string>\", line 4, in raise_exc_info\n", " File \"/Users/ckemere/anaconda3/lib/python3.6/site-packages/tornado/gen.py\", line 1069, in run\n", " yielded = self.gen.send(value)\n", " File \"/Users/ckemere/anaconda3/lib/python3.6/site-packages/distributed/client.py\", line 2906, in _wait\n", " raise CancelledError(cancelled)\n", "concurrent.futures._base.CancelledError: ['work_events-batch-d0504b86914d4eb0948d08ec7bdb2ed7']\n", "tornado.application - ERROR - Exception in callback functools.partial(<function wrap.<locals>.null_wrapper at 0x1c9620e950>, <tornado.concurrent.Future object at 0x1c665c1588>)\n", "Traceback (most recent call last):\n", " File \"/Users/ckemere/anaconda3/lib/python3.6/site-packages/tornado/ioloop.py\", line 605, in _run_callback\n", " ret = callback()\n", " File \"/Users/ckemere/anaconda3/lib/python3.6/site-packages/tornado/stack_context.py\", line 277, in null_wrapper\n", " return fn(*args, **kwargs)\n", " File \"/Users/ckemere/anaconda3/lib/python3.6/site-packages/tornado/ioloop.py\", line 626, in _discard_future_result\n", " future.result()\n", " File \"/Users/ckemere/anaconda3/lib/python3.6/site-packages/tornado/concurrent.py\", line 238, in result\n", " raise_exc_info(self._exc_info)\n", " File \"<string>\", line 4, in raise_exc_info\n", " File \"/Users/ckemere/anaconda3/lib/python3.6/site-packages/tornado/gen.py\", line 1063, in run\n", " yielded = self.gen.throw(*exc_info)\n", " File \"/Users/ckemere/anaconda3/lib/python3.6/site-packages/distributed/joblib.py\", line 128, in callback_wrapper\n", " result = yield _wait([future])\n", " File \"/Users/ckemere/anaconda3/lib/python3.6/site-packages/tornado/gen.py\", line 1055, in run\n", " value = future.result()\n", " File \"/Users/ckemere/anaconda3/lib/python3.6/site-packages/tornado/concurrent.py\", line 238, in result\n", " raise_exc_info(self._exc_info)\n", " File \"<string>\", line 4, in raise_exc_info\n", " File \"/Users/ckemere/anaconda3/lib/python3.6/site-packages/tornado/gen.py\", line 1069, in run\n", " yielded = self.gen.send(value)\n", " File \"/Users/ckemere/anaconda3/lib/python3.6/site-packages/distributed/client.py\", line 2906, in _wait\n", " raise CancelledError(cancelled)\n", "concurrent.futures._base.CancelledError: ['work_events-batch-a6ca03df81754fd0a6f4eb8c7e4672e2']\n", "tornado.application - ERROR - Exception in callback functools.partial(<function wrap.<locals>.null_wrapper at 0x1c8b8d2ae8>, <tornado.concurrent.Future object at 0x1c1d82f048>)\n", "Traceback (most recent call last):\n", " File \"/Users/ckemere/anaconda3/lib/python3.6/site-packages/tornado/ioloop.py\", line 605, in _run_callback\n", " ret = callback()\n", " File \"/Users/ckemere/anaconda3/lib/python3.6/site-packages/tornado/stack_context.py\", line 277, in null_wrapper\n", " return fn(*args, **kwargs)\n", " File \"/Users/ckemere/anaconda3/lib/python3.6/site-packages/tornado/ioloop.py\", line 626, in _discard_future_result\n", " future.result()\n", " File \"/Users/ckemere/anaconda3/lib/python3.6/site-packages/tornado/concurrent.py\", line 238, in result\n", " raise_exc_info(self._exc_info)\n", " File \"<string>\", line 4, in raise_exc_info\n", " File \"/Users/ckemere/anaconda3/lib/python3.6/site-packages/tornado/gen.py\", line 1063, in run\n", " yielded = self.gen.throw(*exc_info)\n", " File \"/Users/ckemere/anaconda3/lib/python3.6/site-packages/distributed/joblib.py\", line 128, in callback_wrapper\n", " result = yield _wait([future])\n", " File \"/Users/ckemere/anaconda3/lib/python3.6/site-packages/tornado/gen.py\", line 1055, in run\n", " value = future.result()\n", " File \"/Users/ckemere/anaconda3/lib/python3.6/site-packages/tornado/concurrent.py\", line 238, in result\n", " raise_exc_info(self._exc_info)\n", " File \"<string>\", line 4, in raise_exc_info\n", " File \"/Users/ckemere/anaconda3/lib/python3.6/site-packages/tornado/gen.py\", line 1069, in run\n", " yielded = self.gen.send(value)\n", " File \"/Users/ckemere/anaconda3/lib/python3.6/site-packages/distributed/client.py\", line 2906, in _wait\n", " raise CancelledError(cancelled)\n", "concurrent.futures._base.CancelledError: ['work_events-batch-0fa3c317be1f420fb7046415caed3be5']\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ "tornado.application - ERROR - Exception in callback functools.partial(<function wrap.<locals>.null_wrapper at 0x1c96216d08>, <tornado.concurrent.Future object at 0x1c961f97f0>)\n", "Traceback (most recent call last):\n", " File \"/Users/ckemere/anaconda3/lib/python3.6/site-packages/tornado/ioloop.py\", line 605, in _run_callback\n", " ret = callback()\n", " File \"/Users/ckemere/anaconda3/lib/python3.6/site-packages/tornado/stack_context.py\", line 277, in null_wrapper\n", " return fn(*args, **kwargs)\n", " File \"/Users/ckemere/anaconda3/lib/python3.6/site-packages/tornado/ioloop.py\", line 626, in _discard_future_result\n", " future.result()\n", " File \"/Users/ckemere/anaconda3/lib/python3.6/site-packages/tornado/concurrent.py\", line 238, in result\n", " raise_exc_info(self._exc_info)\n", " File \"<string>\", line 4, in raise_exc_info\n", " File \"/Users/ckemere/anaconda3/lib/python3.6/site-packages/tornado/gen.py\", line 1063, in run\n", " yielded = self.gen.throw(*exc_info)\n", " File \"/Users/ckemere/anaconda3/lib/python3.6/site-packages/distributed/joblib.py\", line 128, in callback_wrapper\n", " result = yield _wait([future])\n", " File \"/Users/ckemere/anaconda3/lib/python3.6/site-packages/tornado/gen.py\", line 1055, in run\n", " value = future.result()\n", " File \"/Users/ckemere/anaconda3/lib/python3.6/site-packages/tornado/concurrent.py\", line 238, in result\n", " raise_exc_info(self._exc_info)\n", " File \"<string>\", line 4, in raise_exc_info\n", " File \"/Users/ckemere/anaconda3/lib/python3.6/site-packages/tornado/gen.py\", line 1069, in run\n", " yielded = self.gen.send(value)\n", " File \"/Users/ckemere/anaconda3/lib/python3.6/site-packages/distributed/client.py\", line 2906, in _wait\n", " raise CancelledError(cancelled)\n", "concurrent.futures._base.CancelledError: ['work_events-batch-7c360b253392409496d96dd59a3b0209']\n", "tornado.application - ERROR - Exception in callback functools.partial(<function wrap.<locals>.null_wrapper at 0x1c96230268>, <tornado.concurrent.Future object at 0x1c71602358>)\n", "Traceback (most recent call last):\n", " File \"/Users/ckemere/anaconda3/lib/python3.6/site-packages/tornado/ioloop.py\", line 605, in _run_callback\n", " ret = callback()\n", " File \"/Users/ckemere/anaconda3/lib/python3.6/site-packages/tornado/stack_context.py\", line 277, in null_wrapper\n", " return fn(*args, **kwargs)\n", " File \"/Users/ckemere/anaconda3/lib/python3.6/site-packages/tornado/ioloop.py\", line 626, in _discard_future_result\n", " future.result()\n", " File \"/Users/ckemere/anaconda3/lib/python3.6/site-packages/tornado/concurrent.py\", line 238, in result\n", " raise_exc_info(self._exc_info)\n", " File \"<string>\", line 4, in raise_exc_info\n", " File \"/Users/ckemere/anaconda3/lib/python3.6/site-packages/tornado/gen.py\", line 1063, in run\n", " yielded = self.gen.throw(*exc_info)\n", " File \"/Users/ckemere/anaconda3/lib/python3.6/site-packages/distributed/joblib.py\", line 128, in callback_wrapper\n", " result = yield _wait([future])\n", " File \"/Users/ckemere/anaconda3/lib/python3.6/site-packages/tornado/gen.py\", line 1055, in run\n", " value = future.result()\n", " File \"/Users/ckemere/anaconda3/lib/python3.6/site-packages/tornado/concurrent.py\", line 238, in result\n", " raise_exc_info(self._exc_info)\n", " File \"<string>\", line 4, in raise_exc_info\n", " File \"/Users/ckemere/anaconda3/lib/python3.6/site-packages/tornado/gen.py\", line 1069, in run\n", " yielded = self.gen.send(value)\n", " File \"/Users/ckemere/anaconda3/lib/python3.6/site-packages/distributed/client.py\", line 2906, in _wait\n", " raise CancelledError(cancelled)\n", "concurrent.futures._base.CancelledError: ['work_events-batch-016afbd8dcb446868b8893fab469b165']\n", "tornado.application - ERROR - Exception in callback functools.partial(<function wrap.<locals>.null_wrapper at 0x1c1d828c80>, <tornado.concurrent.Future object at 0x1c1d825630>)\n", "Traceback (most recent call last):\n", " File \"/Users/ckemere/anaconda3/lib/python3.6/site-packages/tornado/ioloop.py\", line 605, in _run_callback\n", " ret = callback()\n", " File \"/Users/ckemere/anaconda3/lib/python3.6/site-packages/tornado/stack_context.py\", line 277, in null_wrapper\n", " return fn(*args, **kwargs)\n", " File \"/Users/ckemere/anaconda3/lib/python3.6/site-packages/tornado/ioloop.py\", line 626, in _discard_future_result\n", " future.result()\n", " File \"/Users/ckemere/anaconda3/lib/python3.6/site-packages/tornado/concurrent.py\", line 238, in result\n", " raise_exc_info(self._exc_info)\n", " File \"<string>\", line 4, in raise_exc_info\n", " File \"/Users/ckemere/anaconda3/lib/python3.6/site-packages/tornado/gen.py\", line 1063, in run\n", " yielded = self.gen.throw(*exc_info)\n", " File \"/Users/ckemere/anaconda3/lib/python3.6/site-packages/distributed/joblib.py\", line 128, in callback_wrapper\n", " result = yield _wait([future])\n", " File \"/Users/ckemere/anaconda3/lib/python3.6/site-packages/tornado/gen.py\", line 1055, in run\n", " value = future.result()\n", " File \"/Users/ckemere/anaconda3/lib/python3.6/site-packages/tornado/concurrent.py\", line 238, in result\n", " raise_exc_info(self._exc_info)\n", " File \"<string>\", line 4, in raise_exc_info\n", " File \"/Users/ckemere/anaconda3/lib/python3.6/site-packages/tornado/gen.py\", line 1069, in run\n", " yielded = self.gen.send(value)\n", " File \"/Users/ckemere/anaconda3/lib/python3.6/site-packages/distributed/client.py\", line 2906, in _wait\n", " raise CancelledError(cancelled)\n", "concurrent.futures._base.CancelledError: ['work_events-batch-f4a571d4648e49df80dbd068cf509d7c']\n", "tornado.application - ERROR - Exception in callback functools.partial(<function wrap.<locals>.null_wrapper at 0x1c715e0d08>, <tornado.concurrent.Future object at 0x1c1d82f2b0>)\n", "Traceback (most recent call last):\n", " File \"/Users/ckemere/anaconda3/lib/python3.6/site-packages/tornado/ioloop.py\", line 605, in _run_callback\n", " ret = callback()\n", " File \"/Users/ckemere/anaconda3/lib/python3.6/site-packages/tornado/stack_context.py\", line 277, in null_wrapper\n", " return fn(*args, **kwargs)\n", " File \"/Users/ckemere/anaconda3/lib/python3.6/site-packages/tornado/ioloop.py\", line 626, in _discard_future_result\n", " future.result()\n", " File \"/Users/ckemere/anaconda3/lib/python3.6/site-packages/tornado/concurrent.py\", line 238, in result\n", " raise_exc_info(self._exc_info)\n", " File \"<string>\", line 4, in raise_exc_info\n", " File \"/Users/ckemere/anaconda3/lib/python3.6/site-packages/tornado/gen.py\", line 1063, in run\n", " yielded = self.gen.throw(*exc_info)\n", " File \"/Users/ckemere/anaconda3/lib/python3.6/site-packages/distributed/joblib.py\", line 128, in callback_wrapper\n", " result = yield _wait([future])\n", " File \"/Users/ckemere/anaconda3/lib/python3.6/site-packages/tornado/gen.py\", line 1055, in run\n", " value = future.result()\n", " File \"/Users/ckemere/anaconda3/lib/python3.6/site-packages/tornado/concurrent.py\", line 238, in result\n", " raise_exc_info(self._exc_info)\n", " File \"<string>\", line 4, in raise_exc_info\n", " File \"/Users/ckemere/anaconda3/lib/python3.6/site-packages/tornado/gen.py\", line 1069, in run\n", " yielded = self.gen.send(value)\n", " File \"/Users/ckemere/anaconda3/lib/python3.6/site-packages/distributed/client.py\", line 2906, in _wait\n", " raise CancelledError(cancelled)\n", "concurrent.futures._base.CancelledError: ['work_events-batch-2c0cd671b771471fb42588c481f2b4b8']\n", "tornado.application - ERROR - Exception in callback functools.partial(<function wrap.<locals>.null_wrapper at 0x1c715e0bf8>, <tornado.concurrent.Future object at 0x1caf97bc88>)\n", "Traceback (most recent call last):\n", " File \"/Users/ckemere/anaconda3/lib/python3.6/site-packages/tornado/ioloop.py\", line 605, in _run_callback\n", " ret = callback()\n", " File \"/Users/ckemere/anaconda3/lib/python3.6/site-packages/tornado/stack_context.py\", line 277, in null_wrapper\n", " return fn(*args, **kwargs)\n", " File \"/Users/ckemere/anaconda3/lib/python3.6/site-packages/tornado/ioloop.py\", line 626, in _discard_future_result\n", " future.result()\n", " File \"/Users/ckemere/anaconda3/lib/python3.6/site-packages/tornado/concurrent.py\", line 238, in result\n", " raise_exc_info(self._exc_info)\n", " File \"<string>\", line 4, in raise_exc_info\n", " File \"/Users/ckemere/anaconda3/lib/python3.6/site-packages/tornado/gen.py\", line 1063, in run\n", " yielded = self.gen.throw(*exc_info)\n", " File \"/Users/ckemere/anaconda3/lib/python3.6/site-packages/distributed/joblib.py\", line 128, in callback_wrapper\n", " result = yield _wait([future])\n", " File \"/Users/ckemere/anaconda3/lib/python3.6/site-packages/tornado/gen.py\", line 1055, in run\n", " value = future.result()\n", " File \"/Users/ckemere/anaconda3/lib/python3.6/site-packages/tornado/concurrent.py\", line 238, in result\n", " raise_exc_info(self._exc_info)\n", " File \"<string>\", line 4, in raise_exc_info\n", " File \"/Users/ckemere/anaconda3/lib/python3.6/site-packages/tornado/gen.py\", line 1069, in run\n", " yielded = self.gen.send(value)\n", " File \"/Users/ckemere/anaconda3/lib/python3.6/site-packages/distributed/client.py\", line 2906, in _wait\n", " raise CancelledError(cancelled)\n", "concurrent.futures._base.CancelledError: ['work_events-batch-303b0ed7475e418f99e49ef3ce51212a']\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ "tornado.application - ERROR - Exception in callback functools.partial(<function wrap.<locals>.null_wrapper at 0x1caca45488>, <tornado.concurrent.Future object at 0x1c1d825160>)\n", "Traceback (most recent call last):\n", " File \"/Users/ckemere/anaconda3/lib/python3.6/site-packages/tornado/ioloop.py\", line 605, in _run_callback\n", " ret = callback()\n", " File \"/Users/ckemere/anaconda3/lib/python3.6/site-packages/tornado/stack_context.py\", line 277, in null_wrapper\n", " return fn(*args, **kwargs)\n", " File \"/Users/ckemere/anaconda3/lib/python3.6/site-packages/tornado/ioloop.py\", line 626, in _discard_future_result\n", " future.result()\n", " File \"/Users/ckemere/anaconda3/lib/python3.6/site-packages/tornado/concurrent.py\", line 238, in result\n", " raise_exc_info(self._exc_info)\n", " File \"<string>\", line 4, in raise_exc_info\n", " File \"/Users/ckemere/anaconda3/lib/python3.6/site-packages/tornado/gen.py\", line 1063, in run\n", " yielded = self.gen.throw(*exc_info)\n", " File \"/Users/ckemere/anaconda3/lib/python3.6/site-packages/distributed/joblib.py\", line 128, in callback_wrapper\n", " result = yield _wait([future])\n", " File \"/Users/ckemere/anaconda3/lib/python3.6/site-packages/tornado/gen.py\", line 1055, in run\n", " value = future.result()\n", " File \"/Users/ckemere/anaconda3/lib/python3.6/site-packages/tornado/concurrent.py\", line 238, in result\n", " raise_exc_info(self._exc_info)\n", " File \"<string>\", line 4, in raise_exc_info\n", " File \"/Users/ckemere/anaconda3/lib/python3.6/site-packages/tornado/gen.py\", line 1069, in run\n", " yielded = self.gen.send(value)\n", " File \"/Users/ckemere/anaconda3/lib/python3.6/site-packages/distributed/client.py\", line 2906, in _wait\n", " raise CancelledError(cancelled)\n", "concurrent.futures._base.CancelledError: ['work_events-batch-7fd950ed94b84282b87996e8805484f6']\n", "tornado.application - ERROR - Exception in callback functools.partial(<function wrap.<locals>.null_wrapper at 0x1c9621b378>, <tornado.concurrent.Future object at 0x1c96206c18>)\n", "Traceback (most recent call last):\n", " File \"/Users/ckemere/anaconda3/lib/python3.6/site-packages/tornado/ioloop.py\", line 605, in _run_callback\n", " ret = callback()\n", " File \"/Users/ckemere/anaconda3/lib/python3.6/site-packages/tornado/stack_context.py\", line 277, in null_wrapper\n", " return fn(*args, **kwargs)\n", " File \"/Users/ckemere/anaconda3/lib/python3.6/site-packages/tornado/ioloop.py\", line 626, in _discard_future_result\n", " future.result()\n", " File \"/Users/ckemere/anaconda3/lib/python3.6/site-packages/tornado/concurrent.py\", line 238, in result\n", " raise_exc_info(self._exc_info)\n", " File \"<string>\", line 4, in raise_exc_info\n", " File \"/Users/ckemere/anaconda3/lib/python3.6/site-packages/tornado/gen.py\", line 1063, in run\n", " yielded = self.gen.throw(*exc_info)\n", " File \"/Users/ckemere/anaconda3/lib/python3.6/site-packages/distributed/joblib.py\", line 128, in callback_wrapper\n", " result = yield _wait([future])\n", " File \"/Users/ckemere/anaconda3/lib/python3.6/site-packages/tornado/gen.py\", line 1055, in run\n", " value = future.result()\n", " File \"/Users/ckemere/anaconda3/lib/python3.6/site-packages/tornado/concurrent.py\", line 238, in result\n", " raise_exc_info(self._exc_info)\n", " File \"<string>\", line 4, in raise_exc_info\n", " File \"/Users/ckemere/anaconda3/lib/python3.6/site-packages/tornado/gen.py\", line 1069, in run\n", " yielded = self.gen.send(value)\n", " File \"/Users/ckemere/anaconda3/lib/python3.6/site-packages/distributed/client.py\", line 2906, in _wait\n", " raise CancelledError(cancelled)\n", "concurrent.futures._base.CancelledError: ['work_events-batch-a73a73e65df647b191614e9967783ea4']\n", "tornado.application - ERROR - Exception in callback functools.partial(<function wrap.<locals>.null_wrapper at 0x1c1d8332f0>, <tornado.concurrent.Future object at 0x1c1d82f0f0>)\n", "Traceback (most recent call last):\n", " File \"/Users/ckemere/anaconda3/lib/python3.6/site-packages/tornado/ioloop.py\", line 605, in _run_callback\n", " ret = callback()\n", " File \"/Users/ckemere/anaconda3/lib/python3.6/site-packages/tornado/stack_context.py\", line 277, in null_wrapper\n", " return fn(*args, **kwargs)\n", " File \"/Users/ckemere/anaconda3/lib/python3.6/site-packages/tornado/ioloop.py\", line 626, in _discard_future_result\n", " future.result()\n", " File \"/Users/ckemere/anaconda3/lib/python3.6/site-packages/tornado/concurrent.py\", line 238, in result\n", " raise_exc_info(self._exc_info)\n", " File \"<string>\", line 4, in raise_exc_info\n", " File \"/Users/ckemere/anaconda3/lib/python3.6/site-packages/tornado/gen.py\", line 1063, in run\n", " yielded = self.gen.throw(*exc_info)\n", " File \"/Users/ckemere/anaconda3/lib/python3.6/site-packages/distributed/joblib.py\", line 128, in callback_wrapper\n", " result = yield _wait([future])\n", " File \"/Users/ckemere/anaconda3/lib/python3.6/site-packages/tornado/gen.py\", line 1055, in run\n", " value = future.result()\n", " File \"/Users/ckemere/anaconda3/lib/python3.6/site-packages/tornado/concurrent.py\", line 238, in result\n", " raise_exc_info(self._exc_info)\n", " File \"<string>\", line 4, in raise_exc_info\n", " File \"/Users/ckemere/anaconda3/lib/python3.6/site-packages/tornado/gen.py\", line 1069, in run\n", " yielded = self.gen.send(value)\n", " File \"/Users/ckemere/anaconda3/lib/python3.6/site-packages/distributed/client.py\", line 2906, in _wait\n", " raise CancelledError(cancelled)\n", "concurrent.futures._base.CancelledError: ['work_events-batch-ac5ae1219d8646ccb7244b10e579a051']\n", "tornado.application - ERROR - Exception in callback functools.partial(<function wrap.<locals>.null_wrapper at 0x1c1d828f28>, <tornado.concurrent.Future object at 0x1c1d8257f0>)\n", "Traceback (most recent call last):\n", " File \"/Users/ckemere/anaconda3/lib/python3.6/site-packages/tornado/ioloop.py\", line 605, in _run_callback\n", " ret = callback()\n", " File \"/Users/ckemere/anaconda3/lib/python3.6/site-packages/tornado/stack_context.py\", line 277, in null_wrapper\n", " return fn(*args, **kwargs)\n", " File \"/Users/ckemere/anaconda3/lib/python3.6/site-packages/tornado/ioloop.py\", line 626, in _discard_future_result\n", " future.result()\n", " File \"/Users/ckemere/anaconda3/lib/python3.6/site-packages/tornado/concurrent.py\", line 238, in result\n", " raise_exc_info(self._exc_info)\n", " File \"<string>\", line 4, in raise_exc_info\n", " File \"/Users/ckemere/anaconda3/lib/python3.6/site-packages/tornado/gen.py\", line 1063, in run\n", " yielded = self.gen.throw(*exc_info)\n", " File \"/Users/ckemere/anaconda3/lib/python3.6/site-packages/distributed/joblib.py\", line 128, in callback_wrapper\n", " result = yield _wait([future])\n", " File \"/Users/ckemere/anaconda3/lib/python3.6/site-packages/tornado/gen.py\", line 1055, in run\n", " value = future.result()\n", " File \"/Users/ckemere/anaconda3/lib/python3.6/site-packages/tornado/concurrent.py\", line 238, in result\n", " raise_exc_info(self._exc_info)\n", " File \"<string>\", line 4, in raise_exc_info\n", " File \"/Users/ckemere/anaconda3/lib/python3.6/site-packages/tornado/gen.py\", line 1069, in run\n", " yielded = self.gen.send(value)\n", " File \"/Users/ckemere/anaconda3/lib/python3.6/site-packages/distributed/client.py\", line 2906, in _wait\n", " raise CancelledError(cancelled)\n", "concurrent.futures._base.CancelledError: ['work_events-batch-0ea38ad87928479ca2ade34134e36373']\n", "tornado.application - ERROR - Exception in callback functools.partial(<function wrap.<locals>.null_wrapper at 0x1c9621b730>, <tornado.concurrent.Future object at 0x1c96213668>)\n", "Traceback (most recent call last):\n", " File \"/Users/ckemere/anaconda3/lib/python3.6/site-packages/tornado/ioloop.py\", line 605, in _run_callback\n", " ret = callback()\n", " File \"/Users/ckemere/anaconda3/lib/python3.6/site-packages/tornado/stack_context.py\", line 277, in null_wrapper\n", " return fn(*args, **kwargs)\n", " File \"/Users/ckemere/anaconda3/lib/python3.6/site-packages/tornado/ioloop.py\", line 626, in _discard_future_result\n", " future.result()\n", " File \"/Users/ckemere/anaconda3/lib/python3.6/site-packages/tornado/concurrent.py\", line 238, in result\n", " raise_exc_info(self._exc_info)\n", " File \"<string>\", line 4, in raise_exc_info\n", " File \"/Users/ckemere/anaconda3/lib/python3.6/site-packages/tornado/gen.py\", line 1063, in run\n", " yielded = self.gen.throw(*exc_info)\n", " File \"/Users/ckemere/anaconda3/lib/python3.6/site-packages/distributed/joblib.py\", line 128, in callback_wrapper\n", " result = yield _wait([future])\n", " File \"/Users/ckemere/anaconda3/lib/python3.6/site-packages/tornado/gen.py\", line 1055, in run\n", " value = future.result()\n", " File \"/Users/ckemere/anaconda3/lib/python3.6/site-packages/tornado/concurrent.py\", line 238, in result\n", " raise_exc_info(self._exc_info)\n", " File \"<string>\", line 4, in raise_exc_info\n", " File \"/Users/ckemere/anaconda3/lib/python3.6/site-packages/tornado/gen.py\", line 1069, in run\n", " yielded = self.gen.send(value)\n", " File \"/Users/ckemere/anaconda3/lib/python3.6/site-packages/distributed/client.py\", line 2906, in _wait\n", " raise CancelledError(cancelled)\n", "concurrent.futures._base.CancelledError: ['work_events-batch-803a075599f949fc934ceefac1d7d943']\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ "tornado.application - ERROR - Exception in callback functools.partial(<function wrap.<locals>.null_wrapper at 0x1c1d833950>, <tornado.concurrent.Future object at 0x1c715ec6d8>)\n", "Traceback (most recent call last):\n", " File \"/Users/ckemere/anaconda3/lib/python3.6/site-packages/tornado/ioloop.py\", line 605, in _run_callback\n", " ret = callback()\n", " File \"/Users/ckemere/anaconda3/lib/python3.6/site-packages/tornado/stack_context.py\", line 277, in null_wrapper\n", " return fn(*args, **kwargs)\n", " File \"/Users/ckemere/anaconda3/lib/python3.6/site-packages/tornado/ioloop.py\", line 626, in _discard_future_result\n", " future.result()\n", " File \"/Users/ckemere/anaconda3/lib/python3.6/site-packages/tornado/concurrent.py\", line 238, in result\n", " raise_exc_info(self._exc_info)\n", " File \"<string>\", line 4, in raise_exc_info\n", " File \"/Users/ckemere/anaconda3/lib/python3.6/site-packages/tornado/gen.py\", line 1063, in run\n", " yielded = self.gen.throw(*exc_info)\n", " File \"/Users/ckemere/anaconda3/lib/python3.6/site-packages/distributed/joblib.py\", line 128, in callback_wrapper\n", " result = yield _wait([future])\n", " File \"/Users/ckemere/anaconda3/lib/python3.6/site-packages/tornado/gen.py\", line 1055, in run\n", " value = future.result()\n", " File \"/Users/ckemere/anaconda3/lib/python3.6/site-packages/tornado/concurrent.py\", line 238, in result\n", " raise_exc_info(self._exc_info)\n", " File \"<string>\", line 4, in raise_exc_info\n", " File \"/Users/ckemere/anaconda3/lib/python3.6/site-packages/tornado/gen.py\", line 1069, in run\n", " yielded = self.gen.send(value)\n", " File \"/Users/ckemere/anaconda3/lib/python3.6/site-packages/distributed/client.py\", line 2906, in _wait\n", " raise CancelledError(cancelled)\n", "concurrent.futures._base.CancelledError: ['work_events-batch-4b29ce28a85f40f7b7e58e8213527811']\n", "tornado.application - ERROR - Exception in callback functools.partial(<function wrap.<locals>.null_wrapper at 0x1c962162f0>, <tornado.concurrent.Future object at 0x1c71602d30>)\n", "Traceback (most recent call last):\n", " File \"/Users/ckemere/anaconda3/lib/python3.6/site-packages/tornado/ioloop.py\", line 605, in _run_callback\n", " ret = callback()\n", " File \"/Users/ckemere/anaconda3/lib/python3.6/site-packages/tornado/stack_context.py\", line 277, in null_wrapper\n", " return fn(*args, **kwargs)\n", " File \"/Users/ckemere/anaconda3/lib/python3.6/site-packages/tornado/ioloop.py\", line 626, in _discard_future_result\n", " future.result()\n", " File \"/Users/ckemere/anaconda3/lib/python3.6/site-packages/tornado/concurrent.py\", line 238, in result\n", " raise_exc_info(self._exc_info)\n", " File \"<string>\", line 4, in raise_exc_info\n", " File \"/Users/ckemere/anaconda3/lib/python3.6/site-packages/tornado/gen.py\", line 1063, in run\n", " yielded = self.gen.throw(*exc_info)\n", " File \"/Users/ckemere/anaconda3/lib/python3.6/site-packages/distributed/joblib.py\", line 128, in callback_wrapper\n", " result = yield _wait([future])\n", " File \"/Users/ckemere/anaconda3/lib/python3.6/site-packages/tornado/gen.py\", line 1055, in run\n", " value = future.result()\n", " File \"/Users/ckemere/anaconda3/lib/python3.6/site-packages/tornado/concurrent.py\", line 238, in result\n", " raise_exc_info(self._exc_info)\n", " File \"<string>\", line 4, in raise_exc_info\n", " File \"/Users/ckemere/anaconda3/lib/python3.6/site-packages/tornado/gen.py\", line 1069, in run\n", " yielded = self.gen.send(value)\n", " File \"/Users/ckemere/anaconda3/lib/python3.6/site-packages/distributed/client.py\", line 2906, in _wait\n", " raise CancelledError(cancelled)\n", "concurrent.futures._base.CancelledError: ['work_events-batch-573eafef27174563a793bc127cbea4ad']\n", "tornado.application - ERROR - Exception in callback functools.partial(<function wrap.<locals>.null_wrapper at 0x1c7160ed90>, <tornado.concurrent.Future object at 0x1caca3f0b8>)\n", "Traceback (most recent call last):\n", " File \"/Users/ckemere/anaconda3/lib/python3.6/site-packages/tornado/ioloop.py\", line 605, in _run_callback\n", " ret = callback()\n", " File \"/Users/ckemere/anaconda3/lib/python3.6/site-packages/tornado/stack_context.py\", line 277, in null_wrapper\n", " return fn(*args, **kwargs)\n", " File \"/Users/ckemere/anaconda3/lib/python3.6/site-packages/tornado/ioloop.py\", line 626, in _discard_future_result\n", " future.result()\n", " File \"/Users/ckemere/anaconda3/lib/python3.6/site-packages/tornado/concurrent.py\", line 238, in result\n", " raise_exc_info(self._exc_info)\n", " File \"<string>\", line 4, in raise_exc_info\n", " File \"/Users/ckemere/anaconda3/lib/python3.6/site-packages/tornado/gen.py\", line 1063, in run\n", " yielded = self.gen.throw(*exc_info)\n", " File \"/Users/ckemere/anaconda3/lib/python3.6/site-packages/distributed/joblib.py\", line 128, in callback_wrapper\n", " result = yield _wait([future])\n", " File \"/Users/ckemere/anaconda3/lib/python3.6/site-packages/tornado/gen.py\", line 1055, in run\n", " value = future.result()\n", " File \"/Users/ckemere/anaconda3/lib/python3.6/site-packages/tornado/concurrent.py\", line 238, in result\n", " raise_exc_info(self._exc_info)\n", " File \"<string>\", line 4, in raise_exc_info\n", " File \"/Users/ckemere/anaconda3/lib/python3.6/site-packages/tornado/gen.py\", line 1069, in run\n", " yielded = self.gen.send(value)\n", " File \"/Users/ckemere/anaconda3/lib/python3.6/site-packages/distributed/client.py\", line 2906, in _wait\n", " raise CancelledError(cancelled)\n", "concurrent.futures._base.CancelledError: ['work_events-batch-9bc070bc1e3741fe9da096dd84527831']\n", "tornado.application - ERROR - Exception in callback functools.partial(<function wrap.<locals>.null_wrapper at 0x1caca3d510>, <tornado.concurrent.Future object at 0x1c8b8d1eb8>)\n", "Traceback (most recent call last):\n", " File \"/Users/ckemere/anaconda3/lib/python3.6/site-packages/tornado/ioloop.py\", line 605, in _run_callback\n", " ret = callback()\n", " File \"/Users/ckemere/anaconda3/lib/python3.6/site-packages/tornado/stack_context.py\", line 277, in null_wrapper\n", " return fn(*args, **kwargs)\n", " File \"/Users/ckemere/anaconda3/lib/python3.6/site-packages/tornado/ioloop.py\", line 626, in _discard_future_result\n", " future.result()\n", " File \"/Users/ckemere/anaconda3/lib/python3.6/site-packages/tornado/concurrent.py\", line 238, in result\n", " raise_exc_info(self._exc_info)\n", " File \"<string>\", line 4, in raise_exc_info\n", " File \"/Users/ckemere/anaconda3/lib/python3.6/site-packages/tornado/gen.py\", line 1063, in run\n", " yielded = self.gen.throw(*exc_info)\n", " File \"/Users/ckemere/anaconda3/lib/python3.6/site-packages/distributed/joblib.py\", line 128, in callback_wrapper\n", " result = yield _wait([future])\n", " File \"/Users/ckemere/anaconda3/lib/python3.6/site-packages/tornado/gen.py\", line 1055, in run\n", " value = future.result()\n", " File \"/Users/ckemere/anaconda3/lib/python3.6/site-packages/tornado/concurrent.py\", line 238, in result\n", " raise_exc_info(self._exc_info)\n", " File \"<string>\", line 4, in raise_exc_info\n", " File \"/Users/ckemere/anaconda3/lib/python3.6/site-packages/tornado/gen.py\", line 1069, in run\n", " yielded = self.gen.send(value)\n", " File \"/Users/ckemere/anaconda3/lib/python3.6/site-packages/distributed/client.py\", line 2906, in _wait\n", " raise CancelledError(cancelled)\n", "concurrent.futures._base.CancelledError: ['work_events-batch-02ff4cd66c014a55af2930413728b5ee']\n", "tornado.application - ERROR - Exception in callback functools.partial(<function wrap.<locals>.null_wrapper at 0x1c665d3c80>, <tornado.concurrent.Future object at 0x1c665cab70>)\n", "Traceback (most recent call last):\n", " File \"/Users/ckemere/anaconda3/lib/python3.6/site-packages/tornado/ioloop.py\", line 605, in _run_callback\n", " ret = callback()\n", " File \"/Users/ckemere/anaconda3/lib/python3.6/site-packages/tornado/stack_context.py\", line 277, in null_wrapper\n", " return fn(*args, **kwargs)\n", " File \"/Users/ckemere/anaconda3/lib/python3.6/site-packages/tornado/ioloop.py\", line 626, in _discard_future_result\n", " future.result()\n", " File \"/Users/ckemere/anaconda3/lib/python3.6/site-packages/tornado/concurrent.py\", line 238, in result\n", " raise_exc_info(self._exc_info)\n", " File \"<string>\", line 4, in raise_exc_info\n", " File \"/Users/ckemere/anaconda3/lib/python3.6/site-packages/tornado/gen.py\", line 1063, in run\n", " yielded = self.gen.throw(*exc_info)\n", " File \"/Users/ckemere/anaconda3/lib/python3.6/site-packages/distributed/joblib.py\", line 128, in callback_wrapper\n", " result = yield _wait([future])\n", " File \"/Users/ckemere/anaconda3/lib/python3.6/site-packages/tornado/gen.py\", line 1055, in run\n", " value = future.result()\n", " File \"/Users/ckemere/anaconda3/lib/python3.6/site-packages/tornado/concurrent.py\", line 238, in result\n", " raise_exc_info(self._exc_info)\n", " File \"<string>\", line 4, in raise_exc_info\n", " File \"/Users/ckemere/anaconda3/lib/python3.6/site-packages/tornado/gen.py\", line 1069, in run\n", " yielded = self.gen.send(value)\n", " File \"/Users/ckemere/anaconda3/lib/python3.6/site-packages/distributed/client.py\", line 2906, in _wait\n", " raise CancelledError(cancelled)\n", "concurrent.futures._base.CancelledError: ['work_events-batch-a3b50ab5f1a24c36a51090019986e49a']\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ "tornado.application - ERROR - Exception in callback functools.partial(<function wrap.<locals>.null_wrapper at 0x1c665e3378>, <tornado.concurrent.Future object at 0x1c665cada0>)\n", "Traceback (most recent call last):\n", " File \"/Users/ckemere/anaconda3/lib/python3.6/site-packages/tornado/ioloop.py\", line 605, in _run_callback\n", " ret = callback()\n", " File \"/Users/ckemere/anaconda3/lib/python3.6/site-packages/tornado/stack_context.py\", line 277, in null_wrapper\n", " return fn(*args, **kwargs)\n", " File \"/Users/ckemere/anaconda3/lib/python3.6/site-packages/tornado/ioloop.py\", line 626, in _discard_future_result\n", " future.result()\n", " File \"/Users/ckemere/anaconda3/lib/python3.6/site-packages/tornado/concurrent.py\", line 238, in result\n", " raise_exc_info(self._exc_info)\n", " File \"<string>\", line 4, in raise_exc_info\n", " File \"/Users/ckemere/anaconda3/lib/python3.6/site-packages/tornado/gen.py\", line 1063, in run\n", " yielded = self.gen.throw(*exc_info)\n", " File \"/Users/ckemere/anaconda3/lib/python3.6/site-packages/distributed/joblib.py\", line 128, in callback_wrapper\n", " result = yield _wait([future])\n", " File \"/Users/ckemere/anaconda3/lib/python3.6/site-packages/tornado/gen.py\", line 1055, in run\n", " value = future.result()\n", " File \"/Users/ckemere/anaconda3/lib/python3.6/site-packages/tornado/concurrent.py\", line 238, in result\n", " raise_exc_info(self._exc_info)\n", " File \"<string>\", line 4, in raise_exc_info\n", " File \"/Users/ckemere/anaconda3/lib/python3.6/site-packages/tornado/gen.py\", line 1069, in run\n", " yielded = self.gen.send(value)\n", " File \"/Users/ckemere/anaconda3/lib/python3.6/site-packages/distributed/client.py\", line 2906, in _wait\n", " raise CancelledError(cancelled)\n", "concurrent.futures._base.CancelledError: ['work_events-batch-0b66d906109d4799b4bf5adc58e8ea8c']\n", "tornado.application - ERROR - Exception in callback functools.partial(<function wrap.<locals>.null_wrapper at 0x1c8b89d400>, <tornado.concurrent.Future object at 0x1c8b8998d0>)\n", "Traceback (most recent call last):\n", " File \"/Users/ckemere/anaconda3/lib/python3.6/site-packages/tornado/ioloop.py\", line 605, in _run_callback\n", " ret = callback()\n", " File \"/Users/ckemere/anaconda3/lib/python3.6/site-packages/tornado/stack_context.py\", line 277, in null_wrapper\n", " return fn(*args, **kwargs)\n", " File \"/Users/ckemere/anaconda3/lib/python3.6/site-packages/tornado/ioloop.py\", line 626, in _discard_future_result\n", " future.result()\n", " File \"/Users/ckemere/anaconda3/lib/python3.6/site-packages/tornado/concurrent.py\", line 238, in result\n", " raise_exc_info(self._exc_info)\n", " File \"<string>\", line 4, in raise_exc_info\n", " File \"/Users/ckemere/anaconda3/lib/python3.6/site-packages/tornado/gen.py\", line 1063, in run\n", " yielded = self.gen.throw(*exc_info)\n", " File \"/Users/ckemere/anaconda3/lib/python3.6/site-packages/distributed/joblib.py\", line 128, in callback_wrapper\n", " result = yield _wait([future])\n", " File \"/Users/ckemere/anaconda3/lib/python3.6/site-packages/tornado/gen.py\", line 1055, in run\n", " value = future.result()\n", " File \"/Users/ckemere/anaconda3/lib/python3.6/site-packages/tornado/concurrent.py\", line 238, in result\n", " raise_exc_info(self._exc_info)\n", " File \"<string>\", line 4, in raise_exc_info\n", " File \"/Users/ckemere/anaconda3/lib/python3.6/site-packages/tornado/gen.py\", line 1069, in run\n", " yielded = self.gen.send(value)\n", " File \"/Users/ckemere/anaconda3/lib/python3.6/site-packages/distributed/client.py\", line 2906, in _wait\n", " raise CancelledError(cancelled)\n", "concurrent.futures._base.CancelledError: ['work_events-batch-021b15cddf2d43eca3611a97eac931a4']\n", "tornado.application - ERROR - Exception in callback functools.partial(<function wrap.<locals>.null_wrapper at 0x1c8b8d22f0>, <tornado.concurrent.Future object at 0x1c8b899b00>)\n", "Traceback (most recent call last):\n", " File \"/Users/ckemere/anaconda3/lib/python3.6/site-packages/tornado/ioloop.py\", line 605, in _run_callback\n", " ret = callback()\n", " File \"/Users/ckemere/anaconda3/lib/python3.6/site-packages/tornado/stack_context.py\", line 277, in null_wrapper\n", " return fn(*args, **kwargs)\n", " File \"/Users/ckemere/anaconda3/lib/python3.6/site-packages/tornado/ioloop.py\", line 626, in _discard_future_result\n", " future.result()\n", " File \"/Users/ckemere/anaconda3/lib/python3.6/site-packages/tornado/concurrent.py\", line 238, in result\n", " raise_exc_info(self._exc_info)\n", " File \"<string>\", line 4, in raise_exc_info\n", " File \"/Users/ckemere/anaconda3/lib/python3.6/site-packages/tornado/gen.py\", line 1063, in run\n", " yielded = self.gen.throw(*exc_info)\n", " File \"/Users/ckemere/anaconda3/lib/python3.6/site-packages/distributed/joblib.py\", line 128, in callback_wrapper\n", " result = yield _wait([future])\n", " File \"/Users/ckemere/anaconda3/lib/python3.6/site-packages/tornado/gen.py\", line 1055, in run\n", " value = future.result()\n", " File \"/Users/ckemere/anaconda3/lib/python3.6/site-packages/tornado/concurrent.py\", line 238, in result\n", " raise_exc_info(self._exc_info)\n", " File \"<string>\", line 4, in raise_exc_info\n", " File \"/Users/ckemere/anaconda3/lib/python3.6/site-packages/tornado/gen.py\", line 1069, in run\n", " yielded = self.gen.send(value)\n", " File \"/Users/ckemere/anaconda3/lib/python3.6/site-packages/distributed/client.py\", line 2906, in _wait\n", " raise CancelledError(cancelled)\n", "concurrent.futures._base.CancelledError: ['work_events-batch-648f34f2cc83473580f75e2b587e8d11']\n", "tornado.application - ERROR - Exception in callback functools.partial(<function wrap.<locals>.null_wrapper at 0x1c9620e8c8>, <tornado.concurrent.Future object at 0x1caca3fb00>)\n", "Traceback (most recent call last):\n", " File \"/Users/ckemere/anaconda3/lib/python3.6/site-packages/tornado/ioloop.py\", line 605, in _run_callback\n", " ret = callback()\n", " File \"/Users/ckemere/anaconda3/lib/python3.6/site-packages/tornado/stack_context.py\", line 277, in null_wrapper\n", " return fn(*args, **kwargs)\n", " File \"/Users/ckemere/anaconda3/lib/python3.6/site-packages/tornado/ioloop.py\", line 626, in _discard_future_result\n", " future.result()\n", " File \"/Users/ckemere/anaconda3/lib/python3.6/site-packages/tornado/concurrent.py\", line 238, in result\n", " raise_exc_info(self._exc_info)\n", " File \"<string>\", line 4, in raise_exc_info\n", " File \"/Users/ckemere/anaconda3/lib/python3.6/site-packages/tornado/gen.py\", line 1063, in run\n", " yielded = self.gen.throw(*exc_info)\n", " File \"/Users/ckemere/anaconda3/lib/python3.6/site-packages/distributed/joblib.py\", line 128, in callback_wrapper\n", " result = yield _wait([future])\n", " File \"/Users/ckemere/anaconda3/lib/python3.6/site-packages/tornado/gen.py\", line 1055, in run\n", " value = future.result()\n", " File \"/Users/ckemere/anaconda3/lib/python3.6/site-packages/tornado/concurrent.py\", line 238, in result\n", " raise_exc_info(self._exc_info)\n", " File \"<string>\", line 4, in raise_exc_info\n", " File \"/Users/ckemere/anaconda3/lib/python3.6/site-packages/tornado/gen.py\", line 1069, in run\n", " yielded = self.gen.send(value)\n", " File \"/Users/ckemere/anaconda3/lib/python3.6/site-packages/distributed/client.py\", line 2906, in _wait\n", " raise CancelledError(cancelled)\n", "concurrent.futures._base.CancelledError: ['work_events-batch-ee9553bc36bd469cac8378b7e4f797ca']\n", "tornado.application - ERROR - Exception in callback functools.partial(<function wrap.<locals>.null_wrapper at 0x1c8b8af598>, <tornado.concurrent.Future object at 0x1c8b8d13c8>)\n", "Traceback (most recent call last):\n", " File \"/Users/ckemere/anaconda3/lib/python3.6/site-packages/tornado/ioloop.py\", line 605, in _run_callback\n", " ret = callback()\n", " File \"/Users/ckemere/anaconda3/lib/python3.6/site-packages/tornado/stack_context.py\", line 277, in null_wrapper\n", " return fn(*args, **kwargs)\n", " File \"/Users/ckemere/anaconda3/lib/python3.6/site-packages/tornado/ioloop.py\", line 626, in _discard_future_result\n", " future.result()\n", " File \"/Users/ckemere/anaconda3/lib/python3.6/site-packages/tornado/concurrent.py\", line 238, in result\n", " raise_exc_info(self._exc_info)\n", " File \"<string>\", line 4, in raise_exc_info\n", " File \"/Users/ckemere/anaconda3/lib/python3.6/site-packages/tornado/gen.py\", line 1063, in run\n", " yielded = self.gen.throw(*exc_info)\n", " File \"/Users/ckemere/anaconda3/lib/python3.6/site-packages/distributed/joblib.py\", line 128, in callback_wrapper\n", " result = yield _wait([future])\n", " File \"/Users/ckemere/anaconda3/lib/python3.6/site-packages/tornado/gen.py\", line 1055, in run\n", " value = future.result()\n", " File \"/Users/ckemere/anaconda3/lib/python3.6/site-packages/tornado/concurrent.py\", line 238, in result\n", " raise_exc_info(self._exc_info)\n", " File \"<string>\", line 4, in raise_exc_info\n", " File \"/Users/ckemere/anaconda3/lib/python3.6/site-packages/tornado/gen.py\", line 1069, in run\n", " yielded = self.gen.send(value)\n", " File \"/Users/ckemere/anaconda3/lib/python3.6/site-packages/distributed/client.py\", line 2906, in _wait\n", " raise CancelledError(cancelled)\n", "concurrent.futures._base.CancelledError: ['work_events-batch-68ead2f3c6ab406c95cb8b687e1433ee']\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ "tornado.application - ERROR - Exception in callback functools.partial(<function wrap.<locals>.null_wrapper at 0x1c665ab598>, <tornado.concurrent.Future object at 0x1c8b8996a0>)\n", "Traceback (most recent call last):\n", " File \"/Users/ckemere/anaconda3/lib/python3.6/site-packages/tornado/ioloop.py\", line 605, in _run_callback\n", " ret = callback()\n", " File \"/Users/ckemere/anaconda3/lib/python3.6/site-packages/tornado/stack_context.py\", line 277, in null_wrapper\n", " return fn(*args, **kwargs)\n", " File \"/Users/ckemere/anaconda3/lib/python3.6/site-packages/tornado/ioloop.py\", line 626, in _discard_future_result\n", " future.result()\n", " File \"/Users/ckemere/anaconda3/lib/python3.6/site-packages/tornado/concurrent.py\", line 238, in result\n", " raise_exc_info(self._exc_info)\n", " File \"<string>\", line 4, in raise_exc_info\n", " File \"/Users/ckemere/anaconda3/lib/python3.6/site-packages/tornado/gen.py\", line 1063, in run\n", " yielded = self.gen.throw(*exc_info)\n", " File \"/Users/ckemere/anaconda3/lib/python3.6/site-packages/distributed/joblib.py\", line 128, in callback_wrapper\n", " result = yield _wait([future])\n", " File \"/Users/ckemere/anaconda3/lib/python3.6/site-packages/tornado/gen.py\", line 1055, in run\n", " value = future.result()\n", " File \"/Users/ckemere/anaconda3/lib/python3.6/site-packages/tornado/concurrent.py\", line 238, in result\n", " raise_exc_info(self._exc_info)\n", " File \"<string>\", line 4, in raise_exc_info\n", " File \"/Users/ckemere/anaconda3/lib/python3.6/site-packages/tornado/gen.py\", line 1069, in run\n", " yielded = self.gen.send(value)\n", " File \"/Users/ckemere/anaconda3/lib/python3.6/site-packages/distributed/client.py\", line 2906, in _wait\n", " raise CancelledError(cancelled)\n", "concurrent.futures._base.CancelledError: ['work_events-batch-59299ef9202d45ef9b2dadcf380888c3']\n", "tornado.application - ERROR - Exception in callback functools.partial(<function wrap.<locals>.null_wrapper at 0x1c8b8af1e0>, <tornado.concurrent.Future object at 0x1c8b8a1f60>)\n", "Traceback (most recent call last):\n", " File \"/Users/ckemere/anaconda3/lib/python3.6/site-packages/tornado/ioloop.py\", line 605, in _run_callback\n", " ret = callback()\n", " File \"/Users/ckemere/anaconda3/lib/python3.6/site-packages/tornado/stack_context.py\", line 277, in null_wrapper\n", " return fn(*args, **kwargs)\n", " File \"/Users/ckemere/anaconda3/lib/python3.6/site-packages/tornado/ioloop.py\", line 626, in _discard_future_result\n", " future.result()\n", " File \"/Users/ckemere/anaconda3/lib/python3.6/site-packages/tornado/concurrent.py\", line 238, in result\n", " raise_exc_info(self._exc_info)\n", " File \"<string>\", line 4, in raise_exc_info\n", " File \"/Users/ckemere/anaconda3/lib/python3.6/site-packages/tornado/gen.py\", line 1063, in run\n", " yielded = self.gen.throw(*exc_info)\n", " File \"/Users/ckemere/anaconda3/lib/python3.6/site-packages/distributed/joblib.py\", line 128, in callback_wrapper\n", " result = yield _wait([future])\n", " File \"/Users/ckemere/anaconda3/lib/python3.6/site-packages/tornado/gen.py\", line 1055, in run\n", " value = future.result()\n", " File \"/Users/ckemere/anaconda3/lib/python3.6/site-packages/tornado/concurrent.py\", line 238, in result\n", " raise_exc_info(self._exc_info)\n", " File \"<string>\", line 4, in raise_exc_info\n", " File \"/Users/ckemere/anaconda3/lib/python3.6/site-packages/tornado/gen.py\", line 1069, in run\n", " yielded = self.gen.send(value)\n", " File \"/Users/ckemere/anaconda3/lib/python3.6/site-packages/distributed/client.py\", line 2906, in _wait\n", " raise CancelledError(cancelled)\n", "concurrent.futures._base.CancelledError: ['work_events-batch-c6d97994bcd942e1ac1db4883379c23f']\n", "tornado.application - ERROR - Exception in callback functools.partial(<function wrap.<locals>.null_wrapper at 0x1c665c8950>, <tornado.concurrent.Future object at 0x1c665ca278>)\n", "Traceback (most recent call last):\n", " File \"/Users/ckemere/anaconda3/lib/python3.6/site-packages/tornado/ioloop.py\", line 605, in _run_callback\n", " ret = callback()\n", " File \"/Users/ckemere/anaconda3/lib/python3.6/site-packages/tornado/stack_context.py\", line 277, in null_wrapper\n", " return fn(*args, **kwargs)\n", " File \"/Users/ckemere/anaconda3/lib/python3.6/site-packages/tornado/ioloop.py\", line 626, in _discard_future_result\n", " future.result()\n", " File \"/Users/ckemere/anaconda3/lib/python3.6/site-packages/tornado/concurrent.py\", line 238, in result\n", " raise_exc_info(self._exc_info)\n", " File \"<string>\", line 4, in raise_exc_info\n", " File \"/Users/ckemere/anaconda3/lib/python3.6/site-packages/tornado/gen.py\", line 1063, in run\n", " yielded = self.gen.throw(*exc_info)\n", " File \"/Users/ckemere/anaconda3/lib/python3.6/site-packages/distributed/joblib.py\", line 128, in callback_wrapper\n", " result = yield _wait([future])\n", " File \"/Users/ckemere/anaconda3/lib/python3.6/site-packages/tornado/gen.py\", line 1055, in run\n", " value = future.result()\n", " File \"/Users/ckemere/anaconda3/lib/python3.6/site-packages/tornado/concurrent.py\", line 238, in result\n", " raise_exc_info(self._exc_info)\n", " File \"<string>\", line 4, in raise_exc_info\n", " File \"/Users/ckemere/anaconda3/lib/python3.6/site-packages/tornado/gen.py\", line 1069, in run\n", " yielded = self.gen.send(value)\n", " File \"/Users/ckemere/anaconda3/lib/python3.6/site-packages/distributed/client.py\", line 2906, in _wait\n", " raise CancelledError(cancelled)\n", "concurrent.futures._base.CancelledError: ['work_events-batch-1faba7a288bb4f7d81a53a0cbf3d346e']\n", "tornado.application - ERROR - Exception in callback functools.partial(<function wrap.<locals>.null_wrapper at 0x1c665bda60>, <tornado.concurrent.Future object at 0x1caca3f978>)\n", "Traceback (most recent call last):\n", " File \"/Users/ckemere/anaconda3/lib/python3.6/site-packages/tornado/ioloop.py\", line 605, in _run_callback\n", " ret = callback()\n", " File \"/Users/ckemere/anaconda3/lib/python3.6/site-packages/tornado/stack_context.py\", line 277, in null_wrapper\n", " return fn(*args, **kwargs)\n", " File \"/Users/ckemere/anaconda3/lib/python3.6/site-packages/tornado/ioloop.py\", line 626, in _discard_future_result\n", " future.result()\n", " File \"/Users/ckemere/anaconda3/lib/python3.6/site-packages/tornado/concurrent.py\", line 238, in result\n", " raise_exc_info(self._exc_info)\n", " File \"<string>\", line 4, in raise_exc_info\n", " File \"/Users/ckemere/anaconda3/lib/python3.6/site-packages/tornado/gen.py\", line 1063, in run\n", " yielded = self.gen.throw(*exc_info)\n", " File \"/Users/ckemere/anaconda3/lib/python3.6/site-packages/distributed/joblib.py\", line 128, in callback_wrapper\n", " result = yield _wait([future])\n", " File \"/Users/ckemere/anaconda3/lib/python3.6/site-packages/tornado/gen.py\", line 1055, in run\n", " value = future.result()\n", " File \"/Users/ckemere/anaconda3/lib/python3.6/site-packages/tornado/concurrent.py\", line 238, in result\n", " raise_exc_info(self._exc_info)\n", " File \"<string>\", line 4, in raise_exc_info\n", " File \"/Users/ckemere/anaconda3/lib/python3.6/site-packages/tornado/gen.py\", line 1069, in run\n", " yielded = self.gen.send(value)\n", " File \"/Users/ckemere/anaconda3/lib/python3.6/site-packages/distributed/client.py\", line 2906, in _wait\n", " raise CancelledError(cancelled)\n", "concurrent.futures._base.CancelledError: ['work_events-batch-620458dbd711491f9a90375bc1f4b56c']\n", "tornado.application - ERROR - Exception in callback functools.partial(<function wrap.<locals>.null_wrapper at 0x1c962302f0>, <tornado.concurrent.Future object at 0x1c1d85b080>)\n", "Traceback (most recent call last):\n", " File \"/Users/ckemere/anaconda3/lib/python3.6/site-packages/tornado/ioloop.py\", line 605, in _run_callback\n", " ret = callback()\n", " File \"/Users/ckemere/anaconda3/lib/python3.6/site-packages/tornado/stack_context.py\", line 277, in null_wrapper\n", " return fn(*args, **kwargs)\n", " File \"/Users/ckemere/anaconda3/lib/python3.6/site-packages/tornado/ioloop.py\", line 626, in _discard_future_result\n", " future.result()\n", " File \"/Users/ckemere/anaconda3/lib/python3.6/site-packages/tornado/concurrent.py\", line 238, in result\n", " raise_exc_info(self._exc_info)\n", " File \"<string>\", line 4, in raise_exc_info\n", " File \"/Users/ckemere/anaconda3/lib/python3.6/site-packages/tornado/gen.py\", line 1063, in run\n", " yielded = self.gen.throw(*exc_info)\n", " File \"/Users/ckemere/anaconda3/lib/python3.6/site-packages/distributed/joblib.py\", line 128, in callback_wrapper\n", " result = yield _wait([future])\n", " File \"/Users/ckemere/anaconda3/lib/python3.6/site-packages/tornado/gen.py\", line 1055, in run\n", " value = future.result()\n", " File \"/Users/ckemere/anaconda3/lib/python3.6/site-packages/tornado/concurrent.py\", line 238, in result\n", " raise_exc_info(self._exc_info)\n", " File \"<string>\", line 4, in raise_exc_info\n", " File \"/Users/ckemere/anaconda3/lib/python3.6/site-packages/tornado/gen.py\", line 1069, in run\n", " yielded = self.gen.send(value)\n", " File \"/Users/ckemere/anaconda3/lib/python3.6/site-packages/distributed/client.py\", line 2906, in _wait\n", " raise CancelledError(cancelled)\n", "concurrent.futures._base.CancelledError: ['work_events-batch-ccbe4c232a6747c7b8c49ca08915a2b4']\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ "tornado.application - ERROR - Exception in callback functools.partial(<function wrap.<locals>.null_wrapper at 0x1c1d856048>, <tornado.concurrent.Future object at 0x1c1d8472b0>)\n", "Traceback (most recent call last):\n", " File \"/Users/ckemere/anaconda3/lib/python3.6/site-packages/tornado/ioloop.py\", line 605, in _run_callback\n", " ret = callback()\n", " File \"/Users/ckemere/anaconda3/lib/python3.6/site-packages/tornado/stack_context.py\", line 277, in null_wrapper\n", " return fn(*args, **kwargs)\n", " File \"/Users/ckemere/anaconda3/lib/python3.6/site-packages/tornado/ioloop.py\", line 626, in _discard_future_result\n", " future.result()\n", " File \"/Users/ckemere/anaconda3/lib/python3.6/site-packages/tornado/concurrent.py\", line 238, in result\n", " raise_exc_info(self._exc_info)\n", " File \"<string>\", line 4, in raise_exc_info\n", " File \"/Users/ckemere/anaconda3/lib/python3.6/site-packages/tornado/gen.py\", line 1063, in run\n", " yielded = self.gen.throw(*exc_info)\n", " File \"/Users/ckemere/anaconda3/lib/python3.6/site-packages/distributed/joblib.py\", line 128, in callback_wrapper\n", " result = yield _wait([future])\n", " File \"/Users/ckemere/anaconda3/lib/python3.6/site-packages/tornado/gen.py\", line 1055, in run\n", " value = future.result()\n", " File \"/Users/ckemere/anaconda3/lib/python3.6/site-packages/tornado/concurrent.py\", line 238, in result\n", " raise_exc_info(self._exc_info)\n", " File \"<string>\", line 4, in raise_exc_info\n", " File \"/Users/ckemere/anaconda3/lib/python3.6/site-packages/tornado/gen.py\", line 1069, in run\n", " yielded = self.gen.send(value)\n", " File \"/Users/ckemere/anaconda3/lib/python3.6/site-packages/distributed/client.py\", line 2906, in _wait\n", " raise CancelledError(cancelled)\n", "concurrent.futures._base.CancelledError: ['work_events-batch-62995942315941c6b119340a74567de0']\n", "tornado.application - ERROR - Exception in callback functools.partial(<function wrap.<locals>.null_wrapper at 0x1c1d856950>, <tornado.concurrent.Future object at 0x1c8b8a1400>)\n", "Traceback (most recent call last):\n", " File \"/Users/ckemere/anaconda3/lib/python3.6/site-packages/tornado/ioloop.py\", line 605, in _run_callback\n", " ret = callback()\n", " File \"/Users/ckemere/anaconda3/lib/python3.6/site-packages/tornado/stack_context.py\", line 277, in null_wrapper\n", " return fn(*args, **kwargs)\n", " File \"/Users/ckemere/anaconda3/lib/python3.6/site-packages/tornado/ioloop.py\", line 626, in _discard_future_result\n", " future.result()\n", " File \"/Users/ckemere/anaconda3/lib/python3.6/site-packages/tornado/concurrent.py\", line 238, in result\n", " raise_exc_info(self._exc_info)\n", " File \"<string>\", line 4, in raise_exc_info\n", " File \"/Users/ckemere/anaconda3/lib/python3.6/site-packages/tornado/gen.py\", line 1063, in run\n", " yielded = self.gen.throw(*exc_info)\n", " File \"/Users/ckemere/anaconda3/lib/python3.6/site-packages/distributed/joblib.py\", line 128, in callback_wrapper\n", " result = yield _wait([future])\n", " File \"/Users/ckemere/anaconda3/lib/python3.6/site-packages/tornado/gen.py\", line 1055, in run\n", " value = future.result()\n", " File \"/Users/ckemere/anaconda3/lib/python3.6/site-packages/tornado/concurrent.py\", line 238, in result\n", " raise_exc_info(self._exc_info)\n", " File \"<string>\", line 4, in raise_exc_info\n", " File \"/Users/ckemere/anaconda3/lib/python3.6/site-packages/tornado/gen.py\", line 1069, in run\n", " yielded = self.gen.send(value)\n", " File \"/Users/ckemere/anaconda3/lib/python3.6/site-packages/distributed/client.py\", line 2906, in _wait\n", " raise CancelledError(cancelled)\n", "concurrent.futures._base.CancelledError: ['work_events-batch-b846d4a46046400fa9fc22053014da58']\n", "tornado.application - ERROR - Exception in callback functools.partial(<function wrap.<locals>.null_wrapper at 0x1c1d8330d0>, <tornado.concurrent.Future object at 0x1c8b8ac198>)\n", "Traceback (most recent call last):\n", " File \"/Users/ckemere/anaconda3/lib/python3.6/site-packages/tornado/ioloop.py\", line 605, in _run_callback\n", " ret = callback()\n", " File \"/Users/ckemere/anaconda3/lib/python3.6/site-packages/tornado/stack_context.py\", line 277, in null_wrapper\n", " return fn(*args, **kwargs)\n", " File \"/Users/ckemere/anaconda3/lib/python3.6/site-packages/tornado/ioloop.py\", line 626, in _discard_future_result\n", " future.result()\n", " File \"/Users/ckemere/anaconda3/lib/python3.6/site-packages/tornado/concurrent.py\", line 238, in result\n", " raise_exc_info(self._exc_info)\n", " File \"<string>\", line 4, in raise_exc_info\n", " File \"/Users/ckemere/anaconda3/lib/python3.6/site-packages/tornado/gen.py\", line 1063, in run\n", " yielded = self.gen.throw(*exc_info)\n", " File \"/Users/ckemere/anaconda3/lib/python3.6/site-packages/distributed/joblib.py\", line 128, in callback_wrapper\n", " result = yield _wait([future])\n", " File \"/Users/ckemere/anaconda3/lib/python3.6/site-packages/tornado/gen.py\", line 1055, in run\n", " value = future.result()\n", " File \"/Users/ckemere/anaconda3/lib/python3.6/site-packages/tornado/concurrent.py\", line 238, in result\n", " raise_exc_info(self._exc_info)\n", " File \"<string>\", line 4, in raise_exc_info\n", " File \"/Users/ckemere/anaconda3/lib/python3.6/site-packages/tornado/gen.py\", line 1069, in run\n", " yielded = self.gen.send(value)\n", " File \"/Users/ckemere/anaconda3/lib/python3.6/site-packages/distributed/client.py\", line 2906, in _wait\n", " raise CancelledError(cancelled)\n", "concurrent.futures._base.CancelledError: ['work_events-batch-d2edfb4506d34e689a551bff06f32967']\n", "distributed.utils - ERROR - in <closed TCP>: TimeoutError: [Errno 60] Operation timed out: while trying to call remote method 'cancel'\n", "Traceback (most recent call last):\n", " File \"/Users/ckemere/anaconda3/lib/python3.6/site-packages/distributed/comm/tcp.py\", line 170, in read\n", " n_frames = yield stream.read_bytes(8)\n", " File \"/Users/ckemere/anaconda3/lib/python3.6/site-packages/tornado/gen.py\", line 1055, in run\n", " value = future.result()\n", " File \"/Users/ckemere/anaconda3/lib/python3.6/site-packages/tornado/concurrent.py\", line 238, in result\n", " raise_exc_info(self._exc_info)\n", " File \"<string>\", line 4, in raise_exc_info\n", "tornado.iostream.StreamClosedError: Stream is closed\n", "\n", "During handling of the above exception, another exception occurred:\n", "\n", "Traceback (most recent call last):\n", " File \"/Users/ckemere/anaconda3/lib/python3.6/site-packages/distributed/core.py\", line 454, in send_recv_from_rpc\n", " result = yield send_recv(comm=comm, op=key, **kwargs)\n", " File \"/Users/ckemere/anaconda3/lib/python3.6/site-packages/tornado/gen.py\", line 1055, in run\n", " value = future.result()\n", " File \"/Users/ckemere/anaconda3/lib/python3.6/site-packages/tornado/concurrent.py\", line 238, in result\n", " raise_exc_info(self._exc_info)\n", " File \"<string>\", line 4, in raise_exc_info\n", " File \"/Users/ckemere/anaconda3/lib/python3.6/site-packages/tornado/gen.py\", line 1063, in run\n", " yielded = self.gen.throw(*exc_info)\n", " File \"/Users/ckemere/anaconda3/lib/python3.6/site-packages/distributed/core.py\", line 340, in send_recv\n", " response = yield comm.read()\n", " File \"/Users/ckemere/anaconda3/lib/python3.6/site-packages/tornado/gen.py\", line 1055, in run\n", " value = future.result()\n", " File \"/Users/ckemere/anaconda3/lib/python3.6/site-packages/tornado/concurrent.py\", line 238, in result\n", " raise_exc_info(self._exc_info)\n", " File \"<string>\", line 4, in raise_exc_info\n", " File \"/Users/ckemere/anaconda3/lib/python3.6/site-packages/tornado/gen.py\", line 1063, in run\n", " yielded = self.gen.throw(*exc_info)\n", " File \"/Users/ckemere/anaconda3/lib/python3.6/site-packages/distributed/comm/tcp.py\", line 184, in read\n", " convert_stream_closed_error(self, e)\n", " File \"/Users/ckemere/anaconda3/lib/python3.6/site-packages/distributed/comm/tcp.py\", line 120, in convert_stream_closed_error\n", " raise CommClosedError(\"in %s: %s: %s\" % (obj, exc.__class__.__name__, exc))\n", "distributed.comm.core.CommClosedError: in <closed TCP>: TimeoutError: [Errno 60] Operation timed out\n", "\n", "During handling of the above exception, another exception occurred:\n", "\n", "Traceback (most recent call last):\n", " File \"/Users/ckemere/anaconda3/lib/python3.6/site-packages/distributed/utils.py\", line 229, in f\n", " result[0] = yield make_coro()\n", " File \"/Users/ckemere/anaconda3/lib/python3.6/site-packages/tornado/gen.py\", line 1055, in run\n", " value = future.result()\n", " File \"/Users/ckemere/anaconda3/lib/python3.6/site-packages/tornado/concurrent.py\", line 238, in result\n", " raise_exc_info(self._exc_info)\n", " File \"<string>\", line 4, in raise_exc_info\n", " File \"/Users/ckemere/anaconda3/lib/python3.6/site-packages/tornado/gen.py\", line 1063, in run\n", " yielded = self.gen.throw(*exc_info)\n", " File \"/Users/ckemere/anaconda3/lib/python3.6/site-packages/distributed/client.py\", line 1602, in _cancel\n", " yield self.scheduler.cancel(keys=keys, client=self.id, force=force)\n", " File \"/Users/ckemere/anaconda3/lib/python3.6/site-packages/tornado/gen.py\", line 1055, in run\n", " value = future.result()\n", " File \"/Users/ckemere/anaconda3/lib/python3.6/site-packages/tornado/concurrent.py\", line 238, in result\n", " raise_exc_info(self._exc_info)\n", " File \"<string>\", line 4, in raise_exc_info\n", " File \"/Users/ckemere/anaconda3/lib/python3.6/site-packages/tornado/gen.py\", line 1063, in run\n", " yielded = self.gen.throw(*exc_info)\n", " File \"/Users/ckemere/anaconda3/lib/python3.6/site-packages/distributed/core.py\", line 457, in send_recv_from_rpc\n", " % (e, key,))\n", "distributed.comm.core.CommClosedError: in <closed TCP>: TimeoutError: [Errno 60] Operation timed out: while trying to call remote method 'cancel'\n" ] }, { "ename": "CommClosedError", "evalue": "in <closed TCP>: TimeoutError: [Errno 60] Operation timed out: while trying to call remote method 'cancel'", "output_type": "error", "traceback": [ "\u001b[0;31m---------------------------------------------------------------------------\u001b[0m", "\u001b[0;31mCancelledError\u001b[0m Traceback (most recent call last)", "\u001b[0;32m~/anaconda3/lib/python3.6/site-packages/joblib/parallel.py\u001b[0m in \u001b[0;36mretrieve\u001b[0;34m(self)\u001b[0m\n\u001b[1;32m 700\u001b[0m \u001b[0;32melse\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m--> 701\u001b[0;31m \u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0m_output\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mextend\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mjob\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mget\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 702\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n", "\u001b[0;32m~/anaconda3/lib/python3.6/site-packages/distributed/client.py\u001b[0m in \u001b[0;36mresult\u001b[0;34m(self, timeout)\u001b[0m\n\u001b[1;32m 167\u001b[0m \u001b[0;32melif\u001b[0m \u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mstatus\u001b[0m \u001b[0;34m==\u001b[0m \u001b[0;34m'cancelled'\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m--> 168\u001b[0;31m \u001b[0;32mraise\u001b[0m \u001b[0mresult\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 169\u001b[0m \u001b[0;32melse\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n", "\u001b[0;31mCancelledError\u001b[0m: work_events-batch-6407a9716f68431588a9af8b84f20215", "\nDuring handling of the above exception, another exception occurred:\n", "\u001b[0;31mCommClosedError\u001b[0m Traceback (most recent call last)", "\u001b[0;32m<ipython-input-6-b5f8ff536de8>\u001b[0m in \u001b[0;36m<module>\u001b[0;34m()\u001b[0m\n\u001b[1;32m 30\u001b[0m \u001b[0;32mwith\u001b[0m \u001b[0mparallel_backend\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m'dask.distributed'\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mscheduler_host\u001b[0m\u001b[0;34m=\u001b[0m\u001b[0;34m'35.184.42.12:8786'\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 31\u001b[0m \u001b[0;31m# Anything returned by work() can be stored:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m---> 32\u001b[0;31m \u001b[0mparallel_results\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mParallel\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mn_jobs\u001b[0m\u001b[0;34m=\u001b[0m\u001b[0mn_jobs\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mverbose\u001b[0m\u001b[0;34m=\u001b[0m\u001b[0;36m1\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mmap\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mdelayed\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mwork_events\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mparallel_events\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 33\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n", "\u001b[0;32m~/anaconda3/lib/python3.6/site-packages/joblib/parallel.py\u001b[0m in \u001b[0;36m__call__\u001b[0;34m(self, iterable)\u001b[0m\n\u001b[1;32m 787\u001b[0m \u001b[0;31m# consumption.\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 788\u001b[0m \u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0m_iterating\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0;32mFalse\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m--> 789\u001b[0;31m \u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mretrieve\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 790\u001b[0m \u001b[0;31m# Make sure that we get a last message telling us we are done\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 791\u001b[0m \u001b[0melapsed_time\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mtime\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mtime\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m)\u001b[0m \u001b[0;34m-\u001b[0m \u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0m_start_time\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n", "\u001b[0;32m~/anaconda3/lib/python3.6/site-packages/joblib/parallel.py\u001b[0m in \u001b[0;36mretrieve\u001b[0;34m(self)\u001b[0m\n\u001b[1;32m 719\u001b[0m \u001b[0;31m# scheduling.\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 720\u001b[0m \u001b[0mensure_ready\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0m_managed_backend\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m--> 721\u001b[0;31m \u001b[0mbackend\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mabort_everything\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mensure_ready\u001b[0m\u001b[0;34m=\u001b[0m\u001b[0mensure_ready\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 722\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 723\u001b[0m \u001b[0;32mif\u001b[0m \u001b[0;32mnot\u001b[0m \u001b[0misinstance\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mexception\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mTransportableException\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n", "\u001b[0;32m~/anaconda3/lib/python3.6/site-packages/distributed/joblib.py\u001b[0m in \u001b[0;36mabort_everything\u001b[0;34m(self, ensure_ready)\u001b[0m\n\u001b[1;32m 139\u001b[0m \u001b[0;31m# Tell the client to cancel any task submitted via this instance\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 140\u001b[0m \u001b[0;31m# as joblib.Parallel will never access those results.\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m--> 141\u001b[0;31m \u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mclient\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mcancel\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mfutures\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 142\u001b[0m \u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mfutures\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mclear\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 143\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n", "\u001b[0;32m~/anaconda3/lib/python3.6/site-packages/distributed/client.py\u001b[0m in \u001b[0;36mcancel\u001b[0;34m(self, futures, asynchronous, force)\u001b[0m\n\u001b[1;32m 1621\u001b[0m \"\"\"\n\u001b[1;32m 1622\u001b[0m return self.sync(self._cancel, futures, asynchronous=asynchronous,\n\u001b[0;32m-> 1623\u001b[0;31m force=force)\n\u001b[0m\u001b[1;32m 1624\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 1625\u001b[0m \u001b[0;34m@\u001b[0m\u001b[0mgen\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mcoroutine\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n", "\u001b[0;32m~/anaconda3/lib/python3.6/site-packages/distributed/client.py\u001b[0m in \u001b[0;36msync\u001b[0;34m(self, func, *args, **kwargs)\u001b[0m\n\u001b[1;32m 559\u001b[0m \u001b[0;32mreturn\u001b[0m \u001b[0mfuture\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 560\u001b[0m \u001b[0;32melse\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m--> 561\u001b[0;31m \u001b[0;32mreturn\u001b[0m \u001b[0msync\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mloop\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mfunc\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0;34m*\u001b[0m\u001b[0margs\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0;34m**\u001b[0m\u001b[0mkwargs\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 562\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 563\u001b[0m \u001b[0;32mdef\u001b[0m \u001b[0m__str__\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mself\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n", "\u001b[0;32m~/anaconda3/lib/python3.6/site-packages/distributed/utils.py\u001b[0m in \u001b[0;36msync\u001b[0;34m(loop, func, *args, **kwargs)\u001b[0m\n\u001b[1;32m 239\u001b[0m \u001b[0me\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mwait\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;36m1000000\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 240\u001b[0m \u001b[0;32mif\u001b[0m \u001b[0merror\u001b[0m\u001b[0;34m[\u001b[0m\u001b[0;36m0\u001b[0m\u001b[0;34m]\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m--> 241\u001b[0;31m \u001b[0msix\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mreraise\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m*\u001b[0m\u001b[0merror\u001b[0m\u001b[0;34m[\u001b[0m\u001b[0;36m0\u001b[0m\u001b[0;34m]\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 242\u001b[0m \u001b[0;32melse\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 243\u001b[0m \u001b[0;32mreturn\u001b[0m \u001b[0mresult\u001b[0m\u001b[0;34m[\u001b[0m\u001b[0;36m0\u001b[0m\u001b[0;34m]\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n", "\u001b[0;32m~/anaconda3/lib/python3.6/site-packages/six.py\u001b[0m in \u001b[0;36mreraise\u001b[0;34m(tp, value, tb)\u001b[0m\n\u001b[1;32m 684\u001b[0m \u001b[0;32mif\u001b[0m \u001b[0mvalue\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0m__traceback__\u001b[0m \u001b[0;32mis\u001b[0m \u001b[0;32mnot\u001b[0m \u001b[0mtb\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 685\u001b[0m \u001b[0;32mraise\u001b[0m \u001b[0mvalue\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mwith_traceback\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mtb\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m--> 686\u001b[0;31m \u001b[0;32mraise\u001b[0m \u001b[0mvalue\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 687\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 688\u001b[0m \u001b[0;32melse\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n", "\u001b[0;32m~/anaconda3/lib/python3.6/site-packages/distributed/utils.py\u001b[0m in \u001b[0;36mf\u001b[0;34m()\u001b[0m\n\u001b[1;32m 227\u001b[0m \u001b[0;32myield\u001b[0m \u001b[0mgen\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mmoment\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 228\u001b[0m \u001b[0mthread_state\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0masynchronous\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0;32mTrue\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m--> 229\u001b[0;31m \u001b[0mresult\u001b[0m\u001b[0;34m[\u001b[0m\u001b[0;36m0\u001b[0m\u001b[0;34m]\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0;32myield\u001b[0m \u001b[0mmake_coro\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 230\u001b[0m \u001b[0;32mexcept\u001b[0m \u001b[0mException\u001b[0m \u001b[0;32mas\u001b[0m \u001b[0mexc\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 231\u001b[0m \u001b[0mlogger\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mexception\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mexc\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n", "\u001b[0;32m~/anaconda3/lib/python3.6/site-packages/tornado/gen.py\u001b[0m in \u001b[0;36mrun\u001b[0;34m(self)\u001b[0m\n\u001b[1;32m 1053\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 1054\u001b[0m \u001b[0;32mtry\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m-> 1055\u001b[0;31m \u001b[0mvalue\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mfuture\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mresult\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 1056\u001b[0m \u001b[0;32mexcept\u001b[0m \u001b[0mException\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 1057\u001b[0m \u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mhad_exception\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0;32mTrue\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n", "\u001b[0;32m~/anaconda3/lib/python3.6/site-packages/tornado/concurrent.py\u001b[0m in \u001b[0;36mresult\u001b[0;34m(self, timeout)\u001b[0m\n\u001b[1;32m 236\u001b[0m \u001b[0;32mif\u001b[0m \u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0m_exc_info\u001b[0m \u001b[0;32mis\u001b[0m \u001b[0;32mnot\u001b[0m \u001b[0;32mNone\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 237\u001b[0m \u001b[0;32mtry\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m--> 238\u001b[0;31m \u001b[0mraise_exc_info\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0m_exc_info\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 239\u001b[0m \u001b[0;32mfinally\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 240\u001b[0m \u001b[0mself\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0;32mNone\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n", "\u001b[0;32m~/anaconda3/lib/python3.6/site-packages/tornado/util.py\u001b[0m in \u001b[0;36mraise_exc_info\u001b[0;34m(exc_info)\u001b[0m\n", "\u001b[0;32m~/anaconda3/lib/python3.6/site-packages/tornado/gen.py\u001b[0m in \u001b[0;36mrun\u001b[0;34m(self)\u001b[0m\n\u001b[1;32m 1061\u001b[0m \u001b[0;32mif\u001b[0m \u001b[0mexc_info\u001b[0m \u001b[0;32mis\u001b[0m \u001b[0;32mnot\u001b[0m \u001b[0;32mNone\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 1062\u001b[0m \u001b[0;32mtry\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m-> 1063\u001b[0;31m \u001b[0myielded\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mgen\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mthrow\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m*\u001b[0m\u001b[0mexc_info\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 1064\u001b[0m \u001b[0;32mfinally\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 1065\u001b[0m \u001b[0;31m# Break up a reference to itself\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n", "\u001b[0;32m~/anaconda3/lib/python3.6/site-packages/distributed/client.py\u001b[0m in \u001b[0;36m_cancel\u001b[0;34m(self, futures, force)\u001b[0m\n\u001b[1;32m 1600\u001b[0m \u001b[0;32mdef\u001b[0m \u001b[0m_cancel\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mself\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mfutures\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mforce\u001b[0m\u001b[0;34m=\u001b[0m\u001b[0;32mFalse\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 1601\u001b[0m \u001b[0mkeys\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mlist\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m{\u001b[0m\u001b[0mtokey\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mf\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mkey\u001b[0m\u001b[0;34m)\u001b[0m \u001b[0;32mfor\u001b[0m \u001b[0mf\u001b[0m \u001b[0;32min\u001b[0m \u001b[0mfutures_of\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mfutures\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m}\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m-> 1602\u001b[0;31m \u001b[0;32myield\u001b[0m \u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mscheduler\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mcancel\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mkeys\u001b[0m\u001b[0;34m=\u001b[0m\u001b[0mkeys\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mclient\u001b[0m\u001b[0;34m=\u001b[0m\u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mid\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mforce\u001b[0m\u001b[0;34m=\u001b[0m\u001b[0mforce\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 1603\u001b[0m \u001b[0;32mfor\u001b[0m \u001b[0mk\u001b[0m \u001b[0;32min\u001b[0m \u001b[0mkeys\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 1604\u001b[0m \u001b[0mst\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mfutures\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mpop\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mk\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0;32mNone\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n", "\u001b[0;32m~/anaconda3/lib/python3.6/site-packages/tornado/gen.py\u001b[0m in \u001b[0;36mrun\u001b[0;34m(self)\u001b[0m\n\u001b[1;32m 1053\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 1054\u001b[0m \u001b[0;32mtry\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m-> 1055\u001b[0;31m \u001b[0mvalue\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mfuture\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mresult\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 1056\u001b[0m \u001b[0;32mexcept\u001b[0m \u001b[0mException\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 1057\u001b[0m \u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mhad_exception\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0;32mTrue\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n", "\u001b[0;32m~/anaconda3/lib/python3.6/site-packages/tornado/concurrent.py\u001b[0m in \u001b[0;36mresult\u001b[0;34m(self, timeout)\u001b[0m\n\u001b[1;32m 236\u001b[0m \u001b[0;32mif\u001b[0m \u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0m_exc_info\u001b[0m \u001b[0;32mis\u001b[0m \u001b[0;32mnot\u001b[0m \u001b[0;32mNone\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 237\u001b[0m \u001b[0;32mtry\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m--> 238\u001b[0;31m \u001b[0mraise_exc_info\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0m_exc_info\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 239\u001b[0m \u001b[0;32mfinally\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 240\u001b[0m \u001b[0mself\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0;32mNone\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n", "\u001b[0;32m~/anaconda3/lib/python3.6/site-packages/tornado/util.py\u001b[0m in \u001b[0;36mraise_exc_info\u001b[0;34m(exc_info)\u001b[0m\n", "\u001b[0;32m~/anaconda3/lib/python3.6/site-packages/tornado/gen.py\u001b[0m in \u001b[0;36mrun\u001b[0;34m(self)\u001b[0m\n\u001b[1;32m 1061\u001b[0m \u001b[0;32mif\u001b[0m \u001b[0mexc_info\u001b[0m \u001b[0;32mis\u001b[0m \u001b[0;32mnot\u001b[0m \u001b[0;32mNone\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 1062\u001b[0m \u001b[0;32mtry\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m-> 1063\u001b[0;31m \u001b[0myielded\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mgen\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mthrow\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m*\u001b[0m\u001b[0mexc_info\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 1064\u001b[0m \u001b[0;32mfinally\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 1065\u001b[0m \u001b[0;31m# Break up a reference to itself\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n", "\u001b[0;32m~/anaconda3/lib/python3.6/site-packages/distributed/core.py\u001b[0m in \u001b[0;36msend_recv_from_rpc\u001b[0;34m(**kwargs)\u001b[0m\n\u001b[1;32m 455\u001b[0m \u001b[0;32mexcept\u001b[0m \u001b[0;34m(\u001b[0m\u001b[0mRPCClosed\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mCommClosedError\u001b[0m\u001b[0;34m)\u001b[0m \u001b[0;32mas\u001b[0m \u001b[0me\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 456\u001b[0m raise e.__class__(\"%s: while trying to call remote method %r\"\n\u001b[0;32m--> 457\u001b[0;31m % (e, key,))\n\u001b[0m\u001b[1;32m 458\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 459\u001b[0m \u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mcomms\u001b[0m\u001b[0;34m[\u001b[0m\u001b[0mcomm\u001b[0m\u001b[0;34m]\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0;32mTrue\u001b[0m \u001b[0;31m# mark as open\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n", "\u001b[0;31mCommClosedError\u001b[0m: in <closed TCP>: TimeoutError: [Errno 60] Operation timed out: while trying to call remote method 'cancel'" ] } ], "source": [ "# Parallelize by EVENT\n", "import dask\n", "import distributed.joblib\n", "from joblib import Parallel, delayed \n", "from joblib import parallel_backend\n", "\n", "# A function that can be called to do work:\n", "def work_events(arg): \n", "\n", " # Split the list to individual variables:\n", " session, segment, ii, bst, tc = arg\n", " scores, shuffled_scores, percentiles = nel.analysis.replay.score_Davidson_final_bst_fast(bst=bst,\n", " tuningcurve=tc,\n", " w=w,\n", " n_shuffles=n_shuffles,\n", " n_samples=n_samples)\n", "\n", " return (session, segment, ii, scores, shuffled_scores, percentiles)\n", "\n", "# List of instances to pass to work():\n", "# unroll all events:\n", "parallel_events = []\n", "for session, segment in zip(sessions, segments):\n", " for nn in range(aux_data[session][segment]['PBEs'].n_epochs):\n", " parallel_events.append((session, segment, nn, aux_data[session][segment]['PBEs'][nn], \n", " aux_data[session][segment]['tc']))\n", "\n", "#parallel_results = list(map(work_events, parallel_events))\n", "\n", "with parallel_backend('dask.distributed', scheduler_host='35.184.42.12:8786'):\n", " # Anything returned by work() can be stored:\n", " parallel_results = Parallel(n_jobs=n_jobs, verbose=1)(map(delayed(work_events), parallel_events))\n", "\n" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "scrolled": true }, "outputs": [], "source": [ "\n", "# standardize parallel results\n", "bdries_ = [aux_data[session][segment]['PBEs'].n_epochs for session, segment in zip(sessions, segments) ]\n", "bdries = np.cumsum(np.insert(bdries_,0,0))\n", "bdries\n", "\n", "sessions_ = np.array([result[0] for result in parallel_results])\n", "segments_ = np.array([result[1] for result in parallel_results])\n", "idx = [result[2] for result in parallel_results]\n", "\n", "scores_bayes_evt = np.array([float(result[3]) for result in parallel_results])\n", "scores_bayes_shuffled_evt = np.array([result[4].squeeze() for result in parallel_results])\n", "scores_bayes_percentile_evt = np.array([float(result[5]) for result in parallel_results])\n", "\n", "results = {}\n", "for nn in range(len(bdries)-1):\n", " session = np.unique(sessions_[bdries[nn]:bdries[nn+1]])\n", " if len(session) > 1:\n", " raise ValueError(\"parallel results in different format / order than expected!\")\n", " session = session[0]\n", " segment = np.unique(segments_[bdries[nn]:bdries[nn+1]])\n", " if len(segment) > 1:\n", " raise ValueError(\"parallel results in different format / order than expected!\")\n", " segment = segment[0]\n", " try:\n", " results[session][segment]['scores_bayes'] = scores_bayes_evt[bdries[nn]:bdries[nn+1]]\n", " except KeyError:\n", " try:\n", " results[session][segment] = dict()\n", " results[session][segment]['scores_bayes'] = scores_bayes_evt[bdries[nn]:bdries[nn+1]]\n", " except KeyError:\n", " results[session] = dict()\n", " results[session][segment] = dict()\n", " results[session][segment]['scores_bayes'] = scores_bayes_evt[bdries[nn]:bdries[nn+1]]\n", "\n", " results[session][segment]['scores_bayes_shuffled'] = scores_bayes_shuffled_evt[bdries[nn]:bdries[nn+1]]\n", " results[session][segment]['scores_bayes_percentile'] = scores_bayes_percentile_evt[bdries[nn]:bdries[nn+1]]\n", "\n", "print('done packing results')" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "### Save results to disk" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "collapsed": true }, "outputs": [], "source": [ "jar = nel.ResultsContainer(results=results, description='gor01 and vvp01 speed restricted results for best 20 candidate sessions')\n", "jar.save_pkl('score_bayes_all_sessions.nel')" ] } ], "metadata": { "kernelspec": { "display_name": "Python 3", "language": "python", "name": "python3" }, "language_info": { "codemirror_mode": { "name": "ipython", "version": 3 }, "file_extension": ".py", "mimetype": "text/x-python", "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", "version": "3.6.2" } }, "nbformat": 4, "nbformat_minor": 2 }
gpl-3.0
pycroscopy/pycroscopy
jupyter_notebooks/AFM_simulations/IntroductionToSimulations/IntroToAFMSimulations.ipynb
1
543164
{ "cells": [ { "cell_type": "markdown", "metadata": {}, "source": [ "# Introduction to dynamic AFM simulations\n", "###### Content under Creative Commons Attribution license CC-BY 4.0 version, \n", "#### Enrique A. López-Guerra." ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "Purpose of the notebook: show an application of numerical methods to simulate the dynamics of a probe in atomic force microscopy.\n", "\n", "Requirements to take the best advantage of this notebook: knowing the fundamentals of [Harmonic Oscillators](http://en.wikipedia.org/wiki/Harmonic_oscillsator) in clasical mechanics and [Fundamentals of Vibrations](http://en.wikipedia.org/wiki/Vibration). " ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Introduction" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "Since the atomic force microscope (AFM) was invented in 1986 it has become one of the main tools to study matter at the micro and nanoscale. This powerful tool is so versatile that it can be used to study a wide variety of materials, ranging from stiff inorganic surfaces to soft biological samples. \n", "\n", "In its early stages the AFM was used in permanent contact with the sample (the probe is dragged over the sample during the whole operation), which brought about important drawbacks, such as rapid probe wear and often sample damage, but these obstacles have been overcome with the development of dynamic techniques.\n", "\n", "In this Jupyter notebook, we will focus on the operation of the probe in dynamic mode." ] }, { "cell_type": "code", "execution_count": 1, "metadata": {}, "outputs": [], "source": [ "from __future__ import division, print_function, absolute_import, unicode_literals\n", "import os\n", "import numpy\n", "import matplotlib.pyplot as plt\n", "%matplotlib inline\n", "from IPython.display import Image" ] }, { "cell_type": "code", "execution_count": 2, "metadata": {}, "outputs": [ { "data": { "image/jpeg": "/9j/4AAQSkZJRgABAQEAYABgAAD/2wBDAAIBAQIBAQICAgICAgICAwUDAwMDAwYEBAMFBwYHBwcGBwcICQsJCAgKCAcHCg0KCgsMDAwMBwkODw0MDgsMDAz/2wBDAQICAgMDAwYDAwYMCAcIDAwMDAwMDAwMDAwMDAwMDAwMDAwMDAwMDAwMDAwMDAwMDAwMDAwMDAwMDAwMDAwMDAz/wAARCAJHAqQDASIAAhEBAxEB/8QAHwAAAQUBAQEBAQEAAAAAAAAAAAECAwQFBgcICQoL/8QAtRAAAgEDAwIEAwUFBAQAAAF9AQIDAAQRBRIhMUEGE1FhByJxFDKBkaEII0KxwRVS0fAkM2JyggkKFhcYGRolJicoKSo0NTY3ODk6Q0RFRkdISUpTVFVWV1hZWmNkZWZnaGlqc3R1dnd4eXqDhIWGh4iJipKTlJWWl5iZmqKjpKWmp6ipqrKztLW2t7i5usLDxMXGx8jJytLT1NXW19jZ2uHi4+Tl5ufo6erx8vP09fb3+Pn6/8QAHwEAAwEBAQEBAQEBAQAAAAAAAAECAwQFBgcICQoL/8QAtREAAgECBAQDBAcFBAQAAQJ3AAECAxEEBSExBhJBUQdhcRMiMoEIFEKRobHBCSMzUvAVYnLRChYkNOEl8RcYGRomJygpKjU2Nzg5OkNERUZHSElKU1RVVldYWVpjZGVmZ2hpanN0dXZ3eHl6goOEhYaHiImKkpOUlZaXmJmaoqOkpaanqKmqsrO0tba3uLm6wsPExcbHyMnK0tPU1dbX2Nna4uPk5ebn6Onq8vP09fb3+Pn6/9oADAMBAAIRAxEAPwD9/KKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiimzzpawPJI6xxxqWd2OFUDkknsBQATzpawPJI6xxxqWd2OFUDkknsBXxX45/4KneJfEHxk1Oz+EPw11L4peD/CsRh1e6sEm8y7uHYLGbd445MIpDclG8wBiNqqGOJ8dPjp4p/wCClHxSvPhJ8JLyTT/h7p7hfFfitQfLuY84MURGNyNggKCDKQekYZj9ffAT4CeGf2bPhpY+FfCtitnptmNzu2Gmu5SBumlbHzSNjk9AAAAFAA891KmIlai7RXXu+y8u7+R+b1MzzDiHEulklZ0cNTb5qySk6k19mmpJxcIv45NNSa5Y6XZ8uf8AD0D4vf8ARqHxI/77vf8A5X0f8PQPi9/0ah8SP++73/5X19rUVX1ev/z9f3R/yOz/AFa4g/6HE/8AwTQ/+QPin/h6B8Xv+jUPiR/33e//ACvo/wCHoHxe/wCjUPiR/wB93v8A8r6+1qKPq9f/AJ+v7o/5B/q1xB/0OJ/+CaH/AMgfFP8Aw9A+L3/RqHxI/wC+73/5X0f8PQPi9/0ah8SP++73/wCV9fa1FH1ev/z9f3R/yD/VriD/AKHE/wDwTQ/+QPin/h6B8Xv+jUPiR/33e/8Ayvo/4egfF7/o1D4kf993v/yvr7Woo+r1/wDn6/uj/kH+rXEH/Q4n/wCCaH/yB8U/8PQPi9/0ah8SP++73/5X0f8AD0D4vf8ARqHxI/77vf8A5X19rUUfV6//AD9f3R/yD/VriD/ocT/8E0P/AJA+Kf8Ah6B8Xv8Ao1D4kf8Afd7/APK+j/h6B8Xv+jUPiR/33e//ACvr7Woo+r1/+fr+6P8AkH+rXEH/AEOJ/wDgmh/8gfFP/D0D4vf9GofEj/vu9/8AlfR/w9A+L3/RqHxI/wC+73/5X19rUUfV6/8Az9f3R/yD/VriD/ocT/8ABND/AOQPin/h6B8Xv+jUPiR/33e//K+sm0/4LTXnhf4paR4d+IHwf1j4ew380QurnU9SmWaxgdtv2gwNaI7oOTwRnBxzXsn7dX7dVr+zHpdr4c8OWv8AwknxO8SYh0fR4VMrRlztWaVV527uFQcuRgYAZh8tfHv/AIJ4ah4I/Yf+IPxI+IF9L4h+L2rfZtTvLiSTzE02P7TF5kCEcFvLJ3MPlG0ImFBLcOIqYmDapVOZx1eisvLbd9j8/wCIsy4mwdWrSyjMZYieHi6lXmpUVCMYpy5G4wu5ztZRi00tW0fpXBOlzAkkbK8cihlYdGB5Bp1ed/sj+NP+Fh/sufD3Wd2+S+8P2TTHOf3ohVZPycMK9Er2oS5oqS6n7lgcVHE4aniYbTipL0aT/UKKKKo6gooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKAOb+LHxj8I/AbwRc+JvHPirw34L8N2bolxquu6nDp1jAzsEQPNMyopZiFAJ5JAHJqr8Gfj94E/aO8KSa98PPG3hHx5ocNw1o+o+HdYt9UtEmUKzRGWB3QOAykrnIDA45FfCH/B17/yhI+JP/YU0T/0529eY/8ABmb/AMopfEH/AGUHUf8A0ksaeDXtvb309na3nfk/+S/AnFS9k6Nv+Xl/lbn/APkfxP1ror5Z/wCCtX/BWDwL/wAEjf2cofHHi7TdS8RaprV02m+H9CsHWOXVLsRNJh5WyIYF2jfLtcqGXCOxCn89tQ/4O8PF/wAKY/B+vfFb9iv4nfDv4e+LpI2tfEU+tTst7bsokMtktxpttDdny2VwqzoGBB3AHNRTnGcnGL2aTvok3sm3prfuaSi4pN9U2u9lu7bn7X0V+dP/AAU9/wCDjP4d/sCaL8L7Xwb4P1v41eMPjBpNp4g8NaTpdybCG5026YLbzNMYpZPMmYkRxJA7MUYNs+Xdxv7Cv/By9H+0H+23pfwF+M/7P/jf9nXxt4mEcehxa5ey3DXM7o7pFPFPaWssAkCgROEkV2YA7eCdKcXOfs4rW7jbb3o7pX3a2stb6b6GdScYQ9pLaylfyezfZPe70trtqfqRRX5mf8FF/wDg5S8N/sjftXr8CfhP8I/GH7Q3xYtJxBqmkaFO9rHaSeU0rW8TR29zNcXCIAzokOxFJzJuR0W//wAEx/8Ag408N/ty/tQ3vwN+I3wp8WfAL4wo832LQdbuGuo7vyoVmaF3kgt5obrZ5jiJ4ApSPIkLMEqcP++1pa6NrzS3a7r0uVX/AHP8TTb5X2v2+Z+klFfiR8Q/+Dzrw78LfHPxS8N6x8CL1dX8DalPpWixQeL/ADF8QzQ3pt5DI32EC0QRK8uf3pLBUCkMXX9Zv2Kfj3rn7Uv7KHgL4j+IvB//AAgOqeN9Ih1k6CdS/tFtPhnHmQhpvKi3M0Rjcjy1KlypyRklH97R+sU9Y6a/4k2vPVJhUfs6vsZ/Frp6Wv8Amtdu2zPUaKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAK+Nv+C1HxT1Pwb+z1ovh7S5tchm8Yan9jmGnlQt3EqgtbOcF/wB5uGAg52ENkHB+ya+P/wDgtn4Wk1X9kGz1m33Lc+GPENperKvWNWWSH/0KRD9QK48wv9Wnbt/w58P4k+2/1YxroNpqDd1vyqzl98bo81+An7Yvjj9mz4aWPhXwr+yD8RrPTbMbndnvGmu5SBumlb+z/mkbHJ6AAAAKAB2n/D0D4vf9GofEj/vu9/8AlfX2B4A8VR+OvAmia3FjytYsIL5MdNssauP/AEKtas4YWqopRqu3pH/I4cDwrnFLDwp4XNpxppLlSo0EkraWXJtY+Kf+HoHxe/6NQ+JH/fd7/wDK+j/h6B8Xv+jUPiR/33e//K+vtaiq+r1/+fr+6P8AkdX+rXEH/Q4n/wCCaH/yB8U/8PQPi9/0ah8SP++73/5X0f8AD0D4vf8ARqHxI/77vf8A5X19rUUfV6//AD9f3R/yD/VriD/ocT/8E0P/AJA+Kf8Ah6B8Xv8Ao1D4kf8Afd7/APK+sXxz/wAFhfHvww0VdS8S/s2+LvDuntKIRdanqFxaQmQgkJvksQu4gEgZzwfSvvCvmz/grd4M/wCEx/YQ8YMq7ptHe11GMf7lxGH/APIbvWWIp4iFOU41XdJvaP8AkePxDlfEuAyvEY6hms5SpQlNJ0aFnypu3weR51F/wVF+Lc8SyR/sp/EZ43AZWWS8IYHoQf7Pp3/D0D4vf9GofEj/AL7vf/lfX0l+yP40/wCFh/sufD3Wd2+S+8P2TTHOf3ohVZPycMK9Eq4Ua8oqSqvXyj/kd2ByTPsThqeJhnE7TipL9zQ2aT/k8z4p/wCHoHxe/wCjUPiR/wB93v8A8r6P+HoHxe/6NQ+JH/fd7/8AK+vtaiq+r1/+fr+6P+R1f6tcQf8AQ4n/AOCaH/yB8U/8PQPi9/0ah8SP++73/wCV9H/D0D4vf9GofEj/AL7vf/lfX2tRR9Xr/wDP1/dH/IP9WuIP+hxP/wAE0P8A5A+Kf+HoHxe/6NQ+JH/fd7/8r65v4s/8Fdfid4D8C315ffs8+J/BvmIYLbVdamuhZ287A7NwazjDnI4Xeucda++q+d/+CrHgv/hNv2EPHKKu6bTYrfUYjj7vk3EbOf8Av3vH41liKOIhSlJVXom9l/kePxDk/EmDyvEYujm05SpwlJL2VFX5Yt2uoXV7brUw/wBgb9iST4bSyfFL4gXy+Kfin4sT7XNfSuJk0uOVQfLiPTeVIDOvAX5EwoJb2z9pvwX/AMLF/Zz8eaEqeZJqugXttEMZPmNA4Qj3DYP4VkfsVeNP+Fg/skfDnVi2+Sfw/aRTN6yxxLFJ/wCPo1ensNwweQeCD3rpw9GCoqMNmvz6n1XD+T4CGRwwuEjanVhdt6uTnG7lJvWUne7b/KyPmH/gj740/wCEu/YS8MwM4kl0O6vNOc55GJ2lUH6JKg+gFfT1fFH/AARuf/hCIvjN8PWLK3g/xdJiNuqh98H/ALaV9r1OXyvh4X7W+7Q5fDrEyrcNYNz3jDkfrTbg/wAYhRRRXYfaBRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFNllWCJndlVVGSScACmX19DptnJcXEscMEKl5JHYKqKBkkk8AAd6/OL/gon/wUpj8U2d54X8J3ckPh3JhubqI7ZdYPdE7rD6n+L6cN6WW5ZVxtXkp6Jbvol/WyPB4g4iw2U4f21fWT+GK3k/0Xd9PWyfpn7Tf/BVtPA/xCtdI8DRaXqVlZ3AS7vbokx37D70UGCPl4P7znJ6DAy31R8EfjNo/x4+Hdj4i0Wbfb3i4kiY/vLaQfejcdmU/mMEZBBr+f7xB4ou/EeqfappGVlP7tVOBEO2P8a+s/wDgnP8Atx3PwQ8aKl9JJLot8Vi1a2HPHRblB/eXuB1GR/dx9dmHDdF4ZRwq9+P3y738+33H5fkfH2LhmDnmUv3VR2stqfZry6S69fX9fKKqaFrlr4l0a11CxuIrqzvIlmhmibckiMMhge4IOat1+f7aM/bYyTV0fnF/wde/8oSPiT/2FNE/9OdvX40f8EZv+DlP/h0b+ylqHwx/4Uv/AMLB+3eILjXf7S/4S/8AsnZ5sUEfleV9inzjyc7t4zuxgYyf6tKKnDqVF1eV6VGr+iUdPvin07F1+WqqfMvg29fe1+6TX4n883/BSz/g4P8A2i/2tv8Aglp4Z+K/wV8K698FfCeoeKtV8L+M9V0XUDq95p6xQWJtP9PFtCbJZ3u5AHRVk3woFlG4q3wV/wAFJfiP4P8A2ov2Q/AHxB8GeHP2nvG13oeoroXin4s/F7xBJqZnu5IGmj0PTysz25t43W5n4VZU3rvz5gJ/sOopSpxfNZbuLXdWSur72bu7K29ndX5nGpJKKfRSXZO7bV1tdKyu77XVnZr+cH/gqrffD1/+CZ/7GWp/FD9nHxj438ExfDHw9awfFfwT4yXTL7Qn+zwrcaZPFJp9zbNnAeNZ2BZjKsbRkSk8T/wTo/bJ+L3xM/4KqfCnw/8Asd/ED9rbx98GdJbTLPxLo3xV1OPVLTRdO83y7vzkgleygtltkAhfEcocbI8sVDf06UV1wr2xUsQ1pKcp26PmbfK+jSu76K+t9W2c1SlzUI0eqgoX6q1tV1Tdl1dumlkfys/8FCf2fvEH/BLb/gt/47+IHxYuv2hPCPws+Imvarq+l+OPhTqq6RrF3FfGS4EFveSqYXkjdvLmt2dHKjfwpTf7V/wRm+AvhH/gof8A8FV9J+MHgjwX+1l4m0PwBrK6lP8AFT4lfEyyuxcvaxRrFa3MSaMxmuCjwp9ljvyViIJkVQM/0eUVz4H/AGdU1v7NWj02ta/drytc2xv+0Oo9vafF1vfe3a/ne1j+bf8A4Nr/AAZpvif/AIOLvjtfX1rDcXXh618VX2nu6BjbTNrEFuXXI4byppVyMHDkdCa/pIooop+7hqOH/wCfcVG/ezbvbpvtrtuFT3q9Wt/PLmt20St57BRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABXiv/BRbwX/AMJ7+xD8SrHbuMOjvqAHvastz/7Sr2qsvxv4Zj8a+C9Y0abb5OrWU1lJu6bZI2Q5/BqzrQ54OHdNHm5xgVjMBXwb/wCXkJR/8Ci1+p5L/wAE4PGn/CefsO/De93mRrfSV04knkfZne2x/wCQq9ur47/4IleJpr/9krUtDugY7rwv4ju7JoyeUVlil/8AQ3kH4GvsSscFPmw8JeSPG4FxzxfD2Crvd04J+qSi/wAUwooorqPqwooooAK4f9pvwX/wsX9nPx5oSp5kmq6Be20Qxk+Y0DhCPcNg/hXcUMNwweQeCD3qZR5ouLOfF4eOIoTw89pJp+jVj5h/4I++NP8AhLv2EvDMDOJJdDurzTnOeRidpVB+iSoPoBX09XxR/wAEbn/4QiL4zfD1iyt4P8XSYjbqoffB/wC2lfa9cuXyvh4X7W+7Q+T8OsTKtw1g3PeMOR+tNuD/ABiFFFFdh9oFFFFABXJfHzwX/wALI+BnjLw+E8xtb0S8sUX/AGpIHRce+SK62iplFNWZjiaEa9KVGe0k0/RqzPlX/gjR40/4Sv8AYY0a0MnmN4e1K905vVcy/aAD/wABnH4Yr6qr4n/4JC/8UH4x+O3w9wY18K+LGkij7bXaaDI/C2T8CK+2K5cvk3h436K33aHx/hziJVeG8Ip/FCPs36026b/9JPij9lwn4Zf8Fcvjd4ZP7q38TabFrcXpLJ/o8hx75uZv++TX2vXxP8cwPhh/wWY+Futcx2fjDQJNOuCP+WkoW5jUfn9n/KvtipwOinDtJ/jr+pjwH+6jjsD/AM+sRVSXaM2qi/8ASwoooruPvAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKq61rVp4c0m4vr64htLO0jaWaaVwiRIoyWJPAAHeofFPirT/BPh+71XVryCx0+xjMs88zbUjUdyf85r8uf+ChX/BRy5+L1zJoujtNZ+GIX/cWudsmpMDxLN3CZ5VPxPP3fWynKauNqWjpFbvt/m/I+a4k4mw+UUOafvVJfDFbvzfZLq/u1Nn/AIKI/wDBSRviMtx4e8OzTW/hZWKYUlJtZYH7zd1hB5Cnk8E84UfBGua7c+ItQa5upN8jdB/Cg9AOwpmravca5fyXN1I0ksh6noB6D0FVq/TMNhqWHpKjRVor735vzP5+x+PxGOxDxWLlzTf3JdkuiX/BeoVa0fV59D1GK6t22yxHI9CO4Psaq0Vscr10Z+ln/BLP9uqHTmtPBevXe3R9Qk2abNK//IPuGPMDH+45OVPZj6Nx+iituGRX87PgjxfL4Q1dZhua3kwsyDuPUe4r9fP+Cb37acXxt8Iw+F9cvll8RadAGtbh251O3HRs95FHDdyMHn5sfG8S5PvjaC/xL/27/P7+5+qcAcUWtlOLl/17b7fyPzX2fLTsfVVFFFfEn64FFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQB8T/wDBNI/8K8/bA/aO8DsdsceurqlnH02xNNcZ/wDHJYBn296+2K+J/Dn/ABa7/gt3rkOPLi+IXhNZEU9HZIoiSPfNlJ+bV9sVw4DSm4fyya/G/wCp8H4d/usvrYH/AJ8V60F6c7nH/wAlkvkFFFBbaMngDqa7m7as+8PiX/gqV/wXu+C3/BJD4j+F/CfxF0rx7r2ueKtOk1WG38MWNndGzt1lMSvN9ouoNu91kC7d2fKfOMDP1l8GPjDoHx/+FmheMvC96uoeH/EdlFf2NwBjzIpFDKSOxwRxX8vn7Un7ZvwM/b1/4KWftVeLvit8QoPDfhrWtEuPBvgK5fSr7UIylsu22uFFtBKUU3FvFNzj/Xt71+nH/BoN+2mfjt+wZffDjVL5Z9c+GN+bOKN2HmGxkG+A4/ujLxg/9MqzwMnVoc8t7Kf/AG7JySX+JLlv2uaYyKpVuVbXcWv7yjFt+jfMl6H650UUVoZnxR+y4T8Mv+CuXxu8Mn91b+JtNi1uL0lk/wBHkOPfNzN/3ya+16+J/jmB8MP+CzHwt1rmOz8YaBJp1wR/y0lC3Maj8/s/5V9sVw4HRTh2k/x1/U+D4D/dRx2B/wCfWIqpLtGbVRf+lhRRRXcfeH4R+Jf+Dg/9uj4o/to/GL4Y/BP4N/BfxxafDLxRf6KgmsrxL028NzPFC0m/VYlkkZYGJ8tQMg/KMgV9rf8ABC3/AILdzf8ABVnwN4g0nxl4Oh8D/E3wRcLZ6xa2jyGwvGKnMkKSZkhO9ZFMLs5TaPnbJx+MvwL/AGLfip+2d/wV0/aq0v4U/GTxZ8IdasPiBqolm0Oe4hfUVkvr/h2huYCAoRwM7s+YenOfpX/g1v8AHEH7Nf7cXxb+APiGHRdZvPBuoXENl4m0ZVMN5Os7QyrNIv8Ard20FCSSoWRckBcZ5fJypQhP4pU4yV920ouTutLWb0ffukbZlFQr1HD4Y1HHTZJ3svW9tVsvmf0F0UUVoYnxP+z6f+FZf8Fjfi5oJPl2fizQ4tVgA48yUC2kPH1e459vevtivif9pXHwy/4K/wDwY8RY8u28UaTLo83YSyYuYhn8Z4P++RX2xXDgtOeHaT/HX9T4PgX908fgX/y7xNSy7RqctRf+ls+J/wDgrdnwH8SfgH8QF+RfDPisQzv03K7wTBSfTbbyf99Gvtivk/8A4LQ+DP8AhKf2HNSvdm5vDuq2Wog45Xc5tifyuDX0N8DPGn/Cx/gr4Q8Qb/MOuaLZ35bPUywI5/HJNFH3cTUj3Sf5r9BZN/s/FOY4d/8AL2FGqvulTk//ACSJ1VFFFdx96FFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFDNtUn05ooIyKAPzT/4KnfHXxpr/wAQb7w2sbQ+H9LCyafaoxWO/faN0sh/iZWLALxjHqcn889UvbjUL+Wa6aR7hmO8v1B9Mdsenav3E/at/ZK0341aFNMsKi8UblYD5gfUGvy0/aW/Zb1LwPr80Vxb+TeKSI5tu2O5A7H0b3/p0/RuHc0oVaMcKkozj06S815919x+E8ccO4zDYueZSbqU5vfrDtF/3eia9Hrv8/UVJd2kthcvDNG0csZwysMEGo6+iPhQooooAK9A+AXxl1D4VeL7G5s72SxmtZ1ntLhTzbSg/ltPQg8c88E15/RR5MNd07NaprdPo0fvR+yJ+09p/wC018NItQj8u31qxCw6nZg8wS4+8B12PglT9R1Br1ivxE/Yi/a01b4D/EWxvraRpJLceVNbs+1dQtuN0Tf7QxlT2IB5wc/sz8KvifpPxi8Caf4g0W4W4sNQjDqf4oz0ZGHZlOQR2Ir83z7J3g6ntKf8OW3k+3+XkfvXBfFCzPD+wxD/AH0Fr/eXSS/Xs/VHRUUUV8+fbBRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQB8T/t4f8W1/wCCkH7OfjLPlrqlxJoEkuOFUyiPBPYYvm/DNfbFfF//AAWy0ubSvgh4H8YWi7rzwl4qgmU9NivG7Zz/ANdIoh+NfZGkapDrelWt7btut7yJJ4m/vKwDA/ka4cP7terD0f3q36HwfDf7jiDNcJ0cqVVf9v0+Vv76bLFeY/toeEfHnxA/ZN+Img/DG90fTfH2uaBd6fol5qkssVrZ3E0ZjEzNEjuCgYsuEb5lXIxmvTqK6q1KNWnKlPaSafo9D9ApVJU5qpHdNP7j8gv+CUv/AAbceAfAf7NFtpfxv8C+Etc8YWs8n2i9k0uC785mct8kk0W8xhSqrkL90nAzV79hj/gjf8Rv+CYP/BZLxh428Ax+H5vgD8QLYxLp1tNLHeaaWEcgVoRCIVWOfzgoV8CN14B+UfrfRW3M/ae162a8rPTb8uxjyr2fs3tdP5p3/r/hgoooqSj4n/4K3Z8B/En4B/EBfkXwz4rEM79Nyu8EwUn0228n/fRr7Yr5G/4LT6JbeIf2LbxmZWutE1Wz1GNByygs1uT7cTmvo/4GeNP+Fj/BXwh4g3+Ydc0Wzvy2eplgRz+OSa8fA47DV8ZiKVCpGTg0pJNPllZNxlbZ2cXZ62afU+DyeLw3FOYUJK3tYUaq89JU5P74I6qiiivYPvD8b/2w/wDg0Q+HH7Qv7R3i7x9pvjjx9bTeNtWu9dv4JtRswkNzczPNIsQFmSIwzkKGLMB1Y9a+mf8Aglz/AMEK/A3/AATdvo73SNs16Nrz3DO01zfyqpVZJpDgcAkhEVEBZiFBJz970UU17OHs4aK1reS6DqSdSfPPV3v831CiiigR8T/8Fic+BtS+CXxCU+X/AMIj4uRWfoAHMc/P/gIf1r7YByK+W/8AgsZ4M/4Sz9hXxBcqnmSaDfWWoqAOR++WFj+CzMfoDXt/7N3jT/hY37PfgfXt/mNq2g2V1If9toELg+4bI/CuGl7uKmu6T/NfofBZT/s/FeYUH/y9p0aq+XNTl/6TEwP24vBn/CwP2QPiRparvkk0C6niXGd0kMZmQfi0YFcf/wAEr/Gn/Cb/ALCPgOVm3TafBPp0g/u+TcSIg/79hD+Ne+avpcOuaTdWNwu+3vIXglX+8jAqR+Rr43/4ImarNpfwM8beD7xib3wn4qnidT/yzV441xj/AK6RSn8aKnu4uD7pr7rP/MMw/wBn4vwlbpWo1afzhKFRfg5fifaFFFFdx96FFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFAARkV5P8AtF/sy6R8ZvDtxHLbR/aGU4OO9esUVUZOL5o7k1KcZxcJq6ejT2aPxh/au/ZB1D4e6xLFdQuoQkW93t7dkf29/wD9VfM2raTcaHfPb3UbRyx9Qe49R6iv35+NfwJ0n4u+Hpra6t42kdSASua/MP8AbB/YpvPh3fTCS3kawViYbhVy1t9fVf8APvX6BkvEEcRahiXafR9JevZ/mfiPFvBM8DfGZenKlvKO7h5rvH8V6bfHNFX/ABF4cuvDGoNb3SbT1Rx92QeoNUK+m2Pz5STV0FFFFAx9vcSWk6Sxs0ckbBlYdVIr7d/4Jqft2v8AB/xKNP1aZv8AhHdUkVNRizkWUp4W5Qf3T0YDsO5UZ+H6u+H9en8N6rHdW5+aM4ZT0de4P1rLEYenXpujVV4v+rrzR0YPGV8HiIYvDO04vTz7p+T2Z/RbYX8Op2UVxbyRzQTIHjkRgyupGQQRwQfWpq+Cf+CWn7ckOp2Vj4E1683W0/y6LczNzC3e0Y/+gZ/3RwVFfewORX5XmWX1MHXdGp8n3Xc/o7Ic8oZrhI4qjo9pLrGXVP8ATutQooorgPaCiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKAPnn/gql4L/wCE3/YR8dxqm6bTYYNRiOPueTcRu5/79hx+Ndl+xB40/wCFgfsg/DfVGfzJJNAtYJXzndJFGInP4sjV037QPheLxv8AAfxro87RRw6poV7aM8hCpGHgddxJ4GM5z2xXyl/wSc/aw8C+Fv2MtH0LxR428JeHtQ0O/vLZLbVNYt7SZonlM6uEkcMVJmIBxj5SO1cEpKGLTlpzR/J/8E/O8ZiqOB4whVrzUI1sO43bSTlTqJrfyqP7j7borzf/AIbH+EP/AEVT4b/+FLZf/HKP+Gx/hD/0VT4b/wDhS2X/AMcrr9tT/mX3n2H9uZd/0EQ/8Dj/AJnpFFeb/wDDY/wh/wCiqfDf/wAKWy/+OUy5/bO+ENrA0jfFL4dsFGcJ4js2Y/QCTJrOtjKFKDqVJpRim221ZJbtgs7y5uyxEP8AwOP+Z6WTgVyuueO5b28/s/RI/tV03DTAZSP3Hb8Tx9a8xvP2xPhz48u2g/4Wf8PtK0xThzJ4js1klH08zn6dPrXSaH+1P8F/DtmIbX4ofDdR/Ex8S2RZz6k+ZX4jiOIM941qyweQSlgcvTaniZLlrVbaOOGhJXhHp7aav/JG6uelHOMowy5quIpyn0jzxsvV319F8zn/ANrj4JL4n/ZH+JFvcs19qs2gXdwjN8372KMyqFz3LIBk/pWf/wAEr/Gn/Cb/ALCPgOVm3TafBPp0g/u+TcSIg/79hD+Ndpq/7WXwb1zSbqxuPil8N3t7yF4JV/4Say+ZGBUj/Wehr5T/AOCPf7SHgv4VfATxN4V8VeNvCei3Gk+JJ3tDqGr29qtzA8UQ3Rb3G9d6OcrkfMK/QuGeGcn4bpU8BlFNU6dpN63lKTs3Ocm25Tl1lJtv0SR+c5pn2EXF+Fxkq8GqtGrTb5o2XJKE49bLeVvmfflFeb/8Nj/CH/oqnw3/APClsv8A45R/w2P8If8Aoqnw3/8AClsv/jlfYe2p/wAy+8+0/tzLv+giH/gcf8z0iivN/wDhsf4Q/wDRVPhv/wCFLZf/AByj/hsf4Q/9FU+G/wD4Utl/8co9tT/mX3h/bmXf9BEP/A4/5npFFeb/APDY/wAIf+iqfDf/AMKWy/8AjlH/AA2P8If+iqfDf/wpbL/45R7an/MvvD+3Mu/6CIf+Bx/zE/bG8F/8LD/ZT+Imjhd8l14fvDCPWVIWeP8A8fVa84/4JM+NP+Ez/YQ8Gb23z6T9q06X28u4k2D/AL9tHXol5+138Hb+0lgm+KPw2khmQxuh8S2WGUjBH+s7ivnL/giTrC6X8K/iL4O+0Jct4X8UyMro4dTHJGsYKkcFS1u5BHXJrjlUj9ag4u901+T/AMz4vFY/Df63YOth6kZ+1pVab5WnblcKkb2fZSt8z7Zr4n/YMP8Awrb/AIKOftGeDfuLql0mvxx/3VMrScD0xer+GK+2K+JvEH/Frv8Agt7o83+pi+IXhQxu4+7IyRSAA++bJB/3zVYzSVOfaVvvTR18a/ucVlmOW8MRGL9KsZU3+LifbNFFFdx96FFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAVy/xO+Fem/EvQprS8t438xSASvSuoooA/K79s79hS48CT3M1vaPcaUzF9qL81uf7yf4f04r4n8XeDrrwjfeXMPMhc/upQPlcf0PtX9B/jXwPY+ONHltLyFJFkUjkV+ef7av7BMvhyS8v9Ls/tNhMS0sAHX3X0b/PXr9tknESdsPjH6S/R/5/efkfF3Ari5Y7Ko+cqa/OHn3j16dj85aK6Lx38Pbnwbds215LNmwrkfMh/usOx/n+lc7X2bVj8pjJNXQUUUUijovhz46m8E63HIski27OC+wkNGR0dcdCPb/Cv2O/4J8ftkQ/tC+Bo9G1a6jbxVpMKl3z/wAhGDgLOvvyAwHcg9GwPxPr1L9mf486r8IPHOm3mn3jWl5YziWymzwrd42HdHBII75I78efmmWwxtD2UtJL4X2fb0Z7fD2fVcoxf1iGsJaTj3Xdea6fNdT97qK85/Zh/aK0r9pP4ZWutWBWG8jxDf2ZbL2kwHKn1U9VPcH1yB6NX5XWozpTdOorNaNH9G4XFUsTRjXoS5oyV011QUUUVmdAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFAFbWdIt/EGj3VheR+daX0L288e4rvR1KsMggjIJ5BzX5rf8E/f2HPhb8VPi98avCHjbwv8A2teeBdf+y6ex1K7t2W2MtxHj91Ku4fuVOWyfmHPNfplXxN8CD/wrH/gst8VNFb5bXxfoMepQD+/KFtpD+puPyrzsbTi6lKU0mr2180/1PzTjrLMHWzLK8TjaUakPayptSipJ+0pytdNNaSimvM9K/wCHSP7Pf/RP/wDyu6l/8kUf8Okf2e/+if8A/ld1L/5Ir6NklWGNmdlVVGSScACuT1XxndeI7trDQlLdpLojCoPb0+v5V8nxlxhkfDdGDxkOetVdqVGnFSq1ZfywgtX5ydox+00fV4fw94frP3cvoWW7dKnZer5TwPxT/wAEyP2c/D37mP4e/ar5+EhTXdSJBPTP+kfp1NN8Lf8ABIn4KTt9o1PwR5atytsms6h8o9z5+fwzn3r6R8LeCLfw7++Y/ab1uXmfqCeuPT69TW3XzHDnCefZrj4Z9xRN0FHWnhKM2oQT615xt7efeP8ACj0jK9zetwbwtCHsqGXUH3k6NO79Fy6L8T5w/wCHSP7Pf/RP/wDyu6l/8kUf8Okf2e/+if8A/ld1L/5Ir6Por9b+p4f+SP3I4P8AUfhz/oX0P/BVP/5E+cP+HSP7Pf8A0T//AMrupf8AyRXy5+zB+w58LfEf7e/xk+Gvijwv/aWm+H1TUNDt21K7hNlbs6HbujlVnGy4hGXLH5Rzkkn9Mq+JvEH/ABa7/gt7o83+pi+IXhQxu4+7IyRSAA++bJB/3zXHi8LRi6clBfEk9F1uvzPieMOEsjwtbL8TSwVKMfrEISSpwSlGpGULSXLZ2k4tX2eu56V/w6R/Z7/6J/8A+V3Uv/kij/h0j+z3/wBE/wD/ACu6l/8AJFfR9Fdn1PD/AMkfuR9t/qPw5/0L6H/gqn/8ifOH/DpH9nv/AKJ//wCV3Uv/AJIo/wCHSP7Pf/RP/wDyu6l/8kV9H0UfU8P/ACR+5B/qPw5/0L6H/gqn/wDInzh/w6R/Z7/6J/8A+V3Uv/kij/h0j+z3/wBE/wD/ACu6l/8AJFfR9FH1PD/yR+5B/qPw5/0L6H/gqn/8ifOH/DpH9nv/AKJ//wCV3Uv/AJIryr9g3RLX4G/8FKfjx8P7GP7Lp95bQavbQF2baitG64LEk4W96kk19yV8TfET/i13/BbHwZfH93a+O/DD20sg4DSLHcKFPqc28I/4EK5sRQp0pU6lOKXvLZW3uv1PleJchyzKcRl+YZdh6dFxxEIycIRjeNRSp68qWl5Lc+2a+Jf+Cln/ABbr9sb9nHxwvyxx62dLvH/uxGeD/wBklm/Kvtqvjn/gtx4Zlv8A9k7StctfkuvDHiO1uxKB80aOksXH/A2jP4VrmH+7ya6Wf3O57HiVTk+HcRWh8VLkqL/uHOM/yTPsaisvwR4nj8a+C9H1mHb5OrWUN7Ht6bZI1cY/Bq1K7U7q6Pt6dSM4Kcdmrr5hRRRQWFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAVQ8Q+HLXxNp0ltdRLJHIMEEVfooA+Bf21v2CPLF1q+h2yyLICZYdvyyj0I9ff/I/On4l/Cq68GXs0kcMv2eNiJI2Hz259D7e/wD+s/0EanpcOr2jwzxrJG4wQRXxz+2f+wfD4iguNY0OFY7kAlgF4cejDuK+ryPiB0LYfFO8Oj6x/wA1+XQ/NeLuB1i3LHZckqu7jsp/5S89n17n5G0V6J8XfgneeDdUuDHayQtCT59sRzH/ALS+q/y+nTzuvvVZpSi7p7PufjLum4STTWjT0afZoKM0UUAfTv7BX7ZOp/Ab4hW94HkuISFh1G03cX9vnqO3mJ1B/oWr9i/AXjrTPiV4QsNc0e6jvNO1KETQyp/ED6jqCDkEHkEEHkV+DfwX+E2oeJdbs7hYZjI7g20KcPKf7x9F/n9Ov7B/8E+vhXqHwi+Cken30krPcTtdsGPyozgAhR2X5R9Tk96+P4to0LRqt2qdu67v06Pr8j9Q8MsVjeeph4xvh1rfpGXZd77tdHrpfX3miiivhz9gCiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAK+H/2sr9Pg9/wVo+DPi190dnr+ky6RPgf65/9Ii/P/SIf++RX1/4n8eR6VP8AY7KP7ZqDHaI15VD747+w/Svir/grP4fvvACfCL4k6nMZrjw74sjWRQMrErbZ9vp/y6ngcdeua/J808QqWPzOWQ8PRderTv7WtFJ0cPJRbipyulObnyp0oPmSbcmuWz+P8SMI6GQ/2nV09hUo1UurUaseZ+S5XLU+wktdS+JMgkuN1hpOcqg+9L/j9Tx6ZrrNL0m30W0WC1iWKNew6k+pPc1OjKyKVwVI4I6Ypa9Tg3w7wmSVp5ni6ksVj6qtUxFS3O1/LBLSlTXSnCy2u5NXPu8RjJVVyRXLBbJbfPu/MKKKK/RDkCgnArP1/wAT2fhu333UmGb7sa8u/wBB/XpXNiHV/iKcybtN0puQo+9KP6/y+tfmfFniZhMsxf8AYuV0pY3MJK6oUmrxXSVab92jDVe9PXX3Ys7KGDlOPtJvlh3f6Lqy5rnxC3XX2LR4vt143G5RmNP8f5e9fG/7f2lX3wp/a7/Z38d31z5zy68dOvW7QxGaDgHp9yWbjgcfjX3Fofh608O2vlWsQX+855Z/qa+R/wDgtx4Zlv8A9k7StctfkuvDHiO1uxKB80aOksXH/A2jP4V5eT8H55UxK4i4qxbqYiCbp0aTlHD0U9HZb1Z2unUqbXfLFWTPh/FCpD/VrEPCx/hclS7+JunOM/lpF7H2NRWX4I8Tx+NfBej6zDt8nVrKG9j29NskauMfg1alfsCd1dH1NOpGcFOOzV18wooozigsKKKKACviX/gqT/xb39pT9nbx4n7tNN8RfYbx+mYmmt3xnt8nn/nX21XyD/wWz8Ivr37GkeqRbll8Na9Z329fvIGEkHX/AHplP1ArizBf7PJrpr9zufDeJVKUuHMTUh8VNRqL1pyjP/20+vq8P/4KTeDP+E7/AGGviRZ7dzW2lnURgcj7NIlwT+UR/DNeqfDDxevxA+Gvh3Xo2DR65pltfqR0IliWQf8AoVSfETwqnjv4f65ocm3y9Z0+4sW3dMSxshz/AN9V0VIqpScV1X5n0Wa4eGY5XWw8NVVpyS9JRa/U8t/4J0eNP+E9/Yg+Gt9u3GHR008n3tWa2/8AaVe1V8e/8ESfFkmsfsgXmjzkrceGfEF3ZGJvvRq6xzf+hySD6g19hVlgp89CEvJHmcD4765w9gsQ93Sgn6qKT/FMKKKK6j6oKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKjurWO8haORQysMEGpKKAPln9sP9iGx+IunTalpcKw30YLKyLzn+o9q/MH46fs96h4O124X7I1veRkmSADCzD+8nv7f16/vFJGsyFWXcp4INfP8A+1h+xzpfxe0Sa4t4FjvFBZWQYYH1FfQZLns8I/ZVdab6dV5r/I+H4s4NpZmvrOHtGuuvSXlL9HuvNH4hMpRirAhgcEHtXrP7N3wDT4heO9Ih1j7RDZ3k6ArFD5jxoSMyMuRwPT8cHofTPE/7HerWPxYSzfR5ZrzzNqyhCIX54dv9of5zxX31+xz+xRY/DTS4dR1KFZr6QBmZ15J/oPavpc8zijDByhhqvv1ItRlG143VlLVNXjuk01daq1z834d4PxuNxnLi6bp06b9+/W32Y979ZJ2S1TvYr/sw/sU+GfAXiq7uoZJLzaweL7SQ0qp6ZAAIB9B6Zr6ktLSOxgWONQqKMACuM8c+G5PDl3HrGmDyzCR5qqOB23Y9D0P/AOuul8K+JofFGmLNH8si8Sx55Rv8PQ1/KHh9x9mf9q1eCuMKnNmNBc0Kj0WKo/Zqx/vpK1SK2abV7S5f6KeV4bDYeMsBBRpbcq+y+q/4JpUUUV+1HKFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFZviTxVaeGLbfcNmRh8kS/ef/wCt715edZ1gMowVTMczrRpUaavKUnZJf5vZJat6JNmlOnOpJQgrtl65uo7OBpZnWONBlmY4Arkr3xPfeNrlrPRlaG1U4lum+Xj29P5n2pttoWoeP7hbnVC1pp6ndHbKcFvr/iefTFddZWMOm2ywwRrFFGMKqjgV+Oe04g4/0pe0y/KX9rWGJxMf7vWhRl3f72cduVSPQ/dYXe0qn/ksf83+BneGPB9r4Yg/dr5lww+eZh8zfT0HtXzp/wAFh/Bf/CW/sJ+IrhY/Mk0G8s9RQdxidYWI+iTMfoDX1DXnP7X/AIM/4WF+yv8AEPRwu+S88PXohHrKsLPH/wCPqtfrGV8O5dlGVrK8qoxpUYRajGKsl59229W3dt6ttnx/GWFnmOTYzDz1lOnNfPldvudi7+zJ40/4WL+zl4D11m8yTVdAsbmU5ziRoELj6htw/Cu5r5r/AOCR/jP/AITD9g/werNum0d7vTpTnpsuJGQfhG6V7/4k8YWfhmL98++Zh8sKcs3+A9zTzTiLLsoy15nmtaNGjFJuUnZLTbzb2SV23ok2Xwnip5jlOExEFd1KcJfNxTf3Pc05JFhjZmZVVRkknAAr+cv/AIKjfHj4nf8ABbD/AILAeK/2aNB8Xa5oPwY+HNydLutH0q6McOt3EE0KzT3Cj5JZftWFjMwZIVh3KocuH/oCi0fVviBIsuoM1jp2dywLwzjt/wDrP4Cv5/f2yNC8W/8ABAr/AILreKPj1rXgbxB4q+BvxQ1J9TbU9NQStB9qlSaeLe2EW5jnEmyKR0EiMMMOSvxPDvE2Y8VV51IYaeEwLi1Rq1LRq1Ju1pqk0+SHLfkdTWTalyqyv9bWoxw+GlyS5ql43S6Q15te+17a2ur6s+4/+CYn/BvJrn/BLP8AaHs/G3gz4pa5q3h/WNP+xeIfC+o7XtrmXzEaO43IERmiUOq7oiw818OAWVv1THSvzq/4J7f8HHvw3/4KW/tMx+CPAPw6+I2j+HbfSpbq/wDEviSGC2jtr3zYkt7JY7eS4RmlVpXDPNGR5JwjjLL+itfpGDymjg1z04LmmlzSaXPPlvFOct5PSyculre7Y8rnUm0u/wAr2W3Ta17dd9bhXh//AAUm8Gf8J3+w18SLPbua20s6iMDkfZpEuCfyiP4Zr3Csf4ieFU8d/D/XNDk2+XrOn3Fi27piWNkOf++q6K0OenKHdNHm51gfruXV8H/z8hKP/gUWv1PLf+CdHjT/AIT39iD4a327cYdHTTyfe1Zrb/2lXtVfHv8AwRJ8WSax+yBeaPOStx4Z8QXdkYm+9GrrHN/6HJIPqDX2FWOCnz0IS8keRwPjvrnD2CxD3dKCfqopP8Uwr+av9sj/AIJ/eHP+Cmf/AAdJfGL4X+KtY1zQ9Nu7G1vRd6U8Szo8Wl2AUfvI3UqQxyMZ6c1/SpX82v7Vf/BQDwb/AME0/wDg6l+L3xO8dab4m1bQbWytbF7fQbeCe8LyaXYFSFmmiTb8pz8+enBqo8v1yHPty1PvsrfifZR5vq1Tl7w+7mV/wOk8ReAPi1/waz/8FBPg3ovh74oa140/Z4+L2qPaXPh7VJ/3MH723iu5DD/qkuEE0Eq3ESxs+3y3BUHf/RBp96mpWMNxGcxzIJFPsRmv5v8A9qX9qnxV/wAHKn/BRL4Mt4C+G3ijwv8ABP4YXrz22qa1EBcarI8sElwX2FoFYmCKJYo5JSoDSM+G2R/0b+FtK/sLw1YWfJ+ywJESfYAV1U5VHh4+23vK19+W65b/AI269zllGmq0vZbWV7bc2t7fK1+l9tLF+vGv+Chfgz/hPf2JviVp/l+Y0eiy36qOpNsRcjHvmIV7LWd4v8OxeMPCeqaTcf6jVLSWzk4z8siFD+hrGrDng4d00cOb4JYzA1sG/wDl5CUf/AotfqeN/wDBM/xp/wAJ3+wv8Obstua105tOYd1+zSyW4H/fMY/Aivda+Nf+CI3iOaf9lzXfD13lbzwv4lubZoz/AMs0eOJ//Rhl/KvsqscDPmw8H5I8LgPGvF8O4Ks9/ZxT9Yrlf4pnxL/wTB/4t3+1T+0Z4EYNHFZ+IBqFkh7RGa4XP4o0FfbVfEvgr/i13/BbjxRa58u38f8AhZZo4+zOkULEj3zaSn/gRr7arPL9Kbh/LJr8b/qed4dfusurYD/nxXrU/l7Ryj/5LJfIKKKK7j74KKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKAChl3DBoooAwrr4caReaut9JZwtcKchtvNbccawoFVdqr0Ap1FADZYlniaN1VkcFWUjgg15vqtpc/DLxOs9vua1myVBPDr3Q+49foa9Kqj4i0GHxHpUlrN/FyjY5Ruxr8d8ZPDarxPlsMZlM/ZZlhH7TD1Fo1JauDf8ALOyTvonZu6un6GX4xUZ8tTWEtGv1+RJo2sQ67p0dzbtujkHTup7g+4q1Xluga3dfD3X5Le4VjFu2zRjuOzL/AJ5FenWl3HfW0c0LrJHINysO4rn8F/Fqlxll88PjY+xzDDPkr0no1JOznFPXlbTTW8JXi+jlWY4B4ed46wez/r+mSUUUV+1HmhRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUVDqGow6VaNNcSLFEnVmrkZ9V1L4hzNBYBrPTAdsk7D5pB6f/AFh+Jr8/4y8Q8DkM4YClCWJxtX+Fh6dnUn/efSnTX2qk7RST3asdWHwkqvvP3Yrdvb/gvyRe8Q+PSt19h0mP7ZfNxuXlI/8AHH5Dv6U7w54CFrc/btSk+237HdluVjPt6n9B2rU8PeGbTwza+XbR/M335G5Z/qf6dK0K+cyXw8x2a42nn3HM41q8HzUsPG/1fDvo0n/FqrrVmtH8CSSZtUxcYRdLDaLq+r/yXkvmFFFFfsZ54VDqX2c2Ey3Xl/ZmQrL5h+UqRgg1l+JvHFp4c/d83F23Cwx9c9s+n8/asi28L6l40mW41mRre1B3Jap8v5+n48/SvyniPxOhTx0sh4ZoPHY9fFGLtSo3616usYW35FepK1lFXTO6lgbw9pXfLD8X6Lr+R8df8Ef9d1fw/wCBfiN8PdPVZJvDfimVmnb/AJYq6CLv0ybZj69eK+1vDfgC30eX7Tcsb2+Y7jK/IU+wP8zz9K+Qf2LLeP4Tf8FS/j54NjXyINZt49ciTs3zRy8evF636+9fb1GV+G+DxeZRz3PpPE16dlThJ3o0Gkk/ZQaS5nJOXtJpz2SasfAeG2MlS4fjl0NPYTq0pd3yVJJJv/DbTYKw/iB8NdD+KOhNpuvafb6haNzslXO0+oPUH6VuUV+rH2J5b4A/Yz+Hnw08RR6rpehRpewtuieSRpPKP+yGPFepUUUAFFFFAHxL/wAEwf8Ai3f7VP7RngRg0cVn4gGoWSHtEZrhc/ijQV9tV8S+Cv8Ai13/AAW48UWufLt/H/hZZo4+zOkULEj3zaSn/gRr7arhy/Sm4fyya/G/6nwPh1+6y6tgP+fFetT+XtHKP/ksl8grg/iZ+zR4L+L2tx6j4g0WC+vI0EayMSp2jtxXeUV3H3xyPw/+A3hH4XTNLoeg2FhMwwZUjG/H16111FFABRRRQB8S/wDBN/8A4tx+23+0f4JZfLhbWF1a0jz/AKuIzzHj6pPD+Qr7ar4k07/i1v8AwXCvUz5afETwmGVezlIVPH42DH86+zfEviXT/B3h+81bVry30/TdPha4ubm4cRxQRqMszMeAAK4cD7tOUH9mTX43/U/P/D6caGX4jBydlh69aGvSPO5r/wAlmvkfGP7cf/FtP+Cm/wCzv4w2+WusO+gNJnGcymLB/C+/I19uV8E6N4h1b/gqj+1ZoOtafo/2L4N/C2/eaDUrpZIbjVbv5GBjKlWDZSMheiLy+WZUr72owb5pVJx+FvTz0Sf4i4HqLEYnMMfhdcPWqqVN2tzNQjGcl3i5R0l1swoooruP0EKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKAOb+InhH+3rH7Tbr/pluOAB/rV7r/h+Xeua8B+Lz4dlWKZi2nztgk/8u7/AOH/AOvrkV6TXB+PvDS6NfNfxx77G6O26jX+En+Ieh759fY4r+RvHDgXG5Dm9PxL4Wfs61OyxCSbi46L2k4rWULWjWSu+S1SK5oNv3stxUatN4Ovqnt/l69vu6ndqwdQykMrDII70tcX4K8StodzHpt5KJLWYBrO4/hYHoP6Y7Hiu0r9/wDD3jzB8V5Wsbh1yVYvlq0205U52u02tJRa96E17s4NSXZeXisLKhPle3R91/W/YKKKK+6OUKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiihm2rk8AckntQ2krsArH8UeM7XwzHtb99dMPkhQ/Mfr6Cs3WfHE2qXh0/Q4/tE54efHyR+47fiePrVzwv4Fh0WT7Vct9s1B/maV+dp9s/wA+v0r8VzDj3M+I8TPJ+A1GSi+WrjJLmoUn1jSX/L+quyfs4u3PJ3selHCwor2mK+Uer9ey/EzdP8J33i66W91xmSEcxWi/Lge/p/P6V10ECWsKxxoscaDCqowAKdRX2XBvAOW8OQnUoc1XEVdateo+arVfeUuiX2YRtGK2XV82IxU6zs9EtktkFFFYHiTx9b6NL9nt1N7fMdoij52n3P8AQc/SvW4n4synh7BPMM4rqlT2V9XJ9IwirynJ9IxTb7EUaFStLkpq7Nm+1CHTLZpriRIY16sxrlLnxTqXjOdrfRY2t7YHa90/H5en4c/SnWHgq88TXK3mvTMVHKWqHCqPfHT8OfU11dtax2UCxQxrHGgwqqMAV+Xex4r431r8+V5a/sp2xdaP95q6w8H2V6rV03FM7b0MNtac/wDyVf5/kZPhnwNaeHP3v/HxeHlpnHOfYdv51tUUV+rcOcM5XkOBjl2T0I0aUdoxW76tveUn1lJuT6tnDWrTqy56juz4l+J5Pwu/4LXeBdQz5dp468NPazP03SLHcIF9/mgg/wC+hX21XmX7UX7J3hX9rbwC3h/xL9stYzLHKt7p/kx3qBCWCLJJG+EJJyMc187f8OIPhD/0MfxI/wDA+y/+RK7YxrUpS9nFSTd97b9NmfmVHC57k+KxUcuwscRSrVHVTdX2bi5JKUbck76x5r3XxWtpc+1qK+Kf+HEHwh/6GP4kf+B9l/8AIlH/AA4g+EP/AEMfxI/8D7L/AORKr22J/wCfa/8AAv8AgHZ/bfFX/Qrh/wCFK/8AlR9rUV8U/wDDiD4Q/wDQx/Ej/wAD7L/5Eo/4cQfCH/oY/iR/4H2X/wAiUe2xP/Ptf+Bf8AP7b4q/6FcP/Clf/Kj7Wor4p/4cQfCH/oY/iR/4H2X/AMiUf8OIPhD/ANDH8SP/AAPsv/kSj22J/wCfa/8AAv8AgB/bfFX/AEK4f+FK/wDlRD+3H/xbT/gpv+zv4w2+WusO+gNJnGcymLB/C+/I19uV8U/8OIPhD/0MfxI/8GFl/wDIlH/DiD4Q/wDQx/Ej/wAD7L/5ErGl9ZhKUlTXvO/xeVux4OULirAYrF4iOXwca81Pl+sJcr5Ixlr7N3vy32Vttdz7Wor4p/4cQfCH/oY/iR/4H2X/AMiUf8OIPhD/ANDH8SP/AAPsv/kStvbYn/n2v/Av+Ae9/bfFX/Qrh/4Ur/5Ufa1FfFP/AA4g+EP/AEMfxI/8D7L/AORKP+HEHwh/6GP4kf8AgfZf/IlHtsT/AM+1/wCBf8AP7b4q/wChXD/wpX/yo+1qK+Kf+HEHwh/6GP4kf+B9l/8AIlH/AA4g+EP/AEMfxI/8D7L/AORKPbYn/n2v/Av+AH9t8Vf9CuH/AIUr/wCVFH/go1q9t8F/29P2e/iFeTQ2entcS6VfXch2pbwLKgdnPZQl3IfoGrD13XfFX/BX34pyaNosmo+GfgH4ZuwL6+CmOfxDMhBCqD36FVORGCHcFyiV01z/AMEIPhTtQ2/iX4gK6yIzedd2kiMgYF1wtupyVyAc8Eg4OMH7B+Hvw90X4U+C9O8O+HdOt9K0bSoRBa20C4WNR+pYnJLHJYkkkkk1zU8LWqTl7X3YN3aTvfS1r6aaanyuA4RzvMcfiv7WiqGErTjUlThPndSShGLi5pRtB8vNJWTldRva7D4e/D3RfhT4L07w74d0630rRtKhEFrbQLhY1H6lickscliSSSSTWzRRXrpJKyP2KlShTgqdNJRSsktEktkl0SCiiig0CiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAoor5d/bv8A+CsXw2/YatZ9NupW8V+OMKsHhzTZl8/e33RM/PlKRznaxxj5TkAzOpGC5pPQ6MNhauIqKlRi5N9j6S8VeLNL8DeHrvVta1Gx0nS7CMy3N3eTLDDAg/iZ2IAH1NfAfjf/AILX6z8avjRceBv2cvhzqfxKbT7e4a81kgx26v5UiwtGuMCPzthLyMu4AqFyc1w/g39iv4/f8FZdcs/Fn7QGs3ngD4YiRbzTPBtnmOa6U8oXjyNny/xy5kweFXJNfof8BP2d/Bv7Mfw9tfC/gjQdP0HSbUZZbeJVkuX7yysBl5D3Y/QYAAHNzVavw+7H8X/kes6WDwStVtVqdk/dj6tbv00Ph7w//wAF3tU+D+sW2j/Hr4L+L/h/fM2yS+tYmmtXAJBkVXAyuBn5HfqCCQcj6w+Af/BQf4M/tL2UMnhH4geH7y4m+7Y3FwLS9z8uf3Mu1zgsoyARlgM5Ir1TxX4N0jx3o02m63pen6vp9wuyW3vLdZopB6FWBFfJfx5/4IWfAH403suoWGg33gXVmIaO58OXP2WOJvmORCQ0Q5bPCjG1QMAYL5a8NmpLz0ZHtMsr/HGVJ94vmX3PX7mfYwO4ZFFfmk3/AAT/AP2wP2NDu+DPxkj8deHbXEdroXiBgHVcbVAE26MAZP3XT7q8YHFvTv8AgtZ8TP2atSTTP2ivgZrvh35ju1jREZrQjjhVcsjEZXpNn94gOPvMfWlH+InH8vvQf2LOprhKkanknaX/AIC7P7rn6RUV89/s+f8ABUz4E/tLfZ4fD3j/AEm31KYDOn6oTYXKMSBsxKFDHJAGwkEnA5BA+goJ0uYVkjdZI5AGVlOVYHoQa6IzjJXi7nlVsPVoy5asXF+asOoooqjEKjurWO9tpIZVWSORSrKe4qSis61GFWDpVUpRkmmmrpp6NNPdNboE2ndHnN5oS6Rftot82LO4YyWVwf8Alix/oehH0PHWt/wX4mmjuW0fU/kvrfhGY/65fr3OO/cVq+KvDcfifSXt3wsi/NE/9xv8PWuRtraTxVaNYzt9n17Sv9VIThpVHYn29fofWv4yx3DuZ+HvFMHkaco1E/YRb92vSV5TwU29q1JXng5vVxvRbkkkvoo1oYuh+86b+T6SXk9pL5noFFYPgrxb/bsDW90PK1C1+WVCMFscZx/MVvV/WPC3FGX8Q5ZSzbLJ81OouukotaSjJbxlF3Uk9mjw61GdKbpz3QUUUV9AYhRRRQAUUUUAFFFFABRRRQAUUUUAFFFYXijxzBoL/Z4V+1Xz8LCnOCemf8Ov86+f4m4oyvh/AyzLN6ypUo6Xe7b2jGKu5SfSMU2+iNaNGdWXJTV2aer61baFZtPdSLHGOnqx9AO5rlS+pfEqTC79P0fPJ/imH9f5D3xVjSPBNxrV4uoa6/nSdUts/Ig9/wDAfjmurRRGoVQFVRgADpX5Ssnz7j1+0zyM8Dlb2w6fLXrrviJRd6VNr/lzF8zu+eS0R3+0pYXSl70+/Rend+f3FTRdDtdAsxDaxiNe5/ic+pPerlFFftWX5dhcBhoYPBU406UFaMYpRjFLoktEjzZTlKXNJ3YVW1TV7bRbUzXUywxj16t7Adz9KxNf+IMdrc/Y9Nj+33zHaAnKIffHX8PzqDSvAU2q3S3uuTNczdVgB+RPY4/kOPrX5Xm/iZXx+LnkvBFFYzExdp1W2sNQf/Tyovjmv+fVO8t7uNjup4JRj7TEvlXRfafounqyvJrWrePpGi05WsNPzte4b7zj2/wH4mt3w34Os/DMX7lPMmI+aZ+WP+A9hWpFEsMaqiqqqMBVGABTq9DhjwyoYTGrPc+rPHZh0qzSUad/s0Ka92lHzV5vVyk72JrYxyj7KkuWHZdfV9Qooor9QOEKKKKACiivC/EX/BUD9mnwh4gvtJ1b9oj4F6Xqul3ElpeWd3480qC4tJo2KSRSRtOGR1YFSrAEEEEZpXV7BZ2ue6UVwPwO/aq+F/7TsOpSfDX4keAfiFHo7Rrft4Z8QWmrLYmTcUEpt5H2FtrY3YztOOhqppn7Zfwf1r41P8NbP4rfDa7+Isc0ls/hWHxNZSa0ssaGSSM2Yk84MqKzMuzIVSTgDNVZ83L13t5dxXVnLoj0miiikMKKKpz+ItPttettKkvrOPVLyCW6t7NplFxPDE0ayyImdzIjSxBmAwplQHG4ZPIC5RRRQAUUV5z8Mf2xPhH8bPiHqXhHwZ8U/hz4u8WaMksmoaLoviWyv9RsVikWKUywRSNJGEkZUYso2swBwSBQtXyrf/Lf7g2V2ejUUUUAFFU4fEWn3Ov3Gkx31nJqlnBFdXFmsym4ghlaRYpGTO5UdopQrEYYxOBnacXKACiiigAooqnD4i0+51+40mO+s5NUs4Irq4s1mU3EEMrSLFIyZ3KjtFKFYjDGJwM7TgAuUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUMwRSzHCjkk9qACuX+MPxq8K/ALwPdeJPGGuafoGjWg+e4u5Qik9lUdWY+g/lXyz+3D/wWT8G/s465J4J8B2M3xM+KEzGCPStNy1tYSetxKAeR12Jk4HzFBg1478Hf+CVXxR/bp8c2PxI/ay8SXklr/rtP8D2VwYo7SM/MEl2HbDnPKRkydNzg/KvNPEa8lJXf4L1Z7OHypRgq+Nl7OHT+aXov1ehB49/4KK/Gj/gpp4wvPAv7Luh33hfwnFMbbUfHmpn7MVTPLx8EwjHIC7piGHyoeK9//YT/AOCP3w7/AGO71PEmqf8AFefEKYeZPruqwiTyJjy7wI27YxbPzkl8dxls/T3w9+HGgfCfwlZ6D4Z0fTdB0bT4xFb2djbrDDEo44VR19SeT1NbVOGH156ju/wXoLEZr7jw+Ej7On17y/xPr6bBRRRXQeOFFFFABVfVNJtdcsJLW+tbe8tZhh4Z4xJG491OQasUUBtsfLf7RH/BGz4A/tHSz3V94Nh8O6tcMZJNQ0CT7DM7Fi5ZlAMbEkkEshJBx2Ur883/APwSl/aM/ZNunvPgD8d7+905SJG0TxE/yyY4CgFXibgk5KoefUAn9KqK55YWnJ3tZ+Wh6tDOsXTjyOXNHtJcy/H9D82JP+Csf7RX7KbRw/Hj4A3k+nxtibWvD27yRHjPmcGWPOCuQWTkn7pG2voL9nz/AILLfs+/tDwRx2nje18N6lJ/y4eIV/s+b+HOHYmJsbuzk/Kx6AmvqG6tY763eGaOOaGQFXR1DK4PYg8Gvn39oH/glZ8Cf2kmuLjXvAGkWuqTnd/aGlqbC4DfNyTEVDZLEncDk89QCJ9nWj8Mr+v+aNvrWX1v41JwfeD0/wDAX+jPftL1a11uxjurK5t7y2lGUlgkEkbj2YcGrFfm3q3/AARU+KX7OmoNqH7PPx61/wAOxwyF7fR9adjagk4Ad0DIyqpP3oW78ckVVX/goJ+15+xmrQfGL4Mjx9o1upxrfh8YZyFyd7Qh0AAGeY16MeRyp9Ycf4kWvxX4B/Y8KuuDqxn5P3Zfc9PuZ+l1cz498PSs0erWPy31n8zY/wCWij+eP1GR6V8w/s8/8FyvgL8c7mLT9S1648A64x2SWfiOL7LGknAKifJj6nHzFT8p4HGfrLwt4z0fxzpi3ui6rpusWb/dnsrlLiM9R95SR2P5V85xhwtgOJ8pqZXipNc1pRnHSdOpF3hUg91KErNfNPRtHJ7HE4GqpVINeq0a6rzTObvof+Er0+HXdJ/dalbf62NerEdR7/1HFdF4T8UReKNNEq4SZPllj7of8DXP6vbv8PPEa6hbqTpt422eNf4D7fzH4ipPEemSaJeL4g0ja8bDdcRr92RTzu+h7+nX1r+bsgz3NeHMwxWZ1ad61BpZlh4LSpG3uZjh495RV60UvetJNKUU36FWnTrQjBPR/A307wf6HYUVT0PW4PEGnR3Nu2VbqD1Q9wauV/WWXZjhsfhaeNwU1UpVEpRlF3UotXTT7NHgzjKEnGSs0FFFFdhIUUUUAFFFFABRRRQAU2aZbeJpJGVEUZZmOABVPX/Edr4btPNupNufuIOWc+wrmYtP1L4jSrNebrHSgcpEv3pff/6549BX5rxd4jUstxayPJ6LxmYzV40YOygn9utPalTXeXvS0UYu+nZh8G5x9rUfLDv38kurJtS8X3nii7ax0NW2jiS7PAUe3p9evp61q+F/BVr4aXzP+Pi7f78zjn3x6fzrR03TLfSLRYLaNYo16Ad/c+pqxXHwz4c1fr8eIeK6yxePXwaWo4dP7NCm9n0dWV6krbrVFVsYuX2NBcsPxfq/02CihmCKSeAOST2rl9Z+IDT3X2LRoft103HmAZjT/H69PrX1XF3HGT8N4eNfNKtnN2hCKcqlSXSNOnG8pyei0Vle7aWpjh8NUrO0F6vovVm3rfiC08PWvm3Uqx/3V6s/0FcwZ9W+Ip2xbtN0tuCx+/KP6/y+tXNE+H2+6+26xL9uvG52scxp/j/L2rqANowK/Of7A4m419/iJywGXvbDQlavVj/1EVYv3Itb0qbvZ2nO6sdftaOG/g+9P+Z7L0XX1f3Gf4f8L2fhq32W0fzH70jcu/1P9BxWhRRX7BlGT4HKsJDAZbSjSpQVoxikopei/F7t6vU8+pUlOXNN3YUUUV6RAUUUUAFFFFABX8d3w6/Z5+Ev7U//AAXa+JXgn43+Of8AhXPw31Tx34rfUte/tmz0f7I8dxeSQj7TeI8Cb5VRcMpzuwMEg1/YjX8iH7Mv7DPhL/go7/wcI/ED4R+ONQ8RaX4b8ReOfF0tzc6HPDBfIYJb2dNjzRSoAWjAOUPBOMHms6MXLHwSV/cqb+XK7/LdeZdaSjgptu3vQ1X/AG8b3/BMLT9J/ZH/AODk/wAI+E/gP44uPG/gWHxtP4btNZjnSVNc0eRHWcSPFtiuFRNxEiARu0CSooG0Ds/iL+2B4T/YI/4Oq/iR8W/HA1J/Dfg3xRr1xcQ6fB511cvJpNxDDDGpIG6SWSNAWZVG7LMqgkftx/wTS/4N6P2eP+CW3xLuvG3gm18V+KvGkkL21nrfiy/hvLjSYZFCyJbJBDBChcDBkMZl2s6hwjsp/JT9nrS7XV/+D0nVo7u3t7qOPxvrs6rNGHVZI9HunRwD0ZWVWB6ggEcitsK39bw+HjK8o0615Na6qF0vSza6c0npbV5YhL6tia8o+7Jx92/ZVPuve3ol6L79/wCCRX/B0h4T/wCCn37VMPwj1j4W6h8M/EGtW0s/h+4XX11q21N4Y5JpoZD9nt2hcRIXXAkVtrglCF30/wBqL/g6a0nwt+1bq3wh/Z6+APj39pfxD4ZluoNYm0G6kgh3wMiyNaJb2t3Lcwo7OjyskSBkBQyK4eviH4PaPAn/AAep61a26LZx3HiTWSTAoj2tJ4cuGdxj+IsxYnuST1rg/wDgnr8edW/4Ncf+CifxU0v9oX4Z+NNR8PeMbKbS9H8Q6Lp0cjaslvcpLHcWUlxJFFNbyJKhlVZd8b+WrqGUqM6c41Y4apL3FUpSn3vJXsvwXa97q1ma1oSpSrwj7zjKCXS0W2pP5Wvre17dUfqt+wz/AMHHXhT9vf8AZ1+J+peEvhf4qT44fC/w/d67cfC8ztcXetiFiojsbmKBnly5ijYG2WRHlA8thhm/IX/gh/8A8FKvjLon/BYPxt45uPhb8Svjh4q+Iy/8I/rdub+9ur7wbYy6nbg3E7/Zp3EFoqrHsZYkUADdGABX05/wbU/s4fEX9qH/AIKxfFb9sS68G6t4H+Fvix9cvNIe8jMceqz6je7xBbkhfPjhUSb5UBQSRqud2Qvzn/wSV/bB0z/gjt/wXK+MGl/GLwr4ytbzxff3nhGCCwso2mtbi71a3lt7iRJpIs2rxfvBIhYlGRlVw2RthIv+0MO5x5ZTpTbj2ls49/fTS11W8WrnPi3/ALHXjTfNGFSKUu8d+bt7jTfZ7SvY/V7/AIKQ/wDByl4V/Y4/aoj+Bfwt+FPi79oP4uW9xHb6ho+hXJtoLaRonlNvE8cNzNcXSKELxJBtUO2ZA6NGNf8A4JZ/8HFfg/8A4KCftBal8GfHHw58TfAv4z2MtysPhrWpzdJd+Qm+WEStDBJHdIqys0MsC4WPIdjuVfzI+LMnir/g34/4OEfGPx8+KXw98UeLPhH481fV7nT/ABFplkJhJHqvm3AS3mkZIftsLK8bwvIjGNZGHyOrHX/YD8G+Lv8Agtd/wcPXn7VPgvwP4o8IfBXRtSFxcazqUCwhvs2lrZx2+9S0T3UreW0kUbv5aSksxG0tz5fKVSFNtczlGTn05JK2ny31u3flWqN8elTdVRfLytcnX2ifXyvrttbXc+wfil/wdiabcfth638Mvgp+zp8RPjxo/hWR11fWtAupBdiKCby7u5t7GK0maS3jBUrJJLCHZsHYpV2+G/8Ag1e+L+i+Mv8Agtb8evH3mvpfh3VvB/iLxB5l/tia0tZNYsp902GKqVjOWwxAweSOa5L/AIJQftS6p/wbnf8ABSP4u/D34x/Cv4geINY8YW8ejaJD4d09J7/VZUvXFnLaRytGJ7a6JYB42LbkUBGYMq0/+CDfwZ8SftN/8FHf2wfAd9p58DeLfH3wt8Y6PNp8p/5AV7d6haxmB8AHEUkmxuAcKeBVYOUlyYil78vYVnf+9yv3bdb2TstY7P4kaYqEeadCb5Ye2prv7vMvev03e+j3WzP0H8Wf8Hal18R/ih4q079nf9lL4ofHzwj4PTff+IbG5uLPy13SDz2t4LC7aG3dYyyPM8bsA26NCpFei6L/AMHFmk/tkf8ABKj4rfFH4MfDfxprHxQ8DWVvY6z4KtZ2bUdGa8Xy/wC0beeCGUzWsH76US+VGcWrb1hBDV+If7JfxGs/+CW2ufEz4b/tAa3+258F/GVvOk9hpHwq8VweHLXU5VSRA16k6/PGxVPLuoTKrRsSqsAC36e/8G7f/BPxU/Zq+OXxP8LfCj4ufDa2+KHgm58O6DH448a22sN4nE8Bmju4II9HsGWElowlwzusgkfauAWrOvBSwlbl95KF7re+r5dLL3rcmnvLda2JhNwxNPmXK3NKz2s7K+v8qfN/K9n1Pnn/AINMf26/ifo/7Vvjjw7N8NfHnxXt/jFrdjL4s+IT3l3dJ4WkihvHWe+lNvKJGnZiA0s8RJU8t0r7s/aV/wCDpnT9E/ar1r4S/s7fs9/ED9pjWvCrXEWs3Og3E1vGrwOkcjW0UFpdyzwo7FGmZIl3Abd6srn4B/4NP/24/D/7Fn7Tnj79nzx94d8baX44+L2tWOiacYbKNF0a8tEvVnivVlkSWFgzqo2o5DAhguMn5v8AAHw0u/8Agi5+3X8QPB/7Q2tftY/C3Sr6KaHSfEHwa1yLQ7rxLHHcAxTh7jEV3aOjFvklDRSfKwLblXrxE1KtSin7nJo1b3nGEfd7Lk085X30Zz0abjTrSkvfU1da6KTleXe7tbsrbXZ+9/8AwSl/4OEvht/wUmbxl4f17w7qfwZ+I3w9sbnVfEGga7eLNb29nbysk80dyUiJ8n5POWWGJoy+AHCsw+bfGv8AwdxN48+KHizTv2fP2WfiX8dvCPg2A3Go+IbO8nsvKiVpAbl7eGxumhtWVCySTvGxGd0aFSK+Wf8Agjf/AME77b/goHrPxs+KPgfwH8fvCtv4u8G+JNB07x98RviNbapB4svtTgubQsYo9EgkuSJC7zyrdOsbrgmRjiuC/wCCOX/BVmP/AIN1rf4yfCX9oL4M/EKw8Wa1ew6pp0drYQw3FxLFHLAEme4kjDWbMoaK4h81SHlZVcEE4VdJ2l7r9mpWs/eneSa11VopSto9bfaiaQ+FuHvL2jje/wAMUotPTR3k3G+qVtdmfpVo3/Bxno37Y/8AwSv+KnxM+DPw78Y6x8VPBFhBaax4Htbhm1PRzdjyzqVvNBDKZrW3zLJ5vlRnFs29YQQa/P3/AINMf26/ifo/7Vvjjw7N8NfHnxXt/jFrdjL4s+IT3l3dJ4WkihvHWe+lNvKJGnZiA0s8RJU8t0r9Av8AgjH+078Vv2+P+Cc3xU02/wD2ZfBvwL8KX2i6jH4QufDVk+iaX4nkvoJipttPaPlRuQvdrKY5nk+VQVcL+df/AAaf/tx+H/2LP2nPH37Pnj7w7420vxx8XtasdE04w2UaLo15aJerPFerLIksLBnVRtRyGBDBcZO1GLhjasVH3pU4NRv8Tctaa7aq7e+qu7cpjinzYOMlK8YzleVtlbSfZ6PbbR6X5j9AP2ov+DprSfC37VurfCH9nr4A+Pf2l/EPhmW6g1ibQbqSCHfAyLI1olva3ctzCjs6PKyRIGQFDIrh69f/AOCX3/Bwf8Ov+CmHw+8bRWvhfVvAvxS+Huj3Wtav4N1K6E3mwQlgXtroIvmIG8tH3wxvG8gGxlwzfkN/wT1+POrf8GuP/BRP4qaX+0L8M/Gmo+HvGNlNpej+IdF06ORtWS3uUljuLKS4kiimt5ElQyqsu+N/LV1DKVHo/wDwQx/Zw+Iv7UP7cX7SH7Yl14N1bwP8LfFmg+LLzSHvIzHHqs+oySOILckL58cKiTfKgKCSNVzuyF4/aP6n7SL5v3U5uVrcs4p8qs9NWlo0303O6pTisW6e1qsIxjvzQduaXfRa3Vl12PW9G/4PcdD1j4fSTx/s7ajJ40m1eCxsNAg8ZmSK6tnRy87XP9nja4k8pFhWJy+9iWTaA/7g+ANX1bxB4E0W/wBd0mPQdbvrGCfUNMju/ta6dcNGrSQCbanmBGJXftXdtzgZxX8//wDwY7eDNNvfiD+0R4gltYX1fTtP0PT7a5KAyQwTyXryopxkBmt4SQDg7Fz0GP6F69TEUo0oqP2pJS8kmtEvX4m3fV2VktfOpVJTm10jdet7Su/S/Kkuiu7t3CiiiuM6QooooAKKKKACiiigAooooAKKKKACiiigDzz9pf8Aap8C/si/DqbxR481yDR9NQMIUILz3sgXPlQxjl3PQDpyMkDmvz01b9oL9pD/AILJaheaP8K7K8+EPwb88w3fiG7mMV5qMBypQMnzMSNxMcR2jKhpMH5r/wDwcTeGrjxR41+AWnX+qX1j4R1vW5tO1RIdzhS8lsBKqn5C6xtLjucgcgcXbH/gnj+1z+w/Aq/BL4vWvjfw5ajMPh/XQIwo4zGiSlolDYxlXjxuJyD81edWqTlUcLPlW9t/69D67LsLhqOFhiOaKqzvy89+VWdu1r+p9XfsS/8ABND4Y/sNaEreHdJXVPFFwgF94i1ECa/uW6nax4iXP8KAZwM5IzX0JX5taP8A8Fs/iL+zffx6Z+0N8D/Enh1UQD+2NJiLQykBdxKvhM5ZSQrggSJwON31T+z9/wAFO/gb+0uYYfDPxA0VdQm24sNQk+w3WWIAASXbuOSB8ueSB1roo1qNuSGnlseTmGX4/mdeunO/2k+ZfernvlFNilWaNXRldHAZWU5DA9xTq6TxwooooAKKKKACiiigAooooAKKKKACjrRRQB4v+0B/wTy+DP7TsEn/AAmHw/0G9vJAf9Ot4Psd4Cc8+dFtc4JzySM9QQSD8neMP+CEOq/CTWZNa/Z9+Mvi74d6gx3NZXVzJJbS4OAvmRlWxtwPnV847A8fozRWNTD056tanpYbNsXQXLCbt2eq+53R+aOr/tIftvfskWDQ/Ej4b6L8YPC1uuLjUdCUG6MRGd37kBsqSAS0PWPk/MHb6O/ZH/4KBeEfit8Abjxhefb9B0rS96ataXsDtc6DMn+tjmVV3bADv3hcbfmIX5gv1BXM+L/hfpXiO3vJk0+xj1G6iEb3AgUPOq7sRucZZfmbg5A3GvynxE4RzCVSjxPw7rj8Inyxe1ek9amHm+qla9Nu/LUSatds76eaYatD2NekoqTV3HS3nbVfNfccn4Q+JPh/VY4/EXgzXtI8SeGr4/vJNNvI7mJfcMhIxzkH39CK9Nsb6LUrSOeF1kikG5WHevzk1n/giBocniq+8Q/CH4geJ/hP4wtZ2lhtYZDNp8RLguAgIfYcY2ZK8LkEV9Batr/x1+Cf7Pq3EemeE9c8d6ZHumsllf8As3X2QfOIH+V7eSRRlQ4KhvlOR84/N+FeK8Lw1CnnmX3/ALBxkryXXA15StJNbwoyneM47UqmqtGR147LqNdqnSqXqLTVWbXTyenVdNz6eor4H+Dn/Bf/AOG+peIR4e+KnhvxR8J/EUJEdwuo2jzWqPkKQSq+YoyTyyYAGSeuPsL4PftIeAv2gdK+2eC/F2g+JIQMt9hu0kePocMmdynkcED7w9RX9PUcRSqrmpyTPBxWW4rD/wAaDS79PvWh21FFFbHCFFFR3d5FYW7TTSLHHGMszHAFZ1q1OjTlVrSUYxTbbdkktW23oklu2NJt2RJXO+JfHi2Fx9i0+P7bqDnaFXlYz7+p9vzxWfd+IdQ8dXDWukq1vZKdst0wwSPb0+g5+lb3hrwlaeGLfbCu6Zh88rfef/Ae1fiVbi7OeM6ksFwZL2ODTanjZRvzW0ccLB/G+ntpfu468qk7HorD08OubEay6R/+S7em5l6D4DaW7/tDWJPtl43IQ8pH/Q49Og/WuoopssywRM8jKiKMszHAAr9D4U4NyjhjBSw+XQ5eZuVSpN81SpLdzq1HrKT1bbdlskloctfEVK8rz+S6LySHVm+IfFVn4ag3XEnzkZWNeXf8P6nisXU/HdxrN21loUJnk6NcEfInuM/zP5GrXh74fxWM/wBr1CQ398x3F35VT7A9fqf0r4TGeI2Y8QV5ZbwDTjV5W4zxdS/1am+qhbXEVF/LD3E7c07XR1RwcKS58U7dord+vZeuvkZq2erfERt1wW03SzyIx9+Uf1+p49jXUaNoNroFr5NrEsa/xHqzn1J71cor6ThHw3wGTYmWa4upLF4+atPEVbOdv5aaXu0qfaEElbRuVrmOIxkqi9nFcsey2+fd+bCiiiv0U4wooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKAPz5/wCDjzRp/wDhjPwrr1v5hk8OeMLS5BU8R7oZ1DkezbR9WFfdHws8Ur45+GPh3Wl8nbrGl216PJJMeJIlf5Sf4fm49q4n9tL9lXR/20P2ddc+H+tXFxZ2+qeXNDcQsA0E8Th425BGNwweDwT3r4X8NfEz9tb/AIJzeGNN0nXvBOk/GLwDodulrBPpILXdnbRII4wdgDqEULktGwwjEtjL1xyk6dVzadmlt5H0FGnHGYKGHhJKcJS0btdO2zel7o/TPV9Gs/EGnyWl/a219ay43w3ESyRvjkZVgQa+Vv2h/wDgil+z/wDtCma4k8Jf8Inqkxz9t8Oy/YmHGP8AVYMP/jn6cVyPwH/4L2fBn4k6kdJ8ZLrXwv16EiOa2123IhWTOCPNUfL2++q4yc8DJ+xPAPxL8O/FTw/Dq3hrXNJ17TbgZjubC6S4jb15Unkdx1Fac1GsujOOVPH5fK/vQ89bP9Gfndcf8EzP2oP2Olmufgb8cLrxFpMZJj0LxASVXjAYK++IsB1wFztQEMBhZbb/AILI/Gf9lvUItP8A2hvgLrGn26lkfW9CDfZ5WUuTtDFom4HGJRwpbkc1+lFQ3+n2+q2j291DFcQycNHIgZW+oNT9Wcf4UmvxX4nR/bEaumMpRn5/DL71+qPnX9nr/grR8Bf2kktYdH8eabpeqXSbv7O1k/YLhOvGZMITweFY9vUZ+jLO9h1C2Wa3mjnhf7rxsGVsccEV8y/tCf8ABHv4BftEpPNfeB7Hw/q0u5l1HQT/AGfKjnPzFY8Rtyc/Mp5H1z853H/BJP8AaC/ZPla6+AHx41FtPs0xb6Hr7fu5FySEwQ8JxtQDKAct90HaT2laHxRv6f5MPquX1/4NV032mtP/AAJfqj9KqK/NW3/4Ku/tGfsnahHY/Hv4FXN7psWyOTXvDyusXUDzDt8yJs5zgFMEHj+FfoX9nL/gsl8Av2k/slvY+MI/DusXhVU0zXkFlPuOPlDZMbEE44c9CegJqo4qnJ2vZ9noYV8lxdOPOo80e8XzL8P1PqWiq+l6va65Yx3VldW95bTAMk0EgkjcEZBDDIPFWK6DygooooAKKKKACiiigAooooAKKKKAOV8daJNp92muaf8ALcW/Myj/AJaL6n8OD7fStW2ns/HfhzLLuhnGGX+KNv8AEVqkbhg1xU6t8NfEvmrn+yL9sMo/5Yt/9b9R9K/n/ivA0eD82q5zUgpZRj3yYym1eNKpP3ViOXbkqXUK6/wzd9T1aEniIKmn+8j8L7rt6rdfccl49+Bvgz4lW0nhT4i+FdC8T6TdKVt5L+0WTaD6ORuQ56FSCrAEHoR82/GD/g37+FviDVV1b4da/wCKvhZrCsZBJpl200BYn+4zBlGCwwrAcjsCD9xeItAt/Fmk+S5X5hvilXnaexHt/Osnwb4jms7xtF1P5buDiKQniZe3Prjp6/WtuH8RPgvMqXC+aS58vru2DrSd+RvVYWpLul/Ak370fcu2kjrp5hiXB1sNNxkvij0f9623rp5n59N4H/b3/Ynl+0ad4g0P48eGbc7pLa4O68EecnAfZKDk4wryYBHGFyvSeBv+C+ui+DNch0L43fDHxx8LdalPDS2TSWxXOA5EmyQL3yFYDOMnGT+hOa87+LmneH/izpsnhy98PaR4rjuOJIr+zjurdOCM4cEZAZhnoNx9SK/ReLuLss4YwixWPrNOT5YU0nOpUn0hTgvelJ9lot20tSsPiqeMly16CfeUfct5v7P4EPws/a8+Hnx18Df8JD4J8S2HijTt3lhrMtuV8A7XVgGRsEEhgCM9M8VsWnh3UPHVwt1qzNb2SndFaqcEj39PqefpXkHxj/4J0aX8T/2e18A6D4m1j4Z2EYxGnhaOK0hVc5MbKFBKEk7grKGyc5r5mb9lz9uT9jAovw8+JmkfGDw3b8x6dro/0o4YnaRMd2DuyStwDwemAT+d0+Fs84wqRxvGlN0cEmnDBQlfmtqpYqSfvvr7GP7uOnNzO5tSo4NJxwdVKd953Wnk7WXqfpNaWkVhbrDDGsccYwqqMAVJX58/B/8A4LReMtC8e6f4L+MHwF8feHdfupFtIrjR7KS7W8mzglYmVflGHYlXbAjf0xX1xrv7QWm3msWOjQalpui6jqUPnRxajeRQXJQfe2oW529CVz0P1r7jibxAyPhqjSws7yrSXLSw9KPNVnbRKFNWtFWtzPlhG2rR51TJcWp/vFpvzXTVu91f/M7jxL4zs/DMe2RvMuCPlhT7x+voPrWHFoOqeO5Fm1N2sbHOUtk4Zh7/AOJ/IVqeGfAlroj/AGiZvtl43zGaTnB9v8etb1fIw4Lz3i6SxHG0vY4XeOCpS0fb6zVjZ1X3pwtTVlfm1MvrFLD6YbWX8z/9tXT1epX0zSrfRrVYbWFYY17Adfcnv+NWKKK/ZsHg8PhKEcNhYKFOCSjGKSiktkkrJJdkefKTk+aWrCiiiukkKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKAPM/jx+xv8L/ANpjSfsfjbwVoWuIG3CWS3EdwnJJxKmHGdzdD1YkYPNfGvjz/ggt/wAKw1a58QfAP4qeLvh3rTHelpJdM9q33SBvTa/ZuGDAgqOACG/RaisamHpz1ktT0MLmmKw65ac3bs9V9z0PzQX9p39tz9hfdD8Qvh/pvxl8JaecyaxpIP2vylByS8QyAQu7dJCSMjJyQtes/Af/AILxfA/4qXEOneJrrWPhzrzv5T2euWjCNXBII81AQORj5gvUejY+1iMivKPj/wDsOfCf9qCKX/hOPA+ha1dSJ5f2xoBHdoOMFZkw4IwO/TjpxWfsasfglfyf+Z1/XsFX/wB5o8r7wdv/ACV3X5Hofg/x1onxD0aPUvD+saXrmnyYKXWn3cd1C+QGGHQlTkEHr0INalfnV42/4ISah8KdYk1j9n34v+LvhzdqWmTTru5e4tGk4KrvQhgmf76yHhepGayk/a4/bW/YkCp8TvhjZ/FrwzCADrGgAPcQxjdlmEI3EqMEmSNQQhy/Jej6xKP8SLXmtUH9k0q2uDrKXlL3Zfjo/kz9J7i3ju4HimjSWORSro67lYHqCO4r56/aJ/4JU/Ar9pn7RPr3gPTLPVbg7zqWkj7BdB85LEx4Dk853g5yT1wR57+z9/wXR+BPxp1E6XrGrX3w71qNvLltfEkP2aJHG0EecCUGGJHz7SNjEgDBP134c8U6b4v0uG+0nULLUrO4QSRT20yyxyL6gqSK0UqVVdGckqeNwM7tSg/mvx6n51X3/BGT4tfswaj/AGl+zv8AHTWtIhhczroWuuxtHOB8nyho2BJkxvjyMqCxILmtF/wUg/au/Y4McPxu+Ccni3RYSPN13w8vITj5mMW+LPbDBOSOnQ/pbSOokUqwDKwwQR1rP6ql/Dbj+X3M6/7alU0xlONTzatL/wACVvxufI/7Pn/Bbn4A/HlYYJvE7+C9UciNrPxFGLTEnzZUSZKEfKcEkZyoOGO0fV+i67Y+I9Pju9PvLW/tZRlJraVZY3Hsykg14r+0P/wTX+Cv7UEUzeKvAmkyX0sbJ/aFin2O7QkYDb48ZYfKQWB+6oOV+Wvk/wAQ/wDBDrx1+z/qd1qn7Ovxw8TeDy585dI1OdzbyOCSFaSPhl5wA8Tc9Sc5BzV4fElL00f3D9jltf8AhzdN9pK6+9a/ej9JKK/NG5/bs/bI/YsRk+LfwitfiJoMLZOt6AMskfzZY+TuHygEnfGmQoyRnfXs3wC/4LpfAX4y3g0/WNavPh9rQk8l7TxFAbeMPxx5wyg5JHzlcFT7ZqOKpt2ej89DGrkmKjHnppTj3i+Zfhr+B9kUVm+E/Gmj+PNGj1HQ9U07WNPm5S5srhJ4n+jKSK0q6DypJp2YUUUUCCiiigAqtrGlQ63p0trOu6OQY91PYj3FWaK5cdgcPjMPUwmLgp06icZRaupRas011TWjKjJxalHdHI+C9Wm8P6m+hag3zIc20h6Ovp/h+IrU8ZeE18SWatG3lXtv80Mg4564J9P5Gm+OPC3/AAkNgskPyX1r88LjgnvjP+cGl8EeKf8AhItOKzfLe2/yTIRgk/3se/6Gv5/ynKcPhJ1fC7ihOrhasW8HUk9Z0o6ui5bqth9HCS1cFGSs4s9WpUcksbQ0kviXn39H18zFMHiLxUFsLlfsEMIC3Ew6zfTHXjsOPX0rp9B8OWvhu08q1j25+855Zz7mr1Q6hqUGlWrTXEqwxL1Zj/n8q+54b8O8q4dqzzzM8TPE4iMWvrGJknKnSW0Yu0YU4qPxySTm7yk9bLmrYupWXsoLlXZdX+vl2JqxPE3jq18PHyVzdXjcLDH1z7nt/OsmfxJqXjeZrfSI2tbMHa90/BP09PoOfpWz4a8E2fhtd6r59033pnHzfh6V4VTjjO+LJvC8DxVPDXtLG1Yvk7P6vTdnWkuk5WpJreRosNSoe9idX/Kt/m+npuY9r4R1Dxhcrda3I0UKnMdqhxj6+n8/pXgf7U//AARt+DP7V3iebxBqlpr2ieJplAOqaXqTrKxXGwlZN6nbgAAAYHTB5r6sor7LhLw5yjIeevTUq2Jq/wASvVfPWqPzk9orpCKjBaWQv7VxMZqVKXJbZLRL5dfmfmnc/wDBPT9rj9jiVr/4O/G6Tx9pNvyNC8SM26ROpVRM0ked391o+M+pU2bD/gs98Vv2Z7u2039oT4Ea/oqbws2t6OC1qEP8e07kbgOcLIPuHA67f0furqOytpJppI4YYVLySOwVUUDJJJ4AA71+b/7aX/BSvxH+1v8AEC8+An7M9nZ+JdU1IC31jxYs4ey0+IuqMYiAQygn5peQAPlVuo+uqwVJXhJrst/wPXwOIlj58uIoxklvL4Gl3bWn4an2J+yL+3V8Nv24PDd9qXw+1qbUP7K8oX9rcWr29xZtIpKhlYYP3WGVLDK9cEE+wV+P/wCxH+zTcf8ABOn/AILNeDfh7e6sutN4m8HyTTXuWVHuJIJXfaP4h5luVAYA4Kk8jNfsBW2GqSnH3907M83OMHRw9ZfV23CSUlfs/wDhgoooroPJCiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigDx/49fsCfB39pi2kXxl4A8P6ncS/evEtxb3mM5IE0e2QZ56NxuYjBJNfIPiz/ghf4h+B+q3Gufs9/GLxZ4Jvxjy9OvLlnt2AyQN64zzkYdSDvPIAIb9HqKxqYenPVrU9LDZti6C5YTfL2eq+56H5qv+3L+2F+xDL9l+L3wptvid4fsciTxD4eBVpF3YDlokKgHjAaJD84zz8te0/s5/8FwvgR8e5bexvtcuvAmuTN5RsPEMX2f95wColUtHwTj5iufwIH2Cw3DB5B4IPevE/wBof/gnX8Gf2o47hvGHgPRbu+uE2HULaP7JeKcABvNj2ksNqjLZ4UA5HFZ+zqw+CV/J/wCZ0/XMDX/3ilyvvB2/8len3NHr+geJNP8AFemR3ul39nqVnMoaOe1mWaOQEAghlJBBBBBHUEGrtfm34k/4Ie+Of2f9Sm1T9nX42eJPCTgmRNK1SdzA5JYlTJHwVOQMNGeVBJJwVpxf8FDP2uP2MLmSP41fBtvHHh22bdLrfh5NpjiH3m3RB4/lBz86pkLgkcvR9Ycf4sWvPdD/ALHhW1wdWM/J+7L7no/kz9MK8b+Pf/BPv4N/tL2Zj8X+APD99NyRdwQfZbpSTn/WxbW6knknqfU15f8As9/8FrvgH8emhtZvFUfg3V5Agez8QgWaqzAcCYnyyAcjJK/dyQAQT9WaVq9rrtjHdWNzb3ltIMpLDIJEb6EcVrGVOqtLNHBOjisHP3lKD+a/E/OvxP8A8EHdW+D+tXGtfAD4zeLPh9qUhLC0u5nkt2xgqpkjIbb8qqdytlc5yPlNBf2qP23v2L3EPxB+Gem/GDw/bqI49R0P/j5kxsXDGIFixGCN0OSzty2ML+ldFZfVYrWm3H02+47VndWa5cVCNRea1/8AAlZnxJ8Bf+C9vwP+Kt1Hp/ia61b4ca0FXzbfXbYrCjnt5q5AGMHLheD6Amvr/wACfEzw78UNGj1Hw3rmk69YyDKz2F0lwh6HqpPqPzFcT8df2J/hR+0rbyL428B+HdcmmOWu3tFju+3SdMSDoP4q+P8Ax7/wQJsvA+vTa98Dfip40+GOrbsxQC6ea3jXqFV1ZJBglyMs33uxBJL14bpS/B/5Fezyyv8ADKVJ+fvR+9a/gfolRX5qy/Gn9ur9ii6C+KPB+k/HDwrYkRyXelx7r6YfOd48sCQZ6cxMBtQYUnB7z4If8HAHwh8carb6P4407xJ8M9eYsk8WqWhltoZASNpkUbweP4oxyccmnHFQvaXuvz0M6mR4nl56Nqke8Xf8N/wPu6iuY+Gfxq8I/GbQ4dS8J+JtD8RWNwAyS2F4kwIOcZCnI6Hr6V09dKaeqPJlGUXyyVmFcj4z0qbw5qq67YLypxdRjo49fx7++DXXU2SNZo2RlDKwwQRwRXxfHnBtHiTK3g3N0q0GqlGqvipVY6wnH0ekl9qLcepthcQ6M+bdbNd11RzepfE21W2iWwje8vLhQUiUH5Ceze/sKgsPA914gulvNemaRuqWyHCoPQ4/kPzroNM8OWOjSs9raxwu4ALAc4HFXa+JwvhrmmeVY4rj/ExxCg1y4akpRwya2nUUverSe9p+5G7Si9zqljIUly4Rcvm/i9F2+Wo2CCO1hWONFjjUYVVGAKdRRX7PTpwpwVOmkklZJaJJbJLsebvqwrH8f/EDRfhZ4P1DxB4i1K10fRdLiM91d3D7Y4UHUn/AcmuR/af/AGqfBf7IPwwufFnjbVBp+nw7lgiRd897KFLCKJe7HHcgepFfnf4X+Gfxc/4Lm/Euz8ReOI9W+Hv7O+l3Jex0mOQQ3Oslc4bHJZiCAZWBRckJk5Izq1uV8sdZdv8AM9TA5b7WLr1nyU1u+/lFdWTfFL9pX4q/8FpviLdfDv4Nf2n4L+CtnIYte8UXVhtbUl3KpUMTzgEssKMrMDl8ACvvj9j/APYy8D/sSfC6Pwv4L09YVk2SX9/Kqm71OVUC+ZK4Az04XoMnHU57T4R/CLw58CPh5pnhXwnpVvo2g6PCIbW1hyQoHcsSWZj1LMSSeprpKVKjyvnnrL+th47MvaQ+r4dclJdOr85Pq/wXQ/OH/gpKG+Gf/BYr9lnxfHmOPVpDo0zGPcjZmMR78sVuse2FNfo9X5uf8F8tRtdP+In7ON/p8n2zxZovi/z7TT7NhJfyxmS2fMcK5ZiXjjC8fe4GSa/SGMs0all2tjkA5wfrU0dKk15r8jXMfeweGqPtJfdJ/wCY6iiiuo8UKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKCM0UUAeD/tBf8Ez/gj+0ytxJ4o8A6K2oXA51Cyj+x3YPH/LSLaT07579ySflfVf+CL/AMTP2ZNRm1f9nf43eIdFWJG2aHrUpkt5wA5Vdy4jyCcZaMf6xzlfut+kFFYzw9OTu1r3Wh6WHzfF0Y8ilePZ6r7mfmzD/wAFI/2ov2LpYbX47/Bo+LtDjZY38R+GhyV+VRIyxhk5POGWL5pAODha99/Z4/4LN/AD9okw29v4yh8L6rMWUWHiFfsEmV7B2JiJIwQA+TnA5BA+p5YlniZJFV0YYZWGQw9CK+f/ANoT/glv8DP2l7aT/hIfAWk218+SNQ0pPsF2rH+LfHgMQcH5gQdoByvFZ+zrQ+CV/X/M6frWAr/x6Tg+8Hp/4C/0Z75Y6hBqdqk9tNDcQyAMkkTh1YHkEEcGpq/Nu/8A+CO3xj/ZYv5NQ/Z1+OWsabbeaZE0LXWJtgCxO0kBo3GGP3oxyM9cFasv/BVf9oz9iqPyP2hvgrNqWj2zqj+JNBIjhbcVA3OpaAtksAMx7uB2LE+s8v8AFi1+K/Af9jKt/uVWNTy+GX3P9GfpdXn/AMb/ANlX4c/tIaRJZ+N/Bvh/xEjghZbqzRp4iRtykuN6nGOQR0HoK8j/AGdP+CvvwH/aRNvbaf40tNB1i4AI07W/9ClOQTw7Hy2+6w4bIwMgBlz9LWN/Bqdqs1tNDcQv92SJw6t9COK2jKFRaWaPNqUcThZ++nCXzR+f3xP/AOCAnhbQddk8RfBPx54u+FevwhntYYb2S4tFYnIXeWEyrkJ1ZuE7nDDmv+Ep/b0/YfiZdS0/w/8AHfwrYxAtcxDzL5UXAyNvlzM20c7lkycnOfmP6WUVi8LBawvH0/yPQjnleS5cSlUX95Xf37/ifA/wY/4OAvhvrmsR6J8UPDPif4T+IDJ5UkeoQNcWsLDaDufajqMk9Y/4TnBwD9j/AAh/aE8D/H3RF1LwX4r0LxNZtj95p92k23gHBAOQRnBBAIIIOCCKT4ufs7+Bfj1okmn+MvCeg+I7WVQpF9ZpIy4yBtfG5SASMgjgkdzXxv8AFf8A4N/fh1ea42tfC/xV4s+FetRv9otzYXb3FvFN8vIVmDqpG/hX4L8fKNlH7+HaX4P/ACH/AMJlf+ak/wDwKP6P8z76or81ItE/b6/YrIW1vPD/AMevDsGZWEz777YMZXLeXMWOeADJ368Y6X4Yf8HAXg/T9ZXRPjF4D8YfCrWumbm0knt3OMhuVWRVb5SDtIG8fMVBehYqC0nePr/mKWR15LmwzVRf3Xd/dv8AgfoNXzr/AMFAP+Ckvgj9gjwQ0mpzQa14xvoi2leHLe5Vbq7YhgjOBuaOEsNu/aec4BIxXjH7Zf8AwWu8L+HNA0/wx8Bri3+J3xM8VN9n02CwtJLm3sS2QHkxt3ODyEGemWwvWT/gn9/wShuvCPjpvjJ8dr5PGnxc1S4+3JHMita6K3zY2gfK0nOQQqhOAACCSSrOb5KO/V9F/wAEqhlsKEPrGYXS6R2lL/Jd39x59+zB/wAE8/Hn7f8A8VrX43ftOeYtnHMJfD3gtnkWG2hDl1EsZI2JuI+XJLgHdgYFfpNpGj2nh/TILKwtbeys7VBHDBBGI44lHRVVcAAegqxVbWNYtPD+l3F9fXMFnZ2qGWaeZxHHEoGSzMeAB6mtKVGNNab9WcOOx9XFSXNpFaKK2S8l/Vyzmvh//gpn/wAFmfDH7HMF14S8FtY+LPiY0RJgBMllowKkiS4ZSAWHDeUGBx94qCCfMf2nv+Cmvjv9t34nXnwa/ZVhurgqfK1nxsiPHBZx7irGJ9p8tDjAlOC3O0Y+avk7wR+wpY/tCftIr8D/AIZ6ofEtno9wtz8SPHtzHsa8lVv3kNs7Fm8oMGCgZMj/ADMdoGOXEYqT92j6X/y/zPoMryOlB+1zDRJX5ey7y7X6Ldnon/BJj9jnxZ/wUT/aGk+Pnxkur7XtA0e8MtkNQh3R61eRsCoCkCP7PGc5VAV3JtOMc/s3XP8Aws+GGh/Bf4eaP4V8N6fDpmh6HbJaWltEDtjRRjvkknqSSSSa6CujD0VSjbr1Z4ubZlLGVue1orSK7IKKKK6DywooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAoqvqupwaJpdzeXUnl21nE00r7S2xFBLHA5OAD05r43+AX/AAcK/se/tPfGTw98P/BHxih1jxb4quxY6VYyeGdZslu52BKx+bPaJEpOMDc4ycAZJAJD35+zjrLTRb67aefQJe7D2ktFrr00318up9oUV81/tuf8Fe/2df8AgnN400fw78ZfiIvg7WtfsjqNhbDQ9S1FprcOYy5NpbyqvzKRhiCcHAp13/wV1/Z5sf2Kbf8AaJl+IW34OXV59gi8Qf2FqZ3T/aGt9n2b7P8AaR+9VlyYscZzjmpUouLmnonZvpe9rX730t303KlFqSi1q+nyv+WvprsfSVFec/sp/tZfD/8Abc+COl/Eb4X+IP8AhJvBusyTRWeofYbmy85oZWikHlXEccq4dGHzIM4yMjBr0atJRlF8slZmcZKSvEKKKKkoKKKKACiiigAooooAKKK4v49ftFeBf2XPh5ceLPiJ4s0Pwd4ft28r7Zql0sCzSlWZYYgfmlmcK2yKMNI5GFUnij+vvDV7HaUV4l+2x/wUY+DX/BOrwRoniP4yeMf+EP0XxFeHT9OuP7JvtQ+0TiMyFNtrDKy/ICcsAO2c8VzXx2/4K6/s8/sz/s5+A/i142+IX9i/D/4mJHJ4a1X+wtTuf7SWSHz0Pkw27zR5j+b96iY6HB4qeZWcuiaT8m9k+zfRbsaTbSXVNrzS3a8l1fQ+kqK5n4M/GHw5+0F8J/DvjjwhqP8Aa/hbxZp8Oq6Ve/Z5bf7VbSoHjk8uVVkTKkHa6qw7gV01aSjKMnGSs1uiIyUlzR1TCiiipKCiiigAooooAKKKKACiiigArN8YeD9L+IHhi90XWrG31LStRjMNzazpujmQ9iP84rSooGpNO6Pw+1H9gj4b/sg/tq3Xwl+M2kXl18N/HDMfB/i5JHt7qwncRgb5U+Vgp+RlcFQSHwMmvp28/wCCSHx0/ZUuY7z9nf466odLh2v/AGD4kmPkShTwoKq0R+UKB8icbhuAOD9Uf8FGP2JNH/bk/Zy1bw7cQ2sfiSxhkvPD2oOvz2V4qHZ8wIIRjhWx2OcHFeL/APBH/wDbc1bx3pOs/BH4mTfZfid8MJ30otcswl1mGN5l3Lu5Zo1iwT3Xa2OprzVh4Qqckuuz2+R9jPNsTXwv1im7uOk4tJprpJJ9+tuup5vY/wDBWv4/fskzW9n+0J8EdRl08kR/8JBoMf7qTooYhS0XzMVyNykFjhcgJX05+zr/AMFZ/gP+0wY7fRPHFjpuqSYB0/WR9guAxONo3/Kxzj7rHOQOvFfRl5Zw6jayQXEMc8MylJI5FDK6kYIIPBBBIIPY18z/ALRX/BIH4C/tJRyS6l4Js9C1SZ976joYFjcOSWJLbRtY/MeWU9FByFAro9nWh8L5vX/M8j6zl9f+NTdN94O6/wDAX+jPpm3uY7yBJYZElikAZHRtysD0II60+vzVu/8Aglf+0d+x9511+z/8cb7UtNUkQ+H9fOY4QWX7vmb4eec/Kp+UfeJytjSv+Cwvxj/ZUu00v9oz4H6xaQQSCOXxFoAzA4w2SEOYnJ2sQVlUEDpj5qPrXL/ETj+K+9C/sZ1VfB1I1PLaX3P9Gz9Iq5n4lfBjwj8Y9Kax8V+G9E8Q2rKUCX9mk+0H+6WGVOeQRgggEYIBrx39nL/gqn8DP2nbW3XQfHWmafqVxnGm6w4sLsEdQA52t0/hY9R6jP0RW8ZRmtNUebUo18PO004y+aZ+XP8AwTU+Evh/9nn/AILTfHHwNY6Pa2Vjp+kvd6Arof8AQoWkt3KQ7vVJyCw7IwzjNfqNX5w+Mdvwn/4ON/DtwgmWLx/4PMborbt7CCVchcjaubVWPXo59a+nf28f+CjPgX9gvwSLrXZJdX8TXygaX4fsiDd3rMSAxzwkYI5Y8+gJ4rmw8o04Svok2e1mtGtiq9F005SnCP37P8j0/wCPP7QPhH9mb4bX3izxtrVtoeiWCkvLLktKwUkRxoPmd2wQFUEk1+a+peL/AIzf8F1fHLaf4dbWPhj+ztYXuy6vHQx3OuIrc4IGJHG3GwMURm+bdjjo/gb+wT8UP+CnPxH0/wCK/wC01calo/hOFRceH/BEI+zqIy2V85GyyKR94MBI+V+ZRwPr79sf9qvwX/wTi/ZhbVJLe3tY9OtlsPD+jW6c3MgAVI1UdFXILMeMd8kZmTdRc09Ifi/+AaUY08HNUsOlUxD0vvGL8u789kfJ/wC234+0P/gnr8GNF/Zl/Z80e6PxE+IKR2xms5C+oQRyDy2upGiG8zOqHkBQoJcd6+pf+Cbf7Cmj/sJfs+WOhwqt14o1ZVvfEGpPGomurphkpuBJMaZKqNx6E8FjXgf/AASA/Yv17UtW1L9o/wCLLJqXxE+IIa605H/5htrJzu29FZxgBedqheck4/QCqw9O79rJW7Lsv+CYZtiuSP1OnLm1vOX80v8AJdAooorsPACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigDB+Kf/JMfEn/YLuf/AEU1fxJfswaXrXwS8PaJ+0Nos0yv8LPiHolu6L08yRbi8hOQQefsEqkdww5Hf+3H4k2st98Otfggjkmmm064SONFLM7GJgAAOSSeMCv5nv8AgnV/wSe+MfjP/gjh+2b4P8VfCH4meGfFtyfD/iDwrp+seFr6xvNXuLB7qWSO1iljRp3MZePagY5mUYJIBwo1JUa9bFQ3pxpyX/btW8vX3b6b9tbG1anGrRpYee05Ti/+3oJK/ZXtr5Hnf/Bef4hR/wDBSn/gox8fPHWg3kl14N+CPgTSWsrmEhopY2urCDbu245uNUmPXkRkhiBX2L+zn+0r/wAMmf8ABof4U8Z/8IB8M/iZ9j8UT2/9hePdD/tnRZvM1ydd72+9NzpnKnd8p55rwP8AYY/4JRfGDwH/AMEKf2xdS1j4Q/Eqx+JPjq88P6Fofhu68LXsWtXdrZ6ja3U0kFo0InkjYzZLKCv+jN02GvePEv7Gvxfn/wCDRLQ/hrH8KfiS/wARofFX2h/Cq+Gb062kX9tzS7zZ+X5wXyyHzsxtIPTmtalNYfC1aFPdOk35uU1OT+6WvZpk05Os6dap/NUXoo0VFf8Akydu9/M+ov2R/wDgtZ4T/ZV/4N/fDX7RXir4a+BvCbX2qX+kaP4J+HekjQtIvdQN7crFFFGWlFuHWF5ZZTuxtkYKzFUb5sl/4OLP+CgGl/szW37SF5+zV8Kx+zrNqij+0lF0t61mbvyAu7+0DKuWHlC6Nn5Jcg7CCENvwb/wR0+LX7Y3/Brv4B+FkHhfWfCXxc8D+KNQ8UWHhrxLZyaPdagVu75PszC58vyWlhuC8byYQlUBZVYuOJ+CP/BR3/gob+zh+wH4X/Zr8Dfsg/FTQ/iF4SePw3p3xDbwzdXVnb2yXBVMQTWbWRIXEf2p52gKAybedw2xTaxNbl+JOHIrXTjaPM+zd7rV6duksaNvZU7/AAvn53ezTUpcq8ly63Sd+/b65/4Kpf8ABwF8S/2T/wDgnJ8Ffjd8P/hjb+F9e+Jmqvp+reGviToeoR3GkFLd5GCKktq7qXQFJuUkjZWCqSQvF/sa/wDBxV8dPjbf+K/i58Rvg/p/w+/ZR8EeDpNfuPE03hvUlvfEV7GIbRbPTrt7j7HJJPqDsEjCv5ca7HkLAyHzf/g4J/Z3/a0/as/4JQfs+2/j/wCG1x4y+NFv4mmvfEWk/Djw/d6pHpMRtJEj88W7Tgy42+ZJGRD5jlY8qAzfbGp/8E49W/a9/wCDdDwd+z/LBceB/FuofDPQoorfVLaS1fTtWtoba5EN1Gw8yPNxEUkBUsgdjtJGKyrc0I4urCzcZqMUtUlKnq4/zcru1um7Jt7lUUpTw1Oo7KUbyb0elTr0V1u1qley6Hw1o/8Awceft3ftEfBjx18dfhP+zP8ADVvgL4JuGW+u9Skub++sY4o42nzIt9bNc7A+9ngtNsSt82djMfrjwp/wc6/CnXv+CTuq/tMXXhfV7PVdH1geFJfBS3iyTya28XnRW6XWwL9neLMnnmMEIkmI2dQjfm/8Avi1+3B/wT8/4JyfE79je6/Y1+JXii68QJqOl2PirTdMvL6x0mDU4gLhQ9pbzW15xLKyyJcqI2fDZ8srXpnhH/g2F+McP/BCXxF4DvF0u3+OmqeNIPH1t4c/tCFodlvaSWiaa1zv8gXDpNNJv3mLcY0LgbnBW0pTdHWKjT5Xu3Jyj7Redo3a0+/rVGzqw9tpJyqc0do8qT9m/K8rJ6rTt015f+Diz/goBpf7M1t+0hefs1fCsfs6zaoo/tJRdLetZm78gLu/tAyrlh5QujZ+SXIOwghD97ftK/8ABXz4neGf+Ca/g34ufCv9mH4weLPiZ4/BtYPBl14W1OSTwxOI3L3N6sUAlktVcIY2QR/aFkUq0fzFPze+CP8AwUd/4KG/s4fsB+F/2a/A37IPxU0P4heEnj8N6d8Q28M3V1Z29slwVTEE1m1kSFxH9qedoCgMm3ncPVP+C5fwf/4KEfH/AP4Ja/B9NQ0q8v8AxPM16vxR8K/C+OZpLiOYQRWMVxDBNK98ApmM6W+63Ej7thSNZAsVZUZqlrHmioy6tPfu2ns3ZOLas9btYVSlVg6ukuWTkuiaTa9GrOyu1LZpbLiPj3/wcpft1fsCeIvA95+0B8B/gb4f0nxVFFqS6BbX72niO6sWydxgGqXM9kThlD3NrhXR0KllZR7j/wAFif8Ag5J8dfsP+Iv2fNX+Ffh7wPqngH4zeELbxhcS+J9LvJtRtreeRCAggu4lVhC3KsH+YdSK/Mv9rr9gL4xfG/8AYe8E/wDCsf8Agnz4m+DGkeE9aFpq9wtjqGveNvFmoS2vz3Bjlt1vodOTyidrKbdZZ1CMSGA9Q/4LX/sLfHH4zfAf9iG38J/BX4veJLnwn8G9M0jXINO8GalcTaNeRCNZLe5RYS0MqlT8jgHAzjHNdEYc1WnC6X76Mb94Spzd2r6q6i1fl6aK9iIx5ou91em36SU4LTomk5bXW6vK1z3f4rf8Hcvx0+CH7YGjw+Mv2dYvBPwV8QXMd3pln4i0nUtO8Vaho7/u1vop5JFt3LH96FS3ZMZiEhP76vnL/g7R8f8Axg8Sf8FMPCVt4s8M6LpnhPR7OP8A4VvcW0ytJrto7QvLLcqLh9ji63x8pCSiL8pGHP0x/wAHdH7Hnxc/aT+MvwBuvhz8LPiN4+tdG0C9h1Cbw54avdVjsZGngKpK0EbiNiASA2CQD6Vqf8HaH7AXxp+PPxL+BPxI+GXw58V/ESw8N6ZJo+oWnh/S5tTvLG4Ey3ERkt4Q0vlOA43hdqlMMwLoDz0eRfVa8rrlrTi31UVopbb6WTtb3mrbWuUpTVSEbe/SUrdL+63H09536+6tdHfov+Cvn/BQ346fs2/8Evvg34t/aM/Zz/Zv174oa94wvdPvPDPizw8niXRdMt0hla3uLZVvpgkzxqu5vObhiNq9B4v/AMHH/wASv+Fyf8EKf2M/Fn/CP+GfCv8AwkUlnqH9j+HbH7DpOmeZpLN5FrBubyoUzhU3HAAGTXXf8F4tW+PH/BWP/glT8FvEln+zD8YPCHjSz8dX0eo+DItC1HVdS0+3itZI47p1FpFKsUmRhmiUZOAW6mn/AMFnv2Nfi/8AFL/ggt+xd4P8M/Cn4k+I/F3hW0sF1rRNL8M3t5qWkFdJMbC5t44zJCQ/yneow3HWs8VFvDV+Za+2oWt25Ytv9X2d9tisHJKpRtt7Krfyd2rfLZd133PpjWP+Cx3h3/gjx/wQb/Zf8RXegSeMPGXjDwTpdh4c0MXQtYp2jsoWmuJ5drFYYldMhVZmaSNflDF08H8df8HDP7fX7G3w58AfFz4+fszfDKx+DPjWaFLebS5ZrDUbwT27zQqC2oXT2khRS4W4tgWCMvyk5WT/AIKd/wDBGX4t/tr/APBEb9k258F+F9Uk+J3wW8IW1vqnhC+T7BqU9vPZ2wuEWKfYRcwvbofJba7AyABnCI3xb4I/Yk8YfGix8BeB/Bf/AASq1jQvHUkS2+ueJfHeseNrXQ9RdIcyTgPeWMNiCyO+17iXJYIgLFQe7ESnPHYlrWXtdF05Lu76JpreV1Z3VpW0woxhDB0E/h9m+Z9VLourVtNLO61vG5+i3hv/AIORviMP+CtHwr+GesaN8OF/Z9+NSadqfhbxAml3lvrcthqduRaCVzevAs0V9m2m/dYzDIQFBUjp/Hn/AAX1+Kmr/wDBbPxZ+z/4L0X4a23wa+F6Tah418Uavpd/c6hp2n6fZi51SYPFdxxJtcNbxlomAkKE7gcV5j/wXe/4IoeJdG/4JrfATU/g34NbUviV+z7NFYtpXgax1K9MlrcyedK1nFPNc3kiw3uyRA8kjqkkrEgAgX/+CA//AASL8aePf2Sf2nPHXx30PxJ4P+J/7S0eqeG5Bruly2OqabZzpKZ7kwTIsieddTl9p4ZbaI9Dzz30qOkr+x9ra/2/h9j/AIvifPsnrbZGnSn7XT2qpp2+zv7V+T0vHR6WutbGP8Pv+Dh39tb/AIKL+OvHOqfsh/s0+B9f+Gvglljnm8UzNJqLZ8xkdn/tCziMskaBvs0KzPGeN77lJ9U/Y/8A+Dl3Uf2u/wDgmV8eviBb+DtA8M/G/wCBPhwavd6RctNc6Lq2VIW5jQOk6R+akitAZC0eY/3r7sj8pfhz/wAEu/iT+wP4y8feCvjN/wAE+fHX7S2pswPh3xF4d1TxDFpllgSKsol0kPFcwyfu5PKfyZ0wVYoW2p9yfsnf8EpviJ8Ov+CQ/wC054y1X9m3wn8JviB8SvAUujeHvCXhH/hItT8QajbOI5/9It73VL7y5HfYFt1iSdDG4fb9ys6jSwtaUHdKm2n1U7O1ttb6ONtFe17e7cbvE04yVm5pW+zyXV776W1Urq7ST31j/Ym/4OWf2yP+Cg3ijwL4S+GvwI8E6trF14ij07xn4lg8Mazd+HvD9ncyxrbyOYrwm22ItzI8k0pDgKERdhL/AL2LkKM8nvgV+Uv/AAaJfszeOP2Zf2APHun/ABC8A+Lvh/4i1Px7cXC2niPRbnSru5thYWKxyLHOiM0e/wA0BgMZDDOQa/Vqu/FQjTtTjronf/FGLt8nf8bnHh5SlecvNJekpa/P8FZLQKKKK5DpCiiigAooooAK/Pf/AILAfsjeIvBvjDQf2lvhOtxZ+OPAYA1aCzjBa+tNz7pdo+8wEjhgQdyn2r9CKjvLOHUbSS3uIY54JlKSRyKGR1PBBB4IPoazrU1Ujys7MDjJYWsqsdejXRp7p+p5X+xX+1r4f/bT/Z/0fxv4flX/AElFg1G1B+bT7wIrSwt9NwIPcEGvWK/K7X7HUP8AgiJ+3vDqljD/AMWB+Lt2LaS1jWTytAl/0ffLjO1WVmfb6xlhgYBH6jaDrtn4o0Oz1LTrmG80/UIEuba4ibdHPG6hldT3BBBB96ihUclyy+Jb/wCfzOjM8HGlJVaGtOesX+afmti3VfVdKtdc06azvba3vLW4UpLDNGJI5FPUFTwR9asUVueWfLf7R3/BHT4D/tIXVxfXfhOPw1rcw3LqOgP9gkSTOd+xR5bEnOcrzknrzXz1J/wTK/ae/Y5/efAf43S+ItDsyZovD/iM7dwUKFiG7fE3AAz+6HygcA4r9KaK55YanJ3tZ91oepQznFU48kpc0e0lzL8dvkfg7+2F+0b+0F4j/bp+FuqeKfh3beE/jN4ZtUtdGggBaPWlklkEMiruIxueTOH25352gFV+9P2BP+CRzeCvGTfFz47X9x48+LmpuLoLfXH2i20clRlcZKySKSyg5KKoG0CvO/2UJ/8AhuT/AILY/Eb4hXNut14Z+D9q2j6SSA0aXO4wq5OSCxK3DAADHy85XLfplXNhaCk3Uk766X/M9rOs0nSpwwtKKg+Vc1t9deVPdLXbz7GV448baX8NvB+pa9rl9a6bpOk273V1c3EqxRwooySWYhR6ckckV+ZX7P3hPWv+Cz/7bd18UvFlrdQfA34b3j2/hrSpw8lrrEyOQr7GwhJwHkO0/wAMZyBkaX/BQr4zeIv+Clv7VFj+zH8L7oR+FdHuUufHGtIR5eF+Yxq/OURcjgHfIQOi8/oZ8EPgt4d/Z6+F2j+EPC2nx6boui26W8MSkszbVA3MzEszHHJJJrV/vp2+yvxf+SOGP/Cdh+d/xqi0/uxfX1l07I6qKJYIljjVURAFVVGAoHQAU6iiuw+fCiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigDzf9rX9mfQf2uvgD4i8CeIIgbXWbYrDOFBks5x80Uq57q4U+4BFfF//AASV/aZ179nX4s6z+yv8Vrq5TxB4duHTwhd3I+XUrRfPdlVj1TZGGTrwWX+ECv0Yr4r/AOCwP7B178fvANn8TPAK/wBm/Fb4dj7dZXlsGW5v7aFZJDbAryW3Nlc9CSMgE1y14NP2sN1+KPayzEQnF4HEP3JbP+WXR+j2fkfalFfOH/BMr9vXTv27fgDb6pM1tZeNNFP2PxDpakq9tMOBIFPIR8ZHoQw7V9H10Qmpx5o7Hl4jD1KFV0qis0FeRft5fH+H9mL9kPx740kkaK40vSpUsiGKk3Uo8qAZBBH7x15BB9OcV67X5u/8F0/F198bvij8Gf2dtFmkW68eaxFe6mEUNsgEgjjOMdv3r5JAATnjJXPEVHCm2t/8zsynCqvi4Ql8O79Fq/wPTv8AghD+zpN8FP2HrDXtShKa58RLp9euGYYYwv8ALDke6jd/wP0xib/grz+3ZqnwA8C6f8M/h4t1f/Fn4lMun6XDYvm60+KQlDOqrlw5PyoQBgksDla9o/aj/aQ8H/8ABPj9ly48Qalth0/w7YpY6TYRoS93KFEcMKhR3O0FuABkkivlb/gkf+yHr3xZ8Z6h+1F8XEW98ZeNmebQLSQFV0y1LELL5ecZIA8sNuIUK3BOa55XjFYenvbV9l3PSpyjVq1M1xS92+i/ml0Xolue+f8ABMf9grT/ANhv4EQW11tvvHPiNEvfEupSIpmmuDljEHyWZIyxUEt8xBbALEV8af8ABZnU/wDgpton7V15efsqyeX8HbPQLaaR9vhRtl4vmG5ONS/0k4UJ0+X+73r9Xqwfin/yTHxJ/wBgu5/9FNRi17HDupT+wm0ujtF6PuuvqkeXCtLFYq9bV1Gk31V2tu3b00P5hf2KP+Cxn/BUj/gon8RNS8J/Bz4jf8Jh4g0fTzqt3a/2B4S0/wAm2EiRmTfdW0SH55EG0MW5zjAJH6ffHD4g/tufD3/glt8Grjxl+0V8E/2cv2gLjXNQj8X6t8SdS0GxstWt/NuTa28DRWlzZtKIfIciFVO1TuO7cK/O/wD4MpP+UiXxK/7J9L/6cLKvrr/g9x/5My+Df/Y6Tf8ApDLXoZk1QwtPlXxuDb6r9442T7Nbrr6HmYG9avOMvsc1vP8Ad31+b07aPdH6XfCH9qzw38Bf2Nfhbr/x3+OHwj/tjXNFtI7rxg/iOxsND8T33kB5ZrKZ/IiljfDOvloo28hQK665/bo+CVn8RNJ8HzfGL4VxeLNeW1fTNEfxZYLqOordKr2xhtzL5kgmV0aMqp3hlK5BFfgb/wAF2f8AlXR/YQ/689N/9Mxrxb/gpr/wTh+APwE/4IZ/sy/HDwNeTz/FX4hT2g13UW1uW7OuPNZzTXimFnMcZtLiNYf3SoVyRJvcg1pjJKnXxEp/DTrKnpo/e2stlq/kuj6GFg50qMYv3p03PXpy73e70Xzb3R/VfRXzb/wR7+K/ij44/wDBL34GeLPGl1dX/ifWvCVnLfXdypE14wXYsz55ZpEVXLfxFi3evpKjEUXRqypPXlbX3OxGHre1pRq2tzJP71cKKKKxNgooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKAPy9/ba+Guuf8EqP22NN/aG8DQ3bfDnxrfraeN9Mtl/c2cbyW4d9vTMrb2U9pBjOHxX6RfCn4naP8Z/hrofizQbpLzR/EFlFf2kqn70cihgD6EZwR2INR/F/4TaD8dPhtq/hPxNp9vqei61Abe5t5l3Kw6gjuGBAIIwQQCK/OT9gj4s63/wAEt/2vNQ/Zs+JWpNJ4J8QSm98Ga3dMyQpv3lUyRgByuwjgLIuejZrj/g1P7svwf/BPoP8AkYYX/p7TX/gUV+sfxR+nssqwxs7sqooLMzHAAHc1+Y/7Juq2P7Un/BXn4x/G/XJoYPBvwjtJNJ0y+uJQIoDGDFvYsB5alBcPj5T82Dk+Zn7J/wCCkH7REf7Lv7F3jvxZ5rx30Ng1nYCNtsj3M5ESbDngjcWzzgKTg4wfyI/ZutvE3xu+D/g39l34b3EcV547uT4m+IWpx5P2aJ8FYWkYnOyARl9oOXYJjKsXjFVLTjHe2tvPodWRYJyw1Wteyl7t+0d5P7rL1Z9OfDbRNV/4Lefts3XjDVzdWv7P/wAKb8w6TYSbpIddulxyVO1MsMOxIYqrKnzBsj9SLa2jsraOGGOOGGFQiIi7VRQMAADgADtXF/s6fs++Gv2X/hBo3gvwnYrY6To8AjUFy8kz/wAcjseWZmySffAAGBXcV00KTgry3e54+ZY5V5qFJWpx0ivLu/N7sKqa/o0XiPQr3T52kWG/gkt5GQgMFdSpIyCM4PcGrdFaVIRnFwkrp6M8+E3CSlHdHwv/AMEvf+Dfr4Nf8El/jPrnjr4c+JvidrWra/o7aJcQ+JNRsbm3SFpopiyLBaQMH3RKMliME8dCPRv+CpX/AASW+HP/AAVx+GXhnwp8SNa8baJp3hXVG1a0k8NXlrbTSStE0RWQ3FvOpXaxOAoOe/avqKiqq/vYqFTVRtbys+ZfjqTT/dycoaN7+d1b8tD8F/8Ag7Y+AOj/ALKn/BK39mf4a+HbnU7zQvAuuJolhPqMiSXc0MGmvGjStGiIXIUZKooz0Arvv2Ff+DVX9ln9pH9mr4G/FzXz8SIbzxL4N0HXNZ8P2WvpHo+p3MllBJcF90DXSLM5ZmEVwm3cRH5YAA/aqiqpycZVaktZzmp37WjZrzu9X00WnUU1dU4R0jGLjbveV0/K23fzM7wh4S0vwB4U0zQtEsLXS9G0W1isbGytoxHDaQRIEjjRRwqqoAAHQCtGiiiUnJ80txRiopRirJBRRRUlBRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFfMn/AAVO/YMtP25f2ebi1ssWvjTwyJNT8P3iHbI06RSbbcsOQkjMufQhT2r6boqakFOPLLY3w2IqUKsa1N2aPwF/bN/4KF+Pv2wP2dPh38E9c0vW5PiFo+uTQeIIVjbztWuY5Gito/LUbi43EFecuAcZAJ/VL/glN/wT6s/2HPgZHJqSR3Xj7xTGl1r140SiSJuWW2VuW2JnB5wzDOB0r1Y/sT/Cc/GqP4jf8IJoC+Nobn7YmrLCVmE3lmPfgHaW2nuOuG+8AR6lXJQwrjN1Kju+h7eZ51Cth1hcLDkhduS7tu9vRf5dgooortPnQooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigArzD9pv9s34Y/scaJp2ofEjxZZ+GrfVpmgs0a3nup7llGWKxQI8hVeMtt2gsoJBYZ5z9vX9vXwf+wN8H5PEXiKQX2sXwaHRNEhkC3OrTgdB12xrkF5CCFBHViqt8tfsQ/wDBPLxL+1x8S5f2hP2orG31zWtajz4e8G6hbh7HSLQ58vzrd8qAFY7IWBxkvJukb5eujh48vta2kfxb8v1Z5mKx01U+rYZKVTd32iu7t36LdnsX/D9D9lj/AKKl/wCW3q//AMi0f8P0P2WP+ipf+W3q/wD8i163/wAMCfAn/oivwl/8JDT/AP4zR/wwJ8Cf+iK/CX/wkNP/APjNVfCdpfev8iOXM/5qf3S/+SPJP+H6H7LH/RUv/Lb1f/5Fo/4fofssf9FS/wDLb1f/AORa9b/4YE+BP/RFfhL/AOEhp/8A8Zo/4YE+BP8A0RX4S/8AhIaf/wDGaL4TtL71/kHLmf8ANT+6X/yR5J/w/Q/ZY/6Kl/5ber//ACLR/wAP0P2WP+ipf+W3q/8A8i163/wwJ8Cf+iK/CX/wkNP/APjNcnd/s/fsn2Goy2c/gj9nmG7hdo5IJNG0dZI2XIZSpTIIwcg9MVhWxWX0UnVbjfvKK/NG1HC5xVdqXJK3aM3+TOQ/4fofssf9FS/8tvV//kWj/h+h+yx/0VL/AMtvV/8A5Frs4f2cf2VbgKY/Af7Psgc4UromkHcenHyVeg/ZL/Znugpj+GfwLkDnC7fDulNuPTj93UxxmWy+GTf/AG9H/IqWCzqPxKK/7cn/AJnn3/D9D9lj/oqX/lt6v/8AItH/AA/Q/ZY/6Kl/5ber/wDyLXp8H7Ev7PNym6P4R/BmRc4yvhbTSM/9+quf8MCfAn/oivwl/wDCQ0//AOM10Rng3spfev8AIxdPNFu4f+Ay/wDkjyT/AIfofssf9FS/8tvV/wD5Fo/4fofssf8ARUv/AC29X/8AkWvW/wDhgT4E/wDRFfhL/wCEhp//AMZo/wCGBPgT/wBEV+Ev/hIaf/8AGad8J2l96/yJ5cz/AJqf3S/+SPJP+H6H7LH/AEVL/wAtvV//AJFo/wCH6H7LH/RUv/Lb1f8A+Ra9b/4YE+BP/RFfhL/4SGn/APxmj/hgT4E/9EV+Ev8A4SGn/wDxmi+E7S+9f5By5n/NT+6X/wAkeSf8P0P2WP8AoqX/AJber/8AyLR/w/Q/ZY/6Kl/5ber/APyLXrf/AAwJ8Cf+iK/CX/wkNP8A/jNH/DAnwJ/6Ir8Jf/CQ0/8A+M0XwnaX3r/IOXM/5qf3S/8AkjyT/h+h+yx/0VL/AMtvV/8A5Fo/4fofssf9FS/8tvV//kWvW/8AhgT4E/8ARFfhL/4SGn//ABmj/hgT4E/9EV+Ev/hIaf8A/GaL4TtL71/kHLmf81P7pf8AyR5J/wAP0P2WP+ipf+W3q/8A8i0f8P0P2WP+ipf+W3q//wAi163/AMMCfAn/AKIr8Jf/AAkNP/8AjNfB/wDwVA+Ivwb+GviRfgp8FPgl8JNe+MGvf6Pc3Fv4P02SPw0jDJYkxbfP2/N83yxL879gdaNLDVZcsVL71p5vQ5sXicfh6ftKkoeS5ZXb6JLm1bPtn9mf/gpF8F/2wvHd34Z+HPjP/hItcsbB9Tntv7IvrTZbpJHGz754Y0OHmjGASfmzjAJHuNfjt/wQ4+B1x+zd/wAFVPiD4Lur6LULvR/h6TPPEpWNpJZtIncLnkqrSFQTgkKDgZwP2JrDG0YUqnLTd1ZPXzOvKcXWxFBzxCSkm00vLTuwooorkPUCiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAK8N/b1/b18H/sDfB+TxF4ikF9rF8Gh0TRIZAtzq04HQddsa5BeQghQR1YqrH7ev7evg/8AYG+D8niLxFIL7WL4NDomiQyBbnVpwOg67Y1yC8hBCgjqxVW+Y/2Cv2CvGH7THxgj/aS/aSjN94ovitx4W8LXEZW20GAHdC7wtnaVzmOI5KkmR8yH5eyhQjy+2rfD+LfZfqzy8ZjJuf1XC61Hu+kV3fn2XX0D9gr9grxh+0x8YI/2kv2kozfeKL4rceFvC1xGVttBgB3Qu8LZ2lc5jiOSpJkfMh+X9DqKKxr15VZXe3RdEjpweDhh4csdW9W3u33YUUUVidYUUV8x/wDBQD9vG3/Z60lvCfhWaC8+IGpRg4GHj0OFh/r5RyDIR9yM9c7j8oAfy84zjCZXhJ43Gy5YRWvn2S7t9Eenk+T4rNMXDBYOPNOT08u7fZLqzk/+CjX7e03w/lu/hr4FuceJrmELq+qRMCNFicf6pP8Ap4dTnP8AyzVgR8xBX5D+HPxLh8EeHV024ht7hYXLI8sYkb5jk5J98n8a4iGE2PnSSSSXF5dSNNPPKxaSaRyWZ2Y8lixJJPJJqInJr+JeNONMXxDj3iar5acdIR6RX6t9X+iSP7S4R4GwOSZesJFc05Wc5dZP9Eui/Vtnrg+N+lyfe0/Tz9bdf8KP+FvaHL97S9Mb6wD/AAryOivj/aSPpf7Iw3RP72etH4leF5/9Zoukt/2xFOi8d+Eo923RdLj3fe2rtzXkdY/ifxHHpFo5Zgu0ZJzWlOVRytEzqZXhkrtu3+J/5nrHjX9prwr4D0+SSHSvOkjTH7u5eGNV/wB7PTpwBX0l/wAExv2dvGXxP1HT/jB44utS0HQnRpfCnhi3uJoUnif7t9dfNukVlOY43+Ug+YV5THhf/BM//gnjdftX+J7P4lePLSSH4cabOJtH02ZefE06P/rXB/5dEZcYI/fHj7gO/wDWKv6i8K/D+pQhHN8zvzPWEX0/vNd+y+fY/mfxM40oSnLKcrfu7Tldu/8AdX6v5dwoopssgijZjuwoJO1Sx/ADk/QV+8H4iOor5R+Lv/BYz4RfDW4uLTTZNe8Vahbs0bR2Ni0ESSDIKs8+wjBGMqrfjWn+yl+2B8VP2mfiNZ3Fx8J38KfDm5t5Jf7VvbpzO52kxNHuVPMVmwPlQgA53cc+xLIcdCi8RVhyRX8zUb+ibTb9EebHOMJKqqNOXNL+6m/va0SPpuiivg//AIKgf8FQNS+GviRfgp8FF/t74wa9/o9zcW+JI/DSMMliT8vn7fm+b5Yl+d+wPm0aMqsuWP8Aw3mzpxeLp4en7Sp8l1b6JLq2H/BUD/gqBqXw18SL8FPgov8Ab3xg17/R7m4t8SR+GkYZLEn5fP2/N83yxL879gfOP2Mf2MdN/Zc8N3F9fXH9veO9ezNretzEySSux3tHGzfNs3ckn5nb5m/hVT9jH9jHTf2XPDdxfX1x/b3jvXsza3rcxMkkrsd7Rxs3zbN3JJ+Z2+Zv4VX2+t61aMY+xo7dX3/4HZHFhMJUqVPreL+L7MekV+rfV/JaHgv/AATx/wCU7/xn/wCxDj/9wlfqFX5e/wDBPH/lO/8AGf8A7EOP/wBwlfqFSxvxQ/wx/IMo+Cr/ANfJ/wDpQUUUVxnrBRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAV4b+3r+3r4P/YG+D8niLxFIL7WL4NDomiQyBbnVpwOg67Y1yC8hBCgjqxVWP29f29fB/7A3wfk8ReIpBfaxfBodE0SGQLc6tOB0HXbGuQXkIIUEdWKq3zH+wV+wV4w/aY+MEf7SX7SUZvvFF8VuPC3ha4jK22gwA7oXeFs7SucxxHJUkyPmQ/L2UKEeX21b4fxb7L9WeXjMZNz+q4XWo930iu78+y6+gfsFfsFeMP2mPjBH+0l+0lGb7xRfFbjwt4WuIyttoMAO6F3hbO0rnMcRyVJMj5kPy/odRRWNevKrK726LokdODwcMPDljq3q292+7CiiisTrCiivK/2uv2qtH/ZQ+GMmsXipfaxe7odH0sSbH1CcY4zg7Y13Au2DgepIB5cbjaGEoTxOJkowirtvZI6sFg6+Lrww2Gi5Tk7JLdt/wBfI5/9uP8AbO0/9lTwOtvZ+Tf+NdcjddJ08/MIxyDczDtEjY4OC54HRiv5f3uoX2r6xfazrF9caprmrTNc3t5OcyXErdWPYegAAAAAAAAFWPFPivWPiJ4y1LxV4nvX1LX9ZlM1xK2dqf3Y4wSdsaDCqo4AArNkkMr7jX8W+IXHtfiLGcsLxw8H7ke/96Xm/wAFp3b/ALO8PeA6HDuE5p2liJr35dv7q8l+L17JI7l2yaSiivzs/RAooqnq+qrptuzFvmx+VNJt2QnJJXZFr2tx6XbMS2DjmvQ/+Cff7Deoft4fEb+3Net57f4TeH7vZfSl2ibxFOnJtIWUhvLU7fNkGOCUU79xTnf2Nv2S9Y/4KAfGOTS45bzTfAWgyg+ItYhXk/dYWULHjz5FIyefLQ7yCdqv+zXgTwLo/wAMfBumeHvD+n22k6Lo9ulpZWduu2O3iUYVR/ieSckkk5r+hfCnw39u45vmUfcWsIv7T7vyX4+m/wDPnip4j+wUsoy2XvvScl9ldl5v8PXa9pWlWug6XbWNjbW9nZWcSwW9vBGI4oI1AVURVwFUAAAAYAGKsUUV/TR/M4UUUUAfEv8AwUv/AOCZ8fxnhvPH/gGxjj8XwqZtS0yMbU1xR1dAOlxj/v5/vfe8v/Y9/YyX44/CdvF/wl+Ivjv4X69Y3b2GraVcO8tsl5GqM6K8ZiYxkOhw4dhna2SMn9Kq+Df+Cnn/AAU71D4X+I1+CfwRjXXPjB4gJgubi1CvH4bVxlmY/d+0bSW+b5Y1+d+wP1WC4ixzwywcXfl2bs0o9VJNNNduq6dj5nMMqwVKq8ZU0vule7l05bNNPv0fXueL/G79vv4+fAb4m6p8EF8eeGfG3ja8s2gjvNG01ru+0kspIO5Y40WdU+YiRX2jk9jXlf7HHibwl+x5/aH/AAmGg+K4vHGvTPJqev6jbmSa5DPu2gOQ6qThmxuLtySflA93/Yx/Yx039lzw3cX19cf294717M2t63MTJJK7He0cbN82zdySfmdvmb+FV9n1LSrXWrNre8tre7t5PvRTRiRG+oPFTVznBzvSqUE093B8jfnZXXysZ4bJ8XeOIlVamr2UvfUU+l20792vQ5XwT+0N4J+IexdJ8S6XPNJ92CSXyZj9I5NrfpXZV5T41/Yr+HfjXcx0NdKnb/lrpsht9v0QZj/8drjT+yD40+HI3eA/iRqVrEn+rstRy0I9M43If+/dcv1PLK38Gu6b7Tjp/wCBRv8Aikel9ZzCl/FpKa7wf/tsrfmXv+CeP/Kd/wCM/wD2Icf/ALhK/UKvxl/ZY+LHjT9n7/gpN4/8RReFbv4jfEJfDS2fiDSdL3KEsz/Z7Lcx+XE3RY7YHCkZkOQK+5vAP/BY74X6xqH9n+LLHxN4D1SM7Jo9SsGlijb0zFuf/vqNa6MdkGMlyzoRVSKitYNS6dlr+B5+VZthoKcK0uRucnaStu++1++p9aUVyfw0+PPgr4yWwk8K+KtB17jcY7K9jllj/wB6MHcv0YA11lfOVKc6cuWaafZ6H00KkZrmg7ryCiv5cf8Ag4m+Mviz9o3/AILWal8Ifjl8TNe+E/wP8P3FoNInbSrrVNM0u0NkXXU10+BgbqaWWSaMyr84DFMhY9o9i/4If/8ABPLxv8Fv22fDviz9lb9s34J/E/4YzXEGo+JPC7a1qGg69r2lRsILprzw80EzQvE00iwyTNwXicNH5mKjAf7TGM/hUtutv8X8vnvs92nasZ+4k4LVpJvpf/D0k+3fR6Jpn9FlFfGX/BT7/gu/8Bf+CT2v6PoPxDuvE2veLtaiW7j8PeGLGK7v7e0YyKLqUzSwwxxl4yoBk8xicqhUMw82/YK/4Of/ANmj/goD+0Jpfwy0OL4geCfE2v8A7rR/+Es0u1trXVrjki2jltrmcLKwBKiXYrkBVYuyoxR/fPlpa7rTy3+7b103Ct+6XNU0W/y7+S6+mux+i1FfBHxG/wCDjn9nn4N/tpePPgl4yj8ceF9W+G9vc3Ws+IL7T7Y6GiwW6zkRtHcvcyO4dI40W33PIyqByM8H8Bv+DtD9kX426B40vr7VPGnw+bwbpo1NLXxRpkENx4gXfsMVgttcTiacMY/3TFGIk3gFI5WjmNSMoe0jty83/buuv4Pz0K5WpOL3UuX/ALe00/Ffej9M6K+H/wDgmB/wcB/Af/gq/wDEzWvBvgGHxt4b8VaPZf2kmm+KdPt7WXUrYMFkkt2t7idG8ssm5WZWw4IDAMV8b8Uf8Hcf7LPgbxZ8QdD1zSvixperfD+6msGt5dEs5G125iuTbvFZmO7YZ+V5N05hTYpywcqjVU9ySjLdpteaW7XfXT103Jj7ybj0aT8m9r/LX012P1Eor4V/ZB/4LXfBP/grf+zl8XI/hpP4j0nXvCvh+9k1DQPElnFaaktu9vIqXSCKWaKSEtlCUkLI2N6rvjL/AJo/8GPMy2/jj9o2SRljjj07Q2ZmOFUCS+ySaqjByrTpT93lgp37p3/y3/yJqyUaKqx1vLlt2fu//JXt/mf0MUV+XX7Rv/B3d+yX+z/8WNS8KWK/Ej4jjSnMM+s+EtJtJ9KeVWZXjjlubu3aXaV/1kaNEwIKO4Oa+yv+Cev/AAUr+En/AAU8+DT+NPhPr02o29i8dvq2mXtubXUtDuHjDiG4iJIBwSA8bPE5R9jvtOFTTqQc4apf8Nf0v121XdFVH7OfJPR/rvb18t9H2Z73RRRSAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigArw39vX9vXwf+wN8H5PEXiKQX2sXwaHRNEhkC3OrTgdB12xrkF5CCFBHViqt6L8fvij/wpD4E+NfGn2P+0f8AhENBvtb+yeZ5f2n7NbyTeXuwdu7ZjODjOcGvxS+CuuftDftLftC2f7SOr/BO9+Msd0ZG8OxzuY9H0wwzPGvkRA8iF0cKG/jDOdz/ADV34LCqpec/hXna77ani5tmUqFqNJPnl1s3ZdXZb+S77n2Z+wV+wV4w/aY+MEf7SX7SUZvvFF8VuPC3ha4jK22gwA7oXeFs7SucxxHJUkyPmQ/L+h1fnf8A8PEv2yv+jUf/ACal/wDiqP8Ah4l+2V/0aj/5NS//ABVaV8PWqyu3G3Rcysl95hg8bhcPDliptvVtwldvu9D9EKK/O/8A4eJftlf9Go/+TUv/AMVR/wAPEv2yv+jUf/JqX/4qsPqNTuv/AAJf5nX/AGzQ/ll/4BL/ACP0Qor87/8Ah4l+2V/0aj/5NS//ABVH/DxL9sr/AKNR/wDJqX/4qj6jU7r/AMCX+Yf2zQ/ll/4BL/I+3/j38aNP/Z++Feq+KtStdS1CHTo8x2dhbPcXF3KfuRoqgnk9WPyqMkkAGvxu+OX7UfiX44fE7UPFfinS/EEmpSr5cED6Vcx22l24JZII1KA7VySScFiSx5NfWX/DxL9sr/o1H/yal/8AiqP+HiX7ZX/RqP8A5NS//FV8XxhwDV4gpxw9bEclNa8qcbN927626LY+04P8ScPkFSWIo4ZzqPTmcZXS7Jcul+r3/X4PvvjLGjq1xJdQ7vuiS1kQH6ZWqaftBaI3/MYtfxbFffn/AA8S/bK/6NR/8mpf/iqiuf8AgoJ+2Je7fO/ZLim29N88jY/Nq/O5fR5wv2cT+Ef/AJI/Q4/SOr/awr+6f/yB8HR/HrR36axY/wDf0VNH8b9Lf7uq6ef+2y19sXv7aP7Vmo5+0fsbaPcZbcfMUtk+vPes2+/ac/aS1Pd9p/Yf8K3G/G7zbJH3Y6ZyPaueX0eaf2cUvw/+SOiP0kH9rCy+6X/yJ8gx/GHT5R8uoWJ/7bL/AI1137OH7P8A4k/bt+MsfhHwxN9l0m1CXOv62uHi0i1JIyOzzPgrGg6kEnCq7D3u7+Mfx41Asbj9gfwBMZBhjJpELbh05ytb/wAPf2uP2oPhHYXFr4U/Yr8P+GLW7k86eHSYBZRzPgDcyx7QzYAGTzgV1ZT4A0MNjIV8TWU4Rd3G6V+yvfbucmbfSGnicJOhhqEoTkrKXLJ287cu/Y/QP4G/A/wz+zl8L9K8H+EdNj0vQ9IjKRRA7nkYks8sjHl5HYlmY8kk11tfnf8A8PEv2yv+jUf/ACal/wDiqP8Ah4l+2V/0aj/5NS//ABVfulPLZQioQ5UlokmtF95+GzzylOTnNTberbjLX8D9EKK/O/8A4eJftlf9Go/+TUv/AMVR/wAPEv2yv+jUf/JqX/4qq+o1O6/8CX+ZP9s0P5Zf+AS/yP0Qor87/wDh4l+2V/0aj/5NS/8AxVeW/tZ/8Fbf2qPhr8Nf7P1v4M2fwtvPFkv9k6Xrc0ryPBO/UxKxK+YFzgtkKecHGKqOX1ZOya+9EVM8w8IuTUv/AAGX6qx7l/wVA/4Kgal8NfEi/BT4KL/b3xg17/R7m4t8SR+GkYZLEn5fP2/N83yxL879gfOP2Mf2MdN/Zc8N3F9fXH9veO9ezNretzEySSux3tHGzfNs3ckn5nb5m/hVT9jH9jHTf2XPDdxfX1x/b3jvXsza3rcxMkkrsd7Rxs3zbN3JJ+Z2+Zv4VX2+lWrRjH2NHbq+/wDwOyLwmEqVKn1vF/F9mPSK/Vvq/ktAoooriPWCiiigDwX/AIJ4/wDKd/4z/wDYhx/+4Sv0i+IHwm8L/FfTvsnibw7oviC3xtCahZR3Gz/d3AlT7jBFfm7/AME8f+U7/wAZ/wDsQ4//AHCV+oVd+KqShOEoOz5Y7eh4+VxjKnVjJXXtJ/8ApR8+6F/wTE+EPhD4uaL4z0PQ7zRdS0K7W9hgtr12tJJVztLRyb8AEhgEK8qPcH6CoorLE4yviGnXm5WVld30PRoYWjRTVGKjfV2Vj+eH/gr5/wAFbNQ8Cf8ABR3W/gr+2V+zH8JfiB8HdHvpxpOqadol3b+LX0G4ffb3mnai96AkjeXF5qwmEO8MsRaMg7fgvR5/Avx//wCCxvwxm/YO8D/ErwDYzavpUulabq12bq9066icG6uQRLctHaCNS8nmzSjb5pO1CI1/re+Nv7OHw7/aX8P2uk/EfwH4L+IGlWFx9rtrPxJoltqtvbzbWTzUjnR1V9rMu4AHDEZwTVP4G/sm/Cv9mBtSPw1+Gfw/+Hh1ryxqB8M+HbPSft/l7vL837PGnmbN77d2cb2xjJrly/8A2edOpLV03e605rbc3z19e17LfHfv4VIQ0U1az1Ub7uPbbTy011b/AAp/4Lp/8FJ7z4cf8FstM8ALpfwj+Blp4Tn0q5ufjHqHwrsPGPiiNGtFnS5Q3EMrmGF3VI0gCyq8THzMExr8a+K/id4f+NX/AAcCfArxZ4X+JHxL+MOj61478LS/8Jr4zs/sUniG5XU4luZbG28qL7NYLMJI4oNg8ry2Toor+pz44/sifCf9p2602f4lfC/4d/EKbR1kSwk8TeHLPVmsVkKlxEbiNygYqpIXGdoz0FUfFP7DvwV8c694b1XW/g/8LdY1Twba29joF5feFLC4uNDt7dt9vDau8RaCOJiWRYyoQnIANPLv9nqUak9XTnzev526aKybbbvZIMZ++jUhDRSgo/NLfz66u9lorXZ/PuvwX8JftBf8HlGveFPHHhzR/FnhnUPFN9Ld6Tqtqt1Z3Zh0CSaMSxOCsiiSNG2sCp28gjiuR/Y1/ZN+GPjT/g698WfDXVvAPhPUPh3p/i/xKbfwxPpsT6PGsNrdSRRi1I8rykYArGV2DaAFwAB/SFZ/sefCPTvja3xMt/hZ8Obf4jySvM3iuPw1ZLrbSPGYmc3gj8/c0ZKE78lSV6cU3Qf2NvhB4V+Ms/xG0v4U/DfTfiFdTS3E3ii18M2UOsyySqVldrtYxMWdWYMS+WBIOc0sGlQWHT2p05RfnJ2tL5W9ewY1uu6zjp7SUWvJJybXz5vwP5+f+CTvwz0D4Nf8HcHjrwv4V0mz0Hw7oms+LLbT9OtE8u3sohbzkRxr0VFzgKOFGAAAAK8c/wCCSX7b3wf/AGAv+C8vxc8dfGi4/svw7JfeJ9NsNY/suXUP7GvZNQ3LN5cKPMN8STQ7o0Yjz8HCliP6a/Dn7Hvwj8H/ABkuviLpPwt+HOl/EG+kmlufE9n4asoNZuHlBErPdrGJmZwSGJbLAnOa/IP/AII5/wDBEr4vfBr/AIKt/Hvxh8dvg/oc3wf+Imma7aWw1i+0jWrLVzcaza3duklmk0rYaOIv+8jAUoM4bAqcFzwq4em3rToVINvZt6/fK9l1vrZ7BiIwlDET6VKsJJLdLb8LXfS2l1ufJP8AwQ3tI/2gP+CxX7T/AMTvhpo9xpfwqi8NeML9RHA1rb2tlfSObG3ZFG1WbAZYjjAhYj7laH/Bqv8ADvxF8Xf2bP25PCvhCZrfxV4k+H9vpmkOr+WwupoNTjiAb+HLsBu7Zz2r+jT4Vfs4fDz4E+BLvwt4H8B+C/BvhnUJJJrrSND0S206wuXkUJIzwQosbMyqqsSCSAAcgVR+B37I3wo/ZiuNSm+Gvwx+Hvw9l1hY0v38M+HLPSWvlj3FBKbeNN4Xc2A2cbjjqaI0YRpSoK/K6Kpee8232+1+F/I0lWnKp7bTm9r7Ty+xp/5J+Nulz+Uz/gkb+1FJ+xV4f+MHh3W/2n779lnXJJVtdR0Wf4J2vjS58TNCs0b2byzDfbSRvvQwzbIsy5LA78fpf/waDfs1eG/CviX4sfEv4e+Kvit4g8E61ZwaFM/ifwJY+GrC6vo5fOBt2t9XvTM8SOwYeWiqJx8xPy1+t3xd/YK+Bf7QPjOTxJ48+C/wn8beIpokgk1TX/COn6levGgwiGaaJnKqOACcAdK9I8JeEdJ8AeFtN0PQdL0/RdE0e2jsrDT7C2S2tbGCNQkcUUSAKkaqAqqoAAAAAFdFGs4t1ZfFy8um1tVfW72eivZN3W2vNWpKS9nH4ebm87qzW1lut7XaunvpoUUUViahRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAeS/t9/8mJ/Gr/sQ9c/9N89eSf8EL/+UWPwt/7i3/p3va9b/b7/AOTE/jV/2Ieuf+m+evJP+CF//KLH4W/9xb/073tdq/3R/wCJfkzyZf8AIzj/ANe5f+lRPrWiiiuI9YKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAr85v+Diz/kl3wb/AOx2T/0S1fozX5zf8HFn/JLvg3/2Oyf+iWrty7/eI/P8meTnn+41Pl+aPUaKKK4j1gooooAKKKjvb2HTrSS4uJI4YIVLySOwVUUDJJJ4AA70AeE/8E8f+U7/AMZ/+xDj/wDcJX6hV+SX/BJT41+Hvjn/AMFsfjFr3hq9/tDSLjwS8FvdBSEuPJm0iFmTPVS8bYPcYPQ1+ttduOupRT/lj+R5uWU501UjNWfPJ/Ju6/AKKKK4j0gooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigDyX9vv/kxP41f9iHrn/pvnryT/AIIX/wDKLH4W/wDcW/8ATve163+33/yYn8av+xD1z/03z15J/wAEL/8AlFj8Lf8AuLf+ne9rtX+6P/EvyZ5Mv+RnH/r3L/0qJ9a0UVDqV09lp1xNHC08kMbOsS/ekIBIUdevTpXBOSjFylsj14xbdkTUV+NfxK/4Oev2hfg94U1TxB4o/wCCc/xm8O+G9FQy3urarqWpWVjaRg7fMkmk0QIi5I5ZgORX35/wSS/4KJSf8FSf2L9I+Lz+CLj4fjVtQvLFNLk1L+0VIt5TH5qT+TDvViD/AMsxgqwycZrSnFzTcfspN+jdl+P9aMmo/ZyUZ9W0vVK7/BH0xRRRUjCiiigAooooAKKKKACiiigArwP/AIKK/tbD9kv4AXN9p80a+KteY2GiIwDbJCMvOVPBWJTnkEbigIw1e+V+YH/BRP4Y+OPjhrvxb+IvivS9U8PeF/hoLbRfDEFzEY11IvfwwtOmeHjZXkcuOPniXJ2HH0HDeBo4nGxWIa5E1dPq20krdbtq/lc8bPcZVoYWXsE+Zp2fZJNt/JLTzsfeH7H37SVj+1X8BdG8WWvlxXkqfZtTtkP/AB53iACRP905DLnna6969Pr4C/4J6fCvxt+zJ8ZPBg0nStV1n4a/FvwlYate3ccbPBo199iWVjI/3UJk3KAcblmQDJTFfftc+eYOlhsU1h3eEtV5K70fmmmvxN8pxVSvh06ytJaPz815NWYV+c3/AAcWf8ku+Df/AGOyf+iWr9Ga/Ob/AIOLP+SXfBv/ALHZP/RLVyZd/vEfn+TM88/3Gp8vzR6jRRRXEesFFFV9U1S30TTri8vJ4bW1tY2lmmlcJHEijLMzHgAAEkngCgB2o6jBpNjNdXU0Vvb26GSWWRgqRqBksSeAAOSTX5u/tR/tXeKP+CjHxMuPhX8Kbi4sfh7ayCPXddRSP7SXPKr0PlHBCpwZMZOEBpv7T37U3ib/AIKSfEib4YfC2a60/wCHNnKF1zWwhX+1AD91eh8s4+VOC55bCivsL9k39k3Qf2ePAdnpum2aQrCuSSMySOeruf4mPc/gMAAV3RisOuaXx9F28359ka/Bq9zyH/giP8CLH9n/AP4K6fEjwvp6yR2uk/D4BA77mZnfR5GYn1ZnYnGBk8ADiv2Or8vf+Cd42/8ABd34zY/6EOP/ANwlfqFSxzblFv8Alj+R42VSco1W/wDn5P8AMKKKK4j1AooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigDyX9vv8A5MT+NX/Yh65/6b568k/4IX/8osfhb/3Fv/Tve163+33/AMmJ/Gr/ALEPXP8A03z15J/wQv8A+UWPwt/7i3/p3va7V/uj/wAS/Jnky/5Gcf8Ar3L/ANKifWtFFVdb09tX0W8tI7iW1e6geFZ4jh4SykBlPqM5HuK4KkpKLcVd9u/kexFJySbsj8Xf+CqXxb8Tf8F1/wDgoppX7E3wnvrq1+Evw71GPVvi74pspAYi8DgG1U/dbyX/AHaod2+6YEqFti9fsR8HvhD4b+APwt0DwV4P0ez0Hwv4Xso9O02wtU2x20Ma4UDuT3LHJYkkkkk1+Nvwe/4NKPi5+zrc6xJ8O/29fiR4DbxBMs+pt4f8O3umNqLqWKtOYNYTzWG98Fskbm9TX6Xf8EzP2NPHn7DX7Pt54P8AiH8b/F3x91y51ibUk8R+IluFu4YXjiRbUefdXL7EMbMP3gGZD8o5J1w8Yww/s29fik/5pOy+SitI32Set2Z4huWI9olovdj/AHY6u/m5PWVurWiSPwp/4LFfskaloP8AwUy+LXxC/bQ8M/tK638G9QuB/wAIJ46+HVzZ3el+GrBpmS1s54rqKSKFd0gUx+dbSeasjiOb7QHHdf8ABaT9qvV/j9rf7H37N+h+Ovi58WPgp4v8A6V4k8Rah8P9Ke88V/ExEaWMyfYpWDNKBYtL5UzMIpZGkkR3gUV9iftOf8G0fjb49fG/4iX2jftjfFrwX8Jfid4iutf1r4eWltPJYyfbJfOvYQUvo7dhI5faz2rbQUDiUqS3p37an/BuN8L/ANpf9n74Q+GfBPjDxb8J/GnwF06DTPBXjLT2Fze20ccscm66VTC0rh0eVHilgaOWRnU7cxnmw8XDC0ac1dRlBuPdKMk7/ZbUnF3TXNZtq6idVaSliqlSL1lGSjLZJuULW6pOMXpZ8uiT1bPhP/gih8I/iB+xt/wVw8LeHvg18M/2zvCf7NPjjSbuLxXb/GHwhJpsFpqSWs8iXJe3T7ICWgtY0lISQ+Y8Z3AjPnf/AATl/wCCT1l/wV0/ao/bK8J+OPip8RPCvw28F/E7U9QXwz4bnigh1PVrm9u1ivbgyrJG4hjtmQIYi370lZI/nEn6df8ABOT/AIIfeNP2Qv2m7b4rfFj9qf4rftD+ItB0640zw5b6+Z47PSI7oAXZK3N3eOzPshx5bwgeWdwkyu30L/gmH/wSZ/4dw/GP9oDxb/wn/wDwmX/C9PEx8R/ZP7D/ALO/sTM93L5O/wC0S+f/AMfWN22P7mdvOB01VGVubVqlNJ6/E6kZJfKKdnsrKzukzjvOKl7PS84O2mqUZKT+baTXXV2s2fmj/wAERPEP7Qnxz/4IgftTfB/4W+MdZuviF8P9bbRPAl42p/Y7mzhZYzLa2s7uBa7kim8o+YqxST5DLjdXnX/BAT4XfCH9k7/goz8M9E8Vt+0r8A/2lJ9OvYNZ8M+N7aBvDfjyGS3mQQ20iwW9xEsk8QuoxOskRa0EayyybHP6E/s9f8G50HwQ/Yh/aB+Dc3xm1a8k+N2uW/iG08QaboA0258M3VtMlxblUNzL5wWaKMkh4mKghWQkOsP7E3/BuzrXwR/a88K/GT43ftPfE/8AaO8RfD3fJ4Tt9eW4hg0qaRXWR3a4vLt3X5lZUjaIB0BbeOAYepP6x7Wbs5QhGT3d1TtLlt15m00/dlvfVtViKcVhZ0aX883FdLOXu3v0tZq3vRs+rPhD/gnd/wAE67T/AIObvG/xq+NX7QvxZ+I2fD/iiTQ/DGg6DqNvDH4ftivnBBFcQzpHBtaJVSJULvFK7u7MWrT/AGAvjR48tf8Agkt/wUe+AfirxjqXxA8OfAHR9Q0TwzrV3O82LUQX1r9nh3M+yBVsY3SIOyxiVlXjFfVvx4/4Ner7/ho7xl47/Z3/AGovib+zdp/xClN5r+haJDczw3Ny0ksjbJLe+tGFvmRisMgl2M0m1wrBF95+AP8AwQY+Hf7LP/BMv4n/ALPPgbxBqltqPxc0e5svEHjLU7VLy8urqa3MPn+QrRr5Me5vLgDjaGOXZmaRuTk/2GpSguW9Lk5b3vP3fev8pO71fNZ7HVOpF4yNXf8Ae83N/LDX3bejUbWtpfex8lf8G1P/AASb0fxn8Hfgj+1140+I3xC8R/EDS9MvdJ8N6Mb6JNC0TSY/tOnRWYiaJpG2r5svySRpvlyUZgzv+0NeE/8ABNH9ir/h3d+xJ4G+Df8Awk3/AAmH/CFw3EP9r/2d/Z/2zzbqafPkebLsx5u3/WNnbnjOB7tXp46rGdVqn8Cb5fS7frre7vq27vU83CU5Rpp1Pie/6L0S0XZBXzr/AMFYv+TAPH3/AHDv/Tla19FV8G/t5/tnaZ8XvgF8evhvdaPdeHfEPgy5sVgjupgx1a2XU7VftCDA2jlGC85SRGBOSB6HD+Fq1cdSnTV1GcG/JcyV/vOPOsRTp4SpCbs5Rkl5vlbPq39kD/k0v4Xf9ijpP/pHFXotfKf7Ln7Zmm2epfBX4O6bo91rGpXXgXTbzVb+GYLFowGnRyIrrg7iyhcnK7fNjxuLYH1ZXLmmFq0cQ3VVua8l5pt2f4fqdGX4inVopU3flsn6pLQK/Ob/AIOLP+SXfBv/ALHZP/RLV+jNfnN/wcWf8ku+Df8A2Oyf+iWrPLv94j8/yZz55/uNT5fmj1Giiq+saxa+H9KuL6+uIbOzs42mnnmcRxwooyzMx4AABJJ4AriPWDVNUt9E064vLyeG1tbWNpZppXCRxIoyzMx4AABJJ4Ar82/2mf2mfE3/AAUu+J03w0+Gk11p/wAMtPnC6zrKqVOrEHoOn7vj5E/ixubAAAb+0b+0h4o/4KdfFGX4d/Dma80v4WaZOF1bV1Uo2sEHpjj5OMpGev33/hUfZ37LH7Kugfs9eBrLTdLsY7eO3XPqzserserMe5P8sCu5RWHXNL4+i7eb8/I1+DV7/kR/sp/soaB+zz4Es9O02xjt1hUE8ZeRscu7fxMe5P6AAV7IBtHFAGBRXFKTbuzI8F/4J4/8p3/jP/2Icf8A7hK/UKvy9/4J4/8AKd/4z/8AYhx/+4Sv1CrrxvxQ/wAMfyPJyj4Kv/Xyf/pQUUUVxnrBRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFAHkv7ff/Jifxq/7EPXP/TfPXkn/BC//lFj8Lf+4t/6d72vW/2+/wDkxP41f9iHrn/pvnryP/ghgcf8Esfhb/3Fv/Tve12r/dH/AIl+TPJl/wAjOP8A17l/6VE+tqKN1G6uI9YKKN1G6gAoo3UbqACijdRuoAKKN1G6gAoo3UbqACijdRuoAK+Cf+C0n7JreIvC1v8AFTQ7dvtukxrY6+kQ5uLXcPKmIHXy3wpPXaynolfe26qus6RZ+ItIutPv7e3vLG+iaC4t5kDxzxsCrIyngqQSCD1Br0sozKpgMVHEw6bruuq/rrqcOZYGGMw8qE+uz7Poz5O/4JG/snSfBf4M/wDCa65C/wDwlHjWCN4/OB8yy09QPJi55G8AOR6eWMfJX13TUCxoFXaqqMADoBTt1Z5jjqmMxMsTV3k/uXRfJaGmBwcMLQjQp7L8X1fzCvzm/wCDiz/kl3wb/wCx2T/0S1fozur85P8Ag4wlWL4VfB1mOFXxqhJ9P3LUsu/3iPz/ACZx55/uM/l+aPSdb1uz8NaPdahqF1b2VjZRNPcXE8gjjhjUZZmY8BQASSelfm3+0F+0X4q/4KifEyb4ffD2S80f4UaXcBdU1YIVk1plIIGDj5MjKxn2d/4VC/tC/HrxZ/wVG+J83gHwHJfaN8JtHuQmp6nsMcmtSKc4wedvdIz04dxnao+0/wBmD9mDQ/2f/Atjpum2MVtHbIAqgZOe7MerMTySeSaaSw6u/j/Lzfn+R7fwa9fyI/2XP2WdB/Z88C2Om6bYx28dunAxlmbuzH+JieSTXrwGBQBgUVxSk27syCiiikB4L/wTx/5Tv/Gf/sQ4/wD3CV+oVfl7/wAE8f8AlO/8Z/8AsQ4//cJX6hV2Y34of4Y/keTlHwVf+vk//SgooorjPWCiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKAPIf+CgbMn7B3xrK9f+ED1z/wBN89fj3+wp+wp8ffi/+yn4V8SeD/2ifih4I8O6kbw2miaVdXqWdjsvZ432CO9jT53RpDhF5c9Tkn9iP2+/+TEvjV/2Ieuf+m+evIf+CGVtG/8AwSy+FxZFJ/4m3b/qL3tehRqSp4Vyj/MvPo+553tZRzFRXWD/AAkv8z4w/wCHZn7UX/R2nxp/8DdR/wDljR/w7M/ai/6O0+NP/gbqP/yxr9g/scX/ADzX8qPscX/PNfyrH67W7r7l/ker7WR+Pn/Dsz9qL/o7T40/+Buo/wDyxo/4dmftRf8AR2nxp/8AA3Uf/ljX7B/Y4v8Anmv5UfY4v+ea/lR9drd19y/yD2sj8fP+HZn7UX/R2nxp/wDA3Uf/AJY0f8OzP2ov+jtPjT/4G6j/APLGv2D+xxf881/Kj7HF/wA81/Kj67W7r7l/kHtZH4+f8OzP2ov+jtPjT/4G6j/8saP+HZn7UX/R2nxp/wDA3Uf/AJY1+wf2OL/nmv5UfY4v+ea/lR9drd19y/yD2sj8fP8Ah2Z+1F/0dp8af/A3Uf8A5Y0f8OzP2ov+jtPjT/4G6j/8sa/YP7HF/wA81/Kj7HF/zzX8qPrtbuvuX+Qe1kfj5/w7M/ai/wCjtPjT/wCBuo//ACxo/wCHZn7UX/R2nxp/8DdR/wDljX7B/Y4v+ea/lR9ji/55r+VH12t3X3L/ACD2sj8fP+HZn7UX/R2nxp/8DdR/+WNH/Dsz9qL/AKO0+NP/AIG6j/8ALGv2D+xxf881/Kj7HF/zzX8qPrtbuvuX+Qe1kfj5/wAOzP2ov+jtPjT/AOBuo/8Ayxo/4dmftRf9HafGn/wN1H/5Y1+wf2OL/nmv5UfY4v8Anmv5UfXa3dfcv8g9rI/Hz/h2Z+1F/wBHafGn/wADdR/+WNH/AA7M/ai/6O0+NP8A4G6j/wDLGv2D+xxf881/Kj7HF/zzX8qPrtbuvuX+Qe1kfj5/w7M/ai/6O0+NP/gbqP8A8sa+b/8Agoz+yB8aPgZoHgS48efG74hfEaz1XxAlpaW+tXN28dhLtJ85BLdSjdgEcBTg9a/oT+xxf881/Kvzn/4OKbeOP4XfBvaij/itk7f9MmrqwWKqTrRjJ6ei7eh5ubYqpTwk5x306LuvI3Phj8F9I8BiS4tLG2tpLqV7iQRRKgMjnc7EAfeZiST1JOa7gDAo6UV5Z3BRRRQAUUUUAeC/8E8f+U7/AMZ/+xDj/wDcJX6hV+Xv/BPH/lO/8Z/+xDj/APcJX6hV2Y34of4Y/keTlHwVf+vk/wD0oKKKK4z1gooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigDyX9vv8A5MT+NX/Yh65/6b568k/4IX/8osfhb/3Fv/Tve163+33/AMmJ/Gr/ALEPXP8A03z15J/wQv8A+UWPwt/7i3/p3va7V/uj/wAS/Jnky/5Gcf8Ar3L/ANKifWtfDP8AwcSftyfEj/gn3/wTR17x38K/Ls/FNxq1lo41Z7NboaHDOzBrkI6tHuyqxqZAVDTLwTgH7mr5r/4Kh/t0fBf9hr4G6PdfHzS5tV+HXxA1qPwnfI2iprFjEJoZZS95bNlpLcLC24RxyuSRiNu3kYyLlS5U7XaXa+q0v05tr9L3Pdw8rT5rXsm++yetutt7dbWPzx/4I5fsh/HT4heI/hT8cPA//BRDVvj14dWezk8feCtX1G+vbbTrW4t2kuLQrNeXBS7R9qoJre2fG5wyY2P9W/8ABSL/AIOOP2dP+CY3xkj+Hvi6Txp4u8ZRRCbU9M8J6dBdPoisiPELl7ieCMNIr7lSNncAZcIGQt+NfxBuP2bvA3/BVr9nbWP+CbPjDx5N4o8S+JIrPX9EsrXVF02xtfNtg6g38SXDwyxC5edHaaJUQtmJVAP0P+yR+2f8K/8Agkt/wX+/bE1L9pltQ8I6l401Ke88LeJLjSbrVFisJ7t7lIk+zxyTBJ4HtsFEKD7MyMylQD3Sqe1lTS/dxftWk1reCjaKfVO943d/itds5lT9kpyfvyXs1o91NyXM0tnG3vW0+HWyP0k+If8AwcFfs6/DP/gnt4S/aR1DUPFjeDfHE72Gi6TDoxbWry+jLia08ssIUki8uXc7TCE+Wdsj7k3c7/wTl/4OTf2dv+CmHx9i+GfhG3+IHhPxhfwPNpdp4p0q3t01jy43llSGS2uLhQ6Rxs5EpTI+7uIIHyn/AMFVf+CzXg7wz+xt8AfG37Pvhnwj4T8GfET4hazHY/EHXfAMV8vgaa3u3jutasbHawW8uGnurhWkQzSR+fuiEjts+RfgD+02n7Uf/Bxz+zDrA/aOb9p+TTw1m3io/DaLwOLQeTfOLMW6qrzbNxfzHUY83apODgw69pjFTcWoyny26xvFO/fRv7SimrJNu4sTenhZVE9Yxcr97TcbdtotOzk73dlGzP1h/at/4OWv2cP2MPjb8Uvh746j8fWfir4Wy2dvJaW2lQXH/CRzXMKzBLAi458uNgzvc+Qi8AMWZQ3qv/BN7/gs38Gf+CpPwq8WeJvhvL4ks7jwON+taFrllHa6pZxssjRS7Y5ZIXSQRSbSkrYK4bacCvhP9gfwVo/ib/g7f/au1DUtJ0zUL7w/4bhvNLubm1SabTZ2t9KhaWB2BMbmKWSMshBKSOucMQed/wCCPWn2+gf8Ftv+CjljYwQ2ViFv3FvAgjiDfbZjnauBnLMc46sfU1xRqtYWnOXxVKE6qfROHl1v8rHTKC+sTjH4YVoU2u6nZb9LXv1bd+h7L4g/4PFv2S9C+G/h/Xo9N+LWo6hrjz+boFpolm2paRHHIUWS5LXi26iQqxRY5nk2gMyIGUt9v+Fv+Cm/wS8U/sLxftIDxvZ2Hwiaxa+m1i7hkje22yGF4HhCmU3AmBiESKzO+AgbcufyX/4N0vhn4bvf+Ddf9pvVJvD+hzalraeJbLUbt7GJp7+CDR0eGKZyu6SONpZWRWJCmRyACxz8t3nw78VfEf8A4M+dFuNAt9QvrDwl8WJ9V1tLdmbyNPBniLsg+9Gs9xCxHRfvnG0kdOM/dOrSW8YUp36JVJKLVvK/Ndvp0W2OF/e+ym9pSqxt1fJFyWvm1ypW6p6s/U79lv8A4Oz/ANlX9qL466P4DWL4k+BbvX7hbOw1TxRpFrDpk1y8ixxQtJb3U7xl2YYeRFjGDudeM+vft4/8F+PgR/wTi/aJ1L4afE2PxpZ61YeE18WRXVlp0FxaagjyvFFZQfvxK11I6HAaNYgMs8qKGI/En4yfGj4Z/tw/szfCn4d+LP8AgoFq3ii10W70ePw34A039mu20rUPD10ypaRwJdxT21uq26SlX2XRjZYsr5jBAfu/9prwJpPiz/g8O+BNnrWn2esQ6b8OkvYFu4RKiXMEGrPDMFbI3pIqup6qyqwwQCOidBOdOnF2vOcW97xjTc79ua/RSa27sx9taE6rV7QjK21m5qNtdeVp7tJrXyP0j/Z1/wCCiPhf9qf9gSH9obwb4V8eah4ZutKv9VtdCext0167Wzkmjkijh8/yWldoH2DztrZX5hmvC/DX/Bxp+zn4n/4J2ax+0pHceLLfwroetL4duPD9xaWqeIn1FyDHbRwC4MLs8R84ETbfKVySCjqPt3x1430n4Z+CdY8Sa9f2+laH4fsptR1G9uG2xWlvChkllc9lVFYn2FfyVeLPD0yfHX/htaH4Zsv7IOrfHIP/AMIqbu4Mdz5Uhk+1Nb8JtZWnCknYsrPBjZw3L7SM8W6XwwfLrvyXqRjr35lJpXtZxvqr26HGUMMqtuaSctNue0JSsu3LZOVr3T6aH9WXgf42r42/Z40/4hnwt4s0ePUNCGur4f1G1hj1uBDD5wt5IVlaNbgjC7PMwGOCRzjxf9gL/grn8Jf+Ci/7Lfij4ueDW8Q6D4c8E3N1a67a+IraG1vtMNvAtw7ukUsqbDEwZWDnOGBwVIH0P8OviFovxb+H+h+KvDmoW+reH/ElhBqem3sBzHd200ayRSKfRkYH8a/me/4KVfEzxd/wRY/a/wD2yPgb4R0vUJPCv7V2jW+oeGxGDizN7ckT+UBj5BHNqdqAoLZWDP3SanEOca06MYtSlGSgu1RO6i+rurrpZx83Z4aMZ0YVZSuouLm11g9HJdrOz63T02P32/4Jp/8ABSTwZ/wVM/Z9uviV4B8P+NdB8OW+rz6NEPEtnb2s95JCkbPLEsE8ymLMm3JYHcjjaMZP0JXhP/BMv9ke1/YV/YL+F3wtgt4IbvwvoUCao0SgCfUJB5t5Jx13XDynJ7YHavdq7MVCEKrhT1S0v3to36N6r1OXC1JTpKpPRvW3ZPVL5LRhX5zf8HFn/JLvg3/2Oyf+iWr9Ga/Ob/g4s/5Jd8G/+x2T/wBEtWuXf7xH5/kzgzz/AHGp8vzR6jRRRXEesFFFFABWR488eaP8MfCGoa9r2oW+l6RpcRmubmY4WNR+pJOAFGSSQACSBR488eaP8MfCGoa9r2oW+l6RpcRmubmY4WNR+pJOAFGSSQACSBXzB8B/gP4u/wCC0vxdj13XY9T8K/s6+Fb0+RBkxXHiSZDggEdWPIZxkRAlFJcsw6sPh+e85u0Vu/0Xmefjsd7K1KkuapLZfq+yX/AR3n/BGrRvEH7Qn7fXxU/aEttAvNI+HuuaG3h3Tbi8O2S9nR7AAov8QCWbFyCQrOEBYhiP1CrL8FeCtJ+G/hLTtB0HTrPSdF0i3S1s7O1jEcNtEowqqo6AVqVOIrKpO6VkkkvRGmAwrw9Llk7ybbb827v5BRRRXOdgUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQB5L+33/yYn8av+xD1z/03z15J/wAEL/8AlFj8Lf8AuLf+ne9r1v8Ab7/5MT+NX/Yh65/6b568k/4IX/8AKLH4W/8AcW/9O97Xav8AdH/iX5M8mX/Izj/17l/6VE+tawfid8K/C/xs8D33hjxn4b0Hxd4a1QILzSda0+K/sbsI6yJ5kMqsj7XVWG4HDKD1AreorhaT0Z66k07o85+B/wCx/wDCX9mO/wBQuvhr8Lfhz8PbrVo0ivpvDXhuz0mS8RCSiytbxoXCkkgNkAk460744/sifCf9p2602f4lfC/4d/EKbR1kSwk8TeHLPVmsVkKlxEbiNygYqpIXGdoz0FeiUU3ra/TYS0vbqcT4l/Zo+HHjP4OW/wAO9Y+H/gnVvh/Zww28Hhi80K1n0aGOEqYUW0ZDCqxlVKgLhSoxjArE8HfsPfBX4dXnhu48P/B/4XaFceDZ57nw/Lp/hSwtX0KWfHnyWpSIGBpNo3tHtLYGc4r1GinzPm5+u9/PuFk1yvbY47w5+zv8P/B/xZ1jx9pPgXwdpfjrxFCLfVfEdnottBq2pxjYAk90qCWVR5cfDsR+7X+6MQ+Ef2Z/hv8AD/xz4k8UaD8P/BGieJvGQYa/q1hoVrbX2ubiWb7VMiB58sST5hbJOa7eipsrJdlb5Pdej7Bd3v3d/mtn6+Zw/wAOP2Yvhr8HfhtqPg3wj8PPA/hXwfrBlN/oej6Da2Om3plQRy+bbxIsb70AVtyncoAORWh8Ivgf4L/Z+8Fr4b8B+D/C/gnw7HK866XoGlQabZLI/LuIYVVNzdzjJ711FFN63b6qz9FsvQLaW+fze7PIfhr/AME+fgJ8GPHtn4q8H/BD4Q+E/FGntI1rrGjeDtOsb+2MiMjlJ4oVkUsjspwwyGIPBNdbqH7O/wAP9W+Mll8RrrwL4OuviFptqbG08Ty6LbPrNrbkODDHdlPOWPEkg2hwMO3HJz2NFPmenlt5f1dhLVtvrv59TJ8d+AtD+KPg/UfDvibRdJ8ReH9Yga2v9M1SzjvLO9ib70csUgKOp7qwINcy/wCyz8MZPgh/wrJvhz4Db4b7BH/wiZ0C0/sPaJfOA+x+X5GPN/eY2ff+brzXeUUrLbv+m33Du00102MfwB8PdA+FHg3T/DnhbQ9H8NeHtIiEFjpelWUdnZ2UYJISKGMKiLknhQBzX5nf8FBP+Cbnxa/b2/4Lt/APxhrHgGxt/wBnv4M28eoTeI31Cw87VL1Ga8EJgExumj+0R2sQDRBR++bOGyf1Jooi2q8MR9qD5l62au+9r39d7rQmSTozodJrlfpdPTttb02CiiigYV+c3/BxZ/yS74N/9jsn/olq/Rmvzm/4OLP+SXfBv/sdk/8ARLV25d/vEfn+TPJzz/cany/NHqNFFFcR6wVkePPHmj/DHwhqGva9qFvpekaXEZrm5mOFjUfqSTgBRkkkAAkgUePPHmj/AAx8Iahr2vahb6XpGlxGa5uZjhY1H6kk4AUZJJAAJIFfMHwH+A/i7/gtL8XY9d12PU/Cv7OvhW9PkQZMVx4kmQ4IBHVjyGcZEQJRSXLMOrD4fnvObtFbv9F5nn47HeytSpLmqS2X6vsl/wABB8B/gP4u/wCC0vxdj13XY9T8K/s6+Fb0+RBkxXHiSZDggEdWPIZxkRAlFJcsw/WrwV4K0n4b+EtO0HQdOs9J0XSLdLWzs7WMRw20SjCqqjoBR4K8FaT8N/CWnaDoOnWek6LpFulrZ2drGI4baJRhVVR0ArUpYjEe0tGKtFbL+uo8DgfY3nN81SXxS/RdkuiCiiiuY7wooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooA8l/b7/5MT+NX/Yh65/6b568k/wCCF/8Ayix+Fv8A3Fv/AE73tet/t9/8mJ/Gr/sQ9c/9N89eSf8ABC//AJRY/C3/ALi3/p3va7V/uj/xL8meTL/kZx/69y/9KifWtFFFcR6wUUUUAFFFFAFbWdZs/Duk3OoahdW9jY2cTTXFxcSCOKCNRlnZmICqACSTwK+Fv2s/+C0ej+FXuND+FlvDrmoZMb65exstjbnoTFHw8pH944XgEBwa+8JY1mjZHVWRgVZWGQQexr5D/at/4JFeDfjDdTa94H+yeCvFG/zvJEAk0m9cc/vIMER5OMlBt65Ria+g4fnlkcRfMk2un8v/AG8lr+ndHj51HHyo/wCwtX69/k9v60Zxf7Gf7fHgP4UeHNZvfiZ8erzxl4h8RTx3L250fU2s9I2hsxwZtwBu3DcFVEG0ALwWbW/a4/b/APhf8afhdHp/gf46ah4H8Q2N4l9BdW+j6pHHd7FYeRMUg3eWxYE4DD5RlWHFdh+xp+zHcal4b1jTfjD8EfhTY6no00cNjqtpoOnMutIQ26QpGhClcLyAgbfjYpU51v2t/wBmux8KfC+NvhT8DPhb4g8TXt2lqftWg6ekdhEytmfa6qHIYKME4G7JBAIr2KlTLP7Sv73NdaqVPk20+xa1v+DqeXCnj/qNtOWz0canP/6Ve9/6seEfsrf8FpY7e8j8P/FiOK4WN/Jj8T6XbsI5QDgPNb7QwB67o1B6Dyxya++/CHjHSvH/AIas9Y0PUbPVtK1BPMt7u1lEsUy9MhhxwQQR2IIPIr46/Zg/4I96D4X1VfE3xSk07xRr0z+f/ZFjbpa6PasecGNFQSYP8IVI+o2MOa+0dP0+30mxhtbWCG1trdBHFDEgSONRwFVRwAPQV5fElTK5Vv8AhOTv1t8P/bq3/JdkehkccwjS/wBua8v5vn0/N92TUUUV82e4FFFFABRRRQAV+c3/AAcWf8ku+Df/AGOyf+iWr9Ga/Ob/AIOLP+SXfBv/ALHZP/RLV25d/vEfn+TPJzz/AHGp8vzR6jWR488eaP8ADHwhqGva9qFvpekaXEZrm5mOFjUfqSTgBRkkkAAkgUePPHmj/DHwhqGva9qFvpekaXEZrm5mOFjUfqSTgBRkkkAAkgV8wfAf4D+Lv+C0vxdj13XY9T8K/s6+Fb0+RBkxXHiSZDggEdWPIZxkRAlFJcswjD4fnvObtFbv9F5m2Ox3srUqS5qktl+r7Jf8BB8B/gP4u/4LS/F2PXddj1Pwr+zr4VvT5EGTFceJJkOCAR1Y8hnGRECUUlyzD9avBXgrSfhv4S07QdB06z0nRdIt0tbOztYxHDbRKMKqqOgFHgrwVpPw38JadoOg6dZ6ToukW6WtnZ2sYjhtolGFVVHQCtSliMR7S0Yq0Vsv66jwOB9jec3zVJfFL9F2S6IKKKK5jvCiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooA8l/b7/5MT+NX/Yh65/6b568k/4IX/8AKLH4W/8AcW/9O97X0n8XvhnY/Gn4TeKPBuqTXlvpfizSLvRryW1ZVuI4bmF4XaMsrKHCuSCVYA4yCOK+Ef8AiGh+BP8A0Nnxa/8ABpp//wAhV3UZUnRdKpK2qe1+lvI8jFU8THFxxFCCkuVx1dt2n2fY/RCivzv/AOIaH4E/9DZ8Wv8Awaaf/wDIVH/END8Cf+hs+LX/AINNP/8AkKl7HDf8/H/4D/wR/Wsf/wA+F/4H/wDan6IUV+d//END8Cf+hs+LX/g00/8A+QqP+IaH4E/9DZ8Wv/Bpp/8A8hUexw3/AD8f/gP/AAQ+tY//AJ8L/wAD/wDtT9EKK/O//iGh+BP/AENnxa/8Gmn/APyFR/xDQ/An/obPi1/4NNP/APkKj2OG/wCfj/8AAf8Agh9ax/8Az4X/AIH/APan6IUV+d//ABDQ/An/AKGz4tf+DTT/AP5Co/4hofgT/wBDZ8Wv/Bpp/wD8hUexw3/Px/8AgP8AwQ+tY/8A58L/AMD/APtT9EKK/O//AIhofgT/ANDZ8Wv/AAaaf/8AIVH/ABDQ/An/AKGz4tf+DTT/AP5Co9jhv+fj/wDAf+CH1rH/APPhf+B//an6IUV+d/8AxDQ/An/obPi1/wCDTT//AJCo/wCIaH4E/wDQ2fFr/wAGmn//ACFR7HDf8/H/AOA/8EPrWP8A+fC/8D/+1P0Qor87/wDiGh+BP/Q2fFr/AMGmn/8AyFR/xDQ/An/obPi1/wCDTT//AJCo9jhv+fj/APAf+CH1rH/8+F/4H/8Aan6IUV+d/wDxDQ/An/obPi1/4NNP/wDkKj/iGh+BP/Q2fFr/AMGmn/8AyFR7HDf8/H/4D/wQ+tY//nwv/A//ALU/RCivzv8A+IaH4E/9DZ8Wv/Bpp/8A8hUf8Q0PwJ/6Gz4tf+DTT/8A5Co9jhv+fj/8B/4IfWsf/wA+F/4H/wDan6IV+b//AAcf6jDpHwc+Ed3cNsgtfGImkYDO1VgYk4HsK0P+IaH4E/8AQ2fFr/waaf8A/IVWNM/4NrPgLYalbzzeIvipfRQyrI9vNqtkI7hQQSjFLNXCt0O1lbB4IPNb4f6tSqKpzt2/u/8ABOXHf2hiaEqPsUr9ee/W+3KeE/Af4D+Lv+C0vxdj13XY9T8K/s6+Fb0+RBkxXHiSZDggEdWPIZxkRAlFJcsw/WrwV4K0n4b+EtO0HQdOs9J0XSLdLWzs7WMRw20SjCqqjoBR4K8FaT8N/CWnaDoOnWek6LpFulrZ2drGI4baJRhVVR0ArUrkxGI9paMVaK2X9dT0cDgfY3nN81SXxS/RdkuiCiiiuY7wooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKAP/2Q==\n", "text/plain": [ "<IPython.core.display.Image object>" ] }, "execution_count": 2, "metadata": {}, "output_type": "execute_result" } ], "source": [ "path = os.getcwd()\n", "fig1 = path + '/Fig1.jpg'\n", "Image(filename=fig1)" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "#### Figure 1. Schematics of the setup of a atomic force microscope (Adapted from reference 6)" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "In AFM the interacting probe is in general a rectangular cantilever (please check the image above that shows the AFM setup where you will be able to see the probe!). \n", "Probably the most used dynamic technique in AFM is the Tapping Mode. In this method the probe taps a surface in intermittent contact fashion. The purpose of tapping the probe over the surface instead of dragging it is to reduce frictional forces that may cause damage of soft samples and wear of the tip. Besides with the tapping mode we can get more information about the sample! HOW???" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "In Tapping Mode AFM the cantilever is shaken to oscillate up and down at a specific frequency (most of the time shaken at its natural frequency). Then the deflection of the tip is measured at that frequency to get information about the sample. Besides acquiring the topography of the sample, the phase lag between the excitation and the response of the cantilever can be related to compositional material properties! \n", "In other words one can simultaneously get information about how the surface looks and also get compositional mapping of the surface! THAT SOUNDS POWERFUL!!!" ] }, { "cell_type": "code", "execution_count": 3, "metadata": {}, "outputs": [ { "data": { "image/jpeg": "/9j/4AAQSkZJRgABAQEAeAB4AAD/2wBDAAIBAQIBAQICAgICAgICAwUDAwMDAwYEBAMFBwYHBwcGBwcICQsJCAgKCAcHCg0KCgsMDAwMBwkODw0MDgsMDAz/2wBDAQICAgMDAwYDAwYMCAcIDAwMDAwMDAwMDAwMDAwMDAwMDAwMDAwMDAwMDAwMDAwMDAwMDAwMDAwMDAwMDAwMDAz/wAARCAHOANQDASIAAhEBAxEB/8QAHwAAAQUBAQEBAQEAAAAAAAAAAAECAwQFBgcICQoL/8QAtRAAAgEDAwIEAwUFBAQAAAF9AQIDAAQRBRIhMUEGE1FhByJxFDKBkaEII0KxwRVS0fAkM2JyggkKFhcYGRolJicoKSo0NTY3ODk6Q0RFRkdISUpTVFVWV1hZWmNkZWZnaGlqc3R1dnd4eXqDhIWGh4iJipKTlJWWl5iZmqKjpKWmp6ipqrKztLW2t7i5usLDxMXGx8jJytLT1NXW19jZ2uHi4+Tl5ufo6erx8vP09fb3+Pn6/8QAHwEAAwEBAQEBAQEBAQAAAAAAAAECAwQFBgcICQoL/8QAtREAAgECBAQDBAcFBAQAAQJ3AAECAxEEBSExBhJBUQdhcRMiMoEIFEKRobHBCSMzUvAVYnLRChYkNOEl8RcYGRomJygpKjU2Nzg5OkNERUZHSElKU1RVVldYWVpjZGVmZ2hpanN0dXZ3eHl6goOEhYaHiImKkpOUlZaXmJmaoqOkpaanqKmqsrO0tba3uLm6wsPExcbHyMnK0tPU1dbX2Nna4uPk5ebn6Onq8vP09fb3+Pn6/9oADAMBAAIRAxEAPwD9/Kivrr7FZTTeXLN5KM/lxLud8DOFHcnsKlooA/IX9oT/AIKk/ErxF+0vB4h0WW98Laf4VuZLey0GcEK6g7ZFvI+N7vjDA/c6KQRuP6M/sk/tm+G/2tfhU+vaOskOrabGBqujBhJc2cuCcKON6Pg7HGA3Q4YMB45/wUo/4Jr2/wC0Vp1z408F20Nr46tY91zbLhI9dRR0PYTgDCseGGFbsV/NP4N/GTxb+yv8Wodd0Ka40nXNJlaC5tp0ZVlUNiS3njOCVJGCpwQQCMMAR+pwy3Ls7y+P1JKnUpq1v0fdPpLe/wA0fnssfjcpxr+ttzhN3v8AquzXVf8AAZ7t+0J/wVJ+JXiL9peDxDost74W0/wrcyW9loM4IV1B2yLeR8b3fGGB+50Ugjcf0e/Y8/bD8N/th/DZdY0dls9Wswseq6VI4aawlI/8ejbBKuBggEHDBlHx38ZPg34S/wCCpvwlm+Jfw0ht9J+KOkxKuvaCzqrXzBeATwCxAPly8BwNrYI+T4v+Dfxk8W/sr/FqHXdCmuNJ1zSZWgubadGVZVDYkt54zglSRgqcEEAjDAEbVsjweaYP2OHh7KtS0cXun2fdPdS+fdGdLNsVl+K9rWl7SlU1v3812a2cfl2Z9pf8Fav28vGHhvx7J8NPDceseFLSx8q5vNTBa3uNTPDp5Dg5EII5YHLMpHAUhvYf+Cbf/BSS1/aU0u38H+MLiCz8fWcWIZjiOPXUUcug6CYAZZB15ZeNyqk8Hw3/AOCxH7OHmR+XovjLRUxzh7vQrlh0PQy20hHsGA/hdfl/Mv4tfCXxd+yz8W5tF1qG60XxBosyz29xBIyhwGzHcQSDBKkjKsMEEYOCCBhl+V4DH4J5ZUh7KvT373/m80+q9LdGaY3MMZg8WsfCXtKM9u1u3k10frfqj7U/4K1ft5eMPDfj2T4aeG49Y8KWlj5VzeamC1vcameHTyHByIQRywOWZSOApDew/wDBNv8A4KSWv7Sml2/g/wAYXEFn4+s4sQzHEceuoo5dB0EwAyyDryy8blXx74S/Frwj/wAFWfhJD8O/iJNa6L8WNFhZtE1tY1U6gQvJA4BJA/eQ8BgN6YIIT4r+LXwl8Xfss/FubRdahutF8QaLMs9vcQSMocBsx3EEgwSpIyrDBBGDgggdGHyPB4rCPKqsPZ16et92/wC+n9qL6rptpZGVfNsVh8Ssxpy56U9Ldv7rXRro+u+t2fsN+3v+1LqH7JfwFuvEWl6Jc6xqVxKLO2k8staWEjg4muCOQgPAH8TFVyM5r4H/AGG/+CqfiT4R/Em6tfiJqmoeIvC3iS8a4urmYmW40mZzzNGP+eX96JRgAZQAgq301/wT/wD+CgOi/tieDJPh38RI9Pk8WSWrW7pcRr9m8SQbcMQvQShcl0HB5ZeMhPkn/gov/wAE6NQ/ZT1+TxH4cjuNQ+H+oTYRzl5NHkY8QynqUJ4SQ9fut82C3n5FgcHSdTJ8yp8tSW0v5l05X08u+z10OzNsZiqihmeBnenHddn1uuvn26aan6E/ts/tht+zp+zUvjTwxp58TNq+yLTb2AedYW/mrlLiZ1P+r6YA+8xVcjOa+Ev2G/8Agqn4k+EfxJurX4iapqHiLwt4kvGuLq5mJluNJmc8zRj/AJ5f3olGABlACCrc7+wP+3wvwKjm8B+PIf7f+Fuv7oLm2nj8/wDsvzOHdEOd0TZJeMe7L82Q8f7fH7A7fs+yQ+NvBM39v/C/X9s9neQSef8A2d5nKRu4zujbI2Sd+FPzYLehl+R4PCOeV46GtT4Z/wAy6JP7Ml26+ZyYzNsViFHMMJLSHxR7d2+8X36H6gftAftG2vwe/Zz1P4haRYT+LrO3s1u7RNOIkjuFfG2UuucQjIZnGcKCcV+ZfwA/4KuePvh5+0DqHijxVfXHiHQfEcy/2ppQbbHaoOFa1UnEbRrwBnDgYY5w4f8A8E6v+Cit1+zHqq+E/FjTal8O9TkKujKZX0dnPzSRrzuiOSXjHqWUbsh+r/4KK/8ABOq18HaU3xT+Fiw6l4F1KMXt5Z2TCVNOVxu8+HbndbHOcD/V5/ufdwy3J8Jl9eeX5hBNVdIzezX8v92Sevm/kaY7MsTjaMMbgpNOn8UFun38108l8z9GIvj/AKHr3wJuPiB4b+1eKtHXT3v7eLS4/NuLrYCTEqcESAgqVOCCCCMivyvg/wCCr3xLh/abbx89zu0tv9Fbw35p+w/Y92fKH/TUdfOxu3dtvyVzf7CP7d2ufsb+Odrefqng3VJR/aml7unQefDnhZVH0DgbTjCsv0Z+3b+wlof7Qfgb/hdXwV+z6pb6pEb3U9Msl4uxyXmhTqsynPmRYBJBIAYEMsFk+EyrFyw+OgpU6ukZvZf3X2b7/lrYxWZ4nMcNGthJcs6esord/wB5d15f0/s3wB+1x4Z+LH7O158RfC8Woa9Z2FpJPPpdnEJNQimRdzWxjzxIPyIIYEggn8yoP+Cr3xLh/abbx89zu0tv9Fbw35p+w/Y92fKH/TUdfOxu3dtvyV5l+yX+1p4m/ZC+Jkeu6FIZ7O4KxappcrlYNRhB+6391xklXAypPcFlP0z+1p+yX4Z/a9+Gcnxv+CEYnluA0viHw9EgWeOYDdIyxj7swzlkHEgO9Mk/P0YXI8HleKlTxcOalV0jN/Zv9mXa/SX5GeIzbFZhh4zw0uWpT1lFdf7y726r8z7p8AftceGfix+ztefEXwvFqGvWdhaSTz6XZxCTUIpkXc1sY88SD8iCGBIIJ/MqD/gq98S4f2m28fPc7tLb/RW8N+afsP2Pdnyh/wBNR187G7d22/JXmX7Jf7Wnib9kL4mR67oUhns7grFqmlyuVg1GEH7rf3XGSVcDKk9wWU/TP7Wn7Jfhn9r34ZyfG/4IRieW4DS+IfD0SBZ45gN0jLGPuzDOWQcSA70yT85hcjweV4qVPFw5qVXSM39m/wBmXa/SX5BiM2xWYYeM8NLlqU9ZRXX+8u9uq/M+/vgP+0h4Z/aO+E8Pi7wvcSX1m0Z8+1Cj7VaTKuWgdM8SDsOjAggkEGvzD/aE/wCCpPxK8RftLweIdFlvfC2n+FbmS3stBnBCuoO2RbyPje74wwP3OikEbj5J+yX+1p4m/ZC+Jkeu6FIZ7O4KxappcrlYNRhB+6391xklXAypPcFlP2x+1F+y74R/4KTfCJPi58I3hXxeseNQ087Y3v3RRugmXOEuVGNrdHG3kqVYc9HJsLk+ObxcOajU0jJ6qN+kl57c3/BtrVzTEZnhEsNLlqw1cVpzW6x9O3/APqH9jz9sPw3+2H8Nl1jR2Wz1azCx6rpUjhprCUj/AMejbBKuBggEHDBlHrlfgf8ABv4yeLf2V/i1DruhTXGk65pMrQXNtOjKsqhsSW88ZwSpIwVOCCARhgCP2U/Y8/bD8N/th/DZdY0dls9Wswseq6VI4aawlI/8ejbBKuBggEHDBlHzvE/DEsBL6xh9aT/8l8n5dn8nrv7eQZ/HGR9jW0qL8fNefdfNeXrlFFFfHn0wUUUUAfjD/wAFYv8Ak/8A8ff9w7/022tfOtf0UUV+iYHj76vh6eH9hfkio35rXsrX+E+JxXB3t6863trczbty7Xd/5j+deiv6KKK6v+Ijf9Q//k//ANqc/wDqP/0//wDJf/tj+deiv6KKKP8AiI3/AFD/APk//wBqH+o//T//AMl/+2P516K/oooo/wCIjf8AUP8A+T//AGof6j/9P/8AyX/7Y/nXor+iiij/AIiN/wBQ/wD5P/8Aah/qP/0//wDJf/tj+deiv6KK+df+CsX/ACYB4+/7h3/pyta6sDx99YxNPD+wtzyUb817XaV/hOfFcHewoTre2vypu3LvZX/mPxhor6K/4JO/8n/+Af8AuI/+m26r9nq9TiDiz+y8THD+y5rxUr81t21b4X2ODJeHP7QoOt7Tls7Wtfon3Xc/nXor+iiivB/4iN/1D/8Ak/8A9qev/qP/ANP/APyX/wC2P516M1/RRRR/xEb/AKh//J//ALUP9R/+n/8A5L/9sfzr0Zr+iiij/iI3/UP/AOT/AP2of6j/APT/AP8AJf8A7Y/nXozX9FFFH/ERv+of/wAn/wDtQ/1H/wCn/wD5L/8AbH869Ff0UUUf8RG/6h//ACf/AO1D/Uf/AKf/APkv/wBsfOv/AASd/wCTAPAP/cR/9OV1RX0VRX53jsT9YxFTEWtzycrb2u72PtsLQ9hQhRvflSV+9lYKKKK5ToCiiigAooooAKKKKACiiigAooooAK+df+CsX/JgHj7/ALh3/pyta+iq+df+CsX/ACYB4+/7h3/pyta9TJP+Rjh/8cP/AEpHn5t/uNb/AAS/Jn51/wDBJ3/k/wD8A/8AcR/9Nt1X7PV+MP8AwSd/5P8A/AP/AHEf/TbdV+z1fTeIX/Ixh/gX/pUjweC/9xl/jf5RCiiivhT64KKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAr51/4Kxf8mAePv8AuHf+nK1r6Kr51/4Kxf8AJgHj7/uHf+nK1r1Mk/5GOH/xw/8ASkefm3+41v8ABL8mfnX/AMEnf+T/APwD/wBxH/023Vfs9X4w/wDBJ3/k/wD8A/8AcR/9Nt1X7PV9N4hf8jGH+Bf+lSPB4L/3GX+N/lEKKKK+FPrgooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACvnX/grF/yYB4+/wC4d/6crWvoquH/AGkvgto/7QvwT13wj4gm1a30jVEikuH0zb9rAhmSdRGGRwSWiUY2kkEgckGu7LK8aOMpVp7RlFv0TTOTH0ZVcNUpQ3lFperTR+TP/BJ3/k//AMA/9xH/ANNt1X7PV+A9n4x1f4E/GabVvCsuueF9S0O9m+wG8AF/ZodyBJRtClzGxVxsAOWGMHFfbn7Nf/BcG4tvI034paH9oThf7Z0dAsg95bcnB9zGRjHCGv0fjLh/GY6rHGYVcyUUrdd279nv0dz4bhjOcNhKcsLiHytybv02S+W3ofo5RXJ/CD45eEfj54YGseD9e0/XbDIWRrd/3kDEZCyIcPG2OcMAa6yvy2pTnTk4VE01unoz9Cp1IzipQd0+qCiiioKCiiigAooooAKKKKACiiigAooooAKKKKACkdxGpZiFVRkk9qWuf+LTFfhV4mI4I0m6II7fuXoA4jwL+3l8Dfij8Rf+EP8ADPxm+FHiLxd5rwf2Jpni7T7zUfMQ4dPs8cpk3KQQRtyD1r1ev4g/+CTv/KU39mn/ALKr4X/9O9rX9vlABRRRQAUUVFfXkenWU1xMWWKBGkcqpYhQMnAGSfoOaAJaw/iH8TPD/wAJvDM2seJtZ07Q9Lg+9cXk6xIT2UZ+8x7KMk9ga+Ff2nf+C3dnYfaNL+FekfbpeU/tvVYykI/2ooOGb1BkK4I5Qivgz4l/F7xp+0X4zS+8Saxq3ibWLl/LgSQmTaWP3IYlG1AT/CigZ7V9xlPA+LxFqmLfs49vtfd0+evkfJ5jxbhqPuYb35fh9/X5fefVv/BRL/goV8Mf2g7ObR/DngHT/EV5GPLj8T6nE9rNCB08gRlZmXuBIyrkcxsK+KbCwuNVvobW1hmubi4cRxRRIXeRjwAqjkk+gr68/Zi/4I5ePvi79n1LxlJ/wguhyYfyp4/M1KdfaHIEeemZCGHXYa/Q79nH9if4c/stWS/8IvoMP9qbNkurXmLi/m7H94R8gPdYwqn0r6apxDleTUfquDbqNdL3V/N7L0ivkjwaeS5hmlX6xibQT8rP5Ld/N/M4P/glL8Fb74Kfsn2drrXhvUPDev6pfT3t9He4Wa4yQIn2/ejAjCLsfDBlY4G7n6Uoor8rx2MnisRPET3k2z9CwmGjh6MaENoqwUUUVynQFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFc98XP8AklPif/sE3X/ol66Gue+Ln/JKfE//AGCbr/0S9AH8Un/BJ3/lKb+zT/2VXwv/AOne1r+uD/grN/wU88I/8Eov2SdT+I/iKBdY1ieQaf4c0BLhYZtcv3BKxhjnbEigySSAHainAZiit/ID/wAE7viTovwZ/wCCgXwL8YeJL1NN8O+FPiFoGsapdupZbW1t9St5ppCBkkLGjHAGeK+lf24P2sPif/wcdf8ABU3QdF8K2o0+3128Ph/wJoOp36wWujWI3SPPO2SizOiNNMYw7NsWNPM2RKQD9ff+CN//AAce/Gb/AIKs/tiaf8P7f4C6Dp/hO1t5b3xL4hsdWndPD8Ajfynfem1mkmCRrGDubczD5Ucj9iK+ef8AgmT/AME2vAP/AAS6/Zg0v4c+CLWOa44utd1uSILd+IL4jD3Ep5wP4UTOEQADuT9DUAFFFFAH4s/8FG/2a9U+B/7SPii8t/DOqaR4P1e/a40u6eMNay+YA7qjplVAcvtQkMq7cgVk/sX/ALaV/wDsdeM5NSt/DXh/xBb3eFn+1W6x30S9xDdBS8ee4IZT/dzzX7Ya/wCH7DxVo1xp2qWNpqWn3iGOe2uoVmhmU9VZGBDD2Ir4r/ai/wCCLPhXx/8AadV+G98vhLVny/8AZtyWl02ZvRTzJDn23qOgUCv07LOLsHicOsDmkbKyV9Wnbv1T89fkfA4/hrE0K7xeXyu7t20TXp0a+75nuH7MP/BQn4a/tTRQ2ukasNK8QyKN+jamRBdFu4jOdsw6/cJOOSF6V7hX4K/HL9mrx1+zL4lWx8XaDfaPJv8A9GuwN9rckc5imXKMe+Adw7gGvcP2XP8Agrj8RPgT9n03xFIfHXh2IBBFfSlb63X/AKZ3GCTj0kDdMArXPmXA6nD6xlU1KL1SbX4S2fzt6m+B4scJexzCDjJdUvzW6+X3H69UV5L+y7+2r4D/AGuNJlk8K6hMupWcQlvdLvIvKu7QE4yRyrLkgbkZhyASDxXrVfn+Iw9WhUdKtFxkuj0PsqNenWgqlJpp9UFFFFYmoUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAVz3xc/5JT4n/wCwTdf+iXroaxfiPpk+tfDzXrO1jM11d6dcQwoCBvdomCjnjkkdaAP4jv8AgmN4Y0/xt/wUn/Z70XV7O31HSdX+JfhyyvbSdN8VzBJqlskkbjurKxBHcGvZf+Cwn/BPLxV/wRg/4KLvY+Hbq/stA+3p4s+HmuxK6tFAs/mQxiRt264tJFVGOSTtjkIUSqK6P/gl3/wS0/aU8J/8FRvgPcax8Bvi3otj4X+I2h6pq19qPhW8s7GwtbTUIJ55pLiWNYgixxuwO75+Au4soP8ARr/wXT/4JZ6d/wAFVP2ItV8MWsNvH8QvCvmaz4NvZH8vy71UINs7YP7qdR5bA5APlv1QUAbX/BFv/gprpf8AwVP/AGHPDvjzzLK38aaai6V4w023GxbLU41G90TcxWGYYljBJwr7SSVavrSv5b/+DffwR+1z/wAE0/8AgpJo9pcfs/8AxlTwX42uovDnjW3uPCN7FaQ2pkwl99oaMQr9mdvMEm7a0bSKD+8Br+pCgAooqO9vI9Ps5riUssUCGRyFLEKBk8Dk/Qc0ASVj+O/iFofww8Nzax4i1fT9E0u3/wBZc3s6wxg9hljyx7AcnsK+Ff2nf+C3Wn6V9o0v4WaR/aUwyn9tapG0duPeKDh29jIVwRyhFfBfxW+Nvjb9o/xel94o1rVfEmpTPst43JZYyx+5DEoCoCf4UUZNfcZTwPi8Rapin7OP/k33dPn9x8nmPFuGo+5h/fl+H39fl9591ftlf8Fh/Cev6BqHhXwT4XsfGNtdKYpr/X7Tdp7e6WzYeT1BfZgj7rCvzqfzNX1M+VCDNdS/JDBHwWY8Kqj3OABX1l+zH/wR8+IfxmFvqXis/wDCB6FJhgLyLzNRmX/ZgyNnpmQqR12tX6G/s1/sI/Df9li3jk8O6GlxrSrtfWNQxcXz8YOHIAjB7iMKD3Br6J51k+R03QwV6k+tnfXzlsvkvkeH/ZeZ5vUVbFe5HpdW08lv97+Z5H/wRz/Z81L4MfAjWtS8Q+GtR0DxB4i1IPuvkEc09mka+ThPvoA7THDgE5zyMV9fUUV+Z5ljp4zEzxNTeTv6H32BwkcLQjQhtFBRRRXCdQUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAVDqVzLZ6dcTQ273c0UbPHAjKrTMASEBYhQSeMkgc8mpqKAPwL/AGhfCniDwp8YfEH/AAknhm48I6hqF/Pe/wBmyQGKO3WSRmCxZ4aMZwrKSCAMGvZv+Cfn7dPhv9kjW2XXPAOl6ql1Id+u2if8Ti1U8EKZCVZMfwIY89SWr9Zvi18FPCfx28MNo/i7QdP17T2yVS5jy8LHgtG4w8bf7SEH3r8//wBqL/giRqGji41X4V6odUtxlzompyKlwvtFPwj+wk2kAfeY1+sYPirLsyofUswXs76bvlfz3Xz082fnOK4ex2BrfWsE+e2uyv8Ads/lr5I+7vgZ+0r4I/aR8Pf2l4N8QWWrIigz26t5d1ak9pImw6c8ZIwexI5ruq/AC5tPGP7OvxFCyx694O8UaS+5ciSzuoD2IPB2n1HDD1FfZf7L3/BbPWvDC2+l/FDTG1+zXCDWNPRIryMeskXEcn1UocdmNeLmvAtamvbYCXtI720vby6P8PQ9TL+LqU37PGLkl36f5r8fU/TSiuY+EHxl8M/HnwRb+I/CerQaxo9yxRZo1ZSjjG5HVgGVhkZVgDyPWunr4SpTlCThNWa3T3R9hCcZxUoO6fVBRRRUFBRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRUV9cmzspphFLOYkZxHEAXkwM7VBIGT0GSKAJa87+Pv7VngL9mbRvtfjDxDZ6fM6F4LJD5t5df7kK5YjPG4gKO5Ffn1+1L/wWf8Y+N57zR/h/pz+C9PVmie9ulWXVHxweOUhPUEDcwI4cV8keHPCvjD9obx+1vptprni7xJqT+ZIVEl3cSnu8jHJwO7McDua/QMr4FqSj7bMZ8kd7Jq/zey/H5HxmYcXU4v2WCjzy79Pkt3+B9Eft5/8ABTCP9rPTm0HSfBuk6fokD5h1DU7dLnVevWNuVtwehClif73avmv4e/DTxB8WPEsOj+GdG1LXNTm5W3s4GlcDuxx91R3Y4A7mvuv9mL/giHeX/wBn1T4qav8AYYuH/sTSpA8x/wBmW45VfQiMNkHhwa++PhL8EvCfwJ8Mro/hHQdO0GwGNy20eHmI6NI5y8jf7Tkn3r18RxVluV0fquWR57eb5b97vV/LTzPNo8PY7MKv1jHy5b+Wv3dPnr5Hn3/BPn4R+JvgV+yt4e8LeLbDTNO1bTWnJis5hL8kkrSjzWA2+ZlyDtLDABySSB7VRRX5hisRLEVpV57ybbttd6n3+Hoxo0o0o7RSSv5BRRRXObBRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABTZAxRtpVWxwSMgH6U6igD8b/21/8Agn38Vfg/4w17xZqljH4o0jVLybULnV9HhPlRtI7SOZYR80Iyx9UGQNxrsv2Cf+CpNj+zPoNv4W8R+D9NbQywD6potrHb3+em6deFuCP7xKsB/e6V+r1fnv8A8Flf2VvAvgX4SWPjzQfD9ro3iK71uGxupLIeTDcxyRTuWeJfk37kX5wATk5J4x+kZbxDSzVRyzMqd+ayTjpr0uuny08j4bHZLUy5yx+Bna2rT1066/56+Z9tfBn47eEv2g/CK654P1yz1rTyQkhhJElu+M7JI2w0bYOcMAcc9K66vzH/AOCIvxr8RSfF7UPAP26CPwqukXWrCyS0hVpLvzrZPNaUJ5rHYSuCxGAOOBX6cV8jn+Vf2fjJYdO63Xez2votT6XJ8w+u4VV2rPZ+q7avQKKKK8U9QKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAr5F/4LWwed+xpG2ceV4gtGPv8kw/rX11Xyl/wWZg879ia9baW8nWLJ8/3fmYZ/XH417XDrtmdD/EvzPLzvXAVv8ACz4+/wCCKVx5P7Zci4z53h+7Qe3zwn+lfrdX5Cf8EZ7jyf22bFd23ztIvUx/e+VTj9M/hX6917XHitmf/bq/Nnk8Hv8A2D/t5/oFFFFfFn1QUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFebftD/tceAP2W9E+2eMvEFrYzSLut7CL99fXX+5CvzEZ43HCjuRUznGC5pOyOXG47D4OjLEYuahCO8pNJL5s9Jr5f/4LCW/nfsMeIGzjyb+xf6/6Qg/rXjPjT/gs/wCKfG08sfwv+Fs1xa5xDqOuynY/1ijKqv8A3+P4V478efj1+0H+1H4DvfDviSbwlp+h6g0bzWNtAqcxurqQ/wC8cYZQeH5zivKw/HGT5bjadXEVV7kk2la+j10bR+b5n4kZZicPUo4CnVr8yaUoU5ct2v5pcqfyv5XOf/4I93Hk/tz+H12586xvk69P9Hc/0r9iK/E74FeBvih+zF8TtP8AGXhlPD91q2mrKkcU8hkidZI2jYMp2Z+Vj/EOcV9V+EP+Czfi7wPNGnxN+FcsVqDibUNBmOyP6RyFlP0Mw/GvVz3xGyLOsaquDq/ZSs7Xvd9E33PO4b4+wGAw7o5nTq0Peb5p05cuy3lHmS+dj9BqK8x/Zz/bF+Hv7VGlNN4P8QW93dxLun06ceRfWw9Wibnb/tLlfevTqIVIzXNB3R+sYHH4bG0Y4nCVFUhLaUWmn80FFFFUdYUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRXxb/wVO/bP1XwW9r8IfAcjL4w8UW4bUb2N8HS7R8jaCPuyOoYk9UTkcspHLjMZTwtGVes7RR4fEWf4fJ8DLG4i7tZRivinJ6RjFd2/u3eiMn9tr/gqFdN4guvhz8FimqeI9zQajr6qHttMwdrCEn5WcHrIcqvRdzH5fmPwt+z3ajW5Nd8V3134u8RXTebcXWoSNMpf1wxJc+7k9uBW98K/hhY/CrwvHYWirJM2Gubgrh7h/U+w6Adh75J6av5t4p44xeZVXToScafS2jf+S/p9l+RxyvEZnWWY5+1Uqbxp706XlGO0pd5u7b2skIiLGiqqhVUYAA4ApaKK+DPpAoI3DB5B6iiigDzvxf+z1Y3usx634bvLrwp4itX863vNPcw7ZB0bCkFT/tIQfrX0l+xV/wVCv8ARvENp8Ofja62GsZWDTfEjgLb34JwonPABPAEowD/AB7SCzeY1zvxP+Gth8UfC82n3qqsmC1vOFy9u/Zh7eo7j86+74X44xeW1VCtJyp9b6tf5ry+7z+bnldfLq7zLIWqdXeUP+XdXylHZS7TVmnvdH6xUV8R/wDBK39srVtev7j4M+PZS/ibw5bl9GvpHydStEA/dEnlnRSGU9WjBzgoS325X9J4LGUsVRjXou8ZH63w3xBh85wMcbh047qUX8UJrSUZeaf3qzWjCiiiuo90KKKKACiiigAooooAKKKKACiiigAooooAKKKKAOf+K/xHsPhB8M9e8U6o23T/AA/YTX8wBwziNC20f7TEBQO5Ir8l/g3c6p8W/GPiL4o+JGWbXPF13JJHx8sEW7G1c9FG1UUdljHrX2X/AMFrfiDN4X/ZAi0O1Y/aPGGt2unMoOC0Sbpz/wCPxRj/AIFXzb4W0GPwv4asNNhx5djbpACB12qBn8etfj/itm86dGGCg/i39F/S/E/H+J6zzDiWGGlrTwkFO3T2tS6Tfflgnbs5F+vLf2zP2qtK/Yv/AGftX+IOs6bqGr2Wky28JtLMossrTSrEvLEAAFsk+gr1Kvjn/gvL/wAo1fF//X/pn/pZFX47kOFp4rMqGGraxnOKfo2kz1MHTjUrwhLZtL8Sb4E/8Fofhd8Vv2fvE3xG16K+8D6N4b1BNMEOoSxzXGpTtCZVjt0Q5dyob5R2Uk4AJHzb4g/4ObtPg8WvHpXwhvLrQVkUJcXfiBYLuROMsYlgdFbrhfMYcfeGePh//gmT+xSP2/f2kIvA99rV1o+g6Tp82uajJBgzmBJIIWWEMCiyO0sQ3MCAFyQ2AD9/f8FLv+CL3wg+GP7G/ibxb8N9CuvDniTwbbDU2kfVbq6j1CCNh56SLM8gB8su6lAvzIoJCk1+rYrIeFMtzNYDFxlOVRqyu+WCeiu1JN3et9bdlu/oqmDy6hX9jUTblt2V/n/mfU3wP/4KofB/40/s2ax8Tzr/APwjui+GSsWtW+ppsutOmZQyR7FyZS+cJ5W7ecgfMCB8jfE3/g5j0XSPGFxb+Efhbfa5okLFY73UdaGnzXGCRkRLDKFUjBGWzzyB0r88/wBgX9k2+/bc/aQ0f4e2+rf2Pp97uv8AUrn7xit4QSzInRpMMVXPALk9M5/U39qr/ghZ8FNE/ZQ8VTeCfDuqWPjbQdFnvtP1FtZuJJL+4giMgjlSWQwASldpKogG7IK4rHGcP8LZNj1hsfz1HUa5VsoReicmnFvW+uunTq5q4PL8LW9nWvLm2XZeeq/rofQX7BP/AAUi8B/8FAPDF9N4bW80fXtHAOo6LflPtECngSoVJEkRPG4YIPBAyM/Qlfz5/wDBEbxxf+C/+Ck/gCOzmaODXBe6ZexjGJ4XtJXCn2Ekcb8d0HbIr+gyvi+OuHqOT5j7DDt8koqST1au2mr9dVp5Hl5tgo4avyQ2aujzn42DVPh1rug/Erw3J9n8QeDbqO4Dj/lpEG+6w7rkkEd1d81+r3wT+Ktj8cfhH4d8Xaavl2fiGwivVjLbjAzL80ZPdkbcp91Nfm3r+jx+IdCvLCb/AFN7A8D5HZlIP86+gv8AgiP4/uNd/Zb1bwzeMfP8G67PaxruzsilAlA/7+NNX6F4U5tOpSngZv4dV6P+n+B87w3WeX8TPDx/h4uDlbp7WnbXy5oPXvyo+yqKKK/ZD9iCiiigAooooAKKKKACiiigAooooAKKKKACiiigD4N/4LcTtLf/AAWs2DfZ7jXbhn/u5BtgM/g7frXmNevf8FytEktvhH8PvEyIzLoPiQRuQM7RLEz5+mYAPqRXj8MqzxLIjBkcBlI6EHpX8/8AixTksdTm9mn+h+LVfd4nzKMt37Fr09nb84sdXxz/AMF5f+Uavi//AK/9M/8ASyKvsavj/wD4Ls2FxqH/AATW8Zi3hmmMN5p0snloW2It5ESxx0A7noK+F4W0zjC/9fIf+lI+hy//AHqn/iX5nwT/AMG2v/J8vir/ALEW7/8AThp1fqR/wUp/5MB+MH/YqX//AKJavy//AODbHS7qX9tLxherbztZ2/gm4glnEZMUcj31iyIzdAzCOQgHkhGx0NfqJ/wUds5tR/YL+LsFvDJPNL4VvlSONSzOfJbgAcmvtuOJL/Wun60/zR6ma/8AIxj/ANun5Gf8G+f/ACkPs/8AsX9Q/klftr8bv+SMeLv+wLef+iHr8Tf+De+CSX/gobbsqMyxeHb9nIGQg/djJ9BkgfUiv20+NEL3Hwd8WRxq0kkmjXiqqjJYmB8ACs/Ez/koIf4YfmxZ9/vi9F+Z+AP/AAR1/wCUlXwq/wCv+4/9I7iv6JK/nf8A+CNlnNd/8FKPhe0MMkqwXlzJIUUt5a/ZJxuPoMkDJ9RX9EFaeLf/ACNaX/Xtf+lSK4k/3iP+H9WFejf8EUJGg8f/AB4s1/1Fvq9k6AdAWkvwf0UV5yzBFLMcKOST2r1j/gh5or33gv4oeK9reV4g8RLAjHo3lI0hx/4Ein4T05PMKk1sl+dz4imubibLIx3TrSfp7Jr85I+6KKKK/oM/agooooAKKKKACiiigAooooAKKKKACiiigAooooA8f/bz+Bkn7RP7J/jDw1aw+dqjWf23TlAyzXMBEsar7uVKfRzX5yfs5+OF8a/C+xEjf6bpi/YrlT95SnCk/VcHPrn0r9e6/Lb9u/4Ly/sW/tYTeLrGzkj+HnxEcyTmGP8AdWF4ctInHT5syKO6u4AOyvzrxGyCWPwPtqKvOGq8/L+utj8n4+wzy/H0OIF/Dt7Kt5RbvCb8oybTfaXkWaKZbXMd5bxzQyLJFKodHU5V1PIIPcGn1/Nm2jNE01dEdvax2ke2GOOJc52ooUVJRRQBHBaRWu7y4449xy21Qu4+9SUUUARx2kUUzSLHGskn3mCgM31NSUU2aZLeFpJGWOOMFmZjhVA6kmjVg3bVnF/tB+OY/Avwu1KXzAt1exm0thn5i7jBI/3Vy34V+hH/AATs+B0v7P37IPg/Q7yFodUurY6nqCOu10nuD5hRh/eRSiH/AHK+H/2Jvg1J+23+1la6/dWsk3w5+HMgnLyIRDqF4CGjjHY5YK7D/nnGAcbxX6nV/SHhvkEsDgvb1lac9fRdv663MeA8M8xzGtn7/hRTpUv7yTvUmvJySjFrdRfcKKKK/SD9aCiiigAooooAKKKKACiiigAooooAKKKKACiiigArlvjR8G9A+P3w01Twn4ms1vNJ1aLy5B0khYcrJG38Lo2GB9R3GRXU0VMoqSs9jHEYelXpSo1oqUZJpp6pp6NNdmfkT8S/hf4y/wCCe/i6Pw74xt5dW8DXkzLo/iC3QtGFJJCOP4WA5MZ5HJUstddpWrWuuafHdWdxDdW0w3JLEwZWHsRX6YeP/h9onxT8IX2g+ItMtNY0fUo/LuLW5Tckg/mCDyGGCCAQQRmvg/44/wDBIPxF8L9QuNd+B/iKQxMTJJ4b1aYbX/2Ypm+VvQCXaQP+WhNfkXFXhusTN4rL3aT1a6N/12+7qfjuM4bzXIHbL4PE4RbRT/e012jf+JFdFdTS01scPRXnPif4seLPgteGz+JHw/8AEXhuaNthuFtmNvIfVGbCsPdXanWn7VXge5i3Pqstu392SzmJ/wDHVIr8ixXDWZ4eXJUoy+Sv+VzzqXGGTyfJUrxpyW8an7uS8mp2Z6JRXnd1+1R4Ht4dyatJO39xLOYN/wCPKB+tR+G/jD4o+Ml79i+HPgDxH4muGbYJvszeREfVymVUe7OtGF4bzPES5KdGV/NW/OwVeMMng1CFeNST2jD95J+ihzM9B1LU7fR7GS6u54ra3hXc8kjBVQe5Ncd8Ovhz4z/4KA+LpfDPge3k0zwbayqms+IblCsKp1KL/eYjkRj5m43bVya9o+CH/BIrxZ8XdRt9c+OHiCSztUbzI/DekzKSvtJKuUT0Ij3sQfvqa+9fh18ONC+Eng2x8P8AhvS7TR9G02Py7e1t12qg7knqzE8lmJZiSSSTmv1zhTw2WHnHFZjrJapdE/6729Op34Ph3Nc/dsdCWFwj3i3atUXZpfw4vqr87WmlzM+BfwR8P/s7fC/S/CXhm0Frpelx7cnmS5kP35pG/idzyT+AwAAOuoor9ejFRXLHY/ZMNhqWHpRoUIqMIpJJaJJaJJeQUUUVRsFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAMuLeO6haOWNJI5BtZHXcrD0Iryj43fsy/DfVPh74k1C6+Hvge41CHSrl47mXQrV5kZYmIIcpkEHkHPFetVy/xwma2+C3jCRfvR6JesM+ogero04zqRUlfVfmcWOweHr02q8FKye6T/ADPwd+ElpDP8VfDMbxRvHJqtqrKyghgZkyCPSv6BrW0isbZIYI44YYxtREUKqj0AHAr8A/ghAtz8afCEbZ2ya3ZKcehnQV/QBX6Bx/h6NKpRjSio6S2SXbsfGcB4elSp1vZxUdVsku/YKKKK/PD9ACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAK5T47/8AJD/GX/YCvv8A0neurrjv2iJmt/2f/HUi/ej8PX7D6i2krfC/xoeq/Myr/wAKXo/yPwz+BH/JcPBv/Ydsf/ShK/f2vwJ/Z2hW5/aB8CxtysniHT1b6G5jr99q/QfEX+NQ9Jfmj4zgn+FV9V+TCiiivzc+4CiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAK4v9o/8A5N48ef8AYu6h/wCk0ldpXC/tQzNb/s0fESRTtZPDGpMp9CLWWujCa14LzX5mOI/hS9H+R+Iv7N//ACcR4C/7GPT/AP0pjr99K/BH9l2Jbj9pn4dxsNyv4n01WHqDdRV+91ffeIn8eivJ/mj43gn+DV9V+QUUUV+cn3AUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFfkd/wV2/4OuPAv7BvxW1n4Y/CvwzD8UvH3h6U2ms38979n0LRrkbw9uXTMlxPEwUSImxEJKmTzEdFAP1xor+Y7wH/AMHqv7SGl+M7W68SfDv4N61oIcm6sLCy1DT7iRTnAjna7mEZBxy0cnGRjJyP3e/4JRf8FKvDP/BVr9j7S/ip4c0q58PzNeS6RrOj3Fyly+k6hCsbSwiRQN6FZY3RiqMySISik4AB9J0UUUAeU/tu/HTVv2a/2YPE/jbQrfTrrVdF+y+RFfxvJbv5t3DC24I6McLIxGGHIHUcH5T/AGIv+CrfxE/aU/af8MeCdd0bwXa6VrX2rz5bC0uY7hPKtJpl2l7h1GWjUHKngnoeR7x/wVi/5MA8ff8AcO/9OVrX51/8Enf+T/8AwD/3Ef8A023VfoGQZZha2R4nEVYJzjz2fVWgmvuZ8bnGYYilm1ChTm1GXLdd7yaf4H6xax+1R8MPD2r3Wn6h8R/AdjfWMz29zbXHiC0imt5UJV0dGkBVlYEEEAggiuB/aS/ar+F+u/s7ePrGx+JHgG8vbzw5qEFvbweILSSWeRraRVRFEhLMSQABySa/NP8Aan/ZY+J/iH9p74j6hp/w48eX1jfeKNTuLa5t/D93LDcRPdysjo6xkMrKQQQSCCDXBf8ADIHxa/6Jd8Rf/CbvP/jdduD4QwFoVniNdHb3fJ23OTE8TYy86Soaarr6Gf8As2ara6F+0V4Bvr65t7Oys/EenT3FxPII4oI1uY2Z3Y4CqACSTwAK/a7/AIbA+Ev/AEVH4df+FJZ//HK/GH/hkD4tf9Eu+Iv/AITd5/8AG6P+GQPi1/0S74i/+E3ef/G69/PsnwWaThOpXUeVNaNdfmeNk+aYvL4ShCk5czvqmfr3+1f+1Mvwr/ZB8QfErwJe+G/Ex0024s5xN9s0+cvexW8nzQyLu273HyuMMvPQivmX9iL/AIKt/ET9pT9p/wAMeCdd0bwXa6VrX2rz5bC0uY7hPKtJpl2l7h1GWjUHKngnoeRX8Q+DNY+H/wDwQp1LSde0nUtE1S3lQy2d/avbXEQbXo2XcjgMMqQRkcgg181/8Enf+T//AAD/ANxH/wBNt1XzuXZLgv7MxkpRU5U5VFGXW0Yqz+/U9zHZrivr+FipOKmoNx9ZO/8Akfs9RRRX5qfdBRRRQAUUUUAFFFFABRRRQAUUUUAFFFFAHhv/AAUy/aF1L9lH/gnz8ZPiLorRx654S8JahfaW8iF0jvBCy27MAQSBKyEjI4HUda/lD/4IT/sOWP8AwUw/4KjeDPB/jJrnUvDMMlz4n8UeZMzTajbWw8xoncgkiedoY3JIbZK5DBsGv6Zv+Dg74Tj4z/8ABGP9oLRybhfsfhv+3f3BAb/iXXMOoc5B+X/Rfm4zt3YIPI/nx/4NQfjzo3wQ/wCCxvhO01qT7PH4+0XUPC9pOzBY4rqVUnhDEkf6x7YRKBkl5UGMEkAH9O3ir/gnx8CvG/whXwDqnwf+G914NjgFtFpP/CPWqW1ugCgeWFQeWw2qQyEMCoIIIBrJ/wCCev8AwTt+HP8AwTI+B+ofD74X2+qW/h3UtevPEMi6hci5mE9xsXZ5m0FkjiihiQtufZEu5nbLH3asbwZ8RNA+I1vfzeH9a0rXItLvZdNvHsLpLhbW6ix5kDlCdsiZG5TyMjIoA2aKKKAPnX/grF/yYB4+/wC4d/6crWvzr/4JO/8AJ/8A4B/7iP8A6bbqv0U/4Kxf8mAePv8AuHf+nK1r86/+CTv/ACf/AOAf+4j/AOm26r9O4Z/5J3F/9xP/AE2j4HPv+R3hv+3P/S2fs9RRRX5iffBRRRQB86/8FYv+TAPH3/cO/wDTla1+df8AwSd/5P8A/AP/AHEf/TbdV+in/BWL/kwDx9/3Dv8A05WtfnX/AMEnf+T/APwD/wBxH/023Vfp3DP/ACTuL/7if+m0fA59/wAjvDf9uf8ApbP2eooor8xPvgooooAKKKKACiiigAooooAKKKKACiiigCpr+hWfinQr3S9RtorzT9Sge1ureVd0c8TqVdGHcFSQR6Gv5Sf+Cpf/AAbX/H79gv426t4m+E/hnxD8RfhkNSa+8Pal4Yjmu9Y0OLzFaGK5gjzOJYiQonjDIwjEhMZJRf6waKAP5INN/ag/4Kh/tAeCrf4XWd1+05qmn3Ah0po4dAvLa8wpQAT6gIEnUcr5kkswBUkyMVJz+7//AAba/wDBOPx9/wAEzP8AgnfceEfiYtjZ+LvFvii68V3OmW0yznRlmtLO2S2klQlHkAtN7FCVBk2gnbk/oBRQAUUUUAfOv/BWL/kwDx9/3Dv/AE5WtfnX/wAEnf8Ak/8A8A/9xH/023Vfop/wVi/5MA8ff9w7/wBOVrX51/8ABJ3/AJP/APAP/cR/9Nt1X6dwz/yTuL/7if8AptHwOff8jvDf9uf+ls/Z6iiivzE++CiiigD51/4Kxf8AJgHj7/uHf+nK1r86/wDgk7/yf/4B/wC4j/6bbqv0U/4Kxf8AJgHj7/uHf+nK1r86/wDgk7/yf/4B/wC4j/6bbqv07hn/AJJ3F/8AcT/02j4HPv8Akd4b/tz/ANLZ+z1FFFfmJ98FFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAfOv8AwVi/5MA8ff8AcO/9OVrX5k/8E9viz4f+B37X/hHxT4p1D+y9B0v7Z9quvIkn8rzLK4iT5I1Zzl3UcA4zk8ZNfsZ+0L8DNJ/aU+D+seCdduNStNK1ryfPlsJEjuE8qeOZdpdHUZaNQcqeCeh5H5k/tC/8EgviT4c+MGsWfw58M6lr3g2Hyf7Pv7/WNPS4nzBGZdwLxHiUyKPkXhR16n9G4QzDA/UK2XYqfI58zu2krOMY6N6X3sj4fibBYv65TxuHhzcvLok3qm3qlrY+4P8Ah7F+z/8A9D9/5Q9S/wDkej/h7F+z/wD9D9/5Q9S/+R6/Ov8A4dO/tAf9CD/5XNN/+SK534sf8E9vjB8Dvh/qHinxT4R/svQdL8v7Vdf2rZT+V5kiRJ8kczOcu6jgHGcnjJrqp8K8PzkoQxV29ElOF2+y0OeXEOcxi5Sw9kt3yT/zP02/4exfs/8A/Q/f+UPUv/kej/h7F+z/AP8AQ/f+UPUv/kevyD+E/wAJ/EHxx+IGn+FvC2n/ANqa9qnmfZbXz44PN8uN5X+eRlQYRGPJGcYHOBXtH/Dp39oD/oQf/K5pv/yRW2I4PyPDy5K+IcXvZzgnbvrEzo8TZtWjzUaKku6jJ/kz6s/4KE/8FCfg/wDHH9kDxd4W8LeLv7U17VPsf2W1/sq9g83y723lf55IVQYRGPJGcYHOBXyn/wAEnf8Ak/8A8A/9xH/023VH/Dp39oD/AKEH/wArmm//ACRX2f8A8E9v+CYFl8Dv+ER+IXilvEWl/EfS/tn2rS/t1pPp8XmfaLdP9WjE5gdX4lOGPPda0rV8pyvKq2Fw1bn9pzJe9GTvKNvs2stN7GdKjmWYZjSxFely8nL0cVZSv1vrqfZ9FFFfkp+kBRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAV86/8ABWL/AJMA8ff9w7/05WtfRVfOv/BWL/kwDx9/3Dv/AE5Wtepkn/Ixw/8Ajh/6Ujz82/3Gt/gl+TPzr/4JO/8AJ/8A4B/7iP8A6bbqv2er8Yf+CTv/ACf/AOAf+4j/AOm26r9nq+m8Qv8AkYw/wL/0qR4PBf8AuMv8b/KIUUUV8KfXBRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFfOv/AAVi/wCTAPH3/cO/9OVrX0VXzr/wVi/5MA8ff9w7/wBOVrXqZJ/yMcP/AI4f+lI8/Nv9xrf4Jfkz86/+CTv/ACf/AOAf+4j/AOm26r9nq/GH/gk7/wAn/wDgH/uI/wDptuq/Z6vpvEL/AJGMP8C/9KkeDwX/ALjL/G/yiFFFFfCn1wUUUUAFFFFABRRRQAUUUUAFFFFABRRRQBxfiz9pD4d+AvEFxpOu+PfBei6rabfPs7/W7a2uIdyh13Ru4ZcqysMjkEHoazv+GwPhL/0VH4df+FJZ/wDxyvza/wCCmv7OHxE8e/tv+NtW0LwF401rSrv7B5F5YaJc3NvNtsLZG2yIhVsMrKcHggjqK+R9S0240bUZ7O8t5rW7tZGimhmQxyQupwysp5DAggg8g1+k5bwThMVh4VVXd5RTaVna6vY+Fx3FeJw9adN0lZNpN31sz93f+GwPhL/0VH4df+FJZ/8Axyj/AIbA+Ev/AEVH4df+FJZ//HK/D7wF8IvFnxVe6Xwv4X8ReJGsgpuBpemzXhgDZ27/AC1bbnBxnrg1h6lptxo2oz2d5bzWt3ayNFNDMhjkhdThlZTyGBBBB5BrsXh/hHJwVd3W6sjlfGeJSUnSVn6n7u/8NgfCX/oqPw6/8KSz/wDjlH/DYHwl/wCio/Dr/wAKSz/+OV+H3gL4ReLPiq90vhfwv4i8SNZBTcDS9NmvDAGzt3+Wrbc4OM9cGszxP4V1TwTrtxpetabf6RqdoQs9pe27288JIBAZHAZeCDyOhpLw/wAI5ciru66aX+4b4yxKjzuird9bH7qf8NgfCX/oqPw6/wDCks//AI5R/wANgfCX/oqPw6/8KSz/APjlfhr4H+HXiD4m6u2n+G9B1nxBfxxmZrbTLKS7mVAQCxSNSdoJAzjHIpPG3w91/wCGmsDTvEmh6x4f1BoxKLXUrOS0mKHIDbJADtODzjHBo/4h/hObk9u79tL/AHB/rlieXn9ird9bH7l/8NgfCX/oqPw6/wDCks//AI5R/wANgfCX/oqPw6/8KSz/APjlfhZ4W8Jar451630vRNM1DWNUuiRDZ2Ns9xcTEAk7UQFmwATwOgNdF4v/AGdviD8PdCk1TX/AvjLQ9MhKrJd6hotzbQRljhQXdAoyTgZPJpS4BwUZKEsQ0300uOPGOKlHmVFWXXU/bH/hsD4S/wDRUfh1/wCFJZ//AByvBv8Agpr+0h8O/Hv7EHjbSdC8e+C9a1W7+weRZ2Gt21zcTbb+2dtsaOWbCqzHA4AJ6CvyVrqNV+CHjTQvBcfiS+8IeKLPw7MiSR6pPpU8dlIr42MJioQhsjBB5zxXXheB8LhcRTrus7xkmk7atNOxz4jizEYijOl7JWaabV9E1a56j/wTK8YaT4C/bf8ABOra7qmnaLpVp9v8+8v7lLa3h3WFyi7pHIVcsyqMnkkDqa/Wr/hsD4S/9FR+HX/hSWf/AMcr8HK7B/2ePiBH4Q/4SBvA3jBdA+z/AGv+0jo1z9j8nGfN83Zs2Y53ZxjvXocQcM4fMMRGvWquDsopaa6t9fU4clz6vgqMqNKnzK9+vZLp6H7Z/wDDYHwl/wCio/Dr/wAKSz/+OUf8NgfCX/oqPw6/8KSz/wDjlfg5XYeGP2efH/jbw2ms6L4G8Yato8gYrfWWjXNxbMFJDYkRCvBBB54wa8Wp4f4SCvOu162R6sOMsTN2hRT9Ln7Z/wDDYHwl/wCio/Dr/wAKSz/+OUf8NgfCX/oqPw6/8KSz/wDjlfg4Rg10GhfCjxT4o8KX2vaZ4a8Qajoembheaja6fNNaWm0Bm8yVVKJgEE7iMAg1UvD7CxV5VmvkhR40xEnaNJP7z9w/+GwPhL/0VH4df+FJZ/8Axyj/AIbA+Ev/AEVH4df+FJZ//HK/Byuo074IeNNX8EyeJrTwh4ouvDkSPI+qw6VO9iiISHYzBdgCkEE54wc0p+H+Eh8ddr1SCPGeJl8NJP7z9u/+GwPhL/0VH4df+FJZ/wDxyj/hsD4S/wDRUfh1/wCFJZ//AByvwcrsPDH7PPj/AMbeG01nRfA3jDVtHkDFb6y0a5uLZgpIbEiIV4IIPPGDSqeH+EgrzrtetkOHGWJm7Qop+lz9s/8AhsD4S/8ARUfh1/4Uln/8co/4bA+Ev/RUfh1/4Uln/wDHK/BwjBrqvAvwK8b/ABQ0yS98M+DfFXiKzhk8mSfTNJuLuKN8A7S0aEBsEHB5wRTqeH+EguaddpeaSFDjPEzdo0k35XP3a8J/GXwf48057zQ/FfhvWrSOQwvPYanBcRq4AJUsjEBgGU464I9aK+I/+CZ3wa8YeA/gRq1nrnhTxJot3Jr00yQX+mT28jIbe2AYK6glSVYZ6ZB9KK+Jx2U0KGIlShUuk99NT6zB5jVq0Y1JQs2ttT9AKKKK8A9gK+O/+ClH/BNe3/aK0658aeC7aG18dWse65tlwkeuoo6HsJwBhWPDDCt2K/YlFd2XZjXwVdYjDuzX3Ndn5HJjsDSxdJ0ayun+HmvM/A/4N/GTxb+yv8Wodd0Ka40nXNJlaC5tp0ZVlUNiS3njOCVJGCpwQQCMMAR9ofGT4N+Ev+Cpvwlm+Jfw0ht9J+KOkxKuvaCzqrXzBeATwCxAPly8BwNrYI+T1D/gqN/wT50f4v8AhbUPiJoDWmi+KtKi83UN6lYNWhXAy+0EiVR0fHzAbW7FfWv2Fv2HNB/Y38AeXGYdT8WarGp1bVdv3+/kxZ5WJT+LEbj2C/oWZcR4WphqeZ4e8a6drW0drOUZdHHXTrta2p8VgcjxEK88BWtKi1e/bs49pd+nrofkL8G/jJ4t/ZX+LUOu6FNcaTrmkytBc206MqyqGxJbzxnBKkjBU4IIBGGAI/Qbx74C8B/8Fg/gQvifww1r4f8Aij4fgEU0MrDfG+CRbzkDLwOcmOUDKnPAO9K2v+Co3/BPnR/i/wCFtQ+ImgNaaL4q0qLzdQ3qVg1aFcDL7QSJVHR8fMBtbsV9a/YW/Yc0H9jfwB5cZh1PxZqsanVtV2/f7+TFnlYlP4sRuPYLnm2f4SvhaeZ0LwxCdlZdrcyl0cbPTrr6mmW5PiaWIngK1pUWru/ns11Tuvw9D8e4ZvGH7MHxg3L/AGh4X8X+F7v/AHZbeQdj2ZWU+6urd1PP6IeD/GHgP/gsT8B20HXltfDvxT8OwGSKWNfnhbgGeEE5kt3OA8ZOUJHOdjn1b/god+wXof7V/gSbWLVrfSPGmiWzPaaiVOy5jUFjBPgElOu1gCUJyMglTgf8Ex/2CdF/Z68Baf421JrfWPGXiKyS4juVUmLTLeVQwii3AHcykb3wCfujAyWeZcQYTGYCOPV4YiDsrd97X2cWr6P/AIcwOTYnC4yWDdpUZq7v2723Ul5f8N+YHxa+Evi79ln4tzaLrUN1oviDRZlnt7iCRlDgNmO4gkGCVJGVYYIIwcEED9KP+Cf/APwUB0X9sTwZJ8O/iJHp8niyS1a3dLiNfs3iSDbhiF6CULkug4PLLxkJ7T+2V+xr4c/bF+HDaXqirY63Yqz6TqyJulspD2P96JsDcnfqMEAj57/4Ji/8E4NN+GUn/CwPFk1jrfiC3u7i20qCEM1tp5hleFp/mUFpSyNtJGFGD94/LGOzvA5plTrYpONanZKy+09rPs7apvS3ezKweU4vL8xVPDu9Oe9+y3uu6vo1v6XPmT/gov8A8E6NQ/ZT1+TxH4cjuNQ+H+oTYRzl5NHkY8QynqUJ4SQ9fut82C0P7A/7fC/AqObwH48h/t/4W6/ugubaePz/AOy/M4d0Q53RNkl4x7svzZD/AK8+JPDmn+MNAvNL1Szt9Q03UIWgubadA8c8bDBVgeCCK/OjxH/wRw09/wBsW00Oz177P4Bv7WTWmgJZr+CGOREe2ViCpy0ihZCchc5BK/NplPEeHx+DlhM13ir8y3aXXTaS79fzzzHI6+DxUcTl20na3RX6a7xfbp+XjP7fH7A7fs+yQ+NvBM39v/C/X9s9neQSef8A2d5nKRu4zujbI2Sd+FPzYLX/APgnV/wUVuv2Y9VXwn4sabUvh3qchV0ZTK+js5+aSNed0RyS8Y9SyjdkP+rOl/CXw1o3wzj8G2+i6enheOzNgNNMQa3MJGChB+9nJJJySSSSSc1+fviP/gjhp7/ti2mh2evfZ/AN/aya00BLNfwQxyIj2ysQVOWkULITkLnIJX5nlvEWEzDCVMFmd3yptStq0uul7SXfZ/mY7JMTgsTDFYCy5mk1fRN9Nd4v8Py5P/gor/wTqtfB2lN8U/hYsOpeBdSjF7eWdkwlTTlcbvPh253WxznA/wBXn+593yP9hH9u7XP2N/HO1vP1Twbqko/tTS93ToPPhzwsqj6BwNpxhWX9lPB3gHRvAHguy8O6PptrYaJp9uLWCzjT92keOmD1zkkk5JJJOSTXwB+1V/wSJ0/VP2kfDR8G6pZ+H/DvjW9ljurKRGY6Y6RtNIbcAYKMiNtRioVsDO0/LOScR4fGUZ5dmV5Rs7NrVpa62+0krpr893muR1sNVjjsBpK6ulsm9NL9G9LfptW/bt/YS0P9oPwN/wALq+Cv2fVLfVIje6nplkvF2OS80KdVmU58yLAJIJADAhvkf9lL9q3xH+yX8Rl1jRyt3p12BBq2kzt/o2qQd0cc4YZO18EqSeoLKf2s+CPwS8O/s9fDfT/CvhexWx0uwXv80txIfvSyN/E7EZJ+gGAAB8Y/8FF/+CX+n+NvGmm+MPBNxp3h+88Ratb6fqtnMrLbSTXEojW5jCKdrbmy64w33hg53LIeJKFXmyzGXlTd1Fy1duilby2a2/J5xkdanbH4a0ais5JbX6tX/FdT57/au/ZR8O/EH4dN8aPgurXngq8JfW9ERf8ASfDM/VwUGcRDOSBkICGBMZBXj/2GP26NZ/ZA8ZPDMkmseCdYcLq+kMQwII2maINwJQvBB4cDa38LL+r/AOy1+yd4X/ZR+FSeGdDt1uXuQH1S+njHnapLjBZ/ReSFTooPckk/G/7VX/BInT9U/aR8NHwbqln4f8O+Nb2WO6spEZjpjpG00htwBgoyI21GKhWwM7T8vRlvEWCxaqZdi7yp68smtXFa621ukrp7vrrvjjsjxWGcMdhrRnpzJbJvTS+ln1W3y280/bn/AGGNGn8Gp8ZPg28esfD3WEN3e2VoCx0gk/M6L1EQbIZCMxEEEbfu+a/sI/t3a5+xv452t5+qeDdUlH9qaXu6dB58OeFlUfQOBtOMKy/r78GPgX4Z+Afwxs/CPhvT47XR7RCrK4Dvduw+eSU4+d37k8dAAAAB8L/tVf8ABInT9U/aR8NHwbqln4f8O+Nb2WO6spEZjpjpG00htwBgoyI21GKhWwM7T8ueU8RYXF055dj7yhZ8smtXFa62+0kr3X571mWR4jDThjsHaMtLpbJvTS/Rvo/y2rft2/sJaH+0H4G/4XV8Ffs+qW+qRG91PTLJeLscl5oU6rMpz5kWASQSAGBDfJX7Jf7Wnib9kL4mR67oUhns7grFqmlyuVg1GEH7rf3XGSVcDKk9wWU/tT8Efgl4d/Z6+G+n+FfC9itjpdgvf5pbiQ/elkb+J2IyT9AMAAD4x/4KL/8ABL/T/G3jTTfGHgm407w/eeItWt9P1WzmVltpJriURrcxhFO1tzZdcYb7wwc7s8h4koVubK8ZeVN3UXJXduilby2a2/LTOMjrU7ZhhbRqKzkltfq1f8V1Prv4C/tMeEf2i/hpY+KPD+qQGzuvklgnkWOezmABeGRc8MuR6ggggkEElc1+z9+wp8PPgH8MbHw7FoGla7PDmW71HUrKOae8nYAM/wAwO1eAAg4AA6nJJXweKjgvbS9g5cl3a6W33n2GHlivZR9so81tbN7/AHH/2Q==\n", "text/plain": [ "<IPython.core.display.Image object>" ] }, "execution_count": 3, "metadata": {}, "output_type": "execute_result" } ], "source": [ "fig2 = path + '/Fig2DHO.jpg'\n", "Image(filename=fig2)" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "#### Figure 2. Schematics of a damped harmonic oscillator without tip-sample interactions" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Analytical Solution" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "The motion of the probe can be derived using [Euler-Bernoulli's](http://en.wikipedia.org/wiki/Euler%E2%80%93Bernoulli_beam_theory) equation. However that equation has partial derivatives (it depends on time and space) because it deals with finding the position of each point of the beam in a certain time, which cant make the problem too expensive computationally for our purposes. In our case, we have the advantage that we are only concerned about the position of the tip (which is the only part of the probe that will interact with the sample). As a consequence many researchers in AFM have successfully made approximations using a simple mass point model approximation [see ref. 2] like the one in figure 2 (with of course the addition of tip sample forces! We will see more about this later).\n", "\n", "First we will study the system of figure 2 AS IS (without addition of tip-sample force term), WHY? Because we want to get an analytical solution to get a reference of how our integration schemes are working, and the addition of tip sample forces to our equation will prevent the acquisition of straightforward analytical solutions :(\n", "\n", "Then, the equation of motion of the damped harmonic oscillator of figure 2, which is DRIVEN COSINUSOIDALLY (remember that we are exciting our probe during the scanning process) is:" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "$$\\begin{equation}\n", "m \\frac{d^2z}{dt^2} = - k z - \\frac{m\\omega_0}{Q}\\frac{dz}{dt} + F_0\\cos(\\omega t)\n", "\\end{equation}$$\n", "where k is the stiffness of the cantilever, z is the vertical position of the tip with respect to the cantilever base position, Q is the quality factor (which is related to the damping of the system), $F_0$ is the driving force amplitude, $\\omega_0$ is the resonance frequency of the oscillator, and $\\omega$ is the frequency of the oscillating force.\n", "\n", "The analytical solution of the above ODE is composed by a transient term and a steady state term. We are only interested in the steady state part because during the scanning process it is assumed that the probe has achieved that state.\n", "\n", "The steady state solution is given by:\n", "$$\\begin{equation}\n", "A\\cos (\\omega t - \\phi)\n", "\\end{equation}$$\n", "\n", "where A is the steady state amplitude of the oscillation response, which depends on the cantilever parameters and the driving parameters, as can be seen in the following relation:\n", "$$\\begin{equation}\n", "A = \\frac{F_0/m}{\\sqrt{(\\omega_0^2-\\omega^2)^2+(\\frac{\\omega\\omega_0}{Q})^2}}\n", "\\end{equation}$$\n", "\n", "and $\\phi$ is given by:\n", "$$\\begin{equation}\n", "\\phi = \\arctan \\big( \\frac{\\omega\\omega_0/Q}{\\omega_0^2 - \\omega^2} \\big)\n", "\\end{equation}$$\n" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "Let's first name the variables that we are going to use. Because we are dealing with a damped harmonic oscillator model we have to include variables such as: spring stiffness, resonance frequency, quality factor (related to damping coefficient), target oscillation amplitude, etc." ] }, { "cell_type": "code", "execution_count": 4, "metadata": {}, "outputs": [ { "data": { "text/plain": [ "[<matplotlib.lines.Line2D at 0x78a8048>]" ] }, "execution_count": 4, "metadata": {}, "output_type": "execute_result" }, { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAe8AAAEjCAYAAAAbo4kCAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMi4yLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvhp/UCwAAIABJREFUeJzsnXeYFFXWxn+HqESJklREEHMC85pzznHNAXNec1hzWF3z6ooJs5+KOSuYXV1BQVSiCCgKEgZmYEgzc74/TtVO03So3D1Q7/P00zNd99Zbt+rWPfeee4KoKilSpEiRIkWKhoNGpb6AFClSpEiRIoU/pMI7RYoUKVKkaGBIhXeKFClSpEjRwJAK7xQpUqRIkaKBIRXeKVKkSJEiRQNDKrxTpEiRIkWKBobIhbeI9BQRFZFBUZ87RTxI6pmJyCQRmRQnRw5OFZGPk+QsJ4jItc492LHU15KiOJIcP5eXd0NEdheRL0WkwmnTq6W+piTgSXg7NyTzUysiM0VkqIj8NY4LE5ETHK4TAtQ9VETuE5HPRKTSOc/TMVxmYIjIthn3c0CprycKiMjHItKgAweISGMROVVEPhGR2SKyRET+FJHvReQREdk/q3zgfrq8QEQ2F5FnRGSyiCxy3rmfReQNEblERFpmlY9UaCTZ7/z2j1KiFJPlpCEiPYHXgDWBx4HrgOeL1Nkxh0xb5hPjNfcQkStF5EURmSAidQ5nbz/naeKT9zrnuynQFzgQ2ElE+qnqhT7PFSeuAjYG5gG/AeuU9nJywhXY6vw9sITXkhR2KfUFFIKINAbeBPYE5gBvYf2nPbAWcDTWl14v1TWWG0TkGOAJQIChwCtALTaY9gf2BV4GJpTqGqPCctg/1gWqS30RIbErsBJwkao+67PuZGBQ5FdUHP2BG7Gx/xdgLrCK35P4Et6qem3m/yKyC/ABcL6I3Kuqk/xeQEy4AHupJgA7AB+V9nKWhoisAhwGjAdGAQeLyGaq+m1pryxeqOrPpb6GIjgKG5hHAjuo6tzMgyLSAtiyFBdWjnDux7+wQWh3VR2So8w2wMykry0mLFf9Q1XHlPoaIkA35/v3AHUnZcu0hDAM2B4YqaqVjhZqB78nCbXn7bysY7BZ9+bFyotIVxH5l6POWSwiM0TkZRHpl1XuY0wFAvB4ljqjp4fr+khVx2v5xn49BlgZm/UNcn47NVfBDBXPtSKyiYi8JSJzRKTaUd1tk6NONxG5RkS+EJFpzr3+XUSeFZF1vVygiDzv8G6f5/ihzvH7xNmnw+mAWc/r44w6edV4InKEiAxxVJELnbLPiUj/jDJtReRise2a3zL60OsispWXdhWBey8HZQ/MAKparar/mwh67aci0kREzhSRrxyVcrWIfCciZ4vIMu+gmCp+sIhMFJEFTp0vnFVuTohIPxF5V0SqnPIfisjWOcq1c/h/FhHJc643nTb0y3U8AxsAbYAfcgluAFX9UlXnZLTLfSd3yLpf1/ptv9d+5xzrISL3O+dcJCKznH5TdNzKgK/+kcHdXEQuE1OtVzvt+UxEDvdKLAW2BiRr68YdM4A1gDWy7sugjHo5ty+c9+wWERnrvIsVIvKeiOyao6zv8clDWw8XkU9FZK7z/EeJyOUi0jybl3pt8EcZbdzRL6fH68r5jolPuxJV/U1VP1PVyjDX41dtngvuAFBQUIrImsDn2ExpKPAcsBq2At1HRA5R1Ted4oMwtdQB2H7GiIxTzYngmkuNU4E64ElgGjAdOFpE/qaq8/PU6Q9cAvwHeARYHTgEGCIim6jq2Iyy2wOXYRqHwdj2QR/gUGB/EdlWVUcWucYHgCOA04BPcxx31f4DsWdyHXACNmBcl1FuUiESR4A8DhyPrdBeBmYAPYCdgLHYTBVMzXeTcz1vARXYfdgf2EtE9lPVd4u0qxBmOd9reyw/iCL9VESaAm8Ae2BteRZYiLXtPmyldmzWeR8EfsLa+QfQAdgbeEpE+qrq1ZmFnQHyQ6AZ9SrqTYCPsXftf1DVChF5HjgRUzl+kHWuHtjqcriqDi/Sfvd+dRORlgX6rosRWN/4O8uqLD/O+Ntr+z31OxHZDHgfU2+/h92jjti23+cicpCqvl3k2sF//0BEmjmcO2ALnX8BLbB38f+cd/cKr+fziEnYvTjf+f/ujGMjlim99PWuAnwBrAd849TtCBwOvC8iZ6jqQzmq+hmfCvHfDFyOjQXPYmPXXsDNwB4ispuqLslo447YvX2C+mc+iYjh5x1LDKpa9IMJZs3x+66YEKoD1nB+6+mUH5RV9j3n9yuzft8GqMFejFYZv5/glD/ByzUWuPYdnfM8HeY8UX2ArZzreS/jt386v51c4PqXuReYYFXggazfOwOtc5zLtQN4J+v3fM/sB0zQdMz6fU3nmX+R9fvHufpJxvFJmKoq87cBDvd/gbZZxxoDXTP+b5t9Lc7vPTC12eg8ffdjj89mU2Cx07angIPdfl2gTsF+ClzrHL8PaJzVtkedYwdk1Vkrx3maAUOAJUD3jN8FEwq5znNeRt/ZMeP3/s5vLxW43lM93C9xnptiQuEs5x42K1Kv4DPx0/5i/Q5boExw+vEOWce6AVOxCULzmPrH5U573waaZPze2XkfFNgm4/ee5H4XC7UxZx8kx/tW7DkADzm/PwRIxu99sL3ZRUDPjN93xOf4VOB6tnbKTwG6ZD3DN5xjV+Tprzt64ci65klO/VyfI8O8Y34+7rMFevuq5/Hk7sW5DbsJeAkTugrcWajzYYOrYrPtpjnO/5Rz/LhiHTLAjXEfVLkI78ec6zkq47cNnN++KnD9n+c41hQbzIb54H8dG8iaZvy2zDNzfj/L+f2irN9vyX5emZ2wAPcklhXeo5xzbRryvt7rnGf1HH33Yx/nORwbzDXjMwszxNovR/m8/RTblprpnK9JjuOrYILgBY/XdnCO92Rb57dPcpRvjAmuZQYWbFW1hKUHycbAr0AlGRPpIte0Oqbhybxfi4GvgUuBNjnq+HomhdpfrN9hWhEFbs9z3B18946pf4x3nvE6OY6d7NR/LOO3fO9ioTbm7IO53rdCzwEbT+YDVUD7HOVvcOpck/HbjkQ0PgEPO+cakOPY2pgh5MSs36/N1b+L8LjXXOjzath3zMf1fEwA4e1Xbf5351sxldVnwKOqWswNa1Pn+zM1lUc2hmL7wJtiquTlEiLSBnv552IvOwCq+oOIfAtsKSIbqer3OaoPy/5BVZeIyHSgXQ6ufYDTsVVWR5bdIumIDUKF8CRwK7Y6/qdz3qbYYFEBvFCkfkGIuRBtAExX1e881tkWG3C3xlYvzbKKdMdm7oGgqi+IyCuYWvsvWJ/8C6ZiPVBEnsQGSfVwurUxle944Ko8W8wLsO2A/0FEVscE3y6YcFw5q073jL83c74/ydGWWhH5HLOEzsYD2ETyJEwlCaaa7gE8qKrz8rZqaY4pmMfJusBuWH/bIuNzpojsqKq/eDkf+G5/Mbj7/mtk7qtnoI/zvS62Oi4IP/1DRFoDvYGpmts4zFW3bprjWCmwDqbS/0JVZ+c4PhTz5Ml1vb7Gpzxw+/IyamhVHScivwFrisgq6thRhMQnqrqjj+vy+47FCr/W5jlHHw9o63znExbu777N5RsY/gq0BB5S1YVZxx7HOskA4OwcdfN11hps9vc/iMi5wD2YgP0AE2bV2KTrQEx93pwiUNUqMf/400VkJzVjnAOALsDdOdrgF+7znuqlsIgchGl8FmLt+hlbKdRRv/dVtF3F4Eww33c+rovQIZiwOw6beHkJBNHB+e5D/cQ3F1q5f4hIL0wV3Q6bHL+PTfZqsVXZ8SzdRvfdmp7n3NPy/P48NiE7VURuVdU6TM0JpjL1BVUdDYzOaMc62P3aGrgL63dFEaD9xeA+g8OKlGtV5Pj/4KN/NLRxL8z1eh6fQvKv7pRL0vYp6DsWK6IwWPMC1zKzS57jXbPKLa9wLcpPE5HT8pQ5RkQuVtUFQQhEpAlmyDEN2ExV/8g6vowFchE8iK3gT8PUo5mGamHhvoBeV1I3YCrZ/o6w+B9E5CECuFt4garWAi+IyIbYymNnvAlvtz+/oqoHe6S7EBM4J6rqoMwDInIUJrxycaya53w53zlVXeBYHl8A7C4iP2CGal9rcWPGolDVMSJyLKZS3NlHVb/tLwb3/hygqrH4XxfoH1GOe3Vg77eq1mQdi0r4l3qczuTP5VZaKjkR6B2LG0nFNndVon9xhEs2dnK+M/2ca51vr7O2soaYy9OmmGHVo3k+32OzPM8uJDnQEXuZv8whuFtRrwLyBEeF/wVwkIhsiRkpfpotPB3UOjyenpmadfIPwKoi4kV12Bv4KYfgboSpLuNGlUuZ8VuhfjoGm6Bs5Ww3eIEbZWlwjmO5Jiff5jvmPIdC9+VBTBtzGnAK1gbfq+4CyHW/wARRvj7it/1QuN995Xxvl6dulFiqvapahQmh7iLSJ0f5XONePlQ436vlONY/x29g98XP+DkW09BtIiK5VN1+rjcIXDmxY/YBsehjPYBfIlKZ+0GYdyw2JCK8VfU3TM3Zk3r3BQAcgXA01jlfyTjkumWsnsAlJgF3xXqPqp6S64OtOjLLBsGf2AvYzxHWwP/2qu/BhLtfPIjtLQ/GBqZ/5ykX5Jnd63w/JCJtMw+ISCMR6Zrx0ySgj4h0yygjmEp6PR+cOSEiR4nIbpLb97oL9ZqTTNe5vG12Vkj3YSuGe0Uke+/WjX2Qee2TnO8ds8rtgQnYbHyJDbrbi8gBWcfOpsBenKqOxyy498W0K3OA/8tXPse1ryki52Y/N+eYAFc6/2a7Gs4itxAC/+13zwe5+91rmAA9S0T2zlXZ8dVtkefcmeWC9I/HsHfm9szJhYh0BK7OKFMM/3W+l4oHIRYo66g8dWYBnXL1u1xQ1cXAM9gWwvVZPGsB52IGaE95OV8AuPfhKhHplMHdGLgDk1ePxsRdCIHfsTiRlNocbHD4AuvEu2MGDq6fdx2mJqvKKP8fTAidLyLtqd9vuE9zBEjIhIgcSP0em6vS2FrqAxTMVNW/hWyPZzhC9Chs/+eJAkWHAhOBbURkfVX90S+XqtaJyL2Yn/coEXkNE7w7YX6uH1E/g/aKF7F9y+7U+2LnwhDseb4sIm9jxliTVbXQy/4INnM9DhjvXO8MzI1nZ+yFvtYpexc2cfhORAZjA8m2mOB+A9jPZ7uysSVmDDfNMUJxjazWBPbBDKdew/bdXRTrpzdgNganA/uJyFBsj78zthe+LSbkfnLqPYD5YL/otHEqZtS3J2YgeETmBTuGUSdjk+PBIuL6oG6MaUnedermwwNOuVWda/YTLrMtNiG8XUS+wLQoVU7bdgZ6YZPJi7LqDQGOFJE3gOHYe/Gpqn7qt/0Z58vZ7xyjqYMxV9W3RORLzK2tGht/NneusyvFQ4UG6R93YH7KBwAjnetr4VxvZ+Afqvp5EV4wm5iLgctFZGOsv6ztnPsVbM89133ZHHhXRD7F3LxGquobBXguw7QUZ4sFsPmIej/v1sDZfowP/UBVvxSRf2D+4j+IyEuYTcteWB/4HLg9QsqeeYwYXdytqnMieMeWgSydeMYN332biLgy8JGi/cKjKbtSwAUoq2xPcrg6OMe6Y6u4ydje5Uxsb2jzPOfaExsc57nXQIaPYYFruDajfK7PJC9tieqDzZYVeNlD2Sucsvfo0m4N1+YpPym7Pdik7ELsBV+A7X8/hQWyGJR9Hws9s4wyd1HA5Ubr3SZuxiYgS1jWFWWZa8049lfMmnMuZpD2C7YK2Cyr3AnY4Dvf6T+vABuSx2Uk+xqK3PvVMPe4V7CZdqXTT//ALJGPARr57afYyutYbDCd7ZxzKjYYXQGslnW+bbCJXAUmDD/HJqN5+wLQDxtEqpzPh5ixWM77kvXMZjhl1vfZr5s71/UAplqc7jz3uZhQvgnolKNeZywAx3RMtbtUm/y2v1i/y+C8FZtgVDvPajwmaI8hhytfhP1jJec5/4C9j26bjspRtif5x8/1HZ4q5/o/xlS5J5DbVawlNt7+Rr1b76CM4znfDWzb7Tbn/izCNDIfYCFws8vm7ZPF3vkC9/lI5/5UYWPBj9gEd6UcZQv27zznd6+52KdnVr1A71ieayjGfUKxc4hzohQpCkIsjOL2QF81dWuK5QCOdfcEzD0oiX3hFCmWKzir978DO6nqx0nxJmWwlqIBQ0S2wGb476WCe7nD3zDNwP2lvpAUKVJ4R5J73ikaGETkDGyr40TMLqGQr3KKBgInCMrR2J77iViWrBdLelEpUqTwhVR4pyiESzH3jInAsar63yLlUzQM9MJC3FZje5lnqAVpSZEiRQNBuuedIkWKFClSNDCkK++Q6Nixo/bs2bPUl5EiRYoUDQrDhw+fqaqdipdMkQup8A6Jnj17MmzYMjH5U6RIkSJFAYjI5FJfQ0NGam2eIkWKFClSNDCkwjtFihQpUqRoYEiFd4oUKVKkSNHAkArvFClSpEiRooEhFd4pUqRIkSJFA8MKLbxFZBUReUlExojIaCc1YHsR+UBExjvfufLapkiRIkWKFCXDCi28sXSG76rqOlh6t9FYSrwhqtoHywJ1WQmvL0WKFClSpFgGK6zwFpE2WJasR8ES0avqHCzvrptz+wnq84KnSJEiRYoUZYEVVnhj8Z1nAI+LyHci8oiItARWVdU/AJzvztkVRWSAiAwTkWEzZsyI/MLGj4dttoGRIyM/dVEMHw7XXJM8L8APP8CIEaXhnjQJShUpuKYmWb5SRkSeMaM0/EuWwNChpeH+4AN4/XWoSzh6vCocfzx8+GGyvCmSwYosvJsAmwEPquqmwHw8qshVdaCq9lfV/p06RR/dr2NHGDMGLktYYV9TYwPcDTfAJ58kxzt/PowdC3vvDWedlewA++678I9/QO/e8NZbyfEuXgzHHgsHHwxbbZXswP7II7D55nDccfDCC8nx1tXB1lvDfvvBddeZQE0Kr74Ku+wCTz8NX32VHK+qvcdXXAGzZ8PChclxDxkCTz4JU6dCbW1yvCmSwYosvH8DflPVr53/X8KE+XQR6QrgfP+Z5EU98QTcfLMJsXffhVmzkuGtrYW+fWHRImjXzl76pPDCC7DOOrDbbvDll6Z5SAKqcN558Mor0LUrPPpoMrwAb75pgqRZM9N2/DfBfG0DB5oQGTYM/vWv5Hg/+gh+/hlatYJrr7UVaVIYOBB69oSHH4YBA5LjHT4cvv0W9toLVl8dBg9Ojvuhh6BzZ6iqgg03TI43RTJYYYW3qk4DfhWRvs5PuwA/Aa8Dxzu/HQ+8luR1vfSSrQC33tr+Hz06Gd5x42DiRFhtNdh44+R4wVb5XbrUD6pJcf/5p7X7iCNgiy2SbfMXX8BKK8H119v/P/2UDO+iRSZMDjoI/vIX+PHHZHgBvnamyXfcYd9JcavCN9+YZmfbbe05J7XqHz7cvs84wzRbo0Ylwwv2nHfe2SZqo0fbyj/F8oMVVng7OAd4RkS+BzYBbgZuBXYTkfHAbs7/iWHCBFhvPVh3Xfs/KYHirnbXXddWwWPGJKe+njDBONdZx/4fMyY5XjCNwzrr2KowqUF9/HhT1a+1lq2+k2rzxImmvl57bWv3rFkwc2Yy3OPHQ7du0KOHrQjHjk2Gd+ZMmDu3vs01NWbjkATGj7dJWs+e9ryTavOiRdZGt81gE9UUyw9WaOGtqiOcveuNVPVAVa1Q1Vmquouq9nG+E5uv1tba4Nq7N6yxBhxzjH0nAVeQ9e4NG2xQr25LAq4ga9vW1NdJT1j69DHhXVNjAjwp7j59oHFj+05qUM9uMyTL3aeP/d23b3K8rtDq06dekCXFPX269e1GjUyQJiVA58wxzcommxgvpMJ7eUOaErSM8NtvZsi01lr2sj/1VHLcEybYXnf79rbfftZZyfBWVpr6undv+/+zz0yAJ4Hx4014rrEGNG9u97vzMr4F0UMVWrSo34c87jho2jR+XoAOHeDww21A79TJhNmCBclwX3SR3W8w3rffToZ3s81sf79373rDrbFjYd994+d+6ilbBYO1+Z137Brc+xAXVl213uh0yRLjS2rCkiIZiJbSb2Q5QP/+/TWqfN7uXuQTT8COO9pvs2ebQI0bjz1mL/dtt8XPlYkFC2yPf4MN6leCSWHxYrPEXXPNZHlTmBq7RYvkJi2ZePttW5F265Ys7xdfmGHiGWeYKj1JHHccbLcdnHpqsryFICLDVbV/qa+joSIV3iERpfDOxm23weWXw7x5NtAliYMPhk03hauvTpb3p5/g8cfh0kvNZS5JjBhhbmvbbpssL9gzbtIk/kG9ujr5vgTm3z1hggnNlVdOlvvZZ63NByYcbmnKFLjwQnuH+/VLlvvcc80gcMiQZHn9IBXe4bBC73mXO1ZbzVSskyfHy1Nbu+z+9s8/m4Vu3Bg5Ej79tP7/X381a+S4DbhUbWDN9Ge/4AKbNMSNp582zUplpf3/7bfQujW8/3783OusA6efXv//tdfCrrvGz/vBBxZ4aOJE+7+yEs4+O5kAIrfdtrQb4A8/mOtY3PjxR3MNc7clVOGXX0yox42RI02zlAnV0gboSREtUuFdRjjvPBvQXLh7v9Omxcs7YQK0aQPPP7809x9/xMsLcM89cOSRS/NC/G2eORPuumvpKHbduiXT5u++M/Vp69b2/6qr2nfcbV682CZHXbrU/zZrlu0Hxw1XaPfqZd9NmpiPeVLcLi+YQD399Pg9C375xb4zuddbD+69N15esAl/z571/z/2mGl1kvIsSBE/UuFdRvjyy3qrb6gfZOMWKFOnLs0HJkTjFiYud48eS/NC/Ny//27fmdxduhhv3KuTP/6wiYKI/e8aycXd5unT7bt79/rfunSx/ee4jdamTTODSFdl3qKFTRjj7tvz59uWRKYRZJcu9oxjiGy8FKZPt2fsPl8R43afQ1xQtfud2eZWrWzylsQ7nSIZpMK7jDB9ev0qDJITZO5gksntCrK4w3Zmt7lDB7OMjXtQd+9pdpurq+N3kctuc9Omtr9fqueceSxO7kxelzupNmdOTJPSdEybZs+1SYZPTxJtrqw0C/dSPOcUySEV3mUC1WUHuLZtzWBsq63i5c41qG+wAWy/vQmzuLkzeRs1sv/jDgubq81JTpZyCbKkJizZGpbMY3Fyl0J455ukZR6LCyutZO9RJpJo85IlcPTRZhyYyQvpynt5QurnXSaYO9fUWpmDjEh9+Mw4MX26rQ7atav/7a9/tU+cqKsz1WX2oP7zz/FbXc+ZY9+Z3LvuCh9/vLQqPQ6sv76FoM3EeefV74HHhZ494ZJLlnaNW3NN2HNPi/IWJ26/fdnsad27x2+8tdVWFkegVav635ISZPfcs+xvXbrA55/Hy9uxIzzzzLK8kArv5Qmpq1hIROUq9scfcNhhNrjuv3/97xUVJtgzjU+ixvvvmwHVVVfFx5ELdXUW73rVVZc26kkKixebytrde06RLFRLc+9raiza2BprQMuWyXJ//bVNWA47LD6OujrTYGVCFc48Ew44wCZr5YDUVSwcUuEdEnH6eQMccoi5TSWZQALMkGzHHeHGGy1xR5J48UVbASeZ8QpsUH/xRXOn2nTTZLnnzzdL8L594xNoM2faCrtNm3jOnw+LF8Nrr8GWW1pmrSTxxhtm0X7ttclOFFTt/TnxRDjhhOR4wazZr7rKLM4ztWnlhlR4h0O6513mSGKPbMqUZY202rY1y/c4fcwnTbLUo9nZjr7/3tIZxpmD+MYb4c47l/6tUSM4/vh4c1x//71pGbLzpT/0kCWFmTs3Pu6zzoL+OYbKzTc3tX1c+P13C8ma7dP95ZemZXK9HeLA22/DAw8sK7ifeQaeey4+3spKi1+Q7ZpVWWmpUePM8DVtmnkPtG279O91dfH2rxTJIhXeZYLHHzfjFncv1kXXrvaiu/GR48C228I55yz9W6tWplKMc+LwxRcmLP/MypjepYsJ7jh9Ul98cVkB6hrLxdnmqVPN/zd7jzmJPcnp05c2VnOxaFG8k7RcRmNgguSNN+Ld985lKAeW1/vf/46PN5eVO1jSnZ13hq++io972jRzT8tWnR96qCUrSbF8IBXeZYKJE+3FzjZaitvFQ9WEZ64BLm4L6FwW3y4vxCvI8g3qcfu3l2ubk3jO2YKslBOWuDVauSz7IRk3tXxt7tw5NVhbnpAK7zLB9OlmJZqdbSjuAW7OnGWt3DO54x5kmjWDVVZZlhfiEyjuqr4cJyxxc5fqOUNpJiz52hy3hiVfm5MQ3tOm5Z+wzJqVXM76FPEidRUrE+QbZDbZxPZD4zL0yTfIgFmlxhl5a/p0Ww1k70d27myZ1BYujId35kzb/8vV5k6dLNZ4XJg+vX5LIhNuFK64tgoWLbKJWr4VWfbWRZRwBVV2utVOnew7zsAhFRW527zqqrb/vGBBPIlSmje3VKTZ6W1XXtkMBuMU3ocemju1bWZkuaQzqqWIHqnwLhPkE949esCAAfHyQm7uuF3H8rW5T594g7TMnWu8uQawa6+FK66Ij3vttZeO5e6iXTuzrt9uu3h46+rMCjlXwJ+ttjK7irjyTA8YALvssuw+f5MmsNFG8WY5y7fS7NDBvisq4hHe+++/tMtnJjp2jNdg7fLL8/OC3ZNUeDd8pK5iIRGVq9i559rMOFtw1NVZ8oyOHS3LWNSYMsXceA47LPcKJU5MnWorn969k+VNkaK62oR6mzbJ+5p/9JG9zxtuGP256+rM7bBVq2XbNW6cJR86+eSl49uXCqmrWDike95lgnvvzb3iq6sz9dtjj8XDu/rqZmmeS3Dff7+pd+NSnXfvnl9wn3hi8n7eYD71d9yxrNV/UtyjR8dz7rlzLVZAvq0I1fji2L/2GrzzTjznLoRJk+Ckk8w9LxstWpgrVVyC+8ILLSBKLuy0UzyCG8wtr00beOSRZY+tvTZcc015CO4U4ZEK7zJHkyZm0BWXGvm33yy/cS4FTLNmtkKpqIiH++6784eK/OST+Nxp3noLDjwwd7tGjYKLL7b7Egc22gjOOCP3sWOOgb/9LR7eoUPNFTFXnvRPP7VIc3GF7bzlFnvWuXDFFSZg48DkyeaCmcuO4M8/LXf7d9/yMFCIAAAgAElEQVTFwz1mTH3mumyMGAGvvx4Pr6uOb99+2WN1dXZNpZiYpogeqfAuA8yZY3uejz6a+3j79vHtkd1/v63s8/FCPBOHujq46CJ477383HG1+ccfbTXYtOmyx9y90LgmS1OnLut/6yLONhca1Fu3tv3uOLlz8YK5SH7xRXy8kJt7wQL4xz/iE96F2jxwoKmu44A7Ic0VWW3+fFt151qVp2h4SIV3GWD2bBPgTfKYD8Y5qFdU2PlzqQ/dwScO7spKE+D5wjd26BCfAK2oMMGdK651nG2uq7PnnG9QL5XwjrPN7nlL2eZcfawc2hzHNkWh59yqlY0xcRrLpUgOZWVtLiItgJ5AB2AZcaKqnyZ9TUmg0CAD8Q9whXjdMlHDXSEUGuB++SV6Xqhvc7lNWOKepDVpUpoJS0VF8TbnSqYRFqUUZMWEd12dhSTODmEaBa/LkQ2RePtYimRRFsJbRFoCdwHHATmUmQigQAyOLKVHIVUX2L5gXHG+3ZV3LnTrZuq9OFJkFpuw9OoV375zoTaXcsLSoUO8giyfhiVOQVZVZe0phSCrrbX+lZkO1EXcgmy77fInt8nsY1G3eeONzcXTdQvLxZ0K7+UDZSG8gX8DfwVeAT4DYjKRWhoi0hgYBkxV1X1FZE3geaA98C1wrKoujvs6ig3qO+wQH/fs2fl9Pjt3jm9/rFibb7opHl6Xc731ch9r2dLc59wAIlGieXPzeV5//dzHjzgC+vXLbTwYFiecYFbOuSACF1xgWb+iRqtWlp89XyazXr1g663NCj5qQXbZZfbJhw4dlk3IExVeeSX/sUzhnZlbPQr07587+Uwmdyq8lw+UhZ+3iFQC/6eqpybMeyHQH2jjCO8XgJdV9XkR+TcwUlUfLHSOKPy8v/jCkiTcdVfuGfOUKWYFvdde0a/I3n0XVlrJ0hfmgqqFT23ePFreJUvMCrh9++jPnSKFFyxZkttoMW7Mnm0Z+9ZfP/p84n/+aWNEvpX34MEWiOfAA6PlDYLUzzscysVgbQnwTZKEItID2Ad4xPlfgJ2Bl5wiTwCJdPFtt4Wnnsr/wr38Muy7bzwuHnvumV9wgwWGyc44FgWaNrXQkfkE95AhlgHp11+j5y6GgQPhiSeiP++SJYWNlCoqbDIVh6He11+bwMiHmpp40kWOH29W3XGGQM2Hyy+3iHn5EJfgHjHC+vbQobmPt28PW2wRveAGOPvswlH6DjmkPAR3ivAoF+E9FIhBaVcQdwOXAO5w2gGYo6o1zv+/ATnDGYjIABEZJiLDZsyYEfpCilmdxrUPW1sL779fOJ9y27bxqNk+/NAG1nxtr642jUQcg/7OO8ODBfQpTz4Zj/B+7DHbW86XfOSnn0y7Mnx49NxHHgnXXZf/+EEH5Verh8G335o/db6Y7ZMnW8CSN96Invv996GQUuzpp+H886PnnTnTYpfnmxwsWmR9YcSI6LkLGcqBxTWPo3+lSB7lIrwvAnYRkfNEJHZFlojsC/ypqpndOFespZx7Cqo6UFX7q2r/ThFsjg4YAGutlf94XMK7ogL22MNW9oW441gJvv8+3HZb/m2AuPyta2osPGWhSUFc+4KzZ9s2RHYWtUxet1zUKGSk53KXwkiveXMLEhSHcWIxQTZsWDyRCwtZfLs4+WR4++14uAvxPvig7YmnmcUaPspCeKvqFOAK4J/AfBGZLCITsz4/R0i5LbC/iEzCDNR2xlbiq4iIa8TXA8gTIylaFEuOEJcgK2blDvEJ72KDTFyCzN16KIUgmz3bnnO+Zx1Xm12VeKE2u5buUcOLG2Rmuai5iz3nqqroBVkx4d28uYVnjWuyVOx9hjTK2vKAshDeInIC8BS29/0TMBGYnPWZEhWfql6uqj1UtSdwJDBUVf8KfAQc6hQ7HngtKs5CKDbIuCu1qPckvawQ2rWLZy+0kH+5ywvRh2YtthJ0j5ViYHWPRT1Z8jJhadcuPkG28spmFJkLzZrZ3m8cGpbKysL3OzOzWJQoNmGBeCeIxZ6zWy5Fw0a5uIpdCYwA9lDVmDIae8KlwPMiciPwHZAnYGm0qKiANdbIf3yNNUzNvNFG0fNC4UFmv/2gb99oeV3uQoNM27bmNpVPxRwUXgbWtm0tlGRNTf6od0G5C7W5WTMTdJWV0XGCt+ecOUHMZzgZlLsQr8sd9Upw/nxLxFEoRoHb5jlzcue/Doq+feGvf80/YQG7J3EI0Ftvze+KCPFHlkuRHMpFeHcH7iqF4FbVj4GPnb8nAlskfQ2zZ8Mmm+Q/3qIF7LZbPLxQeHA95JDoeaH4hGWllQobGwVF48aWv7pQZqXLLrPAOFEKbrD8zsUE8xtvFL4vQdCli523UB/bZhu44YboLbDvv7+4L/Uee8A660TL27YtjB1buEz79tb3o86ad8ghxd+btm3j0WjlS3qTyQvxcKdIFuXi5/0dMFhVbyz1tfhFFH7ef/+7zZYPPzx/mVdeMbetQgEY/OL33y0xw0472QQhF5YsMSHfsaMJvqhQV2f+44VWJylSNESoFk81OnmyaVq6do2Od8ECy9ndq5clm8mFWbMsPetOO5U+NWjq5x0OZbHnDdwMnOn4Xq9wuO66woIb4JRTYNCgaHm7dYN99skvuMFcprp0yZ/eMCgaNSouuA8+2PIiJ40ff4SzzrJ80FFixoz8+bRdfPIJfPBBtLxTptjKe/78/GWWLDGf+kJlguCuu+DZZ6M9pxd8843FL/jhh+S5994bdt21cJk11ohWcIOlId1kk8L9p0MHSz1basGdIjzKRXivC0wFRovIkyJynYhck/W5utQXGQfq6kyFVSx2edu20e8LfvcdvPlmcV6IVs2mCqefnj8dqIspU3Lnnw6DgQPNdqCQqnTaNHjgAVsdRYl117U0qIVw001wzTXR8n7wgans8/lagwm51Vc324oo8eCDxX24zzvPQqRGid9+s4lQTU3+MrNnw2GHFe+HflFRUVxL9ckncOed0fK6WzKFwszW1cFnn1kq1hQNG+UivK8F+gEtgWOAq53fsj/LHX7/3QxnivmbxrFH9vDDcOKJxXkh2onD/Pnw0EPw/ffFuaNu85QptrIutOqPa8Iyd27x+N1xtNk9XyHuuPZC587NH9fcxcKF0WeQ89LmRo3gpZcsOE7U3MWe87vvmm1FlLuWXtosYhqJxx+PjjdFaVAuBmsRh+dvOHBny8UGuFVWiX5grawszhvHoO5lkHGPRx1hzW1zoT3JONq8YIGtAr3c77iEd759UJc3s2xUqKws7YSl0P1270cc3F7avGSJTVwKxXjwy+ueOx9E7J6kBmsNH2UhvFU1YgVlw4FX4d22bTyrEy+DjFs2St7McxfiLtXA6paNCl5Umu7xONrcunVhVa7b/6LkXrzYW7awtm2t3OLFZsQVBby8V40b230phbYhs48lKbzd46nwbvgoC+G9IsN1oyn2st9+e/Q5vb0MMl27ws03R+tj7nWQ2Wwzi3EeJbwK76ZNTZhEyeueuxh31D7mXp5z06YmREo1YQHjjioVa4cOlvyjmOtb1IJMFU49FbbfvjgvGHeXLtFw77qrbb8V86tPV97LB8pGeIvI6sBpQB8sSUi2YlNVdZfELyxmeF159+kTPffcudCzZ+EybdtadqYosWCB7TkXG9TPOSf6jGYbbVTcj7p5c0seUczdxw/atYNbbrEJSSGcfLIZl0WZ+vXKKy1+fjH885+wwQbR8XbsaJOQYol31l8fjj46Ol6AM8+0TzGsvXbh7QS/EIG77y5eLg7tzjrrePOXT1feywfKxc97L+AVoBlQBeSM/6OqZbc3HtbP+4cfzGjmnHPqwzXmwogR8Pnn5sIUlVAZNcpUh+utV7jclCmmzoxqheDCiz9sihQNCbW1tpfdvHnhvr1woWnd2rePLn7CTz/ZeYtNEL/80ji3TDqPYxZSP+9wKBdr81uAmcAWqtpWVdfM9Sn1RcaBDTaw1JiFBDdYCs1zzoF586Lj3nDD4oIbLEzp9ddHx+uimOAePNh80adEFtXeO664IlpXnrlzzT2nkOsSmIvTgw+au1pUePVVcw8qhsmTi0cl84MffzSXwFK4JZ16Kpx0UvK8o0bZ9sOrrxYut9JKtkUQZeCjG26AI44oXm6bbUovuFOER7kI73WAu1U1hoCY5Y3Zs70N1FGr2VTN57mYu5bLHaWa7dVX4dhjTTVdCKqW+zpKN7X11vPmR/3BB9EGSxk82NK+FsqdDhYh68wzoxWil14K//pX8XKnngrHHRcd77hx5hJYLCTsDz9YcpJXXomOe9Qob2lG//EPOOqo6Hi9WLmDrbqvvBL+859ouYttRYGt0ItNLlKUP8pFeM8AIjQPaji4+WYLZ1gMUftbV1fDaaeZv6kX7igF6LffwjPPFDcmijqbmipMmODNEC3qCYsfg7XM8lFxexnUo26zV3uOFi2sP5aizT//DEOHRssLxblra+3dL4XwfuopC05TBjumKUKgXIT3U0BMKTDKG1VV3gdWiG6A8zrIuGWiHljbtClulBV1mxctsv3IUgqyYsZRcQTFKZXwXhEnLF7bHIePuZ8219QUD9WborxRLsJ7ENBMRF4TkZ1FZE0RWT37U+qLjANeAqXA8ie8V8QJS6tWxfc4o26zV19rlzsOQVasf8fhY+4lOAxYmUWLim/heIXXPhaHj7nX9yqO+50ieZSLq9gYQDH3sH0LlIvQvKM84FV4b7yxqXy7dYuOF7xxn3FGaQaZjh1NvRdVm70KEzD/di/l/HCXcsLidYK4YIFpJ6JIDVpTYy5yxc7VtKmpzqPcHtluu8J5rV1k3u8ocnpvtpmFPfWShz7qydLjjxfOF5/JC9H6mKdIHuUivK/HhPcKB6/Ce+WVzeApKvhZhe6+e3S8YAP16h70KO3bwwsvRMe70krmT7z22sXL3nSTfaLCMcdYTOliaNbMjNWiGlTbtTODMC+C6aCDoHfvaHjBsuVdd523smecYUFVooCIpb30gtVWM2+KJUui4d5mG/t4Qdu2xY35/KBYJrNMXkhX3g0dZeHn3ZAR1s/7xRdNhXbwwYXL1dSY69I228Bf/hKY7n+orjbXoDXWKJwSFCy++C+/mHtJ6pedIkV+zJpl77OXlffChcX9wb1i0SJ4+22biBSbGM+eDaNHW8CiKAPU+EXq5x0O5bLnvcLisMOKC24w465LL40uZWOLFpaispjgBsvpvfXW0Ycq9YJeveD885PnHTIE9torusQoo0Z5TzH62GMWuCcKTJoE997rzR2xosJSVUa1Irv+eu/xAVSjM6D64QeblH74YTTn84Ozz4bNN/dWdqWVopsMT59u44gX98b27WHbbUsruFOERyq8S4xRo2DGjOLlGjUygyc3FnpYfPWVhXH0oi50X/KouA87zHzMvaC2NjrL60GD7B56CfoyY4a50c2aFQ33YYfBJZd4K3vffTZhigIjR1q+7GL+5QDffGOq/VGjouF+911vwWEAdtsNdoko+HFFhffAPmPH2mo1KnexqirvthJPPAFXXRUdL3gTyNXVxj16dDTcKUqDVHiXEKpm4HLXXd7Kt2kTnQB991244AJvMbSjFt5vvGHGd17QunV0+4KVlZb0w4u2wR2Ao2pzVZX3lU7r1tHx+jFMXF7a7EeQgcUd+OOP6Li98n76qU0oo+IF78L7hBNKo5lIER1S4V1CLFzoLcezi6gHuJYtvYVnjFJ4L1li+3PlPqhHPWHxM6hHOUlrKG1eEZ/z8tLmFKVBKrxLCD+rIoj+ZfczyLh1wsKNzV6qAa5pUzMS8sLr1gkLVWv3ijaol1qQtWrljTezThTcfto8b140kc78POfmze09SIV3w0a5uIqtkPArvN97z4xcooCfQWaDDeD5572lG/TCC965998/OrW5nza3a2cuZVH4O8+fbwN0KQTZvHm2NeJlqyBqQda+Pay6qreyUbZ5tdXM7c2LxXfLlvYdFfcll3iPS9C6taVLra6uv46g2GEH+Phj765+Ud7vFKVBKrxLCL/C20sABq/wI8g6d/aWrcgLamstOYhXP+azz46GF8zC1stqDMxaOarkIE2b2uRno428lb/9drjjjmi4L7nEcoR7sWpu08aSg3i9zmIYP9572V12sftUVxc+l/kee9jHCxo1sjgGPXqE43Rx6qney7Zta/1x/vzwwrtDBxPgXpEK74aPBuHnLSLHAVNVdUiE51wNeBLoAtQBA1X1HhFpD/wf0BOYBByuqhX5zhPGz3vGDPPN3GUXb4PHyy+bheiVVwaiWwpz59qeu5eV0eLFlku8Vy/o2TM8t18sXmzBS1KkKGfU1cGYMdC9u7fgR1Hiu+9sbDjySG+TnzFj7Bq7do3/2vIh9fMOh4ay5z0IeF9EhorIphGdswa4SFXXBbYCzhKR9YDLgCGq2gcY4vwfCzp1guOP9z7r/+ADc++KAm3beldpLlxoE4zBg6Ph9oOrrzaVbxRzzEWL/J1n113hgQfC886ZY37jFXmngEvjq69sxRyFX/1zz8HDD3svP3QoDB8envf33231+9FH3sovWQJ//hlNpLPzzvOWpz5qVFVZSNZHH02e+4UXbCzx6je+zjqlFdwpwqOhCO/rgbuAVYD/RnFCVf1DVb91/q4CRgPdgQMA18v2CeDAKPhy4fff4csvvaWohGhVXXfc4T2nr6tqjoJ76FBTX0+c6K18y5amao8igMf221vgFa8YPtxWKGExYoRNBL77zlv577831fns2eG5n3zSu089mNrXq+tiIcycaQGFvPrJv/aaTSajuN8zZ3p/pwAOP9wEX1j4tecYO9bC9UbhV+9ug3kV3m+9ZalBUzRcNAjhrarXqurfVHUzIKI0FfUQkZ7ApsDXwKqq+ofD+wewTFRoERkgIsNEZNgMLxFW8uDVV02QeQ1C0rp1fVrLsLjjDu/xnxs1MiEahfD+9VebsHhFlEZUVVXe97xd7qh43fN55c2sF5bbTyStFbHNM2d6n0wW4wXv3JWVphnxGnmvGLefNj/+ONxyS3jeFKVDgxDemVDV4NIyB0SkFTAYOF9VPdk1q+pAVe2vqv07deoUmNuvwVqUQTQa2qAehcV5Q2vzivic0zYH5y5Fm1OUDg1OeEcJEWmKCe5nVPVl5+fpItLVOd4V+DMu/spK737HUP9yur7SQVFba/uppRzgvK6ASz3ARTVpcM/nlTezXljuhiTI0klacO5UeK9YKImrmIg8FqCaqurJEV6DAI8Co1X1zoxDrwPHA7c6369FxZkNNx2o132q446zvTkvUdEKwW+gFIBHHvHmN1sMVVV2/V791ddd14y3OnQIx6vqf4DbbLNwnC6CDuphJ2kut99B/eefw/OutJI9O699JkpBtt9+/vpLVIKsb1946CH79soL0XA//LBtqXmF22bVNFNgQ0Wp/LxPCFBHgciEN7AtcCwwSkRGOL9dgQntF0TkZGAKcFiEnEvBay5vF00ielpBhPf220fD3bWrncuPVextt4XnrauDyy/3llPbRRSW5gCHHGLt8Kpt2HhjM7iKIkDM5MnWdq+45ppojAP3288+XtGpE9x8syUJCYu//91f+f79oxGgPXrAgAHey7dqZUZ6UbzXfl043QAxCxZ4C+CTovzQIPy8yxlh/Ly/+858vXff3Vv5SZPg1lvhrLNgww0DUQI22160yASoV5X9N9+YYY8fa+0oUFdnPunNm6eDTApvqK0Nr50KgqlTLcHJJptEN9H2iocftoiAXgO1zJljgnvVVcMHxQmK1M87HFboPe9SY9NNvQtusJX6Qw/BuHHheEVMrelVcIO5D51zTjjeIPj9d4ss98wz4c4TxI/49tthyy3D8QL897/e8iy7qKmxCdpbb4XjnTfPcqH/5z/e6/z0k2W68rNaz4V77jH3OD+YPNlb3vFCqKszjcUNN4Q7TxA89ZTl8vbjphYVLr0UXnzRe/lVVjEtWKkEd4rwSB9dCTF0qHffX4huj2z0aDj3XFvJe0VUma5OOsmfT21Ubf7hB1tlvPmm9zoVFZYuMqxy6s47TRh7RePG8O9/+xO6uTBrlgnRn37yXuftt+HEEy1kZxiMHWu5xP2gXz+4/vpwvG4c+ZVX9l7n+edtgug1B3g+VFWZMPTDfdZZcOON4XiD2HNMmADXXustz3uK8kTZxDYXkSZYQJQtgXYsO7GI1GCtHHD66TZgPfect/JRCbJx4+C++yynr9e9sqiMekaP9jfIRBUgxq/RmFu2psa2GMIkhPE7sIpEc7+Dttmt66deLm6/9UvV5kaNbKIW1tLdb6AUsGh6YSOdLVpk/dRPmydNguuus8iJ3buH409RGpSF8HbiiX8EbAAIZpzmvgKa8dtyJbz9GqxFJbyDDuoLFtggEWY/r6rK32DVuLHtdZdakCUpvF3uUrc5LHfaZm/cDbnNKUqHclGb3wisA5wCrIUJ6z2AdYHngG+AkM5C5Qe/wrt5c3vpamvD8YZ52cO6LwUd4KJYFbnn8sObWTcM94o2qAdpcxRbMw2tzQ29b6coHcpi5Q3sAzypqo+LiCuka1V1LHCMiHwM3AKcUaoLjBpLlthK1o/whtIEDQFLCbrttuFTFwYZ4K68EtZaKzwv+OPu2RP23DO8UU+QNrdvH36v3U1sUopBvW9f/xqa1q29x0LPh44d4cILzfLaDy+Eb/NFF5lnhB9EMUlbfXUz9vMThyEV3g0f5SK8u2Cra7BsXwCZispXgYtZjoS3+9L4Fd5RwPUh9uN61a2bfcJihx3854uOwsq9f3+46SZ/wTt22MFfjuR8eOkl/2r3zz8Pz3vggf61NP36WSKV3r3DcQfxkT/nnPA+5j17wj//6a/OqqtaAKSwe79bb+2/Tq9e5l4WBk2amAD3g1R4N3yUhZ+3iPwB/ENV7xKRRsAC4FxVfcg5fhZwu6qWnadvUD/vxYvh669tsFltNe/1rrrKXrxLL/VNuRT8Rlb64w+zRN577+RTCc6YYVoKvwNUihUPCxeaVqtVq+Qjh336qU0O118/Wd6xY22CePLJ0KWLtzqqpsVr1ao0PvGQ+nmHRbnseY8D1gNQ1TrgO+AEEWkuIi2A44AI8v6UD5o1g+228ye4wdzL/PgM54PfgW3CBDjlFHO5ShonnmiryDCYNs2/K9CECTZh8Jo6NRdqay20rN/79sgjcOaZwXnB0mwOGOBv9b1woa2a/bgw5kK/fpa5zg/++MOCAYXB44+bNiuIv3jYdczxx1sQpaQxcqRN6v1sOYhA27alE9wpwqNchPf7wKEi4oYNuRNzGZuNJQbpj+XzXuERxR7Z3XdbGEy/vBCOe/JkU72//HLxstncYdv8979bAA0/aNbMUpiG2YetqrIc2e+/76/ed9/BCy8E5wVzQxo0yN8A7QaI+fDD4Lyqpnr3u//7wAOw1VbhhGgQ2wYwgX/FFcF5XW6/vIMHW5vD2LIEbfONN8KzzwbnTVFalIvwvhnooqqLAFT1BeBQ4D3gHeBoVX20hNdXNohCkL33Hrz7rr86UaQjnTPHVld+B+eoLK+DWAK7dcPwZp7LD3cp2tyypa3KwnBXV1uksyBtrqurN7QLgqoqu36/hpVNm5bmfs+ebdtnfic62bzgn3vQoPBR/FKUDmVhsKa28b4o67eXAZ9rtOUfqSALzt3Q2rx4sX2aNQvO7ZdXxPZBS9Vmt35Qr4aqqmD73WH7mPusGlofSw3WGi7KYuUtIk1EJK/dtYi0cSKwrfDo2jV8as5SCbIg2czAVv3V1eH824O0uUkTsxIvtSALwx0kSlrYQT1ts3dEodFygwgFcc2LwvU0RWlQLgLxn8BeQD7vzG+AN4GLEruiMsXNN9snDIIMcM2bw6hR4dzFgg5w++xjVrRh90K9WuJm4sgjw1kPB21zx46WYjKM61TjxtC5s/96YQVZ06bmlRAkTSWE4z7gAP+uiC53GN5WrcyuwY9/ucsL4bhvvDGY90nr1uETwaQoHcpFeO8BDC5wfDAW93yFF95RoGVL/4O6CGywQTjerl3hsMMsd7Mf9O9vnzC44gp/CSNcPP54ON6ttzZLc7+C7Oij7RMGfrJMZeKDD8IF4+nZM9heav/+Fud/jTWCc++/f7B6Rx0VLhhP8+aw227+63XqZAZrQfqmi2bN/MUvcNG6tRmRpmiYKBc/7/nAear6SJ7jpwB3qWqIVAnxIEw+7yB47z3LUvXss8Fe2DB44gmL/LXffsnyVlaa21bfvuEjvKVYvjF1qgnC9u2T5Z0+3fy8d9rJtCZJYuBA228/+2x/9erqSpsSNPXzDoey2PMGFgOFQn90AUJmGF4+8Oefpp6rqEie+/bbw69Eg+Czz8xv+Mcfg5/jm2+CqQj33Rf22CM47/DhcO+9/tXf48aZ6vnrr4Nzn3KKDex+8eqrwSKkuXj5ZVP5T/QZmWHhQvjoI/jtt+Dc++xj2fL8orY23P7viBFw+OH23JLGc8/B//2f/3ppLu+GjXJ5fN8Bh4vIMna1zm9HAN8nflVlCHePLOhAU1lpK2e/rmIud5i9uSuvDLbvHHZfsK4OttgCHnzQf13VcH7eH3wA553nf79+0SJ4551wOaYHDw4WVOell/yHGM3EzJm2Am7evHjZTMyaBTvvbJH8giKowdoFF4SL4BfUtmHxYtuj//e/w3EHafNbb1lgmbCJjlKUBuUivP8FrA+8JSL9RaSZ8+mPGaqtB9xf0issE4QVZBUV8Oab8PvvwbjDCO+KimADRdg2B7Vyd+uEtQRu1Mh/bPOwbVYNZ3ldiqAhpbY2nzcvuFFk0DY3bQo//WTBgIIiaJtHj4Ynn4T584NzpygdysJgTVUHi8gtwOXA11jubsUmFwLcpqoBFEPLH8IOcEEHGTC3lqlTg/G63EEHVrd+UN7M8/jljkKYBPE7dusHwcKFNlEqpdtUq1b+6rnlSyW8a2vtvgUxHgvax/ts8K0AACAASURBVESi62N+kdnHSpEgKUU4lIXwBlDVK0XkVeAYoDcmtMcCz6pqyIjHyw/at4d117UZexCUgyALwuvWD8qbeR6/3CtimxctsgQfQfqZG2TF755qo0ZWL2iba2pM+Ia930kKb7dO2Ih2QSfjkAZqaagoG+EN4AjpVFAXQO/epmYLijCDzB13hPe1DsLbrp2p97bcMhhvGLX5X/5i+5J+s7C5CNrmZs3MNS/oimjxYlhzTf9uebC0IAtitb3RRuZ6FQRhBJkq3H+//xj2Li8YdxDf+JNOMkvzINHwGup2VIrSoqyEd4r40bgxrLWWCUS/COuatvfeweo1awbHHhucd801zSK3Xz//dQ8+2D5B8cgjwWN1jxoVnDeItbeLAQNMGAWZdIAZQR1/fLC6Tz8dzKgRTEtw1lnB6m66qSWvCTpZ6to1eKrcsO5lIv6jq4FFamzXziZ6KRoeSuLnLSLXYHvaN6lqnfN/Maiq3hDzpflG0n7eqrDDDvDXv8JppyVGC1iWqjfesIxkfi2Jo+Bu0wbWWy9ZXjB1bKNGqWtNuaO62uIB9Orlf789LD780Iz8wkz0gmD2bLj4Yptsbbttstxhkfp5h4SqJv7BfLZrgWYZ/xf71CZ4fXti++0TgMsKle3Xr58mjZYtVS+8MHFavf9+VVCdPj1Y/UWLgnOvtprqiScGq/vrr6pDh6ouWOC/7nPPWZvHjAnGfc89qoMHB6t78snBn/OXX6ruuqvq2LH+644fr3rRRaoTJgTj3mUX1X32CVb3yy9VP/wwWN3//Mee1Vtv+a+7ZInq1Kmq8+YF4z7wQNUNNwxWNwzGjLE2P/108txhAQzTEsif5eVTqrXEmkAvVV2c8X+xT68kLkxEGmOua3thLmpHiUgJ1nv5EWaPbNAg86WtqQnGC8G5O3WCCy8MVjeM+9Kbb1qbZ8/2X9eN6BaU+667LOhJEIwZY8E/guDXX201GOQ5T59uft4//xyMO8h9dnHzzfC3vwWrG8aeY9w46N7d+kpQ7qDbDBdfHDz8b5g2V1bCoYcGb3OK0qIke96qOrnQ/yXGFsAEVZ0IICLPAwcAIczEokUY4T12LHz+ebA9sjDCW9UMx4KGNw3TZrdekP1Mt82u0ZtfVFYGH9Rbtw4eICas9XPmOYJwh2lzqSzsM88RhDuIHQnAggXwyy/BeSFYmxs3tkA+W2xhkQRTNCyUxS6eiAwVkV0KHN9JRIYmdDndgcyQCb85v2VezwARGSYiw2bMmJHQZdUj7AAXdD8wjB9udbVFOgs6qIfJMV1VZUY9QSYOqSALxp222R93KdrcooW9F0G599gDjjgiWN0U4VEWwhvYEVi1wPHOwA7JXAq5HIKWsupT1YGq2l9V+3cK4osTEv37m8tYEIQdZNxzBOHNPEcQ7rATliCuXmHa7PpKl3JQDzJRa+iCLIiGJWyAmLBtXrLE+otf1NRY/SDcYQPE9OkTfBxKER4NxVVsFSBA1w6E34DVMv7vAQQIJhofHnooeN0wg0z//qY+btEiGC8E577iiuC5rcO0uXNn24Pt29d/3TD+5WDBeP74I1jddu1gs83CbY8EcXFTNcvnv/zFf12Xe8ECE0p+r33XXeGxx8wFyi+aNLHgLEEF2aefBvPxhqUnS369OMK6MoYR3venAatLipKlBBWRjYBNnH8HAQ8B/8lRtD1wJlCpCbgViEgTYBywCzAVCxpztKrmzGmVtKtYWJx/vu2jPvVUsrzTpsHdd1vwjo03Tpb7xx+Nf5e8GzPxQNUEUZDY5qVGEOEZBaZMsQnL5psn75p3//0WYGb77ZPlHTIEHn0U7rsv+TS/O+0Em2xihpVJI3UVC4dSCu+/A393/lVyq6tdVAFHqGqAXFj+ISJ7A3cDjYHHVPWmfGVLIbxvuskyL33xRaK0LFoEl11mwVZ22y1Z7nHjLGjJIYckywtmdOaqGFMURl2dCf6gq9AwGDPGtB1BLbeDYtEim5juvrsFe0kSzzxjY8HTTwfbFgqDtdaCM84I7h2QCu9wKOWe9yBgJ2BnTHDf7Pyf+dkR6A+smpTgBlDVt1V1bVVdq5DgLhUqKoK7EIVB48Y2SP0nl36kCBYutOuuC5iV/cUXza0lyL7gkCHh8mL36AFXX+2/3oQJpumYMCEY7+DBsM46lsPdL847L1heaxfXXBMsF/jYsab6ff75YLxTptgqNIiV/a23hpvc/fprsKh0FRU2qQ3yXoTFsGEWOClpwb14sd2roFtZKcKjZMJbVSer6ieq+jFwIvCo83/m51NV/VZV0y6SgdatbT8ySDzj3XaDGwLGqWvSxNS/QfbIXnnF4mSPGxeMO4wR1UUXmf9wUATdF/z5Z7jnnmDCF0zlPnYszJ3rv+733wcPjwr2vILkfA9r2zBqFJxySrAJTxjbBrCohSedFIwXgnMPH25133svGHeYNt9wQ7BJXtg2pwiPcrE2r6HMjMLKGWF8j4cNgzDebUEFWRTW5pnn8csdZpBJ2+yP160flDfzPH65G2Kbmze3dzlIIKCwbR43Dj75JBgvpMK7lCgX4f0U8IeI3CciCe8aNTwEHeBUoxnggkwaSjmohwmU4nIH5XXrB+WFFUuQNcTnHMZFzeXNPI9f7ob4nFOER7kI7yOB/wJnAMNEZLiInC4iaYr4HFhrLTMa87vPtXChqdrDvHBt2gTLQhTG7xhWzAEubbN/7hWtzW3bwhprBON1uYPwrryy2aCsuWZw7hThUBZ+3qr6AvCCiPQATgJOAB4A/ikiL2H74Z+W8BLLCjvvbB+/iGK2/O23wYxjKistwllQ958ttoDPPoMNN/RXzw1+EabNp5xi5/EL15gnjI/5HnsE81vu3x/WXz8YL5h9QhBXsXXXhUsuCZZHHMIJsvvvDxaDIJM7CO/uu8Pvvwd38wrT5ueeC8aZyb14sX38eAj07m1GpClKh5K5ihWDiOwKnAwcCDTDMnw9CgxS1YAmQNGjIfl5T59uebEvuAD22itZ7g8/hJEjzXgsSdTW2j5/166w+urJcoNZ16epRL2jthZGjzYL/yCTljD473/NQDBM7vigOP102Gcf2G+/ZHmfesqMKocODa72D4rUVSwcylZ4A4jI5sDFwKEZPy/GhPilqhowXUR0KIXw/uknm+0PHGjq8yTxyCM2uP7zn8nyVlfDSy9Z8I51102We+5cc13qlUheu4aNykqzrWjbNlleVXj9ddhgA9tWShKffGLC76qroGnTZLkPOsjGgjPOSJb3ySfNDfL7722iFQSp8A6HslsTiEh7ETlXREYCXwH7Ak8D2wNbAi8ApwMPl+4qS4umTWHq1OAZp8Lgq6+C+fD+9put/INiwQI4/nh4/31/9WbOtJCZv/5avGw+3HQTrBcgKewDD9iAHhSqtp95223+6k2bZgLspZeCc7/1lvlM+/XjveqqcHuwYBNEv8954UI48EB44YXgvLNmWca9BQv81fvoI7j+eouDEBSqwWxJ3n03nEtgUMyZY/7tK6+cPHcKQ9kIbxHZzUm/ORWLbibA+UA3VT1OVT9X1W9U9TgsoEvCa87yQdA9siFDzMBk1Khw3EH25o4+Go48Mhwv+OcePx5OPtlCpIbhdpOM+MH771sAjaAQMYHid9Izd64N6EGEgYtJk+Dll/27L4U1GgMThH73cqOw53jvPdhuO5jsM0FxVVU4ew6Afv3g8MP91ampsUlLmDZ//bVxf/edv3qptXnpURYGayIyCUsGsgB4HhioqoXiFf0ArLDdJqggmznTBuUwKwTXVUzVn+FaVRWstlrxcvnQrJl9/LY5ikEm8363b++PO+zgFmSyFHWbO3f2x708tNkvd9g2t2hRmjbX1JgRqt/YD1VV9e9kitKgXFbec4BzsVX2iUUEN8AbwArrpNCihc3y/b7sYf2O3bqqMH++v3rpoB6cu1TPGRpOm8P6Wru8mefyw5327RRJoyxW3qq6SfFSS5WvBnwqt5YfiFgoR7/7sFG87B062Eqsutqfz/aKOMBVVkLPnsF5Xe6G1OYV8TnPmxdNmydN8lenttayoHXtGo4X/Ld5q60aXqa85Q1lIbxT+MeTT/qvEzZQCljs56Dxn8MOcG+/7d+KOYpVaL9+8K9/waqr+qu30krQsWNwXjBvAr++yx06wL77+lN3Z6NdO9vm8OuMcsYZ4VWprVub0Z0fbLSRGY6FSTcbVJC9+mr4BB1BJixrrmnul2F5wT/3sceWxqUuRT1K4iomIkMDVFNVTTgjc3E0JD/vZ5+1hBNJB1dQNbe2jTaCrbdOlruiwizd11sv3F5/iuQwY4ZtCyWd23r+fHjnHQsIlHRMgJdfNhfQMN4JQbB4Mey6K5x1FhxxhPd6tbXh36fUVSwcSiW8J2E5vH1BVctun7tUwnvXXc1NI4w1cxCMHg2XXw7XXRdulRMEb79t1tdJz/gXLbJc0T16JC9QGhrGjzdtQ7t2yfKOGWOGVwcfnLw69+qrLfbA0Ucny/vhh3DllWaZn3QMgi23tCh6b74Z/Byp8A6HkhisqWpPVV3T76cU11quULVVZdKYPx9ee83yLnvFwoU2sAZJbZmJxx/3n9rzvfcsP3QY/PYbbLKJv4GquhoOOCDc4AZw4YX+/aZvugm6d/ev8s5EdbVF4fPrN73++vCPfwTnBQt6cs01/uq8847ZgYRVX3/4oa2A/eDhh+Hjj8PxLlliGgc/+e6nTrWocKVAVVXq411qlIu1eQqfCLJHdvjhtmIPywv+uCdOtH3jIPmhs7n9tvmZZ4LnL8/kBX/cc+daxK8wwWHAjBNnzvRXZ8YMu9YgMehdNGtmz2vMGO91XF/4sLYNn39uz8yPn3oU9hxgK/eBA/3VicKe45FHzEbBj09/VL7Wu+1mIZP9ILU2Lz1S4d1AEUSQ/flnsAQb2bzgjzsKozG3fqmsn91z+eHNrBuGu7ra9hj9cIflbdLE1M+lanPm+bxyr7xysGQq2dx+eGtr7fk05D42bVqwwDSp8C4tysbaXETaYYlItgTasezEoiwN1kqFoIIsjFuJy+ueyw9vZt0w3H4DxEQxyKy0khnnlFKQzZvn3dI+qoHVbx+LQ3h7tTEoVZvd3PalEt5NmkDz5uG5/fCqpsK7HFAWwltE1gC+ALoBc4E2wGzqhfhMwGdYkOUbO+7o3zCnshLWXjscb8uW5qLiZ78rykG9rs5WOi1beucOm51KJLggC5upKXNQ9yO8o8gQVQ7C2w93KYT3/Pn2Hpaizd27W2rgMNsjLrcfe5TaWssOuP324XhThENZCG/gRmAVYBdgFPAncASWmORK4Ehgh5JdXRni8MP9x0KOYoBr1Mh/IoSoBvXTTjNLc78Thyjcfh56yJ9Fr4hNcsJaXW+4oX/f6R13DBfX3MVGG/nzbe/aFR58EDbbLBxvEEF2663hDSLBJj1+eLt1s0QmYZ12grT5rLPsExatW5tRplc0aRLeKDFFeJRFSlAR+R34P1W9QEQ6ADOA3VR1iHP8VWC+qv61lNeZC6X081682F4krwkRzj3XfFiPOSbe68rGxInwxReWpcpvwJGwmDnTBtZOnZLlTREcS5ZY327RIvyq0i+GDzfOsBMQv/jzT7NaP/RQ6Ns3We4774QJEywLnhfU1NRHlQvj6526ioVDuRisdcCSjQC4JlWZ66sPgN0SvaIyx+OP216XH2vme++NRnCffLI/V55evWzFHFZwT5hg/uV+VgkdO0YjuEeNsoG9FKit9WewVqr5+IwZ5hK4aFG48zRtatsifgT3s8+aW2BY9OvnT3B//z0cd5z1zTDo3Nl8tv0I7uOOi+Z9vvBC74IbrM3t2iUfYyLF0igX4T0DcPM1VQELgZ4Zx5uxtDBf4eHu+XpVs6n68yEthJEj/QmyceNs5R0WkybBtdd6V9urWgCNTz8Nz33hhXD22d7LP/OMueCE9TseMcK0K34Gyi5d7HrD4rrr4KCDvJd//XUTfn5Dm2Zj7lxzXfLTZ667zia0YTFypD/f9okT4amngqXJzYSqWXzPmuW9zrhxtmJPGmk60PJAuQjvH4GNwUzKgf8CZ4rI6iLSExgA+PA4LQwRuV1ExojI9yLyioisknHschGZICJjRWSPqDijht89sqlTTcUVxQDn16jnvvss1nYUvOCde8ECuPFG+E+xHHUeuf20eexYC/gRNs6330kawJw5tnoNi19/tXzPXhHVoF5TA3ff7W+CGJXB2jPPwPHH++OF8NyqlsTm3nv9cUfR5gcesFS31dXeeSEV3qVGuQjv14CtRcRdXV8P9AF+AX52/g4ZamMpfABsoKobAeOAywFEZD3MOG59YE/gAREpy4jYfgWZWy6KqEhBrJCjsn52z+eVN7NeWG6/bW7Vyrs9QiFe93xesHixfZYHVzE3PoBX7qjavHChTSC88rr1wqBRI5uolcLC3o3WWIr3KkVwlIXwVtUHVHUtVV3g/D8U2Bq4B7gT2F5VX4+Q731VdV/Pr4Aezt8HAM+r6iJV/QWYAGwRFW+UaGiCLCpe93xeeTPrheVeEds8b5737ZaqKrPDCLvqb9bMPl7bXFcXTVpOKP39XtH6WIrgKBdXsWWgqsOAJMy4TwL+z/m7OybMXfzm/LYURGQApspn9aTTDzno1g0uvhh69/ZWPsoXrm9ff3HVl4dBxh1YvQaIiarNLVrYqqxUbQbzZfZyvqgEqMvttc3z59fXiYIXjNuLm1/jxmYQWQqN1q67Wsz9KHjBO3e/fmZ70r590aIpYkTZCu+wEJEPgS45Dl2pqq85Za4EaoBn3Go5yi9ju6uqA4GBYK5ikVywT3Tq5M/XMqoQpeA/aURUgqxtW5s0eI1fHaUgO+44f0EpevQoXsYLROCyy2Dbbb2VX3llcwnccMPw3L16WZu9htQ96aTwsfNdtGnj3Wq9ZUszZizF1szf/mafKODXxzyq1L5BhHe/ftFwpwiOsvDzBhCR1YHTsP3tDiwrSCMNjyoixwOnA7uoarXz2+UO0S3O/+8B16pqXpOnUvl5q5pVbuPG3oTTiBHwxBMmCPwE3ogCX35pq8ettkqWV9VWZVGoclMkCz8hcKPE7Nnwyy+W/z3prFkvvmialn32SZZ33DjLRHfJJZYVrhhmzDCbgLChllM/75BQ1ZJ/gL0w97A6LDzqL7k+EfLtCfwEdMr6fX1gJNAcWBOYCDQudK5+/fppKVBXp9qkiepllyXP/fzzqhtuqDp3bvLcN9yg+swzyfNOnar68suqlZXJc8+bpzp7treyixerLlhg/SNpfP216siRyfNOmaJ6442qEycmz33DDarnn58878SJqp06qb70UvLcAwaodukS/jzAMC0D+dNQP2VhsAbcgsUv30JV22r8+bzvB1oDH4jICBH5N4Cq/gi8gAn2d4GzVNVHeIzk4DfednW1fTQCRUtlpQUt8WoN/NprMHp0eF6AQYO858j+7DPzdw7rgwvmbnbwwd59zPfZx/YFo8BOO8FRR3kr+/rrtmIcNSo877BhZt/w5Zfeyp99Nlx6aXheMPfCq6/2Vnb8eLjqKv+ZsXJhzhwLhTtunLfyn33m/f4Uw9SpFgDFC+bOtRVwlNoJr2NDmpSkPFAuwnsd4G41I7XYoaq9VXW1/2/vzMPkqqpF/1sJEMhABjCDZCITyGSYEVCJ8iIYryg3IFdUICCiXL0oiCK+B4qgAgoiFxlDBBkuMnMhyDyohACXDCSBzJChM5C5Ezrjen+sOrerq2s43XX2qerq9fu++rrqnNO19t51zl57WIOqjsy8zss6d6Wa5fs+qjoxjfK0lsgaOA5XXpnMnmAkF+IpRVULi3r33cnJjquM33gDrrsumeA0Ld0XfOON8oOVZMuOKzdJ2wYwJRY3n/j69cnJfeUVePDBeNcmaduwejWcd1782ABJKrJf/hJGj44vF5KRvX69bS1dd1182eXmTXfKp1qU90oggVQK7YuWdOpRJ5PESL0liqyhwUJ7VsIKOVJkSXQ0rbF0r0SdQ1ibe52Ly06yznFXs5Ksc5cuFhugEnV2Wk+1KO+7gX+tdCHaGq1R3knJjb4zjlxIdtbfkjp37lxe8oRsuRBvpWPbNhu0uCIrT3Yl69wSJZpknT/6KF6AmCSfq44d7Tlx5d22qBZXsQnAKBF5DAvMsgBottesqh+kXK6q5nvfs7jXcUjygevb1/Zh4+TUTjqgQ7du8fc2QwxY4nTqSde5JS5EGzaYZX2nTuXLben2SNJ+3vX18azOk2zvTp3smYrb3nvtBYMGlS8Xmg4QS+Wg32svs4NIKlteSwZLP/5xvGffCUu1KO93MX9qAYpFwa7KUKWV4pvfjH9tkopsxAh44YX4ciE52ffcE38mvWVLcjP+fv3gpZfgE58ofe327fC5z8HQocnIPumk+MF4Ro1KLu1qly5w4onxlJMqTJxo8bmTYI89LCNcQ0Npl60LLjAf8yQUSksNQZNIuBORPUAspbyPPdZeScqOW+fTTktOrtN6qsLPW0QuJ08wlFxU9RfhS9MyKpnPe+1aMyaK07HffbcF2xg3Lny5stm40XzM99nHOuO02bGj/PjiTvti7lyLHpZ2BLF582DyZEviU2qwG2dFoiVcdZVFbTzzzNLXvv02DBhQ/vPsft5lUmlftbb+qpSft6rqj36k2rlz+nK3bVMdNkz1979PX/bTT6t+61uqmzenL/uvf1X9+9/Tl1tfrzp7drw6r1ihunZt+DLlsmaN+RzX1aUv+y9/Ub3mmvTlfvih6jHHqD7+ePqyf/Qj1T590pe7ZYsqqP7yl+V/F+7nXdarTcxJRKSfiPy00uWoNrp3N9/tOAYuH3yQjL8z2LL10qXml1qK2bPhrrviu7TF/b5160pfe8klcPPNycgFW54dP770dS++aEvmU6cmI/fRR22rYuHC0teeemoy6VcjRo+Otz3z3nswdmzL0ngWY9o0+MpXYObM0tc+9JD5/yfFgw/G+77Vq23ZfO3aZORu3GhbM8uXl7527dpkDDEjtm+P1z9Ez1337snJdlpH1SpvEekoIl8VkSeA94ErK12maiPaz41jRHXggRbIIknZcRTo889bfuSkBg5RpxGnzvffn1wAjUh2nDqvWGHBXOIaE8aRC/Fkr1uXbMe6aZMN1OLIheRkb9hgwX0WL44nO8k633UX/OEP8eRCcrI/+MBsFl58MZ7sJOt89tlwwAHx5IIr72qg6pS3iHxCRK4FlgAPAqOwfN+nV7RgVUjcTn3HDusMk3zgunePp0CTftgrqcjiDliSrnNLBmlJ1znugKWWfudK1Tn6ndvTve20nqqwNheRrsBpwNlY/uzI8vwK4LeayfPtNCXuLDRKZVmph32nnZJL8hC3g1O1dkm6U1+9uvR1tabI4oQKrXSdhw9PRi5UTpG1pM7r18dLWdoS2evXlzbwdOVdPVRUeYvIp7F82mOBLsAU4IfAZOCfwDRX3IU55BC46abS2X1CPHCjR8fbc4uUSVKWsT17mhvNlhLx+DZutH28pBXZggWlr1u3zjrApEJIxu3UVSs/C03KNa8lqw319WHqrCUsujt3ttSYe+yRjNwuXeyZitPeJ5+cfJ0146tf7Dfcd1/LTrjffsnJdlpHxZS3iLwHDMNCo94KTFDV6ZlzCXnI1jaDB8N3v1v6uhDK+1e/indd0spk5EjL6V2KjRstgEVSHSvAb39rA4JSjBgBp5yS3ICld29L1FEqpeqOHXDNNXBYgs43Rx8dLzb86afDEUckG0lv8GDYddfS1y5dGs9oMy7du9vvvGlTcd/xE06wV1KIxJ/1J5UAJiJ7gFjsN+zXz3LbO5WnYn7eIrIDmAucq6ov5ZwbCswBxqrqwxUoXmwq6ee9dSu88475ZxbL0b1ihRlvjRmTXOCQuNTVmWVsnOAmjlMN1Nfbs9WjR/o5xf/2N/OhLjWz3bjRZv5JlW/KFDMQ/Pd/Lz7gff99MyI86qjyrd3dz7s8Kmmwdi3QFXheROaIyM9FJKFAg+2D1att6fyhh4pf17s3/OAHySruyy8vvVwPdk2SinvHDpvV3ntvct8Zl7ffht//PtlZXlxmzCi9ZP/RR+ZatXFjsrLNs7f4Nc8/by5tabN2rVlKJxnprGtX254ppRh/8xv4zGeSkwvwhS+UVtxbt1oZ465+xWHkSLjsstIrVXffbZHd4qxAOWGpmPJW1YuBAcDJwCzg/wHzROQFzHit8qHfqpy4xlsrV1rnv3VrsvKXLSv9EN95p80mkqJDB8vn/fbbxa+bPNn8hOfOTU72q6/ChReWbu8vftH2JJNk9OjSnfW0abD//uYrnBQPPGDxvku14403xs+/HZfzzoOflojusHKl+d7HsUWIy7x5JrfUd86da9cmyeuvlw49HGIbbNs2234oNfBbt862MnbZJTnZTuuoqKuYqm5X1cdU9cuYIr8U+DhmZS7AuSJykojE2Plqf+y6qyWhKGXU89e/mg/nqlXJyY5r6X755cnPkuO4qc2fb8uApQzbWioXSivvurrkZ+dx6hyiU991Vxv0lapz0rYNYFtCb7xRWi4kK3vZMrNvmDOntOyk6/yrX9kAsZRcSFb27NmW7OSJJ0rLdkvz6qBq/LxVdbmq/lZV9wU+C9wFHAM8DKwUkQcqWsAqRCSeNXCIhz2u8g7xsMcx6onOl0rw0BLiKm+vc3KyK3Fvx13RqlSdo2cuxPNciTo7raNqlHc2qvqqqp4J9APOA2bg+b7zErdT33nneJa7LZEbfXchduxI3tcaKjcLrbQiq/Y6J2VpHtGSAUutDEwrPRh35d12qIogLYVQ1XrgNuA2EflfsycR2R24HrhaVd+tVPmqgeuvL53TN2lfazB3qLPPLp79KMrHnPTDPnRo6Uxh69aZNWxS6TEh3oAlhK812Pd9UCKbfa116nEGLJHxViXqfMghxb08Wiu7lI95//5w6aXJkY1XtQAAHg1JREFUGqDG9TH/5S8tTatTeapaeWejqrOyPu4GnAH8BcsF3m75l38pfU2IjvWgg+D220vLheRl339/6Wu6dLF9/iQHLAccYAq0d+/C12zbBmedBUcemZxcMG+BUops9GhLxJJUcBiwtI/f/a4N1ooxaVKyKztgMvfdt/g1X/uavZKkWze7b0rF4//Tn5KVC/F8zIcNS9bSHOL7mB9xRLJyndZTFfm8W4qI9AHqgONVtYRtZlgq6ecN8O67ltP72GMLX/Pqq3bNV7+arGxVWxov5O+5fbtlSOrWrXR+YsepJhoakh+MxGHxYsvWd+ihhRPbrF8PmzfbwCrJwenNN9uA6XOfK3zNk0/C3nsnE2HN/bzLoyr3vJ34/PrX8PWvF7/m059OXnGvWGH76LfcUviajh0tgEzSivv2280fNm1U4corzae5EDt2xItI1lIWL4ZnninumjdrllloJ822bTYTLMSGDRbZbcaM5GWX4vbb4Zxzkv/eUop761azzk569t2/v63aFMtId8MNtvqTtOvneecVV9wAp50Gt92WrFyndbjybuP06lU6XOikScn6O0Pj8l4x2TNnmqvYsmXJyl661BRZsc7re9+Diy9OVq6IKe+nnip8zeTJNqh55plkZT/yiA1YiiVG+dnPSg/kWsPee8P3v1/4fF2dtfWUKcnKffZZ256ZP7/wNa+9Bk8/naxcgKuvLp4WdN265MOygq1U3Xln8TSsoXytlyyxvOyF2L49+TjyTutx5d3G6dmzMZxjIU491ZROknTqZMZgxZT3lCnwi19YFKwk6dXL/hb73n/+s3hHVI7sYnVet85m3sViYrdWLpSWHaJj7dGj+KAhlG3Dtm0wfbqt8hRi7dowdX7ySRswFZMLybrlgQ1Uxo2DqVOLy47uhyQ5/3zrK4rJhTCynZbTrpW3iFwkIioie2Y+i4jcICJzRWSaiBxS6TKWIk6nHqqD69WreKceqoOLUiEWk71mTbIpEyNKKe/oXNIdXPR9xeq8enWYjrVUnaMyJS07+v1KyQ5R5549S7c11N7vHKfOIZ4rp+W0W+UtIgOA/wNkO+CcCAzPvM4FAtiTJksp5b11q+1JJpldK6Jnz8p06nEGLLXWqVdSkcXt1CulyELc25UasFTy3q7U7+y0jjbjKhaA64CLgceyjp0E3KVmgj9JRHqISD9VratICWMwapTFDt9rr/znQz5w48YVD8yxerW5LSW9N9evn/nYFvL13rLFthJCdXDF4lmHmp1UekZWLExpJZV3jx4wKEA6o1KKrFcvGDu28HPXWuKsKsVJA9xa2Zs2Fba0328/81zxXN7VQVtV3luAl4EYmZ2bIyJfBpao6lRp6muxF7Ao6/PizLEmyltEzsVm5gwcOLA1RUiMfv2KZ/eKOoEQs5MLLih+PpQyGTkS3nqr8PlNmyxl4ZAhycu++27b7y/EYYfBj36U/IBlwADbhz344PznVeG++8IospNOgn32KXz+nHPsmj33TFZujx5w3HHF/epffjlZmRF77mm/85Yt+X/LI46wnAFJs9NONiAupryL7UuXQ/asP1+f0q1bcZdUJ12qws9bRMYDy4DLVbVZKgkROQrL+z2uBd/5HNA3z6lLgZ8Bo1V1nYgsBA5T1Q9F5Eng16r698x3PA9crKoFVUWl/bw3bYKJE+GTn7TgDbmsX2+j5YMPNretJIkSVhTqtHfssBlw0mEzHaeWmTnTBiyFnqvp082lLOnVndmzLavZV76S371z6lST/bWvmUdFubifd3lUy573mcBPgBci47EchmIR1WKjqser6gG5L2A+sDcwNaO4+wP/IyJ9sZn2gKyv6Q8UcdqoPBs32vLdxIn5z+++O4wZk7ziBrjkkuIzvQ4dwijuHTts5nPjjcl/dyleftmscjdvzn9+7dpkM5ll89RT1rkWkvvkkxaMJ2m2bDE/80IeDffeW5nfYuXKxm2jtLnwwjCrHGDL0oUUd0ODuc+FiO42YgR885uF4zI89pidTzIwjNN6qkV5A/wXMBJ4XURKBEVsPao6XVV7q+pgVR2MKexDVHUZ8DjwrYzV+VHAumre74ZGS+5CBi7z5lmavxDxiHv1atwjy8dllyWfDhRsUPDuu4V91597zlYiQriKzZwJN91UeFlzzBg48cTk5YL5rv/nf+Y/98478KUvlc5z3hoeecSW7QulyLz3XsupHYKvfhW+8Y3851autNzlpUJ6toZZs2x5evr0/Oc//DCcEnviCZgwIf+5UN4MAB99BH//e+G4DKtX22C8WAAZJz2qSXn/N5YKdDfgNRE5vgJleAqbmc/FEqJ8rwJlaBE772wj5ULK5PHH4ctfDqO8S1lA33wzvPJK8nKhuDXw4sUwbVoyS3v55ELh9g5l/RzJLiY3uiaE3GwZuaxZE84CecMGWLAg/7mQrkubNtmedjHZoep8112WT7yQXAgje9kyi8ZYKOhNyDo7LaealDeZveUjMfetpzKGYaFlDlbVDzPvVVXPV9WhqnqgqlZuM7sFFHPZWrUq3PJ1MbcW1bAPezGXrZBGeqVceULXuZhcCOcely0jn+xQda7WAUst17kS97bTcqpKeQOo6iLgGOA54E8i8juqsJzVRLFZaPTAlUqh2RqKder19RYhq1IdXMeOYQYsxeocesDSHjv1Sg9YKlHn6HfOZ0scss7dulk/UYkBi9NyqnL3QlXrReRLwA3AD8lx1XKa8uc/Fw7HGfKB23dfS03Yv39+uRBO9qc+VbyT6dkzzJ5kr142MNi4sfm5NAYsxZRJqAFLsVmoathl82xFlvt7du4MBx4YRvbuuxdXZGPHWsz3EPTqZffRxo3N07uOHAl33BHGDbJDh+IrWvffn3wyFKf1VKXyBlDVHcC/i8hc4NpKl6eaOeigwudCKu+BA+HSS/OfW7/e/GRDyS6Wz3jo0HBZx/be2zqwfAMDEbjqKvjMZ8LIvvhiM1rLx7e/DZ//fJgBy+67W9awfPUSsf3hpBN0RBx6KJxyirV5rr/1qaeG83nu0MEGp4X89a+4IoxcaDpYylXegwZZcKSQsgsp7wqHtHByqAo/71KIyP7AnqoaKCRD66m0nzeY+9A778DZZzc/9+67Zqw2cmTyclVh0SKbAeVzbYluLXctcWqJHTvMfS5Uvu/6erP83mOP5ttdc+aYdf1hgbyjn3vO5OYGA1KFa6+1oDmHH56MLPfzLo82sZesqjOqUXFXC48+arl48+WR3nffMIob7IEeMgSuvz7/eZFwinv8eAtNuWFDmO8vxg9/CLfe2vz4hg3w/vvhlhbnzzcL/nzZ1J56Cl58MYxcgA8+yO+at2CBrQbMnBlONuTf/73wQssvnTaLFsFuu1nqzhB07Qof+1h+O5Xrrgvnighw/PH5o/jV19vKT6iIdk7LaRPK2ylOnz62bJlvP3T8+OTzLEd06GCdzPLlzc89/TSceWY45dqxo+U8zpcu8vDD4cc/DiMXLChIvnzdEyfC4MEWqSoE77xjca3zKdH/+39tZhSK006D73yn+fH58y1gSIjgMGAx1bt2tRlhLtOmwcKFYeSCpdE966zmx1etsr9JZ8uLWLPGfs98C3qrVoU1Gps1y/zMc4l+XzdYqx5cedcAffrY31xFtnWrLaU//nhY2fmU95tvmiFdCF/rSC7kDyjx7rthDWsK1Tnq4EL5eUd1zid75crkY4tn07dvfrnRPVcs/ng5dO9uhluFZEdtEoL58/MP0qI6h5K9fbvZdLz2WvNzy5eHrfMdd9hALXelI2r/kLKdluHKuwYo1KlHn/vmi/CeoOx8Hevy5TYzCbUvWKjOGzfaEl8l6rxsWeNqRCi5kZxsVO1YsQQ1ScjON1CKjoVq7+h7C8lO43fO3Y4KXefIoyFfnZcvD1/nTZvsGcomdJ2dluPKuwYopMjSeOAKKbK6uvByoXCdQyuyQsq7d2/reEPJheay16yxlYbQ7b1qVfMVjWXLzKuge/cwcrt1swFgbp23bbPVhpB17tvXZsG51tehn6sOHYoPlkLXOZKTTRoTAadlVK2rmBOf4cNtnzXX37ou4x0f8oEbNw5OOKH58dAzwY99DE4+ubn7Shp1HjjQVhVy00WGHrDstpu5beV2rGkM0qLvXrmyaZKbjz6y+y6UYaJIfkW2aZO5Ax54YBi50HSlI3tL4sgjLSlP585hZecbIN5/f9jnKvqdly+3fiVi3DiLne/Ku3pw5V0D7LJL0wctIlJkIR/2447Lf7xTp3BBLMD20h96qPnxbt1sz27o0HCyL7zQXrmcf37z5cakeeut5svyQ4eaMVuIzHERxx8P99zTPOPUDTfAH/4QTi6Y4thrr6bHdt+9cCa9pBg0CA45pLkP+6hR9gpJ3775jQBDxS/IlgvNB0s779z8N3AqS5vw865mqsHPG+C22yw60tixjcfq6811aZ99wmUCWr8eZsyAAw4onEowJPkibzlOSJYssW2C3AAqSdLQYAPg7Ht7+XIzYvvsZ8MkYwFbSXnrLdh//6Yybr/dnrVvfzs5We7nXR6+510j3HSTWXdn07WrPYQhU/hNmgRHHw1Tp4aTUYiTT24e9Wv79vByFy40X9tsn1dV+Mc/wrlMRUycaL6+2fzjH5ZPO1SUM7C97ldeae6adfrpcPfd4eSCte369U2P3XOPueUtXRpWdj4+//mwUc7A9vlzB6WTJlmK1Pnzw8ndbTc49tjmg4Px4+G//iucXKfluPKuEfLtkd1zj+2RhZYLTWUvXGjLrP/4R1jZu+7auDUQce65FpgmJB07mh97dr7wVaus0wuRvzybJ59sHprz0UfhoovCGcqB7e9/9rNN76dt2+C++yxnfEh+8QuzMcgenCxaZKtKoXytIz79afjNb5oeC200BvbsnHVW01zlaRmNPfJIcxe50FbuTstx5V0j5FPeN95ofpuh5UJT2R98AM8/b0twoWXnM94qlKQlKSKf5uw6p+VK06ePWZdv3txUdr9+YbcPunSxlZzsOq9YYbPi0HXu3dvkZK9qLFtm+94hjcbA7uVZsxo/f/SRKdTQdV60CCZMsCX6iOgeC+VTH3HFFfDHPzZ+jlwR3ce7unDlXSNEyjvbhKGuLqyxGpgVrkh+RRZadp8+5tedneErtMU32F5kz56VU97QNCBPGjPBSHYl65wrO606Zw8Q0wpWks9wLLJ6DxX4KCK3zvX1Zt3vM+/qwpV3jfDxj9tsLPJJjUbLoR+4nXaymcDixY3H0nDXgsbBQfa+Z2gXtYi+fZsu2ac1YInaNFd2Gh1r377NlUl2mULKhfZV53wBeSpV5xUrzPfclXd14a5iNcI559h+b7SMuHatKfM0FNkdd8CAAY2f6+psdhDKIjbisMPgBz+wmTCYsVrokJkRRx3VNHFENIAI3cFFeZzffx+OOMLe19XZfntoBg+GV19t/KxqPt6h77FBg+zvggWNx0aNCmuImS375ZcbvRoGDbJEPCH9y6HxeXr//cZj11zTdA88FP372/0cxTEYOtTe50t85FQOV941Qq7bSvTQRx1fSMaMafp5993N0CdfVqQk2X//pj7GDQ1muBXaBxfM+jabsWOtww3tLrfvvra6kj0wWrAgvH0BWLKX7HziY8bY3mxoPv5x+NnPzOc64rLLwssF86RYssTat3NnG6j8x3+El9u1qw3UshP7hIxdkM2IEaaoFywwN1MwY8iQBpFOy3E/7zKpFj9vVfjJT+DQQ+FrX7Nja9fayDm0Uc+SJTYjO+kkczVJky1bbDYSKp64U31s3Wqz4DRm3rlMm2aD08GDw8vKjmGwerW55J10UnjZ69ZZ3zFggA3Ab7nFPAquvjpZOe7nXR6+510jiMADD8B//3fjsR49wituMMX9b/+WP1VlaD71KTjjDHu/cmX4CGcRU6bYzD9yh0vDZSpiwgT4+c/t/fPPw09/2tRoLxSbNpkrXGR9PWZM8h16IerrLRgQmLtc586mSNMimuN85zuWqS8Nsr0Hpk+HCy4Il242m+7dbcUuWjl77DF49tnwcp2W4cq7hhg2rFGBXnttU3eP0HLBZM+bZ8t7aT3sQ4Y01vnSSxv3hEPTvTvMnGmKbNUq+PrXzd86DSZNshzaYP64113XuO8fkq1bLSjLE0/Y+2eeSWcPFuCqq2DkSPP1fu89k5/W7HfIEFu2VzXZI0aElwvWvqNGmWtgpLTTkn3LLY3Bd2bPTk+uEx9X3jXEsGEwZ469v/NOm5WlJRdM9qxZFgEqZOjIbIYPt725bdssj3foAC0RAweaUd7cuY3BWtKSPXy4LaOuXm11HjYsnSXk7t1te2LOHPuNt21Lr84jRpi8hQutvfv2teXr0IjYwGj2bPMzX7OmcR84NA0N8NJLJnv2bAtKlJuIJxR33WWGqFu2NN37dqoHV941xLBhNgtcscI62E98Ih25PXqY/+ns2Y1LqmkqsqhTnzUrPbkdO9qMbPbsyihvsN/4vffSkxvJnjPHBg2QXqeeW+c0lUmUtS/6ndOahUZyojoPHx7eCDRin32szvPnm/Gaz7yrj3arvEXk+yLynojMEJGrs45fIiJzM+cC5/BJlqOPhj32aFzWTLNTP+ooeOEFePtt8/sO7SYWEblL3XqrzYzSrPPhh8OLL9q+9y67pLOMC7Z8DBZret68dOt88MEweXLjtkhaSnS//Wx14fHHLYNamnU+6CAbGD72mH1Oa1A8ZIgZgL70kg1O05ILZs9RV2d2BX36WPs7VYaqtrsXMAp4DuiU+dw783c/YCrQCdgbmAd0LPZdhx56qFYLO3aobt6sevrpqrvtprpkSXqyZ89WnTxZdaedVM87Lz25qqrXX6/6pS+pduyoOnduenJffln1G9+wOn/96+nJVVU98UTVAw5Q7dVLddq09OS++aYqqB53nOqZZ6YnV1X1lFNUd91V9YorVCdNSk/unDlW54suUr3vvvTkqqp++9v2LC9apLpwYXpyly5V3Xln1e9/X7WhwfqWpAHe1CrQB2311S5dxUTkAeBWVX0u5/glAKr668znvwGXq+prhb6rWlzFIrZvN+vrQYPgyivTlb1smSWR+PnP08/9u3y5BdM49dR05YLtPTc0hM2nncv27bZ039Bge6FpsnBheqsM2cyYYYGHsv290+K3v7Xc9Ucema7c6dPtebruuvSMMSPOOMM8DB54IEzcfHcVK4/2qrynAI8BJwANwEWq+oaI3AhMUtW/ZK67A5ioqg/m/P+5wLkAAwcOPPT97DBIVYJ6nmvHccpg27awhpCuvMujZiOsichzQL5glZdi9e4JHAUcDjwgIkOAfOqu2ehGVW8FbgWbeSdV5iRxxe04TjlUIgiOE5+a/XlU9fhC50Tku8DDmX2XySKyA9gTWAxkRemmP7A0z1c4juM4TsVor9bmjwKfAxCREcAuwIfA48BpItJJRPYGhgOTK1ZKx3Ecx8lDzc68SzAeGC8i7wBbgDMys/AZGWO2mcA24HxV3V7BcjqO4zhOM9ql8lbVLcA3Cpy7EkjZTttxHMdx4tNel80dx3Ecp83iyttxHMdx2hiuvB3HcRynjeHK23Ecx3HaGO0ywlqSiMhKoLUh1vbEXNQcw9ujOd4mzfE2aUpbbY9BqvqxSheireLKu4KIyJseHrARb4/meJs0x9ukKd4e7RNfNnccx3GcNoYrb8dxHMdpY7jyriy3VroAVYa3R3O8TZrjbdIUb492iO95O47jOE4bw2fejuM4jtPGcOXtOI7jOG0MV94JIyIDRORFEZklIjNE5D/yXCMicoOIzBWRaSJySNa5M0RkTuZ1RrqlD0MCbbJdRKZkXo+nW/owxGyTfUXkNRHZLCIX5Zw7QUTey7TXT9MreRgSaI+FIjI9c4+8mV7JwxGzTU7PPC/TROSfIvLJrHM1dY84OaiqvxJ8Af2AQzLvuwGzgf1yrvkiMBEQ4Cjg9czxXsD8zN+emfc9K12nSrZJ5lx9petQoTbpDRyOZbm7KOt4R2AeMATLRT8193/b2quc9sicWwjsWel6VKBNjo76CODErL6k5u4RfzV9+cw7YVS1TlX/J/N+AzAL2CvnspOAu9SYBPQQkX7AF4BnVXW1qq4BngVOSLH4QSizTWqSOG2iqitU9Q1ga86/HwHMVdX5ault78far81SZnvUJDHb5J+ZvgJgEtA/877m7hGnKa68AyIig4GDgddzTu0FLMr6vDhzrNDxmqEVbQKwq4i8KSKTROQrwQuZMkXapBA1fZ+0oj0AFHhGRN4SkXNDlKuSxGyTs7HVK6jxe8SBnSpdgFpFRLoCDwEXqOr63NN5/kWLHK8JWtkmAANVdamIDAFeEJHpqjovZFnTokSbFPy3PMdq4j5pZXsAHJO5R3oDz4rIu6r6SphSpkucNhGRUZjyPjY6lOeymrhHHMNn3gEQkZ2xh+0eVX04zyWLgQFZn/sDS4scb/OU0SaoavR3PvASNgNp88Rok0LU5H1SRntk3yMrgEewZeM2T5w2EZGDgNuBk1R1VeZwTd4jTiOuvBNGRAS4A5ilqr8vcNnjwLcyFtZHAetUtQ74GzBaRHqKSE9gdOZYm6acNsm0RafM9+wJHAPMTKXgAYnZJoV4AxguInuLyC7AaVj7tVnKaQ8R6SIi3aL32HPzTvKlTJc4bSIiA4GHgW+q6uysUzV3jzhN8QhrCSMixwKvAtOBHZnDPwMGAqjqzZmH8kbMGG0TcJaqvpn5/3GZ6wGuVNU7Uyx+EMppExE5Grgl838dgOtV9Y6Uq5A4MdukL/AmsHvmmnrMYni9iHwRuB6zKh6vqlemXIVEKac9sJSYj2T+Zyfg3rbeHhC7TW4H/pXGtMTbNJNhrNbuEacprrwdx3Ecp43hy+aO4ziO08Zw5e04juM4bQxX3o7jOI7TxnDl7TiO4zhtDFfejuM4jtPGcOXtOAERkeNEREXkzEqXxXGc2sGVt+OUiYiMFJHLM/GnHcdxguOxzR2nfEYCl2GhWxfmnHsF2I12kgnLcZx0cOXtOAFR1R1AQ6XL4ThObeHL5o5TBiJyORCFsH0xs7+tIjIhc77Znnf2MRH5noi8JyINIjJdRMZkrjlQRJ4WkfUiskpEbsgkqciVP1xE7haROhHZIiILReSaTIzv1tZpcKZ8l4vIqSIyRUQ+EpG5InJW5pqBIvKgiKwWkQ0i8pcovnjW9wwQkfEi8r6IbBaRFSLyTxE5o7VlcxzH8Jm345THw0A/4FzgKmBW5niclKXnAz2xjFANwA+AR0XkFOA24D7gUSzRxveBFcCvon8WkUOBF4C1WPz3JcAnM99zjIh8VlXLWa7/EnAecBOwGks5OV5EtmTq+gIWa/twYFymDudkyrYT8CyWQ/omYDbQHTgI+DTw5zLK5TjtHo9t7jhlkplV3wmMUtWXcs4dB7yIJVqZkHNsKZZoZF3m+EHAVCzv8tjsFJAi8hbwcVXtl3VsKtAJOFxVN2Qd/yo2qPhfmS2sz2BgAZYgZj9VfT9z/GPAImAX4KLsTFci8jCm7Hupan1WXX6iqle3tAyO4xTHl80dp3JMiBQ3gKpOA9YDS/Pkbv470FdEuoItq2Oz2HuBTiKyZ/TKXLsRm7GXw6OR4s6UbyXwHpbh6j9zrn0V2BkYnPkc1WuUiPQusxyO4+TgyttxKsf8PMfWYLPefMcB9sj8/UTm7y+AlTmvFUAXoE+g8tWp6uZi5cso/SuxAUSdiLwlIleLyOFllslxHHzP23EqyfYWHgeQnL+/A54ucO2aAsfjUk75UNWfi8h4YAy2z30O8GMRuVpVf1Jm2RynXePK23HKpxKGI3Myf7er6nMVkB8LVZ0P/BH4o4jsCvwNuFhEfqeqKypbOsdpu/iyueOUT33mb68UZb4NvAOcJyJDck+KyE4ikmZ5cuV3z3VtU9UGGq3xe6ZfKsepHXzm7Tjl8wZmxHWpiPTEjMUWqOrroQSqqorINzF3rWmZ5ekZQGdgGHAycAkwAZpYkL+sqseFKlcWo4BbReQhzMitHjgUWzp/XVXfS6EMjlOzuPJ2nDJR1Q9EZBzwE+BPmNX1n4Fgyjsjd4qIHIwp6S9jPtkbsBCtE4Dnsy6PAqgsCVmmLKZi7mrHAacDHYEPMP/w36VUBsepWdzP23HaASLyA0xp7q+qsytdHsdxysP3vB2nffAF4GZX3I5TG/jM23Ecx3HaGD7zdhzHcZw2hitvx3Ecx2ljuPJ2HMdxnDaGK2/HcRzHaWO48nYcx3GcNoYrb8dxHMdpY7jydhzHcZw2xv8HSpbL7eJ69fQAAAAASUVORK5CYII=\n", "text/plain": [ "<Figure size 432x288 with 1 Axes>" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "k = 10.\n", "fo = 45000\n", "wo = 2.0*numpy.pi*fo\n", "Q = 25.\n", "\n", "period = 1./fo\n", "m = k/(wo**2)\n", "Ao = 60.e-9\n", "Fd = k*Ao/Q\n", "\n", "spp = 28. # time steps per period \n", "dt = period/spp #Intentionally chosen to be quite big\n", "#you can decrease dt by increasing the number of steps per period\n", "\n", "simultime = 100.*period\n", "N = int(simultime/dt)\n", "\n", "#Analytical solution\n", "\n", "time_an = numpy.linspace(0,simultime,N) #time array for the analytical solution\n", "z_an = numpy.zeros(N) #position array for the analytical solution\n", "\n", "#Driving force amplitude this gives us 60nm of amp response (A_target*k/Q)\n", "Fo_an = 24.0e-9 \n", "\n", "A_an = Fo_an*Q/k #when driven at resonance A is simply Fo*Q/k\n", "phi = numpy.pi/2 #when driven at resonance the phase is pi/2\n", "\n", "z_an[:] = A_an*numpy.cos(wo*time_an[:] - phi) #this gets the analytical solution\n", "\n", "#slicing the array to include only steady state (only the last 10 periods)\n", "z_an_steady = z_an[int(90.*period/dt):]\n", "time_an_steady = time_an[int(90.*period/dt):]\n", "\n", "plt.title('Plot 1 Analytical Steady State Solution of Eq 1', fontsize=20)\n", "plt.xlabel('time, ms', fontsize=18)\n", "plt.ylabel('z_Analytical, nm', fontsize=18)\n", "plt.plot(time_an_steady*1e3, z_an_steady*1e9, 'b--')\n" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "### Approximating through Euler's method" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "If we perform a Taylor series expansion of $z_{n+1}$ around $z_{n}$ we get:\n", "\n", "$$z_{n+1} = z_{n} + \\Delta t\\frac{dz}{dt}\\big|_n + {\\mathcal O}(\\Delta t^2)$$\n", "\n", "The Euler formula neglects terms in the order of two or higher, ending up as:\n", "\n", "$$\\begin{equation}\n", "z_{n+1} = z_{n} + \\Delta t\\frac{dz}{dt}\\big|_n\n", "\\end{equation}$$\n", "\n", "It can be easily seen that the truncation error of the Euler algorithm is in the order of ${\\mathcal O}(\\Delta t^2)$.\n", "\n", "\n", "\n", "\n" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "This is a second order ODE, but we can convert it to a system of two coupled 1st order differential equations. To do it we will define $\\frac{dz}{dt} = v$. Then equation (1) will be decomposed as:\n", "$$\\begin{equation}\n", "\\frac{dz}{dt} = v\n", "\\end{equation}$$\n", "\n", "$$\\begin{equation}\n", "\\frac{dv}{dt} = -kz-\\frac{m\\omega_0}{Q}+F_o\\cos(\\omega t)\n", "\\end{equation}$$" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "These coupled equations will be used during Euler's aproximation and also during our integration using Runge Kutta 4 method." ] }, { "cell_type": "code", "execution_count": 5, "metadata": {}, "outputs": [ { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAbIAAAEjCAYAAABXSYT6AAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMi4yLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvhp/UCwAAIABJREFUeJzt3XmcHHWd//HXe65AIIQr3EcQUUFBkIgHqwRBREVQPBbvKIj3se6urvJbhfXYdV3xWq+sR7zWC1EREBcWAl6g4ZLLlSsgiBJIIAlHkpn5/P74VvfUNNUz3ZOeqe7U+/l4zKN7qqqrvl1dXZ/+fr+f+pYiAjMzs17VV3YBzMzMNoYDmZmZ9TQHMjMz62kOZGZm1tMcyMzMrKc5kJmZWU+b1kAmab6kkLRkOrdTBZIWZvvy1LLLYlMnabmk5WWXox2STs2OvYVll2VjSNpK0meyz2A4e08Hll2ubtDrn3HbgSx7s/m/EUn3SLpQ0iuno5CSFmXbWtTm67aTdJKkH0m6SdJDku6X9EtJJ0rqSCDPHQQT/S3txLbMOm2q368e9O/A24FrgH8FTgP+MtELJC1t4bt96vQXfeN082cs6dmSPiHpfyWtzMr5y3bWMbAR2z8texwEHgu8EDhc0sER8e6NWG8nvRT4AnAXcBFwO7AjcDzwZeC5kl4anbsq/GJgaZN5yzu0DettR5RdgCn4T+C7pO9PLzsG+GNEvGAKr/06zb/DS6daoC5S5mf8VuA44GHgJmCbdlcw5UAWEafm/5d0BHA+8C5Jn4mI5VNddwf9ETgWOCciRmsTJb0f+C3wYlJQ+2GHtre0cb+Y5UXEzWWXoV0RcQ9wT9nl6IBdgEum+NolEbG0g2XpKiV/xh8DTgH+AOwO3Nr2GiKirT8g0ssK512fzX9p9v/87P8lBcvuDHyO9CtnPbACOBM4uGG5pbVtFvzNb7f8ufW+P1vHZ6e6jty6Ts3WdWqLyzfdL/n33DBtYbNtANuSmkpuAB4C7gf+FziqYNlF2XoWAUdn27o/vz3gGcBPgTuAdaTml0uBD7b4/oaAtwHnArdl61gJXAA8t8lrlmd/c0m/Du8k/UK7HngHoGb7EHgc8ONsGw8Av5zqe8+WOwI4L1vfw6QfRP8GzG1Y7vhsfZcCgw3zngA8CPwZ2KHxfU5QrmcDvwDWkr4TXwO2zpY7CDgbWJXNP4uC7wBwMPBp4Orce7gR+ASwTbvfL8aO74UF22ppXzVsa4D0/bsxOzb+RDqZDbX5vdvYc8jSFrZRe+0j3vskx/8/Azdn7+9W4MPArKLtko7hwvMZTb73m+pnzNj3+pftHAsb07RYRNnjhE11kvYinWx2AS4EvkOKxC8Fni/pxRFxdrb4EuA+UtXzJ8BVuVXdtxFl3ZA9Dm/EOkonaU/SwTOfdAI8D9iC1IxynqQ3RsR/Fbz0JaST+c+AL2avR9LRwDnAatKJ8k5SoNwXeAtjTcoT2Zb0Jfs1qZa+gnTSeQFwrqQ3RMSXC143RAp2W5OaOYZIteZPk5qv31rwmr2A3wDXAl/KtvO3wM8kvSIivtfqe8/e/xtJzdEPAD8A7iadTN4LvEDSoRFxH0BEnCnpc1m5PgK8J1vHbOB7pBPXqyLi7gn31phjSZ/b2Vm5nk4KbntJ+ifSj5NfAF8B9iftz70l7R+5FgfgDcCLSE3dFwD9wJOAd5Oa058SEWuyZZcwxe9XO/uqwX+Tfiz9jHScPY+073YAXjfRNnPbbvccshT4IOmH1ZJs+vJWttUOSQK+T9qfN5N+lA0Bryd9Zp2yyX/GbWkn6mURs7BGBhwJjGZ/ezZE1yUNy/48m35Kw/SnkwLLvcCWuemLsuUXtVveJu9hgNThG8BzOrC+U7N1Lc2eF/09teBXx5Im61vauI9p/stsabbPT2iYvjXpgH0I2LFgX44CRxds+4fZ/CcWzNu+xf0xC9itYPpcUsBZCWzeMG95tt1fArNy07clnRACeGbBPgzg4w3rWkD6obIK2KqN974n6dfjauBxDfM+n712ccF7vSK/TlItKoDTCraxnOY1smHgsNz0PtIPgcj22SsbXveVbN5xBe+jv2DbJ2bLv7fJ9gu/XxT8Wp/ivlqaTb8c2DY3fQtS38gIsFOLx1hb55BsXku1sCZlXkLz7/ZOueVfkS3/G2CzJsfx0oZtLKH9Gtkm+RkzxRpZyws2HAyR+xA/ApyRHTwBnF5QqCW5abtl026joTkmm//NbP5rWv0QpvAe/iNb3zkdWl/tIJjo710T7Zeig2GyAxp4YjbtB03Wc1w2/y0F+/JHTV5TC2SP6cS+KVj/u2kIStn05dn0ZxS8plbmrxXsw/uAOQWvWZLNf20b7/2UbP5HC+ZtQ/pCP0Qu0Gbz9gHWkH6t/kO2jospPtEsp3kg+2bB8q/J5l1SMO+wbN4HW9z3IjWlXthk+4XfL4pPcm3vK8ZOckcWvOa0bN4xLbyPts8h2fSNCWQT/R2YW772w+PwCY7jpQ3Ta8fq/ILXLKQgkG2qnzFTDGQbk37+wezvfcCzSE0er47JMxYPyh5/EREbCuZf2LBcR0l6B/D3pI7FV3d49adFhJr8farD2wJ4WvY4N7sEYNwfcFQ2f9+C1/62yTq/nT1eJumLkv5W0m7tFkzS4yUtkXRLdtlDSApSGz7ArgUvGyY1RzZamj0WHRNXxFgTSquvafben5Q9Xtg4IyJWAVcCm5H65PLzbgTeCMwDPk7qNH9FRIw02U4zywqm/Tl7vLxg3p3Z47jPR9KgpLdll5mszC6RCVKtcSuK9327prSvMkXv80/ZYysZa2WcQw6f4Ludb6p7Emk/F6WPL+1UYSrwGbdlY7IWNflSheZmj3c1mV+bvvUU19+UpLeS+luuB46IiJWd3sYM2y57fHb218yWBdMKr5+J1O9zDCnYv550gkbS5cD7IuL8yQol6amkg3+A1K9zFunX2yhwIKmmOKvgpfc0OfnXyjq3YN5fmxRjotc0u3ZoY47N80nvcStSDfnOgmUmc3/BtOEW5g02TP8eqf/kFlKfyF9ITUQA76J437dryvsqivtUau+lfzq3PQPmAiubBNgJr1lr06b+Gbel08kerah9IXdqMn/nhuXaIumrpA7zuyPiCbnp7wI+SeqjOSIi7pb0buAk0g5eAbw+Im7Llh8h9aMB3B4Rx06lPE3UOuab7f9Wv4C1ffTOiPhMm2WIpjMizgHOkbQF8BTS/nwzcLakgyLi+knW/f+AzUm/YpfmZ0h6HymQFdleUn9BMKsdK0XHxI5N1jXRa5q99/yxeV3B/MJjM+vg/wYpiN0DnCzpuxEx1VTvKZO0gHSCuwB4Xv6Emg0A8J4ObWpK+2oatl1kOrc9mfuBbSUNFgSzZuWd6HzwiHNBRT7jtpQx1uKV2ePfSCr64A7PHq/ITaud2FqJ5EtIGWl1kt5LCmJXkU6utSyyK4EFEXEAqZ/v33MveygiDsz+OhnEICUhQMqyGkfSVsBjWlzPpdnjMzpRqEYR8UBEXJg1F3+UlH313BZe+mjSr9KlBfMOm+B1A6TO+kYLs8crC+Y9SdKcNl/TTG3ZhY0zJG1Nqk0+TLrMIe8fScfct0nN7BuA/5a0fRvb7pRHZ49nFZxIDyH9wGjUzverZqr7qhOmcg6ZKVeQzqt/UzBvYZPXND0fkBKXGlXhM27LjAeyiLiD1Awzn1QFrpP0FFLWzyrgR7lZ92aPe7Sw/ktIGV61df4z6ZqH1aSO0B9Jely27EUR8WC26KU09DVMl6xP5w/AoZL2y5W1Hzid4gOxaD3LSH2Tx0t6fdEykvaXtEOrZZN0hKSi7ddqPg8WzGu0nPSr9ICGdZ8IPGeS1/6rpHqziKRtSTU8SNmAjeYCH2jYzgLglaRfij8qeE0z3yIFobdLenTDvA+RalzfiohaE07tmP0wKSPrzRFxDfB3pD6KJVltbSYtzx4X5idmx8Dnmrym5e9XTtv7qlOmeA6ZKbVj9COSNsuVK38cN6r12b4hP1HS/sA7C5Zfnj0ubFh+k/mM21VG0yLAm4BfAR+XdBSpY7B2Dcgo8LqGDvzfkE6g78oOiFq/yGcjomm1VtJrgX8hNSWdScpy2pV0jdHXs8WWR8QSUtrqz3Iv30zSMlKz479FxI9beF8L1XzctfsaEj4+Tkqf/pWkH5B+2RxO6u+4mpSR2IpXkPqjvpIlslxGyuTbDTiAdGHu00gZda34BDBfaWzI5aQLTQ8m1TRuI13fNZlPkQLWLyV9nxRQFpB+pZ5Buo6ryF2ktv1rJZ1F2hcvITVhfL5JU90lwEnZCexXjF1H1ge8MSJWt1BeACJiedYE/TngiqzsK0i1yKeRfny8t7Z89qv0u6Tj64TaMRsRX8xGunkJKUvzE8yc35H2w/GSfk1KOtiRVJP+P8aSR/La/n61u6+mQbvnkI21SM0H1L0qd374Dun4O5Z0HP+EseP4d8DeBa//CenC4ZdniVWXkQJO7bqvlzUsv0l9xpL+htTFA2P9+fsoN9h8RCyacCXtpDjGWAprtLjsfJqkmZMCyhdIJ8f1pL6FHwNPbrKuo0kfxtpaGWgyske23WtpLS1+KfAqUo0sn0a6S/b4KNIJfe8J3mcr21le8LoTSW3PtdEzvkRK4FjauI+ZeGSPOaSr6C/P9s9DpNEEzgFOBrbILbuIidNwX0b6Mt6YrWt1ti8/Asxr4zg5Jtuna0iB9X+AZzbbPuNH9vgcKSNvHanZYrKRPfYlfeFXkb6sv6Lg+sDJ3ntuuaOy8q7KynATqdl564blapcq/F3BOuaSOuLXA4c0vs9WyzXJ517fBw3TtyVd57Oc9APpZlLT8Oyi7U/2/WLiUR9a2lfZsktpcu5o9bPZyHPIdKXfN+7/IVIrwS3ZPllO+v4UjuyRvWZ3UgLHStL393ekkWMKP/9N6TPOTW/6N9nnpGxFmxRJ84GzI+IJWZ/T/0XEzk2WPRL4LOlC1MJaS/bL4OyIOGN6SmzKbm0SEfNbXH4+KVh/PSb7tWbWJbIU+YsjYmHZZdmUbPI31ozUtHSrpJdCyjCT9MTs+UGkWtCx+SAmaZtaP03WYX8oKWXfzMy6zCYXyCR9h1R9fqykO7IEg1cCJ0q6mtSUV0v//jipTfYHkq7K+mUgNVUty5a/iNRH5kBmZtaFykr2mDYR8fIms45unBARRzZZx6/p7ACfZmY2TTbJPjIzM6uOTapGtv3228f8+fPLLoaZWU+5/PLL74mIeWWXY6o2qUA2f/58li0rGqvSzMyakXRb2WXYGJtcsoeZmVWLA5mZmfU0BzIzM+tpDmRmZtbTHMjMzKynOZCZmVlPcyAzM7Oe5kBmZtajHlg3zJlX3EHVR2japC6INjOrklPPuo4fXH4He263BQfvuU3ZxSmNa2RmZj3qr2vWAbD6oQ0ll6RcDmRmZj1qsE8ADI9Wu2nRgczMrEeNZn1j/RU/k1f87ZuZ9a5aTaxPKrkk5er6QCapX9KVks4uuyxmZt1kpOJNijVdH8iAdwI3lF0IM7NuU6uRjVY8/b6rA5mk3YDnA18uuyxmZt1mNAtkI6MlF6RkXR3IgE8B7wGafkySTpa0TNKyFStWzFzJzMxKVquJVb2JsWsDmaRjgLsj4vKJlouIxRGxICIWzJvXs3fqNjNrm7IkDzctdq9DgWMlLQe+CzxL0rfKLZKZWffILiNzjazsAjQTEe+LiN0iYj5wAnBhRLyq5GKZmXUNkSKZA5mZmfUm18iAHhk0OCKWAktLLoaZWVepXQY94j4yMzPrRbUBPUYrXiNzIDMz61G1oalcIzMzs54k95EBDmRmZj3LWYuJA5mZWY9yjSxxIDMz63EOZGZm1pPGhqgquSAlcyAzM+txQbUjmQOZmVmPiiztvuLZ9w5kZma9LioeyRzIzMx6nPvIzMysp1W8QuZAZmbWq2oBzDfWNDOznjRaT/ZwIDMzsx5UD2Qll6NsDmRmZj1q1E2LgAOZmVnP8nVkiQOZmVmPGquRlVuOsjmQmZn1qLE+smpHMgcyM7MeVauJuWnRzMx6Uq2PbLTibYsOZGZmPcrp94kDmZlZjxodzR4r3rboQGZm1kP+uvphvnTxzUREbmSPkgtVsoGyC2BmZq1767evYNltqzhyvx3rAcxDVJmZWc+4e806ICV4uI8scSAzM+sh64ZHAHhow0g9kLmPzMzMesaGkag/hkf2ABzIzMx6irLH4ZFRJ3tkHMjMzHqIskg2PBq5kT2qHcm6OpBJ2l3SRZJukHSdpHeWXSYzs3KlSDY86vT7mm5Pvx8G/j4irpA0B7hc0vkRcX3ZBTMzK0NfrUY2MprrI6t2JOvqGllE3BURV2TP1wA3ALuWWyozs/LUmhY3jDj9vqarA1mepPnAQcBlDdNPlrRM0rIVK1aUUTQzsxnTp1rT4qjT7zM9EcgkbQn8EHhXRKzOz4uIxRGxICIWzJs3r5wCmpnNkLGsxfBtXDJdH8gkDZKC2Lcj4syyy2NmViZpLNkj6ske1Y5kbSV7SNoTOBnYB9iOsR8HNRERR3SobCh9Yl8BboiI0zu1XjOzXpeuI0vPq35BdMuBTNKxwA+AQWA1sGq6CpVzKPBq4BpJV2XT3h8R587Ats3Muk5f1o62wWMt1rVTI/sY8CfgRRFxzTSVZ5yI+CWPrPWZmVVWPeV+NOp3hnayR+vmA5+ZqSBmZmaPlL92rB6/qh3H2gpktwKzpqsgZmbWupFc06JrZK37FHCSpC2mqzBmZtaa0Yhcske1A1nLfWQRsVjSVsB1kr4OLAdGCpb7RueKZ2ZmeVGvheGxFjPtZC3uCBwP7AH8c5PFAnAgMzObJrWYNTLq+5HVtJO1+EXgycAngV8wM+n3ZmaVt/yeB/jjX9dw1ON3qgeviMg1KVY7krUTyI4APh0R/zBdhTEzs0c66RvLuOnutfzhQ0cTWdAaGSWX7FFm6crXTrLHOuCm6SqImZkVu+nutQCsXTc8LsHDyR5JO4HsHODZ01UQMzOb2IPrRuoXQY/kqmEVj2NtBbJ3A7tL+oykvVUbudLMzGbEA+uHGcmi1obR0fr0qtfI2ukju4fUo3gw8FYYG4U5JyKi2+86bWbWkx5cP8zISFYjG6l28MprJ+h8g6qnxpiZlejB9SP1GtlwrmnRNbIWRcSiaSyHmZlNYngk6gFsONe0WPE41v031jQzs2TDyGg92WN4xDWymrb7syTNJo2EX3RjTSLiko0vlpmZNRoezdfI8oGsrBJ1h3aGqJoNnA68rsnrROpD6+9M0czMLG/98Fhz4vDI2POqZy+0UyP7NHAicC5wIXDvtJTIzMwKPbxhbJx2J3uMaSeQvRD4TkS8croKY2ZmyZW3r+LmFQ/wkoN3q08bF8hyfWTVDmPtBbLNgaXTVA4zM8t50ed/DcDxB+1an/ZwvmnRF0TXtZO1uAzYZ7oKYmZmj3TfQxvqz5s3Lc5okbpOO4Hsn4DXSXrydBXGzMzGu2ftuvrzdeOSPXLRq+I1snaaFk8G7gB+I+k3wC088g7REREndqpwZmZVt2LNWCAbXyPLXRA9oyXqPu0EskW554dmf42ClNloZmYdcP+4psXiGlnV+8jaGaLKo4CYmc2A/C1a1jw8FsjWNekjq3gc8xBVZmbd4mu/upXTfnodD+UC1pqHh+vP1zXNWpyZ8nUr33LFzKxLnPbT6wF402F716etzgWypteRVbxK5hqZmVmXuWPVQ/Xna/OBbNhNi0UcyMzMSjQ8MkpE8ND6sSB1270P1J/n+8jGJ3vksxarHcnctGhmVqJX/NdlbLnZAB9+4RPq0/66eizlfnwfmWtkRRzIzMxKct+D6/nt8pUA/HX1w/Xp+edr1uWzFp1+X6TrmxYlHS3p/yTdJOmfyi6PmdnGGB4Z5YTFv+Ej51zP7SsfrE+/4a419ef5i6CbZy2m4DXQp4o3LHZ5jUxSP/A54NmkUUV+J+msiLi+3JKZmU3u4Q0jzBroY/3IKKf86FoO2WtbHrPjHC69ZSWX3rKSx+8yt77sdX++v/787jW5GlmzrMUs/b6vT25a7NSKJN1CCjb/HBEXd2i1hwA3RcQt2Ta+CxwHdDSQrXpgPbfcs7bFpR9xU+zipVpbrMW1gVpcYevra3G5Dr/fTq6r02UrbbutLdbGPu79Y7Sbj09Io23cvvJBHr3DlqwfHuXXN9/DAbttzdzNB/nSxTdzxL47sud2s3n54ks57LHzeNbjduSMy+/gjMvv4N3Pfkx9PT+/7i/159fftbr+PN9HtnbdcP09FI21ONCnyqffd7JGNj/7u1DSTyPihR1Y567An3L/3wE8pQPrHeeyW1fypm9d3unVmllF/fiqP9efn3vNXzj3mrGAdfr5f0RKCRrnXfcXhgb6WD88yg25QFZrWtxy1kA9/X7zwf56skefxmpk/ZIviO7UiiKiT9KWwLOAozq02qLfUeM+MkknkwY0Zo899pjSRg7ecxu+8fpDJl2u1WOl1V9HLR97LS7Yagpuqz/eWl6utcVa2i+tr6vFBTu9T1rdalmfWWuLdfwXfBnvt6x9EsBWmw2wy9ab84esX+vQfbbnVzfdwx2rHuIVh+zBv//8D/zxr2v4j5c+kbf/95XcePdaPvbi/fnw2TewZt0wL3nSbpx37V9Ys26YfXeaw80rHmDtumG2nj3I6GjUL4LeevZg/Zqy2UP93PvAegCGBvrqNbK+Pjn9vpMri4i1wFnZXyfcAeye+3834M/5BSJiMbAYYMGCBVP6NOfNmcW8OfOmWkYzq6gDdtu6/vxlC8ZOVae/7MD682+e+BR+f8d9PHu/HbnqT/fznd/ezvP235nbVj7Ib29dyaPmbcnadcOsXTHMtrOHWDc8yuqHhxnq72OLobFT9OZD/UTWAzLY38fDG1KwG3AfWWtZi5K2lHShpJke2f53wD6S9pI0BJxA54Kkmdm022nuZhz1+J2QxAeO2Y8z3/J0Dn/cDuw9b0sA9p63BTvN3QyA7becxZzNUvDabLCPWYNjp+jNB/vrz4f6x6Y72aPFQJbVtGb8hpoRMQy8Dfg5cAPw/Yi4bqbLYWbWCZsP9fOkPbYB4LgDd2HveVtwzAG7sOOcFMi223KIrTYbBGD20ACzBooD2WAukPXLyR7tNC1eBew7XQVpJiLOBc6d6e2amU2npz5qO/737xcCsGNWI9t2iyE2ZENPzR7qZ9bAWPDaYtbY6XpwYCx9oL9P4277UkXtXBD9QeANkg6frsKYmVVRrTlxhzmbMSerkW0+1D+uRjZ7qEmNzMkebdXIXgXcDlwg6Wrgj8CDDctERPgO0WZmbXjRQbty7Z338+KDd2XxJbcAWY0s6yPr79O42tlQQyCreIWsrUC2KPf8wOyvUQAOZGZmbdh57uZ8/pUHA9T7yDYbHGtaHOwX/X1jzYn5GlmfPGhwy4EsIrp+XEYzs15Xa2ZMtbB02h3q72OgPx/Ixp4P9PVVPtnDwcnMrIvU+siG+vvGAtlAP4N9Y6frwcb0+5ktYtdp+4JoSVsATwN2BC6IiL92vFRmZhW17RZD9eezspT7WQPja2RDuSQQj7XYZo1M0puBO4H/Ab4BPD6bPk/Sw9lwUWZmNkXPfMz2HP34nfjH5zyWzeo1sj4Gcn1k+WzGPid7tB7IJL2YdEuVi4CTyI2DGBErgPNII9ObmdkUzR4a4IuvPph9dpxTr5EJGOgvblp0jay9Gtk/AhdFxIuAnxTMXwY8oWC6mZlNQa3mFdC0aTGN7DHTJesu7QSy/YEfTTD/LmCHjSuOmZnV1ALZaMS4ZI/G68gqHsfaCmQjkyy/C/DAxhXHzMxqateRjUaMu45sXI2sT4xWvErWTiC7GnhO0QxJfcBLSaPVm5lZB9RG9hjs6xt37dgj0u+rHcfaCmT/CTxX0oeAbWuvl/RY4AekDMbPdLh8ZmaVVWtaHOzvG5fska+dDXisxbZG9viepP2BU4D3ZZPPIyXUCPhgRPys80U0M6umuZuna8o2jI6OS7/PB7I+Of2+rQuiI+L/SToTeCXwOFIAuxH4ZkQsm4bymZlV1rw5swAYGY1xgaxP42tkFa+QtT+yR0RcAVwxDWUxM7Oc+dvN5viDduUNz3wUl9+2qj49F9Oc7IHHWjQz61oD/X2c/rcHsu/OW41L9hjXtOj0++Y1MkkfmML6IiI+tBHlMTOzAgO568jyTYv9ovI1somaFk+dwvoCcCAzM+uw/Mge+UDm9PuJA9leM1YKMzObUL5GlsvEryeBRATKBbgqaRrIIuK2mSyImZk1N65GVpCKHwEVjWNO9jAz6wXjkj1UEMhmvETdo+X0+xaTP5zsYWY2DfqbJnuk56MR9FPNKlk715GdOsG8IF0c7WQPM7NpMNjXrGkxu9VLhatk7QSyouSPAWBv4O+AucBrO1EoMzMbb9xYi+MuiE6PVU7Bb2esxWbJHzdLOh+4BHgd8P5OFMzMzMYMTHBBdNV1JNkj0n22zwBe04n1mZnZePmxFtU41iLVblrsZNbiELBdB9dnZmaZ8deRFSd7VFVHApmkBcA7gRs6sT4zMxuvln7f36eG9Pss2aOUUnWHdtLvb2kya1tgDjAMnNSJQpmZ2XibDfYDtRE8xqY72aO9rMXbeWTQD9ItXf4ILI6I5R0qF5I+DrwAWA/cDLwuIu7r1PrNzHrJ3NmDAOw9b8vxTYtOv28ra3HhNJajyPnA+yJiWNLHSHelfu8Ml8HMrCtstdkg/3b8/hz66O254vaxe5PVamRR4UjWtUNURcT/RMRw9u+lwG5llsfMrGwnHLIHu287e/zIHq6RTRzIJL1f0n65//slPUnSFgXLPk3SN6ajkMDrgZ9N07rNzHpK4/3IoNp9ZJPVyD4MHJj7f2vgd8BTCpZ9FPDKdjYu6QJJ1xb8HZdb5hRSIsm3m6zjZEnLJC1bsWJFO5s3M+tJ+du49HnQ4LaSPWo6dhl5RBw54Yak1wLHAEdEkwbgiFgMLAZYsGBBlT9LM6uIfI2sdnF0hStkUwpkM0LS0aTkjsMi4sGyy2Nm1i3yWYu1Z0726E7/Sbo+7XxJV0n6YtkFMjPrBvkaWe15dcNYF9fIIuLRZZfBzKwb9Y0bdzE9OtljYkVkoyBPAAALv0lEQVR7p7p7zMysZP3jamTpscJxrKUa2Vckfalh2tmSRqawLjMz20j5O7cIDxo8WfC5BNe+zMy6St/4SAa4RtZUCcNSmZnZJMbdWFO+sea0ZS1K2krSVyU9brq2YWZWReOuI8seq9y0OJ3p95sDrwV2mcZtmJlVTr5lsa8+aHA5ZekG030dmeu8ZmYdNv6CaCd7dPMF0WZmVmD8EFXpsbphzIHMzKznjKuR1cdarG4ocyAzM+sxRckeFY5jDmRmZr1m3G1cPNaiA5mZWa8p6iNzsoeZmfWMPo+1OM50BrL1wMXAqmnchplZ5eSTPXD6feuBLBul46OShprMf6qkr9b+j4hVEXF4RFzZiYKamVnS1+caWV47NbJFpDs2Xyhp+4L5e5NG8jAzs2k0WJh+X1Zpytdu0+L3gAOByzyGoplZOTYf6q8/r9fIKpy32G4gOxs4jDSO4m8kHdn5IpmZ2URmD43duGQsa7GkwnSBtpM9IuJy4CnA7cC5kk7ueKnMzKyporEWqzyyx5Tu6hwRf5J0KPB94AuSHgtc1dGSmZnZpDzW4hQDGUBErJV0DPAZ4O+AuzpWKjMzm9CCPbfhGfvM81iLbEQgA4iIUeBtkm4C/qMzRTIzs8mc8eanA/CLG1cA1c5abDmQRUTT/rSI+JSk84GitHwzM5smY/cjK7kgJdqoGlleRFzXqXWZmVlrxi6Irm4k81iLZma9zOn3DmRmZr2snn5f4bxFBzIzsx5Wv6SsunHMgczMrJfV0u/dtGhmZj3JYy06kJmZ9TSPtehAZmbW0zyyRw8EMkn/ICma3APNzKzS6rke1Y1j3R3IJO0OPJs00r6ZmTWo18jcR9a1Pgm8h0onlpqZNTc2ske55ShT1wYySccCd0bE1ZMsd7KkZZKWrVixYoZKZ2bWHTzWYgfHWpwKSRcAOxXMOgV4P3DUZOuIiMXAYoAFCxZU+KM0syqSx1osN5BFxJFF0yXtD+wFXJ21/+4GXCHpkIj4ywwW0cysqzn9vuRA1kxEXAPsUPtf0nJgQUTcU1qhzMy6UJ88RlXX9pGZmdnkXCPr0hpZo4iYX3YZzMy6UV/9guiSC1Ii18jMzHpYrWFxtMKRzIHMzKyH1bMWyy1GqRzIzMx6mMdadCAzM+tpHmvRgczMrKf1eaxFBzIzs15WT78fLbccZXIgMzPrYWM1supyIDMz2wQ4/d7MzHqSR6hyIDMz62lO9nAgMzPraR5r0YHMzKyneaxFBzIzs57msRYdyMzMepqcfu9AZmbWy+qDBrtGZmZmvchjLTqQmZn1tD6Pfu9AZmbWy5x+70BmZtbTaskezlo0M7OeNNDnQOZAZmbWw/qzQDZc4bZFBzIzsx5WS/YYdSAzM7NeVKuRjfjGmmZm1ouyOMaI+8jMzKwXSaK/T4yMVrdK5kBmZtbj+iU3LZqZWe/q63P6vZmZ9bDnPWFnHrvjnLKLUZqBsgtgZmYb5/S/PbDsIpTKNTIzM+tpXR3IJL1d0v9Juk7Sv5ddHjMz6z5d27Qo6XDgOOCAiFgnaYeyy2RmZt2nm2tkbwb+LSLWAUTE3SWXx8zMulA3B7LHAM+QdJmkiyU9uWghSSdLWiZp2YoVK2a4iGZmVrZSmxYlXQDsVDDrFFLZtgGeCjwZ+L6kR0XDbVAjYjGwGGDBggXVvZDCzKyiSg1kEXFks3mS3gycmQWu30oaBbYHXO0yM7O6bm5a/DHwLABJjwGGgHtKLZGZmXUdRZcOayJpCPgqcCCwHviHiLhwktesAG6b4ia3x4GykffJeN4fj+R9Ml6v7o89I2Je2YWYqq4NZDNN0rKIWFB2ObqJ98l43h+P5H0ynvdHObq5adHMzGxSDmRmZtbTHMjGLC67AF3I+2Q8749H8j4Zz/ujBO4jMzOznuYamZmZ9TQHMjMz62mVC2SSjs5uDXOTpH8qmD9L0vey+ZdJmj/zpZxZLeyTRZJWSLoq+zupjHLOFElflXS3pGubzJekz2T76/eSnjTTZZxJLeyPhZLuzx0fH5jpMs4kSbtLukjSDdktpt5ZsEyljpGyVSqQSeoHPgc8F9gPeLmk/RoWOxFYFRGPBj4JfGxmSzmzWtwnAN+LiAOzvy/PaCFn3hLg6AnmPxfYJ/s7GfjCDJSpTEuYeH8A/CJ3fPzLDJSpTMPA30fEvqSxYN9a8J2p2jFSqkoFMuAQ4KaIuCUi1gPfJd3zLO844OvZ8zOAIyRpBss401rZJ5USEZcAKydY5DjgG5FcCmwtaeeZKd3Ma2F/VEpE3BURV2TP1wA3ALs2LFapY6RsVQtkuwJ/yv1/B488AOvLRMQwcD+w3YyUrhyt7BOAF2dNJGdI2n1mita1Wt1nVfI0SVdL+pmkx5ddmJmSdT0cBFzWMMvHyAyqWiArqlk1Xn/QyjKbklbe70+B+RFxAHABYzXWqqraMTKZK0hj9T0R+CxpwO9NnqQtgR8C74qI1Y2zC15S5WNkWlUtkN0B5GsTuwF/braMpAFgLpt2s8qk+yQi7q3dqRv4L+DgGSpbt2rlOKqMiFgdEWuz5+cCg5K2L7lY00rSICmIfTsizixYxMfIDKpaIPsdsI+kvbLR9U8AzmpY5izgtdnzlwAXNt7McxMz6T5paNs/ltQnUGVnAa/JMtOeCtwfEXeVXaiySNqp1o8s6RDSeeXecks1fbL3+hXghog4vcliPkZmUKk31pxpETEs6W3Az4F+4KsRcZ2kfwGWRcRZpAP0m5JuItXETiivxNOvxX3yDknHkrK1VgKLSivwDJD0HWAhsL2kO4APAoMAEfFF4FzgecBNwIPA68op6cxoYX+8BHizpGHgIeCETfzH36HAq4FrJF2VTXs/sAdU8xgpm4eoMjOznla1pkUzM9vEOJCZmVlPcyAzM7Oe5kBmZmY9zYHMzMx6mgOZWU42kntIWlR2WcysNQ5kVjmSDpR0ahVu0WNWBZW6INoscyDpot6lwPKGeZcAmwMbZrZIZjZVDmRmORExCjxcdjnMrHVuWrRKkXQq8LXs34uy/rCQtCSb/4g+svw0SW/J7qb9sKRrJD0/W2Z/SedJWi3p3uzuwIMF299H0jcl3SVpvaTlkj4uaYuNfF+vkfRbSfdJekDSLZK+LWnexqzXrBe4RmZVcyawM+muvR9lbADkm1t47VuBbYAvk2pt7wB+LOmlpLsCfId0C5OjgLcDdwMfrr1Y0sHAhcB9wJeAO4EnZus5VNJhEdF2k6akV5FurfML4AOk8Q73IN2leAdgRbvrNOslHmvRKierbX0NODwiljbMWwhcBLwuIpY0TPszsF9E3J9NPwC4mnSfqZfkb+ch6XJgl4jYOTftamAW8OTszsK16S8iBdj6Ntt8P2cCRwLbZjeDNasUNy2atW5JLYgBRMTvgdXAnwvuSfVLYKfs5otI2h84APhvYJak7Wt/2bIPkGpyU3E/MBt4fu12KmZV4kBm1rpbCqatAm5tMh1gu+xx3+zxNFJTX/7vbmALYMcpluujwG2kZs0Vkn4o6SRJc6a4PrOe4j4ys9aNtDkdxm55X3v8BHBek2VXNZk+oYi4UdJ+wBHZ32GkPrvTJD0zIlrp/zPrWQ5kVkVldAzfmD2ORMQFnV55RKwj3czxXABJzwPOAd5NSlIx22S5adGqaG32uO0MbvNK4FrgTZIe1ThT0oCkKZUn62drdEX2OJPv0awUrpFZFf0OGAVOkbQNKdHi1oi4bLo2GBEh6dWk9PvfS/oqcB0pSePRwPHA+4AlANnwWbcCF0fEwklW/z+S7ieNSvInYGtgEanm+c3OvhOz7uNAZpUTEbdLej3wXuALwCDpOqxpC2TZdq+SdBApYB0LvAlYQxomawnwv7nFa4kad7aw6i8ALwPeSKqB3UuqAb49Ii7qRNnNupmvIzPrQpLeQUoMeXxE/LHs8ph1M/eRmXWn5wBfdBAzm5xrZGZm1tNcIzMzs57mQGZmZj3NgczMzHqaA5mZmfU0BzIzM+tpDmRmZtbTHMjMzKyn/X/zVAxxIXGzTQAAAABJRU5ErkJggg==\n", "text/plain": [ "<Figure size 432x288 with 1 Axes>" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "t= numpy.linspace(0,simultime,N) #time grid for Euler method\n", " \n", "#Initializing variables for Euler\n", "vdot_E = numpy.zeros(N)\n", "v_E = numpy.zeros(N)\n", "z_E = numpy.zeros(N)\n", "\n", "#Initial conditions\n", "z_E[0]= 0.0\n", "v_E[0]=0.0\n", "\n", "for i in range (N-1):\n", " vdot_E[i] =( ( -k*z_E[i] - (m*wo/Q)*(v_E[i]) +\\\n", " Fd*numpy.cos(wo*t[i]) ) / m) #Equation 7\n", " v_E[i+1] = v_E[i] + dt*vdot_E[i] #Based on equation 5\n", " z_E[i+1] = z_E[i] + v_E[i]*dt #Equation 5\n", "\n", "plt.title('Plot 2 Eulers approximation of Equation1', fontsize=20); \n", "plt.plot(t*1e3,z_E*1e9);\n", "plt.xlabel('time, s', fontsize=18);\n", "plt.ylabel('z_Euler, nm', fontsize=18);\n" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "This looks totally unphysical! We were expecting to have a steady state oscillation of 60 nm and we got a huge oscillation that keeps growing. Can it be due to the scheme? The timestep that we have chosen is quite big with respect to the oscillation period. We have intentionally set it to ONLY 28 time steps per period (That could be the reason why the scheme can't capture the physics of the problem). That's quite discouraging. However the timestep is quite big and it really gets better as you decrease the time step. Try it! Reduce the time step and see how the numerical solution acquires an amplitude of 60 nm as the analytical one. At this point we can't state anything about accuracy before doing an analysis of error (we will make this soon). But first, let's try to analyze if another more efficient scheme can capture the physics of our damped harmonic oscillator even with this large time step." ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "### Let's try to get more accurate... Verlet Algorithm" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "This is a very popular algorithm widely used in molecular dynamics simulations. Its popularity has been related to high stability when compared to the simple Euler method, it is also very simple to implement and accurate as we will see soon! Verlet integration can be seen as using the central difference approximation to the second derivative. Consider the Taylor expansion of $z_{n+1}$ and $z_{n-1}$ around $z_n$:\n", "\n", "$$\\begin{equation}\n", "z_{n+1} = z_n + \\Delta t \\frac{dz}{dt}\\big|_n + \\frac{\\Delta t^2}{2} \\frac{d^2 z}{d t^2}\\big|_n + \\frac{\\Delta t^3}{6} \\frac{d^3 z}{d t^3}\\big|_n + {\\mathcal O}(\\Delta t^4)\n", "\\end{equation}$$\n", "\n", "$$\\begin{equation}\n", "z_{n-1} = z_n - \\Delta t \\frac{dz}{dt}\\big|_n + \\frac{\\Delta t^2}{2} \\frac{d^2 z}{dt^2}\\big|_n - \\frac{\\Delta t^3}{6} \n", "\\frac{d^3 z}{d t^3}\\big|_n + {\\mathcal O}(\\Delta t^4)\n", "\\end{equation}$$\n", "\n", "Adding up these two expansions and solving for $z_{n+1}$ we get:\n", "\n", "$$z_{n+1}= 2z_{n} - z_{n-1} + \\frac{d^2 z}{d t^2} \\Delta t^2\\big|_n + {\\mathcal O}(\\Delta t^4) $$\n", "\n", "Verlet algorithm neglects terms on the order of 4 or higher, ending up with:\n", "\n", "$$\\begin{equation}\n", "z_{n+1}= 2z_{n} - z_{n-1} + \\frac{d^2 z}{d t^2} \\Delta t^2\\big|_n\n", "\\end{equation}$$\n" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "This looks nice; it seems that the straightforward calculation of the second derivative will give us good results. BUT have you seen that we also need the value of the first derivative (velocity) to put it into the equation of motion that we are integrating (see equation 1). YES, that's a main drawback of this scheme and therefore it's mainly used in applications where the equation to be integrated doesn't have first derivative. But don't panic we will see what can we do...\n", "\n", "What about subtracting equations 8 and 9 and then solving for $\\frac{dz}{dt}\\big|_n$:\n", "$$\n", "\\frac{dz}{dt}\\big|_n = \\frac{z_{n+1} - z_{n-1}}{2\\Delta t} + {\\mathcal O}(\\Delta t^2)\n", "$$\n", "If we neglect terms on the order of 2 or higher we can calculate velocity:\n", "$$\\begin{equation}\n", "\\frac{dz}{dt}\\big|_n = \\frac{z_{n+1} - z_{n-1}}{2\\Delta t}\n", "\\end{equation}$$\n", "\n", "This way of calculating velocity is pretty common in Verlet integration in applications where velocity is not explicit in the equation of motion. However for our purposes of solving equation 1 (where first derivative is explicitly present) it seems that we will lose accuracy because of the velocity, we will discuss more about this soon after..." ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "Have you noticed that we need a value $z_{n-1}$? Does it sound familiar? YES! This is not a self-starting method. As a result we will have to overcome the issue by setting the initial conditions of the first step using Euler approximation. This is a bit annoying, but a couple of extra lines of code won't kill you :)" ] }, { "cell_type": "code", "execution_count": 6, "metadata": {}, "outputs": [ { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAbgAAAEjCAYAAABAaxQzAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMi4yLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvhp/UCwAAIABJREFUeJzsvXncJUV1Pv6c+84Msg/CiKwZo0RDiCsobjERt0QEvkk0gvsSkvwkhiQat69fB40IbkEJahCUxQgqQhBEBBx2wg4jywAODMsMM8MMM8w+73Lv+f3Ry1tdXaf61K3ud7t9+PCZevtWd1dVV53nPOec6iZmRiuttNJKK63MNOlMdgNaaaWVVlpppQlpAa6VVlpppZUZKS3AtdJKK620MiOlBbhWWmmllVZmpLQA10orrbTSyoyUFuBaaaWVVlqZkTJpAEdE84mIieisyWrDIAkRvSkd7/872W1ppShEdAMRjU12O0KEiD6azqf3TnZbYoSI5hDRl4hoCRENp306fLLbNRVkJjzjWgEuHQzz/y4RrSGihUT0njrvZdzzg+m9PtjHuScT0W+I6Aki2kpEa4noLiL6AhHtHtmuP0jbtZyIhirqvjatuyjmnhMhM2HSt1ItA2QQ/RuA/wvgCQBfA3ACgId8JxDRjxy6zv7/jAloe5RM5WdMRIcS0UlEdDkRrUrb+WjodWY10DYgmSQAMBvACwEcBeDPiOgVzPwvDd2zH/lnAHcCuBLAUwB2BHAogAUAjiWiQ5n5iX4uzMwPEdG1AN4A4O0AfuGp/tH039P7uVcr016OAbD9ZDciUH4G4AYAT052QyLlcADrAbyFmUcDz70IwG+F3+6MatXUkMl8xu8F8DEAIwAWA3hOPxdpBOCYeYH5NxEdhgREjieibzPzo03ctw/ZhZm32QeJ6MsAPgvgMwD+v4jrn44E4D4KAeCIaBcA7wKwBcCPIu7VyjQVZn58stsQKsy8HgkwTHfZG8CaPsANAC5k5hm7Zif5Gf8AwBkA7gPAAPp5PgAz1/Z/2hAWfrs//f2d6d/z07/PctTdC8BpAB5FguCrAVwI4BVWvWuyezr+nx/Rj5ek17gycjy2A7AGwBiAvYU6f5/e64eO3w4EcA6AZek4rATw3wAOcNT9UXqd/QH8E4B7AGwFcFX6+5vS3/+v49zdAZwM4IH0nGeQGCRvsurd4BnvfRXj8eH0OT6S3md9es1jhPo3pGP3LAAnpvNhGMASAJ8HMMeqPytty1UA9k3HanV6r9sB/I3jHvm4IGHvlwFYa/cJwCFILPbVaRseBfCfAJ5rXe81SBbj7wDsbP22T3r+RvMZZv30tOuVAK5Ix2sdEst6n7TeCwD8JL3uFgALAfyxo58vTJ/x7VYf/iu7lmMuuf5/XVrno+nf73XcSzVW1r32Q2JM3gtgG5K5/j0kRmjImpub9vOh9DprAVwO4I3KPi5R3CM7t9R3zzkE4ONI9OAwgOUAvg1gFyTre4lV/9/N8bZ+e0H62xmD8Iwxvq4fDZkLzNyYi9IllP7rffklET0PyYLfG8liPQ/JwLwTwNuJ6K+Y+dK0+llIlPGRAC4GcLdxqWci2vqO9F/J/aASZh4monMBHA/gQwC+7Kj2t+m/3zcPEtHbAVwAYAjAJQAeRjIOf4VkHN7AzK6Y3WkAXodEUf8SCTCKko731QB+D8B16Xk7I3HdXEFEH2HmH6bVf4BEYbwDZffMBt99UvkvJM/oWiSTew8AfwHgv4noAGY+QTjv5wBemv47hsTl/UUAr0jLtuwO4CYkxsUPAOyGhCWfT0R7M/N/OM55HYD/h2QMzkTiEhkFACI6CsBPkczdCwA8jmSBfwzAkUT0Wk5ZGDPfRESfB/CVtL/HpNcYAvDjtM/vZebfVQ1WKociAbmFSObISwD8NYCDiOgvAdyIRGGcg8Ro/EsAVxLR7zPzFuM67wRwLJJnfWPatz9GMv8OJ6KDmXlFWvdCAD0A70vrX2dcx8s2Q8bKkm8AeDOASwH8GsBhAP4OwPPT45VCRM9O+/YiALem/ZiH5NlfRUTHMnMWG7sQiaH0L0jm1LfT42s19+pD/hOJcn8SybzI5vErkYRySp6kPmTGP+NgCUXECqR1Mjgk1mgv/f/30mPz4WBwaccZwOes469BMimeBrCTcfyDaf0PRrT7E0jibv8B4Pr0eosAzKthTP4wvd4jAMj67WXpb/dax3dHAtCrAbzI+u3FADYDuE2wkp7IxtjxDEoMDokx0UPKrI3juyFhgZvNcYDHqlOMxfMdx7ZDwsRHUGZDGWN8AMBc4/j2SBQYAzjaOJ5ZeowETMi8dzqmw+b4GOPCAD7iaN8uSFjTGIDXWL99Lj3vMus4IWEN+TUBfCn9+0zHPXwMjmExTwBnp8fXAviU9dsJ6W8fs47vC2A7x73/PH3+p2rmi28e9DlW2bxdiiJjno3ESGEAL1fOrzPT+t+xjr8ICWveBmA/67cSe1LcJ2vzhUj0huv/PzDq/0la/yEAuwnzuA4GNyOfMSIYXFBlxYPPFmT2kL+MBOHH0uPfNOrOhwVw6QNiAI8BmO24/rnp7+83jn0Q8QC30mg7A/gVgD1rHJcMNG2X33fS4x+3jv9revzvhOudmv5uLqJsEn1MOKc0mZEwIAZwnnDOX6W/H+ub9DWMz7vSax5jHc8A7mjHOVl/rjSOZQthFMD+jnMypfE5x3VuE9r2gfT3cxy/zU7nKqPsApqHxFrfjMSy7SKJJ+zguI4P4K521H9j+tsSAB3rt+env30/YPzvB/BQ1Xyxfncpv+CxMuZtaf0iYR4M4O8VfdgO427vuY7fv5Je67PW8RiA8/1/uFH/h+mx93nmcTTAzdRnjCnoovxC+i8jsZqvR2K5VgVkX5b+ez27g74LkWTXvAyJS6YWYebnAgAR7YmEKZ4E4C4iOpyZ68iG+j4SF9jfIokPgYi2R+K+2oYEuE15dfrvy4hogeN6L0j//UOUU5pvDWhXdp/dhPvsadwnWohoPpK07MOQuFvtzMF9hFOvdRy7DolV+jLHb0vZ7SK5BomV6TpHGreXp/8utH9g5lEiugHJc3wpkrhK9tvqdGvMVUjcU1uRMLEt9nUq5HbHsSyr7S5m7lm/ZW3Y1zxIRITEHfUBJF6A3ZC4vzMJbZdL+hqrVFz9zDKYd1Pc+0AksdpbmNkVnlgI4NNwP/t+5X0KnQaMj4tvHkfLADzjYGkqi5Kqazll1/TfFcLv2fG5fV7fK8y8CsBFRHQnEuA4B8BBNVz6pwBOAXAUEe3BzGuQsJZdAfyImddZ9bM9eH9Xcd2dHMdWBrQru89b0/9D7hMkRPQCJCCyK5JF/Wsk1nYXwO8jWZjbCac/ZR9g5hEiWofxOWPKKuE62di4zpHGLWZO3oLUZYwk2ede4Ro+cWWxjSl+m20d/zaA45CA4+VIlE8W9/kwkph3rMSMlQuUsr5495HWcO+mJWtbaV4a87gOmenPOFgmMslEI9mCfa7w+15WvUaEmR8jovsBvNQApJjrbSOiHwH4RwDvB/BN+Pe+Zf37I2a+P/R2AXWz+3yMmb8TeJ9Q+QQSK61k9RLR+5AAnCTPgbUXh4jmpNdzKYc9HceA8Xnlmj/SuMXMyVORgNsaAO8gor9h5p8I12lMiGgvJG7SRUhcXpus331jHyKTuX6nhO4QJLvnnrASOIx5bCv/jNW5dHQJPAbkGQfLVHsX5V3pv68jIteD/bP0X9Nt2E3/rdsCyKydrreWXjIg+ygRvQiJy/IBZr7eUffm9N/X13RvSfq5T7/jnblVf+747Q0V57p+/xMk8/cux2/PI6L9HMf/NP3XdY4kWd0/tX8gotkAXuu6JhEdjcRqXogk1vk0gNOJ6PkB965Lno8k8eXXDsX3e0ji4bb085z7Gqua5H4kbOVl6d5SW1y6Y6Iku6dvHtuSGW6ueXyw49ggPONgmVIAx8zLkOy/mo8ktT4XInoVEt/uOiQp6pk8nf67f8i9iOhFRFSyQoiok270fg6Amxzuw74kdU/djCSelYHd94XqZyJJu/8iEZUmMxENEdGf1tCmmwH8L4B3EdEHXHWI6CVEtIdxqK/xRrJPBrAWBhH9BZJEIZ/8PyLKrdY0fnli+ucPHfVnATg5jUlk5zwfiftmFMn+OK1ciMS6fi8RHWL99q9IGNrlzJzHG1J37H8hyYJ9bxoP/CCSDLTzU6t9IuXR9N/Xm6+NI6KdkcxFlx7o5zkHj1VdwszDSLYU7YpkC0kuRHQAkmc/gsl5mUI2Rz/vmce2ZDHhD1vPbH8ke0BteTT9d8Y+435kqrkogWTj840AvkZEb0ESmMz2wfUAfIiZNxr1/xdJ8PT4dB9M5uc+lZOd+JK8Lb3HdUj2mD2NxIXwBiQxoZUY36NWl5yOZF/T65Gkq5/tqpQmKLwTCdu5lYiuwvhG+f2QWEk7o4bYGIB3A/gNgLOI6HgkC+sZJEkKL0USvD8EiZsNSNJ6twH4VyKah/H42Les52LLaUjcsxcR0QVIfPUHIYn9/RTA3wjndZFssbiXiMx9cL+PZO/jeY5z7kbCkO8goisAPBvjMc9/4YA36TDzBiL6CJLN1NcT0c+QxNUORrJ350kA/5DVT8HrJ0iezbs53XfEzJcS0SlIDLeTkbwmbkKEmZelY/7XAO5M59OuAN4CYBOS7SAHWqfdj+QZvYeIukj6zADOZuH1daFj1YB8Eslz/ycieiWSpI5sH9xOAP5BSD7qV/4yNWZc8ggznwMAzHwdEX0XSd/vS59FNo9XwxFjRrLObkJiEN5KRFcj0U9HIsnyfpdZeaY9YyI6EElCGjC+h3oPKr6c/58rCUho2mVFKirDsQ9OqDsfjn1w6W/7APgukpTTESTK9X8AHCJc621IgG5T1gZUvMkEiXI9DYkyzN42sh7AbUi2ODy7zrFJ77kDEvBgAD9W1P99JFsJliABlfVI9oSdDeAIq26Wiut8owj8bzLZBclm4jvTMdyCBFQuRQLyO1j1/wIJGzXHW/Mmk9ch2VS6DglDvR7AEVLbUHyTyVcw/iaTR5Bsyta+yWQbgDuQAI56XKx6r0rn4Jp0Tj6WPpu9rHrfSq/3Dcc15iAx2BjAO+x+BjwvMU3cHAPr+I7pGGZz6XEk2Z27ue5v9Pnq9Fllz1nzlgvVWFXNW+2zsc7ZDclLk5ekc2UdkoSmNwn1m9omYI9/B8kbhhZj/E0mp0J4k0l6zrORvK7qqfSZ/RbAR6TnP5OeMYr7QKX/K3UOpRdrpZUpJ2nK8aHMrPI0pHHbUQC/YeY3Ndq4VlqpSYhoGYBtzCyxwVb6lCkVg2ullVZaaaWVuqQFuFZaaaWVVmaktADXSiuttNLKjJQ2BtdKK6200sqMlKm4TaB22WOPPXj+/PmT3YxWWmmllWkld9xxxxpmnjfZ7ehXBgLg5s+fj9tvd73ns5VWWmmlFUmI6LHJbkOMtDG4VlpppZVWZqS0ANdKK6200sqMlBbgWmmllVZamZHSAlwrrbTSSiszUqY8wBHRXCK6gIgeIKLFRPRqIno2EV1JRL9L/23ka7CttNJKK61MX5nyAIfk5bWXM/OLALwEyctKP43kfYMHIHkT/qcnsX2ttNJKK61MQZnSAJd+uPBPkHwfDcw8wszPIPlkRPapmbORfHailVZaaaWVVnKZ0gCH5HMxqwH8kIjuIqIziGhHAHvy+He2ViD5OGlBiOhYIrqdiG5fvXr1xLa6lUkX47Mb2DSyCcNjwwCA1ZtXY/225DOByzcsx8pNKwEAjz3zGJauWwoAWLpuKe576j4AwCPrHsHtT96eH7/usevy+pcvuRwA8MT6J/A/D/wPAGDFxhU4757z8nv94K4fAADWbV2H7972XTAzNg5vxLdu/hZ63MPW0a34xk3fwFhvDCPdEXz1xq9ieGwY3V4XX7vxa9g8shk97uHrN30d67etBzPjlJtPwerNyZw+7dbT8OTGJwEA37/j+3j0mUcBAGfffTYeevohAMCP7/kx7n3qXgDAz+//Oe5akXxs+ZIHL8Ety24BAPx6ya9xw+M3AACuXno1Fi5dCAC48fEbccXDVwAAblt+Gy596FIAwKKVi/I+L169GD+772cAgIfXPowf3/NjAMDj6x/HOYvOAQCs3LQyH4u1W9fi9DtOz8ciG5dtY9tw2q2nocc9jHZH8Z3bvoOx3hh63MP3bv8eRrojYGaccecZ2DK6BQBwzqJzsHE4+QzhT+79CdZuXQsAuGjxRXhqc/KZtV8+9Mt8jK565Co8sT751Nl1j12XP/Obl92MJWuXAADuXHEnHlzzIADg3qfuxeLViwEADz39UD4vlq5bintW3QMAWLZhGRatXAQAWLVpFe5eeXfez2ysNwxvwJ0rkg97bxndkpdHuiN5udvr5vWZOb8mM+f3BYAH1jyQz+2H1z6clx9f/zh63AOQzMNur4uBl5DvIE30/0g+ojcG4FXp398C8CUAz1j11vmu84pXvIJbmR7yzNZn8vLCRxbyyNgIMzOfesupvGrTKu71enz8r47nRSsXca/X47ee+1b+2X0/Y2bmeV+dx1+4+gvMzIwF4L/+6V/n5Rd/98V5eacTd8rLWAB1ec6X5uTlPb66R15+wbdfwFgAHu2O8iGnH8JYAF6zeQ2/9dy3MhaAH1j9AB99wdGMBeDrH7uej/vlcYwF4Avvv5BPuOYExgLw6befzqfecipjAfjL132Zz7/nfMYC8PG/Op6vevgqxgLwMT8/hhetXMRYAH7LuW/h5RuWMxaAX/q9l/LW0a2MBeB9v7lv3u45X5rTVz9jynNPmstYAO71enzAtw9gLABvHtnMrznzNYwF4MefeZyPPO9IxgLwnU/eyR+9+KOMBeArllzBn7nqM4wF4PPuOY+/cdM3GAvAp95yKp+76FzGAvCCqxfwZQ9dxlgAPu6Xx/Fty29jLAAffcHRvHTd0nxc1m5Zy1gAfvUZr+bR7ihjAfiFp74wb+u8r87Ly7O+OKuR/pvzgpnz/nd7XX7Hj9/BWADeOLyRP/w/H2YsAC/fsJw/ecUnGQvAi1cv5pNvOJmxAHzrslv5jDvOYCwAX/XwVXzR4ovyuXPN0msYC8Bn3XUW373i7ny8Hln7CGMB+CvXf8W1xIIEwO08BbCg3/+nOoNbBmAZM9+S/n0BgJcDWEVEewFA+q/ri7itTCFhZjy45kEwMzaNbMIXr/0iNgxvwKpNq/Cy/3oZFq1chIfXPoy5J8/F6XecjiVrl+CN57wR//DLf8DyDcvxj7/6R7z9x2/H+uH1OOWWU3DoGYeixz38+uFf450/eycAYPWW1Tjh2hPye15w/wV5+berfpuXN41s6qsPI92RvC9rtiQfON8yugXLNiwDADyz7Rms3rI6L2dsYt22ddg4krCMp7c8jc2jmwEAa7aswbaxbQCApzY/hdHuaF7OLPGVm1eCkVjoKzauAKUfN35y45N5edmGZfm5yzYsy8/N2jtRwsx4Ztsz+b0zdrxtbBtWbVqVl7Mx2jy6GWu2JuO4cWTj+HhtXZdf5+ktT+eM+6nNT+XP7slNT+Ys7okNT+QMfem6pflYP7b+sfzcJWuX5GO9esvqnPWM9cZqHYOs3dk9gWRcbnriJgDA8NgwfrXkV/lYXP7w5fnxKx+5EkAyPzMGvWbLGlz72LV5P298/EYAwO/W/g63Lr8VALBo1aKcNd6y/BY8+HTCPn+z9De19m06ypQGOGZeCeAJInpheugwJJ9Z/wWAD6THPgDg4kloXiupMDPWbU2+HL9u6zp85fqvYLQ7ijtX3IkDTzsQjz7zKC5cfCFedNqLcNEDF+HiBy7GF675Ar5+09excOlC3L3ybpx040m5e+38e8/Pldcty2/JFfbj6x/P3S5bx7ZitDc68Z1FUSmOdEcwREMAEiWVlcd6Y5jVSd6E1+NeXu5yF7M7s/Ny4fhQcny0O1oozxmak5R748dHuiN5O0a7o4WxyMBuosUE1M2jm/O+bR4ZL4/2Rsf73Ovm41Uos1XuOMq9LjqUqK8e90BEeXnr6FYAQIc62DpmlNPjQP3A5hPzXsPd4dwwGR4bzvsw2hvNy8yc9xNAXjaPM3OhfuFcGq8z6DKlAS6VfwTw30T0WwAvBXAigJMAvJmIfgfgzenfrTQszJwrzyfWP4F/u/Lf0OMezrjzDDz7q8/GA2sewD//+p/x2YWfxfWPX4/Tbj0Ni9csxtVLr87jWA+ueTC34DcMb8jZSbboAeTKKhNTQUjlDAQnQro8HtsY643lfcjiRVmdrNyhTq5sOtTJ63eoU6jjKg91hnJQH6KhfPyHaCgHlA51CuBigl3TSs68vgSyZtvsuFD2rBk8XmYuAFYmPe7l84TBeTmL2WXl7PmMdkfz+432RgvPzSw3IWa7h7vD4+Wx4Rzgh7tG2Tg+1hsrGEpS2TSOCucaBsGgy5QHOGa+m5kPZuYXM/NRzLyOmZ9m5sOY+YD037WT3c6ZKuu2rsNvHklcHSdefyLm/PscbB7ZjPdd9D587aav4bblt+EXD/0CQBKEN113mfjAx1SQmeI3zyFQQXFqwK4JMdtpKulur5v/ZoJatzdeZmYRyArAx2XgI1Chvglq2bgMdYYKgFIoN8xyzWdbGBfu5s/EBJ0ud8cB2wLvrP6szqz8eKmcXmd2Z3ZentWZlY+LWT+7n6t95nxpwgiQAH6kO5IDkMngTE/ASHckP26CWpfHWavNZk1Qy4C/TTKZBgDXysTLvU/di1NvORUAcNg5h+FN574Jw2PDOOnGhChvHNmYx5E61Ckopkwk4LJ/y4SICsdd4GWCHYFEgGtCYUnWvwRqPjanKWfKyWZzWf871MmVqAl2QFmhZjKR4yKBWrfXzY/3uOcEtaGOBXYGkGXHTVCf1ZmVsySzfnY/Z1uF43WJzTzNcvYcCsaBMI6mN8P0cvikZW7j0gJcKwCAGx6/ASffcDIA4I+/+8f4+OUfBzPjrpVJ2vK2sW259ZilsQNlZWS7F30iLVgTvIjkssRamljgkvVvglqXuzmYF8pGHZuRacrZ/UxQG+oUXZQS2DXN5sxxsdmcC9RMZmce71AHY1wBahbLy/o/REN5kokJlOZ8sdsqgV2MFFi+BmS5WwC7bL6YZWDcQLTBLjvXNA7ttTPo0gLcAMsty27BuYvOBQC8/oevx6d/U3whjB0cz5MpusNOKzz7PZPQBZaDgAlkcJft9jXtrvS5ulwMTnJd9rgngp2p7F2szWSwBRelMh5ngl0Mm9MqconB5QBnuzF7blBzHbdZW8FF6WBD9txpgsH53LVmHReQFeZLzwI+A7xMsDPj1+bxHOCVjG8mSwtwAyZPbnwSD6x5AABw6JmH4v3/836xbpZWDaQZgkbsIFOWo93RXLn0oyhMS9VUQKYyltyVTSefaBSWydTGemOV8TjzOJGOzZnsrIq1mYkogOyujDECtC5AicFlx01QM8GOMK6kTQ+BHbMzQS1nc0Z9s31EJLuZBRYaKjaQucoSkJnzSAJBm6lJMduWwY3LQHzRu5Vx2eeb+wAA+AtuC95c7CbAFTLhuFsANVNhZcJgJ0vg9D9btExNcrlJTCVKkXvckmY5BNTMrEsz+URkc6gGtX5clDGxOZ9bMi9bCtucIyLjRXkcTXZiK3IXuErH7fYVnmdN7koxpuYZF7MsneuKZxcYnMnaDCDPQgqDLO0IDIAcf/nx+WboKjFTmm0mZLpNTJdbJt1eWAaXyWDs+7libVI8TjoXiHPLSRa/rRxdsTYb7Krq2G7JQtzN4ZYkkDOj0o5NalhxKPP2JdzkZUupZ2zC3L9mZwWac8eVXGECAmPcOLDLdYGdRqTsWl+SidQel1uy0GdmJ4OTjMPWRdkyuBkr67etB4Mx91lz8a1bvuWtK2Uv2ovRVNL5cUMZSWDlW2guRSOBV2w8TqO8pLGQFKV9fReo2RmVpovKVMy+rQhA0VIHdEo0tCxJVdtKZUt55+BlgZ2r3OPe+MZlFDcxF8bLofhNtmiymX7ATmMQmd4IretWjLWZ8ThHslLJXWkyOC7PkdZF2QLcjJW5J88FILsiTenHwnSBmqT4zTo22FUBkwRkNghqXJcad6XKyvco+GxcxnpjRaXuYCcFBmO9mcOlyEuxGQejNkEg+y0TV2Zedk7IuEjP3GbzGSu1++kalx735OPGXHP1s8DgmL0GiNm+kOPiuCgMDruOM8mErXicg82Zx02XdsvgZGldlDNIVmxckb9lPkTEBW4tTJOFSMooEx+wVLklzbLPLVmViOLrj6TURYWoKI/1xtzuN8ktZ4FdJrYLuFKpg51MIPs7pCxJKCAUAMvqp5PBSeNlubor3XhgFfsNBTtJtGPhrK/YJmCyOamfUgyuZXAtg5tRsvc39wagY22m+DIEnWXLteQ6Lm7CNhemtN/NOM7MKpdjgalwtYKXGIyGtdnHRaYiKXW4lXrB5WYoMkmpVwGfr5/SGEnSD/shIoCLLkez/xoQNOuIcTculgvZmMI2AQ2z0zB+DWvzxtoEt7+TwVnHM2kZnCwtwLWiSpm2LUnJhZQdH+uNOcGu2+uCqRznMhWTmShgtsNUZObCz85xtVtyy2ndslXHC65ID3i5GJztxgwBLxMEJdelr58aENQqbOm400XLAmtjN2vrchdDGCr10zYCXEkm6nYrDLxQIPONuxPUBDbny7rMXZRtDE6U1kU5zWXXk3bFG89+Y/B5YtKAB+xMF6VZ31RemdgxsWxhmi+9lVxxElORFnv2d943BZBJm5Uly97nuqxyS9ogKLniqlyOkoKT2Izdz1DXpXY7gHTcBVgia7OYnXNcfGDP48AXCsah7u1+WJt5vMrNKialWAlK2XVt1toyuHFpAW6ay4bhDbj60auDz9NYqr54QYG1OZIAJJAyy8C40rWz4grXcSj10nUE5qFxy6myAj3lApBVsROrnF/HAm9NDK7KdWn3U+W6hBv4NdsB7DGtjK8JxpFmXHzxSInNxCSZaDJqNV4BiZ1Jbklp/ne5+E5P6X6DLi3ATUO58uErsXj14qhrqKxzOy4gxAtcdWwFalrYedmOF2lcjgrA0rjoYlibfVxiZFLZZDBZm+xXfoVkS0rp89nfIeOV+grDAAAgAElEQVQSDPweYApJMpFYm8RsJZZrMzjX21FKbdWAWiDYeYHfsVfUNBRLsUyjfqURZI3RoEsbg5uG8pYfvQVAeDKJKaHZX7aidSUK2GXz3CpXpH2OBGShbklJ2RcyKhVsxgcCLqZS2iZgxCNNBmMaDeZxiZ1oXs6rYnASawtMOPIBogRe4ubukHikB+Cz9knH7baGgr24V1Tp0jWTb6rilJKHRHJ72uMy6NIC3IBKcNKAqYytRAFX/RI4VsSRADeg2IwkGNQ0GZUxSRkKcGQe/zin3WYX2EuZdral7iqX2hHYN3N7R7C71hOblbaVSPFL0xVXBeq+GGTUcw6M00oeArtO1ab3Qh0P8JvXdK2XlsG1LsppI+fdcx7uWXVP1DWkBavNNHMuOmthuu4lsRAzE8483wtqEW5Jqf8qlhOx9UACe8lda5bNDb0h96hsn3CdmH2ANoNxbpkQWJ6Y0NRzv9pMSjIxDQVv8k2gG1fzMu/Q2KTk/SjVcTE4O35nzKmWwY1Ly+CmiRxz4TEAZLekZjJrrE3fcWnRVYGd7d50uSvtPtR1XAJKCdRDMzD7AT5pLFwp8L7rhvY51BWnimX6tgmQm8FJCTdO5W1nzrpccYJxIG2l0PbNrC++xzMwu9JeLwV3rWtNWZmTZn/MazoNyJbBtQxuOkvoZ2FCXU422EkZbyKoOVxrJTdTKHhp3JKKOpLLSaPsYkGmB4c7ycocdV3XfMGuuk2BSl1iZ5qYqOq4pw1O1qZIOJGMA1vxhz43Ke4W+vove3w1oGYyW9e8kLYPFPrcMrgW4KayrNi4ovDJGqC4iMxPnmgALtj95EkacCWT2EzIpXS8e5kUwBQDOiLzEFhLKIBoFajI4BwZgr7rxgBZ6Lho7hUDuIU5YrEQKes2K9tuXFc/TeasbatkBJlxylBPiDfWJqyvAput8IRImcyDKi3ATWHZ+5t74x3nvaOgaHyfs8lEstx84OUsS8FxITYnWeSSIrfdRlXAYSupGLehNjnGeX0lqEnM1jUupvIuMTgFO41pt8bY6cd163KV+YDPfM6usj1fNHHaGNDVxqZd1/StqSpQs927TiDzuHFbBjcuLcBNUckm51WPXFVgasNj4wAXyiq0LhTpuBSDM69fsDwrAv9a1hITa5NcTiKD64MJSRmSUn1nkonNYBwKS+p/rOsy1F3dD9hL5wZlSMKTfFNjElDe/0D3o+iiVdxXykw214i9F9VkbQXga2NwubQAN0XFZGcmwEluSWmhhW4H8FmhITE42xVZpbxKrCUwBqcC+MB9XVEuQA/TkJitxOxC2Wlou1UMLrLPUrnKdV0Cvip3pfGdNHW7FTG4fvaNVl3f665VJNO4jMOWwRWlBbgpJtc8eg3Wbl1bZG2GW1K0HjVKPdDlImVRim/msC1PBwuxy5VxOmVsTsPypKQBTaxJCyCSu9YsFxQTykrKl3ASCyhmW139VzHbSLB3MdjCuAguypK7MoBJEoWz3NC1UxewegFeWCOu9dK+bHkaABwRDRHRXUR0afr384joFiL6HRH9hIjmTHYb65Kx3hj+7Ow/wxvPfmMwa5PKwR989NQR315C5YB4Ccgcwf5+FJaGzaiYSuArlkKVo31uFWuVWJsN8LEuQVf9JpitFvhE1lbh3jbnDpHsrmw8BtcE+xfmixSPLACfxWwHXaY8wAH4JwDmixdPBvAfzHwAgHUAPjIprWpAsvjaolWLCqxNE3fTKHIV2Cn3NUl1qtwmEvB5mYqD8ZTqKI7XpbBUVrilyDSstYrxmvcuxd0iXJeh20f6iXeZ/TTru/rsBT6HUpfaUQI+BdCo3PUSg6sJWEXj0DR8FMZB66Kc4gBHRPsCeDuAM9K/CcAbAVyQVjkbwFGT07r6xQQ1k7WFKl0ppdncrNpPCrgzIYLdi66gsCzlLSk1372r2qqyyENdToGg4VNkVe5HabzsGFwoeAUbRIEZlbFKPWiOCPEoXztCXYUaz4Y0dho2q5qzyvlS5RUxrzmoMqUBDsApAP4NQDYTdgfwDDNnGnwZgH1cJxLRsUR0OxHdvnr16uZbGiHZ5KzLLVn4FpvwBgaN20ujyEoxFQWQuUBNqlNqU6BbMtQK18Q4NW2wx1RjkVcx3qp7hLQ7+D2Tijd29NNO57zwJSgpGH9sm6r6HDouWjZrll3917q6XdcfVJmyAEdEhwN4ipnvMA87qjqfIjOfzswHM/PB8+bNa6SNdcjw2DA6X+zgpBtOCt8OICyQwgtzA7PitG4vTYykUKdCSZUsUgWD0RzXxhddx0MBxPecCv1xgHpJqTnGwqfUQ1lL8HsmpbeaRLAlG9Rd80Jibeb88rUj9BkGz5fApC8v8FU8cx/Ld42Rea9BlSkLcABeC+AIInoUwPlIXJOnAJhLRNk7NPcF8OTkNK8e2TC8AQDw+as/XwA16W0JGqUe+lXi2JhKFXh54yiCa0Xsp4JtmsdDv90VusdJCzIhSsoLfJGA4uxzTQzOx+ylc/tlbRLL977VRAJBDbNVvkjZed9INqth+YX1aNQfdJmyAMfMn2HmfZl5PoB3A1jIzO8BcDWAv06rfQDAxZPUxFokY20EEt2SoTEYTWKJVklVtaG0GE3F5AIy6LLCYkBNVOQNxOC0xoErXuJVUhXA52uHyv0Ww+BCQRZuJS3NFy9rE+ZXDJtVjUvgPOqLzVaBumAE+OJ0gy5TFuA88ikA/0JES5DE5M6c5PZESQZqHeoUkkw0i1FamKFbAzQK0QcsGtZWUOQO16WkyEr3DnStxiipUKXuc7+JjKwimaDkuqopBicZRMFvNVGwInuMnOBlzRfNHHGNkXcsPHHkyv7H7IlTzh0Vm3WAesmAcDDnQZVp8bkcZr4GwDVp+REAr5zM9tQhW0a3YIfZO4wzOJIZnKYsgZr4FnSNO0UT4xBciwXW5okpVMVg7PuFsqcYJRXqlhNdTsoYXKFOBTia9+vn7R2qfZCBe+K0wKpxUYssvyL2a98vFGhENteAe9tnKKrYrILlDbpMRwY37WXD8AbseOKO+OK1X8xZG4FUn21RAZzGCg10p0iKSVLAImtRxp1cbfIyO8kir4vBecYo9HNBIWNRsMgh9z8UdFTzJXBPnJZRqsCrirXZjC+Q8TcBajHubTWbFVz90tocdGkBbhLk6S1PAwC+d/v3CgwuVGFJFnnohm4NUEjxAmmhaZJPbEvVdU27HVqW4OpncMJJH3sFzeMhTFXLeEUFqWC5Mawt+A0nHuCrcmn7YrNOFx0r54sCjGNArR82a5YLa8EFZAKo+8Zx0KUFuEkQE9SyzMkOdYL3GomWpyYeFxGDs5WGtABdLMTHbKpcNNnfrrJGSUnjpRmjfoyPqsQaKQYnuaIkxWffW/M8Y1hb7PsXK+cFlNsEHAaU3Y7gsQh85jFrSnr+KiPQFxowxmXQpQW4SRBX5qQvvVmjyDSxNonNaADEVmRVLERrqWtcna4Aum8sol4wHajIfceDWIit7DVjh2pFLo5L0wzOA3xOI0hIGrGZrXMsPGCvaVM/r62rKocyxwLYGXNBAj7ROGpjcAVpAW4SxPVKLu0iDbXIQ4FPe19J6VaBlE95Sy4ajfLWWORNJ1aUGJxgbUtjJLK8CnC0761itnUxOCVbMt3PrucszinbUFAAXyirVM2L0LnjMY5CXNEl4Kty9VvAN+jSAtwEyll3n4XlG5Y7424+haVZmBo3m8aNKbGCUHZSUGQepV61wO1x0cSaQmNtmjFVW+GC5S0lClQpey/wBSYyNMHgxDliGykKFia52TTGVCjwqxh/xNzRslwXI9fOBWl9tS7KcWkBboJk9ebV+NDFH8JRPznK+Rqubq8rLgQR4AK3A2gWb1PsxBlHsBe4oOA0oCaNS8z+QOmavjZIQKZhuVVsVgv8KmbbQFli11K8TJxHtruygsFK88h24zbC4AIzKu32hLiifYxPWo+DLkH74IhoBwB/A+AAJJus7XdDMjP/XU1tm1Gybts6ACh8zJRA+aLox0UZvPdN405RxuCqlIu0eCUQ0Fjqdjuk48FKOjC+4gNcDVOtcsWKY4Fw5S0xFY2hFMPm7Pb0y8Kk+iXXbcU8stunicGJRlOEQSTNF4nBSu5aiRXbYzHoogY4InoVgEsA7OGpxgBagHPI2q1rAQA7z9k56o0l5iINTSbRAJ+2PZUsRHC5lFgeBBBwLHbfWKgUU03xFR/gOl20vv5XjJ1G8dvtUMXgQl1ukYkVQUBmK/tQ161jHpX6VtOm/9hM0yoGKxmEEjjaBsGgS4iL8rS0/l8BeA6A2Y7/Z8zXteuWTSObAACzh2bnn7DRsjaNy0nF2mLdTBUut4JygQyCVYpfYkLZb86x0ICXwggIHSN7vKqUcUFJCSAoKm/B1WezXKlcF1PrZzN8lWIW6wjzS2M0mOfaH4gNZWF1jUthTQnA7wOsSkPBCgEMuoS4KP8IwBeY+aKmGjOTJVtQ5mTsJ+4WrLBqyhyUXJQaRS4tRk19yRWT/e3qZxPKW5NYUVI0Fe5HkZEoGIwEFHb7mo67aY0jTZ8l5S3FlzRGk8aNO5HjYs9fDbN3jgVkw8c8d9AlhMGtADBcWauVglz2u8uwftv6XEGO9cacE15rhZtlVWJJzN4vj0XuUjR2gL+qjg/4xPidxGYj+lmXwtIAeTAL8bjuJJbbBAuJjcFJBovGXVk1L3zAJ4HuRI6Lzeaq5rzWvS/FHc3rDLqEANwPABxDRG3mpVLuXHEn3v7jt+OEa0/IFeRYb0wV/9BYm3UlmWjicRrAKsU/HO4032IMsU6zeq5xqUsZSeNisyXR/eZQUl4GiwrF77u+BPyTxeA8z9MJ5Ar3q29eONm/AA4TPS72GEku6koDxzIgRS+HEdcedAlxUZ6I5AOjNxLRdwA8CqBrV2Lmm+pp2vSXjcMbAQC3PXkbXr//6wH43ZKaZA+JqamSSQKzCG2lGeJm0yjy0Dq2K65xBqc0RKqAvKTIKxScV5FXjF12jrMPDZdt48MFUjabk/osMZVKxifcyzcuGsarWadallvJ7C2mHtxnY34NuoQA3BwAOyL5VI3rczUEgAEM1dCuGSHZBDNZW5e7ubK0rUpNOcotGZhFaDMVSUmLyluIqUnKTnRLOo7b7WuCwWmu2Q+zlUC9wx1vnzVjnZ3j7MNEMxUXIxP6oO2zy9iR5ot0bqndGuMoMOtSupfEMEWmLrB2kbVafR50CQG4/wRwDIBLAVwPYF0jLZpB4nqRcj/vnFQBnLDQYgCxxFQUbrYq1lJQQJJl72E5oitO0f+6GJz9Hs+QZBrJdelV5AEMMTvH2YcJjjW5QEoEMl+fBeMoc8V53duKhJMYIzD0eD+x6dC4o3nuoEsIwP0fAGcx80eaasxMk2y/W4c6ld9607I5jSsyFPhimUqVYvKBYChoiu63GAYbodQkpaNRUiUGRx3nuVVjXWcMrq7vxJWeG8pGjcRsJQYjGUc+BS+tI5UrsiZQs93+lcxLKitA0B6XQZeQhJEhALc01ZCZKAUGl054IlItLg3ANbJNQKmwJHZSpex9CRROq11w43j7VlMWqcoiFxiWRknZIKVRatL4hiry0FhTPxmVElOvYrZqllfhFbBZW0zSTIxb0h5f1zP3AVYlCHrGZdAlBOCuhTv21oollzx4CbaMbikwuKpsSa3rMtQVGfNeSkmRa91PLmXvU2rSNSWFpWGhUQpbqdSkfga7LqtiUAowLbV7ksq+xAdTYVcxMonxaIGvLsCOmVO+da1hpKKhWBHjbWNwYQD3TwAOI6KPE1HQOywHSa577Doccf4R+NK1X8K2sW0AigwOCHdRBsfU6nLLKRhcwcL0WOpVyQS+OpLLSWSwDWdRSq5bialqYo2lMa1S6gKYlto9SeVCPz3MXnr+Eni55p0GBIB4l2sd17HdlU4jwGJtQUzYOnfQJQTgrgDwLAD/AWAzET1MRA9Z/z/YTDOnj2TvnLxv9X35K7kIlCtgAlWyObusiqMpACsGEKWECFG5eNhZpUtP4a7ztTtm719fDC4A4EWm5nHdVgGfWafU7knMojTLkiLXgJeK/VY8AyASvGOMRt+achgBUj9FJiwYSmbfB1VCmNhTAFYBWNJQW2aEDFGyS6LHvVyJMti5+JnHj9tKyiyHJpZoWF7o+ypLC8plnSssUkl524pM5YoLjYU0kBouupxMy1upvIhp/FxH/3tczBx0KfhSu6dA2TdfXM9cmlMlt5zAbFwgADTE5mtKxPGxthAmbJ876KIGOGZ+XZMNmSmSfQrHdEv2uFdbYkltn8gJPVfrrlRkC1axEAkEfW0KZmoNpIarYycOlisyOxsQKly9pfZNgXLJ8NEYOxVj4fMcqOZOaEytCQYnPHNfn82xy/ZNSgy2dVEGfg+ulWopxN0Mdla1TcD8urddJyaBJCrJRKHIfcDkZGEeRSYFzUUrPNB1Kz2DmLHwuSs1rssCg0s/r6hxRXpdt1OAtZXicS63pCcGKdWpGgsb7MxxEZ95IJuvy5iQkmM0a8e3Bs1zB136Ajgi2g7As1H+4CmY+cnYRhn32Q/AOQCeC6AH4HRm/hYRPRvATwDMR/LKsHcx85TYeO5KLOlxL5/YEpA15aIMtjyVilxkGC7r3KOANCwvmMFFZIvGMLhCH+CJnZiKzCxTtSuqanzV/Z/EjMoq15qGkYlzrR/GHwNkkdmVVc9TAsEeW/smhVj2oIs6yYSIOkT0CSJ6DMAWAMsAPOH4v04ZA/CvzPyHAA4F8DEiOhDApwH8hpkPAPCb9O8pIS4G1+VuPrF9SSYaFlaXK7LWzEEp+7FCYZWsbWGxaxJLosArNDYpHC+xjcAYXAiQmVZ+Vi+o/zHJN30wOCdT8bjWqsai5C1wGBDecalpHmmuLxmuZrnktXCsHZHlCmy+ZXBhDO7LAD4F4AEA/wXg6UZaZAgzr0DymR4w80YiWgxgHwBHAvjTtNrZAK5J2zYpwsy44P4LcMQLj8gBzt7QLbrHFIslZl9bVJJJhLtSw87E5AAhKaWvtoYyuMiEkyrm5YvBaaz20ISbqZBMIfVTBeo+N54Uv0L/7ue6mHAo+7PdslVGjcR4bWNi0CUE4N6PZKvAn/MkcF8img/gZUjeprJnCn5g5hVE9JyJbo8pC5cuxLsueBc++ZpPYvftd8+Pu8DFdFHaSsosh7K2KBdlZNxJUlIFpS4oo8ogu8VU6rK8mxgjKXYYGoOTxkUyCPrp/0QmU9hzPCSm6DOICsDnmGvaNk1mbNIsS7FGaY2YMVtpLAZdQvbB7QbgokkCt50A/BzA8cy8QXnOsUR0OxHdvnr16kbb9/TWhMw+vO7hXHH2eDzuxszFeByPH9cAXLafzj4eFY+LADXR8hSs8y53nQxGArK+mEoE81AlnwTGbEpuNkUMrspqL4ED3POlceZRYzyuip1q4rcS8E2VPmtZbtU6Ks0dgc2Z5w66hADc/QD2aqohkhDRbCTg9t/MfGF6eBUR7ZX+vheSPXoFYebTmflgZj543rx5jbZxy+gWAMCOs3fMFU23Nx536/L4J3K6va5bkVmKPArIarLaNdeULG9JeXe561RY9kKWgL9xCzsG+C2lWcVOVezXp+yncOakN7FCSIgImRel8XLE9aZKn9Xj4mBtUpzS6/Ewzh10CQG4LwL4OyLap6nG2EJEBOBMAIuZ+ZvGT78A8IG0/AEAF09Um1ySvVR5u6Ht8kk71hvLFV6Pxzd9i2BnsblQ1qZRunV9P85mPJWLTmItgsI2F3ud7Y4pj3GYAeHL+AuJwYnuSh+zncJlHzt19V9k9grPgbp9irnT9FiL7lcpluthc2b9k244CZ++asrk4E24hMTgDgLwGIDFRHQBgKVA6YvezMxfqatxAF4L4H0A7iGiu9NjnwVwEoCfEtFHADwO4J013jNYTPAqAFnG4HrFsjkBczdmHwwuONOypkzDUuagoLAlK1yyVCWwjxmXupIsVK5LwSKXFLNtELhicCVlLxgBk+Va68cFKhpBAiNzAp/glsvqmferbJ8EZA0n35Titw7W5h0L+D0BzIzrH78eT20uObgGRkIA7t+N8geFOgygNoBj5hvg2GuXymF13SdWRnsJ27LZWV7mYtnlrgPCXY4a8FJ9Xkez2JWBctFt4gA7Xx3J/SYBnzSOwUwtJrtUiqn4skVNIEOvdK7krrT7PBXYmZapVLFWH7Ovmjule4cCWYSHIPR52M9S5ZY1xiJxcJXZnH0uiSp05ksIwB3QWCumuZiJJRKDKySfpMdtyzMm1tZ0PE6b6lyVxi3FF7zut4hkjxirOuY1X5LLVXKnmQrLq+AE1lZXnycymaI0RhWZo1I8Kna+hK6F0Htp6tsMVMqodPW5KnEnm1eDKCHvony4yYZMZ8niZSaQmQzOBDXTRWmWgWYSS2p78bJCCfiYhxR3k1xOoRZ5TAxOZEWBLmApNukdF4HNVLk36+y/isHWVLYVuaSwq2JzNuMRE24i3Iy1sbya2H/JvQ+/AZXVyd54MogyuD2PFGbGwqUL0eNe0UWZTuCx3pg7scQuGxM+u052flW5tgSS0MXrsUJVSRPws7zs79r7o+lnIAj6yi4FbPbTNHA08ciSIm8iRtRwrMkGkCoGHxqbU/enLvCO8S4o4rdSrFEcL4dxMMguyhbg+pTLl1yOw845DKfcfErO4HwuSheDs5W6mTmpAjsOA8HQxR76zTSvq8ThZimBneB+a4LBRbn0NFa4AURSoojPXVnl3oztf7DCboAValirlwnXZRw1YBDEzK9+3PvSeA26i7IFuD7lsfWPAQAeWPNADkbm1gAT1GzgMxepObFDGVxtbzXRMEFh8ZZYiyKNu2qbgK99tTG4UBCMBFPRhVSx30kbg6tLeccoZmnuSNf0KXLXGIl1YBlHoc+zJpdrXdfUuGu9Y2FtHxhkBtd+LqdPyTZ37zB7h5x5jfXGclYluSJN4Mt+yyQGyOoKoIfG3aSFKbnoNGCX/VZ1b5WlrulDXfEVRUxFAjvJvWkr+8YZ3AQqexfbcB13KXspQQmokZ3VBPx1um5dHg9fshZzG4NrpQ/JJmSHOgUG53yTSc+9TQCo7zVcTcfsNIkovhRwZ0BccFeW2iQpmhiXY9NGgM3ghH1wrnikzwiQYnB1vYR7IsuaZApJ2dugJrL/ugB7Ag0IHyOTmL1rrWXXbV2UrQRLBmqj3dFcWZguyoK7kovZlQWA61XH3aTjwQqrLqXuCaCHpH1LYOe6bkhbVUxiIhmcZx9cVQzOG3ebYq61ftpQZfholH3pHoHMKxjIGmaINnBLcccq4yir17ooWwmW7PVcI92RfEKVMieNGFzO5jg8c1JieaEKZSK3CUiKSVLePnYSw6pUbs8GGJzocvSxswhmOx3LBUUujEuPeyAuvzW/FLONmBfBrsgmgN8DdpJXRHyTiTUus2fNxqBKbQyOiK4goh+kn7WZ8TLSHUn+7Y0Uk0xcbslecU+c5KLUAFmMSzOGnWmsTXsxSnEBSZEFx5ciWFXjDE4Rm/RmUSqYrQZcm97XVqdSd8bdFLE533WbYK1R4Khwt2vmjmgoOuZL66KsR96E5BVei4no6zVed0pKDnDdEXcMjt3vpQR0QBb6Gq6oFzLXxGAkl5smBpf91u+9G7GwY+4lMZXAt1R4mYrSbRxybhOxOc1c1o6Lax7Z1w2OxzZsBKmA2AOCVTE4KeEkO791UdYjBwDYGcAbAbylxutOSRnujrsoswkkJZmUWJsUa9O4IptWOhGLtJSiHLCXR3uP6cjgRKZiGQSd1N6MjcE18qq2mPsqxkViIT0WXmHWB7NtmoU2YYj5YpAZbtns3wb4QWZwtQEcj7/K624A3/TVnc6SbZzMGNxodzSfQKYrsrQnTgCXmL1vjbuf+mALvnTlrCwuxglUHDHKS6VYPe7KEDfThDOVGEMh4jn55o5kHE0oU2ugz5rrS65+k5lJhmV2v3abgEKI6Bgi+j3P7/sT0TH1NGtqyn1P3YfdTt4N1z12XYHBFfbBud5kwvLWgKa3CdS1eDXWuZ00IC1MV/aX795NM7hg12hgTMV2w4quSIebqa9swSYYSRMGganIPUlJKtftDGVwkqtfG5scdBdlCLSfi+T7bJK8Oq0zY+XShy7F+uH1+MWDvxBjcDmo9awkE2PS1sXaol6kXNPi9QXc7TcqZGWRnUwWg6vrmhqLXBFrktivfa1G3NhNGApK9u9isNJ49XW/utodAeQxiSiSK9Le+9a6KMclxEVZNUqzAfQq6kxrmT2UpNsOjw3n2wRGe6P55PJtE5AYXIy7UmJYtTG7GmMHLsvb62aaQAYXzEIimJMmBudNvqmJeUnzqIm4Vij7t92VmTQWdwt8nhqQ6mdeVB2XYnBVcdpBdlGGxuDYdZCIdgLw5wBWRrdoCsu2sW0AkgQTk8Flk66UZJIxOC7G4DSbu4MzITUKTlEnaluBzeAqYk1eN9MkMTiVhR0BppoYnHpcYtpUF+NrwIAobRNwuLpj2xQKZBoAasTIstm/4KL0Zdq2LkpBiOjzRDRCRCNIwO2c7G/zfwDrAbwbwE8moM2TJhuHNwJIJo3ookwnl+muzP7OpIkYXChI1VVHZHDKpIlQBldXvKwRl2Yog/Okeqv6qWFJgX1oJHGpD7Bzuittd20MI51A8K5rTpVi2Yq3uvS417ooPXIvEtAiAMcAuAXAUqsOA9gE4GYAP6q7gVNJNo1sAgBsHdtavU2Au6L7MXSbQF0xuNDXfMUoB3MBSrGm0nUD3UahIBDqZmo6TmWz3Gwe+WKToe4x1bOtqW/B7F84bsfdzO0TKldxEwAUA96Bc0rqSylbEuX1ZZ8z6EkmXoBj5osAXAQAaQblCcx81UQ0bCrKxpGEwW0Z3VLYJpD5uKUkk6yeq9xItmQDzEO1GNlSUn24U6quG6oUYlhbaBtCr2mzk0xH2UZA1CUKg4YAACAASURBVHMObWsTLCSGwQkst9Y2TRKDCzVW7HHJxJU5ad6vZXAKYebXN9mQ6SAFBme8i9IEOPHtJYEvUq4ryaRxCzNCYcVeN7h9dcWpalKUtsupwOBCt0/EAF8Trt4IdmXH3cz9XlGGzCQxuBhPg2Q02oaSL2Y7yEkmQT0nok66H+4sIvoVEb0kPT43Pb53M82cGpIBnMngpFd19bj4MdOsPmC5K5veB9eEda5hXbbLSXCn1AVqGrALzsBrWFFKLidvVlwgy62tz02cK9QvbROQkkymAIOrLQtYUe5r0zu3AKcSItoewNVI4mzvQvI6rt3TnzcheXvJ39fdwKkkmYty6+jWcRdlz/25HMACtQgXpRTn0ABZXXulYtKzpaQB773rArum3U+RylFS3tIYBT9z4d5Ns/yYe0kZlfZvdQFQ8NaASTKOJHelt329NotSKwsAHArgnQDmw9gXx8xjAC4E8LYa2zblxGRwVW8yyX7LJGZrQGhyiMp1WZdbRml5ijG4huM5TbufYq4v7XGyf5tQtjWR11Tcy54vMWCkBYSQOpNlHJlu3Ko+DHIMLgTg3gngdGb+OYCu4/ffIQG+GSVbR7fiqPOPwpUPX5lvE7CTTFxvMgGKACeyuUDg01jJURZ84OLVKhzXvibtPWYqg7MVUbBClZ5DKAvXMJ4mxkvRRzXjr+u5KerEAGioy9ybxCUAv33OILsoQzZ67wNgkef3zQB2iWuOXojobQC+BWAIwBnMfFIT97nxiRtx8YMXY9GqRdg8shlAsuHbjMHN6c4BkChvE7wkUGsivhb8qq6GLfVSEFwTdxswBmcrMtOVpGHbUXsZp8J4KRmcKU0/tyZckaFu0lBwrGpH66LUyVoAe3l+PxDAirjm6ISIhgCchuTtKQcCOJqIDmziXtc+ei0AYPtZ2+cxOBPgRnujBeaVuS7t8mhvFEM0lJfz401vH2iAhYQG1n37l1oGl0jV+wSryjGb8ptg9rUxOC3jny5zZIJdlF0e7G0CIQC3EMCH0mSTgqR75D4M4Nd1NaxCXglgCTM/wswjAM4HcGTdN9k0sgn/fv2/AwA2DG/IX9W1bWxbAbyy43bZ3AQ+2h3N32VpuyjNbQbmpnHzuKuOuQevy+OWWqGcTvYhGsoXQYc6+fEOdfLjBCrWcZRL1zHKmVK262QL0WxrBvamC6VwvFesE3pccy9ff4ZoyDl20nH73GwsNGM3REN5MkXWVvOZa8arx73KcRzrjanG0ZxHrucslh1zqo5xFPummDvmmPYzR8zjmfTbN22fNcezcdE8z0F2UYb0/AQkWZO3AjgWybbUNxPRlwDcCWAUwIm1t9At+wB4wvh7WXosFyI6lohuJ6LbV69e3ddNur0uDnrOQZg/dz6Wb1wOANh1u10x3B3GWG8M289KsH6sN4bthrYDkLyIec5Q4rIc6Y6Mg1pvFLM75fJYbwyzOrPyclbfPp6Ve9zLy+ZEHuuNYahjTPbOEAiUW+RDnfHFNaszy73oOtYCdJUj65jty8uu41ysky3SHvdK/XTV19wra2sBmM0+sKM/0nHpXM+45PdN28DMwX3IjpfASxqXjkOR94pKnYgKgGX2YVZnlnycx8tm36RxLNQRxjGLNVWNRWFesND/wDliz7UOdYrjIvXB6nPlWGjWjnU8H5eK5zzobzJRAxwzPwTgzUiyJ7+c/vspAJ9D8pLlNzPz40000iGuJ1Z4ETQzn87MBzPzwfPmzevrJrs+a1fc8w/34LhDjsuPzdtx/Fo7ztkxLz9r1rPSRnAOdgBysAPGv0ZggpRZZrATvMzjAAqTVwI+AoGIcvZkW5LORUfWAnSUTUYmLl7Pdey+lRSQg5HYyqtw3GWpC9e0j2f9kYDJxUjF4z5QE8Ylf57Gcw7tg8Q8zDGSGJ85X8x5lCtyqW/CcXNccsPKM45O9t8pst/MFVc1RzSsTZoj4tyxDCtK/3Oxc9uDUajjMmqUa1Caa9m4SGvBNRcGUYJ6zsy3MvNBAF4O4D0A3gvgVQAOYuY7G2ifJMsA7Gf8vS+AJ5u6mQlqe+ywR17eac5OeXn72eOe2+1mjQNcxtRK5aHxsgleoWVTUZrHMyXlqied41K6VeUCgPZk5V0qC3UKbXYofvu42EfhXvZiLwC21D7hfN/9Kq+puJc0LlIbQueLVM4UeWVbNX3QlK155Bw7x1iYwGeW7TrSeIl1HPMuq2Mbja4+2NcyDULz3s76mjqacTGOD3IMLvRzOQAAZr4bwN01tyVEbgNwABE9D8ByJF8yaOxr4vN2mOcsmwCXMTgAlQwOKIJdMKiRW6nZk90MQmsAK1QR2uXuWNEVadeRFqkGiDVlDfiYdQgkA0cgMMccF++rAC/VvQLLthEQM8aae0TNO81zChxrqY9EFvA3PD9D2+czWAZV+gK4yRZmHiOi45AktQwB+AEz39fU/UwGJwFcFo8DLAYngFoo2ElAJCkHIgJxMrFtRR6sLJRK0XTLOOvHKKwIJW0rh6ytHeqEKyyFMgpVUioWHXM8sGxb/BqDSuMV0PRZrBMIZKr5EjimNlDUNVdre+ZKg2WQRAQ4Inqoj+sxM78woj0hN7oMwGUTcS8T1EwX5c5zds7LpovSZG0SgzMXr8ZdKSoQz6RmShhcljRQdU6w5RnhcgtWWDVZ9qb7TT0uNbri+r5XA4pP4wKt9X51jYXG4Ah9Hn24txuZqzUZMranYlDFx+CegvAF70ETk8HtudOeeVlkcJKLUojHxcTg7LgbgfJ4QQZwWewgkyh3j0ahKK4TfG5NCjHPEEyD79K41NW+KPfrBDI4c+7YCjHYtRZjBAXOTRXLizAgCkBBnnHRPP+61kWEy3XQRAQ4Zn7dRDZkKssOs3fIy8+b+7y8rEkyEWNwNSWZuBJLsizKbGLbLkpVDCfGaq9LYddkFdvsJFNUJddtTTGP2gB7AhlcnnXLXLL+Q2OE0tg3Uqdh5pQxfjsRpZSIEwE6Gld3DJgOcpKJCtqJaPv0cziHNN2gqS6777B7Xi64KAMZXMFFWROzMzMnpTIQCVgxrsgGFHPovUyF7Y3BNcwkpyKDyw0iw3XrTaxQ3E8DRjGgFhoH7YchmYaiyr3d8PNsk0z0ok0yGQZwNoB/RJLBOHBy8bsvxspNKwvZklIWpSYGF5VF6XMz0fgCFBdjDGBNQwbncsUBfSqpmcrgzPmSsjmgBuOoAYMguD2KdvrYDxEBLHsCtPdoxHgJdJMPmqgAjpl7RPQ4JvBlylNNjnjhEQCA3676bX5s5+3cSSaii7KBfXB2jMBkJ2ad4H1NMdbjFGNw9hiZyttUUsEJJzOUwdluXJUiD5wjtcVgG2BCkivSHAfvFpOYPjfQn9ZFqZNzALyHiOZU1pzBYjI1jYtSA2oxsbkhGsoXoMZFaSssVTzDWFASuEYlGTTMnEwlZY+FS6n3c79GkmYmksHB7Zbsh8HFxNqi3JtCe2IYnzRfSq7bqfCcPfN/UCVkH9y1AI4CcCcRnYbk+29b7ErMfFNNbZuSIrkopX1wdWVR+kDGzAp0LkZrYWqYSuwbTpzlwIUZGl+pUlL5K8wM5W265aIYXBOAPcEMrsBs63JvhzKPCACtqz1OFyXKBl1U8lFNayF0fAdNQgBuoVE+DeUtBJQeG8IMlgKDM1yUoW8ykZJMQsHOTHu3GYn5mh9NYkVtiiNCeTWRNGDHUQpWuCNm2U8/o5TUJDE4yb1tx+DMcdG49eoyAmqLG0e0pzRfHHFK9f0aMI60839QJQTg/raxVkwjERncbMFFqXiTSR1bA7KyyU6yN4vYVmhoYkVte400ij/CEvYpXxeoqTNNmwajSWJwmUFkv9XFjsGJrmgF49dkQoaOdTCYRjBKm/GbdYJd9DHPOWKMWganEGY+s8mGTBcxXZGSi7KJLEqfUnfG2ojQgTsGFxwvqsv9Upfl3Ud8SYrBiRb5RLoTJ4nB2YxEisGJxpHifhrjKGZfW1Ts0xOzyje9C8y2HzanAsS61p1lyAyqDC609ynmYtx9+/E9cWIWZaf+LErR2rayKKWyuBgjQEfDCmuzvPtQgk5QI8+euAFgcBpmW1LwmmzcmgyiYHBUzDuNq1taL5JB4AN+zZzXtC/KwBtgF2UQwBHRPkR0OhE9SkRbiOhP0+Pz0uOvaKSVU0jMybLrs3bNyzGv6goFO4mRiWzOk2QSAzrBSSB1Wd59xJckt6TLOPC2byYxOGG/m52gJGZU1hVrrMsgqOncQmzWs76k+G1dc6cJ1/2gidpFSUTzAdwMYEckX/XeDylAMvNqIno1gC6AO2pv5RQVE7xCX9UV84mcbKHZmZMlpiIpdSlzsC43Y10gUNOilpiKtE2grwSCacLgxHGxmK3E5jTsX/XWkabjURHn+taL5C2JSjgJ7H+oATHILsqQJJMvp/8eBGAzkpcxm3IZgMPraNR0EZOFqbIoFZ/LkSZ4tqDMLy4DfldklkXpc62oFmaom7EuEIhkcHkcBZ7+x7icpiODs5mKg535XJQxzFuzP07TN21suqqOL2YlurFdWym0huIkuqIHVUIA7s0A/pOZHyOi3R2/P4rky9ozXm740A0Y7Y0WQEqzD071XkoP8FUqIyEIrlFegG4B1vZxyoYZXKZ0utwtv72kIgbn3cQ7gYppQhmcEGuzlbrKLR0zLwJd3aExu74YXEUMLnrTd03PXBqvQY7BhQDcLgCe9Pw+O/B601Zeu/9rAQAj3ZH8mLRNQJNFKZVtxZQrbCGmZi9M+9ysrNoyoFHGoW6TCWRwvr1vVTG4ErNtAnQmicFlY9HjXsmNXRmP8+wVVLGzmlzdwSxaCfaZeN3YFW7cfvoTA+qa+q2LUifLABzo+f1QAA/HNWd6iQlGwW8yiUgs0ZYzkQCxlBXXhIU9iTG4Kkbii8FJym+6MzjflglXrM1U6rYi1yj1mK8J9MO8gs615ovp0naBui8pJ+qdpjGgHgjegyYhPb8QwIeJ6A+NYwwARHQkgHcB+FmNbZvyYk5q860m4kbvwE3fPrdklctNUt4+hRX8nbhAQGw6mG4H1iVFXgC7itic7x4qd13DDC40JmazWddYeF2XwhtO6mLeoeAYVXYxfgSMRcX86qcdTZQH2UUZAnBfBrACyedyzkYCbp8kouuRgN+9AL5eewunieyy3fiHFjRxN427UsPUvGnMFcBnZ8WFKssYl2YoqPVjwUqMRHRXOsZLe78oRhYxXqFGieR+C43B+RIr6nLXNR1r882XKlC33dvS3GnCRRtaHmQXpRrgmHk9gFcjAbfXACAAbwPwYgCnA3gDM29topHTQcwvC6i+6K1gcP24JasSSzRACUwigwt11wggqEl1t5WUS6mVLPIIt1mU4qs5BmeX7QQl0SByKHj7HrXF4wKPB2dXehi/Jh5Z5S3xtTXGOxEzBwdNgpJCmPkZAB8jouMAPBcJyK1i5m4TjZtOsuOcHfOy+LkcjVtSsCpDQUrKovQqfkORh1rJKms+xl2nuG+mpBjsdUsGMRV771cgGMe8hq02964Qg/NtgNfMr1CmFvpV7kYSMTzMNgTUNXFdX5uaZm123wZVvNBORJ8mor3s45zICmZ+sgW3RMzJG8zgQrcDeDInQ9yYkuIHmmFtdbkffda5pIBcfdYoNS+zFcrSN/OaiMFp2IzNbKU55Uqm0Gw3KfUz0EiJ2hiuSKzQGkrSdoCqsSjMI8+WgX7aFFK/ZXBlqer5iQAeI6JfENFRRMaotVIQ00oKjcHZCzwIvDxgVxU0V7soA1lbE8kR2mC6qHQqtgP4xigmaSAqcacmsJP6JhkBXq+A4LqtC6Rqi7X1EacK9pAoEreCXe4Ra8fH2gdVqgDuI0hez3U4gJ8DWE5EXyMi33aBgZK9d967dGzH2ePuytCvCfhATXInhcYLJBdVsCuuYRbSj5Kqcjn6XJFVdRrrc8MxuFJMMWC/m2a8st9c9w4GqZpibf3ERzWsrXLsjHPr7HPU829dlG5h5h8y858AOADASQBGAPwrgHuI6CYi+ggR7eS7Rr+SAukDRPRbIrqIiOYav32GiJYQ0YNE9NYm7q+VB497EOs+ta5wbIfZO+RlDYMb6rjdkkNUH5sLKWd/5+0LdC01kRyhVVgu5hUag/MmDTTBvGJilorjXrdk1UZvRXalN+4U4+oOPB66rSA0Hqk1FM2xkOZO6HOOqW+WB01UPWfmh5n5cwB+D8CfI9nv9jIk2ZMriOgHRPT6mtt2JYCDmPnFAB4C8BkASNnjuwH8EZIszu9Mput0pzk7Ye6z5haOiQDneQ1XHcBUUDoKpSZZ7VmbKsuBMbjgBRsZg5PcTCqwc8TpvP2sqSxu9Ef/bbD7UxlHslieNF7S3Ilpa9NlW/FX9UcaC20sM3SehxoKmvqti1IpaXLJr5n53QD2AvBxAA8C+CCAa4jowboaxsxXMPNY+ufNGH/P5ZEAzmfmYWZeCmAJgFfWdd86xHxtl+b9k6GszXaJaOqL7johdqBaaJoYgYb91ai8JLCvypD0MeGC8taAXRNMVXLRKV2UGrBXJd8o4k51bRMQ52BNY+rrj8tQlJh9gc3ZdUKNxoZBfdCk754z8zPMfBqAo5AwOgLwgroaZsmHAfwqLe8D4Anjt2XpsSkj0rsoY77QrSlLi8tnqVaBYKndMYsuQkn5lGYVO5GUlwSIPiaoSjiJcFEGX1NpcLies1d5h84dxbgEbxMQnn8UKxKAXzsWVR4CCRxL7ZtAgBvkGFxfL0cmojkA/g+ADwE4DMAQgJUAzgm8zlVI9tPZ8jlmvjit8zkAYwD+OzvNUZ8d1z4WwLEAsP/++4c0K1rMbQJmWVpoktvEV5YUeZUy0ij7ksJSKBFJeWnYRui55vFMYTNbe98UrjiJtYgKy3I5hTKpGAUX+qkZ87gmviT1U8PaYt24qv2BdcUvPdmlrsQSzTqSsnS9CScxcco+kq8GVYIAjpIvdn8IwNEA5iL5wOllAM4E8MvQPXHM/KaK+30ASQbnYcycgdgyJB9bzWRfOL5ywMynI4kR4uCDDy4BYJNiLlKTwfkWY/btthgGF8P4JAVvt1ujdGNesBuabp611fV2fImdVrmT7AQCFwjY7W6CwYnPQDGOWR8YjA50+90q54uS8cfElKS+hbI8jTEhxaN9wF/lxi0ZAaheR62LsjmpBDgi2gPAe5EA20FIGNRDAE4GcDYzr2qiYUT0NgCfQvIKsC3GT78A8GMi+iaAvZFkeN7aRBvqEPvdkpn4lEAQSFFx0VW56HzWvKsO0LybUZWIIoyXyCq0YFeROSmxvL7GIlTBRSToZH3Ov4cngLqLtduKX+MtMOeLiuUqlHEo49fMncIYRQC/xmhSr6OmGVzronQLEV0I4O1IvvW2GYkL8kxmvmEC2vafALYDcGX6gG5m5r9n5vuI6KcA7kfiuvzYVH6bSmE7gDKwnv1tg12VovFZ25XgKNSx2xcMWIHKPtTVZbuHJBeayl0ZEJvS9icqBhdx/Xxc2D9HKsFLYG3SudnfQf2sy1DQsDbj+an6LwC/OEaeLQOhczu0vqbPgyZVDO4oALcgcUGez8ybmm9SIswsJqww85eRfN1gSsnF774YS9ctLRyTtgmEMhJ70WlYnsRgxPoOFx0QqZgDFZMqHicl5cDdH6mfEjsr1QlVWA0zuNjEkkolbbG2qnmkTo3XKHKFMRXMogWXtneMFMCvGSNzHUntDu1P6HXM44MmVQB3EDPf38+FiWgXAKcA+CozP9DPNaabHPHCI0rHfFsDMillBSoSAkLKYnBc4Yqpaqurb8GJAhFgJynjGHZWMgJQ7YqLUViNMDiLeYjsxOGu1QCZZp72My4x7/HUAKvkivQCWYW7tjBGwrh7gb8BsGuzKBPxQnu/4JbK9gA+gCRONrAi7YPTLEyNErEXVxVT6yeZQFpEtWURBjIbG3yrFLA3vlaxZcAbsxTiK8HjUlPMUmS2tlFToYA1WZdE5AR+8xnE9qeuD/D65ovEQlUsV8H4XHPNblMT7krJQB00abrng2s6pKL5LI5mMcaWnYkVnkUtLcwmlHE/2YUh7iGJnfVlzUuuuJr6KV4zMMlCnSFYwxj52H9otmRw/UBXb2meuxhZoLvWx/hc19T2s7YkkwFWw4ML7RMk4vsnLWsr2wURC3AaV1wlg1MuzNB3UdbFbCTXqlYBh8RXJLeUeR3vWIT2MyL5RjN3NArYy9qEsXaBoLbdE5ldKbJWqT8+luvoM2Gc2UoGROxYBCeZtC7KVpoS39e6M7EXrAl2/YKaaJ16XJeuxehdmAqFHfVC5opEAV8/JRbqG7uq60jA6uu/Cuwjk0kykZhHweUI3TwKYrbCnPL2M5DB1jleTje2LzYrAHmokVnwhEwggzPHdNBkcHs+QWJOrkIMzuOWzOuQe09cKDvzJpkoXDRRDE5SXhor3GPNS4omJL4kgr0AZJIi8/ZfA941Zk66+i+yU6UbUwRNYe7EMJUY96M0TwtGgMRaIb+SSxpTp0EgMTutQdQEgzOex6BJC3ANyUv2fEnpmOZ1S3ZZw040VnWl4vNYrXUtzJjXeRViCh5FIyqsCjejj6lUXcfb/wi3ZD+ZkyLz1DAPQTGrXLoOoMzqOdsdGHdUGUo+l7YDvOx1EWLUSPFYaYzMe2n72TK4eOnrXZStVMv/fuR/sXVsa+GY6a7UWJulxdinq8i7SF3JJwLj8bU1dJtATDzONxaiu1ZjkQtWuMRsTYUVxXJrzJxUJZYoxqJf9msDvyYeF/r1gX48Bx2q560uqjGtAEFf35qIUw5yDK4FuIZk+9nbFz6bA4S/Td1eECFWYijwaZIM7DY1/sFTT1ZYFRj5wK6KqfrqSMy2YASEKqmYTEMhgUJkWFogk1gbHNcUACE7p7IPMdmVCqDM28R+wK5aOxr3o4r9WcZRbazNkzk6qNIkdx0BcC2AdVUVB0WkfXBad2UIMNnsrLBgUV68PgZjLhBxYdbkfosF+0pXpGCRl9isRtlJ7CTU/RaaOaiMwVUylUAGL7lxpTmYnVPZh5iyYh5pjBobpCrngsD+C89AAEFX+6r6qaqviOsPmqh7TslXu0+k5FM5rt8PJaIfZH8z8zpm/jNmvquOhs4EMS1MyV0ZCnA+pS4uxoCsMN/C1LglQ7PfNCy3ZA1LWWsSs3MoIy2bcdXPzqnqmwhegRa59Dxsl6kT4IVx8c0RJwhYjEdiJ1I/Q9lcTBKP5IqV+uDtc8Xa0bq0JcYfA3ztNoGyhED7B5G83X8hJV8YsOX5SN5c0oogO8zeIS/bn9ExP5djljORFLDmuG3ZV7I/YyFn9Vzl4GSKyAQKsw0S6FTF5kQjQKnsQhV502NUADjzOQnA7zOONCAQMu9K4xIzFhFJPDbTrjRqNHPBZwRVsD8G6wycmsqti1IvPwHwUgC3ENGLGmjPjBZz0plf/dZMdh+Dq1I6XgYjJJzki5FZVliBCjg2gcIsS9/Pc7oiBStcdOMKsRYfsw0G/rribgLISgAvumg9xpFL8XvHTjCIVPMowr0rXd9mua62qoDPA2QSaxPHRWL8DZTN/g+ahPb8UgBvQPKeyf8lIu8HS1tJ5JKjL8EnXv2JwjGTwdmLyzwu1QlRTFrgcy1kX5s0bsaYRJTCS5UF5SAp7EL/Ue3G1bC8AoBaLLcuBieOr5BM4R2XCheaCIIKIOtrvgTGXUO/Yi69SIFABYNIijWKRpBrHKX6CvbnHZcmGFzrotQLM98B4FUAHgdwGREdW3urZpgc/geH42tv+VrhmAlwNthpyqKicSxMLfC56me/ucpRSSYRil/DVESDQEigCVVwdjui3JWBDFYbm6wEaYHlquaXcP1+xqW2d1EKSr3QHiE5RO3SFYBMGi/X+rLb1zK45qSvbQLM/AQRvRbATwF8l4heCODuWls2w2W7WeMuytmd2WLczSxLbrkQxVRYpAII+hS5ytoOVOr9vIQ6EzVIKWJzISwvu0dV+1TJNDXGJs02OEFaEY8rARkq6ltsNnhcaorBiXNEYdRo+ibGrK3xlZiwak21Mbhape99cMy8iYgOB/BtAP8MYEVtrRoAiWVwIexMsio1gJj97SqHMhXNa5h8biapDS7FpAEpKV6iUXCl9gkKXvXqqYj9gRqlrmEhXnd1hcLuZ1zqUt6a+WK3TZoLVWPhNQKq1pTHCGiazbUuyj6FmXvMfByAfwGwZz1NGgyxv/Td4x4AecFKbhZN0oBWeWsSAoLZXOjm5sCkAZuFOa1qjyIvxEsCLPusXuW4xKS695E56RoXO0bkAibJnSYZR+Y1+xmX4HdOahS5AGp221Ru3FDgq4hf+saiLgYnXcc8PmiiZnDMLI4SM59CRFcCcG0faMWQA+cdiPtX319Y4PZHUaVP54Sytir3o3RuVq+qHLowVQoucL+XreBDEkV8zFYTgxPHKNQij3BLaseoSjH7mG3BCHAZE9C538RxiVDkKuZou25dRo3A1EsGUQCbLQG/Z946xyUwvqaZL4Mmtb2qi5nvq+taM1nOOvIsLF6zuHBM+macbyGHKG+NUjcXbNW9XWWNyzE07hTKCrxWuKS8XQpeUGpm2b53lCsuhsF5xkhipy7A9vXZVUdygTKzyiDSzB2pjhSz1cwRCfg1oK4BMmke+dqhMRQ1QKbxfgyatO+inGA5ZJ9DcMg+hxSO2Qwuc1eawFdicxVuFp8rqiqxIqsn3dtVJybJJJTBdcj9gVifOynvJzybwR2AIBkEdv9DlXcUgwt8NpqYks1mpPninGtKV5wE/JLyDt1iEsquJTerxggUx0sYO/vewfMoYj9lG4NrZVLFZG2zh2ajy10AyQLPFHkpvlKxGH0sT1JSphUuKsuIJJNQBa9hKva4BLFWic0ISs3HcjVsM4bBickUnrEwy854nMcVJwKZY7y8bZLGIjRmq9kT2Afjl1yUOfAJeyh9RoBkNGpATTUulEPZsgAAIABJREFUmjXVuigBtAA3JaTgojQZ3FCxnInkQhIVk4fluRRfVg8ov1ZIKjfB4EID9D7lXaWA7DF1ja/rfiHt0wC8hrXExOA08bjQxArbLal6VmY8rqaMSi2bNY9XMVuv90NIbnIZR/a9Ncw2mOUrxmXQZHB7PoXEzqjs9sYZnCu70sdaqlxLtptFpSAVi7Sujd5aIMvLJI+F6IqsSBSQxtF1P9dxqX0qgA+MqYjM1jcuAmupVPZC/X7ap5o7geMiPgMNs/W5twOATDtGqthkjFek3SYAoI3BTar8/F0/xyUPXVL4bpzE5kSwC7S2pUWanZ+JRnlJykXjWtG4pbQuJzMeJ7klVWNkKqkIN1MMg9MoOAnIfAyh3/5rEiu07VApcs1YCGxWxWyF2KQEapKLWpoj9nyJMY6C50i70bskU57BEdEniIgp/YIBJfJtIlpCRL8lopdPdhv7lb/8w7/ED4/8YeHY7KHZ+QSe1ZlViMdJe+UkJeW0NoV4QfZ3JrUFxEPdb0rQcL35pZRAICggU3mbiszJ4IzrZH+72qRR9jExuFAAseu4XGuaGGTpXEd9Xzs0XgHJCFAZQRrQsJ6zWd+cI073tg/gHTE7c0y9Y1GXcaTIOjWPD5pM6Z4T0X4A3ozkvZeZ/DmAA9L/jwXw3UloWu2STcLZnSLASQzOzLSULPK8jOrYnNkGO+4mKhGFktIsRs3mdo3Fa9cvgJTGFedKMvAxuFCmEpFFqQINQ7n6lL3EWiQG46pvu27NuaNhLdLzj4m7+eaFmHUrxWwdwGcbR1XjaLcj1DgKjkcqXLeDJlMa4AD8B4B/A1JzPZEjAZzDidwMYC4R7TUpratRcoAzGFwhyURwVw51hvIFMqszyw1kwmL0xZc0izGUwYXu34lhLRJIFRSW5ysDLpZnt0nT1uAYXE17An1jV8lC7DniGCPbOAoF+8K4NPD2klB2bbM553oBOcHOZrYS8Aevo9BxUXhCBk2mbM+J6AgAy5l5kfXTPgCeMP5elh6zzz+WiG4nottXr17dYEvrkRftkXxeb5ftdikwOA2by9x1Q52hvL4JfOYCBFBYjKGupVC3lCrVOTJDUKrv6r8N/FXuOuneEoPxlRthcH0YARoWUjVeVfdwlqUkk5oyJ0UgU7bZ1U8V8NkhgMB2BLu0pXicYovNoMmkJpkQ0VUAnuv46XMAPgvgLa7THMe4dID5dACnA8DBBx9c+n2qya/e8yvc99R9eNasZ40zOMtdmQGZBHZDNFSo7yqbixEYn/wMd6q374OnGgUXmmTSD5CZZdcXF3zuJxfjLTAbkHNctG0V3bgTGIOzx04CMmc8Dkr3WyDYx7i3NQk3/YyLi/FLc6cEggqXtgRqGoNIHCNN8s0AuygnFeCY2fnBVCL6YwDPA7AofTj7AriTiF6JhLHtZ1TfF8CTDTe1cdl3l32x7y77AhifzBKDG+oMFUAtiy/M6szKJ7MJdmbZdrO4lJcdswpVIipFHrFNQMtmqhRQQWEJ41J1j6A2SW65GmNwZh2zP2YdyRVZF9jHjFfomznqYpEikFlrQVovrrXja4fmGcZsE5DGZdBkSvacme9h5ucw83xmno8E1F7OzCsB/ALA+ymRQwGsZ+YZ9amebJLbAJeJ+YaTWZ1Z6GEc+HJQE8q2O6XS5eJx16kWaeBG79j4klkWLe8KBudzMzWiyCPfORnSHomRFRickHxRYnDkZv8xbC40ESkUyOxzC0AGf58lsLfnSwyDjZkvkhHQuiinl1wG4C8ALAGwBcCHJrc59ctzdnwOVm5aid132L0AcNnElticz+3ntNoFpia58bLfzOtWlWOsTR9oOLPiPApOBLKKWEvIPSrrC4pckwnXD5BJ5zqBLBD4tO3TsFkJyKT53A/YF+a2MefN+k4gE2KzUn1f+0JjcMHubcUYDZpMC4BLWVxWZgAfm7zWNC+XHH0JrnvsOnXCSabsbXdltodOUliim8UTNJcWpsYiD7U2tSBT9TV0Tbyk5KKqMeblKgczuD6AzHmuRqnDrdQ1bL6frwloxiUG7LXn9gv2sV4O1bhI8TiFG9s8d9BkWgDcoMn+u+6P9774vQBQWFzZZNZkVw51hsC98Rc1uxR59lt2/UJZYW1qFE1oYklM2dc2l5Iu9Fn4yoB93YmMwdUJZOazNa/pcsvZLjoXmym1L8ItKZ3blEEknetaC+IYQTYCc9et8h2dGsZnrh3zbUci423fRQkAUzMG18q4jHZHARRdlHYCiblNIC+TEHcDVW6sLoFAhFtKsiRVXy6vSYH6lJdLSZl11PdrOAYXA7g+UBKZSgU78b2EO8YgaPq9nAQa/0KHx61YxezNOSKutUivgFmWgEwDaubxQZMW4Ka4ZExuv133yycqg/PyUGeo4KJ0bQAvMBgi53WyelmdELeUXVbFDhQpzf2AiRSbKwBZhbtS6k9fyScKFhb6zsk63WGVbkmSn3+MwpbaqlHSoTEuc17YRqDp3jaPZ9cqlDvuzGRpHG32K60pjftZA3CSodAyuFamrHzu9Z/Dts9tK8Tjur1uPoGZx0GqQ53i9gGMuyhNV1y2KJh5vCy8aUFyaWb3qypL8bgmWJFPqQfH3SLAK/TcqK0B1n3NfjrPtca0A8EtKbBZV9/MvZK+N3ZoxtccC/MTUao9YZ5yAchMsHOUzTlig1rO2jpu4BPdmKYBEZmso0nEkcZo0KSNwU1xISJsN2s7AJa78v9v79yj5KjqPP79dfdkJgmcvEMAiUMeoCAvE1SOuhtUNrrsEVd0Nx5WCcYVBMnuUdRlER8Q4Czo4jEoiBDjgiIcwAgERImYBIMhCZCQAEl4JDEkIQ/IEyYz3fXdP6q6+lZ13e7b6enume7f55w+uVN9u/vWTdX91u9x7w0GwhwLYpcXtzxJN6yIFMQRTHQbFm146iIuNpeQJR5XTQxOUD6xJN62pJhKfCBP+nx8MKrYknIZ1CuMwVVj5ZpCHk+UcLE2rJZtguuuVPtc+shljUpbP8aPRxKxLFabzfsREbWE66XogSAhZlnSgqvwIcDJgtMYHAC14PoVHx77YQBA59DOcCDMebnwIs8xF17MHr3whi0VgzNFLSkhpNTu3pUKU2+tOVmpgNiErCjW6OBOdLH4Kn0gcOqXEvEi83iSizYykMcGe3PwTnK/mZaKSz+6CKJrH7m431xjmZHkq4Ss47jYmd8ZuUZM12UFfVH0YFHFda4xOHdU4PoR3z/z+3h55st459B3FjK1UHAzmq7LrJeNuCgjFlw+BmeImvk9tjJgH7BcBrKKdw2o0GpxHUyTYnAlY00VDswuMRWXp+1DGdRtFkm+XDTYI1nszIG87OAds1R6K3ZoZgtWOm+wpIvSEPsk4YvXSeqLuKjZrLbeisFVbMFpDA6ACly/IpPKYNywcQCArmwXAKAj0xERNdOaS3JdpiRlt+AS4nqAPdW/UguutyxBZ6vFskWKOTCXs8hKrcVZqfDZPmt7Cre66EoM9uUslUjWrURjUFYLzuaKTIprlrDgKrXaK3VLOtUpIYhJVq55bkWLmZe5hnszBucidhqDK0YFrp9y8eSLAQDvP/r94c3i0QsveFPseryeyGfLWWqRMun0xOjkWrPc1C4xCJd4lBmbE5HEp/a4my3JRVdUp8ygbpZdz8fJUjuE3QcShSyVbM2lU+nCMm+xbMGy7jdbMoUl3ul6/rZ+rHQR5ngfmf/PtvphnVgWZb5eROyM42Zcu9T5VLrmalXhAI3BAdAkk37L1AlTwe/6A1g++WRAekB4YWe9LAZmBoblMCnFcGMC0Zs8SchM0YzXsd1ctZjQHbdsrJPbjZVcTOvErJ//3vji1LYEgiThs1kzrufjlHDisHZnKQsuKaO2yJoz+sj8nnKiln8vfv4RQSzh9nV5IKp08Ha11JJcsfFzML8zybK1ufqB6ANktcJc9pxd6mgMTunPjB8+HgDQObQzvLAjySdeLoxn9Hg9ydMEzHic6a4scZO6CJxN7Fzm9dhWbIgP3ratg2zHzW2HEmMqhniVypyzueUqjalY3ZWHYsFZ3I9JYl8kgoZbLinTMm7ZlrXm4m7fKmKZFQ/8sYeDskLmYM2lJFWw2iCJQlZS7Iz7y8X97HLvuFj/rWzBte6ZNxFfP+PrWPCFBZg6YSqyXhaAP4fIdFGarsty8bVDcVHaBmmzbMscdMkKi9evVNRsx8taIZYBu+izFQ7YLvVrZsEllVPRsu38k/rCdEXGxbFSS93sFxMXS80p4aSE69J2LZifjSySkPC9NrErJWou1381sW+NwSn9mnQqjY8c+xEAwBGDjwDg7y9nZlHmJ832eD3hxR+Pu5k3ZtKTJ+B2o9kGFBOXtOdSlqDN/WjbZSEx+SKVnBWXgj0Gl2S1xF2UlcadzDomvRmDq8SCi7viyvWFizUXP08XsbdR6UNASUutQmsuUdQsD4GReypWtlrqDg8ytn50SbhpNVr3zJuUi0+/GHedexemnzodOc/fTcB0xeW8XGLwPh5rc3nydJmI6nJzubhi4iKb/+1IHK1CKyduXZrxNauQlRns4+dss05somZizagscW6JiSViF7LEJaxig2OieMXKVmvOwVK1la39UqmlFrfOkCxqSW5p83g87lbORekSAihqq4Nnw4aLJ6DVUIFrMtKpNKa9ZxpSksIJo04AAJx+9OmJc5+A5Juo1Dy4SpNMXLB9ttTNHhmAUCx2LmVz8HKNi7hYCTZRq2YgPxR3pU28ksopSSUKos0VGS+Xs+ZK9YvNIrH2S6WWWky8Eus4uCjN3QFsLsqk781TjYvSxc2oMbhiWvfMW4Czxp+FFy95EeeddF5kom9S1iWAxCfM+NNmpbEAFyp1V5quJVsmpEusxdyJmmDoxvXohQkupvDZjhN02sLEJt4u/eLirnRJxHGx5lISnUNY1hVpseZKuW6ruXZcXJSlYna2pBmzjvnZyPWS4BKMJ2X1lovSFr+2oTG4YlTgmpzjRx4PEcHZE8/Gh8Z+CFdNuSq8+LNeNhzI2lKFpBQRqcqCc7kZbbi45Zxdl6aoWay2MB4ZG6TyYhcvR0TNEMRI9qexSLCtXKmV62TBxcr5c4ukuqeS0+TN7zQt/LilUqmbsWLXrSXJxIaL8MfFrtx1Ef+s7Xq2JWVV46Ks9CHIxBaPa2ULTufBtQhDOoZg8QWLARRuhKnjp0ZWOcnfUKbYpSVtvek6Mh2F473k53e98SNuyQTrzBywzDqmtWE+kdvSuMmCdebRS7TyzONAdHqDrVzpQ4BTwklw/vlzyb8XETspf9yjFx736EWOD0gPKN8XCWXAzbKttF9csysrsdTiscM8+YfBfDnycJTw25FrytHt75Kg5YLG4HxU4FqQCcMnYOc3dmL4wOHYsHsDAOCUI04JbwQzmJ5JZaxCk59IDgDt6fZeaZvNXWmz1IqEzHgKNwdvc7WX0OVkxlSMsk28TLEjmXgc6D2rzcR1IE9JKlymzbTa8vXi1pw5GJuJSPnfyHmFBbxzzIUCl/NyEbFLOp71smEZQLgrBoDIcbNcKU5uyQrjpqYgAgWrMu7STkrWsrkfDyWxpBrLS2NwPipwLcqIQSMAAMcOOxbL/n0Z3jP6PTjQfQAAMOnISZFBxzoRO33oFokLJWNwCRacrRx/IjetNps1Vy7hxuaujLe1GqvNxBqPiw3k6VQauVyuSOAjllpe7Izj5go3pss1x8KCAaZg2cQux1woZOZxwC5qvWaplEg4iWRIWrIlk9pDRuNuSeW49W/LtKzU5V4NGoPzUYFTMPmoyQB8l+OKL6/A8SOODwepc999bsQ6q8YKqRSbW65Upplp2ZmYcTfTUjMHddOaM91PLi5Km6iZwtdblLPg8mWb1RZxPwZ1zK2WcsyhPVUQKbOP8ucTF7UksSNoFbV69kvcUrOJmk288sRdlOb1kmi1xeaQumRU9pYYVZP01UyowCkR3nvke8Py9su2Y2jHULSl2zBx+ER87YyvhQOTGX+rFaWyK61TABISCIpcS6bYJSWcxCy7cnG3eKzJHLxrMbiUEvtEUYvF3UL3Y2z/QDPWlih8htjlWFj+zSZ2gN1qq3W/2ObBxYUvKQPXFDKghIsywaq2rQLk6qLsrX6xJZy0GipwipVRg0eF5XWXrgvL93zmHrxr5LvCv88ad1bN22JLMimaApAwZytukZmDVJKL0qMXKdsGLGvcLdX71olJqXhcoqgZYmeesylqkVibEYOL1GF0fdNyFhwQs9rq2S8xyzZpErutHCeeVZrHTNDKIyjEr1NSWLsyJcnbVMXLtXD1VxPj7O+owCkV89kTPxuWve8UbvLHPv8YhnYMBQCcd9J5mDB8AgBgaMdQTBw+sarfLDkdIMGCM0XKfPKOHLckmdjcT7YpA/nfTmprLSgVj0ucGhCLtSWVzczJHHPR/jLKZv0kd6WZcAJEB9daDN4mZr+bCS3tmfZwVZ+OTEe4fVRHpiOcE9qebg+Pt6XbCuVUW2F9V1s5HS3n+8hM0DLLpvs43u5aoC7KPoqIXArgqwCyAOaT/GZw/HIAMwDkAMwk+WjjWtnamIPWR8d9NCzf+ek7w/K6r64LBeC3//rb0L155d9diW37twHw44DLtywHAAxuG4wDPQciv2PepAPSAyKT1fODSyaVQY65sF2mq8l82o7EUhB1RyUdN+tb57vV2DqxYQrIwMzAsC/Mclu6Leyv+GBs9l1YJxU7bgz2pgjk+7Qt3Rb2RVu6zZqgVE/M/4+BmYHh/2dHpiP8/+zIdERWcsmLoEAKK7lIoWzWMVd+EUjhuot9Nt8O04KLW3OtnARSa/qswInImQDOAXAyyYMiMjo4fgKAaQBOBHAUgMdE5DgyuMKUPofp6vzUuz4Vlq8686qwvGj6onBQXXnRSuzu2g0AWPLFJXhh5wsAgAc/9yDmr5uP9kw7fvyJH+PKx6/E8IHDceGkC3Hl41fiyMOOxNTxU7F8y3KMHzYep405DfPXz8dxI45D59BOAP7E9z0H9wAAJo6YGP7OuGHjQhHtHNoZDlLHDDkG3bluAP4C1vk2HnX4UeEgNXrw6IYN5OYDRkemI2zf4e2Hh+X2dHuknB+kzeMD0gPCQbo9EzvuFR83PxsXjfygblrX9Sa/WEHWy6I9044xh43B5r2b0Z72y1v3bwVJjDlsDAA/QzRfJhguWi4QjB48OjyfvIeiPdOOkYNGAvAfyEYM9LOSh3QMwfCBwwEAIweNDMtjDhsTlscOGYtBbYMAAMM6hkXc6r3JqEGjsOOtHb36nf0Okn3yBeAeAB9LOH45gMuNvx8FcEap75o0aRKV5ibn5UiS2VyW2/dvJ0l2Z7u5ZvuasLxww0KSZE+uh/c9fx89z2NProdznp7DbC7LbC7L2Utns6unizkvxxv+cgP3dO2h53m8dtG13L5/Oz3P46yFs7hx90aS5DWLruGLO14kSV63+Do+s/UZkuT1T1zPJZuWkCRvfPJGLnhlAUnypqU3cf66+STJny3/Ge9dcy9J8hfP/IJ3rLyDJPnrVb/mz1f8nCR53/P3cfbS2STJh9Y+xBv+cgNJ8o8v/5FXL7yaJLl442J+e8G3SZJPbX6Klz16GT3P46ptqzjz4Zn0PI9rd67lRQ9exGwuy427N3LG72bwYPYgt+3bxgvmXcC3ut/irrd28fzfns+9XXu57+A+Tp83nbve2sW3e97mjN/N4LZ929id7eaFD17ITbs3MefleOnDl3L9rvX0PI+XPXoZV7++mp7n8YoFV3DFlhUkyVkLZ/HJvz1JkvzBX37AP7/657Av/vDSH0iSt624jQ+tfYgk+atVv+L9z98fnv/dq+8Ozz/fRwteWcDbn76dJPnExid4y7JbSJLLX1vOm5beRJJ87vXneOOTN5Ik1+9aH/bdpt2beN3i6+h5Hl/f/zpnLZxFz/P45ttv8uqFVzOby3L/wf2ctXAWu7Pd7Orp4rWLrmVXTxd7cj28/onreaD7AHNejj968kfhNXLzspu588BOkuTcZ+Zy275tJMnfPPcbbt6zmSQ574V54bXzyPpH+PIbL5MkH3/1ca7ftZ4kuWTTkvCaWrFlBZ/f/jxJcvXrq7n69dUkyXU713HVtlUkyQ1vbgjLW/Zu4cptK0mSOw7sCMuHCoDl7AN6cKgvIZNdNI1GRJ4F8DsAHwfQBeAykstE5CYAfyV5Z1DvdgCPkLw39vkvA/gyAIwdO3bSxo0b69p+RVGU/o6IrCA5udHtOFQa6qIUkccAjEl46wr4bRsG4AMATgdwj4iMAxLt+CKVJnkrgFsBYPLkyX1TxRVFUZSa0VCBI/kx23si8hUA9wdm8lMi4gEYCWAzgGOMqu8AsKWmDVUURVH6HX05f3QegI8AgIgcB2AAgJ0AHgAwTUTaReRYABMBPNWwViqKoih9kj6bRQlgDoA5IrIaQDeA8wNrbo2I3APgefjTBy6hZlAqiqIoMfqswJHsBvBvlveuAXBNfVukKIqi9Cf6sotSURRFUQ4ZFThFURSlKVGBUxRFUZqSPjvRuzcRkR0AqpnpPRJ+Bqfio/1RjPZJFO2PYvpjn7yT5Kjy1fomLSFw1SIiy/vzbP7eRvujGO2TKNofxWif1B91USqKoihNiQqcoiiK0pSowLlxa6Mb0MfQ/ihG+ySK9kcx2id1RmNwiqIoSlOiFpyiKIrSlKjAKYqiKE2JClyAiHxcRNaKyEsi8l8J77eLyN3B+0tFpLP+rawvDn0yXUR2iMizwetLjWhnvRCROSKyPVgAPOl9EZEfB/21SkTeW+821hOH/pgiInuM6+M79W5jPRGRY0TkcRF5QUTWiMh/JNRpqWuk0ajAARCRNICfAPgEgBMAfE5ETohVmwHgTZITANwI4H/q28r64tgnAHA3yVOD1211bWT9mQt/h3kbn4C/fdNE+LvJ31yHNjWSuSjdHwCw2Lg+rqpDmxpJFsDXSb4b/kbNlyTcM612jTQUFTif9wF4ieQrwS4GvwFwTqzOOQB+GZTvBfBREUnaXbxZcOmTloLkIgBvlKhyDoD/o89fAQwVkSPr07r649AfLQXJrSSfDsr7ALwA4OhYtZa6RhqNCpzP0QD+Zvy9GcUXZliHZBbAHgAj6tK6xuDSJwBwbuBquVdEjkl4v5Vw7bNW4gwRWSkij4jIiY1uTL0IQhinAVgae0uvkTqiAueTZInF50+41GkmXM73QQCdJE8G8BgKFm6r0mrXSDmehr+W4SkAZgOY1+D21AUROQzAfQD+k+Te+NsJH2nla6SmqMD5bAZgWh/vALDFVkdEMgCGoLndM2X7hOQukgeDP38OYFKd2tZXcbmOWgaSe0nuD8oPA2gTkZENblZNEZE2+OL2K5L3J1TRa6SOqMD5LAMwUUSOFZEBAKYBeCBW5wEA5wflzwD4E5t7lnzZPonFDj4JP+bQyjwA4AtBptwHAOwhubXRjWoUIjImH6cWkffBH292NbZVtSM419sBvEDyfy3V9BqpI5lGN6AvQDIrIl8F8CiANIA5JNeIyFUAlpN8AP6Fe4eIvATfcpvWuBbXHsc+mSkin4SfPfYGgOkNa3AdEJG7AEwBMFJENgP4LoA2ACB5C4CHAfwjgJcAvAXggsa0tD449MdnAHxFRLIA3gYwrckfCj8I4PMAnhORZ4Nj/w1gLNCa10ij0aW6FEVRlKZEXZSKoihKU6ICpyiKojQlKnCKoihKU6ICpyiKojQlKnCKoihKU6ICp7Q8war3FJHpjW6Loii9hwqc0hKIyKki8r1W2OZIURQfneittAqnwp+I/GcAG2LvLQIwEEBPfZukKEotUYFTWh6SHoCuRrdDUZTeRV2UStMjIt8D8Ivgz8eDeBtFZG7wflEMzjwmIhcHO5t3ichzInJ2UOckEfm9iOwVkV3BTs1tCb8/UUTuEJGtItItIhtE5AYRGVzFOXUG7fueiPxLsGP228FO0RcEdcYG2xi9ISL7ROROETk89j3HBDtzbxSRg8EO3UtE5PzkX1aU/oNacEorcD+AI+HvoHwtCotCv+zw2UsADANwG3wrbyaAeSLyWfg7KNwFfxuYfwBwKYDtAGblPywikwD8CcBuAD8D8BqAU4Lv+aCI/D3Jalyj/wTgIgA/hb8e6AwAc0SkOzjXP8FfD/F0AF8MzuFLQdsyAP4Ifz+ynwJYB3+XjJMBfBi6/ZHS3yGpL301/Qv+QtAEMCXhvSnBe9MTjr0GYIhx/OTguAfg07HvWQFga+zYSgAvAjg8dvyf479Z4fl0Bp8/AH/PtfzxUfBFzAPwtdhn7gfQDeCw2Ll8s9H/P/rSVy1e6qJUlNLMJbkn/wfJVQD2AtjC4v2+ngAwJtjwEiJyEnwR+TWAdhEZmX8FdQ/At/yqYR7JjUb7dgBYC1/gfhKruxj+av+dwd/58zpTREZX2Q5F6XOowClKaV5JOPYmgFctxwFgRPDvu4N/vw9gR+y1HcBgAEfUqH1bWdiMNrF9gTBeA19kt4rIChG5XkROr7JNitIn0BicopQmV+FxAJDYvz8E8HtL3Tctx12ppn0g+W0RmQPgbPhxty8B+IaIXE/yW1W2TVEaigqc0io0YuPD9cG/OZKPNeD3nSD5CoDZAGaLSAf8TW6/KSI/JLm9sa1TlENHXZRKq7A/+Hd4HX/zGQCrAVwkIuPib4pIRkTq2Z747w+JT2sg2YVClumw+rdKUXoPteCUVmEZ/MSLK0RkGPwEj1dJLq3VD5KkiHwefqr+qsAVuAbAIAATAHwawOUA5gL+3Db4sb2FJKfUql0GZwK4VUTug5+Ysh/AJPhuyqUk19ahDYpSM1TglJaA5CYR+SKAbwG4GX424S8B1Ezggt99VkROgy9kn4Q/Z20f/OXC5gJYYFTPT8J+rZZtMlgJf+rAFADnAUgD2AR//twP69QGRakZQjYiNKEoShwRmQlfWE4kua7R7VGGE427AAAAVElEQVSU/o7G4BSl7zAVwC0qborSO6gFpyiKojQlasEpiqIoTYkKnKIoitKUqMApiqIoTYkKnKIoitKUqMApiqIoTYkKnKIoitKUqMApiqIoTcn/AxO/cMOOdsLxAAAAAElFTkSuQmCC\n", "text/plain": [ "<Figure size 432x288 with 1 Axes>" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "time_V = numpy.linspace(0,simultime,N)\n", "\n", "#Initializing variables for Verlet\n", "zdoubledot_V = numpy.zeros(N)\n", "zdot_V = numpy.zeros(N)\n", "z_V = numpy.zeros(N)\n", "\n", "#Initial conditions Verlet. Look how we use Euler for the first step approximation!\n", "z_V[0] = 0.0\n", "zdot_V[0] = 0.0\n", "zdoubledot_V[0] = ( ( -k*z_V[0] - (m*wo/Q)*zdot_V[0] +\\\n", " Fd*numpy.cos(wo*t[0]) ) ) / m\n", "zdot_V[1] = zdot_V[0] + zdoubledot_V[0]*dt\n", "z_V[1] = z_V[0] + zdot_V[0]*dt\n", "zdoubledot_V[1] = ( ( -k*z_V[1] - (m*wo/Q)*zdot_V[1] +\\\n", " Fd*numpy.cos(wo*t[1]) ) ) / m\n", "\n", "#VERLET ALGORITHM\n", "\n", "for i in range(2,N):\n", " z_V[i] = 2*z_V[i-1] - z_V[i-2] + zdoubledot_V[i-1]*dt**2 #Eq 10\n", " zdot_V[i] = (z_V[i]-z_V[i-2])/(2.0*dt) #Eq 11\n", " zdoubledot_V[i] = ( ( -k*z_V[i] - (m*wo/Q)*zdot_V[i] +\\\n", " Fd*numpy.cos(wo*t[i]) ) ) / m #from eq 1\n", " \n", "plt.title('Plot 3 Verlet approximation of Equation1', fontsize=20); \n", "plt.xlabel('time, ms', fontsize=18);\n", "plt.ylabel('z_Verlet, nm', fontsize=18);\n", "plt.plot(time_V*1e3, z_V*1e9, 'g-');\n", "plt.ylim(-65,65);\n", " \n" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "It WAS ABLE to capture the physics! Even with the big time step that we use with Euler scheme!\n", "\n", "As you can see, and as we previously discussed the harmonic response is composed of a transient and a steady part. We are only concerned about the steady-state, since it is assumed that the probe achieves steady state motion during the imaging process. Therefore, we are going to slice our array in order to show only the last 10 oscillations, and we will see if it resembles the analytical solution." ] }, { "cell_type": "code", "execution_count": 7, "metadata": {}, "outputs": [ { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAfUAAAEjCAYAAAArL5gjAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMi4yLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvhp/UCwAAIABJREFUeJzsnXeYXFd5/z/vzM7OFu1q1S1ZtmVsB9s4GIMTwDTH9FCT0FOAQAwJ+QWSQBqBQBIIpEAakDj0QAIJxIGAQzUY0+MmiuUuyVa1JG8vszsz7++Pc+9qNJpyyzlz7q7u93n2Gem297y3vP28R1SVHDly5MiRI8fKR8H3AHLkyJEjR44cdpAr9Rw5cuTIkWOVIFfqOXLkyJEjxypBrtRz5MiRI0eOVYJcqefIkSNHjhyrBLlSz5EjR44cOVYJrCt1EdkhIioiH7Z97RwnQ0SeFNzvP/Y9lhx+ICJPE5HviMhE8C58yveYegEROTfg9/2+x5LjZIjInwfP57Ge6P+2iNwqIvPBOH7Txzh6jUhKPbghjX81ETkqIteKyC+6GJiIvCyg9bIE575TRL4qIvcFD/QBEblZRP5ERDakHNdPBOPaLyLFLsc+Jjh2ZxqavYCIvDIY6y/5HkuO6BCRc4D/Bs4CPgC8FfgPS9fuC96Jr9i43mqFi/skIt8Ukaqt651qCOTYu4B54G8x38X3u5wTGiGd/px9CyLyKBF5h4h8QUQOB/T2xL1OX8zj3xr8loAHA88FfkZEHqGqvxOXuEP8NnAT8GXgfmAYeBTwFuBKEXmUqt6X5MKqeoeIXAc8AXgG8NkOh78y+L0qCa0cOSLgyUAZeJ2qWlHmOXKsAjwz+H26qt4f89yvAd9os++e5EPqil8CXgMsAruAzUkuEkupq+pbGv8vIk/EKM7Xicjfq+qeJINwgFFVXWjeKCJvA/4I+EPgN1Jc/yqMUn8lbZS6iIwCLwDmgI+loJUjRydsC34PeB1FjhzZwjaglkChA1yrqn9ue0AR8EHg/cCPAQWWEl1FVbv+BQS0zb5bg/3PD/6/I/j/h1scuxV4D7AHY40cAf4LeETTcV8Pabb42xFlzG3GenFwjS8nvUZwnTJwFKgC29oc8+qA1oda7LsQ+CiwL7gPh4CPA+e1OPZjwXXOBF4L/BATUvpKsP9Jwf4/bnHuBuCdwG3BORMYI+xJTcd9s8P93h7hfvxq8BzvCehMBtd8SZvjvxncuwHg7cH7UAHuAt4E9Dcd3xeM5SvA9uBeHQlo3QC8sAWN5fuCidJcAzzQzBPwU8DVwfUqwVj+ETit6XqXYT6yO4GRpn2nB+dPt3qGCd6vFwHXA1MBjz8Afr/xvjTw1+rvsRHe39cBNwPjwGzA938DVwTHvLLD9f+46XqPBj4dvMeLwH3APwFbW9C+FPj7gKdxYAG4A/grYKzNeEcxIdR9wfG7gvGfF4zn/Q3HfirYdlmHe6vAuyN+51buExG/EeDcDtf7StOxZwDvDa5ZAY4Bn6FJnkbg87nAtcHzqwD7MTL41S2OfTDwrxgjcjH4/QhwTotj/zzK+xhxjAMYh+xHwf2bwnjTz2tDs/mvGoFGeO5JsrTLeb+IiQwvYCLDHwFOC55vV7ptrhnKvD1xz40bfm8FCX47NpEXkbMDJrdhXqB/x7yUzweeISK/oKqfCw7/MEYBPQfzkt7ScKmJFGN9VvD7gxTXQFUrIvKvmA/+5cDbWhz2a8HvvzRuFJFnYARPEfgf4G7MffgFzH14gqq2ysG/B3gsRjl9HvNBtUVwv7+GybV+IzhvBBOW+pKIvEJVPxQc/kGMwnsWRsE13p+pTnQC/DPmGV2HEQwbgZ8FPi4i56nqW9uc92ngYcFvFSNc/hR4RPDvZmwAvo0xqD4IrMNEQz4hIttU9d0tznks8GbMPfgAJqS1BCAiz8XknxXzTO7FKPnXAM8Rkceo6r0AqvptEXkT8BcBvy8JrlEE/i3g+ZdU9c5uN6sTROQvgTdgjISPYRTJM4B3AE8RkaeqahUjyN8KXAE8DvhQMH4aftvhXzHf3Q8wAmgBY5g8DngK5vu8CfgzjJG1G2OEhlgOTYrIr2EU+DwmarUP+AnM+/9MEXmkqu5vOPfVAT/fwBiYRczzfj3wtCA1Nttw/YFgPI/AvGMfxzz3twA/04K392K+pVdh3pVmXBn8RkmJWbtPRP9GHsA811/FGLB/2nCN5dCviFwKfBFzL76A+YY2AT+HuY/PUtUvdWNQRH4DI1sOYp7fUcw3cjHwUsyzDY99FPAlYA1GLt8GnA/8MvBsEXmiqt7UjWZciEgZ8648FuNE/iMmpfp84D9F5M9U9c3B4ddiZEnz/avbHlcwtjcAf4kx+j6MMdaeDnwLE6XtPSJaDS09dYy3UA/+zgq27aCFp455ARV4Y9P2yzAP4RiwpmH7y4LjX5bCuns95uN/N8bzUWAnsMmC5XhBcL17AGnad0mw70dN2zdgjJIjwPlN+x6KEeD/17Q99NTvC+9xi2fQynv6ZvBcnt+0fR3G259tvA8c9zh+KcG9aGWllzHW/iIne71hZOA2GrwzYBBTzKLAixu2h1arYhSoNNIO7mml8f5woif7ihbjG8V8iFWavDrgjcF51zRtF4wAXb4mRqAr8AEL79TjgmvtATY38X9NsO/3ms6J5Q0B64P34rtAocX+DS3u+1faXOuC4PneTpNXjlF6NeA/m7afBRRbXOtVAa3fbdr+5mD7JxvH2/DcT/DUg327MEbGuqbt5wW8X9fL+5TiG2np5WFqmkKP/7FN+7ZjFPQ+miJeba61M7jOxhb7Njb8u4CJqChNkTGMp6oYL7rx27TiqWMMJsUYHX0N20/DyMU68Mio968DnXC812L0Rqu/n256BxcxhtCZDduLmGhOpAhBm7Ek9tSjEgiFY8jY2zCeTTXY/q6GY3fQpNSDF02BvUCpxfX/Ndj/Kw3bXkZ6pX6oYewK/C+wJc0L1nT90FBoDme/N9j+W03bfzfY/qo21/uHYP9PNGwLlfpr2pxzklLHeDUK/Hubc34h2H9lw7bESr3D/XlBcM3mEGOo1F/c4pyQny83bAtf8KXGj6dhf/gxvrHFdf6vzdheGuz/aIt9peBdVeD0pn2bMCHHWYxHX8PkwIYs3K8PBTR/tcW+CzDC6442vEdV6uuC46Motm5KPXxfn9pm//8Ez2w4Aq0CMAN8qWn7boycObvDc29W6q8Ntr+2aftftXofXd+nFN9IO6Uefr9/0WZ/KGeeEoH+Tkw0bm2X454QXPMbbfZ/h6a0R9x3swPt3cF31io9GRqDV0W9fx3otAvdN/79ZsPxfxJse1OLa4UGZObD738S/CrGSr4e46F0KwS7JPi9XlVbJf+vxVT+XcKJ4atUUNXTAERkCyYi8A7gZhF5ptoJE/0LJiT0a5h8LyIyiAnNLmCMlUY8Ovi9RETe0uJ65wa/F2Cs4kZ0nI7Rhs66NnS2NNBJDRHZAfwe8ERMKmGw6ZDT25x6XYtt38B8DJe02Ldbg3B4E76O8a5bndPuvj08+L22eYeqLonINzHP8WGYHGO470gwjfMrmDDgPMZzsRFq6zSmXSJyEDhPRNao6kwSAqo6LiL/CzxdRG7G5HmvB76nqvMxLxe+Zz8jIo9usX8jRjidi1EeiEgJ+HXghZjaklFOnFq7/K6IyDqMk7BbVXe3uP7XMc+9GR/G1Gq8Cvi74Fr9GEPuKCZU3RGW71Oab6QVwnt9dpvv+8HB7wWYcHknfBxTd3OriHwS801+S1WPNh3X9t1s2P4ozDfYKu2RCA3vwF5tndoKx9Pq20+KN2m0Qrnwnpwkx1T1ThE5gIkm9BRxq9+l+1EtsTb4Pdhmf7h9LOH1O0JVDwNXi8hNGGX5UeAiC5f+D0wBz3NFZGPwIbwAw+/HVHW86fhwjvyrulx3TYtth2KMK6Tz1OAvDp1YEJFzMYpzLUYhfxGTV6oBD8Lk28ptTj+pMlVVF0VknOPvTCMOt7lOeG9andPuvqV5J79HkA7BeGc/anONuIgypm3BcYmUeoDnAX8AvJjjOcd5EflP4PWqeiTidcL37Pe7HNf4nn0aU7txN6Z+4zAmdQLwO5z4roT3o9tzPwGqOiki/wa8UkQep6rXAz+PibL8tapWWp3XAlbuU8pvpBXC+/7CLsd1/b5V9S9F5H6MofU6zHRgFZGvAW9ocH58yXCvuqMLoryf2VbqKTAZ/LZjcGvTcU6gqntF5FbgYQ1KOM31FkTkY8D/A34F0+yg09z0kL+HqOqtccnFODak8xpVfW9MOnHxekyo8pebIzYi8ssYgdUOm2maihV4VOsw+e5mbGmxDY6/V63en3b3Lc07+Q8YhX4UeJaIvFBVP9nmOnHQOKa9MccUGUFU4c3Am0XkTODxmILPX8HMsmhVgNYK4TiGo0QqgkKrZ2GU2jPVFPyF+4qYqaatrt/tubfC+zDf4qswHvaVBGHabuMMYfE+pflGWiG8L89Q1WtinnsSVPXDwIcDr/gyjAH0cuCLInK+qh7DnwzPhO5og8b38/YW+3uu0KF3vd9vDn4fKyKtDInw42gMideC345d2xIgnNdb63hUdIRC4pUicj4mHH9b4B0047vB7+Ms0W6HJHSS3u8wZdAqpPmELue22v94zHt5c4t9Z4vIGS22Xx78tjqnHcJjL2/eEYSIH9PqmiLyYkxlbViRfQy4KujslhadxvRgjAC7M2novRVU9d5A0TwFk7u8XERCDySsGG73TsR9z8J35TONCj3Ao4H+prGNY4oGzwzC1824vB2hwMP8HvC8wJi4HPhamxBuV6S8T0m+kRogItIqOupEjqjquKp+XlVfgUkdbsTIM+jwbjZtt1r9HrwDezHvwINaHNJKd/QKIc2TnqGInMdxXdNT9ESpq+o+zJSEHZgQzzJE5JGY3OU4JhwX4ljwe2YcWiJyvoicZCGJSCFoPrMZ+HaL0HgiBKHX72LyV6GC/5c2h38AU5Typ8GUlOYxFkXkcgtj+i6mcOUFIvLSVseIyMUisrFhU6L7jRG60PSxi8jPYoodO+HNIrIcNgvqEd4e/PdDLY7vA97ZKOgCZfqbmIKsj8cY939h6kJ+SUR+qmnf72I88S9ow3SsIIz6z5jZC78U5PdfhskLfyKIMtBw/MbgfYzamviDwe+bGs8JDOG/wVTffyDitVpCRLa04BfMFKFhzH2sAqhqHfNdtnsn/iE49u+Ce9NMq19O7Pu9J/i9vHlMwbVa4UMYZflOESk0nBM+9054Hyas/SnMvfunzoefOCaL92lP8Ht5E41O38gxjHze3mLf1cE1f0tEWqbXROSyYDpgR4hZN6CvaZtwvJtZGIH5BqaPxOVipoI2Hv8ijIe/CyN3utE8M/gumusK2uGDmHvxV03vwGaO11R8sNWJjvExzDvw2iCSE46riCnKTJquToVehd/BzE/9FubBPAXTNCScp14HXq6q0w3HfwfzQr1ORNZzPG/xD6raKdTytIDGNzB5u2OY8MgTMPmrQxyfQ24LV2GKRB6HyQ9+pNVBQZHV8zEW+/fF9BEOm/ecgfEOR7CQ68Y02fgqJqz2OkxObwIjJB6GKVL6KUwIGUxxywLwuyKyieP57r9rei7NeA8mHHm1mIVEDmLqFZ6KqTlol/erYabl/EhEGuepPwgzB/bfW5xzC8ZzuFFEvoSZdhTWMPyOxuhoqKpTIvIKzFSp64M86X2Y5ihPxqQFfj08PlDYn8Q8mxep6sHgOp8Tkb/FGKvvxOQkQ7wOI3TehKms7Tamb4jIuzC55R8H93MOM6/7QkxBzrui8tgGZ2DevVsxnsY+zP17JkaQv0sb5olj3qHnichnMN5aFfi6qn5TVX8sIq/EGLG3BoVld2IU6ZmY7+EAx+tXvoMxgF8gItsx8uA0zHztH9E6N/lXmH4VL8AUCTY+9+uAZ3fg9ZMYY+h0zPv835HukIG1+0Syb+SrmDnn/y0iX8AUZO5W1Y+r6ZPx85jplV8QkW9hvo15zH3/KeBsTA3BSZ01m/ApYFpMYegejAH1OMx38H1MrwtUtR44CF8CPi0i/40JOZ+PeT5TmNlLUdKE/4aRdY/DVKl3wzsxcv3ngZ3BexbOU98EvD1wZGzhijYRZYAHVPXvAVT1bhF5YzC+W0TkPzg+T30Y805HLkYWkQsxxZRw3CDYKCcujvbbXR3SiOX1ag6NdOwOmqa0New7HWM97+X4/L7/Bn6qzbWehhEEM+EY6NJRDvOxvAfzkodd3yaB/8NMx1sfhY84f8AQx+fM/luE4x+EmfZ2F+ajm8TM2f4I8OymY8MpbS07u9G5o9wopqPaTcE9nMMo0s9hDJuhpuN/FiN0G+93lI5yj8V8/OOYj/t6jLDtNIc+7Cj3FxzvKHcPJocZtaPcAnAjRslGvi9Nxz0yeAePBu/k3uDZNM+7/rvgen/T4hr9GCNVgWc1bE/ToepbmA51Cxjh8IdAucWxSaa0/UnwvPYH9/1g8P8XcnLPhdMwBtb9GEOs1fO8OHh39wbXeyAY8/uAy5uO3YjxmPcGvN2FmSI7iFGcd7UY89rg/h8Irn8bxng6qaNci3PDaXctp3/16j4R/xvpw8zW2Y2JCpw0ZQ7jrLwTM6VyDvPd3gn8Z/AOndQPoAWfvxG8//cE13gAIy/eQEPfkIbjL8B8fweDcR3EhOpbTTdr+W5yfEpr5KluwfvxxwGvC5hv43padJNslDExn3mUKW2t3s9fxBhyYUe5j2JSZbHGQOcukZHlsQQXy5GjZwi8gkepaqRIUWA1LwFfVdUnOR1cjlWF4F27DNP8pdW0uBw5nCCunLOFXhXK5ciRI0dPISKXYcK8n88Veo5TBT21IHLkyJHDNcT0Mz8dMy2rhkm75chxSiBX6jly5Fht+CNMjvsuTGHRjZ7HkyNHz5Dn1HPkyJEjR45VgtxTt4iNGzfqjh07fA8jR44cOVYUbrzxxqOqusn3OFYDcqVuETt27OCGG27wPYwcOXLkWFEQkVZtkXMkQF79niNHjhw5cqwS5Eo9R44cOXLkWCXIlXqOHDly5MixSpAr9Rw5cuTIkWOVIFfqgIiMicinROQ2EdklIo8WkfUi8mURuTP4Xed7nDly5MiRI0cn5Erd4O8wy2yej1mcYhfwB5he4+dhVkz6A4/jy5EjR44cObrilFfqIjIKPJ5gnWpVXVTVCcxyguESqh/BLAuaI0eOHDlyZBanvFLHLIN6BPiQiNwsIu8XkWFgix5fM/sgZg3lkyAiV4rIDSJyw5EjR6wO7K4H7mLf1D6r14yCar3Kd+77Dj66DR6YPsDeid5PWVVVbjxwI3Wt95z2+Pw4eyb29JwuwK1HbqVar/ac7uzirJfnDHDv5L0sVLstM24fi7VF7pu8r+d0AY7MHmFuac4L7Ry9Ra7UTQOehwPvU9VLgFlihNpV9SpVvVRVL920yV5DpOv2XMdD3/dQXvSpF1m7ZhRU61V++epf5rIPXsb/3PE/PaX9/f3f56L3XsRTP/bUntKta51Xf+7VXPovl/KRWz7S/QSL2HloJxe97yIe+f5HUqvXekZXVXn9l17PQ977EN79nXf3jC7AriO7uPifLuai913E7OJsT2m/9etvZcff7uAtX39LT+ne/cDdPOKqR3DuP5zLwemDPaX919/+a7a/ezuv/d/X9pRuDj/IlTrsA/ap6veC/38Ko+QPi8hWgOD3/l4O6uWfeTkL1QW+fd+3OTZ3rGd0r951NZ/40ScQhM/f8fme0QX49c//OhMLE9x+7HbufuDuntH92u6vcdVNVxme7+wtz2/48hs4OH2Q+2fv58aDvVt35JZDt/A33/kbBOGau67pGV2AP/3Gn3LP+D3MLM5w/b3X94zuvZP38pbr3oKiXHNnb3l+13fexY/u/xGLtUWu3X1tz+hOV6b5vS//Hou1Ra656xov0bccvcUpr9RV9RBwn4g8ONj0ROBW4LPAS4NtLwU+06sxHZs7xu6J3fzChb+Aonzp7i/1ijQ3HLiB/mI/P3vez/KFu7/QMyGwWFvkh4d/yM9f8PMAfPHuL/aELrCsTJ97/nP56u6v9iwcrarcdPAmnv3gZwPw5bu/3BO6ADcdvAmA55z/HL5177d66jHfeOBGnnruUykXy3zlnq/0jO4yzw9+Dj+8/4fcP9s7O/2mQzfxmDMew7qBdT1V6rccugVFefaDn82B6QPcceyOntHO4QenvFIP8P+Aj4vID4CHAW8H3gE8WUTuBJ4c/L8n+MHhHwDwiktewYbBDXzh7i/0ijQ7D+/kwk0X8qyfeBb3Tt7LbUdv6wndXUd2sVRf4nkXPo+zx87uqVLfeXgnZ649kxc+5IVMLExww4He9O/fP72fY/PHeMo5T+GS0y7hy/f0TqnfcugW1vSv4dWPeDVL9aWeeczTlWnueuAuLtt+GZedcVlPlfrNB2+mIAVe96jXAfRMudbqNXYe2sml2y7l8h2Xc+2e3in10JB5/aNfD8DX9nytZ7Rz+EGu1AFVvSXIiz9UVZ+rquOqekxVn6iq5wW/D/RqPKFSv+S0S3jCjifw3X3f7RVpdh7eycVbLuaKs68A4Dv7vtMzusAy7W/d+62e0AWj4C7ecjFPfNATAbh+b28U3C2HbgHgYac9jCvOvoJv3/ftnkUJbjlseH78WY+nVCjxjb3f6AndHxz+AYpyydZLuOLsK9h5eCcTCxM9oX3zoZs5f+P5PO7Mx7G2vJbr9lzXE7q3H7ud+eo8D9/6cK44+wr2TOzpWZHgTYduYuuarTz2zMeyfXQ7X9/z9Z7QzeEPuVLPIHYe3snm4c1sWbOFc9adw96JvT2pyr5/9n4OzRzi4i0Xs2NsBwUp9Kwqe+ehnQz0DXDehvM4b/15HJs/xnRl2jnd+aV5bjt6GxdvuZiNQxtZN7CuZzzfcugWBOEnN/8kD97wYJbqSxyYPuCcbl3r3HLoFi457RIGS4OcNXYW94zf45wuGMUKxmC9cNOFAD2lfclpl1AsFDl/4/ncNX5Xb+gePM7zT27+SYCehcFvOngTD9/6cETMe5aH31c/cqWeQfzg8A946JaHArBjbAeVWoVDM4d6Qhfg4tMuplQssX10e++U+uGdXLT5IvoKfewY2wHA3kn33syPj/yYutZ52GkPA8z93jO5xzldMEr9nPXnMFIeWea5F/c7LFI7gecePeebD97MxqGNbBvZxllrzwLoidd6ZPYI+6b2cclplwBw1thZPfOWbz50M+VimfM3ns9ZYwHPPXi3F6oL7Dqy6zjPa8/qCd0cfpEr9YxBVfnxkR8vW/Rnj50N9EbY33rkVgAu2nzRMu3dE7ud0wXYdXTXMt1eKrhdR3YB8JDND1mm3SsFd/ux25e91V7yHHprF2y6AOitsL9r/C4u2HgBItJzQwbgwRtNPexZa8/i3sl7exIB2z2xm3PWn0OpWOL0kdMpSKEnBsV9k/dR0xrnbTgPMIbMA/MPMLM445x2Dn/IlXrG8MD8AyxUF5a9mFDw7R53r1z3Te2jXCyzaWjTMu1eCNxqvcqhmUOcMXrGMl3ojbDfP70fgO2j25dp75nY05Oq//1T+9k+YuieufZMoEc8T53M86GZQ8wvzfeE9umjpwOwfnA9w6XhnhgU4XM+fcTQDiNgh2cOO6e9b2rfMt1QsfvguZeRkRz+kCv1jCH8ELeNbAN6q+AOTB9g28g2RGSZ9v6p/VSqFad0D88cpq71ZeGzeXgzA30DPeN5tDzKmv41gOF5bmmOo3NHndKdX5pnfGF8WcGV+8psG9nWU0Nm65qtwPF37N7Je53SVVX2T+9ffs6ht94LBRd2Zgzv97KC64VybTBkgJ7xHBpvyzz3MPSfwx9ypZ4xhIVSoVIfLA2yZXhLT8Lg+6dPFj6Kct+U29aWzYZMKOx7xvPIcZ5DYe9auTZ7USHtXgjcA9MH2Dy8mVKxtEwX3Av78YVxFqoLJ/I8dlbPohP9xX42Dm1cpgvun3MYhfLCc+6pn5LIlXrGECr1RuV69rre5LZDT32Zbo/y+S15Hju7Z556syEDPVDqTV5USLtXwr5RyXjlee2OniiZ/dP72TayjYIYkdcrBXd45jA1rZ1kvO2f2u98+uK+qX2MlkcZKY8AsHVkK6VCKffUVzlypZ4xhIIvDI1C74T9gekDbFtzXKn3Kp8f8txoUOwY29GTOoL9U/tPoNurEGVzRAYMz/dO3uu8B3xzOHjbyDb6Cn1+ohNjZzG+MM5UZco57Ua6I+UR1g+ud/6cm2s2wCj1mtaW33uXtBt5LkiBM9aekSv1VY5cqWcMB6YPsHFoI+W+8vK2bWu2OZ/SNlWZYmZx5iRhD3Bwxu0CFAemD1CUIpuHjy+Et310+3K41hXqWufgzMETBN/YwBgj/SPOV9NqpeDOGD2Dar3K4Vm3xVvNwr5YKHL6yOnu0ywtPPXQY3adz282ZELazpV6K557ZDjun9p/gjEBAc95+H1VI1fqGcOBmRND4GAKx+aW5pz2527lOZaKJdYNrOPIrN0lZZuxf3o/W0e2LodGgeUKfJe0j8weoVqvnqDgwNzvI3OOeZ7az3BpmNHy6Al0w3G5QqVa4ejc0ZN43rJmi/Ne6M21E9AbnpsL9EL0kudG2qetOQ3AOe19U/tOMmS2jmx1bjTm8ItcqWcMzXltgE3DgYJzqGiWPYomwbdpeBP3z7kXfK0UKzjmuYWSAcOzc6UeFCWGMw1CuuCW51b1C2CMKOfG29R+Ng1tor/Yf5xuwLNLBTdZmWRuae7kd7sHPO+b2kepUFrmM6QLbnmu1WsnFeiFtF3znMMvcqWeMeyfaq/gXAqBVp56SNu1R9HJkHFJu1VoFHqk4Kb3t7zX4JjnFp4j9MaQOTBz4KR73QvjrXk6W4hNQ70x3hoL9IDlCnyX79jhWVOg1xx+3zS0ienFaefTVHP4Q67UM4Qwn9pO2LsUAu2Uei8UXCul7pNnb4ZMD1IOIc9bR7aesH3zkOHZZdOdg9MHTygABdgwuAFBnPIc1qM00940vMl5WuvQzKHlcHuIUrHE2MCYU4MibKqzZXjLCdt7EQ3K4Re5Us8Qjs0do671k4RAL8J1h2cPM1waZrh/+IRBA6n1AAAgAElEQVTtrhXcYm2RiYWJk4VPD3gOBVtjgV5I+8jcEacK7ujcUTYPnUh33eA6ilJ0ynPYVCe8vyE2DW9isbbI9KK7RXSOzh09IQwNpkhv/eB6p0om5Dn0kEMsG1EOaR+bO3YS3ZC2U7rzx4AOPOch+FWLXKlnCKHw2TC44YTtvQhRHps/xoahDSdt3zS0iWPzx5xNs3pg3qxo20x7tDxKf7HfucAd6R85IccL5n5X61VnS4JWqhVmFmdO4rkgBTYObXTOM5x8v3sh7I/NHzvp3Qb3of+Q52YF14to0NG5o62/q2G3EbC2hkzuqa965Eo9Qwit62YhMNw/zGDfoFMPrp1HsXl4M3WtLytfF3ThZENGRNg0tMktz+0MGceCb/k5+1Bw860NGdc8LxsyLXh2HQ0K7/f6wfUnbO+Fgjs2f4yNgx48dY/GWw6/yJV6htBOwUFvBF87JQPuBN9ydKKFcnU9tawdz64L1tp5jiFtH4aMc57bhIPBfd3G0bmjjJZHl9viNtIFdwpufmmeuaW5thGwXnjqPgyZHH6RK/UMoZ2nDr0JUfoU9u0MCtf55XYCF9wJ+47PuQfCvuW9dsxzJ+OtF/nllsZEjyIy7WgfnTvqbOnXo3NHGRsYo6/Qd8L2sYExilLMPfVVjFypZwhZ9NRd5x07ea2uFdyxOT/RiU7PuRdhWS8KrhPPw5s4NueubqPdcw7TEK7f7XbPuaY1Z3Ub7QyZXtRt5PCLXKlnCMfmj1EulhkqDZ20z6WCq9VrjM+Pd/TgnHvqbaIEXlIOnnmeWJhgsbbojHYrukOlIYZLw17C75uHN6Po8jG2cXTuaEu6y3UbjpordYxODLuPjLR6t0Parqds5vCHXKlnCGEIvLHLWIhQwbmYZjW+MI6iLYXPhiEzj9hlfnmgb6CtITO7NMvc0px1umF1eythX+4rM1oedR+K7hAlcLWeezuvNaTto3aiF+mOVnQhqNtwnGZpF4UCt6H/VnRD2rmnvnqRK/UMoZ3nCKbgpVKrMF+dt0+3Q5iwr9DH2oG17qrfO/AcCiUXtMfnx4HWSiakfXTenWIdKg0xWBo8aV8o7F0o9aXaEpOVyc7C3kcougehf6+GjIe0Vrt6EXA/nS6HX+RKPUPo5FGsG1gHHFdGtulCewW3bmAd4wv26Ya029IddMdzJ4ELAc8O6EJnQ8Ylz8s9ATrQdvmc1/SvOWH1wRBhhbYLnsOGOu0MmfWD69095zbTyhq3uZwq2moqHcDGwY3OUh05/CNX6hlCJ48iFPYuCms6eVEhbWfCvgPPYwNjAE5odzVkHCu4dnS98jywzlnhVqccr1Oeu73bDg3Wo3NHW/YEALc8L1QXmF2a7fhuTy5MOu2YmMMfcqUeQESKInKziHwu+P/ZIvI9EblTRD4pIid/mZbRyYNbrcLeW3QigrB3xnMn423An/E2NjDmNjrR5Tk74blDXhuO8+xCwXXKa4/0j1CQgtPn3InnmtactgTO4Q+5Uj+O1wK7Gv7/TuDdqnoeMA68wiVxVeWB+QeyqeAGHYaiO4QJnUYnIgp7F+gk7HuRcmhLOzBknCi4NlPpAEbKIwjiNs3S4buqaY3ZJfuLunTKa4uIs3csSmoJ3HxXOfwjV+qAiGwHngG8P/i/AFcAnwoO+QjwXJdjmKpMUa1Xu+daHXnqfYU+RsujLfePlcec0K1rPZqn7jIs26WOwIWC6xSKHi2PGgXnKeWwVF9yMtugE88FKRgF5yH8vhwBc1TD0I4uBEZUxb5iDfP0zd3kQrjkOYd/5Erd4G+B3wPC9k4bgAlVrQb/3wec3upEEblSRG4QkRuOHEleURolBA7uPPX1g+tbTqUDd576VGWKutbbCp/QyHAlcEuFEsOl4Zb71w2uY7G2aH22QV3rTCxMtOW5IAXWDqx14kWF9zF8l5rhMsUzsTDRli6Y++2C5/CaoVHcim7jcbZpt6Mb0nbxbvvkOYd/nPJKXUSeCdyvqjc2bm5xaEuXTVWvUtVLVfXSTZs2tTokEroJ3LUDa81xLgRupYvAHVhHpVZhobpgl24ofNrQLhaKrC2vdaZkxgbG2hoyoYKzLfhmFmeoa335+q3gqnhrsjJJUYqs6V/Tli7Y51lVl+93O7jy1ENe2tF2GQ2aWJhgbXlt2/2+eHZpvOXwj1NeqQOPAZ4tInuAT2DC7n8LjIlI2Dh5O3DA5SAmK5NA+w+xr9DHSP+IM4+io5JxlOedXDA8hwZLO9pOeK504dlRZCQKz65yrRMLE6wdWNsxIgP2eZ5dmqWmte6GjAOeJyuTCNLWkHFlvEUxZFwVY3aTJXlOfXXjlFfqqvqHqrpdVXcALwKuVdVfBL4GPC847KXAZ1yOI/zAuik4Jx7cwmRXJQP2LftuHgU49Fq78OyqhiESzw5D0d28ZbDPs1fjLTBkCtJa1LkyZBaqCyzVl7pHJxyG30f6R9rShTynvlpxyiv1Dvh94HdE5C5Mjv0DLomFgs+HNxPFowAHXmvgUXQNUa4inr0aMpXJjvfalQcXhWdXxZhRDRkfPLvy1CcWJhgtj1IsFFvuXzuwFkFyT32Voq/7IacOVPXrwNeDf98D/HSvaC976p2EritPvZuwd1RYE9Vrvf3o7VbpguH59NGWtY8njMk2z5k2ZBx5rVGfs6vwe6d7He5zFZHp9l1VahXml+ZbtgxOQ7vTvS5IgdHyaJ5TX6XIPfWMIBT27aaVQQY8dVeCr1NY1pHX2q2IyWv43aEH14lueD98GTKuijE78VwsFI2C82DIuDQcO9EFtx0Tc/hFrtQzgomFCUb6R9qGzMBNtWylagRpJAXnqmisS0jYhyHjKu8YtXZivjpPpVqxSrtbHcGygvNkyICb+91VwTmYL96tWC2kC24Mx07fVDiuPPy+OpEr9YwgknXtQMFFET4uQ5TDpWFKxVLbY8YGxqwruKWaabDSSfD1FfpY07/GXdFYF68V3NzvsXKEd8wRz5FC/y4UXAdDJqTtK+UA/gyZvFBudSJX6hlBVOFjW8FFqUwuFUus6V/jJEwYhWewG6KMYsiAmzD4xMIEg32DLVcra6QbHmsL1XqV6cXprvfbhQcXJTrhLBS9MNnVkFmVPHd5t3NPffUiV+oZQZQP0YWwj+JRhLSdeI4RebZJO4ohA27yjlGNN7DrwU1VpoAIz9mR11oulhnoG2hP10H4va51pipTXt7tqLNZwE/43eXqdDn8IlfqGUGUDzEsorO5ulKUIqaQdqgYbCEKz6ECtEk7qiGztrx2WTjbQpQ0iwsPLoqSCff7KNxykXKYqkyhaCTaLgyZUqHEYF/7qnYXdRt1rUe+33n4fXUiV+oZQZQPcaRsmkn4UHCj5VGmK3aXaozEc799nqOG30fLo9aXp4wSnQh5tkk7yhQrcMdzt+jEssFq8R2LEgIHc09cPed23fsax2Xz3Y7ShhiO16os1Zas0c6RDWRynrqIDAEvBM7DNH5p/jJUVV/V84E5RCxP3aLgixqKHimPWPdaJxYmOHf9uR2PcSrsu9zvkfIItx+zO0e+02IuIVzyHMWgcBGRiWJAgeUoVMToxEh5hOnKNKraUQnHQbc2xAD9xX7KxbI3nsHc727vY46VhcwpdRF5JPA/QOvFlw0UWDVKXVUj5dRDwefLU79v8j5rdCFaEZNXnvvtpxwmK5M8aN2DOh7jIiITJzoxVZmyquCiRGSGSkMUpODt3VaU2aXZtj3i46Lb9MEQI2W7RlTU6ESj4Zgr9dWFLIbf34MZ1y8Am4FSi79+b6NzgHDBi67esqNQdEEKXYXZaL/dsGy44EWUCAFY5jlidMJFyiFKRMbFc44j7Kv1KpWavRkWUXgWEetRgsgRGUf3u5sxAfbTHXEiMmCX5xzZQBaV+kOAv1TVq1X1qKrWWv35HqRNRA2ZuQhRhn2i2y140UjbpgCYr853XfAC3AlcQTp27wNjUMxX56nWq1Zpd+O5WCgyXBpeNcI+6wrOVTQoCs+uDBkfsiRHNpBFpX4QsNtKK+OIU8QE9j31SMKnIe9ohW5EQ6bcV6a/2G+94j+qIQP2ctsL1QUWa4uR77eL6EQ3Q8ZV3Ua3dxsc8FyJHpEByzxXJhnt73yvQ9o2eQ6vFfU555766kMWlfoHgZeIdJG4qwhRhY+rvGMUgduYd7SBKL3uG2nbFvZR6YI9wRdVsYbH2Bb2Q6Uh+gqdy2hspzuq9Srz1fnIPNtUrOG12i1BGsJFime60r3RD9jnOeQhShFo4/E5Vg8yVygHvB3YDnxLRN4L7AFOCrer6rd7PC5n2DK8hTdc9gbOW39ex+Nc5B2nK9PLH3gnNCo4G8VEUT2K8BgfPNsORYfRhqj322Z0YnpxuqtyC+mCRZ4r8Xi2OcNienGaUqHUsXtfSBfs8VzXOtOL05He7ZHyCHccu8MKXTjOQ7f77SI6kSMbyKJS7weGMcuetlr6VDDV7+1XPllhOGf9Ofzlk/8y0rEuhP2moU1dj2tUcNtGtqWnG9GLCo/xqeBs0Y7Ls1VDZjGe8WaN58V4PNucYRHXeLPF88ziDBDRYLVcgDpVmaIoxY5NbyAvlFvNyKJS/0fgJcDngOuBvO1RA1x4rd2mWIV0wZ/X6js6YYVuTJ53T+y2QhcCniMqVvDnqds23nykWZa95Sj323IdwVRlitHyaNfpiI3z1HOsLmRRqf8c8GFVfYXvgWQRtoVAbK/VUrgujtc6Wh7l4MxBK3TB8HzamtO6Hmc77xiXZ9u5Vq+GTESebSs4H+923NTS3NIc1Xq1a71DFEQ1ZPoKfQyVhnJPfRUii8VoReB7vgeRVbgoJorqUYAfrzWsvLeFuJ66NUMmDs8Owu9xvFbrxltEnm3OsIiacij3lSkVStaNtzj3OwzZp0XoqUeBi+6BOfwji0r9Olrn0nNg15tRVWYWZ/x4cHG8Vsud3eJ6cL48desphwh0bc+wiOup25xhEZXnkLbt8HukQjnL6Y6oERlw0+c/h39kUam/FniiiPyWiGQxPeAVNhXc7NIsivopGlucpiAFhkpDkWjbNGSieq1hlb+v6MRSfYlK1U7LhqhpFtszLGJ56g6iQVEV3EjZXjFm1Ap0cBP6j+ypW07l5cgGsqjUvwQMAO8GZkXkbhG5o+nP7iobKwg2hU/c0CjY9VrX9K+J1F/cZme3Sq1CtV6NpODCvKPt+x1lSqCLKIEPBRfXUwe7of/Me+qWDZk4St1FG+Qc/pFFT/h+4DBwl++BZBHhh1jXeteOaN0Qp0o37Oxm1YuKIXDBCOl1g+vS0Y1hyIS0bfI82DcYqSCqUalvGu4+5bATwgYwPhRc3Op3sOyp++B5MX5O3WaUIEonu5D23om9VujmyA4yp9RV9bG+x5BlLOcdF2cjK6Z2iBMODmnbLBqLQxeMwEqt1GN4juFxXrxli3OnwyIsX4ZMX6GPcrFzAxiwy3OcepGQ9pG5I6npQjxj2YUhE6dQLs+prz5kMfyeowNsCr44VbrhcVOLFhVcDMUKdnn2UUyUJDphQ9jHKdALj7OZchjpH4mUZrHJ89zSHHWtewu/D/YNUiqWuh5rM61Vq9diGTK2izFzZAOZVuoiUhaRrSKyrfnPIo0zRORrIrJLRH4sIq8Ntq8XkS+LyJ3BbzoX0RKsCnufXmtCT90GXYjOs22v1SvPnjz1lcBzOJ3OBuJWoIOdOoI4newgn9K2WpE5pS4iBRF5vYjsBeaAfcB9Lf5soQr8rqpeADwKeI2IXAj8AfBVVT0P+Grwf+9w4sH5CL/HLGICfzxbDb9HNaDCjl8W7ndcT92213qq8RwrBG6xUC5OgV543GJt0doMixzZQOZy6sDbgN8HbgP+GTjmkpiqHsQs94qqTovILuB04DnA5cFhHwG+HozLK2xa9km81kMzh1LTDWnHqcYGPzzbbHwTtZMdrB6vNY6C8x2dmF2apVavUSykW1YiTgV6X6GPwb5BK+mOJEodzL3qtuhNjpWDLCr1X8FMa3u62motFREisgO4BNPRbkug8FHVgyKyuZdjaQebln1cr9XmilIrxlO32BdgujLddSW+Zboec+phHYGqRsqFd6MdZQlSgHLRXme32HUEwfswszgTebztEEeph7R9eOqNxvLGoY2p6efIBjIXfgfWAVd7UOhrgE8Dr1PVyF+YiFwpIjeIyA1Hjtipnu0E296MIAyXhqPRtqngfBWNJYhO+CiUGy4NI4id4sC4nnp5hLrWmVuas0I7Ks8iYm2OfBJPHeyFwaPyHNL29W5DvlLbakMWlfqtwNZeEhSREkahf1xV/yvYfFhEtgb7t2Lmz58EVb1KVS9V1Us3bUo3nzgKbM5rjdMAJqRtg+5ibZHF2mJkgRs2a/FR/T5SHrGWd4wzpS1UcL48dbAXJYgz9dKagktQ8Q/2eI7jqdv6rmJ76paXnM2RDWRRqf8p8CoROb0XxMRotA8Au1T1XQ27Pgu8NPj3S4HP9GI83WBV+MTIa8OJK0qlohtT4NpcUWp6cZqBvoHIK2LZUnB1rTO7NBsvLGupOtmn1xrHUwd70+mS8mxLufp4zklz6jZov+bzr+E9339P6uvkSI8s5tQvAvYCu0TkU8BuoNZ0jKrqX1ii9xjgl4EfisgtwbY/At4B/IeIvAK4F3i+JXqpYLOzW2yB25CDS9MEJq7ABbseXNzQKJgxp+nsttwAJiZtW9GJghQY7BuMdLwtD05VE93vlR6dSBJ+3ze1zwpd8GO8XX3b1SzWFlNfJ0d6ZFGp/3nDv1/W5hgFrCh1Vf0m0C7+/EQbNGzDqoKLqVjBCPtUSj2mwA2P9RGdsBUZiRv2B7u51qgNYEK6kJ7nheoCNa3F5tlGZ7fQIInSZx/szbBYqi1RqVXivWOe0iy2Z5Wk7XCZww6yqNSjlQefwrDmwcX01G0J+6Se+qrgOWZkxFeaBfzxfM/4PanoglFUw6XhyNPTfPJsqwB1ZnHGzCCI0MkO7KaWZhZnYvGcwx0yp9RV9W7fY8g6rHmtlWnOGjsrFl2w6LV6Cssmik6k9GaSeuoHpw+mohvSTppmSUu38XpRYEvB+YrIxO2zD3YN1qiRCbBXgBrOksg99Wwgi4VyObrAdlg2Dl1IL+zj5v7CY33WEXjx4Gw+5xXiqfuKyCwbMilpx1let5H2QnWBpdpSOtoxn3NBCqzpX2PNSI/Dcw53yJX6CoStdq1Ji8a8CXtbPPtQcAm8VmuV4HE9dY91BCPlEWYWZ6jVm2tj49OOQ7e/2M9A34C3d7vx3KRIEgK38V0l4TmHO+RKfQXCV67Vmtcac3U4sByW9SBw03jqafswxVlgBFie8ueLZzgexk5DO66SsdEeN6nxBna+q7gh8JH+kdQrLybhOYc75Ep9BcKGgqvWqyxUF1ZMoZzNCuE4PIed3XxVv9vo7Ban/zqYxjc2Qv9JeQY7YfC4SsbG0sJJpy6ChRqGmDn1kLa1OoLcU88EcqW+AmEj75jGo7BBu7/YT3+xP/I5o+VRlupLqTq7qWqs9abBXme3RJXgFu93Eq/VJ882aMfm2eJzjqNcbaZ4kvBsK/ye59SzgVypr0DY6OyWROAWC0WGS8NeBK4NwTe7NIuiXvKOU5UpClJgqDQUi254blKoauL77cNwtFmM6SW/nLCOAOxU3ieKTniIyORwh1ypr0DYmHKU9EO05c0kyf1BOsGXmGdLecc4ffbBjrCv1CpU61U/wt631+qRZ191G16Mt7xQLlNYcUpdRL4kIh8Mlkk9JWFDCCT9EG15cEk9dW88WwhRJubZhvHmIxRdmWawbzByn/2QLqRT6tV6lfnqvJeUw8ziDAUpMNA3EIsuWIjIVOLn1G3xDHn4PStYcUodeBKmfewuEflrz2PxAhveTFKv1ZY3k4Qu5DwnoQvJeLZiyCTkOY3xlqQBTEjblsEaJyJjw3hbbsmb0GBNM8Min6eeLWSuo1wEnAeMAFcAT/E8Fi+wEopO6LVaKaCqTLN+cH08uhY8uMQ8l0c4MH0gMV1IXqwGlgwZD885SV57pfOcxJAJlWEa2kkNmZH+EVOAWqvEii40YnpxmqHSUOSWvDncYsV56qp6t6reoqrvUtWn+R6PD1hRcKei13oq8pzGU7eQa40zlQ4sG28JeE7b2S1JmsVGAWqa1BKk/67yfHp2kDmlLiIvEZG2DclF5EwReUkvx5Q1WMm1pvBabVQIJ/Xg0tCOu950I20v08ostC5N47Wm7eyWpFitv9hPuVj2VkcA6T3mJGHotIZj0hC4DVkys5SM5xxukDmlDvwrZo3zdnh0cMwpCxvzl9NUgvuo0rWi4FKkHFLnHRN46oN9gxSkYMd4SzDLAcw0wDS0k3hwI+V071gaT73x/ES0ExgyELTHXUreRS9x+N1S1C+fzpYdZFGpd6swKQH1Xgwkq7AypW1xmr5CH+ViOR7tlK00kzSAgYYVpTxN46tpjYXqQiracRWciKQ2otJ46o3nJ6WdSMGtZJ4TGjJr+tf4ibwFx6dpy5uU5xxukEWlDtDSJRKRNcDTgUO9HU62YMtTj1ulC0bBVWqVxHnHuaU56lqPLQQKUmC4NJzagxOE4dJwrPOs3O8V5rXaiowk4Tl1KNonzwmmlYFFQyapsewhOpHDDTKh1EXkTSKyKCKLGIX+0fD/jX/AJPAi4JNeB+wZpWIpfd4xQTgY0iu4pAI3PCet5xi3AUxINzw/CRZriyzWFpN7rT7yy7Y89aSGjAWek9RONJ6fBElWSgMLPCds1Woj6pe0jiCHG2RlStuPMIpagJcA3wN2Nx2jwAzwXeBjPR1dBmHDg0sqfCDZtLTwPEjWfSq1N+PLkEnDs4XnXC6WKRVLsemG5ydBXevMLs0mvt9H5o4kogvpikAbz09KOynPaULgSRdV8RmFyuEGmVDqqno1cDVAUPn+VlX9it9RZRs2wnUr0lP3bMgkpdt4nVi0LXjqSeimrYpOs3LXSHmEe8bvSUQXzJiLUow97zqtp55k5cMQa/rXeA2/p8qp51PaMoVMKPVGqOrjfI9hJcBGuM6LgkvrqXsq3IL0nnrccDCY+3149nAiupDiOduKTvgolAu85cRploS007RLTf1uL05TKpRirXwI6b/npIWvOdwhEzn1ZohIIZiv/mER+V8RuTjYPhZs3+Z7jL6Re+rJaHv11H0YMknDwSud5zSGTFqDNeH9nl2apa7JJvYkVax9hT4G+gYSf1dzS3MomufUM4TMKXURGQS+hsmbvwDTCnZDsHsGeBfwaj+jyw5yTz0Zba85dU/Tu9IouKRV6GkV3MziTOK+AEmfc7mvTKlQSm+wprjfs4vJ+gKkyWunyefnK7RlD5lT6sBbgEcBzwd20DBvXVWrwH8Bp2R72Eb4FvZePHUbYdkV5qmH07sSK7iEnvpQacg0vvGk4BRN3PgmlYJLYSynWdgk7dSyNNPK0uTz87XUs4csKvXnA1ep6qeBVj0q78Qo+1MaabxWVfUXlk1bCe5hipUNgQvJvdZqvUqlVklMOwnPIpKqIUpanhuvkYR2UiWTxnBM2tWt8Zw0hmPSEHgqQybhVLoc7pBFpX46sLPD/lkgfsVRQojI00TkdhG5S0T+oFd0uyFNfrlSq1CtV7166kmLiear81Tr1cS0k+YdB/sGveWXIZ2wTxOW9RmKTkM7lafukeekYfCk8+ND2qkNmTz8nhlkUak/AGztsP9C4GAvBiIiReA9mC52FwIvFpELe0G7G8I8WJKwbBovajnvmMKLSrpMYzjeJIIvzXSjkLYvTx2SK7ipylSiqvuQtleefXnqHqITvsPviXPqefg9c8iiUr8WeHlQMHcCgjnsvwp8sUdj+WngLlW9R1UXgU8Az+kR7Y4YKY9Q1zpzS3Oxz01b3JLWm0njUUAyYZ9W+KT1WvuL/bGnG4V0IRnPda2nmm6USsGdwp56oiiUhfC7lzqCvFAuc8iiUn8rptr9+8CVmE5yTxaRPwNuApaAt/doLKcD9zX8f1+wbRkicqWI3CAiNxw5krwLVlykEXxJlyBtpJ1K4CZVMim81rTCJ00/8jTNOdLwHFZS+4pOFKTAUGkoEd3wGklppwpF+2i4k9KQSdOqNdX3nKI4MIcbZE6pq+odwJMxVe9vC35/H3gjZiGXJ6vqvT0aTqvuFSfEu1X1KlW9VFUv3bRpU4+GlU7wpfZaU1YIr0hPPaU3k8ZbhoQ8p5hpENJOW7gVtwFMSDe8RlxUqhWW6kvpnnMKBSdIKkMmTRjchyGT9h3LYR+Z6ygHoKrfBy4SkYcBF2CU653ADZpmUev42Aec0fD/7cCBHtJvizSCL3X4/RT01Ef6Rzg4k6yUI21oNLxGbLopZhqEtFPleNPynMaQSRqR6R/1YsikWVo4rSET5tRVNfbY03TRy+EGmVTqIVT1FuAWj0P4P+A8ETkb2I9ZIe4lHsezDN+e+uTCZKJzpyvTbBtJ1hDQt6d+x7E7Ep2btnArvEZsuh499anFFAV6FlJLaT31JAoubbEaeDJYyyPUtMZCdYHB0kmlTJ1pV6YZ7Bukr5BpVXJKIXPh9ywhaHbzm5jCvF3Af6jqj/2OyiD31OPTBY88r0RPPWWuNelzHu4fXr5GErqQjuekBagzS8mnlRWkwHBpOBHPab3ltLIk99KzBe/mlYgkcX9UVR9sfTCtCV0DXNMLWnHg21M/5XLqKac6nbn2zMR0w2vEppvWUy+PLK8FH7dyP40hU5BC4i5nNngOrxMaF5FppzBkQtpJcupp3+3G0P/m4c3xaKcw0nO4gXelDtxPU/FZju6w4al7qZb15bVaCFGGC24UJF6AKw3PpWKJcrHszVMPr7NhaENs2nEVRCOSzjZIsyIenMjzaWtOi0c7pdea2pBJ+V0lMSjSNL3J4QbelbqqPtb3GFYi0nrqafJgodcaN+9YrVeZW5pLLHAH+wYpStGbpw5GiMUdf9r1ppNGRqWlLCQAACAASURBVGx6rbGVegpDBpIbjrYUXFIjKmlEBpLznKY9bUgXkvOch9+zhUzl1EVkMFha9ad8jyXrSFtYkzZMGBbWxEFa4SMiiSuypxen6Sv0US6WE9FOakSl6bO/TDupgrPoqSeh7cWQsWS8Jc1tp/2u0vCcpvd743Vi0c7D75lDppQ6UAE+AjzC90CyjjSFNTa8qPA6seimVDLhuUkV3Ej/SKLpRiFdiM/zfHWeutbTK7gUXmvc3HAj3cbrxKXtxZDx6akvTrOmlNxrTboEalqeUzkIKY23HPaRKaWuqnXgXnq4YMtKRmJhb6GgJ7xOLLoWGlWkCUV74dlCb+ykRXphaDRuDUAj3fA6cRAW151qnnra7ypxTt1iaiku8px69pAppR7go8Avikj8RtmnGNJ4M6ecp+6LZwu9sdN46mnohrUDiZ+zJ099oG8geb1IQk+9Vq8xX51P/26nmNLmq9lPnlPPFrwXyrXAdcBzgZtE5D2YTnInTRpV1W/3emBZQxpvZsuaLanohteJRdenp16ZTlygF9INrxOXbuP5iWj3j7B7fHfs87xFJ2wYMimiE1aMt5i009aLhOemqRdJsmAQJA+/q2rqOoIc9pFFpX5tw7/fw8nT3STYFn/tzlWGNN7Muf3npqIbXicWXUue+qGZQ7HPm6pMsXZgbSq64MlTT1lHkIYuePLU00QnUobAw+vEpdt4fhKM9I8wuxh/2mTaepFwBcG4hszc0lzqepEc9pFFpf5rvgewUjBSHmH/1P7Y59moTA6vE4uu55z69tHtqeiCJ099pdURWDJkFqoLVOvVWKH0tCmHYqHIUGko+XNOQXtN/xoUZW5pLpZxYKMCPUmRXr6YSzaROaWuqh/wPYaVglT55ZTh4PA6sej6rn73wbMlBZdkwY2086aXPbiEz9lWumPd4LpYtNPQhWTvWHi8LZ7jKvXUPCeIjNh4zjnsI4uFcjkiIknesa71RA1UTqAbCJ+4Hb+sCL6kudbFaUb7k9MdKg1RkEJs2uE9ShX6L4+gKLNLs7Fpp6ELye532kVVQroQ34iaqkyl91oTKDjvPKcMgSepvF/mOQ+/ZwqZVOoicrqIXCUie0RkTkQuD7ZvCrbn89hJJnzSVspC8mUipypTFKXIQN9AYtoj5RGW6ktUqpXI56hqamEvIt4EX9LiLRvCPo2C81GYOFVJvjrcMu0EhozN6ETsMLit6ETCNEvuqWcLmVPqIrIDuBF4MXA3UCYYp6oeAR4NvNLT8DKFkf4R5pbmqNVrkc+xIXz6Cn0M9g0mCteNlkcTF/RAMm8mbADjS9gLkrgBDBx/VkkiIys2FJ0i3ZEmIgP+DJk0xrKN6ERcY8IGzznsI3NKHXhb8HsR8EJMtXsjrgEe39MRZRRJLHtbH2KS4q00a2w30oV4gs8qzwmEfZoGMCFdiKfgKtVK6gYwIe2k4fdUleApPPW0Ci7JYjJWIzIJ3rHUhkwS481CEWgO+8iiUn8y8F5V3Uvr1dv2AMnLmFcRkggBG7m/kLaXfGcantMquIQ82/CWIZ6CsxUaTSrsh0pDiRvAhHQh3nOu1WupFgxqpO0jFJ04/G4hIrOmf01i4y331LOFLCr1UeBAh/0lMli17wMrzWu1kvtLwLOtKt0kXqutyuTwWlHhNSJjw5BJ8pw9GjJTlSn6i/2U+5ItGATJwu91raee2QHJprTlhXLZRBaV+j7gwg77H4XJtZ/ySOLNWBV8noqY4BSNTiQw3rzwvGihQM9nRCaJ8WZhYZMkPM8uzqKoNSNdtVVwtDWmF6cpSIGh0lAq2jnsIotK/b+AXxWRCxq2KYCIPAd4AfCfPgaWNaTx1H1VRdugCx6jEz691jjGm63oRP9I/AK9lR6R6R9hvjpPtV6NfI6NepEknrqNPggh7Wq9SqUWfVZJ+D2nKXzNYR9ZVOpvAw4C/4dZhlWBN4jI9RiF/yPgr/0NLztI4834yjv68NS95pdt8uzJkAkb38ShnTZCUC6W6Sv0xTIorEUnEhagpqUbdrPzUviasG4jz6dnD5lT6qo6iZm29hHgMkz1+9OAhwJXAU9Q1Xl/I8wO0ngzvkLRPqvfrRTKeZgrHk6H81UcWNc6c0snranUkXba5ywijJZHvRmsEP+7sqHg4vZCsFkvAvENmVypZw+ZU+oAqjqhqq8BNgCnY6rd16vqrwdKPwfJPfVysZx4Radl2jFD0TY62cFxnpN4cDYEX6VmporFoZ2WbkEKsauTrUUnkoT+LXlwcQ1HnzzbUnBxebZZOwHxUzz5dLbsIRNKXUT+QES2Nm9Xg4OqekBVo3dYOUWQ1Gu1JXxml8yKUlFgo5MdQKlYolwsxxY+fYW+VJ3soGF98Yj3W1WteXBJhb2v0L+Niui4hqPN6ATED0X75NlHPj/31LOJTCh14O3AXhH5rIg8V0RO+WVVo2Cwb9D0I/fhRcUM19mc05pE8Nko6InrzcxX56lpzZ6wT6DU03SyC+nCyvBabYeiffEcJwRuq1AuKc/5dLbsIStK/RXAd4FnAp8G9ovIX4lIp6ltpzxEJHZ1so2CHojvzVhV6gnCsjYNGW88x8zxjvSPpOpkF9INrxcFtjrZQQpP3dMUQhs8x82p54VyOZqRCaWuqh9S1ccD5wHvABaB3wV+KCLfFpFXiEjynpNtEBgOt4nID0TkahEZa9j3hyJyl4jcLiJPtU3bFpIUE1lVcBFp22wpmcRrtaVY4RTjOe5ztrjIR5KUw2DfYKpOdhCfZ1ud7CD4nn0UvuaFcqsGmVDqIVT1blV9I3AW8HTMfPRLMFXvB0XkgyLyOIskvwxcpKoPBe4A/hAgiBC8CHgIpvL+vVlNCSTxZqwquBXgtVqLTqwkT33RThGT1+cc8922WaAH0Xm2acjE7Ts/VZmiVDB1JmnphteLgrBeJA+/Zw+ZUuohggK5L6rqi4CtwG8BtwMvA74uIrdbovMlVQ07THyX4z3lnwN8QlUrqrobuAv4aRs0bSNJKNpWaDS8XhRYF/aeqrHD60WBT55tGW/LxYE+ohMJPPWVHoVKotTTrnwI8WeVzC7Z6WSXwz4yqdQbEUxvew/wXIznLsC5Dkj9KvC/wb9PB+5r2Lcv2JY5rBRP3VZBT3gNLzzH9NRPRZ5dRCeiNr6xFZFZLkD1xPPs0mzk5ZRtRWRKxRKDfYORlXq+Qlt2kemFUUSkH/g54OXAE4EicAj4aIxrfAU4rcWuN6rqZ4Jj3ghUgY+Hp7U4vqVkEZErgSsBzjzzzKjDsoaR/hEOzRyKfLwvb8ZnoZy1KVY+PfUEEZnT1rR67eNheaqTp+hETWssVBcYLA12Pd5WRCYsQPXBc2NkZGxgrMvRdvPacaIE+Qpt2UUmlbqIPAKjyF8MjAE1zDrqHwA+H2fOuqo+qQutl2Kq7p+ox12CfcAZDYdtp83Kcap6FSbnz6WXXhq9l6YlxPHUl2pLLFQX7Cq4mN6MtaIxD92+vHqt5REWqgtU69VIhWC2hH1BCgyXhr1FJ8JrRlHqU5Upzhg9o+txkWiXo88qsclzYy+EKErdVjoN4qV4cqWeXWQm/C4iG0XkdSKyE/g+8BvAEUzx2hmq+hxV/azNJjQi8jTg94Fnq2pjH8zPAi8SkbKInI2pyv++Lbo2EcejsFqZnCDvaKOTHRyfyxslLFvXujUPrr/YT3+x31t+ufGa3WDTg/Ml7JMYUTa9Vp+eehyP2YenbtOQyWEXmfDUReS/gGdg1kqfxYTXP6Cq33RM+h+BMvDloNDku6r6alX9sYj8B3ArJiz/mqx2tIuTa7UpfIZLwwjiTeAqyuzS7HJ4uB1sdbILEfd+F6XIYF93L7Mr3QYjat3guo7H2q5MjmU4ujBkYtC2ZsjEeM62C+UgnlI/Z905qemGtPPw+8pHJpQ6pgjue5jw+idUNfpkyRRQ1bYFd6r6NsyKcZnGSHmEpfoSlWqFcl/naS02Q+AiEqtRho2lKUM0enDdlLqtLmONtON4cDYqkyGepx52srPKc0zDsdtziUoX4nnqKz0UHfIcp2DNFs+j5VH2TuyNTBfyQrksIivh94tU9dGq+v64Cl1ERoP56+e7GlyWEcebcaLgYngztgRAHJ5texRx0x3WeI6R7rD+nGMWjdnoZBfShWg8L9YWqdQqXjx1Wz3nIf4UwrxQLkczMqHUVfXWFKcPAi8FtlkazopCHG/Gp4KzneOFeDzbVK5e8tox5hH75NmJIROBts+IzPTiNAN9A5SKpdR044Tfa/Uas0uz1u73aH/0OgKb9Tk57CITSt0C0sc3Vyi8eq0JQtFW6MaJTlgWPr4MmTgrxK0a4y3Bu20zGuSrXiS8ZjeE9SI2v+c4nnpfoS91J7sc9rFalPopi1jejOWK1VjFRBYXf/AanYjrtVrM8YbXjEIX/BUH2uY5iqJxZbxFmWFh8zmHtQixIjIWc+qLtUUq1Uok2rbqRXLYRa7UVzhWkqduU8lATA/OQyW4E6/VlyETIyzrk2ebBkW1XqVSi67gbKCv0MdQaciLIRMnSmDTkMlhF7lSX+FI4rXaqEwGfyFKr7lWz16rr+LAuaW5SK1LbT7nYqHIUGnIG88Q/buymVuOulKbbZ7jKPV8hbbsIlfqKxxxq9+HS8MUC3YWnIvqtYad7FZFrrUcIyxrcd50uVimr9AXy5CxXbAWZVlOW/3Xl2lHNKJcFMpB9O/KJs+j5VGmFiN4y5afc5zKe5vvdg67yJX6CkdcT93mhxg1v2w7xzvcP2yuG5FnW53swPBQ1zrz1fmOx9nsZAfx+pE781qjCvt+y++Yp0I58PRd9UcrWPPtqedz1LOJXKmvcMTyWi02gAlpV2oVlmpLnelaFj4FKURufGNTsUJ0I2q5k51NrzWGgrPVyS6kC915VlUnCs5XvQhEL0y0achEnS/uol6k8bqdYPu7ymEPq0GpLwLXAeO+B+IDpWKJcrHsxbqOatnbDo1C9LCsi3AwdBf2PnkO54rbqkyOynPYyc66IRMjGmSzXgSie+q2v6s4PHvz1PNCuUwic0o96A739mDZ1Vb7HyUiHwz/r6rjqvozqnpz70aZLYwNjEWzri3nwdYOrAW6CwHbodGQdpS8o23PMeR5cmGyK12wq9TjeHC26YbX7QRnhkxET31N/xornewg+nQ62/UiYO7fZKXz+wX2v6u8UG51IHNKHXgZZuW0a0VkY4v952A6yOUIsHZgLRMLE12Ps67gykbBdaPtQsGtLUfj2XaYMOS5m9C1HRoF85yjCHvrPMc0ZKzz3IUuODBYy9EMVherlcUx3mzWi4T3r9v9rmudmcWZXKlnFFlU6gCfBB4GfO9U7ekeB2MDY5Ete5vCJ1zvuZtyddFScmxgLLIhk/Ocni544rkckedFPzy7MFjD59xthoVtQ2aoNERfoa+rLLG98mEOu8iqUv8c8ARMX/fviMiTPI8n0/DmtQ549lojeHCrKfw+Vh7zwnOo4KI+Z9u0JyuTXRWcbZ7DUH43nl2kHMYGxpa94U6YWrSbyxeRSIajC55z2ENWlTqqeiPwSOBe4BoRudLzkDKLKB+ii8pkr95MRA/OtjcTl2fbdQQ+PLg1/WsQxBvP1XqVuaW5jsfZ5jmqgnPBc1QjysVc8ShRPxc857CHzCp1AFW9D3gM8BXgfSLyN2R8zD6wttzda12oLlCtV52EKLvRDi17W5XJEK+OwHa+UxBvHtxSfanrHHnbPBekEOl+u+IZohlRtpVMlAiYi5RDnFoV2yHwKDzny65mG5lXkMH66s8E3gf8NvAOvyPKHiKFzBwIn/BaUYSAzU52YHiu1CosVBfaHlOtV5mvzlvluSAFRsoj0T04D0aUi8rkWB6cC54j0Lat4KJ8V+Gz8JXPd/Gcc6W+spF5pQ6gqnVV/U3gd4AtvseTNawdWMt8dZ7F2mLbY1yEzPoKfazpXxNJ4LoQPtBZwbkSPpGEfWWScrFMuc/e0pRRPLhaveakMUgUDy7cHz4bW3Qbr92J9rqBddboQjRDJhzXukF7tKMab+ML41bphrS73evxBdMSxPb9zmEHmVPqqlpQ1X9rs+9vgYuBK3o7qmwjihAYnx8/4VhbiCLsxxfGndCFzh5cyLNtwbe23H1q2fi8G4ELnXkO9/kS9uVimcGSnU52IV3obshMViZXjYILizG70p4fd2PIdDMmHH1XOewgc0q9G1T1x6p6ne9xZAlRFNyyR+HJm3Gl4DoJvlDg2jYoogj7icqEE7rQmWdXzznKbIOJBXc8R4nIWDccI9QRTCxM0F/sZ6BvwBrdKM+5rnWmKlNejHQXEZkc9rDilHqOkxFHwfnyZlwoGfCj4KJ6Mz54duVFRX7OtqMiUXh2FA6OMoUwfM62WvJCtJTD5MIkijp5t2eXZjuu5zC+ME5/sd/a2gI57CJX6qsAUeZOLwt7Dx6c01B0FJ4dKBofCi4Sz66iExGmELoKB0M0481FlGB6cZpqvdqetoOITLmvzGDfYKTIm7PISBfaYwNjVg2ZHPaQK/VVgJXgqY+V3eTUfXlwUUKUqy38PlWZoq71jrRt8zzQN0C5WPZSOxHy0qllqwuDFbobji6/Z+huOOah9+wiV+qrAFGLxlyEzLrl4OpaZ3LBTRETRAtFu8i1duty5sJrHewbpK/Q5y38rmjH1cNcRCcguoJz8Zyhs4JzYchAd2PZlaceNa2VV75nF7lSXwWI6sG5CJl1a+M5VZlykvuL0sZzfGGcUqHEUGnIKu1ubTzrWnci+MIuZ914DsdoE1HfMRfCPqqC8xH6d1EvEtKOZLz54Hk+99SzjFypBxCR14uIhivDicHfi8hdIvIDEXm47zG2w0h5xHQ56xIycyV8OrXxdOU5ikjXKEFYdW/bkOkWGVk2ZBx4rVEUXF+hj+HSsFW63XgODRkfXqvr8LsPBddt2qSL+fEQw3jLp7NlFrlSB0TkDODJmD7zIZ4OnBf8XYnpaJdJFKTAaHm0u0fhIjTaRdi78hzDa/ryoqC94HM55aebsHdRjQ3deZ6uTFPXupP7HUXBFaVo3ZDpxrOqeotOuI7IdIsG2a6RyWEPuVI3eDfwe0BjDPk5wEfV4LvAmIhs9TK6CBgbGGOi0tmjcKngQm+pFV1w032qa67VkRfVTdi75DmKsHdiTHTJL7vyHCGi8eYhIjOzOENNa95y6gUpOOn9Hl6/FZYNmdxTzyxOeaUuIs8G9qvqzqZdpwP3Nfx/X7Ct+fwrReQGEbnhyJEjDkfaGesH13Ns7ljb/a489fWD6wF4YP6BlvtdCvv1g+vb0gV3PIfXbEfbVWVyeM1OPLsSuKGB0o1nVwqundEY0nZpvLWj3QtDpl2tSmiw2jZkwlReO55nl2ap1qt5Tj3DOCWUuoh8RUR+1OLvOcAbgTe3Oq3FtpO+MFW9SlUvVdVLN23aZHvokbFhaAPH5tsrdVdhwg1DGwDa0nbZJ3rDoCeeBwOe2xhRrgq3QtpdjTcfz9lhdCJ8zu0UnKvnvHZgLQUpdDfeHNBeP7iexdpi21qViYobngtSYN3gumXeTqLr8N3OYQd9vgfQC6jqk1ptF5GfBM4GdgYW73bgJhH5aYxnfkbD4duBA46HmhgbBjewd2Jvy30ui5i6KThX08pC2h0VnKOUQ1QF54rnB+YfQFVbemnj8+OcPXa2dbpry2spSrG7IePAa90wtIFqvdp2oRpXaZaCFFg/uJ6jc0db7ndZOxF+V0fnjjLcf3KtgKv58SHtdjy7fLdz2MEp4am3g6r+UFU3q+oOVd2BUeQPV9VDwGeBXwmq4B8FTKrqQZ/j7YROXqvLIqYonnpRilbXUg+xcWgj4wvjLRuihLk/F8JnpH+EUqHU3pBxGH7fMLSBmtba5nldea0i0jEa5DL8vnFoI9A5MuJSwXWNTjigvcxzh/vtSrFuHNrYlq5L4y2HHZzSSr0LrgHuAe4C/gX4Db/D6YwNQxsYnx+nVq+dtM+lkhkuDdNf7O8qcF20lNwwtGE5CtGM6cVpalpzwnM3BRdWY9suYoLOCk5VndURQDQPzmW6oy1tRykHMPe7E11w5KkPdebZZQOYDUMdnrNDnnPYQa7UGxB47EeDf6uqvkZVz1HVn1TV/9/euQfXddR3/PPTw3pLliXLetmRFQeC87DsJBDyIobgBCglpaXDDKUhlMnQMoQyk5amKdN0pmlnUmDCoxRSCIGGtAMhpPkDSJySBDIhJk4sO7Gd+CFLtmzJV++3dK+k7R/nHPnqvqxY2r3y0e8zc+dKe869v/3tOXe/+9vds7s72/nLRHVxNQaTUuBsVrgikjmasVjhZqrsbfoc2M4kcBWFFXYaMhl8tj2J6WyReo7kUFaw9A2ZTL1Bxhiri6Fk8jkYa7dxj52td6JvvM9qQyaTXThzHyrLDxX1kDA3tp2iApqrfGxFcBla9n3jfVbtBjaS7PrlEMzOt2E7XWXfO9E7VynbsAupr3NwDWzZzlTZ9473UlVURY4sfZWSSeCGp4aJzcZYW2xnkmp1UXqfe8Z6yMvJsz6mnsismaVvoo+1JXZ8ztRg7Rn3nvCxZVtZPCrqISGTwAU/xJqSGju2M0TqPeM9Vu1CaoHrGbPrcyaB6xnrsSYymSYmBj7btJ2psrcpMpBa4CJjEcDive03WFPNvO8Z966zjR6ZyqJKBEnbSJ81s/YaMsXVTExPpJx53zPWQ2Fe4ZIv9KMsHSrqIWG5ClxkLEJNsb0KFzI3ZGwKTbqGTGQsYlVkIEsCl+HRsshYxJrIrC5cTY7kpL63HVznqZmp1AJnsSET9ACkus5zjTfLjah0vytbDRllaVBRDwlnq+yDx3Os2E4jcMYYL2q1VPlkmiHsRODGUwtcUPHZIJsCV11cTXQmylhsLNn2mL0emdycXCoLK7PSOxHcY+nE1ZbdwHbG62zZ53S2tet9eaOiHhIyta4jYxGqi6utjHeC16AInp2OZ2hqiNhszFpln+nZ6Z6xHvJz8ueWvVxqqoqriM3GGInO34p01szSO95rreILGmdZ6X4/S8+ITYGrKq6idyKFsNqO1DPMYbAtcFXFqddhsB2pZ7MhoyweFfWQUF5QTl5OXvrKx2aFW+QtDjI8NTzfrmWRERFP4NJE6mtL7HUTppu8FYx32mrIQPqekchYhMK8QitrAgR2Ibmyn56dpn+i36rApRvicTGPALIXqae0azlSP2vjTSP1ZY2KekiYE7g0kbpVkUkTzdjuAg9sp6v4bDdkINln2yIDZ/fZekMmwefgnrNd3umGlkpXlVKUX2TFbrrGW3QmytDUkHWfM82RsfmUA2ikfr6ioh4i0lYCFmegB3YhueJz8fhLJp9td41Css8uGjKZxlqz6bP1SD0bvVBpGqy2u8Ahc6ReXlBOQV6BFbvB3JtEnydiE4zFxlTUlzkq6iGipqSG02Onk9JtzkyGMxVbULnH2w3yZdN2UMEm2rYtrHCm4RLgqiGTLmrNps+2G46pHi2z3ZAJBC6xvF35PB4bZyI2kWTb5u853cx7fUb9/EBFPUTUl9XTNTJ/efroTJTByUGrlU99WT0Ap0bm73fjoiu6vrQ+yW5g26bdutI6IDs+15XWcXr0dNKSwLZ9XlO0hvyc/KR7zIXPtaW1TE5Pppy3YVvgqoqq6B7tTrILdn0OfrOJDXWbT5QErC1em9JucExZvqioh4iGsgZOjpycF80ErW2blUAgcCdHTs5Lj4xFrHYTgtegGJgcmBfNTE5PMhIdsdqQKSsoo2xVGSeHk30Ge+OdAA3lDcyYmaSeEdsRXI7kUFdWl3SdXURwDeUNQPI95mLiVmN5Y3Z9Hk7hs2VhbShvSGkXNFJf7qioh4j6snompyfnrf/uogs8PzefmpKa5KjVUeUD8yNmVxFFQ3kDp0aTfa4srCQ/N9+e3bJkgRuLjjEeG7d6nQPbSQI31oMgVtcDn/M5TmiMMVYXN5qznUrgHNxjqa4z2B9OC2ynus6gkfpyR0U9RATd4PE/RturyQWkqgRsj/EGdiHBZ0cRRUNZcmXvxOcUEZwzn1MIXGQswpqiNeTm5Fq1C/Ov8/DUMNGZqJvrnHBvnx47Ta7kWt2CtLG8EZh/nWdmZ+gd72Vd6TprdgPbp0ZOzdvWOBiCsG1bWRwq6iEiVdTaNeqNf64rsftDrC9LHtvuGu2itrTWul2Y73NQCQbDAjZtJ1b2J0dOUldm126qhsyJoRPzjtmivjTZ5xPDJ1hfsd6u3aDBGidwJ4Y9n9eX27XdUNZAZCxCdCY6l3Z86DiN5Y3WFnQCb/XAorwiOoc759K6RruYnp1mQ8UGa3bB8zk6E503Wa5jqIOKggrKC8qt2lYWh4p6iEhV8bUPtgM4qQTihdUYQ/tgO02rm+zaTRG1Bj5vrNxo13ZZA10jXfOimfbBdjautmu3pqSGXMmd53PHUAeAk/IejY7Om7DWPtjOBRUXWLVbmFdIVVHVvAZFcJ1d3WPx93fHUId1uyLi9YzE+dwx6F1n2+Wdqpfg+NBxLlht166yeFTUQ0SqqPXY4DHqy+qtTlYLbMdHMz3jPYzHxq0LXEVBBUV5RfN8bh9spyivyMmYemw2NhfNTE1PcWrklPXKPjcnl7qyunnj+S4bb3CmsjfGOBE4IL3AWRaaVALXMdjhROASu/6Dxptt26mGOzqGOqw3JpTFo6IeIgrzCllTtCYpmrEtrHCmEgjG3VxFUamimfYhr4fA9k5SiT0jx4eOA/ajqMB2Yu9EbWmttZXVAhIr+/6Jfkajo25EPWEOQ/tgOwW5Bc7nbcRmYpwcOenkOjeWN6bshbJtO/A5vuu/Y1BF/XxART1kJI5tHxs45qzChTMC50rUIXls20W3P5zxOShvlz4nRnCufU68zi4q+4ayhvkiM+RFyzbHtSF5iKdzuJNZM+v0OgePqXYMdlBVVEXJKrv7mdeW1s4b4hmaHGJoaki7388DVNRDuLM4YQAADuRJREFURkNZw9wEounZaTqHO50JK5xp2R8bOAa4E7j4yt6ZwJXPj2aci/qw+67RxEjd1Vh+YDsyFiE2E5uz7cLnysJKCvMKk3x2Vd7xE9aChoxtcnNyqS2tpXOkc84uuPFZWRwq6iHj4uqLOdhzkJnZGU4MnWDGzDipcDet2YQgHOg5AHgCV1VURVlBmXXbb6t6Gx2DHYxFxxieGqZ/ot+Jz3WldRTlFfFG7xuA53Ou5M4Jn002rdnE0NQQ3aPdzJpZOgbdjGsX5xezrmQdh/oOAXGRugOhaVrdhMHQNtA2Z9uFzyJC0+omjvQfAdyN5cMZEQ18djmuvaFiw1zj3KXPyuJQUQ8ZW9ZtYWJ6gqMDR8/MAncwpl6yqoSLqi5i7+m9wJlxbRdsWbcFg+H1yOtzlY8L27k5uVy+7nJaT7cCXoW7vmI9eTl51m231LYAsLd7L10jXcRmY87Ku6W2hdZuz+f2wXbKVpVRWWjvee14uwB7uvcwEZsgMhZxJnAttS3s6d4DnIlabT9KF9gFz2djjLPGG3i/q9bu1rnJkKCR+vmAinrI2FK7BfAq+6B177ISCES9baDNWat+TuBO7+XowFHAnc8ttS3s7d6LMYYj/UecVXrBdW7tbp2LIF35vLV2K/t79jM1PcXh/sNOJiUCbF67mfycfPZ07eFw/2HA/mOLAVtrt3J86Dh943280fsGjeWN1p8oAS9ariys5NWuVzkxfIKJ6QmaK5ut2wXYVreNoakh2gbaONBzgNJVpdYnJSqLR0U9ZGxeu5lcyWXf6X28cOIFKgsrnYp620Abh/sOc6jvEFfWXenEbtPqJsoLymntbuX59ucpzCvksprLnNhuqW1hYHKAAz0HeKXrFd7d+G4ndlcXrqZpdRN7uvfwXPtzCMI7G97pxHZLbQvTs9PsPb2XF46/wLXrr3Vid1XuKi6tuZQ93Xt49tizAM5sb63dCngR87Ptz3L9huud2BURttVt49WuV+d8vuGCG5zYvqL+CgBe7XqV59qf47oN1zlpvCmLw34/oeKUwrxC3l79dlpPt7L71G52XLjD6vKd8QTR41de/AoAt2y6xYldEZnrJRiYGOCGC26w/mhXQNBL8MBLDzA9O82OC3c4sRvYbu1upXO4kyvrr5zbJtQ2W+s8gfvu7u8yGh3lpuabnNgFT1yfPPQkBXkFbFqzyVlvUODzo689SvdoN+/d+F4ndsGLmL++6+s83fY01cXVXFpzqRO7l6y9hPycfH5x5Bcc7D3Ip1o+5cSusjhWfKQuIp8XkTdFZL+I3B+XfreIHPGP3ZzNPL5VWmpbePro03SPdjsT1sAuwMN7H2Zdybo5kXdle/ep3RzsPcjNF7q7XJfVXEaO5PCjfT+iOL+Ya9Zf48x2y7oWDvUd4qXOl3h/8/ud2d20ZhMl+SU88tojCML2jdud2d5at5Xe8V6eOvIU79v4Pmd2q4urWV++nkf2PQLg1Pa2um1EZ6L8dP9PubHpRuuP8AUU5BVwac2l/HjfjwHY3uTuOivnzooWdRHZDnwEuNwYcwnwFT99M/Bx4BLgFuDbIuIm3F0C7rn+nrn1mV0KXGN5I1+8+otEZ6LsuHCHs8oH4M533Tk33ucyWi5ZVcKXb/gy0Zko77ngPU7GWQNu33o7zZXNzJgZ3n+hO1HPkRzuvfFeojNRrqi/wlkPAcDHNn+MzWs3E5uNOe0hALj7uruZNbM0VzY7G8sH+MCmD9BS20JsNua0MQHwhXd9ARGhsrByrrdCWd5I/N7bKw0R+QnwoDHmmYT0uwGMMf/q//8UcK8x5neZvu/KK680u3fvtpXdt8ShvkMc6DnArRff6tSuMYbHDjzGNeuvcfJoVzwnh0+y6+QuPvqOjzq1C7Dz6E6aK5u5cM2FTu32T/TzfPvz3Hrxrc7HO3d17qKisIKLqy92anc8Ns7Oozv58Ns/7LThCLA/sh+AS2oucWo3NhPjmbZnuKn5Jqvb+qbi2MAxRqOjXLbO3jwVEXnFGONmEk7IWemi3gr8L140PgncZYx5WUS+BbxkjHnEP+/7wC+NMY+l+I47gDsANmzYcEVHR4ez/CuKooQBFfWlI/QT5UTkGSDV/p/34PlfCVwNXAX8RESagVQhT8rWjzHmQeBB8CL1pcizoiiKopwLoRd1Y0zagTcR+UvgceN1V/xeRGaBaqATiF9ZohE4leIrFEVRFGXZsKInygFPAO8FEJG3AauAXuBJ4OMiUiAiG4GLgN9nLZeKoiiKsgBCH6mfhYeAh0TkdSAK3OZH7fv9SXQHgGngc8aYmSzmU1EURVHOyooWdWNMFPizNMfuA+5zmyNFURRFOXdWeve7oiiKooQGFXVFURRFCQkq6oqiKIoSElb04jNLjYj0AOe6+kw13sx7xUPLIxktk2S0TOZzvpbHBcaYtdnORBhQUV8miMhuXVHpDFoeyWiZJKNlMh8tD0W73xVFURQlJKioK4qiKEpIUFFfPjyY7QwsM7Q8ktEySUbLZD5aHiscHVNXFEVRlJCgkbqiKIqihAQVdUVRFEUJCSrqFhGR9SLyrIgcFJH9IvKFFOeIiHxDRI6IyD4R2RZ37DYROey/bnObezssQZnMiEir/3rSbe7tsMAyuVhEficiUyJyV8KxW0TkTb+8/s5dzu2wBOXRLiKv+ffIbnc5t8cCy+QT/u9ln4i8KCJb4o6F6h5RMmCM0ZelF1AHbPP/LgMOAZsTzvkg8EtAgKuBXX76GqDNf6/0/67Mtk/ZLBP/2Gi2fchSmdQAV+FtMnRXXHoucBRoxts6eG/iZ8+312LKwz/WDlRn248slMk1QR0BfCCuLgndPaKv9C+N1C1ijOkyxrzq/z0CHAQaEk77CPAj4/ESsFpE6oCbgZ3GmH5jzACwE7jFYfatsMgyCSULKRNjTMQY8zIQS/j4O4Ejxpg24+06+D945XfessjyCCULLJMX/boC4CWg0f87dPeIkh4VdUeISBOwFdiVcKgBOBH3f6efli49NJxDmQAUishuEXlJRG61nknHZCiTdIT6PjmH8gAwwNMi8oqI3GEjX9lkgWXyF3i9XRDye0SZz4reT90VIlIK/Az4a2PMcOLhFB8xGdJDwTmWCcAGY8wpEWkGfi0irxljjtrMqyvOUiZpP5YiLRT3yTmWB8C1/j1SA+wUkTeMMb+xk0u3LKRMRGQ7nqhfFySlOC0U94iSjEbqlhGRfLwf4Y+NMY+nOKUTWB/3fyNwKkP6ec8iygRjTPDeBjyHF7Gc9yygTNIRyvtkEeURf49EgJ/jdT+f9yykTETkcuB7wEeMMX1+cijvESU1KuoWEREBvg8cNMZ8Lc1pTwJ/7s/4vhoYMsZ0AU8BO0SkUkQqgR1+2nnNYsrEL4sC/3uqgWuBA04ybpEFlkk6XgYuEpGNIrIK+Dhe+Z23LKY8RKRERMqCv/F+N68vfS7dspAyEZENwOPAJ40xh+IOhe4eUdKjK8pZRESuA34LvAbM+sl/D2wAMMZ8x/+xfgtvEtw4cLsxZrf/+U/75wPcZ4z5gcPsW2ExZSIi1wDf9T+XAzxgjPm+YxeWnAWWSS2wGyj3zxnFm8E8LCIfBB7Am+X8kDHmPscuLCmLKQ+8rUd/7n8mD3j0fC8PWHCZfA/4Y85s/zxt/B3bwnaPKOlRUVcURVGUkKDd74qiKIoSElTUFUVRFCUkqKgriqIoSkhQUVcURVGUkKCiriiKoighQUVdURwhIjeKiBGRT2U7L4qihBMVdUVZQkSkRUTu9dfnVhRFcYqu/a4oS0sL8I94S9i2Jxz7DVDECtlZTFEU96ioK4ojjDGzwGS286EoSnjR7ndFWSJE5F4gWMr3WX/83IjIw/7xpDH1+DQR+SsReVNEJkXkNRH5kH/OZSLyKxEZFpE+EfmGv7lHov2LROS/RKRLRKIi0i4i/+avgX6uPjX5+btXRP5URFpFZEJEjojI7f45G0TkMRHpF5EREXkkWH897nvWi8hDItIhIlMiEhGRF0XktnPNm6IoyWikrihLx+NAHXAH8C/AQT99IVvDfg6oxNthaxK4E3hCRD4G/Cfw38ATeBuUfB6IAP8cfFhErgB+DQzirY9/Etjif8+1IvIeY8xiuv3/APgs8G2gH29rz4dEJOr7+mu8tcivAj7t+/AZP295wE68Pby/DRwCKoDLgeuBHy4iX4qixKFrvyvKEuJH4T8Athtjnks4diPwLN4GNQ8npJ3C26BlyE+/HNiLt+/1n8RvtSkirwD1xpi6uLS9QAFwlTFmJC79j/AaG3M236I/TcAxvI11NhtjOvz0tcAJYBVwV/zOYSLyOF4jYI0xZjTOly8ZY+5/q3lQFGXhaPe7oiwPHg4EHcAYsw8YBk6l2Dv7BaBWRErB657Hi3ofBQpEpDp4+eeO4UX4i+GJQND9/PUAb+LtGPbvCef+FsgHmvz/A7+2i0jNIvOhKEoGVNQVZXnQliJtAC9KTpUOUOW/v8N//yegJ+EVAUqAdZby12WMmcqUP78xcB9ew6JLRF4RkftF5KpF5klRlAR0TF1RlgczbzEdQBLevwr8Ks25A2nSF8pi8ocx5h9E5CHgQ3jj6J8B/kZE7jfGfGmReVMUxUdFXVGWlmxMUjnsv88YY57Jgv0FYYxpA74JfFNECoGngL8Vka8aYyLZzZ2ihAPtfleUpWXUf1/j0OYe4HXgsyLSnHhQRPJExGV+Eu1XJD6CZ4yZ5MzTAZXuc6Uo4UQjdUVZWl7Gmzx2j4hU4k1SO2aM2WXLoDHGiMgn8R4r2+d3c+8HioFNwEeBu4GHYd6M9ueNMTfaylcc24EHReRneJPrRoEr8Lrgdxlj3nSQB0VZEaioK8oSYow5LiKfBr4E/AfeLPAfAtZE3bfbKiJb8cT7D/GeKR/BW6r2YeD/4k4PFoY5aTNPcezFe6zuRuATQC5wHO/59q86yoOirAj0OXVFWWGIyJ14YnqJMeZQtvOjKMrSoWPqirLyuBn4jgq6ooQPjdQVRVEUJSRopK4oiqIoIUFFXVEURVFCgoq6oiiKooQEFXVFURRFCQkq6oqiKIoSElTUFUVRFCUkqKgriqIoSkj4fzSFbTt3hb65AAAAAElFTkSuQmCC\n", "text/plain": [ "<Figure size 432x288 with 1 Axes>" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "#Slicing the full response vector to get the steady state response\n", "z_steady_V = z_V[int(90*period/dt):]\n", "time_steady_V = time_V[int(90*period/dt):]\n", "\n", "plt.title('Plot 3 Verlet approx. of steady state sol. of Eq 1', fontsize=20); \n", "plt.xlabel('time, ms', fontsize=18);\n", "plt.ylabel('z_Verlet, nm', fontsize=18);\n", "plt.plot(time_steady_V*1e3, z_steady_V*1e9, 'g-');\n", "plt.ylim(-65,65);\n", "plt.show();\n" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "### Let's use now one of the most popular schemes... The Runge Kutta 4!" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "The Runge Kutta 4 (RK4) method is very popular for the solution of ODEs. This method is designed to solve 1st order differential equations. We have converted our 2nd order ODE to a system of two coupled 1st order ODEs when we implemented the Euler scheme (equations 5 and 6). And we will have to use these equations for the RK4 algorithm.\n", "\n", "In order to clearly see the RK4 implementation we are going to put equations 5 and 6 in the following form:\n", "$$\\begin{equation}\n", "\\frac{dz}{dt}=v \\Rightarrow f1(t,z,v)\n", "\\end{equation}$$\n", "$$\\begin{equation}\n", "\\frac{dv}{dt} = -kz-\\frac{m\\omega_0}{Q}+F_ocos(\\omega t) \\Rightarrow f2(t,z,v)\n", "\\end{equation}$$\n", "\n", "It can be clearly seen that we have two coupled equations f1 and f2 and both depend in t, z, and v.\n", "\n", "The RK4 equations for our special case where we have two coupled equations, are the following:\n", "$$\\begin{equation}\n", "k_1 = f1(t_i, z_i, v_i)\n", "\\end{equation}$$\n", "$$\\begin{equation}\n", "m_1 = f2(t_i, z_i, v_i)\n", "\\end{equation}$$\n", "$$\\begin{equation}\n", "k_2 = f1(t_i +1/2\\Delta t, z_i + 1/2k_1\\Delta t, v_i + 1/2m_1\\Delta t)\n", "\\end{equation}$$\n", "$$\\begin{equation}\n", "m_2 = f2(t_i +1/2\\Delta t, z_i + 1/2k_1\\Delta t, v_i + 1/2m_1\\Delta t)\n", "\\end{equation}$$\n", "$$\\begin{equation}\n", "k_3 = f1(t_i +1/2\\Delta t, z_i + k_2\\Delta t, v_i + 1/2m_2\\Delta t)\n", "\\end{equation}$$\n", "$$\\begin{equation}\n", "m_3 = f2(t_i +1/2\\Delta t, z_i + 1/2k_2\\Delta t, v_i + 1/2m_2\\Delta t)\n", "\\end{equation}$$\n", "$$\\begin{equation}\n", "k_4 = f1(t_i + \\Delta t, z_i + k_3\\Delta t, v_i + m_3\\Delta t)\n", "\\end{equation}$$\n", "$$\\begin{equation}\n", "k_4 = f2(t_i + \\Delta t, z_i + k_3\\Delta t, v_i + m_3\\Delta t)\n", "\\end{equation}$$\n", "\n", "$$\\begin{equation}\n", "f1_{n+1} = f1_n + \\Delta t/6(k_1+2k_2+2k_3+k_4)\n", "\\end{equation}$$\n", "$$\\begin{equation}\n", "f2_{n+1} = f2_n + \\Delta t/6(m_1+2m_2+2m_3+m_4)\n", "\\end{equation}$$\n", "\n", "Please notice how k values and m values are used sequentially, since it is crucial in the implementation of the method!\n", "\n" ] }, { "cell_type": "code", "execution_count": 8, "metadata": {}, "outputs": [ { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAeAAAAEjCAYAAADqqNKPAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMi4yLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvhp/UCwAAIABJREFUeJzsvXm8XVV5//9+cjPPcwIkIQGiDGoZla8j1FlR9Kvt16lC1fJttQ61/pxqFVq1Dl+HolVLlYJ1KFZR0VIFwSiKokHmOQkgIYGEjDeBjPf5/bH28u577j7n7L3PGs45d31er/M65+zps56911qf51nTFlUlISEhISEhISzGxU5AQkJCQkLCWEQS4ISEhISEhAhIApyQkJCQkBABSYATEhISEhIiIAlwQkJCQkJCBCQBTkhISEhIiADnAiwiy0VEReQi19dOSOh1iMhMETlfRO4TkQNZWTk+drpCQEQuyuxdHjstCaORPZtVkbhXish3ReShLB3bY6QjNEoJcHZD8p+DIvKIiFwtIq/1kTAROTvjOrvGuR8XkatE5AEReUxEtorIDSLyIRGZ5yh95xbclz0iskZELmhWyeQqobML9g2IyFey/b8TkUVNrjFJRG7Njlvvwp6EYPgE8FbgFuCfgPOAh1xcOJcnT3NxvX6F6/skIqdl1zvXxfXGGkRkAPge8CLgh5gy8bES5zXWv0Wf0zyleYKIvF1E/l1EbhSRfRnfm6pcZ3xF3vOy7wnA44GXAaeLyEmq+s6K1/KJvwF+B1wJbAKmAacC5wLniMipqvqAI66fAauy3/OAPwb+AniliDxFVe8pcxERmQJcArwEuAp4uaoONjn8o8DhnSQ6IRrOAO5W1ZfETkhCQpdgBXAs8G+qek6N889rse++Wilqj2nAZ7PfD2Oc6KVVL1JJgFX13Px/EXk2RuTeISLnq+p9VRPgCTNVdU/jRhH5CPB+4H3Amx1xrcrfFxEZB/wA4829H/jzdhcQkbnZOU/FiPDrVXVfk2NPwzgYbwa+2GHaE8LjUODnsRORkNBFODT73lDn5EZdCoRHMXX8jaq6MWv9+FDlq6hq2w+g5tDCfbdn+/8k+788+39RwbGHAP+C8Ur2AZuBS4GTGo5bZTkLPsvLpLlJWv8ou8aVda+Ru9a52bXOLdj3J9m+Wwv2XZTtOzv7vwS4Ldv2z4C04JyZ3bsrc89lfcV0Pw7TvLM6u/97gfuBC4AlBcefZu0E/hfwE2AHMAj8GDi5xb05DTgLuAF4DNMacSGwuOAc+8wnAh8E7srSdlHumEnAe4GbMQVgJ3AN8KcF1/tedr23Fuz7x2zflx3kg07z9KoSHE8Cvplx7M04fofxwCdkx9zXrMw0XGsqxgG9EdgN7AJ+Bby6gHci8NfA5Vke2QtszfLAC1uk9znZc9mdHf894GiG8/7y7Lijs/9Xt7jWLcD+ojzj6z5RoYzkbCr6nNZw7KuBnwLbgD3AHcAHgEkV8tsi4P9hysduYHv2+yLgiIZjxwF/Cfw2e867s99/BYwruHap/FgynScB38GUeXv/vgAcUsBZ9Dm3BEdTXWpz/76CiVofy8rBWeTquZr2npud/6Yq51Vtgi6CZN8tF5UWkRXALzDeztWYgrIUI1YvFpFXqOoPs8MvwmSsM4HvZzfJopPOedvsd3MH1ygDe0/2tzxI5FiMiC0B3q+q/9TmuucDc4A3dpC2/40plD8FrsWIxnHAm4CXiMjJqvpgwXlPwVTcP8EIzlHZtZ4pIs9T1WsKzvkb4HmYqP5HwNMxLQKnZc3zmwvO+Q5wCvA/mIp7E4CITMTcq2cBd2ZpmAq8ErhERI5X1ffnrvMGjPB/UkR+oao3ZNd5NqZl4nbgbW3uVUvUyNOrMF7y/dl/aNNEJiJPAq7DlK/LgHsxjthRmFaQD2Dy2WcxXULPAi4uuq6IzM7SeQJGmC7EVNLPB74hIsep6gdyp8zFOIXXYlq6NmMcjpcAl4vIX6jqlxs4Xol53vuy742Y5/4rGsqdqt4pIj/FdGM9TlXvbrjWU4EnAN9R1Zb95C7vE9XKyPey77MY2R1F/toi8hVMnlyPcdC2Y7rF/hF4tog8V1UPtLFxKvBL4EjM8/gBpq45HFNXfhtYlzvlP4DXAA8AX87uzcsxQvh0wNf4nTMw5ViyNN2PEeS/As4UkafpcGvpeZigrfH+rcIxsvE/1wJHYMrtLzD5+UvAFa75SqGkuhd6GhhPdyj7HJ5tW05BBIypPBX4u4btTwUOAFuA6bntZ5OLFGt6Je/CeCafwXjkCtwELHDg4Z1LgccEDGDERoHPFZx3UbbvXzHRwf4yNmIKjgJvbHguVSPgwyjwuDFCeRD4YsP20xj2Sv+6Yd+Z2fZ7yHnUuXuzDzih4ZzPZPu+0rB9Vbb9ZmB+Qfrel+2/HBif276Q4ajmqQV5az9wNzA9O3YjJno+zkEeqJSnc89sVQWOT2XnnFmwb06T+35ak2vZvPfuhu2Tszw7BByf2z6J4laRWcCtWf6dkts+PbN5Pw0tI7nn/ocIONv+ymzb/2uR3ucGvk91y8i5Ta53drb/0vz9akjL20vY+JLs2M8U7JsIzMj9f3V27O8YWa9Ow0T2Crymk7zZJI3TgUey+/SMhn3vyTiuqHL/WnD9IVpu8nlvw/EXFN0/4OQszwaPgOsa+hGMZ3Mg2/7p3LHLaRBgTISnGE9oQsH1/yPb//qCTHt2B5nhoVzaFRNVLeokgxXc8FW5+3I+pllJMc3KCwvOu6ghTR8owbUIEwleXvBcKglwG56bgXVNCscIkc3tX5Xtf1bBvflKwfGzMN7/Y+Qqudx1RlWg2f57MAJxdMG+N2bnXliw773Zvq9jvNzKhaRJeirn6dwzW1WBxwrL8yrkydMK9s3Lyutvm5xru2c+UTJd78yOf2Zu22uzbRe3eO6NAjweeBBTaefzw2yMo7SGFt0yru9Th2Xk3Cbn3ICp4GcX7BvIbP9NCW4rwB8tceyVze4H8GwKmv6r5s0mvDYPfKNg33hMy4QCy8revxZc2uazPXfsBEwT/E5gVsG1LqqThoI85bUJ+kPZt2IK0zWYSvZrbc47Ifu+RlWLmmWvBl6XHffVimlqClVdDJBN53kqpl/nBhE5Q1V/54jmWdknjxsxhXtHi/OuxBSE94nIr1T1qhbH/hsmA/1FRykFREQwheRsTKU7B1MJWBQO/sI8u6GC7asw9p+AaULKo/E/qrpDRG7MzjmGkd0LAL8pSPMMTFPig6p6Z0Ears6+TyjY93FMAX9N9v+b2tBsWhOh8vQlwNuB74nItzFdAL9U1bUVr3MK5jk3my4zIfs+Jr9RRI4D/j/gmZjmuskN5x2W+31i9t3uuee3HxCRL2P6/V8BfCPb9WfAFOACzWq4NnB1nzopI0XXmppd4xHMYNWiw/bScN+b4GcYZ+W9InIipjXol5iBQAcbjj0R47CuanKdgxSXl05h88DVjTuyZ/1zTJB2AvB7F4SqWnhTG3A0psvqmib18ipMM3hQVB0FXcbQIszKvjc22W+3z655/ZZQ1YeB74rI7zDNkV/F9C25wHmqem42+vkwTLP324BvicgLm4gWmIrm4uzzw6y/8PLGg0Tk9RjP9ywt7putik8D78Dc8x9jCvRj2b6zaT696eEm223f3KyCfXXOKerrq51/VFVF5LuYfk4YnjrQKYLkaVX9jYg8A/g7THPtnwGIyF2YvPfNkpey899PyT7NMN3+EJFTMRXpeMzUuMswEcQQcDymC2JS7lx7T9o990ZcgOmX/78MC/A5GKH79xZp/QMc3ieoX0aKMAfTF7qAOqNkc1DVndkzOQ94KcN5+hER+QLw4ZwzOAvYqgWzKTIhfATTJeMaUev6FqibN73CxSCsMrAex+Im+w9pOM4LVPV+EbkdOF5E5qvqIw6vPYQZ7PB2ETkUUwn8NaZZutk5XxeRPZjBO98VkVer6qUNh1mP8mIRubjgMoeJiI0Q5qhq00FqIrIQ4xzciukvHWzY/+rmFlK4KAjDz7To2VU+p0m0Uzv/iMhKzKjRbZhC+GURebIWTFOriGB5WlV/BZwhIpMwg1legFnM4xsisllVf1LiMjYdn9Hyc/Y/gIlCT1fVVfkdIvI+jAAXcbR77iOgqg+KyA+Al4vIMRjRegJwiRYP1CuEi/vUYRkpgr0nN6jqiS2PLAFVXQ+8MYvSj8WsO/AWTAvCOODvc7xzRWRCYwuNiIwH5mOcKdfoirq+ALXypm+EWgv6huz76dnDb8Tp2Xe+Wdg2qQzgFnbOWWOTjUv8LaZZ6YMiMrPVgar6HYYHWF0iIq9pOORXmGHzRR8w/WT2/9426ToC88yvKKhYlmT7m+HpWZTfiNOy7xsK9jU2zSMiszDRk52G0RZZWtdinI2VBYcU5R+yivgSzMCTV2FWnnoibqLgOnm6I6jqXlW9VlU/yPAI7rwItiozv8FErs+oQHkUJopaVbBv1LNl2NZWz70ZvpB9n5N9wAxUrIwO71OdMtL0eqq6CzMe5Lhsvr8TqMFtqvo54LnZ5pflDrkBY8czC05/ZpZWZ3mzgReG64U/ICsnT8/++uBuhTsxdeXxWV5sxGlhk5OhSmd3yWOXUzwK2g6AeVfD9qdgBodsZeQovhdlx59XsTP8aIrnmY7DDB5TTN9Q7YEGOrLTvbDTHvhcUfppmAec2/4czCCBg8CfV3gupQdhYbw8xUzXGMhtn44ZoDbqOeNvFPSFDdtXtcpjmCZKxUz7yKd9PsMDO57e5Bl8LPs/gJl6oBTPHT6agkFeLdJUKU/nntmqChzPoHjQyLuya308t+3N2bbC/IPpelFMlDS+YP+RwIrcfzua/0kNx9lBbyPycZaP7Mj+UqOgc/sFM591K6aivKvsPXJ5n2qWkWNpMvgs2/+GXN4tGog1BzixhI1PaHLvTrZpzm17TbbtN8DU3Pap2TYFXtsub2bHH01u0FSbNNqR8AeAU5s8iysbtp9GB4OwKhzf26OgSx67nGIBPgLT/q+YiuujmJGiezAV9ZkNx8/BCNIOTEX6gewzqpA1nPeO7GZeld3wf8LMd1ybcW8Ejq1zk5vc8MIHhmlqsYtFzM9tv4gCAc72PYPhPrY3l3wuVachfTM77xbMyNEvY0by3oXxXrXheFs4/gcTYf939uy+lRWyx8iNhG24N9/P7sFF2XOwU8HupWGEOO0FeGLu/Fsxayp/HtOnM6KCzY5/Wbb914yctrQUU0HsYPTCBVULdKU8neNYVYHje9k9vDyz92OY+Z9W4I/MHXsMxoF7KHu2HyA3yh4zL/ZXWRruzsrFP2HGIdhK+VW541+QbduZ5ZNPMTyA57+K8jGm6+Vgli/yz31bdm6hAGfn/o19BsA7K+Zrl/epahkZwMzv3YsZMPn32TUPzx3zL9k1t2D6uT+GqZ+uzM77Ugkb34GpG36RpemjGKdqR2bPKxuOv4Th8vYZTN/2umzbJWXyJsPlv0qePROT//cCX8vSaafsbWR0ubMchXVpCx6bV85t8clPq5vPsA5ck+XNi7K8+v2qacDMsLgo+9yYnf/L3La2YlzJ0JLHLqdAgLN9h2GWT7w/e0CPYArOKU2u9QJMhbErd7MLC2/unCdkmf3G7PoHsgz62+yBzK3ykFvwnNvugTE8NeJTuW0X0USAs/1PxlQYCvxtiedSVYCnYloC1mCE4oHsfs2jQATzhYPhlbB2YlbCuqLo2eXuzWmYQSs3Zpl8M2ZQzSEF54ziLjhmMiYSvjW73iCmMnp1w3HLsnu4nVxEl9tvI/ffABPr5PMO8nTVyux52T27PcvHuzFCcD65Cj53/Oty93uUPQyvbnVtdr29mNGoV2Eq+HkNx5+BcWIGs/t5BaYJ8+xm+RjTJPoLjCBuw1Ruo1bCKjhvDkZI9jSmI+R9omIZyc45JbuHOzAiqYxeCesMzMsGNmV55aEsD36YEi0vGMfh04xcoes+zJTQpxYcPw4T7a/OnsWjwPWYPuNSK2FRQ4Bz9+O7WTr3ZXnsi8ChBcdajnMrcmiJz9kN5yzGOJ6bGV4J6+w6aWB46mSzz0XtriHZhRISCpGtPf1TstHeJc85FzPic9TgnYSEZsjlta+p6p9FTk7CGEKdes4FQg3CSkhISGiHd2ffn4+aioSEQAg1DSkhISFhFETkiZim2ZOAFwI/VNXr4qYqISEMkgAnJCTExEmYQTo7MQO7XL0mNCGh65H6gBMSEhISEiIgRcAlMH/+fF2+fHnsZCQkJCT0FK6//vpHVHVB7HR0K5IAl8Dy5ctZvXp17GQkJCQk9BRE5P7YaehmpFHQCQkJCQkJEZAEOCEhISEhIQKSACckJCQkJERAEuCEhISEhIQI6GsBFpHZIvJtEblTRO4Qkf8lInNF5EoRuSf7nhM7nQkJCQkJYw99LcDAPwM/UtWjgT/CvH/2vcBVqroSs3j6eyOmLyEhISFhjKJvBVhEZmLe2vIVAFXdp6rbMW/CuTg77GJGvsQ6DFThla+EL30pODW//CU8/enw0EPhud/0JvjHfwzPe9ttcNJJcM894bnf9S5461vD8z7wABx/PMSYPveRj8D/+T8mn4fE1q3G5iuuCMsL8MUvwnOfCwcOhOXdswee8hT4xjfC8ia4QZXXP/XSBzge86qvizDv8PwyMA3Y3nDctibnn4N5jdfqZcuWqVPcfLMqqE6cqHrLLW6v3Q6ve53hfsUrwvKuX294RVR//euw3O94h+H+4z9WHRoKx7tjh+qkSYb7xz8Ox6uq+uEPG96TT1Y9eDAc7969qnPnGu5vfSscr6rqF79oeB/3ONV9+8LxDg2prlhhuL/0pXC8qqr/9V+G95BDVHfvDstdAsBq7QI96NZP30bAmEVGTgS+qKonYN4PWrq5WVUvUNWTVfXkBQscL+Ry6aUgAlOnmmghFPbtgx/8AObOhe98B268MRz3pZea79mz4YMfDMc7NAT/9V8wZw5cfTWsWhWO+7LLYO9eY/MHPhCOF+A//9Pwrl4N3/9+ON4rrzSR6KxZ4W3++tdh5ky4+2742tfC8V57Ldx7L8yYAeedBwcPhuO++GKYPh02boR//ddwvAlO0M8CvB7zsnr7ZpVvYwT5YRE5BCD73hQ8Zd/9Ljz1qfDMZ8JNN4Xjveoq2LED3v9+8z8k97e/DU94Arz85WF5r7sOHnwQPvQh8/+GG8Jxf+tbsHSpaXq/6aZwzZO33w633mpsHj8+bDP0JZcYB+9d7zJCuGNHGN4HHoBf/ALe/W7D/+tfh+EF+OY3YcoU+Id/MEJ4f6DFn7Ztg//5H/irv4KVK40jkNBT6FsBVtWHgAdE5PHZpmcDtwOXAWdl284CAoYHmArpppvgxS+G444z/ZL79oXh/vnPTYX8l38JEyeaijoEDh6EX/0KXvhCOPZYePhh2LIlDLetlF73OliwIJzNYETgec8zz3nfPhMlhcBvfmO+X/xiOOoouOOOMLxgxP5Zz4InPcn8D8VtHatnPxuOOQbuvDMML5iWpFNOMR8Ix33HHaZsnXZaeJsTnKBvBTjDW4Gvi8jNmD7hjwIfA54rIvcAz83+h8O6deb78Y83FfOBA+EGB61bB8uXw7Rphv+228Lwrl8P+/fD4x5nBBjCVczr1pnm53nzDHco3sFB2LzZRCbHHGO2hRL/tWth3DjzrI85Jhzv0JC530cdNWxzqPu9dq35PuooOProsE7H2rVw5JGGF+LZfPfdYZu/EzpGXwuwqt6Y9eM+SVVfpqrbVHWLqj5bVVdm31uDJsoK8BFHDItRqAry3nsNLxjuULwxbV67dthmK0YaYHRu3uYYYrRsGUyYYLjXrAnTyrJhg+nzPvJIWLHCtLKEisrWrjX9v/PmGZs3bw7TyrJ7t5lRcNRRhnv+/HA2r1kz7GgdfbR5xvfdF4Y7wQn6WoC7ErZiXrHCFBqRcJHounUjBfi++0wFEoIXDPfSpSYCj2Xz9u1hpmDZ6OTII40wHHZY2Kj/yCPN72OOMVHRmjX+efM2jx9vov+QTseRR5ryZB2eEEKYtxnCNgVbR2vixOHoOzVD9xSSAIfGunVmkMisWWbgxhFHhBGjHTtMRGDF6LjjTCQYosCuW2cq5CVLjMceKvo+eNA4GXkBhjCikHc6IGxTsBUjywthbLZilLc5tABDWDFqFOCQzd9r1gzzPj4b6pIEuKeQBDg08s3AYJquQjQb2QFAlnvlSvNthcIn1q2Dww83Imy5Q0Rktu/ZVlKPe5z5DtHnvnatcbRmzzb/H/9400fnGzt3wiOPjK6Y77rLP/fateYZL1tm/h99tHn2+/f75bWOlrX58MNh0qR4Arxli3kGIbiPOsr8njsXFi5MAtxjSAIcGuvWmeZni0MOMVMXQvDCsAAfcoj5DsWddzoOPdQ0A/vui220efFi00QZw+bDDjPi+Oijfnkbo9Dp001rSwib164d6WgtXWoGZj38sF/eBx4wIm/FaGDA3O8NG/zygnEk5841A/1g2Pl48EG/vDt2jHS0wNz7Bx7wy5vgFEmAQ6KxSRSMED78sKmofKJRjObNMxVlqIo5b/PixWYJPd9zRBttnjDBDJIJZXO+crQOj+/+Z2tznnvx4jg2L15svn3b3BiFQljHNobNzZ5zjCVmE2ojCXBIbNxoPPV8BHzooWYqku8mq/vuM82hs2aZ/+PGhamYd+82TXLLlw9vCxV933+/iXiXLh3J7buSUjWRiI2GYLhi9m3z+vXmO88dwmYwUV/jvQb/3DbSXbJkeFsoMdqwwUTbFqFstvno0EOHtyUB7jkkAQ4J2xRnC2n+t++K+eGHh0Ugz+27wG7KFhrLc4eyedMmE/HaJlHL7Zt3504zJWTRopG84P9+P/ywsXdO7i2bIWweGjJTf/I2h3I6bLlauHAkdwgx2rRppM32dyibG+/35s1pLnAPIQlwSFgxylcUIcUozwthIuCxbHMMMdq0yaz4NS5XtK0Y+exz37bNtOTk77e1P4STN2mSme5lsXixSdOePf54bctV3ubp080nlGPb6HRYRyihJ5AEOCS6TYxCREbNohMIU0kV2ey7z73oOS9YYAYHxXrOjz5qVufyyQsjnY6JE81YgxB5bOFC091gYcuVzwFgW7YYpyZvs+UO0dIxbZr5WIQqVwnOkAQ4JLpRgDdv9jtNpMjmWbNg8uR4Nu/fb97Y4wtFTse4caaiDlExNwpCiIq56Dlb7hCOVgybi56z5e7X55zgFEmAQ2LTJrP4Rt5rnTzZDI7yKUZWcIrECPxGCbZizr/SUSRM9F1UMYdweFqJUSynA/xyNxOjUK0sRfcawjznIiHs1+ec4BRJgEPCFpp8Uxn4r6TsCOsYBXbTJvOe1ClTRnP75LXTnJrZHCIabHyPdKhBb83EKITNRWIUIwIO8ZyLBkJBvAg4VJ97gjMkAQ6JosoR/ItRs4gslADHsNkORIkVGc2da+YdN3L75N21y/T1xoj6H37YNLPPnTua2+cAMNXiPLZggXF0YzRBH3KI/0VXimyeOtUMREsC3DNIAhwSzcRo0SK/zcDtxMh3E3SRzYsXh2n67janY9Mmf9NEmtk8d64ZEOXb5vnzzUCzPHwvurJ9u+liaXQ6Qiy6smmT4bHLjVr4LlcHD46e8pXnTgLcM0gCHBLNKuZ58/wOCmpWMc+bZ759czezefv28GI0bZrpd49h8/z5ZvT19u3+eGE0t4jh9vl6vqJm4HxafE2NaWYzmPTY/T5QNPra8tr9PrBli8lHRffbtzOf4BRJgEOhWVMZmAglhhhNmWLmT8aomOfONffEtxg14/Y9CroZL/jjbtYnabl929wsb0M8m7dt88MLrfM2+LO5ldPh25lPcIokwKFgV0dqVmhU/TXTbdpkVkdqbCoT8Vsx20UBmtkM/ivmZqLg2+mIYXOritm3ALdyLqE/bR6LjlaCUyQBDoV2FQX4E4Vmo68tt68Ca5vKYlXMkyePnPKV5/bFe+CAuXbjCGjLC/7FqBm3z4p58+ZiXt9Oh23ajmHzI4+Ypv0iXvDHbWc1NONOAtwzSAIcCraiiFFgN28u5gVTQfoSfntdWwnn4dvmLVuMzaGdDtvkGcPmrVvNSNjJk4u5fTodO3eOHgFteW3afMBetxm3TzHatq2Y17Y0+Wr+ttfNr/dtMXcuPPaY+SR0PZIAh0KrQmMra19CuG1bMS+EEaNmFQXEsdlnP1m32uzzOdt+/FZi5PN+27EMjfApRtbpKLrf48eb1d5i5jGffd8JzpAEOBTKFBqfBbbbBNh302Q7m32KIBRzhxCjVjb7EiNrTxH3wICxO5bN9hjXsE5HrHI1efLoxW0sL6Rm6B5BEuBQ6FYBjhUNxhajPXvCi1GIyKjVc86nzzUvxBOjdgLcbzZv3RrH5gTnSAIcCrbANo5EtttE4jVN7tnjZ9WeVpVUN0RG/VYxj1Wbi5q+LS/0p83NeO32JMA9gSTAobBtm3lPaOPyhOBXjPbtM+LarRVzLKcD/NrcTBR8tzik5zySF8aWAKcIuKfQ9wIsIgMicoOI/DD7v0JErhORe0TkEhGZGCQh27c3LzTgr8CWqSjAH/e0acVOB/gTo/37Yffu9s2xPkQhiVExd7+JUTtHqx9tTnCOvhdg4O3AHbn/Hwc+o6orgW3AG4OkolWhAX/TgdpVjr7FKDkdo7l9OR27do09AY7VH1rW5qEh99xbtzYX/hkzTItaEuCeQF8LsIgsAV4MfDn7L8AfA9/ODrkYeFmQxIxVMUo2j+b2wVtmVC74s7nZVCDLvW2bezFq53RMn24GvvmwudVgOzA2Dw3B4KB77lZ5zPfqdglO0dcCDHwWeDdgS/48YLuqHsj+rwcOKzpRRM4RkdUisnqzi4Xkt20rHoBl4atpMnbFnAR4NLcPMWrXJGqjcl9i1M7moSEzb9Yl2uVtn2JUxukA99wHDhhRj1GuEpyjbwVYRM4ANqnq9fnNBYcWvqhUVS9Q1ZNV9eQFRcvcVUW3i1GMJuh588wxrl9C0c7mqVP9vYSizHP2se53O5t9i1Ez4Qd/YtTOZssdy9EC99ztnA7LnQS4J9C3Agw8DXipiNwH/Cem6fmzwGwRGZ8dswTYECQ17QrOBphjAAAgAElEQVTsrFkmQnD94vIyYjR+vJ8XQZSxWdV9M10ZMZo928+bmNrZ7GuaSBkxmjOnv8SoXdRv9/lytMo4Ha652zV9W26fLxtJcIa+FWBVfZ+qLlHV5cCrgKtV9bXAT4FXZoedBXzfe2LajcoFIwhDQ6ZPyyXKiNGsWfEEGMJHg5Y7ps2um2N7weax9Jxtd5Mvm1uJ/+zZ/t6sluAUfSvALfAe4J0isgbTJ/wV74xlKwrwU2Bbjcq13K55yzgdY7FiTja75YVkcxF3EuCewPj2h/Q+VHUVsCr7vQ54ctAElOm3yRfYJUvccberKCy36wJb1WaX2LbNNK1PbDHF25fT0WpUruWFeBXz/fe75bXc3WyzDzHauhWOP741L8S1WbX4bWAJXYOxGAGHR+wIOIYAj0Wbk9PRnBf85bFWswt8CXC7hXWmTzfiF8vmgwf9LC+b4BRJgEMgthi1KqyWO1ZFAX6EMIbNVoDHks22L9vaVYSZM823a+4dO8xbgZpNBbLp2rfPrHfuCgcPmoGDrWweN84sihHjfvvKYwnOkQQ4BGIWmh072lfMPgZtWJtjiNGOHa3vteXup8px585hoWvF/dhjJmp1BWtHK5sHBkxE6MPmMs8Z3HLbgZJl7rfrwXY7dphZC0WvIszz2mMTuhpJgEPAFsIZM5ofE7ti9iGC0Jo7ts27drmdg1zG5okTTdQWy+mwx7qCzdux8lgZXnArhGWcDrvfV95u1bebBLhnkAQ4BMpUUj7FqExFsXOn29WZytg8ebIZnR0zMnJZMccUo7JOB7jlLitGM2f2j82xnY4YeTvBC5IAh4BdaGL69ObHTJ1qmupiVVKuF8Qo0xzraw5ylcgohhj5EuCxGAHHsDn2c46RtxO8IAlwCOzcaebiDgw0P8aHGO3ZYwagxBSjVs3uljuJUeeI5XSUcbTs/n4Ro9gtHWVaGyAJcA8gCXAIlKkowH2BrVI5gnvudk4HuB8Atn+/GWg0FivmmI5WjAFJscSois39EvUneEES4BAYHCwvwC7XJ64iCOC+kmpXUVjuWCII7m2ePLn1XFzL7ZK3zLQYywv9EwGnqL8YM2b4mYOc4BxJgENg5872TbHgvsBW8dTzx7tAlajfh9MRS4xitHRUmRYD7vPY+PHG8WjH7ZJXtfsj4Jkz3c9BLuPY+pqDnOAcSYBDoEoE3E9N0DFsju10xIj6qwwKyh/vAtbmdkseup6DvHu3GbXf7jmPH2+6QlzbLNJ6UCW4H41snY4Y5SrBC5IAh0DsPuDUBF3MC+5tLvucd+82L1d3gbI2T5hgFnCI5WiBO+6yzqU9xsdzLuN02ONdYM8e48CUtTlNQ+p6JAEOgbJN0K4HJJWNBn28Oq1KxTw46G5BjLIV86RJ5hMrArbHu0DZ52y5Yzla9nhXvBDPsY1hc1lHy3KnCLjrkQQ4BKo0Qe/caZqaXKCsGPlYEKNKNAju5iDHFqOxFg3GjoDH0nMu29Vgj0kC3PVIAuwbtt+mTAQ8c6bp19q92w13mSUwwTSlzZzpflWoMhWFrchccY9FMYrtdMSMgGM95xQBJzhAEmDf2LvX9NuUKTRWKF1Gg7aptQy3K96hofJRv2ubq1RSLm223GUqZl82l3V4XDtaZe61L0erLLfrtaBTBJzgAONjkIrIVGAeMGoUg6r+PnyKPMJWslXF6JBDOucuKwiW25Ug1LXZBXbsMIt/tHpbTJ7bFW+VEaqxnY6NG93wQvkIOKbT4cPRWrmyHC/0h3OZ4AXBBFhEBoD3AG8BFrc4tM3SST2Gss3AMDytwWWBLVNYwW2BrVo5glvuMtNiLPeDD7rhffRRM5Ashs07dhh7p00rx23nDXeKmE5HlWZ312JUNgL2ZXPZPLZnjxlpPz5KnJVQAiGfzKeBtwK/A/4L2BaQOx6qeq3gtsBWEeBtjh5J1coR4tkcKzoB947WuBI9StOnu+O13SsxI+Ayjq11OlTLOWZluMvYPHGi+cTOY3PmuOFPcI6QAvxa4FJVfWVAzvio0xzrKkKp2gT9e0et/90gRmXgUoDHotNRxeapU42D4JJ7+vT2a42DsVnVDG5st3hGO9iVrcoIv+V2WZ4hCXAfIeQgrAnAFQH5ugNVPXXofTHqFQF2GQ32is0zZpiode9eN7xQjtuuHOVynEEVEbTnuOCFOHlscHB4ymA7uM5jCV4QUoCvBY4NyNcdiDkgqez0J8vdD2JUdvS15bZ9ty547TXbwa6d3OtiZCO7GHkstgDHsrlsBJ8EuCcQUoDfDbxGRM4MyBkfscWoakXhYhGQKpXU5MmmGTFmJeVi3nXMinnXrrhiVPZ+90MEPBadjgRvCNYHrKq3iMhfAN8RkQ3AvUBj6KGq+uxQaQqCmKOgqxbYoSGzYP7UqZ3xVqmkRLqjkiobNbfizV+zDLdLm8tOW4sdDbrqD40dAVdx8lzNx61is+u6JMELgkXAIvIi4FsZ50xgGbCi4XOEQ76lIvJTEblDRG4Tkbdn2+eKyJUick/27XeEwuBg+Ski48aZ41wUGtvPF6PA1qmkYgtwpxiLkVHsqL9qS4cL8Y/taFV9zq4cngQvCNkE/THgAeCPVHW2qq4o+jjkOwD8raoeA5wKvEVEjgXeC1ylqiuBq7L//mD7YctOf3BVYG3Bi9FnNDg4PAWjLLcLXruMZ69ERr0uwMnpKMcd0+lIEXBXI6QArwTOV9VbQpCp6kZV/V32exC4AzgMOBO4ODvsYuBlXhNSZYQquCuwdSqK/HmdoEqfpOV2wfvoo6YPO5bTMW5c+eb7sdgH3A8CPBadjgRvCCnA9wOTA/L9ASKyHDgBuA5YpKobwYg0sNAredX+xX4Q4CoVheXuB5unTw/f0mEXw0gC3JrXnuOCF6rb7GpwY1mbXQ9uTPCCkAJ8PvAmEelwJnw1ZHzfAd6hqqVXZBeRc0RktYis3rx5c/0EVJkKBP3TBF1lwQNXg3NiR/1VbJ4+3a3NsfpDp0wpv9Shq7x98KBp7Shrsx1/EcvJO3jQLN7hgrssr+vBjQleEHIlrF3AduAOEfl3ikdBo6pfdUUoIhMw4vt1Vb002/ywiByiqhtF5BBgU9G5qnoBcAHAySefXN99rRMBu1ifuK4YuaqYYzodKepvzZs/rxPU6WpwsT6xnTZWlntgwHQNuLrfAwMmwiyD/P0u84KQZlCNl8cSvCGkAF+U+/2BJsco4ESARUSArwB3qOqnc7suA87CDAo7C/i+C76m2LkTDj20/PH9UjGXXQLTcsdqHsyf1yl31crRxfrEVZ0Ol+sT12npsOd1sjxi1bxtj3XpdFTpagDDvbCD3q49e8wgw6r3OwlwVyOkAJ8ekAvgacCfAbeIyI3ZtvdjhPdbIvJG4PfAn3hNRawm6Nj9oUuWlD8+ls0u1yeuI8Au1ieOKUZ1bLbn9aoAV7XZPttOW5bq2Oxy4ZMELwi5EMfPQnFlfL+g4H3DGcIt9hFrEFbVPmDX84Creup23vKkSfV5q0aDLtcn3rULli4tf3xejFwIcIzIqK4YdcpdNW+DW5vrRv2d8uavV5Y7CXBXI+QgrLEH+77UqoXGxfrEVQvs+PGmjypW3yDEqaRcCXAn0WCnvPnrlYFLm8eaGPXSc04C3PUI+qZmEZkGvAYzJ3geoyNUVdU3hkyTVzz6qOm3qRoBQ/V+1EbYealVBn64KLB1B4uAOW/+/PrcvRQNuqqYq0b99lhXjtaKCmvnxBajjRs744V4zmXdqD+thNXVCCbAIvJk4L8xwtsMCvSPANtCV0eABwc7F+Aq81Itd6cVxd69ZpRrzChhLAlwXTHavr0zXsvdSzbffXdnvJa7ymCq2DanCLirEbIJ+tOYdwL/KTBfVccVfEq8XbuHUOVFDBYu+8mq8IKbAltXBPPn1sWuXdXmpVruTnkPHjQvsYjZHNtLToerAUmpD7g9dxLgrkZIAT4J+JSqfltVtwbkjYdOI+BOuWMIcJ0mUVdORy/Z7NLpGD++2uA1V10NVRcf6Ydm916L+vftM5+ErkRIAd4JbAnIFx9V3gVs0esCXLeiyJ/bCXfVEcX9YHOVeamWu1Pexx4z4xtiilGZN4zluXfvNmnuBFVblsaPN4t29HLLUoI3hBTgS4HnB+SLjzpN0C6jhJhiFKuZbiw6HXVstouAdMJrr1UWrtYnto7WuArVl4vm76qv+Mxz93IrS4I3hBTg9wALReRzInJktlJVfyM1QZfnhd7t964zQtVls3sdR6vT9YnrCLCr9Ynr2Oziftex2R7vwuZJk2DChPLnuJzbn+AFIachbceMcn4y8GaAAg1WVQ06Ncoreq0J2sX80NjR4IIF1c6ZMWP4jUJVKrdGXnutshg3zjShxnI6wHDXXZ+4TkuH5Y5tc13EtLmuQ23PTehKhBS7r2IEeOwgZhN03cho1y7TT1alea+R116rLFytTzw4WG1eKoxsmqy7PGLsyKiTirnu+sR1WjrAnZMXQ4zq2uxiPm7d8mzPTehKhFyK8uxQXF2DE06At7yl/JtTwN36xJ1ECbt3Vz/XopMoodNKqtPIqFMBjhUZLV5cndee2wlv/lpVuGMKcCd5rK7N06fDlg7Hn8aK+hO8Ii1F6RPPfz58/vPVRqi6WJ/4wAEzSrXXooQUGVVHrMgotgCPRZtjOB0JXpEEuBvRaYHtRBCg80pqwoTqL1Xo1GY7LzVm32CsAWCpP7Qcrz23E978tapw96rNCV6RBLgb0WmB7aRyzJ9fl7tO83WnNtt1t2PZLGK6D6pgrPaH9qrTUWe0u+Xu1ag/wSuSAHcjej0CrvN6vVg2u5qeMm1a9YFrndpsVzlK0WA5XntuJ7z5a1XhdjHvuiqvnbaUBLhrkQS4G+EqAo4VJcSIgJPN5eHK6Zg8udq629C5zUNDZpBgVSdv2jTTShErjw0NmVaauqibx1y9ejLBC5IAdyN6WYxiNUGPRZs7aRKFeC0ddkWpOqjb0uFicOPgoFnJq8qsBuj8ftd5xWeeOwlw1yIJcDci9QHX44Xes/nRR82qVHV57XWqwK5P3OmUnLo2Q33uugJsz+nU4an6ik/LC/W59+wxeSQJcN+hawRYRJ4pIitjp6Mr0Mt9wHXWoLbcg4P1+8nq2uxifeJOokGoL0Z1BdieE6vZHepzx7S5U6ejU5tjjK1I8IquEWBgFXCHiFwoIofETkxUxGqOtW+XiVVJDQ2Z+ct1ee11qsDF+sRJjKrx2vPr8kIcMYptc4qA+w7dJMBfBb4HvAS4J3Ja4mLGjM7e41m3kho3zk0/2VirpGLZXLcP2HLHiPo7HQDWyXOePj01uyd0FbpGgFX1bFV9JbAQOC1ycuLChRiJVHtfap47iVE1dNoEnZyO8ojdB1xX+CHec04rYXUtukaALdRgdex0RIULj7nOYBHLXbei2LfPjHBNYlSe155flzd/narcqdm9OnfMvJ36gPsOUQVYRCaKyIkiMitmOroOLjzmOhUUdFZgO60c89eow11nXqrlrst78KAZyTzWosHYTkfqAy4H26XUySIgCd4QOwJeCvwWeHbkdHQXXBTYOhWU5e5VAY7hdOzePXyNOrzQmc0DA9XX3bbcnc5LTS0d5dCpQ92po3XgQP151wle4fV1hCLyv9scshgQ4FTJmktV9VKfacrS9QLgn4EB4Muq+jHfnJXgIjKqK0bTp8P69fV5obNKqtNm9zropJ+s04gMOuOeMSN8V8Njj5kR670YAT/2mBGkOi0ldQV4YMCsEx7bsa26gEiCd/h+H/C3Adv2IbnfeSjwt7n9Az4TJCIDwL8AzwXWA78VkctU9XafvJXQq9GgCzGKYXMnI797Oeq36xNXFfBOHC27PnEnjladdbdhpMMze3a1c+3qXTFbljotVwsW1ONP8AbfAnwQeBT4JPBAwf5FwMcwghhq4NWTgTWqug5ARP4TOBPoPgHuJDJasqQ+d6yFIfLXqMPda/3eU6d2tj5xpy0dqqb/uupo+U5stufF6l6BegLcidNhz+vE5okTzacOr71GQtfBtwCfBPwb8G7gQ8A/q+qQ3SkiR2IE+Kchmp4zHMZIZ2A98JTGg0TkHOAcgGXLloVJmcVYHITlogl67tx6586YYSKcffuqV3KdVMydrk/sQowGB+sLcF3uTm3uxOmw16jDC523ONRBp+UZ0lSkLoXXQViqejNwKvD3wHnAahF5sk/OEihqbxvVNK6qF6jqyap68oLQTTex+4Drrk/ciRjZ9Ylji1EdXojX/9xpxRxLjGI5l/YadXjz16iKTpyOTspzJzZv3gynngo//GE97oS28D4KOpvX+8/AccCDwLUi8oWIU4/WY0ZfWywBNkRKSzHs+sS95jG7EKOxGBnFFKNOnnOMaLDTwXZQ7353stCL5Y7hXHaSt7dtg+uugx076nEntEWwaUiq+oCqvgR4LfAy4E7gVRQPzPKJ3wIrRWSFiEzM0nBZ4DS0RifrE9t5qS76yaqi18Wo1yKjWE5H7P7QXnU6xlreTmiL4POAVfUS4Bjgv4F/iMB/APhr4MfAHcC3VPW20Oloi7oVs4vKEeoX2PHj681Ltdx1KsdO3pdqeSFVzFV4IfUBV0HsroYYeTuhLXwPwiqEqu4A3iQi/wIsA64LzH85cHlIzsqoWzG7iMjy16nKXXdequWuw9vJvFRw0zRZZ91ty/1A0QSBkty9GBn1stMRq6Vj6dL2xxUhRcBdDa8RsIg8odV+Vb1BVb+vqg9lx3/OZ3p6CnU9ZheVI9Tn7qSw9qrTMX16vXmpUN9mF/NSoff6gHtVgPPzrutw1+WdONHMu47R753QFr6boH8sIivKHJiJ75s9p6d3EEuMOq2kelGAY9pcNzKK7XTYBTXqoO5zHhoyS3/WtbmTedcu8pjq8NKlVbl7sVwltIVvAZ4OXCkii1odJCKfBd6C6ZdNgHgVc2wx6sWov5MIoVej/k6fs43gq6DT8Q123nXd5zwwUH85x7rlqtPxDZY7CXBXwrcAvxQ4FCPCc4oOEJFPA2/DiO/LPKendxCrCTpmxVy3oog98KxTmx97rPq8606f8/jxMGVKPJvtdary5s+vyx1rfANUL9N79nQ2vgE6r0tSE7Q3+F6I42fAnwJHA/8tIlPz+0XkU8A7gCuAM1V1n8/09BRiN8fGjAar9pN1WlFMmmSim5hiVPV+uxCjTlpZetXmTgW4E157naq8+fPrcte1ue662wmlEGIhjh8CZ2PWYP6eiEwAEJFPAn8DXEkS39GINQ3JjuaNVUkNDZmIsCqvPb8OOpl37aI51l6nKi/Ei4zGohh16lza61TlzZ9fB7EcrYS2CDINSVW/ka189S/AN0XkXswbkK7CiG96WWUjZswwfWT791cb7NJpgR03zohwXfF3IUa7dpkBM2XRD2LUa9Hg/Pmd8drrVEGnziV01gcc0+noVPwffLD6eUmAvSPYPGBV/aKIzAY+gln96irgjCS+TZCvmOcUdp8XY3DQiGgVASvijt1Mt3BhNd78+XW5Y9tclTd/fl3uujavKDW5oRixo/46865dOpdV0MvOZUJbeBVgEXlnw6a9wDpgMfAz4C0yclCDqupnfKapZ5CvmKsK8PTp9QeLWO6qBdZG670aJcTuD43VNPnII9XP61SMejXqr+IUFvHa61TlzZ9flzs1QXclfEfA/6/FvqJlKBVIAgydRQmdFpo6BdaVIOSvVYV7yhQzsrcu6jgdBw6Y/upe7gO+777q5/Wy0zGWWzpUqznmg4Nw6KH1eRPawrcAn+75+v2LTqKETgW4TjToqqKAODbPmAGbNlU7x0WfZCc2T5hQf91ty11nXqqrCHgstXTEdLSmTzfO4t691eYxpwjYO7wKcDYNKaEOOqmkXIjRxo3Vee25nfDmr1WFu1ej/k5s7nR+Zh2bH32083mpnYpR3XW3YeS864GBatyd2DwwUG/etWvHtooAd+poJbRFV03wEpFnxE5D16DXKubYYhQj6ncZAceyuer6xC6e86RJprugTtTfybrbUK/FYd8+83Hh5FW1udfzWEJLdIUAi8hTReRKYFXstHQNUh9wNe4YlaMLm+1o9Vg2V5137aIZuO68a1c222tV4c2f2wl3HZsnT+58fIO9Vll0uu52Qil4F2ARWSki/ywil4vI10Tk+bl9TxCRHwHXYPqLL/Gdnp5B6gOuxu2icrQjuavw2nPrYty4enNTx6oYucjb9lpVePPn1kUv2ewi8k5oC9/TkI4DrgXyT/HVIvJ6YAD4N0CA/wA+qqp3+0xPTyF2f+ju3cYLLtvc56JitoOK6th81FH1eWHk/Z47tzxv/txOuOs0f7sU4EUt35cyDFc213XyXNlcxeFJNid4gu8I+O+BScDbgSdgXrbwe+DjwL8CPwGOVdWzk/g2YMoUI34xC2yVV6eN5cgo2VwddftDU9Rfj9deqwpv/twEL/A9DekZwIWq+rns/+0iMg64FPihqr7UM3/vos6r0+wr3lwW2LLXSlFCfYxFm+uK0dKlnfPaa1XhzZ/bCfe6ddXOcTWo0l6rCi+kNyF5hu8IeAFwfcO21dn3Vz1z9z6qVlIuBQGqV8ydvKTdompkNDTUH5FR6gMux93rUX+KgBNy8C3A44HGIZb2/1bP3L2PWAJct8C6KKxVbbbN5LFsHjfOdBd0yl2F18VL2i0vxBmc00ti5MrmWC0dMZ2OhJYIMQ2p2STDii99HYPoNQF20VxVtZKKHfV3uu42VH/Oe/ealY16eURw7JHfsZrdq867dtG6Y1um0iCsrkMIAf6KiOy0H+DebPsP89uzz44A6ekdVK2kYgtwjAi4H2yO5XTUtXnq1GqrSDXjrsLrYt1tMGkXiXe/Vc1qYlW4e7lcJbSE70FYPydFuvUxYwbcf3/542NHg64qirHodMS0OdZztitMTZzY/nhXzcB13nc9ONj5utswMo+VWU7Txbrbee40D7jr4Hst6NN8Xr/v0WvRYNn5s+24e8lmV5VjlXnXrpqBx483qyzFstleb968crzgppujTh5z1dJhr7d4cfvjXay7bVHHZpHO1t1OaIuuWIqyCCIyU0QuFJGja5z7SRG5U0RuFpHvisjs3L73icgaEbkrvypXV6JqE7TLATIQtzm2bD+ZKwGePNmIX6xoEMpzu2werNP87VKMYthcp8XBlfDb65XlzZ/XCep0Z7kY35DQEl0rwMAU4CygzgsprwSeoKpPAu4G3gcgIscCrwKOA14AfEFEOuzM8ohY0aD1emOJ0cGDsGdPueNtGjutIOusT+yqeTC2GMWOgMvy5s/rlDvZ3J47NT97RzcLMJhlKitDVa9Q1QPZ318DS7LfZwL/qap7VfVeYA3w5M6T6QkzZpiBJwcOtD8W3BXYgQEzWCVmJZXEqDVv/rxOuWNG/WVtdtknGSvq77W8nRbh8I5uF2AXeAPwP9nvw4AHcvvWZ9u6E3UK7PjxnQ8WsdxlC6zrwSIwtqKEXrO515tj03Mux50iYO/oWQEWkZ+IyK0FnzNzx/wdcAD4ut1UcKnCzkYROUdEVovI6s2bN7s3oAzqNE3OmOGm36ZKgXU5WKTq3FR7nIvBInX6yXq9Yh6rfcCxB2GV5c2f1yl3jLyd0BK+pyF5g6o+p9V+ETkLOAN4tuofRvSsB/KLyS4BNjS5/gXABQAnn3xynKlUdSpmV4WmStOk68oxf80y3J2+pD3PXZbX1brblhfi3e+qU9163ekYi83udZyOZcs6501oiZ6NgFtBRF4AvAd4qarmZ71fBrxKRCaJyApgJfCbGGkshZgCXCUy8iHAVaN+F6hSSbmOQvPXLMPtYt1tqCZGLl/S3ktRf78MtrNOY1nuFAF7R89GwG3wecxrEK8U0xz7a1X9S1W9TUS+BdyOaZp+i6oejJjO1ogtRg8/XJ7XntMp6ojRWIv6XQkCVBMjV+tu569R5Tm7WHfbcj/6qBlt325FL1frboMZnzFlSlzH1jpvZbiTAHtHXwqwqjZ9O7uqfgT4SMDk1EdsMVq7ttyxrpvKYGxG/bGes5133W7sgEubJ00yghRrfAMY7lmzWh/rat1tizp5zOWgt127YP78ctxJgL2jm5ug9wE/A7bFTkg0JDEqx93rTdBV5127tnloyEx3K8Nrz+kU9n3XsZ4zlLvfLkXQclex2cW621DNmT9wwMzDTwLsHcEEOFvV6qMiUrjwq4icKiIX2v+quk1VT1fVG0Klseswc6b5jlFJzZwJO3eW54X+EOA9e8rNu3Zpc9X1iV3O0axyv13abK8Ty7m01yzDC71vc5XnnNaBDoaQEfDZmIFRV4tIURvIkZiVrxIsrADvKPmSKNcCvGuX6ScrwwtuRGHiRNM8WUX8XdoM5bhdV8xVHZ4YFXNsm105HTGfcy8IsOuoP6EpQjdBXwIcD1xXZ43nMYfJk00/WZmKwuVgERjuG6vSTOeSO4YYWZtjVMxj0eaZM+MMPBuLjlZMmxOaIrQA/xB4Fmad51+JSMu5vGMeIqaCLBMBux4sUqfAuoxQYkX9UI57LNvskjumzWNJgGM6WglNEXwQlqpeDzwF+D1wuYicEzoNPYWyBdZHRQHlK+YpU0y07gJlo0FXL2m3qFIxu+4nG4sR8Fi1uazTsWuX+2b3GI5WQlNEGQWtqg8ATwN+AnxRRD4VKy1dj1gCXLWScllYy9rsQwShfCXlat1tKB8Nulx32/LC2IyAY9kcw+mwQp4i4K5CtHnAqrpLRM4Azgf+BtgYKy1djbIes68IOJYAr1tXjhfi2uzqfallK2aX625DdUdLxEyNccVdVox27hx+Pp2iynO2x7jinjXLdBft3dveeduxo/085bIYGDB5pkxdYo9xxZ3QFFGjTlUdUtW/Bt4JLIqZlq5FLzRBu6wcoXzF7KNyhPKVlMsKqqzNrivHKmK0Y4c53sW625Z79+7207727IF9+9zZPGGC6U9GZW0AABp1SURBVDKpIkYxxN91HitblyQBDoZgAqyq41T1G032fRb4I+CPQ6WnZxCr0FSJjPqloohdOQ4Omui2HS+44540yXxiOB1l57n7EIQqDs/06W4Ww7C80J573z7jeLi2OYbTkdAUXdPvqqq3qerPYqej61C20GzfPny8C1QRo+3b/VSO2uYlVK4r5ilTTEUbS4Bt/247Xojn8Lh+zva67Xjzx7tA2f5nX05HLJvLPuepU9287COhJbpGgBOaIFY0OG2a6e8rW0nNnu2GF4zNBw+a/s52vODO5irTvvpJjGLZXNbJix0B+3jOsWwu+5xT9BsESYC7HTNnmuaodq8Rc11gx42LFxnFrJiTza25+0WMeiUCdimEZZ/zzp2p/zcQkgB3O6pERhMmmNWzXKFMgR0aMn14/RINxqqYkxi15oWxFQHb/f3Q0pHQFEmAux1VIqPZs91Ni7Hc7QqsfZVdrGhwYMDdtBgoVzGrJjFyxQvJ6WjGC/3R0pHQFEmAux1VCqzrQlOmYvYlCNCe2w7+Cu102Je5x3I67Kv8XHL3gtMRa6pbvzgds2aVm/aVBDgYkgB3O6oUWNeFpowY+fLU89duxd1vTkcZm13OxbXc7Xj37IH9++P2e7vuDy077culzZMmmTd+xSxXZaZ9JQEOgiTA3Y4qlZQPAY7VPAjJ5mbcvmxuNe3Lh832ZfNlxMjlXFwwdrSb9uVjLi5Uy2Ouo/78tVtxJwEOgiTA3Y4UDbbm7peof/p007QcQ4BnzWo/7cuHIIiUFyMfzxlac/taEapMi4OPubhlbN6/3+SDNA0pCJIAdzvGYhO0XU4zlhi1m/blw+Zx48qt1duPYhTrOdtrt+IF92IUy+koY7Ntnk4RcBAkAe52xIyAZ8403nCrQRs+Kubx481CIDHFqEzFHKtpMqYYxXLy+s3pKNvX7xIxbU4oRBLgbsekSWaJxG3bmh/jYy4uDK9uZZe5LILPSqoVr+X2JUZj0eYYAlxWjPrJ5jJOh4/FMGLanFCIJMC9gDlzWguwj7m4lhdac+/YYSLWKVPcc7fiVfVTSZW1Gfxwt+K13L4crRg2z549Nm0ea85lQiGSAPcC2lVSPgUB2nO7notruVvx7tplIn/XNs+da77b2TxunNu5uFDO6fBRMZd5zj5WZgJzv2MIcExHayzanFCIJMC9gHYVc2wBdvkihjx3N9s8c2Z4p+Oxx0x/fMyK2dX7pvPcY02M5swxDuT+/a25XfNOmmRGVpexOY2CDoK+FmAReZeIqIjMz/6LiJwvImtE5GYROTF2Gkuh28XIh7ecbC7mhXg2z5jhdi6u5R4cbC5Ge/eaTz+Jkb3frZqCXb/iM8/dymabJh9OdcIo9K0Ai8hS4LnA73ObXwiszD7nAF+MkLTq6PaKeayJkc/KcXCw+ahzX5VjGTHatm343rhEOzGyabJdA66529k8c6b79+K2y2N795rZB/PmueW13Fu3Nt/v834njELfCjDwGeDdQH55nzOBr6rBr4HZInJIlNRVwZw5rb1lW6BcF5oyYrR1q7/KsZUYWZtdV1JlRp1v3eqvcoTmz9qXzZY7ps3NuH3lbcvdSox85m17/SL4FMF2/c9btxqnY/x499wJo9CXAiwiLwUeVNWbGnYdBjyQ+78+21Z0jXNEZLWIrN68ebOnlJbEnDlmEMzBg8X7fVVSkyebT6sCu2WL30qqnRjFiIy2bPEjRu0GgMUWYJ/POZYAx7C57HPuJ5sTCtGzAiwiPxGRWws+ZwJ/B3yw6LSCbYUL4KrqBap6sqqevGDBApdJr452YrRlixkQFHowlGq8yGjLFvM9lsTI2hzL6RiLYuSz2b1bbU4CHAw9286gqs8p2i4iTwRWADeJGaW6BPidiDwZE/EuzR2+BNjgOamdI19giwTHVhQu35CT524m/Lt3m8EzsSKjceP8jNYs43T0YzR4333N9/er03HDDc33b90KT3yiH15IApzQuxFwM6jqLaq6UFWXq+pyjOieqKoPAZcBr89GQ58K7FDVjTHTWwplCqyvQtOqwPquKKA1t0+noxlvbKdjYKA/nY5m/aE+81iZ/tB+c7Tmzm09BSoJcFD0nQC3weXAOmAN8G/Am+MmpyTKRAk+mmItd6zoBLrP6Yht85w57ucfW+5mvLt2mcFw/eh0NBMjn07HxIlmrfMYTkfMcpUwCj3bBF0WWRRsfyvwlnipqYkyhcZXP/WcOXDrrc15IV4fcMyoP9aIYJ82WzFqnHbjUxAmTmw9Bcq30wGGe+HCkft8Oh2Wu53T4XrRE8sLxTZbp8NHv3dCIcZaBNybKFMx+4qAWy2DGdtT9xn1N5sC5dNmOwWqVWTkUxCguL/fp82WO5bTAcXc3WCzD6ej1aC3wUEz0yJFwMGQBLgXEDsa3LGjeAqUz0qq3RSoJEbueaG1GPlyeFr1xca2uV+fc5GT59vmhFFIAtwLmDLFREdFBfbAASOQvgts0SvMfPaHWu5uq5hj2uzb0YKxKUYxbB6LTkfCKCQB7hXMnz9c+edhozRf0cn8+eb7kUdG79u61fTfTZ7sh3vevGKbfTsd9rpF3CEq5hhN0Pa6MSKjVitS9asYjUWbE0YhCXCvYOFC2LRp9HbfEZkdqFG0GpjvEZMLFxbz+l6vtp3NPp2OBQuKeffvN6uh+XK07CC+ZjaDv8E5zWy23LGcS/CXx+bNM7xasA5QCAGOYXPCKCQB7hU0E2DfhcaKUTPx9y3ArWz2VTG3sjmE01HEa1s6Yj1nn06HdbSGhkZut06Hz6h/YAAefnj0Pt9Ox6JF5qULg4PF3L5sHj/elJsYdUnCKCQB7hUkMRrJC/3pdCxaZDgaR2D7tnnGDCOwzcTI93M+eHB0s6hvp2PcOBN9F9m8ZYsZezFlih/uZnnMdq/4nAq0aFHrcpWmIQVDEuBeQbsmaF+FxjbTxYqAd+yAPXtG84I/7ilTjCDFsll1dBOh/e+LW6R5HnvkEX8OHhhBgNFCaJulfXMX2bx583De98ULzW22+31xFzkdDz9sFjzx5XQkjEIS4F7BwoXmHaG7d4/cbguSrwI7caIR92YF1mdF0awv9qGHzLdv7qKK+aGHYPFiv7wwmtvafIjHt2c2s3njRv+8MJp7Y7ZKrG/uorwdy2b7nH3nsSKbfefthFFIAtwraFVJTZvmZ9WcPHcj7969pskqZsUcupJS9V8xW6cihs3NIiPfFXMzm0M4Hc0i4IceCvOcG+93CAGO9ZwTRiEJcK+glRj5LjRFAhwqIoNim+fONXOjfaGoYt61y7RChLC5qGIeGPDbLFr0nIeG/ItRK5shjKPVOBrZtxjZUeexIuCdO0d37SQBDo4kwL2CVmLks3K03DEqilbRYAybQ0XeUMy9cKERYZ/cmzaNFKOtW83AIJ82z5tnBkQV2Tx5sp8XMVgsWgSPPTaya2f/ftPv7dPmCROME9nodNg85rsPGIrLdBLgoEgC3CvoNgEO1T8HxRVFCJsbp8aEsHn2bFM5x7B50SIjPvklOEPY3Gw0srXZx5rIFkXRt3VCQtzvouc8a5bfgVBFzd+PPmqi4iTAQZEEuFfQrMkqlAA3To0JUTFPm2YqoqIoIUSz+9DQyNWKQjS729HIRTaHeM4wMo+FaOmA5mIUghfi2Fz0nEM5lzDSZpuOJMBBkQS4V1A0NWb3bjORP1SBzU+N2bhxWCx8oWhqTIiBUFBcSYVogrbcMfr6iyKjEI4WNLc5RBQKI20O6XQUCXCM5xzCuUwYhSTAvYSFC4cLCoStHGE098KFZmUd39z5imLbNti3L07FvHGjmZble6WgRpsPHjTi1M8RcLNoMAQvdE/UH6p1B+I4HQkjkAS4l3D44XD//cP/Qwnw4Yeb79//fnhbiKYygKVLR/KGsnnJEvPdaPPixX77JAEOOwzWrx/+b/uifVeOhx5qvvPcGzfC9Onm45t7w4bhAWB2mlsIMRKBBx8c3haqpWPxYtPf/thjw9tCOB1Tp5rWNGun5bVpSgiGJMC9hCOOgHXrhv+HEqMjjjDfjdwhCusRR8C99w4PhgrVVLZsmRkcFMPmI480dtqRuaFsnjfPVMxr1w5vCzUy9ogjzLQYm6dtdObb5okTjbOVf84PPWQWn/E5zQ1gxQrzbbl37TKfEPd7xQpTriweemh4MFxCMCQB7iWsWGEqJlsxhxLguXPNVJBGMQoRAR95pImGrK2hbJ440UTfeTEKZbN1eGwFuWGD+fZdMYuY+51/zhs2hLV5zRrzbSPSENxHHTXyOa9fHy5vwzC3bXk47LAw3PZeg2npWbTI7zS3hFFIAtxLsJXUffeZ73vvNSOFffdJioyMvnfvNmK0fLlfXhgdfd9zj/HUly4Nw215Dx40FZatNH2isWK++27zfdRRYbjzYnTXXbByZRheGOa+6y7zHYo7L0Z33QWPf7x/Xvs8Lbe1ORT3unUmXwPceSccfbR/3oQRSALcS2gUo9tug2OOMYIUgtvy3nWX6as77rgwvDBcMd9xh9kWYsH4vBjdf79pIj3mGP+8RTbPmxemefDII41jZ99O9PDDYWw+/HATfVmb77zTtELYe+ETRx5p+tkHB8086DVrwtg8d66Z9523GcIJ8L59pqVBNQlwJCQB7iU0CvDtt4cRQctt+2Jvv91sO/ZY/7yNfbG33x6GF4zNmzaZfrk77jDbQnDPnWsWY8jbfMwx/gd/gbHZVszW5hBiNGGCedZ5p2PlSv+j7GFk9L12rZnvHkqM8s3fd95pBqP5XPnLwtq8Zo3J49u3JwGOgCTAvYR588xo1HXrTIHZsCGsGO3ZYwZr3HabqTBDNInavth160x0cvfdYW0Gw22djhBiZPti82IUghdGilFIAbbceZtDiiDEs9k2QYeMQvPN37bpOwlwcCQB7iXYvth77gkbhcLIQTK33w6Pe5wR4RCwFfPatUaEQ9ncKEaLF4d7WfkRRxjezZvNKmSxbJ40aXgaWgjutWvNoLu1a+M4HSGbgcEI4f33m3wd0ulYssQ4tzFsTvgD+laAReStInKXiNwmIp/IbX+fiKzJ9j0/Zhpr4dRT4Zpr4Prrzf9QTdAnnmiagn/yk7DNwAAnnWTsvfZa8z9UxXzMMeZlAD/96XAzcCiccIJxdq68cjgtIbBsmemXvOYaIwiPf3y4kbFPfKKZ+/uDH5iujlA2z5xpBOnaa43NS5b4fb1nHscea5q8//u/YceOcAI8MGCe7XXXGQGeMiXMwMaEkVDVvvsApwM/ASZl/xdm38cCNwGTgBXAWmCg3fVOOukk7Rr86EeqoLp8ueq0aaoHD4bjPu001aVLVceNUz333HC81103bPO4caqDg+G4X/5y1QULVKdMUX3b28Lx3nWXsfnww833+vXhuN/wBtUZM1Rnz1Z93evC8W7YYJ7vsmXG5ltvDcf9zneqTpigumiR6hlnhOPdvl118mRTrkD1F78Ix33eeYbz0ENVn/50LxTAau0CTejWT/QEeDEKvgU8p2D7+4D35f7/GPhf7a7XVQK8d6/qrFnm0b3//WG5P/95wztzZlhBGBoarpTf+tZwvKqq3/ym4Z08WXXNmrDcJ5xguF//+rC8V1xheMeNU7355rDcz3mO4X7pS8PyXn+94QXVX/4yLPef/qnhfeYzTV4PhXvvHbb58su9UCQBbv3p1yboxwHPEJHrRORnInJKtv0w4IHcceuzbaMgIueIyGoRWb1582bPya2AiRPhrLPglFPggx8My/2KV5g+0PPPD7NYgIUIvPGNpq/uwx8OxwtwxhlmgYJ/+Icwc4DzeNObzNSjj388LO/ppxtb3/EO0ywcEuecYwYafvKTYXlPOMGUqde8Bp761LDc//f/mr72T3wizEh3i+XL4UUvguc8B17wgnC8CX+AGCel9yAiPwGKlgb6O+AjwNXA24FTgEuAI4DPA79S1a9l1/gKcLmqfqcV18knn6yrV692mHoHUA1bWGPzgukXDDHnuVt4wczHjbE60cGDxuYYz3r//nAD/PKwi1LEuN/79hnnOjQOHjRl2tN0LxG5XlVP9nLxPkCASXZ+oKrPabZPRP4KuDRrAvmNiAwB8zERb36kwRJgg9eE+kIsEYzFC/FEMBYvxFsaMOaShDHEF+LaHEN8IS09GRn92gT9PeCPAUTkccBE4BHgMuBVIjJJRFYAK4HfREtlQkJCQsKYRc9GwG1wIXChiNwK7APOyqLh20TkW8DtwAHgLap6MGI6ExISEhLGKPpSgFV1H/C6Jvs+gukjTkhISEhIiIZ+bYJOSEhISEjoaiQBTkhISEhIiIAkwAkJCQkJCRHQs/OAQ0JENgP31zh1Pmb0dcIw0j0ZjXRPRiLdj9Ho1XtyuKoGeJF1byIJsEeIyOo0CX0k0j0ZjXRPRiLdj9FI96Q/kZqgExISEhISIiAJcEJCQkJCQgQkAfaLC2InoAuR7slopHsyEul+jEa6J32I1AeckJCQkJAQASkCTkhISEhIiIAkwAkJCQkJCRGQBLgGRGSpiPxURO4QkdtE5O0Fx4iInC8ia0TkZhE5MbfvLBG5J/ucFTb1fuDgnhwUkRuzz2VhU+8eJe/H0SLyKxHZKyLvatj3AhG5K7tX7w2Xcn9wcE/uE5FbsjzSZS/oroeS9+S1WXm5WUSuFZE/yu3ru3wypqCq6VPxAxwCnJj9ngHcDRzbcMyLgP8BBDgVuC7bPhdYl33PyX7PiW1TzHuS7dsV24YI92MhcArm5SDvym0fANYCR2BepXlT47m9+OnknmT77gPmx7Yjwj15qq0jgBfm6pK+zCdj6ZMi4BpQ1Y2q+rvs9yBwB3BYw2FnAl9Vg18Ds0XkEOD5wJWqulVVtwFXAi8ImHwv6PCe9B3K3A9V3aSqvwX2N5z+ZGCNqq5T82av/8Tcu55Gh/ekL1Hynlyb1RUAvwaWZL/7Mp+MJSQB7hAishw4AbiuYddhwAO5/+uzbc229w1q3BOAySKyWkR+LSIv857IgGhxP5phLOeRVlDgChG5XkTO8ZGumCh5T96IaUWCMZBP+h19+T7gUBCR6cB3gHeo6s7G3QWnaIvtfYGa9wRgmapuEJEjgKtF5BZVXeszrSHQ5n40Pa1g21jJI63wtCyPLASuFJE7VfXnflIZFmXuiYicjhHgp9tNBYf1TT4ZC0gRcE2IyARMgfm6ql5acMh6YGnu/xJgQ4vtPY8O7gmqar/XAaswkUBPo8T9aIaxnEeaIpdHNgHfxTTB9jzK3BMReRLwZeBMVd2Sbe7bfDJWkAS4BkREgK8Ad6jqp5scdhnw+mzk76nADlXdCPwYeJ6IzBGROcDzsm09jU7uSXYvJmXXmQ88Dbg9SMI9oeT9aIbfAitFZIWITARehbl3PY1O7omITBORGfY3ptzc6j6VYVHmnojIMuBS4M9U9e7crr7MJ2MJaSWsGhCRpwPXALcAQ9nm9wPLAFT1S1nB+jxmgNWjwJ+r6urs/DdkxwN8RFX/PWDyvaCTeyIiTwX+NTtvHPBZVf1KYBOcouT9WAysBmZmx+zCjGLdKSIvAj6LGel6oap+JLAJztHJPcG8ju+72TnjgW+MoXvyZeAVDL8S9YBmb0bqx3wylpAEOCEhISEhIQJSE3RCQkJCQkIEJAFOSEhISEiIgCTACQkJCQkJEZAEOCEhISEhIQKSACckJCQkJERAEuCEhA4hIqeJiIrI2bHTkpCQ0DtIApyQUAIicryInJut15uQkJDQMdJa0AkJ5XA88CHMMpn3Nez7OTCFMfIGn4SEBDdIApyQ0CFUdQjYEzsdCQkJvYXUBJ2Q0AYici5glwv9adbfqyJyUbZ/VB9wfpuIvFlE7hKRPSJyi4i8ODvmiSLyIxHZKSJbROT8bGH+Rv6VIvIfIrJRRPaJyH0i8slsTeS6Ni3P0neuiPypiNwoIo+JyBoR+fPsmGUi8m0R2SoigyLyNbsec+46S0XkQhG5X0T2isgmEblWRM6qm7aEhLGCFAEnJLTHpcAhwDnARzEvTQco87rEtwBzMG+y2QO8DfieiPwJ8G/AN4HvYV4u8FZgE/Bhe7KInARcDWzHrJf9IPBH2XWeJiLPUtVOmr7PAP4S+AKwFfO6uwtFZF9m69WYtYlPAd6Q2fCmLG3jgSsx76D9AnA3MAt4EvAM4OIO0pWQ0PdIa0EnJJRAFt3+O3C6qq5q2Hca8FPMyyUuati2AfOChR3Z9icBN2He2/rK/OvnROR64FBVPSS37SZgEnCKqg7mtr8c4xj8gbOiPcuBezEvxThWVe/Pti/AvOR9IvCu/Bt6RORSjGDPVdVdOVveo6qfqJqGhISxjtQEnZDgFxdZ8QVQ1ZuBncCGgne//gJYLObl7IjIEzHR5DeASSIy336yY3djIudO8D0rvln6NgN3Yd7M8y8Nx14DTACWZ/+tXaeLyMIO05GQMOaQBDghwS/WFWzbhok+i7YDzMu+j8m+zwM2N3w2AdOARZ7St1FV97ZKXybcH8E4ARtF5HoR+YSInNJhmhISxgRSH3BCgl8crLgdQBq+PwX8qMmx25psL4tO0oeqfkBELgRejOn3fRPw/4nIJ1T1PR2mLSGhr5EEOCGhHGIMlrgn+z6oqj+JwF8KqroO+BzwORGZDPwYeLeIfEpVN8VNXUJC9yI1QScklMOu7HtuQM4bgFuBvxSRIxp3ish4EQmZnkb+WY3TplR1D8OjxOeET1VCQu8gRcAJCeXwW8zApL8TkTmYAVD3qup1vghVVUXkzzBTgW7OmnpvA6YCRwH/G3gfcBGMGNn8M1U9zVe6cjgduEBEvoMZuLULOAnTDH2dqt4VIA0JCT2LJMAJCSWgqr8XkTcA7wG+iBkNfDHgTYAz3htF5ASM0L4UM2d3ELMc5kXAVbnD7SIZD/pMUw43YaZCnQa8FhgAfo+ZP/ypQGlISOhZpHnACQl9AhF5G0b4jlPVu2OnJyEhoTVSH3BCQv/g+f9/+3VAAgAMBDHs/CuY3MkoD4mJ0m1PfOEGBwwAAQcMAAEBBoCAAANAQIABICDAABAQYAAICDAABD6ReMwBNzB8lAAAAABJRU5ErkJggg==\n", "text/plain": [ "<Figure size 432x288 with 1 Axes>" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "#Definition of v, z, vectors\n", "vdot_RK4 = numpy.zeros(N)\n", "v_RK4 = numpy.zeros(N)\n", "z_RK4 = numpy.zeros(N)\n", "k1v_RK4 = numpy.zeros(N)\n", "k2v_RK4 = numpy.zeros(N)\n", "k3v_RK4 = numpy.zeros(N)\n", "k4v_RK4 = numpy.zeros(N)\n", "\n", "k1z_RK4 = numpy.zeros(N)\n", "k2z_RK4 = numpy.zeros(N)\n", "k3z_RK4 = numpy.zeros(N)\n", "k4z_RK4 = numpy.zeros(N)\n", " \n", "#calculation of velocities RK4\n", "\n", "#INITIAL CONDITIONS\n", "v_RK4[0] = 0\n", "z_RK4[0] = 0\n", "\n", " \n", "for i in range (1,N):\n", " #RK4\n", " k1z_RK4[i] = v_RK4[i-1] #k1 Equation 14 \n", " k1v_RK4[i] = (( ( -k*z_RK4[i-1] - (m*wo/Q)*v_RK4[i-1] + \\\n", " Fd*numpy.cos(wo*t[i-1]) ) ) / m ) #m1 Equation 15\n", " \n", " k2z_RK4[i] = ((v_RK4[i-1])+k1v_RK4[i]/2.*dt) #k2 Equation 16\n", " k2v_RK4[i] = (( ( -k*(z_RK4[i-1]+ k1z_RK4[i]/2.*dt) - (m*wo/Q)*\\\n", " (v_RK4[i-1] +k1v_RK4[i]/2.*dt) + Fd*\\\n", " numpy.cos(wo*(t[i-1] + dt/2.)) ) ) / m ) #m2 Eq 17\n", " \n", " k3z_RK4[i] = ((v_RK4[i-1])+k2v_RK4[i]/2.*dt) #k3, Equation 18\n", " k3v_RK4[i] = (( ( -k*(z_RK4[i-1]+ k2z_RK4[i]/2.*dt) - (m*wo/Q)*\\\n", " (v_RK4[i-1] +k2v_RK4[i]/2.*dt) + Fd*\\\n", " numpy.cos(wo*(t[i-1] + dt/2.)) ) ) / m ) #m3, Eq 19\n", " \n", " k4z_RK4[i] = ((v_RK4[i-1])+k3v_RK4[i]*dt) #k4, Equation 20\n", " k4v_RK4[i] = (( ( -k*(z_RK4[i-1] + k3z_RK4[i]*dt) - (m*wo/Q)*\\\n", " (v_RK4[i-1] + k3v_RK4[i]*dt) + Fd*\\\n", " numpy.cos(wo*(t[i-1] + dt)) ) ) / m )#m4, Eq 21\n", " \n", " #Calculation of velocity, Equation 23\n", " v_RK4[i] = v_RK4[i-1] + 1./6*dt*(k1v_RK4[i] + 2.*k2v_RK4[i] +\\\n", " 2.*k3v_RK4[i] + k4v_RK4[i] ) \n", " #calculation of position, Equation 22\n", " z_RK4 [i] = z_RK4[i-1] + 1./6*dt*(k1z_RK4[i] + 2.*k2z_RK4[i] +\\\n", " 2.*k3z_RK4[i] + k4z_RK4[i] ) \n", "\n", "#slicing array to get steady state\n", "z_steady_RK4 = z_RK4[int(90.*period/dt):]\n", "time_steady_RK4 = t[int(90.*period/dt):]\n", " \n", "plt.title('Plot 3 RK4 approx. of steady state sol. of Eq 1', fontsize=20); \n", "plt.xlabel('time, ms', fontsize=18);\n", "plt.ylabel('z_RK4, nm', fontsize=18);\n", "plt.plot(time_steady_RK4 *1e3, z_steady_RK4*1e9, 'r-');\n", "plt.ylim(-65,65);\n", "plt.show();" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "### Error Analysis" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "Let's plot together our solutions using the different schemes along with our analytical reference." ] }, { "cell_type": "code", "execution_count": 9, "metadata": {}, "outputs": [ { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAesAAAEjCAYAAAASSCl4AAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMi4yLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvhp/UCwAAIABJREFUeJzsnXecFdXd/9/f7buUpZelgxTpwsJSlyaokWjsGGPLEzUxPqmPxiRPfIjtZ9QkxhJNbFgQNDawIEhZpbNLB+mwtKXDFth+7/f3x5m73DJ32X73svN+veZ1d8+ZOec75zNzvjOnjagqDg4ODg4ODvWXiFAb4ODg4ODg4FA+jrN2cHBwcHCo5zjO2sHBwcHBoZ7jOGsHBwcHB4d6juOsHRwcHBwc6jmOs3ZwcHBwcKjn1LizFpGuIqIiMqOm025IWGWYFmo7HC4uRCRNRBrkfM2q1k0Xe5nVVZ0tIpkiklmbedjkWS/qURGZbtkyvqppVMhZW5l4by4ROSkii0XktqpmfoE877LyuqsG0rrdy/af1IB5nnSHichMEdkvIkUikisie0TkMxF5SEQa1VReDg4OtYOIzLDqhq6htiWcudgfakJNVCX3/7P1Gw30Bn4ATBCRoar6mxq1rIYQkU7AC8BZoHENpvsj4C1AgMXAJ4AL6AYkA1OBj4HdNZWng0MNcAeQEGojQsRh4FIgJ9SGNFAmhdqAcKZSzlpVp3v/LyKTgK+BX4nI86qaWXOmVR8REeBN4BTGcf5PDaWbALwEKDBFVRfZ7DMKOFkT+Tk41BSqeiDUNoQKVS0BtofajoaKqu4JtQ3hTLX6rC0ntR3zdjnsQvuLSHsRecnquygWkRMi8rGIDPXbLw3jZAHe9GuC71oJE38BTATuBs5V4rgL0R9oCmyxc9QAqrpCVbP9w0Wkj4i8YZVBkYgcF5GlIvIzu3REpJWI/FtEjlj7bxWRu4MZJiJXiMiXVjdFkdUs/4yINLPZN9PaGovI30XkoIgUiMgGEfmBtU+UiPxBRHaJSKGV3gM1lP9AEZnlVRYnRGSdiDwnItHB8rBJZ7iIvC8ih610jojIAhG52Wbfm0XkWxHJsc51s4j8XkRia7N8RGS8df1OF5GRIrLQsiFPROaLSLLNMUki8oiILBeRo9Y9kyUi74nIpTb7l/U9ikgvq0yOi4hbrL4yu6ZKMdwpIissDQqtc50vIrfY5DNURD6y0i4S0w30TxFpb7NvWROziNxnlXehiByzruvEAEFtsI5VEbnHL/zHVni+v4YissbKK96/fLz2UeBO6999cr6eybSxwVvrIquM/iIiMRU5ByuNXiLylIhkWGXtKb9/i0hHm/29r5vBIvKFiGRb5/uNmJcC/2Mqdd0EsXO2lW9qkPgbrfgXPOUKjLPivOvrNK9jgvZZi8gtIrJIRE5bmmWKqRuSvfZJFJEHxXS/HpLzPmSuiIyoyHlV4Lyvsezw1LdZVjnfb7NvTxF5W0y94ynjt0WkZ03YEoCqXnDDvEFqkLhtVvyN1v9drf9n+O3XDdMMpcAi4P8B7wJF1jbVa9+7gE+tfT8FpnttzSpo86VAAfB36//pVno/qcjxF0i7h5XWcaBRJY67GsjHNJd/YZXBy8AKYJ9NmW8AdgCbMU35rwJnrLg7bdJ/xIo7hWmifwaYb4VtBZr67Z9pabLSyudF4N9AnmXjJOAj4JCV94vAMSu9W6qTPzDQ0icfmG2VxUvW/sVA4wqW6T1AqXUN/Qd4EnjNKrs0v32ftGw5YZX7M8AWKywNiK6t8gHGW+HzLFu/sOz5wLK/ABjrd8w0q3y+sMrmL5gWomJMt84gv/27Wnksta6T1cDfgVeAIdY+afjdy17lstfK50nMw/IW4EO/fada9hcD71m6LbCOPwx09dt/hhX3Aab5+V3gr8A6K3xxBXW+xNp/tl/4u1a4AuO9whOtcl1iUz4zvMKmW9eKAs9xvp75ldc+aV7ncAR4w9p3pxX+ZiXqgIeBbEy32fPAs9Y14bbS7hDkuvncuhYWWcd8gLkGC4DeNXTdeJdLqhU2M8h5eDQfADSzyizTCpvutd3ldz9l+qUjXtfICcy9+/+AdzD31XSvfUdY57AQ+BfwFOYaPAuUAFfa2Kn41QPlaHOvtf8RzH3uqUvWAOl++w7DXM9ujI960ipjlxWe7Lf/dPyu0cpuFb3AbJ01cLllrBvoEkx4K9xTaf/RL3wU5qY6hVcFjXHY6i12JW6IKCADU8HG+xVWTThrsQT0ONSfA5cBMeUc08oSsRgYZxPf0a7MrYsl0iu8r1Ve3/ntP8HafwV+DzReZfl3v/BMK/wzINYrfKwVfhpI904P6G6dw/rq5I+psBW41qYsmgMRFdChL+YmPQ30K69MgZFWfgeAdn7XymdW3B9qsXzGe2n6gF/ctVb4Lu/zBtoATWzOaxCmgprnF97VK48ng5RZGoHO+hSmYkywu269/m6M6dpxEfhg8Tsr3wV+4TO8yr2zX7l/a8UNr+B9tx/zgCxeYVkYB+YCHrMp0z/ZlI9/3eSxsWt5ZQasBVp4hTfCjElxeV9TFziHDt7Xklf4FCudl8u5bu7yi7vPCv+nX3hVrxv/ctkCFHpfA1Z4N0ydv/xC15bN/ZTpF+ZxkGuARL+4SKC91/+J/rZY4R2t62CbTVxlnPVazINomwvcB8L5l9Tb/Pa7xQrfju+9PJ26dNacf1p6AvgQ4zQU+Ft5wluFqZibLdom/Xes+Du8wu6yu0AraO+j1oU/0qawqu2srfQ6A0u8ykYxlfRqTMXl/xb7W2uff1SizM/5p2PFfWPFN/EK+8QKC3BaVvx64LjNzaNAD5v991pxE23illjaR1Y1f8476ynV0OAFK41fV2DfV61977WJ62VdL3trsXzGY+OQveLTrPhxFTz3uZiKNNorzHPvHcXGIXjn4xd2CtgX7Biv/W6z0n/PJi7KSkPxdcozgt13mO4pxe/hpZz837T2H2j939f6/2eYh6YVXvs+b8WNsimfGX7pemzsWl6ZAZfbxP3ZiptakXO4wPltsrkGPdfNMpv9ozEPqxmVyKO868a/XH5uhf/WL/z/4VdfB7u2/OIzCXTWm620Lqtm2Xn07uwXXllnfQ5ofoH9RlvprggSv9SKT/UKm041nXVlR4P/n/WrmKacpcDrqvruBY67zPpdqmaQhz+LgR9Z+71dSZt8EJHhwB+Av6rqyuqkVR5qBupMsPqAJmNGgA/32u4XkfGqus86xNOnMq8S2exS1Vyb8IPWbzNMkyyYN8cS4CYRucnmmBigtYi0VNVTXuHZaj/wIwvzBL3WJu4w5qm3nfV3VfJ/H/gl8KmIfIhp2loexJZgVKZMh1i/i/0jVHWniBwCuolIM/Uda1BT5eNhqaq6bY5Jw/T5XYZ5GANARK4Gfoq5vloROCi0FabZzpuNqlpkk0cwZgL/DWwVkf9Y+a9UVf9R0+WVYamIfIup+C/DvEl7k2GTr+c6bl5BOxdjHuInYRzbRCt8kZXvb0SkiarmWXFnMW9sNUW1z0FEBPPQcxfmTbc55lrxUFzRvFW1RESO2eVdxevGn7cxTc33Yh6uETOW5C5MN8sHFzi+XMRMbe0PHFPV9RU8ZjSm3hiJaUHwHy/QgcBrr6LMxJznVhF5H3MfLFfVE377Bb0PvMLHYO6Db6toSwCVHQ0uVczHM4gk2MXhCQ8YhFQZRCQK85a+E/hTddKqKKq6DdMk4rGhD6ZPaySmv/AHVpTn3Pwr7/IIGKBmUWr9et/kLTF6/l/g7j40xrxJeQg2jaUUwKbC9s7fexBYpfJX1TUiMhb4I3AjcDuAiOwA/qyqsy6QDlSuTCtyDXa29vMu95oqHw/HgqR31M9OROQXwD8wFePXmEooH/Ow/ANMZR8wMM4rrYrya2AP8GNMn+rDQKmIfIl5q/JMP6zOfWx3Ldtdx+XhGcw5CXNvTQIOWQ9bi4CHgHEikg70A75U1VL7pCqP2gwYpfLn8DfgV5iymo+5dgusuLuALkGOK68u8Mm7GteND6qaJyLvAj8VkQmqugTTvdAOeE5VCy+UxgWoVJ0oItdhWnQLMee1B/Mm7Ma0QIyjAucVDFX9m4icBO7HDE7+FaAi8g3woKp6HpjqxJ/5U9k366riqdDaBYlv77dfVWmMadIEKDQPsQG8KiKvYpqjf1XN/AJQ1e0icjumL2uiV5TnZuuAafqpaXIwzastaiHtWsnfavmYKmYU71DgSswb3nsickJVF14gCe8yvdCUHO9r0O5NuaauwQvRNki4597IgbIHzz9jHO8QVfWpGERkZDl5aGUMUlUXpnL/h4i0wbwVTANuAvqJSD/rTb2u7uNgdmZZD3PjrGtmPDDHil6GeSu9HDNTA4K/+YQEq2x/gekLHmW1AHjH31oDeVTnurHjZcwb+n2Y7p17rfB/V9NU8L1/K8JjGI2TrZekMkTkX1ij0auDqr4NvC1m9soo4DrMQ+x8EblUVY8TovugrtYG9zRxjLEuJn8mWL/rvMJc1m9Fn1jBDA54PcjmsWGZ9X+tNZFzvmna+2lhlfV7VS3luQpoLiL9ain9WstfVYvUTHV7BFOZgXmCr0ieULEy9eg/3j9CRC7BjKvYF+TtqSYZIyJ2953HLo+drTBP5itsKtzGnG+Kq1FU9biqfqyqN2OcXQ9MU6W3beP9j7Pu6zHWv+v842uQRZiH8p9hymcRgKrmY66HSfg2j1eEqtQ1VaE7ps5dYOOoO1rx1aVGrxtV3QQsB64TkRTMw9C3/s7SwmXlU6FyVNVzmAeXtiJy2YX2x8wI+M7GUUdw/tqrEVQ1W1W/VNV7MGMaWmAGlkI594FfeI3eB3XirFX1EKbZoiumaaEM6wL4IabJ5hOvKE9TbedK5FOgqj+x2zADKwDessLer+LpICLdROQXYjNH1OqT+qP1r3d/xVtALvAzu7mLYjPHspL83fp9VUSSbNJvVFNzEWsifxEZa1d+nH/zzK9Ani9jmgH/JCJ9bfL0LtM3rN//FZHWXvtEYqbCRGAe4mqbnphmtjJE5FrMW8FuzDgQMKOe84GhViXr2Tca8xbcqiaMEZFYEZkkfs1QVj6eVhKPFp9iRsDfanMt/QrjbBZq7S684nlb/r3f/56/+wPXYOqPjRVMs9J1TRXJtH7HeDs0S99XqZmWztq4bl7G9A1/hHkBeSXIflUpx+et33/51wciEiG+c/czgZ7e9Yt13f4fZrBhtRCRK4O8TLaxfj33wXLMTKMxInKjXxo3Yqa97cS8GF4oz85i1t644KqCddUMDqYpZTnwjIhMwQyY6IRpanMDd/s9ba7EFM6vRKQF5/v6XgjST1iXJGIu/GdEZDnm6TAPI+pETKV1HDMCHABVPSkiP8T0uSwRkXmYQTJNMXOOO2EGLFUJVV0kIg9jRmrusvob92HeQrpgnMEyTFNzjVOF/H8LTBGzaMJezGCgfpi35DNUoJlNVb8Ts1jBK8B6EZmDGW3dEjOwJg+r1UZVV4jI05h+zS3WoLZzVn79LdueqWYxVISvgL+KyFUYZ3IJcD2mH+6/PIPPVNUtIs9j+o83W+cWY51PC0yT5ASb9CtLPGZwX6aIrMbM2IjDDJq8FJjreZNR1bMi8mPMfPZvrMFoBzBdGFMwTa/31YBN5bEEU1+0Abarqnd/5yLMqNvWmPnhFe0OWAQ8iHnQ/BBzLWar6os1ZjWgqkdFZDami2GDiCzA1CWTMfpvAAZXM4/auG7+g3kY74CZuvdxkP0WYerzj637vwDYr6rvlJP2a5i34jsw9cYczHzrJExd+gZGUzi/ZsB6EfkIM6B1NMZRfwZ8v5Ln5c9sTPfpMsyDgWDepodhBpIuBDPcXUTuxLyAvm/ZvJ3zS3DnYUbK2w0k9edtTN04ATPINDgVGTIO9vOsg+zbFZtpAFZcB8xT2n5M38NJzNP6sCBpXYlx2mc9NhBkekUF7JpODU3dwgxi+AHwT0xTxzHMhZNjifoE0DrIsf0sgQ5bZXAMM+rwXr/9gk45oJypJpgL/wPMaOVizIW/ATOwxX+ifiZ+Uym84tKCaV4T+WMq9zeB76xyO4d5Wn0ea85+JfQYiXnqP27lmYVxijfa7DsN45jzMBXkVkxLSJzNvjVWPpyfgjPdsnchpqUlD7PARMA9gHmY/o1VRgUYZ/gO5uHHLo+uBLn3gtmNGQT3EGZE/QGrTE5gmpR/is3aAZjK6xNrv2LruJeBpEpeK2VlUkm911rHveQXHs35uuJnNscFLR+rnLdhutLUW/cLaH0XlZhiilmX/QlMK0ohZjT5S5gHzIB8LlRGdtdoLV03f7f2eaacfSIxi4PsxdSHPnWYna1ecbdh6sEcq1z2YUZnD7Ep7w2Y+uKkdR0OIMjUKH8bLqDNT6309mJeFE9jmrwfwn7eem+rXI9Y53sEs0hPb5t9g9mXZhdut4l1gIODQy0iZrnPJZiR7tNDa42DQ+WwWsBSMY5oV4jNaZDU1QAzBwcHB4cwRMzaFeOA+Y6jDh112Wft4ODg4BAmiPm4UAfMSnNuLryGgkMt4jhrBwcHBwc7foeZ0rgXuF1Va3I1OIdK4vRZOzg4ODg41HOcN+sq0qpVK+3atWuozXBwcHAIK9auXXtSVVtfeE8HbxxnXUW6du1KRobduv4ODg4ODsEQkf2htiEccUaDOzg4ODg41HMcZ+3g4ODg4FDPcZy1g4ODg4NDPcdx1g4ODg4ODvUcx1k7ODg4ODjUcxqksxaRZiLyoYhsF5FtIjJSRFqIyNcissv6bR5qOx0cHBwcHKCBOmvM5y2/UtU+wCDM13YeBhapak/Mp94eDqF9Dg4ODg4OZTQ4Zy0iTTFfj3kdQFWLVTUbuBZ4y9rtLcwnMOsdGR/tZ9fbK8FdkU+lOoQ7uv8ALFsGLleoTXGoCw4ehLQ0KC0NtSUO9YwG56yB7pjv8L4pIutF5DURaQS0VdUjANZvG/8DReReEckQkYwTJ07UqdG5ufDmhLfoe+Ol9LxzFHTtSu7Pfkfe8k11aodD3ZCXB29ePpPiS/rC2LG4O3dhzcSHyVu1NdSmOdQCeXnw5R2z0X79YMIETjfpzOrxv+NsxvZQm+ZQT2hwa4OLSDKwChitqqtF5B9ALvDfqtrMa78zqhq03zo5OVlrawWz/dn7+Wb/N6RlprHl+BYmR9/HgAdWMu3c6+zpNI5Of7qbmE8/wDVvPpHq4nCbwbT89lPienepFXscag9VJTM7k6UHlrLswDI2H99MKncx+JcZ3HruNfZ2GEu3J+8h6x8f0HbdPKJwcbD9MNosfp/YPt1Cbb5DJVFV9pzZw8qDK1lxcAWbj29mROmtDP3NBm499xq5A0YR8+ufs+6h9xl+8guicLG/4yjaLXiH2Eu7h9r8GkFE1qpqcqjtCDtUtUFtQDsg0+v/scAXwA6gvRXWHthRXjpDhw7VmuaDLR9o1+e6KtNRpqMt/tJCh97fXde3RRX04B2/Vy0pKdt/06Lj+mbyi5pDE93TaZyqy1XjNjnUHh9u/VA7/LVDmd7Nnmqmyfd11Y1t7PXesOCYvjn4Oc2mqe7tMEa1tDSE1jtUlo+/+1jbPNOmTO+m/6+pDru3i25ujbpAD9z+sGpxcdn+6+Yd1TcHPKtnSNS97UddNHoDGVoPfEG4bSE3ICQnDUuB3tbf04FnrO1hK+xh4Ony0qhpZ73p6CaNezxOL3vlMn1+1fO66egmdWXu05LGiXomPlav+iE67cNpWlBSEHDs62PeUAU9+Ju/1ahNDrXHlmNbNP7xeL3slcv0pTUv6aajm3Tbwv2aLU31VHycXnFbOXqPe0sV9MCvng2B5Q5V4bvj32mjJxrpZa9cpq+kv6Kbjm7S9/56QHNooicbxevkHxm9C0sKA459feK7qqAlTz4dAstrHsdZV9FvhdqAkJw0DAYygE3Ap0BzoCVmFPgu67dFeWnUpLPOK8rTPi/20XbPttOjeUdVVdXtVtXbb1eNjVX3zp36l2V/UaajI18bqcfOHvM5/vQpt86LvUaLImJVt26tMbscaoe8ojy99MVLte0zbTUrN+t8xN13qzsmRl07dupTS59SpqNj3hijJ8+d9Dn+zGm3ru9yrbpjHb3DgbNFZ7XfS/209dOt9VDOobLwo1P/S0siorV0+3m9U99M1VP5p3yPz3Or69rrVC8SvR1nXUW/FWoDwnWrKWftdrv19o9vV5kuumjvorLwf/x4g7oQdT/4UFnYh1s/1LjH43TIv4aoy+3b5L0t7ai6W7VSHTLEpynNoX7hrffCPQvLwrfO3qRuEdX/+Z+ysPe3vK+xj8XqkH8N0VKXXxPo0aOqrVqpDh3q6F2Pcbvdescnd6hMF/16z9fnIzZvVo2IUP31r8uC3tv0nsY8FmOv97Fj6mrZSrN7Joe93o6zrtoWcgPCdaspZ/3GujeU6ej0JdPLwnbvVp0vV2heTHPV06d99n9n4zvKdHT25tmBiX30kSpozq8eqRHbHGqe19a+Zqv3PLlK8+OaqZ7yfat6d+O7ynR05qaZAWkdfelDVdCTv/hzrdvtUDWC6b2l6/fUlRio98xNM5Xp6Dsb3wlI6+XLLb1/+Wit212bOM66alvIDQjXrSactaffcuJbE32epP9vzEJV0Ow/BfZJutwuHfDPAdrz+Z5a4irxjXOpzm12u5YQqa6Vq6ttn0PNsvHoRo17PE4vf/tyH70fGe3R+5mAY1xulw58eaD2+EcPLS71faPKylKdHX2blkiUutZk1Lr9DpVjw5ENGvd4nE5+e7KP3n8avahcvQe9PMhW78OHVT+IvlVLJErd69bXuv21heOsq7aF3IBw3arrrEtdpdrvpX7a5pk2eiTvSFn4kkUuzWCIZid2Vi0IHFykqjpn+xxlOvra2tcC4t598YwepINmXTK2WvY51CylrlLt+1Jfn3EJqqqLF1p6Nwuu99ztc5Xp6L8z/h0Q99Zzp/Uw7TWrp6N3fcLldumlL16qSX9N8hljsnCBS9dymZ5p1iWo3p/t+Cyo3m/+9ZRm0U6P9BxTW6bXOo6zrtoWcgPCdauus/Y4XP/m7Ed6vqcKWvTa20GPdbvdmvJqinb6W6eA0cJut+pLnZ9SBXVtDv/BKBcLngp41uZZZWGlpaoPdbL0fj2w2dODR++Of+toq/eLXZ42em/aUmv2O1SOz3d8rkxH39v0XllYSYnqwx3fMXq/8W7QY91ut454bYSt3i6X6j+6/NXovXFzrdlfmzjOumpbQ1zBrF7wwpoX6Ni0Izf0veF8YFER/1v4R871GEjMXT8MeqyI8OSkJzmYe5B/ZfzLLw7a/O5uionm8P/9u7bMd6gkz69+ng5NOnDDpef1Pri7iAeO/IEzXQdfUO8nJj7BodxDtnq3//1dFBPNoUccvesLL6x5gaQmSdzY98aysHdfK+Snh/7Ime5DiLnz1qDHigiPT3jcVu+ICOg2/U5KImIofunVWrPfoR4S6qeFcN2q82b93fHvlOnoE98+4Rvx4ouqoDpvXoXSmfTWJG39dGvNK8rzCc/PV/0o+mYzYCk/v8p2OtQM205sU6ajj33zmG/ECy+ogrrnL6hQOhPfmqhtnmkToHdBgerOIbeYAUuO3iFn+4ntynT00TTfgWCHf2/pvXBRkCN9mTBjgrZ5po2eLTobGPnDH6o2C0+9cd6sq7Q5b9Yh4KX0l4iJjOEnQ35SFrZjB+z+w+sU9E+GK66oUDpPTHyCE/kn+Meqf/iEx8fDhNk/Jb4wG/7znxq13aHyvLjmRWIiY7h36L1lYTk54H79TRg6FJkyuULpPDHxCY6fO87zq5/3CY+Lg57P3kdEjqN3fcBOb4Ckr9+CIUOQSRMrlM7jEx/n+LnjvLDmhcDIe++F7Gzy33L0big4zrqOyS3K5a2NbzGt/zTaNDr/rZCv/r6NS3LXU3zzj0zbZgVI6ZjCtb2v5ZkVz3Cm4IxPXPPrxkOvXui//mV/sEOd4NH7ln63+Og94+HtRGxYR9FNP6pwWiM6jmBqr6k8s+IZsguzfeLcqePJbtuLk086eoeS3KJcZmycwS39bqFt47Zl4Ytf3gEZGXDbbRVOa1SnUXyv5/d4evnTAXrvTkplO73JftrRu6HgOOs65q0Nb3G2+Cz/Pfy/y8LcboiYNRMXESTec0ul0ntk3CPkFOUwa8ss3wgR5ne5F1mxAt28pSZMd6gCMzbMsNVbLL1j76ic3tPHTSe7MJuZm2b6hEdECm9G30urHY7eoSSY3lt+b/Rm2rRKpffo+Ec5U3iGdze96xN+SU9hXsd7Sdrn6N1QcJx1HeJWNy+mv0hKhxSSk85/dGbZUuXq3Pc43n8StGtXqTQva3cZfVv3DXTWwJEpd1JEDMcfd56+Q4Fb3by4xug9rMOwsvBlS5Wrc97jeL+J0L59pdIcmjSUfq37MXvr7IC45r+09H7CGWgWCjx6j+g4wkfv5cuUq3NmGr2TkiqV5tCkoQxoM4DZWwL1bvaLOyy9nYFmDQHHWdchC/cuZOepnT5P3QDL/7qK7uyjxX9XvInMg4hwa/9bWXZgGQdyDvjEXXdPKz6JvJEmn74D+fnVst2h8izYs4Bdp3cF6v231fRgb5X0BsrV+9PIG2jyyduO3iFg/u757Dq9i18M/4VP+LK/Gr2bP1B1vZcfXF6+3gUFVbbbITxwnHUd8sKaF2jTqI3PdA6Aq3PeoyQqjthp11Up3Wn9TdPa+1ve9wlPTIS9l99HQnEORW+/b3eoQy3ywpoXaNuoLTf1u6ksrLAQWsybSXFkHLG3Xl+ldMvTe/ckS+93nYFHdc0La16gXeN2PtMxCwqg5VdG77gfVk3vW/qbrhL/t+tmzWDPxHtJKM7GNdvR+2LHcdZ1xN4ze/li5xfcN/Q+YqNiz0eUlDBw2/tEX/d9aNq0Smlf0uIShiUNs20KH/uHsXzHpeQ+80pVTXeoArtP72bernncN/Q+YiJjysJjI0r4ceP3Kbi86nr3aNGD4R2GB9E7lcy43rhfcbo+6pJdp3Yxb/c8fpb8Mx+9t20q4bqS9zkzuup6d2/enZQOKbZN4be/Ng5Xj15EvubofbHjOOs64u2NbwNw39D7fMI3/X0RnDhRqVHmzFSbAAAgAElEQVSidtza/1bWH13PjpM7fMLHjBWOXH0PrfeuMfPDHOqE9za/BxAwfUcWLST6zAkSfxp8EZSKEEzv1HFC18fvIX79SkfvOmT2ltkI4jMdE2DI6YW01hO0/lX17u9p/afZ6t2psxD5s3thxQpH74scx1nXEXN3zGVUp1F0aNqhLOzECdj88EwKYpvBlVdWK/1b+t+CIAFvWyIw6UWref2LL6qVh0PFmbNjDiM6jvDR+/hxWPWL93A1bQZXXVWt9G/udzOC2L5tcaPpZin86PNq5eFQcebsmENKxxSSmpwfQFZcDPruu9C8ORFX157e3/W/GYBTMz6rVh4O9RvHWdcBB3IOsP7oeq7tfa1P+Edvn+Na/YSCqTdBbGyQoytGUpMkxncdz6wtszCLBJ1Hu3Qlt3N/zrzrOOu64FDuIdYdWReg94dvnaP/7k/ImVwzeo/rOs5W76zoLmyhPydnOM66LjiUe4i1R9YG6P3ac2cpmPUpRdfcBDExQY6uGOXd37GXdGIjAyn40Lm/L2YcZ10HfLbDPPFe0/san/BDL39GY87R4oHqNYl6uLX/rew8tZP1R9f7hIvArNyrabLhW7N0lkOtMnfHXACu7eNbeR9+ea7Ru4qjwP25tf+t7Di1gw1HN/iEJyXB8uZTabd7maN3HVCmt5+zPvLKHBI0n9gf14ze0/pPs9W7Rw9Y2eJq2u1ZBtnZQY52CHccZ10HzNkxh94te9O7Ve+ysMOHIWXPTPKadoDU1BrJ54a+NxAdEc2szYEDjwovn0qUllL0+YIaycshOHN2zKFXy170adWnLCwrC0bum0luYkcYO7ZG8rnh0huIioiyHWhWOOlqR+86Ys6OOfRs0dNH7yNHjN45iZ1gzJgaycejt11TeJFH788cvS9WHGddy+QU5pCWmRbwVr30yzyuYD6FP5hmPqVTA7SIb8EVl1zB7K2zcavbJ+7Su0dwmuacmOE0ldUmOYU5LNm3hGt6+eq9eO5ZprCAwmturjG9Wya05IoeVzB7S6DefX88glO04MSbTlN4beLR+9re1yJeywQvnnuWy1lIUQ3rPaXHlKD39ylacOIt5/6+WHGcdS3z1e6vKHGXBDSR3dI2jRhKaHXn1TWa3639b+VQ7iGWH1juE546MYoFkVeRuPxLcLlqNE+H88zfM9/o7dcE3nLrN8RQQus7vlej+U3rP42DuQdZeXClT/jYCVEsjLySxBXzHL1rkbL727/L4z2jd6sfVW/gqD+39r+VAzkHWHVolU946oRINra/ijZrHb0vVhxnXcvM3TmX1gmtGdFxhE+4fL0AEhKQ0aNqNL9rel9DfFR8QFNZXBwcHDiVJgUnID29RvN0OM+cHXNoldCKkR1H+oRfFbEA4uORMaNrNL9re19LXFRcQFN4XBx0fcDRu7aZs2MOrRNaB+h9U+ICSqPjiEitmSZwD2V6bw7Ue+JfryYm29H7YsVx1rVIiauEL3d9ydReU4mMiCwL37ABjrz9NQXDx1V7VLA/jWMaM6XHFL7c/WXAqNF7P7oCjYhwpnDVEsH0LioCXbAAxo0ztWoN0iS2CVf0uIIvdn0RoHfKI1eYJlhH71ohmN4A3XYtIGpi7eh95SVXMnfn3AC9ucLc34UfOXpfjDjOuhZZemAp2YXZAf3V376zn/a5O3BNmlIr+U7uPpnM7Ez2nNnjE57YrQUyejR87vRj1gYevf27PP71xwPI9u0Uj68dvaf0mGKrtzZvwYneo8md5ehdG3y7/1tyinIC9F77yQHYvh2m1JLe3adwIOcAu07v8gk/WtyCpe7R5MxynPXFiOOsa5G5O+YSFxXH5O6TfcLz53wNQOPrJtsdVm0m9zDpfr3n64C4hbFXm1f7w4drJe+GzJztc8rVO2Zq7T2cQaDeIvDOqatpusfRuzaYs8PSu4ev3gsesnSoJWcd7P5u1w4y2lxN28PrHb0vQhqksxaRSBFZLyKfW/93E5HVIrJLRN4XkeqtYACoKnN2zOHy7pfTKKZRWXhODnTf+zW5jZOgb9/qZmNLzxY96ZLYha/3BjrrDR2nAjhNZTWMR+/J3ScH6r1nQa3qfUmLS+iS2IUFewOn7ejVjt61gbfeCdEJZeE5OdBjzwJyG7eHfv1qJe8ezXvQtVlX2/vbfZUZsFr48Ze1krdD6GiQzhr4JbDN6/+/AH9X1Z7AGeC/qpvBluNbyMzODJjCs2iBi0m6kPwxU8yrTy0gIkzuPplF+xZR6i71iRt6e1/20ZUz7zpNozXJpmOb2J+zP6DLY/HXHr0n16reU3pMYfG+xQF6D/lRXzLpwpmZjrOuSTYe28iBnAMBTeB1eX8vyVwSeH/f0Y/9dHZWK7wIaXDOWkQ6AlcDr1n/CzAR+NDa5S3gB9XNZ86OOQB8v/f3fcITdqynJadpdWvtNIF7mNxjMrlFuaQf9h0ZOmas8HX01bRYv8j5Bm4NMnfHXATh+7189d42y6N37TSJepjc3V7v0WOEBdFTabFuofk+p0ONMGf7HARhaq+pPuHb31tXp3qvObzGJ3z0GGF+9FSaO3pfdDQ4Zw08BzwEeFYVaAlkq6rnEfUQ0MHuQBG5V0QyRCTjxIkT5Wby2c7PSOmQQrvG7XzCr4wwTZVRV15e5ROoCJO6TUKQgKay6Gg4PnwqsaX56JK0WrWhIfHZzs9I6ZhC28ZtfcJvblY3ek/sNtFW75gYOD7samJL8yEtrVZtaEh8sesLRnQcEaB33NI6ur+7W/f3nkC9B/3+auJKz8E339SqDQ51S4Ny1iIyFTiuqmu9g212VZswVPXfqpqsqsmtW7cOmk9OYQ4ZWRlceYnvgghlU3guuwzatKnCGVSclgktGZo0lAV7Avsx+/18PMVR8ZR+/lWt2tBQyCnMYe2RtUzpHvg2dcme0Ov9qzkT0Ph4+NLpx6wJPHpf3j3QIf+izwKK+tW+3i3iW5CclGzbb53y8ARw9L7oaFDOGhgNXCMimcBsTPP3c0AzEYmy9ukIZFUnk2UHluFWN+O7jvcJf/OFs5R8s4KCMbXbBO5hcvfJrDq0ityiXJ/w626NIyZ1JNErv60TOy52gum9Ni0P9/IV6OTabRL1MKX7FFu9G7eKM1P2vnX0rgmC6U1eHlGrVxBbS6P+/Ql2f2tcPEd6jCbnM+fN+mKiQTlrVf29qnZU1a7ANGCxqt4GLAFutHa7E5hTnXzSMtOIjYwNWLXs6PtmCcL4a+uo8u4xBZe6SMtMC4hzp45DN250vtJTA6RlphETGROg92f/8w0RpSXIFXVUefeYHFTvBYWpuDdugjNn6sSWixmP3v6rlr11dxqUltbalC1/guktAh8dT6XJPkfvi4mQO2sRGSUiM0VkjYjsEZG9ftueC6dSbX4H/EZEdmP6sF+vTmJp+9MY0XEEcVHnVy8qKoI2GxZQHBUPo2t2yclgjOw4koToBNum0Zc2pSKquL5dbnOkQ2Xw6B0fHV8WVlQEbTZ+HRK97ebXb2mRSgSO3jWBnd6FhXDu09DobXd/l4x09L7YCKmzFpF7gKXA9UAMcADY77cdqI28VTVNVadaf+9V1eGqeomq3qSqRVVNN6cwh3VH1gU0ka1YAeNLvyZ7QGqNL0EYjNioWMZ1GWfbr9Xm+ykUE82Jj52m0epQpneX8T7hy5bBhNIFZA+s+SVlg+HR226+dYfrhlNEDCcdvatFML2XL4eJrgVkDxpf53rb3d8evU985Oh9sRDqN+s/ABuATqo6WFUn2G0htrFSBO2/nHOIvmyj6U1100TmYUqPKew8tZP92ft9wkdNimcNw9E052auDsH03jD3AJeynaY3hkbvAzm+z7gevd3fOHpXh2B6b5y7nz7sqHO9J3efXK7e6oxTuGgItbNuC7yuqidDbEeNEay/+tpGCwGIm1o3g8s8lC1F6ff03akTbGyaSusDGXDuXJ3adDERrL9aFy4CIO77IdJ7T6DemxJTaX1gLZw9W6c2XUwsyVxiq3fpgsUAxE2t3Slb/gRberRjR6N3m4OO3hcLoXbW24DmIbahRrHrrwboeXQptGwJ/fvXqT19W/clqUmSbVNZ/rBxRGkpumKlzZEOFSFtfxojO4706b8E+GXyMlzNWtTaEqPBKE/vJlenEqWlsGqVzZEOFSEt017vIfnLyI9rXud692vdj/aN29vqfdcbqUS6Hb0vFkLtrJ8A7hcR20VIwo1g/dWHD0P+wuW4R4yqtSUIg+FZmnDh3oW43L4fpZ/wx1FoRATqNI1WiWB6A0SvXk7kmFHmE5V1iIhweffLWbh3IW51+8Td8Yplj9M0WiWyC7NZf3S9rd6Xxy8nYVLo9F60b1GA3o0mO3pfTITUWavqx5iR2N+JyFsi8mcRecRv+1MobawMwfqzPnvjBAkHdnB2UN2MEvVnUrdJnC44zZbjW3zCkyc0QYYMIWKZczNXhaUHltrr/eZJ2LED16gxIbFrcvfJnCo4xaZjm3wjmjRBLxtCyWJH76oQ7P52Hzd6MyZ0ep/MPxmgdx5N2N10CMc/dPS+GAj1aPBewKNAE+B24E/AdJstLAjWX5395QoAml4VGmc9prOpRJYfDJzGkdUzFdeKVWaukUOlCKb3ln8bvSPHhljvA4F6v7EnFV3p6F0Vgun97PVG77qasuVPapdUwDxMeNO4MXxdlEqzHY7eFwOhbgb/J9AG8xWsIUA3m617yKyrJHb91arQeNNySiJiIDk5JHZ1bdaV9o3b2zrrt/elEllSBGvW2BzpUB5pmfZ6N920LKR6d0nsQlKTJFu9T/RJJcZdBOnpNkc6lMeSzCW2eiesX05pRHTI9O6c2JkOTToE6C0COYMcvS8WQu2sRwDPquoLqrpBVffbbSG2sUIE67/cvRsuy1/Oqa5D62x+tT8iwujOowOevAESp44FIPszp6msMgTrv9yzBwbXA73HdB5j66ybf9+8dec4eleK7MJs1h9Zz4SuvjNJ9+yBy/KXcarLULMedwjw3N92LSnNpjp6XyyE2lnnAuV/vipMCNaftSqtkGQyiBoXmiYyD2M6jeFAzgEO5R7yCU+5qgWbGEDBV87NXBmC6b1yiaV3amj1Ht1pNAdyDnAw56BP+LArW7KZ/uQ7eleKpfuXomhwvUN8f4/uNJqDuQcD9B5+laP3xUKonfUHmNXLwp5g/Vk391hLLMW0mBrim7mzyd//6XvQIFgVnUrzbcvNusYOFSKY3jGbLb2/H/rKGwLHKQwaBCujxzl6VxKP3ikdU3zCD881entaLEJFeXrvbp9Kq52O3uFOqJ31v4AmIvKpiEwUkW4i0tl/C7GNFSLY/OrYDHPzRIwZFQqzyhjUdhAJ0QkBN3NkJJzom2q+f7t+fYisCz/s+qsBbulYT/RuN4hG0Y0CHs4iI6HXPanElZyFDRtCZF34kbY/jZGdRgbofUXj+q/3dX9PJbrQ0TvcCbWz3goMBa4BvgZ2A/tstnpNsP7qU6dg66vLKe7aq9a/b3shoiOjSemQYtuP+V8zzGhSZz5mxShvvi3Ll0PPniHXOyoiipSO9nqP/18zTsHRu2J4+qv91wMHMx6lvuvNWKO3a4mjdzgTamf9qLX92etvu61eE6z/ctlSpc3uFZzpG9omUQ+jO41mw9EN5BXl+YS3G9wOevWCb5zv31aEFQdX4FZ32ZQZD5/NVc58sZy8gfVH743HNgboXdKqPfkdepL3hVN5V4QVB1egaIDehw8prqXLQzZly59gem86mcRuucT5qEeYExXKzFV1eijzrynGdhnLZ7d+FtB/ufPznVzLSUpC3H/pYUznMbjVzerDq7m8u+8axukJqQxY9BFxbnedr8IUbqw6tIoIiWB4h+E+4ds+3cH3XacomVQ/9B7dabSt3i4XzD6Syi2nPgFH7wvi0XtYh2E+4TMf2cFDZ05RkjKG6BDZ5k0wvXv1glmSys0bP3X0DmMc1WqAprFNmdprakB/VnGaaZKKHl8/Ku8RHUcgiO0Uj0XnRhKXfwZ27QqBZeHFykMrGdh2II1jGvuEl35j6T0htIONPATTOy4OjnUfRaPC047eFeCCetfz+zsuDo52H2303rEjRNY5VJd64axFpJeIfE9EbheRO/y3UNtXFQoKoMPeZZyLbwm9e4faHAAS4xIZ0HaAbb9W/HgzyrV46eq6NiuscLldrD60mhEdfFtRCgogad/yeqf3wLYDy9W76FtH7/IIpnd+fv3UO9j9HTfO0TvcCfVyo21F5CvM17c+A94CZvhtb4bGuuqxZw+MluXkDaj7j3eUx+hOo1l5aCWlbt9pHN2u6kMuTTj1hfOFnvLYdnIbecV5jOw00ic8PR1Gavjo3f17Ru/T85zKuzzCUe9Vh1YFfLSnx9WO3uFOqN+sXwQmAy8DNwETbLaJIbOuGvRve4Ke7p20/kH9aCLzMLrTaM4Wn2Xzsc0+4cNHRpLOMCIynJu5PFYdMg8z/uMTEotP0JudNL2ynund2V7vlFGW3unOw1l5BNN73XxL76vqR5eHh9GdRpNXnMfm4756jxobycnuw2mx27m/w5VQO+vJwCuq+oCqfqyq39htIbaxaqwI7cccghHsox7t2sGB9im0ytpk2nQdbFl5cCUt4lvQs0VPn/BBZ015JkyuX3oHWyyjbVvo/+MU2hx19C6PYHrf0aOe6m0tfuS/tHCrVtB9Wgqx2zeZNnyHsCPUzjoC2BhiG2ocVZh5/3JcUaH7mEMwgi36D3D3yynmY/Xr1oXAsvBg1eFVZiCPV9OnKuTOW47GhJfeba9JQUodvcvDTm+AltuXQ0wMDB0aIsvsKe8jLuf6p5ipAI7eYUmonfVSYFCIbahx9uyBrlnLOdk5dB9zCEZ5i/6TYi2luNppKrMjuzCb7058x8iOvv2Xe/fC5n+v4ESn8NJ7Z3Oj99lFjt52BNP7yBE48vEKigcl10+9O9nr/fYOo3feQkfvcCTUzvo3wHUickOI7ahR0leUMIR1yOiRF945BHgW/T+Qc8AnfGduOw5FdSHrE+dmtmPNYfMZUf/+y/SVpUbvESl2h4WcYHofk3bspzO5Xzt62xFM728WlZK4dz3ZvYbbHRZyxnQeY/tRjwGXtyWTLo6zDlNC7axfBs4CH4jIQRH5RkQW+22LQmxjpTk8fwvxFNLyyvp7M0PgRz06doQVrhTiNzs3sx2rDq1CkIDFUA5+tZV4CmlxxbAgR4aWYHoPHQqrZYSjdxBWHlxpq/eB+dtIoIAWk+tXl4eHYOMUhgyBNZJCgqN3WBJqZ90diAYOAKVAZ6Cb39Y9ZNZVEfcq80QeOaJ+Vt4D2w6kUXQjVhxc4ROekAAH26fQPGc/HD0aIuvqLysPraRfm340jW3qE166KgOAyJT6WXlXSO9jx0JkXf1l1eFV9nqvTAcgamT9vL+DfdTDo3ez3APO/R2GhNRZq2pXVe12oa0m8xSRTiKyRES2ichWEfmlFd5CRL4WkV3Wb/Oq5jEqag35CS2hW42aXmNERUQxNGko6VnpAXHuYaYp173Sefr2xq1u28UxSkqgZWYGBTFN4ZJLQmRd+URFRJGclMyarDUBcY7e9rjVzapDqwL6q0tKoJWjt0MICPWbdSgoBX6rqpcCI4Cfi0hf4GFgkar2BBZZ/1eJMbHpJIwbXq8WS/BneNJw1h9dT7Gr2Ce8zZVDKCGKM185N7M3O0/t5EzhmYDFMdxuuKFLBiWDkuv1msvDOwxnw9ENFJUW+YR79D632NHbm52ndpJdmB3QX71rFwx2ZZB7ydCw1Pua6UPQqChkjaN3uFF/r7ZaQlWPqOo66+88zOppHYBrMSuoYf3+oCrpF5w8h27dCsPqZxOZh+EdhlPsKmbTsU0+4aMmxZPVciDxm5yb2Ztgi2PEUkTLgxtpOqF+NoF7CKb3j+6JJ2rIQJp85+jtzcqDKwEC3qz7XlLMsJiNNJ8Snnr3HhyPDBzoOOswpME5a29EpCtwGbAaaKuqR8A4dCDgA7Uicq+IZIhIxokTJ2zT/Med6xC3G4bXz8FlHjyDZjwjXj307Aldbk4hYWu6mZPpAJjKOzE2kT6t+viEZ7y52bSN1rP51f4E0zsyEiQlBdascfT2YtWhVTSLa0bvVn7rfm/ejBQXEzOq/j+MA7ZdXXtap1Cy0rm/w40G66xFpDHwEfArVc2tyDGq+m9VTVbV5NatW9vuE7nOqgzr+Zt158TOtGnUJqDyBqtfKy8Ptm8PgWX1k1WHV5HSMYUI8b1l5j1mBpfVd2fdqWkn2jZqa1t5f37C0duflYdWktIhUO9Zvw0vve3u7//sTyG6wNE73GiQzlpEojGOeqaqfmwFHxOR9lZ8e+B4ZdM9exa6HF1DdmIXaBPwYl6vEDFTUuxu5hfSTVNvyTKnqQwgryiPLce3BDSJnj0LSVkZ5Me3hK5dQ2NcBSlPb8/iKI7eBo/e/l0eZ8/CuW/CX++YsY7e4UiDc9Zi1g18Hdimqn/zipoL3Gn9fScwp7Jpr1sHyaRT0L9+v1V7GJ40nO0nt5NTmOMT3nlST87QzPlCj0V6VjpudQd+zMHS+9ylyfV6MKGH4R3s9e52RS+ySXT0tlhzeA2KBjycOXo7hJIG56yB0cDtwEQR2WBt3wOeAiaLyC7MB0aeqmzCmxefoDv7aDKpfvdXexjeYTiKsvbIWp/wlJERrGG480UmC89go5QOviuUrVuWTz+2kjCufjeJeriw3k7lDecHE/ovhrJueQH92eLo7RASGpyzVtVlqiqqOlBVB1vbl6p6SlUnqWpP6/d0ZdOe0MT0ZzWeGB7OelgH0wLg31SWlATbmqTQ8sgW0/bXwFl9eDW9W/amebzv1PsTizYShYtGqeFReScnGTvt9P6uSQotj2yGc+dCYVq9YvXh1fRp1SdQ74WO3g6ho147axFxicgBEbkj1LZUhL5n15jmsSFDQm1KhfB8+s+uXyt/QAoR6oa1a22ObFhkZGUEvGUB/O8Ua7BWPR9M6KE8vZte7ujtISMrg2FJgZpekh0eg8s8lKf3T14d4egdZtRrZw0cBOKBGSJSr7/rlpsL2QvW4L60LzRpEmpzKkywQSgTfmeck64OjGtIHM49zJGzR8reUryJ35phPgSelBQCy6pGML1//C/ni2tQvt539083enfoEALLqkYwvcta/xq43uFEvXbW1nKkrYHBwHuhtqc8vv1GKV6RzvEu4fGW5WF4h+EczjvM4dzDPuEjr2kNXbogazNCZFn9ICPLnL//m9bq1XB8Xob5TGIYDDbyEExvWrdGu3ShdLWjNwTqbSIzzFv1RaD34eLWHG/UlePzGrbe4URUqA2oCKq6Cdh0wR1DyM6v93NF81IO/PYOtm3bFmpzKkxqQirzpszjaOZRcqN9p5u7ZrxNREkxEkbnU9O0KWzDvCnzaJrX1EdXdbk5+c7fOJmYWFY+cXFxdOzYkejo6FCZe0G8F8vo0PT8G2JREczPSmbM4gxahMq4ekB6VjqREsmgdoN8wv/yp7M8+N02uPHm+v2G40cwvRMT4atzQ5m4wWkGDxfCwlmHAwVL0zk0fTqJfXrRMikJCZOnb7e6cR1x0bZxWzo27egTd7SoGe1KD5tlzaIa5qWy89ROmrqa0q9NP5/wg9vy6BRTYMomMRFV5dSpUxw6dIhu9fQDLgCD2w0mKiKKNYfX8IM+51fUjY2FXc2Gcc2Jj+D0aWjRMF12RlYG/dr0IyE6wSf8xPx1RKCQEl4tZ8H0btwYDrZJpsXxj+DMGWhe5e8WOdQRIa+BrXnPlwM9gZaAv5dTVX2szg2rBKrQdPsaCi6ZSNd27cLGUQNESATx0fGcKw4cFaoJjSAXM2I0MbHujQsxqkp+ST7N4pr5hUNEgVVeCaZSFxFatmxJsGVo6wtxUXEMbDvQth+zZFAyLMQMOpo8ue6NCzGqSnpWOtf1uc4vHOK2WM3FQ4eGwLKqExcVx6C2g+z1Hjj0vN6XX173xjlUipC26IhIT2AL8BXwIvBnYLrNVq/ZuxcGFq7BHROLREaG2pxK0yi6Efkl+aiqT3hkE+OIXHn5oTAr5BS7iil1lwa8ZRUVQZw7H1dkDHg1eYfLQ9rwpOFlC714kzjROKLcRYFLkjYEMrMzOV1wOmBw2Z490Lcgg7PNO0HbtiGyruoM7zCcjKyM4HovcZrCw4FQd7+8APQAfgckA91stu4hs66CdGjnYkzcWiQuNtSmVIlGMY1wqYvC0kKf8IQmURQSiyuvYc7FPFdizrtRdCOf8OJiaMQ5NCHB7rB6z/AOw8ktymXnqZ0+4QNTm7GTnpz7pmEOOgo2uCwjA5LJoPSy8Jiy5c/wDsPJKcph16ldPuGDJrTgYEx33Gsapt7hRqid9RjgOVV9VlXXqep+uy3ENl6QuH3biCw8R0RsTKhNAeCTTz5BRNhewYX6Pc7I45w8/PzndzFr0bdEFAZ/s37yySd9/h81alQlrTVMnz6dZ599tkrHekhLS2Pq1Knl7pOdnc0///nPsv+zsrK48cYbbffNL8lHEOKj433CmyaUEkcRkU0b2R5X3wn2Ba7Bg6GgXzKtMhtm5Z2elU5MZAwD2g7wCU9KyKYXu2gyIbz6qz0E03vECOh07VCa7XHerMOBUDvrYmBfiG2oPidOQLduZpROPWDWrFmMGTOG2bNnV2j/uKg4IiSC/BJfpywC8YmxRLmKzWcgbfB31itWrKia0XWEv7NOSkriww8/tN33XPE5EqITAr68RL4pJ2kUns66T6s+NI5pHFB5N2oEg36cTPTRg3DsWIisCx0ZWRkMajuImEjfh+7URsaZRaaE55t175a9aRLTxLbfmuRk2LcPTp2qe8McKkWonfV8zFrd4c2ECabjuh5M2Tl79izLly/n9ddf93HWaWlpjB8/nhtvvJE+ffpw2223lfVRP/bYY9z5vTuZNGIS9957r0/fdVSjWBatWcN1150fdM/2gBUAACAASURBVPP1119z/fXX8/DDD1NQUMDgwYO57bbbAGjcuHHZfk8//TQDBgxg0KBBPPzwwwC8+uqrDBs2jEGDBnHDDTeQn19+f/h//vMf+vfvz6BBg0hNTQWgsLCQu+++mwEDBnDZZZexZMmSgOP839T79+9PZmYmDz/8MHv27GHw4ME8+OCDZGZm0r9/f9t0v0n7hoToBGbMmMH111/PlVdeSc+ePXngl+ZcCNNm8MiISJKTku1XrutrHJKmN6y3a7e6WXtkbUB/tdsNeUvCc3CZh8iISIYmDWVNVqDes3ZZemc4b9f1nVA7698AI0XktyJSP9qQa5Dx4wM3z0tdfr59/IwZJv7kycC4ivDpp59y5ZVX0qtXL1q0aMG6decXflu/fj3PPfcc3333HXv37mX58uUAPPDAA8z7Zh6zF80mvyCfzz//vOyY4ohYJgwbxrbt28tGOr/55pvcfffdPPXUU8THx7NhwwZmzpzpY8e8efP49NNPWb16NRs3buShhx4C4Prrryc9PZ2NGzdy6aWX8vrrr5d7Po8++ijz589n48aNzJ07F4CXXnoJgM2bNzNr1izuvPNOCgsLy0umjKeeeooePXqwYcMGnnnmGZ8473RnvD2DR375CJFuM2Bww4YNvP/++6Snb2bOV3PIPHkmrKezDU8azoajGygqLfIJf2frENzIeQfVQNh1ahe5RbkBznr3bpj/RDp5bbqH9XS2YHrn9TRLIzuDzOo/oXbWy4GmwNPAORHZLyJ7/bY9IbYxrJg1axbTpk0DYNq0acyaNassbvjw4XTs2JGIiAgGDx5MZmYmAEuWLOHaSddyy6RbWLx4MVu3bi07xq0RFEk8P7z6Gt59912ys7NZuXIlV111Vbl2LFy4kLvvvpsE6+2zhVXRbdmyhbFjxzJgwABmzpzpk5cdo0eP5q677uLVV1/F5XIBsGzZMm6//XYA+vTpQ5cuXdi5c2d5yVQI73Q79uhI+47tObzPrPw0adIkEhMTcbni6NutG5mnK/2dl3rFsA7DKHGXsPn4Zp/wgaMas41Lyf+2YTnrCw8uC8/+ag/DOgyj2FUcoPeAsc3YxSUNdlBhOBHqV4MDgF5wrzAlLS14XEJC+fGtWpUfb8epU6dYvHgxW7ZsQURwuVyICE8//TQAsV596pGRkZSWllJYWMj999/P8lXLyY7N5v0X3/d5S42JgXM04u7vXcUP/vAwcXFx3HTTTURd4K1SVW2nMt111118+umnDBo0iBkzZpB2gZN85ZVXWL16NV988QWDBw9mw4YNAVPM7IiKisLtPj9VpSJv3t7pegbbxUXFAefLrvBsCdGRgsaFvsujOnjeIDOyMnzeJgcNgg9J5rpt880E4zCZjlZd0rPSiY+K59LWl/qEb196gh+yH9eEB0JkWc3geQix0/szhjJlm/M53PpOSN+sVXW8qk640BZKG8OJDz/8kDvuuIP9+/eTmZnJwYMH6datG8uWLQt6jMeJJbVNorigmLmfzPWJj4iAkuhGdGrZnKR27Xj88ce56667yuKjo6MpsRl8NmXKFN54442yPunT1ptoXl4e7du3p6SkJKDp3I49e/aQkpLCo48+SqtWrTh48CCpqallx+7cuZMDBw7Qu3dvn+O6du1a1gWwbt069u0z4xibNGlCXl6ebV7e6W7dvpVjWcfo06ePzz561hpcFhd3QdvrM10Su9AqoRXph33nVCckwKH2w2hy7hgcPhzk6IuPjKwMhrQfQlSE70NowbLwHlzmoXNi5+B6t0umec5+M1DWod4S6mZwhxpk1qxZPgPBAG644Qbeey/4N1CaNWvGPffcw8CBA/mfH/8PfQf3DdjHM5/4h9ddR6dOnejb9/w+9957LwMHDiwbYObhyiuv5JprriE5OZnBgweXDfZ67LHHSElJYfLkyQGO0I4HH3yQAQMG0L9/f1JTUxk0aBD3338/LpeLAQMGcMsttzBjxgyfVgPPeZ8+fZrBgwfz8ssv06tXLwBatmzJ6NGj6d+/Pw8++KDPMd7p/vq/fs3f/vm3gHQbiTW9rZ6M/K8qIkJyUjIZRwKbP12XNaxBZqXuUtYdWWc7uCxxZzpuwuezt8EQEYYlDbPVu8sN1nk7n8us36hqyDfMwii/waxi9qL1d49Q21XeNnToUPXnu+++CwgLJw7lHNL0w+la6ir1CT921KXu9HS9/8479bXXXguRdXXHueJzmn44XU+eOxkYuXOn6ubNQY8Np2vgfxf9r0b+OVLPFZ/zCd+0Ol/dkZHq/sMfQ2RZ3bLp6CZlOvrOxnd8wouKVPcPvkbzu/QJkWU1y58W/8lWb83OVgXVxx+vEzuADK0HdXi4bSF/sxaRx4DtwLPA/db2LLBDRB4NpW0NjUYxZt5wQUmBT3ir1hEk33knm7du5Uc/+lEoTKtTPPPN/VcuU8UM4w/TKVv+DOswDJe62HB0g0/4gOHxSP/+SEbDWHY0Pcucp//gspgY6Hw8g/ix4d0E7iE5KdlWbxITcV/Si+IVDaMlJVwJ9drgPwb+CKwGrsN8zKMn8ANgJfBHEbk7dBY2LDxrYPuvZBYRAWu/+IJvX32V2JiLboZdAOeKzxEpkcRG+TZ1Z+03i8NomC6G4o+n2de/HxMgs/UwildmWE8oFzcZWRk0jW1Kz5Y9fcLXfZ4FWVlm4ZCLgGB6FxfDB3uHkr/MaQavz4T6zfrnGEc9XlXnqOoea5sLTADWAOE9DDOMiImMIToiOsBZA2SXNILSUnNnX+Tkl+STEJ0QMJq9bHDZReKsk5okkdQkybYf853tycTknQZret/FTEZWBkPbD/3/7J13eFzVtbffNerF3XKRm2zj3i3JlmwDcnABYmzg0hwSIJCYhHb5EmoCF3JDIAklEEouJIBDCSYhhG5wx9jYliX3grtcJPciW12aWd8fZ0ZoNDPCVpkzGu33ec5jaZ+2tn+as2bvvc5aPpnq/nmf+/8lvXm/tuUhkN7R0VaQWdvTLTNzXXPBbmc9CJijqlW1d7jb5riPMQSJhOgEn7SjACVijbq1OLyLerjURUllSfWSgAdViCgvtt4zjIvze25zJC05rfodYy9SW0aQWYWzgvWH1/sElzmd0HZnDi5xWEnTw4T05HS/ejtHmkxmoY7dzroCSKxjfyv3MYYgER8VT1lVGU6X06s9qlUcLiTsy2WWVpaiqE9ZzLIyiNdinNFx0AzLoAYiPTmdbce2cbr8tFd7p4uGUU40pxeF97r1xsMbqXBW+KxXb9sGwytzONVtSNjEKID15cyf3h0mjcKFcGqhcdahit3OejVwq4j4FIkVkU7ALKxpckOQCFSBKz7RQSnxaFF4j6wDBZeVFCvxlEB8eEyBe0hLTkNR1hxc49U+OiOa9YygfHl4j6w9wWW1R9a5OUo6q5EwmQL3kJ6c7lfvERNasY0BlH4V3no3Z+x21r8FugJbReRJEfmxe3sK2Ap0AR6z1cJmRFZWFl988YVX27PPPsttt9121teIj4pn+tjp7D+436s9Lg6KiSeirARUfaptNRZ5eXle74XPnj2bO+6of9jCuZ5fXFlMpCPSp/JSXEQFUVQR0Tp8RlkQOOho2DBYI2m03pFrvXAcpuQU5NAhrgMpbVO82nct3kcSx2hzUXgEl3lITbaKkfjT25GWSqf9xlmHKnZnMFsKXAmcAX4JvOrefuFuu1JVvwqWPSJysYhsE5GdIvJAsO7bWMycOdOnLOacOXOYOXPmWZ2vqkRIBIL4rFs7HEB8Ag51Qnl50Jx1sPGUxawdXBav1oxCuASXeegY35GUtik+QUexsXDtk2nElp+GHTtssq7p8aTfrK33Ly6w/j8cY8LLWdel94Dr04g8XAAHD9pknaEu7B5Zo6ofA72BscB1wExgDNBHVT+p69zGREQigBeBS4DBwEwR8U3nFcJcddVVfPLJJ5SXW5V18vLyKCgoYMKECQA8+eSTpKenM3z4cB555JHqYwYNGsRtt93G6NGj2b9/PyJS/a71W2+9xZgxYxg5ciQPP30/TqeTB+6/36c0Zk0SExO5//77SU1NZdKkSWRnZ5OVlUWfPn2qK2c5nU7uvffeantefvllAB544AG++uorRo4cyZ/+9CcACgoKqstTeqp3gZWxzZPd7P77769uf/311+nfvz8XXnhhdWWxs8HpclJaVer3/erK0yWoSFgFl3lIS07z+/pWuynuKeCc8BxtlVSWsOnIJp8pcIDW21ZbJW+HD7fBsqYlPTndr97He5sgs1DG7kIeAKiqC2v92s5oljHATlXdDSAic4AZwJb6XOzuz+/2TT7QQEZ2GcmzFz8bcH+HDh0YM2YMn3/+OTNmzGDOnDlce+21iAjz5s1jx44dZGdno6pMnz6dpUuX0rNnT7Zt28brr7/OS+76nSJChauCjZs28u6777J8+XKioqK47ec/560vvuCJX97DC6++yrp1/vtXXFxMVlYWf/jDH7jiiit46KGHmD9/Plu2bOHGG29k+vTpvPrqq7Rp04bVq1dTXl7O+PHjmTJlCr///e956qmnqst0zp49m3Xr1rF27VpiYmIYMGAAd955JxEREdx///3k5ubSrl07pkyZwgcffMDYsWN55JFHyM3NpU2bNkycOJFRo0ad1f9vaZX1BaW2sy4rg8pjxcRHxxHpsP37baOTnpzOe1ve43jJcTrEd6hu3+QcRL+IOMoX59Daz5ey5s76Q+txqtMnuCwvD/S9HLoNGk50M08r64+05DT+teVfPnp/kDeSHyMULsyl3WXTbLTQ4I+QcNYhQjeg5kLtAazRfjUiMgsr6I2ePXsGz7JzwDMV7nHWr732GgDz5s1j3rx51Y6rqKiIHTt20LNnT3r16kVGRkb1NRzuCZfP539Obm4u6e4gm5KSUtpmTabqdN1BZtHR0Vx88cUADBs2jJiYGKKiohg2bFh1Wc558+axYcMG3nvvPQAKCwvZsWMH0X6SrnjKUwIMHjyYvXv3cvz4cbKyskhKSgLg+uuvZ+nSpQBe7ddee+1Zl88srrD6FR/tvS5dXKy0pQQSmm8947rwjCxzD+Yype+U6vayqkhynKPoH6ZBZoGCy75coszYlUPxNdcRjimAalbgmnre1Or2EeOt8qjtvsqhnV3GGQISVGctInsAFzBQVStFZPdZnKaq2reJTQPwVwvQK32Tqr4CvAKQlpZWZ2qnukbATcnll1/OL37xC9asWUNpaSmj3QUIVJUHH3yQW2+91ev4vLw8Emqtw3rW78qryrnxxht54oknACvO6OiafUSUH6vThqioqOprOByO6mIYDoeDqqqqanuef/55pk6d6nWuv5KZ/kp7ah2ZtfyV5jwbSipLiHJE+QSXVZwuJxInGmbBZR5Su34bdFTTWQ8bBq840kjf9TcrIc53lEVtbuQU5NA1sSvdWnfzas9buIu2FOIKs+AyD6O7Ws+E2s562DD4p6QxY9s8u0wz1EGw5/T24l3Dep+7ra5tX5BsOwD0qPF7d6AgSPduNBITE8nKyuLmm2/2CiybOnUqr732GkVFRQDk5+dz5MiRgNeJiYghdXwq7733XvVxp06dIO/YCRzqClga82yZOnUqf/nLX6qvsX37doqLi+ssYVmTsWPH8uWXX3Ls2DGcTifvvPMOF154IWPHjmXJkiUcP36cyspK/vWvf521TcWVxT7vV8O3iWDCLbjMQ5vYNvTv0N8n6CgmBg73SCe6sgS++cYm65qO1QWr/a5Xu1ZZI+5wCy7z0Ca2DQM6DKieWfAQEwOHuqfSuviQlWbVEFIE9auyqmbV9bvNrAb6iUhvIB8r2O0H9ppUP2bOnMmVV17pFRk+ZcoUtm7dSmZmJmA59bfeeouIAAk+4qLiaN2nNY899hhTpkzB5bIc9CMPPgMdE/jpj37E8OHDGT169FnVpa7NT37yE/Ly8hg9ejSqSlJSEh988AHDhw8nMjKSESNGcNNNN9Gunf8Jua5du/LEE08wceJEVJVLL72UGTNmAPDoo4+SmZlJ165dGT16NE6n0+81auJ0OSmrKqN9nPdUtypEVpTgQnA08xrWdZGenM6SvCU+7Y6xabDXymQmQ4cG37Am4nT5abYd28bMod5vSlRVQfs9OVRGxBI1ZIhN1jU9aclpfvV2jUqD/W69Z0wPvmGGwNhZ8gvoCcTVsT8O6BlEey4FtgO7gF/XdWw4lsisyaEzh3R1/motryr3aj9yxKVVq3O1cvdemyxrGk6XndbV+av1VOkpr3aXS7Vy01at2nR22jbXv4E/rfiT8ihacLrAq/1vrzj1jKOVlvz4NpssaxqW7FmiPIp+tv0zr/YdO1S/lAv0yHkZNlkWHALpvWdzsbocDnU9/D9Ndm9Micx6bXaHtu7BqrYViOnuY4KCqn6mqv1Vta+q/i5Y9w1FPNPBtd+3btVKqIxOwFEaXpnMPBnbak+DC0pkeQkRrcJzCtyDZzq4dt7oW37qIPGCVOI2h1eQWaDgsvN6Ozk/Ppd2k8JzCtxDzSCzmqQMjkcGD0Zyw0vvcMBuZ/1dkUAOagV5GYJDdbnMCm+nHBsLse3icZSWhFVmq+KKYqvqWESUV/uZY2VWP8MoP7Q/RnUZhUMc/ot6pKXB+vVhVXEtpyCHXm16kZSQ5L1j2zakuJjIzPBKM1qbkV1GBtR7W6s0ypa3jPKozQm7nTXU7YwHAaeCZYjhWyIcEcRFxvmtwOWKT7A+yGVlNljWNJRUlvi8Xw1w5pD7y0qYBpd5SIhOYHDSYL/lMv++OQ3Ky2HzZhssaxoCBZe9foe7/2FSwzoQCdEJDEka4hNkBvBhfiqxhUcgP98GywyBCLqzFpEbRWSRiCxyNz3k+b3Wtg74FbA42DYaLOKj4ymuLPas51dzsNBdLjNMinpUuaood5b7TIG7XBBZXmKVSQzj4DIPnsxWtfXe2dZyXJ4o6ebOidIT7D652ycZSmUllC7NoTwqAQYMsMm64OEpj1pbb095VFe2mQoPJewYWbfFSi/aG2tUnVTjd8+W4rbtNeDsq1AYGpWEqASqXFVUOL2nP6NbxVBFBM4z4eGsSyrclbaifTOXxVOMMyYe6vnudnMiLTmNoyVH2X/au4hLr4l9OEE7ziwOj4d3boGVTrP2yHrLFhjlXE1h39FhVQY1EOnJ6RwtOcq+Qu+3YztNHkEVEZw05TJDiqA7a1V9TlV7q2pvrDXruz2/19j6qOpwVZ2lqkeDbaPBwjMtXHsqPCFBKCYBisOjtnWg4LKSYhfxlCCJ4T0F7sEz0qydNzotXcghDWeYjLQ8U7+eClQe1qyqZCTrwn692kOgoMKRmXFsZkjYl0dtbthddcuhqvaVWApDIiIiGDlyJEOHDuWyyy7j1Kn6L/nHRcUhiE9t69hYKCWeiIrSOoPMsrKyyHEXgcjLy6Nfv34+JTxrU7Oa16lTp6rzldeH6dOnM/Qs3g0uriwmJiKGSId32oHK02U4UCJahXdwmYfhnYcT5YjyeXgPGQLrItJos29jWMQp5BTk0K99P9rGtvVqL1iwhTjKaBummctq49G79rq1R++2O02QWSgRCgFmhkYkLi6OdevWsWnTJtq3b8+LL75Y72s5xEFcVJxPRLjDAVUxCQgKJd89uj5w4ABTp07l6aef9kkvWpvGctbvv/8+iYmJZ3VsSWWJzxQ4QJdW4Z25rDYxkTEM6zzM5+EdFQVtJ6cT4aqyosKbOYGCy/oXhnfmstrERMYwvPNwny9nUVHwg6dTiS8+Bvv3BzjbEGyC6qzdgWMLRSSyxu/ftS0Mpo3hRGZmJvnuiM4lS5Ywbdq3lXTuuOMOZs+eDUBKSgqPPPIIo0ePZtiwYXzjTi159OhRbr3mVi6feDmzZs2iV69eHDtm5QWfu+xDxtx4IyMzMrj11lsDZgk7dOgQU6ZM4bHHHmP6dCsj0uzZs7njjjuqj5k2bRpLlizhgQce8Cq9+cADD7Br1y5GjhzJvffeS1FRERdddFG1nR9++KHfexYVFfHMM8/w0EMPfef/UaWzkgpnhd9IcCktsdYuw7DyUiDSk9P9Bh3NesXtwJp5ucxDRYc4cPqAT3AZwNW9c6BNGzjvPBssswdPkJlLvWfIojLDQ+9wItiZ+ftgFfKQGr+H5zzL3XdDgBKS9WbkSHj27AqEOJ1OFi5cyC233HJWx3fs2JE1a9bw0ksv8dRTT/G3v/2N3/zmN1yYdSGX//RyCtYW8Ne//hWArVu38tFn/2b57NlEdezIbU8+ydtvv80NN9zgc90bbriBxx57jKuvvvo7bfj973/PCy+8UF16My8vj02bNlX/XlVVxX/+8x9at27NsWPHyMjIYPr06T6FOx5++GF++ctfEn8W70YHWq8uKwM5WUxUXDyOFhBc5iEtOY2Xc19m18ldnNe+htPq3h3t1Annqhwib7fPvobiGUXWHlmrguTkWK9stSC905PTLb1P7KJfh37V7WudwxkmkZxZkEu7K6+00UKDh6COrFU1xR08Vlnj99rBZT5bMG1s7nhGph06dODEiRNMnjz5rM670v2BTE1NrS5juWzZMn4w00qPPn7i+Oo83QsXLiQ3N5e0H93AyEsuYeHCheze7b+A2qRJk3jzzTcpOYvp8u9CVfnVr37F8OHDmTRpEvn5+Rw+fNjrmHXr1rFz506uuKKuxHjf4gmeq+2si067iKoqxRXXMqbAPQQKMtu+Q5h7NI2ixc379a2cghwc4mBUV+8a57NfLqcidwPFg1rGFLgHz5eW2ksfEQmxbNShlC0zI+tQIbxq3oUSZzkCbmw8a9aFhYVMmzaNF198kbvuuovIyEhcNYLBymoFCnnKUHpKUILlHGMiYyiVUq+IcFXlhhtu5K6r7qQrBcioUQFfdbnvvvt46623uPrqq/nwww+JjIz8TlsC8fbbb3P06FFyc3OJiooiJSXF59wVK1aQm5tLSkoKVVVVHDlyhKysLL+lN8HKXBYXGUeEw9v+ytOlOFCkhQSXeRicNJjYyFhyCnKYOezbIhd9+sA/HelcnP85FBXBWcYDhBrZ+dkMSRpCYrS3/YfmbSCaSqIuaFnOekinIdV6/2DYt3WLBg+GNyLSuHbH++5ph5Yz2xCqhFyAmYhEish/ichPRaSL3fY0V9q0acOf//xnnnrqKSorK+nVqxdbtmyhvLycwsJCFi787lCACRMm8N6/3iM+Mp558+Zx8uRJAC666CL+/e/3OFxcjAAnDhxg7969Aa/zpz/9idatW3PLLbegqqSkpLBu3TpcLhf79+8nOzu7+tiapTdrl8ssLCykU6dOREVFsXjxYr/3/PnPf05BQQF5eXksW7aM/v37B3TUqkpxZbHf4DJKWlZwmYeoiChGdRnlM9KKjISTfdNwqKvxl3eChKqSnZ/td73akwtbxrSM17Y8RDoiGdVllE+QWWQkHOuZSkLZCajjs20IHrY6axH5o4isrvG7AAuAfwIvAxtFpK9d9jV3Ro0axYgRI5gzZw49evTgmmuuYfjw4Vx//fWMGjXqO89/5JFHmDdvHldPuppF8xfRtWtXWrVqxeDBg3nsscf44c+vYvjMmUyePp2DBw8GvI6I8Pe//52DBw9y3333MX78eHr37s2wYcO45557GD16dPWxs2bNqraxQ4cOjB8/nqFDh3Lvvfdy/fXXk5OTQ1paGm+//TYDBw5s0P9PhbOCKleVT3CZywVRFSU4HZEQHd2gezRH0pLTWHNwDU6Xd9Bg9Dh3ZqvVzXNqdM+pPRwvPc6YbmO82svLofP+HIriOkLPnjZZZx+B9PakXA2XzHXNHjtLfgEbgGdq/D4dKwDt91j1pI8Cf7W7NJm/LdxLZKqqlpWVaWVlpR4tPqqvfviqDhs+zGv/0aOq5avXaeX2XTZZ2DCOlxzX1fmrtbii2Ku9tFS1JGeTlm/eds7XDIe/gTfWvaE8im4+stmr/bXXVPfRXU9N+4FNljWMdza+ozyKrilY49Wek6O6nmFaMPJimyyzF4/emw5v8mr/11tlWi7RWnLHvY16P0yJzHptdq9Z9wB21Pj9MmCPqj4AICJDgOvtMMwA+/bt45prrsHpdFLlqOK5F57z2p+QAMUk0LoRgsfsoLiiGIc4iI30zvsdG+UELUXbtA1wZnhTHXSUv5rBSYOr2ydOhLIhaXTd2jxH1tn52cRGxjK0k3einHhKGCCbOXP+DJsss5eaQWZDOg2pbr/q+hj480jYZEbWoYDda9bRQM25l4lY0+AedgNdg2qRoZp+/fqxdu1a1q9fz1tz32LAcO/iBrGxkNgpgYjKMnAHpTUniiuLiY+KxyG1PgalpUDLW6/20L9DfxKjE31rHadAv5lpRO7aDoWF9hjXALLzsxnddbRPGdRB5etwqIs2k1rWerWHAR0H+NUbgPR0NCcHAuRRMAQPu531fiADqkfRfYAva+zvBBTZYFe9sWZ5wgsRIT4q3ieTmQhEtXFHSzez0bWqBiyLeXSvu5/nWMM6XLSPcESQ2jXVb/nEk33d0dJr1gTZqoZR6axkzcE1jEke47PvxLyWURYzEA5xBNT7tU1jkKIicCdKMtiH3c56DnCjiHwCfAKcBj6rsX8UsMsOw+pDbGwsx48fD5uHdk0SohIoqSzxyXRUjLtcZjMr6lFaVYpLXT6R4C4XOEqLcTqizim4TFU5fvw4sWFSSjMtOY11h9ZR6az0an9uueXQqlY0r6nRzUc3U1pV6je4bO7/ruZ0YldITrbJOvtJT05n/aH1PhX2jvWx/r+am97hiN1r1k9grVtfDhQCN6jqKQARaYMVcPYn+8w7N7p3786BAwc4ejT8CoUVVxRzrOQYG09sJDriWydWUgLRx07hKCrBceqkjRaeG2cqznCi5AQxJ2M47Pg2sUp5OTiOFXAwOpKIrVvP6ZqxsbF07969sU21hfTkdMqd5Ww6sskrgcjQCzuw+4XetF2cz7fFpwAAIABJREFUQ/tf2WjgOZKdb70eWNtZr1sHozWHokHptLbDsBAhLTmtWu/RXb99O6P31P4Uvt6a8s+z6fSTm+wz0GCvs1bVcuAW91abM1jr1c1myBYVFUXv3uGZcG3niZ2kP5/OK9Ne4aepP61u37cPVqY9wtQOObQ55j+LWSjy049+yn+++Q9H7z3qla70//54mln3D+HMLx+lzVP/Y6OF9lKzfGJNZz1mDKwkjalrm1eQWXZ+Nu3j2tOnXR+v9rVfnmYW2zhzwcwAZ7YMaupd01mPyXCQQxrDVpuRtd3YPQ0eEFV1qWqhulOTGuylb7u+tI1t67Ou1aMHfJOQRpvje+D4cZusO3dW5a8ivVu6T17xE/NycKC0meS7ttmS6NOuD+1i2/kEHfXoAdsS3Xq7i7o0B7LzsxnTbYyP3ifnrbb0njzWJstCA4/etdPM9uwJm+PH0P7A+rAoj9qcsd1Zi0iCiPxGRDaISJF72yAij4pIywzHDUFEhLTkNB9nLQJlw9xRtM2kQk9RRRGbj272G2w0llXWD2NatrOuS+/SoW69c3NtsOzcqUvvmHVGb6hb7x7/lU6kqzIsyqM2Z+zOYNYeyAYeBroAa91bZ+B/gGz3MYYQYGy3sWw8vNEnKrzt96xps6qVzcNZrzm4Bpe6fNYvAS5KXAX9+0N782c3tttYNhze4KP3D55yT5M2ky9ndek9s+8qSnr0B3eRmpbMmG5j2HRkk4/eVzzu/n8zU+G2YvfI+n+BgcAdQFdVPV9VzweSgduBAcCj9plnqElm90yc6vSZGr3nt22gf38i1zWPh7cn2Ci9m/d7taUliq5aBWNb9pSoh4zuGTjVSe5B7xH00PGW3s3FWQfSG1W67l1FfJbRGwLrTbduODt3pWxptv8TDUHBbmc9Hfibqr6kqtVv3auqU1X/AryGFSneKIjIkyLyjXua/T8i0rbGvgdFZKeIbBORqY11z3BibHfrobbywEqvdocD6x3VZvTwTmmbQqeETl7trzy0Dzl0iMrR5uEN3+q9Yv8Kr3ZV2NkunbKvmsdIK5Deuf/ZB4cPmy9nbjK6ZwC+ep88JXxyOJ3iJcZZ24ndzroz1rR3INa4j2ks5gNDVXU4sB14EEBEBmPlIh8CXAy8JCL+az62YDrGd6Rf+36sOLDCZ9+/96XDgQNw6JANlp0bnmCj2pQssdYvoyaYhzd8q/fKfO8vZyLw7q40Yo/nQx0FXEKFQHrP+617vdo4a8DS+7z25/l8vtu1g13tx9Dh6LZmmbkuXLDbWR/GSnwSiFHuYxoFVZ2nqp68mCsBz0uxM4A5qlquqnuAnUDLjjgJQEb3DFYeWOmT+GVTrDv7U4iPrg8XHWZv4V6fYCNVaLN1FZURMTB8uE3WhR6B9K4a6dY7xIPM6tT7G6N3bTK7Z/rVu2JE8woiDUfsdtYfA7eIyK0i3yZoFhGHiMwCbgY+aqJ73wzMdf/cDSv1qYcD7jYvRGSWiOSISE44Jj45GzK6Z3C42HoA1iRp8kicODizOLQ/zJ5o19ojrd27YXjZKo73Gt0iy2IGIrN7JoeKDvno3XHyKEvvRaE9FW70Pjc8n++8U3le7W0nWV/OCheYqXC7sNtZ/w9WsY6XgAIR+VJEvgQKgL+49z1yLhcUkQUissnPNqPGMb8GqoC3PU1+LuWTM1RVX1HVNFVNS0pKOhezwobM7pmA77rWqPMT2cogipeGtrPOzs/GIQ6vxA8Aq7+uJJVcHJlmSrQmnnXM2nEKo89PYAuDjd5hhufzXVvvERPbs51+FC8O7S9n4YytzlpVjwNpWPWrjwPp7u0YVirSdPcx53LNSao61M/2IYCI3AhMA67Xb+d6DmClPfXQHesLg6EWwzoPIz4q3ufDPHIk5Eo6iVtWW3OMIUp2fjZDOw31yQmeGr2ROMrocIl5eNfEo3ftL2cjR8IaSaPVtpxmqXf+5269L82wybLQpFrvWuvWo0ZBVGY6nfeZkbVd2D2yRlVPq+qvVXWIqsa7t6Gq+pCqnm7Me4nIxcD9wHRVrZnG9CPgOhGJEZHeQD+s978NtYh0RJKenO7zYY6LA8eYNBJLjliBZiGIS11k52eTnuxbCrHfCSvYKGKccdY18ehdO8gsLg6u+WMaCUWhr7e/ZCh3jjF6+6Na71pfxmNjofe1Y4g4mA8FZhxjB7Y76yDzAtAKmC8i60Tk/wBUdTPwT2AL8Dlwe81XyQzeZHTPYO2htZRWlnq1/+i50A4y23ZsGyfLTjKuxziv9spKOPTBSjSpk1W02eBFZvdM1h5cS1mVd7rJuAvcX3pCNFnGN8e+8as3QPTaVdCpE/TqZYNloU1m90y/n++DPawvPa5Voal3uGO7sxaRWBG5T0RWiMhh97bC3RbXmPdS1fNUtYeqjnRvP6ux73eq2ldVB6jq3Lqu09LJ7J5JlauKNQdr1TQeMQKNjAzZcnrL9y8HYHyP8V7t69fDqXmrONhzrPVeksGLjO4ZVLoqffTewHCqJJIT80Pzy9nyfW69e3rr/c03cPjjVZQON3r7I6N7ht/P9/yjI6kkkpNfmElHO7A73WgSsBprzXoQkI+1VjzI3bbafYwhhAiUHGV3QSxrncM5+ukqO8z6TpbvX07H+I7079Dfq339kpMMZBvxE82UqD8CJctwxMeyQYdRHqKZrZbvX05SfBL92vfzal/2ySk6n/iGspFGb39U611rqSt1QhwbGUbFV6H5+Q537B5ZPwkMBn4BdFLV0ao6CugE/BLLaT9po30GP3RJ7EJK2xSfdcxevSA7Yhztt6+CqqoAZ9vHsn3LGNdjnG+lrS+smYA2U8zD2x+dEzvTu21vH70HDYLVkeNotyM09V6+f3mderc1evulWu9aX8YHDoScqMyQ1TvcsdtZXwa8qqrPqmqFp1FVK1T1T8Dr7mMMIUZm90yfkVZEBBzpN56YquKQq9BzuOgwO0/sZEKPCT77oteuwoUgY3wDzwwWmT0C6x1bWQQbNthkmX88etde8gCIXmf0/i4ye2Sy4sAKr+QoERFw5Dy33hs32mhdy8RuZx2NlVI0EDnuYwwhRkb3DPLP5HPgtHckcNwk6+FYvmi5HWYF5Ov9XwO+65enTkHf46s4kTQQ2rSxw7RmQUY3/3rHXtQM9T62iuNG7zrJ6JZBwZmCgHpXLA4tvVsCdjvr1cDoOvanYl6hCkkCJUcZdmkP9tGDU5+G1od5+f7lxETEkNo11as9MUGZ2nYVsReaKdG6yOwRIBnOjJ4cju5OxZLQ0nvZvmV+9d69S8mQVVSMMnrXRbXetdatb3y4J87k7kSvDi29WwJ2O+tfAleJyJ0iEuVpFJFIEflv4Er3MYYQY0SXEcRGxvqsa2Vmwplh4+mwbXlIJctYvn85aclpxETGeLVH7ttN1KljJF5kHt51MbzzcL96T5oEna+cQKv1ofXwDqT36PZ5JOlRus4wetdFIL2TOgkR54+HZctssqzlYrezfhorc9mzwBERyRWRHOAo8Ix73zMisqjGttBGew1uoiOiSe2a6hN01KYNDJk1nshD+bBvn03WeVNaWUpuQa7f9csFvzOVl86G6Iho0pLTfPQGYPx4KzFKCOm95uAaJvT0jU9gpWW/STNaNx69/VXYWxkRWnq3FOx21n2ASGAfcApoD3Rw/7wPiAJ619r62GKpwYeM7hnkFuRS4azwai8aYTlF59LQGG2tLlhNpavSZ/2yqgp2vrWC8sh4GDbMJuuaDxnd/Ov95m633l+GxmirWu8evnq/898rqIxJgKFDbbKu+ZDRLYM1B9dQXlXu1b6kKrQ+3y0Fu3ODp6hq73Pd7LTZ8C0Z3TMod5b7JE/4dN8wzpDIiY9D48PsSY5RO5PV+vWQUfkVJweOg8hIO0xrVmT2yKTcWc7ag94l6KNGNw+9162DQUeXcrz/OIiK8neqoQaZPTKpcFaw9pC33imXDQ8pvVsKdo+szwkRaS0ir4nIQLttMcD5Pc8HYOnepV7t4y6IZCUZ8HVofJiX71/OwI4D6Rjf0at91ecnGc4G4i++wCbLmhce5/fVvq+82sdfGJp6d4jv4NWe/YXR+1zw6L1sn/eMSbXey0NjJqWl0KycNRAH3AQk22yHASt5wqCOg1iSt8SrvUcP2NR6PB3yN0JhoT3GuXGpi6/3f+13vfrUJ8twoLSeZh7eZ0OXxC4M7DiQxXmLvdp79ICNbSbQoWAjnG7U2jvnTF16n/zY6H0udEnswoAOA/zqvan1+JDQuyXR3Jy1IcTISsniq31fUeXyzmhUljoeBy50hZ+ApCDiKebg7+HddedSKh3RMMa3KpPBPxNTJvLV3gB6a+jqrQptNhi9z5VAervGTcChruqAPUPTY5y1oUFkpWRRVFHks26ddFkGThyc+szeqdFAxRwAbuqzFMfYMVa9R8NZkZWSxZmKMz7r1mm3jcUlDlxL7Z0aDaR3cTFckrCUUwPGWvUeDWdFIL1/+c+x4HDA8tBY+mgJGGdtaBAX9roQwGcqfPr1ragYOIK2m+z9MC/bv8xvMQeKipDcXCImminRcyGQ3lP+qxWOkSOIWGnzl7MAxTsSKaLvyVySrjR6nwsXpvjXm1atrCp75n3roGGctaFBBFq37tTJSj0q2fYm/V++z38xh7/dsgKcTrjAPLzPhWq99y7x2VeaOh7nCnv1DlSs5eRco3d9CBSnAPDh8fFULDVFPYKFcdaGBhNo3XpLu/HW/KNNRT0OFx1m18ldfpNjlHyxFKdEwLhxfs401EVWSpbfdcznciYQUWq/3v7iE978qVvvzEwbLGveTEyZ6PfzvbX9hJAs2hOuGGdtaDCB1q0XlFoPzeJ59kyNLt/vXr+s9fDetw9GFC7laI/R1nSe4ZzwrGPW1jt+sr16e14xqr1ebfRuGIE+3wlT7NW7pWGctaHBBFrHHDHNKupRONeeD/PC3QtJiEogNdm7mMPyhWWMZRWOC82UaH0IqPf3u7OXnhR+as865oLdC0iMTiQ92bv0pUdvMXrXi1DVu6XR3Jx1BfAlcNJuQwzfEmjdOj0dVsh4EtbZU9Rj3u55ZKVkER3hXWU1/4PVxFJOBxNsVC86J3ZmcNLgwHqvt0fv+bvnk5WSRVSEd3Yyj94djd71wvP5rr1unZ4OX8sE2/RuadjqrN3ZyB4XEb81q0UkQ0Re8/yuqidVdaKqrvV3vME+/K1bx8fDvp4TaHMmH/bsCao9eafy2HliJ5P7TPbZl1r0JQARF/gp9GA4K7J6+dd7f68JtCkqgLy8oNqz5+Qedp3c5VfvqBVWhj2jd/2ZmDKRZfuWUemsrG6Li4PYSeNt0bslYvfI+ibgfmCRiHT0s78vcGNQLTLUi0DrWq6JF1n/fjE/qPbM32Xdb3Jf34f3xIilVuGO9u2DalM44dE7tyDXq33yE9+zfliwIKj2zN/t1tuPs76u21LO9DZ6N4RAn+8rns2yflhoiiE2NXY7a4B3gZHAKpPzu/kSaF3rFy8PgB49cCwMsrPePZ9urboxqOMgr/biU5Xo11+bV3gaSKD3b0deOwC6d4d584Jqj0fvgR1rPUKqqui8YzmtLjV6N4SA71sPGoSzazdKPwqu3i2RUHDWnwAXYuX9XiEik2y2x1APAq1bR0ULTJ5sffMO0vuYTpeTBbsXMLnvZJ/3bf9621qkuBjXBPPwbgidEjpZ69a137cWYfd5U6iYu8B6rzkIOF1OFu5eyJS+U3z0zv3bWuv1QfPlrEEE0rukVHjz8BR0fvD0bqmEgrNGVXOBsVg1rD8TkVk2m2SoB4Het/6gdAqcOgU5OUGxY83BNZwsO+l3SlS+stYvHVnm4d1Qsnpl+axjArxxaArRxaGh91ePuyvCnX9+UGwJZzx5wmvqHR8Pe/tPIb7sJOTm1nG2oaGEhLMGUNX9wHhgAfAXEXmaJrJPRO4REfWsk4vFn0Vkp4hsEJHRTXHfcCfQulZen4twIZx5PzhTZZ71y0l9vCdpTp6EPgeWcqx9f+jSJSi2hDOB9G5zpaV3UZD0nrfLus9FfS7yaj9xAvru/5Jj7ftB165BsSWcyUrJoriymNyD3k659ZWTgqp3SyVknDWAqhYB04C/AP8P+H1j30NEegCTsUbxHi4B+rm3We77G86RQOvWF1zZkVxSKfkwOOvW83fPZ2SXkXRK6OTdPreKCXyFc7wZZTUGgdYxL/wvS+/iD4L35awuvV3jzSxKY3BBL+v/0d/new2jg6Z3SyWknDWAqrpU9Q7gF0DnJrjFn4D7gJovBs4A3lCLlUBbETFfxc8Rz/u3npGth5EjYXncZDruWNHk9W+LKopYvm+53ynR7W+spB2n6PjDi5vUhpZCp4RODEkawoI93pHfI0fCsvgpQdP76/1f+9V75xtf045TdPjRJU1qQ0vBo/eiPYu82keNgmVxU+iwven1bsnY6qxV1aGq/wiw71lgBPC9xrqfiEwH8lW1djLbbsD+Gr8fcLfVPn+WiOSISM7Ro0cby6yw4vv9vs+XeV9SWFZY3eZwQPH4KUSoE9dC34IAjcnSvUupdFX6fXjf0P4TXBGRREz13WeoH5f2u9S/3uMsvVlsj96q0H7Fp1Q5oozejcjF513MkrwlnC7/1ik7HHD+b6cQqVVNrndLJuRG1jVR1c2q+uW5nCMiC0Rkk59tBvBr4H/8nebv9n7seUVV01Q1LSkp6VzMajHMGDCDSlcln+/83Kt91G2ZlEclUDW3aafK5u+aT2xkrN/iHT03fGKlGG3TpkltaElMHzDdr973vp8JCQkwv2mXPgLpLQK3dv8E57gLoHXrJrWhJRHo85165zhL7yC/steSCGlnXR9UdZKqDq29AbuB3sB6EckDugNrRKQL1ki6R43LdAcKgm17OJDRPYOk+CQ+3PahV/ulV8QQMyWL6CVN/PDePZ/ze55PXFScV/uKd/Jg82b4/veb9P4tjczumX71jmkVDRMnNvnDO5De5OXh2LqFmCuN3o3JuB7j6Bjf0UdvjYpm33kTKfqPcdZNRdg560Co6kZV7aSqKaqaguWgR6vqIeAj4AZ3VHgGUKiqB+20t7kS4YhgWv9pfLbjM59Xepzfmww7djRZ6tH80/lsPrrZ7xT4sgc/tX6YNq1J7t1SqUvvj8unNKneBWcKAur91ky33ubLWaMSSG8ReOf4FBIP7oTdu220MHxpMc76O/gMa+S9E/grcJu95jRvZgyYQWF5IUv3LvVqf3HHFADKPm6a0fWC3Vag05S+U7zajxyBIXs/5Xj786B//ya5d0smkN7belk6lH7UtHrXTil79Ch0WPkJxzv0M3o3ATMGzOBU2SkfvSMvaVq9Wzot1lm7R9jH3D+rqt6uqn1VdZiqBiebQ5gyue9kYiNjfabKhl09kP1058Scppkqm797Pp0SOjGs8zCv9oUfFfM9FlE11Yyqm4JJfSb51Tt1Zn/20YOT7zaN3vN2zSMpPonhnYd7tS/4sJiJLKZqihlVNwWT+/j/fKfO7M9eejaZ3i2dFuusDU1HfFQ8k/tM5qNtH6E1SueNnyAsipxC2zULGz01YYWzgrk75zK171Qc4v1nfeCNRcRSTtJN5uHdFCREJzC5z2Q+3Pahf71zGz/VbHlVOZ/u+JRL+l3io3f+m0bvpiSQ3uPGC4s9n+8gpRZuSRhnbWgSZgyYwd7CvWw4vKG6LToaDg+bTHx546einLdrHidKT3DtkGu92lUhec0nlEYmYlKMNh0zBsxgX+E+X72HTyG+ovH1/mLXF5wqO8V1Q67zanc6oeNKo3dT49F7/eFv34KNjoYjI6cQX1EIq1fbaF14Ypy1oUmY1n8agvhMlbW/xkpNeOLtuY16v3c2vUP7uPY+65eC8oO2n+K4eKr1NDE0CYH0HnCblXq06rMvGvV+czbNoUNcB5+UsieOK993fMbJtClG7yakWu9vvPW+++OLrGizLxpXb4Nx1oYmonNiZzK6Z/DRto+82qfd1JHCYRNoN+9da9jbCJRUlvDhNx9y1aCriI6o9YBevx7Jzzev8DQxHr1rO+vLb+mAY8J4Iv/9z0bTu7iimA+3fchVg68iKiLKa1/SwQ0klR0g+adG76akc2JnMntk+ugd3aU9jBsH773XaHobLIyzNjQZMwbMIPdgLgdOH6hu69IF2t1+PbLtG1i3rlHu8/G2jymuLGbmsJk++969wf0Kz6WXNsq9DIGZMWAGaw6uYX/hfq9253XXw5YtsL524sD68fH2jympLGHmUF+9i/9p9A4WMwbMYO2htewr3OfV/q+oH1g5DTZsCHCmoT4YZ21oMqYPmA5YzrQmB8dfRZUjisK/vN0o93ln0zskt0rm/J7eBTry86Hnxk8o6J4OnZsizbyhJjMGzgAsZ1qTFw5fTSWRnG4kvedsmkNyq2SfrGUFBbD+8U842ivNVFULAjMGWHrXnj3bk35No+ptsDDO2tBkDOw4kH7t+/lMlZUnduAz18U45rzT4KjwU2WnmLtzLtcOuZYIR4TXvvn/OMpYVuG4zLyyFQwGdhxI/w79ffSe/uMOzOUSaGK9v3j7GBmsxHWJmQIPBgM6DmBAhwE+el/1s458zsXwzj/A5bLJuvDDOGtDkyEizBgwg0V7FnGq7FR1e0oKrBl4Pa3OFKBfLg18gbPg/a3vU+Gs8Dsluv+lj3GgdL7ZPLyDxYwBM1i8Z7GX3r17W3q3Pp3fpHofePFDHCidbjZfzoLFjAEzWJK3xEvvPn0gd4Bb7yXnVNrBUAfGWRualB8M+wGVrkpmr5vt1d7rjss4QyJHn2vYVNk7m96hb7u+pCWnebVv2ACT8v7K8c6DkNTRDbqH4ey5dsi1VLoqeWP9G17tPW+39D7WQL3nbJrjV+/162Hy3r9yovMgJC21QfcwnD1XD7maKlcVb214y6u95x3TLb3/bKbCGwvjrA1NyqiuoxjXYxwvrn4Rl347JXbF9fF85LiCxM/fg7Kyel37UNEhFu1ZxMyhMxHxLpwWu30Dmawk9s5Z1qskhqCQmpxKRvcMXsh+wUvvK3/o1vuL+ut9uOgwC/cs5Lqh1/no/fkf1pPBKmLuutXoHUTSktMY220sz2c/76P3zqFX0GFx/fU2eGOctaHJuXPMnew8sdOrrF7btnBo0vVWAoW59Xvn+l+b/4VLXX6jwPsvfhliYkj4+Q31tttQP+4ccyc7Tuxg3q5v0062bQvjX7qeuPJC+Oyzel33X1vcevuZAr8r9hWcUTEk/OxH9bbbUD/uGnsX249v99F71NM/xHG6/nobvDHO2tDkXDnoSromduWF7Be82n/56UXQqRO8Xb+psnc2vcPwzsMZnDTYq33jymJcb7wFV18N7dvX225D/bhq8FV0SezC89nPe7Wn3NIwvedsmsPQTkMZ0mmI947iYuL+/RYR111j9LaBQHo7L/weZW07c/L5twKcaTgXjLM2NDnREdHcmnorc3fOZcfxHd/uiIyEa69FP/kECgvP6Zq7T+5mxYEVfkdZX9z8Lo6i0+isWxtquqEeREdE87PUn/HZjs989M7uex2VH3wCp04FvoAfdp/czfL9y/3q/e6V78Lp0zBrVkNNN9SDQHq7HJH8vfw6Epd+CidP2mhheGCctSEo3Jp2K1GOKF5c/aJX++zK65Hyckre/Pc5Xe/xrx4nOiKaHw7/oVf77t1w/taXOZo0GJkwvsF2G+pHIL2/6nE9Ua4Kit84N70fW/oYMREx3DjiRq/2PXsgZd7LHEkaDOON3nbhT++oKCiaXj+9Db4YZ20ICl0Su3D1kKt5fd3rFFUUVbcP+fEYdtKXky+e/dTo9uPbmb1uNj9P+zndW3f32jf3iXWMJZvI202gkZ0E0jvr3nR2cB6nXjp7vbcd28bf1/+d29Jvo1vrbl77PHpH3WYCCe2kS2IXrhlyDa+tfY0z5Weq2yfem8Z2+p2T3gb/GGdtCBp3jrmT0+WneXP9m9VtaenCpx1upNs3i2DNmrO6ziNLHiE2MpYHJzzo1e50Qqt3XqbcEUu7u0ygkd149K75GtfoVGFuxxvotm3xWaebfWTJI8RFxvHAhAe82p1OSPzHK0bvEOGusXdxpuIMf1//9+q2UaOFL5J+RNftX8LGjTZa1/wxztoQNMZ2G0tq11ReWP1CdR1cEeCuuzhGB07+9L7vTP6//tB65myaw90Zd9M50TuF6MYVRVxe/DaHLrgW2rVrqm4YzpKx3caSlpzG89nPe+t9550cpz0nZ93/nddYf2g9725+l7sz7qZTQievfYs+Luby4rc4NMEEEoYCY7qNYWy3sV6v7YmA3HE7ZxxtqPrFfTZb2LwxztoQNESEO8fcyZajW1i4Z2F1+6x72/BC24dpt2YhzJtXxxXgocUP0Ta2LfeMu8dn38it79CaM3T7XxNYFgqICHeNuYtvjn3Dgt0Lqtt/ck9b5o95iHar532n3g8vfjig3slL59CaMyT/xugdKtw55k62Hd/G/F3zq9tuubc98b97iMgFn8OCBXWcbagLUVPGrF6kpaVpTk6O3WY0O8qqyujzXB/axrZl9U9XkxCdAMCm3HIGXzUIR+tW1nR4RITPuSv2r2Dca+N4/HuP8+D53lPgBXvK6TptNBIRYaWzMuuXIUF5VTm9n+tNh/gOrPrJKuKj4t07ymHQIGjd2tLb4TtuWHlgJZmvZvK77/2OX53/K++dZWUwerSl86ZNRu8QocJZQcqzKSQlJLHylpXERcVZO8rLcQ0YSFlsWxK2rctV1bS6r2SojRlZG4JKbGQsb17xJt8c+4bbP7u9un1oagyOJx6HDRsof81/MMqvF/2aTgmduGvsXV7tZ87Af0Y8imzZAo8/bh7cIURMZAyzL5/N5iObueOzO2rsiOHI3Y/D+vWU/s2/3g8teoik+CS/en89+RHYuhWeftroHUJER0Tz6vRX2XB4A3fOvfPbHTExPN8bym/RAAAN/0lEQVTlceK3NU5Z3BaJqpqtHltqaqoa6s8jix9RHkVfX/t6dVvRaaduiEnVk616qJaWeh2/YNcC5VH0uZXP+Vzr6f9arlU49NBltzS12YZ68vCih5VH0dfWvFbdlr3SqdmkWXqXlHgdv2j3IuVR9Jmvn/G51jNXLVcnoocvn9Xkdhvqx68X/trn8716laU3kKMh8AxvbpvtBjTXzTjrhlHlrNKJsydq3GNxuunwpur2309ZqAp67P4/VrdlH8jWzk921p5/6qlllWVe11mxoEi3c54ea9VLtbAwWOYbzpGaem88vLG6/fdTF6mCHr33D9VtK/av0KQ/JmmPZ3poaaX3l7aVC916t05RPX06aPYbzo0qZ5V+7+/f07jH4nTDoQ3V7U9cssQ463puthvQXDfjrBvOwTMHtfOTnXXQC4P0TPkZVVXNz1f9POISPRPVVvXYMf33ln9r3GNxmvJsim4+stnr/LIy1bfb3aZORIvnLrGjC4ZzwKP3gOcHVOtdUKA6N+L7WhTZplrv2Mditc9zffSbo994nV9ervpm+ztVQYs/M3qHOofOHNKuT3XV/s/318Iy64v0wYNqnHU9N9sNaK6bcdaNw8LdC1UeFb3sH5fpgl0LtKi8SF++Y4NWEqH7OnfSIbehY/86Vg+dOeRzbt5f56mC7rni/9lguaE+LNq9SB2/cei0f0zTRbsXaVF5kb7y35u0kgjN79FVB96OZvwtQ48UHfE5942brFmXXTPutsFyQ334Mu9LjfhNhE77xzRdmrdUiyuKjbOu59biosFF5E7gDqAK+FRV73O3PwjcAjiBu1T1i7quY6LBG48nlz/JAwsfwKUuIh2RjO6SRvJnyv/NX0WbqggcL/0f0Tf/pPr4Y4edOJYsov09N+NKbIVjTS7ExdnYA8O58PTXT3Pv/HtRlEhHJCM6j2LQQuGZT7JJdEYgL71M7M23VB/vqqjCsXA+Fbf8jDOVsXTYt87o3Yx4duWz/L8v/h8AkY5Iqv6nykSD14MW5axFZCLwa+D7qlouIp1U9YiIDAbeAcYAycACoL+qOgNdyzjrxuV0+Wm+3v81S/cuZenepWw4vIFf9LyRR/66EfnyS7aNv5n4X/yMbf/7LkPW/4OuHLQSYcybB6mpdptvOEdOlp5kxYEVLNu3jOX7l7Px8EZ+0es67n9hC1HLv+SbzJtIvP8Otv7mXUZueoukyoPQsaNVbjE93W7zDefI0eKjrMpfxYr9K3h80uPGWdeDluas/wm8oqoLarU/CKCqT7h//wJ4VFVXBLqWcdZNi6oiIlBVxfzxjzA5+3EAKolkU89L6Xj3j+jx82kQG2uzpYbGJH9vFQuzfssP836LA3Xr/X0GPnEjcVd9H6Kj7TbR0EBExDjretDSnPU64EPgYqAMuEdVV4vIC8BKVX3LfdyrwFxVfa/W+bOAWQA9e/ZM3bt3b1Dtb6m4XPD5r7/CuXU76Y/NoMvQjnabZGhCVOHzh5dTtX4zqb+9nOSRnb77JEOzwTjr+hFptwGNjYgsALr42fVrrP62AzKAdOCfItIH8JdVwedbjKq+ArwC1si6sWw21I3DAZc+cT5wvt2mGIKACFzy2HjAlLw0GDyEnbNW1UmB9onIz4H31ZpOyBYRF9AROAD0qHFod6CgSQ01GAwGg+EsaWnpRj8AvgcgIv2BaOAY8BFwnYjEiEhvoB+QbZuVBoPBYDDUIOxG1t/Ba8BrIrIJqABudI+yN7uDz7ZgvdJ1e12R4AaDwWAwBJMW5axVtQL4YYB9vwN+F1yLDAaDwWD4blraNLjBYDAYDM0O46wNBoPBYAhxjLM2GAwGgyHEMc7aYDAYDIYQp0VlMGtMROQMsM1uO5qQjlivtYUrpn/Nm3DuXzj3DWCAqray24jmRouKBm9ktoVzyjwRyTH9a76Y/jVfwrlvYPXPbhuaI2Ya3GAwGAyGEMc4a4PBYDAYQhzjrOvPK3Yb0MSY/jVvTP+aL+HcNwj//jUJJsDMYDAYDIYQx4ysDQaDwWAIcYyzNhgMBoMhxDHOuhYi0kNEFovIVhHZLCL/7ecYEZE/i8hOEdkgIqNr7LtRRHa4txuDa/130wj9+1xETonIJ8G1/OxoSP9EZKSIrHCft0FErg1+D+qmgf3rJSK5IrLOfe7Pgt+DwDT0b9O9v7WI5IvIC8Gz/OxohM+e063dOhH5KLjWfzeN0L+eIjLPff4WEUkJpv0hj6qarcYGdAVGu39uBWwHBtc65lJgLiBABrDK3d4e2O3+t53753Z296mx+ufedxFwGfCJ3X1pAv36A/3cPycDB4G2dvepEfsXDcS4f04E8oBku/vUWH+b7v3PAf8AXrC7P43dP6DI7j40cf+WAJPdPycC8Xb3KZQ2M7KuhaoeVNU17p/PAFuBbrUOmwG8oRYrgbYi0hWYCsxX1ROqehKYD1wcRPO/kwb2D1VdCJwJps3nQkP6p6rbVXWH+9wC4AiQFETzv5MG9q9CVcvdx8QQYjNrDf3bFJFUoDMwL4hmnzUN7V+o05D+ichgIFJV57vPL1LVkmDaH+qE1Ic11HBPw4wCVtXa1Q3YX+P3A+62QO0hST3616xoSP9EZAzWSHRX01nYMOrTP/dU5Qb3/j+4v5SEHOfaNxFxAE8D9wbDvoZSz7/NWBHJEZGVInJ5kxvZAOrRv/7AKRF5X0TWisiTIhIRDFubC8ZZB0BEEoF/A3er6unau/2conW0hxz17F+zoSH9c49k3gR+rKquprOy/tS3f6q6X1WHA+cBN4pI56a19NypZ99uAz5T1f1+9ocUDfjb7KlWGtIfAM+KSN8mNLPe1LN/kcD5wD1AOtAHuKkJzWx2GGftBxGJwvpje1tV3/dzyAGgR43fuwMFdbSHFA3oX7OgIf0TkdbAp8BD7mm6kKMx9HOPqDdjPSBDhgb0LRO4Q0TygKeAG0Tk901s7jnTEO08syCquhtrfXdUkxpbDxr47FyrqrtVtQr4ABjt5/wWi3HWtRARAV4FtqrqMwEO+wjrYSAikgEUqupB4Atgioi0E5F2wBR3W8jQwP6FPA3pn4hEA//BWlP7V5BMPica2L/uIhLnvk47YDwhVDmuIX1T1etVtaeqpmCNzt5Q1QeCY/nZ0UDt2olIjPs6HbG02xIUw8+SBj5bVgPtRMQTI/I9Qqx/dmOqbvkyHvgRsFFE1rnbfgX0BFDV/wM+w4pq3AmUAD927zshIr/F+sMD+F9VPRFE28+GevcPQES+AgYCiSJyALhFVUPpC0lD+ncNcAHQQURucrfdpKqe64QCDenfIOBpEfEs2TylqhuDaPt30aC/zWZAQ7V7WURcWIOs36tqqDmzhjw7nSJyD7DQ7fRzgb8G1/zQxqQbNRgMBoMhxDHT4AaDwWAwhDjGWRsMBoPBEOIYZ20wGAwGQ4hjnLXBYDAYDCGOcdYGg8FgMIQ4xlkbDE2AiGSJiNZ4BcxgMBjqjXHWBkM9Eauk5qOmlJ/BYGhqTFIUg6H+jAQewUr9mFdr31IgDqgMrkkGgyEcMc7aYGgC3AVAyuy2w2AwhAdmGtxgqAci8ijwuvvXxe71aRWR2e79PmvWNdtE5DYR2SYiZSKyUUS+7z5mmIh8LiKnReS4iPzZXRyh9v37icibInJQRCpEJE+ssoIJDehTitu+R0XkGhFZJyKlIrJTRH7sPqaniLwnIidE5IyIvCUirWpdp4eIvCYie0WkXESOiMjXInJjfW0zGFo6ZmRtMNSP94GuwCzgcWCru/1s6l/fDrQD/oY1+r4L+EBErsbKh/wOVtWhKcCdwBHgMc/JIpIKLAJOAS8D+cAI93XGi8iFqtqQ6fdpwM+Al4ATwC3AayJS4e7rIqycz+nAze4+/MRtWyQwH6tG8UvAdqANMByrwtffG2CXwdBiMbnBDYZ64h41vw5MVNUltfZlAYuxamLPrtVWAAxW1UJ3+3BgPVZd36tqlhYUkVwgWVW71mhbD8QA6ap6pkb7FVhfIqrveY79SQH2YBVYGKyqe93tScB+IBq4p2ZFJRF5H8u5t1fVohp9uV9V/3iuNhgMBv+YaXCDIfjM9jhqAFXdAJwGCvzUAF4GdBGRRLCmybFGqf8AYkSko2dzH1uMNSJvCB94HLXbvqNYpTRdwIu1jv0KiAJS3L97+jVRRDo10A6DweDGOGuDIfjs9tN2EmtU668doIP730Huf38DHK21HQESgM5NZN9BVS2vyz63k/8d1heGgyKSKyJ/FJH0BtpkMLRozJq1wRB8nOfYDlb96Zr/Pg18HuDYkwHaz5aG2IeqPiQirwHfx1qn/glwr4j8UVXvb6BtBkOLxDhrg6H+2BHwscP9r1NVF9hw/7NCVXcDzwPPi0gs8AVwn4g8rapH7LXOYGh+mGlwg6H+FLn/bR/Ee64FNgE/E5E+tXeKSKSIBNOe2vdvU/tVM1Ut49to+XbBt8pgaP6YkbXBUH9WYwVd/VpE2mEFd+1R1VVNdUNVVRH5EdbrUxvc082bgXjgPOBK4EFgNnhFeH+pqllNZVcNJgKviMi/sYLSioBUrKnwVaq6LQg2GAxhh3HWBkM9UdV9InIzcD/wF6yo6L8DTeas3fddJyKjsJzydKx3os9gpTydDSyscbgnYUl+U9pUg/VYr49lAdcDEcA+rPeznw6SDQZD2GHeszYYwhgRuQvLSQ5R1e1222MwGOqHWbM2GMKb/99+HdAAAAIwDLs7LCIXGyNpTSw7265Qw9+cNQDEOWsAiBNrAIgTawCIE2sAiBNrAIgTawCIE2sAiHuyVZSyJlUZrwAAAABJRU5ErkJggg==\n", "text/plain": [ "<Figure size 432x288 with 1 Axes>" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "plt.title('Plot 4 Schemes comparison with analytical sol.', fontsize=20);\n", "plt.plot(time_an_steady*1e3, z_an_steady*1e9, 'b--' );\n", "plt.plot(time_steady_V*1e3, z_steady_V*1e9, 'g-' );\n", "plt.plot(time_steady_RK4*1e3, z_steady_RK4*1e9, 'r-');\n", "plt.xlim(2.0, 2.06);\n", "plt.legend(['Analytical solution', 'Verlet method', 'Runge Kutta 4']);\n", "plt.xlabel('time, ms', fontsize=18);\n", "plt.ylabel('z_position, nm', fontsize=18);\n" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "It was pointless to include Euler in the last plot because it was not following the physics at all for this given time step. REMEMBER that Euler can give fair approximations, but you MUST decrease the time step in this particular case if you want to see the sinusoidal trajectory!\n", "It seems our different schemes are giving different quality in approximating the solution. However it's hard to conclude something strong based on this qualitative observations. In order to state something stronger we have to perform further error analysis. We will do this at the end of the notebook after the references and will choose L1 norm for this purpose (You can find more information about this [L1](http://en.wikipedia.org/wiki/Taxicab_geometry) )." ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "As we can see Runge Kutta 4 converges faster than Verlet for the range of time steps studied. And the difference between both is near one order of magnitude. One additional advantage with Runge Kutta 4 is that the method is very stable, even with big time steps (eg. 10 time steps per period) the method is able to catch up the physics of the oscillation, something where Verlet is not so good at." ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "### Let's add a sample and oscillate our probe over it" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "It is very common in the field of probe microscopy to model the tip sample interactions through DMT contact mechanics. \n", "DMT stands for Derjaguin, Muller and Toporov who were the scientists that developed the model (see ref 1). This model uses Hertz contact mechanics (see ref 2) with the addition of long range tip-sample interactions. These long range tip-sample interactions are ascribed to intermolecular interactions between the atoms of the tip and the upper atoms of the surface, and include mainly the contribution of van de Waals forces and Pauli repulsion from electronic clouds when the atoms of the tip meet closely the atoms of the surface. Figure 2 displays a force vs distance curve (FD curve) where it is shown how the forces between the tip and the sample behave with respect to the separation. It can be seen that at positive distances the tip starts \"feeling\" attraction from the tip (from the contribution of van der Waals forces) where the slope of the curve is positive and at some minimum distance ($a_0$) the tip starts experiencing repulsive interactions arising from electronic cloud repulsion (area where the slope of the curve is negative and the forces are negative). At lower distances, an area known as \"contact area\" arises and it is characterized by a negative slope and an emerging positive force." ] }, { "cell_type": "code", "execution_count": 10, "metadata": {}, "outputs": [ { "data": { "image/jpeg": "/9j/4AAQSkZJRgABAQEAYABgAAD/2wBDAAIBAQIBAQICAgICAgICAwUDAwMDAwYEBAMFBwYHBwcGBwcICQsJCAgKCAcHCg0KCgsMDAwMBwkODw0MDgsMDAz/2wBDAQICAgMDAwYDAwYMCAcIDAwMDAwMDAwMDAwMDAwMDAwMDAwMDAwMDAwMDAwMDAwMDAwMDAwMDAwMDAwMDAwMDAz/wAARCAHeAnoDASIAAhEBAxEB/8QAHwAAAQUBAQEBAQEAAAAAAAAAAAECAwQFBgcICQoL/8QAtRAAAgEDAwIEAwUFBAQAAAF9AQIDAAQRBRIhMUEGE1FhByJxFDKBkaEII0KxwRVS0fAkM2JyggkKFhcYGRolJicoKSo0NTY3ODk6Q0RFRkdISUpTVFVWV1hZWmNkZWZnaGlqc3R1dnd4eXqDhIWGh4iJipKTlJWWl5iZmqKjpKWmp6ipqrKztLW2t7i5usLDxMXGx8jJytLT1NXW19jZ2uHi4+Tl5ufo6erx8vP09fb3+Pn6/8QAHwEAAwEBAQEBAQEBAQAAAAAAAAECAwQFBgcICQoL/8QAtREAAgECBAQDBAcFBAQAAQJ3AAECAxEEBSExBhJBUQdhcRMiMoEIFEKRobHBCSMzUvAVYnLRChYkNOEl8RcYGRomJygpKjU2Nzg5OkNERUZHSElKU1RVVldYWVpjZGVmZ2hpanN0dXZ3eHl6goOEhYaHiImKkpOUlZaXmJmaoqOkpaanqKmqsrO0tba3uLm6wsPExcbHyMnK0tPU1dbX2Nna4uPk5ebn6Onq8vP09fb3+Pn6/9oADAMBAAIRAxEAPwD9/KKKKACiiigAooooAK4D9pqdofgzru043Wkin3BUiu/rz39p/wD5Ixrf/Xq//oJrOt/Dl6M48w/3Wr/hl+TPyO+AXiD46/HH4E+CvGv/AAnHwl0v/hMNBsdb+x/8K/1Cf7J9pt45vK8z+2l37d+3dtXOM4HSut/4Q746/wDRRvhL/wCG41D/AOXlH7Av/JinwV/7EPQ//TfBXrVfn9So1NpJb9l/kfy7jMVOniJwgo2TaXuR7+h5L/wh3x1/6KN8Jf8Aw3Gof/Lyj/hDvjr/ANFG+Ev/AIbjUP8A5eV61RUe1l5fcv8AI5vr1TtH/wAAh/8AInkF74b+N+mWUtxcfEz4QW9vbo0kssnw7v1SNAMlmJ1zAAAySai0bSPjT4i02O80/wCKXwcvrSbPlz2/w9vpY3wSDhl1wg4II+oNd78Z/B3/AAn/AMKdf0hbf7XPd2Un2aLzPL3zqN8PzZAH7xUPJxxzxmvKf+Cfvi7+0/h3q+ju9zJLpN6Jk3nMccUy/Kic8fPHKxGAMvnkk19Zg8ijieH8RnFOfv0JwUo8sbck9FK+9+bTa3m+nBUzqtDFww7jG0k7Pkjuunw9jo/+EO+Ov/RRvhL/AOG41D/5eUf8Id8df+ijfCX/AMNxqH/y8r1qivk/ay8vuX+R3/XqnaP/AIBD/wCRPJf+EO+Ov/RRvhL/AOG41D/5eUf8Id8df+ijfCX/AMNxqH/y8r1qij2svL7l/kH16p2j/wCAQ/8AkSl+yX4O/aGPxbRdN+KHwbtLh7V1L3Hww1KdNu5ONq6+h9P4q+uR8Of2psf8lk+AH/hm9X/+aevKP2N/+S0Q/wDXs/8A6Elfaw6V9jksm8Nd92fv3h3UdTJ1KVvilskvwVjwD/hXP7U3/RZPgB/4ZvV//mno/wCFc/tTf9Fk+AH/AIZvV/8A5p6+gKK9Y+5PkDxH4t/am8P/ALU/g34af8LQ+AEv/CW+Fde8T/2l/wAKk1dfsn9mXejW3keV/wAJKd/m/wBr7t+8bPs+Nrb8p3//AArn9qb/AKLJ8AP/AAzer/8AzT10HjX4W67q/wC318NPGtvY+Z4Z8P8Aw/8AFuiX9550Y+z3l9qPhma1i8st5jb49PvG3KpVfJwxUsgb2CgD5/8A+Fc/tTf9Fk+AH/hm9X/+aej/AIVz+1N/0WT4Af8Ahm9X/wDmnr6AooA+f/8AhXP7U3/RZPgB/wCGb1f/AOaej/hXP7U3/RZPgB/4ZvV//mnr6AooA+f/APhXP7U3/RZPgB/4ZvV//mno/wCFc/tTf9Fk+AH/AIZvV/8A5p6+gKKAPn//AIVz+1N/0WT4Af8Ahm9X/wDmno/4Vz+1N/0WT4Af+Gb1f/5p6+gKKAPn/wD4Vz+1N/0WT4Af+Gb1f/5p6P8AhXP7U3/RZPgB/wCGb1f/AOaevoCigD5//wCFc/tTf9Fk+AH/AIZvV/8A5p6P+Fc/tTf9Fk+AH/hm9X/+aevoCigD5/8A+Fc/tTf9Fk+AH/hm9X/+aej/AIVz+1N/0WT4Af8Ahm9X/wDmnr6AooA+f/8AhXP7U3/RZPgB/wCGb1f/AOaej/hXP7U3/RZPgB/4ZvV//mnr6AooA+QP2lvFv7U37O/w607X/wDhaHwA1j+0PFfhzwx5H/CpNXt/L/tfXLHSfP3f8JK2fJ+2+bsx8/lbdybtw7//AIVz+1N/0WT4Af8Ahm9X/wDmnroP24fhbrvxg+C+i6T4dsf7R1C0+IHgrW5YvOjh2Wen+KtKv7yXMjKD5drbTybQdzbNqhmKqfYKAPn/AP4Vz+1N/wBFk+AH/hm9X/8Amno/4Vz+1N/0WT4Af+Gb1f8A+aevoCigD5//AOFc/tTf9Fk+AH/hm9X/APmno/4Vz+1N/wBFk+AH/hm9X/8Amnr6AooA+f8A/hXP7U3/AEWT4Af+Gb1f/wCaej/hXP7U3/RZPgB/4ZvV/wD5p6+gKKAPn/8A4Vz+1N/0WT4Af+Gb1f8A+aej/hXP7U3/AEWT4Af+Gb1f/wCaevoCigD5/wD+Fc/tTf8ARZPgB/4ZvV//AJp6P+Fc/tTf9Fk+AH/hm9X/APmnr6AooA+f/wDhXP7U3/RZPgB/4ZvV/wD5p6P+Fc/tTf8ARZPgB/4ZvV//AJp6+gKKAPn/AP4Vz+1N/wBFk+AH/hm9X/8Amno/4Vz+1N/0WT4Af+Gb1f8A+aevoCigD5//AOFc/tTf9Fk+AH/hm9X/APmno/4Vz+1N/wBFk+AH/hm9X/8Amnr6AooA+f8A/hXP7U3/AEWT4Af+Gb1f/wCaeuA/ZO8W/tTftQfssfDT4l/8LQ+AGh/8LE8K6X4n/s3/AIVJq9z/AGf9ttIrnyPN/wCElTzNnm7d+xd23O0ZxX1/Xj//AAT2+Fuu/A79gX4H+CvFNj/Zfibwf8P9B0TV7Pzo5/sl5badbwzxeZGzRvtkRl3IzKcZBIwaAOf/AOFc/tTf9Fk+AH/hm9X/APmno/4Vz+1N/wBFk+AH/hm9X/8Amnr6AooA+f8A/hXP7U3/AEWT4Af+Gb1f/wCaej/hXP7U3/RZPgB/4ZvV/wD5p6+gKKAPn/8A4Vz+1N/0WT4Af+Gb1f8A+aej/hXP7U3/AEWT4Af+Gb1f/wCaevoCigD5/wD+Fc/tTf8ARZPgB/4ZvV//AJp6P+Fc/tTf9Fk+AH/hm9X/APmnr6AooA+f/wDhXP7U3/RZPgB/4ZvV/wD5p6P+Fc/tTf8ARZPgB/4ZvV//AJp6+gKKAPn/AP4Vz+1N/wBFk+AH/hm9X/8Amno/4Vz+1N/0WT4Af+Gb1f8A+aevoCigD5//AOFc/tTf9Fk+AH/hm9X/APmno/4Vz+1N/wBFk+AH/hm9X/8Amnr6AooA+f8A/hXP7U3/AEWT4Af+Gb1f/wCaej/hXP7U3/RZPgB/4ZvV/wD5p6+gKKAPn/8A4Vz+1N/0WT4Af+Gb1f8A+aetD/gn98WfH3xq+CGs6z8RdR8H6lrdj418S+G4JPDeh3OkWv2fSdZu9JV2invLtzJK9jJOSJAFE6x7SYzJJ7hXz/8A8E0/+TdfEf8A2VX4j/8Aqb67QB9AUUUUAFFFFABRRRQAUUUUAFee/tP/APJGNb/69X/9BNehV57+0/8A8kY1v/r1f/0E1nW/hy9GceYf7rV/wy/Jn5d/sC/8mKfBX/sQ9D/9N8FetV5L+wL/AMmKfBX/ALEPQ/8A03wV61X55W/iS9WfynmH+9Vf8UvzYUUUVkcYV8rfs/ib4Q/th634WS2lt7DUnuYIrcXJKRRAG4t5CMtvPlDAydw805Ocg/VNfKX7Ydj/AMK0/aI8OeLY7DzIJvs95J+/x9rntpBuXuU/diAZ245zgndX6p4W2xlXG5FPbFUZKK/6eQ96D3S095/5K54md/u408UvsSV/R6P9D6tooor8rPbCiiigD1X9jf8A5LRD/wBez/8AoSV9rDpXxT+xv/yWiH/r2f8A9CSvtYdK+0yP/dfmz+h/Df8A5Eq/xSFooor2D70KKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAK+f8A/gmn/wAm6+I/+yq/Ef8A9TfXa+gK+f8A/gmn/wAm6+I/+yq/Ef8A9TfXaAPoCiiigAooooAKKKKACiiigDgf2oP2mPB37HfwD8UfErx7qsej+FfCVk97ezsRvkxwkMSkjfLI5VEQHLO6gda87sv2kND/AGwP2CdH+KHhq11Wx0DxzoK6vYW+pxRxXkMUqEqsqxu6B/UK7D3r52/4LT/sXftLftU/ELwRrfwom+DOseA/h5pt7qs3hfxtLqxOoa0UdYbtILGMieW3j5txI4VZpGYoxClbH/BLrwJ8U/hh/wAETPA3h74t6NpXh7XtH0EWun6ZbWl3aXllpyxKII7+K5AdL0Hf5iqAg+XHeso+/RrSno1ay8veT+bauv7tnu2lx5x7mH5Y6pwnd+dk18km0/72lrJN/Pn7Av8AyYp8Ff8AsQ9D/wDTfBXrVfK37EvwD8Vaz+xj8I7u3+NvxP0q3uvBejTRWNrY+HWgs1axhIijMulPIUUHaC7u2ANzMck/Q/w08Fal4E0KW01Txf4i8aXElwZlvtZhsIp4lKqBEos7a3j2AqWBKFsu2WI2gfAV4pTk0+vn/kfy3mlGEcRUkppvmei5r7+aS/E6Kiiiuc8sK8L/AG+PB39tfCmy1eO38yfRL1fMl8zHkwSjY3y5w2ZBAOhI9hur3SuY+M/g7/hP/hTr+kLb/a57uyk+zReZ5e+dRvh+bIA/eKh5OOOeM19Nwbm39mZ5hcc3ZRmr/wCF6S6r7Le7t30OPMKHtsNOl3X49PxMz9mfxH/wlPwG8L3Pk+R5VkLPbv3Z8gmDdnA+95e7HbOMnGa7qvnj/gnn4j+1eDfEWkeTj7Fex3nm7/v+cmzbtxxjyM5zzu6DHP0PXVx/lf8AZ3EWMwi2U216T9+PV9JLz76kZXX9thKc/L8tAooor487z1X9jf8A5LRD/wBez/8AoSV9rDpXxT+xv/yWiH/r2f8A9CSvtYdK+0yP/dfmz+h/Df8A5Eq/xSFooor2D70KKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAoorP8AFmjXHiPwrqWn2erahoN3f2ktvBqdgkD3WnO6FVniWeOWEyISGUSxyISo3Iy5UgGhXz//AME0/wDk3XxH/wBlV+I//qb67R/wxt8Rf+jsfj//AOCjwR/8z1c//wAEjvBuo+CP2XfE1tqXizxB4wmb4q/EDF3q8NjFMnl+LtWgfAtLeCP97JFJcPlDiW5lCbIhFDGAfUFFFFABRRRQAUUUUAFFFFABXnv7T/8AyRjW/wDr1f8A9BNehV57+0//AMkY1v8A69X/APQTWdb+HL0Zx5h/utX/AAy/Jn5d/sC/8mKfBX/sQ9D/APTfBXFftkf8FFNP/Zl+JHhv4deGfCWrfE34seMNr6X4Z024S2CxF8GW5uGDCBNqysG2MAImLlEBcdr+wL/yYp8Ff+xD0P8A9N8FfIPwru10b/g42+IieIMLNqvgyNPDxlyQ2LexY+Vnp8kV1nHGRJ618NQpRq4qUZ7JSl68qvb5/lc/nHB4OhWxeMrV48ypRnNRu1d86jrazsua7s09N0fV37L/AO0V8Rfiv4o1jRPiP8Ftb+FWo6faxX1rMdZt9b02/id2QqLqBVRZ1ZSTFywUqxwGGfaq+dv+Crvxv8Qfs7/sBfELxR4Xnmstbt7WCztryFisll9ouIrdpkOOGVZSVPZsHORXwf8AtT/sYeEP2R/+CdHgP9oTwHrWuaT8ZoBpOtXHiuLW555teuL9QbgMryGMq3nO3yrlkUh94ZySlRhXXtH7i5ow0u/efq9tr6vyRWCyOlmHJVUvZe1k4Qik5LmjGLd25Xim5L+Z67WR+vNc18Zfinp/wO+EviXxlq0N5caZ4W0241W7itEV55IoY2kYRhmVSxCnALAZ7ivzk8Y/CrTv2wv+Cx1v4e8YyazB4f8AEnwtsdS1rStO1Cawj1TAVxa3DRlZGgDybigZctGhJ+XFeffDT4R6Lc/AD9ub4R3q3+peA/hBezax4R0+5vpm/se5VNQZWRgwJUGGM7WyrEEsGLEmpYDlg3KWqXM1bopqD6763XfutzpwnC9CXs51Krf8FyXL9mq0kk+bdN2elrap390+pf8Agnx8ddL8efFeDVPDVlqdl4X8cQXElhZ3kgSW1hG+aEyqrSKzqiFPvnHmN8x5B+3K/FXwN8LfBH7MH7APgn4nfZPEXh8eM9Ajl1jU9A1aSHVL26iv5UH2dnZ1t5ArwgMqBRnODg1DoPhnUP2df2tf2Z/FvhH4Eat+z1YePPENpZNP/wAJ9Jrx8T2N1La7opoHPmQYjkBKOFyXGV3IMfp/iHh4ZnisHj1JKdWmoys1L34SnC7bad2orRJtWe9rvxMm4WpTnjKOGqSUKc58nNGKvyx53H+Jd27xUtGpSUEz9sK8i+O/7Z/hf9nr43fDXwFrVhr9zrHxTvJbHSZrKCJ7a3eMxAmdnlVlH71cbFc8Hj1+Jv2ef2ePDP8AwVM/bN/aK1D41nUfEsfw68QHw34b0NdUubODQrYSzx+aiRSKd7fZ1zn5WYSEhiRtx/8Agpj+xb4EP7dX7K+hata6t4kHi+QeH/EV/qmq3El9r1vaLaQxNPIrriUqzlnjCFmYk9sfmWHwdN16VKo9ZWbVuji5LW++19PS57OHyDBU8ZPB4qpJyhTnKVo6KSp86s+ZcyWu6jdpLaXMv2j/AGN/+S0Q/wDXs/8A6Elfaw6V8F/8E6PhnonwZ8TaB4V8N2X9m6DoGl/YrC186SbyIUKBV3yMztgd2Yn3r70HSvo8lt9W93a7P1Xw4t/Yy5duaQtFFFesfeBRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABXz/8A8E0/+TdfEf8A2VX4j/8Aqb67X0BXz/8A8E0/+TdfEf8A2VX4j/8Aqb67QB9AUUUUAFFFFABRRRQAUUUUAFee/tP/APJGNb/69X/9BNehV57+0/8A8kY1v/r1f/0E1nW/hy9GceYf7rV/wy/Jn5d/sC/8mKfBX/sQ9D/9N8FZP7XX/BP3wF+2Xf6Fquvvr/h/xZ4XkD6P4m8OX/8AZ+r6cA4faku1lI3DI3KxQlihUsxOt+wL/wAmKfBX/sQ9D/8ATfBXrVfn05yhWc4uzTP5crYuthsdUq0JOMuaWq827r0fVHzv8Lv+CaPgfwRpfiu38TeIPiJ8WJPGOlHQr+68c+IpNUnTTy2820TKIxGvmfOGUb1blWFcP4I/4Ip/C/wvq2gLqvin4reNPC3hW7N9pHhHxD4k+1eH9PlBYoUtliThSxwCxDAkOHBIP2BRVrGV4vmjJp/1b83r3bfUazzHrmSqv3t9fK2nbTTS2mh5FD+xj4Xg/bKk+OIvte/4SyTQv+EfNp50X9nC3yDuCeV5m/jr5mPas34XfsBeBfhb41+MOsxya3rI+OEpfxJY6lPE9psIuA0UIjjR1RhcyA7mY4xgjHPt9YHhn4q+F/GvifWNE0bxJoOraz4ddY9VsLLUIp7rTGbO1Z40YtETtbAcDOD6VkqlRxcU9LW/7dve3pezMlmGMcHabtaKfpFrk9LNK3mfEnxo/wCCSngn4Jfsm6/4esPEnj3xH4Xa4hZNL8Q6ytzb6HE0shb+z0SJBCzTzRu+c7vKBOSMNd/Zl/4JN+APG3hT4Y+OdX8Y/FzXdb8Eahbahop1jxKt9Fpy2UxC2kUbQBI7V3iRiiqHAVVEgAOftD4neEv+E8+Het6OEtnl1Gylhh+0LmNJSp8tzwcbX2tkAkEAjkV4X/wTz8Xebo3iLQXe2XyJo7+BM4mk3r5chxnlV8uLoOC/J5FfqGDcsfwbXxMX+/wlWL5uvs53SX/gbcr+vdnm1OIsypZk17Z8tdO/ZytZv5xST76X2RR+Nf8AwSi8C/Fv426z8QNJ8XfFD4Z+IvEtuLfW5PBPiAaXHrOMDdOpifJIVdwUqrEbiCxLHf8A2iP+CbHw6/aJ+GXgDwxNL4m8KJ8LWh/4RbU/D2pm31LR0iRERI55VkPSKE7iC+6JCGBzn6Aor8xWJqqMYqTtHbytt93Ttd9z1v7bx/NCftXeCsvJW5fnppr002O5/wCCdvggfDXxRoGgDVtc17+x9LFp/aOs3Zu9QvtmwebPKQN8jdWbAyT0FfeQ6V8U/sb/APJaIf8Ar2f/ANCSvtYdK+vyWTlh+Z7ts/c/Dht5Mm/5pC0UVkePPHmkfDHwhf69r1/BpmkaZEZrm5mOFjUfqSTgADJJIABJr1JSjGLlJ2SPvoxlKSjFXbDx5480j4Y+EL/Xtev4NM0jTIjNc3Mxwsaj9SScAAZJJAAJNfAVx/wV58Uf8LzHiSPQZf8AhUqyf2f9jMS/amTd/wAfW/8A56/7GdmPkzu+evLP2ov2yJv23vifHZXN82heANKuB/Z2lNJtm1CTOBLLjjec8dkBwMksxtf2Ra/2X9i+zxfZPL8rydvybemMV+G8XeI9aOKjRy12hF3v/Nb9PLr1P2/hLw5oyw0q2ZK8pK1v5f8Ag+fTofqH8PfiFo3xV8GWHiDw/fwanpGpxCW3uIjww7gjqGByCpwQQQQCK2q/JL9mP9sK4/Yf+KUlvY3x13wHqtwRqWkrJmWycfKZYs8CRcfRwNrYIVh+qfw9+IWjfFXwZYeIPD9/BqekanEJbe4iPDDuCOoYHIKnBBBBAIr9N4Y4moZvh1OOlRbx/VeX5fn+acTcNV8oxDhL3qb2l+j8/wA/y2qKKK+nPmQooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAr5/8A+Caf/JuviP8A7Kr8R/8A1N9dr6Ar5/8A+Caf/JuviP8A7Kr8R/8A1N9doA+gKKKKACiiigAooooAKKKKACvPf2n/APkjGt/9er/+gmvQq89/af8A+SMa3/16v/6Cazrfw5ejOPMP91q/4Zfkz8u/2Bf+TFPgr/2Ieh/+m+CvBf2iP27vjLpP/BQG4+BHww8L+BNVvr7w/b6rYahrxuooNMbcWnmumicl4tibFSNFbfKhLELsb3r9gX/kxT4K/wDYh6H/AOm+CvIbX9mLxzH/AMFlrn4rnRMeAZPAw0ddU+2W/N3vU+X5O/zugPzbNvvXwtLk+sSdTb3t+6Tt+Nj+b8K8NHF4upiFFuKk4qW3Nzxt1V3a+nVXurHE/tH/APBTrxv4F+P1l8IPDepfAjw54z0HQrfUvFviDx1rc1h4eS7kjQtZ2YDrMzfvFdSxJ2EgqMFqufCP/gsINZ/Yk+KnxD8R6DpF54p+D96NK1O38P3/AJ2ka1PJKsNvPaXHz4gkduuXIVdwLZFcx+1X+wd418I/8FANZ+Mnhr4PeB/2gvC/jjS4rPVPC+v3NjazaVdRRxxrcRSXiNGARCnK7mPmSqVACvWT+2ppup/Bb/gk78Wb3Wvhx4A+AOo+MLyzsrLQPCEUE08sJlhQwXs8CRwySSAXJLR/KsLgctuB6eWhPDxSS5pct9dVJzSaS3ta6Vk1s9ZaH0VDA5TXeEw9KClzypXakubW3tE0m5rW+rSSSVnYv6P+3l+1Rpfx8+CPhHX9O/Z8a2+M8C6nZyaYmqTSWtmkazyiQ+cQsvlEhGVXjLfxYBNbv7JvxA03w7+39+14NH8GeF9I1Lw5BDfSapbtevdatIUllP2gS3DxKN/JEEcWe+cDHhHwN8Ea7/wSn/aJ+EmpeIvhT8CBH8XL6Pw/Bc+E9V1m/wBbsfN8pTKn26eZAAZ13/Z1IcfLvUMufpb4D/slfEHwZ+2X+1V4r1Lw/wDZtA+JFjFD4cuvt1s/9ousMikbFkLx8sB+8Veta4yNOCk6SSXJUV1peXNG0d3eyt672DGRwcKU+XljCcKdmmoqpasuZ8qk1ok1a7tZy0vp43p3/BWj9pDXP2Krf49W3w/+FEXgbQrqO01xZ7u7+3auTdLA0lnEshW3jVnWL988jlgXClTtrkvhl+3r8Q/2e/2wPBWueIPAnhTSPAfxfvorK1020vHm1HRrW/aCa3ZpFxCSFkicKkZGwMh2Ng16L4U/YJ+LGm/8EKtd+Dc3hTZ8SLy8MsOkf2nZnev9rQ3GfPEvkD90rNzJ2x14rl/+CkX7MPjay8I/sqXFnYZ1fwbaaZb6vbefB/xLWsVgLvvL7ZfmkYYTd/q+N26vtOE5qtVxOVYXeu1BRjf3l7sm2kneKXPrpy9HpZ+XmSyVzjOUKSUatePNfaCivZyT5rJyk9JdbWWlz239sH/gp1r/AIF/atn+EHw71L4NeHNV0HTk1LW/EHxL1t7DSkaQKUs4RE6u022SN85PBYbRjdXpH/BNX9u64/ba8AeJ01my0S18WeBNXbRtXl0K6+16PqJGdl1Zy5bMMm1sDc3Cg7iGFeAftIfsTeLLP9ue++Ong34R+B/2iPBnxH0W3S98N6/PZWc2mzrDEsdzE99GyKCkUZyAWPmSqUUBWr6j/Ya+HOreCfAmsXutfCL4c/Be61q+EsHh/wALCCSWGBI1Vfts8EaQzTeZ5rKYxtWN0H3g1fCzpUqeG5ZL37a30anzaq2+iutrdXqZ5rDLFltN4RRbcYPmUo817e+nG/NvfdJKys7PX7E/Y3/5LRD/ANez/wDoSV9rDpXxT+xv/wAloh/69n/9CSvtYdK97I/91+bP1Xw3/wCRKv8AFIWuY+KXwb8M/GvRYdO8VaRb63YW8vnpb3BbyxJggMVBAJAJxnpk+tdPRXq1KcKkXCaun0Z+gU6k6clODs11R+c3/BUv9nXwR8DLn4ZS+EfDenaDJqOqTJctaqQZghgKg5J6bj+dcJXt/wDwWj6/CX/sLXP/ALb14hX8yeJdKnSzmUKUUlZaJWXwo/pjw1q1KuTRnUbbu9Xq/iZ3f/BLT9nXwR8c7n4my+LvDena9Jp2qQpbNdKSYQ5nLAYI67R+VfePws+C/hf4JaTcWHhTR7bRLK6l8+W3ty3ls+MbtpJAOAASOuBnoK+Qv+CLnX4tf9ha2/8AbivuWv2zgfC0VlFCsoLns9bK/wAT67n4pxtiqzzavRc3y3Wl3b4V02CvnX9uL/grD+z/AP8ABN7WvD2nfGjx+vg298VQTXOlxf2LqOom5jhZFkY/ZLeXYAXUfPtzk4zg4+iq/F//AIOCPi9/woT/AILW/sQeMf8AhF/GHjT/AIR8ajdf2H4V03+0dZ1LEsY8u2t9y+bJznbuHANfXcz9vRpXspy5W+ys3f8AA+RatRq1bXcI3S76pfqfpB+xJ/wVN+AP/BRk6xH8GviTpXjG70HDX9j9lutPvoEO3979muoopmiyyr5qoU3HbuzxX0BX4w/8EzfHEX/BS3/gvx8Uv2ovDWg3fwu8I/DHwqvg/W9B8QG3tvFeq6j5fls99p8bvJbrGIym9ycm0iRSzCVYvm/x/wD8HJ3xA+N7/E7x/o/7WXhj4EyeGtRuo/BHwmPwol8QDxZaW/zwNeas1u/2aW6/1bbXCqRnEQ+arlOKULqzceZ9bLmaT01fMrSSScrPbRijCTlNbpSUV0u3FNrsrO6bbSuul0j+i6ivyA/bZ/4LW/Geb/gn7+xh8ZfhUujeGfEvxu8V22la1od5bxT6bqMhEkLWzSSRySxWzXKZ3RMswjON+ea6Xw/+2H+1H+wF/wAFifhD8Gvjl8VvDXxo8A/tBWFybCTT/CVtoEnhW/QyN5UKw5klhV/KjDzyuzJJuIVkO7RU5e3eHekudw9ZKKlZeqenS+9rq+Pto+wWIWseRT9ItuN36W23ttfW36tV8+ft6f8ABSTwN/wTvk+Gq+NdK8V6ofin4og8JaT/AGJbW832e7mxtefzZotsQzyU3t/smvjj/glX/wAFGvjL+0j/AME9/wBrvxx408Y/2z4o+F/iLxLY+Gb3+ybG3/syG008TW6+XFCkcuyTnMquW6MSOK+Kv2nv2p/Hn7aX/BLf/gnb8SPiZrv/AAkvjTxB8bsahqP2K3s/tHk6pcQR/ureOOJcRxovyoM7cnJJNZ0X7R02tm8O3/hrPT5pXv2drXNq69lTnJ7r20V/ipRb+660/FI/ofryD4pft6/CX4K/tO+B/g14o8YQaT8SfiPC8/h3R3sbp/7RRd4J85IzBGSY3AEkiliMAEkV+af/AAUo/wCCn3xf8I/8FbtX+Bs/7R2hfsceBdP0GyvPCuv6x4BtvEFr44urkR7jPc3QMVpAknnx+dujjXyHD5bGO1/bG+PXjHw9/wAFjf8Agn/pWpf8Ky1HU/GuhXreINU0zw3p+pLLMLXc7aZqN1bve29szu5XyZY96P8ANnJow376VBr4ak+Xz2n8lrHZ6pWvFXQsT+5jVT+KEOby+y/npLppdPXQ/Vaivyg/ZR/4K1fE74E+I/27/BXx88Uw+KPEn7Ny3PiXwveXGn2envfaS8UhtISltFEr7m+yfMVLFrsAnoK8K+IH/BcD4/fst/8ABJz9nbV/iJ8RNJ0/4s/tK6xeXh8b6r4Whmg8D+HVkjRbtLCzgVLiVY5IpUVo3LCRgVb5cTGopQU1tKNNrz9pey9Vyy5r2S5XroXKDjNwe6c0+tuRJt6dGnG1tXzJWP3Uor8cv+CP/wDwWo8T/GP/AIKWx/Aa++P2lftWeDPFvhyfWNM8aw+AG8E3uhX9urvLZSWhjjWSIxRlt4DndImGADKP2NraUHGMZdJK6+9rr5p+u60MY1FKUo9Yuz+5Pp5Nemz1CiiioLCiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAK+f/wDgmn/ybr4j/wCyq/Ef/wBTfXa+gK+f/wDgmn/ybr4j/wCyq/Ef/wBTfXaAPoCiiigAooooAKKKKACiiigArz39p/8A5Ixrf/Xq/wD6Ca8+/b4/4KR+C/8Agnzp3hKPX/D/AI/8deKfHt7NY+HPCfgfRDrGvay0MYkuHhg3oCkSFWclwcMMA81n+Ef2wfBn7d/7ByfE3wHNqDaDr1nOht9RtTa32m3MTNFPa3ERJ2TRSqyMAWUlcqzKVY5z9+lNx6aP7jkzP3cLPm6xlb7n/k/ufY+DP2Bf+TFPgr/2Ieh/+m+CvWq8l/YF/wCTFPgr/wBiHof/AKb4K9ar88rfxJerP5SzD/eqv+KX5sK5v4ufB/wx8efh7qXhTxholj4g8P6vEYrqzu03Iw7MpGGR1PKupDIwDKQQDXSUVkc9OpOnNVKbaa2a0aPn74D/APBLD4Bfs0fEGHxV4N+HOn6fr9qhS3u7q+u9Ra1JIO+JbmWRY5OMCRAHALAHDEH6BoorWpWqVNakm/V3NMTi6+Jn7TETc5d5Nt/ewryj9tHwl/wlPwG1CVUuZZ9Hmiv4khXOcHy3LDBO1Y5JGOMY25JwDXq9UPFHh+Hxb4Z1HSrhpUt9TtZbSVoyA6pIhUlSQRnB4yDXqcO5o8tzTD49f8u5xk/RPVfNXR5+Lo+2oTpd00eefsdeOW8bfAvTllaV7jRnbTJGdFUERgGMLt6gRPGuSASVOc9T6lXzB+wB4gm0fxN4n8M3i30VxsS7W3kBVLZ4nMUwZScrIS8YPHPl842ivp+vo/EvKo5fxJiqVNe5KXPG21prm08k218jkyau6uDhJ7rR/LQ9V/Y3/wCS0Q/9ez/+hJX2sOlfFP7G/wDyWiH/AK9n/wDQkr7WHSufI/8Adfmz+mvDf/kSr/FIWiiivYPvT4a/4LR9fhL/ANha5/8AbevEK9v/AOC0fX4S/wDYWuf/AG3rxCv5l8UP+R3P0X/pMT+l/DD/AJEkPV/+lM9v/wCCLnX4tf8AYWtv/bivuWvhr/gi51+LX/YWtv8A24r7lr9w4I/5EeH9H/6Uz8R41/5Hdf1X/pKCvhn9vb/gmX48/al/4Kl/sv8Axv8AD+reEbPwp8FJrqTXLTULq4j1C6Erqy/ZkSB436c75I6+5qK+qj7tWnWW8HzL1s1+p8tL3qU6T2mrP0/pHwPqf/BK/wAe/Dr/AILkQftMfDfVvBum/Drxz4cbRfiXoF7dXMV7q8wjZEngiSB4WOYrJzukjJMUn98k+S/szf8ABLz9s3/glpq/jnwV+zP46/Z28QfBfxR4gl8QaXa/Eu31n+1/DrTALJDELIeXIAixDc74kMe7ZEWYH9UqKUFyRjGOyTj/ANuuXNyvyUtV1WydtBzfM3J9Wn81HlT9eXR9H1R+M3/BzN8PfGtl+zv+xl4X1bx9/anxAHxM03TrjxlHo0Nt5uoGEJ/aAskbylxIRIIQ23jbnFe3/B//AIJSftDfHf8A4KbeB/2g/wBqfx38K9Vh+DWmvY+C9D8AWt9FBfTv5wN7eLdj9zJ86uUiZ1Z0QAoseJPv74o/AbwN8cTox8a+DPCnjA+Hb1dT0k63pFvqH9mXa/duIPNRvKlHZ0ww9a6yqpNwm6v2udzXZNwjG6XRqz2tuuytNRc8fZv4eVRfnaUpa907rfs+7v8AkZ4U/wCCIn7UvwB1H9oT4XfCn4s/CXw9+z98fNavtYuNRv7HULnxhoaXUTebaW0YH2UeYCtq8zyOwiHnIqSfu6qx/wDBAL4xp/wTr/ZE+Ef/AAkvwz/4ST4BfEWTxd4huf7QvvsN5aNqE9yEtH+yb3l2SqMSJGu4H5scn9faKVL93GMI9PZ/+Un7nyW1v1u263726l15385pqT+d389j85P+Cr/7An7Wn7cf/Cc/Dzw9q/7L/iX4KeMxDNpx8faHenxJ4HnNsLeZ9Oe3ieBpF/eyx3Ev71WuZEBVVU1Suf8AgiL4w8E/tUfsQ6/4Y8XaDq3gv9lnQZ9F1mfWZ7iHVtXLw7FktoUikjC7s/I8y7FwoLYr9KKKKP7qUJR3jJS9XFNK/eyk/N31bCt+9Uoz2cXH5Npu3q4r9LXZ+R//AAW6/wCDfL4nf8FEP2xLf4h/Cfxr4P8ABmkeMPDdr4Y+INtqt5dW8+q29vexXEbRrDbSrKcQwcOyfNaxc4Jx9A/8FRv+CPmp/tT/AAv+CV98FfFOmfDn4ofs2XsF54EutRgeTS5IokgX7JceWGdEzbQHeEk4R1MbCQlfu+ilTXs6apU3a0udPqpXbTv5Nuy21a2bKnLnqOpPW8eW3SzSi/vSSb30R8t/saeFP2x734qzaz+0T4s+Adl4asLCW1svDnwz0vUZF1W4laMi6urrUD5sRgEbKkcI2yfaHLnKJX1JRRVuV0l2/r+vuWiSIStcKKKKkYUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABXz/AP8ABNP/AJN18R/9lV+I/wD6m+u19AV8/wD/AATT/wCTdfEf/ZVfiP8A+pvrtAH0BRRRQAUUV81/thf8FhP2Z/2Ctf8A7H+Knxg8L+HdeEyQzaPbCbVtUsy8QlQz2lnHNPAjRlWV5UVWDLgnIpOSW7Got7I+lKK+K/g3/wAHFH7Fnx28ZDQtD+PvhazvjC04k8QWd94etCqkAj7TqEEEG/kYTfubnAODX2lHIJYwykMrDIIOQRVuMkuZrQnmV7DqKKKkZ+ff/Bd79oX4g/ATQfh6/wAH/gd4u+IPxL1ma8srfx74c+Hr+LNR+GOnSLFHeXNoqqB9rlR8RxPNFHIYT5hKrg9R+w/oHhrwj/wSf0nR/CfgX4ufD/S9LgvYH0/4m6V/Zvii8uTNI9xfXcW9/muJnkl3ZwQ/AAwB9uV57+0//wAkY1v/AK9X/wDQTWfwUakXre/y7L039W230tx5t7+Gk9uWMvno9fX8krLd3/Gz9iX9kbwr4l/Yx+Eeo3GrfE+O4v8AwXo1zKlr8SfEVpArPYwsRHDFfLHEmTwiKqqMBQAAK+h/hp8MNN+E2hS6dpdz4iurea4Nyz6zr9/rU4YqqkLNeTSyKmEGEDBQSxAyzE8P+wL/AMmKfBX/ALEPQ/8A03wV61X5/XqTc5Jvqfy3mmKrzxFSE5trmejbtuFFFFc55YUUUUAFFFFAHyl4msf+FTft56fcpYYttZvY5YF8/wD1n2tDBJLn5iMTPK204+7gYBBr6tr5u/4KGeEvN0bw7ryJbL5E0lhO+3E0m9fMjGccqvly9TwX4HJr3T4Y+Lv+E8+HeiawXtnl1Gyimm+znMaSlR5iDk42vuXBJIIIPIr9V44bzHIMqzveSg6E996bfLfV6yV5f1ZeHltqOKr4bpfmXz3+49y/Y3/5LRD/ANez/wDoSV9rDpXxT+xv/wAloh/69n/9CSvtYdK+eyP/AHX5s/qPw3/5Eq/xSFooor2D70+Gv+C0fX4S/wDYWuf/AG3rxCvb/wDgtH1+Ev8A2Frn/wBt68Qr+ZfFD/kdz9F/6TE/pfww/wCRJD1f/pTPb/8Agi51+LX/AGFrb/24r7lr4a/4Iudfi1/2Frb/ANuK+5a/cOCP+RHh/R/+lM/EeNf+R3X9V/6Sgr8Qv+Dov9qhvFH7VX7O3wJ1z4f/ABp134az+KIdU8V6bomlSrbfEaHfalNP02SKZGu7iMNKrxgoUeaEqwbDD9va/J//AIOBf+Unv/BOP/spF1/6U6RX1EYe0xeGpvZ1I36ry09bP5HzKnyUa01uqdR/dBv/AIHluexX3/BVb4Ff8E3vhd8Hvg94O+F3xx1fxNqvhe11LRPhN4Z8N3Gt+L/DWlvC8o+3Qz3BaNotrI8bTvIpH3Sg3Dsvg9/wXV+Cfxt/Y8+Kfxg0m28cWo+CkU7+NfBupaVHZ+KdBeJ5FEUts8wi3v5TlcTFcqysyujovxf8Xfj5of8AwSQ/4OPfif8AGP4+wa7oXwq+Mngi20zwt41XTLvUbGynhjs/NsmEEcjhy9nJlEBZd0TlQkm4eGw6Jqv7R/wj/wCCnf7U+h+HdY8P/Bv4r+FTp/hC61KxksT4mFuAsl/DGyqWiYxlt5H3p2UnekgGdXESnQniOrhUm3vySi3ywfdyXfVv3l7ug40YwqwoL+enFLbmjKKcpLyi300VrPU/UT9mD/guP8I/2qvD/inxRpPh74p+Hvhj4O8Ov4i1D4h+IPDRs/CrCIR/abOG8Ej+ddwPIyPHGjBmhk8tpBtZqf7HP/BdT4aftp/F/wAN+GNE+HXx38LaV45e8h8I+L/E/gx7Hwz4ultklleKyvFkk3O0MFxKokVPlgcNtfCH5c8T/sx+Kf2m/wDg0M8L+CPh3pEupeJLv4faRqltpVjF++1I293DezxxovMkrrHIwUAtI5AALNXqv/BIr/gs98E/2lfgt8FfgP4Ij8Xn4o2nhKHRdd0Kz8NXSQ+CDYWBiluLy4ZI4Et/NiSJGjZmMlzApRCzbe2rBQrV6cVd09FHrLSbcvJKyVtl9pu6OSnOUsPSrPRTTbfSNlCy827tva9rRtY6n41f8HFnwa+EvxB8Y6XpXgP47/Enwz8Ob06d4t8ceDPBp1Lwt4auEbE8dzeNNHjyR8zlUZSCNhfpXqX7V3/BYn4O/srfBj4a+M1bxV8Sh8ZXjXwLongbSDq2seKg6xsWtoGaMfKssZZXZWywUKX+Wvwj/Y8+Hvwc/Zb8MfFb4H/teftE/tefs7+OYPEd7b3PhLwrqt+nh3xnY3KCP7StvDp9ys3n7XVnkOyaNoipYFgv3H+3f8B/2UvgL/wTw/Za8M/EDxP+0f8As+R+GNNvtS+GvxHutGm/t/wfqEirOLDVVsYSyXDtMsvkxxxsRYSATxEEvy7YeNS97unqut03NK+l1ZJJu61Urux1uP8AtMqVrJKpv/ddoPTWz3k0rWs1ofqH+xT+2doX7cPwnuvE+j+GvHngm70rU5tG1fw5400RtH1zRbuNUk8q4tyzAFoZYZVKuwKTLkhtyj1+vz6/4Ny/2nfjP+1J+xx4i1T4r6tqXjPRdH8TXGleBfG2paR/ZV54y0aFVSO8eHALcqf3rFmZi6uzujMf0FrprwUZWXZPr1Sez1W+z1W13a5y0JuUbvu/wbW63XZ9d7K9gooorE2CiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACs/xZ4at/GnhXUtHvJNQhtNWtJbKeSwv57C6RJEKMYriB0mhkAJ2yROrocMrKwBGhRQB8/wD/AA7T+HX/AEMfx/8A/D7eN/8A5bVz/wDwSO+GmnfC39l3xNY6ZceILmGT4q/EDLavrt9rEw8nxdq1qmJbuaWQZjt42fDfvJWlmfdLNLI/1BXz/wD8E0/+TdfEf/ZVfiP/AOpvrtAH0BRRRQB8uf8ABXT4T/tE/Hj9lRPBf7NHinSPA3jXxNqqWeqeIr+9ey/sjSvs9w8zxTRJJNFK8iwRK8MbSL5pIKYMifnR8DP+DJn4Z29hf3Pxc+NvxE8Xa1fOk0cvhm0tdFjt3IJmEjXS3rXBLkEP+66HKknj7S/4OCPgl+0l8e/2K9D0b9lu98XWPxDh8W2t3eSeHPFaeG7o6ctrdrKGuHuIAyea8GY95yQp2nbkfiR8WP2Lf+CtfwJ+HWreLvGfxB+NXhjwxoUBudQ1PUvj/Z29taR5Ayztq4HJIAHUkgAEkCueE4QdSclbXd9rJ6X2X637s6KkZSVOMXfTZd7ta9328reR+hXjv/gyd/Z21DwfqMPhn4n/ABp0jX5IGWwvdUutM1Gztpf4Wlt47OB5VHdVmjJ/vCvcv+CMX/BM79pj/glZ8ZdY+Hnif4s6T8V/2bJdHml8OF1kg1HQtSWS1IQW0pc20EivdYjhnmjzHvIieQhv51vgH+3Z+2t+0r8XNE8FeA/jh+0t4u8Ua3cCK00zTfHWszzTY5ZiBPhUVQWd2wqKrMxCgmv7RdMSSLTbdZs+asSh8nJ3YGee/NejGEqVNVk9JXVu+m9vK+j7ryOCcoTmqbWq1v1Wq0+fbqrk9FFFcxuFee/tP/8AJGNb/wCvV/8A0E16FXnv7T//ACRjW/8Ar1f/ANBNZ1v4cvRnHmH+61f8MvyZ+Xf7Av8AyYp8Ff8AsQ9D/wDTfBXrVeS/sC/8mKfBX/sQ9D/9N8FetV+eVv4kvVn8p5h/vVX/ABS/NhRRRWRxhRRRQAUUUUAcL+0l4C/4WN8F9bsY4vNu4YftloFt/Ok82L5wsY67nAaPI5xIeD0PFfsH+OV8QfCSbRmaL7R4fumQIiMD5MpMisxPBJczDjoEGR3Pt9fK37Lt23wi/af8Q+DiL5LK/ee2gSaNd7mEtJDK5IBwYfMIKjDeYpxjBH6nwzfMuEsyyp6yoOOIgvT3an/kn4vprfxMZ+5x9Gv0leD/ADX4n39+xv8A8loh/wCvZ/8A0JK+1h0r4p/Y3/5LRD/17P8A+hJX2sOleBkf+6/Nn9ReG/8AyJV/ikLRRRXsH3p8Nf8ABaPr8Jf+wtc/+29eIV7X/wAFrruOwtfhVPK22KHVLuR2xnaoFuSa+Zv+F7eFf+gp/wCS03/xFfzT4m0pzzufIm9I/wDpKP6T8M6sIZJDnaWsv/SmfTv/AARc6/Fr/sLW3/txX3LXwt/wRRu47+1+Ks8TboptUtJEbGNykXBBr7pr9s4J/wCRJQ9H/wClM/FONP8AkdV/Vf8ApKCiiivqj5cKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAK+f8A/gmn/wAm6+I/+yq/Ef8A9TfXa+gK+f8A/gmn/wAm6+I/+yq/Ef8A9TfXaAPoCiiigD5z/wCCo/8AwUs8Gf8ABKf9la7+KHjTT9Y1qJ72PSNK0vTEXztTv5UkeKIuxCRR7YpGeRs7VQ7VdtqN/L1+1x/wVM8cf8Ftv2odNs/jr8XdK+Cvwjgu/tFrYRabqOo6P4eiUbd62lpHJNeXpRnxJLtBZ3UPBGQi/wBQv/BTj/gmR4D/AOCrvwA0/wCHHxE1bxdo2iabrcOvRT+HLq3t7pp4oZ4VVmngmTZtnckBAcheRyD+aPxx/wCDU39gv9mOz0+4+JP7QfxE+HtvqzvHYy+JvHfh3SUvWQAusRuLBA5UMpIXONwz1rnhH9651kmk/dT22X43vb8N3fonJezUKN02vefXd/ha343Ok/4Jmf8ABST/AIJZ/wDBLL4Wr4d+GvxUWXXdQULrPijUfBWvS6zrj8cSTf2eNkIKjbBHtjXltpdndv2Tt51uoEkQ5SRQynHUHkV+A9v/AMEDv+CWkdwjL+2nlgwKj/hb3hHk/wDgJX762ESW9jCkTb40jVUbOdwA4Oa9GrJTpqpJvmu/S2lrduumyVtDghHkkoR2t876ff5tk1FFFcxuFee/tP8A/JGNb/69X/8AQTXoVee/tP8A/JGNb/69X/8AQTWdb+HL0Zx5h/utX/DL8mfl3+wL/wAmKfBX/sQ9D/8ATfBXrVeS/sC/8mKfBX/sQ9D/APTfBXrVfnlb+JL1Z/KeYf71V/xS/NhRRRWRxhRRRQAUUUUAFfK37W4m+Ev7Rvh3xjZ20qJcJFPK0dyUN5LC22WPOSVBhMSH5dpDHg/NX1TXiv7d3hL+3fguuoolt5uiXsczyOv7wRSZiZEOD1d4iRkAhM9QBX6J4W5hDDcRUaNbWnXTpSWuqmrJf+Bcv/D2Z5Od0nPCSlHePvL5f8A+v/2N/wDktEP/AF7P/wChJX2sOlfnD/wSF8cr45s9AbdF9o0qyk0ydY0ZRGYigQc9SYjGxIOMsenQfo8OlVTyyrl1SrgK3xU5yi+l7O1/R7ryP6X8L6yrZDCrHZtsWiiitj9DMDx18KvC/wAUYrZPE3hvQfESWZZrddT0+K7EBbG4oJFO3OBnHXArnP8Ahkn4Vf8ARMvh9/4Ttn/8br0KisJ4WhOXNOCb80jeGKrwjywm0vJswPAvwq8L/C6K5Twz4b0Hw6l4Va4XTNPitBOVztLiNRuxk4z0ya36KK1hCMI8sFZGU5ym+abuwoooqiQooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAr5/8A+Caf/JuviP8A7Kr8R/8A1N9dr6Ar5/8A+Caf/JuviP8A7Kr8R/8A1N9doA+gKKKKACv5kP8Ag4l/Z9sf2iv+DhnSvCPj740+DfAngzxbpemWUWu395FeReBoFtSxgu7dZUa3Mk+6VfOaJCt4jlwu5l/pd17xjpHha80u31PVNO0641y7+wabFdXKQvqFz5ckvkwhiDJJ5cUr7FydsbnGFJH5Mf8ABU7/AINVP+Hl/wC3D4v+M3/C+P8AhCv+Erjsk/sf/hCv7S+y/ZrOG2/1/wBvi3bvJ3f6sY3Y5xk4Sg3iKc2rxi3f7rffrv09GdFOSVGrC9nKOn/gS/yf3H5/2v8AwbkfstRXUbD/AIKbfAFirghRDpHPPT/kOV/TlpkIttNt41cSKkSqHHRwAOa/Au3/AODGj7PcI/8Aw1DnYwbH/Ct+uP8AuKV+80PiDS9E1fTfD82p2CaxdWclxa2TzotzdwQGJJpUiJ3MiNNCGYAhTNGCRuGfQc06EYc2t27fJa3+X4HC4v2qlbo9fmtDVooormNgrz39p/8A5Ixrf/Xq/wD6Ca9Crz39p/8A5Ixrf/Xq/wD6Cazrfw5ejOPMP91q/wCGX5M/Lv8AYF/5MU+Cv/Yh6H/6b4K9aryX9gX/AJMU+Cv/AGIeh/8Apvgr1qvzyt/El6s/lPMP96q/4pfmwooorI4wooooAKKKKACqHijw/D4t8M6jpVw0qW+p2stpK0ZAdUkQqSpIIzg8ZBq/RWlKrOnNVIOzTuvVCaTVmef/APBEjxBd+G/2jvEfgrUFljuLSGW7EICMkEsciQzguDkkkxAYyvyEjHf9ax0r8XPhr4zi/ZM/4Kd+GNekmgs9C8Q3kf27dqDW0EdveboJpbh2G3ZHNuuCp+X92nKYyv7RjpX73xpGGIr0c4oq0cVTjU0096yUlbXVWV99Xuz9l8FsZGWS1MA379GpJP0esX89V8haKKK+MP2AKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAK+f/APgmn/ybr4j/AOyq/Ef/ANTfXa+gK+f/APgmn/ybr4j/AOyq/Ef/ANTfXaAPoCiiigD5t/4Krf8ABNDwn/wVc/ZKv/hd4q1XUvD7LeR6vo2r2IEj6VqESSJFM0RIWaPbLIrxkruVztZGCuv4h/EX9nT/AIK3f8Eirm/sfAnjH4k/FHwSWtdJ06+0Ep45gSFI3MKQabex3F1ZKiAo5S3SIEInmOPLJ/pOorNQcZOVN2vv2fTX5afnc0c1KKjUV7bd1rfT56/lY/mb8KfGb/gs1+3Lbaj4Fjh+M3hy2uoY5ru+vvCen+AGhjWaPmLUWtrOUMG2kpby+YyBxtZdwr9T/wDgiv8A8EMNR/4J1+PPEnxg+LHxJ1b4r/H7x1YnTtY1d764uLK0tmaF2iWW4/f3UjPBGTPNtO1UVY0wzP8AorRXRCoqesFaTTTfWz0a9Gvn520MJQc9Jv3b3t0uuvr/AFYKKKKzLPlr/god/wAFFtd/ZB8cfDj4f/Dn4U6j8a/i58Upr59F8L2+uwaFELOyhE13czXs6PFGEDIFVh85YjIIAL/hX+2Lo/7ev/BO6y+KGjaVqfh+PXrO6gvNI1HH2rSb22lltrm2cjg7JopAGwNy7W2rnaOF/wCCmvwS+NegftY/A79oL4IeA9O+Les/DO11vw/rHgq41+20GXUrPUoYgtxDeXAMSGKWBCykEsCABySNf/gnD+wz4s/Zj/4Jp6V8PvGn9mxeONZutT17XoNNmM1tZXeoXk101vG5+95SyrGSMqWRiCwIJiCc6M1LfXys7tRS7xcPelLW0vdur8q58ypudN06W7Vl2acXdt9Gp2ilpePvWe6+Pv2Bf+TFPgr/ANiHof8A6b4K9arx39gr/gk7/wALG/YX+C/iH+1fiNH/AG94D0PUdlt8R/EdrCvnafBJhIYr9Y40+bhI1VVGAoAAFfSPw0/4J3698JtCl07S7jV7q3muDcs+s67qGtThiqqQs15PLIqYQYQMFBLEDLMT8pVySu5OUf6/E/Ecf4c5jOrOpSs7tvWy3fq/yOQor1D/AIY+8Y+lr/3yf8aP+GPvGPpa/wDfJ/xrH+w8V2X3nn/8Q3zr+WP/AIEeX0V6h/wx94x9LX/vk/40f8MfeMfS1/75P+NH9h4rsvvD/iG+dfyx/wDAjy+ivUP+GPvGPpa/98n/ABo/4Y+8Y+lr/wB8n/Gj+w8V2X3h/wAQ3zr+WP8A4EeX0V6h/wAMfeMfS1/75P8AjR/wx94x9LX/AL5P+NH9h4rsvvD/AIhvnX8sf/Aj4j/4KFeD4ZvDOg6+PKS4t7ptPfEQ3zJIjSLl+uEMbYXB/wBaTxzn9df2TvjhF+0j+zd4M8bJJbPNr2mRy3otoZIoYrxMx3UaLJltqTpKgyTkKCGYEMfl34gfsD+IPiN8CvHOiTpLNqGo6PL/AGdBayxwm4u4mW4t4y0nyhWmhjViSBtZuV+8MP8A4N/Pi/eeKPgj418F3QuZYfCWpwX1pNLdNIscV6kmbeOMjEarJbSScHDNcscA5LfsuX0J4rguMar/AHmDqNbr+HUf3/Ftvt227eDsuxnDnE6wWL+HGU21bX36V3a+2kLt+q+f6A0UUV8cfvIUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRXnmtftc/Cjw1rN3p2o/E74e2GoWEz211a3PiOzimtpUYq8bo0gKsrAggjIIINbUcPVrO1KLl6Jv8jnxGLoUEnXmop92l+Z6HRXmf/Dafwc/6Kz8M/wDwqLH/AOO1meMf+CgHwS8DeHLjVL34qeBpra12700/VotRuW3MFG2C3LyvywztQ4GScAEjqjlOOlJRjRm2/wC6/wDI4p57lsIuc8RBJbvnj/mev0V8z/8AD4X9nP8A6KJ/5QdT/wDkaj/h8L+zn/0UT/yg6n/8jV2f6sZz/wBAlX/wXP8AyPP/ANc+H/8AoOo/+DYf/JH0xRXxJrX/AAXu+C+lazd2sGj/ABC1KG2meKO7ttNtlhulViBIgkuUkCsBkb0VsEZUHIqt/wAP/fg5/wBC18TP/BdY/wDyXXcuCM+av9Vl9x5z8SOGE7PGw+//AIB9yUV8N/8AD/34Of8AQtfEz/wXWP8A8l0f8P8A34Of9C18TP8AwXWP/wAl0/8AUfPv+gWX9fMX/ESeGP8AoNh97/yPuSivzi8Y/wDBw5o9l4juIvD/AMLtT1PSF2+Rc6hriWNzJ8oLboUhmVcNuAxI2QAeCdozP+Iif/qj/wD5df8A9x12R8OOIpRUlht/70F+DkefPxc4ShJxeL2/uVH+KhZ/I/TCivzP/wCIif8A6o//AOXX/wDcdH/ERP8A9Uf/APLr/wDuOq/4htxH/wBA/wD5PT/+SI/4i/wj/wBBf/lOr/8AIH6YUV+YsX/BaP44fHHWZ3+FPwXtr/T9NhjW/hWxv/EE0ErtJtZpLbyRGrKuFVkzmNzuPRbX/Dyr9sb/AKID/wCWPrf/AMfpvw8zaPu1XThLs6kbr11EvFfI5+9QVWceko0ptP00R+mFFfmf/wAPKv2xv+iA/wDlj63/APH6P+HlX7Y3/RAf/LH1v/4/S/4h/mX/AD8pf+DIj/4inlH/AD6rf+CpH6YUV+Z//Dyr9sb/AKID/wCWPrf/AMfrP8Wf8FBf2vvGnhXUtHvPgLqENpq1pLZzyWHhXxFYXSJIhRjFcQXKTQyAE7ZInV0OGVlYAg/4h/mX/Pyl/wCDIh/xFPKP+fVb/wAFSP1Ar5//AOCaf/JuviP/ALKr8R//AFN9dr8z9v7QP/RJPj//AOF98U//AJe1+gn/AARh8AW3gP8AYVsnjfxB/aGu+K/E2q6xb6vrd/qs1hqL65erdWwa9mlmi8uVGR0Zt5lWWSUvcSTSv5OccL4vLaKr15Qabt7s1J3s3sumh7mQcaYHN8Q8NhYVFJLm9+DirJpbvrrsfVlFFFfOH1wV+CX/AAXq8X/tC/8ABUn/AIKha3+x78HvEY8N+C/AHhBdf8UwXGqS6fp2ogwRXby3piRpJ4x51pFHCEkUSMHIHzMn721+I/8AwX5/4Jp/tMfC39uA/te/sonW9U17U9CGieKdM0S0ivdUiAg+yGRLJ0cXsMkPlKY1jkkjeJZAuFDR8WLV3Hm+H3vTm5XyOX91Ss38n0OzCNLm72Vu/wAUb28+W9j4i+DH7SPxc/YV/wCCVf7E3xy8A6lPpXhXwj8QvE+j+IzDdME1JLy9gl+xXNv0lglhsrjnko6Kw2uEYf1I2twt3bRyp9yVQ659CM1/Kt/wTw/4I8/tm/t4XXw3+D3xD8LePfhx+z18M/EJ1q7i8W6MdDgtTcOZbhoIJo4576eRUkjRiJFhMpBaJXO7+quGJbeJUQbUQBVA7AV7VZr2EU97u3e3LBa/9vKTXkzyKV/aWjsk0+13Oclb0T97z9B1FFFcR1hRRRQB8/f8EnlB/wCCWX7NPA/5JV4X/wDTRa19AbB6D8q8A/4JO/8AKLL9mn/slXhf/wBNFrX0BQAmweg/KjYPQflS0UAJsHoPyo2D0H5UtFACbB6D8qNg9B+VLRQAmweg/KjYPQflS0UAIBivyq+Beo6d+w9/wW88Q+F4ZdMg8P8Ai29k0gCPT2ijsU1JIb60toI4iQm24NtbhiNmzcSqA5T9Vq/Nj/gux8P9W+G/xK+F3xp8PyXNvqGkzLpTXbNC8Njc28rXliVicEszMbosSGTEKAhc/P8Ad8A1I1cXWyuq/dxNOUO3vWvF7PazS8312PzLxRozo4GhnVFXnhKsKm124XtJbrR3Tfkt1ufpPRXM/Bb4i/8AC3/g54T8W/Y/7P8A+Eo0az1f7J5vm/ZvtECS+Xv2ru278btozjOB0rpq+Hq05U5unPdOz+R+k0a0KtONWm7xkk16PYKKKKg0CiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiquta3Z+GtGu9R1G7trDT7CF7m6urmVYobaJFLPI7sQFVVBJJOAASa+cfjD/wAFd/gP8IP7Rg/4S/8A4SjU9O8r/QvD9s979p37D+6uPltW2q+5v3wxtZfvjbXfgcrxmNlyYOlKb/upu3rbb1Z5mZ53l+XQ9pj60aa/vSSv6X3fktT6Yor8z/jD/wAHCX/IRtvAHw8/55fYNS8QXv8AuGTzbOD/ALaKu25/use6Vmf8NOft3/H3xl5Xh3wXqfgr7NZbntv+EYh02zl2vgv52qhsynzFGxZOVTITh2r6yn4d5qoKpjHToJ9ak0u3a/f5dbHw1XxYySVR0sBGriZLS1KnKWuvflvt00fS5+odcf8AED9oTwD8J9Zj07xT448IeGtQmhFzHa6rrNvZzSRFmUSBJHUlSyMM4xlSOxr84rv/AIJIftNfHTRtEtPiF8V7a50aWaC8urDVfEmoatNpbFcOwhZDA88aPIvyyhScgSbW3V6H8Ov+De3wdpn2z/hLfiH4m1vfs+yf2RZQaX5ON2/f5v2nfnKYxs27WzuyNrfD2QYdXxWYqT7U4N/+TXt/WhMeK+KcW7YLKXBfzVakY/8Aktuby0+Z73rX/BW/9njQNZu7Gf4j2zzWUzwSNbaTf3MLMjFSUljgaORcjh0YqwwQSCDXlX/D/wB+Dn/QtfEz/wAF1j/8l11/w/8A+CJvwC8G6NJbajoWueLJnmMq3eq6zPHNGpVR5YFqYI9oIJ5QtlzliMAev6L+wt8F9A0a0sYPhR8PXhsoUgja50C2uZmVFCgvLIjSSNgcu7FmOSSSSaUqvCFDSEK9XzbjFfK2v3jjR49xNpVKmGortGM5P0d9NPJnxL/xET/9Uf8A/Lr/APuOquk/8FZP2ofiXatrng74IW2peGL+aVtOng8MatqKmJZGUKbiKVY5WUqVZlVQWVvlXoP0w0XRbPw1o1pp2nWltYafYQpbWtrbRLFDbRIoVI0RQAqqoAAAwAABVqh8SZFT/wB3yuN/71SctPR7P5jXCPE1W31vOZNf3KUIa+q3XyPzFi/aG/b1/aD1me68N+DbnwVDpsMcU1o2g2umQzMzSESKdWLSSNgYby3KqFTKqWy1bxj4S/4KHeOfDlxpd7LqcNtdbd76fqWg6dcrtYMNs9u6SpyoztcZGQcgkH9Q6KFxxGnJOhl+HSW16d3/AOBXQpeG06sWsVmmLk3e9qqjF/8AbvK0lbofmf8A8O1f2xv+i/f+Xxrf/wAYqrL/AMEXPjh8cdZgT4rfGi2v9P02GRrCdr6/8QTQSu0e5VjufJEasq5ZlfOY0G09V/TqikvEPNo+9SVOEu6pxuvTQp+FGRz92u6s49Yyqzafrqj8z/8AiHY/6rB/5an/AN2V1/w//wCDfLwDpujSJ4p8d+L9Z1AzFo59Kht9MhWLauFMci3BLbtx3bwCCBtGCT+gNFY1fETiKpHlliX8owX4qKZvQ8J+FKUueODV/OU5L7nJo+G/+HAXwc/6GX4mf+DCx/8AkSrOi/8ABBH4L6VrNpcz6x8QtShtpklktLnUrZYbpVYExuY7ZJArAYOx1bBOGBwa+26K5XxvnzVvrUvvO5eHHDKd1gofd/wT5n/4c8/s5/8ARO//ACvan/8AJNH/AA55/Zz/AOid/wDle1P/AOSa+mKK4f8AWfOf+gur/wCDJ/5no/6mcP8A/QDR/wDBUP8A5E8N+HX/AATT+A/wu+2f2b8MPDNz9u2eZ/a8T6xt2bsbPtbS+X9452bd2FznaMdN/wAMWfBz/ok3wz/8Jex/+NV6ZRXLUznMKkuepXm33cpN/md1Hh/K6UFTpYanGK6KEUvuseZ/8MWfBz/ok3wz/wDCXsf/AI1R/wAMWfBz/ok3wz/8Jex/+NV6ZRWf9qYz/n7L/wACf+Zr/Y2X/wDPiH/gMf8AIwvh/wDDDw18J9Gk07wt4e0Pw1p80xuZLXSrCKzhklKqpkKRqoLFUUZxnCgdhW7RRXHOcpyc5u7fc76dOFOKhTSSXRaIKKKKksKKKKACiiigAooooAK+f/8Agmn/AMm6+I/+yq/Ef/1N9dr6Ar5//wCCaf8Aybr4j/7Kr8R//U312gD6AooooAK/Hr/go7/wU1+OXiz/AIL/APwU/Zj+DtzqUfhTw1qekaz40sdJeKC51hGYXd0LidyMWsNjtbygyiQu4YSExBf2Fr+f7/g4N+Fnx8/4Jhf8FXNP/be+EGnS6l4e1PTrW31m8OnyXthpssUMVjJa6iikbLa4jEAWTcnzsQrJIqMc1VjSxVCpV+BSu+10ny8393mtfre1tTT2bqYetTh8TjZd9Wk7efLe3+R7T/wWx/4Kh/tA/wDBK/8A4K9/CzxXajVH/Z18V6PYaNqmn3YSbSdUlS6na8eL5ibe8jiuI2V/3Zfy0DCSNMV+y0My3ESuh3I4DKR3Br+Vq6/at/ap/wCDqD9pL4a/DfVvDHh2w8F+DtWivdZn8L6PcW+laJDKxEt9eTTzysJPJSVY4/NXeVKopYk1/VHa262ltHEn3IlCLn0AxXRTpShhIqpvzzt35XZq/lzOVvLzulz1Kinim6e3LFS7cy008+W3N8ujuSUUUVmaBRRRQB8//wDBJ3/lFl+zT/2Srwv/AOmi1r6Ar5//AOCTv/KLL9mn/slXhf8A9NFrX0BQAUUUUAFFFFABRRRQAUUUUAFeG/8ABSH4Df8ADRX7GXjbQ4LX7Vq9nZHV9KEdh9tuTdWv75Y4EHzCWZVeAMnzATtwwJU+5UV1YHGVMJiaeKpfFBqS9U7nDmeApY7CVcFX+GpFxfo1Y+JP+CEnxwi8f/sl3ng6WS2GoeANTkiWGKGRW+x3bPcRSSOcozNMbtfkIwsS5UZDN9t1+T//AAT/ALmX9hH/AIKu+KPhZfTXNroWvzXOh2327VY0VlOLrTLiUIPLlnki2RouEYNesAASYz+sFfV8f4KFHNpYij/DrpVIvupb/jc+I8LsyqYjIoYTEaVcNKVGS7OGi/8AJbL1T9Aooor4o/RQooooAKKKKACiiigAooooAKKKKACiiigAooooAKK8N/bQ/wCCgHgP9ijw4/8Ab13/AGh4qu7J7vSvD9sT9pv8MEUu4UrBEWJ/eSdRHLsWRkKV+f2tftCftO/8FYNZu9G8Gafc+GvAM0z2l0unu1npsURYo6Xl82HuGEN0nmQR8SIodbbIr63JeDsZj6P1yq1RoLec9F8u/wCV9L3PhOIvEDL8sr/UKMZYjEvalTV3/wBvPaP521tY+7v2i/8AgqN8Gf2ar+/03VfE39t+INOwJdH0KH7bcq4mMTxNICII5UKuXjllRwF+7kqG+N9W/wCCxPxz/av8Tr4V+DHw/ttG1C8hiy0EZ1m/tG89VacyyIltFAd8cbNNCVTczGQZUr6/+zL/AMEJPh94D0Zbn4mXlz471m4hAktLaeWw02yZljJCGNlnlZXWQCRnRWRxmFWANfbfg7wVo/w78OW+j+H9J0zQ9Is93kWOn2qW1tBuYu22NAFXLMzHA5LE9TXrSx/DOV+7g6LxVRfaqaQ+Ueqv0kv+3jwoZZxlnb58fiFgqL+xS96o/Wb+F26xfrE/Lzwd/wAEX/jb+0hf2+t/GD4hf2VciyaCL+0L2XxFqttsmOyFsyCJYiGkkBS4bG8AqCzbfo74Qf8ABDn4KeAtGKeJLfXPHWoTQwrLPfahJZwxSqp8xoI7ZoyquxztkeUqFUBvvFvsiivPx/H+d4lckavs4dI01yJejXvfietlnhdw5g5e1nQ9tPrKq+dv1T92/wD26cz8Ovgt4O+D/wBs/wCES8JeGfC/9o7Ptf8AZGlwWX2nZu2b/KVd23e+M5xubHU101FFfH1Ks6kueo233erPvqNGnSgqdKKjFdErL7goooqDQKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAr5//AOCaf/JuviP/ALKr8R//AFN9dr6Ar5//AOCaf/JuviP/ALKr8R//AFN9doA+gKKKKACvwi/4KGf8FqfG/wDwTi/4OJLrQtd+MPiGf4BXKaNJ4o8LabpaXx0NDp3EardQ/JukkS5layk3PHKAWaRBGv7u1+Sf/Ba//gi9+xf4s+LXib9o/wDaR+M3xD+Gkvic2ttLHYavYRwXL29tFbpHaWpsJ7qeTy4lZkj8xvvtgKDjFzlTrQrO3LG977PokzanGM6VSk73krK26d07rs7X1Pbo/wDg6K/YVlkVV+OWWY4A/wCEM8Qcn/wBr77t51uoEkQ5SRQynHUHkV/Pj+xT/wAEMf8AgmN/wUB8ZXeh/CL9pT4yeKPEGmqJ30qfUbPSr6ZMFi8MF5o8Mk6KF+dolYJldxXcM/0G2lsLK0ihXJWJAgJ6kAYrslCMaabvzN/K2ln+ZyKbc7Rtbr66ElFFFYmoUUUUAfP/APwSd/5RZfs0/wDZKvC//pota+gK+f8A/gk7/wAosv2af+yVeF//AE0WtfQFABRRRQAUUUUAFFFFABRRRQAUUUUAfmL/AMFzvh3L8Hfjd8M/jD4WtrnT9dkmMV3qMVnG1rFeWTxTWUkhMZDTspkH70tujtFAXEbZ/R34YfECz+LHw18PeKdOjuYdP8S6Zbarax3Kqs0cU8SyoHClgGCuMgMRnOCeteG/8FYPgfF8cf2GvGUYjtjqHhWH/hJbGWeaSNYGtAzzEbM7ma1NyiqwK7pFztwGXzP/AIISfHCLx/8Asl3ng6WS2GoeANTkiWGKGRW+x3bPcRSSOcozNMbtfkIwsS5UZDN+hY1f2jwrRxK1nhZuEv8ABLWLv2TtFfP5/lWXS/srjfEYN6U8bBVI/wCOGklbu1zSfy+X23RRRX56fqoUUUUAFFFFABRRRQAUUUUAFFFFABRRVXWtbs/DWjXeo6jd21hp9hC9zdXVzKsUNtEilnkd2ICqqgkknAAJNNJt2Qm0ld7BrWt2fhrRrvUdRu7aw0+whe5urq5lWKG2iRSzyO7EBVVQSSTgAEmvzs/bl/4K1az8RPEeq/Cf4AafqeuaveZtH8SaOHubmfasjXKafFEpZsKoxdA8BZWjXAjnrzz9rX9rXxv/AMFWvjdb/B74PW9yngdJvNuLiXfbrqixuub68OMxWcbbSkZG5mKEq0rRRR/cn7EP/BPDwT+w5o11Jopuda8T6rDHDqGuXyoJnUKu6GBVGIYDIpfZlmJ273fy02/o+HyrAcP0Y4zOI+0xMleFHpHtKp/8j8rXvb8jxWd5nxViJ4DIJ+ywkXy1MR1lo7xpf/JLbdO1ub5x/ZZ/4If6de+V4t+OWr6n4n8Savm+vtEivGWKOeXzTILq7VzLcS5eNy0bxgSI43TKcn9ANF0Wz8NaNaadp1pbWGn2EKW1ra20SxQ20SKFSNEUAKqqAAAMAAAVaor5HOeIMfmtX2mMndLZbRj6LZfm+rZ95w9wrlmSUfZZfSUW/ik9ZS85Ser722V3ZIKKKK8U+hCiiigAormvjN4gu/Cfwf8AFeqWEvkX+m6PeXVtLtDeXLHA7I2GBBwQDggivzM8H/tw/tHeNdCj1C1+IenxwysyhZdIsQ3BIPS1I7etfM8QcV4LJ3BYtS97ayX6tH0uQcK43OFN4Rx93e7f6Jn6sUV+anwX/bT+OjftKeAPD3ifxva6jpfiHV4La4gg0uzXzIjIqspYW6MuQeqnPvX6V105DxDhs3oyr4VOydtbfo2c2fcP4nKK0aGKau1fS/6pBRRRXunhhRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAV8/wD/AATT/wCTdfEf/ZVfiP8A+pvrtfQFfP8A/wAE0/8Ak3XxH/2VX4j/APqb67QB9AUUUUAFfzvf8FY/ghYf8FT/APg550n4CfFDx5d+BfAOg6NZWOlPHMkct55lkl68Fp52YlurmaYxh9r58pBscqEr9xP20P27vhT/AME9PhVaeNvjB4q/4RDwxfalHpEF7/Zl5qG+6kjkkSPy7WKWQZSGQ7iu35eTkjP5lf8ABfr/AIJffAz/AIKh/DH4f/tE6P8AHf4efB/xF4l0K3i8P6v43v10fRPGllJGbm1jkNwY5oJVSVnDLE77DtaLgMmEv4sK/LzRg7NdnKLt89dI9U9mbxT9nOjfllOOnmlKLfy0ab6d0fCH/BZr/glN4C/4ID/G74EfEL4F/E7xbqHjGTXVvI9B169tZ9UT7O6ut1G1rFAfs7nMDK0Z3FiNxyVH9PdhcNd2MMrLsaSNXK/3SRnFfg3/AMErf+DP7XPgv+0XoPxD+PXjvwT4h0bwpe22raRoPhCW5u4NZmjPmRtc3E8MBSJXWNvLRH80EgugGG/equ7WGHVKUrvmlL0TUVb8G/LbTZcWk6/tIqy5Uv8AE7t3+V9O9+u4UUUVgbBRXy1/wUf/AGkPj58K9e+HXgz9nzwB4a8QeKPHNzfSaj4p8Y29/wD8Ij4Ps7OASs9/LaAMjzltkWXHzI3Ddtr/AIJS/tn65+37+w14Q+JviXQNN8P67qr3djfRaXcG40y9mtLqW1e6s3YljbTNEXQMWKhtu98b2KfvqTXT/hrryvp637MKnuct/tf8HT7lf0t3V7f/AASd/wCUWX7NP/ZKvC//AKaLWvoCvn//AIJO/wDKLL9mn/slXhf/ANNFrX0BQAUUUUAFFFFABRRRQAUUUUAFFFFABX5GfsS61ef8E+/+CrusfDO7u7my8Ma9qcvh1o7yVrlriKX97pM7CAiPz3L2672TEa3UwKx5Yr+udfmL/wAF4/gfL4C8eeBvjD4cjudL1C4mGl6jqNnNHbtFeQATWMylNsxnKJOPNy21bWEZTC7v0Dw/rU6uIrZPX+DEwcfSSu4v5a287H5Z4p4erQwmHz/DL95g6in6wk0pr5+7fX4bn6dUVx/7P/xfs/j98EfCvjSxFskPiXTIL5oYLpbpbOV0Hm25kAAZopN8bcAhkYEAggdhXwdalOlUlSqK0otprzW5+m4evTr0o16TvGSTT7p6phRRRWZsFFFFABRRRQAUUUUAFFFFABX5U/t6/tVeKv8Agor+03ZfAT4Uanpk/hGS9WA3cF4Uttenij86aeaUgZtrfZIVSMOJDD5i+aTCE9V/4LLftv3mjWv/AAobwTa3Oo+J/F8MCatNYzM9xbxTSDy7CKOFvMM84Ch0cYMMyqFfz8p7T/wTV/4J/wCjfsZfCq21C9tPO+IviKyjfXLycI0lhuCubCEozKIo2wGZWPmum8naI0j/AEbJMPQyLArPMbHmrTv7CD/9OPyXT/gpr8k4jxWJ4mzJ8N5dJxw9Np4mor3/AOvMfN9X8ns4y7n9i/8AYw8K/sT/AAqTw/4fT7Zqd5sm1nWZogtzq04BAYjJ2RLlhHECQgJ5Z2d39foor4LGYytiq0sRiJOU5O7b/r/htkfqGAwGHwWHhhMJBQpwVklsl/W73b1eoUUUVzHWFFFFABRRRQBx37RH/Jv/AI5/7F6//wDSaSvyo+AH/JMLP/rpL/6Ga/Vf9oj/AJN/8c/9i9f/APpNJX5UfAD/AJJhZ/8AXSX/ANDNfh/jBvQ+Z+3eEG1f5HSeBv8Ak834Pf8AYdh/9HR1+slfk34G/wCTzfg9/wBh2H/0dHX6yV7nhN/yK5/4jxPFj/kZw/whUd5eRafaSzzyJDBAhkkkc4VFAyST2AFSV8nf8FvviJ4+8Af8ExfilD8L/CHjDxr468U6afDWl2PhrSp9RvYPtv7ia58uFWdVihaVt4HDBOmc1+m4mpKnSlKmry6Lu3ol82fmWHpqpVjCTsur7Lq/kj8QPGXjnxLa/H2x/wCCpMepXr+Hp/j4/h6OxBG0+FI4PsaSAY3B2t45YCM4yQcV9u/8Fx/26/2hPhH/AMFTv2UNI+F3hjxPe+E9R1P7To9lpHxEj0mw+LUkhtGexuYgQkCREqokug6OLglQAGzz+t/8G9v7Tk3/AASW/wCFNy/tS2c3g208N/2pH8NE+Eum4/tBCdQFkNSWb7XvN58vngFiSfkIOyvL/EHhv9ojxP8Aszf8E9PjT4h+Anxl1nWP2Y/Ek/h/xh4ZtfDN2fEs9nA9mLW9hs5EWWVHtrfBcgJ5i4Z1Dbh10oQpVaWG5rRo1Kfb4HBU23un+8jzWV1eeuhzVZyqwniFG7q06i/7eTc4pbNe5Jxu0vhSVpHpn/BWf/goN+1n4G/4KA/sbWunfCPxZ4FutZuRdP4K0z4r2yWfjy/c2hn0e6kh2wBbdiIxNOrRv57FQAGz9V/tjf8ABcXxb+xN47+BfgnxP+ztreofEf42aFcXMXhfSfFdvd3Wl6yrJFb6YJUgMM6PNIivch0WNN7hJNoQ+Qf8FldI+I3xZ+J37Dv7Ung/4K/F3xJoXw58QtrHiTwZa6AZPGGk29y1pKqyWEbORKqwShl3bUfYrOu7I0f2xfCnjr9qX/gsN+wD8XNE+FPxU0rwnbabqV9rZ1bw3PFN4T8+IlIdTMfmRWk3IBR5OvHWow0W/ZYeel684y/uxkm1Zu/la9/hXeXM8Q+VTrx1tRi4/wB6SlZ3St87WfvPtHl+kfiX+37+0h4R+GvgKLQ/2MvFfib4reKLO61LW/DUfjvTLbRPC1vDOYQkuuOv2eW6k3QyJAibmRpTn902eQ/ZZ/4L3eDvid+z98ePFfxZ8E6x8GPE37Nd21n468OT6jDq5t5GeWO3S1uEEa3DyyRGNRtQGQqAzKQ5+eP+C+PwD8XfFD/goR8HdW+JXwi+N3x8/ZM07QrldR8HfDOO6vLka8BchLm5traSKTASWALJ5sYAVwH5eOT5X/ZC/wCCQXxP+LP7Mf8AwUF+G/h/4KeMfgpbePz4b1b4daB4nEojuYLa5ur+GxW+mZo5ZfK8qNyZm8mWULKylWrFVJSpVaiWqjJpb8rVSKWm/wAF2o+85KzutjodOEZ04ylpzU7vupL3vub1a5eVq1nqz9L/ANj3/grd8cf2qbjw/rVz+xt448M/Df4habe3vgrxSPF9jff2k8dvLc2Y1C1WNJNMhuo4Sq3EpeMSSwKN6yq9fKP/AAQP/bz/AGo/jD+3D+0F4f8AFnw28WeLfCs3xDlt9fvNY+J8F7D8IMNekafbW0u43ce9RHm02J+6U4xivpr/AIJR/wDBRH4ofETwl8Hvgx4h/ZS+O/gXWvC+gR6T4w8T+JtF/sbwzpsVjZmFJ7O4mJe9eaaO3UQKqsqzyOGdISW8g/4JR6R8Rv2Av+Cr37T/AMPfGXwV+LuoaJ8cviC/iLw7470bQDdeFra1b7bchry9LLHD8ksa4Uu3mEoVUgbu506cMY4w96DhJRv9q1SFr7fFG97cukdLe9zcTlUlhFKa5ZKUXJL7N4TTt6SsrO9ua8r+7byT/gnz+3n4Z/4JpfsC/tbfE74X/CDxp4qsfAPxhmsvEOma/wDEGO4kuBI6QPfQSRaYiworNHmJo5HIYlp22AV9zftlf8FqtI/Zz+Gf7Nes+C/BL/EvVv2nNUsbLw3paaz/AGb5VvcRwu1w0nkTbvLa4gUptX75O4ba+c/+CLv7BviTxh+zR+298OPij4J8VeEdM+K/xC12Cy/t3R7iwN/Z3MLRpd2/nIvmRgkMsiZXKjBr5u/4IZfsYftEfFH/AIKAfCK2+Pvw68a+F/BP7H3hXVNL8MXut6JdWdnrF7LezLE8Es0apNtimXaYyw2WUBzzXLgPfdKjU25KMu3uRpXqQXm3GKXVcztsjfF+7GrVhvzVY/8Ab0p2py9FeTe6fKrrW5+gPxz/AOCzvjy8/af+IXww/Zx/Zt139oe++D6pH431JfF9l4Zs9KupFLJbW5uI5Gu5AEkDKgVg0ZAV+tfRf/BOv9vjwf8A8FKf2VtC+KnguG/sbHUpJbO+02/UC70i9hbbNbS4JBKnBDD7yOjYGcD8Wvix/wAEuvCf7M3/AAUs+P8AqP7Rn7Hnxw/aU8B/ErXZvFXgbxL8MLbUtQk09bieSaa1uobO8t1Q/vgpMxD7rclFZJAw/Xz/AIJI/AXwt+z7+xtp2n+D/grrnwA0XWdTvNYh8Ia1rcuq6lbpK+2G4uWkllaGaaCOF3t958hmMZyykl4L3sLz1NW4xfpK/vRe2i1VrOScb8zV2GM93EOFPZSa9Y20fXXZ3uo6tWTsj6aooooAKKKKACiiigAooooAKKKKACiiigAooooAK+f/APgmn/ybr4j/AOyq/Ef/ANTfXa+gK+f/APgmn/ybr4j/AOyq/Ef/ANTfXaAPoCiiigD8i/8Ag9B/5RWeE/8AspGn/wDpv1KvzQ/4K+/8FJvgr+1H/wAEdf2SPhX4F8Z/2548+GNjpcPibS/7Iv7b+zXh0hbeQedNAkMuJQV/dO+eoyOa/en/AILQf8Erv+HvP7K2k/DL/hO/+Fe/2X4kt/EP9pf2L/a3m+Vb3MPk+V58GM/aM7t5xsxtOcj8u/8AiBj/AOrov/Mb/wD30rGhzxVWElo6kJr/ALcSt8r3v17WOqrUjelUhvGEov8A7elK/wCFrH3Z4D/4OeP2G9M8HaNYzfG/ZdW9nBBIn/CHa+drqiqRkWOOo9a/Q+3nW6gSRDlJFDKcdQeRX4D2/wDwY0fZ7hH/AOGoc7GDY/4Vv1x/3FK/fWwtfsNjDDnd5MapuxjOBjNd9VwnD2l/fbd10tpb8b9TzacJU+WlH4Ut+ulrfqTVzvxd+FGgfHf4W+IvBXiuw/tXwz4r06fSdVs/Pkg+1W0yGOWPzI2V13KxGUYMM8EGuiorllFSTjJXTOmMpRalF2aPzC/bq/4InePNC/Zb8O/A39jWP4bfDX4SajrdxrnxA0LxT4o1/wD4qvctui2LTwie6FpKkTrOkdxCWG0AjLE/bn7B3gP4j/C39mDw74b+KWlfCXQ/E2ho1jFp/wANYLyDw5ZWUZ220dul0BKpWIKGB4znHFew0VcZySkm783fysl9yVl2V7bsmUU3Gyty3tbz1f3t3fd27I+EP+CZX/BMr9m7x7/wTb/Z813Xf2fPghrWt618NfDl/qGoX/gXS7m6v7iXS7Z5ZpZXgLySO7MzMxJYkkkk19f/AAU/Z78A/s1+FbjQvh14H8H+ANEu7tr+fT/DejW2lWs1wyIjTNFAiIZCkcaliMkRqM4UV5f/AMEnf+UWX7NP/ZKvC/8A6aLWvoCpGFFFFABRRRQAUUUUAFFFFABRRRQAV4t/wUG/Zvl/ap/ZL8V+FLGC2m10wrqGjGWCORheQMJESNnZRE0qh4PM3Das7E5GVPtNFdWCxlXCYiGKo/FBqS9U7nHmOAo47C1MFiFeFSLi/Rqz+fY/P7/ggh+0hL4y+EHiH4aajPbed4NmGoaQrTxrNJZ3Lu0yLEFDMsU+WaQlubxFO0BAf0Br8lvDWowf8E3/APgszqEF1L/YngjxPeyQtIunw2NmunaiBLEqeYQiW1tdeUjSxsuFs5OB80dfrTX2HH+DpxzCOYYdfu8TFVF6te9876v1PgPC3H1ZZVLK8W71sJOVKXpF+6/S3ur/AA/MKKKK+FP0sKKKKACiiigAooooAK88/al/aQ0H9lL4I614z16e2VLCFlsLSWcxNqt4UYw2kZCsd0jLjIVtihnYbUYj0Ovyy/4KP/ETXv2+P2+vDf7P/hy5toNC8P6mLea6tLwXCzXDQLLeXMsZkSMtZxLOgiz5gZLhd2Zdi/S8KZJDMsdyV3ajBOdR9oR3+/b8eh8fxxxHPJ8t9phlzV6klTpR3vOW33b66O1up3P/AASv/ZevP2lviVrf7S/xRs7bVNQ17U5LvwvC9008NvKksiST+U5cqsDIkNsryExiJjt+WGSv0UrM8FeDtO+Hfg3SfD+j2/2PSNDsodPsYPMaTyIIkEcabmJZsKoGWJJxySa065eIM6nmeMliHpBaQj0jBaRS+W/ndnZwrw7TybL44WL5qj96pLrOb1lJ/Pa+ysgooorxD6QKKKKACiiigAooooA479oj/k3/AMc/9i9f/wDpNJX5UfAD/kmFn/10l/8AQzX6r/tEf8m/+Of+xev/AP0mkr8qPgB/yTCz/wCukv8A6Ga/D/GDeh8z9u8INq/yOk8Df8nm/B7/ALDsP/o6Ov1kr8m/A3/J5vwe/wCw7D/6Ojr9ZK9zwm/5Fc/8R4nix/yM4f4Qooryf9uD9q3Qf2KP2VvG/wASNf1PQtOXw3o93dafFqt/HZxapepBJJb2aM7LulmdAiop3MTgDNfqFarGlB1JbI/MKVOVSapx3Z6xRX5uf8G9X7XvxP8A22fgdq/xW+KP7SHgn4iz6zbvcXPw90vQ9MsJvhsftlysRnnt388pLDDlVuUB2rkO+GZvtL4Lftv/AAW/aS8UzaH8O/i98L/Hut21s17Np/hzxVY6pdRQKyo0rRQSuwQM6AsRgF1GeRXROlKEvZy+Ldrtv8ul7ptW6nPCpGSclte1+/8AV+tn+B6jRXmHjH9tv4MfDu81i38QfFz4YaFP4e1GDSNVi1DxTY2r6Zezo8kFrOHlBimkSORkjfDMqMQCAas/Gz9sL4Sfs06hp1p8Rvil8OfAF1rEbTWEPiTxLZaVJeopAZolnkQuASASuQCRWa1tbrt56X/LX0NOtv67fnoejUVy/wAWPjb4M+A3geTxN458XeGPBnhuF445NW13VYNOsUaQ4RTNMyoCxOAM8npR8Ifjf4L/AGg/BqeI/AXi/wAL+N/D0krwJqmgarBqVm8icOgmhZkLKTyM5Heha3t03C+z77HUUV5x8Mf2xPhH8bPiHqXhHwZ8U/hz4t8V6MksmoaLoviWyv8AUbFYpFilMsEUjSIEkZUYso2swBwTXo9HRS6MOrXYKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigArP8WeE9L8e+FdS0LXdM0/WtE1q0lsNQ0+/t0ubW/t5UKSwyxOCkkbozKysCGBIIINaFFAHz//AMOnf2Wf+jafgB/4bzSP/keuf/4JHfCfwt8H/wBl3xNp3hLw14f8L6fJ8VfiBvtdI06GyhfyPF2rWcOUiVQfLtba2gTj5YreJBhUUD6gr5//AOCaf/JuviP/ALKr8R//AFN9doA+gKKKKACiiigAooooAKKKKACiiigD5/8A+CTv/KLL9mn/ALJV4X/9NFrX0BXz/wD8Enf+UWX7NP8A2Srwv/6aLWvoCgAooooAKKKKACiiigAooooAKKKKACiiigD89f8Agv8AfAb/AISD4VeEfiLZWu658OXraRqTwWG+RrW4G6KSaccpFFNGUVWBXfe8FScP9V/sH/tFwftR/sq+EfFX2/7fq5sksdcZhCkqajCoS4LxxErHvYeaq4X93LGdqhgK6/8AaA+EFn8f/gj4q8F3xtkh8S6ZPYrPPardLZyuh8q4EZIDNFJskXkEMikEEAj87P8AghD8dtR8AfFXxl8GvECf2b9q83VrS0vmW1ubbUYCkN1bCJkEjytEFZlLfuxZOdnzOR+iYeP9q8LTpLWpg5cy/wCvc9/ud3vsl5H5Nipf2JxtCs9KWPjyvt7Wnbl69U0lpvJ+bP1Dooor87P1kKKKKACiiigAooooA8p/bW/aas/2R/2bvEfjOdrZ9QtYfs2kWsxUi9v5MrBHsLoXUN+8kCNvEUcrD7tfIP8AwQw/Zvi1/RvEvxs8UwXOq+J9X1Oay0m/1OCR5lXbm7vI5nYiVp5JWiaTbuUwTLvPmSLXDf8ABbr4v3nx2/aR8EfBTwsLm81DSZohc2q3TQw3ep3/AJS20LJIFj3RxMpWXeVAvXXKbXz+k/wa+Euj/Aj4VaB4P8Pw+TpHh2yjs4MoiyTbR80smxVUyyNud2Cjc7s2Mmv0Suv7H4ZhTWlbGO77qnHZekr3802j8mwz/t/jGpVlaVDL1yx7OtL4n2vCzXk0mt7nTUUUV+dn6yFFFFABRRRQAUUUUAFFFFAHHftEf8m/+Of+xev/AP0mkr8qPgB/yTCz/wCukv8A6Ga/Vf8AaI/5N/8AHP8A2L1//wCk0lflR8AP+SYWf/XSX/0M1+H+MG9D5n7d4QbV/kdJ4G/5PN+D3/Ydh/8AR0dfrJX5N+Bv+Tzfg9/2HYf/AEdHX6yV7nhN/wAiuf8AiPE8WP8AkZw/whXzh/wV5+G/h34m/wDBMn462/iTQNF8QW+l+Bta1Wzi1Kxiu0tLyDT7h4LmMSKQk0bfMjjDKeQQa+j6wvih8NNE+M/w08Q+D/Etl/aXh3xVptxpGqWnnSQ/arW4iaKWPfGyuu5HYblYMM5BB5r9MxdJ1aE6cd2nb16fifmuDrRpV4VZ7Jpv0vqfzjfGDwtp/wAIP+DUT4K6p4Y0PSfCy/Fjxfa6V8SPEGk6WkF/q2nxX2pvF9sniUSTKjxxhfMLY4UY3YP0n/wWn/Zi+Cv7H3xI/Yb8Rfs2eGfCHg74l33j/TbfQn8G20Vvc+JNHZYQ883kjdeKxNupmlZiy3MgLMJGr9YfB/8AwT/+Dngf9kKP4CWfgPSrj4RR2slmPDepSTalbmN5mnOXuHklLCZjIrF9yMFKlSq480/ZH/4IffsrfsL/ABTTxt8MfhBo+h+K4YmhttTvNRv9XmsQ3DNbm9nmEDkEqXiCuVZlztYg+i60Xi5Vlovaqomt7JRtB9l7u99FKWj6+b7GX1ZU95ezlB9ryb97112a+zGzWp8D/sIfsh/Db9qT/g42/bXvviP4O0HxzF4MksJdJ0/XbKLUNPtp7mOISXH2eVWjMwWBArkZUFscnIj/AOCWXwI+Fv7bX/BV/wDbxvP2iPDXhP4g+O/DXij+zNK03xhYQXsekaDFNcxJJbQzKVRFjjtU85OVXZ8y+aS/6pfCX9iD4X/Av9ob4gfFXwr4Y/svx78UjCfE+qf2jdz/ANp+SMR/uZJWhix/0yRM9815b+19/wAES/2XP28vix/wnPxT+Eul+IvFrW6W02p2+p3+lTXiIAqef9jnhEzKoVQ8gZgqqoO1QBxUI8lGhSkk+Sm4P1bT5l30XK72bi2ro7KjU6lad2uaopr0X2X21blpe0knZ6n5b/8ABVzwhd+Nv+Cs/wCxz8G/hNbfA7X/AIVab8OY5PhppXxKub3VvAesO6XMMYd4Hla7cwW9qISzNvbyslt43e5/sP8A/BL/AOJf7MvxI/a0/wCFofEX9mv4O+GPi18OimpeHvhVqV1Z6b4Jd4pLaPWTY3scYtIPLS7PmeaFZxKBtC/J+gv7UP8AwTB+AP7Zfwd8OeAfiN8LvDWueFPByJDoFlbrJpraHEqogitZbV4pYIiscamON1RhGgIIUYp/swf8Eo/2d/2NvhR4q8E/Dv4VeHdE8N+OYnt/ENvcNNqcuswuhjME8908s0kO1mxEX2LvchQWYmnFOnVg9XL2urfxKo2/e7PWzfvfCmvJc37ynNaW9novsuFvh7p2ulaPxSTbT1/LP/gmV4JuP+CUn7enwI/Z8+On7P3wWn8Ua0Lz/hW/xk+H0oXUdX3Wk3nnURhbi6QrcmHdOkSIUDLHKEEy/ujXyv8Asef8ETf2Xf2CPimfG3wq+E2m+HPFf2Z7SLU7jVNQ1Wa1jfh/JN5PMIWYZUvGFYqzKTtJB+qK6KlXnhHmd5a3e3XTTa9t2rXfRdeeFPkm+VWjpZb7LXV62vsru3fsUUUVibBRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFfP/wDwTT/5N18R/wDZVfiP/wCpvrtfQFfP/wDwTT/5N18R/wDZVfiP/wCpvrtAH0BRRRQAUUUUAFFFFABRRRQAUUUUAfP/APwSd/5RZfs0/wDZKvC//pota+gK+f8A/gk7/wAosv2af+yVeF//AE0WtfQFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABX5Lf8ABTbwdqP7D3/BSHwz8X9Ht9ukeIb2DXooLCRdO8+e3MUeoWhZCzfv1IeSRkAf7a4Ich8/rTXzP/wVv+AH/C/f2JPEnlXP2a98FZ8VW26TZFL9lil85H+Ric28k+0DbmQR5YLur7DgbNY4LNYwra06q9nNeUtPwdvlfufA+JOSTzHJJzw+lag1VptfzQ1/FX+dn0PoXwV4x074h+DdJ8QaPcfbNI1yyh1Cxn8to/PglQSRvtYBlyrA4YAjPIBrTr4k/wCCGv7TV58Yv2btR8Gaq1zcah8N5obaC6kLOJbC48xreMuzsS0bRTRgBVRYlgVc4OPtuvFz3Kp5bmFXAz+w7eq3T+aaZ9DwzndPN8roZlT2qRu/JrSS+Uk0FFFFeSe6FFFFABVXWtbs/DWjXeo6jd21hp9hC9zdXVzKsUNtEilnkd2ICqqgkknAAJNWq+VP+Cyvx21H4IfsSarFpaf6T42vY/DDz7l/0WCeKaSc7WRg2+GGSL+Er528MCgz6OU5fPH42lg6e85Jel938lqeTnubU8sy6tmFXanFy9bLRfN6Hy7/AMEn/D95+2F/wUJ8ffG/Vbi5t08PzTX0FnJfNcTRS6gJ4Le3LtH88ENqsyDBjIKQbRtBUfqbXyp/wRq+BWo/BD9iTSpdUf8A0nxteyeJ0g2r/osE8UMcA3K7Bt8MMcv8JXzthUFDn6rr3uOcwhis3qRo/wAOlanG2yUNPzu/1e58x4a5VUwWQ0p4i/tazdWd93Keuq6Pl5V8tlsFFFFfIH3oUUUUAFFFFABRRRQAVFfWgv7GaAvLGJkaMvE5R1yMZVhyD6EdKloo30DY/Mf9uw/HT9mvxXNpupfETxJqfw/8SeZa2upSbWUxupDW84VeJApPTh1yV6FV4L4X+G/+ET8F2tp9piuwC0izRfccMSwx+dfqz8Sfhvonxd8E6h4d8RafDqekanGYp4JR17hgeqsDghhyCAQa/L/9or4BeIP2BvGxtbsXeufD3VZGOlaiFy9u3LeRJ0AkHpwGA3Lj5lH4R4i8K4yC+tUJOdLs224/f07fc+l/3Tw84qwc39VrxUKvdJJS+7r3+9dbcb8XUvPD2p6R4osNZGi3vh+QzWsyjMvnZDJs/wBrK19c/wDBOHwx8afi99l8deP/ABv4lj8Lf6zTdMkkCPq57SvwCIPQdX/3fveefsNfsNX/AO0vr9p8RviNaNB4RgbzNF0WQEDUhnIkkH/PHp/10/3PvforDCltCscaLHHGoVVUYCgdAB6V7Xh5wti6NGOKxc3GO8YJtX835du/pv43iDxRha1aWFwkFKW0ptJ28l59+3rs+iiiv10/JAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAK+f8A/gmn/wAm6+I/+yq/Ef8A9TfXa+gK+f8A/gmn/wAm6+I/+yq/Ef8A9TfXaAPoCiiigAooooAKKKKACiiigAooooA+f/8Agk7/AMosv2af+yVeF/8A00WtfQFfP/8AwSd/5RZfs0/9kq8L/wDpota+gKACiiigAooooAKKKKACiiigAooooAKKKKACiiigD8g/C3/Grr/grs2l2n+g+CNbvY7Avff6JbLo+oNGysJ5/MJitJtu6XeC5sXDMm5wP18r4b/4LmfswaP8QP2cz8TfN+w+IPAPlQZS3Rv7Ttbm6hh8mR+HHlvJ5iHJVd0w25k3L7R/wTb/AGtZf2xv2YNO8Q31vcw67o039h6zLKI9t7eQwwu9xHsCgLIsqPt2rsZmUAhQzfonE8nm2U4bPIK84/uqr68ys4vzundvzS9PybgyKyPPcZw3N2hN+3orpySbUortytWSe9m+uvvlFFFfnZ+shRRRQAV+VP8AwWg8Yz/tIftt/D34P6JcaYLnSvs+n+bPHNF9m1HVJYhslfBDRCFbNwY0OPMkBLEbV/Vavy8/4J6T/wDDW3/BXb4hfE9rrU9V0jw//aF5pOpwWnkW0kbsLCximBjG3Ni0hVTtkYwbiSVfP33AVsNVxObyWmHptr/HL3Yrbrqv89T8u8T74yjg8hg7PFVYqX/XuHvTe99Hyvt6aH6c6Lotn4a0a007TrS2sNPsIUtrW1tolihtokUKkaIoAVVUAAAYAAAq1RRXwTbbuz9QSUVZbBRRRSGFFFFABRRRQAUUUUAFFFFABWV418DaP8R/Dk+ka9pllq+l3O0y2t3EJYpCpDLlTxwQCPpWrRSlFSTjJXTHGUotSi7NDIYUtoVjjRY441CqqjAUDoAPSn0UUxBRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFfP/wDwTT/5N18R/wDZVfiP/wCpvrtfQFfP/wDwTT/5N18R/wDZVfiP/wCpvrtAH0BRRRQAUUUUAFFFFABWd4u8X6T8P/C2o65r2qadomiaRbveX+oX9ylta2UCKWeWWVyFRFUElmIAAJJrRrO8XeENJ+IHhbUdD17S9O1vRNXt3s7/AE+/tkubW9gdSrxSxOCroykgqwIIJBFKV7Pl3HG11zbHx7+3J/wVh0DRf2fo7X9nHxL4L+LvxU8d/bdO8KjQdXt9V03S2toVlvdTvZYDIiW9lFIkrq3Ls8UYBMlepf8ABKf43eKP2k/+CcPwY8e+NdT/ALa8WeLPC1nqWq332aK3+1XEiZd/LiVI0yeyKB7V5h+0t/wb5/siftOafH/aXwU8JaFfWFhNZ6Y/h37ToNpYvJlvONpp81vDK4cgkupZgoUtgAD0/wD4Jj/8E9vDH/BMX9kHw98KvDNx/aX9nk3erap5csP9s6g6os135Mk03k79i/u0fYuOByaqhZRq8+75bdduZNLtvd9b2XvL4Yq8zlT5NlzX+fLZvvtZeV3o/i8R/wCCZX/BTb9m7wF/wTb/AGfNC139oP4IaLrei/DXw5Yahp9/460u2urC4i0u2SWGWJ5w8ciOrKysAVIIIBFfX/wU/aF8A/tKeFbjXfh1448H+P8ARLS7awn1Dw3rNtqtrDcKiO0LSwO6CQJJGxUnIEinGGFeX/8ABJ3/AJRZfs0/9kq8L/8Apota+gKRQUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAZnjXwdp3xE8G6t4f1i3+2aRrllNp99B5jR+fBKhjkTcpDLlWIypBGeCDX5ef8ABO//AISP/gnf/wAFIdX+EPij/R9E8b7rK3vLzyrOLUfKMz6dfRE793m4khWJZP8AWXJViZItlfqtXwR/wXZ/ZV1H4o/CrQfiJ4f0z7be+CfPg1lbazVrltOkAcTvJkOYrd0Y7ArbRdSyfIquT9zwTjqc6lTJcU0qOJXLd/ZmvgkvO9vV2vsfmviNltWFGjxDgot18HLmsvtU20qkX5ct35Lmtufe9FeQfsH/ALRcH7Uf7KvhHxV9v+36ubJLHXGYQpKmowqEuC8cRKx72HmquF/dyxnaoYCvX6+PxmFqYWvPDVlaUG0/VaH3+X46ljcNTxdB3hOKkvRq4UUUVzHWeZ/tl/GH/hQX7Kvj7xamo/2Te6To0/8AZ139n8/yr6RfKtPk2sDm4kiHzKVGct8oJr5U/wCCAPwl/wCEZ/Z58XeMJodTgufFesrZxeem22uLWzj+SWHKgt++uLlGYMVzDtABVs6f/Ber4w/8IX+yro3hK21H7Ne+NdZTz7T7Pv8AtljaqZZfnKkJtuDZHhlY5wMrvFe5f8E0/h1/wq79g/4Yab9s+3fadGTV/M8rytv253vfLxuP3PtGzdn5tmcLnA++jH6nwjKf2sTVS9YQV+3Sa7+nU/LpzWP48jT3jhKDfpUqNLa/WDXRPvpY9yooor4E/UQooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACs/xZ4s0vwF4V1LXdd1LT9F0TRbSW/1DUL+4S2tbC3iQvLNLK5CRxoiszMxAUAkkAVoUUAfP/8Aw9i/ZZ/6OW+AH/hw9I/+SK5//gkd8WfC3xg/Zd8Taj4S8S+H/FGnx/FX4gb7rSNRhvYU8/xdq15Dl4mYDzLW5tp05+aK4icZV1J+oK+f/wDgmn/ybr4j/wCyq/Ef/wBTfXaAPoCiiigAooooAKKKKACiiigAooooA+f/APgk7/yiy/Zp/wCyVeF//TRa19AV8/8A/BJ3/lFl+zT/ANkq8L/+mi1r6AoAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACqutaLZ+JdGu9O1G0tr/T7+F7a6tbmJZYbmJ1KvG6MCGVlJBBGCCQatUU02ndCaTVnsflT/AME9tR1H/gmz/wAFDfEPwo8cS6naaR428vTNLuf7PXytXn+07dNvMqXZIpFeePCMwSSbbJgxs0f6rV8g/wDBX/8AYk/4aa+A7eJfDeifb/iD4P2y232S333mqWOT51oPnXdt3mZBh23Rska7pmz3P/BNX9tCD9s79nm21C7fZ4u8OeXpniCJ5IfMnnEakXipGF2RT/MwGxQHSVF3CPcfveJpLOMFDP6Xxq0Ky00kkuWVu0lpfZNWPy/g6LyDMKvC9Z/u3eph276wbbnC+14PW27TcmfQtFFFfAn6ifl5/wAFvv7Z+NX7Y/wi+Flj/ZkH2yyi/s+4n3ri61K+NqfNYbv3S/ZYSNqbhmT72QB+odflT4atNO/aZ/4L6ahdpo+p3ukeHdZkkuwyMv2SfSrEW6XDtEx2xfbreLaWIDb41YZcpX6rV99xmlh8Fl2XdYUud+TqO7W+91+vU/LvD1vF5hm2bdKlf2a840lZPZaWlp93TUooor4E/UQooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAr5/8A+Caf/JuviP8A7Kr8R/8A1N9dr6Ar5/8A+Caf/JuviP8A7Kr8R/8A1N9doA+gKKKKACiiigAooooAKKKKACiiigD5/wD+CTv/ACiy/Zp/7JV4X/8ATRa19AV8/wD/AASd/wCUWX7NP/ZKvC//AKaLWvoCgAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACvyW+O0eo/8ABI3/AIKYJ4t0Gx8v4feNc3L20Nirxvp00yNfWUI2xRpLDKgeJI3+RDah2Ku6t+tNeZ/td/swaP8Atf8AwH1fwRrEv2L7bsnsdQW3SeXTLqM7o5kDfijBSrNHJIgZd2R9TwpndLL8TKni1zUKq5Ki8n9r1juuu9j4rjjhytmuDjVwMuXE0Jc9J/3l9nppLZ9Nr6HX/DT4l6D8YvAemeJ/DGp22s6FrMIntLuAnbKuSCCDgqysCrIwDKysrAEEDdr8qf2Cv2qvFX/BOr9pu9+AnxX1PTIPCMd60Au57wvbaDPLH50M8MoBxbXG+MskgQRmbzG8oiYP97/8FAPGOneBv2JPipe6pcfZbabwze6ej+Wz7p7qJraBMKCfmmljXPQbskgAkXnPC1XBZlTwlN81Os17OS15oyem1rvVXX6NEcPca0cxyirjqseSrQUlVg/d5JwV5LW9ouzs35p6po+Ef+CE9hr3xV/au+KPxJ1W9trqZ9MaLVHZRHNc3moXi3PmKiKIwubSbdjbgugVSM7f1Nr4I/4N+PB2nWX7NXjTxBFb7dX1PxMdPuZ/MY+ZBb2sEkKbc7Rta6nOQATv5JAXH3vXV4iYhVc+rRgrRhyxS22iv1vbyOHwnwkqHDGHlN3lU5pt3vdyk+/W1r+dwooor4k/RgooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAr5/wD+Caf/ACbr4j/7Kr8R/wD1N9dr6Ar5/wD+Caf/ACbr4j/7Kr8R/wD1N9doA+gKKKKACiiigAooooAKKKKACiiigD5//wCCTv8Ayiy/Zp/7JV4X/wDTRa19AV8//wDBJ3/lFl+zT/2Srwv/AOmi1r6AoAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooA+cP+Ch/wDwTw0H9uHwGJoTbaN4+0aEro+sMp2yLkt9kudoJaBmJIIBaJmLKCDJHJ+Xnxw/aW+Ofwn/AGfZP2efH9nc6XpNrNG6rqlkTfyWcEv7q3inJKSWazQ7o5Iw3+rCLL5QCV+6VYXxA+GHhr4saNHp3inw9ofiXT4Zhcx2uq2EV5DHKFZRIEkVgGCuwzjOGI7mvu+GeNXl8IYbG0lWpQkpRT3hJdYt3+7vtbU/MuMfDmOa1J4zLqzw9epFwm18NSL6TSa6aX7aNPS3i/8AwSm8Haj4G/4J9/Day1S3+y3M1lcagieYr7oLq7nuYHypI+aGWNsdRuwQCCB9C0UV8hmOMli8XVxclZ1JSlbtzNv9T73KcvjgMDRwMHdUoRgn35Ulf8AooorjPQCiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACvn/8A4Jp/8m6+I/8AsqvxH/8AU312voCvn/8A4Jp/8m6+I/8AsqvxH/8AU312gD6AooooAKKKKACiiigAoornfi78V9A+BHwt8ReNfFd//ZXhnwpp0+rareeRJP8AZbaFDJLJ5cas7bVUnCKWOOATSlJRTlJ2SHGMpNRirtnRUV+NH/BSr/gsF4W/bb8R/BPw98C/iH+0Pqvww8Ty+ILnxBP8DdCvbfxzrF3p0VmYbK0FxDFJFEn2zz5nxsZEK9QMff3/AAR7+M0fx3/4J1fDfXR8R9a+K1wlnLYXXiHW9FOjavLNBPJE1vfWxlm23cG0Qyv5riV4jIGYSBjdOEpU5VGrW281qr+Sured0+pM5RjJRTv38nvb1tr+G6lbZ/4JO/8AKLL9mn/slXhf/wBNFrX0BXwh/wAEyv8AgoN4D8F/8E2/2fNHvNA+N813pPw18OWc8lh8GPGN/au8el2yMYriDTHhmjJB2yROyOMMrMpBP1/8FPjjovx98K3GsaFZeMLG0trtrN4/EnhPVfDV0XVEclbfUbe3mePEi4kVChIZQxZGAkZ2FFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFfP/wARv+Upvwb/AOyVePP/AE7+DK+gKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKK+f/8AgpZ/ybr4c/7Kr8OP/U30KvoCgAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiivn/8A4JO/8osv2af+yVeF/wD00WtAH0BRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUVn+LPE1v4L8K6lrF5HqE1ppNpLeTx2FhPf3TpGhdhFbwI800hAO2OJGdzhVVmIBANCvn//AIJp/wDJuviP/sqvxH/9TfXaP+Hlnw6/6Fz4/wD/AIYnxv8A/Kmuf/4JHfEvTvij+y74mvtMtvEFtDH8VfiBldX0G+0eY+d4u1a6TEV3DFIcR3Eavhf3cqywvtlhljQA+oKKKKACiiigAooooAKKKKAPAv25/wDgnb4S/bws/DVxqnif4i/Dzxb4Nnml0Pxf4C15tE1/TI50CXMEdwFceVMqqHVkOdoxiut/Y5/ZF8H/ALDP7Peh/DbwOmpnRdF82V7vU7s3eoapdTSNLcXdzMQN80sru7EBVBbCqqhVHqFFEPdTUeu/9f1rruEvetzdP6/ry0Pl/wCE/wDwTl8T/A74WeGvBXhb9qL4/wCl+GfB+lWuiaRZ/wBneDJ/slnbQpDBF5knh9pH2xoq7nZmOMkk5NdB/wAMbfEX/o7H4/8A/go8Ef8AzPV9AUUAfP8A/wAMbfEX/o7H4/8A/go8Ef8AzPUf8MbfEX/o7H4//wDgo8Ef/M9X0BRQB8//APDG3xF/6Ox+P/8A4KPBH/zPUf8ADG3xF/6Ox+P/AP4KPBH/AMz1fQFFAHz/AP8ADG3xF/6Ox+P/AP4KPBH/AMz1H/DG3xF/6Ox+P/8A4KPBH/zPV9AUUAfP/wDwxt8Rf+jsfj//AOCjwR/8z1H/AAxt8Rf+jsfj/wD+CjwR/wDM9X0BRQB8/wD/AAxt8Rf+jsfj/wD+CjwR/wDM9R/wxt8Rf+jsfj//AOCjwR/8z1fQFFAHz/8A8MbfEX/o7H4//wDgo8Ef/M9R/wAMbfEX/o7H4/8A/go8Ef8AzPV9AV8f/wDBSL9tL4wfCn46/CP4Lfs/+HvAGq/FP4qrqmprqHjl7saBo+nadCjztKLQidpJHljRNuQD1BByJlKzStdvt6Xf3JNvyTGlo29Ev+G/F2S7tpHQal/wTl8T6v8AFPRvGtx+1F8f5PE3h/Sr/RLC8/s7wYPs9nfTWU11F5Y8P+W2+TT7NtzKWXycKVDOG6D/AIY2+Iv/AEdj8f8A/wAFHgj/AOZ6q/8AwTg/bll/bY/Ya0T4p69osHhrW4vt9j4i0u0n+0w2V9p9xNbXIibqUZoS6AkkK6gsxG4/KX7EP/BYn44/Gn44/BXVviP4C+GuhfBD9qC61q0+Hcmk3l3/AMJLorWSyywHVBKTBL9oihbb9nC4LAtt+42nLer7JO+2vTW/LZ/37Pk/m6Et2p8789Ovu/Fp/c+1207n1r/wxt8Rf+jsfj//AOCjwR/8z1H/AAxt8Rf+jsfj/wD+CjwR/wDM9X0BRUjPn/8A4Y2+Iv8A0dj8f/8AwUeCP/meo/4Y2+Iv/R2Px/8A/BR4I/8Amer6AooA+f8A/hjb4i/9HY/H/wD8FHgj/wCZ6j/hjb4i/wDR2Px//wDBR4I/+Z6voCigD5//AOGNviL/ANHY/H//AMFHgj/5nqP+GNviL/0dj8f/APwUeCP/AJnq+gKKAPn/AP4Y2+Iv/R2Px/8A/BR4I/8Ameo/4Y2+Iv8A0dj8f/8AwUeCP/mer6AooA+f/wDhjb4i/wDR2Px//wDBR4I/+Z6j/hjb4i/9HY/H/wD8FHgj/wCZ6voCigD5/wD+GNviL/0dj8f/APwUeCP/AJnqP+GNviL/ANHY/H//AMFHgj/5nq+gKKAPn/8A4Y2+Iv8A0dj8f/8AwUeCP/meo/4Y2+Iv/R2Px/8A/BR4I/8Amer6Ar5f/wCCpP7aPjb9kj4eeAdI+F3h7QPEXxT+L3jGy8FeF4/EDzLo1jcTLJLJdXnkkSmGOKGQkRkNyCM4wZcrWS1baS822kl82xpXu27JJt+SSu38kg+Jf/BOXxP8YPDltpPiL9qL4/6jp9pqum63FF/Z3gyHZeaffQX9nLmPw+pPl3VtBJtJ2ts2sGUsp6D/AIY2+Iv/AEdj8f8A/wAFHgj/AOZ6sD/gl5+2f41/ax8CfELRPijonhbQfin8H/GN34M8Tx+GriabR76aJIpo7u0E2ZkhkjmXCyEuCjE4ztX41n/4LxfEDxv/AMFh9Z+Afhvxt+zB4b8IaL48t/CaWPi6x8RxeJdZjjWH7b9lu4FbTBOZftMMCTPGXlSNNjblL6Qjz1oUIO7muZdnF8tn90k+9umjJb5aU60lZRdn5NXuv/JX5ab7H3T/AMMbfEX/AKOx+P8A/wCCjwR/8z1H/DG3xF/6Ox+P/wD4KPBH/wAz1fQFFSM+f/8Ahjb4i/8AR2Px/wD/AAUeCP8A5nqP+GNviL/0dj8f/wDwUeCP/mer6AooA+f/APhjb4i/9HY/H/8A8FHgj/5nqP8Ahjb4i/8AR2Px/wD/AAUeCP8A5nq+gKKAPn//AIY2+Iv/AEdj8f8A/wAFHgj/AOZ6j/hjb4i/9HY/H/8A8FHgj/5nq+gKKAPn/wD4Y2+Iv/R2Px//APBR4I/+Z6j/AIY2+Iv/AEdj8f8A/wAFHgj/AOZ6voCigD5//wCGNviL/wBHY/H/AP8ABR4I/wDmeo/4Y2+Iv/R2Px//APBR4I/+Z6voCigD5/8A+GNviL/0dj8f/wDwUeCP/meo/wCGNviL/wBHY/H/AP8ABR4I/wDmer6AooA+f/8Ahjb4i/8AR2Px/wD/AAUeCP8A5nqP+GNviL/0dj8f/wDwUeCP/mer6ArI8feLP+ED8C6zrn9matrX9jWM99/Z+lW/2i+vvKjZ/JgjyN8r7dqLkZYgZGaUpKK5mOMXJqK3Z4t/wxt8Rf8Ao7H4/wD/AIKPBH/zPVz/AMJ/+Ccvif4HfCzw14K8LftRfH/S/DPg/SrXRNIs/wCzvBk/2SztoUhgi8yTw+0j7Y0VdzszHGSScmuY/wCCX3/BQj4l/tp/HH9oHwx8SPh3pXwxn+FGr6TY2GiRXv2/ULeO8sjckXlwjmGSXGw4hVVj3FCZCu88X/wUW/4KMfHr4b/tSav8Lv2efB3w01m++HXw8m+JnjO+8cTXiQT2ImeOKwsfszLi7kEMxDTfu+mSu0kqpJU1Fz0UlzfLk57v0im36dxUl7Tm5NbO3z5uS3zlZL17anvf/DG3xF/6Ox+P/wD4KPBH/wAz1H/DG3xF/wCjsfj/AP8Ago8Ef/M9Xefsj/tEWH7W/wCy98Pvifplo+n2Xj3QLPXI7N5RK1kZ4VkaEuAAxRiULYGducDpXola1acqc3TnunZ/IinUjUgpw2eqPn//AIY2+Iv/AEdj8f8A/wAFHgj/AOZ6j/hjb4i/9HY/H/8A8FHgj/5nq+gKKgs+f/8Ahjb4i/8AR2Px/wD/AAUeCP8A5nqP+GNviL/0dj8f/wDwUeCP/mer6AooA+f/APhjb4i/9HY/H/8A8FHgj/5nqP8Ahjb4i/8AR2Px/wD/AAUeCP8A5nq+gKKAPn//AIY2+Iv/AEdj8f8A/wAFHgj/AOZ6j/hjb4i/9HY/H/8A8FHgj/5nq+gKKAPn/wD4Y2+Iv/R2Px//APBR4I/+Z6j/AIY2+Iv/AEdj8f8A/wAFHgj/AOZ6voCigD5//wCGNviL/wBHY/H/AP8ABR4I/wDmeo/4Y2+Iv/R2Px//APBR4I/+Z6voCigD5/8A+GNviL/0dj8f/wDwUeCP/meo/wCGNviL/wBHY/H/AP8ABR4I/wDmer6ApCcCjbUDwD/hjb4i/wDR2Px//wDBR4I/+Z6uw/ZJ/ZiT9kv4Z6h4Zh8aeMPHMeo+INU8SPfeJF05bqK41G7kvbtF+w2lrF5bXc9xMAYyVM7KGEaxonzl+xv/AMFM/iX+0r/wUt8a/CPxT8KD8LvCOjeBIPF2iQ6zL5niPUEl1A20c90kchitVdFYi2KtKhUFpPm2Li/8F3v+CsOv/wDBL/wR8L18Jap8MdF1/wCIeu3NpJf+PLDVr3SbCxtrZpJpmj0wNdFvNe2QbEf/AFvK4yyxKajThVe09v8AwJx17ap3T1XUqMXKrOkt4b/+AqWnfR9NH0PveivDf+Cbf7QPiH9qf9izwR4/8U+Ifhd4q1rxNbzXUupfDxr3/hH508+RYhCt6BcxyLGESWOZVdJllUqu3A9yrerTlTm6ct1oZwmpx5o7BRRRWZQUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAV8f8A/BSL9i34wfFb46/CP40/s/8AiHwBpXxT+FS6ppi6f45S7Ogaxp2owok6ym0BnWSN4o3TbgE9SAMH7AoqZRu072a7eln96bT8mxp6NNXT/wCH/B2a7NJnxz+xL+w18V/2J/gJ8JPhZYa18OfEvhaVtevvi1ql5Bd22q3t5qBkuYzpCx/uQq3Mzo5uACYkQqqsSo8Q/Yh/4I7fHH4LfHH4K6T8R/Hvw1134Ifsv3WtXfw7j0myu/8AhJdaa9WWKAaoZQIIvs8Uzbfs5bJQBt331/TWitFK0+dJenTS/Lp/cu+T+XoTJc0OR+evV81+bX+/f3u9l2CiiipGFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFfL/APwVJ/Yu8bftb/DzwDq/wu8Q6B4d+Kfwh8Y2XjXwvJ4gSZtGvriFZIpLW88kGUQyRTSAmMFuABjOR9QUVLV7NaNNNeTTTT+TQ07XTV000/NNWa+aZ8Rfsb/sYftDfsnfD3Vdb/tv4Ma98WPjB8VR4z+J0kltqMOi2OkSosM9po5XEz3EcUMXktcgKS7h84DN5L8Tf+CR/wC0P8YPjddeDNa8ZfAiL9m64+KsXxTN9pPhT+yfHTTRyLcJZstrDHZM3mKImvXZrmRf3jMc+TX6b0VpGXLOM0vhtbslHk5V/wBuuEWvO973ZMlzQlTl9q9+7cubmfq1OSfSz0SsrFFFFSMKKKKACiiigAooooAKKKKACiiigAooooAKKKKAPkn4EfsZfE79nn9oX9r/AOIui3/gS51X41Xen6p4Hgvp7t7e1urTSjaoNSVIlZIjcBSRA7sY84IbArxn9rz/AIJz/tTfEj4pWfxR+GvjH4JaL8RPiL8Kl+GfxRsdah1J9DgJYyNf6PsVpTJHJNcCNbn5du3eGLED9HKKiUIyjGEldRSj8lB07f8Ab0W1Lvvo0VGTi247tuXzclO/ykk1280ed/sj/s72H7JH7L3w++GGmXb6hZeAtAs9DjvHiETXpghWNpigJCl2Bcrk43YyeteiUUVtVqSqTdSe7d38zKnTjTgoQ2WiCiiioLCiiigAooooAKKKKACiiigAooooAKKKKAPmXwt+xl4p0L/grh4v+Pkl/oDeEdf+GNj4MtrNZ5jqSXsGoSXLSOnlCMQlGABEhbOflA5ry/49/s2ftkfEPQvg38RtB1b9liD46+AJ9YttZ07VvDl1d+GLq0vCyRS2V+0L6taTJCkQkjieNJmd9x2Rqj/dVFK1oxgvs3t83Jv7+d/h1Vx31lJr4rX+UVFfgl80fOv/AASx/Yiv/wDgn9+x7pHgLWtbsvEHiS41C+1/XLqwtzb6et/fXD3E0VpEcFLeNn2JkAkLuKqW2j6Kooq5Sv5JWS8klZJeSWhMVbzbbb823dv5vUKKKKkYUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUVQ8Va3/AMIz4Y1HUvK87+z7WW58vdt8zYhbbnBxnHXFfgh/xHOf9Wu/+ZI/+9dQqkXN01urP772/JluElFT6PT7rf5o/f6ivwB/4jnP+rXf/Mkf/euvuj9on/gtv8WPh1+zZ8BviL8Nf2QviH8aofjL4XHiO/tPDN9eXK+FGZIHS3llt9NnEhcTNhmWLPlHCnnGjTUefpdL5tNr8Iv+mjNNOXL1tf5Jpfm0fotRXG/s7/ErVfjL8A/Bfi7XfC+oeCNb8T6HZ6rf+Hb8ubrQp5oUkktJd8cbb4mYo26NDlTlV6V2VVUhKE3CW60FCSlFSjswoooqCgooooAKKKKACiiigAooooAKKK/LT/gsX/wcr/8ADpn9r+x+FP8Awpb/AIT/AO2aDaa5/an/AAl/9lbPPlnj8ryfsU2dvk53b+d3QY5I+9UhSXxTdl5v+kUoNpyWy1f32/U/UuiobC6+3WMM23b50avtznGRmpqbTTszOE1OKlHZhRRRSKCivy+/4K4/8HI3/DrH9tfRvg9/wpn/AITr+1tHsdW/tf8A4S7+zPK+0zzQ+X5H2KbO3yc58wZ3YwMZPo3/AAUh/wCCu/xs/Yp/aIsvBvw//Y0+KXx30C60a21N/E3h6S/FnDNLJKr2p8jTblN6CNWP7wHEg+UdSU/3ijKG0pOK/wAS3Xlbu9PMck4zdN7pKXyez/Hbc++6KjtJmubSKRkMbOgYoeqEjpUlD00JjJSSktmFFeE/8FBf+Cjvwr/4Jj/BFfHnxX1e+07TLu4aw021sLCW8vNXvBDJMttCqjarssT4aV44wcbnXNX/APgn1+2bpn/BQb9knwt8XtE0W/8AD+j+L2vJLGyvpUkuY4Ibya3Rpdnyq7rEHKKWClioZ8biR95Scfs2T8m9UvW2o5e7yqX2r287bns9FFFABRRRQAUUUUAFFFFABRRXxj/wWV/4LMeF/wDgkN8L/DF5c+Gbn4g+OvHF/wDYtA8K2t/9hkvUQp587zeVKURN6KMRsXeRFAA3MsuSTS6tpLzb2KjFu7XRNv0R9nUVh/DLXtY8U/DjQNT8Q6NF4d17UdOt7nUdKiuzeJplw8atJbiYxxmQIxK7/LTdtztGcVuVpODhJxlujOElKKktmFFFFSUFFFecftefGnW/2cf2YPHnj/w94VXxvq3gvRbnWotBOoGwbU0t0MskSzCKYq/lq5UeW25gF4zkRVqRpwdSeiWrLp05VJqEN3oj0eivl/8A4JK/8FSvCH/BWf8AZWt/iJ4bsf8AhHtWs7p9O8QeHZbwXc+h3S8hDIETzI3Qq6SbFDAkYDKwH1BW1SnKnLlnuY06kZx5o7f5aBRRRUFhRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAV+Z/wDwdt/8oXfF/wD2MOjf+la1+mFfnr/wc/8AwW8Y/H//AIJI+KfDfgTwl4m8a+IrjXdJmi0vQdLn1K9lRLpWdlhhVnIUckgYA61xY9N0lb+aH/pcTqwbSqO/8sv/AElny9/wZI/8mTfGH/sd4/8A0ggrkf8Ag8a/a7+LH7MXxF+A0Hw1+J/xD+HsOsadrT38fhnxHeaSt80ctkEMot5EDlQzYLZxuOOpr2P/AIM/v2a/iN+zP+yD8VdM+I/gDxr8P9R1HxhHdWlp4l0O60qe6iFlCpkRJ0RmTcCNwBGQRXjn/B41+yJ8WP2nfiL8Bp/hr8MPiH8QodH07Wkv5PDPhy81ZbFpJbIoJTbxuELBWwGxnacdDXbm7bxFHl/u/wDpp/qcmVq1Crzf3v8A05/kR/8ABbz9r34s/Cf/AIIAfsdeMvC3xQ+Inhrxf4nt9BbWdd0rxJeWepasZNBllkNxcRyLJLukAdt7HLAE88184eJvBn7cnxL/AOCJ+k/tcXH7XXxKstN8MQi0s/Cum65e2Nzc6Ul4bRr25vobhGubo3BZis6SP5eMSjCxD1z/AIOKfCOq+AP+DeD9i/Q9d0zUNF1vRzoFlf6ff2z211Yzx+H5kkilicBkdWBDKwBBBBFfP/w6/ak/a28Y/wDBBTRv2bPDH7LXjnxt4O8bwyT6L4/8OaddavF/ZQ1SSWS2e3tYJFS4FzDMm6WVGEZU+VysjXjrutjnR+JVVydtl8tr/wDbvNbWw8LpDBqp8Lh73e13897fPlvpc/Rb/gkT/wAHKfgnXf8Agm/Z+Mv2qfHMHh3xNoPiaTwhJrMWiXd0ddcWy3MMzw2UEnlyGMurHYqExEjBbFfQvxH/AOC4vw1/aP8A2Fvj74y/ZW8U/wDCyfHXwp8LSar9l/4R3UrYWUkiyCKYx3VvF5wQRyyFF3ZERDYBr56/4JE/8G1ngnQ/+Cb9n4N/ap8DQeIvE2veJpPF8mjRa3d2p0JzbLbQwvNZTx+ZIIw7MN7IDKQMlc19X+D/APglt4W/4JkfAb4l6r+xd8OvCPhv4qeIbCBre18T6tq2qaZrL2zs6W8nnXuYiyyTKrq6AO6l8qODM0n7ZSdrxVnDVp8kbu3VqXM/d8rEZe2lTcVf3teba3O7fLktv130P55fgx+3d4+/aZ+FXjDxn8RP+ClPxU+D3xRudXnbTfCU8PihtH1BGEcgn+06SXgsYi8kqCGK1YIIRhArDH9AH/BMjxH+0d4n/wCCZmtw6n8XPgB8cfihYJdWHg3xtoHiGbVdDvmWJVgGpzw2qM0sMhIcojO6hd58wsx/Ebxj4N+Ofi/4a/ErwZ8cP+CaOr/EL4gXWq31xoHjLwf4AufCn/CPXUkbxHe+h2Kx6vbpLiVDJOwc7iZJAysv1r/wTD/4IpftT/AT/gir+0z4dD3Pgn4m/GyzsX8NeGH1KKC6ggg+adZZA2y3nvIJHt9jspQKokMZ3BYlO+ErOMbLkjblel9NE7cyktbtXVvgTWhaj/tVFSevO0+Za2vu+nLs7PX+bW1/DfH3gX9p7w74t+Nur/tP/wDBSUfAjxX4InC2fh/QPiD/AGjceIpSnyNDo2lXsMtjA4MDKv2MS7ZS7QKFJPt3/BrL/wAFavjV+0/P8WvhJ8TPGuueOrTwz4On8R6DrGr3JudWsHWbZLG92376cMbhWUyu7R+UFUhcKPj3/gmB+wj8XPhfca94M1r/AIJ0a/8AEj4q6895a+H/ABr8RINQ0zwz4XR7byi1xa3UH9n3SxsHlRzIsjEgRktsr3b/AINff2IvjV+yh+2v8XofiL8Hvin4QtdU+Hep6TZ6lqnhS+ttOurpLm3YRJcvEI2Z1VimGO8KcZ4zElanVp3vF0ZNW0TkoS1XW9+XyvpHS93e9SE7WaqxvfdJzitelrc3d21lbQ8G/wCCOP7VH7d37fPjf4k/CH4XfHLxPd+IvE3hr7Tc+I/HXjLU7qPwxZQzKsrWbMLhoLqZpoohLGm9V3FSpAkRn/BNL9vj/goF8Tv2n/FX7Mngj4zatqPjbxq15o91qPjvWp9Z/wCEVlsd7XNza3cnnyQNsilizGsinzdyp5ixyJ9M/wDBof8AsU/GX9mr9vD4g6v8RvhJ8TfAGk3vgaW0t73xJ4WvtKt55jfWjCJJJ4kVn2qx2g5wpOOKxv8AgiV+w/8AGn4Uf8HFOu+N/FPwg+KPhvwZNq3i2SPX9V8K31npbrMLryWFzJEsREm5dp3fNuGM5rs9nB16VN/DOlUcvWLdl6Pt81ZnI6s40alRL3o1Kaj6SSu/l38rPQ5b/gkP+37+1V+yL/wXL039nr4ufFjxd8RLTUPEM/g7xFYa74iuvEFoJEjlMVzZy3LF4vn2NlQhZGw6ZAC1v+ClH7bv7Uekf8HGvij4ZfCP42+PvDrah4v0nRPD+kXHiG6k8PWEt1Y2iBnsHdrZo1eVpCjRMpYElWJwezsv2IPjSn/B1yfiKfhB8UB8Pv8AhZz6h/wk58K339jfZvJI8/7X5Xk+Xnjfux7184/8FVdX8ceH/wDg6M8S3/wz0u21z4g2Xj7QJ/D2m3MkccOoXy2lg0MLtIyIquwCksygA9R1rlyyqqzwM8Ru1Lmte9r0nstd5St16HTj4eyWMjR2XLa+1/3q3emyjfoes/tt/tLftd/8G8H/AAUn8JReIv2kPHHx48Ma3p0OtS23iG/upLDV7KS4KXVsbGe4nS1lV4mCSwsCAVIIBeOuB/4O5fFNr45/4Kn+D9asG32OsfDbRL63b+9HLcXjqfyYV6B+21+zr+1r/wAHFn/BRnwTca5+zT47+AXhjRdKh0e4u/ElheRWWmWaXLSXNy15c29utxKTMdkMSbiFXAIDyVp/8HQX/BPH4w/FD/gpB4Sm+GHwb+KfjbwloXw+0bR4tQ8PeE77U7OJoJrtfKMsETIHVChK5yAw45Fa4DnUsI69rqs7f4LTtfy+G3nzdTaVvbVlTvb2a5r/AM14d+t+a/lbpY+vv+Dnr/gtz8Qf+CfOheBvhB8INQ/4Rvxn4y0T+2tW8Qi3SWfTtPZngjitvMVkWWR45syY3RiNdm1mDL+YHxK/4KAeO/2XfhZ4O+IXwu/4KW/E/wCLfxPt5bd9V8E6lpniT+z7AyQN522TVPMs75IpDtxNDHuB3qoYBa/Tb/g6J/4InfEr9vOx8CfF/wCEWknxP4q8FaE2ia34dSVY7y8skZ7iKW2V2CySRvJOGiH7x/MQIGI218yeHPjJ8bvH3g7wH4L8F/8ABH34VWHj4Rw2OreIfGfwgKaTq0iw7WlxJaWMVjvcby0126DO3qQa5cPf947v2nP87XfLb7PLa1+t7297mMlyqlRSXuezW+3Nyq9+t73t0ta+lj9lv+CNP7f13/wUw/4J6+CPirq1hZ6X4i1AT6drdtZ5+zre20rRSPGCSVSTasgUklRIBk4yfxt/4KGf8FHP2k/+Cl//AAXH/wCGXvg/8WvEvwa8JaJ4qm8KWk2gahPpcxktEf7ffXMtu8c1wR5U5jhMgjxHGAFZmkP7ofsBfBLWPgB+yx4a0HxJ4T+EvgjxMyNe6vo3w10H+xfDtncyncyQQl3LEDarSkjzGUthQQB+Gv8AwUe/4J2/tE/8E0/+C6MH7T/wX+EXiv4w+E9d8Ry+LLe30HTbjVXSa5RhqNjcpbpLLbljLMY5imzEqbdzRsg6a7pPMqftV+61vb4eb3bbdPitb5a8oqHtFl9T2f8AE+zffl97v1+G/Xe+nMfEv/BbH4D/ABf/AGZP+Cmfh7wN8ZPifdfGLWPD+k6RBoniq8tfIu9Q0rznaHzwSztKspnVmkllc45kbgD7C/4OpP25vjZ+zt/wU/0Hw98P/jD8UvAugS+BtKu30zw94rv9Ms3me5vFeQxQSqhdgqgtjJCj0rxn/grL8CP2xv8Agoj+3j4Z+MviX9lb4qeFbLxDpmmf2Vo2laLfa62i2EMrAJeTQwDyrgyedI0UscMiLIu6MZBb2f8A4Opv2GPjb+0N/wAFQdB8QeAPg78U/HOgw+BtKtJNS8P+E7/U7RJkubwvEZYYmQOoZSVzkBhkc1eC50sHGrv7ed9trfatp6+dynyfWKzht7KFv/Ao7X6dvI+kv+Ds7/go/wDHn9kTw38JvBnwy8Sa/wCAPC3jrTri61nxLo5a3v7u4hkgK2sV4oEluVGHbynV5BJtJ2blb5Y/Zh+M3xJt/wBq3wlL8B/+CqmgfE69tYlub7SPjPeeJvDWmagTKkZsUi1GK7tblpBIFGyRLgElo1BTeP0M/wCDjyy/a5vfgFoFh8E/hh4D+KPw4eK2uNdsbjwRb+K/EOm30Um1GSwvBPBcQOJFGY7R5ojHIxZFO4fkh+0p/wAE/Pi5/wAFN/ir4O034V/8E8vFX7N3iy83yeKNYmi1PSvDuqSeVEpkSG8ht7LTYU2SuIYQzuZMDew+bmwUpRqSaV2py9bdL3vHkX3tbppszmk8NSUnZci9L6dve53+fVWifTv/AAea/AX4t2fifwH8TtV8Ywn4S6jHZaBb+EYdbvZo7PXUivZprxbVo1twDCfLE4IlYDBQCvef+DTL9lD9oH4c/AD/AIWnrvxIt/EHwh8Y+Frm18E+DrjxLqU0Wi3seoMGke0eL7NbKzRS5eBnbEhOMkiuy/4OGv8AgmJ8WvjT/wAEaPhB4F8DWeo/E/xZ8FptMl1iOyiMuoa1Fb6ZLZzTwQ/flfeyt5aguwJwCRisf/ggn8Uv2ita/wCCfHiT9l3WPgN8Sfgd4g8G+A9ZXwt8QvEVhqGmW19qV1cTG3VY5rNBFJE10r5WaRiISwQdFulajHFwo+84yly9OaLhJtq/X+XdrZXaHVTrfVZVfdTUebrytSSSdvRc3rd2TPmz9oT4Vftian+2545tv2pf+CgHhj9mTRtJ0X+2dPm8KfEFILfUoSzPHb2GhQXlleuqjzk86aHzpGgCgzkhqpf8G0X/AAV1+NXif/gpjJ8CPF3xa8R/Gj4deKf7XbT9U8Qzz3l2s1tEZYbyGa7zdRxSRW2Ps7ttXzidivuJ+Z/2Bf8Agn78ZP2Uv2pNbsvi3/wT2+IP7RPieXUobbRZdYmv7Hw/pt+sr7557tYZdNvraQsm5rhzDhM78EmvZv8Agir/AME+/wBoD9lT/gv/AKDr3xG+BvjLwrokWqa7FeatofhK8XwjYSXFndeWLa5SM26Wm91jjIfaoKLnitstSVSEW1yuE/RuzavfeV2trK9nrJ6RmLk6dSSXvKUfklvZLZOz0d3ulaK14X9k39vr9s34o/8ABXj4i/Cr4VfF/wAV6v4l8Xax4i8PaBF4z8UX19oHhdEuZJWvRbSGaIGC3t5FjHksFLjCt9w9V/wT2/bu/a0/4J+f8F2PDvwH+L/xf8X/ABHivPE9t4O8R6bqvie717TJ0vAhhubVrsloivmwyhlWNyAUYAFlrqv+CNf7DHxt+F//AAcZ3PjjxL8Hfin4d8Ft4i8VzjxBqfhO/tNLMc0d6IX+0yRCLbIXXad2G3DGcitD9qP9h741eIP+Dq+z+Ilh8IPije/D9fiV4dvz4mt/Ct/Jo4t4oLESTfa1iMPloUcM27C7WyRg1lkyUamAjPacFzX/AMSVn20b89fJWrNm3DGuH2Ze7bvaTuvujbtbzNz/AIKaf8FXv2kP+Ch//BX4/sifATx9qHwk8Naf4qbwudT0aeWw1C8ubXJvLue6i23CxRGO42wwsiuqDdvLLt94+HX/AATV/wCClv7C/wC3B4Wb4c/tGX3x8+HGo2ay69qPxL1yePSYtjsz2UtpPPfXUTuFQJc2alsvhyqhg3hX/BRn/glb+0h/wTe/4LHP+118C/h1qfxm8KX/AInfxQ2naXA9/qFrcXvmLe2UtrEGuCj+bOUnijdY1dN+CuG6rXf2gv8Agpd/wVc/b+8F6v8ADj4efFT9kHwb4Tt0t7seIBcx6RGkpYT3d1DfW8EOqS4OI4VtnMeEPy8yiMrf7qhy/wATmftL9+X7V9OW/bpb/l3a+uYpOrWv/DsuT/wJ7W15rW31vf7ZF/wcx/8ABdb4qfB/9qSH9m74U+L3+FNtp9nZN4y8U2nmi8Sa7RJljhuI42nhghhkjkaS2QTOWKjhSj/F/wAVv+CpXxD/AOCfPxG8HeL/AIE/8FCPHn7T8kryRa5onizQtetrG1jVo3CPb6q8sUqSgOhkheOePHyld24fZn/Bx/8A8ERvjJ4o/bG0z9pz4ReEv+FwwfZdMk8UeH2sY9QvJbyxEUKStp//AC9288ccKvDAjEbZMpsJIwdL+IXxv/ai+Kvhzwx8Kv8AgkJ8BPhsbiIjVL/4l/Cv/iXKdygzC6kttOjhRQWJi/fSv/AGI2mMHzcqs/3nM7+nT4tOTe2l7fF1teKcbq69zlj/AOBWV9vtX+XbofuJ+xL+0xa/tlfsjfDn4p2dn/Z0XjvQLXV2s/M8z7HJJGDJDu43bH3LnAzt6Cvwe/bK8TS/t0f8HgngPwTrsk134b+HWv6Xp1haH/VolhZ/2pKCrfKQ9z5m7j5lwOcCv6Af2fvhr/wp74JeF/DDab4P0iXRdOitprPwppH9kaJBKFzILO03v5MO8sVQsxAPJJr8AP2xfDsn7CX/AAeDeBPG2vW7weGviNrum6hYXT58tkv7L+y5G3HAHl3PmE88KAe4FdcOR51QcdI80uX/ABfZ/Dm+RytTWU103eXIr+nX583Kej/8HiP7YXxb/Zj+OHwTtPht8UviN8PbXVdC1Ka9h8NeJb3SY7x0uIQrSLbyIHIBIBbJAJr5b/4Kk/HP/goN8L/gp8J/2mvFvxs1rwX4H+KUFpD4a8OeDfF9/Zto0JtzdWy39uqxRzzSxBneVmmZjlXKDZGPqT/g8R/Y9+Lf7Tnxw+Cd38Nvhb8RviFa6VoWpQ3s3hrw1e6tHZu9xCVWRreNwhIBIDYJANdD/wAF9v2S/ir8Y/8Aghh+yZ4R8IfDP4g+KvFfhz+w/wC1tF0fw7eX2oaX5ehSxSefBFG0kW2QhG3qMMQDzxXn4fmhgJVl8aqpL0c5pv5LZ9DsrcssbGk/hdNt+qhCy+/p1OI/4K5/8FQvjH8TP+DfT9lr4y6J498XeAvHnjLxELLX9S8LatPosupPBbX8MjMbVo/kkktxL5Y+QMRgDaK+Yv2ivjn+3/41/wCCTfwv/aRk+NniXwv8JtCVPDFtDovjXUrTxNq8puJIJNV1CRdrXXmXEXlrvndkXZtjAMkjey/t1fsPfGrxd/wbQ/so+A9J+EHxR1Pxx4d8XXlzq3h208K382raXEx1XbJParEZYlPmR4LqAd6+or1/43/sifFjVv8Ag0S8CfDW1+GHxDufiNaajbvP4Vi8OXj63Ao1u4lJazEfnKBGwfJT7pB6GurHpQni5w6VoKK6WaSbXor+Sv3tbmwcpOOGjPrTnd9dOZq/m2l5vbZs+Sb/APag/wCCif7dP/BKu7+PNp8bLnw18NPgXnRryTRNdudB8SeJ3RoxJeTyWyj7U0aXMSN5k0YYQ7hG8pd5P09/4NTP2+/iJ+3v+wv4w0r4r63deM9U8Aa0mjW+rakfOvL+xmtldUuZWJad1PmAyPlmUjcWOTXzv+wl+yJ8WPCH/Bqf8d/h3q3ww+Iel/EDV9S1N7Dwxd+HLyDWL1Xax2GK0aMTOG2Pgqpztb0Neof8Gfn7NfxG/Zc/Zo+Mtr8TPAHjb4d3N/4jtLm1h8T6HdaRJcxLakNIi3CIWUHgkZANdEuRVsTSlZxdOnPX+aTXN934JtbaHPFzdGhUWklUqR0/liny/p6uz3Pk/wD4NtvEt1+xn/wX9+OfwGsZWi8MatNr2irZqxaPzdKvJHtX69VhFwuT/wA9CO9f0c1/Op/wbleCZf2wf+Dgn9oH476dHK/hXw/ea/qsV1lcNNql9LHaodpx80H2l+Mj939DX9FdY03J4HCufxezV777y367dzprWWOxSjt7R2/8BiFFFFSMKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooA+Mf+C2f/AASJ/wCHxXwA8KeBv+Fg/wDCuv8AhGPEI137d/YX9r/acW00HleX9og2/wCu3btx+7jHOR6x/wAE0f2Kv+Hd37Engb4Of8JL/wAJh/whkNxD/a/9nf2f9s826mnz5Hmy7Mebt/1jZ254zge7UUQ9yMox2k035tKy/AJrncZS3iml6PVhRRRQAUUUUAFFFFABRRRQAV+Xfxd/4NtP+Fqf8FiIP2sf+Fz/AGDyfFWmeJv+EV/4RHzc/Y47dPI+2fbV+/5Gd/k/Lv8AunHP6iUUU/3daOIh8Udn80/TdIKi56UqEvhluvvX6sKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACvjb/AILI/wDBHLwv/wAFdfhJ4c0258RSeAPHXgvUlv8Aw/4tttNF9PYIxXz4Gi82IvHJtRuJFKyRRsCQGVvsmik4ptPqmmvJp3TKjJq6XVNP0e5i/DjRtZ8OfD3Q9P8AEWsQeItfsbCC31LVYbL7FHqVykarLOsG+Tyg7gts3tt3Y3HGa2qKKucnKTk+vyM4RUYqK2QUUUVJQV53+1r8Hte/aE/Zn8ceBfDPi0+A9a8X6PcaPb+IFsGvn0kToY3mSISwkyBGbafMXaxVucYPolFRVpxqQdOez0ZdOpKnNThutUfMP/BJb/gl54T/AOCTP7KFr8N/Dmov4i1K5vJNT17xBLaC1l1q8fC+Z5W9/LRI1RFTe2AuclmYn6eoorapUlUlzT3MadOMI8sdv6YUUUVBYUUUUAFFFFABRRRQAUUUUAFFFFABRRRQB//Z\n", "text/plain": [ "<IPython.core.display.Image object>" ] }, "execution_count": 10, "metadata": {}, "output_type": "execute_result" } ], "source": [ "fig3 = path + '/Fig3FDcurve.jpg'\n", "Image(filename=fig3)" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "### Figure 3. Force vs Distance profile depicting tip-sample interactions in AFM (Adapted from reference 6)" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "In Hertz contact mechanics, one central aspect is to consider that the contact area increases as the sphere is pressed against an elastic surface, and this increase of the contact area \"modulates\" the effective stiffness of the sample. This concept is represented in figure 4 where the sample is depicted as comprised by a series of springs that are activated as the tip goes deeper into the sample. In other words, the deeper the sample goes, the larger the contact area and therefore more springs are activated (see more about this on reference 5). \n" ] }, { "cell_type": "code", "execution_count": 11, "metadata": {}, "outputs": [ { "data": { "image/jpeg": "/9j/4AAQSkZJRgABAQEAYABgAAD/2wBDAAIBAQIBAQICAgICAgICAwUDAwMDAwYEBAMFBwYHBwcGBwcICQsJCAgKCAcHCg0KCgsMDAwMBwkODw0MDgsMDAz/2wBDAQICAgMDAwYDAwYMCAcIDAwMDAwMDAwMDAwMDAwMDAwMDAwMDAwMDAwMDAwMDAwMDAwMDAwMDAwMDAwMDAwMDAz/wAARCAEJAT8DASIAAhEBAxEB/8QAHwAAAQUBAQEBAQEAAAAAAAAAAAECAwQFBgcICQoL/8QAtRAAAgEDAwIEAwUFBAQAAAF9AQIDAAQRBRIhMUEGE1FhByJxFDKBkaEII0KxwRVS0fAkM2JyggkKFhcYGRolJicoKSo0NTY3ODk6Q0RFRkdISUpTVFVWV1hZWmNkZWZnaGlqc3R1dnd4eXqDhIWGh4iJipKTlJWWl5iZmqKjpKWmp6ipqrKztLW2t7i5usLDxMXGx8jJytLT1NXW19jZ2uHi4+Tl5ufo6erx8vP09fb3+Pn6/8QAHwEAAwEBAQEBAQEBAQAAAAAAAAECAwQFBgcICQoL/8QAtREAAgECBAQDBAcFBAQAAQJ3AAECAxEEBSExBhJBUQdhcRMiMoEIFEKRobHBCSMzUvAVYnLRChYkNOEl8RcYGRomJygpKjU2Nzg5OkNERUZHSElKU1RVVldYWVpjZGVmZ2hpanN0dXZ3eHl6goOEhYaHiImKkpOUlZaXmJmaoqOkpaanqKmqsrO0tba3uLm6wsPExcbHyMnK0tPU1dbX2Nna4uPk5ebn6Onq8vP09fb3+Pn6/9oADAMBAAIRAxEAPwD9/KKKKACiiigDivgj8f8Aw1+0Loeoaj4Yubi6tNMvW0+d5rd4CJVRHICsAcAOOcdc12tfJX/BKb/iX6b8U9M6fYfFUvHpkFf/AGnX1rXz3CuaVsyyqljcRbnle9trqTWm/bufQcVZXRy7NauDw9+SNrX3s4p67dwooor6E+fCiiigAooooAKKKKACiiigAooooAKKKw/FHxP8NeB9VsLHWvEOh6Re6q/lWNve38VvLePgnbGrsC5wDwoPQ1MpxirydioxlJ2irm5RRRVEhRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABXFa18f/AA14f+N+kfDy6up08T65Ztf2cAt2aOSJRMSS4G1SBBJwcdB612tfJXidv7a/4K/+He/9keFXH0zHcf8Ax6vnuIc1rYGOHdFK9SrTg79pP3rba2vY+g4eyujjZYhVr2p0qk1bvFafK9rn1rRRRX0J8+FFFFABRRRQAUUUUAfI37DjnwF+2p8efCLEhbq/XWIIz/Ahlkbj/gNzH+Qr65r5C8Wy/wDClv8AgrNo+pz/ALuw+JGhix80cAzBQgQ+p328A/7aLX17XxXBD9lhsRgH/wAua1WP/brlzx+9SPtON/3uIw+PX/L6jTl81Hkl9ziFFFFfanxYUUUUAFFFFABRRRQAV5t+2Trt74X/AGQfirqemXl1p2o6d4P1e6tLu1laGe1lSymZJEdSGV1YAhgQQQCK9JorKvTdSnKmna6av6mtCoqdSNRq9mnb0P5uv+G5vjZ/0WH4p/8AhV3/AP8AHaP+G5vjZ/0WH4p/+FXf/wDx2v2f/wCC1P8AyjM+JX/cL/8ATrZ1+MH7DP8Ayez8Hv8Asd9F/wDS+CvwDPsrxWW4+ngfrMpc6TvqrXk1tzPt3P3zIc0wuZYCpjfq8Y8jato72Se/Ku/Y+kf+CRf7VvxR+JX/AAUM+H2i+IviT4+1/Rr3+0ftFhqXiG7urafbpt26745JCrYdVYZHBUHqK5H/AIK1fBX4nP8At8eK7jXNH13V08R3/wDxTk9vZyyw3dptzBBBjdlo0BVlXncrttGa/eKvgb9tX/guH/wx9+0z4l+HX/CsP+Ei/wCEd+y/8TD/AISP7J9o860huP8AVfZX27fN2/fOdueM4H2ma8OYbB5SsPmWLdvaXUuVvVxty2Tl0Td76fn8blXEWJxmavEZbhFf2dnHmS0Ur812o9Wlb+l9PfsH+FvGHgn9j34e6V49klfxXZaRHHeibJliGSYopCSSZEiMaMc8spPHSvW68C/4J0/txf8ADfnwT1Txj/wjH/CJ/wBm65Lo32T+0vt/mbILebzN/lRYz5+Nu0/cznnA+MP+Ilr/AKot/wCXf/8AcVfVf6xZXgcHQlUq+5Je62pNtRsruyv23sfK/wCr2aY7F1406XvxfvJOKScruyu7d9rn6mUV+fPxY/4OEvAHgTwroh0XwpqXinxJqGkWOo31nBqCQ6fpk88SSSWjXRQs8kO4qxWHbuGCVIYL137Jn/Bc34XftGeKbLw9r9nffD3XdQKRW/8AaE6T6fPK3/LMXIC7TngGREByBnJxWtPivKJ1lh411zP1t99rX8r3MqnCubQouvKg+Vel/uve3nY+2KKKK+hPnwooooAKKKKACiiigAooooAK+R/gN/xcj/gqP8U9eyXtPDGmR6TF6RyYhjI/OKf86+r9Z1e38P6PdX93IsNpZQvcTSN0jRFLMT9ADXyv/wAEqtOuPFGgfEb4hXcRil8c+I5JkDdSiF5Cc+m+d1+qmvi+Iv3+bZdgv78qr9KcGl/5NNH2fDv7jKcxxv8AcjSXrUmm/wDyWDPrGiiivtD4wKKKKACiiigAooooA+VP+Crng+7t/hZ4Y8f6UuNV8Aa1FdLKB/q4pGUZOP8ApskH5mvpP4f+NbP4keBtI1/TnD2Ws2cV5CQc4V1DAH3GcH3BqP4meALH4qfD7WfDmpLusdas5LOXjJQOpAYe6nBHuBXzd/wS68f3uj+GfFPwp15wuufDzUpYo0J5e3aRgdueSFlDHPpKlfDt/wBncTXfwYyH/lSkv/boP58p9ul/aHDVl/Ewc/8AynVf/ts1/wCTH1bRRRX3B8QFFFFABRRRQAUUUUAFFFFAHyz/AMFqf+UZnxK/7hf/AKdbOvxg/YZ/5PZ+D3/Y76L/AOl8Ffs//wAFqf8AlGZ8Sv8AuF/+nWzr8YP2Gf8Ak9n4Pf8AY76L/wCl8FfjHHv/ACPsP/hh/wClyP2XgP8A5EWI/wAU/wD0iJ/SLX4G/wDBan/lJn8Sv+4X/wCmqzr98q/A3/gtT/ykz+JX/cL/APTVZ19F4m/8iun/ANfF/wCkzPnfDT/kaVP+vb/9KiffP/Bun/yZN4o/7He7/wDSDT6/GCv2f/4N0/8AkybxR/2O93/6QafX4wV8NxN/yJ8t/wAM/wD20+54a/5HGY/4of8Atx+n/wCxT/wQY8K/Gj9mrw94x8d+KvE1prHiyxj1WyttFeCO3s7aZA8AkMsTtI5QhmwUA3bRnbub4D/at/Z31H9k/wDaF8T/AA+1S7g1C78OXKxi6hQotzFJGk0Um052lopEJXJ2kkZOMn78/Yo/4Lz+Fvgv+zV4f8HePPCviW71jwnZR6VY3OixwSQXlrCipAZPNlRo3CAKcBwdu4Y3bR8BftWftEaj+1f+0J4n+IOq2kGn3fiO5WQWsLF0too40hij3HliscaAtgbiCcDOBnxB/Yf9m0P7P/i6c297W15vO9rfO2heQf23/aNf+0P4WvLta99OW3S17/K+p+2H/BHD9oi+/aM/YY0C71e9k1HWvDFzN4evriQMZJDAEaIszffbyJYctk5Oc85r6mr5X/4I2/s8337Ov7C+gW2rWb6frHii5m8Q3sEm8PGZwiRBlb7reRFDlcDBznnJP1RX7XkHtv7NofWPj5Vf7uvn38z8Wz72P9pV/q/w8zt9/Ty7eQUUUV655IUUUUAFFFFABRRRQB8/f8FM/iyPhf8Asn63bwy7NR8UMujWyg/MyyczcenkrIPqwr0D9lT4Wf8AClv2dvCPhxo/KubHT0e7XGMXEmZZv/IjtXz18SY/+GvP+CjmjeGQPtHhP4TQ/btQGMxy3eUYoex/eeShU9opa+xq+IyP/b86xWa/Yh+4h58rvUfzn7t/7p9tnn+wZNhcq+3P9/Py5lamvlC8v+3gooor7c+JCiiigAooooAKKKKACvjj9tLRLr9k/wDaZ8M/HPRYJH0rUJU0nxPbxZ/eqV2hyP8AajUY7b4YyeWr7Hrnfi18MdM+M3w31jwvrEfmafrNu0EmPvRnqrr/ALSsFYe6ivnuJ8nlmOBdOi+WrBqdOX8s46xfo9n5Nn0HDOcRy7HKpWXNSmnCpHvCWkl6rdeaRs6LrNr4i0e11CxnjurK+hS4t5ozlJo3AZWB9CCDVmvkj9g34r6r8GfHup/AXxzIF1bQWeTw9dtwmoWvL7FJ6/L86f7O9TgpivretuH86hmeDjiEuWa92cXvCa0lF+j+9WfUy4gyaeWYx4dvmg7ShJbTg9YyXqvud10CiiivbPECiiigAooooAKKKKAOB/ag/Z00T9rL4Ga58P8AxFdarZaNr/kfaJtNkjjuU8m4iuF2NIjqMvEoOVPBPQ8j5j+FP/BBn4QfB/4o+G/FumeI/iRPqPhbVbXV7SO61CyaCSW3mWVFcLaKxQsgyAwOM4I619tUV5mLybA4qsq+IpqU1s35O6/E9PCZzjcLRdDD1HGL3S81b8gr5E/ag/4IvfC79rL45658QPEWvePrLWdf8j7RDpt9aR2yeTbxW67FktnYZSJScseSeg4H13RW2Oy7DY2mqWKgpRTvZ9/6ZhgcxxODqOrhZuMmrXXb+keQ/sX/ALF/hf8AYW+F1/4S8JX+v6jp2o6rJq8kmrzwzTrK8MMRUGKKNdm2BMDaTktz0A/nFr+piv5uv+GGfjZ/0R74p/8AhJ3/AP8AGq/MPEXL3ClhKOEpvljz6JN2+E/TvDvMOepiq2KqLmlyatpX+I/Rzw7/AMEPfhx+1D+zD8MfFmkatqfgXxLrXg3SLq/ktYVu7K7uHsYS0zQMVIdmyW2OoYkkjJJPp/7J/wDwQu+F/wCzr4ssPEWvX+o/EDXNNKy2638CQadFMv8Ay0FuN24g8gSO4GBxkZr6R/Y20K98L/sg/CrTNTs7rTtR07wfpFrd2l1E0M9rKllCrxujAMrqwIKkAggg16TX2mB4Xyu1PFOgueyfzt22v8j4zHcT5pephlXfJdr5X772+YUUUV9QfMBRRRQAUUUUAFFFFABXlv7Yn7RNv+zL8C9U8Qlo21SQfY9KhfnzrpwdnHdVALt7IR1Ir02/vodLsZrm5ljgt7dGlllkYKkaKMliTwAACSa+LvA0Vz/wUd/auHii5jkX4U/De48vTIpEO3VboENuIPXcVV2HZBGpGXJr5XirNq2HoxwOB/3mv7sP7v8ANN+UFr62XU+q4WyqjiK0sdjv92oe9P8AvfywXnN6el30PWv+Cev7O9z8E/g42ra55sni/wAayjVdXlm5mTdlo4mJ5yAzM2ed8j+le+UUV7OUZXRy7B08Fh/hgreb7t+bd2/NnjZtmdbMcZUxuI+Kbv5Lsl5JWS8kFFFFeiecFFFFABRVTXdcs/DGh3mpahcRWdhp8D3NzcSttjgiRSzux7AKCSfavnx/+Ctn7PkbkH4gDIOOND1Ij8/s9ZVK9On8ckvVnlZjnuWZe4xx+Ip0nLbnnGN/TmaufR1FfOH/AA9u/Z7/AOigf+ULUv8A5Ho/4e3fs9/9FA/8oWpf/I9Z/XMP/OvvR5n+u/Dn/Qwof+Daf/yR9H0V84f8Pbv2e/8AooH/AJQtS/8Akej/AIe3fs9/9FA/8oWpf/I9H1zD/wA6+9B/rvw5/wBDCh/4Np//ACRe/by/ZZvfjb4Z0/xR4Sc2fxB8GuLvS54ztkuUU7/Iz03bhuTPAbI4Dk1sfsW/tbWn7T3gORLyMab4x0LFvrWnMpRkkHy+ainnYxB4PKsCp7E8z/w9u/Z7/wCigf8AlC1L/wCR6+Xf2ov2vvhLofxh074sfB3x5BH4xjlCatpbaRfwwaxGcBmJeFUyQMOCw3YDAh1y3w+bp5ZjXnWXPnUrKtTTTcktFOC/nj1X2o6bpH2+UeInCmZ4JZLmOZYeEo3dGo61NKLerhN83wS6P7Mtdmz9MaK8t/ZS/ax8N/tZfD5NX0WQW9/bqq6jpsjgzWTkZH+9G3O1wMHB6EED1Kvt8FjaGMoRxOGlzQlqmv637rdPRmGKwtXDVXRrK0l/Sa6NNaprRrVaBRRRXUc4UUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUV8R/8ABRD/AIKY6b8PLif4e+DdZgt9auj9m1TW13vHpKk7XSMxqzGQc7mUEpghQX+75Oc5xQy3DuvVTk/sxiryk+0V+fRLV2R0YelRk+bFVoUKStzVKkowpwTdrylJpLXRK929Fdmt+1t8aNa/au+Jp+Bvw0lDQF/+Kp1lOYbaJWG+LcP4VPDY5ZsIP4s/T/wd+E2j/A74b6X4X0ODydP0uERgn787nl5HPdmYkn68cYFfIv7Jn7ZP7MX7Kvw0j0iw+IC3eq3e2bVdROgakHvpsf8AXvkRrkhV7DJ6kk+pf8Pbv2e/+igf+ULUv/kevn+HcI41Z5tmlSLxNVWsmmqcN1Tj6byf2peiM+IfE/hSVKGVZZj6Kw1J3u6sE6k9nUl73XaK+zH1Z9H0V84f8Pbv2e/+igf+ULUv/kej/h7d+z3/ANFA/wDKFqX/AMj19b9cw/8AOvvR8n/rvw5/0MKH/g2n/wDJH0fRXzh/w9u/Z7/6KB/5QtS/+R6P+Ht37Pf/AEUD/wAoWpf/ACPR9cw/86+9B/rvw5/0MKH/AINp/wDyR9H0V598Av2p/AP7UGnahdeBfEMOuxaS6R3gW3mt5LcvuKbklRGw21sHGDtPPFeg1vGcZLmi7o9/CYzD4ujHEYWanCW0otNPpo1o9Tzf9sb/AJNE+Kn/AGJ+rf8ApFNX8mn7XHxV8UeG/wBoXxBZad4k1+ws4fs3lwW2oSxRR5tomOFVgBkkn6k1/Wz+1B4bvvGf7NPxD0fTLaS81LVfDOpWdpbx/enmktZURB7liB+NfzlfGn/gi18Xfi/8TNS8Rf8ACJfEfT/7Q8r/AEf/AIQi9l8vZEkf3srnOzPQda9Xh3H4DBZp7bMvgdNpXi5a80Xsk+iZ+O8f1MPQ4hw+IxsG6fsZxvySmubng7e7GWtkz4T/AOF5eNf+hw8U/wDg1n/+Lo/4Xl41/wChw8U/+DWf/wCLr7D/AOHCHxd/6F/4j/8AhBXv/wAVR/w4Q+Lv/Qv/ABH/APCCvf8A4qv0H/W3hXuv/BU//kDwf7b4f/59P/wRU/8AlZ8ef8Ly8a/9Dh4p/wDBrP8A/F0f8Ly8a/8AQ4eKf/BrP/8AF19O2H/BHXxlqnxPvfBVu3i6bxbp1uLu60dPB9y17bwkIRI8Ik3quJI+SMfOvqK6b/hwh8Xf+hf+I/8A4QV7/wDFVMeL+FJfDKP/AIKn/wDIGlTNcip2U6LV0mv9nqbPZ/wz48/4Xl41/wChw8U/+DWf/wCLr0j9kf4q+KPEn7Qvh+y1HxJr9/ZzfafMgudQllikxbSsMqzEHBAP1Ar3v/hwh8Xf+hf+I/8A4QV7/wDFV1PwW/4ItfF34QfEzTfEX/CJfEfUP7P83/R/+EIvYvM3xPH97LYxvz0PSvOzribhutl9ejh2ueUJKP7qS1cWlryaa9Txs8zTJa2W4ijhqT55Qmo/uKi1cWlr7NW16n7AeFP2QvEXg74G/C74tfBqUWHjBPCOlzarpI/1GtK1lCXIXgF2xlkJG84YEOMt9A/snftuaD+0rbNpVzEfDvjewDJf6JdErJuTh2i3YLKCDlfvLzkdCez/AGXPD174R/Zl+HWk6nbS2WpaZ4Y0y0u7eUYeCWO0iR0YeoYEH6V5/wDtX/sK6T8fryLxJoN43hLx/p5WW11i1ynnsv3RNtwcjAAkX5l4+8Btr8CrZLjcrqPMMjV1LWpRbtGT6yg/sT7/AGZdddT+w+Gs3wmY5Rhctz68ZQpwjCta8oWivdqLeUF/4FHppoe90V8f/DL9uzxT+z94tg8EfHzSpdNuSdll4lgi3W14o4DybBhh0y6DIyAyKcmvrbRdbs/Emk29/p93bX1jdoJYLi3kEkUynoysMgj3FfQZLxFg80jL6u2px+KElacH2lF6r12fRnNnXD2MyyUfbpOEvhnF3hNd4yWj9N11Raooor3DwwooooAKKKKACiiigAooooAKKKKACiiigAooooAKg1LU7fRdPnu7y4htLS2QyzTTOEjiQDJZmPAAHUmvNP2kf2wPBX7L+imXX9QE2qSIWtdKtSJLu4Pb5c4Rf9pyBwcZPFfPVr8OPi5/wUXu4b3xjJP8Ovhc0izQaTBkXepIDlSwIBbth5AFHBWM9a+Uzbimlh631DAwdfE/yR2j51JbQXrq+iZ9VlPC1XEUfr+OmqGG/nlvLypx3m/TTu0X/iz+1l4u/a98V3nw8+B8Eq6bjydY8WSBoooIzwfKbGUBGcNje3OxQBuP5rf8F9/gbbfsb6DbaP4Y1LUY75PCun3l1qSTNFPcXMmqTRySLtPyAooUKD90ckkkn9z/AIXfCjw/8F/B1toPhrTLfS9MtRxHEPmkbu7sfmdzjlmJJr8xP+Dg/wDYt8e/tX/ErT7Xwz4Z8T6npt/4ZtLN9Q0rRptSW3mh1CedkZY+h2snUj73GcEUskyR4bH0c3zqp7Wspwu0nyU4cycowjq7WWrd5S/A/NvGvPKNXIaOX5bRcMJTr0ZyVnKc+WWs6lk72V7RS5VeyTPwB/4Xl41/6HDxT/4NZ/8A4uj/AIXl41/6HDxT/wCDWf8A+Lr7D/4cIfF3/oX/AIj/APhBXv8A8VR/w4Q+Lv8A0L/xH/8ACCvf/iq/oD/W3hXuv/BU/wD5A/Ff7b4f/wCfT/8ABFT/AOVnx5/wvLxr/wBDh4p/8Gs//wAXR/wvLxr/ANDh4p/8Gs//AMXX1d41/wCCJHxD+G3hi61vxFbeNNC0axCm5v8AUPBl1bW1uGYIu+R3CrlmUDJ5JA71Y8O/8EMvib4u0Gz1TStN8eanpmowpc2l3a+CLuaC5icBlkR1cqykEEEHBBqf9b+FL8vNG/8A16n/APIB/bWQWv7J/wDhPU/+VnyT/wALy8a/9Dh4p/8ABrP/APF0f8Ly8a/9Dh4p/wDBrP8A/F19h/8ADhD4u/8AQv8AxH/8IK9/+Ko/4cIfF3/oX/iP/wCEFe//ABVV/rbwr3X/AIKn/wDIB/bfD/8Az6f/AIIqf/Kz9Vv+DZW+n1T4Q+Mbm5mluLi40fw3LLLK5d5XaG8LMzHkkkkkmv1Cr89P+CAf7N3jH9m/wB4003xX4d8QaEq2mi2FpLqumy2DXxto7pZGWOQA4+dCeoG7GTiv0Lr8kw7i4uUdm5NdNOZ2P0nwupyhw1QjKLj71V2aadnWqNaOzWjTCiiitz9ACiiigD4B8HH+xv8Ag4V8V54/tbwOmP4d2IbX/vr/AFX6e1ff1fAPiP8A4k//AAcLaD2/tXwO3TnOIJ/y/wBV/nNff1eZln/L1f35foRDr6hRRRXplhRXNeP/AIz+D/hRJbr4p8V+GvDTXgJgGq6nBZmcDrt8xl3YyM4rnP8Ahsf4Rf8ARVPhx/4Utl/8cqHVgnZtHBWzXBUZunVrRjJdHJJ/c2dR8TfhX4e+MnhOfQ/E2lWur6bccmKZeUbsyMPmRhnhlII9a+VdY/Yz+KH7I+qz618EfE0+r6KXM1x4X1VwwkHUhc4Rz7jy5MADcxr6C/4bH+EX/RVPhx/4Utl/8co/4bH+EX/RVPhx/wCFLZf/AByvnc54fy7MpKtUfJVj8NSEuWcfmt15O68j3Mn8QqeXRdGniac6UvipzlGUJfJvR+as/M8p+D3/AAU+8K67qf8AYPxC0+++HXim3bybiG/if7Lv/wB8gNHnriRQB/eNfSuj6zZ+IdMhvbC6tr6zuV3w3FvKssUq+qspII+leJfFn4mfs4/HPSvsnivxn8JtYQKVjkl8Q2QnhH+xKsodP+AkV856j8M/CPwR1WXU/gl+014J8P8AmNvfSNV8UWctpIfqGZW9BviY/wC1XjrHZ9lmldRxdJfag1Cql5wb5Jf9uuLfY9d5pwZmetDFxwlR/ZnNTpP0mvfj/wBvKXqfoFRXwFov/BXDxB8ItSj07x7aeBfFUOdo1Hwz4htZncf3ysckiE+x8v6V7p8NP+Cp3wZ+JESf8VHLok7Y/dalasm0+hkj3xj8Xr0cHxtlNf3alR0pLdVU6bT7e9ZP5NnLPIq7moYOcMRfVexnGrdLd2g3Ky63SsfRNFYng34k+HviLa+foGu6PrcWNxexvI7gAe+wnFbdfU0qsKkVOm00+q1R5FSlOnJwqJpro9GFFFFWQFFFFABRUGpapbaPZvcXdxBa28fLSzSBEX6k8V5P8RP2+PhB8L45DqfjzQ5Gj4KWMhvTn0PkhgD9SK48XmOEwqviasYX/maX5nTRweIrRlOlByUdW0m0l3b6L1PX6K+I/iR/wWv8IwT/AGPwXor6tcyHYl1q19DYWyn+9jcxK/7xSuUk+OPxA/aRTb4n+Pvwh+GGh3H+ss9K8S2TXe0+hjmLdOoM49xXy9fjjCObo5fSniJ/3Y2ivWc+WK+9npUMqwigq2YY6hh4f3qsHL5Qg5Sf3I+v/jZ+1v8AD79n2Fx4l8R2VveqMrp8B+0Xj8ZH7pMsuexbC+9fPN1+038Zv21LiSx+E3h+XwV4SkYxyeJNTwssi9CUbBCnrxEHYHB3LVj4LfB/9lX4RXCX118Qvh74t1oN5jX2teJ7Gcb+pZYvM8sc8gsGYf3q98h/bA+D9vCscfxR+GyIgCqq+JLIBQOgA8yuV4LOs0/5GFeOHpP7FJ3m12lVdrefJFf4jpXF3COV/wDIvlHEVV9urKKgvONJPXy52/Q4P9nb/gnR4T+DutL4i8QXNz458Ys/nyalqfzxxy9d8cbE/N/tuWbIyCtfQ1eb/wDDY/wi/wCiqfDj/wAKWy/+OUf8Nj/CL/oqnw4/8KWy/wDjlfT5VluXZbR+r4GMYR8t2+7b1b822z5rNeNKWZVvrGOxkZy85xsl2STsl5JJHpFFch4I/aC8BfE3WP7P8N+N/CHiC/CGT7Npus293NtHVtkbk4Hriuvr1lJSV4mVDE0a8OehJSXdNNfgFFFFM2Pmz/gr5Y/2j/wTf+KUfHy2FvLz/sXkD/8AstdP/wAE37/+0v2CfhFJ83y+FrGLkf3IlT/2Wqn/AAU7sTqP/BP34tRjPy+HbiXj/Yw//stZ3/BJ2/Gpf8E6/hVIMfLpLRcf7E8qf+y15n/Mx/7c/wDbiPt/I+iKKKK9MsKKKKACiiigAooooA+Afjz/AMSf/g4P+C8nSPUvBNwjMeBkQ6wMe5+VfzFff1fL37fn/BO65/ap8V+HfHngrxfd+Afij4PhMGm6vEZDHPFl2WF9rAxgGSX51UkiRgyuMAeIaP8A8FMfjV+wzq9toH7TXw7utS0YyCCDxr4djVobjsGdVxC7HrgGFwB/qya8WFb6nVqKumoyldS3WqSs+3z0Mr8rdz9EKK4X9n79pbwN+1L4H/4SLwF4isvEOliTyZWhDRy20mM7JYnCvG2CDhlGQQRkHNd1XsQnGceaDuma77H4u/8ABz7431T4efEe31bR7o2moWXhDTzDL5aybN+q3KN8rArypI5Ffjf/AMNpfEv/AKGX/wAp9r/8ar9nv+DmX4W6p8VPifYaTYeTbyar4TsooLi63Lbl4tSuJXXcqschdvAB++ucZr8iv+HdvjX/AKCnhb/wJn/+M19NwliuHqVCtHNlT9p7R254pvl5Y23T0vf8T+YsZiuHKWc5jHOVT9p7d254pvl5IW3T0vc5b/htL4l/9DL/AOU+1/8AjVH/AA2l8S/+hl/8p9r/APGq6n/h3b41/wCgp4W/8CZ//jNWb79hHUtXggtdIvtOj1KyXbqTXdxJ5LvgD91tiJxkN94DjFfR1c44KhUhT5KL5m1dU42VlfXTTt6nZh5cHV6VWvShQcaaTk+SOibUV9nu0jjf+G0viX/0Mv8A5T7X/wCNUf8ADaXxL/6GX/yn2v8A8arqf+HdvjX/AKCnhb/wJn/+M0f8O7fGv/QU8Lf+BM//AMZro/tDgrtQ/wDAI/8AyJx/2jwN2of+AR/+ROW/4bS+Jf8A0Mv/AJT7X/41X7mf8G+vws8N/tIfB/xfceOND0zxHcSaXoFz5t1br5kUksN20pjZQDHuIGQmB8o9BX4uf8O7fGv/AEFPC3/gTP8A/Ga/dX/g208J3fg34ZeOrC6UM2n2GgWDzRhjDJLDFdq4RiBnGQemcMMgZr4njJ8OYxUKOXQpSu5cyjCOq5dL6aq538MZjkseLMsq8PuEakZVbumlFpexn1ikz5R/4K9/FHw9+wp+074g03RdOvtK8P6Zc2Npaw6exuJhLNYpcly08mcZLjhuMLx1NfOXhr/guprvg4AaX4s+Klgg/ghuEVD9V8/B/KvR/wDg6B/5Od8Wf9hvSP8A0ypX5R1nwX4W8N4zByxc8NGM+eS91KOiemyPpY53xDm+IxlTGZtjPdr1oqKxNZRUYzaSUVKysj9R7P8A4OUPiHYRbE8ZePmGc5k03T5D+bMTWon/AAc//E5FA/4SzxVwMc+GtGP/ALLX5SUV+gQ8NsngrQ51/wBvs5p5JWnrPH4p/wDcxU/+SP1Ou/8Ag5g+I960hfxh43HmZz5ej6ZHjPptxj8K5jxF/wAHAfi/xSCL3xr8VmQ9UimihRunVUmAPQdq/Niisa3hbkVZWqxlJecr/mbUctxlF81LMcXF+WJqr8pH3bq//BWfS/EFx5t+3jS9lHR7iC3kbt3aY+g/KvuLXtD0vxB/wTHtvFUmlWMfiS3+JA0R9RjDCae2GmvOFbLFfvv/AAgD5V4yM1+GFfu5b2M13/wSEnkiikkS2+LglmZVJESHR1QMx7DcyjJ7sB3r8q438PMgyOpRrZdh4xnJTu7K+nJaztdbs+b42z3P6OEqZfUzPFVqNWhW5oVcRVqRfL7Nr3ZSa0u+h+Ov/DaXxL/6GX/yn2v/AMao/wCG0viX/wBDL/5T7X/41XU/8O7fGv8A0FPC3/gTP/8AGaP+HdvjX/oKeFv/AAJn/wDjNfqv9ocFdqH/AIBH/wCROL+0eBu1D/wCP/yJy3/DaXxL/wChl/8AKfa//GqP+G0viX/0Mv8A5T7X/wCNV1lt/wAE9vFllcJNe6l4dayiYPcLDczeYYxywXMON2M4z3p9/wDsD654hu3utA1DR4tKkwIlvriXzwQMNu2xEfezjnpiud5xwUq6oclHVN39nG2jSte2+p2RlwdLCyxqhQ9nGSi3yR3abS+Hsmch/wANpfEv/oZf/Kfa/wDxqj/htL4l/wDQy/8AlPtf/jVdT/w7t8a/9BTwt/4Ez/8Axmj/AId2+Nf+gp4W/wDAmf8A+M10f2hwV2of+AR/+ROP+0eBu1D/AMAj/wDIn6Af8G4XxQ134r/tceDtR1+++33kOqarbJJ5McWIxo8jBcIqjqzHOM81/QTX4E/8G7/wO1n4Kftg+ENM1J7S8mN/ql+0lkXkjiibSpIgWLIpHzLjpj5l5ya/favzGvPCzxmIlgreyc3y8qsrWWyP0TwilhZ4HGzwNvZPES5eVWVvZ0tkFFFFI/WTyL9v2w/tL9hr4wR4Bx4M1aTn/Ys5X/8AZa86/wCCMGoHUv8Agmh8MnOcrFqEXP8AsaldKP0Fe9fG34ev8W/gx4u8KR3Isn8TaLeaStwU3i3M8DxByvfG/OPavzq+DXxs+Nv/AARp8F2vgv4kfDlPGfwk0yeV7XxJ4aYySWSyytK5ctgYLucJMsRyxw5AFeRiqioYuOIqJ8nK03a9ndPUzk7S5mfp7RXkv7Mn7cfwv/a90hJ/A/ivT9QvfL8ybSpm+z6lagY3b7dsPgE43qChPRjXrVepTqwqR56buvI0TvsFFFFWAUUUUAFIzBFJPAHJJ7VQ8V6jfaR4X1K70ywGq6jbWsstrZGcQfbJVUlIvMIITcwC7iDjOcV+VHwt+J/xV/4LX+O9U0DWvifoHwq8E2MjR3HhHSLgjVtQiAy2YyVedMcMzt5akA+VXDi8cqDjTUXKUtlt+L0IlO2h9V/tW/8ABY74cfAfWT4Y8HxXXxU8fTyfZrfR9APmwrMeAkk6hhuzkbIlkfIwQvWvH7T9i39o3/gpTdRal8evFUvw0+H8rrNF4M0T5LiZAcr5q5ZVPQhpzK6nP7tK+uP2U/2Cfhf+xpowh8FeHIIdSePy7jWbzFxqV2O+6Yj5Qf7iBU/2a9krD6lVr64yWn8sdF83u/yFyt/Eedfsy/sqeB/2Qfh63hnwHpB0nTJp/tdzvuJLiW7nKIjSu7sTuIReBhRjgCvRaKK9OEIwioQVkjTbRBRRRVAFfAP/AATv/wCJR/wVk/aoseguLiK7x93P74tnb3/1vX396+/q+Af2PR/ZH/Bcj9oux6faNDgusdc5Fg3X/tr+vtXmY/StQf8Ae/8AbWZz3R9/UUUV6ZoFFFFAHzH+0j/wSg+G/wC1B8XtR8a65qfjDT9X1VIUuU028t0gkMUSxK22SCQg7EQHBx8vTOa4T/hxB8Iv+hj+I/8A4H2X/wAiV9r0VySwGHlJylBXZ8Zi/DvhrFV54nEYOEpzbbdt29W9+rPij/hxB8Iv+hj+I/8A4H2X/wAiV8t/Hb/gnV4N+GP/AAUx+E/wls9a8XSeE/HGky3d9JLc2xvUlUXmNjiAIFzDF1Qn73PIx+vdfAP7ff8AxKv+Cv8A+y/e9BcLNa5bp/rHX65/e/yrzcywVCFOMoxt70fuujBeG3C9LWGBp66bX0fr+e66HT/8OIPhF/0MfxH/APA+y/8AkSj/AIcQfCL/AKGP4j/+B9l/8iV9r0V6H9m4b+RE/wDEMOFf+gGH3P8AzPij/hxB8Iv+hj+I/wD4H2X/AMiV9Ffso/so+Gv2O/hrceF/C9xq91Y3V/JqU02pTJLO8rpHGeURFACxIAAvb3r02itKWDo05c1ONmeplPBORZXiPrWX4aNOpZq63s9wooorpPqDj/2hdP8A7W+APji1xn7T4fv4sbd2d1tIOnfr0r5h/wCCCmofbP8Agnfo0ec/ZNZ1CIfNnGZd/wCH3+n496+ufHen/wBreCNZtev2mxnixnH3o2H9a+K/+Deq/wDtn7Bl5HnP2XxXexdOmYbZ/wD2evMraY+m+8ZfnEh/Gj7pooor0ywooooAKKK+F/8AgpL/AMFZNc/Zb+LMPwt8F+E7c+MdTgglg1rxFdRWmkxJNkLJGWkVXAYMpeR40VkbIYCubFYunh6ftKr0FKSirs+xPip8X/C/wP8AB9xr/i/XtL8O6PbD57q+nWJCcZCrnlnOOFUFj2Br4Y+IX/BVrx9+154jvfBX7Lnw+vfEAybe88WazahLC0VuCwjkwigjkeedxGR5JNWvg7/wSH1n9oTxJZfEH9pj4gXnxJ1adFuLXRNPuyulWyNhgokTaChGPkgWNM87nBr7q8C+AND+GHha10Tw5pGm6Fo9iuy3srC3WCCIeyqAOepPc9a4rYvE7/u4ffJ/ovxZHvS8kfFP7Bv/AARcs/2dvirpvxP8d+Jzr/j+0uJb2O00m3jtdItZZY3R/l2BpMeYSpURKDj5Divu2iiu3C4Slh4ezoqyLjFRVkFFFFdIwooooAK+Sv2u/wDgj58Nv2kNVfxL4cM/w08fRyfaYNa0JPKjknHIeWBSoLZ53oUcnkselfWtFYYjDUq8eSrG6E0noz84NP8A2zf2i/8Agmdew6V8evDU/wATPh5G4hg8Z6OfMuYFzhfNcgB26fLOI3Jz+8fFfbH7OH7Wnw+/az8JDWPAfiWw1uJFBuLZW8u8sSf4ZoWw6HORkjBxwSOa9B1DT4NWsZrW6giuba4QxSwyoHSVCMFWU8EEcEGvyR/4KeeAv2f/ANmr4jDXvg/401bwR8Zra4wmi+Cz9otvNLYKSqjqtoScAoj9P+WDZzXlVpVsBHn5+aHaTtL5Pr6PXzM3eGvQ/XSivl//AIJcfGD46fF74R30/wAbfDK6Jc2bQJpV9PaGyvtWjZCzvNb8KmPkwwVM7iNo25P1BXrYesq1NVIpq/fRmid1cKKKK2GFfAvwatW8Kf8ABwP8WZbnZaw+IPBVv9kEzCL7UfK0vmIEgyc28uSoOCr56GvvqvlD/goH/wAE7/g1+0G8njPxXrcXw38XRqnleK49RSzIaJQI/NWRhG4UBeQVcAABwBXn5jSnKMZ09XCSlq7X0a3+ZE03qj6vor8e/Cn/AAVs+IX7BXxHTwlrfjzwn+0V4Kh+WLUrG8b7fBGDgD7SVO5+5DmYHgCQCv1i+EfxFh+L3wu8PeKrew1HS7bxFp8GpQ2l+ipcwRyoHVZFVmAbDDIBNGCzKliW4w0kt1/wVoEZqWx0VFFFegWFFFFABXwB/wAFR/8AiU/8FH/2Q77objxC9rkcE/6XZLj/AMi/qa+/6/P3/gtJf2fg79ob9lTxXqV/ZabpfhvxlJcXdzcygLDGtxp0zMUGXKhYGywG1eAxG5c+ZnGmFb7OP/pSIqfCfoFRWb4Q8ZaR8QPDlrrGhapp+s6VfJ5lveWNwlxBOvqrqSpH0NaVemndXRYUUUUAFFFFACOgkQqwBBGCCOCK+B/+DeqB/Df7LXjnQLsrDqOmeNrozWsjgXEA+y2kX7yLO6P54nGGA5B9K++a/P79sH/gl/8ADb4U+IX+Ifw6+KFr+z14xUtPHLPrAtdLumJywwzh4wx4IQsmOPKNeZj41I1IYmmr8t7q9t7bdOnkRK91JH6A0V+XH7IX/Bb7xXonxh0v4ZfFK00Tx3Lf6lBpFn4p8MXESi4klkWON3Q7InQswyy+UVA5Qmv1HrfBY+jiouVLpv5DjNS2CiiiuwoK80/aV/ZA+Hf7XPhX+yvHnhqy1gRqVtrzb5V7Yk94p1w6c8lc7TgZBr0uionTjOPJNXQb7n5v3X7IH7SH/BMe8l1L4HeIp/ip8N4nMs3g/Vh5l3bpnLeVGCAzdfmtyjMSMxNivcf2QP8Agr38NP2nNRTw7rLTfDrx6j+RNoWuP5QkmBwyQzMFV2zxsYJIT0Q4zX1fXzt+3j+w/wDBP9ovwNf658TLfTPDc9hDlvFcdxHYXVkoGBvmb5ZFHQLKGHPAB5ry3g6uG97CS93+WW3ye6/Iz5XH4T6Jor8lf+Cc37VvxT8K/te2vwi+HXjFvjf8K7a4RZtU1Wxnt/7Jsgf3kscj5kTYBhUYtG5ACBd2R+tVdWAx0cVTc4q1nZ+vk1oyoT5lcKKKK7SgooooAK+df2v/APgqH8J/2N0nsda1n+3PFSDEfh/R8XF5u7CU52Q9v9YwbByFavVP2jvhZffG34GeKPCul6/qXhbU9bsJLe01WxneGaym6o25CG27gAwBG5SwyM1+VXwH8L6p/wAEbfi7JqHxn+Ctj4t0q6u/9E+IGll76SyJOAY/NPlKSc4BWCY5b5nAArycyxlai1GCtF7yd2l8l+uhnOTWx7b/AGd+1h/wVFObp2/Z8+Et7/yyXeNW1GE+o+SaTIPfyImU9Hxz9O/shf8ABMz4T/sZW8Nz4d0Ian4lRcSa/quLm/Ynr5ZwFhB9I1XI6luteifs+/tPeA/2pfBy654E8Sadr9kAPOSF9txZsedk0TYeNvZgM9Rkc13taYXA0bqu37SX8z1+7ovkOMVvuFFFFekWFfO//BSH9oT4r/s2fBy18QfCvwdp/i+5Wd01NbmGWc6fDsyswijdGcZBBwepXg19EUVlXpyqU3CMuVvqugnqrH4heEf+Ci3xX/ax8VTaX47/AGkbb4LWDSeUsdhotxBIjZwQJLeNWXHrJcDHPSvqr4Cf8EafgZ8aseJNX+LWvfGy6YAz3VvrsRt5M/3/ACzJMDnPBmyOe9favxg/ZZ+HHx/gZfGfgjwz4jdl2ie8sI3uUH+zNjzF/wCAsK+R/jX/AMERPgn4eu/7c8LeM/EPwd1NCWt7mHWQ1tCfUeewl4JHSYV868rrU3zVkq3q2n9zvEx9m1vqfSvwk/4J/fBX4GeU3hn4aeE7O4h/1d1PZi9u0+k8++T/AMer2BEEaBVAAAwABwBX5LeMP2gfjb+xCG/4R79qr4RfF/SrTppms6vDc6jLjkBtzNIuR2+1f0NfpH+yH8U9f+OH7M/gzxh4nsdM03W/EumpqM1vp7FrZFkJaIoSzHBjKH7x5J5r08BjKM5OjThyNdNLfetC4ST0SPR6KKK9Q0CiiuQ+Pdr4wvfg14ij+H91Y2fjQ2bnR5bxA8AuBgqHDAjBwRkjjOe1KT5Yt7gdfXj/AO1r4h+B994Kn0P4y6n4CGluu8WevXkCTAkfehVmEofHRo/m9DX5IftA/E79pzTPGkkPx+8Q/Gvw94SWQrdXPh7TRFZ3C5xhPLe3tmHQjcx7ZHNey/shfBf9gTxlNbvqPjDV9Y1uZg8kHjnUJNKAkPPJjEUDc9vNf3znn53+2XXk6MIKP+N2/DW5j7W+i/E8g+MHxu8AfsVfEj+1/wBlD4z+L5ftV0PtfhqbTprjS5STjAeZVWYAcDdG7YPEua/Uv/gnF+0z48/as/Z9HiX4geC18G6rHeNaRKqyxLqaKiN9pSGUbo0JYqBufJRiDiu9+CHwG+GHww0aC7+H3hXwbpVpOmY73RrKBTcL6mZBuf6ljXoNdeX5dVoTc3P3X9lL3fldv8LFQg073CiiivYNAr5B/wCCqX7Xvxq/ZL0LS9Q+GngvS9e0K6t3/tLVbi0mu30uUNhR5cci8FTkMQwG1sivr6isMTSlVpuEJOL7oUldWR+Jfwu/bK8eftraobX4jftax/Ce3uH2rY2OmXFnlO6mWBIIgOo/eTnr36V9c/Af/giP+z/4utl8Rah4v134wNckNNe/28jWdwcDndbEPz7ymvqn4z/sTfCX9oXzX8YfD7wxrN1NnfeNZrDenP8A08R7ZR+DV8j/ABf/AOCL3wq+FWqNrngb4v8AiT4JasBvjmfWkMEIGSCpZ4ph0PJmPT2r5/8AsyrSfNWgq3m5O/3SvH8jHka1ep9e/CT9jD4T/AkRHwn8PPCejXEONt3Hp0b3fHTM7gyn8Wr02vyN8V/tvfHb9iaXZZ/tBfBX44aRbNhbObVIbm+2jg72UpJu9vPc+3r+rngLUNT1bwNo11rVvb2msXNhBLfwQEmKG4aNTIiEkkqGJA56CvVwGMo1b06ceVx3Wn6aGkJJ6I1qKKK9IsKpeI/EuneDtCutU1e/stL02yQy3N3eTrBBboOrO7EKo9yau1+Sf/BWD4NfFnTf2lpvFHxMg8cfEX9ny2vBdW9p4fvo7RNMg2glJY1jYRlGJXzXTMigfvVY/Lw5hjJYal7SMeb8l5vy+RM5cqufQPxy/wCC0Np4h8YP4G/Z58I6l8XPGkpKLdRW8g0u2xwX4w8qqerZjjwc+YRWB4M/4JR/En9rzxLaeLf2p/iBf6qI28618H6NcCO0sc/wM6fu04+VvJBZgAfONe7f8E4vjL+z344+GEemfA9NF0VIY1kvdFMQt9WiI43XCsTJMRnHm7pF7BzX0pXJSwn1qKq4mfOuy+H/AIPz+4lR5tZO5y/wj+CnhL4CeD4dA8G+HtL8OaRB0t7GARh2xjc5+87nuzEse5rqKKK9iMVFcsVZGgUUUUwCiiigAqtrGjWniHSrixv7W2vrK7jMU9vcRLLFMh4KsrAhge4IqzRQB8MftBf8EYdPsvGJ8d/s/eJ734Q+OYCXS3tppF0q5J5KYXLwqe6gPGQAPLrnfh//AMFYfiD+yd4utPBf7VHga+0OWRvKtvGGlW3mWV8B/wAtHSPKPxyxgORkAwivbf2wP+CsXwq/ZInl0h9Qfxj40DeVH4f0NhPMkp4CzSDKQ84BUkycghDXzlqnwC/ab/4KwxRt8SbiH4K/CWaVbiLQIoC2o3qjlS8bYkJ95igBwyxGvm8R7OlVay9v2nWK1j/290XyaZi7J+5ufoT8Mfit4a+NHg+21/wnrmmeIdGux+6u7G4WaMnupI+6w7qcEHggV0FeYfsk/skeEP2LfhKng7wbFe/2ebmS9uLi9lWW5vJ3CgySMqqCdqqowoACivT6+gpObgnUVpdbGyvbUK/PH/gsZ40/aY+CniKHxT8PvFOsW/wwmt40u4NE0yKe60aRB+9mnfyd6xN8u0+aRkMDs+Xd+h1IRkVjjMM69J01JxfdEyjdWPya/ZN/Z1H/AAUK0kTTftl/EPWtR2eZdeGpBPZXtnjk/upLt1dRhCXiRkBH3ieR714b/wCDfD4KWN19p1rWviF4luXOZGvNUhjV8cD/AFcKv0x1Y9Pwrsf2sf8Agjj8N/j9q7eJvCT3Hwt8fRSfaINY0FfKheYch5IFKjdnJ3xmN8nJZuleN2P7an7Rn/BNO8h0r4+eFpviV8P43EMHjPRT5lxEvQeY+FVj0AWcROxyfMevAWFo4d2xtK6/m1kvmm21+RjyqPxo+hvBv/BHb9nDwSUaD4aWF7KpyX1G/u7zcfdZJWT8lxX0T4T8J6b4E8M2OjaNY22maTpkC21paW0YjhtolGFRFHAAHAFcN+zb+118PP2tfCv9q+A/E1jrSRqDc2gbyryyJ7SwNh054BI2nHBI5r0mvoMNSw8Y82HSSfa36G0VH7IUUUV0lBRRXzh/wU3/AGbviL+0X8CEh+GHjHXvDHifRJXuo7LTtRksF15Su37PJKsiKuDh1L7hlcfLu3DKvUlCm5xjzNdO4m7K59E6hd29jZvJdSQw24GHeVgqAHjknjvXyV+0x8LP2MfHwnbx5P8AB6wv5Bl7i11i203UGPGGzbyJI5G4HncORkYr84Pgf8IPhFe/E8+Ef2ptR+M3gTxpA+1J9Svo20ybPAZneBpY1PG1gWjIXJkxxX6O/DL/AIIx/swx6Pa6nYeE18U2t1GJba9m1+6uYZ0OcMvlyrE4IPXB6CvEp4urjotQpw81J3a9Vy6GSk57I+HfiT4N/Zt/Z81O41L4LftV+OPBGqk+Z9jsrO91GCcj+HzIEiG3HH7xn79a+0/+CMX7Qvj39o74R+MdT8Z+OLXxzaaRrCaVpV2lgLWYKkKyO0g8uNm3CWPBYE/I3Jr3Hwd+wV8FPAO06X8KfAMEifdmk0S3nmX6SSKzfrXp+h+HdP8ADFkLbTbGz0+3HSK2hWJB+CgCtcFllWjWVRtJfyx5rfi7fgOMGncuUUUV7ZqFfll/wVc+Kn7T37OvxsutQTx34l074QavOJLK/wDDukwyf2JC2F8iaQRxHzt24qHlwylcOTkL+ptQ39hBqllNbXMMVxbXCGOWKVA6SqRgqynggjqDXFjsI8RS5IzcX3X6+RM48ysfl/8As2/sKWP7ePhX+1n/AGw/iB8QIdoa902GSa2ubDdwUkhnuJGQcyAHywpz8uR19i8Jf8G+/wACdDl83VLnx14lmY75Tf6skYkY4JP7mKNuTn+Innqas/tJf8EW/C/iPxT/AMJr8F9cvfg54+tmM0EmlyPHpsz+nloQ0GeBmI7MZzG2a4bwt/wU1+MP7DHiG08LftQ+Bru80p5PItPG2hwq8N0OzOFxFIcckL5ciqBmIk14kcPh6DtjqX/b2so/O92vn95lZL40fQvg3/gkb+zn4G2fZPhdotyy/wAWo3Fzf7j6kTyOP0xX0Zb26WlukUShI4lCIqjhQOABXJ/BT4++Df2jPBkXiDwR4j0zxHpUuAZbSXLQsRnZKhw8b/7LgN7V19fQ0KVGEb0Ekn2t+hsklsFFFFbjCkdBIhVgCCMEEcEUtFAHx1+1X/wRq8A/GTXj4t+H13dfCX4g28hubfU9CzDbSTcnc8KFdjE/xxFDySQ/SvK9E/4KAfHj/gnZqtvoH7SPg+48X+EPMEFr430JRISOg8w4VJDxwsghl4JO+vt/49/tL+BP2YPCDa5478TaZ4dscHyhcPme6I6rDEuZJW9kUn8K+GfGv7e3xn/4KTjUfCH7Pfw9Gk+CbzfZaj4u8UW0bQPGcq6hHDwjryoE0mCDtSvAxsKFCfNh5ONR9Iq9/WO3z09TGVk7rc+4/gD+0/4B/ah8KrrHgTxRpfiG12K80cEuLm03ZwJoWxJEeDw6jOOM13tfEv7A/wDwRg0T9jP4kaL46u/Geta54ssbe4iuYbZBaaZIZkChQg+dlTL/AH2wx2NtUqBX21Xq4OdedJPER5ZeTuaRba94KKKK6igooooA4z9ob40Wv7O3wT8SeN77TNU1iy8M2TX09ppyK9xJGuNxAZlGFB3MSeFVjzjFfnV4E+PPx6/4LO65qmmeFPFXh/4O/DOxcR6hDp+orca3NET/ABqjLO2en/LCJhkZcg1+otzbR3tvJDNGksUqlHR13K6kYIIPBBFfF37Tf/BGjwv4x8Vf8Jv8HdZu/g98Q7ZzPBPpLvFp08h67o0IMOehMWFwTmNs15OZ0MRUadN3h1inZv5/poZzTe2x6j+yB/wTJ+FH7GUEN14f0Qat4nVf3viDVttxfFiMN5ZxthByeIwCQcEt1r6Dr4Q/ZY/b1+Mvwy/aj0D4A/HnwnbX/inXImk0rxHpM8KrewKsrefKmVRkIhk+ZAjjZjyi1fd9dGXzoSpWoR5UtGrWs/McLW0Ciiiu4sK53xv8XvCfwziL+JPE/h7w+gG4tqWpQ2gA45zIw9R+ddFXwv8A8FSv+CQkv7a/i2Dxr4P1jT9J8YrAlreR6o8gtLyKMHywpjVjG3zHJKtkBcbcHPLjKlanSc6EeaXbYmTaWh7B48/4Kxfs7/DreL34p+HrtkyNulibU9xHYG3Rx+Oce9eMeO/+C/XwPcTaXpOg+OfGrXatCILfSIlguVPBUiaRXIK548s8dRXzb4E+GPin9gllj+J37G3hHx3o1mRnX9GhfVGCdPNk8xrlP++1h5x3OT+gH/BP79rD4XftXeBdUvfhn4cm8MQ6LNHbX9jLpMNg0EjKSFHlEowwvY8cZAzXj0MbisRP2TnGEu3K7/i0mZqUm7Xsfl98V/A3if44fFK08Zfs9/s4fFr4T67FMZRqmm3M1tYSk8nbF5CJCcY4jmCYOChzk/r7+yVH43i/Zt8Hf8LIuJbnx0dORtZeWKKJ1nJJKMIv3eVBC5Xg7c969ForuwOWrDTlU57uXSyS9bLqVCHK7hRRRXqGgUUVxXxt/aN8Dfs4aHb6j458T6V4Zs7xzFbyXsu37Q4wSqAZLEAg4APFTKcYrmk7ICP49fs1+Bf2nvB7aF478Nab4isOfK+0R4mtWPBaGVcSRN7owNfD+u/8E7fjp/wT41i58Q/s0+NbnxP4Y3me68Ea86v5g6kICVjkP+0phlwAAXJ59X8d/wDBdb9nTwbvFp4l1nxJInBTS9FuOTnGA06xKfqDj3rgD/wXbb4gHHwz+AfxR8cbv9X+58rdz/07x3Pt+deHi8Rl1SXM5++tnHf8LmUnB9dTsv2Xv+Cz/gj4l+I/+EP+KOm3nwf8f2zi3uLLWg0VlJL6CZwpiJ67ZgoGQAzmvsyCdLqBJYnWSORQyOpyrA8gg9xX5YftM2X7R/8AwUV0FbG//ZS8JaaFTbb6rrtybfU9PH/TOZri3kHJB2FWU45Q9vpz/gkP+yL8SP2P/gtrmi/EbVjdz3d8j6XYRao97a6ZbqnKxqQFjZnZiwTg4XvmqwGNxEqvspxco/zcrj96f6BCUr2Z9bUUUV7hqFcl47+PngX4Xbv+Em8aeE/D2z7w1PV7e029v+WjjuDXW1+cX/BR7/giVqn7QnxkvviH8OdS0VNT1iT7Xq+la1PNHHeT/KP3UkanapVR8pwcljvGQF48dWr0qfNh4cz7EybS0Pojxz/wV+/Zz8AFlufibpd9KOiaZa3N/u+jQxsnbuw/UV4l8Sf+C73wT8f6bdeG9P8AAHjj4ixahGY5rB9Ht2tbtD/CyPIzMM46xkc14b4B1ub9hIpF8ZP2K/DtxYWZ2yeJdEsBqcUajneWna4j3Ec8zR9+ByB+jn7GP7QPgP8AaZ+CsHin4dabJpWgSXElr9mk05LF4pUxuBRMqcbuqkjOea8qhisTiZezdSMH25Xf/wAmaM1KUtLn5IN8KvizrHxrh8a/s3fAv4u/B2WRsuGvpTYXIz0VbiCJQm7OY2kkj44VQMV+2PgOHU7fwPo0etXH2vWEsYFv5/KWLzpxGvmPsX5Vy2TgcDOBWtRXfgMuWFcmpN39Evkloi4Q5Qooor0iwr88P2zf+Cs3jqP9pC++Bnwm8Pab4d8XRXv9mza94rvLe2jR2AKvbpI/l4ZWVkZyxcMAIiSK/Q+vFf2t/wDgn78MP20tFaLxloEf9rJHsttbsMW+pWvpiUA71HZJAy+2ea4cwpYipS5cPKz/ADXa+tvUiabXungnwD/4Iv6Ze+L18c/H7xRf/GDxxORI8F1NIdLtjkkJhsPMoPQEJHjjysV9t6Joll4a0i20/TrO1sLCzjEVvbW0SxQwIOAqIoAUDsAK/NnxKv7SH/BHLRpNUTV7b4zfA3TXRJItQnMN9o0TOqIoZizxcsqDaZYv9hCa/QT4E/FmD47/AAZ8MeM7SwvNMtfFGmw6nBa3TI00UcqB13FGZeQQRz0IyAcgc+WuhFulGDhNatPd+fN1FC21tTrKKKK9Y0CiiigAooooAKKKKAPgH9q7/Q/+C8P7Pc7fck8NXEIx1zs1Qf8As4r7+r4B/bTP2H/gtn+zdc/eMulTw7fTm8Gf/H/0r7+rzMv/AIldf3//AG2JEN2FFFFemWFFFFABXwD/AMEqv9F/4KGftgwv8sj+J0kVfVftmoHP/jw/Ovv6vgH/AIJnH7F/wU7/AGtLduWl1eOYEdAPtNwcf+Pj8q8vG/7zQf8Aef8A6SzOXxI+/qKKK9Q0CiiigAryX9sj9jjwp+2x8JZfC/ieN4niYzadqEIDTaZORtMiA/KSVJUhgeDkYIBHrVFRUpxqRcJq6YNXVmfmB4Z/4JcftCfsLam9/wDCHVfhl8R9ORjIdP1vQLW2vpz1A8yQFvbIuk7cenuf7Kf/AAU38ZeNf2idK+EXxd+FVz8OPGWqWstza3Ju9tpfBFY/uo5BlgdjAeXJJyrdNpx9mV8A/thf8px/2dP+wHcfyv68WrhfqSjLDyai5RXLurN266r7zJx5fhPv6iiivdNQooooAKKKKACvgH/g3l/0f9mX4hW7fLLD44ud6/3f9EtR/MH8q+/q+Af+CAJ+y/Cf4t2Z5e28cT7mHQ5hjHH/AHya8zE/77Q9J/kiH8aPv6iiivTLCiiigAooooA+ZP8Agshbtdf8E1vigq4yLazfn0W/tmP6Cu4/4J53K3X7CfwgZc4HhDTE59VtkU/qK5P/AIK5232v/gnH8U1zjGmwvnH926hb+lb/APwTVuvtf7AvwjbGMeGbNMf7qBf6V5i/5GL/AMC/9KZH2/ke4UUUV6ZYUUUUAFFFFABRRRQB8A/t7/6L/wAFhP2YJk4kkjmiY+q+ZIP/AGY19/V8A/8ABR0eR/wVV/ZTlHyF72VC/TcPPj4z/wAC6e/vX39XmYH+PXX95f8ApKIjuwooor0ywooooAK+Af8Agnn/AKF/wVq/amt15WSaKYk9QfOzj/x8/lX39XwB+wsPsv8AwWX/AGmYk4je0hkZfVt8Bz/48fzrzMf/ABqD/vf+2sie6Pv+iiivTLCiiigAooooAK+Af2tv9N/4Lr/s8W68NH4duJiT0I26kf8A2Q/nX39XwD+1H/ynu/Z//wCxVuP/AEXq1eZmn8OH+OH/AKUiJ7L1Pv6iiivTLCiiigAooooAK+Af+CDv+i6T8c7QcpbeOJdrHqeGHP8A3yK+/q+AP+CG4+z+Kv2i7dOIYfHD7F/u/PcD+QH5V5mK/wB8of8Ab35ES+JH3/RRRXplhRRRQAUUUUAfPv8AwVVgW5/4J4/FdWGQNFLfiJIyP1Aqb/glxO1x/wAE9/hOzckaDEvTsGYD9AKn/wCCm8Xn/wDBP/4tArvx4cuGxjPQA5/DGfwrL/4JMy+b/wAE6fhUd27/AIlTrnOelxKMfpXmf8zH/tz/ANuI+38j6Jooor0ywooooA/nH/4LEf8ABsBZ/sP/AArs/if8Grzx38QvBHhz994z0XUru2bWbW0Vtz3dtNDbKnlBMh8wOYv9YQ6BwnsP7Af/AAbm/sRf8FHf2ctK+I3w9+Jnx3mtLtRDqOnTa5pH2zQ7wKDJa3CDTuHXIwR8rqVZSVYGv3VliWeJkdVdHBVlYZDA9QRX4xft3fsdeP8A/gg7+03f/tXfszaW+p/CDWpAfiX8O4mZbS0hLktPCig7IAWZlYAm1djwYHZFAPz/APGv/BG74b/sAf8ABRa3+Ff7V2r+PtI+FPjZmXwX8RvDV3a2Vk+GGDeLPbXAXG5ElAKmFirndE4cfpJq3/Bmz+zZq/he5fQ/iR8aYr25tWawu59U0u7tUkZf3cjxpYxmSPJBKrIhYcBlzmvtrx58Mvg5/wAFz/8Agnfpcmq6ZqN54G+IenrqekXN1Zm01XRLgblW4i3g7JonDruXdHIu4Zkjf5vh7/gmF+1d8V/+CTf7X+jfsUftDJqnibwzrshh+FHjW2tprlbqAtiO1bG5vIA+XBybVvlYmBkkQA+D/wBin/gmp8N/gD+2j4z/AGVP2stS8efDzxH4xZE8J+JdE1Kzg0TxHCxaOJUa4tJSpmJby33gbw0LqkigN9a/tlf8GcfgHR/2ftbv/gZ40+Id/wDEXTo/tNhpvinULCax1YKCWtg0VrAYpX42SMxQEAMAG3r+j3/BVb/glp4F/wCCqH7O83hPxKq6V4m0rfdeGPEkMQa60S7I/N4HwokiyAwAIKuqMvy1/wAEXf8Agot8UvBHx51D9jP9prS9VHxf8E2jS+HvEgjluofE+mRKSJJZ8fMRGAUuGwJQCj7ZlIkiNOMW5RWr3Cx+eX/BHP8A4I1fsp/8FFtG1rwR488R/HD4eftAeBJZbbxN4SfV9NtxJ5T+W9xbRy6eZAiv8jxMzPE3DEhlZvpT9sr/AIM4/AOj/s/a3f8AwM8afEO/+IunR/abDTfFOoWE1jqwUEtbBorWAxSvxskZigIAYANvX6a/4LQ/8EgNe+N3i3Tf2kP2dbuTwf8AtJ/D8reQyWLrAPFkMS48mT+E3ATKKz/LKhMMmUKlPY/+CNX/AAVLi/4Kffs73+oat4ev/CXxI8CXa6L4z0iWzmit7a+Ab5oWcfdfYxMTHzImBVgRsd7A/G7/AII5/wDBGr9lP/goto2teCPHniP44fDz9oDwJLLbeJvCT6vptuJPKfy3uLaOXTzIEV/keJmZ4m4YkMrNi/8ABXf/AIN6NG/4Jg+OPDfxF0//AIWL8Q/2b3uYbbxQ1neWkXiXw8WIQkzfZzAUdiDHIYAu7ET7SySN+pH/AAWh/wCCQGvfG7xbpv7SH7Ot3J4P/aT+H5W8hksXWAeLIYlx5Mn8JuAmUVn+WVCYZMoVKepf8EmP+Cjmi/8ABX39k7xBZ+MvBjaV4v8ADjN4Z+IPhrUdNkOntO6OjqglUho5FV90LkyRHcjgjY7gHxZ+zd/way/sW/tb/BbQviD8P/iv8bvEPhXxFbie0u4Nb0rI7NHIp03ckiMCrowDKwII4r5J/wCCkn/BJzwl/wAE1/jp4A8MfFyH4iaz+ytq+otb2Xjjw5eW0esaNLJvIhvEe1liZ4lLMQiJ58as0eGRoh9PfEXwJ4+/4NeP2q5fHHg221rxp+xp8StURNd0QSNPceDbmQgB0JOA4HEcjECZFEMrCRY5T+u3xE+G3gH9ur9mebRPEmkReJ/AHxD0iOZrW+tZIGmt5kWSKTY4WSGVcq6nCyRuAflZeM50YTcXJbO69RNJ7n5b6F/waGfsrfFv4V2/iDwN8WPi/f2mv6cLzRNXXV9KvrCUSJuhmKx2KGWPlSVWRCRkblPI/PX9lf8A4I/fCP4bft/ax+zb+1/qnxG+Hfi/UpkbwV4k0DVrK20HxJE7FIlBuLOYgzEHy33gbw0LqkigN9z/AAA+I/xH/wCDan9r3Tfg38QJde8d/snfE/Vmj8G+IUgku7vwzdSt/qTHGD825h5sCL+8BM8K7vNiP6Jf8FVP+CWvgX/gqj+ztL4U8SKuleJtLD3XhjxJDCDdaHdEfgXgfCiSLIDAAgq6oy6DPym/4Kc/8GjWk/Bz9nO78Xfs5674/wDGPibw/uutQ8OeILi0up9VtQMt9jNvbwfv0wW8tgxlHC4cBXwP+CS//BDP9iv/AIKqfABfEGjeOvjpofjbQwlv4q8Ly6/pLXGj3ByNy500F7eQqxjkx2Kth1YD7T/4Iu/8FFvil4I+POofsZ/tNaXqo+L/AIJtGl8PeJBHLdQ+J9MiUkSSz4+YiMApcNgSgFH2zKRJz3/BWj/gmT49/ZL+P7ftnfskwtp/j7RC93458IWsRNp4rtOGuJlgTHmMwXM0Q5kIEqYmXLgH58/8Fd/+DejRv+CYPjjw38RdP/4WL8Q/2b3uYbbxQ1neWkXiXw8WIQkzfZzAUdiDHIYAu7ET7SySN9j/ALOH/BrL+xd+1v8ABXQviD8Pviv8bvEHhbxFb+fZ3cOt6VwejRyIdN3JIjAq6NhlZSCK/Rb/AIJ/ftp+Bv8Agrf+xBZ+Nbfw9J/YniWCbRvEOgaxaebBHcBAl1a5dQlzD8+A6gqythgrBkX80fiL4E8ff8GvH7Vcvjjwbba140/Y0+JWqImu6IJGnuPBtzIQA6EnAcDiORiBMiiGVhIscpAPhzxr/wAEbvhv+wB/wUWt/hX+1dq/j7SPhT42Zl8F/Ebw1d2tlZPhhg3iz21wFxuRJQCphYq53ROHH2Z/wUU/4Ngbb4G/sM63cfsz634t8c3ySf2rqei6/PbXt3q1qBG2dPktoYF81RGG8tlcygkIQwVX/V79qz9lH4Yf8FU/2QP+EY8W2EupeFPGFhDquk3/ANna21DS5JIw9veQCVA8Myq/3XUZDMjqVZlP55f8Ewv2rviv/wAEm/2v9G/Yo/aGTVPE3hnXZDD8KPGttbTXK3UBbEdq2NzeQB8uDk2rfKxMDJIkVKcZpKavZ3+aC19z5q/4JL/8EM/2K/8Agqp8AF8QaN46+Omh+NtDCW/irwvLr+ktcaPcHI3LnTQXt5CrGOTHYq2HVgPK/wDgrv8A8G9Gjf8ABMHxx4b+Iun/APCxfiH+ze9zDbeKGs7y0i8S+HixCEmb7OYCjsQY5DAF3YifaWSRv0G/4K0f8EyfHv7Jfx/b9s79kmFtP8faIXu/HPhC1iJtPFdpw1xMsCY8xmC5miHMhAlTEy5f7X/4J/ftp+Bv+Ct/7EFn41t/D0n9ieJYJtG8Q6BrFp5sEdwECXVrl1CXMPz4DqCrK2GCsGRbA/On9nD/AINZf2Lv2t/groXxB+H3xX+N3iDwt4it/Ps7uHW9K4PRo5EOm7kkRgVdGwyspBFfAnjX/gjd8N/2AP8Agotb/Cv9q7V/H2kfCnxszL4L+I3hq7tbKyfDDBvFntrgLjciSgFTCxVzuicOPuP4i+BPH3/Brx+1XL448G22teNP2NPiVqiJruiCRp7jwbcyEAOhJwHA4jkYgTIohlYSLHKf1H/as/ZR+GH/AAVT/ZA/4RjxbYS6l4U8YWEOq6Tf/Z2ttQ0uSSMPb3kAlQPDMqv911GQzI6lWZSAfnzq3/Bmz+zZq/he5fQ/iR8aYr25tWawu59U0u7tUkZf3cjxpYxmSPJBKrIhYcBlzmvzi/ZX/wCCP3wj+G37f2sfs2/tf6p8Rvh34v1KZG8FeJNA1ayttB8SROxSJQbizmIMxB8t94G8NC6pIoDfot/wTC/au+K//BJv9r/Rv2KP2hk1TxN4Z12Qw/CjxrbW01yt1AWxHatjc3kAfLg5Nq3ysTAySJ9x/wDBVb/glp4F/wCCqH7O83hPxKq6V4m0rfdeGPEkMQa60S7I/N4HwokiyAwAIKuqMoB8GfGb/gzO+Cdx8LdcX4e/EX4qWfjT7KzaPL4gv7C70z7QOVWeOGyik2NjaWRwV3bsNjafjj/gn5/wTY+DP7Z37Rusfs7ftP3/AMTPhF8cvAAFjo+kabqVjb2uvQrGGkMcs9rN5km1VkRVO14m3ozjds/RX/gi7/wUW+KXgj486h+xn+01peqj4v8Agm0aXw94kEct1D4n0yJSRJLPj5iIwClw2BKAUfbMpEnsf/BZv/gj1pf/AAUi+H1h4o8JXo8GfHjwEBd+EfFFtIbaR3jbzEtLiVPnEe8bkkHzQudy8F1fOVKEpxnJax2+Yra3Pzo/4Kc/8GjWk/Bz9nO78Xfs5674/wDGPibw/uutQ8OeILi0up9VtQMt9jNvbwfv0wW8tgxlHC4cBXwP+CS//BDP9iv/AIKqfABfEGjeOvjpofjbQwlv4q8Ly6/pLXGj3ByNy500F7eQqxjkx2Kth1YD9Fv+CIX/AAVR8W/tf2vir4M/Gnw3qvhn9oL4OqLbxIkliyW+qwqwjW6LKPLjmZiNyZ2ybhJFlGKx+N/8FaP+CZPj39kv4/t+2d+yTC2n+PtEL3fjnwhaxE2niu04a4mWBMeYzBczRDmQgSpiZcvoM/Pn/grv/wAG9Gjf8EwfHHhv4i6f/wALF+If7N73MNt4oazvLSLxL4eLEISZvs5gKOxBjkMAXdiJ9pZJG+x/2bv+DWX9i39rf4LaF8Qfh/8AFf43eIfCviK3E9pdwa3pWR2aORTpu5JEYFXRgGVgQRxX6Lf8E/v20/A3/BW/9iCz8a2/h6T+xPEsE2jeIdA1i082CO4CBLq1y6hLmH58B1BVlbDBWDIv5o/EXwJ4+/4NeP2q5fHHg221rxp+xp8StURNd0QSNPceDbmQgB0JOA4HEcjECZFEMrCRY5SAfF37fv8AwQ78G/8ABLD9tDw4/wAWbj4ka9+yz4yu/sVr4v8ADs9tFq+gzPyI7wNbSxu8YDMQkaedGGaPDI0Q+5PFP/BoX+zz8W/2d5vEXwa+LXxGv9W1zS1v/C+qapqmnahol4XUPE0gt7KJ2iccbkfK7t2G27T+sfxE+G3gH9ur9mebRPEmkReJ/AHxD0iOZrW+tZIGmt5kWSKTY4WSGVcq6nCyRuAflZePyU+AHxH+I/8AwbU/te6b8G/iBLr3jv8AZO+J+rNH4N8QpBJd3fhm6lb/AFJjjB+bcw82BF/eAmeFd3mxEA+Q/wDgkX/wSj+BPxP/AGp9a+CH7Quo/Fv4UftH+CtSaSy0yDV9Oi0vxDGg8wC2EtlIxkCYcASss0bCSMkbgvpf/BcH/g2yH7MHhb/hdHwpu/GvxB8J6UwufHGiXtzbf2taWqY33drLFbqnlCNcPmF2i/1hDoHCfqD/AMFmv+CPel/8FJPh7p/inwjejwZ8d/AYF34R8T28jW0jvG3mJaXEifOI943JIPmhc7l4Lq/O/wDBEf8A4KmeKv2x7DxZ8FvjZ4Z1Pw58fvhAgtPE0c1gy22rQBhEt0WAMccrEjcmdsgYSRbkZljj2cef2ltbWv5BbW58V/sBf8G5v7EP/BR39nPSviN8PviX8eJrO6Ah1HTptc0j7Zod4FBktbhRpvDrng/ddSrKSrA181/8Fd/+DejRv+CYPjjw38RdP/4WL8Q/2b3uYbbxQ1neWkXiXw8WIQkzfZzAUdiDHIYAu7ET7SySN9mft3fsdeP/APgg7+03f/tXfszaW+p/CDWpAfiX8O4mZbS0hLktPCig7IAWZlYAm1djwYHZF/U34B/GfwN/wUD/AGTtE8Y6bp0mreA/iTo7OdP1vTthuLeQNHLBPDICGGQ6HG5GAyrMpDGwPyt/Zu/4NZf2Lf2t/gtoXxB+H/xX+N3iHwr4itxPaXcGt6VkdmjkU6buSRGBV0YBlYEEcV+qn7GP7J3h39hn9mTwn8KfCV7rWoeHfB1vLbWVxq80Ut7Ksk8kxMjRRxoTulYDai8AfWvyT+IvgTx9/wAGvH7Vcvjjwbba140/Y0+JWqImu6IJGnuPBtzIQA6EnAcDiORiBMiiGVhIscp/afwJ410/4keCNH8RaTJNLpWvWUOo2ck1vJbyPDMiyIWjkVXQlWGVZQw6EA0AatQ6hp8GrWE1rdQRXNtcxtFNDKgeOVGGGVlPBBBIIPXNTUUAV9K0q10LS7aysraCzsrOJYLe3gjEcUEagKqIowFUAAADgAVFf+GtO1XV7DULqwsrm/0syNZXMsCvNZl12OY3Iym5flO0jI4NXaKACqR8NacfEY1j7BZf2stsbMX3kL9pEBYOYvMxu2bgG25xkA4zV2igAqlo3hrTvDjXh0+wsrA6hcteXZt4Fi+0zsAGlfaBuchVBY5JwOeKu0UAFUtG8Nad4ca8On2FlYHULlry7NvAsX2mdgA0r7QNzkKoLHJOBzxV2igCl4i8Nad4w0WfTdWsLLVNOugFmtbuBZ4ZgCCAyMCp5API6gVdoooApa34a07xKtqNRsLK/Fjcx3lsLmBZfs88ZykqbgdrqeQw5HY1doooApHw1px8RjWPsFl/ay2xsxfeQv2kQFg5i8zG7ZuAbbnGQDjNXaKKAKXh3w1p3hDSI9P0mwstMsISzR21pAsMMZZi7EIoAGWZmPHJJPejxF4a07xhos+m6tYWWqaddALNa3cCzwzAEEBkYFTyAeR1Aq7RQAVSv/DWnarq9hqF1YWVzf6WZGsrmWBXmsy67HMbkZTcvynaRkcGrtFABVLw74a07whpEen6TYWWmWEJZo7a0gWGGMsxdiEUADLMzHjkknvV2igCl4i8Nad4w0WfTdWsLLVNOugFmtbuBZ4ZgCCAyMCp5API6gVdoooApX/hrTtV1ew1C6sLK5v9LMjWVzLArzWZddjmNyMpuX5TtIyODV2iigCkfDWnHxGNY+wWX9rLbGzF95C/aRAWDmLzMbtm4BtucZAOM1doooApWXhrTtN1q+1K3sLKDUdTEa3l1HAqzXYjBEYkcDc+0MQuScAnHWrtFFAFLw74a07whpEen6TYWWmWEJZo7a0gWGGMsxdiEUADLMzHjkknvR4i8Nad4w0WfTdWsLLVNOugFmtbuBZ4ZgCCAyMCp5API6gVdooAKpa34a07xKtqNRsLK/Fjcx3lsLmBZfs88ZykqbgdrqeQw5HY1dooAKpWXhrTtN1q+1K3sLKDUdTEa3l1HAqzXYjBEYkcDc+0MQuScAnHWrtFAEOoafBq1hNa3UEVzbXMbRTQyoHjlRhhlZTwQQSCD1zTdK0q10LS7aysraCzsrOJYLe3gjEcUEagKqIowFUAAADgAVYooApeIvDWneMNFn03VrCy1TTroBZrW7gWeGYAggMjAqeQDyOoFXaKKAP/2Q==\n", "text/plain": [ "<IPython.core.display.Image object>" ] }, "execution_count": 11, "metadata": {}, "output_type": "execute_result" } ], "source": [ "fig4 = path + '/Fig4Hertzspring.jpg'\n", "Image(filename= fig4)" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "### Figure 4. Conceptual representation of Hertz contact mechanics" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "This concept is represented mathematically by a non-linear spring whose elastic coefficient is a function of the contact area which at the same time depends on the sample indentation ( k(d) ).\n", "$$F_{ts} = k(d)d$$\n", "where\n", "$$k(d) = 4/3E*\\sqrt{Rd}$$\n", "being $\\sqrt{Rd}$ the contact area when a sphere of radius R indents a half-space to depth d.\n", "$E*$ is the effective Young's modulus of the tip-sample interaction. " ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "The long range attractive forces are derived using Hamaker's equation (see reference 4): $if$ $d > a_0$\n", "$$F_{ts} = \\frac{-HR}{6d^2}$$\n", "\n", "where H is the Hamaker constant, R the tip radius and d the tip sample distance. $a_0$ is defined as the intermolecular distance and normally is chosen to be 0.2 nm." ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "In summary the equations that we will include in our code to take care of the tip sample interactions are the following:\n", "\n", "$$\\begin{equation}\n", "Fts_{DMT} = \\begin{cases} \\frac{-HR}{6d^2} \\quad \\quad d \\leq{a_0}\\\\ \\\\\n", "\\frac{-HR}{6d^2} + 4/3E*R^{1/2}d^{3/2} \\quad \\quad d> a_0 \\end{cases}\n", "\\end{equation}$$\n", "\n", "where the effective Young's modulus E* is defined by:\n", "$$\\begin{equation}\n", "1/E* = \\frac{1-\\nu^2}{E_t}+\\frac{1-\\nu^2}{E_s}\n", "\\end{equation}$$\n", "where $E_t$ and $E_s$ are the tip and sample Young's modulus respectively. $\\nu_t$ and $\\nu_s$ are tip and sample Poisson ratios, respectively.\n", "\n" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "##### Enough theory, Let's make our code!" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "Now we will have to solve equation (1) but with the addition of tip-sample interactions which are described by equation (5). So we have a second order non-linear ODE which is no longer analytically straightforward:\n", "\n", "$$\\begin{equation}\n", "m \\frac{d^2z}{dt^2} = - k z - \\frac{m\\omega_0}{Q}\\frac{dz}{dt} + F_0 cos(\\omega t) + Fts_{DMT}\n", "\\end{equation}$$\n", "\n", "Therefore we have to use numerical methods to solve it. RK4 has shown to be more accurate to solve equation (1) among the methods reviewed in the previous section of the notebook, and therefore it is going to be the chosen method to solve equation (6).\n", "\n", "Now we have to declare all the variables related to the tip-sample forces. Since we are modeling our tip-sample forces using Hertz contact mechanics with addition of long range Van der Waals forces we have to define the Young's modulus of the tip and sample, the diameter of the tip of our probe, Poisson ratio, etc." ] }, { "cell_type": "code", "execution_count": 12, "metadata": {}, "outputs": [], "source": [ "#DMT parameters (Hertz contact mechanics with long range Van der Waals forces added\n", "a=0.2e-9 #intermolecular parameter\n", "H=6.4e-20 #hamaker constant of sample\n", "R=20e-9 #tip radius of the cantilever\n", "Es=70e6 #elastic modulus of sample\n", "Et=130e9 #elastic modulus of the tip\n", "vt=0.3 #Poisson coefficient for tip\n", "vs=0.3 #Poisson coefficient for sample\n", "E_star= 1/((1-pow(vt,2))/Et+(1-pow(vs,2))/Es) #Effective Young Modulus" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "Now let's declare the timestep, the simulation time and let's oscillate our probe!" ] }, { "cell_type": "code", "execution_count": 13, "metadata": {}, "outputs": [ { "data": { "text/plain": [ "Text(0.5,1,u'Plot 7 Tip response and driving force')" ] }, "execution_count": 13, "metadata": {}, "output_type": "execute_result" }, { "data": { "text/plain": [ "<Figure size 432x288 with 0 Axes>" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAbEAAAEbCAYAAABUV7o5AAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMi4yLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvhp/UCwAAIABJREFUeJzsvXmcZFV5//9+et+n1+npZfYZZtgcGHaQRQUVheCWRIhRo1HzTaIx5Juo3yQOrTGKJn41Mfl9JZHFJYoCRjAgKjKDICAwAwPMALP1LF3dPdP7vlTX8/vj3NtdU13Vde6ttXvq83rVq7rvPeee86l7zvOc5XmeI6pKDjnkkEMOOSxG5GW6AjnkkEMOOeTgFzkllkMOOeSQw6JFTonlkEMOOeSwaJFTYjnkkEMOOSxa5JRYDjnkkEMOixY5JZZDDjnkkMOiRVYrMRFZIyIqIndmui6LBSLSLiLtma5HDksfyWxrIrJdRDz7+ySjDiJyiyNnrkrkOamAiHxCRPaIyLhTx09muk7ZhrQrMedFhH9mRKRHRH4lIn+QojI/6JT1QZ/5FvrMpKC+ayzKjfxclex65JBDDpmDiLwX+DowAXwNaAOeymilshAFGSy7zfkuBDYB7wDeICLnqerNmavWSXieuXpG4nLgjcBDKSh3IEa525zvaPfane83paA+OeSQrUhGe/8G8APgSBKelUxc536raiCjNcliZEyJqeot4f+LyJuAXwCfFJF/UdX2TNQrHKr6PEaRzYOIPOn8eVsKyh0AbolS5jbn/rx7YXkPJLs+OeSQrUhGe1fVHqAnCdVJNpoBcgosDlQ1rR9ATbFR7+1x7v+u8/8a5/87o6RtAv4NMwOZAk4A9wHnRaTb7pYZ5bPGJ4eznPzHgPxs+O3C0rQD7RHXPujk/SDwduA3wCjQD9wDbPRQh6ucZ90CXAj8D9AX+XsCrZgR7kFgEugF7gcuiPLMSuDvgZeAIWAYOADcHf4+w9sDsBn4b6fsUeBx4M0x6lwMfBrYDYw5Zfwa+L0oacPLWIMZofdglnSexYyKI/MUAZ8Adjq/6ZjzHn4CXB0l/Wbn+Ued36Yb+C9gk4f3UAT8OfAgcNh5Th/wS+DahdoGUAZ8BTPzmAT2A58CJEoeccp52fkNOpz3uixaW7Oo93uB54Bx4DjwHYyw3k5E27Zpa5F1AD7j3P9EjPKbgRngmbBrtzh5rorS37YD9ZjBaqfze70M/NECbe0W5tr9IeAfnOsKbLf4jdz6zPtEpHsT8DPnN5kAXgO+BCyL8sztzjOKgM8Crzr1uzMi3e8Dj4Q9sx34PnB+lGfeCDyKafMTwF7g74BiL20i0U8mlxOjQZzvBTd4RWQtRmg1A7/C/Mgrgd8F3i4i71bVnzrJ78Qsz92AESrhM6sBn/X8mPP9LVVN+p5YCvEu4Frgx5hGfQ7wbswy7qWq+qqHZ12CERiPA7djOvoUgIhsBX4O1AIPYwYX9Zgl48dF5J2q+qCTVjAd8VLgSeA/gSDmfV6FUTbPRZS91kn7EvBNzIDm94GHROQmVb3bTSgiRU4drgRewQx8yoD3AHeLyDmq+n+i8FsN/BYjjL7jcPl94CcicrWqPhqW9k5Mh34J+DZGQDcDrwfeilEsbn3e6vwehcADGAXSink3bxeRN6jqzij1iUQtZr/kN5gVjBPO73A98KCIfERV/zNKvkLMu2nGLIUHMe/lS0AJ85eqv4ZR0J0YQT6N6UsXYQTilEVdARCRvwS+iul333a+3+JwGFwga8y2FgXfxiiNDwD/EuX++zC2AHdZVrsaeMIp7x7Mb/Qe4HYRCanq7HOctnwvZqC4D6PsCzGDxzMtywPTN3HyrSbK9oGIfAz4/zADuB9hBgRXYQYj14vIZWpWdCJxL3AB5t3/t5PPrfsdmN+tB9NGT2Da5hswSu/ZsPK/BXwIM5C/D/MuLwY+D7xJRK5R1aAHzv6RTo0ZNrrRKNevBkLOZ7VzbQ1RZmIYoaTA30ZcvxTTKXuBirDrH3TSfzAJ9S/FjDxmgJXZ8NtFpGkn9kxMiZhJAH/hXH/Esg5XhT3rY1HuF2AE8wRwZcS9ZsxIvhNntAac7Tzrx1GelQfUhP2/Jqzsr0SkPR8jYPuBqrDr7sj8QaAg7Ppy57dS4NIYZWyLKOMt7rPCri1z2uyzRJmVA3Vhf9c49esBzohIdyYwAuy0fA/FQGuU68swyrQPKI3SNtzfojTs+nKMEBoACiP6kzrvszbseglmEKGRbW2B+q5hbra4JuId3xutbcdrawu0d1c+nBUl/csYhRT+Xm4h9kxMMQOr/LDrZ2DkzJ6I9H/opH8MKAq7Xo0ZQFnNxMLybY/8TZzrq53fcgjYHHHv351ybov2LMxqRH2UZ37Uuf9bImZyQD7QFPb/B52090VpY+5v+Re2PBP9pKWQGA3jFufzBcwIJ+hc/2pEwz9JiWFGBopZQimM8vzvOPffH+VH/2AS6v8B51k/zdRvFydNtE7t8p+nqJwGut+5v9qiDlc5aXfFuH8DUZRM2H1Xab7N+d9VYv9lUbbbHgaAyij373TufyDs2j6MktkcJf2HnfS3RymjnehK6TDQE/Z/lZP+CaIsx8Xg/mcx7v9f5/4ZCz3H4ne62XnOFVHahgIbouS5iwjBD/yHc23e0llYO2i3rNPfOunbotxbhxkUaowyora1Bdr7TdHaIGago8B9EddvIbYSGyVsUBR2b4dzvzLs2i+j/e7OvT8geUrM/S3/Mcq9GoxyGydsWY85JXZDjLJedO6fa1GvXZgBY3WUe/mYQdpvE2nDXj6ZXE7c5ny7QunXmOW578bJd67z/WtVnY5y/1eYJYNzMUsLycZHne9vpuDZqcaOyAuqOiMijwPrMb/ZYctn/TbG9Uuc79UickuU+xud79MxM4I9mCXeG0VkNWbJ93HgWVWNtWS0U1WHo1zfjhlknAvcJSKVwAagQ1VfiZL+V873uVHuPa/Rl4qPMscRVR0SkQcwy3jPi8i9mLb8tKqOReR1822J8duc5nyfjvldFoSInAn8NXAFZimxJCJJS5Rsg6q6P8r1o853Tdi1rc73vHaD4ehluSjms1T1oIgcxcwwoiFWW4uFH2OWJ98nIp8Oe48fcL7v9PCsfao6FOW6+3tVY/ZwwbSjEGZ5NBKPeygzHtzf8leRN1S1X0R2YdrEZuCFiCTzfksRKcfs83er6q6FChaRMmALRlF90qxCzsMkpg2nBZm0TozK3gLLnO/OGPfd69U+nx8TInIGZonlGEYALzZ0x7je5Xwvi3F/oTyRqHO+fzdO/gqYVaJvxGw2vwe41bk/LCJ3AZ9R1ZGIvLY8EmkrsfZLg8z3r/x9zF7ETcztX0yIyD3A/1ZVt77ub/ORGM92URHnPiJyMUaIFWA24u/HjMBDmL3OGzBLjpFYiBeYkbQL9/eb93s77603Xj1tnuWgi9hKLFZbiwpVHReRH2J+5zdj9koLMfuWJ/DmFuP19+rT6HtBsXj7QSLtOtpv6abrsCi7BmO70MDcRCSjyOqIHTHgbgCviHG/KSJdMrFYDTpcNMa47v6WXn4zjXHdfcYNqioLfGY3q1W1X1X/UlVXYmZqf4zZQ/hzzOa1Xx5paSuqOq6qt6jqacAqzErA4873PWFJ3XK2xPltbIwO/g6zP/tmVb1WVT+pqp9V437xdCJ8otR33u8tIvnMKeWEnuUg1juCOIZeMeD+hu7s6zpMff8rxgpOMjAE1IpItMlBLN5+4Ltdq7PmFwFXUUebuccqe1ecNux3kuIZi1GJudPd18doLG9wvsMtvFyFk49PiEgJZuM2BHzL73MyjCsjLzjC6PXOvwsuJVjCjShwuZ/MqrpfVb+FqesIZkYRia3OUmEkrnK+dznPck31W0RkY5T00dpKQlDVo6r6PYwRyD5MO3WFfUK/TQQ2YEb926Pcm/eefcL9XaI973K8reTEfJaIrMNYoyYNqvoE5ve/QUSWMafMbK0S/WAXRqZeGuXe66NcS6QcmGvvsxCRasxM3DV5jwtVHcUYAzWKSLSl9fC0IxjjmDNFpNZDnVOGRafEVPUYxqR4DXBSHDERuQizpNOPWRd34S57rEqg6N/FTKUfVNWj8RJnKd4oItdFXPtzzH7Yo6pqux+2EH6CURx/JiJvi5ZARC5x1tYRkbXO3k4kajDLYeNR7i3DLD+GP/N8zOb5ICe/+9sxyx9fcRS2m74e45vmpvEFEWlw2l0kyjH+b0HmzMHvwIx6t4nIhVGelechfFg7ZtT/uohnfBijQJOBO53vvw0XWM6A7osen/U9jDHAx0VkTdiz8jA+a6mQRXdh9gn/FHgbsDvenk+CcPfg/8Fx7QDAUaJ/Hz2LL3yXud9yQ8S9z2OMjb6rqpMenum6I3zTqe8snHbZFHbpqxj3itsdpUlE+hrHzSYtyDY/MVv8CcYa7Csi8maMebPrJxbCWFOFb/w/iXFA/aTTGd316X9VVdulJNegI+kROtKIB4Afi8iPMRaJWzCduw/T0ROGqk6LyLswZs7/IyK/wRhujGHe0QUYa7Qm59oWp07PYUaDAcx6+w0YH5tb5xViTJj/2FEeTzDnJ5aHMcUO34j/J4xv3A3ACyLyIMZP7HcxpuVfVtVENt1bgKdEZC9mtnEUI0Suwyz3/IvbFlW1V0Teg1GyT4nII5hRbQgzwLoEs+QVaaARDV/DKKvHnf2fQYz13esxS5jvSYATTn2fEJF/BT4OvOTs8bl+Yv3E3pOJ9qx2Efk08M/ALhG526nzWzB7MruB1y3wCD/4NvA5zD5lIamdhbnlvRfjG/iSiNzvlPtujIzahHnXCcH5LT+J8Xnc6bz/E5hZ7iWYpfhPeXzsf2LazvuBfSLyE+eZzZjwerfjRBFS1dtF5DyMzDggIg9jHOdrMT6cV2AGbH+SAE17pMsM0v1gYSYelnYNUfzEnHstmP2Sw5iRbg/GeW9eRAgn/VsxymzErQOWETswljaKEVBpi9Dh57cjfsSO65zfYRQzK7gXOM1DHa5ynnVLnHTLMQ60L2GU1QhmeecezF5RgZOuFfhHjDLqwlg2HcNsvl8b8czZ9uC8k58wFyHjCeAtMepSAvwfpy7jGGuyx4EbvbQ55/728HeAEcCfxRhZdDj173TS3Uj0KBhrMI6w+zDLPkMYwfMd4B0e3sV1mCXKYedd/hwjQGbfd7y2EXbvFqKbmbsRO/Y63AIY4ek3YseNGGU/gRGS38UiYoeX9h5x3zV7nwYaPXKPaRLPnDvHmiht7XOYSB2TTv2+gJFXCvy3h99q3m8Scf/NzjvvZy7yypeJbvq+4LPC0v0BxoJ00HlHhzCz6K0x2t9PMQ7TU5j++1uMs/k8l5ZUfcSpTA5LGGKi99+BmaHemdna+IezDHUIuEtVP5jRyuSQgweIyDUYhfMlVf1MpuuzlLDo9sRyyCGHHLIVItIc5VodZlUCTt6vzSEJWKx7YjnkkEMO2YivisgWjMOzG3vwWsx+0TdV1avjdg5xkFNiOeSQQw7Jw30Yn7DrMfulExjjndsxxhM5JBm5PbEccsghhxwWLZbETCwvL09LS0szXY0ccsghh0WFsbExVdVFbRuxJJRYaWkpo6Ojma5GDjnkkMOigohECyawqLCoNXAOOeSQQw6nNlKuxETkdhE5LiIvhV2rFZFfiMg+57vGuS4i8i8isl9EdqczdEkOOeSQQw6LD+mYid2JiZYRjk9jDmjciDlG4tPO9WsxUcw3YsI8RYtgnkMOOeSQQw5AGpSYqj6Gic0XjhuYi2N2F/COsOvfVoOngOqIwJM55JBDDjnkMItM7Yk1qmongPO93LnewtyJqWBi6EU940ZEPioiz4rIs8GglwNmc8ghhxxyWCrINsOOaAepRXVkU9XbVPV8VT2/oGBJGFnmkEMOOeTgEZlSYt3uMqHzfdy5foyTD8drxUTNziGHHHLIIYd5yJQSu5+5k1Y/gDlSw73+fsdK8WJg0F12TAWGhuBLX4JJy6PjdrTv4MtPfJmD/QdTVaWUYnISvvlNuOMOmLY8oH17+3a+8sRXODq4OM8BHRuDf/93+M53YGYmfnqAXxz4BV998qt0Dqes6aUUIyPwjW/A978PIcvTqx7c9yBfe+prnBg9kdrKpQiDg/D1r8M994BNECJV5f5X7+dfnv4X+sf7U1/BFKCvD778ZfjlLzNdkwwj1We9AN/HnK80jZlpfRhz8N8jmPOUHgFqnbSCOavoAPAicL5NGWVlZeoHd92lCqrXXqsaDC6c9tvPf1u5BeUWdNkXl+mrPa/6KjNTCAZV3/AGwxdU3/1u1ZmZhfP8v2f+3yzn+i/Xa3t/e3oqmyRMTqpefPEc5/e/XzUUWjjPV3/z1VnOzf/crIGhQHoqmySMjamee+4c5//1v+Ln+fyOz89yXvO1NXpi9ETqK5pEDA2pnn76HOe//uv4eT7zy8/Mct70r5t0YHwg9RVNInp7VdetM3w//Wn/zwFGNU3nfqXqk/EKJOPjV4mpqn7jG+ZXuO222Gm6R7q14h8r9Mo7rtTdXbu17tY6ff3tr9dQPImYRfj61w3Pb35T9YtfNH9/73ux0x8eOKwl/1Cib/nOW/TZjme16otV+tbvvjV9FU4CvvAFw/O731X9u78zf//kJ7HTv9bzmhZ8rkDf+YN36m+O/EbLvlCm77773emrcBLwmc8Ynvfdp/qXf2n+fuSR2Olf6HpB89ry9KZ7b9JHDz2qRZ8v0vf/+P3pq3AS8IlPqOblqT70kOrHPmY4P/lk7PRPHX1KuQX90H9/SH+272ea35avf/rTP01fhZOAD39YtaBA9bHHEntOTollyScRJRYKmdH6qlWxZ2Of+sWnNL8tX1858Yqqqv7bb/9NuQV95OAC0iGLMDWl2tqqeuWVhu/MjOrZZ6tu2hR7ZnLzz27W/Lb82dnXrY/fqtyCPnX0qfRVPAGMj6vW16u+/e3m/6kp1Q0bVLdujZ3nYw98TIs/X6xdw12qqvrZX31WuQV9sfvFNNQ4cQwNqVZVqf7e75n/x8fNe7/iith53nff+7TiHyu0b6xPVVX/6uG/0ry2PN3fuz8NNU4cPT2qpaWqH/qQ+X94WLWhwayuxMI7f/BOrflSjQ5PDquqee+FnyvUY4PH0lDjxNHRoVpYqPrxjyf+rJwSy5JPIkpMVfVHPzK/xIMPzr83PTOtK/5phd7w/Rtmr41Pj2v1l6r1D+79g4TKTRdcfvffP3ftzjvNtR075qcfnRrVyn+s1BvvuXH22tDEkJZ9oUw/9sDH0lDjxOHyC5+FuLPu556bn75/vF9L/qFEP3L/R2av9Yz2aOHnCvWvHv6rNNQ4cbj8ngobZ9x6q7n2yivz03cNd2nB5wr0kw99cvbascFjKreIfvZXn01DjROHy+/FsHHGZz+rKqJ6+PD89O397Sq3iP7tI387e+21nteUW9BbH781DTVOHC6/AwcSf9ZSUGLZZmKfEfzO70BtLXzve/Pv/fzAz+ka6eKPzvmj2WslBSW898z3ct/e+xiaHEpjTf3h7rthxQp429vmrr3nPVBREZ3zw/sfZnhqmA+f++HZa5XFlbzr9Hdx98t3MxGcSEOtE8Pdd8PatfCGN8xdu+kmKCqC//qv+ekfePUBJoITfOjcD81eqyur4+2nvZ3v7v4uwVD2+yL+8Idw1llw0UVz197/fsjLi875x6/8mGAoeBLnlqoWrl53Nd/e/W1CamkVkkH88IeG71lnzV374AfN7tgPfjA//b1770XRk/rzxrqNXNJ6Cd9+4dtmZJ/luPtueOMbYd26TNckO5BTYhjB9va3w0MPQaTf9AOvPkBFUQXXbrz2pOs3nn0j48FxfnHgF2msqXeMjxteN9wA+flz18vL4c1vhv/5n/nWXPfuvZe60jquXHPlSddvOusmBiYG2NG+Iw0194+hIXjkEXjnO0HCPA9raoxSe+CB+Xnu3XsvLZUtXNhy4UnXbzrrJrpHu3nq2FMprnViOHECHn/ccA7HihVwySWxOW+s3chZy8866fpNZ99E+0A7L3S9kMIaJ44jR+C55+ZzXrsWzjkHfvrT+Xnu2XMP56w4h/W160+6ftPZN/HyiZfZ37c/hTVOHHv3wquvzud8KiOnxBxcf70xWX3yyblrqsrDBx7mjWvfSFF+0UnpL2m9hKriKn62/2dprqk3bN8Oo6NGiUXi+uuhowOef37uWkhDPLjvQa7fdD0FeSc7kV+15ipKCkqynvPPfw5TU/COd8y/d9118Npr5uNiMjjJzw/8nHdsfgd5cnKXuGb9NeRLPg/vfzjFtU4MDz5ozOmjcb7+eti1y7xrFyNTI2xv3847N78TkZNjDLxl/VsAePhAdnN2lVQ0gX7ddfDEE6ZPu+gd6+XJY0/yzs3zM1y7wQxSs52zOxiJ9p5PVeSUmIO3vMXMVH7+87lr+/v2c2jg0GynDkdhfiFXr7uahw88nNVLEDt2QEEBXHnl/HvXOpPLcM67u3fTP9HPm9a+aV760sJSrlh9BT87kN1KbMcOM9O8+OL5997+dvMdzvmZwDOMB8ejcq4uqebi1osXBee6OjMDiYS7jBzO+TdHf0MwFORN6+ZzbqpsYkvjlqwX6Nu3w8qVsHHj/Htve5tR6o88MnftscOPAUR9z+tr17OhdkPWD9C2b4fTT4eWqMH4Tk3klJiDqiojAH7967lrPz9gen00JQZwzbprODp0NKudnx97DC64AMrK5t9rbIRNm07mvL19OwBXro6i9TCcX+l5JasdgR97DC69FAoL599bswZaW0/m7C6PXr768qjPe/P6N/Nc4DkGJwZTUNvkYMcOuPxys/8ViTPPNHu+ke85X/K5dOWlUZ93zbpreOLIE1m7/6lq3vMVV5y8ZOzi/PNNm4/kXFpQygUtF0R95jXrrmF7+3ZmQpZe8WnGzIxZMr7iikzXJLuQU2JhuPxyePrpuQgeTxx9gpbKlnnr5y5cAfDksSej3s80xsbgmWeiz8JcXHGFWXZxIzvsOLyDdTXrWLlsZdT0Luds3SPq64MXX4zd0UXMe/71r+f2Ancc3sHZy8+mvqw+ap5LV16Kovy247cpqnViOHYMDh6MzTkvD17/+gjFfXgHF7RcQEVRRdQ8l668lOnQNDs7d6agxonjtdeguzt22y4sNDPxk5TY4e1ctuqyeVsDLi5beRmj06O8fOLlFNQ4cbzwAgwPL9yfT0XklFgYLr8cJibMZjHA0x1Pc1HrRTHTn9lwJhVFFTx5NDuV2FNPGUOVhUZul18OAwPw0ktmD/Cxw4/FnIUBbG3aSmFeYdYqsccfN8ppoY5++eXQ2WkEfzAU5ImjTyzI+cKWCxEkawcrrqCOx3n/fujqgrHpMX7b8dsFOV+y8hKArG3bj5mVwbht+4UXTEiq/vF+dnfvXpDzxa1m/TnbOV8efcHglEVOiYXhEtNveeYZODF6goP9B7m4JcrGioP8vHwubLkwa4XbU46ecXlFQzjng/0H6Rvvm+3M0VBSUMLWpq1Zy/npp83e5vnnx04TznnPiT2MTY8tyLmquIozl5+Z1ZxLS+F1r4udxt0ffOYZs+8ZDAUX5LyiYgVrqtfwVEd2DlaeftoskZ52Wuw0l1xiBjTPPQfPdZqR6UKc19Wso6GsIavf88qVZjk8hznklFgYmpqMSfLOncwuHS00EwNjpbi7ezejU6PpqKIn7NoF69dDdXXsNOvWmf3AnTuZXTo6r+m8BZ97SeslPBt4lukZyyjCacSuXWYPqLQ0dpozzzRuFSdxbo7P+aljT2Wl79SuXWY/d6ETic45xyyl7twJzwWMQLd5z9k6K9m1C847L/p+mIutW+fSupy3Nm2NmV5EuGTlJVm7yrBzp+Gcw8nIKbEIbN1qGsvTHU+TL/lxO/pFLRcxozO80J19PjU7d8515FjIy4Nzz3WEW+dzFOYVzvMbisSFLRcyHhxnz4k9Saxt4nBH3fE4FxaaWYsr0CuKKjitboEhPeY9D0wMZJ0RTyhkhHQ8zhUVxojHfc8NZQ20Vi08pL+o5SI6hjuyzohnasrse8bj3NBgZi4u57XVa6ktrV0wz4XNF/Jq76tZF8RgeNjsA8bjfCoip8QisHUr7NkDzx7ew6b6TZQXlS+YfsuKLQBZ5xja32/2fGwa/datZu/gmWO7OLvxbIoLihdM73Le3b07GVVNGjo74fhxe847d8Kzgec4d8W58/zDIpGtnA8cMALOC+fnOp/jvObz5vmHRSJbOb/8sjlKyCvnhWZhLs5ZYXwUXux+MdFqJhUvOOIl3UpMRFaKyKMisldEXhaRv3Cu14rIL0Rkn/Ndk96azSGnxCJw3nlmdPv8CzOcvfzsuOlXVq2kuqQ66zq668B87rnx027daiJ7PLt7mK0r4veS0+pOozi/OOtmnzsdQzpb4dbfD7te6bMSbmc2nEme5GXdYMUr52PH4KWDx+OuMAC8rtFssi329/zqq8rBru5ThnOSEQT+SlVPBy4G/kxEzgA+DTyiqhsxx2l9Ou01c5BTYhFwhX7nvkYrJSYivK7xdVnX6HftMt82SsxNM9S+jnOb4mcoyCvgrOVnZZ3i3rXL7JFs2RI/rct58tjpnLsiPufSwlJOqzuN3cezj3NhIZxxRvy0rgAMdZ5txbm2tJbWqtasfM+VlXaxA7duBVWB7i1Wbbu1qpWakpqs5NzYaPbt0wlV7VTVnc7fw8BeoAW4AbjLSXYXkLEYIjklFoFVq6CsfAZOnMHZjfGVGMCWxi28ePzFrNr0f/llWL7cfOLhtNMgvyAEJ87gzIYzrZ6fjYr75ZeNM3NFdNenkzAr9E+cwZnLPXDOspnYyy+bva6i6K5PJ+FMl6YHzlsat2Tlez7zzOiO3ZE4ibNF287WQenLL58c5DiJKBCRZ8M+H42VUETWAOcCTwONqtoJRtEBFpImNcgpsQiIwPLVvUaJWczEwHT0kakRDvUfSnHt7LF3rwlPY4PCQqhv7YcTZ3BGg8WQHsP5+Ohxuka6EqhlcrF3r92MBIyiW9Y4CCdO5/R6ux9qS+MWDg0cyqpNfy+cGxqgtGqUvN4zWV8T3YE/Eq9rfB2v9LzCZHAygVomF15BDHteAAAgAElEQVQ4r14NBcVTFPZtiWvI4mJL4xZe7M6eQamqN84eEVTV88M+t0VLJCIVwL3AJ1U1ezoAOSUWFSXNh5CeM1hdvdoqvWvNly2e/n4afWlTO/m9Z9FQ3mCVfpbz8ezgPDNjonvbKm6AsqZDFPWfE9d4x4XLOVusMsfHjfGOLWcR855L+rdSmB8lJlcUnL38bIKhIK/1vhY/cRrQ12ciddhyzsuDkhWHKRuIb8ji4uzGsxmdHuXwwOEEapo8HDsGIyPe2nYyISKFGAX2PVW9z7ncLSJNzv0m4HhmapdTYlExVfMCOtzM8JDdz7OpfhMAr/a8mspqWaOry0Th8NLog/W7meldOxtyKx42128G4NXe7OB86JAJF+ZFcU/XvUjw+IbZkFvxMMs5S97za6+ZAYsXzsG6Fwl2nzbv+J1YyLb3vHev+fbUtut2EzweJUpwDGQr5xTNxBaEGM3/LWCvqn417Nb9wAecvz8A/CTddXORU2JR0Fth4vi4jSceqkuqaSxv5JWeV1JYK3t47eiqSl/5E6D5Jx1RshCaK5upKKpYtJxnQjMMVPyG0FQJhy0H3Gur11KQV5A1nPc4E0JbzuPT4wxVPs3USCUnTtjlcf3nso2zrUDvG+9jononoyfqGRmxy7OpzgxKs41zhmZilwF/CLxRRJ53Pm8DvgRcIyL7gGuc/zOCnBKLwODEIIMVJkrBHg+rRpvrN/NKb3Y0eq8jt66RLsaqnzkpbzyICJvqNmXNaNVrRz80cIhg3Qsn5Y2HwvxCNtRuyBrOe/ea5bKFQi+F49XeV6Hh5dm8NigvKmdl1cqs4lxaava6rNKf2AsN5gW/Ytk968vqqSmpyZoZ9969JsRWg91Kf1Khqo+rqqjq61T1HOfzoKr2quqbVHWj890X/2mpQU6JRWBf3z6oOURh0YwnJbapblPWNPo9e0woKVtz3D0n9kDda4ioN871m7JmtLp3LzQ3w7Jldun3nNgDDXtn89oi2xT3+vVQvLBv+lz6MM5e33O2tO29e2HzZjvLRHA413vjLCJsrt+cVe/5jDMWDrF1KiOnxCKwr3cf5IVYu2Ham3Cr30TveC89Yz2pq5wlXMtE20b/Ss8rUDjBqjUznjhvrtvMkcEjjE2P+atoEuHFGhOcfa3SAZY3hrxxrt/Mvt59BENB75VMMvxwlmUBKirU83t+peeVrDj81TPn3lcpXt5BYaE3ztk0QHvllcwZdSwG5JRYBF7rfQ1BOH1TIQcO2OfLpk3//fvtl5gADvQfoLSglM2n5bN/v30+16BlX+8+jzVMPvbt88Z5f99+GsoaOG1jnjfOdZuYDk3TPtDuuY7JRChkQk554ty/n9XVq9iwQTy/5+Gp4Yy7U0xOwpEj0U9yjoX9ffvZUL+aNWs8cq7bROdIZ8bdKQYGoKfHG+dTDTklFoF9fftYuWwlmzbmc+iQMd22QbZsBk9MGJPc9XZuQIDp6Otr17N+vXDgAJ4t1zLNub/ffDxx7nc542uwkmnOHR1GqHvhfKDvAOtrFi/nQ4dM2/TEuf9AQu85064Fbp29cD7VkFNiEdjXt4+NtRtZv95Ey+7osMu3pnoNRflFGV9H99PR9/ftZ0PtBjZsMAcI9llu0W6s3YggGefsp6Mf6DvAhtoNrF9v3vH4uF2+bHGn8MM5/D37GaAttvcc0pB5zzWGs5cBWrYMSl3OGzZktBpZjYwqMRH5Sycy8ksi8n0RKRGRtSLytBMd+W4RsQiokxyoKq/1vsZpdafNdhTbJYj8vHzWVq/N+FEdfjr6wf6DbKjZMJvHdsRaWlhKS1XLouM8GZzkyOAR1tesnxUOBy0p1JbWUlNSs+g4D0wM0DveO6u4p6fNjN0GLVUtFOcXZw1nW4HeOdzJeHB8lvPQEPT22uVdW7MWQbKGs02cyFMVGVNiItICfAI4X1XPAvKB9wK3Av/XiY7cD3w4XXXqHe9lYGJgdiYG3pYg1tWsy5pGbyvcOoY6mJyZnF1yCX+GDbKJs21HPzRwCEVnhVv4M2ywtmYtBwcyz7mgwMT6tErfZwi6y4lgP0DLkzzWVK/JivdcUWFvar6/zxAMb9u2nEsKSrJmgNbYaBcP9FRFppcTC4BSESkAyoBO4I3APc79tEZHdg0UNtZtZOVKE1PQq0A/0H8go1ZcBw6YCN+2Hf1AvyG4oXbDrBLwsgGeLUpsxQoot4seFVWgL0bFvXr1wqc5h8MV6H4VdzZw3r/fDM5srW7D2/Zi55xDbGRMialqB/BPwBGM8hoEngMGVNW1Xz6GCfs/DyLyUTfycjCYHHNndxN3Y+1G8vNh7VrvAn1ocoj+if6k1McPDhzw1tHDhVtpKbS0eOzo1evoGO5gIjjho7bJgcvZFuGca2uNb5lXzu0D7cyELDeVUgCvnF2Bvq5mHa2tJuq9V4F+aCCzAa79vOeCvAJWLVvF2rVzz7BFNigxr5xPRWRyObEGcybNWqAZKAeujZI06rRGVW9zIy8X2A5H4+DQwCEEYU31GgDPFk3rasxUJpPR7P109MK8QlZWrQT8c86kybnX0er+vv1UFVdRX1aPiD/OUzNTBIYD3iubJBw44G2zf3/ffpoqmigvKp8doHnlPDAxQP94ZgZoMzPGGMXre15TvYaCvAJKS6G11eOycfXajA7QJiaM0VHOqGNhZHI58WrgkKqeUNVp4D7gUqDaWV4EaAXSJinaB9pprmymuMCEQPBq0bS22gz3MjV6m5kxBgpeR+hra9aSn5cPeBfoa2syy3l83HR0z2bXNetno5qvX+99xg2Z49zXZ/yHvHLeUDsnDRcb544OYy3sRaBH47yYBmh+LI1PRWRSiR0BLhaRMidS8puAPcCjwHucNGmNjtw+0D47CwPTeIaHjbOhDTIt0I8dM1ZnfsyuXWzYAJ2dMGYZhCPTwu2QM+lNlHN7O9iuSmeacyLm9S5cgW47QFtsnFXVcK5ZvIo75yNmh0zuiT2NMeDYCbzo1OU24FPAzSKyH6jDHAOQFkRTYmDf8N0lqsXU6A/2H2Rd9ZxZn5vX1uS8sbyR0oLSRcM5pCHaB9pnBZSbNxiEo0ftnrFq2SryJG/RcJ4IThAYDpzEecMGc0aVbTT7TK8yeOXcP9HP0OTQ7MDSzdvdjXU0+0xvD+SUmB0yap2oqttUdbOqnqWqf6iqk6p6UFUvVNUNqvq7qpqWI2WDoSDHho6dpMTWOH8eOWL/nHU16zJmft3ebr7Xrl0w2SwGJgYYmhw66fBPl7Pt8SQiktENcK+cO4c7mQ5Ns3qZf86F+WYPMdPv2a13PBwZNA04Ec6VxZUZHaC1t0N+vtnXsoF7oGU0zrb9OdMDtPZ2KCuD+vqMFL9okGkT+6xBx1AHMzpzkhJzfXBsOzpk1qLpyBFjlZhIR1+MnEtKYPlyu/SHBx3O1YlzztQI/fBhczSHre/Q7HtOAudMKe4jR4zlrK0NV7T37B7f4nmAlkHOq1fnotfHQ06JOXA3b8OVWFUVVFd7nIlVr+PwwOGMRDk/fNgcv1JkGeMkWkdvbDT5PQv0gUMZ8Y87fNgIZNuOHm1WsnKlc8/rjDuDitv2PC2Ye8+rls15Rrv5vXLOpOL2wjnae/bLOVPv2SvnUxU5JeYgmhID04i8CPS1NWuZ0Rk6hiyDLiYRXoVbtI6el2eEupeOvrZ6LSNTI/SOW8b0SSKOHLGPWgHRZyUlJcZZ2tN7rl5L92h3Ro6hcRW3dfqBw+RJHi2Vcy6X1dVmJueV8+HBwxnxj/PDubSglPqyubW4piYzk/PK+WD/wYwO0HJYGDkl5qB9oB1BZv2lXKxa5a3Ru6Pdo0OWVgJJhJ+OXlJQwvLyk9fivCruWc6DmeHsdVZSW1pLRdHJa3F+3/OxIcsAhEmCqj/OLZUtFOYXzl4TMc/wMlhZtWwVwVCQ7tFuDzVOHDMzxvLWK+dVy1bNulHA3J6aV84jUyMMTg56qHHiGBszVtG5mVh85JSYg/bBk33EXPjp6DA3y0kXQiFjXZdoRwf/SizdnCcmoKvLo+IePHzSzNPFYnnPAwPGus7rew6febpYLO85EDCKzPN7jsLZ96A0zQM0ty3mlFh85JSYg0jzeherVpnjSQYtB2LuTC7dHb272ziDJkOgr1plfMWmpuyes3JZZji7Udg9CfSB2AL9yBF7v6lMCXRXAHudccd6z4tBifkR6EcGj8QcrHjhnKm27XLOLSfGR06JOYilxLxaNJUXlVNXWrcoOnos4bZ6tRHmtkd1NJQ1UJxfnDGBbstZVRdU3BMT9n5TLVUtCJL179l1HYn1nvv67P2mFoviHp8e5/jo8ZMMWVysXm2if9g6tmeac24mFh85JYbp6EcHjy6oxLwuNWV7o58ITtA92h1zVhL+zHgQEcN5KLtHq/0T/YxMjcQU6GDPuSi/iBUVK7JeoAeGA8zoTMylNbBv21XFVVQVV2W94o5msORi1Sqz9G572O2KihUU5hVm5D3n50Nzc1qLXZTIKTHmfMRiNXrwvgSR7cItXkcPf6YNMqW4ffnFJUFxQ+Y4e/KLi+IL6GIxca6rsz9qJ5rriAuvg9I8yaO1qjUjAzQvfnGnMnJKjDlLwmiN3o/f1Kqq9Hf0I0fMkSLLltmlX0ig+/GbyoRwO3LEp1/cAop7MXD24he3kEBfLJy9Wt269Yu2nLiYBmi5pUQ75JQYc2bSrVXzh/R+/KZWLVvF4OQgQ5NDyapiXHg2r19AoBcXe/ebWrVsFZ3DnUzNWFqDJAGeTc0XUNzV1eYwUa+cjw4dTasPkR83Cogu0JubvftNZWqA5vU9R/rFufCrxDJhnZhTYnbIKTHmzGejKTFYHH5Tfjp6vuTTUhX1zFFfnBVN6xlbfiJXlBWWUVdaN++e6zfllfNEcIKeMctjDpIAPz5iDWUNlBWWzbvn12+qd7w3bU7erl+c1wFapF+cCzcWoRfOK6tWcmzoWNqcvF2/uJxloh1ySgwzE3M3raNhMfjTeF5yGTpCc2UzBXnRF929+k2l27UgFPIerePI4JGofnEuVq3Kbl+xiQnjSuHV1DzaLMxFtvtNJdMvzoWf/jyjM3SOdNpnSgCBgLGezM3E7JBTYsCx4WMxZ2FglhO7usxZXTZIt3AbHjad3YtADwwH4nLOZr+p48e9+8XF45ztSsx1eVi5cuF04VjsnN26eeFso7izmbN7JJAXzqcyckoMMxNbqKO3thph3mk5EFtRsYKCvIK0NfqAs4LXEn1lMHqe4QDNlbHtd1tbYXLS+BHZIN1Ooani3NtrZjw2SLdwSxXnQMDMbG2Q7ZxDGuLY0DFWVcVWYq2t9ib2kP2cT3XklBhmaaS1MrYScxuTbcPPz8tPq1mu2+i9+JR0DHUsKNy8ci4rLKO+rD7tHd2Ws6rZr2uuiM85YLmtV1daR2lBadZyngxO0jveG/c9B4P2Tt7Nlc3kSV7Wcj4xeoJgKBhzrxcM56EheyfvTA3Qcj5idjjlldj0zDRdI11xZ2JgH8ECzOjNtQxLNbw2+tGpUQYnB+OO0MEH58Hs5Nwz1sN0aNpKcdtydp28s5Wzu4eTzPdcmF9Ic2Vz2gdoTU2W6R3DomQO0KqKq6guqU6rEissNL5xOcTHKa/EOkc6UXR2tBUNXhs9GEvHdEU4T4VwWwycRYwfn1V6C+HmCvRs5lxSYtwBrNKnQKCD4Zwuw45AwAjz4uL4acHbe/YyQGutak3byRSBgOnLucMw7XDKK7GFfMRc1NaaTuSl0bdUthAYDqTFhygQMNEMKist01t09KYm04m8CLeWypa0naMWCJioFYXzraijp/cg0D2956oWOobTw7mz05twc99F0jlXpo+zK9Ct0zvvOZqPmAs/itvtz+mAV86phIjcLiLHReSlsGu1IvILEdnnfNdkso45JWahxNzQRl4b/eTMZFoOivQ6crPp6IWFZpbjVbj1T/QzPj1un8kn/Aq3hQR6VZUZCHh9z53DnWnxIUoF58ZG4y+WzYMVP5xXVKyImca34s5SzinGncBbI659GnhEVTcCjzj/ZwynvBKL5+jsoqXFY0d3NpbT0fBTIdwgAc5pGKX75dxUufDmimfOlS3M6AzHR4/bZ/IJP5yL8ouiOne7yM83s26v73l4apjhyWH7TD7hh/Py8uVRHZ1dlJVBTY13zt2j3QRDluHvE0A2KTFVfQyItFG+AbjL+fsu4B1prVQETnkldmzoGOWF5SwrXjjoYGur95EbpEegu8tMtggMBygrLIvp3O3CK2d3IJCtiruhrIGi/IUDLba0eF9OhCxV3CPGvD6Wc7eLbG3bMzPGP9MP53jwM1gJaYiukS77TD4wOmrOLkyjEisQkWfDPh+1yNOoqp0AzrdlOOrUYMEYydImrcB7gcuBZmAceAn4H+Ah3aaW3iXZC9fROV5Hb2kxQkTVbtkuXTMxVe/CrWO4w0q4tbTAY4/ZPzddwm162jg7p0K4tbbCr35l/9xZzkMdnN98vn1GjxgeNibhXhW3rUB/+WX754a37c31m+0zesTx48Z/LRWcPSvuMM7xVm0SgeuLmkYlFlTV1DVcS4iwHLiMk/XMs6rE1TExZ2LSJncAtwNTwK3AjcCfAr/ErJE+Lm1yRcK1zzCODR1b0DLRRUuLcf7ttdziaqpoQpCUC/TBQRgfT51w6++HMcsweelS3N3dRnkn0y/OhTtYmbHc4krXTMyP71DKBHqaBiu+OS/gC+jCz0wMspNzBtAtIk0AzrfvtXQR3iDCw5iJ0bVAE3AG8HfAiyK0ibDgktFCM7F/1m36UpTrLwH3SZsUAYs+ROWxoWNcve7quOnCzXLr6+M/tzC/kOXly1Mu0P12dJtZQ7jJ+caN8Z9bVVxFRVFFVnb0wHCAc1acEzdda6tRYMeP2/kmNZY3ki/5Wfue37zuzXHTtbSYWd7QkDFuiZs+TYMVr5yDoSDdI93Wg5XubjOrt7FwzVbOGcL9wAeALznfP0ngWW8DPqLKPCc8EQqA64BrgHtjPSDmTCyGAgu/P6XbdL99XedDRKpF5B4ReUVE9orIJek03wyGgia23ALROlz4MstNg/l1KiJXuPBripxtnIOhIN2j9sIN7Gcm+Xn5rKhYkXWcR6ZGGJoc8sTZS3SW6pLqrOPcPdKNotazTy+h5OrL6inMK8w6zqmGiHwfeBLYJCLHROTDGOV1jYjswyiYL/l9vip/HU2BOfeCqvy3amwFBnH2xACkTa4DPg+sdtILoLpNLcZscfF14Geq+h4RKQLKgP+DMd/8koh8GmO++akklDUPXSNdhDRktcbtx0GypbIl5dEcvDb6ockhxqbHFgzL48KP829LVepNkb3uGxwfPU5IQ54F+gUX2D0/GwcrthaocHLbPv10u+ena7CSbId2F+Hv2SaIdJ7k0VzZnBbOpaX2h9umGqp6Y4xbb0pmOSJUA+8H1hCml1T5RLy8Nodffw14F/Cibkue566IVAFXAB8EUNUpYEpEbgCucpLdBWwnRUrMxkfMxYoV5oBMr7OS3xz9jd/qWSEVYXlc+PWn2XF4h30GHwgEjGl4Q4Nlegu/OBe+FHdlC6/0vGKfwQcCAaioSK5DuwvfqwxpWFpLtkO7Cz+cmyub08L5FI3W8SDwFPAixDfmCIeNEjsKvJRMBeZgHXACuENEtgDPAX9BhPmmiEQ133RMQT8KUGR7Pn0EXCVmY9hRUGBGhF7D8/SO9zIRnKCkoMRXHeMhEDCjtvJyy/QeOnpFhdkj8RPZIKQh8iQ1HhyBgBlU5OdbpvfAuaHBCE2vivuRQ4/YZ/AB35ErLGbcfgcrLx1fcMchYaTK/xF8rqxUtbC7e7d9Bh/IJh+xNKNElZv9ZLRRYn8DPChtsgOYdC/qNv2qnwIjyt4KfFxVnxaRr+PB81tVbwNuAygvL/elYC9quYjvvet7rK9Zb5Xer1luYDjAupp1fqoYF37M68Guo4M/zsFQkBOjJ2issFwH8ohUCre8PPNsr7OSockhRqZGqCiqsM/oAankXFJi4hN6Hax0jXQRDAVjHqyaKAIB78fO5Ekey8vjuy25oeS8cn5o30Ooalz3FL8IBGDr1pQ8OtvxHRE+AvyUcD2j8xyt58FmqPwFYAwoASrDPoniGHBMVZ92/r8Ho9SSZr4ZDyuXreSms2+ivMhuGuPbLDeFSxC+I1dU2K0/ZqMpsmfFPdRhLdzAu8NzOpy8/bzn8sJyKovsuqqfwUpIQ3SPdNtn8gg/A7QVFSvIz4s/RXdDyXmdfY5OjzI0OWSfyQP8+HwuIUwBX8EYkTznfJ61yWgzhKrVbRrfTtcjVLVLRI6KyCZVfRWzUbjH+STLfDOpaG2F7dvt06fDhygQgCs8eOsFhgMsK17mSXHv2WP//HBT5K1NqRlSBgJw2WUe0g8HrIUbGM4vvGD//HDFval+k31GS/gRbq6PmO2MwetgZVZxD3dYLVl6hS+Hdku/OBd+w6oFhgMsK0m+5cXwsInY4YXzS8dformymdrS2qTXJ824GdigSo/XjDYzsV9KmyRdiTn4OPA9EdkNnAP8I0k030w2WlpgYMA0NKv0jnBL1VEdiQg3W7S2GmvAoGXIuFTPxCYnoacnNdE6XLjBnm13gVPtQzQwYE6bziqBnuJVhi4nulNWck5R2/bjLnPBf1zAF3/9xZTUJ814GbPi5xk2M7E/A/5G2mQSmCaJJvaq+jwQzes2qeabyUK4RdNpp8VPX1VcRXlheco6em+vGbGmuqOHQsYx1GZ/orGikTzJyzrhtqZ6jXX6lpa5GHY2Z3dlm3Bz63JRy0XW6Vtbzcxnagps7KRcxZ2qAZpf5+7LVtpP0Vtb4b77sieUnFfOAxMDTAQnPPXnLMYM8LwIj3LynljiJva6TZOx/7Uk4Dauzk47JSYiKfUh8tvRr1xzpXX6cM42Sqwgr4Cmiqas43xp66XW6cM52yix8iITQDpbhNusQ7sH4eY+u6vLzm8q1c6/XjlPBs2xR145T06a0Gq1Fqtx2TZYcQ+3jXcywyLBfzsfz7AyK5I2aWHO2RkA3aYeQsMuDbi+WG5js0EqnUJTGa3DhS/OWaS4J4OT9Iz1eNq3Ceds7fybRZzdEbqNX5yLcM7Z4PybitPKIxHO2UaJlRaWUlNSk/LBSip8PrMdqrNHu3iGTcSOW4HfxxhcuGFRFTjllFj4CN0WLVUt/Prwr1NSH68dvWesh+nQtK8RuifOlS281vuafQYP8MrZPTojHZxTLdBTKdzcZ3tt26kU6L4c2n0MVjo74ayz7PKkerBSWendod3W0jibIcJlwC1ERoZS4vom2czE3gFs0m06GTflEseyZcanxutMLFXOv+kQbo2NZr/AK+dH2x+1z+ABgYBxRq6Lfc7jSfDqFwf+BfqeAx7MOD0gEDDLmmVllul9vGe/ivuFbg9mnB6QSod2F9k4WPGyTN45vKSWE78F/CXGtN7TMek2UvUgYBn4ZWlDxDQyr41+OjRN75jlGS4eEAgYYV5cbJneR0cvKDChf7wK9IGJAcamfRkbLQivYXn8cK6sNBFQvCrurpEuZkKe+p8VUuno7KKhwTh6+xmgpQLp4Ox7eyCFs0+vnCuLKlPmYJ9mDKrykCrHVel1PzYZbWZiY8Dz0iaPcHLEjrhWI0sRTU3eGr3bqQLDARrKLddGLJGOjg6Gsxcl5j6/c7iT9bV20VBskS7OXgcrzZXNzOgMJ8ZOsKJihaey4sG3Q7uHEXp+vpn5eOU8MjXC8OQwlcXJtf8KBGC9h6YTGA5QmFdIXanlFB0zUKmq8j5A6x7tTkmkkkAALrW3P6JzpHNJ7Ic5eFSErwD3cbJ14s54GW3ewv3OJweMMNntIXya28g6hjvYsmJLUuuSDuEGiSnuVCgxW2MLtw5ehRskxjkVSuyqq+zTdwx3UF1STVmh5fqjg0Q4bypOrpN3IACXX+4hvUfnbhdeObdUzkUqSaaTt1+fzyWylAjg+oOEu1wp8MZ4GW1M7H1bjSxFNDXBww/bpw/v6MlGIGC/Ie3WoaGsgaJ8bwGTm5vh+ec9pA9T3MlGIABv8uBF6Fe4NTfDs1ZBb5z0LuckRyoJhcxMIZW+gC6amuDoUfv04e85mZFKJiagry89nP3MuN3ykqnE+vuNub+nPbGRTi5uvThpdcgkVHmD37wx98SkTR6QNrle2mTefpi0yTppk89Jm3zIb8GLFU1N5gRc26gd7kgp2UpsZsb49KQycoWLpibj7Dxjud3jmnYnm/PYmIle4VW4+RE27hKqddSOFHH269Duxbzehef93qrUcPZ6XpxbB79t2+/sM5lIh7tMNkKE94ksoIeE9SK8fqFnLDQT+wgmntXXpE36MMemlABrgf3AN3SbZk1cw3Qh3KJpw4b46Yvyi2goa0h6oz9xwigVr4Fw/Y5WQyET0cHGErKquIqywrKsEG4dwx2ctdzDdNVBU5MZqAwPm32TeGisaESQjAs3MAJ2c/1mz2U1NZl3PD1td4aXa9qdLZyvXne157LCBys2k/VsUWKDk4NMBCeWwnJiHbBLZDbor6tnNgBXAj3EOd0kphLTbdqFOYblb6RN1gBNwDjwmm7T5JudLRKEWzTZKDEgJU6hfjv6OSvO8VxWOGcbJSYiWcX5zeu8h/4MH6zYKLGCvAIaKxozzjmkId8b/m4Z3d1z520thMriSiqLKpNureeV8+jUKIOTg745T0zYhxhbXr6cPMnLuBJbKo7OqnxdhG9g9r4uA16H0TN7gT9U5Ui8Z1iZ1+g2bQfafdd0CcGvw3OmG30wFKR7tDsh4ebVtSDTnEemRhiaHPK9zOSWuclyuycbOPeM9RAMBRPmbKPEwGnbI5nl7Cdah4twzjZKLD8vnxUVK1I2WLH1+Zz1EVsCjs6qzAC/cD6ekZqjd5cw/PiWNFc0Z1y4HR89TkhDCXV0rxvgmebsdvR0Ke5Ucl5hafCYyNDCitwAACAASURBVAg9m96zF4f2RDhn0wCtpgZKSy3TL5GZWDKQU2IeUVNjnIu9dvTukW6mZ6aTVo9AwKzhN1oenpxIo3fL8LoB3jHUgdpaRlggEDCdfJnlUU6ZEOipGKHX19s7tLtLe+lU3KlYTky1Q7sLX4PSFCnudLjLLEXklJhHiHh3/m2pakFRukeTdwpuIGAiadhswENiHb2oyER08DpaHQ+OMzg56Lm8WEincKuqMgrTqw9Rz1gPk8HkRWhLl3M3mPbkJ8RYYDiQ9MFKujhn0+zTq3n9EorWkRBsAgBHD8y4TeMGZlyqSMQs1z0RN1H47eh+TK8hMc7VJRabDRZIp3DzE2LMLadrpIvV1as9lxkNfjn7cbguKDCzbq+cp0PT9I73Ul9W77nMaAgE4Mwz7dN3DHVQWlDKsmLvpy1XVkJFhXfOveO9TAYnKS6wnCLHQSAAmz0YlC4xR2dEaMQcitysyrUinAFcosq34uW1mYl9C/gq8HrgAoxH9QUJ1HfRIxEHyWTBq3DrGOogT/JYXr7cV3mLkvNwB+WF5VQV+zu/NRt8iPwoseXlyz07tLtYlJxH/Dm0u/DL2TUoSRR+HNqXWMgpgDuBhwGX1GvAJ20y2iixQd2mD+k2Pa7btNf9+Kvn0oDfRp/MvQM/wm1FxQry8yzDgkdgsXJORLj5df5N1r5YOh3aXfiNk5ms9zwyYoIJpMPR2UWmB2g9PRAM+gg5tQQsE8NQr8oPgRCAKkEso9nbmNg/Km0yPzDjNo0bmHGpornZ+JWMjdkdj7G8fDn5kp+0Rj89bZxS0yncmpvnonbYHI+R7I4+PGwEXDqFW1MTPPSQffpkcz5+3IzS0y3Qd3ro2cmOVOI3Wsd5Tef5LrOpCZ55xj59shW3n2gdncNLbiY2KkIdJl4iIlwMWG2o2ygx34EZlyrCN4NtIm3nSR5NlU1J86fp7jYRBrx29DXVa3yX2dRkFFhPj51FpHsKbrKEm19H5wtbLvRdZlPTnPKssNg/ryutozCvMOOct67wH7vRDTEWDJo9snhw994yxdkNv3T9adf7LtOdidlG7Ui24vYTrWM8OL7UZmI3YwLNrxfhCaABeI9NRpsAwL4DMy5VhJsi2x4XkUxTZL/C7dLWS32XGW6KbGvWn0yTc9+x5RKclYB5zxs3xk+f7EglvhzaR/w5tLtobjbC3HamX1xQTH1ZfcY4D00OMTY95ttgCUzbHhszy5g27hu1pbUU5RdlTIkl4v+YrVBlpwhXApswxoOvqmLlk2RjnbgM2AZc4VzaAXxOt2nybKcXGXyd/FvZwmu9ryWlfK+NfjI4Sc9YT9IE+rnn2uVJZqQSv6PVRJcT3bJtlBhklnPXSBeKJo2zbbnJdP7NRPil8LZto8TcwUqyVlbS6dCerRDhz4DvqfKy83+NCDeq8u/x8toYdtwODAO/53yGgDsSqO+iR6YdJP0INyChoyOyhbNtWJ5kCzfrPEnmnC6HdheZ9ptKp0O7i2zg3NBg/DFt4FpFLiUTe+Ajqgy4/6jSjwlCHxc2e2LrdZu+O+z/NmkTD6dLLT3U1RknY6+Nvn+in/HpcUoLLWPLxEAgYIwrGiwPinaXehLp6O4o0RPnimY6RzoJaYg8ScyvPhAwPj2VlgcIu0u3iS4zgXfOD+/3cODcAnCXbm32piDMFzCBwYpfxb2ra5fvMsORTod2F34HaC8df8l3meHwHa1jae2J5YkgqrOGHfmAlVq3kSzj0iaz57k4zs/jvqq5ROBG7ciUP00gYJSKjZVgeJmJdPTiYqO8vXIOhoKcGD3hu1wX6XR0dlFdbXh7imBR1cLw1DDDk8O+y3WRCc6Njd6jdrhh1YKhoO9yXWQi/JIvxZ3EeKieo3UMd1JRVEFlseWIbnHg58APRXiTCG8Evg/8zCajjRL7X8C/SZu0S5scBr4B/InvqkZARPJFZJeI/NT5f62IPC0i+0TkbhHx57WZYnj2IUqiRVMmhBv495vKJOdEhFsiUTuS4Qjrh3O+5NNQZjlFj4LCQn8hxhSleyTxsGp+OFcVVyUUfqmy0rjKeB2sDE0OMTI14rtcF36du9MFEXmriLwqIvtFZMGzvRLA3wCPYPTNnzl//41NxrhKTLfp87pNt2DOeTlbt+m5uk1fSKCykfgLzNkxLm4F/q+qbgT6gQ8nsaykIdMzMa8dvTCvkLpSy7DgMeDXETZTnKtLqikrtHDkWwCL7T0n4tDuwrfDc4IWiqqZEeiJDFYSfc/BoHFpyFZHZxHJB/4NuBY4A7hRRM5IbhnkA99W5f+p8h5V3q3KN50jWuIi9rHQbfI+5/tmaZObgT8G/jjs/yRUXlqBtwP/6fwvGP+ze5wkdwHvSEZZyYbfRp8MU+R0R65w4TtqxyIVbuB/xp2oO4Uvh/YEXQpcZEpxDw0ZU/dTibMfh/Y0OzpfCOxX1YOqOgX8ALghmQU4yqpBxG4PLBILzcTKne/KKJ9khU7+GmbKGHL+rwMGVNVdXD8GRN2lFpGPisizIvJsMJj4WrxXNDVBf785FdYG1SXVlBaUJtzoJyehtzczHb252YRBCoXipwXjCCtIwpwHBszvnCnhlokReleX8zwPFDqGOzKjuJO0bOzX/zETnJP1nv36PyZxJlbgylHn89GI+y3A0bD/Y8rkBNEOPCHC34tws/uxyRjT7km36TedP3+p2/SJ8HuOcUdCEJHrgOOq+pyIXOVejlaVqPVTvQ24DaC8vDx550BYItxybe3a+OlnfUsSbPR+w/Kc0ZD4CkBTk1n+6Okxx3bEQ0FeAY0VjRkTbletuSqhcsFw9hJirLLYHI+RKc6Xr7o8oXLBcO7qsg8x1lDWkJSwar4d2isW72DFj3N3ov6PEQiq6vkL3LeWyQki4HzyMBMla9gY7/4rEBnHJto1r7gM+B0ReRtQAlRhZmbVIlLgzMZaMcSyDuEWTTZKDJITwcKPcOsY7uCaddckVG54mZ2ddkoMMsM5pCECw4GEzOtd+InO0lLZknbOE8EJ+sb7ksY5FIITJ+wccPPz8llRsSLtnPvG+5iamUrajHtkxIQZs3HjqCyqpLywPO1KLAOHYR4DVob9nxKZrEobgAiVmPGJtcVMTCUmbXIJcCnQELEHVgUktnMMqOpngM8AODOx/62qfyAiP8LEzPoB8AHgJ4mWlQr49S15rvO5hMr12uhHpkYYmhxKWkd367Bli12e5spmjg0dS6hcr47OPWM9BEPBpHP2EmIs3cItmaGIwlcZbKNIJCNSSSYc2l2ED1ZslFiyVlYCAcjLsx8UulavadwTewbYKCJrgQ7gvcBNyS5EhLOA7wC1zv89wPvdCB4LYaE9sSLM3lcBJ++HDWEZmNEnPgXcLCL7MXtkcQ9FywT8+JYk4xTcTAq3RDgngmwRbtZ5kiTcvDi0J5NzpqKzeHVozzTnlqrkzLj9OLSnyzrRWRH7c8xZX3uBH6pqXMXiA7cBN6uyWpXVwF8B/2GTcaE9sR3ADmmTO3WbHk5OPWOUpbod2O78fRBjEZPVqKszDc9rRx+bHmNwctD3aceBgPHlqbO0lk9mR/cVtaOymeOjx5mamfJ9UGMgYByPbfakIDXCzY8SU1XfFqGBgCk7zzLQScYVd0UzO9p3JFRupvwfwf9g5aljTyVUrh9HZ7fsdEFVHwQeTHEx5ao8Olcm20VmjQsXxELLiV/TbfpJ4BvSJvOmDrpNf8dXVZcI8vIS2wxORImlOyyPi5ISqKnxZ4rcNdLFqmWrfJWbSeFWW2ti2nkaoVe2MDkzSd94H3Vl/nzzMsnZHax4fc+JhlXLhEO7C1+zz4rkDFZWeegWgeHAUozWAXBQhL/HLCkCvA84ZJNxoUms+7B/SqBiSxpelVi4KbJfa8FMCjdILFJJupWYe9ZVInBDjPkdrCSixDZs8JB+OEBRfhG1pbW+ygtHURHU1/tr250jnayrWeer3EAALvNg99wx3EFtaS0lBSW+ygvHsmUm8LDX9zwRnGBgYoCa0hpf5QYCcPHF9uk7RzqXWsxEFx8C2jCHLwM8BvyRTcaFlhOfc75n1wikTWqAlbpNd/uu6hJCczPs3+8hfRLMcgMBOMOD/gsMBygrLKOquMp3meHIhFNoIABXXeUh/XCAhrIG38uXkUiE89mNZ/sqMxCAK66In86F6yOWqEO7C9+O7UMdvpSYL4f2JPmIQeLxUP0osakpYwGaKc7ZABEKVAk6Ues/4ecZcVfcpU22S5tUSZvUAi8Ad0ibfNVPYUsNzc3eGr07gkokmoPXjp5s4eY7UolPzqGQKS8TTr8u/Dr/+t30n5iAvr7MCrd0O//29Rmhfipx9uPQ3jnSudSOYPmt+4cI/+rnATbbxst0mw4B7wLu0G16HnC1n8KWGpqbTeezjdpRXlTOsuJlvhv96KhxvPXa0ZPhO+TCVdy2UTvqy+opzCv0zbm314Rg8sw5geNIIuF3sOKXsytIba0x3bJS8Z5tkWiAa7/O3RnlnGCkkkw6d2cRwkfXvoJo2CixAmmTJsyBmD/1U8hShS+T86oW3yfC+o3WkczRakvLXNQOGyR6Cq7vUERJ7OjNzSb01diYXfrigmLqSusSVmKZnpW4UTtsUF1STUlBSdoE+kxohq6RrqRz9rWy4nPG7Sdax9j02FKbiSUc/cNGiX0O4yNwQLfpM9Im64B9iRa8FOA2Pq/r6H6X1nyP3JLc0cPrYpUnjZyDoSDdI91JV9zhdbHKk4APkVfOw5PDDE8NJ/09z8yYPRsbuIOVdHE+MXaCGZ1JOmc3aocNSgtLqSmpSZvizoCjczqwWYTdIrwY9vduEV4Uwcr2Iq6LnW7THwE/Cvv/IPDu2DlOHfgV6I/2PBo/YRR4bfSDk4PJjrN2EudzzrHMU9nMnhN7fJXnlXP3SDeKpoyzrcVgIs6/2SDcXMXd0eEhakcCju2ZdGh3Ef6eN22yzJPgey4oMJagVumX5onOpyf6gLhKTNqkFRMr8TLM1O9x4C90myYWS2gJwI8Sa6lsoXOkk5CGyBNLT1ZOLsdrnLVMz8RaKlv45cFf+irPLcdWkGYL5+aKZnZ3+zPizaRDu4twzuedZ5mnspmdnTt9lRcIGB/EUksXs1RwDlfc6VJiXhzaM+HonGqoknAgDZuf7w7gfqAZE4L/AefaKQ8/jrDNlc0EQ0F6xiw3lcIQCJhOvmyZZfoUdHS/jrCDk4OMTo16Li8QMCPV4mLL9FmixFqqWuga6SIY8n5MkFeHdnepNtOc3eVEP2HVMu3/CP45J6LEMuXcvZRgo8QadJveods06HzuBPyff76E4J4I69efxiuyQbgVFZl4funyFfPjUhBeZjLgOsJ65RzSEMdHj3suLxsEemOjaWd+wqoNTQ55Ls8PZ0FoLG/0XFYs+I0Z6a6seIXnkFMjnZQXllNZtOSidSQEGyXWI23yPmmTfOfzPqA31RVbLPCrxNIh0FMh3CC9psh+OOdLPsvLLcOCWyCRwUq6OFcUVSTNoR3MXk1jY/rM7P1wXl6+nML8Qs9lxYIbfNgr50RWVrxybqpsSprPZ7ZBhFIRLBdy52CjxD6EMa/vcj7vca7lQHr9afw0+uqSasoKLSPnWiLbBfqKihXk5yV8WtBJyGrOI6mJ4uB7lcGjhaIfh/ZURa5I18rK+Lg5Gd7rTGwp7YeFQ4TrgeeBnzn/nyPC/TZ5bawTjwCndLDfhdDcDA8/bJ/ejefntaO7YXmuu84+TyqF2/PPe0jvU7jNzBhfpWwRbjs92Cy4gxWvws2vQ3uqOB/zYL7lV3GfOGHedbZw9jtYObfpXOt8fh3az29e6BDmRY1bMKeXbAdQ5XkR1thktAk7tU7a5AFpkxPSJselTX7i+IrlgLFoGh629y0pzC9keflyzx19aMgIuGzp6N3dxunZBn5Pwe3uNqN0P0suyUZzs7Fas7VZWF6+nDzJ88zZr3N3Ksyu0zX7PJU5t1gGHFFVOoeXbPBfgKAqg34y2iwn/hfwQ6AJY6H4I+D7fgpbikjXQZFeGz2YWUAqlFhLi1Eu3d126UXE18m/vjgPdyQ1FJGL5mYTsWPI0mYhPy+fFRUrPHPucCZuXoRbx1DqOB8/bsJ+2cBvWDWvnKdnpjk+ejypocVcuErMdrDirqz45ewlWsfo9OiSXU4EXhLhJiBfhI1OHMXf2GS0UWKi2/Q7YdaJ3yUJoUKWChIxRfYCr40+pCE6RzpTJtwg+ziPT4/TN96XEs6+onZUeo/a4VVx9433MTkzmTKBDt6D4qaac+dIJ4qmrG1PTpr9Khv4XVnxqrjd3zQVnLMEHwfOBCYxE6dB4JM2GW0OxX5U2uTTwA8wyuv3gf9xotqj27TPT42XCvwK9GcCz3gqx2ujPz56nGDo/2/vzKPjOq4z/91uoLGDWAliBwgCoEiR1EKRkijJlqjFC8eU7CRSbMVLHMueOFEcjzOxo3NGUhwnmYmze9VYSaSJGIuO7Vi2FYukLJuRJa4SJXADCQIkgMZG7PvWfeeP6gc0gF6qXvd7/Rqq3zl9AHZXNerje69uLffemneUEVM9BVdVs9GRWNmhd3UB10jmGCjLKUPrUKvS31E13FZ2bsGGW/bgRjMzbq9XeICWSHrLG/uMVl5nr1fEgUrVMZEbtKtLHDKbJ3k2rpWaHUIjMx4D8JhqRZmZ2IMAPg3gFYhNt/8O4Z14EsAJ1T+42jCbwaJvog9zPsl1GqjvG1jlXh/cBlXNxim4snR1AW43sFbSW95pms0EwnZ1AdnZQK6kt/xq0Oz1CgOWKuktvzBYcdCM24zm8vLEnNDuUP6GCOeJ8GUibFapKOOdWGu+XaufnBwgK8vcZnDPeA8q11RK1fF6xagtU9Jb3sqR29q1IlWOqubp+WkMTQ9Jnz5s5O1zS3rLWzkrMRMIW55TjoGpAUzPT0ufPuz1KgZ32zArUU231TXWpZRWzQkB7QZmDfeJLrXxfFeX+l4vsHqXE5lxJxHWQYRzPUWEXADPM+PPotVVS96nWUFMWTsU9g6cdNO73cK4WO3FpazZwg7dmB2Z0WzkvJPBGKFLl7ewQy8qEkHPVqdVU9Y86oXH7UFRpmTmXAXMZu1QXVkxM1jJT89HRqpkcskkhBk9zPgHAJ+BiBn7XzL1tBGLA3a45Zq56V3kQkl2/NLyBONIzWNeZKZmYk2aZHJJRezQbMZwF2cWw+P2yFeSxOUSnbrV2VnMDNDieVp5MOnpYi9M9TozGL0Tcu66Rsynstft6t0PAxGuIcITRDgN4GsQnokVMnW1EYsDRgyRLGYedNXRatdYF0qySpDikvHdUceOTCVmNFvVuQHWp9syOjcnZOswsDqDxcyMOGA1kSc6L8fqwcrwsMjY4YSYTwfxzwCGANzLjHcx45vMkEo8KtXD0ZP0QQC3IXAUCz/OPzTd1FVIcGyJTP9ZlFmEFFeK9INuJnOF1SO3sjLgV7+SL28EIMtqnpwUD7sTYsQMysqAV19VKK+4bDwwAMzOqs/ErL7OFy4olFfs0M3GAm4r2SZfQRGrjZiq1y0gNF+79lr5CkkGM242W1cmY8c3INYomwCcBvBpepK+bvYPrkbKyoDpadHpyuAiF0qzS6Xdcvv6hCFzWoc+MCBG0jKkp6SjIKNAuXNTXUK1ukNXCYTNT89HmjvN8s7NSbMSI6OEVdfZyuBuA6tXGcycVt4z3rMqnTqIsD/wsynoVOf4nuwM4F0AruXHxaNLT9IzEAYtJoioEsCzANYB8AN4ipn/nogKADwPoAbAZQC/wcySoYeJIdgtNz9fso5CPI3ZbB13VN0hX0GR4EDYmhq5OuU55dKG20xaHjuWmWZnhfGWOY2XiJRczlVjxGZ9syJzhcWah4bE8pfMgZVG8K/s7FPVcBuZK6werHR3i6w0MgdWFmcVw01uywYrveO98LN/te6J/UHgp0JW2KXI7Ik1AwgOdawE5CxkFOYB/A9mvgbAzQA+S0SbAHwRwMvMXA/g5cC/HY3pDBaSS2tmMlcMTQ9ZuoZuJp7GSs1G5gqnaS7Plc/aoWq4e8Z7AFgbO2R1rJjZ+EerDbfPJ1ZAZHCRC6U5pcrX2Qkxn4mGGd1EcAN4mhlXlr9kvkPGiBUCOEdP0i/oSfoFgLMAiulJeoGeJKlU+aEbz93M/Ebg9zEA5yBOjt4L4JlAsWcA3G/2b9hFLPE0Mjgpc4WB1Z2bE9Py2KVZNrO5HVkczA5WVDSnpclnx1i4zkl+bxcUCE9IqfKrP0bMB2CSCKbcimWWE6V89WOBiGoAXA/gKIASZu4GhKEjovidbmgRZmNLRmZGMDE7gSxPVsSyXV1iWUM2c4VTO/TynHL0jPfA5/dFPe+rq0sEdstmrrCjQzc7WHlx7EWpsl1d4hrLZq5w8nU+2XVSqqxq5gorTitfTrDhvuEGuTplOWVoGWyRKmsmLg5Y1SmnAGAaQBMRDgKYMN5kxqPRKspk7PhlbG2LDBFlA/g+gM8x86isezQRPQLgEQDweOIfI6NCZqbIpmHG/bp7vBsbCjZELGtkrkiR9Ja346YvLBSdrarh9rEPfRN9UY9LUe7cbOjQTWXtyC3H+Ow4RmdGo5687MTOzeysxAj+jXbystlsHU4z3GXZZTh85bBUWTOa431auQP5aeClTNhukZ6kV/lxvo2epDEszVpPAJgf55jPQieiVAgD9hwz/yDwdi8RlQZmYaVA6FgBZn4KwFMAkJWVlfCs+rHE00QzYqqBkXasoceSqUTmzC+zmq04S8wgLU0Yb7Oa423Eusa64HF7UJhRKF9Jkbw8sexlJvhXJq2a1wvceKP8d3eNdVmeuaKkRNzfqpoHpwalUox5vcDWrfLfbTwvsmm8khFmPEOE4sDvV1XqRvpfyQIAfpxz+HHODXrlxMmAEYCnAZxj5r8J+ugFAB8L/P4xAD+K9W/ZgZWxJU7LXGHgKM0WZq4IxkrNTspcYWBmsCLrcm4muNuOzBWpqWJZ19TKSpQUY/Pz4hw+Zc2rdD+MCBTI1NEP4DyAC0S4SiS/jRXJiFk9u9kF4LcA3EVEpwKv9wH4SwD3ENFFAPcE/u14lLN2KMSWmMmnV55TbmnnBliXwcLJaXms6tBnZ4U3nJNixAysyg06MiKC2pWDux2sOdp1Nk4rd1JAu1mI6NeJ6AwR+Ylo+7LPvkRELUTUTET3Rfiaz0HYgpuYUciMfAA7Aewiwh/KtCPSLstaepI+H+5DfnzJ7EkZZn4VYmkyFLtj+e5EoBpbkpuWi8zUzKgP+tSUiNNxUtCvQVkZcPCgfPm1WWvhIldUzYODIojaiaPVsjKgSSFKUjZTSU/P4vfL4h314vrS6+UrmKSsDDh1SqG8ZIduNluHHZkrrDLcZgPa715/t3wF+zgN4IMAvh38ZiBU6iGIQy7LABwiogZm9oX4jo8CuIcZCxmjmdFKhIcBHADwt9EaEam7dQPIBpAT5qUJoqxMLBVclVzNlQ2ENfOg25VnrawMGB0Fxsflyqe4UlCSVRJVs5kH3U7NPT0ijkiGbE82ctNy467ZCO4uy7ZHs9crn6mkOKsYKa4Uac2yhtvn99mWuUJ1ZUXVcMtqNpyCnBgjxsznmLk5xEd7AXyXmWeYuQ1AC4AdYb4mNdiALX43rgKQ8tONNBPr5sf5T2W+RANUBPItd3bKn1CrYsRU0vJYnbnCwNDs9QKNjXJ1ZDKVqBpuOzJXGFRUiNl2T498+2QylTgxc4VBRQUwMSGW/2ROIjbSqsV7VtI7YV/mivJysbw7MyMceqIhm2LMdMyndfd2ChEFH4b2VMBpLhbKAQQf494ZeC8UsxG+J9JnC0QyYtZuqKwyKgNOWB0d8t5W5TnlOOY9FrGM6k0/MDWAGd+MLR26obm9Xd6IleWU4fLw5YhlVEfoxma6HZ1b8HWWvSYymUpUByt2BsAGa5YxYoA1A7SFkAIbNFcFchR5vcD69dHLq6ysuN1AcbFcO2wIo5hn5u3hPiSiQxCpAZfzGDOHc7oLZTvCzeO3EWE0zHdIhYNHWk5Mun2pRBL8oMtSllMG75gXHGGdprNT/JTOXGFDMKiBKc0SmUoMzdKZKyw8GHI5wYZbFpnOrbNz0YVfBsdfZ0nNBQVyORmBxFxnFc0yqwwdHcJoq55WnqjlRGa+m5mvDfGK5DXeCZGe0KACQMj/GGa4mZEb4pXDLLecGNaI8eM8KPMFGkFxMeDxqD/o0/PTGJ4On/6+owPIyQHWSHrLd44KCxAtPiceGIZVVXP/ZD9m5sOnv+/oEMHdMss4QJDmXOs1x9KhRxqstLeL75Z1KO0YFQ2w4zqb6tBzonfohmZZOkacrVnGcHd0mNRsw70dR14A8BARpRFRLYB6AJGXnGJg9UbP2YzLJfYOVB90IPJmsGrn1j4ipghVa6qilIydtDSx/6c6WgVEppJwqHZudmrOywOystSv85x/Dv2TK/avFzDTuRHIlqW10lIxc1CdfQ5PD2NybjJsmY6OxWU7GTpGO5DmTkNxpuRaXAxYtcpgRnNBRkHU1HSJgIgeIKJOALcA+CkRvQQAzHwGwH6IPLs/A/DZMJ6JcUEbsThSVaU+cgMiu+Uqd26jHQtegHZQWWlOc6SHXflBH+lAjicHa9KtDe4GxGDCCZrbR9pRkl2CtBTJ6WoMuN1iCcwKzaqDlco1lZbHPwIilVxBgbrmsdkxjM2Mhfzc7xdLqMqaHToLY+YfMnMFM6cxcwkz3xf02VeYuY6ZG5n5P61shzZiccQpnVtFbkXUBLvxwqzhDqeZ2cRMbLTdllmYQbyv8/y8cCBQHaw4WXO0wPbxcRH/6HTNqrNPILzmq1eFt6OTNScj2ojFkcpK0RnJxhBFu+mnp4Wbr+pNb+fIzejcZGOIoi2hDg2JLA6qS2t27JMYqBruaB26ESSvOkJ3shELzg0aCuO7VAdoibi3ZYn2PCeD5mREG7E4UlkpDJiRHNCARwAAIABJREFUfSEaGakZyE/PD/ugG156Tu/cxsdFDJEMBRkF8Lg9ce/cqnLt1dzTI0bVMqzLFh7K4ZaNVTUzs+2DlaoqcT/KDlZkO3TZe3veP4+usa6kMNzx0jw+O47h6WE9E4uCNmJxxLRHU5hAWNXOzef3wTvqtX20CshrXoinCaPZWL6RfdCn5qZwdfKqrTMxo22yGR08bg+KM4vDdm6qmgenBjE5N2l7hz4zI5+RZk3aGmSmZsatQ+8a64Kf/bYb7qEhEegtgzHjNrxll6Oq2U5vzGRGG7E4Em+3XNWbvneiF3P+Ods7NyB+7teqmo0Ow/GaI8QQKXduhnt9EgxWws0+29uFk4xs/KPRoTv5Omd7spGfnr/gLbuc9nZxrE1Rkdz32el1m8xoIxZH4t25GSN0I71TNBIxcjMd5B1hOTE1VcSJyZAMHTqAiB16R4eIA5Q9xToRnZsVA7TSUvlTrA3NTr+3q/OqcXnkcsjPDG9M5VhAvScWEW3E4ogRQ6Tk0ZRdhu6xbvj8K71BOjpEELVsRoNEdG5GDFG8OvT2djE6lzkJAEiiDj1CDJGTg34NrDBiqg5LgPMHK9VrqnFl+ErIz8yEFLjI5cjkv05CG7E4YiaGqHJNJXwssnMvJxkedCOGSMVwV+ZWLmxaL8dsRoOKXMnpahzIygLy89Wvc+94b8hMJWY6N4/bY+tx9cXFIrhdSXNuJTpHO+Fn/4rPzAS056XnISfNvgM0ysvFM61sxEauhMzOojxYGe1AaXYpUt2S09V3KNqIxRlVI1aTVwMAIZPimnnQsz3ZyEuXzNIaJ8xqDjViNRX0m2VP0G8wZjQzeGGgEYyZLA6VuZW2HldPJJa1VQYrNXk1mPHNoHe8d8n7zOY027035PGoZ6SpzqvG+Ow4hqaHlrw/Py9CKZS9bvV+WFS0EYszqjFEkYyY2c7NjowGwcRLs8+nntGgY9TeGDED1UDYcJqnpoTHn5nMFXYTrwHa4KDQnQyZK1Svc/WaagArB2hdXeqxgHbHPyYr2ojFmcpKcQT5rNRJOIs3/fIHfWREHDjp5Bgxg8pKtRiicJ1bb68YsSaL5nh06MkQC2gQL82q3phA8miuzgsYsZGlRkxVsxELaGf8Y7KijVicqa5eXC6RISM1AyVZJSsedGP0p5pDMBGj1aoqEUPU2xu9LCACnrM92Ss0X7my+H0yJCLo16C6WsQQjYVOk7eCspwypLhSYtZsBP0mSrPXC8zNSZYPM0BT1TwxO4HBqcGEab5yRX6AFm4mpqq5f7If0/PTeiYmgTZicaa2VvxsbZWvU5NXs8Itt61t6fdFY3JuEr0TvQsjQTsxDg002hwNIkJNXg3ahpdWUNU8ODWI8dnxhY7DTlQ1p7hSUJlbGbNm76gXPvYtzHLspLZWLInJDtCyPFkozixeYcRUNRv1E6V5akqkf5OhKLMIGSkZK2ZihuaaGrnvMe6TRGhONrQRizPGgynbuQEBIxanB319vsQxtHHGtOEOo1n2QW8dEn8w2TWnpMjHAhqaa/Mkb4w4YhjueAzQcnLkDwA1OvTa/MRpVhmgVedVhzRi69aJ7PgytA0FNCfgOicb2ojFmfJyEcCpasSuDF9Z4orc1iZcuWWj+xN50xtGR0nzmtAd+tq1QrcMiezc4jlYqaqSP+l3tWiurZUP+k3kvW1msBIqVqy1VX5ACiT2Oicb2ojFGbdbrKOrjlbn/HPoHls8KFL5QQ/c9ImYlWRkiKBn1c5tZGZkSaxYW9viyFeGRHZuhYViNqGquWusa0msmHGdZWkbaoOLXAnZH6qoELPGWAdoqh1661ArMlMzbY2LMzAzQDNixYJRvc6tQ60ozixGtidbvtI7FG3ELKC2Vv1BB5ZugKt26Il80AGhWdVwAys1qz7oRZlFtgbAGhCZ1xycW8/MCL1qTVVCAmDNDNBq82qXxIoxmzDcw22ozau1PXQEEMt/69YpGrG8avRP9mNiVmQOnp8X+4jKmvUsTAptxCxg/frYOnRmc51bTV5NQh50IHbDPT8vPDLNdG6JYv362DSPj4sYMVXDnUjNsV7nq1fFeXHJ1KGbHawYs7GODhEDqTrjTsSqSjKijZgF1NYCAwPy7tfLXZH7+8XxD8l0069fLx5WWffr5Z1bZ6f6g9461JpQzUaHbjY+7vLlxe+RxQmGO5YBmqrDEjMnneE27knDCUdVs8/vw5WRK9qpQxLHGjEieg8RNRNRCxF9MdHtUUF1AzwjNQPrstcl/YPu98tnN1geK2bmQW8faU94hz41JR8ftzxWzNAsu2w8NTeFnvGehBvu/n6FAVre0gGa6nUemBrA+Ox4Ug3QNhRsAAC0DLYAUNfcOdqJef+8NmKSONKIEZEbwNcBvBfAJgC/SUSbEtsqecy6IhvOGWbipcZmxxLeuQHmY8WU46XGvJjzzyWV5uWxYmbDKBK9tAbIazb2aZdrlo6XcoCreW2tWCWQjY8rzChEblouLg1eAiA0u93y2ToS6aSVjDjSiAHYAaCFmVuZeRbAdwHsTXCbpDHjirw+fz0uDS3e9MHfE41Exg4ZqMbTAAHNJh/0Bc1J1KEDK69zZqbIEC9DUl/nIM1r1wLZkk53TrjOZmLFNhRsQMvQ4kysqkp4dsrgBM3JhFONWDmA4HFPZ+C9BYjoESI6QUQn5ufnbW1cNAoKhPu1ykysvqAeV4avYGZ+Bm1tomOTfdCdEFNixMepam4ZbIGf/WhrEwZM9pBEJ4zQjdmEquYLAxfAzKbDKJLNcNcX1OPiwMWFeqbipRI8EwPUrvOGgg0Ly4nKTloJDKNIRpxqxEI91ku2z5n5KWbezszbU2SHODZhuF+rPugMxqWhS2hpUXevBxL7oLvdYrSpormhsAEzvhl0jHSY0uwiV0KPqjDjft1Q2IDh6WEMTA2Y0pyRInJtJorCQjG4UunQGwob0DHagcm5SVOaCzMKExJGYWAmPm5D/gZcHr6Mef88WlqAujr5uq3DrajMrdTniEniVCPWCSB4GFIBIPQRsQ6lrg64dEm+fENhAwDg4sBFXLgANDbK1704cBHrstcl9EEH1DXXF9QDAC4MXERzs5rmC4MXUJtXm/AHff16Rc2FQvP5votoaVHUPHAB9YX1CQujAMQATVlz4Dqf8bbiyhV1zcazkSiM+DgVzRsKNmDeP4+3L3eivz/5NCcTTjVixwHUE1EtEXkAPATghQS3SYmGBnHTy650Gp3b6c42dHaK+rI0DzQ74qZvaACam+Vdzo02v3mpA8PDapqd8qA3NgrNshhtPnq2CzMz6pobCxV6Q4tobAQuXJAvb2h+9a1uMKt36I1Fidfc0KCmua5ATL1efbN3ob4MzOyY65wsONKIMfM8gN8D8BKAcwD2M/OZxLZKjcZG4ZIruwSRl56HoswivHFmFIC6EXPCTd/YKFyve3rkypfllCEzNRMnm8YW6svgZ79jHvTGRqF3dFSufG1eLdzkxglFzbO+WbQOtTrGcLe2iuN3ZDBczk+eFppl7+2xmTF0j3ejocAZmpubRRiJDGY19070YnRm1BHXOVlwpBEDAGZ+kZkbmLmOmb+S6PaosnGj+Kk6Sj/XLJ4S2c5tcGoQ/ZP9jrjpjTbLaja8uM5fEJplH/SusS5Mzk0mpeZUdypq82vRfEFMV2U1tw21wcc+xxhuv19+eS0nLQel2aU4H7i36+vl6l0YEFMfJ8zENm4UMYHGIabRKM0uRUZKBprPM9xueccOJ2lOFhxrxJId1c4NEHsHnW3irIYNG+TqLNz0DuncAOD8efk6DYUN6GjNRGqq2HeQoblf/Kc64UE3e507WjOQkwOUSPpoNA+IP5CMhhsQy+UdrZkoLRWeuzIY93YyajYGaO1tGaitBTweuXrGve0EzcmCNmIWUVAgjlFR7dzGukpRUemXPnfISQ96RYXIaK+qedhbjLo6lo6jcZLmujqx8a9iuOsL6jHUWYSGBpZ2r3eSZjNGrKGgAUOdRcr7YQRCXb6Ca59FmNG8sWgjBjoLlTWnudMS6nWbbGgjZiGmNv0HGlBeOyFdp7m/GW5yOyK63+VadO6QpaGwAdxfjwoVzQPNyEzNRHlOefTCFuPxiKUiVc2+/jpUrZ+WrtPc34zizGLkZ+SbaGV8yc0VR++ozsTmrtaipk5yIw3iOlfnVSMjNcNEK+PLunViBqkyWLmmcDNm+6qwfoN8HGvzQDPqC+vhIt01y6L/pyxk40bVWUkD0N+InFJJzwgIV/P1+esT7mpuoKq5Lq8BGNyAnFLJBIRY9ExMpKt5MKqaq7M2AsPVytfZCbMwA9UBWql7MzBZbOo6OwEidc3r/DcCc1nILu2OXjiAkzQnC9qIWUhjo0gOOzwcvSwA5M5uBGby4ForP9w7d/WcI/aGDBobRXb2aclJRsboFsCXDlfJOem/ca7/nCP2AA0aG4GLF0V+PRlSB7cCcMFdonidHaTZMNyy4RTu/m3ip6RmP/txvv+84zSrzMTo6hYAgFvyeZ71zeLS0CVsLNxopnm2Q0R/RUTniehtIvohEeUFffalQPL2ZiK6z8p2aCNmIZs3i5+nT8uVv3AuDQAwnve6VPlZ3yyaB5qxZe0WM82zhE2bhOfaOUmbdPmC2OWX1Tw2M4bLw5cdp3l6Wt5br/tSEQBgPF9Oc+94L65OXsXWkq1mmxh3Nm0CBgflwykGL5cBAMbWvCZV/vLwZUzMTThOc2en/KB08IpY7p4sOCpV/nz/ecz757GlxDn3dhQOAriWmbcCuADgSwAQSNb+EIDNAN4D4BuBpO6WoI2YhWwNPH9vvSVXvqlJ/OxM/0+p8gs3vYM69OuuEz+VNJMPHWkvSZU/3SdGBE7q3LaJSYa05tOnCZQyi3b3z6XKv937NgA4qnMzNJ86JVf+zBkX3JmjaPO/KlV+QbOD7m1D89tvy5U/dyYFKXk9aJ0+KVW+qVd0AE7SHAlmPhCI6QWAIxCZlQCRrP27zDzDzG0AWiCSuluCNmIWUl4uvBRVOvScolG0z53C2Ez0A5sWbnoHdW4bNggPRRXNBeWDuDD6FmZ9s1HLO7FD37xZeCiqaC6q7sWZgbfg5+jRs019zuvczAzQimp6cPpqk1z5wL29ee1mM82zBNXBSlMTUFjTjbNXz8qV72tCqivV7j2xFCOReuD1iMnv+W0Axug7agL3eKKNmIUQiRtf5abfsHEKAHDmavQEJcZN76R9A7cb2LJFTXPdxinM++cXYmQilu9rQo4nZ+E0bCeQni72S1Q1j8+O48rwlejl+5pQklWC4izJM1tsIC9PxPXJaGYWS+obNk6hb6IPfRN9Ues09TVhff56ZHskj3KwgbIyETYjo3luTiypr2+cQMtgC6bmpqLWaeprwjXF19jtpDVvJFIPvJ4K/pCIDhHR6RCvvUFlHgMwD+A5460Qf0dy91QdbcQsZts20WlF2/Sfnxc3/Y3XiX0xYyQaiQTd9FExDHe0Tf/JSbGPtN3Q3CeneUvJFsd4JhrIDlYGBoDubmD7dSL6VUpzb5OjZp4Gspo7OoCREfV720lLxoDaoPTiRWB2Frjp+nT42b+wghCJt3vfdtRsGwCY+W5mvjbE60cAQEQfA7AHwEeYF554WxO4ayNmMdu2iXQ1Fy9GLnf2rMhFd8fOXGR7sqVu+lM9pxx30wNC8+Bg9BQ9p04JQ3fXrQVIdaVG1Wx0Bk7V3NEhdEfiZGB75J5b1wJAVM1zvjmcuXoGW9c6q0MHhObmZnF/R8LQfK+k5sm5SVwYuODY63z6dPTE3obm998uVtFOdJ2IWH5gcgCdo52O1BwOInoPgD8G8AFmngz66AUADxFRGhHVAqgHcMyqdmgjZjGy6+hHAw5Mt9zswvXrrseJ7sg3vXfUi66xLtxUdlMcWhlfVDXvujkVW0q2RH3QLw5cxPD0cFJrPhZ4lN+1KxMNhQ1RNTf1NWF6fho3lTtTs98f3fv22DFx2OnuXQUozymPem+f7DoJP/uxo9wyXwDTbNsmPFGjZbQ/dkycu3bXjnUoyizCye7Izh3Hu44DgCM1R+BrAHIAHCSiU0T0LQAIJGvfD+AsgJ8B+CwzSwagqKONmMVs3gykpS12XuE4dkw4gdTVATdX3Iw3ut/AzHz47AZHvcIC7KzYGc/mxoXrrhPZO2Q0V1aK7A87y3fimPcYfP7w9/oxr/hCJ2q+8UbxU0bzxo3AmjXiOh/pPAKOsO56tDNwncuTW/O2bWLv0NAciYV7O8k1b98OpKQQbiy9MaoRO9p5FATC9rLtcWqp9TDzBmauZObrAq/PBH32lUDy9kZmlnO3Nok2Yhbj8QA7dgCvRvEsPnZMlCMSD++sbxanesL7Lx/tPIpUVyquW3ddnFscO9nZotP61a8ilzM0A6JzG5sdw/n+8IGhR71Hke3JxjVF18SxtfGhqEik3IqkmVnMPncG+uad5TvRO9GLKyPhnTuOeo+iOLMYNXk18W1wHKiuFs4OkTT7/cDx40uvc+tQa0TnjqPeo6jNq3WUI4vBNdcIp5ZImmdmxFK5oXl72Xac6TsT0bnjqPcoNhVvSvjBtsmINmI2sGsX8MYbwpEhFBMTYkkm+EEHFkekoTjWdQzXrbsO6Snp8W5uXLjtNtFhh9s76O8XZ1IFd+gAIo7Sj3mPYXvZdrhdlsVNxsSuXcBrr4V3aGlvB/r6QlznzgjX2XsMOyt2Os6RBRADrl27Info58+LM+YMzcZ1jqbZqctqLhdw662RNb/1lnDqCNbsY1/Y55mZxXV24MwzGdBGzAZ27RKd+fHjoT9/7TUxYr3lFvHv8txyVORW4PXO0Bkd5nxzOO497uibftcuYZzD7RH913+Jn4bm+sJ65KfnhzVik3OTONVzytGab7tNeB+Gy693+LD4aWjesnYLMlIy8FpH6CwWg1ODON9/HjvKnNmhA0Jze7twagmFofnWW8XPG8tuhJvcYa+zd9SL9pF2x1/nc+fEtQ7F8ut8e/XtcJELv7j8i5DlLw5exMDUgCOXyZMBbcRswHiAjY57OYcOiY3v229ffO+O6jvwStsrIYNhj3QewcTcBO6svdOC1saHXbvEz0ias7IWR6sucuH26tvxctvLIfeIDl85jDn/HO6qvcuiFsdONM0vvwwUFi46gaS6U3Fr5a34+eXQmTteaXsFDE56zVVVi+fjZaZm4qbym8JqPtR6CACSQnO4LYJDh8SyY5nItIW89Dxcv+56vHL5ldDlk0Czk9FGzAYKCsSG8H+G2d48dEgYuqysxffuXX8veid6Q8bUHGw9CBe5HH3TV1SIxLiRNL/rXUsPC7yv7j60Dbfh0tDKJIQHLx2Ex+3BbVW3WdTi2GloELpDaWYWmu+6SyxJGdxbdy9O951G19jKMJqDrQeR48lx7NIaIJx4CgqAn/1s5Wc+H/DznwO7d2PJuWn31d2HY95jGJoaWlHnYOtBrM1a68i4OIOdO8WzGkrzzIww6Lt3L33/zpo7caTzSMh9sYOtB1GTV+OIc9OSEW3EbGLPHuD118VeUDBdXcCbbwL33LP0/XvqxBsvXVqZU/DApQO4qewm5KXnrfjMSezZA/ziF8D4+NL3L10SLsrLNd9bdy8A4KWWEJpbD+C2qtuQmSp5WmgCIBKaDxwQnVkwb78NeL3ympkZBy4dwLtr3u24YPZg3G7gfe8DXnxxZUD/0aMibi6UZj/7F2YgBj6/D4daD2F37W5Hn6eVlgbcey/wk5+s3P/85S/F3vdyzbvX78asbxY/b1s6A531zeKVtldwd+3djtz3TAace6esMvbsETf8j3+89P3vfU+8/6EPLX2/LKcMN5TegO+d/d6S9y8PX8ZR71F8oPEDFrc4dvbsERvcy2cmzz8vfn7wg0vfr8uvQ2NhI/af3b/k/TN9Z3C67zT2Nu6F09mzR+wFvvzy0veff150+HuXSdhashWVuZUrrvOJrhNoG25LGs0DAyuX155/XnT473//0vd3lO9AcWbxCs2HrxxG70Qv7t94v8Utjp09e0Qw/xtvLH3/+efF4Zn33rv0/btq78KatDUrNB+4dAAjMyNJodmpaCNmEzfeCNTXA08/vfT9ffvEkszGEEcIPbzlYZzoOrHE7Xxf0z4AwIe3fNjK5saF224Ty2vBmpmF5l27xF5JMESEh7c+jMNXDi/JKbivaR9c5MKDmx+0qeXmuftu4W4frNnvF53b7t3A2rVLy7vIhY9s+QgOXDqA3vHFAyOfa3oOHrcHH9q0bHTjQPbsER13sOa5OWD/fmHAcnOXlk9xpeChax/CC80vYHh68VyTfU37kO3Jxp6GPTa13DwPPCDi3oI1T08DP/whcP/94rNgPG4PHrjmAfzH+f9YsqT4XNNzKMwoXJiRa9TRRswmiIBHHhGuucbxFa+/LmKlPv7x0HV+c8tvIsWVgq8f+zoAsfTw7ZPfxh3Vdzgybmg5KSnA7/yOWF4zMhy8/DJw5kx4zQ9vfRgEwjeOfwOA8Ep8+s2ncV/dfSjJLrGn4TGQlia0/ehHix57P/6xCCcIp/mj2z4KH/vw7ZPfBgCMTI/gmbeewd7GvY5fMgbE/tDDDwuj1RcI/9q/X5w1FknzjG8G//TmPwEArk5cxb7T+/Brm37N0UvGBvn5wG/8BvCv/woMBbb2nn1W/B5O88e3fRwjMyN49q1nAQhPzB+c+wEeuvYhRy8ZOx5mTvpXZmYmJwMDA8wFBcy33848Ps58003MRUXi93B86oVPsefLHj7VfYr//PCfM54Av3jhRfsaHSPd3czZ2cz33cc8Nsa8ZQtzeTnz9HT4Oh/+/oc58yuZfO7qOf6TQ3/CeAJ8+PJh+xodI5cvM6enM99/P/PICHN9PXNdHfPcXPg6e/9tL+f+RS5fGrzEj774KOMJ8Mmuk/Y1OkbOn2dOSWH+yEeYBweZq6qYr72W2ecLX2f3M7u58H8XcsdIB3/yR59keoL4bN9Z+xodI2++yUzE/KlPMff1MZeUMO/cyez3hy7v9/t55//dyeu+uo57x3v5we89yCl/msJtQ222tjsYABPsgD48llfCGxCPV7IYMWbmZ58V/+vp6eLn/v2Ry/eM9XDZX5ex58sexhPgX9//6+wP95Q4lG9+c1EzEfNPfxq5fMdIBxf/n2JO+3Ia4wnwJ/7jE/Y0NI589auLml0u5ldeiVy+ZaCF8/4yb0Hz77/4+7a0M5488cSi5pQU5iNHIpc/23eWs/88e0HzFw9+0Z6GxpEvfGFRc1oa86lTkcu/2f0mp305jVP/NJXxBPjPfvln9jQ0DKvBiJHQkdxkZWXxxMREopshzfe/L5aYHnhg5UZ/KFoGW/DXr/01SnNK8Ue3/hEyUjOsb2Sc2bdPLCs++CDw3vdGL3++/zz+7sjfoSavBp+/5fPwuD3RKzkIZuBf/kV4q330o8K1PhpNvU34x2P/iI1FG/HozkeR4kqxvJ3xhBl46ingyBHgk58Ue6LRONl1Et868S1sW7cNv3vT7zraKzEUfj/wta+JoP5Pf3ox7jESJ7tO4psnvokd5TvwqRs+lVCvRCKaZOas6CWdS0KMGBH9FYD/BmAWwCUAn2Dm4cBnXwLwSQA+AI8yc9Rz65PNiGk0Go0TWA1GLFHDnoMArmXmrQAuAPgSABDRJgAPAdgM4D0AvkFEzkyUp9FoNJqEkxAjxswHmNlIDXsE4uRPANgL4LvMPMPMbQBaADg3XYFGo9FoEooTFqB/G4ARDlsOIDiVaGfgvRUQ0SNEdIKITsxHO2ZVo9FoNKsSy3aOiegQgHUhPnqMmX8UKPMYgHkAzxnVQpQPuWnHzE8BeAoQe2IxN1ij0Wg0SYdlRoyZ7470ORF9DMAeALt50bukE0BlULEKACszo2o0Go1GgwQtJxLRewD8MYAPMHPwUZEvAHiIiNKIqBZAPYAoB4FrNBqN5p1KogJRvgYgDcDBQIzEEWb+DDOfIaL9AM5CLDN+lpl9Eb5Ho9FoNO9gdLCzRqPRvENZDXFiq8KIEZEfwMrT5pxBCsSscjWitSUnWltyYoW2DGZ2gpe6aVaFEXMyRHSCmbcnuh1WoLUlJ1pbcrKatcVCUltgjUaj0byz0UZMo9FoNEmLNmLW81SiG2AhWltyorUlJ6tZm2n0nphGo9FokhY9E9NoNBpN0qKNmEaj0WiSFm3ETEJElUT0ChGdI6IzRPQHIcpsJKLXiWiGiL6gUjeRxKIt6HM3Eb1JRD+xp9VyxKqNiPKI6N+J6HzgO26xr/WRiYO2PwzUO01E/0ZE6fa1PjySuj5CRG8HXq8R0bagz95DRM1E1EJEX7S39ZGJRZvT+xHbYGb9MvECUArghsDvORCHe25aVmYtgJsAfAXAF1TqJqu2oM8/D2AfgJ8kWk88tQF4BsDvBH73AMhLtKY43ZPlANoggl8BYD+Ajydak4KuWwHkB35/L4Cjgd/dEKfHrw9cr7eS8FkLp83R/YhdLz0TMwkzdzPzG4HfxwCcw7Kzz5i5j5mPA5hTrZtIYtEGAERUAeD9AL5jQ3OViEUbEeUCuAPA04Fys8w8bEvDJYj1ukFkhMggohQAmXDICRKSul5j5qHAP4MP2t0BoIWZW5l5FsB3IQ7fdQSxaHN6P2IX2ojFASKqAXA9gKN21rUDk+37OwD/E4DfgibFDRPa1gO4CuCfA0ul3yEiR+adU9XGzF4AXwXQDqAbwAgzH7CqfWaR1PVJmDhoN9GY0KZad1WijViMEFE2gO8D+Bwzj9pV1w7MtI+I9gDoY+aTljYuRkz+36cAuAHAN5n5egATABy1xwKYvm75EDOUWgBlALKI6GHrWqmOjC4iuhOio/9j460QxRwXV2RSm3Td1Yw2YjFARKkQN89zzPwDu+raQQzt2wXgA0R0GWLp5i4i+lcLmmiaGLR1AuhkZmO0++8QRs0xxKDtbgBtzHyVmecA/ABiL8YRyOhPQ1W5AAAC80lEQVQioq0QS9h7mXkg8LbjD9qNQZvj+xE70EbMJEREEHsj55j5b+yqawextI+Zv8TMFcxcA+AhAD9nZseM6GPU1gOgg4gaA2/thjj7zhHEeF+1A7iZiDID37MbYo8l4cjoIqIqCMP7W8x8Ieij4wDqiaiWiDwQ9+QLVrdZlli0Ob0fsQudscMkRHQbgP8C0ITFvZ8/AVAFAMz8LSJaB+AEgNxAmXEAmwBsDVWXmV+0TUAEYtEWvJxBRO+G8IDbY1/rIxOrNiK6DmJE7AHQCuATQZvuCSUO2p4E8CDEcR9vQnhhztirYiWSur4D4EMArgQ+n+dAxncieh/EPq0bwD8x81dsbH5EYtEWrq5T+hG70EZMo9FoNEmLXk7UaDQaTdKijZhGo9FokhZtxDQajUaTtGgjptFoNJqkRRsxjUaj0SQtKYlugEbjZIioEMDLgX+uA+CDSD0FAJPM7JiAYI3mnYh2sddoJCGiJwCMM/NXE90WjUYj0MuJGo1JiGg88PPdRPRLItpPRBeI6C8DZ0AdI6ImIqoLlCsmou8T0fHAa1eI79wcqHcqcH5Uvd26NJpkQi8najTxYRuAawAMQmTy+A4z7wgcVPj7AD4H4O8B/C0zvxpIJfRSoE4wnwHw98z8XCBNkts2BRpNEqKNmEYTH44zczcAENElAMYxJk0A7gz8fjeATSLlHQAgl4hyAmdBGbwO4LHAmWw/YOaL1jddo0le9HKiRhMfgnMM+oP+7cfiYNEF4BZmvi7wKl9mwMDM+wB8AMAUgJeI6C6L263RJDXaiGk09nEAwO8Z/wgkEwYR7SCiZwO/rwfQysz/AJFtfWsiGqrRJAvaiGk09vEogO0Bh42zEPtfgMhYPhX4/UEAp4noFICNAJ61v5kaTfKgXew1mgRDRH8F4P8x89uJbotGk2xoI6bRaDSapEUvJ2o0Go0madFGTKPRaDRJizZiGo1Go0latBHTaDQaTdKijZhGo9FokhZtxDQajUaTtPx/HWr7B02wyfIAAAAASUVORK5CYII=\n", "text/plain": [ "<Figure size 432x288 with 2 Axes>" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "#IMPORTANT distance where you place the probe above the sample\n", "z_base = 40.e-9 \n", "\n", "spp = 280. # time steps per period \n", "dt = period/spp \n", "\n", "simultime = 100.*period\n", "N = int(simultime/dt)\n", "t = numpy.linspace(0,simultime,N)\n", "\n", "#Initializing variables for RK4\n", "v_RK4 = numpy.zeros(N)\n", "z_RK4 = numpy.zeros(N)\n", "k1v_RK4 = numpy.zeros(N) \n", "k2v_RK4 = numpy.zeros(N)\n", "k3v_RK4 = numpy.zeros(N)\n", "k4v_RK4 = numpy.zeros(N)\n", " \n", "k1z_RK4 = numpy.zeros(N)\n", "k2z_RK4 = numpy.zeros(N)\n", "k3z_RK4 = numpy.zeros(N)\n", "k4z_RK4 = numpy.zeros(N)\n", "\n", "TipPos = numpy.zeros(N)\n", "Fts = numpy.zeros(N)\n", "Fcos = numpy.zeros(N)\n", "\n", "for i in range(1,N):\n", " #RK4\n", " k1z_RK4[i] = v_RK4[i-1] #k1 Equation 14 \n", " k1v_RK4[i] = (( ( -k*z_RK4[i-1] - (m*wo/Q)*v_RK4[i-1] + \\\n", " Fd*numpy.cos(wo*t[i-1]) +Fts[i-1]) ) / m ) #m1 Equation 15\n", " \n", " k2z_RK4[i] = ((v_RK4[i-1])+k1v_RK4[i]/2.*dt) #k2 Equation 16\n", " k2v_RK4[i] = (( ( -k*(z_RK4[i-1]+ k1z_RK4[i]/2.*dt) - (m*wo/Q)*\\\n", " (v_RK4[i-1] +k1v_RK4[i]/2.*dt) + Fd*\\\n", " numpy.cos(wo*(t[i-1] + dt/2.)) +Fts[i-1]) ) / m ) #m2 Eq 17\n", " \n", " k3z_RK4[i] = ((v_RK4[i-1])+k2v_RK4[i]/2.*dt) #k3, Equation 18\n", " k3v_RK4[i] = (( ( -k*(z_RK4[i-1]+ k2z_RK4[i]/2.*dt) - (m*wo/Q)*\\\n", " (v_RK4[i-1] +k2v_RK4[i]/2.*dt) + Fd*\\\n", " numpy.cos(wo*(t[i-1] + dt/2.)) +Fts[i-1]) ) / m ) #m3, Eq19\n", " \n", " k4z_RK4[i] = ((v_RK4[i-1])+k3v_RK4[i]*dt) #k4, Equation 20\n", " k4v_RK4[i] = (( ( -k*(z_RK4[i-1] + k3z_RK4[i]*dt) - (m*wo/Q)*\\\n", " (v_RK4[i-1] + k3v_RK4[i]*dt) + Fd*\\\n", " numpy.cos(wo*(t[i-1] + dt)) +Fts[i-1]) ) / m )#m4, Eq 21\n", " \n", " #Calculation of velocity, Equation 23\n", " v_RK4[i] = v_RK4[i-1] + 1./6*dt*(k1v_RK4[i] + 2.*k2v_RK4[i] +\\\n", " 2.*k3v_RK4[i] + k4v_RK4[i] ) \n", " #calculation of position, Equation 22\n", " z_RK4 [i] = z_RK4[i-1] + 1./6*dt*(k1z_RK4[i] + 2.*k2z_RK4[i] +\\\n", " 2.*k3z_RK4[i] + k4z_RK4[i] ) \n", " \n", " TipPos[i] = z_base + z_RK4[i] #Adding base position to z position\n", " \n", " #calculation of DMT force\n", "\n", " if TipPos[i] > a: #this defines the attractive regime\n", " Fts[i] = -H*R/(6*(TipPos[i])**2)\n", " else: #this defines the repulsive regime\n", " Fts[i] = -H*R/(6*a**2)+4./3*E_star*numpy.sqrt(R)*(a-TipPos[i])**1.5\n", " \n", " \n", " Fcos[i] = Fd*numpy.cos(wo*t[i]) #Driving force (this will be helpful to plot the driving force)\n", "\n", "#Slicing arrays to get steady state\n", "TipPos_steady = TipPos[int(95*period/dt):] \n", "t_steady = t[int(95*period/dt):] \n", "Fcos_steady = Fcos[int(95*period/dt):] \n", "Fts_steady = Fts[int(95*period/dt):] \n", "\n", "plt.figure(1)\n", "fig, ax1 = plt.subplots()\n", "ax2 = ax1.twinx()\n", "ax1.plot(t_steady*1e3,TipPos_steady*1e9, 'g-')\n", "ax2.plot(t_steady*1e3, Fcos_steady*1e9, 'b-')\n", "ax1.set_xlabel('Time,s')\n", "ax1.set_ylabel('Tip position (nm)', color='g')\n", "ax2.set_ylabel('Drive Force (nm)', color='b')\n", "plt.title('Plot 7 Tip response and driving force', fontsize = 20)\n" ] }, { "cell_type": "code", "execution_count": 14, "metadata": {}, "outputs": [ { "data": { "text/plain": [ "(-20, 30)" ] }, "execution_count": 14, "metadata": {}, "output_type": "execute_result" }, { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAY8AAAEjCAYAAADKRI1yAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMi4yLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvhp/UCwAAIABJREFUeJzt3XmYXFWd//H3J4GAArIlIFtIBGQAlSANMjJqWFRAlE0ccFRQRkRkRn7qsAmPQRQEcRfUIEyisg6LIILIFllUMOyByCIEBCIJ+05I8v39cU7blUpVd93uqrrVXZ/X89RTVeeeuvdbt6vrW2e59yoiMDMzK2JU2QGYmdnw4+RhZmaFOXmYmVlhTh5mZlaYk4eZmRXm5GFmZoU5ebSJpAmSQtK0smOxziNpSv58TC47FrNGOHkMQf5nr7wtkvSkpGsk/UeLtrl/3tb+g3z9hyT9XtKjkl6R9KCk/5P0r02Kb0qN/VJ5m9OM7XQiSTOq3utCSc9I+quk8yR9WtKKLdr2tLzNCa1Yv1m1ZcoOYIQ4Nt8vC2wM7A5sJ2nLiPhSeWEtSdKJwGHAU8CvgSeBDYHdgL0kfSoiftWkzf0BmFGj/Nkmrb+TTQfmAALeBEwEdgT2Bo6XdEBEXFb1mh8D5wCPtDFOs0Fz8miCiJhS+VzSDsCVwKGSfhgRc8qIq5KkNwNfAZ4A3hER8yqWbQdcA3wdaFbymFG9X7rItIiYUVkgaXngy6R9fJGk90fEdb3LI+JJUjI3GxbcbdUCEXE18FfSL8+tBqovaS1Jp0iaI2mBpPmSLpS0ZVW9GcD/5qf/W9VFMmGAzaxP+nvfVJk4crzXAi8A4xp4e00n6WOSrpP0XO5Ku0vSkZKWq1F3Tr69SdJ38+PXJU2pqDNa0kGSbqxY5wOSfi5po6r1LSPpYEl/lvS8pJcl3SbpEElN+/+IiFcj4pvAN4AxwA+q4qg55iHpPZJ+k7sZX5P0jxzr1yrqBLBffvpQrS5CSVtK+oGkOyQ9LelVSfdL+o6kVavjrewelbRd7pJ7Ie+j30rapNb7lPRGSYdLmpnrvyhptqQfSlqzRt0jJd0u6aVc90+S9i20c9O61s3buD+/t6cl3SzpmKp6kf+Paq1jqa4/VYxVSnqrpHMlzZO0WNLk3CW5QNLYOus8Ir/+CzXi/bFSt/Frkp6SdImkAb8vOoVbHq2jfN/vycMkTQRuANYm/fo/G1iP1MXxIUl7RcSlufo0UrfPbsDFwO0VqxqoO+h+YAGwtaSx+ZdubwzvBVYidWW1laTjgSNJv7rPAl4EdgaOBz6Yf6G/XvWyMaR9tRrwe+B54KG8vjHAb0ndRH/P63wemADsQdrX9+e6ywK/AT4I3JvrvgpsB/wIeBfwySa/5ZOB/wEmSdosIu6uV1HSTvm9PA9cAjxGes+bAAfT1116LKmrdHNSUur9LFR+Jj5Lev9/AK4CRgPvBL4E7CzpXRHxQo0wdiV93i4HfgpsCuwCbCVp06rP0arAtTmOe4EzSJ+5DYDPABeSWr5IWoX0N9wCuDXXHUX6W5yV983R9fZN1X7qAa7I++a6vJ035linAMc1sp4BbADcBNwHnAm8gfR3mU76rO5L+sxU+xRpH5xTEe87SZ/b1XLcFwJjSX/DGyTtUaNbs/NEhG+DvJESQ9Qo3xFYnG/r57IJuf60qrpX5PKvVpW/G1hIGp9YsaJ8/1x//0HEe2iOaR4wFTgBOI/0hfl7YI0m7JMpOb4Z+XH1bUJF3X/NdR8B3lxRvgzpSz2Ao6rWPyeXXwWsUGP7x+fllwDLVS1bDhhXI9YfAaMrykcDp+dluxV47zPyayYPUO/6XO/TNWKZXFF2QS7bvMY6xlY9n5brTqizzfUr32NF+QH5dYdXlfd+zhYCO1QtOyEvO6yq/Kxc/hNgVNWylYCVa8RbvY7lgd/lz+mkBvb5GNIPhwA+XmP5elXPg9SlWmtdS+1D+v5vAzi+xmvWARYBM2ss2yq/7oKqz/YDpP+591XVX5v0A2Fu9We3E2+lBzCcbxUfqin59k3g/PwPF8B3K+r2fginVZStm8seBpatsf5f5uWfqijr/afef5Ax7w48XRF7kH6JL/WPN8j1T6lad/VtckXd03LZgTXW89b8T/lgVfkc6n+hjib92n4ZWHuAOEeRWjtzgWVqLF8lf4GdV+C9z6h+j3XqnUPVFyf9J4+3NrDtpb74GoxZwHPANVXlvZ+zX9V4zcS87PyKsjXy3+txaiT1qtevnv9H/lJn+eZ5/Sc1EP9eue7FDb7fwSaPf1DnC530wyuAzarKf5zLP1JRtlsu+3addX0xL9+lyN+xjJu7rZrja/k+SF9e1wOnx8Azl7bI99fH0l0zkJr1n8j1fjHUICUdRvpl/kPSB/sfwL+QfkmeKWlSRBw21O1kx8bAA+bvzPfXVC+IiPskPQpMlLRKRFR2wbwK3Fljff8CrEwa13l8gG2/lfQldj9wtKRadV4hdREBaVyiRp1pUXxCRENdmqTukT2BmySdS+oSujEiHi24vd4uus8B+5C6c1ZmyTHPdeq8dGaNsr/n+8qxkq3y+q6LiJcGCGcrUqKPOvt02Xxfc1ylyjb5/vIG6g7FHRHxWp1l04D3k8adDoN/dp/uA8wHKrugeqfEr1/nvfeOyW1S9bqO4+TRBBFR85unASvn+7l1lveWrzLI9f9THog9Ebgolpw+fKukPUh9uV+W9NOIeHCo22tQI+9/fK5XmTzmRf6ZVqV3Pz3WwLZXz/cb0Zf8a6k8LqNWvRmk1lARa+f7+f1ViogLJe1KmqX1GdKXP5JuAY6MiCsLbPNc0pjHg6Txsn8AvV+Gh5K69GpZaiwtIhbmZDu6ongw+34r+p9Q0sgxMUW2OxT/6GfZRaTxj09IOjIiFpHGilYHvh8RCyvq9r73vQfYXkuOB2omJ49yPZfv31xn+VpV9YZi13x/bfWCiHhZ0s2kL5ctSF8w7VD5/v9WY3m991/vF3vvF129X9G1tn1RROzZQP2h/Ej4J0krAb2z6G5qYJu/BX4raQXSAP6uwOeBSyVtERH3NLDNHtLf9ipSd8jrFctGkX8tD9Fg9v33YujHQRXZLqTPTr3vvf5+pNVtJUbEK5LOA/6T1AL5HX2z36ZXVe9977tFxCUDh9u5PFW3XLfl+3+TVOsDvV2+v7WibFG+H00xvb8s603H7S1fUHC9Q9H7/idXL5C0IWlM6KGqLqv+/JX0ZfIOSWs3WHeb3KXTLv9DmqlzW0TMbvRFEfFSRFyTv2yPJw0U71xRpb/PxYb5/pIa3aNb53iG6mbSGNF7c6JrpO57mrDdP+f7nfut1ecZ0mzGJUgaDUwaQhzT8v1+edruzsCdEXF7Vb3eeJvx3kvl5FGi3Hd9JWlQ7tDKZZLeBXyc9GG/qGLRU/l+fMHNXZ/vD5S0xK80STsD25LGEv5YcL1DcUa+P1rSP5Na/kc+mfT5PL3RleXuglNJX4Y/VdVxIpLG9G4ndyX8iNS6+aGkpb5AlY6/2bTYW6pN0vKSjgK+SkrQ/93Aa3aoFRfQe7zEyxVl/X0u5uT7yVXrXwM4ZaA4GhER80kTAdYCTlbVMTKSVpS0cq47jzSe0yPpmFo/nCRtkKexD+Q3pPf3kVrHh1R/1kmJa7ykD1SVH02akTYoEXEjafxsN1LLcFn6Ekqli0mt7C9I2qXWuiT9q6Q3DjaWdnG3VfkOAm4Evp0/0DPpO85jMWk6Z+X8+z+RvjQOlbQaed488KOI6K9763xSt8WOwGxJF5H6cTchdYUIOCIinqq/iuaKiD9KOonUbTJL0vnAS6RfbW8jHZPx7YKrPZbUvfNh4D5Jl5IOgFwP+ADpl/+0XPc40syeg4APS7qG1He+BmksZFvSl/2AXUNV9lffwX4rko4ReC9pXv9c4DMRcUMD6/kOMCEf1DaHlHS2BLYnzdA7p6Lu1fm9nZb344vAsxHxY+AvpM/YnpL+SNqva5L2872kGVLNcAjp73YQMFnSFTnmiaTjNz5C3ylrDiHt468Dn5R0A+mzvDbpM7kV6diJh/rbYEQskLQ3acbTWZI+R/p1v3xezw4s+T13co7l4jwJ4WnStPiJObbJg33zpEktxwHHkGaTnVUj3tcl7Umaov/b/Pe4nfQ/vR7pfb+FlIRfrn59Ryl7utdwvlHnOI86dSdQ4ziPvGwd0tz4h0n/bE+SDtjbqs66diIlkRd7Y6CBKZqkX0OHkv65nid9wOcBlwIfaNI+mZLjmVLgNfuQvtBeILV+7iZ9aS9fo+4cYM4A61uG9OV0c95HL5F+FU4FNqyqK9KBgFeTvkgWkBLIDcBRVB0nMMB2Z1T8PXqPkXiW1EV2Lmn6a81prNSeqvsx0kGj9+f38TwwizQlfFyNdXwJmE0aCI/K/URKXKfm/fcq6dfv8aSD6ZbapwwwJZw6U16BFfLf7k7Sl98LpOT7faqOIyJ1vR1Cau0+l+N+JP8tDgVWL7Dvx+f391D+Gz5FGlP6ao26HyH9SHs11zuH1OqYRv2pukv939aJYVGu/5sB6q4BfCv/PV/Of9/7ST/yPkGN6eOddlN+I2ZmZg3zmIeZmRXm5GFmZoU5eZiZWWFOHmZmVtiImqo7duzYmDBhQtlhmJkNK7fccsuTEVHoej4jKnlMmDCBmTNrncfNzMzqkfRw0de428rMzApz8jAzs8KcPMzMrDAnDzMzK8zJw8zMCnPyMDOzwpw8zMyssNKTR75Izs2S7pB0t6Rjc/lESTdJul/SufmC8k31k5/Az37W7LWamY18pScP0jn8t4+IzUmXgdxJ0jbAiaRrHG9EupreAc3e8MEHw0EHwV13NXvNZmYjW+nJI5IX89Nl8y1IV0s7P5dPB3ZvVQzveEer1mxmNjKVnjwgXbNa0u2kq9pdSbrK2bORrjMN8CjpantNdU/Ri4uamRnQIckjIhZFxCRgXWBr0rWHl6pW67WSDpQ0U9LM+fPnF9ruJhVbkQq91Mysq3VE8ugVEc+SrgO9DbCKpN4TN64LPF7nNVMjoiciesaNK3RSSDMzG6TSk4ekcZJWyY/fAOwIzAauBT6aq+0HXNyK7Vdewt2tDzOzxnTCKdnXAqZLGk1KZudFxKWS7gHOkfQN4Dbg9DKDNDOzPqUnj4i4E9iiRvmDpPGPllu8GEblNtgTT8Caa7Zjq2Zmw1fp3VadoLK76s1vLi8OM7PhwsnDzMwKc/LIPHBuZtY4Jw8zMyvMyaOCWx9mZo1x8jAzs8KcPKqccELf4wULyovDzKyTOXlUOeKIvsfLLVdeHGZmnczJw8zMCnPyqMED52Zm/XPyMDOzwpw86nDrw8ysPicPMzMrzMmjH+PH9z1etKi8OMzMOo2TRz8efrjv8TKln7zezKxzOHmYmVlhTh4D8MC5mdnSnDzMzKwwJ48GuPVhZrak0pOHpPUkXStptqS7JX0xl0+R9Jik2/Ntl7JjNTOzpPTkASwEvhwRmwDbAF+QtGle9r2ImJRvl5UXIhx8cN/j118vLw4zs05QevKIiLkRcWt+/AIwG1in3KiWdsopfY/HjCkvDjOzTlB68qgkaQKwBXBTLjpE0p2SzpC0ap3XHChppqSZ8+fPb1OkZmbdrWOSh6QVgQuAQyPieeAnwAbAJGAu8J1ar4uIqRHRExE948aNa2mMHjg3M0s6InlIWpaUOM6MiAsBIuKJiFgUEYuB04Cty4zRzMz6lJ48JAk4HZgdEd+tKF+rotoewKx2x1aLWx9mZtAJZ2zaFvgkcJek23PZUcC+kiYBAcwBPldOeGZmVq305BERNwC1fsOXOjW3P3PmwIQJ6fHll8POO5cZjZlZ+5XebTUcrb9+3+NdfOiimXUhJw8zMyvMyWOQPHBuZt3MycPMzApz8hgCtz7MrFs5eZiZWWFOHkPk1oeZdSMnDzMzK8zJowlmVZw45RvfKC8OM7N2cfJogs0263t8zDHlxWFm1i5OHmZmVpiTR5N44NzMuomTh5mZFebk0URufZhZt3DyMDOzwpw8msytDzPrBk4eZmZWmJNHC7j1YWYjnZOHmZkVVnrykLSepGslzZZ0t6Qv5vLVJF0p6f58v2rZsRbx7W/3PT777PLiMDNrBUVlH0sZAUhrAWtFxK2SVgJuAXYH9geejohvSToCWDUiDu9vXT09PTFz5syWx9yoyi6rknezmVldkm6JiJ4irym95RERcyPi1vz4BWA2sA6wGzA9V5tOSihmZtYBSk8elSRNALYAbgLWjIi5kBIMsEad1xwoaaakmfPnz29XqA3xwLmZjVTL9LdQ0p5FVxgRFw4mEEkrAhcAh0bE82rw2zYipgJTIXVbDWbbZmZWTL/JAzgf6O8LufcbPiruB1rn0iuRliUljjMrks8TktaKiLl5XGRe0fV2goi+VofksQ8zGxkG+qL/dAPrWBb4LLDVYAJQamKcDsyOiO9WLLoE2A/4Vr6/eDDrNzOz5us3eUTE9P6WS9ob+CawIXAvcOQgYtgW+CRwl6Tbc9lRpKRxnqQDgEeAvQex7o7g1oeZjTSFu5gAJE0GTgR6gLnA54DTI2Jx0XVFxA30dX9V22Ew8ZmZWWsVmm0l6e2SLgOuBjYGjgE2iojTBpM4uolnXpnZSNJQy0PSeOA44D+AhcAPgG9ExNMtjM3MzDrUQFN1VwWOBg4GxgBnAUdHxMNtiG3E8diHmY0UA7U8HgTeBMwEjgDugHTeqXovcGvEzGzkGyh5rJzve4CrGljfoI7z6CaLF8OoPNLk1oeZDVcDfdH3O1XXivNguZmNBAMd59HIQYJW0NVXww55ErJbH2Y2HHXUiRG7xfbblx2BmdnQDCp5SHpjvojT+OpbswMcqVZfve/xz39eXhxmZoPRcPKQNErSEZIeA14A5gAP1bhZA558su/xZz9bXhxmZoNRZGbUt4CvAHeTzoD7VEsi6lJPPbVka8TMrJMVSR6fAH4XEbu0KphuU3nQ4NixHjg3s+GjyJjHqvi06C3l5GFmw0WR5HEXsFarAulWlQljlOe+mdkwUeTr6ljgIEnrtSoYc+vDzIaHImMeWwIPA/dIuog0s2pRVZ2IiOOaFVy3qBz7GDXKCcTMOl+R5DGl4vEn6tQJ0qnbzcxsBCuSPCa2LArz6drNbFhpOHm06hoeks4AdgXmRcTbctkU4LPA/FztqIi4rBXbNzOz4jphfs80YKca5d+LiEn51hWJw5eqNbPhovTkERHXAb6AlJnZMFJ68ujHIZLulHRGvhxuTZIOlDRT0sz58+fXqzZsuPVhZsNBpyaPnwAbAJOAucB36lWMiKkR0RMRPePGjWtXfGZmXa0jk0dEPBERiyJiMXAasHXZMbWTWx9m1uk6MnlIqjwNyh7ArLJiMTOzpRU5zqMlJJ0NTAbGSnoU+BowWdIk0kGHc4DPlRZgSXzch5l1sqYlD0nXAI8Cx0bE3xp9XUTsW6P49GbFZWZmzdfMbqvJpNOW3CPp+01cb9fy2IeZdapmdltNBFYCtgc+0MT1mplZh2la8qg4fcks4IfNWm+389iHmXWijpxtZfU5eZhZJyiUPCSNlvQpSb+SdKWkLXL5qrl8ndaE2d18tUEz6zQNd1tJeiPwe+DdwEvAG0nXNQd4HvgWcAZwdJNjtCqvvQbLLVd2FGbWzYr8jp0C9JAO2nsL8M/5PxGxCLgQ+GAzg7M+la2P5ZcvLw4zMyiWPPYGpkbExcDiGssfACY0Iygb2BVXlB2BmXWzIsljbeCOfpa/TJqqay1S2frYqdYVUMzM2qRI8ngK6G9AfDPg8aGFY0V48NzMylLk6+dq4NN54HwJkiYCnwF+16zArLbK1oen7ZpZWYokj2NJs6v+AnyedNLCnSSdANwKvAac0PQIbSk779z32KctMbMyNJw8IuIBYAdgIfB10myrrwCHA38HdoiIv7ciSFvSZV1xRXcz62SFTk8SEbcAm0t6G7AJKYHcHxG3tSI4q2/+fOi9cKJPW2Jm7Taoc1tFxCx8gaZSjR1bdgRm1s0a7raStEMe36i3/ARJ2zUnLGvE4oqjbTz2YWbtVGTA/HBgw36WT8x1rE2cMMysLEWSx+bAn/tZflOuY23kC0aZWRmKJI+VSSdErOcV+k6UaGZmI1iR5PEYsGU/y7cE/lE0AElnSJonaVZF2Wr5lO/353snpX649WFm7VYkefwW2E/SjtULJO0A7AcM5giEaUD1mZqOAK6OiI1IR7YfMYj1mplZixSZqvtNYC/gCkmXA7eTjjLfAtiZ1Oo4rmgAEXGdpAlVxbsBk/Pj6cAMPBjfL1+u1szaqeHkERFPSHo38BNSstildxFwOXBIRMxtUlxr9q4rIuZKWqNeRUkHAgcCjB8/vkmbH/6uuw7e+96yozCzkaroEeYPA7vkMYgN6TvC/JlWBNdgTFOBqQA9PT1d/Xu7svXxvve59WFmrdPQmIekFfPA9t4AEfFMRPwlIm5uUeJ4QtJaedtrAfNasI0Rz4PnZtYqDSWPiHgR2Ad4U2vD+adLSAPw5PuL27TdYc+tDTNrhyKzre6hBZeZlXQ28CdgY0mPSjoA+Bbwfkn3A+/Pz61BL77Y99itDzNrhSJjHicBp0r6ZUTc16wAImLfOot2aNY2us0KK5QdgZmNdEWSx7+Qrttxl6RLgftJ1y2vFBFReLquNZ+n7ppZKxVJHlMqHu9Rp04wiGM9zMxseCmSPCa2LAprCbc+zKxVihwk+HArA7HW22svuOCCsqMws5FgUFcSlLQ6fS2RhyLiqeaFZM1U2fq48MJyYzGzkaPIVF0kbS7pD6SD9m7Kt3mSZkh6RysCtKHbseJUlp66a2bN0HDLQ9LbgBuA5UkH8fWeQn0z4MPA9ZLeHRF3Nz1KG5Irr3TSMLPmKtJt9XXgdeDdEXFX5YKcWK7LdfZqXnjWLB48N7NmKtJt9V7glOrEARARs4BTgfc1KzAzM+tcRZLHCvR/pcC5uY51KF9x0MyapUjyeBDYtZ/lu+Y6Nkw4gZjZYBVJHr8APijpLEmbSRqdb2+TdCbwAdIlZa2DeazDzJqhyID5ycA7Sadm/3dgcS4fRboo1HnAd5oanbXEK6/AG96QHnvw3MwGo8gR5ouAf5f0c2B30kGCAv4G/DoirmpNiNZsyy9fdgRmNtwVPsI8Iq4ErmxBLNZGnrprZkPR75iHpK0lrdauYKw8Hjw3syIGGjD/E7BT75N8LfOzJG3a2rCsHdzaMLPBGih5VP8eXY40YP7m1oRj7fb0032P3fows0YVOjGijTyrrlp2BGY2HA3qlOztImkO8AKwCFgYET3lRjQyefDczIrq6OSRbRcRT5YdRDdxAjGzgTSSPHaR1DvG8UbSdcr3ljSpRt2IiO81LTprm8rWh5nZQBT9/MSUtLjuwtoiIkYPLaQltv8Q8AwpYf0sIqbWqHMgcCDA+PHjt3z4YV8tdygqE4hbH2bdQdItRYcFBmp5bDeEeJph24h4XNIawJWS/hoR11VWyAllKkBPT4+/7ppov/1g+vSyozCzTtRvy6OTSJoCvBgRJ9er09PTEzNnzmxfUCOUWx9m3WUwLY+OnaoraQVJK/U+Jp21d1b/r7JmOPHEvsceBzGzWjo2eQBrAjdIugO4GfhtRPyu5Ji6wmGHLfncrQ8zq9axU3Uj4kFg87Lj6FaVs69GjXICMbMldXLLwzqIu6/MrJKTh9Xl1oaZ1ePkYf2qTCBufZhZLycPK8QJxMzAycMa4O4rM6vm5GENcfeVmVVy8rBBcQIx625OHtaw6u4rd2eZdS8nDyukMmGM8qfHrGv539+GxN1XZt3JycMKq+6u+vjHy4nDzMrj5GGDUplAzj67vDjMrBxOHjZoN93U99jdV2bdxcnDBm3rrZd87gRi1j2cPGxIPF3XrDs5ediQ+ehzs+7j5GFN5wRiNvI5eVhTVHdfOYGYjWwdnTwk7STpXkkPSDqi7Hisfx7/MOseHZs8JI0GTgF2BjYF9pW0ablR2UA8/mHWHZYpO4B+bA08EBEPAkg6B9gNuKfUqKwQqdwWyUsvwe9+t3T5pEmwwQbw3HNw9dVLLnv9ddhnn/bEZzZcdXLyWAf4e8XzR4F3VVeSdCBwIMD48ePbE5n1K2LJVkeZCWTePPjoR5cu/9GP4L/+q/3xmI0UHdttBdTq9FjqKygipkZET0T0jBs3rg1hWSOqk8VFF5UTxzrrwJ13LnkDJw6zoerklsejwHoVz9cFHi8pFhuEyhbInnuW0/oYMwbe/va+5/2Nw3jA37rVYMYnO7nl8RdgI0kTJY0B9gEuKTkmK6iyxVH2APpLL9UuP/dcJw6zojq25RERCyUdAlwBjAbOiIi7Sw7LCtp99yWflzn+seKKtcs/9rH2xmE2EnRs8gCIiMuAy8qOw4amkwbQzaw5OrnbykaQso9Anz27dvmXvtTeOMxGCicPa5vqBHLffe3b9qZ1Di89+eT2xWA2kjh5WFtVJpCNNy4vjl5lD+KbDVdOHtZ2X/9632N/eZsNT04e1nbHHLPk81YnECcos+Zz8rBSlD2ADu0dczEbaZw8rDRlJ5CNNmrv9sxGEicPK1WrE8jjPqGNWUs4eVjpWplA1lmneesysz5OHtYR2t2FdemlrV2/2Ujn5GEdo9kJZNGi+ss+9KGhrdus2zl5WEdpZgJZpqPP3GY2vDl5WMcpexaWmQ3MycM6khOIWWdz8rCOVSuB9DeOUWmzzeovu9tXhTEbMicP62jVCWSZZRprhdxzT/1l9c6wa2aNc/KwjlfrwlH9JZCFC1sXi5klTh42LETA668vWVYvgSy7bP31bLll82Iy62ZOHjZsLLNM7XGQIoPpJ57Y3JjMulVHJg9JUyQ9Jun2fNul7Jisc/TXjTVQItluu+bHY9aNOvkwqu9FhC8SajVFwIIFsNxyfWWNtEBGdeTPJbPhx/9KNmyNGVO7FWJmrdfJyeMQSXdKOkPSqvUqSTpQ0kxJM+fPn9/O+KxDRDiJmLVbaclD0lWSZtW47Qb8BNgAmATMBb5Tbz0RMTUieiKiZ9y4cW2K3jpRBCxeXH/5nXe2Lxazka60MY+I2LGRepJOA3wCbWuI1NcK2XZb+OMf+5a9/e3lxGQ2EnVkt5UQya7lAAAJ3klEQVSktSqe7gHMKisWG75uvLGvS8vdWmbN1amzrU6SNAkIYA7wuXLDMTOzSh2ZPCLik2XHYGZm9XVkt5WZmXU2Jw8zMyvMycPMzApz8jAzs8KcPMzMrDAnDzMzK0wxgo6ekvQCcG/ZcXSIscCTZQfRIbwv+nhf9PG+6LNxRKxU5AUdeZzHENwbET1lB9EJJM30vki8L/p4X/TxvugjaWbR17jbyszMCnPyMDOzwkZa8phadgAdxPuij/dFH++LPt4XfQrvixE1YG5mZu0x0loeZmbWBk4eZmZW2IhIHpK+Lemv+ZrnF0lapWLZkZIekHSvpA+WGWc7SNpb0t2SFkvqqVrWbftip/xeH5B0RNnxtJukMyTNkzSromw1SVdKuj/fr1pmjO0gaT1J10qanf83vpjLu3FfLC/pZkl35H1xbC6fKOmmvC/OlTRmoHWNiOQBXAm8LSLeAdwHHAkgaVNgH2AzYCfgVEmjS4uyPWYBewLXVRZ2277I7+0UYGdgU2DfvA+6yTTS37rSEcDVEbERcHV+PtItBL4cEZsA2wBfyJ+FbtwXrwHbR8TmwCRgJ0nbACcC38v74hnggIFWNCKSR0T8PiIW5qd/BtbNj3cDzomI1yLiIeABYOsyYmyXiJgdEbWOsu+2fbE18EBEPBgRC4BzSPuga0TEdcDTVcW7AdPz4+nA7m0NqgQRMTcibs2PXwBmA+vQnfsiIuLF/HTZfAtge+D8XN7QvhgRyaPKZ4DL8+N1gL9XLHs0l3WjbtsX3fZ+G7VmRMyF9KUKrFFyPG0laQKwBXATXbovJI2WdDswj9Rr8zfg2Yof4A39rwyb05NIugp4c41FX42Ii3Odr5KaqGf2vqxG/WE/N7mRfVHrZTXKhv2+6Ee3vV8bgKQVgQuAQyPieanWR2Tki4hFwKQ8NnwRsEmtagOtZ9gkj4jYsb/lkvYDdgV2iL6DVx4F1quoti7weGsibJ+B9kUdI3Jf9KPb3m+jnpC0VkTMlbQW6dfniCdpWVLiODMiLszFXbkvekXEs5JmkMaBVpG0TG59NPS/MiK6rSTtBBwOfCQiXq5YdAmwj6TlJE0ENgJuLiPGDtBt++IvwEZ5FskY0mSBS0qOqRNcAuyXH+8H1GupjhhKTYzTgdkR8d2KRd24L8b1zkaV9AZgR9IY0LXAR3O1hvbFiDjCXNIDwHLAU7nozxFxUF72VdI4yEJSc/Xy2msZGSTtAfwIGAc8C9weER/My7ptX+wCfB8YDZwREd8sOaS2knQ2MJl06vEngK8BvwbOA8YDjwB7R0T1oPqIIunfgOuBu4DFufgo0rhHt+2Ld5AGxEeTGg/nRcTXJb2FNKlkNeA24BMR8Vq/6xoJycPMzNprRHRbmZlZezl5mJlZYU4eZmZWmJOHmZkV5uRhZmaFOXlYKSRNkBSSppQdSzNJmpLf14QG6++f609uaWBmTebkYU2RvwAbvU1ocSwzqrb3uqTHJJ0tabNWbrtOPJNzUlll4Npmw4OP87CmkPSJqqL3AAeSro18fdWyi4CXSQd2Lqw4IVuzYplBOuXCf+aiNwDvIh05+wqwVZ0zDzdj28uQTvvzWu9pcnLr6mvAxIiYU1V/NOnMpgsiYjFmw8SwObeVdbaI+FXl8/wleiDwp+plFV5tYUgLq7Z7mqTZwMnAfwNfaMVGcyJsOBnmk9QtakUsZq3kbisrRa0xj8oySfsqXRnyVUmP5LKh/ti5It9vWBXLf0q6VdIrkp6T9Pt8SovqmD8k6Q+Snsx1H5F0oaS3VtRZYsxD0jRSqwPgoYqutCl5ec0xD0ljJZ0i6e+SFuT7UyStXlWv9/XbS/qKpL9Jek3SfflkoYNW8V42lnS8pEfzuu/Ip36prFv5t/uYpNvzPnpA0qdznfGSzpf0tKQXJP1K0kpDidHK45aHdaIPA4eSrgT4D+AjpC/g9YFPD2G9G+X7J3sLJJ0IHEY6SeRRwEqkFtO1knaLiMtyvfeRTqR3F3AC6bxha5NOLLch6QqWtfwMeBOwB/D/KrZ9Z70gJa0M/DGv9wzgVtI1KD4PbC9p63xRo0rHk7rnfka6WtzngWmSHoiIG+vvkoZMB14ntdrGkP42v5b01upuONKZrQ8CTiVdiOoA4AxJC3KM15D281ak86y9Sl/3og0nEeGbb02/AfuTrgmwf53lE/LyKTXKFgHvrCgXaZwkgG0a2PYM4EXSCQHHkk7N/lHSxaEC+GCutzHpRHk3AGMqXr82KTnMAUbnsu/m164xwLan5HoT+iursZ8mV5R9M5cdXFX3C7n8uBqvv63qPaxDSiJnD+Fv2Bv3peTx0Vy+VS4/ocbf7iVg/YrycaQEsRj4UtX6LwQWACuW/Xn1rfjN3VbWia6MfNlQSJfOBE7KT/docB0rAPPz7RHg/0gt7f0jorf7ajdSYjop0qVqe7f3OOn63+uTfvEDPJfv92pC99lA9shxT60q/xmp5VJrH5xa9R4eI7WGNqpRt6gf5L9B77r/ArxQZ92/joiHK+rOB+4lJY9TqupeT5osMKEJMVqbOXlYJ5pdo+yefP+WBtfxKvD+fNsO2BRYJyKmV9SZmO/vrvH6WVXb+zHp1/2pwNOSLpP035LGNRhPEROBe6NqFlp+fi+198GDNcqeAlavUV5UrXU/XWfdteo+A8yNpU/x/Uy+b0aM1mYe87BO1Iz544si4qoB6jR8HdKIeErSVqQpyO8H3gt8DzhW0i4R8afBh9oU9WZsNeNaq0XWXa9ufzPKuvN6sMOcWx7WiTbtp6zWL9vB+lu+r3Xg4FLbi4hFETEjIr4aEe8hdWmtCBw9wHaKJsMHgY2ru8fy87fS3H1gNihOHtaJ3i/pnb1PJIk0IwrSlfCa5RLSF/v/KF3jund7a5FmdT1M6qpC0tgar/8r6aDD1QbYzov5fqB6vX5NGmiunoX02Vx+UYPrMWsZd1tZJ7oDuEbSKcBc0sD2jsAvm9k9FBH3Svo2KTFdJ+lc+qbqrgj8R6SD+CAdZLgu8HtSUnkD8O+5/i8G2NSf8/2Jks4kjcfMiohZdeqfBOwNnJKT6G2kVs4BpDGPk+q8bkAVR7t/OiKmDXY9Zk4e1okuIX1JHkmaTjsPOC7fmioiDpf0AHAw8C3S1NGbgI9HROVpVX5Jmha7H+nX//OkQfyPRsQFA2zjRkmHk45/OI30f3csfYPy1fWfk7RtrvMRUivoCeCnwNdi6WM8iug9KO+xIazDzOe2ss6Rj8p+CDg2IqaUGswIJelW4IWIeF/Zsdjw5paHWZeQtAawOekkkWZD4uRh1iUiYh4wuuw4bGTwbCszMyvMYx5mZlaYWx5mZlaYk4eZmRXm5GFmZoU5eZiZWWFOHmZmVtj/B7TPXhFzyaOkAAAAAElFTkSuQmCC\n", "text/plain": [ "<Figure size 432x288 with 1 Axes>" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "plt.figure(2)\n", "plt.title('Plot 8 Force-Distance curve', fontsize=20)\n", "plt.plot(TipPos*1e9, Fts*1e9, 'b--' )\n", "plt.xlabel('Tip Position, nm', fontsize=18)\n", "plt.ylabel('Force, nN', fontsize=18)\n", "plt.xlim(-20, 30)" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "Check that we have two sinusoidals. The one in green (the output) is the response signal of the tip (the tip trajectory in time) while the blue one (the input) is the cosinusoidal driving force that we are using to excite the tip. When the tip is excited in free air (without tip sample interactions) the phase lag between the output and the input is 90 degrees. You can test that with the previous code by only changing the position of the base to a high-enough position that it does not interact with the sample. However in the above plot the phase lag is less than 90 degrees. Interestingly the phase can give relative information about the material properties of the sample. There is a well-developed theory of this in tapping mode AFM and it's called phase spectroscopy. If you are interested in this topic you can read reference 1.\n", "Also look at the above plot and see that the response amplitude is no longer 60 nm as we initially set (in this case is near 45 nm!). It means that we have experienced a significant amplitude reduction due to the tip sample interactions.\n", "Besides with the data acquired we are able to plot a Force-curve as the one shown in Figure 3. It shows the attractive and repulsive interactions of our probe with the surface.\n", "\n", "We have arrived to the end of the notebook. I hope you have found it interesting and helpful!" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "REFERENCES\n", "\n", "1. Garcı́a, Ricardo, and Ruben Perez. \"Dynamic atomic force microscopy methods.\" Surface science reports 47.6 (2002): 197-301.\n", "2. B. V. Derjaguin, V. M. Muller, and Y. P. Toporov, J. Colloid\n", "Interface Sci. 53, 314 (1975)\n", "3. Hertz, H. R., 1882, Ueber die Beruehrung elastischer Koerper (On Contact Between Elastic Bodies), in Gesammelte Werke (Collected Works), Vol. 1, Leipzig, Germany, 1895.\n", "4. Van Oss, Carel J., Manoj K. Chaudhury, and Robert J. Good. \"Interfacial Lifshitz-van der Waals and polar interactions in macroscopic systems.\" Chemical Reviews 88.6 (1988): 927-941.\n", "5. Enrique A. López-Guerra, and Santiago D. Solares. \"Modeling viscoelasticity through spring–dashpot models in intermittent-contact atomic force microscopy.\" Beilstein journal of nanotechnology 5, no. 1 (2014): 2149-2163.\n", "6. Enrique A. López-Guerra, and Santiago D. Solares, \"El microscopio de Fuerza Atómica: Metodos y Aplicaciones.\" Revista UVG (2013) No. 28, 14-23." ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "### OPTIONAL: Further error analysis based in norm L1" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "print('This cell takes a while to compute')\n", "\n", "\"\"\"ERROR ANALYSIS EULER, VERLET AND RK4\"\"\"\n", "\n", "# time-increment array\n", "dt_values = numpy.array([8.0e-7, 2.0e-7, 0.5e-7, 1e-8, 0.1e-8])\n", "\n", "# array that will contain solution of each grid\n", "z_values_E = numpy.zeros_like(dt_values, dtype=numpy.ndarray)\n", "z_values_V = numpy.zeros_like(dt_values, dtype=numpy.ndarray)\n", "z_values_RK4 = numpy.zeros_like(dt_values, dtype=numpy.ndarray)\n", "z_values_an = numpy.zeros_like(dt_values, dtype=numpy.ndarray)\n", "\n", "for n, dt in enumerate(dt_values):\n", " simultime = 100*period\n", " timestep = dt\n", " N = int(simultime/dt)\n", " t = numpy.linspace(0.0, simultime, N)\n", " \n", " #Initializing variables for Verlet\n", " zdoubledot_V = numpy.zeros(N)\n", " zdot_V = numpy.zeros(N)\n", " z_V = numpy.zeros(N)\n", " \n", " #Initializing variables for RK4\n", " vdot_RK4 = numpy.zeros(N)\n", " v_RK4 = numpy.zeros(N)\n", " z_RK4 = numpy.zeros(N)\n", " k1v_RK4 = numpy.zeros(N) \n", " k2v_RK4 = numpy.zeros(N)\n", " k3v_RK4 = numpy.zeros(N)\n", " k4v_RK4 = numpy.zeros(N)\n", " \n", " k1z_RK4 = numpy.zeros(N)\n", " k2z_RK4 = numpy.zeros(N)\n", " k3z_RK4 = numpy.zeros(N)\n", " k4z_RK4 = numpy.zeros(N)\n", " \n", " \n", " #Initial conditions Verlet (started with Euler approximation)\n", " z_V[0] = 0.0\n", " zdot_V[0] = 0.0\n", " zdoubledot_V[0] = ( ( -k*z_V[0] - (m*wo/Q)*zdot_V[0] + \\\n", " Fd*numpy.cos(wo*t[0]) ) ) / m\n", " zdot_V[1] = zdot_V[0] + zdoubledot_V[0]*timestep**2\n", " z_V[1] = z_V[0] + zdot_V[0]*dt\n", " zdoubledot_V[1] = ( ( -k*z_V[1] - (m*wo/Q)*zdot_V[1] + \\\n", " Fd*numpy.cos(wo*t[1]) ) ) / m\n", " \n", " \n", " #Initial conditions Runge Kutta\n", " v_RK4[1] = 0\n", " z_RK4[1] = 0 \n", " \n", " #Initialization variables for Analytical solution\n", " z_an = numpy.zeros(N)\n", " \n", " # time loop \n", " for i in range(2,N):\n", " \n", " #Verlet\n", " z_V[i] = 2*z_V[i-1] - z_V[i-2] + zdoubledot_V[i-1]*dt**2 #Eq 10\n", " zdot_V[i] = (z_V[i]-z_V[i-2])/(2.0*dt) #Eq 11\n", " zdoubledot_V[i] = ( ( -k*z_V[i] - (m*wo/Q)*zdot_V[i] +\\\n", " Fd*numpy.cos(wo*t[i]) ) ) / m #from eq 1\n", " \n", " #RK4\n", " k1z_RK4[i] = v_RK4[i-1] #k1 Equation 14 \n", " k1v_RK4[i] = (( ( -k*z_RK4[i-1] - (m*wo/Q)*v_RK4[i-1] + \\\n", " Fd*numpy.cos(wo*t[i-1]) ) ) / m ) #m1 Equation 15\n", " \n", " k2z_RK4[i] = ((v_RK4[i-1])+k1v_RK4[i]/2.*dt) #k2 Equation 16\n", " k2v_RK4[i] = (( ( -k*(z_RK4[i-1]+ k1z_RK4[i]/2.*dt) - (m*wo/Q)*\\\n", " (v_RK4[i-1] +k1v_RK4[i]/2.*dt) + Fd*\\\n", " numpy.cos(wo*(t[i-1] + dt/2.)) ) ) / m ) #m2 Eq 17\n", " \n", " k3z_RK4[i] = ((v_RK4[i-1])+k2v_RK4[i]/2.*dt) #k3, Equation 18\n", " k3v_RK4[i] = (( ( -k*(z_RK4[i-1]+ k2z_RK4[i]/2.*dt) - (m*wo/Q)*\\\n", " (v_RK4[i-1] +k2v_RK4[i]/2.*dt) + Fd*\\\n", " numpy.cos(wo*(t[i-1] + dt/2.)) ) ) / m ) #m3, Eq 19\n", " \n", " k4z_RK4[i] = ((v_RK4[i-1])+k3v_RK4[i]*dt) #k4, Equation 20\n", " k4v_RK4[i] = (( ( -k*(z_RK4[i-1] + k3z_RK4[i]*dt) - (m*wo/Q)*\\\n", " (v_RK4[i-1] + k3v_RK4[i]*dt) + Fd*\\\n", " numpy.cos(wo*(t[i-1] + dt)) ) ) / m )#m4, Equation 21\n", " \n", " #Calculation of velocity, Equation 23\n", " v_RK4[i] = v_RK4[i-1] + 1./6*dt*(k1v_RK4[i] + 2.*k2v_RK4[i] +\\\n", " 2.*k3v_RK4[i] + k4v_RK4[i] ) \n", " #calculation of position, Equation 22\n", " z_RK4 [i] = z_RK4[i-1] + 1./6*dt*(k1z_RK4[i] + 2.*k2z_RK4[i] +\\\n", " 2.*k3z_RK4[i] + k4z_RK4[i] ) \n", "\n", " \n", " #Analytical solution\n", " A_an = Fo_an*Q/k #when driven at resonance A is simply Fo*Q/k\n", " phi = numpy.pi/2 #when driven at resonance the phase is pi/2\n", " z_an[i] = A_an*numpy.cos(wo*t[i] - phi) #Analytical solution eq. 1\n", " \n", " \n", " #Slicing the full response vector to get the steady state response\n", " z_steady_V = z_V[int(80*period/timestep):]\n", " z_an_steady = z_an[int(80*period/timestep):]\n", " z_steady_RK4 = z_RK4[int(80*period/timestep):]\n", " time_steady = t[int(80*period/timestep):]\n", " \n", " z_values_V[n] = z_steady_V.copy() # error for certain value of timestep\n", " z_values_RK4[n] = z_steady_RK4.copy() #error for certain value of timestep\n", " z_values_an[n] = z_an_steady.copy() #error for certain value of timestep\n", "\n", "\n", "def get_error(z, z_exact, dt):\n", " #Returns the error with respect to the analytical solution using L1 norm\n", " \n", " return dt * numpy.sum(numpy.abs(z-z_exact))\n", " \n", "#NOW CALCULATE THE ERROR FOR EACH RESPECTIVE DELTA T\n", "error_values_V = numpy.zeros_like(dt_values)\n", "error_values_RK4 = numpy.zeros_like(dt_values)\n", "\n", "for i, dt in enumerate(dt_values):\n", " ### call the function get_error() ###\n", " error_values_V[i] = get_error(z_values_V[i], z_values_an[i], dt)\n", " error_values_RK4[i] = get_error(z_values_RK4[i], z_values_an[i], dt)\n", "\n", "\n", "plt.figure(1)\n", "plt.title('Plot 5 Error analysis Verlet based on L1 norm', fontsize=20)\n", "plt.tick_params(axis='both', labelsize=14)\n", "plt.grid(True) #turn on grid lines\n", "plt.xlabel('$\\Delta t$ Verlet', fontsize=16) #x label\n", "plt.ylabel('Error Verlet', fontsize=16) #y label\n", "plt.loglog(dt_values, error_values_V, 'go-') #log-log plot\n", "plt.axis('equal') #make axes scale equally;\n", "\n", "plt.figure(2)\n", "plt.title('Plot 6 Error analysis RK4 based on L1 norm', fontsize=20) \n", "plt.tick_params(axis='both', labelsize=14) \n", "plt.grid(True) #turn on grid lines\n", "plt.xlabel('$\\Delta t$ RK4', fontsize=16) #x label\n", "plt.ylabel('Error RK4', fontsize=16) #y label\n", "plt.loglog(dt_values, error_values_RK4, 'co-') #log-log plot\n", "plt.axis('equal') #make axes scale equally;" ] } ], "metadata": { "kernelspec": { "display_name": "Python 2", "language": "python", "name": "python2" }, "language_info": { "codemirror_mode": { "name": "ipython", "version": 2 }, "file_extension": ".py", "mimetype": "text/x-python", "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython2", "version": "2.7.15" } }, "nbformat": 4, "nbformat_minor": 1 }
mit
mclaughlin6464/pearce
notebooks/Debug Delta Sigma h.ipynb
1
57068
{ "cells": [ { "cell_type": "markdown", "metadata": {}, "source": [ "My DS emu varies much more as a function of *h* than i woud expect. I thought I removed all *h* dependence in my code but its possible is still lingering somewhere. Here I will attempt to Identify such. " ] }, { "cell_type": "code", "execution_count": 72, "metadata": { "collapsed": true }, "outputs": [], "source": [ "import numpy as np\n", "from glob import glob\n", "from os import path" ] }, { "cell_type": "code", "execution_count": 73, "metadata": { "collapsed": true }, "outputs": [], "source": [ "from matplotlib import pyplot as plt\n", "%matplotlib inline\n", "import seaborn as sns\n", "sns.set()\n", "import matplotlib.colors as colors" ] }, { "cell_type": "code", "execution_count": 74, "metadata": { "collapsed": true }, "outputs": [], "source": [ "#from pearce.mocks.kittens import TrainingBox\n", "import pyccl as ccl" ] }, { "cell_type": "code", "execution_count": 75, "metadata": { "collapsed": true }, "outputs": [], "source": [ "h1, h2 = 0.7, 0.7*0.9" ] }, { "cell_type": "code", "execution_count": 76, "metadata": { "collapsed": true }, "outputs": [], "source": [ "omch2 = 0.25/(0.7**2)\n", "ombh2 = 0.05/(0.7**2)\n", "param_dict1 = {'Omega_c': omch2*(h1**2), 'Omega_b': ombh2*(h1**2), 'n_s': 0.96, 'sigma8': 0.8, 'h': h1}\n", "param_dict2 = {'Omega_c': omch2*(h2**2), 'Omega_b': ombh2*(h2**2), 'n_s': 0.96, 'sigma8': 0.8, 'h': h2}" ] }, { "cell_type": "code", "execution_count": 77, "metadata": { "collapsed": false }, "outputs": [], "source": [ "def xi_mm(param_dict):\n", " if 'omch2' in param_dict: # in other units, convert\n", " new_param_dict = {}\n", " new_param_dict['Omega_c'] = param_dict['omch2']*self.h**2\n", " new_param_dict['Omega_b'] = param_dict['ombh2']*self.h**2\n", " new_param_dict['n_s'] = param_dict['ns']\n", " new_param_dict['h'] = self.h\n", " new_param_dict['A_s'] = np.exp(param_dict['ln10As'])*(np.power(10, -10))\n", "\n", " param_dict = new_param_dict\n", "\n", " elif 'Omega_c' not in param_dict:\n", " param_dict['Omega_c'] = param_dict['Omega_m'] - param_dict['Omega_b']\n", " del param_dict['Omega_m']\n", "\n", " cosmo = ccl.Cosmology(**param_dict)\n", "\n", " big_rbins = np.logspace(-1, 1.6, 21)\n", " big_rpoints = (big_rbins[1:] + big_rbins[:-1]) / 2.0\n", " big_xi_rmax = big_rpoints[-1]\n", " return ccl.correlation_3d(cosmo, 1.0, big_rpoints)" ] }, { "cell_type": "code", "execution_count": 78, "metadata": { "collapsed": false }, "outputs": [], "source": [ "xi_mm_7 = xi_mm(param_dict1)\n", "xi_mm_6h = xi_mm(param_dict2)" ] }, { "cell_type": "code", "execution_count": 79, "metadata": { "collapsed": true }, "outputs": [], "source": [ "param_dict1 = {'Omega_c': 0.25, 'Omega_b': 0.05, 'n_s': 0.96, 'sigma8': 0.8, 'h': h1}\n", "param_dict2 = {'Omega_c': 0.25, 'Omega_b': 0.05, 'n_s': 0.96, 'sigma8': 0.8, 'h': h2}" ] }, { "cell_type": "code", "execution_count": 80, "metadata": { "collapsed": false }, "outputs": [], "source": [ "#xi_mm_7 = xi_mm(param_dict1)\n", "xi_mm_6 = xi_mm(param_dict2)" ] }, { "cell_type": "raw", "metadata": { "collapsed": true }, "source": [ "def calc_ds(cat, bins):\n", " x_g, y_g, z_g = [cat.model.mock.galaxy_table[c] for c in ['x', 'y', 'z']]\n", " pos_g = return_xyz_formatted_array(x_g, y_g, z_g, period=cat.Lbox)\n", "\n", " x_m, y_m, z_m = [self.halocat.ptcl_table[c] for c in ['x', 'y', 'z']]\n", " pos_m = return_xyz_formatted_array(x_m, y_m, z_m, period=cat.Lbox)\n", "\n", "\n", " return mean_delta_sigma(pos_g, pos_m, cat.pmass/cat._downsample_factor,\n", " rp_bins=rp_bins,\n", " period=cat.Lbox, num_threads=n_cores) / (1e12)#*self.h**2)" ] }, { "cell_type": "code", "execution_count": 81, "metadata": { "collapsed": false }, "outputs": [ { "data": { "text/plain": [ "<matplotlib.text.Text at 0x7f9acbe25190>" ] }, "execution_count": 81, "metadata": {}, "output_type": "execute_result" }, { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAXQAAAEMCAYAAADUEk3/AAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzs3Xd4VFX+x/H3tPRKGiQQ0iiBhBAgNGnSFRBEQVFUFsui\nggX1h+jqqrvWdbEXRLGXVUSR3rv0hJKQQAIBUkif9Doz9/dHIFJCAkkmMwnf1/PwQHLLOTOH+5k7\n5957jkpRFAUhhBAtntrSFRBCCNE0JNCFEKKVkEAXQohWQgJdCCFaCQl0IYRoJSTQhRCilZBAF1Yv\nPT2dyMhIjEZjk++7S5cunD59usn3e6l77rmHX375xezliOub1tIVEOK84cOHk5OTg0ajqfndmjVr\n8PX1JSYmxoI1M6/k5GTeeustYmJiMJlMhIeH8/zzzxMUFGTpqokWRs7QhVX59NNPiYmJqfnj4+Nj\n6SqZXVFREcOHD2fNmjXs3LmT8PBwHnnkEUtXS7RAEujC6qWmptKlSxcMBgP5+fkMGTKETZs2AVBS\nUsKoUaP4/fffAaisrOTNN99k2LBhDBw4kBdffJHy8vKafX3++ecMGjSIQYMGsWTJkjrLzczMZNas\nWfTt25dRo0bx888/1yz74IMPeOyxx3j66aeJjIxkwoQJJCcns3DhQgYMGMDQoUPZsWPHRftLS0vj\nzjvvJDIykpkzZ5KXlwdAjx49mDJlCm5ubuh0OmbMmEFycjJ6vb5J3j9x/ZBAFy2Km5sbr732Gi+8\n8AK5ubm8/vrrhIaGMmnSJADefvttkpOT+f3331m3bh1ZWVl89NFHAGzbto3FixezePFi1q1bx65d\nu+osa+7cubRt25bt27fz/vvvs2DBgou22bx5MxMnTmTfvn2EhoZy//33YzKZ2LZtG48++igvvvji\nRftbsWIFr7/+Ort27aKqqorFixfXWu7+/fvx8vLC3d29MW+VuA5JoAur8uijj9KnTx/69OlzxW6H\nQYMGMXbsWGbMmMHWrVt5+eWXAVAUhZ9//pnnnnsONzc3nJyc+Pvf/87KlSsBWL16NZMnT6Zz5844\nODgwe/bsK9bj7NmzREdH8/TTT2Nra0toaChTpkxh2bJlNev06dOHwYMHo9VqGTt2LHq9noceegid\nTsfNN99MWloahYWFNetPnjyZwMBA7OzsGDt2LPHx8ZeVm5GRwcsvv8yzzz7boPdPXN/koqiwKh99\n9BEDBw6sd72pU6fy3XffMWvWrJoz2by8PMrKypg8eXLNeoqiYDKZAMjKyiIsLKxmmZ+f3xX3n5WV\nhaurK05OTjW/8/X1JTY2tuZnDw+Pmn/b2dnh7u5ec0HXzs4OgNLSUlxcXADw8vKqWd/e3p7S0tKL\nyszLy2PmzJncddddjB8/vt73QIhLSaCLFsdoNPLiiy8yadIkfvjhByZPnkzHjh1xd3fHzs6OlStX\n1nox1dvbm7Nnz9b8nJ6efsUyvL29KSgooLi4uCbUz549a7aLtAUFBcycOZPhw4fz8MMPm6UM0fpJ\nl4tocT799FNUKhWvvfYa999/P/PmzcNoNKJWq5kyZQqvvfYaubm5QPWFze3btwMwduxYfvvtN5KS\nkigrK+PDDz+8Yhnt2rUjMjKSBQsWUFFRQUJCAkuWLOGWW25p8tdTXFzM/fffT69evXj66aebfP/i\n+iGBLlqU2NhYvvrqK9588000Gg0PPvggAJ999hkAzzzzDB07dmTq1Kn06tWr5o4RgKFDh3Lfffdx\n3333MWrUKPr3719nWQsWLCAtLY3Bgwcze/Zs5syZc1XdQddq/fr1HDlyhKVLlxIZGVnzp65vEELU\nRiUTXAghROsgZ+hCCNFKSKALIUQrIYEuhBCthAS6EEK0EhLoQgjRSljswaLs7KIrLnN3d0CvL73i\ncmF+0gaWJ21gedbYBl5ezldcZpVn6Fqtpv6VhFlJG1ietIHltbQ2sMpAF0IIce0k0IUQopWQQBdC\niFZCAl0IIVoJCXQhhGglJNCFEKKVkEAXQohmFJ97HH15vln2LTMWXWLIkL4EBYXU/Pz6629TUJDP\nmjUreeKJZxq9/9tvn8Dnn3+Lm5vbRb8vLi7mnXfeIjb2MIqiEB4ewZNP/t9FU6A11KpVy0lIOMrc\nufMava8Lffvtl6xYsQy1Ws0TTzxDv34Dal1vyZKfWLr0F9RqDQMH3sAjjzzO0aOxvPXWa0D1NHEz\nZz7E0KE3XrDvr/Dx8WHYsBH8+9//5NixeFxcXHnllddp1873ov2XlpbwyCMP1vycnZ3J6NE38/jj\nT1FZWVnv9kI0l8ySLD489DlD/AZwR5dbm3z/EuiXsLW15auvfrjod+3a+dK1azezlvvGG68QGBjM\nCy+8AsAXXyzkjTf+xb///aZZy22o5OSTbNiwjm+//ZmcnGyeeOIRfvxxac2cmudFR+9n+/ZtfPXV\nj9jY2KDX5wEQFBTC559/g1arJScnhxkzpnHDDdUTLgPs3buLV155gxUrluHs7Mz//vc7Gzas5ZNP\nPuCVV16/qAwHB8eL2mzmzOk1Hw5Xs70QzeVgdvWctAEu/mbZf71dLvPnz2fAgAF1Tlq7Z88eJk6c\nyLhx45g+fXqTVtAaREfv5//+7wkA3n33bb78chEAe/bs4tFHH8RkMqHX63n++Wd44IF7eeCBezl8\n+CAABQX5PPnko0yfPpU33vgXtc0nkpqawrFjCcyY8UDN72bMeIBjx+JJS0slOno/s2c/xLPPzmXK\nlIl88skHrFu3mgcfvJd7772DtLTUel9DTk4Oc+fO4c47b+Xjj99r9HuyY8dWRo4cjY2NDb6+frRv\n34H4+LjL1vvttyVMn34fNjY2ALi7twGqJ1E+H96VlRWoVKqabUpKijEYqnB3d2fHjq3cdFP1/71h\nw0Zw4MDeWt/D886cOU1+vp6IiMiael7L9kKY08HsWNQqNeGeoWbZf71n6JMnT2b69OnMm1f71/XC\nwkJefvllPv/8c3x9fWvmcmysnzclsS8hq0n2dV5UV2+mDg+pc52KigpmzLgLqD4zf/31ty9aPmvW\nbB544F4iIiJ5993/8Pbb76NWq3nvvbeZOvVuIiJ6kpGRwVNPzeb775fw5ZeL6NGjJ3/724P8+ecO\nVqxYdlmZp06dJCSk80VntxqNhpCQziQnn8DBwZGkpON8990SXFxcmDp1IhMmTGLRom/4+ecfWbLk\nfzz++FN1vq7ExON8+eX36HQ67rrrNm677Q58fNpetM777/+X6OgDAGi1agwGEwAjRozmnntmXLRu\ndnYW3buH1/zs5eVNdvbl7ZWScobDhw/y2WcfY2try6OPPk5oaHcA4uJief31V8jMPMs//vFKTcDv\n37+X3r371pTj7e1zrk5aHB2dKCgouKzL6ryNG9cxfPiomg+Ia91eCHPJK9dzpiiVru6dcNA5mKWM\negM9KiqK1NQrnwEuX76cUaNG4etb3S/p4eHRdLWzgNq6XC5kZ2fHvHnPM3v2Q8yZ8yR+fu2B6hA6\ndSq5Zr2SkhJKS0s5eDCGV199C4CBAwfh7OzSoHp17doNT09PAPz82hMV1Q+A4OAQYmL217t9nz5R\nNf3xAQFBZGRkXBbojz3214eCl5dznQOoXS2j0UBhYQGfffYV8fFxvPjifH7+eRkqlYru3cP47ruf\nOXUqmVdf/Sf9+w/E1taW3bt3MW7chAaVt3HjOv7xj1caXW8hmtqh7OpvsBFeYWYro9F96KdOncJg\nMHDPPfdQUlLCvffey6RJkxpdsanDQ+o9m7aUEyeScHFxJScnp+Z3imJi4cIvsbW1veb9BQQEkZR0\nHJPJhFpd3QtmMplISjpOQEAQWVmZNV0WACqVquZnlUqF0WistwydTlfzb41GjdFouGydazlD9/Ly\nJisrs+bn7OwsvLy8L9unl5cPQ4cOR6VS0a1bGCqVivz8fNzd3S94/YHY2zuQnHyCrl27ER8fx9NP\nP3tROd7ePhgMBkpKinF1da31NSYmHsdgMNK1619fZ69leyHM6dC5/vMeXua7HtfoQDcajcTFxfHV\nV19RXl7OnXfeSUREBIGBgXVu5+7uUOdIZnUNEWlOKpXqsrLd3BywsdHi5eVMWloaS5b8yLJlv/PQ\nQw+Rnn4zERERDB48mDVrfueBB6r7wePj4wkNDWXAgH78+edmHnnkEbZu3UpRUSEeHo60afNXGV5e\n3QgL684vv3zL7NmzAfjwww8JDw8jMrIbe/YU1ZQPYGOjxc3NAS8v54vqtn79eg4fPsxTT13c/eLs\nbIe9vU2t21/oX/966arfpwkTbuKpp55i9uxZZGZmkp6eypAh/S+7KHrzzWNISDjMmDE3kpycjMlk\npFOnDqSmptKuXTu0Wi1paWmkpJyme/dO5OZm0LlzCG3bVneJjB07ms2b13LjjTewcuVKBgwYgLd3\n7d9yvv56MxMnTrjodV3L9tbIUseB+EtTtEFheRFJBcl09giiU/v2TVCr2jU60Nu2bYubmxsODg44\nODjQp08fEhIS6g30usYYbqqv+w2hKMplZefnl1JZaSArq5BnnnmWWbPmoFY78PTTz/Pss/NZtOgb\nZs16ggUL3mTp0nEYjUYiIiJ55pnnuPPO+3jppedZtmw54eE98PFpS25uCUaj7qIynnxyPu+++x9u\nvHE4AGFhPXjyyflkZxfVlH++XpWVBvLzSy9bdvRoIiqV7rL6FxWVU1ZWWev2V1JfG7i5tWXIkOGM\nGTMWjUbD448/Q15edZu+8ca/mDTpNrp27cbQoWN4/fVXGDv2JnQ6HfPn/5OcnGK2bNnJd999jVar\nRa1W8eST8zAadaxatZ6ePaNqyh46dAzbtu1k+PARuLi48NJLr9UsmzHjrou6x1asWMXbb793Ub3r\n2t7aWfI4ENWaqg3+TN+Hoih0c+va6P3V9QGjUq7ikn9qaiqzZs1ixYoVly07ceIEr7zyCl988QVV\nVVVMmTKFBQsW0Llz5zr32ZgwEbV75ZUXmDNn7kXdGQ1lqTZ44olH+Mc/Xqm5XnA9k+PA8pqqDT45\ntJjY3AT+2f//8HZo3P/tugK93jP0uXPnsnfvXvR6PUOGDGHOnDkYDNX9r9OmTSM4OJjBgwdzyy23\noFaruf322+sNc2EeL774L0tXodHeffdjS1dBiCZVbignIS8RX8e2jQ7z+tQb6AsWLKh3Jw888EBN\n37EQQoi/xOUmYFCM9DTj3S3nyVguQghhRs1xu+J5EuhCCGEmVcYqYnPj8bRrg59TO7OXJ4EuhBBm\nckyfRIWxkgivsIuGtzAXCXQhhDCT84Nx9fQ2f3cLyGiLl7HU8LnmcKWy1q1bzffff42iKDg4OPLU\nU8/SqVPddyaZo97p6Wn885/PUVhYQJcuobzwwisXPdF6XkZGBm+++S+ysjJRqVT85z/vnRtn5xUS\nEuIBhQ4d/HnuuZdwcKgeI8NgMPDQQ/exePH37N79J++99zYmk4nx4ydd9tQrwA8/fMO6dWuA6uEK\nTp8+xYoV63Fxcb2q7YW4lNFk5EjOUVxsnM02uuKlJNAvYanhc5tTu3a+fPDBZ7i4uLBr107eeutV\nFi36utnr8cknH3DHHXcxcuQY/vOf11ixYhm33nr7Zev9+98vct99M4mK6k9paWnN8AiPPTYXR8fq\n8Wk++GABv/76c03YHj58kPDwCIxGIwsWvMk773yEt7cPDzxwL4MGDSEwMOiiMu66617uuuteAHbs\n2MbPP/+Ai4vrVW8vxKVOFpyiuKqEQX79UauapzNEulyugrmHzwVYv34N9957B/fcM5WPP36/5vej\nRg3mo4/eY/r0qTz++CMcPRrL7NkPMWXKRHbs2ApUD7/w4Yfvcs89U7nvvjtZsuSnmu1//fV/zJx5\nN/feewenT58CIDw8AheX6sffu3cPr3WUxNrUtq+GUhSF6Oh9DBs2AoCbbhrP9u1bLlsvOfkkRqOR\nqKj+ADg4OGBnZwdQE+aKolBRUcGFXZS7d/9J//4DiY+Po337Dvj5tUen0zFy5Oia9+1KNmxYy8iR\nYwAatL0QcEF3i2fzdLeAFZ+hL01aQUzWkSbdZ6R3OJNDrjyuO1hm+NycnGw++eQDvvjiO5ydnZk7\ndzbbtm1hyJBhlJWV0atXHx599HHmz3+aRYs+4d13PyY5+SSvvvoSgwYN5Y8/fiMjI50vv/wBrVZL\nYWFBzb5dXV1ZvPh7li79hR9//JZnn33horJXrFhG//4Dr+r9q29fZ86c4sUXn6t12w8+WIiz819P\nuBUUFODk5FwzZG5dw+86Ozvz3HPPcPZsGn369GPWrNk1Y8a89trL7Nq1k4CAQGbPfrJmu5iY/cyc\n+RC7du2oGT73fDlHj8Ze8TWWl5ezZ88u5s79P+Di4XevZnshoPok41B2HPZaezq5N9+3OasNdEux\nxPC58fFxREb2rnlkf/TosRw6FM2QIcPQ6XQ1gRscHIJOp0Or1RIcHEJGRvq5svcwadJtNeHo4vLX\naIJDh1aPDdOlSyhbt26+qNzo6P2sXLmMjz/+/Krem7r2BeDvH1Dne9cQRqOBQ4diWLz4e3x82vLP\nf85n9erljB9fPaLnc8/9E6PRyDvv/IeNG9cxbtwtZGdn4ezsWnMmfy127tx27huMjMgoGu5MUSr6\ninyifHqhVTdfzFptoE8OGV/v2bSlNPXwuXXRarU1tzupVCp0uuphc9Vq9VUOm1u9/qVD5iYlJfLG\nG//i7bffx9X16i50Xmlf513LGbqrqyvFxUUYDAa0Wm2dw+926tSl5oNz8OBhxMXFcuEEWhqNhpEj\nR/PDD98wbtwt7NnzJ/369T+3/dUN83vehg3rarpbGrK9EPDXw0TNdXfLedKHfo0yMs7y00/f8+WX\n1XdPxMVVf/2OiurPr7/+r2a9xMRjAPTsGcn69dV3T+zatZOiosLL9hkaGsbBg9Hk5+djNBpZv34d\nPXv2uuo6RUX1Y9mypTVj7FzY5VL7a8jg+eef4YUXXsHfv+NFyx5//OGr7lO/1Pkz9Nr+XBjmUP3h\nFBnZhy1bNgKwevUKBg0aetk+Q0O7UVRUhF6vB6q/VQQEBKIoCqmpKUD119sdO7bh7x8AwO7du+jf\n/wagemKQlJQU0tPTqKqqYsOGddxww5Ba619cXMzBg9EMHvxXPa5leyHOO5gdi06to1ub5h3XymrP\n0K2Roii8/vq/mD37cTw9vXj22Rd47bWXWLToG5544hkWLHiT++6786Lhc//2twd56aXnmT59as3w\nuZfy9PRk1qzZPPbY31EUhQEDBjF48LCrrtf48ZNISTnDjBnT0Gi03HLLJG677Y4rrv/VV4soKCjg\nv/+tnoBao9HwxRffYjKZSE1Nqblgam4PPzyHl156jkWLPqFTpy6MHz8RgISEo/z++688++wLaDQa\nZs9+nCeeeBhFUejSJZRbbrkVRVF49dV/UlJSgqIohIR05umnn8VoNJKWlkLHjgFA9TecuXOfYe7c\nOZhMRsaNu4WgoGAAfv99CQCTJlXfWbNt22b69u2Hvb19TR3r2l6I2mSUZJJZmkWEVxg2Gpv6N2hC\nVzV8rjnI8LnW5+TJJFau/IM5c+a22DY4dOgg69at4plnau/6aUlaahu0Jg1pgzWnNrH85BruDb2D\nfu16m6VOVyJn6KJGUFAIc+bMtXQ1GiUioicRET0tXQ1xHTuUHYtapSbcM7T+lZuY9KELIUQTySvX\nc6Yolc5uwTjoHJq9fAl0IYRoIpa6u+U8CXQhhGgih7JjUaGih2d3i5QvgS6EEE2gqLKYpPxkAl39\ncbVtnjvFLiWBLoQQTeBIzlEUlGaZmehKJNCFEKIJHDo3GFdEMw7GdSkJdCGEaKQyQzkJeYn4ObXD\ny8HDYvWQQBdCiEY6mpuAQTESYaGLoedJoAshRCP9NdVcuEXrIYEuhBCNUGWsIi43AU+7Nvg6Xj5W\nU3OSQBdCiEZI0CdSYawkwjusZqhrS5FAF0KIRqh5OtSCtyueJ4EuhBANZDQZOZJzFBcbZwJc/C1d\nHQl0IYRoqBMFpyiuKqGHV3fUKsvHab01mD9/PgMGDGD8+Nqng9uzZw+9e/dm4sSJTJw4kQ8//LDJ\nKymEENbo/MNE1tDdAlcxHvrkyZOZPn068+bNu+I6ffr0YeHChU1aMSGEsGaKonAoOw57rT2d3axj\nFqt6z9CjoqJwdZUZ0IUQ4kJnilLRV+QT7hmKRq2xdHWAJpqxKCYmhgkTJuDj48O8efPo1KlTvdu4\nuzug1V75TahrmiXRPKQNLE/awPKu1Abrzx4HYEhwlNW0U6MDvXv37mzevBlHR0e2bt3Ko48+yrp1\n6+rdTq8vveIymUvR8qQNLE/awPLqaoNdp2PQqXX4aTs0azvV9eHR6MuyTk5OODo6AjB06FAMBgN5\neXmN3a0QQlitjJJMMkuz6ObRBRuNjaWrU6PRgZ6dnY2iKAAcPnwYk8mEu7t7oysmhBDW6qAVPUx0\noXq7XObOncvevXvR6/UMGTKEOXPmYDAYAJg2bRpr167lxx9/RKPRYGdnx4IFCyz++KsQQpjToewj\nqFVqwjy6WroqF6k30BcsWFDn8unTpzN9+vQmq5AQQlizvHI9Z4rSCG3TGQedg6WrcxHLP9okhBAt\nyPmxWyK8LDv2eW0k0IUQ4hocyo5FhYoeFp7MojYS6EIIcZUKKopIyk8m0NUfV1sXS1fnMhLoQghx\nlf5M34uCQpRPpKWrUisJdCGEuApGk5Ed6bux1djQt20vS1enVhLoQghxFWJzE8ivKKBf297Yae0s\nXZ1aSaALIcRV2J62C4DBfgMsXJMrk0AXQoh6ZJVmE593nGDXQHydLDsRdF0k0IUQoh7b03YDMKS9\n9Z6dgwS6EELUqdJYxe6z+3HWOVnd2C2XkkAXQog6HMg6RKmhjBt8+6JVN8kUEmYjgS6EEHXYnroL\nFSpu8Otn6arUSwJdCCGuICn3FKeLUgjzDKWNnfUPCy6BLoQQV7DuxDYAhljxrYoXkkAXQohalFSV\nsvPMfjztPejapv55kq2BBLoQQtRiz9n9VBmrGOzXH7WqZURly6ilEEI0I5NiYnvabnRqLf3b9bF0\nda6aBLoQQlzimD6JrLIcBvr3wUnnaOnqXDUJdCGEuMT21OpxW8aEDLVwTa6NBLoQQlxAX57P4Zyj\n+Dv7Edymo6Wrc00k0IUQ4gI70/egoDDYbyAqlcrS1bkmEuhCCHGOwWRgZ/pe7LX29PGJsHR1rpkE\nuhBCnHMoO47CyiL6t+uNjcbG0tW5ZhLoQghxTs0kFr79LVyThpFAF0IIIL04g8T8k3R174SPo7el\nq9MgEuhCCAHsSK+exGKwlU9iURcJdCHEda/cUMGeswdws3Ul3CPU0tVpsHoDff78+QwYMIDx48fX\nud7hw4fp1q0ba9asabLKCSFEc9iXGUO5sYIbfPuiUWssXZ0GqzfQJ0+ezOeff17nOkajkbfffpsb\nbrihySomhBDNQVEUtqftQq1SM9C3r6Wr0yj1BnpUVBSurq51rvPtt98yZswYPDw8mqxiQgjRHE4W\nnCat+CwRXmG42dadddau0RPkZWZmsmHDBr755huOHDly1du5uzug1V75q42Xl3NjqyYaSdrA8qQN\nzO/HE/sBuKX7iFrf75bUBo0O9FdffZWnn34atfrarq/q9aVXXObl5Ux2dlFjqyYaQdrA8qQNzK+o\nspjdZw7Q1sEbL9pe9n5bYxvU9QHT6ECPjY1l7ty5AOj1erZu3YpWq2XkyJGN3bUQQpjVrvR9GBQj\ng/0GtLhxW2rT6EDftGlTzb+fffZZhg0bJmEuhLB6JsXE9vTd2Kh19GvXy9LVaRL1BvrcuXPZu3cv\ner2eIUOGMGfOHAwGAwDTpk0zewWFEMIc4nITyCvXc4NvP+y19pauTpOoN9AXLFhw1Tt74403GlUZ\nIYRoLtvTzj0Z6tdynwy9lDwpKoS47uSU5XI09xiBLh3p4Oxr6eo0GQl0IcR1Z0da9SQWQ1rwuC21\nkUAXQlxXqoxV/Hl2L046RyK9wpu9/GNn9OQXV5hl3xLoQojrSnTWYUqqShnQLgqdRtesZcckZvPm\nDzGs2n3aLPuXQBdCXFe2p+1GhYpBfs07iUVBcQVfrkpAq1EzNMI8/fYS6EKI60ai/iTJhafp5tEF\nT/s2zVauoih8uTqB4rIqpgwLxs/LySzlSKALIa4LJsXE0qTlANwUMKJZy95yMJ3DJ3LpHuDOiD7t\nzVaOBLoQ4rqwP/MgZ4rS6O0dQaBrx2Yr92xuCf/bmIijnZaZ47qhNuMQAxLoQohWr9JYybITq9Gq\ntUwMvqnZyjUYTSxafpRKg4n7xnbF3dnWrOVJoAshWr2NZ7aTX1HA8A6D8WjGvvM/dp7iVEYRA8Pa\n0qer+SeelkAXQrRqBRVFrDuzGSedI6M73ths5SalFrBy1yk8Xe24e1TnZilTAl0I0aqtOLmWSmMl\n44NGY6+1a5YyyyoMfLY8DhR4YHw37G0bPbDtVZFAF0K0WmnFZ9l1dh9tHX0Y2K755gv9cUMiOQXl\n3DygI507uDVbuRLoQohWSVEUliauQEFhcsg4NOorT3nZlA4cy2LHkbN09HFm4qDAZinzPAl0IUSr\nFJebQII+kdA2nenWpkuzlJlfXMHXa46h06p5cEI3tJrmjVgJdCFEq2M0GfktaSUqVNwaMq5ZppdT\nFIXFK+MpLqti6o0h+Ho6mr3MS0mgCyFanZ3pe8kozWKgbxR+Tu2apcxN0WnEJucRFtSG4b38mqXM\nS0mgCyFalTJDGSuT12GrsWFc4JhmKTM9p4SfNyfhZK9j5s2hFptwWgJdCNGqrD21meKqEkZ3vBFX\nW2ezl2cwmvhseRxV554GdXMy79OgdZFAF0K0GjlleWxO2Y67rRvDOwxpljJ/357MmcxiBvVoR+8u\nXs1S5pVIoAshWo0/TqzGoBi5JXgsNs0wecXxlHxW7z6Nl5sd00Z0Mnt59ZFAF0K0CicLTnMg6xD+\nzu3p49PT7OWVlhtYtPwoqODB8d2b7WnQuli+BkJcJwoqitiW9icHs44Q5BrAmIAb8bT3sHS1WoXq\nh4iqxzomwfVcAAAgAElEQVS/rdME1Crzn6v+sOE4uYXlTBgYQEh7V7OXdzUk0IUws7Tis2w6s539\nmTEYFCNqlZqM0ix2Z+ynr08vxgTciLeDZfteW7rorEMkF56hp1c4IW7mfzpzX0IWf8ZmENjOmQk3\nBJi9vKslgS6EGSiKwtG842w6s40EfSIA3g6eDO8whCifnsTmxLP61EZ2Z+xnT8YB+vhEMjZgOG0d\nzT/EamtTZaxi2YnVaFQaJgXfbPby9EUVfLMmARudmgcndG/2p0HrIoEuRBOqMlaxLzOGjSnbySjJ\nBKCzWzDD/QfT3aNrTVdAn7aR9PKJ4GB2LKuTN7AvM5r9mTH08u7B2IAR+Dq1teTLaFG2pO4kt1zP\n8A6D8XIwbxeWyaTwxcqjlJQbuGdMF9q2cTBreddKAl2IJlBUWcz2tF1sS91FUVUxapWaKJ9eDPcf\nhL9z7XNIqlVqenn3oKdXGEdyjrI6eQMHsg5xIOsQPb3CuSvyFhyxjr5Za1VUWcyaU5tw1DqYfZ5Q\nRVH4aWMiR0/p6RHswbCevmYtryHqDfT58+ezZcsWPDw8WLFixWXLN2zYwHvvvYdarUaj0fDcc8/R\np08fs1RWCGuTUZLJppQd7M04QJXJgL3WnlH+wxjafiDudlc3bKpapSbCK4went2JzY1ndfJGDmYf\n4eC6I/Tw7M5NASPwdzHfxMIt2ark9ZQby7m90y046Mx7trxuXwobDqTi5+nIQxO6Wexp0LrUG+iT\nJ09m+vTpzJs3r9blAwYMYMSIEahUKhISEnjiiSdYs2ZNk1dUCGuhKArH9SfYmLKNuNwEADzt2nCj\n/2D6t+2DnbZhTwqqVCrCPbsR5hHK0bzjrE/dxOGcOA7nxBHm0ZWxASMJdPVvypfSomWUZLIjfQ/e\nDp4M8Rtg1rL2xmfyv01JuDnZ8OTUCBzszH+Pe0PUG+hRUVGkpqZecbmj418jipWVlVnlp5YQTSWr\nNJvFsd+TUpwOQLBrAMP9h9DDs1uT3SqnUqno7tGFoV16s+N4DKuSNxCbm0BsbgKhbTpzU8BIgt0C\nmqSsluy3pJWYFBO3Bpt3rPNjZ/R8vuIodjYanpzakzYuzTPrUUM0SR/6+vXr+e9//0teXh4LFy68\nqm3c3R3Qaq/cCF5e5h+DQdRN2uBiGUVZfLBrEXll+fTv0ItbuowixCPArGUO7tKLwV16cTTrOEvi\nVhGbdYz4vOPc1OlG7ou8vVnut7ZGhzPiic1NoLt3Z4aH9jPbieSZjEI+/C0WRYHn/9aXnp2t+y6k\nJgn0UaNGMWrUKPbt28d7773HV199Ve82en3pFZd5eTmTnV3UFFUTDSRtcLHs0lzejfmU/IoCbg0Z\nx0j/oWDCrO/RhW3gpWrHw2H3k5SfzE/HlrI6cTP5xcXc1fW26y7UTYqJxft/RoWK8R3HkpNTbJZy\n8osreP37aErKqnhgfCh+7vZWcUzUdaLVpP8ToqKiSElJIS8vryl3K4RF5ZTl8l7MwovD3EJC3AJ5\notcs/J3bs+vsPr4++hNGk9Fi9bGE3Wf3k16SQb+2va94B1FjlVUYePeXQ2Try7h1SBADw5pnTPXG\nanSgnz59GkVRAIiLi6OyshJ3d/dGV0wIa5BTlsu70QvRV+QzKfhmi4b5eU46Rx6LfJAg1wD2Zx7k\ni9jvqDIZLF2tZlFUWczyk2uxUeuYEGyesc4NRhOf/B7LmcxixvTvyPgBHc1SjjnU2+Uyd+5c9u7d\ni16vZ8iQIcyZMweDofo/z7Rp01i7di3Lli1Dq9ViZ2fHO++8IxdGRauQU5ZXE+YTg29iVMdhlq5S\nDXutPbN7PsCnh7/iUE4cnx3+mgfD78FGY2PpqplNmaGcjw59QWFlEROCxuJm2/T36CuKwjdrjhGb\nnEePYA8entyDvLySJi/HXFTK+dPrZlZXX5T031re9d4GuWV5vBuzkLxyPbcEjWVMwPBmr8PVtEGl\nsYrPY78lLjeBTm5BzOoxAzut9d6F0VCVxio+PvQFifknGdguiru63m6WE8dlO5JZtiOZgLbO/N9d\nkXTwc7e646CuPnR5UlSIS+SW6XnvXJhPCBpzUZgfPpHLmj2nKSk3YFIUTCYFkwKKSan++YLfmUwK\nSs3vqFmmUqkYHNGOKcOCsbNp3CFoo9HxUPi9fBn3Iwezj/Dhwc95JOJ+HHT2jX0brIbRZGRx3Hck\n5p+kp1c407reZpYw334onWU7kvF0tePxKRGNbhtLaHk1FsKM8sqrwzy3XM/4wDGMPfc4eZa+lJ82\nJnEwKQcVYGerQa1SoVKpUKtVqFWgUatQq1RodWrUF/xerVKhOrdMrYb8oko2R6cRezKXmTeH0sW/\ncdectGotM7vfxXcJv7A3I5r3YxYyu+eDONk0/6zzTc2kmPgu4ReO5MTT1b0TM7pPM8tdPbEnc/l6\nzTEc7bQ8OTUCV8eW2XUlgS7EOfryfN6NXkhueR7jAkdxU+AIKqqMrNp1mtV7zmAwmujSwY27R3Wm\nvbdTg8upMphYtiOZ1XtO89YPMYzs04HJQ4Ow1TX84RiNWsM9oVPRqXXsTN/DOzGf8ljPB3G1dWnw\nPi1NURSWJC5nb0Y0AS7+PBh+Lzp100fW6YwiPvo9Fo1GxeO3R9DOo+V+EEqgC8H5MP+U3PI8bg4c\nxU0BI9mfkMX/NiWSW1iBm5MNdwzvRN9Q70Z/3ddp1dw+LJjITp58sTKe9ftTOHwyl/vHhRLi1/AL\nfWqVmmldJmOj0bE5ZQfvRH/CY5EP0cauZd51turUBram7qSdow+PRMxs8JAKdcnJL+PdXw5RWWnk\nkVvDrGaiiobSvPTSSy9ZouDS0sorLnN0tK1zuTC/66kN9OX5vBuzkJzyPG4KGEkvlxv4bHkcq3af\nobLKxE39OvLwpDAC2ro0ad9tGxc7BvdoR6XBxJETuew4cpbKKiOdO7iiUasb1AYqlYrQNp0xKSYO\n5xzlYFYsYZ6hOJp54KqmtjllB8tOrMbDzp3He/0dF5umf2q5uKyK//wUQ05BOdNGdmJQj8tHT7TG\n48DR8cofbHKXi6jV9dIG+RUFvBv9KdlluYxsfyMVqcFs3J+G0aQQFtSGu0Z2bpYxr4+n5LN4ZTxZ\n+WX4ejpy/7hQ+vbwa1QbrDm1ieUn1+Bq48ycyIdo5+jThDU2nz1nD/BN/P9wsXFmbq9HzDLGeZXB\nyH9/Osjx1ALG9O3AHcNrn+DZGo+Duu5ykUAXtboe2iC/ooD3oheSVZZDmEM/ju3zprCkCk9XO6aN\n7ETPEM9mfaaiotLIL1uS2BSdhlqlYsqIToyI9G3UjDibU3awJPEPnHSOzO75AB2c/Zqwxk3vcHYc\ni2K/xVZjy5O9ZuHn1PRPaJoUhYXL4tiXkEVUV2/+PrE76iu0szUeBxLo4pq19jbIryjgvZiFZJXm\n4FQUSna8PzqthnH9OzK2nz82jbhA2Vjxp/JYvCqB3MJyOng7cf+4UPx9Gt7lsDNtDz8eW4qd1o5H\nI+632iF4j+tP8NGhL1CjYs65J2GbmqIo/G9TEuv2pdC5vStP3dkTXT2DBFrbcVBXoEsfuqhVa26D\ngopC3j2wkOyyHAxnAyk6EUTvzt48dlsPIjt7obHwHJFebvYM7tEOIxB9LJvth88CEOznilp97d8Y\n/F3a42nvQXTWYfZnxhDk2hEP+zZNXOvGOVOYykeHvsComPh7j/vo7B7S5GUYTSa+X5/IxgOptPNw\n4Kk7I7G3rfu+EGs8DqQPXVyz1toG+RWFvLHrI4pMeqrSA/Eo7cndozoTFmjeuSgbwsvLmU17TvHV\n6gT0RRV0bOvMA+NC8fNq2C2TMVlH+DLuB9QqNXd0nkS/dr2tYqTGjJIs3on+hJKqUmaG3U0v7x5N\nXkZ5pYFPl8Vx+EQuHbydeGJKBO7O9d81Y43HgXS5iGvWGtsgt7iQV3d9SIUmHyUriAkBNzEqqoNV\nzdp+ofNtUFpexY8bEtkZm4FWo2LS4CDG9vVv0Nl6bE48n8d+R5WpCn/n9tzWaQIhboFmqP3VySvX\n898DH5NfUcBdXW7jBr9+TV6GvqiC9345xJmsYsKC2vDwxLB6z8zPs8bjQAJdXLPW1gans/P4776F\nGO30OJV0Yt7Qe6x65hm4vA1iErP5es0xCksq6R7Yhocndm/QVGh55XqWnVjN/syDAER6hTMpZBye\nzdwNU1RZzILoj8kqzWFS8M1mGfwsJauYd385hL6ogmE9fbl7dGc06qv/ALfG40ACXVyz1tQG+4+f\n5cuEr8EpD2+lM/OHzsBGa/3P1NXWBsVlVXy+4iiHT+TSzsOBx27vgY97w26rPFlwml8Tl3Oq8Axa\nlYYbOwxmTMBw7JthcK8yQxnvRS8kpTidUf7DmBRyc5OXEZucy8e/xVJeaWTKsGDG9vO/5ruWrPE4\nkEAX16w1tIFJUfhjxwnW5PyKxjWXjradeXrgTKvoN74aV2oDk0nhly1JrN2bgqOdlkdvDadrx4Y9\nDaooCvszD7LsxGr0Ffk465yYEDSGAb5RZnufKo1VfHjwc04UJHODb1+mdWn6wba2HUrnmzXHUKtV\nPDA+lL6hDbsH3xqPAwl0cc1aehuUVRhYtCKWo8oGNG2yCHbqxGN9/obWDGOBmEt9bbDtUDrfrj0G\nwD1jujAk4vInHa9WpbGSjWe2s+7MZiqNlfg5tWNyyHi6tqn9gZuGKDdUkFxwmo0p24jPO06kdw9m\ndr+rST84TIrCb9tOsnLXaZzsdcy5LZxO7d0avD9rPA4k0MU1a8ltcDa3hA+WHibXdTdaz7MEuwQx\nJ/J+dJpr72+2pKtpg2Nn9Hy49Agl5QZGR3Vg6o0hDbpYel5+RQHLT6xlT8YBFBTCPbtxa8g4fBy8\nrnlfpVVlnCw4RWL+SRLzT5JSlIZJMQEQ2qYzf+8xo0kH26oyGPliZTx747PwdrfnyakRDe6OOs8a\njwMJdHHNWmobxCRms2h5HEbfw2i9Uwlw8WdOzwfNMrCTuV1tG2TpS3lvyWHO5pbSI9iDv9/S/arv\n4riSM0Wp/Jq4nKT8ZNQqNUPbD+TmgJE41DEmTHFVCSfyk0nMP0mS/iSpxWdRqI4XtUpNR+cOhLgF\n0sk9iK7undCom+7hreKyKj749TCJqQWEtHdlzuRwnB0aPwSuNR4HEujimrW0NqjuL0/mj53J2HY8\nhtrnFB2cfHks8u8tdrKHa2mD0nIDny6LJTY5Dz9PRx67vQdebo173YqicDA7lt+SVpJbnoej1oGb\ng0Yx2Lc/GrWGwsoikvKTSdSfJCn/JOklGTXbatVaAlw60MktiBC3IAJdO2JrpunxMvWlvPvzITL1\nZfQN9eb+caF1Pv15LazxOJBAF9esJbVBabmBz1cc5WBSDi5ByVR5HqOtgzdP9JqFs03Dxy23tGtt\nA6PJxP82JrHhQCpO9jpmTw6nc4eG9x+fV2UysCVlB2tObaLcWI63ffUYN5ml2TXr6NQ6glw7ngvw\nQAJc/JuliysprYD3lxymuKyKm/t3ZPLQoCuOy9IQ1ngcSKCLa9ZS2iA9p4QPlh4hM68U39AM9M4H\n8bRrw5O9HzbLJMLNqaFtsDkmje/XHUelgvvGdmVQj6YZ4KqospgVyevYmbYHG42OYNfA6gB3D8Tf\nuX2zX3Den5DFZ8uPYjIp3DOmM0N7Nv3AY9Z4HEigi2vWEtog+ng2i1YcpaLSSHjfIpLYiZutK3N7\nPWx1Y5U0RGPa4OipPD7+LZbSCgM39fPntqHBjbpYeqEyQzk2al2T9oFfC0VRWLP3DL9sPoGtjYZH\nJ4URFmSeoRus8TioK9Bbxg25Qlzg/K1pHy49gmJSGDkKktiJs86Jx3o+2CrCvLG6BbThH/f1wcfd\nntV7zvDh0iOUVxqaZN/2WjuLhXlZhYFv1h7jl80ncHe2Zf7dvcwW5i2RBLpoUUrLq3h/yWGW/3kK\nT1c7bpvowJ8Fa3HQ2jMn8kF8HL0tXUWr0baNA/+4rw+hHd05mJTDa99Gk1tQbulqNUiVwcT6/Sk8\nu3AXWw+m08HbiX/c26dRwwq3Ri3nKQtx3TudUcRHvx0hp6Cc7oFtGDpYyzfHvsdGo+PRnvebZTKE\nls7RTseTUyP4YUMiW2LS+NfX+5h9W49GzV3anEyKwp64TH7bfpKcgnLsbDRMGhzImCh/bG0sN2a9\ntZJAF1ZPURS2HUrn+/WJGIwmxg8MoHt3E58cWYxapeLhHn8jwMU6J22wBlqNmntGd8bP05EfNhzn\nrR9iuLm/P8N7t8elCe7VNgdFUThyMpclW06Sml2MVqNiVJ8OjBvY0WrrbA0k0IVVq6gy8u3aY/wZ\nm4GjnZbZk8Nx9izm/YOLMSkKf+8xg07uwZauptVTqVSM6N0eH3d7Fv4Rxx87T7Fq9xkGhrVldFQH\nfD0dLV3FGklpBSzZcoLjKfmogBvC2jJxcCCeri3zeYLmJHe5iFpZQxtk5JXy8W9HSM0uIbCdMw9P\nCqOILD46tJgKYwX3h02np1eYRetoTuZqg/JKAzsOn2X9/hSy86v71HsEezA6qgOhHd2bdR7VC6Xl\nlLB06wliEnMA6BniyeShQbRv4IQeTcEajoNL1XWXS71n6PPnz2fLli14eHiwYsWKy5b/8ccfLFq0\nCABHR0deeuklunbt2ojqClF9j/HiVfGUVxoZ3suPO4Z3IjYvjq+P/ohRMXFP6NRWHebmZGejZWSf\nDgzv1Z6YxGzW7k3h8Incmtl8Rkd1oF83n2ab+COvsJzftyezM/YsigIh7V25fWhwkzwUdb2p9wx9\n3759ODg4MG/evFoDPTo6muDgYFxdXdm6dSsffvghv/zyS70Fyxm6dbNUGxiMJpZsOcG6fSnY6NTM\nGNuVft182Jiyjd+TVmGj0XF/2HS6e7T+k4bmbIMTaQWs25fC/mNZKAq4Otkwsnd7hvb0w8nePE98\nFpdVsXLXKTYeSMNgNOHn6chtQ4OJCPGw2LeES1ljFjXqDD0qKorU1NQrLu/Vq1fNv3v27ElGRsYV\n1xWiLnmF5Xy6LI6ktALaeTjwyK3htG1jx/+O/872tF242brycI+/0d654cPEitoF+7nysJ8rOfll\nbDiQyrZD6fy69STL/zzFoPB2jIrq0OiRC8+rqDSybn8Ka/acpqzCiIeLLZMGBzGge9sme/jpetWk\nF0WXLFnCkCFDmnKX4joRdyqPhcviKC6rom+oNzNu6gpqIwuPfE1cbgJ+Tu14uMffcLeTr+Hm5Olm\nz50jOnHLDYFsO5TOhgMpbIpOY3N0Gj07eTKmrz+d2rtedgZtMJooKq2iqLSSorJzf5dWUVRaRXHN\nv6uX5RVVUFFpxMlex50jgrgx0g+dVh6JaQpNFui7d+9myZIl/PDDD1e1vru7A9o6RkSr62uFaB7N\n0QYmk8LPG4/zw9oENGoVsyb34OaBAejLCnhj+0JO5afSs203nhj4QIsdNbExLHkc3NPBnWk3hfLn\n4XR+O3exMiYxh5D2rrRxsaegpILC4koKSiooLa//KVSVCpzsbfB2t2dguC+3DgvB0UzdOU2pJWVR\nkwR6QkIC//jHP1i0aBHu7lc3FZZeX3rFZdbYb3W9aY42KC6r4rPlccSezMPDxZaHJ4UT5OvCoVOJ\nfHxoMfkVBQzy7cfUzpMoyTdQwvX1f8JajoPQ9q50vSuSxNQC1u49w8HEHJIoQKNW4WSvo42zLR19\nnHF20OFkr8PZwQZnh3N/2+tq/u1kr7uoS6W0uJzSYut+ctVa2uBCjepDr096ejpz5szhrbfeIjAw\nsLG7E9eJk+mFfPL7EXILKwgP8uDBCd1wstdxNPcYX8R+R7mxgknBNzPSf6jVXCC7nqlUKjp3cKNz\nBzeKy6pQqcDBVittY2XqDfS5c+eyd+9e9Ho9Q4YMYc6cORgM1V+vpk2bxkcffUR+fj4vv/wyABqN\nhqVLl5q31qLFUhSFTdFp/LQxEZNJ4dbBgYwbGIBapWJn2h5+Ov4bapWamd3vprdPhKWrK2phrrte\nROPJg0WiVuZog7zCcr5ec4wjJ3NxdtDx0C3d6R7QBpNiYvnJtaw7vRlHnQOzeswgyDWgSctuieQ4\nsDxrbAOzdrkIUR9FUdh6KJ2fNyVRXmmke2Ab/nZTV9q42FFlrOLb+J85kHUIb3tPHo6YibeDp6Wr\nLESLJIEuzCorv4yvVycQf1qPva2Wv93clUHh7VCpVBRXlrDwyNecLDhFsGsAD/W4Dyed9YwpIkRL\nI4EuzMJkUth4IJVft52gsspEzxBP7hnTBXdnWwCySrP5+NBissty6e0dwT2hU5tlDkohWjMJdNHk\nzuaW8OWqBJLSCnCy1zHjpq70C/WpuSPiRP4pFh75ipKqUsZ0HM74oNGoVfJgiRCNJYEumozRZGLt\n3hR+356MwWgiqqs3d4/qjItj9fjVJsXE5pQd/HFyDSbFxN1db2egb18L11qI1kMCXTSJ1KxivlgV\nz+mMIlwcbbhndBd6d/GqWZ5enMF3Cb9wujAFJ50jM7pNI9SjswVrLETrI4EuGsVgNLFy12lW/HkK\no0nhhrC23DGiU829ygaTgbWnN7P21CaMipE+Pj2Z0mkiTjZy8VOIpiaBLhrsVEYhi1fGk5pdgruz\nLfeN7UqP4L9mYD9dmMJ38b+QXpKBm60rd3a5lXDPbhassRCtmwS6uGZVBiPLdpxizZ4zmBSFYT19\nmXJjCPa21f+dKo2VrDi5jk0p21FQGOTbj0khN2Ovvf4G1xKiOUmgi6t2fuLenzYmkZFXiqerHTNu\n6kq3gDY16xzXn+D7hCXklOXiae/B3V1vo7N7iAVrLcT1QwJdXJVLJ+4d2bs9k4cGYWdT/V+ozFDG\nb0mr2Jm+BxUqRvgPYXzgaGw0MkO7EM1FAl3UKS27mKXbTtY5ce+RnKP8dOw38isK8HVsy92htxPg\n4m+pKgtx3ZJAF7XK0peyeOVR/ozNuOLEvUWVxSxJ/IP9mQfRqDTcHDiKMR1vRKuW/1ZCWIIceeIi\nRaWVrNx1mk3R5ybu9To3cW/wXxP3KorCgcyD/JL4B8VVJXR06cD0rlPwdWpr4doLcX2TQBcAlFca\nWL8vhTV7z1BWYcTb3Z5bbgigf7eLJ+49W5LJ70mriM2NR6fWMTlkPDd2GCSP7gthBSTQr3MGo4mt\nB9NZ/ucpCksqcbLXMW1EEFNGdyH/gmkCkwtOs+70Fg7nxAHQyS2Iu7reLkPdCmFFJNCvUyZFYe/R\nTH7bfpLs/HJsbTTcckMAY/r6Y2+rRafVoCgKR/OOsf70FhLzTwIQ4OLPqI7D6OHZTc7KhbAyEujX\nmep7yfP4desJUrKK0ahVjOzdnvEDA2oG0TKajOw4vY9fY1eTVnwWgG5tujC64zBC3IJkHkkhrJQE\n+nWiosrInqOZbNifSmp2MSpgQPe2TBociJdb9ROclcYqdp/dz4YzW8ktz0OFit7eEYzqeCMdnH0t\n+wKEEPWSQG/lcvLL2BSTxvZD6ZSUG1CrVPTp6s2EgQF08K6+l7y0qoztabvYnLKDoqpitGoto4OH\nMNBrAF4OHvWUIISwFhLorZCiKMSf1rPxQCoHk3JQFHB20DF+YEeG9fSjjYsdAAUVhWxO2cH2tF2U\nGyuw09gxuuON3NhhEMF+vlY3Oa4Qom4S6K1IRaWRP+My2HQglbScEgA6tnVmZO/29A31RqfVANXT\nv204s5U9Zw9gUIy42DgzNmAEg/z6yQBaQrRgEuitQJa+lE3RaWw/fJayCgMatYp+3XwY0bs9wb4u\nqFQq8isKiDl7hJisI5wsOIWCgpe9B6P8h9G3bS+Zz1OIVkACvYUyKQpHT+WxYX8qR07kogAujjaM\n6hPAsEg/3Jxs0Zfnszl1R02IA6hQEewWwND2N9DTK0xuPRSiFZFAb2GKy6rYczSTjQdSycirfvAn\nyNeFkb3b06erN0VVhURn7SE64QjJhaeB6hDv5BZEpHcPenqF4WrrYsmXIIQwEwn0FqCswkBMYjZ7\n47OIS87DaFLQalQM6N6WkX3a4+JmJCb7MO/ELOFU4RmgOsQ7uwUT6d2DCK8wXG2dLfwqhBDmJoFu\npSqqjBw+kcveo5kcOpGLwWgCwN/HiX6hPoR2tiOpOIFf0jZyOj4FOBfi7iH08g4nwisMFxsJcSGu\nJxLoVqTKYCIuOY+98ZnEJOZQUWUEoJ2HA71C3fD2KyfXmM5h/W5WHEwFQK1S09W9E5HnQtzZxqmu\nIoQQrVi9gT5//ny2bNmCh4cHK1asuGz5iRMneO6554iLi+PJJ5/k/vvvN0tFWyujyUTC6Xz2xGcS\nfSyb0goDAB6eCuHBBmzdC8ioSGVzSSZKsgL8FeK9vHvQw6u7hLgQAriKQJ88eTLTp09n3rx5tS53\nc3Pj+eefZ+PGjU1eudbKpCgkpRawJz6T/QlZFJVWorIrwcm7mI5tS6iwyaagKp84BcgDnVpLiFsg\nwW6BhLgGEujqj53WztIvQwhhZeoN9KioKFJTU6+43MPDAw8PD7Zu3dqkFWttSssNxJ/OIzY5j0Mn\nsikw5aB20mPbIR9nl3wMqnIMQBbgoNgT5hFaE+L+zn4yC5AQol4WSwl3dwe0555crI2XV8u+oGc0\nKSSeyWNXwmmiT50grSgd7IpROxSh7lyMnaa6f1wBXO3d6eoVRqhXCF09Q2jv2s4q7g9v6W3QGkgb\nWF5LagOLBbr+gskTLuXl5dzixhEpqSrlWHYKB1NOkqxPJ68yG8WuCJW2CtxB6169nho1Po5eBLkG\nVJ+BuwbQxs79ryFpqyD33GP7ltQS26C1kTawPGtsg7o+YOR7/DVQFIXiqhJyynI5W5JJSuFZTual\nkVWWRaXqgg8oG0AHdooLPnYBdPL0o6OrL+0c2+Lt4CndJ0IIs5BkuYCiKJQYSskr05Nbrie3PI/c\nMj155XnVP5fpqTRVXradqdIOVbkX7jpPAtv4Edk+iDDfDthqbS3wKoQQ16t6A33u3Lns3bsXvV7P\nkP6D2zkAAAVCSURBVCFDmDNnDgZD9a1106ZNIzs7m9tuu43i4mLUajVff/01q1atwsnJ+m6lMykm\niqtKKKgoJLdcT15ZHjnl5wK7TE9euZ5yY0Wt26pMOkzldpgq3FAq7DGVOeFp60W4bwARoW3p3N61\nZjRDIYSwBJWiKIolCq6rX+pa+q0URaHCWEFBZRGFFUUUVl7y54LfFVUWo1D7y7XT2OKic0NndKSq\nzJbCfC0FeVqUSnuUCntURh1+Xo6E+LkS7OdKt4A2uDu33jNwa+w7vN5IG1ieNbZBq+pDzy3LY9mJ\n1egr8mvCutJUVec2thobXGyc8XLtiIuNMy62LrjqXKkqtaNAryEjQyE5tYzT5caabexsNIT6uhDs\n50pIe1eC2rniYNfi3i4hxHWkxSVUekkGB7IOoVapcdY54ePoXR3SNs642jjjbOtc8/P5P5g0pGaX\nkJJZxJm0YuIzikjJLMak/HUh08vNjohgz5oz8PZeTqjVMhmyEKLlaHGBHu7ZjQVD/41Orb3sXm1F\nUcgvriQlq4iEzGLOZGWQkpVEVl7pRR0tWo2KQF9nQvxca/64OrXe7hMhxPWhxQU6VHehGE0m0nLP\nnXVnFdf8XVR6cfeLo52WLv5udPB2xt/HiQ7eTvh6OqLVWP7BHSGE+P/27ueljTQA4/gDIhXXdmtd\nHC1EF3QXXPGoIIigqDkoHvxxEnINHoTFmxclIcSLJ/cQlBwKHvwHjJWgol4Ejx5cBA/SWHBgJRRS\noe5G9rBrS6CxpOi85p3vB4JkFHngGR7GhDgPqewG/f1fH/Xm7Z965+b09z+3Bd/76ccq/fLrSzXV\n1yjg1Kip/rlevXj25UM7AGCxshv0D7lPury61uu6HxT4/4q7qf6/r9VV3BcTgH+V3aD/9vMr/fF7\nr+kYAPDk8EIyAFiCQQcASzDoAGAJBh0ALMGgA4AlGHQAsASDDgCWYNABwBLG/h86AOBhcYUOAJZg\n0AHAEgw6AFiCQQcASzDoAGAJBh0ALMGgA4AlGHQAsERZ3bEok8kokUgol8tpeXnZdBzfuL6+ViQS\nUWVlpbq6ujQ6Omo6ki9x/pu3vb2tvb095XI5TUxMqKenx3SkAp5doc/Nzam7u1sjIyMFxw8ODhQM\nBjU4OKjV1dV7f0cgEFA8Hn/MmL5RSh/pdFrBYFCxWEy7u7sm4lqrlB44/x9HKR0MDAwoFospEolo\nc3PTRNx7eTboY2NjSiaTBcfy+byi0aiSyaRSqZQ2NjZ0dnam09NThcPhgsfV1ZVXUX2hlD5c11Vj\nY6MkqaKiwkRca5XSAx7H93SQSCQ0NTXlddRv8uwll87OTl1cXBQcOz4+VnNzswKBgCRpeHhYOzs7\nCofDWllZ8SqaL5XSh+M4ury8VFtbm25vb03EtVYpPbS2tpqIaL1SOmhpadHS0pJ6e3vV3t5uIu69\njL4p6rquGhoaPj93HEeu6xb9+Ww2q/n5eZ2cnDD4j6BYH0NDQ0qn01pYWFBfX5/BhP5QrAfOf+8U\n62BtbU2Hh4fa2trS+vq6wYRfV1ZvitbW1ioajZqO4TvV1dVaXFw0HcP3OP/NC4VCCoVCpmMUZfQK\n/e5P+Tuu68pxHIOJ/I0+ngZ6MK9cOzA66B0dHTo/P1cmk9HNzY1SqZT6+/tNRvI1+nga6MG8cu3A\nsxtczM7O6ujoSNlsVnV1dZqZmdHk5KT29/cVj8eVz+c1Pj6u6elpL+L4Hn08DfRgnk0dcMciALAE\nH/0HAEsw6ABgCQYdACzBoAOAJRh0ALAEgw4AlmDQAcASDDoAWIJBBwBL/At4TO8yubWYRgAAAABJ\nRU5ErkJggg==\n", "text/plain": [ "<matplotlib.figure.Figure at 0x7f9acd449790>" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "plt.plot(big_rpoints, xi_mm_6/xi_mm_7, label = 'Fixed Om, h = %0.2f/%0.2f'%(h2,h1))\n", "plt.plot(big_rpoints, xi_mm_6h/xi_mm_7, label = 'Fixed omch2, h = %0.2f/%0.2f'%(h2,h1))\n", "\n", "plt.legend(loc='best')\n", "plt.xscale('log');\n", "plt.title('Fixed omh2')" ] }, { "cell_type": "code", "execution_count": 82, "metadata": { "collapsed": false }, "outputs": [ { "data": { "text/plain": [ "<matplotlib.text.Text at 0x7f9acbd35e50>" ] }, "execution_count": 82, "metadata": {}, "output_type": "execute_result" }, { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAXwAAAEMCAYAAADHxQ0LAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzs3Xd0FOXbxvHvbEndNNJ7SKcECL0GpIhKEemiIDZEBUVs\ngIBIFQuiWBEQBEUBURQE6YReJBACoQQSSCG992x5/0Dzk5eebDJL8nzO8Ry3zdzJxdz7ZMozksFg\nMCAIgiDUeQq5CxAEQRBqh2j4giAI9YRo+IIgCPWEaPiCIAj1hGj4giAI9YRo+IIgCPWEaPhCnZCS\nkkJ4eDg6nc7oyw4JCeHy5ctGX+7/N3LkSNauXVvj6xHqL5XcBQjCvejevTuZmZkolcrK57Zs2YKH\nhwdRUVEyVlaz4uPj+eCDD4iKikKv1xMWFsY777yDv7+/3KUJ9xExwhfuO19//TVRUVGV/7m6uspd\nUo0rKCige/fubNmyhf379xMWFsZLL70kd1nCfUY0fKFOSEpKIiQkBK1WS25uLhEREezcuROAoqIi\nevXqxW+//QZAeXk58+fPp1u3bnTs2JHp06dTWlpauawlS5bQuXNnOnfuzLp162673rS0NMaOHUvb\ntm3p1asXa9asqXxt0aJFvPLKK7zxxhuEh4fTr18/4uPj+eabb+jQoQNdu3Zl37591y0vOTmZ4cOH\nEx4ezjPPPEN2djYAzZo1Y8iQIdjb26NWqxk9ejTx8fHk5OQY5fcn1A+i4Qt1jr29PXPnzmXatGlk\nZWUxb948GjVqxIABAwD46KOPiI+P57fffmPr1q2kp6fzxRdfABAZGcmyZctYtmwZW7du5eDBg7dd\n18SJE3Fzc2Pv3r189tlnLFiw4LrP7Nq1i0cffZSjR4/SqFEjnn32WfR6PZGRkbz88stMnz79uuVt\n3LiRefPmcfDgQSoqKli2bNlN13vs2DGcnZ1xcHCozq9KqGdEwxfuOy+//DKtW7emdevWt9yt0blz\nZx566CFGjx7Nnj17eO+99wAwGAysWbOGKVOmYG9vj0aj4YUXXmDTpk0AbN68mYEDBxIcHIyVlRXj\nxo27ZR1Xr17l+PHjvPHGG5ibm9OoUSOGDBnChg0bKt/TunVrunTpgkql4qGHHiInJ4cxY8agVqt5\n5JFHSE5OJj8/v/L9AwcOpGHDhlhYWPDQQw8RGxt7w3pTU1N57733mDRpUpV+f0L9JQ7aCvedL774\ngo4dO97xfUOHDmXVqlWMHTu2ciScnZ1NSUkJAwcOrHyfwWBAr9cDkJ6eTtOmTStf8/T0vOXy09PT\nsbOzQ6PRVD7n4eFBTExM5WNHR8fK/7ewsMDBwaHygLOFhQUAxcXF2NraAuDs7Fz5fktLS4qLi69b\nZ3Z2Ns888wwjRoygb9++d/wdCMJ/iYYv1Ek6nY7p06czYMAAfvzxRwYOHIivry8ODg5YWFiwadOm\nmx7sdXFx4erVq5WPU1JSbrkOFxcX8vLyKCwsrGz6V69erbGDyHl5eTzzzDN0796dF198sUbWIdRt\nYpeOUCd9/fXXSJLE3LlzefbZZ3n77bfR6XQoFAqGDBnC3LlzycrKAq4deN27dy8ADz30EL/++itx\ncXGUlJTw+eef33Id7u7uhIeHs2DBAsrKyjh79izr1q2jf//+Rv95CgsLefbZZ2nZsiVvvPGG0Zcv\n1A+i4Qt1TkxMDMuXL2f+/PkolUqef/55ABYvXgzAm2++ia+vL0OHDqVly5aVZ7wAdO3alaeeeoqn\nnnqKXr160b59+9uua8GCBSQnJ9OlSxfGjRvH+PHj72p3073atm0bp06dYv369YSHh1f+d7u/QATh\n/5PEDVAEQRDqBzHCFwRBqCdEwxcEQagnRMMXBEGoJ0TDFwRBqCdEwxcEQagnTPrCq4yMgps+7+Bg\nRU5O8U1fE2qHyEB+IgP5mWIGzs42t3ztvhzhq1TKO79JqFEiA/mJDOR3v2VwXzZ8QRAE4d6Jhi8I\nglBP1No+/IsXL7JixQpyc3Np3749I0aMqK1VC4IgCFRzhD958mQ6dOhwwzStkZGR9O7dm169elXO\nXxIQEMDMmTNZuHAhx48fr85qBUEQhCqoVsMfOHAgS5Ysue45nU7HzJkzWbJkCZs2bWLjxo3ExcUB\nsGPHDsaMGUPXrl2rs1pBEAShCqq1S6dNmzYkJSVd91x0dDS+vr54e3sD0KdPH3bs2EFgYCA9evSg\nR48ejBkzhn79+t1x+Q4OVrc8Cn67U4+E2iEykJ/IQH73UwZG34eflpaGm5tb5WNXV1eio6M5fPgw\n27Zto7y8/K5H+Lc6v9XZ2eaW5+gDnEqLQ2fQ0sw1GIUkjkvXhDtlINQ8kYH8TDGD230B1dpB23bt\n2tGuXbtaWdc3J1ZhUBejOmVNM4cW9G/cBWerBrWybkEwZRERbfH3D6x8PG/eR+Tl5bJlyyYmTHiz\n2ssfPLgfS5asxN7e/rrnCwsL+eSTD4iJicZgMBAW1pzXXnvruttDVtWff/7B2bNnmDjx7Wov679W\nrvyOjRs3oFAomDDhTdq163DT961b9xPr169FoVDSsWMnXnrpVc6cieGDD+YC126h+cwzY+ja9QGj\n1lcVRm/4rq6upKamVj5OS0ursVu+3crTZ2zJzMzlVFAFUdI+jh/cj4PkRTef9nT1b4laYdIXGAtC\njTE3N2f58h+ve87d3YPQ0MY1ut73359Jw4YBTJs2E4ClS7/h/fdnMXv2/Bpdb1XFx19i+/atrFy5\nhszMDCZMeInVq9dX3o/4X4cOHWLv3kiWL1+NmZkZOTnZAPj7B7JkyfeoVCoyMzMZPfpxOnW6djN7\nORl97WFhYSQkJJCYmIirqyubNm3i448/NvZqbsvd0hybtFwapkGphQWnvK04HZrAr1eS2BD/OwHW\njekfGoF/A69arUsQTNHx48f46adVfPDBQhYu/Ag7Ozuefvp5Dh8+yPffL2PRom/Iy8vjo4/mkpaW\nBsArr0ykWbMW5OXlMmPGO2RkZNC0aRg3u59SUlIi586d5b335lU+N3r0cwwf/hjJyUmkpaWybNli\nNBoNFy9epHv3ngQEBLJ27WrKysqYN+9jPD1vv61mZmYyceJ4UlKSiIjoxksvvVqt38m+fXvo2fNB\nzMzM8PDwxMvLm9jY0zRt2uy6961evZonn3wKMzMzABwcru1J+PcG9QDl5WVIklSteoylWg1/4sSJ\nHDlyhJycHCIiIhg/fjxDhgxh+vTpPPfcc+h0OgYNGkRQUJCx6r0rHmNfpvTKZfL3RZJ/6CBtLmTT\n5gKkONlzMkDLRb8oPj5xAiudE+3cWvNIaHus1Fa1WqNQv63ZGcfRs+nVWoZSKaHT/a/Btgl1YWj3\nwNt8AsrKyhg9+to1MO7uHsyb99F1r48dO47nnhtF8+bhLFz4IR999BkKhYJPP/2IoUOfoHnzFqSm\npvL66+P44Yd1fPfdtzRr1oKnn36eAwf2sXHjhhvWmZBwicDA4OtGx0qlksDAYOLjL2JlZU1c3HlW\nrVqHra0tQ4c+Sr9+A/j22+9Zs2Y169b9zKuvvn7bn+vChfN8990PqNVqRowYxKBBw3B1dbvuPZ99\n9jHHj/99w2d79HiQkSNHX/dcRkY6TZqEVT52dnYhI+PGvBISEoiOPsHixV9ibm7Oyy+/SqNGTQA4\nfTqGefNmkpZ2lalTZ8o+uodqNvwFCxbc9PmuXbvKfuqlhY8vFiNG4jR4GIV/HyNv7x48zp/DIxMq\nosw442lDdGgqu5Rb2JW2DQ9VAA8HdSbcI8Rkvo0FwdhutkvnvywsLHj77XcYN24M48e/VjmyPnbs\nCAkJ8ZXvKyoqori4mBMnopgz5wMAOnbsjI2NbZXqCg1tjJOTEwCenl60aXPteF9AQCBRUcfu+PnW\nrdtUHg/w8/MnNTX1hob/yiu3/9KoCp1OR35+HosXLyc29jTTp09mzZoNSJJEkyZNWbVqDQkJ8cyZ\n8y7t23fE3Nzc6DXcC/m/cmqYwswM2w4dse3QkfLUVPL2RZK/fx/N47NoHg9ZDew47qfiQsBZlp47\nj+q0hmYOLXi0cRecrB3kLl+oo4Z2D7zjaPxOauoMkYsX47C1tSMzM7PyOYNBzzfffFelhuXn509c\n3Hn0ej0KxbWz5vR6PXFx5/Hz8yc9Pa1ylwiAJEmVjyVJQqfT3XEdarW68v+VSgU6nfaG99zLCN/Z\n2YX09LTKxxkZ6Tg7u9zwWVdXV7p27Y4kSTRu3BRJksjNzcXB4X+9w8+vIZaWVsTHX6zxYyV3Uucb\n/n+ZubnhPHgoTgMGUhh9kvy9eyDmFL2yDXSPVnHB054TwbkcV+7l+KH9OEl+PBwQQTufxmLUL9QL\nqalX+emnH/juux94441X6dKlG02aNKVNm/b88svPjBgxCoALF84RFBRCixbhbNu2hdGjn+Pgwf0U\nFOTfsEwvL2+CgkJYsWIpTz/9PAArViwlODgELy/v6xrr7ezZs4vY2NOMHTuuSj/bvYzwO3WK4L33\npjJs2BNkZmaQmJhYuavmv3r27Mnx48do2bI1V65cRqvVYm9vT0pKMi4urqhUKlJTr3L5cgJubh5V\nqtuY6lXD/5ekUmHTshU2LVtRkZ1F/v595O2NJPRyJqGXocDOlr99zYgNvsjKi/H8dM6W8AateCws\nAltza7nLF4QaYTAYmDdvFuPGvYqTkzOTJk1j7twZfPvt90yY8CYLFsznqaeGo9PpaN48nDffnMLT\nTz/PjBnv8OSTQwkLa3bDbpR/TZo0jYULP2To0EcBaNq0GZMmTb+n+pKTk7C2rp3tz98/gO7de/Lk\nk0NQKpVMnPhW5TGI99+fxYABgwgNbcygQYN4/fW3GDlyKGq1mnfemYEkSURHn2DVqhWoVCoUConX\nX590w6mqcpAMNzusbiJu9edqTfwpa9DrKY49Q97ePRRGHQedDr1azTlPe46F6shuoAK9EndlIP2C\nu9Lcs3p/jt/vTPGCk/qmvmUwc+Y0xo+feN3uErmZYga3u/BKNPyb0Obnk78vktzdu9BmZwGQ6eTA\nUX8lcQ0l9EoJc20D2jm3pX/TjliqLe6wxLrHFP+h1zciA/mZYgai4VeRQa+n6OQJcnfvpPh0DAAV\nVlZEe9sQFaqlyFoJOjW+6kYMaNyNYJf6c16/Kf5Dr29EBvIzxQxEwzeC8tRUcnfvJH//XvQlJRgk\nBcmeThwKMJDsAUgSVhVudPZoxyON26FW1u3DI6b4D72+ERnIzxQzEA3fiPRlZeQfPkjerh2UJSYC\nUGJvx1EfS06HaClXK5C0FgRahDGseU/c7Uxnf6MxmeI/9PpGZCA/U8xANPwaYDAYKL0YR+6uHRQc\nOwo6HQa1mjgfJw4Fasl2lDDoFTgbAng0tDstvQNkrdfYTCGD+k5kID9TzEA0/Bqmzcsjb+8e8vbs\nRvvP5Ek5bs7s81dwyVcPkoRFuQsRHp3o07QtKsX9daf7mzG1DOojkYH8TDED0fBriUGnoyj6BLk7\nd1AcewaAMnt7DjW0IiaoAq1KQlFuTVPbVgxr8QD2VvfvOf2mmkF9UpUM5JoeuSbcal1bt27mhx9W\nYDAYsLKy5vXXJxEUFFylZd3J7TJISUnm3XenkJ+fR0hII6ZNm3ndFcH/Sk1NZf78WaSnpyFJEh9+\n+Ok/8xzN5OzZWMCAt7cPU6bMwMrqznN+mcR8+PWBpFSiCW+FJrwVZYmJ5GzbQv7hQ3SNyqXLWUti\nGjpyKLiQ6NJIovcfwFPRiMFNexLs6i536UI9Idf0yLXJ3d2DRYsWY2try8GD+/nggzl8++2KWq/j\nq68WMWzYCHr27M2HH85l48YNPPbY4BveN3v2dJ566hnatGlPcXFx5fQTr7wyEWvra/MDLVq0gF9+\nWXPDFBD3SjT8GmLu7Y3bM8/jNHAIuTu3k7t7F83OJNHsvIorfu7s8a8g2ekUC2NOYRPlQ2+/CLoF\nN60MWxBqS01PjwywbdsWVq78DoPBQIcOnXnppVcA6NWrCwMGDObgwf04Ojrxwgsv8eWXn5GWlsar\nr06kc+eu6HQ6vvpqEYcPH0ChUNCv3wAGDx4OwC+//Mz+/ZFotVpmzZqPr68fYWHNK9fbpEnYTWe5\nvJmbLauqDAYDx48f5d13ZwPw8MN9WbZs8Q0NPz7+EjqdjjZt2gNcN4L/t9kbDAbKysowxuwuouHX\nMJW9PU4DB9OgTz/yD+wjZ9tWfOISGRkHud4e7PGTSPC6zC8pq/gt3oE2ju0Y3LwzluZmd164cN9a\nH7eRqPRT1VqGUiGh0/+vwYa7hDEwsO9tPyPH9MiZmRl89dUili5dhY2NDRMnjiMycjcREd0oKSmh\nZcvWvPzyq0ye/AbffvsVCxd+SXz8JebMmUHnzl35/fdfSU1N4bvvfkSlUpGfn1e5bDs7O5Yt+4H1\n69eyevVKJk2adt26N27cQPv2He/q93mnZV25ksD06VOue06lUqDV6lm06BtsbP63KyUvLw+NxqZy\nSuRbTa+cmHgFGxsbpkx5k6tXk2nduh1jx46rnMZh7tz3OHhwP35+DRk37rW7+jluRzT8WqIwN8f+\ngR7YdX2AopNR5Gz9Cy6c59FEqHB24pCfNVENszlUuIVDu3cTYN6cJ1v2wsW2atPNCsLNyDE9cmzs\nacLDW1VOifDggw9x8uRxIiK6oVarKxtyQEAgarUalUpFQEAgqakp/6z7MAMGDKpsnra2dpXL7tq1\nOwAhIY3Ys2fXdes9fvwYmzZt4Msvl9zV7+Z2ywLw8fG74XdX3WNZOp2WkyejWLbsB1xd3Xj33cls\n3vwHffsOAGDKlHfR6XR88smH7NixlT59+ld5XSAafq2TFIrK/fwlly6Ru20LBX8fo0tGJl3O2hDj\n78y+hkVcVB9mxqG/8VY0ZUT4g/g6OsldumBEAwP73nE0fif3y/TIt6NSqSpnopUkCbX62l+2CoXi\nLqdFvvb+/z8lclzcBd5/fxYfffQZdnZ3dyD2Vsv6172M8O3s7CgsLECr1aJSqW45vbKzsytBQSGV\nX6xdunTj9OkY+v7nn4ZSqaRnzwf58cfvq93wxQ5jGVn6++P+wks0nPcBDr16o6iooOnJS4z9M4fH\noqyxKdaTpDjB/OMfM+Ov5cSmpMhdslDH/Xd65EOHDnD6nylF/p0e+V8XLpwDqJweGbjl9MiNGjXl\nxInj5ObmotPp2LZtKy1atLzrmtq0aceGDevRaq814f/u0rn5z5DKO++8ybRpM/Hx8b3utVdfffGu\n9+n/f/+O8P/734YNG1i+/Mfrmj1c+/IKD2/N7t07ANi8eSOdO994U6hGjRpTUFBATk4OcO2vEj+/\nhhgMBpKSrl3YaTAY2LcvEh8fvyrV/V+i4ZsAtaMTzsMep+GHn+A8dDgqjQ0+sfE8uzmDocc12BdI\nZKjPsOjMp0z58xuOxcffeaGCcI9uNj3y/PmzKCsrY8KENzl7NpannhrOk08O4bfffgHg6aef5+TJ\nKJ58ciiRkbtuOj2yk5MTY8eO45VXXmD06McJCQmlS5dud11X374DcHV1Y/Tox3nqqccrv2BuZfny\nb8nLy+Pjj+czevQInn12JHDtpitJSYnY1tJu0hdfHM/PP//AsGEDyMvLo2/fa1NDnz17hvffnwVc\nG72PG/cqEya8yKhRwzAYDPTv/xgGg4E5c95l1KhhjBo1jKysTJ5++rlq1yTOwzdBBq2W/EMHyf5z\nIxXpaaBQkBXckD/9ysluUIbBANalPvQJ6EHXkFBZbs5S1zO4H4gM7s2lS3Fs2vQ748dPNNoyTTED\nceHVfcqg01Fw9DDZmzZSfjUFJIn8kAD+9NWS5lgMgFmxGz28u/FIWDgKRe01/vqSgSkTGcjPFDMQ\nDf8+Z9DrKTx+jKyNf1CelAiSRHFIIJt9DCQ5Xdtnqix2opNrZx5r0Q4zdc1P3VDfMjBFIgP5mWIG\nouHXEf/Oz5+18XfKLicAUBESxBYfBZecrx30kUrsaGnfgWGtOmNtUXPn8tfXDEyJyEB+ppiBaPh1\njMFgoDjmFFkbf6f0YhwA+qBAtvuZc8Yp49oVeaUaWtl25vE2XbA0v3H+juqq7xmYApGB/EwxA9Hw\n6yiDwUDJ2Viy/thAyflrp8lJgf7saqjhpFMaSAYosaN9gwiGte6Amdp4l12IDOQnMpCfKWYgGn49\nUHz+HNl//E5x7GkAJP+GbA3ScLpBGpIEUnEDurg8wKBWbVApq382rshAfiID+ZliBqLh1yMlF+PI\n3vg7Raeirz3RuBG/N1QSb3ftYhNFkTM9PHrQL7wFympM1CYykN/9ND1yYWEhn3zyATEx0RgMBsLC\nmvPaa2+h0Wiqvc4///yDs2fPMHHi29Ve1n+tXPkdGzduQKFQMGHCm7Rr1+GG98yZM40LFy4CUFhY\ngEZjUzn9wt18viaI6ZHrEcuAQDxfnUjx+XNk/rKW0jOx9I+V0Ic35xevClI0GWzL+4ldm3bT26cX\nDzVrikKG8/gFecg1PfL778+kYcMApk2bCcDSpd/w/vuzmD17fo2ut6ri4y+xfftWVq5cQ2ZmBhMm\nvMTq1esrJzX718KFCyu/dBct+qTyC+xuP1/bRMOvo6yCQ/Ce9A5FJ6LI/HUd5cdPMDRaRVnblqxx\nLSDLOpVNWSvZ9ocX/fwf5IEmIbJcwCXIr6anR05KSuTcubO89968yudGj36O4cMfIzk5ibS0VJYt\nW4xGo+HixYt0796TgIBA1q5dTVlZGfPmfVw518ytZGZmMnHieFJSkoiI6MZLL71ard/Jvn176Nnz\nQczMzPDw8MTLy5vY2NM0bdrspu83GAzs2rWdTz/9qkqfry2i4ddhkiShCW+JdfMW5B/YT9bvv2J2\n4AijLC0p6NCKnxtkUKBJYl3aMjZd8uOx4N50CvEXjb8WZKz96dq9kKvhslKBTqevfGzTug3OQ4bf\n9jNyTI+ckHCJwMDg60a3SqWSwMBg4uMvYmVlTVzceVatWoetrS1Dhz5Kv34D+Pbb71mzZjXr1v3M\nq6++ftuf68KF83z33Q+o1WpGjBjEoEHDbpjm4bPPPub48b9v+GyPHg/ecGORjIx0mjQJq3x8q+mN\n/3XyZBQODg3w9vap0udri2j49YCkUGDXuQs27dqRu3MH2X9uxHrnPp63tyezQwvWaJIp1STwY9Ji\nNpz3Z0jjh2gT4CMafx0kx/TIdyM0tDFOTtdmhPX09KJNm3bAtSmTo6KO3fHzrVu3qdyd4ufnT2pq\n6g0N/5VXbv+lUR3bt/9Fz569a2z5xiIafj2iUJvRoPfD2HWJIGfLZnK2b8Vh827GubqS1L45v5hf\npFhzkeUJX/HrmWCead2PIA9nucuuk5yHDL/jaPyOy7hPpkf28/MnLu48er2+8o5uer2euLjz+Pn5\nk56ehpnZ/y4SlCSp8rEkSXc5TfL/rjW51fTG9zLCd3Z2IT09rfLxraY3BtBqtezZs4ulS1dW6fO1\nScyWWQ8praxxGjiYhnPnY9e1GxUZGbhu2MZrRww8VtEStcGCfM1ZPjn1KR/89Rs5BSVylyzUkpqY\nHtnLy5ugoBBWrFha+dyKFUsJDg7By8v7rmvbs2cXX3/9eZV+Lrg2wv//0xsvX/7jTe8T26lTBNu3\nb6W8vJyUlGQSExNp1KjJTZd77NgRfH39cHFxrdLna5No+PWYyt4B15Gj8Zs5F03rNpQlxOOzdguv\nn7Kmm7YZklLHZfUB3on8mO/37adCe+eRlnD/qqnpkQEmTZpGYuIVhg59lKFDHyUx8QqTJk2/p/qS\nk5Owtrau9s95N/z9A+jevSdPPjmE118fz8SJb1Ueg3j//VmcPXum8r07dmylZ88H7/rzchLn4QuV\nShPiyfxlLcWxZ0CSsOjUkV+8DcRJ16ZvUBa481hAH7o1CcLFxVZkILP6th3MnDmN8eMnVt4q0RSY\nYgbiwivhnhSdjiFj9Q+Up15FodGg69WN5RYJ5EvpGPQStkUhvNZjGK6a2hltCTcntgP5mWIGouEL\n98yg1ZKzfStZf2zAUFaGuV9DrnRtybqyv9EqijFUmOFnaMNznR6kgY2l3OXWS2I7kJ8pZiAavlBl\nFTk5ZK79mYIjh0CS0HTqzO5gO/YX/w0KHYZiW9rZd+fxdrUzD7/wP2I7kJ8pZmASDX/79u3s3r2b\nwsJCBg8eTOfOne/4GdHwTUfxubOk/7iK8uQkFFbWOA0bwGLdFS5rr52tocz34NGAR+jeNEicv19L\nxHYgP1PMoMYa/uTJk9m9ezeOjo5s3Lix8vnIyEjmzJmDXq9nyJAhjBkzpvK1vLw85s+fz9y5c++4\nfNHwTYtBqyV3906yNvyKvqQEc28fSvr0ZEX+UfJJw6BXYFMUwtMt+xLqLc7fr2liO5CfKWZwu4Zf\nrdMyBw4cyJIlS657TqfTMXPmTJYsWcKmTZvYuHEjcXFxla9/9dVXPPHEE9VZrSATSaXCoeeD+M2e\nh0v3bpQlXkHx9TJeibdhsNPDqLGg0CaWz05/xgebfye/qEzukgVB+I9q79JJSkpi7NixlSP8qKgo\nPv/8c5YuvXaRxTfffAPAmDFj+Oijj+jUqRMdO3a8q2VrtTpUKrFf2FTlx57l0jdLKIqPR2llhcew\nwfzuUEJkyj5Q6JAKnRjWaBCPdWgudvMIggkw+tQKaWlpuLn97+ILV1dXoqOjWblyJQcPHqSgoIDL\nly/z+OOP33FZOTnFN33eFP+Mqm+cnW0oc/LEY/I08vbsIvPXX0j87nvaeXrRZeBjLMk9RpomgdWX\nv+Wv2Ka83Kk/7o5Vm2dFuDmxHcjPFDMwifnwR40axahRo2prdUItkRQK7B/ogaZ1GzLXryN/317K\nF33J8+3ac6FjP9Zd3UaOJppZhy7Ryb43w9ob545bgiDcO6Nvea6urqSmplY+TktLw9XV9TafEOoC\nlY0tbk89g/fkaZj7NaTg8CE8l6xluk1vgq2aIVkWsr/0F97641tiE+WfJlYQ6iOjN/ywsDASEhJI\nTEykvLycTZs20b17d2OvRjBRlv7++EyeitPgoehLisn+9luGnsxnrN8TWBrsKLO9yKLTi1i0bSsl\nZTfOaCjzB29bAAAgAElEQVQIQs2p1kHbiRMncuTIEXJycnB0dGT8+PEMGTKEPXv2MHfuXHQ6HYMG\nDeLFF1+s0vLFaZmm624yKL+aQup3Sym9dBGljQ2OI57kd3U6h7P2g6RHke/O8JABdGrUsJaqrlvE\ndiA/U8zAJC68qgrR8E3X3WZg0OvJ2fYXWb+tx1BRgaZ1W3T9e/H1uY3kGq5i0ClxL2/FyxF9xBQN\n90hsB/IzxQxEwxeM7l4zKE+9em20fzEOpY0Nzk+MZK9NGZsTt2BQVECRPQ+696Ffq2bipup3SWwH\n8jPFDGrswitBuFtmbu54vz0F56HD0ZeWkvr1l4TvimZm85fwVgeDdS5/5f7I5N+Xk5CeK3e5glAn\niRG+UCXVyaA8NZXU5UspjbuAUmODyxMjOe1qzk/nf6NCUYSh1IrW1j0Y1bmTOIXzNsR2ID9TzECM\n8AWTYubmhvdbk3Ee9jj68jKufvMlPpv2MqflSzTVtEIyL+Zv3R9M3riUpMw8ucsVhDpDjPCFKjFW\nBuVpqaQtX0bJhfMoNBpcRjxJip8Li6N/pEyRj6FEw4Ou/Xm0lZie4f8T24H8TDEDMcIXTJaZqxte\nb07CefgTGMrLSV38NbbrNjGn1VhCrJojWRayNXc1Mzb9RG5hqdzlCsJ9TYzwhSqpiQzK09JIW7GM\nkvPnUGpscHv2eU7Zw49n16FTliIVNWB40BA6hwYYdb33K7EdyM8UMxAjfOG+YObqitcbb+M8fAT6\n0hKSP11AwKFYZnV6HXelPwbrbH5MXMKCrRspLRdX6QrCvRINXzApkkKBQ88H8Z4yDbWLKzl/bSZv\n4ae81XgQj3j2R5IkLqoieXvL55xJTL3zAgVBqCQavmCSLHx88Z0+A5t2HSi9dIkrM6cTUWjOtHav\nYWtwRatJ4fPTX/Dd3kj0epPdKykIJkU0fMFkKSwscXtuDK6jn8Wg03H1qy+Qft/MrC7jaN+gK5K6\nnGMVG5m08VuSs8Xpm4JwJ6LhCyZNkiTsOnfBZ+q7mHl6kbdrJ8nzZjPMrSWvNH8Jc50dRZo45hxa\nyB/HT2DC5yAIguxEwxfuC+Yenvi8Mx27iG6UJSZyedYM3C8kMe+BNwmxDEeyKGJz9mpmbl5NXrE4\nfVMQbkY0fOG+oTAzw3XUaNzHvIikUJC69Ftyvl/BuPDHGBk4CqXBgnSLE7yz8xMOXrgod7mCYHJE\nwxfuOzZt2+Ez/T3M/RqSf2A/l2fPIFyyY27EW7grAjFY5bAyYQmLI7ejF7t4BKGSaPjCfcnM2QWf\nSe9g36s3FampXJnzHrqDh5kS8RwPu/dHkuCkdivT/lxGblGJ3OUKgkkQDV+4b0kqFS7DHsdj/AQk\nc3PSV31P6jdf8rBvOK+1eBm11pZcy3NM272QU4lJcpcrCLITDV+472mat8D33VlYBgVT+PcxLs98\nF8/8cuZ1ewM3KQi9ZQ5fxX7Fz0cPyF2qIMhKNHyhTlA3aIDXG2/ToG8/tFlZJH0wl/LDh5na7Tm6\nNOiFpNCxJ/83Zm/9gdLyCrnLFQRZiIYv1BmSUonTgEF4TngdycyctBXfkbF6FcOaPsCYxs+j1Fpz\nVXWSSds+JT4jQ+5yBaHWiYYv1DnWTZpeu1DLw5PcnTtI+uQjmtq4MDvidex1PlRYpvPR8c/YEhMl\nd6mCUKtEwxfqJDMXF3ymTEUT3oqSc2e5PHsGFpnZzO75Ms2tOmNQlfN72k98sns9Op1e7nIFoVaI\nhi/UWQoLS9xffBnHRx9Dm5XFlXmzKfz7KGPa92eE30gUOnPi9IeYtHURafliLh6h7hMNX6jTJIUC\nx36P4vHyeJAUXP36SzJ//YVODRsztf1rWFa4UmyezKwDn3Dw0jm5yxWEGiUavlAvaMJb4TNlKmpn\nZ7I3/UHKF5/hrLbg/V4TCFC2wmBWzMpLy1hycDN6vdjFI9RNouEL9Ya5pxc+77yLVeMmFJ08QeLc\nWejTM5jYdRh93IYg6VVElexi+vbF5JcWy12uIBidaPhCvaLUaPB8dSIOvXpTfjWFK3Peoygmmkca\nt+H18PGoyxqQo7rE1N0LOJcmrs4V6hbR8IV6R1IqcR72OG7PPI+hooLkTz8he8ufNHRy5f2eE3HT\nNUZnls9nJ79i+zlx6qZQd4iGL9Rbth074f32FJR2dmSuW0Pqkm8wM8C0XqNpbdkTg0LL+qTVLD28\nSdxYRagTRMMX6jWLhv74Tp2BRUAgBYcPkfj+HCqysni6w4MM9noSSWvO8aI9zNq1lLKKcrnLFYRq\nEQ1fqPdU9vZ4vfE2tp0jKLtymSuz36Pkwnm6h4YxofnLKEsdSOM8U3Z+Qmp+ttzlCkKViYYvCIBC\nrcb1qadxHvEkuqJCEj+aT/7B/QS5uTGr66toSv0oVWcx+9BCTiRfkLtcQagS0fAF4R+SJOHQvSde\nr72Bwtyc1KXfkrnhV2ytLJnT+wV89W3RK0v5NnYpv52OlLtcQbhnouELwv9j1agx3pOmonZyJvuP\nDaQuWYxCr+etnoPpYjMAg17BtrSNfHbgJ3R6ndzlCsJdEw1fEG7C3MMD7ynT/jmYe5DkBR+iKyzk\n8bYdGdnwGSjVcK70ONN3f05BWZHc5QrCXRENXxBuQWVri9frb6Fp3ZaSC+e5Mm8W5WmpdAgK5O02\n41AVuZFLMtMiPyY+J1nucgXhjkTDF4TbUJiZ4T5mLA0e6UtFWhpX5s6i+Pw5fJwbMKfny9gXNaFC\nWchHf3/B3gRxkZZg2mqt4ScmJjJlyhReeeWV2lqlIBiFpFDgNHAwrqOfQV9aSvKCD8k/dACNpTkz\n+4wkWP8ABoOeny6tZuWJjeIiLcFkVavhT548mQ4dOtC3b9/rno+MjKR379706tWLxYsXA+Dt7c3c\nuXOrszpBkJVd5wi8JryOpFaTumQxWX9sQCFJvNrzYXo5DMNQZsGh7Ejm719CmU5cpCWYnmo1/IED\nB7JkyZLrntPpdMycOZMlS5awadMmNm7cSFxcXLWKFARTYdWoMd6Tp6JyciJrw6+kLvsWfUUFj7UO\n59ngMVDYgMTyC0zbvYDMYnGRlmBaVNX5cJs2bUhKun5GwejoaHx9ffH29gagT58+7Nixg8DAwHte\nvoODFSqV8qavOTvb3HvBglHV2wycQ3H5eD6xc96n4OABpII8Qie9yUPtG9HY/02m/v4tRTaXmHVg\nIZO6vkgzj+CaK6W+ZmBC7qcMqtXwbyYtLQ03N7fKx66urkRHR5OTk8Mnn3zCmTNn+Oabb3jhhRfu\nuKycnJvPSe7sbENGRoHRahbunchAiduEN0ldupj8v48R9fokPF+diKWLCzMffIb5W38lU3Oc2ZGf\nMrDho/Tw72D0CkQG8jPFDG73BVRrB20dHByYOXMm27dvv6tmLwimTmFmhvsLL+Hw0CNUpKWSOHcW\nJRcuYG1pxvS+Q2ik641Bp2B9wq8sP/EreoO4k5YgL6M3fFdXV1JTUysfp6Wl4erqauzVCIJJkBQK\nnAcPxWXUaHTFRSR9PJ/8w4dQKRWM6/UAPe2Goy+x4mj2QT44sJgSbancJQv1mNEbflhYGAkJCSQm\nJlJeXs6mTZvo3r27sVcjCCbFPqIbnq9OvHYGz7dfk7XxdwAGtmvG6KDnMOQ7kVh2iRl7F5JRnClz\ntUJ9Va2GP3HiRIYPH058fDwRERGsXbsWlUrF9OnTee6553jkkUd4+OGHCQoKMla9gmCyrJs0xXvS\nO6gcHcn6bT1py5agr6igXbAXb7V/AWW2P4WGbGYd/JSzWeLMNaH2SQYTvkrkVgdDTPFASX0jMrg1\nbV4uKZ9/Rmn8JSyDgvF4aTxKGxtyC8t4f/Nv5DscR5JgYMCj9PDrWOX1iAzkZ4oZmMRBW0GoL1R2\n9ni9Oel/c/DMnUV56lXsNea8N2AwfkW9MGhVrL/0GyuifxEzbgq1RjR8QagBlXPw9O1HRUb6tTl4\nYs9grlbyRv8edDAbjL5Yw5HMw3x0eDHFFSVylyzUA6LhC0INkRQKnAYMwu3Z5zGUl5O08GPyIveg\nkCRGPhDOEK+R6HOduVISz8wDC0krzpC7ZKGOEw1fEGqYbYdOeE58E4WlJWnff0fG2p8x6PV0b9GQ\nV1o9A+n+FOhymHvoU85knZe7XKEOEw1fEGqBVXAIPpOnoXZzI+evzaR89Tn6sjIa+Toy/cFRWKS2\npEJfwRcnlrLj8j65yxXqKNHwBaGWmLm64jN5GpahjSiKOk7i/LlU5OTg2sCK9x4bhFtODwxaNesv\n/s6KU2vR6rVylyzUMaLhC0ItUlpb4zXhdWy7RFB25TJX5rxH6ZXLaCzVTBnYkzDdo+iLbDiScZT5\nh78ktyxP7pKFOkQ0fEGoZZJKheuop3EaMgxdXh6J78+h8EQUKqWCsQ+35hHnx9FluZFSksSsA58Q\nlxsvd8lCHSEaviDIQJIkGvR+GI+XxgGQ8sVnZP+1GYB+7QN5udUopJTGlOhLWPj31+y6sl/cSUuo\nNtHwBUFGmvBWeL89BaWdHZlrfyZ95XIMWi1h/k5M7zMUu9TO6LVq1sVtYNmpnyjXVchdsnAfEw1f\nEGRm4euHzzvvYu7jS17kHpI/XYCuqAgXBytmDHmEkNJ+6AvtOJ4ZxbxDi8gqyZG7ZOE+JRq+IJgA\ntYMD3m9NxrpFOMWxZ7gydxZlycmYmyl5pX9bHnEejjbdi/SyVGYf+oSz2RfkLlm4DylnzJgxQ+4i\nbqW4+OY3gra2Nr/la0LtEBkYn6RSYdO6LYaKCopORpF/YB9qJycsvLwJ8W5AQ6tAjp3KR6u5ypHU\n46gUKrytvJAkSe7S6y1T3A6src1v+Zpo+EKViAxqhiRJWDdugpmnJ0UnT1Bw5DDagnysGjXG1UlD\nG98goqKg1OIqMVmnuZKfSphTKCqF0e9WKtwFU9wObtfwxS4dQTBBNq3a4DN1BmaeXuTt2knSB/Oo\nyMrExcGKd4c+SGhZf3T5DsRkxzD30KdiHh7hrogRvlAlIoOap9RosO3YCW1ODkWnosk/uB9zb2+s\n3N1pG+KBpsKf6EuplFle5UDyMTxt3HC1cpa77HrFFLcDsUtHMDqRQe2QVCqsw1uisneg6EQU+QcP\nYDAYsAoOoW2YFy6SF8dOFqHTXOXvjCh0ej1BDv5iv34tMcXtQOzSEYT7mCRJ2HfthvekqagcHcn+\nYwPJny6gIj+fpv6OvDtgAHapD6Avs+Svyzv4PGqZmF9fuCnR8AXhPmHh54fv1BlYhzWj+HQMJ157\nk5JLF6/t1x/Wg0Zl/dHlOXIu9zyzD31CfN4VuUsWTIzYpSNUichAHgozM2zatkNSKik8EUX+/n0o\nrK3RBATQLtQdRa4nsZezKbe6yqGrR5FQEGDvJ3bx1BBT3A5ut0tH3MRcqBKRgfzUKfGc/XABuoIC\nbNq2w3XU0ygsLDgdn803OyPRev6NZFaGr8aXZ8NG4GjpIHfJdY4pbge3u4m5GOELVSIykJ+jvw+K\nJuGUXrpIccwpCqOOYxnaCHcfFzqF+nP5jD0ZJVnkK5PZn3wUJ6sGeGjc5C67TjHF7UCcpSMYnchA\nftbW5pQalNh26Ii+tJSi6BPXrs51dsbWz5f2jTzQlPkQc7YYnU0aJzKjSSvMJNQxCLW4UMsoTHE7\nEA1fMDqRgfz+zUBSKLBuGoaZuweFJ05QeOQQ2oICrEJC8fduQCufQE5HmVOkyCBVm8DhlCj87X1w\nsLCX+0e475nidiAavmB0IgP5/f8MzD09sWnZkuJzZyk+dZKCv49i4euHg5cbEU19KUl152JK7j8H\ndI+hNxgIsPNDIYmT9arKFLcD0fAFoxMZyO9mGShtbLDt2Bl9RQXFp6LJ378XfVkp1sEhhAW6EGQX\nwIkTBios07lYeJ6YjAs0cgzESm0p009xfzPF7UCcpSMYnchAfnfKoOTCeVK/W0pFehpqNzfcnn4O\ny4BAikor+G5LNKcq9qByTEUtmTEidCBt3VvWYvV1gyluB+IsHcHoRAbyu1MGakdH7DpHoC8vozj6\nn9F+eTm2jUJp29gLB50f0bEl6DVpnMw6xdWCdBo5BqFWqGvxp7i/meJ2IEb4gtGJDOR3LxkUnztL\n2vKlVGRkYObhgdvTz2HR0J/03BK++vMQqZoDKDR52KrseK7ZEwTY+9Vs8XWEKW4HYoQvGJ3IQH73\nkoHayQm7zhHoSkooPhVN3v69GCoqcGzamIhmDdFmeHI+6Z8DuqnH0Ol0BNiLA7p3YorbgRjhC0Yn\nMpBfVTMoPhtL6vKlaDMzMfP0ujba9/PjYnIeX23fQ5HLMRTmpTiaO/FUk6FitH8bprgdiBG+YHQi\nA/lVNQO1kzN2nbugKyq+NtrfF4lBp8OzZRgRTYLIuOhEUnYepeZXOZR6lJySPALtG6JWin37/58p\nbgdihC8YnchAfsbIoOjMadKWL0ObnYWZlzduzzyHhY8vpxOyWb77AIVOx1FYFWKpsGZE48cIdw4T\nE7H9hyluB2KELxidyEB+xsjAzNkF284R6IsK/xnt7wWDAZ9WYXQLC6Ii3ZO4xEJ01ulEZZzkYk4i\nQQ0aYqkS5+2DaW4H4sIrwehEBvIzVgYKtRpN83As/AMoORtL0ckoik5GYeXrS/PwIFp6BHMhxop8\nfRbZJBGZeBhzpRm+tt71frRvituB2KUjGJ3IQH41kYGuuJiMNT+Rvy8SANsuETgPGopkbU3kiWTW\nntyDweMMkqoCNwt3RocNw9vGw6g13E9McTu43S4d0fCFKhEZyK8mMyg+f470H1ZSnpyEwtoap0FD\nsOscQX5xBat2xhBduheVUwog8YBnF/oHPoiZ0qxGajFlprgdmMQ+/OLiYqZOncqePXsoLCwkJCTk\nLj4jdumYKpGB/GoyA7WjE3ZdIlBaWVEcG0vR8WMUnz6FXWAAHds1xs8yiJhTBsrNM7lccpEDyX/j\noXHF2cqpRuoxVaa4HdTYTcwnT55Mhw4d6Nu373XPR0ZG0rt3b3r16sXixYsB2Lp1K71792b27Nns\n3LmzOqsVBKEWSCoVDg8+hN/sedi0aUvppUtcmf0e6T+upLGbBXNH9KOr5eNor/qTX5HPFyeXsvjk\nKgrKC+UuXbiFajX8gQMHsmTJkuue0+l0zJw5kyVLlrBp0yY2btxIXFwcaWlpuLu7A6BUKquzWkEQ\napHawQH3F17Cc+KbqF1dyd25g4Spkyk7dphh3UKY2utJXNJ7oS+042RWNNP2z2d/yhH0Br3cpQv/\nT7Vue9OmTRuSkpKuey46OhpfX1+8vb0B6NOnDzt27MDV1ZXU1FQaNWqEXn93/xAcHKxQqW7+5XC7\n/VRC7RAZyK82M3Du2h6fjq1I2fAHiT+vJXXpYooP7yf0hedYNG4Afx5sxveHN1PudpYfz64jMukQ\nY9s9TrCTf63VKIf7aTsw+n3O0tLScHP7330zXV1diY6OZuTIkcyaNYvdu3fzwAMP3NWycnKKb/q8\nKR4oqW9EBvKTKwPzrr3wbdKC9J9Xkx91nKgJb+DQsxdt+g0g2H043+88wZnyAySRxNQdH9LCqTlD\nQvpib25X67XWNFPcDm73BVRrN7a0srJi3rx5tbU6QRBqkNrJGc+XX6Ew+gQZP/5Azl9bKDhyGOdh\nj/NK/7bEXg7i+70HybOP4gQnOZV5mt5+D9DLtxtmYooG2Rh9Krx/d938Ky0tDVdXV2OvRhAEE6Bp\n1gLfmXNo0O9RdAUFXP36S5IXfkygZTmzRzzMY26jILEZ2goFfyZsY/r++RxPj8aEzwav04ze8MPC\nwkhISCAxMZHy8nI2bdpE9+7djb0aQRBMhMLMDKdHH8P3vTlYNQ2j+HQMl9+dSu6G9fQMc2HekKG0\nNgxFe7Uh+eUFLI1ZxUdHvyKpIEXu0uudal14NXHiRI4cOUJOTg6Ojo6MHz+eIUOGsGfPHubOnYtO\np2PQoEG8+OKLVVq+uPDKdIkM5GeKGRgMBgqP/03Gz6vRZmehcnDAafAwbNq240paISt2/k2K+VGU\nDhmARAe3Njwa+BA2Zhq5S68SU8xAXGkrGJ3IQH6mnIG+rIzsLX+Ss3kTBq0Wy6BgXEY8iZmXN4fO\npPHzkQOUuZxCYVmEWjKnf0Avunp1Qqm4v07ZNsUMRMMXjE5kIL/7IYOKjAzS16ymKOo4SBJ23R7A\n6dGBVJhZ8MeBS+xI2I/C4wKSSoujuRPDQh+lieOdr8I3FaaYgWj4gtGJDOR3P2VQdDqGjNU/UJ56\n9drcPI8Nwi6iG+l5pfywM4Zz5UdQulxBkiDUPoShIf1wtXaRu+w7MsUMRMMXjE5kIL/7LQODVkvO\njm1k/7EBfWkp5j6+uDz+JJZBQZy6lMWqyGPk2UehtM1GQkFXzw484t8La7WV3KXfkilmIBq+YHQi\nA/ndrxloc3PJXL+W/AP7AbBp3wHnwUPBxo5tRxP54/RBDO6xKCxKMFdY0DegFxGeHVApau2yobtm\nihmIhi8YnchAfvd7BiUX40j/cRVllxOQzC1w7Nsfh14Pkl+qY82e8xzNOILK4yKSSksD8wYMDu5L\nM6cmJnXTFVPMQDR8wehEBvKrCxkY9Hry9kWStf4XdIUFqF3dcBk+AuuwZlxMyWPVjlOkKE+gdE1E\nkgwE2DVkcHA/fGy85C4dMM0MRMMXjE5kIL+6lIGuqIisDb+Su2sHGAxYN2+By+NPoHR04sCpVNYe\niKLM+fQ/5+9DO7dW9A94SPb5eUwxA9HwBaMTGcivLmZQlpRI+o+rKDl/DsnMjAZ9+tGg98OUaOGP\nA/HsOHcCpddZFNYFqCQVD/p2o6dvN8xlutuWKWYgGr5gdCID+dXVDAwGAwWHD5Kx5id0+fmYubnj\n8sRIrBo15mpWET9sP8e5ghjUXheQzMqwVdvQP/Bh2rm1RCEZfbaY2zLFDETDF4xOZCC/up6BrriI\nzF/Xk7d7JxgM2LRrj/PQ4Sht7TgRl8nqnbHkWsWido8HhR4vjQeDgvoS7BBYazWaYgai4QtGJzKQ\nX33JoDQhgbRVKyhLiEdhaYnjY4Ow79Ydrd7A1qOJ/HE0FoPbuX9uqg7NnJowIPARXK2ca7w2U8xA\nNHzB6EQG8qtPGRj0evIid5O5fh364uJrF209+RSW/v5k55eybvdFDl8+j9r7LErbHBSSgge8OvNw\nwx5YqixrrC5TzEA0fMHoRAbyq48ZaPPyyFy3hvyD+6/NzRPRDaeBg1FaW3M+MZcftp0jueIiZj7n\nkMxLsFFr6B/wMO3dW9XI/n1TzEA0fMHoRAbyq88ZFJ87S/oP31OekoLSxgbnIcOx6dARgwH2nEzh\nl8jzlNvHofa8BAodvjbeDAnuT0M7X6PWYYoZ3K7hK2fMmDGj9kq5N8XF5Td93tra/JavCbVDZCC/\n+pyB2skJuy5dUZhbUHzmNIXHjlJyNhZL/wACgz3pHOZJTqqG+DN2KMzKyFcmc+DqUTJLsvCz9cZC\nZWGUOkwxA2tr81u+Jhq+UCUiA/nV9wwkhQLLoCBs23dEm5VF8ekY8vbuQV9ain1oCK2buBPs4cj5\n01bkp9qi1hSSXJbA/pTDSJKEj603ymru5jHFDG7X8MUuHaFKRAbyExlcr/DkCdJXr0KbmYmqQQNc\nRz2NddMwKrR6Nh+6zMaDCRgaXMHSNw6dogxnS0cGBfWjqWOjKs/PY4oZiF06gtGJDOQnMriemZsb\ndl26giRRdDqGgoP7qcjKQhMaSqNAF9o2ciXpioqU844oVQZKzVM5lnaChPxEfG280JhZ3/M6TTED\nMcIXjE5kID+Rwa2VJV4h9bullF25jNLOHteRT6FpEY7BYODwmTR+2nGBAn0OmsDzaK3Sq3wapylm\nIEb4gtGJDOQnMrg1lZ0ddp26IKlUFJ8+RcGhg5SnpWIV0ggfrwZ0ae5BcZGSC9HW6IpssXQoIK7g\nAgdTjmGltsJT435Xu3lMMQMxwheMTmQgP5HB3SlLTiZt+VJK4y+htLHF5cmR2LRqA8DF5DxWbDlH\nUmYeVt6JKNzi0KHF18abx0MH4m3jedtlm2IGYoQvGJ3IQH4ig7ujsrXFtlNnFBYWFMdEU3DkMGXJ\nSViGhOLkbEdEC3cszcw4cwZKUt2xs9eTqU9kf8oRSrVl+Nv7oVIob7psU8xAjPAFoxMZyE9kcO/K\nU6+SunwZpXEXUGg0uDz+BDZt2yNJEll5pfyw7Twn4jJR22dhG3KOYkM+DSwcGBY8gKZOjW5Ynilm\nIEb4gtGJDOQnMrh3So0Nth07o7TWUBxzisKjRyhLvIJVcCgaew3tGrvi7aIh9nwZOQmu2NuYU6hM\n5mhaFKlFaQTYNcRC9b8RtClmIC68EoxOZCA/kUHVSJKEpX8ANm3aUZaUeO2CrX2RKG1tMff2wcPJ\nms7N3MnOL+dCrAryXHF0LSO+8BIHrh7FSmWJl40HkiSZZAai4QtGJzKQn8igepTW1th26IjKzo6i\nmBgKjx2lNP4SlsEhWNpqaB3igqeTNacvFJGV4IyztR0VFumcyIzhXE4cDe18cLVvYHIZiIYvGJ3I\nQH4ig+qTJAkLv4bYtm9PeUoyxadjyN8bicJag7mvL57OGjqFuZORW8r58xKGLC+8vBRcKY5nf8oR\ntHot3pZeKG9xUFcO4qCtYHQiA/mJDIzLYDCQv38vGT+vRl9SgnWLcNxGP4tSo6m8YOuHbecpKtXi\nG1xEqfNJ8ivycbF04vHQgbV6p63bEdMjC0YnMpCfyKBmVGRnk7p0MSXnzqJycMDtuRewCgkFIKeg\njBVbzhJ9MQtLSwNNO2ZxuuBvDBho79aax4L6oFHf+xQNxiTO0hGMTmQgP5FBzVBaWmLboSOSUklR\n9EnyD+zDoNdjGRSMpYWado1dcbS14NTFXK7EWdLQOhDrBoWczTnPoavHsDO3xcParcoTslWX2KUj\nGJ3IQH4ig5pXcjGOq4u/QpuVhUVAIO5jxqJ2dAK4dt7+9gucuJCBlYWC8I6FxBQfpFxfQahDEE82\nGvQyejQAAAl/SURBVIKDhX2t1yxG+ILRiQzkJzKoeeoGDbDt1BltZibFMafI378XtYsL5h6eWFmo\n6BMRgAoDMZdyiL+oIljTBCcXHedyL3Dw6lEczO3x1LjXas3iLB3B6EQG8hMZ1A6F2gxNq9aoHR0p\nij5JweFDaHNzsAptjMbOGhc7C9o2cuFKWgGxlwopvOpCxxA/ksri+Tv9JGlF6YT8X3v3H1V1fcdx\n/Mm9/BAQETEvhKgBZkh0TqYW01E6kSEca6YdzzxxKj2Sa7Ydzn5EKxlEmJvL5ZwEw9NWp9PZ4bTl\nAuc46IrWLM25SFkYJHJRuAu6FYgKXNgfLjvsBAG7l++F7+txDn/c7733e1/nvO553+/5fC/fGxaH\nn9VvTPJqSUfcTh0YTx2Mve6W87SUPMtlexP+EZHMf+QHdE0OB6Cvv5+qY3Zerv6Qnt4+brs5hE+m\nvcXZDjtTA0K5N/4ebpg21+MZtaQjbqcOjKcOxp41JIQpS5bSd/kSF2rexXHor1gCA5l0XQwWHx9i\no0JZOO8aTts/pbahk8ALc7j1hkhOf3aat1uPc7HnInFTYzz6vX0t6YjbqQPjqQNj+FitBN94EwFz\n5nDx1Ek6j7/D5aazBM9PwBIQQEiQP0sSI+i42ENNw8fYz/iTnrCIz3xaOdn+Pu+2nSImdDahAVM8\nkk9LOuJ26sB46sB4odZeTv3sabr+VYt16lQiN24mKH7+1fuPnGrl+YN1XO5xkbzAxqRZp3nj/BGs\nPlbSr0shZfYdWP7PH1L/X16xpGO329mxYwf79+8nLS1tWM/REb73UgfGUwfGmzI9FGviLVj8/f/7\nnf036e/tJXDu9fhYLETPmMwt866hzv4JJxuc9Din861bFtDY+SE1bbXUOeu5PiyGIL8gt2Ua6gh/\nWB8tOTk5JCUlkZGRMWB7dXU1qamppKSkUFJSMuQ+oqOjKSwsHM7LiYiMGz4WC9PS0on+8aP4hU/n\n4wPl2H/+FD1OJwCR4cE8lrmQr98USZOjkxf/4CRtWiY3z7iJDz9tpPDoLv5+/hhjsdgyrIG/Zs0a\nSktLB2xzuVzk5+dTWlpKRUUF5eXl1NfXU1dXR1ZW1oC/9vZ2j4QXEfEWgTGxzMrNJ2TxbVxqqKep\n4KdcbKgHIMDPyv2r4tmUEY+rr5/n/tRAwPmFbJh3Dz5YePH9Mn7z3vN0dHd6NOOw1/Cbm5t58MEH\nKS8vB+DEiRPs2bOHffv2AVBcXAxAVlbWkPt5+OGH2b1797DC9fa68PX1nqvQiYh8lf7+flpereDM\nc7/Dx2IhdstmbCu+cfV+u6ODp54/RlNrB3EzQ9m0NpayD8qo/egDQgNC2LL4XhZcm+iRbL6jfaLD\n4SAiIuLqbZvNRk1NzaCPdzqd7Nq1i9raWoqLi7/yg+HKc7q+dLtOVhlPHRhPHRhvsA78km4nKnQ6\nLc/upf5Xe2k7dZpr7lmPj68vkyyQs2EBL1ae5m/vtZBX9C73fXM18+Le59WGgzz1xl5un/k11s29\nc1TX4xnqpK17Tw8PISwsjPz8fKqqqoY17EVExrPg+QnMeiwX/2uj+ORwFc2//AWujisfDgF+Vh5I\nj2dj+pUlnqL9p/h3XSTZN3+Xa4MjePPc21xyXXJ7plEf4dtsNlpbW6/edjgc2Gw2t4QSEZkI/GfM\nYNajj9G6r5TOE8c5+2QeUQ99j4DoaACWJEYyJ3IKRa+cpOp4M/XnQth852aCgyHQN9DteUZ9hJ+Y\nmEhjYyN2u53u7m4qKipYvny5O7OJiIx7lkmBRG55iPDVd9Hb1kbT9ifoeOfY1fujpgfzeOZCltwY\nQWNrB0/89h980HjRM1mG86Ds7GzWr1/PmTNnSE5OpqysDF9fX7Zt28amTZtYtWoVaWlpzJ3r+etE\niIiMNz4WC+Gr7yLyO1vBx4eWZ39N2ysv09/XB0CAv5WNGfN5YFU8Llcfe/94kq5Lve7Pof+0ldFQ\nB8ZTB8YbTQeXzzVzfs8z9Hz00ZWfUdy4GWvgF8s3Le0XOOvo4NZ42/g9aSsiIhAQNZNZP8klKD6B\nC/88gb3wCbodX5wPjQwP5rb5nvnFLA18EZExZp08majvZzN1xUq6W87T9GQ+F06+5/HX1cAXETGA\nj9XKjPXfxnb/Jvq7uzn3zNN8/Jc/e/QSCxr4IiIGCl2ylJk/ysE6JZS2st/Tuq+Evm7PXBRPA19E\nxGCBMbHMfjyXSTExdLx1hOadO+h3udz+Ohr4IiJewHdqGDN/+AihyXfg6uykv9f9X8sc9X/aioiI\ne1n8/LFl3ue5/XtszyIi4lU08EVETEIDX0TEJDTwRURMQgNfRMQkNPBFRExCA19ExCQ08EVETMKr\nr4cvIiLuoyN8ERGT0MAXETEJDXwREZPQwBcRMQkNfBERk9DAFxExCQ18ERGT0MAXETGJCfeLV3a7\nnaKiIjo7O9m9e7fRcUyjq6uLvLw8/Pz8WLx4MatXrzY6kunovW+8qqoqXnvtNTo7O1m7di1Lly41\nOtIAXnWEn5OTQ1JSEhkZGQO2V1dXk5qaSkpKCiUlJUPuIzo6msLCQk/GNI2R9FFZWUlqaioFBQUc\nPnzYiLgT0kg60HvfM0bSwYoVKygoKCAvL48DBw4YEXdIXjXw16xZQ2lp6YBtLpeL/Px8SktLqaio\noLy8nPr6eurq6sjKyhrw197eblDyiWkkfTgcDiIjIwGwWq1GxJ2QRtKBeMZoOigqKmLDhg1jHfUr\nedWSzqJFi2hubh6wraamhtmzZxMdHQ1Aeno6hw4dIisri+LiYiNimsZI+rDZbLS2thIfH09fX58R\ncSekkXQQFxdnRMQJbyQdxMbGsnPnTpKTk0lISDAi7pC86gj/yzgcDiIiIq7ettlsOByOQR/vdDrZ\ntm0btbW1+kDwgMH6WLlyJZWVleTm5rJs2TIDE058g3Wg9/7YGayDF154gSNHjnDw4EFeeuklAxN+\nOa86wneHsLAw8vPzjY5hOkFBQWzfvt3oGKam977xMjMzyczMNDrGoLz+CP/zpYLPORwObDabgYnM\nTX0YTx0Yb7x24PUDPzExkcbGRux2O93d3VRUVLB8+XKjY5mW+jCeOjDeeO3Aq34AJTs7m6NHj+J0\nOgkPD2fr1q2sW7eO119/ncLCQlwuF3fffTdbtmwxOqopqA/jqQPjTaQOvGrgi4iI53j9ko6IiLiH\nBr6IiElo4IuImIQGvoiISWjgi4iYhAa+iIhJaOCLiJiEBr6IiElo4IuImMR/AN6rmam4fXfIAAAA\nAElFTkSuQmCC\n", "text/plain": [ "<matplotlib.figure.Figure at 0x7f9acc459a90>" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "plt.plot(big_rpoints, xi_mm_6, label = 'Fixed Om, h = %0.2f'%h2)\n", "plt.plot(big_rpoints, xi_mm_6h, label = 'Fixed omch2, h = %0.2f'%h2)\n", "plt.plot(big_rpoints, xi_mm_7, label = 'Fixed Om, h = %0.2f'%h1)\n", "\n", "plt.legend(loc='best')\n", "#plt.xscale('log');\n", "plt.loglog()\n", "plt.title('Fixed omh2')" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "collapsed": true }, "outputs": [], "source": [] }, { "cell_type": "code", "execution_count": null, "metadata": { "collapsed": true }, "outputs": [], "source": [] } ], "metadata": { "kernelspec": { "display_name": "Python [default]", "language": "python", "name": "python2" }, "language_info": { "codemirror_mode": { "name": "ipython", "version": 2 }, "file_extension": ".py", "mimetype": "text/x-python", "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython2", "version": "2.7.13" } }, "nbformat": 4, "nbformat_minor": 2 }
mit
caseyjlaw/FRB121102
candidate_spectra.ipynb
1
13699866
null
bsd-3-clause
maxrose61/GA_DS
FInal_Project/Quantifying_Influence_Acquire_Clean_Merge.ipynb
1
1991777
null
gpl-3.0
ky822/Data_Bootcamp
Code/IPython/Python_Visualization_Demos.ipynb
1
204057
{ "metadata": { "name": "", "signature": "sha256:3e25346d96c688010139d3614452b412910ef9dc18e573756606ebf02a7e9ac0" }, "nbformat": 3, "nbformat_minor": 0, "worksheets": [ { "cells": [ { "cell_type": "code", "collapsed": false, "input": [ "import pandas as pd\n", "from pylab import savefig\n", "import seaborn as sns\n", "import plotly.plotly as py\n", "from plotly.graph_objs import *\n", "py.sign_in(\"sebecketthile\", \"a649z2ue29\")\n", "%matplotlib inline" ], "language": "python", "metadata": {}, "outputs": [], "prompt_number": 28 }, { "cell_type": "code", "collapsed": false, "input": [ "# Import data into dataframe with read_csv:\n", "df = pd.read_csv('https://raw.githubusercontent.com/fivethirtyeight/data/master/college-majors/recent-grads.csv')\n", "\n", "\n", "group_df = df.groupby('Major_category').mean()\n", "group_df\n", "\n", "quartile_df = group_df[['Median','P25th','P75th']].transpose()\n", "quartile_df\n", "\n", "sns.set_context('poster')\n", "sns.set_style('whitegrid')\n", "sns.boxplot(quartile_df, vert=False, linewidth=3)\n", "sns.despine()\n", "savefig('majors.png', bbox_inches='tight')" ], "language": "python", "metadata": {}, "outputs": [ { "metadata": {}, "output_type": "display_data", "png": "iVBORw0KGgoAAAANSUhEUgAABA8AAAITCAYAAABohDUBAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzs3XmcXfP9x/FXxDZVS4KWFqWlH9NWUYpohdjGTmUsqUFU\nbUEl9tpqXxtJqZ+dYCxhogiJsSQh1mgspcanlGhRSxJiG7Fkfn98vjc5ubn3zp1kkjszeT8fj3nc\nued8zzmfc+6deTzO53y+32+3lpYWRERERERERESKWaTSAYiIiIiIiIhIx6bkgYiIiIiIiIiUpOSB\niIiIiIiIiJSk5IGIiIiIiIiIlKTkgYiIiIiIiIiUpOSBiIiIiIiIiJS0aKUDEBEpZeLEiS0bbLBB\npcOQdtbU1ARAdXV1hSOR9qbPtuvSZ9t16bPtuvTZdl1NTU1UV1d3W5DHVOWBiIiIiIiIiJSkygMR\nEVlo1dTUVDoE6UAaGxsrHYKIiEiHpcoDERERERERESlJyQMRERERERERKUndFkRERIBhu55Y6RDa\nRf+7z5/5e1c5p/kpe71ERESkOFUeiIiIiIiIiEhJSh6IiIiIiIiISEnqtiBdlpltBRwP/BKoAiYB\nI4Dz3f3TdjzO6cAx7r50G7aZARzn7oNLtPkFcAqwGbA08A5wL3C2u79f5nG2AMYAG7r7s+XGJ5Kv\noaGBESNG0LdvX2praysdjohUyNixYznzzDP1v0BEZCGkygPpksxsB6AReBOoA7YHrgYOARrNrD2/\n+1cDW8zFdi3FVpjZ+sDj6e2BwLbABcDOwGNmVm6iYiKwCfDKXMQnMlN9fT1Tp06lvr6+0qGISAXd\nf//9+l8gIrKQUuWBdFXHAY3ufnBm2Tgze4V4er8tcH97HMjd3wbebo99ZfwBeM3dd88se9TMxgMv\nAfsAV5QR2yfAhHaOTRZCzc3Ns72KyMJp+vTpgP4XiIgsjJQ8kK5qReCtAssfAE7KrjOz1YELgc2J\n7g1jgGPd/bVMm58TT/43BZqB+1KbD/O7LZjZMsBZwK7AysA0YBRwlLtPKzP+7wCLmFk3d59ZoeDu\nL5vZ0cA/MrH1TPHvlOJ/KsXzUqFuC2a2DXA2sA4wBbgOOMPdZ6T1k4DLgB8CexL/J/4GHJHr7mFm\n3YETiKqIlYB/Aae7+92ZuP4AHAmsCrwGnOnut5d5/iIiIiIi0oGo24J0VaOBbc3sHjPby8xWAnD3\nr939fHd/CcDMViGezP8IOBQ4AFiD6BqwcmrzA+AxYtyBfYmqgG2BW4oc+xZgF+Lmehvgz8BvgVPb\nEP8ooBp4xMz6m9lquRXuPtTdn0ixLQo8BGwHnAjsQSQQHjCz5fJ3msaBGA38G9gNuAg4Brgkr+lJ\nwLLAXsS4C/3Sa84Q4DTgWiJp8TTQYGa/Ssf5UzrvW9L6B4FbzUwdZEVEREREOiFVHkhXdTLQE9if\nuHkldVloAC52949Su0HAEsA27j41tRsHvE7cVB8LDAS+ArbLPHlvBi5KT/1nMrMlgcWAQ9z9gbT4\n0XRTvXm5wbv7ZSmxMQj4ddr3m8BdwEXu/k5quiOwHrCZuz+e2j1L3MxvAHyTt+uzgSfc/bfp/QNm\nNhUYZmYXuvt/0vL/Zto8lCoYdgBOTOc8APiTu5+b2ow1sx8Dm5nZP4lExvnu/qfMPpYGzic+AxER\nERER6USUPJAuyd2/BA40s9OIQQa3IQY1PAX4nZn92t0nAb2BsbnEQdp2ipk9nNZBdFV4JDtDg7uP\nBEYCmFn2uF8ANWn56sCPgZ8RVQRt6iDq7n80sz9n4t8SOAo4wMy2cveJKbaPcomDtN1kopIiN9sC\n6fdvETNPnJwqFnIaiSqkPsANaVn+OAlvE0kKgI1T+5F58W6ZjrMdkZAZlXec+4lr/wN3f7MNl0I6\nmJqamkqHIDJf6LstIiJSnJIH0qWlwQyvAK5I/fT3Ba4ETgf6Az2AQlMYvg/8JP3eE3iu3GOa2S5E\nWf8awGTg78DnzEU3IXefAgxLP5jZTsBNwGAiGdIT+KDM3fVIMZyXfrJaiPEZcj7PWz+DWfHnqi2K\nTRe5fHp9osC63HGUPBARERER6USUPJAux8w2IWZU2M7d/55b7u7fEOX5uwBrp8VTiQH/8q1EDCYI\nMeDhd/KOsTiwFXk3yGa2FnAHcD0xQOA7afntRPVBOfGvQkyxOMDdR2TXufu9ZjaMGIMgF9uKBfbR\nh+h6kfVxej0LuDtvXTcg1xWi6BSSmWOSjvtu5pi5yoRcl5DdmHPQym6At7J/ERERERHpYJQ8kK7I\niUEDjyCqC2ZK1Qc/Ap5Ji8YDB5nZ8ukpP2a2ApEYuDy1eRyoM7Ol3P2ztGwbomz/x3nH/gUx5sH5\nmcTBUsS4BVMozzvAl8AAM/tbbhaEjLWI6RohkhdHm1kvd38yHa8nMSjiEcQsB3FR3D8xsxeANXMz\nL6T2PwUuJrp0/K+M+CYAXxPdKV7MLL+KmHUhN0bEd939nsxx6oC+wH5lHEM6sMbGxnneR1NTEwDV\n1WXl1OYblalLVnt8t7uypqYmBg4cWOkwRESkQpQ8kC4nTZ94EjDEzL5D9ON/B/gecEh6PSc1H0Ik\nGB40s7OJJ+OnAF8AQzNt9if68F8ELENM2zjC3V/LjnlAdG/4BrjQzK4AViAGXVwMWKrM+GeY2VHA\n7cSsD1cCbxDdBeqIsQ+2SM3vScccns55CrOmohxODJqYdRpwl5lNIwZfXIGoRPiGWYmAbq3E9346\nt1PM7Kt0/D2JqR8PdffJZnYJMNjMehCJmvWIwRrvcvdPyrkOIiIiIiLScWiqRumS3P0vxJPxbsCl\nwMNEEuBNYEN3fyO1ewvYjEgu3ABcQ5T798pVDqSBFTcHphM35BcBI4iEAkSZf0tq+y/iyfrPiekW\nTweuI6aBXDU3ZWQZ8d+Z4nqXGJ/gQeLJfguwsbtPSO2+JqaNfBj4CzE14hRg68xNektmvyOBXYEN\nia4LQ4jqhT5psMfZ2me05C0fSMyccETaz8+B7TMVDccTSYmDiCqII5mVqBERERERkU5GlQfSZbn7\nfcB9ZbR7mTSdY4k2LxA36YXWnQGckXl/K3BrgaaLZdq0mrhL3RB2L6PdFOCAIuvGAd3zlt1LjAlR\nbH9rFFg2iJg2Mvd+BnBm+im0jxYiyXJRa/GLiIiIiEjHp8oDERFpVVVV1WyvIrJwWmKJJQD9LxAR\nWRgpeSAiIq2qq6ujZ8+e1NXVVToUEamg7bbbTv8LREQWUuq2ICIiraqtraW2trbSYYhIhfXp04cB\nAwZUOgwREakAVR6IiIiIiIiISElKHoiIiIiIiIhISeq2ICIiAvS/+/xKh9DuuuI5iYiISGWo8kBE\nRERERERESlLyQERERERERERKUrcFERFZaDU2NlY6hC6nqakJgOrq6gpHIiIiIu1JlQciIiIiIiIi\nUpKSByIiIiIiIiJSkrotiIgIADU1NZUOoctQdwgRERHpalR5ICIiIiIiIiIlKXkgIiIiIiIiIiWp\n24KIiMzhuu2HzPdj/G70oAV6vPktez4iIiIiXY0qD0RERERERESkJCUPRERERERERKQkJQ9ERDqg\nhoYG+vXrR0NDQ6VDkYWQvn8iIiKST2MedDBmNg7onbe4GXgVuNrdL1tAcWwBjAE2dPdn52E/pwPH\nuPvS7RTaPDGz7YELgdWBCcAh7v5aGdstAQwC6oAfAtOB54FL3f3Odo5xEnCPu/+hzPb9geuAFdx9\nat66bsB7wN3uflDeulHAdsCB7n59Znl34EPg/9z9xLk8h9WB14Ha9r4+C4v6+nqam5upr6+ntra2\n0uHIQkbfPxEREcmnyoOOpwV4DNgk87Mz8CJwqZkdXsHY5lZLpQMAMLM1gb8BDwO7AysAt5e5+Q3A\n0cDVwA5EEuF1oMHMDm3nUHcF/tweO3L3FmAc8T2aycwWJ5JUU4Bt8jZbF/g2cZ2kQpqbm2d7FVmQ\n9P0TERGRfKo86Hi6AR+5+4TsQjMbC2wIHAEskOqDdtSt0gEkmwOLAye7+2dmdiXwVzNb3N2/LLZR\neoq+J7CXu9+RWXWfmS0NnAFc0V5BuvsL7bWvZBzQ18yWdvdP0rJewJLARcCAvPa/Ar4ExrdzHCIi\nIiIi0kkpedBJuHuLmf0D2Cm3zMz2B44nyugnA3cAf3T36WY2EXjH3XfOtF+SKGE/yd0vM7OeRAn/\nTkAV8BTRxeClzKHXN7NLgA2Ad4Bz3f3azD5XT/vYPO1jDHBsqa4AZnYQ8AfgR8BbwGXu/pe8OC8E\n9gaWIKoDPgD6ufsaZjYY6A+s5O5fZbZ7APjY3YvV2L6aXvub2RVEBcFzpRIHyYrptXuBdRcCT5nZ\nou7+dYrjN8BJQDUwFRgGnOHu32RiPRg4ClgDeBMY7O7XpHWTgJHufmR6vxFwOnHD/y3gDeBid7+q\nlbhzxhEJnE2AB9OybYDngDuBP5nZeu7+fFr3a+BJd/8iHX91SnzGqWvKjkTFzIHEdd49G4CZVQEP\nAKsCv3L3t8uMXUREREREOgB1W+hc1iJuHDGz3sC1QD2wLXAOcCjwp9T2BmBbM+uR2X5n4mnzrWa2\nKPAQ0ef9RGAP4sbwATNbLrPNEGA4cXP4D+AqM1snxbAKMW7Aj9KxDyBuhh8zs5ULnYCZnQf8H9F9\nYBci4THYzM7KNLsO2D+dy2+BNYnxBnLdH24AegA1mf2uBPRJ6wpy90eBu4DBKe51gH2Ktc94AXgb\nuMLMLjSz3inBgbv/3d0vziQODgZGEImY3YBLgWOJBEIu1qOBy4FRROLmDuK67pWatOTO1cxWA8YC\nHwO16Zr9K8XyszJix91fJpJGvTKLtwYedPcXgfeZvevCr0hdFtrwGa9LXM9dgVPIVJukMRSGE0mu\nLZU4EBERERHpfFR50DEtkm64uqWflYHDgPWAganNpsBnxBPrL4HxZjYdyD2Jv5UoSd8DyD2h3gcY\n7e5TzWzXtL/N3P1xADN7FniaqDLIPSU/290vTeufI/rIb06MwTCIqAzYJjdQXxrw8XXgGOKmeSYz\nW54YN+BCdz8tLX4oDep3nJkNIcYh2Bvo7+43pu3GkJImAO7+DzN7gUgs3JsW700M8jeq2EVNx/+c\n6LqwLrCOu79SrH3meF+a2Y7AzemcjgWmm9l44Bp3vz3tvztwNnBrrmognd804mb/AuBloirhOnc/\nLrUZY2ZrEE/8hzN7N4+fAo8D++QqF8xsAvE59AayVSKljCMlD1JyaIMUB0SiYBvgolRl8D1mjXdQ\n7me8KFG18kJqs3pa3o0YJ2ITYHN3f73MeEVEREREpANR8qBj2oFZSYCcz4GLgb+m9+OJaoMXzOx2\n4L7siPnu/oGZ3Q/0I55q9ySqDHJP2jclxlZ4PLPNZOIJc262BYAnMus/NLNPgFxlQm9gbHaEf3ef\nYmYPEwmGfJsAixFP2rOGE9UPvYgbV4gKgdw+m83sPmDLzDY3AmeZWZW7NxMDGA7Pdg3ISk/JHyWu\n4x7A9cC1ZrY5USFQlUtWFOLu/wDWMbNexOezFVHpsLWZ7eru+wBrE8mPQud3BXG9vgF6AiPz9r9v\n5m1LZvloYLSZLZkqDdYCNkqrlygWbwHjgPPS732I79dj6f3DxNgPixEJjE+JagNo22f8rwLHPQlY\nHzjF3ZvaEK9k1NTUtN5IOhR9ZiIiItLVqNtCxzSeGBxxQ+IJsQHLuvux7j4DIN307wr8D/gj0e/+\n32a2bWY/NwCbmdn3iBvmZmbdtPYkxhFozed572cw63vTgyiHz/c+UGhqxlwXivxtcu+XJm6+v3L3\njwvsM+tmooJgVzMz4BfATYVOIDmTuNnu7e4jiG4RGxMJmfOIARFb5e5Puvup7r4pkei4HeiXki0F\nz8/dpxFTOy5DXPdC51OQmXU3s6HE2AkTicqG3HHaMhDlOGA5M6smqgzGZ8Z6eIjozrIR0WXhkUwS\nZrn888nEn/2MP0tJnDlOAXgEONrMVmhDvCIiIiIi0oEoedAxTXP3Z9PPc+7+aqEn6u5+r7tvCSxP\nVBh8DgxP0/BBlPRPIwav6wvcnrlhnMasgQBnMrM+ZvaDMuOcAqxUYPlKaV2+3NPr7xZon9vf28Bi\nZrZMXpvZYnX394kB+GqJc3s1f4aKPL2IPv7T0vZ/I5IGhxN98YsOPmhmF6euArNx9w+Ag9PbtZl1\nzrOdX+omsERa/1Gh8zGzH6eqhnwnAwcB+wJLu/vaxGCTbeLuTiSafglsQSQMcuv+QwxyuCmZ8Q6S\nqbTtM853LJGY6U47TT8pIiIiIiILnrotdFJmdjawtbtvkqbfG54G8bueeCI8JfXVH06U9K9HPH3P\neZx4GtzL3Z9M++wJjCamgyw6W0LGY8BBZra8u09J+1iBKOm/vED7CUS5/J7A85nle6XlE4ib6hlE\nVcVNaZ+LE10u8mdFuJEYNHJ1SlcdAEwCepnZIrnqjRTjsURXig9LbOvAQDPr4+5j89b9OL2+lNpN\nTud3V6ZNbiDEx4nS/qnE4JXZrgvnEGNb/JrZKwp6Ac+kaomc7dNrW6fAHEcMMrk2s2ZdyHkoHfsn\nzJ48aOtnnO/91IXmNOAvZna9uz/SxrgXeo2NjQvkOCq1bz8L6jObX/RdEBERkXxKHnRM5dwUPgz8\n0cyuIvrU9yD6l4/P3eQlNxCj5E9y98cyy0cSU/UNN7OTiKfIJxFTJw4nuku0FtsQYsrEB1Myoxsx\n0v4XwND8Dd19cpr28Tgz+5rontGbuIEfnKoCppnZzcAlZrYU8B/iSftKRAIg627gSqJPfbHpGXPO\nJcrnbzezq4HVgNPS+X4J3G1mfQskByBmSugP3GtmlxKzH3xBXKPjgLty19bMzgAuNbOpwD3Az4lp\nFm9Psx5gZucCF5rZZGLawz5EdchuBY49ATjRzA4nEhS/TMf8DFiqlXPON5aY6WJyZlrGnIeIz31K\nmoEhp02fcQmXEdM4Xm5m62an2BQRERERkY5P3RY6npnT9JWSbnLriH7q9xAD8j1BlPBn2z1NlMrX\n5y3/mpji8WHgL8AtRAJh61TJkIulUHy5fbwFbAa8QyQpriFG4e/l7u8UOZ/jiVL8fYgERi1wtLuf\nmGlzGHAb8TT+FmKmhTuIG+bsOUwnnqY/7u6TCsSabfsEMd3kakRVwFlEt46Niafor1HkZjwdZ0vg\nfOLJ/R1Ehcb+xLSPe2Ta5m6S+xCfywCiXH+fTJuLgSPTuY8kpmvcy91zlQjZ63U+cW3/BNyXYq0h\nEgGbZNq1+p1J2yxKJCwKrVskf91cfsZzSNUeRxBVD8eVaisiIiIiIh1Pt5aWcu45pLMys42Ap4C1\n3P3flY6nNWk6xRrgHnf/NLP8CeAdd6/NLKsiKgeOc/frFniwskBMnDixZYMNihXCdF3ZsvFKdFu4\nbvsh8/14vxs9aIEeb37Lnk9X6rbQ1nNpaoqJVaqrq9s1Jqk8fbZdlz7brkufbdfV1NREdXV1W7sx\nzxN1W+iizGwDol/9vsC9nSFxkHxBlLjXmtmVwNfEk/2Nga1h5gCERxHVAF8S1QkiXUpVVRXNzc1U\nVVVVOhRZCOn7JyIiIvnUbaHrWgoYRAzgd1iFYymbu39GdKf4NnArMa7BOsBOmfEIphPdAX4A7OPu\nX1QiVpH5qa6ujp49e1JXV1fpUGQhpO+fiIiI5FPlQRfl7o8Cy1Y6jrnh7s8QCYRi65uZc7pHkS6l\ntraW2trWxgEVmT/0/RMREZF8qjwQERERERERkZKUPBARERERERGRktRtQURE5pCdOaArHk9ERERE\n2kaVByIiIiIiIiJSkpIHIiIiIiIiIlKSui2IiAgAjY2NC+xYTU1NAFRXVy+wY4qIiIjI3FPlgYiI\niIiIiIiUpOSBiIiIiIiIiJSkbgsiIiILQE1NTaVDEJkrC7JLk4iIdFyqPBARERERERGRkpQ8EBER\nEREREZGS1G1BRERkARtcO6zSIXQ6xzT0n/m7rt/8l73eIiIioMoDEREREREREWmFkgciIiIiIiIi\nUpK6LUhFmNk4oHfe4mbgVeBqd78stdsCGANs6O7PzqdY+gPXASu4+9R22uckYKS7H1mizZrAacDW\nwPLA+8BDwJnu/kaZx1kdeB2odfc75y1qkeIaGhoYMWIEffv2pba2ttLhiIh0KfofKyKdgSoPpFJa\ngMeATTI/OwMvApea2eELMJZ70/GnteM+W9JPQWa2CvAksCrwByKBcBKwAfC0ma1a5nHeIWIfO0/R\nirSivr6eqVOnUl9fX+lQRES6HP2PFZHOQJUHUindgI/cfUJ2oZmNBTYEjgAuWxCBuPtkYPKCOFbG\ngUTyrsbdv0zLxpvZ/UQlweHAia3tJG07obV2IvOqubl5tlcREWk/+h8rIp2BkgfSobh7i5n9A9gp\nb9X6ZnYJ8WT+HeBcd7/WzBYF3gLuyHYRSE/23wR2cff7zOw44BDg+8DbwDDgnHS8/uR1WzCzg4Gj\ngDXSfga7+zVp3WLAKUA/YDXgc+LJ/1Hu/laZp/qd9No97/w/MLM/AO9mzqUKOAvYG1gW+Adwgrs/\nVqjbgpltAFxIVCR8BtyW2jen9eOAicAXRBJjaeABYIC7/y9z3KLXIK3vR1RLrEV8BkPd/a+Z9RsD\nFwHrAV8BDwPHuvt/yrxGIiIiIiLSQajbgnREawH5ff6HAMOBHYmb56vMbB13/xq4BdjDzLLf537A\nB8BoM6sDzgT+DGwLXAOcARxU6OBmdjRwOTCKSGLckY63VyaWI4BzgW2Ak4GtgKFtOMdRQA/gSTMb\nYGY/zq1w9+vdfXSm7XDg98D5wK7Ae+m8flQg9p8AjwLfAHsAJwB7AbfnNf0d8EugP3AY0CedV1nX\nwMz2B24mkiY7ATcAQ8zs2LR+2bTtf4FdiGv9CyKRISIiIiIinYwqD6SSFjGz7kQXhm7AysSN7HrA\nwLy2Z7v7pQBm9hwwBdicGCPhhtR+a+IJOsA+wG3uPsPMfg1Mcvcr0rrxZvYlUYEwm5SAOAm4zt2P\nS4vHmNkawK+JG/kVgGPcfVhmf2sDvy33xFM1xEDgHOCv6djvEeMv/NndPS1bl7g539fdb07LxgPP\nApsC4/N2fSpRmbFDSqxgZq8Cj5rZr939sdTua2CnXJeJdJyDyrkGZnY7kTipd/c/pPUPmVkLcKqZ\nXQZUE8mRS939qbTfyUAfM+vm7kXHgxARERERkY5HyQOppB2Icvasz4GLSTfUGU/kfnH3D83sE2C5\n9P4FM3uRqDZ4wMx+CvycKMmHeBJ/sJk9AzQA97n7xUViMqAnMDK70N33zfy+N4CZfT+1ryYSC4uX\ncc7ZfV5iZtcR16GGePp/ILCvmfV19/uIBAHZeNz9K2CdFMPqebvtA/wtrcv9fT8FfEJUR+SSBy9k\nxlqASKQslX4veQ1SomRlYFTmGAD3ExUeGxHdIqYCI83sNuA+YIy7P9rqhZEOr6amptIhiMgCpL95\nEREBdVuQyhpPDI64ITGWgQHLuvux7j4jr+3nee9nMPv39wbgN2a2BFAHvOLuEwHc/RaiPH8G8cT8\nH2b2fBobIF/P9Pp+saDNbFMze4EoyR8B9E3xtfnvyd0/dffb3f1Ad/8hsFk6dm6wyJ7AV+7+cZm7\nXJ4Y2+HLvJ9vEzf8OYWuZ7fMMaH4NVg+vd6Sd4wJxAwTK7v7p8RUnA8D+xNdGN5NY0+IiIiIiEgn\no8oDqaRp7v5sO+3rFuACYgyCvsD12ZXufiNwo5mtQPTB/xNwE/CT/JjS64rZhWlMguWBl4muBY8C\nv3H319P6C4nuFq1KXTUmARe7+5DsOnd/3MwGE+MHLJniWczMlnb3TzL76EU82Z+et/uPgLuI8Qqy\nulH+jBKtXYOP0qIBzDnTQzfSeBXu/jKwd6pO6E0MvniBmT2SP8uGiIiIiIh0bEoeSJfg7u+a2YPA\n8cCPgJkTJZvZDcC33H2PNC3jdWa2KnBsgV29QtyU78zsZfvnAN8DBhHdJYZmEgeLEEmLcmP9xsze\nAg4ysyvdPb8KYC3gdXf/wsxy3TV2JhIkmNnixACGw4Cr87Z9DKjOJmXMbEUiUXIJMWtCa0pdg5WJ\nsSamAKtmxpHAzLYmxp440sw2TfGtna75GDP7d9rnqmh6yU6tsbFxnvfR1NQEQHV19Tzvq7NQ6bd0\nVrm/+YXx73ZB0f8HEekMlDyQSurWepM2bXsDcCvwiLv/N7N8LJEwOAd4iLh5PRS4M38H7v61mZ0L\nXJgG+BtDjCOwO7AbcWP9CXBaeqL+LeBwYBWgqg3nNogo6X8mTUHZREyZuBtwAFCb4nnWzO4F/mpm\nywD/Jp74LwlcSd5Uj8SUjk+kQQ2vT+1OJaaofK6c+Fq7Bin5cTpwsZmR1q8BnBeb+xtm9jHRheFO\nM7uAGNtiIPAh8XmIiIiIiEgnojEPpFJa0k+5bctZlnscelN2YZoVYSBx8zuKmPJwOJFAmGN/aTDF\nI4kb+JHEbAd7ufvINPZAX2ImgXuI6RkfTW26mdlGJeLLxvQUMVXis8RUjw+kuL8PbOnud2Wa7wXc\nSHS1uBNYBtgqL0GS2++zwJZEl4MGYlrK/wJbuPv/MrGVvKalrkFafxlx/XYhBkM8g1lTaeLuU4Dt\nibEQbkpxL5binlrq2oiIiIiISMejygOpCHfvU2a7ccz5dB1371Gg+bZAM3B7gfaXEGX7hY4xjCix\nzy67nDnHDcitewhYv8Cq7pk2axTaNm8/LwP7ltGumUh+5E9fibtPIi8J6O5PEJUCxfY3xzp3H0ok\nQrLLil6DtP568saWyFv/d2L6TBERERER6eSUPJBOL/W13xw4GLg2jfQvIu2oqqqK5uZmqqqqWm8s\nIiJtov+xItIZqNuCdAXfIcYQeJ7oAiAi7ayuro6ePXtSV1dX6VBERLoc/Y8Vkc5AlQfS6bn7LaSZ\nCERk/qitraW2trbSYYiIdEn6HysinYEqD0RERERERESkJCUPRERERERERKQkJQ9EREREREREpCSN\neSAiIrKAHdPQv9IhdGq6fiIiIgueKg9EREREREREpCQlD0RERERERESkJHVbEBERWQAaGxsrHcIC\n0dTUBEBRoXwIAAAgAElEQVR1dXWFIxEREZH2pMoDERERERERESlJyQMRERERERERKUndFkRERLqY\nmpqaSocgHdjC0oVGRETalyoPRERERERERKQkJQ9EREREREREpCR1WxAREenCBv3+pkqHMF8MuWbf\nmb931XNsT9nrJSIiMjdUeSAiIiIiIiIiJSl5ICIiIiIiIiIlqduCtBszmwSMdPcjKxwKZvZj4DJg\nY+A/wLHufn8Z200CVsssagE+A14GLnb329sQw+nA/u6+Rok2w4AN3H2d9H5GivXico+Tt79xQO+8\nxc3Aq8DV7n5ZG/bVH7gOWMHdp6Z9f+LuO89NbCIdRUNDAyNGjKBv377U1tZWOhwR6aD0v0JEZHaq\nPJD21JJ+KsrMFgHuBboBuwEvAg1mtlIZm7cAdwCbpJ9NgT2AD4HbzGynNoZTzvXIttkEuLmNx8jf\n12PMin8TYGfiGlxqZofPw74PBY6eh+1FOoT6+nqmTp1KfX19pUMRkQ5M/ytERGanygPpitYA1gQG\nufsYM3sX2Av4OfBuGdu/5+4TsgvMbDzwFnA4kZgoV7e2tMk/7lzoBnxUIP6xwIbAEURFRpu5+yvz\nGJtIh9Dc3Dzbq4hIIfpfISIyOyUPZIEyMwPOBjYHlgXeAa5197PNrCfwAfA7d78htd8NuBM40N2v\nT8v6ArcCy7v7JwUO8y7R1aA/cB+wK/A58Pzcxu3un5vZq6QuDfkl/WnZcsBUoL+735g55wHAyel8\nHwQGuvubhY6Tui0c5+6D0/ufAxcQFRDN6XyOdfcP2xh/i5n9A5hZOWFmKwDnAdsBPYGngOPdfWKR\n2MaR6baQPq8L0z6r0vbHuPtLZjYReCfbxcHMlgTeA05qS/cJERERERGpPHVbkAXGzL4NjAN6APsB\nOwBjgDPNbKd0Ez4B2DKz2Rbp9deZZTXA40USB7j7Z8TNel8zexI4lbihf38eYl8MWB14o42brgIc\nDxxDJDN+BjyUbqSLaUnH/AHRBWFpYF/gD8C2wC1tjCFnLVL86bN4grjWJxCVGd2AR83sZyXiysW2\nKPAQkXg4kejaUQU8kJIoNwDbmlmPzPY7A0sSiR8REREREelEVHkgC5IB/wL2cvcpMLOc/jfEIH/3\nAqOB32e22QJ4Dtgss2wb4P+KHiRubBcHZhADJh7m7g1tiHMRM+tO3Ex3B1YFTgFWBK5qw35I2+/m\n7s+n2F4BXiBu1m9oZduBwFfAdu7+adq+GbjIzHqUqD7Ixt8NWBk4DFgv7RPgAOCHwM9y3RHMrJEY\nWPF0oNDIUNkuGDum/W3m7o+n7Z8FngY2IBIcFxFJhdw12wcYnavUEBERERGRzkPJA1lgUjn85ma2\nmJn9BPgxsD6wGLBEatYInG5mPyIGKVyHuOm8xcxWJKoWfgCMKnSMNFjinUAv4mn9CcA5ZnY/sAKR\njLiqWNUCcYM8IP1kfQic6O73tPG0X8slDgBSSf8bRDKkteTBpsAjucRB2n4kMLKV7XYgkg5ZnwMX\nA39N73sDL2XHMXD3r8zsTuK6tWZTYmyFxzPbTwZ+lHufrnk/4KrUxWE74rMU6TBqamoqHYLIAqfv\nvYiIzA0lD2SBMrOTgeOAZYBJwJPEjW7uqfYzwBSinP4DYkyEO4CriRvelYH/uvs/ixyiH/FUfBN3\nf8bMngL+DjQAntYNLRFiCzCceGoOUb0wzd3b2l0hp1BXiQ+IJEhrehJVF201HhiUfm8BPgVed/dv\nMm16EOMP5Huf+GzKie2DVtrcANxuZt8juix8TuuJDxERERER6YCUPJAFxsz2A84kSuhvzT39N7OZ\nN7HuPsPMHgD6AP8Dxrv7N2b2BPG0fnWia0MxvYBJ7v5M2t8bZtaPqFTYABiadxNdyAfu/mwrbXLT\nK2bHDfl2gXaFkgQrEV0XWvMR8J3sAjNbHNgKeMLdpxXZbloZ8U8lupEUim1yGbFNI7pxzMbM+hCJ\nijeJbijTgN2BXYA73P3LMvYtIiIiIiIdjJIHsiD1At5y95njBpjZL4ib0Gx/+tHEKP5vETMaADxK\nVBWsQgy2WMwkYFUzW83d/5OWjQFeBNYlbprbw8fp9fvMutnerEC7tc3sB7nZFcxsQ6LbxbgyjvEE\nUGdmS6VBICHGexhJdPkoljwox3hgdzNbOzPmweLE+BOPl9xyVmxHm1kvd38ybd+T+OyOAK5x9y/N\nbDhQR4yPcOY8xCsyXzQ2NlY6hPlCZelSytx+75uamgCorq5uz3A6LP0diYjMTskDaU/dgPXMbGCB\ndbcSMykcYmanEsmAamIgwg+BpTJtG4Ebiafg/dOyR4GzgOnEKP/FXE2U7N9rZqelmI4jbrbHAmeY\n2efufnGJcyjHGOAL4C9mdg4xheMpKb6sL4B7UneNpYlpF58julG0ZgiwPzDKzC4iuhNcAIxw99dK\nbFfOOVxPDJ44ysxOIZIhg4hEzjll7Pse4jyGm9lJRFeTk4iEz/BM+xuAQ4lqkMfKiEtERERERDog\nTdUo7akF+BUxMF/2ZzDxtH0YcfN7KHA/MXjevsDNxKwIALj7B8BEYIq7v5wWTyBuxMe7++fFAkil\n/JsTFQg3pmNOATYhpni8BfhuK+fQqnScPYmb7ZFEV4x9ifEFsvuaSNxAXwNcSTzx39bdv860KXhM\nd5+UzmU6s8ZhGEEkFErF3+o5pEEYexOzI1xGJHe+Bnq7e7ZLRUve7y1p+6+JaSMfBv5CXNcpwNbZ\nwSjd/Wmi+0V9azGJiIiIiEjHpcoDaTfuvkYZzf6YfrLGFtjXL/PeTwe+VWYcrxF97AspOZNAmeeQ\na3sv0a8/a8XM+jOAM9LbgpUO7n5A3vtF8t6/QNyklxtTnza0fZvoClJs/TAi+VJw32m6zQMowcw2\nApaj9ZklRERERESkA1PyQETanZltQMywsC9wr7v/u8IhicxUVVVFc3MzVVVVlQ5FRDow/a8QEZmd\nui2IyPywFDGGwmSiS4dIh1FXV0fPnj2pq6urdCgi0oHpf4WIyOxUeSAi7c7dHwWWrXQcIoXU1tZS\nW1tb6TBEpIPT/woRkdmp8kBERERERERESlLyQERERERERERKUrcFERGRLmzINSUnmekSFoZzFBER\nqTRVHoiIiIiIiIhISUoeiIiIiIiIiEhJ6rYgIiLSxTQ2Nlbs2E1NTQBUV1dXLAYRERFpf6o8EBER\nEREREZGSlDwQERERERERkZLUbUFERBa4gQMHVjoEaUeV7CYhIiIiC4YqD0RERERERESkJCUPRERE\nRERERKQkdVsQEZGK2uawaysdwnz14OUHzvy9K51r9rxERESk61PlgYiIiIiIiIiUpOSBiIiIiIiI\niJSk5IGIiIiIiIiIlKTkgXRqZna6mX3ShvY/NbOH52M8D5nZ9en3Lcxshpn9op32Pc7MRrahff90\n/J5zs70sWA0NDfTr14+GhoZKhyKyUNPfooiISGFKHkhX0NKGtnsAG82vQIhYcvFMBDYBXmmnfR8K\nHF3B7WU+qq+vZ+rUqdTX11c6FJGFmv4WRURECtNsC9IVdKt0AIW4+yfAhHbc3zwlIeZ1e5m/mpub\nZ3sVkcrQ36KIiEhhSh5IV9ACYGbDgKWAx4gn7CsCTwED3P0VMzsdOC21nQH0d/cbzWwp4HyiKmEZ\n4GlgkLs/n9r2B/4MXACcCHwGGNAdGAL8JsVwcTYoM9sCGANs6O7PmtlKwCVAH+BbRGXCKe7+aGab\n3YGTgGrgPeBqdz8vrRsHfOLuO2f2vQXwf8APgReB4939kUIXqcj2vdN5/QJ4BzjX3a/NbLMRcDrQ\nK8X8BnCxu19V4to0APsDK7n7V5l9PQB87O61heITEREREZGOS90WpCvIVh5sDewLHAnUAWsBw9K6\nq4FrgWaiO8EoM+sG3APsBZxMJBC+AMaZ2Q8z+10W6AfsDQx092bgNmA34FjgwLRt7xJx1hM3+f2B\nXYHPgfvMbDkAM+tL3Hi/kPZ7CXC6mZ2Q2Ud+F42GtN/dgY+A+82susjxs10qcm4D7gC2B54Drs5t\nb2arAWOBj4FaYBfgX8AVZvazzD5muzbE9e4B1OQapMRJH+CGIrGJiIiIiEgHpsoD6WqWBnZ09/cA\nzOz7wF/MrIe7v21mbwMz3H1CWl9D3NRu7e5j0rL7gX8SyYQD0367A2e4+4Opzc+BHYC93P2OtGwC\n8WS+mF8Bp7v7fan9S8AgolriI+AU4GF3zx3zQTP7LvHUv5gh7n5+2t8Y4HXgOOB3BdoW6t4x1N2H\npu2fI6ootgOagJ8CjwP7uPs3mXOcQiRJXkr7mO3apHYvAL8F7k2L9gY+BEaVOBcREREREemglDyQ\nrmZSLnGQvJ1elyJuXvP1ISoAHjWz7N/Dg8DOeW098/uv0uvomSvd3zWzJ0vENh44y8zWBe4DRrv7\nCQBmVgWsSzy5n3VA9z+W2B/ALZm2X5rZaKIrQ7meymw/zcw+Ja4V7j4aGG1mS6ZKg7WYNdjkEnn7\n8bz3NxLnWpWqNOqA4bkkhJRWU1PTeiORDkTfWRERka5PyQPpavJHuJqRXot10Vme6Mv/ZYF1+cve\nz/zeA/jK3T/Na/Nuidj2IsZc2JN4Ev+Vmd0GHAL0LHCMcryT935yiq1cn+e9n0G6VmbWHRgMHAws\nDrxGJEBgziqG/LhvJsZB2DVVNPwCGNCGuEREREREpANR8kAWdtOIG98d8pa3NoPDFGAxM1vG3T/O\nLF8BeKvQBu7+IdFNYVCqPtgHOIboIvF/qdmK2W1St4s1mXXTnm95Zk9YfJcYaLE9nAwcRIwhMcrd\nm1OFxIGlNwN3fz8NkFhLjPPwaq6riIiIiIiIdD5KHkhX0FLk90Lyy+bHEzf0n7n7zNJ7M7uI6Ms/\nsch+xqbXvsD1aZsexECMDfmN09gFE4Ej3f1v7v4C8IKZ7QGs6u6fmtmLRFeJSzObDgT6ufsqZlYo\njp2JgSAxsyWJgQ/nOP5c6gU84+4jMsu2T6/lTI95IzFA5erATe0U00KhsbGx0iHMdypz71qy39mm\npiYAqquLjd3asem7KSIiUpiSB9IVdCvyeyEfAd8ys12AZ4CR6XWUmZ0B/JdICAwguhMU5O7/MrN6\nYGi6af8v8EeK/E25+3tm9hoxeONSRHXCjsBqwN9SszOBO8zsSiIBsC4xa8QxJc7vQjNbDJhETE+5\nJNFdoJjWrk92/QTgRDM7nBgc8ZfEYIyfkcZFaMXdwJXA+kQFgoiIiIiIdFKaqlE6u+z0g4WmIiRv\n2a1EBcAdxCwCM4gpBR8ELiQGMvw10N/dry6yj5wDgWuAM4gn608xKxFQaLu9gHHpOPcT00r2y83y\nkJ7w70lUL4wkugwc7e6XlTi/gUSC4XZivILN3D3bbSK/KqO1Ko3ssvOJqRX/RFyXrYhrNTbFWGo/\nuPv0dL6Pu/ukQm1ERERERKRz6NbS0lqVt4h0NGa2BTAGWNPdX69wOAWl8RHeAo5z9+vmdj8TJ05s\n2WCDDdovsA4qWyq9sHVb2OawaysYyfz34OWzhgnpSueaPa+u2m1hYfhbbIvO/tlKcfpsuy59tl1X\nU1MT1dXV5XQlbjfqtiAi7crMlgOOArYkZqy4pfQWAlBVVUVzczNVVVWVDkVkoaa/RRERkcLUbUGk\n8+qoZUPTiTEjfkB0DfmiwvF0CnV1dfTs2ZO6urpKhyKyUNPfooiISGGqPBDphNx9HDEbRIfj7s3E\nlJHSBrW1tdTWalxJkUrT36KIiEhhqjwQERERERERkZKUPBARERERERGRktRtQUREKio7an9XtzCd\nq4iIiHQtqjwQERERERERkZKUPBARERERERGRktRtQUREFrihQ4cCUF1dXeFIRERERKQcqjwQERER\nERERkZKUPBARERERERGRktRtQUREOq2amppKhyDzqLGxsdIhiIiISBlUeSAiIiIiIiIiJSl5ICIi\nIiIiIiIlqduCiIh0CT1+f1alQ5gvPrzm1Jm/d5VzzJ6TiIiIdA6qPBARERERERGRkpQ8EBERERER\nEZGSlDwQEenCGhoa6NevHw0NDZUORaTL0t+ZiIgsDCo65oGZnQ4c4+5Lz+N+TgEOdPc12iWw2OdB\nwGruXrRjppltAYwBNnT3Z8vc7zjgE3ffuZV2uwJ/A0a7+45l7ns54DJgcLnxlNjX9sCFwOrABOAQ\nd3+tzG2XBo4C9gTWAD4BJgLnuPtT8xJXV2ZmewJHAj8HugOvATcDQ939q/l87C1o43dZOof6+nqa\nm5upr6+ntra20uGIdEn6OxMRkYVBR6g8aKl0AEWcDCzbSpuJwCbAK23YbwvlnfN+wD+BGjP7fpn7\nXg/o14ZYCjKzNYnExcPA7sAKwO1lbrsq8AxwGHAjsCswgLgZHm9mfec1vq7IzA4lEgWPE0mXXYE7\ngT8BNy2AEObmuyydQHNz82yvItL+9HcmIiILg44w20K3SgdQRAutxObunxBP5dui1fM1sx7AjsBv\ngSuB3wFtGWJ7Xq/p5sDiwMnu/pmZXQn81cwWd/cvW9n2BmBpYGN3fyu30MzuBkYCV5vZ/e7+2TzG\n2NWcAFzl7idmlj1sZpOJa3+6u8+3G/u5/C6LiIiIiMhCoiMkD2Yys2HAUsBjwNHAisBTwIDsjZOZ\nHUuUd69APCH/T95+ZgDHufvgzLK7gGXdvU96vwNwJlANfArcCxzr7h+a2SRgNeBwMxvg7t1TbMsC\nzcAuwEPAUPJKvc3sKOD3wJrAVyn+o939pTZcir2BGcCDwB3AAeQlD1KMtwJ9iDL304huBgDPmNkw\nd/+dmW0MXERUJXxFVBMc6+6zXbM8r6bX/mZ2BbAD8FxriQMz2wDYAhiUTRwAuHuLmZ1MVEb0AD5L\n2/wGOIn4HKYCw4Az3P2bzHleBvyQeCK/KPGZH+Hun6Y2Jc+xte+Dma0OvA78hvhe9QLeBY4FnEjg\n/CL9frC7/z2zn34p/rWAt4guBn/NrJ9BVLHUAT8ADnD3OwpcvhWJ6ox8txPJmJmPs1JlyJ+BLYFv\niKTMIHefktYPY87v6jrAQ+5+SGY/PYD3gEOAN5jzu7w7sz6b94Cr3f28zPbbAGenfU8BriM+uxlp\nvRF/I5sQVU5PAMe7+4sFzlNERERERDqwjtBtId/WwL7ETVwdcVM2LLcyJQ7OI25UfkPccB3DnF0B\nCnUNaEn7WJMoCR8PbJ+235m4SQXYjbh5vIO4kczJjT2wMzAkf+cptvOBq4Bt0zn8JBt/mfYD7k1P\ng+uB1dONWr5jiBvpWuAB4PC0vD9wlpktC4wC/kvcRB5E3ATfVurg7v4ocBcwmHgavQ6wTxlxb5te\nRxXZ7wvufmIusWBmBwMjiATLbsClxA37sLxNTyJuhvcCTiESEKekfZR7jkW/DxnXAven/bxFdLu4\nE7gF6AssQ3wepGPvT3Q1GAvsRFRdDEnfg6xTiO/LfsAjBeIAGA383sxuMrNdzawngLtPdvcL3P3N\ndMzvEsm1VYm/k0OJ7+gDZrZYZn/Z7+rQdD12M7Ps3/xviOTDiPxgUveSBuAF4rO5BDjdzE5I67dK\nMf87rb+I+D5ektYvQiQ1FiGSPnsTyb77zKyjVhuJiIiIiEgRHaryIFka2NHd3wNI/f3/kp6STmNW\nefcZqf0DZvY8cWNXrg2JsvwL3P3ddJxPiWoD3P15M5sOvOfu2VLu7sBh7j4tbbNF3n5XAc5090vT\n+/HpJnCwmX3L3T9vLTAzWwvYGDgnxfKEmb1GVDM8mNf8n+5+QWbbnunXl9z9DTPbhHjKf2luoMJU\nBt/HzLq5e8GxF8xseeDzdI3WBdYps2R+lfT6Zhnn2Z14an2rux+ZFj9kZtOAK8zsgky1xn/d/beZ\nNlsQ1RAnEk/FC55jGfHmG+7uf87Edz9Q7+6Xp2XnAteY2TJEtcq5af0fMrG1AKea2WXunqsWeMDd\nr2nl2AcR13uf9NOSvte3pXP7IrUbmNpt4+5TU1xPE9UiezNrfIT87+oHwB+JypAxqc2exICcH0eR\nwGxOAR529wPT+wdT4iKXTDsbeCLzuTxgZlOBYWZ2IfAlUX1zqrs/mGL4D5H4WRr4uJXrIfNBTU1N\npUMQmYO+lyIiIp1DR0weTMolDpK30+tSwErA8sQTz6w7idL+cj0NTAcmmNltwH3APbly6xI+yN2M\nFeLuAwHMbEVg7fSTm1VhCeKGvDX7AR8BT6XZEyDOb6CZLZ8rTc8dspV9vUR0BRiZOc8xqbKgIDNb\nGXg0xboHcD1wrZltTjxhrnL3G4ts/k16LaeiZW3iSXR+Cf9w4Aqgd4of5uyL/zbRRQFiUMk2nWMJ\n2eO8n17/nlk2Nb0uB3wPWBkYZWbZv6P7ie4wGzGryqC1zwl3/wjYNVXF7ExU4PQGLgD2M7PNUps+\nRKXGtMxx3wKagK2YlTyY7bvq7v80sxeJz3RMSjRtSYGKEjOrIpJGA/Ni/GNa/y3gl8DJeefeSHz2\nfYiqjX8RyZZtiOqQRnc/pbVrISIiIiIiHU9H7LaQP1Rx7oZ+EeIJM8DkvDbv0Qbu/gZxo/UC0bVg\nLPC2me3byqbvl1ppZmub2fgUz2hgfyJJAeUNlNiN6KqxXDrW1PRzPPG0eb9M85bW4kljAvQmxgDY\nn7iBe9fMjiux2ZlEoqO3u49I220MXEx0F9mzxLa5ioPVijUws1x1Qu6znO2zSze805m9kiQ/6TKD\n9N1NXTvaeo7FfFJgWbGEz/Lp9RbiKXvuZwLx2aycaVvyc8py99fcfUiannMForrip8y6kV8e2I4Y\n2yF73J8RybVSx7wF2D11Kdgd+AK4p0C7XAVLsbh7ENf/vLwY3iOde6pq2ZpIBu1GdIF438wGq9uC\niIiIiEjn0xErD0rJPXX/Tt7y5fMbMmdi5NvZN+7+BLCzmS1J3OQcD1xnZg+5+/+KHL/oTU+mj/cH\nwM/c/eW0fABQbk1mb2JQvQHAy3nHvQg4kAJjLZSS4tg7PSHuDRwFXGBmj+R1ycjpBTyYe2rt7n8z\ns/OIcQcgBrIs5oEU5/bEU+fZmNkvgadTkubZtPi7eW2WI5IXuc+61WktS5zjOHd/JjUr+X2YC7mn\n+gOYszKiGzEAYVnMrJYYJ8Pc/YPccnefDlxoZnsTlRoQVSmjiAEy84/5Sd77fMOJrhabERUId6Vj\n5Mt1KVgxL87vE10RnkuLzgLuLhDHOyn+t4juNr83s17p90FE5U9ZU39K+2psbKx0CDM1NTUBUF1d\nPU/7Ucl759eRvpdzS99DERFZGHTEyoNSN4v/Im5M+uYt3yFvu4+B7+femNlSwPqZ94ea2Rtmtqi7\nf+Hu9wKnEv3Ev5eafcOcSsW2IvAjYjyG7I3/dum1nKet+xFPb69090czP48Qgwj+JI1jUMxsMZvZ\nTmY22cxWcPev3X0MkOufv2qRfUwCeuUNrHc58WS5Bfiw2MHTKPpjgRPM7HvZdWl/5xA3uPcQn+Vk\n5qxk2Cu9Pl7sOHn7LXWOuQqIkt+HufQKkeBY1d2fzf0QT+3PoG1jcLxEDAh5RP6K1EXg+8zqwvEY\nMc7DS5lj/pP4/v4qs+kc31V3nwQ8SVS39CFm65hDquZ4kVldbnIGAje7+8dE1c6aeec+nUhOrGJm\n65vZ+2a2ftrnk8DBwNcU/+6JiIiIiEgH1RErD4reZKfp/k4D/p+9+46Tq6z+OP4JQSChBwSVoihy\nsoqCgBSlBAIsvWUBI6FXpSU0QZAqUoQYBJQiRVgpYSMlQFiBJNKL9PxcjvSmhBIIARYCyf7+OM8k\nN5OZ2ZlkdmfL9/167Wsy9z5z77l3ZheeM+d5nsvNbDKxBN1uxOz62fL3ccC+ZvYkUQlwHFHqnjv2\nBOIb/JvM7E/EN90nETPHP53afAisY2abpM57e7FNThPCjUiT080gyuhzE8z1Z/a36XMdJ40zbyAm\n4CuUpBhNzJp/IDHmvVAsH6bH7czsU6Kj2Ab83czOIUrdhxMJgAlFLuV3xFj90WZ2OdEBP5kYVz8d\nuNXMhrh7sdcfDEwk5pMYSdzP5YmVINYFdkmdU8zsNODCNNHebcSSk6cCozMJmPaSLuVcY3ufh4q5\n+5dmdiowMk02OB5YhSjl99RRL/dYz5vZH4mJFlclVj94Nx1vOJH8yK0EMpJIMo0zswuIzvhRxHKI\n2WqEYtd2HbEiwhSiUqSY04nfj0uJIQdrEEN8jk77TwZuSRNc3kIMsTiD+Nw/l+L6ELgm3acPiN+H\nGcS8FCIiIiIi0o3UuvKgjTm/Ic1/nt0OgLtfSXyDuTPRaVmO6OhkXzeC6DheQizpeC+xjF5bOoYT\ny/EtT3TUGomKhi3dPfft/e+IEu070jj9dmMjxpF/THT0ryAm9lsn7dsg077QcXYiSunzJxDMXfd7\nRGdvVzNbrMgxJhET5p0AnJsmV9ya6PRfS0y8+BVgcG6m/gLneYhY5m9l4v6eAdxOzHswGHiRmLyy\nIHd/MbW9iVhGcCxwHtEZ3iBVeeTaXkwMxdiUSB78MrXNTuJX7J7n3styrrHk56GE9j6LF6dr3IHo\nEJ9GDA3YtsDrSnL3EUTnegXgciIxdjpRabC+u3+Q2r0BbEjMxdBIVA/0ATZ392czMRa7ttFE4qQp\n81kvdG1jiMTc+sR7eCBwVLpm3H0ssCPx+b6VSMY9BGyaqnm+JCqCXiQqV24nll3dtsyVO0RERERE\npAvp09bW7pByEZGaeeKJJ9rWXnvtWofRbe200060trbSr18/brnlllqHM0tHzHmw9AFnzNexuqoP\n/vKbWf/uKdeYvaaeMOdBV/09q7Zq/d5K16P3tufSe9tztbS0UFdX16kTkde68kBERDrQsGHDGDBg\nAMOGDat1KCI9ln7PRESkN+iKcx6IiEiVNDQ00NDQUOswRHo0/Z6JiEhvoMoDERERERERESlJyQMR\nERERERERKUnJAxEREREREREpSXMeiIhIj5Cdwb+n6g3XKCIiIl2TKg9EREREREREpCQlD0RERERE\nRHqDAhcAACAASURBVESkJA1bEBGRbqu5ubnWIUielpYWAOrq6mociYiIiFSTKg9EREREREREpCQl\nD0RERERERESkJA1bEBERAOrr62sdgswnDeMQERGRjlJ25YGZ/drMvt2RwYiIiIiIiIhI11PJsIXT\ngBfN7DEzO9rMVuyooERERERERESk66hk2MLXgCHAbsDZwLlm9jBwA3CTu0/ugPhERKQGFt3vsFqH\nMM8+ufKiWf/uztdRruz1ioiIiHSUsisP3P19d7/M3TcHvgEcCnwOjATeMrN7zexAM1u6g2IVERER\nERERkRqYp9UW3P1dd7/E3QcDqwF/BzYFLgXeNrMxZrZBFeMUERERERERkRqZp+SBma1gZkeY2X3A\nC8RwhoeAw4GjgW8BD5jZEdUKVESkK2pqamLo0KE0NTXVOhSRXkO/dyIiIp2vktUWVjKzEWb2IPA6\nMApYHDgRWMXdN3T3i939ImA94Bng5I4Iujczs4lmNrbIvkFmNtPM1ursuOaFmZ1qZtMyz3c0s0uK\n7e/gWPY2sxfMbKqZ3Wxmy5Xxmn3S/R5Qos2s9yvz/qxczdjLZWbfSuffpYy2N6e2u1Zw/A3NrNf9\nn3xjYyNTpkyhsbGx1qGI9Br6vRMREel8lUyY+Fp6fAE4A7je3b1QQ3f/0sxeAhaZz/hkbm3ppye4\nHMgmQkYAH5XY3yHMbCPgSuAk4DngT8AlQLud7DIcAsyownE6jZktA2wDTAIOAG4q86UHEMOYepXW\n1tY5HkWk4+n3TkREpPNVkjy4CrjY3Z8ss/0e7j59HmKS0vrUOoBqcfe3gLfyNvdpZ39H2BL4wN3P\nAjCzjYE9q3Fgd3++GsfpZD8DpgGnAqPNbGV3f73M1/aYz6eIiIiIiMxWSfJgK6L6oKzkgRIHtWdm\npwJHu/vimW1rEu/hIHe/z8yuBhYFHgWGA0sBdwL7E5UAvwT6AtcBw929LR1nXaJzuQHQH3gFGOnu\nl6X9+wC/B3YnVuQYCLwEHO/uuTL+WfGZ2URg47R9JrAKsG+B+I8g5tZYCXgRON3dR2f2bwOcDtQB\nHwO3A8e4+wclbtULwAAz2xYYD2xOzOEx39J1TXP37TObNzGz44BVgWeBX7n7xMxrlgPOA7YFFkox\nHenur6b9p6Z9DxDv04vuvpaZfR04E6gHvgq8C4xOx6/k93EvoJm4d9PSOU7JxDcoxXQIca8XTG33\nSvtnMvvzdSxwMLACkQi6Gjgz9zkSEREREZHuoZIJE5cG3u6oQKQiC5hZXzNbMPtDdPLzldNJ2xLY\niegkHkuU6/8LWJf4Bv5yosO+O0Aasz+BGGLQAOwA/Ae4xMxWzxx3cWI4wIXAdsB7wI15y3nm4vsF\n8BTRIV4f+F9+kGZ2CtGpvi4d727gejNrSPtXJVb+uB/Ympi8c3vg4nau/2/peq8FniA6w79s5zXl\nKjTM5E9EJ3pnYApwV+6+mVk/4t7+BDiMuP9fA+4zs6Uyx1gD+AGwI3CimfUB7gLWTLFvma7nSOCg\ncoM1MwN+DPwtJRxGA/um4+c7jvjMHEkkEe4EXibev6fMbFjafl6K5y/AacCB5cYjIiIiIiJdQyWV\nB5cAh5vZA+7+744KSMqyDfBFmW3LKSNfDBji7pMBzGwvolJgLXf/BLg7dQTXBW4Avg88SAxNmZFe\n8xjwPlE9MCkddyHiW/+m1GYyMZHmIODmbHzu3pImR/zI3R9L7WcFmDrOxwNnu3vuW/B7zGxx4Gyg\nCVgnnfMcd387ve5joL0JClcAPiCqLhYkJgB9v4z7Vo5C9/8kd78gxTee6HAfTVRa7EXMG/B9d/9P\nanMvUfVzODHfCCnOo939mdRmJeL+H+Huufs/0cy2AjYBLioz3r2AyUQiAuAaorO/FTAur+2F7n5H\n7omZvQe0Zt6/DYFX3T03Ceb9ZjadzhmKUhP19fW1DkF6OX0GRUREpKNUkjxYhViCcZKZfUCURM/M\n7O8DtLn796oXnhRxPzGkIN86RJKnUq/nEgfJZKBPShzkvE90rnH3ccA4M1skfWP+XSKxALBw3rEf\nyfw712lcdB5iXD8d+85UZZFzF7CfmX2TGHrxOfCYmd0A3AHc5u4z5zpaYmbfAyYC/wfsDVxB3MNd\nzexAYLK73zYP8ZYyawJCd59uZncBm6ZNmxLDKF7KXGcrUZExmNnJA4hqj9xx3gA2M7MFzOy7RAJi\nDWB5Zk92WlKqLhgG3AYskZI3/we8QUyGmJ88KDhhasZ9wEFm9jiR3LnD3UeWE4uIiIiIiHQtlSQP\nliZKukvROObOMbXQxJVmtsQ8Hq/QcoifFmtsZn2B84ly+IWIuQfuT7vzv2nPHifXia9kuEzOMumx\n0FwEbcDX3f0RMxsMnEB8S38MMNnMjnP3a4sc9wJi6dEt3f2LtNLASDP7DVGW/1eiM11Nk/Oev0tK\nzBDXOZDClSX/yfz7E3efY5pxM9ufmPNgOWLYx6NE4qHcSQwHEXNJHMjcQwu+ZmbLufs7mW3vUIK7\nX5cSIIcCvwPOMrNngf3dvb2/JSIiIiIi0oWUnTxw90EdGId0jDbm7qgvVqBdpTPkn0h0LvcE7nT3\n1jRWf//KQyzb1PS4E/Bm3r4+pG/B3f0hYHszW4SY+PA44Eozu9fd/1vguOsD57r7F+n1o8xsbWJs\n/kxivodqW5qY/yHna0QCAeI6n2Hue9mHqKooyMw2AS4j5hi4KDfsIg0nKddeRCJlr7ztyxKVA3sT\nk2CWMkcC0d2vAa4xs2WJuTFOIeZi6JEVSs3NzbUOYb6o5L376wqfwZaWFgDq6uo67Bz6rIqIiHS+\nSioPgFnfbm9GjCPPjV8en1fiLl3DR0A/M1vS3XOd740KtKu0YmQD4HF3H5PZtnV6nJ+l+maUeP2j\nxLfxy2eHEaS5GIYAe5nZIcCvgO+6+2fA7WkehQnA14FCyYPXgA3ztl0A7EF8a//ZvF9OUVsTHWjM\nrD8xh0VuDoj7iaTHa5kEQB9igsV/M3s+iXzrE+/jbzPzUHyDmFQxv9JhLimOIcCl7n5fgf3/IhIa\npZIHc7x/ZvZXoL+77+ru7xFJnJWIihAREREREelGKkoepDHg5zP3t9efmtmx7v7nqkUmpZTbQb+T\neL+uMLOLiZn4f1Hm8fK3ZZ8/BhxvZocSndkfE6s0fMK8zWeQ8wGwZloK8NHsDnd/18z+CJyfVmt4\nnLie3wK3uPs0M5sA/AG4ycz+RMyRcBKxROTTRc55OnCDmf0ZGEN0tn9DLGf5DWKyyG3d/bkScR9i\nZvnDPF5x91vTv/Pv5e9SOf87xH1bGDgn7bsSOCKd96x0Tw4kOvbblYjhMaLK5AIzayKSeycSy1WW\n857sTPxejy6y/2/AH8ysUPIp5wNgRTPbnBjiNIFIGJwJ3EMMiTiEWBFDRERERES6kbLHnpvZjsCl\nwPPAz4iO29rAz4lvRC8ys+2LH0GqpNDSf/n7AXB3Jya6W4tIJOxALK3Yltc+/3jFtuWcTcwFcAox\nKeFgoJ7oLK5f5DXFYs22GUmaFJH4fOXvP46YMPBAYvK+w4lkwT4w63p3ICYJHAM0EtUGW+a+jc/n\n7qOJ4RcbAbcDw4ny/43TdU0l5nUoFj9EAmNk3s/BRa6xLcX/K2IoQB9gkLu/kuKZls79PDFx4y1E\nImAHd7+ryDFx9wnAUcC26d4cSSQPziISMl8pcg05exLVDo8X2X8DUVmwf6HzJ5cSVQ5jgS3c/Wri\nfu5CvKdnAzcSCQQREREREelG+rS1lVexbmaPEh2dn+bGh2f2LUTMBv+5u5f6ZlJEpCJPPPFE29pr\nr13rMIraaaedaG1tpV+/ftxyyy21Dme+ZMeRL7rfYTWMZP58cuXslUm783WUK3u9vWXOg570e9ed\ndMZ7K7Wh97bn0nvbc7W0tFBXVzc/Q8YrVsms9z8AGvMTBxDLzRFlzWtWKzARke5g2LBhDBgwgGHD\nhtU6FJFeQ793IiIina+SOQ8+I2aJL2ZpCi8vJyLSYzU0NNDQ0FDrMER6Ff3eiYiIdL5KKg/uBg4z\nM8vfYWYDgcOA8dUKTERERERERES6hkoqD04gZsB/1sxuA/6Ttg8Etidmdf91dcMTERERERERkVor\nO3ng7i+b2frE7O3bEEvHAXwK3Aqc4O4vVj9EERHpbNlJ+LqznnIdIiIiIrVWSeUB7v4SsJuZ9QWW\nJVZfeLfYMngiIiIiIiIi0v2VnTwws5WL7FohTYPQBkwH3nf3L6sQm4iIiIiIiIh0AZVUHrxKJAgg\nKg6ysttnmtmzwInuPm7+whMRkc7S3NzcaefSutMiIiIi3Uslqy0cAnxITIz4Z2AE8AtgJPA28Dnw\n+7RvaeA2M9usqtGKiIiIiIiISKerpPLgB8BHwAbu/nZ2h5mdSazEsJC7H25mxwH3ASei5RtFRERE\nREREurVKkgdDgXPyEwcA7v6BmV1KLOc4wt1bzexa4PQqxSkiIjKX+vr6WocgPUBnDtkRERHprioZ\ntrAA0K/E/kWBhTPPv2T2XAgiIiIiIiIi0k1Vkjy4BxhhZuvl7zCzHwLDgQnp+VeA3YBnqxGkiIiI\niIiIiNROJcMWjiHmMXjYzB4BXiSWZlwN2ICYNHG4mS0AvA4sB2xd3XBFREQKW2S/PWodQqf67Mq/\nzfp3b7v2asjePxEREWlf2ZUH7v46sAZwBtAf2AXYA1iGWGXhh+7+MrHSQjNQ7+7/qHrEIiIiIiIi\nItKpKqk8wN2nAqekn2Jt3gf2mb+wRERERERERKSrqCh5AGBmg4BtgJWAM4FPiWELo939i6pGJyIi\nIiIiIiI1V/awBTPra2bXA+OBo4kJEZcD1gKuBSaY2ZIdEqWIlGRmE81sbJF9g8xsppmtVcXzXW1m\nz2We72hml2Sen2pm06p1PimuqamJoUOH0tTUVOtQRKQX0d8eEZHep5LVFn5NJAwOA74D9EnbbwWO\nAH5MieEMItKh2uj8pVGz5xsBfKPEfukgjY2NTJkyhcbGxlqHIiK9iP72iIj0PpUkD/YBrnT3PwEf\n5za6+xfufhFwCbBTdcMTkTL1ab9Jh5+zvefSAVpbW+d4FBHpDPrbIyLS+1Qy58EKwOMl9v8bOHj+\nwhGRjmZmqwLnAZsBM4CxwIg02WmuzR7AcOB7adPTwPHufn/mUG2p7URg4/TvmcAqmePsDpwOrAxM\nAo5w94c75MJERERERKTDVFJ58CbwwxL7N0ptRKQ2FkhzkyyY/QH65hqY2fLAA8SEp3sChxATnv7D\nzL6S2jQA1xBJha2BfYGlgBvT8XJylQW/AJ5Kx10f+F/a3p9Y2vU3wK7AosDfzawvIiIiIiLSrVRS\neXAVcIqZPQzck9toZosAxwE/JzoKIlIb2wDFVjxpIzr7w4GFgC3cfQqAmT0KvAD8jJj89DvARe5+\neu7FZvYFMAZYjagymsXdW9LkiB+5+2OpPel8wzLbvpKOUUdUIYiIiIiISDdRSfLgHOD7ROfiy7Tt\nBmBp4pvNccTSjSJSG/cTExfmW4eYkwRgU+ARYGqmiuBNoAUYDFzr7ucAmNlSwEDAgB1S24UriGdG\nLnGQvJYel6rgGFKB+vr6Wocg0i3pd0dERKR9ZScP3P1L4OdmdgUxMeJ3iKTB68BYd7+tY0IUkTJN\ndfcn8zea2RKZp8sA61K4QuG/qf3XgCuArYDpRJVAruNfySSIn+U9n5keKxkuJSIiIiIiXUDZyQMz\n2xh43t3vBe4tsH8lYEN3v76K8YlIdX0I3AmcnLe9DzAt/fs6YtnF9YEn3H2mmW0D7NJpUYqIiIiI\nSJdSybCFicAwomNRyNbAKEDJA5Gu6wFiCMIkd58OYGYLAzcCtwD/IZIG57p7dnWVrdJjscqDGSX2\nSSdpbm6udQhla2lpAaCurm6+jqNyc6mG7vS7U0vZ31v97omI9D5FkwdmtgpwcXqa6xQca2bDCjRf\ngBhX/W51wxORCrTXeW8DRgJ7AePM7AJi/pKjiIRBrhrhcWBfM3uOqFTYmVgtAWLFhEI+ANY0s0HA\no/N6ASIiIiIi0jUVHXvs7q8QE6l9j5gdHWCF9Dz/57vEbO2HdGSwIlJUW/optR93fwPYEPgUaCQq\nhfoAm7v7s6ntvsQEilcRk6IuDKwBfEQkGQqdb2RqdyewZol4SsUoIiIiIiJdVMlhC+5+UO7fZjYT\nGOHuf+vwqESkIu6+aYl9E4nJTXPPW4DtS7R/mdnDFLKWyrTZN+81DwErZTY9DJyW1+bpbBwiIiIi\nItJ9VLLagmZIFxHpYvr160drayv9+vWrdSgi0ovob4+ISO9TyYSJmNlqwGbAYsw55GFBYAlgE3ff\noHrhiYhIKcOGDWPMmDEMGTKk1qGISC+ivz0iIr1PJUs1bkvMxl6s7Hg68FQ1ghIRkfI0NDTQ0NBQ\n6zBEpJfR3x4Rkd6nkqEIJxGrKdQDO6Zt6wE/Af4GvE4s1ygiIiIiIiIiPUglyYMfAH9297uJGdU/\nA77l7o8QS7+9DZxS/RBFREREREREpJYqmfNgAWLpRtx9hpm9SCzJdpO7t5nZaOBXwIjqhykiIlLa\nZ1f23sWAevO1i4iISOeopPLgFeB7mefPE8mDnDZgmWoEJSIiIiIiIiJdRyWVBzcCvzazD4CRwD+A\ni81sdyKR8AvgP9UPUURERERERERqqZLkwTlAHXAGcAFwDfBL4Pq0/0tgt6pGJyIiUkJzc3OtQ5A8\nLS0tANTV1dU4EhEREammspMH7v45MNTMjnL3TwDM7KdEwmAAcI+7P9cxYYqIiIiIiIhIrVQy5wFm\nthiwRXrE3VuBGcA0wKsfnoiIiIiIiIjUWtmVB2a2EnAP8F3g/4An0q7BwN7AoWa2hbu/V/UoRURE\nRKRT1NfX1zoEkXmioWwiHauSyoNzgKWBwe6eSxzg7vsCGwErAmdXNzwRERERERERqbVKkgeDgfPd\nfUL+Dnd/EBgFbFWtwERERERERESka6hktYVFiBUVivmUqEwQERERkR5g4QO2rXUIvcbnf7lj1r91\n38uXvW8i0rEqqTx4DDggN1lilpn1A/Zh9jwIIiIiIiIiItJDVFJ5cBowHnjWzK4FXkjbvwPsAXwL\n2KKq0YmIiIiIiIhIzZVdeeDuDwD1wBTgN8A16ecUYsjC1u7+z44IUkRERHqXpqYmhg4dSlNTU61D\nERHpUfT3VeZVJZUHpMkS1zGz5YGVgb7AG+7+Vn5bM+sPLOvur1clUpEaM7OJwMYlmhzv7udW6Vyn\nAke7++LVON78MrOZwDHuPrLWsYhI79DY2EhrayuNjY00NDTUOhwRkR5Df19lXlWUPMhx98nA5Haa\n7QL8lUgwiPQEbcADwDFF9r9RxXNdDoyt4vHm1/rAa7UOQkR6j9bW1jkeRUSkOvT3VebVPCUPKtCn\ng48v0pn6AB+6+2MdfaJUzTNXRU+tdMY1i4iIiIhI19XRyQORXsXM9gF+D+wOjAQGAi8RQxrGZtpt\nCpwDrA68DBwN3AHs5+7X5A9bSMMG9gW2BrYBPgcaiaEEM1KbBYGTiZVPvgpMAn7l7uMz510UOBvY\nFVgCeBQY4e5PZ+I/L8V2PPAxUJcej3H3kSm2bdP1nQasBDwHHOnuD2fOtSsxJ8q30/7fATcDg9z9\nvnm6wSIiIiIiUhOVLNUoIrCAmfU1swXzfzJtFgeuBC4EtgPeA240s6UBzOwHwDjgf8DOwNXAaNr/\nfRxFDBfaEbgYOBI4MLP/cuAo4A+pzfPAODPbIJ23D3Abkdg4kUggfAZMNLNvZ46zJDAU+BmRWPi0\nQCyrAacSyYohQD/gJjPrm861FXADkZzYEbgHuJ4Y+iEiIiIiIt2MKg9EKrMN8EWB7W1pklCAhYhv\n6ZsAzGwy8AwwiPjm/XjgdWBnd58JNKfKgvPaOfeD7n5k+vcEM9s+xXOJmQ0E9gYOcPcrU5t/mNnX\ngd8Cg4EtgU2BzXPVCGZ2F/B/RDJh//S6vsBp7n53iVgWBwa7+7/ScfoCtwI/BJ4iVmT5p7vnjnm3\nmS0OHNbONYqIzKW+vr7WIYhIN6C/FSIdS8kDkcrcD4wotMPdPzez3NNHMrtycxcsmh4HATemxEFO\nE+0nDx7Je/4WkEtYDEqP4/KqIMYBvzOzrxCJg0+B+/La3A1sn3857cTyZS5xkIkFYFEzWwRYj6iC\nyGpCyQMRERERkW5JyQORykx19yfLaJct9c8lCXLDEpYB3s1r397qJfnHzB03e0woPMliG7BsatMf\nmF6gTf62d9qJ5fMCsZDiWTo9zss1ioiIiIhIF6TkgUjnewtYLm/bV+fzmFOJJMEGwJeZ7bkVT95L\nbd4hhjpQoE21vEMM7ci/pvm9RhHppZqbm2sdQq+i0m/prvS3Ym4tLS0A1NXVzdqm33GZV5owUaTz\n3Q9smyYwzNlxPo/5AJEEWNLdn8z9EEMVjiQSCg8QHfhP8tr8DNhjPs8/S1r94WHmvqb5vUYRERER\nEamRsisPzOxHwLO5ZeFEeqmlzWw9Cn9bP7XMY5wNPA2MMbPLiJULTk/7ZhZ9VWF9ANz9aTMbAzSm\npRSfJ+ZB+DVwrru3mdltwOPAnWZ2GvAGsVLCL4GDKzxve04nJkm8jJjrYH1mz3dQ6TWKiIiIiEiN\nVVJ58A9i1vZy/Z1Y312kp2gDfkp8q/5QgZ8LUpuSyxG6+/PEBIWrALcABzB7EsaPM+dqb1nD/DZ7\nAFcBJxATJe4OHO/uJ6bzzgTqiQkSzwXuADYE9nH3y/OOW8l553pdWs1hT2BjYnnIrYhVJmD2NYqI\niIiISDdRyZwHCxPfVJYlrQ3/aqUBiXRV7r5pmU3/mve6D8kk6sxsc2LixR9ltm2Z/vlies1pwGmZ\nY8yV6HP3nfOeTyc66Mfnt820mQockn4K7b8auLrA9gUy/54jtrTtaWKJx9z17AQ84+4DM9sOIqoO\nXi4Wn4iIiIiIdE2VJA9OA44zs1eB+919WodEJNLzrQcca2bHAP8BvkmU+f/T3SfVNLLq2RaoN7Pj\ngTeBOuBM4Fp3/6imkYlIt9CvXz9aW1vp169frUMREelR9PdV5lUlyYNhxHJvtwOY2XRmlym3EWOv\n29y9f+GXi0hyNlHJczywAjCFGOZzQi2DqrLhxHWeTaws8RbwJ2bP7SAiUtKwYcMYM2YMQ4YMqXUo\nIiI9iv6+yryqJHnwTPoppb2x0iK9Xpp09OT00yO5+yfA4elHRKRiDQ0NNDQ01DoMEZEeR39fZV6V\nnTxw9306MA4RERERERER6aIqqTwAwMxWBbYDVgamE+XId7r7S1WOTURERERERES6gIqSB2Z2JvAr\n5l7i8Q9mdp67F53lXURERES6l8//cketQ+iVdN9FpCuaa/m3YszsAGJCt7HA+sBSwDLAT9K248xs\nnw6IUURERERERERqqJLKg8OBe/PXlgceMbNdgH8Ah1FgjXgRERERERER6b4qSR6sBlxaaIe7t5nZ\nLcDvqxKViIiIiNREc3Nzwe0tLS0A1NXVdWY40gn03opIOcoetgB8BHyzxP6VgY/nLxwRERERERER\n6WoqSR6MBQ41s83yd5jZYGLIwu3VCkxEREREREREuoZKhi2cAAwC7jGzJ4D/pO0DgR8BrwMnVjU6\nERHp1urr62sdQrdQrExcREREpKsou/LA3d8F1gPOAxYDdkk//YHzgbXd/X8dEaSIiIiIiIiI1E4l\nlQe4+/vAcelHRERERERERHqBoskDM1sXeCklDHLPyzGTmDjxJXf/Yv5DFBGRnmChg35Qs3NPv+y5\nLhFHVjYmERERka6uVOXBI8Aw4LrM80pMM7O93f2WeYpMRERERERERLqEUsmD/YCH856Xow+wBPBL\nYCSg5IGIiIiIiIhIN1Y0eeDuV5d63h4zWxoYPk9RifQgZjYR2LhEk+Pd/dwCr1uRWMVkkLvf10Hh\nzcXMvg/80d0Hp+eDgPHAOu7+ZGfFIfOuqamJMWPGMGTIEBoaGmodjnQj+uyIiIhIMRVNmGhmCwCr\nEastZFdqWJCoNtjE3U9I2/4A3FWNIEW6uTbgAeCYIvvf6MRYyrErkJ3j5AlgfeD52oQjlWpsbKS1\ntZXGxkZ1AKUi+uyIiIhIMWUnD8xsIJEMWLlEsxnACQDuPpXK50kQ6Yn6AB+6+2O1DmReuPs0oFvG\n3lu1trbO8ShSLn12REREpJhKKg/OAZYHzkrPTwAOBZYE9ga+BH5S1ehEehEzWw84H/gR8DJwct7+\nq4G13f0HmW07AX8HvuXur6dtuwC/BuqAycDl7n5W5jVHAgcAqwJfEEm+o9x9kpmdmjuvmc0E9iGG\nTswxbMHMds6cYwpwNXCau89I+18FLga+DexG/K25GTjM3T+evzslIiIiIiKdbYH2m8yyIXCZu58I\nnElUGbzk7mcTJc79gH2rH6JIj7CAmfU1swXzfwDM7FvAvcCnwBDgCqJDnq+t1EnMbAjQBDwD7AT8\nETjVzH6V9h8DnA1cBmwJHA58L3Ouy9O5W4mhCncWOMdBwBgi6bATcCExJCM/3l8TycXdgZOAoelR\nRERERES6mUoqDxYjOiS4+6dm9hqwNvAPd59mZlcCBxOdFRGZ0zbEt/z52sysP3AE0WHfwd0/A+4y\nsz5EJUJWn3bOcxJwr7vvn57fbWbLAxuk5ysCp7v7hen5/WY2ADjfzPq7+1tm9hYwMzfMwsxmHdzM\n+gK/Ba5398PT5nvMbCpwiZmd4+6T0vY33P3nmTaD0n04vp1rEBERERGRLqaS5MFkYthCjgM/zDx/\nF/hONYIS6YHuB0YU2uHun5vZT4F/psRBzt+ZO3lQlJn1A9Ygb5WTzCSmuPvw1ParwMD0s33avTBR\n+VDKQGBZ4Ka87TcClxCrSuSSB/nzJLwFrFnGpUgV1dfX1zoEKYPeJxEREenqKkkejAN+aWb/dPeH\ngIeB4Wa2EvBfYMf0KCJzm9rOModLAU/lbXu7wnMMSI/vFGuQJj69HPgpkSh4GpiWdrdX1QCwOZfz\ntQAAIABJREFUdHqcnN3o7lPN7HNi1ZWc/ETETCobKiUiIiIiIl1EJf8jfxownShzXob4lrEP8CLw\nP6Ic+YqqRyjSO7zPnJU9AMvkPW9j7t/ZxTL//ig9fjXbwMxWMLNN0lKrY4G+wOruvpi7b5i2lWtK\nepwjVjNbiqhceD8Tq4iIiIiI9BBlVx64+3/NbHViTPb7AGa2IXAc0cm5090v6ZgwRXq8CcChZrZk\nWuYUIiGX9RGwvJn1cfdc53yj3M4098hzxDCECzOvG05MVrgWMbToTHf/d2b/VukxV3kwo0SczwPv\nESso3JLZvnt6fLDEa6UGmpuba3p+leOXp9bvU47eLxERESmmaPLAzDah8LeH/zOzjTPPr06PbWa2\nsbvfV8X4RHqKpdNSjIWGBnwIjAIOAsaZ2ZnASsApee3uJFZHuNjMRgObEcOFsk4HbjKzS4lVF9ZI\nrzna3d8xs9eBEWb2LpEk2JvZkykuSlQOfAj0N7MdgMezB3f3mWZ2GnChmU0BbiPmPjkVGJ1JSpQz\nBEJERERERLqJUpUHE4jkQSWdgDaiJFpEZmsj5hh4uMj+e9x9y5SwuwAYDbwBHAjcmmvk7s1mdiJw\nGNHpvyc93plpM8bMdgN+k/a9Bhzl7n9KTXYhqhJGE0mC64F1gFeIpRlfT9v2TG1OIhIIbZlzXGxm\nnxLLMx5AzHVyHnBG3jUXug8aziAiIiIi0g21N2yhD1GiPJZIJnyBvlEUqYi7b1pmu38DW+Rt7pvX\n5izgrHbaNBFVB4XO8SSRyMi3QKbNe8C67ZzjKuCqQudI+1cpsG0ERVacEBERERGRrq1U8mA1oiR6\nR2Av4hvLO4hxzuPc/ZOOD09ERCrVr18/Wltb6devX61DkW5Gnx0REREppuhqC+7+oruf7+4bA18H\njiJmdv8r8L6Z3WFmB5rZcp0Uq4iIlGHYsGEMGDCAYcOG1ToU6Wb02REREZFiylptIZUxXwVcZWb9\nidLqHYEzgUvM7BGiIuEWd3+ho4IVEZH2NTQ00NDQUOswpBvSZ0dERESKKVp5UIy7f+rut7r7fsRa\n75sA04BziGXcRERERERERKQHKavyIJ+ZLUJUH2wPbEsMa/gEGFe90ERERERERESkKyg7eWBm3wC2\nIxIGg4FFgDeJ4Qq3ARPcfXpHBCkiIt3f9Mueq3UIQNeJQ0RERKQ7KZk8MLO1iGTB9sBaafPTwO+B\nW9OybyIiIiIiIiLSgxVNHpjZm8RwhC+AicBhwG3u/mbnhCYiIiIiIiIiXUGpyoNvpMf3gG8ChwOH\nmVmx9n2ANnf/XvXCExGR7qy5ubng9paWFgDq6uo6MxwRERERmUelkgf3AW1EUqBcbfMXjoiIiIiI\niIh0NUWTB+4+qBPjEBEREREREZEuaoFaByAiIiIiIiIiXVvZSzWKiIhI56ivr691CCIVKzbHiYiI\n9AyqPBARERERERGRkpQ8EBEREREREZGSNGxBRESkC1tzX/2nulJPX/XlrH/r/nWs7L0WEZGeTZUH\nIiIiIiIiIlKSkgciIiIiIiIiUpJq+bogM9sR+CWwJtAPeBG4ArjU3btFfaCZLQVcDJzv7k/WKIbV\nUgzrAa8Dx7j7XWW8bmb65xHuflGB/RsDE4FP3H3xCuLZEBju7g3p+T7AlcCy7j6l3ON0FjNbGDgX\nGO/ut6ZtrwK3ufsRNQxNurimpibGjBnDkCFDaGhoqHU4IiI9gv62ikitqfKgizGzi4ExwJvAgcBO\nwO3A74EbzKy7vGdrAkNrdfJ0n24H+hD38Dmgycy+VuYh2oBdiuzbNdOmEgcAVuFraunrwOFA38y2\nHYHzahOOdBeNjY1MmTKFxsbGWociItJj6G+riNSaKg+6EDPbC/gFcJC7/yWza7yZTQJuAH4OdKf/\navSp0XlXAVYFRrj7eDN7G9gd+CHwdhmvfwjYyMyWcff3cxtTUmII8Czw7eqH3SXNeg/d/ZlaBiLd\nQ2tr6xyPIiIy//S3VURqTcmDruVY4Jm8xAEA7j7azH4MvJvbZmbfIsrKNyGGN4wnSvNfTPtPBbYF\nLgROBr4BPAjsSXyDfCKwBDCWSFi0mtmgdJxBwJ+IDvJzwHHu/s903H3IK7dPwxSmAPsCr6VjADxu\nZle7+36p3RHEt9krEcMxTnf30ZnreRkYDhwFLAVsk7b9EdgU6A88AZzk7veVuJdvA58A+wB3pOv9\nFHi6xGuymonqiZ2IISM5PwUWA/4KHJbbaGZfAU4iqi1WTueaABzp7m+a2dXAXqntzHQtOYPN7ESi\nKuEl4AR3H5s59qrEt/2bATOI92tELqmRjr0o8Chx75YC7gT2B0YQQ2D6AtcRwyba0uvWBU4FNiDu\n6yvASHe/LPNeANxkZhPdfbM0bGGsux+ejvFNoipmcGo7IcX2Rtp/LHAwsALwFnA1cGYuBhERERER\n6R66Swl8j2dmXwe+T3T6CnL3Y929ObVfEXgM+A5wCNFpXwV4IB1r1qGJpMTRRNn8+sA/iU71wcAp\nRDXDkXmnayIqHHYBPgTuMrO6Mi6ljejcH5qe7wOckWI+hegEXwdsB9wNXG9m+QP3TkoxHwb8K8Xx\n7XSsXBLgjpSwKMjdPyGSI0PM7GHgN8A+7v5OGdcA0Eq8F/lDF3YFbgM+y9v+hxTv74At0rkHA6PS\n/tPT8V4m3oPsPBB/TO12JO71jWb2VQAzWx54gEi27Em81xsA/0gJi5wtiUTH/sS924W4d+um111O\nJG12T8ddmejofwQ0ADsA/wEuMbPVgf9mrv0EIgEB8f7mkg9LpNhWJypm9gYGAuPMbAEzG5au+7wU\n31+A04jhOCIiIiIi0o2o8qDrWDE9vlZm+xHAwsAWmW//JxKd06OBY1K7xYD93P3x1GY74GfAN9O3\nw+PMbAgxqWDWH9z97PSa8em4xwL7tReYu08zs5b0dJK7v5I6+scDZ7v7KWnfPWa2OHA2kazI+Zu7\n35R7YmY/BU519zvS80np+hcjOttzMbMFgYWAmenafuHuTYXaFtGWYrrWzJZw94/MrA/RoT4U+FFe\n+2WBo9396vT8fjMbSCRmcPeXzew9oNXdH0sx5l57ZKb64l0i+bIeMWfD8HQd2ff5UeAF4n28Nh1j\nMWCIu09ObfYiOvJrpUTK3akzvy4x/OX7RBXKHu4+I73mMeB9YGN3n2RmuSqNF9z9+QL3aF9geWBD\nd38tHeMN4O/p3BsCr7r7JZl7Mp2oQBARERERkW5EyYOuY0Z6LLcaZGNgQnaWfnd/38zuJYYx5LQR\n30DnvAO8kysrT6YAS+Yd/7rMcaeb2ThiKMO8Wp9IdtyZOvY5dwH7pfL3WafMe+39wBlmtgYxBGGc\nu/+q2InSvAR/J76h3xP4FXCmmd1FdPIHAZe5+7R2Yr6TSD5sR9yPnxLDPMaRlzxw95+lc69AVHvU\nEZ3nhdo5B8T8Cjm55FGuqmJT4BFgaua+vQm0EJUNueTB67nEQTIZ6JMSBznv547r7uOIxNEiqdLg\nu0RiAeJ9KsdPiOTQrIRXmhPhOwBmdh9wkJk9TiRi7nD3kWUeW3qI+vr6WocgIp1Ev+8iIj2bhi10\nHa+nx5WLNTCzr6dvvyE6gZMLNHsHyC4f+GmB8eXlzLTz37zn7wFLl/G6YpZJjw8B0zM/o4kER3ao\nRf7Qgt2JJRc3ITrL/zOzv5rZIkXONZSY62Ebd78e2JmY9K+JqFg4iRj6UFLqeN/F7PL9BmK8//T8\ntmb2EzN7BniDWC1jSDpHOb9j2Vhyy0TmXrcMsBXwBXPet9WB7MoRhRIhRa/RzPqa2SgicfQE8Ftm\nv7/lTnI5gLnfq1nc/TpiqMlMYjjHs2b2tJmtXebxRURERESki1DyoItw9/eAp4iOYjH3EPMEAHzA\nnJ3HnK8R3zDPr2Xyni/P7GRFLhmR/fws1s7xpqbHnYB18n7WBSYVe6G7f+DuI9x9BeIb/wuAYcAR\nRV6yAVEu/3h6/StEQuFHxDCCq3Kl+mUYA2xlZv2JhMDo/AZmtiQxxOAVYFV3X9rdNwMeLvMcpXxI\nVEDk37MfM+f1V7qqxYnE3AN7Aou7+0CK389ipgLL5W80s63NbDkAd7/G3dcjPj8HEAmKa/NfIyIi\nIiIiXZuGLXQto4C/mtl+7n5ldoeZ7UmUwv8+bbofODC7lKCZLUuUsv+5CrFsT0yyR/qGf2tmz0vw\nUXpcgahIANgo7/X5nfNHiW/Pl3f323Ib0zj8IUQndi5pwsAngMPd/eZUFv+Mme1KTCJYyKvASma2\nsrvnKjrGE6tGrEF8216u24nfk5OIoR3jCrQZSFSCjHL3l1PcCxATJ2aVm7DIeoCYzHBSruLBzBYG\nbgRuJSY5hNkJnXJtADzu7mMy27ZOj7lERHvxPgjskL3PZvZ9YmhJfXpv+7v7rik5dqWZrcTs+Tik\nF2hubi64vaUlpkWpqytnHtbeR+Xf0h0V+32X6tDfBRGpNSUPuhB3v9bMtgUuM7P1iFn9ZwL1xGz2\nN2Ym5PsDURJ+t5n9lujwnUSsAjCKyuV/c31ums3/VWLZxEWAc9K+8ek8F5jZmcRQi5OAzzOvz01k\nuJ2Zferuz5vZH4HzzWxp4HFiKcTfAre4+8cp+TEHd59sZi+mcy1KjPffNp3z5iLXcjkxPOF2Mzs5\nXduxwGrECgOnpZjaHX/v7lPN7B5iEsqmQkMWgOeJYQMnp3kJ+hOTKq5ILKGZ8wGwopltTiREyjGS\nWOJxnJldAHxJvB/rE8tv5hSqPMjfln3+GHC8mR1KVH38mLhHnxDLPsLsapEtzOxld3867xhXEvf5\njrSSxkzi/XwUuJdILl2ZPiP3EMmeQ4j5KEREREREpBvRsIWuZyixLN4Pgb8SM+P/hFgGcI9cI3d/\nk/i2/7+p3V+IFRE2cPfcfAWzltXLKHfbcGJpv9FEp3CjdE7cfSqwG/BVYCyR2NgT+Djz+klEefoJ\nwLlp23HEso0HEt/gH87sJEgpuwMT03HuAjYHhrr7+EKNU3ybEImPa4CriaEc6xOJmOuIMvpyjSES\nbTdlts26Z+l8Q4iS/NuI5M19xESLfcwsNxHhpcTQj7FEVUKh+55/LW8QEy9+SixZeT3Rgd/c3Z/N\nj6VQfHnbcs4mPjenEJUCg4l7M4G4T7j7R0TCaM/Udo5jpOvemFj54WoiafMEsL27z0yJruHEnBF3\npnPeSCQQRERERESkG+nT1lZptbP0ZGY2iKgsWDVXgi9SS0888UTb2mtrjsXuJFtaq2EL8yZ7D9fc\nV0WClXr6qi9n/Vv3r2Nl77WGLXSscv62ziv9Te659N72XC0tLdTV1VU679l8UeWBiIhUVb9+/eZ4\nFBGR+ae/rSJSa0oeSCEqRxGReTZs2DAGDBjAsGHDah2KiEiPob+tIlJrquWTObj7RKBvreMQke6r\noaGBhoaGWochItKj6G+riNSaKg9EREREREREpCQlD0RERERERESkJA1bEBER6cKys9lL5XT/RERE\nqkOVByIiIiIiIiJSkpIHIiIiIiIiIlKShi2IiIh0Mc3NzbUOYZ61tLQAUFdXV+NIpNr03oqI9G6q\nPBARERERERGRkpQ8EBEREREREZGSNGxBRERqrr6+vtYhSJWMGjWq1iGIiIhIB1DlgYiIiIiIiIiU\npOSBiIiIiIiIiJSkYQsiItKl7Di0b61DmGe3Xj9j1r+783VUKnvdIiIi0jOp8kBERERERERESlLy\nQERERERERERKUvJARKSba2pqYujQoTQ1NdU6FJFeRb97IiLSmyh5ICLSzTU2NjJlyhQaGxtrHYpI\nr6LfPRER6U00YWKZzGxH4JfAmkA/4EXgCuBSd/+ylrF1JDMbBIwH1nH3J6t0zO8Df3T3wR11jvlh\nZlsD5wLfAh4DDnb3Fys8xreAl4EGd/97tWPsCGa2D3AlsKy7TzGzicA0d9++poFJu1pbW+d4FJHO\nod89ERHpTVR5UAYzuxgYA7wJHAjsBNwO/B64wcx68n18AlgfeL6Kx9wVWLeDzzFPzGxV4GbgXmAX\nYFlgdE2Dqp1DgKNqHYSIiIiIiNSeKg/aYWZ7Ab8ADnL3v2R2jTezScANwM+BHlmz6O7TiG/fu/U5\nKrAJsBBwort/YmaXAheZ2ULuPr3GsXUqd695MkdERERERLoGJQ/adyzwTF7iAAB3H21mPwbezW1L\n5ernEp3QfkQ5/jG5snczOxXYFrgQOBn4BvAgsCewI3AisAQwlkhYtGbK+jcDzgF+ALxEJDVIx1qN\n+AZ/X3d/KZ1rJnCsu5+fie8WYEl33zRTWr8DcBiwEfAB8Cd3/11qnzv3rCEFZrYL8GugDpgMXO7u\nZ2XOcSRwALAq8AXwCHCUu09K139yJr59gNcLnGPnzDmmAFcDp7n7jLT/VeBi4NvAbsRn+WbgMHf/\nOLVZj6gOWTPFcW96L16nuBfS4z5mdgmwDfBUNRIHZX42jnb3xTOvWRN4Ehjk7veZ2dXAkkAr8b7d\nA4xKx9qY+HysBfwX+J27X5E51rrAqcAGQH/gFWCku19WJN6JZIYtmNnewHHEPX8PuAk4wd0/n9fP\nqIiIiIiIdA9KHpRgZl8Hvg+cVayNux+bab8i8Q36G0TJ9wJER/kBM/uRu/8v15RIShwNLApcCvyT\n6CQfTHSyRgL/B5ydOV0j0fl7I+2/EfgEOB2YRszBcDGwVeY1bQXCzt92FXBROtfuwG/N7El3vyv/\nhWY2hOg0XgWcQNyfc8xsprufY2bHAGcQncyniY7mmUTnfx3gcmAFolpjUyJ5sXreOQ4CLknXcgLw\nI+A0YBUiyZLza2BcirkOOA94GzjezJYE7gTuIt6DAUTH/QbgJwXuCQCpg34LcD6wHzFsob5Y+3JV\n8Nko9H7l2xZoArYHZma230DcgxOJZNDlZvaQu7eY2crABCIp1UD87h8KXJLaTCpwnrZcPGa2MfH5\n+g3wAPG+jwQ+I96HnHn5jEoV1dfP98dVZL4MHz681iGIiIhIB1DyoLQV0+NrZbYfASwMbOHuU2DW\nt7cvE4mCY1K7xYD93P3x1GY74GfAN939DWBc6qSvl3f8C3IVEGZ2AdHB3svdG9O2tYHDK71I4EZ3\nPy0d459E53JrouOd7yTgXnffPz2/28yWJ77Nhrhnp7v7hen5/WY2ADjfzPq7+1tm9hYw090fS+ec\ndXAz6wv8Frje3XPXco+ZTSU6uudkOrpvuPvPM20GEZUCxxPJhKWBC939kXTs94BNzayPuxfspJvZ\nMsCnxNCFNYAfVKl8v9zPRp8yjtUX+IW7T03HGZS2j3L3UWnbU8DORCe9hejsPwjskaneeAx4n6hY\nKJQ8yMbyEyIJcH6qwrjfzD4nKjqyOuozKiIiIiIiNaTkQWkz0mO5EyJuDEzIdQ4B3P19M7uXKFXP\naQP+lXn+DvBOShzkTCHK07Oy8wK8kx6zxyn0mnI8kom3zcz+S1REzMHM+hEd6jm+VnL3EzL/Hp7a\nfhUYmH5ys/UvTHTMSxlIfNt/U972G4mOaLajmz9PwlvEEAWIqo0pwFgzuwG4Axjv7vcVO3GqNLkv\nxbgrUV1xhZltQkyS2c/dr2kn/mLK/WyU491c4iBP9n2camYfk95Hdx9HJKUWMbPVge8ye9LKhcs4\n5/1EBckzZjYauMPdryrQrqM+oyIiIiIiUkNKHpSWGxu/crEGqcP5dvomeylifHq+d4DvZZ5/WuCb\n73LWeZpWYFt7nfFy5B9jJoUTJgPS4zsF9gFgZgOJoQk/Tcd9mtlxl/Ot+tLpcXJ2Y+oMf07MB9Fu\n3O4+LZXanwzsTZTof2hmZ7n774uc+3SiI71OOt9MYnjASKIS43lgXpMH5X42ylHs/he9H6mi43zg\nIKKq4kUiIQBlvC/u/mBarvQoYijJb8zsFaIC4h+Zph31GZUyNTc31zqEsrS0tABQV1cHaLhFTzJq\n1Chg9nvbk+lzKyIivUlPXmJwvrn7e8BTlB6ffQ9wd/r3B8DXCrT5GlEeXgv57/Fi83Gsj9LjV7Mb\nzWwFM9skLVk5liirX93dF3P3DdO2cuW+mV8+7xxLER373H1sd24Ad/+3u/+MSHpsTnSWz0kTBxay\nAXB37lt9d7+ZmO/iUGLuhoITC6b4DjSz3TOb+qbHzzLX1d5no43y3q9ykjD5TiSWGd0TWNzdBwJH\nVHIAd7/d3TcDlgGGEkmBG83sK/MQj4iIiIiIdCNKHrRvFLCmme2Xv8PM9iTG1ueWabyfGFO/TKbN\nssBgYrx5Z/uImJwwF8uixOSD8yQtqfgcs4ch5AwH/kYMN/gOcJm7/zuzP5d8yXV6Z1Dc88RM/rvl\nbc91zMu6j2a2nZm9Z2bLuvuX7j6e2Z3llYq87FX+v707D5OjKhc//g3I1aCIBFBxuyjq63gRvTeo\nwZ8iixoVZDGjyGWQRbwqCgRk30F2gYCCsoksUQwkihKWsMgqKhLA6zK8rogsF5WwG9kyvz9ONal0\nZnomYZKeznw/z9NPT1edOnWqTlcn9dZZYL0qCNLwTeApyo39Qy12uS3w6drnxnm/t3q/icG/G48C\nY6vBHhve18++hjKoYrP1gF9k5ozMbLRy+Uj1PmgwIiKOiIifQfkeZOY0yuCMK7NgaxBJkiRJyyC7\nLQwiM8+PiE2AM6qp/35EaQ4+kTIN3bTMPKdKPoUy9eBVEXEE5absQMrT55MWY/eL84S57nJgh4i4\njTKd5N6Usg+Wb6v1hwMXRcTplCb9b6cMgPflzPxbRNwN7B4Rf6cECbZj/mCKL6Y8ZX8YWDEiNgN+\nUc88M+dFxGHA1yNiDuV8r0MZwf/CWlBisGP4KeUm+/sRcSxlYL/JlADAtQNscxRl1osLI+JMSneV\ng4F7KAGEH0bEpMzsb/uLgWMi4guUKQoPB36fmb+s1g/lu3EZpWvBtyLiVMr4DV9gYUP9XtTT3UKZ\nheKLlDEj3kmZ8eMJ+hnfop88rgH2i4gzKONPrEKZZeHGauyGIRZJkiRJUiey5cHQbA3sTLmJPZf5\n0/19CdimkSgz76E8Kb6vSncWZTT99TLzvirZc9Pf1Qxl2VCmXGxetjvlRvk04GzKDeC5A2zXKt/n\nPmfmDEqrgAmU7gifBfbIzFOrJB8HHgcupEzLdy9likaqbQAuAGZXabah6VirvD5DmcrxR5Rzfzy1\ncz3AMTyXT2Y+SHmy/hRwPvB9YAVg4/qghXWZeTNlGsTXUYIBXwFmUma92JgyTsBAN9pfpwQB9q/2\n9SiwaS3vQb8bmZnATsB/UQIJm1Fmvmj+HizOd+GYar+HUAaP3JgSALuW+fXSvE39fF4L9FAGWfwR\n5Tt1MzBpEcrQapkkSZKkEWxMX5//j5c0cs2ePbtv/Pjx7S7GiLbFFlswd+5cxo4dy8UXX9zu4gxJ\nqwETN996+X636QQ/vGB+r6xOPo5FVT/u0TRgYidee89H83WrZYd1u+yybpddvb29dHV1Pd+W6ovE\nlgeS1OF6enoYN24cPT097S6KNKp47UmSRhPHPJCkDtfd3U13d3e7iyGNOl57kqTRxJYHkiRJkiSp\nJYMHkiRJkiSpJbstSJJGlPrge51sWTkOSZIksOWBJEmSJEkahMEDSZIkSZLUkt0WJEltN2vWrHYX\nQcOkMae4JElattjyQJIkSZIktWTwQJIkSZIktWS3BUmSxMSJE9tdBI0AdiGSJA3ElgeSJEmSJKkl\ngweSJEmSJKkluy1IkqQFfO4TK7S7CEvc6Rc9/dzfo+F4W6mfC0mSBmLLA0mSJEmS1JLBA0mSJEmS\n1JLdFqQ2iYi7gNfVFj0LPABcAuybmY8M034OBb6cmSsNR37SaDF9+nRmzJjBpEmT6O7ubndxJC0l\nXvuS1D9bHkjt0wdcBEyoXhsBhwCbAd8bxv2cCWwwjPlJo8LUqVOZM2cOU6dObXdRJC1FXvuS1D9b\nHkjt9UBm3lL7fGNEPA2cExGvzcy/Pt8dZOa9wL3PNx9ptJk7d+4C75JGB699SeqfwQNp5Gl0VxgT\nEdsDZwOrZeYcgIh4GTAH2CEzz42I5YGjgU8BLwf+CHwtM0+v0h9KrdtCRMwDdgA+AnwUeBKYCuyZ\nmc9WaV4AHAxsD6wO/BrYJzN/3ChkRGwH7A28AfgHpRXFfpn55FDWS5IkSeocdluQ2mu5iFg+Il4Q\nES+KiLWBA4DLMvPuQbbtq973A3YE9gc+BFwBfDMiPthi25Mo4ytsDpwK7AZ8trb+TGAPYEqV5k7g\n8ohYDyAi1ge+RQk6fAg4Evg8pdvFoOslSZIkdRZbHkjtMwbYuXrVPQj0LEI+7wVuzcxG58wbIuIJ\n4J8ttvlJZu5W/X1tRHyM0grhtIh4C7AdsFNmnl2luTIi1gCOADYG3gM8AZyQmU9Ruls8BTxVpe9v\n/ZOAk4lLkiRJHcjggdQ+fcA04KvV5xWANSktCW6KiAlDzOcG4IiI+DFwMTAzMw8eZJufNX2+F1ix\n+nuD6v3yqvtCw+XAUdWyGymtCX4ZERcCl9YCDQyw/ttDPB5pxJk4cWK7iyAtFX7XJUkDsduC1F5/\nz8zbqtfPM3MapQXAKsDuzO+a0MoxlC4Gq1O6I/whIm6IiDe02Ka5VcI85v8erFq930tpSdB4fZUS\ncFwtM39C6c5wPyXY8bOI+GNEfAhgsPWSJEmSOovBA2mEycz7KAMirsX84EH9Wn1JU/p5mXlSZr4N\neB1l/IK1gVMWswiPVPudAKxbe70TeBelWwWZOTMzN6IEG7amBCSmRcQKQ1kvSZIkqXPYbUEaYSJi\nTUorgj8Aj1aLX02ZsQDgfU3prwVuz8w9MvMe4OsR8V+UG/7FcRNlPIaVM/Oq2n72BNYBtouII4AP\nZOaEzHyMEhR4EfBtYOWImNxi/UupAhBSp5g1a1a7i7DE2Vxd0Pq73tvbC0BXV9fSKk5beC1IUv8M\nHkjtMwZ4ZdPYBq+iTJE4F/gGpdn/v4CTI+JISsuCAynTKzZcD+wbEfcBtwJdQDdw4mLz9JbSAAAg\nAElEQVSUh8y8IyJmAFOraR7vpIyDsD9wXGb2RcQ1wH4RcQZl3IZVqvU3ZuY/Bllv4ECSJEnqMAYP\npPbpo9zkd9c+PwzcAnw+M+8EiIhPAscClwC/BrYFflDL53BKt4adKcGH+4Hjga/U8h1s7ITmNNtU\n+e4HvBy4C9g3M08AyMxrI6IH2KdKO7cq315DWS9JkiSpsxg8kNokM18/xHQzgZlNi1evrZ9Haa3Q\n7wwLmXkYcFjt80JjnWTmlk2fnwL2rV4DlesC4ILFXS9JkiSpczhgoiRJ/Rg7duwC75JGB699Seqf\nwQNJkvrR09PDuHHj6OnpaXdRJC1FXvuS1D+7LUiS1I/u7m66u7sHTyhpmeK1L0n9s+WBJEmSJElq\nyeCBJEmSJElqyW4LkiRpAadf9HS7i7BUjbbjlSRpcdjyQJIkSZIktWTwQJIkSZIktWS3BUmSxKxZ\ns4Yln97eXgC6urqGJT9JkjQy2PJAkiRJkiS1ZPBAkiRJkiS1ZPBAkiRJkiS15JgHkqSONXHixHYX\nQUvIcI3BIEmShoctDyRJkiRJUksGDyRJkiRJUkt2W5AkLRMO3XLFdhdhiTn0B/+c//coOU5JkjSy\n2PJAkiRJkiS1ZPBAkiRJkiS1ZLeFUS4i7gJeV1v0LPAAcAmwb2Y+UqXbHjgbWC0z5wwx73nAXpl5\nwjAWebFExErAScDmwL+AkzPzq0PY7jrgscz82ADr1wT+BHRn5verZScCOwJjgA9n5k8Xs8xvBA4G\nPgCsCvwNuBo4PDP/PMQ8FiqfRofp06czY8YMJk2aRHd3d7uLI6nitSlJ6lS2PFAfcBEwoXptBBwC\nbAZ8r5ZuZrX+kcXIfySYAnwQ2B44FTg2IjYbwnZ9tD6G+yjn5VqAiHgbMBn4FrAJ8MvFKWxEvAb4\nKfBaYFdKAGF/YDzw84h47RCzWqB8Gj2mTp3KnDlzmDp1aruLIqnGa1OS1KlseSCABzLzltrnGyPi\naeCciHhtZv41M/8B/KNN5RsOE4HvZeZMYGZETKbcVP9okO3GtFqZmU8B9XM3rnq/IDNvXdzCAp+h\nBPcmVvuAUi9XUFoSfBHYd7BM+imfRom5c+cu8C5pZPDalCR1KoMHGkijhcEY6L/bQkR8lvJUfC3g\nHuDUzDx5oAyrJvTHAe8HxgI/BvbMzD/U0mwIHAusTblJ/jJwKaUbwKWUJ+n717tCRMR7gJuAt2Xm\nbwbY/e+BSRFxGLAOsBrlyf7zUusW8AngbZRuBgC3RMT1mblhRLygWr49sDrwa2CfzPxxi6xfXr0v\nX1+YmX+PiF2B/6uVYSzwFeBTwMrA/1b53zRAt4rxlHqYADxBaWGyT2bOrdZfB8ymdO/4DLAScCWw\nc2beX9vv/wC7Aa8H/gKckJln1dZvTWkt8SbK9+OkzDylxTFLkiRJGqHstiCA5SJi+Yh4QUS8KCLW\nBg4ALsvMu/vbICKOBr4B/IDSxeEi4ISI+MoA6V9DeQK+FvB5YAfKTedNEbFGleZtwOXA/cCWwDnA\nhVTf08x8kBJA2Lop+22A21sEDgD2AV4F3AhcBUzJzEtapF9UfcCZlBYBUAIFX6j+PhPYg9J1YnPg\nTuDyiFivRX6XAasAP42InSPizY0VmfntzLy8lnYasBNwTJX/A1X+azVnGhFvBW6gjG3xCcp52Ypy\nnut2BN5ZO44Nq/I38tkD+GZVzk0p9X9GRGxVrd8O+A6lu8SmwLnAlIjYs8UxS5IkSRqhbHmgMcDO\n1avuQaCnvw0iYlXKzfBxmdl40n51RIwB9oqIKf0Mqrg78ELgg7WWC9cxv3XBnpRm+HcDW2bmPGBW\nNeji8bV8zgV+EBFvzszfVU/1PwkcOchxrgE8DLwdmJaZw34Tm5n3RkRv9fHXmXlnRLwF2A7YKTPP\nrtZdWQVMjgA2HiCvS6uuFUcCpwBExAOUsSeOz8yslr2dcnO+bWZ+p1p2I3Ab8B5KsKTuIErrjY9m\n5jNV+t8DN0TEezPzpirdM8CmjS4T1X4+W/29HKVFwdmZuVeV/scR8XrgvRFxIXAUMDUzd63WXx0R\nfcBBEfGNzHQyd0mSJKmDGDxQH+XJdWPmgRWANYH9KK0CJmTmn5q2mVClu6hp+TRKAGAC5Yl03frA\ntfWgQmY+GBHXVOsANqDc2M+rbTedBYMHl1ECG1sDhwEfBl4GfHegA4yIvYCjq/RrAttHxHeB6ylB\nkKn1rhPDbIPq/fIq0NFwOXBURLygcRPfLDO/FhFnAx+ljNmwIaUbwbYRMSkzL6UECKDMjtHY7mlK\nF4pGt4q6DSmtRaiV52fAY5RARiN48MvaWAsA9wIvrv4OytgOC7TcyMxtq3zfQgnWXNZ0zFcAhwPv\nAq7r75i1ZEycOLHdRZAWmd9bSZJGFoMHAvh7Zt5W+/zz6un1XygtBnZpSr9K9f5A0/LG55f2s49V\nKE/Dm/0NeGv196rA3wfIEyg3xhFxAfODB9sAV2Xm3/rJu3HzfBRl2snjI+LfgP8AzgO+RnkSP7O/\nbYfJqtX7vf2s66OMvfB//awDIDMfp3QpuBAgIv4fcAFlxohLKTfxT2fmo4tQns9Vr+ayrFH73Nwy\nYB7zB49sDArZ7zln/jF/l4WDOn3AK4dYVkmSJEkjhMED9Ssz74uIhyhjFDRrtB54BWV8gobGTeGD\n/WzzIP3fNL6ylv5e5g8U2LB6P9ucB3ypGvhvExa+Ea5blzLo4DQosw9ExCTKgIAHUcZKeD6zIgzm\nEcoN83qUrgANjRvxhc5VRCwP3AWcmJlT6usy8ycRcQJl/IAXVfmvEBErZeZjtTzWo9TTk03ZPwxc\nTBmvoG4MQ59NozGY5gJ1U43LsGq1DyhdYZpnehgD/HmI+5EkSZI0Qhg8UL+qJ/arAf01578FeJoy\n1sAdteVbVcv7mxrwJuCzEbFqNfAhEbEapal840b2RmCTiNgjM/uqZZs3Z5SZt1ZjC0yh3Jj/oMWh\n3FW9v5fyxL4xNsFFlMEN/xERyzV1lRhON1FumFfOzKsaC6uBA9ehjIewgMx8NiLuoZyv0/sZH+BN\nwJ8y818RcXO17GNUT/mr1hUXUQacPLOf8nTVW5pExOrA+ZSWGH8ZwjHdSQlMfIwFuy4cSWm98H5K\nUOS1mXlabT8fACYDX2J+AEpLwaxZs9pdhIX09pbhQbq6up5XPjZtX3aNxO/tcPA7K0nqVAYPNAZ4\nZURMqC17FWVqwbmUGRUWkJn/iIivUQZHfIZy078+ZdDDEzLzkeZtKDf62wNXRcQR1X4PpEwHeFKV\n5hhKMGJGRJwBvJnSRx5Ks/m68yjjGJybmf8a6OCqQMMVwKkR8RJKMKEH2JYyfsJHge9GxHaZ2fyU\nvuEN1eCFzS6lBEsGlJl3RMQMYGpEHEq58d6AMuDgcbUgSbPdgWuAX1TnupcyZeIWlJkquqv8b4uI\nmcApEfFS4I+UJ/4vAk6naapHypSON1eDGn67SncQ8Grg9lq6MQwgM5+JiKOA4yLiH5QpNzcEPg5s\nUQU/DgVOjAiq9a+n1Fdm5l0D5S1JkiRpZHKqRvVRbkRvrl4/oTytvh/YODPvbErbsDdlOsdtKE+f\nu4E9MnPf/naSmfcA76OM9H8ucBZlpoX1MvO+Ks2dlKfZr6c0rd+JchMN8HhTlldU7+cP4Rg/SWl1\ncATwI+AtwKTM3BTYldJVYqCWB32UMRlObHqdAPxni23qtqHcqO9HGShxK8oYDAcMVODM/BllqsTb\nKOf5SsqxvhrYKDMvriXfihJMOQT4PmXMiY0z86/95HsbsBGly8F0Sj38FdggMxtdUPr6OYYFjisz\nT6SMhdFNqf9Nga0a019m5qmUKTk3owRZDqN0HdlkoGOWJEmSNHKN6esb6MGntHRVzdofzcxbass+\nRAkUrJOZv64t3xvYOTPXXOoF1VI1e/bsvvHjx7e7GB2n3jR6JDb/XhLdFg7dcsXnlddIdugP5vde\nGi3HORK/t8NhpF+brQzXdauRx7pddlm3y67e3l66uroGbC28JNhtQSPJuyldIfYEfgf8O6XbwvWN\nwEE12OG7KOMVHNyugkoj3dixY5k7dy5jx45td1Ek1XhtSpI6ld0WNJIcQxm0b19gVvV5JqUrQ8Mb\nKQPu/RA4eWkXUOoUPT09jBs3jp6ennYXRVKN16YkqVPZ8kAjRmY+S2lNMGCLgsw8Fjh2qRVK6lDd\n3d10d3e3uxiSmnhtSpI6lS0PJEmSJElSSwYPJEmSJElSS3ZbkCQtE+oj9S/LRstxSpKkkcWWB5Ik\nSZIkqSWDB5IkSZIkqSW7LUiSOtasWbPaXQQ16e3tBaCrq6vNJZEkScPJlgeSJEmSJKklgweSJEmS\nJKkluy1I0ig2ceLEdhdBI4jdQCRJ0kBseSBJkiRJkloyeCBJkiRJklqy24IkCYCztli33UVom50u\nvvW5v0fbeagfuyRJ0kBseSBJkiRJkloyeCBJkiRJkloyeCBpVJo+fTpbb70106dPb3dRJLWRvwWS\nJA2NwQNJ/YqI2yNiXkS8c4jpN4+I05Z0uYbL1KlTmTNnDlOnTm13USS1kb8FkiQNjcEDSQuJiLWB\ndYDfADsNcbPdgVctsUINs7lz5y7wLml08rdAkqShMXggqT/bAXcA3wI+FRErDnG7MUuuSJIkSZLa\nxakaJS0gIpYH/hs4B5gGHA9sBXy7Wr99texYYF/gCeD/gHWr9fOANYF7gaOBTwEvB/4IfC0zT19a\nxyJJkiRpeNjyQFKzDwBrAN/JzPuBa1i468LKwNaUwMBkSkuF24GbgAmUYMJ+wI7A/sCHgCuAb0bE\nh5bCMUiSJEkaRrY8kNTs08Btmfnb6vN5wPkR0ZWZvdWy5YHDMvOqxkYR8RjwaGbeUn1+L3BrZjZG\nIbshIp6gtFSQJEmS1EEMHkh6TkSsBGwBHBURL6sWXwv8k9L64Mu15DlIdjcAR0TEj4GLgZmZefAw\nF3lYTJw4sd1FkEYErwVJkjQQuy1IqusGxgJfAeZUr3uAFYFtI2KFWtq/DZLXMcAewOrAScAfIuKG\niHjDsJdakiRJ0hJlywNJdZ8GbgH2blq+NnAKpVXCkGTmPErQ4KSIeA2wJXBYlc9Hh6W0kiRJkpYK\ngweSAIiI1wHrA7tm5g1N624CDqR0XfjuAFk8S22qxoi4Frg9M/fIzHuAr0fEf1HNyjCSzJo1q91F\naBubqatuOK6F3t4yNEpXV9fzzmtp8BqQJGloDB5IatgW6AOmN6/IzHkRMQ3YBbh5gO0fAt4RERsA\nPweuB/aNiPuAW4EuSreIE4e/6JIkSZKWJIMHkhp6gJsy84EB1n8H2I0y/WJfP+tPBKYBlwEbAYdT\nxlXZGXgVcD9wPGU8BUmSJEkdxOCBJAAys2Ub48y8lRaDrGbmzcBrmxYfXL0kSZIkdTBnW5A0Ko0d\nO3aBd0mjk78FkiQNjcEDSaNST08P48aNo6enp91FkdRG/hZIkjQ0dluQNCp1d3fT3d3d7mJIajN/\nCyRJGhpbHkiSJEmSpJYMHkiSJEmSpJbstiBJAmCni29tdxFGBM+DJEnSwmx5IEmSJEmSWjJ4IEmS\nJEmSWrLbgiSNYrNmzWrLfnt7ewHo6upqy/4lSZK0aGx5IEmSJEmSWjJ4IEmSJEmSWrLbgiSpY0yc\nOLHdRdAI166uOJIkLetseSBJkiRJkloyeCBJkiRJklqy24IkqSOdO2m7dheh7babce5zf4/m81E/\nD5Ikacmw5YEkSZIkSWrJ4IEkSZIkSWpp1HZbiIjbgbcD787MXwxTnvOAPTPzxGHK7xxgfGa+rfq8\nOfCRzPz8cOS/mGVaATgK6AGWB84D9s7MeYNsdyhwMPDpzJzaz/qHgSmZedgilOWzwOsy86ChH8Hi\niYjtgbOB1TJzzgBp+jsHTwEPAJcC+2TmY0uskFrmTJ8+nRkzZjBp0iS6u7vbXRxJI5y/GZKkJWlU\ntjyIiLWBdYDfADsNY9YTgO8MY34AfbW/dwdeNcz5L6p9gM8CuwH7V+9fWoTtT4yIVftZ3seCxzoU\nBwArL+I2S9rXKN+DxmsT4LvA54BvtbFc6kBTp05lzpw5TJ26ULxNkhbib4YkaUkarS0PtgPuAM4H\nDouI3TPzn88308y85XmXbGFjBvm8tE0ErsrMC+G5p/8TKDfNg3kGWBE4Cdh2GMrSR/vPR7O7+/ke\nXBMRrwH+OyJWHI7vmkaHuXPnLvAuSa34myFJWpJGXfAgIpYH/hs4B5gGHA9sBXy7lubtwBTgXZQm\n54cAhwLnZ+ZhVRP244FjgX2Bx4Gu6n2vzDyhymedKs17gLmUput7ZuZDVTP+L2fmSrX9vgO4Ddgg\nM2+oFvdV664D1q/+nge8HthhsDyqrg8rV/vfDLg6M7eIiBcDxwCfAF4K/BzYPTPvGOQU/h7YMiJe\nDbwIeCsw1EccT1LO41cj4vzMvHKghBGxBnAkJVixOvB34EJK0/+nIuIu4HXAFyNi58xcvrmbR5XP\nFsD3gTUz8+7qPCawJvA+4MzM3C0i3lWVbT1KgOPPwImZecYQj20wj9PUsiIiPggcAbwNeJDSLeKw\nRheQiAhKoGUCpZXQzZQuIr+q5fFZYFdgLeAe4NTMPLm2fh6172S17GJg5czcMCLWBP4ETAb2AF4G\nfDQzb46Ij1Nal3RRroMzM/Po4Sy/JEmSpM4wGrstfABYA/hOZt4PXEOt60JEvAK4FnghJahwLHAy\n8BoWvPlbGdga+BTlprvxNLlxs//vwE3ASpSn7LsCH6I0YaeedhCNJ+tfAG6v8pwA3L8IeWxSvX+M\nEhQB+BHl+A6gBBD+BVwXEW8YJK/Dqn1eDfwCmAmcOoQyNMo6hRLcOC0iVuwvUUQsB1wBvAPYmXLe\nzqd0kfifKtkWwP8BF1Fu+Ov7GMwOwG8pwZTzIuJ1lDp/FOiulv+uKuPaQzy2huUj4gW116oR0QN8\nGri48T2JiI2By4E/VsfyVeDLVC04qnNwCeUa/STle7YacGlEjKnSHA18A/hBVeaLgBMi4itNZerv\nnDQvOxDYi9IF5daImARMB35Zle9rwKERsc9wlV+SJElS5xh1LQ8oN3G3ZeZvq8/nAedHRFdm9lJu\n8qEMTPgoQET8g3IjVbc85SnrVQPsZzLwNPDhzHy8ymcu5an7uCrNkG+iMrM3Ih4DHm00iy8PdoeU\nx/LAFzLzkWq7icCGwAcy88fVsisoY0AcAHymRV6voTxlDuDnmbn1UI8BGJOZ86qn5bcAX6HccDZ7\ndbWPXTPz19Wy6yLiw8D7gVMy846IeBJ4oKmbwFDOx6OZuXvjQ0R8BPgJsE1mPlstu6Uqw/rAr/vN\npX/HVq+6B4GzKE/xG44Abs7M/64+XxkRc4BzIuI4ykCLbwQOanzHIuJuSsBqpWrgyj2A4zLz4CqP\nq6sb870iYspAAzsO4DuZeVHjQ0QcCFyTmY3vwlVVYK0RqHle5acEaiRJkiR1iFEVPIiIlShPSY+K\niJdVi68F/klpffBlYAPgukbgoPJDSn/9Ztlid+8Brm8EDgAy8xLK09jGjf/S8vdG4KCyIeWYb4iI\n+nfgKkrrhH5FxKcoLQBOBx4CDoiIL2XmKVU3jB9m5u2DFSYzb4+IKcDuEXFBZt7atP6vwEYRsVxE\nvAl4M2VmjFcAfxnC8Q7mD037uxy4PCJeVLU0eBOlywqUFiiL4iRKN47lKC0+9geOrs/AUbW4eCfl\n/NXP/6xquw0pQa3fAWdV3QMuA2Zl5oFVHpsAK1BaG9RNo3SlmVBtM1TPfZcjYizlfE9eIEHmfsNV\nfi26iRMntrsIUkfwWpEkackYbd0WuoGxlCfec6rXPZQ+7j3V09zVKP3rn1M9jf5HP/n9rcW+xg2y\nfmlqLseqlGN+qun1ReCV/WUQES8BvgmcnplfqqZHvJjSTH5vyjSMay1CmQ4B7gbOrMahaN7fZ4D7\nKDe1ZwDrUsZtGI4m7wucj4hYPiJOonwfZlOeqq9SrV7U/d2Tmbdl5q3VtJNHAcdHxA61NKtQrr2j\nWfD8P0DpTrBGZvZRuthMowS8pgN/i4gTqtYFjfI90LT/xueXLmK56+dkXD/L6oaj/JIkSZI6yKhq\neUDpsnALsHfT8rWBUyg3OfcAL6+vrPpv9ze9YCsP95PPvwEbUwaO62Ph4M1LFnEfQ82j+WbtEcqN\n4UcHSVf3Fso4D9Nqyxrn8xjKjf4lg5T3OZk5NyI+T3lavUB9RMT7KQGDwyldFB6slg82m8XintMD\nKNNPbgtcVpVtLK27bwzVkZQxJU6KiFmZeR/zm+x/hdKqpW4M5VySmfdQWsTsFBHrVX/vThnc8sEq\n/SuYP/4FzA/+PFhbtqjnpFG+1esLq0Ey30gZe+P5lv/CQcogSZIkaQQZNcGDalC89Sn96G9oWncT\nZcC4nYAbgd0iYqXMfKxK8hFKE/FFcTOlNcOLM/OJatkHKTfYb6bcoI2NiJVrXQreN0iez7LgDf5Q\n82geHO9Gyk3cE5lZb67+Vcr4CLP7yeOvVT7vrbYnMx+PiG9RBst7sNp2yDLzqoiYChzUtO2Eal9H\n1MYgeBVlVP/6k/Znm7J8FHhFRIypnnzD4OcUSj/+X2TmjNqyj1Tvz+speWY+ExGTgSspT+q3y8zH\nIuKXwBsz87ZG2oj4D+BE4MCIeCUlsDIxM2/PzJ9WwZNtgddSZgt5mjIYYX2GjK2q5Y1Ay6OUMSQa\n+3gx8J+UgRAHKvNjEfErSheWr9dWTQa2zszXDEP5tYhmzZrV7iIMq97eXgC6uroWaTubpGswy9q1\nsii8PiRJS9KoCR5Qblr6WHjgQ6pB/KYBu1CeQO9CGRX+WErrgSOrpPMWYX9TgO2Ay6qb8pdSBtKb\nkZl/iIjLgBOAb0XEqZSZBb4wSJ4PAe+IiA0oT2+HmkfzDfAllJkSLouIwyiBgUmUmQ0+19+OM/OB\niDgdODginqLcsG5KOVdXAhtRztmWmfnwIMdRtzvwYUp3kYZbKE/LT46I6ZQpGQ+gTHf44lq6h4F1\nI+L9mXk95XzsApwaERdWZdq8n302n49bgH0j4ouUwRHfSZl54Imm/S2WzLw6Ii6nBJO+Xo3xcDBw\ncUQ8Qun+sRrlSf6zwK8oY2w8TJkN4lBK3W9Xrb80Mx+MiK9RBkd8hhLQWR/YEzihFky6HNghIm6j\ndMfZm/I9HiwocjhwUVXn0yljIOzC/AEun1f5F+0MSpIkSWq30TTmQQ9wU2Y29xFv+A7lfOxIaSGw\nHOWm6QDKDS6Um9eGllMCZuZdlJkBnqQ09f8qMINyA0X1xH8n4L8oN72bUcZkqOfb1/T5RMoAfpcB\nb1/MPMjMecBEygCJx1Fu5t4LbJ+ZZ7Y4rF0pwYrJ1TYbUWZx+DDzR9EfyELlqMryIGXWgL7asmur\nZZtQbn53o9TD0ZTgSaMVyFGUZvSXRsSrM3NWlW7zqnxvp5zvlueD0u3iXMo4DJdSupZMpAymOaFp\n28W1F+WmfUp1jJdU5VyX0vR/CqW1yoaZ+a/MfIbSreQPlLEmZlIGctwkM++s8ty7Ot5tKAGhbmCP\nzNy3tt/dq+M4DTibMjXpuYMdS9UK45OU47+EElTbIzNPHcbyS5IkSeoQY/r6ns/90LInIiYAKzam\nMKyWvRm4E9gsM2e2rXDSKDR79uy+8ePHt7sYbVFvgrysNcUejm4L507abljL1Im2m3Huc3+P5vNR\nPw/L2rWyKJb0b8biXrca+azbZZd1u+zq7e2lq6trqQ5EPpq6LQzVGyndAPYDbqUMSHcAZdT/K9tZ\nMEmjy9ixY5k7dy5jx45td1EkdQB/MyRJS9Jo6rYwJJk5ldIcfCfgCsosDP9LaY79VDvLJml06enp\nYdy4cfT09LS7KJI6gL8ZkqQlyZYH/cjMk4GT210OSaNbd3c33d3d7S6GpA7hb4YkaUmy5YEkSZIk\nSWrJ4IEkSZIkSWrJ4IEkSZIkSWrJMQ8kSR2pPj2fPB+SJGnJsuWBJEmSJElqyeCBJEmSJElqyW4L\nkqSOMWvWrHYXQYPo7e0FoKurq80lkSRJw2lMX19fu8sgSQOaPXu2P1KSJElSP8aPHz9mae3L4IEk\nSZIkSWrJMQ8kSZIkSVJLBg8kSZIkSVJLBg8kSZIkSVJLBg8kSZIkSVJLBg8kSZIkSVJLBg8kSZIk\nSVJLBg8kSZIkSVJLBg8kSZIkSVJLBg8kSZIkSVJLL2h3ASQtOyJiOWAy8FngtcBfgG9k5qm1NAcA\nnwNWBX4C7JKZWVv/QuAY4FPAi4FZwK6ZeX8tzSrAFGBTShB0BrBHZj5WS/Na4GvAhsC/gHOBAzPz\n6eE/8mVfRPwbcDCwLaXufg7smZm319JYtx2uqqM7gJ9l5g615dZth4qIVYG/97NqemZ+MiLGAPtj\n/XakiNgYOAp4G/A34Bzg8MycV6332u0wEbEB8OMWSf4duAev245U/eZOBr4ArAH8BtgvM6+tpRmx\n160tDyQNp4OBI4HzgI8BFwInRcReABFxCHAAcBzlB29l4JqIeGktj9MoN6j7ADsAbwcuqwITDTOA\n9Sk/rJOBzYDvNlZWP6pXUgIYPcBXgC8CJw7v4Y4qU4BdKP9J3Rz4J3BtRLwOrNtlyCFAAH2NBdZt\nx3t79f5BYELttV+1/GCs344UEf8PuJxy8/FR4BRKHR1Yrffa7UyzWfBanUC5uXuQcpN4D163nWwy\npd7Opvx/6o/AFRHxDhj51+2Yvr6+VuslaUgiYnlgDnBSZh5SW34K8AlgLeB+yhORr1brXkZpnXBo\nZk6JiLWABLbOzIuqNG+slnVn5g8iYkPgGuDdmfmLKs1GwNXA+My8PSJ2AE4H1szM+6o0O1J+bF+T\nmX9b0udjWRIRK1OeaO2TmSdVy15E+Y/MkcDXgfuwbjtaRPwncAMwF5iZmTtGxEpYtx0tIiYDe2fm\nq/pZZ/12sIi4EXgoMzerLTsaeDflRsF/c5cREXESsDXwVuApvG47VkT8CpidmQMLgEUAAAY9SURB\nVNtXn5cD/gz8iNKaZETXrS0PJA2XlSjNnb7ftPx3wOrARpSmVT9qrMjMh4HrgQ9Xizaq3mfW0vyB\n8lSlkeYDwAONH8PKdcCjwMRamtmNH8PKDyldtTZe9EMb9R4H3kVpDtvwDOXp9AspT0Ws2w4WES+g\nPAU5Dri3tsq67XzrAP87wDrrt0NFxOrAe4Az6sszc7/M3AhYD+t2mRARb6U8ET4wMx/E67bTvRR4\nrutA1cXoUWAVOqBuDR5IGhaZ+XBm7pqZv2xa9THgr8Brqs9/bFr/Z+DN1d9vBu7PzLn9pHlTLc0f\nmvY9D7irKZ/mNA9SfjTfhBZJZj6bmb/MzIcjYkxEvIFyozkPmMr8827ddq59KP9hOAYYU1tu3Xa+\ndYAXR8RPImJuRPw1Ivas1lm/nettlGv1nxFxSVW3D0TEIVWfaut22XEkkJl5ZvXZuu1sU4FtI2Kj\niFg5InajtCj5Hh1QtwYPJC0xEbETJXp5HKXP1pOZ+UxTsscoUViq98f7yao5zWP9pHl8CGnq+Wjx\nHEz5x6YHODYzf085p9Zth4qILkpTyZ1y4UGSrNsOVnUn66L8R/A0yhOnC4BjIuIgrN9Otnr1fh7w\nW8oTx29QxjvYC+t2mVAF6z8GnFBbbN12toOBGyldCB6ijCl1YGbOpAPq1tkWJC0REbEN5T+rF2Xm\nqRGxP7VB2Jo8W72PaZFm3jCn0eL5PmUU6I2AQ6oBd+Zi3Xakqq/lWcBZmfnzanH9/LY639btyNcH\nfAS4OzPvqpbdEBEvobQ2ORLrt1OtUL1fkZn7VH9fHxGrUQIIx2DdLgt2oownNbW2zN/lzjaV0q3o\nC0AvZTDbQyPiETqgbm15IGnYRcQelKchPwK2qRY/ArywehJWt1K1rpFmpX6ybE7TX0S0nubhIeSj\nxZCZv8rMGzPzMMr0PnsBT2DddqpdKCMtHxwRL6jGPhgDLFf97XXbwTJzXmbeUAscNMwCVsRrt5M1\nnjxe0bT8auAllPNt3Xa+LYCLm1qF+bvcoSJiXWAr4HOZeXr1+3wQZYaD4yjX9YiuW4MHkoZVRBwF\nHE8JHnTXml79nnJT8vqmTd5AGSG2keaV1dPsVmne0LTP5SjzHtfTrNWUZlXKD2miRRIRr4iIHaqn\nlXV3UAZMfAjrtlNtQRmP5CHKCN5PUfrIf7r22brtUBGxRkT8T/U0um5s9e6127kafZX/rWl5o0XC\n01i3HS3KVMhvYeGBqP3/VOdqjCXws6blP6EEdPsY4XVr8EDSsKkGfdmXMl3jDtXgLA03A/8Ctqyl\nXwV4P2U6Gar35SlTTDXSvIkykEwjzdXAGhHxzlreG1J+7Or5rBsRr66l2YLyn6kbns8xjlKrAN8C\nupuWfwh4ALgY67ZTfQ5Yt/Z6J2WGlEuqz9/Duu1kYyndx3qalk+i/Ofw+1i/neo3lJlRPtm0fJNq\nuddu53tX9d58o+n/pzrXn6r39zYtfzflnI743+QxfX0DdXWQpKGLiDUoI70m8D8sOGI7wC+Ao4Dd\ngAMoEc8DgDWA/8jMx6p8plEG9dqT0qTqaMrgLeMzs69K81PK09K9KE9djgd+1pjrOiLGUgaQehw4\nCHg1cCxwdmbuugQOf5kXERdRxjnYj1LPH6fceO6QmedGxLFYt8uEiLgDuC0zd6w+W7cdLCIuADal\n1NudwCeAHYHNM3Om9du5ImJbyhTJpwEzKFOv7Q18PjPPtG47W0QcCuycmS/vZ51126Ei4kpgPGVs\nkjuBDSgP3k7OzL1Het06YKKk4TKR8uO0NvDTpnV9lJGh96cMwrInpU/mT4BtGz+GlR0oI88eS2kd\ndRWwa+PHsLIZ8HXK/NZPUp58795YmZlzI+IDwCnAdyg/rKdW+9fi+TRwCCV4sAblqVd3ZjaaU1q3\ny47mpwrWbWfbkTK692TKtftb4OPVyN5g/XaszDw/Ip6mnMMdgLspfanPqpJYt51tdUrXov5Yt51r\nM0pAYHfgVZQuSLtk5hnV+hFdt7Y8kCRJkiRJLTnmgSRJkiRJasnggSRJkiRJasnggSRJkiRJasng\ngSRJkiRJasnggSRJkiRJasnggSRJkiRJasnggSRJkiRJasnggSRJkiRJasnggSRJkiRJaun/Ax+0\nHWsBlkoYAAAAAElFTkSuQmCC\n", "text": [ "<matplotlib.figure.Figure at 0x10c0b5518>" ] } ], "prompt_number": 29 }, { "cell_type": "code", "collapsed": false, "input": [ "sns.set(font=\"monospace\")\n", "\n", "df = sns.load_dataset(\"brain_networks\", header=[0, 1, 2], index_col=0)\n", "used_networks = [1, 5, 6, 7, 8, 11, 12, 13, 16, 17]\n", "used_columns = (df.columns.get_level_values(\"network\")\n", " .astype(int)\n", " .isin(used_networks))\n", "df = df.loc[:, used_columns]\n", "\n", "network_pal = sns.cubehelix_palette(len(used_networks),\n", " light=.9, dark=.1, reverse=True,\n", " start=1, rot=-2)\n", "network_lut = dict(zip(map(str, used_networks), network_pal))\n", "\n", "networks = df.columns.get_level_values(\"network\")\n", "network_colors = pd.Series(networks).map(network_lut)\n", "\n", "cmap = sns.diverging_palette(h_neg=210, h_pos=350, s=90, l=30, as_cmap=True)\n", "\n", "sns.clustermap(df.corr(), row_colors=network_colors, method=\"average\",\n", " col_colors=network_colors, figsize=(13, 13), cmap=cmap)" ], "language": "python", "metadata": {}, "outputs": [ { "metadata": {}, "output_type": "pyout", "prompt_number": 14, "text": [ "<seaborn.matrix.ClusterGrid at 0x10c62d860>" ] }, { "metadata": {}, "output_type": "display_data", "png": "iVBORw0KGgoAAAANSUhEUgAAAyEAAAMhCAYAAAD/7r7zAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzs3XuUlNWd7/838YZCq0TQFgG5ySYgcgkXg5qgZyKjJpro\nTHJMzPySnJkkhpkznrjOkpOMPzszmQmuozmOE+fEOL/Ek5ngxIlO4pgYNMdLVEBBFBXCF7nIRSAg\nKjaaVkz4/VGFltBdtavprq7ufr/Wctn1PJ9n167qqur68uy9nz579+5FkiRJkmrlPV3dAUmSJEm9\ni0WIJEmSpJqyCJEkSZJUUxYhkiRJkmrKIkSSJElSTR1abue1Ay/slKWzrnrxrj6d0a66HZdmkyRJ\nvYXff0uULUL6vMfnSpIkSVLHKluEHHJY2d2SJEmSVLWyVcZ7LEIkSZIkdTDPhEiSJEmqqfJFyOFd\nU4SklD4BfIPCxOUrI+LuMtlrgE8Ub/4oIv66Bl2UJEmS1E51dyYkpXQ4MA+YAfQFHgBaLUJSSiOA\nzwBjgEOAVSml/xMRG2rUXUmSJElVqrsihELxsSIidgCklDallCZGxPJWsq8Ce4AjKRQhbwK7atZT\nSZIkSVWrMBzrsFr1o9QJwNaU0heBl4BtwInAAUVIROxMKf09sInChRevjIhXatlZSZIkSdUpvzrW\nIV13QfWIuBkgpXQxbVzULqU0HPgScDJwOPBoSulnEbGtVv2UJEmSVJ16XKJ3K4UzH/s0Fre1Zgaw\nJCKaAVJKTwKTgXs6tYeSJEmS2q0e54QsAcanlAZRmJg+JCKeBkgpfRPYGxFfLWbXAv+jOJn9EGAK\n0FT7Lksda968ebS0tHR1NySpVX379mXu3Lld3Q1J3VjdzQmJiDdTSnOBR4ubrijZ3UjJ0KyIWJpS\n+nfgyeKmWyIiatNTqfO0tLTQ1NTU1d2QpFb5+STpYFU4E3JIrfrxLhFxO3B7K9s/18q2rwNfr0W/\nJEmSJB28ehyOJUmSJKkHq7vhWJIkSZJ6Ns+ESJIkSaqpelyiV5KkuuFqdQdatWqVk9P344phUnXK\nVhmHHm4RIknq3VytTjl8jUjVKVtl9Dmka1bHkiRJktRzOSdEkiRJUk1ZhEiSJEmqqQpL9FqESJIk\nSepYdXkmJKX0CeAbwF7gyoi4u0K+AQjg+oi4vgZdlCRJktROdbdEb0rpcGAeMAPoCzwAlC1CgK8B\nSykULZIkSZLqWD2eCZkBrIiIHQAppU0ppYkRsby1cEopAYOAJ4A+teumJEmSpPaoxzkhJwBbU0pf\nBF4CtgEnAq0WIcA3gb8EPl+b7kmSJEk6GPV4JgSAiLgZIKV0MW0Ms0opfRRYHRGbUkqeBZEkSZK6\ngXosQrZSOPOxT2NxW2umA5eklC4CBgK/TyltiYjbOrmPkiRJktqp/MT0Q7vkiulLgPEppUEUJqYP\niYinAVJK3wT2RsRXASLiauDq4r5rgGYLEEmSJKm+1d2ZkIh4M6U0F3i0uOmKkt2NuAKWJEmS1K3V\nXRECEBG3A7e3sv1zZY75eqd2SpIkSVKHqLvrhEiSJEnq2Sos0XtYrfohSZIkqZeoMByrSyamS5Ik\nSerB6nJOiCRJkqSey+FYkiRJkmrKMyGSJEmSasoiRJIkSVJNla0y+hzynlr1Q5IkSVIvUbYIObSL\n5oSklD4BfIPC1dGvjIi7OyIrSZI61rx582hpaenqbnS5VatW0dTU1NXdqAt9+/Zl7ty5Xd0N1bm6\nu1hhSulwYB4wA+gLPAC0WlhUk5UkSR2vpaXFL996F18PylF2vNUhhx3aKf9VMANYERE7ImITsCml\nNLEDspIkSZLqQNmKoKWhc+aEVBjkdQKwNaX0ReAlYBtwIrD8ILOSJEmS6kDdLn8VETcDpJQupjDf\no0OykiRJkrpWPS5/tZXC2Yx9GovbDjYrSZIkqQ7U45mQJcD4lNIgCpPNh0TE0wAppW8CeyPiq5Wy\nkiRJkupT2SLktUMP75Q7bSizLyLeTCnNBR4tbrqiZHcjJcOtKmQlSZJ6vHpbJrmelit2ueD6VbYI\n2fPWW510t0eU3RsRtwO3t7L9c7lZSZKk3sBlktvm81K/yhYhb/3ud7XqhyRJkqReosKZEIsQSZIk\nSR2rbBHy5p49teqHJEmSpF6ii+aESJIkSeqtLEIkSZIk1VSF4VgWIZIkSZI6lmdCJEmSJNWURYgk\nSZKkmio/HMsiRJIkSVIH6zZnQlJKnwC+AewFroyIuzOOaQACuD4iru/kLkqSJEnKULYI+V2dXDE9\npXQ4MA+YAfQFHgAqFiHA14ClFAoXSZIkSXWgu5wJmQGsiIgdACmlTSmliRGxvK0DUkoJGAQ8AfSp\nTTclSZIkVdJdluhtBLamlL4IvARsA04E2ixCgG8Cfwl8vvO7J0mSJClX3Z0JSSldAfyX/Tb3ARZG\nxM3FzMWUGWKVUvoosDoiNqWUPAsiSZIk1ZG6K0Ii4gbghtJtKaUzgLklmxqBrWWamQ5cklK6CBgI\n/D6ltCUibuvo/kqSJEmqTndZoncJMD6lNIjCxPQhEfH0vp0ppW8CeyPiqwARcTVwdXHfNUCzBYgk\nSZJUH+ruTEhrIuLNlNJc4NHipiv2izTiCliSJElSt9AtihCAiLgduL2NfZ8rc9zXO61TkiRJkqrW\nbYoQqdS8efNoaWnp6m50mlWrVtHU1NTV3ehUffv2Ze7cuZWDkiSpx+kuS/RK79LS0tLjv6T3dP7+\npI7R1f8o09X/aOI/aEjdU7e4YrokSWpdb/9Hmd782KXuzOFYkiRJkmqquyzRK/UKXT2sopa6eghH\nLTlcRJKkd/NMiOpOzhfxnC+w3fGLX28fVtFT+TuVJOndLEJUdzrqi7hf/CRJkuqTw7EkSZIk1VT5\nMyEu0StJkiSpg3WbMyEppU8A3wD2AldGxN0V8tcAnyje/FFE/HUnd1GSJElShm4xJySldDgwD5gB\n9AUeANosQlJKI4DPAGOAQ4BVKaX/ExEbatBdSV2kXlcXq9eVwLrj4g2SpJ6hwnCsPbXqRyUzgBUR\nsQMgpbQppTQxIpa3kX8V2AMcSaEIeRPYVZOeSuoyri5WHZ8rSVJXKVuEvPX739eqH5U0AltTSl8E\nXgK2AScCrRYhEbEzpfT3wCbgPRSGb71Sq85KkiRJalvdDcdKKV0B/Jf9NvcBFkbEzcXMxRTmhrTV\nxnDgS8DJwOHAoymln0XEtk7ptCR1os4aZtYZw8Qc4iVJylF3q2NFxA3ADaXbUkpnAKV/1RqBrWWa\nmQEsiYjm4vFPApOBezq2t5LU+brTMLPu0k9J3U97/kGmvf/Y4j+odL7usjrWEmB8SmkQhYnpQyLi\n6X07U0rfBPZGxFeLm9YC/6M4of0QYArQVNsuS5LqUbVfZKr9EuOXF6lz1PIfZPwHlc5Xd8OxWhMR\nb6aU5gKPFjddsV+kkZLhWRGxNKX078CTxU23RER0fk/VFdr6QtHWF4fO+ILQUcNlOnJ4jF+EpNZ1\n9hcZv7xIUmXdoggBiIjbgdvb2Pe5VrZ9Hfh6Z/dLXa/aLxSd8QWhHofL1Ft/yqm3Is4CTpJ6rpy/\nOTl/T/xbcXDKD8eqnyV6JfVg9VbE1VNfJEkdq6P+5vi34uBUOBPyu1r1Q5IkqVdr71lhJ1+rO+o2\nw7EkFeT+kcr9o+QfIUldwWGYB6r1WWH/JT9PPcw97YksQqRupqP/SPlHSKpPPf0fHByGqe6iHuae\n9kRli5DtP7mtT606IkmdxSVZ1R35Dw6SerKyRYik7r2KRr31vatOabska76DHSLTEUNjLOokqeez\nCJEq6M6raNRb3z2lXf/qYYhMV9+/JKnzvaerOyBJkiSpd/FMiNTBXEVDUq3V29BLSarEIkTqYA45\n6rksMFWvqv3caeu1/NRTT/la7gE6emU1qO1rwM/a3sEiRJIyWWB2LL9odB1fyz1bZ8ztquVrwNdn\n72ARIultfilULflFQ7XicDWp/liESHqbXwoldYR6+9JfbysFSrIIkdSDeCZHqg/d/Ut/b/ssqbZo\nfOSRR3jrrbcOyDQ2NjJ27NgDtnf350edwyJEUo/R3c/kdPYXn3r712mpXnX3z5Jqtefx9qbnR53D\nIkSS6kRnf/FxBSVJUr2wCJEktaq3/Wuwuo7Dnwp66uOVWmMRIklSO/hFsuP0toK3tz1eqTUWIZIk\ntYNfJCWp/d7T1R2QJEmS1Lt4JkSS1CM5XEqS6pdFiCSpR3K4lCTVL4djSZIkSaopixBJkiRJNWUR\nIkmSJKmmLEIkSZIk1ZRFiCRJkqSasgiRJEmSVFN99u7d29V9kCRJktSLeJ0QdSUrYEmS1Fv06eoO\n1BOLEHWp7z+4Kiv3uVljAXhhx8qs/EmDxvWI/M/XL66YPX/E6dnZWubr4bkp7U+95Rf8929l5Wf/\nz6+0K1/te6u759Oki7Ly8dRP25U/5b1jsvLPvbS6XflRl+b1Z+1tP83OV5M9mPzs//aBrPyC/7Wo\nV+av/2/nZeWv/F/39Mr8T769LCv/sT+f0iPyeodzQiRJkiTVlEWIJEmSpJqyCJEkSZJUUxYhkiRJ\nkmrKIkSSJElSTVmESJIkSaopixBJkiRJNWURIkmSJKmmLEIkSZIk1ZRFiCRJkqSasgiRJEmSVFMW\nIZIkSZJqyiJEkiRJUk1ZhEiSJEmqKYsQSZIkSTVlESJJkiSppixCJEmSJNWURYgkSZKkmrIIkSRJ\nklRTFiGSJEmSasoiRJIkSVJNWYRIkiRJqimLEEmSJEk1ZREiSZIkqaYsQiRJkiTVlEWIJEmSpJqy\nCJEkSZJUUxYhkiRJkmrKIkSSJElSTVmESJIkSaopixBJkiRJNWURIkmSJKmmLEIkSZIk1VSfvXv3\ndnUf1Hv54pMkSb1Fn67uQD05tKs7oF7NN6MkSVIv5HAsSZIkSTVV6UyIw2W6t31nGurt91iv/ZIk\nSeosjgAp4XCsXuL7D67q6i4A8LlZY991+9qBF2Ydd9WLdwHwyvLns/LHThwOwBubXsrKHzH0vQD8\n9vkdWfkjhw8C4LXntmbl+51yIgAtG3Zm5fuefBwAa+98tGJ21MVnALD6Rw9ltT3mkx8CYNczG7Py\nx0wYBsCLS57Lyg+cdgpQ/XNT7e+2s5/7321vzsofcnwDAC8/tT4rP2DSCACam/Pab2gotP/mCy9n\n5Q8/aQAAy2/+WVZ+4hcvAPJea/DO623R383Pyn/gq58CYN1di7PyIy88HYBnv7cgK3/q52cDsOON\nPVn5QUccBsCm5tey8kMb+gGw7uVdWfmRA44B4Jktv8nKTxh8AgDLNr6QlZ8y7CQAHlm9rmL2zDEj\nAVi+Oe+9MnFI4b3y748vy8p/fPoUAB5fn/dZMn3EsHblF67Je2/NHF14b9297Oms/EemnAbAvU+v\nzMqfe9o4AP5j6VNZ+Y9OnQRU/16vNl/ta7ne2l/7k4VZ+VEfm9mu/Kb7nszKD/3wZAC2L4qs/PEf\nSAC8te3VrPyhjUdn5XoTixBJkiSpC6WUrgMuA3ZExISU0nHAL4DDKJxB+duIuD2jnQYggOsj4vp2\n9mV3RPRvz7HVcE6IJEmS1LXuAC4oub0L+FBETALOAb6dUsr53v41YCkHN+S9JsPlPRMiSZIkdaGI\nWJRSGl5y+y3greLNAcAbldpIKSVgEPAEGfNPUkqzKBQtrwBjgfsi4ivFfTcCs4GHIuIL1TyWXJ4J\nkSRJkupMSql/SukZ4GngLyLi9xUO+SbQVOXdzASuiYgJJcf2A+YD44HZKaXGKtvM4pmQgzBv3jxa\nWlq6uhttampq6uouSJIkqR0iYjcwIaU0Frg7pXRfRLS6UkBK6aPA6ojYlFKqZhWuJyJiZfH+9s2y\nfzMiFhfbXQ80Atva/UDaYBFyEFpaWvyiL0mSpE4TEatSShuA9wFLU0ozgO8Ud19eLBimA5eklC4C\nBgK/TyltiYjb2sjv09rSf6XLDe6lk0ZOWYRIkiRJdSSldBLQEhE7i8OhErAeICIeAyaX5iPiauDq\n4rHXAM0RcVtb+XpgESJJkiR1oZTSTcDHgeNSSpuAW4A/Ksw1pw9wZUTkXfAq315aXwnL1bEkSZKk\nni4i5gBz9tv81+1s6+uZuYeAA650HBFHl/x8dnv6kKPP3r1li52aVELdVVNTU73PCdk3Manefo/1\n2i9JkqTOUs2E8R7PJXolSZIk1ZTDsXqJF3as7OouAHDSoHHvuv3K8uezjjt24nAArh14YVb+qhfv\nAuDZ7y3Iyp/6+dkAPH79v2Xlp1/5xwDseGx1Vn7QjDEAbFywLCs/bPaU7Py+7LbfVryOEQCNRx4B\nwG+f35GVP3L4oHa1f+9//Yes/Lk3/gUAq+Y/kJUf+6nCmeFqXzu/296clT/k+AYAXn5qfVZ+wKQR\n7Wp/3cutLUhyoJEDjgFgwfIVWfnZE8cD8NpzW7Py/U45EYC3tr1aIVlwaGPhLH1zc97jbWgoPN61\ndz6alR918RlA9e+t+1dEVv6c8QmAny55Mit/0bTCXM5nt27Pyp964vEALNv4QlZ+yrCTAFi4Ju/1\nNnN04fWW837c917c1Nzqip4HGNrQD4CHY21W/qw0Cqj+tVBtvtrPnmrfW9X2Z+W2vM/OcY2Fz85q\nP/d3PbMxK3/MhGFA9Z/lm3e/npUf0v8ooPrnZ/WLL2flxwwc0K72q33+q22/2r9F1X726x0WIZIk\nSVIXSildB1wG7IiICSml2cC8ksg4YFpEPN3G8ccBvwAOozDs628j4vYy9zcGuB0YBcyKiCdK9u2O\niP4H+5gqsQjJ1NqFCVetWtVFvZEkSVIPcgdwG3ArQEQsABYAFJfo/VVbBUjRLuBDEfF6sSD5dUrp\nx21dZT0iVgOTUkoPcOAcXVfHqietXZiwzielS5IkqRuIiEUppeFt7L4UKDtePCLeAt4q3hwA5I1j\nbENK6UZgNvBQRHzhYNpqixPTJUmSpPr1KeBfK4VSSv1TSs8ATwN/0dZZkAz9gPnAeGB28UxMh/NM\nSI20Npyrs3mmRpIkqftKhasVHhURz1TKRsRuYEJKaSxwd0rpvojIW5ni3d6MiMXF+18PNALb2tFO\nWRYhNdLacC5JkiSpjAPOgqSUpgM3F29evq9g2CciVqWUNgDvA5amlGYA32kj39r8jz377e+UkVMW\nIZIkSVJ9uhS4oHRDRDwOTC7dllIaDLwRETuLw6cSsL6Yf2z/fImdwFAgby3pDmQRIkmSJHWhlNJN\nwMeBgSmlTcDlwA6gOSKey2hiGPDdwugt+gBXRsTOjOO+BXw/pXQNcH5EbMPVsSRJkqSeLyLmAHNa\n2fX+zOMXA6e1434XAWP323Z0yc9nV9tmrj5795YtdmpSCXUHTU1NrS7RmzvPo5psB+pT/H+9/R7r\ntV+SJEmdpU/lSO/hmZCD0Ldv3+zCwgsbSpIkSQUWIQdh7ty52dmuXhnrhR0ru/T+9zlp0Lh33X5j\n00tZxx0x9L0APPu9BVn5Uz8/G4BrB16Ylb/qxbsA+O3zO7LyRw4fBMDWXz2blT/xg6e2q/3m5uaK\n2YaGBgBaNuQM/YS+Jx8HwJ4tu7Lyhw0+BoDXntuale93yokArLnjkaz86EvOBODx68teh+lt06/8\nYwC2PbwiK9941ngANvx8SVb+5POnAbDlwYqrIQIweNYEANbdtbhCsmDkhacDeb9beOf3W22+2v7/\n5tFfZ+VPOON9AOxcuiYrf9zU0e3Kv7Xt1az8oY2FUQM/XfJkVv6iaYW5mfc8lffePW9S4b27cM36\nrPzM0SMAeDjWZuXPSqMAWLPzlaz86OOOBWD1iy9XzI4ZOACo/rWzanveZ8nY449rV/vVfvZU+3di\ny2t5y+EP7tcXgE3NeSuYDm3oB8BvWt7Myp/Q9/BCvsr3VrWfJa+v256VP2rk8QC8/FTea3nApMJr\n+fU1v8lrf/QJ7cqveznv9TByQOH1UO3r7ZHV67LyZ44ZCeS9t+Cd91e1n1V6h0WIJEmS1IVSStcB\nlwE7ImJCSmk2MK8kMg6YFhFPt3H8ccAvgMMoDPv624i4vZ192R0R/dtzbDW8YrokSZLUte6gZCne\niFgQEZMjYjJwHrChrQKkaBfwoYiYBJwDfDul1N7v+a6OJUmSJPV0EbEopTS8jd2XAmXHLEfEW8Bb\nxZsDgDcq3WdKaRbwNeAVCitk3RcRXynuuxGYDTwUEV/IeAhVswiRJEmS6tengM9XCqWU+gOLgFHA\npyLi9xltz6QwzGtlSmnfxJV+wHzgK8DalFJj8fohHcoipEaqWUmro3T1ZHhJkiS1XypcffCoiKi4\n2khE7AYmpJTGAnenlO6LiEorLzwRESuLx++bZf9m8bojpJTWA42ARUh3Vc1KWpIkSRKFsyD/Wroh\npTQduLl48/J9BcM+EbEqpbQBeB+wNKU0A/hOG/nWlifbU/LzXjppDrlFiCRJklSfLqVkwjpARDwO\nTC7dllIaDLwRETtTSo1AAtYX84/tn68HFiGSJElSF0op3QR8HBiYUtoEXA7sAJoj4rmMJoYB3y2M\n3qIPcGVEVLroz15aXwnL1bEkSZKkni4i5gBzWtn1/szjFwOnVXmfDwEPtbL96JKfz66mzWr02bu3\nbLFTk0qoO2hqauqOE737FP9fb7/Heu2XJElSZ+lTOdJ7eLFCSZIkSTXlcKxe4oUdK7u6CwCcNGjc\nu27/9vkdWccdOXwQAI9fX/ZaPW+bfuUft6v9awdemJW/6sW7ALj3im9n5c+94c/blV/4jR9WzM78\nq08DsPbOR7PaHnXxGQDEvz6YlU//eRYAWx6suDogAINnTQDy+g7v9H/jPUuz8sPOmwrA6+u2Z+WP\nGnk8AG9te7VCsuDQxsJZ6G0Pr8jKN541HoCXlq3Lyr93ysh29ae5uTkr39DQAMCbL7yclT/8pAEA\nvLHppaz8EUPfC8Dvtuf155DjC/2p9vlp2VBpKHNB35OPA2DZxhey8lOGnQTAY+s2ZOVnjDwZgPWv\n5P2+Rhxb+H09sjrv8Z45pvB4/2PpU1n5j06dBMCq7ZWfn7HHF56bXz7766y2/+DU9wGwfPPWrPzE\nIScCsPT5zVn5qcOHAPDTJU9m5S+aVphHe/eycheJfsdHphRGoixYnvfenT1xfLvy1fa/2ufn4Vib\nlT8rjQJgU3OlFVgLhjb0A+Dx9Ruz8tNHDANg3cutLZ50oJEDjgHg/hWRlT9nfAJg9Yt5n1VjBhY+\nq6p9vNW2//JT67PyAyaNAGDXM3nP5zEThmXlehOLEEmSJKkLpZSuAy4DdkTEhJTSbGBeSWQchYsK\ntlmV799GhfsbA9xO4cKGsyLiiZJ9uyOif/sfTR6HY0mSJEld6w5KluKNiAURMTkiJgPnARvKFSCt\ntVFORKyOiEnAUg6co1uTObsWIZIkSVIXiohFQFvjLC8FKo5Hr9BGVVJKN6aUIqX03Y5orzUWIZIk\nSVL9OuCq6Z2sHzAfGA/MLl78sMM5J6QOzJs3j5aWlg5vtxsuKSxJkqSiVLj64FERkbc6TMd4s3jd\nEVJK64FGYFtH34lFSB1oaWmxYJAkSdL+DjgLklKaDtxcvHn5voKhLRXyrc3/2LPf/k4ZOWURIkmS\nJNWnS9lvsnlEPA5Mzm2gQn4nMBRY1t4OtpdzQiRJkqQulFK6CVhY+DFtSil9JKU0A2iOiOfa20bG\nYd8Crk0pLSuZ+1GT1bE8EyJJkiR1oYiYA8xpZdf7O6CNcscsAsbut+3okp/Prqa9avTZu7dssVOT\nSqg7aGpq6rR5G53Ydp/i/+vt91iv/ZIkSeosfSpHeg+HY0mSJEmqKYdj9RIv7FjZ1V0A4KRB4951\n+7XntmYd1++UEwHY8djqrPygGWMA2PqrZ7PyJ37wVADuveLbWflzb/hzAK4deGFW/qoX7wJgybd+\nnJWf9pU/AmDNHY9UzI6+5EwAHvuft2e1PeO/fwKAtXc+mpUfdfEZACy/+WdZ+YlfLMyfy+k7vNP/\npTfcmZWfesXFALyy/Pms/LEThwOw6b4ns/JDP1yYu7flwbzVEAfPmgDAM//fPVn5Cf/lPABeXJI1\nxJeB005pV3/W/8djWfkRH50BVP/7qvb5rPa9/saml7LyRwx9LwAPrMz7bDh7XOGz4f4VkZU/Z3wC\nYPnmvP5PHFLo/71P533mnnta4TPxp0vyns+LphWez1XbK1+PbOzxxwFwz1N5n4PnTSp8Dq7ctiMr\nP65xEADPbPlNVn7C4BMAuHPx0qz8xadPBWDhmvVZ+ZmjRwDw0Kq899aHxhbeW4+v35iVnz5iWLv6\nU237617elZUfOeAYALb99o2sfOORRwDQ3NyclW9oaKhJvtrnc8cbeyokCwYdcRhQ/euh2uf/5afy\n+j9g0oisXG9iESJJkiR1oZTSdcBlwI6ImJBSmg3MK4mMA6ZFxNO5bRxEX3ZHRP/2Hp/LIqRGyl2Q\ncNWqVTXujSRJkurIHcBtwK0AEbEAWABQXLXqV+UKkNbaOAiujtWTlLsgoRcqlCRJ6r0iYlFKaXgb\nuy8F/u0g2zhASmkW8DXgFQorZN0XEV8p7rsRmA08FBFfyG2zGk5MlyRJkurXAVdN70AzgWuKw7ea\nitv6AfOB8cDskuuHdCjPhNSZcsO2quUZFkmSpO4rpZSAoyIib3WS6j0RESsBIuLV4rY3I2Jx8f7X\nA43Ato6+Y4uQOlNu2JYkSZJ6lQPOgqSUpgM3F29evq9gaEuFfGvLgZUuQbaXTho5ZREiSZIk1adL\ngQtKN0TE48Dk3AaqzdeKRYgkSZLUhVJKNwEfBwamlDYBlwM7gOaIyLrYSWttRMTdZQ7ZS+srYbk6\nliRJktTTRcQcYE4ru97fAW20lX8IeKiV7UeX/Hx2bnvV6rN3b9lipyaVUHfQ1NR0UHM1yh1fuu9g\n72c/fYr/r7ffY732S5IkqbP0qRzpPTwTUgf69u37duHhhQslSZLU01mE1IG5c+e+/XNnrYz1wo6V\nndJutU4aNO5dt1s27Mw6ru/JxwGwccGyrPyw2VMA+O3zO7LyRw4fBMC9V3w7K3/uDX8OwJJv/Tgr\nP+0rfwR0sLYXAAAgAElEQVTAtQMvzMpf9eJdAPxizt9XzP7hTX8JwJP/eFdW25O/XOjDwm/8MCs/\n868+DcDanyzMyo/62EwAHr7m1qz8WV//LACb7nsyKz/0w4W5ddseXpGVbzxrPFD9a23tnY9m5Udd\nfAYAO5euycofN3U0UH3/39j0Ulb+iKHvBWDHY6uz8oNmjAGqf29V2/9qf78rf3BfVn7cn3wYgLuX\nVbqQcMFHppwGwD1PPZuVP2/SqQA8HGuz8melUe1q/6FVWUO++dDYUwBobm6umG1oaADg2a3bs9o+\n9cTjAXhy05as/OShgwFYtvGFrPyUYScB8MjqdVn5M8eMBKr/3Vabr/bxVvtaqPb5f2bLb7LyEwaf\nAOS9FuCd18Om5tey8kMb+rWr/ZXb8v7ujmss/N393fa89g85vqFd/dm8+/Ws/JD+RwGwZ0tri0Ud\n6LDBx7SrP3qHRYgkSZLUhVJK1wGXATsiYkJKaTYwryQyDpgWEWWr7JRSAxDA9RFxfZncGOB2YBQw\nKyKeKNm3OyL6t//R5LEIkSRJkrrWHcBtwK0AEbEAWABQvGL5ryoVIEVfA5ZSYd5tRKwGJqWUHmgl\nW5M5u51y8RFJkiRJeSJiEdDWuOFLgX+r1Ebx6uqDgCc4yEnwKaUbU0qRUvruwbRTjkWIJEmSVL8O\nuGp6G74JNHXA/fUD5gPjgdnFMzEdzuFYdaZ0payD1VmT3CVJktT5imc3joqIZyrkPgqsjohNKaWD\nXQr4zYhYXGx3PdAIbDvINg9gEVJnSlfKkiRJUq92wFmQlNJ04ObizcuLBcN04JKU0kXAQOD3KaUt\nEXFbSmkG8J398vu0Nv9jz377O2XklEWIJEmSVJ8uBS4o3RARjwOT99t2NXA1QErpGqA5Im4r7nts\n/3yJncBQIG+d9g5kESJJkiR1oZTSTcDHgYEppU3A5cAOCsVE3oWE2udbwPeLhcv5EbGNGq2OZRHS\nDvPmzaOlpaWqY7wSuiRJkloTEXOAOa3sen872vp6FdlFwNj9th1d8vPZ1d5/rj5795YtdmpSCXUH\nTU1Nb0/0Lv25PcfX0L6JSfX2e6zXfkmSJHWWg50w3qN02JmQ9pwd6E48kyFJkiR1jA4rQlpaWnr0\nkrDd/bH9fP3iyqEaOH/E6e+6vfbOR7OOG3XxGQBsXJA3b2rY7CkANDc3Z+UbGhoAWPiNH2blZ/7V\npwFYc8cjWfnRl5wJwC/m/H1W/g9v+ksArh14YcXsVS/eBcBDX/teVtsf+tvPA3DXZ+dl5S+8tbBi\n25P/eFdWfvKXC31ePO+2rPzpcy8F4DeP/jorf8IZ7wNg1fwHsvJjP1U4k/zK8uez8sdOHA7Ailvv\nzcqP/+y5AGy678ms/NAPF+YGbnmw7GqLbxs8awIAe7bsysofNviYmvRnw8+XZOVPPn8aUP3va9m3\nf5qVn/LnFwFw/4rIyp8zPgGwYPmKrPzsieMBWL55a1Z+4pATAXg41mblz0qjAPjpkrzf10XTCr+v\npc9vrpidOnwIUP1z88DK1Vn5s8eNAeA/lj6Vlf/o1EkA/HhR3mvnjz5QeO380715r50/Pbfw2rnp\nZ3nv3TkXFN67//543t+Vj08v/F35/v/9VVb+c//pg0D1r4Vq+7Nqe1vXt3u3sccfB1T/+1228YWs\n/JRhJwFw79Mrs/LnnjYOgF3PbMzKHzNhGFD93/WWDXnPT9+TC8/PzqVrsvLHTR0NwG9a3szKn9D3\n8Kxcb+KcEEmSJKkLpZSuAy4DdkTEhOK2GcAtFL6vPxMRn8xopwEI4PqIuL5MbgxwOzAKmBURT5Ts\n2x0R/Q/m8eTwiumSJElS17qDkqV4U0rvAX4AfCkixgFfzmzna8BSKsy7jYjVETGpjWxN5uxahEiS\nJEldqLhKVenYsfdTOCuysLi/4riy4tXVBwFPcJCT4FNKN6aUIqX03YNppxyLEEmSJKm+DAN2pZTu\nSSktSyldnnHMN4GmDrjvfsB8YDwwO6XU2AFtHsA5IV2kFquJdffJ9JIkSb1UX+AM4FRgF7A0pfSL\niFjfWjil9FFgdURsSikd7FLAb0bE4mK764FGYNtBtnkAi5Au0tNXE5MkSVK7bQNWRsRmgJTSExQu\nKri+OGH9O8Xc5cWCYTpwSUrpImAg8PuU0paIuK2N/D6tzf/Ys9/+Thk5ZREiSZIk1ZelwLCU0gDg\nNWACsBYgIh4DJpeGI+Jq4GqAlNI1QHNE3NZWvsROYCiQtzZ0B3JOiCRJktSFUko3AQsLP6ZNwAeB\nK4D7KRQI8yMi7yIv1fkWcG1x3sm+uR81WR3LMyGSJElSF4qIOcCcVnb9uB1tfb2K7CIKw7xKtx1d\n8vPZ1d5/rj5795YtdrIroaamph49x6H08bXnse5/TI2er30Tk2pS0VahXvslSZLUWQ52wniP4nAs\nSZIkSTXlcKxe4ufrF1cO1cD5I05/1+3VP3oo67gxn/wQANt++0ZWvvHIIwBo2VDx2j4A9D35OADW\n3vloVn7UxWcA8Nj/vD0rP+O/fwKAJ//xrqz85C9fCMBDX/texeyH/vbzAFw78MKstq96sdCHpTfc\nmZWfesXFAPxizt9n5f/wpr8EYOfSNVn546aOBmDtTxZm5Ud9bCYALz/V6iqFBxgwaQQAm3/5VFZ+\nyB9MAuDFJc9l5QdOOwWAx679UVZ+xlWfBGDjPUuz8sPOmwpU/16p9rX89C0/z8qf9mfnA7Di1nuz\n8uM/ey4Arz23NSvf75QTAdj6q2ez8id+8FQAlm18ISs/ZdhJAKx+8eWs/JiBAwBY9/KurPzIAce0\nqz8PrMwb6n32uDEALFxT+fU/c3Thtb9g+YqstmdPHA/Aym07svLjGge1q/0fPfJYVv6TZ85oV/6f\nH3wkK/+ZWWcC8NMlT2blL5pWmNf740VLsvJ/9IFpANy/IrLy54xP7co/uWlLVn7y0MEAbGp+LSs/\ntKEfAEuf35yVnzp8CADrX3k1Kz/i2MKIn+bm5qx8Q0MDAG9seikrf8TQ9wKweffrWfkh/Y8CYM3O\nV7Lyo487FoA9W/I+Gw4bfEzZ/Sml64DLKFygcEJx2wzgFgrf15+JiE+WOf444BfAYRTOuPxtROR9\nSTmwrd0R0b89x1bDMyGSJElS17oDuGDfjZTSe4AfAF+KiHHAlyscvwv4UERMAs4Bvl1soz2cmC5J\nkiT1dBGxKKU0vGTT+ymcFVlY3F92aEdEvAW8Vbw5AKg4dCSlNAv4GvAKhcnp90XEV4r7bgRmAw9F\nxBeqejCZLEJqpG/fvu+aiL5q1aqu64wkSZLq2TBgV0rpHuAE4JaI+N/lDkgp9QcWAaOAT0XE7zPu\nZyYwLSJWppT2rYrVD5gPfAVYm1JqjAivmN5dzZ079123e/JKYpIkSToofYEzgFMpDLVamlL6RUS0\nOSEsInYDE1JKY4G7U0r3RUSlSUBPRMTK4vH7JvS8ue+q6iml9UAjhSu4dyiLkDowb948WlpaOrxd\nCx1JkqRuaRuwMiI2A6SUnqAwZGp9ccL6d4q5y/cVDPtExKqU0gbgfRSKl3L51mbW7yn5eS+dNIfc\nIqQOtLS0WDBIkiRpn6XAsJTSAOA1YAKwFiAiHgMml4ZTSoOBNyJiZ/HK5wlY31a+HliESJIkSV0o\npXQT8HFgYEppE4XVsK4A7qew7O4PI6LcWt7DgO+mlKCwRO+VlSazUzjL0dpKWK6OJUmSJPV0ETEH\nmNPKrh9nHr8YOK3K+3wIOOAiVBFxdMnPZ1fTZjW8TogkSZKkmuqzd2/ZMy7Zp2Oampp69LyG0sfX\nEY+1o9trQ5/i/2tyWq0K9dovSZKkztKncqT38EyIJEmSpJpyTkgv8fP1iyuHauD8Eae/6/auZzZm\nHXfMhGEA/Pb5HVn5I4cPAmDPltZWnjvQYYOPASD+9cGsfPrPswBYe+ejWflRF58BwMJv/DArP/Ov\nPg3AXZ+dVzF74a2Fa9AsveHOrLanXnExANcOvDArf9WLdwHwk8v+Liv/sX/5KgArbr03Kz/+s+cC\n8OKS57LyA6edAsDiebdl5U+feykAq+Y/kJUf+6nC8NdH/+afs/JnXP0ZAJ6+5edZ+dP+7HwAfnX1\n97PyH/ybzwGw8gf3ZeXH/cmHAdjy4DNZ+cGzJrQrv+6uvM+UkRcW3vMbfr4kK3/y+dOA6n9f/3Rv\nXv5Pzy3k/8/9D2fl/59zzgLgsXUbsvIzRp4MwCOr12XlzxwzEoAf/mphVv7TH5wJwL8/vqxi9uPT\npwBwz1PPZrV93qRT25W/9+mVWflzTxsHwILlK7LysyeOb1f+e798MCv/+T+YBcDtCx/Pyn9i5nSg\n+t/Vs1u3Z+VPPfF4AB5fn/d3cfqIwt/F5ubmrHxDQwMAW17LuyTA4H59AdjUXOkyEwVDG/oBsPrF\nl7PyYwYOAKrvf7X9eWbLb7LyEwafAMDm3a9n5Yf0Pwqo/vfVlpTSdcBlFK6SPqG4bQZwC4Xv689E\nxCfLHH8S8CPgWApXS78qIn5ZJj8GuJ3ChQ1nRcQTJft2R0T/rAd2EDwTIkmSJHWtO4AL9t1IKb0H\n+AHwpYgYR2G1rHL2ULgGyKkUVtm6tVw4IlZHxCQKSwHvPzze1bF6sr59+749D2TVqlVd2xlJkiR1\nmYhYlFIaXrLp/RTOiiws7i+73G5EbAe2F3/emFI6PKV0WETsKXdcW1JKNwKzgYci4gvtaaMSi5Au\nMnfu3Ld/7skT+iVJklS1YcCulNI9wAnALRHxv3MOTCnNBp5obwEC9APmA18B1qaUGiNiWzvbapPD\nsSRJkqT60hc4A/gz4EPAFSmlEZUOKl4t/ToqD98q582IWBwRb1G46nrjQbTVJs+E1LF58+bR0pI3\ngaw1nmGRJEnqlrYBKyNiM0BK6QlgLLC+OGH9O8Xc5cULFZJS6gv8G4Wrpa/f11BKaTpw8/75otbm\nf+zZb3+nnLSwCKljLS0tFhKSJEm9z1JgWEppAPAaMAFYCxARjwGTS8MppT7A94H5EfGu5Skj4vH9\n8yV2AkOBykvudTCHY0mSJEldKKV0E7Cw8GPaBHwQuAK4n0KBMD8iVpdp4gzgEuALKaUni//lDKP6\nFnBtSmlZSd7VsSRJkqSeLiLmAHNa2fXjzOMfAQ5vx/0uojDMq3Tb0SU/n11tm7k8EyJJkiSppvrs\n3Vv2jEv26ZimpqYePX+h9PF19GNtq70OuJ8+xf/X5LRaFeq1X5IkSZ2lT+VI7+FwrDpQeuHCUl7E\nUJIkST2RRUgdKL1wYamOPNvy8/WLK4dq4PwRp7/r9otLnss6buC0UwDY9ts3svKNRx4BwGvPbc3K\n9zvlRAC2PPhMVn7wrAkALL/5Z1n5iV+8AIC1P1mYlR/1sZkAPPmPd1XMTv7yhQD8Ys7fZ7X9hzf9\nJQA/uezvsvIf+5evAnDtwAuz8le9WOjzS8vWZeXfO2UkABvvWZqVH3beVAB+/S//Nyv/vsv+EwDL\n/uEnWfkpf/ExAFbNfyArP/ZTheGyD371n7Lys/7uTwFY+I0fZuVn/tWnAXhg7i1Z+bPn/RkAa+98\nNCs/6uIzgOqfz2e/tyArf+rnZwOwa8WmrPwx44cCsPVXz2blT/zgqQB8d8H9WfkvzD4HgDsX573e\nLj698Hpb+vzmrPzU4UMAWLhmfYVkwczRhWX///nBR7Lyn5l1JgD//njlhWw+Pn0KALc9vCir7UvP\n+gAA96+IrPw54xMAj6zOe6+fOabwXv/ls7/Oyv/Bqe8D4IGV5ebivuPscWOA6n+3nZ1/duv2rPyp\nJx4PwOoXX87Kjxk4AIDm5uasfENDAwC/256XP+T4hna1v2fLrqz8YYOPAWDLa3mXIhjcr2+7+lPt\n66fa9+7m3a9n5Yf0P6rs/pTSdcBlFK6SPqG4bQZwC4Xv689ExCfLHH8S8CPgWOAN4KqI+GVW5w5s\na3dE9G/PsdVwTogkSZLUte4ALth3I6X0HuAHwJciYhyVLz64h8I1QE4FPg7cehB9cXUsSZIkqaeL\niEUppeElm95P4azIwuL+nRWO3w5sL/68MaV0eErpsIjY09YxKaVZwNeAVyiskHVfRHyluO9GYDbw\nUER8od0PrAzPhEiSJEn1ZRiwK6V0T/EaHpfnHphSmg08Ua4AKTETuKY4BKypuK0fMB8YD8zOvN5I\n1SxCJEmSpPrSl8IFCP8M+BBwRUppRKWDigXDdVQevrXPExGxEiAiXi1uezMiFkfEW8B6oFOKEIdj\n1bG2Vs3K1ZOXTJYkSerBtgErI2IzQErpCQpDptYXJ6x/p5i7PCIWFzN9gX8DroyIt2fYp5SmAzfv\nny9qbSWB0jMoe+mkkxYWIXWsrVWzJEmS1KMtBYallAYArwETgLUAEfEYMLk0nFLqA3wfmB8R95bu\ni4jH98/XA4sQSZIkqQullG6isKrVwJTSJgrDqa4A7gcOA34YEeXWGz4DuAQYm1LaN5H8vIjYVuaY\nvbS+EparY0mSJEk9XUTMAea0suvHmcc/Ahxe5X0+BDzUyvajS34+u5o2q+HEdEmSJEk11Wfv3rJn\nXLJPxzQ1NfXoidClj68bPdY+xf/X5LRaFeq1X5IkSZ2lT+VI7+GZEEmSJEk15ZyQXuKFHSu7ugsA\nnDRo3Ltuv/bc1qzj+p1yIgD3/td/yMqfe+NfALDmjkey8qMvOROAhd/4YVZ+5l99ul3tP3zNrVn5\ns77+WQAWz7utYvb0uZcCsHPpmqy2j5s6GoAVt95bIVkw/rPnAvDSsnVZ+fdOGQnAtQMvzMpf9eJd\nQPW/26U33JmVn3rFxQCsvfPRrPyoi88AYPnNP8vKT/ziBQBsXLAsKz9s9hQAmpubs/INDQ0ArNpe\n9mK5bxt7/HEAbPj5kqz8yedPA+CF+5dn5U86ZyJQ/eth5Q/uy8qP+5MPA7Dpviez8kM/XFjw5Z8f\nzHsvfmZW4b34T/c+kJX/03MLw6EXrllfIVkwc3RhGf8Fy1dk5WdPHA/A4+s3ZuWnjxgG5L0e9r0W\nNjW/ltX20IZ+ANy97Oms/EemnAbA5t2vZ+WH9D8KgDU7X8nKjz7uWACWbXwhKz9l2EkAPLZuQ1Z+\nxsiT29X+0uc3Z+WnDh8CwOtrfpOVP2r0CUD1nw1vbXu1QrLg0MbCMP8Nu3Zn5U8+pj9Q/d/p9a/k\n9WfEsYX+dPZnYbW/35YNee33PbnQfrWv/7aklK4DLqNwlfQJxQsOziuJjAOmRUSrb9CU0knAj4Bj\ngTeAqyLil2XubwxwOzAKmBURT5Ts2x0R/bMe2EHwTIgkSZLUte4ALth3IyIWRMTkiJgMnAdsaKsA\nKdpD4Rogp1JYZevWcncWEasjYhKFpYD3Hx5fk+HyFiGSJElSF4qIRUBbp2EupXARwnLHb4+IZ4o/\nbwQOTykd1t7+pJRuTClFSum77W2jEosQSZIkqX59CvjX3HBxKNcTEbGnYrh1/YD5wHhgdkqpsZ3t\nlOWcEEmSJKkOpZQScNS+sxwZ+UbgOiBvYmbr3oyIxcX21gONQLmLHraLRUgdmDdvHi0tLR3ebjdZ\nRliSJEmtO+AsSEppOnBz8eblJQVDXwrDtq6MiPWV8kWtzf/Ys9/+Thk5ZRFSB1paWiwYJEmStL9L\nKZmwDhARjwOTS7ellPoA3wfmR8S9lfIldgJDgbwlHjuQRUimvn37vl0orFq1qms7I0mSpB4jpXQT\nhVWtBqaUNgGXAzuA5oh4LqOJM4BLgLEppS8Ut50XEZWGUX0L+H5K6Rrg/GK+JqtjWYRkmjt37ts/\ne9ZCkiRJHSUi5gBzWtn1/szjHwEOb8f9LgLG7rft6JKfz662zVyujiVJkiSppvrs3Vv2jEv26Zim\npqZec4agox9rJz53fYr/r8lptSrUa78kSZI6S5/Kkd7D4Vg11NYqWM4xkSRJUm9iEVJDba2CVYsz\nSC/sWNnp95HjpEHj3nX7leXPZx137MThAKya/0BWfuynCkMYH7++7AVG3zb9yj8GYOM9S7Pyw86b\nCsDSG+7Myk+94mIANt33ZFZ+6IcLi1j85tFfV8yecMb7AFj7k4VZbY/62EwAXlySM88NBk47Baj+\nubn3v/5DVv7cG/8CgGsH5i1pftWLdwHVvxYWz7stK3/63EuB6h9vta+15ubmrHxDQwMAv9uelz/k\n+EL+qe/cnZWf9KWPALD85p9l5Sd+sbBIS7XP/47HVmflB80YA8Dr67Zn5Y8aeTwAP12S9966aFrh\nvfUfS5/Kyn906iQAHlm9Lit/5piRACxYviIrP3vieACe3LQlKz956GAAHl+/sWJ2+ohhAGze/XpW\n20P6HwXAwjXrKyQLZo4eAcC2376RlW888ggA1r28Kys/csAxAGzYtTsrf/Ix/QF4dmvea+fUE4+v\nSf71Nb/Jyh81+gSg+s/maj9L3tr2alb+0MbCtIBq34uvrtyclT963BAAlj6fl586vJCv9vHe+3Te\n959zTyt8P1m+eWtWfuKQE9vVn7aklK4DLgN2RMSE4gUH55VExgHTIuLpNo4/CfgRcCzwBnBVRPwy\nq3MHtrU7Ivq359hqOCdEkiRJ6lp3ULIUb0QsiIjJETEZOA/Y0FYBUrSHwjVATqWwytatB9EXV8eS\nJEmSerqIWJRSGt7G7kspXISw3PHbge3FnzemlA5PKR0WEXvaOialNAv4GvAKhRWy7ouIrxT33QjM\nBh6KiC+01cbB8EyIJEmSVL8OuGp6OcWhXE+UK0BKzASuiYgJQFNxWz9gPjAemJ1Saqyuu3k8E1IH\nSi+E2JF6y2plkiRJPVFKKQFHRcQzmflG4Dogb6JloVhZCRAR+yYMvRkRi4vtrQcagUoXPayaRUgd\nKL0QoiRJklR0wFmQlNJ04ObizctLCoa+FIZtXRkR6yvli1pbKaL0DMpeOmnklEWIJEmSVJ8upWTC\nOkBEPA5MLt2WUuoDfB+YHxH3VsrXA4sQSZIkqQullG6isKrVwJTSJuByYAfQHBE56zafAVwCjE0p\n7ZtIfl5ElBtGtZfWV8JydSxJkiSpp4uIOcCcVna9P/P4R4DDq7zPh4CHWtl+dMnPZ1fTZjX67N1b\nttjJroSampp6zUTo9j7WLniO+hT/X5OKtgr12i9JkqTO0qdypPdwiV5JkiRJNeVwrF7i5+sXVw7V\nwPkjTn/X7dee25p1XL9TTgTgleXPZ+WPnTgcgG0Pr8jKN541HoDX123Pyh818via9GfV/AcqZsd+\nqnCm9OWn1ldIFgyYNAKAxfNuy8qfPvdSAH79L/83K/++y/4TAEtvuDMrP/WKi4G8xwrvPN5rB+at\nPnjVi3cB8JPL/i4r/7F/+SoAj/7NP2flz7j6M0D1z8/mXz6VlR/yB5MAeGnZuqz8e6eMBGD5zT/L\nyk/84gXt6s/Ge5Zm5YedN7Vd/dnyYNZqlAyeNQGApn+5PSvfdNknAPh/f5C35P5f/8l/BmDB8rz3\n7uyJhffu3cvKXdj4HR+ZchoAP3rksaz8J8+cAcD9K6Ji9pzxCYCHY21W22elUQDcuTjvd3vx6YXf\n7bbfvpGVbzzyCACam5uz8g0NDe1q/8lNW7Lyk4cOBmD55ry/QxOHFP4OLVyT91k7c3Ths7baz+ZX\nV27Oyh89bggAz/3br7Lyp/zxBwHYvqjyawfg+A8UXj9r7ngkKz/6kjMB2Ll0TVb+uKmjAdiwa3dW\n/uRj+gOw9Pm852fq8MLzk/NegXfeL+tfebVCsmDEsYURSw+sXJ2VP3vcmKxcb2IRIkmSJHWhlNJ1\nwGXAjuKFA0kpzQBuofB9/ZmI+GS1bZTJjgFuB0YBsyLiiZJ9uyOi/8E8nhwOx5IkSZK61h2ULMWb\nUnoP8APgSxExDvhytW2UExGrI2ISsJQD5+jWZM6uRYgkSZLUhSJiEbCzZNP7KZzRWFjcv7PVA8u3\n0W4ppRtTSpFS+m5HtNcaixBJkiSpvgwDdqWU7kkpLUspXV7D++4HzIf/n717D6+qvPO//860aipE\nRBDC+SjfCIRTOSiogFV5UESlVqtj29F2rMh4jdVnBq5xZpr293MemLG2Y2s9tdraFiseqnhAwQoo\ncgzhHPNFIUIQkYOKQY2gzfPH2tFNTPa+107CTuTzui6u7L32Z91r7Z29186Xte77ZgAwwczym2Ij\n6hPSyGbOnElVVVWdj5WVlTV6m6kcLUMmi4iIiHzJ5BJNQDgQ2A8Um9lz7h420kHDHHT35QBmVg7k\nA6kmPcyIipBGVlVVVe8f/5kWBanaFBEREZEvnV1AqbvvADCz1UABUJ7osH53Ije1pmCoj5mNBO6p\nJ19X/49DtR5vkiunVISIiIiIiDQvxUB3M2sLfAAUAlsA3H0FMDS0IXdfmSK/D+gGlDRobzOgPiEi\nIiIiIllkZncCS6ObVgGcBdwIvEhUIMx295STktRuw8wmBWz6dmBWot9JTd+PIzI6ls6EiIiIiIhk\nkbtPA6bV8dCjjdBGqnWWEV3mlbzshKTb4+O0F0dOdXXKYie4EioqKjpq+i2keq6ZPpbp9tLISfw8\nIhVtDM11v0RERESaSk76yNFDZ0KyLGTkq0xH1RIRERERaY5UhGRZyMhXjXGG6dnylAMnHDHn9zrt\nsPtV28Lm1Mnt0Q6AT3dXBuW/0iEPgG3PrgrK9zh/BACf7Ho/KP/V/OhMZcWCNUH5budG/cHiPt/3\n1r2RNnvi4J4A7HhhbVDbXc8ZAkDZ7IVB+YIrozOxJb98Iig/7IaLAdjy+CtB+T5TxgCwfOZDQfnT\nZlwBwBNX/VdQ/uI//hsAs9pPDspP3zsXgA2/nReUL/z+RCD+6/P2K68G5TuOORWI//uNuz/+50VB\nefv2OADKn1oRlO914SgA3nppY1C+01kDgfiflZ8/8UxQ/kcXR5MJ/+/csN/vP0+Ofr8LS1Neiv2Z\n8f37AfD8uk1B+QmDBwDw5KqwY8lFI6JjyYqt29JmR/XuAcDK8u1BbY/s1R2AFzd5UP7sAQZAZWXY\ncZKz9lsAACAASURBVDkvLzouxz2Ox21/2/4DQfkebVoD8Pq+94LyfdudCMC6HW8F5Qd37QSEHcfh\n82P53lWvBeXbjzgFiH9s2Do37O+B3pOj7+u4n/W47S99PWzE2dF9ewHxf19Pl6wPyk8aNgiAJZu3\nBuXP6NcbgOI3dgTlh/fsGpQ7mqgIERERERHJIjO7DbiKaJb0wsSyUcB9RH+vb3D3y+O2keG+HHD3\n1pmuH0qjY4mIiIiIZNdjwAU1d8zs74AHgevcvT9wfdw2GkCjY4mIiIiIfNm5+zIz65m06OtEZzSW\nJh5Pe41qHW2kZGbjgFuA94hGyFrg7jclHrsDmAAsdvdrQ9uMQ2dCRERERESal+7AfjObl5jDY2oT\nbWc08OPE5VtFiWWtgNnAAGBC0vwhjUpnQlqA3NzcjIf2FREREZEWJxcYAwwE9gPFZvacu4f15A+3\n2t1LAdy9ZnSeg+6+HMDMyoF8YFcjb1dFSEswY8aMbO+CiIiIiBw5u4BSd98BYGariS6ZKk90WL87\nkZtaUzDUx8xGAvfUk99fxyqHkm5X00RXTqkIERERERFpXoqB7mbWFvgAKAS2ALj7CmBoaEPuvjJO\n/khRnxARERERkSwyszuBpdFNqwDOAm4EXgRKgNnunnLCotptmNmkNJutpu6RsDQ6loiIiIjIl527\nTwOm1fHQo43QRn35xcDiOpafkHR7fGh7ceVUV6csdoIroaKioqOmI3Sq5xr3sSZ+3XISP49IRRtD\nc90vERERkaaSkz5y9NCZkCOorlGuysrKsrMzIiIiIiJZoiLkCKprlKsjdfbo2fKUAyccMef3Ou2w\n+5/urgxa7ysd8gB4d23YyHRth/QCYOeiDUH5zuMKAdj18qagfP6ZAzJqf8vjrwTl+0wZA8Cm381P\nmx3wD+cBsHfVa0Fttx9xCgCv/J8/BOXH/Md3ACibvTAoX3BldOZ23T3PBOUH/zCa3HX7vOKgfPeJ\nw4H4+7/ht/OC8oXfnwjArPaTg/LT984FYPEt9wflx956DRD/9Yz73nz7lVeD8h3HnArA5oe/cEa+\nTv0uHwvA9udLgvLdJwwDoPypFUH5XheOAsD/vCgob98eB8Cdz6T/rABMuyD6vPz8ibD3548ujt6f\nT65aE5S/aETU9/PhJWHP9/Izouf7wsaw39c5A6Pf15qKnWmzQ7t1BmDjW7uD2h7YqQMAL/uWoPyZ\n1geAPR8fSpOMnHzcMQBUVH4QlO+W1wqADTvfDsoXdu6YUb5sd9o54AAo6NAOgKWvh30Pje4bfQ9V\nVoZ9z+XlRd9zcV/Pd0q2BuVPGtYbiP9dEfdYcsDTvzcBWlv0/oz7+mx9t67BnL6od9s2AJRsfzMo\nP6x7l4z2J+SzCJ9/HuVzKkJERERERLLIzG4DriKaJb0wsWwUcB/R3+sb3P3yFOu3A54DjiG67OtW\nd5+TIt8PmAP0Aca5++qkxw64e+uGP6vUNDqWiIiIiEh2PQZcUHPHzP4OeBC4zt37A9enWX8/MNbd\nhwBnA79KtFEnd9+cyBbzxT66Gh1LREREROTLzt2XmVnPpEVfJzorsjTxeMrrBt39E+CTxN22wMcN\n2R8zuwOYACx292sb0lZ9VISIiIiIiDQv3YH9ZjYP6Ajc5+53pVrBzFoDy4gusbrS3f+W4bZbAbOB\nm4AtZpbv7rsybKteKkKamZkzZ1JVVdUobR0tQyaLiIiIfMnkAmOAgUSXWhWb2XPuXu/ICO5+ACg0\nswLgaTNb4O5hI0Ec7qC7Lwcws3IgH1AR8mVXVVWl4kFERETk6LYLKHX3HQBmthooAMoTHdbvTuSm\n1hQMNdy9zMy2AacSFS+p8nX1/zhU6/Em6UOuIkREREREpHkpBrqbWVvgA6AQ2ALg7iuAoclhM+sM\nfOzu+8wsHzCgvL58kn1ANyBs3PVGpNGxRERERESyyMzuBJZGN60COAu4EXiRqECY7e6bUzTRHVho\nZuuBBcDN6TqzJ9wOzDKzkkTxAhodS0RERETky8/dpwHT6njo0cD1lwODMtjuMqLLvJKXnZB0e3zc\nNkPlVFenLHaCK6GioqKjpi9Dquca93WonW/k1zEn8fOIVLQxNNf9EhEREWkqOekjRw+dCcmy3Nzc\nw4qOsrKy7O2MiIiIiMgRoCIky2bMmHHY/aY6m/Rs+fL0oSPg/F6nHXb/3bX1jjR3mLZDegHw6e7K\noPxXOuQBsHVu2PPuPTnar3dKtgblTxrWG4ANv50XlC/8/kQA9hW/HpRvN7wvABUL1qTNdjs36mu2\nYtbDQW2Pmn45AOvvezYoP+gfzwdg0b/9Jig/7r9+AMD258P6uHWfMAyAlT97JCg/8uZvAfDqH/8a\nlD/1qm8AUPLLJ4Lyw264GIDFt9wflB976zUAzGo/OSg/fe9cALY8/kpQvs+UMUD85xu3/SU/eTAo\nf8aPvwtA6YMLgvL9v3suEP+9H/ez+OiyVUH5S08fAcDTJeuD8pOGRVc3LC57LSg/tuAUAOat3RiU\nnzhkYEb5haWpLg2PjO/fD4D560uD2j5vUH8g/nMtf+/9oHyvE6MrPJZsDvvdntEv+t2u2/FWUH5w\n104ArCzfHpQf2as7AC9sfDUof87AU4H4r8+ejw+lSUZOPu4YACorw77n8vKi77m434v7N4S9Pm0K\no9enaltItwLI7dEOiP+9Hvf983bVwaB8x9xjgfi/37jvt7i/L/mcihARERERkSwys9uAq4hmSS9M\nLBsF3Ef09/oGd788oJ08wIGfufvPMtyXA+7eOpN149DoWCIiIiIi2fUYcEHNHTP7O+BB4Dp37w9c\nH9jOLUTD+zak361GxxIRERER+bJz92Vm1jNp0deJzoosTTye9ro4MzPgZGA1AZ3gzWwcUdHyHtEI\nWQvc/abEY3cAE4DF7n5trCcTSGdCRERERESal+7AfjObl5jDY2rAOv8fUBRzO6OBHycuAatZtxUw\nGxgATEiaP6RR6UxIM1N7tKyGOFqGTBYRERH5kskFxgADgf1AsZk95+519vw3swuBze5eYWZxhgJe\n7e6lAO5eM0rAwcS8I5hZOZAP7MrwedRLRUgzU3u0LBERERE56uwCSt19B4CZrSa6ZKo80WH97kRu\naqJgGAl808wuAtoDfzOzne7+UD35Gvvr2HbykG7VNNGVUypCMpDqbIXm+RARERGRBioGuptZW+AD\noBDYAuDuK4ChyWF3/w/gPwDM7MdApbs/VF++OVARkoFUZyt0CZSIiIiIxGFmdwKXAO3NrIJoNKwb\ngReBY4A/uXv6CYLiqabukbA0OpaIiIiIyJedu08DptXx0KMZtPWTwNxiYHEdy09Iuj0+7vZD5VRX\npyx2giuhoqIinQWg2b0ONR2TjkhFG0Nz3S8RERGRphKnw/iXnoboFRERERGRI0qXYx0lnv+X27O9\nCwBM+J+bDrtfWVkZtF5eXh4AW9+taxCHL+rdtk1G7X+y6/00ychX86MzlXtXvRaUbz/iFAB2vbwp\nKJ9/5gAAdi7akDbbeVwhANvnFQe13X3icABe+o8HgvJn/Z+rAVj6f/8UlB/9738PxH/t4+Z3vLA2\nKN/1nCEAvP3Kq0H5jmNOBaBs9sKgfMGV0ZnqLY+/EpTvM2UMALPaTw7KT987F4BHv1UUlL/0kSi3\nr/j1oHy74X0BKH9qRVC+14WjgPivz1svbQzKdzprYEbtP7wkbP8vPyPa/8eXh31eppwWfV7uf2FR\nUP6ac8YB8Jv5Yfv/g/Oi/V9TsTMoP7RbZwBKd+1Jm+2ffzIAG3a+HdR2YeeOAGx8a3dQfmCnDkDT\nf9bj5nd+UBWU79wq94i0f/DNd4Pyx3ZpC8DHFe8E5Y/rdhIA7617Iyh/4uCeQPzPYtzvlrjHkrjf\ni3Gf77b9B4LyPdq0jvbno4/D9udrxwHx3w/yORUhIiIiIiJZZGa3AVcRzZJeWN+yuG2kyPYD5gB9\ngHHuvjrpsQPu3jrjJxNIl2OJiIiIiGTXY8AFAcvitlEnd9/s7kOIhgKu3Uf3iPTZVREiIiIiIpJF\n7r4M2JduWdw2MmVmd5iZm9m9jdFeXVSEiIiIiIhIjVbAbGAAMMHM8ptiI+oT0kLMnDmTqqqwzk81\nmtFQwSIiIiLSMhx09+UAZlYO5AO7GnsjKkJaiKqqKhUVIiIiIkc5MxsJ3JO4O7WmYMgwX1f/j0O1\nHm+SK6dUhIiIiIiItBDuvhIY2kj5fUA3oKQRdi0W9QkREREREckiM7sTWBrdtO1mdqGZ/SppWYWZ\nTYrRRtp8wu3ALDMrSer7cURGx9KZEBERERGRLHL3acC0WoufAv6pgW2kW2cZUFBr2QlJt8fHaS+O\nnOrqlMVOcCVUVFSkPgs03euQYbs5iZ9HpKKNobnul4iIiEhTyUkfOXroTEgTyWQ0q1TKysoarS0R\nERERkWxSEdJEGns0q4a29fy/3N44O9JAE/7npsPuH3zz3aD1ju3SFoDn120K287gAQBUVlYG5fPy\n8jLK71y0ISjfeVwhAB9XvBOUP67bSQAc2rk/bfaYzm0A2Pzw4qC2+10+FoDSBxcE5ft/91wAFs64\nLyg/fuY/AlC2O2y+pIIO7QD4dHfYa/+VDtFr/07J1qD8ScN6A7DjhbVB+a7nDAFg18th77X8M6P3\n2qt//GtQ/tSrvgHAo98qCspf+kiUm9V+clB++t65AGx/PqyPYfcJwwBYe/fTQfkh10WXGC+f+VBQ\n/rQZVwDw4dbdQfnje3cA4v++ni5ZH5SfNGwQAIvLXgvKjy04BYDHlxcH5aecNhyAOUtXBuUvGz0S\ngBVbtwXlR/XuAcDK8u1psyN7dQfgZd8S1PaZ1geI/9lt6uNs3PzbVQeD8h1zj82o/T0fH0qTjJx8\n3DEZtf/eujeC8icO7gnA/g3p3wsAbQqj98OWJ5YG5ftcPBqIfywp+eUTQflhN1wMxD82bHt2VVC+\nx/kjANj4Vlj7AztF7Yd8tuDzz1fc3698Th3TRURERESyyMxuM7NdZrYh1bK4bWS4Lwcasn4oFSEi\nIiIiItn1GHBBwLK4bWTiiPTZVREiIiIiIpJFiVGq9qVbFreNVMxsnJktMLNHzGyDmd2e9NgdZuZm\ndm9oe3GpCBEREREROTqNBn7s7oVAUWJZK2A2MACYkDR/SKNSx/QWIjc3N3bndA2ZLCIiIiIprHb3\nUgB3fz+x7KC7Lwcws3IgH9jV2BtWEdJCzJgxI9u7ICIiIiJZZmYjgXsSd6fWFAwZ5usahjN5CLhq\nmujKKRUhIiIiIiIthLuvBIY2Vf5IUREiIiIiIpJFZnYncAnQ3sy2A9OACcCUxLIKorMY9U7qVKuN\ntHmisxx1jYR1REbHUhEiIiIiIpJF7j6NqPBI9hTwTw1sI1V+MfCFmY7d/YSk2+ND24srp7o6ZbET\nXAkVFRWpIzSfvw7N5PXISfw8IhVtDM11v0RERESaSk76yNFDQ/SKiIiIiMgRpcuxjhIPLCrL9i4A\ncPW4gsPur7vnmaD1Bv8wmgD0g9feCsq3OqUTADsXbQjKdx5XCMDBN98Nyh/bpS0A5U+tCMr3unAU\nAHtWbA7KnzyqHwAVC9akzXY7N+prtuXxV4La7jNlDBD/tYnb/rZnVwXle5w/AoC1d6e6bPVzQ66b\nBMR/75T88omg/LAbLgbg7VdeDcp3HHMqEP/12Vf8elC+3fC+AGx/viQo333CMABmtZ8clJ++dy4A\nL9x8V1D+nJ9NBeCpq2cF5S98YDoA867/RVB+4q9vBKD4F48H5YffOAWAOUtXBuUvGz0SgAf++lJQ\n/upvnAXA8+s2BeUnDB6Q0f7MW7sxKD9xyEAAXtiY/v15zsDovbmyfHtQ2yN7dc9oX8p2h82NVtCh\nHQBb361rMJ4v6t22DQDb9h8Iyvdo0xqAJZu3BuXP6NcbgDUVO4PyQ7t1BmDp6+VB+dF9ewFN/731\n4etvB+WP79sRgP0bwt4PbQqj90PcY/mG384Lyhd+f2JG+/PWS2Hvz05nRe/PysrKoHxeXh4AH72x\nJyj/tZ4nA/DJrvfTJCNfzT8hfegooyJERERERCSLzOw24Cpgj7sXmlk74DngGKLLuG519zlx2mjA\nvhxw99aZrh9Kl2OJiIiIiGTXY8AFSff3A2PdfQhwNvArM0v3d3vtNjKl0bFERERERL7s3H2ZmfVM\nuv8J8Eniblvg47htpGNm44BbgPeAAmCBu9+UeOwOoiGCF7v7taFtxqEiRERERESkmTGz1sAyoA9w\npbv/rQk2MxoY4e6lZlbTcaUVMBu4CdhiZvnuvquxN6wipAWYOXMmVVVVsddrBkMEi4iIiEgG3P0A\nUGhmBcDTZrbA3T9o5M2sdvfSxPZqetkfdPflAGZWDuQDKkKORlVVVSooRERERI5C7l5mZtuAU4Fi\nMxsF3J14eGpNwVAfMxsJ3FNPvq7h6g4l3a6mifqQqwgREREREWlGzKwLUOXu+8wsHzCgHMDdVwBD\nQ9ty95Vx8keKRscSEREREckiM7sTWAr0M7MK4PvAQjNbDywAbnb3lJPyJLVhZlZhZpPSbLaaukfC\n0uhYLVFubi5FRUWUlTWPyQFFREREpHlz92nAtFqLf9oIbaTKLwYW17H8hKTb4+PsQxw51dUpi53g\nSqioqEj9FpI05uvRgLZyEj+PSEUbQ3PdLxEREZGmkpM+cvTQ5VgiIiIiInJE6XKso8QDi5rH5WFX\njys47P6Wx18JWq/PlDEAfLLr/TTJyFfzozOJb7/yalC+45hTAfi44p2g/HHdTgLg9ceWBOX7fvMM\nALY/XxKU7z5hGAA7F21Im+08rhCA9fc9G9T2oH88P7jt5PZf/eNfg/KnXvUNAN58cV1QvsvZgwFY\nd88zQfnBP4wmg93xwtqgfNdzhgDgf14UlLdvjwNg88NfOENdp36XjwVgyU8eDMqf8ePvAlD+1Iqg\nfK8LRwGw9u6ng/JDrosuAX7h5ruC8uf8bCoAs9pPDspP3zsXgGeu/VlQ/oJ7bwbi7//ymQ8F5U+b\ncQUAT5esD8pPGjYIgEeXrQrKX3r6iIzy9z7/YlD+2glnAzB/fWlQ/rxB/QHY+UH6Yds7t8oFoGT7\nm0FtD+veBYAVW7cF5Uf17gFARWXYiKHd8loB8Pq+94LyfdudCMCGnW8H5Qs7dwSg+I0dQfnhPbsC\nsPXdugYH+qLebdsAsKZiZ1B+aLfOABx8892g/LFd2gLxv7c+eO2toHyrUzoB8b93dy/zoHyH0w2I\nfyyP+10R93u3srIyKJ+XlwfE/zvg/dKw99sJ/bsG5Y4mKkJERERERLLIzG4DrgL2uHuhmbUDngOO\nIbqM61Z3n5Ni/S7Aw8CJRLOrT3f3FzLclwPu3jqTdeNQEdIMpJuMUJ3cRURERL7UHgMeAn6XuL8f\nGOvuHyYKklfN7NEUs6YfIpoDZIOZdScaJSvT0y8aHetokW4yQnX4FxEREfnycvdlZtYz6f4nwCeJ\nu22Jzm6kWn83sDtxe7uZHWtmx7j7ofrWMbNxwC3Ae0ABsMDdb0o8dgcwAVjs7tdm+rxSUREiIiIi\nItLMmFlrYBnQB7gyxVmQ2utNAFanKkCSjAZGuHupmdUMzdsKmA3cBGwxs3x33xX/GaSmIqQFSXfZ\nVm06gyIiIiLSMrn7AaDQzAqAp81sgbunHAkiMbv6bUDYaCNRsVKa2F7N6D8H3X15or1yIB8ILkLM\nbJ67T0yXUxHSgqS7bEtEREREvlzcvczMtgGnAsVmNgq4O/Hw1KSCIRd4hGh29fKa9c1sJHBP7XxC\nXcPDJZ9BqSb+lB75ISEVISIiIiIizUhitKsqd9+XOLthQDmAu68AhtbK5wAPALPdfX7yY+6+sna+\nEfbvRXc/28z21PFwm5A2VISIiIiIiGSRmd0JXAK0M7MK4D7gUjODaIjem919X4omxgDfBArMrKYj\n+cQ0fTmqqXskrJDRsf4+8XM3cD6HzwYfNFmMihARERERkSxy92nAtFqLfxpj/SXAsTG3uRj4wsy8\n7n5C0u3x9axbM0vmM+5+2AynZnYwZPs51dUpi53gcYKLiorUXyFJnNcjXbbm8Qxe45qq9IiM9xxD\nc90vERERkaaSkz7S8plZG3evq6/JYXQmpAXIzc2lqKhIkxaKiIiISLOR6CQ/BTiJz+uKauCadOuq\nCGkBZsyYATRsyN0HFjWPAubqcQWH3V/2X7OD1jv9364EoLKyMiifl5cHwL7i14Py7Yb3BeDT3WHt\nf6VD1H7FgjVB+W7nRv3Bdr28KSiff+YAALY9uypttsf5IwDY9Lv5aZKRAf9wHgBb5y5Pk4z0nnwa\nABvvfz4oP/CaCQC8U7I1KH/SsN4AlM1eGJQvuDI6M7x9XnFQvvvE4QCUP7UiKN/rwlFR+8+XhLU/\nYRgApQ8uCMr3/+65QPznu3zmQ0H502ZcAcBTV88Kyl/4wHQAnrn2Z0H5C+69GYBZ7cNGf5y+dy4A\na349Nyg/9PrJGe3P0yXrg/KThg0CYM7SlUH5y0aPBODRZek/iwCXnh59Hn8zP+z3+4Pzot/v0tfL\n0yQjo/v2AmD++tK02fMG9Qdg41u7g9oe2KkDAC9sfDUof87AUwHYvPfdoHy/9m0BqKhMOcLoZ7rl\ntQLg7aqgKzvomBtdibK47LWg/NiCUwDYceDDoHzX1scDsG7HW2mSkcFdOwHw4etvB+WP79sRgDdf\nXBeU73L2YCD+92LcY/O7a8Pem22HRO/NuMfCV//416D8qVd9A4BVtz8alB9x06UA7N+wPSjfprA7\nEP/1jJv/EvoT8G/AHiBoHpMaKkJERERERLLIzG4DrgL2uHuhmbUDngOOIbqM61Z3n5Ni/Vj5NPty\nwN1bB8b/yheH8A263D7uuL8iIiIiItK4HgMuSLq/Hxjr7kOAs4FfmVmqv9vj5lOJ02d3MPA94B+S\n/l0dsqLOhIiIiIiIZJG7LzOznkn3PwE+SdxtC3ycZv1YeQAzGwfcArwHFAAL3P2mxGN3ABOAxe5+\nbb2NwDvAJHePdSkWqAgREREREWl2zKw1sAzoA1yZ7g/9uPmE0cAIdy81s5qheVsBs4GbgC1mlp9i\nvpFRwH4z28fnZ1Cq3b13ug2rCGlBakbJCqUhk0VERERaJnc/ABSaWQHwtJktcPd6R3aIm09Y7e6l\nifXfTyw76O7LAcysHMgH6ixC3L1dvGf1ORUhLUjNKFkiIiIicnRw9zIz2wacChQnhsW9O/Hw1JqC\nIcN8XfN5HEq6XU2KPuSJsyf/BnR39yvNrBDo4+5PpHteKkKaSJyzFpr/Q0RERERqmFkXoMrd95lZ\nPmBAOYC7rwCG1sp3Bj4OzTei3wIbgCGJ+xXAHwAVIdkS56yFLpsSEREROXqZ2Z3AJUA7M6sA7gMu\nNTOIhty92d33pWiiO3BvjDxEZznqGgkrzuhYfdz9W2Z2CYC7v2dmQTPDqwgREREREckid58GTKu1\n+Kcx1l8ODIq5zcXA4jqWn5B0e3yaZj4xs8/qCTM7mcAiJqe6OmUuuBIqKirS/+hnqAlfu5pKNE5F\neyQ01/0SERERaSpBZwhaEjO7DpgC9AfuJZpw8b/d/Tfp1tWZEBERERERic3d7zYzJ5poMQ/4obsv\nDFlXRchR4oFFzaPz+9XjCg67v3Xu8nqSh+s9+TQAtjz+SlC+z5QxAOwrfj0o3254XwDeKdkalD9p\nWDT89QevvRWUb3VKJwAqFqwJync7N+o/VjY7/ee44MrxGe3LtmdXBeV7nD8CgP2bKoLybQZ0A6D0\nwQVB+f7fPReAPSs2B+VPHtUPgHX3PBOUH/zDaALat17aGJTvdNZAAMqfWhGU73XhKCD+ey3u/ny4\ndXdQ/vjeHQCYd/0vgvITf30jAGvvfjooP+S6SQCs+fXcoPzQ6ycDMKv95KD89L1Ruwt+9Oug/Lk/\nvx6AB/76UlD+6m+cBcDtfwl7vjddEj3f+etLg/LnDeoPwKPLwj5fl54efb6eXBV2bLhoRHRsWLcj\n/ed9cNdOwdnk/PPrNgXlJwweAEBFZboRQCPd8loB8HbVwaB8x9xjASjbne6y9khBh2ik0JXl24Py\nI3t1B6Bk+5tB+WHduwCwsDTsWDW+f3SsinvsfL90R1D+hP5dM8pXbQt7PXN7RK/na4+EfbZO+Vb0\n2drxwtqgfNdzhmTU/kdv7AnKf63nyUD818f/vCgob98eB0BlZWVQPi8vLyjXEiWKjqDCI5mKEBER\nERGRLDKz24guZdrj7oVm1g54DjiG6DKuW919Tpw20mT7AXOIJjYc5+6rkx474O6tA/d7CPAjoCuf\nD+Vb7e5np1u33nF/RURERETkiHiM6JKmGvuBse4+BDgb+JWZpfu7vXYb9XL3zYm2i/liH904fXYf\nAV4FfgH8LOlfWjoTIiIiIiKSRe6+zMx6Jt3/BPgkcbct8HHcNhrCzO4AJgCL3f3aFNF33X1mJttQ\nESIiIiIi0syYWWtgGdElU1e6+9+O0KZbAbOBm4AtZpbv7rtq7Vt/osvEXjGzfwXmA591+HL3tB3p\nVIQ0UzNnzqSqqqpBbWjIZBEREZGWyd0PAIVmVgA8bWYL3D1sJIiGOZiYdwQzKwfygV21Ms9y+GVb\nU2s93ivdRlSENFNVVVUqIkRERESOcu5eZmbbgFOBYjMbBdydeHhqTcFQHzMbCdxTT76u/h+Haj3+\nhb4o7t4zcPfrpSJERERERKQZMbMuQJW77zOzfMCAcgB3XwEMDW3L3VemyO8DugElDdvj+DQ6loiI\niIhIFpnZncBSoJ+ZVQDfBxaa2XpgAXCzu6ec5CWpDTOzCjObFLDp24FZZlaSKHYg3uhYydsfGCev\nMyEiIiIiIlnk7tOAabUW/7QR2ki3zjKgoNayE5Juj4/R3B+IcYYmp7o6ZbETXAkVFRWpD0OG6nrt\nGun1zEn8zKiibULNdb9EREREmkpO+kjLZWZr3D24CNGZkGYgNzf3CwVHWVlZdnZGRERERCS+UIgC\nKQAAIABJREFUR+KEVYQ0AzNmzPjCssY+q/TAouZR1Fw97rAzfmy8//mg9QZeMwGAPSs2B+VPHtUP\ngE92vR+U/2p+dOaxalvKyy0/k9ujHQAfV7wTlD+u20kAlD64ICjf/7vnAlDyqyfTZof900UAvPXS\nxqC2O50VXbJZNnthUL7gyvEZtV+xYE1Qvtu50X+afLh1d1D++N4dANi5aENQvvO4QiD+79b/vCgo\nb98eB8A7JVuD8icN6w3Ef/13vLA2KN/1nCEAFP/i8aD88BunALB85kNB+dNmXAHAM9cGTYjLBffe\nDMCCH/06KH/uz68HYFb7yUH56XvnAvDQy8uC8leceToAdz0b9lmcen70Wfz9iy8H5b939pkZ5ReX\nvRaUH1twCgBb392fNtu7bZvgbHJ+YWnYcXZ8/+g4W1lZGZTPy8vLKF9RGTYiabe8VgCsqdgZlB/a\nrXNG+1P8xo6g/PCeXYH4x7aP3tgTlP9az5MBOLQz7Pd7TOfo9/vBa28F5Vud0gmAfcWvB+XbDe8L\nwK6XNwXl888cAMBz0/43KP//3PnPAGx5/JWgfJ8pYzLKb59XHJTvPnE4ANv2HwjK92jTOijXkrn7\nf8XJqwgREREREckiM7sNuArY4+6FZtYOeA44hugyrlvdfU6K9bsADwMnEs2uPt3dX0iR7wfMIZoI\ncZy7r0567IC7N3nVpNGxRERERESy6zHggqT7+4Gx7j4EOBv4lZml+rv9ENEcIAOBS4DfpdqYu29O\ntF3MF/voBvfZNbOuZvZnM3s5cX+4mV0Xsq6KEBERERGRLEqMUrUv6f4n7v5h4m5borMbqdbf7e4b\nEre3A8ea2TGZ7o+Z3WFmbmb3pon+lmj29BMT9zcB/xSyDRUhIiIiIiLNjJm1NrMNwHrgBnf/W+B6\nE4DV7n4obbhurYDZwABgQtL8IXVp7+4PAp8AuPtHwKchG1GfkGaqrhGz4tKQySIiIiItk7sfAArN\nrAB42swWuHvKkRoSBcNtQNjoHnU76O7LE+2VA/nArnqyh8ysVdL2exNdGpaWipBmqq4Rs0RERETk\n6OLuZWa2DTgVKDazUcDdiYenJhUMuUTD5N7s7uU165vZSOCe2vmEuvp/HKr1eKorp2YBLwNdzOx+\n4Hzg2pDnpSJERERERKQZSYx2VeXu+xJnNwwoB3D3FdSamdzMcoAHgNnuPj/5MXdfWTufZB/QDSjJ\nZD/d/S9mtgk4j6hgmeXuHrKuihARERERkSwyszuJRrVqZ2YVwH3ApWYG0RC9N7t7qgmvxgDfBArM\nrOZMxER3r+8yqhq3Aw+Y2Y+B8xP54NGxIBppCwibYCiJihARERERkSxy92nAtFqLfxpj/SXAsRls\ndxlQUGvZCUm3x9e1XqKvSH2q3b13um3nVFenLHaCK6GioiJ1hG5+chI/Y1W0R0Bz3S8RERGRppKT\nPtIymNnAxM3rgUrgcaLndwlwgrtPTdeGzoSIiIiIiEgwd98IYGZfd/dRSQ8tN7OVIW2oCDlK2JCL\nsr0LAPjaJw+7v+fjsCGsTz4umm/nxU1BfZ04e4AB8OSqNUH5i0ZE/bVKtr8ZlB/WvQsAC0vDLoEc\n378fAE+XrA/KTxo2CAh7vjXPNe6+/2b+wqD8D86LzsTe+/yLQflrJ5wNwB8WLQnKf2fcGUD831XR\nH+cE5YuuugyAnz/xTFD+RxdHE9be+cz8NMnItAvOA+DRZauC8peePgKAh5esCMpffkZ0bI/73pmz\nNOg7gMtGj8yo/bj5B/76UlD+6m+cBcBDLy8Lyl9x5ukAzGofNhrl9L1zAbh/TNBcWlzzyq8AKPnl\nE0H5YTdcnFG+9MEFQfn+3z0XgN3L0h8bOpweHRvKnwp7r/W6MHqvVSwI+yx2Ozez4+aSzVuD8mf0\ni67mWFm+PSg/sld3ACoqU45g+pluedGoopWVlUH5vLw8AD7Z9X5Q/qv50RUtcb+34ubjfrYeX14c\nlJ9y2nAg/rE87rHng9feCsq3OqUTAO+X7gjKn9C/KwBls8O+6wqujL7r3lv3RlD+xME9Adg+L+z1\n7D5xeFCuBTrOzM519wUAZnYuEDRJoooQEREREZEsM7NPiSYmBFjs7jemyN4GXAXscffCNO32A+YA\nfYBx7r466bED7t66Abt9LfB7M+uRuL8VuDpkRRUhIiIiIiLZ96G71zeUbm2PAQ8Bv0sXTIxeNcTM\nFvLF/rgN6p+bGP73VDM7kahD+v7QdVNNPiIiIiIiIs1MYlSrVEP2BjOzO8zMzezeDNcfS9RB/Xoz\nOyt0PRUhIiIiIiLZl2tmq81siZmdeYS22QqYDQwAJiQmRgxmZv8O3AWcBLQH7jKzW0LW1eVYLdzM\nmTOpqqqq8zENmSwiIiLSYnRx991mNhz4i5n1dfePm3ibB919OXw290c+kG6Cw2SXA8Pd/cNEG/8B\nrARuTbeiipAWrqqqSsWGiIiISAvn7rsTP4vNbCfQ08zaAPckIlNrCob6mNnIFPm6+n8cqvV43Kuk\ncoCDSfcP1hesTUWIiIiIiEgWmVlboMrdPzKznkAXYLu7fwSEdlav6SheX34f0A0oaeDuJpsPvGxm\nTxAVJBcCz4esqD4hIiIiIiLZVQCsMbN1RLOPfz9RgNTJzO4ElkY3rcLMJgVs43ZglpmVJPX9aNDo\nWMDNwM+BTkBH4BfA/xuyos6EiIiIiIhkUWK0q4IY+WnAtIZuw91PSLo9Pk57iXWqieYgCZtBOElO\ndXXKAii4OioqKlLfhCxI87rnJH42tMptbM11v0RERESaSk76SMtiZt2AHwBd+fwKq2p3vybdujoT\ncgSkGsGqocrKypqkXRERERGRNJ4huixsTdKyoP9kVhFyBDTlCFah7dqQi5pk+3H52icPu19R+UHQ\net3yWgHw5Ko1aZKRi0ZEfbLmrd0YlJ84ZCAAK7ZuC8qP6t0DgBc3eVD+7AGW0f48v25T2uyEwQMA\n2Lz33aC2+7VvC8DvX3w5KP+9s6Ohyh9fXhyUn3LacAB+M39hUP4H50Vnf58qXhuUv3D4EAD+88E/\nB+V/+t1vA/C/c+cF5f958kQAfv7EM0H5H118AQBPl6wPyk8aNgiI/3ouLnstKD+24BQAHvjrS0H5\nq78RzSv16LJVQflLTx8BwJylK4Pyl40eCcDtf3k6KH/TJdFlzXc9uyAoP/X8cwG4f8w/BeWveeVX\nAMxqPzkoP33vXADW/HpuUH7o9VG7L//4d0H5M3/yDwCU/PKJoPywGy4GYP+mirTZNgO6AbBz0Yag\ntjuPKwRg+7yw92b3idF7c8nmrUH5M/r1BuIfN0u2vxmUH9a9CxD/e6WysjIon5eXB8CHW3cH5Y/v\n3QGIf9yfv740KH/eoP5A/GNt3M96Ux9LYr/+r78dlD++b0cAdi8Le791ON0y2p9tz4Y93x7njwjK\ntUCfuvt1mayoIkREREREJMvM7FOg5n+0Frv7jSmytwFXAXvcvbAB2zzg7q0zXR94zswuIxol67Ph\neWvmDUlFRYiIiIiISPZ96O6hw/E+BjwE/K6B22xo/9zp9bT5lXQrqggREREREWlB3H1ZYj6RIGY2\nDrgFeI9ohKwF7n5T4rE7gAlEZ1+ujbkfGU/3oXlCRERERESyL9fMVpvZEjM7swnaHw38OHH5VlFi\nWStgNjAAmJA0f0iT05mQFi43N7fezukaMllERESkxeji7rvNbDjwFzPr6+4fN2L7q929FMDd308s\nO+juywHMrBzIB3Zl0riZneTu74TmVYS0cDNmzMj2LoiIiIhIA7n77sTPYjPbCfQ0szbAPYnI1JqC\noT5mNjJFfn8dqxxKul1Nw66SegEYFhpWESIiIiIikkVm1haocvePEn09ugDb3f0jILSzOu6+Mk6+\nkcWajFF9QkREREREsqsAWGNm64DHge8nCpA6mdmdRJMEmplVmNmkNO1XU/dIWA0dHSvZK3HCOhMi\nIiIiIpJF7r6MqBAJzU8DpsXILwYW17H8hKTb40Pbq2cbYbPGJuRUV6csgIKro6KiInWErkcWX5ua\n02KNWeU2hua6XyIiIiJNJdblSi2VmR3r7gfT5Zr8TMjMmTOpqqpq6s00a2VlZdneBRERERGRRmVm\nl7r7o0n3+wEPE9AvpcmLkKqqqqP+DElzeP6nnNQv27sAwGvvbD7s/tZ36xqo4Yt6t20DwMa3dgfl\nB3bqAMDS18uD8qP79gKg/L330yQjvU6Mzl6u2/FWUH5w104AvOxbgvJnWp/g9mvajvtarti6LSg/\nqncPAIrf2BGUH96zKxD/tV+yeWtQ/ox+vQF4ft2moPyEwQMAWFi6OU0yMr5/9Fl5ctWaoPxFI6Lj\n7OKy14LyYwtOAeD+FxYF5a85ZxwAjy8vDspPOW04EP/1eXTZqqD8paePyCg/f31pUP68Qf0B+P2L\nLwflv3d2NJR+yS+fCMoPu+FiANb8em5Qfuj1kwGY1X5yUH763qjduwZdE5Sfuv5+ACorK4PyeXl5\nAOw48GHabNfWxwNQUflBUNvd8lpltC9/WLQkKP+dcWcAMGfpyqD8ZaNHAvHfa0+XrA/KTxo2CIh/\nLIz7PfSnl5YG5f/+rNFA/Nfz4SUrgvKXnzEKgIdeXhaUv+LM0zPan7jHtrivZ9z8Ad8ZlG9tnQF4\nuyrtf+AD0DH3WCD+5+VL6GYz+9DdnzWz7wH/BfxryIrqEyIiIiIikkVmdhtwFbAnMZlgY2X7AXOA\nPsA4d1+d9NgBd2/dwF2/EHjOzH4InAyc4e5B/wup0bFERERERLLrMeCCxs66+2Z3HwIU88W+uBn3\nzTWz483seOBD4HJgIDADeDuxPC0VISIiIiIiWZQYHWtfY2fTMbM7zMzN7N6Yqx5I+vca0AtYlLgf\ndI2aLscSERERETn6tAJmAzcBW8ws3913hazo7g0+kaEipAUKHXGsOXSIFxEREZFm6aC7Lwcws3Ig\nHwgqQmqY2RXAPHd/L+7GVYS0QBpxTEREROTLzcxGAvck7k6tKRgyzNfV/+NQrcczObvxn+7+UAbr\nqQgREREREWlu3H0lAfNtBOb3Ad2AkkbYtWQfmFmOu8fu5K6O6SIiIiIiWWRmdwJLo5tWYWaTGiOb\n5HZglpmVmFl+YlnGo2MlmQM8YGZjzKx/zb+QFXUmREREREQki9x9GjCtsbNJ6ywDCmotOyHp9vg4\n7SW5nqiYGVtrea90K+ZUV6csgoIrpKKiojr7KdS3/GjS2K9BjPZyEj8bo9JtTM11v0RERESaSk76\nyNFDZ0KOgNzc3EYtQsrKyhqtLRERERGRI01FyBEwY8aMRm0vk4LmlJP6Neo+ZOq1dzYfdn/DzreD\n1ivs3BGAku1vBuWHde8CwMu+JSh/pvUBYMnmrUH5M/r1BmD++tKg/HmDossj563dGJSfOGQgELb/\nNfse97WJ+1yXvl4elB/dNzoD+/y6TUH5CYMHZJR/umR9UH7SsEEZtf/wkhVB+cvPGAXE/93+Zv7C\noPwPzovOkM9ZujIof9nokRnl733+xaD8tRPOBuLv/6PLVgXlLz19BAC/f/HloPz3zj4TgJJfPhGU\nH3bDxQC8/OPfBeXP/Mk/AHDXoGuC8lPX3w/ArPaTg/LT984FoLIyaG4v8vLyAHi76mDabMfcYzNq\nO27+D4uWBOW/M+4MIP5nN+5n68VNHpQ/e4ABsPGt3UH5gZ06ALDjwIdB+a6to0mjn1y1Jih/0Yio\nP3HcY8/jy4uD8lNOG55R+396aWlQ/u/PGg3EP5bEff1Xlm8Pyo/s1R2Aqm1hc/rl9mgHwOv7wkaa\n7dvuRCD+5+XLyMx6A6cRXeGy3N2D/mBQx3QRERERkSwys9vMbJeZbWjMbJp2DjRk/UQb1xB1kp8C\nXAosTSxLS0WIiIiIiEh2PQZc0ATZVBqjb+5NQKG7X+ru3wQGAT8KWVFFiIiIiIhIFiVGrwq6dixO\nFsDMxpnZAjN7xMw2mNntSY/dYWZuZvfG32sAqt19T9K+7UkVTqY+ISIiIiIiX26jgRHuXmpmNUPz\ntgJmE53N2GJm+e6+K2a7JWb2CPAo0ehfU4DVISuqCGmBQkfbOtqHRhYRERERAFa7eymAu7+fWHbQ\n3ZcDmFk5kA/ELUKuA24Avp24vxT4VciKKkJaoMYebUtEREREmhczGwnck7g7taZgyDC/v45VDiXd\nriazbhrfBh539/+Ou6KKEBERERGRZsbdVwJDmyrfSEYBN5hZB2A5sARY4u5px45Wx3QRERERkSwy\nszuJLmUyM6sws0mNkU2opu6RsBo8Opa7X+fuw4BTgDnA94GXQtbVmRARERERkSxy92nAtMbOJvKL\ngcV1LD8h6fb40PZqM7MC4PdACTADCJqxMqe6OmURFFwhFRUV1dkRur7lckTkJH42xjjQjam57peI\niIhIU8lJH2l5zOxE4GpgJFAFLHL336dbT5djiYiIiIhIbGaWA3QDKoEPgDHAv4asq8uxjhJ9rrgo\n27sAwJaHnjzsfsn2N4PWG9a9CwBLXy8Pyo/u2wuA1/e9F5Tv2+5EAJ4qXhuUv3D4EACeXLUmKH/R\niKif2OKy14LyYwtOCW6/pu2FpZuD2h7fvx8Af3ppaVD+788aDcAfFi0Jyn9n3BkArCzfHpQf2as7\nAGsqdgblh3brDMDDS1YE5S8/YxQQ/3f1wsZXg/LnDDwVgHlrNwblJw4ZCMR/viu2bgvKj+rdI6P9\nmb++NCh/3qD+QPzPYlN/VkofXBCU7//dcwEo+eUTQflhN1wMQGVlZVA+Ly8vo/ys9pOD8tP3zgWg\nbPbCtNmCK6OrKx7/9k+D2p7y5/8EYMX/zAnKj/qXywB4+5Wwz0rHMdFnZf+GsGNDm8Lo2LDlibBj\nVZ+Lo2PVq3/8a1D+1Ku+AcDG+58Pyg+8ZgIAi2+5Pyg/9tZrgKZ/78Q91u78oCoo37lVLgBvVx0M\nynfMPRaIv/+f7g7Lf6VDlD/gYcfO1tY5o/3ZvPfdoHy/9m0zav9LaC9QRtQh/UngX939nZAVVYSI\niIiIiGSZmY0C7iP6+3yDu1+eInsbcBWwx90LG7DNA+7eOtP1gc7u/nEmK+pyLBERERGRLDKzvwMe\nBK5z9/7A9WlWeQy4oBE23dD+ub+pvcDM7gtZUWdCRERERESy6+tEZzWWArj7vlRhd19mZj1DGzez\nccAtwHtAAbDA3W9KPHYHMAFY7O7XxtzvgYHLvkBFiIiIiIhIdnUH9pvZPKAjcJ+739XI2xgNjHD3\nUjOrGZ63FTAbuAnYYmb57r4rXUNmdi5wHtDZzP6bz0f+Ohk4NmRnVIRkycyZM6mqCusclikNjSwi\nIiLSIuQSjSw1ENgPFJvZc+4eNgpImNXuXgrg7u8nlh109+UAZlYO5ANpixDgINFoWH9L/KzxJvDv\nITujIiRLqqqqVCSIiIiICER/+Je6+w4AM1sNFJjZycA9iczUmoKhPmY2MkV+fx2rHEq6XU1gf/Ga\nCRDN7CJ3/0nIOrWpCBERERERya5ioLuZtSU6s1AIbHH3zcDQ0EbcfWWcfCOYkOmKGh1LRERERCSL\n3H0/cCPwIlACzE4UIHUyszuBpdFNqzCzSWk2UU3dI2E1dHSsd8zsOjObldivU8xsdMiKOhMiIiIi\nIpJl7v4o8GhgdhowLUbbi4HFdSw/Ien2+ND2kvyaqJ4YA0wnmjl9NjAi3Yo51dUpC6Dg6qioqKjO\nPg71LT/aHaHXpWakgoZWuY2tue6XiIiISFPJSR9pWcxsrbsPMbM17j40sWy9uw9Kt64uxxIRERER\nkUwcMrPPiiszaxW6oi7HOkr0ueKibO8CAFseevKw+0s2bw1a74x+vQHY9dHHQfn8rx0HwOa97wbl\n+7VvC0DZ7pRzA32moEO7jPKVlZVB+by8PACK39iRNju8Z1cAlr4eNorf6L69APjLypKg/CUjh2WU\nj/varCzfHpQf2as7AC9u8qD82QMMgBVbtwXlR/XuAcCaip1B+aHdOgOwsLTeS3cPM75/PwBKd+0J\nyvfPPxmI//q8sPHVoPw5A08FYOcHYUOGd26VC8D89aVB+fMG9Qdg3Y63gvKDu3YCYOu7dQ3i8kW9\n27YBYPeysPdDh9Oj98P+TRVB+TYDugGw48CHQfmurY8H4O2qg0H5jrnRcPplsxcG5QuujK6WmNV+\nctrs9L1zAdg6N+VgOp/pPfk0AFb8z5yg/Kh/uQyA7fOKg/LdJw4HYOeiDUH5zuMKAdizIuyzdfKo\n6LO1+eEvXHFSp36XjwXA/7woKG/fHgfAa4+8FJQ/5VtnAfDJrvfTJCNfzY+uion7PfHp7rD8VzpE\n+Y/eCDv2fK3nyRntT1Pn4x6rqraFfRfl9oi+i/ZvCDvWtimMjrWHdoYdq47p3CZtxsxGAfcR/X2+\nwd0vryfXBXgYOBH4GJju7i+kaLcfMAfoA4xz99VJjx1w99ZBT6JuTwO/BdqY2XeAHyb2LS2dCRER\nERERySIz+zvgQeA6d+8PXJ8ifoho+N2BwCXA71K17e6b3X0I0QhctS+Fb9Cl8YnheV8m6kw/GfiN\nu98asq7OhIiIiIiIZNfXgT3uvhTA3es9hePuu4HdidvbzexYMzvG3Q/Vt04qZnYH0VC7i9392rjr\nu/sDwANx11MREkNjznJeVlbWKO2IiIiISIvXHdhvZvOAjsB97n5XupXMbALRTOgZFSBAK6LRrG4C\ntphZvruHzJhes/1uwA+Arnx+hVW1u1+Tbl0VITE05iznGjFMRERERBJyiYa5HUg0s3mxmT3n7vV2\n+DSzfOA2osugMnWwZlZ1MysH8olmbw/1DNF8JWuSlgVd4qUipJlpzLMtKnREREREWoRdQKm77wAw\ns9VAgZmdDNyTyExNKhhygUeAm5MLFTMbWVc+oa7i4FCtx+P2F//U3a+LuQ6gIqTZacyzLSIiIiLS\nIhQD3c2sLfABUAhsScyaPjQ5mBgS9wGiWdXnJz/m7itr55PsA7oRdSJvLM+Z2WXAfOCzYQHdPe2Q\ngipCRERERESyyN33m9mNwIvAMcCfEgVIXcYA3yQ6U1LTkXxiQF+O24EHzOzHwPmJfEMnjp5ex7Jq\n4CvpVlQRIiIiIiKSZe7+KPBoQG4JcGwG7S8DCmotOyHp9vgM2sx4ug/NEyIiIiIiIkdUTnV1yrMw\nwadoioqK6uzLUN/ylqgxn8sRer1yEj8beqqtsTXX/RIRERFpKjnpI0cPnQkREREREZEjSn1CjhJ9\n/n/27jxK6vrO9/+z7wzYQjdL2Jp9lTeyyBIWBRcwav9cYgwxcXQ0k2Su3hgn50Y9cyAnd362yc25\ncIboxEnmF/VOdJIZDC5oiIlBiIiy0+yC/UaghUb2Dks32IAz/fvjW60FdHd9vtVLVdOvxzmerm/V\n6/v5fqrqW1V8/H6Wu7+U6SoAsPOF356zvWnv/qD9RvfpCUBZxcmgfN/89gBUVFQE5fPz8wFY/N77\nQfkbRl4OwBsb3wvK3zxmJADv7T8UlB/ZszsAb231lNnrRxgACzdtDSq7cPQIIH7dX3h3ZVD+7muu\nAuK/V3srU06kAUCfvHYAvOs7g/LX2GAA1pTuCcpPHNgPiP9evbl5W1D+piuGA7Bl38Gg/KhePYCm\nf77r93wUlB/XrzcQ//WJ+1nfdfR4UH5Q544AlP5udVB+4BcnAbDv7S1B+V5TRwFN/90z/69+GJSf\n/pv/F4BdC1alSMKg268EYHbXsCUEZhxZAMDO+cuD8oOnTwHgwLth3z0F10TfPXFf+72LNwbl+9ww\nJq381uffTJGMjPjGTQBsfvYPQfkr7r8FiH8ufPzh4aD8pQO6AbD9yNGg/NCunYGmP5fj5k9s2xuU\n7zC8DwD73wn77ep57ci06rPvZNgyCb3a5wJQeuxEUH5gpw4pM2Y2CXiW6N/nW9z9rnqyc4B7iVZZ\nH5Wi3KHAi8BgYKq7r0t6rNLd84KeRCPTlRARERERkQwys/8G/Ar4trsPB76TYpdXgFtDynb37e4+\nhmga4PO7wmesa7yuhGRIbm5urWM/SkpKmr8yIiIiIpJJnye6qrECwN3L6wu7+0ozG9AYBzazp4BC\nYKm7P5Aq31jUCMmQmTNn1nr/xTKIX0RERESC9QOOm9kbQA/gWXf//5rhuO2BucAjwE4zKwhYb6RR\nqDuWiIiIiEhm5RItQng/cB3wPTMb2AzHPePuq9z9E6AUKGiGYwK6EpJ1li1b1qjTAIuIiIhI1jsA\nbHP3vQBmto5oRfRuwNOJzIPuXu+sFGY2sZ58beM/zp73eLNdoFAjJMt88sknajyIiIiItC7FQD8z\n6wycBEYBO919OzA2tBB3X1NPvhzoC6xvYF0bhbpjiYiIiIhkkLsfB74HvEXUSJibaIDUysx+DqyI\nblqZmd0WcJgngNlmtt7MarpdaXYsEREREZHWyt1fBl4OzD4EPBSz/JXAsPPu65B0e1qc8hpKV0JE\nRERERKRZ5VRX13sVJvgSTVFRUa1jGeq6vyVqjucydepU3n777cYqLifxN2OX2uqQrfUSERERaSo5\nqSOth66EZJmCgmabGU1EREREJCM0JiTLDBs2LHUoDYPv/lKTlBvXzhd+e872q2vCJmj48sRxALzr\nO4Py19hgAEoO1bvg6KeGde8CwKa9+4Pyo/v0BGDbgcNB+eEF3QDYULYvKD+2by8Almyrc0zap6YN\nH5pWXd7Y+F5Q/uYxIwF4a6sH5a8fYQC8vn5zUP62cVcAsGJHaVB+8pBo2vT5q4qD8tOvHA/Er3/c\nc21pyQdB+euGXQbAe/sPBeVH9uwOxD+X476/q3ftDspPGtQfgMXvvR+Uv2Hk5QAs3LQ1KF84egQQ\ndu7DZ+d/2aINQfm+N0aTxux5I+z86XdzdP5UVFQE5fPz89PKr/7HF4Pyk/7+a8H5muzO+cuDyh48\nfQoAs7veHpSfcWQBAB+9tSko3/v60QAc3Rj2We88Jvqs738n7FzueW10Lm/71aKg/PCqE3RQAAAg\nAElEQVSv3wjA3sUbg/J9bhgDxH89D58+myIZ6XZJGwAOfHw6KF9w6SUA7D5eGZTv3zEPiH9u7q08\nFZTvk9curfJ3lB8Lyg/p0imt8ps6f7rsz0H5S/p+LmXGzCYBzxL9+3yLu99VR643MA/oBJwGZrj7\n4qCKXFhWpbvnpbNvQ+lKiIiIiIhIBpnZfwN+BXzb3YcD36knfpZoDZCRwJeB5xtwaM2OJSIiIiLS\nSn0eOOzuKwDcvc7L3+5+CDiUuL3HzNqaWRt3r/Oym5lNBX4AHCOaIWuRuz+SeOwpoBBY6u4PNNLz\nSUlXQkREREREMqsfcNzM3kis4/FgyE5mVgisq68BkmQy8Ji7jwKKEve1B+YCI4DCpPVDmpwaISIi\nIiIimZULTAHuB64DvmdmA+vbIdFgmEP9XbeSrXP3bQDufiJx3xl3X+XunwClQLM1QtQdK8vk5uY2\n2jTAF8vUyCIiIiIXuQPANnffC2Bm64BhZtYNeDqRedDdVyUezwVeAh51909nezCzibXlE47Xctzk\nKyjVNOMFCjVCsszMmTMzXQURERERaV7FQD8z6wycBEYBO919OzA2OWhmOcBzwFx3fzP5MXdfc34+\nW6kRIiIiIiKSQe5+3My+B7wFtAH+I9EAqc0U4CtEV0pqBpLf7O4H6jlENbXPhNXyZ8eqqxtRSUlJ\nYx1CREREROSi5O4vAy8H5JYBbWOWvRRYWsv9HZJuT4tTZkM1WiOkrm5EGpcgIiIiIiLJcqqr670K\n0+BLNEVFRRdNQ6QFPpecxN+MXWqrQ7bWS0RERKSp5KSOtB4tdkzIrFmzqKqqatZjqmuZiIiIiEjD\ntdhGSFVVVbNflWhhV0HOUfjwVZmuAgALn1x5zvaa0j1B+00c2A+AioqKoHx+fn5a+eIP9wblxw/o\nA8CWfQeD8qN69QBg/Z6PgvLj+vUG4HfFG1Nmvzh+DAALN20NKrtw9AgA3ty8LSh/0xXDAVi2fVdQ\n/uqhgwDYW3kqKN8nrx0ABz4+HZQvuPSStPJxz4XDp0PWfYJul7QBoPTYiRTJyMBOHdKqT9x8yaE6\nF9s9x7DuXQAoqzgZlO+b3x6A7UeOBuWHdu2cVvlxn2/cz1bc8/nXby8Lyt839eq08geXvx+U7zHl\ncgD2vFGcMtvv5vEAHHg37Luh4Jrou+GjtzYF5XtfPxqA2V1vD8rPOLIAgGWP/yoof/VjXwdg1awX\ngvJXzrwbgN9+/f8E5b/0q+8DsOYnLwXlJz76VQA2/MuCoPzY70Svi//m7aC8/dVUAHbOXx6UHzx9\nCgBlizYE5fveGE2YtHdx6t8VgD43jEmr/Nj1iflbsetobbPMXmhQ544A7D5eGZTv3zEPiP/ds6Fs\nX1B+bN9e9T6eWHRwVtJdw4EJ7r65lmxvYB7QCTgNzHD3xfWUPRR4ERgMTHX3dUmPVbp7XtCTaGQt\nthEiIiIiInIxcPeFwEL4dBHCd2prgCScJVoDZIuZ9QNWAH3qKXs7MMbMlnBhV/iMdY3XiukiIiIi\nItnjbqKFCGvl7ofcfUvi9h6grZm1SfdgZvaUmbmZPZNuGelQI0REREREJHvcA/wmJJjoxrXO3cP6\nEF+oPTAXGAEUJq7CNAt1xxIRERERyQJmZkC7misdKbIFwBwgbGBW7c64+6pEeaVAAVDfooeNRo2Q\nLNeQWcBa8kB6ERERkVbonKsgZjYReDqx+WBSgyGXqMvWo+5emiqfUNv4j7PnPd5svaTUCMlymZgF\nTEREREQy4m7g1poNd18DjE0OmFkO8Bww193fTH6stnyScqAvsL4xK5wujQkREREREckwM5sEVLj7\nBymiU4CvAA+Y2YbEfyFjOZ4AZpvZ+qR8xmbH0pUQEREREZEMc/fVwOcDcsuAtmmUvxIYdt59HZJu\nT4tbZkPoSoiIiIiIiDSrnOrqeq/CNPgSTVFRUZOMaWiqci+yY+Yk/mbsUlsdsrVeIiIiIk0lJ3Wk\n9dCVEBERERERaVYaE9JKFD58VaarAMDCJ1ees72mdE/QfhMH9gOgoqIiKJ+fnw/A2X3Hg/JtenUE\n4LdrNwTlvzQhmnhi/qrioPz0K8cDsGz7rqD81UMHAfDyyrUps3deNQGAectWB5V919WTAFi4aWtQ\nvnD0CAAWv/d+UP6GkZcDsKP8WFB+SJdOAOw6GvZeDeocvVdxz4X/PBSW/4vuUb6s4mRQvm9+eyD+\nexu3/nHzcV/PuO9X3NfnYNWZoHyP3Kibc9znG/f1f2urB+WvH2EAvLhiTVD+a5MnAvD6+s1B+dvG\nXQHA8S1h34UdR0XfhfveTrmEAL2mjgrOJuePbixNkYx0HjMQgGWP/yoof/VjXwdgdtewJQ1mHFkA\nwOt/+49B+dv+9e8BePex54Py1zz+DQD+9Pe/CMp/4R+/DcDq2fOC8pNm3AXAkpnPBuWnzbofgLVP\nvByUn/DInQBsff7NFMnIiG/cBMD7//6noPzl934BgF0LVqVIRgbdfmVa+bif9b2Vp4LyffLapVV+\n3PyWfQeD8qN69aj38cSig7OS7hoOTHD3Wr9MzGwOcC9w2N1HpSh7KPAiMBiY6u7rkh6rdPe8oCfR\nyNQIERERERHJIHdfCCyETxchfKeuBkjCK8ALwPMBZW8HxpjZEi7sCq/ZsVqb0EUIS0pKmqE2IiIi\nIpIl7iZaiLBO7r7SzAY0xsHM7CmgEFjq7g80Rpkh1AjJkNBFCLVQoYiIiEircg/wrWY6VntgLvAI\nsNPMCtz9QHMcWAPTRURERESygJkZ0M7dwwZzNdwZd1/l7p8ApUDIooeNQldCWpjQblygqygiIiIi\nLcw9wG9qNsxsIvB0YvNBd6935H+KfG3jP86e93izXaBQI6SFCe3GJSIiIiItzt3ArTUb7r4GGBu6\nc4p8OdAXWN+QCjYWdccSEREREckwM5sEVLj7BwHZnwMroptWZma3BRziCWC2ma1PzMAFmh1LRERE\nRKT1cvfVwOcDsw8BD8UsfyUw7Lz7OiTdnhanvIbSlRAREREREWlWOdXV9V6FafAlmqKioiYZw9BU\n5TbXMUPLOj8Xsw45ib8Zu9RWh2ytl4iIiEhTyUkdaT3UHSvL5ebmntPo0OKFIiIiItLSqRGS5WbO\nnHnOdrpXYgofvqoRatNwC59cec72ih2lQftNHjIQgAMfnw7KF1x6CQCny/4clL+k7+cAeH395qD8\nbeOuAOLXP275//fNJSmz//2mqAvnvGWrg8q+6+pJACzctDUoXzh6BABLtm0Pyk8bPhSA9Xs+CsqP\n69cbgN3HK4Py/TvmAfHPhYqKiqB8fn4+AFv2HQzKj+rVA4BNe/cH5Uf36ZlWfeLm476ecZ/vwaoz\nQfkeuW0BKDlUHpQf1r0LAGUVJ4PyffPbA7CmdE9QfuLAfkD88/PllWuD8ndeNQGANza+F5S/ecxI\nAHa+tiIoP/iOyQAcXp3689htUvRZ3Lt4Y1DZfW4YA8D+d8Lq3vPaqO6rZr0QlL9y5t0AvP63/xiU\nv+1f/x6A2V1vD8rPOLIAgEUP/0tQ/sYnvwPA0h/8Mih/3Y+jteOWzHw2KD9t1v0ArH3i5aD8hEfu\nBGD9P78WlB/33TsAKFu0ISjf98ZowqS450Pc8uOey6XHTgTlB3aKhi7E/S7cUX4sKD+kSycANpTt\nC8qP7dsLgO1Hjgblh3btXO/jZlYIzEq6azgwwd0v+IeDmfUG5gGdgNPADHdfHFSRC8uqdPe8dPZt\nKDVCREREREQyyN0XAgsBEjNXvVNbAyThLNEaIFvMrB/RLFl90jy0ZscSERERERHuBl6q60F3PwQc\nStzeY2ZtzayNu5+tax8zmwr8ADhGNEPWInd/JPHYU0AhsNTdH2i0Z5GCZscSEREREcke56yaXp9E\nN6519TVAkkwGHnP3UUBR4r72wFxgBFCYtH5Ik9OVkBbm/IHq9dHK6iIiIiIth5kZ0M7dtwRkC4A5\nQNjAqaixsg3A3WsG45xx91WJ8kqBAuBA7IqnQY2QFub8geoiIiIictE45yqImU0Enk5sPpjUYMgl\n6rL1qLuXpsonHK/leMlXUKppxl5SaoSIiIiIiGSHu4FbazbcfQ0wNjlgZjnAc8Bcd38z+bHa8tlK\njZAY4nSFSkXrfYiIiIhIDTObBFS4+wcpolOArwDDzKxmIPnN7l5fN6pqap8JS7NjtQSN2RVK4zVE\nREREpIa7rwY+H5BbBrSNWfZSYGkt93dIuj0tTpkNlVNdXW8DqMGto6Kioib5B3dTldtcmqn+OYm/\nGWvl1iFb6yUiIiLSVHJSR1oPTdErIiIiIiLNSt2xWonCh6/KdBUAWPjkynO2X19f12Kg57pt3BUA\n7Dpa28QOFxrUuSMA+05WBeV7tc+N6rdpa1C+cPQIAJaWpOq2Gblu2GVA/Of789+/mSIJD916EwC/\nfntZUNn3Tb0agF8ufjso/60bpgIwf1VxUH76leMBWL1rd1B+0qD+ALy3/1BQfmTP7gBsKNsXlB/b\ntxcAu49XBuX7d8wDYMu+g0H5Ub16ALCmdE9QfuLAfkD8c/Ng1ZmgfI/c6Ar9su27gvJXDx0EQPGH\ne4Py4wdEi/LGPffjvj5x39+yipNB+b757dPKx/3svrXVg/LXjzAA3v/3PwXlL7/3CwBsn3dBr4oL\nDL3rOgD2Lt4YVHafG8YAsO1Xi4Lyw79+IwC//fr/Ccp/6VffB+Ddx54Pyl/z+DcAWPTwvwTlb3zy\nOwDM7ho2W+mMIwsAeOcfngvKX/ujbwKw9Ae/DMpf9+NvAbBz/vKg/ODpUwD44KV3gvKXffVaIP77\nG7c+H721KSjf+/rRAOxasCpFMjLo9isB2HbgcFB+eEG3tPI7yo8F5Yd06QTE/3fG9iNHg/JDu3YO\nyrUmaoSIiIiIiGRQYtHBWUl3DQcmuHut/wfEzOYA9wKHE4sPpnvcSnfPS3f/hlAjREREREQkg9x9\nIbAQPl2E8J26GiAJrwAvAM838NCaHUtERERERLibaCHCOrn7SjMbEFqgmU0FfgAcA4YBi9z9kcRj\nTwGFwFJ3f6DOQhqZBqaLiIiIiGSPc1ZNb0STgccS3beKEve1B+YCI4DCxFWYZqErIVls1qxZVFWF\nDV6tTUuewlhERESktTEzA9q5+5YmKH6du28DcPcTifvOuPuqxLFLgQKgvkUPG40aIVmsqqpKDQkR\nERGR1uOcqyBmNhF4OrH5YE2DoS4p8rVN/XU26XY1zdhLSo0QEREREZHscDdwa82Gu68BxobuHDef\nSRoTIiIiIiKSYWY2Cahw95QLMZnZz4EV0U0rM7PbUuxSTe0zYWl2LBERERGR1srdVwOfD8w+BDwU\no+ylwAWrnLp7h6Tb00LLaww51dX1NoAa3DoqKipqknENTVVucwmpfyM8x5zE34y1cuuQrfUSERER\naSo5qSOth7pjiYiIiIhIs1J3rFai8OGrMl0FABY+ufKc7Tc3bwva76YrhgNQUVERlM/PzwegrOJk\nUL5vfvuofpu2BuULR48AYE3pnqD8xIH9ANhQti8oP7ZvLwBeXbM+ZfbLE8cB8Nu1G4LK/tKEaLza\niyvWBOW/NnkiAPNXFQflp185HoD1ez4Kyo/r1xuA9/YfCsqP7NkdgE179wflR/fpCcCO8mNB+SFd\nOgFQcqg8KD+sexcAFr/3flD+hpGXA/HP5bj5uOfarqO1TZpyoUGdOwKwt/JUUL5PXjsg/vnQ1K9P\n3PzqXbuD8pMG9Qfin8/v/XJhWP5bhQD4b95OmbW/mgrA1uffDCp7xDduAmDv4o1B+T43jAFgzU/q\nXVPtUxMf/SoAf/r7XwTlv/CP3wZg6Q9+GZS/7sffAuCdf3guKH/tj74JwOyutwflZxxZAMCr9/zv\noPyX5/4vAPYsTP09DtCvMPou3/2HtUH5/rdMAODYpg+D8p1GDwBg/zvvBeV7XjsSgLJFYb8tfW+M\nfltKf7c6KD/wi5OA7PusHz59NkUy0u2SNkD83xb5jBohIiIiIiIZZGaFwKyku4YDE9x9cy3ZLsAf\ngTZEXbx+7O4v1lP2UOBFYDAw1d3XJT1W6e55jfMs4lEjJENyc3NTjvcoKSlpnsqIiIiISMa4+0Jg\nIUBi1fJ3amuAJBwHrnP3U4kGyftm9rK7/1cdZW8HxpjZEi4cj6vZsVqbmTNnpsy05IH3IiIiIpKW\nu4E6+zm6+yfAJ4nNzsDphhzMzJ4CCoGl7v5AQ8qKQwPTRURERESyxzmrptfGzPLMbAuwGfhuXVdB\nArQH5gIjgMLEVZhmoSshLcCsWbOoqqqKvZ+upIiIiIi0HGZmQDt331Jfzt0rgVFmNgx43cwWuXvY\nbDznOuPuqxLHLgUKgANplBObGiEtQFVVlRoUIiIiIhe/c66CmNlE4OnE5oM1DYYa7l5iZruBy4Hi\nxKrrv6gjX9v4j7PnPd5svaTUCBERERERyQ53A7fWbLj7GmBscsDMegGn3b080X3KgNJEfvX5+STl\nQF8gbN7oJqYxISIiIiIiGZa4ilHh7h+kiPYDlpjZZmAR8Ki7hyxu9QQw28zWJ4390OxYIiIiIiKt\nVeIqxucDcquAK9IofyUw7Lz7OiTdnha3zIbIqa6utwHU4NZRUVFRk4xnaKpys0nNc2zAc81J/M1Y\nK7cO2VovERERkaaSkzrSeqg7VharWdBQixaKiIiIyMVE3bGyWM2Cho1xxafw4asaXEZjWPjkynO2\nf1e8MWi/L44fA8C2A4eD8sMLugFwsOpMUL5HblsAfrt2Q1D+SxOiMV8rdpQG5ScPGQjAu74zKH+N\nDQbguT+9kzL7zS9cC8DLK9cGlX3nVRMA+I93VgTl//rayQDMX1UclJ9+5XgAij/cG5QfP6APAO/t\nPxSUH9mzOxD/td+0d39QfnSfnmmVv7QkVRfeyHXDLgNg38mwabd7tc8F4PDpsymSkW6XtAHi139D\n2b6g/Ni+vYD4r+eSbduD8tOGDwXinz+fHDgRlP/LgqjnwaldYedbu0HR+Rb3/NxbeSoo3yevHQBL\nf/DLoPx1P/4WAB+8lPq74bKvRt8Nm5/9Q1DZV9x/CwA75y8Pyg+ePgWADf+yICg/9ju3A7B69ryg\n/KQZdwGwZOazQflps+4H4r+Wr97zv4PyX577vwCY3fX2oPyMI9HrcnD5+0H5HlMuB2D3H8K+y/vf\nEn2Xn/noaFC+be/OABxZG/Zd1XVC9F315/W7gvKfGzcIgL2Lw37X+9wQ/a6XVYTNKts3vz0Q/7tw\n19HjQflBnTsC8b/b4n6Xy2fUCBERERERySAzKwRmJd01HJjg7ptryXYB/gi0Ieri9WN3fzHN41a6\ne146+zaUumOJiIiIiGSQuy9097HuPha4GdhdWwMk4ThwnbuPAa4HfmZm6f6bXrNjiYiIiIgIdwMv\n1fWgu38CfJLY7AycTlWgmU0FfgAcI5oha5G7P5J47CmgEFjq7g80qOYxqBEiIiIiIpI97gG+VV/A\nzPKAlcBg4B53/6+AcicTdfHaZmY1U/O2B+YCjwA7zazA3Q+kX/VwaoS0ADWzZMV1sU9hLCIiInIx\nMTMD2rn7lvpy7l4JjDKzYcDrZrbI3VON8l/n7tsS+9fM5nEmse4IZlYKFABqhEikZpYsEREREbmo\n3QP8pmbDzCYCTyc2H6xpMNRw9xIz2w1cDhQnVl3/RR352qYKS55urJpmHC/e5I2QdP8vfipaO0NE\nRERELjJ3A7fWbLj7GmBscsDMegGn3b3czAoAA0oT+dXn57NVkzdCmur/4qurkYiIiIhcLBJXMSrc\nPdViLv2AZ6KeW+QAj7p7eYp9qql9JizNjiUiIiIi0lolrmJ8PiC3CrgiZtlLgaW13N8h6fa0OGU2\nVE51db0NoIy1jlIpKirS1ZDUchJ/s+19zNZ6iYiIiDSVnNSR1kOLFYqIiIiISLNSd6xW4icP35zp\nKgDw6JNvnLNdUVERtF9+fj4AexauD8r3KxwHwMHl7wfle0y5HIDiD/cG5ccP6APAmtI9QfmJA/sB\n8N7+Q0H5kT27A/Cu70yZvcYGA/DWVg8q+/oRllZd4uZP7TgYlG83pEda+aMbS4PynccMBODYpg+D\n8p1GDwDin5uHT59NkYx0u6QNAGc+OhqUb9u7c1r1OfnB/qB8+8t6plWfuO/X8a1lQfmOI/pG5e8K\nO9/aDYrOt7jn/xsb3wvK3zxmJAD/8c6KoPxfXzsZgN+u3RCU/9KEaPxo3Pf3kwMnUiThLws6pFV2\n3HPZf/N2UN7+aioAS2Y+G5SfNut+ANY+8XJQfsIjdwKwc/7yoPzg6VOApv9dmd319qD8jCMLAPjd\nN2cH5b/43AwAtvzrGymSkVF/G/07YOvzbwblR3zjJgBK5i4Jyg+7J+rJs2vBqhTJyKDbrwTin59N\nna/anWpoRSS3fxcAyipSzYob6ZvfPijXmqgRIiIiIiKSYWb2GPC1xOY8d/9hHbnewDygE9Fq6TPc\nfXE95Q4FXiRa2HCqu69LeqzS3fMa6SnEou5YIiIiIiIZZGYDgfuAUcAY4G/MrH8d8bNEa4CMBL4M\nPF9f2e6+3d3HAMVcOB43Y+Nz1QgREREREcmsE0SNi0sT/52h9sUFcfdDNSuqu/seoK2ZtUn3wGb2\nlJm5mT2TbhnpUCNERERERCSDEut8/BQoA/YAc9z9WKr9zKwQWOfuYYO5LtQemAuMAAoTix82C40J\naWFmzZpFVVVVUFZTGIuIiIhkPzMbAHwb6A+0BZab2e/d/UA9+xQAc4Cw2Q9qdyax7ghmVgoUAHUe\nszGpEdLCVFVVqXEhIiIicnGZBKx19woAM9sAjDWzcuDpRObBpAZDLvAS0Wrpn04XaWYTa8sn1Db+\n4+x5jzdbLyk1QkREREREMmsn8H0zawv8BTAOKHJ3B8YmB80sB3gOmOvu58y57O5rzs8nKQf6AmHz\nUjcxjQkREREREckgdy8GXgU2EM1i9WyiAVKbKcBXgAfMbEPiv5CxHE8As81sfVI+Y7Nj6UqIiIiI\niEiGufvjwOMBuWVE40bilr8SGHbefR2Sbk+LW2ZD5FRX19sAyljrKJWioqJWOTYi5vPOSfzNtvcx\nW+slIiIi0lRyUkdaD10JyYA4M1ydr6SkpJFrIyIiIiLSvNQIyYCGzHCV7n4/efjmtPZrbI8++cY5\n2xUVFUH75efnA3B8y56gfMdR/QDYtWBVimRk0O1XAvCu7wzKX2ODo/KP1rqO0IXld+4IwJZ9B4Py\no3r1AODVNanHjn154jgA3tpaV9fRc10/wgBYUxr2Wk4cGL2W248cDcoP7doZiP/eHln7QVC+64TL\nADixbW9QvsPwPmmVf/h02JTr3S6J1oeK+3xPl/05KH9J388BcGzTh0H5TqMHALDv7S1B+V5TRwFw\ncPn7QfkeUy4H4KO3NgXle18/Goj/fn384eGg/KUDugHxz/83N28Lyt90xXAAfv32sqD8fVOvBmDe\nstVB+buungTEP39C8jXZuK/lgY9PB+ULLr0EgJ3zlwflB0+fAsDaJ14Oyk945E4A1v/za0H5cd+9\nA4APXnonKH/ZV68FYPcf1gbl+98yIa387745Oyj/xedmADC7a9hsqzOOLABg87N/CMpfcf8tABT/\n0/yg/PjvTQegZO6SoPywe6KePHHf37jn/qldh4Ly7QZ1B2D38cqgfP+OeUDTf/fLZ9QIERERERHJ\nMDN7DPhaYnOeu/+wjlxvYB7QCTgNzHD3xWkes9Ld89LZt6E0O5aIiIiISAaZ2UDgPmAUMAb4GzPr\nX0f8LNEaICOBLwPPN+DQmh1LRERERKSVOkHUuLiUaJ2QM0Ctfb7d/RBwKHF7j5m1NbM27l5nXzIz\nmwr8ADhGNEPWInd/JPHYU0AhsNTdH2i0Z5SCroSIiIiIiGSQu5cDPwXKgD3AHHc/lmo/MysE1tXX\nAEkyGXjM3UcBRYn72gNzgRFAYeB6I41CV0JamNzc3ODB6a1xCmMRERGRlsbMBgDfBvoTrQGy3Mx+\n7+4H6tmnAJgDhM1mEDVWtgG4+4nEfWfcfVWivFKgAKjzmI1JjZAWZubMmZmugoiIiIg0rknAWnev\nADCzDcBYMysHnk5kHkxqMOQCLwGPuntpTSFmNrG2fEJt3buSr6BU04y9pNQIERERERHJrJ3A982s\nLdGYkHFAkbs7MDY5aGY5wHPAXHd/M/kxd19zfj5bqREiIiIiIpJB7l5sZq8CGxJ3PZtogNRmCvAV\nYJiZ1Qwkv7m+rltEVzlqmwlLs2OJiIiIiLRW7v448HhAbhnRuJE4ZS8FltZyf4ek29PilNlQOdXV\n9TaAMtY6SqWoqKjFDrxuxrrnJP5m2/uYrfUSERERaSo5qSOth6boFRERERGRZqXuWK3ETx6+OdNV\nAODRJ984Z7us4mTQfn3z2wPw8YeHg/KXDugGwKldh4Ly7QZ1T6s+Bz4+HZQvuPQSACoqKoLy+fn5\nAJQcKk+ZHda9CwAbyvYFlT22b6+06hI3/8mBEymSkb8s6JBW+R+89E5Q/rKvXgvA3sUbg/J9bhgD\nwJ/X7wrKf27cIAD+81BY/f+ie1T/Y5s+DMp3Gj0AgONb9gTlO47qB8CpHQeD8u2G9ADg5Af7g/Lt\nL+sJxH+/TmzbG5TvMLwPAGf31bpG1wXa9OoIwHN/CjsfvvmF6Hz4v28uCcr/95ui3gnzlq0Oyt91\n9SQA5q8qDspPv3I8AGtKw97fiQOj9zfkfKs517YfORpU9tCunQHYfbwyKN+/Yx4AZYs2pEhG+t4Y\njZXd+vybKZKREd+4Ka3y437W434Wz3wU9nq27R29nlv+9Y0Uyciov41+pzc/+4eg/BX33wLA7K5h\ns7POOLIAgLVPvByUn/DInQCs/+fXgvLjvnsHACVzwz5bw+6JPltxv0vins/r93wUlB/Xr3da9Yn7\neZHPXLSNkFmzZlFVVZXpatSqpKQk01UQERERkSxiZo8BX0tsznP3H9aR6wL8EWQfS/wAACAASURB\nVGhD1MXrx+7+Yj3lDgVeBAYDU919XdJjle6ekRbSRdsIqaqqytoxI9laLxERERFpfmY2ELgPGEo0\nRW+Jmf2bu++uJX4cuM7dTyUaJO+b2cvu/l+1le3u24ExZraEC8fjanYsEREREZFW6gTRwoGXEjVC\nzlD74oK4+yfAJ4nNzkBY3/A6mNlTQCGw1N0fSJVvLBqYLiIiIiKSQe5eDvwUKAP2AHPc/VhdeTPL\nM7MtwGbgu3VdBQnQHpgLjAAKzawgzXJi05WQLNRY41nU7UtEREQk+5nZAODbQH+iNUCWm9nv61qA\n0N0rgVFmNgx43cwWuXvY7DrnOuPuqxJ1KAUKgPoWPWw0aoRkoWwezyIiIiIijW4SsNbdKwDMbAMw\n1szKgacTmQdrGgw13L3EzHYDlwPFZjYJ+EUd+drGf5w97/Fm6yWlRoiIiIiISGbtBL5vZm2JxoSM\nA4rc3YGxyUEz6wWcdvfyRPcpA0oB3H31+fkk5UBfYH3TPIV4NCZERERERCSD3L0YeBXYABQDzyYa\nILXpBywxs83AIuDRxJiSVJ4AZpvZ+qSxH5odS0RERESktXL3x4HHA3KrgCvSKH8lMOy8+zok3Z4W\nt8yGyKmurrcBlLHWUSpFRUX1jptI9XgmNWPdcxJ/s+19zNZ6iYiIiDSVnNSR1kPdsUREREREpFmp\nO1Yr8ZOHb850FQB49Mk3ztmuqKgI2i8/Px+AvZWngvJ98toBcHRjaVC+85iBAKwp3ROUnziwHxC/\n/mUVYbPn9c1vD8CSbdtTZqcNH5pW2ftOhk0D3at9LgD/eSjsuf5F9+i57j5eGZTv3zEPgE8OnAjK\n/2VBdOX40Mq6usqeq/tVBsCuBatSJCODbr8SgCNrPwjKd51wGQDHt4SdOx1HRefO/nfeC8r3vHYk\nADtfWxGUH3zH5LTqs3P+8rDyp08B4M/rdwXlPzduEABVu0O6K0Nu/y4AnPxgf1C+/WU9AZi/qjgo\nP/3K8QC8vHJtUP7OqyYA8MK7K4Pyd19zFQDzlq0Oyt919SQg/ufx4w8Pp8xeOqAbEP+7Ifb38uKN\nQfk+N4wB4P1//1NQ/vJ7v5BW+XHP5bifxbjfDVuffzMoP+IbNwFQ/E/zg/LjvzcdgLVPvByUn/DI\nnQDM7np7UH7GkQVp1WfJzGeD8tNm3Q/EP9/i5uN+tuL+OyNu+fIZNUJERERERDLMzB4DvpbYnOfu\nP6wj1wX4I9CGqIvXj939xTSPWenueens21DqjiUiIiIikkFmNhC4DxgFjAH+xsz61xE/Dlzn7mOA\n64GfmVm6/6bX7FgiIiIiIq3UCaKFAy8lWifkDFFj4wLu/gnwSWKzM3A6VeFmNhX4AXCMaIasRe7+\nSOKxp4BCYKm7P9CgZxGDGiEZkJubW+/sVyUlJc1XGRERERHJqMTCgz8Fyoh6Kj3q7sfqyptZHrAS\nGAzc4+7/FXCYycAEd99mZjVT87YH5gKPADvNrMDdDzTkuYRSIyQDZs6cWe/j5zdQZs2aRVVV2MCn\n+soRERERkexjZgOAbwP9gbbAcjP7fV0NAnevBEaZ2TDgdTNb5O6pZqFY5+7bEvvXzAZzJrHuCGZW\nChQAaoRIpKqqSg0KERERkYvXJGCtu1cAmNkGYKyZlQNPJzIP1jQYarh7iZntBi4His1sEvCLOvK1\nde86m3S7mmYcL65GiIiIiIhIZu0Evm9mbYnGhIwDitzdgbHJQTPrBZxOdOEqAAwoBXD31efns5Ua\nISIiIiIiGeTuxWb2KrAhcdeziQZIbfoBz5gZRFP0PuruqRZjqqb2mbA0O5aIiIiISGvl7o8Djwfk\nVgFXxCx7KbC0lvs7JN2eFqfMhsqprq63AZSx1lEqRUVF9Y6TSPV4Nju/7g14LjmJv9n2PmZrvURE\nRESaSk7qSOuhxQpFRERERKRZqTtWK/GTh2/OdBUAePTJN87ZLqtINZtcpG9+ewAqKiqC8vn5+QCc\n2nEwKN9uSA8Adh2tdV2gCwzq3DGt+sTNr9/zUcrsuH69ASj+cG9Q2eMH9AGa/rU/+cH+oHz7y3oC\ncGrXoaB8u0HdAdjxyrKg/JCvXA1A6e9WB+UHfnESAAeXvx+U7zHlcgCqdqfqjhvJ7d8FgD1vFAfl\n+908PsovXB+WLxwHwO4/rA3K979lAgCHVtbV9fhc3a8yAI5uLA3Kdx4zEIAPXnonKH/ZV68FoLx4\nR1C+y/ghAPz67bDz4b6p0fnw3J/C6vPNL1ybVvn/8c6KoPxfXzsZgINVZ4LyPXLbAmGfx3S/d/ZW\nngrK98lrB0DZog0pkpG+N0ZjZXctWJUiGRl0+5Vplf/RW5uC8r2vH51W+X9evyso/7lxgwAombsk\nKD/snmlp5df/82tB+XHfvQOA4n+aH5Qf/73pAMzuentQfsaRBQD87puzg/JffG4G0PS/o9uPHA3K\nD+3aOa3yQ36n4bPfavmMGiEiIiIiIhlmZo8BX0tsznP3H9aTnQPcCxx291Epyh0KvEi0sOFUd1+X\n9Filu+c1uPJpUCMkC52/orpWUBcRERG5eJnZQOA+YCjRFL0lZvZv7r67jl1eAV4Ank9VtrtvB8aY\n2RIuHI+r2bHkM+evqN5SB9iLiIiISJATRAsHXkrUCDlD7YsLAuDuKxOrrDeYmT0FFAJL3f2Bxigz\nhAami4iIiIhkUGKdj58CZcAeYI67H2uGQ7cH5gIjgMLE4ofNQldCWoBly5aldTVEV1BEREREsl/i\nqsa3gf5AW2C5mf3e3Q808aHPJNYdwcxKgQKgqY8JqBHSInzyySdqUIiIiIhcvCYBa929AsDMNgBj\nzawceDqRebCmwVAXM5tYT7628R9nz3u82XpJqREiIiIiIpJZO4Hvm1lbojEh44Aid3dgbGgh7r6m\nnnw50BcIm/O9iWlMiIiIiIhIBrl7MfAqsAEoBp5NNEBqZWY/B1ZEN63MzG4LOMwTwGwzW5809kOz\nY4mIiIiItFbu/jjweGD2IeChmOWvBIadd1+HpNvT4pTXUDnV1fU2gDLWOkqlqKio3nESqR5vSaZO\nncrbb7+dzq45ib/Z9j5ma71EREREmkpO6kjroe5YLUBBQbPNliYiIiIi0uTUHasFGDZsWOpQCj95\n+OZGqEnDPfrkG+dsV1RUBO2Xn58PwPYjR4PyQ7t2BuDUjoNB+XZDegDw1tY6u1+e4/oRBsSv/7YD\nh4Pywwu6AfDm5m0pszddMRyA0mMngsoe2Cm68hr3tTy7r841k87RplfHtOpzYtveoHyH4X0AKC/e\nEZTvMn4IALsW1DuhyKcG3X4lAJW+LyifZ70AOLqxNCjfecxAAEp/tzooP/CLkwBY/8+vBeXHffcO\nALb86xspkpFRfxt9N2x6+vdB+dH/41YAtv1qUVB++NdvBGDv4o1B+T43jAHgwLtbg/IF14wA4MUV\na4LyX5s8EYCXV64Nyt951QQAfrn47aD8t26YCsAzC98Kyj9QeD0Q/7skJB8n25B82aINQfm+N0Zj\nZeN+Fne+tiIoP/iOyWmVH/ezGPdcjluftU+8HJSf8MidAJTMXRKUH3ZP1NNmycxng/LTZt0PwO++\nOTso/8XnZgAwu+vtQfkZRxYA8X9b4n7XHqw6E5TvkdsWgAMfnw7KF1x6CQCHT59NkYx0u6RNUK41\nabGNkNzc3Hq7W5WUlDRfZUREREREGsDMHgO+ltic5+4/rCc7B7gXOOzuoxpwzEp3z0t3/4ZosY2Q\nmTNn1vv4xTIeREREREQubmY2ELgPGEo0RW+Jmf2bu++uY5dXgBeA5xt4aM2OJSIiIiLSSp0gWjjw\nUqJGyBmgzr5q7r4yscp6EDObCvwAOEY0Q9Yid38k8dhTQCGw1N0fSLP+sWlguoiIiIhIBrl7OfBT\noAzYA8xx92ONfJjJwGOJ7ltFifvaA3OBEUBh0vohTU5XQlqAVONf6qIuaSIiIiLZL3FV49tAf6At\nsNzMfu/uBxrxMOvcfRuAu9fMHnPG3Vcl6lAKFACNecw6qRHSAqQa/yIiIiIiLdokYK27VwCY2QZg\nrJmVA08nMg/WNBjqYmYT68nX1r0reXqvapqxl5QaISIiIiIimbUT+L6ZtSUaEzIOKHJ3B8aGFuLu\na+LkM0ljQkREREREMsjdi4FXgQ1AMfBsogFSKzP7ObAiumllZnZbikNUU/tMWJodS0RERESktXL3\nx4HHA7MPAQ/FKHspsLSW+zsk3Z4WWl5jyKmurrcBlLHWUUMVFRVpYDbkJP5m2/uYrfUSERERaSo5\nqSOth7pjiYiIiIhIs1J3rFbitZ+tz3QVALjj78ads73ztRVB+w2+YzIAFRUVQfn8/HwAdh2tc52f\ncwzq3BGA7UeOBuWHdu0MwIodpUH5yUMGAvCfh8Lq/xfdo/of37InZbbjqH5A/Ncmbn7fyaqgfK/2\nuWmVX/zh3qD8+AF9ANh9vDIo379jHhD/vYpb/9JjJ1IkIwM7RVe+D7y7NShfcM0IAE7tOhSUbzeo\nOxB27sBn589Hb20Kyve+fjQA7//7n4Lyl9/7BQA+eOmdoPxlX70WgD8+9NOg/P/z8/8JwMkP9gfl\n21/WE4j//r63P+z1H9mze1r5uN8NIfWvqfuJbWGfrQ7Do8/WjvKwpQmGdOkEwN7KU0H5PnntgKb/\nbG07cDgoP7ygW1r1Kas4GZTvm98+rfJbev7svrDf3Ta9ot/d2V1vD8rPOLIAgHcfez4of83j3wBg\n+Y9+HZSf8g/3AbB69ryg/KQZdwHxP1/yGTVCREREREQyyMzmAPcCh919lJn1BuYBnYDTwAx3X1zP\n/nHzQ4EXgcHAVHdfl/RYpbvnNcLTqpe6Y4mIiIiIZNYrwK1J22eJ1vkYCXwZeD7F/rHy7r7d3ccQ\nzcR1/hjdZhmzq0aIiIiIiEgGuftKoDxp+5C7b0nc3gO0NbM29ewfK5+KmT1lZm5mz6RbRipqhIiI\niIiIZCkzKwTWufvZlOE08rVoD8wFRgCFZlaQZjn10piQLDRr1iyqqsIGAddHUxSLiIiItFyJBsAc\nIGgEf9x8Hc64+6pEeaVAAXCgAeXVSo2QLFRVVaUGhIiIiEgrZma5wEvAo+5emnT/RODpxOaDSQ2G\nWPmE2sZ/nD3v8SbpOaVGiIiIiIhIFjGzHOA5YK67v5n8mLuvAcY2JJ+kHOgLNPtaDmqEiIiIiIhk\nkJn9nGhWqy5mVgY8A3wFGGZmDyRiN7t7Xd2ipsTM13gCeM7MHgNuSeSbZXYsNUJERERERDLI3R8C\nHjrv7h/F2H8Z0DaN464Ehp13X4ek29Pilhkqp7q63sZOs7SEmkJRUVGLHVfRiHXPSfzNtvcxW+sl\nIiIi0lRyUkdaD10JaWLpzHRVUlLSRLUREREREck8NUKaWDozXTXFFZzXftbs441qdcffjTtne+dr\nK4L2G3zHZAC2HTgclB9e0A2AioqKoHx+fj4AZRUng/J989sDcPh02BTc3S5pk1Z9QvI12dNlfw4q\n+5K+nwPiP9e4dS85VJ4iGRnWvUta5Rd/uDcoP35AHwB2lB8Lyg/p0gmAXUePB+UHde4IwMGqM0H5\nHrnR1fJjmz4MyncaPQCA3X9YG5Tvf8sEAPa/815Qvue1IwHY8cqyoPyQr1wNwNonXg7KT3jkTgA+\n/jDss3vpgOizu3P+8qD84OlTADixLex86DA8Oh9O7TgYlG83pAcA7+0/FJQf2bM7AGtK9wTlJw7s\nB0Cl7wvK51kvAPadTP0/t3q1zwXinwtxP4txPyt7K08F5fvktUurPk39O9HU3/undoWda+0GRefa\n9iNHg/JDu3ZOqz5x80c3lqZIRjqPGQjAu489H5S/5vFvADC7a9jMszOOLADif3fGff3jli+fUSNE\nRERERCSDzGwOcC9w2N1HmVlvYB7QCTgNzHD3xfXsHyufoi6V7p6Xzr5xaMV0EREREZHMegW4NWn7\nLNGaHiOJZs16PsX+cfP1aZYxu2qEiIiIiIhkUGKWqvKk7UPuviVxew/Q1sza1LN/rDyAmU01s0Vm\n9pKZbTGzJ5Iee8rM3MyeaeBTq5MaISIiIiIiWcrMCoF17h40IClmfjLwmLuPAooS97UH5gIjgEIz\nK4hf69Q0JiQL5ebmNsrg9JY6RbGIiIiIQKIBMAcIGpEfN0/UWNkG4O4nEvedcfdVifJKgQIg1aKH\nsakRkoVmzpyZ6SqIiIiISAaZWS7wEvCou5cm3T8ReDqx+WBSgyFWPqG26e2Sr6BU00Q9p9QIERER\nERHJImaWAzwHzHX3N5Mfc/c1wNiG5LOBGiEiIiIiIhlkZj8nmtWqi5mVAc8AXwGGmdkDidjN7l5X\nt6gpMfMQXeWobSasZpkdS40QEREREZEMcveHgIfOu/tHMfZfBrSNecylwNJa7u+QdHtanDLjyKmu\nrrex0ywtoaZQVFSUFQOzM1yPnMTfbHsfs7VeIiIiIk0lJ3Wk9dAUvSIiIiIi0qwu2u5YjTXNbUOV\nlJRkugoAvPaz9ZmuAgB3/N24c7bLFm0I2q/vjdF4qoqKiqB8fn4+AMu27wrKXz10EADbjxwNyg/t\n2hmApSUfBOWvG3YZAHsrTwXl++S1A6Bqd3mKJOT275JW2Vv2HQzKj+rVA4Al27YH5acNHwrA+j0f\nBeXH9esNwJubtwXlb7piOABvbfWg/PUjDIDX128Oyt827gogfv0Xv/d+UP6GkZcDsPt4ZVC+f8c8\nAN7bfygoP7JndyD+ZyVu/viWPUH5jqP6AXBi296gfIfhfQDYOX95UH7w9CkAlMxdEpQfdk/Us+DQ\nyrDzp/tV0flT6fuC8nnWCwj77MJnn9+4r3+c74amPhfinstxy99RfiwoP6RLp7Tyceuz62htkwld\naFDnjmmVH/f1jPtdte9kVVC+V/tcIP7v4sGqM0H5HrlRz6HlP/p1UH7KP9wHwO4/rA3K979lAgCz\nu4bNVDvjyAIAiv9pflB+/PemA/G/2+QzF20jJFumuc2GhpCIiIiIZC8zmwPcCxx291Fm1huYB3QC\nTgMz3H1xPft3Af4ItCHq9vVjd3+xnvxQ4EVgMDDV3dclPVbp7nmN8LTqpe5YIiIiIiKZ9Qpwa9L2\nWaI1PUYSzZr1fIr9jwPXufsY4HrgZ2ZW57/z3X17IlvMhWN0m2XMrhohIiIiIiIZ5O4rgfKk7UPu\nviVxew/Q1sza1LP/J+5e0y+7M9HVk7SZ2VNm5mb2TEPKqY8aISIiIiIiWcrMCoF17n42RS7PzLYA\nm4Hvuvt/pXnI9sBcYARQaGYFaZZTr4t2TEg2mjVrFlVVYQPCGoPGo4iIiIi0XIkGwBwg5Qh7d68E\nRpnZMOB1M1vk7ifTOOwZd1+VOH4pUADUt+hhWtQIaUZVVVVqGIiIiIhISmaWC7wEPOrupUn3TwSe\nTmw+WNNgqOHuJWa2G7gcKDazScAv6sjXNv7j7HmPN0nPKTVCRERERESyiJnlAM8Bc939zeTH3H0N\nMPa8fC/gtLuXJ66eGFCayK8+P5+kHOgLNPtaDmqEiIiIiIhkkJn9nGgWrC5mVgY8A3wFGGZmDyRi\nN7t7Xd2i+gHPmBlEU/Q+6u4hCxY9ATxnZo8BtyTKb5bZsdQIERERERHJIHd/CHjovLt/FGP/VcAV\naRx3JTDsvPs6JN2eFrfMUDnV1fU2dpqlJXQxKyoq+nQcSPLtZpKT+Jtt72O21ktERESkqeSkjrQe\nmqJXRERERESalbpjtRKv/azZxxvV6o6/G3fO9qGVHrRf96sMgJK5S4Lyw+6Jrh5uP3I0KD+0a2cA\njm4sTZGMdB4zEIBdR48H5Qd17gjA2X1h+Ta9onx58Y6U2S7jhwCwo/xYUNlDunQCYG/lqRTJSJ+8\ndgCs2BH22kweEr02VbtDuqJCbv8uAGzauz8oP7pPTwBKj50Iyg/sFF1VXrZ9V1D+6qGDAKioqAjK\n5+fnA/Hrf+DjsHWkCi69BIA1pXuC8hMH9gPg4w8PB+UvHdANgNNlfw7KX9L3c0D818d/83ZQ3v5q\nKgB73igOyve7eTwAxzZ9GJTvNHoAEL/+B6vOBOV75LYF4n8e435XHd+S+nzoOCo6F/adDJsavlf7\nXCD+a9PU+Q1l+4LyY/v2AuJ/Lx8+Xe/SC5/qdkm0Tlzcz3rc78K49Yn7esb97o9bftzvttWz5wXl\nJ824C4BTuw4F5dsN6g5A8T/ND8qP/950AGZ3TTkTLgAzjiwA4n+3yWfUCBERERERySAzmwPcCxx2\n91Fm1huYB3QiWv18hrsvjlNGiuxQ4EVgMDDV3dclPVbp7nkNekIB1AhpYrm5uZ+OAykpKclsZURE\nREQkG70CvAA8n9g+S7SmxxYz6wesAPrELKNO7r4dGGNmS7hwjK5mx7oYzJw58/9v796D5qrrO46/\nHzQXiECQWwQJUup+uBiHhBAwtCIVDAi2oiMo6jgooojO2OKtXgpqVXAQWwer4lTE2pQIXsYiCDga\nK3IJN2OQ4UulgQQwBCKEIBMIsv3jnAc36z777Nndc/a3z35eM7/JZvezv/2es3vOc3675/LsbV+o\n0MzMzMyaRcT1kl7U8P/1wPr89hpJ0yVNi4gJ99dr7qMXkr4ELAF+HhGnTZbvhg9MNzMzMzNLlKQl\nwC3tBiB9NgtYChwILMkvfth3/iVkQM455xw2b+7sYMFu+ZcXMzMzs+GVDwDOAzo7Yr4/nsqvO4Kk\n1cAcYKKLJHbNg5AB2bx5swcJZmZmZtaSpJnApWRXP1/dcP8i4Gv5f08fHzC06addvtXxH1uaHi9l\nzykPQszMzMzMEiJpDLgIWBoRVzc+FhErgPmd9jVJfgOwF1D5tRx8TIiZmZmZ2QBJ+jLZGbBqktYC\nHwdeD5wm6ba8tT02o6EPSVor6fgOXvp84FxJtzb077NjmZmZmZlNdRFxBnBG092f7kMfkz3nemC/\npvt2aLh9ZJH+ihir19sOdioZCY2Ks88++9njQBpvl2gs/ze19zHVuszMzMzKMjZ5ZHT4l5AK+cKF\nZmZmZmYehFRqkBcu/MEFlR9v1NJr37tgq/8/ve6xjp733DnZL4N/XL+po/xzdtu+q/43rlrTUX7H\neXMBeORXqydJZnY6aB8ANm3qrP7tt8/qf3DzU5Nmd585HYAtD2zsqO9pe+wIwIrVnU3ron2yab3v\n8Sc6yr/wedt1lS86b352x10d5Y88oAbAzffc11F+4YuyC9LetvaBjvLz99oDKF7/A3/o7BTde8ya\n2VX/RT/7j93R2fzZ4YAXdlVP0fy9Gx/vKL/3js8DYM2VN3eUn3vswqz/K27qrP9XHwKUP71F850s\n7+PL+upHO/ss7DM7+yw8ufb3HeVn7PV8oPiysuqBBzvKz9tjdwDueviRjvK1XXbqKv/bDY92lP/L\nnWcDxZfdtZv+0FF+r+1nAeUvK0Xrv3XN/R3lF8zdE4CHnuzsUha7zpgGFF/3FF12i/YflyzvKK83\nvgKAc3fp7My5H374hx3lRokHIWZmZmZmAyTpPOAtwEMRMU/SnsAyYDbwJPDhiPhJkT56qOXxiHhe\nt8/vlM+OZWZmZmY2WN8Fjmv4/xaya3q8BDgB+GYXfXSrkmN2PQgxMzMzMxug/CxVGxr+vz4iVuW3\n1wDTJU0r0sdkJL1C0jWSLpW0StL5DY99SVJIurDwxHTIgxAzMzMzs0RJWgLcEhGdHXBTzGLgrHz3\nrbPz+2YBS4EDgSWTXZ+kWz4mZEAaz5RVlqoPfjczMzOz/skHAOcBnR0BX9wtEXEHQESMn8XiqYi4\nIX/91cAcYF2/X9iDkAFpPFOWmZmZmVkjSTOBS4EzI2J1w/2LgK/l/z19fMDQpp92+Van2mv8xaVO\nSXtOeRBiZmZmZpYQSWPARcDSiLi68bGIWAHM77SvovmqeBBiZmZmZjZAkr5MdhasnSWtBS4EXg/s\nJ+m0PHZsREy4W1RDH7vkfZweEZe3edk6rc+EVcnZsTwIMTMzMzMboIg4Azij6e5P96GPdvmfAz9v\ncf8ODbePLFJDEWP1etvBTiUjISvNWP5vau9jqnWZmZmZlWVs8sjomGwQYmZmZmZm1le+ToiZmZmZ\nmVXKgxAzMzMzM6uUByFmZmZmZlYpD0LMzMzMzKxSHoSYmZmZmVmlPAgxMzMzM7NKeRBiZmZmZmaV\n8hXTzcxsypA0B5hDw5dsEXFrv/JlK1JP2dPqvPNV5m30eBBiSUhtZTjM+ZRqcd75KvOSLgSWAKuB\nxivxHtmPfEr1lz2tzjtfZT5/TjLrkiry5kGIJSC1leEw51OqxXnnq84DRwD7RsTTEzzeUz6x+kud\nVuedrzKf2rqkikGXeRBiaUhqZTjk+ZRqcd75qvNXAQuBG0rKp1R/2dPqvPNV5lNbl5SdNzwIsTSk\ntjIc5nxKtTjvfCV5SY/zp28f3yvpKWBL/v96ROzQSz6l+sueVuedrzLfIIl1SYV5A8bq9frkKbMS\nNK2sZgFFVm7OT7xhMlS1O+98r/myDXv9ZqlKbV3iZb1i9Xrdzc3Nzc1tSrZarTanzWPn12q1HQZd\nY7/qaTetg5g3g6yn7Prd/3AtW25pNl8nxAZO0vmSevq2ID8rxZTsv0h+2KfV/fe3/9TyE/TRl89+\nG1e0eezoiHisYH8d19PF/Om1nnbTWjTf87yZpP+i+aL1lF2/+x+uZatQ/4OoZxT5mBBLwdER8Q89\n9nEFsGCK9l8kP+zT6v77239q+VZ6/uxLOpitz0gzbi9guzZ93SnpgIi4o8DrT1pPg6LzZ9J6ik5r\n2fMmtXqK5lObP6PW/ySG5e9uv+oZOR6EWAqSWBmm1n+X9QzltLr//vafWr6Cz/5y4Oam++rABuCU\nNqXNBm6SdAuwcfx5EfG3PdYzruj87KSe5RSb1qL5IrWkWE/Z9bv/IVq2Eh4kGx6EWBqSWBkm2H83\n9QzrtLr/wW6IlZ1fTrmf/bsjopvz8X+mxX2tNkCK1jOu6PzspJ6i01r2oJXVnAAADixJREFUvEmt\nnqL51ObPqPW/nLTWtWXXYw08CLEUpLIyTK3/buoZ1ml1//3tP7V82Z/9EwtknxURyzuMVvJ+dVhP\n0Wkte96kVk/RfGrzZ9T6T21dW9W62cBnx3Ibnlar1Wqj1H+Z9aQ2re5/areUPvt+v9zc0mmprWu9\nrFfbBl6Am5ubm5tbv1utVjuszHxK9Zc9rc47X2XebXSaT9FrSZF0mPP9yadUi/POV50HvlJmPrH6\nS51W552vMp/auqSCZX1keRBiqUlqZTjk+ZRqcd75qvNlG/b6zVKV2rrEy3pJPAgxM7Op6F0l58tW\npJ6yp3XU8u8uOe/6zfAgxNJT9soztZVtmfWnNq3Dnh/2z1pq86fUeiJiRZl5Eqq/7GkdwfyNJedd\nf3sjta4aaYM+KMXNzc3Nza2sVqvVji8zP6j6a7XatBb3zenXtBbtP7V6Cs7LbWq12jb57Vm1Wm1h\nrVbbuU0/hfJlz88q6i/6fvUj7zb1m38JsaRIetMkj28jaZv89ixJCyXt3K98m36OLyM/2fQWyXcz\nrZKmtbhvzrDkJ+ijL+9Vr5+dou/tZPVUkS8y/6tYtvrxeaD8g2hLfb9oqkfSUZLuA+6XdKWkfRoe\nvrKXvrvpP7V6uuj/RGAdcK+k1wIrgXOBlZJO6kO+1PlZdv2T6NuyVebfitS3A0aZL1ZoAyPpTLKL\n+Yw13P0hSS8AiIjzm/InAhcAT0p6H3AecG/2kM6MiGW95CfxFeDyXvJdTG/H+S7mzVHAN4Hpyq7w\n+p6IWJ0/fCUwP+X8JPrxXhWdn4Xe27LrL5rv4v0qddnqop5VbfrfvfmOovlJ9GP+F6nnXGBxRKyR\ntAT4YT7Pr2715C6mtVD/qdXTRf8fA/YHdgJ+DSyIiDvzDdprgObPctF8qfOz7PrLXrYq+NuS1HaA\nbc2DEBukM4GbgVvy/4+RHae0/QT5oV7ZUnx6i+RT+8OY1IZMBRsmhd7bCv6wl73hWeqy1UU9uwLH\nARtaPHZdr/kK5n+RemZExBqAiLhK0krgUkn7TvB6RedN0f5Tq6do//WI2ABskHR3RNyZv9Y6Sa2u\neF00X/b8LLv+UpctEhukDfgLjZHjQYgNkshWEHOBsyNiraSTIuKTE+SHfWVbdHqL5FP7w5jahkzZ\nGyZF39uy6y97Q6/sZatoPd8GpkfEPc0PSPp+H/Jlz/8i9TwqaV5ErIJn5/nRwEXAgT323U3/qdVT\ntP8tkraLiCeAlzVkJ9pdp2i+7PlZdv1lL1upDdLKXtatgQchNjARsQn4iCQB/yrpLtp/Jod6ZVt0\negvmU/vDmNqGTKkbJl18lsuuv+wNvbKXrUL1RMQHJnhdIuKMXvNd1F903VCknpOALU2ZzZJOBg7v\nse/C/adWTxf9HwM8lT/+eMP9M4DT+pAvdX6WXX8Fy1Zqg7Sy17XWYKxebzUQNKuepNcAiyLiExM8\nvjOwMSKebrp/D2BuRNzQS75qk01vkXwX82ZPYEtErG+6fww4PCKuTTlftl4/O0Xf20Hr4v0qddlK\n7fNgZuWo4G9L0tsBI2/Qp+dyc3Nzc3Prd6vVaoeVmU+p/rKn1Xnnq8y7jU7zKXotKZIOc74/+ZRq\ncd75qvOUf2relOovdVqdd77KfGrrkgqW9ZHlQYilJqmV4ZDnU6rFeeerzpdt2Os3S1Vq6xIv6yXx\nIMTMzKaid5WcL1uResqeVuedrzJvI8KDEEvNuwvmU1t5lp0vMn+Kzsuy8ynNmxTznj99ykuaAWyU\ntG0Z+Vxp75eyq2TvLKnWz2wZeUkvbb4vIla06W+k8vlz9pY0O789h2x+yvkJpfZ314OukvjsWGZm\nNtQk/UtEvD+//dfAUuABYE/gHRFxVS/5SV77+Ijo+KrIrfKSlpFd+XmDpNOB95Nd+HIesDQiPtdN\ntqL8k2RXoL4UuGT81Kltpn/U8v8EvI3stLjnAR8EbgMWAF+PiPNGOW+jzb+E2EBJ2kbSNvntWZIW\naoLzd7f6BmqSvoc63+L5+0g6ttNvRzvNlpFPed6kmG967vH9yBdZtqZA/oiG258DToiIQ4G/yv/f\na76dfuwvPi+yC6oBvBNYGBEnAwcDb+4hW0X+DuDlwMPANyT9RtInJL24RXYU8ycB+wGHAl8gO43s\nm4CDgFOcz0ia1uK+OVM1bxkPQmxgJJ0IrAPulfRaYCVwLrBS0kktnnKTpLskfUbSvA5eYqjzkpaN\nb3Tl30j+GHgr8F1J/9httop80Wktmk9teruYP+30vFFbdNka9nyTbSPiZoD8AmLP6TUvadVEDdi9\n1zzwtKTF+e0HgR3z27NounBdwWwVeSJiXUR8MSIOAV5HdqHOH0m6xXkA/pi3Z8gvFJj/fyIjk5d0\nlKT7gPslXals979xV061vG3NV0y3QfoYsD+wE/BrYEFE3Jl/e3ANsKwpfwdwLPAmsm+gtgMuIftJ\n/H9b9D/s+VbfSG6SNB24la2/sS2SrSKf0rxJLp9vjE6k5UZtkTzFl61hz79U0qb89kxJu0XEemXH\neMxoMX+K5ncFjgM2tHjsuj7k3wl8S9JDwEbgdkl3AHPJdofqNltFfisREcBZwFmSDnWe7wB3kQ3g\nPgr8QtJNwCH5Y6OePxdYHBFrJC0BfijpzIi4ukV2KuStgQchNkj1fMNtg6S7I+JOyL5lktTyYKWI\nWAd8EfiiJAEnk30DtSkiDp5i+aclLY6I6/jTN5KbaPPtaIfZKvIpzZsU82Vv1BZdtoY6HxET/dox\nkxa7gBTNA98Gpue/lGxF0vd7zUfEjZL2J9vlaS7ZMSrrgJsjYmO32SrywEda3PdsX6Oej4hPSvoW\n8Fhkx9n8mGxXpa9F/gvcKOeBGRGxJn/uVZJWApdK2rdFdirkrYEHITZIWyRtFxFPAC8bv1Nt9hNv\nlMA3XGXn/e1of+ZNivl2G6nf60O+6LI17PmWIuIR4Ppe8xHxgTbPOaPXfH7/M8BNeZuszo6zZeej\nwEH8o5jPn7O64fY9wD3OP+tRSfMiP8A//6LhaOAi4MApmLcGHoTYIB1Dvr9oRDzecP9M4LIW+Qm/\ngSL7pnhK5dt9I0l2YGRX2SryRae1aD616e0iP+FGKvBnGzlF8xRftoY9b2bD6SSafi2OiM2STgY+\nPgXz1qher7u5Jddqtdpa5/uTT6kW5zvKryk5n9r0lpp3c3MbzpbausTrqv43/xJiA6P2B9vuVjDf\n88G8w5xPqRbne87/2Wkd+5wvumwlnzez4ZTausTrqmp5EGKDVPbBuaOUT6kW552vOm9mwym1dYnX\nVRXyIMQGqdQzzoxYPqVanHe+6ryZDafU1iVeV1VorF5veSZUMzMzMzOzUviK6WZmZmZmVikPQszM\nzMzMrFIehJiZmZmZWaU8CDEzs76QdER+teCyX+cZSduV/TpNr/kSSasnT7bt4x5JB/SrprzPF0j6\naT/7NDOrgs+OZWZm/XIkMAu4ZtCFJKoOjPWzw4j4HfA3/ezTzKwKHoSYmdlWJD0DnAscAzwHOC4i\n1uaPnQUcD0wDVgDvAZ4PXEV24cRtJB0F3A6cCjwA7BIR9Yb+vwrcCFwCfBVYQLZxfn5EfKMhdw/w\nb8CJZIObT0XEfzU8vgvw38AXIuKybqZJ0hjwBeBVZIOEZRHxz/lzFgEXAk8CtzT1dwLw4Xw+PAy8\nIyLua1dD7lRJhwM7AW+IiF/l/b0beDvZ3+W78/4ek7Qhn1fPB1YCrwTeHBE3Svo82TUKdouIXTt4\nbTOzZHh3LDMza+W2iJhPdsGtUwEknQLsDSyKiIPINphPjYj1efarwMURMT8i3hoRTwJ3Ai+RNFvS\nfnnfi4BfAO8DtouIeWS/onxW0l801FAHDgAOiYj9gSsbHnsB8GPg05MNQNpNE/AG4GXAQcChwMmS\njsgfuxj4YEQcCmwa70RSDfgE8MqIOBj4T+C8Dmv4XUQsAv4d+Pu8vyOB1wGLI2IBsAr4aJ6fTjbo\newT4WX7/6wAi4kPAqzt8XTOzpHgQYmZmrVyd/3s78ML89nHAK4BbJd0GHA7s0/S85t2NriXbuD8F\nuFjStmTf3P+WbOP/MoCIeCjPHtb0/K+P/4oSEY821Xd/RFzR4zQtBn4QEU9HxBPAFcDhkmYDe0fE\n+K5l32vo51X586/N58MHgT0L1vAbtp6vBwA35f29EZibP7YhIp4B1gMPAg+R/Soyrq+7d5mZVcW7\nY5mZWStPNdwe/8KqDpwVEf9RoJ9rgb8j253qVuA1wA0Nj4813W6+gu4jE/R7CnCOpLdFxMXjd0q6\ngGxwVAeOiojfNzxnomlqVUNzHY2ZOnB5RLy9VWGSPkr2CwvAWyPi9hY11JtquDAiPtWiu/E6nskb\n+G+3mU0B/iXEzMw69SPgXZJmAUiaI+nFDY9vBJqPTfgl8HJgM3A52W5M1+aPXUe+a5GkXcl+lbiB\nztwMvJlsF67a+J0R8d58d7AFTQOQiVwHvEbSc/Mzbh0D/DIiNgL/13C2rxManvMT4NXju45J2lbS\nwoYaPpvXML9pADKRK4C35POAfNe1eR08z8xsaHkQYmZmzepNt8d3h/om2XEZ10v6NdlB4Y2DjsuA\neZKul/T1/Dm/B7YAy4GfAvvyp0HIBcATklblj30sIjo5De54PauBDwHLJE3vZprymm8AfkV2oP3S\niPif/LFTgM9LWgHs0PC6AZwGfEfSSuAmYCHFNM7XnwGfB67J+1tONp9a1Q1Ql7RjvuvWj4AdJd0m\nqfGYGTOzpI3V682/OJuZmZmZmZXHv4SYmZmZmVmlPAgxMzMzM7NKeRBiZmZmZmaV8iDEzMzMzMwq\n5UGImZmZmZlVyoMQMzMzMzOrlAchZmZmZmZWqf8HT4PHyGvBpkcAAAAASUVORK5CYII=\n", "text": [ "<matplotlib.figure.Figure at 0x10c62d470>" ] } ], "prompt_number": 14 }, { "cell_type": "code", "collapsed": false, "input": [ "import numpy as np\n", "from scipy.stats import kendalltau\n", "import seaborn as sns\n", "sns.set(style=\"ticks\")\n", "\n", "rs = np.random.RandomState(11)\n", "x = rs.gamma(2, size=1000)\n", "y = -.5 * x + rs.normal(size=1000)\n", "\n", "sns.jointplot(x, y, kind=\"hex\", stat_func=kendalltau, color=\"#4CB391\")" ], "language": "python", "metadata": {}, "outputs": [ { "metadata": {}, "output_type": "pyout", "prompt_number": 15, "text": [ "<seaborn.axisgrid.JointGrid at 0x10c6496d8>" ] }, { "metadata": {}, "output_type": "display_data", "png": "iVBORw0KGgoAAAANSUhEUgAAAaYAAAGoCAYAAAANe0FzAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzs3XmU5Hdd7//nd629qveZ6VmTSaaSEBIgEJCEyCrecyUa\nZJWbIyBHD+g5Jj9FPRFCQA7KAU+4Ry/uoBeucBNvQA0S0IiAkAWzDWTpyUxmn+nptfb67p/fH9Xd\n6aW6uqoy0109836c45FU1ae/36qe/r7q811eX00phRBCCNEr9I1eASGEEGIxCSYhhBA9RYJJCCFE\nT5FgEkII0VMkmIQQQvQUc4OXL6cECiEuNNpGr0Cv2+hg6klRFFEul7sam8lk0HWZiAohRLckmJoo\nl8v809M/IplKdTSuVq1y4+WvIJfLnaM1E0KI858E0yqSqRSpbGajV0MIIS44ss9JCCFET5FgEkII\n0VMkmIQQQvQUCSYhhBA9RYJJCCFET5FgEkII0VMkmIQQQvQUCSYhhBA9RYJJCCFETznvmx+66b0r\nFosoFZ2jNRJCCNHKeR9M3fTeTZ2ZIJXLkj6H6zWv28JYKYsVQpyvNlUwdTv7SSQTHfXeVcuVTlet\na90Ep5TFCiHOZ5sqmDbD7KdYLHY0ppvgFEKI89mmCibovPV7PWc/9WqNb83uZ2BwsO0x6xmcQgix\nGWy6YOp1iR4OTiGE2Azk6LkQQoieIjOmTaibY1nz5Gw+IUSvk2DahLo5lgVyNp8QYnOQYNqkOj2W\nJYQQm4Xs0xFCCNFTZMZ0Aen22JQclxJCrCcJpgtIN8em5LiUEGK9STBdYOTYlBCi18n+GSGEED1F\ngkkIIURPkWASQgjRUySYhBBC9BQJJiGEED1lQ8/K++7+Rzp6fWF2hqAvfo7WRgghRC/Y0GCq52Id\nvb5QCIlF0TlaGyGEEL1AduUJIYToKRJMQggheooEkxBCiJ4ilUSiJSl+FUKsNwkm0ZIUvwoh1psE\nk1iTFL8KIdaTBJM462T3nxDihZBgEmed7P4TQrwQEkzinOh091+3syyQmZYQ5xsJJtETupllAVTK\nZV6347KOZ1oSZkL0Lgkm0TO6OcmiWq7wredkt6EQ5xMJJrHpyVmDQpxfJJjEBaeb41nRXHlwp7v/\nZJehEJ2TYBIXnG6OZ02dmUA3DdllKMQ6kGASF6ROd/9VyxV0y5RdhkKsAwkmIc4ROQVeiO5IMAlx\njnR7CrzsAhQXOgkmIc4hOWNQiM5JMAnRY+SsQXGhk2ASosf08lmDURRRLpfbfv1iEoKiXRJMQvSg\n9ThrsJuZWbFY5Lsnx0im0x2N66Y6qptZYLczR+g8OLsNaTl2uDZNKbUhC87n8+Zvfe4P/U7GFCam\nsLJJMtls22NmpqbRDYO+/r5zOmY9l3U+rp+8p41ZP9/zyHSwoSxOz5DIpLt6T90sSzeNcz4GwHUc\nfnrPFWQy7Qd7uVzmu0eeIhaPd7Scv/7oH14EnBgbGws6WskLyEYG0x7g8IYsXAghNtZFY2NjRzZ6\nJXrVRu7KOwFctIHLX81henO95vXy+sm6da+X16+X1w16e/1WW7cT670im8mGzZh6VT6fV2NjY9pG\nr8dqenn9ZN2618vr18vrBr29fr28br1MTpERQgjRUySYhBBC9BQJJiGEED1Fgmmlj2/0Cqyhl9dP\n1q17vbx+vbxu0Nvr18vr1rPk5AchhBA9RWZMQggheooEkxBCiJ6yYRfY5vN5E9iBVHMIIcQKF/I2\nciObH3YAh++///4VT1Q9Fzfq/PeQseJYhnEWVk0IIc6Zdi+43QEc/vrXv34u12Ujrfo5yK48IYQQ\nPUWCSQghRE/pyWDq9hR2OfVdCCE2v54KJqUUtcDDV2FX46uBS833JKCEEGIT65k72HphQD3wCLsI\nFQ1Qc//nhD5+FJAwbWyjZ96eEEKINm34ljtSirLn4Eerz5Lmg2e1x5c/FypFxXexwoCkaWHocqae\nEEJsFhu+K2+tUILmodTq8Xl+FFLyHGq+K7v3hBBik9jwYDrXGrv3AiIJJiGE2BQ2XTB1fytICSYh\nhNgMNl0wCbGR7rnnHv74j//4rP28t7zlLS2fv/766wG4+eabee655ygWi9x7771nbfntmJmZ4f3v\nfz/vec97uPXWW3EcZ8Vr7rzzTt7xjnfwzne+k4cffnjJcw8//DCvfe1r12lt4W//9m9X/R0tXs9H\nH3207Z/51FNPccMNN3DzzTdz8803881vfhOAL37xi9x00028613vWvffy/lsw09+EGIz0bTu5+xn\nY9nPPPMM//7v/87P/dzPrdtyP//5z3PjjTfyC7/wC/zlX/4lX/3qV3nve9+78PxTTz3F/v37ueuu\nuzh58iQf+tCH+Md//EcATp8+zRe/+EWC4NxXvbmuy2233cZPfvIT3vzmN694/tChQzz44IPcdddd\nHD16lFtvvZV77rmnrZ/95JNP8r73vY/3ve99C48dOHCAr3/969x9990AvPWtb+VVr3oVQ0NDZ+cN\nXcAkmITowszMDL/+67/Ob/7mb/Lyl7+c22+/nWPHjhFFEbfccgvXXnstb3nLW3jlK1/J2NgYAH/2\nZ39GMpnkYx/7GGNjY2zdupVKpQI0NnKf/vSnCcOQ2dlZ7rjjDl760pcuWaZSij//8z9nbGyMu+++\nm6uvvrrpmOuuu44f/OAHANx66628+93v5tprr134OZ/73Od45JFHFv5b0zT+5m/+Bsuymr7XRx99\nlA9+8IMA3HDDDdx5551LgumKK67gr//6rwE4efIk2WwWaATFHXfcwSc+8Ql+8Rd/ceH1n/rUp3jr\nW9/KZZddtvDYn/zJn3Dy5EnGx8cpFot89KMf5WUve9nC84888gif+9znlqzX+9//fl73utct/Lfr\nurz1rW/l+uuv57nnnlvxPmzbpl6v43ke5XIZ27aBRnjefvvtOI5DPB7nD/7gD9i6deuSsU8++SSH\nDx/m/vvvZ/fu3dx2220cOnSIa6+9duHnXHrppTz++OO88Y1vbPo5ivZJMAnRoampKT70oQ9x2223\ncdVVV/H3f//3DAwM8KlPfYrZ2Vluvvlm7r33XqrVKj/3cz/HRz7yEX77t3+b733ve5imSb1e5667\n7mJmZoaf+ZmfAeDgwYP87u/+Lvv27ePee+/lnnvuWRFMAB/84Af56le/ytvf/nb+5V/+pemYxbM6\nTdNWzPJuueWWjt5vpVIhk8kAkEqlKJfLK15jGAZ33nknX/rSl7j99tsB+MQnPsGv/MqvsGXLliWv\nve2221aM1zSN/v5+/uiP/ogDBw7w4Q9/eGHWBXDNNdfwpS99qeV6ZrNZrrvuOr72ta81fX7nzp3s\n27ePn/3Zn6VSqfDJT34SgE9/+tPcfPPN3HDDDTzwwAN89rOf5bOf/eySsVdddRXveMc7uOKKK/jz\nP/9z/vRP/5S3ve1t/OVf/iXVahXP83jsscd4wxve0HIdu1Eul4miCF2/cI68SDAJ0QGlFN///vcZ\nGRkhiiKgMdt55JFHeOKJJwAWZjDQmE0AbNu2Ddd1OX78OC9+8YsBGBgYYO/evQCMjIzw+c9/nng8\nTrVaJZ1Or7r8ee2MaXaZxJ133rni+MoXvvCFhRnT4tnJBz7wAdLpNJVKhYGBAarV6sKMaLlbb72V\nX/3VX+Wd73wnu3bt4pFHHuHYsWMAFAoFfuu3fqvl8blXv/rVAOzbt4+pqaklzzWbMb3vfe/j9a9/\n/ao/b7l//ud/RtM07r//fiqVCr/0S7/E1VdfzYEDB/iLv/gL/uqv/goAy7L41re+xZe//GUAfu/3\nfo83velNC+H8xje+kU9+8pPs3buX97znPXzgAx9gdHSUq666iv7+/rbXp10PjB8iX86Ty+XO+s/u\nVRJMQnRA0zRuuukmfv7nf55bbrmFu+++m71797Jt2zZ+7dd+jUqlwhe+8AX6+vqajt+7dy/33nsv\nv/zLv0yxWOTIkSNAY/fWZz7zGfbu3buwW6sZwzAWAnG1Mb7vU6vVME2TgwcPrvgZt956a8v3uHx2\n8v3vf5/vfve73HTTTXzve9/j5S9/+ZLXP/jgg3z729/m9ttvx7ZtTNNky5Yt3HfffQuvuf7669c8\naWT//v285jWv4cCBA4yOjrZcp27U63WSySSappFMJrEsi1qtxt69e3n/+9/PS1/6Ug4cOMATTzzB\nm9/85iXHqd75znfy+7//+1x11VU88MADXHnllczMzFCpVPjKV75CuVzmXe96F1dfffULWsdmUqnU\nWf+ZvW7TBVO3J32HSqErtaEHr9cSRhGapqH38DqKRjhdcskl3HjjjfzhH/4hH/nIR/joRz/KzTff\nvPBNvNm/M03TeOMb38hDDz3E29/+dkZGRhYOlN94443ccsstbN26lSuvvJLJycmm43fu3MmBAwf4\nu7/7u1XH/PIv/zLvfOc72bFjB9u3b3/B7/eDH/wgv/u7v8tdd93FwMDAQsB85jOf4c1vfjPXXnst\n9913H+9+97uJooj3vOc9LZfb7BgTNGZF733ve3Echz/4gz94Qeu8+POfX8+bbrqJRx99lHe9611E\nUcSNN97IRRddxO/8zu9wxx134HkejuPwkY98ZMXP+/jHP87HP/5xTNNkZGSET3ziE6RSKQ4fPszb\n3vY2dF3nwx/+8KozXdEZbaMaEfL5/B7g8D9845/YvmPHmq9fXku0Wk1Rq3Ex3SRuWRhab+2rVUrh\nhgG1wENDI2XZWLrR0yEqRLe+/OUvc8MNN7Br166Fx/70T/+Uffv2LRxzO8+19Yc9v4388Oc/w9tf\n/tPn4668VT+HrmZM+XzeAr4A7AZiwCfHxsb+uZufVfQd+gOPpGmv+ppmIbRWKDXr0XOjANcNSM0V\nvG70hl8pRRCFVH2PaG5NFY2eP1MzSFk2xgV0wFNcGN7whjewbdu2jV4N0cO63ZX3HmBybGzs5nw+\n3w88DnQVTAD10Kce+mStONaiwtXVSlqX6zS4qoFHPfRJWzEMTd+QgAqjkHrg463SExiokKJXJ25Y\nxE1Ldu+J80azUPqN3/iNDVgT0au6Daa7gX+Y+986cFauniv5DoamkbXi6Jre9vGk+de1u3sPGq3m\nJc8hphskTHvdTsWMoggvCqgFfluvd0Ifdy5ELbmNhxDiAtDVlm5sbKwKkM/nMzRC6vfP1gqFSjVO\nVFinCYIbhcTXZ1FA4/21G0rzFI2mdAkmIcSFoOstXT6f3wncA/yvsbGxr67x2juAj3W7LCGEOJ/J\nNnKpbk9+2AJ8G/jQ2NjYd9Z6/djY2B3AHct+xh7gcDfLF0KI84lsI5fqdsZ0G5ADbs/n87fPPfbf\nxsbGVtYOCyGEEB3o9hjTbwK/eZbXRQghhJD7MQkhhOgtEkxCCNHDCrOFhX7EC0VPBpPRxWoppfBX\nuVh1Let56WrY5T+w9VxHpRRBGDZtphZCrK8o7G67tpn11IUxlqYzksySMCxCFVH1XcI2No5+GOKE\nPp4KiekGccPCXNQgsRpbM0hY9ro0PyilqAeNi2U7lTJj2Mba7+dsCMKQeuDhqwhLM0hY7X2WQohz\nY2Bo8IK6FxP0SDBpwHA8Q8aOoc8VrJqaQdZO4Ich1cBt2ugQRlGjGSEKFp53oxA/iogbJnHDaho6\n+lxRqrlORalu6OMEAaFaOltaq6liPUtnlVLUAg83fL7Ew1chgRdiGyZJc30CXAghNjyY0pbN7vQg\nVpMZgaZp2KaJaeg4QYAzN9uYb+N2opUbe4AIRS1s9NDFDZOY8fwto5OmTWydClzDKKQW+KvuYlyt\nSsnQNFLr1OO38FkG/kKR7PJ1dMMAPwpJGFZPlN8KIc5vGx5Mg7F001BaTNd0EqaFbRgUnBqVwMNX\na+93DVTUeG0U0mfHSVlxjHXYLdXYbdeYfbRzlGbxa9az+dyf220XNAn35SKlqAYeXhiQmJttCiHE\nubDhOy7b3QBrmoapG/gqbCuUFnOjkLgZW5dQgsaMzWkzlBaL6QYxs/nux3PBDYO2QmkxX0Xd361R\nCCHasOHB1DnZjSSEEOezTRhMQgghzmcSTEIIIXqKBJMQQoieIsEkhBCip0gwCSGE6CkSTEIIIXrK\nhl9g24lIKUxdx9D0po0Pq9HRqPoepm6gd3CNUM13qYc+/bFU2+OUUnhBQBRFHfdblXwHTddJrFKl\ndLZZuk4QaU0bH1ajo8llTEKso8JsgWKx2PS5TCZzXvbobXgwuWGAUqrlhni+ObzquxiaTsaMrejI\na0YDNBob3im3QtGrsTWZJbbGht8PQ05UZnhm9jQKGI6nuXxglJQVazkuiEJm3RoFrw5AXG+vYy6I\nQibrZcq+A+VpdqT62ZLMrdmI8ULFzEZBaz3w8NpoZo/pBgnTPi//EIToVbZt89DscfTiySWP16pV\nbrz8FeRyuQ1as3Nnw4PJCXyKXp2UFcNc1g2nlCJUiprvLmkoMHSdlB7DCk2c0G/aBGFoGqFSqEXR\n5auI49UCWSvOQCy1YsOvlGLKqbB/8jhu9HyZ6aRTYfLUAfb1bWV3ZgDLWPqxRUpR8V0m6qUlQelE\nAY4XkDZjxIyVH7VSiqJXY6JeXvL4ieosp2tFLsmNkIslO5rldcrQddJ2vGU9kanpJEz7nAelEGKl\nwS0jZPrOv/BpZcODCRob9rLnYM99Izd0nUhFS4pbm7ENA0vXlxS6NnY1qZa3yyj5DmXfWWg019Co\nBh5jM6c5Uy+tOu5AYZzDpUmuGtrJcCKDRmPGd6ZexlsUZMtVApda4JGx4phzs4164HGqWlh1l2So\nIsYK42StOHuyQyTOcbu3ZRiYenyhCT1CoaMRN611K70VQgjokWCa50UhnlcnYVg4od/WsQxNa2w8\nrcigErhtd78pYMIpM+tWCaKQA4UzbY3zo5BHJo4wFE+zKzvU2P3WhghF0a9jzh3vqgTtjSv5Dvun\nT7AvN8JAItPWmG41PksbWzdxo2DV24YIIcS51JMHC9oNpcUMXV+4l1MnfBVxvDLb8bhpp9J2KC1W\nD/22Q2mxWtD5DQa7pev6OZ+hCSHEanoymIQQQly4JJiEEEL0FAkmIYQQPUWCSQghRE+RYBJCCNFT\nJJiEEEL0lJ4LpjCKOFA4Q73D06ODMKTq11EtLqxtpuw6TNXLHY/TgKJb63hc0rBIm/GOxgB4UUA9\n8Doao5SiFniEbdQNLRZGETXfI4ra7yPcCG7o467jafRCiPXRMxfYKqU4UZnhSHmKoudwvDLDrvQA\nF+dGWlbyKKWYdWsUvRp+FGLrJnHDxFyjrSCMIg4WznCiMosT+uTsBDk7Qdy01lzXmG7gRxETtRKO\n75GLJ4mbdssxOhpZK46h62RjSZzA42SL5od5tmaQiScJgVPVIhkrxmA8haG3rgdyAx8nbLRhuPjE\nDHPNa5OUUo0OwrnmBy8MiJlmz11oG0YhtcDHnwtcLwpJmtaan4kQYnPoiWAqujUOFM4s6ZqrBR7P\nFMaZrJe5ODfClmR2xbiq7zDrVKktqi3yogAvCkhEFrZhYTbpwztVKXC0NMWsV3t+Hbw6Fd+hL5Yi\na8VW9OFBo40bwF00Ayn5DrXAI2sn6E+kml7k26wrL27aXJwdpuTVm9YgaUBfLLWkMLXRHuFQC336\n5oJ0eWAEUUjdX9ofqAAnDPCjiLhpEjNWhm+zrrwIRT3w8cOwJ7rylFLUA69R/LvocT8KKXlhW+Er\nxGYzOz2N0lf+m65XqxRzjdbx861lfMOD6UBhHC+cWbKxX2zarVKYPMK2ZB/5/q0kTBs/DJl2KlT8\nOqvNN+qhjxcGja63uY1V0a1xqDjJeLXQtFkiVIppp0LNd8nFkmTm2sR1NCzdWFLsuligImbcKvXA\nIxtLkrHjjXof3SJprj7b0DSNXCxJyooxWa9Q9hut5GkrTty0Vm2/8KOQSadCxXcZjKdImPaqG+2l\n7y+i6nt44fMzjDCK1mwXD1RE2Xeww+e7DNfb4hlgM0vC1zCJtTHzFWIziIKQyF+57YnZMR6aPY5z\n6sB51zK+4cF0vDJLX2qo5WtCpThRnWXGqbAnO4ymsbAbp+U4FNXAw49CTleLHK/M4ISrl63Oq4c+\n9VqRuh1nNNmHglVDqek432Nf/xbMNnctmbrBtlSOrBfHUY3ltHPkqh76nKoWyNoJbN1s+x5V8zMM\ncy6Y2r0fkxeFBJ5Dyoqt2+xJzTW3t/P7hrnwnfudr3WbEiE2g8EtIwxuHVn1+fNppjRvU72jWujj\nhl7bG6l5XhQy41TbCqXFip6Dgo5upAfghF7bobSYaXT+64ho7L7r5MaJ0Ai+IAo7fm8RivXc1Cva\n+xKyXLTGPb6EEL1rUwWTEEKI858EkxBCiJ4iwSSEEKKnvOBgyufzr8zn8985GysjhBBCvKCz8vL5\n/O8A/wOonJ3VEUIIcaF7oTOmg8BbYV1P1BJCCHEee0HBNDY2dg/Q2TnYL1CH1XTPjzu7q9HGAtd9\niUIIcV5Ylwts8/n8HcDHmj3XSTLqmsaTM6fI929tq9NuXhBFGFqjGqgSuG2NsXSD0VQfA/EUFd/F\nCdsrCzU1A9uwKHj1ppVBq9HRyNoJdE2n4rttX19kajqoxpS1kyicf32n4yzNWLf5sVIKr4uSVp3G\nRctKrmUSm0SrbeSFaF2CaWxs7A7gjsWP5fP5PcDhLckshhWj4q8eGKauM+vUOF1r9EIdr85yRd9W\n9uSGWxa8AkzVyszMdeJZhkGfnsQJ/ZZBM5LIsjc3zEAiDUA2lqDg1Ch59SVdcotpQNK0MXUdQzeY\nqJeYdipsT/WtWfBq689X/aSsGNnAY2ZZB+ByOhpx4/mC1flwaTdo1LL/v9Y4XdNJGCb2GuW4Z4NS\nikBFVH2XaNHMs533tvizFGKzaLWN3IDV2XBnK5i63m8VN22GkjlKXp2iV1/SzmBqOm4YcLAwsWIG\n8VRhnAPFCV6xZQ+D8fSS53Q0yr7DyWphyeOapqFpEMfANkyqnkO46OdmrTi7soPsygwu2fgausFg\nMkPKjlFwapR9Z+l7MCxsw8RctjEMVcSxygwZM85wMrOiDcLU9KblqAnTZjRlUfIcCl5tRY9dTDeI\nG1bTdolWv4hWG/bVHtdgXctRW3X3tQpRQ9NJmI3fgxBic3vBf8VjY2NHgFe/kJ8xX2aaNG2KntO4\nzxFwrDzTctdboCIeGH+OoViaq4d3kDBtgijieHkav0VFj64b6DRmQn4U4oUB29P9XJLbgm2u/pHE\nTZstKYuUF6Pg1ghVRMywsHS95Ua7HDiUSw4jiQw5O4mh6WveTqLxmSTI2HGm6hXKvoOhacSM5u3g\nTX8GS3fXtfvtYf71lmaQsJoH4NmmlMINA2pt3HNq8fvQgZhp9dytOYQ4W1ZrF5+3uGUczo+m8Z76\nemkZJkOJNFP1CgdLE22Pm3Ir3H/iGa4a3N5RH56mNVrDXzK8i1ws2faYTCxB0rKZdaodbQwn6mUc\nP2gUvLZZgqprGiPJDHHXxI/Cjpa3fHddJ+OShkXcar0L8mwqug7Rql3xq0tb8bY/SyE2o9XaxefN\nt4zrxZPUqtXzomm8p4JpXrdffP0u7riqaRppq/M7yupa41hS1Gl5qhZ1tSG1DGPV41utdHpyw7z1\nv+le5+9N1zQ5liTOe2u1i5+P5K9aCCFET5FgEkII0VMkmIQQQvQUCSYhhBA9RYJJCCFET5FgEkII\n0VN6Lpgc3ydumAzFUh2NG4yl0NHQOyhyU0oxXinwtWf/i+l6ue1xYRTxb4f2880Dj1FvUaXUjBsE\nHC1NLanaWYsfhsw6NZzAR3Uwruq5PFs4w1QH7w2g6jscKk5QdGsdjXshkmas4wq+hGGtWzlvEIWU\nPQe3w9+BEKJzPXMdUxCFlFyHolfHVyGDiTQDiTRHilN4amU9zTxLM7goN4SOhq9CTE3H1s01S1dL\nTp2jpSlOVGZQwJHSFC8d2c1P77ysZdPBk2eO8++Hf8KhwhkAjhQmuGb0Yq4Zvbjlxa8GOpoGngo5\nXStS9OqMpvoYSmRWHaOUYsatUvKchWuY/CgkZljYLa6FCqOIE5UZppwKfhQy7VSYcarsyPSTNGOr\njvPDgGmnSsWvEwElr85APMWuzOA5r/qxTRPTMHCC1j2GsL59eEopaoGHFwYoWGgKSZi2XNgrxDmy\n4cGklKLs1in4DvVFdTTz30kv6dtC1Xc4Nhcgi+1KD5C2YgQqWujSC1REEEbE9MZbc6OlV0x7YcCx\n4jTHK9PUFzVXF706/3HiGQ4WJrhu9FKuHN6xZNx0rcw3n32M/WeO4S36mRO1Et88+DgHZ8Z59c59\n7OobXvEeLc3AV+GSK11rgcfB4gTTTpVdmX4SywKj4jvMuDXcZU0Wngrxg5BY1Kg0WrxxVkoxWStx\npl6iuuyznHGrVHyHwXianZkBdG3puEYA1vEXddRFKKacCmXPYSSZZTTVd05rf3RNI2nZxAyTqu8R\nLPtComsaKSuGqbWugDoblFJ4YUA9DFZcRO2rCN93iEUmyXXqEBTiQrLhwTTtVjDqq/9hByokZlpc\n3r+NiXqZKafCUDzNSCLTCKFV2hDmAylhWHhhQKAixisFjpWnmXaqqy7vRGWG//fsj3hy+gSv23kF\nA4kU9x/6MQ+dfJaZFuOenRnnRGmaK4Z3csOey0nbcSxNJ1SqEUqrmHWrlD2H4UQjMMIoYsqptuwI\nVIATBfgqIq6bxAyTiu9wqlpgtsXuNy9qzNZKXp2tyRxDiQzVwGXWqVJvMUtxo4DjlRkKbpXtqX76\n4p3tZu2Uoetk7Bh+FFL1XRSQMu11aTaHxuy97vstf28AbhjghyFx0yK2TusmxIVgw4Op7Ln0sfru\nrHmBihiMpxiKp1Gotut56qGPqek8PXWKI6WptsYEKuIn0yc5Vp4BL+Bkeaa9ZQU+j5x+jtPlWX7l\nmte3LJJdurz5wHBI2XHCNseFKqIaekzWy5yplVbMMFZTDTwOlSYpeXUiVNvHacq+y4HCGV40MErK\n7rzGqROaps01thug1LqVUrqBTy3w2v5MItRC8Wwn9wgTQqxuw4OpEwpImFZbDdSLBSrCD9vbaC9W\n8upoXue4zBzfAAAgAElEQVQ36K0suy1Gu0IVtR1Ki3lR0HYoLdZJKC0es54zA13Tui9P7EI3nwms\n6yqKC8xa7eKLLW8a70YvtJNvqmASQogLzVrt4ostbhrvRq+0k0swCSFED5N2cSGEEGKDSTAJIYTo\nKRJMQggheooEkxBCiJ6y6YLJ7fBU8YVxXmeddtC4LXknnXbzdLSu+tQ6vU378+O6624Lo+7GdbM4\npVTX729TkPo8Ic6aDQ+mWJsdbDowPj3Fl//zXzk9PYnRbuWnH7L/wYe5/2++gjZRwtLae8tZO0HK\niqFbJkOpLEabF6psSfexrX+QRyeP4YXtXwNVdGt85ZkH+ZfnnqDaQTFs1Xc4UpokCBs9ge0wNZ20\nFQMUpqa3/VlamsFgPI0b+nhB0Hb4Riqi7nuUXAc/bH/cRogbFknT6qgM2NaNlv2KQojObPjp4iOJ\nDFYsRdGtEa7ytbNWq/HdZx5nvDgLwH37H2Y408/rr3gJyWSy6RgNOH34GH//5S9TLDQuOHvw7nsZ\nvfQiLn3NK3ASzd96wrCwTZOiW288oGu4KPpSWaIgYHaVWqJcLMlwJkc6mULTNE7XipyuFXnxwHZ2\nZwdXff9+GPLoxBEeOH0IgOOVWX40/hxvvfTlXDG4fdWi0iAKOVKaYnKuOdyN6mh+naF4Gg1toTtw\nuaRhY+kGhtH4ufMNGgt9fk1oQMZKMBBPLZS5VgIXI2x01xmrdNc1+uZCaoG7sDZl350rYbUwenBj\nrmkacdPG1k3qgYcbrX7hsqnpJEwbS8pchTirNjyYTN1gKJEmbdkU3DqlRa0JKgzZf/QQjx59dsW4\nyfIs//eh7/CSXZfwkj2XoC3aONQLJb557zd44rHHV4w79exhTh08wotueBUjL9pLTWtsmDUa4VL1\nHOruyt44T4tQpsZwOkfNdRZmNZZuMprtI5tKYzappPnxzEmeKYxz7chF9MeXhujR4hT3Hn5iSXEq\nNMLirgMPszWZ5a2Xvpxt6f7nn1SKyXqZQ8WJFdGjgEmnQtwwydnJJS0SsblOPUNvHiK+CjHQ0HSN\nIHp+XMKw6I+lSDepIAqVouQ5xHWTuGUtFMMqpRp1Sb5L2GR25EUhnheSnOu/03uwNkHXdVJ2HDsM\nqQfekgosHY2Y2SjRlX48Ic6+DQ+meXHTZothkfJspupljk1N8K9P/hdh1Pq4xOPHDvLjE8/xhiuu\nYUs6y48feZx//PrXW+8uUoonv/sABx5+nGv+++tJjw4TaRqFNe4/pGkaDhGGbTNkx9DRGEzniMdX\nv5UENG6V8IPxg2xNZLlycJR64PNvR5/kZLXQctx4rcTnn/h3rt1yMa/bdTkaMDZ7uuW3eAAnDHDq\nJXJWgqRpEzNNLN1YcyMaoiBq7N7TNY2MnWAgllpznBMFuG5A0oxh6jpu4ONEa+/GrAUe9cAnbdkY\nutGTAWUZBqYexw0D3NDHmJslrcctN4S4UPVMMEFjw5+JJfj+2I/5/qGftD0ujCK+/ZMfoZ46wdHn\nnmt7nF+v8+A/fIPX/tovUe/gk1A6eCjyg9vaLpMFGK+XOHZkmmOl6fYXBjx85jnqgcvO3FBH44p+\nnZwd7/heSoGK2JkaIGHabY9RQDVw0ejsPACFouy79MWa75LtBY3de9IgLsR6ka99gNbxvVPnxm2C\njVS367gZ3tt6k89EiPXRUzMmIYQQS3XSLv5CzbeTb3TDuASTEEL0sE7axV+omB3jOyee4RdyuQ1t\nGJdgEkKIHrbe7eLVUnndlrUaOcYkhBCip0gwCSGE6CkSTEIIIXpKzwXTcDzNr77qZ/j/fvoX2r7+\nRtd1rr/sKm58zzv4mbf897ZP69UNgz2X7+P4408RTBTa7nALSjUKP3qaB/7pPmZPjLc1BiBpWOzJ\nDvGqbZeQiyXaHtdnJyj6Licqs7jBylaKZpRSHJs5w5ee+B7/dmh/2+OgUbUzXi0w7VTa/kzCKKLq\nexS8Om7gtz1OQyNjtb5AWQhxYemZkx8yZozhZAZTb6zSdRdfwZXbdvO1/Q/wz089vOq4y7fv5rId\nFxHNRezlr7qGSy7P8537vs3T+1e/SHfbnl3Y2RQFpwazLrPFAtu2bSO2aytmemX9DkAUhjgHTjBx\n+BjFcuMA4ZkzZ7j4kkvYc82LSaRTTcdpwNZEDoXCi0LQ4MVDO6n4Dvsnj6/aDm7pBltTOZwwoBK4\nVCouRbfOlmSGgXh61aaE2VqZsYmTHCtOoYDTlQJHCpO8fHQvV2/dvWpwL6kkUjDtVKgHHn12smkl\nETQC0A0D3ChYuNi4EnrYUUjctLBa9OElDRvb7M1KIiHExtE2quk5n8/vAQ7f+X//lqsuuYzkKi0D\nSimOzEzwFz/8Js9OnVp4fCCd5VWXXokdt5s2DejA1LFTfP2rd1EulhYezw30M7hjGzOrlLGmE0mG\ntm/F2jmCbj6/UfVOTDJ78BjjZ840HTfU389Fl+XZcdVlS87/H4qniekm7ioVPaamc6pS4LnixJLH\nt6X70DWdeth8pjMcTzOcyJBdNPNyfZ8DUyc5PHOGepMZkgbkB0e5btdljGb7lzzXaYkrNApondDH\nazEuplvE5zr65vVyiasQ66Ctb2Lz28jb//efrftZeW/cdcV6nC6+6uew4cH0/77xz4zu2L7m64Mw\n4EfHDvK/fvgNXrH3cob7BghYuw5IDyOeefQJ/vUb97Hjkoup6yGuv/ZureGBQbLbt6ISJtWx45w8\ndowgbN1RB7Brx04ufsmL2LlnN/3xFG6bt77QgGemT6GhkYrFqbZx3ylL09mSzDIUTzNemuXg9Gmm\n65U1x6WsGFeO7OQ1uy8nY8cbpattFAlZmkE2liBnJXCjxiypnX89pqYT000SpkXaimG20dsnxHlM\ngqlh1c+hq115+XxeBz4PXAW4wAfGxsYOdbVmbW6gTMPkpy66jJoRcbJWaCuUACJDZ98rXsqxyTOc\nnDwDa2cLAJMz00zPzmB5EcVyae0Bc46dOE6xXOLyS/e1HUrQ6JfbnRvmRGW2rVAC8FXEiWqBo7OT\nnJidbHtZVd/loZMHyQ+Okuhvvw/PVyHTzlzwdRAsgYoIQo/hZKblrj0hhIDuT374BcAeGxt7NfB7\nwB+fvVVqLdbk1hJtjbM7P8AeKdVVi14QtjP/WEkptep9lFrRupz0Gm3eWHDlArvs3+tuaUKIC0y3\nwXQdcB/A2NjYQ8DLz9oaCSGEuKB1e1ZeFli8fyvM5/P62NhY0/1r+Xz+DuBjXS5LCCHOa7KNXKrb\nYCoBmUX/vWooAYyNjd0B3LH4sfkDe10uXwghzhuttpHr2S4OzzeMt+NctZB3G0w/AN4C3J3P518F\n7D97qySEEGLeeraLQ+N4/EOzx9GLJ1u+rlatcuPlrzgnZ+91G0xfA96Uz+d/MPff7ztL6yOEEGKR\n9W4X7wVdBdPY2JgCPniW10UIIYTova68VpRSBFHY8UobaIRR2PHpyplkCtPu/PT0VCyG8jqfehua\nRsLofHlhFBHv8DR6HY1Zt3n7RSsaEERtXgy2ZHmsWr10LvhhQNjFevph0PF6KqUIo7DtfsAXqvF3\nEK3b8oRYbxveleer9jbgVd/lwfFDPDF9gqwVJ2vHcdq4gDWo1fnuAw9y9PRJ+pJpNE1jttr6Rlim\nYTAyMgIjfaiYQeb4NLPHT1MotT4gmLBjZLM5ikGdv/+Hu3jz697Alm1bWasfwdIMil6NH0+ewNA0\ntqX7cKNwoXtu1eXpJsVCgUMnj5OIxejv66fo19e8EmowkSaZSPLozAnKocfLRna3FWyWZhCokKJb\nI2XGSFjN66CWs3WDhGFR8V0SUUTMtM5ZP16kImadGodKE+iaziXZEXKxxJoXcodRRNl3mHQq2LrJ\nlkSGmGGuPU5FOL6PGwWYmk7SimFo2jlptlBKEaqIqu8SKkXcsIibJnq316MJ0aM2PJiOl2dJ1wfo\niyeb/oEFUciB2TP864knCee+IZZ8h5LvMBLPYBo6XpOqID1UjI2N8cMfPbTwWKHWaC0YyuSoeS41\n11kxbnhgkNiWAaJco4NOA9g9TN9wluzRScZPnMBrUmk0MjCIqymKkQu6ju/73Pvt+9i+bZQbfuo6\n7ExyxRiNxsbm8cmjlP3GugRKcbw8Q9ZOkIunqAbuinGWZhC5PvuPPE0wF85116V+ZpyBbA47Eafk\nr3xvKStGfyqDZj+/MTtYmuRQaZKf2rqXvbnhphtUQ9PRYEmXXjVwqQYuuVgSSzeaBtR8FdHiDXw9\n9HFCn5QVwzqL1URKKaq+y+HS5EJzRqRCnimcpj+WZFdmkESTPkalFPXAZ7xeIpz7IuBFAcers+Ts\nBP12EstY2VahlMILgyUtHYGKKHn1cxIYiwNwnhP6uKFPyoxhGVLzJM4fGx5MAFNuhRmvyrZkH6m5\nWyAopThTK3Hf0R8z49WajptwypjojCQzBFFEhMJAY2p8gm99599wvebVPlPlIjHLYijbx3S5iFKK\nbCpNdmSIcDhN1OT0Rz0ZQ798BztGctSOjjM+3rjdRX82ixmLUQxctCY7C0+ePsVX7rmbV7zkZVz5\noiuI5ophTU3neGmao+XpputY8uqUvDpbUjlM3Vgoc42jc+zkcaaLzWdvM6UilIpsGRwm0BX10MfQ\nNIbTfVi2hW6u/JUr4Ifjh3hi8gSv3bGPwUQaaASn2aLcFaDo1jA1jVwstdAIoaMRMwwSht10Y6mA\niu9iajopK7ak4LUbXhhwqjLLeL15ddSsW2PWrbErPcBIIos5FzReGDBVr1ANm/87Kc79DobjGTJ2\nHF3TFmYtFd9ddZff2QyMRgCGTb+gwNxnGbiYoU7SshtfIiSgxCbXE8EEjeMPJ6uzJAyLpGnzyORR\nfjJzas1xARGnakUyZoyo5vLgww9x7OSJNce5vo/rF8gl08RzaYyt/UQxa+3jUIMZEv0p9hzPUjkz\nQ9l30UJvzY3Bjx5/lMd+sp83ve71JAb7eGr6FKqNHWFnqkUMdIYSacqlMk+fOr7mGIAz05PEbZuh\nwSFSySR6G8fKqqHLN47+mIszQ7xq215sXW8ZSvMCpZh2KiRNm6ydIGnamG104gUqojg/wzDMjq+H\nCKOQGafG4dJkW1VOxyoznKoW2JsbQWkwvUrD/GKKxhegWbfK1mSWMIpw2zh2tTgwug3fIApbBuCS\n16qIkud0/VkK0Ut67l9vPfT54fihtkJpsXLg8thjj7UVSosVaxX6L9oBsfZPHtB0HW3nMMq20Iz2\nP8IgCPjPRx7myemTbYXSvJCIyZkpDrcZSvMczyMXby+UFnuuPEXVd9usyX1eLfDaDqXFnNDvqn/P\njyIOlSY66hcMVMTxykxbobRkWSpi1q23FUrLlxetcaxwNbXA6/hEjMZn2dXihOgZPRdMQgghLmwS\nTEIIIXqKBJMQQoieIsEkhBCip/TMWXlCCCFWWu928Xat1kJ+NhrHJZiEEKKHrXe7eLuatZCfrcbx\nngymqu+hlOroQkGlFMrsIqU1UF18GVFKdXSq+MI4IPQDDKuzjz7q8qJJLwww1NrVOstVfZdcLNHR\nGKUUFc+lL76y5WItYRShN2lYWIup6WtWN220IIow9c7+PQNNL9huhzTonV8uxHbxnjrGVPYdHjh9\niLHCeOOPss2/sCAMqbh14hePcvX1rySeam/DuGXHNl72+tdgp5Nsyw20NUYpRSLSSfiQ2zPK9j27\n21tJYHhkmGQySe3oadRspe0SzpydIJFKcsnFFzPY19/WGF3X2TY8wmS9hFOtEQXtfeOKaSbbU308\nMX2CJ6aOU/FWVhs14wQeZ2olHjxziCemjuMGK2ubVqMBFd+h5rsdFZPGDJOXDO1iV7q93x3QuADY\niqF3sNnXgJwVb1Qrtb2k58fWQ5+K5xI0qc5qJW3FSFuxtpdp6wY5O44uFzKJTa4nZkyhinh65jQH\nCxMLHW8zbpW4YZK2YgRR1HSfZRiFeEHAjFOhPrch9BMml13/CupnZhh74ifQZENnJ+Jc9rKriVI2\nVRVBBB4h2/qH8HyP6UrzahszglioM10uPH9Rpw17XpSnNDHNzORU03HZdIZ0f5aZehUcHxyYLZfY\nMjiMPZxDS8SajkuZNoauU/TqC4/F+tLszeU4efo0jte8pma4fwDdtijOfZYT1SJx12IgmUGzrYVK\nnuW2JLLoGgv1R8crs0zXq+zMDHBxdqhpe4EfhgvVPfMzl+OVGWacCrvSg1y8Sv8ezHUF8vz3DycM\n8KKIhGFit1GgqmkapmEwmu6nP57iWHmaWbd5fVXCtElZsYXlzV/gbGjaQgdjMynTIm4837E3/0qN\n1t+blr83X4X4fkgsMkmazauamr0/2zAxdQM38Bd+L8vpaKSsxoXNUkckzgcbHkzj1SKPH5/mdG3l\nQTQnDHDCgIwVx0AjUhHaXF+ZHwaU3DqFJhuiehTAcJaXveE1nH72MKePzjUmaBr7XnwFqW1D1KIA\nlu0CqgQuaLBjYIiZcpma39jwK6VIRwbVWo2SvzIMCr6DOZBhz0A/p48dw603XmMYBlu2bqUSuI1Q\nWkQB49OTJEolBocHUQMZzLnde5ZmkLJjFN3aio1fqBQVArbuGCVyPI6den7/biaZIpPJUPDr4C/9\ndu4EPqdKM/TFkmQSKTT7+Q3/QCxF0rKpBd6KrW0t9BgrjDPllNmdHmQ03bfwmZQ9h4JXb7QNLFMN\nPJ4unGaiXuKSvhGGE9mF55ZvtBeLVEQ18PDCkIRltd0ikTBt9vVtpejWOViaWLg1hzHX46dpWtPl\nhUqh0dhttrhBwp7r8VutiLWdUGrGDQP8KCRuWG21lwPomkbCsrENk6rvESyqiUqadts/R4jNYsOD\n6eEzh7EGsy1fU/Yd8KE/lsIPAuq+x2S9tOaevqoW0r9vNyM7tzN5apytF+2kqkeNUGqh6LskU0n6\nSDMzM4PyQiZrzWdR8wIVUcBj+OLdRFUXv1ZHsw1m1qi+qfsuJ06dor+UJTPUT9+WYdwoaBq4S8aF\nPlgaey++mEJhhphhU1VhI5RaKLg1Cm6NkVSOTDLFlkwfTug3QqmFaafKrFNjol5iV3oQNwoWGtFb\njnOrFCeOsi2Z40UDo1iG2dYeWl+FBF6IbXQ2w+iLJ3mJvZMz1RJFv47dxvLmZ1CN3XuKtBXvqFZp\nPohaBe5ikVLUAg8vDBoVTm0eWzN0nYwdI4hCvDAkbpoYHdY/CbEZbPgxpk4OXM+6VeqBx0QboTQv\nROEkDHZefglVvf1luWFAOfQIXZ/ZudtltKPiu1SNiLoWUnJah8Ris5UStXqdolfH6eD4TCX0SKez\nFEIXf43AXWyiWiQbi1MP/bY/ywjFiWqBWa/WVijNC1TE8epsWxvtxRSNkzc6ZeoGuXii7RCcF6GI\nddH1tziUOhGoTlr+GjRNwzLMRpO4hJI4T214MHWq2x0W634ztS5Ojer2vXV79la3B8k3w06jbj+T\nzfDeANl1J85rmy6YhBBCnN8kmIQQQvQUCSYhhBA9RYJJCCFET5FgEkII0VM2/DomIYQQq+vVdvFm\nmjWOd9M2vqmCKWna+EGjCaKT62hSukW1VCKeiOF0cK2PVagzfXQce2sfXtRez5kGJNwIzwmJYhpR\nm91vtmGihxFp3aIStX8dU8K02BrPYgKnKoW2x6WtGDPVClv6BnA7+ExydgJbN9CV1vZnAo12iW5O\n2Z9xqtQCj9FUX9unSCvVuFjW1gw81Vk/nR8GxPTOmxS6KU7Vad5GIcRivdou3szyxvFu28Y3PJjy\n/VuYMhS1cPXmAUvTSZgxSnOtBoahM2xmKLg1/BYbx7huElUdnj7wNCqKSGdS7LzoIhwDWl3aGA/h\n+H/8F9/5n3+LCiN2X3sVV7ztZ6mnW39caUzOPPo0j373IQD2vPRKtrwkTylq3aowlO0jNDSKkU/x\n8GFGR7YQT6eotvhMAPZkh3jR4CiDiQxBFPLYqcM8M3mSkrf6hb2mppONJSg4VQ7PnuF4cZIrt+3B\nsqyWFzvHDJMdqT725kawDRMvDCh6jUqoVhvXhGFxcW6YlwztwtB1/DCkHnhrXljthj77J0/w/fFn\nAXj58B5etyNPLta6oDeMQuqBjxeFpK0YbhjgRsGayzPQCFF4KmLGq5E2Y8SMtf88urmwFhqFq4m5\nLkQhWrkQ28W1Ttqcz6Z8Pr8HOPzZr34Rsy/FT2ZOc7Q8vSIwslZ8YeOynK4a3WrLa380IBnpHH/u\nCOVyecW4baOjDGwbWTEzsdCoHTjBv376LyiPLytk1TSu+aW3sPW6q6myNAwThol3bJJHv/atFd9s\nNEPnyje9Bnv7MLVgac9eNp4ilohTwl/xDV3XDXZv305g6njL3vtQIsNl/Vu4KDeyYtxsvcJjp57j\n2enxFRvjvngSLwia1g8NprLsHdpKsx6IbckcezND9CVSK56r+S4Ft97oGVy8/mjsyPTzsqHdZJfd\nPkMphRP6uEGw4vcdKcWx8hTfOPpj3GWtD4amc+Oeq3nx0A7sZaGhlMINm7+3MIpwQx8nCla8O30u\nWprFlo5GxopjNgmPdktclzM0nYRpY3dxiw9x3mhrOj6/jbz9f//Zpg2maqnMG3ddsdqMadXPoSeC\naXjbFpRSHClN88zsOJNOmZRpo6Gt2OAtp5TC0jTqvk/Zd0jpFoXxSU6dPNlynKZp7L30EsxsknoY\nYM7W+K8v3sPY/T9sOc7Oprnug+/GumgbQRQSr/k8/c3vMXPsVMtxmeEB8q9/NW7CQDcM+tIZSgSw\nxr7jbDrNyNAwZeWTNG325ka4YnCUmGm1HPfczBn2jx/lZHmGtBVvtJSv0b8HsHdoG8OZHG4U0mcn\n2JMZZHu6v+WurUgpSl6jTskNAwbjaa4cGGV3dqjlssIooh54C7sEZ5wK3zn5DEfLMy3HDcVS3LT3\nGnZlGre7CKKQqu+1nAVDowndCX08FaLRCJ6wjflOTGtUAOlzn0Ens6T51+poxEyTuGFJa4OQYGro\n/WCaF0Qh/3FijFNN2sZbiaKIynSB5w4+i4raf0+JZJLg0Gn+88/+HhW136W3/WVXMPyiSzn84GMd\nredFP/USRq69Eq/DPThXXXwpr9i5j4Fkuu0xYRTxrWcf50hhoqPdTaau89/y13DF4OiKmUkrbhiQ\nsxO8eGgHRgfHk/ww5N+OP8UPxg92sJbwypGLee2OfMvducsppagGLm4HY+blzHjbhauLyW47sYwE\nU8Oqn0PP/aWYusFAfOUuo7Xouk5YrnYUSgD1Wo0j3/phR6EEcPKxp5ncf6CjMQCzJ890HEoAg2ay\no1CCRhv1SCrXebloFDGazHUUStA4DnVZ/7aOQgnAMgx+MtN6htvMWOF0xyWvmqZhat3tRmtndtVM\nzDAllITogPy1CCGE6CkSTEIIIXqKBJMQQoieIsEkhBCip0gwCSGE6CkvOJjy+fxN+Xz+/5yNlRFC\nCCFeUDDl8/n/CXyKs3xH6r25EeJG6wtIl/Ndj8LUDJ1el6UrSF+6Azq86DE3PISViHU0BiAWs4lm\nKh2PqxJQdlevGmomUgrN1LH1zk771jWdU7UiQYfX+vhhwFhhvO1+wHlT9TIps/PPMmfHmW3jouHF\nlFLUAocg7Pw6JqPLf+ZuGBB1eDmCEBeyF9qV9wPga8CvnYV1IWHYpOwYg4kMH8gM8uOp43zv1IGW\nV48opSgfG+fMkWNMFWYZzPWhLJOqWlnzs3xcTrOo1+rE8jt5zaX/g4P/9iCnn3q25TrqpsGlr3wp\nvqXj+h67917ExOlx6rXWoRFPxNm+by8Vz2HikSfZsmsHavcwetxuOa4/nWX3jh2UtYgfTRxlZ6af\ni7LDTWtyFiu6NcbrJVwiXrb7EmarFcYmTrQcA3DRwFa25Po4UStQG/fYlR1k+xoFqkopSp5D0a1x\nuDzNycosLx7cwc65ZobVeGHAo5NHOVKaJm3HyNtbOVGZpbpG20dcN7hiYDsJ0+Jg4QwD8TQ70v3E\n12jDqAces06VSuBioBEzbWKGuWbzsa0ZpKxY180PXhQSeI40P4iubKZ28eUWt4130jLeVvNDPp//\nFeCWZQ+/d2xs7JF8Pv9a4NfGxsbe3ckKL25+2Dq6lVws1fQPtuTV+e6JMQ4WJ1Y8V58pMHXoGCdO\nLa0DMnSdwb5+akQE+sr3l8RA90KmSkvbuGOmBVNlHvuH+/Aq1RXjdr/4MpJbBpmtlJY8nkmlsDWD\nE0ePr3yjGuzedwnEbUq1pTOlgf5+crtHiUYH0Jb9wzN0ncv27MVMxFa0eA/GUuzODrItmVvxmTmB\nz3itxJlaccUFoZamc3T6DGfKK1vI+xNpLhkZZXmbnAZsS/WxNztMblnnHUDN9yh69RVt7wYaOzMD\nvHRkNxkrvuQ5pRRjhXGemR1fUThrajpuGHC4NLWiYkgD8n1bGYqnVzwXM0yGExlGU/0LATIvUhHT\n9TIl3yVc1h9o6QYxw8I2VjaKa2hkz3JXnjnXlWdJV96FrKPmh1//zMfpGxo8t2t0DiVSSZx6vVnL\n+LmrJGonmPL5/B3Ax5o99xf3fIUdO3as+Q30ZHmWbxx5nGrg4zsus88e4/SJk9S81W9/kY4nSaZS\nFPHQNA0DjVRkMFOYbbmbKmPFKTz9HD/+xn+AUvRvG2H0ikuYrq4shF1sKNdPvVJlamISgOHtW8mO\nDDGzLMiW27Z9lPiebaj+RuPFRaM76O/vp97idhQasD3Vz8XZIbKxBJFSnKmXOFMrNS0ynWegEYUh\nT54+ihsGGJrOlaO7iVkx/Ba3iIgbJjvS/ezNDmMZJm4YUPYcCm6tZUdd0rS5JDfCVUM70DWdiVqJ\nJ6aOc3qNyilT15l1aguv25bMclF2uOUYaPzutiZzDCbSczO5RgP6Wrf2iM+FkzXXdpE2bWJt7E6W\ndnHRhRUb5FbbyM1cSTRvlWqijQ2mVcbtAQ7/zdfvYsvotrbGBGHI//nPb/Hgo//FdLH9ew8NZnPo\nhrc7qd8AACAASURBVIHjOJTr7R+TyEQGkz8+gBuF1N327v+k6zoD2SxWMknZdwnarMyJ2TY7L9/H\nlW+6HlfroOvPtNie7AMNZjo43hLTDWquQzIW76g3rs9OsCc7RKiiFe3frQzF06Qsm9PVYkf3cdLR\nSJk2cdPqaPdZfzxF0rRbhnSzZWWsBMPJzIpZV7vL7eSvSUcjacWkafzCc8F05c3rNJjOxtc1RXdf\nGjtmGgbV6UJHoQQwXSqiRaqjUAIo6yF6ItZ2KEGjTHaqVKQctB9KAK7noZl6R6EEUA98Sr7TUSgB\nuFFIfzLbcZlp4f9n781jbVsS+6yvqta4xzPdc+fpTfv183O3u9vtTtyOBzoktoBAQAQRg2IwSPyD\nMESKZAnFjRQQ/yBEFCmKwEgZlEQCBaSECBS1nIARdjx028/p7v26+413PvfMe1pDreKPtfe5e5+z\nh7X2vffcfd+tT3q67wx1Vq1h129VrVVfxX1inZYKJYDHgw4PukelQgnAYAgdr9QFZoBOPCgVSpCv\n0eUpeS6hNNrey/nkwGJ5vjz1QoHtdvufAf/sGdTFYrFYLBY7wdZisVgsq4UNJovFYrGsFDaYLBaL\nxbJS2GCyWCwWy0phg8lisVgsK8VLF0zLvpe+9Hytc3kR/kWx3M59pg+JxWJ54bxUwTRIY268dovX\nr98sPP/DkYo3b93m+luvc2X7YuFtBa7HpUuX2HjnNba3i09uazabfPGnf5If+WNfZmNtvXC5zY1N\n/HqNQDr4JaSr636FpheyHdZRJebf1FyfSCfU3eLyVAHUXZ+HvUMcUfzSkQhcIemlUSmhrCcVlytr\nbATVUuVcKfGViyMEssRMIVcqIq1Ly2uVyLfninITZQW5v09bwavFMsFTz2N6WiqOiyMkqZn94dRZ\nxsfHu3x37x6yWeVrP/czXHn/B7zfbvNwf3dmuSsXLnLzrdfZuJabJbZvXedC+4d8/OFHHHRm64W2\nN7cwjYCBq3Aal2lc26T2vTs8/MFHdLtnHXoAjuPw+o98jls/9xNULuZeq/W3X+P+b/8hH7a/TxxP\nn+wZBgHX3nqd+pfexK1WuNfZp+J4bFbq9NJ4Zu+kojwuVupsVeqoYUiEyuEojtiPZ0+2DZWLFIJO\nkotSo0yffK87Z0Jq1fHIMsPxsNxe1ONGbYO655PMaVg9qTgam+x6GA+4ENQQQsw955tBjSvVNWpe\n7tmreQEHgy5H8WCmAkkCoevjCImSknTYS3aFmqtbUggCx8MbCl0Pk8EZces0BLmjL3Q8hBAYY4h1\nSl8ncw3ro8m4BkhNxmHcJ1AugeMuNbnXYvms8cKDyZcuDTdgoFMinZwRj+72O/zeo49Ixu5ihRC8\n1nqTq7du8L0/eI/vf/gB3cETGWizWufm7Vtceft11JjuRSnFtXfeYvP6Fe587wd89MnHxOkTg8F6\nvYnfrNMP5YTQ0/E9+MJrXL1+gf53P+bOBx9NDA1ev3mDW1/7Mls/+uZE3cP1Bq/9/E+x+dYt7vzO\ne3zyyScTP79x+xYbX2jhX50UNPbSmN7RLluVOhXHmwgMieBStcG2XyfwJs3kvuOxpVwqjsdB3Jso\n5wpJ4LgnwTJOXydA3otKtJ7wyvnKwRWKzhTj9yedPVwhud28gERMBIYrFUmmedA76wncGXTwpGLd\nr54JjJrjc6naZCusT5wDVzlcqDapugEHUe+MgTxULq5SOPJsryUxGoWYGoaBcvPe1SktUGw0cdzL\ndUhTnHmuVFQcFzW2PSEEvpM79/ppTKRPK3Fzpn1voBMinVB1fFylrIHccsKq2sUD30MUHDnpzbih\nn8VTu/KWZeSB+gf/+B9x+eoVANJM5wGVpfSTmD/avcuj/nwBKsDuzi7fe+89Prl/l5vXb3D97bcI\nG9WF5fbvPeST93/A4/191jbW6VUU0pmf1cYYzMePOGh/TBxFvPblz3PtZ34c5c4vl2nNo9/9Lp+8\n9x2EUlz8kTeovnMLUUDieaW2jsFQcwO2K3UaXriw4Up1SieN2Rt0CRyXWKeFdEAKQeh69JP45N/T\nNwvTWPcqXKo2wOQN9OP+MUUGqJpuQOj6gOFC2OBqbX2h2NQYw1HU4yDqYzAEysWRslBj7kiJyQxq\nONznTrGKn0bA0DKuUEIQDntXi0gzTT9JSIwupSxyhKTieihRbJ8sLx0vvV283+vxC2998bT7bi5T\nlr2YeRxeeI9pHEcqalLx/UcPeG/vbuFymxc2+cmf+xlae3tQLf7MZP3KRZoXL/Cd73yHw3RQ6IGb\nEAJx6yLNKxu8df0W3kaj0LakUlz66rs0Wzc51AO8MFhcaMi9zj6t9UvcXruALHiH4iiHNeXk7r6o\n+N2KxtBJIqrKOxnuK8J+3GM/7nGjuk5v2AMrwmEy4DAZ8LNX36LqnV1WYxpCCJpBlUB5HMa9Uobu\nNMvwpEPNCwo3+mZYzy2/WuimYIQjFXVfcTjoFQr3kzqajKN4QMMLcWwwvfJsXtxeOYlr9+iYZrNZ\nKpjKsJIvPyQlHz5D3lhtbMxfmG4aUkmCsFiDOI7je9S2ir/cMMJvVEuF0ghPqsKhNLG9kisBjzg9\ntFWUZfvf4RIr2DpKLbVsRNHe1WnkcDiwLEsvbfGCRjMslhfNSgaTxWKxWF5dbDBZLBaLZaWwwWSx\nWCyWlcIGk8VisVhWChtMFovFYlkpbDBZLBaLZaVYyWB6e+MyrzW2SpVxhcKXDoEs93p0qFxuXbtG\nxSv+urIxBvX4mA9/+9sk0WyNz2kyk5FGEX4mSkllszSl/clH/PDep6XKHXU6fOuH36NzNFu/NB3D\nYdRHlHz5+3p1jYuVBkFJZ9zlSpOd/jGpLjdNoOEGXAqbJWx4+Yw+TzmlL3yJQGOI0qTUOUi0nqte\nmkUnHvDB0Q7duPhcMmMMgzSmEw+sf8/yUrNSE2xHNLyQr11+k7fWLvH/3nuf4zkON8g9bgOdoI1h\n3a9gMDzsH81tVhWCiptPInUCn6+++wV2Dw5478Pvz214VCdC7xxw5+FDAA4e7HDl7ddZe+PGzDku\nxhhMqun1++z285DYCGsIJYjF7G0ZY3D6KYNOh51+lzuPH3Jnd4d3brzGhebazHKp1nz3kw94//4d\njqIejlRc27zA1tYWfjB7DlWWZSghOUoikkzjSYfG0IU3by5OzfH53MZl3KGe53Zzm04acaezN/cc\nNLyAy5UmBjiK+0RpQtOv0PDnT2INpENl6KcLHJeq67E76HIwxxEIUHV9QsfDABn5NVBk4mvN8fGH\npoduGhNrTei6U/VHI3SW0U/jCdtGEftDpFP2Bh06yeDkuGwGdW7UN+aeg0Rr+ml8EoJp3MdzXELl\nWnuE5aVjZYLp9IdWCMF2pcGfee2LfHC4w289/BBz6mMdKhdjzIQTbuReu1Jdo5/G7EVnG6vcCZdO\neONik1FvNviZL/w4H9z7lE8ePZgoY6IU5/Exjx88JEqebO/R4x12fnOHm3cecOndNwkvTE7yzVJN\nHEXsdA4nXHJ7/Q6OkKxXakRkZ1xYMk5JOwPuHR88qQPwweP73D/c482LV/mRm69P+PKMMXy684Dv\n3PmI+4d7J99PM81HOw/YOz7k8uY2G1ubE2oQY3JFT2wyDuInzsE4S3k8SKm5Pi4KbbKJRk4ieGfj\nMmteZWLfNBmh49Jav8TjfofHg87kvgnBrfoWnlQT5aIs5VH/iF4aseaHhO5kiEoEDTc400Arqdiu\nNGh6Ifd7h8Rjrj8ATyjqQeXkGD6pZ/7VrIAaD8BxEqNJY42nzv7cGJN779L0jGx2XihlxrAXdTmK\n+qRj/sDUZDzsH3KU9LgUrrFdmXQITgtAyIN3kCYkOi2sULJYVoWVuVpnfWiVVLy5fokrtXX+YOdT\nfnD0CE8oHCnnqm8inSKF5Gp1jb1Bl75Ozpi1p5EIw82r17l+4RLf/mGbTq+Hu9el8+gxD4+me/sM\n8NFHH/HowUOuv36brc+/heO5ZHHCQa9Dd8b2UpOx0z2i5gWEnk8fjdEZTj9h9/CQeMb+9ZOIP7zz\nAfcPdnn7yg1ev3Kdw+4xf/TxB3ywcw89o8d3NOhzdPdjLh4fcfHCBeqNxvCGwPC435laBqCTRHSS\niHW/MtxbwY3qOtfqeQjPsn1nxrARVFkPqnx69JhBprlSXaPphWiTzSzXSSL6SUzdj1n3qzhKUXf8\nhY2r77jcamxxHA940MsDfc2vnvZznUFjTpbHyIb/Py0AxzHk11gytLN7yiEdhkSRobvxG7HjqM9+\n3GMw53rupwkfHu+wF3W4Xtug6vozA3Bi30yumHJ1SsXxlrdQWCznyMoE0yKqrs9PXnmd1Gg+Pd4j\nLvg8ItIpTS/ESRXHyaBQmQwDnsNPvPN5fuN/+0fcuX+/ULneoE/7X3yH3Uc7XPvaj3EUF9teJx7Q\niQdUpUfU6bIzmD8kNWKnc8jO++/xg4d36Qz6HEf9xYWAh0f77HYOad16HRX6hRVQ+1EPVyq+un2b\ntWEPpAgCuN24QDbs8+oCDbfGcBD1GCQJ725dwynRoNa9AF9u0tGzlw05zahx96VDrcQaVdmwx95P\nk7kBcZrRb+70j9if0qufxWHcp7N/n9v1rYWBO06SaY7iPk0vLFXO8uJZRbt4v9vlsHl48vUUQetT\n8dIEU45ACllKiAl5z6TMInojYqPRUfGHzyP2jw/ZKPHQ+mR7ScxRwVAaZxDHhUNpRJplqOHSFGVI\nMk21RMM9QmPwpCpkOJ/YntFLnTtE2Vc3csoE4Dinh5mLki7xkoI22VLbMwD2edNLR5ZqsiRd/Ivn\niO/5/Pb+p8jDu/S6Xf7M577yTIWuL1kwWSwWy6vFKtrFnze2T2+xWCyWlcIGk8VisVhWChtMFovF\nYlkpbDBZLBaLZaWwwWSxWCyWleKlC6ZlX8ullFFtrNQSy5kvu+S3EAK5xOu82RIutqcpN24mKMMy\nK4UbDNkSBcWS57uMB+9ZlFuWpbdml2u3vAS8VMGUZJrW+iVea144cZctoup4fGHzOn/29S/yubXL\nuAWDpuGGvNXc5t/7t/4cX2i9Uzhobl+7wb/+8/8KX7v9Oa43NguVAbhYa3Jxa4vb126wVSs2H8CR\nilsXLvPGrdt87sZrbFTqhcqFrseP33iTn7rR4u21S1Qcb3EhIFQeW0GN9x7foZ/GhZt+Tyoark/o\nOFQLbgtyBdHjfof/+1678GRlgDRLedw/ohdHpeLJl+rE91eGXhrzw6MdjqJ+qYDylcObzW0uhHVU\nwZq6UrEZ1FBClpbXAhwnA9JMn3uQWixlWIl5TIvkltpkdJIBqTEoqfjcxhWuVNf44cFDHvSmy1od\nIble2+DHLtyg7uXOtV+49aN8cHSJ33n4IXe7B1NKQaActsMGF8MGrlJwtc6//+/+eb71B9/mN3/r\n/+Pj+3enlttsrvNjn/88X/7jX0WpvHHbrDa5tPuQH+7eZ2/QnVpuPahSCysI10EIgee6bFYCagcV\nHh/s04mmN8iXGhtcvHCBWiMPoyAMqTdq7O7scnf3EYP0rN5GAG9sX+Urt9/m6kZub68HFS5VGnxw\n9Jg7nf2p9gKFoDnUEWUYMuBbjz9lK6jxRvMCckbYKwSB4+FIeRLsDvkk1kinDPT0SYMKQTeN+XRM\nAvtpZ58vXbhJa+1Sfl6mkBnDYdRjZ/DEpt7vxzS8EE85M68xR0gC6eApZ8JDt+i6TLOUnd4xx2k+\nmfpB/5DdwTGXq+sEzmzLvSvUhAT29eY222GdT4/3OUqmT5SWQM0N2QxqJ/s/qlsROezo59oYjuIB\ngXTwXRe1xIiAxfK8ES/qzqnVat0CPvwH//gfcfnqlbwynP2A9dKY/gyHmDGGu519Pjp6zOGYfPRC\nWOfdjatcr29MLZeZjN99+BHv7d2dKHcxbHAprFP1phu44zjmm//0N/jdP/g2B53cm+e5Hu++/TZ/\n7Ke+RnNtuvG7n8S8/+guH+4/IhruS+h4rFfrSNc5CbLTpFFC7+CIB/uPTzQ+zbDCpc0LbGxuzlSA\n9Lo9Hu084u7+4yf7Vl/jizfe4N3rr820TT/oHvLR8e6EdHXNC1FSzm343mhc4FKlORFqoXLxpINS\n0+tojCHNNIOhb278+58e7zKYYYjwpOJPXHmLK9W1if3oJTH3evszh/2kEDS9ysQxkwgC5RAsMHCf\nvi6nBeBpmm7IZlibMJBLIQnV2QAcYYzhYe+IB72DidCuOC7rfpWqO9sMX6Te06g6Pp5S1kB+vhQ6\n2KM28i//rb++0hNsu0fH/Mkb7yxjfph5HFYqmMaJs0n79zzSTPODg4fs9jvcamzx7ubVmXfx43Ti\nAb95//vc7x2yHdTZCKqFPqD3Hzzgm//0NzjqdvjKV7/C7TfeKFTPx50j2jt38yUlggA5o9E+Tdzp\ncXhwQD2osLW1hRcsVgIZYzjY2+fx/h63Ni/y1dc/R1BgzSmdZXx0/Jh7nUNcddYoPgtHSN7dvErT\nDQmUg1OwsUszjc4MvTTmcf+Y3Wh6z/I0VypNvnLxNqHj8ah3OFfoO06oPKqejycUgTN/6YozGENP\nJ9zrzg7A01wMmzT9/JiEU0zl00i05tPOLodxn7obsu5XCgfH6LfKfKqlENRcPx8etAF1Hthgypl5\nHFZiKO80vTSiP2OYZxqOVLy9cYWmG5RqaGpewM/f/FH+cOeTwg0bwOVLl/jzf+7f4Sjpk5YI9q1a\ng8BxeW//XqkGwKtVeGtzq1QZIQTrmxv89Bs/St0vfqetpOT15jaOkNztHRbeZmoyvv34U/70tXdw\nneKXlSMVjoTvHTygv2DdrXHu9Q75Pz/5I7544UbhMgB9HRNkLrWwWqocwO6gy24028I+jYf9Q9b9\nkEoJv6CrFK81tzmMejNN8bNY5jYzM4bjeMCaX1zMa7E8T0oHU6vVagJ/B6gDHvBftNvt33rWFVuG\nZe/2liknhMjLlWw4Tsotsb1leFnKfZZ5qmNpX1J45TlPu3jge6XfRO51i41ylGGZHtN/DvyTdrv9\nV1ut1lvA3wO+/GyrZbFYLBY4P7t4v9fjp9/64lKW8Hq92BvBRVkmmP57YPTwxwXKrbdgsVgslsKc\nl128e3RMs9l8pstXLMvcYGq1Wr8M/Mqpb/9Su93+vVardQn428B/9rwqZ7FYLJZXj7nB1G63fx34\n9dPfb7VaP0o+hPcX2+32/7NoI61W6xvAry1ZR4vFYvlMY9vISZZ5+eEd4H8B/u12u/1ekTLtdvsb\nwDdO/Z1bwIdlt2+xWCyfNWwbOckyz5j+G/K38f5qq9UCOGi323/2mdbKYrFYLK8spYOp3W7/G8+j\nIpBPCo10SpxpJGKqHmcaArgQ1Km6PrFOGRSck5Rmmr1Bh4rrYcgtE0WQCNbDKhtBlQe9I46TYh63\nS2GDL9/8PL+QDPj77d/mk+5+oXINNyBULkpKOgUnHQNcqjTRJiPRKY4sPrvfk4qb9S0qjs/7hw8L\nb6/m+vzzRx9xs75xxswwD1dI3t24wsfHuzzqz7YpjFNRLtfqG/STeK5h4jS+dJFS0kkGw2O6eN6b\nMYajuE8nGeAKRVJCYusIyQdHO2wFNa7WNgpJeo3JJxzrrJxkV5CbHKSUDNKYeIY94zRSCKol5lmN\nSLTOnYlCUHGKHUuLpQgrM8E21pqBTiY+9BKBWeATb7g+G/4Tf5gSLp5S9JKYdIY92wyVMgdxnzjL\nX8MMHJfQcTmMenMnzTa9AE86aAxCCK5Um8RZjY+Pd2faAFyp+KnLb3KltoYSks2wxl/80p/m2zuf\n8nfe/60JJc84DpKL1QaxTnMtk85VP1LkLrlZ1Byfa7V1MgyJ0RwmmtDx8KWDmjOPSiFQUp0ck62w\nxmZQ5YPDHR7O0e+M6pSHZsR+1OVR/5jXGhdo+uHMco7IVUeJyVBS8lrzAperTb63d59oxjERCG7W\nNwiVi8bQ1wlJpglwcYScqWkSCNb8J0qiKNMkWbZQSTRIY/ai7sQNgSMkxoBmdnBIQA1DLNUZd7sH\nHER9rtTW2AxqU8sYY07O9fi1VEQtFCiXwHFOjCdV18fPNN0knnuDV3E8/BmKpFnoLKM/HnwGjmKN\nX8JuYbHM44UHkzYZ3SQiytIzH5/RB0oh0Kd+6grJxUrjTKMihMARiroXkGhNN40mSvaSmP2oM7Vh\nN8CaXyXJ9IRDDyB0XKpOQEY2URdDHjxvNS9yGPe53zucKPeFzWu01i+fkXq6yuErl27TWr/EP/n0\nO3zzzncnfr4d1nGkPOMJHH1dc32SNCU6FeS3G1v4yjkTyv00pk9M3fVxUGd6GL50iLMUnU3OlxBC\n8MbaNlfTdb6zd3fCYecgCV33jDrKAHe7B+wOOlyrrfNGc3vSGQcoqaYGcuh4fGn7Jo/7HX5w+Gji\n3F0M6qyHNTIzeQ5Sk9FJInzp4CsHJSfVOnUvwFfu1OurN7wZyiWuT85RZjJ2Bx2O4sGJp3B8e8DM\n3pMrJKnJzvysm0a5OsvvcL2+STh2TaRa00+TqX9vnqzVEZKK6+OcCmQhBK5yaEpFpNMzowGeVISO\nV2p5FmMMA50QpemZsDMw9B7mYe/PkdhaLIt44cHUTWPCbP7kMY1BkN/1GgwXgjp1z5/rwxNC4DkO\njpIM0pROPGA36nAcD+beQWYYlJRcCGr00phBmrAWVDBANucOOcNQ9wLqXsDD3gEVJ+Ar27dp+uHc\nO8iGH/Jvvv4lvrJ9i7/3/j9nP+7R8AJ6aUyqZ2+vk0Q4QlJzfTpJxOVKk/WgQpplM3uKAMdJhCsV\nFXLrt68cMgPRnHNgyHuUP759m8f9Dt87fEDN9Ym1nuszHOiUHxzu8Ljf5XZ9kyu1NTzpkBo9s5c4\n2t5mWGM9qPDx0R6dOOJqPRfkzltDKspSoiwlVB6eVFRdn+pQxzSvx5FkGUkW42cZgVT00oj9qD/3\nmAAkJh9ylkKQmmyiBzhv3/Ie2ICtsM7V6nre2BdQcI3vgyDvFbkLhmiFEASOiysl/TQhNRlV18cp\n6cWLh8N2p0P6NNpkdNOYWOsJg7rFUoYXHkyLLvQRhnzRuMthg9oM+/c0pJBUXI8PD3c4Touv6aMx\n+I5L6HiFn3WNuF7b5Atb1wuPuQshuNHY5Bdu/Sj/6w9+t/CzrlFP4Uq1Sc0NSAs+k0gyzWHWZyuo\nFX4OAXn4boRVtgZVHheUrQIcxD2+tdvjYrVZ6vmMFJJbjc2pvZZ59HWMFE9CqShRlnIc9ws/M4T8\nmGTGoIbhVJQ409zrHuANl9soS90r54VUUlF18+Asuxhlmmk6JY4JDEM7FTieDSZLeV66xViWWeEV\nWHYB26W3V8RufhptstIhCPmQ0jKUW2ruCcveBS9zLJder3jJ873sCsnLnO+n2d4yu7fsCsnLngT7\nqMmyLC9dMFksFovls80LH8qzWCwWy2yeh118mkX8eVjCl8UGk8Visawwz9ouPs8i/qwt4ctig8li\nsVhWmGdtF18li/gs7DMmi8VisawUNpgsFovFslK8dMGkswyzxHLTy7zirIYTestiDIUmTJ6m7vrU\nHK90udHkzrIoWf6FcQEn+qcyBMpZ7rwJiVriveNlrxMpJGqJl7GNMUu9wr1MHYHCc9aeBcu+0q4z\ns/T+WV5tXngwOQXn4DhCUlMecabpJhG6xMRQgLfWLnKjtokviz1Wc4VCY9DG5I1jgWZHkE9e/d7B\nff73D36fT4/35poKRmTGcBQPQAj+5Rvv8lpjq1BjXHU8rlaaVByPzBhCVUwDU3cDPr95lS9duMmb\naxepu8UmogbKpe4FfH7zGj+2eY01b7YHb5wr1TW+sn0LJeUwaBZfdoL8HGQYqq5PbWgrWMToPN3p\n7vOtRx/RiYtNDJXk87pc5VDzQoKCxzK/NuSYpqjYRypULpfDJsHwRqRoqGUm4yju8Ul3n/2oW1r0\nWgZjDHGanngCywSvIJ9kexj3STJtA8pSihf+8kPN8agqj0GWTp3dLxFnRJtxpoljXUpAKYTgSm2N\nC2GNTzp77PU7Z/x7kDc0mTEThoJFbrQR97uHHA1nyGuj+Y273+NS2OArF19jbYqaaGRTf9g/PhGn\nNvyQP3G1xc3Dx3xn/z4P+0dntuMKyXpQper4J72XbCg09aRCIKbqdHypuFJdp7V+6aQHuRHUWPOr\n3Ovus9M7nlrOlYpAuThjDrpr9Q22Kw0+ONrhTmefwZQe4rpX4VZjc8I0Pn4sUzPtDAxvCsZcc0II\nPOWgkCRGzzRjKCE4iHonAtgo07y3e4cLYZ1bja2ZvWYlBNrkbhEARymUlHhSMdDJVDuGRKCEmNAP\njXREIzXRtOvZFYqGH7LhVyeuhyLNdl/H9NIn7sTHgy77UY+LYYPKM5SnGmPQJqOXRBNC43nOPk79\nbPTzzBiO48FSbj7Lq8sLD6YTl1eWNwLjMlf/pEGc3qCMXHZV1yu8rIOrHF5vbnMhrHPneJ+jJJe1\nqqHzbJ7nLDEahUBIcTKUIoDDeMCDU/LWEQ/6R/zDj77N5zev8vb6lROZa6I1+3HvjCx2xI3mFlcb\nG/zR7l1+cPDw5K513a/QdEM8Z/qpGzWigXJJM01qMgSwHTZ4a+0iTb9ypowUgmu1DbaCOnc6++wN\nOmQYJILQyZ160xoUTzm8vX6Zy5UmPzx6zP3uQe7VUy7Xa+u83rww89zlnrlclZMO66yEPLnTnoZS\nEmkESkhinZ6EqCMkvTQ+uSk4zU7/mJ2h7Xy70ji5TpSQuRB2yt28EALXcXGUQ5QmDHR88nujG5RZ\nNvlp4SuAuhuyEVQXKohON/xJpjlOBlPDQBvDvd4hVeWyFdYXuvMWkZmMQTp/6Zhp9TgdSKfJbyb7\nS9nMLa8eLzyYRigpqUofVzvEWYIrFX6B4ZQMw3ES4UlFxfFmLntwmoYX8rmNgAe9Ix5094kyPbWB\nOo3GQJYP73WTmE+7ezMbqHH+cPcu391/wNcuv0nTC9kZHC+8S1ZC8oWt67zW2OL3Hn1MmunCmQj6\n9wAAIABJREFUd8YDnSDJg+xGbYNrtY2F5QLH5Y21bfYHeQ9KCFHo2VzTr/DFretcDBvsDo65Vd+k\nMSUAT5MBWaaHPQxTyIeXW7NVHpZa0k0jHkzpVU7jg6MdPuns8SMbV6i5QeHtBcMbn0Eak2ZnreGz\nGIVvoFzW/Wphx+PoutBZRicdzF2GZURXJ3Q7e2z6Vda8sPDn4GSbxky18RehyLIcI0Y3kzXPt4JX\ny0xWrl/tKUXdDQqF0jhxwWAZRwjB5WpzqQXO4kxzr3dQKJRGJJnm9x99xKMCoTRO3Qt5e+0SVdcv\ndaeZAa83LnC9vlmq3HpQZTOol2o4hBBcra3x5e1bhUJpnLyHUe4OeuR92x2Um62eZprdfqe0k9BR\nClequWswTSMDtkqKh0f0dFwolMbZjbrLvbADdJYIpVHZMmTkIWixzGLlgslisVgsrzY2mCwWi8Wy\nUthgslgsFstKsTIvP1gsFovlLM/CLj5uE18li/gsbDBZLBbLCvO0dvFpNvFVsYjPwgaTxWKxrDBP\naxd/GWzip1nJZ0znLS9xl3hdXJBPAC7LMk67kw0uQZSmS+lgyiqfYKiwWcIRCBRSN51GCoGzhElg\n2cmdy+p/ohmmikUUUTdNY1mP3jJHZVknYbZkOcurwcr1mEaT9cpM2pNCUHP9pT/IrfVL7A96/PDo\nUaF5Set+hQ2/xhvNi9zp7vNHu3cK1fWdjSvcqG2gpKKfxvTnzK4fYYwhShMC5fLW2kV2ekfsz7BF\nnCZULt85uM/DwRFvNLfZCGoLy0Q6ZW/Qoa/jhQqmcQZJwmHcp5vGrHkBDT8sNA9KIRBCkBmDEuLE\nmrCILb/Kml/lreYlPj5+zHcPHiwsI4A31i6yFdaRQ0FvkfOms4xkaJqYp1I6W06TZhnfP3hI069w\ntbZO1fUXllNCUHV91v0K3TTmYf+o0HXpC0XF9emmMdpkhCU0RYJ8ovQgTeZaH0YYYxjohIFOkULg\nS6eU0SEymjTuEzreQhOG5dVj5a4Ic+rfRVSHF/bTKE6kkGyGNRpewP3uIfd6B1N/z5cOlytNPOfJ\n5N+b9U22wwbt/fvc6e5PLXcpbPDO5lUqY+bwiuMRKIfjZPrM/nwmfkqk0xOPHsCFSoP1oMad413i\nGY24Jx0EnATfo/4x+1GPK9UmrbXLUxuCzBj2Bh2O4v5JOGRGn2iCZgVGqnNR5+FYucdRl66OaXoh\ndTeYeW5Ogm+4/9lQmGuMmeoxBKgol4vVJu5QxiuB19cucqm6xr/Yu8uj/vHUcpfCJtfrGzhjbkHI\ng3HWtkY9wEgnJMMeZDa0OThzQtsYQ5JlE+X2oi6dZMBWUOdafR055SZKABXHx1NPtEI11ydUmxwm\n/ZmTiSWCuhtM9B4HOiXONKFyC30+hBD59t1cGdRNYtIZ+xfrlEGWjh0TQ6pjEpNvb94NyfgNpzaG\nThLh6pSK9ehZxliJYFrUO5r2c18qgmd8MbvK4Xp9g82wxkeHjzlOB8PtCy5XmjNn74eOy49duMHN\n+hbf3vmYro6HdXT40vbNM8LOEVJIml7ljAst1ZpYJzN7VI6UvNa8wHEScW/opwNwkLhKTS2XZJqP\nj/fY7Xe5Vd/kZmPrpE5HUY+DuDdVxDrS9pwODDOUcx7G/anb66dJ/p+b0PQCAvdJKI/+1rSGfZYw\nVwrBlco6FXf6siBV1+cr27fZHXT4vZ2PTxrNUHm8tX5pZjlNvlyFQEzYIBKd5g3wlH3LmB3aOsuI\nZpQb2UIO4x6XKk22wvrJOQiUQ+C4UwNLScmGX6Xm+Dzud06uL8glyLMsKZkxdNOYWGtCxz0J5UUo\nKal7PsnQ5P9EkaTpjzkKp+1fmml85RCqyd7aPJdekmmO4j6+cgkd13r0LKsRTIt6R+NWYzE2bPc8\nLmAxHEb53OYVDqIuu/0ua36lUACuBxV++mqLe919tMm4Phy2W4QrFRt+lW4ScRD1GOhkocctI2+M\n31y7yMPuYS7J1OnC4cFOGvFH+/d40D/itfoWKdmJIHYe44FxHPc5iPszpanjHCZ9umlE0wvZDGo4\nShZ6BnIizBWCNb/Cml+Z2miPI4RgK6zz9Wuf45POHmmWsRkuHr7MG8xcWqsznQ9RpclCbZEeOyax\njokzQ6+A1qebxvzwaIf9qMft+hablVqh69lTDperTfppzG7Uo6KKNeKJ0SSJxs+cwq7FkdHdkYpB\nErMf9xnoxcckA/o6JckyAungD0cXinzGBzohyVI7vGdZjWAqiiEfujsP+aMUgo2ghkCUehlDScn1\n+uZS29Qmo5suDonT+MrlsEBIjPN40KHuBqUX/UuM5igZFAqlEanJ2I26bIa1Ug/mNQZpYH1Gj3MW\njlRcq65zXPJYZhiiLJ25rMYsEqNJjSl97vaiLm+vXy7tJKy4PrHWpX1/kc4b/TK3c3LoJOzpcsck\nNdnMIdJ5aGMXF7Ss6Ft58zjvTr449y2W52UZ+Vi2mue5e8tva8mSyxY7x5N+3kNrNpYsL10wWSwW\ni+WzjQ0mi8VisawUNpgsFovFslLYYLJYLBbLSvFSvZVnsVgsrxpF7OLj9vDTvAw28dPYYLJYLJYV\nZpFdfJo9/DSrbhM/TelgarVaVeDvAmtADPyFdrt971lXbBpl/HnPCkdK4pJCU4UAIRZOkj1NzfGp\nuX6hCa8jJILtsEGkUw4KOvQAfOWghMCVkqTE3CJPKta9Cn2dEJUQttbdAEdIUlNu9k3V9ZBClp6z\n4wiJKyRJyXPgSIUnnQkN1CIUAqUc4swpdUwC5WKy5a5oR0q0Lrdvgtwq4o4pj4qgpCRUbiG34wRm\nyc+sncc0wSK7+MtoD1/EMj2m/wj4nXa7/VdardZfAP4S8CvLVsBTxR5zuVJRcdxCJoVnSc0LcqNC\nGqMXfGAkAt9xCIaKmJGaZpGAUwlJoPJZ8pthjbudAx71DxcGYsMNuFrfoOmFvLt1jW/tfMKHRztz\nG0cBbIV1rlTXqLg+OsuI04S+juc2ICMf22ZQw2korkcbvH/4kIe9o7nlfOVwIWxwpbaGEpJ0eEwW\nNeC+dLhYaXC5uoYQgijNhaGLwn7UEEopqbtBfg6yxeVGzjwlFTUvGG5vsYEjd9Hlup+aF3IQ9TiK\nenMnlyoEF6tNWuuXCJ3pqqRFVF0fTzr007iw+NaQmz+8TBGW+Cw5UnG1usZB3Ocw7i28kXGlIpAO\nnnJKCZkdIQkdr/Skb8tnj9LB1G63/4dWqzVKk5vAdHNpQULHp+4GMz9gSkgCx8V/gYoSTzm4UtFP\nE2KdMO1jOc3dN6p3L42nNsSCvOEet0ALIbhWX2e7UueT4132Bt0zvQVfOVyqNLlUaZ6Uc6XiJy7e\n5o3mNt/a+YR73f0zjUHDC7hUWZvQ9CgpCT0fV6uZgVF1PNb9KpUxM3bDr/DlC7e4293nw6PHHJ7q\nrZ0OwBGOcqhKhStTIh2faeQkuXHjRn1jQkvjO7mMtD88ltMautMNoBCCwHFxs+G+ZWfLyeEM1/Eg\nEUIQuB6OUsPQPttT8KRDoBycMUGqoxRblTpV1+cw6nI8pee77ld4o7nNhUpjyh6Uw1UKRwb5vqXp\n1F7ltFCIM00caypD9Y8sqCha9ys0XJ/dQZfjZHDmcyARufPvlCppXCk27bxJxMlnxXryLLAgmFqt\n1i9ztjf0S+12+/dardY3gXeBP/W0lRh9wCKdnjjK8kZ7daSOuQrGOwmakSR00V3eyL3nS4d+mpyI\nSRf1AD3l8MbaRQ4GXe529zlOIhSCjbDGjdoG7oyg3giq/EvX3uaHhzt8d+8e+3GP4KTXsj6zEZoW\nGJ5UNL3cUzftHAghuFbb4HJljfcPHnKnu0ek06kBeLqc7+QW6njMS1d3A67V1mn6lZnlKq6fB1Ty\n5FjOE4RCHr5V6eNqJ/exDcvNM4tD3lNwPJWXSxPiLB32bl38Oddl6HoEjksl7nMY5XLcULlcr2/y\nevPCM72ehRCEjje8vmKirNgxAeilMf00oebmmq8i9VJSsV1pUE8Ddgfdk9AOZB5I85yS0wLKV8X9\nfZZXB/E0XqpWq9UC/o92u/3Ggt/7BvBr0372zW9+k2vXrp18bYyhnyb5M5AV1uDHOiUzGX5BkSaM\nLaQnmGmEnlXufveAuhdQ98LC5dJM8zuPPqLq+qWGjHSWIYxhPaiW8rgdxwM+7uxysdJYKFydqKdO\naHgVrgyH7YrSHzasZTBDp11U8rmhMYY4TVBSFbZ0Q34OdKZ5o3mRwCl+zpcl0ZrOmKm+KK5Q1Dy/\n1PE3xrA36JJkurR01RGSiuOVOpafIc4c5Hlt5F/+W3994TOmP3njnZfxGdPMi22Zlx9+FbjTbrf/\nNtAFFj7tbbfb3wC+cerv3AI+PP27o57JqrOM/XjUU1im3JXaeulyjlS80dwu9VIE5D2MNTcsfWNQ\n9wJu1DdKvUwB4Ch3YliyKJ506FMumIQQOEIRUS6YhBCErl/+JQypuFnbOJdQgnz0QSSi4BKIT5i1\n9tI8hBDUPZ9OUn6FXrdkwH/WKdNGvgos8+Dm14G/2Wq1/kNAAf/Bs62SxWKxWF5llnn54RHwC8+h\nLhaLxWKxWCWRxWKxWFYLG0wWi8ViWSlsMFksFotlpbDBZLFYLJaVwkpcXwKMMUQ6xZGy1LwigFB5\nHInBQi3SaZaZ7ijInXh7Ua902eNkQNMLS70y3ktjYp2WenXfGFPaYTii6YUcJYPS5Y+TiMBxS83t\nWpY006VfFQdQS05wFUiUEAt1XacpYps4jTGGgU7w5GrPceynMWmWUfeCZ/L3ZtnFR0bxl9Eevggb\nTCtOovWJrkmQz58qM1O+5vmEziaHSZ/dweILOFRurkiinIAzHNoQpMideo/7Hbp68fwWST7nZmfQ\noZtEbAa1hXN+Eq15HOW/b4Ag0wutA5A32rmaSCOG255nfhhRVS5bYR1XKtb9CsdJn50CxzI/hoKj\nZEBfJ6x5YenwLUo+Mf2JrqnouRNA1fFLi11HuErRkCGJ1nTTaOE2naG9Q5UM6XFXYkR64qRcJWNE\nmml2B106Q13TcTJgM6g9tU5tml38tFH8ZbOHL8IG04qSZdmEYgbyhibSKUmmh/LQYm4xJSUbfpWa\n4/O4f0x3ivvNEYKaG0w0GIscZ3k5RdWddAR6yuFytUk/jXnQP5p6Ny2Hf3l8wmpPJwy6B9TdgK2w\neqaHYYxhL+pyFA8mvIqDLCXO9FRP26hcX+eN9qiUIffjyeHeTesDKSG4GDYmbgSUEKwNvYG7/S6d\ndLoJftSLGPVekkyzM+jQSSI2g+rS8tZpTBPcFgmlQLkEjvPUPTkhBJ7j4CjJIM0lvWd+h+UCMM30\nhH4KICO3wyRar4T01RgzVXDbTWMGnX3qXi4/XqaXCNPt4p9Fo/g4NphWjNFwxSwpJ0BmDN00Jtaa\n0HULD+/lgbFGL415OAyM0fCbO+dvTBemirmOtZHX7qba5Cjp83ish/Fk6OfsX84wHCZ9+jqm6VVo\negFCCLrJgN2oN9NKnmHo6YQkywjU0Gw9VEANsnSmgXt0jE8PR20FVRpz7BeedLhUadDXCQ96Ryeh\nMOoBzhra6uuEe90Dam7AZknl02mmNdpFcISk4nooIZ9pj0MKSei4eErRSyLS4TFYJgBP9wCnkZqM\n42SApxXhKYHyedFPYnaj7swlQTR5aPXShHUvpD68ni3zscG0QuhM002KL2OQGE0S572nsKDGaSSV\nvak2zxjBC5Unb5RD1yt0B6ikZN2vUnV87ncPSYwu9DwizjQ7g2M6cT8fRy8wLAjDY5Jq3DRBCEFc\nsNEehXQgXbYr9ULPrYQQVByPm/UNHvc6dNKokLIog+HwXszFsLFU76mXRHMb7an1hROj+PNqHEfK\np7qXD+9JKUoHYKJTeuniJUdGxJkmjQf5vjnn16Q97B1xXNBLGGcpDwfHHKcRV6trz71uLzs2mFaI\nxGSFQ2mS8o2MkrL0gniQ93H8gksljOMpB0T5NeD6WbrUixgJWekV6gxQcd3SHkQlJEKK0h69JMsQ\nS+1dXrbsKw4GcM9paYnR8N4yJJku/YJJhuG8OyK9dP4aZrPKWBazuq+2WCwWi+WVxAaTxWKxWFYK\nG0wWi8ViWSlsMFksFotlpbDBZLFYLJaVwgaTxWKxWFYKG0yvNOWdai/P1pZj6TqWfQ/+6Te4bMFz\nwyx7TCyvPDaYVghPKLySJgCJWGr+hs4ysiwrPYvGWUJfY4wh0Sm+UKXKS6Du+DS9sJRbTQnJmhvS\ncINSF7hEcBwP8vkpJRpVnWlcofBEuXPnCkU/TdBZ8Tk7xhiSTJeW8kI+222QxkuVLUtmMvppQqzT\n0gHlKQe35LFcVkL7NDS9Cm6p61nQdMPnWKPPDnaC7QohpaTmBRPi1nn4JYWukOuMojSZqVCZWTcE\ngePglxRn6iyjl8QkRuM7Lk6mGOiUKEvm3vOHyp1wyq15IY8Hs910I2qOz2ZQPZkk20gD9gZdenP2\nd1zomhnD3e7Bmb8zjZH1vZfGIKDm+gsVSJAHZyAdfOVghOEw7k9IcGehM5039lk5BdHIdWggP/Y6\nper6uDN0Uk9DfhMyJnTVIwWSjxKi0PYcqah5klin9HUyN0gl4oUJXTeCCg3X53GUOxDnXc8V5bEZ\nVBcKiqdx2i4e+B79Xnlry8uEDaYVxFUKRwYznXmukISOh1NCXjm60+4mcellEXylqDj+MwlAJSVV\n6eFlikGanFEGuVJNtXC7QzHscTJgf4ozz5cO60GFuju51EDoeFypuhzGAw7iHsmpRn3kyDttGe+k\nEZ1OxIWgSv2UM88YQzo8luPnRgiB77h4xjkjjYU8IHzpTDWh93XCQCdTA2MiAGcwT7R7+vsG6CQR\njpBUXf+ZOOZGy4n0pii1UpNxFPdLOfNOjqVyTpY3Ob0fnnxxjrwRjlJcqjTpJTF7U5x5nlSseRUa\nT+HIG7eLn1jFbzY/c0bxcWwwrShCCELHw5MOg6FlXApRyioOeYORGTN08BW70x41co6QVJYIwDTT\ndBYEoCsVjitPehiZMdTdvJei5gxn1t2AmuOfWMYN0BgKUWcdEyEEa35Iw/N53O9ynAxGtV3o7dsZ\ndNmL+lwK64SOlw9RJWcD9fT2Ko6PJx36Ou/heEIRKHeuCftJYOTGdinE1ACcVRaenLsiy16kJuNw\nLDAExXo0E9sdGtRnWcXHGeiESCelLOMjt6OvnBNhrRremHkv2Co+TsX1CB2Xg6jPQdLDZOapreIj\nxu3in3Wr+AgbTCuOkpKqF+BrjZLlbdD9NFnYYJzGAKFyCEoOEwJ0ksGE+n8e4z2MiusTFhzmEEKw\nGdRouCFgcAu67aSQbFfqqL5gLy6+mKE2GXd7h6y7AbLEM0BHKmpCorOs1LlLjeYw7uMIcWLoLoo5\n9W8RBjoh1glNv1JqW8CwF754HaYRhrw3WjEuQUHxMOTHsu4rEq1xlvgcnAdCiLzX7vloY556HaZX\nGXvkXhLK9FrGWWY1UwBHLif7zJbYnBBiqQ/xsuvwLDv0kxiDX7KMEAJXqaXOQtlVYZ+G5be03BW2\n7PZe9NpLRXCksg3rU2LfyrNYLBbLSmGDyWKxWCwrhQ0mi8VisawUNpgsFovFslLYYLJYLBbLSmGD\nyWKxWCwrhQ2mJTDG0E/jfP7GiosqfeWW9o4B9NOIRJdT3wBUHBdR0sAXKKe0BNUYQy+J6C1xDmqu\nz3rJOTtKSJp+WNplqIYTRMs6Bl2hqDp+6cmZvlRUHa+0AzFQ7lIvfjvDicNlEICryjc9aabpxAPi\nU9aPRXSTmAe9QwZpufl8lheHfd2+JPHQY6eH2pVEawLHxS9hYzhPHCmpeX4hGwM8MQakxnCcDPB1\nrn2RBef+uMqhKRXxAoUOPGm0lSg3YTJKEwY6fXIOsoxAOfgFJ+g6UrHpV6m7ATv9I/oLGroLQZ26\nl9fTGINvMrpJtFCGWnV8vKHhwJVq0iE3A4Gg5no4Qy2Rq9RCHRGAFILa2LF0lSpkYxhZJpad2yWl\npCK9XB2URAv9jkWcgKcxxtBL4xMNVZxpXJ1SWaAjSrVmJ+qcTADuJjF1N2ArfHobg+X5YoOpIDrL\n6KfxGYFmhjlxeYWOt5ITAPOGahgYaUpPT2/kpmlsokyTxINSokwpBIHj4ko5VToqoJSWZoTONL00\nOeO70yajm8bEWhO6Lk6BXs1oUu/V6jrdJOLh4PhM0NQdn82gNnFOhRC4QtH0wpmBEUgH33UnjOhC\nCDzHwVFyZmCEysN3nIlGU5wcSzX1+oPJABwhhSQcueamBMbpAHxaHCmpe8FME8QyAWiMmSlyTTLN\ncdzHUy6hM3ldGmPYj3ocxv2J/c4wHCZ9+jqm6VVoPoW/zvJ8scG0AGNM7jubIlMdJzXZUj2M80QK\nQeC6uGoyMMbt09PIMPTThETrUuGrpKLqyryHEUdkmFIizxGjodNoishznMRo0ljjK4ewoE5JCEHN\nCwgdj8O4x27UwxWS7UqDcE4QTwuMIj3AJ4GhToSnrlBUXHeuI1DJXLg63lvzpUNwKgBP19ER4kxg\nLNNrKYIQAk85OFKdCHwFgqrrlTaZp8ORiWRODywj1yklWTp05zl0k4i9qMtgTi84zjQ7g2O6yYCN\nMYP9qjJuFzdpuWHMlxUbTAs4jgcLhyfGiTJNGg9o+OHK3o2NAsMMvXZFnyyMwrchgkK9EhjrYfgh\nmTHIgksfjDDGcBT3C+t5Rks7pFlGvcQdsZKSdb9KzQlwlCwcnKPACLMMWdDhlgeGou4FpTx64701\nbbLCQ6DjgWGMee42bikEoeudyIbLBuAgjemVeB6kjaGTRMSDDp00Lnw993TCoHvIteo6vrO6TeHI\nLt7v9fiFt774mbaKj1jds7EiLLOo2mq/DpEjhEAggeKhe8KSPrxlFnMzLO+MK3tjMBpuW2Y7aokh\nXCHEUg7EUbCVRQrBUqtKLsmyAbjsQoZlbrJOtoU5z0OyFCO7+MgsvoqjMc+az/4eWiwWi+WlYuke\nU6vVehv4LWC73W7Pf2XIYrFYLJaCLNVjarVaDeC/AwaLftdisVgsljKUDqZWqyWAvwH8KvDZXnje\nYrFYLOfO3KG8Vqv1y8CvnPr2x8Dfb7fbf9hqtYDSk8wtFovFYpnJ3GBqt9u/Dvz6+Pdardb3gV8e\nhtYl4P8Cfnbe32m1Wt8Afu1pKmqxWCyfVWwbOUnplx/a7fabo/9vtVofAn+qQJlvAN8Y/16r1boF\nfFh2+y8DL8Pr4jlL1vQc+8iC6UaKRRjyOVCrOpdsxGhu13kwcgqWPSbLlrMU51VrIxfxtK+Lvzxt\n8JKUFXAqIXOR6UvwIa66Pr4qfm8iyIWrs0wDzwMxZlMoXIahpiiJ0NkS87TOAWMMUZpwGPWI0/S5\ny4C1yeglMcdxnzTThbenM00njobHsrzUdxlCxyNQTqn7H08qLoZ1Gm5QuFFTQrDmVQpPFrecH081\nwbbdbr/2rCqyqrhK4ciASKcM0mSmlkhAKRXOKjBq9H3p5MohM7vhcYUq7KF71njKwZWKgU6IFqih\n4MndUpxp4rhPxfFWRrJrjEGbjM6YBLaTRjhaUnG90kLbItuLh/LYEUfxYKEaKhsGZ3/k9DMQx5rK\nUP3zPHt5Qggqw5umaW7EcRwhJzRZFx2XRhqwO+g+qfsUqo7PVlDFK3FjZjk/7FkpwMiLln9QnliO\nR7hSUXHmu85WGUcpalJOFWYqIUuZu58XQojchyadqTLTecN9vTRmoJOT3u+LCiidZQzSmGhKQ5ua\nrFBgFGVaAI4z0AmRTs7IdI0xc030vTSmnybPVAA7CyUVdU8R6YRBmkwYQCSCwHHwp/gMQ8fjatXl\nMB5wEPcmgs2XDutBhbobPLd6W54eG0wlmOxhxGSwEo32s0AIgT+0UfeHpm5PqZXrASopqXnBcPmR\nvNGdJ6AdkRnDcTzAk4rQcZHnGFCZMSQ6pbtg6QqYHRhlmBeA4xjy3prS+XUNYiiWXVTOcJxEQ/ms\nV9p/WBZfucMbkoRYp7hKEqr5omQhBGt+SMPzedzv0ktjaq7PZlBdqevZMh0bTEuQ9zDyO67P2kU+\nGkYJndV+ccBTConPUVJujnecaYSG6jneMfeSaOpyFbMYBUZDBEu59I7jwcLhznG0MRzF5efKJ0bT\nS2Lq/vM/lvl16Z1Z4mIRUki2K/WX4kWYWezv7uKHPv3eqzNt1AbTkrysF3lRXob9exnqaHm2LHvO\nX+ZrpXfc4SfWrtO82XwlzOJgg8lisVhWmo2tTZrNJs1m80VX5dywdnGLxWKxrBQ2mCwWi8WyUthg\nslgsFstKYYPJYrFYLCuFDSaLxWKxrBQ2mCwTGGPopTGHUY9+Gj93h9vTIIWg7gWl9DiOkATKO5f9\nMsbQT2OSJXx9FcdDzZlAOo+6F+CK4vOfJIKa49NwA1SJY6mEIHTdlb5GLC8n9nVxywmxTumn8Yn6\nJZ9pr3MV0BITPZ83QghcoWh6IfECs4KAp7IplCU3U8Ro8ySUiljSR2aKp9Fb5XYMf65aaMRpj2BD\nhmfceqc572NpefWwwWRBZxm9NJ4qy8x9awM8neuJlr2Lf56MdEqOVFNVPLl/zj2X5SV0lk11+cGT\nUJoWUHKou3pWLj8hBK5yaEpFnKb09GRozwrA/Fg6OEoSJQmDbNIL+axcfhbLPGwwvcLkQ025m23R\nnXycadK4j++4BFPEmauAkjK3Ug/lpRJJ1T2fMDXGlLafj3ie9nMpBIHr4ipJP0lIyQoFoBKS0PXw\njEM3iRCI52I/t1imYYPpFaaXRkS6uMMtIx/ec6XCKfEM4zwRQuAMh/dGX58H06zzRai5/rksvaCk\noupJDBTuOY6OZeOcj6XFYoPpFcaYJRual+BZ97k3oksvBnx+9RRiua3ZQLKcN3ag2GKxWFaYV8kq\nPsIGk8Visawwf/KNz78yVvERNpgsFotlhanX63MXRfws8mrtrcVisVhWHhtMFovFYllSo9aEAAAF\nuElEQVQpbDBZLBaLZaWwwfQKI5d9C9i+PXyG5a0SL8G79+eMzrT1773i2HlMrzAV10cJyUCnE063\nWSghCRwH5yk8bp9VQtdDSskgTYofS+XgnsPk2peFzBgGacJAJzhCnZu1w7J62E/FK47vuHjKoT80\nF0y7TxWArxxCx7OTLefgKwdPqrmaJ3ssz2KMIck03SQ6OWap0RzG/XP1HFpWBxtMFoQQuWNOOfTS\nZELm6kpF5Slt168S+bH0hsdyUozrCkXourbHOcQYgzaGXhKRzuhlDnQe8lXXx5XWZv6qYIPJcoKS\nirqniIbLXXiOg2+HmpZCSUndC4h1SpSmeErhO+6LrtbKkGUZA50y0MnC3zVAJ4lwhKTq+nZ47xXA\ntjqWM/iOaxvRZ4SnnHORtL5sRAVDaZzUZKRGo+w7W5957Bm2WCwWy0phg8lisVgsK8WLHGNQAA8e\nPHiBVbBYLC+CQZostX5V6Lp48uUeGv36179+C7jTbrfLH4BXhBd5hi8D/OIv/uILrILFYrGcOx8C\nt4GPivzy17/+9dvtdrvQ735WeJHB9DvAnwDuA8WXUX3+jC6aVWWV62frtjyrXL9Vrhusdv1m1e1O\ngbJ3hmWL/O5nCmHVH5O0Wi3TbrdXdrLEKtfP1m15Vrl+q1w3WO36rXLdVhn78oPFYrFYVgobTBaL\nxWJZKWwwWSwWi2WlsMF0lv/qRVdgAatcP1u35Vnl+q1y3WC167fKdVtZ7MsPFovFYlkpbI/JYrFY\nLCuFDSaLxWKxrBQ2mCwWi8WyUthgslgsFstKYYPJYrFYLCuFDSaLxWKxrBQvtz/+OdBqtb4K/Lft\ndvvnXnRdRrRaLRf4n4GbgA/8lXa7/Q9fbK2e0Gq1FPA/Am+Rr4T9n7Tb7X/xYms1SavV2gZ+D/h6\nu91+/0XXZ5xWq/X7wOHwyw/a7fYvv8j6jNNqtX4V+NcAF/hr7Xb7b77gKp3QarX+AvBLwy9D4AvA\nxXa7ffTCKjWk1WpJ4H8i/0xkwH/cbrfbL7ZWLw+2xzRGq9X6S+QNrP+i63KKXwR22u32TwM/D/y1\nF1yf0/yrQNZut38K+C+B//oF12eCYbD/DaD7outymlarFQC02+2fG/63SqH0s8Afb7fbPwn8LPDa\nC63QKdrt9t8cHTfgd4H/dBVCacif+v/bu3vXKII4jONfFUQ9NBaKIApWeQpBBa1jpWIrtkJSRWKR\nTjBCEBuLgIUWFirGgCIo4gsWHsQQNY2tjY8vf4CgpDEkiorFzOl5nFjOLPw+cLB71QO3s8/tzLIL\ntPKYOE9lY6J2UUx/ew8cA2p7GvBdYDJvrwaqesGY7YfAaN7dBSyWS9PXFHCF9IqV2uwFNkh6Kmk2\nX7HX4jDwWtID4DHwqHCeviQdAHbbvlY6S5dlYEDSKmAA+FY4T6NEMXWxfZ/KTvoAtpdsf5G0kVRS\nZ0tn6mX7h6Rp4BJwu3Cc3yQNk6422/mr2v50LAFTto8AJ4FbeRqoBluB/cBxcraycf5pAjhXOkSP\nBWAd8IZ0tX65bJxmqWUAhP+QtBN4BszYvlM6Tz+2h0lz6lclrS8cp2MEOCRpDtgH3JS0rXCmbm/J\nJ3zb74DP5Lc7V+AT0Lb9Pa/LrUjaUjpUN0mbgUHb86Wz9DgNLNgWf467tYUzNUbc/NAA+UTaBsZs\nz5XO00vSCWCH7QukKYyf+VOc7YOd7VxOo7Y/FozUawTYA5yStB3YRD1Tji+BceBiztYiFWdNhoDZ\n0iH6aAGd9a5F0s0ja8rFaZYopv5qe7LtBGmeelJSZ63pqO2Vgpm63QOmJc2TBuC47a+FMzXFdeCG\npOd5f8R2LaX+RNKQpFek2ZUx27WNjUHgQ+kQfUyRftcXpDFxxvZy4UyNEU8XDyGEUJVYYwohhFCV\nKKYQQghViWIKIYRQlSimEEIIVYliCiGEUJUophBCCFWJYgohhFCVX4+TYIANUqwPAAAAAElFTkSu\nQmCC\n", "text": [ "<matplotlib.figure.Figure at 0x10c649208>" ] } ], "prompt_number": 15 }, { "cell_type": "code", "collapsed": false, "input": [ "data = Data([\n", " Surface(\n", " z=[[27.80985, 49.61936, 83.08067, 116.6632, 130.414, 150.7206, 220.1871, 156.1536, 148.6416, 203.7845, 206.0386, 107.1618, 68.36975, 45.3359, 49.96142, 21.89279, 17.02552, 11.74317, 14.75226, 13.6671, 5.677561, 3.31234, 1.156517, -0.147662], [27.71966, 48.55022, 65.21374, 95.27666, 116.9964, 133.9056, 152.3412, 151.934, 160.1139, 179.5327, 147.6184, 170.3943, 121.8194, 52.58537, 33.08871, 38.40972, 44.24843, 69.5786, 4.019351, 3.050024, 3.039719, 2.996142, 2.967954, 1.999594], [30.4267, 33.47752, 44.80953, 62.47495, 77.43523, 104.2153, 102.7393, 137.0004, 186.0706, 219.3173, 181.7615, 120.9154, 143.1835, 82.40501, 48.47132, 74.71461, 60.0909, 7.073525, 6.089851, 6.53745, 6.666096, 7.306965, 5.73684, 3.625628], [16.66549, 30.1086, 39.96952, 44.12225, 59.57512, 77.56929, 106.8925, 166.5539, 175.2381, 185.2815, 154.5056, 83.0433, 62.61732, 62.33167, 60.55916, 55.92124, 15.17284, 8.248324, 36.68087, 61.93413, 20.26867, 68.58819, 46.49812, 0.2360095], [8.815617, 18.3516, 8.658275, 27.5859, 48.62691, 60.18013, 91.3286, 145.7109, 116.0653, 106.2662, 68.69447, 53.10596, 37.92797, 47.95942, 47.42691, 69.20731, 44.95468, 29.17197, 17.91674, 16.25515, 14.65559, 17.26048, 31.22245, 46.71704], [6.628881, 10.41339, 24.81939, 26.08952, 30.1605, 52.30802, 64.71007, 76.30823, 84.63686, 99.4324, 62.52132, 46.81647, 55.76606, 82.4099, 140.2647, 81.26501, 56.45756, 30.42164, 17.28782, 8.302431, 2.981626, 2.698536, 5.886086, 5.268358], [21.83975, 6.63927, 18.97085, 32.89204, 43.15014, 62.86014, 104.6657, 130.2294, 114.8494, 106.9873, 61.89647, 55.55682, 86.80986, 89.27802, 122.4221, 123.9698, 109.0952, 98.41956, 77.61374, 32.49031, 14.67344, 7.370775, 0.03711011, 0.6423392], [53.34303, 26.79797, 6.63927, 10.88787, 17.2044, 56.18116, 79.70141, 90.8453, 98.27675, 80.87243, 74.7931, 75.54661, 73.4373, 74.11694, 68.1749, 46.24076, 39.93857, 31.21653, 36.88335, 40.02525, 117.4297, 12.70328, 1.729771, 0], [25.66785, 63.05717, 22.1414, 17.074, 41.74483, 60.27227, 81.42432, 114.444, 102.3234, 101.7878, 111.031, 119.2309, 114.0777, 110.5296, 59.19355, 42.47175, 14.63598, 6.944074, 6.944075, 27.74936, 0, 0, 0.09449376, 0.07732264], [12.827, 69.20554, 46.76293, 13.96517, 33.88744, 61.82613, 84.74799, 121.122, 145.2741, 153.1797, 204.786, 227.9242, 236.3038, 228.3655, 79.34425, 25.93483, 6.944074, 6.944074, 6.944075, 7.553681, 0, 0, 0, 0], [0, 68.66396, 59.0435, 33.35762, 47.45282, 57.8355, 78.91689, 107.8275, 168.0053, 130.9597, 212.5541, 165.8122, 210.2429, 181.1713, 189.7617, 137.3378, 84.65395, 8.677168, 6.956576, 8.468093, 0, 0, 0, 0], [0, 95.17499, 80.03818, 59.89862, 39.58476, 50.28058, 63.81641, 80.61302, 66.37824, 198.7651, 244.3467, 294.2474, 264.3517, 176.4082, 60.21857, 77.41475, 53.16981, 56.16393, 6.949235, 7.531059, 3.780177, 0, 0, 0], [0, 134.9879, 130.3696, 96.86325, 75.70494, 58.86466, 57.20374, 55.18837, 78.128, 108.5582, 154.3774, 319.1686, 372.8826, 275.4655, 130.2632, 54.93822, 25.49719, 8.047439, 8.084393, 5.115252, 5.678269, 0, 0, 0], [0, 48.08919, 142.5558, 140.3777, 154.7261, 87.9361, 58.11092, 52.83869, 67.14822, 83.66798, 118.9242, 150.0681, 272.9709, 341.1366, 238.664, 190.2, 116.8943, 91.48672, 14.0157, 42.29277, 5.115252, 0, 0, 0], [0, 54.1941, 146.3839, 99.48143, 96.19411, 102.9473, 76.14089, 57.7844, 47.0402, 64.36799, 84.23767, 162.7181, 121.3275, 213.1646, 328.482, 285.4489, 283.8319, 212.815, 164.549, 92.29631, 7.244015, 1.167, 0, 0], [0, 6.919659, 195.1709, 132.5253, 135.2341, 89.85069, 89.45549, 60.29967, 50.33806, 39.17583, 59.06854, 74.52159, 84.93402, 187.1219, 123.9673, 103.7027, 128.986, 165.1283, 249.7054, 95.39966, 10.00284, 2.39255, 0, 0], [0, 21.73871, 123.1339, 176.7414, 158.2698, 137.235, 105.3089, 86.63255, 53.11591, 29.03865, 30.40539, 39.04902, 49.23405, 63.27853, 111.4215, 101.1956, 40.00962, 59.84565, 74.51253, 17.06316, 2.435141, 2.287471, -0.0003636982, 0], [0, 0, 62.04672, 136.3122, 201.7952, 168.1343, 95.2046, 58.90624, 46.94091, 49.27053, 37.10416, 17.97011, 30.93697, 33.39257, 44.03077, 55.64542, 78.22423, 14.42782, 9.954997, 7.768213, 13.0254, 21.73166, 2.156372, 0.5317867], [0, 0, 79.62993, 139.6978, 173.167, 192.8718, 196.3499, 144.6611, 106.5424, 57.16653, 41.16107, 32.12764, 13.8566, 10.91772, 12.07177, 22.38254, 24.72105, 6.803666, 4.200841, 16.46857, 15.70744, 33.96221, 7.575688, -0.04880907], [0, 0, 33.2664, 57.53643, 167.2241, 196.4833, 194.7966, 182.1884, 119.6961, 73.02113, 48.36549, 33.74652, 26.2379, 16.3578, 6.811293, 6.63927, 6.639271, 8.468093, 6.194273, 3.591233, 3.81486, 8.600739, 5.21889, 0], [0, 0, 29.77937, 54.97282, 144.7995, 207.4904, 165.3432, 171.4047, 174.9216, 100.2733, 61.46441, 50.19171, 26.08209, 17.18218, 8.468093, 6.63927, 6.334467, 6.334467, 5.666687, 4.272203, 0, 0, 0, 0], [0, 0, 31.409, 132.7418, 185.5796, 121.8299, 185.3841, 160.6566, 116.1478, 118.1078, 141.7946, 65.56351, 48.84066, 23.13864, 18.12932, 10.28531, 6.029663, 6.044627, 5.694764, 3.739085, 3.896037, 0, 0, 0], [0, 0, 19.58994, 42.30355, 96.26777, 187.1207, 179.6626, 221.3898, 154.2617, 142.1604, 148.5737, 67.17937, 40.69044, 39.74512, 26.10166, 14.48469, 8.65873, 3.896037, 3.571392, 3.896037, 3.896037, 3.896037, 1.077756, 0], [0.001229679, 3.008948, 5.909858, 33.50574, 104.3341, 152.2165, 198.1988, 191.841, 228.7349, 168.1041, 144.2759, 110.7436, 57.65214, 42.63504, 27.91891, 15.41052, 8.056102, 3.90283, 3.879774, 3.936718, 3.968634, 0.1236256, 3.985531, -0.1835741], [0, 5.626141, 7.676256, 63.16226, 45.99762, 79.56688, 227.311, 203.9287, 172.5618, 177.1462, 140.4554, 123.9905, 110.346, 65.12319, 34.31887, 24.5278, 9.561069, 3.334991, 5.590495, 5.487353, 5.909499, 5.868994, 5.833817, 3.568177]]\n", " )\n", "])\n", "layout = Layout(\n", " title='Mt Bruno Elevation',\n", " autosize=False,\n", " width=500,\n", " height=500,\n", " margin=Margin(\n", " l=65,\n", " r=50,\n", " b=65,\n", " t=90\n", " )\n", ")\n", "fig = Figure(data=data, layout=layout)\n", "plot_url = py.plot(fig, filename='elevations-3d-surface')" ], "language": "python", "metadata": {}, "outputs": [], "prompt_number": 30 }, { "cell_type": "code", "collapsed": false, "input": [ "x = ['day 1', 'day 1', 'day 1', 'day 1', 'day 1', 'day 1',\n", " 'day 2', 'day 2', 'day 2', 'day 2', 'day 2', 'day 2']\n", "\n", "trace1 = Box(\n", " y=[0.2, 0.2, 0.6, 1.0, 0.5, 0.4, 0.2, 0.7, 0.9, 0.1, 0.5, 0.3],\n", " x=x,\n", " name='kale',\n", " marker=Marker(\n", " color='#3D9970'\n", " )\n", ")\n", "trace2 = Box(\n", " y=[0.6, 0.7, 0.3, 0.6, 0.0, 0.5, 0.7, 0.9, 0.5, 0.8, 0.7, 0.2],\n", " x=x,\n", " name='radishes',\n", " marker=Marker(\n", " color='#FF4136'\n", " )\n", ")\n", "trace3 = Box(\n", " y=[0.1, 0.3, 0.1, 0.9, 0.6, 0.6, 0.9, 1.0, 0.3, 0.6, 0.8, 0.5],\n", " x=x,\n", " name='carrots',\n", " marker=Marker(\n", " color='#FF851B'\n", " )\n", ")\n", "data = Data([trace1, trace2, trace3])\n", "layout = Layout(\n", " yaxis=YAxis(\n", " title='normalized moisture',\n", " zeroline=False\n", " ),\n", " boxmode='group'\n", ")\n", "fig = Figure(data=data, layout=layout)\n", "plot_url = py.plot(fig, filename='box-grouped')" ], "language": "python", "metadata": {}, "outputs": [], "prompt_number": 31 }, { "cell_type": "markdown", "metadata": {}, "source": [ "Stats Homework" ] }, { "cell_type": "code", "collapsed": false, "input": [ "\"\"\"\n", "Created on Wed Oct 29 21:33:04 2014\n", "@author: sarahbeckett-hile\n", "\"\"\"\n", "import pandas as pd\n", "from math import factorial, pow\n", "import numpy as np\n", "import scipy as sp\n", "#%%\n", "'''\n", " 1. Let r be a binomial random variable. Compute Pr(r) for each of the following situations:\n", "'''\n", "# There are lots of good ways to do this\n", "# Either make a couple of lists....\n", "Ns = [10, 4, 16]\n", "thetas = [.2, .4, .7]\n", "Rs = [3, 2, 12]\n", "questions = ['1a', '1b', '1c']\n", "#%%\n", "#...and then write a while loop\n", "i = 0\n", "while i < len(questions):\n", " n = Ns[i] #name the different parts of the equation for easy reading\n", " theta = thetas[i]\n", " r = Rs[i]\n", " factorials = factorial(n) / (factorial(r)*factorial(n-r)) #this is the first chunk of the equation\n", " probability = factorials*pow(theta, r)*pow((1-theta), (n-r))\n", " rounded_prob = round(probability, 3)\n", " print('{}.'.format(questions[i]), rounded_prob)# \n", " i += 1 #add 1 to the value of i to make sure this loop ends. Doing while loops like this can be risky if you forget to add this part\n", "#%%\n", "###...or we could put it in dictionaries and make a DataFrame:\n", "dict1 = {'n': Ns, 'theta': thetas, 'r': Rs} #create a dictionary from the lists\n", "#%%\n", "df = pd.DataFrame(data=dict1, index=questions) #create a DataFrame from the dictionary\n", "#%%\n", "# we'll have to use scipy.misc.factorial instead of math..factorial because math cannot work with a series, which is what we're using when applying functions to Pandas df columns\n", "df['probability'] = ( \n", " (sp.misc.factorial(df.n, exact = False)/\n", " (sp.misc.factorial(df.r, exact=False)*sp.misc.factorial(df.n-df.r, exact=False)))\n", " *np.power(df.theta, df.r)*np.power(1-df.theta, df.n-df.r)\n", " )\n", "#%%\n", "# or we could write a function:\n", "def binomial_pdf(n, theta, r):\n", " factorials = factorial(n)/(factorial(r)*factorial(n-r))\n", " probability = factorials*pow(theta, r)*pow((1-theta), (n-r))\n", " return probability\n", "#%%\n", "binomial_pdf(10, .2, 3)\n", "#%%\n", "# finally, the simplest option - use a module that already does this:\n", "# the module we'll use is scipy. List R first, then N and P (probability)\n", "# http://docs.scipy.org/doc/scipy-0.13.0/reference/generated/scipy.stats.binom.html\n", "sp.stats.distributions.binom.pmf(3, n = 10, p =.2)\n", "#%%\n", "\n", "'''\n", "2. A chain of motels has adopted a policy of giving a 3% discount to customers who pay in cash \n", "rather than by credit cards. Its experience is that 30% of all customers take the discount. Let Y = \n", "number of discount takers among the next 20 customers.\n", " a. Do you think the binomial assumptions are reasonable in this situation?\n", "'''\n", "print('2a. Yes, binomial assumptions are reasonable in this siutation')\n", "#%%\n", "'''\n", " b. Assuming that the binomial probabilities apply, find the probability that exactly 5 of \n", "the next 20 customers take the discount.\n", "'''\n", "# we already have something for this!\n", "print('2b.', binomial_pdf(20, .3, 5))\n", "#%%\n", "'''\n", "c. Find P(5 or fewer customers take the discount).\n", "'''\n", "r_list = range(0,6)\n", "p_5_or_fewer = 0\n", "for r in r_list:\n", " prob = binomial_pdf(20, .3, r)\n", " p_5_or_fewer =+ p_5_or_fewer + prob\n", "print('2c.','Probability that 5 or fewer customers will take the discount:', round(p_5_or_fewer, 3))\n", "#%%\n", "'''\n", "d. What is the most probable number of discount takers in the next 20 customers?\n", "'''\n", "print('2d.', .3*20)\n", "#%%\n", "# or, to replicate the answers given in the assignment's answer key:\n", "N = 20\n", "theta = .3\n", "binom_pdf_df = pd.DataFrame(index=range(0, N+1))\n", "#%%\n", "cumulative = 0\n", "for index, i in binom_pdf_df.iterrows():\n", " probability = binomial_pdf(N, theta, index)\n", " binom_pdf_df.ix[index, 'P(X = x)'] = round(probability, 4)\n", " cumulative += probability\n", " binom_pdf_df.ix[index, 'P(X <= x)'] = round(cumulative, 4)\n", "#%%\n", "print('Binomial with n = {} and p = {}'.format(N, theta))\n", "binom_pdf_df\n", "#%%\n", "# this looks crazy messy, but all it's doing is asking for the value of the index where 'P(X = x)' is greatest\n", "binom_pdf_df.index[binom_pdf_df['P(X = x)']==binom_pdf_df['P(X = x)'].max()].item()\n", "#%%\n", "# All of this can be turned into a new and fairly comprehensive function:\n", "def binom_pdf(n, theta, R=None, Return=None):\n", " df = pd.DataFrame(index=range(0, n+1))\n", " cumulative = 0\n", " for index, i in df.iterrows():\n", " r = index\n", " factorials = factorial(n) / (factorial(r)*factorial(n-r)) # recreating the pdf function from so it can standalone outside this script\n", " probability = factorials*pow(theta, r)*pow((1-theta), (n-r)) # need to use this and it can run independantly: from math import factorial, pow\n", " df.ix[index, 'P(X = x)'] = round(probability, 4)\n", " cumulative += probability\n", " df.ix[index, 'P(X <= x)'] = round(cumulative, 4)\n", " df.ix[index, 'P(X => x)'] = round(1-cumulative, 4)\n", " if R == None:\n", " return df\n", " if R != None:\n", " if Return == None:\n", " return df[df.index == R]\n", " #let's make some plain English options for specifying the value you're looking for with this function\n", " if Return == 'exactly':\n", " return df[df.index == R]['P(X = x)'].item()\n", " if Return == 'at_most' or Return == 'or_fewer' or Return == 'not_more_than' :\n", " return df[df.index == R]['P(X <= x)'].item()\n", " if Return == 'at_least' or Return == 'or_more':\n", " return df[df.index == R-1]['P(X => x)'].item()\n", " if Return == 'less_than' or Return == 'fewer_than':\n", " return df[df.index == R-1]['P(X <= x)'].item()\n", " if Return == 'greater_than' or Return == 'more_than':\n", " return df[df.index == R]['P(X => x)'].item()\n", " return df[df.index == R]\n", "#%%\n", "# since it's optional to submit a number for R, you can leave it out and get a table with all variables\n", "print(binom_pdf(20, .3))\n", "#%%\n", "# or, if you are only interested in a particular value for R:\n", "binom_pdf(20, .3, 5)\n", "#%%\n", "#or, if you want to get really specific:\n", "binom_pdf(20, .3, 5, 'or_fewer')\n", "#%%\n", "'''\n", "3. The admissions office of a small, selective liberal-arts college will only offer admission to \n", "applicants who have a certain mix of accomplishments, including a combined SAT score of 1,400 \n", "or more. Based on past records, the head of admissions feels that the probability is 0.66 that an \n", "admitted applicant will come to the college. If 500 applicants are admitted, what is the probability \n", "that 340 or more will come? Note that \u201c340 or more\u201d means the set of values {340, 341, 342, \n", "343, \u2026, 499, 500}.\n", "'''\n", "# this is a great example for when we'd want to use the new binom_pdf function\n", "# Instead of \"R or fewer\", we want \"R or more\"\n", "# In other words, we want 'P(X => x)' \n", "# luckily I already threw in this column!\n", "#print binom_pdf(500, .66, 339)['P(X => x)'].item()\n", "print('3a.', binom_pdf(500, .66, 340, 'at_least'))\n", "# Bam, we're done!\n", "#%%\n", "'''\n", "4. Suppose that a full-repair warranty is offered with each new Power-Up foodprocessor. If the \n", "probability that any individual food processor will be returned forneeded warranty repairs within \n", "one year is 0.11, and if a certain store sells 83 of these,find the probabilities that...\n", "a. at most 10 food processors will be returned for warranty repairs;\n", "'''\n", "print('4a.', binom_pdf(83, .11, 10, 'at_most'))\n", "\n", "#%%\n", "'''\n", "b. at least 10 food processors will be returned for warranty repairs\n", "'''\n", "print('4b.', binom_pdf(83, .11, 10, 'at_least'))\n", "#%%\n", "'''\n", "c. exactly 10 food processors will be returned for warranty repairs;\n", "'''\n", "print('4c.', binom_pdf(83, .11, 10, 'exactly'))\n", "#%%\n", "'''\n", "d. not more than 15 food processors will be returned for warranty repairs.\n", "'''\n", "print('4d.', binom_pdf(83, .11, 15, 'not_more_than'))\n", "#%%\n", "'''\n", "5. The rate of home sales at a small real estate agency is 1.3 per day. We\u2019ll assume that a Poisson \n", "phenomenon can represent these home sales.\n", "a. Find the probability that no homes will be sold on Monday.\n", "'''\n", "# First, let's write how how we'd do this if there was no existing module for Poisson probability\n", "# we'll still cheat and use scipy to do exp()\n", "# http://docs.scipy.org/doc/numpy/reference/routines.math.html\n", "mean = 1.3\n", "r = 0\n", "poisson_probability = sp.exp(-mean) * (pow(mean,r)/factorial(r))\n", "print('5a. part 1:', poisson_probability)\n", "#%%\n", "# fortunately, a fuction for Poisson probability does exists in scipy \n", "# http://stackoverflow.com/questions/280797/calculate-poisson-probability-percentage\n", "no_sales = sp.stats.distributions.poisson.pmf(0, 1.3)\n", "print('5a. part 2:', no_sales)\n", "#%%\n", "'''\n", "b. Find the probability that one home will be sold on Monday.\n", "'''\n", "one_sale = sp.stats.distributions.poisson.pmf(1, 1.3)\n", "print('5b.', one_sale)\n", "#%%\n", "'''\n", "c. Find the probability that two homes will be sold on Monday.\n", "'''\n", "print('5c.', sp.stats.distributions.poisson.pmf(2, 1.3))\n", "#%%\n", "'''\n", "d. Find the probability that more than two homes will be sold on Monday\n", "'''\n", "no_sales = sp.stats.distributions.poisson.pmf(0, 1.3)\n", "one_sale = sp.stats.distributions.poisson.pmf(1, 1.3)\n", "two_sales = sp.stats.distributions.poisson.pmf(2, 1.3)\n", "more_than_two_sales = 1 - no_sales - one_sale - two_sales\n", "print('5d.', more_than_two_sales)" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "1a. 0.201\n", "1b. 0.346\n", "1c. 0.204\n", "2a. Yes, binomial assumptions are reasonable in this siutation\n", "2b. 0.17886305056987956\n", "2c. Probability that 5 or fewer customers will take the discount: 0.416\n", "2d. 6.0\n", "Binomial with n = 20 and p = 0.3\n", " P(X = x) P(X <= x) P(X => x)\n", "0 0.0008 0.0008 0.9992\n", "1 0.0068 0.0076 0.9924\n", "2 0.0278 0.0355 0.9645\n", "3 0.0716 0.1071 0.8929\n", "4 0.1304 0.2375 0.7625\n", "5 0.1789 0.4164 0.5836\n", "6 0.1916 0.6080 0.3920\n", "7 0.1643 0.7723 0.2277\n", "8 0.1144 0.8867 0.1133\n", "9 0.0654 0.9520 0.0480\n", "10 0.0308 0.9829 0.0171\n", "11 0.0120 0.9949 0.0051\n", "12 0.0039 0.9987 0.0013\n", "13 0.0010 0.9997 0.0003\n", "14 0.0002 1.0000 0.0000\n", "15 0.0000 1.0000 0.0000\n", "16 0.0000 1.0000 0.0000\n", "17 0.0000 1.0000 0.0000\n", "18 0.0000 1.0000 0.0000\n", "19 0.0000 1.0000 0.0000\n", "20 0.0000 1.0000 0.0000\n", "3a." ] }, { "output_type": "stream", "stream": "stdout", "text": [ " 0.1852\n", "4a." ] }, { "output_type": "stream", "stream": "stdout", "text": [ " 0.6969\n", "4b." ] }, { "output_type": "stream", "stream": "stdout", "text": [ " 0.4306\n", "4c." ] }, { "output_type": "stream", "stream": "stdout", "text": [ " 0.1275\n", "4d." ] }, { "output_type": "stream", "stream": "stdout", "text": [ " 0.982\n", "5a. part 1: 0.272531793034\n", "5a. part 2: 0.272531793034\n", "5b. 0.354291330944\n", "5c. 0.230289365114\n", "5d. 0.142887510908\n" ] } ], "prompt_number": 27 }, { "cell_type": "code", "collapsed": false, "input": [], "language": "python", "metadata": {}, "outputs": [] } ], "metadata": {} } ] }
mit
minxuancao/shogun
doc/ipython-notebooks/multiclass/KNN.ipynb
1
16921
{ "cells": [ { "cell_type": "markdown", "metadata": {}, "source": [ "# K-Nearest Neighbors (KNN)" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "#### by Chiyuan Zhang and S&ouml;ren Sonnenburg" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "This notebook illustrates the <a href=\"http://en.wikipedia.org/wiki/K-nearest_neighbors_algorithm\">K-Nearest Neighbors</a> (KNN) algorithm on the USPS digit recognition dataset in Shogun. Further, the effect of <a href=\"http://en.wikipedia.org/wiki/Cover_tree\">Cover Trees</a> on speed is illustrated by comparing KNN with and without it. Finally, a comparison with <a href=\"http://en.wikipedia.org/wiki/Support_vector_machine#Multiclass_SVM\">Multiclass Support Vector Machines</a> is shown. " ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## The basics" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "The training of a KNN model basically does nothing but memorizing all the training points and the associated labels, which is very cheap in computation but costly in storage. The prediction is implemented by finding the K nearest neighbors of the query point, and voting. Here K is a hyper-parameter for the algorithm. Smaller values for K give the model low bias but high variance; while larger values for K give low variance but high bias.\n", "\n", "In `SHOGUN`, you can use [CKNN](http://www.shogun-toolbox.org/doc/en/latest/classshogun_1_1CKNN.html) to perform KNN learning. To construct a KNN machine, you must choose the hyper-parameter K and a distance function. Usually, we simply use the standard [CEuclideanDistance](http://www.shogun-toolbox.org/doc/en/latest/classshogun_1_1CEuclideanDistance.html), but in general, any subclass of [CDistance](http://www.shogun-toolbox.org/doc/en/latest/classshogun_1_1CDistance.html) could be used. For demonstration, in this tutorial we select a random subset of 1000 samples from the USPS digit recognition dataset, and run 2-fold cross validation of KNN with varying K." ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "First we load and init data split:" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "collapsed": false }, "outputs": [], "source": [ "import numpy as np\n", "import os\nSHOGUN_DATA_DIR=os.getenv('SHOGUN_DATA_DIR', '../../../data')\n", "\n", "from scipy.io import loadmat, savemat\n", "from numpy import random\n", "from os import path\n", "\n", "mat = loadmat(os.path.join(SHOGUN_DATA_DIR, 'multiclass/usps.mat'))\n", "Xall = mat['data']\n", "Yall = np.array(mat['label'].squeeze(), dtype=np.double)\n", "\n", "# map from 1..10 to 0..9, since shogun\n", "# requires multiclass labels to be\n", "# 0, 1, ..., K-1\n", "Yall = Yall - 1\n", "\n", "random.seed(0)\n", "\n", "subset = random.permutation(len(Yall))\n", "\n", "Xtrain = Xall[:, subset[:5000]]\n", "Ytrain = Yall[subset[:5000]]\n", "\n", "Xtest = Xall[:, subset[5000:6000]]\n", "Ytest = Yall[subset[5000:6000]]\n", "\n", "Nsplit = 2\n", "all_ks = range(1, 21)\n", "\n", "print Xall.shape\n", "print Xtrain.shape\n", "print Xtest.shape" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "Let us plot the first five examples of the train data (first row) and test data (second row)." ] }, { "cell_type": "code", "execution_count": null, "metadata": { "collapsed": false }, "outputs": [], "source": [ "%matplotlib inline\n", "import pylab as P\n", "def plot_example(dat, lab):\n", " for i in xrange(5):\n", " ax=P.subplot(1,5,i+1)\n", " P.title(int(lab[i]))\n", " ax.imshow(dat[:,i].reshape((16,16)), interpolation='nearest')\n", " ax.set_xticks([])\n", " ax.set_yticks([])\n", " \n", " \n", "_=P.figure(figsize=(17,6))\n", "P.gray()\n", "plot_example(Xtrain, Ytrain)\n", "\n", "_=P.figure(figsize=(17,6))\n", "P.gray()\n", "plot_example(Xtest, Ytest)" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "Then we import shogun components and convert the data to shogun objects:" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "collapsed": false }, "outputs": [], "source": [ "from modshogun import MulticlassLabels, RealFeatures\n", "from modshogun import KNN, EuclideanDistance\n", "\n", "labels = MulticlassLabels(Ytrain)\n", "feats = RealFeatures(Xtrain)\n", "k=3\n", "dist = EuclideanDistance()\n", "knn = KNN(k, dist, labels)\n", "labels_test = MulticlassLabels(Ytest)\n", "feats_test = RealFeatures(Xtest)\n", "knn.train(feats)\n", "pred = knn.apply_multiclass(feats_test)\n", "print \"Predictions\", pred[:5]\n", "print \"Ground Truth\", Ytest[:5]\n", "\n", "from modshogun import MulticlassAccuracy\n", "evaluator = MulticlassAccuracy()\n", "accuracy = evaluator.evaluate(pred, labels_test)\n", "\n", "print \"Accuracy = %2.2f%%\" % (100*accuracy)" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "Let's plot a few missclassified examples - I guess we all agree that these are notably harder to detect." ] }, { "cell_type": "code", "execution_count": null, "metadata": { "collapsed": false }, "outputs": [], "source": [ "idx=np.where(pred != Ytest)[0]\n", "Xbad=Xtest[:,idx]\n", "Ybad=Ytest[idx]\n", "_=P.figure(figsize=(17,6))\n", "P.gray()\n", "plot_example(Xbad, Ybad)" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "Now the question is - is 97.30% accuracy the best we can do? While one would usually re-train KNN with different values for k here and likely perform Cross-validation, we just use a small trick here that saves us lots of computation time: When we have to determine the $K\\geq k$ nearest neighbors we will know the nearest neigbors for all $k=1...K$ and can thus get the predictions for multiple k's in one step:" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "collapsed": false }, "outputs": [], "source": [ "knn.set_k(13)\n", "multiple_k=knn.classify_for_multiple_k()\n", "print multiple_k.shape" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "We have the prediction for each of the 13 k's now and can quickly compute the accuracies:" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "collapsed": false }, "outputs": [], "source": [ "for k in xrange(13):\n", " print \"Accuracy for k=%d is %2.2f%%\" % (k+1, 100*np.mean(multiple_k[:,k]==Ytest))" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "So k=3 seems to have been the optimal choice." ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Accellerating KNN" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "Obviously applying KNN is very costly: for each prediction you have to compare the object against all training objects. While the implementation in `SHOGUN` will use all available CPU cores to parallelize this computation it might still be slow when you have big data sets. In `SHOGUN`, you can use *Cover Trees* to speed up the nearest neighbor searching process in KNN. Just call `set_use_covertree` on the KNN machine to enable or disable this feature. We also show the prediction time comparison with and without Cover Tree in this tutorial. So let's just have a comparison utilizing the data above:" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "collapsed": false }, "outputs": [], "source": [ "from modshogun import Time, KNN_COVER_TREE, KNN_BRUTE\n", "start = Time.get_curtime()\n", "knn.set_k(3)\n", "knn.set_knn_solver_type(KNN_BRUTE)\n", "pred = knn.apply_multiclass(feats_test)\n", "print \"Standard KNN took %2.1fs\" % (Time.get_curtime() - start)\n", "\n", "\n", "start = Time.get_curtime()\n", "knn.set_k(3)\n", "knn.set_knn_solver_type(KNN_COVER_TREE)\n", "pred = knn.apply_multiclass(feats_test)\n", "print \"Covertree KNN took %2.1fs\" % (Time.get_curtime() - start)\n" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "So we can significantly speed it up. Let's do a more systematic comparison. For that a helper function is defined to run the evaluation for KNN:" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "collapsed": false }, "outputs": [], "source": [ "def evaluate(labels, feats, use_cover_tree=False):\n", " from modshogun import MulticlassAccuracy, CrossValidationSplitting\n", " import time\n", " split = CrossValidationSplitting(labels, Nsplit)\n", " split.build_subsets()\n", " \n", " accuracy = np.zeros((Nsplit, len(all_ks)))\n", " acc_train = np.zeros(accuracy.shape)\n", " time_test = np.zeros(accuracy.shape)\n", " for i in range(Nsplit):\n", " idx_train = split.generate_subset_inverse(i)\n", " idx_test = split.generate_subset_indices(i)\n", "\n", " for j, k in enumerate(all_ks):\n", " #print \"Round %d for k=%d...\" % (i, k)\n", "\n", " feats.add_subset(idx_train)\n", " labels.add_subset(idx_train)\n", "\n", " dist = EuclideanDistance(feats, feats)\n", " knn = KNN(k, dist, labels)\n", " knn.set_store_model_features(True)\n", " if use_cover_tree:\n", " knn.set_knn_solver_type(KNN_COVER_TREE)\n", " else:\n", " knn.set_knn_solver_type(KNN_BRUTE)\n", " knn.train()\n", "\n", " evaluator = MulticlassAccuracy()\n", " pred = knn.apply_multiclass()\n", " acc_train[i, j] = evaluator.evaluate(pred, labels)\n", "\n", " feats.remove_subset()\n", " labels.remove_subset()\n", " feats.add_subset(idx_test)\n", " labels.add_subset(idx_test)\n", "\n", " t_start = time.clock()\n", " pred = knn.apply_multiclass(feats)\n", " time_test[i, j] = (time.clock() - t_start) / labels.get_num_labels()\n", "\n", " accuracy[i, j] = evaluator.evaluate(pred, labels)\n", "\n", " feats.remove_subset()\n", " labels.remove_subset()\n", " return {'eout': accuracy, 'ein': acc_train, 'time': time_test}" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "Evaluate KNN with and without Cover Tree. This takes a few seconds:" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "collapsed": false }, "outputs": [], "source": [ "labels = MulticlassLabels(Ytest)\n", "feats = RealFeatures(Xtest)\n", "print(\"Evaluating KNN...\")\n", "wo_ct = evaluate(labels, feats, use_cover_tree=False)\n", "wi_ct = evaluate(labels, feats, use_cover_tree=True)\n", "print(\"Done!\")" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "Generate plots with the data collected in the evaluation:" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "collapsed": false }, "outputs": [], "source": [ "import matplotlib\n", "\n", "fig = P.figure(figsize=(8,5))\n", "P.plot(all_ks, wo_ct['eout'].mean(axis=0), 'r-*')\n", "P.plot(all_ks, wo_ct['ein'].mean(axis=0), 'r--*')\n", "P.legend([\"Test Accuracy\", \"Training Accuracy\"])\n", "P.xlabel('K')\n", "P.ylabel('Accuracy')\n", "P.title('KNN Accuracy')\n", "P.tight_layout()\n", "\n", "fig = P.figure(figsize=(8,5))\n", "P.plot(all_ks, wo_ct['time'].mean(axis=0), 'r-*')\n", "P.plot(all_ks, wi_ct['time'].mean(axis=0), 'b-d')\n", "P.xlabel(\"K\")\n", "P.ylabel(\"time\")\n", "P.title('KNN time')\n", "P.legend([\"Plain KNN\", \"CoverTree KNN\"], loc='center right')\n", "P.tight_layout()" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "Although simple and elegant, KNN is generally very resource costly. Because all the training samples are to be memorized literally, the memory cost of KNN *learning* becomes prohibitive when the dataset is huge. Even when the memory is big enough to hold all the data, the prediction will be slow, since the distances between the query point and all the training points need to be computed and ranked. The situation becomes worse if in addition the data samples are all very high-dimensional. Leaving aside computation time issues, k-NN is a very versatile and competitive algorithm. It can be applied to any kind of objects (not just numerical data) - as long as one can design a suitable distance function. In pratice k-NN used with bagging can create improved and more robust results." ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Comparison to Multiclass Support Vector Machines" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "In contrast to KNN - multiclass Support Vector Machines (SVMs) attempt to model the decision function separating each class from one another. They compare examples utilizing similarity measures (so called Kernels) instead of distances like KNN does. When applied, they are in Big-O notation computationally as expensive as KNN but involve another (costly) training step. They do not scale very well to cases with a huge number of classes but usually lead to favorable results when applied to small number of classes cases. So for reference let us compare how a standard multiclass SVM performs wrt. KNN on the mnist data set from above." ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "Let us first train a multiclass svm using a Gaussian kernel (kind of the SVM equivalent to the euclidean distance)." ] }, { "cell_type": "code", "execution_count": null, "metadata": { "collapsed": false }, "outputs": [], "source": [ "from modshogun import GaussianKernel, GMNPSVM\n", "\n", "width=80\n", "C=1\n", "\n", "gk=GaussianKernel()\n", "gk.set_width(width)\n", "\n", "svm=GMNPSVM(C, gk, labels)\n", "_=svm.train(feats)" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "Let's apply the SVM to the same test data set to compare results:" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "collapsed": false }, "outputs": [], "source": [ "out=svm.apply(feats_test)\n", "evaluator = MulticlassAccuracy()\n", "accuracy = evaluator.evaluate(out, labels_test)\n", "\n", "print \"Accuracy = %2.2f%%\" % (100*accuracy)" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "Since the SVM performs way better on this task - let's apply it to all data we did not use in training." ] }, { "cell_type": "code", "execution_count": null, "metadata": { "collapsed": false }, "outputs": [], "source": [ "Xrem=Xall[:,subset[6000:]]\n", "Yrem=Yall[subset[6000:]]\n", "\n", "feats_rem=RealFeatures(Xrem)\n", "labels_rem=MulticlassLabels(Yrem)\n", "out=svm.apply(feats_rem)\n", "\n", "evaluator = MulticlassAccuracy()\n", "accuracy = evaluator.evaluate(out, labels_rem)\n", "\n", "print \"Accuracy = %2.2f%%\" % (100*accuracy)\n", "\n", "idx=np.where(out.get_labels() != Yrem)[0]\n", "Xbad=Xrem[:,idx]\n", "Ybad=Yrem[idx]\n", "_=P.figure(figsize=(17,6))\n", "P.gray()\n", "plot_example(Xbad, Ybad)" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "The misclassified examples are indeed much harder to label even for human beings." ] } ], "metadata": { "kernelspec": { "display_name": "Python 2", "language": "python", "name": "python2" }, "language_info": { "codemirror_mode": { "name": "ipython", "version": 2 }, "file_extension": ".py", "mimetype": "text/x-python", "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython2", "version": "2.7.12" } }, "nbformat": 4, "nbformat_minor": 0 }
gpl-3.0
pioneers/topgear
ipython-in-depth/examples/IPython Kernel/Third Party Rich Output.ipynb
1
263103
{ "metadata": { "name": "", "signature": "sha256:123d82ef0551f78e5dca94db6e00f1e10ae07d930467cf44709ccc6a9216776a" }, "nbformat": 3, "nbformat_minor": 0, "worksheets": [ { "cells": [ { "cell_type": "heading", "level": 1, "metadata": {}, "source": [ "Third Party Libraries With Rich Output" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "A number of third party libraries defined their own custom display logic. This gives their objcts rich output by default when used in the Notebook." ] }, { "cell_type": "code", "collapsed": false, "input": [ "from IPython.display import display" ], "language": "python", "metadata": {}, "outputs": [], "prompt_number": 7 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Pandas" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "[Pandas](http://pandas.pydata.org/) is a data analysis library for Python. Its `DataFrame` objects have an HTML table representation in the Notebook." ] }, { "cell_type": "code", "collapsed": false, "input": [ "import pandas" ], "language": "python", "metadata": {}, "outputs": [], "prompt_number": 9 }, { "cell_type": "markdown", "metadata": {}, "source": [ "Here is a small amount of stock data for APPL:" ] }, { "cell_type": "code", "collapsed": false, "input": [ "%%writefile data.csv\n", "Date,Open,High,Low,Close,Volume,Adj Close\n", "2012-06-01,569.16,590.00,548.50,584.00,14077000,581.50\n", "2012-05-01,584.90,596.76,522.18,577.73,18827900,575.26\n", "2012-04-02,601.83,644.00,555.00,583.98,28759100,581.48\n", "2012-03-01,548.17,621.45,516.22,599.55,26486000,596.99\n", "2012-02-01,458.41,547.61,453.98,542.44,22001000,540.12\n", "2012-01-03,409.40,458.24,409.00,456.48,12949100,454.53" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "Writing data.csv\n" ] } ], "prompt_number": 10 }, { "cell_type": "markdown", "metadata": {}, "source": [ "Read this as into a `DataFrame`:" ] }, { "cell_type": "code", "collapsed": false, "input": [ "df = pandas.read_csv('data.csv')" ], "language": "python", "metadata": {}, "outputs": [], "prompt_number": 11 }, { "cell_type": "markdown", "metadata": {}, "source": [ "And view the HTML representation:" ] }, { "cell_type": "code", "collapsed": false, "input": [ "df" ], "language": "python", "metadata": {}, "outputs": [ { "html": [ "<div style=\"max-height:1000px;max-width:1500px;overflow:auto;\">\n", "<table border=\"1\" class=\"dataframe\">\n", " <thead>\n", " <tr style=\"text-align: right;\">\n", " <th></th>\n", " <th>Date</th>\n", " <th>Open</th>\n", " <th>High</th>\n", " <th>Low</th>\n", " <th>Close</th>\n", " <th>Volume</th>\n", " <th>Adj Close</th>\n", " </tr>\n", " </thead>\n", " <tbody>\n", " <tr>\n", " <th>0</th>\n", " <td> 2012-06-01</td>\n", " <td> 569.16</td>\n", " <td> 590.00</td>\n", " <td> 548.50</td>\n", " <td> 584.00</td>\n", " <td> 14077000</td>\n", " <td> 581.50</td>\n", " </tr>\n", " <tr>\n", " <th>1</th>\n", " <td> 2012-05-01</td>\n", " <td> 584.90</td>\n", " <td> 596.76</td>\n", " <td> 522.18</td>\n", " <td> 577.73</td>\n", " <td> 18827900</td>\n", " <td> 575.26</td>\n", " </tr>\n", " <tr>\n", " <th>2</th>\n", " <td> 2012-04-02</td>\n", " <td> 601.83</td>\n", " <td> 644.00</td>\n", " <td> 555.00</td>\n", " <td> 583.98</td>\n", " <td> 28759100</td>\n", " <td> 581.48</td>\n", " </tr>\n", " <tr>\n", " <th>3</th>\n", " <td> 2012-03-01</td>\n", " <td> 548.17</td>\n", " <td> 621.45</td>\n", " <td> 516.22</td>\n", " <td> 599.55</td>\n", " <td> 26486000</td>\n", " <td> 596.99</td>\n", " </tr>\n", " <tr>\n", " <th>4</th>\n", " <td> 2012-02-01</td>\n", " <td> 458.41</td>\n", " <td> 547.61</td>\n", " <td> 453.98</td>\n", " <td> 542.44</td>\n", " <td> 22001000</td>\n", " <td> 540.12</td>\n", " </tr>\n", " <tr>\n", " <th>5</th>\n", " <td> 2012-01-03</td>\n", " <td> 409.40</td>\n", " <td> 458.24</td>\n", " <td> 409.00</td>\n", " <td> 456.48</td>\n", " <td> 12949100</td>\n", " <td> 454.53</td>\n", " </tr>\n", " </tbody>\n", "</table>\n", "<p>6 rows \u00d7 7 columns</p>\n", "</div>" ], "metadata": {}, "output_type": "pyout", "prompt_number": 12, "text": [ " Date Open High Low Close Volume Adj Close\n", "0 2012-06-01 569.16 590.00 548.50 584.00 14077000 581.50\n", "1 2012-05-01 584.90 596.76 522.18 577.73 18827900 575.26\n", "2 2012-04-02 601.83 644.00 555.00 583.98 28759100 581.48\n", "3 2012-03-01 548.17 621.45 516.22 599.55 26486000 596.99\n", "4 2012-02-01 458.41 547.61 453.98 542.44 22001000 540.12\n", "5 2012-01-03 409.40 458.24 409.00 456.48 12949100 454.53\n", "\n", "[6 rows x 7 columns]" ] } ], "prompt_number": 12 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "SymPy" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "[SymPy](http://sympy.org/) is a symbolic computing library for Python. Its equation objects have LaTeX representations that are rendered in the Notebook." ] }, { "cell_type": "code", "collapsed": false, "input": [ "from sympy.interactive.printing import init_printing\n", "init_printing(use_latex='mathjax')" ], "language": "python", "metadata": {}, "outputs": [], "prompt_number": 13 }, { "cell_type": "code", "collapsed": false, "input": [ "from __future__ import division\n", "import sympy as sym\n", "from sympy import *\n", "x, y, z = symbols(\"x y z\")\n", "k, m, n = symbols(\"k m n\", integer=True)\n", "f, g, h = map(Function, 'fgh')" ], "language": "python", "metadata": {}, "outputs": [], "prompt_number": 14 }, { "cell_type": "code", "collapsed": false, "input": [ "Rational(3,2)*pi + exp(I*x) / (x**2 + y)" ], "language": "python", "metadata": {}, "outputs": [ { "latex": [ "$$\\frac{3 \\pi}{2} + \\frac{e^{i x}}{x^{2} + y}$$" ], "metadata": {}, "output_type": "pyout", "prompt_number": 15, "text": [ " \u2148\u22c5x \n", "3\u22c5\u03c0 \u212f \n", "\u2500\u2500\u2500 + \u2500\u2500\u2500\u2500\u2500\u2500\n", " 2 2 \n", " x + y" ] } ], "prompt_number": 15 }, { "cell_type": "code", "collapsed": false, "input": [ "a = 1/x + (x*sin(x) - 1)/x\n", "a" ], "language": "python", "metadata": {}, "outputs": [ { "latex": [ "$$\\frac{1}{x} \\left(x \\sin{\\left (x \\right )} - 1\\right) + \\frac{1}{x}$$" ], "metadata": {}, "output_type": "pyout", "prompt_number": 16, "text": [ "x\u22c5sin(x) - 1 1\n", "\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500 + \u2500\n", " x x" ] } ], "prompt_number": 16 }, { "cell_type": "code", "collapsed": false, "input": [ "(1/cos(x)).series(x, 0, 6)" ], "language": "python", "metadata": {}, "outputs": [ { "latex": [ "$$1 + \\frac{x^{2}}{2} + \\frac{5 x^{4}}{24} + \\mathcal{O}\\left(x^{6}\\right)$$" ], "metadata": {}, "output_type": "pyout", "prompt_number": 17, "text": [ " 2 4 \n", " x 5\u22c5x \u239b 6\u239e\n", "1 + \u2500\u2500 + \u2500\u2500\u2500\u2500 + O\u239dx \u23a0\n", " 2 24 " ] } ], "prompt_number": 17 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Vincent" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "[Vincent](https://vincent.readthedocs.org/en/latest/) is a visualization library that uses the [Vega](http://trifacta.github.io/vega/) visualization grammar to build [d3.js](http://d3js.org/) based visualizations in the Notebook and on http://nbviewer.ipython.org. `Visualization` objects in Vincetn have rich HTML and JavaSrcript representations." ] }, { "cell_type": "code", "collapsed": false, "input": [ "import vincent\n", "import pandas as pd" ], "language": "python", "metadata": {}, "outputs": [], "prompt_number": 1 }, { "cell_type": "code", "collapsed": false, "input": [ "import pandas.io.data as web\n", "import datetime\n", "all_data = {}\n", "date_start = datetime.datetime(2010, 1, 1)\n", "date_end = datetime.datetime(2014, 1, 1)\n", "for ticker in ['AAPL', 'IBM', 'YHOO', 'MSFT']:\n", " all_data[ticker] = web.DataReader(ticker, 'yahoo', date_start, date_end)\n", "price = pd.DataFrame({tic: data['Adj Close']\n", " for tic, data in all_data.items()})" ], "language": "python", "metadata": {}, "outputs": [], "prompt_number": 5 }, { "cell_type": "code", "collapsed": false, "input": [ "vincent.initialize_notebook()" ], "language": "python", "metadata": {}, "outputs": [ { "html": [ "\n", " <script>\n", " \n", " function vct_load_lib(url, callback){\n", " if(typeof d3 !== 'undefined' &&\n", " url === 'http://d3js.org/d3.v3.min.js'){\n", " callback()\n", " }\n", " var s = document.createElement('script');\n", " s.src = url;\n", " s.async = true;\n", " s.onreadystatechange = s.onload = callback;\n", " s.onerror = function(){\n", " console.warn(\"failed to load library \" + url);\n", " };\n", " document.getElementsByTagName(\"head\")[0].appendChild(s);\n", " };\n", " var vincent_event = new CustomEvent(\n", " \"vincent_libs_loaded\",\n", " {bubbles: true, cancelable: true}\n", " );\n", " \n", " function load_all_libs(){\n", " console.log('loading all libs')\n", " vct_load_lib('http://d3js.org/d3.v3.min.js', function(){\n", " vct_load_lib('http://d3js.org/d3.geo.projection.v0.min.js', function(){\n", " vct_load_lib('http://wrobstory.github.io/d3-cloud/d3.layout.cloud.js', function(){\n", " vct_load_lib('http://trifacta.github.com/vega/vega.js', function(){\n", " window.dispatchEvent(vincent_event);\n", " });\n", " });\n", " });\n", " });\n", " };\n", " if(typeof define === \"function\" && define.amd){\n", " if (window['d3'] === undefined ||\n", " window['topojson'] === undefined){\n", " require.config(\n", " {paths: {\n", " d3: 'http://d3js.org/d3.v3.min',\n", " topojson: 'http://d3js.org/topojson.v1.min'\n", " }\n", " }\n", " );\n", " require([\"d3\"], function(d3){\n", " console.log('Loading from require.js...')\n", " window.d3 = d3;\n", " require([\"topojson\"], function(topojson){\n", " window.topojson = topojson;\n", " load_all_libs();\n", " });\n", " });\n", " };\n", " }else{\n", " console.log('Require.js not found, loading manually...')\n", " load_all_libs();\n", " };\n", "\n", " </script>" ], "metadata": {}, "output_type": "display_data", "text": [ "<IPython.core.display.HTML object>" ] } ], "prompt_number": 8 }, { "cell_type": "code", "collapsed": false, "input": [ "line = vincent.Line(price[['AAPL', 'IBM', 'YHOO', 'MSFT']], width=600, height=300)\n", "line.axis_titles(x='Date', y='Price')\n", "line.legend(title='Ticker')\n", "display(line)" ], "language": "python", "metadata": {}, "outputs": [ { "html": [ "<div id=\"vis47fdfca404f24684b44753131b44ed27\"></div>\n", "<script>\n", " ( function() {\n", " var _do_plot = function() {\n", " if (typeof vg === 'undefined') {\n", " window.addEventListener('vincent_libs_loaded', _do_plot)\n", " return;\n", " }\n", " vg.parse.spec({\"axes\": [{\"scale\": \"x\", \"title\": \"Date\", \"type\": \"x\"}, {\"scale\": \"y\", \"title\": \"Price\", \"type\": \"y\"}], \"data\": [{\"name\": \"table\", \"values\": [{\"col\": \"AAPL\", \"idx\": 1262592000000, \"val\": 205.7}, {\"col\": \"IBM\", \"idx\": 1262592000000, \"val\": 122.62}, {\"col\": \"YHOO\", \"idx\": 1262592000000, \"val\": 17.1}, {\"col\": \"MSFT\", \"idx\": 1262592000000, \"val\": 27.67}, {\"col\": \"AAPL\", \"idx\": 1262678400000, \"val\": 206.05}, {\"col\": \"IBM\", \"idx\": 1262678400000, \"val\": 121.14}, {\"col\": \"YHOO\", \"idx\": 1262678400000, \"val\": 17.23}, {\"col\": \"MSFT\", \"idx\": 1262678400000, \"val\": 27.68}, {\"col\": \"AAPL\", \"idx\": 1262764800000, \"val\": 202.77}, {\"col\": \"IBM\", \"idx\": 1262764800000, \"val\": 120.35}, {\"col\": \"YHOO\", \"idx\": 1262764800000, \"val\": 17.17}, {\"col\": \"MSFT\", \"idx\": 1262764800000, \"val\": 27.51}, {\"col\": \"AAPL\", \"idx\": 1262851200000, \"val\": 202.4}, {\"col\": \"IBM\", \"idx\": 1262851200000, \"val\": 119.94}, {\"col\": \"YHOO\", \"idx\": 1262851200000, \"val\": 16.7}, {\"col\": \"MSFT\", \"idx\": 1262851200000, \"val\": 27.22}, {\"col\": \"AAPL\", \"idx\": 1262937600000, \"val\": 203.75}, {\"col\": \"IBM\", \"idx\": 1262937600000, \"val\": 121.14}, {\"col\": \"YHOO\", \"idx\": 1262937600000, \"val\": 16.7}, {\"col\": \"MSFT\", \"idx\": 1262937600000, \"val\": 27.41}, {\"col\": \"AAPL\", \"idx\": 1263196800000, \"val\": 201.95}, {\"col\": \"IBM\", \"idx\": 1263196800000, \"val\": 119.87}, {\"col\": \"YHOO\", \"idx\": 1263196800000, \"val\": 16.74}, {\"col\": \"MSFT\", \"idx\": 1263196800000, \"val\": 27.06}, {\"col\": \"AAPL\", \"idx\": 1263283200000, \"val\": 199.65}, {\"col\": \"IBM\", \"idx\": 1263283200000, \"val\": 120.83}, {\"col\": \"YHOO\", \"idx\": 1263283200000, \"val\": 16.68}, {\"col\": \"MSFT\", \"idx\": 1263283200000, \"val\": 26.88}, {\"col\": \"AAPL\", \"idx\": 1263369600000, \"val\": 202.47}, {\"col\": \"IBM\", \"idx\": 1263369600000, \"val\": 120.57}, {\"col\": \"YHOO\", \"idx\": 1263369600000, \"val\": 16.9}, {\"col\": \"MSFT\", \"idx\": 1263369600000, \"val\": 27.13}, {\"col\": \"AAPL\", \"idx\": 1263456000000, \"val\": 201.29}, {\"col\": \"IBM\", \"idx\": 1263456000000, \"val\": 122.49}, {\"col\": \"YHOO\", \"idx\": 1263456000000, \"val\": 17.12}, {\"col\": \"MSFT\", \"idx\": 1263456000000, \"val\": 27.68}, {\"col\": \"AAPL\", \"idx\": 1263542400000, \"val\": 197.93}, {\"col\": \"IBM\", \"idx\": 1263542400000, \"val\": 122.0}, {\"col\": \"YHOO\", \"idx\": 1263542400000, \"val\": 16.82}, {\"col\": \"MSFT\", \"idx\": 1263542400000, \"val\": 27.59}, {\"col\": \"AAPL\", \"idx\": 1263888000000, \"val\": 206.69}, {\"col\": \"IBM\", \"idx\": 1263888000000, \"val\": 124.19}, {\"col\": \"YHOO\", \"idx\": 1263888000000, \"val\": 16.75}, {\"col\": \"MSFT\", \"idx\": 1263888000000, \"val\": 27.8}, {\"col\": \"AAPL\", \"idx\": 1263974400000, \"val\": 203.51}, {\"col\": \"IBM\", \"idx\": 1263974400000, \"val\": 120.58}, {\"col\": \"YHOO\", \"idx\": 1263974400000, \"val\": 16.38}, {\"col\": \"MSFT\", \"idx\": 1263974400000, \"val\": 27.35}, {\"col\": \"AAPL\", \"idx\": 1264060800000, \"val\": 199.99}, {\"col\": \"IBM\", \"idx\": 1264060800000, \"val\": 119.43}, {\"col\": \"YHOO\", \"idx\": 1264060800000, \"val\": 16.2}, {\"col\": \"MSFT\", \"idx\": 1264060800000, \"val\": 26.83}, {\"col\": \"AAPL\", \"idx\": 1264147200000, \"val\": 190.07}, {\"col\": \"IBM\", \"idx\": 1264147200000, \"val\": 116.19}, {\"col\": \"YHOO\", \"idx\": 1264147200000, \"val\": 15.88}, {\"col\": \"MSFT\", \"idx\": 1264147200000, \"val\": 25.89}, {\"col\": \"AAPL\", \"idx\": 1264406400000, \"val\": 195.18}, {\"col\": \"IBM\", \"idx\": 1264406400000, \"val\": 116.76}, {\"col\": \"YHOO\", \"idx\": 1264406400000, \"val\": 15.86}, {\"col\": \"MSFT\", \"idx\": 1264406400000, \"val\": 26.21}, {\"col\": \"AAPL\", \"idx\": 1264492800000, \"val\": 197.94}, {\"col\": \"IBM\", \"idx\": 1264492800000, \"val\": 116.42}, {\"col\": \"YHOO\", \"idx\": 1264492800000, \"val\": 15.99}, {\"col\": \"MSFT\", \"idx\": 1264492800000, \"val\": 26.37}, {\"col\": \"AAPL\", \"idx\": 1264579200000, \"val\": 199.8}, {\"col\": \"IBM\", \"idx\": 1264579200000, \"val\": 116.96}, {\"col\": \"YHOO\", \"idx\": 1264579200000, \"val\": 15.98}, {\"col\": \"MSFT\", \"idx\": 1264579200000, \"val\": 26.53}, {\"col\": \"AAPL\", \"idx\": 1264665600000, \"val\": 191.55}, {\"col\": \"IBM\", \"idx\": 1264665600000, \"val\": 114.57}, {\"col\": \"YHOO\", \"idx\": 1264665600000, \"val\": 15.44}, {\"col\": \"MSFT\", \"idx\": 1264665600000, \"val\": 26.07}, {\"col\": \"AAPL\", \"idx\": 1264752000000, \"val\": 184.6}, {\"col\": \"IBM\", \"idx\": 1264752000000, \"val\": 113.31}, {\"col\": \"YHOO\", \"idx\": 1264752000000, \"val\": 15.01}, {\"col\": \"MSFT\", \"idx\": 1264752000000, \"val\": 25.19}, {\"col\": \"AAPL\", \"idx\": 1265011200000, \"val\": 187.17}, {\"col\": \"IBM\", \"idx\": 1265011200000, \"val\": 115.42}, {\"col\": \"YHOO\", \"idx\": 1265011200000, \"val\": 15.05}, {\"col\": \"MSFT\", \"idx\": 1265011200000, \"val\": 25.4}, {\"col\": \"AAPL\", \"idx\": 1265097600000, \"val\": 188.25}, {\"col\": \"IBM\", \"idx\": 1265097600000, \"val\": 116.21}, {\"col\": \"YHOO\", \"idx\": 1265097600000, \"val\": 15.17}, {\"col\": \"MSFT\", \"idx\": 1265097600000, \"val\": 25.44}, {\"col\": \"AAPL\", \"idx\": 1265184000000, \"val\": 191.49}, {\"col\": \"IBM\", \"idx\": 1265184000000, \"val\": 116.34}, {\"col\": \"YHOO\", \"idx\": 1265184000000, \"val\": 15.46}, {\"col\": \"MSFT\", \"idx\": 1265184000000, \"val\": 25.6}, {\"col\": \"AAPL\", \"idx\": 1265270400000, \"val\": 184.59}, {\"col\": \"IBM\", \"idx\": 1265270400000, \"val\": 113.87}, {\"col\": \"YHOO\", \"idx\": 1265270400000, \"val\": 15.01}, {\"col\": \"MSFT\", \"idx\": 1265270400000, \"val\": 24.89}, {\"col\": \"AAPL\", \"idx\": 1265356800000, \"val\": 187.87}, {\"col\": \"IBM\", \"idx\": 1265356800000, \"val\": 114.35}, {\"col\": \"YHOO\", \"idx\": 1265356800000, \"val\": 15.19}, {\"col\": \"MSFT\", \"idx\": 1265356800000, \"val\": 25.05}, {\"col\": \"AAPL\", \"idx\": 1265616000000, \"val\": 186.58}, {\"col\": \"IBM\", \"idx\": 1265616000000, \"val\": 113.34}, {\"col\": \"YHOO\", \"idx\": 1265616000000, \"val\": 14.99}, {\"col\": \"MSFT\", \"idx\": 1265616000000, \"val\": 24.78}, {\"col\": \"AAPL\", \"idx\": 1265702400000, \"val\": 188.57}, {\"col\": \"IBM\", \"idx\": 1265702400000, \"val\": 114.58}, {\"col\": \"YHOO\", \"idx\": 1265702400000, \"val\": 15.07}, {\"col\": \"MSFT\", \"idx\": 1265702400000, \"val\": 25.04}, {\"col\": \"AAPL\", \"idx\": 1265788800000, \"val\": 187.54}, {\"col\": \"IBM\", \"idx\": 1265788800000, \"val\": 114.21}, {\"col\": \"YHOO\", \"idx\": 1265788800000, \"val\": 14.8}, {\"col\": \"MSFT\", \"idx\": 1265788800000, \"val\": 25.02}, {\"col\": \"AAPL\", \"idx\": 1265875200000, \"val\": 190.95}, {\"col\": \"IBM\", \"idx\": 1265875200000, \"val\": 115.06}, {\"col\": \"YHOO\", \"idx\": 1265875200000, \"val\": 15.22}, {\"col\": \"MSFT\", \"idx\": 1265875200000, \"val\": 25.14}, {\"col\": \"AAPL\", \"idx\": 1265961600000, \"val\": 192.6}, {\"col\": \"IBM\", \"idx\": 1265961600000, \"val\": 115.31}, {\"col\": \"YHOO\", \"idx\": 1265961600000, \"val\": 15.17}, {\"col\": \"MSFT\", \"idx\": 1265961600000, \"val\": 24.97}, {\"col\": \"AAPL\", \"idx\": 1266307200000, \"val\": 195.5}, {\"col\": \"IBM\", \"idx\": 1266307200000, \"val\": 116.46}, {\"col\": \"YHOO\", \"idx\": 1266307200000, \"val\": 15.41}, {\"col\": \"MSFT\", \"idx\": 1266307200000, \"val\": 25.46}, {\"col\": \"AAPL\", \"idx\": 1266393600000, \"val\": 194.68}, {\"col\": \"IBM\", \"idx\": 1266393600000, \"val\": 117.48}, {\"col\": \"YHOO\", \"idx\": 1266393600000, \"val\": 15.44}, {\"col\": \"MSFT\", \"idx\": 1266393600000, \"val\": 25.68}, {\"col\": \"AAPL\", \"idx\": 1266480000000, \"val\": 195.05}, {\"col\": \"IBM\", \"idx\": 1266480000000, \"val\": 118.85}, {\"col\": \"YHOO\", \"idx\": 1266480000000, \"val\": 15.54}, {\"col\": \"MSFT\", \"idx\": 1266480000000, \"val\": 26.02}, {\"col\": \"AAPL\", \"idx\": 1266566400000, \"val\": 193.84}, {\"col\": \"IBM\", \"idx\": 1266566400000, \"val\": 118.28}, {\"col\": \"YHOO\", \"idx\": 1266566400000, \"val\": 15.58}, {\"col\": \"MSFT\", \"idx\": 1266566400000, \"val\": 25.84}, {\"col\": \"AAPL\", \"idx\": 1266825600000, \"val\": 192.63}, {\"col\": \"IBM\", \"idx\": 1266825600000, \"val\": 117.96}, {\"col\": \"YHOO\", \"idx\": 1266825600000, \"val\": 15.49}, {\"col\": \"MSFT\", \"idx\": 1266825600000, \"val\": 25.81}, {\"col\": \"AAPL\", \"idx\": 1266912000000, \"val\": 189.41}, {\"col\": \"IBM\", \"idx\": 1266912000000, \"val\": 117.6}, {\"col\": \"YHOO\", \"idx\": 1266912000000, \"val\": 15.38}, {\"col\": \"MSFT\", \"idx\": 1266912000000, \"val\": 25.45}, {\"col\": \"AAPL\", \"idx\": 1266998400000, \"val\": 192.87}, {\"col\": \"IBM\", \"idx\": 1266998400000, \"val\": 118.65}, {\"col\": \"YHOO\", \"idx\": 1266998400000, \"val\": 15.59}, {\"col\": \"MSFT\", \"idx\": 1266998400000, \"val\": 25.72}, {\"col\": \"AAPL\", \"idx\": 1267084800000, \"val\": 194.15}, {\"col\": \"IBM\", \"idx\": 1267084800000, \"val\": 118.17}, {\"col\": \"YHOO\", \"idx\": 1267084800000, \"val\": 15.24}, {\"col\": \"MSFT\", \"idx\": 1267084800000, \"val\": 25.69}, {\"col\": \"AAPL\", \"idx\": 1267171200000, \"val\": 196.67}, {\"col\": \"IBM\", \"idx\": 1267171200000, \"val\": 118.25}, {\"col\": \"YHOO\", \"idx\": 1267171200000, \"val\": 15.31}, {\"col\": \"MSFT\", \"idx\": 1267171200000, \"val\": 25.75}, {\"col\": \"AAPL\", \"idx\": 1267430400000, \"val\": 200.87}, {\"col\": \"IBM\", \"idx\": 1267430400000, \"val\": 119.56}, {\"col\": \"YHOO\", \"idx\": 1267430400000, \"val\": 15.79}, {\"col\": \"MSFT\", \"idx\": 1267430400000, \"val\": 26.07}, {\"col\": \"AAPL\", \"idx\": 1267516800000, \"val\": 200.74}, {\"col\": \"IBM\", \"idx\": 1267516800000, \"val\": 118.49}, {\"col\": \"YHOO\", \"idx\": 1267516800000, \"val\": 15.73}, {\"col\": \"MSFT\", \"idx\": 1267516800000, \"val\": 25.56}, {\"col\": \"AAPL\", \"idx\": 1267603200000, \"val\": 201.2}, {\"col\": \"IBM\", \"idx\": 1267603200000, \"val\": 117.99}, {\"col\": \"YHOO\", \"idx\": 1267603200000, \"val\": 15.57}, {\"col\": \"MSFT\", \"idx\": 1267603200000, \"val\": 25.56}, {\"col\": \"AAPL\", \"idx\": 1267689600000, \"val\": 202.52}, {\"col\": \"IBM\", \"idx\": 1267689600000, \"val\": 117.84}, {\"col\": \"YHOO\", \"idx\": 1267689600000, \"val\": 15.81}, {\"col\": \"MSFT\", \"idx\": 1267689600000, \"val\": 25.72}, {\"col\": \"AAPL\", \"idx\": 1267776000000, \"val\": 210.44}, {\"col\": \"IBM\", \"idx\": 1267776000000, \"val\": 118.33}, {\"col\": \"YHOO\", \"idx\": 1267776000000, \"val\": 16.06}, {\"col\": \"MSFT\", \"idx\": 1267776000000, \"val\": 25.68}, {\"col\": \"AAPL\", \"idx\": 1268035200000, \"val\": 210.57}, {\"col\": \"IBM\", \"idx\": 1268035200000, \"val\": 117.55}, {\"col\": \"YHOO\", \"idx\": 1268035200000, \"val\": 16.52}, {\"col\": \"MSFT\", \"idx\": 1268035200000, \"val\": 25.72}, {\"col\": \"AAPL\", \"idx\": 1268121600000, \"val\": 214.36}, {\"col\": \"IBM\", \"idx\": 1268121600000, \"val\": 116.75}, {\"col\": \"YHOO\", \"idx\": 1268121600000, \"val\": 16.53}, {\"col\": \"MSFT\", \"idx\": 1268121600000, \"val\": 25.87}, {\"col\": \"AAPL\", \"idx\": 1268208000000, \"val\": 216.11}, {\"col\": \"IBM\", \"idx\": 1268208000000, \"val\": 116.82}, {\"col\": \"YHOO\", \"idx\": 1268208000000, \"val\": 16.79}, {\"col\": \"MSFT\", \"idx\": 1268208000000, \"val\": 26.02}, {\"col\": \"AAPL\", \"idx\": 1268294400000, \"val\": 216.74}, {\"col\": \"IBM\", \"idx\": 1268294400000, \"val\": 118.66}, {\"col\": \"YHOO\", \"idx\": 1268294400000, \"val\": 16.53}, {\"col\": \"MSFT\", \"idx\": 1268294400000, \"val\": 26.21}, {\"col\": \"AAPL\", \"idx\": 1268380800000, \"val\": 217.8}, {\"col\": \"IBM\", \"idx\": 1268380800000, \"val\": 118.98}, {\"col\": \"YHOO\", \"idx\": 1268380800000, \"val\": 16.32}, {\"col\": \"MSFT\", \"idx\": 1268380800000, \"val\": 26.29}, {\"col\": \"AAPL\", \"idx\": 1268636400000, \"val\": 215.14}, {\"col\": \"IBM\", \"idx\": 1268636400000, \"val\": 118.87}, {\"col\": \"YHOO\", \"idx\": 1268636400000, \"val\": 16.46}, {\"col\": \"MSFT\", \"idx\": 1268636400000, \"val\": 26.31}, {\"col\": \"AAPL\", \"idx\": 1268722800000, \"val\": 215.73}, {\"col\": \"IBM\", \"idx\": 1268722800000, \"val\": 119.65}, {\"col\": \"YHOO\", \"idx\": 1268722800000, \"val\": 16.36}, {\"col\": \"MSFT\", \"idx\": 1268722800000, \"val\": 26.38}, {\"col\": \"AAPL\", \"idx\": 1268809200000, \"val\": 215.41}, {\"col\": \"IBM\", \"idx\": 1268809200000, \"val\": 118.81}, {\"col\": \"YHOO\", \"idx\": 1268809200000, \"val\": 16.5}, {\"col\": \"MSFT\", \"idx\": 1268809200000, \"val\": 26.61}, {\"col\": \"AAPL\", \"idx\": 1268895600000, \"val\": 215.92}, {\"col\": \"IBM\", \"idx\": 1268895600000, \"val\": 119.39}, {\"col\": \"YHOO\", \"idx\": 1268895600000, \"val\": 16.56}, {\"col\": \"MSFT\", \"idx\": 1268895600000, \"val\": 26.6}, {\"col\": \"AAPL\", \"idx\": 1268982000000, \"val\": 213.62}, {\"col\": \"IBM\", \"idx\": 1268982000000, \"val\": 118.76}, {\"col\": \"YHOO\", \"idx\": 1268982000000, \"val\": 16.44}, {\"col\": \"MSFT\", \"idx\": 1268982000000, \"val\": 26.58}, {\"col\": \"AAPL\", \"idx\": 1269241200000, \"val\": 216.02}, {\"col\": \"IBM\", \"idx\": 1269241200000, \"val\": 119.01}, {\"col\": \"YHOO\", \"idx\": 1269241200000, \"val\": 16.34}, {\"col\": \"MSFT\", \"idx\": 1269241200000, \"val\": 26.59}, {\"col\": \"AAPL\", \"idx\": 1269327600000, \"val\": 219.49}, {\"col\": \"IBM\", \"idx\": 1269327600000, \"val\": 120.31}, {\"col\": \"YHOO\", \"idx\": 1269327600000, \"val\": 16.03}, {\"col\": \"MSFT\", \"idx\": 1269327600000, \"val\": 26.84}, {\"col\": \"AAPL\", \"idx\": 1269414000000, \"val\": 220.46}, {\"col\": \"IBM\", \"idx\": 1269414000000, \"val\": 119.52}, {\"col\": \"YHOO\", \"idx\": 1269414000000, \"val\": 16.09}, {\"col\": \"MSFT\", \"idx\": 1269414000000, \"val\": 26.63}, {\"col\": \"AAPL\", \"idx\": 1269500400000, \"val\": 217.85}, {\"col\": \"IBM\", \"idx\": 1269500400000, \"val\": 120.18}, {\"col\": \"YHOO\", \"idx\": 1269500400000, \"val\": 16.32}, {\"col\": \"MSFT\", \"idx\": 1269500400000, \"val\": 26.96}, {\"col\": \"AAPL\", \"idx\": 1269586800000, \"val\": 221.93}, {\"col\": \"IBM\", \"idx\": 1269586800000, \"val\": 120.2}, {\"col\": \"YHOO\", \"idx\": 1269586800000, \"val\": 16.54}, {\"col\": \"MSFT\", \"idx\": 1269586800000, \"val\": 26.64}, {\"col\": \"AAPL\", \"idx\": 1269846000000, \"val\": 223.36}, {\"col\": \"IBM\", \"idx\": 1269846000000, \"val\": 119.58}, {\"col\": \"YHOO\", \"idx\": 1269846000000, \"val\": 16.56}, {\"col\": \"MSFT\", \"idx\": 1269846000000, \"val\": 26.58}, {\"col\": \"AAPL\", \"idx\": 1269932400000, \"val\": 226.69}, {\"col\": \"IBM\", \"idx\": 1269932400000, \"val\": 119.75}, {\"col\": \"YHOO\", \"idx\": 1269932400000, \"val\": 16.61}, {\"col\": \"MSFT\", \"idx\": 1269932400000, \"val\": 26.74}, {\"col\": \"AAPL\", \"idx\": 1270018800000, \"val\": 225.87}, {\"col\": \"IBM\", \"idx\": 1270018800000, \"val\": 119.26}, {\"col\": \"YHOO\", \"idx\": 1270018800000, \"val\": 16.53}, {\"col\": \"MSFT\", \"idx\": 1270018800000, \"val\": 26.31}, {\"col\": \"AAPL\", \"idx\": 1270105200000, \"val\": 226.8}, {\"col\": \"IBM\", \"idx\": 1270105200000, \"val\": 119.26}, {\"col\": \"YHOO\", \"idx\": 1270105200000, \"val\": 16.29}, {\"col\": \"MSFT\", \"idx\": 1270105200000, \"val\": 26.19}, {\"col\": \"AAPL\", \"idx\": 1270450800000, \"val\": 229.23}, {\"col\": \"IBM\", \"idx\": 1270450800000, \"val\": 120.29}, {\"col\": \"YHOO\", \"idx\": 1270450800000, \"val\": 16.51}, {\"col\": \"MSFT\", \"idx\": 1270450800000, \"val\": 26.29}, {\"col\": \"AAPL\", \"idx\": 1270537200000, \"val\": 230.23}, {\"col\": \"IBM\", \"idx\": 1270537200000, \"val\": 119.9}, {\"col\": \"YHOO\", \"idx\": 1270537200000, \"val\": 16.92}, {\"col\": \"MSFT\", \"idx\": 1270537200000, \"val\": 26.34}, {\"col\": \"AAPL\", \"idx\": 1270623600000, \"val\": 231.25}, {\"col\": \"IBM\", \"idx\": 1270623600000, \"val\": 119.48}, {\"col\": \"YHOO\", \"idx\": 1270623600000, \"val\": 16.87}, {\"col\": \"MSFT\", \"idx\": 1270623600000, \"val\": 26.36}, {\"col\": \"AAPL\", \"idx\": 1270710000000, \"val\": 230.63}, {\"col\": \"IBM\", \"idx\": 1270710000000, \"val\": 118.67}, {\"col\": \"YHOO\", \"idx\": 1270710000000, \"val\": 17.35}, {\"col\": \"MSFT\", \"idx\": 1270710000000, \"val\": 26.87}, {\"col\": \"AAPL\", \"idx\": 1270796400000, \"val\": 232.4}, {\"col\": \"IBM\", \"idx\": 1270796400000, \"val\": 119.74}, {\"col\": \"YHOO\", \"idx\": 1270796400000, \"val\": 17.52}, {\"col\": \"MSFT\", \"idx\": 1270796400000, \"val\": 27.25}, {\"col\": \"AAPL\", \"idx\": 1271055600000, \"val\": 232.88}, {\"col\": \"IBM\", \"idx\": 1271055600000, \"val\": 119.37}, {\"col\": \"YHOO\", \"idx\": 1271055600000, \"val\": 17.64}, {\"col\": \"MSFT\", \"idx\": 1271055600000, \"val\": 27.23}, {\"col\": \"AAPL\", \"idx\": 1271142000000, \"val\": 233.01}, {\"col\": \"IBM\", \"idx\": 1271142000000, \"val\": 119.99}, {\"col\": \"YHOO\", \"idx\": 1271142000000, \"val\": 18.18}, {\"col\": \"MSFT\", \"idx\": 1271142000000, \"val\": 27.35}, {\"col\": \"AAPL\", \"idx\": 1271228400000, \"val\": 236.15}, {\"col\": \"IBM\", \"idx\": 1271228400000, \"val\": 122.05}, {\"col\": \"YHOO\", \"idx\": 1271228400000, \"val\": 18.38}, {\"col\": \"MSFT\", \"idx\": 1271228400000, \"val\": 27.68}, {\"col\": \"AAPL\", \"idx\": 1271314800000, \"val\": 239.25}, {\"col\": \"IBM\", \"idx\": 1271314800000, \"val\": 121.72}, {\"col\": \"YHOO\", \"idx\": 1271314800000, \"val\": 18.97}, {\"col\": \"MSFT\", \"idx\": 1271314800000, \"val\": 27.73}, {\"col\": \"AAPL\", \"idx\": 1271401200000, \"val\": 237.79}, {\"col\": \"IBM\", \"idx\": 1271401200000, \"val\": 121.48}, {\"col\": \"YHOO\", \"idx\": 1271401200000, \"val\": 18.17}, {\"col\": \"MSFT\", \"idx\": 1271401200000, \"val\": 27.55}, {\"col\": \"AAPL\", \"idx\": 1271660400000, \"val\": 237.47}, {\"col\": \"IBM\", \"idx\": 1271660400000, \"val\": 122.97}, {\"col\": \"YHOO\", \"idx\": 1271660400000, \"val\": 18.39}, {\"col\": \"MSFT\", \"idx\": 1271660400000, \"val\": 27.88}, {\"col\": \"AAPL\", \"idx\": 1271746800000, \"val\": 235.09}, {\"col\": \"IBM\", \"idx\": 1271746800000, \"val\": 120.6}, {\"col\": \"YHOO\", \"idx\": 1271746800000, \"val\": 18.38}, {\"col\": \"MSFT\", \"idx\": 1271746800000, \"val\": 28.17}, {\"col\": \"AAPL\", \"idx\": 1271833200000, \"val\": 249.15}, {\"col\": \"IBM\", \"idx\": 1271833200000, \"val\": 119.95}, {\"col\": \"YHOO\", \"idx\": 1271833200000, \"val\": 17.45}, {\"col\": \"MSFT\", \"idx\": 1271833200000, \"val\": 28.14}, {\"col\": \"AAPL\", \"idx\": 1271919600000, \"val\": 256.12}, {\"col\": \"IBM\", \"idx\": 1271919600000, \"val\": 120.08}, {\"col\": \"YHOO\", \"idx\": 1271919600000, \"val\": 17.72}, {\"col\": \"MSFT\", \"idx\": 1271919600000, \"val\": 28.2}, {\"col\": \"AAPL\", \"idx\": 1272006000000, \"val\": 260.31}, {\"col\": \"IBM\", \"idx\": 1272006000000, \"val\": 120.88}, {\"col\": \"YHOO\", \"idx\": 1272006000000, \"val\": 17.64}, {\"col\": \"MSFT\", \"idx\": 1272006000000, \"val\": 27.81}, {\"col\": \"AAPL\", \"idx\": 1272265200000, \"val\": 259.03}, {\"col\": \"IBM\", \"idx\": 1272265200000, \"val\": 121.57}, {\"col\": \"YHOO\", \"idx\": 1272265200000, \"val\": 17.39}, {\"col\": \"MSFT\", \"idx\": 1272265200000, \"val\": 27.94}, {\"col\": \"AAPL\", \"idx\": 1272351600000, \"val\": 251.86}, {\"col\": \"IBM\", \"idx\": 1272351600000, \"val\": 119.79}, {\"col\": \"YHOO\", \"idx\": 1272351600000, \"val\": 16.92}, {\"col\": \"MSFT\", \"idx\": 1272351600000, \"val\": 27.71}, {\"col\": \"AAPL\", \"idx\": 1272438000000, \"val\": 251.44}, {\"col\": \"IBM\", \"idx\": 1272438000000, \"val\": 120.98}, {\"col\": \"YHOO\", \"idx\": 1272438000000, \"val\": 16.75}, {\"col\": \"MSFT\", \"idx\": 1272438000000, \"val\": 27.76}, {\"col\": \"AAPL\", \"idx\": 1272524400000, \"val\": 258.2}, {\"col\": \"IBM\", \"idx\": 1272524400000, \"val\": 121.32}, {\"col\": \"YHOO\", \"idx\": 1272524400000, \"val\": 16.97}, {\"col\": \"MSFT\", \"idx\": 1272524400000, \"val\": 27.84}, {\"col\": \"AAPL\", \"idx\": 1272610800000, \"val\": 250.95}, {\"col\": \"IBM\", \"idx\": 1272610800000, \"val\": 119.96}, {\"col\": \"YHOO\", \"idx\": 1272610800000, \"val\": 16.53}, {\"col\": \"MSFT\", \"idx\": 1272610800000, \"val\": 27.43}, {\"col\": \"AAPL\", \"idx\": 1272870000000, \"val\": 256.0}, {\"col\": \"IBM\", \"idx\": 1272870000000, \"val\": 120.52}, {\"col\": \"YHOO\", \"idx\": 1272870000000, \"val\": 16.95}, {\"col\": \"MSFT\", \"idx\": 1272870000000, \"val\": 27.72}, {\"col\": \"AAPL\", \"idx\": 1272956400000, \"val\": 248.63}, {\"col\": \"IBM\", \"idx\": 1272956400000, \"val\": 119.14}, {\"col\": \"YHOO\", \"idx\": 1272956400000, \"val\": 16.32}, {\"col\": \"MSFT\", \"idx\": 1272956400000, \"val\": 27.06}, {\"col\": \"AAPL\", \"idx\": 1273042800000, \"val\": 246.05}, {\"col\": \"IBM\", \"idx\": 1273042800000, \"val\": 118.53}, {\"col\": \"YHOO\", \"idx\": 1273042800000, \"val\": 16.49}, {\"col\": \"MSFT\", \"idx\": 1273042800000, \"val\": 26.81}, {\"col\": \"AAPL\", \"idx\": 1273129200000, \"val\": 236.68}, {\"col\": \"IBM\", \"idx\": 1273129200000, \"val\": 115.83}, {\"col\": \"YHOO\", \"idx\": 1273129200000, \"val\": 15.92}, {\"col\": \"MSFT\", \"idx\": 1273129200000, \"val\": 26.03}, {\"col\": \"AAPL\", \"idx\": 1273215600000, \"val\": 226.7}, {\"col\": \"IBM\", \"idx\": 1273215600000, \"val\": 114.13}, {\"col\": \"YHOO\", \"idx\": 1273215600000, \"val\": 15.29}, {\"col\": \"MSFT\", \"idx\": 1273215600000, \"val\": 25.34}, {\"col\": \"AAPL\", \"idx\": 1273474800000, \"val\": 244.12}, {\"col\": \"IBM\", \"idx\": 1273474800000, \"val\": 118.02}, {\"col\": \"YHOO\", \"idx\": 1273474800000, \"val\": 16.33}, {\"col\": \"MSFT\", \"idx\": 1273474800000, \"val\": 25.99}, {\"col\": \"AAPL\", \"idx\": 1273561200000, \"val\": 246.56}, {\"col\": \"IBM\", \"idx\": 1273561200000, \"val\": 118.6}, {\"col\": \"YHOO\", \"idx\": 1273561200000, \"val\": 16.41}, {\"col\": \"MSFT\", \"idx\": 1273561200000, \"val\": 25.94}, {\"col\": \"AAPL\", \"idx\": 1273647600000, \"val\": 251.91}, {\"col\": \"IBM\", \"idx\": 1273647600000, \"val\": 124.02}, {\"col\": \"YHOO\", \"idx\": 1273647600000, \"val\": 16.47}, {\"col\": \"MSFT\", \"idx\": 1273647600000, \"val\": 26.44}, {\"col\": \"AAPL\", \"idx\": 1273734000000, \"val\": 248.32}, {\"col\": \"IBM\", \"idx\": 1273734000000, \"val\": 122.89}, {\"col\": \"YHOO\", \"idx\": 1273734000000, \"val\": 16.14}, {\"col\": \"MSFT\", \"idx\": 1273734000000, \"val\": 26.26}, {\"col\": \"AAPL\", \"idx\": 1273820400000, \"val\": 243.96}, {\"col\": \"IBM\", \"idx\": 1273820400000, \"val\": 122.62}, {\"col\": \"YHOO\", \"idx\": 1273820400000, \"val\": 16.39}, {\"col\": \"MSFT\", \"idx\": 1273820400000, \"val\": 25.99}, {\"col\": \"AAPL\", \"idx\": 1274079600000, \"val\": 244.34}, {\"col\": \"IBM\", \"idx\": 1274079600000, \"val\": 121.92}, {\"col\": \"YHOO\", \"idx\": 1274079600000, \"val\": 16.27}, {\"col\": \"MSFT\", \"idx\": 1274079600000, \"val\": 25.99}, {\"col\": \"AAPL\", \"idx\": 1274166000000, \"val\": 242.56}, {\"col\": \"IBM\", \"idx\": 1274166000000, \"val\": 121.46}, {\"col\": \"YHOO\", \"idx\": 1274166000000, \"val\": 16.03}, {\"col\": \"MSFT\", \"idx\": 1274166000000, \"val\": 25.81}, {\"col\": \"AAPL\", \"idx\": 1274252400000, \"val\": 238.69}, {\"col\": \"IBM\", \"idx\": 1274252400000, \"val\": 120.45}, {\"col\": \"YHOO\", \"idx\": 1274252400000, \"val\": 15.79}, {\"col\": \"MSFT\", \"idx\": 1274252400000, \"val\": 25.48}, {\"col\": \"AAPL\", \"idx\": 1274338800000, \"val\": 228.52}, {\"col\": \"IBM\", \"idx\": 1274338800000, \"val\": 115.72}, {\"col\": \"YHOO\", \"idx\": 1274338800000, \"val\": 15.1}, {\"col\": \"MSFT\", \"idx\": 1274338800000, \"val\": 24.46}, {\"col\": \"AAPL\", \"idx\": 1274425200000, \"val\": 232.91}, {\"col\": \"IBM\", \"idx\": 1274425200000, \"val\": 117.23}, {\"col\": \"YHOO\", \"idx\": 1274425200000, \"val\": 15.48}, {\"col\": \"MSFT\", \"idx\": 1274425200000, \"val\": 24.22}, {\"col\": \"AAPL\", \"idx\": 1274684400000, \"val\": 237.17}, {\"col\": \"IBM\", \"idx\": 1274684400000, \"val\": 116.32}, {\"col\": \"YHOO\", \"idx\": 1274684400000, \"val\": 15.54}, {\"col\": \"MSFT\", \"idx\": 1274684400000, \"val\": 23.7}, {\"col\": \"AAPL\", \"idx\": 1274770800000, \"val\": 235.69}, {\"col\": \"IBM\", \"idx\": 1274770800000, \"val\": 116.39}, {\"col\": \"YHOO\", \"idx\": 1274770800000, \"val\": 15.31}, {\"col\": \"MSFT\", \"idx\": 1274770800000, \"val\": 23.52}, {\"col\": \"AAPL\", \"idx\": 1274857200000, \"val\": 234.63}, {\"col\": \"IBM\", \"idx\": 1274857200000, \"val\": 115.18}, {\"col\": \"YHOO\", \"idx\": 1274857200000, \"val\": 15.45}, {\"col\": \"MSFT\", \"idx\": 1274857200000, \"val\": 22.57}, {\"col\": \"AAPL\", \"idx\": 1274943600000, \"val\": 243.51}, {\"col\": \"IBM\", \"idx\": 1274943600000, \"val\": 118.14}, {\"col\": \"YHOO\", \"idx\": 1274943600000, \"val\": 15.69}, {\"col\": \"MSFT\", \"idx\": 1274943600000, \"val\": 23.46}, {\"col\": \"AAPL\", \"idx\": 1275030000000, \"val\": 246.9}, {\"col\": \"IBM\", \"idx\": 1275030000000, \"val\": 117.08}, {\"col\": \"YHOO\", \"idx\": 1275030000000, \"val\": 15.34}, {\"col\": \"MSFT\", \"idx\": 1275030000000, \"val\": 23.28}, {\"col\": \"AAPL\", \"idx\": 1275375600000, \"val\": 250.7}, {\"col\": \"IBM\", \"idx\": 1275375600000, \"val\": 116.22}, {\"col\": \"YHOO\", \"idx\": 1275375600000, \"val\": 15.02}, {\"col\": \"MSFT\", \"idx\": 1275375600000, \"val\": 23.36}, {\"col\": \"AAPL\", \"idx\": 1275462000000, \"val\": 253.7}, {\"col\": \"IBM\", \"idx\": 1275462000000, \"val\": 119.09}, {\"col\": \"YHOO\", \"idx\": 1275462000000, \"val\": 15.18}, {\"col\": \"MSFT\", \"idx\": 1275462000000, \"val\": 23.87}, {\"col\": \"AAPL\", \"idx\": 1275548400000, \"val\": 252.9}, {\"col\": \"IBM\", \"idx\": 1275548400000, \"val\": 119.6}, {\"col\": \"YHOO\", \"idx\": 1275548400000, \"val\": 15.43}, {\"col\": \"MSFT\", \"idx\": 1275548400000, \"val\": 24.24}, {\"col\": \"AAPL\", \"idx\": 1275634800000, \"val\": 246.02}, {\"col\": \"IBM\", \"idx\": 1275634800000, \"val\": 117.1}, {\"col\": \"YHOO\", \"idx\": 1275634800000, \"val\": 15.0}, {\"col\": \"MSFT\", \"idx\": 1275634800000, \"val\": 23.27}, {\"col\": \"AAPL\", \"idx\": 1275894000000, \"val\": 241.19}, {\"col\": \"IBM\", \"idx\": 1275894000000, \"val\": 116.02}, {\"col\": \"YHOO\", \"idx\": 1275894000000, \"val\": 14.94}, {\"col\": \"MSFT\", \"idx\": 1275894000000, \"val\": 22.82}, {\"col\": \"AAPL\", \"idx\": 1275980400000, \"val\": 239.64}, {\"col\": \"IBM\", \"idx\": 1275980400000, \"val\": 115.64}, {\"col\": \"YHOO\", \"idx\": 1275980400000, \"val\": 14.79}, {\"col\": \"MSFT\", \"idx\": 1275980400000, \"val\": 22.66}, {\"col\": \"AAPL\", \"idx\": 1276066800000, \"val\": 233.75}, {\"col\": \"IBM\", \"idx\": 1276066800000, \"val\": 115.81}, {\"col\": \"YHOO\", \"idx\": 1276066800000, \"val\": 14.69}, {\"col\": \"MSFT\", \"idx\": 1276066800000, \"val\": 22.37}, {\"col\": \"AAPL\", \"idx\": 1276153200000, \"val\": 240.78}, {\"col\": \"IBM\", \"idx\": 1276153200000, \"val\": 119.34}, {\"col\": \"YHOO\", \"idx\": 1276153200000, \"val\": 15.1}, {\"col\": \"MSFT\", \"idx\": 1276153200000, \"val\": 22.56}, {\"col\": \"AAPL\", \"idx\": 1276239600000, \"val\": 243.66}, {\"col\": \"IBM\", \"idx\": 1276239600000, \"val\": 120.06}, {\"col\": \"YHOO\", \"idx\": 1276239600000, \"val\": 15.29}, {\"col\": \"MSFT\", \"idx\": 1276239600000, \"val\": 23.15}, {\"col\": \"AAPL\", \"idx\": 1276498800000, \"val\": 244.4}, {\"col\": \"IBM\", \"idx\": 1276498800000, \"val\": 120.11}, {\"col\": \"YHOO\", \"idx\": 1276498800000, \"val\": 15.17}, {\"col\": \"MSFT\", \"idx\": 1276498800000, \"val\": 23.01}, {\"col\": \"AAPL\", \"idx\": 1276585200000, \"val\": 249.6}, {\"col\": \"IBM\", \"idx\": 1276585200000, \"val\": 121.31}, {\"col\": \"YHOO\", \"idx\": 1276585200000, \"val\": 15.65}, {\"col\": \"MSFT\", \"idx\": 1276585200000, \"val\": 23.98}, {\"col\": \"AAPL\", \"idx\": 1276671600000, \"val\": 256.87}, {\"col\": \"IBM\", \"idx\": 1276671600000, \"val\": 121.84}, {\"col\": \"YHOO\", \"idx\": 1276671600000, \"val\": 15.49}, {\"col\": \"MSFT\", \"idx\": 1276671600000, \"val\": 23.75}, {\"col\": \"AAPL\", \"idx\": 1276758000000, \"val\": 261.31}, {\"col\": \"IBM\", \"idx\": 1276758000000, \"val\": 122.43}, {\"col\": \"YHOO\", \"idx\": 1276758000000, \"val\": 15.6}, {\"col\": \"MSFT\", \"idx\": 1276758000000, \"val\": 23.79}, {\"col\": \"AAPL\", \"idx\": 1276844400000, \"val\": 263.42}, {\"col\": \"IBM\", \"idx\": 1276844400000, \"val\": 121.65}, {\"col\": \"YHOO\", \"idx\": 1276844400000, \"val\": 15.54}, {\"col\": \"MSFT\", \"idx\": 1276844400000, \"val\": 23.86}, {\"col\": \"AAPL\", \"idx\": 1277103600000, \"val\": 259.68}, {\"col\": \"IBM\", \"idx\": 1277103600000, \"val\": 122.12}, {\"col\": \"YHOO\", \"idx\": 1277103600000, \"val\": 15.21}, {\"col\": \"MSFT\", \"idx\": 1277103600000, \"val\": 23.41}, {\"col\": \"AAPL\", \"idx\": 1277190000000, \"val\": 263.21}, {\"col\": \"IBM\", \"idx\": 1277190000000, \"val\": 120.86}, {\"col\": \"YHOO\", \"idx\": 1277190000000, \"val\": 15.09}, {\"col\": \"MSFT\", \"idx\": 1277190000000, \"val\": 23.25}, {\"col\": \"AAPL\", \"idx\": 1277276400000, \"val\": 260.44}, {\"col\": \"IBM\", \"idx\": 1277276400000, \"val\": 121.61}, {\"col\": \"YHOO\", \"idx\": 1277276400000, \"val\": 15.23}, {\"col\": \"MSFT\", \"idx\": 1277276400000, \"val\": 22.84}, {\"col\": \"AAPL\", \"idx\": 1277362800000, \"val\": 258.55}, {\"col\": \"IBM\", \"idx\": 1277362800000, \"val\": 119.82}, {\"col\": \"YHOO\", \"idx\": 1277362800000, \"val\": 14.83}, {\"col\": \"MSFT\", \"idx\": 1277362800000, \"val\": 22.56}, {\"col\": \"AAPL\", \"idx\": 1277449200000, \"val\": 256.34}, {\"col\": \"IBM\", \"idx\": 1277449200000, \"val\": 118.82}, {\"col\": \"YHOO\", \"idx\": 1277449200000, \"val\": 14.81}, {\"col\": \"MSFT\", \"idx\": 1277449200000, \"val\": 22.13}, {\"col\": \"AAPL\", \"idx\": 1277708400000, \"val\": 257.88}, {\"col\": \"IBM\", \"idx\": 1277708400000, \"val\": 120.56}, {\"col\": \"YHOO\", \"idx\": 1277708400000, \"val\": 14.73}, {\"col\": \"MSFT\", \"idx\": 1277708400000, \"val\": 21.93}, {\"col\": \"AAPL\", \"idx\": 1277794800000, \"val\": 246.22}, {\"col\": \"IBM\", \"idx\": 1277794800000, \"val\": 116.92}, {\"col\": \"YHOO\", \"idx\": 1277794800000, \"val\": 14.04}, {\"col\": \"MSFT\", \"idx\": 1277794800000, \"val\": 21.03}, {\"col\": \"AAPL\", \"idx\": 1277881200000, \"val\": 241.76}, {\"col\": \"IBM\", \"idx\": 1277881200000, \"val\": 115.42}, {\"col\": \"YHOO\", \"idx\": 1277881200000, \"val\": 13.84}, {\"col\": \"MSFT\", \"idx\": 1277881200000, \"val\": 20.76}, {\"col\": \"AAPL\", \"idx\": 1277967600000, \"val\": 238.83}, {\"col\": \"IBM\", \"idx\": 1277967600000, \"val\": 114.57}, {\"col\": \"YHOO\", \"idx\": 1277967600000, \"val\": 14.09}, {\"col\": \"MSFT\", \"idx\": 1277967600000, \"val\": 20.9}, {\"col\": \"AAPL\", \"idx\": 1278054000000, \"val\": 237.35}, {\"col\": \"IBM\", \"idx\": 1278054000000, \"val\": 113.9}, {\"col\": \"YHOO\", \"idx\": 1278054000000, \"val\": 14.07}, {\"col\": \"MSFT\", \"idx\": 1278054000000, \"val\": 21.0}, {\"col\": \"AAPL\", \"idx\": 1278399600000, \"val\": 238.97}, {\"col\": \"IBM\", \"idx\": 1278399600000, \"val\": 115.4}, {\"col\": \"YHOO\", \"idx\": 1278399600000, \"val\": 14.13}, {\"col\": \"MSFT\", \"idx\": 1278399600000, \"val\": 21.49}, {\"col\": \"AAPL\", \"idx\": 1278486000000, \"val\": 248.62}, {\"col\": \"IBM\", \"idx\": 1278486000000, \"val\": 118.71}, {\"col\": \"YHOO\", \"idx\": 1278486000000, \"val\": 14.4}, {\"col\": \"MSFT\", \"idx\": 1278486000000, \"val\": 21.93}, {\"col\": \"AAPL\", \"idx\": 1278572400000, \"val\": 248.06}, {\"col\": \"IBM\", \"idx\": 1278572400000, \"val\": 119.61}, {\"col\": \"YHOO\", \"idx\": 1278572400000, \"val\": 14.6}, {\"col\": \"MSFT\", \"idx\": 1278572400000, \"val\": 22.02}, {\"col\": \"AAPL\", \"idx\": 1278658800000, \"val\": 249.53}, {\"col\": \"IBM\", \"idx\": 1278658800000, \"val\": 119.6}, {\"col\": \"YHOO\", \"idx\": 1278658800000, \"val\": 14.89}, {\"col\": \"MSFT\", \"idx\": 1278658800000, \"val\": 21.9}, {\"col\": \"AAPL\", \"idx\": 1278918000000, \"val\": 247.3}, {\"col\": \"IBM\", \"idx\": 1278918000000, \"val\": 120.27}, {\"col\": \"YHOO\", \"idx\": 1278918000000, \"val\": 14.94}, {\"col\": \"MSFT\", \"idx\": 1278918000000, \"val\": 22.4}, {\"col\": \"AAPL\", \"idx\": 1279004400000, \"val\": 242.02}, {\"col\": \"IBM\", \"idx\": 1279004400000, \"val\": 121.96}, {\"col\": \"YHOO\", \"idx\": 1279004400000, \"val\": 15.52}, {\"col\": \"MSFT\", \"idx\": 1279004400000, \"val\": 22.67}, {\"col\": \"AAPL\", \"idx\": 1279090800000, \"val\": 242.91}, {\"col\": \"IBM\", \"idx\": 1279090800000, \"val\": 122.18}, {\"col\": \"YHOO\", \"idx\": 1279090800000, \"val\": 15.37}, {\"col\": \"MSFT\", \"idx\": 1279090800000, \"val\": 22.95}, {\"col\": \"AAPL\", \"idx\": 1279177200000, \"val\": 241.68}, {\"col\": \"IBM\", \"idx\": 1279177200000, \"val\": 122.18}, {\"col\": \"YHOO\", \"idx\": 1279177200000, \"val\": 15.37}, {\"col\": \"MSFT\", \"idx\": 1279177200000, \"val\": 23.02}, {\"col\": \"AAPL\", \"idx\": 1279263600000, \"val\": 240.19}, {\"col\": \"IBM\", \"idx\": 1279263600000, \"val\": 119.67}, {\"col\": \"YHOO\", \"idx\": 1279263600000, \"val\": 14.9}, {\"col\": \"MSFT\", \"idx\": 1279263600000, \"val\": 22.46}, {\"col\": \"AAPL\", \"idx\": 1279522800000, \"val\": 236.04}, {\"col\": \"IBM\", \"idx\": 1279522800000, \"val\": 121.31}, {\"col\": \"YHOO\", \"idx\": 1279522800000, \"val\": 15.1}, {\"col\": \"MSFT\", \"idx\": 1279522800000, \"val\": 22.76}, {\"col\": \"AAPL\", \"idx\": 1279609200000, \"val\": 242.11}, {\"col\": \"IBM\", \"idx\": 1279609200000, \"val\": 118.29}, {\"col\": \"YHOO\", \"idx\": 1279609200000, \"val\": 15.2}, {\"col\": \"MSFT\", \"idx\": 1279609200000, \"val\": 22.99}, {\"col\": \"AAPL\", \"idx\": 1279695600000, \"val\": 244.36}, {\"col\": \"IBM\", \"idx\": 1279695600000, \"val\": 117.09}, {\"col\": \"YHOO\", \"idx\": 1279695600000, \"val\": 13.91}, {\"col\": \"MSFT\", \"idx\": 1279695600000, \"val\": 22.67}, {\"col\": \"AAPL\", \"idx\": 1279782000000, \"val\": 248.96}, {\"col\": \"IBM\", \"idx\": 1279782000000, \"val\": 119.15}, {\"col\": \"YHOO\", \"idx\": 1279782000000, \"val\": 13.88}, {\"col\": \"MSFT\", \"idx\": 1279782000000, \"val\": 23.31}, {\"col\": \"AAPL\", \"idx\": 1279868400000, \"val\": 249.84}, {\"col\": \"IBM\", \"idx\": 1279868400000, \"val\": 120.0}, {\"col\": \"YHOO\", \"idx\": 1279868400000, \"val\": 13.99}, {\"col\": \"MSFT\", \"idx\": 1279868400000, \"val\": 23.29}, {\"col\": \"AAPL\", \"idx\": 1280127600000, \"val\": 249.21}, {\"col\": \"IBM\", \"idx\": 1280127600000, \"val\": 120.03}, {\"col\": \"YHOO\", \"idx\": 1280127600000, \"val\": 14.15}, {\"col\": \"MSFT\", \"idx\": 1280127600000, \"val\": 23.55}, {\"col\": \"AAPL\", \"idx\": 1280214000000, \"val\": 253.82}, {\"col\": \"IBM\", \"idx\": 1280214000000, \"val\": 120.23}, {\"col\": \"YHOO\", \"idx\": 1280214000000, \"val\": 13.95}, {\"col\": \"MSFT\", \"idx\": 1280214000000, \"val\": 23.6}, {\"col\": \"AAPL\", \"idx\": 1280300400000, \"val\": 250.82}, {\"col\": \"IBM\", \"idx\": 1280300400000, \"val\": 120.04}, {\"col\": \"YHOO\", \"idx\": 1280300400000, \"val\": 13.87}, {\"col\": \"MSFT\", \"idx\": 1280300400000, \"val\": 23.41}, {\"col\": \"AAPL\", \"idx\": 1280386800000, \"val\": 248.08}, {\"col\": \"IBM\", \"idx\": 1280386800000, \"val\": 119.66}, {\"col\": \"YHOO\", \"idx\": 1280386800000, \"val\": 13.76}, {\"col\": \"MSFT\", \"idx\": 1280386800000, \"val\": 23.49}, {\"col\": \"AAPL\", \"idx\": 1280473200000, \"val\": 247.26}, {\"col\": \"IBM\", \"idx\": 1280473200000, \"val\": 120.02}, {\"col\": \"YHOO\", \"idx\": 1280473200000, \"val\": 13.88}, {\"col\": \"MSFT\", \"idx\": 1280473200000, \"val\": 23.29}, {\"col\": \"AAPL\", \"idx\": 1280732400000, \"val\": 251.68}, {\"col\": \"IBM\", \"idx\": 1280732400000, \"val\": 122.22}, {\"col\": \"YHOO\", \"idx\": 1280732400000, \"val\": 14.0}, {\"col\": \"MSFT\", \"idx\": 1280732400000, \"val\": 23.76}, {\"col\": \"AAPL\", \"idx\": 1280818800000, \"val\": 251.76}, {\"col\": \"IBM\", \"idx\": 1280818800000, \"val\": 121.86}, {\"col\": \"YHOO\", \"idx\": 1280818800000, \"val\": 13.94}, {\"col\": \"MSFT\", \"idx\": 1280818800000, \"val\": 23.6}, {\"col\": \"AAPL\", \"idx\": 1280905200000, \"val\": 252.76}, {\"col\": \"IBM\", \"idx\": 1280905200000, \"val\": 122.7}, {\"col\": \"YHOO\", \"idx\": 1280905200000, \"val\": 14.18}, {\"col\": \"MSFT\", \"idx\": 1280905200000, \"val\": 23.22}, {\"col\": \"AAPL\", \"idx\": 1280991600000, \"val\": 251.53}, {\"col\": \"IBM\", \"idx\": 1280991600000, \"val\": 123.22}, {\"col\": \"YHOO\", \"idx\": 1280991600000, \"val\": 14.16}, {\"col\": \"MSFT\", \"idx\": 1280991600000, \"val\": 22.89}, {\"col\": \"AAPL\", \"idx\": 1281078000000, \"val\": 249.99}, {\"col\": \"IBM\", \"idx\": 1281078000000, \"val\": 122.24}, {\"col\": \"YHOO\", \"idx\": 1281078000000, \"val\": 14.34}, {\"col\": \"MSFT\", \"idx\": 1281078000000, \"val\": 23.05}, {\"col\": \"AAPL\", \"idx\": 1281337200000, \"val\": 251.58}, {\"col\": \"IBM\", \"idx\": 1281337200000, \"val\": 123.99}, {\"col\": \"YHOO\", \"idx\": 1281337200000, \"val\": 14.4}, {\"col\": \"MSFT\", \"idx\": 1281337200000, \"val\": 23.11}, {\"col\": \"AAPL\", \"idx\": 1281423600000, \"val\": 249.33}, {\"col\": \"IBM\", \"idx\": 1281423600000, \"val\": 123.84}, {\"col\": \"YHOO\", \"idx\": 1281423600000, \"val\": 14.35}, {\"col\": \"MSFT\", \"idx\": 1281423600000, \"val\": 22.62}, {\"col\": \"AAPL\", \"idx\": 1281510000000, \"val\": 240.47}, {\"col\": \"IBM\", \"idx\": 1281510000000, \"val\": 121.95}, {\"col\": \"YHOO\", \"idx\": 1281510000000, \"val\": 13.87}, {\"col\": \"MSFT\", \"idx\": 1281510000000, \"val\": 22.43}, {\"col\": \"AAPL\", \"idx\": 1281596400000, \"val\": 242.01}, {\"col\": \"IBM\", \"idx\": 1281596400000, \"val\": 120.52}, {\"col\": \"YHOO\", \"idx\": 1281596400000, \"val\": 13.85}, {\"col\": \"MSFT\", \"idx\": 1281596400000, \"val\": 22.1}, {\"col\": \"AAPL\", \"idx\": 1281682800000, \"val\": 239.42}, {\"col\": \"IBM\", \"idx\": 1281682800000, \"val\": 120.11}, {\"col\": \"YHOO\", \"idx\": 1281682800000, \"val\": 13.83}, {\"col\": \"MSFT\", \"idx\": 1281682800000, \"val\": 22.02}, {\"col\": \"AAPL\", \"idx\": 1281942000000, \"val\": 238.02}, {\"col\": \"IBM\", \"idx\": 1281942000000, \"val\": 120.02}, {\"col\": \"YHOO\", \"idx\": 1281942000000, \"val\": 13.79}, {\"col\": \"MSFT\", \"idx\": 1281942000000, \"val\": 22.11}, {\"col\": \"AAPL\", \"idx\": 1282028400000, \"val\": 242.18}, {\"col\": \"IBM\", \"idx\": 1282028400000, \"val\": 120.66}, {\"col\": \"YHOO\", \"idx\": 1282028400000, \"val\": 13.94}, {\"col\": \"MSFT\", \"idx\": 1282028400000, \"val\": 22.41}, {\"col\": \"AAPL\", \"idx\": 1282114800000, \"val\": 243.24}, {\"col\": \"IBM\", \"idx\": 1282114800000, \"val\": 121.54}, {\"col\": \"YHOO\", \"idx\": 1282114800000, \"val\": 13.99}, {\"col\": \"MSFT\", \"idx\": 1282114800000, \"val\": 22.51}, {\"col\": \"AAPL\", \"idx\": 1282201200000, \"val\": 240.17}, {\"col\": \"IBM\", \"idx\": 1282201200000, \"val\": 121.08}, {\"col\": \"YHOO\", \"idx\": 1282201200000, \"val\": 13.85}, {\"col\": \"MSFT\", \"idx\": 1282201200000, \"val\": 22.17}, {\"col\": \"AAPL\", \"idx\": 1282287600000, \"val\": 239.94}, {\"col\": \"IBM\", \"idx\": 1282287600000, \"val\": 119.76}, {\"col\": \"YHOO\", \"idx\": 1282287600000, \"val\": 13.79}, {\"col\": \"MSFT\", \"idx\": 1282287600000, \"val\": 21.98}, {\"col\": \"AAPL\", \"idx\": 1282546800000, \"val\": 236.25}, {\"col\": \"IBM\", \"idx\": 1282546800000, \"val\": 118.8}, {\"col\": \"YHOO\", \"idx\": 1282546800000, \"val\": 13.65}, {\"col\": \"MSFT\", \"idx\": 1282546800000, \"val\": 22.02}, {\"col\": \"AAPL\", \"idx\": 1282633200000, \"val\": 230.61}, {\"col\": \"IBM\", \"idx\": 1282633200000, \"val\": 117.32}, {\"col\": \"YHOO\", \"idx\": 1282633200000, \"val\": 13.4}, {\"col\": \"MSFT\", \"idx\": 1282633200000, \"val\": 21.81}, {\"col\": \"AAPL\", \"idx\": 1282719600000, \"val\": 233.45}, {\"col\": \"IBM\", \"idx\": 1282719600000, \"val\": 117.67}, {\"col\": \"YHOO\", \"idx\": 1282719600000, \"val\": 13.26}, {\"col\": \"MSFT\", \"idx\": 1282719600000, \"val\": 21.86}, {\"col\": \"AAPL\", \"idx\": 1282806000000, \"val\": 230.95}, {\"col\": \"IBM\", \"idx\": 1282806000000, \"val\": 115.33}, {\"col\": \"YHOO\", \"idx\": 1282806000000, \"val\": 13.21}, {\"col\": \"MSFT\", \"idx\": 1282806000000, \"val\": 21.61}, {\"col\": \"AAPL\", \"idx\": 1282892400000, \"val\": 232.23}, {\"col\": \"IBM\", \"idx\": 1282892400000, \"val\": 117.16}, {\"col\": \"YHOO\", \"idx\": 1282892400000, \"val\": 13.43}, {\"col\": \"MSFT\", \"idx\": 1282892400000, \"val\": 21.71}, {\"col\": \"AAPL\", \"idx\": 1283151600000, \"val\": 233.08}, {\"col\": \"IBM\", \"idx\": 1283151600000, \"val\": 115.91}, {\"col\": \"YHOO\", \"idx\": 1283151600000, \"val\": 13.18}, {\"col\": \"MSFT\", \"idx\": 1283151600000, \"val\": 21.44}, {\"col\": \"AAPL\", \"idx\": 1283238000000, \"val\": 233.66}, {\"col\": \"IBM\", \"idx\": 1283238000000, \"val\": 115.66}, {\"col\": \"YHOO\", \"idx\": 1283238000000, \"val\": 13.11}, {\"col\": \"MSFT\", \"idx\": 1283238000000, \"val\": 21.29}, {\"col\": \"AAPL\", \"idx\": 1283324400000, \"val\": 240.61}, {\"col\": \"IBM\", \"idx\": 1283324400000, \"val\": 118.14}, {\"col\": \"YHOO\", \"idx\": 1283324400000, \"val\": 13.37}, {\"col\": \"MSFT\", \"idx\": 1283324400000, \"val\": 21.68}, {\"col\": \"AAPL\", \"idx\": 1283410800000, \"val\": 242.37}, {\"col\": \"IBM\", \"idx\": 1283410800000, \"val\": 117.45}, {\"col\": \"YHOO\", \"idx\": 1283410800000, \"val\": 13.51}, {\"col\": \"MSFT\", \"idx\": 1283410800000, \"val\": 21.72}, {\"col\": \"AAPL\", \"idx\": 1283497200000, \"val\": 248.72}, {\"col\": \"IBM\", \"idx\": 1283497200000, \"val\": 119.84}, {\"col\": \"YHOO\", \"idx\": 1283497200000, \"val\": 13.62}, {\"col\": \"MSFT\", \"idx\": 1283497200000, \"val\": 22.03}, {\"col\": \"AAPL\", \"idx\": 1283842800000, \"val\": 247.8}, {\"col\": \"IBM\", \"idx\": 1283842800000, \"val\": 118.31}, {\"col\": \"YHOO\", \"idx\": 1283842800000, \"val\": 13.53}, {\"col\": \"MSFT\", \"idx\": 1283842800000, \"val\": 21.73}, {\"col\": \"AAPL\", \"idx\": 1283929200000, \"val\": 252.71}, {\"col\": \"IBM\", \"idx\": 1283929200000, \"val\": 118.43}, {\"col\": \"YHOO\", \"idx\": 1283929200000, \"val\": 13.75}, {\"col\": \"MSFT\", \"idx\": 1283929200000, \"val\": 21.71}, {\"col\": \"AAPL\", \"idx\": 1284015600000, \"val\": 252.85}, {\"col\": \"IBM\", \"idx\": 1284015600000, \"val\": 118.69}, {\"col\": \"YHOO\", \"idx\": 1284015600000, \"val\": 13.65}, {\"col\": \"MSFT\", \"idx\": 1284015600000, \"val\": 21.78}, {\"col\": \"AAPL\", \"idx\": 1284102000000, \"val\": 253.18}, {\"col\": \"IBM\", \"idx\": 1284102000000, \"val\": 120.23}, {\"col\": \"YHOO\", \"idx\": 1284102000000, \"val\": 13.68}, {\"col\": \"MSFT\", \"idx\": 1284102000000, \"val\": 21.63}, {\"col\": \"AAPL\", \"idx\": 1284361200000, \"val\": 256.67}, {\"col\": \"IBM\", \"idx\": 1284361200000, \"val\": 121.75}, {\"col\": \"YHOO\", \"idx\": 1284361200000, \"val\": 13.73}, {\"col\": \"MSFT\", \"idx\": 1284361200000, \"val\": 22.78}, {\"col\": \"AAPL\", \"idx\": 1284447600000, \"val\": 257.65}, {\"col\": \"IBM\", \"idx\": 1284447600000, \"val\": 121.03}, {\"col\": \"YHOO\", \"idx\": 1284447600000, \"val\": 13.63}, {\"col\": \"MSFT\", \"idx\": 1284447600000, \"val\": 22.7}, {\"col\": \"AAPL\", \"idx\": 1284534000000, \"val\": 259.72}, {\"col\": \"IBM\", \"idx\": 1284534000000, \"val\": 121.58}, {\"col\": \"YHOO\", \"idx\": 1284534000000, \"val\": 14.27}, {\"col\": \"MSFT\", \"idx\": 1284534000000, \"val\": 22.79}, {\"col\": \"AAPL\", \"idx\": 1284620400000, \"val\": 265.83}, {\"col\": \"IBM\", \"idx\": 1284620400000, \"val\": 121.8}, {\"col\": \"YHOO\", \"idx\": 1284620400000, \"val\": 14.19}, {\"col\": \"MSFT\", \"idx\": 1284620400000, \"val\": 22.98}, {\"col\": \"AAPL\", \"idx\": 1284706800000, \"val\": 264.67}, {\"col\": \"IBM\", \"idx\": 1284706800000, \"val\": 122.29}, {\"col\": \"YHOO\", \"idx\": 1284706800000, \"val\": 13.89}, {\"col\": \"MSFT\", \"idx\": 1284706800000, \"val\": 22.88}, {\"col\": \"AAPL\", \"idx\": 1284966000000, \"val\": 272.23}, {\"col\": \"IBM\", \"idx\": 1284966000000, \"val\": 123.79}, {\"col\": \"YHOO\", \"idx\": 1284966000000, \"val\": 13.86}, {\"col\": \"MSFT\", \"idx\": 1284966000000, \"val\": 23.07}, {\"col\": \"AAPL\", \"idx\": 1285052400000, \"val\": 272.75}, {\"col\": \"IBM\", \"idx\": 1285052400000, \"val\": 123.97}, {\"col\": \"YHOO\", \"idx\": 1285052400000, \"val\": 14.18}, {\"col\": \"MSFT\", \"idx\": 1285052400000, \"val\": 22.81}, {\"col\": \"AAPL\", \"idx\": 1285138800000, \"val\": 276.57}, {\"col\": \"IBM\", \"idx\": 1285138800000, \"val\": 124.53}, {\"col\": \"YHOO\", \"idx\": 1285138800000, \"val\": 14.04}, {\"col\": \"MSFT\", \"idx\": 1285138800000, \"val\": 22.32}, {\"col\": \"AAPL\", \"idx\": 1285225200000, \"val\": 277.7}, {\"col\": \"IBM\", \"idx\": 1285225200000, \"val\": 123.68}, {\"col\": \"YHOO\", \"idx\": 1285225200000, \"val\": 14.17}, {\"col\": \"MSFT\", \"idx\": 1285225200000, \"val\": 22.16}, {\"col\": \"AAPL\", \"idx\": 1285311600000, \"val\": 280.96}, {\"col\": \"IBM\", \"idx\": 1285311600000, \"val\": 125.97}, {\"col\": \"YHOO\", \"idx\": 1285311600000, \"val\": 14.5}, {\"col\": \"MSFT\", \"idx\": 1285311600000, \"val\": 22.48}, {\"col\": \"AAPL\", \"idx\": 1285570800000, \"val\": 279.85}, {\"col\": \"IBM\", \"idx\": 1285570800000, \"val\": 126.48}, {\"col\": \"YHOO\", \"idx\": 1285570800000, \"val\": 14.28}, {\"col\": \"MSFT\", \"idx\": 1285570800000, \"val\": 22.43}, {\"col\": \"AAPL\", \"idx\": 1285657200000, \"val\": 275.72}, {\"col\": \"IBM\", \"idx\": 1285657200000, \"val\": 126.71}, {\"col\": \"YHOO\", \"idx\": 1285657200000, \"val\": 14.39}, {\"col\": \"MSFT\", \"idx\": 1285657200000, \"val\": 22.39}, {\"col\": \"AAPL\", \"idx\": 1285743600000, \"val\": 276.21}, {\"col\": \"IBM\", \"idx\": 1285743600000, \"val\": 127.26}, {\"col\": \"YHOO\", \"idx\": 1285743600000, \"val\": 14.34}, {\"col\": \"MSFT\", \"idx\": 1285743600000, \"val\": 22.22}, {\"col\": \"AAPL\", \"idx\": 1285830000000, \"val\": 272.73}, {\"col\": \"IBM\", \"idx\": 1285830000000, \"val\": 126.0}, {\"col\": \"YHOO\", \"idx\": 1285830000000, \"val\": 14.17}, {\"col\": \"MSFT\", \"idx\": 1285830000000, \"val\": 22.21}, {\"col\": \"AAPL\", \"idx\": 1285916400000, \"val\": 271.55}, {\"col\": \"IBM\", \"idx\": 1285916400000, \"val\": 127.41}, {\"col\": \"YHOO\", \"idx\": 1285916400000, \"val\": 14.27}, {\"col\": \"MSFT\", \"idx\": 1285916400000, \"val\": 22.11}, {\"col\": \"AAPL\", \"idx\": 1286175600000, \"val\": 267.82}, {\"col\": \"IBM\", \"idx\": 1286175600000, \"val\": 127.04}, {\"col\": \"YHOO\", \"idx\": 1286175600000, \"val\": 14.28}, {\"col\": \"MSFT\", \"idx\": 1286175600000, \"val\": 21.69}, {\"col\": \"AAPL\", \"idx\": 1286262000000, \"val\": 277.72}, {\"col\": \"IBM\", \"idx\": 1286262000000, \"val\": 129.31}, {\"col\": \"YHOO\", \"idx\": 1286262000000, \"val\": 14.61}, {\"col\": \"MSFT\", \"idx\": 1286262000000, \"val\": 22.09}, {\"col\": \"AAPL\", \"idx\": 1286348400000, \"val\": 277.96}, {\"col\": \"IBM\", \"idx\": 1286348400000, \"val\": 129.48}, {\"col\": \"YHOO\", \"idx\": 1286348400000, \"val\": 14.52}, {\"col\": \"MSFT\", \"idx\": 1286348400000, \"val\": 22.16}, {\"col\": \"AAPL\", \"idx\": 1286434800000, \"val\": 277.99}, {\"col\": \"IBM\", \"idx\": 1286434800000, \"val\": 130.3}, {\"col\": \"YHOO\", \"idx\": 1286434800000, \"val\": 14.23}, {\"col\": \"MSFT\", \"idx\": 1286434800000, \"val\": 22.25}, {\"col\": \"AAPL\", \"idx\": 1286521200000, \"val\": 282.65}, {\"col\": \"IBM\", \"idx\": 1286521200000, \"val\": 130.43}, {\"col\": \"YHOO\", \"idx\": 1286521200000, \"val\": 14.49}, {\"col\": \"MSFT\", \"idx\": 1286521200000, \"val\": 22.29}, {\"col\": \"AAPL\", \"idx\": 1286780400000, \"val\": 283.89}, {\"col\": \"IBM\", \"idx\": 1286780400000, \"val\": 131.19}, {\"col\": \"YHOO\", \"idx\": 1286780400000, \"val\": 14.41}, {\"col\": \"MSFT\", \"idx\": 1286780400000, \"val\": 22.31}, {\"col\": \"AAPL\", \"idx\": 1286866800000, \"val\": 286.94}, {\"col\": \"IBM\", \"idx\": 1286866800000, \"val\": 131.37}, {\"col\": \"YHOO\", \"idx\": 1286866800000, \"val\": 14.43}, {\"col\": \"MSFT\", \"idx\": 1286866800000, \"val\": 22.52}, {\"col\": \"AAPL\", \"idx\": 1286953200000, \"val\": 288.48}, {\"col\": \"IBM\", \"idx\": 1286953200000, \"val\": 131.85}, {\"col\": \"YHOO\", \"idx\": 1286953200000, \"val\": 15.25}, {\"col\": \"MSFT\", \"idx\": 1286953200000, \"val\": 22.99}, {\"col\": \"AAPL\", \"idx\": 1287039600000, \"val\": 290.57}, {\"col\": \"IBM\", \"idx\": 1287039600000, \"val\": 132.92}, {\"col\": \"YHOO\", \"idx\": 1287039600000, \"val\": 15.93}, {\"col\": \"MSFT\", \"idx\": 1287039600000, \"val\": 22.89}, {\"col\": \"AAPL\", \"idx\": 1287126000000, \"val\": 302.51}, {\"col\": \"IBM\", \"idx\": 1287126000000, \"val\": 132.5}, {\"col\": \"YHOO\", \"idx\": 1287126000000, \"val\": 16.25}, {\"col\": \"MSFT\", \"idx\": 1287126000000, \"val\": 23.17}, {\"col\": \"AAPL\", \"idx\": 1287385200000, \"val\": 305.65}, {\"col\": \"IBM\", \"idx\": 1287385200000, \"val\": 134.16}, {\"col\": \"YHOO\", \"idx\": 1287385200000, \"val\": 15.93}, {\"col\": \"MSFT\", \"idx\": 1287385200000, \"val\": 23.42}, {\"col\": \"AAPL\", \"idx\": 1287471600000, \"val\": 297.47}, {\"col\": \"IBM\", \"idx\": 1287471600000, \"val\": 129.66}, {\"col\": \"YHOO\", \"idx\": 1287471600000, \"val\": 15.49}, {\"col\": \"MSFT\", \"idx\": 1287471600000, \"val\": 22.77}, {\"col\": \"AAPL\", \"idx\": 1287558000000, \"val\": 298.47}, {\"col\": \"IBM\", \"idx\": 1287558000000, \"val\": 130.63}, {\"col\": \"YHOO\", \"idx\": 1287558000000, \"val\": 15.8}, {\"col\": \"MSFT\", \"idx\": 1287558000000, \"val\": 22.96}, {\"col\": \"AAPL\", \"idx\": 1287644400000, \"val\": 297.5}, {\"col\": \"IBM\", \"idx\": 1287644400000, \"val\": 131.35}, {\"col\": \"YHOO\", \"idx\": 1287644400000, \"val\": 15.97}, {\"col\": \"MSFT\", \"idx\": 1287644400000, \"val\": 23.06}, {\"col\": \"AAPL\", \"idx\": 1287730800000, \"val\": 295.53}, {\"col\": \"IBM\", \"idx\": 1287730800000, \"val\": 131.2}, {\"col\": \"YHOO\", \"idx\": 1287730800000, \"val\": 16.31}, {\"col\": \"MSFT\", \"idx\": 1287730800000, \"val\": 23.02}, {\"col\": \"AAPL\", \"idx\": 1287990000000, \"val\": 296.84}, {\"col\": \"IBM\", \"idx\": 1287990000000, \"val\": 131.36}, {\"col\": \"YHOO\", \"idx\": 1287990000000, \"val\": 16.4}, {\"col\": \"MSFT\", \"idx\": 1287990000000, \"val\": 22.85}, {\"col\": \"AAPL\", \"idx\": 1288076400000, \"val\": 296.08}, {\"col\": \"IBM\", \"idx\": 1288076400000, \"val\": 132.14}, {\"col\": \"YHOO\", \"idx\": 1288076400000, \"val\": 16.46}, {\"col\": \"MSFT\", \"idx\": 1288076400000, \"val\": 23.49}, {\"col\": \"AAPL\", \"idx\": 1288162800000, \"val\": 295.87}, {\"col\": \"IBM\", \"idx\": 1288162800000, \"val\": 132.85}, {\"col\": \"YHOO\", \"idx\": 1288162800000, \"val\": 16.42}, {\"col\": \"MSFT\", \"idx\": 1288162800000, \"val\": 23.63}, {\"col\": \"AAPL\", \"idx\": 1288249200000, \"val\": 293.38}, {\"col\": \"IBM\", \"idx\": 1288249200000, \"val\": 132.35}, {\"col\": \"YHOO\", \"idx\": 1288249200000, \"val\": 16.4}, {\"col\": \"MSFT\", \"idx\": 1288249200000, \"val\": 23.84}, {\"col\": \"AAPL\", \"idx\": 1288335600000, \"val\": 289.29}, {\"col\": \"IBM\", \"idx\": 1288335600000, \"val\": 134.89}, {\"col\": \"YHOO\", \"idx\": 1288335600000, \"val\": 16.49}, {\"col\": \"MSFT\", \"idx\": 1288335600000, \"val\": 24.19}, {\"col\": \"AAPL\", \"idx\": 1288594800000, \"val\": 292.36}, {\"col\": \"IBM\", \"idx\": 1288594800000, \"val\": 134.63}, {\"col\": \"YHOO\", \"idx\": 1288594800000, \"val\": 16.15}, {\"col\": \"MSFT\", \"idx\": 1288594800000, \"val\": 24.45}, {\"col\": \"AAPL\", \"idx\": 1288681200000, \"val\": 297.34}, {\"col\": \"IBM\", \"idx\": 1288681200000, \"val\": 135.11}, {\"col\": \"YHOO\", \"idx\": 1288681200000, \"val\": 16.19}, {\"col\": \"MSFT\", \"idx\": 1288681200000, \"val\": 24.85}, {\"col\": \"AAPL\", \"idx\": 1288767600000, \"val\": 300.65}, {\"col\": \"IBM\", \"idx\": 1288767600000, \"val\": 135.42}, {\"col\": \"YHOO\", \"idx\": 1288767600000, \"val\": 16.17}, {\"col\": \"MSFT\", \"idx\": 1288767600000, \"val\": 24.52}, {\"col\": \"AAPL\", \"idx\": 1288854000000, \"val\": 305.91}, {\"col\": \"IBM\", \"idx\": 1288854000000, \"val\": 137.88}, {\"col\": \"YHOO\", \"idx\": 1288854000000, \"val\": 16.2}, {\"col\": \"MSFT\", \"idx\": 1288854000000, \"val\": 24.62}, {\"col\": \"AAPL\", \"idx\": 1288940400000, \"val\": 304.81}, {\"col\": \"IBM\", \"idx\": 1288940400000, \"val\": 138.01}, {\"col\": \"YHOO\", \"idx\": 1288940400000, \"val\": 16.27}, {\"col\": \"MSFT\", \"idx\": 1288940400000, \"val\": 24.36}, {\"col\": \"AAPL\", \"idx\": 1289203200000, \"val\": 306.24}, {\"col\": \"IBM\", \"idx\": 1289203200000, \"val\": 138.19}, {\"col\": \"YHOO\", \"idx\": 1289203200000, \"val\": 16.44}, {\"col\": \"MSFT\", \"idx\": 1289203200000, \"val\": 24.32}, {\"col\": \"AAPL\", \"idx\": 1289289600000, \"val\": 303.8}, {\"col\": \"IBM\", \"idx\": 1289289600000, \"val\": 137.88}, {\"col\": \"YHOO\", \"idx\": 1289289600000, \"val\": 16.97}, {\"col\": \"MSFT\", \"idx\": 1289289600000, \"val\": 24.45}, {\"col\": \"AAPL\", \"idx\": 1289376000000, \"val\": 305.68}, {\"col\": \"IBM\", \"idx\": 1289376000000, \"val\": 138.27}, {\"col\": \"YHOO\", \"idx\": 1289376000000, \"val\": 16.94}, {\"col\": \"MSFT\", \"idx\": 1289376000000, \"val\": 24.44}, {\"col\": \"AAPL\", \"idx\": 1289462400000, \"val\": 304.35}, {\"col\": \"IBM\", \"idx\": 1289462400000, \"val\": 137.21}, {\"col\": \"YHOO\", \"idx\": 1289462400000, \"val\": 16.8}, {\"col\": \"MSFT\", \"idx\": 1289462400000, \"val\": 24.2}, {\"col\": \"AAPL\", \"idx\": 1289548800000, \"val\": 296.06}, {\"col\": \"IBM\", \"idx\": 1289548800000, \"val\": 135.62}, {\"col\": \"YHOO\", \"idx\": 1289548800000, \"val\": 16.55}, {\"col\": \"MSFT\", \"idx\": 1289548800000, \"val\": 23.83}, {\"col\": \"AAPL\", \"idx\": 1289808000000, \"val\": 295.11}, {\"col\": \"IBM\", \"idx\": 1289808000000, \"val\": 135.53}, {\"col\": \"YHOO\", \"idx\": 1289808000000, \"val\": 16.6}, {\"col\": \"MSFT\", \"idx\": 1289808000000, \"val\": 23.77}, {\"col\": \"AAPL\", \"idx\": 1289894400000, \"val\": 289.87}, {\"col\": \"IBM\", \"idx\": 1289894400000, \"val\": 134.2}, {\"col\": \"YHOO\", \"idx\": 1289894400000, \"val\": 16.24}, {\"col\": \"MSFT\", \"idx\": 1289894400000, \"val\": 23.56}, {\"col\": \"AAPL\", \"idx\": 1289980800000, \"val\": 288.83}, {\"col\": \"IBM\", \"idx\": 1289980800000, \"val\": 133.93}, {\"col\": \"YHOO\", \"idx\": 1289980800000, \"val\": 16.15}, {\"col\": \"MSFT\", \"idx\": 1289980800000, \"val\": 23.34}, {\"col\": \"AAPL\", \"idx\": 1290067200000, \"val\": 296.45}, {\"col\": \"IBM\", \"idx\": 1290067200000, \"val\": 136.2}, {\"col\": \"YHOO\", \"idx\": 1290067200000, \"val\": 16.99}, {\"col\": \"MSFT\", \"idx\": 1290067200000, \"val\": 23.58}, {\"col\": \"AAPL\", \"idx\": 1290153600000, \"val\": 294.81}, {\"col\": \"IBM\", \"idx\": 1290153600000, \"val\": 136.86}, {\"col\": \"YHOO\", \"idx\": 1290153600000, \"val\": 16.57}, {\"col\": \"MSFT\", \"idx\": 1290153600000, \"val\": 23.45}, {\"col\": \"AAPL\", \"idx\": 1290412800000, \"val\": 301.19}, {\"col\": \"IBM\", \"idx\": 1290412800000, \"val\": 137.18}, {\"col\": \"YHOO\", \"idx\": 1290412800000, \"val\": 16.56}, {\"col\": \"MSFT\", \"idx\": 1290412800000, \"val\": 23.48}, {\"col\": \"AAPL\", \"idx\": 1290499200000, \"val\": 296.74}, {\"col\": \"IBM\", \"idx\": 1290499200000, \"val\": 135.09}, {\"col\": \"YHOO\", \"idx\": 1290499200000, \"val\": 16.19}, {\"col\": \"MSFT\", \"idx\": 1290499200000, \"val\": 22.93}, {\"col\": \"AAPL\", \"idx\": 1290585600000, \"val\": 302.57}, {\"col\": \"IBM\", \"idx\": 1290585600000, \"val\": 137.57}, {\"col\": \"YHOO\", \"idx\": 1290585600000, \"val\": 16.41}, {\"col\": \"MSFT\", \"idx\": 1290585600000, \"val\": 23.15}, {\"col\": \"AAPL\", \"idx\": 1290758400000, \"val\": 302.76}, {\"col\": \"IBM\", \"idx\": 1290758400000, \"val\": 135.77}, {\"col\": \"YHOO\", \"idx\": 1290758400000, \"val\": 16.22}, {\"col\": \"MSFT\", \"idx\": 1290758400000, \"val\": 23.04}, {\"col\": \"AAPL\", \"idx\": 1291017600000, \"val\": 304.56}, {\"col\": \"IBM\", \"idx\": 1291017600000, \"val\": 134.82}, {\"col\": \"YHOO\", \"idx\": 1291017600000, \"val\": 16.38}, {\"col\": \"MSFT\", \"idx\": 1291017600000, \"val\": 23.1}, {\"col\": \"AAPL\", \"idx\": 1291104000000, \"val\": 299.06}, {\"col\": \"IBM\", \"idx\": 1291104000000, \"val\": 133.47}, {\"col\": \"YHOO\", \"idx\": 1291104000000, \"val\": 15.82}, {\"col\": \"MSFT\", \"idx\": 1291104000000, \"val\": 23.05}, {\"col\": \"AAPL\", \"idx\": 1291190400000, \"val\": 304.11}, {\"col\": \"IBM\", \"idx\": 1291190400000, \"val\": 136.25}, {\"col\": \"YHOO\", \"idx\": 1291190400000, \"val\": 16.15}, {\"col\": \"MSFT\", \"idx\": 1291190400000, \"val\": 23.77}, {\"col\": \"AAPL\", \"idx\": 1291276800000, \"val\": 305.79}, {\"col\": \"IBM\", \"idx\": 1291276800000, \"val\": 136.98}, {\"col\": \"YHOO\", \"idx\": 1291276800000, \"val\": 16.33}, {\"col\": \"MSFT\", \"idx\": 1291276800000, \"val\": 24.54}, {\"col\": \"AAPL\", \"idx\": 1291363200000, \"val\": 305.11}, {\"col\": \"IBM\", \"idx\": 1291363200000, \"val\": 137.17}, {\"col\": \"YHOO\", \"idx\": 1291363200000, \"val\": 16.35}, {\"col\": \"MSFT\", \"idx\": 1291363200000, \"val\": 24.66}, {\"col\": \"AAPL\", \"idx\": 1291622400000, \"val\": 307.71}, {\"col\": \"IBM\", \"idx\": 1291622400000, \"val\": 136.8}, {\"col\": \"YHOO\", \"idx\": 1291622400000, \"val\": 16.33}, {\"col\": \"MSFT\", \"idx\": 1291622400000, \"val\": 24.5}, {\"col\": \"AAPL\", \"idx\": 1291708800000, \"val\": 305.85}, {\"col\": \"IBM\", \"idx\": 1291708800000, \"val\": 135.88}, {\"col\": \"YHOO\", \"idx\": 1291708800000, \"val\": 16.94}, {\"col\": \"MSFT\", \"idx\": 1291708800000, \"val\": 24.52}, {\"col\": \"AAPL\", \"idx\": 1291795200000, \"val\": 308.54}, {\"col\": \"IBM\", \"idx\": 1291795200000, \"val\": 136.79}, {\"col\": \"YHOO\", \"idx\": 1291795200000, \"val\": 17.02}, {\"col\": \"MSFT\", \"idx\": 1291795200000, \"val\": 24.85}, {\"col\": \"AAPL\", \"idx\": 1291881600000, \"val\": 307.34}, {\"col\": \"IBM\", \"idx\": 1291881600000, \"val\": 136.15}, {\"col\": \"YHOO\", \"idx\": 1291881600000, \"val\": 16.95}, {\"col\": \"MSFT\", \"idx\": 1291881600000, \"val\": 24.71}, {\"col\": \"AAPL\", \"idx\": 1291968000000, \"val\": 308.11}, {\"col\": \"IBM\", \"idx\": 1291968000000, \"val\": 136.64}, {\"col\": \"YHOO\", \"idx\": 1291968000000, \"val\": 17.01}, {\"col\": \"MSFT\", \"idx\": 1291968000000, \"val\": 24.95}, {\"col\": \"AAPL\", \"idx\": 1292227200000, \"val\": 309.17}, {\"col\": \"IBM\", \"idx\": 1292227200000, \"val\": 136.13}, {\"col\": \"YHOO\", \"idx\": 1292227200000, \"val\": 16.7}, {\"col\": \"MSFT\", \"idx\": 1292227200000, \"val\": 24.87}, {\"col\": \"AAPL\", \"idx\": 1292313600000, \"val\": 307.85}, {\"col\": \"IBM\", \"idx\": 1292313600000, \"val\": 137.58}, {\"col\": \"YHOO\", \"idx\": 1292313600000, \"val\": 16.63}, {\"col\": \"MSFT\", \"idx\": 1292313600000, \"val\": 25.21}, {\"col\": \"AAPL\", \"idx\": 1292400000000, \"val\": 307.92}, {\"col\": \"IBM\", \"idx\": 1292400000000, \"val\": 136.54}, {\"col\": \"YHOO\", \"idx\": 1292400000000, \"val\": 16.45}, {\"col\": \"MSFT\", \"idx\": 1292400000000, \"val\": 25.42}, {\"col\": \"AAPL\", \"idx\": 1292486400000, \"val\": 308.77}, {\"col\": \"IBM\", \"idx\": 1292486400000, \"val\": 136.38}, {\"col\": \"YHOO\", \"idx\": 1292486400000, \"val\": 16.51}, {\"col\": \"MSFT\", \"idx\": 1292486400000, \"val\": 25.55}, {\"col\": \"AAPL\", \"idx\": 1292572800000, \"val\": 308.16}, {\"col\": \"IBM\", \"idx\": 1292572800000, \"val\": 136.81}, {\"col\": \"YHOO\", \"idx\": 1292572800000, \"val\": 16.38}, {\"col\": \"MSFT\", \"idx\": 1292572800000, \"val\": 25.46}, {\"col\": \"AAPL\", \"idx\": 1292832000000, \"val\": 309.69}, {\"col\": \"IBM\", \"idx\": 1292832000000, \"val\": 136.35}, {\"col\": \"YHOO\", \"idx\": 1292832000000, \"val\": 16.28}, {\"col\": \"MSFT\", \"idx\": 1292832000000, \"val\": 25.38}, {\"col\": \"AAPL\", \"idx\": 1292918400000, \"val\": 311.61}, {\"col\": \"IBM\", \"idx\": 1292918400000, \"val\": 137.51}, {\"col\": \"YHOO\", \"idx\": 1292918400000, \"val\": 16.6}, {\"col\": \"MSFT\", \"idx\": 1292918400000, \"val\": 25.62}, {\"col\": \"AAPL\", \"idx\": 1293004800000, \"val\": 312.53}, {\"col\": \"IBM\", \"idx\": 1293004800000, \"val\": 137.7}, {\"col\": \"YHOO\", \"idx\": 1293004800000, \"val\": 16.63}, {\"col\": \"MSFT\", \"idx\": 1293004800000, \"val\": 25.73}, {\"col\": \"AAPL\", \"idx\": 1293091200000, \"val\": 311.03}, {\"col\": \"IBM\", \"idx\": 1293091200000, \"val\": 137.65}, {\"col\": \"YHOO\", \"idx\": 1293091200000, \"val\": 16.72}, {\"col\": \"MSFT\", \"idx\": 1293091200000, \"val\": 25.83}, {\"col\": \"AAPL\", \"idx\": 1293436800000, \"val\": 312.07}, {\"col\": \"IBM\", \"idx\": 1293436800000, \"val\": 137.13}, {\"col\": \"YHOO\", \"idx\": 1293436800000, \"val\": 16.48}, {\"col\": \"MSFT\", \"idx\": 1293436800000, \"val\": 25.62}, {\"col\": \"AAPL\", \"idx\": 1293523200000, \"val\": 312.83}, {\"col\": \"IBM\", \"idx\": 1293523200000, \"val\": 137.48}, {\"col\": \"YHOO\", \"idx\": 1293523200000, \"val\": 16.43}, {\"col\": \"MSFT\", \"idx\": 1293523200000, \"val\": 25.56}, {\"col\": \"AAPL\", \"idx\": 1293609600000, \"val\": 312.65}, {\"col\": \"IBM\", \"idx\": 1293609600000, \"val\": 138.24}, {\"col\": \"YHOO\", \"idx\": 1293609600000, \"val\": 16.61}, {\"col\": \"MSFT\", \"idx\": 1293609600000, \"val\": 25.53}, {\"col\": \"AAPL\", \"idx\": 1293696000000, \"val\": 311.09}, {\"col\": \"IBM\", \"idx\": 1293696000000, \"val\": 138.38}, {\"col\": \"YHOO\", \"idx\": 1293696000000, \"val\": 16.76}, {\"col\": \"MSFT\", \"idx\": 1293696000000, \"val\": 25.42}, {\"col\": \"AAPL\", \"idx\": 1293782400000, \"val\": 310.03}, {\"col\": \"IBM\", \"idx\": 1293782400000, \"val\": 138.47}, {\"col\": \"YHOO\", \"idx\": 1293782400000, \"val\": 16.63}, {\"col\": \"MSFT\", \"idx\": 1293782400000, \"val\": 25.47}, {\"col\": \"AAPL\", \"idx\": 1294041600000, \"val\": 316.77}, {\"col\": \"IBM\", \"idx\": 1294041600000, \"val\": 139.15}, {\"col\": \"YHOO\", \"idx\": 1294041600000, \"val\": 16.75}, {\"col\": \"MSFT\", \"idx\": 1294041600000, \"val\": 25.54}, {\"col\": \"AAPL\", \"idx\": 1294128000000, \"val\": 318.42}, {\"col\": \"IBM\", \"idx\": 1294128000000, \"val\": 139.3}, {\"col\": \"YHOO\", \"idx\": 1294128000000, \"val\": 16.59}, {\"col\": \"MSFT\", \"idx\": 1294128000000, \"val\": 25.64}, {\"col\": \"AAPL\", \"idx\": 1294214400000, \"val\": 321.03}, {\"col\": \"IBM\", \"idx\": 1294214400000, \"val\": 138.74}, {\"col\": \"YHOO\", \"idx\": 1294214400000, \"val\": 16.91}, {\"col\": \"MSFT\", \"idx\": 1294214400000, \"val\": 25.55}, {\"col\": \"AAPL\", \"idx\": 1294300800000, \"val\": 320.77}, {\"col\": \"IBM\", \"idx\": 1294300800000, \"val\": 140.26}, {\"col\": \"YHOO\", \"idx\": 1294300800000, \"val\": 17.06}, {\"col\": \"MSFT\", \"idx\": 1294300800000, \"val\": 26.3}, {\"col\": \"AAPL\", \"idx\": 1294387200000, \"val\": 323.06}, {\"col\": \"IBM\", \"idx\": 1294387200000, \"val\": 139.57}, {\"col\": \"YHOO\", \"idx\": 1294387200000, \"val\": 16.9}, {\"col\": \"MSFT\", \"idx\": 1294387200000, \"val\": 26.1}, {\"col\": \"AAPL\", \"idx\": 1294646400000, \"val\": 329.15}, {\"col\": \"IBM\", \"idx\": 1294646400000, \"val\": 139.3}, {\"col\": \"YHOO\", \"idx\": 1294646400000, \"val\": 16.6}, {\"col\": \"MSFT\", \"idx\": 1294646400000, \"val\": 25.76}, {\"col\": \"AAPL\", \"idx\": 1294732800000, \"val\": 328.37}, {\"col\": \"IBM\", \"idx\": 1294732800000, \"val\": 138.96}, {\"col\": \"YHOO\", \"idx\": 1294732800000, \"val\": 16.58}, {\"col\": \"MSFT\", \"idx\": 1294732800000, \"val\": 25.65}, {\"col\": \"AAPL\", \"idx\": 1294819200000, \"val\": 331.04}, {\"col\": \"IBM\", \"idx\": 1294819200000, \"val\": 140.68}, {\"col\": \"YHOO\", \"idx\": 1294819200000, \"val\": 16.65}, {\"col\": \"MSFT\", \"idx\": 1294819200000, \"val\": 26.06}, {\"col\": \"AAPL\", \"idx\": 1294905600000, \"val\": 332.25}, {\"col\": \"IBM\", \"idx\": 1294905600000, \"val\": 140.41}, {\"col\": \"YHOO\", \"idx\": 1294905600000, \"val\": 16.75}, {\"col\": \"MSFT\", \"idx\": 1294905600000, \"val\": 25.73}, {\"col\": \"AAPL\", \"idx\": 1294992000000, \"val\": 334.94}, {\"col\": \"IBM\", \"idx\": 1294992000000, \"val\": 141.53}, {\"col\": \"YHOO\", \"idx\": 1294992000000, \"val\": 16.81}, {\"col\": \"MSFT\", \"idx\": 1294992000000, \"val\": 25.83}, {\"col\": \"AAPL\", \"idx\": 1295337600000, \"val\": 327.42}, {\"col\": \"IBM\", \"idx\": 1295337600000, \"val\": 142.14}, {\"col\": \"YHOO\", \"idx\": 1295337600000, \"val\": 16.5}, {\"col\": \"MSFT\", \"idx\": 1295337600000, \"val\": 26.16}, {\"col\": \"AAPL\", \"idx\": 1295424000000, \"val\": 325.68}, {\"col\": \"IBM\", \"idx\": 1295424000000, \"val\": 146.89}, {\"col\": \"YHOO\", \"idx\": 1295424000000, \"val\": 16.31}, {\"col\": \"MSFT\", \"idx\": 1295424000000, \"val\": 25.98}, {\"col\": \"AAPL\", \"idx\": 1295510400000, \"val\": 319.76}, {\"col\": \"IBM\", \"idx\": 1295510400000, \"val\": 147.0}, {\"col\": \"YHOO\", \"idx\": 1295510400000, \"val\": 16.23}, {\"col\": \"MSFT\", \"idx\": 1295510400000, \"val\": 25.87}, {\"col\": \"AAPL\", \"idx\": 1295596800000, \"val\": 314.03}, {\"col\": \"IBM\", \"idx\": 1295596800000, \"val\": 146.72}, {\"col\": \"YHOO\", \"idx\": 1295596800000, \"val\": 15.97}, {\"col\": \"MSFT\", \"idx\": 1295596800000, \"val\": 25.57}, {\"col\": \"AAPL\", \"idx\": 1295856000000, \"val\": 324.34}, {\"col\": \"IBM\", \"idx\": 1295856000000, \"val\": 150.61}, {\"col\": \"YHOO\", \"idx\": 1295856000000, \"val\": 16.09}, {\"col\": \"MSFT\", \"idx\": 1295856000000, \"val\": 25.9}, {\"col\": \"AAPL\", \"idx\": 1295942400000, \"val\": 328.14}, {\"col\": \"IBM\", \"idx\": 1295942400000, \"val\": 152.32}, {\"col\": \"YHOO\", \"idx\": 1295942400000, \"val\": 16.02}, {\"col\": \"MSFT\", \"idx\": 1295942400000, \"val\": 25.97}, {\"col\": \"AAPL\", \"idx\": 1296028800000, \"val\": 330.49}, {\"col\": \"IBM\", \"idx\": 1296028800000, \"val\": 151.94}, {\"col\": \"YHOO\", \"idx\": 1296028800000, \"val\": 15.57}, {\"col\": \"MSFT\", \"idx\": 1296028800000, \"val\": 26.27}, {\"col\": \"AAPL\", \"idx\": 1296115200000, \"val\": 329.88}, {\"col\": \"IBM\", \"idx\": 1296115200000, \"val\": 151.97}, {\"col\": \"YHOO\", \"idx\": 1296115200000, \"val\": 16.2}, {\"col\": \"MSFT\", \"idx\": 1296115200000, \"val\": 26.35}, {\"col\": \"AAPL\", \"idx\": 1296201600000, \"val\": 323.04}, {\"col\": \"IBM\", \"idx\": 1296201600000, \"val\": 150.22}, {\"col\": \"YHOO\", \"idx\": 1296201600000, \"val\": 15.83}, {\"col\": \"MSFT\", \"idx\": 1296201600000, \"val\": 25.33}, {\"col\": \"AAPL\", \"idx\": 1296460800000, \"val\": 326.14}, {\"col\": \"IBM\", \"idx\": 1296460800000, \"val\": 152.85}, {\"col\": \"YHOO\", \"idx\": 1296460800000, \"val\": 16.12}, {\"col\": \"MSFT\", \"idx\": 1296460800000, \"val\": 25.31}, {\"col\": \"AAPL\", \"idx\": 1296547200000, \"val\": 331.63}, {\"col\": \"IBM\", \"idx\": 1296547200000, \"val\": 154.32}, {\"col\": \"YHOO\", \"idx\": 1296547200000, \"val\": 16.38}, {\"col\": \"MSFT\", \"idx\": 1296547200000, \"val\": 25.55}, {\"col\": \"AAPL\", \"idx\": 1296633600000, \"val\": 330.94}, {\"col\": \"IBM\", \"idx\": 1296633600000, \"val\": 154.07}, {\"col\": \"YHOO\", \"idx\": 1296633600000, \"val\": 16.57}, {\"col\": \"MSFT\", \"idx\": 1296633600000, \"val\": 25.5}, {\"col\": \"AAPL\", \"idx\": 1296720000000, \"val\": 330.1}, {\"col\": \"IBM\", \"idx\": 1296720000000, \"val\": 154.29}, {\"col\": \"YHOO\", \"idx\": 1296720000000, \"val\": 16.69}, {\"col\": \"MSFT\", \"idx\": 1296720000000, \"val\": 25.24}, {\"col\": \"AAPL\", \"idx\": 1296806400000, \"val\": 333.04}, {\"col\": \"IBM\", \"idx\": 1296806400000, \"val\": 154.74}, {\"col\": \"YHOO\", \"idx\": 1296806400000, \"val\": 16.79}, {\"col\": \"MSFT\", \"idx\": 1296806400000, \"val\": 25.34}, {\"col\": \"AAPL\", \"idx\": 1297065600000, \"val\": 338.21}, {\"col\": \"IBM\", \"idx\": 1297065600000, \"val\": 155.51}, {\"col\": \"YHOO\", \"idx\": 1297065600000, \"val\": 16.8}, {\"col\": \"MSFT\", \"idx\": 1297065600000, \"val\": 25.74}, {\"col\": \"AAPL\", \"idx\": 1297152000000, \"val\": 341.4}, {\"col\": \"IBM\", \"idx\": 1297152000000, \"val\": 157.29}, {\"col\": \"YHOO\", \"idx\": 1297152000000, \"val\": 16.6}, {\"col\": \"MSFT\", \"idx\": 1297152000000, \"val\": 25.81}, {\"col\": \"AAPL\", \"idx\": 1297238400000, \"val\": 344.25}, {\"col\": \"IBM\", \"idx\": 1297238400000, \"val\": 155.96}, {\"col\": \"YHOO\", \"idx\": 1297238400000, \"val\": 16.43}, {\"col\": \"MSFT\", \"idx\": 1297238400000, \"val\": 25.53}, {\"col\": \"AAPL\", \"idx\": 1297324800000, \"val\": 340.77}, {\"col\": \"IBM\", \"idx\": 1297324800000, \"val\": 155.43}, {\"col\": \"YHOO\", \"idx\": 1297324800000, \"val\": 16.62}, {\"col\": \"MSFT\", \"idx\": 1297324800000, \"val\": 25.1}, {\"col\": \"AAPL\", \"idx\": 1297411200000, \"val\": 342.99}, {\"col\": \"IBM\", \"idx\": 1297411200000, \"val\": 155.21}, {\"col\": \"YHOO\", \"idx\": 1297411200000, \"val\": 16.85}, {\"col\": \"MSFT\", \"idx\": 1297411200000, \"val\": 24.87}, {\"col\": \"AAPL\", \"idx\": 1297670400000, \"val\": 345.23}, {\"col\": \"IBM\", \"idx\": 1297670400000, \"val\": 154.61}, {\"col\": \"YHOO\", \"idx\": 1297670400000, \"val\": 16.89}, {\"col\": \"MSFT\", \"idx\": 1297670400000, \"val\": 24.85}, {\"col\": \"AAPL\", \"idx\": 1297756800000, \"val\": 345.92}, {\"col\": \"IBM\", \"idx\": 1297756800000, \"val\": 154.25}, {\"col\": \"YHOO\", \"idx\": 1297756800000, \"val\": 17.2}, {\"col\": \"MSFT\", \"idx\": 1297756800000, \"val\": 24.75}, {\"col\": \"AAPL\", \"idx\": 1297843200000, \"val\": 349.02}, {\"col\": \"IBM\", \"idx\": 1297843200000, \"val\": 154.78}, {\"col\": \"YHOO\", \"idx\": 1297843200000, \"val\": 17.76}, {\"col\": \"MSFT\", \"idx\": 1297843200000, \"val\": 24.81}, {\"col\": \"AAPL\", \"idx\": 1297929600000, \"val\": 344.38}, {\"col\": \"IBM\", \"idx\": 1297929600000, \"val\": 155.58}, {\"col\": \"YHOO\", \"idx\": 1297929600000, \"val\": 17.77}, {\"col\": \"MSFT\", \"idx\": 1297929600000, \"val\": 24.98}, {\"col\": \"AAPL\", \"idx\": 1298016000000, \"val\": 336.94}, {\"col\": \"IBM\", \"idx\": 1298016000000, \"val\": 156.14}, {\"col\": \"YHOO\", \"idx\": 1298016000000, \"val\": 17.66}, {\"col\": \"MSFT\", \"idx\": 1298016000000, \"val\": 24.84}, {\"col\": \"AAPL\", \"idx\": 1298361600000, \"val\": 325.46}, {\"col\": \"IBM\", \"idx\": 1298361600000, \"val\": 153.41}, {\"col\": \"YHOO\", \"idx\": 1298361600000, \"val\": 16.91}, {\"col\": \"MSFT\", \"idx\": 1298361600000, \"val\": 24.41}, {\"col\": \"AAPL\", \"idx\": 1298448000000, \"val\": 329.31}, {\"col\": \"IBM\", \"idx\": 1298448000000, \"val\": 151.73}, {\"col\": \"YHOO\", \"idx\": 1298448000000, \"val\": 16.58}, {\"col\": \"MSFT\", \"idx\": 1298448000000, \"val\": 24.41}, {\"col\": \"AAPL\", \"idx\": 1298534400000, \"val\": 329.56}, {\"col\": \"IBM\", \"idx\": 1298534400000, \"val\": 152.29}, {\"col\": \"YHOO\", \"idx\": 1298534400000, \"val\": 16.37}, {\"col\": \"MSFT\", \"idx\": 1298534400000, \"val\": 24.58}, {\"col\": \"AAPL\", \"idx\": 1298620800000, \"val\": 334.64}, {\"col\": \"IBM\", \"idx\": 1298620800000, \"val\": 153.72}, {\"col\": \"YHOO\", \"idx\": 1298620800000, \"val\": 16.5}, {\"col\": \"MSFT\", \"idx\": 1298620800000, \"val\": 24.37}, {\"col\": \"AAPL\", \"idx\": 1298880000000, \"val\": 339.49}, {\"col\": \"IBM\", \"idx\": 1298880000000, \"val\": 153.34}, {\"col\": \"YHOO\", \"idx\": 1298880000000, \"val\": 16.4}, {\"col\": \"MSFT\", \"idx\": 1298880000000, \"val\": 24.4}, {\"col\": \"AAPL\", \"idx\": 1298966400000, \"val\": 335.74}, {\"col\": \"IBM\", \"idx\": 1298966400000, \"val\": 151.53}, {\"col\": \"YHOO\", \"idx\": 1298966400000, \"val\": 16.1}, {\"col\": \"MSFT\", \"idx\": 1298966400000, \"val\": 24.02}, {\"col\": \"AAPL\", \"idx\": 1299052800000, \"val\": 338.44}, {\"col\": \"IBM\", \"idx\": 1299052800000, \"val\": 151.71}, {\"col\": \"YHOO\", \"idx\": 1299052800000, \"val\": 16.63}, {\"col\": \"MSFT\", \"idx\": 1299052800000, \"val\": 23.94}, {\"col\": \"AAPL\", \"idx\": 1299139200000, \"val\": 345.59}, {\"col\": \"IBM\", \"idx\": 1299139200000, \"val\": 154.86}, {\"col\": \"YHOO\", \"idx\": 1299139200000, \"val\": 16.86}, {\"col\": \"MSFT\", \"idx\": 1299139200000, \"val\": 24.05}, {\"col\": \"AAPL\", \"idx\": 1299225600000, \"val\": 346.02}, {\"col\": \"IBM\", \"idx\": 1299225600000, \"val\": 153.29}, {\"col\": \"YHOO\", \"idx\": 1299225600000, \"val\": 17.08}, {\"col\": \"MSFT\", \"idx\": 1299225600000, \"val\": 23.82}, {\"col\": \"AAPL\", \"idx\": 1299484800000, \"val\": 341.56}, {\"col\": \"IBM\", \"idx\": 1299484800000, \"val\": 151.49}, {\"col\": \"YHOO\", \"idx\": 1299484800000, \"val\": 16.7}, {\"col\": \"MSFT\", \"idx\": 1299484800000, \"val\": 23.61}, {\"col\": \"AAPL\", \"idx\": 1299571200000, \"val\": 341.94}, {\"col\": \"IBM\", \"idx\": 1299571200000, \"val\": 153.72}, {\"col\": \"YHOO\", \"idx\": 1299571200000, \"val\": 16.94}, {\"col\": \"MSFT\", \"idx\": 1299571200000, \"val\": 23.79}, {\"col\": \"AAPL\", \"idx\": 1299657600000, \"val\": 338.78}, {\"col\": \"IBM\", \"idx\": 1299657600000, \"val\": 157.11}, {\"col\": \"YHOO\", \"idx\": 1299657600000, \"val\": 17.65}, {\"col\": \"MSFT\", \"idx\": 1299657600000, \"val\": 23.77}, {\"col\": \"AAPL\", \"idx\": 1299744000000, \"val\": 333.2}, {\"col\": \"IBM\", \"idx\": 1299744000000, \"val\": 153.47}, {\"col\": \"YHOO\", \"idx\": 1299744000000, \"val\": 17.06}, {\"col\": \"MSFT\", \"idx\": 1299744000000, \"val\": 23.33}, {\"col\": \"AAPL\", \"idx\": 1299830400000, \"val\": 338.32}, {\"col\": \"IBM\", \"idx\": 1299830400000, \"val\": 153.86}, {\"col\": \"YHOO\", \"idx\": 1299830400000, \"val\": 17.42}, {\"col\": \"MSFT\", \"idx\": 1299830400000, \"val\": 23.58}, {\"col\": \"AAPL\", \"idx\": 1300086000000, \"val\": 339.83}, {\"col\": \"IBM\", \"idx\": 1300086000000, \"val\": 152.88}, {\"col\": \"YHOO\", \"idx\": 1300086000000, \"val\": 17.31}, {\"col\": \"MSFT\", \"idx\": 1300086000000, \"val\": 23.58}, {\"col\": \"AAPL\", \"idx\": 1300172400000, \"val\": 332.01}, {\"col\": \"IBM\", \"idx\": 1300172400000, \"val\": 150.63}, {\"col\": \"YHOO\", \"idx\": 1300172400000, \"val\": 16.33}, {\"col\": \"MSFT\", \"idx\": 1300172400000, \"val\": 23.31}, {\"col\": \"AAPL\", \"idx\": 1300258800000, \"val\": 317.19}, {\"col\": \"IBM\", \"idx\": 1300258800000, \"val\": 144.93}, {\"col\": \"YHOO\", \"idx\": 1300258800000, \"val\": 15.91}, {\"col\": \"MSFT\", \"idx\": 1300258800000, \"val\": 22.76}, {\"col\": \"AAPL\", \"idx\": 1300345200000, \"val\": 321.64}, {\"col\": \"IBM\", \"idx\": 1300345200000, \"val\": 146.05}, {\"col\": \"YHOO\", \"idx\": 1300345200000, \"val\": 15.86}, {\"col\": \"MSFT\", \"idx\": 1300345200000, \"val\": 22.75}, {\"col\": \"AAPL\", \"idx\": 1300431600000, \"val\": 317.82}, {\"col\": \"IBM\", \"idx\": 1300431600000, \"val\": 147.67}, {\"col\": \"YHOO\", \"idx\": 1300431600000, \"val\": 16.03}, {\"col\": \"MSFT\", \"idx\": 1300431600000, \"val\": 22.77}, {\"col\": \"AAPL\", \"idx\": 1300690800000, \"val\": 326.12}, {\"col\": \"IBM\", \"idx\": 1300690800000, \"val\": 149.36}, {\"col\": \"YHOO\", \"idx\": 1300690800000, \"val\": 16.29}, {\"col\": \"MSFT\", \"idx\": 1300690800000, \"val\": 23.25}, {\"col\": \"AAPL\", \"idx\": 1300777200000, \"val\": 327.95}, {\"col\": \"IBM\", \"idx\": 1300777200000, \"val\": 149.66}, {\"col\": \"YHOO\", \"idx\": 1300777200000, \"val\": 16.36}, {\"col\": \"MSFT\", \"idx\": 1300777200000, \"val\": 23.23}, {\"col\": \"AAPL\", \"idx\": 1300863600000, \"val\": 326.01}, {\"col\": \"IBM\", \"idx\": 1300863600000, \"val\": 151.11}, {\"col\": \"YHOO\", \"idx\": 1300863600000, \"val\": 16.13}, {\"col\": \"MSFT\", \"idx\": 1300863600000, \"val\": 23.45}, {\"col\": \"AAPL\", \"idx\": 1300950000000, \"val\": 331.57}, {\"col\": \"IBM\", \"idx\": 1300950000000, \"val\": 151.6}, {\"col\": \"YHOO\", \"idx\": 1300950000000, \"val\": 16.83}, {\"col\": \"MSFT\", \"idx\": 1300950000000, \"val\": 23.7}, {\"col\": \"AAPL\", \"idx\": 1301036400000, \"val\": 337.88}, {\"col\": \"IBM\", \"idx\": 1301036400000, \"val\": 153.62}, {\"col\": \"YHOO\", \"idx\": 1301036400000, \"val\": 16.96}, {\"col\": \"MSFT\", \"idx\": 1301036400000, \"val\": 23.52}, {\"col\": \"AAPL\", \"idx\": 1301295600000, \"val\": 336.83}, {\"col\": \"IBM\", \"idx\": 1301295600000, \"val\": 152.86}, {\"col\": \"YHOO\", \"idx\": 1301295600000, \"val\": 16.58}, {\"col\": \"MSFT\", \"idx\": 1301295600000, \"val\": 23.33}, {\"col\": \"AAPL\", \"idx\": 1301382000000, \"val\": 337.33}, {\"col\": \"IBM\", \"idx\": 1301382000000, \"val\": 154.29}, {\"col\": \"YHOO\", \"idx\": 1301382000000, \"val\": 16.75}, {\"col\": \"MSFT\", \"idx\": 1301382000000, \"val\": 23.4}, {\"col\": \"AAPL\", \"idx\": 1301468400000, \"val\": 335.09}, {\"col\": \"IBM\", \"idx\": 1301468400000, \"val\": 154.97}, {\"col\": \"YHOO\", \"idx\": 1301468400000, \"val\": 16.74}, {\"col\": \"MSFT\", \"idx\": 1301468400000, \"val\": 23.51}, {\"col\": \"AAPL\", \"idx\": 1301554800000, \"val\": 334.97}, {\"col\": \"IBM\", \"idx\": 1301554800000, \"val\": 154.47}, {\"col\": \"YHOO\", \"idx\": 1301554800000, \"val\": 16.68}, {\"col\": \"MSFT\", \"idx\": 1301554800000, \"val\": 23.31}, {\"col\": \"AAPL\", \"idx\": 1301641200000, \"val\": 331.18}, {\"col\": \"IBM\", \"idx\": 1301641200000, \"val\": 155.6}, {\"col\": \"YHOO\", \"idx\": 1301641200000, \"val\": 16.84}, {\"col\": \"MSFT\", \"idx\": 1301641200000, \"val\": 23.39}, {\"col\": \"AAPL\", \"idx\": 1301900400000, \"val\": 327.94}, {\"col\": \"IBM\", \"idx\": 1301900400000, \"val\": 155.58}, {\"col\": \"YHOO\", \"idx\": 1301900400000, \"val\": 16.87}, {\"col\": \"MSFT\", \"idx\": 1301900400000, \"val\": 23.46}, {\"col\": \"AAPL\", \"idx\": 1301986800000, \"val\": 325.73}, {\"col\": \"IBM\", \"idx\": 1301986800000, \"val\": 155.34}, {\"col\": \"YHOO\", \"idx\": 1301986800000, \"val\": 17.11}, {\"col\": \"MSFT\", \"idx\": 1301986800000, \"val\": 23.67}, {\"col\": \"AAPL\", \"idx\": 1302073200000, \"val\": 324.91}, {\"col\": \"IBM\", \"idx\": 1302073200000, \"val\": 155.39}, {\"col\": \"YHOO\", \"idx\": 1302073200000, \"val\": 17.05}, {\"col\": \"MSFT\", \"idx\": 1302073200000, \"val\": 24.01}, {\"col\": \"AAPL\", \"idx\": 1302159600000, \"val\": 324.95}, {\"col\": \"IBM\", \"idx\": 1302159600000, \"val\": 155.71}, {\"col\": \"YHOO\", \"idx\": 1302159600000, \"val\": 17.0}, {\"col\": \"MSFT\", \"idx\": 1302159600000, \"val\": 24.05}, {\"col\": \"AAPL\", \"idx\": 1302246000000, \"val\": 322.04}, {\"col\": \"IBM\", \"idx\": 1302246000000, \"val\": 155.4}, {\"col\": \"YHOO\", \"idx\": 1302246000000, \"val\": 16.77}, {\"col\": \"MSFT\", \"idx\": 1302246000000, \"val\": 23.93}, {\"col\": \"AAPL\", \"idx\": 1302505200000, \"val\": 317.95}, {\"col\": \"IBM\", \"idx\": 1302505200000, \"val\": 155.3}, {\"col\": \"YHOO\", \"idx\": 1302505200000, \"val\": 16.59}, {\"col\": \"MSFT\", \"idx\": 1302505200000, \"val\": 23.85}, {\"col\": \"AAPL\", \"idx\": 1302591600000, \"val\": 319.49}, {\"col\": \"IBM\", \"idx\": 1302591600000, \"val\": 154.64}, {\"col\": \"YHOO\", \"idx\": 1302591600000, \"val\": 16.36}, {\"col\": \"MSFT\", \"idx\": 1302591600000, \"val\": 23.54}, {\"col\": \"AAPL\", \"idx\": 1302678000000, \"val\": 323.07}, {\"col\": \"IBM\", \"idx\": 1302678000000, \"val\": 155.3}, {\"col\": \"YHOO\", \"idx\": 1302678000000, \"val\": 16.64}, {\"col\": \"MSFT\", \"idx\": 1302678000000, \"val\": 23.53}, {\"col\": \"AAPL\", \"idx\": 1302764400000, \"val\": 319.51}, {\"col\": \"IBM\", \"idx\": 1302764400000, \"val\": 156.27}, {\"col\": \"YHOO\", \"idx\": 1302764400000, \"val\": 16.69}, {\"col\": \"MSFT\", \"idx\": 1302764400000, \"val\": 23.34}, {\"col\": \"AAPL\", \"idx\": 1302850800000, \"val\": 314.74}, {\"col\": \"IBM\", \"idx\": 1302850800000, \"val\": 157.44}, {\"col\": \"YHOO\", \"idx\": 1302850800000, \"val\": 16.62}, {\"col\": \"MSFT\", \"idx\": 1302850800000, \"val\": 23.29}, {\"col\": \"AAPL\", \"idx\": 1303110000000, \"val\": 318.96}, {\"col\": \"IBM\", \"idx\": 1303110000000, \"val\": 157.19}, {\"col\": \"YHOO\", \"idx\": 1303110000000, \"val\": 16.35}, {\"col\": \"MSFT\", \"idx\": 1303110000000, \"val\": 23.02}, {\"col\": \"AAPL\", \"idx\": 1303196400000, \"val\": 324.74}, {\"col\": \"IBM\", \"idx\": 1303196400000, \"val\": 156.67}, {\"col\": \"YHOO\", \"idx\": 1303196400000, \"val\": 16.12}, {\"col\": \"MSFT\", \"idx\": 1303196400000, \"val\": 23.09}, {\"col\": \"AAPL\", \"idx\": 1303282800000, \"val\": 329.11}, {\"col\": \"IBM\", \"idx\": 1303282800000, \"val\": 156.06}, {\"col\": \"YHOO\", \"idx\": 1303282800000, \"val\": 16.87}, {\"col\": \"MSFT\", \"idx\": 1303282800000, \"val\": 23.65}, {\"col\": \"AAPL\", \"idx\": 1303369200000, \"val\": 337.08}, {\"col\": \"IBM\", \"idx\": 1303369200000, \"val\": 159.4}, {\"col\": \"YHOO\", \"idx\": 1303369200000, \"val\": 16.85}, {\"col\": \"MSFT\", \"idx\": 1303369200000, \"val\": 23.43}, {\"col\": \"AAPL\", \"idx\": 1303714800000, \"val\": 339.3}, {\"col\": \"IBM\", \"idx\": 1303714800000, \"val\": 158.82}, {\"col\": \"YHOO\", \"idx\": 1303714800000, \"val\": 17.11}, {\"col\": \"MSFT\", \"idx\": 1303714800000, \"val\": 23.51}, {\"col\": \"AAPL\", \"idx\": 1303801200000, \"val\": 336.81}, {\"col\": \"IBM\", \"idx\": 1303801200000, \"val\": 159.6}, {\"col\": \"YHOO\", \"idx\": 1303801200000, \"val\": 17.28}, {\"col\": \"MSFT\", \"idx\": 1303801200000, \"val\": 24.04}, {\"col\": \"AAPL\", \"idx\": 1303887600000, \"val\": 336.55}, {\"col\": \"IBM\", \"idx\": 1303887600000, \"val\": 161.38}, {\"col\": \"YHOO\", \"idx\": 1303887600000, \"val\": 17.26}, {\"col\": \"MSFT\", \"idx\": 1303887600000, \"val\": 24.22}, {\"col\": \"AAPL\", \"idx\": 1303974000000, \"val\": 333.28}, {\"col\": \"IBM\", \"idx\": 1303974000000, \"val\": 161.77}, {\"col\": \"YHOO\", \"idx\": 1303974000000, \"val\": 17.51}, {\"col\": \"MSFT\", \"idx\": 1303974000000, \"val\": 24.52}, {\"col\": \"AAPL\", \"idx\": 1304060400000, \"val\": 336.53}, {\"col\": \"IBM\", \"idx\": 1304060400000, \"val\": 161.58}, {\"col\": \"YHOO\", \"idx\": 1304060400000, \"val\": 17.7}, {\"col\": \"MSFT\", \"idx\": 1304060400000, \"val\": 23.8}, {\"col\": \"AAPL\", \"idx\": 1304319600000, \"val\": 332.83}, {\"col\": \"IBM\", \"idx\": 1304319600000, \"val\": 163.07}, {\"col\": \"YHOO\", \"idx\": 1304319600000, \"val\": 18.14}, {\"col\": \"MSFT\", \"idx\": 1304319600000, \"val\": 23.56}, {\"col\": \"AAPL\", \"idx\": 1304406000000, \"val\": 334.67}, {\"col\": \"IBM\", \"idx\": 1304406000000, \"val\": 163.75}, {\"col\": \"YHOO\", \"idx\": 1304406000000, \"val\": 17.92}, {\"col\": \"MSFT\", \"idx\": 1304406000000, \"val\": 23.7}, {\"col\": \"AAPL\", \"idx\": 1304492400000, \"val\": 335.99}, {\"col\": \"IBM\", \"idx\": 1304492400000, \"val\": 161.62}, {\"col\": \"YHOO\", \"idx\": 1304492400000, \"val\": 18.2}, {\"col\": \"MSFT\", \"idx\": 1304492400000, \"val\": 23.92}, {\"col\": \"AAPL\", \"idx\": 1304578800000, \"val\": 333.28}, {\"col\": \"IBM\", \"idx\": 1304578800000, \"val\": 159.57}, {\"col\": \"YHOO\", \"idx\": 1304578800000, \"val\": 18.43}, {\"col\": \"MSFT\", \"idx\": 1304578800000, \"val\": 23.68}, {\"col\": \"AAPL\", \"idx\": 1304665200000, \"val\": 333.19}, {\"col\": \"IBM\", \"idx\": 1304665200000, \"val\": 160.7}, {\"col\": \"YHOO\", \"idx\": 1304665200000, \"val\": 18.65}, {\"col\": \"MSFT\", \"idx\": 1304665200000, \"val\": 23.75}, {\"col\": \"AAPL\", \"idx\": 1304924400000, \"val\": 334.1}, {\"col\": \"IBM\", \"idx\": 1304924400000, \"val\": 160.9}, {\"col\": \"YHOO\", \"idx\": 1304924400000, \"val\": 18.56}, {\"col\": \"MSFT\", \"idx\": 1304924400000, \"val\": 23.71}, {\"col\": \"AAPL\", \"idx\": 1305010800000, \"val\": 335.88}, {\"col\": \"IBM\", \"idx\": 1305010800000, \"val\": 162.11}, {\"col\": \"YHOO\", \"idx\": 1305010800000, \"val\": 18.55}, {\"col\": \"MSFT\", \"idx\": 1305010800000, \"val\": 23.57}, {\"col\": \"AAPL\", \"idx\": 1305097200000, \"val\": 333.74}, {\"col\": \"IBM\", \"idx\": 1305097200000, \"val\": 161.28}, {\"col\": \"YHOO\", \"idx\": 1305097200000, \"val\": 17.2}, {\"col\": \"MSFT\", \"idx\": 1305097200000, \"val\": 23.28}, {\"col\": \"AAPL\", \"idx\": 1305183600000, \"val\": 333.11}, {\"col\": \"IBM\", \"idx\": 1305183600000, \"val\": 163.88}, {\"col\": \"YHOO\", \"idx\": 1305183600000, \"val\": 17.17}, {\"col\": \"MSFT\", \"idx\": 1305183600000, \"val\": 23.25}, {\"col\": \"AAPL\", \"idx\": 1305270000000, \"val\": 327.27}, {\"col\": \"IBM\", \"idx\": 1305270000000, \"val\": 161.68}, {\"col\": \"YHOO\", \"idx\": 1305270000000, \"val\": 16.55}, {\"col\": \"MSFT\", \"idx\": 1305270000000, \"val\": 22.98}, {\"col\": \"AAPL\", \"idx\": 1305529200000, \"val\": 320.35}, {\"col\": \"IBM\", \"idx\": 1305529200000, \"val\": 160.67}, {\"col\": \"YHOO\", \"idx\": 1305529200000, \"val\": 15.81}, {\"col\": \"MSFT\", \"idx\": 1305529200000, \"val\": 22.56}, {\"col\": \"AAPL\", \"idx\": 1305615600000, \"val\": 323.08}, {\"col\": \"IBM\", \"idx\": 1305615600000, \"val\": 162.23}, {\"col\": \"YHOO\", \"idx\": 1305615600000, \"val\": 16.0}, {\"col\": \"MSFT\", \"idx\": 1305615600000, \"val\": 22.66}, {\"col\": \"AAPL\", \"idx\": 1305702000000, \"val\": 326.67}, {\"col\": \"IBM\", \"idx\": 1305702000000, \"val\": 162.17}, {\"col\": \"YHOO\", \"idx\": 1305702000000, \"val\": 15.96}, {\"col\": \"MSFT\", \"idx\": 1305702000000, \"val\": 22.82}, {\"col\": \"AAPL\", \"idx\": 1305788400000, \"val\": 327.3}, {\"col\": \"IBM\", \"idx\": 1305788400000, \"val\": 162.31}, {\"col\": \"YHOO\", \"idx\": 1305788400000, \"val\": 16.35}, {\"col\": \"MSFT\", \"idx\": 1305788400000, \"val\": 22.84}, {\"col\": \"AAPL\", \"idx\": 1305874800000, \"val\": 322.2}, {\"col\": \"IBM\", \"idx\": 1305874800000, \"val\": 161.9}, {\"col\": \"YHOO\", \"idx\": 1305874800000, \"val\": 16.3}, {\"col\": \"MSFT\", \"idx\": 1305874800000, \"val\": 22.63}, {\"col\": \"AAPL\", \"idx\": 1306134000000, \"val\": 321.41}, {\"col\": \"IBM\", \"idx\": 1306134000000, \"val\": 160.1}, {\"col\": \"YHOO\", \"idx\": 1306134000000, \"val\": 16.06}, {\"col\": \"MSFT\", \"idx\": 1306134000000, \"val\": 22.33}, {\"col\": \"AAPL\", \"idx\": 1306220400000, \"val\": 319.29}, {\"col\": \"IBM\", \"idx\": 1306220400000, \"val\": 159.84}, {\"col\": \"YHOO\", \"idx\": 1306220400000, \"val\": 16.14}, {\"col\": \"MSFT\", \"idx\": 1306220400000, \"val\": 22.32}, {\"col\": \"AAPL\", \"idx\": 1306306800000, \"val\": 323.7}, {\"col\": \"IBM\", \"idx\": 1306306800000, \"val\": 159.61}, {\"col\": \"YHOO\", \"idx\": 1306306800000, \"val\": 16.15}, {\"col\": \"MSFT\", \"idx\": 1306306800000, \"val\": 22.35}, {\"col\": \"AAPL\", \"idx\": 1306393200000, \"val\": 321.99}, {\"col\": \"IBM\", \"idx\": 1306393200000, \"val\": 159.07}, {\"col\": \"YHOO\", \"idx\": 1306393200000, \"val\": 15.98}, {\"col\": \"MSFT\", \"idx\": 1306393200000, \"val\": 22.8}, {\"col\": \"AAPL\", \"idx\": 1306479600000, \"val\": 324.3}, {\"col\": \"IBM\", \"idx\": 1306479600000, \"val\": 159.37}, {\"col\": \"YHOO\", \"idx\": 1306479600000, \"val\": 16.02}, {\"col\": \"MSFT\", \"idx\": 1306479600000, \"val\": 22.88}, {\"col\": \"AAPL\", \"idx\": 1306825200000, \"val\": 334.32}, {\"col\": \"IBM\", \"idx\": 1306825200000, \"val\": 160.73}, {\"col\": \"YHOO\", \"idx\": 1306825200000, \"val\": 16.55}, {\"col\": \"MSFT\", \"idx\": 1306825200000, \"val\": 23.11}, {\"col\": \"AAPL\", \"idx\": 1306911600000, \"val\": 332.09}, {\"col\": \"IBM\", \"idx\": 1306911600000, \"val\": 158.48}, {\"col\": \"YHOO\", \"idx\": 1306911600000, \"val\": 15.85}, {\"col\": \"MSFT\", \"idx\": 1306911600000, \"val\": 22.58}, {\"col\": \"AAPL\", \"idx\": 1306998000000, \"val\": 332.66}, {\"col\": \"IBM\", \"idx\": 1306998000000, \"val\": 158.03}, {\"col\": \"YHOO\", \"idx\": 1306998000000, \"val\": 16.02}, {\"col\": \"MSFT\", \"idx\": 1306998000000, \"val\": 22.38}, {\"col\": \"AAPL\", \"idx\": 1307084400000, \"val\": 330.1}, {\"col\": \"IBM\", \"idx\": 1307084400000, \"val\": 157.04}, {\"col\": \"YHOO\", \"idx\": 1307084400000, \"val\": 15.68}, {\"col\": \"MSFT\", \"idx\": 1307084400000, \"val\": 22.09}, {\"col\": \"AAPL\", \"idx\": 1307343600000, \"val\": 324.91}, {\"col\": \"IBM\", \"idx\": 1307343600000, \"val\": 156.76}, {\"col\": \"YHOO\", \"idx\": 1307343600000, \"val\": 15.45}, {\"col\": \"MSFT\", \"idx\": 1307343600000, \"val\": 22.19}, {\"col\": \"AAPL\", \"idx\": 1307430000000, \"val\": 319.14}, {\"col\": \"IBM\", \"idx\": 1307430000000, \"val\": 155.75}, {\"col\": \"YHOO\", \"idx\": 1307430000000, \"val\": 15.45}, {\"col\": \"MSFT\", \"idx\": 1307430000000, \"val\": 22.23}, {\"col\": \"AAPL\", \"idx\": 1307516400000, \"val\": 319.33}, {\"col\": \"IBM\", \"idx\": 1307516400000, \"val\": 156.37}, {\"col\": \"YHOO\", \"idx\": 1307516400000, \"val\": 15.1}, {\"col\": \"MSFT\", \"idx\": 1307516400000, \"val\": 22.12}, {\"col\": \"AAPL\", \"idx\": 1307602800000, \"val\": 318.61}, {\"col\": \"IBM\", \"idx\": 1307602800000, \"val\": 156.84}, {\"col\": \"YHOO\", \"idx\": 1307602800000, \"val\": 15.22}, {\"col\": \"MSFT\", \"idx\": 1307602800000, \"val\": 22.14}, {\"col\": \"AAPL\", \"idx\": 1307689200000, \"val\": 313.24}, {\"col\": \"IBM\", \"idx\": 1307689200000, \"val\": 155.26}, {\"col\": \"YHOO\", \"idx\": 1307689200000, \"val\": 15.2}, {\"col\": \"MSFT\", \"idx\": 1307689200000, \"val\": 21.91}, {\"col\": \"AAPL\", \"idx\": 1307948400000, \"val\": 313.91}, {\"col\": \"IBM\", \"idx\": 1307948400000, \"val\": 155.25}, {\"col\": \"YHOO\", \"idx\": 1307948400000, \"val\": 15.16}, {\"col\": \"MSFT\", \"idx\": 1307948400000, \"val\": 22.21}, {\"col\": \"AAPL\", \"idx\": 1308034800000, \"val\": 319.53}, {\"col\": \"IBM\", \"idx\": 1308034800000, \"val\": 156.16}, {\"col\": \"YHOO\", \"idx\": 1308034800000, \"val\": 15.2}, {\"col\": \"MSFT\", \"idx\": 1308034800000, \"val\": 22.38}, {\"col\": \"AAPL\", \"idx\": 1308121200000, \"val\": 314.06}, {\"col\": \"IBM\", \"idx\": 1308121200000, \"val\": 154.45}, {\"col\": \"YHOO\", \"idx\": 1308121200000, \"val\": 14.81}, {\"col\": \"MSFT\", \"idx\": 1308121200000, \"val\": 21.94}, {\"col\": \"AAPL\", \"idx\": 1308207600000, \"val\": 312.53}, {\"col\": \"IBM\", \"idx\": 1308207600000, \"val\": 154.78}, {\"col\": \"YHOO\", \"idx\": 1308207600000, \"val\": 14.78}, {\"col\": \"MSFT\", \"idx\": 1308207600000, \"val\": 22.18}, {\"col\": \"AAPL\", \"idx\": 1308294000000, \"val\": 307.82}, {\"col\": \"IBM\", \"idx\": 1308294000000, \"val\": 156.46}, {\"col\": \"YHOO\", \"idx\": 1308294000000, \"val\": 14.7}, {\"col\": \"MSFT\", \"idx\": 1308294000000, \"val\": 22.42}, {\"col\": \"AAPL\", \"idx\": 1308553200000, \"val\": 303.07}, {\"col\": \"IBM\", \"idx\": 1308553200000, \"val\": 157.01}, {\"col\": \"YHOO\", \"idx\": 1308553200000, \"val\": 14.99}, {\"col\": \"MSFT\", \"idx\": 1308553200000, \"val\": 22.61}, {\"col\": \"AAPL\", \"idx\": 1308639600000, \"val\": 312.66}, {\"col\": \"IBM\", \"idx\": 1308639600000, \"val\": 158.15}, {\"col\": \"YHOO\", \"idx\": 1308639600000, \"val\": 15.35}, {\"col\": \"MSFT\", \"idx\": 1308639600000, \"val\": 22.88}, {\"col\": \"AAPL\", \"idx\": 1308726000000, \"val\": 310.08}, {\"col\": \"IBM\", \"idx\": 1308726000000, \"val\": 157.64}, {\"col\": \"YHOO\", \"idx\": 1308726000000, \"val\": 15.23}, {\"col\": \"MSFT\", \"idx\": 1308726000000, \"val\": 22.78}, {\"col\": \"AAPL\", \"idx\": 1308812400000, \"val\": 318.36}, {\"col\": \"IBM\", \"idx\": 1308812400000, \"val\": 158.06}, {\"col\": \"YHOO\", \"idx\": 1308812400000, \"val\": 15.08}, {\"col\": \"MSFT\", \"idx\": 1308812400000, \"val\": 22.76}, {\"col\": \"AAPL\", \"idx\": 1308898800000, \"val\": 313.67}, {\"col\": \"IBM\", \"idx\": 1308898800000, \"val\": 157.06}, {\"col\": \"YHOO\", \"idx\": 1308898800000, \"val\": 14.89}, {\"col\": \"MSFT\", \"idx\": 1308898800000, \"val\": 22.45}, {\"col\": \"AAPL\", \"idx\": 1309158000000, \"val\": 319.14}, {\"col\": \"IBM\", \"idx\": 1309158000000, \"val\": 159.49}, {\"col\": \"YHOO\", \"idx\": 1309158000000, \"val\": 14.88}, {\"col\": \"MSFT\", \"idx\": 1309158000000, \"val\": 23.29}, {\"col\": \"AAPL\", \"idx\": 1309244400000, \"val\": 322.24}, {\"col\": \"IBM\", \"idx\": 1309244400000, \"val\": 161.76}, {\"col\": \"YHOO\", \"idx\": 1309244400000, \"val\": 14.95}, {\"col\": \"MSFT\", \"idx\": 1309244400000, \"val\": 23.84}, {\"col\": \"AAPL\", \"idx\": 1309330800000, \"val\": 321.06}, {\"col\": \"IBM\", \"idx\": 1309330800000, \"val\": 162.27}, {\"col\": \"YHOO\", \"idx\": 1309330800000, \"val\": 14.89}, {\"col\": \"MSFT\", \"idx\": 1309330800000, \"val\": 23.67}, {\"col\": \"AAPL\", \"idx\": 1309417200000, \"val\": 322.63}, {\"col\": \"IBM\", \"idx\": 1309417200000, \"val\": 163.23}, {\"col\": \"YHOO\", \"idx\": 1309417200000, \"val\": 15.04}, {\"col\": \"MSFT\", \"idx\": 1309417200000, \"val\": 24.03}, {\"col\": \"AAPL\", \"idx\": 1309503600000, \"val\": 329.93}, {\"col\": \"IBM\", \"idx\": 1309503600000, \"val\": 166.07}, {\"col\": \"YHOO\", \"idx\": 1309503600000, \"val\": 15.45}, {\"col\": \"MSFT\", \"idx\": 1309503600000, \"val\": 24.04}, {\"col\": \"AAPL\", \"idx\": 1309849200000, \"val\": 335.86}, {\"col\": \"IBM\", \"idx\": 1309849200000, \"val\": 166.92}, {\"col\": \"YHOO\", \"idx\": 1309849200000, \"val\": 15.49}, {\"col\": \"MSFT\", \"idx\": 1309849200000, \"val\": 24.05}, {\"col\": \"AAPL\", \"idx\": 1309935600000, \"val\": 338.1}, {\"col\": \"IBM\", \"idx\": 1309935600000, \"val\": 169.09}, {\"col\": \"YHOO\", \"idx\": 1309935600000, \"val\": 15.72}, {\"col\": \"MSFT\", \"idx\": 1309935600000, \"val\": 24.33}, {\"col\": \"AAPL\", \"idx\": 1310022000000, \"val\": 343.32}, {\"col\": \"IBM\", \"idx\": 1310022000000, \"val\": 167.92}, {\"col\": \"YHOO\", \"idx\": 1310022000000, \"val\": 15.81}, {\"col\": \"MSFT\", \"idx\": 1310022000000, \"val\": 24.74}, {\"col\": \"AAPL\", \"idx\": 1310108400000, \"val\": 345.74}, {\"col\": \"IBM\", \"idx\": 1310108400000, \"val\": 167.93}, {\"col\": \"YHOO\", \"idx\": 1310108400000, \"val\": 15.61}, {\"col\": \"MSFT\", \"idx\": 1310108400000, \"val\": 24.88}, {\"col\": \"AAPL\", \"idx\": 1310367600000, \"val\": 340.25}, {\"col\": \"IBM\", \"idx\": 1310367600000, \"val\": 166.5}, {\"col\": \"YHOO\", \"idx\": 1310367600000, \"val\": 15.05}, {\"col\": \"MSFT\", \"idx\": 1310367600000, \"val\": 24.61}, {\"col\": \"AAPL\", \"idx\": 1310454000000, \"val\": 340.01}, {\"col\": \"IBM\", \"idx\": 1310454000000, \"val\": 165.6}, {\"col\": \"YHOO\", \"idx\": 1310454000000, \"val\": 14.86}, {\"col\": \"MSFT\", \"idx\": 1310454000000, \"val\": 24.52}, {\"col\": \"AAPL\", \"idx\": 1310540400000, \"val\": 344.11}, {\"col\": \"IBM\", \"idx\": 1310540400000, \"val\": 165.86}, {\"col\": \"YHOO\", \"idx\": 1310540400000, \"val\": 14.91}, {\"col\": \"MSFT\", \"idx\": 1310540400000, \"val\": 24.61}, {\"col\": \"AAPL\", \"idx\": 1310626800000, \"val\": 343.87}, {\"col\": \"IBM\", \"idx\": 1310626800000, \"val\": 165.78}, {\"col\": \"YHOO\", \"idx\": 1310626800000, \"val\": 14.63}, {\"col\": \"MSFT\", \"idx\": 1310626800000, \"val\": 24.46}, {\"col\": \"AAPL\", \"idx\": 1310713200000, \"val\": 350.74}, {\"col\": \"IBM\", \"idx\": 1310713200000, \"val\": 167.02}, {\"col\": \"YHOO\", \"idx\": 1310713200000, \"val\": 14.69}, {\"col\": \"MSFT\", \"idx\": 1310713200000, \"val\": 24.75}, {\"col\": \"AAPL\", \"idx\": 1310972400000, \"val\": 359.28}, {\"col\": \"IBM\", \"idx\": 1310972400000, \"val\": 166.78}, {\"col\": \"YHOO\", \"idx\": 1310972400000, \"val\": 14.42}, {\"col\": \"MSFT\", \"idx\": 1310972400000, \"val\": 24.57}, {\"col\": \"AAPL\", \"idx\": 1311058800000, \"val\": 362.21}, {\"col\": \"IBM\", \"idx\": 1311058800000, \"val\": 176.22}, {\"col\": \"YHOO\", \"idx\": 1311058800000, \"val\": 14.59}, {\"col\": \"MSFT\", \"idx\": 1311058800000, \"val\": 25.45}, {\"col\": \"AAPL\", \"idx\": 1311145200000, \"val\": 371.87}, {\"col\": \"IBM\", \"idx\": 1311145200000, \"val\": 174.74}, {\"col\": \"YHOO\", \"idx\": 1311145200000, \"val\": 13.48}, {\"col\": \"MSFT\", \"idx\": 1311145200000, \"val\": 25.01}, {\"col\": \"AAPL\", \"idx\": 1311231600000, \"val\": 372.25}, {\"col\": \"IBM\", \"idx\": 1311231600000, \"val\": 175.93}, {\"col\": \"YHOO\", \"idx\": 1311231600000, \"val\": 13.59}, {\"col\": \"MSFT\", \"idx\": 1311231600000, \"val\": 25.04}, {\"col\": \"AAPL\", \"idx\": 1311318000000, \"val\": 378.02}, {\"col\": \"IBM\", \"idx\": 1311318000000, \"val\": 176.19}, {\"col\": \"YHOO\", \"idx\": 1311318000000, \"val\": 13.98}, {\"col\": \"MSFT\", \"idx\": 1311318000000, \"val\": 25.44}, {\"col\": \"AAPL\", \"idx\": 1311577200000, \"val\": 383.02}, {\"col\": \"IBM\", \"idx\": 1311577200000, \"val\": 174.79}, {\"col\": \"YHOO\", \"idx\": 1311577200000, \"val\": 13.69}, {\"col\": \"MSFT\", \"idx\": 1311577200000, \"val\": 25.79}, {\"col\": \"AAPL\", \"idx\": 1311663600000, \"val\": 387.74}, {\"col\": \"IBM\", \"idx\": 1311663600000, \"val\": 174.05}, {\"col\": \"YHOO\", \"idx\": 1311663600000, \"val\": 13.94}, {\"col\": \"MSFT\", \"idx\": 1311663600000, \"val\": 25.95}, {\"col\": \"AAPL\", \"idx\": 1311750000000, \"val\": 377.34}, {\"col\": \"IBM\", \"idx\": 1311750000000, \"val\": 172.55}, {\"col\": \"YHOO\", \"idx\": 1311750000000, \"val\": 13.59}, {\"col\": \"MSFT\", \"idx\": 1311750000000, \"val\": 25.25}, {\"col\": \"AAPL\", \"idx\": 1311836400000, \"val\": 376.6}, {\"col\": \"IBM\", \"idx\": 1311836400000, \"val\": 172.98}, {\"col\": \"YHOO\", \"idx\": 1311836400000, \"val\": 13.5}, {\"col\": \"MSFT\", \"idx\": 1311836400000, \"val\": 25.62}, {\"col\": \"AAPL\", \"idx\": 1311922800000, \"val\": 375.31}, {\"col\": \"IBM\", \"idx\": 1311922800000, \"val\": 173.03}, {\"col\": \"YHOO\", \"idx\": 1311922800000, \"val\": 13.1}, {\"col\": \"MSFT\", \"idx\": 1311922800000, \"val\": 25.32}, {\"col\": \"AAPL\", \"idx\": 1312182000000, \"val\": 381.34}, {\"col\": \"IBM\", \"idx\": 1312182000000, \"val\": 171.98}, {\"col\": \"YHOO\", \"idx\": 1312182000000, \"val\": 13.1}, {\"col\": \"MSFT\", \"idx\": 1312182000000, \"val\": 25.2}, {\"col\": \"AAPL\", \"idx\": 1312268400000, \"val\": 373.8}, {\"col\": \"IBM\", \"idx\": 1312268400000, \"val\": 169.41}, {\"col\": \"YHOO\", \"idx\": 1312268400000, \"val\": 12.76}, {\"col\": \"MSFT\", \"idx\": 1312268400000, \"val\": 24.77}, {\"col\": \"AAPL\", \"idx\": 1312354800000, \"val\": 377.32}, {\"col\": \"IBM\", \"idx\": 1312354800000, \"val\": 170.15}, {\"col\": \"YHOO\", \"idx\": 1312354800000, \"val\": 13.02}, {\"col\": \"MSFT\", \"idx\": 1312354800000, \"val\": 24.88}, {\"col\": \"AAPL\", \"idx\": 1312441200000, \"val\": 362.71}, {\"col\": \"IBM\", \"idx\": 1312441200000, \"val\": 163.16}, {\"col\": \"YHOO\", \"idx\": 1312441200000, \"val\": 12.0}, {\"col\": \"MSFT\", \"idx\": 1312441200000, \"val\": 23.97}, {\"col\": \"AAPL\", \"idx\": 1312527600000, \"val\": 359.11}, {\"col\": \"IBM\", \"idx\": 1312527600000, \"val\": 164.59}, {\"col\": \"YHOO\", \"idx\": 1312527600000, \"val\": 11.74}, {\"col\": \"MSFT\", \"idx\": 1312527600000, \"val\": 23.73}, {\"col\": \"AAPL\", \"idx\": 1312786800000, \"val\": 339.49}, {\"col\": \"IBM\", \"idx\": 1312786800000, \"val\": 158.84}, {\"col\": \"YHOO\", \"idx\": 1312786800000, \"val\": 11.09}, {\"col\": \"MSFT\", \"idx\": 1312786800000, \"val\": 22.62}, {\"col\": \"AAPL\", \"idx\": 1312873200000, \"val\": 359.48}, {\"col\": \"IBM\", \"idx\": 1312873200000, \"val\": 163.04}, {\"col\": \"YHOO\", \"idx\": 1312873200000, \"val\": 12.09}, {\"col\": \"MSFT\", \"idx\": 1312873200000, \"val\": 23.64}, {\"col\": \"AAPL\", \"idx\": 1312959600000, \"val\": 349.56}, {\"col\": \"IBM\", \"idx\": 1312959600000, \"val\": 155.33}, {\"col\": \"YHOO\", \"idx\": 1312959600000, \"val\": 11.77}, {\"col\": \"MSFT\", \"idx\": 1312959600000, \"val\": 22.36}, {\"col\": \"AAPL\", \"idx\": 1313046000000, \"val\": 359.18}, {\"col\": \"IBM\", \"idx\": 1313046000000, \"val\": 159.33}, {\"col\": \"YHOO\", \"idx\": 1313046000000, \"val\": 12.86}, {\"col\": \"MSFT\", \"idx\": 1313046000000, \"val\": 23.28}, {\"col\": \"AAPL\", \"idx\": 1313132400000, \"val\": 362.35}, {\"col\": \"IBM\", \"idx\": 1313132400000, \"val\": 160.74}, {\"col\": \"YHOO\", \"idx\": 1313132400000, \"val\": 13.59}, {\"col\": \"MSFT\", \"idx\": 1313132400000, \"val\": 23.19}, {\"col\": \"AAPL\", \"idx\": 1313391600000, \"val\": 368.52}, {\"col\": \"IBM\", \"idx\": 1313391600000, \"val\": 165.31}, {\"col\": \"YHOO\", \"idx\": 1313391600000, \"val\": 13.47}, {\"col\": \"MSFT\", \"idx\": 1313391600000, \"val\": 23.57}, {\"col\": \"AAPL\", \"idx\": 1313478000000, \"val\": 365.7}, {\"col\": \"IBM\", \"idx\": 1313478000000, \"val\": 163.64}, {\"col\": \"YHOO\", \"idx\": 1313478000000, \"val\": 13.48}, {\"col\": \"MSFT\", \"idx\": 1313478000000, \"val\": 23.57}, {\"col\": \"AAPL\", \"idx\": 1313564400000, \"val\": 365.66}, {\"col\": \"IBM\", \"idx\": 1313564400000, \"val\": 163.87}, {\"col\": \"YHOO\", \"idx\": 1313564400000, \"val\": 13.47}, {\"col\": \"MSFT\", \"idx\": 1313564400000, \"val\": 23.48}, {\"col\": \"AAPL\", \"idx\": 1313650800000, \"val\": 351.83}, {\"col\": \"IBM\", \"idx\": 1313650800000, \"val\": 156.56}, {\"col\": \"YHOO\", \"idx\": 1313650800000, \"val\": 12.96}, {\"col\": \"MSFT\", \"idx\": 1313650800000, \"val\": 22.94}, {\"col\": \"AAPL\", \"idx\": 1313737200000, \"val\": 342.2}, {\"col\": \"IBM\", \"idx\": 1313737200000, \"val\": 150.55}, {\"col\": \"YHOO\", \"idx\": 1313737200000, \"val\": 12.92}, {\"col\": \"MSFT\", \"idx\": 1313737200000, \"val\": 22.36}, {\"col\": \"AAPL\", \"idx\": 1313996400000, \"val\": 342.59}, {\"col\": \"IBM\", \"idx\": 1313996400000, \"val\": 151.92}, {\"col\": \"YHOO\", \"idx\": 1313996400000, \"val\": 12.84}, {\"col\": \"MSFT\", \"idx\": 1313996400000, \"val\": 22.3}, {\"col\": \"AAPL\", \"idx\": 1314082800000, \"val\": 359.09}, {\"col\": \"IBM\", \"idx\": 1314082800000, \"val\": 157.03}, {\"col\": \"YHOO\", \"idx\": 1314082800000, \"val\": 13.35}, {\"col\": \"MSFT\", \"idx\": 1314082800000, \"val\": 22.99}, {\"col\": \"AAPL\", \"idx\": 1314169200000, \"val\": 361.57}, {\"col\": \"IBM\", \"idx\": 1314169200000, \"val\": 159.36}, {\"col\": \"YHOO\", \"idx\": 1314169200000, \"val\": 13.15}, {\"col\": \"MSFT\", \"idx\": 1314169200000, \"val\": 23.15}, {\"col\": \"AAPL\", \"idx\": 1314255600000, \"val\": 359.2}, {\"col\": \"IBM\", \"idx\": 1314255600000, \"val\": 158.23}, {\"col\": \"YHOO\", \"idx\": 1314255600000, \"val\": 12.87}, {\"col\": \"MSFT\", \"idx\": 1314255600000, \"val\": 22.85}, {\"col\": \"AAPL\", \"idx\": 1314342000000, \"val\": 368.68}, {\"col\": \"IBM\", \"idx\": 1314342000000, \"val\": 161.63}, {\"col\": \"YHOO\", \"idx\": 1314342000000, \"val\": 12.74}, {\"col\": \"MSFT\", \"idx\": 1314342000000, \"val\": 23.48}, {\"col\": \"AAPL\", \"idx\": 1314601200000, \"val\": 374.82}, {\"col\": \"IBM\", \"idx\": 1314601200000, \"val\": 164.96}, {\"col\": \"YHOO\", \"idx\": 1314601200000, \"val\": 13.68}, {\"col\": \"MSFT\", \"idx\": 1314601200000, \"val\": 24.03}, {\"col\": \"AAPL\", \"idx\": 1314687600000, \"val\": 374.84}, {\"col\": \"IBM\", \"idx\": 1314687600000, \"val\": 164.85}, {\"col\": \"YHOO\", \"idx\": 1314687600000, \"val\": 13.84}, {\"col\": \"MSFT\", \"idx\": 1314687600000, \"val\": 24.39}, {\"col\": \"AAPL\", \"idx\": 1314774000000, \"val\": 369.88}, {\"col\": \"IBM\", \"idx\": 1314774000000, \"val\": 164.28}, {\"col\": \"YHOO\", \"idx\": 1314774000000, \"val\": 13.61}, {\"col\": \"MSFT\", \"idx\": 1314774000000, \"val\": 24.74}, {\"col\": \"AAPL\", \"idx\": 1314860400000, \"val\": 366.23}, {\"col\": \"IBM\", \"idx\": 1314860400000, \"val\": 162.77}, {\"col\": \"YHOO\", \"idx\": 1314860400000, \"val\": 13.35}, {\"col\": \"MSFT\", \"idx\": 1314860400000, \"val\": 24.37}, {\"col\": \"AAPL\", \"idx\": 1314946800000, \"val\": 359.52}, {\"col\": \"IBM\", \"idx\": 1314946800000, \"val\": 159.57}, {\"col\": \"YHOO\", \"idx\": 1314946800000, \"val\": 12.87}, {\"col\": \"MSFT\", \"idx\": 1314946800000, \"val\": 23.99}, {\"col\": \"AAPL\", \"idx\": 1315292400000, \"val\": 364.99}, {\"col\": \"IBM\", \"idx\": 1315292400000, \"val\": 157.78}, {\"col\": \"YHOO\", \"idx\": 1315292400000, \"val\": 12.91}, {\"col\": \"MSFT\", \"idx\": 1315292400000, \"val\": 23.72}, {\"col\": \"AAPL\", \"idx\": 1315378800000, \"val\": 369.02}, {\"col\": \"IBM\", \"idx\": 1315378800000, \"val\": 159.89}, {\"col\": \"YHOO\", \"idx\": 1315378800000, \"val\": 13.61}, {\"col\": \"MSFT\", \"idx\": 1315378800000, \"val\": 24.18}, {\"col\": \"AAPL\", \"idx\": 1315465200000, \"val\": 369.22}, {\"col\": \"IBM\", \"idx\": 1315465200000, \"val\": 157.92}, {\"col\": \"YHOO\", \"idx\": 1315465200000, \"val\": 14.44}, {\"col\": \"MSFT\", \"idx\": 1315465200000, \"val\": 24.38}, {\"col\": \"AAPL\", \"idx\": 1315551600000, \"val\": 362.82}, {\"col\": \"IBM\", \"idx\": 1315551600000, \"val\": 154.21}, {\"col\": \"YHOO\", \"idx\": 1315551600000, \"val\": 14.48}, {\"col\": \"MSFT\", \"idx\": 1315551600000, \"val\": 23.94}, {\"col\": \"AAPL\", \"idx\": 1315810800000, \"val\": 365.18}, {\"col\": \"IBM\", \"idx\": 1315810800000, \"val\": 155.21}, {\"col\": \"YHOO\", \"idx\": 1315810800000, \"val\": 14.26}, {\"col\": \"MSFT\", \"idx\": 1315810800000, \"val\": 24.08}, {\"col\": \"AAPL\", \"idx\": 1315897200000, \"val\": 369.68}, {\"col\": \"IBM\", \"idx\": 1315897200000, \"val\": 156.18}, {\"col\": \"YHOO\", \"idx\": 1315897200000, \"val\": 14.26}, {\"col\": \"MSFT\", \"idx\": 1315897200000, \"val\": 24.21}, {\"col\": \"AAPL\", \"idx\": 1315983600000, \"val\": 374.18}, {\"col\": \"IBM\", \"idx\": 1315983600000, \"val\": 159.82}, {\"col\": \"YHOO\", \"idx\": 1315983600000, \"val\": 14.55}, {\"col\": \"MSFT\", \"idx\": 1315983600000, \"val\": 24.64}, {\"col\": \"AAPL\", \"idx\": 1316070000000, \"val\": 377.7}, {\"col\": \"IBM\", \"idx\": 1316070000000, \"val\": 162.54}, {\"col\": \"YHOO\", \"idx\": 1316070000000, \"val\": 14.89}, {\"col\": \"MSFT\", \"idx\": 1316070000000, \"val\": 25.1}, {\"col\": \"AAPL\", \"idx\": 1316156400000, \"val\": 384.94}, {\"col\": \"IBM\", \"idx\": 1316156400000, \"val\": 165.31}, {\"col\": \"YHOO\", \"idx\": 1316156400000, \"val\": 14.97}, {\"col\": \"MSFT\", \"idx\": 1316156400000, \"val\": 25.22}, {\"col\": \"AAPL\", \"idx\": 1316415600000, \"val\": 395.64}, {\"col\": \"IBM\", \"idx\": 1316415600000, \"val\": 165.45}, {\"col\": \"YHOO\", \"idx\": 1316415600000, \"val\": 14.61}, {\"col\": \"MSFT\", \"idx\": 1316415600000, \"val\": 25.3}, {\"col\": \"AAPL\", \"idx\": 1316502000000, \"val\": 397.39}, {\"col\": \"IBM\", \"idx\": 1316502000000, \"val\": 166.97}, {\"col\": \"YHOO\", \"idx\": 1316502000000, \"val\": 14.36}, {\"col\": \"MSFT\", \"idx\": 1316502000000, \"val\": 25.09}, {\"col\": \"AAPL\", \"idx\": 1316588400000, \"val\": 396.13}, {\"col\": \"IBM\", \"idx\": 1316588400000, \"val\": 165.34}, {\"col\": \"YHOO\", \"idx\": 1316588400000, \"val\": 13.96}, {\"col\": \"MSFT\", \"idx\": 1316588400000, \"val\": 24.17}, {\"col\": \"AAPL\", \"idx\": 1316674800000, \"val\": 386.21}, {\"col\": \"IBM\", \"idx\": 1316674800000, \"val\": 161.14}, {\"col\": \"YHOO\", \"idx\": 1316674800000, \"val\": 13.99}, {\"col\": \"MSFT\", \"idx\": 1316674800000, \"val\": 23.3}, {\"col\": \"AAPL\", \"idx\": 1316761200000, \"val\": 388.59}, {\"col\": \"IBM\", \"idx\": 1316761200000, \"val\": 161.83}, {\"col\": \"YHOO\", \"idx\": 1316761200000, \"val\": 14.71}, {\"col\": \"MSFT\", \"idx\": 1316761200000, \"val\": 23.3}, {\"col\": \"AAPL\", \"idx\": 1317020400000, \"val\": 387.51}, {\"col\": \"IBM\", \"idx\": 1317020400000, \"val\": 166.77}, {\"col\": \"YHOO\", \"idx\": 1317020400000, \"val\": 14.75}, {\"col\": \"MSFT\", \"idx\": 1317020400000, \"val\": 23.66}, {\"col\": \"AAPL\", \"idx\": 1317106800000, \"val\": 383.75}, {\"col\": \"IBM\", \"idx\": 1317106800000, \"val\": 169.82}, {\"col\": \"YHOO\", \"idx\": 1317106800000, \"val\": 14.54}, {\"col\": \"MSFT\", \"idx\": 1317106800000, \"val\": 23.87}, {\"col\": \"AAPL\", \"idx\": 1317193200000, \"val\": 381.59}, {\"col\": \"IBM\", \"idx\": 1317193200000, \"val\": 169.67}, {\"col\": \"YHOO\", \"idx\": 1317193200000, \"val\": 14.19}, {\"col\": \"MSFT\", \"idx\": 1317193200000, \"val\": 23.79}, {\"col\": \"AAPL\", \"idx\": 1317279600000, \"val\": 375.4}, {\"col\": \"IBM\", \"idx\": 1317279600000, \"val\": 171.22}, {\"col\": \"YHOO\", \"idx\": 1317279600000, \"val\": 13.42}, {\"col\": \"MSFT\", \"idx\": 1317279600000, \"val\": 23.67}, {\"col\": \"AAPL\", \"idx\": 1317366000000, \"val\": 366.51}, {\"col\": \"IBM\", \"idx\": 1317366000000, \"val\": 167.11}, {\"col\": \"YHOO\", \"idx\": 1317366000000, \"val\": 13.17}, {\"col\": \"MSFT\", \"idx\": 1317366000000, \"val\": 23.15}, {\"col\": \"AAPL\", \"idx\": 1317625200000, \"val\": 360.05}, {\"col\": \"IBM\", \"idx\": 1317625200000, \"val\": 165.6}, {\"col\": \"YHOO\", \"idx\": 1317625200000, \"val\": 13.53}, {\"col\": \"MSFT\", \"idx\": 1317625200000, \"val\": 22.81}, {\"col\": \"AAPL\", \"idx\": 1317711600000, \"val\": 358.03}, {\"col\": \"IBM\", \"idx\": 1317711600000, \"val\": 166.99}, {\"col\": \"YHOO\", \"idx\": 1317711600000, \"val\": 14.46}, {\"col\": \"MSFT\", \"idx\": 1317711600000, \"val\": 23.56}, {\"col\": \"AAPL\", \"idx\": 1317798000000, \"val\": 363.56}, {\"col\": \"IBM\", \"idx\": 1317798000000, \"val\": 169.0}, {\"col\": \"YHOO\", \"idx\": 1317798000000, \"val\": 15.92}, {\"col\": \"MSFT\", \"idx\": 1317798000000, \"val\": 24.08}, {\"col\": \"AAPL\", \"idx\": 1317884400000, \"val\": 362.71}, {\"col\": \"IBM\", \"idx\": 1317884400000, \"val\": 173.63}, {\"col\": \"YHOO\", \"idx\": 1317884400000, \"val\": 15.65}, {\"col\": \"MSFT\", \"idx\": 1317884400000, \"val\": 24.49}, {\"col\": \"AAPL\", \"idx\": 1317970800000, \"val\": 355.43}, {\"col\": \"IBM\", \"idx\": 1317970800000, \"val\": 174.3}, {\"col\": \"YHOO\", \"idx\": 1317970800000, \"val\": 15.47}, {\"col\": \"MSFT\", \"idx\": 1317970800000, \"val\": 24.41}, {\"col\": \"AAPL\", \"idx\": 1318230000000, \"val\": 373.71}, {\"col\": \"IBM\", \"idx\": 1318230000000, \"val\": 178.34}, {\"col\": \"YHOO\", \"idx\": 1318230000000, \"val\": 15.84}, {\"col\": \"MSFT\", \"idx\": 1318230000000, \"val\": 25.05}, {\"col\": \"AAPL\", \"idx\": 1318316400000, \"val\": 384.74}, {\"col\": \"IBM\", \"idx\": 1318316400000, \"val\": 176.79}, {\"col\": \"YHOO\", \"idx\": 1318316400000, \"val\": 15.86}, {\"col\": \"MSFT\", \"idx\": 1318316400000, \"val\": 25.11}, {\"col\": \"AAPL\", \"idx\": 1318402800000, \"val\": 386.57}, {\"col\": \"IBM\", \"idx\": 1318402800000, \"val\": 177.86}, {\"col\": \"YHOO\", \"idx\": 1318402800000, \"val\": 15.77}, {\"col\": \"MSFT\", \"idx\": 1318402800000, \"val\": 25.07}, {\"col\": \"AAPL\", \"idx\": 1318489200000, \"val\": 392.56}, {\"col\": \"IBM\", \"idx\": 1318489200000, \"val\": 178.53}, {\"col\": \"YHOO\", \"idx\": 1318489200000, \"val\": 15.93}, {\"col\": \"MSFT\", \"idx\": 1318489200000, \"val\": 25.27}, {\"col\": \"AAPL\", \"idx\": 1318575600000, \"val\": 405.61}, {\"col\": \"IBM\", \"idx\": 1318575600000, \"val\": 182.07}, {\"col\": \"YHOO\", \"idx\": 1318575600000, \"val\": 15.91}, {\"col\": \"MSFT\", \"idx\": 1318575600000, \"val\": 25.36}, {\"col\": \"AAPL\", \"idx\": 1318834800000, \"val\": 403.68}, {\"col\": \"IBM\", \"idx\": 1318834800000, \"val\": 178.31}, {\"col\": \"YHOO\", \"idx\": 1318834800000, \"val\": 15.7}, {\"col\": \"MSFT\", \"idx\": 1318834800000, \"val\": 25.09}, {\"col\": \"AAPL\", \"idx\": 1318921200000, \"val\": 405.84}, {\"col\": \"IBM\", \"idx\": 1318921200000, \"val\": 170.96}, {\"col\": \"YHOO\", \"idx\": 1318921200000, \"val\": 15.47}, {\"col\": \"MSFT\", \"idx\": 1318921200000, \"val\": 25.4}, {\"col\": \"AAPL\", \"idx\": 1319007600000, \"val\": 383.14}, {\"col\": \"IBM\", \"idx\": 1319007600000, \"val\": 169.52}, {\"col\": \"YHOO\", \"idx\": 1319007600000, \"val\": 15.94}, {\"col\": \"MSFT\", \"idx\": 1319007600000, \"val\": 25.23}, {\"col\": \"AAPL\", \"idx\": 1319094000000, \"val\": 379.95}, {\"col\": \"IBM\", \"idx\": 1319094000000, \"val\": 169.38}, {\"col\": \"YHOO\", \"idx\": 1319094000000, \"val\": 16.18}, {\"col\": \"MSFT\", \"idx\": 1319094000000, \"val\": 25.14}, {\"col\": \"AAPL\", \"idx\": 1319180400000, \"val\": 377.61}, {\"col\": \"IBM\", \"idx\": 1319180400000, \"val\": 173.57}, {\"col\": \"YHOO\", \"idx\": 1319180400000, \"val\": 16.12}, {\"col\": \"MSFT\", \"idx\": 1319180400000, \"val\": 25.26}, {\"col\": \"AAPL\", \"idx\": 1319439600000, \"val\": 390.01}, {\"col\": \"IBM\", \"idx\": 1319439600000, \"val\": 174.16}, {\"col\": \"YHOO\", \"idx\": 1319439600000, \"val\": 16.71}, {\"col\": \"MSFT\", \"idx\": 1319439600000, \"val\": 25.28}, {\"col\": \"AAPL\", \"idx\": 1319526000000, \"val\": 382.32}, {\"col\": \"IBM\", \"idx\": 1319526000000, \"val\": 172.36}, {\"col\": \"YHOO\", \"idx\": 1319526000000, \"val\": 16.24}, {\"col\": \"MSFT\", \"idx\": 1319526000000, \"val\": 24.93}, {\"col\": \"AAPL\", \"idx\": 1319612400000, \"val\": 385.04}, {\"col\": \"IBM\", \"idx\": 1319612400000, \"val\": 173.89}, {\"col\": \"YHOO\", \"idx\": 1319612400000, \"val\": 16.3}, {\"col\": \"MSFT\", \"idx\": 1319612400000, \"val\": 24.73}, {\"col\": \"AAPL\", \"idx\": 1319698800000, \"val\": 388.97}, {\"col\": \"IBM\", \"idx\": 1319698800000, \"val\": 177.63}, {\"col\": \"YHOO\", \"idx\": 1319698800000, \"val\": 16.63}, {\"col\": \"MSFT\", \"idx\": 1319698800000, \"val\": 25.34}, {\"col\": \"AAPL\", \"idx\": 1319785200000, \"val\": 389.22}, {\"col\": \"IBM\", \"idx\": 1319785200000, \"val\": 179.13}, {\"col\": \"YHOO\", \"idx\": 1319785200000, \"val\": 16.56}, {\"col\": \"MSFT\", \"idx\": 1319785200000, \"val\": 25.09}, {\"col\": \"AAPL\", \"idx\": 1320044400000, \"val\": 389.06}, {\"col\": \"IBM\", \"idx\": 1320044400000, \"val\": 176.44}, {\"col\": \"YHOO\", \"idx\": 1320044400000, \"val\": 15.64}, {\"col\": \"MSFT\", \"idx\": 1320044400000, \"val\": 24.76}, {\"col\": \"AAPL\", \"idx\": 1320130800000, \"val\": 381.11}, {\"col\": \"IBM\", \"idx\": 1320130800000, \"val\": 173.3}, {\"col\": \"YHOO\", \"idx\": 1320130800000, \"val\": 14.93}, {\"col\": \"MSFT\", \"idx\": 1320130800000, \"val\": 24.17}, {\"col\": \"AAPL\", \"idx\": 1320217200000, \"val\": 381.97}, {\"col\": \"IBM\", \"idx\": 1320217200000, \"val\": 175.76}, {\"col\": \"YHOO\", \"idx\": 1320217200000, \"val\": 15.1}, {\"col\": \"MSFT\", \"idx\": 1320217200000, \"val\": 24.19}, {\"col\": \"AAPL\", \"idx\": 1320303600000, \"val\": 387.41}, {\"col\": \"IBM\", \"idx\": 1320303600000, \"val\": 178.99}, {\"col\": \"YHOO\", \"idx\": 1320303600000, \"val\": 15.48}, {\"col\": \"MSFT\", \"idx\": 1320303600000, \"val\": 24.67}, {\"col\": \"AAPL\", \"idx\": 1320390000000, \"val\": 384.69}, {\"col\": \"IBM\", \"idx\": 1320390000000, \"val\": 178.11}, {\"col\": \"YHOO\", \"idx\": 1320390000000, \"val\": 15.24}, {\"col\": \"MSFT\", \"idx\": 1320390000000, \"val\": 24.41}, {\"col\": \"AAPL\", \"idx\": 1320652800000, \"val\": 384.2}, {\"col\": \"IBM\", \"idx\": 1320652800000, \"val\": 179.01}, {\"col\": \"YHOO\", \"idx\": 1320652800000, \"val\": 15.69}, {\"col\": \"MSFT\", \"idx\": 1320652800000, \"val\": 24.92}, {\"col\": \"AAPL\", \"idx\": 1320739200000, \"val\": 390.45}, {\"col\": \"IBM\", \"idx\": 1320739200000, \"val\": 179.66}, {\"col\": \"YHOO\", \"idx\": 1320739200000, \"val\": 15.97}, {\"col\": \"MSFT\", \"idx\": 1320739200000, \"val\": 25.26}, {\"col\": \"AAPL\", \"idx\": 1320825600000, \"val\": 379.93}, {\"col\": \"IBM\", \"idx\": 1320825600000, \"val\": 174.85}, {\"col\": \"YHOO\", \"idx\": 1320825600000, \"val\": 15.92}, {\"col\": \"MSFT\", \"idx\": 1320825600000, \"val\": 24.36}, {\"col\": \"AAPL\", \"idx\": 1320912000000, \"val\": 370.26}, {\"col\": \"IBM\", \"idx\": 1320912000000, \"val\": 175.92}, {\"col\": \"YHOO\", \"idx\": 1320912000000, \"val\": 15.95}, {\"col\": \"MSFT\", \"idx\": 1320912000000, \"val\": 24.44}, {\"col\": \"AAPL\", \"idx\": 1320998400000, \"val\": 369.68}, {\"col\": \"IBM\", \"idx\": 1320998400000, \"val\": 179.78}, {\"col\": \"YHOO\", \"idx\": 1320998400000, \"val\": 16.27}, {\"col\": \"MSFT\", \"idx\": 1320998400000, \"val\": 25.02}, {\"col\": \"AAPL\", \"idx\": 1321257600000, \"val\": 364.53}, {\"col\": \"IBM\", \"idx\": 1321257600000, \"val\": 179.76}, {\"col\": \"YHOO\", \"idx\": 1321257600000, \"val\": 16.0}, {\"col\": \"MSFT\", \"idx\": 1321257600000, \"val\": 24.88}, {\"col\": \"AAPL\", \"idx\": 1321344000000, \"val\": 373.73}, {\"col\": \"IBM\", \"idx\": 1321344000000, \"val\": 181.1}, {\"col\": \"YHOO\", \"idx\": 1321344000000, \"val\": 15.93}, {\"col\": \"MSFT\", \"idx\": 1321344000000, \"val\": 25.05}, {\"col\": \"AAPL\", \"idx\": 1321430400000, \"val\": 369.82}, {\"col\": \"IBM\", \"idx\": 1321430400000, \"val\": 179.06}, {\"col\": \"YHOO\", \"idx\": 1321430400000, \"val\": 15.72}, {\"col\": \"MSFT\", \"idx\": 1321430400000, \"val\": 24.43}, {\"col\": \"AAPL\", \"idx\": 1321516800000, \"val\": 362.75}, {\"col\": \"IBM\", \"idx\": 1321516800000, \"val\": 178.2}, {\"col\": \"YHOO\", \"idx\": 1321516800000, \"val\": 15.34}, {\"col\": \"MSFT\", \"idx\": 1321516800000, \"val\": 23.93}, {\"col\": \"AAPL\", \"idx\": 1321603200000, \"val\": 360.38}, {\"col\": \"IBM\", \"idx\": 1321603200000, \"val\": 177.73}, {\"col\": \"YHOO\", \"idx\": 1321603200000, \"val\": 15.38}, {\"col\": \"MSFT\", \"idx\": 1321603200000, \"val\": 23.7}, {\"col\": \"AAPL\", \"idx\": 1321862400000, \"val\": 354.68}, {\"col\": \"IBM\", \"idx\": 1321862400000, \"val\": 174.12}, {\"col\": \"YHOO\", \"idx\": 1321862400000, \"val\": 14.99}, {\"col\": \"MSFT\", \"idx\": 1321862400000, \"val\": 23.42}, {\"col\": \"AAPL\", \"idx\": 1321948800000, \"val\": 361.88}, {\"col\": \"IBM\", \"idx\": 1321948800000, \"val\": 173.96}, {\"col\": \"YHOO\", \"idx\": 1321948800000, \"val\": 14.97}, {\"col\": \"MSFT\", \"idx\": 1321948800000, \"val\": 23.23}, {\"col\": \"AAPL\", \"idx\": 1322035200000, \"val\": 352.73}, {\"col\": \"IBM\", \"idx\": 1322035200000, \"val\": 170.74}, {\"col\": \"YHOO\", \"idx\": 1322035200000, \"val\": 14.94}, {\"col\": \"MSFT\", \"idx\": 1322035200000, \"val\": 22.93}, {\"col\": \"AAPL\", \"idx\": 1322208000000, \"val\": 349.45}, {\"col\": \"IBM\", \"idx\": 1322208000000, \"val\": 169.88}, {\"col\": \"YHOO\", \"idx\": 1322208000000, \"val\": 15.1}, {\"col\": \"MSFT\", \"idx\": 1322208000000, \"val\": 22.77}, {\"col\": \"AAPL\", \"idx\": 1322467200000, \"val\": 361.51}, {\"col\": \"IBM\", \"idx\": 1322467200000, \"val\": 174.82}, {\"col\": \"YHOO\", \"idx\": 1322467200000, \"val\": 15.35}, {\"col\": \"MSFT\", \"idx\": 1322467200000, \"val\": 23.3}, {\"col\": \"AAPL\", \"idx\": 1322553600000, \"val\": 358.7}, {\"col\": \"IBM\", \"idx\": 1322553600000, \"val\": 173.61}, {\"col\": \"YHOO\", \"idx\": 1322553600000, \"val\": 15.7}, {\"col\": \"MSFT\", \"idx\": 1322553600000, \"val\": 23.27}, {\"col\": \"AAPL\", \"idx\": 1322640000000, \"val\": 367.35}, {\"col\": \"IBM\", \"idx\": 1322640000000, \"val\": 180.38}, {\"col\": \"YHOO\", \"idx\": 1322640000000, \"val\": 15.71}, {\"col\": \"MSFT\", \"idx\": 1322640000000, \"val\": 23.97}, {\"col\": \"AAPL\", \"idx\": 1322726400000, \"val\": 372.86}, {\"col\": \"IBM\", \"idx\": 1322726400000, \"val\": 181.77}, {\"col\": \"YHOO\", \"idx\": 1322726400000, \"val\": 16.23}, {\"col\": \"MSFT\", \"idx\": 1322726400000, \"val\": 23.69}, {\"col\": \"AAPL\", \"idx\": 1322812800000, \"val\": 374.56}, {\"col\": \"IBM\", \"idx\": 1322812800000, \"val\": 181.97}, {\"col\": \"YHOO\", \"idx\": 1322812800000, \"val\": 16.05}, {\"col\": \"MSFT\", \"idx\": 1322812800000, \"val\": 23.63}, {\"col\": \"AAPL\", \"idx\": 1323072000000, \"val\": 377.74}, {\"col\": \"IBM\", \"idx\": 1323072000000, \"val\": 183.1}, {\"col\": \"YHOO\", \"idx\": 1323072000000, \"val\": 15.89}, {\"col\": \"MSFT\", \"idx\": 1323072000000, \"val\": 24.08}, {\"col\": \"AAPL\", \"idx\": 1323158400000, \"val\": 375.76}, {\"col\": \"IBM\", \"idx\": 1323158400000, \"val\": 185.12}, {\"col\": \"YHOO\", \"idx\": 1323158400000, \"val\": 15.84}, {\"col\": \"MSFT\", \"idx\": 1323158400000, \"val\": 24.04}, {\"col\": \"AAPL\", \"idx\": 1323244800000, \"val\": 373.98}, {\"col\": \"IBM\", \"idx\": 1323244800000, \"val\": 186.18}, {\"col\": \"YHOO\", \"idx\": 1323244800000, \"val\": 15.62}, {\"col\": \"MSFT\", \"idx\": 1323244800000, \"val\": 23.98}, {\"col\": \"AAPL\", \"idx\": 1323331200000, \"val\": 375.48}, {\"col\": \"IBM\", \"idx\": 1323331200000, \"val\": 183.81}, {\"col\": \"YHOO\", \"idx\": 1323331200000, \"val\": 15.61}, {\"col\": \"MSFT\", \"idx\": 1323331200000, \"val\": 23.8}, {\"col\": \"AAPL\", \"idx\": 1323417600000, \"val\": 378.33}, {\"col\": \"IBM\", \"idx\": 1323417600000, \"val\": 186.67}, {\"col\": \"YHOO\", \"idx\": 1323417600000, \"val\": 15.94}, {\"col\": \"MSFT\", \"idx\": 1323417600000, \"val\": 24.08}, {\"col\": \"AAPL\", \"idx\": 1323676800000, \"val\": 376.62}, {\"col\": \"IBM\", \"idx\": 1323676800000, \"val\": 184.39}, {\"col\": \"YHOO\", \"idx\": 1323676800000, \"val\": 15.47}, {\"col\": \"MSFT\", \"idx\": 1323676800000, \"val\": 23.9}, {\"col\": \"AAPL\", \"idx\": 1323763200000, \"val\": 373.71}, {\"col\": \"IBM\", \"idx\": 1323763200000, \"val\": 183.4}, {\"col\": \"YHOO\", \"idx\": 1323763200000, \"val\": 15.42}, {\"col\": \"MSFT\", \"idx\": 1323763200000, \"val\": 24.13}, {\"col\": \"AAPL\", \"idx\": 1323849600000, \"val\": 365.42}, {\"col\": \"IBM\", \"idx\": 1323849600000, \"val\": 181.07}, {\"col\": \"YHOO\", \"idx\": 1323849600000, \"val\": 15.02}, {\"col\": \"MSFT\", \"idx\": 1323849600000, \"val\": 23.98}, {\"col\": \"AAPL\", \"idx\": 1323936000000, \"val\": 364.22}, {\"col\": \"IBM\", \"idx\": 1323936000000, \"val\": 179.88}, {\"col\": \"YHOO\", \"idx\": 1323936000000, \"val\": 15.16}, {\"col\": \"MSFT\", \"idx\": 1323936000000, \"val\": 23.95}, {\"col\": \"AAPL\", \"idx\": 1324022400000, \"val\": 366.22}, {\"col\": \"IBM\", \"idx\": 1324022400000, \"val\": 176.13}, {\"col\": \"YHOO\", \"idx\": 1324022400000, \"val\": 14.96}, {\"col\": \"MSFT\", \"idx\": 1324022400000, \"val\": 24.36}, {\"col\": \"AAPL\", \"idx\": 1324281600000, \"val\": 367.36}, {\"col\": \"IBM\", \"idx\": 1324281600000, \"val\": 175.48}, {\"col\": \"YHOO\", \"idx\": 1324281600000, \"val\": 14.62}, {\"col\": \"MSFT\", \"idx\": 1324281600000, \"val\": 23.92}, {\"col\": \"AAPL\", \"idx\": 1324368000000, \"val\": 380.57}, {\"col\": \"IBM\", \"idx\": 1324368000000, \"val\": 179.65}, {\"col\": \"YHOO\", \"idx\": 1324368000000, \"val\": 15.11}, {\"col\": \"MSFT\", \"idx\": 1324368000000, \"val\": 24.39}, {\"col\": \"AAPL\", \"idx\": 1324454400000, \"val\": 381.05}, {\"col\": \"IBM\", \"idx\": 1324454400000, \"val\": 174.11}, {\"col\": \"YHOO\", \"idx\": 1324454400000, \"val\": 15.99}, {\"col\": \"MSFT\", \"idx\": 1324454400000, \"val\": 24.13}, {\"col\": \"AAPL\", \"idx\": 1324540800000, \"val\": 383.07}, {\"col\": \"IBM\", \"idx\": 1324540800000, \"val\": 174.66}, {\"col\": \"YHOO\", \"idx\": 1324540800000, \"val\": 16.0}, {\"col\": \"MSFT\", \"idx\": 1324540800000, \"val\": 24.18}, {\"col\": \"AAPL\", \"idx\": 1324627200000, \"val\": 387.66}, {\"col\": \"IBM\", \"idx\": 1324627200000, \"val\": 177.26}, {\"col\": \"YHOO\", \"idx\": 1324627200000, \"val\": 16.19}, {\"col\": \"MSFT\", \"idx\": 1324627200000, \"val\": 24.39}, {\"col\": \"AAPL\", \"idx\": 1324972800000, \"val\": 390.74}, {\"col\": \"IBM\", \"idx\": 1324972800000, \"val\": 177.45}, {\"col\": \"YHOO\", \"idx\": 1324972800000, \"val\": 16.09}, {\"col\": \"MSFT\", \"idx\": 1324972800000, \"val\": 24.4}, {\"col\": \"AAPL\", \"idx\": 1325059200000, \"val\": 387.0}, {\"col\": \"IBM\", \"idx\": 1325059200000, \"val\": 176.53}, {\"col\": \"YHOO\", \"idx\": 1325059200000, \"val\": 15.78}, {\"col\": \"MSFT\", \"idx\": 1325059200000, \"val\": 24.19}, {\"col\": \"AAPL\", \"idx\": 1325145600000, \"val\": 389.38}, {\"col\": \"IBM\", \"idx\": 1325145600000, \"val\": 178.63}, {\"col\": \"YHOO\", \"idx\": 1325145600000, \"val\": 16.13}, {\"col\": \"MSFT\", \"idx\": 1325145600000, \"val\": 24.38}, {\"col\": \"AAPL\", \"idx\": 1325232000000, \"val\": 389.27}, {\"col\": \"IBM\", \"idx\": 1325232000000, \"val\": 176.43}, {\"col\": \"YHOO\", \"idx\": 1325232000000, \"val\": 16.13}, {\"col\": \"MSFT\", \"idx\": 1325232000000, \"val\": 24.32}, {\"col\": \"AAPL\", \"idx\": 1325577600000, \"val\": 395.26}, {\"col\": \"IBM\", \"idx\": 1325577600000, \"val\": 178.75}, {\"col\": \"YHOO\", \"idx\": 1325577600000, \"val\": 16.29}, {\"col\": \"MSFT\", \"idx\": 1325577600000, \"val\": 25.08}, {\"col\": \"AAPL\", \"idx\": 1325664000000, \"val\": 397.38}, {\"col\": \"IBM\", \"idx\": 1325664000000, \"val\": 178.02}, {\"col\": \"YHOO\", \"idx\": 1325664000000, \"val\": 15.78}, {\"col\": \"MSFT\", \"idx\": 1325664000000, \"val\": 25.67}, {\"col\": \"AAPL\", \"idx\": 1325750400000, \"val\": 401.79}, {\"col\": \"IBM\", \"idx\": 1325750400000, \"val\": 177.17}, {\"col\": \"YHOO\", \"idx\": 1325750400000, \"val\": 15.64}, {\"col\": \"MSFT\", \"idx\": 1325750400000, \"val\": 25.93}, {\"col\": \"AAPL\", \"idx\": 1325836800000, \"val\": 405.99}, {\"col\": \"IBM\", \"idx\": 1325836800000, \"val\": 175.14}, {\"col\": \"YHOO\", \"idx\": 1325836800000, \"val\": 15.52}, {\"col\": \"MSFT\", \"idx\": 1325836800000, \"val\": 26.34}, {\"col\": \"AAPL\", \"idx\": 1326096000000, \"val\": 405.35}, {\"col\": \"IBM\", \"idx\": 1326096000000, \"val\": 174.23}, {\"col\": \"YHOO\", \"idx\": 1326096000000, \"val\": 15.46}, {\"col\": \"MSFT\", \"idx\": 1326096000000, \"val\": 25.99}, {\"col\": \"AAPL\", \"idx\": 1326182400000, \"val\": 406.8}, {\"col\": \"IBM\", \"idx\": 1326182400000, \"val\": 173.96}, {\"col\": \"YHOO\", \"idx\": 1326182400000, \"val\": 15.51}, {\"col\": \"MSFT\", \"idx\": 1326182400000, \"val\": 26.08}, {\"col\": \"AAPL\", \"idx\": 1326268800000, \"val\": 406.14}, {\"col\": \"IBM\", \"idx\": 1326268800000, \"val\": 174.93}, {\"col\": \"YHOO\", \"idx\": 1326268800000, \"val\": 15.53}, {\"col\": \"MSFT\", \"idx\": 1326268800000, \"val\": 25.97}, {\"col\": \"AAPL\", \"idx\": 1326355200000, \"val\": 405.02}, {\"col\": \"IBM\", \"idx\": 1326355200000, \"val\": 173.23}, {\"col\": \"YHOO\", \"idx\": 1326355200000, \"val\": 15.66}, {\"col\": \"MSFT\", \"idx\": 1326355200000, \"val\": 26.23}, {\"col\": \"AAPL\", \"idx\": 1326441600000, \"val\": 403.5}, {\"col\": \"IBM\", \"idx\": 1326441600000, \"val\": 171.9}, {\"col\": \"YHOO\", \"idx\": 1326441600000, \"val\": 15.48}, {\"col\": \"MSFT\", \"idx\": 1326441600000, \"val\": 26.47}, {\"col\": \"AAPL\", \"idx\": 1326787200000, \"val\": 408.2}, {\"col\": \"IBM\", \"idx\": 1326787200000, \"val\": 172.7}, {\"col\": \"YHOO\", \"idx\": 1326787200000, \"val\": 15.43}, {\"col\": \"MSFT\", \"idx\": 1326787200000, \"val\": 26.48}, {\"col\": \"AAPL\", \"idx\": 1326873600000, \"val\": 412.44}, {\"col\": \"IBM\", \"idx\": 1326873600000, \"val\": 173.73}, {\"col\": \"YHOO\", \"idx\": 1326873600000, \"val\": 15.92}, {\"col\": \"MSFT\", \"idx\": 1326873600000, \"val\": 26.45}, {\"col\": \"AAPL\", \"idx\": 1326960000000, \"val\": 411.13}, {\"col\": \"IBM\", \"idx\": 1326960000000, \"val\": 173.2}, {\"col\": \"YHOO\", \"idx\": 1326960000000, \"val\": 16.12}, {\"col\": \"MSFT\", \"idx\": 1326960000000, \"val\": 26.35}, {\"col\": \"AAPL\", \"idx\": 1327046400000, \"val\": 403.97}, {\"col\": \"IBM\", \"idx\": 1327046400000, \"val\": 180.88}, {\"col\": \"YHOO\", \"idx\": 1327046400000, \"val\": 15.96}, {\"col\": \"MSFT\", \"idx\": 1327046400000, \"val\": 27.84}, {\"col\": \"AAPL\", \"idx\": 1327305600000, \"val\": 410.81}, {\"col\": \"IBM\", \"idx\": 1327305600000, \"val\": 182.28}, {\"col\": \"YHOO\", \"idx\": 1327305600000, \"val\": 15.68}, {\"col\": \"MSFT\", \"idx\": 1327305600000, \"val\": 27.85}, {\"col\": \"AAPL\", \"idx\": 1327392000000, \"val\": 404.08}, {\"col\": \"IBM\", \"idx\": 1327392000000, \"val\": 184.15}, {\"col\": \"YHOO\", \"idx\": 1327392000000, \"val\": 15.69}, {\"col\": \"MSFT\", \"idx\": 1327392000000, \"val\": 27.49}, {\"col\": \"AAPL\", \"idx\": 1327478400000, \"val\": 429.31}, {\"col\": \"IBM\", \"idx\": 1327478400000, \"val\": 183.96}, {\"col\": \"YHOO\", \"idx\": 1327478400000, \"val\": 15.56}, {\"col\": \"MSFT\", \"idx\": 1327478400000, \"val\": 27.7}, {\"col\": \"AAPL\", \"idx\": 1327564800000, \"val\": 427.36}, {\"col\": \"IBM\", \"idx\": 1327564800000, \"val\": 183.24}, {\"col\": \"YHOO\", \"idx\": 1327564800000, \"val\": 15.53}, {\"col\": \"MSFT\", \"idx\": 1327564800000, \"val\": 27.64}, {\"col\": \"AAPL\", \"idx\": 1327651200000, \"val\": 429.91}, {\"col\": \"IBM\", \"idx\": 1327651200000, \"val\": 182.74}, {\"col\": \"YHOO\", \"idx\": 1327651200000, \"val\": 15.74}, {\"col\": \"MSFT\", \"idx\": 1327651200000, \"val\": 27.39}, {\"col\": \"AAPL\", \"idx\": 1327910400000, \"val\": 435.41}, {\"col\": \"IBM\", \"idx\": 1327910400000, \"val\": 184.7}, {\"col\": \"YHOO\", \"idx\": 1327910400000, \"val\": 15.55}, {\"col\": \"MSFT\", \"idx\": 1327910400000, \"val\": 27.74}, {\"col\": \"AAPL\", \"idx\": 1327996800000, \"val\": 438.75}, {\"col\": \"IBM\", \"idx\": 1327996800000, \"val\": 184.79}, {\"col\": \"YHOO\", \"idx\": 1327996800000, \"val\": 15.47}, {\"col\": \"MSFT\", \"idx\": 1327996800000, \"val\": 27.67}, {\"col\": \"AAPL\", \"idx\": 1328083200000, \"val\": 438.47}, {\"col\": \"IBM\", \"idx\": 1328083200000, \"val\": 184.81}, {\"col\": \"YHOO\", \"idx\": 1328083200000, \"val\": 15.73}, {\"col\": \"MSFT\", \"idx\": 1328083200000, \"val\": 28.0}, {\"col\": \"AAPL\", \"idx\": 1328169600000, \"val\": 437.44}, {\"col\": \"IBM\", \"idx\": 1328169600000, \"val\": 183.77}, {\"col\": \"YHOO\", \"idx\": 1328169600000, \"val\": 15.72}, {\"col\": \"MSFT\", \"idx\": 1328169600000, \"val\": 28.06}, {\"col\": \"AAPL\", \"idx\": 1328256000000, \"val\": 441.82}, {\"col\": \"IBM\", \"idx\": 1328256000000, \"val\": 185.79}, {\"col\": \"YHOO\", \"idx\": 1328256000000, \"val\": 15.92}, {\"col\": \"MSFT\", \"idx\": 1328256000000, \"val\": 28.33}, {\"col\": \"AAPL\", \"idx\": 1328515200000, \"val\": 445.95}, {\"col\": \"IBM\", \"idx\": 1328515200000, \"val\": 185.0}, {\"col\": \"YHOO\", \"idx\": 1328515200000, \"val\": 15.82}, {\"col\": \"MSFT\", \"idx\": 1328515200000, \"val\": 28.29}, {\"col\": \"AAPL\", \"idx\": 1328601600000, \"val\": 450.62}, {\"col\": \"IBM\", \"idx\": 1328601600000, \"val\": 185.51}, {\"col\": \"YHOO\", \"idx\": 1328601600000, \"val\": 15.83}, {\"col\": \"MSFT\", \"idx\": 1328601600000, \"val\": 28.44}, {\"col\": \"AAPL\", \"idx\": 1328688000000, \"val\": 458.16}, {\"col\": \"IBM\", \"idx\": 1328688000000, \"val\": 185.85}, {\"col\": \"YHOO\", \"idx\": 1328688000000, \"val\": 15.78}, {\"col\": \"MSFT\", \"idx\": 1328688000000, \"val\": 28.73}, {\"col\": \"AAPL\", \"idx\": 1328774400000, \"val\": 474.01}, {\"col\": \"IBM\", \"idx\": 1328774400000, \"val\": 186.02}, {\"col\": \"YHOO\", \"idx\": 1328774400000, \"val\": 16.0}, {\"col\": \"MSFT\", \"idx\": 1328774400000, \"val\": 28.83}, {\"col\": \"AAPL\", \"idx\": 1328860800000, \"val\": 474.25}, {\"col\": \"IBM\", \"idx\": 1328860800000, \"val\": 185.34}, {\"col\": \"YHOO\", \"idx\": 1328860800000, \"val\": 16.14}, {\"col\": \"MSFT\", \"idx\": 1328860800000, \"val\": 28.58}, {\"col\": \"AAPL\", \"idx\": 1329120000000, \"val\": 483.08}, {\"col\": \"IBM\", \"idx\": 1329120000000, \"val\": 185.53}, {\"col\": \"YHOO\", \"idx\": 1329120000000, \"val\": 16.12}, {\"col\": \"MSFT\", \"idx\": 1329120000000, \"val\": 28.65}, {\"col\": \"AAPL\", \"idx\": 1329206400000, \"val\": 489.67}, {\"col\": \"IBM\", \"idx\": 1329206400000, \"val\": 185.15}, {\"col\": \"YHOO\", \"idx\": 1329206400000, \"val\": 15.37}, {\"col\": \"MSFT\", \"idx\": 1329206400000, \"val\": 28.53}, {\"col\": \"AAPL\", \"idx\": 1329292800000, \"val\": 478.34}, {\"col\": \"IBM\", \"idx\": 1329292800000, \"val\": 185.18}, {\"col\": \"YHOO\", \"idx\": 1329292800000, \"val\": 15.12}, {\"col\": \"MSFT\", \"idx\": 1329292800000, \"val\": 28.34}, {\"col\": \"AAPL\", \"idx\": 1329379200000, \"val\": 482.7}, {\"col\": \"IBM\", \"idx\": 1329379200000, \"val\": 185.92}, {\"col\": \"YHOO\", \"idx\": 1329379200000, \"val\": 15.36}, {\"col\": \"MSFT\", \"idx\": 1329379200000, \"val\": 29.51}, {\"col\": \"AAPL\", \"idx\": 1329465600000, \"val\": 482.61}, {\"col\": \"IBM\", \"idx\": 1329465600000, \"val\": 186.3}, {\"col\": \"YHOO\", \"idx\": 1329465600000, \"val\": 15.01}, {\"col\": \"MSFT\", \"idx\": 1329465600000, \"val\": 29.47}, {\"col\": \"AAPL\", \"idx\": 1329811200000, \"val\": 494.85}, {\"col\": \"IBM\", \"idx\": 1329811200000, \"val\": 186.27}, {\"col\": \"YHOO\", \"idx\": 1329811200000, \"val\": 14.75}, {\"col\": \"MSFT\", \"idx\": 1329811200000, \"val\": 29.65}, {\"col\": \"AAPL\", \"idx\": 1329897600000, \"val\": 493.11}, {\"col\": \"IBM\", \"idx\": 1329897600000, \"val\": 186.74}, {\"col\": \"YHOO\", \"idx\": 1329897600000, \"val\": 14.5}, {\"col\": \"MSFT\", \"idx\": 1329897600000, \"val\": 29.49}, {\"col\": \"AAPL\", \"idx\": 1329984000000, \"val\": 496.33}, {\"col\": \"IBM\", \"idx\": 1329984000000, \"val\": 190.34}, {\"col\": \"YHOO\", \"idx\": 1329984000000, \"val\": 14.78}, {\"col\": \"MSFT\", \"idx\": 1329984000000, \"val\": 29.58}, {\"col\": \"AAPL\", \"idx\": 1330070400000, \"val\": 502.12}, {\"col\": \"IBM\", \"idx\": 1330070400000, \"val\": 190.48}, {\"col\": \"YHOO\", \"idx\": 1330070400000, \"val\": 14.89}, {\"col\": \"MSFT\", \"idx\": 1330070400000, \"val\": 29.69}, {\"col\": \"AAPL\", \"idx\": 1330329600000, \"val\": 505.34}, {\"col\": \"IBM\", \"idx\": 1330329600000, \"val\": 190.26}, {\"col\": \"YHOO\", \"idx\": 1330329600000, \"val\": 14.86}, {\"col\": \"MSFT\", \"idx\": 1330329600000, \"val\": 29.57}, {\"col\": \"AAPL\", \"idx\": 1330416000000, \"val\": 514.61}, {\"col\": \"IBM\", \"idx\": 1330416000000, \"val\": 190.69}, {\"col\": \"YHOO\", \"idx\": 1330416000000, \"val\": 14.9}, {\"col\": \"MSFT\", \"idx\": 1330416000000, \"val\": 30.06}, {\"col\": \"AAPL\", \"idx\": 1330502400000, \"val\": 521.37}, {\"col\": \"IBM\", \"idx\": 1330502400000, \"val\": 189.49}, {\"col\": \"YHOO\", \"idx\": 1330502400000, \"val\": 14.83}, {\"col\": \"MSFT\", \"idx\": 1330502400000, \"val\": 29.93}, {\"col\": \"AAPL\", \"idx\": 1330588800000, \"val\": 523.32}, {\"col\": \"IBM\", \"idx\": 1330588800000, \"val\": 190.26}, {\"col\": \"YHOO\", \"idx\": 1330588800000, \"val\": 14.93}, {\"col\": \"MSFT\", \"idx\": 1330588800000, \"val\": 30.45}, {\"col\": \"AAPL\", \"idx\": 1330675200000, \"val\": 524.0}, {\"col\": \"IBM\", \"idx\": 1330675200000, \"val\": 191.49}, {\"col\": \"YHOO\", \"idx\": 1330675200000, \"val\": 14.72}, {\"col\": \"MSFT\", \"idx\": 1330675200000, \"val\": 30.25}, {\"col\": \"AAPL\", \"idx\": 1330934400000, \"val\": 512.45}, {\"col\": \"IBM\", \"idx\": 1330934400000, \"val\": 193.28}, {\"col\": \"YHOO\", \"idx\": 1330934400000, \"val\": 14.62}, {\"col\": \"MSFT\", \"idx\": 1330934400000, \"val\": 29.99}, {\"col\": \"AAPL\", \"idx\": 1331020800000, \"val\": 509.66}, {\"col\": \"IBM\", \"idx\": 1331020800000, \"val\": 190.0}, {\"col\": \"YHOO\", \"idx\": 1331020800000, \"val\": 14.42}, {\"col\": \"MSFT\", \"idx\": 1331020800000, \"val\": 29.76}, {\"col\": \"AAPL\", \"idx\": 1331107200000, \"val\": 510.08}, {\"col\": \"IBM\", \"idx\": 1331107200000, \"val\": 190.49}, {\"col\": \"YHOO\", \"idx\": 1331107200000, \"val\": 14.62}, {\"col\": \"MSFT\", \"idx\": 1331107200000, \"val\": 30.03}, {\"col\": \"AAPL\", \"idx\": 1331193600000, \"val\": 520.94}, {\"col\": \"IBM\", \"idx\": 1331193600000, \"val\": 192.46}, {\"col\": \"YHOO\", \"idx\": 1331193600000, \"val\": 14.62}, {\"col\": \"MSFT\", \"idx\": 1331193600000, \"val\": 30.19}, {\"col\": \"AAPL\", \"idx\": 1331280000000, \"val\": 523.99}, {\"col\": \"IBM\", \"idx\": 1331280000000, \"val\": 193.24}, {\"col\": \"YHOO\", \"idx\": 1331280000000, \"val\": 14.63}, {\"col\": \"MSFT\", \"idx\": 1331280000000, \"val\": 30.17}, {\"col\": \"AAPL\", \"idx\": 1331535600000, \"val\": 530.56}, {\"col\": \"IBM\", \"idx\": 1331535600000, \"val\": 193.6}, {\"col\": \"YHOO\", \"idx\": 1331535600000, \"val\": 14.49}, {\"col\": \"MSFT\", \"idx\": 1331535600000, \"val\": 30.22}, {\"col\": \"AAPL\", \"idx\": 1331622000000, \"val\": 546.03}, {\"col\": \"IBM\", \"idx\": 1331622000000, \"val\": 196.28}, {\"col\": \"YHOO\", \"idx\": 1331622000000, \"val\": 14.55}, {\"col\": \"MSFT\", \"idx\": 1331622000000, \"val\": 30.81}, {\"col\": \"AAPL\", \"idx\": 1331708400000, \"val\": 566.68}, {\"col\": \"IBM\", \"idx\": 1331708400000, \"val\": 197.19}, {\"col\": \"YHOO\", \"idx\": 1331708400000, \"val\": 14.63}, {\"col\": \"MSFT\", \"idx\": 1331708400000, \"val\": 30.9}, {\"col\": \"AAPL\", \"idx\": 1331794800000, \"val\": 562.81}, {\"col\": \"IBM\", \"idx\": 1331794800000, \"val\": 198.42}, {\"col\": \"YHOO\", \"idx\": 1331794800000, \"val\": 14.89}, {\"col\": \"MSFT\", \"idx\": 1331794800000, \"val\": 30.98}, {\"col\": \"AAPL\", \"idx\": 1331881200000, \"val\": 562.82}, {\"col\": \"IBM\", \"idx\": 1331881200000, \"val\": 198.43}, {\"col\": \"YHOO\", \"idx\": 1331881200000, \"val\": 15.18}, {\"col\": \"MSFT\", \"idx\": 1331881200000, \"val\": 30.74}, {\"col\": \"AAPL\", \"idx\": 1332140400000, \"val\": 577.75}, {\"col\": \"IBM\", \"idx\": 1332140400000, \"val\": 198.15}, {\"col\": \"YHOO\", \"idx\": 1332140400000, \"val\": 15.15}, {\"col\": \"MSFT\", \"idx\": 1332140400000, \"val\": 30.37}, {\"col\": \"AAPL\", \"idx\": 1332226800000, \"val\": 582.42}, {\"col\": \"IBM\", \"idx\": 1332226800000, \"val\": 196.73}, {\"col\": \"YHOO\", \"idx\": 1332226800000, \"val\": 15.41}, {\"col\": \"MSFT\", \"idx\": 1332226800000, \"val\": 30.17}, {\"col\": \"AAPL\", \"idx\": 1332313200000, \"val\": 579.1}, {\"col\": \"IBM\", \"idx\": 1332313200000, \"val\": 197.16}, {\"col\": \"YHOO\", \"idx\": 1332313200000, \"val\": 15.51}, {\"col\": \"MSFT\", \"idx\": 1332313200000, \"val\": 30.09}, {\"col\": \"AAPL\", \"idx\": 1332399600000, \"val\": 576.06}, {\"col\": \"IBM\", \"idx\": 1332399600000, \"val\": 197.93}, {\"col\": \"YHOO\", \"idx\": 1332399600000, \"val\": 15.49}, {\"col\": \"MSFT\", \"idx\": 1332399600000, \"val\": 30.18}, {\"col\": \"AAPL\", \"idx\": 1332486000000, \"val\": 572.9}, {\"col\": \"IBM\", \"idx\": 1332486000000, \"val\": 197.92}, {\"col\": \"YHOO\", \"idx\": 1332486000000, \"val\": 15.39}, {\"col\": \"MSFT\", \"idx\": 1332486000000, \"val\": 30.19}, {\"col\": \"AAPL\", \"idx\": 1332745200000, \"val\": 583.4}, {\"col\": \"IBM\", \"idx\": 1332745200000, \"val\": 200.12}, {\"col\": \"YHOO\", \"idx\": 1332745200000, \"val\": 15.54}, {\"col\": \"MSFT\", \"idx\": 1332745200000, \"val\": 30.73}, {\"col\": \"AAPL\", \"idx\": 1332831600000, \"val\": 590.61}, {\"col\": \"IBM\", \"idx\": 1332831600000, \"val\": 199.56}, {\"col\": \"YHOO\", \"idx\": 1332831600000, \"val\": 15.43}, {\"col\": \"MSFT\", \"idx\": 1332831600000, \"val\": 30.67}, {\"col\": \"AAPL\", \"idx\": 1332918000000, \"val\": 593.63}, {\"col\": \"IBM\", \"idx\": 1332918000000, \"val\": 199.66}, {\"col\": \"YHOO\", \"idx\": 1332918000000, \"val\": 15.32}, {\"col\": \"MSFT\", \"idx\": 1332918000000, \"val\": 30.36}, {\"col\": \"AAPL\", \"idx\": 1333004400000, \"val\": 586.17}, {\"col\": \"IBM\", \"idx\": 1333004400000, \"val\": 200.61}, {\"col\": \"YHOO\", \"idx\": 1333004400000, \"val\": 15.3}, {\"col\": \"MSFT\", \"idx\": 1333004400000, \"val\": 30.29}, {\"col\": \"AAPL\", \"idx\": 1333090800000, \"val\": 576.26}, {\"col\": \"IBM\", \"idx\": 1333090800000, \"val\": 200.97}, {\"col\": \"YHOO\", \"idx\": 1333090800000, \"val\": 15.22}, {\"col\": \"MSFT\", \"idx\": 1333090800000, \"val\": 30.42}, {\"col\": \"AAPL\", \"idx\": 1333350000000, \"val\": 594.6}, {\"col\": \"IBM\", \"idx\": 1333350000000, \"val\": 201.76}, {\"col\": \"YHOO\", \"idx\": 1333350000000, \"val\": 15.46}, {\"col\": \"MSFT\", \"idx\": 1333350000000, \"val\": 30.45}, {\"col\": \"AAPL\", \"idx\": 1333436400000, \"val\": 604.87}, {\"col\": \"IBM\", \"idx\": 1333436400000, \"val\": 201.79}, {\"col\": \"YHOO\", \"idx\": 1333436400000, \"val\": 15.18}, {\"col\": \"MSFT\", \"idx\": 1333436400000, \"val\": 30.12}, {\"col\": \"AAPL\", \"idx\": 1333522800000, \"val\": 600.06}, {\"col\": \"IBM\", \"idx\": 1333522800000, \"val\": 198.47}, {\"col\": \"YHOO\", \"idx\": 1333522800000, \"val\": 15.27}, {\"col\": \"MSFT\", \"idx\": 1333522800000, \"val\": 29.43}, {\"col\": \"AAPL\", \"idx\": 1333609200000, \"val\": 609.06}, {\"col\": \"IBM\", \"idx\": 1333609200000, \"val\": 197.91}, {\"col\": \"YHOO\", \"idx\": 1333609200000, \"val\": 15.07}, {\"col\": \"MSFT\", \"idx\": 1333609200000, \"val\": 29.73}, {\"col\": \"AAPL\", \"idx\": 1333954800000, \"val\": 611.52}, {\"col\": \"IBM\", \"idx\": 1333954800000, \"val\": 197.4}, {\"col\": \"YHOO\", \"idx\": 1333954800000, \"val\": 15.1}, {\"col\": \"MSFT\", \"idx\": 1333954800000, \"val\": 29.33}, {\"col\": \"AAPL\", \"idx\": 1334041200000, \"val\": 604.03}, {\"col\": \"IBM\", \"idx\": 1334041200000, \"val\": 194.88}, {\"col\": \"YHOO\", \"idx\": 1334041200000, \"val\": 14.99}, {\"col\": \"MSFT\", \"idx\": 1334041200000, \"val\": 28.74}, {\"col\": \"AAPL\", \"idx\": 1334127600000, \"val\": 601.87}, {\"col\": \"IBM\", \"idx\": 1334127600000, \"val\": 195.13}, {\"col\": \"YHOO\", \"idx\": 1334127600000, \"val\": 14.88}, {\"col\": \"MSFT\", \"idx\": 1334127600000, \"val\": 28.62}, {\"col\": \"AAPL\", \"idx\": 1334214000000, \"val\": 598.58}, {\"col\": \"IBM\", \"idx\": 1334214000000, \"val\": 197.76}, {\"col\": \"YHOO\", \"idx\": 1334214000000, \"val\": 15.06}, {\"col\": \"MSFT\", \"idx\": 1334214000000, \"val\": 29.22}, {\"col\": \"AAPL\", \"idx\": 1334300400000, \"val\": 581.72}, {\"col\": \"IBM\", \"idx\": 1334300400000, \"val\": 195.34}, {\"col\": \"YHOO\", \"idx\": 1334300400000, \"val\": 14.87}, {\"col\": \"MSFT\", \"idx\": 1334300400000, \"val\": 29.06}, {\"col\": \"AAPL\", \"idx\": 1334559600000, \"val\": 557.59}, {\"col\": \"IBM\", \"idx\": 1334559600000, \"val\": 195.26}, {\"col\": \"YHOO\", \"idx\": 1334559600000, \"val\": 14.79}, {\"col\": \"MSFT\", \"idx\": 1334559600000, \"val\": 29.31}, {\"col\": \"AAPL\", \"idx\": 1334646000000, \"val\": 586.02}, {\"col\": \"IBM\", \"idx\": 1334646000000, \"val\": 199.82}, {\"col\": \"YHOO\", \"idx\": 1334646000000, \"val\": 15.01}, {\"col\": \"MSFT\", \"idx\": 1334646000000, \"val\": 29.65}, {\"col\": \"AAPL\", \"idx\": 1334732400000, \"val\": 584.71}, {\"col\": \"IBM\", \"idx\": 1334732400000, \"val\": 192.77}, {\"col\": \"YHOO\", \"idx\": 1334732400000, \"val\": 15.49}, {\"col\": \"MSFT\", \"idx\": 1334732400000, \"val\": 29.37}, {\"col\": \"AAPL\", \"idx\": 1334818800000, \"val\": 564.62}, {\"col\": \"IBM\", \"idx\": 1334818800000, \"val\": 192.17}, {\"col\": \"YHOO\", \"idx\": 1334818800000, \"val\": 15.4}, {\"col\": \"MSFT\", \"idx\": 1334818800000, \"val\": 29.24}, {\"col\": \"AAPL\", \"idx\": 1334905200000, \"val\": 550.72}, {\"col\": \"IBM\", \"idx\": 1334905200000, \"val\": 192.25}, {\"col\": \"YHOO\", \"idx\": 1334905200000, \"val\": 15.6}, {\"col\": \"MSFT\", \"idx\": 1334905200000, \"val\": 30.57}, {\"col\": \"AAPL\", \"idx\": 1335164400000, \"val\": 549.49}, {\"col\": \"IBM\", \"idx\": 1335164400000, \"val\": 191.31}, {\"col\": \"YHOO\", \"idx\": 1335164400000, \"val\": 15.33}, {\"col\": \"MSFT\", \"idx\": 1335164400000, \"val\": 30.29}, {\"col\": \"AAPL\", \"idx\": 1335250800000, \"val\": 538.52}, {\"col\": \"IBM\", \"idx\": 1335250800000, \"val\": 192.64}, {\"col\": \"YHOO\", \"idx\": 1335250800000, \"val\": 15.43}, {\"col\": \"MSFT\", \"idx\": 1335250800000, \"val\": 30.1}, {\"col\": \"AAPL\", \"idx\": 1335337200000, \"val\": 586.3}, {\"col\": \"IBM\", \"idx\": 1335337200000, \"val\": 196.08}, {\"col\": \"YHOO\", \"idx\": 1335337200000, \"val\": 15.5}, {\"col\": \"MSFT\", \"idx\": 1335337200000, \"val\": 30.37}, {\"col\": \"AAPL\", \"idx\": 1335423600000, \"val\": 584.09}, {\"col\": \"IBM\", \"idx\": 1335423600000, \"val\": 198.01}, {\"col\": \"YHOO\", \"idx\": 1335423600000, \"val\": 15.53}, {\"col\": \"MSFT\", \"idx\": 1335423600000, \"val\": 30.28}, {\"col\": \"AAPL\", \"idx\": 1335510000000, \"val\": 579.58}, {\"col\": \"IBM\", \"idx\": 1335510000000, \"val\": 199.2}, {\"col\": \"YHOO\", \"idx\": 1335510000000, \"val\": 15.57}, {\"col\": \"MSFT\", \"idx\": 1335510000000, \"val\": 30.16}, {\"col\": \"AAPL\", \"idx\": 1335769200000, \"val\": 561.29}, {\"col\": \"IBM\", \"idx\": 1335769200000, \"val\": 199.46}, {\"col\": \"YHOO\", \"idx\": 1335769200000, \"val\": 15.54}, {\"col\": \"MSFT\", \"idx\": 1335769200000, \"val\": 30.2}, {\"col\": \"AAPL\", \"idx\": 1335855600000, \"val\": 559.52}, {\"col\": \"IBM\", \"idx\": 1335855600000, \"val\": 200.35}, {\"col\": \"YHOO\", \"idx\": 1335855600000, \"val\": 15.63}, {\"col\": \"MSFT\", \"idx\": 1335855600000, \"val\": 30.19}, {\"col\": \"AAPL\", \"idx\": 1335942000000, \"val\": 563.22}, {\"col\": \"IBM\", \"idx\": 1335942000000, \"val\": 200.4}, {\"col\": \"YHOO\", \"idx\": 1335942000000, \"val\": 15.67}, {\"col\": \"MSFT\", \"idx\": 1335942000000, \"val\": 29.99}, {\"col\": \"AAPL\", \"idx\": 1336028400000, \"val\": 559.22}, {\"col\": \"IBM\", \"idx\": 1336028400000, \"val\": 199.61}, {\"col\": \"YHOO\", \"idx\": 1336028400000, \"val\": 15.4}, {\"col\": \"MSFT\", \"idx\": 1336028400000, \"val\": 29.95}, {\"col\": \"AAPL\", \"idx\": 1336114800000, \"val\": 543.29}, {\"col\": \"IBM\", \"idx\": 1336114800000, \"val\": 197.45}, {\"col\": \"YHOO\", \"idx\": 1336114800000, \"val\": 15.15}, {\"col\": \"MSFT\", \"idx\": 1336114800000, \"val\": 29.22}, {\"col\": \"AAPL\", \"idx\": 1336374000000, \"val\": 547.36}, {\"col\": \"IBM\", \"idx\": 1336374000000, \"val\": 196.25}, {\"col\": \"YHOO\", \"idx\": 1336374000000, \"val\": 15.35}, {\"col\": \"MSFT\", \"idx\": 1336374000000, \"val\": 28.91}, {\"col\": \"AAPL\", \"idx\": 1336460400000, \"val\": 546.11}, {\"col\": \"IBM\", \"idx\": 1336460400000, \"val\": 194.88}, {\"col\": \"YHOO\", \"idx\": 1336460400000, \"val\": 15.36}, {\"col\": \"MSFT\", \"idx\": 1336460400000, \"val\": 28.76}, {\"col\": \"AAPL\", \"idx\": 1336546800000, \"val\": 547.07}, {\"col\": \"IBM\", \"idx\": 1336546800000, \"val\": 194.64}, {\"col\": \"YHOO\", \"idx\": 1336546800000, \"val\": 15.3}, {\"col\": \"MSFT\", \"idx\": 1336546800000, \"val\": 29.01}, {\"col\": \"AAPL\", \"idx\": 1336633200000, \"val\": 548.36}, {\"col\": \"IBM\", \"idx\": 1336633200000, \"val\": 194.03}, {\"col\": \"YHOO\", \"idx\": 1336633200000, \"val\": 15.44}, {\"col\": \"MSFT\", \"idx\": 1336633200000, \"val\": 28.99}, {\"col\": \"AAPL\", \"idx\": 1336719600000, \"val\": 544.7}, {\"col\": \"IBM\", \"idx\": 1336719600000, \"val\": 194.58}, {\"col\": \"YHOO\", \"idx\": 1336719600000, \"val\": 15.19}, {\"col\": \"MSFT\", \"idx\": 1336719600000, \"val\": 29.39}, {\"col\": \"AAPL\", \"idx\": 1336978800000, \"val\": 536.54}, {\"col\": \"IBM\", \"idx\": 1336978800000, \"val\": 192.91}, {\"col\": \"YHOO\", \"idx\": 1336978800000, \"val\": 15.5}, {\"col\": \"MSFT\", \"idx\": 1336978800000, \"val\": 28.93}, {\"col\": \"AAPL\", \"idx\": 1337065200000, \"val\": 531.68}, {\"col\": \"IBM\", \"idx\": 1337065200000, \"val\": 192.52}, {\"col\": \"YHOO\", \"idx\": 1337065200000, \"val\": 15.4}, {\"col\": \"MSFT\", \"idx\": 1337065200000, \"val\": 28.68}, {\"col\": \"AAPL\", \"idx\": 1337151600000, \"val\": 524.87}, {\"col\": \"IBM\", \"idx\": 1337151600000, \"val\": 193.19}, {\"col\": \"YHOO\", \"idx\": 1337151600000, \"val\": 15.28}, {\"col\": \"MSFT\", \"idx\": 1337151600000, \"val\": 28.38}, {\"col\": \"AAPL\", \"idx\": 1337238000000, \"val\": 509.53}, {\"col\": \"IBM\", \"idx\": 1337238000000, \"val\": 191.41}, {\"col\": \"YHOO\", \"idx\": 1337238000000, \"val\": 14.87}, {\"col\": \"MSFT\", \"idx\": 1337238000000, \"val\": 28.21}, {\"col\": \"AAPL\", \"idx\": 1337324400000, \"val\": 509.78}, {\"col\": \"IBM\", \"idx\": 1337324400000, \"val\": 189.46}, {\"col\": \"YHOO\", \"idx\": 1337324400000, \"val\": 15.42}, {\"col\": \"MSFT\", \"idx\": 1337324400000, \"val\": 27.78}, {\"col\": \"AAPL\", \"idx\": 1337583600000, \"val\": 539.48}, {\"col\": \"IBM\", \"idx\": 1337583600000, \"val\": 191.28}, {\"col\": \"YHOO\", \"idx\": 1337583600000, \"val\": 15.58}, {\"col\": \"MSFT\", \"idx\": 1337583600000, \"val\": 28.24}, {\"col\": \"AAPL\", \"idx\": 1337670000000, \"val\": 535.33}, {\"col\": \"IBM\", \"idx\": 1337670000000, \"val\": 190.37}, {\"col\": \"YHOO\", \"idx\": 1337670000000, \"val\": 15.29}, {\"col\": \"MSFT\", \"idx\": 1337670000000, \"val\": 28.25}, {\"col\": \"AAPL\", \"idx\": 1337756400000, \"val\": 548.4}, {\"col\": \"IBM\", \"idx\": 1337756400000, \"val\": 189.69}, {\"col\": \"YHOO\", \"idx\": 1337756400000, \"val\": 15.38}, {\"col\": \"MSFT\", \"idx\": 1337756400000, \"val\": 27.63}, {\"col\": \"AAPL\", \"idx\": 1337842800000, \"val\": 543.36}, {\"col\": \"IBM\", \"idx\": 1337842800000, \"val\": 189.67}, {\"col\": \"YHOO\", \"idx\": 1337842800000, \"val\": 15.35}, {\"col\": \"MSFT\", \"idx\": 1337842800000, \"val\": 27.6}, {\"col\": \"AAPL\", \"idx\": 1337929200000, \"val\": 540.45}, {\"col\": \"IBM\", \"idx\": 1337929200000, \"val\": 187.93}, {\"col\": \"YHOO\", \"idx\": 1337929200000, \"val\": 15.36}, {\"col\": \"MSFT\", \"idx\": 1337929200000, \"val\": 27.59}, {\"col\": \"AAPL\", \"idx\": 1338274800000, \"val\": 550.04}, {\"col\": \"IBM\", \"idx\": 1338274800000, \"val\": 190.02}, {\"col\": \"YHOO\", \"idx\": 1338274800000, \"val\": 15.47}, {\"col\": \"MSFT\", \"idx\": 1338274800000, \"val\": 28.06}, {\"col\": \"AAPL\", \"idx\": 1338361200000, \"val\": 556.67}, {\"col\": \"IBM\", \"idx\": 1338361200000, \"val\": 188.16}, {\"col\": \"YHOO\", \"idx\": 1338361200000, \"val\": 15.25}, {\"col\": \"MSFT\", \"idx\": 1338361200000, \"val\": 27.85}, {\"col\": \"AAPL\", \"idx\": 1338447600000, \"val\": 555.29}, {\"col\": \"IBM\", \"idx\": 1338447600000, \"val\": 186.58}, {\"col\": \"YHOO\", \"idx\": 1338447600000, \"val\": 15.24}, {\"col\": \"MSFT\", \"idx\": 1338447600000, \"val\": 27.71}, {\"col\": \"AAPL\", \"idx\": 1338534000000, \"val\": 539.2}, {\"col\": \"IBM\", \"idx\": 1338534000000, \"val\": 182.88}, {\"col\": \"YHOO\", \"idx\": 1338534000000, \"val\": 14.92}, {\"col\": \"MSFT\", \"idx\": 1338534000000, \"val\": 27.01}, {\"col\": \"AAPL\", \"idx\": 1338793200000, \"val\": 542.37}, {\"col\": \"IBM\", \"idx\": 1338793200000, \"val\": 182.36}, {\"col\": \"YHOO\", \"idx\": 1338793200000, \"val\": 15.01}, {\"col\": \"MSFT\", \"idx\": 1338793200000, \"val\": 27.1}, {\"col\": \"AAPL\", \"idx\": 1338879600000, \"val\": 540.97}, {\"col\": \"IBM\", \"idx\": 1338879600000, \"val\": 183.0}, {\"col\": \"YHOO\", \"idx\": 1338879600000, \"val\": 15.1}, {\"col\": \"MSFT\", \"idx\": 1338879600000, \"val\": 27.06}, {\"col\": \"AAPL\", \"idx\": 1338966000000, \"val\": 549.26}, {\"col\": \"IBM\", \"idx\": 1338966000000, \"val\": 187.63}, {\"col\": \"YHOO\", \"idx\": 1338966000000, \"val\": 15.36}, {\"col\": \"MSFT\", \"idx\": 1338966000000, \"val\": 27.86}, {\"col\": \"AAPL\", \"idx\": 1339052400000, \"val\": 549.51}, {\"col\": \"IBM\", \"idx\": 1339052400000, \"val\": 188.07}, {\"col\": \"YHOO\", \"idx\": 1339052400000, \"val\": 15.36}, {\"col\": \"MSFT\", \"idx\": 1339052400000, \"val\": 27.75}, {\"col\": \"AAPL\", \"idx\": 1339138800000, \"val\": 557.78}, {\"col\": \"IBM\", \"idx\": 1339138800000, \"val\": 188.75}, {\"col\": \"YHOO\", \"idx\": 1339138800000, \"val\": 15.65}, {\"col\": \"MSFT\", \"idx\": 1339138800000, \"val\": 28.15}, {\"col\": \"AAPL\", \"idx\": 1339398000000, \"val\": 548.98}, {\"col\": \"IBM\", \"idx\": 1339398000000, \"val\": 186.2}, {\"col\": \"YHOO\", \"idx\": 1339398000000, \"val\": 15.3}, {\"col\": \"MSFT\", \"idx\": 1339398000000, \"val\": 27.43}, {\"col\": \"AAPL\", \"idx\": 1339484400000, \"val\": 553.78}, {\"col\": \"IBM\", \"idx\": 1339484400000, \"val\": 188.18}, {\"col\": \"YHOO\", \"idx\": 1339484400000, \"val\": 15.47}, {\"col\": \"MSFT\", \"idx\": 1339484400000, \"val\": 27.8}, {\"col\": \"AAPL\", \"idx\": 1339570800000, \"val\": 549.93}, {\"col\": \"IBM\", \"idx\": 1339570800000, \"val\": 186.77}, {\"col\": \"YHOO\", \"idx\": 1339570800000, \"val\": 15.34}, {\"col\": \"MSFT\", \"idx\": 1339570800000, \"val\": 27.65}, {\"col\": \"AAPL\", \"idx\": 1339657200000, \"val\": 549.33}, {\"col\": \"IBM\", \"idx\": 1339657200000, \"val\": 188.71}, {\"col\": \"YHOO\", \"idx\": 1339657200000, \"val\": 15.36}, {\"col\": \"MSFT\", \"idx\": 1339657200000, \"val\": 27.85}, {\"col\": \"AAPL\", \"idx\": 1339743600000, \"val\": 551.83}, {\"col\": \"IBM\", \"idx\": 1339743600000, \"val\": 192.58}, {\"col\": \"YHOO\", \"idx\": 1339743600000, \"val\": 15.36}, {\"col\": \"MSFT\", \"idx\": 1339743600000, \"val\": 28.5}, {\"col\": \"AAPL\", \"idx\": 1340002800000, \"val\": 563.03}, {\"col\": \"IBM\", \"idx\": 1340002800000, \"val\": 191.79}, {\"col\": \"YHOO\", \"idx\": 1340002800000, \"val\": 15.49}, {\"col\": \"MSFT\", \"idx\": 1340002800000, \"val\": 28.33}, {\"col\": \"AAPL\", \"idx\": 1340089200000, \"val\": 564.59}, {\"col\": \"IBM\", \"idx\": 1340089200000, \"val\": 192.41}, {\"col\": \"YHOO\", \"idx\": 1340089200000, \"val\": 15.65}, {\"col\": \"MSFT\", \"idx\": 1340089200000, \"val\": 29.14}, {\"col\": \"AAPL\", \"idx\": 1340175600000, \"val\": 562.99}, {\"col\": \"IBM\", \"idx\": 1340175600000, \"val\": 192.27}, {\"col\": \"YHOO\", \"idx\": 1340175600000, \"val\": 15.74}, {\"col\": \"MSFT\", \"idx\": 1340175600000, \"val\": 29.36}, {\"col\": \"AAPL\", \"idx\": 1340262000000, \"val\": 555.23}, {\"col\": \"IBM\", \"idx\": 1340262000000, \"val\": 187.05}, {\"col\": \"YHOO\", \"idx\": 1340262000000, \"val\": 15.52}, {\"col\": \"MSFT\", \"idx\": 1340262000000, \"val\": 28.61}, {\"col\": \"AAPL\", \"idx\": 1340348400000, \"val\": 559.49}, {\"col\": \"IBM\", \"idx\": 1340348400000, \"val\": 187.35}, {\"col\": \"YHOO\", \"idx\": 1340348400000, \"val\": 15.61}, {\"col\": \"MSFT\", \"idx\": 1340348400000, \"val\": 29.14}, {\"col\": \"AAPL\", \"idx\": 1340607600000, \"val\": 548.6}, {\"col\": \"IBM\", \"idx\": 1340607600000, \"val\": 186.54}, {\"col\": \"YHOO\", \"idx\": 1340607600000, \"val\": 15.44}, {\"col\": \"MSFT\", \"idx\": 1340607600000, \"val\": 28.35}, {\"col\": \"AAPL\", \"idx\": 1340694000000, \"val\": 549.81}, {\"col\": \"IBM\", \"idx\": 1340694000000, \"val\": 185.66}, {\"col\": \"YHOO\", \"idx\": 1340694000000, \"val\": 15.35}, {\"col\": \"MSFT\", \"idx\": 1340694000000, \"val\": 28.5}, {\"col\": \"AAPL\", \"idx\": 1340780400000, \"val\": 552.18}, {\"col\": \"IBM\", \"idx\": 1340780400000, \"val\": 186.68}, {\"col\": \"YHOO\", \"idx\": 1340780400000, \"val\": 15.52}, {\"col\": \"MSFT\", \"idx\": 1340780400000, \"val\": 28.64}, {\"col\": \"AAPL\", \"idx\": 1340866800000, \"val\": 546.94}, {\"col\": \"IBM\", \"idx\": 1340866800000, \"val\": 185.13}, {\"col\": \"YHOO\", \"idx\": 1340866800000, \"val\": 15.45}, {\"col\": \"MSFT\", \"idx\": 1340866800000, \"val\": 28.39}, {\"col\": \"AAPL\", \"idx\": 1340953200000, \"val\": 561.31}, {\"col\": \"IBM\", \"idx\": 1340953200000, \"val\": 189.17}, {\"col\": \"YHOO\", \"idx\": 1340953200000, \"val\": 15.83}, {\"col\": \"MSFT\", \"idx\": 1340953200000, \"val\": 29.04}, {\"col\": \"AAPL\", \"idx\": 1341212400000, \"val\": 569.5}, {\"col\": \"IBM\", \"idx\": 1341212400000, \"val\": 189.41}, {\"col\": \"YHOO\", \"idx\": 1341212400000, \"val\": 15.84}, {\"col\": \"MSFT\", \"idx\": 1341212400000, \"val\": 29.01}, {\"col\": \"AAPL\", \"idx\": 1341298800000, \"val\": 576.13}, {\"col\": \"IBM\", \"idx\": 1341298800000, \"val\": 189.51}, {\"col\": \"YHOO\", \"idx\": 1341298800000, \"val\": 15.98}, {\"col\": \"MSFT\", \"idx\": 1341298800000, \"val\": 29.2}, {\"col\": \"AAPL\", \"idx\": 1341471600000, \"val\": 586.25}, {\"col\": \"IBM\", \"idx\": 1341471600000, \"val\": 188.89}, {\"col\": \"YHOO\", \"idx\": 1341471600000, \"val\": 15.85}, {\"col\": \"MSFT\", \"idx\": 1341471600000, \"val\": 29.14}, {\"col\": \"AAPL\", \"idx\": 1341558000000, \"val\": 582.34}, {\"col\": \"IBM\", \"idx\": 1341558000000, \"val\": 185.14}, {\"col\": \"YHOO\", \"idx\": 1341558000000, \"val\": 15.78}, {\"col\": \"MSFT\", \"idx\": 1341558000000, \"val\": 28.66}, {\"col\": \"AAPL\", \"idx\": 1341817200000, \"val\": 590.04}, {\"col\": \"IBM\", \"idx\": 1341817200000, \"val\": 183.46}, {\"col\": \"YHOO\", \"idx\": 1341817200000, \"val\": 15.75}, {\"col\": \"MSFT\", \"idx\": 1341817200000, \"val\": 28.48}, {\"col\": \"AAPL\", \"idx\": 1341903600000, \"val\": 584.58}, {\"col\": \"IBM\", \"idx\": 1341903600000, \"val\": 180.16}, {\"col\": \"YHOO\", \"idx\": 1341903600000, \"val\": 15.82}, {\"col\": \"MSFT\", \"idx\": 1341903600000, \"val\": 28.23}, {\"col\": \"AAPL\", \"idx\": 1341990000000, \"val\": 580.95}, {\"col\": \"IBM\", \"idx\": 1341990000000, \"val\": 179.18}, {\"col\": \"YHOO\", \"idx\": 1341990000000, \"val\": 15.8}, {\"col\": \"MSFT\", \"idx\": 1341990000000, \"val\": 27.81}, {\"col\": \"AAPL\", \"idx\": 1342076400000, \"val\": 575.64}, {\"col\": \"IBM\", \"idx\": 1342076400000, \"val\": 177.09}, {\"col\": \"YHOO\", \"idx\": 1342076400000, \"val\": 15.69}, {\"col\": \"MSFT\", \"idx\": 1342076400000, \"val\": 27.18}, {\"col\": \"AAPL\", \"idx\": 1342162800000, \"val\": 581.47}, {\"col\": \"IBM\", \"idx\": 1342162800000, \"val\": 179.92}, {\"col\": \"YHOO\", \"idx\": 1342162800000, \"val\": 15.74}, {\"col\": \"MSFT\", \"idx\": 1342162800000, \"val\": 27.9}, {\"col\": \"AAPL\", \"idx\": 1342422000000, \"val\": 583.33}, {\"col\": \"IBM\", \"idx\": 1342422000000, \"val\": 178.74}, {\"col\": \"YHOO\", \"idx\": 1342422000000, \"val\": 15.65}, {\"col\": \"MSFT\", \"idx\": 1342422000000, \"val\": 27.95}, {\"col\": \"AAPL\", \"idx\": 1342508400000, \"val\": 583.36}, {\"col\": \"IBM\", \"idx\": 1342508400000, \"val\": 177.63}, {\"col\": \"YHOO\", \"idx\": 1342508400000, \"val\": 15.6}, {\"col\": \"MSFT\", \"idx\": 1342508400000, \"val\": 28.16}, {\"col\": \"AAPL\", \"idx\": 1342594800000, \"val\": 582.71}, {\"col\": \"IBM\", \"idx\": 1342594800000, \"val\": 182.08}, {\"col\": \"YHOO\", \"idx\": 1342594800000, \"val\": 15.7}, {\"col\": \"MSFT\", \"idx\": 1342594800000, \"val\": 28.91}, {\"col\": \"AAPL\", \"idx\": 1342681200000, \"val\": 590.46}, {\"col\": \"IBM\", \"idx\": 1342681200000, \"val\": 188.94}, {\"col\": \"YHOO\", \"idx\": 1342681200000, \"val\": 15.73}, {\"col\": \"MSFT\", \"idx\": 1342681200000, \"val\": 29.11}, {\"col\": \"AAPL\", \"idx\": 1342767600000, \"val\": 580.83}, {\"col\": \"IBM\", \"idx\": 1342767600000, \"val\": 186.14}, {\"col\": \"YHOO\", \"idx\": 1342767600000, \"val\": 15.92}, {\"col\": \"MSFT\", \"idx\": 1342767600000, \"val\": 28.59}, {\"col\": \"AAPL\", \"idx\": 1343026800000, \"val\": 580.37}, {\"col\": \"IBM\", \"idx\": 1343026800000, \"val\": 184.58}, {\"col\": \"YHOO\", \"idx\": 1343026800000, \"val\": 15.76}, {\"col\": \"MSFT\", \"idx\": 1343026800000, \"val\": 27.79}, {\"col\": \"AAPL\", \"idx\": 1343113200000, \"val\": 577.58}, {\"col\": \"IBM\", \"idx\": 1343113200000, \"val\": 184.1}, {\"col\": \"YHOO\", \"idx\": 1343113200000, \"val\": 15.43}, {\"col\": \"MSFT\", \"idx\": 1343113200000, \"val\": 27.67}, {\"col\": \"AAPL\", \"idx\": 1343199600000, \"val\": 552.63}, {\"col\": \"IBM\", \"idx\": 1343199600000, \"val\": 184.82}, {\"col\": \"YHOO\", \"idx\": 1343199600000, \"val\": 15.5}, {\"col\": \"MSFT\", \"idx\": 1343199600000, \"val\": 27.37}, {\"col\": \"AAPL\", \"idx\": 1343286000000, \"val\": 552.55}, {\"col\": \"IBM\", \"idx\": 1343286000000, \"val\": 187.6}, {\"col\": \"YHOO\", \"idx\": 1343286000000, \"val\": 15.8}, {\"col\": \"MSFT\", \"idx\": 1343286000000, \"val\": 27.68}, {\"col\": \"AAPL\", \"idx\": 1343372400000, \"val\": 562.43}, {\"col\": \"IBM\", \"idx\": 1343372400000, \"val\": 189.96}, {\"col\": \"YHOO\", \"idx\": 1343372400000, \"val\": 16.11}, {\"col\": \"MSFT\", \"idx\": 1343372400000, \"val\": 28.25}, {\"col\": \"AAPL\", \"idx\": 1343631600000, \"val\": 571.92}, {\"col\": \"IBM\", \"idx\": 1343631600000, \"val\": 190.24}, {\"col\": \"YHOO\", \"idx\": 1343631600000, \"val\": 15.98}, {\"col\": \"MSFT\", \"idx\": 1343631600000, \"val\": 28.14}, {\"col\": \"AAPL\", \"idx\": 1343718000000, \"val\": 587.03}, {\"col\": \"IBM\", \"idx\": 1343718000000, \"val\": 189.56}, {\"col\": \"YHOO\", \"idx\": 1343718000000, \"val\": 15.84}, {\"col\": \"MSFT\", \"idx\": 1343718000000, \"val\": 27.97}, {\"col\": \"AAPL\", \"idx\": 1343804400000, \"val\": 583.24}, {\"col\": \"IBM\", \"idx\": 1343804400000, \"val\": 188.78}, {\"col\": \"YHOO\", \"idx\": 1343804400000, \"val\": 15.99}, {\"col\": \"MSFT\", \"idx\": 1343804400000, \"val\": 27.92}, {\"col\": \"AAPL\", \"idx\": 1343890800000, \"val\": 584.18}, {\"col\": \"IBM\", \"idx\": 1343890800000, \"val\": 188.08}, {\"col\": \"YHOO\", \"idx\": 1343890800000, \"val\": 15.75}, {\"col\": \"MSFT\", \"idx\": 1343890800000, \"val\": 27.71}, {\"col\": \"AAPL\", \"idx\": 1343977200000, \"val\": 591.78}, {\"col\": \"IBM\", \"idx\": 1343977200000, \"val\": 192.02}, {\"col\": \"YHOO\", \"idx\": 1343977200000, \"val\": 15.97}, {\"col\": \"MSFT\", \"idx\": 1343977200000, \"val\": 28.24}, {\"col\": \"AAPL\", \"idx\": 1344236400000, \"val\": 598.37}, {\"col\": \"IBM\", \"idx\": 1344236400000, \"val\": 192.25}, {\"col\": \"YHOO\", \"idx\": 1344236400000, \"val\": 16.04}, {\"col\": \"MSFT\", \"idx\": 1344236400000, \"val\": 28.43}, {\"col\": \"AAPL\", \"idx\": 1344322800000, \"val\": 596.79}, {\"col\": \"IBM\", \"idx\": 1344322800000, \"val\": 193.38}, {\"col\": \"YHOO\", \"idx\": 1344322800000, \"val\": 16.22}, {\"col\": \"MSFT\", \"idx\": 1344322800000, \"val\": 28.72}, {\"col\": \"AAPL\", \"idx\": 1344409200000, \"val\": 595.78}, {\"col\": \"IBM\", \"idx\": 1344409200000, \"val\": 193.33}, {\"col\": \"YHOO\", \"idx\": 1344409200000, \"val\": 16.17}, {\"col\": \"MSFT\", \"idx\": 1344409200000, \"val\": 28.79}, {\"col\": \"AAPL\", \"idx\": 1344495600000, \"val\": 599.18}, {\"col\": \"IBM\", \"idx\": 1344495600000, \"val\": 192.74}, {\"col\": \"YHOO\", \"idx\": 1344495600000, \"val\": 16.01}, {\"col\": \"MSFT\", \"idx\": 1344495600000, \"val\": 28.95}, {\"col\": \"AAPL\", \"idx\": 1344582000000, \"val\": 600.12}, {\"col\": \"IBM\", \"idx\": 1344582000000, \"val\": 193.58}, {\"col\": \"YHOO\", \"idx\": 1344582000000, \"val\": 15.15}, {\"col\": \"MSFT\", \"idx\": 1344582000000, \"val\": 28.88}, {\"col\": \"AAPL\", \"idx\": 1344841200000, \"val\": 608.13}, {\"col\": \"IBM\", \"idx\": 1344841200000, \"val\": 193.31}, {\"col\": \"YHOO\", \"idx\": 1344841200000, \"val\": 15.02}, {\"col\": \"MSFT\", \"idx\": 1344841200000, \"val\": 28.85}, {\"col\": \"AAPL\", \"idx\": 1344927600000, \"val\": 609.76}, {\"col\": \"IBM\", \"idx\": 1344927600000, \"val\": 192.61}, {\"col\": \"YHOO\", \"idx\": 1344927600000, \"val\": 14.73}, {\"col\": \"MSFT\", \"idx\": 1344927600000, \"val\": 28.79}, {\"col\": \"AAPL\", \"idx\": 1345014000000, \"val\": 608.93}, {\"col\": \"IBM\", \"idx\": 1345014000000, \"val\": 192.72}, {\"col\": \"YHOO\", \"idx\": 1345014000000, \"val\": 14.76}, {\"col\": \"MSFT\", \"idx\": 1345014000000, \"val\": 28.86}, {\"col\": \"AAPL\", \"idx\": 1345100400000, \"val\": 614.25}, {\"col\": \"IBM\", \"idx\": 1345100400000, \"val\": 195.09}, {\"col\": \"YHOO\", \"idx\": 1345100400000, \"val\": 14.99}, {\"col\": \"MSFT\", \"idx\": 1345100400000, \"val\": 29.41}, {\"col\": \"AAPL\", \"idx\": 1345186800000, \"val\": 625.61}, {\"col\": \"IBM\", \"idx\": 1345186800000, \"val\": 195.46}, {\"col\": \"YHOO\", \"idx\": 1345186800000, \"val\": 15.03}, {\"col\": \"MSFT\", \"idx\": 1345186800000, \"val\": 29.53}, {\"col\": \"AAPL\", \"idx\": 1345446000000, \"val\": 642.06}, {\"col\": \"IBM\", \"idx\": 1345446000000, \"val\": 194.76}, {\"col\": \"YHOO\", \"idx\": 1345446000000, \"val\": 14.96}, {\"col\": \"MSFT\", \"idx\": 1345446000000, \"val\": 29.37}, {\"col\": \"AAPL\", \"idx\": 1345532400000, \"val\": 633.28}, {\"col\": \"IBM\", \"idx\": 1345532400000, \"val\": 192.96}, {\"col\": \"YHOO\", \"idx\": 1345532400000, \"val\": 14.97}, {\"col\": \"MSFT\", \"idx\": 1345532400000, \"val\": 29.43}, {\"col\": \"AAPL\", \"idx\": 1345618800000, \"val\": 645.65}, {\"col\": \"IBM\", \"idx\": 1345618800000, \"val\": 191.6}, {\"col\": \"YHOO\", \"idx\": 1345618800000, \"val\": 14.92}, {\"col\": \"MSFT\", \"idx\": 1345618800000, \"val\": 29.18}, {\"col\": \"AAPL\", \"idx\": 1345705200000, \"val\": 639.62}, {\"col\": \"IBM\", \"idx\": 1345705200000, \"val\": 190.1}, {\"col\": \"YHOO\", \"idx\": 1345705200000, \"val\": 14.87}, {\"col\": \"MSFT\", \"idx\": 1345705200000, \"val\": 28.92}, {\"col\": \"AAPL\", \"idx\": 1345791600000, \"val\": 640.19}, {\"col\": \"IBM\", \"idx\": 1345791600000, \"val\": 192.11}, {\"col\": \"YHOO\", \"idx\": 1345791600000, \"val\": 14.92}, {\"col\": \"MSFT\", \"idx\": 1345791600000, \"val\": 29.2}, {\"col\": \"AAPL\", \"idx\": 1346050800000, \"val\": 652.22}, {\"col\": \"IBM\", \"idx\": 1346050800000, \"val\": 190.09}, {\"col\": \"YHOO\", \"idx\": 1346050800000, \"val\": 14.85}, {\"col\": \"MSFT\", \"idx\": 1346050800000, \"val\": 29.33}, {\"col\": \"AAPL\", \"idx\": 1346137200000, \"val\": 651.37}, {\"col\": \"IBM\", \"idx\": 1346137200000, \"val\": 189.29}, {\"col\": \"YHOO\", \"idx\": 1346137200000, \"val\": 14.72}, {\"col\": \"MSFT\", \"idx\": 1346137200000, \"val\": 29.27}, {\"col\": \"AAPL\", \"idx\": 1346223600000, \"val\": 650.09}, {\"col\": \"IBM\", \"idx\": 1346223600000, \"val\": 189.49}, {\"col\": \"YHOO\", \"idx\": 1346223600000, \"val\": 14.84}, {\"col\": \"MSFT\", \"idx\": 1346223600000, \"val\": 29.29}, {\"col\": \"AAPL\", \"idx\": 1346310000000, \"val\": 640.82}, {\"col\": \"IBM\", \"idx\": 1346310000000, \"val\": 187.83}, {\"col\": \"YHOO\", \"idx\": 1346310000000, \"val\": 14.67}, {\"col\": \"MSFT\", \"idx\": 1346310000000, \"val\": 28.97}, {\"col\": \"AAPL\", \"idx\": 1346396400000, \"val\": 642.14}, {\"col\": \"IBM\", \"idx\": 1346396400000, \"val\": 189.27}, {\"col\": \"YHOO\", \"idx\": 1346396400000, \"val\": 14.65}, {\"col\": \"MSFT\", \"idx\": 1346396400000, \"val\": 29.45}, {\"col\": \"AAPL\", \"idx\": 1346742000000, \"val\": 651.54}, {\"col\": \"IBM\", \"idx\": 1346742000000, \"val\": 188.97}, {\"col\": \"YHOO\", \"idx\": 1346742000000, \"val\": 14.89}, {\"col\": \"MSFT\", \"idx\": 1346742000000, \"val\": 29.04}, {\"col\": \"AAPL\", \"idx\": 1346828400000, \"val\": 646.96}, {\"col\": \"IBM\", \"idx\": 1346828400000, \"val\": 189.46}, {\"col\": \"YHOO\", \"idx\": 1346828400000, \"val\": 15.09}, {\"col\": \"MSFT\", \"idx\": 1346828400000, \"val\": 29.04}, {\"col\": \"AAPL\", \"idx\": 1346914800000, \"val\": 652.79}, {\"col\": \"IBM\", \"idx\": 1346914800000, \"val\": 193.4}, {\"col\": \"YHOO\", \"idx\": 1346914800000, \"val\": 15.11}, {\"col\": \"MSFT\", \"idx\": 1346914800000, \"val\": 29.96}, {\"col\": \"AAPL\", \"idx\": 1347001200000, \"val\": 656.82}, {\"col\": \"IBM\", \"idx\": 1347001200000, \"val\": 193.79}, {\"col\": \"YHOO\", \"idx\": 1347001200000, \"val\": 15.22}, {\"col\": \"MSFT\", \"idx\": 1347001200000, \"val\": 29.57}, {\"col\": \"AAPL\", \"idx\": 1347260400000, \"val\": 639.73}, {\"col\": \"IBM\", \"idx\": 1347260400000, \"val\": 195.2}, {\"col\": \"YHOO\", \"idx\": 1347260400000, \"val\": 15.11}, {\"col\": \"MSFT\", \"idx\": 1347260400000, \"val\": 29.35}, {\"col\": \"AAPL\", \"idx\": 1347346800000, \"val\": 637.66}, {\"col\": \"IBM\", \"idx\": 1347346800000, \"val\": 197.45}, {\"col\": \"YHOO\", \"idx\": 1347346800000, \"val\": 15.16}, {\"col\": \"MSFT\", \"idx\": 1347346800000, \"val\": 29.42}, {\"col\": \"AAPL\", \"idx\": 1347433200000, \"val\": 646.54}, {\"col\": \"IBM\", \"idx\": 1347433200000, \"val\": 197.94}, {\"col\": \"YHOO\", \"idx\": 1347433200000, \"val\": 15.4}, {\"col\": \"MSFT\", \"idx\": 1347433200000, \"val\": 29.41}, {\"col\": \"AAPL\", \"idx\": 1347519600000, \"val\": 659.27}, {\"col\": \"IBM\", \"idx\": 1347519600000, \"val\": 200.45}, {\"col\": \"YHOO\", \"idx\": 1347519600000, \"val\": 15.6}, {\"col\": \"MSFT\", \"idx\": 1347519600000, \"val\": 29.56}, {\"col\": \"AAPL\", \"idx\": 1347606000000, \"val\": 667.28}, {\"col\": \"IBM\", \"idx\": 1347606000000, \"val\": 200.89}, {\"col\": \"YHOO\", \"idx\": 1347606000000, \"val\": 15.77}, {\"col\": \"MSFT\", \"idx\": 1347606000000, \"val\": 29.82}, {\"col\": \"AAPL\", \"idx\": 1347865200000, \"val\": 675.48}, {\"col\": \"IBM\", \"idx\": 1347865200000, \"val\": 201.22}, {\"col\": \"YHOO\", \"idx\": 1347865200000, \"val\": 15.68}, {\"col\": \"MSFT\", \"idx\": 1347865200000, \"val\": 29.82}, {\"col\": \"AAPL\", \"idx\": 1347951600000, \"val\": 677.54}, {\"col\": \"IBM\", \"idx\": 1347951600000, \"val\": 201.14}, {\"col\": \"YHOO\", \"idx\": 1347951600000, \"val\": 15.91}, {\"col\": \"MSFT\", \"idx\": 1347951600000, \"val\": 29.79}, {\"col\": \"AAPL\", \"idx\": 1348038000000, \"val\": 677.72}, {\"col\": \"IBM\", \"idx\": 1348038000000, \"val\": 200.52}, {\"col\": \"YHOO\", \"idx\": 1348038000000, \"val\": 15.86}, {\"col\": \"MSFT\", \"idx\": 1348038000000, \"val\": 29.67}, {\"col\": \"AAPL\", \"idx\": 1348124400000, \"val\": 674.44}, {\"col\": \"IBM\", \"idx\": 1348124400000, \"val\": 200.28}, {\"col\": \"YHOO\", \"idx\": 1348124400000, \"val\": 15.79}, {\"col\": \"MSFT\", \"idx\": 1348124400000, \"val\": 30.05}, {\"col\": \"AAPL\", \"idx\": 1348210800000, \"val\": 675.78}, {\"col\": \"IBM\", \"idx\": 1348210800000, \"val\": 200.08}, {\"col\": \"YHOO\", \"idx\": 1348210800000, \"val\": 15.74}, {\"col\": \"MSFT\", \"idx\": 1348210800000, \"val\": 29.8}, {\"col\": \"AAPL\", \"idx\": 1348470000000, \"val\": 666.81}, {\"col\": \"IBM\", \"idx\": 1348470000000, \"val\": 199.41}, {\"col\": \"YHOO\", \"idx\": 1348470000000, \"val\": 16.0}, {\"col\": \"MSFT\", \"idx\": 1348470000000, \"val\": 29.41}, {\"col\": \"AAPL\", \"idx\": 1348556400000, \"val\": 650.16}, {\"col\": \"IBM\", \"idx\": 1348556400000, \"val\": 199.11}, {\"col\": \"YHOO\", \"idx\": 1348556400000, \"val\": 15.68}, {\"col\": \"MSFT\", \"idx\": 1348556400000, \"val\": 29.04}, {\"col\": \"AAPL\", \"idx\": 1348642800000, \"val\": 642.09}, {\"col\": \"IBM\", \"idx\": 1348642800000, \"val\": 198.16}, {\"col\": \"YHOO\", \"idx\": 1348642800000, \"val\": 15.61}, {\"col\": \"MSFT\", \"idx\": 1348642800000, \"val\": 28.83}, {\"col\": \"AAPL\", \"idx\": 1348729200000, \"val\": 657.67}, {\"col\": \"IBM\", \"idx\": 1348729200000, \"val\": 200.01}, {\"col\": \"YHOO\", \"idx\": 1348729200000, \"val\": 16.04}, {\"col\": \"MSFT\", \"idx\": 1348729200000, \"val\": 28.82}, {\"col\": \"AAPL\", \"idx\": 1348815600000, \"val\": 643.94}, {\"col\": \"IBM\", \"idx\": 1348815600000, \"val\": 201.51}, {\"col\": \"YHOO\", \"idx\": 1348815600000, \"val\": 15.98}, {\"col\": \"MSFT\", \"idx\": 1348815600000, \"val\": 28.44}, {\"col\": \"AAPL\", \"idx\": 1349074800000, \"val\": 636.5}, {\"col\": \"IBM\", \"idx\": 1349074800000, \"val\": 204.44}, {\"col\": \"YHOO\", \"idx\": 1349074800000, \"val\": 15.83}, {\"col\": \"MSFT\", \"idx\": 1349074800000, \"val\": 28.18}, {\"col\": \"AAPL\", \"idx\": 1349161200000, \"val\": 638.35}, {\"col\": \"IBM\", \"idx\": 1349161200000, \"val\": 203.83}, {\"col\": \"YHOO\", \"idx\": 1349161200000, \"val\": 15.94}, {\"col\": \"MSFT\", \"idx\": 1349161200000, \"val\": 28.34}, {\"col\": \"AAPL\", \"idx\": 1349247600000, \"val\": 648.14}, {\"col\": \"IBM\", \"idx\": 1349247600000, \"val\": 204.48}, {\"col\": \"YHOO\", \"idx\": 1349247600000, \"val\": 16.21}, {\"col\": \"MSFT\", \"idx\": 1349247600000, \"val\": 28.53}, {\"col\": \"AAPL\", \"idx\": 1349334000000, \"val\": 643.65}, {\"col\": \"IBM\", \"idx\": 1349334000000, \"val\": 204.37}, {\"col\": \"YHOO\", \"idx\": 1349334000000, \"val\": 16.27}, {\"col\": \"MSFT\", \"idx\": 1349334000000, \"val\": 28.7}, {\"col\": \"AAPL\", \"idx\": 1349420400000, \"val\": 629.93}, {\"col\": \"IBM\", \"idx\": 1349420400000, \"val\": 204.56}, {\"col\": \"YHOO\", \"idx\": 1349420400000, \"val\": 16.09}, {\"col\": \"MSFT\", \"idx\": 1349420400000, \"val\": 28.52}, {\"col\": \"AAPL\", \"idx\": 1349679600000, \"val\": 616.01}, {\"col\": \"IBM\", \"idx\": 1349679600000, \"val\": 203.81}, {\"col\": \"YHOO\", \"idx\": 1349679600000, \"val\": 16.03}, {\"col\": \"MSFT\", \"idx\": 1349679600000, \"val\": 28.46}, {\"col\": \"AAPL\", \"idx\": 1349766000000, \"val\": 613.77}, {\"col\": \"IBM\", \"idx\": 1349766000000, \"val\": 202.03}, {\"col\": \"YHOO\", \"idx\": 1349766000000, \"val\": 15.85}, {\"col\": \"MSFT\", \"idx\": 1349766000000, \"val\": 27.98}, {\"col\": \"AAPL\", \"idx\": 1349852400000, \"val\": 618.66}, {\"col\": \"IBM\", \"idx\": 1349852400000, \"val\": 199.93}, {\"col\": \"YHOO\", \"idx\": 1349852400000, \"val\": 15.83}, {\"col\": \"MSFT\", \"idx\": 1349852400000, \"val\": 27.69}, {\"col\": \"AAPL\", \"idx\": 1349938800000, \"val\": 606.29}, {\"col\": \"IBM\", \"idx\": 1349938800000, \"val\": 199.87}, {\"col\": \"YHOO\", \"idx\": 1349938800000, \"val\": 15.92}, {\"col\": \"MSFT\", \"idx\": 1349938800000, \"val\": 27.66}, {\"col\": \"AAPL\", \"idx\": 1350025200000, \"val\": 607.85}, {\"col\": \"IBM\", \"idx\": 1350025200000, \"val\": 201.85}, {\"col\": \"YHOO\", \"idx\": 1350025200000, \"val\": 15.88}, {\"col\": \"MSFT\", \"idx\": 1350025200000, \"val\": 27.9}, {\"col\": \"AAPL\", \"idx\": 1350284400000, \"val\": 612.72}, {\"col\": \"IBM\", \"idx\": 1350284400000, \"val\": 202.95}, {\"col\": \"YHOO\", \"idx\": 1350284400000, \"val\": 15.68}, {\"col\": \"MSFT\", \"idx\": 1350284400000, \"val\": 28.2}, {\"col\": \"AAPL\", \"idx\": 1350370800000, \"val\": 627.23}, {\"col\": \"IBM\", \"idx\": 1350370800000, \"val\": 204.96}, {\"col\": \"YHOO\", \"idx\": 1350370800000, \"val\": 15.92}, {\"col\": \"MSFT\", \"idx\": 1350370800000, \"val\": 28.18}, {\"col\": \"AAPL\", \"idx\": 1350457200000, \"val\": 622.23}, {\"col\": \"IBM\", \"idx\": 1350457200000, \"val\": 194.88}, {\"col\": \"YHOO\", \"idx\": 1350457200000, \"val\": 16.09}, {\"col\": \"MSFT\", \"idx\": 1350457200000, \"val\": 28.27}, {\"col\": \"AAPL\", \"idx\": 1350543600000, \"val\": 610.68}, {\"col\": \"IBM\", \"idx\": 1350543600000, \"val\": 189.38}, {\"col\": \"YHOO\", \"idx\": 1350543600000, \"val\": 16.0}, {\"col\": \"MSFT\", \"idx\": 1350543600000, \"val\": 28.19}, {\"col\": \"AAPL\", \"idx\": 1350630000000, \"val\": 588.67}, {\"col\": \"IBM\", \"idx\": 1350630000000, \"val\": 187.82}, {\"col\": \"YHOO\", \"idx\": 1350630000000, \"val\": 15.84}, {\"col\": \"MSFT\", \"idx\": 1350630000000, \"val\": 27.37}, {\"col\": \"AAPL\", \"idx\": 1350889200000, \"val\": 612.02}, {\"col\": \"IBM\", \"idx\": 1350889200000, \"val\": 188.83}, {\"col\": \"YHOO\", \"idx\": 1350889200000, \"val\": 15.77}, {\"col\": \"MSFT\", \"idx\": 1350889200000, \"val\": 26.76}, {\"col\": \"AAPL\", \"idx\": 1350975600000, \"val\": 592.06}, {\"col\": \"IBM\", \"idx\": 1350975600000, \"val\": 185.77}, {\"col\": \"YHOO\", \"idx\": 1350975600000, \"val\": 16.67}, {\"col\": \"MSFT\", \"idx\": 1350975600000, \"val\": 26.8}, {\"col\": \"AAPL\", \"idx\": 1351062000000, \"val\": 595.41}, {\"col\": \"IBM\", \"idx\": 1351062000000, \"val\": 185.26}, {\"col\": \"YHOO\", \"idx\": 1351062000000, \"val\": 16.55}, {\"col\": \"MSFT\", \"idx\": 1351062000000, \"val\": 26.66}, {\"col\": \"AAPL\", \"idx\": 1351148400000, \"val\": 588.38}, {\"col\": \"IBM\", \"idx\": 1351148400000, \"val\": 186.11}, {\"col\": \"YHOO\", \"idx\": 1351148400000, \"val\": 16.61}, {\"col\": \"MSFT\", \"idx\": 1351148400000, \"val\": 26.64}, {\"col\": \"AAPL\", \"idx\": 1351234800000, \"val\": 583.03}, {\"col\": \"IBM\", \"idx\": 1351234800000, \"val\": 187.74}, {\"col\": \"YHOO\", \"idx\": 1351234800000, \"val\": 16.79}, {\"col\": \"MSFT\", \"idx\": 1351234800000, \"val\": 26.96}, {\"col\": \"AAPL\", \"idx\": 1351666800000, \"val\": 574.65}, {\"col\": \"IBM\", \"idx\": 1351666800000, \"val\": 188.96}, {\"col\": \"YHOO\", \"idx\": 1351666800000, \"val\": 16.84}, {\"col\": \"MSFT\", \"idx\": 1351666800000, \"val\": 27.27}, {\"col\": \"AAPL\", \"idx\": 1351753200000, \"val\": 575.83}, {\"col\": \"IBM\", \"idx\": 1351753200000, \"val\": 191.5}, {\"col\": \"YHOO\", \"idx\": 1351753200000, \"val\": 16.95}, {\"col\": \"MSFT\", \"idx\": 1351753200000, \"val\": 28.21}, {\"col\": \"AAPL\", \"idx\": 1351839600000, \"val\": 556.77}, {\"col\": \"IBM\", \"idx\": 1351839600000, \"val\": 187.89}, {\"col\": \"YHOO\", \"idx\": 1351839600000, \"val\": 17.11}, {\"col\": \"MSFT\", \"idx\": 1351839600000, \"val\": 28.19}, {\"col\": \"AAPL\", \"idx\": 1352102400000, \"val\": 564.32}, {\"col\": \"IBM\", \"idx\": 1352102400000, \"val\": 188.58}, {\"col\": \"YHOO\", \"idx\": 1352102400000, \"val\": 17.37}, {\"col\": \"MSFT\", \"idx\": 1352102400000, \"val\": 28.31}, {\"col\": \"AAPL\", \"idx\": 1352188800000, \"val\": 562.61}, {\"col\": \"IBM\", \"idx\": 1352188800000, \"val\": 189.48}, {\"col\": \"YHOO\", \"idx\": 1352188800000, \"val\": 17.46}, {\"col\": \"MSFT\", \"idx\": 1352188800000, \"val\": 28.53}, {\"col\": \"AAPL\", \"idx\": 1352275200000, \"val\": 541.09}, {\"col\": \"IBM\", \"idx\": 1352275200000, \"val\": 186.5}, {\"col\": \"YHOO\", \"idx\": 1352275200000, \"val\": 17.39}, {\"col\": \"MSFT\", \"idx\": 1352275200000, \"val\": 27.79}, {\"col\": \"AAPL\", \"idx\": 1352361600000, \"val\": 521.45}, {\"col\": \"IBM\", \"idx\": 1352361600000, \"val\": 185.46}, {\"col\": \"YHOO\", \"idx\": 1352361600000, \"val\": 17.24}, {\"col\": \"MSFT\", \"idx\": 1352361600000, \"val\": 27.53}, {\"col\": \"AAPL\", \"idx\": 1352448000000, \"val\": 530.48}, {\"col\": \"IBM\", \"idx\": 1352448000000, \"val\": 185.02}, {\"col\": \"YHOO\", \"idx\": 1352448000000, \"val\": 17.26}, {\"col\": \"MSFT\", \"idx\": 1352448000000, \"val\": 27.55}, {\"col\": \"AAPL\", \"idx\": 1352707200000, \"val\": 526.38}, {\"col\": \"IBM\", \"idx\": 1352707200000, \"val\": 184.64}, {\"col\": \"YHOO\", \"idx\": 1352707200000, \"val\": 17.51}, {\"col\": \"MSFT\", \"idx\": 1352707200000, \"val\": 26.97}, {\"col\": \"AAPL\", \"idx\": 1352793600000, \"val\": 526.44}, {\"col\": \"IBM\", \"idx\": 1352793600000, \"val\": 183.73}, {\"col\": \"YHOO\", \"idx\": 1352793600000, \"val\": 17.85}, {\"col\": \"MSFT\", \"idx\": 1352793600000, \"val\": 26.1}, {\"col\": \"AAPL\", \"idx\": 1352880000000, \"val\": 520.61}, {\"col\": \"IBM\", \"idx\": 1352880000000, \"val\": 180.99}, {\"col\": \"YHOO\", \"idx\": 1352880000000, \"val\": 17.83}, {\"col\": \"MSFT\", \"idx\": 1352880000000, \"val\": 25.86}, {\"col\": \"AAPL\", \"idx\": 1352966400000, \"val\": 509.69}, {\"col\": \"IBM\", \"idx\": 1352966400000, \"val\": 181.32}, {\"col\": \"YHOO\", \"idx\": 1352966400000, \"val\": 17.89}, {\"col\": \"MSFT\", \"idx\": 1352966400000, \"val\": 25.68}, {\"col\": \"AAPL\", \"idx\": 1353052800000, \"val\": 511.69}, {\"col\": \"IBM\", \"idx\": 1353052800000, \"val\": 182.38}, {\"col\": \"YHOO\", \"idx\": 1353052800000, \"val\": 17.86}, {\"col\": \"MSFT\", \"idx\": 1353052800000, \"val\": 25.55}, {\"col\": \"AAPL\", \"idx\": 1353312000000, \"val\": 548.58}, {\"col\": \"IBM\", \"idx\": 1353312000000, \"val\": 185.71}, {\"col\": \"YHOO\", \"idx\": 1353312000000, \"val\": 18.36}, {\"col\": \"MSFT\", \"idx\": 1353312000000, \"val\": 25.75}, {\"col\": \"AAPL\", \"idx\": 1353398400000, \"val\": 543.91}, {\"col\": \"IBM\", \"idx\": 1353398400000, \"val\": 184.59}, {\"col\": \"YHOO\", \"idx\": 1353398400000, \"val\": 18.24}, {\"col\": \"MSFT\", \"idx\": 1353398400000, \"val\": 25.73}, {\"col\": \"AAPL\", \"idx\": 1353484800000, \"val\": 544.67}, {\"col\": \"IBM\", \"idx\": 1353484800000, \"val\": 185.65}, {\"col\": \"YHOO\", \"idx\": 1353484800000, \"val\": 18.4}, {\"col\": \"MSFT\", \"idx\": 1353484800000, \"val\": 25.96}, {\"col\": \"AAPL\", \"idx\": 1353657600000, \"val\": 554.18}, {\"col\": \"IBM\", \"idx\": 1353657600000, \"val\": 188.77}, {\"col\": \"YHOO\", \"idx\": 1353657600000, \"val\": 18.57}, {\"col\": \"MSFT\", \"idx\": 1353657600000, \"val\": 26.69}, {\"col\": \"AAPL\", \"idx\": 1353916800000, \"val\": 571.66}, {\"col\": \"IBM\", \"idx\": 1353916800000, \"val\": 188.18}, {\"col\": \"YHOO\", \"idx\": 1353916800000, \"val\": 18.76}, {\"col\": \"MSFT\", \"idx\": 1353916800000, \"val\": 26.39}, {\"col\": \"AAPL\", \"idx\": 1354003200000, \"val\": 567.06}, {\"col\": \"IBM\", \"idx\": 1354003200000, \"val\": 186.57}, {\"col\": \"YHOO\", \"idx\": 1354003200000, \"val\": 18.93}, {\"col\": \"MSFT\", \"idx\": 1354003200000, \"val\": 26.09}, {\"col\": \"AAPL\", \"idx\": 1354089600000, \"val\": 565.27}, {\"col\": \"IBM\", \"idx\": 1354089600000, \"val\": 187.3}, {\"col\": \"YHOO\", \"idx\": 1354089600000, \"val\": 18.91}, {\"col\": \"MSFT\", \"idx\": 1354089600000, \"val\": 26.36}, {\"col\": \"AAPL\", \"idx\": 1354176000000, \"val\": 571.5}, {\"col\": \"IBM\", \"idx\": 1354176000000, \"val\": 186.86}, {\"col\": \"YHOO\", \"idx\": 1354176000000, \"val\": 18.87}, {\"col\": \"MSFT\", \"idx\": 1354176000000, \"val\": 25.96}, {\"col\": \"AAPL\", \"idx\": 1354262400000, \"val\": 567.54}, {\"col\": \"IBM\", \"idx\": 1354262400000, \"val\": 185.44}, {\"col\": \"YHOO\", \"idx\": 1354262400000, \"val\": 18.77}, {\"col\": \"MSFT\", \"idx\": 1354262400000, \"val\": 25.65}, {\"col\": \"AAPL\", \"idx\": 1354521600000, \"val\": 568.42}, {\"col\": \"IBM\", \"idx\": 1354521600000, \"val\": 184.86}, {\"col\": \"YHOO\", \"idx\": 1354521600000, \"val\": 18.55}, {\"col\": \"MSFT\", \"idx\": 1354521600000, \"val\": 25.46}, {\"col\": \"AAPL\", \"idx\": 1354608000000, \"val\": 558.4}, {\"col\": \"IBM\", \"idx\": 1354608000000, \"val\": 184.74}, {\"col\": \"YHOO\", \"idx\": 1354608000000, \"val\": 18.93}, {\"col\": \"MSFT\", \"idx\": 1354608000000, \"val\": 25.41}, {\"col\": \"AAPL\", \"idx\": 1354694400000, \"val\": 522.46}, {\"col\": \"IBM\", \"idx\": 1354694400000, \"val\": 184.05}, {\"col\": \"YHOO\", \"idx\": 1354694400000, \"val\": 18.89}, {\"col\": \"MSFT\", \"idx\": 1354694400000, \"val\": 25.69}, {\"col\": \"AAPL\", \"idx\": 1354780800000, \"val\": 530.65}, {\"col\": \"IBM\", \"idx\": 1354780800000, \"val\": 185.07}, {\"col\": \"YHOO\", \"idx\": 1354780800000, \"val\": 19.2}, {\"col\": \"MSFT\", \"idx\": 1354780800000, \"val\": 25.75}, {\"col\": \"AAPL\", \"idx\": 1354867200000, \"val\": 517.09}, {\"col\": \"IBM\", \"idx\": 1354867200000, \"val\": 187.27}, {\"col\": \"YHOO\", \"idx\": 1354867200000, \"val\": 19.2}, {\"col\": \"MSFT\", \"idx\": 1354867200000, \"val\": 25.49}, {\"col\": \"AAPL\", \"idx\": 1355126400000, \"val\": 513.76}, {\"col\": \"IBM\", \"idx\": 1355126400000, \"val\": 187.92}, {\"col\": \"YHOO\", \"idx\": 1355126400000, \"val\": 19.43}, {\"col\": \"MSFT\", \"idx\": 1355126400000, \"val\": 25.95}, {\"col\": \"AAPL\", \"idx\": 1355212800000, \"val\": 524.98}, {\"col\": \"IBM\", \"idx\": 1355212800000, \"val\": 189.46}, {\"col\": \"YHOO\", \"idx\": 1355212800000, \"val\": 19.52}, {\"col\": \"MSFT\", \"idx\": 1355212800000, \"val\": 26.32}, {\"col\": \"AAPL\", \"idx\": 1355299200000, \"val\": 522.66}, {\"col\": \"IBM\", \"idx\": 1355299200000, \"val\": 188.25}, {\"col\": \"YHOO\", \"idx\": 1355299200000, \"val\": 19.38}, {\"col\": \"MSFT\", \"idx\": 1355299200000, \"val\": 26.24}, {\"col\": \"AAPL\", \"idx\": 1355385600000, \"val\": 513.64}, {\"col\": \"IBM\", \"idx\": 1355385600000, \"val\": 187.31}, {\"col\": \"YHOO\", \"idx\": 1355385600000, \"val\": 19.35}, {\"col\": \"MSFT\", \"idx\": 1355385600000, \"val\": 26.12}, {\"col\": \"AAPL\", \"idx\": 1355472000000, \"val\": 494.34}, {\"col\": \"IBM\", \"idx\": 1355472000000, \"val\": 187.08}, {\"col\": \"YHOO\", \"idx\": 1355472000000, \"val\": 19.64}, {\"col\": \"MSFT\", \"idx\": 1355472000000, \"val\": 25.83}, {\"col\": \"AAPL\", \"idx\": 1355731200000, \"val\": 503.1}, {\"col\": \"IBM\", \"idx\": 1355731200000, \"val\": 188.9}, {\"col\": \"YHOO\", \"idx\": 1355731200000, \"val\": 19.69}, {\"col\": \"MSFT\", \"idx\": 1355731200000, \"val\": 26.11}, {\"col\": \"AAPL\", \"idx\": 1355817600000, \"val\": 517.72}, {\"col\": \"IBM\", \"idx\": 1355817600000, \"val\": 190.92}, {\"col\": \"YHOO\", \"idx\": 1355817600000, \"val\": 19.62}, {\"col\": \"MSFT\", \"idx\": 1355817600000, \"val\": 26.55}, {\"col\": \"AAPL\", \"idx\": 1355904000000, \"val\": 510.36}, {\"col\": \"IBM\", \"idx\": 1355904000000, \"val\": 190.32}, {\"col\": \"YHOO\", \"idx\": 1355904000000, \"val\": 19.6}, {\"col\": \"MSFT\", \"idx\": 1355904000000, \"val\": 26.31}, {\"col\": \"AAPL\", \"idx\": 1355990400000, \"val\": 505.92}, {\"col\": \"IBM\", \"idx\": 1355990400000, \"val\": 190.02}, {\"col\": \"YHOO\", \"idx\": 1355990400000, \"val\": 19.69}, {\"col\": \"MSFT\", \"idx\": 1355990400000, \"val\": 26.67}, {\"col\": \"AAPL\", \"idx\": 1356076800000, \"val\": 503.59}, {\"col\": \"IBM\", \"idx\": 1356076800000, \"val\": 188.7}, {\"col\": \"YHOO\", \"idx\": 1356076800000, \"val\": 19.35}, {\"col\": \"MSFT\", \"idx\": 1356076800000, \"val\": 26.45}, {\"col\": \"AAPL\", \"idx\": 1356336000000, \"val\": 504.4}, {\"col\": \"IBM\", \"idx\": 1356336000000, \"val\": 187.71}, {\"col\": \"YHOO\", \"idx\": 1356336000000, \"val\": 19.65}, {\"col\": \"MSFT\", \"idx\": 1356336000000, \"val\": 26.07}, {\"col\": \"AAPL\", \"idx\": 1356508800000, \"val\": 497.45}, {\"col\": \"IBM\", \"idx\": 1356508800000, \"val\": 187.27}, {\"col\": \"YHOO\", \"idx\": 1356508800000, \"val\": 19.57}, {\"col\": \"MSFT\", \"idx\": 1356508800000, \"val\": 25.88}, {\"col\": \"AAPL\", \"idx\": 1356595200000, \"val\": 499.45}, {\"col\": \"IBM\", \"idx\": 1356595200000, \"val\": 188.01}, {\"col\": \"YHOO\", \"idx\": 1356595200000, \"val\": 19.6}, {\"col\": \"MSFT\", \"idx\": 1356595200000, \"val\": 25.97}, {\"col\": \"AAPL\", \"idx\": 1356681600000, \"val\": 494.14}, {\"col\": \"IBM\", \"idx\": 1356681600000, \"val\": 185.2}, {\"col\": \"YHOO\", \"idx\": 1356681600000, \"val\": 19.5}, {\"col\": \"MSFT\", \"idx\": 1356681600000, \"val\": 25.58}, {\"col\": \"AAPL\", \"idx\": 1356940800000, \"val\": 516.04}, {\"col\": \"IBM\", \"idx\": 1356940800000, \"val\": 186.88}, {\"col\": \"YHOO\", \"idx\": 1356940800000, \"val\": 19.9}, {\"col\": \"MSFT\", \"idx\": 1356940800000, \"val\": 25.73}, {\"col\": \"AAPL\", \"idx\": 1357113600000, \"val\": 532.39}, {\"col\": \"IBM\", \"idx\": 1357113600000, \"val\": 191.56}, {\"col\": \"YHOO\", \"idx\": 1357113600000, \"val\": 20.08}, {\"col\": \"MSFT\", \"idx\": 1357113600000, \"val\": 26.61}, {\"col\": \"AAPL\", \"idx\": 1357200000000, \"val\": 525.67}, {\"col\": \"IBM\", \"idx\": 1357200000000, \"val\": 190.51}, {\"col\": \"YHOO\", \"idx\": 1357200000000, \"val\": 19.78}, {\"col\": \"MSFT\", \"idx\": 1357200000000, \"val\": 26.25}, {\"col\": \"AAPL\", \"idx\": 1357286400000, \"val\": 511.03}, {\"col\": \"IBM\", \"idx\": 1357286400000, \"val\": 189.26}, {\"col\": \"YHOO\", \"idx\": 1357286400000, \"val\": 19.86}, {\"col\": \"MSFT\", \"idx\": 1357286400000, \"val\": 25.76}, {\"col\": \"AAPL\", \"idx\": 1357545600000, \"val\": 508.02}, {\"col\": \"IBM\", \"idx\": 1357545600000, \"val\": 188.43}, {\"col\": \"YHOO\", \"idx\": 1357545600000, \"val\": 19.4}, {\"col\": \"MSFT\", \"idx\": 1357545600000, \"val\": 25.71}, {\"col\": \"AAPL\", \"idx\": 1357632000000, \"val\": 509.39}, {\"col\": \"IBM\", \"idx\": 1357632000000, \"val\": 188.17}, {\"col\": \"YHOO\", \"idx\": 1357632000000, \"val\": 19.66}, {\"col\": \"MSFT\", \"idx\": 1357632000000, \"val\": 25.58}, {\"col\": \"AAPL\", \"idx\": 1357718400000, \"val\": 501.43}, {\"col\": \"IBM\", \"idx\": 1357718400000, \"val\": 187.63}, {\"col\": \"YHOO\", \"idx\": 1357718400000, \"val\": 19.32}, {\"col\": \"MSFT\", \"idx\": 1357718400000, \"val\": 25.72}, {\"col\": \"AAPL\", \"idx\": 1357804800000, \"val\": 507.64}, {\"col\": \"IBM\", \"idx\": 1357804800000, \"val\": 188.18}, {\"col\": \"YHOO\", \"idx\": 1357804800000, \"val\": 18.99}, {\"col\": \"MSFT\", \"idx\": 1357804800000, \"val\": 25.49}, {\"col\": \"AAPL\", \"idx\": 1357891200000, \"val\": 504.53}, {\"col\": \"IBM\", \"idx\": 1357891200000, \"val\": 189.71}, {\"col\": \"YHOO\", \"idx\": 1357891200000, \"val\": 19.29}, {\"col\": \"MSFT\", \"idx\": 1357891200000, \"val\": 25.85}, {\"col\": \"AAPL\", \"idx\": 1358150400000, \"val\": 486.54}, {\"col\": \"IBM\", \"idx\": 1358150400000, \"val\": 187.92}, {\"col\": \"YHOO\", \"idx\": 1358150400000, \"val\": 19.43}, {\"col\": \"MSFT\", \"idx\": 1358150400000, \"val\": 25.91}, {\"col\": \"AAPL\", \"idx\": 1358236800000, \"val\": 471.19}, {\"col\": \"IBM\", \"idx\": 1358236800000, \"val\": 187.81}, {\"col\": \"YHOO\", \"idx\": 1358236800000, \"val\": 19.52}, {\"col\": \"MSFT\", \"idx\": 1358236800000, \"val\": 26.21}, {\"col\": \"AAPL\", \"idx\": 1358323200000, \"val\": 490.75}, {\"col\": \"IBM\", \"idx\": 1358323200000, \"val\": 187.89}, {\"col\": \"YHOO\", \"idx\": 1358323200000, \"val\": 20.07}, {\"col\": \"MSFT\", \"idx\": 1358323200000, \"val\": 26.05}, {\"col\": \"AAPL\", \"idx\": 1358409600000, \"val\": 487.44}, {\"col\": \"IBM\", \"idx\": 1358409600000, \"val\": 188.93}, {\"col\": \"YHOO\", \"idx\": 1358409600000, \"val\": 20.13}, {\"col\": \"MSFT\", \"idx\": 1358409600000, \"val\": 26.25}, {\"col\": \"AAPL\", \"idx\": 1358496000000, \"val\": 484.85}, {\"col\": \"IBM\", \"idx\": 1358496000000, \"val\": 189.73}, {\"col\": \"YHOO\", \"idx\": 1358496000000, \"val\": 20.02}, {\"col\": \"MSFT\", \"idx\": 1358496000000, \"val\": 26.25}, {\"col\": \"AAPL\", \"idx\": 1358841600000, \"val\": 489.47}, {\"col\": \"IBM\", \"idx\": 1358841600000, \"val\": 191.3}, {\"col\": \"YHOO\", \"idx\": 1358841600000, \"val\": 19.9}, {\"col\": \"MSFT\", \"idx\": 1358841600000, \"val\": 26.16}, {\"col\": \"AAPL\", \"idx\": 1358928000000, \"val\": 498.43}, {\"col\": \"IBM\", \"idx\": 1358928000000, \"val\": 199.73}, {\"col\": \"YHOO\", \"idx\": 1358928000000, \"val\": 20.11}, {\"col\": \"MSFT\", \"idx\": 1358928000000, \"val\": 26.6}, {\"col\": \"AAPL\", \"idx\": 1359014400000, \"val\": 436.85}, {\"col\": \"IBM\", \"idx\": 1359014400000, \"val\": 199.44}, {\"col\": \"YHOO\", \"idx\": 1359014400000, \"val\": 20.44}, {\"col\": \"MSFT\", \"idx\": 1359014400000, \"val\": 26.62}, {\"col\": \"AAPL\", \"idx\": 1359100800000, \"val\": 426.55}, {\"col\": \"IBM\", \"idx\": 1359100800000, \"val\": 199.97}, {\"col\": \"YHOO\", \"idx\": 1359100800000, \"val\": 20.37}, {\"col\": \"MSFT\", \"idx\": 1359100800000, \"val\": 26.86}, {\"col\": \"AAPL\", \"idx\": 1359360000000, \"val\": 436.2}, {\"col\": \"IBM\", \"idx\": 1359360000000, \"val\": 199.93}, {\"col\": \"YHOO\", \"idx\": 1359360000000, \"val\": 20.31}, {\"col\": \"MSFT\", \"idx\": 1359360000000, \"val\": 26.89}, {\"col\": \"AAPL\", \"idx\": 1359446400000, \"val\": 444.38}, {\"col\": \"IBM\", \"idx\": 1359446400000, \"val\": 198.93}, {\"col\": \"YHOO\", \"idx\": 1359446400000, \"val\": 19.7}, {\"col\": \"MSFT\", \"idx\": 1359446400000, \"val\": 26.98}, {\"col\": \"AAPL\", \"idx\": 1359532800000, \"val\": 442.98}, {\"col\": \"IBM\", \"idx\": 1359532800000, \"val\": 198.56}, {\"col\": \"YHOO\", \"idx\": 1359532800000, \"val\": 20.12}, {\"col\": \"MSFT\", \"idx\": 1359532800000, \"val\": 26.83}, {\"col\": \"AAPL\", \"idx\": 1359619200000, \"val\": 441.68}, {\"col\": \"IBM\", \"idx\": 1359619200000, \"val\": 198.12}, {\"col\": \"YHOO\", \"idx\": 1359619200000, \"val\": 19.63}, {\"col\": \"MSFT\", \"idx\": 1359619200000, \"val\": 26.45}, {\"col\": \"AAPL\", \"idx\": 1359705600000, \"val\": 439.87}, {\"col\": \"IBM\", \"idx\": 1359705600000, \"val\": 200.18}, {\"col\": \"YHOO\", \"idx\": 1359705600000, \"val\": 19.76}, {\"col\": \"MSFT\", \"idx\": 1359705600000, \"val\": 26.91}, {\"col\": \"AAPL\", \"idx\": 1359964800000, \"val\": 428.91}, {\"col\": \"IBM\", \"idx\": 1359964800000, \"val\": 198.82}, {\"col\": \"YHOO\", \"idx\": 1359964800000, \"val\": 19.34}, {\"col\": \"MSFT\", \"idx\": 1359964800000, \"val\": 26.44}, {\"col\": \"AAPL\", \"idx\": 1360051200000, \"val\": 443.96}, {\"col\": \"IBM\", \"idx\": 1360051200000, \"val\": 197.85}, {\"col\": \"YHOO\", \"idx\": 1360051200000, \"val\": 19.66}, {\"col\": \"MSFT\", \"idx\": 1360051200000, \"val\": 26.49}, {\"col\": \"AAPL\", \"idx\": 1360137600000, \"val\": 443.49}, {\"col\": \"IBM\", \"idx\": 1360137600000, \"val\": 196.94}, {\"col\": \"YHOO\", \"idx\": 1360137600000, \"val\": 19.85}, {\"col\": \"MSFT\", \"idx\": 1360137600000, \"val\": 26.34}, {\"col\": \"AAPL\", \"idx\": 1360224000000, \"val\": 456.67}, {\"col\": \"IBM\", \"idx\": 1360224000000, \"val\": 195.69}, {\"col\": \"YHOO\", \"idx\": 1360224000000, \"val\": 20.32}, {\"col\": \"MSFT\", \"idx\": 1360224000000, \"val\": 26.28}, {\"col\": \"AAPL\", \"idx\": 1360310400000, \"val\": 463.27}, {\"col\": \"IBM\", \"idx\": 1360310400000, \"val\": 197.59}, {\"col\": \"YHOO\", \"idx\": 1360310400000, \"val\": 20.5}, {\"col\": \"MSFT\", \"idx\": 1360310400000, \"val\": 26.54}, {\"col\": \"AAPL\", \"idx\": 1360569600000, \"val\": 468.1}, {\"col\": \"IBM\", \"idx\": 1360569600000, \"val\": 196.1}, {\"col\": \"YHOO\", \"idx\": 1360569600000, \"val\": 20.9}, {\"col\": \"MSFT\", \"idx\": 1360569600000, \"val\": 26.84}, {\"col\": \"AAPL\", \"idx\": 1360656000000, \"val\": 456.36}, {\"col\": \"IBM\", \"idx\": 1360656000000, \"val\": 195.98}, {\"col\": \"YHOO\", \"idx\": 1360656000000, \"val\": 21.21}, {\"col\": \"MSFT\", \"idx\": 1360656000000, \"val\": 26.86}, {\"col\": \"AAPL\", \"idx\": 1360742400000, \"val\": 455.49}, {\"col\": \"IBM\", \"idx\": 1360742400000, \"val\": 196.03}, {\"col\": \"YHOO\", \"idx\": 1360742400000, \"val\": 21.15}, {\"col\": \"MSFT\", \"idx\": 1360742400000, \"val\": 27.0}, {\"col\": \"AAPL\", \"idx\": 1360828800000, \"val\": 455.08}, {\"col\": \"IBM\", \"idx\": 1360828800000, \"val\": 195.6}, {\"col\": \"YHOO\", \"idx\": 1360828800000, \"val\": 21.18}, {\"col\": \"MSFT\", \"idx\": 1360828800000, \"val\": 27.01}, {\"col\": \"AAPL\", \"idx\": 1360915200000, \"val\": 448.81}, {\"col\": \"IBM\", \"idx\": 1360915200000, \"val\": 196.9}, {\"col\": \"YHOO\", \"idx\": 1360915200000, \"val\": 21.02}, {\"col\": \"MSFT\", \"idx\": 1360915200000, \"val\": 26.98}, {\"col\": \"AAPL\", \"idx\": 1361260800000, \"val\": 448.65}, {\"col\": \"IBM\", \"idx\": 1361260800000, \"val\": 196.26}, {\"col\": \"YHOO\", \"idx\": 1361260800000, \"val\": 21.29}, {\"col\": \"MSFT\", \"idx\": 1361260800000, \"val\": 27.25}, {\"col\": \"AAPL\", \"idx\": 1361347200000, \"val\": 437.78}, {\"col\": \"IBM\", \"idx\": 1361347200000, \"val\": 195.27}, {\"col\": \"YHOO\", \"idx\": 1361347200000, \"val\": 20.92}, {\"col\": \"MSFT\", \"idx\": 1361347200000, \"val\": 27.07}, {\"col\": \"AAPL\", \"idx\": 1361433600000, \"val\": 435.06}, {\"col\": \"IBM\", \"idx\": 1361433600000, \"val\": 194.31}, {\"col\": \"YHOO\", \"idx\": 1361433600000, \"val\": 20.83}, {\"col\": \"MSFT\", \"idx\": 1361433600000, \"val\": 26.7}, {\"col\": \"AAPL\", \"idx\": 1361520000000, \"val\": 439.69}, {\"col\": \"IBM\", \"idx\": 1361520000000, \"val\": 197.01}, {\"col\": \"YHOO\", \"idx\": 1361520000000, \"val\": 21.22}, {\"col\": \"MSFT\", \"idx\": 1361520000000, \"val\": 26.97}, {\"col\": \"AAPL\", \"idx\": 1361779200000, \"val\": 431.88}, {\"col\": \"IBM\", \"idx\": 1361779200000, \"val\": 193.51}, {\"col\": \"YHOO\", \"idx\": 1361779200000, \"val\": 20.73}, {\"col\": \"MSFT\", \"idx\": 1361779200000, \"val\": 26.59}, {\"col\": \"AAPL\", \"idx\": 1361865600000, \"val\": 437.9}, {\"col\": \"IBM\", \"idx\": 1361865600000, \"val\": 195.1}, {\"col\": \"YHOO\", \"idx\": 1361865600000, \"val\": 20.76}, {\"col\": \"MSFT\", \"idx\": 1361865600000, \"val\": 26.59}, {\"col\": \"AAPL\", \"idx\": 1361952000000, \"val\": 433.61}, {\"col\": \"IBM\", \"idx\": 1361952000000, \"val\": 198.23}, {\"col\": \"YHOO\", \"idx\": 1361952000000, \"val\": 21.16}, {\"col\": \"MSFT\", \"idx\": 1361952000000, \"val\": 27.01}, {\"col\": \"AAPL\", \"idx\": 1362038400000, \"val\": 430.52}, {\"col\": \"IBM\", \"idx\": 1362038400000, \"val\": 196.76}, {\"col\": \"YHOO\", \"idx\": 1362038400000, \"val\": 21.31}, {\"col\": \"MSFT\", \"idx\": 1362038400000, \"val\": 27.0}, {\"col\": \"AAPL\", \"idx\": 1362124800000, \"val\": 419.86}, {\"col\": \"IBM\", \"idx\": 1362124800000, \"val\": 198.8}, {\"col\": \"YHOO\", \"idx\": 1362124800000, \"val\": 21.94}, {\"col\": \"MSFT\", \"idx\": 1362124800000, \"val\": 27.15}, {\"col\": \"AAPL\", \"idx\": 1362384000000, \"val\": 409.69}, {\"col\": \"IBM\", \"idx\": 1362384000000, \"val\": 201.03}, {\"col\": \"YHOO\", \"idx\": 1362384000000, \"val\": 22.7}, {\"col\": \"MSFT\", \"idx\": 1362384000000, \"val\": 27.34}, {\"col\": \"AAPL\", \"idx\": 1362470400000, \"val\": 420.51}, {\"col\": \"IBM\", \"idx\": 1362470400000, \"val\": 202.34}, {\"col\": \"YHOO\", \"idx\": 1362470400000, \"val\": 22.95}, {\"col\": \"MSFT\", \"idx\": 1362470400000, \"val\": 27.54}, {\"col\": \"AAPL\", \"idx\": 1362556800000, \"val\": 415.16}, {\"col\": \"IBM\", \"idx\": 1362556800000, \"val\": 204.15}, {\"col\": \"YHOO\", \"idx\": 1362556800000, \"val\": 22.8}, {\"col\": \"MSFT\", \"idx\": 1362556800000, \"val\": 27.29}, {\"col\": \"AAPL\", \"idx\": 1362643200000, \"val\": 419.96}, {\"col\": \"IBM\", \"idx\": 1362643200000, \"val\": 205.17}, {\"col\": \"YHOO\", \"idx\": 1362643200000, \"val\": 22.7}, {\"col\": \"MSFT\", \"idx\": 1362643200000, \"val\": 27.33}, {\"col\": \"AAPL\", \"idx\": 1362729600000, \"val\": 421.07}, {\"col\": \"IBM\", \"idx\": 1362729600000, \"val\": 206.11}, {\"col\": \"YHOO\", \"idx\": 1362729600000, \"val\": 22.9}, {\"col\": \"MSFT\", \"idx\": 1362729600000, \"val\": 27.2}, {\"col\": \"AAPL\", \"idx\": 1362985200000, \"val\": 427.07}, {\"col\": \"IBM\", \"idx\": 1362985200000, \"val\": 205.82}, {\"col\": \"YHOO\", \"idx\": 1362985200000, \"val\": 22.6}, {\"col\": \"MSFT\", \"idx\": 1362985200000, \"val\": 27.07}, {\"col\": \"AAPL\", \"idx\": 1363071600000, \"val\": 417.87}, {\"col\": \"IBM\", \"idx\": 1363071600000, \"val\": 206.28}, {\"col\": \"YHOO\", \"idx\": 1363071600000, \"val\": 22.4}, {\"col\": \"MSFT\", \"idx\": 1363071600000, \"val\": 27.11}, {\"col\": \"AAPL\", \"idx\": 1363158000000, \"val\": 417.79}, {\"col\": \"IBM\", \"idx\": 1363158000000, \"val\": 207.76}, {\"col\": \"YHOO\", \"idx\": 1363158000000, \"val\": 22.34}, {\"col\": \"MSFT\", \"idx\": 1363158000000, \"val\": 27.12}, {\"col\": \"AAPL\", \"idx\": 1363244400000, \"val\": 421.84}, {\"col\": \"IBM\", \"idx\": 1363244400000, \"val\": 211.42}, {\"col\": \"YHOO\", \"idx\": 1363244400000, \"val\": 22.43}, {\"col\": \"MSFT\", \"idx\": 1363244400000, \"val\": 27.33}, {\"col\": \"AAPL\", \"idx\": 1363330800000, \"val\": 432.72}, {\"col\": \"IBM\", \"idx\": 1363330800000, \"val\": 210.56}, {\"col\": \"YHOO\", \"idx\": 1363330800000, \"val\": 22.07}, {\"col\": \"MSFT\", \"idx\": 1363330800000, \"val\": 27.24}, {\"col\": \"AAPL\", \"idx\": 1363590000000, \"val\": 444.48}, {\"col\": \"IBM\", \"idx\": 1363590000000, \"val\": 208.89}, {\"col\": \"YHOO\", \"idx\": 1363590000000, \"val\": 22.01}, {\"col\": \"MSFT\", \"idx\": 1363590000000, \"val\": 27.3}, {\"col\": \"AAPL\", \"idx\": 1363676400000, \"val\": 443.28}, {\"col\": \"IBM\", \"idx\": 1363676400000, \"val\": 209.11}, {\"col\": \"YHOO\", \"idx\": 1363676400000, \"val\": 22.17}, {\"col\": \"MSFT\", \"idx\": 1363676400000, \"val\": 27.37}, {\"col\": \"AAPL\", \"idx\": 1363762800000, \"val\": 440.93}, {\"col\": \"IBM\", \"idx\": 1363762800000, \"val\": 210.7}, {\"col\": \"YHOO\", \"idx\": 1363762800000, \"val\": 22.1}, {\"col\": \"MSFT\", \"idx\": 1363762800000, \"val\": 27.51}, {\"col\": \"AAPL\", \"idx\": 1363849200000, \"val\": 441.57}, {\"col\": \"IBM\", \"idx\": 1363849200000, \"val\": 207.96}, {\"col\": \"YHOO\", \"idx\": 1363849200000, \"val\": 22.86}, {\"col\": \"MSFT\", \"idx\": 1363849200000, \"val\": 27.31}, {\"col\": \"AAPL\", \"idx\": 1363935600000, \"val\": 450.52}, {\"col\": \"IBM\", \"idx\": 1363935600000, \"val\": 207.78}, {\"col\": \"YHOO\", \"idx\": 1363935600000, \"val\": 23.26}, {\"col\": \"MSFT\", \"idx\": 1363935600000, \"val\": 27.44}, {\"col\": \"AAPL\", \"idx\": 1364194800000, \"val\": 452.15}, {\"col\": \"IBM\", \"idx\": 1364194800000, \"val\": 206.47}, {\"col\": \"YHOO\", \"idx\": 1364194800000, \"val\": 23.38}, {\"col\": \"MSFT\", \"idx\": 1364194800000, \"val\": 27.35}, {\"col\": \"AAPL\", \"idx\": 1364281200000, \"val\": 449.77}, {\"col\": \"IBM\", \"idx\": 1364281200000, \"val\": 208.05}, {\"col\": \"YHOO\", \"idx\": 1364281200000, \"val\": 23.59}, {\"col\": \"MSFT\", \"idx\": 1364281200000, \"val\": 27.35}, {\"col\": \"AAPL\", \"idx\": 1364367600000, \"val\": 440.93}, {\"col\": \"IBM\", \"idx\": 1364367600000, \"val\": 206.61}, {\"col\": \"YHOO\", \"idx\": 1364367600000, \"val\": 23.59}, {\"col\": \"MSFT\", \"idx\": 1364367600000, \"val\": 27.56}, {\"col\": \"AAPL\", \"idx\": 1364454000000, \"val\": 431.74}, {\"col\": \"IBM\", \"idx\": 1364454000000, \"val\": 208.97}, {\"col\": \"YHOO\", \"idx\": 1364454000000, \"val\": 23.53}, {\"col\": \"MSFT\", \"idx\": 1364454000000, \"val\": 27.79}, {\"col\": \"AAPL\", \"idx\": 1364799600000, \"val\": 418.33}, {\"col\": \"IBM\", \"idx\": 1364799600000, \"val\": 208.07}, {\"col\": \"YHOO\", \"idx\": 1364799600000, \"val\": 23.5}, {\"col\": \"MSFT\", \"idx\": 1364799600000, \"val\": 27.79}, {\"col\": \"AAPL\", \"idx\": 1364886000000, \"val\": 419.19}, {\"col\": \"IBM\", \"idx\": 1364886000000, \"val\": 210.01}, {\"col\": \"YHOO\", \"idx\": 1364886000000, \"val\": 23.78}, {\"col\": \"MSFT\", \"idx\": 1364886000000, \"val\": 27.98}, {\"col\": \"AAPL\", \"idx\": 1364972400000, \"val\": 421.34}, {\"col\": \"IBM\", \"idx\": 1364972400000, \"val\": 208.35}, {\"col\": \"YHOO\", \"idx\": 1364972400000, \"val\": 23.38}, {\"col\": \"MSFT\", \"idx\": 1364972400000, \"val\": 27.74}, {\"col\": \"AAPL\", \"idx\": 1365058800000, \"val\": 417.17}, {\"col\": \"IBM\", \"idx\": 1365058800000, \"val\": 207.03}, {\"col\": \"YHOO\", \"idx\": 1365058800000, \"val\": 23.52}, {\"col\": \"MSFT\", \"idx\": 1365058800000, \"val\": 27.78}, {\"col\": \"AAPL\", \"idx\": 1365145200000, \"val\": 412.76}, {\"col\": \"IBM\", \"idx\": 1365145200000, \"val\": 205.16}, {\"col\": \"YHOO\", \"idx\": 1365145200000, \"val\": 23.3}, {\"col\": \"MSFT\", \"idx\": 1365145200000, \"val\": 27.88}, {\"col\": \"AAPL\", \"idx\": 1365404400000, \"val\": 415.7}, {\"col\": \"IBM\", \"idx\": 1365404400000, \"val\": 205.08}, {\"col\": \"YHOO\", \"idx\": 1365404400000, \"val\": 23.48}, {\"col\": \"MSFT\", \"idx\": 1365404400000, \"val\": 27.77}, {\"col\": \"AAPL\", \"idx\": 1365490800000, \"val\": 416.45}, {\"col\": \"IBM\", \"idx\": 1365490800000, \"val\": 204.98}, {\"col\": \"YHOO\", \"idx\": 1365490800000, \"val\": 23.83}, {\"col\": \"MSFT\", \"idx\": 1365490800000, \"val\": 28.76}, {\"col\": \"AAPL\", \"idx\": 1365577200000, \"val\": 424.95}, {\"col\": \"IBM\", \"idx\": 1365577200000, \"val\": 207.7}, {\"col\": \"YHOO\", \"idx\": 1365577200000, \"val\": 24.2}, {\"col\": \"MSFT\", \"idx\": 1365577200000, \"val\": 29.41}, {\"col\": \"AAPL\", \"idx\": 1365663600000, \"val\": 423.62}, {\"col\": \"IBM\", \"idx\": 1365663600000, \"val\": 208.6}, {\"col\": \"YHOO\", \"idx\": 1365663600000, \"val\": 24.49}, {\"col\": \"MSFT\", \"idx\": 1365663600000, \"val\": 28.11}, {\"col\": \"AAPL\", \"idx\": 1365750000000, \"val\": 419.2}, {\"col\": \"IBM\", \"idx\": 1365750000000, \"val\": 207.09}, {\"col\": \"YHOO\", \"idx\": 1365750000000, \"val\": 24.69}, {\"col\": \"MSFT\", \"idx\": 1365750000000, \"val\": 27.97}, {\"col\": \"AAPL\", \"idx\": 1366009200000, \"val\": 409.5}, {\"col\": \"IBM\", \"idx\": 1366009200000, \"val\": 205.02}, {\"col\": \"YHOO\", \"idx\": 1366009200000, \"val\": 23.98}, {\"col\": \"MSFT\", \"idx\": 1366009200000, \"val\": 27.87}, {\"col\": \"AAPL\", \"idx\": 1366095600000, \"val\": 415.73}, {\"col\": \"IBM\", \"idx\": 1366095600000, \"val\": 207.7}, {\"col\": \"YHOO\", \"idx\": 1366095600000, \"val\": 23.79}, {\"col\": \"MSFT\", \"idx\": 1366095600000, \"val\": 28.14}, {\"col\": \"AAPL\", \"idx\": 1366182000000, \"val\": 392.87}, {\"col\": \"IBM\", \"idx\": 1366182000000, \"val\": 205.42}, {\"col\": \"YHOO\", \"idx\": 1366182000000, \"val\": 23.7}, {\"col\": \"MSFT\", \"idx\": 1366182000000, \"val\": 28.0}, {\"col\": \"AAPL\", \"idx\": 1366268400000, \"val\": 382.38}, {\"col\": \"IBM\", \"idx\": 1366268400000, \"val\": 202.95}, {\"col\": \"YHOO\", \"idx\": 1366268400000, \"val\": 23.26}, {\"col\": \"MSFT\", \"idx\": 1366268400000, \"val\": 27.97}, {\"col\": \"AAPL\", \"idx\": 1366354800000, \"val\": 380.9}, {\"col\": \"IBM\", \"idx\": 1366354800000, \"val\": 186.15}, {\"col\": \"YHOO\", \"idx\": 1366354800000, \"val\": 23.47}, {\"col\": \"MSFT\", \"idx\": 1366354800000, \"val\": 28.92}, {\"col\": \"AAPL\", \"idx\": 1366614000000, \"val\": 388.84}, {\"col\": \"IBM\", \"idx\": 1366614000000, \"val\": 184.02}, {\"col\": \"YHOO\", \"idx\": 1366614000000, \"val\": 23.95}, {\"col\": \"MSFT\", \"idx\": 1366614000000, \"val\": 29.95}, {\"col\": \"AAPL\", \"idx\": 1366700400000, \"val\": 396.12}, {\"col\": \"IBM\", \"idx\": 1366700400000, \"val\": 187.72}, {\"col\": \"YHOO\", \"idx\": 1366700400000, \"val\": 24.38}, {\"col\": \"MSFT\", \"idx\": 1366700400000, \"val\": 29.72}, {\"col\": \"AAPL\", \"idx\": 1366786800000, \"val\": 395.46}, {\"col\": \"IBM\", \"idx\": 1366786800000, \"val\": 187.82}, {\"col\": \"YHOO\", \"idx\": 1366786800000, \"val\": 24.75}, {\"col\": \"MSFT\", \"idx\": 1366786800000, \"val\": 30.85}, {\"col\": \"AAPL\", \"idx\": 1366873200000, \"val\": 398.31}, {\"col\": \"IBM\", \"idx\": 1366873200000, \"val\": 190.02}, {\"col\": \"YHOO\", \"idx\": 1366873200000, \"val\": 25.2}, {\"col\": \"MSFT\", \"idx\": 1366873200000, \"val\": 31.03}, {\"col\": \"AAPL\", \"idx\": 1366959600000, \"val\": 406.91}, {\"col\": \"IBM\", \"idx\": 1366959600000, \"val\": 190.37}, {\"col\": \"YHOO\", \"idx\": 1366959600000, \"val\": 24.68}, {\"col\": \"MSFT\", \"idx\": 1366959600000, \"val\": 30.88}, {\"col\": \"AAPL\", \"idx\": 1367218800000, \"val\": 419.51}, {\"col\": \"IBM\", \"idx\": 1367218800000, \"val\": 195.11}, {\"col\": \"YHOO\", \"idx\": 1367218800000, \"val\": 24.43}, {\"col\": \"MSFT\", \"idx\": 1367218800000, \"val\": 31.68}, {\"col\": \"AAPL\", \"idx\": 1367305200000, \"val\": 431.86}, {\"col\": \"IBM\", \"idx\": 1367305200000, \"val\": 198.43}, {\"col\": \"YHOO\", \"idx\": 1367305200000, \"val\": 24.73}, {\"col\": \"MSFT\", \"idx\": 1367305200000, \"val\": 32.15}, {\"col\": \"AAPL\", \"idx\": 1367391600000, \"val\": 428.46}, {\"col\": \"IBM\", \"idx\": 1367391600000, \"val\": 195.58}, {\"col\": \"YHOO\", \"idx\": 1367391600000, \"val\": 24.3}, {\"col\": \"MSFT\", \"idx\": 1367391600000, \"val\": 31.78}, {\"col\": \"AAPL\", \"idx\": 1367478000000, \"val\": 434.53}, {\"col\": \"IBM\", \"idx\": 1367478000000, \"val\": 198.29}, {\"col\": \"YHOO\", \"idx\": 1367478000000, \"val\": 24.97}, {\"col\": \"MSFT\", \"idx\": 1367478000000, \"val\": 32.21}, {\"col\": \"AAPL\", \"idx\": 1367564400000, \"val\": 438.88}, {\"col\": \"IBM\", \"idx\": 1367564400000, \"val\": 200.36}, {\"col\": \"YHOO\", \"idx\": 1367564400000, \"val\": 25.07}, {\"col\": \"MSFT\", \"idx\": 1367564400000, \"val\": 32.53}, {\"col\": \"AAPL\", \"idx\": 1367823600000, \"val\": 449.35}, {\"col\": \"IBM\", \"idx\": 1367823600000, \"val\": 198.67}, {\"col\": \"YHOO\", \"idx\": 1367823600000, \"val\": 25.17}, {\"col\": \"MSFT\", \"idx\": 1367823600000, \"val\": 32.78}, {\"col\": \"AAPL\", \"idx\": 1367910000000, \"val\": 447.35}, {\"col\": \"IBM\", \"idx\": 1367910000000, \"val\": 199.5}, {\"col\": \"YHOO\", \"idx\": 1367910000000, \"val\": 26.07}, {\"col\": \"MSFT\", \"idx\": 1367910000000, \"val\": 32.36}, {\"col\": \"AAPL\", \"idx\": 1367996400000, \"val\": 452.4}, {\"col\": \"IBM\", \"idx\": 1367996400000, \"val\": 201.61}, {\"col\": \"YHOO\", \"idx\": 1367996400000, \"val\": 26.41}, {\"col\": \"MSFT\", \"idx\": 1367996400000, \"val\": 32.05}, {\"col\": \"AAPL\", \"idx\": 1368082800000, \"val\": 448.46}, {\"col\": \"IBM\", \"idx\": 1368082800000, \"val\": 200.05}, {\"col\": \"YHOO\", \"idx\": 1368082800000, \"val\": 26.24}, {\"col\": \"MSFT\", \"idx\": 1368082800000, \"val\": 31.73}, {\"col\": \"AAPL\", \"idx\": 1368169200000, \"val\": 444.72}, {\"col\": \"IBM\", \"idx\": 1368169200000, \"val\": 201.26}, {\"col\": \"YHOO\", \"idx\": 1368169200000, \"val\": 26.83}, {\"col\": \"MSFT\", \"idx\": 1368169200000, \"val\": 31.75}, {\"col\": \"AAPL\", \"idx\": 1368428400000, \"val\": 446.46}, {\"col\": \"IBM\", \"idx\": 1368428400000, \"val\": 199.29}, {\"col\": \"YHOO\", \"idx\": 1368428400000, \"val\": 26.39}, {\"col\": \"MSFT\", \"idx\": 1368428400000, \"val\": 32.08}, {\"col\": \"AAPL\", \"idx\": 1368514800000, \"val\": 435.78}, {\"col\": \"IBM\", \"idx\": 1368514800000, \"val\": 200.02}, {\"col\": \"YHOO\", \"idx\": 1368514800000, \"val\": 26.64}, {\"col\": \"MSFT\", \"idx\": 1368514800000, \"val\": 32.8}, {\"col\": \"AAPL\", \"idx\": 1368601200000, \"val\": 421.04}, {\"col\": \"IBM\", \"idx\": 1368601200000, \"val\": 200.13}, {\"col\": \"YHOO\", \"idx\": 1368601200000, \"val\": 27.34}, {\"col\": \"MSFT\", \"idx\": 1368601200000, \"val\": 33.11}, {\"col\": \"AAPL\", \"idx\": 1368687600000, \"val\": 426.67}, {\"col\": \"IBM\", \"idx\": 1368687600000, \"val\": 201.48}, {\"col\": \"YHOO\", \"idx\": 1368687600000, \"val\": 26.58}, {\"col\": \"MSFT\", \"idx\": 1368687600000, \"val\": 33.34}, {\"col\": \"AAPL\", \"idx\": 1368774000000, \"val\": 425.37}, {\"col\": \"IBM\", \"idx\": 1368774000000, \"val\": 205.17}, {\"col\": \"YHOO\", \"idx\": 1368774000000, \"val\": 26.52}, {\"col\": \"MSFT\", \"idx\": 1368774000000, \"val\": 34.11}, {\"col\": \"AAPL\", \"idx\": 1369033200000, \"val\": 434.87}, {\"col\": \"IBM\", \"idx\": 1369033200000, \"val\": 204.34}, {\"col\": \"YHOO\", \"idx\": 1369033200000, \"val\": 26.58}, {\"col\": \"MSFT\", \"idx\": 1369033200000, \"val\": 34.32}, {\"col\": \"AAPL\", \"idx\": 1369119600000, \"val\": 431.66}, {\"col\": \"IBM\", \"idx\": 1369119600000, \"val\": 205.38}, {\"col\": \"YHOO\", \"idx\": 1369119600000, \"val\": 27.0}, {\"col\": \"MSFT\", \"idx\": 1369119600000, \"val\": 34.09}, {\"col\": \"AAPL\", \"idx\": 1369206000000, \"val\": 433.32}, {\"col\": \"IBM\", \"idx\": 1369206000000, \"val\": 203.74}, {\"col\": \"YHOO\", \"idx\": 1369206000000, \"val\": 26.54}, {\"col\": \"MSFT\", \"idx\": 1369206000000, \"val\": 33.86}, {\"col\": \"AAPL\", \"idx\": 1369292400000, \"val\": 434.09}, {\"col\": \"IBM\", \"idx\": 1369292400000, \"val\": 202.93}, {\"col\": \"YHOO\", \"idx\": 1369292400000, \"val\": 26.02}, {\"col\": \"MSFT\", \"idx\": 1369292400000, \"val\": 33.41}, {\"col\": \"AAPL\", \"idx\": 1369378800000, \"val\": 437.05}, {\"col\": \"IBM\", \"idx\": 1369378800000, \"val\": 202.49}, {\"col\": \"YHOO\", \"idx\": 1369378800000, \"val\": 26.33}, {\"col\": \"MSFT\", \"idx\": 1369378800000, \"val\": 33.52}, {\"col\": \"AAPL\", \"idx\": 1369724400000, \"val\": 433.4}, {\"col\": \"IBM\", \"idx\": 1369724400000, \"val\": 204.52}, {\"col\": \"YHOO\", \"idx\": 1369724400000, \"val\": 26.07}, {\"col\": \"MSFT\", \"idx\": 1369724400000, \"val\": 34.26}, {\"col\": \"AAPL\", \"idx\": 1369810800000, \"val\": 436.85}, {\"col\": \"IBM\", \"idx\": 1369810800000, \"val\": 204.66}, {\"col\": \"YHOO\", \"idx\": 1369810800000, \"val\": 25.81}, {\"col\": \"MSFT\", \"idx\": 1369810800000, \"val\": 34.12}, {\"col\": \"AAPL\", \"idx\": 1369897200000, \"val\": 443.36}, {\"col\": \"IBM\", \"idx\": 1369897200000, \"val\": 206.08}, {\"col\": \"YHOO\", \"idx\": 1369897200000, \"val\": 26.33}, {\"col\": \"MSFT\", \"idx\": 1369897200000, \"val\": 34.27}, {\"col\": \"AAPL\", \"idx\": 1369983600000, \"val\": 441.54}, {\"col\": \"IBM\", \"idx\": 1369983600000, \"val\": 204.76}, {\"col\": \"YHOO\", \"idx\": 1369983600000, \"val\": 26.3}, {\"col\": \"MSFT\", \"idx\": 1369983600000, \"val\": 34.14}, {\"col\": \"AAPL\", \"idx\": 1370242800000, \"val\": 442.52}, {\"col\": \"IBM\", \"idx\": 1370242800000, \"val\": 205.67}, {\"col\": \"YHOO\", \"idx\": 1370242800000, \"val\": 26.39}, {\"col\": \"MSFT\", \"idx\": 1370242800000, \"val\": 34.81}, {\"col\": \"AAPL\", \"idx\": 1370329200000, \"val\": 441.13}, {\"col\": \"IBM\", \"idx\": 1370329200000, \"val\": 202.96}, {\"col\": \"YHOO\", \"idx\": 1370329200000, \"val\": 26.26}, {\"col\": \"MSFT\", \"idx\": 1370329200000, \"val\": 34.23}, {\"col\": \"AAPL\", \"idx\": 1370415600000, \"val\": 437.01}, {\"col\": \"IBM\", \"idx\": 1370415600000, \"val\": 199.56}, {\"col\": \"YHOO\", \"idx\": 1370415600000, \"val\": 25.75}, {\"col\": \"MSFT\", \"idx\": 1370415600000, \"val\": 34.02}, {\"col\": \"AAPL\", \"idx\": 1370502000000, \"val\": 430.48}, {\"col\": \"IBM\", \"idx\": 1370502000000, \"val\": 200.6}, {\"col\": \"YHOO\", \"idx\": 1370502000000, \"val\": 26.21}, {\"col\": \"MSFT\", \"idx\": 1370502000000, \"val\": 34.2}, {\"col\": \"AAPL\", \"idx\": 1370588400000, \"val\": 433.77}, {\"col\": \"IBM\", \"idx\": 1370588400000, \"val\": 203.11}, {\"col\": \"YHOO\", \"idx\": 1370588400000, \"val\": 27.04}, {\"col\": \"MSFT\", \"idx\": 1370588400000, \"val\": 34.89}, {\"col\": \"AAPL\", \"idx\": 1370847600000, \"val\": 430.9}, {\"col\": \"IBM\", \"idx\": 1370847600000, \"val\": 201.8}, {\"col\": \"YHOO\", \"idx\": 1370847600000, \"val\": 26.74}, {\"col\": \"MSFT\", \"idx\": 1370847600000, \"val\": 34.7}, {\"col\": \"AAPL\", \"idx\": 1370934000000, \"val\": 429.63}, {\"col\": \"IBM\", \"idx\": 1370934000000, \"val\": 200.78}, {\"col\": \"YHOO\", \"idx\": 1370934000000, \"val\": 26.4}, {\"col\": \"MSFT\", \"idx\": 1370934000000, \"val\": 34.08}, {\"col\": \"AAPL\", \"idx\": 1371020400000, \"val\": 424.32}, {\"col\": \"IBM\", \"idx\": 1371020400000, \"val\": 198.04}, {\"col\": \"YHOO\", \"idx\": 1371020400000, \"val\": 25.89}, {\"col\": \"MSFT\", \"idx\": 1371020400000, \"val\": 34.24}, {\"col\": \"AAPL\", \"idx\": 1371106800000, \"val\": 428.02}, {\"col\": \"IBM\", \"idx\": 1371106800000, \"val\": 200.57}, {\"col\": \"YHOO\", \"idx\": 1371106800000, \"val\": 26.37}, {\"col\": \"MSFT\", \"idx\": 1371106800000, \"val\": 33.96}, {\"col\": \"AAPL\", \"idx\": 1371193200000, \"val\": 422.22}, {\"col\": \"IBM\", \"idx\": 1371193200000, \"val\": 199.03}, {\"col\": \"YHOO\", \"idx\": 1371193200000, \"val\": 26.28}, {\"col\": \"MSFT\", \"idx\": 1371193200000, \"val\": 33.65}, {\"col\": \"AAPL\", \"idx\": 1371452400000, \"val\": 424.14}, {\"col\": \"IBM\", \"idx\": 1371452400000, \"val\": 199.86}, {\"col\": \"YHOO\", \"idx\": 1371452400000, \"val\": 26.54}, {\"col\": \"MSFT\", \"idx\": 1371452400000, \"val\": 34.24}, {\"col\": \"AAPL\", \"idx\": 1371538800000, \"val\": 423.91}, {\"col\": \"IBM\", \"idx\": 1371538800000, \"val\": 201.66}, {\"col\": \"YHOO\", \"idx\": 1371538800000, \"val\": 26.66}, {\"col\": \"MSFT\", \"idx\": 1371538800000, \"val\": 34.22}, {\"col\": \"AAPL\", \"idx\": 1371625200000, \"val\": 415.3}, {\"col\": \"IBM\", \"idx\": 1371625200000, \"val\": 198.77}, {\"col\": \"YHOO\", \"idx\": 1371625200000, \"val\": 26.24}, {\"col\": \"MSFT\", \"idx\": 1371625200000, \"val\": 33.84}, {\"col\": \"AAPL\", \"idx\": 1371711600000, \"val\": 409.25}, {\"col\": \"IBM\", \"idx\": 1371711600000, \"val\": 194.25}, {\"col\": \"YHOO\", \"idx\": 1371711600000, \"val\": 25.35}, {\"col\": \"MSFT\", \"idx\": 1371711600000, \"val\": 32.76}, {\"col\": \"AAPL\", \"idx\": 1371798000000, \"val\": 405.97}, {\"col\": \"IBM\", \"idx\": 1371798000000, \"val\": 192.39}, {\"col\": \"YHOO\", \"idx\": 1371798000000, \"val\": 25.19}, {\"col\": \"MSFT\", \"idx\": 1371798000000, \"val\": 32.54}, {\"col\": \"AAPL\", \"idx\": 1372057200000, \"val\": 395.21}, {\"col\": \"IBM\", \"idx\": 1372057200000, \"val\": 190.5}, {\"col\": \"YHOO\", \"idx\": 1372057200000, \"val\": 24.07}, {\"col\": \"MSFT\", \"idx\": 1372057200000, \"val\": 32.98}, {\"col\": \"AAPL\", \"idx\": 1372143600000, \"val\": 395.3}, {\"col\": \"IBM\", \"idx\": 1372143600000, \"val\": 191.92}, {\"col\": \"YHOO\", \"idx\": 1372143600000, \"val\": 24.96}, {\"col\": \"MSFT\", \"idx\": 1372143600000, \"val\": 32.94}, {\"col\": \"AAPL\", \"idx\": 1372230000000, \"val\": 390.82}, {\"col\": \"IBM\", \"idx\": 1372230000000, \"val\": 191.8}, {\"col\": \"YHOO\", \"idx\": 1372230000000, \"val\": 25.29}, {\"col\": \"MSFT\", \"idx\": 1372230000000, \"val\": 33.6}, {\"col\": \"AAPL\", \"idx\": 1372316400000, \"val\": 386.61}, {\"col\": \"IBM\", \"idx\": 1372316400000, \"val\": 192.58}, {\"col\": \"YHOO\", \"idx\": 1372316400000, \"val\": 25.47}, {\"col\": \"MSFT\", \"idx\": 1372316400000, \"val\": 33.87}, {\"col\": \"AAPL\", \"idx\": 1372402800000, \"val\": 389.31}, {\"col\": \"IBM\", \"idx\": 1372402800000, \"val\": 188.11}, {\"col\": \"YHOO\", \"idx\": 1372402800000, \"val\": 25.13}, {\"col\": \"MSFT\", \"idx\": 1372402800000, \"val\": 33.79}, {\"col\": \"AAPL\", \"idx\": 1372662000000, \"val\": 401.77}, {\"col\": \"IBM\", \"idx\": 1372662000000, \"val\": 188.28}, {\"col\": \"YHOO\", \"idx\": 1372662000000, \"val\": 25.24}, {\"col\": \"MSFT\", \"idx\": 1372662000000, \"val\": 33.61}, {\"col\": \"AAPL\", \"idx\": 1372748400000, \"val\": 410.87}, {\"col\": \"IBM\", \"idx\": 1372748400000, \"val\": 188.5}, {\"col\": \"YHOO\", \"idx\": 1372748400000, \"val\": 24.99}, {\"col\": \"MSFT\", \"idx\": 1372748400000, \"val\": 33.2}, {\"col\": \"AAPL\", \"idx\": 1372834800000, \"val\": 413.14}, {\"col\": \"IBM\", \"idx\": 1372834800000, \"val\": 190.22}, {\"col\": \"YHOO\", \"idx\": 1372834800000, \"val\": 25.59}, {\"col\": \"MSFT\", \"idx\": 1372834800000, \"val\": 33.27}, {\"col\": \"AAPL\", \"idx\": 1373007600000, \"val\": 409.82}, {\"col\": \"IBM\", \"idx\": 1373007600000, \"val\": 191.87}, {\"col\": \"YHOO\", \"idx\": 1373007600000, \"val\": 25.68}, {\"col\": \"MSFT\", \"idx\": 1373007600000, \"val\": 33.46}, {\"col\": \"AAPL\", \"idx\": 1373266800000, \"val\": 407.49}, {\"col\": \"IBM\", \"idx\": 1373266800000, \"val\": 191.92}, {\"col\": \"YHOO\", \"idx\": 1373266800000, \"val\": 25.53}, {\"col\": \"MSFT\", \"idx\": 1373266800000, \"val\": 33.58}, {\"col\": \"AAPL\", \"idx\": 1373353200000, \"val\": 414.66}, {\"col\": \"IBM\", \"idx\": 1373353200000, \"val\": 188.3}, {\"col\": \"YHOO\", \"idx\": 1373353200000, \"val\": 26.68}, {\"col\": \"MSFT\", \"idx\": 1373353200000, \"val\": 33.6}, {\"col\": \"AAPL\", \"idx\": 1373439600000, \"val\": 413.07}, {\"col\": \"IBM\", \"idx\": 1373439600000, \"val\": 189.23}, {\"col\": \"YHOO\", \"idx\": 1373439600000, \"val\": 26.56}, {\"col\": \"MSFT\", \"idx\": 1373439600000, \"val\": 33.94}, {\"col\": \"AAPL\", \"idx\": 1373526000000, \"val\": 419.51}, {\"col\": \"IBM\", \"idx\": 1373526000000, \"val\": 189.78}, {\"col\": \"YHOO\", \"idx\": 1373526000000, \"val\": 27.04}, {\"col\": \"MSFT\", \"idx\": 1373526000000, \"val\": 34.91}, {\"col\": \"AAPL\", \"idx\": 1373612400000, \"val\": 418.75}, {\"col\": \"IBM\", \"idx\": 1373612400000, \"val\": 189.06}, {\"col\": \"YHOO\", \"idx\": 1373612400000, \"val\": 27.23}, {\"col\": \"MSFT\", \"idx\": 1373612400000, \"val\": 34.89}, {\"col\": \"AAPL\", \"idx\": 1373871600000, \"val\": 419.66}, {\"col\": \"IBM\", \"idx\": 1373871600000, \"val\": 190.96}, {\"col\": \"YHOO\", \"idx\": 1373871600000, \"val\": 27.34}, {\"col\": \"MSFT\", \"idx\": 1373871600000, \"val\": 35.38}, {\"col\": \"AAPL\", \"idx\": 1373958000000, \"val\": 422.37}, {\"col\": \"IBM\", \"idx\": 1373958000000, \"val\": 190.81}, {\"col\": \"YHOO\", \"idx\": 1373958000000, \"val\": 26.88}, {\"col\": \"MSFT\", \"idx\": 1373958000000, \"val\": 35.48}, {\"col\": \"AAPL\", \"idx\": 1374044400000, \"val\": 422.48}, {\"col\": \"IBM\", \"idx\": 1374044400000, \"val\": 191.5}, {\"col\": \"YHOO\", \"idx\": 1374044400000, \"val\": 29.66}, {\"col\": \"MSFT\", \"idx\": 1374044400000, \"val\": 34.96}, {\"col\": \"AAPL\", \"idx\": 1374130800000, \"val\": 423.9}, {\"col\": \"IBM\", \"idx\": 1374130800000, \"val\": 194.88}, {\"col\": \"YHOO\", \"idx\": 1374130800000, \"val\": 29.66}, {\"col\": \"MSFT\", \"idx\": 1374130800000, \"val\": 34.67}, {\"col\": \"AAPL\", \"idx\": 1374217200000, \"val\": 417.21}, {\"col\": \"IBM\", \"idx\": 1374217200000, \"val\": 190.5}, {\"col\": \"YHOO\", \"idx\": 1374217200000, \"val\": 29.11}, {\"col\": \"MSFT\", \"idx\": 1374217200000, \"val\": 30.72}, {\"col\": \"AAPL\", \"idx\": 1374476400000, \"val\": 418.55}, {\"col\": \"IBM\", \"idx\": 1374476400000, \"val\": 191.05}, {\"col\": \"YHOO\", \"idx\": 1374476400000, \"val\": 27.86}, {\"col\": \"MSFT\", \"idx\": 1374476400000, \"val\": 31.31}, {\"col\": \"AAPL\", \"idx\": 1374562800000, \"val\": 411.36}, {\"col\": \"IBM\", \"idx\": 1374562800000, \"val\": 191.92}, {\"col\": \"YHOO\", \"idx\": 1374562800000, \"val\": 27.36}, {\"col\": \"MSFT\", \"idx\": 1374562800000, \"val\": 31.13}, {\"col\": \"AAPL\", \"idx\": 1374649200000, \"val\": 432.49}, {\"col\": \"IBM\", \"idx\": 1374649200000, \"val\": 193.53}, {\"col\": \"YHOO\", \"idx\": 1374649200000, \"val\": 27.84}, {\"col\": \"MSFT\", \"idx\": 1374649200000, \"val\": 31.26}, {\"col\": \"AAPL\", \"idx\": 1374735600000, \"val\": 430.52}, {\"col\": \"IBM\", \"idx\": 1374735600000, \"val\": 194.13}, {\"col\": \"YHOO\", \"idx\": 1374735600000, \"val\": 28.27}, {\"col\": \"MSFT\", \"idx\": 1374735600000, \"val\": 30.71}, {\"col\": \"AAPL\", \"idx\": 1374822000000, \"val\": 432.96}, {\"col\": \"IBM\", \"idx\": 1374822000000, \"val\": 194.25}, {\"col\": \"YHOO\", \"idx\": 1374822000000, \"val\": 28.11}, {\"col\": \"MSFT\", \"idx\": 1374822000000, \"val\": 30.93}, {\"col\": \"AAPL\", \"idx\": 1375081200000, \"val\": 439.64}, {\"col\": \"IBM\", \"idx\": 1375081200000, \"val\": 193.13}, {\"col\": \"YHOO\", \"idx\": 1375081200000, \"val\": 27.93}, {\"col\": \"MSFT\", \"idx\": 1375081200000, \"val\": 30.85}, {\"col\": \"AAPL\", \"idx\": 1375167600000, \"val\": 445.07}, {\"col\": \"IBM\", \"idx\": 1375167600000, \"val\": 192.94}, {\"col\": \"YHOO\", \"idx\": 1375167600000, \"val\": 28.05}, {\"col\": \"MSFT\", \"idx\": 1375167600000, \"val\": 31.16}, {\"col\": \"AAPL\", \"idx\": 1375254000000, \"val\": 444.29}, {\"col\": \"IBM\", \"idx\": 1375254000000, \"val\": 191.98}, {\"col\": \"YHOO\", \"idx\": 1375254000000, \"val\": 28.09}, {\"col\": \"MSFT\", \"idx\": 1375254000000, \"val\": 31.15}, {\"col\": \"AAPL\", \"idx\": 1375340400000, \"val\": 448.37}, {\"col\": \"IBM\", \"idx\": 1375340400000, \"val\": 192.74}, {\"col\": \"YHOO\", \"idx\": 1375340400000, \"val\": 27.96}, {\"col\": \"MSFT\", \"idx\": 1375340400000, \"val\": 30.98}, {\"col\": \"AAPL\", \"idx\": 1375426800000, \"val\": 454.12}, {\"col\": \"IBM\", \"idx\": 1375426800000, \"val\": 192.1}, {\"col\": \"YHOO\", \"idx\": 1375426800000, \"val\": 27.65}, {\"col\": \"MSFT\", \"idx\": 1375426800000, \"val\": 31.19}, {\"col\": \"AAPL\", \"idx\": 1375686000000, \"val\": 460.9}, {\"col\": \"IBM\", \"idx\": 1375686000000, \"val\": 192.43}, {\"col\": \"YHOO\", \"idx\": 1375686000000, \"val\": 27.67}, {\"col\": \"MSFT\", \"idx\": 1375686000000, \"val\": 31.01}, {\"col\": \"AAPL\", \"idx\": 1375772400000, \"val\": 456.78}, {\"col\": \"IBM\", \"idx\": 1375772400000, \"val\": 187.99}, {\"col\": \"YHOO\", \"idx\": 1375772400000, \"val\": 27.32}, {\"col\": \"MSFT\", \"idx\": 1375772400000, \"val\": 30.89}, {\"col\": \"AAPL\", \"idx\": 1375858800000, \"val\": 456.52}, {\"col\": \"IBM\", \"idx\": 1375858800000, \"val\": 186.53}, {\"col\": \"YHOO\", \"idx\": 1375858800000, \"val\": 27.39}, {\"col\": \"MSFT\", \"idx\": 1375858800000, \"val\": 31.36}, {\"col\": \"AAPL\", \"idx\": 1375945200000, \"val\": 455.61}, {\"col\": \"IBM\", \"idx\": 1375945200000, \"val\": 185.91}, {\"col\": \"YHOO\", \"idx\": 1375945200000, \"val\": 27.48}, {\"col\": \"MSFT\", \"idx\": 1375945200000, \"val\": 32.17}, {\"col\": \"AAPL\", \"idx\": 1376031600000, \"val\": 449.12}, {\"col\": \"IBM\", \"idx\": 1376031600000, \"val\": 185.8}, {\"col\": \"YHOO\", \"idx\": 1376031600000, \"val\": 27.68}, {\"col\": \"MSFT\", \"idx\": 1376031600000, \"val\": 31.99}, {\"col\": \"AAPL\", \"idx\": 1376290800000, \"val\": 461.88}, {\"col\": \"IBM\", \"idx\": 1376290800000, \"val\": 187.05}, {\"col\": \"YHOO\", \"idx\": 1376290800000, \"val\": 28.35}, {\"col\": \"MSFT\", \"idx\": 1376290800000, \"val\": 32.15}, {\"col\": \"AAPL\", \"idx\": 1376377200000, \"val\": 483.83}, {\"col\": \"IBM\", \"idx\": 1376377200000, \"val\": 186.39}, {\"col\": \"YHOO\", \"idx\": 1376377200000, \"val\": 28.34}, {\"col\": \"MSFT\", \"idx\": 1376377200000, \"val\": 31.75}, {\"col\": \"AAPL\", \"idx\": 1376463600000, \"val\": 492.66}, {\"col\": \"IBM\", \"idx\": 1376463600000, \"val\": 185.51}, {\"col\": \"YHOO\", \"idx\": 1376463600000, \"val\": 28.05}, {\"col\": \"MSFT\", \"idx\": 1376463600000, \"val\": 31.87}, {\"col\": \"AAPL\", \"idx\": 1376550000000, \"val\": 492.07}, {\"col\": \"IBM\", \"idx\": 1376550000000, \"val\": 183.79}, {\"col\": \"YHOO\", \"idx\": 1376550000000, \"val\": 27.14}, {\"col\": \"MSFT\", \"idx\": 1376550000000, \"val\": 31.32}, {\"col\": \"AAPL\", \"idx\": 1376636400000, \"val\": 496.44}, {\"col\": \"IBM\", \"idx\": 1376636400000, \"val\": 183.34}, {\"col\": \"YHOO\", \"idx\": 1376636400000, \"val\": 27.32}, {\"col\": \"MSFT\", \"idx\": 1376636400000, \"val\": 31.33}, {\"col\": \"AAPL\", \"idx\": 1376895600000, \"val\": 501.79}, {\"col\": \"IBM\", \"idx\": 1376895600000, \"val\": 182.25}, {\"col\": \"YHOO\", \"idx\": 1376895600000, \"val\": 26.91}, {\"col\": \"MSFT\", \"idx\": 1376895600000, \"val\": 30.92}, {\"col\": \"AAPL\", \"idx\": 1376982000000, \"val\": 495.2}, {\"col\": \"IBM\", \"idx\": 1376982000000, \"val\": 182.57}, {\"col\": \"YHOO\", \"idx\": 1376982000000, \"val\": 27.12}, {\"col\": \"MSFT\", \"idx\": 1376982000000, \"val\": 31.15}, {\"col\": \"AAPL\", \"idx\": 1377068400000, \"val\": 496.47}, {\"col\": \"IBM\", \"idx\": 1377068400000, \"val\": 182.87}, {\"col\": \"YHOO\", \"idx\": 1377068400000, \"val\": 27.06}, {\"col\": \"MSFT\", \"idx\": 1377068400000, \"val\": 31.14}, {\"col\": \"AAPL\", \"idx\": 1377154800000, \"val\": 497.07}, {\"col\": \"IBM\", \"idx\": 1377154800000, \"val\": 183.2}, {\"col\": \"YHOO\", \"idx\": 1377154800000, \"val\": 27.9}, {\"col\": \"MSFT\", \"idx\": 1377154800000, \"val\": 31.91}, {\"col\": \"AAPL\", \"idx\": 1377241200000, \"val\": 495.15}, {\"col\": \"IBM\", \"idx\": 1377241200000, \"val\": 183.42}, {\"col\": \"YHOO\", \"idx\": 1377241200000, \"val\": 27.99}, {\"col\": \"MSFT\", \"idx\": 1377241200000, \"val\": 34.23}, {\"col\": \"AAPL\", \"idx\": 1377500400000, \"val\": 497.08}, {\"col\": \"IBM\", \"idx\": 1377500400000, \"val\": 182.75}, {\"col\": \"YHOO\", \"idx\": 1377500400000, \"val\": 27.7}, {\"col\": \"MSFT\", \"idx\": 1377500400000, \"val\": 33.64}, {\"col\": \"AAPL\", \"idx\": 1377586800000, \"val\": 482.86}, {\"col\": \"IBM\", \"idx\": 1377586800000, \"val\": 180.77}, {\"col\": \"YHOO\", \"idx\": 1377586800000, \"val\": 27.0}, {\"col\": \"MSFT\", \"idx\": 1377586800000, \"val\": 32.76}, {\"col\": \"AAPL\", \"idx\": 1377673200000, \"val\": 485.15}, {\"col\": \"IBM\", \"idx\": 1377673200000, \"val\": 180.2}, {\"col\": \"YHOO\", \"idx\": 1377673200000, \"val\": 27.11}, {\"col\": \"MSFT\", \"idx\": 1377673200000, \"val\": 32.53}, {\"col\": \"AAPL\", \"idx\": 1377759600000, \"val\": 485.94}, {\"col\": \"IBM\", \"idx\": 1377759600000, \"val\": 180.67}, {\"col\": \"YHOO\", \"idx\": 1377759600000, \"val\": 27.3}, {\"col\": \"MSFT\", \"idx\": 1377759600000, \"val\": 33.05}, {\"col\": \"AAPL\", \"idx\": 1377846000000, \"val\": 481.51}, {\"col\": \"IBM\", \"idx\": 1377846000000, \"val\": 180.31}, {\"col\": \"YHOO\", \"idx\": 1377846000000, \"val\": 27.12}, {\"col\": \"MSFT\", \"idx\": 1377846000000, \"val\": 32.9}, {\"col\": \"AAPL\", \"idx\": 1378191600000, \"val\": 482.85}, {\"col\": \"IBM\", \"idx\": 1378191600000, \"val\": 181.98}, {\"col\": \"YHOO\", \"idx\": 1378191600000, \"val\": 27.78}, {\"col\": \"MSFT\", \"idx\": 1378191600000, \"val\": 31.4}, {\"col\": \"AAPL\", \"idx\": 1378278000000, \"val\": 492.85}, {\"col\": \"IBM\", \"idx\": 1378278000000, \"val\": 181.16}, {\"col\": \"YHOO\", \"idx\": 1378278000000, \"val\": 28.07}, {\"col\": \"MSFT\", \"idx\": 1378278000000, \"val\": 30.73}, {\"col\": \"AAPL\", \"idx\": 1378364400000, \"val\": 489.47}, {\"col\": \"IBM\", \"idx\": 1378364400000, \"val\": 182.17}, {\"col\": \"YHOO\", \"idx\": 1378364400000, \"val\": 28.23}, {\"col\": \"MSFT\", \"idx\": 1378364400000, \"val\": 30.76}, {\"col\": \"AAPL\", \"idx\": 1378450800000, \"val\": 492.38}, {\"col\": \"IBM\", \"idx\": 1378450800000, \"val\": 181.06}, {\"col\": \"YHOO\", \"idx\": 1378450800000, \"val\": 28.17}, {\"col\": \"MSFT\", \"idx\": 1378450800000, \"val\": 30.69}, {\"col\": \"AAPL\", \"idx\": 1378710000000, \"val\": 500.24}, {\"col\": \"IBM\", \"idx\": 1378710000000, \"val\": 182.99}, {\"col\": \"YHOO\", \"idx\": 1378710000000, \"val\": 29.24}, {\"col\": \"MSFT\", \"idx\": 1378710000000, \"val\": 31.19}, {\"col\": \"AAPL\", \"idx\": 1378796400000, \"val\": 488.84}, {\"col\": \"IBM\", \"idx\": 1378796400000, \"val\": 184.59}, {\"col\": \"YHOO\", \"idx\": 1378796400000, \"val\": 29.48}, {\"col\": \"MSFT\", \"idx\": 1378796400000, \"val\": 31.91}, {\"col\": \"AAPL\", \"idx\": 1378882800000, \"val\": 462.23}, {\"col\": \"IBM\", \"idx\": 1378882800000, \"val\": 188.65}, {\"col\": \"YHOO\", \"idx\": 1378882800000, \"val\": 29.19}, {\"col\": \"MSFT\", \"idx\": 1378882800000, \"val\": 32.25}, {\"col\": \"AAPL\", \"idx\": 1378969200000, \"val\": 467.15}, {\"col\": \"IBM\", \"idx\": 1378969200000, \"val\": 188.68}, {\"col\": \"YHOO\", \"idx\": 1378969200000, \"val\": 29.65}, {\"col\": \"MSFT\", \"idx\": 1378969200000, \"val\": 32.2}, {\"col\": \"AAPL\", \"idx\": 1379055600000, \"val\": 459.45}, {\"col\": \"IBM\", \"idx\": 1379055600000, \"val\": 190.1}, {\"col\": \"YHOO\", \"idx\": 1379055600000, \"val\": 29.26}, {\"col\": \"MSFT\", \"idx\": 1379055600000, \"val\": 32.54}, {\"col\": \"AAPL\", \"idx\": 1379314800000, \"val\": 444.84}, {\"col\": \"IBM\", \"idx\": 1379314800000, \"val\": 191.07}, {\"col\": \"YHOO\", \"idx\": 1379314800000, \"val\": 29.62}, {\"col\": \"MSFT\", \"idx\": 1379314800000, \"val\": 32.31}, {\"col\": \"AAPL\", \"idx\": 1379401200000, \"val\": 449.98}, {\"col\": \"IBM\", \"idx\": 1379401200000, \"val\": 190.09}, {\"col\": \"YHOO\", \"idx\": 1379401200000, \"val\": 30.0}, {\"col\": \"MSFT\", \"idx\": 1379401200000, \"val\": 32.44}, {\"col\": \"AAPL\", \"idx\": 1379487600000, \"val\": 459.23}, {\"col\": \"IBM\", \"idx\": 1379487600000, \"val\": 192.33}, {\"col\": \"YHOO\", \"idx\": 1379487600000, \"val\": 30.44}, {\"col\": \"MSFT\", \"idx\": 1379487600000, \"val\": 32.82}, {\"col\": \"AAPL\", \"idx\": 1379574000000, \"val\": 466.76}, {\"col\": \"IBM\", \"idx\": 1379574000000, \"val\": 191.31}, {\"col\": \"YHOO\", \"idx\": 1379574000000, \"val\": 31.03}, {\"col\": \"MSFT\", \"idx\": 1379574000000, \"val\": 33.14}, {\"col\": \"AAPL\", \"idx\": 1379660400000, \"val\": 461.93}, {\"col\": \"IBM\", \"idx\": 1379660400000, \"val\": 187.97}, {\"col\": \"YHOO\", \"idx\": 1379660400000, \"val\": 30.93}, {\"col\": \"MSFT\", \"idx\": 1379660400000, \"val\": 32.3}, {\"col\": \"AAPL\", \"idx\": 1379919600000, \"val\": 484.89}, {\"col\": \"IBM\", \"idx\": 1379919600000, \"val\": 188.93}, {\"col\": \"YHOO\", \"idx\": 1379919600000, \"val\": 30.26}, {\"col\": \"MSFT\", \"idx\": 1379919600000, \"val\": 32.25}, {\"col\": \"AAPL\", \"idx\": 1380006000000, \"val\": 483.37}, {\"col\": \"IBM\", \"idx\": 1380006000000, \"val\": 187.93}, {\"col\": \"YHOO\", \"idx\": 1380006000000, \"val\": 31.27}, {\"col\": \"MSFT\", \"idx\": 1380006000000, \"val\": 31.97}, {\"col\": \"AAPL\", \"idx\": 1380092400000, \"val\": 475.89}, {\"col\": \"IBM\", \"idx\": 1380092400000, \"val\": 187.43}, {\"col\": \"YHOO\", \"idx\": 1380092400000, \"val\": 31.34}, {\"col\": \"MSFT\", \"idx\": 1380092400000, \"val\": 32.03}, {\"col\": \"AAPL\", \"idx\": 1380178800000, \"val\": 480.52}, {\"col\": \"IBM\", \"idx\": 1380178800000, \"val\": 188.17}, {\"col\": \"YHOO\", \"idx\": 1380178800000, \"val\": 32.75}, {\"col\": \"MSFT\", \"idx\": 1380178800000, \"val\": 32.28}, {\"col\": \"AAPL\", \"idx\": 1380265200000, \"val\": 477.09}, {\"col\": \"IBM\", \"idx\": 1380265200000, \"val\": 184.91}, {\"col\": \"YHOO\", \"idx\": 1380265200000, \"val\": 33.55}, {\"col\": \"MSFT\", \"idx\": 1380265200000, \"val\": 32.77}, {\"col\": \"AAPL\", \"idx\": 1380524400000, \"val\": 471.16}, {\"col\": \"IBM\", \"idx\": 1380524400000, \"val\": 183.19}, {\"col\": \"YHOO\", \"idx\": 1380524400000, \"val\": 33.17}, {\"col\": \"MSFT\", \"idx\": 1380524400000, \"val\": 32.78}, {\"col\": \"AAPL\", \"idx\": 1380610800000, \"val\": 482.24}, {\"col\": \"IBM\", \"idx\": 1380610800000, \"val\": 184.37}, {\"col\": \"YHOO\", \"idx\": 1380610800000, \"val\": 34.31}, {\"col\": \"MSFT\", \"idx\": 1380610800000, \"val\": 33.08}, {\"col\": \"AAPL\", \"idx\": 1380697200000, \"val\": 483.82}, {\"col\": \"IBM\", \"idx\": 1380697200000, \"val\": 182.97}, {\"col\": \"YHOO\", \"idx\": 1380697200000, \"val\": 34.14}, {\"col\": \"MSFT\", \"idx\": 1380697200000, \"val\": 33.41}, {\"col\": \"AAPL\", \"idx\": 1380783600000, \"val\": 477.74}, {\"col\": \"IBM\", \"idx\": 1380783600000, \"val\": 181.88}, {\"col\": \"YHOO\", \"idx\": 1380783600000, \"val\": 33.88}, {\"col\": \"MSFT\", \"idx\": 1380783600000, \"val\": 33.36}, {\"col\": \"AAPL\", \"idx\": 1380870000000, \"val\": 477.37}, {\"col\": \"IBM\", \"idx\": 1380870000000, \"val\": 182.12}, {\"col\": \"YHOO\", \"idx\": 1380870000000, \"val\": 34.89}, {\"col\": \"MSFT\", \"idx\": 1380870000000, \"val\": 33.37}, {\"col\": \"AAPL\", \"idx\": 1381129200000, \"val\": 482.03}, {\"col\": \"IBM\", \"idx\": 1381129200000, \"val\": 180.05}, {\"col\": \"YHOO\", \"idx\": 1381129200000, \"val\": 34.14}, {\"col\": \"MSFT\", \"idx\": 1381129200000, \"val\": 32.8}, {\"col\": \"AAPL\", \"idx\": 1381215600000, \"val\": 475.3}, {\"col\": \"IBM\", \"idx\": 1381215600000, \"val\": 176.8}, {\"col\": \"YHOO\", \"idx\": 1381215600000, \"val\": 32.93}, {\"col\": \"MSFT\", \"idx\": 1381215600000, \"val\": 32.52}, {\"col\": \"AAPL\", \"idx\": 1381302000000, \"val\": 480.89}, {\"col\": \"IBM\", \"idx\": 1381302000000, \"val\": 179.37}, {\"col\": \"YHOO\", \"idx\": 1381302000000, \"val\": 33.01}, {\"col\": \"MSFT\", \"idx\": 1381302000000, \"val\": 32.58}, {\"col\": \"AAPL\", \"idx\": 1381388400000, \"val\": 483.9}, {\"col\": \"IBM\", \"idx\": 1381388400000, \"val\": 182.78}, {\"col\": \"YHOO\", \"idx\": 1381388400000, \"val\": 33.87}, {\"col\": \"MSFT\", \"idx\": 1381388400000, \"val\": 33.26}, {\"col\": \"AAPL\", \"idx\": 1381474800000, \"val\": 487.03}, {\"col\": \"IBM\", \"idx\": 1381474800000, \"val\": 184.16}, {\"col\": \"YHOO\", \"idx\": 1381474800000, \"val\": 34.15}, {\"col\": \"MSFT\", \"idx\": 1381474800000, \"val\": 33.62}, {\"col\": \"AAPL\", \"idx\": 1381734000000, \"val\": 490.23}, {\"col\": \"IBM\", \"idx\": 1381734000000, \"val\": 184.96}, {\"col\": \"YHOO\", \"idx\": 1381734000000, \"val\": 34.0}, {\"col\": \"MSFT\", \"idx\": 1381734000000, \"val\": 33.94}, {\"col\": \"AAPL\", \"idx\": 1381820400000, \"val\": 492.84}, {\"col\": \"IBM\", \"idx\": 1381820400000, \"val\": 182.67}, {\"col\": \"YHOO\", \"idx\": 1381820400000, \"val\": 33.38}, {\"col\": \"MSFT\", \"idx\": 1381820400000, \"val\": 33.98}, {\"col\": \"AAPL\", \"idx\": 1381906800000, \"val\": 495.24}, {\"col\": \"IBM\", \"idx\": 1381906800000, \"val\": 184.72}, {\"col\": \"YHOO\", \"idx\": 1381906800000, \"val\": 33.09}, {\"col\": \"MSFT\", \"idx\": 1381906800000, \"val\": 34.12}, {\"col\": \"AAPL\", \"idx\": 1381993200000, \"val\": 498.59}, {\"col\": \"IBM\", \"idx\": 1381993200000, \"val\": 172.95}, {\"col\": \"YHOO\", \"idx\": 1381993200000, \"val\": 32.74}, {\"col\": \"MSFT\", \"idx\": 1381993200000, \"val\": 34.4}, {\"col\": \"AAPL\", \"idx\": 1382079600000, \"val\": 502.93}, {\"col\": \"IBM\", \"idx\": 1382079600000, \"val\": 171.91}, {\"col\": \"YHOO\", \"idx\": 1382079600000, \"val\": 33.43}, {\"col\": \"MSFT\", \"idx\": 1382079600000, \"val\": 34.44}, {\"col\": \"AAPL\", \"idx\": 1382338800000, \"val\": 515.25}, {\"col\": \"IBM\", \"idx\": 1382338800000, \"val\": 171.0}, {\"col\": \"YHOO\", \"idx\": 1382338800000, \"val\": 34.06}, {\"col\": \"MSFT\", \"idx\": 1382338800000, \"val\": 34.47}, {\"col\": \"AAPL\", \"idx\": 1382425200000, \"val\": 513.78}, {\"col\": \"IBM\", \"idx\": 1382425200000, \"val\": 173.09}, {\"col\": \"YHOO\", \"idx\": 1382425200000, \"val\": 33.94}, {\"col\": \"MSFT\", \"idx\": 1382425200000, \"val\": 34.06}, {\"col\": \"AAPL\", \"idx\": 1382511600000, \"val\": 518.81}, {\"col\": \"IBM\", \"idx\": 1382511600000, \"val\": 173.88}, {\"col\": \"YHOO\", \"idx\": 1382511600000, \"val\": 33.1}, {\"col\": \"MSFT\", \"idx\": 1382511600000, \"val\": 33.26}, {\"col\": \"AAPL\", \"idx\": 1382598000000, \"val\": 525.68}, {\"col\": \"IBM\", \"idx\": 1382598000000, \"val\": 175.89}, {\"col\": \"YHOO\", \"idx\": 1382598000000, \"val\": 33.08}, {\"col\": \"MSFT\", \"idx\": 1382598000000, \"val\": 33.22}, {\"col\": \"AAPL\", \"idx\": 1382684400000, \"val\": 519.8}, {\"col\": \"IBM\", \"idx\": 1382684400000, \"val\": 174.95}, {\"col\": \"YHOO\", \"idx\": 1382684400000, \"val\": 32.25}, {\"col\": \"MSFT\", \"idx\": 1382684400000, \"val\": 35.2}, {\"col\": \"AAPL\", \"idx\": 1382943600000, \"val\": 523.67}, {\"col\": \"IBM\", \"idx\": 1382943600000, \"val\": 175.44}, {\"col\": \"YHOO\", \"idx\": 1382943600000, \"val\": 32.35}, {\"col\": \"MSFT\", \"idx\": 1382943600000, \"val\": 35.04}, {\"col\": \"AAPL\", \"idx\": 1383030000000, \"val\": 510.62}, {\"col\": \"IBM\", \"idx\": 1383030000000, \"val\": 180.16}, {\"col\": \"YHOO\", \"idx\": 1383030000000, \"val\": 33.17}, {\"col\": \"MSFT\", \"idx\": 1383030000000, \"val\": 34.99}, {\"col\": \"AAPL\", \"idx\": 1383116400000, \"val\": 518.75}, {\"col\": \"IBM\", \"idx\": 1383116400000, \"val\": 178.21}, {\"col\": \"YHOO\", \"idx\": 1383116400000, \"val\": 32.57}, {\"col\": \"MSFT\", \"idx\": 1383116400000, \"val\": 35.01}, {\"col\": \"AAPL\", \"idx\": 1383202800000, \"val\": 516.57}, {\"col\": \"IBM\", \"idx\": 1383202800000, \"val\": 177.28}, {\"col\": \"YHOO\", \"idx\": 1383202800000, \"val\": 32.94}, {\"col\": \"MSFT\", \"idx\": 1383202800000, \"val\": 34.88}, {\"col\": \"AAPL\", \"idx\": 1383289200000, \"val\": 513.94}, {\"col\": \"IBM\", \"idx\": 1383289200000, \"val\": 177.3}, {\"col\": \"YHOO\", \"idx\": 1383289200000, \"val\": 33.18}, {\"col\": \"MSFT\", \"idx\": 1383289200000, \"val\": 35.0}, {\"col\": \"AAPL\", \"idx\": 1383552000000, \"val\": 520.58}, {\"col\": \"IBM\", \"idx\": 1383552000000, \"val\": 178.33}, {\"col\": \"YHOO\", \"idx\": 1383552000000, \"val\": 33.19}, {\"col\": \"MSFT\", \"idx\": 1383552000000, \"val\": 35.4}, {\"col\": \"AAPL\", \"idx\": 1383638400000, \"val\": 519.29}, {\"col\": \"IBM\", \"idx\": 1383638400000, \"val\": 175.94}, {\"col\": \"YHOO\", \"idx\": 1383638400000, \"val\": 32.97}, {\"col\": \"MSFT\", \"idx\": 1383638400000, \"val\": 36.09}, {\"col\": \"AAPL\", \"idx\": 1383724800000, \"val\": 517.82}, {\"col\": \"IBM\", \"idx\": 1383724800000, \"val\": 178.21}, {\"col\": \"YHOO\", \"idx\": 1383724800000, \"val\": 32.88}, {\"col\": \"MSFT\", \"idx\": 1383724800000, \"val\": 37.61}, {\"col\": \"AAPL\", \"idx\": 1383811200000, \"val\": 509.44}, {\"col\": \"IBM\", \"idx\": 1383811200000, \"val\": 179.02}, {\"col\": \"YHOO\", \"idx\": 1383811200000, \"val\": 32.11}, {\"col\": \"MSFT\", \"idx\": 1383811200000, \"val\": 36.94}, {\"col\": \"AAPL\", \"idx\": 1383897600000, \"val\": 517.46}, {\"col\": \"IBM\", \"idx\": 1383897600000, \"val\": 179.01}, {\"col\": \"YHOO\", \"idx\": 1383897600000, \"val\": 33.12}, {\"col\": \"MSFT\", \"idx\": 1383897600000, \"val\": 37.22}, {\"col\": \"AAPL\", \"idx\": 1384156800000, \"val\": 515.96}, {\"col\": \"IBM\", \"idx\": 1384156800000, \"val\": 181.88}, {\"col\": \"YHOO\", \"idx\": 1384156800000, \"val\": 33.82}, {\"col\": \"MSFT\", \"idx\": 1384156800000, \"val\": 37.03}, {\"col\": \"AAPL\", \"idx\": 1384243200000, \"val\": 516.92}, {\"col\": \"IBM\", \"idx\": 1384243200000, \"val\": 182.07}, {\"col\": \"YHOO\", \"idx\": 1384243200000, \"val\": 34.07}, {\"col\": \"MSFT\", \"idx\": 1384243200000, \"val\": 36.8}, {\"col\": \"AAPL\", \"idx\": 1384329600000, \"val\": 517.53}, {\"col\": \"IBM\", \"idx\": 1384329600000, \"val\": 182.55}, {\"col\": \"YHOO\", \"idx\": 1384329600000, \"val\": 35.1}, {\"col\": \"MSFT\", \"idx\": 1384329600000, \"val\": 37.59}, {\"col\": \"AAPL\", \"idx\": 1384416000000, \"val\": 525.02}, {\"col\": \"IBM\", \"idx\": 1384416000000, \"val\": 181.22}, {\"col\": \"YHOO\", \"idx\": 1384416000000, \"val\": 35.69}, {\"col\": \"MSFT\", \"idx\": 1384416000000, \"val\": 37.45}, {\"col\": \"AAPL\", \"idx\": 1384502400000, \"val\": 521.87}, {\"col\": \"IBM\", \"idx\": 1384502400000, \"val\": 182.19}, {\"col\": \"YHOO\", \"idx\": 1384502400000, \"val\": 35.47}, {\"col\": \"MSFT\", \"idx\": 1384502400000, \"val\": 37.28}, {\"col\": \"AAPL\", \"idx\": 1384761600000, \"val\": 515.54}, {\"col\": \"IBM\", \"idx\": 1384761600000, \"val\": 183.46}, {\"col\": \"YHOO\", \"idx\": 1384761600000, \"val\": 34.98}, {\"col\": \"MSFT\", \"idx\": 1384761600000, \"val\": 36.65}, {\"col\": \"AAPL\", \"idx\": 1384848000000, \"val\": 516.46}, {\"col\": \"IBM\", \"idx\": 1384848000000, \"val\": 184.24}, {\"col\": \"YHOO\", \"idx\": 1384848000000, \"val\": 34.63}, {\"col\": \"MSFT\", \"idx\": 1384848000000, \"val\": 36.47}, {\"col\": \"AAPL\", \"idx\": 1384934400000, \"val\": 511.94}, {\"col\": \"IBM\", \"idx\": 1384934400000, \"val\": 184.18}, {\"col\": \"YHOO\", \"idx\": 1384934400000, \"val\": 35.62}, {\"col\": \"MSFT\", \"idx\": 1384934400000, \"val\": 36.8}, {\"col\": \"AAPL\", \"idx\": 1385020800000, \"val\": 518.04}, {\"col\": \"IBM\", \"idx\": 1385020800000, \"val\": 183.13}, {\"col\": \"YHOO\", \"idx\": 1385020800000, \"val\": 36.3}, {\"col\": \"MSFT\", \"idx\": 1385020800000, \"val\": 37.12}, {\"col\": \"AAPL\", \"idx\": 1385107200000, \"val\": 516.71}, {\"col\": \"IBM\", \"idx\": 1385107200000, \"val\": 180.31}, {\"col\": \"YHOO\", \"idx\": 1385107200000, \"val\": 36.49}, {\"col\": \"MSFT\", \"idx\": 1385107200000, \"val\": 37.29}, {\"col\": \"AAPL\", \"idx\": 1385366400000, \"val\": 520.62}, {\"col\": \"IBM\", \"idx\": 1385366400000, \"val\": 177.96}, {\"col\": \"YHOO\", \"idx\": 1385366400000, \"val\": 36.29}, {\"col\": \"MSFT\", \"idx\": 1385366400000, \"val\": 37.36}, {\"col\": \"AAPL\", \"idx\": 1385452800000, \"val\": 530.23}, {\"col\": \"IBM\", \"idx\": 1385452800000, \"val\": 176.34}, {\"col\": \"YHOO\", \"idx\": 1385452800000, \"val\": 36.64}, {\"col\": \"MSFT\", \"idx\": 1385452800000, \"val\": 37.07}, {\"col\": \"AAPL\", \"idx\": 1385539200000, \"val\": 542.71}, {\"col\": \"IBM\", \"idx\": 1385539200000, \"val\": 177.99}, {\"col\": \"YHOO\", \"idx\": 1385539200000, \"val\": 36.96}, {\"col\": \"MSFT\", \"idx\": 1385539200000, \"val\": 37.32}, {\"col\": \"AAPL\", \"idx\": 1385712000000, \"val\": 552.76}, {\"col\": \"IBM\", \"idx\": 1385712000000, \"val\": 178.7}, {\"col\": \"YHOO\", \"idx\": 1385712000000, \"val\": 36.98}, {\"col\": \"MSFT\", \"idx\": 1385712000000, \"val\": 37.85}, {\"col\": \"AAPL\", \"idx\": 1385971200000, \"val\": 547.95}, {\"col\": \"IBM\", \"idx\": 1385971200000, \"val\": 176.51}, {\"col\": \"YHOO\", \"idx\": 1385971200000, \"val\": 37.01}, {\"col\": \"MSFT\", \"idx\": 1385971200000, \"val\": 38.16}, {\"col\": \"AAPL\", \"idx\": 1386057600000, \"val\": 562.95}, {\"col\": \"IBM\", \"idx\": 1386057600000, \"val\": 175.12}, {\"col\": \"YHOO\", \"idx\": 1386057600000, \"val\": 36.56}, {\"col\": \"MSFT\", \"idx\": 1386057600000, \"val\": 38.02}, {\"col\": \"AAPL\", \"idx\": 1386144000000, \"val\": 561.64}, {\"col\": \"IBM\", \"idx\": 1386144000000, \"val\": 174.78}, {\"col\": \"YHOO\", \"idx\": 1386144000000, \"val\": 38.13}, {\"col\": \"MSFT\", \"idx\": 1386144000000, \"val\": 38.65}, {\"col\": \"AAPL\", \"idx\": 1386230400000, \"val\": 564.52}, {\"col\": \"IBM\", \"idx\": 1386230400000, \"val\": 175.12}, {\"col\": \"YHOO\", \"idx\": 1386230400000, \"val\": 38.87}, {\"col\": \"MSFT\", \"idx\": 1386230400000, \"val\": 37.72}, {\"col\": \"AAPL\", \"idx\": 1386316800000, \"val\": 556.69}, {\"col\": \"IBM\", \"idx\": 1386316800000, \"val\": 176.7}, {\"col\": \"YHOO\", \"idx\": 1386316800000, \"val\": 38.86}, {\"col\": \"MSFT\", \"idx\": 1386316800000, \"val\": 38.07}, {\"col\": \"AAPL\", \"idx\": 1386576000000, \"val\": 563.06}, {\"col\": \"IBM\", \"idx\": 1386576000000, \"val\": 176.49}, {\"col\": \"YHOO\", \"idx\": 1386576000000, \"val\": 38.87}, {\"col\": \"MSFT\", \"idx\": 1386576000000, \"val\": 38.42}, {\"col\": \"AAPL\", \"idx\": 1386662400000, \"val\": 562.18}, {\"col\": \"IBM\", \"idx\": 1386662400000, \"val\": 176.15}, {\"col\": \"YHOO\", \"idx\": 1386662400000, \"val\": 40.22}, {\"col\": \"MSFT\", \"idx\": 1386662400000, \"val\": 37.83}, {\"col\": \"AAPL\", \"idx\": 1386748800000, \"val\": 558.02}, {\"col\": \"IBM\", \"idx\": 1386748800000, \"val\": 174.24}, {\"col\": \"YHOO\", \"idx\": 1386748800000, \"val\": 39.16}, {\"col\": \"MSFT\", \"idx\": 1386748800000, \"val\": 37.33}, {\"col\": \"AAPL\", \"idx\": 1386835200000, \"val\": 557.2}, {\"col\": \"IBM\", \"idx\": 1386835200000, \"val\": 172.42}, {\"col\": \"YHOO\", \"idx\": 1386835200000, \"val\": 39.35}, {\"col\": \"MSFT\", \"idx\": 1386835200000, \"val\": 36.94}, {\"col\": \"AAPL\", \"idx\": 1386921600000, \"val\": 551.13}, {\"col\": \"IBM\", \"idx\": 1386921600000, \"val\": 171.86}, {\"col\": \"YHOO\", \"idx\": 1386921600000, \"val\": 39.73}, {\"col\": \"MSFT\", \"idx\": 1386921600000, \"val\": 36.42}, {\"col\": \"AAPL\", \"idx\": 1387180800000, \"val\": 554.18}, {\"col\": \"IBM\", \"idx\": 1387180800000, \"val\": 176.88}, {\"col\": \"YHOO\", \"idx\": 1387180800000, \"val\": 39.73}, {\"col\": \"MSFT\", \"idx\": 1387180800000, \"val\": 36.62}, {\"col\": \"AAPL\", \"idx\": 1387267200000, \"val\": 551.69}, {\"col\": \"IBM\", \"idx\": 1387267200000, \"val\": 174.8}, {\"col\": \"YHOO\", \"idx\": 1387267200000, \"val\": 39.51}, {\"col\": \"MSFT\", \"idx\": 1387267200000, \"val\": 36.25}, {\"col\": \"AAPL\", \"idx\": 1387353600000, \"val\": 547.49}, {\"col\": \"IBM\", \"idx\": 1387353600000, \"val\": 177.73}, {\"col\": \"YHOO\", \"idx\": 1387353600000, \"val\": 40.04}, {\"col\": \"MSFT\", \"idx\": 1387353600000, \"val\": 36.31}, {\"col\": \"AAPL\", \"idx\": 1387440000000, \"val\": 541.22}, {\"col\": \"IBM\", \"idx\": 1387440000000, \"val\": 179.24}, {\"col\": \"YHOO\", \"idx\": 1387440000000, \"val\": 40.2}, {\"col\": \"MSFT\", \"idx\": 1387440000000, \"val\": 35.98}, {\"col\": \"AAPL\", \"idx\": 1387526400000, \"val\": 545.75}, {\"col\": \"IBM\", \"idx\": 1387526400000, \"val\": 179.04}, {\"col\": \"YHOO\", \"idx\": 1387526400000, \"val\": 40.12}, {\"col\": \"MSFT\", \"idx\": 1387526400000, \"val\": 36.53}, {\"col\": \"AAPL\", \"idx\": 1387785600000, \"val\": 566.7}, {\"col\": \"IBM\", \"idx\": 1387785600000, \"val\": 181.24}, {\"col\": \"YHOO\", \"idx\": 1387785600000, \"val\": 40.77}, {\"col\": \"MSFT\", \"idx\": 1387785600000, \"val\": 36.35}, {\"col\": \"AAPL\", \"idx\": 1387872000000, \"val\": 564.29}, {\"col\": \"IBM\", \"idx\": 1387872000000, \"val\": 182.22}, {\"col\": \"YHOO\", \"idx\": 1387872000000, \"val\": 40.85}, {\"col\": \"MSFT\", \"idx\": 1387872000000, \"val\": 36.8}, {\"col\": \"AAPL\", \"idx\": 1388044800000, \"val\": 560.54}, {\"col\": \"IBM\", \"idx\": 1388044800000, \"val\": 184.34}, {\"col\": \"YHOO\", \"idx\": 1388044800000, \"val\": 40.65}, {\"col\": \"MSFT\", \"idx\": 1388044800000, \"val\": 37.16}, {\"col\": \"AAPL\", \"idx\": 1388131200000, \"val\": 556.76}, {\"col\": \"IBM\", \"idx\": 1388131200000, \"val\": 184.07}, {\"col\": \"YHOO\", \"idx\": 1388131200000, \"val\": 40.49}, {\"col\": \"MSFT\", \"idx\": 1388131200000, \"val\": 37.01}, {\"col\": \"AAPL\", \"idx\": 1388390400000, \"val\": 551.22}, {\"col\": \"IBM\", \"idx\": 1388390400000, \"val\": 185.39}, {\"col\": \"YHOO\", \"idx\": 1388390400000, \"val\": 40.2}, {\"col\": \"MSFT\", \"idx\": 1388390400000, \"val\": 37.01}, {\"col\": \"AAPL\", \"idx\": 1388476800000, \"val\": 557.68}, {\"col\": \"IBM\", \"idx\": 1388476800000, \"val\": 186.55}, {\"col\": \"YHOO\", \"idx\": 1388476800000, \"val\": 40.44}, {\"col\": \"MSFT\", \"idx\": 1388476800000, \"val\": 37.13}]}], \"height\": 300, \"legends\": [{\"fill\": \"color\", \"offset\": 0, \"properties\": {}, \"title\": \"Ticker\"}], \"marks\": [{\"from\": {\"data\": \"table\", \"transform\": [{\"keys\": [\"data.col\"], \"type\": \"facet\"}]}, \"marks\": [{\"properties\": {\"enter\": {\"stroke\": {\"field\": \"data.col\", \"scale\": \"color\"}, \"strokeWidth\": {\"value\": 2}, \"x\": {\"field\": \"data.idx\", \"scale\": \"x\"}, \"y\": {\"field\": \"data.val\", \"scale\": \"y\"}}}, \"type\": \"line\"}], \"type\": \"group\"}], \"padding\": \"auto\", \"scales\": [{\"domain\": {\"data\": \"table\", \"field\": \"data.idx\"}, \"name\": \"x\", \"range\": \"width\", \"type\": \"time\"}, {\"domain\": {\"data\": \"table\", \"field\": \"data.val\"}, \"name\": \"y\", \"nice\": true, \"range\": \"height\"}, {\"domain\": {\"data\": \"table\", \"field\": \"data.col\"}, \"name\": \"color\", \"range\": \"category20\", \"type\": \"ordinal\"}], \"width\": 600}, function(chart) {\n", " chart({el: \"#vis47fdfca404f24684b44753131b44ed27\"}).update();\n", " });\n", " };\n", " _do_plot();\n", " })();\n", "</script>\n", "<style>.vega canvas {width: 100%;}</style>\n", " " ], "metadata": {}, "output_type": "display_data", "text": [ "<vincent.charts.Line at 0x10290f710>" ] } ], "prompt_number": 10 } ], "metadata": {} } ] }
apache-2.0
chengsoonong/crowdastro
notebooks/56_nonlinear_astro_features.ipynb
1
14186
{ "cells": [ { "cell_type": "markdown", "metadata": {}, "source": [ "# Nonlinear Astro Features\n", "\n", "This notebook examines whether $w_1 - w_2$ and $w_2 - w_3$ are good features. There are indications that these may be correlated with whether galaxies contain AGNs. It also looks at whether the fluxes are more useful than the magnitudes, i.e., should we exponentiate the magnitudes." ] }, { "cell_type": "code", "execution_count": 11, "metadata": { "collapsed": true }, "outputs": [], "source": [ "import h5py, numpy, sklearn.linear_model, sklearn.cross_validation, sklearn.metrics" ] }, { "cell_type": "code", "execution_count": 30, "metadata": { "collapsed": false }, "outputs": [], "source": [ "with h5py.File('../data/training.h5') as f:\n", " raw_astro_features = f['features'][:, :4]\n", " dist_features = f['features'][:, 4]\n", " image_features = f['features'][:, 5:]\n", " \n", " w1_w2 = raw_astro_features[:, 0] - raw_astro_features[:, 1]\n", " w2_w3 = raw_astro_features[:, 1] - raw_astro_features[:, 2]\n", " \n", " features_linear = f['features'][:]\n", " features_nonlinear = numpy.hstack([\n", " raw_astro_features,\n", " dist_features.reshape((-1, 1)),\n", " w1_w2.reshape((-1, 1)),\n", " w2_w3.reshape((-1, 1)),\n", " image_features,\n", " ])\n", " features_exp = numpy.hstack([\n", " numpy.power(10, -0.4 * raw_astro_features),\n", " dist_features.reshape((-1, 1)),\n", " image_features,\n", " ])\n", " features_nlexp = numpy.hstack([\n", " numpy.power(10, -0.4 * raw_astro_features),\n", " numpy.power(10, -0.4 * w1_w2.reshape((-1, 1))),\n", " numpy.power(10, -0.4 * w2_w3.reshape((-1, 1))),\n", " dist_features.reshape((-1, 1)),\n", " image_features,\n", " ])\n", " labels = f['labels'].value" ] }, { "cell_type": "code", "execution_count": 15, "metadata": { "collapsed": false }, "outputs": [], "source": [ "x_train, x_test, t_train, t_test = sklearn.cross_validation.train_test_split(\n", " numpy.arange(raw_astro_features.shape[0]), labels, test_size=0.2)" ] }, { "cell_type": "code", "execution_count": 18, "metadata": { "collapsed": false }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "Linear features, balanced accuracy: 88.20%\n", "[[4114 268]\n", " [ 78 368]]\n" ] } ], "source": [ "lr = sklearn.linear_model.LogisticRegression(C=100.0, class_weight='balanced')\n", "lr.fit(features_linear[x_train], t_train)\n", "cm = sklearn.metrics.confusion_matrix(t_test, lr.predict(features_linear[x_test]))\n", "tp = cm[1, 1]\n", "n, p = cm.sum(axis=1)\n", "tn = cm[0, 0]\n", "ba = (tp / p + tn / n) / 2\n", "print('Linear features, balanced accuracy: {:.02%}'.format(ba))\n", "print(cm)" ] }, { "cell_type": "code", "execution_count": 17, "metadata": { "collapsed": false }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "Nonlinear features, balanced accuracy: 88.52%\n", "[[4103 279]\n", " [ 74 372]]\n" ] } ], "source": [ "lrnl = sklearn.linear_model.LogisticRegression(C=100.0, class_weight='balanced')\n", "lrnl.fit(features_nonlinear[x_train], t_train)\n", "cm = sklearn.metrics.confusion_matrix(t_test, lrnl.predict(features_nonlinear[x_test]))\n", "tp = cm[1, 1]\n", "n, p = cm.sum(axis=1)\n", "tn = cm[0, 0]\n", "ba = (tp / p + tn / n) / 2\n", "print('Nonlinear features, balanced accuracy: {:.02%}'.format(ba))\n", "print(cm)" ] }, { "cell_type": "markdown", "metadata": { "collapsed": true }, "source": [ "So maybe they're useful features (but not very). What about the fact they're magnitudes?" ] }, { "cell_type": "code", "execution_count": 25, "metadata": { "collapsed": false }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "Exponentiated features, balanced accuracy: 89.10%\n", "[[4124 258]\n", " [ 71 375]]\n" ] } ], "source": [ "lrexp = sklearn.linear_model.LogisticRegression(C=100.0, class_weight='balanced')\n", "lrexp.fit(features_exp[x_train], t_train)\n", "cm = sklearn.metrics.confusion_matrix(t_test, lrexp.predict(features_exp[x_test]))\n", "tp = cm[1, 1]\n", "n, p = cm.sum(axis=1)\n", "tn = cm[0, 0]\n", "ba = (tp / p + tn / n) / 2\n", "print('Exponentiated features, balanced accuracy: {:.02%}'.format(ba))\n", "print(cm)" ] }, { "cell_type": "code", "execution_count": 27, "metadata": { "collapsed": false }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "Exponentiated features, balanced accuracy: 89.35%\n", "[[4107 275]\n", " [ 67 379]]\n" ] } ], "source": [ "lrnlexp = sklearn.linear_model.LogisticRegression(C=100.0, class_weight='balanced')\n", "lrnlexp.fit(features_nlexp[x_train], t_train)\n", "cm = sklearn.metrics.confusion_matrix(t_test, lrnlexp.predict(features_nlexp[x_test]))\n", "tp = cm[1, 1]\n", "n, p = cm.sum(axis=1)\n", "tn = cm[0, 0]\n", "ba = (tp / p + tn / n) / 2\n", "print('Exponentiated features, balanced accuracy: {:.02%}'.format(ba))\n", "print(cm)" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "Those are promising results, but we need to rererun this a few times with different training and testing sets to get some error bars." ] }, { "cell_type": "code", "execution_count": 33, "metadata": { "collapsed": false }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "[0.87926733193277307]\n", "[0.8515625]\n", "[0.88248424369747902]\n", "[0.88453584558823528]\n", "[0.87926733193277307, 0.88709672756497815]\n", "[0.8515625, 0.88978171720807331]\n", "[0.88248424369747902, 0.90201871711218939]\n", "[0.88453584558823528, 0.90356851867109755]\n", "[0.87926733193277307, 0.88709672756497815, 0.88338354869339275]\n", "[0.8515625, 0.88978171720807331, 0.87759469717527616]\n", "[0.88248424369747902, 0.90201871711218939, 0.90199786319816277]\n", "[0.88453584558823528, 0.90356851867109755, 0.90017429356059719]\n", "[0.87926733193277307, 0.88709672756497815, 0.88338354869339275, 0.89836929366341134]\n", "[0.8515625, 0.88978171720807331, 0.87759469717527616, 0.89028843970020444]\n", "[0.88248424369747902, 0.90201871711218939, 0.90199786319816277, 0.89785600726777193]\n", "[0.88453584558823528, 0.90356851867109755, 0.90017429356059719, 0.9004042698160345]\n", "[0.87926733193277307, 0.88709672756497815, 0.88338354869339275, 0.89836929366341134, 0.87160312684947727]\n", "[0.8515625, 0.88978171720807331, 0.87759469717527616, 0.89028843970020444, 0.86731233971197474]\n", "[0.88248424369747902, 0.90201871711218939, 0.90199786319816277, 0.89785600726777193, 0.90828134247386072]\n", "[0.88453584558823528, 0.90356851867109755, 0.90017429356059719, 0.9004042698160345, 0.90953590451765631]\n", "[0.87926733193277307, 0.88709672756497815, 0.88338354869339275, 0.89836929366341134, 0.87160312684947727, 0.87634941658782717]\n", "[0.8515625, 0.88978171720807331, 0.87759469717527616, 0.89028843970020444, 0.86731233971197474, 0.86569082308420053]\n", "[0.88248424369747902, 0.90201871711218939, 0.90199786319816277, 0.89785600726777193, 0.90828134247386072, 0.901931251970987]\n", "[0.88453584558823528, 0.90356851867109755, 0.90017429356059719, 0.9004042698160345, 0.90953590451765631, 0.90642144433932514]\n", "[0.87926733193277307, 0.88709672756497815, 0.88338354869339275, 0.89836929366341134, 0.87160312684947727, 0.87634941658782717, 0.87592505060404435]\n", "[0.8515625, 0.88978171720807331, 0.87759469717527616, 0.89028843970020444, 0.86731233971197474, 0.86569082308420053, 0.87744690610655063]\n", "[0.88248424369747902, 0.90201871711218939, 0.90199786319816277, 0.89785600726777193, 0.90828134247386072, 0.901931251970987, 0.90776139078849805]\n", "[0.88453584558823528, 0.90356851867109755, 0.90017429356059719, 0.9004042698160345, 0.90953590451765631, 0.90642144433932514, 0.90758745067882418]\n", "[0.87926733193277307, 0.88709672756497815, 0.88338354869339275, 0.89836929366341134, 0.87160312684947727, 0.87634941658782717, 0.87592505060404435, 0.89230593847556916]\n", "[0.8515625, 0.88978171720807331, 0.87759469717527616, 0.89028843970020444, 0.86731233971197474, 0.86569082308420053, 0.87744690610655063, 0.8868778280542986]\n", "[0.88248424369747902, 0.90201871711218939, 0.90199786319816277, 0.89785600726777193, 0.90828134247386072, 0.901931251970987, 0.90776139078849805, 0.894419306184012]\n", "[0.88453584558823528, 0.90356851867109755, 0.90017429356059719, 0.9004042698160345, 0.90953590451765631, 0.90642144433932514, 0.90758745067882418, 0.89259532077589532]\n", "[0.87926733193277307, 0.88709672756497815, 0.88338354869339275, 0.89836929366341134, 0.87160312684947727, 0.87634941658782717, 0.87592505060404435, 0.89230593847556916, 0.89844451547113535]\n", "[0.8515625, 0.88978171720807331, 0.87759469717527616, 0.89028843970020444, 0.86731233971197474, 0.86569082308420053, 0.87744690610655063, 0.8868778280542986, 0.89511513933914744]\n", "[0.88248424369747902, 0.90201871711218939, 0.90199786319816277, 0.89785600726777193, 0.90828134247386072, 0.901931251970987, 0.90776139078849805, 0.894419306184012, 0.90695059586320259]\n", "[0.88453584558823528, 0.90356851867109755, 0.90017429356059719, 0.9004042698160345, 0.90953590451765631, 0.90642144433932514, 0.90758745067882418, 0.89259532077589532, 0.90993466812778712]\n", "[0.87926733193277307, 0.88709672756497815, 0.88338354869339275, 0.89836929366341134, 0.87160312684947727, 0.87634941658782717, 0.87592505060404435, 0.89230593847556916, 0.89844451547113535, 0.86800810449011045]\n", "[0.8515625, 0.88978171720807331, 0.87759469717527616, 0.89028843970020444, 0.86731233971197474, 0.86569082308420053, 0.87744690610655063, 0.8868778280542986, 0.89511513933914744, 0.85676049910927476]\n", "[0.88248424369747902, 0.90201871711218939, 0.90199786319816277, 0.89785600726777193, 0.90828134247386072, 0.901931251970987, 0.90776139078849805, 0.894419306184012, 0.90695059586320259, 0.89731786414315262]\n", "[0.88453584558823528, 0.90356851867109755, 0.90017429356059719, 0.9004042698160345, 0.90953590451765631, 0.90642144433932514, 0.90758745067882418, 0.89259532077589532, 0.90993466812778712, 0.89731786414315262]\n" ] } ], "source": [ "def balanced_accuracy(lr, x_test, t_test):\n", " cm = sklearn.metrics.confusion_matrix(t_test, lr.predict(x_test))\n", " tp = cm[1, 1]\n", " n, p = cm.sum(axis=1)\n", " tn = cm[0, 0]\n", " ba = (tp / p + tn / n) / 2\n", " return ba\n", "\n", "def test_feature_set(features, x_train, t_train, x_test, t_test):\n", " lr = sklearn.linear_model.LogisticRegression(C=100.0, class_weight='balanced')\n", " lr.fit(features[x_train], t_train)\n", " return balanced_accuracy(lr, features[x_test], t_test)\n", "\n", "linear_ba = []\n", "nonlinear_ba = []\n", "exp_ba = []\n", "nonlinear_exp_ba = []\n", "\n", "n_trials = 10\n", "for trial in range(n_trials):\n", " print('Trial {}/{}'.format(trial + 1, n_trials))\n", " x_train, x_test, t_train, t_test = sklearn.cross_validation.train_test_split(\n", " numpy.arange(raw_astro_features.shape[0]), labels, test_size=0.2)\n", " linear_ba.append(test_feature_set(features_linear, x_train, t_train, x_test, t_test))\n", " nonlinear_ba.append(test_feature_set(features_nonlinear, x_train, t_train, x_test, t_test))\n", " exp_ba.append(test_feature_set(features_exp, x_train, t_train, x_test, t_test))\n", " nonlinear_exp_ba.append(test_feature_set(features_nlexp, x_train, t_train, x_test, t_test))" ] }, { "cell_type": "code", "execution_count": 35, "metadata": { "collapsed": false }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "Linear features: (88.31 +- 1.02)%\n", "Nonlinear features: (87.58 +- 1.43)%\n", "Exponentiated features: (90.01 +- 0.73)%\n", "Exponentiated nonlinear features: (90.12 +- 0.77)%\n" ] } ], "source": [ "print('Linear features: ({:.02f} +- {:.02f})%'.format(\n", " numpy.mean(linear_ba) * 100, numpy.std(linear_ba) * 100))\n", "print('Nonlinear features: ({:.02f} +- {:.02f})%'.format(\n", " numpy.mean(nonlinear_ba) * 100, numpy.std(nonlinear_ba) * 100))\n", "print('Exponentiated features: ({:.02f} +- {:.02f})%'.format(\n", " numpy.mean(exp_ba) * 100, numpy.std(exp_ba) * 100))\n", "print('Exponentiated nonlinear features: ({:.02f} +- {:.02f})%'.format(\n", " numpy.mean(nonlinear_exp_ba) * 100, numpy.std(nonlinear_exp_ba) * 100))" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "collapsed": true }, "outputs": [], "source": [] } ], "metadata": { "kernelspec": { "display_name": "Python 3", "language": "python", "name": "python3" }, "language_info": { "codemirror_mode": { "name": "ipython", "version": 3 }, "file_extension": ".py", "mimetype": "text/x-python", "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", "version": "3.5.1" } }, "nbformat": 4, "nbformat_minor": 0 }
mit
nkmk/python-snippets
notebook/pathlib_file.ipynb
1
10249
{ "cells": [ { "cell_type": "code", "execution_count": 1, "metadata": {}, "outputs": [], "source": [ "import pathlib\n", "import os" ] }, { "cell_type": "code", "execution_count": 2, "metadata": {}, "outputs": [], "source": [ "os.makedirs('temp', exist_ok=True)" ] }, { "cell_type": "code", "execution_count": 3, "metadata": {}, "outputs": [], "source": [ "p_empty = pathlib.Path('temp/empty_file.txt')" ] }, { "cell_type": "code", "execution_count": 4, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "temp/empty_file.txt\n" ] } ], "source": [ "print(p_empty)" ] }, { "cell_type": "code", "execution_count": 5, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "<class 'pathlib.PosixPath'>\n" ] } ], "source": [ "print(type(p_empty))" ] }, { "cell_type": "code", "execution_count": 6, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "False\n" ] } ], "source": [ "print(p_empty.exists())" ] }, { "cell_type": "code", "execution_count": 7, "metadata": {}, "outputs": [], "source": [ "p_empty.touch()" ] }, { "cell_type": "code", "execution_count": 8, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "True\n" ] } ], "source": [ "print(p_empty.exists())" ] }, { "cell_type": "code", "execution_count": 9, "metadata": {}, "outputs": [], "source": [ "p_empty.touch()" ] }, { "cell_type": "code", "execution_count": 10, "metadata": {}, "outputs": [], "source": [ "# p_empty.touch(exist_ok=False)\n", "# FileExistsError: [Errno 17] File exists: 'temp/empty_file.txt'" ] }, { "cell_type": "code", "execution_count": 11, "metadata": {}, "outputs": [], "source": [ "# pathlib.Path('temp/new_dir/empty_file.txt').touch()\n", "# FileNotFoundError: [Errno 2] No such file or directory: 'temp/new_dir/empty_file.txt'" ] }, { "cell_type": "code", "execution_count": 12, "metadata": {}, "outputs": [], "source": [ "p_empty_new = pathlib.Path('temp/new_dir/empty_file.txt')\n", "p_empty_new.parent.mkdir(parents=True, exist_ok=True)\n", "p_empty_new.touch()" ] }, { "cell_type": "code", "execution_count": 13, "metadata": {}, "outputs": [], "source": [ "pathlib.Path('temp/empty_file2.txt').touch()" ] }, { "cell_type": "code", "execution_count": 14, "metadata": {}, "outputs": [], "source": [ "p_new = pathlib.Path('temp/new_file.txt')" ] }, { "cell_type": "code", "execution_count": 15, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "False\n" ] } ], "source": [ "print(p_new.exists())" ] }, { "cell_type": "code", "execution_count": 16, "metadata": {}, "outputs": [], "source": [ "with p_new.open(mode='w') as f:\n", " f.write('line 1\\nline 2\\nline 3')" ] }, { "cell_type": "code", "execution_count": 17, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "line 1\n", "line 2\n", "line 3\n" ] } ], "source": [ "with p_new.open() as f:\n", " print(f.read())" ] }, { "cell_type": "code", "execution_count": 18, "metadata": {}, "outputs": [], "source": [ "s = p_new.read_text()" ] }, { "cell_type": "code", "execution_count": 19, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "line 1\n", "line 2\n", "line 3\n" ] } ], "source": [ "print(s)" ] }, { "cell_type": "code", "execution_count": 20, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "<class 'str'>\n" ] } ], "source": [ "print(type(s))" ] }, { "cell_type": "code", "execution_count": 21, "metadata": {}, "outputs": [], "source": [ "i = p_new.write_text('new text')" ] }, { "cell_type": "code", "execution_count": 22, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "8\n" ] } ], "source": [ "print(i)" ] }, { "cell_type": "code", "execution_count": 23, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "new text\n" ] } ], "source": [ "print(p_new.read_text())" ] }, { "cell_type": "code", "execution_count": 24, "metadata": {}, "outputs": [], "source": [ "p_new2 = pathlib.Path('temp/new_file2.txt')" ] }, { "cell_type": "code", "execution_count": 25, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "False\n" ] } ], "source": [ "print(p_new2.exists())" ] }, { "cell_type": "code", "execution_count": 26, "metadata": {}, "outputs": [], "source": [ "# print(p_new2.read_text())\n", "# FileNotFoundError: [Errno 2] No such file or directory: 'temp/new_file2.txt'" ] }, { "cell_type": "code", "execution_count": 27, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "9\n" ] } ], "source": [ "print(p_new2.write_text('new text2'))" ] }, { "cell_type": "code", "execution_count": 28, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "new text2\n" ] } ], "source": [ "print(p_new2.read_text())" ] }, { "cell_type": "code", "execution_count": 29, "metadata": {}, "outputs": [], "source": [ "# print(pathlib.Path('temp/new_dir2/new_file.txt').write_text('new_text'))\n", "# FileNotFoundError: [Errno 2] No such file or directory: 'temp/new_dir2/new_file.txt'" ] }, { "cell_type": "code", "execution_count": 30, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "8\n" ] } ], "source": [ "p_text_new = pathlib.Path('temp/new_dir2/new_file.txt')\n", "p_text_new.parent.mkdir(parents=True, exist_ok=True)\n", "print(p_text_new.write_text('new_text'))" ] }, { "cell_type": "code", "execution_count": 31, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "new_text\n" ] } ], "source": [ "print(p_text_new.read_text())" ] }, { "cell_type": "code", "execution_count": 32, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "9\n" ] } ], "source": [ "print(pathlib.Path('temp/new_file3.txt').write_text('new_text3'))" ] }, { "cell_type": "code", "execution_count": 33, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "new_text3\n" ] } ], "source": [ "print(pathlib.Path('temp/new_file3.txt').read_text())" ] }, { "cell_type": "code", "execution_count": 34, "metadata": {}, "outputs": [], "source": [ "p_empty = pathlib.Path('temp/empty_file.txt')" ] }, { "cell_type": "code", "execution_count": 35, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "True\n" ] } ], "source": [ "print(p_empty.exists())" ] }, { "cell_type": "code", "execution_count": 36, "metadata": {}, "outputs": [], "source": [ "p_empty.unlink()" ] }, { "cell_type": "code", "execution_count": 37, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "False\n" ] } ], "source": [ "print(p_empty.exists())" ] }, { "cell_type": "code", "execution_count": 38, "metadata": {}, "outputs": [], "source": [ "# p_empty.unlink()\n", "# FileNotFoundError: [Errno 2] No such file or directory: 'temp/empty_file.txt'" ] }, { "cell_type": "code", "execution_count": 39, "metadata": {}, "outputs": [], "source": [ "p_dir = pathlib.Path('temp/')" ] }, { "cell_type": "code", "execution_count": 40, "metadata": {}, "outputs": [], "source": [ "# p_dir.unlink()\n", "# PermissionError: [Errno 1] Operation not permitted: 'temp'" ] }, { "cell_type": "code", "execution_count": 41, "metadata": {}, "outputs": [], "source": [ "for p in p_dir.iterdir():\n", " if p.is_file():\n", " p.unlink()" ] }, { "cell_type": "code", "execution_count": 42, "metadata": {}, "outputs": [ { "data": { "text/plain": [ "[]" ] }, "execution_count": 42, "metadata": {}, "output_type": "execute_result" } ], "source": [ "[p.unlink() for p in p_dir.iterdir() if p.is_file()]" ] }, { "cell_type": "code", "execution_count": 43, "metadata": {}, "outputs": [], "source": [ "import shutil\n", "\n", "shutil.rmtree('temp')" ] } ], "metadata": { "kernelspec": { "display_name": "Python 3", "language": "python", "name": "python3" }, "language_info": { "codemirror_mode": { "name": "ipython", "version": 3 }, "file_extension": ".py", "mimetype": "text/x-python", "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", "version": "3.7.0" } }, "nbformat": 4, "nbformat_minor": 2 }
mit
wzxiong/DAVIS-Machine-Learning
labs/lab1-soln.ipynb
1
128583
{ "cells": [ { "cell_type": "markdown", "metadata": {}, "source": [ "# Lab 1: Nearest Neighbor Regression and Overfitting" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "This is based on the notebook file [01 in Aurélien Geron's github page](https://github.com/ageron/handson-ml)" ] }, { "cell_type": "code", "execution_count": 13, "metadata": { "collapsed": false, "slideshow": { "slide_type": "-" } }, "outputs": [], "source": [ "# Import the necessary packages\n", "import numpy as np\n", "import pandas as pd\n", "import matplotlib.pyplot as plt\n", "from sklearn.model_selection import LeaveOneOut\n", "from sklearn import linear_model, neighbors\n", "%matplotlib inline\n", "plt.style.use('ggplot')\n", "\n", "# Where to save the figures\n", "PROJECT_ROOT_DIR = \"..\"\n", "datapath = PROJECT_ROOT_DIR + \"/data/lifesat/\"" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "# Load and prepare data" ] }, { "cell_type": "code", "execution_count": 2, "metadata": { "collapsed": false }, "outputs": [ { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAskAAAHxCAYAAACf9CGwAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAAPYQAAD2EBqD+naQAAIABJREFUeJzs3Xl4VPX5//9XYJgkhCTEMcFAjEmwEpZCCBKlQvAKAlXB\nJRRq68el+DGaorXQgiJFECiiFK0fKUixi9ZWpZpaFLXgUiJIRcCCsoiENSBkEZIQSYYJ5/eHP+br\nnEwwA8mck5nn47q8MPe8M+eeuWd5MZxzJsIwDEMAAAAAvNpZ3QAAAABgN4RkAAAAwISQDAAAAJgQ\nkgEAAAATQjIAAABgQkgGAAAATAjJAAAAgAkhGQAAADAhJAMAAAAmlofkw4cP6+6779aAAQM0bNgw\nPfvss02u3bZtm8aNG6esrCyNHTtWW7duDWKnAAAACBeWh+T77rtPMTEx+sc//qEHH3xQv/3tb/X2\n2283WnfixAkVFBRo4MCBKioqUlZWlu666y7V1dVZ0DUAAABCmaUhubq6Wps3b1ZhYaFSU1M1bNgw\nDRkyRP/5z38arV2xYoWio6M1efJkZWRkaNq0aYqJidFbb71lQecAAAAIZZaG5KioKEVHR+uVV16R\nx+PR7t27tWnTJvXq1avR2i1btmjAgAE+tezsbH388cfBahcAAABhwtKQ7HQ69dBDD+nFF19Uv379\ndM011yg3N1f5+fmN1paVlSkpKcmn5nK5dOTIkWC1CwAAgDBh+T7JJSUlysvL09///nfNmzdP//rX\nv/T66683WldXVyen0+lTczqdcrvdwWoVAAAAYcJh5cbXrVunl19+WcXFxXI6nerVq5cOHz6sxYsX\na9SoUT5rIyMjGwVit9utqKiogLZpGIYiIiLOuXcAAACELktD8tatW5WWlubzCXHPnj21ZMmSRmu7\ndOmi8vJyn1pFRYUSExMD2mZERISqq0+ooeHU2TWNVtG+fTvFxUUzG5tiPvbFbOyL2dgb87Gv07Ox\nmqUhOSkpSfv27ZPH45HD8XUru3fvVkpKSqO1/fr109KlS31qmzZtUmFhYcDbbWg4JY+HJ4QdMRt7\nYz72xWzsi9nYG/NBUyzdJzkvL08Oh0O/+tWvtHfvXr377rtasmSJbr31Vklff1JcX18vSRo5cqRq\namo0d+5clZSUaM6cOTpx4oSuvvpqK28CAAAAQpClIblTp07685//rPLyco0dO1aPPvqoJkyYoLFj\nx0qSBg8erDfffNO79umnn9aGDRs0ZswYffLJJ1q6dGnA+yQDAAAA3ybCMAzD6iaC7ejRWv5pxWYc\njnZKSIhhNjbFfOyL2dgXs7E35mNfp2djNctPAQcAAADYDSEZAAAAMCEkAwAAACaEZAAAAMCEkAwA\nAACYEJIBAAAAE0IyAAAAYEJIBgAAAEwIyQAAAIAJIRkAAAAwISQDAAAAJoRkAAAAwISQDAAAAJgQ\nkgEAAAATQjIAAABgQkgGAAAATAjJAAAAgAkhGQAAADAhJAMAAAAmhGQAAADAhJAMAAAAmBCSAQAA\nABNCMgAAAGBCSAYAAABMCMkAAACACSEZAAAAMCEkAwAAACaEZAAAAMCEkAwAAACYEJIBAAAAE0Iy\nAAAAYEJIBgAAAEwIyQAAAIAJIRkAAAAwISQDAAAAJoRkAAAAwISQDAAAAJgQkgEAAAATQjIAAABg\nQkgGAAAATAjJAAAAgAkhGQAAADAhJAMAAAAmhGQAAADAhJAMAAAAmBCSAQAAABNCMgAAAGBCSAYA\nAABMCMkAAACAicPqBv7xj39o6tSpioiIkGEY3j/btWunbdu2NVpfWFio9957z2f9008/raFDh1rQ\nPQAAAEKR5SH52muvVW5urvfnkydP6rbbblNeXp7f9bt379aCBQt0+eWXe2txcXGt3icAAADCh+Uh\n2el0yuVyeX9esmSJJGnSpEmN1rrdbpWWlqpPnz4+vwMAAAC0JMtD8jdVVVXpmWee0dy5c9WhQ4dG\nl+/Zs0cRERG68MILLegOQChyezwqLatRZXWdXHFRSkmKldPhaLIOnA0eT0DbY6tn6N/+9jd16dJF\nw4cP93t5SUmJOnXqpMmTJ+vDDz9UcnKy7r33Xp/dNQCgudwej1au36+i4r3eWn5umvIGdNO7Gw82\nqo/ISSXYIGDuk/4fZzyeAHuz1bPz5ZdfVkFBQZOX7969W/X19RoyZIgKCgq0atUqFRYWatmyZerd\nu3ezt9O+PSf1sJvTM2E29hSq89nzRY1PcJGkouK9SkuO8Vvvk5Ggi1PstatXqM4mFJyeyf6y6jbz\neAonPHfsyy4zsU1I3rJli44cOaJrrrmmyTX33HOPbrvtNsXGxkqSevTooU8//VQvvfSSZs2a1ext\nxcVFn3O/aB3Mxt5CbT5Vnx32W684Vu+3fqz2pBISYlqzpbMWarMJJceOu/3Xbfx4Cic8d9AU24Tk\nNWvWaODAgd4A3BTz5d27d1dJSUlA26quPqGGhlMB94jW0759O8XFRTMbmwrV+cR3bHzsgySd3znS\nb71zTAcdPVrbmi0FLFRnEwpOz6ZzJ6ffy+34eAonPHfs6/RsrGabkLxlyxZlZ2efcc3p8ynPnTvX\nW9uxY4cuueSSgLbV0HBKHg9PCDtiNvYWavPplhir/Ny0RvuKZnTt7Lfe9fxY297+UJtNKElNimtz\nj6dwwnMHTbFNSN65c6euu+66RvWKigrFxsYqMjJSeXl5mjRpknJycpSdna3ly5dr06ZNmj17tgUd\nA2jrnA6HRuSkqld6giqr6uSKj1JKYuwZ60CgnB14PAFtkW2eoV9++aXi4+Mb1QcPHqx58+bphhtu\n0PDhwzVjxgwtXrxYhw8f1sUXX6xnnnlGXbt2taBjAKHA6XAoIzlBGcnNqwNng8cT0PZEGIZhWN1E\nsB09Wss/rdiMw9FOCQkxzMammI99MRv7Yjb2xnzs6/RsrGaPc2wAAAAANkJIBgAAAEwIyQAAAICJ\nbQ7cA3B23B6PSstqVFldJ1dclFKSrDlq3i59AGfC4xRAc/HKALRhbo9HK9fvb3T+1RE5qUF947dL\nH8CZ8DgFEAh2twDasNKyGp83fEkqKt6r0vKasOwDOBMepwACQUgG2rDK6jr/9Sr/9VDvAzgTHqcA\nAkFIBtowV1yU/3q8/3qo9wGcCY9TAIEgJANtWEpSrPJz03xq+blpSkmMDcs+gDPhcQogEBypALRh\nTodDI3JS1Ss9QZVVdXLFRyklMfhH69ulD+BMeJwCCASvDEAb53Q4lJGcoIxk+gC+DY9TAM3F7hYA\nAACACSEZAAAAMCEkAwAAACaEZAAAAMCEA/eAEOf2eFRaVqPK6jq54qKUkhT8o/ndHo8OlX/dQ229\nR11dHZXaJd4WZxWww/0DALAf3gmAEOb2eLRy/X6fr+LNz03TiJzUoAVBt8ejNZsPqrSiVv/++PA3\n+rhII3IusjSQ2uH+AQDYE7tbACGstKzGJwBKUlHxXpWW1wS1h4rqOp+A/HUf+4Lahz92uH8AAPZE\nSAZCWGV1nf96lf96a/Vw0nPK8j78bt8G9w8AwJ4IyUAIc8VF+a/H+6+3Vg8dHP5faoLZh9/t2+D+\nAQDYEyEZCGEpSbHKz03zqeXnpiklMTaoPZwfF6Ur+19g6uOioPbhjx3uHwCAPXFkChDCnA6HRuSk\nqld6giqr6uSKj1JKYnDP3uB0ODS4XzcdqqhR77TO+qq+QcmuGKV2ibP84Dg73D8AAHvinQAIcU6H\nQxnJCcpItraHtAsSlHZBgnVNNMEO9w8AwH7Y3QIAAAAwISQDAAAAJoRkAAAAwISQDAAAAJgQkgEA\nAAATzm4BIGy4PR6VltWosrpOrrgopSQF53RvVm0XAHD2eJUGEBbcHo9Wrt+vouK93lp+bppG5KS2\namC1arsAgHPD7hYAwkJpWY1PUJWkouK9Ki2vCcntAgDODSEZQFiorK7zX6/yX2/r2wUAnBtCMoCw\n4IqL8l+P919v69sFAJwbQjKAsJCSFKv83DSfWn5umlISY0NyuwCAc8NRIwDCgtPh0IicVPVKT1Bl\nVZ1c8VFKSWz9s0xYtV0AwLnhVRpA2HA6HMpITlBGcnhsFwBw9tjdAgAAADAhJAMAAAAmhGQAAADA\nhJAMAAAAmBCSAQAAABNCMgAAAGBCSAYAAABMCMkAAACACSEZAAAAMCEkAwAAACaEZAAAAMCEkAwA\nAACYEJIBAAAAE8tD8j/+8Q9lZmaqZ8+ePn/26tXL7/pt27Zp3LhxysrK0tixY7V169YgdwwAAIBQ\nZ3lIvvbaa7V27VqtWbNGa9eu1XvvvaeLLrpIt912W6O1J06cUEFBgQYOHKiioiJlZWXprrvuUl1d\nnQWdAwAAIFRZHpKdTqdcLpf3v3/+85+SpEmTJjVau2LFCkVHR2vy5MnKyMjQtGnTFBMTo7feeivY\nbQMAACCEWR6Sv6mqqkrPPPOMfvnLX6pDhw6NLt+yZYsGDBjgU8vOztbHH38crBaDyu3xaPeho/po\nxxfafeio3B6P1S0BkkLzsRmKtwkAcPYcVjfwTX/729/UpUsXDR8+3O/lZWVluuSSS3xqLpdLu3bt\nCkZ7QeX2eLRy/X4VFe/11vJz0zQiJ1VOh63GhjATio/NULxNAIBzY6tX/5dfflkFBQVNXl5XVyen\n0+lTczqdcrvdAW2nfXtbfYDu154vanzesCWpqHiv+mQk6OIUlzVNtaLTM2kLswlH35zPwfLQe2y2\n5ecbzx37Yjb2xnzsyy4zsU1I3rJli44cOaJrrrmmyTWRkZGNArHb7VZUVFRA24qLiz6rHoOp6rPD\nfuvHak8qISEmyN0ET1uYTTiLi4tW1Vcn/V7Wlh+bofB847ljX8zG3pgPmmKbkLxmzRoNHDhQsbGx\nTa7p0qWLysvLfWoVFRVKTEwMaFvV1SfU0HDqrPoMlviOjffJlqTOMR109GhtkLtpfe3bt1NcXHSb\nmE04+uZ8QvGx2ZZvE88d+2I29sZ87Ov0bKxmm5C8ZcsWZWdnn3FNv379tHTpUp/apk2bVFhYGNC2\nGhpOyeOx9xOiW2Ks8nPTGu0j2fX8WNv3fi7awmzCWUPDqZB8bIbCbeK5Y1/Mxt6YD5pim5C8c+dO\nXXfddY3qFRUVio2NVWRkpEaOHKnHH39cc+fO1Q9/+EO98MILOnHihK6++moLOm5dTodDI3JS1Ss9\nQZVVdXLFRyklMZaDiGC5UHxshuJtAgCcG3vsGS3pyy+/VHx8fKP64MGD9eabb0qSOnXqpKefflob\nNmzQmDFj9Mknn2jp0qUB75PcVjgdDmUkJ2hgZrIykhN4w4ZthOJjMxRvEwDg7NnmXeC///2v3/qO\nHTt8fv7ud7+roqKiYLQEAACAMGWbT5IBAAAAuyAkAwAAACaEZAAAAMDENvskA7Ant8ejPV/UqOqz\nw4rv2EHdzuGsD26PR6VlNaqsrpMrLkopSZxBAoB98ZoV3pg0gCa5PR6tXL+/0fmDR+SkBvxG0ZLX\nBQCtjdcssLsFgCaVltX4vEFIUlHxXpWW11h6XQDQ2njNAiEZQJMqq+v816v814N1XQDQ2njNAiEZ\nQJNccf6/qMcVH/gX+LTkdQFAa+M1C4RkAE1KSYpVfm6aTy0/N00pibGWXhcAtDZesxBhGIZhdRPB\ndvRorTyeU1a3gW9wONopISGG2diQ2+PRoYoaHas9qc4xHdT1/HM8u0V5jSqr6uSKj1LKOZwpA1/j\nuWNfzMbemjMfXrOscXo2VmPSAM7I6XDo4hRXi7zZOx0OZSQnKCO5BRsEgFbCa1Z4Y3cLAAAAwISQ\nDAAAAJgQkgEAAAATQjIAAABgwoF7AILG7fGotKxGldV1csVFKSWJI8UBAPbEuxOAoHB7PFq5fr/P\n17zm56ZpRE4qQRkAYDvsbgEgKErLanwCsiQVFe9VaXmNNQ0BAHAGhGQAQVFZXee/XuW/DgCAlQjJ\nAILCFRflvx7vvw4AgJUIyQCCIiUpVvm5aT61/Nw0pSTGWtMQAABnwNEyAILC6XBoRE6qeqUnqLKq\nTq74KKUkcnYLAIA98e4EIGicDocykhOUkWx1JwAAnBm7WwAAAAAmhGQAAADAhJAMAAAAmBCSAQAA\nABMO3GsD3B6PSstqVFldJ1dclFKSWuaMAK11vQAAAG0dicjm3B6PVq7f7/N1vvm5aRqRk3pOgba1\nrhcAACAUsLuFzZWW1fgEWUkqKt6r0vIaW14vAABAKCAk21xldZ3/epX/utXXCwAAEAoIyTbniovy\nX4/3X7f6egEAAEIBIdnmUpJilZ+b5lPLz01TSmKsLa8XAAAgFHCEls05HQ6NyElVr/QEVVbVyRUf\npZTEcz8LRWtdLwAAQCggEbUBTodDGckJykhuG9cLAADQ1p11SK6oqNDJkydlGIZPvWvXrufcFAAA\nAGClgEPypk2bNHXqVO3fv9+nbhiGIiIitH379hZrDgAAALBCwCF5zpw5SkxM1JQpUxQby0FeAAAA\nCD0Bh+TPP/9cr776qrp3794a/QAAAACWC/gUcMnJyaqtrW2NXgAAAABbCDgkFxYWau7cufrss890\n8uTJ1ugJAAAAsFTAu1ssXrxYhw4d0g033OD3cg7cAwAAQFsXcEguLCxsjT4AAAAA2wg4JN94442t\n0QcAAABgGwHvkyxJ77zzjsaNG6esrCxdeumluummm7Rq1aqW7g0AAACwRMAheeXKlbrnnnuUlJSk\niRMn6p577pHL5dJ9992nd955pzV6BAAAAIIq4N0tFi1apAkTJuiee+7x1m6//XYtXLhQTz/9tIYN\nG9aiDQIAAADBFvAnybt379bo0aMb1UeNGqWdO3e2SFMAAACAlQIOyUlJSdq3b1+j+r59+/iaagAA\nAISEgEPyqFGjNHPmTK1evVrHjx/X8ePHtXr1aj388MO65pprAm7A7Xbr4YcfVk5OjgYPHqwnnnii\nybWFhYXKzMxUz549vX+uXr064G0CAAAAZ3JW50neuXOn7rrrLkVEREiSDMPQlVdeqUmTJgXcwJw5\nc7R+/Xr98Y9/1PHjxzVx4kR169ZN48aNa7R29+7dWrBggS6//HJvLS4uLuBtAgAAAGcScEiOjIzU\nokWLVFJSop07d8owDPXo0UPdu3cPeONVVVUqKirSn//8Z/Xp00eSNH78eG3evLlRSHa73SotLVWf\nPn3kcrkC3hYAAADQXM0KyYcOHVJycrIiIiJ06NAhSVJ0dLT69evns0aSunbt2uyNb9y4UbGxsbr0\n0ku9tTvvvNPv2j179igiIkIXXnhhs68fweX2eFRaVqPK6jq54qKUkhQrpyPgv4cFVVvs+VyF420G\nACBQzXpnHDZsmNasWSOXy6W8vDzvbhbfZBiGIiIitH379mZv/MCBA+rWrZteffVVLVmyRCdPnlR+\nfr4KCwsbbaOkpESdOnXS5MmT9eGHHyo5OVn33nuvcnNzm709tB63x6OV6/erqHivt5afm6YROam2\nDWBtsedzFY63GQCAs9Gsd8Vnn31W8fHxkqTnnnuuxTb+1Vdfae/evVq2bJnmzZun8vJyTZ8+XR07\ndtTtt9/us3b37t2qr6/XkCFDVFBQoFWrVqmwsFDLli1T7969A9pu+/Zn9UWDOIM9X9T4BC9JKire\nqz4ZCbo45dt3jzk9k2DO5lx7bovO9jZbMR80D7OxL2Zjb8zHvuwyk2aF5JycHO//r1+/XnfccYei\no6N91hw/flxPPvmkz9pv0759e9XW1urxxx/XBRdcIEk6ePCgXnjhhUYh+Z577tFtt93mPc1cjx49\n9Omnn+qll17SrFmzmr1NSYqLi/72RQhI1WeH/daP1Z5UQkJMs68nmLNpqZ7bknO9zTx37IvZ2Bez\nsTfmg6Y0KySXlJToyy+/lCT97ne/U2ZmpveT5dN27typZcuWadq0ac3eeFJSkiIjI70BWZLS09N1\n+LD/N3LzeZi7d++ukpKSZm/vtOrqE2poOBXw76Fp8R07+K13jumgo0drv/X327dvp7i46KDO5lx7\nbovO9jZbMR80D7OxL2Zjb8zHvk7PxmrNCskHDhzQ3Xff7d1P+JtfSf1NY8aMCWjj/fr1U319vfbt\n26eLLrpI0teBvFu3bo3WTp06VREREZo7d663tmPHDl1yySUBbVOSGhpOyePhCdGSuiXGKj83rdG+\nrl3Pjw3ovg7mbFqq57bkXG8zzx37Yjb2xWzsjfmgKc0KyVdeeaXeffddnTp1SldddZX+/ve/67zz\nzvNeHhERoY4dO6pz584BbTw9PV1Dhw7VAw88oBkzZqi8vFxLly7VhAkTJEkVFRWKjY1VZGSk8vLy\nNGnSJOXk5Cg7O1vLly/Xpk2bNHv27IC2idbhdDg0IidVvdITVFlVJ1d8lFIS7X3WhLbY87kKx9sM\nAMDZiDAMwwjkFw4ePKhOnTqpqqpKqampkqSVK1cqJycn4JAsfb0v85w5c7Rq1SpFR0fr5ptvVmFh\noSQpMzNT8+bN0w033CBJevnll7V06VIdPnxYF198sR588EENGDAg4G0ePVrL3xptxuFop4SEGGZj\nU8zHvpiNfTEbe2M+9nV6NlYLOCRv3bpV48ePV35+vu6//35JUl5entxut/74xz+e1e4PwcYTwn54\nsbI35mNfzMa+mI29MR/7sktIDvgcG/PmzVNeXp4mTpzora1cuVJDhgzRvHnzWrQ5AAAAwAoBh+RP\nP/1UP/3pT+V0Or01h8OhgoICbd68uUWbAwAAAKwQcEiOiYnRgQMHGtXLysp8gjMAAADQVgUckkeO\nHKmHH35Y69atU21trWpra/Wf//xHDz/8sIYPH94aPQIAAABBFfB5n37xi19o//79+slPfuI9b7Ik\nDR8+XFOmTGnR5gAAAAArBBySO3bsqKVLl2r37t36/PPP5XA41L17d6WlpbVCewAAAEDwnfU3CGRk\nZCgjI8OndvjwYZ+vmAYAAADaooBD8oEDB/Too49q586damhokCQZhiG3260vv/xS27Zta/EmAQAA\ngGAK+MC9WbNm6bPPPtPIkSN15MgRXXvtterdu7cqKio0c+bMVmgRAAAACK6AP0netGmTFi1apMsu\nu0zvv/++rrrqKvXt21dPPPGEVq9erXHjxrVGnwAAAEDQBPxJstvtVmpqqiQpPT1dn332mSTphhtu\n4MtEAAAAEBICDsndunXTzp07JX0dkrdv3y5JOnXqlGpra1u2OwAAAMACAe9uceONN2rKlCl67LHH\ndOWVV+rWW29V165dtXbtWvXo0aM1egQAAACCKuCQXFBQoMjISBmGob59++qnP/2pFi9erOTkZM2f\nP781egQAAACCqlkhedy4cfrd736nxMRE/fOf/9SPf/xjOZ1OSV+H5oKCglZtEgAAAAimZu2TvGPH\nDpWVlUmSpk6dquPHj7dqUwAAAICVmvVJcnZ2tn70ox/p/PPPl2EYGjNmjNq185+v33nnnRZtEAAA\nAAi2ZoXkJ598UsuXL1dVVZUWLlyo73//+4qJiWnt3gAAAABLNCskx8fH65ZbbpEkHTx4UBMmTFCn\nTp1atTEAAADAKgGfJ/mRRx5RdXW1d7/k//znP5o1a5Zef/31Fm8OAAAAsELAIXnVqlUaMWKENm/e\nrP379+t///d/tW7dOv3qV7/SX//619boEQAAAAiqgEPyokWLdMcdd2jQoEF67bXX1LVrV61YsUJz\n587V888/3xo9AgAAAEEVcEguKSnRuHHj1K5dO61du1ZDhw5Vu3btlJWVpYMHD7ZGjwAAAEBQBRyS\n4+LiVFNTo5qaGm3ZskXf+973JEn79+9X586dW7xBAAAAINgC/lrqoUOH6qGHHlJMTIxiY2N1xRVX\n6IMPPtDMmTN15ZVXtkKLAAAAQHAF/Eny9OnTlZ2drY4dO2rx4sVyOp3auHGjsrKydP/997dGjwAA\nAEBQRRiGYVjdRLAdPVorj+eU1W3gGxyOdkpIiGE2NsV87IvZ2BezsTfmY1+nZ2O1Zu1usXDhQt1x\nxx2Kjo7WwoULz7j2nnvuaZHGAAAAAKs0KyQXFRXp5ptvVnR0tIqKippcFxERQUgGAABAm9eskPzu\nu+/6/X+zU6f45woAAAC0fQEfuDds2DAdO3asUf3IkSMaNGhQizQFAAAAWKlZnyS/8cYbev/99yVJ\nBw8e1KxZsxQZGemz5uDBg4qIiGj5DgEAAIAga1ZI7t+/v1588UWdPhHGoUOH1KFDB+/lERER6tix\nox599NHW6RIAAAAIomaF5OTkZD333HOSpFtuuUULFy5UfHx8qzYGAAAAWCXgfZL/8pe/NBmQDx8+\nfM4NAQAAAFYL+GupDxw4oEcffVQ7d+5UQ0ODJMkwDLndbn355Zfatm1bizcJAAAABFPAnyTPmjVL\nn332mUaOHKkjR47o2muvVe/evVVRUaGZM2e2QosAAABAcAX8SfKmTZu0aNEiXXbZZXr//fd11VVX\nqW/fvnriiSe0evVqjRs3rjX6BAAAAIIm4E+S3W63UlNTJUnp6en67LPPJEk33HCDNm/e3LLdAQAA\nABYIOCR369ZNO3fulPR1SN6+fbukr79tr7a2tmW7gy25PR7tPnRUH+34QrsPHZXb47G6JQAAgBYV\n8O4WN954o6ZMmaLHHntMV155pW699VZ17dpVa9euVY8ePVqjR9iI2+PRyvX7VVS811vLz03TiJxU\nOR0BP5wAAABsKeBUU1BQoMjISBmGob59++qnP/2pFi9erOTkZM2fP781eoSNlJbV+ARkSSoq3qte\n6QnKSE6wpikAAIAWFnBIjoiI0O233+79uaCgQAUFBS3ZE2yssrrOf72qThnJQW4GAACglQS8T7Ik\nvfbaa94vDlm0aJFGjRqlhx56SPX19S3aHOzHFRflvx7vvw4AANAWBRySFy1apGnTpunQoUPauHGj\n/u///k/9+/fXhx9+qN/85jet0SNsJCUpVvm5aT61/Nw0pSTGWtMQAABAKwh4d4tXXnlFjz76qLKz\nszV37lxlZWVp9uzZ2rBhgyZOnKhp06a1Rp+wCafDoRE5qeqVnqDKqjq54qOUkhjLQXsAACCkBJxs\nysrK1L+r77/yAAAgAElEQVR/f0nSBx98oO9///uSpOTkZFVXV7dsd7Alp8OhjOQE9kEGAAAhK+CQ\nfMEFF2jPnj2qr6/Xrl27dMUVV0iSNmzYoAsuuKDFGwQAAACCLeCQfNNNN+nnP/+5nE6nevToof79\n++uvf/2rHnvsMf3sZz9rjR4BAACAoAo4JN9xxx1KT0/XgQMHdN1110mS4uLiNH36dP3gBz8IuAG3\n261HHnlEK1askNPp1JgxYzRx4kS/a7dt26aZM2dq586d+s53vqOZM2eqd+/eAW8TAAAAOJOzOtoq\nLy/P5+fRo0efdQNz5szR+vXr9cc//lHHjx/XxIkT1a1bN40bN85n3YkTJ1RQUKDrr79e8+bN0wsv\nvKC77rpLb7/9tqKiOP0YAAAAWs5ZnSe5pVRVVamoqEhz5sxRnz59dPnll2v8+PHavHlzo7UrVqxQ\ndHS0Jk+erIyMDE2bNk0xMTF66623LOgcAAAAoczS83Zt3LhRsbGxuvTSS721O++80+/aLVu2aMCA\nAT617Oxsffzxx7rhhhtatU+ruT0elZbVqLK6Tq64KKUkcco1u2JWAACEBkvfvQ8cOKBu3brp1Vdf\n1ZIlS3Ty5Enl5+ersLBQERERPmvLysp0ySWX+NRcLpd27doVzJaDzu3xaOX6/Soq3uut5eemaURO\nKuHLZpgVAAChw9J37q+++kp79+7VsmXLNG/ePJWXl2v69Onq2LGjbr/9dp+1dXV1cjqdPjWn0ym3\n2x3wdtu3t3Qvk4Ds+aLGJ3RJUlHxXvXJSNDFKS5rmmoFp2fSlmZjFsqzCoX5hCpmY1/Mxt6Yj33Z\nZSZnFZJ37NihZ599Vnv27NGTTz6pt99+WxdffLEuu+yygK6nffv2qq2t1eOPP+49x/LBgwf1wgsv\nNArJkZGRjQKx2+0+q4P24uKiA/4dq1R9dthv/VjtSSUkxAS5m9bXlmZjFg6zasvzCXXMxr6Yjb0x\nHzQl4JD86aef6sc//rH69eunTz/9VG63W9u3b9cjjzyi3/3udxo6dGizryspKUmRkZE+X0KSnp6u\nw4cbh40uXbqovLzcp1ZRUaHExMRAb4Kqq0+ooeFUwL9nhfiOHfzWO8d00NGjtUHupvW0b99OcXHR\nbWo2ZqE8q1CYT6hiNvbFbOyN+djX6dlYLeCQ/Jvf/EY/+clPNHHiRO/XU8+ZM0cxMTF66qmnAgrJ\n/fr1U319vfbt26eLLrpIklRSUqJu3br5Xbt06VKf2qZNm1RYWBjoTVBDwyl5PG3jCdEtMVb5uWmN\n9nPten5sm7kNgWhLszELh1m15fmEOmZjX8zG3pgPmnJWnyTPmDGjUf3mm2/WsmXLArqu9PR0DR06\nVA888IBmzJih8vJyLV26VBMmTJD09SfFsbGxioyM1MiRI/X4449r7ty5+uEPf6gXXnhBJ06c0NVX\nXx3oTWhTnA6HRuSkqld6giqr6uSKj1JKImdMsCNmBQBA6Ah4z+gOHTro+PHjjepffPGFoqMD/2j8\nN7/5jS666CLdfPPNmjp1qm655RbdfPPNkqTBgwfrzTfflCR16tRJTz/9tDZs2KAxY8bok08+0dKl\nS8Pii0ScDocykhM0MDNZGckJhC4bY1YAAISGCMMwjEB+Yfr06Tp06JCeeOIJDR06VMuXL5fb7dbE\niRPVp08fzZ07t7V6bTFHj9byTys243C0U0JCDLOxKeZjX8zGvpiNvTEf+zo9G6sF/Eny/fffr9ra\nWl1++eU6ceKE8vPzNWrUKLVv315TpkxpjR4BAACAoGrWvwW//fbbGjJkiCIjI9WpUye9+OKLWrdu\nnbZt26ZTp07pkksu0ZAhQ9SunT3OawcAAACci2aF5F/+8pd66623dMEFF2jYsGF6+eWXNWjQIA0a\nNKi1+wMAAACCrlkhuVOnTnrqqad06aWX6uDBg1qxYoU6derkd+0NN9zQog0C4cDt8ai0rEaV1XVy\nxUUpJYmzYgAAYKVmHbj3yiuv6LHHHlNVVZUiIiLU1K9ERERo+/btLd5kS2MnffsJ5wMo3B6PVq7f\n3+j8yiNyUm0TlMN5PnbHbOyL2dgb87Evuxy416x34DFjxmjMmDGSpMzMTK1Zs0bnn39+qzYGhIvS\nshqfgCxJRcV71Ss9QRnJCdY0BQBAmAv4SLt33nlHLperNXoBwlJldZ3/epX/OgAAaH3N+iT51ltv\n1cKFCxUXF6epU6eece1zzz3XIo0B4cIV5/8LcVzxof9FOQAA2FWzQnK3bt28p3fr1q1bqzYEhJuU\npFjl56Y12ic5JTHWuqYAAAhzAX/jXihgJ337CfcDKNwej0rLa1RZVSdXfJRSEu11dotwn4+dMRv7\nYjb2xnzsyy4H7rXYt3989NFHGjZsWEtdHRBWnA6HMpITNDAzWRnJCbYKyAAAhKMWC8l1dXU6dOhQ\nS10dAAAAYBm+RxoAAAAwISQDAAAAJoRkAAAAwKRZRwctXLjwW9fs27fvnJtB63J7PCotq1FldZ1c\ncVFKSbLXGRTshvsLAIDw1ax3/KKiomZdWXJy8jk1g9bj9ni0cv3+RufiHZGTSvDzg/sLAIDw1qx3\n+3fffbe1+0ArKy2r8Ql8klRUvFe90hOUkZxgTVM2xv0FAEB4Y5/kMFFZXee/XuW/Hu64vwAACG+E\n5DDhiovyX4/3Xw933F8AAIQ3QnKYSEmKVX5umk8tPzdNKYmx1jRkc9xfAACEN45AChNOh0MjclLV\nKz1BlVV1csVHKSWRszU0hfsLAIDwxjt+GHE6HMpITlAGJyFpFu4vAADCF7tbAAAAACaEZAAAAMCE\nkAwAAACYEJIBAAAAEw7cg+24PR6VltWosrpOrrgopSRxVgkAABBcJA/YivukRyvX7/f5Suj83DSN\nyEklKAMAgKBhdwvYyr7DVT4BWZKKiveqtLzGmoYAAEBYIiTDViqr6/zXq/zXAQAAWgMhGbbiiovy\nX4/3XwcAAGgNhGTYykUXxCs/N82nlp+bppTEWGsaAgAAYYkjoWArzg4OjchJVa/0BFVW1ckVH6WU\nRM5uAQAAgovkAdtxOhzKSE5QRrLVnQAAgHDF7hYAAACACSEZAAAAMCEkAwAAACaEZAAAAMCEA/fa\nELfHo9KyGlVW18kVF6WUJHud9cHu/QEAADQXCaaNcHs8Wrl+v89XNufnpmlETqotgqjd+wMAAAgE\nu1u0EaVlNT4BVJKKiveqtLzGmoZM7N4fAABAIAjJbURldZ3/epX/erDZvT8AAIBAEJLbCFdclP96\nvP96sNm9PwAAgEAQktuIlKRY5eem+dTyc9OUkhhrTUMmdu8PAAAgEBxR1UY4HQ6NyElVr/QEVVbV\nyRUfpZRE+5w9wu79AQAABIIE04Y4HQ5lJCcoI9nqTvyze38AAADNxe4WAAAAgIktQvLbb7+tzMxM\n9ezZ0/vnfffd53dtYWFho7WrV68OcscAAAAIZbbY3WLXrl3Ky8vTnDlzZBiGJCkyMtLv2t27d2vB\nggW6/PLLvbW4uLig9AkAAIDwYIuQXFJSou985zs677zzzrjO7XartLRUffr0kcvlClJ3AAAACDe2\n2N2ipKRE6enp37puz549ioiI0IUXXhiErgAAABCubBGS9+zZo/fff18jR47U8OHDtWDBAp08ebLR\nupKSEnXq1EmTJ0/W4MGDNXbsWBUXF1vQMQAAAEKZ5SH50KFDqqurU2RkpJ588kndf//9eu211zR/\n/vxGa3fv3q36+noNGTJEf/jDHzR06FAVFhZq69atFnQOAACAUBVhnD5SzkLV1dU+B9+tXLlSU6ZM\n0ccff6yIiAiftTU1NYqN/X/f4nb33XcrKSlJs2bNCmB7J9TQcOrcG0eLad++neLiopmNTTEf+2I2\n9sVs7I352Nfp2VjNFgfumc9O0b17d9XX1+vYsWNKSEjwueybAfn02pKSkgC3Z/0dD/+Yjb0xH/ti\nNvbFbOyN+aAplofkNWvW6Be/+IWKi4u9p33btm2bOnfu3CggT506VREREZo7d663tmPHDl1yySUB\nbZO/NdoPf6O3N+ZjX8zGvpiNvTEf++KT5P9f//79FR0drWnTpmnChAnav3+/5s+frzvvvFOSVFFR\nodjYWEVGRiovL0+TJk1STk6OsrOztXz5cm3atEmzZ88OaJsNDafk8fCEsCNmY2/Mx76YjX0xG3tj\nPmiK5QfuxcTE6A9/+IOOHj2qH/zgB5o+fbpuuukmjR8/XpI0ePBgvfnmm5Kk4cOHa8aMGVq8eLFG\njx6t9957T88884y6du1q5U0AAABAiLHFgXvBdvRoLX9rtBmHo50SEmKYjU0xH/tiNvbFbOyN+djX\n6dlYzfJPkgEAAAC7ISQDAAAAJoRkAAAAwISQDAAAAJgQkgEAAAATQjIAAABgQkgGAAAATAjJAAAA\ngAkhGQAAADAhJAMAAAAmhGQAAADAhJAMAAAAmBCSAQAAABNCMgAAAGBCSAYAAABMCMkAAACACSEZ\nAAAAMCEkAwAAACaEZAAAAMCEkAwAAACYEJIBAAAAE0IyAAAAYEJIBgAAAEwIyQAAAIAJIRkAAAAw\nISQDAAAAJoRkAAAAwISQDAAAAJgQkgEAAAATQjIAAABgQkgGAAAATAjJAAAAgAkhGQAAADAhJAMA\nAAAmhGQAAADAhJAMAAAAmBCSAQAAABNCMgAAAGBCSAYAAABMCMkAAACAicPqBhB+3B6PSstqVFld\nJ1dclFKSYuVwOK1uCwAAwIuQjKByezxauX6/ior3emv5uWm6ZlCaZT0BAACYsbsFgqq0rMYnIEtS\nUfFe7T9SZU1DAAAAfhCSEVSV1XV+6xVV9UHuBAAAoGmEZASVKy7Kb/38+MggdwIAANA0QjKCKiUp\nVvm5aT61/Nw0pXaJt6YhAAAAPzhwD0HldDg0IidVvdITVFlVJ1d8lFISY+XswEMRAADYB8kEQed0\nOJSRnKCMZKs7AQAA8I/dLQAAAAATW4Tkt99+W5mZmerZs6f3z/vuu8/v2m3btmncuHHKysrS2LFj\ntXXr1iB3CwAAgFBni5C8a9cu5eXlae3atVq7dq3WrFmjX//6143WnThxQgUFBRo4cKCKioqUlZWl\nu+66S3V1/k8rBgAAAJwNW4TkkpISfec739F5550nl8sll8ulTp06NVq3YsUKRUdHa/LkycrIyNC0\nadMUExOjt956y4KuAQAAEKpsE5LT09O/dd2WLVs0YMAAn1p2drY+/vjj1moNAAAAYcgWIXnPnj16\n//33NXLkSA0fPlwLFizQyZMnG60rKytTUlKST83lcunIkSPBahUAAABhwPJTwB06dEh1dXWKjIzU\nk08+qdLSUs2ZM0f19fV68MEHfdbW1dXJ6XT61JxOp9xud0DbbN/eFn83wDecngmzsSfmY1/Mxr6Y\njb0xH/uyy0wsD8ldu3bVhx9+qLi4OElSZmamTp06pSlTpmjq1KmKiIjwro2MjGwUiN1ut6Ki/H/V\ncVPi4qLPvXG0CmZjb8zHvpiNfTEbe2M+aIrlIVmSNyCf1r17d9XX1+vYsWNKSEjw1rt06aLy8nKf\ntRUVFUpMTAxoe9XVJ9TQcOrsG0aLa9++neLiopmNTTEf+2I29sVs7I352Nfp2VjN8pC8Zs0a/eIX\nv1BxcbEiIyMlfX0u5M6dO/sEZEnq16+fli5d6lPbtGmTCgsLA9pmQ8MpeTw8IeyI2dgb87EvZmNf\nzMbemA+aYvlOH/3791d0dLSmTZumPXv2aPXq1Zo/f77uvPNOSV9/UlxfXy9JGjlypGpqajR37lyV\nlJRozpw5OnHihK6++morbwIAAABCjOUhOSYmRn/4wx909OhR/eAHP9D06dN10003afz48ZKkwYMH\n680335QkderUSU8//bQ2bNigMWPG6JNPPtHSpUsD3icZAAAAOJMIwzAMq5sItqNHa/mnFZtxONop\nISGG2dgU87EvZmNfzMbemI99nZ6N1Sz/JBkAAACwG0IyAAAAYEJIBgAAAEwIyQAAAICJ5edJRutz\nezwqLatRZXWdXHFRSkmKldPB6AEAAJpCUgpxbo9HK9fvV1HxXm8tPzdNI3JSCcoAAABNYHeLEFda\nVuMTkCWpqHivSstrrGkIAACgDSAkh7jK6jr/9Sr/dQAAABCSQ54rzv+3Ebri+ZZCAACAphCSQ1xK\nUqzyc9N8avm5aUpJjLWmIQAAgDaAI7dCnNPh0IicVPVKT1BlVZ1c8VFKSeTsFgAAAGdCUgoDTodD\nGckJyki2uhMAAIC2gd0tAAAAABNCMgAAAGBCSAYAAABMCMkAAACACQfuodW4PR6VltWosrpOrrgo\npSRxVg0AANA2kFjQKtwej1au3+/zldj5uWkakZNKUAYAALbH7hZoFaVlNT4BWZKKiveqtLzGmoYA\nAAACQEhGq6isrvNfr/JfBwAAsBNCMlqFKy7Kfz3efx0AAMBOCMloFSlJscrPTfOp5eemKSUx1pqG\nAAAAAsARVGgVTodDI3JS1Ss9QZVVdXLFRyklkbNbAACAtoHEglbjdDiUkZygjGSrOwEAAAgMu1sA\nAAAAJoRkAAAAwISQDAAAAJgQkgEAAAATQjIAAABgQkgGAAAATAjJAAAAgAkhGQAAADAhJAMAAAAm\nhGQAAADAhJAMAAAAmBCSAQAAABNCMgAAAGBCSAYAAABMCMkAAACACSEZAAAAMCEkAwAAACaEZAAA\nAMCEkAwAAACYEJIBAAAAE0IyAAAAYEJIBgAAAEwIyQAAAIAJIRkAAAAwISQDAAAAJrYKyQUFBZo6\ndWqTlxcWFiozM1M9e/b0/rl69eogdggAAIBw4LC6gdNWrFih4uJi3XjjjU2u2b17txYsWKDLL7/c\nW4uLiwtGewAAAAgjtgjJVVVVmj9/vvr27dvkGrfbrdLSUvXp00culyuI3QEAACDc2CIkP/roo7r+\n+utVVlbW5Jo9e/YoIiJCF154YRA7AwAAQDiyfJ/kdevWaePGjZowYcIZ15WUlKhTp06aPHmyBg8e\nrLFjx6q4uDhIXQIAACCcWPpJstvt1syZMzVjxgw5nc4zrt29e7fq6+s1ZMgQFRQUaNWqVSosLNSy\nZcvUu3fvgLbbvr3lfzeAyemZMBt7Yj72xWzsi9nYG/OxL7vMJMIwDMOqjS9YsECHDh3SggULJMl7\nZotHHnnE7/qamhrFxsZ6f7777ruVlJSkWbNmtX6zAAAACBuWfpL8xhtvqLKyUv3795cknTx5UpL0\nr3/9S5s2bWq0/psBWZK6d++ukpKS1m8UAAAAYcXSkPz888/L4/F4f54/f74kafLkyY3WTp06VRER\nEZo7d663tmPHDl1yySWt3ygAAADCiqUhOTk52efnmJgYSfKewaKiokKxsbGKjIxUXl6eJk2apJyc\nHGVnZ2v58uXatGmTZs+eHfS+AQAAENrssWd0EwYPHqw333xTkjR8+HDNmDFDixcv1ujRo/Xee+/p\nmWeeUdeuXS3uEgAAAKHG0gP3AAAAADuy9SfJAAAAgBUIyQAAAIAJIRkAAAAwISQDAAAAJoRkAAAA\nwCRsQrLb7daDDz6ogQMHasiQIfrTn/5kdUsh48iRI/rZz36myy67TEOHDtW8efPkdrslSaWlpfrJ\nT36i/v37a9SoUVq7dq3P737wwQcaPXq0srKydPvtt+vAgQM+l//5z39Wbm6uBgwYoGnTpqm+vt57\nGTMNTEFBgfer3yVmYwdut1sPP/ywcnJyNHjwYD3xxBPey5iP9Q4fPqy7775bAwYM0LBhw/Tss896\nL2M+1nC73Ro9erQ++ugjb83KWXzbtsOJv9n897//1U033aT+/fvr6quv1t///nef37H9bIwwMWvW\nLOP66683tm/fbqxatcrIzs42/vWvf1ndVkgYN26cUVBQYOzatcvYsGGDMWLECOOxxx4zDMMwRo8e\nbUyZMsUoKSkxlixZYmRlZRlffPGFYRiGcejQISMrK8v405/+ZOzatcv4+c9/bowePdp7vW+99ZYx\ncOBA49///rfxySefGNdee60xe/Zs7+XMtPlef/11o0ePHsYDDzzgrV133XXMxmLTp083Ro4caXzy\nySfGunXrjMsvv9x46aWXDMPguWMH48aNMyZNmmTs27fPePvtt42srCxj1apVhmEwHyvU19cbEyZM\nMDIzM43169d761a+lp1p2+HE32zKy8uNgQMHGk888YSxb98+Y8WKFUbfvn2Nf//734ZhGMbBgwdt\nP5uwCMlfffWV0bdvX+Ojjz7y1hYtWmTccsstFnYVGkpKSozMzEyjsrLSW3v99deN3NxcY926dUb/\n/v2Nuro672W333678dRTTxmGYRi//e1vfWZw4sQJIzs72/sEu/nmm42FCxd6L9+wYYPRr18/o66u\njpkG4NixY8bQoUONsWPHekPyBx98wGwsduzYMaN3794+99Pvf/9748EHH+S5YwNVVVVGjx49jM8/\n/9xbu/fee43Zs2czHwvs2rXLuP76643rr7/eJ4hZ+Vr2bdsOF03N5oUXXjCuueYan7XTp083fvnL\nXxqG0TZmExa7W+zYsUMNDQ3Kysry1gYMGKAtW7ZY2FVoSExM1DPPPKPzzjvPp15TU6PNmzerd+/e\nioyM9NYHDBig//73v5KkLVu2aODAgd7LoqKi1KtXL3388cc6deqUPvnkE1166aXey7OysnTy5Ent\n2LGDmQbg0Ucf1fXXX6/u3bt7a1u2bGE2Ftu4caNiY2N97sc777xTv/71r3nu2EBUVJSio6P1yiuv\nyOPxaPfu3dq0aZN69uzJfCywfv16DRo0SC+99JKMb3wHmpWvZd+27XDR1Gxyc3P1yCOPNFpfU1Mj\nqW3MJixCcnl5uTp37iyHw+GtuVwu1dfX6+jRoxZ21vbFxsbqiiuu8P5sGIaef/55DRo0SOXl5UpK\nSvJZ73K5dOTIEUlSWVlZo8vPP/98HTlyRNXV1aqvr/e5vH379urcubMOHz7MTJtp3bp12rhxoyZM\nmOBTZzbWO3DggLp166ZXX31VV199ta666iotWrRIhmEwHxtwOp166KGH9OKLL6pfv3665pprlJub\nqzFjxjAfC/zoRz/S/fff7xN6JGtfy75t2+Giqdl07dpVffv29f5cWVmpN954Q9/73vcktY3ZOL59\nSdt34sQJOZ1On9rpn08fYIaW8dhjj2n79u16+eWX9ac//cnv/X76Pq+rq2vy8rq6Ou/P/i4/deoU\nM/0WbrdbM2fO1IwZMxrdV009J5hN8Hz11Vfau3evli1bpnnz5qm8vFwPPfSQoqOjmY9NlJSUKC8v\nT3fccYd27typ2bNna9CgQczHRqycxbdtG/9PfX297r33XiUlJemHP/yhpLYxm7AIyZGRkY3umNM/\nR0dHW9FSSJo/f77+8pe/6Le//a0uvvhiRUZGqqqqymeN2+1WVFSUpKbnEhcX1+SbgtvtVnR0tDwe\nDzP9Fk899ZT69Onj/Vv7NzEb67Vv3161tbV6/PHHdcEFF0iSDh48qL/97W8aPHiwjh075rOe+QTX\nunXr9PLLL6u4uFhOp1O9evXS4cOHtXjxYg0aNIj52ISVr2Xftm187auvvlJhYaH279+vF154wfuJ\nc1uYTVjsbtGlSxcdO3ZMp06d8tYqKioUFRWluLg4CzsLHbNnz9azzz6r+fPn66qrrpL09f1eXl7u\ns66iokKJiYnfenlCQoIiIyNVUVHhvayhoUHHjh1TYmIiM22GN954Q++884769++v/v3767XXXtNr\nr72m7OxsXXDBBczGYklJSYqMjPQGZElKT0/XkSNHeO7YwNatW5WWlubzaVTPnj31xRdfMB8bsXIW\n37ZtSMePH9f48eNVUlKiZ599VhdeeKH3srYwm7AIyT179pTD4fDZYXvDhg3q06ePhV2FjoULF+ql\nl17SE088oauvvtpb79evn7Zt2+bzt72NGzd6d7Tv16+fNm3a5L3sxIkT2rZtm/r376+IiAh997vf\n1caNG72Xf/zxx+rQoYMyMzOZaTM8//zzeu2117R8+XItX75ceXl5ysvL0z//+U/17duX2VisX79+\nqq+v1759+7y1kpISdevWTf369dPWrVuZj4WSkpK0b98+eTweb2337t1KSUlhPjZi5fvMt2073BmG\noXvuuUcHDx7U888/73PwuNRGZhPQuTDasIceesgYNWqUsWXLFmPVqlXGgAEDvOe7xNnbtWuX0atX\nL+PJJ580ysvLff5raGgwRo0aZUycONH4/PPPjSVLlhjZ2dne8xSWlpYa/fr1M37/+98bn3/+uXHf\nffcZ119/vfe6V6xYYVx66aXGqlWrjM2bNxujRo0yfv3rX3svZ6aBeeCBB7yngGM29nDXXXcZN910\nk7F9+3ajuLjYGDRokPH8888bDQ0NxrXXXst8LFRTU2MMHjzYuP/++409e/YY77zzjnHZZZcZy5Yt\nYz4W69Gjh/c0YVa+ln3btsPRN2fz0ksvGT179jT+/e9/+2SDY8eOGYbRNmYTNiH5xIkTxgMPPGD0\n79/fyM3NNZ577jmrWwoJS5YsMTIzM33+69Gjh5GZmWkYhmHs27fP+J//+R+jb9++xqhRo4x169b5\n/H5xcbExcuRIIysryxg/frxRWlrqc/nvf/9743vf+54xcOBA41e/+pVRX1/vvYyZBuabIdkwDGP/\n/v3MxmI1NTXG/fffb2RnZxtXXHGFsWjRIu9lzMd6u3btMsaPH29ceumlxogRI3zuJ+ZjHfOXiVg5\ni2/bdrjJzMz0nrv4jjvuaJQPMjMzfc6NbPfZRBjGN05qBwDA/9fe3cdUWf5xHH+DhLOAIyIBxnEe\nmQ6DNY8UCUbh00pR5mzDJp3AqZQ9EUr5MEWdAzOcTjSWDxMRhtPQ46a5irTWw1ooywnMo3gYFPCH\nOzQU5soS+oN5r3OQwN/PxMnn9dc5N9/7uq5z/8E+59r33LeIiAyOnmQRERERkbuhkCwiIiIi4kEh\nWVg0tX0AAAigSURBVERERETEg0KyiIiIiIgHhWQREREREQ8KySIiIiIiHhSSRUREREQ8KCSLiIiI\niHhQSBYRERER8eAz0AsQERlIx44dw263c+XKFTo6OggLCyMxMZGMjAxGjhxp1EVGRrqd5+vrS2ho\nKC+++CJvvvkmw4YN67XW29sbPz8/Jk6cSHZ2NuPHj/9vP9QDwGazER4ezubNmwH45ptvMJvNRERE\nDPDKRET6R4+lFpFBqauri7feeouqqiqWLVtGQkICjz32GHV1dRQWFtLS0oLdbmfEiBFAd/Bdu3Yt\ns2bNAuDGjRtcuHCBDz/8EIvFQlFREUOGDLljbWdnJ1evXmXTpk00NTVRUVHhFqofRtevXze+HLS0\ntDBt2jRKSkp45plnBnppIiL9onYLERmUioqK+PbbbykuLiY9PZ2IiAhCQ0NJSEjgwIED+Pr6sn//\nfrdz/Pz8CAoKIigoCLPZTFJSEp988glnz57Fbrf3WhscHExUVBQrV67E5XLx448/3s+POiACAgLw\n8/MDur8keHl5DfCKRETujkKyiAxKpaWlzJs3r0drBMDQoUM5ePAgmZmZfY4TFRVFTEwMn332WZ+1\nt3eafX197/h3m81GXl4eK1asYOLEibzwwgvs2bPHrcbpdJKRkYHVauW5554jOzsbl8vlNkZOTg4p\nKSnExsZy8uTJO8514cIFFi1aZIyzYcMGfv/9d6B7F3jt2rU8//zzREdHEx8fz7p16/jjjz8AqKys\nJDIykoqKCmbOnInVamXRokU4nU63daxevZrm5mZmzJgBwGuvvcauXbsA+Oqrr0hJScFqtfLUU08x\nf/58vv/++z6voYjI/aKQLCKDzq+//kpLSwtxcXG91oSFhfHII4/0a7zx48fjcDj+taahoYH8/HxC\nQkKYNGlSr3WHDh3CZDJht9vJysqisLCQffv2AXD16lVSU1OxWCzY7Xb27NlDR0cHCxYsMAIuQHl5\nOenp6ZSVlZGQkNBjjqamJtLS0ggNDaW8vJydO3fyww8/sHHjRgBWrVqFw+Hg448/5ssvv2TNmjUc\nP36cw4cPu42zZcsWcnJyOHLkCD4+PqSlpdHR0eFWM2rUKD799FO6urrYuXMnixcvpra2lnfffZe5\nc+dy8uRJjhw5QlBQECtXruSvv/7694stInKf6Id7IjLotLa2Ahj9xre98cYb/PTTT8b78PBwTpw4\n0ed4/v7+tLe3ux1bv369ETr//PNPOjs7iY6OprCwkEcffbTXscaOHUtOTg4AFosFp9PJwYMHWbJk\nCWVlZYSFhbF69Wqjfvv27cTFxfH5558zb948oLsnevbs2b3OcfjwYQIDA8nNzcXbu3uvJDc3l59/\n/hmAKVOmEBsby7hx44DuoFtSUsLly5fdxlm1apURwrdu3UpiYiKnTp0iJSXFqPHy8jKus8lkYtiw\nYQwZMoScnBxeeeUVo85ms/H666/T2tpKSEhIr2sXEblfFJJFZNAJDAwEoK2tze34pk2bjB3Z4uJi\nvv76636N19HRQUBAgNuxzMxMZs6cCXS3WQQGBvbrx3qxsbFu761WK/v27aOtrY2LFy9SV1eH1Wp1\nq7l58yb19fXG+zFjxvzrHHV1dURHRxsB+fa8t+deuHAhp0+f5tixYzQ0NHDlyhWam5sZO3asUe/l\n5eW2VpPJhMVi6RGk7yQyMhKTycTevXupr6+nsbGRixcvAnDr1q0+zxcRuR8UkkVk0DGbzQQHB1NZ\nWWncgQIgODjYeD18+PB+j1dbW8uECRPcjo0YMQKz2XzXa/Pxcf+33NnZCXQH7c7OTp599lk2bNjQ\n4zx/f3/j9dChQ+9qjn/q6uoiIyMDp9PJnDlzSEpK4sknn2TdunV9jnPr1i234N2byspKlixZQmJi\nIjExMSQnJ3Pjxg3efvvtPs8VEblf1JMsIoOOt7c3NpuN48ePc+nSpTvWtLS09Gusmpoazp8/T3Jy\n8j1ZW01Njdv7qqoqwsPD8ff3Z9y4cdTX1xMaGorZbMZsNhMQEEBubm6/dnBvi4iIoLa2ln/eAbSi\nooJp06Zx/vx5vvvuO3bs2MHy5cuZM2cOZrOZxsbGHuNUV1cbr3/77TcaGxuJiorqUed5Z4uioiIm\nT55MQUEBaWlpxMXFGddbdyUVkQeFQrKIDEpLly5l6tSppKamsnv3bhwOB83NzZw5c4bFixdjt9uJ\nj493O6e9vR2Xy4XL5eKXX37hxIkTvPPOO8TFxd2zkHzu3Dl27dpFY2Mj5eXlHDp0iKVLlwLdbRDt\n7e1kZ2fjcDhwOBy899571NTUGP3D/ZGamkpbWxvr16/H6XRy9uxZ8vPzmTJlCk888QQ+Pj6cOnWK\npqYmqqurycrKorW1lZs3bxpjdHV1sXHjRs6dO4fD4WDFihWEhITw0ksv9Zjvdg/25cuXjQe2XLp0\niaqqKpqbmzl69CgFBQUAbnOIiAwktVuIyKDk5eXFtm3b+OKLLzh69CglJSVcu3aN4OBgnn76aUpL\nS4mJiXGrz8vLIy8vD+i+jdvo0aOx2Wy8+uqrbrul/889gadPn47T6SQ5OZmQkBDWrFlj/BAuPDyc\n0tJStm7dysKFC/Hx8WHSpEkUFxcbfdb98fjjj7N//37y8/OZP38+JpOJpKQksrKy8PX1ZcuWLRQU\nFFBWVsbIkSOZOnUq6enpnDlzxu0zpqSk8MEHH9DW1kZ8fDzFxcV3bPUYPnw4L7/8Mh999BENDQ1k\nZmbicrlYtmwZ0L2zvXnzZt5//32qq6uxWCz/8/UTEblX9MQ9EZEHhOejnB9UlZWVpKWlcfr0aUaN\nGjXQyxER+U+o3UJERO6a9ldE5GGnkCwiIndNj5kWkYed2i1ERERERDxoJ1lERERExINCsoiIiIiI\nB4VkEREREREPCskiIiIiIh4UkkVEREREPCgki4iIiIh4UEgWEREREfGgkCwiIiIi4uFvakNrfu8w\ns98AAAAASUVORK5CYII=\n", "text/plain": [ "<matplotlib.figure.Figure at 0xb81a710>" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "# Download CSV from http://stats.oecd.org/index.aspx?DataSetCode=BLI\n", "oecd_bli = pd.read_csv(datapath+\"oecd_bli_2015.csv\", thousands=',')\n", "oecd_bli = oecd_bli[oecd_bli[\"INEQUALITY\"]==\"TOT\"]\n", "oecd_bli = oecd_bli.pivot(index=\"Country\", columns=\"Indicator\", values=\"Value\")\n", "\n", "oecd_bli.columns\n", "\n", "oecd_bli[\"Life satisfaction\"].head()\n", "\n", "# Load and prepare GDP per capita data\n", "\n", "# Download data from http://goo.gl/j1MSKe (=> imf.org)\n", "gdp_per_capita = pd.read_csv(datapath+\"gdp_per_capita.csv\", thousands=',', delimiter='\\t',\n", " encoding='latin1', na_values=\"n/a\")\n", "gdp_per_capita.rename(columns={\"2015\": \"GDP per capita\"}, inplace=True)\n", "gdp_per_capita.set_index(\"Country\", inplace=True)\n", "\n", "full_country_stats = pd.merge(left=oecd_bli, right=gdp_per_capita, left_index=True, right_index=True)\n", "full_country_stats.sort_values(by=\"GDP per capita\", inplace=\"True\")\n", "\n", "_ = full_country_stats.plot(\"GDP per capita\",'Life satisfaction',kind='scatter')" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "Here's the full dataset, and there are other columns. I will subselect a few of them by hand." ] }, { "cell_type": "code", "execution_count": 7, "metadata": { "collapsed": false }, "outputs": [], "source": [ "xvars = ['Self-reported health','Water quality','Quality of support network','GDP per capita']" ] }, { "cell_type": "code", "execution_count": 76, "metadata": { "collapsed": false }, "outputs": [], "source": [ "X = np.array(full_country_stats[xvars])\n", "y = np.array(full_country_stats['Life satisfaction'])" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "I will define the following functions to expedite the LOO risk and the Empirical risk." ] }, { "cell_type": "code", "execution_count": 79, "metadata": { "collapsed": true }, "outputs": [], "source": [ "def loo_risk(X,y,regmod):\n", " \"\"\"\n", " Construct the leave-one-out square error risk for a regression model\n", " \n", " Input: design matrix, X, response vector, y, a regression model, regmod\n", " Output: scalar LOO risk\n", " \"\"\"\n", " loo = LeaveOneOut()\n", " loo_losses = []\n", " for train_index, test_index in loo.split(X):\n", " X_train, X_test = X[train_index], X[test_index]\n", " y_train, y_test = y[train_index], y[test_index]\n", " regmod.fit(X_train,y_train)\n", " y_hat = regmod.predict(X_test)\n", " loss = np.sum((y_hat - y_test)**2)\n", " loo_losses.append(loss)\n", " return np.mean(loo_losses)\n", "\n", "def emp_risk(X,y,regmod):\n", " \"\"\"\n", " Return the empirical risk for square error loss\n", " \n", " Input: design matrix, X, response vector, y, a regression model, regmod\n", " Output: scalar empirical risk\n", " \"\"\"\n", " regmod.fit(X,y)\n", " y_hat = regmod.predict(X)\n", " return np.mean((y_hat - y)**2)" ] }, { "cell_type": "code", "execution_count": 80, "metadata": { "collapsed": false }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "LOO Risk: 0.348022001422\n", "Emp Risk: 0.2703035744\n" ] } ], "source": [ "lin1 = linear_model.LinearRegression(fit_intercept=False)\n", "print('LOO Risk: '+ str(loo_risk(X,y,lin1)))\n", "print('Emp Risk: ' + str(emp_risk(X,y,lin1)))" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "As you can see, the empirical risk is much less than the leave-one-out risk! This can happen in more dimensions." ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Nearest neighbor regression" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "Use the method described here: http://scikit-learn.org/stable/modules/generated/sklearn.neighbors.KNeighborsRegressor.html\n", "\n", "I have already imported the necessary module, so you just need to use the regression object (like we used LinearRegression)" ] }, { "cell_type": "code", "execution_count": 20, "metadata": { "collapsed": false }, "outputs": [], "source": [ "# knn = neighbors.KNeighborsRegressor(n_neighbors=5)" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "**Exercise 1** For each k from 1 to 30 compute the nearest neighbors empirical risk and LOO risk. Plot these as a function of k and reflect on the bias-variance tradeoff here. (Hint: use the previously defined functions)" ] }, { "cell_type": "code", "execution_count": 77, "metadata": { "collapsed": false }, "outputs": [ { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAqQAAAH9CAYAAADML24LAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAAPYQAAD2EBqD+naQAAIABJREFUeJzs3Xd0VNXexvHvmUySmZAGKKCgoqCEIqCA6KVJRyQUKVIF\nBKRGuhSlN0FApfcuvZfLBZFrBRVQFEF8vWBDAQFTSJ1Mef8YGY0JkNBmkjyftbJkztlzzm9mh+XD\nPufsbbhcLhciIiIiIl5i8nYBIiIiIpK7KZCKiIiIiFcpkIqIiIiIVymQioiIiIhXKZCKiIiIiFcp\nkIqIiIiIVymQioiIiIhXKZCKiIiIiFcpkIqIiIiIVymQiuRSHTp0ICIiIs1PyZIlqVChAs2bN2f7\n9u1p2kdERDBr1qxMHz+r7TMjPj6eHj16UL58eSpXrszPP/98S48/dOhQatWqddX9v/76KxEREbRo\n0QKn05lu/+eff05ERASHDh26ofYZmTVrVrp+ioiI4LHHHqNBgwa8+eabOByOG/i0vq1WrVoMGzbM\n22WIyB1i9nYBIuI9pUqVYvTo0Z7XDoeDs2fPsnz5cl555RXCw8OpXr06AOvXr6dgwYJeqtRt27Zt\nvP/++4wePZrixYtTpEiRW3p8wzAwDOO67Y4fP87ChQvp3r17hse42fYZtVm3bl2abdHR0ezcuZP5\n8+fjdDoZOHDgdY+TncyZM4c8efJ4uwwRuUMUSEVyseDgYMqWLZtm22OPPUb16tV56qmn2LJliyeQ\n/rOdN0RHR2MYBq1bt/ZqHaGhocyePZs6depQrFixW94+Ixl9/zVq1OCXX35h8+bNOS6QRkREeLsE\nEbmDdMleRNIJCAggICAgzejdPy/BL1++nGeeeYayZctSvXp1xowZQ3x8/FWPOWPGDEqVKsXWrVsB\n+OOPPxg4cCBVq1albNmyNG3a1LMvIx06dGDWrFm4XC4iIiI8l3Pj4+OZNGkSdevWpWzZskRGRrJp\n06Y0761VqxaTJk2iU6dOlCtXjhEjRmTqezhx4gSVKlWie/fupKamerZ3796d4OBghg4disvluu5x\nsto+K4KDg9ONsu7bt4/mzZtTtmxZqlatyoQJE0hKSkrT5v3336d58+aUK1eOBg0asGvXLurVq+fp\n4yu3E6xbt45atWpRsWJFDh48CMDhw4fp0KGD59aJoUOH8scff3iO7XK5ePPNN6lduzaPPvootWvX\nZvr06djtdk+bnTt30qRJE8qVK8dTTz3F4MGD+f333z37/3nJPrP9PHPmTKZMmUKVKlUoV64cXbt2\n5aeffrrJb1lEbjcFUpFczOVy4XA4PD82m43Tp08zbNgwEhMTadKkSYbv27lzJ1OnTqV9+/YsWbKE\nPn36sG3bNiZMmJBh+8WLFzNv3jwmTJhA06ZNARg8eDA//PADY8eOZdGiRZQqVYphw4bx+eefZ3iM\n0aNH06JFCwzDYP369fTq1YuUlBTatGnDrl27eOmll5g7dy4VK1bk1VdfZcGCBWne/84771CuXDnm\nzp1LixYtrvvdnDp1iq5du1K+fHlmzZqFv7+/Z1++fPkYMWIEx44dY+HChdc9VlbbZ+Tv/ZSamsr5\n8+dZsGABn3zyiec7BdixYwd9+vShePHizJkzh6ioKLZv307v3r09bT799FN69+5N4cKFmTVrFu3b\nt2fUqFGcO3cu3Xlnz57N0KFDGTlyJI899hiHDh2iU6dOBAUF8fbbbzN8+HA+//xzOnbsiM1mA2DB\nggWsXbuWqKgoli5dStu2bT2/AwBHjhxhyJAhNGjQgEWLFjF8+HAOHjx41VHerPTzihUrOH36NK+/\n/joTJkzgm2++YciQITf0nYvInaNL9iK52KFDhyhdunSabYZhUKJECWbMmEGNGjWu+r777ruPdu3a\nAVCxYkWCgoKIjY1N13bNmjVMnTqVcePG0axZszTH6NOnj+choieeeIK8efMSEBCQ4TmLFStGoUKF\ngL8uX69evZr//e9/rFu3zrOtSpUqpKamMmfOHFq3bk1oaCgAhQsXpn///pn6Xn755Rc6depEyZIl\nmT17dpowesUzzzzD7t27mT17NrVr177upfistv87l8uVrp8A7r33Xvr27Uu3bt0826ZNm0aNGjWY\nPHmyZ9sDDzxAp06d+OCDD6hRowYzZ87kkUceYcaMGQBUq1aNfPnyMWDAgHTnaNeuHfXq1Utz/GLF\nijF//nzPtvLly9OwYUM2btxI27ZtOXToEGXKlPEE5YoVK2KxWDx9ceTIEaxWK127dvV8t+Hh4Rw7\ndizDz79p06ZM93NYWBhz5871jBr/9NNPzJo1i9jYWMLCwq73VYuIl2iEVCQXK126NJs3b2bTpk3M\nnTuXRx55hAcffJC33nqLunXrXvV9lStX5vTp0zRr1ozZs2fzzTff0KhRI09AvWL//v2MHTuWihUr\nphuVrFy5MjNmzKBv375s3LiRCxcuMHjwYMqXL5/p+g8dOkThwoXT3V/ZuHFjkpOTOXr0qGdbZu9J\njI+Pp3Pnzly6dInRo0dfNSCDe9TWarUybNiwTF2Kz2r7KwzD8PTTqlWrqFOnDiEhIYwYMYIePXrg\n5+cHwOnTpzl37hw1a9ZMM6JasWJFgoODOXDgADabjaNHj6YJmQANGjTAbE4/RvH37y05OZmvv/6a\nGjVqpDl+4cKFeeihhzhw4ADg7ttPPvmEdu3asXjxYk6dOkW7du2IjIwE3P/4SExMpFGjRkyfPp3D\nhw9TpUoVevXqleHnz0o/P/roo2luYbjyj5h/3rIgIr5FgVQkF8uTJw+lSpWidOnS1KxZk6VLlxIb\nG0vnzp2JiYm56vsaNmzI9OnTyZMnj+cSeO3atdm9e3eadt9++y01atTg8OHDvP/++2n2vfnmm3Tu\n3JlvvvmGESNGUKNGDbp27cpvv/2W6fpjY2O566670m2/su3y5cuebUFBQZk6ZlxcHAULFiQkJIQ3\n3njjmm2vXIr/+uuvWbRoEcA1g2ZW2//dlX6qWLEiM2fOpFSpUkRFRXHkyBFPmyt9NmbMGEqXLu35\nKVOmDAkJCVy4cIHY2FgcDgf58+dPc3yTyUR4eHiabYZhpPneYmNjcTqdLFy4MN3x//e//3HhwgUA\nunXrxsiRI0lOTmbatGk8++yzREZG8tlnnwHuEdWFCxdy3333sWzZMtq3b0/16tVZtWpVhp89K/1s\nsVjSfS4gw2m3RMR3KJCKiEf+/PkZOXIkZ8+eZfz48dds27BhQ1atWsWnn37K22+/Td68eRk8eLAn\nlAC0bt2aefPmUa5cOcaMGUNiYqJnX3BwMAMHDuS9995j9+7dDBw4kCNHjjB27NhM1xsWFsbFixfT\nbb9SQ758+TJ9rCvCw8NZtGgR/fv3Z+/evbz33nvXbP/ss89Sp04dZs2axalTp647jVNW22fEMAwm\nTZqEv78/w4YN89y7eeWy9ZAhQ9i0aVOan40bN9K/f3/y58+P2WxO9725XK5r/iME/nqAqlOnThke\nf+LEiZ62bdu2ZdOmTXz88ce8/vrr2Gw2Xn75Zc+DTVWqVGHRokUcOnSI+fPnU6JECc89n/90O/pZ\nRHyLAqmIpFG/fn2qVavGrl27OHz4cIZt+vfvT58+fQB3SKlfvz49e/bE4XCkeVL6yijcmDFjuHDh\nAtOmTQPgt99+4+mnn2bPnj0AFC1alC5dulClShV+/fXXTNdaqVIlfv31V7766qs027dt20ZAQACP\nPvpo5j/4n4KCgrBarTz//POUL1+esWPHXnP2AHB/PovFwvTp0zN1jqy2z8i9995Lr169+Pnnnz0P\nSj300EPkz5+fX375Jc0I5t13383UqVP59ttvMZlMVKhQgX379qU53nvvvZfmKfiMXBlR/+GHH9Ic\nv3jx4rz99tueB9Jat27tecAtX758NG3alHbt2hEXF0d8fDyTJ0/23MIRGBhIjRo1GDx4MC6XK8MR\n8tvRzyLiWxRIRSSd4cOH4+fnx/jx4zO8pPzkk0/y3nvvMXnyZD799FP27NnDW2+9RdGiRTO8V7NE\niRJ07NiR1atXc/ToUe69914KFSrEhAkT2LRpE4cOHWLJkiV88MEHNGjQINN1PvfccxQrVozevXuz\nbt06PvnkE8aOHcuWLVs8Uy3dKMMwGDNmDJcuXWLKlCnXbJs/f35ee+21NJeOb2X7q+nUqRMPPPAA\nixYt4uzZs5hMJvr168fatWsZP348Bw4cYPfu3XTt2pUTJ054HoyKioriu+++o2/fvnz00UesXbuW\nkSNHYhiG5xI3ZHw7wYABA/j4448ZNGgQH3zwAfv376dLly589tlnnuM/8cQTrFmzhvnz5/P555+z\nfft2li5dyhNPPEF4eDhPPfUUJ06cYOjQoRw4cID333+f8ePHEx4ezpNPPpnunLezn0XENyiQiuRi\nV7tc/OCDD/LCCy/w3XffsXr1ak/bK+2ff/55XnvtNT7++GN69uzJqFGjeOSRR1iyZInnAZt/rnoU\nFRXFvffey2uvvYbdbmf27NlUrVqVGTNm0KVLF9atW0dUVFSa6YmuV7PFYmHVqlXUrFmTGTNm0KtX\nL7788ksmTpyY5jiZXYHpn8cvUaIEL7zwAhs3bvSMFl/tOJGRkRkuO5rV9ter6e/8/f0ZPnw4ycnJ\nvP766wC0bNmSadOmcfToUXr27MnYsWO5//77WbVqFYULFwbcT73PmDGDH3/8kd69e7N8+XJGjhyJ\ny+VKc89oRue9cqn9/Pnz9OvXj6FDh+Lv78+yZcs8Dx3169ePHj16sHnzZrp168aUKVOoVq2a56n+\n6tWrM3XqVL7//nuioqIYNGgQwcHBrFy50nPbwd/77Hb0s4j4FsOVxVmabTYbo0eP5t1338VisfDi\niy/SuXPnDNt+9913jBkzhuPHj/PAAw/w6quvUrly5VtSuIiI3Jj9+/dTqFAhSpUq5dn2/fffExkZ\nydy5c6lZs6YXqxOR3CjLI6STJ0/mxIkTrFy5klGjRjFr1iz27t2brl18fDxdunTh4YcfZufOndSt\nW5c+ffqkWc1DRETuvI8//pjOnTt7Rn537drFgAEDKF68OFWqVPF2eSKSC2VphDQpKYknn3ySxYsX\nU7FiRQDmzp3LwYMHWbFiRZq2K1as4J133vE8tADuS0lRUVGetbFFROTOs9lsvPXWW+zdu5fff/+d\nsLAwatSowYABA/TEuoh4RZYC6ZdffkmHDh04evSoZwLlzz//nJdeeinNxMTgvl+sSJEiWrJNRERE\nRK4pS5fsL1y4QHh4eJrVPPLnz09KSgrR0dFp2v7yyy/kzZuXkSNHUrVqVVq3bs0XX3xxa6oWERER\nkRwjS4E0KSkp3TJ6V15fmZj5isTERBYtWkSBAgVYtGgRFStWpEuXLpw/f/4mSxYRERGRnCRLgTQw\nMDBd8Lzy2mq1ptnu5+dHyZIl6dOnDxEREQwaNIiiRYuybdu2TJ8vixMAiIiIiEg2ZL5+k78ULFiQ\nmJgYnE6nZ/LkixcvYrFYPHPHXXH33Xfz0EMPpdlWtGhRzp49m+nzGYZBXFwSDofWIPYlfn4mQkOt\n6hsfpf7xXeob36W+8W3qH991pW9uVpYCacmSJTGbzRw9epTHH38cgMOHD1OmTJl0bcuXL8+hQ4fS\nbDt9+jSRkZFZKtDhcGK365fPF6lvfJv6x3epb3yX+sa3qX9yrixdsrdYLDRp0oRRo0Zx7Ngx9u3b\nx9KlS+nYsSPgHi1NSUkB3GsZf/fdd8yaNYuff/6Zt99+mzNnztC4ceNb/ylEREREJNvK8sT4w4YN\no0yZMnTs2JFx48bRt29f6tSpA0DVqlXZvXs3APfeey+LFy9m//79REZG8sEHH7BgwQIKFChwaz+B\niIiIiGRrWV469E6Ljk7Q8LyPMZtN5M2bR33jo9Q/vkt947vUN75N/eO7rvTNzcryCKmIiIiIyK2k\nQCoiIiIiXqVAKiIiIiJepUAqIiIiIl6lQCoiIiIiXqVAKiIiIiJepUAqIiIiIl6lQCoiIiJyA6pV\nq8TRo19cs82hQ5/y8ss9qFu3Og0b1mbAgKirvmfTpvV07NiGWrWq0KxZQyZOHMPZs79lqaYlSxbw\n8ss9MtUuKqp7lo79T0b8ZYJ639wxrlAgFREREbkNdu3azpAhA3j88YosXrySuXMXExFRkv79e7N3\n7+40bSdOHMOKFYtp3bodq1dvYsKEKSQkxNOtW0dOnz6V6XO2bfsCEya8kam2hmFk6fOkeW9cLGGt\nmhG45p0bPsbfmW/JUURERETE4+LFi7z55hQGDhzKs8829mx/6aVehIWFMW3a61SqVJm8efPx4Yfv\n8957e1my5B0eeKAoAIUKFWLChDcYNmwQkyaNZeHC5Zk6r8ViwWKx3I6P5GFE/0HY883wP/rlLTum\nRkhFREREbrG9e/9NcHBImjB6RYsWrfHzM7Nv314Adu7cStWq1T1h9O86derKyZMn+N//vk+379y5\ns1SrVollyxbxzDO1eOutN9Jcirfb7UyePJ5GjepQt251hg4dwMWLF9Idx2az0bNnFwYMiMJut1/z\ncxkXLxL+XKQnjKZ07Hzd7yIzNEIqIiIiPseIi8Xv+/8DwM/PBKFW/OKSwHH71rJ3PPwIrtCwW3Ks\n7777lkceichwn5+fH6VKlebbb48DcPLkt7Rp0yHDtiVKRGCxWPj22+MUL/5whm2++eZrlixZhdPp\nZM+ef3suxW/atI6vvvqSN9+cQ2BgINOmvc7MmdMZM2aS570ul4tRo4YDMGnSVMzmq0dD4/x5wltE\nYv7uJACJ3XqQ8vobBF7nu8gMBVIRERHxKUZcLPkqPIopNibN9tDbfF5nWDh/HDl2S0JpXFwc+fLl\nv+r+kJBQYmNj/2wbS0hIyFXb5skTTOw/vou/e/75ttxzz73ptp87d47AwEAKFixEaGgow4ePIi4u\n1rPf5XLx5ptT+O23M8yevYjAwKtHS9NvvxLWPBLzqf8BkNi7Lwkjx2K+iftQ0xz/lhxFRERERDxC\nQ0P5449LV91/8eIFwsLC/mwbdtW2DoeD6Og/CAsLv+qxCha8J8PtjRs349KlSzRpUp8BA/pw8ODH\n3H9/Uc/+48ePsW3bZoKCgggODr7q8U0//0R442c8YTRhwCskjBwLtyiMgkZIRURExMe4QsP448ix\nNJfsQ0OtxMUl4cgml+xLlSrD6tUrsdvt6S6D22w2fvjhNNWr1/yzbWm+++7bDI/z/fff4XK5iIgo\nleF+wzAICMh4ZPPBBx9iw4btHDz4MQcOfMz8+XPYt28vs2YtACAoKA8TJrzBK6/0ZefObTRq1CTd\nMUynTxHeojF+Z34BIGHYCBL7D87cl5AFCqQiIiLic1yhYdgrVHK/MJsgbx4c0QnY7bcvkN5KderU\nZ+nShWzevIFWrdqk2bdx4zpSU23Url0XgMaNn2PYsIF8//13PPxwiTRtlyxZQIkSJXn44UeyXMN/\n/rMLf/8Aateuy9NP1+b48W/o2fNFoqOjAXjooWKUK1eejh27MG/eLGrUqJXm1gG/7/+PsOca4Xf+\nHADxYyaS1LNPluvIDAVSERERkRt04sQ3pKSkpNlWvvzj5M9/FwMGDGHy5PEkJiZQq5Y7fO7bt4d3\n3lnOkCGvee4x/de/qhIZ2YxBg/rSo0cfHnusAjEx0axZs4oTJ44zc+b8q57f5XJddV9CQjwrViwh\nPDyce+65l717/02BAgUJD097+b9Vq7bs2LGV+fNnMWjQMAD8ThwnvEVjTH8+lX950lSSu7yU9S8o\nkxRIRURERG6AYRjMmzcr3fY1azZTuHAR6tV7hgIFCrJixRLWr18DuC/PT58+m3Llyqd5z6BBQ4mI\nKMmGDWuZPn0KefLk4YknnmTRohUUKpTxPaJXaria555rxYULFxg/3v0wU0REKV5/fXq695jNZl5+\neQBDhw4kMrIZpVOSCWvZBFN0NC7DIH7aDJLbd8zKV5Nlhuta0doHRGej4fncwmw2kTdvHvWNj1L/\n+C71je9S3/g29c+dYz5yiLDWzTHFxuAymbg8Yy4p/7jlIE37P/vmps9700cQERERkWzP/OlBwtq2\nwBR/GZefH5fnLSalyXN35tx35CwiIiIi4rP8P/qAsA7PYyQm4vL3J27hcmwNG92x8yuQioiIiORi\n/vv3EdapLUZyMq7AQOKWrsJWp/4drUGBVERERCSXCtizm9AuHTBsNlxWK7Er15Fa/ek7XodWahIR\nERHJhQJ2bCO0czsMmw1nnmBi1272ShgFBVIRERGRXCdw03pCX+qEYbfjDA0jdsNWUp+q4rV6FEhF\nREREcpHANasI6dUNw+HAGR5O7Kbt2Cs+4dWaFEhFREREcgnL8iWE9u2F4XLhvOsuYjbvwl7uMW+X\npUAqIiIikhtYF84lZHA/ABwFChKz5d84yjzq5arc9JS9iIiIyA1o0SKS8+fPpdtuGAYzZsyjfPnH\n72g9X355hL59e/Lhh5+n22ddMIfg14YC8GmR++iUJ4iPSkTc0fquRYFURERE5AYYhkG/foOoVatu\nun0hIaF3vJ5HHy3Htm3/SbfdOn82wSOGAeAoch/xE6dgTBxzp8u7JgVSERERkRsUFJSHvHnzebsM\nAMxmc7pa/hlGY7bswvnHJW+Ud026h1RERETkNmnZsjG7dm2nW7cXqF27CgMGRHHu3Dlee+0V6tSp\nSufObfnxxx8A2L17J716dWXevFnUq1eDFi0i2blz6zWPPXfuTJo0acCLL7bniy8OU61aJc/+rf16\n0XjJAsoWL07z4sX58PVpOB8omu44M2dOp0WLSH7//fwt//yZpRFSERER8TlxcfD99+5xMz8/E6Gh\nEBdnwuG4fed8+GEnobfhSvuiRfMYMWIswcHBDBgQxYsvtqNHjz507dqTyZPHMX/+bCZNmgrAt98e\nJygoiPnzl3LixDdMnTqJggXvoVKlyhke+913/8Nbb83B6XQSFxeLYRgA/DRxDDM+/5TZ58/z4F13\nsbBZC16b8zZb6zVI8/61a1exd+9/mDNnEQUKFLz1Hz6TFEhFRETEp8TFQYUKwcTGGv/YY72t5w0L\nc3HkSHyWQunUqZOYPn1Kmm333HMPK1as87xu2DCSxx+vCECFChW5dOkSjRs3A6B+/YZs2LDW09Zk\nMjFixFjCwsJ58MGHOHr0C7Zv33LVQFq/fkMefPAhwP1QE4B17ixiFs7DdM89FLzrboI276RbgYJU\nOfENTqfT89733nuXZcsWMWPGPO677/7Mf+jbQIFURERE5AZ17dqT6v9YbtNsThuv7rnnXs+fAwMt\n6V7bbKme10WK3EdYWLjndURESbZt23zV8xcqdE/aDS4XwaOGU9UweBhoYrXw8OhXqVatBpGRzTCZ\nTH82czFp0hj8/QO4++4Cmf24t40CqYiIiPiU0FA4ciT+H5fsrcTFJeFwOK/z7ht3I5fsw8PDKVy4\nyDXb+Pn5pXl95bJ6xm3TRjOHw4lhXP2Rn4CAAM+fA7duhj9HQP3vu5/5a7dw5NJFPvnkI/79751s\n3bqJxYtXeWoYMWIcq1evYNasNxkxYtw1P8PtpkAqIiIiPic0FCpUcIcrsxny5oXoaCd2++0LpL7g\n119/ITk5GYvFAsB3352gePHi132fdfYMrMsWQZEiOO5/gI8nT+fw++/xwgsv8thjFejevTeRkfX4\n+uuj5M2bF4AaNWpy991307NnFxo3bk65cuVv62e7Fj1lLyIiInKDEhLi+eOPS+l+kpOTb+h4iYmJ\nvPHGRH7++Ue2b9/Cf/+7n2bNWl3zPdbZMwge85rndcyWXfjf/wBLly5k586tnDt3ln379pCcnJQu\n3JYqVYb69Rsyffrrae4vvdM0QioiIiJyg2bMmM6MGdPTbe/atQcvvPAicPXL8xkpWLAQ+fPfRZcu\nL3DXXXcxatQ4ylx1eU+DgH17CV65DABngYJg8sN53/08DAwbNoplyxby5ptvUKjQPYwcOZ777y/K\npUtp5yHt0aMPbds2Z+PGtbRq1TZL9d4qhsvlcnnlzJkUHZ2Q44fnsxuz2UTevHnUNz5K/eO71De+\nS33j23JL/+zevZMlSxayYcO2TLW3znqb4LEjAHDcX5SYLTtx3uGn5a/0zc3SJXsRERGRbMY68y2v\nh9FbSZfsRURERLIR68y3CB43EvgzjG7dhbPIfV6u6uYokIqIiIj4gGeeacQzzzS6ZhvrjDcJHj8K\nyDlhFHTJXkRERCRbSBNGH8g5YRQUSEVERER8nnXG9LRhdEvOCaOgS/YiIiIiPs0dRkcDV0ZG/43z\nOqtDZTcKpCIiIiI+yvr2NIInjAFybhgFXbIXERER8UlpwmjRB3NsGAUFUhERERGfY535VtowumVX\njg2joEAqIiIi4lOs82b9Nc9oLgijoEAqIiIi4jMsixcQPHI4AI77H8gVYRQUSEVERER8gmXFUkKG\nDQLAUbgIMZt25IowCgqkIiIiIl4XuGYVIYP6AuAodI87jD5Q1LtFZUJq6q05jgKpiIiIiBcFblhL\nSL/eADjvLkDs5p04Hyrm5aqu7+RJE48/br0lx9I8pCIiIiJeErhtMyFRPTBcLpx33UXM5p04ij/s\n7bKu69gxE61aWbl06daMbWqEVERERMQLAnbtIKRHFwynE2fevMRs2I6jRIS3y7quo0dNNG8exKVL\nJkwm1y05pgKpiIiIyB0WsHc3oS91wnA4cIaFE7thG47SZbxd1nUdOuQOozExBn5+LubPT7klx1Ug\nFREREbmD/PfvI/TFDhipqTiDQ4hdtxl72fLeLuu6Dh70o1WrIC5fNjCbXSxYkEzz5o5bcmwFUhER\nEZE7xP/D9wnr1BbDZsMVlIfYtZuxP17R22Vd14cf+tGmjZWEBIOAABdLlyYRGWm/ZcfPciC12WwM\nHz6cSpUqUa1aNZYuXXrVtj179iQiIoKSJUt6/vvBBx/cVMEiIiIi2ZH/gY8J6/A8RnIyLquV2DUb\nsT9R2dtlXdf+/X60b28lMdHAYnGxYkUS9evfmpHRK7L8lP3kyZM5ceIEK1eu5MyZMwwZMoTChQtT\nr169dG1PokXbAAAgAElEQVRPnz7NtGnTePLJJz3bQkNDb65iERERkWzG/NmnhLVtiZGUhMtiIXbl\nOlKfquLtsq5rzx4/unSxYrMZBAW5WLkyiWrVbm0YhSwG0qSkJDZu3MjixYuJiIggIiKCrl27smrV\nqnSB1GazcebMGcqUKUP+/PlvadEiIiIi2YX5i8OEtWmOkZiAKyCA2GWrSa3+tLfLuq4dO8x0727B\nbjfIk8fFmjVJPPnkrQ+jkMVL9idPnsThcFC+/F833laoUIGvv/46XdsffvgBwzC47777br5KERER\nkWzI/PVRwlo1wxR/GZe/P3FLVpJaq463y7quTZvMvPSSO4yGhrrYsCHxtoVRyGIgvXDhAuHh4ZjN\nfw2s5s+fn5SUFKKjo9O0PXXqFMHBwQwePJiqVavSsmVLPvzww1tTtYiIiIiP8/vmGGEtm2CKi8Vl\nNhO3cDm2es94u6zrWrvWTK9eFhwOg/BwF5s2JVKxovO2njPLl+wDAgLSbLvy2mazpdl++vRpUlJS\nqFatGi+99BLvvvsuPXv2ZP369ZQuXTrT5/Tz00QAvuZKn6hvfJP6x3epb3yX+sa3Zcf+MX17gpCW\njTFFR+MymUhYsARn48Y+v0Tm8uVmBgwIwOUyyJ/fxZYtyZQpA1cbw7xVfZKl7yUwMDBd8Lzy2mpN\nu5Zpnz596NixIyEhIQCUKFGCb775hnXr1jF27NhMnzM09NaskSq3nvrGt6l/fJf6xnepb3xbtumf\n776D5yLh0iUwDIwVKwhu187bVV3XrFnQv7/7zwULwnvvGZQufWe+8ywF0oIFCxITE4PT6cRkcifi\nixcvYrFYMnx6/koYvaJYsWKcOnUqSwXGxSXhcNzeYWLJGj8/E6GhVvWNj1L/+C71je9S3/i27NQ/\nptOnCIlsgOn8eQASZs7F1rApRCd4ubJrmzXLzMiRgQDcc4+TrVuTufdeF/+4IzOdK31zs7IUSEuW\nLInZbObo0aM8/vjjABw+fJgyZdIvdTVs2DAMw2DixImebSdPnuSRRx7JUoEOhxO73bd/+XIr9Y1v\nU//4LvWN71Lf+DZf7x/TTz8S2vRZTGfPAnB56tskt2oLPlwzwFtvBTBxojuMFiniZNOmRB580IX9\n1s17f11ZuvBvsVho0qQJo0aN4tixY+zbt4+lS5fSsWNHwD1ampLiXtO0Vq1a7Nixg61bt/Lzzz8z\na9YsvvjiCzp06HDrP4WIiIiIF5nO/EJ480j8fj0DwOVJU0l+obOXq7o2lwumTPkrjD7wgJNt29xh\n9E7L8p2ow4YNo0yZMnTs2JFx48bRt29f6tRxT19QtWpVdu/eDUDdunUZNWoUc+fOJTIykv/+978s\nWrSIe++999Z+AhEREREvMh/9gvCmDfH7+ScA4sdOJLnLS16u6tpcLpgwIYCpU91htFgxdxi97747\nH0YBDJfL5Z0zZ1J0dIJPD8/nRmazibx586hvfJT6x3epb3yX+sa3+Wz/uFxY588mz7hRGKmpAMSP\nGEtSVD8vF3ZtLheMHBnI/PnumZJKlHCwcWMSBQtmPRJe6Zub5euzD4iIiIj4HOOPS4S83JPAvf8B\nwBUUxOXXp5HS2refpnc6YdiwQJYudYfRkiXdYfTuu707PqlAKiIiIpIF/p8eIKRHF/x++xUAe6ky\nxC1chuPhrD24fac5nTBoUCCrVrnDaNmyDtavTyRfPi8Xxg3cQyoiIiKSKzkcBE2fQljThp4wmtSp\nC9G73/P5MOpwQN++Fk8YrVDBwaZNvhFGQSOkIiIiItdlOn+OkF7dCPjoAwCcoWFcfnMmtsimXq7s\n+hwOePllCxs2+ANQubKd1auT+Md08V6lQCoiIiJyDf779xHapzumixcASK1Qkbh5S3A+UNS7hWWC\nwwFRURY2bnSH0aeesvPOO0kEB3u5sH/QJXsRERGRjKSmkmfcKMJbP+cJo4m9+xKzfU+2CaN9+vwV\nRv/1L/fIqK+FUdAIqYiIiEg6pl9+JrT7i/gf/hwAZ/78XJ41H1vtel6uLHPsdncY3bzZHUarVLGz\nalUSeW5+hqbbQoFURERE5G8Cdu0gpF9vTLExANiqVOPy3EU4C93j5coy559htGpVOytX+m4YBQVS\nEREREbfkZILHvIZ18QIAXCYTiYOGkth/MPj5ebm4zLHboXdvC1u2/BVGV61KIijIy4VdhwKpiIiI\n5Hp+p74npFtn/L/5GgBHoXu4PG8xqf+q6uXKMs9uh169LGzd6g6j1aq5R0Z9PYyCHmoSERGRXC5w\nw1ry1q7uCaMpdeoRvf+TbBdGe/bMnmEUNEIqIiIiuVVCAiHDBmFZ+w4ALrOZhBFjSereC0zZZ8wu\nNdUdRrdvd4fR6tXdYdRq9XJhWaBAKiIiIrmO3/FvCH2pE+bv/w8Ax/1FiVuwBPvjFb1cWdakpkKP\nHhZ27HCH0Ro17KxYkb3CKCiQioiISG7hdGI+fIjAHVuwLluMkZICQHLjZsRPn4ErNMzLBWZNaip0\n725h5053GH36aTvLl2e/MAoKpCIiIpKTORz4f3qAwJ3bCNi1A79zZz27XBYL8eNeJ/mFzmAYXiwy\n61JT4aWXLOza5Q6jNWvaWbYse4ZRUCAVERGRnCY1Ff9PPiJwxzYCd+/0rLJ0hctqxVa7HgmDhuIo\nVdpLRd44m80dRv/977/C6PLlSVgsXi7sJiiQioiISPaXkkLAR+8TsGMbgf/ZhSk6Os1uZ55gbPXq\nk9KoCbZadfHpWeKvwWaDbt0s7N7tDqO1arlHRrNzGAUFUhEREcmukpIIeH8/gTu2ErBnN6bLcWl2\nO0PDsNV/hpTIptierkV2T202G3TtauE//3GH0Tp17CxZkv3DKCiQioiISHaSkEDAe3sJ3LmNwL17\nMBIT0ux25s1LyjONsDVqjK3a0xAY6J06b7GMwujSpUk55eMpkIqIiIiPi4uD3dvIs2Yd/u+9i5GU\nlGa38667SGnYmJRGjUmtUg38/b1U6O2RkgJdu1rZs8cd2+rWdY+M5pQwCgqkIiIi4sMCtm8htG8v\n98jo37Y7ChbC1qgxKZFNSa38VLZZaz6rUlKgSxcre/e6I1u9enYWL85ZYRQUSEVERMRHWRYvIHj4\nYAyXCwBn4SIkN2pCSmRT7BUrZavVlG5ESgq8+KKVd991x7X69e0sWpTzwigokIqIiIivcbkImjKR\nPNMmA+5L8qb164ktVwm7w+Xl4u6MpCT3yOi+fe6o1qBBKgsXJufIMAoKpCIiIuJLHA6ChwzEumKJ\n++X9DxC/aRthFctBdAKQ8wPpt9+a6N7dwsmT7tsQGjRIZdGiZAICrvPGbCxnj3WLiIhI9pGcTGi3\nTp4wai9Zmpide3EWK+7lwu4MlwuWLfOnfv0gTxht3Djnh1HQCKmIiIj4AONyHKEvtCHgk48AsD35\nL+JWrsUVFp4rRs+io2HAgL+WAg0MdDF6dAovvpia3VY1vSEKpCIiIuJVxu+/E9amOf7HvgIgpcGz\nxM1fQrZdmD2LPv3Uj549Lfz6qzt6P/KIg/nzkyld2unlyu6c3PCPDhEREfFRph9/IG+jup4wmtTu\nBeKWrMwVYdThgDfeCKBpU6snjHboYGPPnsRcFUZBI6QiIiLiJX7Hvia89XOYLvwOQEK/QSQOG0Fu\nuEb9668GvXpZOHjQHcVCQ11Mm5ZMkyZ2L1fmHQqkIiIicsf5f/IRoS+08aw/Hz9hMkndenq5qjtj\n1y4z/ftbiIlxB++KFR3Mm5fE/ffn/BkErkaBVERERO6ogJ3bCe3ZBSMlBZfZzOWZ80hp3srbZd12\nSUkwalQgy5a5H5k3DBf9+tkYPNiGOZcnslz+8UVEROROsqxcRvDgfhhOJ66gPMQuWUlqrTreLuu2\nO3nSPbfot9+6p3MqVMjJnDnJVK3q8HJlvkEPNYmIiMjt53IRNH0KIQNfxnA6cebLR8zmHTk+jLpc\nsGKFe27RK2G0fn07//1vosLo32iEVERERG4vp5PgV1/BungBAI4i9xG7bguOhx/xcmG3V0yMe27R\nnTvdc4sGBLjnFu3SJXfMLZoVCqQiIiJy+9hshER1x7JlEwD2iJLErt2M897CXi7s9vrsM/fcomfO\nuC9GFy/unlv00Udz13ROmaVL9iIiInJbGPGXCWvX0hNGUytVJmbb7hwdRh0OmDYtgCZNrJ4w2rat\njXffTVQYvQaNkIqIiMgtZ1y8SFjb5vgf/RKAlLr1iVu4HIKCvFzZ7fPbb+65RQ8ccMerkBAXU6cm\n06xZ7pxbNCs0QioiIiK3lOnnnwiPrOcJo8nPtyVu2eocG0aTk2HjRjM1a+bxhNEKFRzs35+gMJpJ\nGiEVERGRW8bvxHHCWj+H37mzACT27kvCyLE5bvUlux0++siPLVv82bXLzOXL7s9nGC5eftnGK6/Y\n8Pf3cpHZiAKpiIiI3BJ+J78lvFlDTNHRAMSPGk9S75e9XNWt43TC55/7sWWLmR07zFy8mPZCc+HC\nTt5+O5nq1TWdU1YpkIqIiMhNM/3yM2HPN8MUHY3Lz4/Lb80m5fm23i7rprlccOyYic2b/dm2zcyv\nv6YNoWFhLho1SqVZMztVqjjw8/NSodmcAqmIiIjcFOPiRcJaNcXv7G8AXH5zVrYPo99/b2LzZjNb\nt/pz6lTaEBoU5KJBAzvNmqVSs6aDgAAvFZmDKJCKiIjIDTPiLxPWpjnmU/8D3JfpU1q383JVN+aX\nXwy2bPFnyxYzx4+nHeoMCHBRu7adZs3s1K1rJ08eLxWZQymQioiIyI1JTia0Y1v8v3I/TZ/Yp1+2\nu2f0998Ntm83s2WLP4cOpQ2hJpOLatUcPPdcKg0b2gkL81KRuYACqYiIiGSdw0Foz64EfPQBAElt\nO5AwYoyXi8qcpCTYssXM5s3+fPyxH05n2hkAKle207SpncaN7dx9t8tLVeYuCqQiIiKSNS4Xwa/0\nJ3DXdgBSnmlE/NS3s8XUTmfPGrRpY+XEibSjoWXLOmjaNJWmTe0UKaIQeqcpkIqIiEiWBE0ah3Xl\nMgBs/6pK3PwlYPb9SHHypIk2bayeJ+WLF3fQrJn74aTixRVCvcn3f3tERETEZ1jnzybPW1MBSC1T\nlrgVa8Bi8XJV13fggB8dO1qJjXWP4g4dmkL//rbsMKibKyiQioiISKYEblhL8IhhADiKPkjs2s24\nQn3/SZ9t28z07m3BZjPw83MxfXoybdpoSU9forXsRURE5LoC9u0hpG8vABwFChKzfiuuAgW8XNX1\nzZvnT7duVmw2g6AgF++8k6Qw6oM0QioiIiLXZP7sU0K7vIBht+MMDSN23RacRR/0dlnX5HTCqFGB\nzJ/vnrX+7rudrF6dRLlyTi9XJhlRIBUREZGr8jtxnLD2rTCSknBZLMSuWo+jdBlvl3VNyckQFWVh\n2zZ/AIoVc7J2bSIPPKAHl3yVAqmIiIhkyPTTj+716WNjcPn5Ebd4BfYnn/J2WdcUEwMdO1o5eNAd\ncSpWdLByZRL58yuM+jLdQyoiIiLpGL//7l6f/vw5AC6/PQdb3QZerurazpwxiIwM8oTRZ55JZdOm\nRIXRbECBVERERNIw4mLd69P/cBqA+LETSWnVxstVXds335ho2DCI775zT3jfubONJUuSsVq9XJhk\nii7Zi4iIyF+Skwl9oQ3+x74CILHvQJJ69PFyUdf24Yd+dOpkJT7ePanoa6+lEBWlOUazEwVSERER\ncbPbCe3+IgEHPgYgqX1HEoaP9HJR17Zxo5m+fS2kphr4+7t4661kWrbUtE7ZjQKpiIiIuNenH9yP\nwN07AUhpGEn8lDd9dn16lwtmzgxg/PhAAIKDXSxdmkSNGg4vVyY3QoFUREREyDN+NNZ3VgBgq1qd\nuHmLfXZ9eocDXn01kCVL3HOMFizonmP00Uc1x2h2leWHmmw2G8OHD6dSpUpUq1aNpUuXXvc9Z86c\n4bHHHuPQoUM3VKSIiIjcPtY5Mwma+SYAqWXLE7d8tc+uT5+UBF26WDxh9JFHHOzenagwms1l+Z8+\nkydP5sSJE6xcuZIzZ84wZMgQChcuTL169a76ntGjR5OcnHxThYqIiMitF7huNcGjXwXA/lAxYtds\nwhUS6uWqMvbHH9C6dRCHD7ufpH/ySTsrViQRHu7lwuSmZWmENCkpiY0bN/Laa68RERFBnTp16Nq1\nK6tWrbrqe7Zv305iYuJNFyoiIiK3VsDe3YT06w2Ao9A9xK7fiuvuu71cVcZ++AGeecbqCaORkams\nX68wmlNkKZCePHkSh8NB+fLlPdsqVKjA119/nWH76Ohopk2bxrhx43C5NCmtiIiIrzB//hmhXTti\nOBw4w8Pd69Pf/4C3y8rQV1+ZeOop+P57d2x56SUbCxcm++pdBXIDshRIL1y4QHh4OOa/3eScP39+\nUlJSiI6OTtf+9ddfp1mzZhQrVuzmKxUREZFbwu/7/yOsQyuM5OQ/16ffgKNkKW+XlaGDB/2IjLRw\n/rz79ZgxyYwfn4JJS/vkKFm6hzQpKYmAgIA02668ttlsabYfOHCAL7/8knHjxt1UgX5++o3zNVf6\nRH3jm9Q/vkt947tyU98YZ88S8nwzTNHRuEwmEhYvh3895ZPT7hw5YqJdOwvx8QYBATB3ro1mzRxo\noUnfcav+zmTp9y8wMDBd8Lzy2vq3tblSUlIYNWoUo0ePThdgsyo0VGt++Sr1jW9T//gu9Y3vyvF9\nExMDrZ+DM78AYMybR3DbVl4uKmNffQUtW0J8PPj7w7Zt0KBBAHBzuUJ8U5YCacGCBYmJicHpdGL6\nc6z84sWLWCwWQkP/eiLv66+/5syZM0RFRaW5d7Rbt240bdqU0aNHZ/qccXFJOByaysGX+PmZCA21\nqm98lPrHd6lvfFeu6JuUFIJbNsX/2DEAkoYMJ7lFW4hO8HJh6f3f/xk0amQlJsbAz8/F0qU2GjQI\nzNn9k01d+btzs7IUSEuWLInZbObo0aM8/vjjABw+fJgyZcqkaVeuXDn27t2bZlvdunWZMGECTz31\nVJYKdDic2O365fNF6hvfpv7xXeob35Vj+8bpJKR7V/w//giApA6diR8wBHzws/70k0GzZlYuXjQw\nDBczZybTsKETCMy5/SNZC6QWi4UmTZowatQoJk6cyPnz51m6dCmvv/464B4tDQkJITAwkPvuuy/d\n+wsUKEC+fPluTeUiIiJyfS4XeV4bgmX7FgBSGjxL/ORpPrkk6NmzBs2bB3H2rPsq7NSpKbRoYUf3\njOZ8We7hYcOGUaZMGTp27Mi4cePo27cvderUAaBq1ars3r07w/cZPviLLyIiktNZZ75F0KL5AKRW\nqkzc/CU+uSTohQsGLVpY+flndzQZNy6ZDh1SvVyV3CmGy8cnCI2OTtDwvI8xm03kzZtHfeOj1D++\nS33ju3Jq3wSuW01oVA8A7I+UIGbHHlx5fe9KZXQ0PPdcEMePuye9Hzo0hQED/nqIOqf2T05wpW9u\nlsbARUREciD//e8S0r8P8OcqTGs3+2QYjY+HNm3+CqNRUSn072+7zrskp1EgFRERyWHMXx4h7MUX\nMOx2nKFhxK7djLNI+mc7vC0xEdq1s/LFF+4w2qWLjddes/ni7a1ymymQioiI5CCm06cIa9cSIzEB\nV0AAcSvW4ChV2ttlpZOSAi++aOXgQff9rG3apDJhQorCaC6lQCoiIpJDGL//TvjzzTBdvIjLMIib\nu4jUf1X1dlnp2O3QvbuF/fvdYbRp01SmT0/WcqC5mLpeREQkBzDiLxPWtgV+P/0IQPzEKdgim3q3\nqAw4nRAVZeHf//YHoH59O7NnJ+Pn5+XCxKsUSEVERLI7m43Qzu3x//ooAIl9B5LcpbuXi0rP5YLB\ngwPZtMkdRqtVs7NwYRL+/l4uTLxOgVRERCQ7czoJ6duLgA/+C0Dy821JGD7Sy0Wl53LByJGBrFzp\nXov+iSfsrFiRhMXi5cLEJyiQioiIZGN5xo3Csmk9ACm163J5+kyfXIVpypQA5s93h9GyZR2sXp1E\nnpufvlJyCAVSERGRbMo6bxZBs98GIPWxx4lbtAJfvP49c2YA06YFAhAR4WDduiRCQ71clPgUBVIR\nEZFsKHDLRoJHDgfA/uBDxL6zEV8cclyyxJ9x49xh9MEHnWzYkET+/D69SKR4gQKpiIhINuP/4fuE\n9HE/tOS8uwCx67bguusuL1eV3tq1ZoYOdd8kWqSIk02bEilYUGFU0lMgFRERyUb8jn1NaKd2GKmp\nOPMEE7t2E86iD3q7rHS2bzfTr587jBYo4GTjxkSKFFEYlYwpkIqIiGQTpp9+JKxNc0zxl3H5+xO3\ndBX2R8t5u6x03n3Xjx49LDidBvnyuS/TP/SQwqhcnQKpiIhINmBcukTY883w+/08AJdnzCX16Vpe\nriq9Dz/048UXrdjtBiEhLtatS6JkSae3yxIfp0AqIiLi6+x2Qrt1xHz6FADxYyaS0ryVl4tK79Ah\nEy+8YCUlxSAoyMWaNYmUK6cwKtenQCoiIuLj8ox5jYCPPwQgqctLJPXs4+WK0jt+3ETbtkEkJhoE\nBrpYsSKJJ55QGJXMUSAVERHxYYHr1xA0fw4AtirViB87ycsVpXf6tEGrVlZiYw38/FwsXJhE9eoO\nb5cl2YgCqYiIiI8yH/2CkIEvA+Aoch9xC5f73MT3v/1m0LJlEBcuuCPFjBnJNGigMCpZo0AqIiLi\ng4wLF9zTO6Wk4LJaiVu+2ufmGr140aBlSyu//OKOE5MmJdOypd3LVUl2pEAqIiLia1JTCe36An6/\n/QrA5ekzfW56p7g4aN3ayvff+wEwbFgKXbqkerkqya4USEVERHxM8MhhBBz8BIDEnlE+90R9YiK0\nb2/l66/dYbRXLxv9+tm8XJVkZwqkIiIiPiRwzSqsixcAYKtek4QRY7xcUVo2G3TpYuXTT80AtG9v\nY9SoFAzDy4VJtqZAKiIi4iPMRw4RMrgfAI77ixK3YAmYzV6u6i8OB/TpY+G999w1NWmSyhtvKIzK\nzVMgFRER8QHG+fOEdm6PYbPhCgoidtk7uPLl93ZZHi4XvPJKIFu3up/yr13bzuzZyfj5ebkwyREU\nSEVERLzNZiOsSwf8zp0F4PLbc3CUedTLRf3F5YKxYwNZuTIAgMqV7SxenERAgJcLkxxDgVRERMTL\ngl8dgv/nnwKQGNWflCbPebmitGbMCGD2bHf6fPRRB++8k0RQkJeLkhxFgVRERMSLLCuWYl2+GABb\nzdokDB/p5YrSWrrUnwkTAgEoXtzBunVJhIZ6uSjJcRRIRUREvMT8+WcEDxsEgKPog8TNX4Iv3ZS5\ncaOZoUPdYbRIEScbNiRx110uL1clOZECqYiIiBeYzp0l9MX2GKmpuILyELt8Da7wvN4uy2PPHj+i\noiy4XAZ33+1k48ZEChdWGJXbQ4FURETkTktJIbRzO/x+Pw9A3Kz5OEqW8nJRf/n4Yz+6drXicBiE\nhblYvz6Jhx5SGJXbR4FURETkTnK5CB46EP8jhwFIGDAYW6PGXi7qL19+aaJDByspKQZBQS5Wr06k\ndGmnt8uSHE6BVERE5A6yLFuM9Z0VAKTUrU/iK696uaK/nDxponXrIBISDAICXCxblkSlSgqjcvsp\nkIqIiNwh/p8eIPjVVwCwFyvO5TkLweQb/yv+8UeDli2tREcbmEwu5s1L5umnHd4uS3IJ3/hbICIi\nksOZfj1D6IsdMOx2nMEhxC1fgyss3NtlAXDunEHLlkGcP++OBW+9lUyjRnYvVyW5iQKpiIjI7Zac\nTGjndpguXgDg8pyFOB4p4eWi3P74A1q1svLTT+5IMH58Mq1bK4zKnaVAehMCN60nvEFNAvbu9nYp\nIiLiq1wuQgb3w//olwAkDB6GrUFDLxflFh8PbdoEcfKke+7TwYNTeOmlVC9XJbmRAukNMmKiCX5l\nAP5fHCG0UzsC/vNvb5ckIiI+yLpoHpZ1qwFIafAsiQOHeLkit9RU6NzZypdfusNo9+42Bg2yebkq\nya0USG+Qdf4cTJfjADDsdkK7dCBg3x4vVyUiIr7E/5OPyDNyOAD2R0pwefZ8n3iIyeWC4cMD+eAD\nMwCtW6cyZkwKhuHlwiTX8v7fimzIiI3BunAeAKmPlsOZJxgjNZXQzu3x/+97Xq5ORER8gemXnwnt\n+gKGw4EzNIy45atxhfjGIvALFvizfHkAANWq2Zk2LdkXcrLkYvr1uwHW+XMwxcUCED95GrFrNuEK\nyoORkkJYxzb4f/SBlysUERFv8jv1PWHtW2G6dAmXYXB57kIcxR72dlkA7N3rx8iR7vXpixd3sHhx\nEv7+Xi5Kcj0F0iwyYmOwLpgLgK1mbewVn8D+5FPErt6Ay2rFSE4mrMPz+B/8xMuViojIHed0Ylk0\nj7y1qmL+9gQAicNGYKvbwMuFuR0/bqJ7dysul0G+fE7eeSeJcN+YeUpyOQXSLLIumOsZHU0YNNSz\nPfVfVYlduQ6XxYKRmEhYmxaYP/vUW2WKiMgdZjrzC2EtmxAy/BWMpCRc/v7EvzqKxL4DvV0aAOfP\nG7RvbyUhwcDf38XSpck8+KDWpxffoECaBUZsDNb5cwCwPV0Le6XKafanVn+a2GWrcQUEYCQmENam\nOeYjh7xRqoiI3CkuF4Fr3yFvjacI+POWLXupMkTveZ+kvgPxhSeFkpKgY0crv/7q/t/+9OnJPPWU\nVmES36FAmgXWhfP+Njo6LMM2qbXqELd0FS5/f0zxlwl7/jnMR7+4k2WKiMgdYpw/T2jHNoS+3BPT\n5ThcJhOJfQcSvee/OMo86u3yAHA6ISrKwhdfuKd36tcvheef18T34lsUSDPJiIv9a3S0Rk3sT1S+\naltb3QbELVqBy2zGFBdLWKummI99dadKFRGROyBg+xby1ahM4J/zUNsfKkbMzr0kvDoKAgO9XN1f\npkwJYPt291NLkZGpDB2quUbF9yiQZpJ14TxMsTHA1UdH/872zLPEzV+Ky88PU0wMYS2b4Hfi+O0u\nU7yEC84AACAASURBVEREbjMj+g9CerxIWNeOmP74A4DEbj2I3v8J9opPeLm6tDZsMDN9ujscly/v\nYOZMTe8kvkm/lplgxMVinTcbAFv1mtgrP5mp99kim3B57iJcJhOm/2/vvuOjKPM/gH9md7alkQKE\noqjU0CQQA0YIClIFBBWwUe+i/tQTTw9PBe4Q4aRZEc5ugHCcekEFgQAiiCAgXSIISFEINYEEUrbN\nzvz+mOyGkFCWlJnNft6vV16bTCbJN3kym0+eZ57nOXcOkYMHwLh/X1WWSkREVcj83SpEdb0d1i/T\nAQCeG25E3qJvUPivGUBIiMbVlbZ5sxHPPWcFADRoICMtza63Eol8GEivge3jDy7qHX3pKmeX5hz0\nAPLffR+KIMCQk4PI+/vDePC3qiiTiIiqiFCQj7C/jUGthwfDePoUAMD+8DDkfr8R7uQ7Na6urN9/\nFzB6tBUul4CQEAVpaXbExnJGPemXqHUBeifkX4Dt/dkAAFfyXZBuT/L7cziHPARIEiKefQqG7DOo\ndX9/5H29HHLjJpVdrvYUBZAkQJIgeCR1s2TJo75e6vhFr0sSIHmgREfD07SZLmakEhF5mTZuQPiY\nJ2E8+gcAQK5TF/lvvgtX774aV1a+8+eBYcNsOHvWAEFQ8MEHdrRtK2tdFtEVMZBehe3jD2DIU3tH\ni17wr3f0Ys6HhyFfkhD+tzEwnjqJyAcGqKH0ppsrqdKqJxTkw/ztSliXLQG2bUEth0MNm5IESG41\nYMoVe9Lz3HwLnH37w9m3P6TEjoDRWEnVExH5yW5H6GuvwvbhvyEoau+i4977UDD9TSgxMRoXVz5J\nAlJSbDhwQH3ufOUVJ3r35vJOpH+Coii67sPPzS2EJGnzn52QfwHRCW1gyMuDK/lOnF/0TYU/p/XT\njxD+krpIsufGRmoovbFRhT9vVRHycmFemQHLsiUwr/0OgtNZbV9brl0Hzj73wNW3H1zJdwFWa7V9\n7UAmigZERYVqeu1Q+dg2+nVp24g7tyP8L09A/O0AAECOjETB9DfhHPSAbkdxFAV48UUL5s5V96gf\nPtyF11936rVcv/Da0S9v21T481RCLTWW7ZMPS3pH/bx39HIcf3oMguRG2ISXYDx2FJH390fe4gzI\nDRpWyuevDEJODiwrlsGydDFMP3yv9oBeRK7fAIZ7B8AeVguywQiYTFCMIiCKgGhUXzeZoIii2sMp\nilBMJsBY/H5RBESTerz4GEQRxl/3wrJ8KczffwfB4YAhJxu2BfNgWzAPcmgYXHf3VMNpj15QanGv\nOyKqAi4XQmZMQ8g7b0DwqD2Lzrt7ouCt2ZDr1de4uCv76COTL4wmJ0uYNq1mhFEKDuwhvQyhIF/t\nHc3NhatLV5z/cmmlfn7bnFkImzQBgLp23fmvl2v6ZGc4dRLmZd/AsmwJTBs3lBl69zS6Cc7+A+Hs\nfy/QsSOiYsKrrm0KC2FetxaWjKUwr8qAITe31LsVUYS7S1c4+/aHq889kOs3qPwaAhh7EvSLbaNf\nomhA1PEjkB4dBnG3um60HBqGwslT4Xh0hG57Rb2+/daI4cNtkGUBTZt6sHx5UY3ao57Xjn5VVg8p\nA+ll2N55A2H/mgQAyPt6Odx3dKnSryE1a468r5ZDqVu30r/O5RiyjsGydDEsS5dA3PqT7x4pL6lp\nMzj7D4Sr/72Q2rbzPSFX6xODJMG0eSPMGUthyVgGY9axMqe4OyTAec8AuPr2h6dZ86qtJwDwiVu/\n2DY65XYj7P13YZv+GuBSF4133dEF+e/8OyDu89+zx4D+/UNQWCggKkpBRkYhGjfW9Z92v/Ha0S8G\n0ipUqne0czLOf7Wsyr5WyOvTEDrjNQCA1CJODaW1a1fZ1zMcPgTL0iWwLFsM086yW5pKLVvD2f9e\nOAcMgqdFXLm9Apo9MSgKxMyfYV6uhlPx17IbDUhNm8HVtz+c9/SH1D4BwbgCNJ+49Yttoz/izzsR\n9twzMP2yGwCgWCwoHD8R9sefCojnj9OnBfTtG4KsLANMJgXp6fYauUc9rx39YiCtQrZZbyJsyisA\ngLyvlsHdOblKv17ItMkIfXMmAEBq1QZ5X34DJfoaZ3B6l1lyuSBIbsAtFT+qL4IkqbPj134HyzeL\nIe79pcyncMe39/WEeho3veqX1MsTg+HwIVhWLIclYynELZvL9PB6YuvBOeQh2J94CnJsPY2qrH56\naR8qi22jI0VFCJ05Fbb3Z/vuFUVSEs6/+S5cTQJjpMVuB+6/PwTbt6sz6mfNsuOhh2rmHvW8dvSL\ngbSqFBQg5rY2MJw7B9cdXXD+6+VV/zUVBaFTXkHIu28BADz1G0CuUxeC2w1I7uJHdU1Pwe0qFTov\nnXB0rdyJndR7QvsNgNzoJr8+Vo9PDMKZM7CsyoA5YynM69ZCcJXs1axYLHA8PAxFTz8bEMNvFaXH\n9iEV20YfTBt+QPjzz8D4+xEAgBISCvs/X0HI2OeQe8EREG0jy8ATT1ixeLG6R/2zzzoxfnzN3aOe\n145+cZZ9FbF9+lHJ3sQvXH3P+kohCCic8Io6u/ODOTCePAHjyROV+iUUgwHupM5qT2i/AbqfLeov\npW5dOIaNhGPYSAgF+TCtWQ1r+hewrFgGwemEbe4nsKbNhfO+wSga8zw8cS21LpmIqplwPg+hk/4B\n24J5vmPOu3uiYObbMNx8E0ICaN3jGTPMvjDav78bL79cc8MoBQf2kF7s4t7RpM44vzijer6ul6LA\n+p/5MK3/HhBN6lJJogmKWX2EyQTFJJZ6H0wiFJO5ZJkl0yXvE02A2QypRctKuzc1kP5TNe7fh5B3\n34Jl0Rclw3IAnH37o+ivf1PvM61hAql9gg3bRjvmpUsQ9tLfYDxzGgAgR0ejYMp0OB8YCghCQLVN\nerqIp56yAQDatfNg8eKiGr9HfSC1T7DRbMje5XLhlVdewbfffgur1Yo//elPGD16dLnnLlmyBHPm\nzMGpU6fQqlUrvPzyy7j11lv9KrA6f/ls776NsMn/BADkfbkU7i5dq+XrBppAfGIwHP0DIXPegXVh\nWqnF/V1du6Hor39T7xPW+bIu1yoQ2ydYsG2qn3D6NMJfHgvL0sW+Y477h6BgyvRS/6QHStv89JMR\nDzxgg8sloEEDGStWFKFePV33K1WKQGmfYFRZgdTvKYTTp0/H3r17kZaWhokTJ2L27NlYtWpVmfO2\nbduGCRMm4JlnnsGyZcsQHx+Pxx57DHa7vcJFV4mCAoT8+x0AgOv2O6p8IhNVL7nRTSiY/ibObvsF\nRc88BzksHABg/mEtIu/vj8h7esC8Yrl6YxYRBb7iEafoLom+MOppeAPO/+cL5L//SZWuZlJVdu40\nYNQoK1wuASEhCtLS7EERRik4+BVI7XY70tPTMWHCBMTFxaFHjx5ISUnBggULypybk5ODp59+Gv37\n98cNN9yAp59+GufPn8fBgwcrrfjKZJv7CQxnzwIovne0hvSWUWlKbCwK/zEJ53b8gsKXJkCOjgYA\nmLZvRa0RDyGq2x2wLPpCnURGRAHJcOQwag2+F+HP/QWG83lQBAH2Pz+O3PU/wdWzj9bl+c3pBKZM\nMaNv3xCcPWuAICh4/3072rblP9BUc/gVSPft2wePx4P4+HjfsYSEBOzevbvMuX369METTzwBAHA6\nnZg7dy5q166Npk2vvqxQtSss9PWOujslcag+CCiRUSh6/u84u30PCiZPhad4tyfx172IeDIF0Ukd\nYJ2fqv4lIKLAIEmwzZmF6LuSYF6/Tj3UrDnyvlmFgqmvQykeGQkkO3ca0KNHCGbNskCWBYSGKpg9\n24E+fWreWqMU3PwKpNnZ2YiMjIQolkzOj4mJgdPpRO4l2zt6bdq0Ce3bt8e///1vjBs3DjabrWIV\nVwHb3E9gyMkBABSydzS4hIbC/sTTOLflZ+S/+S48N98CADD+8TvCxz6L6MRbYXtvNlBQoHGhRHQl\nxl8yEdn3boRNmgDBbociiih8/u/IXfMjpI6dtC7Pbxf3iu7fr87+79pVwg8/FGLIEI7gUM3j17JP\ndrsdZrO51DHv2y5X+UtOtGjRAl9++SW+//57vPjii7jhhhv8mthkNFbxThmFhQiZ8zYAQOqUBKVb\nN4gMpFfkbZMqb5vqJNogjRqNC8OGw7T4K1jfeh3i3j0wnjqJsInjEPL263A+8SScjz0BJSpa62qv\nqEa2Tw3BtqkCDgesr0+DddbbvnWZpQ63oXDWbMit2lzzHzk9tc2OHQY8/bQF+/ertYSFKXj1VRdG\njpQgCAKA4Psbpaf2odIqq038CqQWi6VM8PS+fbmez+joaERHRyMuLg67du3Cf//7X78CaUREFfeo\nfvo+UNw7Kk55FVHRYVX79WqQKm8braSMAv48Eli2DHjtNWDTJhhyz8E27V+wzX4HeOklYOxYwGLR\nutIrqrHtUwOwbSrJ+vXAY48B+/erb4eEAP/6F8RnnkGt61xTVMu2cTiASZOAGTNK5lf27Al89JGA\nm26yAND3c0514LVTc/kVSGNjY5GXlwdZlmEo3uM3JycHVqsVERERpc7NzMyE0WhEq1atfMeaNGmC\nQ4cO+VXghQt2eDxVdON2URFqTZ8OAwCp4+3I73A7kFtYNV+rBjEaDYiIsFVt2+hB527A0rsgbtwA\n65uvw7T2O3XofsIEeD5NRdHUGZB69ta6yjKCpn0CENumchj++B3Wd96EZe6nvmPuu7qj6K1Z6m5s\nFxx+f06t22b7dgP+8pfSvaKTJ7swYoQEQQAuc1dc0NC6fejyvG1TUX4F0pYtW0IURezatQsdOnQA\noC7v1KZNmzLnpqenIysrC5988onv2J49e9C6dWu/CvR45Cpbc8z2yccwZGcDAArGvgTJowDgEhrX\nqirbRk+kTp3h+LwzxJ3bEfrKBJg3/Qjj4UMIf/ABOHv3RcHkaZCL7z3Vk2Bpn0DEtrkOTicsK5bB\numAezOvW+g7LkZEoeHUqnA8+ot7/X8Gfa3W3jcMBvP66GbNnmyHL6lD8nXdKeOstB264QYGHc5dK\n4bVTc/k18G+1WjFw4EBMnDgRmZmZWL16NVJTUzFy5EgAam+ps3hW8oMPPoiffvoJaWlp+OOPPzBr\n1ixkZmb6ztVcUZFv73j3bR3hvrObxgWR3kntE3D+6+W48N7H8MTWAwBYVmYgOrkjQqb/Cygq0rhC\noprHeGA/Qv85DjHxcYh4bJQvjCoGAxz3D8a5DdvgfOjRgJyMumOHAT17lsygDwtT8MYbDnzxhR03\n3MDOEQoufu/U5HA4MGnSJKxcuRLh4eFISUnB8OHDAQBxcXGYNm0aBg0aBABYt24d3njjDRw9ehTN\nmjXDhAkT0K5dO78KrKpdGWzvz0bYP8cBAPI+/wrubndX+teoqbhjBiAU5CPkjRmwfTDHN5HCc2Mj\nFEyeBlfffpr+cWT76Bfb5hoVFcGy5CvYFsyDacvmUu/y3NgIjkeGw/HwMMgNGlbal6zOtnE4gJkz\nzZgzp/xeUSqL145+abZ1aHWrkl++oiLEJN4KQ/YZuG/riLxl3wbkf9da4RNDCeOB/Qh7+QWY13/v\nO+bqdjcKXpsBT5NmmtTE9tEvts2Vibt3wbpgHiyL/gdD/gXfccVkgqtPP9iHjVRHswyVP9O6utpm\nxw4Dxoyx4sABddJVWJiCSZOcGDbMzT9DV8BrR78qK5D6dQ9pTWGb/ykM2WcAAIVjX2IYpevmad4C\n59MXw7x0McL+OQ7G41kwr/0OUV1vh/3JZ1D417FAGFduILoc4cJ5WBb9D9b/zIdp965S75OaNoPj\n0ZFwDH0YSp06GlVYOdgrSnRlwddDarcjOvFWGM+chjshEXnLVzOQ+on/qV5GYSFCZr2BkDmzIBQv\nh+Zp0BCFk/4F5733VdvvGdtHv9g2xRQF4pafYFswF5YlX0Gw20veZbXCOWAQHMNHwd0pqUZcN+wV\nrTheO/rFHtLrZJv/KYxnTgMACl9g7yhVotBQFL38TzgefBRhE16EZfUqGE8cR8Rjo+Ca9ykKXpsJ\nT1xLrask0oyQkwPr/z6D9T/zIB7YX+p9Uuu2sA8bCefgoVBqRWpUYeViryjRtQuuQGq3w/auuiuT\nO+E2uLv10Lggqonkxk1w4T//g3nVCoSNfxHGo7/DvOEHRHXvDHvK/6HohZeghEdc/RMR1QQOB8wb\n1sHy2UJYMpZCcLt975LDwuG8fwgcw0ZAate+RnUQbN5sxN/+ZsFvv7FXlOhaBFUgtaWl+npHi3jv\nKFUlQYCrd1+c63oXQua8g5BZb0JwOBDy/mxYvvwfCidOhnPwg/wdpBpJyMmBefVKWFZmwLz2OwhF\npTcccd/WEfbho+AcMKjG3WOdlwe8+qoFCxaUbLPNXlGiqwuee0jtdkR3bAfj6VNwd0hAXsYahoHr\nxHt5/Gc4+gfC/vEyLBlLfcfcnZKQP/V1eNq0rdSvxfbRr5rcNsaDv8G8YjksK5dD3PoTBLn09ydH\nRcEx9GE4Hh2py1tXKto2igJ8/bWICRMsyM5WVwGIjFQwcaITjzzCXtGKqsnXTqDjPaR+Mq9eBePp\nUwDYO0rVT250Ey7MWwjTmm8RNu7vEA8fgumnTYjqkQznkIfgTkiEp0UcpGYtoNSurXW5RFcnSTBt\n/QnmFcthXrkc4uGy20J7Gt0MZ9974Op9jzpByWTSoNCqd/SogBdftOK770r+pN5/vxuTJztRp46u\n+3yIdCNoAqmnaTPI0dFwdbkTrrt7aV0OBSl3957IXbcZtg/mIPTNGRCKimD9fCGsny/0nSPHxEBq\n1gKe5nHwtGihvt4iDnK9+vxHijQlFOTDtPY7WFYsh3n1Shgu2WBdEQRIHW6Ds48aQj0t4mr076wk\nAR98YMLMmRYUFanfZ6NGMmbMcKB7d+75SeSP4Bmyp0rDoZPKYTiehdCpk2Fat9bXe38lcngEPM2b\nQ2oeB0+zFr6wKje6qdRC4Wwf/QrEtjEcz4J5ZQYsK5fD9ON635JmXorNBted3eDqfQ+cPXpDiY3V\nqNKK8bdtdu0y4G9/syIzU520ZDQqePJJF8aOdSEkpKqrDT6BeO0ECw7ZEwU4ueENyJ/9AQBAOJ8H\n44H9EH87AOP+fTD+th/igf0wHv3Dd74h/wIM27fBtH1bqc+j2GyQmjSDp7nak6rExQF3dQHCY6r1\n+6EaQpYh/rK7eCg+A6bMn8ueUqcunL37wtX7HriS70QwJbCCAmDaNAs+/tjkW8qpQwcPXn/dgTZt\nGJSIrhcDKZEOKLUiISV2gpTYqfQ7CgshHvqtOKQegFgcVo1HDkPwqEOCgt0O0y+7Yfpld6kPjWh0\nE9xJneG6owvcSZ0h33RzjR4+pesjXDgPcfs2mLZtgWnbFojbt8Fw4XyZ86SWreDsfQ9cvftCap9Q\nJdt36t3KlUa89JIVx4+r33toqILx450YPdoNo1Hj4ogCHAMpkZ6FhkK6NR7SrfGljzudMB4+pPak\nentU9++H8dBvviFV49E/YDz6h+/+VE+DhnDffgfcd3SB+44u8DRpyoB6KY8HxoO/Qdy5HaYd22A8\nfBhKrVqQa9eGXLuO+lKnLuTadaDUUY8pEbUC5+coyzAeOgixOHyatv4E4/59EMq5c0sxGuG+owtc\nvfvC2asv5Jtv0aBgfTh1SsC4cRYsXVoyKatPHzemTnWiYUNd3/VGFDB4Dyn5jffy6JgkwXz0CGpl\n7oDz2+8g/rgBxuNZ5Z7qqRsLd1Jn34unRVxw9XopCgwnjkPcsR2mndsh7toBcddOGAry/fs0JpMv\nqCoXB9faddQgW7culOK3DbF1EVUvutquHaEgX/3+tv6khtDtW2HIyyv/+zCbIbVtB/dtHeHu2Anu\n5DuhREZVeY16Ud7zmiwD8+aZMGWKBfn56j8d9erJmDrViX79JC3LDTr8u6NflXUPKQMp+Y1PDPp2\nafsYjv4B08YNMG36EeaNG2D84/dyP06Ojob79s5w39EZrqQu8LRuU6MCqpCXC3HXTjV87twOccd2\n30YZ5fHE1oMnriWEwkIYcrIh5OT4HVbLFREBT2QU5MgoKJFRkKOLH6OioERGFz8Wvz+q5BFm85U/\nr6LAePggxK1bYNq2FaZtW2Dct7fMeqC+769efUiJndQAelui2gtvsVT8+wtQl143v/5qwNixVmzd\nqo7FC4KC0aPdGDfOiQhutFbt+HdHvxhISTN8YtC3q7WP4cRxmDb9CNPGH2HatAHiwd/K/TxyrUi4\nb09SQ2piJyg2GwQUP10ofj6Wd8xohGILgRISAsUWAoTY1MfKuBnP4YD4y+7i8LlDDaCHDl72dDks\nHFL7DpDaJ8DdPgFShwTI9RuUPdFuhyEn2/ci5OTAkJ0NQ/aZi47nQPC+31N5S//IoWGlAqovtIaH\nw3jwAEzbtsBw7ly5H6uYTJDa3gr3bR0h3dYR7ts6Qm54Q+DcalANvNfNiROFmDlTxOzZZkiS+vNp\n2dKDN95w4Lbb+HynFf7d0S8GUtIMnxj0zd/2EU6fhnnzj2ov6uaNEH/dWw1VXp5iNl8UVG2ATX1U\nbCFQQkteh/eYzQYlJBQwm9SJXzt3QNyTCUEqf0hVMZkgtW5zUfi8DZ6mzSq/N1iWIeTlwpCTUxxe\ns2E6m42Qonw4Tp4Gzp5T35+XCyG3+DEv77I9mv7w1I29qPezI6Rb2wE2WyV8UzWXKBqwc2coHntM\nxuHD6u+C1apg7FgXnnzSVVPX9A8Y/LujXwykpBk+MehbRdtHOHsWps0bYdq0AaaNP6rhTt9PE1ck\nNW2mhs8OCZDaJ0Bq3Vazoemrto0sQ8i/UBJQz527JLDmwpB7yWNeHjwNG5bu/byxEXs/r5EkAd9+\nKyItzYTVq0vm+d55p4QZMxy45ZbA/d2vSfh3R7+4DikRVQklJgaufgPg6jcAgHrvpXHfPghK8R+B\n4qCjQCj1dskjLnP8ooAkCIBbguCwQ7DbIdiLIBQVAfYiCEXFb9vtEIoKIdjtgP3iY+q5gr2o+Hjx\n+9xueGLrqaGzQ3HvZ3x7KLUiq+gnVQUMBii1IqHUioSM4J3VXh1OnBCwYIEJ//mPCSdPlvSOx8Qo\nePVVBwYPlpjpiaoRAykRXZESGQXp9iSty7g6SQJEPqXR5Xk8wJo1Rsyfb8a33xp9C9sD6uz5lBQD\nRo0qQkQEe+CIqhufvYmoZmAYpcs4dUrAwoUmLFhgQlZW6XuFu3WTMGKEG/fcI6Nu3VDk5qr/2xBR\n9eIzOBER1TiyDKxbZ8S8eSasXCnC4ynpDa1dW8Yjj7gxbJgbN9+s3iMqijVniTOiQMRASkRENcaZ\nMwI++8yEtDQT/vijdMhMTpYwcqQbffpIV13WlYiqFwMpEREFNEUBNmwwYv58E5YvF+F2l/SGRkfL\neOghCSNGuNC4MWfME+kVAykREQWks2cFfP65iPnzzb61Q72SktTe0H79pGDegIooYDCQEhFRwHA4\ngO+/N+Lrr01YulSEy1XSG1qrloKHHnJj+HA3mjfnTHmiQMJASkREulZYCKxZI+Kbb0R8+62IwsLS\nC4QmJnowYoQL994rcUMqogDFQEpERLqTnw+sWiVi6VIRa9aIsNtLh9DatWXce6+6ZFOrVuwNJQp0\nDKRERKQLubnAypUili414fvvjaWG4wEgNlZGv34S+veXcPvtHi49S1SD8HImIiLNZGcLyMhQe0I3\nbDBCkkqH0IYNZfTvr4bQxEQPDFwulKhGYiAlIqJqdeqUgGXL1BC6aVPpLTwB4OabZfTv78aAARLi\n42XuKU8UBBhIiYioyh07pobQb74xYds2AxSldMps3tzj6wlt3ZohlCjYMJASEVGly88HNm0yYsMG\ndSj+l1+MZc5p3bokhLZowYlJRMGMgZSIiCqsqAjYssWIDRuM+PFHEbt2GUrtH+8VH+8NoW7unERE\nPgykRETkN6cT2L5dDaAbNhixfbux1JadXmFhCpKSPOjaVULfvhIaNWIIJaKyGEiJiOiqJAnYtcvg\nG4LfssUIh6NsALXZFHTs6EGXLh506SKhXTuZyzMR0VXxaYKIiMrweIA9ewzFPaAiNm82oqCgbAA1\nmxUkJKgBNDnZg/btPdw7noj8xkBKdBFFUSdjnDplwKlTQvGLAadPq6/n5QmoU0dBgwYyGjZU0KCB\ngoYNZTRooCAmRuHMYCqXwwFs3areW3nmDOByWaAo6tC1IMD3e+N9XRDKf59XeceLP12Zx4td7hzv\njHfv23l5wObNIvLyyv5CG40K4uNlJCdL6NzZg8RED0JCrv1nQURUHgZSChqFhSgOluWHTe/rRUXX\nlyqtVgX165cE1PIeIyLA0BoEPB7gl18MWLdOxA8/lDe8HThPvYKgoG1bGZ07e5CcLKFTJw/Cw7Wu\niohqmsB5ViTyw65dBqSlmfD77wZf2MzPv74kaDIpqFdPQWysgshIBWfOCDhxQkBOTuktYxwOAUeO\nCDhy5PJbyYSGlg2qTZvKSE72oHZtTvYIVIoC/P67gB9+UAPohg0icnPL/r5ZrQpathSgKB4oCnwv\n3s9R3utXep/6ulCqR7W8x8sdu9zHmM1Ahw7qMHxSkoSoKH9/IkRE/mEgpRpDloHvvjNizhwzNm68\n+q+20aigbl1v2JRRr55S/CL7Ami9egqio8sfinc4gBMnBJw4YcDx4+U/nj9f+gMLCwUcOGDEgQOl\nP5cgKLj1Vhndu0vo1s2DhAQPTKaK/DSoqmVnC9iwwYj164344QcRR4+W/UfEYFCHt7t2lZCc7EFS\nkoL69UORm+uAJHHdTSIiLwZSCnhOJ7BokYj33jNj//6SxbdDQtTlZurXl33hsn79krBZu7YCY9m1\nuq+Z1Qo0bqygcWPPZc8pKEA5QVXA8eMG32NRkQBFEfDzz0b8/LMRb70FhIcr6NJFDafdukm46Sb2\nnmqtsBD46Sejbxh+z57yf3maNFEDaNeuHnTuLCEysuR9osiN2ImIysNASgHr/Hlg3jwzPvrI6fpC\npgAAIABJREFUhNOnS/7Q160r47HH3Bg50lUqDGghLAxo3lxG8+YAUDa4Kgqwb58Ba9YYsXatOpPZ\n5RKQny8gI8OEjAy1m7RJExndukno3l1CUpIHoaHV+30EE0VRw2d+voBjxwRs2KAG0K1by19ns04d\nGV27enDnnWovaMOG/OeBiMhfgqKUNxdTP3JzCzm0pTOiaEBUVKhmbZOVJeCDD8xYsMCEwsKSgNC8\nuQdPPeXCAw9IAbvsTFGRut3i2rUi1qwx4uDBsr1wZrOCTp08xQHVg5YtS+/7rXX7aM3pBC5cEHDh\ngvp4/rwa8NXX1WP5+erxCxdw0eve81DuDkNeISEKOnf2+HpB4+Kufd/1YG8bPWPb6BvbR7+8bVNR\nDKTkN62eGDIzDZgzx4zFi8VSgeGOOyQ89ZQLPXp4YKhhI6LHjglYu1bE2rXqfYrlTcyqV0/GXXep\nAfXOOyXUrXt97SPLgMvlfRHgdqvhzu0WIMtArVoKoqIUzcK+ywWcOqXe+nDypIDjxwWcPGnw3cd7\n4oS6LJfTWbnLGIiius5m167qS4cO139/L/+o6hfbRt/YPvrFQEqaqc4nBkUB1q5VJyqtX19yh4nB\noKB/fzWIdugQHL8fbre6VeP336s9qLt2GXzrR3oJgoL27WU0amREQYFUHCjVgOlyoThklg6b3tev\n1Ct4sZAQdaJXdLQaUL2P3tcvPR4drSAs7MrLXV0cNtWAWfL6yZPqvbfZ2UKZ79dfBoOCiAggIkK5\n5OXSYyUBPD7eg7CwCn1ZH/5R1S+2jb6xffSLgZQ0Ux1PDG438NVXIv79bzP27i0ZtrbZFDzyiBuP\nP+7CLbfo+le3yp09K+CHH4xYs0btQT1zRr/dwyZT2fCqKLgobPpfu9GorvvqXfu1Xj11olp4uIJa\ntdRgGR4O3+sREQpCQ7VdB5Z/VPWLbaNvbB/9qqxAyklNpCv5+UBamgkffmjGiRMlIaV2bRl//rMb\no0e7EB2tYYE6EhOj4L77JNx3nwRFAfbuNWDtWiM2bhQhSSIEQYLZrIZBsxllXjebFZhMgMVS9rh6\nbsnrggCcPy/g3DkBubnqo/d179u5uUKZZa683G4BZ84IOHPm2r43UfSGTXWtVvVFLvVYp07FVkkg\nIiL9YCAlXTh1Sp2oNH++qdR9ko0by3jySReGDnXDZtOwQJ0TBKB1axmtW8v46189iIoSkZvrrPae\nBElCmZCamwucPWtAbi5KHVcUlAqbF+9yVdEluYiIKLAwkJLmVq0y4sknbaWCaGKiB08/7UKfPlKN\nm6hUk4kiUKeO2ntJRER0rRhISTOKArz9thnTppl92x/27atOVOrYkfcIERERBQsGUtJEQQHw7LNW\nfPONun5O7doyPv7YgTvuuPyuR0RERFQzMZBStfvjDwEjRtjw66/qTYJt23owb54dN9zAYV4iIqJg\nxLvzqFr98IMRvXqF+sLo/fe78c03RQyjREREQYyBlKqFogAffGDCgw/akJsrwGBQMHGiA++950BI\niNbVERERkZY4ZE9VzuEAXnjBis8/V+8XrVVLwQcf2NG9O+8XJSIiIgZSqmInTggYPdqGnTvVIfoW\nLdT7RRs35hA9ERERqThkT1VmyxYDevYM8YXRPn3cyMgoYhglIiKiUhhIqUqkpZlw330hvj3Kx451\nYu5cB8LCNC6MiIiIdIdD9lSpXC5gwgQL5s41AwBCQxXMnu1Av36SxpURERGRXvndQ+pyuTBu3Dgk\nJiYiOTkZqamplz33+++/x6BBg9C+fXsMHDgQa9asqVCxpG/Z2QIGD7b5wujNN8vIyChiGCUiIqIr\n8juQTp8+HXv37kVaWhomTpyI2bNnY9WqVWXO27dvH5555hkMGTIES5YswdChQzFmzBjs37+/Ugon\nffn5ZwN69QrB5s1qp/tdd0lYubIQcXHcApSIiIiuzK9AarfbkZ6ejgkTJiAuLg49evRASkoKFixY\nUObcZcuWISkpCY8++ihuvPFGPProo+jUqRMyMjIqrXjSh0WLRAwYEILjx9Vfp6eecmHhQjuiojQu\njIiIiAKCX/eQ7tu3Dx6PB/Hx8b5jCQkJ+OCDD8qce99998Htdpc5XlBQcB1lkh55PMArr1jw73+r\nQ/RWq4I333Rg8GAO0RMREdG18yuQZmdnIzIyEqJY8mExMTFwOp3Izc1F1EVdYo0bNy71sb/99hs2\nb96MRx55pIIlkx7k5gJDh1qwdq36u9CwoYy5c+1o145D9EREROQfvwKp3W6H2Wwudcz7tsvluuzH\nnTt3Ds888wwSEhJw9913+1Wg0ciVqfTmwAEjHn0UOHRI/fVJSvJg7lwH6tQBuJKY9rzXDK8d/WHb\n6BfbRt/YPvpVWW3iVyC1WCxlgqf3bZvNVu7H5OTkYPTo0RAEAe+8847fBUZElP95SRsrVgBDhwL5\n+erbTz4JvP22EWZzqLaFURm8dvSLbaNfbBt9Y/vUXH4F0tjYWOTl5UGWZRgMaiLOycmB1WpFRERE\nmfNPnz6NESNGwGg0Ii0trdSQ/rW6cMEOj4fDwFpTFODDD0WMH2+GLAsQReD1110YMcKNwkKgsFDr\nCsnLaDQgIsLGa0eH2Db6xbbRN7aPfnnbpqL8CqQtW7aEKIrYtWsXOnToAADYtm0b2rRpU+Zcu92O\nlJQUmEwmzJ8/H9HR0ddVoMcjQ5L4y6cltxsYN86CefPU2zOiohR8+aWAdu3cbBsd47WjX2wb/WLb\n6Bvbp+bya+DfarVi4MCBmDhxIjIzM7F69WqkpqZi5MiRANTeUqfTCQB4//33kZWVhalTp0KWZeTk\n5CAnJ4ez7APM+fPAww/bfGG0SRMZq1bZcddd2tZFRERENYffW4e+/PLLmDRpEkaOHInw8HA8++yz\n6NGjBwCgS5cumDZtGgYNGoRVq1bB4XBg6NChpT5+0KBBmDp1auVUT1Xq8GEBw4fb8NtvRgBAcrKE\nTz6xo3Zt3lRORERElUdQFEXRuogryc0tZPe8BjZuNGL0aBtycwUAwIgRLkyd6oTJBIiiAVFRoWwb\nnWL76BfbRr/YNvrG9tEvb9tUFLu6qIyFC0UMGaKGUYNBwZQpDsycqYZRIiIiosrm95A91VweDzBl\nigVz5qj3i4aFKfjoIzvuvtujcWVERERUkzGQEgCgoAB46ikrVqxQu0FvvFHGggV2tGzJoREiIiKq\nWgykhOPHBQwbZsOePerkpcRED+bOtaNOHV3fXkxEREQ1BO8hDXI7dhjQu3eIL4wOHuzGokVFDKNE\nRERUbRhIg9jixSIGDQrBmTPqr8HLLzsxZ44DVqvGhREREVFQ4ZB9EFIU4M03zZg+3QIAsNkUzJ7t\nwIABksaVERERUTBiIA0yDgfw179a8eWX6uSl2FgZaWl2xMdz8hIRERFpg4E0iJw5I2DkSBu2b1fv\nF23b1oO0NDsaNOD9okRERKQd3kMaJPbuNaBPnxBfGO3b140lS4oYRomIiEhzDKRB4NtvjejXLwRZ\nWWpzjxnjRGqqA6EV3+mLiIiIqMI4ZF+DKQowZ44JU6ZYIMsCTCYFb7zhwEMPcfISERER6QcDaQ1V\nVAQ8/3zJ5KXoaBlz5zpw++3cBpSIiIj0hYG0Bjp2TMCoUTZkZqr3i7Zq5cG8eXbcdBPvFyUiIiL9\n4T2kNczGjUb06hXiC6P33uvGsmVFDKNERESkWwykNYSiAJ98YsLgwTacPWuAICgYP96Jjz7i5CUi\nIiLSNw7Z1wBOJ/DiixYsXGgGAISHK3j/fTt69uT9okRERKR/DKQB7tQpAaNHlyx237SpB/Pn29G0\nKYfoiYiIKDBwyD6Abd9uQM+eJYvd9+olYcWKIoZRIiIiCigMpAHqv/8VMXBgCE6fVpvwueecmD/f\njogIjQsjIiIi8hOH7AOM2w1MnGjBxx+r94uGhCh4910HBgzgYvdEREQUmBhIA0hOjoDHHrPixx/V\nZmvUSMb8+Xa0aiVrXBkRERHR9WMgDRCZmQaMGmXDsWPqEH1ysoSPPrIjOlrjwoiIiIgqiPeQBoCv\nvhLRv3+IL4w+8YQLn3/OMEpEREQ1A3tIdczjAf71LzNmz7YAACwWBa+/7sCDD/J+USIiIqo5GEh1\nKi8P+L//s2HNGrWJGjSQMXeuHfHxvF+UiIiIahYGUh3av9+AESNsOHJEHaLv2FHCp586ULcu1xcl\nIiKimof3kOrMypVG9O0b4gujI0a48OWXdoZRIiIiqrHYQ6ojJ08KSEmxwekUIIoKpk51YuRIt9Zl\nEREREVUpBlIdWbRIhNMpAAC++MKOLl08GldEREREVPU4ZK8j6ekmAEBioodhlIiIiIIGA6lO7Nlj\nwN69RgDA4MEcpiciIqLgwUCqE4sWqXdPiKKCgQMZSImIiCh4MJDqgCwDixapw/U9ekjcgYmIiIiC\nCgOpDmzcaMTJk2pTDBnCXZiIiIgouDCQ6kB6ujpcHx6uoGdPBlIiIiIKLgykGrPbgW++UYfr773X\nDatV44KIiIiIqhkDqcZWrRKRn6+uPTp4MHtHiYiIKPgwkGrMu/ZogwYykpK49igREREFHwZSDZ09\nK+C779S1Rx94wA0DW4OIiIiCECOQhhYvFiFJHK4nIiKi4MZAqiHvcH3r1h60bClrXA0RERGRNhhI\nNXLkiIBt29Th+iFDuDMTERERBS8GUo14d2YSBAX338/heiIiIgpeDKQaUJSS4frkZA/q1VM0roiI\niIhIOwykGtixw4DDh9Uf/eDBHK4nIiKi4MZAqgFv76jNpqBfPw7XExERUXBjIK1mbjfw9dfq3vV9\n+kgID9e4ICIiIiKNMZBWs++/N+LsWQ7XExEREXkxkFYz73B9TIyMu+7iVqFEREREDKTVKD8fyMhQ\nh+sHDZJgMmlcEBEREZEOMJBWo2XLRDgc6lahXAyfiIiISMVAWo28w/WNG8to355bhRIREREBDKTV\n5tQpAevXq1uFDh7shiBoXBARERGRTjCQVpNFi0QoippCH3iAw/VEREREXgyk1cQ7XH/bbR7ccgu3\nCiUiIiLyYiCtBnv3GrBnT8lwPRERERGVYCCtBosWqUs9iaKCgQO5VSgRERHRxRhIq5gsA4sWqcP1\nd9/tQUwMh+uJiIiILuZ3IHW5XBg3bhwSExORnJyM1NTUq37Mtm3b0KNHj+sqMNBt2mTEiRPqj5lr\njxIRERGVJfr7AdOnT8fevXuRlpaGrKwsvPjii2jYsCF69epV7vn79+/HX//6V1gslgoXG4jS09Uf\ncXi4gp49OVxPREREdCm/ekjtdjvS09MxYcIExMXFoUePHkhJScGCBQvKPf+zzz7Dww8/jNq1a1dK\nsYHG4QCWLFGH6wcMcMNm07ggIiIiIh3yK5Du27cPHo8H8fHxvmMJCQnYvXt3uedv2LABM2bMwMiR\nIytWZYBatUpEfr669ujgwewdJSIiIiqPX4E0OzsbkZGREMWSkf6YmBg4nU7k5uaWOX/27NlBe+8o\nUDJc36CBjDvu8GhcDREREZE++XUPqd1uh9lsLnXM+7bL5aq8qi5iNAbmQgBnzwKrV6s/3sGDJZjN\ngfl9lMfbJoHaNjUd20e/2Db6xbbRN7aPflVWm/gVSC0WS5ng6X3bVkU3SEZEBOaNl599BkjFo/Qp\nKWZERZmv/AEBKFDbJliwffSLbaNfbBt9Y/vUXH4F0tjYWOTl5UGWZRgMaiLOycmB1WpFRERElRR4\n4YIdHo9cJZ+7Ks2dawVgROvWHtxwgwPl3NEQsIxGAyIibAHbNjUd20e/2Db6xbbRN7aPfnnbpqL8\nCqQtW7aEKIrYtWsXOnToAEBdY7RNmzYVLuRyPB4ZkhRYv3y//y5gy5aSrUIDrf5rFYhtE0zYPvrF\nttEvto2+sX1qLr8G/q1WKwYOHIiJEyciMzMTq1evRmpqqm8WfU5ODpxOZ5UUGki8OzMJgoL77+fs\neiIiIqIr8ftO1Jdffhlt2rTByJEjMXnyZDz77LO+mfRdunRBRkZGpRcZSBQFSE9XA2mXLh7Ur8+t\nQomIiIiuRFAURdeJKTe3MKC653fsMKBPn1AAwKxZdjz0UM3rIRVFA6KiQgOubYIF20e/2Db6xbbR\nN7aPfnnbpqK4fkIl8/aOWq0K+vWreWGUiIiIqLIxkFYitxv4+mt1nlifPhLCwzUuiIiIiCgAMJBW\nonXrjMjJUX+kgwe7Na6GiIiIKDAwkFYi73B9dLSMbt24VSgRERHRtWAgrSQFBUBGhjpcP2iQBJNJ\n44KIiIiIAgQDaSVZtkyE3S4AAIYM4XA9ERER0bViIK0k3uH6W26R0aEDl6QgIiIiulYMpJXg1CkB\n69eXbBUqCBoXRERERBRAGEgrwZdfipBlNYU+8ACH64mIiIj8wUBaCbzD9QkJHjRurOuNr4iIiIh0\nh4G0gn791YBffikZriciIiIi/zCQVtCiRepST6KoYOBAbhVKRERE5C8G0gqQZWDRInW4vnt3D2rX\n5nA9ERERkb8YSCtg82Yjjh9Xf4Rce5SIiIjo+jCQVsD//qcO14eFKejVi8P1RERERNeDgfQ65ecD\nX32lDtcPGCDBZtO4ICIiIqIAxUB6nb74woSiInXt0REjXBpXQ0RERBS4GEivg6IAc+eqvaO33urh\nVqFEREREFcBAeh02bzZi/3517dFRo7hVKBEREVFFMJBeh9RUtXc0IkLBffdxdj0RERFRRTCQ+un0\naQHLlqmz6x980I3QUI0LIiIiIgpwDKR+WrjQBLdbHaMfNYq9o0REREQVxUDqB48HmD9fHa5PTpbQ\nrBknMxERERFVFAOpH779tmRnJvaOEhEREVUOBlI/zJ1rBgDExsro04c7MxERERFVBgbSa3TkiIA1\na9TJTMOGuWEyaVwQERERUQ3BQHqN5s1Te0eNRgXDh3O4noiIiKiyMJBeA7sd+O9/1S7R3r0lNGig\naFwRERERUc3BQHoNliwRkZurLvU0ejR7R4mIiIgqEwPpNfBOZmrSREZyskfjaoiIiIhqFgbSq8jM\nNGD7dnXf+pEjXTDwJ0ZERERUqRivrmLuXPXeUZtNwUMPcbieiIiIqLIxkF7BhQvAokVqIB00SEJk\npMYFEREREdVADKRX8MUXJhQVeSczuTSuhoiIiKhmYiC9DEUpGa6Pj/cgPp771hMRERFVBQbSy9i4\n0YgDB9TJTOwdJSIiIqo6DKSXkZqq9o5GRioYOJD71hMRERFVFQbScpw+LWD5cnXf+gcfdCMkROOC\niIiIiGowBtJyLFhggiSpk5lGjeJwPREREVFVYiC9hCQB8+erw/Vdu0po0oT71hMRERFVJQbSS6xa\nJeLkSfXHwn3riYiIiKoeA+klvJOZ6teX0bs3JzMRERERVTUG0oscPixg3Tp1MtPw4W6IosYFERER\nEQUBBtKLzJ1rBgCIooJhwzhcT0RERFQdGEiL2e3AZ5+pw/V9+0qoV4+TmYiIiIiqAwNpscWLReTl\nefetZ+8oERERUXVhIC2WmqoO1zdr5kHnzh6NqyEiIiIKHgykAHbtMmDnTnXf+lGj3BAEjQsiIiIi\nCiIMpADmzlXvHQ0JUTB0KIfriYiIiKpT0AfSvDzgq6/UQHr//W7UqqVxQURERERBJugD6eefm2C3\ne/etZ+8oERERUXUL6kCqKCVrjyYkeHDrrbLGFREREREFn6AOpOvXG3HokPojGDXKpXE1RERERMEp\nqAOpdzJTVJSCgQO5bz0RERGRFoI2kJ48KSAjQ92s/uGH3bBaNS6IiIiIKEgFbSBNSzPB41EnM40Y\nweF6IiIiIq0EZSB1u4EFC9Th+m7dJDRuzH3riYiIiLQSlIF0xQoRp06p3/ro0ewdJSIiItJSUAZS\n72Smhg1l9OzJfeuJiIiItOR3IHW5XBg3bhwSExORnJyM1NTUy567d+9eDB06FPHx8RgyZAj27NlT\noWIrw8GDAtavVyczjRjhhtGocUFEREREQc7vQDp9+nTs3bsXaWlpmDhxImbPno1Vq1aVOc9ut+Px\nxx9HYmIivvzyS8THx+OJJ56Aw+GolMKv17x56kL4oqjgkUe4MxMRERGR1vwKpHa7Henp6ZgwYQLi\n4uLQo0cPpKSkYMGCBWXOXbZsGWw2G1544QU0btwY48ePR2hoKFasWFFpxfurqAj47DN1uL5/fwmx\nsZzMRERERKQ1vwLpvn374PF4EB8f7zuWkJCA3bt3lzl39+7dSEhIKHWsQ4cO2Llz53WWWnFffy3i\n/HnuW09ERESkJ34F0uzsbERGRkIURd+xmJgYOJ1O5Obmljr3zJkzqFu3bqljMTExOH36dAXKvX6K\nAnz6qTpc36KFB0lJnMxEREREpAfi1U8pYbfbYTabSx3zvu1ylV4+yeFwlHvupeddjdFYOQsB7Nhh\nwO7d6gymP/1JgskUlAsMVApvm1RW21DlYvvoF9tGv9g2+sb20a/KahO/AqnFYikTKL1v22y2azrX\n6ucenRERtqufdA3uvlvtJS2urviFKqKy2oaqBttHv9g2+sW20Te2T83lV6yNjY1FXl4eZFn2HcvJ\nyYHVakVERESZc7Ozs0sdy8nJQZ06dSpQLhERERHVNH4F0pYtW0IURezatct3bNu2bWjTpk2Zc9u1\na1dmAtOOHTtKTYgiIiIiIvIrkFqtVgwcOBATJ05EZmYmVq9ejdTUVIwcORKA2gPqdDoBAL1790Z+\nfj5ee+01HDp0CFOmTIHdbkffvn0r/7sgIiIiooAlKIri12KcDocDkyZNwsqVKxEeHo6UlBQMHz4c\nABAXF4dp06Zh0KBBAIDMzExMnDgRhw8fRosWLTBp0iTExcVV/ndBRERERAHL70BKRERERFSZuH4C\nEREREWmKgZSIiIiINMVASkRERESaYiAlIiIiIk0xkBIRERGRpnQZSF0uF8aNG4fExEQkJycjNTVV\n65Ko2OrVqxEXF4eWLVv6Hp999lmtywp6LpcLAwYMwNatW33HsrKyMHr0aLRv3x79+/fHjz/+qGGF\nwau8tpkyZUqZ6+g///mPhlUGl9OnT2PMmDHo1KkT7rzzTkybNs231TWvG21dqW143Wjv6NGj+POf\n/4z27duje/fu+OSTT3zvq+i149de9tVl+vTp2Lt3L9LS0pCVlYUXX3wRDRs2RK9evbQuLegdPHgQ\n3bt3x5QpU+BdMcxisWhcVXBzuVx4/vnncfDgwVLHn376acTFxWHRokVYvXo1/vKXvyAjIwP16tXT\nqNLgc7m2OXz4MMaOHYv77rvPdywsLKy6ywtaY8aMQWRkJBYuXIi8vDyMGzcORqMRL7zwAp566im0\nbNmS141GrtQ2vG60pSgKHn/8cbRr1w6LFy/G77//jueffx716tVDv379Knzt6K6H1G63Iz09HRMm\nTEBcXBx69OiBlJQULFiwQOvSCMChQ4fQrFkzREdHIyYmBjExMXxC0NChQ4cwdOhQZGVllTq+adMm\nHDt2DK+++ioaN26Mxx9/HPHx8UhPT9eo0uBzubbxvq9Vq1a+aygmJob/2FWTw4cPY/fu3Zg6dSqa\nNGmChIQEjBkzBkuXLsXmzZuRlZXF60YjV2obgNeN1nJyctCqVStMnDgRjRo1QteuXZGUlITt27dX\nyrWju0C6b98+eDyeUnveJyQkYPfu3RpWRV6HDh3CLbfconUZVGzLli1ISkrC559/jov3uNi9ezda\nt25d6sk6ISEBu3bt0qLMoHS5tikoKMDp06dx8803a1dcEKtTpw4+/vhjREdHlzqen5+Pn3/+mdeN\nhsprG0VRkJ+fz+tGB+rUqYM333wTISEhAIDt27dj27Zt6NixY6VcO7obss/OzkZkZCREsaS0mJgY\nOJ1O5ObmIioqSsPq6MiRI1i/fj3ee+89yLKMPn36YMyYMTCZTFqXFpQefvjhco9nZ2ejbt26pY7F\nxMTg9OnT1VEW4fJtc/jwYQiCgPfeew8//PADIiMjMXr0aN+Wy1S1wsPD0blzZ9/biqJgwYIFSEpK\n4nWjscu1zR133MHrRme6d++OkydP4q677kKvXr3w2muvVfja0V0gtdvtMJvNpY553/be2EzaOHHi\nBBwOBywWC9555x1kZWVhypQpcDqdGDdunNbl0UUudx3xGtLe4cOHYTAY0KRJEwwfPhxbtmzBP/7x\nD4SFhaFHjx5alxd0ZsyYgV9//RXp6elITU3ldaMjM2bMwL59+5Ceno5ffvmF142OvPvuu8jJycEr\nr7yC1157rVL+5ugukFosljLfgPdtm82mRUlUrEGDBvjpp58QEREBAIiLi4Msy/j73/+Ol19+GYIg\naFwheVksFpw/f77UMZfLBavVqlFF5DVo0CB0797ddx01b94cv//+O/773//yD2s1mzlzJtLS0vD2\n22+jadOmvG505NK2adq0Ka8bHWndujUA4KWXXsLYsWMxePBgXLhwodQ5/l47uruHNDY2Fnl5eZBl\n2XcsJycHVqvV94tI2rm0DZo0aQKn04m8vDyNKqLyxMbGIjs7u9SxnJwc1KlTR6OK6GKXXkeNGzfG\nmTNnNKomOE2ePBnz5s3DzJkzfYGG140+lNc2AK8brZ09exarV68udaxp06Zwu92oU6dOha8d3QXS\nli1bQhTFUjfCbtu2DW3atNGwKgKADRs2oFOnTnA6nb5je/fuRWRkJO/t1Zl27dph7969pUYbtm/f\nXmqyIGlj1qxZGD16dKljv/76KycLVqPZs2fj888/x1tvvYW+ffv6jvO60d7l2obXjfaysrLwzDPP\nlPonIDMzEzExMUhISMCePXsqdO3oLpBarVYMHDgQEydORGZmJlavXo3U1FSMHDlS69KCXvv27WGz\n2TB+/HgcOXIE69atw8yZM/HYY49pXRpdomPHjqhfvz5eeuklHDx4EB9++CEyMzMxePBgrUsLet26\ndcPWrVuRmpqKY8eOYeHChViyZAlSUlK0Li0oHDp0CO+99x4ef/xxtG/fHjk5Ob4XXjd8z5+8AAAC\nlklEQVTaulLb8LrRXtu2bdGmTRuMGzcOhw4dwrp16/D666/jySefRGJiYoWvHUG5eD0SnXA4HJg0\naRJWrlyJ8PBwpKSkYPjw4VqXRVCfMF577TXs2rULoaGheOihh/DUU09pXRZBHV2YP38+EhMTAQDH\njh3DuHHjsHv3bjRq1Ajjx4/H7bffrnGVwenStlmzZg3eeecd/PHHH2jYsCGee+453gdXTT788EO8\n9dZbpY4pigJBEPDrr7/i6NGjGD9+PK8bDVytbXjdaC87OxuTJ0/Gpk2bYLPZMGzYMDz++OMAKv43\nR5eBlIiIiIiCh+6G7ImIiIgouDCQEhEREZGmGEiJiIiISFMMpERERESkKQZSIiIiItIUAykRERER\naYqBlIiIiIg0xUBKRERERJpiICUiIiIiTTGQEhFVsbi4OHz99ddal0FEpFsMpERERESkKQZSIiIi\nItIUAykRUTXKzs5Gnz598Oc//xkul0vrcoiIdIGBlIiompw7dw6jR49Go0aN8N5778FsNmtdEhGR\nLjCQEhFVg9zcXIwePRoNGzbEnDlzGEaJiC4ial0AEVEweOuttyBJEtq2bQuTyaR1OUREusIeUiKi\natC5c2fMmjUL6enp2Lhxo9blEBHpCgMpEVE16N27N3r06IF77rkHEyZMQFFRkdYlERHpBgMpEVE1\nGj9+PAoLCzFt2jStSyEi0g0GUiKiKiYIgu/1mJgY/P3vf8f//vc/bN68WcOqiIj0Q1AURdG6CCIi\nIiIKXuwhJSIiIiJNMZASERERkaYYSImIiIhIUwykRERERKQpBlIiIiIi0hQDKRERERFpioGUiIiI\niDTFQEpEREREmmIgJSIiIiJNMZASERERkaYYSImIiIhIU/8PiBLCNJK3sWsAAAAASUVORK5CYII=\n", "text/plain": [ "<matplotlib.figure.Figure at 0xd3e44e0>" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "LOOs = []\n", "MSEs = []\n", "K=30\n", "Ks = range(1,K+1)\n", "for k in Ks:\n", " knn = neighbors.KNeighborsRegressor(n_neighbors=k)\n", " LOOs.append(loo_risk(X,y,knn))\n", " MSEs.append(emp_risk(X,y,knn))\n", "\n", "plt.plot(Ks,LOOs,'r',label=\"LOO risk\")\n", "plt.title(\"Risks for kNN Regression\")\n", "plt.plot(Ks,MSEs,'b',label=\"Emp risk\")\n", "plt.legend()\n", "_ = plt.xlabel('k')" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "I decided to see what the performance is for k from 1 to 30. We see that the bias does not dominate until k exceeds 17, the performance is somewhat better for k around 12. This demonstrates that you can't trust the Empirical risk, since it includes the training sample. We can compare this LOO risk to that of linear regression (0.348) and see that it outperforms linear regression." ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "**Exercise 2** Do the same but for the reduced predictor variables below..." ] }, { "cell_type": "code", "execution_count": 66, "metadata": { "collapsed": false }, "outputs": [], "source": [ "X1 = np.array(full_country_stats[['Self-reported health']])" ] }, { "cell_type": "code", "execution_count": 78, "metadata": { "collapsed": false }, "outputs": [ { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAqQAAAH9CAYAAADML24LAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAAPYQAAD2EBqD+naQAAIABJREFUeJzs3XmcjXX/x/HXdc4sZxazGIzSoo0hQmj52cpSUpZKZado\nUdxKyVIRksgeSYgist4p3UqIuz0qIdWtKC2WGWYx65k55/r9cWaOGTOYw5w5h/N+Ph4ezbnO91zX\n58zX477fvt/r+n4N0zRNRERERER8xOLrAkREREQksCmQioiIiIhPKZCKiIiIiE8pkIqIiIiITymQ\nioiIiIhPKZCKiIiIiE8pkIqIiIiITymQioiIiIhPKZCKiIiIiE8pkIoEqJ49e5KQkFDkT61atWjY\nsCF333037733XpH2CQkJzJw5s9Tn97R9aaSnp/PII49Qv359rr/+evbv31+m5x82bBgtW7Y86ft/\n//03CQkJdO7cGafTWez9b775hoSEBLZu3XpG7Usyc+bMYv2UkJBAgwYNaNu2LVOnTsXhcJzBt/Vv\nLVu2ZPjw4b4uQ0TKSZCvCxAR36lduzbPP/+8+7XD4eDAgQO8+eabPP3008TExNC8eXMAli9fTnx8\nvI8qdVmzZg2bN2/m+eef58orr+Siiy4q0/MbhoFhGKdt9+OPPzJ37lwefvjhEs9xtu1LarNs2bIi\nx5KTk1m7di1z5szB6XTy5JNPnvY855JXX32ViIgIX5chIuVEgVQkgEVGRnLNNdcUOdagQQOaN2/O\njTfeyL///W93ID2xnS8kJydjGAZdunTxaR1RUVHMmjWL1q1bc8UVV5R5+5KU9Ptv0aIFf/75J6tX\nrz7vAmlCQoKvSxCRcqQpexEpJiQkhJCQkCKjdydOwb/55pvcdtttXHPNNTRv3pzRo0eTnp5+0nPO\nmDGD2rVr8+677wJw9OhRnnzySZo2bco111xDp06d3O+VpGfPnsycORPTNElISHBP56anpzN+/Hja\ntGnDNddcQ/v27Vm1alWRz7Zs2ZLx48fTp08f6tWrx3PPPVeq38Pu3btp3LgxDz/8MLm5ue7jDz/8\nMJGRkQwbNgzTNE97Hk/beyIyMrLYKOuGDRu4++67ueaaa2jatCnjxo0jKyurSJvNmzdz9913U69e\nPdq2bcsHH3zALbfc4u7jgtsJli1bRsuWLWnUqBFffvklANu2baNnz57uWyeGDRvG0aNH3ec2TZOp\nU6fSqlUr6tatS6tWrZgyZQp5eXnuNmvXrqVjx47Uq1ePG2+8kSFDhnD48GH3+ydO2Ze2n1955RUm\nTpxIkyZNqFevHv369eOPP/44y9+yiHibAqlIADNNE4fD4f5jt9vZu3cvw4cPJzMzk44dO5b4ubVr\n1zJp0iR69OjBG2+8wYABA1izZg3jxo0rsf38+fN57bXXGDduHJ06dQJgyJAh7Nu3jzFjxjBv3jxq\n167N8OHD+eabb0o8x/PPP0/nzp0xDIPly5fz6KOPkpOTQ9euXfnggw946KGHmD17No0aNeKZZ57h\n9ddfL/L5t99+m3r16jF79mw6d+582t/Nb7/9Rr9+/ahfvz4zZ84kODjY/V7FihV57rnn2LlzJ3Pn\nzj3tuTxtX5LC/ZSbm8uhQ4d4/fXX+fzzz92/U4D333+fAQMGcOWVV/Lqq68ycOBA3nvvPR577DF3\nm6+++orHHnuMatWqMXPmTHr06MGoUaM4ePBgsevOmjWLYcOGMXLkSBo0aMDWrVvp06cP4eHhTJ8+\nnREjRvDNN9/Qu3dv7HY7AK+//jrvvPMOAwcOZMGCBXTr1s39dwDg22+/ZejQobRt25Z58+YxYsQI\nvvzyy5OO8nrSz2+99RZ79+7lpZdeYty4cezatYuhQ4ee0e9cRMqPpuxFAtjWrVu5+uqrixwzDIOa\nNWsyY8YMWrRocdLPXXzxxXTv3h2ARo0aER4eTmpqarG2S5cuZdKkSYwdO5Y777yzyDkGDBjgfojo\nuuuuIzY2lpCQkBKvecUVV1C1alXg+PT1kiVL+PXXX1m2bJn7WJMmTcjNzeXVV1+lS5cuREVFAVCt\nWjWeeOKJUv1e/vzzT/r06UOtWrWYNWtWkTBa4LbbbmPdunXMmjWLVq1anXYq3tP2hZmmWayfAC68\n8EIGDRrEgw8+6D42efJkWrRowYQJE9zHLr30Uvr06cOWLVto0aIFr7zyCjVq1GDGjBkANGvWjIoV\nKzJ48OBi1+jevTu33HJLkfNfccUVzJkzx32sfv36tGvXjpUrV9KtWze2bt1KnTp13EG5UaNG2Gw2\nd198++23hIWF0a9fP/fvNiYmhp07d5b4/VetWlXqfo6Ojmb27NnuUeM//viDmTNnkpqaSnR09Ol+\n1SLiIxohFQlgV199NatXr2bVqlXMnj2bGjVqcNlllzFt2jTatGlz0s9df/317N27lzvvvJNZs2ax\na9cu7rjjDndALbBp0ybGjBlDo0aNio1KXn/99cyYMYNBgwaxcuVKEhMTGTJkCPXr1y91/Vu3bqVa\ntWrF7q/s0KED2dnZbN++3X2stPckpqenc//993PkyBGef/75kwZkcI3ahoWFMXz48FJNxXvavoBh\nGO5+Wrx4Ma1bt6ZChQo899xzPPLII1itVgD27t3LwYMHufnmm4uMqDZq1IjIyEi++OIL7HY727dv\nLxIyAdq2bUtQUPExisK/t+zsbHbs2EGLFi2KnL9atWpcfvnlfPHFF4Crbz///HO6d+/O/Pnz+e23\n3+jevTvt27cHXP/4yMzM5I477mDKlCls27aNJk2a8Oijj5b4/T3p57p16xa5haHgHzEn3rIgIv5F\ngVQkgEVERFC7dm2uvvpqbr75ZhYsWEBqair3338/KSkpJ/1cu3btmDJlChEREe4p8FatWrFu3boi\n7X766SdatGjBtm3b2Lx5c5H3pk6dyv3338+uXbt47rnnaNGiBf369eOff/4pdf2pqalUqlSp2PGC\nY8eOHXMfCw8PL9U509LSiI+Pp0KFCrz88sunbFswFb9jxw7mzZsHcMqg6Wn7wgr6qVGjRrzyyivU\nrl2bgQMH8u2337rbFPTZ6NGjufrqq91/6tSpQ0ZGBomJiaSmpuJwOIiLiytyfovFQkxMTJFjhmEU\n+b2lpqbidDqZO3dusfP/+uuvJCYmAvDggw8ycuRIsrOzmTx5Mrfffjvt27fn66+/BlwjqnPnzuXi\niy9m4cKF9OjRg+bNm7N48eISv7sn/Wyz2Yp9L6DEZbdExH8okIqIW1xcHCNHjuTAgQO88MILp2zb\nrl07Fi9ezFdffcX06dOJjY1lyJAh7lAC0KVLF1577TXq1avH6NGjyczMdL8XGRnJk08+ycaNG1m3\nbh1PPvkk3377LWPGjCl1vdHR0SQlJRU7XlBDxYoVS32uAjExMcybN48nnniC9evXs3HjxlO2v/32\n22ndujUzZ87kt99+O+0yTp62L4lhGIwfP57g4GCGDx/uvnezYNp66NChrFq1qsiflStX8sQTTxAX\nF0dQUFCx35tpmqf8Rwgcf4CqT58+JZ7/xRdfdLft1q0bq1at4rPPPuOll17Cbrfzr3/9y/1gU5Mm\nTZg3bx5bt25lzpw51KxZ033P54m80c8i4l8USEWkiFtvvZVmzZrxwQcfsG3bthLbPPHEEwwYMABw\nhZRbb72V/v3743A4ijwpXTAKN3r0aBITE5k8eTIA//zzDzfddBMfffQRANWrV6dv3740adKEv//+\nu9S1Nm7cmL///psffvihyPE1a9YQEhJC3bp1S//F84WHhxMWFsZ9991H/fr1GTNmzClXDwDX97PZ\nbEyZMqVU1/C0fUkuvPBCHn30Ufbv3+9+UOryyy8nLi6OP//8s8gIZuXKlZk0aRI//fQTFouFhg0b\nsmHDhiLn27hxY5Gn4EtSMKK+b9++Iue/8sormT59uvuBtC5durgfcKtYsSKdOnWie/fupKWlkZ6e\nzoQJE9y3cISGhtKiRQuGDBmCaZoljpB7o59FxL8okIpIMSNGjMBqtfLCCy+UOKV8ww03sHHjRiZM\nmMBXX33FRx99xLRp06hevXqJ92rWrFmT3r17s2TJErZv386FF15I1apVGTduHKtWrWLr1q288cYb\nbNmyhbZt25a6zrvuuosrrriCxx57jGXLlvH5558zZswY/v3vf7uXWjpThmEwevRojhw5wsSJE0/Z\nNi4ujmeffbbI1HFZtj+ZPn36cOmllzJv3jwOHDiAxWLh8ccf55133uGFF17giy++YN26dfTr14/d\nu3e7H4waOHAgv/zyC4MGDeLTTz/lnXfeYeTIkRiG4Z7ihpJvJxg8eDCfffYZTz31FFu2bGHTpk30\n7duXr7/+2n3+6667jqVLlzJnzhy++eYb3nvvPRYsWMB1111HTEwMN954I7t372bYsGF88cUXbN68\nmRdeeIGYmBhuuOGGYtf0Zj+LiH9QIBUJYCebLr7sssvo1asXv/zyC0uWLHG3LWh/33338eyzz/LZ\nZ5/Rv39/Ro0aRY0aNXjjjTfcD9icuOvRwIEDufDCC3n22WfJy8tj1qxZNG3alBkzZtC3b1+WLVvG\nwIEDiyxPdLqabTYbixcv5uabb2bGjBk8+uijfP/997z44otFzlPaHZhOPH/NmjXp1asXK1eudI8W\nn+w87du3L3HbUU/bn66mwoKDgxkxYgTZ2dm89NJLANxzzz1MnjyZ7du3079/f8aMGcMll1zC4sWL\nqVatGuB66n3GjBn8/vvvPPbYY7z55puMHDkS0zSL3DNa0nULptoPHTrE448/zrBhwwgODmbhwoXu\nh44ef/xxHnnkEVavXs2DDz7IxIkTadasmfup/ubNmzNp0iT27NnDwIEDeeqpp4iMjGTRokXu2w4K\n95k3+llE/ItherhKs91u5/nnn+fjjz/GZrPxwAMPcP/995fY9uOPP2bq1KkcOHCA2rVr88wzz1C7\ndu0yKVxERM7Mpk2bqFq1apH/Pd6zZw/t27dn9uzZ3HzzzT6sTkQCkcfrkE6YMIHdu3ezaNEi/vrr\nL4YOHUq1atWKLSHy66+/8tRTTzF27FgaNGjAwoULeeihh9i4cSOhoaFl9gVERMQzn332GR988AFD\nhgyhevXqHDp0iNdee40rr7ySJk2a+Lo8EQlAHo2QZmVlccMNNzB//nwaNWoEwOzZs/nyyy956623\nirRduHAha9euZeXKlQBkZGTQsGFDVq1aVeICzyIiUj7sdjvTpk1j/fr1HD58mOjoaFq0aMHgwYP1\nxLqI+IRHI6Q///wzDoejyMLVDRs2LLJjR4GYmBh+/fVXvvvuOxo0aMCqVauoUKECl1xyydlXLSIi\nZywkJISnn36ap59+2teliIgAHgbSxMREYmJiiuzmERcXR05ODsnJycTGxrqPt2vXjk2bNtGtWzes\nVisWi4XXX3+dChUqlF31IiIiInLO8+gp+6ysrGLb6BW8LliYuUBKSgpJSUmMGjWKFStW0KlTJ4YN\nG8bRo0fPsmQREREROZ94FEhDQ0OLBc+C12FhYUWOT5o0iZo1a9K1a1dq167NmDFjCAsLY/Xq1aW+\nnocLAIiIiIjIOcijKfv4+HhSUlJwOp3uxZOTkpKw2WzuteMK/Pjjj/Tq1cv92jAMEhISPNqn2jAM\n0tKycDi0B7E/sVotREWFqW/8lPrHf6lv/Jf6xr+pf/xXQd+cLY8Caa1atQgKCmL79u1ce+21AGzb\nto06deoUa1ulShV+/fXXIsf27dvnXji5tBwOJ3l5+svnj9Q3/k3947/UN/5LfePf1D/nL4+m7G02\nGx07dmTUqFHs3LmTDRs2sGDBAnr37g24RktzcnIA124hK1asYM2aNezfv59JkyZx4MABOnXqVPbf\nQkRERETOWR4vjD98+HBGjx5N7969qVChAoMGDaJ169YANG3alJdeeolOnTrRrl07srKymDNnDocO\nHaJWrVq89dZbWuNORERERIrweOvQ8pacnKHheT8TFGQhNjZCfeOn1D/+S33jv9Q3/k39478K+uZs\neTRlLyIiIiJS1hRIRURERMSnFEhFRERExKcUSEVERETEpwIqkFr/9wvGsTRflyEiIiIihQRMIA3e\nvImKTRsTfecdvi5FRERERAoJmEBq/eN3AIJ3bIfMTN8WIyIiIiJuARNInVXi3T9bDh/yYSUiIiJy\nPmjWrDHbt393yjZbt37Fv/71CG3aNKddu1YMHjzwpJ9ZtWo5vXt3pWXLJtx5ZztefHE0Bw7841FN\nb7zxOv/61yOlajdw4MMendubAiiQVnH/bDl82IeViIiISCD44IP3GDp0MNde24j58xcxe/Z8EhJq\n8cQTj7F+/boibV98cTRvvTWfLl26s2TJKsaNm0hGRjoPPtibvXt/K/U1u3XrxbhxL5eqrWEYHn0f\nb/J469BzlUZIRUREpLwkJSUxdepEnnxyGLff3sF9/KGHHiU6OprJk1+icePriY2tyH//u5mNG9fz\nxhtvc+ml1QGoWrUq48a9zPDhTzF+/Bjmzn2zVNe12WzYbDZvfCWvCpwR0sqFR0gVSEVERMR71q//\nD5GRFYqE0QKdO3fBag1iw4b1AKxd+y5NmzZ3h9HC+vTpx88/7+bXX/cUe+/gwQM0a9aYhQvncdtt\nLZk27eUiU/F5eXlMmPACd9zRmjZtmjNs2GCSkhKLncdut9O/f18GDx5IXl7eWX7zMxMwI6TYbDhj\nYrCkpGA5fNDX1YiIiMgpGGmpWPf8DwCr1QJRYVjTssDhvb3sHVfVwIyKLpNz/fLLT9SokVDie1ar\nldq1r+ann34E4Oeff6Jr154ltq1ZMwGbzcZPP/3IlVdeVWKbXbt28MYbi3E6nXz00X/cU/GrVi3j\nhx++Z+rUVwkNDWXy5Jd45ZUpjB493v1Z0zQZNWoEAOPHTyIoyDfRMHACKa5pe1cg1T2kIiIi/spI\nS6Viw7pYUlOKHI/y8nWd0TEc/XZnmYTStLQ0KlaMO+n7FSpEkZqamt82lQoVKpy0bUREJKkn/C4K\nu+++blxwwYXFjh88eJDQ0FDi46sSFRXFiBGjSEtLdb9vmiZTp07kn3/+YtaseYSGhpbmq3lFwEzZ\nw/H7SDVlLyIiIt4UFRXF0aNHTvp+UlIi0dHR+W2jT9rW4XCQnHyU6OiYk54rPv6CEo936HAnR44c\noWPHWxk8eABffvkZl1xS3f3+jz/uZM2a1YSHhxMZGVmKb+U9ATZC6rqPVIFURETEf5lR0Rz9dmeR\nKfuoqDDS0rJwnCNT9rVr12HJkkXk5eUVmwa32+3s27eX5s1vzm97Nb/88lOJ59mz5xdM0yQhoXaJ\n7xuGQUhIySObl112OStWvMeXX37GF198xpw5r7Jhw3pmznwdgPDwCMaNe5mnnx7E2rVruOOOjmf6\ndc9agAXSqoCWfRIREfF3ZlQ0eQ0bu14EWSA2AkdyBnl53gukZal161tZsGAuq1ev4N57uxZ5b+XK\nZeTm2mnVqg0AHTrcxfDhT7Jnzy9cdVXNIm3feON1atasxVVX1fC4hg8//IDg4BBatWrDTTe14scf\nd9G//wMkJycDcPnlV1CvXn169+7La6/NpEWLlqe8dcCbAiyQFpqydzrBElB3LIiIiEgZ2717Fzk5\nOUWO1a9/LXFxlRg8eCgTJrxAZmYGLVu6wueGDR/x9ttvMnTos+57TP/v/5rSvv2dPPXUIB55ZAAN\nGjQkJSWZpUsXs3v3j7zyypyTXt80zZO+l5GRzltvvUFMTAwXXHAh69f/hypV4omJKTr9f++93Xj/\n/XeZM2cmTz01/Ex/FWclwAKpa8reyMvDSE7GjDv5zcYiIiIip2IYBq+9NrPY8aVLV1Ot2kXccstt\nVKkSz1tvvcHy5UsB1/T8lCmzqFevfpHPPPXUMBISarFixTtMmTKRiIgIrrvuBubNe4uqVUu+R7Sg\nhpO56657SUxM5IUXXA8zJSTU5qWXphT7TFBQEP/612CGDXuS9u3vpGbNklcH8CbDPFW09gPJZTg8\nH7x5EzH3dgLg6JavcNQq+X4MObWgIAuxsRFl2jdSdtQ//kt947/UN/5N/eO/CvrmbAXUnLV2axIR\nERHxP4EVSOOrun+2HNLi+CIiIiL+IKACqRkbi5m/9IKetBcRERHxDwEVSLFY3Hvaa8peRERExD8E\nViBFuzWJiIiI+JvAC6Tx+YE0UVP2IiIiIv4g8AJpwQipHmoSERER8QsBGEh1D6mIiIiIPwm8QFo5\nf4Q0JQVO2OpLRERERMpf4AXSwmuR6j5SEREROUOdO7enWbPGxf40b34d27d/V+71fP/9tzRvfl2p\n2jVr1rgcKiq9gNrLHk7YrenQQZwXXezDakRERORcZRgGjz/+FC1btin2XoUKUeVeT9269Viz5sNS\ntT1xP3tfC8BAWsX9sxbHFxERkbMRHh5BbGxFX5cBQFBQkN/U4qnAm7KvXDiQ6sEmERER8Z577unA\nBx+8x4MP9qJVqyYMHjyQgwcP8uyzT9O6dVPuv78bv/++D4B169by6KP9eO21mdxySws6d27P2rXv\nnvLcs2e/QseObXnggR589922IlPxK1a8Q+fO7WnZsgn9+vVix47tJZ7nlVem0Llzew77MBcF3Agp\nERE4IytgST+mQCoiIuKn0tJgzx7XuJnVaiEqCtLSLDgc3rvmVVc5ifLCTPu8ea/x3HNjiIyMZPDg\ngTzwQHceeWQA/fr1Z8KEscyZM4vx4ycB8NNPPxIeHs6cOQvYvXsXkyaNJz7+Aho3vr7Ec3/88YdM\nm/YqTqeTtLRU91T8//73M7Nnz+DFFydRvfrlrFixhJEjh/Puu+uKfP6ddxazfv2HvPrqPKoUuq2x\nvAVeIMW1OL4l/RiWQwqkIiIi/iYtDRo2jCQ19cT7HMO8et3oaJNvv033KJROmjSeKVMmFjl2wQUX\n8NZby9yv27Vrz7XXNgKgYcNGHDlyhA4d7gTg1lvbsWLFO+62FouF554bQ3R0DJdddjnbt3/He+/9\n+6SB9NZb23HZZZcDroeVChw8eBDDMIiPr0rVqlV58MFHadKkOU6n091m48aPWbhwHjNmvMbFF19S\n+i/tBYEZSKvEw2+/aoRUREREzkq/fv1p3vymIseCgorGqwsuuND9c2iordhruz3X/fqiiy4mOjrG\n/TohoRZr1qw+6fWrVr2gxOPXX38Dl19+Jb163cdVV9WkWbMWtG9/JxaLa9TZNE3Gjx9NcHAIlQvd\nzugrgRtIAUuiAqmIiIi/iYqCb79NP2HKPoy0tCwcDudpPn3mzmTKPiYmhmrVLjplG6vVWuT1qZ5w\nt1qLRjOHw4lhnPyRn5CQkBKPh4bamDv3Tb7//ls+//xT/vOftbz77irmz1/sruG558ayZMlbzJw5\nleeeG3vK7+BtARpIC3Zr0lP2IiIi/igqCho2dIXPoCCIjYXkZCd5ed4LpP7g77//JDs7G5vNBsAv\nv+zmyiuv9Pg8u3bt5LvvttKr1wM0aNCQhx9+jPbtb2HHju3ExsYC0KLFzVSuXJn+/fvSocPd1KtX\nv0y/iycC7il7OL44vuXwITBNH1cjIiIi56qMjHSOHj1S7E92dvYZnS8zM5OXX36R/ft/5733/s0n\nn2zizjvv9fg8oaGhLFgwl7Vr3+XgwQNs2PAR2dlZxcJt7dp1uPXWdkyZ8lKR+0vLW4COkLqm7I2c\nHIzUFMyYWB9XJCIiIueiGTOmMGPGlGLH+/V7hF69HgA8W4A+Pr4qcXGV6Nu3F5UqVWLUqLHUqVP3\nJK1Pfu6rrqrB8OGjWLhwLlOnvkzVqhcwcuQLXHJJdY4cOVKk7SOPDKBbt7tZufId7r23m0f1lhXD\nNP17iDA5OaPMh+eDN31MTJe7ATj62VYcNWqW6fnPd0FBFmJjI7zSN3L21D/+S33jv9Q3/i1Q+mfd\nurW88cZcVqxY4+tSSq2gb85WYE7ZVy60faietBcRERHxqcAMpFUUSEVERET8RUDeQ2pWqoRpsWA4\nnVocX0RERPzCbbfdwW233eHrMnwiIEdIsVpxVqoMaIRURERExNcCM5BSaHF8BVIRERERnwrYQGq6\nF8dXIBURERHxpYANpI7Ci+OLiIiIiM8EbCA1NWUvIiIi4hcCNpC697M/cgRyc31cjYiIiEjgCuBA\nWmgt0qREH1YiIiIiEtgCN5Dm30MKmrYXERER8aXADaT5U/YAlkMHfViJiIiISGAL4EBaePvQwz6s\nRERERCSwBWwgNSMiMcPDAU3Zi4iIiPhSwAZSDANnZS2OLyIiIuJrgRtIOf5gk+WQAqmIiIiIrwR2\nINXi+CIiIiI+F+CBVFP2IiIiIr4W4IE0f4Q08TCYpo+rEREREQlMHgdSu93OiBEjaNy4Mc2aNWPB\nggUltuvZsycJCQnF/jzzzDNnXXRZKbiH1MjMxEg/5uNqRERERAJTkKcfmDBhArt372bRokX89ddf\nDB06lGrVqnHLLbcUaTdr1ixyC+0Rv337dp544gm6d+9+9lWXkSKL4x8+hKNClA+rEREREQlMHgXS\nrKwsVq5cyfz5890jnv369WPx4sXFAmlU1PFw53Q6mTp1Kg8++CC1a9cum8rLwImL4zuuuMqH1YiI\niIgEJo+m7H/++WccDgf169d3H2vYsCE7duw45edWrVpFamoq/fr1O7MqvaRoINWDTSIiIiK+4FEg\nTUxMJCYmhqCg4wOrcXFx5OTkkJycfNLPzZs3jz59+hAWFnbmlXqBs1JlTMMAFEhFREREfMXjKfuQ\nkJAixwpe2+32Ej/z1VdfcfjwYe65554zKtBq9eJCAEGhmHFxGElJWBMPExQU0IsOlFpBn3i1b+SM\nqX/8l/rGf6lv/Jv6x3+VVZ94FEhDQ0OLBc+C1ycb/Vy/fj3NmjUrck+pJ6KivDyqesEFkJREWMoR\nwmIjvHut84zX+0bOivrHf6lv/Jf6xr+pf85fHgXS+Ph4UlJScDqdWCyuRJyUlITNZjtp4Pz0008Z\nOHDgGReYlpaFw+E848+fTmRcZYKB3D//Jj05w2vXOZ9YrRaiosK83jdyZtQ//kt947/UN/5N/eO/\nCvrmbHm3gUHWAAAgAElEQVQUSGvVqkVQUBDbt2/n2muvBWDbtm3UqVOnxPbJycn8+eef7rZnwuFw\nkpfnvb98jspVCAY4dMir1zkfebtv5Oyof/yX+sZ/qW/8m/rn/OXRxL/NZqNjx46MGjWKnTt3smHD\nBhYsWEDv3r0B12hpTk6Ou/2ePXuw2WxcdNFFZVt1GSpYHN966KCPKxEREREJTB7fiTp8+HDq1KlD\n7969GTt2LIMGDaJ169YANG3alHXr1rnbJiUlUaFChbKr1gsKFsc3jiSBw+HjakREREQCj2Ga/r2J\ne3JyhleH50NXryDqkb4AJO3cgxkff5pPSFCQhdjYCK/3jZwZ9Y//Ut/4L/WNf1P/+K+CvjlbAb9+\nghbHFxEREfEtBdL8e0gBLIkKpCIiIiLlTYE0/x5SAMshBVIRERGR8hbwgdSMisYMDQU0ZS8iIiLi\nCwEfSDEM932kCqQiIiIi5U+BlOPT9pbDh31ciYiIiEjgUSAFnFVcDzZZtDi+iIiISLlTIAVN2YuI\niIj4kAIpmrIXERER8SUFUgqNkKYfg4wMH1cjIiIiElgUSDlhcXxN24uIiIiUKwVSTlgcX9P2IiIi\nIuVKgRTtZy8iIiLiSwqkgLNy4RFSBVIRERGR8qRAChAaijMmBgBLogKpiIiISHlSIM1X8GCT5ZAC\nqYiIiEh5UiDNp8XxRURERHxDgTRfwX2kespeREREpHwpkObTCKmIiIiIbyiQ5nPfQ5p4GJxOH1cj\nIiIiEjgUSPMVLI5v5OVhHD3q42pEREREAocCaT4tji8iIiLiGwqk+RRIRURERHxDgTRfkUB66KAP\nKxEREREJLAqk+czYWMzgYEBLP4mIiIiUJwXSAhZLobVINWUvIiIiUl4USAspeNJe+9mLiIiIlB8F\n0kKOL46vKXsRERGR8qJAWoh7cXw91CQiIiJSbhRIC9F+9iIiIiLlT4G0EPeUfWoKZGf7uBoRERGR\nwKBAWkiRtUgTNUoqIiIiUh4USAtxxmtxfBEREZHypkBaSNHtQzVCKiIiIlIeFEgLKXioCbQ4voiI\niEh5USAtLDwcZ4UoQIFUREREpLwokJ7AvVvTIQVSERERkfKgQHoC9+L42j5UREREpFwokJ7APUKq\nKXsRERGRcqFAegLtZy8iIiJSvhRIT3A8kB4C0/RxNSIiIiLnPwXSExQEUsNux0hJ9nE1IiIiIuc/\nBdITaHF8ERERkfKlQHqCooFUDzaJiIiIeJsC6QkUSEVERETKlwLpCcy4OEyL69eixfFFREREvE+B\n9ERWq3tPe42QioiIiHifAmkJiiz9JCIiIiJepUBaguO7NekpexERERFvUyAtgXuEVPvZi4iIiHid\nAmkJnPFVAbAcOujjSkRERETOfwqkJXBP2R89Cna7j6sREREROb8pkJagyFqkSYk+rERERETk/KdA\nWgJTi+OLiIiIlBsF0hI4CgdSLY4vIiIi4lUKpCXQ9qEiIiIi5UeBtCSRkZjhEYACqYiIiIi3KZCe\nxPHF8RVIRURERLxJgfQk3Ivj6x5SEREREa/yOJDa7XZGjBhB48aNadasGQsWLDhp219++YVu3bpR\nr149OnTowNdff31WxZYn9+L4GiEVERER8SqPA+mECRPYvXs3ixYtYtSoUcycOZP169cXa5eenk7f\nvn256qqrWLt2LW3atGHAgAEcPXq0TAr3Nu1nLyIiIlI+PAqkWVlZrFy5kmeffZaEhARat25Nv379\nWLx4cbG2q1evJiIigtGjR3PxxRczcOBAqlevzq5du8qseG8qsp+9afq4GhEREZHzl0eB9Oeff8bh\ncFC/fn33sYYNG7Jjx45ibbdu3UrLli2LHFuxYgXNmzc/w1LLV0EgNbKyMNKP+bgaERERkfOXR4E0\nMTGRmJgYgoKC3Mfi4uLIyckhOTm5SNs///yT2NhYRo4cSdOmTenSpQvfffdd2VRdDpzxWhxfRERE\npDwEnb7JcVlZWYSEhBQ5VvDabrcXOZ6Zmcm8efPo1asX8+bNY+3atfTt25cPP/yQ+EJh73SsVt8s\nBGBccIH75+AjhzESavqkDn9U0Ce+6hs5NfWP/1Lf+C/1jX9T//ivsuoTjwJpaGhoseBZ8DosLKzI\ncavVSq1atRgwYAAACQkJfP7556xZs4aHHnqo1NeMigo7fSNvqHGZ+8cKGakQG+GbOvyYz/pGSkX9\n47/UN/5LfePf1D/nL48CaXx8PCkpKTidTiwWVyJOSkrCZrMRFRVVpG3lypW5/PLLixyrXr06Bw4c\n8KjAtLQsHA6nR58pE0HhxBgGhmmSufcPcpIzyr8GP2W1WoiKCvNd38gpqX/8l/rGf6lv/Jv6x38V\n9M3Z8iiQ1qpVi6CgILZv3861114LwLZt26hTp06xtvXr12fr1q1Fju3du5f27dt7VKDD4SQvzwd/\n+QwrZlwcRlISHDjomxr8nM/6RkpF/eO/1Df+S33j39Q/5y+PJv5tNhsdO3Zk1KhR7Ny5kw0bNrBg\nwQJ69+4NuEZLc3JyAOjSpQu//PILM2fOZP/+/UyfPp2//vqLDh06lP238BJnFS2OLyIiIuJtHt+J\nOnz4cOrUqUPv3r0ZO3YsgwYNonXr1gA0bdqUdevWAXDhhRcyf/58Nm3aRPv27dmyZQuvv/46VfIX\nnD8XaD97EREREe8zTNO/V31PTs7w2fB8hQEPY1u+lLyr65L8yec+qcEfBQVZiI2N8GnfyMmpf/yX\n+sZ/qW/8m/rHfxX0zdnS+gmn4N6t6dBBH1ciIiIicv5SID2FgsXxjSNJkJfn42pEREREzk8KpKfg\n3j7UNLEcSfJxNSIiIiLnJwXSUygIpKAHm0RERES8RYH0FBRIRURERLxPgfQUnIWWqLIcUiAVERER\n8QYF0lMwo6IxbTZAI6QiIiIi3qJAeiqGcfzBJgVSEREREa9QID0NZ+WC3ZoO+7gSERERkfOTAulp\nFIyQWrU4voiIiIhXKJCehntxfE3Zi4iIiHiFAulpuLcP1ZS9iIiIiFcokJ6GO5BmpEN6uo+rERER\nETn/KJCehhbHFxEREfEuBdLTKLiHFDRtLyIiIuINCqSnUWSENFEjpCIiIiJlTYH0NJyVKrt/1pS9\niIiISNlTID2d0FCcsbGAAqmIiIiINyiQloL7SftDCqQiIiIiZU2BtBScVaoCGiEVERER8QYF0lJw\nVtF+9iIiIiLeokBaCsd3a9IIqYiIiEhZUyAtBXcgTTwMDoePqxERERHxA9nZ2MaNLpNTKZCWQsHi\n+IbDgXH0qI+rEREREfEtIzGRmLvuIGzyy2VyPgXSUtD2oSIiIiIu1p92E3tbS4K3fVNm51QgLQUF\nUhEREREI2biemNvbYN3/BwDZAx8vk/MGlclZznMFT9mDAqmIiIgEINMkbN5rRDw3HMPpxAwO5tik\n6Th69sJWBqdXIC0FM7YiZnAwRm6uFscXERGRwJKbS+SIpwl7cz4AzthY0ha8Te7/NS2zIKkp+9Iw\njEJP2ns3kFp3/0jwV1949RoiIiIipWGkphDdtbM7jOZdeRXJ6zaR+39Ny/Q6CqSldHxxfO8FUss/\nfxPbrjUxHdoS/OkWr11HRERE5HQse38jpl1rQv77CQD25jeT8p8NOC+/ouyvVeZnPE8dXxzfe7s1\n2ZYswsjMACBs4XyvXUdERETkVIK/+IzY21oStOd/AGT17kvq0pWYMbFeuZ4CaSm5A+mhg965gMOB\nbcki98uQDz/AOHLEO9cSEREROYnQpYuJvqcjluRkTIuF9HETSJ84BYKDvXZNBdJS8vYIafCWT7D+\n9af7tZGbi231cq9cS0RERKQYp5OIMSOJGvQoRm4uzsgKpC1eRtaD/cEwvHppBdJScgfStFTIyirz\n84ctftN1nYoVybu6LgChS98u8+uIiIiIFJOeTlSf7oTPnAaA4+JLSFm7HnvrW8vl8gqkpVRkcfzE\nsh0lNQ4fJuTDDwDIvrcbWT37ABC8awdBO38o02uJiIiIFGb5529iOrQlND+L5Da6juQPP8FR++ry\nq6HcrnSOK7I4fhnfR2pbtgQjLw+A7B69ybmrM2ZoKOC6j0NERETEG4K+/5aYW28meNcOALLvuoeU\n1WsxK1cu1zoUSEvJGV/V/XOZ3kdqmtjedk3X515/I44aNTFjYslpdwcAtlXLISen7K4nIiIiAoS8\n929iOt6GNX+gLWPYsxybPQ9sZbH3kmcUSEvJWdk724cGf/k5QXt/AyCrR2/38eyuPV3XSk4m5KP/\nlNn1REREJMCZJuFTJhLdrzdGdjamzUba3IVkDn7a6w8vnYwCaWmFheGMigbKNpDaFi0EwBkVTU77\nTu7juc1a4Kh2kevShZaDEhERETlj2dlUePRBIl56AQBHlXhS3v0POR3v8mlZCqQeOL5bU9lM2RvJ\nRwlduwaAnLvvgfDw429arWTf1w2A4E82Yvnn7zK5poiIiAQmy6GDxNzd3nU7IJB3dV1SPvqEvGsb\n+bgyBVKPHF+LtGwearKtXIaRf39oVo8+xd7P7tIdAMM0sS1fWibXFBERkcBiJCYSMfo5Kl5fn+Ct\nXwOQ07Ydye9/hDN/NtbXFEg94IwvCKRlMGVvmtjy1x7Nrd8AR91ril+v+mXYmzQD8p+2N82zv66I\niIgEBCMpiYgxI4lrXJfwWdMxMjMByHxsEGkL3obISB9XeFyQrws4l5Tlbk1B320j6KfdAGSXMDpa\nILtLd0I+/5SgfXsJ/vpLcm/4v7O+toiIiJy/jKQkwl+dQdgbr7tDKEDO7R3IeHIojjp1fVhdyTRC\n6gFn5UIjpGc5WlkwOmqGh5Nz590nbZdzR0eckRVcn9HDTSIiInISxpEjRIwdRVyjuoTPnOYOoznt\n2nN042ekLVjsl2EUFEg9UvBQk5Gbi5F89IzPY6Qfw/bvVQBkd7obs0LUyRtHRLgDa+h772KkHzvj\n64qIiMj5xzhyhIgXnieuYR3CX5mKkZkBQM5td7iC6MK3S7w10J8okHqgrBbHD1290v2XJbvQ2qMn\n4364KTOD0PfePePrioiIyPnDOHqEiHGjqdioLuEzphwPom1vJ3njp6S9ucTvg2gBBVIPFNnP/iwe\nbLItXghAXq3a5DVsfNr2eY2uI++qGq7PaitRERGRgGYcPUL4i2Oo2LAu4dMnY8lIB/KfnN/wX9Le\nWkpe3Xo+rtIzCqQeKItAat25g+Dt3wP5o6Ol2RHBMMju0gOA4K+/xPrbnjO6toiIiJy7jOSjhI8f\nQ8VG1xAxbdLxIHrrbSR/vIW0t94h75r6Pq7yzCiQesCsWBHTagXAcujMAmlY/r71Zmgo2Z3vK/Xn\ncu7t4r62benbZ3RtEREROfcYyUcJf2ksFRvWJWLqJCz5z5Pk3NLWFUQXLSOvXgMfV3l2FEg9YbXi\nrFQZOMMR0sxMQle6dkfIub0DZmzFUn/UGV8Ve6s2AIQuXwp5eZ5fX0RERM4ZRkoy4S+94BoRnfLy\n8SDa5laS128mbfHycz6IFlAg9VDBg01nEkhD338XS1oqANk9+3j8+eyuPQGwHjxAyOaNHn9eRERE\n/J9x6BARLzzvGhGdMhHLsTQAclrfQvJHn5D29gry6l/r2yLLmBbG99DZ7Gcflr/2aN7lV5D7f009\n/ry9za04K1XCkpSEbenb2Fvf6vE5RERExD9Zft9H+KwZ2N5Z7N5aHCCnVRsyhwz3iz3nvUUjpB5y\n79aU6NkIqXXP/wj++ksAsruX8mGmE4WEkH23677TkA8/wDhyxPNziIiIiF+x7tpJhUceoOINDQh7\nc747jOa0vZ3kdRtJW7rqvA6joEDqMXcgPXTQo8+5d2YKCiL7vm5nfP3sbq5peyM3F9vq5Wd8HhER\nEfGt4K++IKpbZyq2bIJt9UoMpxPTaiX73q4c/e/XruWbSrE85PlAgdRDzvj8QJqcDIWG008pJwfb\n8iUA2G9th5k/7X8mHLVqk1vfdQOzbYnWJBURETmnmCYh69cRc8ctxHRoS+iG9a7DYWFk9nuYo9/8\nwLGZc3Ak1PJxoeVL95B6qMhapEmJOKtddNrPhH74AZb86fWsnqffmel0srv2JHj79wT9uJOgnT+c\nc4vfioiIBJy8PELfXUX4K1MJ+mm3+7AzOoasvg+R1e8RzEqVfFigb2mE1EPOyp4vjm9b5Jqud1x0\nMbktWp51DTl33o0ZGuo695JFZ30+ERER8ZKsLGzzX6fiDQ2IevRBdxh1VL2A9OfHcfT7H8kc9mxA\nh1FQIPWYs9B0e2kWx7f8vo+Q/34C5N//mb+4/dkwY2LJub09AKGrlkN29lmfU0RERMqOkZpC+LRJ\nxDW8mgrDn8K6/w/AtdLOsSmvcHTrDrIeHYgZWcHHlfoHTdl7yNPtQ21LXSOYpsVCdtceZVZHdpce\n2FavxJKSQuhH/yGn411ldm4RERE5M5ZDBwmb8yq2hfPdC9kD5F5Tn8xBg7G3a18mg1PnG49HSO12\nOyNGjKBx48Y0a9aMBQsWnLRt//79SUhIoFatWu7/btmy5awK9rnISJwRkUApAmlennubT3vL1qW6\n37S0cpu1wHHRxYCm7UVERHzNsm8vkU89TsVGdQmfOc0dRu3NWpCy/F1SPt6CvX0nhdGT8HiEdMKE\nCezevZtFixbx119/MXToUKpVq8Ytt9xSrO3evXuZPHkyN9xwg/tYVFTU2VXsB5xVqmDZl37aQBqy\nYT3WgwcAyO7Rp2yLsFrJvq8bEZMnELx5E5a//yrTwCsiIiKnZ9m3l4ipLxO64h0Mh8N9PKddezIH\nPh4wyzadLY9GSLOysli5ciXPPvssCQkJtG7dmn79+rF4cfHlh+x2O3/99Rd16tQhLi7O/Sc4OLjM\nivcV070W6akDqW3xQgAcVeKxtyn7XZWyu3QHwDBNbMuXlvn5RUREpGSWfXuJHPQoFf+vIbZ33sZw\nOFxrjXfpztHPtpK28G2FUQ94FEh//vlnHA4H9evXdx9r2LAhO3bsKNZ23759GIbBxRdffPZV+hn3\n4vinGCG1/PM3Iflri+V07QFeCOLOS6tjb9ocANvSxWCaZX4NEREROc7y+z4iH3+Miv/XkLCli11B\nNDiYrF4PcPTr7RybMRtHjZq+LvOc41EgTUxMJCYmhqCg4zP9cXFx5OTkkJycXKTtb7/9RmRkJEOG\nDKFp06bcc889/Pe//y2bqn3MUbA4fuLJ97O3vfM2htMJQFb+7kreUDBKav19H8FffeG164iIiAQy\nyx+/E/nEAFcQXbLIPSKa1fN+jn71PemTpuG8+BJfl3nO8uge0qysLEJCQoocK3htt9uLHN+7dy85\nOTk0a9aMhx56iI8//pj+/fuzfPlyrr766lJf02r1v5WpjKpVAdcIaZDVKL4vvdPpftAot3kLLFdd\n6bX1tRyd7sQc9hRG+jHC3nkbs1kzL13puII+8ce+EfWPP1Pf+C/1jX/zZf9Y/vgd25RJhCxdjJGX\nB7i2Abd360H24CE4L7kUC4G5jqbTCZ98EsRdZbDQj0eBNDQ0tFjwLHgdFhZW5PiAAQPo3bs3FSq4\n1teqWbMmu3btYtmyZYwZM6bU14yKCjt9o/J2metfQEZ2NrFWB0RHF31//XrIX28suP8jxMZGeK+W\n2Ajo2gXmziV0zWpC57wKFcpnTTO/7BtxU//4L/WN/1Lf+Ldy7Z/ff4dx42DhQsgPogQFQZ8+GCNG\nEHrZZYSWXzV+xTThvfdg1Cj44YeyuWPQo0AaHx9PSkoKTqcTi8X1b4GkpCRsNluJT89XOCEYXXHF\nFfz2228eFZiWloXD4fToM94WFBlDwTdL/fk3nCfcKxIxazYhgLNiRVJvugWSM7xaj7VzV6LmzoXM\nTDIWLsbeo5d3r2e1EBUV5pd9I+off6a+8V/qG/9Wnv1j+XM/tskTCVlSaETUasXetQfZg5/CWf0y\nV0Mv/3+7PzJN+PhjK+PHB/PDD2W7fJVHgbRWrVoEBQWxfft2rr32WgC2bdtGnTp1irUdPnw4hmHw\n4osvuo/9/PPP1KhRw6MCHQ4neXl+9j8OlY7v1mQeOEje5Ve5XxuJiQSv+wCA7Hu6kmcNBi/Xn1e/\nIXk1ahL0v18IWfwWmV3KbgH+U/HLvhE39Y//Ut/4L/WNf/Nm/1j+3E/4tMnY3lmMkZsLuIJo9n3d\nyHy8UBANwL8fpgmbN1uZODGUb789HkQvvNDJU0/lQhmMFXt0y4PNZqNjx46MGjWKnTt3smHDBhYs\nWEDv3r0B12hpTk4OAC1btuT999/n3XffZf/+/cycOZPvvvuOnj2994BPeTnVbk225Uvdf5Gze/Qu\nn4IMg+z8EBr8zVdYf91TPtcVERE5x1n++tO1oP0NDQhbtAAjNxfTaiWraw+OfvEt6dNmHQ+jAejT\nT620bx/GffeFu8NofLyT8eOz+frrDPr0ySuT63h8D+7w4cOpU6cOvXv3ZuzYsQwaNIjWrVsD0LRp\nU9atWwdAmzZtGDVqFLNnz6Z9+/Z88sknzJs3jwsvvLBMCvclZ1wlzPwHmYoEUtPE9vabAOQ2vh5H\nzYRyqyn7ni6Y+bs/2N55u9yuKyIici6y/PUnkUOeoOL19Ql76w13EM3u0p2jn28jffqrOC+73Ndl\n+syXX1q5884w7r47nG++cU2oV6rkZOzYbL75JoO+fXMJLcObaA3T9O/FK5OTM/xy+iSu9hVYkhLJ\nHPA4GSNdD2kFf/k5MR1vAyBtxmxy8pdkKi9RPe8j9KN1OOKrcvT73a6br70gKMhCbGyE3/ZNoFP/\n+C/1jf9S3/i3suwfI/0Y4RPHEzZ/zvGpeYuFnHu6kPHEEJyXX1EWJZ+ztm61MGFCKP/9b+ElPp0M\nGGCnT59cIk54Trugb86WdxJLAHBWiceSlFhkhNS2aKHrvQpR5LTvVO41ZXftSehH67AeOkjI5o3Y\nW5f97lAiIiLnJNMk9L1/E/HccPe23qbFQk7n+8gcPATH5Vf6uEDf+u47CxMnhrJp0/FoGBtr8thj\ndh54wE5kpHevr0B6hpzx8bB7lzuQGinJhK5dA0DO3fdQ7J8Q5cDe5laclSphSUrCtmSxAqmIiAhg\n/W0PkcOeImTLJ+5jOW3bkTFqLI4rrjrFJ89/O3e6guhHHx2PhFFRJv3723noIXt5rSSpQHqmjm8f\n6tqtKXTVcozsbKAcH2Y6UXAw2Z27EP7aTEI++g/GkSOYcXG+qUVERMTXsrIInz6J8JnTMfLXTXdc\ncinpL07EfsttPi7Ot3780cLLL4fwn/8c39o8MtLk4YftPPKIvdgS694WiBsLlIki+9mbJmGL8h9m\nuqY+edfU91ld2V1dT9sbubnYVi3zWR0iIiK+FLJ+HRWbXU/ElJcx7HbMkBAyBg/h6H+/Dugw+ssv\nFvr1s3HzzRHuMBoebjJoUA7btqUzdGj5h1HQCOkZc1ZxrUVqHEkiaOs3BO3eBfhwdDSfo1Ztchtc\nS/D332FbspisB/sX39pURETkPGX5cz+Rzwwl9MMP3MfszW8mfcKkgJ6e//FHC9Onh7BmTRCm6coF\nYWEm99+fy4ABdipV8u0z7gqkZ8gZ79rP3jBNwqe9DIAZHu66f9THsrv2JPj77wjavYugnT/4dMRW\nRESkXNjthL02k4jJEzCysgBwVL2AjLHjyelwZ8AOzmzbZmHatFDWrz8e+UJDTfr0cQXR+Hj/WGxJ\ngfQMFV4cP3TDegCyO96FWaH4FqrlLefOu4kcORwjOxvb0sWkK5CKiMh5LPjTLUQOe5KgPf8DXDss\nZT3Yn8ynh2NGltNTOX7ENF0L2k+fHsKnnx6PemFhJj165DJwoJ2qVf0jiBZQID1DhQNpgezuvp2u\nL2BGx5DTrj221SsIXbWc9FEvgM3m67JERETKlOXQQSJGPYNt9Qr3sdzrbuDYhCk4ri6+rfn5zjRh\n/Xor06YV3eKzQgWTBx6w89BDuVSu7F9BtIAC6RkquIe0QF7NBPIaX+ejaorL7toD2+oVWFJSCP3w\nA3I63e3rkkRERMpGXh5hC+YS/tI4LMfSAHDGxZE+6gVy7u0KlsB6ZtvhgPfeC2L69BB27z4eRCtW\ndPLww7k88IBvHlTyhALpGTIrRGHabEWXevKj+1Nym7XAcdHFWP/6E9vSxQqkIiJyXgja9g2RTw8m\neNcOAEzDILvn/WQ8MxIztqKPqytfdjusXBnEjBmh7N17PIRXrerk0Uft9OxZfGclf6VAeqYMA2eV\nqlj3/44ZEkL2PV18XVFRFgvZ93UjYvIEgjdvwvL3XzirXeTrqkRE5HyWl0fQ9u+wHDiAGRGBGRGJ\nGRnp+jmyAmZEhOsWsjMZwDlyhPAnniI0f1dEcC21mD5xCnnXNiq773AOyMqCJUuCmTkzhL//Ph5E\nL73UycCBdu67r2z3mS8PCqRnIa9GDaz7fyen412YFf1vAfrsLt1dTxuaJrblS8l8YoivSxIRkfOM\n5c/9hHyykZDNmwj+dAuW1JRTtjetVldQjYgoFlZdfyoUes8VaK0Z6fDKVEKPHAHAGRVNxvDnyO7T\nF6zWU17vfHLsGCxYEMJrrwWTlHQ8iNas6WDQIDudOuURdI4mu3O0bP+QPmk69o/WkXNXZ1+XUiLn\npdWxN2tByKdbsM1/nZzbO+CoUdPXZYmIyLksI4OQLz4lePMmQj7ZSNCvezz6uOFwYKSlQlrqGV0+\n+96upI8ci3nCsxzns6NHYe7cEObNCyE19fjocr16Dh5/3M5tt+Wd87fNKpCeBeeF1ci+v5+vyzil\nrL4PE/LpFqyHDxHTrjVp894k96aWvi5LRETOFaaJdddOQjZvImTzRoK//tK9DWdheZdfQe7NrbDf\n1Iq82ldjZGdjpB/DyMjASE/HyEgv+nN6wetjGJkZx392t8l/7XC4LlCnDsfGv0z29U3K9ev70qFD\nBq++GsKbbwaTmXk8iN54Yx6PP27nppsc/vT4yllRID3P2dvdwbFJ04kc9iSWtFSiu95N+osv+32Q\nFnHOSscAACAASURBVBER3zESEwnZ7JqGD9m8CUvi4WJtnBWiyG3WAvvNrbDf1BLnpdXLvhDThJwc\ngvNyiKlejbyUTMhzlv11/Ex2NrzySggzZoSQk3M8cbZs6QqiN9zg8GF13qFAGgCye92Po/plRPXt\nhSU1hQpDB2P99X9kjH6Rc/ZmExERKTt2O8HffEXIJxsJ3ryJ4J0/FGtiGgZ5Da7FflMr7De3Ju/a\nhhAc7N26DANsNsygcL9aycabNm2yMmyYjd9/d83BG4bJ7be7gug115y/YVxpJEDkNr+JlHUbiep+\nD0H79hI+9zWse3/j2OsL/GJ3KRERKWOmCVlZWFKSMVJSsKSmYKSkYKSmFDlm2f8HIZ9/hpGZUewU\njgsuxH5zK9dUfLMWfvkA7/niwAGDZ58N5f33j4f8Zs3yGDcuh4SE8zeIFlAgDSCOK69yhdIHehLy\nxWeEbvwY6x23kLpoGc5LLvV1eSIicir593Ja//4LIyW5aMBMTs4PmilF/lvSvZ6nvITNRu6NTVzT\n8De3dj0IGyAjk76Slwdz5wYzcWIoGRmu33Xlyk7GjMnhrrvyAubXr0AaYMyKcaQuf5fIp58gbMki\ngn7aTWzbm0l9cyl5ja/3dXkiInKizExsq5YTNm8OQT/9WCanNA0DMzoaMzoGZ6VK5F53o2sk9Pob\nISysTK4hp/f111aGDg11765ksZg88EAuw4blEBVgk5cKpIEoJIT0qTNxXFmDiLEjsSQlEXPXHRyb\nNoucu+/1dXUiIgJY9v9B2IJ52N5+E0tK8bU9TcPAjMoPlTExrv/GxmJGx2DGxOAs+G/+e4WPmVHR\nAbe9pj85csRg7NgQliwJcR9r0MDBxInZ1Kt3/k/Pl0SBNFAZBlkDBuG4/AqiHu2HkZlJVP9+ZPy6\nh8ynR2iKRkTEF0yT4E+3EDZvDiHr12E4j4eTvFq1yer7sOtezthY1/3/AbQo/PnA6XTtsDR2bCjJ\nya7/n42ONnnmmRx69swN6O5UIA1w9nZ3kPL+R0T1uA/rgX+ImDwB6297ODZ9tqZtRETKS3o6tpXL\nCJs/h6BffnYfNi0W7G1vJ+vBR8j9v6YaLDiH7dpl4emnbWzbdjx13ndfLiNH5lC5sunDyvyDAqmQ\nV7ceKR99QlTPLgT/8D22d1dj3f8HqW++gxkf7+vyRETOW5Z9ewl7Y+7/t3ff8VGUiRvAn5nZlkpC\n6CUJhBIg1EhTQUVFULrY9YdU9RTxVARRDzyUZsN2VkQF24EonB4KyCGIgIAiCISSkEBUIJGE9C0z\n8/tjsrtZEsqSTWY2+3w/n3w2O9nsvsmbmTz7Vtg+WQqxws5FSmwsyu68G6V3j4fSMl7HElJ1FRYC\nCxZY8c47ZiiK9oaifXsZCxbY0bdv3VtP9GIxkBIAQGnSFPkrVyP6gXtg/WolzD/v1CY7Lf035E4p\nehePiCgwVBXCyZMwZRyGlJEOKV27NR1JB3JOIio+Ec7kDpDbd4AruQPk5A5QmjQNbMukosD8/f8Q\n9u6bsKxbA0H1to45U7qgbMI9KBs5mr1UQU5VgVWrTHjqKSuOH9fG64aHq3jkEQfuvddR40u4BhtB\nVVVDtxPn5RXDFQK7MhiGoiB83jOIWPi8djciEoVvLYJj4GDPQ0wmEbGxEawbg2L9GBfrpvYIead8\nAqeUcRhSRgakjHSIRYV+PZdSLwZy+2S4kjvClZwMObkjXO07QG3Y0L8yFRXC+tnHCFv0ts/+76ok\nwX7DMJROuBeu3n3YLV+FYDt3MjIETJ9uw4YN3na/66934pln7GjRwtCxy2/uuqkuBlKqkvWzjxH1\n8GQITidUQUDx08+i9J77AUEIugtDqGH9GBfrJsCKimA6ku4bPNMPQzqSDvHUqQt6CiUmBnJSGyht\n2sLasjkc+9Mg7t8P6UiGT8tlld/boAFc7bVWVFf7DnAld4ScnAw1JtbncVL6IdgWvQ3bpx/7hGGl\nQQOU3nU3ysaMh9Ksuf8/fwgJlnOntBR45RULXn3VAodDe2MRH69gzpwyDBxYN7vnAxVI2WVPVbLf\ncjvkhFaoN/Z2iH/9hch/zIB06BCK5j0PmKx6F4+IQlVxMcKWLEbYorchZWVe0Leo4RFwJbWB3DoJ\nclIS5FZJkMvvu3ceMplEWGMjUOwOPKWlMB0+CGn/PpgOpEFKK789muV5XjE3F5bcTcDmTT6vJzdp\nWt6i2gGmQwdhWb/O5+vOrt1ROn4S7CNuBGy26v0+SHeyDGRkiNi5U8SLL1o9W36azSoeeMCBKVMc\nCA/XuZBBgC2kdE5i5hHUu/NmmA4eAAA4+l2Bkg+WIqZVC9aNQQVLS0IoYt1cPKGwALb33kH4m69B\n/OuvSl9XrVbIia0gt3YHT++t0qjxebvBL7huiopgOpgGU9p+SGn7YTqg3Up//nHO51dNJtiHjUDp\n+HvguqQXu+X9ZJRzp6wM2L9fxG+/SdizR7vdt09ESYlvffbr58L8+WVo08bQESsg2GVPtUYoOI3o\nCWNg2bAegLYFqfTfr5HXoJlv3SgKhJJiCEVFEIqLym+LIRQVlt+eedz3vtKkCUr+PhVym7b6/KB1\nhFEu3FQZ68Z/Qt4phL39BsLefQviae/i8M7UnigbfTPkpLaQWydBad6iWmtyVrduhNP5kNLSygOq\n1ppq2r8Pqs2GsltuR9mYcdrkKLooepw7+fnwBM89eyTs3Svi4EERsnz2NxPNmin4xz/sGDkyhLb8\nZCClWuVyIfKJxxC2+F3tfr16cMUnAEVFEN0Bs6S42i+jms0ovfcBFP99KhAZWe3nC0UMPcbFurlw\nwsmTCH/zNdgWvwuxuMhz3HF5f5T8fSqcl/cPaCsj68bYarJ+VBX44w/BEzx/+01r+Tx27Nw7WTVt\nqiAlRUHnzjJSUhSkpMhISFBDJoi6MZCSLmyL3kLkE9N8dg/xhyoIUCMioUZGQo2IgBoZBTUiArDZ\nYP5hIwSHAwAgN22G4qefhX34KHZt+Yn/WI2LdXN+4h+/I+z1lxG25H0IZWWe4/arr0XJQ1O1Weg1\ngHVjbIGunz17RKxYYcbu3SL27hVx6tTZw6cgqEhKUtC5s+IJnikpChezL8dJTaSLsvH3AJ06IWr5\np7A7ZShh4Z5QqYXMSCiRkUBEBJQI3+NqRAQQHn7WgClmpCPyyWmwrlsD6c8/ED1pLBwfLkbRnOcg\nJ3eo5Z+UiGqTmJWJ8FcXwvbpUs8bUwCwDx6CkoenwtW1u46lo7oiLU3EggUWfPVV1YuAWq0qOnTw\nbfXs2FFBRPXzFp0HW0jJbzXakqCqsKz5BpFPTIN0NFM7ZDKhdMK9KJk6Xdu7mc6JLT3GxbqpTDp8\nCOEvvwDr8s8gyNqyOKogwD5iFEqmPAq5Y6daKQfrxtiqWz/p6QKee86KL74wQVW1RpGwMBWpqd7g\n2bmzgrZtFZjYVOcXtpBS3SQIcFw3GKf6X4nw1xYi/NWXIJSVIfzN12BdsQzFM2fDPvoWduMTBTlp\n316EL3wO1pVfeNb7VCUJ9ptuRcmDD3NyIwVEZqaAF16wYtkyk2fbTptNxd13OzF5soPd7gbCFlLy\nW222JIhZmYj8xwxYV3/lOebs3ReFc5+HnNK5Rl87WLGlx7hYN4Bp188If+l5n3NatVhQdttdKHlg\nCpSERH3KxboxNH/rJztbwEsvWfDJJ2a4XFoQtVhU3HWXE1OmONCkiaGjT1BhCymFBCUhEQUffAzz\n+rWIfHwqTEcyYN62BbHX9EPZ2Akonv4k1HoxeheTiM7DtG0rIl5a4LNIvBoWhtK77kbp/VOgNG2m\nY+morjhxQsDChRYsWWL27JRkMqm47TYn/v53R53btrMuYSCloOAccC3yNm5D2JuvIeKl5yCUlCBs\n0duwrlyB4iefRtmtdwDiuZfoIKIa5nRCPHYUUuYR7eNIBqSsI5DSD8N06KDnYUpEJMrGTUTJPfdD\nbdRIxwJTXZGTI+DVVy14/30zysq0ICqKKm6+2YWHH7YjMZFB1OjYZU9+07trS8w+hohZT8K26gvP\nMWfqJSia+zxc3XrUenmMRu/6obOrE3VTXAwpK9M3dGZmQMo8AjH7mGdiUlWUejEonXgvSifeCzW2\nfi0W+vzqRN3UYWern1OngH/9y4J337V4dksSBBUjR7owdaodSUmGjjh1ArvsKWQpLVqi8N0PULZx\nLCJnTIXp4AGYd+5AzHVXoeyusSie8ZRnf2oi8p+Qn6cFzSMZPsFTzDwC6cTxC34euXETKImtICe2\ngqtLV5TdegdXyqCAOH0aePNNC956y4KiIu8k16FDnZg61YHkZL6pCDYMpBS0nP2vRN76zQh7502E\nPz8PYnERwj58D9b/fIHiGTNRdueYam0lSBRqTDt+QsSCOXBvE3w+qihCaREPuVUryImttb3kW5Xf\nJiSCizdSoBUWakH0X/+y4PRpbxAdNEgLop07M4gGK3bZk9+M2LUlHv9T68ZfscxzzNm1O4oWvAhX\n91QdS1b7jFg/pDFq3Zh2/YzwBXNgXbem0tdUmw1yQqIWMj2hU/tcaRkPmKteYDzYGLVuSONwiPj4\n4wjMn6/ir7+8QXTAABemTbOje3fWmV64dSjpxsgXbvOWzYic/ihM+/cC0NY1LH78Hyh9YIoxJz05\nHBBPnoDSrHnAymfk+gl1Rqsbac9uRDw3B9Zv/us5pkRFo3TSfXD2uwJyYisoTZoa89wJMKPVTSiT\nZSAjQ9vS072v/C+/SMjL8wbRfv1ceOwxB3r3PvuYZaodHENKVAVn38uQ990mhC1+B+FzZkMsLkLk\nMzNh+eF7FLz2tnFm9KoqrJ//G5EzpkLMz4caFgZXm3aQ27WH3D4ZrnbJkNu3h5zQCtw2hAJN2rcX\nEc/NhfXrVZ5jSkQkSu+5D6X3PgA1JlbH0lEoKSoC9u3TQufevSL27pWwf7+I0tKqNz/p3VvGtGl2\nXH45g2hdwxZS8luwtCSIGemIvmcczL/+AgCQGzVG4b/egbP/lbqWSzh5ElGP/R3W//7nvI9VLRbI\nSW20gNquPVztkyG3S4bcOgmwWKr8nmCpn1Ckd91IBw8g/Lm5sK1c4TmmhodrW/P+bXJITwbUu27q\nOlUF/vhDKG/1lDy3R46cu/U9KkpFp04yOndWcdNNZqSmFkOWWT9Gwi570k1QXbjtdkQ8Mwvhb70O\nQNsju+ShR1AydYYuLY+WVV8gatrDEP/6CwAgJySi5MGHIR7/E9KhAzAdOAAp/RAEh+Ocz6NKEuTW\nSZDbJcPVvr1227Y95DZtYYqKCJ76CTF6nTtS+iGEPz8f1hXLvNt0hoWhdOxElNw/BWrDhrVWFqMK\nquuagSkKUFwMZGWJPuFz717fLveqtGypoFMnbW/5Tp20/eXj41UIAuvHyBhISTfBeGGwrFmNqMn3\nQszLAwA4e/VBwZuLoLRoWSuvL5z6C5HTH4HtS2/LVOnYCSh66p9AZKTvg10ubTHxAwdgOpgG6UAa\npIMHYDp8EEJp6TlfRxUEKImtIA24CoXDb0RZr0tDYvxfsKjtc0c8koGIFxfAuuxTCIr2eqrVitIx\n41Ay+WGojRvXeBmCRTBe12qC3Q4UFAgoLAROnxZQUOD9OH0aPvcLClB+XEBhofsWnj3jz8ZiUdG+\nvYKUFC10duqkoGNHGTHn2HSP9WNcDKSkm2C9MIh//I6oe8fDsvVHAIASE4PChf+C4/ohNfq6ltVf\nI+rRKRBzTgIA5BYtUbjwdf+HDigKxGNHy0NqeVgt/1wsLqryW+TmLWC/8WaUjb4FcnKHav4kVF21\nde6IR7MQvvB52D5Z6lmoXrVYUHbnGJRMeYTbdFYhWK9rF0tVgR07RHz+uRmbN2utlwUFgmeXo0CJ\ni9NaO90tnp06KWjbVvF7cYZQq59gwkBKugnqC4PLhfAX5iP8xQWersuSCfeg+B+zAZstoC8l5Och\n8olpsC371HOs9M4xKH762cAuDq6qEP/4HdKBNJgOpsH8225t1nRBgc/DnJ27wj76FthHjYbSuEng\nXp8uWE2fO+Lv2Qhf+AJsH38IwekEAKgmE8pu/z+UPPRIrfUIBKOgvq75IT1dwPLlZnz+uRmZmf71\nnoiiiuhoIDpaRXS0inr1VERFqahXz3vMfbxRIxUpKQoaN9a63KsrVOonGDGQkm7qwoXB/MNGRN03\nwbPrjDOlCwrfWQw5qW1gnn/9WkQ99ACk438CAOQmTVH00qtwXD0wIM9/LiaTiFibiKJPlsH8709h\n+W4tBJfL83VVFOHsfyXKbroV9sFDKg8ZoBpTU+eOePxPhL/8AmxL3veMP1YlCWW33oGShx6FkpAY\nsNeqq+rCde1sTp4UsHKlCcuXm/HLL76bhYSFqbj2Whfi4xXUq4fygOkOl/AEzOhoFRERCEi4vBh1\nuX6CHQMp6aauXBiE3FxETb4H1u/WAgDU8AgULngR9ptvu/jnLCxAxMwnELb0A8+xsptvQ9Ez82pt\nKZ0z60fIzYV15QrYln8K884dPo9VwyNgv34Iykbfog0h4BJTgeNyQfw9W9v3vfzDdDQTlpIiOBVA\nEQRtfK8gajuKiSJUUQREARC1+55jkqQ9rvzravnjIYgQCk7D9sVyCGVlALQ3HPbRt6D44cegtE7S\n+ZcQPGriulZUBBQVCQFrJfRHcTGwerUWQr//XoIsewsgiir695cxerQT11/vCor3pHXl/05dxEDq\np/R0Af/3f2G4+moZ//ynPQAlC1116sKgKAh783VEPDPT04pYdsvtKJz7vN8th+ZN3yNqyt8gZR/T\nnrphIxQ+/zIcg28IeLHP5Vz1I2UchnXZZ7At/wxSVqbP1+RGjWEfORr2m2+FK6WLfk0hQUTIz4OU\nlQkxKxNSZmaF8HkEYvYxz/jN2qAKAuwjR6Pk0emQ2wSmpT+UBOq6VlAAfPONCatWmfG//0lwOgXE\nxKjo2FFGx45K+YeM5GQF4eEB/AEAuFzAxo0Sli0zY/VqE0pKfM/hrl21EDpihAuNGxv6X38lder/\nTh3DQOqnDz8049FHbRAEFVlZRYEeLhhS6uKFwfTzDkRPGgfpaCYAwNWmLQrefh9ySufzf3NxMSJn\n/wNh773jOVQ2YhSK5r4ANa7213W8oPpRVZh2/ATbsk9hXbnCs/qAm6t9stalP+qm0B536HRWauWU\nMo9oATQrE+Lp/At+KiU2FkpiK5iaNIbT7oQqy4CiAqoCyLI2C979oSqArH3uPS57v64oEOTyx6kq\nnD17oeThaZDbJ9fgL6Nuq851rbDQN4Q6HOd/MycIKlq39gbVTp2025Yt/WtNVVVg1y5tctKKFSbk\n5vqOC42PVzB6tBM33uhC27bBe72ui/936goGUj+tWSPhzju1t6M//FCMdu34B32x6uqFQSg4jciH\nH4Rt1RcAtOVxip6eg7KxE87aWmjaugXRD94LKfMIAECpXx+FC16CY9jIWit3pTL5Wz8OByzfrYVt\n+WewrFkNwe7bg+C4rB/sN94MZ99LIbdKqvvLSJWWwrr6K9g++xjmTd/7jL89F9VkgtwyHkpCIuSE\nVtr+7wmJUBITIccnQK0XU2fPnbrA37opLAS+/daEVatMWL/eVCmExscrGDbMiXbtFBw4oK3FuW+f\niJMnz78QfIcO7qWQtNbUDh2USh02mZkCPv/cjOXLzUhP933O2FgVw4c7MXq0Ez17KnWis4PnjnEx\nkPrp4EERl1+u/cI++qgE117LbccuVp2+MKgqbEveR+ST0zxj8uw3DEPhS6/6jgEtLUXE3NkIe+t1\nz2x9++AhKHxuoe7bk1anfoTT+bD+ZyWsyz6FZcvmSl9XIiIhp3SGs0tXuDp3hatLN8jt2gf/2FNV\nhemnbbB99hGsK7+AWFhQ5cOUuDhP0JQTWpWHz/Lg2bTZeX8PdfrcCXIXUjdFRVoIXbnShP/9zwS7\nveoQOmyYC127Vh0Ec3IE7N8vlgdUCfv2iThwQDxvq2piohZOk5IUbNliwo4dvpOTbDYV113nwo03\nOjFggHy2jdyCFs8d42Ig9VNpKZCQEAUAePbZMkyc6Kz2c4aqULgwSPv3IXrS3TAdSAOgrR1a8NZ7\ncPXsDdPO7YiafC9Mhw8BAJR6MSiaswD20bcYYtxloOpHPHYU1hXLYFv2KUwHD5z1carVClfHTnB1\n7gZXl65wde4CV4dOAV9GqyaIx47C9u9PYP33JzAdyfD5mtwyHmWjb4arS3ctcCYkVHu5rlA4d4LV\n2eqmqAhYs0YLoevXVw6hLVsqGDbMhWHDnOjW7eJaI51OICND9LSiuoPqH3+cuzVVEFRcfrk2LvSG\nG1yIDuBqckbDc8e4GEgvQteuEfjzTxGTJjnwzDOc2HSxQubCUFKCyCceQ9hHHwLQltFxDLoBltVf\neXa9sV99LYpefNVQC40HvH5UFWJWJkx7dsO051eYd++CafcuiLm5Z/8Wk0nbzrRLV601NaUrXCmd\njbHEVFERrF+vgu2zj2H5YaPPl9TwCNiHjUDZLbfD2feygA9PCJlzJwhVrJv8fAVr13pD6JmLxbdo\n4Q2h3bvXXJd4Xh484dQdVA8dEpGYqODGG50YNcqFpk0N/S88YHjuGBcD6UUYNiwMW7eaMHCgC0uX\nnnsLRjq7ULswWFcsQ+SjD0EsKvQcUyKjUDx7Lspuv8sQraIV1Ur9qCrE43/CtPtXmPb86rmVfs8+\n+7cIAuSkNuWtqN3g6tgJclIbKM1baMsa1SRFgXnLZtg+/QjW/6yEUFLs82VHvytQdvNtsN8wrEZD\nc6idO8FElkVs3BiBpUtdWLtWqhRCmzf3htAePerGuMxgwnPHuAIVSIN84Jd/EhNVbN0KZGXxSkIX\nzj7qJji7pyL6nrEw7/oFjv5XoXDha6E9+1wQoDRtBkfTZnBcN9h7ODdXC6h7ftVaVHfv8nSFC6oK\n0+FD2lCHFcs936NarZATW0Fu3QZy6yTISW20j9ZJUBo1rlbgF49kwPbvT2Bb9imko1k+X3O1ag37\nLbej7KZbobSMv+jXoOD3008iHnooDIcPAxX/LTZvrmDoUC2EpqYyhBLVpJAKpAkJ2ruqrCwRilL3\nJwtT4CitWiP/m/9BPHYUSnyC4VpFjUJt0ADOq66G86qrPceEgtMw/bZHC6fl3f7SwQOeYQ+C3Q7T\ngTTPeN2KlIjI8pCapN1WCK1qbP0qyyAUFsC66kvYPv0I5m1bfJ8vKhr2EaNQdvPtcPXqzXoMccXF\nwNy5Vrzzjhmqqv0tNGumhdDhw7WWUP6fIKodfgdSh8OBWbNmYe3atbDZbBg3bhzGjh17zu/Jzs7G\n0KFD8fbbb6Nnz54XXdjqSkzU/gGWlQk4eVJAkyaGHq1ARiOK3ILxIqjR9eC89HI4L73ce7CkBFL6\nYZgyDkNKPwwpI127PZIO8dQpz8PE4iKIe36Fec+vlZ5XiY31bVVt1hyWDethXf0VhFLvkBxVFOG8\n4iqU3XoH7INuAMLCavLHpSCxebOEhx6yIStLS5z16ql46SUBw4aVQlHYJUxU2/wOpPPnz8e+ffuw\nZMkSZGdnY9q0aWjevDkGDjz7Ht2zZs1CWfkSOnpyt5ACQGamiCZNuPQTkS7CwyF37gK5c5dKXxLy\nTnkDakY6pIzDkDIyIKUfhlhc5HmcmJcHced2mHdur/IlXO3ao+zm22G/6RZDTTojfRUVAbNnW7F4\nsXddpOuuc+HFFx3o2DEceXna3gNEVLv8CqSlpaVYvnw5Fi1ahOTkZCQnJ2PChAlYunTpWQPpqlWr\nUFJSEpDCVldiordFNDNTQJ8+OhaGiKqkxtaHK7U+XKln9KaoKoSTJ7VW1TMD65EMCHY7lJgY2Efd\nhLJbboerWw92yZOPDRskPPKIDceOaa2isbEq5swpw6hRLpjN7Jsn0pNfgTQtLQ2yLKNbt26eY6mp\nqXjrrbeqfHxeXh5eeOEFvPfee7jhhtrdz7sqcXEqIiJUFBcLyMzkxYcoqAgC1MaN4WzcWFuSqSJF\ngXjyBJT6cahzK4JTtRUUALNmWbF0qfdvY8gQJ+bNs6NRIw7dIjICv1JZTk4OYmJiYKqwG0lcXBzs\ndjvyztgLGwDmzZuHkSNHIikpqfolDQBB8I4jdY8bIqI6QBShNGnKMEqVrFsnoV+/CE8YbdBAwaJF\npXjvvTKGUSID8bvL3nLGBd993+Fw+Bz/8ccf8csvv2D27NnVKqAkBTY4tmqlYu9eLZCaTAylF8Nd\nJ4GuGwoM1o9xsW5qT14e8MQTFnz6qdlz7MYbXZg3z464OODM9hjWjbGxfowrUHXiVyC1Wq2Vgqf7\nfliFmat2ux0zZ87ErFmzKgVYf0VHB3ZGbHIy8NVXwNGjUkAWcg1lga4bCizWj3GxbmrWl18C990H\nHD+u3W/SBHjzTWD4cBPO92+PdWNsrJ+6y69A2rhxY+Tn50NRFIjli7Pl5ubCZrMhusImurt370Z2\ndjYmT56MihtBTZw4ESNGjMCsWbMu+DULCkohy4Gb8tikiQmAFSdPAkePFiMqKmBPHTIkSUR0dFjA\n64YCg/VjXKybmpWbC0yfbsWKFd5/bbfd5sSzzzoQE6O1mp4N68bYWD/G5a6b6vIrkHbo0AEmkwm7\ndu1Cjx49AAA7duxASkqKz+O6du2KNWvW+By79tpr8eyzz6Jv375+FVCWlYBuE9aypXepp4wMoFMn\n/mFfrEDXDQUW68e4WDeBparAqlUmPP64Fbm5WmNJs2YKXnihDFdfrV3zXa4Ley7WjbGxfuouvwKp\nzWbD8OHDMXPmTMyZMwcnTpzA4sWLMW/ePABaa2lUVBSsVitatqy8rWKjRo1Qv37Vu6vUljPXImUg\nJSIKXidOCJg+3Yqvv/aOFb3rLgdmzrSjQscdERmc3yNRH3/8caSkpGDMmDGYPXs2pkyZgmuuuQYA\ncPnll2P16tVVfp9gkPUAW7ZUIYraMALuaU9EFJxUFVi2zIT+/SM8YbRlSwXLlpXghRcYRomClvHt\nBwAAIABJREFUjd87NdlsNsydOxdz586t9LW0tMp7Ubvt37/f35eqEWYz0KKFiqNHuRYpEVEwUVWt\nIWHbNglffGHG+vXef2Hjxjnw5JN2REbqWEAiumh+B9K6ICFBwdGjItciJSIyMFkG9u0T8dNPErZu\nlbBtm4Tjx32v24mJChYuLMOll3IraKJgFpKBNDFRwaZNYAspEZGBlJUBv/yiBc+tWyVs3y6hsLDq\noVWNGysYPdqFqVPtCA+v5YISUcCFZCBNSNDGkB47JkCWAUnSuUBERCEoLw/Yvt3d+mnCr7+KcDiq\nDqBt28ro3dv7kZCgwiBTE4goAEIykLq3D3W5BPz+u4D4eG4fR0RU07KzBU/r508/Sdi/v+rWAJNJ\nRZcuCnr1ktGnj4xevWQ0aMDrNFFdFtKBFNC2EI2P59gjIqKacOiQiHfeMWPdOhOys6seJhUeruKS\nS7SWzz59ZPToISOCG+kRhZSQDKRnrkXarx8DKRFRoKgqsHmzhDfesGDt2sr/Zho0UDxd7336yOjU\nSYHZXMUTEVHICMlAWq8eEBurIi9P4FqkREQB4nQCK1ea8MYbFuzZ4+2Ot1hUDBniQr9+Mvr0caF1\na47/JCJfIRlIAa2VNC9P4kx7IqJqOn0a+PBDC95914w///ReU2NjVdx9twPjxjnRuDHHgBLR2YVs\nIE1MVLBrFwMpEdHFysoS8M47Fnz0kRnFxd4mz1atFNxzjwO33OLkWFAiuiAhG0jd40i5OD4RkX92\n7BDxxhsWfP21CYriDaJ9+rhw331ODBzo4nJ6ROSXkA2kiYla99Hp0wLy8oDYWJ0LRERkYLIMrF6t\njQ/dvt2bNiVJxdChLtx3nwPduyvneAYiorML2UBacaZ9VpaI2FheSImIzlRUBHz6qRlvvWXx6VGK\njFRx551OTJzoQMuWHB9KRNUTsoG04lqkmZkiunVjICUicvvzTwGLFpnxwQcWnD7t7ZZv3lzBxIkO\n3HmnE9HROhaQiOqUkA2kTZuqMJtVOJ0Cx5ESUUhwOIDiYqC4WCj/0D4vKfE9tnu3hJUrTXA6vUG0\nWzcZ993nwJAhLq4ZSkQBF7KBVJKA+HgV6ekCMjO5IB4RBZeiImDHDgk//yzh1CnBJ2h6A6Zv0HS5\n/LvWCYKK667TJir16SNz7VAiqjEhG0gBbRxperrIFlIiMrzjxwX89JOEbdu0j99+E31muAeKIKiI\niQGGD3finnscSEri+FAiqnkhHUjd40i5FikRGYmiaHvAu8Pntm0Sjh6t+jplsaho0kRFRISK8HCU\n36qIiNA+9956v36uY2FhYEsoEdW6kA6k7pn2v/8uwOEALBadC0REIcluB3bt0oLnTz9pH/n5VafC\nmBgVvXrJ6NVL2wu+a1cZNlstF5iIKMBCOpC61yJVVQHHjgnsmiKiWpGXB2zZ4m39/PVXCXZ71QE0\nPl5B796y56NtWwUiO3WIqI4J6UB65lqkSUmyjqUhorosI0PAkiUWbNgA7N1b9X6aoqgiJcUbQHv1\nktGkCd8oE1Hdx0Ba7sgREQADKREFjqIA69dLWLTIgu++q3y5DQ9XkZrqbf1MTZURGalDQYmIdBbS\ngTQiAmjYUEFODmfaE1Hg5OcDn3xixuLFFp9Jk5Kk4oYbBPTpY0fPni506qTAFNJXYSIiTchfChMT\nVeTkgGuRElG17d0r4r33zFi+3IzSUu81pWFDBf/3f06MHSujU6dw5OW54HJxdzgiIreQD6QJCQq2\nb5fYQkpEF8XpBFavNuHdd83YutX3knrJJTLGj3dg6FAXLBbAZOJ1hoioKiEfSN1rkWZliVBVrr9H\nRBfmxAkBS5ea8cEHZhw/7g2aVquKUaNcGDfOga5d2QpKRHQhQj6Quic2lZQIyMkR0KgRZ7QSKQqw\nf7+IrVslbN0q4eBBEfXqqWjYsPJHgwaK5/OIqieP1xmqCuzYIWLRIgv+8x/fvd5btlRw991O3H67\nE3FxvI4QEfkj5AOpey1SQBtHykBKocjhAH79VcTWrSZs3aotzH76tP/dBeHhFcOqUiG0qmjUyPd4\nVFTw9EiUlgJffmnCokUW7N4t+XztiitcGD/egWuvlSFJZ3kCIiI6JwbSRN+1SHv1Yhcb1X3FxcCO\nHVrr57ZtEnbulHwm4VTUtq2MLl0UlJQAOTkicnK03oSSksqPLykRkJUlICsLAM6fzkwmFZIESBIg\nioDJpM1E937ue9z3vvtz73NYrYDNpm1/6b4NC1Nhs1W+7z2uBemKx9y3f/wh4P33zfjoIwvy8rw/\nb2SkiltvdWLsWCfatuU1g4ioukI+kDZqpCIsTEVpqcA97anOyssDtm2TsGWLCdu2Sdi9W4TLVTlQ\nuhdm79vXuzZmw4ZV9xoUF8MTTisG1ZwcAbm5vscLCqoOuy6XAJfrzKPGbTZt107GuHFO3Hyzk+uF\nEhEFUMgHUkHQxpGmpXGmPdUd2dnAN99I2LzZjK1bJaSlVd1aabGo6NFDRp8+2kfPnjKioi7sNSIi\ngIgItXzYy7lbCcvKUCGkakG1sBCQZUCWBSgK4HJp972fC+VfP/Oj8nH34+127bVKSwWUlQFlZQJK\nS7X7paWAovgfdkVRxXXXuTB+vBP9+slBM8yAiCiYhHwgBbRu+7Q0iWuRUtBSVWD3bhErV5rw3/+a\nkZEBALZKj4uMVNGzp4y+fbUA2q2bDFvlhwWczQa0aKGiRQt3a2vt74qmqtoSTe7AWlqqBdaK988M\nsoIADBzoQsuWHFtORFSTGEgBJCRo/2zYQkrBRFWB337TQujKleYq/34bNND2Re/TRwuhHTuG7s5A\nggBYLNpHdLQ7YDJoEhEZQYj+a/Llnth04oSIkhIgPFznAhGdhapquwGtWqWF0CNHfEOoxaLi6qtl\njBhhQteuJWjVil3MRERkfAyk8K5FCgBHj4pITuasWTIOVdXWBHWH0PR03xBqNqu46ioZw4Y5MWiQ\nC/Xri4iNNSEvT61iwhAREZHxMJDCd+mnzEwByck6FoaoXFqa1h2/apUJhw75TkoymVRceaUWQgcP\ndqFePZ0KSUREFAAMpABatlQhCCpUVSgfh1f7Ey6IAODgQW8IPXCgcgjt31/G8OFaS2hsrE6FJCIi\nCjAGUmiLaTdrpuL337kWKdW+w4cFrFxpxqpVJuzf7xtCJUlFv34yhg93YfBgJ+rX16mQRERENYiB\ntFxiooLffxc5055qnN2uLVL/3XcmrF8vVWoJFUUVl10mY8QIF66/3sV90YmIqM5jIC2XkKBg82Zw\nLVKqEVlZAr77zoT//c+ETZukSttuiqKKSy+VMWyYCzfc4Drr7khERER1EQNpOW23GW2WvaJoe2QT\nXazSUmDLFgnr15vw3XemSjPjAW3/9Msvl3H11VpLaOPGDKFERBSaGEjLuZd+cjgE/PmngObNGQ7I\nPxkZQnk3vAk//iihtLRya3u7djIGDNBCaO/etbNLEhERkdExkJaruPRTVpaI5s050z6YnT4NfPqp\nGcXFAmJiVMTGqoiJ8X7ExqqIjq5eS3hxMfDjj5InhFY1IS4iQkX//i4MGCBjwABuQUlERFQVBtJy\nFRfHz8wUcOmlOhaGLpqqAl9+acJTT1lx8uS506YgqIiJgSeg1qvnG1x9QywQG6stNP/991pX/Nat\nEuz2yq2gHTpoLaBXXy2jZ08ZFktN/bRERER1AwNpudhYbX/rggKBM+2DVEaGgGnTbPj+e++fdXi4\nWmkCkZuqCsjLA/LyBBw5cvGvGx2t4oorvK2gTZuyFZSIiMgfDKTlBEFrJd2zR+JapEHGbgdee82C\nhQstnhbLhAQF8+eXYcAAGXY7kJ8vID9fQF6egPx8733vMe+t++P0aS20VqVzZ60VdMAAGampMszm\n2vyJiYiI6hYG0goSE7VAyhbS4PHDDxIee8yKw4e1tTzNZhUPPODAQw85EBamPcZqBRo3Vv2exS7L\nQEEBfIKq3S6gRw+ZM+KJiIgCiIG0Avc4Uq5Fanw5OQKeftqKf//b2zR56aUuLFhgR7t2yjm+88JJ\nkjaUIzZWBcAASkREVFMYSCtwr0V66pSIggIgOlrnAlEligJ89JEZs2dbkZ+vvXGoX1/BrFl23HKL\nCwLfSxAREQUdBtIKKs60z8oS0blzYFraKDD27RMxdaoN27d7t9q84w4HnnrKzj3eiYiIghgDaQUV\n1yLNzGQgNYriYuCFFyx4800LXC6tCTQ5WcaCBXb06cP1YomIiIIdA2kFzZurMJlUuFwCZ9obxJo1\nEh5/3IZjx7T6CAtT8cgjDtx7r4PrexIREdURDKQVmExAixYqMjMFZGVxMKKe/vhDwIwZVvz3v95J\nS9dc48LcuWVISOAEIyIiorqEgfQMCQkKMjNFtpDqxOUC3n3XjPnzrSgu1t4UNGmi4Nln7RgyhJOW\niIiI6iKmrjO4x5FyLdLa9/PPIgYODMc//mFDcbEAUVQxaZIDmzcXY+hQhlEiIqK6ii2kZ3DPtM/O\nFuB0gjvw1CCXC9i/X8SOHRJ+/FHCqlUmz85I3brJeP75MnTpwollREREdR0D6Rnca5HKsoDffxc8\n96n68vKAnTsl7NghYft2CT//LHm65d2iolTMmGHH3Xc7IUlneSIiIiKqUxhIz1BxLdLMTBGJiVxW\n6GIoCnDwoIjt27UAumOHiEOHzp4wW7VS0L+/C4884kCTJnwTQEREFEoYSM9QcS1SbRwpA+mFKCio\n3PpZUFD1oM+wMBXdusno2VPGJZfISE1V0LAhQygREVGoYiA9Q1QUEBen4K+/ONP+bFQVOHgQWLvW\nhG3bBOzYISEtTfSM/zxTy5aKJ3xecomMTp0Ujs0lIiIiD78DqcPhwKxZs7B27VrYbDaMGzcOY8eO\nrfKxq1atwuuvv47jx4+jY8eOePzxx9GlS5dqF7qmJSaq+OsvcC3SM5SUACtWmPHee2b89hsAWCs9\nxmJR0bWr4gmfPXvK7IInIiKic/I7kM6fPx/79u3DkiVLkJ2djWnTpqF58+YYOHCgz+N27NiBJ598\nEnPmzEG3bt3w0UcfYeLEidiwYQPCwsIC9gPUhIQEBTt3SmwhLXf0qIDFiy34+GMz8vJ8Q3qTJt7W\nz549ZXTurMBaOacSERERnZVfgbS0tBTLly/HokWLkJycjOTkZEyYMAFLly6tFEhzc3Nx//33Y8iQ\nIQCA+++/H4sXL8bhw4fRuXPnwP0ENaDiWqSqipBc/1JVgU2bJLz7rhlr1pigKN5fQnKygilTRFx2\nWQkaN5ZD8vdDREREgeNXIE1LS4Msy+jWrZvnWGpqKt56661Kjx00aJDnc7vdjvfffx8NGjRAmzZt\nqlHc2uGeaV9YKODUKQFxcaHT5VxUBCxbpnXLHzjgnRUviioGDXJhwgQnrrhCRf36EcjLU+Fy6VhY\nIiIiqhP8CqQ5OTmIiYmByeT9tri4ONjtduTl5SE2NrbS92zZsgXjx48HADz//POG764H4LP2aFZW\naATSjAytW/6TT8w+s+NjY1XceacDd9/tRMuW2u9BEDiUgYiIiALH7y57i8Xic8x93+FwVPk97du3\nx4oVK7BhwwZMmzYNLVq08GtikyTVfvhp3dr7+bFjEnr1qvUi1ApFAb77TsI775iwbp3vn0KXLjIm\nTnRh1CgXtPcQQvmHt070qBs6P9aPcbFujIt1Y2ysH+MKVJ34FUitVmul4Om+f7aWz/r166N+/fpI\nTk7Grl278Mknn/gVSKOja79FtV49wGoF7HbgxAkbqmj4DWqnTwPvvw+8/jpw6JD3uMkE3HgjMHky\ncOmlEgRBQlUz6d30qBu6cKwf42LdGBfrxthYP3WXX4G0cePGyM/Ph6IoEEUtEefm5sJmsyE6Otrn\nsXv27IEkSejYsaPnWFJSEtLT0/0qYEFBKWS59vczj48Pw6FDIvbtcyIvr+rW32Bz4ICAd98147PP\nTCgq8nbLN2yoYswYJ+6+24VmzbRu+fz8sz+PJImIjg7TrW7o3Fg/xsW6MS7WjbGxfozLXTfV5Vcg\n7dChA0wmE3bt2oUePXoA0JZ3SklJqfTY5cuXIzs7G4sWLfIc27t3Lzp16uRXAWVZgctV+398iYkK\nDh0SkZkp6PL6gbR+vYR//cuCjRt9q7tHDxnjxzswbJjLs1STP5OU9KobujCsH+Ni3RgX68bYWD91\nl18d/zabDcOHD8fMmTOxZ88erFu3DosXL8aYMWMAaK2ldrsdAHDLLbdg27ZtWLJkCbKysvDKK69g\nz549nscanXumfbCvRfrf/5pw663hnjBqsai46SYnvvmmGN98U4KbbnJx3VAiIiLSld9p6/HHH0dK\nSgrGjBmD2bNnY8qUKbjmmmsAAJdffjlWr14NAOjYsSNef/11LFu2DMOHD8emTZvw3nvvoVGjRoH9\nCWqIey3SP/8UUFamc2GqYdEibY/OmBgV06fb8fPPxXj99TL06MF3mERERGQMgqqqhl7TKC+vWJfm\n+W+/lXDXXeEAgM2bi9G2bfAFuBMnBHTtGgFFEfDYY3Y8+mhgxsKaTCJiYyN0qxs6N9aPcbFujIt1\nY2ysH+Ny1011BXd/dA06cy3SYLRqlXeHpVGjnDqXhoiIiKhqDKRnER/vfQcWrONIV6zQuuu7dpXR\nurWhG8KJiIgohAVn0qoFYWFAkybePe2DTWamgJ07ta0/2TpKRERERhZ8SasWBfNM+y+/1FpHBUHF\niBHccJ6IiIiMK/iSVi1yjyMNxjGkK1Zoyzz17SujaVN21xMREZFxMZCeg7uFNCtLhLHXIvC1b5+I\ntDStu37kSLaOEhERkbExkJ6Dey3S0lIBJ08GTyvpF19oraMmk4qhQzl+lIiIiIyNgfQc3C2kAHDk\nSHD8qlQV+OILbfzoVVfJqF9f5wIRERERnUdwpCydVFyLNDMzOFpId+wQcfSoVq0jR7J1lIiIiIyP\ngfQcGjRQER7untgUHL8qd+toWJiKQYM4fpSIiIiMLzhSlk4EwTuONBiWfnK5gC+/1MaPXnedC5GR\nOheIiIiI6AIYP2XprOJMe6P74QcJubnu7nq2jhIREVFwMH7K0pl7HGkwjCF1d9fXq6diwAAGUiIi\nIgoODKTn4W4hzc0VUVSkc2HOoawM+Oorrbt+yBAnrFadC0RERER0gRhIz8M9hhQwdrf9d9+ZUFio\nteKyu56IiIiCiXETlkEESyB1L4bfqJGCyy6TdS4NERER0YUzbsIyiBYtVIiisceRFhYCa9ZogXTE\nCBckSecCEREREfmBgfQ8LBageXNjr0W6erUJZWXu7nouhk9ERETBxZgJy2CMvhape3Z9QoKCHj2U\n8zyaiIiIyFiMmbAMxshrkebmCtiwQeujHzXKCcGYowqIiIiIzsp4CcuA3GuRHjsmQDbYfKH//McE\nWebseiIiIgpeDKQXwN1C6nQK+OMPYzVBumfXd+woIzmZ3fVEREQUfBhIL0DFpZ+MNI40O1vA1q1a\nIB01iq2jREREFJyMk64MzN1CChhrHOmXX5o8n48Ywdn1REREFJyMk64MLCYGiIkx3lqk7tn1PXvK\niI9XdS4NERER0cVhIL1ARptpf+iQiD17vLPriYiIiIKVMdJVEDDaWqQrVmjd9aKoYuhQjh8lIiKi\n4GWMdBUEjNRCqqre7vp+/WQ0asTueiIiIgpe+qerIOFeizQ/X0B+vr5l+fVXERkZWtXdeCO764mI\niCi4MZBeICPNtF+xQmsdtVpVXH89u+uJiIgouDGQXiCjrEUqy97lnq6+2oXoaN2KQkRERBQQDKQX\nqFkzFWaz1m2vZwvp1q0Sjh93d9ezdZSIiIiCHwPpBZIkoGVL/dcidc+uj4xUcc01DKREREQU/BhI\n/aD3THuHA/jqK2386ODBLoSF6VIMIiIiooBiIPWD3muRbtggIS9Pa53l7HoiIiKqKxhI/eBuIf39\ndwEOR+2/vnt2fVycgn795NovABEREVENYCD1g3stUkURkJ1du+NIi4uBb77Rxo8OHeqC2VyrL09E\nRERUYxhI/VBxLdLa7rZfs8aEkhItBI8axclMREREVHcwkPpBz0D6xRda62jz5gp69WJ3PREREdUd\nDKR+iIwEGjas/Zn2+fnAd99pgXTECBdE1hoRERHVIYw2fkpIqP21SL/+2gyn091dz9n1REREVLcw\nkPrJvfRTbbaQuhfDb9tWRkqKcp5HExEREQUXBlI/uceRZmaKUNWaf70TJwT88IMEABg50gVBv02i\niIiIiGoEA6mf3C2kJSUCcnNrPh2uXGmCqrK7noiIiOouBlI/uceQArUzjtS9GH63bjJat66FJlki\nIiKiWsZA6qdWrbxjOGt6HOmRIwJ+/tndXc/WUSIiIqqbGEj91KiRirAw90z7mv31ffml1joqCCpG\njOBi+ERERFQ3MZD6SRC8E5tqsoVUVb2z6y+9VEbTpuyuJyIiorqJgfQi1MZapPv2iThwwDu7noiI\niKiuYiC9CLWxFql7q1CTScWQIRw/SkRERHUXA+lFcHfZHz8uorQ08M+vqsAXX2jjRwcMkFG/fuBf\ng4iIiMgoGEgvgruFFACOHg38r3D7dhHHjmnPy9n1REREVNcxkF6Eml6L1N06Gham4rrrOH6UiIiI\n6jYG0ovQsqUCQdBCaaDHkbpc2u5MADBokAuRkQF9eiIiIiLDYSC9CDYbPMswBXot0k2bJOTmsrue\niIiIQgcD6UWqqZn27u76evVUXHWVHNDnJiIiIjIik94FCFYJCSp+/LH6Y0gVBdi/X8TGjRI2bTLh\n+++1tUeHDnXCag1ESYmIiIiMjYH0IrlbSI8eFaEogOhHQ2lWloBNm0zYuFHCDz94u+gruvVWdtcT\nERFRaGAgvUjutUjtdgHHjwto1uzsW3vm5gr44QcJmzZJ2LjRdNZu/pQUGf36yRg82IVevZQqH0NE\nRERU1/gdSB0OB2bNmoW1a9fCZrNh3LhxGDt2bJWP3bBhAxYuXIisrCzEx8djypQpGDBgQLULbQQV\n1yLNyhLRrJl3vGdREbBtmxY+N26UsHevVOVzJCQo6N/fhf79ZVx2mYwGDbhfPREREYUevwPp/Pnz\nsW/fPixZsgTZ2dmYNm0amjdvjoEDB/o8Li0tDZMnT8b06dPRv39/bNy4EQ8++CA+//xztG/fPmA/\ngF4qrkV66JAIUUT5OFAJO3dKcDorjy1t0EBBv34y+veX0a+fC/HxDKBEREREfgXS0tJSLF++HIsW\nLUJycjKSk5MxYcIELF26tFIg/frrr9G3b1/ccccdAIA77rgD69evx+rVq+tEIK1fX0VUlIrCQgGP\nPmqr8jERESouvVQLn/37y+jQQYEQ+HX0iYiIiIKaX4E0LS0NsiyjW7dunmOpqal46623Kj125MiR\ncDorT8wpKiq6iGIajyAAbdoo+OUXb3e82azikku0caD9+sno0UOG2axjIYmIiIiCgF+BNCcnBzEx\nMTCZvN8WFxcHu92OvLw8xMbGeo63bt3a53sPHTqErVu34vbbb69mkY3jqafsePttM1q3VtG/vwu9\ne8uIiNC7VERERETBxe8ue4vF4nPMfd/hcJz1+06dOoXJkycjNTUVV199tV8FlCTjrt1/5ZUqrryy\n4s9t3LIGkrtOjFw3oYz1Y1ysG+Ni3Rgb68e4AlUnfgVSq9VaKXi674eFhVX5Pbm5uRg7diwEQcDL\nL7/sdwGjo6t+XtIf68bYWD/GxboxLtaNsbF+6i6/Ym3jxo2Rn58PRfEueZSbmwubzYbo6OhKjz9x\n4gTuuOMOyLKMJUuW+HTpExEREREBfgbSDh06wGQyYdeuXZ5jO3bsQEpKSqXHlpaWYsKECTCbzVi6\ndCkaNGhQ/dISERERUZ3jVyC12WwYPnw4Zs6ciT179mDdunVYvHgxxowZA0BrLbXb7QCAN998E9nZ\n2Zg7dy4URUFubi5yc3PrzCx7IiIiIgoMQVVVv1ZnLysrw9NPP41vv/0WUVFRmDBhAu666y4AQHJy\nMubNm4cRI0Zg8ODByMzMrPT9I0aMwNy5cwNSeCIiIiIKfn4HUiIiIiKiQOL6CURERESkKwZSIiIi\nItIVAykRERER6YqBlIiIiIh0xUBKRERERLoyZCB1OByYMWMGevbsiX79+mHx4sV6F4nKrVu3DsnJ\nyejQoYPndsqUKXoXK+Q5HA4MHToU27dv9xzLzs7G2LFj0b17dwwZMgSbN2/WsYShq6q6eeaZZyqd\nRx999JGOpQwtJ06cwIMPPojevXvjiiuuwLx58zzbYPO80de56obnjf6OHj2K8ePHo3v37hgwYAAW\nLVrk+Vp1zx2/9rKvLfPnz8e+ffuwZMkSZGdnY9q0aWjevDkGDhyod9FC3uHDhzFgwAA888wzcK8Y\nZrVadS5VaHM4HHj44Ydx+PBhn+P3338/kpOT8fnnn2PdunV44IEHsHr1ajRp0kSnkoaes9VNRkYG\nHn30UYwcOdJzLDIysraLF7IefPBBxMTE4OOPP0Z+fj5mzJgBSZIwdepU/O1vf0OHDh143ujkXHXD\n80Zfqqpi0qRJ6Nq1K1auXInMzEw8/PDDaNKkCW644YZqnzuGayEtLS3F8uXL8eSTTyI5ORnXXHMN\nJkyYgKVLl+pdNAKQnp6Otm3bon79+oiLi0NcXBwvCDpKT0/HzTffjOzsbJ/jW7ZswbFjx/DPf/4T\nrVu3xqRJk9CtWzcsX75cp5KGnrPVjftrHTt29JxDcXFxfGNXSzIyMrB7927MnTsXSUlJSE1NxYMP\nPoivvvoKW7duRXZ2Ns8bnZyrbgCeN3rLzc1Fx44dMXPmTMTHx6N///7o27cvdu7cGZBzx3CBNC0t\nDbIso1u3bp5jqamp2L17t46lIrf09HS0atVK72JQuZ9++gl9+/bFZ599hop7XOzevRudOnXyuVin\npqZi165dehQzJJ2tboqKinDixAkkJibqV7gQ1rBhQ7z77ruoX7++z/HCwkL8+uuvPG8ZFkYbAAAG\nK0lEQVR0VFXdqKqKwsJCnjcG0LBhQ7z44osIDw8HAOzcuRM7duxAr169AnLuGK7LPicnBzExMTCZ\nvEWLi4uD3W5HXl4eYmNjdSwdHTlyBJs2bcIbb7wBRVEwaNAgPPjggzCbzXoXLSTddtttVR7PyclB\no0aNfI7FxcXhxIkTtVEswtnrJiMjA4Ig4I033sDGjRsRExODsWPHYsSIEbVcwtAUFRWFyy67zHNf\nVVUsXboUffv25Xmjs7PVzaWXXsrzxmAGDBiAP//8E1deeSUGDhyIOXPmVPvcMVwgLS0thcVi8Tnm\nvu8e2Ez6+OOPP1BWVgar1YqXX34Z2dnZeOaZZ2C32zFjxgy9i0cVnO084jmkv4yMDIiiiKSkJNx1\n11346aef8NRTTyEyMhLXXHON3sULOQsWLMD+/fuxfPlyLF68mOeNgSxYsABpaWlYvnw5fvvtN543\nBvLqq68iNzcXs2bNwpw5cwLyP8dwgdRqtVb6Adz3w8LC9CgSlWvWrBm2bduG6OhoAEBycjIURcFj\njz2Gxx9/HIIg6FxCcrNarTh9+rTPMYfDAZvNplOJyG3EiBEYMGCA5zxq164dMjMz8cknn/Afay17\n7rnnsGTJEixcuBBt2rTheWMgZ9ZNmzZteN4YSKdOnQAA06dPx6OPPorRo0ejoKDA5zH+njuGG0Pa\nuHFj5OfnQ1EUz7Hc3FzYbDbPHyLp58w6SEpKgt1uR35+vk4loqo0btwYOTk5Psdyc3PRsGFDnUpE\nFZ15HrVu3RonT57UqTShafbs2fjggw/w3HPPeQINzxtjqKpuAJ43evvrr7+wbt06n2Nt2rSB0+lE\nw4YNq33uGC6QdujQASaTyWcg7I4dO5CSkqJjqQgAfvjhB/Tu3Rt2u91zbN++fYiJieHYXoPp2rUr\n9u3b59PbsHPnTp/JgqSPV155BWPHjvU5tn//fk4WrEWvvfYaPvvsM7z00ksYPHiw5zjPG/2drW54\n3ugvOzsbkydP9nkTsGfPHsTFxSE1NRV79+6t1rljuEBqs9kwfPhwzJw5E3v27MG6deuwePFijBkz\nRu+ihbzu3bsjLCwMTzzxBI4cOYLvv/8ezz33HCZOnKh30egMvXr1QtOmTTF9+nQcPnwYb7/9Nvbs\n2YPRo0frXbSQd9VVV2H79u1YvHgxjh07ho8//hirVq3ChAkT9C5aSEhPT8cbb7yBSZMmoXv37sjN\nzfV88LzR17nqhueN/jp37oyUlBTMmDED6enp+P777/H888/jvvvuQ8+ePat97ghqxfVIDKKsrAxP\nP/00vv32W0RFRWHChAm466679C4WQbtgzJkzB7t27UJERARuvfVW/O1vf9O7WAStd+HDDz9Ez549\nAQDHjh3DjBkzsHv3bsTHx+OJJ55Anz59dC5laDqzbtavX4+XX34ZWVlZaN68Of7+979zHFwtefvt\nt/HSSy/5HFNVFYIgYP/+/Th69CieeOIJnjc6OF/d8LzRX05ODmbPno0tW7YgLCwMd955JyZNmgSg\n+v9zDBlIiYiIiCh0GK7LnoiIiIhCCwMpEREREemKgZSIiIiIdMVASkRERES6YiAlIiIiIl0xkBIR\nERGRrhhIiYiIiEhXDKREREREpCsGUiIiIiLSFQMpEVENS05Oxpdffql3MYiIDIuBlIiIiIh0xUBK\nRERERLpiICUiqkU5OTkYNGgQxo8fD4fDoXdxiIgMgYGUiKiWnDp1CmPHjkV8fDzeeOMNWCwWvYtE\nRGQIDKRERLUgLy8PY8eORfPmzfH6668zjBIRVWDSuwBERKHgpZdegsvlQufOnWE2m/UuDhGRobCF\nlIioFlx22WV45ZVXsHz5cvz44496F4eIyFAYSImIasF1112Ha665Btdffz2efPJJlJSU6F0kIiLD\nYCAlIqpFTzzxBIqLizFv3jy9i0JEZBgMpERENUwQBM/ncXFxeOyxx7Bs2TJs3bpVx1IRERmHoKqq\nqnchiIiIiCh0sYWUiIiIiHTFQEpEREREumIgJSIiIiJdMZASERERka4YSImIiIhIVwykRERERKQr\nBlIiIiIi0hUDKRERERHpioGUiIiIiHTFQEpEREREumIgJSIiIiJd/T93I1aQYEuMwgAAAABJRU5E\nrkJggg==\n", "text/plain": [ "<matplotlib.figure.Figure at 0xef4e748>" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "LOOs = []\n", "MSEs = []\n", "K=30\n", "Ks = range(1,K+1)\n", "for k in Ks:\n", " knn = neighbors.KNeighborsRegressor(n_neighbors=k)\n", " LOOs.append(loo_risk(X1,y,knn))\n", " MSEs.append(emp_risk(X1,y,knn))\n", "\n", "plt.plot(Ks,LOOs,'r',label=\"LOO risk\")\n", "plt.title(\"Risks for kNN Regression\")\n", "plt.plot(Ks,MSEs,'b',label=\"Emp risk\")\n", "plt.legend()\n", "_ = plt.xlabel('k')" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "For this one dimensional nearest neighbor method, we have a more significant cost of overfitting (k small) when the variance dominates. " ] } ], "metadata": { "anaconda-cloud": {}, "kernelspec": { "display_name": "Python [default]", "language": "python", "name": "python2" }, "language_info": { "codemirror_mode": { "name": "ipython", "version": 2 }, "file_extension": ".py", "mimetype": "text/x-python", "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython2", "version": "2.7.12" }, "nav_menu": {}, "toc": { "navigate_menu": true, "number_sections": true, "sideBar": true, "threshold": 6, "toc_cell": false, "toc_section_display": "block", "toc_window_display": true }, "toc_position": { "height": "616px", "left": "0px", "right": "20px", "top": "106px", "width": "213px" } }, "nbformat": 4, "nbformat_minor": 0 }
mit
jsaudino/75.06_tp1_acs
old/Fabi Parte TP.ipynb
3
548860
{ "cells": [ { "cell_type": "code", "execution_count": 4, "metadata": { "collapsed": false }, "outputs": [], "source": [ "# magic function para hacer que los graficos de matplotlib se renderizen en el notebook.\n", "%matplotlib inline\n", "\n", "import datetime as datetime\n", "import pandas as pd\n", "import numpy as np\n", "import seaborn as sns\n", "import matplotlib.pyplot as plt\n", "\n", "plt.style.use('default') # Make the graphs a bit prettier\n", "plt.rcParams['figure.figsize'] = (15, 5)" ] }, { "cell_type": "code", "execution_count": 5, "metadata": { "collapsed": false }, "outputs": [], "source": [ "#Cargo los datos pero parseando las fechas a DataTime\n", "trip = pd.read_csv('trip.csv', parse_dates=['start_date','end_date'])" ] }, { "cell_type": "code", "execution_count": 6, "metadata": { "collapsed": false }, "outputs": [ { "data": { "text/html": [ "<div>\n", "<table border=\"1\" class=\"dataframe\">\n", " <thead>\n", " <tr style=\"text-align: right;\">\n", " <th></th>\n", " <th>id</th>\n", " <th>duration</th>\n", " <th>start_date</th>\n", " <th>start_station_name</th>\n", " <th>start_station_id</th>\n", " <th>end_date</th>\n", " <th>end_station_name</th>\n", " <th>end_station_id</th>\n", " <th>bike_id</th>\n", " <th>subscription_type</th>\n", " <th>zip_code</th>\n", " </tr>\n", " </thead>\n", " <tbody>\n", " <tr>\n", " <th>0</th>\n", " <td>4576</td>\n", " <td>63</td>\n", " <td>2013-08-29 14:13:00</td>\n", " <td>South Van Ness at Market</td>\n", " <td>66</td>\n", " <td>2013-08-29 14:14:00</td>\n", " <td>South Van Ness at Market</td>\n", " <td>66</td>\n", " <td>520</td>\n", " <td>Subscriber</td>\n", " <td>94127</td>\n", " </tr>\n", " <tr>\n", " <th>1</th>\n", " <td>4607</td>\n", " <td>70</td>\n", " <td>2013-08-29 14:42:00</td>\n", " <td>San Jose City Hall</td>\n", " <td>10</td>\n", " <td>2013-08-29 14:43:00</td>\n", " <td>San Jose City Hall</td>\n", " <td>10</td>\n", " <td>661</td>\n", " <td>Subscriber</td>\n", " <td>95138</td>\n", " </tr>\n", " <tr>\n", " <th>2</th>\n", " <td>4130</td>\n", " <td>71</td>\n", " <td>2013-08-29 10:16:00</td>\n", " <td>Mountain View City Hall</td>\n", " <td>27</td>\n", " <td>2013-08-29 10:17:00</td>\n", " <td>Mountain View City Hall</td>\n", " <td>27</td>\n", " <td>48</td>\n", " <td>Subscriber</td>\n", " <td>97214</td>\n", " </tr>\n", " <tr>\n", " <th>3</th>\n", " <td>4251</td>\n", " <td>77</td>\n", " <td>2013-08-29 11:29:00</td>\n", " <td>San Jose City Hall</td>\n", " <td>10</td>\n", " <td>2013-08-29 11:30:00</td>\n", " <td>San Jose City Hall</td>\n", " <td>10</td>\n", " <td>26</td>\n", " <td>Subscriber</td>\n", " <td>95060</td>\n", " </tr>\n", " <tr>\n", " <th>4</th>\n", " <td>4299</td>\n", " <td>83</td>\n", " <td>2013-08-29 12:02:00</td>\n", " <td>South Van Ness at Market</td>\n", " <td>66</td>\n", " <td>2013-08-29 12:04:00</td>\n", " <td>Market at 10th</td>\n", " <td>67</td>\n", " <td>319</td>\n", " <td>Subscriber</td>\n", " <td>94103</td>\n", " </tr>\n", " <tr>\n", " <th>5</th>\n", " <td>4927</td>\n", " <td>103</td>\n", " <td>2013-08-29 18:54:00</td>\n", " <td>Golden Gate at Polk</td>\n", " <td>59</td>\n", " <td>2013-08-29 18:56:00</td>\n", " <td>Golden Gate at Polk</td>\n", " <td>59</td>\n", " <td>527</td>\n", " <td>Subscriber</td>\n", " <td>94109</td>\n", " </tr>\n", " <tr>\n", " <th>6</th>\n", " <td>4500</td>\n", " <td>109</td>\n", " <td>2013-08-29 13:25:00</td>\n", " <td>Santa Clara at Almaden</td>\n", " <td>4</td>\n", " <td>2013-08-29 13:27:00</td>\n", " <td>Adobe on Almaden</td>\n", " <td>5</td>\n", " <td>679</td>\n", " <td>Subscriber</td>\n", " <td>95112</td>\n", " </tr>\n", " <tr>\n", " <th>7</th>\n", " <td>4563</td>\n", " <td>111</td>\n", " <td>2013-08-29 14:02:00</td>\n", " <td>San Salvador at 1st</td>\n", " <td>8</td>\n", " <td>2013-08-29 14:04:00</td>\n", " <td>San Salvador at 1st</td>\n", " <td>8</td>\n", " <td>687</td>\n", " <td>Subscriber</td>\n", " <td>95112</td>\n", " </tr>\n", " <tr>\n", " <th>8</th>\n", " <td>4760</td>\n", " <td>113</td>\n", " <td>2013-08-29 17:01:00</td>\n", " <td>South Van Ness at Market</td>\n", " <td>66</td>\n", " <td>2013-08-29 17:03:00</td>\n", " <td>South Van Ness at Market</td>\n", " <td>66</td>\n", " <td>553</td>\n", " <td>Subscriber</td>\n", " <td>94103</td>\n", " </tr>\n", " <tr>\n", " <th>9</th>\n", " <td>4258</td>\n", " <td>114</td>\n", " <td>2013-08-29 11:33:00</td>\n", " <td>San Jose City Hall</td>\n", " <td>10</td>\n", " <td>2013-08-29 11:35:00</td>\n", " <td>MLK Library</td>\n", " <td>11</td>\n", " <td>107</td>\n", " <td>Subscriber</td>\n", " <td>95060</td>\n", " </tr>\n", " </tbody>\n", "</table>\n", "</div>" ], "text/plain": [ " id duration start_date start_station_name \\\n", "0 4576 63 2013-08-29 14:13:00 South Van Ness at Market \n", "1 4607 70 2013-08-29 14:42:00 San Jose City Hall \n", "2 4130 71 2013-08-29 10:16:00 Mountain View City Hall \n", "3 4251 77 2013-08-29 11:29:00 San Jose City Hall \n", "4 4299 83 2013-08-29 12:02:00 South Van Ness at Market \n", "5 4927 103 2013-08-29 18:54:00 Golden Gate at Polk \n", "6 4500 109 2013-08-29 13:25:00 Santa Clara at Almaden \n", "7 4563 111 2013-08-29 14:02:00 San Salvador at 1st \n", "8 4760 113 2013-08-29 17:01:00 South Van Ness at Market \n", "9 4258 114 2013-08-29 11:33:00 San Jose City Hall \n", "\n", " start_station_id end_date end_station_name \\\n", "0 66 2013-08-29 14:14:00 South Van Ness at Market \n", "1 10 2013-08-29 14:43:00 San Jose City Hall \n", "2 27 2013-08-29 10:17:00 Mountain View City Hall \n", "3 10 2013-08-29 11:30:00 San Jose City Hall \n", "4 66 2013-08-29 12:04:00 Market at 10th \n", "5 59 2013-08-29 18:56:00 Golden Gate at Polk \n", "6 4 2013-08-29 13:27:00 Adobe on Almaden \n", "7 8 2013-08-29 14:04:00 San Salvador at 1st \n", "8 66 2013-08-29 17:03:00 South Van Ness at Market \n", "9 10 2013-08-29 11:35:00 MLK Library \n", "\n", " end_station_id bike_id subscription_type zip_code \n", "0 66 520 Subscriber 94127 \n", "1 10 661 Subscriber 95138 \n", "2 27 48 Subscriber 97214 \n", "3 10 26 Subscriber 95060 \n", "4 67 319 Subscriber 94103 \n", "5 59 527 Subscriber 94109 \n", "6 5 679 Subscriber 95112 \n", "7 8 687 Subscriber 95112 \n", "8 66 553 Subscriber 94103 \n", "9 11 107 Subscriber 95060 " ] }, "execution_count": 6, "metadata": {}, "output_type": "execute_result" } ], "source": [ "#Observacion de los tipos de datos\n", "trip.head(10)" ] }, { "cell_type": "code", "execution_count": 7, "metadata": { "collapsed": false }, "outputs": [ { "data": { "text/plain": [ "[<matplotlib.text.Text at 0xbe7fd90>,\n", " <matplotlib.text.Text at 0xbe9c2d0>,\n", " <matplotlib.text.Text at 0xbe739d0>,\n", " <matplotlib.text.Text at 0xcfe6510>,\n", " <matplotlib.text.Text at 0xf1f2f90>,\n", " <matplotlib.text.Text at 0x13f95310>,\n", " <matplotlib.text.Text at 0x13f95690>]" ] }, "execution_count": 7, "metadata": {}, "output_type": "execute_result" }, { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAABPQAAAIKCAYAAACk8RE8AAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAAPYQAAD2EBqD+naQAAIABJREFUeJzs3Xl4Tnf+//FXFkkkcSeCbBWxFiGtXtEStUuFhFIp1VFC\nVfyUtvhSTFHb1Jd2UGoZrbVfZoqqQVtLS2tKaolaGmsVaUuiI5I0iGzn94fJGbckRNwatz4f13Vf\nk/uc9znnfZbeV/uazznHwTAMQwAAAAAAAADsgmNZNwAAAAAAAACg5Aj0AAAAAAAAADtCoAcAAAAA\nAADYEQI9AAAAAAAAwI4Q6AEAAAAAAAB2hEAPAAAAAAAAsCMEegAAAAAAAIAdIdADAAAAAAAA7AiB\nHgAAAAAAAGBHCPQAAECZat26tVq3bn3buq+++koODg766quvbLbtvn37qnr16qVevnr16urbt6/N\n+rnX2z1z5owcHBy0dOlSm/dkj4o6/w4ODpowYcI93e69OA+/R98AAOD+QaAHAMAfyKlTpzRw4EDV\nrFlTbm5uslgsevLJJ/Xuu+/q6tWr92y7R44c0YQJE3TmzJl7tg0AAADgj8K5rBsAAAC/j08//VTd\nu3eXq6ur+vTpo4YNGyo7O1vffPONRo4cqcTERC1cuPCebPvIkSOaOHGiWrduXWhE1JYtW+7JNh9k\nx48fl6Pjnf//ssHBwbp69arKlSt3D7p6MFy9elXOzvwrMgAAuL/xbysAAPwBnD59Wj179lRwcLC2\nbdumgIAAc97gwYP1ww8/6NNPPy2T3lxcXMpku/bM1dW1VMs5ODjIzc3Nxt3cH65cuSJ3d/e7Xs+D\nenwAAMCDhVtuAQD4A5g+fboyMzO1aNEiqzCvQO3atfXaa6+Z35csWaK2bdvK19dXrq6uCgkJ0fz5\n8wstV716dXXq1EnffPONnnjiCbm5ualmzZpavny5WbN06VJ1795dktSmTRs5ODhYPQuvqGfo/fzz\nz+ratas8PDzk6+urYcOG6dq1a4W2/69//Uvdu3dXtWrV5OrqqqCgIA0bNqzI24fXrVunhg0bys3N\nTQ0bNtQnn3xSomMnSYZhaMqUKapatarc3d3Vpk0bJSYmFlmblpamoUOHKigoSK6urqpdu7amTZum\n/Pz8W26jU6dOqlmzZpHzwsPD1bhxY/P7zc/QS01N1YgRIxQaGipPT09ZLBZ17NhRBw8etFpPcc9u\nO3bsmJ599ln5+PjIzc1NjRs31vr1661qcnJyNHHiRNWpU0dubm6qVKmSmjdvrq1bt95yv5YuXSoH\nBwft2LFDAwcOVKVKlWSxWNSnTx9dunSpUP28efPUoEEDubq6KjAwUIMHD1ZaWppVTevWrdWwYUMl\nJCSoZcuWcnd315///Odb9lHS83/zs+jOnj2rl19+WXXr1lX58uVVqVIlde/evcS3j6elpalv377y\n8vKSt7e3YmNjC+1PgZKch5K6277/8Y9/KCwsTBUqVJDFYlFoaKjefffdQvt2u2u94Jp75513NHfu\nXNWsWVPu7u5q3769fvrpJxmGocmTJ6tq1aoqX768unTpotTUVKvt/POf/1R0dLQCAwPl6uqqWrVq\nafLkycrLy7OqK7gujhw5ojZt2sjd3V0PPfSQpk+fblWXnZ2t8ePHKywsTF5eXvLw8FCLFi20ffv2\nOzjCAACULUboAQDwB7BhwwbVrFlTzZo1K1H9/Pnz1aBBAz399NNydnbWhg0b9PLLLys/P1+DBw+2\nqv3hhx/07LPPqn///oqNjdXixYvVt29fhYWFqUGDBmrZsqVeffVVzZ49W3/+859Vv359STL/92ZX\nr15Vu3btlJSUpFdffVWBgYH68MMPtW3btkK1q1ev1pUrVzRo0CBVqlRJe/bs0Zw5c/Tzzz9r9erV\nZt2WLVsUExOjkJAQTZ06VRcvXlS/fv1UtWrVEh2P8ePHa8qUKYqKilJUVJT279+v9u3bKzs726ru\nypUratWqlX755RcNHDhQ1apV065duzRmzBidP39es2bNKnYbzz33nPr06aO9e/fq8ccfN6efPXtW\n3377rd5+++1il/3xxx+1bt06de/eXTVq1FBKSor+9re/qVWrVjpy5IgCAwOLXTYxMVFPPvmkHnro\nIY0ePVoeHh5atWqVunbtqo8//ljPPPOMJGnChAmaOnWqXnrpJT3xxBPKyMjQvn37tH//fj311FO3\nPYZDhgyRt7e3JkyYoOPHj2v+/Pk6e/as+bKTgm1MnDhRERERGjRokFm3d+9e7dy50+pW4YsXL6pj\nx47q2bOnXnjhBfn5+RW77bs5/3v37tWuXbvUs2dPVa1aVWfOnNH8+fPVunVrHTly5JajAg3DUJcu\nXfTNN9/o//2//6f69evrk08+UWxsbKHakp6Hkrqbvrdu3arnn39e7dq107Rp0yRJR48e1c6dO83g\n/06v9RUrVig7O1uvvPKKUlNTNX36dPXo0UNt27bVV199pVGjRumHH37QnDlzNGLECC1evNhcdunS\npfL09NTw4cPl6empbdu2afz48crIyCj0z8WlS5fUoUMHdevWTT169NCaNWs0atQohYaGqmPHjpKk\njIwMffDBB3r++ec1YMAA/fbbb1q0aJEiIyO1Z88eNWrU6I6ONQAAZcIAAAAPtPT0dEOS0aVLlxIv\nc+XKlULTIiMjjZo1a1pNCw4ONiQZO3bsMKdduHDBcHV1Nf7nf/7HnLZ69WpDkrF9+/ZC623VqpXR\nqlUr8/usWbMMScaqVavMaZcvXzZq165daB1F9Tl16lTDwcHBOHv2rDmtUaNGRkBAgJGWlmZO27Jl\niyHJCA4OLvIY3Lg/Li4uRnR0tJGfn29O//Of/2xIMmJjY81pkydPNjw8PIwTJ05YrWP06NGGk5OT\nkZSUVOx20tPTCx03wzCM6dOnF9qf4OBgq+1mZWUZeXl5VsudPn3acHV1NSZNmmQ1TZKxZMkSc1q7\ndu2M0NBQIysry5yWn59vNGvWzKhTp4457dFHHzWio6OL7b84S5YsMSQZYWFhRnZ2ttV+STL++c9/\nGobx3+Pcvn17q3157733DEnG4sWLzWmtWrUyJBkLFiwoUQ93cv4lGW+++ab5vahrLD4+3pBkLF++\n/JbbXbdunSHJmD59ujktNzfXaNGiRanPQ3Fs2fdrr71mWCwWIzc3t9iakl7rBddclSpVrI7/mDFj\nDEnGo48+auTk5JjTn3/+ecPFxcXqOBS1LwMHDjTc3d2t6gquixv379q1a4a/v78RExNjTsvNzTWu\nXbtmtb5Lly4Zfn5+xosvvljsPgMAcD/hllsAAB5wGRkZkqQKFSqUeJny5cubf6enp+vf//63WrVq\npR9//FHp6elWtSEhIWrRooX5vUqVKqpbt65+/PHHUvX72WefKSAgQM8++6w5zd3dXXFxcbfs8/Ll\ny/r3v/+tZs2ayTAMfffdd5Kk8+fP68CBA4qNjZWXl5dZ/9RTTykkJOS2/XzxxRfmyKKCkWSSNHTo\n0EK1q1evVosWLVSxYkX9+9//Nj8RERHKy8vTjh07it1OwW2yq1atkmEY5vSPPvpITZs2VbVq1Ypd\n1tXV1XxJRl5eni5evChPT0/VrVtX+/fvL3a51NRUbdu2TT169NBvv/1m9nvx4kVFRkbq5MmT+uWX\nXyRJ3t7eSkxM1MmTJ4s/WLcQFxdnNcJu0KBBcnZ21meffSbpv8d56NChVi/8GDBggCwWS6FnPLq6\nuqpfv3633e7dnv8br7GcnBxdvHhRtWvXlre39y2PrXT9WnZ2dtagQYPMaU5OTnrllVes6u7kPJTU\n3fTt7e2ty5cv3/J26ju91rt37251/Js0aSJJeuGFF6xeQtKkSRNlZ2db7e+N+1JwfFq0aKErV67o\n2LFjVtvx9PTUCy+8YH53cXHRE088YfV75OTkZD67Mz8/X6mpqcrNzVXjxo1ve2wAALhfEOgBAPCA\ns1gskq7/h3BJ7dy5UxEREfLw8JC3t7eqVKliPqPs5kCvqKCpYsWKRT4frSTOnj2r2rVrW4VnklS3\nbt1CtUlJSerbt698fHzk6empKlWqqFWrVlZ9nj17VpJUp06dQssXtc6i+ilq+SpVqqhixYpW006e\nPKlNmzapSpUqVp+IiAhJ0oULF265reeee04//fST4uPjJUmnTp1SQkKCnnvuuVsul5+fr5kzZ6pO\nnTpydXVV5cqVVaVKFR06dKjQ+brRDz/8IMMwNG7cuEI9v/nmm1Y9T5o0SWlpaXr44YcVGhqqkSNH\n6tChQ7fs60Y3Hz9PT08FBASYz3QrOM43nxMXFxfVrFnTnF/goYceKtELVe72/F+9elXjx483nxNX\ncGzT0tJueWwLth0QECBPT89bbvdOzkNJ3U3fL7/8sh5++GF17NhRVatW1YsvvqhNmzZZ1dzptX7z\n70RBuBcUFFTk9Bt/PxITE/XMM8/Iy8tLFotFVapUMUO7m/elatWqhX47ivo9WrZsmR555BHzeZBV\nqlTRp59+ettjAwDA/YJn6AEA8ICzWCwKDAzU999/X6L6U6dOqV27dqpXr55mzJihoKAgubi46LPP\nPtPMmTMLvdzBycmpyPXcOMrsXsjLy9NTTz2l1NRUjRo1SvXq1ZOHh4d++eUX9e3b97YvobgX8vPz\n9dRTT+n1118vcv7DDz98y+U7d+4sd3d3rVq1Ss2aNdOqVavk6OhovlSkOG+99ZbGjRunF198UZMn\nT5aPj48cHR01dOjQWx6HgnkjRoxQZGRkkTW1a9eWJLVs2VKnTp3SP//5T23ZskUffPCBZs6cqQUL\nFuill166ZX/3wo2jtu6lV155RUuWLNHQoUMVHh4uLy8vOTg4qGfPnja7xu7kPJTU3fTt6+urAwcO\naPPmzfr888/1+eefa8mSJerTp4+WLVtm9nwn13pxvxO3+/1IS0tTq1atZLFYNGnSJNWqVUtubm7a\nv3+/Ro0aVarfo//7v/9T37591bVrV40cOVK+vr5ycnLS1KlTderUqSKXBwDgfkOgBwDAH0CnTp20\ncOFCxcfHKzw8/Ja1GzZs0LVr17R+/XqrUTV38wbIm0fM3EpwcLC+//57GYZhtdzx48et6g4fPqwT\nJ05o2bJl6tOnjzn95tsEg4ODJanIW0VvXmdx/RQsf+NbaH/99ddCo35q1aqlzMxMc5TSnfLw8FCn\nTp20evVqzZgxQx999JFatGhxy5daSNKaNWvUpk0bLVq0yGp6WlqaKleuXOxyBftTrly5EvXs4+Oj\nfv36qV+/fsrMzFTLli01YcKEEgV6J0+eVJs2bczvmZmZOn/+vKKioiT99zgfP37c6jhnZ2fr9OnT\npT6md3v+16xZo9jYWP31r381p2VlZRX7ptqbt/3ll18qMzPTapTezdu90/NQEnfTt3R9ZGTnzp3V\nuXNn5efn6+WXX9bf/vY3jRs3TrVr177ra72kvvrqK128eFFr165Vy5YtzemnT58u9TrXrFmjmjVr\nau3atVa/MQWjIQEAsAfccgsAwB/A66+/Lg8PD7300ktKSUkpNP/UqVN69913Jf13hMuNI1rS09O1\nZMmSUm/fw8NDkkoUJkRFRencuXNas2aNOe3KlStauHChVV1RfRqGYe5HgYCAADVq1EjLli2zup1u\n69atOnLkyG37iYiIULly5TRnzhyrbRX1xtoePXooPj5emzdvLjQvLS1Nubm5t93ec889p3PnzumD\nDz7QwYMHb3u7rXT9WNw8InL16tW3fe6ar6+vWrdurb/97W86f/58ofm//vqr+ffFixet5nl6eqp2\n7dq6du3abfuTpIULFyonJ8f8Pn/+fOXm5ppvHo2IiJCLi4tmz55ttS+LFi1Senq6oqOjS7Sdm93t\n+S/q2M6ZM0d5eXm3XTYqKkq5ubmaP3++OS0vL09z5syxqruT81BSd9P3zefa0dFRjzzyiCSZ59sW\n13pJFPXPeXZ2tubNm2fTde7evdu81R0AAHvACD0AAP4AatWqpZUrV+q5555T/fr11adPHzVs2FDZ\n2dnatWuXVq9erb59+0qS2rdvb47OGThwoDIzM/X+++/L19e3yLChJBo1aiQnJydNmzZN6enpcnV1\nVdu2beXr61uodsCAAXrvvffUp08fJSQkKCAgQB9++KHc3d2t6urVq6datWppxIgR+uWXX2SxWPTx\nxx8X+ey+qVOnKjo6Ws2bN9eLL76o1NRUzZkzRw0aNFBmZuYte69SpYpGjBihqVOnqlOnToqKitJ3\n332nzz//vNDot5EjR2r9+vXq1KmT+vbtq7CwMF2+fFmHDx/WmjVrdObMmVuOmJOuh0AVKlTQiBEj\n5OTkpJiYmFvWS9dHYE6aNEn9+vVTs2bNdPjwYa1YscJqpFtx5s6dq+bNmys0NFQDBgxQzZo1lZKS\novj4eP388886ePCgpOsvP2ndurXCwsLk4+Ojffv2ac2aNRoyZMhttyFdD2HatWunHj166Pjx45o3\nb56aN2+up59+WtL14zxmzBhNnDhRHTp00NNPP23WPf7441YvOrhTd3P+O3XqpA8//FBeXl4KCQlR\nfHy8vvjiC1WqVOm22+3cubOefPJJjR49WmfOnFFISIjWrl1b5HPaSnoeSupu+n7ppZeUmpqqtm3b\nqmrVqjp79qzmzJmjRo0aqX79+pJsc62XRLNmzVSxYkXFxsbq1VdflYODgz788MO7uqW/U6dOWrt2\nrZ555hlFR0fr9OnTWrBggUJCQm57PQAAcN/4nd+qCwAAytCJEyeMAQMGGNWrVzdcXFwMT09Po2nT\npsasWbOMq1evmnXr1683HnnkEcPNzc2oXr26MW3aNGPx4sWGJOP06dNmXXBwsBEdHV1oO61atTJa\ntWplNe399983atasaTg5ORmSjO3btxdbe/bsWePpp5823N3djcqVKxuvvfaasWnTJqvlDMMwjhw5\nYkRERBienp5G5cqVjQEDBhgHDx40JBlLliyxWufHH39s1K9f33B1dTVCQkKMtWvXGrGxsUZwcPBt\nj1teXp4xceJEIyAgwChfvrzRunVr4/vvvzeCg4ON2NhYq9rffvvNGDNmjFG7dm3DxcXFqFy5stGs\nWTPjnXfeMbKzs2+7LcMwjF69ehmSjIiIiCLn37zdrKws43/+53/M/p588kkjPj6+0LE9ffp0kcfm\n1KlTRp8+fQx/f3+jXLlyxkMPPWR06tTJWLNmjVkzZcoU44knnjC8vb2N8uXLG/Xq1TP+8pe/3Haf\nlixZYkgyvv76ayMuLs6oWLGi4enpafTq1cu4ePFiofr33nvPqFevnlGuXDnDz8/PGDRokHHp0iWr\nmlatWhkNGjS45XZvVtLzL8l48803ze+XLl0y+vXrZ1SuXNnw9PQ0IiMjjWPHjhV57oty8eJFo3fv\n3obFYjG8vLyM3r17G999912pz0NxbNn3mjVrjPbt2xu+vr6Gi4uLUa1aNWPgwIHG+fPnrepKcq0X\nXHNvv/221bLbt283JBmrV6+2ml5wvezdu9ectnPnTqNp06ZG+fLljcDAQOP11183Nm/eXOj3oLjr\n4ubznJ+fb7z11ltGcHCw4erqajz22GPGxo0bS/x7AADA/cDBMO7xE6sBAABwXzh16pRq166tDz/8\n8K5GvN2JpUuXql+/ftq7d68aN278u2wTAADgQccz9AAAAP4gCm6ZtsWtkAAAACg7PEMPAADgD2Dx\n4sVavHix3N3d1bRp07JuBwAAAHeBEXoAAAB/AHFxcUpNTdXq1avl7e1d1u0AAADgLvAMPQAAAAAA\nAMCOMEIPAAAAAAAAsCMEegAAAAAAAIAd4aUYv7P8/HydO3dOFSpUkIODQ1m3AwAAAAAAgDJiGIZ+\n++03BQYGytGx5OPuCPR+Z+fOnVNQUFBZtwEAAAAAAID7xE8//aSqVauWuJ5A73dWoUIFSddPlMVi\nKeNuAAAAAAAAUFYyMjIUFBRk5kUlRaD3Oyu4zdZisRDoAQAAAAAA4I4fy8ZLMQAAAAAAAAA7QqAH\nAAAAAAAA2BECPQAAAAAAAMCOEOgBAAAAAAAAdoRADwAAAAAAALAjBHoAAAAAAACAHSHQAwAAAAAA\nAOwIgR4AAAAAAABgRwj0AAAAAAAAADtCoAcAAAAAAADYEQI9AAAAAAAAwI4Q6AEAAAAAAAB2hEAP\nAAAAAAAAsCMEegAAAAAAAIAdIdADAAAAAAAA7IhzWTeA+1P10Z+WdQsPjDP/G13WLQAAAAAAgAcI\nI/QAAAAAAAAAO0KgBwAAAAAAANiRMg30duzYoc6dOyswMFAODg5at26dOS8nJ0ejRo1SaGioPDw8\nFBgYqD59+ujcuXNW68jKytLgwYNVqVIleXp6KiYmRikpKVY1qamp6tWrlywWi7y9vdW/f39lZmZa\n1SQlJSk6Olru7u7y9fXVyJEjlZuba1Vz6NAhtWjRQm5ubgoKCtL06dNtfEQAAAAAAACAWyvTQO/y\n5ct69NFHNXfu3ELzrly5ov3792vcuHHav3+/1q5dq+PHj+vpp5+2qhs2bJg2bNig1atX6+uvv9a5\nc+fUrVs3q5pevXopMTFRW7du1caNG7Vjxw7FxcWZ8/Py8hQdHa3s7Gzt2rVLy5Yt09KlSzV+/Hiz\nJiMjQ+3bt1dwcLASEhL09ttva8KECVq4cKGNjwoAAAAAAABQPAfDMIyybkKSHBwc9Mknn6hr167F\n1uzdu1dPPPGEzp49q2rVqik9PV1VqlTRypUr9eyzz0qSjh07pvr16ys+Pl5NmzbV0aNHFRISor17\n96px48aSpE2bNikqKko///yzAgMD9fnnn6tTp046d+6c/Pz8JEkLFizQqFGj9Ouvv8rFxUXz58/X\nG2+8oeTkZLm4uEiSRo8erXXr1unYsWMl3s+MjAx5eXkpPT1dFoultIfrnuOlGLbDSzEAAAAAAEBR\nSpsT2dVbbtPT0+Xg4CBvb29JUkJCgnJychQREWHW1KtXT9WqVTMDvfj4eHl7e5thniRFRETI0dFR\nu3fv1jPPPKP4+HiFhoaaYZ4kRUZGatCgQUpMTNRjjz2m+Ph4tWzZ0gzzCmqmTZumS5cuqWLFikX2\nfO3aNV27ds38npGRYbPjAfzREDTbDkEzAAAAANgvu3kpRlZWlkaNGqXnn3/eTCwLRssVBHwF/Pz8\nlJycbNb4+vpazXd2dpaPj49VzY1hXsE6CuaVtKYoU6dOlZeXl/kJCgq6o/0GAAAAAAAAbmQXgV5O\nTo569OghwzA0f/78sm7njowZM0bp6enm56effirrlgAAAAAAAGDH7vtbbgvCvLNnz2rbtm1W9xP7\n+/srOztbaWlpVqP0UlJS5O/vb9ZcuHDBap25ublKTU21qtmzZ49VTcGbcm+sufntuTfXFMXV1VWu\nrq53tM8AAAAAAABAce7rQK8gzDt58qS2b9+uSpUqWc0PCwtTuXLl9OWXXyomJkaSdPz4cSUlJSk8\nPFySFB4errS0NCUkJCgsLEyStG3bNuXn56tJkyZmzV/+8hdduHDBvD1369atslgsCgkJMWveeOMN\n5eTkqFy5cmZN3bp1i31+HgDgwcezHW2HZzsCAAAAJVOmt9xmZmbqwIEDOnDggCTp9OnTOnDggJKS\nkpSTk6Nnn31W+/bt04oVK5SXl6fk5GQlJycrOztbkuTl5aX+/ftr+PDh2r59uxISEtSvXz+Fh4er\nadOmkqT69eurQ4cOGjBggPbs2aOdO3dqyJAh6tmzpwIDAyVJ7du3V0hIiHr37q2DBw9q8+bNGjt2\nrAYPHmyOrvvTn/4kFxcX9e/fX4mJifroo4/07rvvavjw4WVw5AAAAAAAAPBHVaYj9Pbt26c2bdqY\n3wvCsdjYWE2YMEHr16+XJDVq1Mhque3bt6t169aSpJkzZ8rR0VExMTG6du2aIiMjNW/ePKv6FStW\naMiQIWrXrp1ZO3v2bHO+k5OTNm7cqEGDBik8PFweHh6KjY3VpEmTzBovLy9t2bJFgwcPVlhYmCpX\nrqzx48crLi7OpscEAAAAAAAAuBUHwzCMsm7ijyQjI0NeXl5KT0+3eh7g/YZbyGyHW8hsh+vSdrgu\nbYfr0na4LgEAAPBHU9qcyC7ecgsAAAAAAADgOgI9AAAAAAAAwI4Q6AEAAAAAAAB2hEAPAAAAAAAA\nsCMEegAAAAAAAIAdcS7rBgAAAGBbvH3Zdnj7MgAAuB8xQg8AAAAAAACwIwR6AAAAAAAAgB0h0AMA\nAAAAAADsCIEeAAAAAAAAYEcI9AAAAAAAAAA7QqAHAAAAAAAA2BECPQAAAAAAAMCOEOgBAAAAAAAA\ndoRADwAAAAAAALAjBHoAAAAAAACAHSHQAwAAAAAAAOwIgR4AAAAAAABgRwj0AAAAAAAAADtCoAcA\nAAAAAADYEQI9AAAAAAAAwI4Q6AEAAAAAAAB2hEAPAAAAAAAAsCMEegAAAAAAAIAdIdADAAAAAAAA\n7IhzWTcAAAAA4MFXffSnZd3CA+PM/0aXdQsAgDLGCD0AAAAAAADAjhDoAQAAAAAAAHaEQA8AAAAA\nAACwIwR6AAAAAAAAgB0h0AMAAAAAAADsCIEeAAAAAAAAYEcI9AAAAAAAAAA7QqAHAAAAAAAA2BEC\nPQAAAAAAAMCOEOgBAAAAAAAAdoRADwAAAAAAALAjBHoAAAAAAACAHSHQAwAAAAAAAOwIgR4AAAAA\nAABgRwj0AAAAAAAAADtCoAcAAAAAAADYEQI9AAAAAAAAwI4Q6AEAAAAAAAB2hEAPAAAAAAAAsCME\negAAAAAAAIAdIdADAAAAAAAA7AiBHgAAAAAAAGBHCPQAAAAAAAAAO1Kmgd6OHTvUuXNnBQYGysHB\nQevWrbOabxiGxo8fr4CAAJUvX14RERE6efKkVU1WVpYGDx6sSpUqydPTUzExMUpJSbGqSU1NVa9e\nvWSxWOTt7a3+/fsrMzPTqiYpKUnR0dFyd3eXr6+vRo4cqdzcXKuaQ4cOqUWLFnJzc1NQUJCmT59u\nw6MBAAAAAAAA3F6ZBnqXL1/Wo48+qrlz5xY5f/r06Zo9e7YWLFig3bt3y8PDQ5GRkcrKyjJrhg0b\npg0bNmjsNqSrAAAgAElEQVT16tX6+uuvde7cOXXr1s1qPb169VJiYqK2bt2qjRs3aseOHYqLizPn\n5+XlKTo6WtnZ2dq1a5eWLVumpUuXavz48WZNRkaG2rdvr+DgYCUkJOjtt9/WhAkTtHDhQhsfFQAA\nAAAAAKB4zmW58Y4dO6pjx45FzjMMQ7NmzdLYsWPVpUsXSdLy5cvl5+endevWqWfPnkpPT9eiRYu0\ncuVKtW3bVpK0ZMkS1a9fX99++62aNm2qo0ePatOmTdq7d68aN24sSZozZ46ioqL0zjvvKDAwUFu2\nbNGRI0f0xRdfyM/PT40aNdLkyZM1atQoTZgwQS4uLlqxYoWys7O1ePFiubi4qEGDBjpw4IBmzJhh\nFQ4CAAAAAAAA99J9+wy906dPKzk5WREREeY0Ly8vNWnSRPHx8ZKkhIQE5eTkWNXUq1dP1apVM2vi\n4+Pl7e1thnmSFBERIUdHR+3evdusCQ0NlZ+fn1kTGRmpjIwMJSYmmjUtW7aUi4uLVc3x48d16dKl\nYvfj2rVrysjIsPoAAAAAAAAApXXfBnrJycmSZBWyFXwvmJecnCwXFxd5e3vfssbX19dqvrOzs3x8\nfKxqitrOjX2UpKYoU6dOlZeXl/kJCgq6zZ4DAAAAAAAAxbtvA70HxZgxY5Senm5+fvrpp7JuCQAA\nAAAAAHbsvg30/P39JanQG2tTUlLMef7+/srOzlZaWtotay5cuGA1Pzc3V6mpqVY1RW3nxj5KUlMU\nV1dXWSwWqw8AAAAAAABQWvdtoFejRg35+/vryy+/NKdlZGRo9+7dCg8PlySFhYWpXLlyVjXHjx9X\nUlKSWRMeHq60tDQlJCSYNdu2bVN+fr6aNGli1hw+fNgq+Nu6dassFotCQkLMmh07dignJ8eqpm7d\nuqpYseI9OAIAAAAAAABAYWUa6GVmZurAgQM6cOCApOsvwjhw4ICSkpLk4OCgoUOHasqUKVq/fr0O\nHz6sPn36KDAwUF27dpV0/SUZ/fv31/Dhw7V9+3YlJCSoX79+Cg8PV9OmTSVJ9evXV4cOHTRgwADt\n2bNHO3fu1JAhQ9SzZ08FBgZKktq3b6+QkBD17t1bBw8e1ObNmzV27FgNHjxYrq6ukqQ//elPcnFx\nUf/+/ZWYmKiPPvpI7777roYPH14GRw4AAAAAAAB/VM5lufF9+/apTZs25veCcCw2NlZLly7V66+/\nrsuXLysuLk5paWlq3ry5Nm3aJDc3N3OZmTNnytHRUTExMbp27ZoiIyM1b948q+2sWLFCQ4YMUbt2\n7cza2bNnm/OdnJy0ceNGDRo0SOHh4fLw8FBsbKwmTZpk1nh5eWnLli0aPHiwwsLCVLlyZY0fP15x\ncXH36vAAAAAAAAAAhZRpoNe6dWsZhlHsfAcHB02aNMkqWLuZm5ub5s6dq7lz5xZb4+Pjo5UrV96y\nl+DgYH322We3rHnkkUf0r3/965Y1AAAAAAAAwL103z5DDwAAAAAAAEBhBHoAAAAAAACAHSHQAwAA\nAAAAAOwIgR4AAAAAAABgRwj0AAAAAAAAADtCoAcAAAAAAADYEQI9AAAAAAAAwI4Q6AEAAAAAAAB2\nhEAPAAAAAAAAsCMEegAAAAAAAIAdIdADAAAAAAAA7AiBHgAAAAAAAGBHCPQAAAAAAAAAO0KgBwAA\nAAAAANgRAj0AAAAAAADAjhDoAQAAAAAAAHaEQA8AAAAAAACwIwR6AAAAAAAAgB0h0AMAAAAAAADs\nCIEeAAAAAAAAYEcI9AAAAAAAAAA7QqAHAAAAAAAA2BECPQAAAAAAAMCOEOgBAAAAAAAAdoRADwAA\nAAAAALAjBHoAAAAAAACAHSHQAwAAAAAAAOwIgR4AAAAAAABgRwj0AAAAAAAAADtCoAcAAAAAAADY\nEQI9AAAAAAAAwI4Q6AEAAAAAAAB2hEAPAAAAAAAAsCMEegAAAAAAAIAdIdADAAAAAAAA7AiBHgAA\nAAAAAGBHCPQAAAAAAAAAO0KgBwAAAAAAANgRAj0AAAAAAADAjhDoAQAAAAAAAHaEQA8AAAAAAACw\nIwR6AAAAAAAAgB0h0AMAAAAAAADsCIEeAAAAAAAAYEcI9AAAAAAAAAA7QqAHAAAAAAAA2BECPQAA\nAAAAAMCOEOgBAAAAAAAAdoRADwAAAAAAALAj93Wgl5eXp3HjxqlGjRoqX768atWqpcmTJ8swDLPG\nMAyNHz9eAQEBKl++vCIiInTy5Emr9WRlZWnw4MGqVKmSPD09FRMTo5SUFKua1NRU9erVSxaLRd7e\n3urfv78yMzOtapKSkhQdHS13d3f5+vpq5MiRys3NvXcHAAAAAAAAALjJfR3oTZs2TfPnz9d7772n\no0ePatq0aZo+fbrmzJlj1kyfPl2zZ8/WggULtHv3bnl4eCgyMlJZWVlmzbBhw7RhwwatXr1aX3/9\ntc6dO6du3bpZbatXr15KTEzU1q1btXHjRu3YsUNxcXHm/Ly8PEVHRys7O1u7du3SsmXLtHTpUo0f\nP/7eHwgAAAAAAADgP5zLuoFb2bVrl7p06aLo6GhJUvXq1fX3v/9de/bskXR9dN6sWbM0duxYdenS\nRZK0fPly+fn5ad26derZs6fS09O1aNEirVy5Um3btpUkLVmyRPXr19e3336rpk2b6ujRo9q0aZP2\n7t2rxo0bS5LmzJmjqKgovfPOOwoMDNSWLVt05MgRffHFF/Lz81OjRo00efJkjRo1ShMmTJCLi0sZ\nHCEAAAAAAAD80dzXI/SaNWumL7/8UidOnJAkHTx4UN988406duwoSTp9+rSSk5MVERFhLuPl5aUm\nTZooPj5ekpSQkKCcnByrmnr16qlatWpmTXx8vLy9vc0wT5IiIiLk6Oio3bt3mzWhoaHy8/MzayIj\nI5WRkaHExMRi9+HatWvKyMiw+gAAAAAAAACldV+P0Bs9erQyMjJUr149OTk5KS8vT3/5y1/Uq1cv\nSVJycrIkWYVsBd8L5iUnJ8vFxUXe3t63rPH19bWa7+zsLB8fH6uaorZzYx9FmTp1qiZOnHhH+w0A\nAAAAAAAU574eobdq1SqtWLFCK1eu1P79+7Vs2TK98847WrZsWVm3VmJjxoxRenq6+fnpp5/KuiUA\nAAAAAADYsft6hN7IkSM1atQo9ezZU5IUGhqqs2fPaurUqYqNjZW/v78kKSUlRQEBAeZyKSkpatSo\nkSTJ399f2dnZSktLsxqll5KSYi7v7++vCxcuWG07NzdXqampVjUFz+67cR0F84rj6uoqV1fXUu0/\nAAAAAAAAcLP7eoTelStX5OxsnTk6OTkpPz9fklSjRg35+/vryy+/NOdnZGRo9+7dCg8PlySFhYWp\nXLlyVjXHjx9XUlKSWRMeHq60tDQlJCSYNdu2bVN+fr6aNGli1hw+fNgq+Nu6dassFotCQkJsvOcA\nAAAAAABA0e7rEXqdO3fWlClTFBQUpAYNGui7777TjBkz9OKLL0qSHBwcNHToUE2ZMkV16tRRjRo1\nNG7cOAUGBqpr166Srr8ko3///ho+fLh8fHxksVj0yiuvKDw8XE2bNpUk1a9fXx06dNCAAQO0YMEC\n5eTkaMiQIerZs6cCAwMlSe3bt1dISIh69+6t6dOnKzk5WWPHjtXgwYMZgQcAAAAAAIDfzX0d6M2Z\nM0fjxo3Tyy+/rAsXLigwMFADBw7U+PHjzZrXX39dly9fVlxcnNLS0tS8eXNt2rRJbm5uZs3MmTPl\n6OiomJgYXbt2TZGRkZo3b57VtlasWKEhQ4aoXbt2Zu3s2bPN+U5OTtq4caMGDRqk8PBweXh4KDY2\nVpMmTbr3BwIAAAAAAAD4DwfDMIyybuKPJCMjQ15eXkpPT5fFYinrdopVffSnZd3CA+PM/0aXdQsP\nDK5L2+G6tB2uS9vhurQdrkvb4bq0Ha5L2+G6BIAHR2lzovv6GXoAAAAAAAAArBHoAQAAAAAAAHaE\nQA8AAAAAAACwIwR6AAAAAAAAgB0h0AMAAAAAAADsCIEeAAAAAAAAYEcI9AAAAAAAAAA7QqAHAAAA\nAAAA2BECPQAAAAAAAMCOEOgBAAAAAAAAdoRADwAAAAAAALAjBHoAAAAAAACAHXEuaeHw4cNLvNIZ\nM2aUqhkAAAAAAAAAt1biQO+7776z+r5//37l5uaqbt26kqQTJ07IyclJYWFhtu0QAAAAAAAAgKnE\ngd727dvNv2fMmKEKFSpo2bJlqlixoiTp0qVL6tevn1q0aGH7LgEAAAAAAABIKuUz9P76179q6tSp\nZpgnSRUrVtSUKVP017/+1WbNAQAAAAAAALBWqkAvIyNDv/76a6Hpv/76q3777be7bgoAAAAAAABA\n0UoV6D3zzDPq16+f1q5dq59//lk///yzPv74Y/Xv31/dunWzdY8AAAAAAAAA/qPEz9C70YIFCzRi\nxAj96U9/Uk5OzvUVOTurf//+evvtt23aIAAAAAAAAID/KlWg5+7urnnz5untt9/WqVOnJEm1atWS\nh4eHTZsDAAAAAAAAYK1UgV4BDw8PPfLII7bqBQAAAAAAAMBtlDrQ27dvn1atWqWkpCRlZ2dbzVu7\ndu1dNwYAAAAAAACgsFK9FOMf//iHmjVrpqNHj+qTTz5RTk6OEhMTtW3bNnl5edm6RwAAAAAAAAD/\nUapA76233tLMmTO1YcMGubi46N1339WxY8fUo0cPVatWzdY9AgAAAAAAAPiPUgV6p06dUnR0tCTJ\nxcVFly9floODg4YNG6aFCxfatEEAAAAAAAAA/1WqQK9ixYr67bffJEkPPfSQvv/+e0lSWlqarly5\nYrvuAAAAAAAAAFgp1UsxWrZsqa1btyo0NFTdu3fXa6+9pm3btmnr1q1q166drXsEAAAAAAAA8B+l\nCvTee+89ZWVlSZLeeOMNlStXTrt27VJMTIzGjh1r0wYBAAAAAAAA/FepAj0fHx/zb0dHR40ePdpm\nDQEAAAAAAAAoXokDvYyMjBKv1GKxlKoZAAAAAAAAALdW4kDP29tbDg4OJarNy8srdUMAAAAAAAAA\nilfiQG/79u3m32fOnNHo0aPVt29fhYeHS5Li4+O1bNkyTZ061fZdAgAAAAAAAJB0B4Feq1atzL8n\nTZqkGTNm6PnnnzenPf300woNDdXChQsVGxtr2y4BAAAAAAAASJIcS7NQfHy8GjduXGh648aNtWfP\nnrtuCgAAAAAAAEDRShXoBQUF6f333y80/YMPPlBQUNBdNwUAAAAAAACgaCW+5fZGM2fOVExMjD7/\n/HM1adJEkrRnzx6dPHlSH3/8sU0bBAAAAAAAAPBfpRqhFxUVpRMnTqhz585KTU1VamqqOnfurBMn\nTigqKsrWPQIAAAAAAAD4j1KN0JOu33b71ltv2bIXAAAAAAAAALdR4kDv0KFDatiwoRwdHXXo0KFb\n1j7yyCN33RgAAAAAAACAwkoc6DVq1EjJycny9fVVo0aN5ODgIMMwCtU5ODgoLy/Ppk0CAAAAAAAA\nuK7Egd7p06dVpUoV828AAAAAAAAAv78SB3rBwcHm32fPnlWzZs3k7Gy9eG5urnbt2mVVCwAAAAAA\nAMB2SvWW2zZt2ig1NbXQ9PT0dLVp0+aumwIAAAAAAABQtFIFeoZhyMHBodD0ixcvysPD466bAgAA\nAAAAAFC0Et9yK0ndunWTdP3FF3379pWrq6s5Ly8vT4cOHVKzZs1s2yEAAAAAAAAA0x0Fel5eXpKu\nj9CrUKGCypcvb85zcXFR06ZNNWDAANt2CAAAAAAAAMB0R4HekiVLJEnVq1fXiBEjuL0WAAAAAAAA\n+J3dUaBX4M0337R1HwAAAAAAAABKoFQvxUhJSVHv3r0VGBgoZ2dnOTk5WX0AAAAAAAAA3BulCvT6\n9u2r/fv3a9y4cVqzZo3Wrl1r9bGlX375RS+88IIqVaqk8uXLKzQ0VPv27TPnG4ah8ePHKyAgQOXL\nl1dERIROnjxptY6srCwNHjxYlSpVkqenp2JiYpSSkmJVk5qaql69esliscjb21v9+/dXZmamVU1S\nUpKio6Pl7u4uX19fjRw5Urm5uTbdXwAAAAAAAOBWSnXL7TfffKN//etfatSoka37sXLp0iU9+eST\natOmjT7//HNVqVJFJ0+eVMWKFc2a6dOna/bs2Vq2bJlq1KihcePGKTIyUkeOHJGbm5skadiwYfr0\n00+1evVqeXl5aciQIerWrZt27txprqdXr146f/68tm7dqpycHPXr109xcXFauXKlpOtv8Y2Ojpa/\nv7927dql8+fPq0+fPipXrpzeeuute3ocAAAAAAAAgAKlCvSCgoJkGIateylk2rRpCgoKMl/GIUk1\natQw/zYMQ7NmzdLYsWPVpUsXSdLy5cvl5+endevWqWfPnkpPT9eiRYu0cuVKtW3bVtL1l3vUr19f\n3377rZo2baqjR49q06ZN2rt3rxo3bixJmjNnjqKiovTOO+8oMDBQW7Zs0ZEjR/TFF1/Iz89PjRo1\n0uTJkzVq1ChNmDBBLi4u9/x4AAAAAAAAAKW65XbWrFkaPXq0zpw5Y+N2rK1fv16NGzdW9+7d5evr\nq8cee0zvv/++Of/06dNKTk5WRESEOc3Ly0tNmjRRfHy8JCkhIUE5OTlWNfXq1VO1atXMmvj4eHl7\ne5thniRFRETI0dFRu3fvNmtCQ0Pl5+dn1kRGRiojI0OJiYnF7sO1a9eUkZFh9QEAAAAAAABKq1SB\n3nPPPaevvvpKtWrVUoUKFeTj42P1sZUff/xR8+fPV506dbR582YNGjRIr776qpYtWyZJSk5OliSr\nkK3ge8G85ORkubi4yNvb+5Y1vr6+VvOdnZ3l4+NjVVPUdm7soyhTp06Vl5eX+QkKCrqjYwAAAAAA\nAADcqFS33M6aNcvWfRQpPz9fjRs3Np9R99hjj+n777/XggULFBsb+7v0cLfGjBmj4cOHm98zMjII\n9QAAAAAAAFBqpQr0fq8wLSAgQCEhIVbT6tevr48//liS5O/vL0lKSUlRQECAWZOSkmK+sMPf31/Z\n2dlKS0uzGqWXkpJiLu/v768LFy5YbSc3N1epqalWNXv27LGqKXhTbkFNUVxdXeXq6lrynQYAAAAA\nAABuoVS33N4oKyvrnj0j7sknn9Tx48etpp04cULBwcGSrr8gw9/fX19++aU5PyMjQ7t371Z4eLgk\nKSwsTOXKlbOqOX78uJKSksya8PBwpaWlKSEhwazZtm2b8vPz1aRJE7Pm8OHDVsHf1q1bZbFYCoWO\nAAAAAAAAwL1SqhF6ly9f1qhRo7Rq1SpdvHix0Py8vLy7bkyShg0bpmbNmumtt95Sjx49tGfPHi1c\nuFALFy6UJDk4OGjo0KGaMmWK6tSpoxo1amjcuHEKDAxU165dJV1/SUb//v01fPhw+fj4yGKx6JVX\nXlF4eLiaNm0q6fqovw4dOmjAgAFasGCBcnJyNGTIEPXs2VOBgYGSpPbt2yskJES9e/fW9OnTlZyc\nrLFjx2rw4MGMwAMAAAAAAMDvplQj9F5//XVt27ZN8+fPl6urqz744ANNnDhRgYGBWr58uc2ae/zx\nx/XJJ5/o73//uxo2bKjJkydr1qxZ6tWrl1Uvr7zyiuLi4vT4448rMzNTmzZtkpubm1kzc+ZMderU\nSTExMWrZsqX8/f21du1aq22tWLFC9erVU7t27RQVFaXmzZubwaEkOTk5aePGjXJyclJ4eLheeOEF\n9enTR5MmTbLZ/gIAAAAAAAC342AYhnGnC1WrVk3Lly9X69atZbFYtH//ftWuXVsffvih/v73v+uz\nzz67F70+EDIyMuTl5aX09HRZLJaybqdY1Ud/WtYtPDDO/G90WbfwwOC6tB2uS9vhurQdrkvb4bq0\nHa5L2+G6tB2uSwB4cJQ2JyrVCL3U1FTVrFlTkmSxWJSamipJat68uXbs2FGaVQIAAAAAAAAogVIF\nejVr1tTp06clSfXq1dOqVaskSRs2bLB6kywAAAAAAAAA2ypVoNevXz8dPHhQkjR69GjNnTtXbm5u\nGjp0qEaOHGnTBgEAAAAAAAD8V6necjts2DDz74iICB07dkwJCQmqU6eOQkNDbdYcAAAAAAAAAGt3\nNEJv27ZtCgkJUUZGhtX04OBgtWvXTj179tTmzZtt2iAAAAAAAACA/7qjQG/WrFkaMGBAkW/d8PLy\n0sCBAzVnzhybNQcAAAAAAADA2h0FegcPHlSHDh2Knd++fXsdOnTorpsCAAAAAAAAULQ7CvRSUlJU\nrly5Yuc7Ozvr119/veumAAAAAAAAABTtjgK9hx56SN9//32x8w8dOqSAgIC7bgoAAAAAAABA0e4o\n0IuKitK4ceOUlZVVaN7Vq1f15ptvqlOnTjZrDgAAAAAAAIA15zspHjt2rNauXauHH35YQ4YMUd26\ndSVJx44d09y5c5WXl6c33njjnjQKAAAAAAAA4A4DPT8/P+3atUuDBg3SmDFjZBiGJMnBwUGRkZGa\nO3eu/Pz87kmjAAAAAAAAAO4w0JOk4OBgffbZZ7p06ZJ++OEHGYahOnXqqGLFiveiPwAAAAAAAAA3\nuONAr0DFihX1+OOP27IXAAAAAAAAALdxRy/FAAAAAAAAAFC2CPQAAAAAAAAAO0KgBwAAAAAAANgR\nAj0AAAAAAADAjhDoAQAAAAAAAHaEQA8AAAAAAACwIwR6AAAAAAAAgB0h0AMAAAAAAPj/7N15VFVl\nw/7xi8FZELEANVScwSEHTGl0IAXntHxNcqTJEHOozCc1hzTzKQeUsicTtHIoUytTnMUxB1AkJC1C\nJRUtCRFMmc7vD3+etxNk1qts9nO+n7VYy3Pv+xyuQ3sRXNx734CJUOgBAAAAAAAAJkKhBwAAAAAA\nAJgIhR4AAAAAAABgIhR6AAAAAAAAgIlQ6AEAAAAAAAAmQqEHAAAAAAAAmAiFHgAAAAAAAGAiFHoA\nAAAAAACAiVDoAQAAAAAAACZCoQcAAAAAAACYCIUeAAAAAAAAYCIUegAAAAAAAICJUOgBAAAAAAAA\nJkKhBwAAAAAAAJgIhR4AAAAAAABgIhR6AAAAAAAAgIlQ6AEAAAAAAAAm4mx0AAAAAAAAjFDn1a+N\njvBf4+TMbkZHAOwKK/QAAAAAAAAAE6HQAwAAAAAAAEyEQg8AAAAAAAAwEQo9AAAAAAAAwEQo9AAA\nAAAAAAATodADAAAAAAAATIRCDwAAAAAAADARCj0AAAAAAADARCj0AAAAAAAAABMxVaE3c+ZMOTg4\naNSoUdYxi8WiSZMmqXr16qpQoYICAwP1/fff2zzv6tWrCgsLU7Vq1VS5cmX17dtX58+ft5mTkZGh\nkJAQubq6ys3NTaGhocrOzraZc/r0aXXr1k0VK1aUh4eHXn75ZeXn59+5NwwAAAAAAAD8gWkKvYMH\nD+r9999X8+bNbcZnzZqliIgILVy4UPv371elSpXUpUsXXb161Tpn9OjR+uqrr/TZZ58pNjZWZ8+e\nVZ8+fWxeJyQkRElJSdq8ebPWrVunnTt36tlnn7UeLygoULdu3ZSbm6u9e/dqyZIlio6O1qRJk+7s\nGwcAAAAAAAB+xxSFXnZ2tkJCQvTBBx+oatWq1nGLxaK5c+dqwoQJ6tWrl5o3b66lS5fq7NmzWrt2\nrSTp0qVL+vDDDzV79mx17NhRrVu3VlRUlPbu3atvvvlGkpScnKyYmBgtWrRIbdu21YMPPqj58+dr\nxYoVOnv2rCRp06ZNOnbsmD7++GO1aNFCwcHBmjZtmiIjI5Wbm1vyXxQAAAAAAADYJVMUemFhYerW\nrZsCAwNtxlNTU5Wenm4zXqVKFbVt21b79u2TJMXFxSkvL89mTuPGjVWrVi3rnH379snNzU3+/v7W\nOYGBgXJ0dNT+/futc5o1ayZPT0/rnC5duigrK0tJSUl/mv3atWvKysqy+QAAAAAAAAD+KWejA/yV\nFStWKD4+XgcPHixyLD09XZJsSrYbj28cS09PV9myZeXm5nbTOR4eHjbHnZ2d5e7ubjOnuM/z+xzF\nefPNNzVlypS/fJ8AAAAAAADArSjVK/TS0tL04osv6pNPPlH58uWNjvOPjB8/XpcuXbJ+pKWlGR0J\nAAAAAAAAJlaqC724uDhduHBBrVq1krOzs5ydnRUbG6uIiAg5OztbV8j9ccfa8+fPy8vLS5Lk5eWl\n3NxcZWZm3nTOhQsXbI7n5+crIyPDZk5xn+fGsT9Trlw5ubq62nwAAAAAAAAA/1SpLvQ6deqkxMRE\nHTlyxPrh7++vkJAQHTlyRHXr1pWXl5e2bt1qfU5WVpb279+vgIAASVLr1q1VpkwZmznHjx/X6dOn\nrXMCAgKUmZmpuLg465xt27apsLBQbdu2tc5JTEy0Kf42b94sV1dX+fn53dGvAwAAAAAAAHBDqb6H\nnouLi5o2bWozVqlSJVWrVs06PmrUKL3xxhtq0KCBfHx8NHHiRNWoUUO9e/eWdH2TjNDQUI0ZM0bu\n7u5ydXVVeHi4AgIC1K5dO0mSr6+vgoKC9Mwzz2jhwoXKy8vTiBEj1L9/f9WoUUOS1LlzZ/n5+Wng\nwIGaNWuW0tPTNWHCBIWFhalcuXIl+FUBAAAAAACAPSvVhd6teOWVV5STk6Nnn31WmZmZevDBBxUT\nE2Nzz705c+bI0dFRffv21bVr19SlSxe9++67Nq/zySefaMSIEerUqZN1bkREhPW4k5OT1q1bp+HD\nhysgIECVKlXS4MGDNXXq1BJ7rwAAAAAA4L9bnVe/NjrCf5WTM7sZHeGOMF2ht2PHDpvHDg4Omjp1\n6k2LtfLlyysyMlKRkZF/Osfd3V3Lli276eeuXbu21q9f/7fyAgAAAAAAALdTqb6HHgAAAAAAAABb\nFHoAAAAAAACAiVDoAQAAAAAAACZCoQcAAAAAAACYCIUeAAAAAAAAYCIUegAAAAAAAICJUOgBAAAA\nAAAAJkKhBwAAAAAAAJgIhR4AAAAAAABgIhR6AAAAAAAAgIlQ6AEAAAAAAAAmQqEHAAAAAAAAmAiF\nHjUmJSMAACAASURBVAAAAAAAAGAiFHoAAAAAAACAiVDoAQAAAAAAACZCoQcAAAAAAACYCIUeAAAA\nAAAAYCIUegAAAAAAAICJUOgBAAAAAAAAJkKhBwAAAAAAAJgIhR4AAAAAAABgIhR6AAAAAAAAgIlQ\n6AEAAAAAAAAmQqEHAAAAAAAAmAiFHgAAAAAAAGAiFHoAAAAAAACAiVDoAQAAAAAAACZCoQcAAAAA\nAACYCIUeAAAAAAAAYCIUegAAAAAAAICJUOgBAAAAAAAAJkKhBwAAAAAAAJgIhR4AAAAAAABgIhR6\nAAAAAAAAgIlQ6AEAAAAAAAAmQqEHAAAAAAAAmAiFHgAAAAAAAGAiFHoAAAAAAACAiVDoAQAAAAAA\nACZCoQcAAAAAAACYCIUeAAAAAAAAYCIUegAAAAAAAICJUOgBAAAAAAAAJkKhBwAAAAAAAJgIhR4A\nAAAAAABgIhR6AAAAAAAAgIlQ6AEAAAAAAAAmQqEHAAAAAAAAmAiFHgAAAAAAAGAipbrQe/PNN9Wm\nTRu5uLjIw8NDvXv31vHjx23mWCwWTZo0SdWrV1eFChUUGBio77//3mbO1atXFRYWpmrVqqly5crq\n27evzp8/bzMnIyNDISEhcnV1lZubm0JDQ5WdnW0z5/Tp0+rWrZsqVqwoDw8Pvfzyy8rPz78zbx4A\nAAAAAAAoRqku9GJjYxUWFqZvvvlGmzdvVl5enjp37qycnBzrnFmzZikiIkILFy7U/v37ValSJXXp\n0kVXr161zhk9erS++uorffbZZ4qNjdXZs2fVp08fm88VEhKipKQkbd68WevWrdPOnTv17LPPWo8X\nFBSoW7duys3N1d69e7VkyRJFR0dr0qRJd/4LAQAAAAAAAPx/zkYHuJmYmBibx9HR0fLw8FBcXJwe\nfvhhWSwWzZ07VxMmTFCvXr0kSUuXLpWnp6fWrl2r/v3769KlS/rwww+1bNkydezYUZIUFRUlX19f\nffPNN2rXrp2Sk5MVExOjgwcPyt/fX5I0f/58de3aVW+//bZq1KihTZs26dixY9qyZYs8PT3VokUL\nTZs2TePGjdPkyZNVtmzZkv3iAAAAAAAAwC6V6hV6f3Tp0iVJkru7uyQpNTVV6enpCgwMtM6pUqWK\n2rZtq3379kmS4uLilJeXZzOncePGqlWrlnXOvn375ObmZi3zJCkwMFCOjo7av3+/dU6zZs3k6elp\nndOlSxdlZWUpKSnpTzNfu3ZNWVlZNh8AAAAAAADAP2WaQq+wsFCjRo3SAw88oKZNm0qS0tPTJcmm\nZLvx+Max9PR0lS1bVm5ubjed4+HhYXPc2dlZ7u7uNnOK+zy/z1GcN998U1WqVLF+eHt7/633DQAA\nAAAAAPyeaQq9sLAwffvtt1qxYoXRUf6W8ePH69KlS9aPtLQ0oyMBAAAAAADAxExR6I0YMULr1q3T\n9u3bdc8991jHvby8JKnIjrXnz5+3HvPy8lJubq4yMzNvOufChQs2x/Pz85WRkWEzp7jP8/scxSlX\nrpxcXV1tPgAAAAAAAIB/qlQXehaLRSNGjNCaNWu0bds2+fj42Bz38fGRl5eXtm7dah3LysrS/v37\nFRAQIElq3bq1ypQpYzPn+PHjOn36tHVOQECAMjMzFRcXZ52zbds2FRYWqm3bttY5iYmJNsXf5s2b\n5erqKj8/v9v/5gEAAAAAAIBilOpdbsPCwrRs2TJ98cUXcnFxsd6rrkqVKqpQoYIcHBw0atQovfHG\nG2rQoIF8fHw0ceJE1ahRQ71797bODQ0N1ZgxY+Tu7i5XV1eFh4crICBA7dq1kyT5+voqKChIzzzz\njBYuXKi8vDyNGDFC/fv3V40aNSRJnTt3lp+fnwYOHKhZs2YpPT1dEyZMUFhYmMqVK2fMFwgAAAAA\nAAB2p1QXeu+9954kqX379jbjUVFRGjJkiCTplVdeUU5Ojp599lllZmbqwQcfVExMjMqXL2+dP2fO\nHDk6Oqpv3766du2aunTponfffdfmNT/55BONGDFCnTp1ss6NiIiwHndyctK6des0fPhwBQQEqFKl\nSho8eLCmTp16Z948AAAAAAAAUIxSXehZLJa/nOPg4KCpU6fetFgrX768IiMjFRkZ+adz3N3dtWzZ\nspt+rtq1a2v9+vV/mQkAAAAAAAC4U0r1PfQAAAAAAAAA2KLQAwAAAAAAAEyEQg8AAAAAAAAwEQo9\nAAAAAAAAwEQo9AAAAAAAAAATodADAAAAAAAATIRCDwAAAAAAADARCj0AAAAAAADARCj0AAAAAAAA\nABOh0AMAAAAAAABMhEIPAAAAAAAAMBEKPQAAAAAAAMBEKPQAAAAAAAAAE6HQAwAAAAAAAEyEQg8A\nAAAAAAAwEQo9AAAAAAAAwEQo9AAAAAAAAAATodADAAAAAAAATIRCDwAAAAAAADARCj0AAAAAAADA\nRCj0AAAAAAAAABOh0AMAAAAAAABMhEIPAAAAAAAAMBEKPQAAAAAAAMBEKPQAAAAAAAAAE6HQAwAA\nAAAAAEyEQg8AAAAAAAAwEQo9AAAAAAAAwEQo9AAAAAAAAAATodADAAAAAAAATIRCDwAAAAAAADAR\nCj0AAAAAAADARCj0AAAAAAAAABOh0AMAAAAAAABMhEIPAAAAAAAAMBEKPQAAAAAAAMBEKPQAAAAA\nAAAAE6HQAwAAAAAAAEyEQg8AAAAAAAAwEQo9AAAAAAAAwEQo9AAAAAAAAAATodADAAAAAAAATIRC\nDwAAAAAAADARCj0AAAAAAADARCj0AAAAAAAAABOh0AMAAAAAAABMhEIPAAAAAAAAMBEKPQAAAAAA\nAMBEKPQAAAAAAAAAE6HQ+wciIyNVp04dlS9fXm3bttWBAweMjgQAAAAAAAA7QaH3N61cuVJjxozR\n66+/rvj4eN17773q0qWLLly4YHQ0AAAAAAAA2AEKvb9p9uzZeuaZZzR06FD5+flp4cKFqlixohYv\nXmx0NAAAAAAAANgBZ6MDmElubq7i4uI0fvx465ijo6MCAwO1b9++Yp9z7do1Xbt2zfr40qVLkqSs\nrKw7G/b/qPDaFaMj/Nco7f+tzYTz8vbhvLx9OC9vH87L24fz8vbhvLx9OC9vH87L24fz8vbhvLx9\nOC9vr9J+bt7IZ7FY/tbzKPT+hl9++UUFBQXy9PS0Gff09NR3331X7HPefPNNTZkypci4t7f3HcmI\n0qfKXKMTAEVxXqI04rxEacR5idKI8xKlEeclSiuznJuXL19WlSpVbnk+hd4dNn78eI0ZM8b6uLCw\nUBkZGapWrZocHBwMTGZ+WVlZ8vb2VlpamlxdXY2OA0jivETpxHmJ0ojzEqUR5yVKI85LlEacl7eP\nxWLR5cuXVaNGjb/1PAq9v+Guu+6Sk5OTzp8/bzN+/vx5eXl5FfuccuXKqVy5cjZjbm5udyyjPXJ1\ndeUbCEodzkuURpyXKI04L1EacV6iNOK8RGnEeXl7/J2VeTewKcbfULZsWbVu3Vpbt261jhUWFmrr\n1q0KCAgwMBkAAAAAAADsBSv0/qYxY8Zo8ODB8vf313333ae5c+cqJydHQ4cONToaAAAAAAAA7IDT\n5MmTJxsdwkyaNm0qNzc3TZ8+XW+//bYk6ZNPPlGjRo0MTmafnJyc1L59ezk7002j9OC8RGnEeYnS\niPMSpRHnJUojzkuURpyXxnKw/N19cQEAAAAAAAAYhnvoAQAAAAAAACZCoQcAAAAAAACYCIUeAAAA\nAAAAYCIUegAAAAAAAICJUOgBAPBf5LffftOVK1esj0+dOqW5c+dq06ZNBqYCAAAAcDs5TZ48ebLR\nIQAAwO3RrVs35ebmyt/fX5mZmWrRooX279+vxYsXq1q1amrTpo3REQGg1MrKytKGDRtksVh09913\nGx0HUFxcnLZt26ajR48qPz9f1atXNzoSgFKCFXoAcAdkZmYaHQF2Kj4+Xg899JAkadWqVfL09NSp\nU6e0dOlSRUREGJwOsFVQUKAjR47o119/NToK7FS/fv20YMECSddXOPv7+6tfv35q3ry5Pv/8c4PT\nwZ5duHBBHTt2VJs2bTRy5EiNHDlS/v7+6tSpk37++Wej4wEoBSj0YCoxMTHavXu39XFkZKRatGih\nAQMG8MsADPPWW29p5cqV1sf9+vVTtWrVVLNmTSUkJBiYDPboypUrcnFxkSRt2rRJffr0kaOjo9q1\na6dTp04ZnA72btSoUfrwww8lXS/zHnnkEbVq1Ure3t7asWOHseFgl3bu3Gn9I8iaNWtksViUmZmp\niIgIvfHGGwangz0LDw/X5cuXlZSUpIyMDGVkZOjbb79VVlaWRo4caXQ82LHY2Fj16NFD9evXV/36\n9dWzZ0/t2rXL6Fh2iUIPpvLyyy8rKytLkpSYmKixY8eqa9euSk1N1ZgxYwxOB3u1cOFCeXt7S5I2\nb96szZs3a8OGDQoODtbLL79scDrYm/r162vt2rVKS0vTxo0b1blzZ0nX/9Lv6upqcDrYu1WrVune\ne++VJH311VdKTU3Vd999p9GjR+u1114zOB3s0aVLl+Tu7i7p+h+O+/btq4oVK6pbt276/vvvDU4H\nexYTE6N3331Xvr6+1jE/Pz9FRkZqw4YNBiaDPfv4448VGBioihUrWleOVqhQQZ06ddKyZcuMjmd3\nnI0OAPwdqamp8vPzkyR9/vnn6t69u2bMmKH4+Hh17drV4HSwV+np6dZCb926derXr586d+6sOnXq\nqG3btgang72ZNGmSBgwYoNGjR6tjx44KCAiQdH21XsuWLQ1OB3v3yy+/yMvLS5K0fv16PfHEE2rY\nsKGGDRumefPmGZwO9sjb21v79u2Tu7u7YmJitGLFCknSr7/+qvLlyxucDvassLBQZcqUKTJepkwZ\nFRYWGpAIkKZPn65Zs2Zp9OjR1rGRI0dq9uzZmjZtmgYMGGBgOvvDCj2YStmyZa27N27ZssW68sTd\n3d26cg8oaVWrVlVaWpqk639NDQwMlCRZLBYVFBQYGQ126PHHH9fp06d16NAhbdy40TreqVMnzZkz\nx8BkgOTp6aljx46poKBAMTExevTRRyVdv1TcycnJ4HSwR6NGjVJISIjuueceVa9eXe3bt5d0/VLc\nZs2aGRsOdq1jx4568cUXdfbsWevYmTNnNHr0aHXq1MnAZLBnP/74o3r06FFkvGfPnkpNTTUgkX1j\nhR5M5cEHH9SYMWP0wAMP6MCBA9b7lp04cUL33HOPwelgr/r06aMBAwaoQYMGunjxooKDgyVJhw8f\nVv369Q1OB3vk5eWl7Oxsbd68WQ8//LAqVKigNm3ayMHBwehosHNDhw5Vv379VL16dTk4OFj/ALJ/\n/341btzY4HSwRy+88ILuu+8+paWl6dFHH5Wj4/X1DnXr1uUeejDUggUL1LNnT9WpU8d6JUhaWpqa\nNm2qjz/+2OB0sFfe3t7aunVrkd9xtmzZYj1PUXIo9GAqCxYs0AsvvKBVq1bpvffeU82aNSVJGzZs\nUFBQkMHpYK/mzJmjOnXqKC0tTbNmzVLlypUlSefOndMLL7xgcDrYm4sXL6pfv37avn27HBwc9P33\n36tu3boKDQ1V1apV9c477xgdEXZs8uTJatq0qdLS0vTEE0+oXLlykiQnJye9+uqrBqeDvfL391fz\n5s2VmpqqevXqydnZWd26dTM6Fuyct7e34uPjtWXLFn333XeSJF9fX+sfQgAjjB07ViNHjtSRI0d0\n//33S5L27Nmj6Ohobp1hAAeLxWIxOgQAALg9Bg0apAsXLmjRokXy9fVVQkKC6tatq40bN2rMmDFK\nSkoyOiIgSbp69Sr3KIPhrly5ovDwcC1ZskTS9as+6tatq/DwcNWsWZOiGQD+YM2aNXrnnXeUnJws\n6XrR/PLLL6tXr14GJ7M/rNCD6aSkpCgqKkopKSmaN2+ePDw8tGHDBtWqVUtNmjQxOh7s1EcffaT3\n339fP/74o/bt26fatWtr7ty58vHx4X9uKFGbNm3Sxo0bi9yGoEGDBjp16pRBqYDrCgoKNGPGDC1c\nuFDnz5+3licTJ05UnTp1FBoaanRE2Jnx48crISFBO3bssLnaIzAwUJMnT6bQQ4mKiIi45bkjR468\ng0mAP/fYY4/pscceMzoGRKEHk4mNjVVwcLAeeOAB7dy5U9OnT5eHh4cSEhL04YcfatWqVUZHhB16\n7733NGnSJI0aNUrTp0+3boTh5uamuXPnUuihROXk5KhixYpFxjMyMqyXNwJGmT59upYsWaJZs2bp\nmWeesY43bdpUc+fOpdBDiVu7dq1Wrlypdu3a2dxntEmTJkpJSTEwGezRHzev+vnnn3XlyhW5ublJ\nkjIzM1WxYkV5eHhQ6AFgl1uYy6uvvqo33nhDmzdvVtmyZa3jHTt21DfffGNgMtiz+fPn64MPPtBr\nr71ms0ujv7+/EhMTDUwGe/TQQw9p6dKl1scODg4qLCzUrFmz1KFDBwOTAdLSpUv1n//8RyEhITbf\nL++9917rPaKAkvTzzz/Lw8OjyHhOTg4bCaHEpaamWj+mT5+uFi1aKDk5WRkZGcrIyFBycrJatWql\nadOmGR0Vdqpq1apyd3cv8lGtWjXVrFlTjzzyiKKiooyOaTdYoQdTSUxM1LJly4qMe3h46JdffjEg\nEXD9h6+WLVsWGS9XrpxycnIMSAR7NmvWLHXq1EmHDh1Sbm6uXnnlFSUlJSkjI0N79uwxOh7s3Jkz\nZ4rd/buwsFB5eXkGJIK98/f319dff63w8HBJspZ4ixYtUkBAgJHRYOcmTpyoVatWqVGjRtaxRo0a\nac6cOXr88ccVEhJiYDrYq9dff13Tp09XUFCQ7rvvPknSgQMHFBMTo7CwMKWmpmr48OHKz8+3WYmP\nO4NCD6bi5uamc+fOycfHx2b88OHD1h1vgZLm4+OjI0eOqHbt2jbjMTEx8vX1NSgV7FXTpk114sQJ\nLViwQC4uLsrOzlafPn0UFham6tWrGx0Pds7Pz0+7du0q8v1y1apVxf5hBLjTZsyYoeDgYB07dkz5\n+fmaN2+ejh07pr179yo2NtboeLBj586dU35+fpHxgoICnT9/3oBEgLR3715NmzZNzz//vM34+++/\nr02bNunzzz9X8+bNFRERQaFXAij0YCr9+/fXuHHj9Nlnn1kvI9uzZ49eeuklDRo0yOh4sFNjxoxR\nWFiYrl69KovFogMHDmj58uV68803tWjRIqPjwQ5VqVJFr732mtExgCImTZqkwYMH68yZMyosLNTq\n1at1/PhxLV26VOvWrTM6HuzQgw8+qCNHjmjmzJlq1qyZNm3apFatWmnfvn1q1qyZ0fFgxzp16qTn\nnntOixYtUqtWrSRJcXFxGj58uAIDAw1OB3u1fv16zZgxo8h4p06dNHbsWElS165d2VCohDhYLBaL\n0SGAW5Wbm6uwsDBFR0eroKBAzs7OKigo0IABAxQdHW1zPx6gJH3yySeaPHmy9QbaNWrU0JQpU7jB\nO0pc/fr19dRTTykkJEQNGjQwOg5QxK5duzR16lQlJCQoOztbrVq10qRJk9S5c2ejowFAqfHzzz9r\n8ODBiomJUZkyZSRJ+fn56tKli6Kjo4u99yNwp9WqVUujR4/W6NGjbcbnzJmjOXPm6PTp0zp69Kg6\nd+6s9PR0g1LaDwo9mFJaWpoSExOVnZ2tli1b8ksrSo0rV64oOzubH7JgmDlz5mjZsmWKi4tT69at\n9dRTT+l//ud/5OXlZXQ0ACiVCgsL9cMPP+jChQsqLCy0Ofbwww8blAq47sSJE9ZNgxo3bqyGDRsa\nnAj27IMPPtDw4cPVtWtX6z30Dh48qPXr12vhwoUKDQ3VO++8owMHDmjlypUGp/3vR6EHU5k6dape\neuklVaxY0Wb8t99+07///W9NmjTJoGQAULqcOHFCn3zyiZYvX67U1FR16NBBTz31FLcnQKmQm5tb\nbHlSq1YtgxLBXn3zzTcaMGCATp06pT/+WuTg4KCCggKDkgFA6bRnzx4tWLBAx48fl3R9s5bw8HDd\nf//9BiezPxR6MBUnJyedO3euyOqnixcvysPDgx+6UGJatmxp3Qnvr8THx9/hNMDNffPNNxo+fLiO\nHj3K90kY6vvvv9ewYcO0d+9em3GLxUJ5AkO0aNFCDRs21JQpU1S9evUi/2+vUqWKQckA6aefftKX\nX36p06dPKzc31+bY7NmzDUoFoLRgUwyYyo0f+P8oISFB7u7uBiSCverdu7fREYC/dODAAS1btkwr\nV65UVlaWnnjiCaMjwc4NGTJEzs7OWrduXbHlCVDSvv/+e61atUr169c3OgpgY+vWrerZs6fq1q2r\n7777Tk2bNtXJkydlsVism2QARuA2BaUHK/RgClWrVpWDg4MuXbokV1dXm18ACgoKlJ2dreeff16R\nkZEGpgQA4/3xUtuOHTsqJCREffr0UeXKlY2OBztXqVIlxcXFqXHjxkZHASRJHTt21CuvvKKgoCCj\nowA27rvvPgUHB2vKlClycXFRQkKCPDw8FBISoqCgIA0fPtzoiLBD3KagdGGFHkxh7ty5slgsGjZs\nmKZMmWJz+UPZsmVVp04dBQQEGJgQkOLi4pScnCxJatKkiVq2bGlwItijxo0bq02bNgoLC1P//v3l\n6elpdCTAys/PT7/88ovRMQCr8PBwjR07Vunp6WrWrJl1N9EbmjdvblAy2Lvk5GQtX75ckuTs7Kzf\nfvtNlStX1tSpU9WrVy8KPRji+eefl7+/v77++mtW2pcCFHowhcGDBys/P18ODg7q2LGjvL29jY4E\nWF24cEH9+/fXjh075ObmJknKzMxUhw4dtGLFCt19990GJ4Q9OX78ODt/o9R666239Morr2jGjBnF\nlieurq4GJYO96tu3ryRp2LBh1jEHBwfu6wjDVapUyXrfvOrVqyslJUVNmjSRJP4wAsNwm4LShUIP\npuHs7Kzhw4dbV0ABpUV4eLguX76spKQk+fr6SpKOHTumwYMHa+TIkda/rgIloUGDBsrMzNSqVauU\nkpKil19+We7u7oqPj5enp6dq1qxpdETYscDAQElSp06dbMYpT2CU1NRUoyMAxWrXrp12794tX19f\nde3aVWPHjlViYqJWr16tdu3aGR0Pdqpt27b64YcfKPRKCQo9mMp9992nw4cPq3bt2kZHAaxiYmK0\nZcsWa5knXb+sLDIyUp07dzYwGezR0aNH1alTJ7m5uenkyZN65pln5O7urtWrV+v06dNaunSp0RFh\nx7Zv3250BMAqLy9PU6ZM0cSJE+Xj42N0HMDG7NmzlZ2dLUmaMmWKsrOztXLlSjVo0IAdbmEYblNQ\nurApBkzl008/1fjx4zV69Gi1bt1alSpVsjnONxAYwcXFRbt27VKLFi1sxg8fPqxHHnlEWVlZBiWD\nPerUqZNat26tWbNmWW+iXbduXe3du1cDBgzQyZMnjY4IAKVGlSpVdOTIEQo9ALgFjo6ORca4TYFx\nKPRgKnwDQWnUq1cvZWZmavny5apRo4Yk6cyZMwoJCVHVqlW1Zs0agxPCnlSpUkXx8fGqV6+eTaF3\n6tQpNWrUSFevXjU6IuzYzp07b3r84YcfLqEkwHWDBw9WixYtNHr0aKOjAMU6dOiQ9ZZDfn5+at26\ntcGJYM9OnTp10+NcSVeyuOQWpsJ9TlAaLViwQD179lSdOnWsG7akpaWpadOm+vjjjw1OB3tTrly5\nYleFnjhxgg1aYLj27dsXGfv9Dnn8YQ4lrUGDBpo6dar27NlT7NUfI0eONCgZ7N1PP/2kJ598Unv2\n7LHZdO3+++/XihUrdM899xicEPaIwq50YYUeANwGFotFW7Zs0XfffSdJ8vX1td78HShJTz/9tC5e\nvKhPP/1U7u7uOnr0qJycnNS7d289/PDDmjt3rtERYccuXbpk8zgvL0+HDx/WxIkTNX369CKbZQB3\n2s0utXVwcNCPP/5YgmmA/xUUFKTMzEwtWbJEjRo1knR9J/uhQ4fK1dVVMTExBieEvfjyyy8VHBys\nMmXK6Msvv7zp3J49e5ZQKkgUejCpY8eO6fTp09at3G/gGwgAe3fp0iU9/vjjOnTokC5fvqwaNWoo\nPT1dAQEBWr9+fZHVJ0BpEBsbqzFjxiguLs7oKABQKlSoUEF79+5Vy5Ytbcbj4uL00EMP6cqVKwYl\ng71xdHRUenq6PDw8ir0F1g3cAqvkccktTOXHH3/UY489psTEROu986T/vVyHbyAwwsiRI9WwYUON\nGDHCZnzBggX64YcfWBGFElWlShVt3rxZu3fv1tGjR5Wdna1WrVqxYhSlmqenp44fP250DNix3Nxc\npaamql69enJ25lckGM/b21t5eXlFxgsKCqz3bAZKQmFhYbH/hvFYoQdT6dGjh5ycnLRo0SL5+Pjo\nwIEDunjxosaOHau3335bDz30kNERYYdq1qypr7/+usgut/Hx8erZs6d++ukng5IBQOly9OhRm8cW\ni0Xnzp3TzJkzlZeXpz179hiUDPbqypUrCg8P15IlSyRdv99o3bp1FR4erpo1a+rVV181OCHs1Rdf\nfKEZM2YoMjJS/v7+kq5vkBEeHq5x48apd+/eBicEYDQKPZjKXXfdpW3btql58+aqUqWKDhw4oEaN\nGmnbtm0aO3asDh8+bHRE2KHy5csrKSlJ9erVsxn/4Ycf1LRpU3YVRYmaOnXqTY9PmjSphJIARTk6\nOtqssL+hXbt2ioqKst4nCigpL774ovbs2aO5c+cqKChIR48eVd26dfXFF19o8uTJ/GyJElW1alWb\njYJycnKUn59vXTV649+VKlVSRkaGUTFh5w4ePKjt27frwoULRVbszZ4926BU9on15DCVgoICubi4\nSLpe7p09e1aNGjVS7dq1uVQHhqlfv742bNhQ5JLbDRs2qG7dugalgr1as2aNzeO8vDylpqbK2dlZ\n9erVo9CDof64W72jo6Puvvtu/fLLL5o6dar+85//GJQM9mrt2rVauXKl2rVrZ1OkNGnSRCkpXZ9o\nvAAAFYxJREFUKQYmgz3iNi0o7WbMmKEJEyaoUaNG8vT0tPm++ft/o2RQ6MFUmjZtqoSEBPn4+Kht\n27aaNWuWypYtq//85z8UJzDMmDFjNGLECP3888/q2LGjJGnr1q165513+MEMJa641SRZWVkaMmSI\nHnvsMQMSAf+rdu3axY5fvHhRH374IYUeStzPP/8sDw+PIuM5OTn8cooSN3jwYKMjADc1b948LV68\nWEOGDDE6CkShB5OZMGGCcnJyJElTpkxRjx499NBDD6latWpasWKFwelgr4YNG6Zr165p+vTpmjZt\nmiSpTp06eu+99zRo0CCD0wGSq6ur9XvmwIEDjY4DAKWGv7+/vv76a4WHh0v63xUmixYtUkBAgJHR\nAKurV68qNzfXZszV1dWgNLBnjo6OeuCBB4yOgf+Pe+jB9DIyMorcbwIoKRaLRWlpafLw8FD58uX1\n888/q0KFCqpcubLR0QAbu3fvVo8ePfTrr78aHQUoIiEhQa1atWK3epS43bt3Kzg4WE899ZSio6P1\n3HPP6dixY9q7d69iY2PVunVroyPCTuXk5GjcuHH69NNPdfHixSLH+X4JI8yaNUtnz57lKqRSghV6\nMIVhw4bd0rzFixff4SSALYvFovr16yspKUkNGjTQ3XffbXQk2LmIiAibxzd2Ef3oo48UHBxsUCoA\nKJ0efPBBHTlyRDNnzlSzZs20adMmtWrVSvv27VOzZs2Mjgc79sorr2j79u167733NHDgQEVGRurM\nmTN6//33NXPmTKPjwU699NJL6tatm+rVqyc/Pz+VKVPG5vjq1asNSmafWKEHU3B0dFTt2rXVsmXL\nIjvj/d4fbwYPlIQmTZroww8/VLt27YyOAsjHx8fm8Y1NBzp27Kjx48dbNxYCSlKfPn1uejwzM1Ox\nsbGsOAGA/69WrVpaunSp2rdvL1dXV8XHx6t+/fr66KOPtHz5cq1fv97oiLBDI0aM0KJFi9ShQ4ci\nm2JIUlRUlEHJ7BMr9GAKw4cP1/Lly5WamqqhQ4fqqaeekru7u9GxAEnSzJkz9fLLL+u9995T06ZN\njY4DO/fHXUSB0qBKlSp/eZx7jqKkZGVlWe8/lpWVddO53KcMRsnIyLBu+ufq6qqMjAxJ11eVDh8+\n3MhosGNLlizR559/rm7duhkdBWKFHkzk2rVrWr16tRYvXqy9e/eqW7duCg0NVefOnbl/HgxVtWpV\nXblyRfn5+SpbtqwqVKhgc/zGD2DAnfRXK6AkydnZWV5eXnr00UfVo0ePEkgFAKWPk5OTzp07Jw8P\nDzk6Ohb7c6TFYpGDgwOrRmGY5s2ba/78+XrkkUcUGBioFi1a6O2331ZERIRmzZqln376yeiIsEO1\na9fWxo0b1bhxY6OjQBR6MKlTp04pOjpaS5cuVX5+vpKSktiEAIZZsmTJTY8PHjy4hJLAng0dOvQv\n5xQWFurChQuKjY3VSy+9pKlTp5ZAMgAoXWJjY1WtWjU1bdpUsbGxN537yCOPlFAqwNacOXPk5OSk\nkSNHasuWLerRo4csFovy8vI0e/Zsvfjii0ZHhB2KiopSTEyMoqKiVLFiRaPj2D0KPZhSWlqaoqKi\nFB0drdzcXH333XcUegBwi9atW6cXXnhBp0+fNjoKABjC0dFRbdq00dNPP63+/ftzf1GUeqdOnVJc\nXJzq16+v5s2bGx0Hdqply5ZKSUmRxWJRnTp1imyKER8fb1Ay+8Q99GAav7/kdvfu3erevbsWLFig\noKAgOTo6Gh0Pdi4lJUVRUVFKSUnRvHnz5OHhoQ0bNqhWrVpq0qSJ0fEAGw8++KD8/f2NjgEAhomN\njVVUVJTGjh2r0aNH6/HHH1doaKgeeugho6PBzu3bt08XL15U9+7drWNLly7V66+/rpycHPXu3Vvz\n589XuXLlDEwJe9W7d2+jI+B3WKEHU3jhhRe0YsUKeXt7a9iwYQoJCdFdd91ldCxA0vVfCoKDg/XA\nAw9o586dSk5OVt26dTVz5kwdOnRIq1atMjoiAAAoRk5Ojj799FNFR0dr165dql+/vkJDQzV48GB5\neXkZHQ92KDg4WO3bt9e4ceMkSYmJiWrVqpWGDBkiPz8/zZo1S88995wmT55sbFAAhqPQgyk4Ojqq\nVq1aatmy5U03wFi9enUJpgKuCwgI0BNPPKExY8bIxcVFCQkJqlu3rg4cOKA+ffpw02IAAEzghx9+\nUFRUlD766COlp6crKChIX375pdGxYGeqV6+ur776yrqS/rXXXlNsbKx2794tSfrss8/0+uuv69ix\nY0bGhJ2Li4tTcnKyJKlJkyZq2bKlwYnsE5fcwhQGDRrETrYotRITE7Vs2bIi4x4eHvrll18MSAQA\nAP6u+vXr61//+pdq166t8ePH6+uvvzY6EuzQr7/+Kk9PT+vjG1eC3NCmTRulpaUZEQ3QhQsX1L9/\nf+3YsUNubm6SpMzMTHXo0EErVqzQ3XffbXBC+0KhB1OIjo42OgLwp9zc3HTu3Dn5+PjYjB8+fFg1\na9Y0KBUAALhVO3fu1OLFi/X555/L0dFR/fr1U2hoqNGxYIc8PT2Vmpoqb29v5ebmKj4+XlOmTLEe\nv3z5cpGNCICSEh4ersuXLyspKUm+vr6SpGPHjmnw4MEaOXKkli9fbnBC+0KhBwD/R/3799e4ceP0\n2WefycHBQYWFhdqzZ49eeuklDRo0yOh4AACgGGfPnlV0dLSio6P1ww8/6P7771dERIT69eunSpUq\nGR0Pdqpr16569dVX9dZbb2nt2rWqWLGizWYtR48eVb169QxMCHsWExOjLVu2WMs8SfLz81NkZKQ6\nd+5sYDL7RKEHAP9HM2bMUFhYmLy9vVVQUCA/Pz8VFBRowIABmjBhgtHxAADAHwQHB2vLli266667\nNGjQIA0bNkyNGjUyOhagadOmqU+fPnrkkUdUuXJlLVmyRGXLlrUeX7x4McUJDFNYWFjsCtEyZcqo\nsLDQgET2jU0xAOA2OX36tL799ltlZ2erZcuWatCggdGRAABAMXr27KnQ0FB1795dTk5ORscBirh0\n6ZIqV65c5PzMyMhQ5cqVbUo+oKT06tVLmZmZWr58uWrUqCFJOnPmjEJCQlS1alWtWbPG4IT2hUIP\nAAAAAAAAN5WWlqaePXsqKSlJ3t7e1rGmTZvqyy+/1D333GNwQvtCoQcA/8CYMWM0bdo0VapUSWPG\njLnp3NmzZ5dQKgAAAAC4cywWi7Zu3ark5GRJkq+vrwIDAw1OZZ+4hx4A/AOHDx9WXl6e9d8AAAAA\n8N+qsLBQ0dHRWr16tU6ePCkHBwf5+PioSpUqslgscnBwMDqi3WGFHgAAAAAAAIplsVjUo0cPrV+/\nXvfee68aN24si8Wi5ORkJSYmqmfPnlq7dq3RMe0OK/QA4B8aNmzYX85xcHDQhx9+WAJpAAAAAOD2\ni46O1s6dO7V161Z16NDB5ti2bdvUu3dvLV26VIMGDTIooX1ihR4A/EOOjo6qXbu2WrZsqZt9K2W3\nJwAAAABm1blzZ3Xs2FGvvvpqscdnzJih2NhYbdy4sYST2TcKPQD4h8LCwrR8+XLVrl1bQ4cO1VNP\nPSV3d3ejYwEAAADAbePl5aWYmBi1aNGi2OOHDx9WcHCw0tPTSziZfXM0OgAAmFVkZKTOnTunV155\nRV999ZW8vb3Vr18/bdy48aYr9gAAAADALDIyMuTp6fmnxz09PfXrr7+WYCJIrNADgNvm1KlTio6O\n1tKlS5Wfn6+kpCRVrlzZ6FgAAAAA8I85OTkpPT1dd999d7HHz58/rxo1aqigoKCEk9k3NsUAgNvE\n0dFRDg4Oslgs/M8MAAAAwH8Fi8WiIUOGqFy5csUev3btWgkngsQKPQD4P7l27ZpWr16txYsXa/fu\n3erevbuGDh2qoKAgOTpyVwMAAAAA5jZ06NBbmhcVFXWHk+D3KPQA4B964YUXtGLFCnl7e2vYsGEK\nCQnRXXfdZXQsAAAAAMB/OQo9APiHHB0dVatWLbVs2VIODg5/Om/16tUlmAoAAAAA8N+Oe+gBwD80\naNCgmxZ5AAAAAADcCazQAwAAAAAAAEyEO7YDAAAAAAAAJkKhBwAAAAAAAJgIhR4AAAAAAABgIhR6\nAAAAJuHg4KC1a9ea6nPu2LFDDg4OyszMvI2pAAAA7BuFHgAAgIGGDBkiBwcHOTg4qEyZMvL09NSj\njz6qxYsXq7Cw0GbuuXPnFBwcbFBSAAAAlBYUegAAAAYLCgrSuXPndPLkSW3YsEEdOnTQiy++qO7d\nuys/P986z8vLS+XKlTMwKQAAAEoDCj0AAACDlStXTl5eXqpZs6ZatWqlf/3rX/riiy+0YcMGRUdH\nW+f98fLXcePGqWHDhqpYsaLq1q2riRMnKi8vz3o8ISFBHTp0kIuLi1xdXdW6dWsdOnToT3N8//33\nevjhh1W+fHn5+flp8+bNReakpaWpX79+cnNzk7u7u3r16qWTJ0/e8nu9ePGinnzySdWsWVMVK1ZU\ns2bNtHz58ps+59SpU+rRo4eqVq2qSpUqqUmTJlq/fr31+Lfffqvg4GBVrlxZnp6eGjhwoH755Rfr\n8fbt2ys8PFyjRo1S1apV5enpqQ8++EA5OTkaOnSoXFxcVL9+fW3YsMH6nIKCAoWGhsrHx0cVKlRQ\no0aNNG/ePJtcQ4YMUe/evfX222+revXqqlatmsLCwmz+G3z00Ufy9/eXi4uLvLy8NGDAAF24cOGW\nv14AAADFodADAAAohTp27Kh7771Xq1ev/tM5Li4uio6O1rFjxzRv3jx98MEHmjNnjvV4SEiI7rnn\nHh08eFBxcXF69dVXVaZMmWJfq7CwUH369FHZsmW1f/9+LVy4UOPGjbOZk5eXpy5dusjFxUW7du3S\nnj17VLlyZQUFBSk3N/eW3tfVq1fVunVrff311/r222/17LPPauDAgTpw4MCfPicsLEzXrl3Tzp07\nlZiYqLfeekuVK1eWJGVmZqpjx45q2bKlDh06pJiYGJ0/f179+vWzeY0lS5borrvu0oEDBxQeHq7h\nw4friSee0P3336/4+Hh17txZAwcO1JUrV6xfj3vuuUefffaZjh07pkmTJulf//qXPv30U5vX3b59\nu1JSUrR9+3YtWbJE0dHRNiVsXl6epk2bpoSEBK1du1YnT57UkCFDbulrBQAA8GccLBaLxegQAAAA\n9mrIkCHKzMwsduOJ/v376+jRozp27Jik6yv01qxZo969exf7Wm+//bZWrFhhXYXn6uqq+fPna/Dg\nwX+ZY9OmTerWrZtOnTqlGjVqSJJiYmIUHBxs/Zwff/yx3njjDSUnJ8vBwUGSlJubKzc3N61du1ad\nO3cu8ro7duxQhw4d9Ouvv8rNza3Yz929e3c1btxYb7/9drHHmzdvrr59++r1118vcuyNN97Qrl27\ntHHjRuvYTz/9JG9vbx0/flwNGzZU+/btVVBQoF27dkm6vvquSpUq6tOnj5YuXSpJSk9PV/Xq1bVv\n3z61a9eu2BwjRoxQenq6Vq1aJen6f7sdO3YoJSVFTk5OkqR+/frJ0dFRK1asKPY1Dh06pDZt2ujy\n5cvWUhIAAODvcjY6AAAAAIpnsVisxVlxVq5cqYiICKWkpCg7O1v5+flydXW1Hh8zZoyefvppffTR\nRwoMDNQTTzyhevXqFftaycnJ8vb2tpZ5khQQEGAzJyEhQT/88INcXFxsxq9evaqUlJRbek8FBQWa\nMWOGPv30U505c0a5ubm6du2aKlas+KfPGTlypIYPH65NmzYpMDBQffv2VfPmza2Ztm/fXmw5lpKS\nooYNG0qSdb4kOTk5qVq1amrWrJl1zNPTU5JsLoeNjIzU4sWLdfr0af3222/Kzc1VixYtbD5HkyZN\nrGWeJFWvXl2JiYnWx3FxcZo8ebISEhL066+/Wjc6OX36tPz8/P76CwYAAFAMLrkFAAAopZKTk+Xj\n41PssX379ikkJERdu3bVunXrdPjwYb322ms2l75OnjxZSUlJ6tatm7Zt2yY/Pz+tWbPmH+fJzs5W\n69atdeTIEZuPEydOaMCAAbf0Gv/+9781b948jRs3Ttu3b9eRI0fUpUuXm16y+/TTT+vHH3/UwIED\nlZiYKH9/f82fP9+aqUePHkUy3bgf4A1/vNT4xq7Cv38syVq4rVixQi+99JJCQ0O1adMmHTlyREOH\nDi2Ss7jXvfEaOTk56tKli1xdXfXJJ5/o4MGD1q//rV6iDAAAUBxW6AEAAJRC27ZtU2JiokaPHl3s\n8b1796p27dp67bXXrGOnTp0qMq9hw4Zq2LChRo8erSeffFJRUVF67LHHiszz9fVVWlqazp07p+rV\nq0uSvvnmG5s5rVq10sqVK+Xh4WGzEvDv2LNnj3r16qWnnnpK0vUC7cSJE3+5Ws3b21vPP/+8nn/+\neY0fP14ffPCBwsPD1apVK33++eeqU6eOnJ1v34+2e/bs0f33368XXnjBOnarqxBv+O6773Tx4kXN\nnDlT3t7eknTTTUkAAABuFSv0AAAADHbt2jWlp6frzJkzio+P14wZM9SrVy91795dgwYNKvY5DRo0\n0OnTp7VixQqlpKQoIiLCZvXdb7/9phEjRmjHjh06deqU9uzZo4MHD8rX17fY1wsMDFTDhg01ePBg\nJSQkaNeuXTZloXR9k4277rpLvXr10q5du5SamqodO3Zo5MiR+umnn27pvTZo0ECbN2/W3r17lZyc\nrOeee07nz5+/6XNGjRqljRs3KjU1VfHx8dq+fbv1fYSFhSkjI0NPPvmkDh48qJSUFG3cuFFDhw5V\nQUHBLWX6s5yHDh3Sxo0bdeLECU2cOFEHDx78W69Rq1YtlS1bVvPnz9ePP/6oL7/8UtOmTfvHmQAA\nAG6g0AMAADBYTEyMqlevrjp16igoKEjbt29XRESEvvjiC5v7s/1ez549NXr0aI0YMUItWrTQ3r17\nNXHiROtxJycnXbx4UYMGDVLDhg3Vr18/BQcHa8qUKcW+nqOjo9asWaPffvtN9913n55++mlNnz7d\nZk7FihW1c+dO1apVS3369JGvr69CQ0N19erVW16xN2HCBLVq1UpdunRR+/bt5eXl9aebfNxQUFCg\nsLAw+fr6KigoSA0bNtS7774rSapRo4b27NmjgoICde7cWc2aNdOoUaPk5uYmR8d//qPuc889pz59\n+uh//ud/1LZtW/2/9u7YBGAYCILgN6EmVOmXoVy1qQfFDgx2eDBTxnJw55zHWu+LMUattWrvXXPO\n6u7X4w8AgD+83AIAAABAEAs9AAAAAAgi6AEAAABAEEEPAAAAAIIIegAAAAAQRNADAAAAgCCCHgAA\nAAAEEfQAAAAAIIigBwAAAABBBD0AAAAACCLoAQAAAEAQQQ8AAAAAggh6AAAAABDkAnEABeuDbnBu\nAAAAAElFTkSuQmCC\n", "text/plain": [ "<matplotlib.figure.Figure at 0x2f94ab0>" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "#A cada dato de la columna de comienzo del viaje (start_date) le aplico una funcion para saber en que dia de la semana fueron\n", "#realizados los viajes\n", "#Aclaracion: dayofweek nos da los dias ordenados desde 0(lunes) hasta 6(domingo)\n", "#Realizo un plot de barras para visualizar lo calculado en el paso anterior\n", "plt = trip['start_date'].apply(lambda x: x.dayofweek).value_counts().plot('bar')\n", "plt.set_xlabel('Dias de la semana')\n", "plt.set_ylabel('Cantidad')\n", "plt.set_title('Cantidad de viajes por dia de la semana')\n", "plt.set_xticklabels(['Martes','Miercoles','Jueves','Lunes','Viernes','Sabado','Domingo'], fontdict=None, minor=False)" ] }, { "cell_type": "code", "execution_count": 8, "metadata": { "collapsed": false }, "outputs": [ { "data": { "text/plain": [ "<matplotlib.text.Text at 0x14445f50>" ] }, "execution_count": 8, "metadata": {}, "output_type": "execute_result" }, { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAABOsAAAHaCAYAAABRgs3rAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAAPYQAAD2EBqD+naQAAIABJREFUeJzs3X18zvX////7zk8dm2mnzBBlY95qimmZk2VsxNvetFo5\neWO+osIbUchZlMppThLNyZuPt9EZ1bJSvMtIVEQhjSVGmW1Gs9levz/8HG9HY+3Q1o7a7Xq5HJeO\nPZ+P4/V8HK/DX/eer9fLzjAMQwAAAAAAAACqnX11NwAAAAAAAADgCsI6AAAAAAAAwEYQ1gEAAAAA\nAAA2grAOAAAAAAAAsBGEdQAAAAAAAICNIKwDAAAAAAAAbARhHQAAAAAAAGAjCOsAAAAAAAAAG0FY\nBwAAAAAAANgIwjoAAAArtG/fXu3bt//Nuo8//lh2dnb6+OOPK23t/v37q0GDBjf9+QYNGqh///6V\n1k9Vr3vs2DHZ2dlpxYoVld4TAACArSKsAwAANuvo0aMaMmSIGjVqJFdXV5lMJt1zzz2aN2+efvnl\nlypb9+DBg5o8ebKOHTtWZWsAAAAA1+NY3Q0AAABczzvvvKPevXvLxcVFffv2VfPmzVVUVKRPPvlE\nY8aM0YEDB7R06dIqWfvgwYOaMmWK2rdvX2Yn25YtW6pkzb+yQ4cOyd7e+v9HHBISol9++UVOTk5V\n0BUAAIBtIqwDAAA2JzMzU4mJiQoJCdHWrVsVGBhonhs2bJi+++47vfPOO9XSm7Ozc7Ws+2fm4uJy\nU5+zs7OTq6trJXdjGy5evCh3d/fqbgMAANggLoMFAAA2Z9asWSooKNDy5cstgrqrGjdurCeeeML8\nd0pKijp27Cg/Pz+5uLgoLCxMixcvLvO5Bg0aqFu3bvrkk0909913y9XVVY0aNdKqVavMNStWrFDv\n3r0lSR06dJCdnZ3Fveeud8+6EydOqGfPnvLw8JCfn59GjhypS5culVn/v//9r3r37q369evLxcVF\nwcHBGjly5HUv6X3zzTfVvHlzubq6qnnz5nrjjTcqdO4kyTAMTZ8+XfXq1ZO7u7s6dOigAwcOXLc2\nNzdXI0aMUHBwsFxcXNS4cWM9//zzKi0tLXeNbt26qVGjRtedi4yMVKtWrcx///qedTk5ORo9erTC\nw8Pl6ekpk8mkrl276quvvrI4zo3uWfftt9/qH//4h3x8fOTq6qpWrVrp7bfftqgpLi7WlClT1KRJ\nE7m6uqpOnTqKiopSenp6ud9rxYoVsrOz0/bt2zVkyBDVqVNHJpNJffv21blz58rUL1q0SM2aNZOL\ni4uCgoI0bNgw5ebmWtS0b99ezZs31549e9SuXTu5u7vrqaeeumEP/fv3l6enp7KystStWzd5enqq\nbt26WrhwoSRp//796tixozw8PBQSEqK1a9eWOUZFf9d169YpIiJCtWrVkslkUnh4uObNm1fuOQIA\nAFWLnXUAAMDmbNq0SY0aNVLbtm0rVL948WI1a9ZM999/vxwdHbVp0yY9+uijKi0t1bBhwyxqv/vu\nO/3jH//QwIED1a9fP7322mvq37+/IiIi1KxZM7Vr106PP/645s+fr6eeekqhoaGSZP7vr/3yyy/q\n1KmTsrKy9PjjjysoKEirV6/W1q1by9Smpqbq4sWLGjp0qOrUqaPPPvtMCxYs0IkTJ5Sammqu27Jl\nixISEhQWFqaZM2fq7NmzGjBggOrVq1eh8zFp0iRNnz5dcXFxiouL0969e9W5c2cVFRVZ1F28eFHR\n0dH68ccfNWTIENWvX187duzQ+PHjderUKc2dO/eGazzwwAPq27evdu/erbvuuss8fvz4ce3cuVMv\nvPDCDT/7/fff680331Tv3r3VsGFDnT59Wq+88oqio6N18OBBBQUF3fCzBw4c0D333KO6detq3Lhx\n8vDw0Pr169WzZ09t3LhRf//73yVJkydP1syZMzVo0CDdfffdys/P1+eff669e/fqvvvu+81zOHz4\ncHl7e2vy5Mk6dOiQFi9erOPHj5sfHHJ1jSlTpigmJkZDhw411+3evVuffvqpxeW7Z8+eVdeuXZWY\nmKiHH35Y/v7+5a5fUlKirl27ql27dpo1a5bWrFmj4cOHy8PDQ08//bSSkpLUq1cvLVmyRH379lVk\nZKQaNmwoqeK/a3p6uh588EF16tRJzz//vCTpm2++0aeffmoRhgMAgD+YAQAAYEPy8vIMSUaPHj0q\n/JmLFy+WGYuNjTUaNWpkMRYSEmJIMrZv324eO3PmjOHi4mL861//Mo+lpqYakoyPPvqozHGjo6ON\n6Oho899z5841JBnr1683j124cMFo3LhxmWNcr8+ZM2cadnZ2xvHjx81jLVu2NAIDA43c3Fzz2JYt\nWwxJRkhIyHXPwbXfx9nZ2YiPjzdKS0vN40899ZQhyejXr595bNq0aYaHh4dx+PBhi2OMGzfOcHBw\nMLKysm64Tl5eXpnzZhiGMWvWrDLfJyQkxGLdwsJCo6SkxOJzmZmZhouLizF16lSLMUlGSkqKeaxT\np05GeHi4UVhYaB4rLS012rZtazRp0sQ89re//c2Ij4+/Yf83kpKSYkgyIiIijKKiIovvJcl46623\nDMP433nu3LmzxXd5+eWXDUnGa6+9Zh6Ljo42JBlLliypUA/9+vUzJBkzZswwj507d85wc3Mz7Ozs\njHXr1pnHv/32W0OS8cwzz5jHKvq7PvHEE4bJZDIuX75cob4AAMAfg8tgAQCATcnPz5ck1apVq8Kf\ncXNzM7/Py8vTzz//rOjoaH3//ffKy8uzqA0LC9O9995r/tvX11e33367vv/++5vq991331VgYKD+\n8Y9/mMfc3d2VnJxcbp8XLlzQzz//rLZt28owDH3xxReSpFOnTunLL79Uv3795OXlZa6/7777FBYW\n9pv9fPDBByoqKtJjjz1m3gEmSSNGjChTm5qaqnvvvVe1a9fWzz//bH7FxMSopKRE27dvv+E6Vy9d\nXb9+vQzDMI//5z//UZs2bVS/fv0bftbFxcX8wImSkhKdPXtWnp6euv3227V3794bfi4nJ0dbt25V\nnz59dP78eXO/Z8+eVWxsrI4cOaIff/xRkuTt7a0DBw7oyJEjNz5Z5UhOTrbYGTd06FA5Ojrq3Xff\nlfS/8zxixAiLh2cMHjxYJpOpzD0VXVxcNGDAAKt6GDRokPm9t7e3br/9dnl4eKhPnz7m8dtvv13e\n3t4W/34r+rt6e3vrwoULv3lpMAAA+GMR1gEAAJtiMpkkSefPn6/wZz799FPFxMTIw8ND3t7e8vX1\nNd8T7Ndh3fVCpNq1a1/3fmQVcfz4cTVu3NgiGJOuhCi/lpWVpf79+8vHx0eenp7y9fVVdHS0RZ/H\njx+XJDVp0qTM5693zOv1c73P+/r6qnbt2hZjR44cUVpamnx9fS1eMTExkqQzZ86Uu9YDDzygH374\nQRkZGZKko0ePas+ePXrggQfK/VxpaanmzJmjJk2ayMXFRbfccot8fX21b9++Mr/Xtb777jsZhqGJ\nEyeW6fmZZ56x6Hnq1KnKzc3VbbfdpvDwcI0ZM0b79u0rt69r/fr8eXp6KjAwUMeOHZP0v/P869/E\n2dlZjRo1Ms9fVbduXaseTuLq6ipfX1+LMS8vL9WrV6/MvzUvLy+Lf78V/V0fffRR3Xbbberatavq\n1aunf/7zn0pLS6twjwAAoGpwzzoAAGBTTCaTgoKC9PXXX1eo/ujRo+rUqZOaNm2q2bNnKzg4WM7O\nznr33Xc1Z86cMjfUd3BwuO5xrt0dVhVKSkp03333KScnR08++aSaNm0qDw8P/fjjj+rfv/9vPtCh\nKpSWluq+++7T2LFjrzt/2223lfv57t27y93dXevXr1fbtm21fv162dvbmx/QcSMzZszQxIkT9c9/\n/lPTpk2Tj4+P7O3tNWLEiHLPw9W50aNHKzY29ro1jRs3liS1a9dOR48e1VtvvaUtW7Zo2bJlmjNn\njpYsWWKxY+2Pcu2uyoq40b/Tivz7rejv6ufnpy+//FLvv/++3nvvPb333ntKSUlR3759tXLlSqv6\nBQAAlYewDgAA2Jxu3bpp6dKlysjIUGRkZLm1mzZt0qVLl/T2229b7Jr76KOPbnr9X+9cKk9ISIi+\n/vprGYZh8blDhw5Z1O3fv1+HDx/WypUr1bdvX/P4ry9BDAkJkaTrXr7562PeqJ+rn7/2aa0//fRT\nmd2Dt956qwoKCsw7rqzl4eGhbt26KTU1VbNnz9Z//vMf3XvvveU+IEKSNmzYoA4dOmj58uUW47m5\nubrllltu+Lmr38fJyalCPfv4+GjAgAEaMGCACgoK1K5dO02ePLlCYd2RI0fUoUMH898FBQU6deqU\n4uLiJP3vPB86dMjiPBcVFSkzM/Omz2llsOZ3dXZ2Vvfu3dW9e3eVlpbq0Ucf1SuvvKKJEyeag08A\nAPDH4jJYAABgc8aOHSsPDw8NGjRIp0+fLjN/9OhRzZs3T9L/dhpdu7MoLy9PKSkpN72+h4eHpCvh\n0W+Ji4vTyZMntWHDBvPYxYsXtXTpUou66/VpGIb5e1wVGBioli1bauXKlRaXhKanp+vgwYO/2U9M\nTIycnJy0YMECi7Wu92TXPn36KCMjQ++//36ZudzcXF2+fPk313vggQd08uRJLVu2TF999dVvXgIr\nXTkXv97JmJqaar7f3I34+fmpffv2euWVV3Tq1Kky8z/99JP5/dmzZy3mPD091bhxY126dOk3+5Ok\npUuXqri42Pz34sWLdfnyZXXt2lXSlfPs7Oys+fPnW3yX5cuXKy8vT/Hx8RVapypU9Hf99Tmyt7dX\nixYtJKnC5wkAAFQ+dtYBAACbc+utt2rt2rV64IEHFBoaqr59+6p58+YqKirSjh07lJqaqv79+0uS\nOnfubN4dNGTIEBUUFOjVV1+Vn5/fdQOdimjZsqUcHBz0/PPPKy8vTy4uLurYsaP8/PzK1A4ePFgv\nv/yy+vbtqz179igwMFCrV6+Wu7u7RV3Tpk116623avTo0frxxx9lMpm0cePG694rb+bMmYqPj1dU\nVJT++c9/KicnRwsWLFCzZs1UUFBQbu++vr4aPXq0Zs6cqW7duikuLk5ffPGF3nvvvTK71saMGaO3\n335b3bp1U//+/RUREaELFy5o//792rBhg44dO1buTjfpSlhZq1YtjR49Wg4ODkpISCi3Xrqyc3Lq\n1KkaMGCA2rZtq/3792vNmjUWO9RuZOHChYqKilJ4eLgGDx6sRo0a6fTp08rIyNCJEyf01VdfSbry\nIJH27dsrIiJCPj4++vzzz7VhwwYNHz78N9eQruyQ69Spk/r06aNDhw5p0aJFioqK0v333y/pynke\nP368pkyZoi5duuj+++8319111116+OGHK7ROVajo7zpo0CDl5OSoY8eOqlevno4fP64FCxaoZcuW\nCg0Nrbb+AQCo8arnIbQAAAC/7fDhw8bgwYONBg0aGM7Ozoanp6fRpk0bY+7cucYvv/xirnv77beN\nFi1aGK6urkaDBg2M559/3njttdcMSUZmZqa5LiQkxIiPjy+zTnR0tBEdHW0x9uqrrxqNGjUyHBwc\nDEnGRx99dMPa48ePG/fff7/h7u5u3HLLLcYTTzxhpKWlWXzOMAzj4MGDRkxMjOHp6WnccsstxuDB\ng42vvvrKkGSkpKRYHHPjxo1GaGio4eLiYoSFhRmvv/660a9fPyMkJOQ3z1tJSYkxZcoUIzAw0HBz\nczPat29vfP3110ZISIjRr18/i9rz588b48ePNxo3bmw4Ozsbt9xyi9G2bVvjxRdfNIqKin5zLcMw\njKSkJEOSERMTc935X69bWFho/Otf/zL3d8899xgZGRllzm1mZuZ1z83Ro0eNvn37GgEBAYaTk5NR\nt25do1u3bsaGDRvMNdOnTzfuvvtuw9vb23BzczOaNm1qPPvss7/5nVJSUgxJxrZt24zk5GSjdu3a\nhqenp5GUlGScPXu2TP3LL79sNG3a1HBycjL8/f2NoUOHGufOnbOoiY6ONpo1a1buutfq16+f4eHh\nUWb8Rse53r/rivyuGzZsMDp37mz4+fkZzs7ORv369Y0hQ4YYp06dqnCvAACg8tkZRhXfTRkAAAC4\nCUePHlXjxo21evXqP2yn2ooVKzRgwADt3r1brVq1+kPWBAAAuBb3rAMAAIBNunoZ829digsAAPBX\nwj3rAAAAYHNee+01vfbaa3J3d1ebNm2qux0AAIA/DDvrAAAAYHOSk5OVk5Oj1NRUeXt7V3c7AAAA\nfxjuWQcAAAAAAADYCHbWAQAAAAAAADaCsA4AAAAAAACwETxgohKVlpbq5MmTqlWrluzs7Kq7HQAA\nAAAAAFQTwzB0/vx5BQUFyd6+4vvlCOsq0cmTJxUcHFzdbQAAAAAAAMBG/PDDD6pXr16F6wnrKlGt\nWrUkXfkRTCZTNXcDAAAAAACA6pKfn6/g4GBzXlRRhHWV6OqlryaTibAOAAAAAAAAVt8qjQdMAAAA\nAAAAADaCsA4AAAAAAACwEYR1AAAAAAAAgI0grAMAAAAAAABsBGEdAAAAAAAAYCMI6wAAAAAAAAAb\nQVgHAAAAAAAA2AjCOgAAAAAAAMBGENYBAAAAAAAANoKwDgAAAAAAALARhHUAAAAAAACAjSCsAwAA\nAAAAAGwEYR0AAAAAAABgIwjrAAAAAAAAABtBWAcAAAAAAADYCMfqbgDWaTDunepu4Xc59lx8dbcA\nAAAAAABgs9hZBwAAAAAAANgIwjoAAAAAAADARhDWAQAAAAAAADaCsA4AAAAAAACwEYR1AAAAAAAA\ngI0grAMAAAAAAABsBGEdAAAAAAAAYCMI6wAAAAAAAAAb4VjdDQB/Ng3GvVPdLfwux56Lr+4WAAAA\nAADADbCzDgAAAAAAALAR7KwD8KfD7kYAAAAAwF8VO+sAAAAAAAAAG0FYBwAAAAAAANgIwjoAAAAA\nAADARhDWAQAAAAAAADaCsA4AAAAAAACwEYR1AAAAAAAAgI0grAMAAAAAAABshGN1NwAA+HNpMO6d\n6m7hdzv2XHx1twAAAAAA18XOOgAAAAAAAMBGENYBAAAAAAAANoKwDgAAAAAAALARhHUAAAAAAACA\njSCsAwAAAAAAAGwEYR0AAAAAAABgI6o9rPvxxx/18MMPq06dOnJzc1N4eLg+//xz87xhGJo0aZIC\nAwPl5uammJgYHTlyxOIYhYWFGjZsmOrUqSNPT08lJCTo9OnTFjU5OTlKSkqSyWSSt7e3Bg4cqIKC\nAouarKwsxcfHy93dXX5+fhozZowuX75cdV8eAAAAAAAAuEa1hnXnzp3TPffcIycnJ7333ns6ePCg\nXnrpJdWuXdtcM2vWLM2fP19LlizRrl275OHhodjYWBUWFpprRo4cqU2bNik1NVXbtm3TyZMn1atX\nL4u1kpKSdODAAaWnp2vz5s3avn27kpOTzfMlJSWKj49XUVGRduzYoZUrV2rFihWaNGlS1Z8IAAAA\nAAAAQJJjdS7+/PPPKzg4WCkpKeaxhg0bmt8bhqG5c+dqwoQJ6tGjhyRp1apV8vf315tvvqnExETl\n5eVp+fLlWrt2rTp27ChJSklJUWhoqHbu3Kk2bdrom2++UVpamnbv3q1WrVpJkhYsWKC4uDi9+OKL\nCgoK0pYtW3Tw4EF98MEH8vf3V8uWLTVt2jQ9+eSTmjx5spydnf/AMwMAAAAAAICaqFp31r399ttq\n1aqVevfuLT8/P91xxx169dVXzfOZmZnKzs5WTEyMeczLy0utW7dWRkaGJGnPnj0qLi62qGnatKnq\n169vrsnIyJC3t7c5qJOkmJgY2dvba9euXeaa8PBw+fv7m2tiY2OVn5+vAwcOXLf/S5cuKT8/3+IF\nAAAAAAAA3KxqDeu+//57LV68WE2aNNH777+voUOH6vHHH9fKlSslSdnZ2ZJkEaBd/fvqXHZ2tpyd\nneXt7V1ujZ+fn8W8o6OjfHx8LGqut861ffzazJkz5eXlZX4FBwdbfQ4AAAAAAACAq6o1rCstLdWd\nd96pGTNm6I477lBycrIGDx6sJUuWVGdbFTZ+/Hjl5eWZXz/88EN1twQAAAAAAIA/sWoN6wIDAxUW\nFmYxFhoaqqysLElSQECAJJV5suvp06fNcwEBASoqKlJubm65NWfOnLGYv3z5snJycixqrrfOtX38\nmouLi0wmk8ULAAAAAAAAuFnVGtbdc889OnTokMXY4cOHFRISIunKwyYCAgL04Ycfmufz8/O1a9cu\nRUZGSpIiIiLk5ORkUXPo0CFlZWWZayIjI5Wbm6s9e/aYa7Zu3arS0lK1bt3aXLN//36LUC89PV0m\nk6lMoAgAAAAAAABUhWp9GuzIkSPVtm1bzZgxQ3369NFnn32mpUuXaunSpZIkOzs7jRgxQtOnT1eT\nJk3UsGFDTZw4UUFBQerZs6ekKw+cGDhwoEaNGiUfHx+ZTCY99thjioyMVJs2bSRd2a3XpUsX8yW2\nxcXFGj58uBITExUUFCRJ6ty5s8LCwvTII49o1qxZys7O1oQJEzRs2DC5uLhUzwkCAAAAAABAjVKt\nYd1dd92lN954Q+PHj9fUqVPVsGFDzZ07V0lJSeaasWPH6sKFC0pOTlZubq6ioqKUlpYmV1dXc82c\nOXNkb2+vhIQEXbp0SbGxsVq0aJHFWmvWrNHw4cPVqVMnc+38+fPN8w4ODtq8ebOGDh2qyMhIeXh4\nqF+/fpo6dWrVnwgAAAAAAABAkp1hGEZ1N/FXkZ+fLy8vL+Xl5VXZ/esajHunSo77Rzn2XHx1t/C7\n8RtUP36D6vVnP//Sn/83AAAAAGD7bjYnqtZ71gEAAAAAAAD4H8I6AAAAAAAAwEYQ1gEAAAAAAAA2\ngrAOAAAAAAAAsBHV+jRYAABgPR7yAQAAAPx1sbMOAAAAAAAAsBHsrAMAALASuxsBAABQVdhZBwAA\nAAAAANgIwjoAAAAAAADARhDWAQAAAAAAADaCe9YBAADgT4f7BgIAgL8qdtYBAAAAAAAANoKwDgAA\nAAAAALARhHUAAAAAAACAjeCedQAAAACs9me/byD3DAQA2Cp21gEAAAAAAAA2grAOAAAAAAAAsBGE\ndQAAAAAAAICNIKwDAAAAAAAAbARhHQAAAAAAAGAjCOsAAAAAAAAAG0FYBwAAAAAAANgIwjoAAAAA\nAADARhDWAQAAAAAAADaCsA4AAAAAAACwEYR1AAAAAAAAgI0grAMAAAAAAABsBGEdAAAAAAAAYCMI\n6wAAAAAAAAAbQVgHAAAAAAAA2AjCOgAAAAAAAMBGENYBAAAAAAAANoKwDgAAAAAAALARhHUAAAAA\nAACAjSCsAwAAAAAAAGwEYR0AAAAAAABgIxyruwEAAAAAgPUajHunulv4XY49F1/dLQCATWJnHQAA\nAAAAAGAjCOsAAAAAAAAAG0FYBwAAAAAAANgIwjoAAAAAAADARhDWAQAAAAAAADaCsA4AAAAAAACw\nEYR1AAAAAAAAgI0grAMAAAAAAABsRLWGdZMnT5adnZ3Fq2nTpuZ5wzA0adIkBQYGys3NTTExMTpy\n5IjFMQoLCzVs2DDVqVNHnp6eSkhI0OnTpy1qcnJylJSUJJPJJG9vbw0cOFAFBQUWNVlZWYqPj5e7\nu7v8/Pw0ZswYXb58ueq+PAAAAAAAAPAr1b6zrlmzZjp16pT59cknn5jnZs2apfnz52vJkiXatWuX\nPDw8FBsbq8LCQnPNyJEjtWnTJqWmpmrbtm06efKkevXqZbFGUlKSDhw4oPT0dG3evFnbt29XcnKy\neb6kpETx8fEqKirSjh07tHLlSq1YsUKTJk2q+hMAAAAAAAAA/P8cq70BR0cFBASUGTcMQ3PnztWE\nCRPUo0cPSdKqVavk7++vN998U4mJicrLy9Py5cu1du1adezYUZKUkpKi0NBQ7dy5U23atNE333yj\ntLQ07d69W61atZIkLViwQHFxcXrxxRcVFBSkLVu26ODBg/rggw/k7++vli1batq0aXryySc1efJk\nOTs7/3EnBAAAAAAAADVWte+sO3LkiIKCgtSoUSMlJSUpKytLkpSZmans7GzFxMSYa728vNS6dWtl\nZGRIkvbs2aPi4mKLmqZNm6p+/frmmoyMDHl7e5uDOkmKiYmRvb29du3aZa4JDw+Xv7+/uSY2Nlb5\n+fk6cODADXu/dOmS8vPzLV4AAAAAAADAzarWsK5169ZasWKF0tLStHjxYmVmZuree+/V+fPnlZ2d\nLUkWAdrVv6/OZWdny9nZWd7e3uXW+Pn5Wcw7OjrKx8fHouZ661ydu5GZM2fKy8vL/AoODrb2FAAA\nAAAAAABm1XoZbNeuXc3vW7RoodatWyskJETr169XaGhoNXZWMePHj9eoUaPMf+fn5xPYAQAAAEAN\n0WDcO9Xdwu9y7Ln46m4BwHVU+2Ww1/L29tZtt92m7777znwfu18/2fX06dPmuYCAABUVFSk3N7fc\nmjNnzljMX758WTk5ORY111vn6tyNuLi4yGQyWbwAAAAAAACAm2VTYV1BQYG+++47BQYGqmHDhgoI\nCNCHH35ons/Pz9euXbsUGRkpSYqIiJCTk5NFzaFDh5SVlWWuiYyMVG5urvbs2WOu2bp1q0pLS9W6\ndWtzzf79+y1CvfT0dJlMJoWFhVXpdwYAAAAAAACuqtbLYEePHq3u3bsrJCREJ0+e1DPPPCNHR0c9\n+OCDsrOz04gRIzR9+nQ1adJEDRs21MSJExUUFKSePXtKuvLAiYEDB2rUqFHy8fGRyWTSY489psjI\nSLVp00aSFBoaqi5dumjw4MFasmSJiouLNXz4cCUmJiooKEiS1LlzZ4WFhemRRx7RrFmzlJ2drQkT\nJmjYsGFycXGptvMDAAAAAACAmqVaw7oTJ07owQcf1NmzZ+Xr66uoqCjt3LlTvr6+kqSxY8fqwoUL\nSk5OVm5urqKiopSWliZXV1fzMebMmSN7e3slJCTo0qVLio2N1aJFiyzWWbNmjYYPH65OnTqZa+fP\nn2+ed3Bw0ObNmzV06FBFRkbKw8ND/fr109SpU/+YEwEAAAAAAAComsO6devWlTtvZ2enqVOnlhua\nubq6auGznijJAAAgAElEQVTChVq4cOENa3x8fLR27dpy1woJCdG7775bfsMAAAAAAABAFbKpe9YB\nAAAAAAAANRlhHQAAAAAAAGAjCOsAAAAAAAAAG0FYBwAAAAAAANgIwjoAAAAAAADARhDWAQAAAAAA\nADaCsA4AAAAAAACwEYR1AAAAAAAAgI0grAMAAAAAAABsBGEdAAAAAAAAYCMI6wAAAAAAAAAbQVgH\nAAAAAAAA2AjCOgAAAAAAAMBGENYBAAAAAAAANoKwDgAAAAAAALARhHUAAAAAAACAjSCsAwAAAAAA\nAGwEYR0AAAAAAABgIwjrAAAAAAAAABvhaO0H9u7dKycnJ4WHh0uS3nrrLaWkpCgsLEyTJ0+Ws7Nz\npTcJAAAAAADwaw3GvVPdLfwux56Lr+4WYIOs3lk3ZMgQHT58WJL0/fffKzExUe7u7kpNTdXYsWMr\nvUEAAAAAAACgprA6rDt8+LBatmwpSUpNTVW7du20du1arVixQhs3bqz0BgEAAAAAAICawuqwzjAM\nlZaWSpI++OADxcXFSZKCg4P1888/V253AAAAAAAAQA1idVjXqlUrTZ8+XatXr9a2bdsUH3/l+urM\nzEz5+/tXeoMAAAAAAABATWF1WDd37lzt3btXw4cP19NPP63GjRtLkjZs2KC2bdtWeoMAAAAAAABA\nTWH102BbtGih/fv3lxl/4YUX5ODgUClNAQAAAAAAADWR1TvrJCk3N1fLli3T+PHjlZOTI0k6ePCg\nzpw5U6nNAQAAAAAAADWJ1Tvr9u3bp06dOsnb21vHjh3T4MGD5ePjo9dff11ZWVlatWpVVfQJAAAA\nAAAA/OVZvbNu1KhRGjBggI4cOSJXV1fzeFxcnLZv316pzQEAAAAAAAA1idVh3e7duzVkyJAy43Xr\n1lV2dnalNAUAAAAAAADURFaHdS4uLsrPzy8zfvjwYfn6+lZKUwAAAAAAAEBNZHVYd//992vq1Kkq\nLi6WJNnZ2SkrK0tPPvmkEhISKr1BAAAAAAAAoKawOqx76aWXVFBQID8/P/3yyy+Kjo5W48aNVatW\nLT377LNV0SMAAAAAAABQI1j9NFgvLy+lp6frk08+0b59+1RQUKA777xTMTExVdEfAAAAAAAAUGNY\nHdZdFRUVpaioqMrsBQAAAAAAAKjRKhTWzZ8/X8nJyXJ1ddX8+fPLrfX09FSzZs3UunXrSmkQAAAA\nAAAAqCkqFNbNmTNHSUlJcnV11Zw5c8qtvXTpks6cOaORI0fqhRdeqJQmAQAAAAAAgJqgQmFdZmbm\ndd/fSHp6uh566CHCOgAAAAAAAMAKVj8NtiKioqI0YcKEqjg0AAAAAAAA8Jd1Uw+YuHDhgrZt26as\nrCwVFRVZzD3++ONyc3PTE088USkNAgAAAAAAADWF1WHdF198obi4OF28eFEXLlyQj4+Pfv75Z7m7\nu8vPz0+PP/54VfQJAAAAAAAA/OVZfRnsyJEj1b17d507d05ubm7auXOnjh8/roiICL344otV0SMA\nAAAAAABQI1gd1n355Zf617/+JXt7ezk4OOjSpUsKDg7WrFmz9NRTT1VFjwAAAAAAAECNYHVY5+Tk\nJHv7Kx/z8/NTVlaWJMnLy0s//PBD5XYHAAAAAAAA1CBW37Pujjvu0O7du9WkSRNFR0dr0qRJ+vnn\nn7V69Wo1b968KnoEAAAAAAAAagSrd9bNmDFDgYGBkqRnn31WtWvX1tChQ/XTTz9p6dKlN93Ic889\nJzs7O40YMcI8ZhiGJk2apMDAQLm5uSkmJkZHjhyx+FxhYaGGDRumOnXqyNPTUwkJCTp9+rRFTU5O\njpKSkmQymeTt7a2BAweqoKDAoiYrK0vx8fHmB2WMGTNGly9fvunvAwAAAAAAAFjL6rCuVatW6tCh\ng6Qrl8GmpaUpPz9fe/bs0d/+9rebamL37t165ZVX1KJFC4vxWbNmaf78+VqyZIl27dolDw8PxcbG\nqrCw0FwzcuRIbdq0Sampqdq2bZtOnjypXr16WRwnKSlJBw4cUHp6ujZv3qzt27crOTnZPF9SUqL4\n+HgVFRVpx44dWrlypVasWKFJkybd1PcBAAAAAAAAbobVYV1lKygoUFJSkl599VXVrl3bPG4YhubO\nnasJEyaoR48eatGihVatWqWTJ0/qzTfflCTl5eVp+fLlmj17tjp27KiIiAilpKRox44d2rlzpyTp\nm2++UVpampYtW6bWrVsrKipKCxYs0Lp163Ty5ElJ0pYtW3Tw4EH9+9//VsuWLdW1a1dNmzZNCxcu\nVFFR0R9/UgAAAAAAAFAjVSisu/POO3Xu3DlJV+5Zd+edd97wZa1hw4YpPj5eMTExFuOZmZnKzs62\nGPfy8lLr1q2VkZEhSdqzZ4+Ki4stapo2bar69eubazIyMuTt7a1WrVqZa2JiYmRvb69du3aZa8LD\nw+Xv72+uiY2NVX5+vg4cOHDD3i9duqT8/HyLFwAAAAAAAHCzKvSAiR49esjFxcX83s7OrlIWX7du\nnfbu3avdu3eXmcvOzpYkiwDt6t9X57Kzs+Xs7Cxvb+9ya/z8/CzmHR0d5ePjY1FzvXWu7eN6Zs6c\nqSlTpvzm9wQAAAAAAAAqokJh3TPPPGN+P3ny5EpZ+IcfftATTzyh9PR0ubq6Vsox/2jjx4/XqFGj\nzH/n5+crODi4GjsCAAAAAADAn5nV96wbNGiQPv7449+98J49e3TmzBndeeedcnR0lKOjo7Zt26b5\n8+fL0dHRvLPt1092PX36tAICAiRJAQEBKioqUm5ubrk1Z86csZi/fPmycnJyLGqut87VuRtxcXGR\nyWSyeAEAAAAAAAA3q0I76671008/qUuXLvL19VViYqIefvjhm3oKbKdOnbR//36LsQEDBqhp06Z6\n8skn1ahRIwUEBOjDDz9Uy5YtJV3ZubZr1y4NHTpUkhQRESEnJyd9+OGHSkhIkCQdOnRIWVlZioyM\nlCRFRkYqNzdXe/bsUUREhCRp69atKi0tVevWrc01zz77rM6cOWO+ZDY9PV0mk0lhYWFWfzcAAAAA\nAIC/ugbj3qnuFn63Y8/FV3cLZVgd1r311ls6d+6cUlNTtXbtWs2ePVtNmzZVUlKSHnroITVo0KBC\nx6lVq5aaN29uMebh4aE6deqYx0eMGKHp06erSZMmatiwoSZOnKigoCD17NlT0pUHTgwcOFCjRo2S\nj4+PTCaTHnvsMUVGRqpNmzaSpNDQUHXp0kWDBw/WkiVLVFxcrOHDhysxMVFBQUGSpM6dOyssLEyP\nPPKIZs2apezsbE2YMEHDhg0z36sPAAAAAAAAqGpWXwYrSbVr11ZycrI+/vhjHT9+XP3799fq1avV\nuHHjSm1u7Nixeuyxx5ScnKy77rpLBQUFSktLs7jH3Zw5c9StWzclJCSoXbt2CggI0Ouvv25xnDVr\n1qhp06bq1KmT4uLiFBUVpaVLl5rnHRwctHnzZjk4OCgyMlIPP/yw+vbtq6lTp1bq9wEAAAAAAADK\nY/XOumsVFxfr888/165du3Ts2LEyT1S11q/vhWdnZ6epU6eWG5q5urpq4cKFWrhw4Q1rfHx8tHbt\n2nLXDgkJ0bvvvmtVvwAAAAAAAEBluqmddR999JEGDx4sf39/9e/fXyaTSZs3b9aJEycquz8AAAAA\nAACgxrB6Z13dunWVk5OjLl26aOnSperevTv3dQMAAAAAAAAqgdVh3eTJk9W7d295e3tXRT8AAAAA\nAABAjWV1WDd48OCq6AMAAAAAAACo8W7qnnUAAAAAAAAAKh9hHQAAAAAAAGAjCOsAAAAAAAAAG0FY\nBwAAAAAAANiImwrrVq9erXvuuUdBQUE6fvy4JGnu3Ll66623KrU5AAAAAAAAoCaxOqxbvHixRo0a\npbi4OOXm5qqkpESS5O3trblz51Z6gwAAAAAAAEBNYXVYt2DBAr366qt6+umn5eDgYB5v1aqV9u/f\nX6nNAQAAAAAAADWJ1WFdZmam7rjjjjLjLi4uunDhQqU0BQAAAAAAANREVod1DRs21JdffllmPC0t\nTaGhoZXSFAAAAAAAAFATOVr7gVGjRmnYsGEqLCyUYRj67LPP9H//93+aOXOmli1bVhU9AgAAAAAA\nADWC1WHdoEGD5ObmpgkTJujixYt66KGHFBQUpHnz5ikxMbEqegQAAAAAAABqBKvDOklKSkpSUlKS\nLl68qIKCAvn5+VV2XwAAAAAAAECNc1Nh3VXu7u5yd3evrF4AAAAAAACAGq1CYd0dd9whOzu7Ch1w\n7969v6shAAAAAAAAoKaqUFjXs2dP8/vCwkItWrRIYWFhioyMlCTt3LlTBw4c0KOPPlo1XQIAAAAA\nAAA1QIXCumeeecb8ftCgQXr88cc1bdq0MjU//PBD5XYHAAAAAAAA1CD21n4gNTVVffv2LTP+8MMP\na+PGjZXSFAAAAAAAAFATWR3Wubm56dNPPy0z/umnn8rV1bVSmgIAAAAAAABqIqufBjtixAgNHTpU\ne/fu1d133y1J2rVrl1577TVNnDix0hsEAAAAAAAAagqrw7px48apUaNGmjdvnv79739LkkJDQ5WS\nkqI+ffpUeoMAAAAAAABATWF1WCdJffr0IZgDAAAAAAAAKpnV96wDAAAAAAAAUDUI6wAAAAAAAAAb\nQVgHAAAAAAAA2AjCOgAAAAAAAMBGENYBAAAAAAAANqJCT4MdNWpUhQ84e/bsm24GAAAAAAAAqMkq\nFNZ98cUXFn/v3btXly9f1u233y5JOnz4sBwcHBQREVH5HQIAAAAAAAA1RIXCuo8++sj8fvbs2apV\nq5ZWrlyp2rVrS5LOnTunAQMG6N57762aLgEAAAAAAIAawOp71r300kuaOXOmOaiTpNq1a2v69Ol6\n6aWXKrU5AAAAAAAAoCaxOqzLz8/XTz/9VGb8p59+0vnz5yulKQAAAAAAAKAmsjqs+/vf/64BAwbo\n9ddf14kTJ3TixAlt3LhRAwcOVK9evaqiRwAAAAAAAKBGqNA96661ZMkSjR49Wg899JCKi4uvHMTR\nUQMHDtQLL7xQ6Q0CAAAAAAAANYXVYZ27u7sWLVqkF154QUePHpUk3XrrrfLw8Kj05gAAAAAAAICa\nxOqw7ioPDw+1aNGiMnsBAAAAAAAAarSbCus+//xzrV+/XllZWSoqKrKYe/311yulMQAAAAAAAKCm\nsfoBE+vWrVPbtm31zTff6I033lBxcbEOHDigrVu3ysvLqyp6BAAAAAAAAGoEq8O6GTNmaM6cOdq0\naZOcnZ01b948ffvtt+rTp4/q169fFT0CAAAAAAAANYLVYd3Ro0cVHx8vSXJ2dtaFCxdkZ2enkSNH\naunSpZXeIAAAAAAAAFBTWB3W1a5dW+fPn5ck1a1bV19//bUkKTc3VxcvXqzc7gAAAAAAAIAaxOoH\nTLRr107p6ekKDw9X79699cQTT2jr1q1KT09Xp06dqqJHAAAAAAAAoEawemfdyy+/rMTEREnS008/\nrVGjRun06dNKSEjQ8uXLrTrW4sWL1aJFC5lMJplMJkVGRuq9994zzxuGoUmTJikwMFBubm6KiYnR\nkSNHLI5RWFioYcOGqU6dOvL09FRCQoJOnz5tUZOTk6OkpCSZTCZ5e3tr4MCBKigosKjJyspSfHy8\n3N3d5efnpzFjxujy5ctWfR8AAAAAAADg97B6Z52Pj4/5vb29vcaNG3fTi9erV0/PPfecmjRpIsMw\ntHLlSvXo0UNffPGFmjVrplmzZmn+/PlauXKlGjZsqIkTJyo2NlYHDx6Uq6urJGnkyJF65513lJqa\nKi8vLw0fPly9evXSp59+al4nKSlJp06dUnp6uoqLizVgwAAlJydr7dq1kqSSkhLFx8crICBAO3bs\n0KlTp9S3b185OTlpxowZN/39AAAAAAAAAGtUKKzLz8+v8AFNJlOFa7t3727x97PPPqvFixdr586d\nCgsL09y5czVhwgT16NFDkrRq1Sr5+/vrzTffVGJiovLy8rR8+XKtXbtWHTt2lCSlpKQoNDRUO3fu\nVJs2bfTNN98oLS1Nu3fvVqtWrSRJCxYsUFxcnF588UUFBQVpy5YtOnjwoD744AP5+/urZcuWmjZt\nmp588klNnjxZzs7OFf5OAAAAAAAAwM2q0GWw3t7eql27doVeN6ukpETr1q3ThQsXFBkZqczMTGVn\nZysmJsZc4+XlpdatWysjI0OStGfPHhUXF1vUNG3aVPXr1zfXZGRkyNvb2xzUSVJMTIzs7e21a9cu\nc014eLj8/f3NNbGxscrPz9eBAwdu2POlS5eUn59v8QIAAAAAAABuVoV21n300Ufm98eOHdO4cePU\nv39/RUZGSroSdq1cuVIzZ860uoH9+/crMjJShYWF8vT01BtvvKGwsDDt2LFDkiwCtKt/Z2dnS5Ky\ns7Pl7Owsb2/vcmv8/Pws5h0dHeXj42NRc711rs7dyMyZMzVlyhRrvzIAAAAAAABwXRUK66Kjo83v\np06dqtmzZ+vBBx80j91///0KDw/X0qVL1a9fP6sauP322/Xll18qLy9PGzZsUL9+/bRt2zarjlFd\nxo8fr1GjRpn/zs/PV3BwcDV2BAAAAAAAgD8zq58Gm5GRYXFJ6VWtWrXSZ599ZnUDzs7Oaty4sSIi\nIjRz5kz97W9/07x58xQQECBJZZ7sevr0afNcQECAioqKlJubW27NmTNnLOYvX76snJwci5rrrXN1\n7kZcXFzMT7K9+gIAAAAAAABultVhXXBwsF599dUy48uWLauUXWWlpaW6dOmSGjZsqICAAH344Yfm\nufz8fO3atct8+W1ERIScnJwsag4dOqSsrCxzTWRkpHJzc7Vnzx5zzdatW1VaWqrWrVuba/bv328R\n6qWnp8tkMiksLOx3fycAAAAAAACgIip0Gey15syZo4SEBL333nvmsOuzzz7TkSNHtHHjRquONX78\neHXt2lX169fX+fPntXbtWn388cd6//33ZWdnpxEjRmj69Olq0qSJGjZsqIkTJyooKEg9e/aUdOWB\nEwMHDtSoUaPk4+Mjk8mkxx57TJGRkWrTpo0kKTQ0VF26dNHgwYO1ZMkSFRcXa/jw4UpMTFRQUJAk\nqXPnzgoLC9MjjzyiWbNmKTs7WxMmTNCwYcPk4uJi7SkCAAAAAAAAborVYV1cXJwOHz6sxYsX69tv\nv5Ukde/eXf/v//0/q3fWnTlzRn379tWpU6fk5eWlFi1a6P3339d9990nSRo7dqwuXLig5ORk5ebm\nKioqSmlpaXJ1dTUfY86cObK3t1dCQoIuXbqk2NhYLVq0yGKdNWvWaPjw4erUqZO5dv78+eZ5BwcH\nbd68WUOHDlVkZKQ8PDzUr18/TZ061drTAwAAAAAAANw0q8M66cqlsDNmzPjdiy9fvrzceTs7O02d\nOrXc0MzV1VULFy7UwoULb1jj4+OjtWvXlrtWSEiI3n333fIbBgAAAAAAAKpQhcK6ffv2qXnz5rK3\nt9e+ffvKrW3RokWlNAYAAAAAAADUNBUK61q2bKns7Gz5+fmpZcuWsrOzk2EYZers7OxUUlJS6U0C\nAAAAAAAANUGFwrrMzEz5+vqa3wMAAAAAAACofBUK60JCQszvjx8/rrZt28rR0fKjly9f1o4dOyxq\nAQAAAAAAAFScvbUf6NChg3JycsqM5+XlqUOHDpXSFAAAAAAAAFATWR3WGYYhOzu7MuNnz56Vh4dH\npTQFAAAAAAAA1EQVugxWknr16iXpykMk+vfvLxcXF/NcSUmJ9u3bp7Zt21Z+hwAAAAAAAEANUeGw\nzsvLS9KVnXW1atWSm5ubec7Z2Vlt2rTR4MGDK79DAAAAAAAAoIaocFiXkpIiSWrQoIFGjx7NJa8A\nAAAAAABAJatwWHfVM888UxV9AAAAAAAAADWe1Q+YOH36tB555BEFBQXJ0dFRDg4OFi8AAAAAAAAA\nN8fqnXX9+/dXVlaWJk6cqMDAwOs+GRYAAAAAAACA9awO6z755BP997//VcuWLauiHwAAAAAAAKDG\nsvoy2ODgYBmGURW9AAAAAAAAADWa1WHd3LlzNW7cOB07dqwK2gEAAAAAAABqLqsvg33ggQd08eJF\n3XrrrXJ3d5eTk5PFfE5OTqU1BwAAAAAAANQkVod1c+fOrYo+AAAAAAAAgBrP6rCuX79+VdEHAAAA\nAAAAUONZHdZdq7CwUEVFRRZjJpPpdzUEAAAAAAAA1FRWP2DiwoULGj58uPz8/OTh4aHatWtbvAAA\nAAAAAADcHKvDurFjx2rr1q1avHixXFxctGzZMk2ZMkVBQUFatWpVVfQIAAAAAAAA1AhWXwa7adMm\nrVq1Su3bt9eAAQN07733qnHjxgoJCdGaNWuUlJRUFX0CAAAAAAAAf3lW76zLyclRo0aNJF25P11O\nTo4kKSoqStu3b6/c7gAA/1979x4e452wcfyeSSKRkER0M0mUoJSkVYewpLwokTjUUnpgU+fGbope\nZIvaog6xWj0pgt1qHVpWq4vFRRCUloiKNipIqai0JHRJsoLI6f2jr6mpw7Kv5Hma+X6ua67LPL/f\nzNzz/AyTOzPPAwAAAABwIndd1tWvX1+ZmZmSpMaNG+vjjz+W9NMn7nx9fe9tOgAAAAAAAMCJ3HVZ\nN2TIEKWlpUmSXnrpJSUkJMjDw0NjxozR2LFj73lAAAAAAAAAwFnc9THrxowZY/9zRESEjh49qtTU\nVDVo0ECPPPLIPQ0HAAAAAAAAOJO7Lut+KTg4WMHBwfciCwAAAAAAAODU7vhrsNu3b1doaKjy8/Nv\nGMvLy9NDDz2kzZs339NwAAAAAAAAgDO547Ju9uzZiomJkbe39w1jPj4++sMf/qC5c+fe03AAAAAA\nAACAM7njsi4tLU1du3a95XhkZKQOHjx4T0IBAAAAAAAAzuiOy7qcnBy5ubndctzV1VXnzp27J6EA\nAAAAAAAAZ3THZV2tWrV06NChW44fPHhQgYGB9yQUAAAAAAAA4IzuuKzr3r27Jk2apCtXrtwwdvny\nZb3yyit6/PHH72k4AAAAAAAAwJm43unEiRMnavXq1XrwwQc1cuRINWrUSJJ09OhRJSQkqKSkRC+/\n/HK5BQUAAAAAAAAquzsu62w2m/bs2aPY2FhNmDBBZWVlkiSLxaKoqCglJCTIZrOVW1AAAAAAAACg\nsrvjsk6SgoODtXHjRl24cEHHjx9XWVmZGjZsqBo1apRXPgAAAAAAAMBp3FVZd02NGjXUqlWre50F\nAAAAAAAAcGp3fIIJAAAAAAAAAOWLsg4AAAAAAAAwCco6AAAAAAAAwCQo6wAAAAAAAACToKwDAAAA\nAAAATIKyDgAAAAAAADAJyjoAAAAAAADAJCjrAAAAAAAAAJMwtKybOXOmWrVqperVq8vf31+9e/dW\nRkaGw5yysjJNnjxZgYGBqlq1qiIiInTs2DGHOVeuXNGIESNUs2ZNVatWTX379lVOTo7DnPPnzys6\nOlre3t7y9fXVsGHDdPHiRYc5p06dUo8ePeTp6Sl/f3+NHTtWxcXF5fPkAQAAAAAAgF8wtKzbuXOn\nRowYob1792rr1q0qKipSZGSkCgoK7HNmzZqlOXPmaOHChUpJSZGXl5eioqJ05coV+5wxY8Zo/fr1\nWrVqlXbu3KnTp0+rT58+Do8VHR2t9PR0bd26VRs2bNCuXbs0fPhw+3hJSYl69Oihq1evas+ePVq6\ndKmWLFmiyZMnl/+OAAAAAAAAACS5GvngiYmJDteXLFkif39/paamqn379iorK9Ps2bM1ceJE9erV\nS5K0bNky2Ww2rV27Vv369VNeXp7ee+89rVixQp06dZIkLV68WCEhIdq7d6/atGmjI0eOKDExUV98\n8YVatmwpSZo7d666d++uN954Q0FBQdqyZYsOHz6spKQk2Ww2NWvWTNOnT9f48eM1ZcoUValSpWJ3\nDgAAAAAAAJyOqY5Zl5eXJ0ny8/OTJGVmZio7O1sRERH2OT4+PmrdurWSk5MlSampqSoqKnKY07hx\nY9WpU8c+Jzk5Wb6+vvaiTpIiIiJktVqVkpJin9OkSRPZbDb7nKioKOXn5ys9Pb2cnjEAAAAAAADw\nM0M/WXe90tJSjR49Wm3bttXDDz8sScrOzpYkhwLt2vVrY9nZ2apSpYp8fX1vO8ff399h3NXVVX5+\nfg5zbvY41+f4pcLCQhUWFtqv5+fn3/kTBgAAAAAAAH7BNJ+sGzFihA4dOqSVK1caHeWOzZw5Uz4+\nPvZL7dq1jY4EAAAAAACAXzFTlHUjR47Uhg0btGPHDt1///327QEBAZJ0w5ldc3Jy7GMBAQG6evWq\ncnNzbzvn7NmzDuPFxcU6f/68w5ybPc71OX5pwoQJysvLs1+ysrLu6nkDAAAAAAAA1zO0rCsrK9PI\nkSO1Zs0abd++XfXq1XMYr1evngICArRt2zb7tvz8fKWkpCg8PFySFBYWJjc3N4c5GRkZOnXqlH1O\neHi4cnNzlZqaap+zfft2lZaWqnXr1vY5X3/9tUOpt3XrVnl7eys0NPSm+d3d3eXt7e1wAQAAAAAA\nAP5bhh6zbsSIEVqxYoX++c9/qnr16vZjw/n4+Khq1aqyWCwaPXq04uPj1bBhQ9WrV0+TJk1SUFCQ\nevfubZ87bNgwxcXFyc/PT97e3ho1apTCw8PVpk0bSVJISIi6du2qmJgYLVy4UEVFRRo5cqT69eun\noKAgSVJkZKRCQ0M1YMAAzZo1S9nZ2Zo4caJGjBghd3d3Y3YQAAAAAAAAnIqhZd2CBQskSR07dnTY\nvnjxYg0ePFiSNG7cOBUUFGj48OHKzc1Vu3btlJiYKA8PD/v8t99+W1arVX379lVhYaGioqI0f/58\nh/tcvny5Ro4cqc6dO9vnzpkzxz7u4uKiDRs2KDY2VuHh4fLy8tKgQYM0bdq08nnyAAAAAAAAwC8Y\nWtaVlZX9xzkWi0XTpk27bWnm4eGhhIQEJSQk3HKOn5+fVqxYcdvHCg4O1saNG/9jJgAAAAAAAKA8\nmFlmQbEAABqmSURBVOIEEwAAAAAAAAAo6wAAAAAAAADToKwDAAAAAAAATIKyDgAAAAAAADAJyjoA\nAAAAAADAJCjrAAAAAAAAAJOgrAMAAAAAAABMgrIOAAAAAAAAMAnKOgAAAAAAAMAkKOsAAAAAAAAA\nk6CsAwAAAAAAAEyCsg4AAAAAAAAwCco6AAAAAAAAwCQo6wAAAAAAAACToKwDAAAAAAAATIKyDgAA\nAAAAADAJyjoAAAAAAADAJCjrAAAAAAAAAJOgrAMAAAAAAABMgrIOAAAAAAAAMAnKOgAAAAAAAMAk\nKOsAAAAAAAAAk6CsAwAAAAAAAEyCsg4AAAAAAAAwCco6AAAAAAAAwCQo6wAAAAAAAACToKwDAAAA\nAAAATIKyDgAAAAAAADAJyjoAAAAAAADAJCjrAAAAAAAAAJOgrAMAAAAAAABMgrIOAAAAAAAAMAnK\nOgAAAAAAAMAkKOsAAAAAAAAAk6CsAwAAAAAAAEyCsg4AAAAAAAAwCco6AAAAAAAAwCQo6wAAAAAA\nAACToKwDAAAAAAAATIKyDgAAAAAAADAJyjoAAAAAAADAJCjrAAAAAAAAAJOgrAMAAAAAAABMgrIO\nAAAAAAAAMAnKOgAAAAAAAMAkKOsAAAAAAAAAkzC0rNu1a5d69uypoKAgWSwWrV271mG8rKxMkydP\nVmBgoKpWraqIiAgdO3bMYc6VK1c0YsQI1axZU9WqVVPfvn2Vk5PjMOf8+fOKjo6Wt7e3fH19NWzY\nMF28eNFhzqlTp9SjRw95enrK399fY8eOVXFxcfk8cQAAAAAAAOAmDC3rCgoK1LRpUyUkJNx0fNas\nWZozZ44WLlyolJQUeXl5KSoqSleuXLHPGTNmjNavX69Vq1Zp586dOn36tPr06eNwP9HR0UpPT9fW\nrVu1YcMG7dq1S8OHD7ePl5SUqEePHrp69ar27NmjpUuXasmSJZo8eXL5PHEAAAAAAADgJlyNfPBu\n3bqpW7duNx0rKyvT7NmzNXHiRPXq1UuStGzZMtlsNq1du1b9+vVTXl6e3nvvPa1YsUKdOnWSJC1e\nvFghISHau3ev2rRpoyNHjigxMVFffPGFWrZsKUmaO3euunfvrjfeeENBQUHasmWLDh8+rKSkJNls\nNjVr1kzTp0/X+PHjNWXKFFWpUqVidggAAAAAAACcmmmPWZeZmans7GxFRETYt/n4+Kh169ZKTk6W\nJKWmpqqoqMhhTuPGjVWnTh37nOTkZPn6+tqLOkmKiIiQ1WpVSkqKfU6TJk1ks9nsc6KiopSfn6/0\n9PRbZiwsLFR+fr7DBQAAAAAAAPhvmbasy87OliSHAu3a9Wtj2dnZqlKlinx9fW87x9/f32Hc1dVV\nfn5+DnNu9jjX57iZmTNnysfHx36pXbv23T5NAAAAAAAAwM60Zd2vwYQJE5SXl2e/ZGVlGR0JAAAA\nAAAAv2KmLesCAgIk6YYzu+bk5NjHAgICdPXqVeXm5t52ztmzZx3Gi4uLdf78eYc5N3uc63PcjLu7\nu7y9vR0uAAAAAAAAwH/LtGVdvXr1FBAQoG3bttm35efnKyUlReHh4ZKksLAwubm5OczJyMjQqVOn\n7HPCw8OVm5ur1NRU+5zt27ertLRUrVu3ts/5+uuvHUq9rVu3ytvbW6GhoeX6PAEAAAAAAIBrDD0b\n7MWLF3X8+HH79czMTH311Vfy8/NTnTp1NHr0aMXHx6thw4aqV6+eJk2apKCgIPXu3VvSTyecGDZs\nmOLi4uTn5ydvb2+NGjVK4eHhatOmjSQpJCREXbt2VUxMjBYuXKiioiKNHDlS/fr1U1BQkCQpMjJS\noaGhGjBggGbNmqXs7GxNnDhRI0aMkLu7e8XvGAAAAAAAADglQ8u6/fv367HHHrNfj4uLkyQNGjRI\nS5Ys0bhx41RQUKDhw4crNzdX7dq1U2Jiojw8POy3efvtt2W1WtW3b18VFhYqKipK8+fPd3ic5cuX\na+TIkercubN97pw5c+zjLi4u2rBhg2JjYxUeHi4vLy8NGjRI06ZNK+c9AAAAAAAAAPzM0LKuY8eO\nKisru+W4xWLRtGnTbluaeXh4KCEhQQkJCbec4+fnpxUrVtw2S3BwsDZu3PifQwMAAAAAAADlxLTH\nrAMAAAAAAACcDWUdAAAAAAAAYBKUdQAAAAAAAIBJUNYBAAAAAAAAJkFZBwAAAAAAAJgEZR0AAAAA\nAABgEpR1AAAAAAAAgElQ1gEAAAAAAAAmQVkHAAAAAAAAmARlHQAAAAAAAGASlHUAAAAAAACASVDW\nAQAAAAAAACZBWQcAAAAAAACYBGUdAAAAAAAAYBKUdQAAAAAAAIBJUNYBAAAAAAAAJkFZBwAAAAAA\nAJgEZR0AAAAAAABgEpR1AAAAAAAAgElQ1gEAAAAAAAAmQVkHAAAAAAAAmARlHQAAAAAAAGASlHUA\nAAAAAACASVDWAQAAAAAAACZBWQcAAAAAAACYBGUdAAAAAAAAYBKUdQAAAAAAAIBJUNYBAAAAAAAA\nJkFZBwAAAAAAAJgEZR0AAAAAAABgEpR1AAAAAAAAgElQ1gEAAAAAAAAmQVkHAAAAAAAAmARlHQAA\nAAAAAGASlHUAAAAAAACASVDWAQAAAAAAACZBWQcAAAAAAACYBGUdAAAAAAAAYBKUdQAAAAAAAIBJ\nUNYBAAAAAAAAJkFZBwAAAAAAAJgEZR0AAAAAAABgEpR1AAAAAAAAgElQ1gEAAAAAAAAmQVkHAAAA\nAAAAmARl3S8kJCSobt268vDwUOvWrbVv3z6jIwEAAAAAAMBJUNZd56OPPlJcXJxeeeUVHThwQE2b\nNlVUVJTOnj1rdDQAAAAAAAA4Acq667z11luKiYnRkCFDFBoaqoULF8rT01Pvv/++0dEAAAAAAADg\nBFyNDmAWV69eVWpqqiZMmGDfZrVaFRERoeTk5JveprCwUIWFhfbreXl5kqT8/Pxyy1laeKnc7rsi\nlOe+qSisgfFYA2P92ve/xBqYAWtgPNbAeKyBsX7t+19iDcyANTAea2CsX/v+l8p3Da7dd1lZ2V3d\nzlJ2t7eopE6fPq1atWppz549Cg8Pt28fN26cdu7cqZSUlBtuM2XKFE2dOrUiYwIAAAAAAOBXJCsr\nS/fff/8dz+eTdf8PEyZMUFxcnP16aWmpzp8/r5o1a8pisRiY7L+Tn5+v2rVrKysrS97e3kbHcUqs\ngfFYA+OxBsZjDYzF/jcea2A81sB4rIHxWAPjsQbG+7WvQVlZmf79738rKCjorm5HWfd/7rvvPrm4\nuCgnJ8dhe05OjgICAm56G3d3d7m7uzts8/X1LbeMFcXb2/tX+SKoTFgD47EGxmMNjMcaGIv9bzzW\nwHisgfFYA+OxBsZjDYz3a14DHx+fu74NJ5j4P1WqVFFYWJi2bdtm31ZaWqpt27Y5fC0WAAAAAAAA\nKC98su46cXFxGjRokFq2bKnf/va3mj17tgoKCjRkyBCjowEAAAAAAMAJuEyZMmWK0SHM4uGHH5av\nr69mzJihN954Q5K0fPlyNWrUyOBkFcfFxUUdO3aUqys9rlFYA+OxBsZjDYzHGhiL/W881sB4rIHx\nWAPjsQbGYw2M54xrwNlgAQAAAAAAAJPgmHUAAAAAAACASVDWAQAAAAAAACZBWQcAAAAAAACYBGUd\nAAAAAAAAYBKUdQAAACbD+b8AAACcl/Oc9xYAAOBXwt3dXWlpaQoJCTE6ilM4c+aMFixYoM8//1xn\nzpyR1WpV/fr11bt3bw0ePFguLi5GRwQAAE6ET9Y5sXnz5mngwIFauXKlJOmDDz5QaGioGjdurD//\n+c8qLi42OGHlNmrUKH322WdGxwAMdeDAAWVmZtqvf/DBB2rbtq1q166tdu3a2f99QsUpKCjQ4sWL\n9fLLL2vevHn617/+ZXSkSi0uLu6ml5KSEr366qv26yg/+/fvV0hIiDZu3KiioiIdO3ZMYWFh8vLy\n0osvvqj27dvr3//+t9ExK70jR45o8eLFOnr0qCTp6NGjio2N1dChQ7V9+3aD00GSsrKyNHToUKNj\nAOXq8uXL+vzzz3X48OEbxq5cuaJly5YZkArOyFLG9yycUnx8vGbNmqXIyEjt3r1bo0eP1uuvv64x\nY8bIarXq7bffVmxsrKZOnWp01ErLarXKYrHogQce0LBhwzRo0CAFBAQYHcvpXL16VWvXrlVycrKy\ns7MlSQEBAXr00UfVq1cvValSxeCElVvTpk315ptvKiIiQosWLdILL7ygmJgYhYSEKCMjQ4sWLdI7\n77zDDwflKDQ0VJ9//rn8/PyUlZWl9u3b68KFC3rwwQd1/Phxubm5ae/evapXr57RUSslq9Wqpk2b\nytfX12H7zp071bJlS3l5eclisVBWlKN27dqpS5cueuWVVyRJH374oebNm6e9e/fqwoUL6tSpk9q3\nb6933nnH4KSVV2Jionr16qVq1arp0qVLWrNmjQYOHKimTZuqtLRUO3fu1JYtW9SpUyejozq1tLQ0\ntWjRQiUlJUZHcVo5OTn661//qsmTJxsdpVL65ptvFBkZqVOnTslisdh/cRwYGCjpp/0fFBTEa6AC\nfP/99/L19VW1atUcthcVFSk5OVnt27c3KFnFoaxzUg0aNNCsWbPUp08fpaWlKSwsTEuXLlV0dLQk\nac2aNRo3bpyOHTtmcNLKy2q1auvWrVq/fr2WL1+uvLw8devWTTExMerevbusVj74Wt6OHz+uqKgo\nnT59Wq1bt5bNZpP003/EKSkpuv/++7Vp0yY1aNDA4KSVl6enp44cOaLg4GC1aNFCsbGxiomJsY+v\nWLFCM2bMUHp6uoEpKzer1ars7Gz5+/vr2WefVWZmpjZu3CgfHx9dvHhRTzzxhH7zm99oxYoVRket\nlF599VX97W9/06JFixyKCDc3N6WlpSk0NNTAdM7B09NThw4dUv369SVJpaWl8vDwUFZWlmw2m7Zu\n3arBgwfrhx9+MDhp5fXoo4+qU6dOio+P18qVK/X8888rNjZWM2bMkCRNmDBBqamp2rJli8FJK7d1\n69bddvzEiRP605/+RFFhIArT8vXEE0+oqKhIS5YsUW5urkaPHq3Dhw/r008/VZ06dSjrKsCZM2fU\nq1cvpaamymKx6Pe//73mz59vL+2caQ0o65yUp6enjh49qjp16kiSqlSpoi+//FIPPfSQJOm7775T\naGioCgoKjIxZqV3/A3JRUZHWrFmj999/X0lJSbLZbBo8eLCGDBlCUVSOunTpIi8vLy1btkze3t4O\nY/n5+Ro4cKAuX76szZs3G5Sw8rvvvvu0efNmhYWFyWazacuWLWratKl9/Ntvv1WTJk106dIlA1NW\nbtf/W/TAAw9o4cKF6tKli318z5496tevn06dOmVgysrtiy++0LPPPquePXtq5syZcnNzo6yrQHXr\n1tXy5cvVtm1bST/9oFCrVi0VFBSoatWqOnnypEJCQnT58mWDk1ZePj4+Sk1NVYMGDVRaWip3d3ft\n27dPzZs3lyQdOnRIERER9k/Ao3xc+9bH7X48tFgsTvFDslEOHjx42/GjR4+qf//+rEE5sdlsSkpK\nUpMmTST9dLKn559/Xhs3btSOHTvk5eXlNEWRUQYNGqSMjAzNmzdPubm5eumll2SxWLRlyxbVqFFD\nOTk5CgwMVGlpqdFRyx0f3XFSAQEB9u/hHzt2TCUlJQ7fy09PT5e/v79R8ZyOm5ubnn76aSUmJurE\niROKiYnR8uXL1ahRI6OjVWq7d+9WfHz8DUWdJHl7e2v69OkcV7CcdevWTQsWLJAkdejQQZ988onD\n+Mcff0xhXQEsFoukn47Fcu2rHtfUqlVL586dMyKW02jVqpVSU1N17tw5tWzZUocOHbKvCcpf7969\n9cc//lGJiYnasWOHoqOj1aFDB1WtWlWSlJGRoVq1ahmcsvK79nfearXKw8NDPj4+9rHq1asrLy/P\nqGhOIzAwUKtXr1ZpaelNLwcOHDA6YqXXrFkzNW/eXM2aNbvh0rx5c/Xr18/oiJXa5cuX5er68zk4\nLRaLFixYoJ49e6pDhw765ptvDEznHJKSkjRnzhy1bNlSERER2r17twIDA9WpUyedP39ekpzmPRJn\ng3VS0dHRGjhwoHr16qVt27Zp3LhxevHFF/Xjjz/KxcVF8fHxevLJJ42O6ZTq1KmjKVOm6JVXXlFS\nUpLRcSo1X19fnTx5Ug8//PBNx0+ePHnDcaRwb7322mtq27atOnTooJYtW+rNN9/Up59+aj9m3d69\ne7VmzRqjY1Z6nTt3lqurq/Lz85WRkeHwmvjuu+9Us2ZNA9M5h2rVqmnp0qVauXKlIiIi+K19BYqP\nj9eZM2fUs2dPlZSUKDw8XB9++KF93GKxaObMmQYmrPzq1q2rY8eO6YEHHpAkJScn27/9IUmnTp26\n4RcJuPfCwsKUmpqqXr163XT8P33qDv9/fn5+mjVrljp37nzT8fT0dPXs2bOCUzmPxo0b2086dL15\n8+ZJkn73u98ZEcup5OXlqUaNGvbr7u7uWr16tZ566ik99thjDv8/V3aUdU5q6tSpqlq1qpKTkxUT\nE6OXXnpJTZs21bhx43Tp0iX17NlT06dPNzpmpRYcHCwXF5dbjlssFoevouHee+655zRw4EBNmjRJ\nnTt3djhm3bZt2xQfH69Ro0YZnLJyCwoK0pdffqlXX31V69evV1lZmfbt26esrCy1bdtWu3fvVsuW\nLY2OWaldO6j+Nb88kO/69ev1P//zPxUZyan169dP7dq1U2pqqoKDg42O4xSqVaumjz76SFeuXFFx\ncfENr4HIyEiDkjmP2NhYh4L6l79E27RpEyeXqABjx4697SFwGjRooB07dlRgIucTFham06dP3/Lf\n/9zcXArTcvTEE0/o73//uwYMGHDD2Lx581RaWqqFCxcakMx51K9fXwcPHlTDhg3t21xdXbVq1So9\n9dRTevzxxw1MV7E4Zh0Ap/baa6/pnXfeUXZ2tv0j1WVlZQoICNDo0aM1btw4gxMCAADAGaxZs0YF\nBQV69tlnbzp+4cIFrVu3ToMGDargZEDFGD9+vL766qubHjO8uLhYffv21fr1653imHWUdQAgKTMz\n037g6oCAANWrV8/gRAAAAADgPIqLi3Xp0qWbHlP82vgPP/zgFN8+4AQTACCpXr16Cg8PV3h4uL2o\ny8rK0tChQw1OBgAAAPDeFJWfq6vrLYs66acztk+dOrUCExmHT9YBwC2kpaWpRYsWHOgdAAAAhuO9\nKZydM70GOMEEAKe1bt26246fOHGigpIAAADA2fHeFM6O18DP+GQdAKdltVplsVhue1Yti8XiFL+5\nAQAAgLF4bwpnx2vgZxyzDoDTCgwM1OrVq1VaWnrTy4EDB4yOCAAAACfBe1M4O14DP6OsA+C0wsLC\nlJqaesvx//RbHQAAAOBe4b0pnB2vgZ9xzDoATmvs2LEqKCi45XiDBg20Y8eOCkwEAAAAZ8V7Uzg7\nXgM/45h1AAAAAAAAgEnwNVgAAAAAAADAJCjrAAAAAAAAAJOgrAMAAAAAAABMgrIOAAAAAAAAMAnK\nOgAAAAAAAMAkKOsAAAAAAAAAk6CsAwAAcHIdO3bUqFGjNHr0aNWoUUM2m03vvvuuCgoKNGTIEFWv\nXl0NGjTQpk2b7Lc5dOiQunXrpmrVqslms2nAgAH68ccf7eOffPKJmjRpoqpVq6pmzZqKiIhQQUGB\nfXzRokUKCQmRh4eHGjdurPnz59vHrl69qpEjRyowMFAeHh4KDg7WzJkzK2ZnAAAAGIyyDgAAAFq6\ndKnuu+8+7du3T6NGjVJsbKyeeuopPfroozpw4IAiIyM1YMAAXbp0Sbm5uerUqZOaN2+u/fv3KzEx\nUTk5OXr66aclSWfOnFH//v01dOhQHTlyRJ9++qn69OmjsrIySdLy5cs1efJkzZgxQ0eOHNFf/vIX\nTZo0SUuXLpUkzZkzR+vWrdPHH3+sjIwMLV++XHXr1jVq1wAAAFQoS9m1d00AAABwSh07dlRJSYk+\n++wzSVJJSYl8fHzUp08fLVu2TJKUnZ2twMBAJScnKykpSZ999pk2b95sv4/vv/9etWvXVkZGhi5e\nvKiwsDCdPHlSwcHBNzxegwYNNH36dPXv39++LT4+Xhs3btSePXv0wgsvKD09XUlJSbJYLOX87AEA\nAMzF1egAAAAAMN4jjzxi/7OLi4tq1qypJk2a2LfZbDZJ0tmzZ5WWlqYdO3aoWrVqN9zPt99+q8jI\nSHXu3FlNmjRRVFSUIiMj9eSTT6pGjRoqKCjQt99+q2HDhikmJsZ+u+LiYvn4+EiSBg8erC5duqhR\no0bq2rWrHn/8cUVGRpbXUwcAADAVyjoAAADIzc3N4brFYnHYdu0TbqWlpbp48aJ69uyp11577Yb7\nCQwMlIuLi7Zu3ao9e/Zoy5Ytmjt3rl5++WWlpKTI09NTkvTuu++qdevWDrd1cXGRJLVo0UKZmZna\ntGmTkpKS9PTTTysiIkKffPLJPX3OAAAAZkRZBwAAgLvSokUL/eMf/1DdunXl6nrzt5MWi0Vt27ZV\n27ZtNXnyZAUHB2vNmjWKi4tTUFCQTpw4oejo6Fs+hre3t5555hk988wzevLJJ9W1a1edP39efn5+\n5fW0AAAATIGyDgAAAHdlxIgRevfdd9W/f3+NGzdOfn5+On78uFauXKlFixZp//792rZtmyIjI+Xv\n76+UlBSdO3dOISEhkqSpU6fqhRdekI+Pj7p27arCwkLt379fFy5cUFxcnN566y0FBgaqefPmslqt\nWrVqlQICAuTr62vwMwcAACh/lHUAAAC4K0FBQdq9e7fGjx+vyMhIFRYWKjg4WF27dpXVapW3t7d2\n7dql2bNnKz8/X8HBwXrzzTfVrVs3SdJzzz0nT09Pvf766xo7dqy8vLzUpEkTjR49WpJUvXp1zZo1\nS8eOHZOLi4tatWqljRs3ymq1Gvm0AQAAKgRngwUAAAAAAABMgl9PAgAAAAAAACZBWQcAAAAAAACY\nBGUdAAAAAAAAYBKUdQAAAAAAAIBJUNYBAAAAAAAAJkFZBwAAAAAAAJgEZR0AAAAAAABgEpR1AAAA\nAAAAgElQ1gEAAAAAAAAmQVkHAAAAAAAAmARlHQAAAAAAAGASlHUAAAAAAACASfwv8ctIWsr7W9gA\nAAAASUVORK5CYII=\n", "text/plain": [ "<matplotlib.figure.Figure at 0x13f9f690>" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "#A cada dato de la columna de comienzo del viaje (start_date) le aplico una funcion para saber en que mes fueron\n", "#realizados los viajes\n", "#Realizo un plot en el cual observamos la cantidad de viajes segun el mes del año\n", "plt = trip['start_date'].apply(lambda x: x.month).value_counts().plot('bar')\n", "plt.set_xlabel('meses')\n", "plt.set_ylabel('Cantidad de viajes')\n", "plt.set_title('Cantidad de viajes por mes')" ] }, { "cell_type": "code", "execution_count": 10, "metadata": { "collapsed": false }, "outputs": [ { "data": { "text/html": [ "<div>\n", "<table border=\"1\" class=\"dataframe\">\n", " <thead>\n", " <tr style=\"text-align: right;\">\n", " <th></th>\n", " <th>id</th>\n", " <th>duration</th>\n", " <th>start_date</th>\n", " <th>start_station_name</th>\n", " <th>start_station_id</th>\n", " <th>end_date</th>\n", " <th>end_station_name</th>\n", " <th>end_station_id</th>\n", " <th>bike_id</th>\n", " <th>subscription_type</th>\n", " <th>zip_code</th>\n", " <th>start_date_without_time</th>\n", " </tr>\n", " </thead>\n", " <tbody>\n", " <tr>\n", " <th>0</th>\n", " <td>4576</td>\n", " <td>63</td>\n", " <td>2013-08-29 14:13:00</td>\n", " <td>South Van Ness at Market</td>\n", " <td>66</td>\n", " <td>2013-08-29 14:14:00</td>\n", " <td>South Van Ness at Market</td>\n", " <td>66</td>\n", " <td>520</td>\n", " <td>Subscriber</td>\n", " <td>94127</td>\n", " <td>2013-08-29</td>\n", " </tr>\n", " <tr>\n", " <th>1</th>\n", " <td>4607</td>\n", " <td>70</td>\n", " <td>2013-08-29 14:42:00</td>\n", " <td>San Jose City Hall</td>\n", " <td>10</td>\n", " <td>2013-08-29 14:43:00</td>\n", " <td>San Jose City Hall</td>\n", " <td>10</td>\n", " <td>661</td>\n", " <td>Subscriber</td>\n", " <td>95138</td>\n", " <td>2013-08-29</td>\n", " </tr>\n", " <tr>\n", " <th>2</th>\n", " <td>4130</td>\n", " <td>71</td>\n", " <td>2013-08-29 10:16:00</td>\n", " <td>Mountain View City Hall</td>\n", " <td>27</td>\n", " <td>2013-08-29 10:17:00</td>\n", " <td>Mountain View City Hall</td>\n", " <td>27</td>\n", " <td>48</td>\n", " <td>Subscriber</td>\n", " <td>97214</td>\n", " <td>2013-08-29</td>\n", " </tr>\n", " <tr>\n", " <th>3</th>\n", " <td>4251</td>\n", " <td>77</td>\n", " <td>2013-08-29 11:29:00</td>\n", " <td>San Jose City Hall</td>\n", " <td>10</td>\n", " <td>2013-08-29 11:30:00</td>\n", " <td>San Jose City Hall</td>\n", " <td>10</td>\n", " <td>26</td>\n", " <td>Subscriber</td>\n", " <td>95060</td>\n", " <td>2013-08-29</td>\n", " </tr>\n", " <tr>\n", " <th>4</th>\n", " <td>4299</td>\n", " <td>83</td>\n", " <td>2013-08-29 12:02:00</td>\n", " <td>South Van Ness at Market</td>\n", " <td>66</td>\n", " <td>2013-08-29 12:04:00</td>\n", " <td>Market at 10th</td>\n", " <td>67</td>\n", " <td>319</td>\n", " <td>Subscriber</td>\n", " <td>94103</td>\n", " <td>2013-08-29</td>\n", " </tr>\n", " <tr>\n", " <th>5</th>\n", " <td>4927</td>\n", " <td>103</td>\n", " <td>2013-08-29 18:54:00</td>\n", " <td>Golden Gate at Polk</td>\n", " <td>59</td>\n", " <td>2013-08-29 18:56:00</td>\n", " <td>Golden Gate at Polk</td>\n", " <td>59</td>\n", " <td>527</td>\n", " <td>Subscriber</td>\n", " <td>94109</td>\n", " <td>2013-08-29</td>\n", " </tr>\n", " <tr>\n", " <th>6</th>\n", " <td>4500</td>\n", " <td>109</td>\n", " <td>2013-08-29 13:25:00</td>\n", " <td>Santa Clara at Almaden</td>\n", " <td>4</td>\n", " <td>2013-08-29 13:27:00</td>\n", " <td>Adobe on Almaden</td>\n", " <td>5</td>\n", " <td>679</td>\n", " <td>Subscriber</td>\n", " <td>95112</td>\n", " <td>2013-08-29</td>\n", " </tr>\n", " <tr>\n", " <th>7</th>\n", " <td>4563</td>\n", " <td>111</td>\n", " <td>2013-08-29 14:02:00</td>\n", " <td>San Salvador at 1st</td>\n", " <td>8</td>\n", " <td>2013-08-29 14:04:00</td>\n", " <td>San Salvador at 1st</td>\n", " <td>8</td>\n", " <td>687</td>\n", " <td>Subscriber</td>\n", " <td>95112</td>\n", " <td>2013-08-29</td>\n", " </tr>\n", " <tr>\n", " <th>8</th>\n", " <td>4760</td>\n", " <td>113</td>\n", " <td>2013-08-29 17:01:00</td>\n", " <td>South Van Ness at Market</td>\n", " <td>66</td>\n", " <td>2013-08-29 17:03:00</td>\n", " <td>South Van Ness at Market</td>\n", " <td>66</td>\n", " <td>553</td>\n", " <td>Subscriber</td>\n", " <td>94103</td>\n", " <td>2013-08-29</td>\n", " </tr>\n", " <tr>\n", " <th>9</th>\n", " <td>4258</td>\n", " <td>114</td>\n", " <td>2013-08-29 11:33:00</td>\n", " <td>San Jose City Hall</td>\n", " <td>10</td>\n", " <td>2013-08-29 11:35:00</td>\n", " <td>MLK Library</td>\n", " <td>11</td>\n", " <td>107</td>\n", " <td>Subscriber</td>\n", " <td>95060</td>\n", " <td>2013-08-29</td>\n", " </tr>\n", " </tbody>\n", "</table>\n", "</div>" ], "text/plain": [ " id duration start_date start_station_name \\\n", "0 4576 63 2013-08-29 14:13:00 South Van Ness at Market \n", "1 4607 70 2013-08-29 14:42:00 San Jose City Hall \n", "2 4130 71 2013-08-29 10:16:00 Mountain View City Hall \n", "3 4251 77 2013-08-29 11:29:00 San Jose City Hall \n", "4 4299 83 2013-08-29 12:02:00 South Van Ness at Market \n", "5 4927 103 2013-08-29 18:54:00 Golden Gate at Polk \n", "6 4500 109 2013-08-29 13:25:00 Santa Clara at Almaden \n", "7 4563 111 2013-08-29 14:02:00 San Salvador at 1st \n", "8 4760 113 2013-08-29 17:01:00 South Van Ness at Market \n", "9 4258 114 2013-08-29 11:33:00 San Jose City Hall \n", "\n", " start_station_id end_date end_station_name \\\n", "0 66 2013-08-29 14:14:00 South Van Ness at Market \n", "1 10 2013-08-29 14:43:00 San Jose City Hall \n", "2 27 2013-08-29 10:17:00 Mountain View City Hall \n", "3 10 2013-08-29 11:30:00 San Jose City Hall \n", "4 66 2013-08-29 12:04:00 Market at 10th \n", "5 59 2013-08-29 18:56:00 Golden Gate at Polk \n", "6 4 2013-08-29 13:27:00 Adobe on Almaden \n", "7 8 2013-08-29 14:04:00 San Salvador at 1st \n", "8 66 2013-08-29 17:03:00 South Van Ness at Market \n", "9 10 2013-08-29 11:35:00 MLK Library \n", "\n", " end_station_id bike_id subscription_type zip_code start_date_without_time \n", "0 66 520 Subscriber 94127 2013-08-29 \n", "1 10 661 Subscriber 95138 2013-08-29 \n", "2 27 48 Subscriber 97214 2013-08-29 \n", "3 10 26 Subscriber 95060 2013-08-29 \n", "4 67 319 Subscriber 94103 2013-08-29 \n", "5 59 527 Subscriber 94109 2013-08-29 \n", "6 5 679 Subscriber 95112 2013-08-29 \n", "7 8 687 Subscriber 95112 2013-08-29 \n", "8 66 553 Subscriber 94103 2013-08-29 \n", "9 11 107 Subscriber 95060 2013-08-29 " ] }, "execution_count": 10, "metadata": {}, "output_type": "execute_result" } ], "source": [ "#Ahora para hacer un visualizacion de todos los viajes a traves del tiempo creamos una nueva columa en la cual tendremos\n", "#la fecha pero sin la hora ni los minutos\n", "trip['start_date_without_time']=trip.start_date.dt.date\n", "trip.head(10)" ] }, { "cell_type": "code", "execution_count": 12, "metadata": { "collapsed": false }, "outputs": [ { "data": { "text/plain": [ "<matplotlib.text.Text at 0xbb71790>" ] }, "execution_count": 12, "metadata": {}, "output_type": "execute_result" }, { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAABJUAAAGJCAYAAAAzGAKZAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAAPYQAAD2EBqD+naQAAIABJREFUeJzsnXl8VNXd/z8zk2SybyRh31FRsWJRkEVAxKKI1VYpWh8B\nd1vrWvWpPr+6VIuPS0VLrUpVVB5tEXcFFWQR2WWRJWGHBEL2hOzLZGbO7487595zzz13ZpJMFuH7\nfr14kUzu3G3uvXPO53y+n+NgjDEQBEEQBEEQBEEQBEEQRAtwdvYOEARBEARBEARBEARBED89SFQi\nCIIgCIIgCIIgCIIgWgyJSgRBEARBEARBEARBEESLIVGJIAiCIAiCIAiCIAiCaDEkKhEEQRAEQRAE\nQRAEQRAthkQlgiAIgiAIgiAIgiAIosWQqEQQBEEQBEEQBEEQBEG0GBKVCIIgCIIgCIIgCIIgiBZD\nohJBEARBEARBEARBEATRYkhUIgiCIIifKBMnTsTEiRNDLrd69Wo4HA6sXr06YtuePXs2BgwY0Or3\nDxgwALNnz47Y/rT3dnNzc+FwOPD2229HfJ+IyPP222/D4XAgNze3xe994okn4HA4Wr1tulYIgiCI\nUwkSlQiCIAgiDA4dOoQ77rgDgwYNQmxsLJKTkzF27Fi8/PLLaGhoaLft5uTk4IknnmhV55g4tZkz\nZw4+/fTTzt6Nk5b3338fL730UmfvBkEQBEF0KlGdvQMEQRAE0dVZsmQJpk+fDrfbjZkzZ2LYsGHw\neDxYu3YtHnroIWRnZ2P+/Pntsu2cnBw8+eSTmDhxosUZtGzZsnbZ5snMvn374HS2fEytf//+aGho\nQHR0dDvsVfswZ84cXHvttbj66qs7e1dOSt5//33s3r0b9913n+n1n+K1QhAEQRCthUQlgiAIggjC\nkSNHcN1116F///5YuXIlevbsqf/trrvuwsGDB7FkyZJO2beYmJhO2e5PGbfb3ar3ORwOxMbGRnhv\nug51dXVISEjo7N04KTjZrxWCIAiCEKHyN4IgCIIIwnPPPYfa2lq8+eabJkGJM2TIENx777367wsW\nLMCkSZOQlZUFt9uNs846C6+++qrlfQMGDMC0adOwdu1ajBw5ErGxsRg0aBDeffddfZm3334b06dP\nBwBcfPHFcDgcpmwkVaZSfn4+rr76aiQkJCArKwv3338/mpqaLNv//vvvMX36dPTr1w9utxt9+/bF\n/fffryzl+/TTTzFs2DDExsZi2LBh+OSTT8I6dwDAGMPTTz+NPn36ID4+HhdffDGys7OVy1ZWVuK+\n++5D37594Xa7MWTIEDz77LPw+/1BtzFt2jQMGjRI+bfRo0fj/PPP13+XM5UqKirw4IMP4pxzzkFi\nYiKSk5Nx+eWXY8eOHab12OXk7N27F9deey3S09MRGxuL888/H59//rlpmebmZjz55JM47bTTEBsb\ni27dumHcuHFYvnx50OMKd99UOBwO1NXV4Z133tGvG37cPDMoJycHv/3tb5GWloZx48YBAHbu3InZ\ns2frZZ49evTAzTffjPLycn3dH374IRwOB7777jvLdl9//XU4HA7s3r27Q84RAGRnZ2PSpEmIi4tD\nnz598PTTT9teM1999RUuuugiJCQkICkpCVdccYXt9RiMiRMnYsmSJcjLy9PPL3cStuVa4VlQa9eu\nxT333IPMzEykpqbijjvugMfjQWVlJWbOnIm0tDSkpaXh4YcfBmNMfz/f9gsvvIC5c+eif//+iIuL\nw4QJE0yfCWflypX6+UhNTcVVV12FPXv2tPh8EARBEKcu5FQiCIIgiCB88cUXGDRoEMaMGRPW8q++\n+irOPvts/PKXv0RUVBS++OIL/P73v4ff78ddd91lWvbgwYO49tprccstt2DWrFl46623MHv2bIwY\nMQJnn302xo8fj3vuuQd///vf8eijj+LMM88EAP1/mYaGBlxyySU4evQo7rnnHvTq1QsLFy7EypUr\nLcsuXrwY9fX1+N3vfodu3bph8+bNmDdvHvLz87F48WJ9uWXLluGaa67BWWedhWeeeQbl5eW46aab\n0KdPn7DOx2OPPYann34aU6dOxdSpU7Ft2zb84he/gMfjMS1XX1+PCRMm4Pjx47jjjjvQr18/rF+/\nHo888ggKCwuDZtfMmDEDM2fOxA8//IALLrhAfz0vLw8bN27E888/b/vew4cP49NPP8X06dMxcOBA\nFBcX4/XXX8eECROQk5ODXr162b43OzsbY8eORe/evfGnP/0JCQkJ+OCDD3D11Vfjo48+wq9+9SsA\nmojzzDPP4NZbb8XIkSNRXV2NLVu2YNu2bbj00kvbZd8WLlyob+/2228HAAwePNi0zPTp03Haaadh\nzpw5ujCxfPlyHD58GDfddBN69Oihl3ZmZ2dj48aNcDgcuOKKK5CYmIgPPvgAEyZMMK1z0aJFOPvs\nszFs2LAOOUdFRUW4+OKL4fV69fXPnz8fcXFxynMya9YsTJkyBc8++yzq6+vx6quvYty4cdi+fXuL\nguf/53/+B1VVVcjPz8fcuXMBAImJibbLh3seOHfffTd69OiBJ598Ehs3bsT8+fORmpqK9evXo1+/\nfpgzZw6WLl2K559/HsOGDcPMmTNN73/33XdRU1ODu+66C42NjXj55ZcxadIk7Nq1C927dwcAfPvt\nt7j88ssxaNAgPPHEE2hoaMC8efMwduxYbNu2rU1B/ARBEMQpBCMIgiAIQklVVRUDwK666qqw31Nf\nX295bcqUKWzQoEGm1/r3788AsDVr1uivlZSUMLfbzf74xz/qry1evJgBYKtWrbKsd8KECWzChAn6\n7y+99BIDwD744AP9tbq6OjZkyBDLOlT7+cwzzzCHw8Hy8vL014YPH8569uzJKisr9deWLVvGALD+\n/fsrz4F4PDExMeyKK65gfr9ff/3RRx9lANisWbP015566imWkJDA9u/fb1rHn/70J+ZyudjRo0dt\nt1NVVWU5b4wx9txzz1mOp3///qbtNjY2Mp/PZ3rfkSNHmNvtZn/5y19MrwFgCxYs0F+75JJL2Dnn\nnMMaGxv11/x+PxszZgw77bTT9NfOPfdcdsUVV9juvx3h7psdCQkJpmPlPP744wwAu/766y1/U10X\n//73vy3X6vXXX8+ysrKY1+vVXyssLGROp9O0b+19ju677z4GgG3atEl/raSkhKWkpDAA7MiRI4wx\nxmpqalhqaiq77bbbTO8vKipiKSkpptf5+QnFFVdcobwH2nKtLFiwgAFgU6ZMMd0zo0ePZg6Hg915\n5536a16vl/Xp08f0DODbjouLY/n5+frrmzZtYgDY/fffr782fPhwlpWVxcrLy/XXduzYwZxOJ5s5\nc2bI4ycIgiAIxhij8jeCIAiCsKG6uhoAkJSUFPZ7RIdEVVUVysrKMGHCBBw+fBhVVVWmZc866yxc\ndNFF+u+ZmZk444wzcPjw4Vbt79KlS9GzZ09ce+21+mvx8fG6U8VuP+vq6lBWVoYxY8aAMYbt27cD\nAAoLC/Hjjz9i1qxZSElJ0Ze/9NJLcdZZZ4Xcn2+//RYejwd33323aYp2OdgY0JxTF110EdLS0lBW\nVqb/mzx5Mnw+H9asWWO7HV4W9sEHH5hKgRYtWoQLL7wQ/fr1s32v2+3Wg7t9Ph/Ky8uRmJiIM844\nA9u2bbN9X0VFBVauXInf/OY3qKmp0fe3vLwcU6ZMwYEDB3D8+HEAQGpqKrKzs3HgwAH7kxXBfQuX\nO++80/KaeF00NjairKwMF154IQCYtjljxgyUlJTopZiAVhbn9/sxY8YMAB1zjpYuXYoLL7wQI0eO\n1F/LzMzEDTfcYFpu+fLlqKysxPXXX2+6vlwuF0aNGoVVq1a1aLstoSXngXPLLbeY7plRo0aBMYZb\nbrlFf83lcuH8889XPi+uvvpq9O7dW/995MiRGDVqFJYuXQrAuLdnz56N9PR0fbmf/exnuPTSS/Xl\nCIIgCCIUJCoRBEEQhA3JyckAgJqamrDfs27dOkyePFnPKMnMzMSjjz4KABZRSSV2pKWl4cSJE63a\n37y8PAwZMsTUGQWAM844w7Ls0aNH9Q5lYmIiMjMz9VImvp95eXkAgNNOO83yftU6Vfujen9mZibS\n0tJMrx04cABff/01MjMzTf8mT54MACgpKQm6rRkzZuDYsWPYsGEDAODQoUPYunWrLnDY4ff7MXfu\nXJx22mlwu93IyMhAZmYmdu7cafm8RA4ePAjGGP785z9b9vnxxx837fNf/vIXVFZW4vTTT8c555yD\nhx56CDt37gy6X23Zt3AZOHCg5bWKigrce++96N69O+Li4pCZmakvJ27zsssuQ0pKChYtWqS/tmjR\nIgwfPhynn346gI45R3l5eWFdn1ysmjRpkmVfli1bFvL6agstOQ8c+dnARd2+fftaXlc9L1Tn5PTT\nT0dubi4A495U3cdnnnkmysrKUFdXF+YREgRBEKcylKlEEARBEDYkJyejV69eyoBbFYcOHcIll1yC\noUOH4sUXX0Tfvn0RExODpUuXYu7cuZbwYJfLpVyP6LZpD3w+Hy699FJUVFTgv//7vzF06FAkJCTg\n+PHjmD17dshg7PbA7/fj0ksvxcMPP6z8Oxcq7LjyyisRHx+PDz74AGPGjMEHH3wAp9OpB53bMWfO\nHPz5z3/GzTffjKeeegrp6elwOp247777gp4H/rcHH3wQU6ZMUS4zZMgQAMD48eNx6NAhfPbZZ1i2\nbBneeOMNzJ07F6+99hpuvfXWiO9buKhyh37zm99g/fr1eOihhzB8+HAkJibC7/fjsssuM23T7Xbj\n6quvxieffIJ//vOfKC4uxrp16zBnzhx9mY44R+HC92XhwoXo0aOH5e9RUe3XJG7JeeDYPRtUr7f3\n84IgCIIggkGiEkEQBEEEYdq0aZg/fz42bNiA0aNHB132iy++QFNTEz7//HOT06AtpTWy6ygY/fv3\nx+7du8EYM71v3759puV27dqF/fv345133jEF/MozbfXv3x8AlCVJ8jrt9oe/X5ydrbS01OKuGDx4\nMGpra3VnUktJSEjAtGnTsHjxYrz44otYtGgRLrrooqBh1oBWsnXxxRfjzTffNL1eWVmJjIwM2/fx\n44mOjg5rn9PT03HTTTfhpptuQm1tLcaPH48nnngiqGDS2n3jtOTaAYATJ05gxYoVePLJJ/HYY4/p\nr9uVpM2YMQPvvPMOVqxYgT179oAxZnKGdcQ56t+/f1jXJw8pz8rKavU1JhPu+W3peYgEqnOyf/9+\nPXyb35uq+3jv3r3IyMhAQkJCu+4jQRAEcXJA5W8EQRAEEYSHH34YCQkJuPXWW1FcXGz5+6FDh/Dy\nyy8DMFwEonOgqqoKCxYsaPX2eceusrIy5LJTp05FQUEBPvzwQ/21+vp6zJ8/37Scaj8ZY/pxcHr2\n7Inhw4fjnXfeMZU+LV++HDk5OSH3Z/LkyYiOjsa8efNM21LN5Pab3/wGGzZswDfffGP5W2VlJbxe\nb8jtzZgxAwUFBXjjjTewY8eOkKVvgHYuZKfH4sWLLRk3MllZWZg4cSJef/11FBYWWv5eWlqq/1xe\nXm76W2JiIoYMGYKmpqZ22TdOQkJCWNeNuD3A6nyxm3lv8uTJSE9Px6JFi7Bo0SKMHDnSVFLXEedo\n6tSp2LhxIzZv3mxa73vvvWdabsqUKUhOTsacOXPQ3NwcdF/CJSEhIawyxJach0jx6aefmq6TzZs3\nY9OmTbj88ssBmO9t8RrZvXs3li1bhqlTp0Z8nwiCIIiTE3IqEQRBEEQQBg8ejPfffx8zZszAmWee\niZkzZ2LYsGHweDxYv349Fi9ejNmzZwMAfvGLXyAmJgZXXnkl7rjjDtTW1uJf//oXsrKylJ3JcBg+\nfDhcLheeffZZVFVVwe12Y9KkScjKyrIse9ttt+Ef//gHZs6cia1bt6Jnz55YuHAh4uPjTcsNHToU\ngwcPxoMPPojjx48jOTkZH330kTKb5ZlnnsEVV1yBcePG4eabb0ZFRQXmzZuHs88+G7W1tUH3PTMz\nEw8++CCeeeYZTJs2DVOnTsX27dvx1VdfWZw2Dz30ED7//HNMmzYNs2fPxogRI1BXV4ddu3bhww8/\nRG5ubkh3ztSpU5GUlIQHH3wQLpcL11xzTdDlAc2J9pe//AU33XQTxowZg127duG9994zOavseOWV\nVzBu3Dicc845uO222zBo0CAUFxdjw4YNyM/Px44dOwBogewTJ07EiBEjkJ6eji1btuDDDz/EH/7w\nh3bbNwAYMWIEvv32W7z44ovo1asXBg4ciFGjRtkun5ycjPHjx+O5555Dc3MzevfujWXLluHIkSPK\n5aOjo/HrX/8a//nPf1BXV4cXXnihw8/Rww8/jIULF+Kyyy7Dvffei4SEBMyfPx/9+/c3ZTIlJyfj\n1VdfxY033oif//znuO6665CZmYmjR49iyZIlGDt2LP7xj3+Ec1p1RowYgUWLFuGBBx7ABRdcgMTE\nRFx55ZXKZcM9D5FiyJAhGDduHH73u9+hqakJL730Erp162YqL33++edx+eWXY/To0bjlllvQ0NCA\nefPmISUlBU888URE94cgCII4ienw+eYIgiAI4ifI/v372W233cYGDBjAYmJiWGJiIrvwwgvZSy+9\nxBoaGvTlPv/8c/azn/2MxcbGsgEDBrBnn32WvfXWW6bpzRnTprZXTaE+YcIE0xThjDH2r3/9iw0a\nNIi5XC4GgK1atcp22by8PPbLX/6SxcfHs4yMDHbvvfeyr7/+2vQ+xhjLyclhkydPZomJiSwjI4Pd\ndtttbMeOHZap0Blj7KOPPmJnnnkmc7vd7KyzzmIff/wxmzVrlnI6dRmfz8eefPJJ1rNnTxYXF8cm\nTpzIdu/ezfr372+Z7r6mpoY98sgjbMiQISwmJoZlZGSwMWPGsBdeeIF5PJ6Q22KMsRtuuIEBYJMn\nT1b+Xd5uY2Mj++Mf/6jv39ixY9mGDRss51Y1TTxjjB06dIjNnDmT9ejRg0VHR7PevXuzadOmsQ8/\n/FBf5umnn2YjR45kqampLC4ujg0dOpT99a9/DXlM4e6bHXv37mXjx49ncXFxDIB+3I8//jgDwEpL\nSy3vyc/PZ7/61a9YamoqS0lJYdOnT2cFBQUMAHv88cctyy9fvpwBYA6Hgx07dky5H+15jhhjbOfO\nnWzChAksNjaW9e7dmz311FPszTfftNxzjDG2atUqNmXKFJaSksJiY2PZ4MGD2ezZs9mWLVv0Zfj5\nCUVtbS377W9/y1JTUxkA/X5oy7WyYMECBoD98MMPpvfafWazZs1iCQkJ+u98288//zz729/+xvr2\n7cvcbje76KKL2I4dOyzH8O2337KxY8eyuLg4lpyczK688kqWk5MT8tgJgiAIguNgjNL9CIIgCIIg\ngnHo0CEMGTIECxcuxH/913919u4QhJLc3FwMHDgQzz//PB588MHO3h2CIAjiFIAylQiCIAiCIELA\nyxfDCcgmCIIgCII4VaBMJYIgCIIgiCC89dZbeOuttxAfH48LL7yws3eHIAiCIAiiy0BOJYIgCIIg\niCDcfvvtqKiowOLFi5GamtrZu0MQBEEQBNFloEwlgiAIgiAIgiAIgiAIosWQU4kgCIIgCIIgCIIg\nCIJoMSQqEQRBEARBEARBEARBEC2GgrrDxO/3o6CgAElJSXA4HJ29OwRBEARBEARBEARBEBGBMYaa\nmhr06tULTmf4/iMSlcKkoKAAffv27ezdIAiCIAiCIAiCIAiCaBeOHTuGPn36hL08iUphkpSUBEA7\nwcnJyZ28NwRBEARBEARBEARBEJGhuroaffv21bWPcCFRKUx4yVtycjKJSgRBEARBEARBEARBnHS0\nNO6HgroJgiAIgiAIgiAIgiCIFkOiEkEQBEEQBEEQBEEQBNFiSFQiCIIgCIIgCIIgCIIgWgyJSgRB\nEARBEARBEARBEESLIVGJIAiCIAiCIAiCIAiCaDEkKhEEQRAEQRAEQRAEQRAthkQlgiAIgiAIgiAI\ngiAIosWQqEQQBEEQBEEQBEEQBEG0GBKVCIIgCIIgCIIgCIIgiBZDohJBEARBEMQpxtHyehyrqO/s\n3SAIgiAI4icOiUoEQRAEQRCdxMbD5bh/0Y+oqPN02DY9Xj/GP78KFz23Co3Nvg7bLkEQBEEQJx9R\nnb0DBEEQBEEQpyrXzd8IAKhp9OKNWed3yDYbvYaQVFjViIEZCR2yXYIgCIIgTj7IqUQQBEEQBNHJ\nfLunuMO2xZjxc1ltU4dtlyAIgiCIkw8SlQiCIAiCILoATFR7Omg7ZTVdX1T68Vgldh+vivh6j1XU\nY9W+koivlyAIgiBOJUhUIgiCIAiC6CSyktz6z/knGjpkm6J2VdrFnUqNzT5cN38Drv/XRnh9/oiu\n+75FP+KmBT+0i2BFEARBEKcKJCoRBEEQBEF0Es2CULLt6IkO2ab/J+RUqm5sRmOzHzWNXlQ1NEd0\n3YdKawEAueV1EV0vQRAEQZxKkKhEEARBEATRSdQ2efWft+Z1lKhk/NzVnUpNzYboVhlBUanJ60Nl\nvba+ri6sEQRBEERXhkQlgiAIgiCITqDJ60Ozz1B4th+t7JDtiplKJdVdW1BpEmaqi6RTqVQQkspq\nPRFbL0EQBEGcapCoRBAEQRAE0QnUNnpNvxdVN3bIdkWnUkkXd+k0Ck6lSIpKJSZRqWufA4IgCILo\nypCoRBAEQRAE0QmIpW+AVWRqLxgEp1JNxwhZraXJK4hK9REUlQQBj0QlgiAI4lSgurEZGw+XR3y2\nWRKVCIIgCIIgOgEuKsW4tOZYQ7Mv4jOcqRCdSmW1Hvj8kW1cRpKmZnP525NfZOOVVQfbvN4SKn8j\nCIIgTjGeWboX183fiA+35kd0vSQqEQRBEARBdALcmdQ9xa2/Vtfks1s8YvgFEcnnZ6io67qiiuhU\n2ni4HAvW5eL5b/a1eZRVzJIipxJBEARxKvBDbgUAYDGJSgRBEARBED99uFMpLT4G7iitSVbTFLkS\nLztkPaa9SuDe3ZCLW9/Zgsbm1gtlYlD3gZJa4fW2ObrEYy6rbYp4KQBBEARxarC3qBpzlu6JaO5f\ne9Dk9eFIWR0ATVwqrGqI2LpJVCIIgiAIgugEuKiU6I5CUmyU6bX2xC8JKO0V1v3YZ9n4dk8xvtpd\n2Op1iOLRsYp64/XmtolKxYJTqbHZjzpP+zvECIIgiJOPf6w8iPlrDmPRD0c7e1eCcri0Ti93ZwxY\nsrP1380yJCoRBEEQBEF0AqKolOgOiEodENYte3JKqyMvKonuJKfDEZH1iAJTQxvcT4BVSCvr4rPg\nEQRBEF2T4sDED7uPV3fyngRnf3GN6fclu0hUIgiCIAiC+EnDBaREdxQSA06lmk5wKuUURr4hnH/C\nsNXHx0S1ej12ZW5tKakDgFKp5I9ylQiCIIJTWtOEq/6xFv/e3LUdOR1NeWCyh+yCqk7ek+DsK9JE\npZ/3SwVgdv+2FRKVCIIgCIIgOgHdqRTbwU4lSVR6Z0Muvt5dFNFtHDthNFY9bcg/sitza4tTqdnn\nR3kgnLx/t3gAJCoRBEGE4u8rDmBHfhUe+XhXZ+9Kl4J/fxwuq0O9p/2/w1sLF5WG900DoJV+RwoS\nlQiCIAiCIDoBc/lbtOm19oRP/tYtIQazRvcHY8Cjn+yKaFh1vjAC6vG1XgCycySF41Sqqm/G5S9/\njxeX7TO9rgVzA1FOB07LSgy81nVnwCMIgugKiBMnEBoerx/VgcEgxoC9RTUh3tF57AuUv53bNwVA\nZD9PEpUIgiAIgiA6Ab38LVYI6u4ApxIvf3M4gAd+cQYAoKLOg2Zf5ESlY0L5W1tCte3K38JxKr20\nYj/2FFbj7ysPml4vCWRIZSa5kZkUC4CcSgRBEKFwR7k6exe6HBV15gGJ7IKOy1VqbPahujG8Gedq\nm7x6Wfo5vTVRqdnH9ODuttKpotKaNWtw5ZVXolevXnA4HPj0009tl73zzjvhcDjw0ksvmV5vbGzE\nXXfdhW7duiExMRHXXHMNiouLTctUVFTghhtuQHJyMlJTU3HLLbegtrYWBEEQBEEQnYUqqLsjMpW4\nIcnhcCA22mgKRnLU8pjJqdQWUUm9T+EIVduPVipf56V5WUluZCbGACBRiSCIU5ey2iZ8k10Eb4hn\ntTuK/Cgy8ndHTgeJSowxTH35e4z935VhZSPxZdLio9EjJVZ/va35hJxOvTLq6upw7rnn4pVXXgm6\n3CeffIKNGzeiV69elr/df//9+OKLL7B48WJ89913KCgowK9//WvTMjfccAOys7OxfPlyfPnll1iz\nZg1uv/32iB4LQRAEQRBESzCJSp3gVHI6gBiXKCpFLl9BzFTqKKdSTkE1nvlqD2oCI7d2jfvv95cB\nAM7rl4aMJDcAoKwmdPnbZz8ex5trj4S13wRBaOQUVGPtgbLO3g0iCE99mYM7Fm7Fir0lQZeLjQ7u\nVNpXVIPv9pdGcte6POWSUymng8K6m30Mh8vqUNPoxe/e2wp/CMdRZb32vZiWEGNynEXqe79TRaXL\nL78cTz/9NH71q1/ZLnP8+HHcfffdeO+99xAdHW36W1VVFd588028+OKLmDRpEkaMGIEFCxZg/fr1\n2LhxIwBgz549+Prrr/HGG29g1KhRGDduHObNm4f//Oc/KCgoaNfjIwiCIAiCsEPlVKptCm5lP1xa\ni29zituUf8Tf6nQ44HA49NHniIpKFUb5W1ucSi3JVJq38gBe/+4wlu4qhN/PlNtljGHVPq3jNGlo\nFlLitLZlqBKCmsZm3PufH/HUlzkoqGwIuixBEAY3v/0DZr61CYVV1vuGMYa9RdURK8EhWsf+Yq2C\npzDEs010KqlcTbe9uwWzF2yO6KxiLaHJ68Nfl+Rgw6HyDttmecCp1CNZc/8cLq3rkO2Ks7juPl6N\nD7flB12+qkH7jkuJi4bL6UC0ywHgJHEqhcLv9+PGG2/EQw89hLPPPtvy961bt6K5uRmTJ0/WXxs6\ndCj69euHDRs2AAA2bNiA1NRUnH/++foykydPhtPpxKZNm2y33dTUhOrqatM/giAIgiCISKFnKrmF\nTKUQ5W813kSDAAAgAElEQVT3/Gc7bn13C95vw5TOhlNJa1TqolKEGpfVjc16A7at622JU4lnWxRX\nNyG33GjY88Y+oOVdlNQ0IS7ahZED0xHl1I49VKdW7KScqKdQb4IIh9omL4qqG+Fn6s72/DWHcdlL\n3+OvS/Z0wt4RHC6Uh/r+cQvl0vXSM9jr8+PYiXowZswy1tG8tvow/vX9EVz/r40dts3ywCQPZ/VK\nBqCVsEdCqPF4/Vi6qxB3vbcNl7/8PX4vuZHkcaWNh4MLadWCqAQAsQG30ikhKj377LOIiorCPffc\no/x7UVERYmJikJqaanq9e/fuKCoq0pfJysoy/T0qKgrp6en6MiqeeeYZpKSk6P/69u3bxqMhCIIg\nCIIw0J1KsUKmUojyt93HtUGu//lkd6tH9+W3uQMlDZFyKsmj1E1tyVSyKZ1TTYXMz2d5bRN2HTdK\nEJwOY5lVgfKOsUMyEBvtAq/+C3Uu1x40yneq6sMLRiWIU52iqkb95/wTVvfKi8v3AwDeWqeVlTLG\n8OrqQ/h3G0RzomXUe7z6IEBtU3CBgQ9EAEC9tGxFnUcXOvLCcCrVeyJf6r3uYMeXWZbVaU6lAd0S\nEBMYoCmtaXtG363vbsHv39uGJbsKsaewGkt3FZkGSxjM31l55cHPeWWDJn6lBkSlSH/vd1lRaevW\nrXj55Zfx9ttvwyFcwB3FI488gqqqKv3fsWPHOnwfCIIgCII4eVGXv9k3tJslcebLna0r4+elcwGT\nTsTL3/JPmEso2pKp1GgT1K0aXa3jolKdB7sFUUnUi9Yd0jodFw/NBGB0knwhygm/FzJhKhtIVCKI\ncBBL3uTnAgAMzEgw/f5NdhGe/XovHvl4V8iMGKJtbM2rwP2LfsTOfONZGar8WhTf6yRRqEQQUkKV\nv33243Gc/fg3+HhbPr7bX4rJL36HrXkVLdl9JQWKEsv2hjuVMpJikJmoZfSVRmDihy252vm4eexA\n/TVxMEW+PfLKg5fdVclOpYDr7KR3Kn3//fcoKSlBv379EBUVhaioKOTl5eGPf/wjBgwYAADo0aMH\nPB4PKivNs3sUFxejR48e+jIlJebQMa/Xi4qKCn0ZFW63G8nJyaZ/BEEQBEEQkYAxZnYqhRHUzRuv\nnI+3HW/Vtv1CphIQ+fI3eZS2TbO/BRrRTml8UdUQ5uezos6DvUL5hZg9wZfpnRoHAIgK5EoEcyod\nq6jHkTKjwV5JTiWCCItCk1MpuKjk9fnxyqpD+u9teW4QofnN6xvxyfbjplKxOhun0sbD5SirbYJX\neE7KTiVxFrRQAsfmIxVgTHOAfrItHwdLarF0l30FUbi0JO9u/cEy/HP1QfyQW2HJKNx0uBwTnl+l\n5+8Fgx93RoIbmYGJH9rqVGr2+VHv0c7v3ZOGoG+69n0lDrL4pX0uq/Xok1SokEUl/r2vcv22hi4r\nKt14443YuXMnfvzxR/1fr1698NBDD+Gbb74BAIwYMQLR0dFYsWKF/r59+/bh6NGjGD16NABg9OjR\nqKysxNatW/VlVq5cCb/fj1GjRnXsQREEQRAE8ZMl/0Q9bn93C37IbfuIar3Hp5cKJLqjkOTWGnrB\nnEry1MXhZPvcv+hHzHxrsylUlVkylSJrg5fFr7bN/qY1ovulx5teb/DYi0rltR5T50LUi/yBXeHH\nrjuVgohKcugrLyMgCCI4ocrfugt5Z5/+WGAqW23Lc+NkY09hNcb+70os3hK5yhn+zBO1CVX59Yo9\nxbhu/kZMmbsGXp+9U0kUUkKVv/HvrqPl9TgaWLaoujHYW0Li8fpNz/pgk1k0eX24feFWPPf1Pkx/\nbQP+sfKg6e//8+lu5JXX46YFP4TcLv++65YYEzFRScwkTI6L1r+jxcEUJtweqfFa+yFYCRwfDEmJ\njwFgzORn5wZuKVERWUsrqa2txcGDxod45MgR/Pjjj0hPT0e/fv3QrVs30/LR0dHo0aMHzjjjDABA\nSkoKbrnlFjzwwANIT09HcnIy7r77bowePRoXXnghAODMM8/EZZddhttuuw2vvfYampub8Yc//AHX\nXXcdevXq1XEHSxAEQRDET5qluwqxLKcYsdEuXDAgvU3r4qVaTgcQF+0Ky6kkW+qrQ5RhHauoxyfb\nNTdTbnk9hmQlAjBEFm7+4eGrEROVAhkTie4o1DZ5dWGoNfB9unvSaaht8iK3vA4L1uVaGsJen18f\ncS2v86DB1OExOhdySHk4Qd15FeZRd8pUIojwCOVUEhNOnvt6r+lvjV4fUhCN9qbZ58drqw9hwfpc\n3Hhhf9w3+TRl9Mru41V4Ydk+PDTlDJzdKyXkejccKsfmIxW45aKBenlza1mzvxTHKxvwTXYxpp/f\nfjm/dYpBjSW7CgFoz1Wf3/iOkDORxO+n/IoG+PwMLtliGoBPqnC0ol5/JhdXtU1UypXcUQ3NPsTH\nqM/7psMVpgGcnELzhFwJLfi8+Oxv3RIj51TiolJSbBRcTodeqtZkKn8zvrMGZiRg+9FK5JXXY1hv\n9bVpLX9zWdbZFjrVqbRlyxacd955OO+88wAADzzwAM477zw89thjYa9j7ty5mDZtGq655hqMHz8e\nPXr0wMcff2xa5r333sPQoUNxySWXYOrUqRg3bhzmz58f0WMhCIIgCKLj8PtZ0JFIQAvtPFxaG7Ft\n8lHcUNPPh7UuIU/J4XAYmUoer22WCB8R7Z7sDuxH8KBTcTaYYmEUmDdGeb/JyFSKzIgl38+eKZoL\nwRNErKpqaDbtmwwfme2dFodZYwYgK0lbZ4PHvE6xbKOstgl1HrFMAMLPXFTSfneGEdRdUq11EHjD\nvooylboMGw+X41AE7/H2oLy2Ccuyi0I+r05GioSMm6LqRsuzQDwlJVJHvKOcSvcv+hF/W74fFXUe\nvLziAP65+pByuY+3HcfqfaVY9ENot9BTX+bg+n9txNxv91vEstZwop4HaUfu2ZMWbxXsVE5ZUWgS\ny9/kUrmyGsPB6fH5gz7XT9Rpx1FS04SywPdFW51KB4rNz4Fgrt+VgQkb+DNddmid3cuIvSkPko/E\nGENZQCDLSIxcppLuKgoyU5tJVOqmlZHKwpqIXaaS+L2/r6gG//3hjlbtc6eKShMnTgRjzPLv7bff\nVi6fm5uL++67z/RabGwsXnnlFVRUVKCurg4ff/yxJSspPT0d77//PmpqalBVVYW33noLiYmJ7XVY\nBEEQBEG0Ix6vH5e//D2um28/bfCRsjrc8MYmTPrbdxELouSN1FAztIUD7zDFBBqLSQGnEmPWqZo5\nvPxtUEZiYD+alR3Vynqt/GuDjajE32IpfwvSiTtWUR+2mMKdSj0DuUXBHFDXvLoek15YbSvU8fdy\n4SuOh4tKAlhNkM6W2PjWXVotcCrxDsLp3ZMABM9UWn+wDFvzTtj+vbOobmzGh1vzIyKIdhW25lXg\nuvkb8ct5aztl++sOlmHO0j34f5/uMpV5yfzp4124feFWvLBsXwfuXfvx/qajuOGNjahubMbBklos\n2VloK5iJTiXGzMHdgDUXJiUuGkkBgT1SIncw/H6Gb7K1LJ+rhmsVLH9btk8pJPC8GpXjSuRAcQ3e\nXHtE//39TUdNmWytoTJQLhaJ7x5OUqxVVFI5leoFgV58TgZzKgHBS7EqFKXbJdVNbRJeD5TUmH63\ny4dijOlZSb88V/vMa6TjTohx6T/vFEoyZWqbvLpQ2i2CmUrVNq4ic6aS9r/DAQwIZJMFy7Li39+8\nVE5VUldS04glrcy26rKZSgRBEARBECr2FFZjX3ENNh2psO0kHyg2Gpifbm9doLUML00LVqIWLnw6\nYJcwA1tUwD5jt/6yQEN1YKbWgGz2MWXI5m9e34CJz6/G8uxi/bUik6gkZyoFL3/7JrsIE55fhVlv\nbQ7r2LhTqVcIp1KDx4eDJbWoC/yvwhCVtAaw3riWMpVUHYiYwMkVnV+yU4mf/2Czv/EOwpBMTcyz\ny1SqbfJi9oIfMHvB5i43c9Xjn2XjwcU78If3t3f2rkSMxVvyAQB1Hp9lZsT2prbJi5sW/ID5aw7j\n/zYexfub8myXXZ6j3YdiCPVPmTfXHsa6g+VYtbcEk1/8Dne9vw0bD6tz5rioFB0IxD9+IriodPEZ\nmXrpUSTKcVfsKcadC7fi9+9tNTk3ORX1HjT7GBwO4IXp5yItPhp+ZpRnifAMIVU2lMixwN/P6pmM\niWdkwutneHH5/jYdB88gCua+aSn1ilw6WVyRtxnMqVRaYxZWj1aoBQ7GGE4ozq/H51ee93CRnUoq\ngQzQBpzyyusR7XLgsmGaEUUOuBYf3zuP2YtK3HEVF+1CXIwrpKhU2+TFf72xCQs35AY7FIsAZMzU\nps5G7N9NyxzMDSLk2TuV7GeUawkkKhEEQRAE8ZMiu8DIPyisVDsEyoXG6Rtrj0Sk9IR3KoLNsKLi\naHk9SiRrv+wWcjgcRq6SjeuGO5X6pcfroogsqtU0NmN/cS08Pr+pgyDmVYgjnADg5tkKCmfA3qJq\n3LFwK/wM+PFYpSnw2w5+7nvpTiX1iHFJTfC8FcAYReW5T3Ex6nBR1TnrlaqJWuJHr5/3wAl0BZxK\nYgCtdT8DolL3gKhk41SqqPVo573R2+VmrvpyZwEALZvlZEEMzJdLp9qbw6W1ps+4uNp++6LroaXP\njq4GY0wXisTnsMqJU+/x6h1ZnvMi3+dyJ3byWd2FjLe2OZUYY/ifT3bj6+wiLN1VhLkKYYc7zLol\nuBHtciIu8CxsULhFuUso/0RD0O8Tfi30SInF7ycOAWAN+28pvPytptGLfUU1uOLv32PFnuIQ7wqO\n7DQCbJxKTeE5lXgZ2+DAoMeKPSXYX2x2DwGacOW1US/aUgJ3VAoHtxPg3t90FAAwamA3PSheHsgR\nxc5dx82zzIs0BzKmuGgaSlRaurMQaw+W4c+fZQd1jVpmatPzj6xOJacDGBAof9tbWI1XVx+y5P75\n/cwQqoKU1LWlnUSiEkEQBEEQ7UpZbRN2HLNvmLWUnEJj5LCgSi1GiOVeB0tq29yoB4DaQONaNZpr\nR2FVA8Y/vwpXvbLO9LocGA1Az1WyK3HgjfbMRDeSAw1DuZN6rMLufBiNXCNTKbRT6V9rjph+Lw7R\neff6/Pqoup6pZCOwhJoZStwn7lDijiV59rdahVOpZ4omapnL38zn3RX4X3ZM+P0Mmw6Xo7qxWS+F\nOT1LK3+zKwMUOzFdbeaq3gGB72ThUGktDpUaQkaRzXOgvZBFlPIgDotugZwVAFizv6zd9qkjqGny\n6g6Xr3cbZTIJbpdlWX5/J7qjcGZPLaNGvs/FTmxSbBTGn55pPI/aeA8dLKk1iRTy7JmA8T3RI0X7\njGJj1M8XwLi/6z0+XeRRwY+7e3KsLmxXN6hLlcOFl7/VNnqxPKcI2QXV+GJHQavX5/czpVOp3uOz\nlAKbnUrGZ1LnkZ1K2vkdNUibaGtZTjGu+Pv3FleSyqXECZbDFArZQapy/B4sqcXb63MBALdcNBDJ\nsfx71Lys+FHtyK+y/ex0t1BgkELMVFK9RxTiPgvioLa4irgA5LUGdTvgwICMBLicDlQ3evHs13vx\n3mazc7KmyasfU7IuVKncT7a7FBISlQiCIAiCaFfuem8brnplnW2JU0sJx6kkOwcORGDbtY08LNU+\nTFvmyx3azDmFVY1SyKb2vzjJkB7WbSNa8U5RRpJbz2CqajAvK47W9u8WjysDmRFFiqBupxzUrejE\nyQ6g/JBTRTeDMe24egREJbvOoShQqZxKjDG9dE7PVOJOJWmdqg4Ed0oFC+rmsxPJHanFW49hRiCv\nxx84nkGBEXg7p5I4xXakpmmOFH3S4jt7FyIKz8HhFLZx5iiZP320E9NfW29bunk4IGjxsGOeI6ZC\ndCR820Z3SWcjCsHis0YlwvBle6TE6qJmfqXkVAqc3l//vDc+vWsskmON6dPtyt8YY3jqyxx8sCV4\nYPaaA5qAx90jKjGYPxd7BBwrcdHWzjtHfMbIZXwiXBjpnuzWRQGPMDulHT/kVmDBOrWrlotYWgC2\ndq2FWl8w5OdThiB81kkOJPF3k1NJFNG9Pv38/m7CYPx+4mDERbvQ7GM4Ln3mwUrciqpa7zjk7hw+\nkYV8HADw7Nd74fUzXDI0CxefkaV/5zY0m0toxUGG0pomW+eR4RYyO5U8Xr9y8El0VL636aitWMW/\nY5Lj5PI3wVUU+N/h0MSnl68bjnP7pmrbkdo/PKPJHeW0DNDYhX+3FBKVCIIgCIJoV3jnwy5joSX4\n/Ax7Cw1LvRz8yuHlZlw0COYkCBeeIcGYusGqQgzLFjuXKqcSF4rsnUoBUSkxRhhhlZ1K2rm+8txe\n+O6hi3HLuIEApKDuwP+WoG6FECJrZ3IHQYZ3rtPiYxAfEIDsnEpiSaBKVBI7lVxUio2yNq4BddlG\n74BLwORUCqxSdyrZiEpf7tTEQJ5R0S0hRnecNDT7lOeq7ifiVJJLI36KiMIygKBB2S3F72dYvDUf\nP+SesEw1zuFOpRH90wHYd5QZY3qHDgC+P1D6k54Fzu48q4RwLvT1TIlFlk1ZEL83h2QlYnAgs0w1\nK5XIjvwqvLn2CB7+cKeynLCkphGr95XopZ5X/kwT1ivrrW6hYsFVpG3b3qkk3t/BcpWKBaEq0R2l\nP2OCTXTw0dZ8TH9tA578IgfbJVcvY0x3Konbbkt5IP8ucziAZ685B6/+18/1Ei5ZoDfN/iaUCYvu\nUJ6jF+1yoE9aHB6+bCj6pmvPHPm4TyhCuodkaZ99a8vf/H6mizh8MEF1TXLH9O8vHgwAesk5YD5O\nWVzZU2Qt4xOX498nsdEu/XtcJUSJg117i2oszzGONf/IOpjCB7b4tqf9rBcuD2REycfORapUYca/\n2GireEuZSgRBEARBtJknPs/GC99EfoYi3kitbgi/bMyOI2W1pryLAjunUiCv56xA2UWwaYHDRWyo\nhROY2uDxYd1Bo9xF7FwyyTEDGA1IVefD52d6xzUz0XAqVTeqnUr9Ag16PmpbUtOkN0LlbbsVgZ3y\nfnLsso+Kqhox9n9X4tGPdwHQRJhQs8oVVwcvfxPfx9dlOJXk8jd7p5I5U0kqf7MJ6uYdXE5GohtJ\n7ij9nKk+IzG4tqs5lfhnDBhBwj9l+LXMnSWRdCpVNjTrIuPhUrXDkYtKFwxIA6Dlaamo8/hMHbWy\nWk/EXVUdiZ2opCql4q6MzCQ3MgKiUpl0nmSBG0BIp5KY68anhhd55KNdmL3gB3zHRaVze2rvE4QH\n/XjsnEqqTCWTqGQvrhcFhIPuKbFwOBxI1l2lalFpZ34l/rjYmMZdvpa0IHrjIuLbbotTiZdhxUW7\nMOOCfrhgQLru2pEFenHbdplKXEDJSHTrZdV232cVgXDrAd0M9+TIgZo4W9zKe0Ms7+oVKHtWDTTw\n3edh8NEupy5iioM5sriy10ZcNgYpjNeC5SqVSGHmsoDIMfKPYgAYgyrm/CPrtnW3s9QukEUqQO1+\nIqcSQRAEQRBtoqy2CW+vz8U/Vh1UNqhbC2NMd/VEYjpzeWTPzqnERwTP7Knl4LRlVhmOKFyEM7Xz\nuoNlpo6R2LiWbfOAFhYLqAWwE/UevQwrPcFwKlVLDXZDVNIa7JmJbjgdWmegLOAi4g1ha6aSvVOJ\njzrbjdAv3VWI45UN2HZUaySnJ8QgJrBe20wlYdT2uCL8lu+P02EEocbaBOmqRKWeqapMJe1/h17+\npu2jTwrqljOIspJj4XQ6jI6Swu3TlZ1K4qmVA21/ivDPlGfWRNKpJGbvHC61uisZY7rYdH5AVKpp\n8irvH35/RjkdGNpDexbtCjJFeVeAMYZ5Kw7o066L2Aliqg58ReB50y0hRs+akXON5HJUQN2BFhFL\nEpfuKrT8fa/gKkmOjcLwvql6B1q+b0UBCLB/vjDGwnYqcQdm9yRtncEGCwDg2z3m81wvbVvOINJF\npTYI11wEjI8xnDpcaAmWGWia/U0QEksFAZGTEhBE5HJhfjzDeqfgjO5JOLtXMs7towW5t9apxO+z\n2Ggn0hK0863K2ZMHFQAgiX+XNloHffh1s8dOVFKsj1/rqskD+Hka1js56HqrbZxK4jMmmNtZ/j5U\niUpG+Zt1RrnWQKISQRAEQXQRGpt9+P17WzF/TcdPPS2KJLJQ0RYamo2R+kisd0+g9I3b5VWdHK/P\nr3deeEBsW8vf5E5FOLM4rTlgnmlLdGrpmUxCZ6pbotYIl0fztdeMsrIol1MI6lY7lfoGRKUol1PP\ny+A5C0ZQt/aeYI4iviwXqexG6Hl+Eicj0S1kNak7P6JTqcnrR6nU4WzS85RcugAWpygDAIxObZbQ\nqekV2CexmeyTnUqB/2WnkgzvKPBGeaXiWhYb8sE6fN8fKFXOitSeiMLaySEqaf9zN5qduNwayoTO\n4OEyq1OptKYJdR4fnA6tY8zLm/j04iK8o5ocF42fBTrOu7u4qLT7eDX+tnw/nvg82/K3omr1eVaV\nA/NnbnqCW38GVdR5THl08iyYQHDnpPz66n2lFkGLP0cB4KHLhsLhcCAtXntNLr3izhjdqWQT1C1+\njwH2z8Emr08/bv5MDCUqbTpsnkSiwaMuXRL3BWibcM1dRmLAusrlIguldplKfNCmW4Jx7nmplRyg\nXRH4DDKT3Fh670X44g/j9EkVWhvUzc9tcmy0Lo6pnUpWEVMXYkSnUuDUcqfz3qIa+PzMIrqo3ELc\nlacaHOJC04TTM7X12ohK1vI3a6i2/D0OCJN9yOVvgc+AC33iOs1ClXJ3woJEJYIgCILoInx/oAxL\ndxXhhW/2KxtE7YnYoFJ1mFu93ha6e0LBR4G5Xb6g0upwKav1gDEtL+f07po7oK3lb01ev2mUNpxj\nkYWDkE6lQMdLJYCV1WivZQQ6TEb5m7FOn5/pI+hcBAKMvBDu5pC3HWz2N75sKFFJbFRrxxLaqVQi\ndSDkdXOngli6xX9uaPaZPnfeiO4fKKmIj3HpDXJRUDFm69F+dwUcUPIU13IZAB+BT4lXj74D4TmV\nlmUX4cY3N+OGNzYp/95eiId37CQQlfjnyB1lkXQqlYZwKh0OlL71TY+HO8qlCxaqsG7+nEiOjcI5\nvTVRaWd+1xaVuICtKunj5/n07uby0HqFK0QUGrjQ4/Mzk7Ajz0QJBBe5AXMnuMnrx/eSeM/X+fZN\nF+DGC/sDMDrn8qxtevlbCi9/M54vInI5kd1zkAv3MS6nHuKeHERUamz26SVQXMCQSwlVGURA25xK\nvFRXdCrx7xTxOSbvsxhmLTqVmgMqDH/mA8bU9bI7jDuV0uNj4HI64HQ69PPfVqdSSlw0EmOCiUra\n/+L1lqSYdZVfQ2f30u7ZvUU1uORvqzH9tQ2m7x3V9cuFtXLp/vF4/fo9Mf40TVTaV1SjnPTDEIHk\nTCWrAOQUvnyNGWTN51xd/qbIaSKnEkEQBEH89NmSVwFA64SLWTwdgSj+2M1u1ar1ig6oEO4ePo17\nsABS3sA+M1BK0uT1WzoKfLQzM9E8Qm7H8pxiPPbZblOD2XIcUgM1HFGJT3nOO75iA53BOmLKBSOV\nAMZnYeNlb6ryt6LqRjT7GKKcDn3kFxBEJb3BbpepZF8uwJ1PBZUNllBrwDrC2S3BrXcOm33M0nBm\njOklijz3Se6oNUkzvwGGU0n8O2B0IH7eLw0xUU4M75uqN7YZM45DFtS4U0neP/l4uAOKd5QqFR29\nWnH2Nxt31nOBzDK72YTaC3aSO5WKa5qU16VIaU0TrvrHWry3KS/ocqJT8EhZneXa4HlKAzO02QB5\nJ1L1jOH3Z3JcNIb1NpxKXTmsmz+napq8lnPKnaFXn9fb9Lqq/LRCdyrFINrl1J0r4vk17kfjfcHK\ncbXXzc9p+XqWw/gB6MKfeN82NhszlnUPkakkOz/yT9QrP0OemZOVHDpbCNAERo/Xj4xEN87u1TJR\nKRJOJT6ZAqAuf5PdxeK5FzOVVIMkulNJ+n7m10WaytXUyrYHb1ukxEXr4duqa1JdMhZtWV58vvBM\nrNzyemzJO2Fqb/ilQQpAKGOXngdcrI52OfDz/tr3VJ3HpxQo9UylwHmJVczUpirlS1S4rsT1mcvf\nrPdZWx5LJCoRBEEQRBdha+4J/WdVnkV7UmcSldqeP2Ss12iwhArqfvabvZgxfyMeWLTDdhneoMtK\njtUFowJpRjJxSmc+Ql7Z0GwKeBX527J9eHdDHtYGEfLkUc9QolJVQ7MuHJzXT5vm1xzUrf2vzlSy\nnn95VFJV/nY0MFNZn7Q4vSQHEMK6q81OJSNTyT4Ylzeae6bEIsrpgNfPLGGj4nKc9MQYkxgku5Wq\nG726G2BEfy2XRp6mmzd2YwUhSfxZbGDzRvTAjARs+NMkLLjpAtO55bsnlz/w8xSuU4k38tVB3WLZ\niPVcFlY14GCJOvi5vRGPJ1jI8E8F3qHqnuyGy+nQMsNCuBHXHyrDjvwq/Gdz8KnoxfU0ef0okErr\nuNOrf0BoTbdxJgBC+VtsNM7smQyX04Hyuq4d1i1e27LjgQvTk8/sjk2PXoIXpp8LQB3Uzc9HeuAZ\nnKHIVVJ18oM5JwGrmFJcbZfTJIhKCVbRgruu4qJdunAQazMRAL+3MxLdiI9xoc7jw6YjFZZ9K6rS\n9oWX0wHBRSVe+jZqYLou6sild3KmEqcts78ZmUrW8rdgTiXxvIjf7SqBwygVNu8/F8nSBVHJZXpW\nt1zZqBLEW34eVaKSqlzNmHXVmqnkcgIxUcY5AsztDbXjWD04VCIMdkW7nLrbT55hssnr091D/Hte\nVRKqEmST3FaBDDDcYsrZ38ipRBAEQRAnD01eH3YKWRur9nbs1NMmp1I7lb8FcyptOlyO+WsOAwCW\n7CrEtznFyuW44JUWH6OH9ModNJ5bkJUci7T4GDgcWmNSdjRxeIOUizKhjkP7Pfg5OhQI8u2RHKt0\nKilt84n2ZTSyGKIqf+OzevUVSt+09ZpHTuV1GdlHqtnftP9dTqfuClGJErJJxOP1m0oh5HXzBnZK\nXM1su3gAACAASURBVDSGZGmus0+3Hzd36JutTqVolxNRgR0Xbfv880mMjUK3RM0lJTa2+TFz1wk/\n76L4Zs56sRGVpA4iYwy3vbsFt7+7xTz7m8KpJIoZYmeuIzDnwdQHdeV1FXIKqm2zp/jxRDmduoss\nlFDDHRKhQvvLJBeZXALHBUjeKTPuW5VTKVD+FheF2GiXXo67el+pZdmugvicEgcCGpt9uijTPTkW\n3ZNjdTFGlamkiwcBl5AqrJvpz0HjfW7FVOcispgi5/DwW1dcJ8+SEV0/YumbnNlmV/6WnhCNq4b3\nAgD8e/NRy74ZAxoKUUkarKlr8mJJIGh81KB0Pc9JPpd231ttmf2Nl64lCOVvqkwlWVSydSr5rZ8j\nLxW2zv5mfIdzTM/hVjR7RCeO3Sx22roV7h63dSZVcTn+eXPMopJ1fXr5m/Q80GdDDFwbQ3vwvCaz\nqMSPxeEwSvPU5W/8RFmdSvUen8llyK9n8XtHz2kipxJBEARBnDzsPq7Z4NPioxEX7UJRdaNlBKs9\nEUUT1cxWkVhvsKDuxz7LBmNG5/2xz3YrnUW8gZ0WH42egRwG2alUIjiVXE4jpNWuM8kb0cGyZmQ7\neSinEnekDM5K0EcbRQFINcrIO6cVdR5L2Yk8Iqoqf+ON6FShsQ5AF2F0YUXPCA9n9jdDgOLimOwo\nAswiTGy0E784qzuinA79+Jp8ckfQGNGfPqIPMhJjsK+4Bje+uVnvoPDGrlsaKVbN0MSvMz5KDZgF\nO37MukimEJVEt5LcsemTph27Pvpeb5QILc8pxrKcYhwoMQQQVYdYFEhkZ1R7I3YWmn0MW/NO2C/c\nBahpbMY1r67HL+auwRvfH7aIfGLZiZ7HEiKsmz87ymqbggr2cmeQz/Smb1sSJo3yN6sYrJe/Be7X\naT/Tprf/65IcXXhuT1btK8HoZ1Zgzf7wRSyTqNRodfbExxjOHrtQ5MZmn+6G0Z1KiqnWDQFI4VSy\nKSHl9xafEbJEcirx0mJR4EhTlFeJjlaO/mzxmO9fXhKW6I7Cb0dqOU1f7SqyfKcEFZWE8+rzM9y+\ncAv2FtUgJS4aU87ugfhodUi4nXO4TU6lwPHEq4K6PeE5leo9Pv1eUGUVpcapS9r4fSgGqpuf1S1/\nNuribWyU4FSy/z4Tr41g5W8OhwN3XTwE/++KMzFmcDcAkqikENO62ZTcG7MCan/ns0HKM8CJzwzu\nTA6WfyS2IcTgddXxiOKXqqSOnEoEQRAE8RNnS6D07fwB6fo01bsUga6FVQ0Y+78r8dK3+yO6fbFT\nUFanZY/cuXBrRNdrJ8Q0+/zYF+hwf3TnGMREOVFQ1WhxHvj8TO/kpMbH6A13OZ9Gz+oJTOlslKdY\nO32MMb0RfSzINNHy6HEoUYl3GAdnJiqDWlUjnHxE38+sORq88aqLSnGqcFEEljHvCxdOeNaIHFYd\nzBkgNkZ551DVyeHHc9FpGdj250vRNz0eDodDdyvJTiXuEshKdqNvejwW3zkGgNbALgt0zvl7YqPN\nzVVjJhyxFEM7D0mCqKR0KsmzvznVnRn+89AeSZh3/Xnok6a5v6Jd2ra9fuu5Eh1cwQQ6ALalmO2F\nLKKs2tux5bUtZX9xjS4aPr1kj+7o4Ijlo1xcDuVU4tdtk9evLNficCcNL0/hwdwc+T5LT7DPbRNn\nfwOAO8YPwqiB6ajz+JSzq0Wa5TnFKKxqxFe7C0MvHMDsVDJ+LhRmSuMigCEqmc8nF+aiXQ79nsxQ\nzG6p6hiHLH8LvM4dmcVSOa6qA63KVOLPTjFnxi5TiQ8qJLijcE6fFAzrnQyPz4/3NprzuQyXrCFU\nqUSlrXknsO5gOeKiXXjn5pHonhyrO5WsmUra+8RnG6CJw6FyxOyoU5S/JSicSrIgJH8m/B5VfY6q\nUmG/n+mfgViKJb6vNcdkdioFHF9BgrpVOUQ1jarvZ639cOtFg3RnkficUa2Ptzfkclz52hiUqWWy\nHZcGxSpVpWpR9q4ic+moS//ONYtKivtMOaMcWg2JSgRBEATRBdgVKH37eb803RFSogjz/XBLPo5X\nNuClbw9EdPtiA2z70UrsyK/CNzlFyplJWkI45W+88RXldKBPWpw+qi8LOVUNzXpDKjU+Wm+8VdSr\nMxtSA39Pt7GjA1oDnq/zWIW900Ee9QwpKgWcSkOyEpWdCqZo5EUJMwbJ+SzyCKvuVFLkQIiNTPE9\nvsDf5cZosE6cuJ/JsdYyAX3/hHBccUYh7jKSM5W4wMdLYgZmJBiOqsCiRlB365xK6kwl7X/+pyjh\nA/ApnEojB6bjynON8genLNAJhyV2wFSlKeKt5GfWcHCRYxX1tmHfrYFfP+f21fK9OjqzraUcKDa7\neHYdNwvsYvloj+TwZoATRR9V/hGHl7/xYG1ZtJaFyfTEIJlKgoMC0O7xBy49HQCQF6TcNlLw+6wl\n2xKfU+LP/HrknXAASNCFEPMzgc8cl54QowtQPFNJPJ+qTnmwjDfxdT4jZXF1o3JGLlVotFhKZuTm\nGMvZlb/x7yJednzruEEAgFe/O2Qqv+PPuVihZFf1/OfrG5KViOGBe5I/N+2CuuWyZsB+QgBAe748\n+UU25i63DkA1BLaf0MLZ3yxZU9LnbjrncdaZMpv9fv0zFyddUD2rW4Io3tq557R1W6+N5FjrAI1K\nsOHl9qIIpPoe5+JpTaPXNLjAHXVZgcEu7ig+URf+TG3i4IwqHwowxMda0/HwgSTVfUZOJYIgCII4\naeCNtbT4aL0ETDVDFC/14H/PK6+LSOdTnPFlb8COzVjbpi0G5PI3r7LshB9nRqIbTqdDb9zKJWe8\ncZ3kjkK0y2mISjYCDBcMMhLty9/Ehmcwp5K1/C1UppLmbhicmWiIMUI+CRclHJIApOcf1codWe1/\na/mbdTRSWqVlhjM5zyl4+Zuxn6qSO3nbcgPXzqkkOzjEY+Pr4te1mKkEqPMlaoXyFHl94jr9UuNa\nXEYsSbMT6PjvPml9MsFm0lNtT2THsUpc9Nwq/Oqf65V/bw18UxNPz4TL6cD+4lrkB7neO5sDUqC5\nHPIvXm/hO5WM61aVWwZonxF30pwWyPqSXYNyDlDQ2d8U1zm/J1TXTigHG2MMB4pr4LERXGT4PrVk\nxj+78jdVDly8rVNJO7/cxQUEz1QSnxsqJyKguet2H6/S762+AfdgY7PfJHSrOtupCqeSqmSLB3XL\nJWhccOAizC/P7YXz+qWi3uPDs1/ttR6PsPEUVbi/Yh+5a6ih2Xyt8+u2b3ocZOyENwDYfuwEFqzL\nxcsrDliOx3AqCQKhIuA6lKhU32R2KplzrKIDx+PT3yde8uKz1c4xCgAr9hRj93Gra1tEDOpODBLU\nrQy3VrQ3VN9nPFMwlFMpOTZaPx5RMNJnBgy071TuOfFYTDO1Ke4J1f0ICDPANYkOMViWVZXUtSXH\nk0QlgiAIgugAGGO46/1tePyz3cq/i40T3uhQzbIVJ9jVX16xHxOeX40nv8hp8/7VmRxFxs+qhllr\n1+vx+ZWN4FLJFp6omNoYMBpfqYGZfPSsJLlUzFKeYl/+ViOV59nlSfHj4EKV3Xk5XFqLWW9tRm65\nJirZOZXsBCC9RKROLZTxY+Llbw3NPj10WdXAFX+XM5WMoG7rKKh1uw7ljHMc1ciutm61YGUEGAui\nUqBVyh1DulNJKn+TS1S8Pr/eME40ZSpZj0M+j6JTyW9yKtkIdE71+mRCOZUAdQkdAHy5swCANWuj\nLfD9TI2Pxoh+WnltVw6L5vlTPHdEdjmKuWBGplJwUUkUh+ycStWNXt1tMiRLK3+TS4BkMSI9HFEp\nViGeShfEsYp6nPfUcjz5hX1Z3Oc7CnDp3DW48//CK03mx1lQ2RC2EFVtE9St6pAnBkQJj89vWj8/\nF92EGb4ykqxlQSphR+VUOlRai5ve/gHT5q3Vn1MpcdH6s7WkWuzoWzvbeqZSiBJk26BuYSIAQBON\n/t8VZwIAvhRKM1Wdd+P5bxUtxAeMffmbdi77tdCpJM5OJ5di1evOTkWmUhBRSf7+5k4l1XdPUmyU\nfnj8mhKfl+Kyqmc1AOSW1eGWd7bgjhCl+Kqg7iav3zIhgeraSHRbv9dUy6kyHFXXkNPpUJbA8XYV\nFzj5NVnn8ZnunUa97FsI1Q6Sf+SU1JwkhfMqWJmpeZ1oNSQqEQRBEEQHcLSiHkt2FuKdDXnKhiDv\nSDudDmQG7NGq8jfxS///Nmqzz6hmoeHrDNfFJI80c+ptXg8XWXxRuVz0WVESzaKSxalUx0O6tUYZ\n77DIUy7LDb1uCebZz0Rki7ydW4kfB89xsit/W7TlGL7bXwrGgJED0pGV5NY7FdWmDg1M+8ixcyrJ\nzhlRPOH7YucW4qPmPr0ELNBgDvw9Jkj5m9iRTFbMOGcspx415euWO7Q1emfbOA7uqOJ9Ci5ExVrK\n38xZEOK1a1f+5mfm//nfREeBKqjbVqCTAmplQmUqAVomigpxhDpS8C05HQ4M7akJNfKsWV0JHnT/\n8/6aACY/N0SHi+5Uqg4e1B2OU4l3ApPcUfp6LU4lmO8zu9metP02Zn/juPT70fz5f7L9OGoavViw\nLtf2GN5er/1tZZiZWMaMj9bsFjtCOZXEe0IMehZL4LioJE4bn6FwKqnWaUyfbtxD5rwy7b6PiXLq\nIdvF1ap1GsdklBpZnUricnaZSqrMtn7pWiaOKFyoti0+/xkzPzdMIcsBgU52FfHnHC+bEgnmVFp7\noEz/2SIqBbYhDlIpRaX6EE4lj32mktPpMCY20EUl4+/io9X0rBYOiZe9Hg8hiorh1uJ3gPj9zhhT\nuthUM6mqnv88lqC4ulF3FNoJO6pnAl+W3//JsdH6fpgddIHlVK4ir3itWfcRUH+OyqBuIUuRX5c0\n+xuB2iZvm3MvCIIgWkODx4df/XMdXvhmX2fvSpdGHEVXlWmIjbJg5W8tedbPfGsTLnj627Bmc5Nd\nQZxIOpUAdR4PP05+3IZ9W13+po/02TgE5AZUtyDlb7JwZTcDHN8X7oqwK3/jDd/ZYwZg0R0XamVj\n3OHT5BVye9QCUEaCOp9FHtGPcjn1PBPeoLZzCwUmSdKvMVmgClb+BmHZJEWOk7x/8vHY5aPw60Dl\n4OCdbe5IkJ1KsdIsSTUBm39MlFMXsQDJZSQLasLf9CBzZS6L+XgM11dgtW1wKtkF0qYIs/dFqm0n\nijBOSbzratQ0NuvPSO6qkp8b4v3A78niqqag58uUqWQzEyTPU+qWGGPK4TFn9mj/8/MoljfJ10NQ\np5K0q7zTClhFAE5SbPiCo8frNwlEeeV1QZY2sMtUUpWqRbuMe65OEEPKFaISf76X13osoqwyqFu4\nh8QSWJ4H5I5y6iK/KJCK+W4c/llWN3p1QUBV4hoXoy69E4O6OXyfGYNCLLI6lTyCo1LpkrJxKvF1\nq8Rmu0GjBo9Pn/wDMIeji9tIUJS/iSK9nUOQw59huvEK5gdmquTSFZ+xpmewzexv4oyZpTb3hLZ+\nI3RdvCZVwgpgdVTJy6qzktyIdjngZ0Bx4Dlh951rtDlU+WGB/wXRTZX1JQpVfCDF52e6iGlXoq1y\nXgUrMwWM72fKVDrFKapqxPlPL8fd/9ne2btCEMQpSHZBFbYfrcQHW4519q50aYoFgahQMfU1/y53\nOcXyN+vU16ovfXEGF5F1B8tR0+TFV7sL0eT1KYMrOXZ/CzZLUjhYnEoKQUIvfwsctypoEjBEJW4b\n151K9R5z6ZLf3ChLtxFqVPtn51Sqk0QlO7GNfzyJ7ihdABI7A1yMUpV9AIJTqU7OVLI2CnkHU3cq\nSVOdc4xwaakDwEWlaMOpZL3eAj841DPOWfcvPKeSPrIsODh0R1VgozzPyy6om//d6CCZl5Mzlcwj\n1dY8D3OmknU57Xftf5/UiZQJK1PJJj9HvF7swu1biliWww+pLR2I9oTnKXVPdqNPmia01DTInVvj\nfshKioXDoXXa5VJYTmOzz1TSZFf+xsWQjES37oj0eP2m98odtCih9ydfD9VC1guHLy4LYGK5i13p\no+jsC4XssLITzEU80sx4okPMpyjtAoSwbuGZeEJR/sYdo14/00UGOZ8KUAvR4rnhrhd3lFN374gz\nwKnWmWq6p8zOTtW25fK3Gqn8DbCbCMD6nE50R+nPGPm4VZlKcug5X6f4rOTYiUqbjpSbJkeQRUpe\ntia2HaJd/DlovM/OTSnvm/ydy0nRc4MCxy088sIpf9tXZIhKJTbOSsaYfp1ygTdRIZDZld6py8Ws\nyzmdDl3ELAy4/uwcuro7WnjOqEQg/ow5ESrrS7j+DQGIL2fadNCMKNt1NpuFqtZAotJJwIGSGjQ2\n+7Ezv7Kzd4UgiFMQ3tgKJlgQ5gaRKvvDJwgCfETX4/VbAmpV7oZ6j8+SHSCSV1GPa1/dgEl/W62c\nDh6w//zk2V1aijxrmrr8TTsfslNJdk/x0TzeEOOOJT9T5xVZy9+sI52yODRn6V68uyHX0rjiy/UM\nNCpVjivAXMbIiXY59cY7/zztnDDdFNNu82MEzIGm0VHaz81+OVPJvE7dAWTjDuAdKcasnQhTplKQ\noG7V6Kq2bnVpHW/AJ5kcHOZ1eYQyF5E4yanEjyvKZV7OKXVUbENiFRk3oQQ6w5mgboSr8qnkRZtt\nFCkx5+lEGC7DcBA/RzunTFfhYGDmt9OyknQxxs4x4XQ4EBPl1Eur7HKV5FwklWsRAH7I1XJospLd\niI9xISZwTYmfg5ybY+eyYIwpHXl8ebn8TXyvnajUEqeSLJyFMwOcnKFTHSKXBTDCnsVnKRfn0gRR\nKSbKqZ/PBim42Tz7m9U5yQUPwPgs3dEuvfytRCh/42dRXGeUy6l3tnkHXiUcxNkEdfMOergTAThM\ngolDFwOrGuwHFeJtnEp82WSFU8mu/G3DoXLT72U1cqZSQIhXHI9YfhZKeNZnwQz8Lj8vuZhXqZ9z\ntbBjFruN9+8TnEpiiaNIk9evC2j8PPOsKLNTSXBJCV8V/J6qbfJanuuyYMPDuo/rohI/FvNyRqaS\ntazNJHbGm8+PuJzqngAMIdFuIEeVSam61qOcDn2/+QANZSqd4vCHT4MnvAA+giCISMLFiDqPj8pw\ngyDa80OVv8VGu/TGUWmteVm7Np7cGRDZmnsCu45Xobi6CV/tLlIuY5cRJItNLR3JalX5m41TSQ/q\nDjTEYqKMjkJFkEZZuu5osp4jlZj22GfZlinM5fI3j9ePJ7/IRm6ZuaTEruPFO5Vyp8Jim08IL1NJ\n/FluCNsHdcv7aC5/A6wOG7HRbJS/2c+qI3cq+Lo9PklcVJQFyVkzXCd1SSdTzoCyO+cOU6fP3Klw\nSY1rwC5TybxOq0BnIyqFkanks3EBiMvJbpPWIo5q6+Iduubz+mCpJioNyUo0RCVp5khZxAw1A5ws\nIqnKyzYfqdAzi359Xh84HA6jBE6RjcIvIVFIFUX/eo9P/13lyJO/L8XPPafAxqkkrCfU960soueF\n4VSyiEoKsV6+H/nzWhRDVEHdACwuOZUIIzonOeKtUyU4lZTlbzaCgNGBN5diqTOV1IHUJlFJ+Nzt\nMts48mQNym3HGC4pc7ll4BpSCIp2TqXdBdr3lz7xg5ypFJhhTsxUkr9PxG3bYTcBAsfuuFXLyhNK\n1Hu8plkLVROXiOt2OR3659MrRRN/vthRoC9nN6jA3+PzM13stPsce0nPGbvv3AxV+ZuiLNNwKqny\nnIz1ORwOS7C2nI2oH0+Ys9k5HA4jV6mZyt8IGBdXQxtHkwmCIFqD+MVVH4Gp7U9WioRRNtVoul7+\nFmhwZAUayyXV6jKogRkJ+OcNP9fFJ3kkXmRzrjELjNjIErFzJIlB3fUeLya+sBr3BcqtV+wp1gN1\n7dCzKAKNV1UWEc9K4AHlqilxAWtQN6CeeUluvKUlGKOBckeMO6kmDc3CBQPS9NePnzCXKMrlbwCw\nYF0uXl9zyLRcuJ0KuzwE1Uxx2jFZO0ouSSxSlVQA1hnL5PIQUVRava/UNH2zuJ9G+Zs1O8auca3K\nRwFsyt+kkXK7jopL6vyoGuvGOo3jMIXECi1guewu2PFYM5UsmwRgl6lkXrjZZvY3cT/tnIUtRbw2\nHPr5i8iqIw53AfRJi9Ofb/LMkXIJZ49kPgOcOoxaPo+q8re/fJkNxoBrR/TB5LO6AxCn/bYP8bWb\nDp0Lpy6nQxcrxPfJmpDZqVQDFaKwYDcQwOHPRL5/RwNOpW1HT2BvkVq0sjqVxKwX8/5zeFi3KNCr\ngrrFfQl2jwebjRIwhFZ3lEsI6g4+zTugOUYBCJlK1uX45+Tx+U3lqeE6lfh95pLLwCziinUd3PHF\nmDzNO/Rt/3/23jzcsquqF/3t5vRttamqpKLpJEWThuQlBHPBiyVNEBHix4WXe71qFPSBD4PfMzeA\nPC+iIKDJC0bRCxJFctGQ0DeaGEiA9JW+q3SVVFWqb86p05999l7vj7XHXGOOOcZca+9zqlJJ9vi+\n+k6dfeaezVpzzTXHb/7Gb9B1IuaWts4kSeLmz386ZRUARVOJmEpMU4m6whl0xhIV6NBZ1zwE8rK/\nyQOI7H2WFnpyz6S3Rsm9EFkm0p2FnP/+G04BAHz59medLpMFaPV3V9zv9ExZzFvamxCTzYX9BUyl\nMPxNe6csGwjD36y9Qa8EPI1rngl15z+7MpS8w1R6iRtN7GmBbHesYx3r2JEwTi/uhMDZlsdUoo0c\nbYooE5oUp6RyJ68exAWvWutCwIo6n7c9vV/VJqB7x8MMAP/+3rdtDM/un8Y37tuBGx7ZjYv/8W68\n+Ypbou3R94k2LsP5kiRxm8VAU8kU6s4cKxVUEhv7ZSxMTobR0Mbr+OX9uPZ3X4s3Np3JfYLZQODT\ncG8XTlw54D7fLsAnC9gh8OTQrH9iK3EQ2qzL17m2aXdOgAhrC0K2SnEHoNQMIQKA3//f9+KXP/cT\n1m7WT3Joa/UEX71rG97z97e7E3CL2eM0lZiDtlBvOFHfIVXAOId55RwaRMv5ddqhF1UFVMoD6HLD\n31Smkv/7gsFU4ns5AlIXa1SjF2ZylDJLCXRfN9qHge7MkY5lIstjKhETgEADLfxtx1j63YvPP8F9\nlol1M6dPiOzzucTnEK2pA90V75mUznP23ez/T+6dVFkoHMAam0n79KnvP4b3X3NPcD8JSNjQzPa3\n9cA0HnpuHO/8m1vx5it+HNQNZA661ADi/ZXri9OvYQcT5JzLkK28tQjQw9/4teJMJdKg4/fTcsol\nCK+FuHLmDs+01bqmkt92pn9nHypw4JHrKnGG2NqRPpRLwM+sSN9B2jqz+9AcDkzNo1wCXnvSCgDh\nPkLTVNLATmt9o30C/dm65i78rTlX5bPDTYa/cT2ldFxxphKfa+efshJvesUxqDcS/PVNTwbjkqF3\n9J6qyaxuxrtUCrOH2ohh9rcM2MnKLROgG29bvs6yrKc+AGRqKimhf0Gdgv3U0VR6iRuPS46lluxY\nxzrWscNh/MW12ExhR4PVGwn+9e5tQVjTYs3TVFJSX8sT29WKVkRaLv1JG2RtUxKzJAG+++BO77O5\nhbrT0lk70uf9jW9uh3qyTdsnvvsIAD9kSDPavK4lUEmAOhNzC+7dFWgqBeFvClOp3waVaKPXxfQ0\npDNJQp7kGK1s9kFqUBD4NNBTxXW/91p8+sLTAIQbXcvxCk6qDXYNgRaW3grfkIanxfGNcJapJ9xg\n9lT1LSF3+vq7K67Ny65/ELc9vR9/f8vTXp0hUylkHfB1Yog5aRUB7tjjgV5OGQJ3Yv3wB/Z/lamU\n/pT3sSSupZXBzWIQcFswmUoMVFqy8LfsWjrHaElqXnojUGnNSC/KZZZ1cIY7SelPuo9rmuuWpalE\n4bEnrx4EkIaGWWw7DqwvU0B7eervMZXYLSWQKND6omdchr+x3+uNRGWB8rkxNl3D2PQ8Pn/zU/ju\nAzvx9D6/PIXenLF+FCsGujFTq+O3rr4rqJMbrU8E0sWuORkBE1wUOWFACDcpdK+Bt7Rm8GeIXyq6\nBD1d5QwQTsJn1wqvCjO18bZD7Zp0bCFTiS8NTrjfEDOvCCA8Y9r5Zah9HkrIAYEv/Pez8Y+/dQ6O\nX94PQGdzkR7XSasGcWxT6J6HU9cbibu2HqgkAHPeT2nE+soLA+7t9u+lxZjhn9FzQAwjYivuVrLh\nAtm16mesKwB42+nr0u8d8kPVgBBckRkxrftoh5L79cUOu3iddCjIw2vrxt4gE7AvqKmkhr+JOin8\nbcG/P+1YB1R6ERhfeKSwXMc61rGOHW6bepExlX60eQ/+6GsP4I+/+dCS1ZkkiScyuXNM01RKf9Lm\nk5hKUkdAZlkZUbKHWHbacSMAgAe3C70gtvlYy8K7AD9NNNdgKSL6miSJq3udc1J8UIn0lIZ6q46K\nTSlxLaZSbvibsnHVsqwA2caLBEtJ8DfQoGDg07KBbpx5/CiA0Im1dICGxUl1ng6Q3KRrm/FgI2w4\nU5L9pLMD9AyCfDNaKpU8EEgrJzfrJMzLmUrkqPZ3V5xzwr9LdVmb62w8NttBq5M7nnlMJWsTHrAd\nxCacii+GqcSBiaJgcZ7xuVFynx19sFK9kTgnkNYiyfIDQhAzj6k01lwfTlqVMjxq9STQBtOYKxQ6\ne2DKZuxwfS4+xyxWhmTryHrJtDWWFxmfqeGerVnaeAlkUujN6qFevPuc9QDSjKIxI1CJQIuZWt0J\n5lvPBIVQaewaey2ymR6ZplIdMUZgd6UchMzysiEgnP6sizola0VLBOAyTBYU6g7vuV4uyKTXrJ9n\nn+Pr24a1w/hPp6xS2VxkjzRBpQ1rh90+goe/8br5eOTaBoSHG2TUfl74m2TlxVml8MrQnun09em7\n1sr+JpnJsm3HpjIyz/HfwwMNv05rDsn3vQTdrDr17G962xlTSTyPMkRPYXpbrCZLp6kd64BKLwLj\nSPrzpWfyg4d24pf+6mZTWLBjHevYi9d4dq+iTKVDiiZLO9ZoJPiNL92J//bFO3K1fYoaZRt5oZR9\nBAAAIABJREFUbJeuadGOHZpd8NNZT80HoQ1ZbH761iem0t4JK7W8z1SSWhja9f2Fn2vqKxhsnf7u\niqNtZ3/L7qnFyrBsbqHhmEzEgJKOHDGxiKUE6ELdSZI4B1sLf9OEdL3NmwOf/Os0JcIaSGBTaq4Q\nKEIshmNGsixw/EDHCpuqunTNdEKffm7qSogDaCurEBAykMplw5mKbJgtphLEZlSKxZJQruVUOAeR\nzXdNpBsImVeWPolzAAo5KpljYZ1Uy/r88Yj6DH0qMnISimgqWUwlXurAkmsqlSDByKPJ9k/OYaGR\noFzKgHViSGqi0XQfNcFmbhT+dsxIr1tfJGtRA25HIym/XfgbmySeE1mQteK+K27IjjGF0cq+NDZT\nw93PZKCSPNQhIGHFYDcuOvdngrmsvSPoPXLsaMZYDUO2/O8MOCc2BEIspgcBxtqz29sEuBsJXy/D\nvvZ0VVSAztK5CfXQ8pz3dDw8s2qvp42VfYcAC4uJI1k41vpCgNa0+k5h18gQFAd8UIkOScZnag4c\nnG7Ok3LJX/e1Aw07/I1AJeqjPh5r3MpSHYQ10/NAc9ECRK1rXjLeE3pZeGVy72NOOS3E1ZVlF2mZ\nC6+1AXOy7J7bmRMBXai7qE5TR1PpJW4zRwFT6WubnsMTeybxw817npf2O9axjj1/5msq5a9BDz03\njjM/fgM+/p1HFt32lv1T+NHmvfjxE/twwZU/9k5t27Vn96Wnw3sn5pYsnI9O2IZ7q24TZwlw0zt/\ndVO0Wm6k6gJ8Is0CycCRm4P+7grOaLJrwtCujK1DzhkBN1OKoyDN0mbhTs5ai6lEIt2DGaikaQLM\n1OoO2OGg0rIIzZxv3pYrWZx4G4NNsVmLqSQ3cEM9VRc6sEvJPJTvVLTKYkBQXgpw5+k01cVGWGMH\nZOPV+ymZShSaYI3HnahzplLTSZV1hSwg/TQ/CEEwnEj+WSNJzJNqAvxUTaUgfEeevPvtUbYrjUEg\n/TOTqcQKLpVQN58bXLz8aDNiGq0e6nVhYxlTyU6RTWuCDK8l4yzHFUZGLJ1JYKf85jNDAqJWfbzP\nsfA3ANihiI7zIuMzNdz9LAOVRLIFCn9bMdCDdaN9eOPL13h/1w4JCFRaPtDttO3oultAEQl1Tysa\nLpYeWqADx8rwtSjL8Bh0FT3VcgDyAhHA3hCXluUcU0lhb3hhsy0wlUrG2haInndr1zJsWwJf3Cj8\n7eXrhjHS1+XGTdkAebgYH7tbKxvhtayKAWWgUrEDjXCttg8AZJ2UHOPA1LwDxrhZ7wkrPJyPNSzr\n15nP+tXblgc5Vp1R0Fo03luVAJDe9pDC9LZAvxcNU+mWW27B2972Nqxbtw6lUgnf+MY33N9qtRou\nvfRSvOpVr8LAwADWrVuHX//1X8eOHX7WmtnZWbz//e/HihUrMDg4iAsvvBC7d+/2yhw4cAAXXXQR\nhoeHMTo6iosvvhiTk0tzon00GGcnPV+gEmXqsF7mHetYx1681mr42x1bDqDeSHAXy0jWrj29N9M9\nml9o4LpN2xdd57MHsjqf3V9cV+mqHz6Jj39bB8qIxr1mpJeFafgOQxD+NhRmtQFYlrgyOVNhdqK0\nPn9zcMoxQw6okqmmJ5lexO++/iR89K0b8NtNsdopxVGQZun5Ub393RXnGMo5cqDp2K0cjDOVagtZ\n2zxUy4W/8U2ZlrpXKcf7SCF31I/9UxKkS9un614qlVjGqTDzUACEOGcq/Z1GE5ZDs5wElcLNuB3+\npp+aSqCIF5Phb7JO6qdkF7nQAqPtbiX7G4W/SRFfuRG3wt+k8xMLf7OYSrwsXR/NAZBVWmESZMsd\nqFREU0l/ng6HULfHmlHCXI4Wo3WRZ1kc7o0wlZq/ayEf3DJQqcutwZIJpM2jUSXlt+ZAa3PIgRvQ\n5y/gO/DyfqhMJTY39k3M4f5tY+73SXGoQ2sYgWh/9o5X4vffcLLZHuCLHg8LHbjsQMP/DoW/cVDL\nZq6IcSghPN2MmjgnWBnceqos/I39PTcELUezjXSAXIYvVreWKIHXZQMcfjmLJeVAJVVTiR0CVH0t\nHLL5hQa2NPUgN6wZQrlcckD3vol0PtC6U63Ieem/T3jb3YLJ2h2Ev8UPNEJmDwKT94fm24qBbscQ\nloLjad16ne6ai/dE2k9r7PH7WArmkNW2Ni/DtrPMtFoSAr9OHhYaa3tI0aS0xtMbaCq9QEGlqakp\nnH766bjqqquCv01PT+Oee+7BH//xH+Oee+7B9ddfj82bN+NXfuVXvHKXXHIJvv3tb+Paa6/FzTff\njB07duCd73ynV+aiiy7Cww8/jBtuuAHf+c53cMstt+C9733vYR3bkbRZtvBMGymhD7dtP5ie7Mus\nPh3rWMde/MYd/yLMHlovrPSwrdjTe9MDAjpFe0BoBbVjXMfimX35ukFAms3qL/99M/7hp1tUoVgC\nho4Z7nXO0i4p8CxO8Ijy/dzYjPeil5s3mbJXliM794TlWUaSyXnPmXFZinoqOGa4F7/9n0504Wrc\nUbAYSdpp6aZnD+Iz/7YZQOrwDRhOH21wuTiuo2/PLwQOAOBvomJC3Vo5i6k00DxtdywGgyHG92Ra\nyA2xgcR+3dTUyAvRINNSHMvwt7xTcskO0DIuyXFIx4vAQTI3HkWPJq03S9FNloW/CaYSbcRFyEug\nlVFQoDztUNZPaw5JgfC0PJWzTr+zerkRKDlbq+MrdzyLHzyUieLLe0phNQ89N44rbnw8yOoDLJ1Q\nN9f3CRz7o8h2usxvDFTqC1lIMpSEQKXZmp8KnuygC53txnHLUr2gbQf89V1zjGNC3R7LQwGDLU0l\nT9ib3QP6LjFlNH0o/i649al9HqgQAvZNUKkJKqwY7MH7Xn+S2jYZsbdG+7ucc0pgnhVCQ2u7z2rV\ny4YaO+nn/rUsOWBpTug5cfPC37zrDrXtkC1E5fx6Y0wlXqWXSTEH2C+aNYyyz02zbFwaENNjMJXm\n6w1Xnp4byb617qMaSpjQ+1mASiL8LW/cRdbqcG2lz8vuQEwLb7XqlOFvFpDHPys+nnjbsWupaT2O\nTc/nHpKEoWp628Qc1DSV7PdZCLy1arra4hGyt7zlLXjLW96i/m1kZAQ33HCD99lf//Vf45xzzsHW\nrVtx/PHHY3x8HF/84hdxzTXX4A1veAMA4Etf+hI2bNiA22+/Ha95zWvw6KOP4gc/+AHuuusunH32\n2QCAz33uc7jgggvw2c9+FuvWrTu8gzwCNvM8ayqNz9QcGtphKnWsYy89m2yRqbTtQHr6un9qHvVG\nEggctmLEVHr7Gcfiunu247FdhzC3UDdFh/Nstlb3wJ4bH92NP/3OI/id153opZmWdmh2wb2Mx2dq\n3ik7kAFIq4d63ctbOgxyg7BuNE0dPFtrYO/knNtUZaBFWs5tSmZ0fRAAuOa3z8Wrf2aZq3uhkeDQ\nbM2dwnOmEhk5Cv6JqT5+jZXx8e884k7RByKgkrYxon4kSfpeG+ypepszPmeWD9qgEhfQ1cLkgGzO\nDgmm0sTcAmZrdbeRkwwxACpAaIUBWM5U3iYvG1P6009N7o/XYgsFmYcUZ1fu8a2T5SHBVKoH4/Hr\n0ZlKFP5mpRv36zadBanLoqwlvE7rpFoHlSzQr/n3hn99AOD040bwq2cei+8+uBOztQY+8vVU7P+Z\nT73Vq5OMwt9++XM/SfuEEj648RSv3NILdR/d2d9c5rfhTNNnWM3+5t8fLjg8NVfHSL/vBBPjpa+r\nguOaGbG2H/SZQNrzo2meaHND01DJYy0C6RyvuvLpF9Yv78PjuyexI5LQAQDuesYP9+bv3/mFBiaa\nvxN7TvZZ4jT1RoJNzXC6V64bCcA8KyxnwLFr8lOYS90cyzHuqZYxX2/EQaVqGTNK+Ftx1oy+bvRJ\n7Zocged6kri6LOCiaNYwymA207yWfNia7pR89/I1jIqvHOoBdmYsH2utlgAZAMdwlEylLmIqiQMN\nuQJn6yX8chr+b4S/Vcopc/u5sRn1MNK65lKfMMZoDfQJRf+D8eTeb79cWjaskw4FG0nKLBrp72pB\nU0m/5lV28pQkCUqlUm4/Y4L4Re0Fpak0Pj6OUqmE0dFUE2LTpk2o1WrYuHGjK3Pqqafi+OOPx223\n3QYAuO222zA6OuoAJQDYuHEjyuUy7rjjDrOtubk5HDp0yPt3tBoHlWafh/C359hLWaZ/PlJ2NOoC\ndKxjLxXjTJYioBIxleqNJHDwWzVKofy6n1uJZf1dqNUTPLazfYHt7QenvU3c1+99DrsOzeJPc/Sf\nuEi2Bq6T2PaqoR6XWl5qC9XFS7+7WnZsIX6iLh2fkQJMpTOOH0VvVwXd1bJjh3A9ES1dMjF3tPC3\nn1nRj5v+8PWMHRC+e3hYxpZ9U66snCOa49VTLTvmEjHhuIitRx9Xwv9UmrmR/W1y1mcqDfdW3Sks\nD4HTAI5jtPA3KxWx5dBYoV0BqBRuCi1HJaT2+3/XnGdLQypgKgkgqIhzCPhMJdorSNZTKMAd9hPQ\ntKT8cfp10ngS5qTop8p11QEodvJ+7GgfvvmB83HuicvDToD66/8uw9827z4UlFsyphKbPyXx2dFk\nBLbzLJRa9jc517urZffcTiqsfR6+up6YSgd1plJxoe6snKaTlIGdfl88LR4laxkxqfZNzgXaXEkE\nCuSAPReB54AAb1sKgz+68xAmZhcw2FPFK9YNZ89uTvY3YtdYGcu4heGj9Lk/Fhnqo03Vnmo5YB/F\n20azLgGEiLZpPJIREqszj+FCv8bYorzt6XlNz4m9Iw2mUqKUl8knzPdERBesO2AqyfeZPh5ZpwVM\npt9Nf2bhz1k/SQ5Avqd4nbb2nn+/9TBpeGWKsrnygGPOoJN6mEDK5KWQR1pjrHnZS/pHQfibPid5\nm/a8lHsItG0vGFBpdnYWl156Kd7znvdgeHgYALBr1y50d3c7kInsmGOOwa5du1yZ1atXe3+vVqtY\nvny5K6PZJz/5SYyMjLh/69evX+IRLZ1Ne+FvzwOoxGK+pZN0JOzHT+zFho/9AN+877kj3nbHOtYx\nGf4WX4OSJPFOh/dM6Jl6ihoxlU5aNYjTjkvfBQ88134IXNFwN2kcVJpQQCUKc+mpllURakDPDLJ+\nOYFK2TVzG5PmG1wDVXg5wN9IrByirHKZk8SFusn6FZ0M2uz0dVVw4qrBTCxUESV+2TFD7v+/dtZx\naogEr7MiwroyjRQKvUCznL8pIvCJZ+jRhJuXD+hZVsgBpZC7UqmkhsBpG9I1w6HuVV5Ym2PXKOF0\nfjkJKvl/5//PDamT4rhK2/IEWIbUUdkg/K0hN+F+2xlTqYXsbznhfMG4lc16WNZ2YDOhbjaHTICO\nACgqh2a59KeZRQ+appLPMqjQQ83KzS00lkQvkzs/NB+OQkwpYyrlaSopelv0DGuHGwTgVcolk6mk\nzTdiKk3MLriwOm2uaw55xiQQoCgHlVh5WhuWD3S7tVWGU2tO34krBwDIAwDWN2XNkG0DwG1P7QcA\nnHPCclQrZTMcyQqv5dPZcspNtlAARjeZOAqww8uo4W+FGY5Qy/UWFOrm383TFrJEqINQwgBUYv1n\nS4sTbRZMJV6e5lmf083xx2OzVnh96S9yXcs0lfxyedfHGjf/LAnmW8ldF20ttLS+pIh7jCVVCdou\ndh9bCWO36pQHXkXD36ivFhuQ12WPJ/3p9hsvdqZSrVbDu971LiRJgr/92789Im1edtllGB8fd/+2\nbdt2RNptx2af5/C359hJz/MR/vZn330Us7UGPvjV+4542x3rWMdaC38bn6l55a0UsUVsfLrmmCQn\nrBzAaceNAAAeYAyZVu3ZJiOIwBxuWjYn1xfOVFK05fgp+ZCS7pWX4RsJOlHfyphKshxlf5NZoiyn\nIhOizq69BioNqjoZcOMAso2/ltaYTsGv+C9n4JPvfBUGmyDVfL3hZXCxAIFBITZpbd5iWZc4ALVM\n0VSanq+7PRRnaWkaFBp1XQt/c9cox5nKC3+TezttMx5umo06jdNIDpjIMAqrThmylndiK7VRgOwZ\nCcPfRJ0OQC16Ao3AeEhFLlDksUb8PrmyDvfRT7+7K2XVaeFl6e8y+1sWzuh/bynYSlp4ylGpqXQo\nBXp8phKFYWkpsrPvEttQY803GKi0fnm6ru4YmxEaSKnx+UFMJQAYm/HDwDhYpAnzamsG4DOX6tq6\nVSphHdPU88ah3LNzTkjZcZOKplHaPgeVWP/Esn3b0ymodN6JK7zvhcCxtb7wsYTtAZrQse7shlmp\nwnq6KqWW2g5DkPV1w4FKGrBTkLmSt6677oq2s/C3YkyluZp+SJP2VfbRb9tkkSnXMgh/C7K/UZuy\nTr+eOKtUvz+Vss6Gy/oYn5cupM0YN+939u7RywbsYGP/Ep+XftmAGWeAZL3inlvj1oDjPOag1Ppq\nx456UIkApWeffRY33HCDYykBwJo1azA/P4+xMd+B2L17N9asWePK7Nnjp7lfWFjAgQMHXBnNenp6\nMDw87P07Wo2jts9H+Nv25zn8jcIPgMWzHjrWsY61ZjWmeQDoYQfc5Mnw3kWIdT/VDH1bM9yLgZ6q\nYyo9uAimEmV7e90pq4K/7R63+5oX/kYblEq55LKMHRLrpXbadvzyUFBWbmIILJmar3tgjU+Dz+pc\nqbBwtPA3omR7p9+ibYuCD2SbmXWjfeiqlJ3DF9RJmx2xgxoUaXE5FZ6bnrkLQVktSxz1o1zKTnMB\neILmvD7AB6qcUPe4xlSSp+TNvxdk4UimkiYUHjoLOaemOW1zozkrT0OluHYoEu5XWq2Em2ti8wXh\nb5JRlbNpDhgHkZCKRpKYJ9pV127IVMoN3xF1lkql4FRfbtgJaJPhb8RUksDB0oBKWf+1U/SjwRqN\nxK2zPlPJF4wGdDFml4VMOdzg4avHDPeiWi6hVk8cy9ACjivlUsCGdAwk5VksIvbuh78lwf/LZWBd\nM/R555ie/ZNsWX8XTl49CMDXNPJ1gPS2OXiwUG/gzi1pRtbzTvJBJSnab7EdNIaLuV5LMFqgK47h\naGSlSsHbUCg71rYE4S2Qoa/5XpsR2jXx8FqIssb6b4DRru1o+FtWzmYqZfeIxm8zQON95OPhQt2l\nUrZm5tVpM7mUtdpgFpVLJfR1hRqPWR/9trL6BAAUu48FWU1hCKXeduxa5gFQdii5r6lkhddqTEgz\nnM+4Ru3YUQ0qEaD0xBNP4MYbb8SKFSu8v5911lno6urCf/zHf7jPNm/ejK1bt+K8884DAJx33nkY\nGxvDpk2bXJmbbroJjUYD55577pEZyGG2l3r4G9+83fTonkjJjnWsY0ttcvOex1SS2XYWAwRT6NsJ\nTer/qWvScKun9k62rRVCmd9edeyIy5hDtmM8TO9MNs6cPm0drLMNistsNueX0zZGdKLuM5XSn7RR\nHOqtuo0OF+vOZyplZWt12jhm5QhgmlvIsinJTVmv2OTo40l/Vitld9LG2WqWoz/U4zO6qD7JAOKb\nopA9kpUjxsH4TM2NZ4IxtErKNSJhU1/8NCtHju/uiTkzXIxMOlPmya7CvKLxpWPKygdgkannRHU0\n2xbfB4A/edvLRXv6ZpRYI2SJ24xSnd6fA6cCiIS/CbCjbpwWV3LYQlr7SZLvfNTV8B1rPPB+8jp7\nu/xEAdlJefqTHGaZpawqNvhk4xGx7j/51sN4x9/81AOUVWMOiAYCHA02t9Bw2lvLGENIy/6mPWeW\nbhsA1JtrXLVcQqWcMYHooINfi6K6I7wczUlNU8laC3hdgA98Ufa7HZKpJCbHy9cNs9Bitq5aTCUv\nNCYrs2XfFCbnUj2lDWuHvTHlsR20LFsmS4s9j7zuUFNJpjoXf28+Q+7ZbaHtPIBDCnVb4+af5WXg\ntNcNv1y/C71b8MrJ9qVoM5m2xoWAlv+5rD9h71IaF2cqVcshMJ23/uddH15WsoVKpRL6uvMPsKzx\n5M1frWwuUJUjPC7L8bJWeHoe69fJDYjwNwvQAlqZl37b7djzCipNTk7ivvvuw333pWFLW7ZswX33\n3YetW7eiVqvh137t13D33XfjK1/5Cur1Onbt2oVdu3Zhfj7dCI+MjODiiy/Ghz70Ifzwhz/Epk2b\n8Ju/+Zs477zz8JrXvAYAsGHDBrz5zW/G7/zO7+DOO+/ET3/6U3zgAx/Au9/97hdF5jdAhr8dOabQ\n5NwCbnpsN7bsm3KfzS00oiEih8PGmAN346O7j2jbHevYS92kLlAeqCSZSosJf9vSZCqduCoFlUiw\nulZP1GxkZLc9td+JhUuj/qwZ6cVvnX8CzjlhOV51bBpWJzf33HxNpUj4WykLf5PltJAtApX4dauL\nTUy5XHLi3wenQqeLlwWAFQOh4CXvH1k/ZxaJMADaBMlNDjeNWeScvnktjMXf7bjwN8FUsjZFaV3N\n8SiUdMqykiTZ/coyv/mMGRn+Zp0Wr2qWqzcSF36YTzOHV6d1EipBpSI6Lrnsmsip5W/8/Am4//99\no/vdChGRQFBQpxWqxqYIhb9JgMrS3xAasUGmHitcgH/Gw98CNlWzENc4sgC6LIxFXB/WuGQqybAT\nYirVJFOp4tdNFlvPvnX/Dty7dczbi2nGHRUa0tEm1M3nPF8H9exv6U+PqWRkmARY1sxmvZle3XTQ\ntskkkA5aWSnD6rFAC83p42OqlEsuScOOHE2lU1YPqeO21v90fGEZWhNXDna7ayRBa2sNDnWSeFsW\ngEsPhf85Wa9jKoWMHSADnTItnLBtM1RNZo0U4+ntluFvNmhtAzaybb+c9d7rcwzhcNy8aI9gcpFp\n9yhkh8XfE2n/qL/pTy7UXfFApfj6b4X9adcyDNPO9iUUFjitivDrdUq9IOudy78r25Zl6XfJtJNa\njy1lgzT6Kd97Xe694R/yWfPcH0+8bcl2bseeV1Dp7rvvxplnnokzzzwTAPChD30IZ555Jj72sY/h\nueeew7e+9S1s374dZ5xxBtauXev+3Xrrra6Oyy+/HL/8y7+MCy+8EK973euwZs0aXH/99V47X/nK\nV3DqqafiF3/xF3HBBRfg/PPPx9///d8f0bEeTnu+sr/9zQ+fxG9dfTce2+VnWjrSIXCcFfCTJ/fl\nn9Z1rGMdWzKTm/e855+y7RCwoqWHLWq06aKwJgp9SP+m9+PuZw7gPf/rdrzx8lvUv3Oq9/v/88n4\n1/edhw1rUwZUUVBJD3/LNnFDhuOjhTeR47NjfCbIwMMBIAqT++pdW5U2/Y3EyqH0enGhbs0x7q6U\nnbNNGzmZvaRXCIB6Y1ZAsoGeUE/K2hDKsnm6CUB8o9dVyTLfUThRlvlNgkp++BvfZ/E6q5VytiEM\nNtdelYEzRVXm6R+RaeMPN6P+57LPEtCSNtLXZW6aaQ6dvn4EZ//MsqBfeafFnDlBz8hQrwx/k+PR\nN822gLDm9GVlTeZIRJfLOgWOnQBLppK8RnTqXxdMJc0RAcIwOa1uGS5plfPD345eUIlf9gyI90X2\nAf/+xIS6JevtuFEfsOeXrySf3QAQ8OsCFLAEyACTwDEtqcAOf08c22RSBUwlcc+OHe3DYI8PRPBy\ncv3n/eZAL4H3g+yZDNYsE4ygNsM+WizDEODwimVMJSfULf5OTCXpFCv9Cvsp10sB7BALSABaKhhR\nMMTKCkGTdWbgSTP0zgtjzAq7d6+hqcTveQjsGH30wAh9zQLSlPVWuJi0EHRr9i9WVllbM/H00MfT\n9hr892DcsTDpnHA+uUbnPROaZlre+9kC3sKDKb8tWZ8+Hr+sFRrfjlXzixw++4Vf+IUoIlYELevt\n7cVVV12Fq666yiyzfPlyXHPNNW318Wi3JEk8UOlIhr9J3ZJquYSFRoJDMzV3ynskjDtzs7U0S4oU\nlOtYxzp2eCwIfyuoqXTG+lH8+Il9iwp/k0yYSrmEvq4KZmp1TM4tYIWyDn3vwTTrp7VWasBOJphq\n9zVPqJv0eMvlkhMnDoW6m2VY46sGe9DbVcZsrYEdYzP42ZUDapa4P3zjy/Dr/3Anrr71Gbz9jGNx\nxvpRc8NMTCUu1K2FGZVKJQz0VDE+U3P3WW5Ge8XGn1uibHgI+JtUwjQCppIA3yzdHE/0tpGgq2Jv\n2JcPdOPQ7AIONBldNA/6Bag0IsJtrFAS+r2RJM5B09IGA7HTYr+PkoVDpp00yk1m7gY3AJ/00+KF\nJAkAKCrb313F137vtfgf1z2Ar961jW1G9TplqBqga3jx7zqgxNxc+32Lhr+x9u0+0jXPPjM37IFT\nEdYZMpX8a+TC3yRTyQh/k2FyXt0FnYFMuyabQ0cXpOSPm1/PLkWDSrs/g8r6kpX3HU/HVDqYz1Sy\nWAzcdGBSr4/KN+qJV56vhS4JwLjUVPLbPu+kFe554u/jGCMk/cxvm95H/JksIvDP25BrAaABdLRm\n+WVlnZKJEzCVmn8PWIseMGndRwkI+H2k+Ta/EA8z0sajvZ95X/KA8P5uGf6mz0sn1C0O0qk4B4jC\na6S3ze+VZFd2WUylnDrD8De/T1pZbb71R7K/5YUqF3nvybaLAzv6XqPEyiVJglKpFAlX0+ewFRqf\nrzmY/T94T1lMYvE8tmMdz/sFbnMLDe8EtUj2t/mFBq6/Z3vwomrV+GQ/ceWAEyyV4rOHw2r1Br55\n33MYn64FabRlit6OdeylZJd+7QH8/Kdu8kKbDqdRthnS4pHp4qU91wSVzjw+ZTosJvxNc8qt8IeF\negNJkmDXoezUVzu40FhA64wTY258HVKZSqyvMquZ7A8/ZSqVSkEGOA20eN3PrcKvnrEOSQJ84cdP\nizb9TcSqJlPJC39rhG0DWXrjjIoPr04X/qYwlbR+6hnlqG3/+y5L3pxkKvnlvFO5HJCBdJUONPWk\nyImrikorxuZNq1NqeuRt9ALnwwA4eFm/Xl6n3BDqG9zF6Fpo4GDahu5oFwHJ6P/Wdc8Lf7PGLdlh\nftn8E3ou1N2qsKkG9pHJsi6MQWR/o+shl6YYU4nK5jGV+Hiod4txIA6HJcZzJlkR/P+QXjdqAAAg\nAElEQVT8Umfrf7geETBHc2xNM7wsE+rOyuZrnoRzI5tD2fcs55B/pmkwVcp6Zsm0TPpz44bV+OJ/\nPxuvPHZEfe9Z4HY6Hr89/l1KkJB+1y9nrdXW9dHaL4vrZK2XPSL8Tb6vSbSY36sUOOZt+/0M1qyc\nENd6cFCAwCyWVj5LKv4+0989WTlLz1CrV2pjaYdn6Xfsd2lPjqaS9Z6wWLLxtVrOt5Jjj80oMi95\nYGfeQU6s7XAOQZTzv0/mv8f974QHTrJO6z3ll7PeZ5qAff689Mu1Yx1Q6QVuErEtEv7274/swof+\n9X782fceXVTbFHb2p7/6Snz9//p5lZ58uOwffrIFH/zqffirGzYH6SXr4oH42x89ha/euRUd69iL\n3XYfmsW/btqG58Zm8KPNe49Im3S6uXoo3QBrJ8TcSEh6Q1NUe8/EXNsx3C7Eib2gh3pD0GJitobz\nPnUT3vvlTdjJwHRNB0g7zbHCELj54W/xdNYErMzXfQ26uvHSX9YM75sIwsD8cuc3M9ZJEEZuHJ1Q\n96QS/iZPTYUGkmQVxYS6dacvP6McGW0iKfTOorjH9ANkWQLBSAzY0uIJNsLM8TM3ZXknttJZEEw7\nrX4v3blSr6TY521w3bOmzHMy+mreaagUJjZBMuF8xMrKsBzLMbZBMmU8rs3EnBc6UynueIVORVbG\n0kuTp/51cQhWUTLlAfHDsrzwEzLu9GmhV0eD+Uwl/v/seXQMF+X5GVTWF1k33Ws6CCkEHItnXH0W\nlfC3WKhPRcx1Xj9nKo3P1Ly9PtX5qmNH8YsbjmmOOwz7i4ZsCbYFkL3LhyLhbzYbBV65KEAXOMZ6\nOQKNTKHu5lruHyrE9ZxC4XFrfUGzTVFOXS91MCKfJWX10Z8XHuuLle01Mq9q98gKcYoxXCQQwiNA\nUqaS//f80Mh4OUABJ9n7uS/CVMoPK6P60s91kNevK5eVVxCsAYpkT7TeKfoeImQVKddykfOyHeuA\nSi9wk4BKkfC3bQdSx4hEbts1Oo0/edUgRvq7VCHFxdgVNz6O3/jSneoCQg7z3c8eBJA+oBLdB4C9\nE3P4ix88ho998+GjTpCyYx1bavvuAzvdC+GerQePSJu0iT1mOAUq5hcaLu2yZgS+UArk+YVG22tG\nln45e0lqoMWjOyewd2IONzyyG0/sztY9jVGkATucqWStI55Qt5L9jW/ieHgBdz4tcCUImzId7eYY\nGv4GKgh/a4JK0/P1TCvJ2BgNCGaR1AvqcRloNJ2DZv9ZpYMU+uc5P+nPXN0cK7MZ+71oppP8dMC6\nMyXHA8Q0FvS2w/AHUY59kKfHUHyDK+ZQxOEsqr8UXktj06qwIqyQxxAkswAtCfpBLcc/ayR2H7P9\nAxPqLuhAa32UGSClM0cOWq2eeGuKFB0mk4wmr+6c+5SVy8bu5thRti2yQpc04FhzyuOaSukX6Bpb\nTlfatv9duRZpQIimh0X/01gZWricC0Mup9p7FPLD2UrauuHW6fl6AHzJ9Sr9brhfnlBCUiUgbAMH\n9pphgybxZ7y7mv6eaQn6Y5DhbzSeIiyp8AAAark8sJ5/NwNCctqOgKJafRqDGQhBNzJtbZfjyQP1\ntfFwoW6fqRR/p8jMgMWuJYKy2SGTBipZ40l/FmHohjp9cbAoBjAD/ns8AIvkwZg41CgazmcBskC4\nHpnzkt7PDX++tWMdUOkFbvLhKhL+RgKliw1/I2douK/q/dQctVZtam4BV/3wSfxo8178aPMe72+z\ntTo2NR3mJ/ekDuJwb5c7dVpgmy/qy3y9EQBwHevYi82+df8O9/97nj0yoNKEA5V63WeWSPbcQt2B\nD6uHep1ocru6SioTRtHU4LRt/vl4DvhDtrZ5Yjw1XzcBsEM5TCWuWVQpl1xYWRHB6nAT3iyXEzpk\nMXuobYBlt8kJf5NsIeojXVuNqaQK6WpMJddP//shA0jfaKmilMaGXR4+WOCG3JBx58vSOQg2wsH9\nscZjb+z5/k4DRORJbGK0bWpVRE44g42rUWdeaIF0Pryy4p6bcz3HWbBAUcA/gS4aclKkjzQczQGY\nmJNMJb/ObtqvNBoeYFQVc4ksFtqWgOaoWcRru1wCC387ulAlO+xDc9DCsgSuyOsPsDnSvJ8xRkg7\nmicaUynGyqCPNOC4UiqhVNJ1lTSxYQ4EkR8QY+9pTDWnqcSZSgWBg1YAOgsIl2YxgMi08Lf0Ged1\nxNvOA8nCcmE/LUCtkldnTh9DEMYvx5lKXpi0cthmXfMQAMr+L6+7x1SqlOz3nvku9funHWiYjKpy\npqlUdK9B3+NtWwCQ13Ye8GawqaIZ2HLBInh1aplzgRjwFVlfBFgk27a0vtqxDqj0Ajf5cBUJfyMt\niX2T82rGnqJGThQxlOjnUoS/3bFlv9to3fb0fu9v924dcycXhNCP9HWpp0Sc5ZQXltOxjr2QbduB\nady3bcy9SB7fPXFEQlEJHBjt73KbDutZ44DMYG/VMWYOTrfXTy38TQsDkCGxWX+0LG3pT/6S7u2q\nYEUzBG3HuB4CN5aT/U1qwwypjB19g1CSG448511oVWgnh9KhsTaE/QKkk4LevRGmktZPB/rN5zO0\nLFHKcLMetqnNDSDcQJmZ2sQ1L+JUOIAjL2Qrp04vm50HcjT/zr4gN465bKECJ7ZFw1Ns5pUxblUE\nO35/rPBEubGPhlSwvYF1WkvXlGsX5Z3mS0agFlJBJgE6LtTNmZ2V5o0Kwt9iQt2J34ZlHByUDvvR\nYtY15wLCsVAsbf2X36uWy9735PMIhMEkARtFeX5kVjMgPjckgKrVu2aYdJVmgjK8yt6uLAvllAt/\nRlDOjUcBLyfn0vcWB6haDn8T669eVl53vZyVXp6MniGpXRNlKhkHL/IaFQW3+Wf5wBvUcvnrqr6m\nE6jWSCwB+6x8eKChj0djBFL7XR5TqWyOJxi3SNTQCuuLa1n1xphKBlCVhZjKa263HYQ8muCgHI9e\nn17WAouKPWeSVRRjQmZgp9F2DnjbinVApRe4BeFvioCZtINTmY5Gu+m8Z2t1B+gMN7PkUBz2UoS/\n3fL4Pvf/257yQaXbBcgEpA6ttinkGwsevrH/CIkYd6xjS2kP7xjHVT98UgWDKdztzPWjOG5ZHxoJ\ncP+28aDcUhvP4qSJMHMjZtBQbzVl6xBrJSdjnGXaS18TLLXovHFBbf/F67KcLYTOXa3e8DY68wuN\nAPCvi40hnQbzPuQxI+SJkwRMXLlCmzd/w2GHvzU3cnPy9Dv9e0yoWwOL3P0pwNAy2TUKECGBNzNs\nSmzKbCBPb1sLJbHEpYuCMOF4sv97oTRKvUXD32QIZfTEtuBpqHRUTJBMsKn4d3JDPRVWBv9eHjuM\nl+UOZ97Gmv8/T4MiBtCRSYeKQkkW6j6oVK344yKLC3UXcwbceBA+/0eL5d0fIJ51iUDrGKhE62vo\nFGdlrfalg6aF6MVAIq1O3m7Wx/RvDlQaZ0kVlGeXMnUC/AAg5kCH852+xzWVbA0iUZ/B3tPat5m3\nso/wysm5SixZXn89SZCwV7QN7Pg/i4NP2nrZWp25Tr4ZHui3S5pSgE8w0J4hi/UVXnMGKon7E2oq\n+f00AWEBwhOzUj3QiDCLnKaSqt+ot22xaTWgNesnomXlu8cO5eYAXatAVXwPIfd4sUx64YGTLJf+\nlO+odqwDKr3AjZg4tAhp+kPSDkxnoNLONkPguA4IOZIELi0FO+InT2ag0hN7JrGXZYiSzCWgyVRS\nTn14OCBtMv74mw/hrE/ciJ88sQ8d69gLyT71/cfwmX/bjB8+Fopw0zO5aqgHr25mVjsSukoUZjDQ\nU3UAhMlUaq4NlK6dWDDTORnjLNMcTqkBBNhhIRoAnndyqbEBeBgdfU8K9Uo9D5fZzNNUSn8WDcUK\nHW2qJ+7k8zqlaLQETehUv9YgsVS/nAPbYqLnOUyCVkPQ1FM5t8GF9x17Q0h1hn3k45PhVfrmzW+z\nVWfBmmt8PPz/sfC3XCepwNxoO+TFYGXQr62FluWMJ7jm9ng44Jh3zRe0PgYOtNV2VvDcE5Z735HM\nuC4HKjWcaDw3CYQvFNBU0sKutHJaZqA8qzeSaKKCpTKLXSOBA4DpFfH1pTc8VAD8fSGtFdbzqLUv\ndWFiAK/GLtTwRj37m18Xhb/t9jSV9Hkp19b4M+7XBWTvLI+pJJkeOSxMHaDz25YHAPmhSz4YQUZM\nHQnC83JmP3MAGxleG2d2CtDEWNvkOmiNO7w++lh4WD9nCussOh8wsQ6mJLuGryMUsgs0NZUkAGSA\nRaEulz4e/pm2tsbC34qv1bG2i5WVIEzeIRKQvhuTJMll/Wb3R2+7nfC3vPFY7O12rAMqvcCNTseX\nNdMkFwGVOFNJpiotauQcDvVU3SR3TCVFT6QV2zk+gyf3TKJcAo5fnqbS5uykR3YcAuBvvIf7uhxt\nnG8KubM6ObeA3Ydm8c+3p5ngbnx096L62bGOHWmjTf1ehWnH0wGfsX4UAPDA9iPLVIqdEgMZ+EKh\nslm6+naZSulP/oIeVNhP8gR/tL+ZVEBlKqU/rexQsq5v3b8DV9z4OIB0DaQNuaw7EfVSOU+ou0XW\nTN7G3gJr0jr9Ni1GiGSj1AVw0Fu1mUpa+1rKb3NTVpCh5ZUVAIcpiCnGHWaU8/vmQLclOBHMnCT/\n+7I+Xpb/3z+Bhtf2YllSftmCQFXOBldnAel1yvFk9yenj4VYGcUBv1gfi7Ck/uaiV+PP3/Eq97uc\nb374G2vTYGXEmEryGb5zywGc+ac34Ov3bvfKcadPzu88+5/ffhiv/dRN2PTsgULl2zXrPkrgALA0\n23RQiYekufA3Y/6WSvli89qzKx0+sJLavJQsICAE9wlU2snCri2HUzKVYuzKDFzJPpucs0GlPGaE\nBcJoZSVgX5iVIbBXl/2N1Z804oCWXDfctZTvvTaAkDwg3AozyjvAiu0LiPHIgWmtr+H7LKtD1knW\nSHzAMy/7W14ijbyEDryfbr/B5gYJddcEu9MaM/89T9OIxsTL2KHx1rqhz3Mqk3jzUn9+8vZjISjq\nf19rP3sWrX2Jvidqxzqg0gvcCLElvY9pIdim2QEOKhn6IHmWiXR3uc+y7G+LYyrd9UzKrnjlsSPY\n2EyXykElWjzXMGHg0b4uJ3DJF8HpeR7+toAv/Php9/u60ez7HevYC8H2N5/dccY2JOPpgGluH1TK\nLbURsN3fXY3qWQDZ2kBMpQGRrr5Vi4VXaVnVjl/ej//4w9fjza9Y4/Unr8709/QnX1/u2XoQH/zq\nvQ6oHunrMtfBTHgx/X1IOVG32Rt+HWaIkwNMaCzNvsdCtlzqdhqn5QCIPjaLZUylyOkhG4+Wnc8E\ngMRGKxbOYWknWCexbkPY0K+lBT7FTqrp1VsXjmFQZ8FTct4+77PGjsgDi4o6NLx+Ol2VbclyeWLZ\ngfPesOu0HCrLUQm0XjQHmjnveSF6vqZSjrMbuY8rBnvwf557vAsPDUJJePjbAmcZZH3lFtNUSsR3\n7nh6P8ama7h5s89o5UxIup5F3QdKivL03qmC32jPrJN8TzdHCGvzshpTFfDX7Sz8zb+PMeDAWl94\n0VbAU7u8v8ZlmkpzQRn5TMixx533sG1NqNta/y2Q181FY10FioUS8u/K+U2mhb9xNmKszjxAoJUQ\n15JRp7VuyHFbQEh4fcK2pVae1b4FHMRYbEnii55zUMnL/pYDfoWAo/+5X9YA88pZ+BsQhsDlATtF\nmEpFD+/Cgw+/rWwsfv/4vCwcEmrtS3LYbvyzvPGEIa5BVYWtZVDpnnvuwYMPPuh+/+Y3v4lf/dVf\nxYc//GHMzx9+B+alZnlC2vRgLW+CSkmia36Q1eoNj0nUbvjbIaaNQpaFvy2OqUR6R+uX9bu047vZ\nC5UeIg4K8fA3H1TKrt/eiTl85Y6t7ve8TCkd69jRYNsPTuNf7tqKmfk6xpqC1lrWMn7KSM+iVm6p\nLRM/LeW2G4BKFP5WgGGpmXaaEwuv6u+u4KRVg66fGqsyD7Chl36t3sBl1z3onT6N9neZdUtGzFCP\nL9TNN3A25Tnx+hBuYqxNXjBMc9Ocp9Nkhb9pQt3aeOidwYFEM/zN2hCqJ+8QZYvdx1w2inRgIwBd\nnnNa9PRb04hKy4fXyQKLim6E80IQYqf+mXMYH7c117Q6Q4BOrzMUIc3fXCOJbaz9eZHWmf7MS/ld\nBDiQ/aTwt1qj4Z26Wxv7mrHT56AfVUP1TQpghc8f6mnRU2mqczGn2EXMdkyz30N9lOxvXKfPvzbZ\n/+le289O2K/AQVPmZVmA/34fwzq18DcJzLrwt3Ee/gavDJnMrMlFjsPx+P0DmKZST1dQLu8Zb8d5\nDwEOcc/FMymnnhb+Vk/sDI+8jbx7Hmoq+X2P1tkI5yVvI7ftgtcH0IFJLXNYUYAB8Bl3vN7uimQq\nWXWK8QTXsggQEpbtrmTi4DIqx2rbvfdaOUwpuofIKVcSaxZfwksF2U/tst34d4syAulWL2aJbxlU\net/73ofHH0+p/k8//TTe/e53o7+/H9deey3+6I/+qP2edCywq3+6Ba/42L/h5sdD/RQycsYIVALi\nIXBjIsvSrnZBpWZoB2cqDSnCs+0Y9XGkv4ul1w0XzLUjfe4zDip5Qt3Mcdm8e8JzXg/35qhjHVsK\n++T3HsOl1z2I/31nBojK5xhgIam9VQfaHAlQiQM7xJjcP6UfMLjwt750rdBEtVsxbdOsgUpyAzXs\nkgrY4W956dO/9+BObN494ekaVMtltw5KbTm5SZBC3Xw5MsPfBCBgpbYvcvJelG4tT+jlhpWnNZam\nMsm6Iwwta3MdnMoFTXlj5wBd3gl0y3pO2rU0NHZk0aLOh9e+lzEtrDfM6kZtifoECFMkDCA49Yc+\nL/M27NZJddr/+HNmhTxKkCzmQHOR2ryQE11TKQ5oFTktlgLpdOpfbyQidMUfN1ldxv64PvIy6S/z\nTaoiZfOSZUul0InJM6ozFoa3FJY3h6iMpU9CgEiS+IcVnPFHY7fAQV2MOd8x1kKkYywTLVwuCH9r\nMpX2TMw6tpo1L+XaGl3/lbY1ppLFrszTTYsCIQJ80+4j/64VlkPv3lLJD8WKj7tZLvdQwRiP4jXL\neRQ7LChSLqwv/73nzaHm//mhkwTNY2sW7ye/5F1irxOGEsbfe0XePfJdytf1UqnkdDhDUCn+Hk8S\nOrgrsFbTPTfBQR2EiQF0SSIPU4q99ywWc7BmKaptQVljPHJ/eUQ1lR5//HGcccYZAIBrr70Wr3vd\n63DNNdfg6quvxnXXXdd2RzoW2vce3IWFRoJbn9qHbQem8Q8/2RKEldBGfrCn6lDku5896OkmcZPh\nMO0zlZrhb5yptEThb+OMzSBfaED2EK1lTCWe/Y0/uHzhee6gH+oXS7/7xO4JXP3TLVHKecfybX6h\ngfkIc65j+Ua6Z3czLQuVqcQ2hEv1LBYx/tJfOdQDAJ6wPjdi72Thb5RZbLGaSgy0UIAqB24033gZ\nm6h49jfJRqExvvmVa1yZ+7aNsWuvC3VTvVKom69bAVvIbTiadVknaAVZK0DoJFlOeRgGBq9OOi1W\ns78p/RxQQD8ausm8CsZtb97kRtiqM09UtaWNfcHrbqfnzq/TL19SykH005i/wqHRHGjuIPJrKU9X\nQ9FQ/3NZLnHl7M110WxTYcY9vT4AjJWTlQ/6KDb1fDx5YGecjaKPx2kq1X1NJcuBtoS6/fmR/p9Y\nRTIEjPdTpvnOMwrRa0T2TUthFqjvsffkvGQXvrcrYzN4bFV2/eiwMngeizB7BBDiAbwK8yjmvMdA\nKCq/YrAH1XIJjQTYNzkv6vTrkwcqLTFCGgkm54toKlnOrlwL7Gcic8rF8wP9mczWDb8env2MO/rF\nxg2vD/nrS36dcn2z141muQwR0NtugVWqzzlezu9bDOzkZeNMpfT/MeYgr09qYxVhfcl1nZjRkt1u\nvcd9XaOi2ljwflqs3yKHQxyc5GuWfegTv0ZFQ+j9OuPjye63P652rGVQKUkSNJqjvfHGG3HBBRcA\nANavX499+zrZtJbK6o0ED+1IRXZ3js3igv/vx/j4dx7B52560itHoElfd8XFm/7OP92N/+dr96v1\nHhBg0+5FCnWTAwUsnnXg6magktRJ4huadRZTiW0e+KZqx3hxUOmXLr8Ff/LtR3D1rc+0OYqO7ZmY\nxav/9Aac8+c34s+/96jKZOhYvhHo8NBzh9xnYznhbyNNIeo5JbX9Uht30lYOpqCSyVSa9sPf+t3J\nant91FgMg4pOk8y8ZgE/gO1YyE0m18353defBAD4v99wsmNhScBKOqhSqJs7s6bzLoAQK4Y/YOHE\nsqWJjYTlbIdaRenfexxTKRL+Vg7vD896p9H1075AtE3jVBw0tmGPhVcFAIfBQApFfP3vW23zuvPu\nTxz0Q7POEDTwnQUd0JJVtsYkyMYeP11t9iunTguEkWPxxmMw44JyRa4lu+7WxrpS8dsFbEcyYK0Y\nIXqAJv6afu7C3+oy/M3/SWYxhGKgUpABjY2dHPii/gPVGds3LYUV1Qix5lCpVMp09ZQQaICFvxV0\numTb6c/wOdMkGKJgp3gmeT9pTJVyCaubhzW0X7ccTgnYF2LXNNtO9VjTz7ishQXs2Ow9HQzw2jYY\ntSHDhdpslhMKYBzk4GtMHDCRIBmVlcABrQfwyuUxe2JlKwLItcqF2j42aFEEmARiYEQcXOHPjaep\nVMmyv7nnR3xftp13UMC/K7O40jgpA1yoqZT+jAmPp3NDfz+20s/w3QO1nCwbe5fKtSCfQZ3+XmTN\nKhr+JsfTjrUMKp199tn4xCc+gS9/+cu4+eab8da3vhUAsGXLFhxzzDHt96Rjnj21d9IhsTvGZtzL\n8f5tY145erD6uivuYQOAGx/do9ZLDKb1y1NAZs/EXFtsnAkl/K2rEr5Q27EYU4k/lGtHuKZStyrU\nPVPLNhU7xnwArQga+5MnO0Bpu3b/tnFMzi1gbLqGv7/lafxosz4nyZ7aO4k3/OWPvDCvF6LtOTS7\nKPqoNHrWth6Ydp9pDCSnh9BbxWB31b2kDjdbiW9wVw6m4W/7DKZSFv6WrhukATHdplB3XdkgaEKt\nMrTLAn7SsulP2zH2266USrj0zS/D1373PPzeL5zsACsr/E1my5ShCtG2BaCVH/5mbxylnoflGOdl\nosk0lfSTQ1lnJs5eN4Eq+b0wRC8YjghxCj/Pfk9/umuZc7/zwA1eZxhS55ezT7/D8chTU/5/DtKF\nFHd9PF6GpKSY48VDjLR+Bim/29i02mwu6muz/zkstiIb+yRJbACz+bsW/pbn7BZxkqTQMQ9/84W6\nfUebzNqn8XI0NgtUAstEJudsnlGInkGYWjKL3cdKwWdcDYFuZPeSyltMiyLMHs2Bjglva8+ZWp4d\nVpC5ZAgLfvibrFNm1myFsUMgf7Vc8kK67XeKrC/9WUQI2jrQ0NhpvG3pWnDZDx42xe+1NGpCsqSs\n9TJj1+TXmcfSCsLfoF+j4J3r1nSt7WJzzgJFdcAxqzNhy05PkP3Nf0fmMTuLAHTBwZi47pQBzg5/\n8+uTGdiKtR3vpwV85QF0/B7JopL1a2fE9du0GFpaWXM8BpjWjrUMKl1xxRW455578IEPfAAf+chH\ncPLJJwMAvva1r+G1r31t2x3pmG8cPOIhascu6/PKEfDU11UpJJB9oBn+9nOrh1Apl1BvJI5Sq9lj\nuw7hoefCtORa+JumSdCOcVBJLuwcNV836jOVpOMF+I6lZGkVAb/aTXXesSxsiywv1PJ9X96Ep/dO\n4bLrH4yWO5rtX+/ehnP+/D9w+Q2PL1md2nOtaSq58LeeFIx1bJxFapzlGQdXiKm0b9IKf9OZSlOG\nDlySJPi9f96Ed/3dbUEKWUB/SVJIna7Z0wSVIuGB1gbXEmOulNNMSmf/7HL0dVeCsDar3qFmH6ic\nJyQbbGL8OhxrxjwthldOZ1D4dVonY1b4m9NUqvoOD5mXbYlVyUMrpmvC+TGAgyybnb154zodfFNk\nMq/EpiwM2YJXrsHmedi23FzrwIV1+h3TVPLDscJ6i4qg8t9Jdyr9PGjaOzWNM5UEYGJS9v3+F2I/\n5QB0PKyAly/KcJH1VcU95ONZ1GlxALyln5ODVmtITSV45cksoW7NmZxfSH+GaxD1UwctY0bAl6Xt\ntFQWY2XY89Ivp7HmaR5VWeFWwhgdczDynElANC1HfY+tG7x8uBZaotFyvg10+4c0UQda1En6W4O9\nVSHwnP7MC12ydP+KAAdJ4n9OZjnaZ6wfxZ++/RW44FVrWZ3hfC4ybhsI8duMj0d/xk0wImfdkAkQ\nirAwdUZrVj5879njyQBnf30Js79l5Xh/89b0YmxE/br35TCVrLapzqJgGv8ZAkDWeLQ605+cQaf3\ns9jzE65ZaPaxyLXUx2M9j+1YNb+Ib6eddpqX/Y3sM5/5DCqVivKNjrVjDzIgh4dtcSAFyE6H+7sr\n3gv0xJUDar3EVFo52INl/d3YNzmH/VNzLsMEt70Tc3jzFT9GuQQ88Cdv8pwBTaib6NxLyVSaEA4X\nf/lyptJofxeqjimVFYoxIOoFnpzFZrJ7KdseASpZQAOQLqSUsviFbP/jugcAAFfe9CQ+9MaXLbo+\nrnPATdNUIr0iAjVG+rowPlM77GLdmVMOrBgsKtTtaypZ4O2jOyfw/Yd2AUhTWb9szZDRdvaWjAl1\nu/C3drK/iRe00yAywCcJrsssVtRPWksLnWK5dTDH0S50uioAjkZ2H722g82OX84S6vY2UN6pe6p5\n0kjSezTYUzUdlVa0JXwWg+1w2gwkv5ydoShoOjwFzgEjimSi0ZgkWh9sR0X00TuxjTsqHDSJzsuC\nzk/ATDAAR7+sqNN4zhIx17XsfPxamg6f8txa4wkZFDYQYrGaKHRnod7wNZUURkgj8TWBuPFtDK0x\nBFLN1OqoN5KAIWdlF4wZCXUfbpnJKMOFgeYx8GBQYauSLIIHAgkgoghwEIZ3sWoXVFMAACAASURB\nVP4pQHAcvA3La9kO3RzKYQtVRLRAKxpRE+5QyncL5TOeF5YjQVEdoNOfHxOMEOM5blkf/tt5PyvK\nZnVSNfGQIHjjshmTBYADuRYVBFfsw4f0p9S/iz0THjCpZia0AIY4GMHXhy4z+1seaKEDRbG5IRlV\nNE7HVDKY0cUPUyJrdUNed339D8ej1Mmuu8Xe5r/n7Q1CHcPi+5KiYOcRZSoBwNjYGL7whS/gsssu\nw4EDqXjsI488gj174uEtHStuD2zPQCV+fzn9EMgogL1dFbz2pBXuc4stdGAqdWCWDXSju/kCsgQg\nv3z7swDSiSZFrumEn2sqcWdqMeE/HlPJePkAKcvht88/Ae8481isHelVNZViqcqLCE52QKX2jTIL\nktNpiTcDqbg8Wbm0uOwDz6ctEk8NLE2LHH4+U6sHTrw7aWxuCl2Il6IbtJTGw0mIqXRwel4N15Ba\nbJpoM7fvPbjT/V/Tf9MAARr/9Hw9yAxF5ThTSc41iwUkNW4sYWstpAEI9Z9k+BufO0GojzgBz2X2\nFDot9vtZmKkk2EIuNENoKllsFK55Mim0P8JrbgAMOY5K9EQw2JQZ5SToRuWUxuWG0BZ/bdZVBCRT\nmDNFHE7LWZBhAFRrzKngYXJaP6XzY536x8JYrLnu7rkB0IWbcL1tXrYQU8kDBPQ6eZ+TJDHZVF7b\n4tntYvsvX1PJH0+3YzRZ2d+y/tIc4OF0XFuOg8wtM5VE5rHDZTEGBb/nMbZbf3cYVi2dU/7/QsCB\nACO050x7ZmPjkYwHr58K+CWdPltnDN7PQuFvczqoVFQY2FwDI+tlOB5RzmAV5YG3UdCi+VkgEm4C\nIfDGFQcj/PHkHWjkhWzJtouwUbx6PVZes67g3RNU6b1T+FrNQaVqpdzyWh0CIfH76JdNP3dMpXmd\nCW6BMNR+TCTc0rLKG098bmTXyH+XynJ+m24fauzxWmEEtgzeHklQ6YEHHsApp5yCv/iLv8BnP/tZ\njI2lYVrXX389LrvssrY70rHMavUGHtmZivJ2CxBJOkDkpPV1VfCX7zodH/zFUwCEbKGZ+Tr+5FsP\n4wcPpU7a8oEulx5yQdmszNbq+OcmqASEoUySFQH4tOLFONc+qJR+JsXLgNTJ++gvvxyX/5czUCqV\nVGdOC6vJtJ/y+7JY0fGXsu1ugkivOnYEAKJhlhw8aCQ6E+elaDFQk4du1eoNJ5TMmUpA/rW8c8uB\nXL2rmBGGWymVsKy/uwkKhuGmgC3UrYG/SZJ480KuQYD+khxgm+KpeQFaNNcoAtwWGknQdp5TnhcO\npWWs5L/TMkn3ie6xz94wXvqBA633UZ4WayFbYTiHUWfgTKU/XfhbE1SarzdUCj7vP5mdpUj0UW6K\nGvqmiH/WSPxrHzoLok7jGpnMtBgAlAPQyRNOGJoacjxkalafgsAb/50DbzqDAm4cfM8hi9o6EMWe\nnbQtAyzKc9DECX10Y88Eci3H1DGV6uEctrIZpf3M0+nQHWO+/6pFwt/yGOD8Y7oGvD4eAscBDudc\nQ69XGtVpHUIulcUcTvpIMigsR9ITwG7EwJriDlqMlaFnK7afcckCNes1AdT4mhV33v2yk8qe3ms7\nT+OsoH6L3k+9rA1GBFV6hwXRcRcEQsLwZ3s81v2x1pjiBxriPkZ0c7QwaY9FZ74n4u9SXhf38fzw\nN/uZ4H0sNB55z9mhJcBBpaLhb8wvbSTFnseC79KMtRh7j2f9i733rGQseYcprYUS5rxLXZ3hOIpa\ny6DShz70Ifzmb/4mnnjiCfT2ZuFHF1xwAW655Zb2e9IxZ7sPzWJ+oYHuShmnHzfi/Y0DITPzddyz\nNWV4bFg7jLUjffill6di6RIo+v5DO3H1rc9gR5M9snygxy0QNWWT8O37d3hO4W6hh3NoJgx/4y8Z\nTf+kiM3W6k6bY7ivC5Wyv6HionHWxpWztCSaDQDL+tMQnSJobAdUat9ozrxiXTqHY0ylWx7f6/2u\nAQgvJBvubTmyWLUYqMTBIs70IVClCKiUJAne9Xe34Te+dFfbmSC5UGClXHLimRJEbDQSl3CAQB0t\nVI1s8+4JPL1vyv2+S9Hk0k5zeqplt7ZJ0IJTqKkM15ziwsTmSaxkKpX1dUgugVkmtlKzn6RF5OsK\naW1bmx0ZqhYylfRNHq9Thg+Z2kIShGl+ztmzNJa0XNgvMgpVXnB1NsvJti3nQ9m98U0zB0Js3SkB\nVIlryR1YXl7L/hae9NHn+ngyjShqy3Z+NAfV1zxpzVGhelxdQcs+WBRlfRnOjwXk5YVv+m3HnR/p\n0MTvT1anyQ4Qm3W/bVGfOECLts2cPj4vXfhbI8G8ItRN152eLwvMSZT+co0mvrZSybSb/rzJM5f9\nbTEeRwGLsUz4s8t7kQdGpP9v3iOWDcDS+orpH8mU3ypr0Lsn9D8NJIuAXwqjKs85lGtWbP2XY58w\nmEphxjL9GrUGADXLNPJCgvy6rHJ++3G9uKKsGdMhj2TSSxI5Hr2cXLNCppJVTpmXCjDJwWMyqedX\nJCyTr5eVcglVI/xNAo55YCeVKynPhMXEoToo/G06CLePA0DZePQ+Av7hA287d67TWpCzL4k9E3bG\nP7u+WDmvbI6Go7WHaMdaBpXuuusuvO997ws+P/bYY7Fr1672e9IxZxQHPthbDTSU+Av9p0/uw2yt\ngWNH+7Bhbao1UjUysO0RDv2y/i4vpa20+7f7Weakk0/OLg9/q7LVtl1dJQKrSiVgqKcanhYXcBZ4\n21NKqnJyeouASoc7fe6L2WjOvNIxlXRQqd5IsO1gmtmMgJDdh2wA6oVgFAa2WJMZxLiNMbCInsfe\nrrJ7rmNi1GR8fvPscq2YZHBYYt0Tc1koX8ZUamoqKeDvdZu2e7+rTCXFOeXhVeRQ1YXzXiqVMl2l\nGR4ikdVjgdaSNZnHcCGTJ7z2Cz8/q1veRjjvRNsrS0wPAyQrGv4GwLHleB+19uVG2GIByY1WPMwo\nG0cRICT31F+cKlvaS0B4f6yMLOGmtYCzoDiomiOb27Z3YlswPEU4feEJtNzghm159eUAX7yNogBd\nkc01d6jy2FRqOngjBIHaLaJdJkMJXVhbPYlqKnU58MkKf2P/b/7C93QTRsICy2HXLEmyPhaRDViM\nFWFQ1BvygNEvp4WhEYDN1+uMhRkHawAOAMk+sXYVkMjK8OX1k11S+Z7g383TegnlIvRy/DPJVBpk\ne3peLi/MNAADYoA5q5OPXZa0gB39OYMrU4RxJhNu2IdIaJaz5yV/TxV591CbeaLnrd3H7DOVqWTc\nx+KhhKWAqSSBVmuuFwVMAO2d4l932jPOzktNJXjleNv0EQf24894HBwsiTkUZ1fyOvU+AhmQmJeN\nt+gBFm9bHrQVBTvbsZZBpZ6eHhw6dCj4/PHHH8eqVava7kjHMiMHq7+7EoBK/CV546O7AQAbN6x2\nk4ceeqmpJNkK60b7stNi5QTsmX2pg3lss/0w/I2YSmH2N639ojbOtJrKbNFaEA8vUIzyLMXcgAxU\n6gBGh89ma3V3L1957DCAFGTQFqvdh2ZRqyfoqpRwWpOZJ5lxLwTjG3me6nYxNqEweBwDaToElQZ7\nusJyEVCJOzMyU1BRkyermVi3DyoRuNXbVXYsHQJ/ZmsNT4NpYraGr965DQCwcUPKvtTmhPUyH5Sp\nlZ1DkZUhNhlnKnlASA5rRtv88+/lhb+59aoAwBDE8AtKuOujcKZip6vWqbbJkjI2MZVyyYUUc52v\nmNNXVKfD0jzRGCF87LH3RFE9hNa0C4qBJiGTjD4PqjRYD7azkHe6GqRWLsCS8p0KOwwsuI8BmGbM\nde0+SudHYW7wfmfMQeqT7SQlYNfcZBjGr7f8Pc+J5SLlGlOpLsLfqC4q6kAlg6nE5wf1na/rUwqo\nVCqFDm7MOPPpcDOVirFMimUl1K4Nv+/S2Y05ffJ51NZrOc953UWBY21tt9ZLaw/sQIvIeimZK6am\nkgm8yfee32Y0zKisPxPF18vIGtzg18e+5nnMK4uZlg/CxMYDMR7jPgbgUz4Io7HdtCx+4YGGUidr\nnx/cVdkGqlIuK3sIBO3yNlrLDOjXTfPLMZVk+JuxJwL4HiYPTMvmZZEDxvAwJajSu5dFDpFyxd6N\nd6nSdAZUJcUO2uS60Y61DCr9yq/8Cj7+8Y+jViNGSQlbt27FpZdeigsvvLDtjnQss2liKvVUsU5k\nZXOTuJHgxkdTHZSNzZA3AFm4mNiAUNa3Xzx1NT79a6dhw9phxyzSmEpbmmEnrzkxFf/mDl2t3nAP\ntM9UyiaqBdjsnZjDW6/8Md735buxY2wm+DvXU0rHIzb2bIGTi4IGqGlhNctaYCp1rD2jUKrerjJO\naGYirNUTFeDY1mTIrBvtw7oRHcR8IRhn5vCw0MWYFv520qr0enKmEm0IedjdcBFQiZ1+H4qwomIm\nN+KOqTThh7+NK+L+lP0N8OnM/3LXNkzMLeDEVQN4zznrAQA7I+Fv8iUps8ppm2u6Prxevm7ZQIhf\nNtiM0sZRrC9yk2Bv1oNhmpuYkK3pt5WBaXEQhn/HZIBGNju9LpRPdz7tMDACi/y2zPEUBN5i74nw\n1F93vKwQBPVaGifqeUyCqB5CjDnDyttZ6vRxU9kYg4Jv7AuFXuQ45faGOWzbBEZzHOhWwQhZrqpc\nb9tJ8vc6cYYLL5d93s3C2nxNJX/cBNjWjD0VX2Zo22dpKvHxUL+KnEprTKrDZUVZJnHguFmOgzvN\nS8L3qaGOif99bkXCTiQYkP7fd4q5ScYD73NMqNt6ziTQGnsm6D3lmEpzuqZS0efM6qOq58cAe4+p\nJDOPGiBZ7jPuAKCwnC3GLMulP4u8n30wgs1LA1wvyuwswjiWa6tfPmy7CEDnh5Jn5UJNJX9PlPfe\nKwI4Wow3+txpKgnCQJTF7B2S2O/x4uCg9Uzk1Zn+PzYv87LNcvA0bdwfo97P+HhiiTRatZZBpb/8\ny7/E5OQkVq9ejZmZGbz+9a/HySefjKGhIfzZn/1Z+z3pmLMYU4km3BN7JrFvcg4D3RWce0KW9c1i\nKpE+0n8+dTXedXbqpPGYfm6ztTp2jKeAz2tOXA7Ad/L5JmWQvYDK5YxSbVG1v37vdjy84xD+7eHd\neNPltzhAgSwElfxxuxduzkk1kD4g3MkhW96fz1TiOiFSEK5j+Ub6N2uGe9FTrbj7qekqbW9mFjxu\nWR+OaYKo7er7PJ8W04xq12T4W3e1jGOX9QPwwSKX+U0BlWJgEc8S1G6mQ8n0sMLfDolnG0jXIFqz\nplmo6jV3bgUA/Pb5J2JtE2jU5oTFjJDZxbTsKaesTkOG/8d1D+DmpqYXdwbMU8YkW1+AUNdIC73g\nv3OGD/9bkVPYvFTR1uYg71SOfycvo5y2eetpnh5yplKU9VX2N0YWQCeFrWUYo9rPJIc5UpZ1hs4h\nb0OOWz8thlqntSGUTpJap7g/VnmbJRWOh58su7kR0bXIE/S2w1OMZ8dwFGQ/+TisuSGfxxj7iT5J\nksQMtYyLLNugUgq82eOx2DVOfqDR8JhA0uHsbgK2dWNP5TmTzS9xjSauC8kBAW1+WcbfE4cdVIqx\nMrxTf7hydlKF7DPak/J7FIYE6XONfy8GCKhziMajPGdyLUrHFr5XCoPWbayXVDZjO+dkfzPq9J4J\nBvrlr9Ux5x1eH6movmZlZeOAeTHApqiYOP+MazLq4/HnpdVP+T6Jh2zBGw8v74dQirYjQEj2nvD3\nd1zipML8PcmSzQcci7Stz3ViKklQKb4Gpz+9AwAF/dBYRUAIDlp9jIJFjSTYA3ptizXL2ru1Evat\nsfe08UiAeTGEi5bVZEdGRnDDDTfgJz/5CR544AFMTk7i1a9+NTZu3Nh2JzrmG6VBHegJNZVoUtJG\nYeVQj5chTp4qkx2cTkElHpZDVEbJVNp2YBpJkmoavXxdGrrEHToqXy75KSaBVFdJZgHi9m8P73b/\nn5hbwMM7DmH98n73WQgq+dTvmJMkQ+WmFZ0WIGMqxbTEe6plB0iNzcyjr7vPLtyxwCjz2zHDKUi0\ncrAb4zM17J2cwynHDHllSU/puNF+rBl+4YJKe5gO1FJtvGmjt3qoB3sm5rBioBujLvxtPijHN4RF\nwt84oNxuxj15okLhb1Ko2wmBMuCL9I/GZ2qe80PMyNeetMKBY/un5jG3UHehc37b/noQZhdLP+en\nUx956wbsOjSDnz65H3/175vx+p9b5b1MQ+aKDxZZJ15W+JvrQ/Pv/Hv1JL7hMEMvZB8LnsLydiRb\nKO+U0ZVjlfZ2peu0BioV29jr1zLMPEflwjq18Le4xgHVCbVsEIIg7p86noDxoDsVhU6gFYdTG5cU\n0s1jFi00T/LjLIbMSYo6hwVPoMOsR/r95p/lsdiKnvrzvscAoKpyvbOyoo/sg7xrxNkWfFtG+7Z6\nPUFtIfuD1HDh2kua8WWGrpkl1M2vEXW1SPY3vkd8PplKmhi/Mn0DtgN9h9cBRBxYlVWUOWhAdn94\nN6UuCpCJo2tOn/aMayCq7Kc1L833RMzhbNZF79+BIPyt2S9xsGutl9Ru7Fp6AFASfk4WHJI0InWy\nNaZcAGAI1kuTVeSXjwE7EjgO9gZB23o/JRulyDORx7C0WMzxAw2fhcnD3zhTSYJf4QFN+rOInpO5\nh2n2v9/M/lbkfRYHn3wNouxzGxxs5T0eZ0JKBrX9Lk1/FgsJbZbNG0/ARgz7V9TaTlF0/vnn4/zz\nz2+/5Y6ZRjog/d0V/NwxQ3jLK9fg+w+lIugy9EJutDQKN5A6ZECW+QyAU/KXmxUKffvZlQPOyd83\nOZ9mpKuWnSNaVVb2SrkE1PX4/z0Tsy5b3XHL+rD94EyAiDpQqb8JKsmHl8ZdYBNOIXqVcsktEl2V\nEoaaL80YGsuv39h0zbElOlbMCBQgUGnVUA+e2jsVZSqtX96HY4ZTlssLUaibi+EvVWglsQLfcOpq\n7BifxetOWYmxppbSuBL+xkElpxk0YzOQ+Ik2z/bYiknNE4upRM9Ul1g3BrorGJ+peSAwZyQu6+9C\nd7WM+YUG9hya80BoS0clAJWU9XL5QDd+/w2n4KdP7nfXLx5S4a+tecweOQck04VfhrwQmhDQ0scd\nAkA2wBCwa9w1l+WMjT2rs9cxlRjjIsJGaT3Eqch4sn7WI86HFVIXgBYSACp0yijHozsVxU444bWb\nlvf7lpYT9yf35DLJZXPxk+q4YwrRtl6nzWII67SyTeWFAVjsMP4Zd5Ks53vBu97x+0jtxthc3kk1\nWxMyplI8/K3bSL4i+8j/74W/KUylUikESWKmMakOlxVhMeTNXwk4Atm7Qs2qVsR5Nxxjjfnk3xO7\nTk38m7bOnqC4XIMNENMCQmJZCaku0jTsFoi9DK+ywBXOfkjXjWY7Oet/jKkk2RtUMsp+aiSub9G5\nUTAjVkusX6bZk5b1y0nmrXUf7VBL+1ryx1JbM8O2/b7740GzTiZsXRZMpQoHlfx2c/WpCoGdiZfc\ngD7vNZhKrTLjYtpYIYPO6qPfdtF3T5E1K+9d2srBYRj+5peTc6PIQYNlhUClK6+8Eu9973vR29uL\nK6+8Mlp2cHAQr3jFK3Duuee23amXuk3TiUF3FZVyCX/7X8/CZ/7tMVz1w6eCF4B00PjLJ0kSN1lI\nU4lYBOl3S15dZM/sz0Cl5QPd6K6k7KM9E7M4blm/CWgBdvgdANzwyG4kCXD6cSPo665g+8EZU1Cc\nWBY0PCnUrTtePquJQKX+7gqSJN1cjfR1mUwCbrxfY9PtMTheykbhkmtGiKlEQEMIXGwnptKyfgdC\nvRA1lThgtnRMpXTurRzswacuPA0A8IUfPw1Az/7GWUCtMpUOtgkq1dmmAwBWDRIw6N9Dy9HvF6Fq\nAAMkyiWUSiWsGe7F1gPT2HVo1gOVLAdEUqStEKdgs+6JS+dt9JqfGye2AVNJrJtSONkCqXhfAmaP\nQcsupJsgnAUrLEiyhbTwN8dUWlCYSqpDU2zDLscTD+fI2o2dRganjMbcsFkMtnPYEIwqa77lZXEC\nQsZOWj689nb4m+FI1vOBHT7fqPlY+E52wqm/n20WQ8zRTlwftPGEwvlJ0JYcT8zZ1TLnWteIQgmT\nRAJv8XnJN/ZOfqAuhbr9ZyLTXrKyv7H+Nr/EmU+Tc/yZpD61lv2NHzy2m4SlqGVrQfg37pwWueaa\neLEKKhUBrQuAK7oOWmTPqtyDWOgSFcsDWhcT/pyfedT/XNZH/StyAMCfnbRt2cesPv4z5rync6Ok\n1sf7U1SDrpW2+Xtcr5PapvL+98k4eJrXtlwvrTFZrN88FhtfM0Kmkt9P633W8jsKaGYeDevo7073\ni4FQN+3HcvYbsQMA/pw1lLbJQr1Fvx2t7cLvXJlt0JJXyLnmvO16o5i0Q7YnCvtX1AqBSpdffjku\nuugi9Pb24vLLL4+WnZubw549e3DJJZfgM5/5TPs9ewnbVPNh4TRUuRFeUF6QgM8eqjcSVCsl1BuJ\nc0A5U4mflHHb0sz8dsKKfpRKJawe7sH2gzPYfSgFlTKmkrLJdBuzbFbO1ur4yNcfwrfufw4A8MZX\nrMFtT+1Px5MDKtF4gtTTEUCLyhBLgeiSk3MLGO7rMoV0ufEFenymPWf7pWw7m5pcq4dSgGFV86fG\nVNp2gDOViBk3h1q94YVXXnPHVuwan8GH3viyw9r3dm3PhC74vBgjsGgoR4CbGE1cBJueoUPR7G+M\nqTTdLlMp/Ulr1MvWpOGNj+2awLYD0w4EssBoWue4ppIUK10z0gSVhFi3RbGXotqF2ShsTbDAIglG\nBJtraltMARnyw1/sC42ck/cWTwQd+yjC2JGn5NbmxNxAsXIUkjhXMPyN1mB5WBCEHBYE03jZ3BNB\n48TWEigvwoQJWAwKKwLgc6N5LQtof/gn0OnPaFhDwbFHAS3VeQ/7WFTDi7MYOMskxjgOwhNFBywA\nVQ/TQ+54pEPutW1cSzrRjokxc+CNvxYcWNRIBBOIfqb/6TIY5WR8flA1PlOp1iznO7vamCzzQK/D\nDirlz9+6l+ErrCOWVY3PudB59z/32hasGfVZVIDg2Hg0/T3tAKSoyLJcC+LsPb/t/HdkfDwhcIxg\nHFmdcP3zmD3Q2y7ErlGAqjyQ16/TL2ezae15mSTyOZN1olkuXmdF1EdVqlqyij+j1RuCogjKkLkD\nlYYIf/MA2bLCQNLHLddqRNZLH9AK92N93WGoPe+DTjjQ3mdxQCsGdhZlnIXjoXa0+6jXaQKTjSJt\nw5WJg7f6frkdKyTUvWXLFqxYscL9P/Zvx44d+P73v4+rr7667U691I2YSv0sM5IVelGVVFX2O23Y\nx2dqbgEZ7WfZ2ppl5QnYln2TAFKmEgAXArdrfK7ZdiNoy9WpMJU+9f3HcN0921GrJzjnhOX4r+f+\njHuo8phKUqi70IajWYaQ7IHuqnNcR/q6TCFdsiRJfAYHYyodmJrHwzvG1e91LLUndk/ghkdS7SzS\n5LJCohbqDcdKOm5ZP1YMdKOrUkKS+GXrjQR/8q2HceVNT2Lrfl/c/WgxDpgtYk327JADlbLnljSV\nOINODX9rlpuYWzBBLu4stMtUkmDJutE+vPak9H1x3T3bXTmLCTPQBH2n5rn2h7/pyNYgg/2UBwBZ\nm7eACh958Qpn12RQiI2j7Cu9/PkGLT2V0zf1vM4MXPfH6coZ4FORkC0L9LM2MXxjRIkNeGKEQuFv\nEqAzNvZ0KYuFv4Whhvp44I/HPF0t4NCIDXtundR2jHmlsB40x086h5mzEFTpzY+YU86dgCj4VPQ5\n4w5nTspvzjjg4zKdvmb/rOeRt8Ofs4CpRJlzVZZJfOwxBp0HvGmgksj+lgGOqRGoZK3hHqjU/MXX\nVKo3+8n6hEyLqIgDMR8R6r7xkd249GsPBE5eu2YdFAC+kxR3iv25AYSMWiB03lthP6lsEGVv6S6v\n+pz5e1Zev8eoEkCIqQNU8HlM2/br1EC3tB80jmLAAZWJvns8cNsGYeRhSiEdLQ7yRgEGv848dk1s\nvvnZxcI6tD76betjofZj66UEdgD27uXviUCLJx8IqSeJt2+pstOcapNFztuzriWfUzykLU9Anj8X\ndDBB4W8BU6kAi7meMzf4PU8irHX5Hi8ael00SxyvezEMuooxLyV4G4a4hnUVtZazvxWx888/Hx/9\n6EcPR9UvCZtiYAiZ3EDZTKXsd5roB6ZSZ3e4t+oxP7oq2aaG2zNNphKBSpSRi5z/GFOpKkLQfvrk\nPlx96zMAgL/7b2fhX993Hkb6uzJRTLFBkRmiKKStLoS6Y6F3NG7SaOnrrrhrWST8TX7MnfdL/uU+\nvPXKn+Db9+9Qv/tSt0YjwWXXP4haPcHGDatx3okpuEAhUZKptHN8FvVGgu5qGasGe1Aulxybbj8L\nlds7Mec2ysSCWip7fPcE/u7mpzC3YG+KG40E2w9Oe5traVxTKcaC0+y7D+zET5/cF3yuZXUj4Ihr\nEMXC39K/62wl/uzvXySoxDe4lGHya5u2Z0CIAZoMOP2j9Pp7J3PNl93aET0s0troyWfc0l6SawYH\nI3Kzbrg12CumMh54X7Xwt3ojYU4xApPjsTYnYUppqOV4O/L+mMCbcD54P3WxUN1J0crbbBR5H0PH\n0NXJNsJFALpczR4jA48aXmUw4wIgpAWnT24e0//7fwNCBzrqLLDrHgWLlFP/GOMg79RfhsYUYVDk\nibhbDprGYtNOi0OWX/pTZyqFdXLgLTbXrdPiLjrUazS8cDUZXtXtGOUthL8pmkq8XLlUUoEXyzhI\nJde13/6nu/Evd2/D/7rl6fyKClh8zeJOUsyZCvuqrdeW8x5nDsq1lZUR6wDVa41HHgL49TJAwAC4\n83SA5DvHazsAZf0x2HXGQRgqW4ThyMFBtU5xmFKIldGIs36LatBZ61BsHZRaPLJsECZtZdLjB05J\nPGRL0+XSrr19SKKNh+Y6vL2Yz1QqFb5G9nMWXy+1uUHhb7ZQd2TdaNjP7NjtTwAAIABJREFUjlcu\nkRpEOrATAq15dfrf98oFe6Kc/ZjcO+W0HQNvJcB82JlK0qampvC9730Pn//853HllVd6/wCgr68P\nH/zgB3PrueWWW/C2t70N69atQ6lUwje+8Q3v70mS4GMf+xjWrl2Lvr4+bNy4EU888YRXZnZ2Fu9/\n//uxYsUKDA4O4sILL8Tu3bu9MgcOHMBFF12E4eFhjI6O4uKLL8bk5GQ7Qz8iJsO2AMUBaK5GEtjh\nLw8Cfw5MpQ7liqZjT0bf5RuGmfm6c9xOWNEElYZSh24PgUr12IbdfzD++fZnAQDvOWc93vSKNWw8\ntKHyJ2/AVBKLlsVMAHjoHYFKnKmUXsvRvi6VGn1gat4BBgti8zbGwt8o9fjv/+97AyZCx4An907i\n7mcPoqdaxsff/kq3cK8cagJFUz6olGV+63OLqnYyu4MBSbuVELrF2J9/71F88vuP4cZH9phlfv+r\n9+L8v/ghXvbH3zc3z+1qKj2zbwrvv+YeXPyPdwUZC7XwNw0UdeATYyp1VcpuDaHn6qHnxvHzn7oJ\n37g3DUVdCqaSBti86RVrMNRTxfaDM06cn9YuuWYRU4nGzsdF6wmNn2cyAjhzw++TdCqscnJTJMEs\nr6wBQFkvfTkHJGjEU7yn2d+yz4O2zXXQL+fpNDWKxfDLU2Arhj8WehEDlbS2baAqfi2jGygvxMku\nVxSo8k4t2ampOp6CTl+4eaO2lDrFNaKxyXFZ6YDzTk2LzQ12LZUK7QxJunMIEOgHtRwQOrt5IJA8\n2S0aBpC3FvC687O6RQAOD9DK6ubhb354mf/TZYkzD8HC/vJQOQqN9pzdcugYxazGmUpGeXqXL9YK\nhZI0ctYCAQABnAGU3Xg+p/OAVsvp46f+ulB3ZG4oh6vae8XKnmgfAPjl4tcy8X7mHZJY64bMiFjk\nGedhjFqd7bBFGwm7njlrYKzOcnD4ULBtdn1C0E+2bYEw2f99gE65lsq6pV17a27ksdj4/OV7t2q5\nZLLYrDDGbDzhOLO2+buH7QWbn2fRML6fVgQkywOjrQOAogy6PPZToefR1RlvO9uz0jpkt10XAvJ5\nrLwjCirde++9OPnkk/Ge97wHH/jAB/CJT3wCf/AHf4APf/jDuOKKK1qqa2pqCqeffjquuuoq9e+f\n/vSnceWVV+Lzn/887rjjDgwMDOBNb3oTZmez0+pLLrkE3/72t3Httdfi5ptvxo4dO/DOd77Tq+ei\niy7Cww8/jBtuuAHf+c53cMstt+C9731vq0M/YkbOFXcQpRaDxVSqiIcXyLI6LWOhb0CW/Y2zFUik\ne6SvC8sGUiCAABmiN8eyv7mQumYZYl39Hz+73C8nxkNGrCAp1B2it0HTbuzUNoFKfd0Vdy01ptK+\nyTmc98n/wMX/eJf3Odk4Yypx5/6Hm20Q4qVqdM1XDvZg3WiWMa+3qbkimT4k3L16OAM83T1nc2Pn\nWPbM7x5fWhHvbQfSzfD2yKb40R2HAKQL/b/cvU0twzWOWlmUNz2bgi6ztQbuePqA97cJp5WUzTst\nw6MGPvHf6e8f+fqDeG5sBn/wL/cB8J2Pqfl6WyEMWkhOX3cFG5qhj5TJzwJh+gVTid93eladCL8B\n1BRlFeWf+kQ2b0YqV2sNlnNADZfwnKTE+0yrk6rM2GH2+u+fjNmbGAlUWYwQeVLth2dozhTUPmp1\nmmwh4fgWYRLknZJboEWcsm/fbwAeq4k7ssHcEEyGeKarbG6QaU5IkDWmYNhhodPiRh5lv5jDyb+b\nNPQ1Q5ZtNBLP2ZZliwp6y8+s+60KdRdhVDWKh3Nk5bIkK0miC9zTz26DUS7HA2ThKnwMFFbMlyPO\nVCryquLvCQvcirF4W7Eip/n8OVNBUYUx5PbMrLxMltCK0xd7FouGULpDBZVRlZUvi3LWNQoPn4s5\n0H5Zfc1y756csBzqXzFA1n8mLOZVxkYM29LKxt57wXgsgK7gO4p/NxdMKwiS+QBdDmihhNvrTCX/\nbzEdOIvZKUXuLZZsMC+9zIDxdwp/P/PngorKdyhZkTp9QCvyzk1EuJi1Jwr2JZHxFN2XiPdZXoZH\nLdQx6yfYeMJrmdWZleN1t2Mtg0qXXHIJ3va2t+HgwYPo6+vD7bffjmeffRZnnXUWPvvZz7ZU11ve\n8hZ84hOfwDve8Y7gb0mS4IorrsBHP/pRvP3tb8dpp52Gf/qnf8KOHTsco2l8fBxf/OIX8Vd/9Vd4\nwxvegLPOOgtf+tKXcOutt+L2228HADz66KP4wQ9+gC984Qs499xzcf755+Nzn/scvvrVr2LHDjuE\naW5uDocOHfL+HSkj56qfgUqZ85HebdpgdIljhXI5U+QnJPdgU4B3+UC3V7ab0a/JntmXZX4jI/Co\n5l5UTU2lCFOJdJqssu4hZytDrd7As029nPXL+r223cJuCKB6dTYLETg30FPxNZXcgpB+b9uBacwt\nNLB510TzevhPFA9/40Ln19yxNejDS91MXRaDvUEnoN3VjJWnaVvwkDeZVWyxRmFreyIMKD4nnto7\n6WUqy8rYIQIxu2/bmPs/MeHIKGyNayq5ec5eEtQfCSrJaylfPDXxZs7LdKjpkFkvygzkbXjflXOD\nAF9yfrQMbF2G/ptbD4wXb+BwBusQmn30N9aao1IUqLLmurZ28cOC6Ka1IGNHMkKsa84/C7K/GWu1\ndD50Z4qNt+AmL+1D8/OCm7e8kLoYo9XaXFtaUtS+db+9fjZk9h+9j3kn1UDm/HrMGcWhK6prwcvm\nsjIUp0LfCPttWg5nRV5L5kgGbXsOQORaWkCrUqd38m49t8KJ5HXnzaMoQKcAjuVSydOk5PogcmPf\nVQ33adx8LZUkWNOJqeSDSuFzEDMtO11YZhGeCLMiYCefQ0VEb/n/NbCG/h5nO/j1JEr7MdaI+oyX\n7X7yPsi1Ol8HSIIw8Wec97loMgtZJ3d+89koWblCAEOQEct+zupJEk2AEKRPN/opAZNYSLVbX3KA\ngzDk1ABhzPUy/u4h08qHBwCROtmalR1gNXWVmp1Ns7+Jto1n0jtUSOLvPX9dDevQnhn+u1YnX/+L\nHJI0ktaAvPjhHW/bLsf7yH9a7z2noYjIHsIDb7Ny+eBt+2t5y6DSfffdhz/8wz9EuVxGpVLB3Nwc\n1q9fj09/+tP48Ic/3HZHpG3ZsgW7du3Cxo0b3WcjIyM499xzcdtttwEANm3ahFqt5pU59dRTcfzx\nx7syt912G0ZHR3H22We7Mhs3bkS5XMYdd9xhtv/JT34SIyMj7t/69euXbGx55sAQFv4mHySLqQSE\njmTGVPJBJWIq8c3AliZT6YQVWdpu2tQQAECAlq6pJJw5i1HlnKnss6f2TmK+3sBQTxXHLUtZLpK1\nUsxRSX8ncK6vq4rzT16Jge4KXnPSCpOdQGGAdbE54uFvfOGOpWqXZqUDfrGZdQKtsWuAbKPcFTmV\nA4AdnKmUE/42Nj2Pa+/eFoRKaTYzX3csnhioJB2Nh58Lxdr50FpB+u/froNKSZKoAtzu+WbzlBhG\nPQycAxjI2+zQcrEGSEflQCQE7m9/9BRO+5//jjue3u99bjnwdPIfnISKuUEhenS/+IZcUp5lpso8\nYUiZ1cfUZRHgRpHwBxOEKYVr2//P3ptGW3ZUZ4LfufcNOU8SylQKCZJZCBsL6AZhXLYxtcD2osFQ\nplXGNmAGF+MSWguMbQSUkFHZqwABLXBjuzFmqjaNbcp2tVzVArqXAQECxCBGgWYplakh58z33r3n\n9I9zImLvHXvviPvyJfZCxFpa9+lm3BjOiWHvL779BW2LzlTyDcfsdrE4z0QbKSOjtQ2Tvh6wflh9\nt4xRrR/Vtx4JI8ZknIk13X9Gqcw6Z4q/R+v0LuS12GG8TD73y+EP5XbqJ9DKGBJlesBo1/nOrhYu\noBHspdCw7XCmv9uuHvSrOS2WzqHLfnIcGu0wwweL6DPibdfqZowmJKYSwPVBpBO7MO7XxyqmUsvl\nDICyplLNVkXLtNqxtEZMpdpbnGYRvQV0WzQPy6lfszQwQjKF+vz9Z2nNiu1Q1pnZdYDA8pWYPbTN\n+R4Jte7S+6l5ltPi3OH98EF4OjZ4H2v6Y96kGvd7qPloPZLZU+6PnpczK2dj3gLU1rD7UxP10Skg\nfLDrxuOR+X5qQTJ3f2511q8kLoTklckYut7BIT0AUNqetVHOM/eW3dnCGDXQmtYhbVv/EKkSYA7g\nbd6N6jQzqDQ/P4/R0KszzjgDt9zSszW2bt2KW2/Vw0JWk/bu3QsA2LlzJ/t+586d8d/27t2LhYUF\nbNu2zc1zxhlnsH+fm5vDjh07Yh4t/f7v/z4OHjwY/1vLvpXSkaiplBzJRmwWlqYSQCddnzk4ijs2\nSVBpcNTI5NSYSvMi9CQsxvLmub5uPa/cqBLIkOr+9p09G+xRZ25OYS/ECG5bImarjFxZ5nHCVPr1\nJ5yNb7zl6XjyQ083RXyXVoKmEp9Sh47nt1IB9XTvz3x3H8578z/hr7/0oxtD/1LJolvL8M2QAqBJ\nx5KmM8CYSoXwtxd/8Fq87v/6Ot79qe+7+QBg3+FU1j6HARX6ddYQ0vcNDVSihmQlqnRiZRrHfdMA\nN959FDcPwO7SpI3Ph2sq9Z90nJbA2zButwlQaXnC2xlYjTJ9+rv78MdXfQdHlia4+js87NNy5sJG\nFdahsHbJtSCI6EdQiTI9hr6OxzmQ1pepGwiZAWWMy+hIZmBNedOPJ7sFYzQkzfDgtGy77jB/ZBiY\nZQiH9tWccGYn1RawI5xdmk/rc2KtZFWbwtbWGMrYVEqZ9BS4xpnKwhg9w77169Yo7lpeM+xPC0FQ\n2F+uIzvTwUuJGZfKrHE+EpMgbx/QvxvqcLtC6iqgpbFfEfsS8oe6ZArfeKExsrw+f2h/VqR+qu0A\nWl3H3w3d846v5Eyl0Ip4qGccTHWg7e2Y/hGgg0q0T2vHVFrb8DfvJj2uqZSXIUNC6d8WqETfo/a+\n7VAfUp5yeFbDXGEMT4V9m9/qmbef9q2KQSFCXmw2r17mWtyyReeEe3OirNsBuEu3S9o3pFr5yiAM\nA8KdfcIEIwwgr+9PPQgTkra+5nXbZWrzLB3wjYbPhowNXmYeskX6U9hTaHiXxvrVxO1DuVaZXNcu\nlFe/Vuf5eJ0eYMMvvei/0wEt+SwNX4odDM2uEVUFMFfsCVaaGVQ6//zz8aUv9dozP//zP483velN\n+MhHPoKLLroIj3nMY1bdkH9taXFxEVu2bGH//ahSFJheJEwlYpABJaYS39iCAK9kKUSwiIFKffjZ\nHgoqDZWH06pUdz585oUugSmCqhjM376zDz8798z0rKluUykEQbIygp5TAOckUJX0qfpGhNu/MoFd\nxXnv89cZUZ+94W4sTVp86js/fhpM9x1dxpduupeEP+jjUjofIYWxR9+zpp9zx0HKVPJBpaBR9N+v\nv8vNByS9HyC/mY6mMFZ+5pwewNZAJXYtcOWifP0dh7Ay7XD6poWoO/a5H/RMoEND6FvT8JsgtRP1\nCPRmTjn/d6qrdnRpUsVUWp60eN3Hv2b2wWQqCcPeGhvx9rdhvjIdlaHM+Ti39dMpO9wy5LPWId4H\nN/zNAKoytpDiWFinp9QIr9Vv6ese2rQWJ5zZWi3zgedTHC/fmbIN++xUThr24lSu5lY3Fv7mHLrk\nxpv/LD3DkTrodOpbZYY84VNzkjS2heYsmc6CemqayvEcL35arPeF182N0frT/LyN1KmoAehCFl8/\nhhviWj6XqeSARRSg8/vD89G1+pjCVAp5F5SLK2iiS+K07bIwtGPLU+aYhrbL02kvUcDo1GsqlZ0k\nfsuW927Sd+Fwg7H8SCW9htdQompf8vZp71xjjfjhXbxM+re2T5SA4/C/NTpjDZnj9NMMJa84eGHA\nvsfsUcBt5XVXA0D0uzL7KawFfC81n6XYe0pghLteZrfZ6e3kWl91dfMwaXufqOtPqDtf2yJTadTA\nYtB5e2lXZM3QutP3oS7rIpRYpjouEX9TB/L6IdrZ3HH3vdA+n6lksxF1X6rPUwtolQ4YQxuHck9i\nKZ8ZVHrb296GM888EwDwR3/0R9i+fTte/vKXY//+/Xj/+9+/+paItGtXf1OYvMntrrvuiv+2a9cu\nLC8v48CBA26effu4Mz+ZTHDvvffGPP9Sqes6vPKjX8HvfuhaRvMLJ/YbqaaScNCSE5m/wrEQy753\nYB9sF5pK8/Gq2lR3CH978GlEUynkmwSdJN2Bpe3MWE0ir8ZU+tYghvxoAioxjRAy0T1NjTDRA0i0\nODcS+cDyxdtWuh7kkCdu9CpfxlSqPJkLwMXN967N7Sj/GtK07fDGv/sGzn/r/8Cv/+nn8V+/1uuT\nlW7EkqBAFH1nTCWwsgDgzgNcU8mK+b3nSAKGHrlzc7EfVJ+pJvzt/LMHUOk2DipR0ADgwIiXgp7S\nYx+4LYZ8HhrCKkNY3qbFOa7boLC+rFNG6SitJyG19xxZzsa6xlS6+8hSFFQH8hvYrLpHci0wxobU\nS2Lhb0MZWqguABNktsKrTFaROAn1w9/g9scTrZZtqBWQzMPALOMt/V1ihNSettWFv/Gy6N+enpME\ntEpXZHuGkWZAzRb+IPJJfapKkMxj12RaUhV6CLrDSdvJ89WJoNaKuBfEcQ1H2zuBDmLSxbpbqU9l\nPEsxfl0h9dZ+j9q+4/ZdcX5K443OMSp8y8LfxFjX7DSa5PgIazp9DkeXJ2zPHDW6E2+lZXb7m5Fn\njZlK3jwrndBLdg1A9gDG3qD1Vp7my7WocPtb+Et73hrDUwP38zmet5+VN/y7J8YsAZuippIIQXYZ\nIQXnne4XNSBMl/XbXtvKznv/WQJXpJ6TNy61G8tqQHir7lyfytsnQvtye4Oz6MDqdIFwdgDA28g1\nlXjdXZwTenkAP0ArH2jkY9IClVx22oiWmbcp1Z3KcgkMM4CdlG3n3xLKyyrphQJybDjjsvUPLa0w\n9tWkmUGlJzzhCfjFX/xFAH3421VXXYVDhw7hy1/+Mh772MeuuiEy7dmzB7t27cLVV18dvzt06BC+\n8IUv4IILLgAAPP7xj8f8/DzL893vfhe33HJLzHPBBRfgwIED+PKXvxzzfOpTn0LbtnjiE5+4Zu1d\nTbrx7qP4x6/fiX+6/q4YYtV1XWIqLdjXiAfnqoapdK/BVJoTztyRpUlka9Dwt3j7yFBeHUuKO4gl\nh7PruhgGZDKVKk+gJaA1L8L0JGJPjcilSVvNVKo9mQvAxS33HD0pATSgPzF8y3+9Hp+87vaTKudk\n08e+eAs+fE0SKt8XbvgyxoZ1Y0MMf1OYSmERXJ602E/AohMrLQ6d0PWSvnTTfVmdXqJA0pGlSdQz\nkyn062cGUOmHdx+NTCL67/H/K99zAJV+5uxtGXvj2FK+DgBkjtEbeQydM0sHCAD2H1nKQBqNqST7\nJkEl++RfBw4ks0fOW2rsNMKQsQyJjMUg8rfGuiFvjKwNy+k/h7qyTR9ZWy3neExAP29to6ddtLyc\nVcQNDgusoe3IwvmMuSuBA1VwnPTTO+mzrue2w9/A8ntOHxd/teuWBzSeUHfXUhAxL5Oyn+jcl32X\nDo13U5t0QEL5tA+0PTWaJ9RB7OJ3Xn/qGE2ZLpcHYhbeD3WS6HS3mAQ1LCkeGgk139hjKrlObN0z\n77ocDAjrmhr+NnwuzPlMJXaY0XUR3Nm4MI71HFueZgw6bXxZaZnd/qbbPWvFVKoX0oWZrxFzAkh7\nAN0jm6Zhc7IOOOBglQbwamOoNC5T/v5TC12ShwqmzpjY92r0fULZ1h5ZEgmXZdYc0HBQKcuWsTe8\ndUN7Py44GAGB8HsrX26X5GWmsmrBmlKZbA2u2SfUdYuUV3E4JMvUGNbBVh+PGueyBDku0998bGRV\ns/foaUNJG7suvKvEKrLXar288rOsDr2rPBya5VlSfc8aQFaCg6tJc+Uspy4dOXIEN9xwQ/z/G2+8\nEddddx127NiBc845BxdddBEuu+wyPPzhD8eePXtwySWXYPfu3Xj2s58NoNdxevGLX4yLL74YO3bs\nwJYtW/DqV78aF1xwAZ70pCcBAM4991w84xnPwEtf+lL86Z/+KVZWVvCqV70KF154IXbv3v0v0u+Q\nvjPcNgakU57laRsdnA0k/E0O4qippOoaBUcpgUUAsEncDJUYAn2ZQU9px8YFbF2fwmRkTH+NnlNw\nVi1Rb+lw7ju8hHuOLmPUAI/clRgm8rTYR3r5M4p0Z8tJEhsv0BtGUlOJClPSf6rVEAjAxdHlKe45\nuozTNy1W/U5Ln/rOPvzl527CP3x9Ac/6mbNWXc5q08FjK7hh/xH85//+XfZ9iRqtMdOABGhS4C/8\nGd5Dz0zqjev182McPL6Cuw6dYGM0pGtvujf+TUEfK0kdpX2HlvDg0/NlMWzEp29axAO3r8dt9x3H\nN28/iCc/9HQAfFz0/1+3Kn8tgErnbMMdg25UAIgmxhyXIAzgMcT4v9ON+O4jS1W3v8n5cGRpyv7f\n0k3LwKIC4Oid0Gj6b/1v+k9bLNvf9JNWUXCgQz5kyQKqrFBPTbS6L4fkJQBUjSFc6k9wkrquwoiR\nJ9XGyVxmjCrAjtZnj42Sn8rpfc+YPQ7op4VX1Z0W63k5zZywZJW62a1qyu2Fsj/ytNhn7KTvVGeB\njOE+D28TLzOV4+vHpHwpBCzPV6sDAfD9ufb9WM47LS/MXR9wVPpjlKcDAlqZKX/NzYAai2Fu1GAJ\nYIcZ0oml4W9d12XvtRVzLqyRC3NjzK20WJ72B2XtKOXrAfv891aiOk0WuLV2mkrOMyfrZc1Yo+vR\nxFnfJoPjXgN2UsaZLE+9sbHC4SxdcFCr72PtExqz32LN5MyIoU/KoY9dZmXIVlvHAM0BIHtt6+ej\nna92DZ5FEJnP8XI+GXpn9Wc61O8daOjh9nkbMk0wZ71MawNlEfffRfb4aMQYWrRe2R1ulxSYV8qz\npM+H2gR0Pax57sXQyBGt2x6Xcu2suSmuZYd8Sr4IDoayoebloZElZhxi+2rySbBzNakKVHrc4x6H\nq6++Gtu3b8f555+vToCQvvKVr1RXfu2110bWEwBcfPHFAIAXvOAF+Mu//Eu8/vWvx9GjR/Gyl70M\nBw4cwFOe8hRcddVVWLduXfzNO9/5ToxGIzz3uc/F0tISnv70p+O9730vq+cjH/kIXvWqV+GXfumX\nYt53v/vd1e08VSmEewEJVDpKHLYN81RTiS8cMWxIZQvxky2LsRPyhbpviqFvG9R8wWiY5ea51tqo\nhv8PZQWA7SEP2IR1Sr8BcKFubbMQIJmpMyOQbuo0l5hKEoAqpa7rWIjVLfceK4JKH7/2VvzRf/s2\nnv0zZ+FVT30Yy/+5G+4GANx9ZBn3Hl3GDhHSeCrT8eUpfvHtn4lslkfs3ITzdm/F33719gwQsJx3\n+Wz18LewuPb/duegp3Tm1nVYN5dApUco4W1fIqDSkYrb3+6SoNLhJcbSC4myGX76gVtx233H8Y3b\nKKjE+1UTk3zPkSXcMoRE/vQDt+Gfru8vDpCMwHlB7dHov8GezwEoLnBNx+/dR5aym3y0zUQCgdQB\nYkCMARaV9B3kxQIau9FkKlmOgtQBMgwoujaUmD2ZUHebt5P2Rzs5pP9OyywZo/JZeqFlo6aJYVi1\nISLaLSuxPLFeaid9Wp9dAEgCjkbf5eldzTOixpt/3ThY2TIvraKs5zfkI06Sllfu4/5pKG9faEff\nNs1Z8J0k+h0NT/EZSCVjnbfLd/rSc/f2cSv8zWOS1QKJ3s1Q2rrqnyyHPHV6FTQ0MmTrw3qnOLFC\nQ+yHz+GreRK+P2m7zI7joBKwMly+sDAewuumYVym31CGTo3/wIS6jb1tzTSVKtl7NWON9s1nQ3Yz\nlGnPcW/t99ZgNfyNlJtp8RhghFwzXPbGKM1HVq9xo2gVu3KkvR+lbnYAUONoz7C2FUCL8F3G2DH6\nHUDrGvZrMd8s7yeOy0JIs9jPALpPkHzyML1mDSbPMvx+nmgq5eu/X+Y0A2/t9bLtyMGdArCGPGE5\nrLk1shaEqdfJS/n7vHXjsvTMQ34tr9z3asZlsT8S7DzVoNKznvUsLC4uxr89UGmW9Au/8AtuOFDT\nNLj00ktx6aWXmnnWrVuHK6+8EldeeaWZZ8eOHfjoRz96Um09FembdyRdlrAhh9CSdfOjqCMCKIM4\nhr8pmkrCYJ8YeSVT6Y5Bt+bsHRtEPq5nEsEalyXF85rMleH9Bx2Z08UNdfR3k9Z3vKTjaQmKJ8Me\nLD8QmEq67g9tb8hbSn1IVQIKb7nnGB53znb3N1d9cy8OHFvBX37uJlzzw3tw1UX/Jv7bZ3+QrnO/\nYd8R/M97dhTbsFbphn1HcO/RZYxHDR502gb8p+f+NP7PL/Y32kkRX1OoW0z3yMZh4W98DIWb387c\nug7z4xG+e9dhJrAd0omVKb5JgNrDRogcTVJH6fo7DuLwiRU89VFnZHHtoW0/ddY2/Ldv7MXXiVi3\nB0Ra6Wu39SylhzxgI7aun4/PQDLtSnOnr2/Q0cicWLC89DD57sPL7DIAWjdNMkSOhr/R7CUnrSji\n3ol8pLwIbEtQyTqxrQRhWHw6NaAc4CAb6xaAyt6P7oTQdtY42qHI0in9FF2m4SITNa55+3g+ySoN\nWfXwt/Q7z6nIqfiWAQX271VgRMGwl06FBTiGG8uC42OBT7Tu3OHMy+z7w/tV0oEISXPoRqI/HlBF\nNVc855DOychoyovL2A6u0awYuB77iQJFgOJAC0DYYlrwdhIgugCCU9u01Hdv3VAZdMJBo0k6fYvE\nDpxMO8yPRf6O/t1hedrbG/Nzo+xUv29P3q5SoqCStI9CWjtNpZKjLeejkk89eLH2ABDgraZuMS4V\n7SONNeIBHHTN0PYq6XBa69tswAFYW0u6g/ne4wACre9A073UOpTqv+N1unsKaWd4mnVMVb2dEryo\ne5YlIFquMRXtbOtAa3UMKftE/izt566B8Imp1JDxyz8tDa+pAG8DKizjAAAgAElEQVRdYNKYj3Ld\nlzpi7jOi66C2bjhrtVZe1S2LpEzvfWdav0Y76W8pK0+bFLXsbWkTnQSmVAcqvfnNb45/v+Utb1l9\nbT9JMXVdh2/enoNKmp4SkC8IPlOJL1wWY2c+aiUNt58Np2UbFsYiX/+7EKpkgVQ0b9RUshzJ0MYp\nn0AyHzPs2850TIF84w2f+Y1Y+sYL9OLeOUCgU79rjCgJftx8T1ms+3YiSn3bfVyg+oZ9R+L//6hB\npSDi/rhztuHj/+HJAICPX3sbAHq66hs7GWA3vP95jak0vJeg83XG5nVRX0IyjIB+7tD3c7gi/C2U\ns2PjAu49uoz/+PffAgD8l5c9CU96yGkxHx1LP/3ArQC4WLeM767RVLrulqSnBKRxmZhKepipRv8t\nzTNtrN99ZAkLc+t5u5UhLecDZYAxUW3DKJOMQJOp5Dj5Uv8tJGujzMPfKgzH1nfI7fA3nk+76ZA+\nQvVke0YnyT0ZG5yk0skYNcboezRv6hSgH81WG8YRUnifJQPKBp+yIgVbCGbdM4mzN03/HFsbfKK/\npaEKTaPp9tDxVnkTDXmmmjNZq2sh2+mzGFJ9VQZzG/KH75UyiSHuA0BDP4pOfvq7lp3QwQ4lkVod\n1pyN+VWDPa9bYwQ24t9ois7u8P9BfgDoLw1ZD4EqITV02nZYnoQ9dcT6JN+jPJ32EtNUMrKvnaZS\n/+k7nPXaPiGZe+QqmAQmU0kAFn1/nDVYWzeVdUYCgNaclIfPvqPN379lW1PmYJ8/fJ8VKZxYez+j\n7Mo6Da1Qd8V6qQCoNEkQwjyYYqBSHYuNr0PeM+//P1zU4LeztFbz90PL54cPlk2klKnOif7fgt84\nHjdx6anR26IAas1abYFPkl0eUv2BRqjHXje66nGZ8tPfa2VydnCeL2cc87pCkjaEO4bUeabkE3Oi\nvCPYaWah7pe85CX4zGc+cxJV/iQBPUOC3qgUmUpDaMkGwSDIQkkccEWGk2ghRv3/cwZSYAHIG+XC\nIrJcCCtjdcvTD8sx7niZnhMwaX3dhDlZt8H0kLHSdGFa0jSVlIUL6J9b6ZYvqdlz871H3fwAB5Uo\nCPO5H9zN8lGA6UeRbtyf3wxonXZZC6E85IxC3ZSVJ4yYkGdhboRdW/rQ17//2h2RWReSBD+qmEoD\n6Hfe7i3se/psmV7HqMFjdveg0i33HsPBQYNIjoOa29+uG0CpcKPc3Jj325q3UoyZftbOM0DXVNIc\nDDkf+PXX6d8asZvE/kzr1gLJAOLhb7pYrXURQFamwcrgTMhWDS+KeQ2jzAIOrLBZFYwhTpLKkspO\nqmHmpY6+q8VAwHX62i1wMMX65/1OfaZhMuW6S9ofmZPU6u+bltl1dawvya5RnyUx7F1nt/I0kja7\nJAyssTu1/Fb4m2a4yjAaq+6GjEuvPEvE3dvHQwgErYe1UXHePTsn1DutfD8lY10edFll0tPdzliH\nZD5Zt3Z7r3RUaPjzVEF0+PhImkoMVGLOR8PaVeNA8PA3/Rdrr6lkz58S20EDdyztv1nnLl0LAM5i\n8y8ssMcwC39T5pB1OCSLlLZTmj9Z1Xn0gzGGLRtPP9CoWy+pgLAHyObOO+y6lbFRYq3QsnMmZPq7\nzGIL7avLV8MW8tYNXqayT8R9kvZHf5be+t+2eRt/4ZFn4IzNizhv9xYllNDuO/UBavc9LYyd2b8U\njK0cRzUAHV9f7PLyEEpnjleuWWGJt8HO9HeZ9TXkqxxDaxH+NjOotH//fjzjGc/A2Wefjde97nX4\n2te+turK78+JspQARMqydeOTNIRXDBYDkDs1FuNhXojfhk/pxEZG0yo0lSxgx2JTucYoXdi1fo/5\nrWEWmyu7blyASlKDiurOSKe2xFaS4VW3FJhKh06sMDCEgjCfH0LfHrC5D0X9/r7D+FGmoLm15wEJ\nVJJORSncMQ8tHAxgBiCEvLnT92uPOwvbNszjO3sP49//2TXMkJWAiGQuyXRseYLDA+vmMWdtZf+2\nhYiA0yLmRg22bpjHgwbdsW8M81hWU1qUu65LIt1n9+GQGRis3IxH8wEzgLciHxA0lSTzJ2+31FSi\nTCX6T5axLhkuJeBLy2cJdZviomKDTvo+UPOFvtQ4sQn8glp3NLSYwZP+1sPGugh81RnCznpJnnsd\nEFJ3dXuYqxoAlIys9DvXgMpAP91R4e+njjZPgRCP9ZWDZEpeYjS7en7qlfV23aFel4qvAEBaW0di\nvNU627GsvGpxwmmXZzkV7klsLdhJHE4PfAp5fRH3kM8+sbVAYyAHzGk9pZN3zaEJ/dHC32RIBbVf\nVuSpDPLxEYW6g6YS5Al9aFf6TSktVwh1r5mmkuPMaeNSB0/5HAcc0ESxLz0Atev4M9OYShT7q2Ej\nqsAx+UEj3pUJjArnsBYkA9KzssPfhD3mzDP+LO31n4cLO+tqDWjd5O/Hf+Z+mfT/u64ShJkhX7E/\nI1qmvU9oAKq2bqbDIdHvwnopD/Lf8MuPwhf+4JdwxuZ1GaCVxrFvb9RcSmLpU8nwr5DqdKfqAboa\ncDvU673HRinT2+8lc1DWL2+srL3p0OtPvr6U9wQrzQwqffKTn8Sdd96JSy65BF/60pfwuMc9Dued\ndx7e9ra34aabblp1Q+5viYp0Az2YASSHTYagSabHVGF4hBRDRUIImhGuFpzV5MQGY0TXXlrN7W+W\ns2vFFqvOnGIIe6f5KYymVcu0HBqgD38Lz2NxbizayMUugTKoFMKrHjoAMUGY2Uq33yfYN2RyB4Dq\nqY88AwDwgx8xU+mHw+2AexhTSd+grfdNN0hAZypZ72c8bvDQB2zC37/qKVgYj3DzPcew92Bigmm2\n7hGHrRRYShsWxtgjxLmpoU6BsNCPnxpAqK/ffoC1MaSSptLdR5Zx8PgKmibddhi1azo+fvObE8nJ\ntXxG2Skjn2e0X/ccWWZhDX3deVvDfNi82APdR5cm8R2y8LcicMzbJH8nhbrpHI8Ab6u3N3MQjTEk\nDShGpa7coONJUgEk006fm8Yw9EonnAZ464ImXaeeWKb+pLbx8DeZL7xHsDbQfDGcTQHSSqEkPC/P\nR8dAKWSLg2le3am8vl+ek1TnqGj0es+4BcQpcMEIj79Rys6o6xUGbm0YQCk8JQ8lydsX8ypORQm8\n1fTVUhu5c1ED7ND3mDEMxRpD7epS6F8NgMr1Sfi/0aSF7M4LFitN9KtpS29/G7HwUSk0n0C+sgNB\nwXxrb5Pae6tNMztoFesLkPpphZOXQj1ZeBX7Pi+LX1iQ50v5EcuU7dTEiXNNJelwguWrEhCutSEy\noCrvD59ndj4KRnvl0WcOlMpM7axbh+D2RzJi/L1U8VEKYE2pP6xM7z0qY07bq/K6y7ZO1+lgfWiH\nBTh675zbOto86z+t91gKf9NB5pSnKmy29Q9d5IFGDRBetkv4WPfAScoerzl4KYa7S3DwJM4HZgaV\nAGD79u142ctehs985jO4+eab8cIXvhAf+tCH8LCHPWz1LbmfJQkuJE2l3gneuKhrKkl9Eh3Y4Wwh\nK28Ei9rAVBryGUylFRFOpzOVwsTwNZUyh7PCcF29ULfYJAUzQopvh98vznHNKc2WWimczgVNpf/p\nwb320b7DSzi+PDXzB1DpzK3rYl+iAz804BEDCHHHwRP42f/0Kbzzf3zPbcNapK7rcOP+HsSit6NJ\nh9MEDsQiHNJEYcdJ5kp8j0MZZ+/YgO0beybRweNJNynkX5gbxXd3yNFVuvtI/25O37SIbYSZROvs\n+5T+DmMsgErXD+CwRPZLdnoYA+vnx1EnKjyzSWE+avTfYvibAqDuJ0wlyYShKfwmsLfaDvG2Inaa\nL6akLZbN82UhNC3/fZ+HA+CybZaIb2l9kaKP1vhl7SwAVerJYeFWxElbcLQFoOUaHNQpdwwOJmzq\nMM5qQpykQdS31TbC07jk/ck09chvGUhW6Lf7HoUzVWO8UdaXBz61Hdw2cmO0Dggpncbm1PXwfV4m\nBYFqT/PTGLLbGMqq1blxDWGFOaIbwulvFqKsNZQ5C1DzWSf5dv25I1lyoOXckTd79vUPn6Sd8gCQ\nJnpIM22TTEEW/ibeY2hqYasCIEClTv/FWgl1+0K6QxsKY0MyXPrfDGVkoMnw70XHK5VpMZV0fZvy\neqCC8aT/dK1meUSRtXpBvO7+/8090jhUOJmbrtToA2f9Df2OmmSF9+M+c8kIKQB0qT/he29tg7te\nShuidmx4fo/0DWmfxsrYbLsZtPIK/aZrW98hu0wtDMwNCe10G0vabCHV3BpZe/hQYujKfbx2vNWE\nfVeBfuxZlvdc79ZTVrcYl6tJqwKVQlpZWcG1116LL3zhC7jpppuwc+fOkynufpVuE4yUpKnkh7/V\naCpl2kIBVDLD2vp/p7H4rDzBVEphOfaCkNVtADv5LXFZkcJZcAwOw4E2hRnDJkkWpiVy+1sAJoKj\noJ3QFZlKh3smzSN2bo7t8ICOOw7mN/BJA4HekHf7geN4z6e+77ZhLdJ9x1ZwaGD9UE2ljJ5sPXMy\n9ijzRwM8JRCilbltff8MDhxLz5JquGxe1wMgnq5SCH3bvG4OT33UGXjhkx+clUXbQduwfWNf/7Gh\njFmZSsdX+nm+jlzlYwvs2+Fv02nHDAQJCFjgLdA/m6DhFlh5Gu01aK1tXpfWpPA7+pyKdcf3qN/G\nqIU7yrLo2KEbnzXHazSIqsNYLJCsAGh5eefY2oahbtswKd2yCHAj07rRh9ZDQ7v634tnKU7TNeNN\nO3F3NaIEUGUBAhazx9OuKTv5hvFWKNM79a9nnKW/S+GJ0pFkbSXZpWHvhp1oRrOzj3PwqcYQDt9n\nWUWoZ53zXhMWH8qMa2AJ9Cs45Gkdyn/P+zPUXWuwdzkrQrtBNwPoRmmd0HSLWjE+wkEXBZUmivNO\n2QilFMS/Af3gYS1THRBOQDKP5cf2cf2GVGpbV7Hy2o6B8BobRNN6qXEkLWffYuxY4cJSL6hq7hYO\npmrYKHxOeHM8jT05J9w21ryfjq6BeZnyAgQrL9976pjEpVCojBFSAZKVAdR8rGt7gGTXVIlLO+sl\n70/5/dSswbJMK59k9ZfqrtU10pmQeRuzw66a8Vb9HkO5djv52ODfsXzKoUINCH8yS/yqQKVPf/rT\neOlLX4qdO3fihS98IbZs2YJ/+Id/wG233bb6ltzPUhBjDi84gBPBSbWEusNC4DOV+Aa0YoSBWWCR\nBJUWIlNJaippoXcDS0qwmuTEyK+ptp0kJvDpLByzOuWao02ZStThlzd+0PxeCkLdO7esw7oBpDqx\nUmYqnUNApYlgfY2aBj//iAfEf6eI/qlKNw6hb2duXYf1JDRTUm9NoW7hHIYUdbzIO5IAqsY427qh\nB43uO5bE7ilwsGUAQKj+j0whNG7zujnMjUd4y/9yHv7to3eyOmk7aD8s4Db+pmCpB1BpPRljY6Hh\nZWmc0SlCxev7do1EXmFAiXaG8MHF+QSgyhSM8YW5UQzLPTo8V8/xyoBjA2Qwwx1JRyUAntfN2yyv\nZ7VYRbQ91PEqgTV9/YZzKgxHWr9ctupZGbrx5p22cScpz0cNCaaplJ3kl+e4x85yadli/bcE10O9\nrlFGxnqNcxiGkgdwaNofquhtNMLrToAB6ag4z6jgoErtDc94pCDZrDfWlJgjoVzZPtmfElCl6l+o\ngN9qnCQbTKNjjfa7r0srMx8btYBjCh/JH2qoluaVlziw/KDjQxfq1hwfjSVjpRqm0lqlWR1Tn3GQ\nvjOlGAjA4QFAmsMp2ynZbrw/eTslY5O2l4W/mdpCsrz+U4bJ1exn6fn4ZdYwQig4VhuWU8OEqSmz\nxAjJL57Q+yNBa++QpHZdpfloG4pM4oo9hYPLeX4eLVDPmqkBa9KaxfvJy0x1+/0Z8rV2Pmlb0ja4\nB0ltYT4q+7g3hlKZdn/0W0L9Z04/PZu1yJJS10t/baN1rybNlbPwdNZZZ+Hee+/FM57xDLz//e/H\nM5/5TCwuLq66AffHNG27eHPVntM34gf7j5aZSgRYAVLY0Fg56aIOL52Y0uEM/y+FuqV45Jxw6IKT\nqYlMZiLLxulHCvURTp+zcE2mdbfBVOvMdDwf0DOVggMbwpJCHjrRFudGWJq0RVAphL/t3LKI9Qtj\nHF2extAhLd02jIsHUaZSyz/HowaXPus8fPaGe/AHf/sNAMD+w0vYNYTMnYoUQCXKUgLsZ2mFOAEB\nJOvBiQRkpn+X4KD2zrcPoNIBJfxt1DTYNIBKhx1WWACcNi2m0Lc5Mc9oO2gbInjaBuONl12ij4bw\nt3Xz6UHJui2WX9M0mBs1EVCiG2t2JXsG+vF/D+yzABxrDsNkmp7/xsU5HFuexmfngRHZeyyMDQk+\nafR/C+yzTmylwWyerk4HR3KGsCkz/E30G7DDu8Kwr73pKhi3FEC18nYFQ4KCRTUaN7meBylL6bP3\nzDP2k5GXNpsauC77qfWBnVB3nZhtcvrcsDYFHNQMaxkG7BnC1AhPv1GePXuP+fesftbO8K3dH+oA\naIyQzKmoAOhomdp446K3dnnh+2Aw1+jH9A6n/n4kgMnZKIWx4b1HTcR9+G5e+UGuXdNE8EnTLZLg\n9XLUVGqY7RSyhXaHLtX4DxRU0kLw1jLVnrz7Dlr/yffx/tMLEa+djxbgKLXveH98B1r+joX8iL3H\nWrOkTpZ1mEHLD2VZNrhkSdUJIteBaQy0cMXw+/9PYzjPSwEoL5/GDtP6I0HrGkCrHjgI5Tp2CXnu\nVYdIhX2CsmtKYYc0ZKsKAKoAQrT+uABQZ1+O4YG3OgjUfxZZpYrt5GlohXp9IBxDmXUHOVXaZSM6\n3hx7o3KeWYzj1aSZQaW3vOUt+PVf/3Vs27Zt9bXez9O+wycwaTvMjRqcvWMDB5WWLE2lZMD0n7rD\nCdBNsmVOmNxMF+a4o7YSy9SFupczppJvtHp5LQfa0xPpDcf+Ow/ZL2lJWcwIYGAqzff/v0hYJFTz\nBOhZTEuTNgqsa2nadthLmEohxOh4DVPptAQq5Y5xgwedthEPOm0j/rdPfR93HDyBOw4eP6Wg0k13\n5ze/AfnibjnG/BQ4fR9vJiRIQ00YYwh/O0iYSnRx3RxBJSf8bQCcaFhXHEOKMOmoSeMuYyoJy7zE\nHAtsNcb6EsabNR9DOydtlzHoLFaeBHlDCs8gMJU0MIyuNRsXxtiP/mY9wH7fAGGOVIIwrWijKtRN\nr7YmbS1pSXmgSf/MWmG82QaHvGWrpNlG/7ZOQ2tZK/QErZS37Hglw6TmNi7vtFhjKtVoREkjxmc4\nEtBPM1rjO6djLe+PdJI8PT/9imHfmXLZARS4KIw3LaxBM4jp6bfFoJDfeaEFPF+94xPyW3XHdraF\nUELSby/MM3zfDodNft2502cxJkN/ys9y6A8BqmrrDgCdF/6W8qIg1M0dq2Ua/qaeaId25b+30oqx\n7so0bTvzXdWmel2uCjCCHULojH0q4jsrgw7Q10GOuw1jPW+meQFD3waSzwQjDGc75oOaj5WZHfro\nZXaiTM2JpcBOLZhW08aS/hFtN1+z/DFE+2OBX2EtcPcJUqYL5In++ABH/1kUHlduCY3ljvKxGf7d\n6zddszyWtwwlTAcQeaKMwJiv9j2KOS4PLPv89j7F7Cxn72Fi/M77pl9x5lVetwaEl/rN+1Ow8Ryf\nmO65cu/h5fWfaWkv7wlWmjn87aUvfelPAKWTTAE42LV1XQx/CYCNFhYD5M57AkyUEDRyOkUnXcZA\nEuKPKRaf5wsshpJOEv0uhNyVQIYQJuej5nRSBoczy0YcaCESngkd9586U2maaSoBvTNLwRD53rT0\nw/1HsDxpsXFhjLO2rY+sFDf87UAe/jad8nbSZ3nmtvUAwG5BOxXpwPEevDl94wL7fiQWwhptFOps\nq5pKYqOK/SZlbAtMJaKpRJ25zYtBU8lhKp0ITKUcVGKMmC6faxYrLiTqXGrphDLPM6DKYSPS+VPD\nVLLaGUC3qKmkDGe61gSw+0gMf/M2cs5+KoW/yffNqNvKe+FOn6xbN9Y9kU3OFlL6Y4FkM5yiyXay\nMICKsAJq5Jl5mTFq94fWXcMUlc+SrkO6jlT/WRJjpmWXQhD8E9tQb61zmPLT32tlTtuCU0GBEOc9\n0jK5/kaeT79uXJkblrPr3QzY1l03XjKEpVNc89yLYYx0/DoGM/2ehacUwxP1Nspbhbz1pa8nOYg1\noQqazoxmv4VqqVMT6lpRFmgu1N1FNlOuqdTnCc+MOnmlRG8J5QxM/uOliW3b1KY4x5V/o6BozS2H\nLXs2UPOrZZbmDvTxq+rbOEC4tHWsgxLJRklOuWij6Hetbg4t21qDa0B4zkassOkL+axwPg/gLjFC\nrFCf0i2YfthUmks+8CX6EwDHQn88hq7KjlOArYyJWQtaVPQ7hRJ6ZaY8szN7xJxV7XSoeQEd2Pfn\nxAxh7MQmqw/71urmawe9MVgmlYHkvJ/qm43F4dBq0kkJdf8krS4Fke6ztq2PIVbhdCl80tArgJ+m\nAATYUR3OFJpDjZCiplKbTrh4vlQeDbfR9ACCAyw1lXJQSTicjiFOUWnrNAXIT4ksplI+gdIM0m5/\nC2VRMCQwTLzwt2/ecRAA8OjdWzAaNVGjyQKVTqxMsf9wHy5HhbqlwUFfT7glLoRTnqqUqONSs4e3\n0Qw5HDVxcWRC3YqO15wYQ9pJyVYt/I2MoRj+5mgqUaHukKQDTdvIrlCPwC0HT/kJhlm1KtQ9NvTI\ntBAJCqBSAzZjKgkjUzKqEqg0YvloomtNAJWOivA3dd6K91gSAs2MVpJvXgDbfVtTGZajkACgoS7P\nEG5nE062xzpYP0LZWl7adz9cLLWRh0goeakx6rwfakCFImvYp5pxIrVBQrlmf4QjZ530yRAET3hc\nFaGuOaH3+q46C3l/GDjoOCm0HkbFV597/6mexpL3rlHhaZt4f5C10wOAain7efiDljc9yzjeCoCA\n98x5OwsgZsgH+z3S50BBGKvMBGjVAZOaCLMmIZADdGn9U5lKLf97ZZpsSJ0JGdo/tKviVHqZgEWc\njcjzeaH9tanmPbYdXMDRW48y5jp7j+W6vRAa75IGDziQa5EsW4bsWiDmSKwZHtiZhbwY4YGhGRmw\nU5jjVpgpq5s+8zxbFs4Xx7o6H4d2VjNC/L2HtpOFRioZGy2ft7aJ9+2C8G3dM6djXdsnuW1af0BT\ns5dG5pX4PcvLyAF2PnaBiGG3aXa694z0A43S+lJ+PqHemvW/CKaZ49Kfux3K+ej+WCqPfq4m/QRU\n+hdIgY3ywO0bIgtoSYBK0tiQJxUTg8rbf4chTxcdOkALa5OaSsF51MPfQl4P0KJsC0/7w9bNyYqs\npw9GinjLPkvCwNRR7W9/S0AHc/pIvuCEa7exhPTN2/vr5s/b3V8/v74AKn37zj7/5nVzOG3jQgbC\nRHCD9CeASqeaqWTq4YhNxTtRkacagC5GnY/13BhMt79p4W9NZfjbwFSioFKTxq8sV2MqSfbePMnj\nhcCpoJLRb1UQn4xLxlQSj70U/hYYRwsOqBTe0XjURFbXsaUh/K3mGtcIaOl5c+2loe0kH80jx5pW\nZprj/f97LAbq5LsnThXgCm137zyHvuvGRO3JLj3hpK/IP2X0nSQWZuSCT8nQsm4n0sLf3DIjKMud\ndw/UKhq4ylqth8mBtbUmdIk+dzWsTTUcs2y8zMIpsDTY+/L5v1l115TZxbHhtNF43yHNFG4zyvtd\nEtL19pO+HsQy/THcf3qi2nR/oTpjJUCreKqtzPGQ7fxztmf5tTBT//Y3Mue6JNS9IOwXCcLIkCov\nUS0njcUbksfCrk2zO2h2PsniAvI1oVHLrJ3jYj1X1sG6scHbKPPnuka8TbH+7ODDqZv0ByBAhHHw\nkfbd4XsXaK1dN/I5wdso1xf7ndfqOcV+t/V7aTVIVgRr+Pvxxhsfl+E7/1mGpO2T+W12eR6tnT6b\ntv/Mb9Ir2xGAvj9r71EWp+lWunUzjajyGLLsHFl/6k/+vcxbOrSke1l5XNK8zlhX91wtX+pLaOtq\n009ApR9hOnh8Bf/7//sDfPnm+wAAZ23PmUrBIFgUTCVLB0gPQUunWp7DScPkaN0S0KIskknbMeFe\nr2464bNbqTJH0iuTOAuOkSn7Y7GkpLNLJxBlKo1HDXPK6eK6KN6blr55e89UOm/3FgAgTCX9N1d/\nex8A4N884gFomsaklrLwt619+NudpxhU0tgj9P8lI8S7ppoxleI4zgEbL9Z/uxL+RoHJzevqw982\nk/C3AG7RMZFuMEy/peOc1k3njof2B6FuLfwtaoIZ8xHgTD/6fOSGmq0bRpsSUyn/N7rWhNvfZPhb\nad7SNljzMRfqTvno+NAAMot1IEPvPGOHXQTgGByaxhnLRxojgTLrZjUm9uuchLYdZ0x6uj0l0ILp\nJniGljCgNOdMO6GvMbQokEfbxPLSvjuGvXbLlnv6nBnCSl7lhrwSQOf1m7aTnh6qYtminf1v8jHH\nHZr897w/dLzVOXM1YUY50Oo7sVWsvIIzRftD37nLfnJu6qHjmTKVtL70+VN/6kIL8rqf87izsvy5\nw0n2TkUkm37Tdkmoe35s2y/A6jWVNEcupLUAlTzHizOv7Hza3In2oLNHpjLzdmmn/rJqyRQCSIhT\nXiRjDoY2yHbRv6fCFjQZumJt8xxOGf1gAWXS1tHXwdQ+v26aj7ddqzsxKOy82jpYDoXqst/z/tC9\n1Ks79KfUxpAvrJf8e61ujWXolUn/pvllyFYNWFQEtAgoWmZ99Z8c2FfyVWicyTEJVB5wtn5/aL9r\nQihTmeU90gPJaJ9qDofooanXnxognH4ntb5Wk2YW6v5JWn366y/disv/7+/E/3/g9vXR6Q2GgBn+\nJhD7lQjs6CK+AL9ufH6cO5yRqSSYMDL8jf7/yqSNDCBPU2kiAa2C0Jovgpc2yhqKozyBlowqyWKg\nh3+9plJyoudHDZbRh/A05PcSDJSpbTt8646eefSYs3qmUpTa8LQAACAASURBVElT6f/59l0AgKed\ne0ash4bdadpCgal058FTG/6miScD3GAG/JNl+dwBHTiR7BoNHNTC3+imsmVgHx1xmErx9jcl/I0x\nleI4splKoe75uREgRKy1pGkq1fQ75e0/J0RTyYu3lwL/MkVNJaXNtB2bZPhb5SkJ/SwKdRNwMCQ6\nhyfTDvNjDoBZwI489ffA6KKBKwQxrduEmBhz12EOtgGns4WyqlX2BuAbJyUK9Vhxir0QMMAGqqRz\nFMrt2+g887ZsQMXTUJLXA9NKekG1YYx9v/J2amw3zXA0wQilP54TS8e55vSOZhgbI/KeasY6vxo8\nL48+M366a+el80x75vR9e++Gtp2z2Px8IydfuFWzZITLMmsMe00j5IHbN2Dr+nkcPJ4fjgS0aDRq\n3PA3xmRrO6xMkh2nhYmEuoNga40DQe0cTS8opDUJf4v7RP5vXA/HWS9Hytxp9flbC6AysN4At+XB\nA1ASY9b3PtkvOoZovgzUEjZwnW6ODWb1dfDn493wSIE3t9/Eya8RRE7PxbM3hryFMrV1CNA16Di4\nUrZ1uL6aks880LCfURGoUg50tHLlJRHx/Wh7qXLgpNqXiq1R085qcLDixsaQPN+Dg0o1vqb/zPvv\nyZyoAItKe66m+0S/19pZCxa1xfmI2MZQ7mrTqphKH/rQh/CzP/uz2L17N26++WYAwBVXXIFPfvKT\nq27I/SF9awhvCumBmqbSVAeVLMFdD9jpb3+zw+SiTskAJqUTrrzuMA5XyI1yqhFOQtDowLSYSqF9\nrlYS6XuNoGzulBvPMoA1pJ1LkzYJJI/oSV/L6o7vzQh/u+XeYzi8NMHC3AgPO2MTgMRU0m5/u/Xe\nY/jO3sMYjxr84iMTqAQgaQvFzSr1PQh1/6iYSvni3n9GY8cxCOVzB/SQS0u8kgl1x/C33BgfNQn8\nqLr9bRD1ZnWTVX2ijLk5cRtPaCudOzXhb/T2N8mSskBeQGcE+jpj/mZRx1RKQt1HB+DMozFnzKvC\nSbFkII2V5w3klwBo9VPAhJXpgBH1BocYl7JueiJYAFtp32sMYerQaOUBnJLeOu8ngRG+uDSdy9x5\nT3klMBja2ufLimTGGx2SPn280lEpGlq8fTVlth1Z27T3Q565x6YCwBgCVaBfyVmgwArZjnxArU7o\nuEibJ9+VwtooW6jW6SuGoBHwwGcjIuaruUFwUug3bTvXVLLL5OBT+veX/twelr8V68uoSf3Uw9/S\n3zT8jd7+NlHWNtp971IJWa91WQIAnFgToe7+071UoS0Becp6FNdr/cCW66Hl7aKn/vK3IWnrYB0j\nkNsRTaPPcXnzaM5U6j+7ToK89rPsOsF+NfqUyrXL1NcNb45DnRNZvriP8np4f/K1WqOHxfeYHWjU\nrkX2nlvKJ8Mdaxm17nrpHj5Y48N/PyOtP84FCFPxLP2x7vebs0r1NmqHv2lc5mXSgyTv4GPEDlPs\n55P3h3/H8+VlukC4eJa6zdp/cqCqrkz33YhD2NWkmUGl973vfbj44ovxK7/yKzhw4ACm034T2bZt\nG6644orVt+R+kBaEc3jW9vVYHHNQaWmiAztyQ0tXsdsLIQ1VU2+JG6d8Xde5ZSb9pa4K0KplKkW2\nkLNosvA3x7CXTrnVTopa0/xA/x4oU4mKlFMnMjyPJYOpFES6z921Oeb1wt+uHlhKT3jQdmzb0AMm\nGSCg9Gf3wFTad3iJXbe+1sl67tLYqbkZZMrC34bxTvo0Nt4jXVzD7W8Hjy8r4pU0/K0s1M2ZSvmJ\nsDaO0jhvWR7aD+0mtZDCGKCaSuGZRQ2tCqCVshF9QJa3U+aNmkrKbhLnw7jBxgEES0LdQz0VJ2gW\n00OepmuMJrp+SeFv1yATY8g1XAunjFYIsuVYAGReKH0CjFMspUMcKMr7qdXP18u8P+w00mhf1p9W\nvwXNDX/zjPWWOzSlk0u/ncjK9PtdXrM0QKAE1pROOGsdFY11oBnOWrhAqcwSS4o7feXnAwTnJ29f\nLJOMYW8+1hrrtJ4Siy38vPZUuaR/QevhY8PujwU+/Yeffyhe80sPx+ue/siYry83tj4yebWDCvrO\npy1nu1ObSP5UhsN4iWoqsfokqLR8ajWV+Dxz5rjYUwB6sKCXuTqdGWEPKQdnNetGeOfWmqmxqbQy\nZahyLdjJtJwM3czQL6/MMMfLc4Lmq18Da/N24js9Hz/QKO2R9YCWl6//TIewTl5lXVfXSwXItDQk\n6cFu9TyLa7W2rubPx+wP6bu3ttaEsWsMzBrWF4928ceQ93xk3tqbKGvDw0vjku9TXt2pzNq1LeRf\nbZoZVHrPe96DP/uzP8Mf/uEfYjxODtETnvAEfOMb31h1Q+4P6fBSYlU87wkPxDk7NpiaShKAspwk\nFdghty55jikVFV6ZEtq04lEtRFZTazKA6HeTKT9Rz5hKwoG2QkkA7rDETddZEErhQ2zjFeDXEtNU\nSvTxFSIoO26a+Dys8LdwG9ue0zfG77zwt6/f1oNQT3nY6amdUnhcWQxP27SIuVGDadth/5EltS1r\nkSwwwgLoXNYMC3/L80uxbA9UWpl2OCbCzUZNEuo+VKGptGmRgkq8v1b9kSkUAI4uAC9pnN9x8Dj+\n499fjx/uP5LVfVwJf7M0lTxB/JacMvqgUv//wYjZSBhSgB/+NiVsR/P2twLAzPIahnAGPpF8ki3Z\n5+O/pykbl94zYk4f/z0rUzgMFqhFfyvD77yT7RoWZpc5AHbeWkOCGpgedVzmpVWrGgeekUfeeRkI\n8evW++OVx41wv0zEvB74pF1tXzJGuZC6ks9wOGUbNNDC7g9xqETbeT4M+epuoenrrwO0ygyK9Cy9\n9YX3pz78zaubrlllp6L/LBn2mgNNs82NR7j43z4CTzt3JwDlhq+GMJVUUIn83XZMG5PaRBIwp22Y\nhanEgGMZ/rYGTKU6oJXMHVWPLG+rxjimeWtDnDhLiufRLiPxhahT3bS93j7BDxV4ebbWi1a3vm5k\n4W/EdPf6TsssAloauO0xYeKcGOrOs4r3yL/T27h2IHz1GCLPB7Av+wA4cFC7j4dk6f9pIJAPhNSB\noj2QV7f3TMVzz/P1nxS8zf2O/lOzN2rfjzt+C6xo+vvSeKM2uAtMKoCfVb9246t3SMJZ63m+7AAr\nz1KdZgaVbrzxRpx//vnZ94uLizh69OhJNOXHPx063jti7/xfH4s/+XePRdPkYVSWppKMEfeBnWRI\nUE0lmebn0neTto3OmpY3OLbs9jfHkZy2dSLh4QDMRc3JgPcZTZxlYrXTOnkBFKYS6Q81cEuaSvQG\nuZDWzdm3v+091Ievnb1jQ9ZOCQhIZ3vnlp6tdMeBUxcCZ4FKmT6Jd4oVx2V6ZiuRHWcLdWuOxfr5\ncXwH9w03wNHNL4BKQTdJS+HfNheYSho4aYVsUQDo49fehg989iZ86Jqbs7rDie76BVunSbv1LiR6\ne1YNU0myMjYucjm9xXn79jfajvA7KdRdmrf00woXC6ewltj7PAGsaXmla4NZ3c4GPWnbQoiTmI9W\nfwRo7eWtFdWmoE0taMHDjJQyFaq3ZxSF/kRji3yvndC7Ysz05JCFbNn11xrXYRz17XLKi4Y9/75Y\nZqXhWAOE+I4XYj76KfNrYA1QFhSvu/K7jtkDQOz3jtHc0pP0gqMyw1i3HCn6Xek91up+sLorDfsS\nQCdDdmneeXKoJ1Mn5twyOZik71uCNfQ5KVgVS0xTiTzD/Pa3NdBUqnSgZ9HXpG3NmOvknfsAamif\nIyAsDkiA2vBaaeuU6wbssKCY1wv1bEL7xEGFLJP8P3X0S0wPP2wq2Y2hOyo4OKL5/DKrGSHkpiv+\nLLV2hryzsNjsfBSICG2w8+bri7ePc9aOXq7OcMnLrAfJ+k/6Hq3+1DJQ2c2jBpNL+nqhDYA+Lme1\nIUoHWLzMwgEamWdVgGOVNiLZpyoEysP8sfKlcZnauto0M6i0Z88eXHfdddn3V111Fc4999xVN+T+\nkAJrYsu6pOEiGS8RVFJ0jYA02FJYWz5A+O1vtqbSnGAqTRR9m5Bo+FtdWE7LWCvW5ifDcvxbw+pu\nlJBMj/zGsvQ3BYuAXqg7OuljrqlEHcMAaGgaB0BisFCQIejnqKDSoIkUACLebz906QGbFwEAd59C\nplLtiYHHOJPx8QDVDWqyfB640jQNtq3nN8BR5kgAiqzwt8m0jQynzWQ+RgFs5QSEhb+NeRupmGHI\ndmRgJh5byt93YCrR8LdMUykK4muaSmlTqdIZC7pcQ94NGVPJ1lSakEsBNi72v5PsMC/EyWOcyf/n\n4VV6eRI0dk/FRN7aK8xV51CCncYmTdsjw9/yk+3+kxpvJ3NVM62fa4T4Zbrrrzj91sabZNn1fRp+\nr64FQ552lvC3uvFWYn015PnQNpdo87M6aMX3Q99lzcUTFDAi+TXBdcsQpk5NnbNb0lBJf9ObyTTR\n2/rT4iFf6x8iAZKVN6uTpNlEdJ7ZbaS/nxbeOXV2vTZyEWrO9JCsT5qo/d92hKk0NxK2E283bUMp\n3EFqR0oGaEhrcftb1dgovEf5LAHAYlGzcJuafcKZZxprpAawl/puWfibMi71+tPf1awMsrbRNmn/\nX2SLspAtDHXba3Utmwrwww5pmSWQV2MtFsssHNDogFaej9782XWJ3ePZG1RHsYZ5G9qhtUEDycoi\n4faeqzG5zHYq4XyrBbQ8cXLv/fAQZLvurvB8+rz5ulGyRT3bbWzMx2Jeb6yzMWT3J2Phrx5Tmv32\nt4svvhivfOUrceLECXRdhy9+8Yv42Mc+hssvvxx//ud/vvqW3A/SoeGGjy3rCag0sFeWZPhbdvtb\n/xkBkypgx9dUmmc3KrVm6B2QtGJ6ppKnvZQGsXcrlQzLmVbl7UzDgPaxyFQSpzkcVKpgKjXJCbeY\nSlpIkqWp1HVdZCrt2pqDSiXdqYVxjtqvdbLeT74Ylcelds0vHZ8mw0XUvW3DPPYdXoo359DnI8O0\nZDpKgJ4AlPRtzBk7YQ5RZzKBNUFoPn0/HjVop10W0kqTBirRUAXAHr+s/tZnDlrPcpNkKoXwN2UM\nMabSgmQq9XlKrAjaH+t0N9RlzfG5cQOspOdpGeCs7uig5XXJvDRsyg2pC8/SAFCbAVhsu9R3awyz\nU3Lye6uNXUfGuYEcaKdyPiPEn7dSN0czyjSNg6qbhzphjDr1lxz9WpYJDSWkbfacvhJLVmVQ6K+H\nvctaLQb6KfPPAjiqdHjHuK7V3gA4A7UUKuEKw7M2+v3RQDJv7vbzx6mbjKFgBpmMM+WGvFqArkZc\nmo71sWBp0sQYCm0X9Y+oUDfVuwpVW86SluQeFm+1FPvFWjCVQolu2EfBSdIYQxZwrjMo8napoXfZ\neo7YvpB8FgOf4/ZBRT6GvHwAXw88QKDtuE0m89L/La0xevhblo3125sTMqrAnz/9Zz2jtWOMjNp9\nqngRQMUcl3k9ZlwJ4EhtTN9ZBwGzXkpSrJuB+ul7FSQj65una6TaJaLAFOlC55ndTn7wwvtIUy07\nrM+bynTfI+mPy96bQRuR1u3lqwHoAAp25rbGrGlmUOklL3kJ1q9fjze+8Y04duwYfuM3fgO7d+/G\nu971Llx44YWrbsj9IR06kYfb1Ia/5TTZwGLIRwi//c12Fpqmd4CngyGyorBrQponzBwPqIrGDzv9\nzrKxNgJ1dPge2EltN/OJDdrSAUplpgm0NGkjUDAeJaFu1p+GaCpZTCUFhAlAlLz97dCJSWR+7FKY\nSvJE3TpJ0k4x1ypFQ9w45etEGz2nggl1E/2HkKyr6GW/5Q1wdLOYJ++t67psvAR9s4W5UQRUgFwH\nCDCYSrKNZIPu60phCNoYOaFqKnFwULsZT9ZPQVEPEEjsvf5zw4IElezwN6qptMnQVCqxFmnZtSCv\nHEPeM8/rBstbBRwUTgQtppLlxFIgwqIoa1dQe5v+tHAqRuugoJZ7IlgDRgz7hKU1IJlhoVxgllNY\nvT/8VM5uJ3egyw5NHBve/GHPKOSzyyw5Cqz+SsBGhlvK/Dz0wh6/rJ0lx4sAb54RTr+jgEfJkXRP\nvxWnQrMhAIup5BvX6Ph3NM2x8hqzPPo9DUnVxgZl5dWe0ANyP8v3zpDotk9vf1sYj5Iu4zQxrUPV\ntA0lJ2JFgFnyNq6Q1pKpVAZ2ys+ShQaaB2Pp3332U2pfZ4whLexOgnm87jAfeRstO6vkcPK91F8P\nKHDs6fTx8LdKYe3i+hLaWGDviZtHa4GqqnnWciBEzaswr0q2QS3zirOa7GdZu08wcJkA0lqZvD95\nmeF3tVpSdO+x+sMAG1fMPO091jOPdq1ygUA9s8ffJ7x3Q7+vnWclJmTaT+y9Pvan8qCN74+8Hr2N\nfM9fTZoZVAKA5z//+Xj+85+PY8eO4ciRIzjjjDNW34L7Seq6Ll5hzsLfIuOl34yXDaaSdGhqmEpT\nojOgAUUAosjzCmEqaVeYa+FvJU2lxKDIy8uAA9dBzCeQbrzxhcaqn2uEcIduecKZHxodfjxKoEVJ\nU4lqXiWmEje87hpYSlvXz7Mr5q0QQdn3OcfgXKtk3ZwiHTSrjQBx+pTwNwqcWALPcqxvHcS6DxwP\nmkrJIKNi85O2y3TCQljclnV8CZRjiLaDjk0J5FHHNPTTZyr131FQyQoXK2kqeWuBfJbhGVF2FkBu\nf1M2k6QPlhhgWfhbAQymn5nRSv5/0trC43NkDaJ1q8a6BA6ck7FqXaPgfAgA1XQWyBpo1S/Xdfod\nTZqRpznkfds1Y9RxADrOwtTSuGkwRcccENpOLbTVY4Roxo7Wb9omapR5ABBzfAzAry8P7LN0ylgL\nOBaBHebE9n+XTt5pO2XZtVR42R8v9CI5hyWmRfrb02Wh31FNJTfsjwCOpbHedv58DG3vOrin5JQt\nOuesBbJu7z3y8Df+W6s8+jkapfElwZ1Qbvyb3P7GmUq54yNZE1aSB299edxuC2lthLqRtS8k7vQ5\n+cKaTkElY1+ha5Enqq07coazyw6l7HbKQwXrcLWWEcLeacHhpMBxzT4e+mUBarKdnlNONQJr5kTf\nHzLPHP2l3jEul0nBAKAUGu/7HnqIq7IWZCBZaFNepsZOc+eEMubssV4viF/zLKU2or6nhLaVwoD7\nT2aPZTcSItYbkjcu9TU4z8dZUiGfb5dU3yhaCUzOpI1YKDP2e6bwzfzfZ0mrApVC2rBhAzZs2FDO\n+JOEEyttNAhY+JtwlJYmOrAzEptPAos8vZWW6LLoE2NhPIohXxprRJa5MvXZT2OSzxNqzVgHnhZP\n5YItHWjz9jfyW3ryD4jwtzHXJGBMpcEJXzJAJQ2ECQDCCfGboKd0Jgl9o+1MQt163+WJ9qlIFnsk\nGW9DGx2HVzJXACLUrTqoPhixfQPXVKKOMQVRV6ZtNp9C+JYMA9NC9DQRbivUctSkMpaHh6I5Akmo\n29ZUCmCUd/ubBDtlsp7lTEwlRVMphr85jlwGKgVDR45fYQh3xhiaF+OnVuy3b4Ned/8dhnIrRRxb\nTpvXy0xOLEAdGlEmmbuhmFL4W8nY0cLfSrR5D6zp2wlgajsqcn/q22qXSZ+lB1r0dWt5/Xx+eFX/\nWdLGytvplKkBkxa7hp3EDv1R8slr0bkDhOxvGh5ivcdxNaCV3mfKl5fXNP2tjF3HwfOSU+Exjmt1\nWWiZLNTHBRI7oG3MMukBTduO3Lq5E1DroDn5xPuOAAfSIZYW4i7ZOMvEjqO2oOccesKs2qFIvPVU\ntGdNhLpbez2oZYRot7BZh1M6e8N+jx0BI2Td9NKJkGoEkaXwuczLx3lHvpd9SX9Xg5jk8NnT8wMq\nxPjjHPcPfXThfHsfDf2peZaU/eoC5gVwg+ddG7DTEj0/mbGuApmWva6MI2+t7oh/VBRmhz82NLvE\nP3Cy/Y5gf+s6UnaZXFPJmxPlAxoNgLIigkL7alhfNSH0FCyqZSN24rdaPjomV5uqQKXzzz+/Ov76\nK1/5ykk16Mc1BZHuUcOv85baPJaukaTJekLdNASNiuxqKQoOT1s33CaAKP1tU3XOrgd8Wddz+2E0\nBeONlElvKZLPiP40D39LQt2UqTSZ6kLdVviby1Ra5qd5mkg373cb+0W/D0mGEp6KZIfe9Z9Z+JsL\ncKTvklB3fgtaACEsxs62DSH8bXloQ//9qGkEqJQvkkcGptImyVQiTmRso7KxUaFuyYwIzQzsw1Or\nqUTnuO8c0s/89rdBU0nZUCgzcTFqwE1ZeZoxKoFjUyhVnIRat7+NpTh6jS6LqLvMmqnIJ9aMGpaW\nZTin8dbG/roszK7imnWlPxpRlZ8chu/0Mksny5qGSQ0tW2rVqXWT/rjhtRQk8xxOw3n3rrTuOltA\nnn5XGkP0e37qX567/Ja8/Nm3nW9g0u/ZTUrqM0LMV3K8xk2DSSdCaCqdpKLWSwnsZCesZeO6L648\nNibTDu1cybDvP/mc0Moc6m59gI6OIfpJDypWZgh/m58bMdBazsdappIKKilAJwAsrUn4W2hf/m/a\nVec1WkVAGVTSnhGvO7TPnrf+OujYrNnhlF5u18FlhFCQlzJVS7aBJ1URfj9t5Y3OznOvBQ4Kc4J+\nVwKZtbCpEmjtrb99XrrvOe+RjcsyCBPLdMAvOt5q6w7JWrMZoFZhP7WV+17XQaz/Wn9SO2vC073Q\n6/AONZmK0trqM3ZSvpJNRLUMq8IYiXSAu+8V5k7/+/5z2vnMQe0Ay9v3gJOXUakClZ797GfHv0+c\nOIH3vve9ePSjH40LLrgAAHDNNdfg+uuvxyte8YqTasyPc6Ii3XRhkFfTh89FGf4mNkn3Vjcilu05\npn3exJQKBovHVFommkolAMhzAKLDGULVqp05/p1aptz8MlCJCOkKY3h50rJny/uT6pbvTSYtDGzd\ncG27pIhHkW4DVMri7bPTh9TGU5XM63il8+44C5IF1HUklFK5/W0qwDTZ73WCLWaGvylG8eESU4k8\nS20O0b+pITFu0pipE+rOw/7qNJUSs8h75nNk7tDPjdbtb8pwpvMh3XrYsfw1IQgWGELn47TtTKAq\nvNNJFv7mrBnSQfMAGwpaO7o5U2Joaf3p8yLm7cvmZWR1dx3gPEvqwJavWU95PQOXraslMIIC9oqj\nol1rXAv6eYYWzUtPi0usvCqWVBwb5XYyQ1irWzHWS8wrblzbZYY+WwwF3ZlSq2Z99/pdyyRI33cM\nvK8vMy9P3jZo5QP4Huk7P+QZDbwwrY3zhIFacjjHlc9IY0bojg93DqljPB8P//I9nuI6XddhZdJ/\nsTgeuUwl+pw8ppJm46T9nn+/tppK/rrqszd4WYAHKqW8NUCIp72khd2Fv7RRRIFwwGbDcDF+f54F\nkLfr6GFKXjcFzD0bInw/RcdsKf2Gx3yse3O89iAHkKwMr+4U2uvmK7A86O+5vs/q80mQzFtj+Hhz\n8ikAqmUb1fZdA2+9tS20U/6e501t82w3auuUJBN4n512UhCzQs+J7/dZNqU//Dve1v6zK/S7Fpjs\nyyT9qS6Tf0dTY7zH1aQqUOnNb35z/PslL3kJXvOa1+Ctb31rlufWW289qcb8OKdDip4SwIW6ezZM\n/30W/mboeWhsIcZiKJz0hZCSE5NpXODmlVkUhY+nPlBFadquJowAQizNHoCfFvinqykfDbGymB7t\ntGNIPNADFJyplPdn1NCwxRKolDq03tBUuvNgfvMb649wjOU7pyDiqUolQKsV49JzYgNYREEwOuYk\nUGVpeFFGXt+G8Pu+fu10LaSgb7ZZzEftWWp94sh+y9g1of2BxaaGvylC3RkzzQGOazWVRiM+z8JY\n2pDd/uYJdafnL+e3t/nNkTbSsi3AsZ12LBw111QK5XEQ0WX2iH77N8V1VYymacvBt9L19rQd8jHR\nMoORXqLNl9b0WoCD0bJLZSpGDM0q52woV7Zdljft/AMFWs/UqDv1J9Xrh1clQ4u2ucQW8vLNcmuM\nprGgdZ0a1yF/aheyvz1nN+tPgZVB32fp1DSERpZOqql+zLTCEAbSWmgBdNoYVttJxkZYLjwbosSK\npt+XwCJ9bHgOAH/foyYdImh7mQROSkylsNXSZ+pgSnH/0tiF0uZYk9vfKsCI/jp2DPmceVuxHmlg\ntA9M2swuqsGT6nXaaTC9LckGOtb8dvL9ueRwltiv4ecl4JiCfh5g0pB8NetQ3846ZmcJHNTyVYHw\nM6///tpW2ivooYI7LmcAWLh+WMijlEnWy5o5AVBGf55P1l3/fiy7KQ8HrtLwKoCY/ICmbv3vOrjz\nbFY9p5Kdw8ssAK2q72zPW+DkyQkGBmenj3/84/jt3/7t7Pvf/M3fxCc+8YmTasyPc9JufgMSOLE8\nadmCbd3+FhaYerFsm30EpFvdaEjW/JwNKnFNJe32t8EoI+CTx6aKYIQz4KlWkgtakN+G0zqrfmp0\nZEwlEjJIjUx6+i3DFmXSnNjFCCrx3wShbhNUkkLd2UbBGRynIlk06pxNBTUfwB0agLeX6xVxg7AE\nMkhh9lAP1QGTKYS/bRbgSgI70280ltYcY0Jxdk0Ymx5TKYJKiqZSfD5DfzzmIKVQq+wNYrwB6T1J\nplJYhzRQKc6HccPaQnXTPGH2HHBU8irrRn46JUDE1YS/FdaCmpNqCUS7ANSQz2LOzBp6B6T3UcOE\nqaE8zwKEUOOa1q8x/LyTPsqg85yKvk35c69nEmjlIdYdyrXyct0c3h677uE7EwhBrLeKSRZBBlpG\nyq8zn9Sq2amp56DxK5jr3g8NzfLCTkrPko6XCGgYlVPx/DqH03cAUlhzWx6Xyum37tDUtrH/DDYe\nzZvWx3wvsTWVCFOJlNdEplYqQ1v3Q2K3yRkHXSGthVB3cvS1sZHsDdeJjPM2fWftKypDoAAwW2ub\nPPzt22Cvg3KfmlrlsjUjfe/Ns9J+poZJFw4VqF3kgQxtB3WfkOXRw5mSs9s6z53m5UCI/XyKQLTs\nTwW4UgZh0t+ldbAh4y2uL6r90n/qAIvIS8ZnDeBYnx0UPAAAIABJREFUAkzoe/AOXej3RRYbmbvW\nekl1MEPyABsNENZBmFBWBeOYrQd2mbV6Tg0bvzDzAdIes/PydcPezyzG2WrSzKDS+vXr8dnPfjb7\n/rOf/SzWrVun/OL+l7quw7U33csYKTH8zWAqLU1aBlBkt7+Jl07Fc2WahakUjI5jBFTSGUj9d8tT\nzuSxymNhLE4+qR9Tone6TgVxeJemfn/opkYNo0xTiQh30rpLt79NY+hSqjuEOh23mEoi/I2CMGwD\nkuCKclKx1sk2yIZ/F0amr7EzgC3EoqBjxNIZsLSkwhiSAs+UXSdTFOoWIO8c2QBC0hhDMgY5gRap\n/uAQyTGyQvTLGFOp4c/H00OrneMWYyZjKs3bt79pTKXQjxrDXrKkPGFrz+CYJw5fyFuqO/SnBhDg\n7IQsmwCfCKg0i7PQyPmTr5da3dSwCfPGAg6okemfCPafVCOqpNNkgSYaBb+GLURP0MosqcJ7VA17\nP19frl1/Q55lzbXxNSecY9b30J88n2SumI4Csw3y71heMScBQyRcPV0tGLiFk2pt/ngsQyCBKHYI\nQnAWSifQyPrj7VGTaQVDi+x9bt0EmKy5ca9vJwdN5h02Mv2q7RIIND9uyDNvs7WNMZXUHvaJCn9L\nJk4GKp3y8DfqTHnPEjFfSNahHCvTA7SUMZQ7u8l5De+vZp8KbbPWrVmAY3kA3dej5UOs27vIgn4/\nKTCVdBDebmMNy68h7zK+H+/2t0oWZtVhinr44Y0NHxSla9u09dcDCux7/dFCwUoAakljR7tt0Dso\nBtKeYoHw/Cay/PepTMS6LbtJ2rUhP61H60+9/lGFiDsBb+Xvtf4wHUNn3+uZ1nU2BGVXlsZGzSEs\noB9czJJmBpUuuugivPzlL8drXvMafPjDH8aHP/xhvPrVr8YrX/lKvPa1rz2pxsg0nU5xySWXYM+e\nPVi/fj0e+tCH4q1vfSs7mem6Dm9605tw5plnYv369Xja056G73//+6ycEydO4JWvfCVOO+00bNq0\nCc997nNx1113rWlbabr62/vw7/708/j3f3ZN/C4wlbasF0ylyHiZRiCkaRTtGvL/bWeHBNHvpm1i\n3cwZVllwEo8RY0CG3tHvSuE2VFDSYyplTALHseBsoeE7xyAEuCOvMziSISGZSiuk3dTIpP0pCXVr\ngNo6I/zNYirR90gNR4u+fUo1lQoGWUbZ1965AGyogcKEuuO7EXWPrH4HkKH/PjQxAHoaU+jwCV1T\naUSeeUiahhgdazLspKSpRN//OjX8rWP9mvfmeOczAiW7J4zLTYtSU6lGqHskQCX/li258deK8Vtj\nLTHP5FjLisscXc/h1a4NLmkQUWPGD3/D0FYM9csxjNi+aGg5dQNkPJYMDmLE+ILIdZoaoT+ak6Rf\npV3xzDt/DNHvPYaAbIN3+CC1fWoAx7ZLffMo7qVwDlpPiZ0mL+ew2kmfb1hriqerBUNYv11G70/4\neai75tTfdyrSdyut/Xx4f9La5jmS9ORdZ9BRTaVKh5P1x667JWGzpX7L0Jywjmuh1Hn4W///C0xT\nSXd2w59VTKU5wlQS62pIa3L7m/ssQ5460WYWxh7WOMH8LYX2yjIl4KeVRevuKtoZ8ljgTi2blv6W\n2galuuvD3yhTSVs3Qj9KaxtiG705IdtZBxbVhVeFdvp1Y6YyS2BNw+a4f0iS1o3KcDEy9UqgJ10P\niiC8YzvxZ+nvPZSxWQISZT5Zt+bz1OiH1YZbdoU9in4/KcwJbVzWairZAB2yMk9mH6d74Y9EqJum\nN7zhDXjIQx6Cd73rXfjwhz8MADj33HPxgQ98AM973vNOqjEy/fEf/zHe97734YMf/CDOO+88XHvt\ntXjRi16ErVu34jWveQ0A4E/+5E/w7ne/Gx/84AexZ88eXHLJJXj605+Ob33rW5E59drXvhb/+I//\niI9//OPYunUrXvWqV+E5z3mOyrhai/Sp7+4DAHz1lgO4/cBxnLVtvc1UGidwIjih8+NRNuiYYB3Z\nLHRNpToAiP4+hL+NGj0vDX+Lt79pzq4iEq4zlXhMrEfvpJu+5xzSSRXEm8ejpohcc0co3WAyN25Y\n7C7dJBeESLRMmmMcWClLxPBamkxx79H+9rKMqUQMQuYESHBFMaDWOpXD38rOe2IWBSZO2IQEYEPY\nYYDN8sjYbiJfGrP5czkcw1GFplIEa9J3msM9GqVbViYCQA0LdBgbcpEOTLWm4YL8ck7UaCVNpz54\nS28eop8bFnRwW/Mt6FozHiWtqhVStwocZCBZHWCTQgDk+xZrRqXR2verDGiVxIupYULnmguad/y5\ne1oZNWxNgM4b39ih4IpnQE0Lxi1tt2WUSWYYkDMHWd0sRMN3aCglvUb/qGSs03fAQYY6w95j2pWM\ndVpP+US9/5QsUIvF0NdfAEKG35acQ876wtDGwtiY4XS1xtkFCFNpBqfPY5y1XRc5Dt7YWKlw3unY\nqNGIqhWXTv1JY2Ne7Ik00TnXdh1WiB1JQ+i1ukdNw8I3tHR8sA0XxqNooyZ2MM+7FkwlTxCfz8ey\nLUjbZwE2dGx4jiQHn/hvY710LnYd5kDmeN7MfJ8w+q6xVqxxWetw6reE1s3xvky7Pxx4U8qjgFYJ\nvG16kfBa5m1pnmkXAVjOe62ea+0zD78Pz8cP06t7lnIMhXZo+flYD2PNLpMCHJ6dBZQ1lSjw5s4z\nBoTo+TR2Vk2ZxdBr9h7r+kPnhCdeX7qVdibgmI5Lj+1GxkYNuC37s5o0M6gEAM973vPWHEDS0uc+\n9zk861nPwq/+6q8CAB784AfjYx/7GL74xS8C6AfIFVdcgTe+8Y141rOeBQD4q7/6K+zcuRN/93d/\nhwsvvBAHDx7EX/zFX+CjH/0onvrUpwIAPvCBD+Dcc8/FNddcgyc96Ulq3UtLS1haWor/f+jQoep2\nn7ZxIf79kWtuxuuf8agk1L2eO7FUmyc4v4sKU4gOwmmbbmrzQstqNJWCo3ZsuXeytZum6O+5ppK2\n8eaC3iWnAvBDY3SxSbvfQAJuiiEVwkEEktNPmUorLb/qfKEU/qY8o8BKCSGE41ETtX0AYNsGC+Dw\nndh41fop1FSygAvLKHJDsToOMkhheLlYWwBqGKsh1FACB4HhM1EM8SNL/XyUjB1qhIdkjfe5UTOw\ndbhRFtq/POhLrIgxEsbmurkx16URIQ7hfWrMQaYz5s0d8X7C50YCKs2NGnWDDCk4oPG5jhOoVAPW\nZEwl1WAfxfZZ+STzzHXyJdjpGEazgtYSrPFo7hIAs5yQfj2oczhXnPWX9acSXOkoWGNwl5lmkKKb\npo0f71ROO00vASHla6pDvXWaSqH+OnYCBb/sfNRRMN8Pc36c/pAyQxsAZQxREKYA7ETHq2gII9ZZ\ny7xKWl96vkYp0wvLoWWaY4PM3dob2JquGdqj2BAEvFkN40wHmPvPkjNFv5Mn5RTskoky99uuw5Ih\n1K3VPWqAKXyh7u/fdQQA8ODTN+I7ew/Hevpy+Q+tQ7ZZkgu0Mkd7+K5i/QUcYJ+ubdXAgT7W6F5U\nYhjSuuUemYMB+VizxmU986r/LB0A0+9LQt1a+FutE1sDktXqaHljo9GAEOtAgz13u0zORiytwU0s\nL5Vp111ifcmDQ8DRIlKBUX/Nqn2Paa223iO1S8prdUdtQcvvYPZGGaDjh1ilNvLv8rz9J12Ty0BV\nOR/vi1q1etmHV2Yx3FGxIVabZg5/+1GmJz/5ybj66qvxve99DwDwta99Df/8z/+MX/7lXwYA3Hjj\njdi7dy+e9rSnxd9s3boVT3ziE/H5z38eAPDlL38ZKysrLM+jHvUonHPOOTGPli6//HJs3bo1/nf2\n2WdXt/swAQr+y5duxdJkikPHDaHueOsSORFShLLlSw+LhhbWVqu3AiSm1PGVlv2/THOE9eGxpDig\n5QFAkqlkG5k8DMxzTNN3ISytdE117yDyfzs66O3MjZrk6FNGSEPDFmcBlVLnwokedagsdhrVc9L6\nRMGnU5VMUImcutN83mYhw9/kOJKhQ1aZkvkkja05h6kU3lsI+5J1a8ZoBmoxAHXo4yjpToQxuCzq\nP66IdAM546wmzJQCx+p8FEBV+NxAwDR6oq2FQcT5HkElshZUGHmZppLan/6TaZk4xj+Q3kvphKb/\nDcx21sbb18any7y0zR5TqdbhDCBl6QSNOdqqAYXYNs8plv3RjDdt3tQCeV6/+7bXvR+6pocyPZZf\n6o9df3S8HEeyLxOx7mowggI7Wj7xTK3nxEGYwtgQc1Irj+YrAZNameacUE5NS0wy7/AM4E5ADSDc\ndb7BzjWVKgE61h8ln+LQ1DjatP4kP6AJdYP9jgprU9tJmztBm8YLf/vmHQcBAI85a2vmzMnfeeXU\nppr5WAJXKBARUrATLCCIjo1SSJ3FPmLhb12Yt2VgJ+4TBbDKAge1NpSANzonLIHwkMLzoAd03nMv\nh78Rf6aSecvBIruNNGRLW1hnAULGZH3xxluJyavVz8ewsg6ysQ4zHy0vpNIBRAnYaZSxXgtG2OMS\nsUz/PQ75nGcpL/MJfdLy0jbVgtGzMZV88fragw+27xUYujKE38rL3yP/jvcl/X2yTKV/1aDSG97w\nBlx44YV41KMehfn5eZx//vm46KKL8PznPx8AsHfvXgDAzp072e927twZ/23v3r1YWFjAtm3bzDxa\n+v3f/30cPHgw/nfrrbdWtzuIAAPAvUeXccO+I/EKc0uom/5OYyYwwKSgF0QdyZKmUsh7PDKV9EFM\njRpPQDjdntJlzihNMjzFc0Ao28ILk2uaJk6OGMJmOklD/S3XRwGSaPl4NGKMEOp4hfem6fX0+XNj\neB0BMAKoRPVqZKIgDA9/k33JF7e1TrbQcP+ZnGfeJposoW75jqRWkjWOMtBCOPryCnqaLOBC26ys\nzVIVpW/S7W8BzJJjJIDHVKRb609otwvedr4mTeYEDJ+MqTRO80bzCeRtjwskFLbqFLYC2NHCwOQy\nKIXX3TWDnVr67BGq4WWNC/pbyUzTEj0FDv3S2hodcufWO1lPdI4Kp6slIKQEFFn90Ywt3cjT3yNt\ne6mN9HsGHDhCl/RAo+S8t2Rt9RkutfkqNKJqgR1Sdyi7/97uj9dvII0juiZqOVWGlmlcg5VZMsK7\nzm8nFecNt7iW+sNYX5q9QdY336lIGnS1YGctGMFPv/Py6HfyuctQb5q4M5n6tzAeibUgVJTX6YJK\nt/eg0nm7tzC7SfvdWrCl3dAltmZhyFfee/q/+0+5nzbaGHLK7DpEZXOZj/5veka8HproOkjzWsyM\nEuOA9YexMuw5QUGYolA3OcipHesemEbLtPqj7bueY9yHBPH2aH3p6/bXLA6S2WWm9aUi/E0BV3wg\nhNobdj5VssEYR3yse3XDP6Bh4z3JWWhJG8P1Y0i3m1SmknNoWQ69Tvm8MQTQvdTfx2tZhloYux1y\nnvJ575Gz1u15RvdcLbJjlrSq8LcfVfrrv/5rfOQjH8FHP/pRnHfeebjuuutw0UUXYffu3XjBC15w\nSuteXFzE4uLiqn4bAKSQ7j26TIS6dU0lIIXklJhKVBzau9ls0vqhakBicwQgRQO0+nb2v6c6KiWR\n8BqmUtfxie6zMnxHMpS7PG0TU8kAyagTKyfR0eXEVKKMKupUUC0sLWngymgAo5YnbWSreP1mDC2y\neFpMpVMp1K2FvNC2SCOzFMYI2OFdtULdkoUjN9J54iBk/Sk4aPQ3JqhFAFTKCJHPJAOVhndPmWuy\nfDonPDbidEqYSgUgBEjzZ8PCOGpCMedDeVYWU2l50pr0ZJp/Yrwf1k7yLK0xlEJR+/56xk52W6YD\ncIy1NatgaNWGi6VbkngZsk9lvZX05UrpdJWGgVUAjj2wYueT/dGcd2qshuQ677Tuwim5fjOg3R/q\n5KuGFh0bpL2eUTaLoHc1CMNOOB1DuPPHEGOxFcZlPaA11F04XQVyh7OGcVYGZZsBMC8xr1I7vf5Q\nwz7ly8vTDpFKTlL5NB+x7hrApM+bbmRrmhT+poE21rY/P9cwsFerm84ZLU3bDt+6s5d+OG/3VkXX\nLs9/sslbN2qFZynDRLYtYwHNyKDgzBG93r6N3dAfexzRdZD+JneiUxtLoIWu05fno2u2Z6sDyMZf\nTd2eNhZjdLX+PGuU+eOBMKX1XwP+SnpxvD9amWm81d7ONy2twSNaJv9ObSMFWIz9nK6XPut3yNf5\nIEwAI7qOhD9nuXhbSnsk23Mt21+AsX1+3nat7vpwd58BBHDAUf7eKtMHJjUbT61aPRAs3VhZ6k/Y\nc0sh56X0r5qp9LrXvQ6/93u/hwsvvBA/9VM/hd/6rd/Ca1/7Wlx++eUAgF27dgFAdpPbXXfdFf9t\n165dWF5exoEDB8w8a50oUwkYQKUo1C2uMB+P4ss7suSFv6W/KVOpHIJmsx2ApDsTbn/TbpoK7QT6\nUJ7IrqkUCVedXXZa4DsLGrhSMjLDM7KYSszAFbjQsaUk1F1iKtnhbzptf93wu3BLigcqMaFusnha\nIWjTNTglDOmzN9yN/+97++P/p9A/vW4Z5uNpXkWmksHECQBDSQ+Hhp8B+WYeytWAvxJQRTdoq080\n/I4arDKfBSrJ8DdGCW+Tbpo+z9K4pKF3MkkGCWX6BT23uXHDDDeZJqId83NN7JdnEMaNfMrHhgrs\nNOm5m8/bCOXzToABbjT7+ke+ITEW74e2O6tfgCxW3zWwpsR+iizIQt1M9Nw1dmzjTea19AM0w7bu\nmfs31AHcofJPTdMz9/LRaihjx8vL2ukKm1aAMApA4Al8JlBJnxf0fxMI479HVrc2dxWHxtaWSOug\nVR5tJ2eZ6HnHYrwVxyUTHi/VbY/LuMYUWJhZmR4LU3NMC04FDwtNQL4G2lgso/nxSAXyaD3hTwtU\n+uH+Izix0mLDwhh7Tt+YM8xFe072lBsosb5S/bVhHyGZIcjEiXWBENUx1cui/ahxJEv2k8ZaqZln\nHkDHDkkKa3D4uhxeO9RdAGVpe8phU3T+OP2pzTeD864zNgt7aYXzDkhgX8vXf5YYWprtZgEnGuB4\nMgAdzVsCJvlaxH/Lywt9gDmG6KFqSHXvpwRap7I8eQX6+5XCexwrc6J42FXY9xK43rk+MRfj5+3O\n+8Prtvb7UvpXDSodO3YMc3MchBmPx2iHjWvPnj3YtWsXrr766vjvhw4dwhe+8AVccMEFAIDHP/7x\nmJ+fZ3m++93v4pZbbol51joF8eXARLjnyLIp1A0kECn8TtM1oqFdDFRSWQyJoeEBO0AyVsLtb/MK\noEXzTUq3v2kgjGZoEUeZnagUwBWP7dDX37eT3v6mJbpRSS2iwNpimkqzgkqGgxjEumX4m8tU6vjC\nISf7WjOVvnLLfXj+n38Bv/1/fDGGallsAitEww15GTJboX/y5DsyZTJNI+7MBL8iPB8ZLkWTGY6k\nbPih72b43ZQz7eSrXJkmYxVIoZky/I2WP227uGHq84ww6Iz20f7IMNNx08SxyDWVsiJMptLKtHPn\nY2xjMK4d45GBZMa6EcoLhmD1qT/RofBu7iqGVFBDOBjXhfUl6eH4423akedTKDP03zR2VJBMyUcc\ntJLhmMa67ryPhbMJFNYCMi6L4WLUEK545yWKO9cuoOCKnbftCiAmcwCG7wpASG34Wz6G7P6UmAQJ\nmKyvuwgACZCsNH6ZIWw6IEM7K/VWaH9WG1IB6PZLiY3YdXW6Fm0LN6SCPgrZnzT3NU0lfd/vmdap\nP5ozJUENmYKe0qPP3ILxqGHgv/a7tWAqeeNNu8XJn7c5qCT3yQRA2U4skMYqc7TF2KBhJFWaSkY4\noTxH4jpJdc57iRES6u4IKFqyl1ecNZB+Pwsro3zDY2V/2BpcXqtDXrfuuGbZ7B9aJu13SeB5Wliz\nOEu2vO9poWCyXF0rSVuzUjm1YETtJRG1rC8PfNKY0T6IOeQpADu1+wRt+7TAOKYs2RpACyjPCRrN\nUQUcF9Y22s5SOGopVYW/XXzxxdUFvuMd71hdS5T0zGc+E5dddhnOPvtsnHfeefjqV7+Kd7zjHfid\n3/kdAP1DuOiii3DZZZfh4Q9/OPbs2YNLLrkEu3fvxrOf/WwAvXD3i1/8Ylx88cXYsWMHtmzZgle/\n+tW44IILzJvfTjYdHphKDz6tvy2jZyrpQt1ADyKdWGlj+JsF7IxHDdppx4AM7cVTdoKnfwQQTaWC\nBpF++5sTltP6IW20nklLNjXH0OsFq/vvbCOz/0xMJeNZEkNCGkLp9jeuqUSdn/LtbzrLJLBTAqgU\nJrquOzW0cZqEuvXwwCD2fvIG3cq0xR/8zTfi/x9fmWL9wti5OQWsbm+TlmFtYeGUNxNK1oNNW+eL\noAQx5z1NJcNAkPR+IJ2G5BTclJfWrb2jSdvF9qTwN11Tqc/fRgPODX/rOkwdgMN6luNRM2h8rfQn\n2sRY19re/0bTVNIBIAAspC20tdQf6nBaLLLwPj02igxxqmME1okxA4n9VnO6GsqmdWX5Cie7qa5u\nphCEOsfLZgPKvOz2H9IXjdLvGTu6ToZadTXVmwJbNYYjIEPQ7LwlJpn2Hi2jrP6kOr0f+imfZ8P6\nU/csS+Ki1AEon7zzukvO4SxitmG8la46r2Wc0fVNd9CoppLfH10EVetL/1k6/abvcSrGxvw4HzMh\nadv+wnjEwKheIySvO/xpWQ7X396Hvj3mrK19W+SeK7bWtTjYqmUcVIUcKodDmR3BxiXUPKzMgnM4\nbhpMCFDjHlSIfaJ02FXn5FfuZypY7+8pJaaSHqqs5BP2P1DJvBq+KwPHtXWXnPf+s3hRAwM7/fVf\naoZaeTnYyevhbQx1p++s/ByctMvkzJ6a/ax8iytnPw19VILltL3HkkJgIX+V88y3IerGL62nyPql\n47L2sKtyH+8K47L2wLT/HkN/4um8XnkhVYFKX/3qV9n/f+UrX8FkMsEjH/lIAMD3vvc9jMdjPP7x\nj19VI6z0nve8B5dccgle8YpXYN++fdi9ezd+93d/F29605tinte//vU4evQoXvayl+HAgQN4ylOe\ngquuugrr1q2Led75zndiNBrhuc99LpaWlvD0pz8d733ve9e0rTQFxtGDTtuA7+w9jHuOLsXwt60q\nU2kMYBJ/t2joGjXD5F2eJgDIG5ylEDQgsQ5KmkqRndBS8e+8zCTU3fqOnDCgPM0TzRg1ovlimN7S\nJABDxgRSnJqsrFHDjFbq7Aam0pICWIRyadtDCmLdIfzNO92lIIwH1qwlU+lvv3p7vDa4b9/AAjLA\nL+lM1mpEAclhmBMvXW66rTGGZTiUPP2IzBbluVjjTTv1sQA9KwRNe0cr0zbOoePLfWYJKnFNJZuh\nJdsZ9jQXmCQOTfh9ADjniVC3doOgnO9RU4mEiHjXxmfgoKprlFhNknEWkhznfvhb+puuL9o+STU1\napgwAHF2jfWFGoR9v4Z2SWeBrUNDPQVnQbsEgOfrP5lR5qzBHpAn8/Iwo5R39vC3lKfEPh2RZ+kd\nPjSVBhSthhqE7jOixpsbquYz8mg9E+NZpnz9p2SFWKfvbVcP7JSYPdRR8TRhgBxoKBnh9BS4LAxc\nEv8Gq9vKy5wk2Hsu0yAy1iHZxhLwNothPx41/WEgu2WrYWCXTNq2H0Aoukdp/Ql/WjbQjXcfBQA8\nfOcmALkzdyqYSj6zJ72fWqc4JPt68lRvDRjNgHCl/aNhMkamUoBCCuOyL5v3U7axpN8FcMfY2nd4\nf+xnE1L4+aQA8tYCb9oaPBtIlufTWGwec4TWXQK3u65eb8vrt+yP/E7rDw+b1epONl5IVn79sEBr\no5KvsD8ncLDQ78KhAmWAJkarKCsDt/1nOXvoXfk9yhDbpvFtHb7+5+XNwt4LX89yoFECB6UWrJWv\nlKpApU9/+tPx73e84x3YvHkzPvjBD2L79u0AgPvuuw8vetGL8HM/93Ora4WRNm/ejCuuuAJXXHGF\nmadpGlx66aW49NJLzTzr1q3DlVdeiSuvvHJN22elwxFU2ggA+N5dR7A8bdE0wBmb12X5gwi2p6kE\npJe+PPE3AE1TqZT3eAFUCo7tysQHi+YiayY5ICWmUulEhWqelDa/8P1yKfyNLNjWjSXjERe6pKc5\nNPyt67psMbGo1iEk8oQQ6i6Jnnv0ZC2+eLXplnuOsf8PgMzU2PipYwrkbCGWl7xHgGj1GGBNWCyt\nEEGpqSSdWO/2txL7SdViMEAOaexo72hl0gEL/d/HjfC3jKk01Z8PzTshQt0ey28y5WGe44ZoKo1G\n2XukST7/eXUtyH5mM8nU/qS6rLCpORHO6AHMUjC16va3tk6zByhf+RpPOAXgmYU1KIZWLVvIdLRV\nAyrPRw3hGmcXsE9XPTq6DtAN+wRxdmto81XOOwn701krSVzUAslk3bUn1SW2Ay2zdMIpxaXTc8rz\nBhZzUdhaqbvkqNQyI8qhahj6UcMC4u0s1+07FbVOX9ozak6qU5nxGRVEfGvKnMJhKqk3meZrdrBP\nSifvKaRLtx2CbMP2DQvDb/k8p4dNVG7hZJIH5tU6SfJWNYDuY0beSqCqB1rtNmYhghWXJcjwN9kn\nHmpp191/j1i/F2ZEAZNaoe6VArNHv+mqsAYX16zUd29sREe7woGuBuGp7+GC+mnvsYAQWjcww2UJ\nHQUObFtQZe1k4CR9P3oe+l3X1YSnD/0p3v6Z96fEoLP6PRbrEF0D/UOFOoCOM8d9G6/2IKdkv9D2\nFIW6Sf81BmosU/VRCnvpSYJKM2sqvf3tb8fll18eASUA2L59Oy677DK8/e1vX10rfozSZJpu9jpn\nxwYAwPVDXPoZmxdVwChqKjm3vwEEMHGcTZqP3v4mQ4xCire/rQw3nhn5QsjLhJyiec4ubacXcgKE\nU0HP4QwTo62Y6P33JU2leqZS6jdFcKnulWZIWcBbYKfE2988JgHZ0DxxXum8n0xaabnRGkWWC2yd\ndNJmGyeSqRQZMGLMZewn46REairJ0+95EqZc+bzMAAAgAElEQVQlk+XU0LCykNK7FLe1EVYeHb/a\nkKNi4ScMUInqptHwUS1cjN+yyNvO+kM2NOaojNJYnJ8bMcNNJqmhpmkqeWAwAH7DY8EQt4DJeeN9\nl+pmt9uoeRNLqpqeHNe2LBvLG8aZHf7Wf9aFv/WfRT0nCgi4/U7zrOhUDL8PV7zLMpNhm37jsVFW\nA6aVnpHWH+tZSt02q37qzHnGNdMnmfFk16w7PqP+/30NjOH9FG8G5HOI/lbLx51DtcjqE07OoCiU\nKQHUwrNcYWCn56j4wA7dU4pgGhnzNc7CLKffcmzIAxSaNEAorNF0Tmh1h78MEygekAbZBnnoEur2\nhMRnTbUhW66jrRyStMY+PlbGhgccFBkz4hnV5M0O5QwwoIqppKytJYAu6RjqZUqbrDRv+2fJ6zHL\nrNSBm7YFIJG+xxLLULyjOiCkpm5/XNLvuaaSUqYKCGtrdWpjSJa9o48jZ54VdBlpO2vBlR4Y9fay\n1AdLX1Ne5kOXHXc9YOPS7nc3w/gtg2l0DfYBLdp3q42AYHPN2J+i1lfBHiulmUGlQ4cOYf/+/dn3\n+/fvx+HDh5Vf3L/S0YFtBPThb0AKddq9bb36mwQq9Ru4BQCFgRj1ggqsIir2a2kqBZZUianErhEP\nzoIDHNB2VjGqHEOcMpU8B5p+v1S4/Y3qb1gb5XjUxHdhCXXTftJUApUSU6nM5qJgWg1YczJJGq3B\nWC9uUvHksv++hqmUmDgCrBEbvsXmspgwIVvSAVNAvwJIRp+DxcYZE00luhBri/GKBiqJ29/6PhLw\n1gDdaDvptdu1ekEhb2DNzY8aZhTJlG57HDSV5oimkgNGSN0E72SMhxJaAAwPASk52eFrqodTCjNy\nw9/Ib0taL3JeWPXTfB4DFEjPo8SS0gRlVaO1yfOZTsXwjJYNZo8GxnqCsvyK7I59JxNlenjr/2xs\nIf4s++/surlBaButNcLW0hi1yqQ3KQG+c0odL9puqz/lULX+s2S09mX2nyVAS9MIKe3jpfA3bb32\nnD4exqKtBZqmkl63Fs5RAg7i+lp47jI0RhPCD0nDcSKoVAAjqCOupQAqbVk3z/qS9uZQXz6mV5u8\n+aMBefraFsoi+7jhoOo3JGl1Q8mnrUO8Pm+8yXZaexpnWtjlAcLhdMKF+Q3Ihb1HgtZmvqE/FcwI\nCeybDEf1/dg2RFdgb9C6ippKlXXz9bJubS2xK0dkvfTALy38bRbGWxkkqwOL4t6j5tJtUW+95OCT\nyCPGTompRMEa92BqFf2uDfujgFaJFFG6SbXWLqFrUXFchvdTCAktpZlBpV/7tV/Di170IvzN3/wN\nbrvtNtx22234xCc+gRe/+MV4znOes7pW/Bilw4RttGsLD3Urg0oh/C13NoH00peLgAllFekOeUhz\nUeclgEpWvv774BD3ZdqCuwBhCxU2C6qjUr6dyZ8Y8Rr52vA34khuXODRoHPjhhm31NmlTCUVVDJA\nixj+NuFsnRJTyWWjxOeodnWmJE8a5WlbdoImHR/HOJGU1VC2JdQdFkwL0Pr/2Xv3aMuOsl70m3Ot\ntR+9+91JdzpNaEIIL0MOHBIhQdFIhnAxqJADouhIuFz0IqDGEblBiFzQGwZwr8QHjxHxcuEMHwMG\nIDAEGQziUJAABzwSUSEBgWAO6QQ6/e6991przvvHXFX11Vffa669g7QnNUaP1WvuWlU1a9as+upX\nv+/3UU0luggkdykO9AvtJ2UiIyIkSZg+ixSE7pu7d2xAhHdtcaQL3auMQLSoaGMjd4XNjZhlFP2N\nnlLgRMEOrKmkgYgcs8fKqzKVyMbFAiM4NooFvIXbt9iV44nu6iOdVhcnbkzdlhHuBrQMMI01HK1N\nvgDCUMMS/5813mqmbuO+rTDimC3UCv1N89qaSlC2k3MlYTZoNlso1c3lpECvh5lhgUXlCT2fMTNa\nwVumtUGDeD/WM4+bPlO7DGb5fG6MFtCaHyLlbVHvR+lPblNhbrSJayT3foXkcX/rnmN5P9TFkqag\nBSoxlcLvgs0qgVN9kmeTZG7y69TnJVuUlomfue85qgAzWssAkqaS9o4nm4i/p3qOd8d7P21rsxPo\n/G9ttC03I3xP1gaaYxlyeXPgIP9tWeasbmMDzfal6uJqu/ZSZqdUfwaSaWBa3Muka1J+DlzR3zMb\nCIl9aYIroUx9buXsksL9jb5jbfk3Nr8xb2A7WHMdxXn9BzQ9gCqTcTxrp3GIhQFZy75MINnsHRfh\nQT25NJVwevvb3w7XX389/NzP/RyMx92CMxwO4UUvehG86U1vmqsRZ1I6tjqG7dvlvwe20falIexe\nWcj+dkAClWYj5MTMf31BYAtFTaWpLkKdRX+zNJVmRtSpsY+pdBqBSgMGgMIb4LUZQ4vLF/KuQ4eM\nesONezcgFlMJbwLC5L5zyyg+v67emt2UD6oKhoMa6qqbcNcZ0EIyhiNTaZ24vzH3E+tWgJUs3yYw\nlairWPgusSgw4Ifz6YyzrkwpuhnHOOjy5WVSlwDKhBmhcUOTtOnkNnwyUyktANgo4941PEbC/zlB\n/uT2kRiBHCNxgLQ/XEylts2Mjo6pNJiVj6IEMZuCUqgbtVFZUDnWIm5Tdj+o36UxlNwNyfPWQOum\nNdkoXneB0M4pKtNiWkRAQNjQ4E2a9yTJMsKxwaFpC+FTLFs3oXwvcJnU1bGuq8RGUQzhDoTR6+YA\nR/U5NrZ7FTWguryaMaoDMRzrS6ybbMylvBRIUEGtaIxamz6Y5dPbiMev1xgdG2VmmwUL/Ipl+sBb\nHIyBm184rRfN1sCRLeXNQhqXWh+FS55DMQ48qqpyPsGJm7NZoW6m7tA2DlNqmhZOrM/s2VmAGbre\nh+e4gFzBN5q8TAKPKxRAd29VhRnP1N5I9WplchtTbt9FWZsqGBzntlkbTDsLl1fW3f023Y+H3Yhd\n4y2WrLmBZuZLU7jZCYQ3bQJG3YckxvxiuhmxgJZi2xqgBf695bLLAUAa+ITnBim/162Z60uJxVwc\nKohaUmVfcs8HAzvSgankpYDr4fJboB8evzaY5htDXoZWlxcApg4GXbQ3LBfXNL9YIFnJvOLzWak3\nqLRlyxZ461vfCm9605vga1/7GgAAXHDBBbCysjJfC86w9I//dhQesneP+PcQwW3r4hB2blmIYnQA\nAOfuKEW6AUr3t4WhPjhtplIaHBIbJKRRnTOVOPYR/v3pjKkkv7wAKAKbhdi32P1Nvh+sy2JtQPoI\ndYcyd21ZgH+7/3TMk2kqIf2YUObCsIbVccMylSRmz3Lh/qZt+tJkncor7yUu+JtAVaJlTKatGk2D\nbpA8tNYo1B3c38jYzNw3lc0CdZGgdQcwhnV/EwwZegKC80pMpSnR3+DGJgY2pPJw/WtoTJkMJAU4\nwKdYVKh7CTGVsHsITRSYjppKE90tE/cDBtWskyTZkCAgotMgzEAlFey0w+IOqgqm0Kp6cbhNKfob\n31a2brHM7tNib2CDw8MWwkCIFbodP0dsxODfTdsWaqjcxpvmcojbjudqTVzUc1JNGSF9gAOLhek9\nJR8jcFDbqIR6vToUnvtJwKTeRhwZ0HJPMY1rbtNnjXXn/fTRRtEAID74gnU/stsSQMnu0cqs4n3n\nG04OiAwpbbVToppKGTsAISG4X2g6vjaJfRWYStSFPZQZbNjN0VQKbePGubPPmflIsjEz0FrR4sF9\npYM1fpuoZCPy9+RlH9EyVUZIXfalvJ51nwmM1vP1mYNtt9nu0xL4xwcAflaG1Zepbl1wvftsjXEJ\nkMbf1HDZ5QAtz9zf/UawN5ix4QbChbFRulTrNkQGwit2Y96XpCzhvcFt59poATvpOTqASbLvcq0T\ngocEzRv70ujzabaeMW10zgX499Y6bqXe7m8hrayswMUXXwwXX3zx/zSAEgDAF791RP178EHfujSE\nQV3B7i2JrSS7v3WbuwBISUyl8NAjYKIwgABmTCVDUykYH2ETKwFaIV/Qh+rK5Bf9UL8J7ETwAAkd\nK4vFpGlUwx5fD4CWBJJlUR1mde/cMirKwi5O9DR/gfQdThPhfiJTaUKiv6lh4xEQYRjCG01UqBtr\n4eC6QsITZvfpaWfu+kfZcRwdnau7cH8jk6Gm8yBpeLFMpVleTdMpnTDykzsPKpX5hnH8pvwcIIzF\npaWxlrexAQrQRU2lQVUsKDjRMbqAwDoP0w4gZyrx7UybEtH9TQIRjbkAg4paH7lo88RtyjI4qFvo\nvEYezrtusFHyyF2aMYru2zBiLBAGT7NRb8XBOMBlWnO65SLIbfK9J+8WONi0ut4WZ4SbhynOzZSl\ny4Xbb7kglIYwm430Zd6eMm/36Y3ihDWVrNPdyAg0DPZ5dMb4gw+sqWS0ET0frY+yTZIToKNC3ZzL\nTEgcy4iCSuFwqKuDbxtNx2fM+cVhDYszG5UGxwhjM9S3KdHflANGDrTgAZO8POxCVGgquTfvaU5v\nyW9xouwjdQNNtLKkOYZnWhTF5ffT6GMd21kWU5VqvWiHLgC5C7J1WOBlNFlzEQcIWKLEputdBspq\n8z+3jgtlEuBAaicHDlosnJCkfRIGZXU3U9TnCtDa5e0+LXCFBaoM20ACOMrD7LLtXJn5GLJsCLk8\nfD9WxFWOOSiNN+9hF13HpXZ6+xz/3qrbSr2ZSgAAn//85+E973kP3HXXXbC+vp797f3vf/98LTlD\n0n+3QKW1xFQCANi9sgDfPdn1kQgqBfe3yFSy3N/CJlcHTCbTFP1N1lTKr8tMpQAq6UwlgG7AT5rW\njMCWATYa24IBV6yNZKjb0lvBLKldW3J3xY6plNpI2ULhOWlC3bR/g45OAOd8YFGT+kcBGDbDoKNG\nazeGZKZHH/e3Qqhb0AzK3TcRIFDko8LNeT3h73z0N75MznifCptejlFV17z7G26DpNGE61jDbqbc\nOxGNIgRoeYHJ2bW4URjUmbFBE51DsKZSSBobpcjLsRHR/UhjCLv8dfdkLZLdpxU2PnepmF0zwBXL\n/Q27cHZl8+Xmek46GFEwQkwQRj+xzdhhlsGB1hTuPjL3N+Oeadst1gynqWdq7/UcG+bpnQHQ4Y2k\nrcWQbyqsDRp1NdKAC28kmvnCIOvttECysG62judDjeaNbmhCPuvENs7pU3sDgMNuawB3lY2hvD00\ncZpKdcVvHENqmEk72JTcO5FpKs0+ObbTsdMh8ls6bKPtCGM92EIBOJPmJk/yzFkWkwD/tmkAppVs\nR+C5Wns+eGPq2ZBPSR9pZbZt/l6UbQz34mdCTpXycD6t3piXHNBIa1TOJNPbiV1NcXuKfM65KGej\ngJgP34+XZZIzQuS+zEA/w4Yw7RcnkEgPdkN7ufx+LZ7u08PY8bpN9Y2yCIDWM2GPEOrEDHv1+ZhM\nJa7P9bExNuwxHnC03jNLnzC/fykvtgXd84YB8lqpN1Ppz//8z+Hyyy+Hf/mXf4EPfOADMB6P4Z/+\n6Z/g1ltvhR07dszViDMp/ePdR9hFPKTk/tYtxFhXSQKVFgv3Nx0sstzfuE25tFhQFgTHmMH5Aqg0\nqCtx0BVMJWvCbnSjLHNVMyY4WrcMvHWf2KVuF2EqDQc1Ag6aYuFNjA0ZVKIvcPhNmCy158OxqTTw\niTM4+ybq/oY1T7h24ihOXRv4fADlJkliKnEuQQBlX8ZxHjWV8rER3bQU9k256OYLPgCIgCd2x8KM\nHW7SXkeh2MOz1NxHVzFTiQOfQgjnqY+phN+dkC9En1sY1Nm9URe4KQGxR8O08FkAx5AskmY7G/kd\nHxEQ0WISUKO1a2eZj9NXszaS9qIPsUwAxf0tGq06swf/duw8xcIGIes2iw0tY52gBxp07s8MwYa+\nj/Lz9txPFv1N6SMuopyXsWO5/XWbZRDvJ2M0GSe74VmYLmjonejKluv3uiBQYFIyG7EwsNe4tjYV\nnAuCxU6wNCFLdwG97qYtwXWc4nxFXJq1unMGXZmvT0QhPtx4ldVFE2eOUqHuLPomBpWUw4TAVNq+\nlM6eMdsMtwev4Rs93HJphLQ+8CmUpx1O4eifPvaGoUcj2ETc25aBXxiI0YAva/Oezf+zmo2+tIS6\nE3hrgfConRYrgx6SiO8EzNqpu+J63cVw3qkxb2DQz6VB1Oj58HVLNwdv8j3PkXN/k9ZptxaPBwiJ\n9c/GBpsrB8m0tbRCzyICNoKdTtdGLi+tuxXeMfzbFq0Tsj3WfbrdvhsdYMbXrQOnOIawHIGitdh6\n1nECVM17LtAbVLrpppvgzW9+M3z4wx+GhYUF+L3f+z348pe/DM973vPgoQ996HytOIPSidUpfPW+\nE/Lf1/KFeM/WDlRaGtUFaBFSMADCiyGJZVPXLstdoDv1b2Zl8nkp6CK53lGhbqlutp0ONz0t9Cm+\nH+9pvuV6l1N/uzJ3MEylIQMcRPeqoQ0q0f6NG90wGQr5Qv0AYaOigG5kg7SRVAh1o00+QNnvlD6v\nTbBUAynURYHMPCpgqltyPwuMp17ub0I7WVBJAG1G2fhNGxVuzGG2l+YvTZlKVcXn4yLPaSDVBItq\nz4Zaiv5WZQsI3RNQ4HOEwFTvadu6oRHFuxLm+cI4CePGNBzJ6SqAPr94TnOStpCv7lIrQ8jnOIEu\nT3Z1I9xrjPY5VZaYMHjslS5/THmoHlv0vLwf7d3xGMJlSGk2m1vLBLux9Ndi4PPRE2hdRBhiO6U2\n4t96hUDx2JDBr+7Te7qKy5QPnEKZvvnFEigPV61T/9wV1v989LGR1kjvpoIC62Hu4/Aa7jCJCnXn\nLlu4bXIZx2YHpNuWGaYS2czhg9CNuuGrTALn88GPAb+TAOU8w4m4c8Mom1eVTTF2AfPeTyjXcvfx\nzNVpzjLqRgCQ5pLfXU/rc9ceKV/3qelw0nZ6D0lM92dUd6s8x6xuC9hhDio0wNFz3xQE8s3B9pyF\nx7g0PvkopWWZydVTDmqTyuw+rQONCA42xhyMfi+xX+OYmN1yrqkkv5NToy9xPV6wyHRV63GoQPcf\nFnvbiiA7YOwSGSQLdevAsZV6g0pf+9rX4Cd+4icAAGBhYQFOnjwJVVXBddddB7fccstcjTjT0lfu\nOQ4n1ybwNQZcOoE0lQASU+ncncviQ6JAjshUmv0+snAMoMijqbR1KfeAtMoMTCWJJdWVkWsNedw5\ntNPDjMVgvGyRqRQACwN4wwsqBf2wphIFDnDZ3MmcdD+UXaMt0vi0VtOu4YCQeRO9l8mUavEIdc/a\n53mOUahbANS4iHtd3aQvqaYSWcwTCFH2ixQVa0juR7sn7hS4qip2w5tpKrUyCEQ1lTiWEq4bn8Lq\nLL8SHHvGRefApQ/bBT/9hAPZ+0THkaappEUXw/cT5qyq0kWJtYWXaoeZLlvRaPW5v02bxjSgeru/\nEYDF5f4mltl9WhvozLVXMYyyTUXPUywpamK4FwCDcYBPI71gBJ6DDZAs9SVbpFskFushaKfa3Im2\n5SJi1R0BBmF+y/PmZUr2IHWvsjZd82kx6PeTi78aZTpP873ufK2xKcfaQGZocMRw8bAYLJAX56Xv\nOO0PnLjgCoWmErofXHMQ7WaKYJlKFFxI0d8wU6lsY5+kj/OQR2da4HevbfI1TT5I0uvOWIsqUymf\n+/swqtLcwd8P3pBb77jpssW4ONmMQJ+en8cNGK+7+LdS3W0LLDBK68b3bbo1m+61aR7U+jICJgZo\ngX9vMTsxU9X1TqAxLoE2ac3XxyX/nun3Y7o/ZyCZVne6JoF+6Z2lB4xCG9m5Wq/bG+nQHr8Q22jN\n/8k2sHSa8jmGtp2W18dt1lpLrdQbVNq1axccP34cAAAOHDgAX/rSlwAA4MiRI3Dq1Km5GnGmpXuP\nr8FL//Tv4Wn/z9/AV+45nv3t2CrVVFoEAIADgusbQAkiWULdaUOjbzgnTYs27vwA2bGcAykSSyoI\neActII2p5BXq5iJYaSd92CizFj+TzcWcLFChbqqpRNuIwTuaRFCJCFpKjCb8W04Ph8u3GeF8KVMJ\nM0cAyo1S+Eo3kjr4FYS6eeAvN8I1AIZqKvHPh+sXTzSusDDLzzLdTx/3t7j4Ks/S0iPDJxVaHw24\nd2x27ZH7tsF7//fL4fILziqMW5zCwh7B1EF6vy0wIjF7dIA5cyVs8t+GRKP5WYskx+BTtb6MzQLO\nK/n607opIECNCS4KpbhZmJUpUcJpPosZkblJWCfVs99LIuFVVYnC0porLEBaJ8yNimGwc+xTU4un\n0Z9j7TTKOGPUOmWcWmwh9HwAfG5BVpmF+6YBYE4bXZQYt9OKWJO7VPjmjYkyV+J8lhHO1c1VnTE7\nnRsAixnXZ4NG+zLkS8Bq+RsGD4osap55lSoPbeOAqRB0ZjvWVEIb93BPADkTfqOHWx79mNbcFKP2\ntAbjObMFZSDECzDQPtJd6tL/tfeC25ha7BoLLMIgvFcsu48GkfWO002sDFrArJ2Grh0CtNxsUeda\n2k+LJ79GE7WZLbAm12mS8+GDUGmMhNe0NfoSv2dT434oa8ZzPx5GIIA83uihndXnWd1O1zs/69cH\nPnkAx1JvS1978IG59hz7gJ3WuLRSb6Hupz71qfDxj38cHve4x8Fzn/tc+NVf/VW49dZb4eMf/zg8\n7WlPm68VZ1i699gqfOnuowAA8PlvHoZHnbMt/i3oIgUG0MUHOp2pJzx0l1heiMIUkijUTcAaS1MJ\n55U2pzudoJLEJtHqtzbGHBVT0znwUNLDhndtrLO5sF5RYirl7m+DuiJizLPfzt42TrMlJEmHp4ie\n4mL2NOokk9g17K32StQgxG5/XDuzE0HrNB/1OUCaEOkzGjDjV3MBa1tgtXhGRNgZJynaCWVcDAeV\nwlRKIAfelHNDjhPqVjWVAiNQYg4iQEvbeGFXQo9oJ0BaoG/98iEY1nX8HjWVkPtb0w5mv9c3fdpz\nBEh9lp/W6u+OzeyZ1W1sOKObadPGTJYBFdzfhMcjCtjT6dVLr8fXJbHskHjBUvmZW5p2+HrS1Cjz\nDKoKJsho8wBaAH7B6jzKlvzu5GXq99NHz0kbb5nwuBWJbHY5gIPSSko3C7obzaxuZf7NyjT6xwtM\nAvhdCbPDAsWwx9e9YJGl7RaqsTblfWwNzgXB2qBZAF254ayyunhNpfLawoADlUIdqW686aDp2OmO\nqbSNYSqFtYRGfwPYDE2lsp20vWbEPbKOtyhP6f4GsczIcOH0j5ArSYBatbktjHG1nVXezmiXkILx\nxjTpyunvjqURiDfakos/vSeTCYmYneY7ToFjIx9+J9l8TpAXX7eZkKnfY5ns/A8on/58SkBLXydy\n1yV53cOvnQxOcvMBV3fqSzvwBMQyPffTtPpBRX5Ao7vbT+M75gQ7G7/rnal52BNo7ViGYOTtPk0G\nNRm/XTvlfBjstCIiWu+4lXqDSn/4h38Iq6urAADwqle9CkajEXz605+Gq6++Gl796lfP14ozLN11\n+BR850QX0e3OQ7kLXHB/2zZjKl352H3wmVc+DfZtXxTLC2ymkGSmUr5JElkMaKcTGDvS5nQnAVIk\n7aVSTFkmuQ0QkwHAJyiuubKwpx/iyWUemUpkc6EyJVBpWNeAgaN06tP9fUTcr3CSIobRBcXrLqad\nOFEG0EYSBWAmSKC8rhimBTHe1HYKG21JqBtAZ7jgcT5umkKAj4tSFpLUzux+2haGIIupc256dW27\nv+nPMncdtdw3MeinudPhd0xzHQrtO7U+gV/6r1/I3CIGpF/H08ZkuCShbrmN3e8T60/aIFJ3Rzez\nx3JVQ30U9hKyvk9epm0Id99loCzdd9SVM0Ayy4gJr4V1WpxtVIwNAHWbEoEVNM600+9OfLir2wvC\n4PnNYj+ldrJFFn1pMQKb1lqj0v+9OkBTw3ijG34PM8McGwR8kuxGDgCSmVd5mR6gytwEkHZawT5s\nV8JUt8YcwUxiLyMEr5mWe3pf15iQj4aex4nDcKKmEmc74bpn/2eZSrMD0u2MphKNuDqoO1Y3PiCc\nN+kMipTHo08VwOAQS7VSbBj8fLSNdovmSwv4wvdjgUoYkJC0KwEANC0cfD8ZEOI8VLDduX0gjOcd\np2xe650wgZ0eYyM0yWSZsO+P/Mx7RUtzun13h6Yg5sWgRUgS445lzRh96QVsoquatObGunXX4uxw\nSDgwpa5nGkCGy2zNd6Ks21qfveCgy5XccXgHUK7jUv0Y8PMK/FvvuJV6g0q7d++O/6/rGm644Ya5\nKj6T0z9860j8/x2Hcve3wFTCYVjP2bGklrd3GwGVDE2lqLdiCGDjvFIUNOr+JuUL7m9cHWX9YWPc\nLeUWAJRpfygb4wk6yZE1T7rPwFQSmQToxC0s/tT9bTCoROAAl8FqKgkb/WC0Uk0ljaHVnSRBVjd3\nL5si1E2AqclUjyCYafEYJ160v0JdkgA3ABLzVvoHIJ80w3sSNwhMv0iTO6cNEyZZDSDEgA137xxT\nSYvkl8BgiTmIx4Zt7GhgDUApbLq23hRaVCNGU8krZmhFgsSLJAVvQxrWCcwC0N2r8HUbhEmGYx0N\nDjZrEiU2mVfp+eDPckMDsW4vZd8KYZtT9vN2Z/dS4Xz65p26MeruB2TDqZTZTNskem6AfjTMOk2Y\num4KUcd3t4cegjLWc5aUb2yY7mJIByK0AbdJK9Ny2bLcXSp838qmuGsP3SRJ+SDW7WYBmZon3afJ\nOGCYBFzdeL23TugpSwoA2Ag8uC+9J9XUsKcMIZw0TaUo8C2ckruYSosyUwm/EwFU2iymEjvOs7lN\nHxthfpm2LVQzqpJml1hASM4qksd60UfKM8/czrENQ7Ur0W/NA40KP3MPEGIfKoRmWq7XeH5pleeI\n67LEsnO2hVx/7iadXyvKLIB9e/7X7icHDsI16x3X51U+SARTHgM4S23w3w/qS+vAifalcFSR5kv9\nHcfXJPsSC28DgLo2Z3Ub6xm+5o7A1ugAUOYt4GQZ2qLn+ZortdMLpvWp20ouUOnYsWPuArdv3z5X\nQ86k9O2jq/H/FFQKpztbF/143d7tPjUuMNwAACAASURBVFCJupJYmkoACFwR3gwKpHijxEnl4b/Z\nbIvuM4v4pCy82aIrTnA+phInEr5lgYiW11X8/aQpARMcGY4macNQuL8pLBP8kqe6y3uhJz4bSTiS\nQdPORMKdm6nOOJE3StTYCnVR4IRz3+TBxpxyL7q/cZpKQjtZUEnYHKcNSJMZ7Ny7gQGaYJBy7MH4\n7oz1d4cbG5o7HQBiZSiAAEAnbMq5dCam0mweQroj0sY4MZV8GkRYjJ+ON8oMtEOdQ2ynlg8L7k5n\nWaxFf6ww6ADy+aX7DHVRI680HM0NtLF550WWufkFYj7LfYgCOxoNn+qr6Zvy1rwfKqottTPfePlA\nk7HyTuB6mkY3yvINpzEuyRrg2Ux1n6HtZf50IunrS6+WiMsYJc9djhKHx2V+jaZSsFSfN7yR9Kww\n6xkz2bofsimW2plv0Hx9RIFwqtODE0dQDjYkXic4kCz0l6aphN3fJBZOXXcHcOuwcTtEm9c54EDf\neLUztpJsB3vdhXPXGGVeLewxew4GADVgAn5mfmaPfEDTJ193fTbWDf07zo3dXs/6ANx527k29mHX\nzKepZIwhJ/BmMjvRfXtYqoGFWVWVeWhq3Q+OCmn1ZXk/bLZsrtHGBr4mgZgYLO/KBDYfrbuPNqL3\nwNQbJMKyIQDKwy7vgalUJs+0Y4tkDpz4fFZyIR87d+4UX3iaptOpnek/UPrOiXU4fHI9RnkLETNo\nVDUt7d2WM5kkXSManlt2K0u/X53o0dqWRgNYHNaI/cTXPSJAl+ROh+tasxagwFRCLjyaXkWu/aHX\nbfVRouwni2xYVzAaVGmjUeeaSlRTY6iAFlKY98L9TdlscwsAxyTTBMP7ptCu5dEATq5PCXNEN7Qy\nIXVl0Q/9FTaTFMjE40V7jhlTaVouvInZwhni/GYS9y9lKtExn55/vinn5sos+psDpFs13FZzrS/l\n+aBrmhtYTsNvY79ndQZNpdlcMJ4gl1Bjk2Rpu2WsL+F+BuR5bpr7GzIOKAuxKDNuJOU+765D1kbp\nhDVnTOZ1FO0khoTFKuoTUtqvHxP6kisPYnkAfvcHryvhxNi8c2whK4qfza4p+8h6f0z3N2K8eY08\nz7O03d/kuZZto8OVJFz33rdno0LXSWmzW+o5SfcDTN1lvlxTKW+31Ea87nJl5ptdOR+ui85tJVCR\nkqapFOZsvJnCTo8x+hvTlmMh+lvm/gZZO/AY1pjbfZLuLpbyeOcszNLSbBhrrHMivlwbsftx11YQ\n84YAB4El1QjtzOYXE+xM9WtAL9bz02yILi+ds/R8OeuLzeoGdjAoq0W+44EDvszwe280O7yW8s+8\nvG/z+Vj3zYBkWt1d3m78SeA1jpCnM3a4uVpoJ7kf16GCA4BqWlk/sibzvnc9wWw3fh1P/zcDboR3\nwlz3us/WsZbGcWm63uVtlPJicNB7CGu941ZyIR9//dd/Hf//jW98A2644Qa49tpr4bLLLgMAgNtu\nuw3e9a53wetf//q5GnGmpzsOHYcnP3wPAPDihlbyu791n5amEr4cmUoKCLRjeQT3Hl8DANndZiSA\nI1yijCoL2MGii5r7W669pL/oMfqbIdRNT7+XRwMYTyez9lWQud6RuiWGUNu2InpN2RYe0eaMLaQJ\nYDPGZd8UJvGlACpNdZc2fClzf1PuJwp1x3tXNJUUplIH4HQL+bhJAEfIG0EfVlOprAsgf3dKwznP\ni8G85P7Gb4A4UEl75ompJLERcbS0NrvGlQeAGDuKiwZA9xw5plIoCmsqWYZRBHktxoFjw0lBXA3A\nxL+3WAzx1MuzgQ7zhuH+hjfQADIzjt28ixHYZnUbLltZX6qbimSs+93fbEA0ucaAmDe7H8v9jeTr\nrsn5APzMFdtw7D4xm4s17DGg5RXqnhrPEW3Quk+7772UfdqWso32+0jrNsW/0ebQ1IWJz9zqo+7T\net4VUzfrcp5pKvUD07pr8kbFx6CAWD/OR11LceJW/TBHY20q7n4q1Daajq2WUg4DcoAVwZqqypi7\nG0navIHnGI29keVt9cMuvOnTWGzZ/KLMG6X7mz3WQ4ADiYmfM6gNNiKa170MFy8rI7le83V7WV+4\nnV5tIQwWcS5WXFAF8cCpAPbt+d/DcPG4v3nny5zhIuelovSDusrey6xuPA967gexa/wuW2w2BJin\ncWm5rkrvWRoTMLsf/XlzYJp2AADgYYTP8gm2XUj5wVR+raif2kRmnyfXO23Oatu0P/QLyLPZzORC\nPn7kR34k/v91r3sd/O7v/i787M/+bLz2kz/5k/C4xz0ObrnlFrjmmmvma8kZkrYuDeAUWX8DqLQ+\naeC7JzsB733bdR0lnHZuGcHCoI4br0UB2KGGlgTWVLMFftK0EVwZKcLaO7ckUGnBKdStaioNfJpK\nuUitvKnJN17dNYvxYLrezcrEjIxBXcGWhWE0puq6QgtAU7iwRMCJMGGw3VcylagujHzfHOOANYSF\ndsyTwoSyNBrEdmqCfpn7W5MmLs09JZQXJm3KxslAUWOsD+sqavtQgCMAeBxTaSosQlWVtCEoqKSx\nzvBGhddUSm3QgDfK8rNE7vFml5s2uNDtPDiYn5iuEabSsE4MLKyppI0NfD0xldhsrJtpCeLl47w3\nE8Za9Bv9ZBegnIM9m/LuM/89bePUMBzxdbNuNDYk4xJfy6M2GkaMpqlEwG3zfhBoruVLwIHlZpT+\nb4ERBevLAgeNTWxWtwWYFJsKIV9F+1Ou36uVRMeBdZretvamwuuqFi57NpzRYHca15bOmHfTh+cY\nC7RI80Yal1zWKhtD+uaHvmchn3ZwxAFCI8pUEu4bs0BoOj47IN2eRX/rPpNreBpveA7fSPLoGmEg\nXN5IprZqh5YsE54pk7KyrTbG99bD4JgdTEmHpvird8PZGPeD3wkrkmpk9vc4HOqrSeZ5jum3TN0Z\niOjclLuDJehMj3AJj0sL4J5Ya5Rz34MvUQ1H2tY69qVvLXUxlQiYbAHmHjHz4LoqATvU60F7v3F+\nCyTD17xubf0iCBpgZ9GXer44fvlswpzF563IOzEvU0lGGoR02223wSWXXFJcv+SSS+Bzn/vcXI04\nkxJ2VTtra8cwCrpK9x5fhbbtNl27SSQxLVVVBWcjthJ1NQvJ60qC/7bmyLtzObVVZCqRNmnR3+jG\nWKbUdp8ZA0lh4uR6K3zd3vumG06A7gXcsjgg94JOLgkYgE81ccoWP1I/Zl3h32rMnkzzRAWfNg4q\nhf5YGuFoXHnbs7rxpNXq4CBFwsPkRd3fArADYPvwY10rajRjRg1N2mk11R2RQKA+0d8weOlhc0Wm\nnbXJxywpg6k0NjbQmMJN+wz/BkfVs4w3ylSyhLrxaWTZ3/n7Joma0jbbdeNNBah5KcPR44IGIBt5\n+TsObJ5Ud/dpAyGA7kfb/OB8et0FI0TR6KAsBmuuHk9CX/L56Emo1M7c/c0whMMmyTDeOIOQ6/cA\nygKgjZdy6ANgbw7TRoVsFBTXQy/gSOsoy/Mbo/TU3zKYs42KsT5r7pa4nV52WNvqhn12UOAGgIxx\nmY0hmJVpz+v4u7bGcwTl0TD8DmJ5HAuziv1SFsIylQqwPB1obNbhljZv9Dr1r1O/q+xg5vlowAGA\nzoyjzyr0hjU2s4AJilC31wXNmtexwLPlAVDX+bh0BTawxjqJYGUzKJxACDoAsHSa3Ho4rb734A5y\n/GxENhuxiezxFuoHkA9N6XMU7wfZgpI9VtyPF+x0vLu0jwophDgPwKydVt2A6vbltbXLfPk4pp28\n5s9sA+e49LLdADzPB2Zl6mCnlXqDSueddx780R/9UXH9He94B5x33nlzNeJMSthV7amPPAsAAL56\n7wkAADh0rBPw3rt9UTSWpHQWKnfBYCpZ+kcADONBcX/DPvNSmVtGg+zF1phKXrZQ2iQ2+ok6Y+hZ\nhoTlepc2h5SplINKGBGmC69E98aGXxH9jUzqwR+XFW1GBqYHfNroCSFAantgKlG9IJrwYzBP+tDk\nCiC7vwEgJpnh6on7s9C8Uk5OfQwxHVTCwCReLLixyUZ/00Clsf6O85pKZb4cVPJpCzVty0R+q9H/\n0X0T9p5UpubG2P0esRYFw3pE3BltwyTf5HgitVmabaFNbuHxNh9DovtbY/u8UyDcMsIbtFngsmbu\nb8oYwnnV6G/x/e6+W3TrxDLxnfSNM6ZSmS8HdgwAlYCDMsMl3YvWl7idXjcwb4S6RPEHMX9flwrp\ne7yeAXROd74eG7R0L2xW9Mx9ZZrub5Dq1jZ9aV5t7PmFbIqlvBnbAfR24oM2nE8DlTRNJTwmOa0X\nvHmk6XjUVEJC3aQdNPqb1MY+SdOkCf3TJ3R7BggwmVndEWMt1d4JOvdHgINvJuuurL2nVrhxvIHW\nmOP42UuBJGherwZdztjR50Gv8Lj/PbPZQiV4q+fDEct4N6Pu0wKt8zL1fLmukVZ3uhbyScwdDgjX\nAj/4tHjI87Hu29FHVvTP0sU01GHU3bTmYRe9H/MAwAnWeNh7kQlqRSUM9oux5nI6cH3es3mSX/hn\nlt785jfD1VdfDR/96EfhSU96EgAAfO5zn4M777wT3ve+922oMWdC6hhFHXj05PP3wPv//m64+8hp\nAEhR4c7p4foWEgarRE2l2eU+TCVLgA8gjwAnRX+r6wp2bRnBd06sm+VRsWzLcA0n1VJefC8WTZeC\nONZGknN/48rLXPTqvF10A44p6gXbgmgqaSdEGcKtMIAouDWeNvCnn70LLr9gD1y4b1uRX0vhXiKo\nhFycJLepukoLubSY4fuxhLpj3qlDlwttAugiTUGIkLwRgOgz0phKuI+4sYkn6nRqyomud7+1mEq4\nLzVNJfzzPu4pVKg7YyoFoe5pY55wDhEApd8PzO5HZuVR8NSrr+Zlb7hAawJwWHpOlshyfoqlGxx0\n0bfYG1m0EWVTgcvcCBCCWQQAOrMHt9+K1Eap3mqZVadPYo91uknS16hM7Ffpoym0YAlWU9aXlGh/\neqJi2cCO/p27brqIkPVHHL8IJDNDQAubIZriGIp163ObdVKdM1+dRrgJdnafHkagtKHBG+YQ4Skk\nbg9A3d/wZgpXjTc8OK1NpvFQEDOVKNMazy+bdbjlc9lC74PjkESzYbgNp19TqawXizvn96OPdcwK\nL8Z/XdZtzdWWRiAHVFksZpPZU+M+D/WwWd1usxHYR+OqYuaYPkyY0s1In18sEHOeur3PEYMw2rrb\n3Q9dK/i6LVdCDpC1ACAvs8fH5qL2Bn8fE2Jf2QdtXpmB1nbnI31puYf767YZ1DTQiPVsujItkKz7\ntJ6jlXozlZ75zGfCHXfcAc961rPg8OHDcPjwYXjWs54Fd9xxBzzzmc+crxVnUMLub0982C4AALjn\n6CpMmxbuCaDSjgcIVApAiKEzA1C6samaSsvYaJDzhQh3ADL4BCADKUUbyek3AG8gZPoxzgWa/lZq\n4/o0n1xFplJTbqCD4UZP5qbK5keKYGUKdSsGFF0o/u6r34HXfOif4P/6yL8Uea0UJrPlyFRqVGZN\n3k503ypI1n1P7liy25bFCMFMJbqYDwd5X4eEH5fGFgp9LrEeWB2gmmcqce5v2mloYiPq9900CGRQ\nQD9cpvUc27Z0f8PjM2oqTewoHhS8taJx5RpRed7wvoXnYYlqU9FDqe7Ul20cm6YWj/lOdJ8UVJJo\n3BqYFusO92OB9QiMaJXNVG5wWG6mwYiR+5wa6tamghpGMkiWtxHA7z4kG1uQ5etzemcxVywmGdU/\nkkGY7pO6GnHFJoPQMDKdYA2/gTb63Euvd7gg0GnP2ph6XYIsFgNey7wn9GM0NrRDira156zyfvIy\nwj3gxDKVhrlQtwhoValtOB2fub4BAGxdlJlKuJ0UcJo3xQ2nAoRbAFBoU8irzdcc+MRv3tP/42aO\noWXgUPD4UwRl2U2nfD+aC3J3HZeX1yHej/P9sQMgdJ99mLfuOdgSxGcjXenttA40Kma88aB+qruv\nppK1nrStzq7J5oaCucPP9znrV34nWmMMdffTfdqi56FMe/4Pl6VItyVTyTeG8PMR30dy2GWNIRMA\n6mNfesFbZ5/n67iXEa6XaaXeTCWAzgXupptumqvCMz3t3dYBK7u2jODg7i0wqDuh4PuOr0X3t/mY\nSuk3ovtbAEJ6MJWk7zjtWLaZSgA5qORhKoVkTTKULURTH8NeEsaWysQshqqqYIUwlTBwRF9g6WQu\nYyqRdoYoesH4T8aODKzgk12eqZSDW0dnAptHTo3LGzfSJDKVEiBjbX6CqN54ooOD9OQ9THIc6Bh+\nbjGV8Mky3UCP4vPJAZJGeT64LgsQiKwzzOaq+c1xFv2tDUCi/Mxj1EbhvvGJhuW6NKy7IAB93N/W\nCaiUMZWQVpXNRpm946a7GNIuE4CQMvqbDLR21yG2E8AGirKw8Qb4FcaldUIUNxaCMRGZdo7TO/cJ\nJ6NPxXURPu219Lb6uL/FE3rnRsU8qY759DZ2eQFg6nf1tE/J8w0Abo+Y1wnCew3CAEZomlvUXcBj\nZAKA6KqA2+7VVDK1UeL9+FlA8bt1oNEjrLPGUs3Zp3K+vG6vS5C9qSjBzpmtUeXPIxtbDIbDM5XK\nPgr/p8BUiGK8dXGY1UXF4/GaS5nI8yYPsOLZvGP7yaNjmDE7ufmySsEsNCCEbng1kCzLb6w/g7qL\niGW7C3efucsjkw+1Z9wT2Lc2xS0CyGQwbVamV7Aag7dKPgymuYF9awxlgJ9s2/oYdN2ndfCB71sX\nhk//9wp1mwAdes/87m8+drAlkwEAxeEdLZMe/Nq2U7ofL1vUuz57ASCX6Dl5PhZwbLPw0/+9EXE3\nqqnkApVuv/12uOiii6Cua7j99tvVvBdffPFcDTlT0jk7lgEA4CG7tsBwUMM525fg7iOn4e4jp5P7\n2zxMpe02U4luaFSmkrAB5lLu/iYzlfaspDZqjCbKkjIjsBGx7CIfWaQBlJeNbkTFhbz7pJuPZZGp\n1BYb6HR6nxtROMwjXVgK2qYCCPAuTswCQLQdwuaLE6i2UhLq7vqh05bwbbSxMcm1s9CTmn1yQGaK\nIOjTHcGC1SFrctMioJ9FoyYbFYkJhO8HL0B89LeSqcQ/8+7iaoja6NBU0oDJ7n6g22gbfZlO26Bw\nf8PvUXhe69MmCiVKC1CYJ0ymEgJCJP2LcvyAej+U7WZR+3GoW8vYMUELAhxMhXcIhwpPbpZC3cKG\ns8xXblJYBgW6ZmpEOUALCpZ4xZjXp0a+wmhls7nbieuy8g3I3KrVT5lXluFobQ7x87FZDNTAleqm\nmwx9LgDwgH7dpx2CGW8qwm/152O1M/alExzE5z9c1Ri4thkHMMtrALKzyx6GFjXsw3c8tVMAiGMq\nhTkaizFzdXP9ApDW3WAHhEQPXPLob2EuY2/NnTRAIHcXnuUTkFFuHrSYSp4NNA5IogEMdMMrTVss\neMC0MxzeWXoruI9C3ZrbH4Dtzl1o0BnrY5/Nu31IkueT8noZZ1yZfQABFqAjoK9eZtUrn1U3BjsD\nO1myY7i+1ADHbN0xAqJ4QTIP6FespcI+qpQXkNazlL+vRpR1P16wpgMc82s0UWDesg28tqArb1wr\nwm/ZbGZygUqPf/zj4Z577oG9e/fC4x//eKiqio0WUVUVTKfT+VpyhqSnPOIsuOayNbjysfsAAODA\nzmW4+8hp+B9HTiem0hyg0h7EApKYSuHFSOLFMrDTi6m0Bbu1+dzfejGVpM1C0FvJGC5MPjRphaIs\nVxarnVIkvZUFwYialgt+MkCJkdfwbcl+QwELRax62qIXnQVrcqZSMBDmAZVCGcH9bczcN03h8jrS\nxvKAg6F9HEBZF2NdeN6KsGrof9oPXqZSYpm0WV30fqYE9OMWSgxsJXc6RVPJYCrlbn86GOEVPcfG\nThH9Dd07y1QSjczu0yvUjd0YSw0r3v3NZqPo+fC4tMSlvS51JVOJf0bcps8Uto5zFpste44aSJYZ\nHM7NghbZrIwMJdeN83uZHparAm5XYqdJZXafAdiRxgbV/cDtKfN2n+4TTmc461CmJ6S1d4OW6uDr\n7hOKuO/m0Dr1p/Vr+bx102cj5dWiiUpttDQ1wpgMm76uTDZrcT+xrrp8HiFpQt3hfto2gfC4nel/\neRlSZNZCqBvN1ZRJOm/qzQgx1p5pa0TuqlI+D7tmCki7TLFXS9cc3X6ygJi49hjvI9VXk8rDv7eC\nWVA2igmgNvMAO2w25ArVFNe4unPAkU81KdM6pLb0QvEle/6f1e1lSWUMOnkumsyYkDlwnuevyHOU\nysQ2hFW3d93DB4epHjYraiffRxSYSyAVXx4+vLPsknQ/vkNYk70X5sxerpE+AMiyIXhNJT6vdKDR\nN7lApa9//etw9tlnx///z5yWRgN47U9dFL8f2LUM8A3ImUpzuL/twnpFElOJbNA0VzUKaGiaStj9\nTWM0YVBJY0lJp1s0UdFbfC3Lh09eZn+WXuB56w7ftyzmr0TOVMp/S8GckDSUmf5G1VQaoIlQy0cW\n50kElUpjU0ttm1gviamk1w1QbuS6a2W+sp284Yrrslw9sfsDPY2kGjwh4cflcbeUNix55Ln0W65M\n3DehndqzDELdEiMQR0vTQCpcpgmExM1PCSrh+WMBMcASWMKXGdpv0etZphIpUnJ/ExdUN8CQyvW6\n81nMnnLzxW88k0tQAqNN5pUzahh+/1nDMXN/851UryvgkxYZSivTzyrS24jL0HTG+Lr58ihwgH8r\nlekWHneeHALkmxo9uIDlSkK/65tI3E6/phKbjT31twCBkCwA1bs5tK7xmkpSG733nf7QNPqclTbQ\nOWiRgUoFU6ksJ6x9vG5a2TZaRtTtpAcpAlheV/maxKVvHT4F17/3i/CLT304PO0x+9g8ADpbtMrG\nUH4PNNVxbm2RnaXJDHjL1NlC0tzvAg+U9TQBNj4Ww9QJHAAkAMoKPOF1r+1cdvN2S3ktIWgOaHUD\njqpkg8NlFz1LbT7Av7e1eNJ4k+4F/97vgtZmcyuXnzJcpHaGa63BysPXLVcsL9iJy7Bsby9TiTvQ\n2Oh6VrKF+HxZX7oPLX0HbXFOFw/F0v8tDa90gKbfj5VcQt0HDx6MFX7zm9+EAwcOwMGDB7N/Bw4c\ngG9+85vzteIMTufu7ACku+8/DfceWwOA+ZhKZ29F7m8PhKaS5v627HN/8zKVJBcympJQt26wYz/+\nSOcVylwRQKGiTLpJmn1/9Dl5tLSMDk/YBnSTF5LGVKL0Ro0FlIn4KpMmrqdp2nhP1IXJSnihCZpK\nnEB50U5yT7jtXL7IVHIYepab0QgZslQ0Wjo5NU+raYQ+oZ0DrLeF+sgClbTNZOi3NSvqXXaS5NtA\nJ7YQmw0ZMeXYYTWVJjjinrBAx/fMAi1mfdnK+gGUqWS6vwnAMU3heXcGRyiTzVq6v5nGKMzuC9j8\nuF+9EeWkMLu0jdlppAKednnleQi3SQ+l3X3S6G/WvKHpNHXXSRsVY6dg4kign9Moo6KdAD5wUmtn\nAYQY+QBsIMYN7JA/yJoj6f9eAVYTfIqGfWsCqNIJu1W3t7yuPWW+EZr73ZsPp8aNp52S3lbmCklA\nG85rIBxMYrtvzJxqh/9/8s774Nlv/Tv4yj3Hu3aGyKykk0TApK4K92Sa/vor98Jnv34Y/vy/fYv9\ne7w/Zd7g9IfEQ4W4Rup2Vu6W4xtHqqZStFfD/cCsnXqZlntkX7HsLGw85+aPgRCTSTzLZ609Ffd8\n9PnAO79YEcvw2GiNPi8jlnnuJ/8tV3efMseNPn75cSHkzQT55eeexoYPcMzfCb5u+nxsbSyb9Wsd\n3hXub062W65dqd+PZRO5x29mq4Oal0qZbPRADgfqMZlxoY+M52il3kLdV1xxBXz729+GvXv3ZteP\nHj0KV1xxxX949zeaDuzcAgAA/3j30WgcY9Ftb3rYWStw7eUPg+WFgaipRNF1XVPJp2sEQDWV5HwZ\nU0nJtzzygUrUBa2qhFNY7GYWAB1hwG9ddNYdJnYC0D3r4nPh3+4/DU946M7sOgfsYKFmnLSNiuT+\npgFQmL3B6vCgZzFpEsuEii1bCRshS4z7m9WXmfubYrylqGr8aShAmly9TKUxswlILJn8+Vj0W7pg\nSULlyb0u7yNugsdtiCAVc9/hWUZQSXjP8DvhFQa23N+w3/k66bMcVErlRUPLAo4nFmgB8X4ktzbs\nbopPfUQQhiy8Hrc/k10zuzyeWveTjFEA+eSUE0sVjUxi7Hi1l/A1ro0A9ilWsaFRQPC+EVlM/QD0\nnmn5uL9ZdVtl0jYCbMJ4cwIh+Pc54Fnmr8gztwzc+Ds2VzJGm7aHe4oTTJs2/s279D1dn9XtjDxn\nlYk3MzZrpfu0NwrpunfjRd8JPBYKd3sGwwlzNKubhq6F/37wH/4HnFqfwsf/+R541DnbYh30kFHT\nteM2/ziFtfwEiizHJY92jfU+AOQgpqZXhzeH/g3nbK7mor8huw0DfhYggNupAsdO8NaKxpuDnV6N\nQJ9enAsIIdctgNtiKoVLHk2lcvMutDE+S53hwvWlvI53n2bIemasWyAZBtTwdXo/ma4oU2Tel3rd\n8ZlboAVx2QLgwc6ujLydtEy6l7DmAh6Y9N2POS4NW7BCz9GOSpjbEO4ot3xxMW/TemRM/GVqycVU\nwqltW/ZGv/vd78LKysqczZDT3XffDT//8z8Pe/bsgeXlZXjc4x4Hn//857P2/NZv/Rbs378flpeX\n4corr4Q777wzK2N1dRVe+tKXwp49e2Dr1q1w9dVXw6FDhzalfYGp9A/fOgIAAGdtXRBBISv9nz/5\nA/B/POPR4t/LU+7N0VTaubwg/g2nPRlTSa57C2UqCS8G1byxDGEMrkgTNmUqyULded0hX11X8NIr\nHgGXX3DW7HrSJKCbBelkTnNpi2yLaJTJizk2YNToJagzOneo+TSV8MYJu795QSW8KWYj6xAGUHJ/\n47SFfALPnKZScn8LEzRhKmFNGmPwHgAAIABJREFUJaU/TaZSjetORqsZ/U3Z+CVNpWn2XcqHgRAT\neDND0XefTduWQt0I3FpgNZX0sbFO3jOpjVjXSKI8A9h0dNym9TgubYPDKy5tR93gx5BERwewN8Zl\nmHV9vrQivOBLSXeKLTLWva7cN73nuEEzx6UFkuXvsVQeV4ZlCHvZQlZfAiBmnNMFzTIc8eVsvCuu\nxVakzgKsUUwV2u/SmhvnS3P8dtez6G+G+Gv6LrSxzvtcBr64jaC8PnsiFNE2iptI/I57T9Sb/HsQ\n4wXwMZUWA1MJg1HMPJgOhLq/hcOMsXDgI+kFDSqbqRTmjpPrFqiUtw0nvNm0XJxq1F/hXWNZ0WhD\nbrFrSvCWq3fWRrLBNwEBYy0vWWxsccV7i69x5QHYrvElE1LP17QOd27nAQDnzqcCjpkGEV9myRbV\n52qL4YJ/bzFXqG6OOK+id817QIOZRVwb6GGKZKtz5VmHkW43aQewUwA21BZE0iBdO/W+pCCVXndo\nZ08XNMc6YXl99GU7e1hFVD7Ajoj4PdBUAgB4znOeEyu+9tprYXExuWtNp1O4/fbb4fLLL5+rEVK6\n//774SlPeQpcccUV8NGPfhTOPvtsuPPOO2HXrl0xzxvf+Eb4/d//fXjXu94F559/Ptx4443w9Kc/\nHf75n/8ZlpY6wOe6666Dv/zLv4T3vve9sGPHDnjZy14Gz3nOc+Dv/u7vNtzGAzuXs+/zuL55k3Ry\nzyXqgqYxlbYtpWFwck1mmu3e6tNUonVb9EE7MlRapOuZqJLf/c1wJTQWFdzHlDWTACIetNCEmNNm\nM28P18am1Req/BSziSyTscP97ZN33geHjq3Bf3niQwSmUmMukilCks99J5QXIpwtMiBsuCVJ2yGk\nFIGvdH9LgtL0ZFdfUAumknDKKUV/4/oJgzSqjtbs2mpkKunjN4/+phtv3ihobVsCkngsh35tWptd\nE4FjM4pfAluldwL3RR7tT583ohaPIWSe63TweSmAKvdl90ldwTSw3xKNdkfEIsCXlBdHjTGBfdKX\n7DyE+hEAbFHiAhDwGaPK0qOCdtn1mpap58v14vQNiF+LwTBGUZuwtoW2CRgbhmPBlNOM0aoCAD2c\ndVem9zl2ny43AGEzJOVrzfLKa1xWPC7iemIcplht7MUIVDa7QYy3l6YSAxzg26HvVgCVIghDJs0E\nmIS6U5lU14umAB5bTCVNPwa33e+6lN4LTloCH6Z4N++aplJ0A25assEXyswONfJ6uHZ6mZ2Ybcxl\nxW233IApYG5toFuPDpB3PSNACG07rduvQWTrOXGaetYBTXKb8pVpAStN29rzGzOGaLsA8rGpllfh\n5xiu8ffjXfco+KSXqa8pdN6ygC/2mRlgtHVIgtczTz4AP5DY1y7RbSIgZRr5pvr4tZIbVNqxYwcA\ndINs27ZtsLycwJSFhQV48pOfDC9+8Yvna4WQ3vCGN8B5550H73znO+O1888/P/6/bVu4+eab4dWv\nfjX81E/9FAAAvPvd74Z9+/bBX/zFX8Dzn/98OHr0KPzxH/8x/Omf/in82I/9GAAAvPOd74THPOYx\n8JnPfAae/OQns3Wvra3B2tpa/H7s2DE237kEVLpw7zY232akwmBWRtKuLTn7SNqcAuST+wVny2wz\n7P6mjOHC/c1iWyS/Wb68tFDZC+rKgo+pFH5uuVfh368RQ48CRCFNlFN/OhkEA0wDGDLdHCZfrqmE\no7/xJ4Y4/cIffw4AAC46sD0+36pKYsxW3QCpPywXJ9pfqzM2DhVXx3WtGWAEd7Ic3d9CdEFB88rc\nQAfdK0EIO38+qUyuXI6p5GFJWZpKuGzTzdTQ7Ek03VKoG7cDBxJYc7onWq53WKhbGm+4Ddg9xbpv\n8xQWUeG94tLrJkhWxfvpPoHNX2fP0behkb7Tuq2wwQBoo+oEDmKfc5ue+D7ALK/Rl8SIkcHB7tMC\nvri/WaeRdij6WRs9gBYZb1ZfeqOxAPg3nF4WQ0j6CScATP0n0KbgLtr0eUVqpXaHJLl30ORlKo2I\nK3n3W7ZIZqzx+dgNp7Gp4J5jXVcA6AAjJC76WwCV8O8197eQwrwW1r6RAIIXLq51cn+jgTFo/cfX\nvEyl8m8c68ujVRTqHg21ecvW+vJs+oKtjSMIetrZtDoQ72ULhcse7ZrZkEpsUePd9boE4flKfn/0\n76nuVKaWD4Mwnih+AH4tNuuApg9Tidbdi0Ft5MWi9Fx+ej8WwNA4bANJB67IF9cJe1ziPR/XTjoP\nWaCbJschXbc1iOy5AICCt77xZgE7XkCLLdP5HB9wTaUA7DzsYQ+D66+//gFxdaPpQx/6EDz96U+H\n5z73ufA3f/M3cODAAfjlX/7lCF59/etfh3vuuQeuvPLK+JsdO3bAk570JLjtttvg+c9/PnzhC1+A\n8Xic5Xn0ox8ND33oQ+G2224TQaXXv/718NrXvtZsI2XGvOIZj5rnVl2JDm6NLbR7ZZR91/ICAHz2\nN58Gx06PYa8SuQ4DVScUw4C6v1nuD2vGZjcTqQyTh/CyrTg1lUqVfXsyohvJAdFHSm0MgEDZyGDs\nJRaM3E4MMPRhKoVTzvVpI7qr0vSN75yE7UvdmBnVNdELyttDU8HecE5aq+MufxAFz/MS9zdjDI2R\nERPqHyHXxWnTZow3rZ3h3injguaP0eUIbZ1rK97gq6ASseosTSUAh6g3BehEEGbWPs79DYNKuO4Z\nMOgFYeTniJlK/FjHbeCYaUWZs+uW+1t4TxuH8VbqGun5KNtNuyfL5710f2azoROnBuXV3t3WZEkV\nWjxMNhxQAaBHNDuDSVYaWvJ85nVJoi6CJrW/h57T1MnY9J4+A9iCqaUh7DOu9RPOcO++DYhXnyp3\nqeDLLNspPR++LVIbrWvael/83sn64jacpmtkyIeO75KbVP4bBlOKa1NVdesRZrTi+6btCFFHx5Gp\nROecMM7CoVi6R+mQLaTwnvs1lZiNYLYG+Fgz3SGJbJPhDazNcOk+NW2hwIZan06hBZuVkTFlNdvA\nCUbz7s983rrq9FZMlmzxjsvldffiD9QQktdtyjO/eJk45tzGjGlL9Nyvh+NzcWpbcINk01bX8aJ9\nablCNY66S3cxY25zBL0o53XebqJMJW/UU+karsvbR1Mn+wjA726ZdLl8dqi2jlNmtJS1vG+5TC31\nJji95jWv+Z4ASgAA//qv/wpve9vb4MILL4SPfexj8JKXvAR+5Vd+Bd71rncBAMA999wDAAD79uXh\nSfft2xf/ds8998DCwgLs3LlTzMOlV77ylXD06NH471vfkiNW/JcnPgR2ryzAh172FNi/Y1nMt9Gk\nndzTtHtlMfuusZoAAPZtX4IL9+ksK6x9c/T0WMxHmScW28KMPMEJOQsjfivVVJI25eRUWWYqpXte\nnxlcoRtGaCOMk0Z/xYZBd6ogL+YYhEkuWGU+rPA/bdqMoaSxlbA2w4m1KaK8Y32ERq07vyfLMJnd\nTxtApeD+xjGVQvsNJlmmqZT3O372+KSpUZ5Pdj9ETJ2OQ+751FXFjmMM0kwUdhq9xhnBNJ/tWkbG\nugHetm1biLzjvsQRgSygys/s6T41w3o4qDOAzBtdZuJkSXnERfu6EsbQ20K5VlQ2La83JK5eZvcZ\nTqo34qogshhMMNq5ATCMcNwG6XssM9y3c4MmRaHh6rIp7vl3lS00+5PlAlFukvS+jHWLNftPYr1A\nVfaORxaDbrDbZdrjUrrOskzQ3OYN6xySxTgA8LBM0prSfS/LKd3fyjUeu3nRMZxrKuW/WxsTphIZ\nrGnN677joAocQxKnsKacHk8LncPsfpSNEr7mZYQ0DWIqKe5v09Zm11AXHm4+CO7846lPUyl3XZLL\n9b7j+KCNXpPqtgB7LWopd73FruSCnUX7QwZMko2Hv0v5AGzh5uI59gBCNKZo107dhvAeVGB7OfWl\nkbfJ2XESm9J7UJBLAljrc3h5+DLp3OYpM6RinidzocZuxPm1OlLe7tPtqtyDdbsRpmqWz7n2dH+j\ndUvvBLjqtlLv6G+HDh2C66+/Hj7xiU/AvffeW4gEbmb0t6Zp4JJLLoGbbroJAACe8IQnwJe+9CV4\n+9vfDtdcc82m1cOlxcXFTDdKS//3c/8TjKcNu2BtZirCKir19WUq9U3HlNOmLcQFTdzEBvck5wbN\nU2apqaRPCOsGywNfpvpLkhEVjCIOEKDMBO2knNN30MCv9WkDkyYHBMbTRhSOx/lOrU8ysAOLalt1\nx1Osib6ZwmW2bRsBCd79zSnUjYwiuonF7yN+Rt4TtAgIxOeZ5x8Kzwe3dXk0gNPjaRzjrWEgUBc7\ni30EkJh+IoBKwFvrnWhaXVMphI+eNG0EBi12mvmOIzdGjUm2NKzh5PoUVsdT0/0tbaZ8p6uZi5HR\n71x47qxMYhxYJ9BWuGTuus3ewzRzqcwwhv36PlLdcrhxoUwyNjYKigLYJ5z0uh31rvv0nAh6jTfJ\n0OfSoK6gmc1talQs0k7rRFtqC05eI7MEgPSNnCvKohIlUavLy2iSruUHEf2eo8UcBMAn0Hpe7tS/\nJs8jJAxYhz9hN69BXQFMef072oywliRmD7lHApZj8CsyPjnqFORrysn1KexY5jtMA09zVrYxr6P5\nKLznC5z7Wzb/G+OSAAJcrmB3rKODD7Wds+udq1Hepvx+uk9b7D2f2/A1qW6LZe490MBzhsX6KoW6\n9fnfAi0y7TLjPaPaQqYuo7GWsvpURp/brsrdZ64RxefFbLtszAmHLN41CrP3ZDur++zrXqXXn3+n\n2aI3Qc8DLK1MmtcEqoq5Wi8PwMNU9dk6xbqnQA/ewy4vSGal3qDStddeC3fddRfceOONsH///rn9\n7jxp//798NjHPja79pjHPAbe9773AQDAOeecAwAd0LV///6Y59ChQ/D4xz8+5llfX4cjR45kbKVD\nhw7F329GeqABJYBygGlAEXZVG9TVpj+nYwpTqYj+Zmz6LK0X7oWRjMwCVHJudjUthrCBLoS6EUsG\nJ23RHxLNBi16FgY3NGMj5p3mBhS+Py5hUOnE2iS2ezioo4GYCXUbp102hTotKmuIucO6v1V5Gzm2\nWlcX0lQifYTfyfGkAZhhxNH9zGnESJNsWiSbTMwb3/7yQgCVciMcQNDRonUYQBGAX99n3Rzr3WfT\n6O5vAF3fTpppdGG0wAhLGwuzIjRtlqXRoAOVJlPb/a0naNEnygptt5QvCdryvw9lTME2tLyMEI6p\nZEUeshibHreyUpw8b49UpqlrFI0inRLetWG+PrLmrImxRuG/JdFbvW7pO07dvbYOTaXcYPePIbnu\nUvvJuwHQxxre+Hhc3rV2Fgw6J/hUVYLYLzOveu/bAtMAHCfQ9KQajaGg1UNBm/B1OKhjm/HaRzcV\nOVCVNyQwlVL0N56plNxOZtcrh6bSJF0/sTaBHcsjNp+2QeQ2aBLKgDeH6xEk45hKeFzOrjm1TLix\nEQ7xOjYt33acsJ2nvRd0zrLesz6BDSw72DtnpT7vHz1RBsm6T1MIGj2zqfMgyTpw4sWl5fmgaXu8\n4wbTOrdLrLrTvKH1u5clxY1Jqy/tfN1nn8Mu63t4Lt5IwFqZZdlOu6THIZJ5wOm0dfoH3Ojjnmgz\nwrXUG1T61Kc+BZ/85CcjaPNApqc85Snwla98Jbt2xx13wMGDBwGgE+0+55xz4BOf+ERsz7Fjx+Cz\nn/0svOQlLwEAgCc+8YkwGo3gE5/4BFx99dUAAPCVr3wF7rrrLrjsssse8HvYzEQfMrcZD2nP1hxU\n2uzUx/1NZtfMJnZT4FmmLNO04gS0aIQkdbNAQKXw2wS8kJNDlamUrlmRu7CBmXSa9L6k7m/UjQkn\nDBycWJ0kQ7Kuom4O1nOSRBwLfRKhL3EbA8MFQBfq9jKVxk0Zir4DU2fRrdBC5mWj4BN1XFf6jgU5\nk4GAy11GUfQAcuOEe+aUbTQSrFv2t8b9pLHOZkNASFuMafqT0aCC0+OkwWG5rlq6OR6hboA0VlbH\njX06Re/bAjtbx0l1Tb/r+YKxowGzQRCZtltqp/SdXrd0nwCwwW7pbdl1F+5vTmPL2iwkY7TcaEtt\nkNpN8/nDBtund5RRtSlMJQaI4fJ7+9LrcoLrjhtoI19qC5+PYwRK9dN2elhAnrpjecqcETaH64Zx\n3Qego7pGltsfN94ocBhSAJVGdQXrs2uYnVyCt2V9IYX5PIyjkeDyzTEEvJpKALqukjY28DWvkC4O\nPMEd/uL13huxTJs3Qt+vT5rMk0MaHnFT3uj6NRQsksvrPi0WJlemfNDG11Hmw/MVzNopjXX63Vif\ne2ze/cEFfIddeeQ5NivUVZXpd5nvuHOublp9XACkNXHa6mLz3nUv/BTb/9b9eNe9qeOwSzrA5b43\n6EDZC8Jo7aQgprxGdZ+tMc5x0+N4E2287nNsjHXvoQuuizuo0PLpzvFy6g0qnXfeeYXL2wOVrrvu\nOrj88svhpptuguc973nwuc99Dm655Ra45ZZbAKB7iL/2a78Gv/M7vwMXXnghnH/++XDjjTfCueee\nCz/90z8NAJ1w94te9CL49V//ddi9ezds374dXv7yl8Nll10minR/vyY6EGmUNZwwU2mzXd8A9I2K\nl6kU7scS6uZ+Lmvs1LA4rJN4seUS5BB/HQ268ijAIUZ/UzaQVF8hRvli2skKdRub90mTR+7SNJUw\nqHTk9BgZknVkAI2nup4TgP+0CxtvOGqYZuiZAs8B/Jo27GnFKLgFon6wotlh9lN2QiUsbBO0qA2q\n3P0tAL+hb/ApswYkankAIBNgtfIWukZGvrYtwcgxGePBcE5MJeF9DHU73d8maMPJ5V0chXqn5uld\n6f5mj0uvuHRInpNDAJ2Z0XdTbtXtPQHGefsaMaz7G9mgeMWYLQZdAq3tA4C+7lBevSCPSLjXDWwe\nTSVrw1tuFjY2fnG7vEwyq8xgzGan38ZcRNtS5HMDrfS7fN/BldyODEjbKBYJddXhxt6NMbeRoy47\nIXHr2QLDVOLmQdqMsEZIIIzs4mprKuE15MSafCipjY3Mxcl4PuFy0/rc3/qwMrTnGPoMRygFgEx0\nPS+z+5y26ACPaUCas3oyKByHCl7XeOl7ut59ug5oeq5nJuMYXfdGM/WHWcfsGq2PWj8jxOl61839\nnrqDvIJ877Ru6wCrc3/T607zkuHaS/pcnS+LNZLWiZ51j/c2v8bndWsJOu22Pi671NYR74euj3y2\nrAy/dqXeRiv19tm6+eab4YYbboBvfOMb89XYI1166aXwgQ98AP7sz/4MLrroIvjt3/5tuPnmm+EF\nL3hBzPOKV7wCXv7yl8Mv/uIvwqWXXgonTpyAv/qrv4KlpRTF7M1vfjNcddVVcPXVV8NTn/pUOOec\nc+D973//A97+zU50EHMMj5D2IKHuzWQq/X8vvBQO7tkCt/zCE8U8FOyymUoWal5G1NKMQizWTTVq\n0vXucx2xc6RENz/hu2REBRDGEmKeNI26+OFFxYpYhgEoDCpRNyac8N/uP7mO3N+SppLVRoA0wdmh\n22dtbBNTaUnQe0p9rgNAI/QMOAZSvA8EKtkieIDKVJhKHJurzsfq8kJgKrWxTHqPWZnkGj0pztrp\nBKDCc7PcTNPJWOn+FkTqU7sCxT8Xr5fqtsXEIdatjbelYWAqTdXwy12ZxBg15iGPpkbJoLANQgCD\nZUKfoxOMsAzhkHTQIjdiNlI3psx3n3r9fgAolKvnAyiNUdt4s5539zk2TnYBuD7y3rdcZo36VOvP\ntIGW8wCUz9cCQgAcJ5z0fox8vs27XkdIffWc0ne+XoA0r68bdokXTMP1e0N5c/kocyykyGJGA5B1\nf6Nh45h2hMOeaAuQh0kjPOK1VJIDCGmM1pTjClMpbWLLv3FsFEuzbdq0uvtbDwH5coNW5pGYStY6\n1SDwwGKua+UVh3yO+SWxQH1zlggcoHdce45cmbL9331qbvH0uvc9MyO1MTa+BZp7n48WQRCAf98t\ngGNqsN1KRqv+vPsArW7Rcw/r15jXM1DJ4R7I2TUbtUssNhVXjzXeCltng+8jQDmOrLnN2u9ZqTdT\n6Wd+5mfg1KlTcMEFF8CWLVtgNMr9og8fPjxXQ6R01VVXwVVXXSX+vaoqeN3rXgeve93rxDxLS0vw\nlre8Bd7ylrdsatu+16kXUwkJdUs+7vOkH33UXvib39ir5nFrKgUxZk9kncqnOwLQ6Sp992RHBJcF\nuMkCrdQdwS8yESfAIjeipsqpNqbXYyaMFup22rSxTOvUf9I0JPqbDCrhv91/aj3ex7BG0d+mujsS\nbpMZqQ3dT2C4SMBoBEImlhA0EnhmJsPkHofd3yx2wky7gjCVJBAHR8irqyqb4AMIEplKmTudrO9A\n28K207mopfFrnUZ2nxSY7H6bzyFh02It5n2ZSrge3v0tMaQsAclkXAewk82GNu72Btp9OoWMskPH\nVtV5xsvKkJhyVj4faBG+C/kKI8be9FjvWSECbMxtqW4+H0Af5orvncDuZ1o+ri7/Zsou0zLu+27Q\nPHXTQ5MNayqhsRbZiN6xbpQptYX+zQNMUjDar6kk100NezdTCf8NHcrgFO4pvE91lfeLBqBS9kwE\nlSJTiZ9zQvvwe2EylYiGo5RUpgW6L1NbqE7vrur+hvrc61KtbdAWB8muxV1hPvNWdzUqwSLdHvNs\nDv2HCv3mVezKt1GGIwUyPZv8vu+ZVbcl1I3LcLNfTbcy8NeNxqVH6N52++4+PdHfqDufNNroWNPm\nS+vwjrLSLLfVct3T6vbl7bOW4j2flrdkMfPlzcM49rv6f481lW6++eb5anowbTjRgbO8IINKmK1z\nerx5Efk8ibZro2AEAJS6I8qAX8mYSr5FUiGEiGDCELns4JSAImkzlSK1aXTnaMC1SC/IAdh4mUpY\nLPvIqXEGcOF709oIwBg7xsYUaypJoFIBRggPCEdgY93fBkn3KKToqmb05QSBeVz+oHc0nZLobyhf\nYiqVmkpc9YWmkjIwy025brwF7TLrObZtOW7od9oum7ruY9rhsctGf5uNl7XJ1PSjp/PLZtDmvZo9\n4fp/+8b98KSbPpGuc4benGDERl2CuLq8960FFqAR70TgzbupcOpYATAbFeP5mPokTsAPoMfz6QOS\nxT61xd61tsxTtxf88gI7GLTGGnRsme53gn7Xn4916g6A1x7fhtNXd/dp6+Hk4xKXSfWMQgrrXljr\nKHCSXFzLzQJdq8MhToz+ZoBKGASRmFSxbBz9zQEqyX3UvQt2iOzUngiSMe5vmB3gZddo0cVCHV5N\nJawTqDHSKcvEG0HKByrph5begwoOBNeeI07mO2Fo3HBuRvZ7ZrlsQVZ3l1fv96nRznDdK+iNbUYL\n4Mbub6qLeg/GjOWqXBf3Y/SPAabhMqXvpftbaDdfXlWlw3ytjdzfvIwmax1vpq3JePazpPTfZX9z\ngswewNyTeoNK11xzzVwVPZg2nuiErzGVHsiofFai7ZIFhH1h47syagBAG07FKsRi3W5QSSlPOlGn\nBlZIFrNnOKhgfZprKll05whaSAYucsXKNZUU9zf0t8Mn11HEF0Go2wSV9Dbifjy13hmvi4LYfDSE\nJ7777hhVs/agerC+QUjWiRd248GnwhIzCLvJ1VWeb2mU3N9aopmgsT2k79nfqMFvbH4sthB2taHj\npgSV+I1LUbd7k1/Ww4GTyQCf2ieX4fn0EKFeNwCogknm3HDG68w9eZ+5l5nmbWOvMovnKJdF3d+8\nJ9WWgRt/1+N+LDDC1s3Rv2d1O59j3xNOADustNftb1j3MK6dZXqfT2Ix9HeN2Sh7ryvDbiNAciPz\nuOVL5RftJJs5a7xxGwAJtAnfAgC0IIFKTECUUqg7HH4E1jItq/tM73hanwfCIVtIeE3R3N/MeWMG\nDtruQ6mtwTbhAl9gsC4CIZb+kbJBWxh0axRlKkljONjLp8dTxL5l6g4Ah9O9ysM4CH+z1z2+DqmN\nHoaLm6E7u+zVKury+t6zxjkPeXRmqthOH7jidUGbGOxtnNcCWPpqSQH0j2ZnRU4cO/rSmv8zUGlq\nMwzD3zz5+h6SSG3GKURxNbWxeoK3qXyxanc0SHrwod2PlnqDSjitrq7C+vp6dm379u0bKfLBpKQ+\nmkr/nmk4qGFhUJsLVVj0Lc2Troz0/6rSQTMPU6mPCwLdvIe6R4L7mx1JIy36UaibA5XQ78cGsDNE\nbmC5+xtv4AEQoe5TSah7OKgzFwAr/HOxQXNsTE+td0ZlcA8ry+zyWkBI0FSaCtpPwdDOQCXLxSmC\nEW12kkXvi9NUqms++lvXBhxJT3qOtA7Z/a0AOyU2V6ERYhta62TcUOHuBaKF5Tk9BNDuuwT//O5v\nQt1OsBPX441Sp7VRu65R0kPybqBF48BJoebq8rIyWPeM+C52300x5kr/LtXd55TRdEEwNNv6AHRe\nAMr7vHH9mWsOU3AJcPBlVlUF25dHcOTUWG0jrlv6HhJ9btYmCbsiS/2O13AtXx/jOhj2Vj7KkvUz\ntJTnSDZzUlaNlSG7v+U2xIjMzYl5W7rz0WYk97fAfqKbuWRn4LrrKl8PuYRtEcn9LdcgUubBpu2l\nCxOepeb+5mPX2Bs0TlNJe88Cm3l1faqyBKgrlrWOe4IL0PvxHmhYWi8d68v3fGi7i3xkrvaAvJb+\nkp8Rktv4Hvdnm7HTfdpBFfJ8+Ldl3tTvWv1pbPgPz7wgmanZU/v6B+cNSTssyoS6FZXoMG90bVTy\nOdezPq7Xmx1QotfaM/ubHaVu9nwMpp2Vegt1nzx5El72spfB3r17YWVlBXbt2pX9ezA9cIkOBs39\nDQBgURBB/l6kZQ9baJAWXwDdYMfGgIWgYtc/K8x6zKe6GfFilZKGQGAVSWViVzVtMc8YFCF0u7lQ\ntRnIpbm/ZW5y0waOrXYbjVFdZW5jVqQIqkHh2bwHo3JJYCpRIMTS4qFsoZDifaBn1BogWc4QAzFv\nzlRK+XDeHFRq3KyvkPYXUb75AAAgAElEQVSsLLD5uLwy6Eeej3Xa1XBC3QZTybv4ic+xrIcb61io\nuzEWyVB30mxjs+Xi+U7hTq2NXD4tf/Ecxd/aZXG/VzcVc4JkWhQ7ymKwNgtWO8v74cvj/mZuFiz3\nBydYw+X1u02JRcZ7b9vNcX8DANi+lPQW+7nzCfkKkIzPxzF7pfp3bcm1OsXNVC/AEf1f6fRSU8ku\nz1u3FcJcc1WI7xdZ0sP3YKdQphINpJH1A2lHiv6WDphwomwpzA6mQC1NmaaSwFTCppT3RN0al9MG\nDPe37hOzPKz5W1snMKjkYQQGW/kUApU0YWELXKHj18PKsLRFe7u/Na2bBSR9p9ctDSIA/2bby5L1\n6h91dcEsr8/FyRYeL98nHwtUHh/eyGbcdbmd9Ld8Pi/oxpXBrcOYYWgxgADyd8pmFaG6BXujD4O6\nuB+3Zqfv+ZhgWo8yN8pU6o06vOIVr4Bbb70V3va2t8Hi4iK84x3vgNe+9rVw7rnnwrvf/e65GvFg\n8iU6YWrubwAAO5ZH6t8fyITbZp1+eIS6MStLA58AAFYW7br7MJUk7ZqoO0SMKOuljPR6osWj1Ts2\nTtQxU2k9Yyop7m8EKLjv+FqsIwNMDHZNAi2sNqbrwf3NFuo2xL8HqZ1RNBS1k4pUA/h1c6ZtYipp\nz2dCwCI8wWNwdTzT0cK/le4npLO3LbL5uDIsQMAvSsy4v00pqOSsm/Sx6QprhO5dxPoTPQ2jzTiV\n6yvUXVxnfuA98XLr5vSY2+bVc+LyleHG+Tqkui3BUqktWZk9Nz99WGzcd61d1mZB+h33t2nbqhpV\npREuFgnbl4eufPRvskuQ737C5XG2SeLr3klBJTfQypdH2+VZ762IlV4wDZfR23UJrSXUzSQk6m5P\ngRO8TgHkz5G2Yy1qKs1AGAHQpZpKdZWCezSkfSFhe0NiKuHfWnpbXsaO3/0NTGYRBRm4ukeIHd2C\nvUHD7m9B/5QGu+Hq9jNCxKqLMWvZeNL31MbuM2d96XlTmXwbEyDrcZvqV6aVLzTdAvK6v4XxP/tu\nAHR+kXD8Tgh144NQBWCpKjqG+PIqxb3duu5l4XjmSy0v7h9rrNH6e617zndiMw6c3OL1zsOz7m/6\n95AiuO5gc2mpt/vbhz/8YXj3u98NP/qjPwovfOEL4Yd/+IfhEY94BBw8eBD+5E/+BF7wghfM15IH\nk5moQWu5v21fHsG9M6Dge522OJhKNKqa4umTAUXWYF/JmEq6Zo/VRu5v4QVOgEa+4W4s4AAtABpo\nga9F1yUDOJgQTSUKBuBEQaUwVkaDOrn2NU10Z7FO72x9knQ9CHVKbDp/1LBgMCf9Izy5Dwcl8NdH\n9FwT9cZ9HkrvovulvIvDzpUwRLyzTgRptLezt8qgUqGpZDwfy/0tXG7aEoy0mEqi4dgTfHK7v02m\naDPFFuk+tWSf7QZBBvl0yy7TbXC4T9D4fFxdG6Fb06hD9qaC9OUmgGR9Nz9WPu8pbFfmvH0pl1kz\nmzRts5B+JxeKD5v6GcIby+cBVEPauSVnaPrfCd/9aH0e1ozk/maXB2AAjmQjabogcEylCH7koE3A\nYcKaTedmCqDiZnKaSi06TKFMpaHg/jao8XrI2xye6G8YVLKBN9/hUO7+VuZNYABax42NsabnFGya\nTFNJGW/LSCcwHLZxXggluGLZY56NtnN9ds+Xafxutm6ah0GBXVzVMnse0HjYNX5tue7TCzD72tl9\nZuuEMt/2PZBT83rtlx7ruMfOCsGbciBNLDJr52bYEL0ONHoedvXNt5kM6uCeLh0iWak3U+nw4cPw\n8Ic/HAA6/aTDhw8DAMAP/dAPwd/+7d/O1YgHky/hwbAwrFUjBgBg+9KGJLM2lJYcTKU+PrbLC7ZO\nUkgrjryFNop2cilsjIek/SF53cVMTSUMKgURbQkIGSSDE7u/eYW6ARJTaTioMhZWAGEsV0KLCYN/\nf3LNYCo5N5xYU4lzt1lgNJU4RhNXtwX6YQMbn3DivIO6gqWZkbk2marPm7uuM5V8Lmhe8BYb15b7\nmyQGS1PfqFQWiwELdVuii24AiLksngg6N+99mEqlcbJBQ9hp5AEw75lzvtQ0P4KotLmpcBpavUAY\n5/Px0sf7uBLSLvGON49BiN1JPAL/2sELdn/bjL70bjj7bFQKppLbCPc9Hw9TyTrI8b63OK9XqJvT\nQqT2UkhRU2nAu7/FuZVh9tBmtG04mJoxe0hZC3Eta7K6MVNJ0lTCjAtZUyn93wJ6k0YImy1FsEI2\nEadRGNlXDk0lD9MjCnVPGjMCJgB2f5tEUIlqinVl5LaMOF/GNtqyEvOuPdb6iMfAZoER07jZldP8\n2jV8ebXy7sxdZng+pqu9/Fvpen74sJE2+uvW1hqc+qzjHoAO299eoe5Uvlz3/ACQf2x4D9rc9kuP\ndVx8d2eFWHablXqDSg9/+MPh61//OgAAPPrRj4b3vOc9ANAxmHbu3DlfKx5MroQfsuX6BtAxlf69\nUqapZGx2Q9Jeyi3ofrV8AJSp5HspNaCqjHSV/4YagBYIg3V+NNYM7jdLdypnKvnc39YE97dhXWfA\nl+aih9tuCUOyQt3COPZGpcKaShEsQnmxq2FIFltoiPqSiqBybZo0uQA3db9b4ly2HONyZWHAGpe0\nfgBeSJzmi6wvw4hho78V7m/0NNxuY/ddz4cp7tzCmzSVmsgi2+hpZAg3m+U1+jJ+7wEeSW1wu785\nN+/z6sxoecv5ksmDniHeV7oBRyFfr+hvXoOw54Zmnrot481qIwAG6nSNqj4ARw4qKWPD2U6vSDjP\nsOLL3OVlKjk3SbQMz3O0mB59DPvSZYvPh5ketI5wtlVoOFKhbgFU4kAYrh/WJk3SICIHaosUVAos\n5gpFf5M0lbD7m6ipZIMRfd2Fp216lhRww/naFkxtFg/TI7gfdkLdenkA2P2tiQxuzr4vWGzifNl9\nuly23AcvvnmQc9nyr1N8G2mZGwlFH68Xc7V+3xaAifNaZZbvuK88NW8cl/oYnnfdA+Bd4gD89ga9\nvFGALlybGpFRYzvRH71BobR2epnjtG6tTHpZ6qLC1pCrnrtua58tpd6g0gtf+EL44he/CAAAN9xw\nA7zlLW+BpaUluO666+A3fuM35mrEg8mX8ODwgEqPO7DjgWyOmrBb02a4oGH3NwtB3erQVOpTN/Vv\nDy9bMN7oydzU0IjKXLamMmhR11V80U33N3SagwGAEEaYSxQ4uO9EAJVyoW4zdHtoYwQtxCrjfXqF\nukMyNZVQZLXM/Q2BYyFNjQUIn4xpQurY4MZ+9PgZDeo6Y9f0YSrt3b7ENzCUzdwnez89Tz8wU+l/\n+6HzAQDgrS/4z1leGv3NvQEQ3wn9dyGF8bKGmEoysJN/1+YNOkd5QTKvsGkqlzMU5zP0pD6ixl+f\nU6yNuBKmTVwLLm0Up7HThy00P3Xdu5kSq35ANK/Cn3J3Es8YktuJNZX0TRJty8Y2h/zGgM9M9SC9\nhr2ueWW3EWB+9zdtsxtZM07QgnONwe5cOIVvw+j+pvdJdmLPtGFtPI3RZum6EtaytZn2D7YNLKYS\n1nqU3d/S/0VQ1g1idp9YI5AT6u7DoAtlagDHAho/Lk2lmX15cm0SwTruMKkEO/nyvNpLXLv88z+f\nD89X8ZrIjNbbQstMh5Z8eVwZGz0s6APWuwGtOIbKaIw4cXOZNdabtlUBz76MM+sad30z5ksPSzbM\n0xaLlyvTy2jqypTyAclnz//Sb0NyM+2cthNXl/s5zhnnq7d/1HXXXRf/f+WVV8KXv/xl+MIXvgCP\neMQj4OKLL56vFQ8mV8IPXdqM4/TSKx4Bx06P4ek/cM4D2Sw24U2n17VAo+n2cn9bdLi/OSatWPeI\nD29MF++Qgu3k01TSWUCDqoIJMoqsRZ9Gf1vro6l0bLVr30AQ6jZOKqwwpQAQw3oGmvfiUBfqjnVY\nAF1jRH9DBm0KRW89n2QcefVABlWuqTQcVBFgXR1P43sh3g/aEGh6SrQMjzsHbiOXIqjUpA3VNZc/\nDK5/+qMKRhkGeWlb5qmbaklJ9xMBuslUZW5wZeiaJwAwtdvZ98S2uO4YR+4oaE7DZFMEJB1lYs2X\nPtooVr5+0dL0OqQyva5qOgA0b1+KRSKWieHW0MPI9EZ/82t9gStfH+2ypdEAlkeDKFzsZVB4x7qW\nj4IjG2XMAJR9ZG1UOHcOylQJqY32RleJxFTi6ububX3aiO5ilKmU1lLZHgoJH2Id3wBTqW8EzinS\nmeQOOLn5VgZNqK1T5uGiv2nveDi0/O7J9eIa104zgiBtowrC8L+VyjTzMWNAfn/oSyG10fc+4vpj\nkcZ7Jn1PbezzjvezDSwdIPpzfd0LZeounPO6B3K/lfJu1H7h2qWBXJLtr7Vzo3Vz1x8IN1PvAU0/\nu4TP18du1NKGRXcOHjwIBw8e3GgxDyZHwoPBEukOeV77Uxc9gC2SE6YZe5lK2uK36e5vPQAtianE\nsWAA0qJvsWvGSAdIdS1rWnRqqpc5pe5vEz+odGxm6GGhboBkQFqsjLHh/gaQ+jkxlQT3N+cJdNoA\nNIL7W2gbjv42a7exWZgizStufEgGKrbDB3WVIpZNmtgeD9ip6SkB5GwulankBFDD5SmKlrM4rNln\ntJWcpG6USeDd5Eeh7nGTscPYMp1gDVe/N2KN92Q3toG5jJ/dZhg7fViY87KFdPe3POy5XKZeR0j0\n5zobxbemlC5bzvJUEEb/LrXJA4Tkei/2JlgrE7vFb4Yx6jWEuTZpS/nOLSM4fXSqltkHcMT193NV\nkPMtDuu0Pmpjwzm/hDLCeoXzSUyl8D2s2ZRFqm0kuX5YGzfxEIaynsJasD6LeIrZwdQ1jCaPUHeb\nzRtsFj8ggDbvkkYUQD9GSAkIlPkWkFB37B++iQCQ+vS7M6Z4XfEBTEIzLbe2pAOkM3m59rvBdec6\nrrVzeaEf29mK9sfVZYl/S9+lNvVhuGwUFJ0nQIUV/W1ecAPA1hmz8vUBQjzvOA4MYjFAu/zpbzqr\nyNfOXqCft4/mHBueg6mU1/mOa5OWktwEp1tvvRUe+9jHwrFjx4q/HT16FH7gB34APvaxj83XigeT\nK2Xub8xJxvdTcjGVnAsaAMAW7P5mjHafUHePuhd4VkY4xZtSTaUQMcw4oZlOE1PJYjUFcMjSFpoi\nAArAEOoWAKdhXWUnlGuGnlNoUmRTOU6Bk6aS0zVSAtOQAcWdZA2R5lJIli97Mo7T72gUM66N4Vpe\nf4WAkGk0CD3MHgtUwi6wKmDi3LynE87Ul5wRDgCwdTF3T5E20F7dtCJKnJBvI0Ld/U4ZhXxznmJp\n191RSZx92cfYoX/zzpdc3VioG298rTkrpI26yQH0MMrmBtP8m4qNan3hv3WaSnJ+L7ADkLu/9Rkb\nUjQYL2jNMWY04x5HgJP1SUgdzo1KH2an1sZtXn2qnsAbt0ZJoA09mKK6QdSVPG9K2ZD1aYPc33im\nEkDOxBlUmN1sR387uTaJLCfuXgD8c6iVD2sELrDub9xv2SIZVl6ZJ/R/J3quH8gBpHX8uyc6ptLK\nwlANhGBFQUvgkweEmXe+lMqz6wiJuvhZZXoAOj/TQ3sntHy++UUr0wtazLtOaEx8L5OLu77RtXSz\no9KGuSkEBtHqpn9TAaA5bcF+7m/6u2uV2Udn0gsW9SlTS25Q6eabb4YXv/jFsH379uJvO3bsgF/6\npV+CP/iDP5irEQ8mX8ITgkdT6d8zLTg0lRZHvpMKgBzYsRBUDFRIdXtPaABKAK9kKlFQKVDH+TLx\n76ZGNJhgSAQ9AjnsNsQyvdHfkqFVGqHYsF6b6C4IlPauuxl1f7Oiv7mFuhGwx9F+gxGZR3/zur8h\nkXJ2UeMN1IwpVVdRXHpt0kQNCo97lAUqPWTXFrUtqUxflLjwbMLzBgAYMSemAABbSWRJGRCYM0qc\nkG9xiEClnkKX2obTCx7Mmy+2iQMisbGjPUfSfvreSvl6gTAbAJWS60MDuaYSX7c3Amcf421eer+X\nJdUPmNzYBq0rs/tsGl2MtM8GxCvU7T0NdbvJ0T43jNadiFHlfc+8J9AqqFQEIZDzblvy6VN5N5Kh\nai66mAgqzZa20O4yiIL8fLhu7ZhKvA2D1+sM2K/laLgAQdcoXZ80bREoBABc84YbEJi1p0HsbZZd\n7ABpxetMPjwvr41tYCfYtsHVUzowTpHnDC0eBDAITYyJdod33fICB1r9fdnOWsQ9qX7vXCTXrf9O\nK8M7hqzxa+UDQCzGTF9o/jZWVeVe+8rDB6GNfQA62u8sQNZ9YokO71jvA7RuxuGQ+xDLCbz18fLx\neyr470dLblDpi1/8IjzjGc8Q//7jP/7jcPvtt8/ViAeTL+EB9/0OKuETLenFoICCzhZC7CNjsONy\nOYYJV1cv97fZrUWRaHIyZ50kYbe5FClO2CDO6lifbfTlTV/pxw+Qi2PSFPSWdpNIO8O6zkCKdYMl\nRSn72sa4YCpJG2OnUPcIGRzx1DQDdepZ2xBTyRIeD8Zxq2teYSH1eK3KmUqDQZ0xlTSNJoDciLdA\npfN2L6d6VFCpbDeXwmVs7HPRcgAAthGD0CuWvVGw5oFyf/OyE7zzhmgMKGCM9jvub+fuXGbzaRoq\nZZk+I4Y+b42p5HZ/cxtQ9Hd8PgCA3Ss0ahifz2uw9xlD856Se4Cdpm1TpC0WzPbVDZC7v2krqX+T\npH/vW15Iu1Yw+LXxMvHftKpLdqWcF4NKfTYVFmDCR39LYwGnADYGm4uyfzW2KNfmtck0CVsz+kzB\nJS7Xtct1GGmiEXIBeF2lXKhbWp/Jd2NcTrFQN7OebQRU4sYGXjNXx7r7JkBpB0sRXyng6J3b+myg\nN6pdxtpJQl7sUdCVqbdxYhzAdvXn38V53bv29JhfClvQ6aGxUeAL/w2zhNk1urAFxSJ7AVCefCW4\n0afuMk+cD53ub8tOCRXvetYnEIx7jfQeWs657gHIa77W/j7JDSodOnQIRiM5RP1wOIT77rtvUxr1\nYOITHhxL3+/ub+iNkxagpSHPAOISBnYsAbGcqeScsJ2AFkB6oSUjKqDmoksb0j/S3KtwXWODqRTq\nCkZMSJKLG/7bLrIRw0LdAB73tyorT9v0bTpTCbOKmMU0nBoePT2O1yzBR3zi2lggELMI4HI797cU\nMSe6OwqdhH+71wKVEFNJBZVoXxrGGx5DVFMjJMpU8ro4bZS9wQt1b/7C693EejUb0vXyGm6n6r5D\nynzILh5U6kNjLscGn3f3ygJhepR5wpimQt0WM05qd6rLfz8XnL2CyvOXuVFh9q4M/bfpev5dW86w\nO5QmwFqWKRfqFer2bpLmPdm1DkJ3LKd1yWL2pHxyeRaYksr0P3PMttjMDRq3RmHNMpzCm/a/XLQf\nfuLi/fALl+Uap5prL9eM9UmDmD1lhsAWXRs3mT4htmtowkzhUObx1XGRzxUa3NmXmL2hub/xmkp8\n3Z6N/gAdNq1G+0vZ7BJbnhPpxnVpUSC567006NxrqVSeXUdIpfubPl/6NJX6vWdm3T0AZn/d9Hd8\nef2ErbvPaduqDO4NuU15D++kseEEg7m/ceszZm56hLpxRFHPmmu1s8jX4z3zr5FC3T10Gd2aSs58\nVnKDSgcOHIAvfelL4t9vv/122L9//1yNeDD50pnq/iYlr1AfQL7QaoskAMBZKGqW9+RF0oQBKPs6\nairVyXe+QYZUPEkyNtpYu8baeAWdJNkNrLtOKeUeTaXdKzlYPBrUUFXJBW7dEOru4/4W7vPk+iYJ\ndQ9S3dzC8sSDuwAA4CP/+O1osHKC3jhFuvUUM5X82k/4WhBzBZixa4znjRlrNlMJgUo9wAjrvlfH\n4VS3EhcWSl2Xqi/BQV8+aS5IAF1jamP1CTfuHW801Ln3JCm2STGOpL9zZZ61dUEN1kDHoJRK4EB6\nz2rYg8BnjS2DRaW5OmK7nJsfr6EFAPDws7eKv9Pq3ggzIf7NCUbQ56a1M8wdn7zzOyrDslf0t2Wf\ny5bfrc25Me3xPgIA7NqCmEpCXjoWvGNdmy8pkK71UQYqqQCdty/p79L/B+j9wim8a+fuXIK3/Nx/\nhice3J39vWRh6u1YmzRxA8+5P0e26GSauZJjXUeacPTVYJ8dOV2CSh7GQd8DgKZN9fPub3YdIXk2\n0FVVxUPVNQdTiYJIIqjk3LyXbB0/cCDbBvR3vveRqyMkt/tbleyxrg6+PK4M75y10U0+X7cv32a6\nV1msnT4uaFlgA7XP5d/l+fz34ymTB5WUdc+tf0e/e8eGWGQPzU79e0j9AlT4yuxj62jJDSo985nP\nhBtvvBFWV1eLv50+fRpe85rXwFVXXTVfKx5MroQXi/8IoBINJ68COw7x7ZB2blmA//faS+Bd/+sP\nikLDtAzJ/QyAc3/rfovZJmPk75Fc2vh2JpetxnaHQhOnJ9/p9Zyp5NFU2lW4v+X3Z2kqhclo7BCG\nDGWcikyljQl1Y4CuYU53r7p4PyyNavjqvSfgv3/rCACgU2Crz9s2aSAJw2NEmTh1Hv0NM5VWEVPJ\no+HSx/1NS4X7g/Ecw/OWXN8A+jCVnBtOp7sjdiWM4KA4NvLvm2GMnrtzSa0jXRfaZAACumGS/n8A\nsdSsejYjbDxADtZr1PqmSe9NVflPxrwntto6cQEClaQoVKFdWlukNvXa7ArtpO+Otpz9/JM71sl/\n/cw34f1/f7eYv49BiI1rTtemb5nzivhqfQnQRX8z655z06eDaX00lZz6VE5GlQZ2xk0UWdOjhook\npK6cQHNNXpukgBJ0fQOgTKX0nksakwCQBQ85a1tnbxw5tV7k82wO6Z+sTey0TcFLOHuwj35MGemK\nzxjsX09kQGrLU2Z8apOv7o0IIlsBMqwyedYXn3ll0VdmBJUMhjkAB35J7XTmmxO07r771hTpduYB\nLbqADuGd5NboPmNDbovWTjcII1ftsg3yQ6xZmUo7dyzb6wkAx+wR2tjLNvDlnTeAiNaX82oeWgGx\npOQGlV796lfD4cOH4ZGPfCS88Y1vhA9+8IPwwQ9+EN7whjfAox71KDh8+DC86lWvmqsRDyZfwoPh\n+z36GwWMuNRHU2klc3+z6/+xR++DH3nk2eLfvackAGVfh4UGb9bxBiaKbxsbbeyaJrvp+Ra10Cbq\n/uZhKu2h7m8BVKpzw8iM/mZoL+G/BSNvcYPubwGgk8KKblsawTMv6hiU7/38v3V5DaosPnGdxmht\ntvZTKI9uBLDLVhgnEoh55FQ6vd2zooNK+7YlgOO+WThiLhWMHeM5RqaSAgz7NZX6jd/UFsG4RULd\nU8V44sroI9QtZd2/IwfyPLT5jOHDnh7K7ZDqklzfUv34d0q+Hn2EQU7LyLMAPwDG2BFPyX1jAwBg\n33b9nRHrdm6SNoP9RLVEtDKf9Z/Ohd94+qPM/H0MXHxIcoJxQYplKGBEft1XN928W+s4jv4mjaNt\nPQC6OqtbzuiNWEnr7/OezQO0Jq2//DfRZWyOCJwcELU2aaLdwLlpLyJgP0aeqxJDV3N/WxjU8RDr\n8EmOqWSzUfpu+qzob6H9+W+dGy8hX2In99dUkphKXvfajQVq4PPRg8fNCEvuZjs7n3dXn3fO8vWR\nF2zkyvC71G18kx/XXsTa4Q5fvHM1/dumMAc3cMjH2UXY3dbj/rZ92XcAMLdG1GaMDWeZ8z7HPnV7\n9tlsOd6M+/btg09/+tNw0UUXwStf+Up49rOfDc9+9rPhN3/zN+Giiy6CT33qU7Bv3775WvFgciX8\n0DXXh++H5GEqUZaKF9ixhLo9ad/2pZxarjS30FSavel4ostC1htMpSHjqia7nfgmhNCW04Wmknxa\nH4CdUlOpzts59rm/jQ0GEEDZJ1RXKyS3YF08HeU1lQAArn7iQwAA4OP/fAgAwHRBC10+RYwLSYcI\n3w83LoZ1HY3wzGVLGG+P2b8NALr3x2Lk4T7ihFBju+iiYjGVxv2ZSpLxxmlOsW105ksAXWMaEn3c\nbYp2Cvezd9tiVp8HJDuAACBWUwmVQd9FKZ8JKjkNwsI4UebBs02mEmfkyXU/EIKlVVVlblNS8hpa\nfdyr/KfkFTkk0d/zp16YH454TqC1IvHvObHkkOY9XfVuFkym0rKt/bR7ZSHrSy8oS12+cepzmu8V\n6i4ZLlK+/Ht2QDH7b0NAG8tlTHOV4O6tc3+bMZU4UAlFM8XBEjSmUhLKriJAwTGVLL0g7m/WuGya\nVnV/48pwAxxCGwMjKth42ju+OKyz+rxMJYvZY+Xj/ia9P3RO9W+K5cq3FKCSNAfrdWh/kwFHXx/1\nOVTwzv8PRN1xbkAHOtoabdXdlZn+qM/p+Xd/n/vtMXbNQ0CaJWkB4NdU8jKONyKITzWRUr78uxXh\n0crHl8nnK94zlf8kJ372EtLBgwfhIx/5CNx///3w1a9+Fdq2hQsvvBB27do1V+UPpn4JvzDf9+5v\nGkozS/NGf7OMUU9aGNZw1tZFuO94x/DQhbp5DQxMDceaAclVje8DygDqrvkmD0tbKLBMQvJpKpVC\n3bhN0f1NnIyqrK4++j6LgvubF4xgNZVIkQ+daQ+dWOtORs2oYYPEVLp3Nj7oSV1IGOwM46JgKg39\nTKU9WxfhM698WkENl9JoUKmAUlcX6UvDIAzjUnIdBShFNqXn4xXj9INK6dlYUQn7hbD1GQjDQQ37\nti/Bt4+uqvnw433IrmW4/d+Oivlx+5/zhANyG9FvH9LD/U2b2/oYrhlTiSkzbuJaPayxVIZoXDtB\n0ZAedtYK3H/XETWPW2fMaZB1ef19uXVpCCdnrsrWcraz2NCVefoIsOJ0Yk0DlXwbaLoJtoDEKdja\newCEqSTkraoKHrpnBf7l28fidynhPx0QIicCcJpKynNcHLry+UXc6YBDf4tMJV5TSWYIyGODe5fW\nJo0KwiwxTKW6wkyl0uaIoNKwjgDF/SqoxN8Lbb+WNzyPpk0HaBL7tq4BYBp+14PhIiyRC4SpZIG8\nW0aDOB/4NZXstR0nCK8AACAASURBVIf7nVaGZBtsXxpBXSXbSTINeoFKTm25jYBk3oOKzQguMD8b\nxTnWHHXj6G+8vpV/bsN/0g9TfGX2GRs0SA1XfQpckKQv1AAVTqbSZo+hrq2+Mud1f9sMllSfMrXk\nZirhtGvXLrj00kvhB3/wBx8ElL6HCQ+GZWEz/v2SJLAAp9EgD12vgRH4NHJeX0+azt2R3Ie0ugv3\nt1n9OKT8BGsqmWLM+eYdl0lTufnh2xh+vzrpEf1tZjiuLAwzQzqAZcGgjCLhoj5V9zmZ2psF2icS\nU8ntNpVpKnXX6KQZwJHQvmmrP59wfdK08LV7TwAAwAV7t7J5VxitL/zMck2lxtRzAgA4Z8dSptWh\nJeqOxaW+G+hgCGtsw9KFh8/3sLNy8MMdjVEoDwPRp+Om3PnuGJtdnDTjcT+aNzzsgHPRM+L6/mv3\nnYz/f+4l54n19nN/QxtHp8ExqCv1sMLt/tbw+mY00Y22N0qcNf2ff9aKnoEpQ2pmH7ZbL1Bp0ec2\nBVCy11zub07zQGcq+e7nrK20fXJ9uAjrvrGguJb3IApY4B3r5yqgUj+mkk+nw81OUPocn8zj1EYA\nV7c3Yqr+//bePE6Oql7/f6qX6e7Zl8yWZLLvZIMkhAlbgEBAQKJ4hQsKEUTRIASuwlUBFbwmAl/x\nBxdE/XpZZIniAi5cFFm/IqCGBBCvuRjBRCBByDJJJrN2/f6YqepT1XVOneqpXmbmeb9eeWWm53Rt\nfbrqnM95Ps/H80ebHr/0Nytg0ucslmCrhj0WOSzFdDwasfuzKv0tmCJENjYY+L9fqP4mq2bqCMIH\neE7I2pa5lEp+QV5xjFkuWVDKhyIkW5UhvwfXaEzKAwXhI07Fpq5iJwyzbG2fmSFULJN/PnC1U/Q3\nobHOolh/GsoCJoECdBG974TugkaQMdb4eue40TP9bfC1Az19vpYWgNtTaeh9SDcg6/U3v0B48HZB\nvuOa7TQXprK2k9O7SFEQO1ipeyotdlUgkSFOElUT7ZTGwycoLcLkUDbZBbyUSpmf3Uba4s+ysvHW\nDbJbCAD5GXBn9i1rNzjQC2DU3dOXCR6IihLrWNzpb35BmJ4ARt0WMqNu3Ruc01PJe0AqqplMseSq\njwdFOm1i6z8Hg0qN3hNVcXJoXQdHifio4fBXyCiVwunEbuNoL4JW2erSMOqORgzHOci+u42VCVfZ\nbe92hpFdNc+LhBDosioI6iqVVOJJt1m2agDXWqsOErlfn9ggTnqz27/TkSl+0Vwt/zzFXbX5pr+J\nP+sNOGpTceU92BlUym6XUSpA8HXQvxeE4Y0FAJMb/INKWX0jhNXVIKqvSk2DZ2BgQcXxXfNoHmTf\nImqlkvN32SYbKl2rypqfuV/aX7VmYH2Cz/fL628qpZJbneOnOAu6b1Vb98uOsUY081wS8QvEqBQu\nXp9Bd1+/kP7mpVSyjLr7HWknQT2VVEbdqq6hOznNLA6l7eP0Mh4HnNckiBJG1oft9DcNTyXAOQ52\nL9hY6N4vA6kYAiy8iGrtMNQogFPJrBuoCkOVoTt5DxagU79Xvk3pJl3PcXk763MTVcJaiw+a96wg\n30dpICRAgK7NpcT2PpeB1y7/wUv45m9e891mrulvMo2u6l6d3VavHwV5jovjc9UiUq5G3bnOUBhU\nGkaInaPUPZVmtlThJ59ehmf//XhlO0dQSdGLZXnmQ0FUeSjT3+LOFVPxBhGLOFUwgLhS4L3NmD3g\nEJRKuhMqn4BAlqeSRvpbWSziGMjEs9LfrDQj7+1kpb8FuMHJ+rE7ICdND7RWR0VPJdf+HWmKGn4v\nmW2a+NugikSsKiVS4Uh/QNb+3Uolv+pvQTl0gr9SVLeymnXcGaNu9TGWa/icGYbhUI7oruaoBoOZ\nIJ0VxJRsL8AKp9hn/YIWDoWjRr791KZKXHr8NFxx4gxP9dfXz5yP6U2V+OWlRyn3awXRALXSYuC4\ngk+SVH5OgNNTyasPeQ1sVZcy5rp4YaQxAkD71Abl3wH9yUKwCYDeZBdwGt37TbwMw3Ckgnmdv25V\nKjdB0t9kz8iKsqgj2KurJPD7njUICijVeGeCsKqtW51JHVRyn7f8GB2fozJoLT8WRztFv7SVgKZE\nqSTZd/bClPfPFt29abvohtdzN5POnXaMdayxkCqoFI8aglLJK6g0eFzKzzFY4EC0BJCnv4kTaL3+\nO/C7dzt39Te/76P4LJWlv+kHQtTvU7VVXXedaoxBVaWVHuOn7GMMENjJeubLtqneh0UQdY32MyVA\n4MDr+++9zYH/04MLp4D3/TWQR5QRvJ2qra5iBsiubOy1Sa9nVzhKJb1t6j4fvbah3S8V22yuyYzH\ndNMYvfYh24buGMJN+DN1kjfEDlbqnkoAcJjGhFdUqqg9lTLnqyqDHITWHNLf3F80L3NKPzWKO1gT\nMeQ3D12j7oynUgClUn8mqCQajmaMugfT33wk3NbnpmOyKaY0APLJgtvnSc9TyXv/YnCktz8teF6p\nz+dAdx/e3HMQADBFElQSV6rt9Ddx4hQx7D7e3dfvm3oXlEuPn45/7uvGyYe0SNvoGyJb/XKgD6k8\nlYCBQG/HYPqM6jOfPKYCr7w54Cnkq1zpVx8jMNBnHCb3moM39b6FVR+fz8YRjNYYjFYmYrjipJme\n7QDglHmtOGVeq3KfAPDWnoyiyS/IrqsIEdvVS3zDLESlktcmRY8Dv8A64FRwDbT1bpe9wqk8TCye\nVI9vfHiBMvAW9uTDs63iQHUmUyK15XG8O1jh0VMlFiD4JeIVALC3qTlBNAwDYyoT9r0yjJV3YMAQ\n+snPLkfaNJVBJbEfqa6l+D1Qpr8F8FQSn5vBghGye7Dzd8P1LAFyUCop9u31lp7+NHrTcl+9TOEJ\nb08lL6Nu29MomvFUEiudWpg66W+6AQHXOAvQS78OouyRpr8F8FQCnON52b096HNc9j5lW8XJi0ol\nv8/HzzzeQk+pFCSwo36vhX4FwSBBGL37pW6Awb1NnX33+yzoBLmWhmPfeseo2maQqoRuWwevPuwV\nVFJ7KmkuAGgeZ5ACFfpqIf3n+IT6cmzfZT1z9cZ4A8epdz5MfxsFiF+sUlcq6eJUKsk7sbgS2u3y\nDcoVMY1F16jbPQi3BqCiOWWfnV7lN9jpd/zuhe5D3/ZUyjLqVlR/68tI0sWHuzXwyjLq9tm3fcyK\n85neVOX4XZb+NsmVwuLnqdSrCDKI6Qy9/fpKpdcG/ZTqyuNZQS6LSg9PJfF7GotEhHSBNPptf6rc\nbthuUmVR3PQvC7Bijrzypq4vjB1U6s30CxWi94PqIS0qlXRTY1TfCd2qkbopTgCQiIpKC2kzAM6U\nQ50BR1gqy6OnjwEANFcnfFoCLaKPk+ZA2G0I7UYMKnn5pliXcKACjb8ib964GsfvupVOdFR+Hzxs\nPI6YIlcsuTehe29TBVqzvmeK666bNmVR56MScB+W3zYtdc8USVov4LXCKd+mqCrSVRLorIROHlMh\nVYlaTKzPnIOhEO3vFdKtWhVpw7op50D46W+qQJ5MqeSXMpZdSUl9HN29GaNuz/Q3R/W3jDrYywrA\nQtyeFZwQjbqt+0UmGOF9LoB+sNN6vVtYaJN9f53KTnXARETWMuFSKvl9H5Nxf6WSroIiezwm32+Q\nAFStI6ikt02/r7hYkEQa2MlS+Q39e6ZdNj7L9Fy66+z7pc84y2/fgKtfamQApE11kDmYSsr7OPy2\nqVvFz2+xy0/Nu3bFdMeYRNbOwpH+pnhO6PpoBVlw0u5vAfrGhBy8BNX7dv6eY0yJQaXhhNgZSt1T\nSRddpZL4pXQHTnJlrKankkoVZgUsxOCNNeiTbdNKL+v2qV7l9Tc/7yW3Ukk06v7nvm48vPlNe8Xb\nOma3p5Jd/c3ycPAp1+m++agGJtNchtcyo+4JDf5GfUDmvHuE6+/ev2jO2def9l1Fs/a19+DASqpq\nUuO10iY+ZEWlUpfgVRGWUkmH7D7k3c5q1tXnb9QNOAe/qoefOHFVpr85BlCqoJLL40yagub8XXXJ\na4RJu1/QotXHeBtwTl5UqTZBmD++Fr++/Bg8dsWxvm2nOgJ58nbidZYFTi3EQZlX6oo96XWoBuXb\nq0rGnX1DM7CTqyxbtU3dyYeobvVrqzr3IEbdAFCTUgdt3Mb+ftu898KlOHfpBPzX+UukbYKsxDZU\n6E04nVUJ1ceoixggsp5tXry1N6P0S0ieO4BTtQj492H7faqBfQDVl7Od81kCZCuBfKuZKvq6n6eS\np1G3Q6k0uA9Dz1MpHssYde/u7IFpmnhu63s49PrH8PDmN5WVq2TH7FeooUsYZ/ktqLh/VrVT7Tue\nZdQt3SQAvfS3fFTZylZXyo+xvkL0pNELMvgV1anMQakUTEkmaad53kNTKukGV6Sb9A0Au/+WVlRB\nBrLnMvrBQdW4zf0+/+357Rtwqkm9+tEHDh2Pxy4/Rnub4vjFbRMikn1/0Wun9CDVPPessa3ifMQK\nwGEo6HQrW/rB9LdhhPghD4f0Nx1SmkolEXfgJFdaNKo4AeoHo6dRd7+fUsnpqaQ70fb63T5Gwzuo\nZA3mbn7sf3Hbk39FX9rECbOa8L3VSxxKpSqHUslZ/c29j6xjDKAkmNGcUSqVRSPSa1SdjKOhogzv\nDU5e/dL+xDQ/d7qMZQLdnzbRJ6Tm+FXSs1AFlSqFlTZbqSS8PxYxMh4UQrpAWEbdOuhXOrH6kDz1\nQUT0GlP1YYenkqbflmqC5g5EhtEvnUoQn6CSMIk1s+dP9r5+/8UTYJrhLgCI3x8VYrBGd1Lh56kk\nDjre8wgqiZNK6zvmFwBaML7W9i0LazCqQ/YASn0Pts5HVXWvLMdS9IGVSh7HWudKXfS77hMayvEf\nH5inbOP+/qtWd8dU6vo7iN/xcO6B4nFu39U59O0FUSoJn2OvIpVQdxVYlUoiS3+DTwA3Kzgo+dmi\nUyj24WVsbXsECp5KhmE4UtHd2EGliGGn2fb2mzjQ04/n/vYe9nT24pn/fddedNINTKraZpS3A+ej\neubqqmt0gxbWBLPLNupW93XxGSEuVInkmv4WRNmjr1TSe6YES3/TO8ZASjLNsYF+ipNqnqA+Ftm+\ntJVKGp/jQPqbXKmUXXRIr2+ovo/ZgSq9a+nXN8bVpbBl5z5lG7cKXFnsSTjOfV3ZqbcWWX1DU3Gm\nWnDS7UctNQmtdoBTqaS6krqKqiCpkSqoVBpGjPT0N13z4u6QlEpipaU9B7MnSTp4rR76KZV008oA\n/RQea5syo+67n3vDPsan/vef2HWgx15FG1AqZT4Ht1G3ex9ZxxjgYTFdUCqlZTPyQUSvDFklPVup\n5OOxY51TT1/at9y5+xqrUkS8lEqO6m8Rw17ZzYdRtw6VrkGqf/qbf/U3wJ3+Jj+fSUJQqbNHHhBO\nCsqoMNLfgki9xYCK38N0TEXmwa+6bzRVJZXV3PKJ6AGmXGUU/lbnk/4m8p6HIkQseZ4Z2Kq3I6bA\nyT6fsljEoXAM47sTxINI/Fubq9SxyOJJzoqnSqWSphePhZ9Jbl2FW6k09Gvkrr6mOh+xApx6kgSt\ndrmyr0tuPG6R8FFgZnsqyduK99ZOhem5rtm8agKQUQI62/ilc2cbj6snqqJXiadSSfALEqs8ZhbY\nssdnPUL6W0owdt99oMd+dh/o7tPyZdRNT7GueXeffzp3rulvqnsWoL8AKo6DZYsQ2ioc12mqFXSu\ntsqFlzKhnWKbmsEIwF3oZOjjS+3goPb3MchzQm+bgarzaZ6PmHpuff289p+IRRz70zV4Vl3zrMCO\nNJim/t2NjsK7LBZxZCKoVV+ZP6qeE7rH6X69VXG8VUk9ZbJ7vKi67uJYRPU5uguiyBc03L/n9nwe\nVkGl9evXwzAMrF271n7NNE1ce+21aG1tRSqVwooVK/Daa6853tfV1YU1a9agoaEBlZWVOPPMM7Fz\n585CH/6QEW9GIyX9TZSh604WVBXNgiCucO7skMvm1dsYDCoJx9Tvk+LkNpB0f+lF3IM6aYqIbdQ9\nsE1r4t3bn8b+7j7bFHNSQzn60yb++09vo0cwZK7wUiq5TcIl+3bf0FQDDnHy7rWiKSL6KslXPwbN\nxIXr73XdrRVXh6G35HzECR8AzGiRq0MqPKr/iLuPRQ27j3f19tsBrUIGlUSlECDvl9YhWekCsko5\nFjKZvhtxcvr39+RKAjEQonqgJTQlwu5tqDyDnANm9WcTiRg487DxmN5UiSWuQEKp4FQqyduJ3123\n2kWFV1vbqNs0M6XG/ZRKbZmgkqrp6fPHZvYTQjDCfU10fafG18mDSu1TGxyDR1U/Cm7UrVYJuE3W\nw7i9iOkCsv1ajKnUS38TJyBhxpS+fuY8NFYl8IX3zfZt61c5MYinkvgZH+jWT6nQDYQ7lUoD/7sX\nY/w8lVKKSZ/XZ9XZow4qiR6BmQWazLPYU6nkeqbUCylw1uLa/u4+3wCZ19/80oy6NZ5nKUcqt7SZ\nh4rBu112+pu6s4vP0gqJB5+2L1cgZY9zQq6anIqLDroLFX4Bcx3FpvtlZXDFIwirs039QIhqm5pB\nvwDbDJqWKaa/eQUTDcNw3IN1A1qqfYsL0tY+vAhaXczvPm3hPB+9h4pqcTNX/yOVUklX5ddUlXQF\n86RNHUolVUEmd3EkfSWZfN8qhk1Q6Q9/+AO+/e1vY/78+Y7Xb7jhBtxyyy2444478MILL6CiogIr\nV65EV1cmf/7yyy/Hz3/+czz44IN4+umn8dZbb+GDH/xgoU8hVEZM+pumL0u+eWdfbkElT6WST+DA\n7akUaADlo36y/HCsgUlvn4k3dw9UCKgtj+NfD58AAPjZ5rdsT6VEzJn+FrWVSq6S37qDGJ+7kcyc\n281EIajkp/oS0w+9DjMmBP/8KrAtmVSPz62ciXOWTsC/nTgDx0xvlB6jOCiytpeV/hbPBJWKoVRy\nV67zk/NaK8dxHzPxVFw/e9oymT5j4Vhpm+nNemqU7LxzvYfk4ZPlAaAg6W8A8H8+vAC/vvyYklWM\nigFZrypLFmIAWCeodP9FS3HSnGZ88dTsybv1XRQHtn4DxzmtmaDSQcVA77QFmep4ltfZUAiiYhOr\nR6nS3+LRCE6cnTHM160apnMrqHVM6Lz+7g4qDf3+UqM5GAX0jbpF364w74FnLZmA33/hBMwbX+Pb\ntsVHPaib9u3mQE8Yq9/yfmkFbdyeRXa1J0kShHtSIfZLr1Pb361Of7OVSkI104hhKI26rUmPlSJa\na5t199rfr4Ggkvy4LLI+D0lbd0EUVfpbheY4VHdiXOY26vYZ8qRyMOqWHWaQybujf/n0c92Jse6k\nGHAG0HS/E/rqGvl+3ertMCbausGiYJ+P5r7t755/FWZdL0zHvhX9N1upJN+mOKb0VSopnrUiQf0J\n/dBNAxPbxSKGIwXcTa3m+LIsFkFDhZ7qVxyzvjVYedVz3ym9sUFWv1Qm1ckZFkGl/fv349xzz8V3\nv/td1NVlytSbpolvfvObuPrqq3HGGWdg/vz5uOeee/DWW2/hoYceAgDs3bsX3/ve9/CNb3wDxx9/\nPBYtWoQ777wTv/vd7/D8889L99nd3Y2Ojg7Hv2IjpviMlKCSM+Wl8PufPzgIPc2npLdsgh3zGOhZ\nP8tStjKeSv6DHd2KQtY2rQeKlZrU25/GP3YPqEPG1aZw6vyB8/z9G7vsVDm3UXdcolSSG+m6fvcZ\nnLQpVvtFJo3JtJMadXtcY6+bpqUG6+03fdVC0YiBNcdNw9c+MA+fOWG6cvLjVCoNBpVcEwEriNYt\neFAUMqhUk4o7HnjS9DfX635pIrpKJQC462OHY9M1J2YFuEREvyBlUMl1XNLPUfgcJjWUZ5WpFdGt\nbCMShmF0vhCDXW+8d0DaTvyu+HkqAcCyqWPwnfMWe64iikqlfoVZqEiqLIqPHjERC8bXKAMCoq/Z\nS//Y43ucfuTqHyDzO7FYObdF2Ie8XXBPJfWEriwWCax+8sMdqHJ71YmIA2HVvusr9CamueD3fZw1\nqDg994gJynZZCl3NwzygSn/TDGKqgk92eqmgVDKFn2XHmZ3GKAaVst9knUfE8F6ASIhKJUH1a7VV\neipFLaXSwDHtPtBj2xnoK5XUv2deN+zjFPftha6CLuu+IWmXcKW/+XoqaQSVdPtQroEQv8VAMcVW\nJ8ChOkYLUeUSxvmIKmbV/aCh0l01zLudYRiOv4VReS5ISl3QtMy06b+g4wgqaRbxUCqVNNPfAKf6\n1a9vLJ/ZiHjUwAKfhQLdIJkuusFB8do1Vye1PTv9DlH0VVK1FT/ff+xWBJXK9dLYdYPWfgyLoNKa\nNWtw6qmnYsWKFY7XX3/9dezYscPxek1NDZYuXYrnnnsOALBx40b09vY62syaNQsTJkyw23ixbt06\n1NTU2P/a2tpCPqvgdAsSN78J33AhmYNRd5jc9/Gl+MEnjsCHFo1XtpNVi/Eyiu738exx+wAFqf4m\newi4YyvWjb6nL403B6PY42pTGF9Xjrb6lMNguMyd/iZRKumnv6k/xwkKXxIRUamkWxlK9lrcHvBm\nlEphdDdxUGQN+sXrJCqVuvuK46kEAFM1jJvdh+Rr1B0gqBSNGL5BixnNeulvbnWQdCVJOPz2qfLy\n8kB+J7vFRqVUClL9zY+Mp1Jmsqtjxnz9qrl4+JKjlBW5AOCmf1mAiAH824kzh3ScgEcgXOP7WJ30\nV+YdN7MJ4+tSmDymImsFV6RSw0tEpFZjMO6c9A29DwdJf9NWKpWL3mWF/Z794BPtePDidpzqs4CU\na7XBAwqlXS6r3+7f7fQ3IWgjxm9k173a9TmKrbzeYwWVZGn5SUGplBZS/VVKJdFTCRCVSpn0twFP\nJX8vtqCFJ7o1qpnqePsM7Nu1Dx+lkhVU8utBYoqi7L6hW50pUHqV2FjtRuAIbKu+EropaIBeGnCQ\n83HeJ+X7Fe9XA/uWN/ZSo3uh/x1Xv0/2N52Uw4Ggkvd+LJwBVL19Kz2VstLfpE0d9yK/vlGdjOPl\nL63EgxcvU7YrD/As1bmVuzMN3Ko2C/H4ValvgFMt5HfeLdVC1TvNZ8+Oji7p39zP8TCqRqoo+epv\nGzZswIsvvog//OEPWX/bsWMHAKC5udnxenNzs/23HTt2oKysDLW1tdI2Xnz+85/HFVdcYf/e0dFR\n9MCSw4y4wJPSfCGmQhVjMleVjGPpFPWEExgI4nlVK/as/mYplXzUNd06QSV3wEa2muMa7VgT/p7+\ntJ3+ZvmBjKlMYPuuTGS7LBZxpGPIjLr9PKIs/D7HL546G89ufRdnL1GvGE9q8M8Zdge+Bvaf3c7y\nU+jtTws550PvbzLFgVUxKhoxHAFgK8WnkNXfAGBqUyVeeH2XfWxeuD83/6BSuI+P6YJSSbXq706f\n1Ak4HuHzHQ+a/jYciEcNO8VVRr/w9yBG3V5Y13vgOzbwWpjX8kOLxuP0Ba2+wScddH0TRHQ8Hspi\nETz52eX2d19GZeD0N38lXX15mX1fD+O6u4MRquNUSf9F6iv1zH7zQU15XMsDLbtCkt72Vfcs98eh\n76lkZP1NHGs4lUqSoFJSnp7i9RbLqNtdBc/CqVTKBIHE4zNN03HsWUolK6gkFAwR09+CeddI7v8u\npZIy/c2hmJE20554uS0O/Ca7qcFnmmHI7QFyrf6mug+JqaBuL0k3ouJhv6Z/mN9tSCeYF0TZo/sc\nF4tt+LWtKY+jY9DYWansyfk7Lt+mU6mk2Lfw3ev3UfuJ9zd1kEzvGN1KJVVfFwMcOo8oHe/gCk0/\nNGBgvO5XzEE8/jljq6UWB+K+VCbdgH+hDRFRqeS32JWKR3Gwt18ZMK/VfI4H+Z6pKOmg0vbt23HZ\nZZfhscceQzJZ2Co6iUQCiYTeQKlQFHoiWghSOVR/KwYyZZh1zH/ZsQ/RiIHlM5uE1A9JUMm1gqYe\n7OhV7nJvw5rwD6S/DSqVBnOU3ROAeDTieDDIjLp10oxU7SymNFbipS+d5FtdTJxIuaPt9rF6pL95\nPdSs66OT/hYEr/Q3ADh8Uj12dnShscp5ra0Be6GDwlMEs27ZQMJ93VQPKiCYUkkHMU1j6z/3S9vp\neir1CQGTdp+gktjX/KoSDhfOb5+E//vb1x0V1tyI/kTuNJmgWKt1f31nP37wh+0AwjVjBuSK0aAE\n9YED9KrRAAP3U7/s9KpEsCCmqEKSNc8lhVNFEKWSqHLrUJRrbhgGisD2KWMcv4dh/ppr+pvYzCv9\nTRQFydITq5LulWr5/oDMeciMrR1KJSH9TRyD9KdNx7O51640O/CaNfnf3dnrqP5mBcxUl1w3TcNq\nZxt1a6a/hWHGXBbNqJNV7SysyXNFWUy7MqBudTHVtVy7YgZmtlTh96/v8l1cFe+9ezvlVU+DVHjU\n8cMJ4qmk6/tUnYohFjFs5bhfytZ2+AfrdSflQc5nTGUZtu3q9N23dR33dPZmVMKSAyjX9CDSVSol\n4xEYhr+XExAs/U2XIEbd1cm4b1BJvCaHTaiTthM/t7F+SiXNfgk4A71+l+iHn2zH1Q+9gqtOmSVt\nU5OV/qZ3f8l1jlLSQaWNGzfinXfewWGHHWa/1t/fj2eeeQb/+Z//iS1btgAAdu7cidbWjKR5586d\nWLhwIQCgpaUFPT092LNnj0OttHPnTrS0ZPwPhgPHzmjEiXOafXNMhxOJAEGlZDxiVzcrNLJotSUR\nv/FXA33x6c8ttx9UsmBRxlPJX6nUXO1aUdFMA7Mm/GkT9kPJmhRlB5UMR3DE2laWUkma/qY+Fi90\nJ4e/+MxR2NnR5UiFE9E9RmtA2ddv2iWZw0i/cEijhcHU/RctHRxYR+zj6k+bmdSCIiiVLOQplK6g\nkk/QL58VKHcrUrbcfnKyj3FaUyXG16Uws7kKTT7mvOJqzn6F4mA4ceXJszCrtRrHTB8jbSMGlYYa\n6JzSWIlLj5+GW574K3608R8ASnehwG0CqnOYutVodBBVAToxTFE+LwteiIGdMO5tskC+F+KEffcB\n+YQz7GPML1aY3gAAIABJREFUBy01SSyeWIc//n03gHAmP+57qzwQIp+YWt8lZ/qbhlJJYbju9Z6M\n0tr7/m+N2URj/YhhOL7r/abpmFz0pp3pb5YKbu/BXntxLW1mKs+prnnQ9DerMqyq+puuUbf7kehn\n1K3tqTQ4MVY9U7OLC0jaBVBhlsUiOGPhOJyxcJzy+NyoiiU4+5d6OxUa3nK6PlaAf0GDzN8MNFSW\n2VWf1Sl1evcs99clF980N621KWDbHt92Vnn57bs7sSRdN3is3m3LNS1HxHNVjQUNw0BFWSyzYOoT\noMvsW94uCLoqQ8BZIEOGeE0OmygPKon39BafoFIwTyX99Ld542vw8CVHKdtkp795twsS7FRR0sY8\nJ5xwAl555RVs3rzZ/rd48WKce+652Lx5M6ZMmYKWlhY8/vjj9ns6OjrwwgsvoL29HQCwaNEixONx\nR5stW7Zg27ZtdpvhQiwawXfPW4xLjp9e7EMJjSCeSmGtUueCTLXhDg688V4n+tNWxQ/v8wmS/ua+\nWclUJu7jEIMdb7w7YNRrVS5qFFIQymIRGIYzb9ga+Lk9FWTPlaDpb0GYO64GJ8xulv7d/bCTXUrb\n+yotpL+FcPcTB0W9fWIFOsNx/azVXct3I+rnYBwy0wSjY1lVB/e181MquVVYYaBTGVAMkAHy70Qy\nHsUznzsO31u9xHeb4melUhwMJ8piEXxo0XhlQC2MSmoia1fMwAmzmuzfS1WNMrWx0jZuBsJLf9NF\nHAh39voHMcXJZofkMwsisdchiFJJZNcBeZ+qqwhXTZUvThF8l8Lowm7FsZ+6JvN7dgCoz5H+JmxT\nsu8so27JLdb9LJUVJ7GeZeJ9csBTKfN+t6+Slf5mtbH6c1dvv6O6YsdB/6CSful25x9k6XyA25dF\n2kxbjWKnv/Va6W/ybQKZhZIKVVBJN/0tK7ih3ncuiJ9Z1v41FS6AU+0s/U5oBmsAl++Tcs/6xQV0\nAyHZVd282wUJ+onqWNUk3yp+s31Xp28KqeiBpFt5bnKj96KuvU3NoKyON2BQdD2iAH8bBCAThAaA\nwybUSts5PZXUYwO3WkiFqFQK4xplFdzQvG/kuuuSDipVVVVh7ty5jn8VFRVoaGjA3LlzYRgG1q5d\ni69+9av42c9+hldeeQXnnXcexo4di1WrVgEYMO6+8MILccUVV+DJJ5/Exo0b8bGPfQzt7e044ogj\ninyGxJn+pm7rdrEvJAmJUskdUNnZ0WUrYaSeSq4VNLVSyRVU0lQqiZOQfYMrCFZQSax8kRi86OLK\nuRWAcQ8q9XP4PZvlhVg04sr9ViuVevvC9VQSV32sanpeWMHTzsHPIox9B0GcEFsrw26CVn9bMbsZ\nHzh0HK72KC+fKzd+aAEA4NPLp0rbLHOZbmsbkZIswg4qRSIG1q6YYf++U2EgWWxOXzDW/lnVh6wK\noe9fOFbaJijiAkmnwp/Ei70HvYNQogl2GP3eHVT226T1vfzgYXLVg5j+Vuh7YBDeNy+jYpf5+Vnc\nc8HhGFOZwPfOXyxtoxugU60W20olM5hSKRmPOj5L2aTfbbgrq15rjYXEoJIRcY5B3BXgrPS3+GD6\nW3Kw/3f1pe3ACwDsG0ydVHUNXW8h9zhElf6mq1Ryq7dk4w3r2WmN8fwmu1bqsCpwnW0S7t0uK2gR\n4jPwcytnorUmiU8eK38+i+NGv6+4ThXM7PORb88RWPc57zFVeqXbdc2l3V5lYXhEiQbQaqXSQL/Z\n3dlrp3fJ2pdrehCJxzm9SV61F3B7Y8nbBfVU0kH3uwsAV548E5cePw2PXHq0tM2rb+21f1alvIu7\nGlurb9Ttp4QXPZXC+Oq6A9WybWYF633Dst6UdPqbDldeeSUOHDiAT3ziE9izZw+OOuooPProow4P\npptvvhmRSARnnnkmuru7sXLlStx+++1FPGpiEcSo+7ZzDsMnv78Rn1s59Oo/QZFNsN0DlX/u67aV\nSrrG1qpUqFyDSm6/m4qyqH1DF9PfLEm4uHJuHY97m7ql6AutTkjEonZAR3bN44Mjkb60Kfg2DP04\nxXNXKVysoNJ+u7JOYa9RNGLgmtPmYMuODiwY77364v7c/JRK0YiBm89aGNoxAgMT/SWT6rPSPkXG\n15VjXG3KrmpYqmqY4UDYQSVgQJJtoUpjLDbvXzDWTlvepUjZevDidhzo7h9ydTwZB3qCpVtWJLwX\nOPKhAiqLRWzPG7/v2T0XHI5dnT1oqpIPsJ3pb+EcYz5orUnhrMVt2Lx9D2a1VCvbHjOjEX/44gna\nBrVAgAm08KuXUbcYVFJdz+pkHO8OVhoRm4nvqSiLOSpFxiWzd2vMdlDot2L1N8BZAADIBOYsNZSt\nVOrpdyxy2IbImgoK9zk427nGWYpnrq7PjDt9RuqpFDAgO3dcDe69cCmmKSbvuukpukG3XFhz3DR8\nevlUf1+j9/x9gIDsQKYXQaoxBvGuGaPp76arVHJ8VwP1X3nbVs1UqKpkHLXlcezp7MXfdx1Qtq/Q\n9CASj3N6U5W0HeBWnOkF6MJKf9b97gIDqqYrTlLPHys0lU/ivdcv/U28H3gUx3Qgpr+pFqp1sTJR\nMumJeveNXD+dYRdUeuqppxy/G4aB6667Dtddd530PclkErfddhtuu+22PB8dCUoygKfS3HE1ePbf\nj8/3IXniZ9Rt8U5Hlz3o8/P3sVCtqLS4g0qa6W9lsYij+tP4unL7BjlGTH+zlErCjdmaRLhX5XRv\nRoWe5JfFIvbN1zf9TahMFbbfS5fiAZBwpQwUIxBy4VGTlX/PSn8rdHmmQfwe0MCAjPnHLw749oSV\nSWhV0hhN5Ms/6ptnLcTaH2zGSXPkqavFpq2+HHXlcezu7MXCNrnMPRGL5jX1WlU1TORb5x6Gx/68\nE+cunej5d2fJ73DuL9XJGN7d3zO4TXXbWDSiDCgBzpSTUv+uff1D87Xb+l3vbF8j73aqVJ9MpdnM\n301J26z9J2OZoJJEqVSTituBekChVBr8LnQKn180YiASMWzDXrdSqaff6alkBaa6+lzpb4NKJXWV\nrdwUIarnma7awR1U8vNU0tmmxVEK7zuvbeQSmAwDv75eH8CMX5zA90hS6lQpoW7qAqQAN1TqBeFr\nNAMhul5S7ip7uulvfteyra4cezr3YttgQE92rGIWg3LsJLx/RrOPUqlML7CTF0+lAEolHb546mzE\nogY+eYxcjQc4567uaoJDQZyL/XOfR8nxHKhK+geVgqRlqhh2QSUyskgF8FQqJrJJhTtF7J193Rmj\nS8mgLIhSSQwAAfIAlNujJxaJIB6NoLd/YOA3aUx5ZpuC7Nca/Iifg7Wa4D43eSl697EUWqnkr3az\nPHP6Qq7+JqKaJFkpA8Uy6tYhqFKpmLRPFYJKId03asvjOLi3tCe6YXPrvx6KzzywCdevmhvqdlcd\nOg7Tmiq1K6YVi6c+exy27erEnLFqNUo+0fXwOmVeq8Prx41YIS6s1LKqZFwIKg19m+KEZk8Jq9jC\nJtss1ftaqvyCrM9UXCE3095t3VRJJnPiz24lnsyo2woIOfycDOs9AwtZMk+lTFApY/YtBhP2aSiV\nWmv1PEeyPJU0q78pFV+a5bnd+wrj66hr8BzEgygfBFEjViRi+MCh47Cvq8+R6iWi66EFOJVKsiCV\nhWgDoasyVHsqiT/LG7q/Z2qj7sw16Uurz6etPoVX3tyLNwaDSrLurqvEeUdIXZcVyrEoT+jN4/JR\n/U039U6XiQ0VuP3cRb7tmquTuPVfD0VteTx0m4UjpzVg07Y9WD6zyb+xBtXJON7eO/B5ypWdzt9z\nvZYMKpGikhDT30pwom2RkBgIu4M5Ozu67JK/0gCHZloZkG2WLT0+VwCgLBZBWSxiT1iOE25OYvqb\nNUA1DAP3X7QU+7r67JQ7dyliWSAkK/2t0EEljT5kmXT2pdO+n0+uuAfSItZA3Ep1KcWqWO7LUcpB\nJbGimWqyEISaVObBO1o4fcFYnDC7yTGpCou540q/SmlNeRzzyot7nLpKJT+CKAR00amWkyujKaik\nG4zIrhInqB980t/8lEqe7YSfE7EIqpMxOwVNbtSdvcBmHXd0MKjkngBngkoD7aygUpZS6aDlqSQ/\nl4VtmYpMql7ufiyo0t8qNCfFWabnMqVSVgGRoX8ftaveuYMwBR5rBL0P+aXQB0nLEft5h0/p+AbN\ndGHdQIj4N9VYsK7cHVSSb1M8xnd8VCuWWbelSJRtN6XpqSSOhfzGgrpKpSDpibrofnfzgejL6EdN\nKq5tN/D9C5aiuy8dWoVlUSkru0bZwVsqlcgwxJH+VsJKpVnNVfgl3s563R1oeWdft62Eka30ZVdV\nU5/3mMqE/aCQMcm1khCLGI5B+wohDcXx4BVucsumOuXX491lt2UqKdfn5i75nm/EAZzfymFPv2kP\nxAs51rKNSXv9zdmLhfuYipX+pkNTdRL3XrgUadMMLfjlnjCMFvIRUCL6hFVt0D1ZCYN8fifylXpZ\niugGI7J9czI/W7djmVG3rsJGlqYTjRioqygTgkre91WvBTZrm9ZYQKZUciujD/akHZ5KfibDAByp\nqu40OxH3JEn1PCvX9JnJ9lSSBJVibqXS0J/3utXFsoNPQ951IBxBpRAezUHScoJcZ3FxVRV40w0q\nzR1bjR9tHPhZvcAYRTIesceCqkMWz2eHz4LX+Ppyx++ya5GPIEyFZkW5fBh1l2sGtIpNdSqmHVSK\nRIzQAkqAUyAgN/h3H0Nu++JokhQVcdWrhOew+MSxU9DR1ZtV3t4rqGSVzZR9KbOVSuoTH1NZ5htU\nGleXQiIWsVf9xAFhMh5xPEDFm/4+xcB+fJ3zISUL+rkPv67AVfrE1ER5+tugUqk/nbf0NxXJeLBA\nYjFwXztZxcNSwc+DIihuNQEh+eTU+a345ctv4xPHTAlle2Llo7ACNvlUKo0mstPfvNupUpciHgGb\ntCMFTU9hIzYTtx+NGKhNxfH3wd/9PJWcx51RKgEenkp9bk8la5FF4qmkOJfGqoTt3aTCPV5RKVor\nc6hepWqbrVSSb1MXXaWS++WCp7+Vh1vhMbvUeTjnk5unkrzd+csmYUxVAtf9/M++Kt268jIhHUnv\nfFQBVABocy8CSzarG0C1mNKoTn0Lsk1df6ogOFRSJTiutqhJxbEdB/0b5gGpUlXAfb+nUokMS1Ih\nm6zli0Qsii+eOifrdfcXsacvjd2dAx4UMqVSVlU1n9NurErgLzv2KdtEIwamNFbif97uAJCp6gYA\nJ81pkb1NOTBzK5XknkrO12sLHVTSSX8TPJWswjSF7G9JV4CmNINKzt9LWamUDxryVN2LEC/+v7MW\n4rMnzcTkMf6Ddh3EyT6DSqVFdvqb9/0/W9GU+dl6ZohBJVNTdSumPziy34Q20YjhSE+RBWGiEcNR\nBETct6XCdis1rHQ4a5spVzVUCx2lEgAsGF+Lzdv3KNtkeVeqqr9pjkPdn480qORWKkm3qI9uQZRi\nK8frKsItGOBW0vr1jVjE8A3AAE6lkuoT0lUqGYaB0+aPxanzWn0DnmJQye98dAKowEDhCRHZsTor\ntcm3N62pEn99Zz/Ob5/ku2+HUknRTryWB0NS6JZrqqSKTTGV8NUagdHZrdVoqkrYaZa5XsvRNWsg\nJYeo4CjFibYfXsdsDbZkc/JsA2z117CxSq+ywHShHG08YuCCIydjfF0K15yWHQzTobk66ThWuUm4\nO6hU2Mm5TvqbpQ7rTadDT3/TMd12e16VYl/PShcoYU+lfPBvJ83A2Jok1q6YXuxDIaOAWDQSWkDJ\n4qzFbZjWVImjQ1LxuX31QtlmYvQFqtznLBuvu5UwDiWRh1LJ9GjnRXVSlv6W+TkWMRwqY9Vzzakw\nN7J+7k+b+OXLb+MrP38V/WnTw1PJ+9myr8vfUwkAFoz390Fzb0KlVBLNflXzd93KXblUf/MjW0ng\n3c49tjj78AlD3ncQ6jW9inTRTTm0cH+HZIjHqfK1E7fX2682ywYG+q6fYkYsquB3Pq3V/tVwgYFK\nceJ3dqhKpfsvWoo7PrII57V7VxuVblMxbBS/95Yqcajo+jkVG91+mQ/E75Ds3lpeFsMNQsXTfh9j\neBmja9ZASg5xcKITjS81ZGokAKhMeN9Esiu1qe+EjZV6QaVpYlApGsG1p8/Bb6863jMopTPGiUYM\njBWqN0nT31yv58PbQ0VCo4KgtYLa2xd+9TedlUC3UqkUq7+5r4c7EDbSaapO4tl/Px5rV8wo9qEQ\nkhNf/9B8PHb5MVn3m1zJh1KppsBK1lIgEjGkaWcibpWvp1G3h6eSf1DJeyLp9GyKOBaEVEVCRHWw\n4QpMAQNBpRt/9Rfc+ewb2Lx9N3ol6W9uOg7qKZXapzaoG8DDI1DxPBPVG92KKq7RiOFIlSukp9LE\nBqcSRSYJMQwDM5orUZWM4eE1R4YeuPYj7IIB8WjEEYzw26Tu5F3sg1Z2gRfiPTAsBajTsFrdduXc\ngUyDSp9gfDIexSePzaRSy/x7yjWNupuqkjh5botW360o01MLOaw3fIzUdRHPp5R9eYuqVNLc9/KZ\nTVi7Yjom1JdjyaT6nPY1+paMSEkhpr/prAKUGrLgwCFjq9EiKZEapPob4JbpynEElXwCAtVJvUoE\n4+tS+PtgiVJZ/Mw9cKgucMqEGPyQV2MZeL0vnbZXesPKv06WRZXeVMAwTX8bZUEloLTl04ToEGYf\nzsdA+IIjJ+O6X/wZ7VP8AwMjicpETEjv8v6MKhMxRCNG5hklBn0G35P28FTy+8irJWXR3QEhMagl\nq/4GOFMtxYmc6Klkneu7+3vQ0+9Mf0vEIp5pPQcHAzp+wYiT5rTg/PaJmKQImLi3oVrIEccQBxVB\nJWBgfGMFF/wKg2SORblJLWY0V7m2Kd/ozy45Cn1p0zcQkQ/EoFJYY/rqZBxdvXppOUG8EReMr8FL\n/9iLo6c3StuI40S/inK6iIpAv/O56uRZaKpK4sQ5zcp2APBvJ87Es399D5u378Hs1mrPNhUBPZV0\nKNcItLrZF5ZSSdi3RtZj0SjmYkqQ78TaFTOwdsUMdHR05LQvBpVIUREf5j3DMKgUFQZeVYmYHVxQ\nlZp0y5j9AgzHzWrCfzzyP74eN2L6m58S5vQFrbj3+W2+q1jjBKWSjkdUdTKmXOHMB2LwQ2qObimV\nHNXfwnmgzh9Xg8f/8o6yzXAIKgWplkMIGfnkQ6m0etkkzBlbjXk+ZrYjjepk3NczyDAGzLLfOzCg\nnBCbWWMNh1IpratU8p7EiscRiRgOlbFKhe3wMRS2kVEqpe2qhrsP9GSlvxmGgWQsKg3g+J1PJGLg\nK2fMVbZxV09Spb+J18Q3qJSK4y0fk2W3yjeMsUZVMo5xtSm8ueeg7zbDUirmgrioqFvtyo+qZMz2\nevH3D9OfQP/k00fiYG+/dvAtrEBIXbm+misZj+JTy6dqbTcSMfCji9ux8e+7sXBCrWebMKuKWeSS\ngpYPpVKXz3e3mHz0iIn4zjN/w2nzWwu+70J6IzKoRIqK+FDu6Rt+QaW4MPCqTsXtoJLqxuEO+PgF\ngKY1VeLRtUejoUKtWJrYkAkQWYNSGV983xzMaK7Citnq1Q+99LfMz3VFMDvWUSo5qr8NjsnDksqu\nP3M+bvrVFpyzVO5dIBqlhrnvMHEf02hUKhFCMhwyNvzATyRi4IhRplIC9HwtgIEVbev5LaokMp5K\nmbamplLJue/M625PJVGppDK2Fm0LHMc4+HNPn2kHZ3Z1ZoJKZa6qtLIAThiPx6mNlY7fdZ9nfgbC\nsmsp4k6JD+txP6O5UggqhbPNsBH79u7OcIIw1Zpm2UAw7xp3OqMfYQVC6gKkvwUlFo1gqeL+Kppq\nd4c05xLNsgutVAqiMiwmbfXl+J/rTpb6yeUTv7ljmDCoREoGy+B6OCEqTuaMrbYf+OPrymVvyfJU\n0knDmtXiLWUVEQdNFT6rEamyKM7TqOowtiYTVJKmvwnHX2iTbsD5UJEFa6zgX29/+OlvjVUJfF0w\nuPOiNuW8LqWoVHJ/vgwqETK6mTO2Gnd8ZJE0lZvoozt5rZWU3baeGc70Nz2lUqWWp5Kr+ptCqZSM\ney/kWGog0XtmQKk06KkkPFNS8Sh2w3tiGYaypyYVR2tN0q6ypetj6DfRlpmei2RXLAvneT+jpQpP\nbvkngOGRqh2eUsk7fdOLmlT+prWhKZUq/Ktx5QsxIByWskdUKumeT1ipauL3oJSVSkB+VGI6LJ1c\nj5WHNDuEB/mCQSVSMgx3T6WrTp6FifXl+PCSNu33eP0+FO69cCn+32v/xGnz5el3QWitzUwmZIEQ\nccBUW4QKB6K/g+yBZg12e9OZ9LdCZne5DVhVq8DFwj3wZVCJEHLyoFEsGRq6KQgyE1/r/uxl1O03\nkRMDWmJTt6eS6PUSj8k3Kh6jOC6wJk3v7e+2X9t1oNdWoccdSiX5BCusIdHMlio7qKRKfwuCzJ9K\nJBl3ekaFFTiYKfgqleC6VN6o1lT5AcCxM5pw7/Pb8nIcXb3hzFHE70+hg4PiYmpYQRgxBc2QOcgX\nAD+V4WglEjHw7Y8uLsi+GFQiJcNwTH8TV7XG1aZw9WlzfN8T1FMpCEdNH4OjQionDQAT6jOKK9lx\niuqguiKY0QVPfwvXU0kHd7CtkPvWhZ5KhBCSH6o0Tc9rJak+Xkol06OdF2IgJC0EpRxG4FF9T6W2\nOkHBLGzDUiy8KwSVdnf2oLtvYLJXJgkqJWIRx1gqrOfjzOYqPDWo7PErXqJLlUT1JWIYBlLxqO0r\nFZpSSQgqDQelUlhUJfWVPStmN+HbH12EWS1V6oZFJIinUj4JK12sIqHvqfQvi8bjwY3/0DIeD0op\np7+NFhhUIiWDqpJHqSLKvHVzZd3BmVJMhbKY2FCBC46cjHjUcCiCRMSxZzHS30RFjexaxu2gkilU\n1incdXebR6oG7MUiy1OJQSVCCAkFXaWSWCXIEfQZvB2LSiXTzK4S50V1Mo5PLZ+K7t40GoRqsqKq\nIGo4PZX6FfkpbcJik/gctfxa/rkvE1Ta2dFle0Q1VWf2LY6XGirKbPNrILyAiRiEiYc0zqrWDHCU\nl2WCSmENNcQKv7sOdCtaFhfx3MOgWiOQZ2EYBlYeEq66srk6gZ0d3agKqZpefR49lYIQlvJKtNvw\n++5ev2oujp/VFOritwWDSsWHQSVSdH7y6WX4/eu78IFDxxX7UAJzQAgq6Q6E3F4FpRxUAoBrT1er\nrxzpb0VWKsk+AyuI05s2kR58jhbyuruvSwnGlByDm7JoJDTPKUIIGe3oK5W8U2Os52zfoD/R9l2d\neGn7XsffVFx18qys19yV28Q0OXFs40b0jHQElWylUqZQyGvv7IdpDiz+NAiFPER/kTpXUCnM9DeL\nsKrSikU3VGM+8fzCWsBKxqOY2VyF1989gIVtdaFsMx/UpuLhBpU0Ug7zyX0fX4r1/70Fl50wPZTt\n1QqeSsXM0AgrCFMu3Df8bEyS8ShOmRduBbQxlQm8u78bx89qCnW7JDgMKpGic9iEOhw2oXQfkCoO\n9ASvBhF1pb+F6alUDMTgTF1RjLrFwZt3G0up1Nsnpr/l/dBs3AquUlQqiQNk+ikRQkh46HsqCUoY\n4XXrOdvZ04fP/+RlPPD77Zl2OT7LnEbgEcfv+xRBpbZ6oSqs8CAt91AqWZPmsTVJx/ZFw+C68jJE\nI0boKmJR2bOnU10R152CJ0PXNLo8Hty8WIdfXHoUOrv7HYq2UmNcXcoRJBwqOimH+WRaUxX+7/nh\nedKIiqewzMxzoTukoJJY7bAYvka/vvwY/GVHB9pHYVXRUoMzB0KGwP7u4DfQRCziCCQNd0VIsZVK\neulvA2360mk7faCQg5OKsqjj2EpRneZQKjGoRAghoZFLUMnLU2l3Z68joATkni4mvs3t9bhfUT5d\nTH8T1Q6Wt8q7HqlZrUIlWcDpqZSMRzGmUkgJCunxI+7jgM9YTbcyk071N/f2whxrxKORkg4oAcCN\nH1qAGc2V+MaHF4SyPWfKYemNnYIinkMxg0phKZXE8WxnEVLQ6ivKsGzqmBHRN4Y7nDkQMgSOmFIP\nwFn9wI9ELIpb//VQzBtXAwD2/8MVMRhRDE8lrfQ3q/pbv2kbnRYysGMYhsOAtRSDSuIx0U+JEELC\nQ9tTSUz1EW7DqmdGro8Tr6CVhUqFLU7ydx3IKIDs9Ld92UGlsbXyoFIiHkFTVabSbJiTw+vOOAQL\nxtfgnKUTlO1Simp0Is70N3k7Z0Ws0cWkMRX49eXH4oOHjQ9le06lUiibLBmKGVQKy1NJ5GAO2Rtk\n5MD0N0KGwIVHTUZDRRmOnBbMdO6Uea04ZV4rDvb0a6+QlSrO9LcieCrFxepv3m1so+50Gpb/aKFl\n1DXlcduwtBRTHiNMfyOEkLxwyFi9xaNaSWUodyEFkVyfZQ4jcNc2unOYcFqBlA4PldPY2qTjd9Go\nOxGLoLk6gVfetI4rvOfjee2TcF77JN92ukGlKk2lUnmelEqjEdFTaaRdyoVttUXbd5gV8k6d14oX\nXn8PJ88N1y+JDC8YVCJkCCRiUZy1RL0CpmK4B5QA54CpGJ5KZdHMNZQNvG2j7j6h+luBAzs1Ja5U\nEi8dg0qEEBIeM5qr8F+rFzsUOV7UprxTfVTPq1yDFuLbrGfS9avm4uv//Rd87YNzle9tqCizF0ks\nKhXVsdzpb2IQJxGLorHK3xsxn1h+UH7o+vukyoR2fJwOiWJ7KuWD/3flcXhx226cNn9swff968uP\nwQO/34Y1x00LbZv/ec6h6EubttUEGZ0wqEQIGRI9QrWHYld/kw04bKPudMaoW7Xymw+Y/kYIIaOX\n42c1+7YRn6H96cyzVfW8CsOo2/JU+ugRE3Hu4RN8F13G1aWygkrliqBStlJJDCpFnGl/RQgc3Pih\nBTjnu8/7VvgSTZatsYQX5XH9MutEjcNTqYjHESZt9eUOb7JCMqO5Cl86/ZBQt2kYhj3OJqMXBpUI\nIUNcli+YAAAdL0lEQVRinyB1V61U5osyh6eSdxvbqLtfUCoV+PknpjWUYlCJ6W+EEFJcxPQq8dmq\n9lTKNf3N21NJR8U7tiaFl/+x1/FahUJ57fZUElXaA+lvoqeS7+5DZ3ZrNV685kTfAJCYiqVKY0+N\nYk+lsBGVSj398kAeIaS4MKhECBkSU8ZU2D8XY0UuoVH9zVqF7e3PKJWKmv5WgiuXTH8jhJDiIj7D\n9nZmTHzdz6tELILuvgElU85KJXG/ATdy7MxGPPrqDsdrFcr0N6dSSXxuJ2IRNFUl7N+LleKkM35J\nxqO4/dzD0NXbryxMkq/qb6ORCiGV8EA3jaAJKVUYVCKEDIm2+nI8tOZINFQU3k8JABJx/8Gb5anU\nlzZto+5Cq4VK3VNJvHYJBpUIIaSodHRlgkruoE9zdRLbdnUCCF+ppMNZi9twoLsPSybV26+Jk3+R\nqmTMocACXEqleBRN1WJQKdChFJz3zfM3Iy6PF9cjaiQhBlT3M6hESMnCoBIhZMgUs4KF6P8jT3/L\nKJXMIlV/E70yYiWYe05PJUIIKR3qK4RAi+uW3FydsINKuT7KxGBH0GdSJGLg40dPcbzmNrseU1mG\nd/f3YJwr9Q0AkjFn+ptoYK6wKho2ONLfqFQKjX0elQUJIaUBZw6EkGFNIu6f/iZ6KtnpbwX3VCrt\n9LcI098IIaTo3H3B4Thn6QSsXjbJfi3miiqJQZicF0gc1d+Gfs93eypOa6oEAEwWUuQt3J5KYyoz\nSuc9B3uz2g83ygXVVgk+7octTH8jpHShUokQMqzRqf4meipZ5pqFTkETK5iUYvqbwfQ3QggpOsfO\naMSxMxodr7kXIsJIFxOflyrTaV3KXUbdqxaOw6qF43DU9DFZbZNx0VMpipigjv3nvu4hH0uxKaen\nUl5g+hshpQuDSoSQYU2ZI6jk3cZWKqVNe9Ww0AM9cRW3FINKrP5GCCGliVtIFIZSSXxfGM/Dcpen\nUk0qjlMk/kPJuOip5Dy5d/cP/6CS06i7iAcywqBSiZDSpaRnDuvWrcOSJUtQVVWFpqYmrFq1Clu2\nbHG0MU0T1157LVpbW5FKpbBixQq89tprjjZdXV1Ys2YNGhoaUFlZiTPPPBM7d+4s5KkQQvJEQvBm\n6E97mzFYq7C9fWnbqLvgQaVkaQeVogwqEUJISeJ+ZjQLSqVcER+BYSiVohEDKSFYlHIpl0TEoJLb\nw28kBJWoVAqXueOqAQCnzvc3SSeEFIeSnjk8/fTTWLNmDZ5//nk89thj6O3txUknnYQDBw7YbW64\n4QbccsstuOOOO/DCCy+goqICK1euRFdXl93m8ssvx89//nM8+OCDePrpp/HWW2/hgx/8YDFOiRAS\nMmKqVp8kqGQplXrTaaQH2xQz/a0UjTvFQyqLyicDhBBCCos7MNFcHYZSKfNzNKTiERWCWbcYYHKT\nUiiVunrToRxLMSmnUXeo3HfhEbjjI4vwmeOnF/tQCCESSjr97dFHH3X8ftddd6GpqQkbN27EMccc\nA9M08c1vfhNXX301zjjjDADAPffcg+bmZjz00EM4++yzsXfvXnzve9/D/fffj+OPPx4AcOedd2L2\n7Nl4/vnnccQRRxT8vAgh4SGucvb0eQ9GRaPuftMKKuX/2ETG16VwzIxGRA2gQrGCWyyY/kYIIaWJ\nexGkrjxjbJ2rx7YRsqcSYKXA9Qg/e+NIfxtUG5+9pA0b/rAdZy1uC+VYikkqTqPuMKkpj+PkuS3F\nPgxCiIKSDiq52bt3LwCgvr4eAPD6669jx44dWLFihd2mpqYGS5cuxXPPPYezzz4bGzduRG9vr6PN\nrFmzMGHCBDz33HPSoFJ3dze6uzMS3I6OjnycEiFkiESEwbBMqWQZdfelTTtFrtCrh4Zh4J4LDi/o\nPoMgTloYVCKEkNLBbdQtevTlqlQS3xWWcrdCOC5V+ptDqTT4vPny+w/B++a14vDJ9aEcSzEpp6cS\nIWSUMWxmDul0GmvXrsWRRx6JuXPnAgB27NgBAGhubna0bW5utv+2Y8cOlJWVoba2VtrGi3Xr1qGm\npsb+19Y2/FdOCBnp9PVLlEqRbDWTe5A+2hEHvqz+RgghpYO4eJKIRVCeGLraVQxGhfU8FFW47mpw\nIu7qbwOvRXHMjEaHimm44kh/A8cahJCRz7CZOaxZswZ/+tOfsGHDhoLs7/Of/zz27t1r/9u+fXtB\n9ksIyZ2efrVSCQC6raASlw8diMott3EqIYSQ0iBVFkWFkFrWnaMHkRhUioXkqVQuKJXUQSW5p9JI\nQFRp9UoWuwghZCQxLO7kl1xyCX7xi1/gySefxPjx4+3XW1oG8mvdldx27txp/62lpQU9PT3Ys2eP\ntI0XiUQC1dXVjn+EkNJGqlTyCJJEGFRyIF4Opr8RQkhpkopHHUqfg739OW1HFCdFczVmciEqlVTp\nb4lYxN7/SFTGin5SXTl+PoQQMpwo6Tu5aZq45JJL8NOf/hRPPPEEJk+e7Pj75MmT0dLSgscff9x+\nraOjAy+88ALa29sBAIsWLUI8Hne02bJlC7Zt22a3IYSMDOTV37IDSIwpOaGnEiGElD6psqhDWdrZ\nM/SgUlhG3ZanUsRQK14Nw8CUMRWoTMQwpjIRyr5LCfF5mmvQjxBChhMlbdS9Zs0a3H///Xj44YdR\nVVVleyDV1NQglUrBMAysXbsWX/3qVzF9+nRMnjwZ11xzDcaOHYtVq1bZbS+88EJcccUVqK+vR3V1\nNT7zmc+gvb2dld8IGWHIZOaGYSAaMWyTboCeSm4iTH8jhJCSJ+XyHDrY05fTdhyeSmEFlQbVSeVl\nMd9iGD/59JHo7u13mHuPRLpyTE8khJDhREnfyb/1rW8BAJYvX+54/c4778Tq1asBAFdeeSUOHDiA\nT3ziE9izZw+OOuooPProo0gmk3b7m2++GZFIBGeeeSa6u7uxcuVK3H777YU6DUJIgeiTeCoBAyux\nYlCJ6W9OxPH/SPS4IISQkYDbqyic9LdwPZVUqW8WNak4kIqHst9ShulvhJDRQEkHlUxTPkG0MAwD\n1113Ha677jppm2Qyidtuuw233XZbmIdHCCkxVIaYZdGIbdIN5F6GeaRCpRIhhJQ+7upokqxvX/Kh\nVKocDCqpTLpHG119VCoRQkY+nDkQQkYMqqCSu7oN09+c0FOJEEJKn7ACNuITMCxPJevY3Cl6o5mu\nHD2vCCFkOMGZAyFkxCAz6gaAmEt9E1KxmxGDwepvhBBS8oQVsDHy4qmkn/42WujqY1CJEDLy4cyB\nEDJiUCmV4q5BM9PfnIjXYySWeCaEkJFAWAGbSB48lSY3VgAAJjVUhLK9kQA9lQgho4GS9lQihJAg\n9KqMul1KpbAG0SMFMR0wRhkXIYSUJJanUixiKNW5fuRDqbR4Yh1+eelRmDyGQSWLHnoqEUJGAZw5\nEEJGBfEolUoqxOvh9p8ihBBSGoTlWyTGkcJaSDAMA4eMrUF5Gdesv/aBeahKxPB/Pryg2IdCCCF5\nh3d9QsioIE6lkhJDuDzua0UIIaQ0mNFcBWAgDW5fd1/O28lH9TeS4ZylE3D2kjZEeG0JIaMABpUI\nIcOeWS1V+MuOfVg8sU7axq2+4TjPiUOpxItDCCElxf0XLcWmbXtw+vyxAMI1w+Y9Pz8woEQIGS0w\nqEQIGfbcfcHh2PD77fjXpW3SNqK83zCcfhIkP6kQhBBCwmHZ1DFYNnWM/XtdeRn+/l5nztsTAx5U\nKhFCCBkKnDkQQoY9zdVJXLZiOpqqktI2ZUJKV5QBpSwMZK5JeYLloAkhpJS56V8WYPKYCtz0L7l5\n9uSj+hshhJDRCZVKhJBRgZj+RpPubFJlUVx18iz0p9MYU5ko9uEQQghRMK2pEk9+dnnO7xcXErjQ\nQgghZCgwqEQIGRXEBKUSs7u8+dTyqcU+BEIIIQWgLBax/6f3DyGEkKHAoBIhZFQQj3BVlhBCCAGA\n+ooyXHXyLNSWx4t9KIQQQoY5DCoRQkYFTH8jhBBCMlCdSgghJAyYBEIIGRWMqy23f2ZMiRBCCCGE\nEEKGDoNKhJBRwSeOmWL/3NHVV8QjIYQQQgghhJCRAYNKhJBRQUtNEucsnVDswyCEEEIIIYSQEQM9\nlQgho4YvnT4H8YiBQ8bWFPtQCCGEEEIIIWTYw6ASIWTUkIhF8ZUz5hb7MAghhBBCCCFkRMD0N0II\nIYQQQgghhBASGAaVCCGEEEIIIYQQQkhgGFQihBBCCCGEEEIIIYFhUIkQQgghhBBCCCGEBIZBJUII\nIYQQQgghhBASGAaVCCGEEEIIIYQQQkhgGFQihBBCCCGEEEIIIYFhUIkQQgghhBBCCCGEBIZBJUII\nIYQQQgghhBASGAaVCCGEEEIIIYQQQkhgGFQihBBCCCGEEEIIIYGJFfsAhgumaQIAOjo6inwkhBBC\nCCGEEEIIIeFhxTqs2IcuDCppsm/fPgBAW1tbkY+EEEIIIYQQQgghJHz27duHmpoa7faGGTQMNUpJ\np9N46623UFVVBcMwin04o4qOjg60tbVh+/btqK6uLvbhkBKD/YOIsD8QFewfxA/2EaKC/YOIsD8Q\nFcOxf5imiX379mHs2LGIRPSdkqhU0iQSiWD8+PHFPoxRTXV19bD5QpLCw/5BRNgfiAr2D+IH+whR\nwf5BRNgfiIrh1j+CKJQsaNRNCCGEEEIIIYQQQgLDoBIhhBBCCCGEEEIICUz0y1/+8peLfRCE+BGN\nRrF8+XLEYszYJNmwfxAR9geigv2D+ME+QlSwfxAR9geiYrT0Dxp1E0IIIYQQQgghhJDAMP2NEEII\nIYQQQgghhASGQSVCCCGEEEIIIYQQEhgGlQghhBBCCCGEEEJIYBhUIoQQQgghhBBCCCGBYVCJ5MS6\ndeuwZMkSVFVVoampCatWrcKWLVscbUzTxLXXXovW1lakUimsWLECr732mqPNd77zHSxfvhzV1dUw\nDAN79uzJ2tf73/9+TJgwAclkEq2trfjoRz+Kt956S3l8XV1dWL16NebNm4dYLIZVq1ZltXn77bdx\nzjnnYMaMGYhEIli7dm0OV4J4Ucj+YdHd3Y2FCxfCMAxs3rzZ9xhffvllHH300Ugmk2hra8MNN9zg\n+PtPfvITnHjiiWhsbER1dTXa29vxq1/9KsBVIBYjoT889dRTMAwj69+OHTsCXAnixUjoHwBw3333\nYcGCBSgvL0draysuuOACvPfee5pXgago9T7CMUdxKWT/mDRpUtZzYP369b7HyDFH4RgJ/YFjjvwx\nEvoHUHpjDgaVSE48/fTTWLNmDZ5//nk89thj6O3txUknnYQDBw7YbW644QbccsstuOOOO/DCCy+g\noqICK1euRFdXl92ms7MTJ598Mr7whS9I93Xcccfhhz/8IbZs2YIf//jH2Lp1Kz70oQ8pj6+/vx+p\nVAqXXnopVqxY4dmmu7sbjY2NuPrqq7FgwYKAV4CoKGT/sLjyyisxduxYrePr6OjASSedhIkTJ2Lj\nxo248cYb8eUvfxnf+c537DbPPPMMTjzxRDzyyCPYuHEjjjvuOJx++unYtGlTgCtBgJHRHyy2bNmC\nt99+2/7X1NSktQ8iZyT0j2effRbnnXceLrzwQrz66qt48MEH8fvf/x4XXXRRgCtBZJR6H+GYo7gU\nun9cd911jufAZz7zGWV7jjkKy0joDxYcc4TPSOgfJTnmMAkJgXfeeccEYD799NOmaZpmOp02W1pa\nzBtvvNFus2fPHjORSJgPPPBA1vuffPJJE4C5e/du3309/PDDpmEYZk9Pj9axnX/++eYZZ5yhbHPs\nsceal112mdb2SHDy3T8eeeQRc9asWearr75qAjA3bdqkPJ7bb7/drKurM7u7u+3XrrrqKnPmzJnK\n982ZM8f8yle+omxD/BmO/SHIPYoMjeHYP2688UZzypQpjvfdcsst5rhx4/xPmASm1PqICMccxSef\n/WPixInmzTffHOh4OOYoLsOxP3DMUTiGY/8oxTEHlUokFPbu3QsAqK+vBwC8/vrr2LFjh2PFrqam\nBkuXLsVzzz2X83527dqF++67D8uWLUM8Hh/aQZOCkc/+sXPnTlx00UX4/ve/j/Lycq33PPfcczjm\nmGNQVlZmv7Zy5Ups2bIFu3fv9nxPOp3Gvn377HMguTOc+8PChQvR2tqKE088Ec8++2ygYyN6DMf+\n0d7eju3bt+ORRx6BaZrYuXMnHnzwQbzvfe8LdHxEj1LrI6S0yPeYdP369WhoaMChhx6KG2+8EX19\nfcr2HHMUl+HcHzjmyD/DsX+U4piDQSUyZNLpNNauXYsjjzwSc+fOBQA757e5udnRtrm5Oad84Kuu\nugoVFRVoaGjAtm3b8PDDDw/9wElByGf/ME0Tq1evxsUXX4zFixdrv2/Hjh2e+xaPzc1NN92E/fv3\n48Mf/rD2fkg2w7U/tLa24o477sCPf/xj/PjHP0ZbWxuWL1+OF198UXs/xJ/h2j+OPPJI3HfffTjr\nrLNQVlaGlpYW1NbW4rbbbtPeD9GjFPsIKR3yPSa99NJLsWHDBjz55JP45Cc/ia997Wu48sorle/h\nmKN4DNf+wDFHYRiu/aMUxxwMKpEhs2bNGvzpT3/Chg0b8raPz33uc9i0aRN+/etfIxqN4rzzzoNp\nmgCAQw45BJWVlaisrMQpp5ySt2MguZHP/nHrrbdi3759+PznPy9tE0b/uP/++/GVr3wFP/zhD5nP\nPkSGa3+YOXMmPvnJT2LRokVYtmwZ/uu//gvLli3DzTffHMahk0GGa//485//jMsuuwzXXnstNm7c\niEcffRRvvPEGLr744jAOnQgM1z5CCkO+x6RXXHEFli9fjvnz5+Piiy/GN77xDdx6663o7u4GwDFH\nqTFc+wPHHIVhuPaPUhxzxIq2ZzIiuOSSS/CLX/wCzzzzDMaPH2+/3tLSAmBARt7a2mq/vnPnTixc\nuDDwfsaMGYMxY8ZgxowZmD17Ntra2vD888+jvb0djzzyCHp7ewEAqVRqiGdEwiTf/eOJJ57Ac889\nh0Qi4Xh98eLFOPfcc3H33Xd79o+Wlhbs3LnT8R7rd+vYLDZs2ICPf/zjePDBB6UGrESPkdAfRA4/\n/HD89re/1T4+omY4949169Zh2bJl+NznPgcAmD9/PioqKnD00Ufjq1/9quO4Se6Uah8hpUGhxqQi\nhx9+OPr6+vDGG29g5syZHHOUECOhP7i3zTFHeAzn/lGKYw4qlUhOmKaJSy65BD/96U/xxBNPYPLk\nyY6/T548GS0tLXj88cft1zo6OvDCCy+gvb19SPtOp9MAYEd5J06ciGnTpmHatGkYN27ckLZNwqFQ\n/eOWW27BSy+9hM2bN2Pz5s145JFHAAA/+MEP8B//8R8AvPtHe3s7nnnmGftGDgCPPfYYZs6cibq6\nOvu1Bx54AB/72MfwwAMP4NRTTw1+IQiAkdMf3GzevJnBghAYCf2js7MTsZhznS4ajdrnR4ZGqfcR\nUlyKOSbdvHkzIpGIrSjimKP4jJT+4LVtjjmGzkjoHyU55ii4NTgZEXzqU58ya2pqzKeeesp8++23\n7X+dnZ12m/Xr15u1tbXmww8/bL788svmGWecYU6ePNk8ePCg3ebtt982N23aZH73u981AZjPPPOM\nuWnTJvO9994zTdM0n3/+efPWW281N23aZL7xxhvm448/bi5btsycOnWq2dXVpTzGV1991dy0aZN5\n+umnm8uXLzc3bdqUVcHFem3RokXmOeecY27atMl89dVXQ7xSo5NC9Q83r7/+ulalnj179pjNzc3m\nRz/6UfNPf/qTuWHDBrO8vNz89re/bbe57777zFgsZt52222Oc9izZ88Qr87oYyT0h5tvvtl86KGH\nzNdee8185ZVXzMsuu8yMRCLmb37zmyFeHTIS+sedd95pxmIx8/bbbze3bt1q/va3vzUXL15sHn74\n4UO8OsQ0S7+PmCbHHMWkUP3jd7/7nXnzzTebmzdvNrdu3Wree++9ZmNjo3neeecpj49jjsIyEvoD\nxxz5YyT0j1IcczCoRHICgOe/O++8026TTqfNa665xmxubjYTiYR5wgknmFu2bHFs50tf+pJyOy+/\n/LJ53HHHmfX19WYikTAnTZpkXnzxxeY//vEP32OcOHGi57b9zmPixIlDvTyjnkL1DzdBJgAvvfSS\nedRRR5mJRMIcN26cuX79esffjz32WM99n3/++UEvx6hnJPSHr3/96+bUqVPNZDJp1tfXm8uXLzef\neOKJwNeCZDMS+odpDpTznTNnjplKpczW1lbz3HPP1XpWEX+GQx/hmKN4FKp/bNy40Vy6dKlZU1Nj\nJpNJc/bs2ebXvvY130VO0+SYo5CMhP7AMUf+GAn9wzRLb8xhmCZ12YQQQgghhBBCCCEkGPRUIoQQ\nQgghhBBCCCGBYVCJEEIIIYQQQgghhASGQSVCCCGEEEIIIYQQEhgGlQghhBBCCCGEEEJIYBhUIoQQ\nQgghhBBCCCGBYVCJEEIIIYQQQgghhASGQSVCCCGEEEIIIYQQEhgGlQghhBBCCCGEEEJIYBhUIoQQ\nQggZBqxevRqrVq0q9mEQQgghhNgwqEQIIYQQEhKrV6+GYRhZ//76178W+9AIIYQQQkInVuwDIIQQ\nQggZSZx88sm48847Ha81NjYW6WgIIYQQQvIHlUqEEEIIISGSSCTQ0tLi+BeNRpFOp7Fu3TpMnjwZ\nqVQKCxYswI9+9CPHe1999VWcdtppqK6uRlVVFY4++mhs3brV0eamm25Ca2srGhoasGbNGvT29tp/\n+/73v4/FixejqqoKLS0tOOecc/DOO+8U5LwJIYQQMvpgUIkQQgghpACsW7cO99xzD+644w68+uqr\nuPzyy/GRj3wETz/9NADgzTffxDHHHINEIoEnnngCL774Ii666CL09fXZ23jyySexdetWPPnkk7j7\n7rtx11134a677rL/3tvbi+uvvx4vvfQSHnroIbzxxhtYvXp1gc+UEEIIIaMFwzRNs9gHQQghhBAy\nEli9ejXuvfdeJJNJ+7VTTjkF9957L+rr6/Gb3/wG7e3t9t8+/vGPo7OzE/fffz++8IUvYMOGDdiy\nZQvi8bjntp966ils3boV0WgUAPDhD38YkUgEGzZs8DyeP/7xj1iyZAn27duHysrKkM+WEEIIIaMd\neioRQgghhITIcccdh29961v27xUVFfjrX/+Kzs5OnHjiiY62PT09OPTQQwEAmzdvxtFHH+0ZULI4\n5JBD7IASALS2tuKVV16xf9+4cSO+/OUv46WXXsLu3buRTqcBANu2bcOcOXNCOT9CCCGEEAsGlQgh\nhBBCQqSiogLTpk1zvLZt2zYAwC9/+UuMGzfO8bdEIgEASKVSvtt2B5wMw7ADRwcOHMDKlSuxcuVK\n3HfffWhsbMS2bduwcuVK9PT05Hw+hBBCCCEyGFQihBBCCMkzc+bMQSKRwLZt23Dsscd6tpk/fz7u\nvvtu9Pb2KtVKMv7yl7/gvffew/r169HW1gZgIP2NEEIIISRf0KibEEIIISTPVFVV4bOf/Swuv/xy\n3H333di6dStefPFF3Hrrrbj77rsBAJdccgk6Ojpw9tln449//CNee+01fP/738eWLVu09jFhwgSU\nlZXh1ltvxd/+9jf87Gc/w/XXX5/P0yKEEELIKIdBJUIIIYSQAnD99dfjmmuuwbp16zB79mycfPLJ\n+OUvf4nJkycDABoaGvDEE09g//79OPbYY7Fo0SJ897vf1VYtNTY24q677sKDDz6IOXPmYP369bjp\nppvyeUqEEEIIGeWw+hshhBBCCCGEEEIICQyVSoQQQgghhBBCCCEkMAwqEUIIIYQQQgghhJDAMKhE\nCCGEEEIIIYQQQgLDoBIhhBBCCCGEEEIICQyDSoQQQgghhBBCCCEkMAwqEUIIIYQQQgghhJDAMKhE\nCCGEEEIIIYQQQgLDoBIhhBBCCCGEEEIICQyDSoQQQgghhBBCCCEkMAwqEUIIIYQQQgghhJDAMKhE\nCCGEEEIIIYQQQgLz/wONZfFuv4wocgAAAABJRU5ErkJggg==\n", "text/plain": [ "<matplotlib.figure.Figure at 0xedaa1d0>" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "#Realizamos una visualizacion de los viajes a traves del tiempo\n", "#Quiero aclarar que se realizo una agrupacion dia a dia para realizar este plot\n", "plt = trip.groupby('start_date_without_time').count()['id'].plot(figsize=(14,4));\n", "plt.set_xlabel('Fecha')\n", "plt.set_ylabel('Cantidad de viajes')\n", "plt.set_title('Cantidad de viajes a traves del tiempo')" ] }, { "cell_type": "code", "execution_count": 13, "metadata": { "collapsed": false }, "outputs": [ { "data": { "text/plain": [ "<matplotlib.text.Text at 0x148a9df0>" ] }, "execution_count": 13, "metadata": {}, "output_type": "execute_result" }, { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAABOsAAAHaCAYAAABRgs3rAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAAPYQAAD2EBqD+naQAAIABJREFUeJzs3XlclXX+///nAeGwKCAmAoa4TorLaFiKG5kkBmpOqDmR\nguM25pJ72qTmkqSVe2mYqePopxFtTC0pS1tMUlNTQ1MzldRAiwB3BK7fH/44X4+gnuPAcIrH/Xbj\n1jnv63Vd1+u6uM5Rn12LyTAMQwAAAAAAAADKnFNZNwAAAAAAAADgBsI6AAAAAAAAwEEQ1gEAAAAA\nAAAOgrAOAAAAAAAAcBCEdQAAAAAAAICDIKwDAAAAAAAAHARhHQAAAAAAAOAgCOsAAAAAAAAAB0FY\nBwAAAAAAADgIwjoAAGCXRx55RI888shd6z777DOZTCZ99tlnJbbu+Ph41axZ857nr1mzpuLj40us\nn9Je78mTJ2UymbR8+fIS78ley5cvl8lk0smTJ8u6lRJR3PbYemyXhpdeekkmk6nU1/PffoZuVdJ9\nx8fHq2LFiiW2PAAAfo8I6wAAcGDHjx/XoEGDVLt2bbm5ucnLy0utW7fWvHnzdOXKlVJb76FDh/TS\nSy/9YYIZAAAA4PeiQlk3AAAAivfBBx+oR48eMpvN6tOnjxo1aqTc3Fxt375dY8eOVWpqqhITE0tl\n3YcOHdKUKVP0yCOPFDkL5+OPPy6Vdf6RHTlyRE5O9v8/0uDgYF25ckUuLi6l0BVuxbENAAAcAWEd\nAAAO6MSJE+rVq5eCg4O1detWBQQEWKYNGTJEP/zwgz744IMy6c3V1bVM1vt7Zjab72k+k8kkNze3\nEu4Gt8OxXT4UFBQoNzeXzxYAwGFxGSwAAA5o1qxZunjxopYuXWoV1BWqW7eunnvuOcv7ZcuW6dFH\nH5Wfn5/MZrNCQkK0aNGiIvPVrFlTnTt31vbt2/Xwww/Lzc1NtWvX1j//+U9LzfLly9WjRw9JUvv2\n7WUymazuPVfcfb1Onz6tbt26ydPTU35+fho5cqSuXbtWZP1ffvmlevTooRo1ashsNisoKEgjR44s\n9pLe9evXq1GjRnJzc1OjRo30n//8x6Z9J0mGYWj69Om6//775eHhofbt2ys1NbXY2qysLI0YMUJB\nQUEym82qW7euZs6cqYKCgjuuo3Pnzqpdu3ax08LCwtS8eXPL+1vvWZeZmakxY8aocePGqlixory8\nvPT4449r//79Vsu53T3rvv/+e3Xv3l2+vr5yc3NT8+bNtWHDBqua69eva8qUKapXr57c3NxUpUoV\ntWnTRlu2bLnjdklSamqqHn30Ubm7u+v+++/X9OnTb7s/Nm/erLZt28rT01OVKlVSdHR0kX1deB+y\nH3/8UZGRkfL09FRgYKCmTp0qwzCsagsKCjR37lw1bNhQbm5uqlatmgYNGqTffvvNqs6WY9ne7Snu\n2L527ZomT56sunXrWo7ZcePGFTm+TSaThg4dajluzWazGjZsqOTk5CLr2b59ux566CG5ubmpTp06\neuutt4rdt3l5eZo2bZrq1Kkjs9msmjVr6oUXXij2s1UcWz9Dtu5zW9n6fXQnZ86cUbdu3VSxYkVV\nrVpVY8aMUX5+vlXNpUuXNHr0aMtn94EHHtBrr71W5Jgq/N2sWrVKDRs2lNlstvxeXnvtNbVq1UpV\nqlSRu7u7QkNDtXbt2nvabgAASgpn1gEA4IA2btyo2rVrq1WrVjbVL1q0SA0bNlTXrl1VoUIFbdy4\nUc8++6wKCgo0ZMgQq9offvhB3bt3V79+/RQXF6d33nlH8fHxCg0NVcOGDdWuXTsNHz5c8+fP1wsv\nvKAGDRpIkuW/t7py5Yo6dOigtLQ0DR8+XIGBgVq5cqW2bt1apDYpKUmXL1/W4MGDVaVKFe3atUsL\nFizQ6dOnlZSUZKn7+OOPFRMTo5CQECUkJOjXX39V3759df/999u0PyZNmqTp06crKipKUVFR2rt3\nrzp27Kjc3FyrusuXLys8PFxnzpzRoEGDVKNGDe3YsUMTJkzQzz//rLlz5952HU899ZT69Omj3bt3\n66GHHrKMnzp1Sl9//bVeffXV2877448/av369erRo4dq1aqljIwMvfXWWwoPD9ehQ4cUGBh423lT\nU1PVunVrVa9eXePHj5enp6fWrFmjbt26ad26dfrLX/4i6caN/xMSEtS/f389/PDDysnJ0TfffKO9\ne/fqscceu+3y09PT1b59e+Xl5VmWn5iYKHd39yK1K1euVFxcnCIjIzVz5kxdvnxZixYtUps2bbRv\n3z6rS6jz8/PVqVMntWzZUrNmzVJycrImT56svLw8TZ061VI3aNAgLV++XH379tXw4cN14sQJLVy4\nUPv27dNXX31ldUnw3Y5le7fnVgUFBeratau2b9+ugQMHqkGDBjp48KDmzJmjo0ePav369Vb127dv\n13vvvadnn31WlSpV0vz58xUTE6O0tDRVqVJFknTw4EF17NhRVatW1UsvvaS8vDxNnjxZ1apVK7L+\n/v37a8WKFerevbtGjx6tnTt3KiEhQYcPH75reG3PZ8iefW4Le76PipOfn6/IyEi1aNFCr732mj75\n5BO9/vrrqlOnjgYPHizpRiDftWtXbdu2Tf369VPTpk310UcfaezYsTpz5ozmzJljtcytW7dqzZo1\nGjp0qO677z7LsTlv3jx17dpVsbGxys3N1bvvvqsePXpo06ZNio6Otmu7AQAoMQYAAHAo2dnZhiTj\niSeesHmey5cvFxmLjIw0ateubTUWHBxsSDK++OILy9i5c+cMs9lsjB492jKWlJRkSDK2bdtWZLnh\n4eFGeHi45f3cuXMNScaaNWssY5cuXTLq1q1bZBnF9ZmQkGCYTCbj1KlTlrGmTZsaAQEBRlZWlmXs\n448/NiQZwcHBxe6Dm7fH1dXViI6ONgoKCizjL7zwgiHJiIuLs4xNmzbN8PT0NI4ePWq1jPHjxxvO\nzs5GWlrabdeTnZ1dZL8ZhmHMmjWryPYEBwdbrffq1atGfn6+1XwnTpwwzGazMXXqVKsxScayZcss\nYx06dDAaN25sXL161TJWUFBgtGrVyqhXr55l7M9//rMRHR192/5vZ8SIEYYkY+fOnZaxc+fOGd7e\n3oYk48SJE4ZhGMaFCxcMHx8fY8CAAVbzp6enG97e3lbjcXFxhiRj2LBhVj1HR0cbrq6uxvnz5w3D\nMIwvv/zSkGSsWrXKapnJyclFxm09lm3dHsMoemyvXLnScHJyMr788kurfhYvXmxIMr766ivLmCTD\n1dXV+OGHHyxj+/fvNyQZCxYssIx169bNcHNzszo+Dh06ZDg7Oxs3/9X822+/NSQZ/fv3t1r3mDFj\nDEnG1q1bjTux9TNkzz4vzuTJk41b/0lh6/dRcQqPlZs/B4ZhGM2aNTNCQ0Mt79evX29IMqZPn25V\n1717d8NkMln9HiQZTk5ORmpqapH13dprbm6u0ahRI+PRRx+9a68AAJQWLoMFAMDB5OTkSJIqVapk\n8zw3nyWUnZ2tX375ReHh4frxxx+VnZ1tVRsSEqK2bdta3letWlUPPPCAfvzxx3vq98MPP1RAQIC6\nd+9uGfPw8NDAgQPv2OelS5f0yy+/qFWrVjIMQ/v27ZMk/fzzz/r2228VFxcnb29vS/1jjz2mkJCQ\nu/bzySefKDc3V8OGDZPJZLKMjxgxokhtUlKS2rZtq8qVK+uXX36x/ERERCg/P19ffPHFbddTeOnq\nmjVrrC67+/e//62WLVuqRo0at53XbDZbHjiRn5+vX3/9VRUrVtQDDzygvXv33na+zMxMbd26VT17\n9tSFCxcs/f7666+KjIzUsWPHdObMGUmSj4+PUlNTdezYsdvvrGJ8+OGHatmypR5++GHLWNWqVRUb\nG2tVt2XLFmVlZemvf/2r1b5zdnZWixYttG3btiLLHjp0qOV14aWJubm5+uSTTyTd+H14e3vrscce\ns1pmaGioKlasWGSZthzLtm5PcZKSktSgQQPVr1/fqp9HH31Ukor0ExERoTp16ljeN2nSRF5eXpZ+\n8vPz9dFHH6lbt25Wx0eDBg0UGRlptawPP/xQkjRq1Cir8dGjR0vSHe9Zac9nyN59bgt7vo9u5+9/\n/7vV+7Zt2xb5vTo7O2v48OFWdaNHj5ZhGNq8ebPVeHh4eLHfHzf3+ttvvyk7O1tt27a94+cQAIDS\nxmWwAAA4GC8vL0nShQsXbJ7nq6++0uTJk5WSkqLLly9bTcvOzrb6B3txIVLlypXv+f5Up06dUt26\nda2CMUl64IEHitSmpaVp0qRJ2rBhQ5H1Ff4j/tSpU5KkevXqFZn/bmHWneavWrWqKleubDV27Ngx\nHThwQFWrVi12WefOnbvjup566imtX79eKSkpatWqlY4fP649e/bc8fJZ6cbllfPmzdObb76pEydO\nWN2Lq/ByyeL88MMPMgxDEydO1MSJE2/bc/Xq1TV16lQ98cQT+tOf/qRGjRqpU6dO6t27t5o0aXLH\n3k6dOqUWLVoUGb/191kYAhYGV7cqPI4LOTk5FbnH35/+9CdJN+7NV7jM7Oxs+fn53XbbbmbLsWzr\n9hTn2LFjOnz4sM3Hx936OX/+vK5cuXLbY7swoCvs28nJSXXr1rWq8/f3l4+Pj+U4L449nyF797kt\n7Pk+Ko6bm1uRfV7c7zUwMLDI/9QovFz/1v1Tq1atYte1adMmTZ8+Xd9++63VvQBv/T4DAOB/ibAO\nAAAH4+XlpcDAQH333Xc21R8/flwdOnRQ/fr1NXv2bAUFBcnV1VUffvih5syZU+RG+s7OzsUux7jl\npuwlLT8/X4899pgyMzP1/PPPq379+vL09NSZM2cUHx9/1wc6lIaCggI99thjGjduXLHTC8Ok2+nS\npYs8PDy0Zs0atWrVSmvWrJGTk5PlAR23M2PGDE2cOFF/+9vfNG3aNPn6+srJyUkjRoy4434onDZm\nzJgiZ2IVKgx32rVrp+PHj+v999/Xxx9/rLfffltz5szR4sWL1b9//zv2Z4vCXlauXCl/f/8i0ytU\nsP+vmQUFBfLz89OqVauKnX5rgFPax3JBQYEaN26s2bNnFzs9KCio1Psp7dDI3n1+N/Z+HxXndvvx\nv1HcPQq//PJLde3aVe3atdObb76pgIAAubi4aNmyZVq9enWJ9wAAgK0I6wAAcECdO3dWYmKiUlJS\nFBYWdsfajRs36tq1a9qwYYPVmT33cvlaIXsCguDgYH333XcyDMNqviNHjljVHTx4UEePHtWKFSvU\np08fy/itTycNDg6WpGIv37x1mbfrp3D+m8/kOn/+fJGz+erUqaOLFy8qIiLirsstjqenpzp37qyk\npCTNnj1b//73v9W2bds7PiBCktauXav27dtr6dKlVuNZWVm67777bjtf4fa4uLjY1LOvr6/69u2r\nvn376uLFi2rXrp1eeumlO4Z1wcHBNu37wss9/fz8bOqloKBAP/74o1UAevToUUmy3Oy/Tp06+uST\nT9S6dWubHgBhC1u3pzh16tTR/v371aFDhxIJzapWrSp3d3eb+gkODlZBQYGOHTtm9XCXjIwMZWVl\nWY7z4tjzGSrpfV4a30fFCQ4O1ieffKILFy5YnV33/fffW6bfzbp16+Tm5qaPPvpIZrPZMr5s2bIS\n7RUAAHtxzzoAABzQuHHj5Onpqf79+ysjI6PI9OPHj2vevHmS/t9ZKDefvZOdnf1f/YPT09NT0o3w\n6G6ioqJ09uxZrV271jJ2+fJlJSYmWtUV16dhGJbtKBQQEKCmTZtqxYoVVve32rJliw4dOnTXfiIi\nIuTi4qIFCxZYrau4S1N79uyplJQUffTRR0WmZWVlKS8v767re+qpp3T27Fm9/fbb2r9/v5566qm7\nzuPs7FzkbKukpCTL/eZux8/PT4888ojeeust/fzzz0Wmnz9/3vL6119/tZpWsWJF1a1b1+pSv+JE\nRUXp66+/1q5du6yWe+uZV5GRkfLy8tKMGTN0/fr1O/ZSaOHChZbXhmFo4cKFcnFxUYcOHSTd+H3k\n5+dr2rRpRebNy8uz6Xi81+0pTs+ePXXmzBktWbKkyLQrV67o0qVLdvXi7OysyMhIrV+/XmlpaZbx\nw4cPFzkGo6KiJBU9bgvP8rvTk0rt+QyV9D4vje+j4kRFRSk/P9/qmJKkOXPmyGQy6fHHH7epV5PJ\nZHUZ+smTJ4s85RcAgP81zqwDAMAB1alTR6tXr9ZTTz2lBg0aqE+fPmrUqJFyc3O1Y8cOJSUlKT4+\nXpLUsWNHubq6qkuXLho0aJAuXryoJUuWyM/Pr9hAxxZNmzaVs7OzZs6cqezsbJnNZj366KPF3tdq\nwIABWrhwofr06aM9e/YoICBAK1eulIeHh1Vd/fr1VadOHY0ZM0ZnzpyRl5eX1q1bV+y98hISEhQd\nHa02bdrob3/7mzIzM7VgwQI1bNhQFy9evGPvVatW1ZgxY5SQkKDOnTsrKipK+/bt0+bNm4uctTZ2\n7Fht2LBBnTt3Vnx8vEJDQ3Xp0iUdPHhQa9eu1cmTJ+94ppt0IzSoVKmSxowZI2dnZ8XExNyxXrpx\n5uTUqVPVt29ftWrVSgcPHtSqVauK3NOtOG+88YbatGmjxo0ba8CAAapdu7YyMjKUkpKi06dPa//+\n/ZJuPHzhkUceUWhoqHx9ffXNN99o7dq1Vg95KM64ceO0cuVKderUSc8995w8PT2VmJio4OBgHThw\nwFLn5eWlRYsWqXfv3nrwwQfVq1cvVa1aVWlpafrggw/UunVrqyDFzc1NycnJiouLU4sWLbR582Z9\n8MEHeuGFFyyXWoaHh2vQoEFKSEjQt99+q44dO8rFxUXHjh1TUlKS5s2bZ/UgE1vYuj3F6d27t9as\nWaO///3v2rZtm1q3bq38/Hx9//33WrNmjT766CM1b97crn6mTJmi5ORktW3bVs8++6zy8vIsx/bN\n/fz5z39WXFycEhMTlZWVpfDwcO3atUsrVqxQt27d1L59+zuux9bPUEnv89L4PipOly5d1L59e/3j\nH//QyZMn9ec//1kff/yx3n//fY0YMcLqQR+3Ex0drdmzZ6tTp056+umnde7cOb3xxhuqW7fuXY8N\nAABKVRk8gRYAANjo6NGjxoABA4yaNWsarq6uRsWKFY2WLVsac+fONa5cuWKp27Bhg9GkSRPDzc3N\nqFmzpjFz5kzjnXfeMSQZJ06csNQFBwcb0dHRRdYTHh5uhIeHW40tWbLEqF27tuHs7GxIMrZt23bb\n2lOnThldu3Y1PDw8jPvuu8947rnnjOTkZKv5DMMwDh06ZERERBgVK1Y07rvvPmPAgAHG/v37DUnG\nsmXLrJa5bt06o0GDBobZbDZCQkKM9957z4iLizOCg4Pvut/y8/ONKVOmGAEBAYa7u7vxyCOPGN99\n950RHBxsxMXFWdVeuHDBmDBhglG3bl3D1dXVuO+++4xWrVoZr732mpGbm3vXdRmGYcTGxhqSjIiI\niGKn37req1evGqNHj7b017p1ayMlJaXIvj1x4kSx++b48eNGnz59DH9/f8PFxcWoXr260blzZ2Pt\n2rWWmunTpxsPP/yw4ePjY7i7uxv169c3Xn75ZZu26cCBA0Z4eLjh5uZmVK9e3Zg2bZqxdOnSIseT\nYRjGtm3bjMjISMPb29twc3Mz6tSpY8THxxvffPONpSYuLs7w9PQ0jh8/bnTs2NHw8PAwqlWrZkye\nPNnIz88vsv7ExEQjNDTUcHd3NypVqmQ0btzYGDdunHH27FmrfWrrsWzr9hQ3b25urjFz5kyjYcOG\nhtlsNipXrmyEhoYaU6ZMMbKzsy11kowhQ4YU6ae4Y+7zzz83QkNDDVdXV6N27drG4sWLjcmTJxu3\n/tX8+vXrxpQpU4xatWoZLi4uRlBQkDFhwgTj6tWrRdZTHHs+Q7bs8+IU17et30fFKTxWbFnPhQsX\njJEjRxqBgYGGi4uLUa9ePePVV181CgoKrOpu97sxDMNYunSpUa9ePcNsNhv169c3li1bVuy6AAD4\nXzIZRinfTRoAAAD35Pjx46pbt65WrlypZ555pqzbuWfx8fFau3btXc+KBAAAAPesAwAAcFiFlw3e\n7VJcAAAA/HFwzzoAAAAH9M477+idd96Rh4eHWrZsWdbtAAAA4H+EM+sAAAAc0MCBA5WZmamkpCT5\n+PiUdTsAAAD4H+GedQAAAAAAAICD4Mw6AAAAAAAAwEEQ1gEAAAAAAAAOggdMlKCCggKdPXtWlSpV\nkslkKut2AAAAAAAAUEYMw9CFCxcUGBgoJyfbz5cjrCtBZ8+eVVBQUFm3AQAAAAAAAAfx008/6f77\n77e5nrCuBFWqVEnSjV+Cl5dXGXcDAAAAAACAspKTk6OgoCBLXmQrwroSVHjpq5eXF2EdAAAAAAAA\n7L5VGg+YAAAAAAAAABwEYR0AAAAAAADgIAjrAAAAAAAAAAdBWAcAAAAAAAA4CMI6AAAAAAAAwEEQ\n1gEAAAAAAAAOgrAOAAAAAAAAcBCEdQAAAAAAAICDIKwDAAAAAAAAHARhHQAAAAAAAOAgCOsAAAAA\nAAAAB0FYBwAAAAAAADgIwjoAAAAAAADAQRDWAQAAAAAAAA6CsA4AAAAAAABwEBXKugEAAMq7muM/\nKNXln3wlulSXDwAAAKDkcGYdAAAAAAAA4CAI6wAAAAAAAAAHQVgHAAAAAAAAOAjCOgAAAAAAAMBB\nENYBAAAAAAAADoKwDgAAAAAAAHAQhHUAAAAAAACAgyCsAwAAAAAAABwEYR0AAAAAAADgIAjrAAAA\nAAAAAAdBWAcAAAAAAAA4CMI6AAAAAAAAwEEQ1gEAAAAAAAAOokJZNwAAAAAA+P2rOf6DUl3+yVei\nS3X5AOAoOLMOAAAAAAAAcBCEdQAAAAAAAICDIKwDAAAAAAAAHARhHQAAAAAAAOAgCOsAAAAAAAAA\nB0FYBwAAAAAAADiIMg3r8vPzNXHiRNWqVUvu7u6qU6eOpk2bJsMwLDWGYWjSpEkKCAiQu7u7IiIi\ndOzYMavlXL16VUOGDFGVKlVUsWJFxcTEKCMjw6omMzNTsbGx8vLyko+Pj/r166eLFy9a1aSlpSk6\nOloeHh7y8/PT2LFjlZeXV3o7AAAAAAAAALhJmYZ1M2fO1KJFi7Rw4UIdPnxYM2fO1KxZs7RgwQJL\nzaxZszR//nwtXrxYO3fulKenpyIjI3X16lVLzciRI7Vx40YlJSXp888/19mzZ/Xkk09arSs2Nlap\nqanasmWLNm3apC+++EIDBw60TM/Pz1d0dLRyc3O1Y8cOrVixQsuXL9ekSZNKf0cAAAAAAAAAkkzG\nzaex/Y917txZ1apV09KlSy1jMTExcnd317/+9S8ZhqHAwECNHj1aY8aMkSRlZ2erWrVqWr58uXr1\n6qXs7GxVrVpVq1evVvfu3SVJ33//vRo0aKCUlBS1bNlShw8fVkhIiHbv3q3mzZtLkpKTkxUVFaXT\np08rMDBQmzdvVufOnXX27FlVq1ZNkrR48WI9//zzOn/+vFxdXe+6PTk5OfL29lZ2dra8vLxKencB\nAP6gao7/oFSXf/KV6FJdPgAAEn+eAcCt7jUnKtMz61q1aqVPP/1UR48elSTt379f27dv1+OPPy5J\nOnHihNLT0xUREWGZx9vbWy1atFBKSookac+ePbp+/bpVTf369VWjRg1LTUpKinx8fCxBnSRFRETI\nyclJO3futNQ0btzYEtRJUmRkpHJycpSamlps/9euXVNOTo7VDwAAAAAAAHCvKpTlysePH6+cnBzV\nr19fzs7Oys/P18svv6zY2FhJUnp6uiRZBWiF7wunpaeny9XVVT4+Pnes8fPzs5peoUIF+fr6WtUU\nt56b+7hVQkKCpkyZYvd2AwAAAAAAAMUp0zPr1qxZo1WrVmn16tXau3evVqxYoddee00rVqwoy7Zs\nNmHCBGVnZ1t+fvrpp7JuCQAAAAAAAL9jZXpm3dixY/X888+rV69ekqTGjRvr1KlTSkhIUFxcnPz9\n/SVJGRkZCggIsMyXkZGhpk2bSpL8/f2Vm5urrKwsq7PrMjIyLPP7+/vr3LlzVuvOy8tTZmamVc2u\nXbusagqfKFtYcyuz2Syz2XzP2w8AAAAAAADcrEzPrLt8+bIqVLDOC52dnVVQUCBJqlWrlvz9/fXp\np59apufk5Gjnzp0KCwuTJIWGhsrFxcWq5siRI0pLS7PUhIWFKSsrS3v27LHUbN26VQUFBWrRooWl\n5uDBg1ah3pYtW+Tl5aWQkJAS3nIAAAAAAACgqDI9s65Lly6aPn26goKC1LBhQ+3bt0+zZ8/W3/72\nN0mSyWTSiBEjNH36dNWrV0+1atXSxIkTFRgYqG7dukm68cCJfv36adSoUfL19ZWXl5eGDRumsLAw\ntWzZUpLUoEEDderUSQMGDNDixYt1/fp1DR06VL169VJgYKAkqWPHjgoJCVHv3r01a9Yspaen68UX\nX9SQIUM4ew4AAAAAAAD/E2Ua1i1YsEATJ07Us88+q3PnzikwMFCDBg3SpEmTLDXjxo3TpUuXNHDg\nQGVlZalNmzZKTk6Wm5ubpWbOnDlycnJSTEyMrl27psjISL355ptW61q1apWGDh2qDh06WGrnz59v\nme7s7KxNmzZp8ODBCgsLk6enp+Li4jR16tTS3xEAAAAAAACAJJNhGEZZN/FHkZOTI29vb2VnZ8vL\ny6us2wEA/E7UHP9BqS7/5CvRpbp8AAAk/jwDgFvda05UpvesAwAAAAAAAPD/ENYBAAAAAAAADoKw\nDgAAAAAAAHAQhHUAAAAAAACAgyCsAwAAAAAAABwEYR0AAAAAAADgIAjrAAAAAAAAAAdBWAcAAAAA\nAAA4CMI6AAAAAAAAwEEQ1gEAAAAAAAAOgrAOAAAAAAAAcBCEdQAAAAAAAICDIKwDAAAAAAAAHARh\nHQAAAAAAAOAgCOsAAAAAAAAAB0FYBwAAAAAAADgIwjoAAAAAAADAQRDWAQAAAAAAAA6CsA4AAAAA\nAABwEIR1AAAAAAAAgIMgrAMAAAAAAAAcBGEdAAAAAAAA4CAI6wAAAAAAAAAHQVgHAAAAAAAAOAjC\nOgAAAAD91ZjyAAAgAElEQVQAAMBBENYBAAAAAAAADoKwDgAAAAAAAHAQhHUAAAAAAACAgyCsAwAA\nAAAAABwEYR0AAAAAAADgIAjrAAAAAAAAAAdBWAcAAAAAAAA4CMI6AAAAAAAAwEEQ1gEAAAAAAAAO\ngrAOAAAAAAAAcBCEdQAAAAAAAICDIKwDAAAAAAAAHARhHQAAAAAAAOAgCOsAAAAAAAAAB0FYBwAA\nAAAAADgIwjoAAAAAAADAQRDWAQAAAAAAAA6CsA4AAAAAAABwEIR1AAAAAAAAgIMgrAMAAAAAAAAc\nBGEdAAAAAAAA4CAI6wAAAAAAAAAHQVgHAAAAAAAAOAjCOgAAAAAAAMBBENYBAAAAAAAADoKwDgAA\nAAAAAHAQhHUAAAAAAACAgyCsAwAAAAAAABwEYR0AAAAAAADgIAjrAAAAAAAAAAdBWAcAAAAAAAA4\nCMI6AAAAAAAAwEEQ1gEAAAAAAAAOgrAOAAAAAAAAcBCEdQAAAAAAAICDIKwDAAAAAAAAHARhHQAA\nAAAAAOAgCOsAAAAAAAAAB0FYBwAAAAAAADgIwjoAAAAAAADAQRDWAQAAAAAAAA6iQlk3AAAAfv9q\njv+gVJd/8pXoUl0+AAAA4Cg4sw4AAAAAAABwEIR1AAAAAAAAgIMgrAMAAAAAAAAcBGEdAAAAAAAA\n4CAI6wAAAAAAAAAHQVgHAAAAAAAAOAjCOgAAAAAAAMBBENYBAAAAAAAADqLMw7ozZ87omWeeUZUq\nVeTu7q7GjRvrm2++sUw3DEOTJk1SQECA3N3dFRERoWPHjlkt4+rVqxoyZIiqVKmiihUrKiYmRhkZ\nGVY1mZmZio2NlZeXl3x8fNSvXz9dvHjRqiYtLU3R0dHy8PCQn5+fxo4dq7y8vNLbeAAAAAAAAOAm\nZRrW/fbbb2rdurVcXFy0efNmHTp0SK+//roqV65sqZk1a5bmz5+vxYsXa+fOnfL09FRkZKSuXr1q\nqRk5cqQ2btyopKQkff755zp79qyefPJJq3XFxsYqNTVVW7Zs0aZNm/TFF19o4MCBlun5+fmKjo5W\nbm6uduzYoRUrVmj58uWaNGlS6e8IAAAAAAAAQJLJMAyjrFY+fvx4ffXVV/ryyy+LnW4YhgIDAzV6\n9GiNGTNGkpSdna1q1app+fLl6tWrl7Kzs1W1alWtXr1a3bt3lyR9//33atCggVJSUtSyZUsdPnxY\nISEh2r17t5o3by5JSk5OVlRUlE6fPq3AwEBt3rxZnTt31tmzZ1WtWjVJ0uLFi/X888/r/PnzcnV1\nvev25OTkyNvbW9nZ2fLy8iqJXQQAKAdqjv+gVJd/8pXoUl2+9MfYBgDAf4c/CwDA2r3mRGV6Zt2G\nDRvUvHlz9ejRQ35+fmrWrJmWLFlimX7ixAmlp6crIiLCMubt7a0WLVooJSVFkrRnzx5dv37dqqZ+\n/fqqUaOGpSYlJUU+Pj6WoE6SIiIi5OTkpJ07d1pqGjdubAnqJCkyMlI5OTlKTU0ttv9r164pJyfH\n6gcAAAAAAAC4V2Ua1v34449atGiR6tWrp48++kiDBw/W8OHDtWLFCklSenq6JFkFaIXvC6elp6fL\n1dVVPj4+d6zx8/Ozml6hQgX5+vpa1RS3npv7uFVCQoK8vb0tP0FBQXbvAwAAAAAAAKCQ3WHd3r17\ndfDgQcv7999/X926ddMLL7yg3Nxcu5ZVUFCgBx98UDNmzFCzZs00cOBADRgwQIsXL7a3rTIxYcIE\nZWdnW35++umnsm4JAAAAAAAAv2N2h3WDBg3S0aNHJd04M65Xr17y8PBQUlKSxo0bZ9eyAgICFBIS\nYjXWoEEDpaWlSZL8/f0lqciTXTMyMizT/P39lZubq6ysrDvWnDt3zmp6Xl6eMjMzrWqKW8/NfdzK\nbDbLy8vL6gcAAAAAAAC4V3aHdUePHlXTpk0lSUlJSWrXrp1Wr16t5cuXa926dXYtq3Xr1jpy5EiR\n5QcHB0uSatWqJX9/f3366aeW6Tk5Odq5c6fCwsIkSaGhoXJxcbGqOXLkiNLS0iw1YWFhysrK0p49\neyw1W7duVUFBgVq0aGGpOXjwoFWot2XLFnl5eRUJFAEAAAAAAIDSUMHeGQzDUEFBgSTpk08+UefO\nnSVJQUFB+uWXX+xa1siRI9WqVSvNmDFDPXv21K5du5SYmKjExERJkslk0ogRIzR9+nTVq1dPtWrV\n0sSJExUYGKhu3bpJuvHAiX79+mnUqFHy9fWVl5eXhg0bprCwMLVs2VLSjbP1OnXqZLnE9vr16xo6\ndKh69eqlwMBASVLHjh0VEhKi3r17a9asWUpPT9eLL76oIUOGyGw227ubAAAAAMAuPE0VACDdQ1jX\nvHlzTZ8+XREREfr888+1aNEiSTee3HrrAxru5qGHHtJ//vMfTZgwQVOnTlWtWrU0d+5cxcbGWmrG\njRunS5cuaeDAgcrKylKbNm2UnJwsNzc3S82cOXPk5OSkmJgYXbt2TZGRkXrzzTet1rVq1SoNHTpU\nHTp0sNTOnz/fMt3Z2VmbNm3S4MGDFRYWJk9PT8XFxWnq1Kn27iIAAAAAAADgnpgMwzDsmeHAgQOK\njY1VWlqaRo0apcmTJ0uShg0bpl9//VWrV68ulUZ/D3JycuTt7a3s7GzuXwcAsNkf4UyKP8I2AEBZ\n+71/l/7e+weAknavOZHdZ9Y1adLE6mmwhV599VU5OzvbuzgAAAAAAAAA/z+7HzAhSVlZWXr77bc1\nYcIEZWZmSpIOHTpU5ImrAAAAAAAAAGxn95l1Bw4cUIcOHeTj46OTJ09qwIAB8vX11Xvvvae0tDT9\n85//LI0+AQAAAAAAgD88u8O6UaNGqW/fvpo1a5YqVapkGY+KitLTTz9dos0BAAAAAPC/wn33ADgC\nuy+D3b17twYNGlRkvHr16kpPTy+RpgAAAAAAAIDyyO6wzmw2Kycnp8j40aNHVbVq1RJpCgAAAAAA\nACiP7A7runbtqqlTp+r69euSJJPJpLS0ND3//POKiYkp8QYBAAAAAACA8sLusO7111/XxYsX5efn\npytXrig8PFx169ZVpUqV9PLLL5dGjwAAAAAAAEC5YPcDJry9vbVlyxZt375dBw4c0MWLF/Xggw8q\nIiKiNPoDAAAAAAAAyg27w7pCbdq0UZs2bUqyFwAAAAAAAKBcsymsmz9/vgYOHCg3NzfNnz//jrUV\nK1ZUw4YN1aJFixJpEAAAAAAAACgvbArr5syZo9jYWLm5uWnOnDl3rL127ZrOnTunkSNH6tVXXy2R\nJgEAAAAAAIDywKaw7sSJE8W+vp0tW7bo6aefJqwDAAAAAAAA7GD302Bt0aZNG7344oulsWgAAAAA\nAADgD+ueHjBx6dIlff7550pLS1Nubq7VtOHDh8vd3V3PPfdciTQIAAAAAAAAlBd2h3X79u1TVFSU\nLl++rEuXLsnX11e//PKLPDw85Ofnp+HDh5dGnwAAAAAAAMAfnt2XwY4cOVJdunTRb7/9Jnd3d339\n9dc6deqUQkND9dprr5VGjwAAAAAAAEC5YHdY9+2332r06NFycnKSs7Ozrl27pqCgIM2aNUsvvPBC\nafQIAAAAAAAAlAt2h3UuLi5ycroxm5+fn9LS0iRJ3t7e+umnn0q2OwAAAAAAAKAcsfuedc2aNdPu\n3btVr149hYeHa9KkSfrll1+0cuVKNWrUqDR6BAAAAAAAAMoFu8+smzFjhgICAiRJL7/8sipXrqzB\ngwfr/PnzSkxMLPEGAQAAAAAAgPLC7jPrmjdvbnnt5+en5OTkEm0IAAAAAAAAKK/sPrMOAAAAAAAA\nQOmw6cy6Bx98UJ9++qkqV66sZs2ayWQy3bZ27969JdYcAAAAAAAAUJ7YFNY98cQTMpvNltd3CusA\nAAAAAAAA3BubwrrJkydbXr/00kul1QsAAAAAAABQrtl9z7r+/fvrs88+K4VWAAAAAAAAgPLN7rDu\n/Pnz6tSpk4KCgjR27Fjt37+/NPoCAAAAAAAAyh27w7r3339fP//8syZOnKjdu3frwQcfVMOGDTVj\nxgydPHmyFFoEAAAAAAAAyge7wzpJqly5sgYOHKjPPvtMp06dUnx8vFauXKm6deuWdH8AAAAAAABA\nuXFPYV2h69ev65tvvtHOnTt18uRJVatWraT6AgAAAAAAAMqdewrrtm3bpgEDBqhatWqKj4+Xl5eX\nNm3apNOnT5d0fwAAAAAAAEC5UcHeGapXr67MzEx16tRJiYmJ6tKli8xmc2n0BgAAAAAAAJQrdod1\nL730knr06CEfH5/S6AcAAAAAAAAot+wO6wYMGFAafQAAAAAAAADl3n/1gAkAAAAAAAAAJYewDgAA\nAAAAAHAQhHUAAAAAAACAgyCsAwAAAAAAABzEPYV1K1euVOvWrRUYGKhTp05JkubOnav333+/RJsD\nAAAAAAAAyhO7w7pFixZp1KhRioqKUlZWlvLz8yVJPj4+mjt3bok3CAAAAAAAAJQXdod1CxYs0JIl\nS/SPf/xDzs7OlvHmzZvr4MGDJdocAAAAAAAAUJ7YHdadOHFCzZo1KzJuNpt16dKlEmkKAAAAAAAA\nKI/sDutq1aqlb7/9tsh4cnKyGjRoUCJNAQAAAAAAAOVRBXtnGDVqlIYMGaKrV6/KMAzt2rVL//d/\n/6eEhAS9/fbbpdEjAAAAAAAAUC7YHdb1799f7u7uevHFF3X58mU9/fTTCgwM1Lx589SrV6/S6BEA\nAAAAAAAoF+wO6yQpNjZWsbGxunz5si5evCg/P7+S7gsAAAAAAAAod+4prCvk4eEhDw+PkuoFAAAA\nAAAAKNdsCuuaNWsmk8lk0wL37t37XzUEAAAAAAAAlFc2hXXdunWzvL569arefPNNhYSEKCwsTJL0\n9ddfKzU1Vc8++2zpdAkAAAAAAACUAzaFdZMnT7a87t+/v4YPH65p06YVqfnpp59KtjsAAAAAAACg\nHHGyd4akpCT16dOnyPgzzzyjdevWlUhTAAAAAAAAQHlkd1jn7u6ur776qsj4V199JTc3txJpCgAA\nAAAAACiP7H4a7IgRIzR48GDt3btXDz/8sCRp586deueddzRx4sQSbxAAAAAAAAAoL+wO68aPH6/a\ntWtr3rx5+te//iVJatCggZYtW6aePXuWeIMAAAAAAABAeWF3WCdJPXv2JJgDAAAAAAAASpjd96wD\nAAAAAAAAUDoI6wAAAAAAAAAHQVgHAAAAAAAAOAjCOgAAAAAAAMBBENYBAAAAAAAADsKmp8GOGjXK\n5gXOnj37npsBAOBe1Bz/Qaku/+Qr0aW6fAAAAAAoZFNYt2/fPqv3e/fuVV5enh544AFJ0tGjR+Xs\n7KzQ0NCS7xAAAAAAAAAoJ2wK67Zt22Z5PXv2bFWqVEkrVqxQ5cqVJUm//fab+vbtq7Zt25ZOlwAA\nAAAAAEA5YPc9615//XUlJCRYgjpJqly5sqZPn67XX3+9RJsDAAAAAAAAyhO7w7qcnBydP3++yPj5\n8+d14cKFEmkKAAAAAAAAKI/sDuv+8pe/qG/fvnrvvfd0+vRpnT59WuvWrVO/fv305JNPlkaPAAAA\nAAAAQLlg0z3rbrZ48WKNGTNGTz/9tK5fv35jIRUqqF+/fnr11VdLvEEAAAAAAACgvLA7rPPw8NCb\nb76pV199VcePH5ck1alTR56eniXeHAAAAAAAAFCe2B3WFfL09FSTJk1KshcAAAAAAACgXLunsO6b\nb77RmjVrlJaWptzcXKtp7733Xok0BgAAAAAAAJQ3dj9g4t1331WrVq10+PBh/ec//9H169eVmpqq\nrVu3ytvbuzR6BAAAAAAAAMoFu8O6GTNmaM6cOdq4caNcXV01b948ff/99+rZs6dq1KhRGj0CAAAA\nAAAA5YLdYd3x48cVHR0tSXJ1ddWlS5dkMpk0cuRIJSYmlniDAAAAAAAAQHlhd1hXuXJlXbhwQZJU\nvXp1fffdd5KkrKwsXb58+Z4beeWVV2QymTRixAjLmGEYmjRpkgICAuTu7q6IiAgdO3bMar6rV69q\nyJAhqlKliipWrKiYmBhlZGRY1WRmZio2NlZeXl7y8fFRv379dPHiRauatLQ0RUdHy8PDQ35+fho7\ndqzy8vLueXsAAAAAAAAAe9kd1rVr105btmyRJPXo0UPPPfecBgwYoL/+9a/q0KHDPTWxe/duvfXW\nW0WeLjtr1izNnz9fixcv1s6dO+Xp6anIyEhdvXrVUjNy5Eht3LhRSUlJ+vzzz3X27Fk9+eSTVsuJ\njY1VamqqtmzZok2bNumLL77QwIEDLdPz8/MVHR2t3Nxc7dixQytWrNDy5cs1adKke9oeAAAAAAAA\n4F7YHdYtXLhQvXr1kiT94x//0KhRo5SRkaGYmBgtXbrU7gYuXryo2NhYLVmyRJUrV7aMG4ahuXPn\n6sUXX9QTTzyhJk2a6J///KfOnj2r9evXS5Kys7O1dOlSzZ49W48++qhCQ0O1bNky7dixQ19//bUk\n6fDhw0pOTtbbb7+tFi1aqE2bNlqwYIHeffddnT17VpL08ccf69ChQ/rXv/6lpk2b6vHHH9e0adP0\nxhtvFHnaLQAAAAAAAFBa7A7rfH19FRgYeGNmJyeNHz9eGzZs0Ouvv24VttlqyJAhio6OVkREhNX4\niRMnlJ6ebjXu7e2tFi1aKCUlRZK0Z88eXb9+3aqmfv36qlGjhqUmJSVFPj4+at68uaUmIiJCTk5O\n2rlzp6WmcePGqlatmqUmMjJSOTk5Sk1NvW3v165dU05OjtUPAAAAAAAAcK8q2FJkTwjl5eVlc+27\n776rvXv3avfu3UWmpaenS5JVgFb4vnBaenq6XF1d5ePjc8caPz8/q+kVKlSQr6+vVU1x67m5j+Ik\nJCRoypQpd91OAAAAAAAAwBY2hXU+Pj4ymUw2LTA/P9+mup9++knPPfectmzZIjc3N5vmcTQTJkzQ\nqFGjLO9zcnIUFBRUhh0BAAAAAADg98ymsG7btm2W1ydPntT48eMVHx+vsLAwSTcuI12xYoUSEhJs\nXvGePXt07tw5Pfjgg5ax/Px8ffHFF1q4cKGOHDkiScrIyFBAQIClJiMjQ02bNpUk+fv7Kzc3V1lZ\nWVZn12VkZMjf399Sc+7cOat15+XlKTMz06pm165dVjWFT5QtrCmO2WyW2Wy2eZsBAAAAAACAO7Ep\nrAsPD7e8njp1qmbPnq2//vWvlrGuXbuqcePGSkxMVFxcnE0r7tChgw4ePGg11rdvX9WvX1/PP/+8\nateuLX9/f3366aeWcC4nJ0c7d+7U4MGDJUmhoaFycXHRp59+qpiYGEnSkSNHlJaWZgkSw8LClJWV\npT179ig0NFSStHXrVhUUFKhFixaWmpdfflnnzp2zXDK7ZcsWeXl5KSQkxKbtAQAAAAAAAP5bNoV1\nN0tJSdHixYuLjDdv3lz9+/e3eTmVKlVSo0aNrMY8PT1VpUoVy/iIESM0ffp01atXT7Vq1dLEiRMV\nGBiobt26SbrxwIl+/fpp1KhR8vX1lZeXl4YNG6awsDC1bNlSktSgQQN16tRJAwYM0OLFi3X9+nUN\nHTpUvXr1sjwoo2PHjgoJCVHv3r01a9Yspaen68UXX9SQIUM4cw4AAAAAAAD/M3Y/DTYoKEhLliwp\nMv7222+X+P3axo0bp2HDhmngwIF66KGHdPHiRSUnJ1vd427OnDnq3LmzYmJi1K5dO/n7++u9996z\nWs6qVatUv359dejQQVFRUWrTpo0SExMt052dnbVp0yY5OzsrLCxMzzzzjPr06aOpU6eW6PYAAAAA\nAAAAd2L3mXVz5sxRTEyMNm/ebLmMdNeuXTp27JjWrVv3XzXz2WefWb03mUyaOnXqHUMzNzc3vfHG\nG3rjjTduW+Pr66vVq1ffcd3BwcH68MMP7eoXAAAAAAAAKEl2n1kXFRWlo0ePqkuXLsrMzFRmZqa6\ndOmio0ePKioqqjR6BAAAAAAAAMoFu8+sk25cCjtjxoyS7gUAAAAAAAAo12wK6w4cOKBGjRrJyclJ\nBw4cuGNtkyZNSqQxAAAAAAAAoLyxKaxr2rSp0tPT5efnp6ZNm8pkMskwjCJ1JpNJ+fn5Jd4kAAAA\nAAAAUB7YFNadOHFCVatWtbwGAAAAAAAAUPJsCuuCg4Mtr0+dOqVWrVqpQgXrWfPy8rRjxw6rWgAA\nAAAAAAC2s/tpsO3bt1dmZmaR8ezsbLVv375EmgIAAAAAAADKI7vDOsMwZDKZioz/+uuv8vT0LJGm\nAAAAAAAAgPLIpstgJenJJ5+UdOMhEvHx8TKbzZZp+fn5OnDggFq1alXyHQIAAAAAAADlhM1hnbe3\nt6QbZ9ZVqlRJ7u7ulmmurq5q2bKlBgwYUPIdAgAAAAAAAOWEzWHdsmXLJEk1a9bUmDFjuOQVAAAA\nAAAAKGE2h3WFJk+eXBp9AAAAAAAAAOWe3Q+YyMjIUO/evRUYGKgKFSrI2dnZ6gcAAAAAAADAvbH7\nzLr4+HilpaVp4sSJCggIKPbJsAAAAAAAAADsZ3dYt337dn355Zdq2rRpafQDAAAAAAAAlFt2XwYb\nFBQkwzBKoxcAAAAAAACgXLM7rJs7d67Gjx+vkydPlkI7AAAAAAAAQPll92WwTz31lC5fvqw6derI\nw8NDLi4uVtMzMzNLrDkAAACUDzXHf1Cqyz/5SnSpLh8AAKCk2B3WzZ07tzT6AAAAAAAAAMo9u8O6\nuLi40ugDAAAAAAAAKPfsDutudvXqVeXm5lqNeXl5/VcNAQAAAAAAAOWV3Q+YuHTpkoYOHSo/Pz95\nenqqcuXKVj8AAADA/9fenYfXdO97HP/sDJIYIqiEGJIoSpoqNVVR2qZS1HQ8Va1KuUrr0BraGmqK\n4VZ66hzzoVxFnbY4t62hipraXmMlRbTUVIRDUkPR0gzkd/9w7GOLRKJircX79Tz7ebrWb+21Pt+k\nsff67t9eCwAAADcn3zPrBgwYoHXr1mnatGnq3Lmzpk6dqn/961967733FB8fXxAZAQAAACBXBX2T\nEokblQAAbo98N+uWLl2qDz74QE2bNlXXrl3VuHFjVa5cWWFhYfrwww/VqVOngsgJAAAAAAAA3PHy\n/TXY06dPq1KlSpIuX5/u9OnTkqRGjRrpm2++ubXpAAAAAAAAgLtIvpt1lSpV0sGDByVJ1apV08KF\nCyVdnnEXFBR0a9MBAAAAAAAAd5F8N+u6du2qHTt2SJIGDRqkqVOnyt/fX/369dObb755ywMCAAAA\nAAAAd4t8X7OuX79+7v+Ojo7Wjz/+qMTERFWuXFk1atS4peEAAAAAAACAu0m+m3XXCgsLU1hY2K3I\nAgAAADgSdyIFAAC3Sp6/Brt27VpFRkbq3Llz2cbOnj2r+++/XytXrryl4QAAAAAAAIC7SZ6bdRMm\nTFD37t0VGBiYbax48eJ6+eWXNXny5FsaDgAAAAAAALib5LlZt2PHDj311FM5jjdr1kxJSUm3JBQA\nAAAAAABwN8pzsy41NVW+vr45jvv4+OjEiRO3JBQAAAAAAABwN8pzs65cuXL6/vvvcxxPSkpS2bJl\nb0koAAAAAAAA4G6U52ZdixYtNGzYMKWlpWUb+/333zVixAg9/fTTtzQcAAAAAAAAcDfxyeuGQ4cO\n1aeffqqqVauqd+/euu+++yRJP/74o6ZOnapLly5pyJAhBRYUAACgoIQPWlag+z8U37JA9w8AAIA7\nR56bdSEhIdq4caN69uypwYMHyxgjSXK5XIqJidHUqVMVEhJSYEEBAAAAAACAO12em3WSFBYWpi++\n+EK//PKL9u/fL2OMqlSpohIlShRUPgAAAAAAAOCuka9m3RUlSpRQ3bp1b3UWAAAAAAAA4K52U806\nAAAAAABgL1yDFbgz0KwDAAC4A3CCBgAAcGfwsjoAAAAAAAAAgMto1gEAAAAAAAA2QbMOAAAAAAAA\nsAmadQAAAAAAAIBN0KwDAAAAAAAAbIJmHQAAAAAAAGATNOsAAAAAAAAAm/CxOgAAAAAA64UPWlag\n+z8U37JA9w8AwJ2CmXUAAAAAAACATdCsAwAAAAAAAGyCZh0AAAAAAABgEzTrAAAAAAAAAJugWQcA\nAAAAAADYBM06AAAAAAAAwCZo1gEAAAAAAAA2QbMOAAAAAAAAsAmadQAAAAAAAIBN0KwDAAAAAAAA\nbIJmHQAAAAAAAGATNOsAAAAAAAAAm6BZBwAAAAAAANgEzToAAAAAAADAJmjWAQAAAAAAADZBsw4A\nAAAAAACwCZp1AAAAAAAAgE3QrAMAAAAAAABsgmYdAAAAAAAAYBM06wAAAAAAAACboFkHAAAAAAAA\n2ATNOgAAAAAAAMAmaNYBAAAAAAAANkGzDgAAAAAAALAJmnUAAAAAAACATVjarBs7dqzq1q2rYsWK\nKTg4WG3bttWePXs8tjHGaPjw4SpbtqwCAgIUHR2tffv2eWyTlpamXr16qVSpUipatKjat2+v1NRU\nj21Onz6tTp06KTAwUEFBQerWrZt+++03j22Sk5PVsmVLFS5cWMHBwXrzzTd18eLFgikeAAAAAAAA\nuIalzbqvv/5avXr10ubNm7Vq1SplZmaqWbNmOn/+vHubv/zlL5o0aZKmT5+uLVu2qEiRIoqJiVFa\nWpp7m379+mnp0qX65z//qa+//lrHjh3Tn/70J49jderUST/88INWrVqlzz//XN9884169OjhHr90\n6ZJatmypjIwMbdy4UXPnztWcOXM0fPjwgv9BAAAAAAAAAJJ8rDz4ihUrPJbnzJmj4OBgJSYm6tFH\nH5UxRhMmTNDQoUPVpk0bSdIHH3ygkJAQLVq0SB07dtTZs2c1a9YsffTRR3r88cclSbNnz1b16tW1\nefNmPfzww9q9e7dWrFihrVu3qk6dOpKkyZMnq0WLFho3bpxCQ0P15ZdfateuXVq9erVCQkJUs2ZN\njR49WgMHDlRcXJwKFSp0e384AAAAAAAAuOvY6pp1Z8+elSSVLFlSknTw4EGlpKQoOjravU3x4sVV\nv2dBJmAAACAASURBVH59bdq0SZKUmJiozMxMj22qVaumihUrurfZtGmTgoKC3I06SYqOjpaXl5e2\nbNni3uaBBx5QSEiIe5uYmBidO3dOP/zwQwFVDAAAAAAAAPyHpTPrrpaVlaW+ffuqYcOGioqKkiSl\npKRIkkcD7crylbGUlBQVKlRIQUFBuW4THBzsMe7j46OSJUt6bHO941yd41rp6elKT093L587dy7v\nBQMAAAAAAADXsM3Mul69eun777/X/PnzrY6SZ2PHjlXx4sXdjwoVKlgdCQAAAAAAAA5mi2Zd7969\n9fnnn2vdunUqX768e32ZMmUkKdudXVNTU91jZcqUUUZGhs6cOZPrNj///LPH+MWLF3X69GmPba53\nnKtzXGvw4ME6e/as+3HkyJF81Q0AAAAAAABczdJmnTFGvXv31meffaa1a9cqIiLCYzwiIkJlypTR\nmjVr3OvOnTunLVu2qEGDBpKk2rVry9fX12ObPXv2KDk52b1NgwYNdObMGSUmJrq3Wbt2rbKyslS/\nfn33Njt37vRo6q1atUqBgYGKjIy8bn4/Pz8FBgZ6PAAAAAAAAICbZek163r16qWPPvpIixcvVrFi\nxdzXhitevLgCAgLkcrnUt29fjRkzRlWqVFFERISGDRum0NBQtW3b1r1tt27d1L9/f5UsWVKBgYF6\n9dVX1aBBAz388MOSpOrVq+upp55S9+7dNX36dGVmZqp3797q2LGjQkNDJUnNmjVTZGSkOnfurL/8\n5S9KSUnR0KFD1atXL/n5+VnzAwIAAAAAAMBdxdJm3bRp0yRJTZs29Vg/e/ZsdenSRZI0YMAAnT9/\nXj169NCZM2fUqFEjrVixQv7+/u7tx48fLy8vL7Vv317p6emKiYnR3//+d499fvjhh+rdu7eeeOIJ\n97aTJk1yj3t7e+vzzz9Xz5491aBBAxUpUkQvvviiRo0aVTDFAwAAAAAAANewtFlnjLnhNi6XS6NG\njcq1aebv76+pU6dq6tSpOW5TsmRJffTRR7keKywsTF988cUNMwEAAAAAAAAFwRY3mAAAAAAAAABA\nsw4AAAAAAACwDZp1AAAAAAAAgE3QrAMAAAAAAABsgmYdAAAAAAAAYBM06wAAAAAAAACboFkHAAAA\nAAAA2ATNOgAAAAAAAMAmfKwOAAAAAAAAIEnhg5YV6P4Pxbcs0P0DtwIz6wAAAAAAAACboFkHAAAA\nAAAA2ATNOgAAAAAAAMAmaNYBAAAAAAAANkGzDgAAAAAAALAJmnUAAAAAAACATdCsAwAAAAAAAGyC\nZh0AAAAAAABgEzTrAAAAAAAAAJvwsToAAMBa4YOWFfgxDsW3LPBjAAAAAMCdgJl1AAAAAAAAgE3Q\nrAMAAAAAAABsgmYdAAAAAAAAYBM06wAAAAAAAACboFkHAAAAAAAA2ATNOgAAAAAAAMAmaNYBAAAA\nAAAANkGzDgAAAAAAALAJmnUAAAAAAACATdCsAwAAAAAAAGyCZh0AAAAAAABgEzTrAAAAAAAAAJvw\nsToAAAAAAADAnSB80LIC3f+h+JYFun/YAzPrAAAAAAAAAJugWQcAAAAAAADYBM06AAAAAAAAwCZo\n1gEAAAAAAAA2QbMOAAAAAAAAsAmadQAAAAAAAIBN0KwDAAAAAAAAbIJmHQAAAAAAAGATNOsAAAAA\nAAAAm6BZBwAAAAAAANgEzToAAAAAAADAJmjWAQAAAAAAADZBsw4AAAAAAACwCZp1AAAAAAAAgE3Q\nrAMAAAAAAABswsfqAAAAAAAAALBe+KBlBX6MQ/EtC/wYTsfMOgAAAAAAAMAmaNYBAAAAAAAANkGz\nDgAAAAAAALAJmnUAAAAAAACATdCsAwAAAAAAAGyCZh0AAAAAAABgEzTrAAAAAAAAAJugWQcAAAAA\nAADYBM06AAAAAAAAwCZo1gEAAAAAAAA2QbMOAAAAAAAAsAmadQAAAAAAAIBN+FgdAAAAAAAAALgV\nwgctK9D9H4pvWaD7l5hZBwAAAAAAANgGzToAAAAAAADAJmjWAQAAAAAAADbBNesA4A+6E66JAAAA\nAACwB2bWAQAAAAAAADZBsw4AAAAAAACwCZp1AAAAAAAAgE3QrAMAAAAAAABsgmYdAAAAAAAAYBPc\nDdZi3EUSAAAAAAAAVzCzDgAAAAAAALAJmnUAAAAAAACATdCsAwAAAAAAAGyCa9bhD+GaewAAAAAA\nALcOzbprTJ06Ve+++65SUlL04IMPavLkyapXr57VsYA7Gk1fAAAAAAAuo1l3lQULFqh///6aPn26\n6tevrwkTJigmJkZ79uxRcHCw1fFQQGgUAQAAAAAAu+CadVf529/+pu7du6tr166KjIzU9OnTVbhw\nYb3//vtWRwMAAAAAAMBdgJl1/5aRkaHExEQNHjzYvc7Ly0vR0dHatGnTdZ+Tnp6u9PR09/LZs2cl\nSefOncvzcbPSL9xk4rzJT5ab4fT8kvNriBqxskD3//3ImALdv+T83wH5b8zpNZD/xpxeg9PzS86v\ngfw35vQanJ5fcn4N5L8xp9fg9PyS82sg/405vYb85L+yrTEmX8dwmfw+4w517NgxlStXThs3blSD\nBg3c6wcMGKCvv/5aW7ZsyfacuLg4jRw58nbGBAAAAAAAgIMcOXJE5cuXz/P2zKz7AwYPHqz+/fu7\nl7OysnT69GmVKlVKLpfrlh/v3LlzqlChgo4cOaLAwMBbvv+C5vT8kvNrcHp+yfk1kN96Tq/B6fkl\n59fg9PyS82twen7J+TWQ33pOr8Hp+SXn1+D0/JLzayC/9Qq6BmOMfv31V4WGhubreTTr/u2ee+6R\nt7e3UlNTPdanpqaqTJky132On5+f/Pz8PNYFBQUVWMYrAgMDHfuHIDk/v+T8GpyeX3J+DeS3ntNr\ncHp+yfk1OD2/5PwanJ5fcn4N5Lee02twen7J+TU4Pb/k/BrIb72CrKF48eL5fg43mPi3QoUKqXbt\n2lqzZo17XVZWltasWePxtVgAAAAAAACgoDCz7ir9+/fXiy++qDp16qhevXqaMGGCzp8/r65du1od\nDQAAAAAAAHcB77i4uDirQ9hFVFSUgoKC9N///d8aN26cJOnDDz/UfffdZ3Gy//D29lbTpk3l4+PM\nPqvT80vOr8Hp+SXn10B+6zm9Bqfnl5xfg9PzS86vwen5JefXQH7rOb0Gp+eXnF+D0/NLzq+B/Naz\nYw3cDRYAAAAAAACwCa5ZBwAAAAAAANgEzToAAAAAAADAJmjWAQAAAAAAADZBsw4AAAAAAACwCZp1\nAByFe+IAAAAAAO5k9rkvLbI5efKk3n//fW3atEkpKSmSpDJlyuiRRx5Rly5dVLp0aYsTArefn5+f\nduzYoerVq1sdBUAeHT9+XNOmTdP69et1/PhxeXl5qVKlSmrbtq26dOkib29vqyMCAAAAtuEyTFOx\npa1btyomJkaFCxdWdHS0QkJCJEmpqalas2aNLly4oJUrV6pOnToWJ715R44c0YgRI/T+++9bHSVH\nv//+uxITE1WyZElFRkZ6jKWlpWnhwoWKjY21KN2N7d69W5s3b1aDBg1UrVo1/fjjj5o4caLS09P1\nwgsv6PHHH7c6Yo769+9/3fUTJ07UCy+8oFKlSkmS/va3v93OWH/I+fPntXDhQu3fv19ly5bVc889\n567Djr777juVKFFCERERkqR58+Zp+vTpSk5OVlhYmHr37q2OHTtanDJ3r776qjp06KDGjRtbHeWm\nTZkyRd9++61atGihjh07at68eRo7dqyysrL0pz/9SaNGjZKPj30/e0tISFB0dLQqV66sgIAAbdq0\nSc8//7wyMjK0cuVKRUZGasWKFSpWrJjVUQEAgM1lZGRo0aJF153Q0qZNGxUqVMjihDcvNTVV7733\nnoYPH251lFwdPXpUQUFBKlq0qMf6zMxMbdq0SY8++qhFyfLm1KlTSkpK0oMPPqiSJUvq5MmTmjVr\nltLT0/XMM8/YZ1KIgS3Vr1/f9OjRw2RlZWUby8rKMj169DAPP/ywBclune3btxsvLy+rY+Roz549\nJiwszLhcLuPl5WUeffRRc+zYMfd4SkqKrfMvX77cFCpUyJQsWdL4+/ub5cuXm9KlS5vo6Gjz+OOP\nG29vb7NmzRqrY+bI5XKZmjVrmqZNm3o8XC6XqVu3rmnatKl57LHHrI6Zq+rVq5tTp04ZY4xJTk42\n4eHhpnjx4qZu3bqmRIkSJjg42Pz0008Wp8xZjRo1zKpVq4wxxsycOdMEBASY1157zUybNs307dvX\nFC1a1MyaNcvilLm78vdbpUoVEx8fb44fP251pHwZPXq0KVasmGnfvr0pU6aMiY+PN6VKlTJjxowx\nb7/9tildurQZPny41TFz1bBhQxMXF+denjdvnqlfv74xxpjTp0+bmjVrmtdee82qeHmWnp5uFixY\nYPr27Ws6duxoOnbsaPr27WsWLlxo0tPTrY73h6SkpJiRI0daHSNPjhw5Yn799dds6zMyMszXX39t\nQaK8O3nypFm7dq37deHEiRMmPj7ejBw50uzatcvidDcvIiLC7N271+oY+ZaVlWXWrl1rZsyYYZYu\nXWoyMjKsjpSrI0eOmBMnTriXv/nmG/P888+bRo0amU6dOpmNGzdamC5vxo0bZw4dOmR1jD9k6dKl\nZtiwYWb9+vXGGGPWrFljmjdvbmJiYsx7771ncbq8uXDhgpk1a5bp2rWreeqpp0yLFi1M7969zerV\nq62OdkP79u0zlSpVMv7+/qZJkyamQ4cOpkOHDqZJkybG39/fVK5c2ezbt8/qmDfN7ufHx44dM3Xr\n1jVeXl7G29vbdO7c2eM12e7nx8YYs2XLFlO8eHHjcrlMiRIlTEJCgomIiDBVqlQx9957rwkICDCJ\niYlWxzTGGEOzzqb8/f3N7t27cxzfvXu38ff3v42J8m/x4sW5PsaPH2/rP+a2bduali1bmhMnTph9\n+/aZli1bmoiICHP48GFjjP3/MWrQoIEZMmSIMcaYjz/+2JQoUcK89dZb7vFBgwaZJ5980qp4NzR2\n7FgTERGRraHo4+NjfvjhB4tS5Y/L5TKpqanGGGM6depkHnnkEXPmzBljjDG//vqriY6ONs8995yV\nEXMVEBDgflNdq1YtM2PGDI/xDz/80ERGRloRLc9cLpdZvXq16dOnj7nnnnuMr6+vad26tVm6dKm5\ndOmS1fFu6N577zWffPKJMebyGzhvb2/zj3/8wz3+6aefmsqVK1sVL08CAgLMgQMH3MuXLl0yvr6+\nJiUlxRhjzJdffmlCQ0OtipcnnBxYz+knCE46OcjJxIkTr/vw9vY2gwcPdi/bVfPmzd2vwadOnTL1\n69c3LpfLlC5d2nh5eZlq1aqZn3/+2eKUOatXr55ZunSpMcaYRYsWGS8vL9O6dWszcOBA065dO+Pr\n6+setyuXy2W8vb1NdHS0mT9/vuM+6Jg+fbrx8fExtWvXNoGBgWbevHmmWLFi5qWXXjIvv/yyCQgI\nMBMmTLA6Zq727dtnwsLCTHBwsKlQoYJxuVymZcuWpn79+sbb29s888wzJjMz0+qYOYqOjjZt2rQx\nZ8+ezTZ29uxZ06ZNG9OsWTMLkuXNjh07cn0sWLDA1q9lsbGxpn79+mbr1q1m1apVpnbt2qZOnTrm\n9OnTxpjLr8Uul8vilLmLjo42L730kjl37px59913Tfny5c1LL73kHu/atatp27athQn/g2adTYWH\nh5u5c+fmOD537lwTFhZ2+wLdhCszWlwuV44PO/9jFBwcbJKSktzLWVlZ5pVXXjEVK1Y0Bw4csP2J\nQWBgoPvk8dKlS8bHx8d899137vGdO3eakJAQq+LlybfffmuqVq1qXn/9dfcn3k5t1lWqVMl8+eWX\nHuMbNmwwFSpUsCJanpQqVcokJCQYYy7/PWzfvt1jfP/+/SYgIMCKaHl29e8gIyPDLFiwwMTExBhv\nb28TGhpq3nrrLVs3WQICAtwfEBhjjK+vr/n+++/dy4cOHTKFCxe2IlqehYWFuWcgGHO56eJyucyF\nCxeMMcYcPHjQ9h8+cXJgPaefIDjp5CAnLpfLlC9f3oSHh3s8XC6XKVeunAkPDzcRERFWx8zR1a8H\nPXv2NJGRke7Z7UeOHDG1a9c2r7zyipURc1WkSBF33vr165v4+HiP8cmTJ5tatWpZES3PXC6XmT17\ntmnTpo3x9fU1pUqVMn369DE7d+60OlqeREZGmpkzZxpjjFm7dq3x9/c3U6dOdY/Pnj3bVK9e3ap4\nedK8eXPz8ssvu7+9FR8fb5o3b26MMWbv3r0mPDzcjBgxwsKEuQsICMj1/5ekpCRbvzfN7fz4yno7\nvx6HhoaaLVu2uJfT0tJMq1atTM2aNc2pU6dsf35sjDElSpRwz2bPyMgwXl5eHjUlJiaacuXKWRXP\nA806m5oyZYrx8/Mzr732mlm8eLHZvHmz2bx5s1m8eLF57bXXTEBAgMeLgx2FhoaaRYsW5Ti+bds2\nW/8xFytW7LpfS+nVq5cpX768+eabb2ydPzAw0Ozfv9+9XLRoUY/ZLYcOHbL9CbIxl2egxcbGmho1\napidO3caX19fRzXrrnxKHxoamu3Nhd1/By+88ILp1q2bMcaYZ555xgwdOtRj/O233zYPPPCAFdHy\n7OqTs6sdPnzYjBgxwoSFhdn67zgiIsIsX77cGHP5TbSXl5dZuHChe3zZsmUmPDzcqnh50qdPHxMV\nFWWWL19u1q5dax577DHTtGlT9/iKFSvMvffea2HCG+PkwHpOP0Fw0slBTl5++WVTs2bNbO+NnPIh\n2tWvB/fdd59ZvHixx/jq1att3WwsXry42bFjhzHm8gdoV/77iv3799v+w5urfwepqanmnXfeMdWq\nVTNeXl6mbt26ZsaMGebcuXMWp8zZ9T5Au/q14eDBg7b/HRQuXNjja+vp6enG19fXnDx50hhzedam\nnd9XlC1bNtcZpEuWLDFly5a9jYnyp1SpUmbWrFnm0KFD130sW7bM1q9lRYoUyXbZg8zMTNO2bVtT\no0YNk5SUZOv8xlyu4eDBg+7la8+RDx8+bJvzMy+rr5mH6+vVq5fmzp2rLVu2qH379mrQoIEaNGig\n9u3ba8uWLZozZ47+/Oc/Wx0zV7Vr11ZiYmKO4y6XS8bG9zepVq2aEhISsq2fMmWK2rRpo9atW1uQ\nKu/Cw8O1b98+9/KmTZtUsWJF93JycrLKli1rRbR8KVq0qObOnavBgwcrOjpaly5dsjpSvjzxxBN6\n6KGHdO7cOe3Zs8dj7PDhw7a+wcQ777yjNWvWqEmTJqpQoYL++te/qnHjxurRo4eaNGmiuLg4xcfH\nWx3zplSsWFFxcXE6ePCgVqxYYXWcHHXq1EmxsbHq3r27YmJiNGDAAL3xxhuaNm2aZsyYoVdeeUXt\n2rWzOmauxowZo8jISLVq1UpPPPGE0tPTPW4s5HK5NHbsWAsT3lhQUJAOHTqU4/ihQ4cUFBR0+wLl\nU8mSJTVz5kwdPHgw2+Onn37S559/bnXEGzp79qxKlCjhXvbz89Onn36q8PBwPfbYY/r5558tTHdj\nGRkZCggIkCT5+vqqcOHCuueee9zj99xzj06dOmVVvDyZPn26hg8frpiYGE2ZMsXqODfF5XJJkn75\n5Rfde++9HmOVK1fWsWPHrIiVJ02aNNHHH38sSapVq5a++uorj/F169apXLlyFiS7OcHBwRowYIB2\n796tr776SpGRkerXr5+t35uWKlVKhw8fliQdO3ZMFy9eVHJysnv88OHDKlmypFXx8iQoKEi//vqr\ne/nChQu6ePGi+6YMNWrU0PHjx62Kd0MvvfSSYmNjNX78eCUlJSk1NVWpqalKSkrS+PHj1aVLF/Xo\n0cPqmDmqXbu2jh07prCwsOs+ypUrZ+vz40qVKikpKcljnY+Pj/75z3+qUqVKevrppy1KlncVKlTQ\nTz/95F6eP3++x787x48f93h9tpJ9bx8HPfvss3r22WeVmZmpkydPSrr8Zs7X19fiZHnz5ptv6vz5\n8zmOV65cWevWrbuNifKnXbt2+vjjj9W5c+dsY1OmTFFWVpamT59uQbK86dmzp0djKyoqymN8+fLl\ntr4b7LU6duyoRo0aKTExUWFhYVbHyZMRI0Z4LF97x6SlS5fa+i6loaGh2rZtm+Lj47V06VIZY/Tt\nt9/qyJEjatiwoTZs2GD7O1KHhYXJ29s7x3GXy6Unn3zyNibKn5EjR7rvoNq9e3cNGjRIDz74oAYM\nGKALFy6oVatWGj16tNUxc1W0aFEtWLBAaWlpunjxYra/g2bNmlmULO+unBwMGzZMTzzxRLY7tI8Z\nM0avvvqqxSlzdvXJwfWcOXPG1icH0n9OEKpUqeJed+UE4ZlnnrH9CcKVk4Pw8HBJ9j45yE27du1U\nr149xcbGatmyZZo9e7bVkfKlS5cu8vPzU2Zmpg4ePKj777/fPZaSkmLrpnt8fLwaN26sY8eOqVGj\nRhoyZIi2bt2q6tWra8+ePVqwYIGt35dK/2mWXqtx48Zq3LixJk2apAULFtzmVHnXpk0bdevWTS++\n+KKWLFmi2NhYvf7663K5XPL29tYbb7xh+9e0J598Uv3799f06dPl5+enwYMHq2bNmu47sicnJys4\nONjilDkbNWqUihQponfffdf9s5ckY4zKlCmjgQMHasCAARanzNkrr7yS6/lxxYoVbf3vavPmzTVj\nxgy1b9/eY/2V1+P27dvr6NGjFqXLm44dO3p8wNeyZUuP8SVLlqhevXq3O9Z1uYzd350BAABY7J13\n3tHEiROVkpKS7eSgb9++tj45+Oyzz3T+/Hm98MIL1x3/5ZdftGTJEr344ou3OVneDRw4UNu3b9fK\nlSuzjV28eFHt27fX0qVLlZWVZUG6Gxs5cqTuu+8+dezY8brjQ4YM0Y8//qhPPvnkNie7OcYYxcfH\na9KkSTpx4oSSkpIUGRlpdaxcde3a1WO5efPm6tChg3t5wIABSkpKsvVs6wMHDmjo0KFatmyZfvvt\nN0mXT5Lr1q2rN998U23btrU4Ye68vLyUkpJi62ZQbs6fP69+/fpp06ZNeuSRRzR58mRNmjRJQ4YM\nUWZmppo0aaIFCxbYur6ff/5Zbdq00ZYtW+RyuVShQgV99tlnqlWrliTpf//3f3X8+HFbfwB1xcGD\nB5WSkiJJKlOmjCIiIixOdOe7ePGiLly4oMDAwBzH//WvfzlmYsX1XLhwQd7e3vLz87M6Cs06AACA\nvOLkwBp3+gmCnU4O8iMxMVHr169XbGysx9eUnej8+fPy9vaWv7+/1VFuyBijn3/+WVlZWY761s2d\nKi0tTZmZme7ZaU6wb98+paenq1q1avLx4ct2gB1xzToAAIA8ioiIcF9H9kqj7siRI/qv//ovi5Pd\nPCfk9/HxybFRJ13+GunIkSNvY6Jb69SpU+rZs6fVMfKtdu3a6tOnj0qUKOGI/49yc/r0adtfD/oK\nl8ulkJAQlS1b1t2oc/rPX3JuDf7+/ipWrJij8lepUkVRUVHZGnVOqOH333/X+vXrtWvXrmxjaWlp\n+uCDDyxIlXfkt55TamBmHQAAwB+wY8cOPfTQQ467Ac4VTs8vOb8Gp+eXnF8D+a3n9Bqcnl+yfw17\n9+5Vs2bNlJycLJfLpUaNGnlcAzQ1NVWhoaHkLyBOzy85qwbmvAIAAORiyZIluY5ffVcxO3J6fsn5\nNTg9v+T8GshvPafX4PT8kvNrGDhwoKKiopSQkKAzZ86ob9++atiwob766itVrFjR6ng3RH7rOakG\nZtYBAADkwsvLSy6XK9c7prpcLlt8Cns9Ts8vOb8Gp+eXnF8D+a3n9Bqcnl9yfg0hISFavXq1Hnjg\nAUmXr9/45z//WV988YXWrVunIkWK2GZW1PWQ33pOqoFr1gEAAOSibNmy+vTTT5WVlXXdx3fffWd1\nxFw5Pb/k/Bqcnl9yfg3kt57Ta3B6fsn5Nfz+++8e19lzuVyaNm2aWrVqpSZNmmjv3r0Wprsx8lvP\nSTXQrAMAAMhF7dq1lZiYmOP4jWYpWM3p+SXn1+D0/JLzayC/9Zxeg9PzS86voVq1akpISMi2fsqU\nKWrTpo1at25tQaq8I7/1nFSDd1xcXJzVIQAAAOyqfPnyKlOmjCpXrnzd8WLFiqlZs2YKDw+/vcHy\nyOn5JefX4PT8kvNrIL/1nF6D0/NLzq/h5MmTWrZsmTp16pRtrEWLFkpOTlZCQoJGjBhhQbobI7/1\nnFQD16wDAAAAAAAAbIKvwQIAAAAAAAA2QbMOAAAAAAAAsAmadQAAAAAAAIBN0KwDAABAgTh06JBc\nLpe2b9+e5+c0bdpUffv2zddx4uLiVLNmTfdyly5d1LZt23ztAwAAwC5o1gEAADhMTs2or776Si6X\nS2fOnLEglX1MnDhRc+bMsToGAADATfGxOgAAAADsIyMjQ4UKFbI6xh9SvHhxqyMAAADcNGbWAQAA\n3ME++eQT3X///fLz81N4eLj++te/eoyHh4dr9OjRio2NVWBgoHr06CFJGjhwoKpWrarChQurUqVK\nGjZsmDIzM3M91rfffqtatWrJ399fderU0bZt27Jt8/3336t58+YqWrSoQkJC1LlzZ508eTJfNcXH\nxyskJETFihVTt27dlJaW5jF+7czDFStWqFGjRgoKClKpUqX09NNP68CBA/k6JgAAwO1Csw4AAOAO\nlZiYqA4dOqhjx47auXOn4uLiNGzYsGxfER03bpwefPBBbdu2TcOGDZMkFStWTHPmzNGuXbs0ceJE\nzZw5U+PHj8/xWL/99puefvppRUZGKjExUXFxcXrjjTc8tjlz5owef/xx1apVSwkJCVqxYoVSU1PV\noUOHPNe0cOFCxcXF6e2331ZCQoLKli2rv//977k+5/z58+rfv78SEhK0Zs0aeXl5qV27dsrKysrz\ncQEAAG4XlzHGWB0CAAAAedelSxf94x//kL+/v8f6S5cuKS0tTb/88ouCgoLUqVMnnThxQl9+ZEu+\nCAAABABJREFU+aV7mwEDBmjZsmX64YcfJF2eWVerVi199tlnuR5z3Lhxmj9/vhISEq47PmPGDL31\n1ls6evSoO9f06dPVs2dPbdu2TTVr1tSYMWP0f//3f1q5cqX7eUePHlWFChW0Z88eVa1aVU2bNlXN\nmjU1YcKE6x7nkUceUa1atTR16lT3uocfflhpaWnuG1l06dJFZ86c0aJFi667j5MnT6p06dLauXOn\noqKicq0bAADgdmNmHQAAgAM99thj2r59u8fjf/7nfzy22b17txo2bOixrmHDhtq3b58uXbrkXlen\nTp1s+1+wYIEaNmyoMmXKqGjRoho6dKiSk5NzzLN7927VqFHDo4HYoEEDj2127NihdevWqWjRou5H\ntWrVJCnPX0vdvXu36tev77Hu2uNca9++fXruuedUqVIlBQYGKjw8XJJyrQcAAMAq3GACAADAgYoU\nKaLKlSt7rDt69OhN7+tqmzZtUqdOnTRy5EjFxMSoePHimj9/frbr3eXXb7/9platWumdd97JNla2\nbNk/tO/ctGrVSmFhYZo5c6ZCQ0OVlZWlqKgoZWRkFNgxAQAAbhbNOgAAgDtU9erVtWHDBo91GzZs\nUNWqVeXt7Z3j8zZu3KiwsDANGTLEve7w4cM3PNa8efOUlpbmnl23efNmj20eeughffLJJwoPD5eP\nz829Da1evbq2bNmi2NhY97prj3O1U6dOac+ePZo5c6YaN24sSVq/fv1NHRsAAOB24GuwAAAAd6jX\nX39da9as0ejRo7V3717NnTtXU6ZMyXbjh2tVqVJFycnJmj9/vg4cOKBJkybd8Jp2zz//vFwul7p3\n765du3bpiy++0Lhx4zy26dWrl06fPq3nnntOW7du1YEDB7Ry5Up17drV42u5uenTp4/ef/99zZ49\nW3v37tWIESPc19+7nhIlSqhUqVKaMWOG9u/fr7Vr16p///55OhYAAIAVaNYBAADcoR566CEtXLhQ\n8+fPV1RUlIYPH65Ro0apS5cuuT6vdevW6tevn3r37q2aNWtq48aN7rvE5qRo0aJaunSpdu7cqVq1\namnIkCHZvu4aGhqqDRs26NKlS2rWrJkeeOAB9e3bV0FBQfLyytvb0meffVbDhg3TgAEDVLt2bR0+\nfFg9e/bMcXsvLy/Nnz9fiYmJioqKUr9+/fTuu+/m6VgAAABW4G6wAAAAAAAAgE0wsw4AAAAAAACw\nCZp1AAAAAAAAgE3QrAMAAAAAAABsgmYdAAAAAAAAYBM06wAAAAAAAACboFkHAAAAAAAA2ATNOgAA\nAAAAAMAmaNYBAAAAAAAANkGzDgAAAAAAALAJmnUAAAAAAACATdCsAwAAAAAAAGyCZh0AAAAAAABg\nE/8Pbe9jV4YaG04AAAAASUVORK5CYII=\n", "text/plain": [ "<matplotlib.figure.Figure at 0x14c577d0>" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "#Ahora añadiremos otra columna la cual tendra solo la hora en la que se realiza el viaje\n", "trip['hora'] = trip['start_date'].apply(lambda x: x.hour)\n", "#Realizo una visualizacion en base a la hora en que se realiza el viaje\n", "plt = trip.groupby('hora').count()['id'].plot('bar');\n", "plt.set_xlabel('Hora del dia')\n", "plt.set_ylabel('Cantidad de viajes')\n", "plt.set_title('Cantidad de viajes dependiendo de la hora')" ] }, { "cell_type": "code", "execution_count": 15, "metadata": { "collapsed": false }, "outputs": [ { "data": { "text/plain": [ "<matplotlib.text.Text at 0x15bec670>" ] }, "execution_count": 15, "metadata": {}, "output_type": "execute_result" }, { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAABOsAAAHaCAYAAABRgs3rAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAAPYQAAD2EBqD+naQAAIABJREFUeJzs3XlYVnX+//EX683mDWKylaKik+AyGk6IS2aSKGg60WIx\niuaWaeaeNu6alC1ulWaLmuU0omWlhlnaoiGZWyaVqCiaohYBLgkC5/dHP+6vtyxxG8Y98Xxc130N\nfM77nM/7HM/tla85i4NhGIYAAAAAAAAAVDvH6m4AAAAAAAAAwG8I6wAAAAAAAAA7QVgHAAAAAAAA\n2AnCOgAAAAAAAMBOENYBAAAAAAAAdoKwDgAAAAAAALAThHUAAAAAAACAnSCsAwAAAAAAAOwEYR0A\nAAAAAABgJwjrAAD4i7v99tt1++23/27dp59+KgcHB3366adVNnf//v3VoEGDa16/QYMG6t+/f5X1\nc73nPXr0qBwcHLR8+fIq78lWy5cvl4ODg44ePVrdrVSJsvansuf29TB9+nQ5ODhc93n+6HfIXtjT\nd6Mi1fV3DgAAVyKsAwCgCh0+fFhDhw5Vo0aN5ObmJrPZrPbt22vBggX69ddfr9u8aWlpmj59+l8m\nmAEAAABqKufqbgAAgL+KDRs26N5775XJZFK/fv3UvHlzFRQUaNu2bRo/frwOHDigpUuXXpe509LS\nNGPGDN1+++2lrsL56KOPrsucf2U//PCDHB1t//80g4OD9euvv8rFxeU6dIWrcW6jql3rdx8AgKpE\nWAcAQBXIyMhQnz59FBwcrC1btigwMNCybPjw4Tp06JA2bNhQLb25urpWy7z/y0wm0zWt5+DgIDc3\ntyruBuXh3K65CgsLVVxcXOXnwLV+9wEAqEr830YAAFSBuXPn6vz583rttdesgroSjRs31mOPPWb5\nfdmyZbrjjjvk5+cnk8mksLAwLV68uNR6DRo0UI8ePbRt2zbdeuutcnNzU6NGjfTGG29YapYvX657\n771XktS5c2c5ODhYPXuurOd6nThxQr1795anp6f8/Pw0evRo5efnl5r/iy++0L333qv69evLZDKp\nXr16Gj16dJm39K5bt07NmzeXm5ubmjdvrnfffbdSx06SDMPQ7NmzddNNN8nDw0OdO3fWgQMHyqzN\nycnRqFGjVK9ePZlMJjVu3FhPP/20iouLK5yjR48eatSoUZnLIiMj1aZNG8vvVz+3Kjs7W+PGjVOL\nFi3k5eUls9ms7t27a9++fVbbKe+5XN9//73uuece+fr6ys3NTW3atNH7779vVXP58mXNmDFDTZo0\nkZubm+rUqaMOHTpo8+bNFe6XJB04cEB33HGH3N3dddNNN2n27NnlHo8PP/xQHTt2lKenp2rVqqXY\n2NhSx7p///7y8vLSkSNHFB0dLU9PTwUFBWnmzJkyDMOqtri4WPPnz1ezZs3k5uYmf39/DR06VL/8\n8otVXWXOZVv3p6xzOz8/X9OmTVPjxo0t5+yECRNKnd8ODg4aMWKE5bw1mUxq1qyZkpOTS82zbds2\n/eMf/5Cbm5tCQkL08ssvl3lsCwsLNWvWLIWEhMhkMqlBgwZ64oknyvxulaWy36HKHvOyZGVlacCA\nAbrppptkMpkUGBioXr16Wd1C7+DgoOnTp5dat7LPc8vJyVH//v3l7e0tHx8fJSQkKCcnp1Rdec8c\nvPo5fSXfq2effVbz58+3HN+0tDQVFBRo6tSpCg8Pl7e3tzw9PdWxY0dt3bq11HaLi4u1YMECtWjR\nQm5ubqpbt666deumr7/+usJ9PHLkiO699175+vrKw8NDbdu2LfV/vpQ883P16tV68sknddNNN8nN\nzU1dunTRoUOHfveYAQBwJa6sAwCgCnzwwQdq1KiR2rVrV6n6xYsXq1mzZrrrrrvk7OysDz74QI88\n8oiKi4s1fPhwq9pDhw7pnnvu0cCBA5WQkKDXX39d/fv3V3h4uJo1a6bbbrtNI0eO1MKFC/XEE08o\nNDRUkiz/e7Vff/1VXbp0UWZmpkaOHKmgoCCtXLlSW7ZsKVWblJSkixcvatiwYapTp46++uorLVq0\nSCdOnFBSUpKl7qOPPlJcXJzCwsKUmJion3/+2RIIVMbUqVM1e/ZsxcTEKCYmRrt371bXrl1VUFBg\nVXfx4kV16tRJP/74o4YOHar69evryy+/1KRJk3Tq1CnNnz+/3Dnuv/9+9evXTzt37tQ//vEPy/ix\nY8e0Y8cOPfPMM+Wue+TIEa1bt0733nuvGjZsqNOnT+vll19Wp06dlJaWpqCgoHLXPXDggNq3b68b\nb7xREydOlKenp1avXq3evXtr7dq1+uc//ynptxcWJCYmatCgQbr11luVl5enr7/+Wrt379add95Z\n7vazsrLUuXNnFRYWWra/dOlSubu7l6pduXKlEhISFB0draeffloXL17U4sWL1aFDB+3Zs8cqICkq\nKlK3bt3Utm1bzZ07V8nJyZo2bZoKCws1c+ZMS93QoUO1fPlyDRgwQCNHjlRGRoZeeOEF7dmzR9u3\nb7e6Jfj3zmVb9+dqxcXFuuuuu7Rt2zYNGTJEoaGh2r9/v+bNm6eDBw9q3bp1VvXbtm3TO++8o0ce\neUS1atXSwoULFRcXp8zMTNWpU0eStH//fnXt2lV169bV9OnTVVhYqGnTpsnf37/U/IMGDdKKFSt0\nzz33aOzYsUpNTVViYqK+++673w2vbfkO2XLMrxYXF6cDBw7o0UcfVYMGDXTmzBlt3rxZmZmZVfIi\nC8Mw1KtXL23btk0PP/ywQkND9e677yohIeEPb3vZsmW6dOmShgwZIpPJJF9fX+Xl5enVV1/VAw88\noMGDB+vcuXN67bXXFB0dra+++kqtWrWyrD9w4EAtX75c3bt316BBg1RYWKgvvvhCO3bssArrr3T6\n9Gm1a9dOFy9e1MiRI1WnTh2tWLFCd911l9asWWP5/pZ46qmn5OjoqHHjxik3N1dz585VfHy8UlNT\n//D+AwBqEAMAAPwhubm5hiSjV69elV7n4sWLpcaio6ONRo0aWY0FBwcbkozPP//cMnbmzBnDZDIZ\nY8eOtYwlJSUZkoytW7eW2m6nTp2MTp06WX6fP3++IclYvXq1ZezChQtG48aNS22jrD4TExMNBwcH\n49ixY5axVq1aGYGBgUZOTo5l7KOPPjIkGcHBwWUegyv3x9XV1YiNjTWKi4st40888YQhyUhISLCM\nzZo1y/D09DQOHjxotY2JEycaTk5ORmZmZrnz5ObmljpuhmEYc+fOLbU/wcHBVvNeunTJKCoqslov\nIyPDMJlMxsyZM63GJBnLli2zjHXp0sVo0aKFcenSJctYcXGx0a5dO6NJkyaWsb///e9GbGxsuf2X\nZ9SoUYYkIzU11TJ25swZw9vb25BkZGRkGIZhGOfOnTN8fHyMwYMHW62flZVleHt7W40nJCQYkoxH\nH33UqufY2FjD1dXVOHv2rGEYhvHFF18Ykoy33nrLapvJycmlxit7Lld2fwyj9Lm9cuVKw9HR0fji\niy+s+lmyZIkhydi+fbtlTJLh6upqHDp0yDK2b98+Q5KxaNEiy1jv3r0NNzc3q/MjLS3NcHJyMq78\nT+m9e/cakoxBgwZZzT1u3DhDkrFlyxajIpX9DtlyzK/2yy+/GJKMZ555psJeJBnTpk0rNX7196Is\n69atMyQZc+fOtYwVFhYaHTt2LPXduPrPr0RCQoLVPpd8r8xms3HmzBmr2sLCQiM/P99q7JdffjH8\n/f2Nhx56yDK2ZcsWQ5IxcuTIUvNd+ffO1ftYcj5eeU6dO3fOaNiwodGgQQPL3wtbt241JBmhoaFW\n/SxYsMCQZOzfv7/UvAAAlIfbYAEA+IPy8vIkSbVq1ar0OldeJZSbm6uffvpJnTp10pEjR5Sbm2tV\nGxYWpo4dO1p+r1u3rm6++WYdOXLkmvrduHGjAgMDdc8991jGPDw8NGTIkAr7vHDhgn766Se1a9dO\nhmFoz549kqRTp05p7969SkhIkLe3t6X+zjvvVFhY2O/28/HHH6ugoECPPvqoHBwcLOOjRo0qVZuU\nlKSOHTuqdu3a+umnnyyfqKgoFRUV6fPPPy93npJbV1evXm11K+d///tftW3bVvXr1y93XZPJZHno\nfFFRkX7++Wd5eXnp5ptv1u7du8tdLzs7W1u2bNF9992nc+fOWfr9+eefFR0drfT0dP3444+SJB8f\nHx04cEDp6enlH6wybNy4UW3bttWtt95qGatbt67i4+Ot6jZv3qycnBw98MADVsfOyclJERERZd42\nOGLECMvPJbeNFhQU6OOPP5b025+Ht7e37rzzTqtthoeHy8vLq9Q2K3MuV3Z/ypKUlKTQ0FA1bdrU\nqp877rhDkkr1ExUVpZCQEMvvLVu2lNlstvRTVFSkTZs2qXfv3lbnR2hoqKKjo622tXHjRknSmDFj\nrMbHjh0rSRU+s9KW75Ctx/xK7u7ucnV11aefflqpW2avxcaNG+Xs7Kxhw4ZZxpycnPToo4/+4W3H\nxcWpbt26VmNOTk6W59YVFxcrOztbhYWFatOmjdV3c+3atXJwcNC0adNKbffKv3eutnHjRt16663q\n0KGDZczLy0tDhgzR0aNHlZaWZlU/YMAAq+folZzv1/r3NQCgZuI2WAAA/iCz2SxJOnfuXKXX2b59\nu6ZNm6aUlBRdvHjRallubq7VP9jLCpFq1659zf/YPnbsmBo3blzqH6g333xzqdrMzExNnTpV77//\nfqn5SkLFY8eOSZKaNGlSav3fC7MqWr9u3bqqXbu21Vh6erq++eabUv9gL3HmzJkK57r//vu1bt06\npaSkqF27djp8+LB27dpV4e2z0v896+qll15SRkaGioqKLMtKbpcsy6FDh2QYhqZMmaIpU6aU2/ON\nN96omTNnqlevXvrb3/6m5s2bq1u3burbt69atmxZYW/Hjh1TREREqfGr/zxLQsCS4OpqJedxCUdH\nx1LP+Pvb3/4mSZbnm6Wnpys3N1d+fn7l7tuVKnMuV3Z/ypKenq7vvvuu0ufH7/Vz9uxZ/frrr+We\n2yUBXUnfjo6Oaty4sVVdQECAfHx8LOd5WWz5Dtl6zK9kMpn09NNPa+zYsfL391fbtm3Vo0cP9evX\nTwEBAeWuZ4tjx44pMDBQXl5epfbjj2rYsGGZ4ytWrNBzzz2n77//XpcvXy6z/vDhwwoKCpKvr69N\nc5Z3PpY8ZuDYsWNq3ry5Zfzqc6rk77DrFY4CAP6aCOsAAPiDzGazgoKC9O2331aq/vDhw+rSpYua\nNm2q559/XvXq1ZOrq6s2btyoefPmlXqQvpOTU5nbMa560H9VKyoq0p133qns7Gw9/vjjatq0qTw9\nPfXjjz+qf//+v/tCh+uhuLhYd955pyZMmFDm8pIwqTw9e/aUh4eHVq9erXbt2mn16tVydHS0vKCj\nPHPmzNGUKVP00EMPadasWfL19ZWjo6NGjRpV4XEoWTZu3LhSV2KVKAl3brvtNh0+fFjvvfeePvro\nI7366quaN2+elixZokGDBlXYX2WU9LJy5coygxlnZ9v/s7C4uFh+fn566623ylxe1lVQZamqc7m4\nuFgtWrTQ888/X+byevXqXfd+KrpKqyrYesyvNmrUKPXs2VPr1q3Tpk2bNGXKFCUmJmrLli1q3bp1\nheteGVJXBQcHhzKPdXnzlPXcwjfffFP9+/dX7969NX78ePn5+cnJyUmJiYk6fPhwlfZbGdX19zUA\n4K+FsA4AgCrQo0cPLV26VCkpKYqMjKyw9oMPPlB+fr7ef/99q6swKrp97ffYEhAEBwfr22+/lWEY\nVuv98MMPVnX79+/XwYMHtWLFCvXr188yfvXbSYODgyWpzNs3r95mef2UrH/llVxnz54tdTVKSEiI\nzp8/r6ioqN/dblk8PT3Vo0cPJSUl6fnnn9d///tfdezYscIXREjSmjVr1LlzZ7322mtW4zk5Obrh\nhhvKXa9kf1xcXCrVs6+vrwYMGKABAwbo/Pnzuu222zR9+vQKw7rg4OBKHfuS2z39/Pwq1UtxcbGO\nHDliFYAePHhQkiwvIggJCdHHH3+s9u3bV+oFEJVR2f0pS0hIiPbt26cuXbpUSWhWt25dubu7V6qf\n4OBgFRcXKz093erlLqdPn1ZOTo7lPC+LLd+hqjjmISEhGjt2rMaOHav09HS1atVKzz33nN58801J\nv10NdvXbWwsKCnTq1Knf3XZwcLA++eQTnT9/3urqurL+/GrXrl3m7aEVXYV4tTVr1qhRo0Z65513\nrP7Mr77dNSQkRJs2bVJ2drZNV9cFBweX2fv3339vWQ4AQFXjmXUAAFSBCRMmyNPTU4MGDdLp06dL\nLT98+LAWLFgg6f+uvLjySovc3FwtW7bsmuf39PSUpFL/wC5LTEyMTp48qTVr1ljGLl68qKVLl1rV\nldWnYRiW/SgRGBioVq1aacWKFVbP29u8eXOp5zmVJSoqSi4uLlq0aJHVXGXdmnrfffcpJSVFmzZt\nKrUsJydHhYWFvzvf/fffr5MnT+rVV1/Vvn37dP/99//uOk5OTqWujElKSrI8b648fn5+uv322/Xy\nyy+XGXScPXvW8vPPP/9stczLy0uNGzdWfn5+hXPExMRox44d+uqrr6y2e/WVV9HR0TKbzZozZ47V\nrYJl9VLihRdesPxsGIZeeOEFubi4qEuXLpJ++/MoKirSrFmzSq1bWFhYqfPxWvenLPfdd59+/PFH\nvfLKK6WW/frrr7pw4YJNvTg5OSk6Olrr1q1TZmamZfy7774rdQ7GxMRIKn3ellzlFxsbW+48tnyH\n/sgxv3jxoi5dumQ1FhISolq1almdZyEhIaWe/7h06dJKXVkXExOjwsJCLV682DJWVFSkRYsWlaoN\nCQnR999/b3Xu7du3T9u3b//deUqU9fdUamqqUlJSrOri4uJkGIZmzJhRahsVXfUWExOjr776ymp7\nFy5c0NKlS9WgQYNKPZcTAABbcWUdAABVICQkRKtWrdL999+v0NBQ9evXT82bN1dBQYG+/PJLJSUl\nqX///pKkrl27ytXVVT179tTQoUN1/vx5vfLKK/Lz86vUlStladWqlZycnPT0008rNzdXJpNJd9xx\nR5nPtRo8eLBeeOEF9evXT7t27VJgYKBWrlwpDw8Pq7qmTZsqJCRE48aN048//iiz2ay1a9eW+eyl\nxMRExcbGqkOHDnrooYeUnZ2tRYsWqVmzZjp//nyFvdetW1fjxo1TYmKievTooZiYGO3Zs0cffvhh\nqavWxo8fr/fff189evRQ//79FR4ergsXLmj//v1as2aNjh49WuGVbtJv//iuVauWxo0bJycnJ8XF\nxVVYL/125eTMmTM1YMAAtWvXTvv379dbb71V6pluZXnxxRfVoUMHtWjRQoMHD1ajRo10+vRppaSk\n6MSJE9q3b5+k316+cPvttys8PFy+vr76+uuvtWbNGquXPJRlwoQJWrlypbp166bHHntMnp6eWrp0\nqYKDg/XNN99Y6sxmsxYvXqy+ffvqlltuUZ8+fVS3bl1lZmZqw4YNat++vVU45+bmpuTkZCUkJCgi\nIkIffvihNmzYoCeeeMJyq2WnTp00dOhQJSYmau/everatatcXFyUnp6upKQkLViwwOpFJpVR2f0p\nS9++fbV69Wo9/PDD2rp1q9q3b6+ioiJ9//33Wr16tTZt2qQ2bdrY1M+MGTOUnJysjh076pFHHlFh\nYaHl3L6yn7///e9KSEjQ0qVLlZOTo06dOumrr77SihUr1Lt3b3Xu3LnCeSr7Hfojx/zgwYPq0qWL\n7rvvPoWFhcnZ2VnvvvuuTp8+rT59+ljqBg0apIcfflhxcXG68847tW/fPm3atOl3v1vSb7eat2/f\nXhMnTtTRo0cVFhamd955p9SLcyTpoYce0vPPP6/o6GgNHDhQZ86c0ZIlS9SsWTPLi3t+T48ePfTO\nO+/on//8p2JjY5WRkaElS5YoLCzM6rh17txZffv21cKFC5Wenq5u3bqpuLhYX3zxhTp37lzu92zi\nxIn6z3/+o+7du2vkyJHy9fXVihUrlJGRobVr11pePAMAQJX6s18/CwDAX9nBgweNwYMHGw0aNDBc\nXV0NLy8vo23btsb8+fONX3/91VL3/vvvGy1btjTc3NyMBg0aGE8//bTx+uuvG5KMjIwMS11wcLAR\nGxtbap5OnToZnTp1shp75ZVXjEaNGhlOTk6GJGPr1q3l1h47dsy46667DA8PD+OGG24wHnvsMSM5\nOdlqPcMwjLS0NCMqKsrw8vIybrjhBmPw4MHGvn37DEnGsmXLrLa5du1aIzQ01DCZTEZYWJjxzjvv\nGAkJCUZwcPDvHreioiJjxowZRmBgoOHu7m7cfvvtxrfffmsEBwcbCQkJVrXnzp0zJk2aZDRu3Nhw\ndXU1brjhBqNdu3bGs88+axQUFPzuXIZhGPHx8YYkIyoqqszlV8976dIlY+zYsZb+2rdvb6SkpJQ6\nthkZGWUem8OHDxv9+vUzAgICDBcXF+PGG280evToYaxZs8ZSM3v2bOPWW281fHx8DHd3d6Np06bG\nk08+Wal9+uabb4xOnToZbm5uxo033mjMmjXLeO2110qdT4ZhGFu3bjWio6MNb29vw83NzQgJCTH6\n9+9vfP3115aahIQEw9PT0zh8+LDRtWtXw8PDw/D39zemTZtmFBUVlZp/6dKlRnh4uOHu7m7UqlXL\naNGihTFhwgTj5MmTVse0sudyZfenrHULCgqMp59+2mjWrJlhMpmM2rVrG+Hh4caMGTOM3NxcS50k\nY/jw4aX6Keuc++yzz4zw8HDD1dXVaNSokbFkyRJj2rRpxtX/KX358mVjxowZRsOGDQ0XFxejXr16\nxqRJk4xLly6VmqcstnyHKnPMr/bTTz8Zw4cPN5o2bWp4enoa3t7eRkREhLF69WqruqKiIuPxxx83\nbrjhBsPDw8OIjo42Dh06VOaxKcvPP/9s9O3b1zCbzYa3t7fRt29fY8+ePWV+N958802jUaNGhqur\nq9GqVStj06ZNpfa55Hv1zDPPlJqruLjYmDNnjhEcHGyYTCajdevWxvr168s8boWFhcYzzzxjNG3a\n1HB1dTXq1q1rdO/e3di1a5elpqx9PHz4sHHPPfcYPj4+hpubm3Hrrbca69evt6rZunWrIclISkqy\nGi/v7wQAACriYBg87RQAAKAqHD58WI0bN9bKlSv1r3/9q7rbuWb9+/fXmjVrfveqSAAAAFQ9rtsG\nAACoIiW3MVfmdkEAAACgLDyzDgAAoAq8/vrrev311+Xh4aG2bdtWdzsAAAD4H8WVdQAAAFVgyJAh\nys7OVlJSknx8fKq7HQAAAPyP4pl1AAAAAAAAgJ3gyjoAAAAAAADAThDWAQAAAAAAAHaCF0xUoeLi\nYp08eVK1atWSg4NDdbcDAAAAAACAamIYhs6dO6egoCA5Olb+ejnCuip08uRJ1atXr7rbAAAAAAAA\ngJ04fvy4brrppkrXE9ZVoVq1akn67Q/BbDZXczcAAAAAAACoLnl5eapXr54lL6oswroqVHLrq9ls\nJqwDAAAAAACAzY9K4wUTAAAAAAAAgJ0grAMAAAAAAADsBGEdAAAAAAAAYCcI6wAAAAAAAAA7QVgH\nAAAAAAAA2AnCOgAAAAAAAMBOENYBAAAAAAAAdoKwDgAAAAAAALAT1R7W/fjjj/rXv/6lOnXqyN3d\nXS1atNDXX39tWW4YhqZOnarAwEC5u7srKipK6enpVtu4dOmShg8frjp16sjLy0txcXE6ffq0VU12\ndrbi4+NlNpvl4+OjgQMH6vz581Y1mZmZio2NlYeHh/z8/DR+/HgVFhZev50HAAAAAAAArlCtYd0v\nv/yi9u3by8XFRR9++KHS0tL03HPPqXbt2paauXPnauHChVqyZIlSU1Pl6emp6OhoXbp0yVIzevRo\nffDBB0pKStJnn32mkydP6u6777aaKz4+XgcOHNDmzZu1fv16ff755xoyZIhleVFRkWJjY1VQUKAv\nv/xSK1as0PLlyzV16tTrfyAAAAAAAAAASQ6GYRjVNfnEiRO1fft2ffHFF2UuNwxDQUFBGjt2rMaN\nGydJys3Nlb+/v5YvX64+ffooNzdXdevW1apVq3TPPfdIkr7//nuFhoYqJSVFbdu21XfffaewsDDt\n3LlTbdq0kSQlJycrJiZGJ06cUFBQkD788EP16NFDJ0+elL+/vyRpyZIlevzxx3X27Fm5urr+7v7k\n5eXJ29tbubm5MpvNVXGIAAAAAAAA8D/oWnOiar2y7v3331ebNm107733ys/PT61bt9Yrr7xiWZ6R\nkaGsrCxFRUVZxry9vRUREaGUlBRJ0q5du3T58mWrmqZNm6p+/fqWmpSUFPn4+FiCOkmKioqSo6Oj\nUlNTLTUtWrSwBHWSFB0drby8PB04cOD6HAAAAAAAAADgCtUa1h05ckSLFy9WkyZNtGnTJg0bNkwj\nR47UihUrJElZWVmSZBWglfxesiwrK0uurq7y8fGpsMbPz89qubOzs3x9fa1qyprnyj6ulp+fr7y8\nPKsPAAAAAAAAcK2cq3Py4uJitWnTRnPmzJEktW7dWt9++62WLFmihISE6mytUhITEzVjxozqbgMA\nAAAAAAB/EdV6ZV1gYKDCwsKsxkJDQ5WZmSlJCggIkKRSb3Y9ffq0ZVlAQIAKCgqUk5NTYc2ZM2es\nlhcWFio7O9uqpqx5ruzjapMmTVJubq7lc/z48crtOAAAAAAAAFCGar2yrn379vrhhx+sxg4ePKjg\n4GBJUsOGDRUQEKBPPvlErVq1kvTbw/lSU1M1bNgwSVJ4eLhcXFz0ySefKC4uTpL0ww8/KDMzU5GR\nkZKkyMhI5eTkaNeuXQoPD5ckbdmyRcXFxYqIiLDUPPnkkzpz5ozlltnNmzfLbDaXChRLmEwmmUym\nKjkWDSZuqJLt2OLoU7F/+pwAAAAAAAAoX7WGdaNHj1a7du00Z84c3Xffffrqq6+0dOlSLV26VJLk\n4OCgUaNGafbs2WrSpIkaNmyoKVOmKCgoSL1795b02wsnBg4cqDFjxsjX11dms1mPPvqoIiMj1bZt\nW0m/Xa0+7+rFAAAgAElEQVTXrVs3DR48WEuWLNHly5c1YsQI9enTR0FBQZKkrl27KiwsTH379tXc\nuXOVlZWlyZMna/jw4VUWyAEAAAAAAAAVqdaw7h//+IfeffddTZo0STNnzlTDhg01f/58xcfHW2om\nTJigCxcuaMiQIcrJyVGHDh2UnJwsNzc3S828efPk6OiouLg45efnKzo6Wi+99JLVXG+99ZZGjBih\nLl26WGoXLlxoWe7k5KT169dr2LBhioyMlKenpxISEjRz5szrfyAAAAAAAAAASQ6GYRjV3cRfRV5e\nnry9vZWbmyuz2WzTutwGCwAAAAAA8NdxrTlRtb5gAgAAAAAAAMD/IawDAAAAAAAA7ARhHQAAAAAA\nAGAnCOsAAAAAAAAAO1Gtb4NFzcOLNAAAAAAAAMrHlXUAAAAAAACAneDKOuA64ApCAAAAAABwLbiy\nDgAAAAAAALAThHUAAAAAAACAnSCsAwAAAAAAAOwEYR0AAAAAAABgJwjrAAAAAAAAADtBWAcAAAAA\nAADYCcI6AAAAAAAAwE4Q1gEAAAAAAAB2grAOAAAAAAAAsBOEdQAAAAAAAICdcK7uBgD8b2swccOf\nPufRp2L/9DkBAAAAAPgzcGUdAAAAAAAAYCcI6wAAAAAAAAA7QVgHAAAAAAAA2AnCOgAAAAAAAMBO\nENYBAAAAAAAAdoKwDgAAAAAAALAThHUAAAAAAACAnSCsAwAAAAAAAOyEc3U3AAD/CxpM3PCnz3n0\nqdg/fU4AAAAAQPXiyjoAAAAAAADAThDWAQAAAAAAAHaCsA4AAAAAAACwE4R1AAAAAAAAgJ0grAMA\nAAAAAADsBGEdAAAAAAAAYCcI6wAAAAAAAAA7QVgHAAAAAAAA2AnCOgAAAAAAAMBOENYBAAAAAAAA\ndoKwDgAAAAAAALAThHUAAAAAAACAnSCsAwAAAAAAAOwEYR0AAAAAAABgJwjrAAAAAAAAADtBWAcA\nAAAAAADYCcI6AAAAAAAAwE4Q1gEAAAAAAAB2grAOAAAAAAAAsBOEdQAAAAAAAICdIKwDAAAAAAAA\n7ARhHQAAAAAAAGAnCOsAAAAAAAAAO0FYBwAAAAAAANiJag3rpk+fLgcHB6tP06ZNLcsNw9DUqVMV\nGBgod3d3RUVFKT093Wobly5d0vDhw1WnTh15eXkpLi5Op0+ftqrJzs5WfHy8zGazfHx8NHDgQJ0/\nf96qJjMzU7GxsfLw8JCfn5/Gjx+vwsLC67fzAAAAAAAAwFWq/cq6Zs2a6dSpU5bPtm3bLMvmzp2r\nhQsXasmSJUpNTZWnp6eio6N16dIlS83o0aP1wQcfKCkpSZ999plOnjypu+++22qO+Ph4HThwQJs3\nb9b69ev1+eefa8iQIZblRUVFio2NVUFBgb788kutWLFCy5cv19SpU6//AQAAAAAAAAD+P+dqb8DZ\nWQEBAaXGDcPQ/PnzNXnyZPXq1UuS9MYbb8jf31/r1q1Tnz59lJubq9dee02rVq3SHXfcIUlatmyZ\nQkNDtWPHDrVt21bfffedkpOTtXPnTrVp00aStGjRIsXExOjZZ59VUFCQPvroI6Wlpenjjz+Wv7+/\nWrVqpVmzZunxxx/X9OnT5erq+ucdEAAAAAAAANRY1X5lXXp6uoKCgtSoUSPFx8crMzNTkpSRkaGs\nrCxFRUVZar29vRUREaGUlBRJ0q5du3T58mWrmqZNm6p+/fqWmpSUFPn4+FiCOkmKioqSo6OjUlNT\nLTUtWrSQv7+/pSY6Olp5eXk6cOBAub3n5+crLy/P6gMAAAAAAABcq2oN6yIiIrR8+XIlJydr8eLF\nysjIUMeOHXXu3DllZWVJklWAVvJ7ybKsrCy5urrKx8enwho/Pz+r5c7OzvL19bWqKWuekmXlSUxM\nlLe3t+VTr149Ww8BAAAAAAAAYFGtt8F2797d8nPLli0VERGh4OBgrV69WqGhodXYWeVMmjRJY8aM\nsfyel5dHYAcAAAAAAIBrVu23wV7Jx8dHf/vb33To0CHLc+yufrPr6dOnLcsCAgJUUFCgnJycCmvO\nnDljtbywsFDZ2dlWNWXNU7KsPCaTSWaz2eoDAAAAAAAAXCu7CuvOnz+vQ4cOKTAwUA0bNlRAQIA+\n+eQTy/K8vDylpqYqMjJSkhQeHi4XFxermh9++EGZmZmWmsjISOXk5GjXrl2Wmi1btqi4uFgRERGW\nmv3791uFeps3b5bZbFZYWNh13WcAAAAAAACgRLXeBjtu3Dj17NlTwcHBOnnypKZNmyZnZ2c98MAD\ncnBw0KhRozR79mw1adJEDRs21JQpUxQUFKTevXtL+u2FEwMHDtSYMWPk6+srs9msRx99VJGRkWrb\ntq0kKTQ0VN26ddPgwYO1ZMkSXb58WSNGjFCfPn0UFBQkSeratavCwsLUt29fzZ07V1lZWZo8ebKG\nDx8uk8lUbccHAAAAAAAANUu1hnUnTpzQAw88oJ9//ll169ZVhw4dtGPHDtWtW1eSNGHCBF24cEFD\nhgxRTk6OOnTooOTkZLm5uVm2MW/ePDk6OiouLk75+fmKjo7WSy+9ZDXPW2+9pREjRqhLly6W2oUL\nF1qWOzk5af369Ro2bJgiIyPl6emphIQEzZw58885EAAAAAAAAICqOax7++23K1zu4OCgmTNnVhia\nubm56cUXX9SLL75Ybo2vr69WrVpV4VzBwcHauHFjxQ0DAAAAAAAA15FdPbMOAAAAAAAAqMmq9co6\nAIB9aTBxw58+59GnYv/0OQEAAADAXnFlHQAAAAAAAGAnCOsAAAAAAAAAO0FYBwAAAAAAANgJwjoA\nAAAAAADAThDWAQAAAAAAAHaCsA4AAAAAAACwE4R1AAAAAAAAgJ0grAMAAAAAAADsBGEdAAAAAAAA\nYCcI6wAAAAAAAAA7QVgHAAAAAAAA2AnCOgAAAAAAAMBOENYBAAAAAAAAdoKwDgAAAAAAALAThHUA\nAAAAAACAnSCsAwAAAAAAAOwEYR0AAAAAAABgJwjrAAAAAAAAADtBWAcAAAAAAADYCcI6AAAAAAAA\nwE4Q1gEAAAAAAAB2wrm6GwAA4M/WYOKGP33Oo0/F/ulzAgAAAPjfw5V1AAAAAAAAgJ0grAMAAAAA\nAADsBGEdAAAAAAAAYCcI6wAAAAAAAAA7QVgHAAAAAAAA2AnCOgAAAAAAAMBOENYBAAAAAAAAdoKw\nDgAAAAAAALAThHUAAAAAAACAnSCsAwAAAAAAAOwEYR0AAAAAAABgJwjrAAAAAAAAADvhXN0NAACA\n66PBxA1/+pxHn4r90+cEAAAA/kq4sg4AAAAAAACwE4R1AAAAAAAAgJ0grAMAAAAAAADsBGEdAAAA\nAAAAYCcI6wAAAAAAAAA7QVgHAAAAAAAA2AnCOgAAAAAAAMBOENYBAAAAAAAAdoKwDgAAAAAAALAT\nNod1u3fv1v79+y2/v/fee+rdu7eeeOIJFRQUVGlzAAAAAAAAQE1ic1g3dOhQHTx4UJJ05MgR9enT\nRx4eHkpKStKECROqvEEAAAAAAACgprA5rDt48KBatWolSUpKStJtt92mVatWafny5Vq7dm2VNwgA\nAAAAAADUFDaHdYZhqLi4WJL08ccfKyYmRpJUr149/fTTT1XbHQAAAAAAAFCD2BzWtWnTRrNnz9bK\nlSv12WefKTY2VpKUkZEhf3//Km8QAAAAAAAAqClsDuvmz5+v3bt3a8SIEfr3v/+txo0bS5LWrFmj\ndu3aXXMjTz31lBwcHDRq1CjLmGEYmjp1qgIDA+Xu7q6oqCilp6dbrXfp0iUNHz5cderUkZeXl+Li\n4nT69GmrmuzsbMXHx8tsNsvHx0cDBw7U+fPnrWoyMzMVGxsrDw8P+fn5afz48SosLLzm/QEAAAAA\nAABs5WzrCi1btrR6G2yJZ555Rk5OTtfUxM6dO/Xyyy+rZcuWVuNz587VwoULtWLFCjVs2FBTpkxR\ndHS00tLS5ObmJkkaPXq0NmzYoKSkJHl7e2vEiBG6++67tX37dst24uPjderUKW3evFmXL1/WgAED\nNGTIEK1atUqSVFRUpNjYWAUEBOjLL7/UqVOn1K9fP7m4uGjOnDnXtE8AAAAAAACArWy+sk6ScnJy\n9Oqrr2rSpEnKzs6WJKWlpenMmTM2b+v8+fOKj4/XK6+8otq1a1vGDcPQ/PnzNXnyZPXq1UstW7bU\nG2+8oZMnT2rdunWSpNzcXL322mt6/vnndccddyg8PFzLli3Tl19+qR07dkiSvvvuOyUnJ+vVV19V\nRESEOnTooEWLFuntt9/WyZMnJUkfffSR0tLS9Oabb6pVq1bq3r27Zs2apRdffFEFBQXXcogAAAAA\nAAAAm9kc1n3zzTdq0qSJnn76aT377LPKycmRJL3zzjuaNGmSzQ0MHz5csbGxioqKshrPyMhQVlaW\n1bi3t7ciIiKUkpIiSdq1a5cuX75sVdO0aVPVr1/fUpOSkiIfHx+1adPGUhMVFSVHR0elpqZaalq0\naGH1zL3o6Gjl5eXpwIED5faen5+vvLw8qw8AAAAAAABwrWwO68aMGaMBAwYoPT3dciuqJMXExOjz\nzz+3aVtvv/22du/ercTExFLLsrKyJKnUSyv8/f0ty7KysuTq6iofH58Ka/z8/KyWOzs7y9fX16qm\nrHmu7KMsiYmJ8vb2tnzq1av3u/sMAAAAAAAAlMfmsG7nzp0aOnRoqfEbb7yxwmDrasePH9djjz2m\nt956yyr0+18yadIk5ebmWj7Hjx+v7pYAAAAAAADwP8zmsM5kMpV5u+fBgwdVt27dSm9n165dOnPm\njG655RY5OzvL2dlZn332mRYuXChnZ2fLlW1Xv9n19OnTCggIkCQFBASooKDAcitueTVXP0uvsLBQ\n2dnZVjVlzVOyrDwmk0lms9nqAwAAAAAAAFwrm8O6u+66SzNnztTly5clSQ4ODsrMzNTjjz+uuLi4\nSm+nS5cu2r9/v/bu3Wv5tGnTRvHx8dq7d68aNWqkgIAAffLJJ5Z18vLylJqaqsjISElSeHi4XFxc\nrGp++OEHZWZmWmoiIyOVk5OjXbt2WWq2bNmi4uJiRUREWGr2799vFept3rxZZrNZYWFhth4iAAAA\nAAAA4Jo427rCc889p3vuuUd+fn769ddf1alTJ2VlZSkyMlJPPvlkpbdTq1YtNW/e3GrM09NTderU\nsYyPGjVKs2fPVpMmTdSwYUNNmTJFQUFB6t27t6TfXjgxcOBAjRkzRr6+vjKbzXr00UcVGRmptm3b\nSpJCQ0PVrVs3DR48WEuWLNHly5c1YsQI9enTR0FBQZKkrl27KiwsTH379tXcuXOVlZWlyZMna/jw\n4TKZTLYeIgAAAAAAAOCa2BzWeXt7a/Pmzdq2bZu++eYbnT9/Xrfcckupt7lWhQkTJujChQsaMmSI\ncnJy1KFDByUnJ1s9427evHlydHRUXFyc8vPzFR0drZdeeslqO2+99ZZGjBihLl26WGoXLlxoWe7k\n5KT169dr2LBhioyMlKenpxISEjRz5swq3ycAAAAAAACgPDaHdSU6dOigDh06VGUv+vTTT61+d3Bw\n0MyZMysMzdzc3PTiiy/qxRdfLLfG19dXq1atqnDu4OBgbdy40aZ+AQAAAAAAgKpUqbBu4cKFGjJk\niNzc3KyuSCuLl5eXmjVrZnkeHAAAAAAAAIDKqVRYN2/ePMXHx8vNzU3z5s2rsDY/P19nzpzR6NGj\n9cwzz1RJkwAAAAAAAEBNUKmwLiMjo8yfy7N582Y9+OCDhHUAAAAAAACADRyvx0Y7dOigyZMnX49N\nAwAAAAAAAH9Z1/SCiQsXLuizzz5TZmamCgoKrJaNHDlS7u7ueuyxx6qkQQAAAAAAAKCmsDms27Nn\nj2JiYnTx4kVduHBBvr6++umnn+Th4SE/Pz+NHDnyevQJAAAAAAAA/OXZfBvs6NGj1bNnT/3yyy9y\nd3fXjh07dOzYMYWHh+vZZ5+9Hj0CAAAAAAAANYLNYd3evXs1duxYOTo6ysnJSfn5+apXr57mzp2r\nJ5544nr0CAAAAAAAANQINod1Li4ucnT8bTU/Pz9lZmZKkry9vXX8+PGq7Q4AAAAAAACoQWx+Zl3r\n1q21c+dONWnSRJ06ddLUqVP1008/aeXKlWrevPn16BEAAAAAAACoEWy+sm7OnDkKDAyUJD355JOq\nXbu2hg0bprNnz2rp0qVV3iAAAAAAAABQU9h8ZV2bNm0sP/v5+Sk5OblKGwIAAAAAAABqKpuvrAMA\nAAAAAABwfVTqyrpbbrlFn3zyiWrXrq3WrVvLwcGh3Nrdu3dXWXMAAAAAAABATVKpsK5Xr14ymUyW\nnysK6wAAAAAAAABcm0qFddOmTbP8PH369OvVCwAAgM0aTNzwp8959KnYP31OAAAA1Aw2P7Nu0KBB\n+vTTT69DKwAAAAAAAEDNZnNYd/bsWXXr1k316tXT+PHjtW/fvuvRFwAAAAAAAFDj2BzWvffeezp1\n6pSmTJminTt36pZbblGzZs00Z84cHT169Dq0CAAAAAAAANQMNod1klS7dm0NGTJEn376qY4dO6b+\n/ftr5cqVaty4cVX3BwAAAAAAANQY1xTWlbh8+bK+/vprpaam6ujRo/L396+qvgAAAAAAAIAa55rC\nuq1bt2rw4MHy9/dX//79ZTabtX79ep04caKq+wMAAAAAAABqDGdbV7jxxhuVnZ2tbt26aenSperZ\ns6dMJtP16A0AAAAAAACoUWwO66ZPn657771XPj4+16MfAAAAAAAAoMayOawbPHjw9egDAAAAAAAA\nqPH+0AsmAAAAAAAAAFQdwjoAAAAAAADAThDWAQAAAAAAAHaCsA4AAAAAAACwE9cU1q1cuVLt27dX\nUFCQjh07JkmaP3++3nvvvSptDgAAAAAAAKhJbA7rFi9erDFjxigmJkY5OTkqKiqSJPn4+Gj+/PlV\n3iAAAAAAAABQU9gc1i1atEivvPKK/v3vf8vJycky3qZNG+3fv79KmwMAAAAAAABqEpvDuoyMDLVu\n3brUuMlk0oULF6qkKQAAAAAAAKAmsjmsa9iwofbu3VtqPDk5WaGhoVXSFAAAAAAAAFATOdu6wpgx\nYzR8+HBdunRJhmHoq6++0n/+8x8lJibq1VdfvR49AgAAAAAAADWCzWHdoEGD5O7ursmTJ+vixYt6\n8MEHFRQUpAULFqhPnz7Xo0cAAAAAAACgRrA5rJOk+Ph4xcfH6+LFizp//rz8/Pyqui8AAAAAAACg\nxrmmsK6Eh4eHPDw8qqoXAAAAAAAAoEarVFjXunVrOTg4VGqDu3fv/kMNAQAAAAAAADVVpcK63r17\nW36+dOmSXnrpJYWFhSkyMlKStGPHDh04cECPPPLI9ekSAAAAAAAAqAEqFdZNmzbN8vOgQYM0cuRI\nzZo1q1TN8ePHq7Y7AAAAAAAAoAZxtHWFpKQk9evXr9T4v/71L61du7ZKmgIAAAAAAABqIpvDOnd3\nd23fvr3U+Pbt2+Xm5lYlTQEAAAAAAAA1kc1vgx01apSGDRum3bt369Zbb5Ukpaam6vXXX9eUKVOq\nvEEAAAAAAACgprA5rJs4caIaNWqkBQsW6M0335QkhYaGatmyZbrvvvuqvEEAAAAAAACgprA5rJOk\n++67j2AOAAAAAAAAqGI2P7MOAAAAAAAAwPVBWAcAAAAAAADYCcI6AAAAAAAAwE4Q1gEAAAAAAAB2\nolrDusWLF6tly5Yym80ym82KjIzUhx9+aFluGIamTp2qwMBAubu7KyoqSunp6VbbuHTpkoYPH646\nderIy8tLcXFxOn36tFVNdna24uPjZTab5ePjo4EDB+r8+fNWNZmZmYqNjZWHh4f8/Pw0fvx4FRYW\nXr+dBwAAAAAAAK5SqbfBjhkzptIbfP755ytde9NNN+mpp55SkyZNZBiGVqxYoV69emnPnj1q1qyZ\n5s6dq4ULF2rFihVq2LChpkyZoujoaKWlpcnNzU2SNHr0aG3YsEFJSUny9vbWiBEjdPfdd2v79u2W\neeLj43Xq1Clt3rxZly9f1oABAzRkyBCtWrVKklRUVKTY2FgFBAToyy+/1KlTp9SvXz+5uLhozpw5\nld4fAAAAAAAA4I+oVFi3Z88eq993796twsJC3XzzzZKkgwcPysnJSeHh4TZN3rNnT6vfn3zySS1e\nvFg7duxQWFiY5s+fr8mTJ6tXr16SpDfeeEP+/v5at26d+vTpo9zcXL322mtatWqV7rjjDknSsmXL\nFBoaqh07dqht27b67rvvlJycrJ07d6pNmzaSpEWLFikmJkbPPvusgoKC9NFHHyktLU0ff/yx/P39\n1apVK82aNUuPP/64pk+fLldXV5v2CwAAoKo1mLjhT5/z6FOxf/qcAAAANV2lboPdunWr5dOzZ091\n6tRJJ06c0O7du7V7924dP35cnTt3Vmzstf8HXVFRkd5++21duHBBkZGRysjIUFZWlqKioiw13t7e\nioiIUEpKiiRp165dunz5slVN06ZNVb9+fUtNSkqKfHx8LEGdJEVFRcnR0VGpqamWmhYtWsjf399S\nEx0drby8PB04cKDcnvPz85WXl2f1AQAAAAAAAK6Vzc+se+6555SYmKjatWtbxmrXrq3Zs2frueee\ns7mB/fv3y8vLSyaTSQ8//LDeffddhYWFKSsrS5KsArSS30uWZWVlydXVVT4+PhXW+Pn5WS13dnaW\nr6+vVU1Z85QsK09iYqK8vb0tn3r16tm6+wAAAAAAAICFzWFdXl6ezp49W2r87NmzOnfunM0N3Hzz\nzdq7d69SU1M1bNgwJSQkKC0tzebtVIdJkyYpNzfX8jl+/Hh1twQAAAAAAID/YTaHdf/85z81YMAA\nvfPOOzpx4oROnDihtWvXauDAgbr77rttbsDV1VWNGzdWeHi4EhMT9fe//10LFixQQECAJJV6s+vp\n06ctywICAlRQUKCcnJwKa86cOWO1vLCwUNnZ2VY1Zc1Tsqw8JpPJ8ibbkg8AAAAAAABwrWwO65Ys\nWaLu3bvrwQcfVHBwsIKDg/Xggw+qW7dueumll/5wQ8XFxcrPz1fDhg0VEBCgTz75xLIsLy9Pqamp\nioyMlCSFh4fLxcXFquaHH35QZmampSYyMlI5OTnatWuXpWbLli0qLi5WRESEpWb//v1Wod7mzZtl\nNpsVFhb2h/cJAAAAAAAAqIxKvQ32Sh4eHnrppZf0zDPP6PDhw5KkkJAQeXp62jz5pEmT1L17d9Wv\nX1/nzp3Tqv/X3p2HRVnvcR//DIuAyCKaCC6Au6RpYilquaGUHsP05LHMLZcyNZfS9Libpa0uSdmq\n5tHKHs1yQ02zckPFo5SZS4l6joInyQ0TEH7PHz7O44QY5OAMzPt1XXNd3PfvN3N/v/cgTZ+5lyVL\ntHnzZq1bt04Wi0XDhw/XtGnTVLNmTUVERGjChAkKDQ1V586dJV294US/fv00cuRIBQUFyd/fX0OH\nDlV0dLSaNm0qSapbt64eeOABDRgwQPPmzVN2draGDBmi7t27KzQ0VJLUvn17RUZGqmfPnnrllVeU\nmpqq8ePHa/DgwfLy8ip0XwAAAAAAAMBfUeiw7hpfX1/dddddt7Tx06dPq1evXjp16pQCAgJ01113\nad26dWrXrp0kafTo0crIyNDAgQN19uxZtWjRQgkJCfL29ra+xsyZM+Xm5qauXbsqMzNTsbGxeY7w\nW7x4sYYMGaK2bdta586ZM8c67u7urlWrVmnQoEGKjo6Wr6+vevfuralTp95SfwAAAAAAAEBh/KWw\nbvfu3Vq6dKmOHz+urKwsm7Hly5cX+HU++OCDm45bLBZNnTr1pqGZt7e34uPjFR8fn++coKAgLVmy\n5KbbCgsL05o1a25eMAAAAAAAAFCECn3Nuk8++UTNmjXTgQMH9Pnnnys7O1v79+/Xpk2bFBAQUBQ1\nAgAAAAAAAC6h0GHdSy+9pJkzZ2rlypUqVaqUZs+erZ9++kndunVT1apVi6JGAAAAAAAAwCUUOqz7\n+eef1bFjR0lSqVKllJGRIYvFohEjRujdd9+1e4EAAAAAAACAqyh0WFe2bFlduHBBklSpUiX98MMP\nkqSzZ8/q0qVL9q0OAAAAAAAAcCGFvsHE/fffrw0bNqh+/fp65JFHNGzYMG3atEkbNmxQ27Zti6JG\nAAAAAAAAwCUUOqybO3euLl++LEkaN26cPD09tW3bNnXt2lXjx4+3e4EAAAAAAACAqyh0WBcUFGT9\n2c3NTWPGjLFrQQAAAAAAAICrKlBYd/78+QK/oL+//18uBgAAAAAAAHBlBQrrAgMDZbFYCvSCOTk5\nt1QQAAAAAAAA4KoKFNZ9/fXX1p9TUlI0ZswY9enTR9HR0ZKk7du3a+HChZo+fXrRVAkAAAAAAAC4\ngAKFdS1btrT+PHXqVL3xxht69NFHreseeugh1a9fX++++6569+5t/yoBAAAAAAAAF+BW2Cds375d\njRs3zrO+cePG2rlzp12KAgAAAAAAAFxRocO6KlWq6L333suz/v3331eVKlXsUhQAAAAAAADgigp0\nGuz1Zs6cqa5du2rt2rVq0qSJJGnnzp06fPiwli1bZvcCAQAAAAAAAFdR6CPrOnTooEOHDqlTp05K\nT09Xenq6OnXqpEOHDqlDhw5FUSMAAAAAAADgEgp9ZJ109VTYl156yd61AAAAAAAAAC6tQGFdcnKy\n6tWrJzc3NyUnJ9907l133WWXwgAAAAAAAABXU6CwrmHDhkpNTVWFChXUsGFDWSwWGWPyzLNYLMrJ\nybF7kQAAAAAAAIArKFBYd/ToUd1xxx3WnwEAAAAAAADYX4HCurCwMOvPx44dU7NmzeThYfvUK1eu\naNu2bTZzAQAAAAAAABRcoe8G27p1a6Wnp+dZf+7cObVu3douRQEAAAAAAACuqNBhnTFGFoslz/oz\nZ87I19fXLkUBAAAAAAAArqhAp8FKUpcuXSRdvYlEnz595OXlZR3LyclRcnKymjVrZv8KAQAAAAAA\nAP505qUAACAASURBVBdR4LAuICBA0tUj6/z8/OTj42MdK1WqlJo2baoBAwbYv0IAAAAAAADARRQ4\nrJs/f74kKTw8XM899xynvAIAAAAAAAB2VuCw7ppJkyYVRR0AAAAAAACAyyv0DSbS0tLUs2dPhYaG\nysPDQ+7u7jYPAAAAAAAAAH9NoY+s69Onj44fP64JEyYoJCTkhneGBQAAAAAAAFB4hQ7rtmzZou++\n+04NGzYsinoAAAAAAAAAl1XosK5KlSoyxhRFLQAAAHBx4WNW3/ZtpszoeNu3CQAAkJ9CX7Nu1qxZ\nGjNmjFJSUoqgHAAAAAAAAMB1FfrIun/84x+6dOmSqlevrtKlS8vT09NmPD093W7FAQAAAAAAAK6k\n0GHdrFmziqIOAAAAAAAAwOUVOqzr3bt3UdQBAAAAAAAAuLxCh3XXu3z5srKysmzW+fv731JBAAAA\nAAAAgKsq9A0mMjIyNGTIEFWoUEG+vr4qW7aszQMAAAAAAADAX1PosG706NHatGmT3n77bXl5een9\n99/XlClTFBoaqo8++qgoagQAAAAAAABcQqFPg125cqU++ugjtWrVSn379tV9992nGjVqKCwsTIsX\nL1aPHj2Kok4AAAAAAACgxCv0kXXp6emqVq2apKvXp0tPT5cktWjRQt9++619qwMAAAAAAABcSKHD\numrVquno0aOSpDp16mjp0qWSrh5xFxgYaN/qAAAAAAAAABdS6LCub9++2rdvnyRpzJgxio+Pl7e3\nt0aMGKFRo0bZvUAAAAAAAADAVRT6mnUjRoyw/hwTE6OffvpJSUlJqlGjhu666y67FgcAAAAAAAC4\nkkKHdX8UFhamsLAwe9QCAAAAAAAAuLQCnwa7adMmRUZG6vz583nGzp07pzvvvFPr1q2za3EAAAAA\nAACAKylwWDdr1iwNGDBA/v7+ecYCAgL05JNP6s0337RrcQAAAAAAAIArKXBYt2/fPj3wwAP5jrdv\n317Jycl2KQoAAAAAAABwRQUO69LS0uTp6ZnvuIeHh/73v//ZpSgAAAAAAADAFRU4rKtUqZJ++OGH\nfMeTk5MVEhJil6IAAAAAAAAAV1TgsK5Dhw6aMGGCLl++nGfs999/16RJk/S3v/3NrsUBAAAAAAAA\nrsSjoBPHjx+v5cuXq1atWhoyZIhq164tSfrpp58UHx+vnJwcjRs3rsgKBQAAAAAAAEq6Aod1wcHB\n2rZtmwYNGqSxY8fKGCNJslgsio2NVXx8vIKDg4usUAAAAAAAAKCkK/BpsJIUFhamNWvW6Ndff1Vi\nYqJ27NihX3/9VWvWrFFEREShNz59+nTdc8898vPzU4UKFdS5c2cdPHjQZo4xRhMnTlRISIh8fHwU\nExOjw4cP28y5fPmyBg8erHLlyqlMmTLq2rWr0tLSbOakp6erR48e8vf3V2BgoPr166eLFy/azDl+\n/Lg6duyo0qVLq0KFCho1apSuXLlS6L4AAAAAAACAv6JQYd01ZcuW1T333KN7771XZcuW/csb/+ab\nbzR48GDt2LFDGzZsUHZ2ttq3b6+MjAzrnFdeeUVz5szRvHnzlJiYKF9fX8XGxtpcO2/EiBFauXKl\nPvvsM33zzTc6efKkunTpYrOtHj16aP/+/dqwYYNWrVqlb7/9VgMHDrSO5+TkqGPHjsrKytK2bdu0\ncOFCLViwQBMnTvzL/QEAAAAAAACFUeDTYItCQkKCzfKCBQtUoUIFJSUl6f7775cxRrNmzdL48eMV\nFxcnSfroo48UHBysFStWqHv37jp37pw++OADLVmyRG3atJEkzZ8/X3Xr1tWOHTvUtGlTHThwQAkJ\nCdq1a5caN24sSXrzzTfVoUMHvfbaawoNDdX69ev1448/6quvvlJwcLAaNmyoF154Qc8//7wmT56s\nUqVK3d6dAwAAAAAAAJfzl46sKyrnzp2TJAUFBUmSjh49qtTUVMXExFjnBAQEqEmTJtq+fbskKSkp\nSdnZ2TZz6tSpo6pVq1rnbN++XYGBgdagTpJiYmLk5uamxMRE65z69evbXHcvNjZW58+f1/79+29Y\nb2Zmps6fP2/zAAAAAAAAAP4qpwnrcnNzNXz4cDVv3lz16tWTJKWmpkpSnhtXBAcHW8dSU1NVqlQp\nBQYG3nROhQoVbMY9PDwUFBRkM+dG27m+jj+aPn26AgICrI8qVaoUum8AAAAAAADgGqcJ6wYPHqwf\nfvhBn3zyiaNLKbCxY8fq3Llz1seJEyccXRIAAAAAAACKMacI64YMGaJVq1bp66+/VuXKla3rK1as\nKEl57uyalpZmHatYsaKysrJ09uzZm845ffq0zfiVK1eUnp5uM+dG27m+jj/y8vKSv7+/zQMAAAAA\nAAD4qxx6gwljjIYOHarPP/9cmzdvVkREhM14RESEKlasqI0bN6phw4aSpPPnzysxMVGDBg2SJEVF\nRcnT01MbN25U165dJUkHDx7U8ePHFR0dLUmKjo7W2bNnlZSUpKioKEnSpk2blJubqyZNmljnvPji\nizp9+rT1lNkNGzbI399fkZGRRb8zAAAA4FLCx6y+7dtMmdHxtm8TAAAUjkPDusGDB2vJkiX64osv\n5OfnZ702XEBAgHx8fGSxWDR8+HBNmzZNNWvWVEREhCZMmKDQ0FB17tzZOrdfv34aOXKkgoKC5O/v\nr6FDhyo6OlpNmzaVJNWtW1cPPPCABgwYoHnz5ik7O1tDhgxR9+7dFRoaKklq3769IiMj1bNnT73y\nyitKTU3V+PHjNXjwYHl5eTlmBwEAAAAAAMClODSse/vttyVJrVq1slk/f/589enTR5I0evRoZWRk\naODAgTp79qxatGihhIQEeXt7W+fPnDlTbm5u6tq1qzIzMxUbG6u33nrL5jUXL16sIUOGqG3btta5\nc+bMsY67u7tr1apVGjRokKKjo+Xr66vevXtr6tSpRdM8AAAAAAAA8AcOPw32z1gsFk2dOvWmoZm3\nt7fi4+MVHx+f75ygoCAtWbLkptsKCwvTmjVr/rQmAAAAAAAAoCg4xQ0mAAAAAAAAABDWAQAAAAAA\nAE6DsA4AAAAAAABwEoR1AAAAAAAAgJMgrAMAAAAAAACcBGEdAAAAAAAA4CQ8HF0AAAAAgJIrfMzq\n277NlBkdb/s2AQCwF46sAwAAAAAAAJwEYR0AAAAAAADgJAjrAAAAAAAAACdBWAcAAAAAAAA4CcI6\nAAAAAAAAwEkQ1gEAAAAAAABOgrAOAAAAAAAAcBKEdQAAAAAAAICTIKwDAAAAAAAAnARhHQAAAAAA\nAOAkCOsAAAAAAAAAJ0FYBwAAAAAAADgJwjoAAAAAAADASRDWAQAAAAAAAE7Cw9EFAAAAAEBxFz5m\n9W3fZsqMjrd9mwCAoseRdQAAAAAAAICTIKwDAAAAAAAAnARhHQAAAAAAAOAkCOsAAAAAAAAAJ0FY\nBwAAAAAAADgJwjoAAAAAAADASRDWAQAAAAAAAE6CsA4AAAAAAABwEoR1AAAAAAAAgJMgrAMAAAAA\nAACcBGEdAAAAAAAA4CQI6wAAAAAAAAAnQVgHAAAAAAAAOAnCOgAAAAAAAMBJENYBAAAAAAAAToKw\nDgAAAAAAAHAShHUAAAAAAACAkyCsAwAAAAAAAJwEYR0AAAAAAADgJAjrAAAAAAAAACfh4egCAAAA\nAADFQ/iY1bd9mykzOt72bQKAI3FkHQAAAAAAAOAkCOsAAAAAAAAAJ0FYBwAAAAAAADgJwjoAAAAA\nAADASRDWAQAAAAAAAE6CsA4AAAAAAABwEoR1AAAAAAAAgJNwaFj37bffqlOnTgoNDZXFYtGKFSts\nxo0xmjhxokJCQuTj46OYmBgdPnzYZs7ly5c1ePBglStXTmXKlFHXrl2VlpZmMyc9PV09evSQv7+/\nAgMD1a9fP128eNFmzvHjx9WxY0eVLl1aFSpU0KhRo3TlypWiaRwAAAAAAAC4AYeGdRkZGWrQoIHi\n4+NvOP7KK69ozpw5mjdvnhITE+Xr66vY2FhdvnzZOmfEiBFauXKlPvvsM33zzTc6efKkunTpYvM6\nPXr00P79+7VhwwatWrVK3377rQYOHGgdz8nJUceOHZWVlaVt27Zp4cKFWrBggSZOnFg0jQMAAAAA\nAAA34OHIjT/44IN68MEHbzhmjNGsWbM0fvx4xcXFSZI++ugjBQcHa8WKFerevbvOnTunDz74QEuW\nLFGbNm0kSfPnz1fdunW1Y8cONW3aVAcOHFBCQoJ27dqlxo0bS5LefPNNdejQQa+99ppCQ0O1fv16\n/fjjj/rqq68UHByshg0b6oUXXtDzzz+vyZMnq1SpUrdnhwAAAAAAAMClOe01644eParU1FTFxMRY\n1wUEBKhJkybavn27JCkpKUnZ2dk2c+rUqaOqVata52zfvl2BgYHWoE6SYmJi5ObmpsTEROuc+vXr\nKzg42DonNjZW58+f1/79+/OtMTMzU+fPn7d5AAAAAAAAAH+V04Z1qampkmQToF1bvjaWmpqqUqVK\nKTAw8KZzKlSoYDPu4eGhoKAgmzk32s71ddzI9OnTFRAQYH1UqVKlsG0CAAAAAAAAVk4b1hUHY8eO\n1blz56yPEydOOLokAAAAAAAAFGNOG9ZVrFhRkvLc2TUtLc06VrFiRWVlZens2bM3nXP69Gmb8StX\nrig9Pd1mzo22c30dN+Ll5SV/f3+bBwAAAAAAAPBXOW1YFxERoYoVK2rjxo3WdefPn1diYqKio6Ml\nSVFRUfL09LSZc/DgQR0/ftw6Jzo6WmfPnlVSUpJ1zqZNm5Sbm6smTZpY53z//fc2od6GDRvk7++v\nyMjIIu0TAAAAAAAAuMahd4O9ePGijhw5Yl0+evSo9u7dq6CgIFWtWlXDhw/XtGnTVLNmTUVERGjC\nhAkKDQ1V586dJV294US/fv00cuRIBQUFyd/fX0OHDlV0dLSaNm0qSapbt64eeOABDRgwQPPmzVN2\ndraGDBmi7t27KzQ0VJLUvn17RUZGqmfPnnrllVeUmpqq8ePHa/DgwfLy8rr9OwYAAAAAAAAuyaFh\n3e7du9W6dWvr8siRIyVJvXv31oIFCzR69GhlZGRo4MCBOnv2rFq0aKGEhAR5e3tbnzNz5ky5ubmp\na9euyszMVGxsrN566y2b7SxevFhDhgxR27ZtrXPnzJljHXd3d9eqVas0aNAgRUdHy9fXV71799bU\nqVOLeA8AAAAAAJxN+JjVt32bKTM63vZtAnBODg3rWrVqJWNMvuMWi0VTp069aWjm7e2t+Ph4xcfH\n5zsnKChIS5YsuWktYWFhWrNmzZ8XDQAAAAAAABQRp71mHQAAAAAAAOBqCOsAAAAAAAAAJ0FYBwAA\nAAAAADgJwjoAAAAAAADASRDWAQAAAAAAAE6CsA4AAAAAAABwEoR1AAAAAAAAgJMgrAMAAAAAAACc\nBGEdAAAAAAAA4CQI6wAAAAAAAAAnQVgHAAAAAAAAOAkPRxcAAAAAAABuv/Axq2/7NlNmdLzt2wSK\nG46sAwAAAAAAAJwEYR0AAAAAAADgJAjrAAAAAAAAACdBWAcAAAAAAAA4CcI6AAAAAAAAwEkQ1gEA\nAAAAAABOgrAOAAAAAAAAcBKEdQAAAAAAAICT8HB0AQAAAAAAAEUlfMzq277NlBkdb/s2UXJwZB0A\nAAAAAADgJDiyDgAAAAAAoJjjCMKSgyPrAAAAAAAAACdBWAcAAAAAAAA4CcI6AAAAAAAAwEkQ1gEA\nAAAAAABOghtMAAAAAAAAoNgo6TfT4Mg6AAAAAAAAwEkQ1gEAAAAAAABOgrAOAAAAAAAAcBKEdQAA\nAAAAAICTIKwDAAAAAAAAnARhHQAAAAAAAOAkCOsAAAAAAAAAJ0FYBwAAAAAAADgJwjoAAAAAAADA\nSRDWAQAAAAAAAE6CsA4AAAAAAABwEoR1AAAAAAAAgJMgrAMAAAAAAACcBGEdAAAAAAAA4CQI6wAA\nAAAAAAAnQVgHAAAAAAAAOAnCOgAAAAAAAMBJENYBAAAAAAAAToKwDgAAAAAAAHAShHUAAAAAAACA\nkyCsAwAAAAAAAJwEYR0AAAAAAADgJAjrAAAAAAAAACdBWPcH8fHxCg8Pl7e3t5o0aaKdO3c6uiQA\nAAAAAAC4CMK663z66acaOXKkJk2apD179qhBgwaKjY3V6dOnHV0aAAAAAAAAXABh3XXeeOMNDRgw\nQH379lVkZKTmzZun0qVL68MPP3R0aQAAAAAAAHABHo4uwFlkZWUpKSlJY8eOta5zc3NTTEyMtm/f\nfsPnZGZmKjMz07p87tw5SdL58+cLvf3czEuFfs6t+it13ir6LDqO6FNynV7ps+jQZ9Ghz6JDn0XH\nVfqUXKdX+iw69Fl06LPo0GfRcZU+peLT67XnGGMK9TyLKewzSqiTJ0+qUqVK2rZtm6Kjo63rR48e\nrW+++UaJiYl5njN58mRNmTLldpYJAAAAAACAYuTEiROqXLlygedzZN0tGDt2rEaOHGldzs3NVXp6\nusqVKyeLxXJbajh//ryqVKmiEydOyN/f/7Zs0xHos2Shz5KFPkseV+mVPksW+ixZ6LNkcZU+Jdfp\nlT5LFvosOsYYXbhwQaGhoYV6HmHd/1O+fHm5u7srLS3NZn1aWpoqVqx4w+d4eXnJy8vLZl1gYGCR\n1Xgz/v7+Jfof1TX0WbLQZ8lCnyWPq/RKnyULfZYs9FmyuEqfkuv0Sp8lC30WjYCAgEI/hxtM/D+l\nSpVSVFSUNm7caF2Xm5urjRs32pwWCwAAAAAAABQVjqy7zsiRI9W7d281btxY9957r2bNmqWMjAz1\n7dvX0aUBAAAAAADABbhPnjx5sqOLcBb16tVTYGCgXnzxRb322muSpMWLF6t27doOruzm3N3d1apV\nK3l4lOzslT5LFvosWeiz5HGVXumzZKHPkoU+SxZX6VNynV7ps2ShT+fC3WABAAAAAAAAJ8E16wAA\nAAAAAAAnQVgHAAAAAAAAOAnCOgAAAAAAAMBJENYBAAAAAAAAToKwDoBDcG8bAAAAAADycu571QIo\nsby8vLRv3z7VrVvX0aWgkE6dOqW3335bW7Zs0alTp+Tm5qZq1aqpc+fO6tOnj9zd3R1dIgAAAAAU\nW4R1xciePXtUtmxZRURESJIWLVqkefPm6fjx4woLC9OQIUPUvXt3B1dpfxkZGVq6dKmOHDmikJAQ\nPfrooypXrpyjy7plQ4cOVbdu3XTfffc5upQiNXLkyBuuz8nJ0YwZM6zv5RtvvHE7yyoSc+fO1c6d\nO9WhQwd1795dixYt0vTp05Wbm6suXbpo6tSp8vAo3n92d+/erZiYGNWoUUM+Pj46fPiwHnvsMWVl\nZem5557Thx9+qISEBPn5+Tm6VLs4cOCAduzYoejoaNWpU0c//fSTZs+erczMTD3++ONq06aNo0sE\ngBLh999/V1JSkoKCghQZGWkzdvnyZS1dulS9evVyUHUA4FpOnDihSZMm6cMPP3R0KbckKytLK1as\n0Pbt25WamipJqlixopo1a6a4uDiVKlXKwRXmz2I4F63YaNCggV5//XXFxMTo/fff1zPPPKMBAwao\nbt26OnjwoN5//33Nnj1bTzzxhKNLvSWRkZHasmWLgoKCdOLECd1///367bffVKtWLR05ckSenp7a\nsWOHNbQsrtzc3GSxWFS9enX169dPvXv3VsWKFR1dlt25ubmpQYMGCgwMtFn/zTffqHHjxvL19ZXF\nYtGmTZscVKF9TJs2Ta+88orat2+vrVu3avjw4Xr11Vc1YsQIubm5aebMmRo0aJCmTJni6FJvSYsW\nLdSuXTtNmjRJkvSvf/1Lc+fO1Y4dO/Tbb7+pTZs2uv/++zV79mwHV3rrEhISFBcXpzJlyujSpUv6\n/PPP1atXLzVo0EC5ubn65ptvtH79+hIR2BXnDzL2kpaWpnfeeUcTJ050dCl28Z///EeBgYEqU6aM\nzfrs7Gxt375d999/v4Mqs68zZ84oOTlZDRo0UFBQkH799Vd98MEHyszM1COPPFKij96uVq2a1q1b\np5o1azq6lFt26NAhtW/fXsePH5fFYlGLFi30ySefKCQkRNLVf5+hoaHKyclxcKX2Z4zR5s2brV9K\nx8bGytPT09Fl3bL//Oc/8vb2Vvny5SVJ3333nc1BBoMHD1Z0dLSDq7x1r7/+uv7+978rLCzM0aUU\nuVWrVmnnzp2KjY1V8+bNtWnTJr322mvWL6UHDhzo6BLt4vfff9fHH398wzNI2rZt6+jybpt9+/ap\nUaNGxfrv7pEjRxQbG6uTJ0+qSZMmCg4OlnT1vymJiYmqXLmy1q5dqxo1aji40nwYFBs+Pj4mJSXF\nGGPM3Xffbd59912b8cWLF5vIyEhHlGZXFovFpKWlGWOM6dGjh2nWrJk5e/asMcaYCxcumJiYGPPo\no486skS7sFgs5quvvjLDhg0z5cuXN56enuahhx4yK1euNDk5OY4uz26mT59uIiIizMaNG23We3h4\nmP379zuoKvurXr26WbZsmTHGmL179xp3d3fzr3/9yzq+fPlyU6NGDUeVZzc+Pj7m559/ti7n5OQY\nT09Pk5qaaowxZv369SY0NNRR5dlVdHS0GTdunDHGmI8//tiULVvW/POf/7SOjxkzxrRr185R5dnN\n4cOHTbVq1Yy3t7dp2bKl6datm+nWrZtp2bKl8fb2NjVq1DCHDx92dJlFbu/evcbNzc3RZdyykydP\nmnvuuce4ubkZd3d307NnT3PhwgXreGpqaono0xhjEhMTTUBAgLFYLKZs2bJm9+7dJiIiwtSsWdNU\nr17d+Pj4mKSkJEeXectmz559w4e7u7sZO3asdbk469y5s+nYsaP53//+Zw4fPmw6duxoIiIizLFj\nx4wxJev39sEHH7R+rj1z5oxp0qSJsVgs5o477jBubm6mTp065vTp0w6u8tbde++9ZuXKlcYYY1as\nWGHc3NzMQw89ZJ5//nnz8MMPG09PT+t4cWaxWIy7u7uJiYkxn3zyicnMzHR0SUVi3rx5xsPDw0RF\nRRl/f3+zaNEi4+fnZ/r372+efPJJ4+PjY2bNmuXoMm/Z4cOHTVhYmKlQoYKpUqWKsVgspmPHjqZJ\nkybG3d3dPPLIIyY7O9vRZdrFF198cdPHzJkzi/3f3ZiYGBMXF2fOnTuXZ+zcuXMmLi7OtG/f3gGV\nFQxhXTFSrlw5s3v3bmOMMRUqVDB79+61GT9y5Ijx8fFxRGl2dX1YV61aNbN+/Xqb8a1bt5oqVao4\nojS7ur7PrKws8+mnn5rY2Fjj7u5uQkNDzT//+c8S8z/IO3fuNLVq1TLPPvusycrKMsaUvLDOx8fH\n+j8Vxhjj6elpfvjhB+tySkqKKV26tCNKs6uwsDCzZcsW6/LJkyeNxWIxly5dMsYYc/ToUePt7e2o\n8uzK39/f+m8wJyfHeHh4mD179ljHv//+exMcHOyo8uymuH+QKah9+/bd9PHpp58W+w+lxhjTq1cv\n06RJE7Nr1y6zYcMGExUVZRo3bmzS09ONMVdDD4vF4uAq7SMmJsb079/fnD9/3rz66qumcuXKpn//\n/tbxvn37ms6dOzuwQvuwWCymcuXKJjw83OZhsVhMpUqVTHh4uImIiHB0mbekQoUKJjk52bqcm5tr\nnnrqKVO1alXz888/l6iw7vrPf4MGDTKRkZHml19+McYYc+LECRMVFWWeeuopR5ZoF76+vta+mjRp\nYmbMmGEz/uabb5q7777bEaXZlcViMfPnzzdxcXHG09PTlCtXzgwbNsx8//33ji7NriIjI817771n\njDFm06ZNxtvb28THx1vH58+fb+rWreuo8uzmwQcfNE8++aTJzc01xhgzY8YM8+CDDxpjjDl06JAJ\nDw83kyZNcmCF9mOxWIybm5uxWCz5Por7310fH5+b/ltMTk526vyEsK4Yefzxx02/fv2MMcY88sgj\nZvz48TbjL730kqlfv74jSrMri8Vi/UYxNDQ0zz+wlJSUEhEGXP9h7XrHjh0zkyZNMmFhYcX+D+T1\nLly4YHr16mXuuusu8/333xtPT88SFdZFRESYtWvXGmOu/sfczc3NLF261Dq+evVqEx4e7qjy7GbY\nsGGmXr16Zu3atWbTpk2mdevWplWrVtbxhIQEU716dQdWaD/+/v7myJEj1uUyZcrYHFVYUv4WFfcP\nMgV1sw+l19aXhL+5oaGhJjEx0bp8+fJl06lTJ9OwYUNz5syZEhV6lC1b1vz444/GmKtferm5udn0\nnpSUZCpVquSo8uzmySefNA0bNrT2ek1J+tLLz88vT3/GGDN48GBTuXJl8+2335aY39vrP//Vrl3b\nfPHFFzbjX331VbEPX40xJiAgwOzbt88YczWMvfbzNUeOHCkRX2Je/36mpaWZl19+2dSpU8e4ubmZ\ne+65x7z77rvm/PnzDq7y1t3oS+nrPzscPXq0RLyfpUuXNocOHbIuZ2ZmGk9PT/Prr78aY64eJVoS\nPs8bc/XzwooVK/Id//e//13s/+6GhITc9AjeL7/80oSEhNzGigrHzdGn4aLgXn75ZW3cuFEtW7ZU\nlSpV9Prrr+u+++7TwIED1bJlS02ePFkzZsxwdJl20bZtWzVq1Ejnz5/XwYMHbcaOHTtWIm4wkZ+q\nVatq8uTJOnr0qBISEhxdjt2UKVNGCxcu1NixYxUTE1Osr39wIz169FCvXr00YMAAxcbGavTo0Xru\nuef09ttv691339VTTz2lhx9+2NFl3rJp06YpMjJSnTp1Utu2bZWZmWlz4VmLxaLp06c7sEL7CQ8P\n1+HDh63L27dvV9WqVa3Lx48ft15PqTgLDAxUSkpKvuMpKSl5rjlZHAUFBem9997T0aNH8zx++eUX\nrVq1ytEl2sW5c+dUtmxZ67KXl5eWL1+u8PBwtW7dWqdPn3ZgdfaVlZUlHx8fSZKnp6dKly5tvT6W\nJJUvX15nzpxxVHl2M2/ePE2cOFGxsbGaO3euo8spEnXq1NHu3bvzrJ87d67i4uL00EMPOaCqnxe4\nkQAAFbJJREFUomOxWCRJv/32m6pXr24zVqNGDZ08edIRZdlVy5Yt9fHHH0uS7r77bm3evNlm/Ouv\nv1alSpUcUFnRqVChgkaPHq0DBw5o8+bNioyM1IgRI0rEZ4Vy5crp2LFjkqSTJ0/qypUrOn78uHX8\n2LFjCgoKclR5dhMYGKgLFy5Yly9duqQrV65Yr91711136dSpU44qz66ioqKUlJSU77jFYpEp5rc3\n6N+/v3r16qWZM2cqOTlZaWlpSktLU3JysmbOnKk+ffo49bUWi/dtCV1MaGio/v3vf2vGjBlauXKl\njDHauXOnTpw4oebNm2vr1q1q3Lixo8u8ZdcuXH/NHy+OvXLlyhJxB9WwsDC5u7vnO26xWNSuXbvb\nWNHt0b17d7Vo0UJJSUkl6mK8U6ZMkY+Pj7Zv364BAwZozJgxatCggUaPHq1Lly6pU6dOeuGFFxxd\n5i0rU6aMPv30U12+fFlXrlzJ8++zffv2DqrM/gYNGmQTKterV89mfO3atSXi5hLXPshMmDBBbdu2\ntbn47saNGzVt2jQNHTrUwVXeuqioKJ08eTLfvztnz54t9h9Kpas3HUhOTra56YCHh4c+++wzPfLI\nI/rb3/7mwOrsq0qVKvrll18UHh4uSTY3JJCkU6dO2YR3xdnDDz+se++9V7169dLq1as1f/58R5dk\nVw8//LA+/vhj9ezZM8/Y3LlzlZubq3nz5jmgsqLRp08feXl5KTs7W0ePHtWdd95pHUtNTS0RX5DM\nmDFD9913n06ePKkWLVpo3Lhx2rVrl/XGeJ9++mmJeE+vBa9/dN999+m+++7TnDlz9Omnn97mquwv\nLi7OekO8L7/8Ur169dKzzz4ri8Uid3d3PffccyXiM2C7du00cuRIzZs3T15eXho7dqwaNmwoPz8/\nSVe/qK1QoYKDq7SPUaNGKSMjI9/xGjVq6Ouvv76NFdnf1KlT5evrq1dffdX6+ypdvbFPxYoV9fzz\nz2v06NEOrjJ/3A0WAAAX9/LLL2v27NlKTU3N80Fm+PDhTv1BpqA+//xzZWRk6PHHH7/h+G+//aYv\nv/xSvXv3vs2V2dfzzz+vvXv3at26dXnGrly5oq5du2rlypXKzc11QHX2NWXKFNWuXVvdu3e/4fi4\nceP0008/admyZbe5sqJjjNGMGTM0Z84c/e9//1NycrIiIyMdXRYKoW/fvjbLDz74oLp162ZdHj16\ntJKTk0vE2RU///yzxo8fr9WrV+vixYuSrn55cM8992jUqFHq3Lmzgyu8dW5ubkpNTS0xAU5+MjIy\nNGLECG3fvl3NmjXTm2++qTlz5mjcuHHKzs5Wy5Yt9emnnxb7/XD69GnFxcUpMTFRFotFVapU0eef\nf667775bkvR//s//0alTp0rEl5iu5ujRo0pNTZUkVaxYUREREQ6u6M8R1gEAAEnF84MMbF25ckWX\nLl2Sv79/vuP//e9/S9SRzfm5dOmS3N3d5eXl5ehS7C4pKUlbtmxRr169bE57RvGXkZEhd3d3eXt7\nO7oUuzHG6PTp08rNzVX58uXl6enp6JJgJ5cvX1Z2drb1yLOS4vDhw8rMzFSdOnXk4cHJiHAMrlkH\nAAAkSREREYqOjlZ0dLQ1qDtx4oSeeOIJB1dW9EpKnx4eHvkGddLVU0OnTJlyGytynDNnzmjQoEGO\nLqNIREVFadiwYSpbtmyJ+d3FVenp6Xr66acdXYZdWSwWBQcHKyQkxBrUucrvbUnv09vbW35+fiWu\nz5o1a6pevXp5grqS1qcr+P3337Vlyxb9+OOPecYuX76sjz76yAFVFQxH1gEAgHzt27dPjRo1KnE3\nhfkj+ix5XKVXV+nTVbjK+0mfJQt9whkdOnRI7du31/Hjx2WxWNSiRQub69umpaUpNDTUad9PjukE\nAMCFffnllzcd/+WXX25TJUWLPq8qKX1KrtOrq/TpKlzl/aTPq+izeHGVPl3F888/r3r16mn37t06\ne/ashg8frubNm2vz5s2qWrWqo8v7UxxZBwCAC3Nzc5PFYrnpnVAtFovTfutYUPT5/5WEPiXX6dVV\n+nQVrvJ+0uf/R5/Fh6v06SqCg4P11VdfqX79+pKuXj/z6aef1po1a/T111/L19fXqY+s45p1AAC4\nsJCQEC1fvly5ubk3fOzZs8fRJdoFfZasPiXX6dVV+nQVrvJ+0id9Fkeu0qer+P33322uO2ixWPT2\n22+rU6dOatmypQ4dOuTA6v4cYR0AAC4sKipKSUlJ+Y7/2TfMxQV9XlVS+pRcp1dX6dNVuMr7SZ9X\n0Wfx4ip9uoo6depo9+7dedbPnTtXcXFxeuihhxxQVcG5T548ebKjiwAAAI5RuXJlVaxYUTVq1Ljh\nuJ+fn9q3b6/w8PDbW5id0edVJaVPyXV6dZU+XYWrvJ/0eRV9Fi+u0qer+PXXX7V69Wr16NEjz1iH\nDh10/Phx7d69W5MmTXJAdX+Oa9YBAAAAAAAAToLTYAEAAAAAAAAnQVgHAAAAAAAAOAnCOgAAAAAA\nAMBJENYBAAAUUEpKiiwWi/bu3ZvvnM2bN8tisejs2bO3tK1WrVpp+PDhhXrO5MmT1bBhw1va7l9h\nr56dxYIFCxQYGFio51gsFq1YseIvb/OvvHfh4eGaNWvWX94mAABwToR1AACgWElNTdXQoUNVrVo1\neXl5qUqVKurUqZM2btxo1+306dNHnTt3tllXpUoVnTp1SvXq1bPrtoq7Zs2a6dSpUwoICLDr67pS\nGPXcc88V+nd4165dGjhwYBFVBAAAHMXD0QUAAAAUVEpKipo3b67AwEC9+uqrql+/vrKzs7Vu3ToN\nHjxYP/30U5Fu393dXRUrVizSbRRHpUqVYr/cojJlyqhMmTKFes4dd9xRRNUAAABH4sg6AABQbDz9\n9NOyWCzauXOnunbtqlq1aunOO+/UyJEjtWPHDuu8N954Q/Xr15evr6+qVKmip59+WhcvXrSOXzvN\ncd26dapbt67KlCmjBx54QKdOnZJ09ZTEhQsX6osvvpDFYpHFYtHmzZtveBrsmjVrVKtWLfn4+Kh1\n69ZKSUmxqfnMmTN69NFHValSJZUuXVr169fXxx9/bDMnIyNDvXr1UpkyZRQSEqLXX3+9QPtjxowZ\nCg4Olp+fn/r166fLly/nmfP++++rbt268vb2Vp06dfTWW2/d9DVbtWqloUOHavjw4SpbtqyCg4P1\n3nvvKSMjQ3379pWfn59q1KihtWvXWp/zx9Ng/2z/XtvOH0/z7dy5s/r06WMdP3bsmEaMGGF9D65Z\ntmyZ7rzzTnl5eSk8PDzP/nrrrbdUs2ZNeXt7Kzg4WH//+99v2vOCBQtUtWpVlS5dWg8//LDOnDmT\nZ84XX3yhRo0aydvbW9WqVdOUKVN05cqVm77uNe+++65CQ0OVm5trsz4uLk5PPPGEpLynwe7atUvt\n2rVT+fLlFRAQoJYtW2rPnj02z//jkYdnz55V//79dccdd8jf319t2rTRvn37rOP79u1T69at5efn\nJ39/f0VFRWn37t0F6gEAANw+hHUAAKBYSE9PV0JCggYPHixfX98849dfY8zNzU1z5szR/v37tXDh\nQm3atEmjR4+2mX/p0iW99tprWrRokb799lsdP35czz33nKSrpyR269bNGjCdOnVKzZo1y7PNEydO\nqEuXLurUqZP27t2r/v37a8yYMTZzLl++rKioKK1evVo//PCDBg4cqJ49e2rnzp3WOaNGjdI333yj\nL774QuvXr9fmzZvzBDN/tHTpUk2ePFkvvfSSdu/erZCQkDxB3OLFizVx4kS9+OKLOnDggF566SVN\nmDBBCxcuvOlrL1y4UOXLl9fOnTs1dOhQDRo0SI888oiaNWumPXv2qH379urZs6cuXbqU72vcbP8W\nxPLly1W5cmVNnTrV+h5IUlJSkrp166bu3bvr+++/1+TJkzVhwgQtWLBAkrR7924988wzmjp1qg4e\nPKiEhATdf//9+W4nMTFR/fr105AhQ7R37161bt1a06ZNs5nz3XffqVevXho2bJh+/PFHvfPOO1qw\nYIFefPHFAvXyyCOP6MyZM/r666+t6679Pvfo0eOGz7lw4YJ69+6tLVu2aMeOHapZs6Y6dOigCxcu\n3HQ7p0+f1tq1a5WUlKRGjRqpbdu2Sk9PlyT16NFDlStX1q5du5SUlKQxY8bI09OzQD0AAIDbyAAA\nABQDiYmJRpJZvnx5oZ/72WefmXLlylmX58+fbySZI0eOWNfFx8eb4OBg63Lv3r1NXFyczescPXrU\nSDL//ve/jTHGjB071kRGRtrMef75540k89tvv+VbT8eOHc2zzz5rjDHmwoULplSpUmbp0qXW8TNn\nzhgfHx8zbNiwfF8jOjraPP300zbrmjRpYho0aGBdrl69ulmyZInNnBdeeMFER0fn+7otW7Y0LVq0\nsC5fuXLF+Pr6mp49e1rXnTp1ykgy27dvN8YY8/XXX9v0XJD927Jlyzz9xcXFmd69e1uXw8LCzMyZ\nM23mPPbYY6Zdu3Y260aNGmV9H5YtW2b8/f3N+fPn8+3xeo8++qjp0KGDzbp//OMfJiAgwLrctm1b\n89JLL9nMWbRokQkJCbEuSzKff/55vtuJi4szTzzxhHX5nXfeMaGhoSYnJ8cYY8ykSZNs3rs/ysnJ\nMX5+fmblypXWddfvn++++874+/uby5cv2zyvevXq5p133jHGGOPn52cWLFiQ7zYAAIBz4Mg6AABQ\nLBhjCjz3q6++Utu2bVWpUiX5+fmpZ8+eOnPmjM2RYKVLl1b16tWtyyEhITp9+nShajpw4ICaNGli\nsy46OtpmOScnRy+88ILq16+voKAglSlTRuvWrdPx48clST///LOysrJsXicoKEi1a9e+pW1nZGTo\n559/Vr9+/azXQytTpoymTZumn3/++aavfdddd1l/dnd3V7ly5VS/fn3ruuDgYEm66f6yx/69kQMH\nDqh58+Y265o3b67Dhw8rJydH7dq1U1hYmKpVq6aePXtq8eLFNz0CsCDv4b59+zR16lSb/ThgwACd\nOnXqpq99vR49emjZsmXKzMyUdPWox+7du8vN7cYfx9PS0jRgwADVrFlTAQEB8vf318WLF62/N3+0\nb98+Xbx4UeXKlbOp8+jRo9b3e+TIkerfv79iYmI0Y8aMP/09AAAAjsENJgAAQLFQs2ZNWSyWP72J\nREpKiv72t79p0KBBevHFFxUUFKQtW7aoX79+ysrKUunSpSUpz+l/FoulUIFgQb366quaPXu2Zs2a\nZb2O3vDhw5WVlWX3bV3v2jX63nvvvTxhlLu7+02fe6N9c/26a9eP++M12P7sNa7fv25ubnn2d3Z2\n9k3rKgg/Pz/t2bNHmzdv1vr16zVx4kRNnjxZu3btsjlVujAuXryoKVOmqEuXLnnGvL29C/QanTp1\nkjFGq1ev1j333KPvvvtOM2fOzHd+7969debMGc2ePVthYWHy8vJSdHR0vr83Fy9eVEhIiDZv3pxn\n7FrfkydP1mOPPabVq1dr7dq1mjRpkj755BM9/PDDBeoBAADcHhxZBwAAioWgoCDFxsYqPj5eGRkZ\necav3dwgKSlJubm5ev3119W0aVPVqlVLJ0+eLPT2SpUqpZycnJvOqVu3rs215yTZ3OhCkrZu3aq4\nuDg9/vjjatCggapVq6ZDhw5Zx6tXry5PT08lJiZa1/322282c/Lb9vXP+eO2g4ODFRoaql9++UU1\natSweURERNz0tW+HO+64w+aGEzk5Ofrhhx9s5tzoPahbt662bt1qs27r1q2qVauWNYT08PBQTEyM\nXnnlFSUnJyslJUWbNm26YR1/th8lqVGjRjp48GCe/VijRo18j4z7I29vb3Xp0kWLFy/Wxx9/rNq1\na6tRo0b5zt+6daueeeYZdejQwXozjV9//TXf+Y0aNVJqaqo8PDzy1Fi+fHnrvFq1amnEiBFav369\nunTpovnz5xeofgAAcPsQ1gEAgGIjPj5eOTk5uvfee7Vs2TIdPnxYBw4c0Jw5c6ynLtaoUUPZ2dl6\n88039csvv2jRokWaN29eobcVHh6u5ORkHTx4UL/++usNj/p66qmndPjwYY0aNUoHDx7UkiVLrDc6\nuKZmzZrasGGDtm3bpgMHDujJJ59UWlqadbxMmTLq16+fRo0apU2bNumHH35Qnz59/jQEGjZsmD78\n8EPNnz9fhw4d0qRJk7R//36bOVOmTNH06dM1Z84cHTp0SN9//73mz5+vN954o9D7w97atGmj1atX\na/Xq1frpp580aNAga+B6TXh4uL799lv997//tQZVzz77rDZu3KgXXnhBhw4d0sKFCzV37lzrzStW\nrVqlOXPmaO/evTp27Jg++ugj5ebm5nta8TPPPKOEhAS99tprOnz4sObOnauEhASbORMnTtRHH32k\nKVOmaP/+/Tpw4IA++eQTjR8/vlA99+jRQ6tXr9aHH36Y740lrqlZs6YWLVqkAwcOKDExUT169JCP\nj0++82NiYhQdHa3OnTtr/fr1SklJ0bZt2zRu3Djt3r1bv//+u4YMGaLNmzfr2LFj2rp1q3bt2qW6\ndesWqgcAAFD0COsAAECxUa1aNe3Zs0etW7fWs88+q3r16qldu3ZKSEjQ66+/Lklq0KCB3njjDb38\n8suqV6+eFi9erOnTpxd6WwMGDFDt2rXVuHFj3XHHHXmO5pKkqlWratmyZVqxYoUaNGigefPm6aWX\nXrKZM378eDVq1EixsbFq1aqVKlasqM6dO9vMefXVV3XfffepU6dOiomJUYsWLRQVFXXT+v7xj39o\nwoQJGj16tKKionTs2DENGjTIZk7//v31/vvva/78+apfv75atmypBQsWOMWRdU888YR69+6tXr16\nqWXLlqpWrZpat25tM2fq1KlKSUlR9erVdccdd0i6egTZ0qVL9cknn6hevXqaOHGipk6dqj59+ki6\nesrn8uXL1aZNG9WtW1fz5s3Txx9/rDvvvPOGdTRt2lTvvfeeZs+erQYNGmj9+vV5QrjY2FitWrVK\n69ev1z333KOmTZtq5syZCgsLK1TPbdq0UVBQkA4ePKjHHnvspnM/+OAD/fbbb2rUqJF69uypZ555\nRhUqVMh3vsVi0Zo1a3T//ferb9++qlWrlrp3765jx44pODhY7u7uOnPmjHr16qVatWqpW7duevDB\nBzVlypRC9QAAAIqexRTFxVkAAAAAFKmQkBC98MIL6t+/v6NLAQAAdsQNJgAAAIBi5NKlS9q6davS\n0tLyPWIQAAAUX5wGCwAAABQj7777rrp3767hw4dbr9UIAABKDk6DBQAAAAAAAJwER9YBAAAAAAAA\nToKwDgAAAAAAAHAShHUAAAAAAACAkyCsAwAAAAAAAJwEYR0AAAAAAADgJAjrAAAAAAAAACdBWAcA\nAAAAAAA4CcI6AAAAAAAAwEkQ1gEAAAAAAABO4v8CJ/+PikNj8boAAAAASUVORK5CYII=\n", "text/plain": [ "<matplotlib.figure.Figure at 0xbe73d10>" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "#Cambiamos la duracion a minutos\n", "trip['duration'] = trip['duration'].apply(lambda x: x/60)\n", "#Cantidad de viajes segun la duracion (en minutos). Visualizacion de la cantidad de viajes segun la duracion del viaje \n", "plt = trip['duration'].value_counts()[:20].plot('bar')\n", "plt.set_xlabel('Cantidad de minutos del viajes')\n", "plt.set_ylabel('Cantidad de viajes')\n", "plt.set_title('Cantidad de viajes dependiendo de su duracion')" ] }, { "cell_type": "code", "execution_count": 16, "metadata": { "collapsed": false }, "outputs": [ { "data": { "text/html": [ "<div>\n", "<table border=\"1\" class=\"dataframe\">\n", " <thead>\n", " <tr style=\"text-align: right;\">\n", " <th></th>\n", " <th>start_station_id</th>\n", " <th>name</th>\n", " <th>lat</th>\n", " <th>long</th>\n", " <th>dock_count</th>\n", " <th>city</th>\n", " <th>installation_date</th>\n", " </tr>\n", " </thead>\n", " <tbody>\n", " <tr>\n", " <th>0</th>\n", " <td>2</td>\n", " <td>San Jose Diridon Caltrain Station</td>\n", " <td>37.329732</td>\n", " <td>-121.901782</td>\n", " <td>27</td>\n", " <td>San Jose</td>\n", " <td>8/6/2013</td>\n", " </tr>\n", " <tr>\n", " <th>1</th>\n", " <td>3</td>\n", " <td>San Jose Civic Center</td>\n", " <td>37.330698</td>\n", " <td>-121.888979</td>\n", " <td>15</td>\n", " <td>San Jose</td>\n", " <td>8/5/2013</td>\n", " </tr>\n", " <tr>\n", " <th>2</th>\n", " <td>4</td>\n", " <td>Santa Clara at Almaden</td>\n", " <td>37.333988</td>\n", " <td>-121.894902</td>\n", " <td>11</td>\n", " <td>San Jose</td>\n", " <td>8/6/2013</td>\n", " </tr>\n", " <tr>\n", " <th>3</th>\n", " <td>5</td>\n", " <td>Adobe on Almaden</td>\n", " <td>37.331415</td>\n", " <td>-121.893200</td>\n", " <td>19</td>\n", " <td>San Jose</td>\n", " <td>8/5/2013</td>\n", " </tr>\n", " <tr>\n", " <th>4</th>\n", " <td>6</td>\n", " <td>San Pedro Square</td>\n", " <td>37.336721</td>\n", " <td>-121.894074</td>\n", " <td>15</td>\n", " <td>San Jose</td>\n", " <td>8/7/2013</td>\n", " </tr>\n", " <tr>\n", " <th>5</th>\n", " <td>7</td>\n", " <td>Paseo de San Antonio</td>\n", " <td>37.333798</td>\n", " <td>-121.886943</td>\n", " <td>15</td>\n", " <td>San Jose</td>\n", " <td>8/7/2013</td>\n", " </tr>\n", " <tr>\n", " <th>6</th>\n", " <td>8</td>\n", " <td>San Salvador at 1st</td>\n", " <td>37.330165</td>\n", " <td>-121.885831</td>\n", " <td>15</td>\n", " <td>San Jose</td>\n", " <td>8/5/2013</td>\n", " </tr>\n", " <tr>\n", " <th>7</th>\n", " <td>9</td>\n", " <td>Japantown</td>\n", " <td>37.348742</td>\n", " <td>-121.894715</td>\n", " <td>15</td>\n", " <td>San Jose</td>\n", " <td>8/5/2013</td>\n", " </tr>\n", " <tr>\n", " <th>8</th>\n", " <td>10</td>\n", " <td>San Jose City Hall</td>\n", " <td>37.337391</td>\n", " <td>-121.886995</td>\n", " <td>15</td>\n", " <td>San Jose</td>\n", " <td>8/6/2013</td>\n", " </tr>\n", " <tr>\n", " <th>9</th>\n", " <td>11</td>\n", " <td>MLK Library</td>\n", " <td>37.335885</td>\n", " <td>-121.885660</td>\n", " <td>19</td>\n", " <td>San Jose</td>\n", " <td>8/6/2013</td>\n", " </tr>\n", " </tbody>\n", "</table>\n", "</div>" ], "text/plain": [ " start_station_id name lat long \\\n", "0 2 San Jose Diridon Caltrain Station 37.329732 -121.901782 \n", "1 3 San Jose Civic Center 37.330698 -121.888979 \n", "2 4 Santa Clara at Almaden 37.333988 -121.894902 \n", "3 5 Adobe on Almaden 37.331415 -121.893200 \n", "4 6 San Pedro Square 37.336721 -121.894074 \n", "5 7 Paseo de San Antonio 37.333798 -121.886943 \n", "6 8 San Salvador at 1st 37.330165 -121.885831 \n", "7 9 Japantown 37.348742 -121.894715 \n", "8 10 San Jose City Hall 37.337391 -121.886995 \n", "9 11 MLK Library 37.335885 -121.885660 \n", "\n", " dock_count city installation_date \n", "0 27 San Jose 8/6/2013 \n", "1 15 San Jose 8/5/2013 \n", "2 11 San Jose 8/6/2013 \n", "3 19 San Jose 8/5/2013 \n", "4 15 San Jose 8/7/2013 \n", "5 15 San Jose 8/7/2013 \n", "6 15 San Jose 8/5/2013 \n", "7 15 San Jose 8/5/2013 \n", "8 15 San Jose 8/6/2013 \n", "9 19 San Jose 8/6/2013 " ] }, "execution_count": 16, "metadata": {}, "output_type": "execute_result" } ], "source": [ "#Cargamos los datos de station.csv y le cambiamos el nombre a una de sus columnas para un posterior procesamiento\n", "station = pd.read_csv('station.csv', low_memory=False)\n", "station.rename(columns={'id': 'start_station_id'}, inplace=True)\n", "station.head(10)" ] }, { "cell_type": "code", "execution_count": 18, "metadata": { "collapsed": false }, "outputs": [ { "data": { "text/html": [ "<div>\n", "<table border=\"1\" class=\"dataframe\">\n", " <thead>\n", " <tr style=\"text-align: right;\">\n", " <th></th>\n", " <th>id</th>\n", " <th>duration</th>\n", " <th>start_date</th>\n", " <th>start_station_name</th>\n", " <th>start_station_id</th>\n", " <th>end_date</th>\n", " <th>end_station_name</th>\n", " <th>end_station_id</th>\n", " <th>bike_id</th>\n", " <th>subscription_type</th>\n", " <th>zip_code</th>\n", " <th>start_date_without_time</th>\n", " <th>hora</th>\n", " <th>name</th>\n", " <th>lat</th>\n", " <th>long</th>\n", " <th>dock_count</th>\n", " <th>city</th>\n", " <th>installation_date</th>\n", " </tr>\n", " </thead>\n", " <tbody>\n", " <tr>\n", " <th>0</th>\n", " <td>4576</td>\n", " <td>1</td>\n", " <td>2013-08-29 14:13:00</td>\n", " <td>South Van Ness at Market</td>\n", " <td>66</td>\n", " <td>2013-08-29 14:14:00</td>\n", " <td>South Van Ness at Market</td>\n", " <td>66</td>\n", " <td>520</td>\n", " <td>Subscriber</td>\n", " <td>94127</td>\n", " <td>2013-08-29</td>\n", " <td>14</td>\n", " <td>South Van Ness at Market</td>\n", " <td>37.774814</td>\n", " <td>-122.418954</td>\n", " <td>19</td>\n", " <td>San Francisco</td>\n", " <td>8/23/2013</td>\n", " </tr>\n", " <tr>\n", " <th>1</th>\n", " <td>4299</td>\n", " <td>1</td>\n", " <td>2013-08-29 12:02:00</td>\n", " <td>South Van Ness at Market</td>\n", " <td>66</td>\n", " <td>2013-08-29 12:04:00</td>\n", " <td>Market at 10th</td>\n", " <td>67</td>\n", " <td>319</td>\n", " <td>Subscriber</td>\n", " <td>94103</td>\n", " <td>2013-08-29</td>\n", " <td>12</td>\n", " <td>South Van Ness at Market</td>\n", " <td>37.774814</td>\n", " <td>-122.418954</td>\n", " <td>19</td>\n", " <td>San Francisco</td>\n", " <td>8/23/2013</td>\n", " </tr>\n", " <tr>\n", " <th>2</th>\n", " <td>4760</td>\n", " <td>1</td>\n", " <td>2013-08-29 17:01:00</td>\n", " <td>South Van Ness at Market</td>\n", " <td>66</td>\n", " <td>2013-08-29 17:03:00</td>\n", " <td>South Van Ness at Market</td>\n", " <td>66</td>\n", " <td>553</td>\n", " <td>Subscriber</td>\n", " <td>94103</td>\n", " <td>2013-08-29</td>\n", " <td>17</td>\n", " <td>South Van Ness at Market</td>\n", " <td>37.774814</td>\n", " <td>-122.418954</td>\n", " <td>19</td>\n", " <td>San Francisco</td>\n", " <td>8/23/2013</td>\n", " </tr>\n", " <tr>\n", " <th>3</th>\n", " <td>5070</td>\n", " <td>2</td>\n", " <td>2013-08-29 21:43:00</td>\n", " <td>South Van Ness at Market</td>\n", " <td>66</td>\n", " <td>2013-08-29 21:46:00</td>\n", " <td>South Van Ness at Market</td>\n", " <td>66</td>\n", " <td>598</td>\n", " <td>Subscriber</td>\n", " <td>94115</td>\n", " <td>2013-08-29</td>\n", " <td>21</td>\n", " <td>South Van Ness at Market</td>\n", " <td>37.774814</td>\n", " <td>-122.418954</td>\n", " <td>19</td>\n", " <td>San Francisco</td>\n", " <td>8/23/2013</td>\n", " </tr>\n", " <tr>\n", " <th>4</th>\n", " <td>4765</td>\n", " <td>3</td>\n", " <td>2013-08-29 17:05:00</td>\n", " <td>South Van Ness at Market</td>\n", " <td>66</td>\n", " <td>2013-08-29 17:08:00</td>\n", " <td>Market at 10th</td>\n", " <td>67</td>\n", " <td>553</td>\n", " <td>Subscriber</td>\n", " <td>94103</td>\n", " <td>2013-08-29</td>\n", " <td>17</td>\n", " <td>South Van Ness at Market</td>\n", " <td>37.774814</td>\n", " <td>-122.418954</td>\n", " <td>19</td>\n", " <td>San Francisco</td>\n", " <td>8/23/2013</td>\n", " </tr>\n", " <tr>\n", " <th>5</th>\n", " <td>4560</td>\n", " <td>3</td>\n", " <td>2013-08-29 13:58:00</td>\n", " <td>South Van Ness at Market</td>\n", " <td>66</td>\n", " <td>2013-08-29 14:02:00</td>\n", " <td>San Francisco City Hall</td>\n", " <td>58</td>\n", " <td>438</td>\n", " <td>Subscriber</td>\n", " <td>94124</td>\n", " <td>2013-08-29</td>\n", " <td>13</td>\n", " <td>South Van Ness at Market</td>\n", " <td>37.774814</td>\n", " <td>-122.418954</td>\n", " <td>19</td>\n", " <td>San Francisco</td>\n", " <td>8/23/2013</td>\n", " </tr>\n", " <tr>\n", " <th>6</th>\n", " <td>4559</td>\n", " <td>4</td>\n", " <td>2013-08-29 13:58:00</td>\n", " <td>South Van Ness at Market</td>\n", " <td>66</td>\n", " <td>2013-08-29 14:02:00</td>\n", " <td>San Francisco City Hall</td>\n", " <td>58</td>\n", " <td>554</td>\n", " <td>Subscriber</td>\n", " <td>94115</td>\n", " <td>2013-08-29</td>\n", " <td>13</td>\n", " <td>South Van Ness at Market</td>\n", " <td>37.774814</td>\n", " <td>-122.418954</td>\n", " <td>19</td>\n", " <td>San Francisco</td>\n", " <td>8/23/2013</td>\n", " </tr>\n", " <tr>\n", " <th>7</th>\n", " <td>4584</td>\n", " <td>4</td>\n", " <td>2013-08-29 14:17:00</td>\n", " <td>South Van Ness at Market</td>\n", " <td>66</td>\n", " <td>2013-08-29 14:21:00</td>\n", " <td>South Van Ness at Market</td>\n", " <td>66</td>\n", " <td>587</td>\n", " <td>Subscriber</td>\n", " <td>94612</td>\n", " <td>2013-08-29</td>\n", " <td>14</td>\n", " <td>South Van Ness at Market</td>\n", " <td>37.774814</td>\n", " <td>-122.418954</td>\n", " <td>19</td>\n", " <td>San Francisco</td>\n", " <td>8/23/2013</td>\n", " </tr>\n", " <tr>\n", " <th>8</th>\n", " <td>5075</td>\n", " <td>5</td>\n", " <td>2013-08-29 21:47:00</td>\n", " <td>South Van Ness at Market</td>\n", " <td>66</td>\n", " <td>2013-08-29 21:52:00</td>\n", " <td>Civic Center BART (7th at Market)</td>\n", " <td>72</td>\n", " <td>598</td>\n", " <td>Subscriber</td>\n", " <td>94115</td>\n", " <td>2013-08-29</td>\n", " <td>21</td>\n", " <td>South Van Ness at Market</td>\n", " <td>37.774814</td>\n", " <td>-122.418954</td>\n", " <td>19</td>\n", " <td>San Francisco</td>\n", " <td>8/23/2013</td>\n", " </tr>\n", " <tr>\n", " <th>9</th>\n", " <td>4981</td>\n", " <td>6</td>\n", " <td>2013-08-29 19:41:00</td>\n", " <td>South Van Ness at Market</td>\n", " <td>66</td>\n", " <td>2013-08-29 19:47:00</td>\n", " <td>Market at 10th</td>\n", " <td>67</td>\n", " <td>632</td>\n", " <td>Subscriber</td>\n", " <td>94110</td>\n", " <td>2013-08-29</td>\n", " <td>19</td>\n", " <td>South Van Ness at Market</td>\n", " <td>37.774814</td>\n", " <td>-122.418954</td>\n", " <td>19</td>\n", " <td>San Francisco</td>\n", " <td>8/23/2013</td>\n", " </tr>\n", " </tbody>\n", "</table>\n", "</div>" ], "text/plain": [ " id duration start_date start_station_name \\\n", "0 4576 1 2013-08-29 14:13:00 South Van Ness at Market \n", "1 4299 1 2013-08-29 12:02:00 South Van Ness at Market \n", "2 4760 1 2013-08-29 17:01:00 South Van Ness at Market \n", "3 5070 2 2013-08-29 21:43:00 South Van Ness at Market \n", "4 4765 3 2013-08-29 17:05:00 South Van Ness at Market \n", "5 4560 3 2013-08-29 13:58:00 South Van Ness at Market \n", "6 4559 4 2013-08-29 13:58:00 South Van Ness at Market \n", "7 4584 4 2013-08-29 14:17:00 South Van Ness at Market \n", "8 5075 5 2013-08-29 21:47:00 South Van Ness at Market \n", "9 4981 6 2013-08-29 19:41:00 South Van Ness at Market \n", "\n", " start_station_id end_date end_station_name \\\n", "0 66 2013-08-29 14:14:00 South Van Ness at Market \n", "1 66 2013-08-29 12:04:00 Market at 10th \n", "2 66 2013-08-29 17:03:00 South Van Ness at Market \n", "3 66 2013-08-29 21:46:00 South Van Ness at Market \n", "4 66 2013-08-29 17:08:00 Market at 10th \n", "5 66 2013-08-29 14:02:00 San Francisco City Hall \n", "6 66 2013-08-29 14:02:00 San Francisco City Hall \n", "7 66 2013-08-29 14:21:00 South Van Ness at Market \n", "8 66 2013-08-29 21:52:00 Civic Center BART (7th at Market) \n", "9 66 2013-08-29 19:47:00 Market at 10th \n", "\n", " end_station_id bike_id subscription_type zip_code start_date_without_time \\\n", "0 66 520 Subscriber 94127 2013-08-29 \n", "1 67 319 Subscriber 94103 2013-08-29 \n", "2 66 553 Subscriber 94103 2013-08-29 \n", "3 66 598 Subscriber 94115 2013-08-29 \n", "4 67 553 Subscriber 94103 2013-08-29 \n", "5 58 438 Subscriber 94124 2013-08-29 \n", "6 58 554 Subscriber 94115 2013-08-29 \n", "7 66 587 Subscriber 94612 2013-08-29 \n", "8 72 598 Subscriber 94115 2013-08-29 \n", "9 67 632 Subscriber 94110 2013-08-29 \n", "\n", " hora name lat long dock_count \\\n", "0 14 South Van Ness at Market 37.774814 -122.418954 19 \n", "1 12 South Van Ness at Market 37.774814 -122.418954 19 \n", "2 17 South Van Ness at Market 37.774814 -122.418954 19 \n", "3 21 South Van Ness at Market 37.774814 -122.418954 19 \n", "4 17 South Van Ness at Market 37.774814 -122.418954 19 \n", "5 13 South Van Ness at Market 37.774814 -122.418954 19 \n", "6 13 South Van Ness at Market 37.774814 -122.418954 19 \n", "7 14 South Van Ness at Market 37.774814 -122.418954 19 \n", "8 21 South Van Ness at Market 37.774814 -122.418954 19 \n", "9 19 South Van Ness at Market 37.774814 -122.418954 19 \n", "\n", " city installation_date \n", "0 San Francisco 8/23/2013 \n", "1 San Francisco 8/23/2013 \n", "2 San Francisco 8/23/2013 \n", "3 San Francisco 8/23/2013 \n", "4 San Francisco 8/23/2013 \n", "5 San Francisco 8/23/2013 \n", "6 San Francisco 8/23/2013 \n", "7 San Francisco 8/23/2013 \n", "8 San Francisco 8/23/2013 \n", "9 San Francisco 8/23/2013 " ] }, "execution_count": 18, "metadata": {}, "output_type": "execute_result" } ], "source": [ "#Realizamos un join entre trip y station en base a la columna start_station_id\n", "arch_unidos = pd.merge(trip, station, on='start_station_id', how='inner')\n", "arch_unidos.head(10)" ] }, { "cell_type": "code", "execution_count": 19, "metadata": { "collapsed": false }, "outputs": [ { "data": { "text/plain": [ "<matplotlib.text.Text at 0xebd65f0>" ] }, "execution_count": 19, "metadata": {}, "output_type": "execute_result" }, { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAABPQAAAIuCAYAAAA4zFYcAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAAPYQAAD2EBqD+naQAAIABJREFUeJzs3XlYVnX+//EXIDve4AIiRajYKLi04KS4VpI4YmVp5cQk\nmooVjrnl0oJmFqVTLvVVokX8+q3fJNaYWmKWpmVEiqmEuaNohloEd2qCwPn90XDyFtD7Nhy8m+fj\nuu4r7s95n3Pe53Du+5JXZ3ExDMMQAAAAAAAAAKfgWt8NAAAAAAAAALAfgR4AAAAAAADgRAj0AAAA\nAAAAACdCoAcAAAAAAAA4EQI9AAAAAAAAwIkQ6AEAAAAAAABOhEAPAAAAAAAAcCIEegAAAAAAAIAT\nIdADAAAAAAAAnAiBHgAAcMjNN9+sm2+++aJ1n376qVxcXPTpp5/W2bqHDh2qFi1aXPL8LVq00NCh\nQ+usn8u93oMHD8rFxUXp6el13pOj0tPT5eLiooMHD9Z3K3Wipu2x99i+HKZPny4XF5fLvp7f+xk6\n33+q73NdjmPxciyzPo8nAMAfH4EeAABXsP3792vUqFFq1aqVvLy8ZLFY1K1bN82bN0+//PLLZVvv\nzp07NX369D9MeAMAAAD8kTSo7wYAAEDNPvjgA91zzz3y9PTUkCFD1L59e5WVlenzzz/XY489pry8\nPKWlpV2Wde/cuVNPP/20br755mpn83z00UeXZZ1/ZLt375arq+P/HzUsLEy//PKL3N3dL0NXOB/H\ntnN44IEHNHjwYHl6etZ3KwAA1BsCPQAArkD5+fkaPHiwwsLCtG7dOjVv3tyclpSUpH379umDDz6o\nl948PDzqZb3O7FKDBxcXF3l5edVxN6gNx7ZzcHNzk5ubW323AQBAveKSWwAArkCzZs3SyZMn9cYb\nb9iEeVVat26tRx991Hy/aNEi3XrrrQoKCpKnp6ciIyO1cOHCavO1aNFC/fv31+eff66bbrpJXl5e\natWqlf73f//XrElPT9c999wjSbrlllvk4uJicy+8mu4LdeTIEQ0YMEC+vr4KCgrSuHHjVFpaWm39\nn332me655x5dc8018vT0VGhoqMaNG1fj5cPLly9X+/bt5eXlpfbt2+tf//qXXftOkgzD0MyZM3X1\n1VfLx8dHt9xyi/Ly8mqsLS4u1tixYxUaGipPT0+1bt1aL7zwgiorKy+4jv79+6tVq1Y1TouOjlan\nTp3M9+ffQ6+oqEgTJ05Uhw4d5OfnJ4vFor/85S/avn27zXJqu4ferl27NGjQIDVu3FheXl7q1KmT\nVqxYYVNz9uxZPf3007r22mvl5eWlJk2aqHv37lq7du0Ft0uS8vLydOutt8rb21tXX321Zs6cWev+\nWL16tXr06CFfX181bNhQcXFx1fb10KFD5efnpwMHDig2Nla+vr4KCQnRjBkzZBiGTW1lZaXmzp2r\ndu3aycvLS82aNdOoUaP0008/2dTZcyw7uj01HdulpaWaNm2aWrdubR6zkyZNqnZ8u7i4aPTo0eZx\n6+npqXbt2ikzM7Paej7//HP9+c9/lpeXl8LDw/Xqq6/WuG/Ly8v1zDPPKDw8XJ6enmrRooUef/zx\nGj9bNbH3M2TvPreXvd9Htdm1a5fuvfdeBQYGytvbW23atNETTzxhTq/pfncuLi6aPn16tWXVdP9K\ne4+H999/X3FxcQoJCZGnp6fCw8P1zDPPqKKiolptWlqawsPD5e3trZtuukmfffaZ3dsLAMCl4Aw9\nAACuQCtXrlSrVq3UtWtXu+oXLlyodu3a6Y477lCDBg20cuVKPfLII6qsrFRSUpJN7b59+zRo0CAN\nHz5cCQkJevPNNzV06FBFRUWpXbt26tmzp8aMGaP58+fr8ccfV0REhCSZ/z3fL7/8ot69e6ugoEBj\nxoxRSEiIlixZonXr1lWrzcjI0OnTp/Xwww+rSZMm+uqrr/Tyyy/ryJEjysjIMOs++ugjDRw4UJGR\nkUpJSdGPP/6oYcOG6eqrr7ZrfyQnJ2vmzJnq16+f+vXrp61bt6pPnz4qKyuzqTt9+rR69eql7777\nTqNGjdI111yjL774QlOnTtX333+vuXPn1rqO++67T0OGDNHmzZv15z//2Rw/dOiQvvzyS82ePbvW\neQ8cOKDly5frnnvuUcuWLXXs2DG9+uqr6tWrl3bu3KmQkJBa583Ly1O3bt101VVXacqUKfL19dXS\npUs1YMAAvfvuu7rrrrsk/fqwgpSUFI0YMUI33XSTrFartmzZoq1bt+q2226rdfmFhYW65ZZbVF5e\nbi4/LS1N3t7e1WqXLFmihIQExcbG6oUXXtDp06e1cOFCde/eXV9//bXN5doVFRXq27evunTpolmz\nZikzM1PTpk1TeXm5ZsyYYdaNGjVK6enpGjZsmMaMGaP8/Hy98sor+vrrr7Vp0yaby48vdiw7uj3n\nq6ys1B133KHPP/9ciYmJioiIUG5urubMmaM9e/Zo+fLlNvWff/653nvvPT3yyCNq2LCh5s+fr4ED\nB6qgoEBNmjSRJOXm5qpPnz4KDAzU9OnTVV5ermnTpqlZs2bV1j9ixAgtXrxYgwYN0oQJE5Sdna2U\nlBR9++23Fw24HfkMObLP7eHI99H5duzYoR49esjd3V2JiYlq0aKF9u/fr5UrV+rZZ591qI+aOHI8\npKeny8/PT+PHj5efn5/WrVun5ORkWa1Wm8/3G2+8oVGjRqlr164aO3asDhw4oDvuuEONGzdWaGjo\n7+4ZAIAaGQAA4IpSUlJiSDLuvPNOu+c5ffp0tbHY2FijVatWNmNhYWGGJGPjxo3m2PHjxw1PT09j\nwoQJ5lhGRoYhyVi/fn215fbq1cvo1auX+X7u3LmGJGPp0qXm2KlTp4zWrVtXW0ZNfaakpBguLi7G\noUOHzLHrr7/eaN68uVFcXGyOffTRR4YkIywsrMZ9cO72eHh4GHFxcUZlZaU5/vjjjxuSjISEBHPs\nmWeeMXx9fY09e/bYLGPKlCmGm5ubUVBQUOt6SkpKqu03wzCMWbNmVduesLAwm/WeOXPGqKiosJkv\nPz/f8PT0NGbMmGEzJslYtGiROda7d2+jQ4cOxpkzZ8yxyspKo2vXrsa1115rjl133XVGXFxcrf3X\nZuzYsYYkIzs72xw7fvy44e/vb0gy8vPzDcMwjJ9//tkICAgwRo4caTN/YWGh4e/vbzOekJBgSDL+\n/ve/2/QcFxdneHh4GCdOnDAMwzA+++wzQ5Lx1ltv2SwzMzOz2ri9x7K922MY1Y/tJUuWGK6ursZn\nn31m009qaqohydi0aZM5Jsnw8PAw9u3bZ45t377dkGS8/PLL5tiAAQMMLy8vm+Nj586dhpubm3Hu\nP823bdtmSDJGjBhhs+6JEycakox169YZF2LvZ8iRfV6TadOmGef/SWHv91FNevbsaTRs2NBm/xiG\nYfNZXrRoUbXfnSRj2rRp1ZZ3/mfPkeOhpu0YNWqU4ePjY37+ysrKjKCgIOP66683SktLzbq0tDRD\nks3xBABAXeKSWwAArjBWq1WS1LBhQ7vnOffskpKSEv3www/q1auXDhw4oJKSEpvayMhI9ejRw3wf\nGBioNm3a6MCBA5fU74cffqjmzZtr0KBB5piPj48SExMv2OepU6f0ww8/qGvXrjIMQ19//bUk6fvv\nv9e2bduUkJAgf39/s/62225TZGTkRfv5+OOPVVZWpr///e9ycXExx8eOHVutNiMjQz169FCjRo30\nww8/mK+YmBhVVFRo48aNta6n6jLZpUuX2lw2+s4776hLly665pprap3X09PTfEhGRUWFfvzxR/n5\n+alNmzbaunVrrfMVFRVp3bp1uvfee/Xzzz+b/f7444+KjY3V3r179d1330mSAgIClJeXp71799a+\ns2rw4YcfqkuXLrrpppvMscDAQMXHx9vUrV27VsXFxfrrX/9qs+/c3NzUuXNnrV+/vtqyR48ebf5c\ndYlqWVmZPv74Y0m//j78/f1122232SwzKipKfn5+1ZZpz7Fs7/bUJCMjQxEREWrbtq1NP7feeqsk\nVesnJiZG4eHh5vuOHTvKYrGY/VRUVGjNmjUaMGCAzfERERGh2NhYm2V9+OGHkqTx48fbjE+YMEGS\nLngPTUc+Q47uc3s48n10rhMnTmjjxo168MEHq31+zv0s/x6OHA/nbkfV561Hjx46ffq0du3aJUna\nsmWLjh8/roceesjmHoxDhw612fcAANQ1LrkFAOAKY7FYJP36B6S9Nm3apGnTpikrK0unT5+2mVZS\nUmLzh2VNQVOjRo0u+X5Zhw4dUuvWrav9wd2mTZtqtQUFBUpOTtaKFSuqra/qD/1Dhw5Jkq699tpq\n818s8LrQ/IGBgWrUqJHN2N69e7Vjxw4FBgbWuKzjx49fcF333Xefli9frqysLHXt2lX79+9XTk7O\nBS/VlX69lHPevHlasGCB8vPzbe7JVXVpZk327dsnwzD01FNP6amnnqq156uuukozZszQnXfeqT/9\n6U9q3769+vbtqwceeEAdO3a8YG+HDh1S586dq42f//usCgqrwq3zVR3HVVxdXavdc/BPf/qTJJn3\nQtu7d69KSkoUFBRU67ady55j2d7tqcnevXv17bff2n18XKyfEydO6Jdffqn12K4K8ar6dnV1VevW\nrW3qgoODFRAQYB7nNXHkM+ToPreHI99H56oKPtu3b+/wOu3lyPGQl5enJ598UuvWrTP/R0uVi31f\nubu713qPTQAA6gKBHgAAVxiLxaKQkBB98803dtXv379fvXv3Vtu2bfXSSy8pNDRUHh4e+vDDDzVn\nzpxqN3uv7emQxnkPJ6hrFRUVuu2221RUVKTJkyerbdu28vX11XfffaehQ4de9CEUl0NlZaVuu+02\nTZo0qcbpVYFTbW6//Xb5+Pho6dKl6tq1q5YuXSpXV1fzoSK1ee655/TUU0/pwQcf1DPPPKPGjRvL\n1dVVY8eOveB+qJo2ceLEamd0VakKgHr27Kn9+/fr/fff10cffaTXX39dc+bMUWpqqkaMGHHB/uxR\n1cuSJUsUHBxcbXqDBo7/M7OyslJBQUF66623apx+frB2uY/lyspKdejQQS+99FKN08+/P9rl6Keu\nzkyrjaP7/GIc/T663Gp6gIU9iouL1atXL1ksFs2YMUPh4eHy8vLS1q1bNXny5Hr5vgIA4FwEegAA\nXIH69++vtLQ0ZWVlKTo6+oK1K1euVGlpqVasWGFzhtClXCpXxZEQISwsTN98840Mw7CZb/fu3TZ1\nubm52rNnjxYvXqwhQ4aY4+c/dTUsLEySarxU9Pxl1tZP1fznniFz4sSJamcFhoeH6+TJk4qJibno\ncmvi6+ur/v37KyMjQy+99JLeeecd9ejR44IPtZCkZcuW6ZZbbtEbb7xhM15cXKymTZvWOl/V9ri7\nu9vVc+PGjTVs2DANGzZMJ0+eVM+ePTV9+vQLBnphYWF27fuqS0uDgoLs6qWyslIHDhywCUn37Nkj\nSebDM8LDw/Xxxx+rW7dudj20wh72bk9NwsPDtX37dvXu3btOgrWqp7ba009YWJgqKyu1d+9emwfS\nHDt2TMXFxeZxXhNHPkN1vc9/z/dR1fFt7//MOFejRo1UXFxsM1ZWVqbvv//eZsze4+HTTz/Vjz/+\nqPfee089e/Y0x/Pz86stT/p1X597turZs2eVn5+v6667zuFtAQDAHtxDDwCAK9CkSZPk6+urESNG\n6NixY9Wm79+/X/PmzZP021lB554FVFJSokWLFl3y+n19fSWp2h/INenXr5+OHj2qZcuWmWOnT59W\nWlqaTV1NfRqGYW5HlebNm+v666/X4sWLbe63tXbtWu3cufOi/cTExMjd3V0vv/yyzbpqugz23nvv\nVVZWltasWVNtWnFxscrLyy+6vvvuu09Hjx7V66+/ru3bt+u+++676Dxubm7VztrKyMgw739Xm6Cg\nIN1888169dVXqwUV0q+hZZUff/zRZpqfn59at26t0tLSC66jX79++vLLL/XVV1/ZLPf8M7hiY2Nl\nsVj03HPP6ezZsxfspcorr7xi/mwYhl555RW5u7urd+/ekn79fVRUVOiZZ56pNm95ebldx+Olbk9N\n7r33Xn333Xd67bXXqk375ZdfdOrUKYd6cXNzU2xsrJYvX66CggJz/Ntvv612DPbr109S9eO26mzB\nuLi4WtfjyGeorvf57/k+CgwMVM+ePfXmm2/a7J/zl1eT8PDwave8TEtLq3aGnr3HQ03bUVZWpgUL\nFtjUderUSYGBgUpNTbV5inZ6evolHa8AANiLM/QAALgChYeH6+2339Z9992niIgIDRkyRO3bt1dZ\nWZm++OILZWRkaOjQoZKkPn36yMPDQ7fffrtGjRqlkydP6rXXXlNQUFCNoY89rr/+erm5uemFF15Q\nSUmJPD09deutt9Z4n62RI0fqlVde0ZAhQ5STk6PmzZtryZIl8vHxsalr27atwsPDNXHiRH333Xey\nWCx69913a7x3X0pKiuLi4tS9e3c9+OCDKioq0ssvv6x27drp5MmTF+w9MDBQEydOVEpKivr3769+\n/frp66+/1urVq6ud/fbYY49pxYoV6t+/v4YOHaqoqCidOnVKubm5WrZsmQ4ePHjBM+akXwOChg0b\nauLEiXJzc9PAgQMvWC/9egbmjBkzNGzYMHXt2lW5ubl666237Lrn1v/8z/+oe/fu6tChg0aOHKlW\nrVrp2LFjysrK0pEjR7R9+3ZJvz4w4uabb1ZUVJQaN26sLVu2aNmyZTYPpqjJpEmTtGTJEvXt21eP\nPvqofH19lZaWprCwMO3YscOss1gsWrhwoR544AHdeOONGjx4sAIDA1VQUKAPPvhA3bp1swnwvLy8\nlJmZqYSEBHXu3FmrV6/WBx98oMcff9y8rLNXr14aNWqUUlJStG3bNvXp00fu7u7au3evMjIyNG/e\nPJuHr9jD3u2pyQMPPKClS5fqoYce0vr169WtWzdVVFRo165dWrp0qdasWaNOnTo51M/TTz+tzMxM\n9ejRQ4888ojKy8vNY/vcfq677jolJCQoLS3NvPzzq6++0uLFizVgwADdcsstF1yPvZ+hut7nv/f7\naP78+erevbtuvPFGJSYmqmXLljp48KA++OADbdu2rdb5RowYoYceekgDBw7Ubbfdpu3bt2vNmjXV\nPr/2Hg9du3ZVo0aNlJCQoDFjxsjFxUVLliypFiy6u7tr5syZGjVqlG699Vbdd999ys/P16JFi7iH\nHgDg8vqPP1cXAADYbc+ePcbIkSONFi1aGB4eHoafn5/RpUsXY+7cucYvv/xi1q1YscLo2LGj4eXl\nZbRo0cJ44YUXjDfffNOQZOTn55t1YWFhRlxcXLX19OrVy+jVq5fN2GuvvWa0atXKcHNzMyQZ69ev\nr7X20KFDxh133GH4+PgYTZs2NR599FEjMzPTZj7DMIydO3caMTExhp+fn9G0aVNj5MiRxvbt2w1J\nxqJFi2yW+e677xoRERGGp6enERkZabz33ntGQkKCERYWdtH9VlFRYTz99NNG8+bNDW9vb+Pmm282\nvvnmGyMsLMxISEiwqf3555+NqVOnGq1btzY8PDyMpk2bGl27djX+8Y9/GGVlZRddl2EYRnx8vCHJ\niImJqXH6+es9c+aMMWHCBLO/bt26GVlZWdX2bX5+fo37Zv/+/caQIUOM4OBgw93d3bjqqquM/v37\nG8uWLTNrZs6cadx0001GQECA4e3tbbRt29Z49tln7dqmHTt2GL169TK8vLyMq666ynjmmWeMN954\no9rxZBiGsX79eiM2Ntbw9/c3vLy8jPDwcGPo0KHGli1bzJqEhATD19fX2L9/v9GnTx/Dx8fHaNas\nmTFt2jSjoqKi2vrT0tKMqKgow9vb22jYsKHRoUMHY9KkScbRo0dt9qm9x7K921PTvGVlZcYLL7xg\ntGvXzvD09DQaNWpkREVFGU8//bRRUlJi1kkykpKSqvVT0zG3YcMGIyoqyvDw8DBatWplpKamGtOm\nTTPO/6f52bNnjaefftpo2bKl4e7uboSGhhpTp041zpw5U209NXHkM2TPPq9JTX3b+31Um2+++ca4\n6667jICAAMPLy8to06aN8dRTT5nTFy1aVG1ZFRUVxuTJk42mTZsaPj4+RmxsrLFv374a97+9x8Om\nTZuMLl26GN7e3kZISIgxadIkY82aNdW+1wzDMBYsWGC0bNnS8PT0NDp16mRs3LixxuMJAIC64mIY\nl/kO2AAAALgk+/fvV+vWrbVkyRL97W9/q+92LtnQoUO1bNmyi55dCQAAAPtwDz0AAIArVNUlihe7\n7BcAAAD/XbiHHgAAwBXozTff1JtvvikfHx916dKlvtsBAADAFYQz9AAAAK5AiYmJKioqUkZGhgIC\nAuq7HQAAAFxBuIceAAAAAAAA4EQ4Qw8AAAAAAABwItxD7z+ssrJSR48eVcOGDeXi4lLf7QAAAAAA\nAKCeGIahn3/+WSEhIXJ1tf+8OwK9/7CjR48qNDS0vtsAAAAAAADAFeLw4cO6+uqr7a4n0PsPa9iw\noaRff1EWi6WeuwEAAAAAAEB9sVqtCg0NNfMiexHo/YdVXWZrsVgI9AAAAAAAAODwbdl4KAYAAAAA\nAADgRAj0AAAAAAAAACdCoAcAAAAAAAA4EQI9AAAAAAAAwIkQ6AEAAAAAAABOhEAPAAAAAAAAcCIE\negAAAAAAAIATIdADAAAAAAAAnAiBHgAAAAAAAOBECPQAAAAAAAAAJ0KgBwAAAAAAADgRAj0AAAAA\nAADAiRDoAQAAAAAAAE6EQA8AAAAAAABwIvUe6H333Xf629/+piZNmsjb21sdOnTQli1bzOmGYSg5\nOVnNmzeXt7e3YmJitHfvXptlnDlzRklJSWrSpIn8/Pw0cOBAHTt2zKamqKhI8fHxslgsCggI0PDh\nw3Xy5EmbmoKCAsXFxcnHx0dBQUF67LHHVF5eblOzY8cO9ejRQ15eXgoNDdWsWbPqeI8AAAAAAAAA\ntavXQO+nn35St27d5O7urtWrV2vnzp168cUX1ahRI7Nm1qxZmj9/vlJTU5WdnS1fX1/FxsbqzJkz\nZs24ceO0cuVKZWRkaMOGDTp69Kjuvvtum3XFx8crLy9Pa9eu1apVq7Rx40YlJiaa0ysqKhQXF6ey\nsjJ98cUXWrx4sdLT05WcnGzWWK1W9enTR2FhYcrJydHs2bM1ffp0paWlXca9BAAAAAAAAPzGxTAM\no75WPmXKFG3atEmfffZZjdMNw1BISIgmTJigiRMnSpJKSkrUrFkzpaena/DgwSopKVFgYKDefvtt\nDRo0SJK0a9cuRUREKCsrS126dNG3336ryMhIbd68WZ06dZIkZWZmql+/fjpy5IhCQkK0evVq9e/f\nX0ePHlWzZs0kSampqZo8ebJOnDghDw8PLVy4UE888YQKCwvl4eFhbsPy5cu1a9cuu7bZarXK399f\nJSUlslgsv2v/XelaTPmgvltAHTr4fFx9twAAAAAAwB/KpeZE9XqG3ooVK9SpUyfdc889CgoK0g03\n3KDXXnvNnJ6fn6/CwkLFxMSYY/7+/urcubOysrIkSTk5OTp79qxNTdu2bXXNNdeYNVlZWQoICDDD\nPEmKiYmRq6ursrOzzZoOHTqYYZ4kxcbGymq1Ki8vz6zp2bOnGeZV1ezevVs//fRTjdtYWloqq9Vq\n8wIAAAAAAAAuVb0GegcOHNDChQt17bXXas2aNXr44Yc1ZswYLV68WJJUWFgoSTYhW9X7qmlVZ8sF\nBARcsCYoKMhmeoMGDdS4cWObmprWc24f9tScLyUlRf7+/uYrNDT0YrsFAAAAAAAAqFW9BnqVlZW6\n8cYb9dxzz+mGG25QYmKiRo4cqdTU1Ppsq05NnTpVJSUl5uvw4cP13RIAAAAAAACcWL0Ges2bN1dk\nZKTNWEREhAoKCiRJwcHBklTtibXHjh0zpwUHB6usrEzFxcUXrDl+/LjN9PLychUVFdnU1LSec/uw\np+Z8np6eslgsNi8AAAAAAADgUtVroNetWzft3r3bZmzPnj0KCwuTJLVs2VLBwcH65JNPzOlWq1XZ\n2dmKjo6WJEVFRcnd3d2mZvfu3SooKDBroqOjVVxcrJycHLNm3bp1qqysVOfOnc2a3Nxcm+Bv7dq1\nslgsZugYHR2tjRs36uzZszY1bdq0sXkyLwAAAAAAAHC51GugN27cOH355Zd67rnntG/fPr399ttK\nS0tTUlKSJMnFxUVjx47VzJkztWLFCuXm5mrIkCEKCQnRgAEDJP36kIzhw4dr/PjxWr9+vXJycjRs\n2DBFR0erS5cukn49669v374aOXKkvvrqK23atEmjR4/W4MGDFRISIknq06ePIiMj9cADD2j79u1a\ns2aNnnzySSUlJcnT01OSdP/998vDw0PDhw9XXl6e3nnnHc2bN0/jx4+vh70HAAAAAACA/0YN6nPl\nf/7zn/Wvf/1LU6dO1YwZM9SyZUvNnTtX8fHxZs2kSZN06tQpJSYmqri4WN27d1dmZqa8vLzMmjlz\n5sjV1VUDBw5UaWmpYmNjtWDBApt1vfXWWxo9erR69+5t1s6fP9+c7ubmplWrVunhhx9WdHS0fH19\nlZCQoBkzZpg1/v7++uijj5SUlKSoqCg1bdpUycnJSkxMvIx7CQAAAAAAAPiNi2EYRn038d/EarXK\n399fJSUlf/j76bWY8kF9t4A6dPD5uPpuAQAAAACAP5RLzYnq9ZJbAAAAAAAAAI4h0AMAAAAAAACc\nCIEeAAAAAAAA4EQI9AAAAAAAAAAnQqAHAAAAAAAAOBECPQAAAAAAAMCJEOgBAAAAAAAAToRADwAA\nAAAAAHAiBHoAAAAAAACAEyHQAwAAAAAAAJwIgR4AAAAAAADgRAj0AAAAAAAAACdCoAcAAAAAAAA4\nEQI9AAAAAAAAwIkQ6AEAAAAAAABOhEAPAAAAAAAAcCIEegAAAAAAAIATIdADAAAAAAAAnAiBHgAA\nAAAAAOBECPQAAAAAAAAAJ0KgBwAAAAAAADgRAj0AAAAAAADAiRDoAQAAAAAAAE6EQA8AAAAAAABw\nIgR6AADp+60LAAAgAElEQVQAAAAAgBMh0AMAAAAAAACcCIEeAAAAAAAA4EQI9AAAAAAAAAAnQqAH\nAAAAAAAAOBECPQAAAAAAAMCJEOgBAAAAAAAAToRADwAAAAAAAHAiBHoAAAAAAACAEyHQAwAAAAAA\nAJwIgR4AAAAAAADgRAj0AAAAAAAAACdCoAcAAAAAAAA4EQI9AAAAAAAAwIkQ6AEAAAAAAABOhEAP\nAAAAAAAAcCIEegAAAAAAAIATIdADAAAAAAAAnAiBHgAAAAAAAOBECPQAAAAAAAAAJ0KgBwAAAAAA\nADgRAj0AAAAAAADAiRDoAQAAAAAAAE6EQA8AAAAAAABwIgR6AAAAAAAAgBMh0AMAAAAAAACcSL0G\netOnT5eLi4vNq23btuZ0wzCUnJys5s2by9vbWzExMdq7d6/NMs6cOaOkpCQ1adJEfn5+GjhwoI4d\nO2ZTU1RUpPj4eFksFgUEBGj48OE6efKkTU1BQYHi4uLk4+OjoKAgPfbYYyovL7ep2bFjh3r06CEv\nLy+FhoZq1qxZdbxHAAAAAAAAgAur9zP02rVrp++//958ff755+a0WbNmaf78+UpNTVV2drZ8fX0V\nGxurM2fOmDXjxo3TypUrlZGRoQ0bNujo0aO6++67bdYRHx+vvLw8rV27VqtWrdLGjRuVmJhoTq+o\nqFBcXJzKysr0xRdfaPHixUpPT1dycrJZY7Va1adPH4WFhSknJ0ezZ8/W9OnTlZaWdhn3DgAAAAAA\nAGDLxTAMo75WPn36dC1fvlzbtm2rNs0wDIWEhGjChAmaOHGiJKmkpETNmjVTenq6Bg8erJKSEgUG\nBurtt9/WoEGDJEm7du1SRESEsrKy1KVLF3377beKjIzU5s2b1alTJ0lSZmam+vXrpyNHjigkJESr\nV69W//79dfToUTVr1kySlJqaqsmTJ+vEiRPy8PDQwoUL9cQTT6iwsFAeHh6SpClTpmj58uXatWuX\n3dtstVrl7++vkpISWSyW37X/rnQtpnxQ3y2gDh18Pq6+WwAAAAAA4A/lUnOiej9Db+/evQoJCVGr\nVq0UHx+vgoICSVJ+fr4KCwsVExNj1vr7+6tz587KysqSJOXk5Ojs2bM2NW3bttU111xj1mRlZSkg\nIMAM8yQpJiZGrq6uys7ONms6dOhghnmSFBsbK6vVqry8PLOmZ8+eZphXVbN792799NNPtW5faWmp\nrFarzQsAAAAAAAC4VPUa6HXu3Fnp6enKzMzUwoULlZ+frx49eujnn39WYWGhJNmEbFXvq6ZVnS0X\nEBBwwZqgoCCb6Q0aNFDjxo1tampaT9U0e2tqkpKSIn9/f/MVGhp6kb0CAAAAAAAA1K5Bfa78L3/5\ni/lzx44d1blzZ4WFhWnp0qWKiIiox87qztSpUzV+/HjzvdVqJdQDAAAAAADAJav3S27PFRAQoD/9\n6U/at2+fgoODJanaE2uPHTtmTgsODlZZWZmKi4svWHP8+HGb6eXl5SoqKrKpqWk9VdPsramJp6en\nLBaLzQsAAAAAAAC4VFdUoHfy5Ent27dPzZs3V8uWLRUcHKxPPvnEnG61WpWdna3o6GhJUlRUlNzd\n3W1qdu/erYKCArMmOjpaxcXFysnJMWvWrVunyspKde7c2azJzc21Cf7Wrl0ri8WiyMhIs2bjxo06\ne/asTU2bNm3UqFGjy7A3AAAAAAAAgOrqNdCbOHGiNmzYoIMHD+qLL77QXXfdpQYNGuivf/2rXFxc\nNHbsWM2cOVMrVqxQbm6uhgwZopCQEA0YMEDSrw/JGD58uMaPH6/169crJydHw4YNU3R0tLp06SJJ\nioiIUN++fTVy5Eh99dVX2rRpk0aPHq3BgwcrJCREktSnTx9FRkbqgQce0Pbt27VmzRo9+eSTSkpK\nkqenpyTp/vvvl4eHh4YPH668vDy98847mjdvns3ltAAAAAAAAMDlVq/30Dty5Ij++te/6scff1Rg\nYKC6d++uL7/8UoGBgZKkSZMm6dSpU0pMTFRxcbG6d++uzMxMeXl5mcuYM2eOXF1dNXDgQJWWlio2\nNlYLFiywWc9bb72l0aNHq3fv3mbt/Pnzzelubm5atWqVHn74YUVHR8vX11cJCQmaMWOGWePv76+P\nPvpISUlJioqKUtOmTZWcnKzExMTLvJcAAAAAAACA37gYhmHUdxP/TaxWq/z9/VVSUvKHv59eiykf\n1HcLqEMHn4+r7xYAAAAAAPhDudSc6Iq6hx4AAAAAAACACyPQAwAAAAAAAJwIgR4AAAAAAADgRAj0\nAAAAAAAAACdCoAcAAAAAAAA4EQI9AAAAAAAAwIkQ6AEAAAAAAABOhEAPAAAAAAAAcCIEegAAAAAA\nAIATIdADAAAAAAAAnAiBHgAAAAAAAOBECPQAAAAAAAAAJ0KgBwAAAAAAADgRAj0AAAAAAADAiRDo\nAQAAAAAAAE6EQA8AAAAAAABwIgR6AAAAAAAAgBMh0AMAAAAAAACcCIEeAAAAAAAA4EQI9AAAAAAA\nAAAnQqAHAAAAAAAAOBECPQAAAAAAAMCJEOgBAAAAAAAAToRADwAAAAAAAHAiBHoAAAAAAACAEyHQ\nAwAAAAAAAJwIgR4AAAAAAADgRAj0AAAAAAAAACdCoAcAAAAAAAA4EQI9AAAAAAAAwIkQ6AEAAAAA\nAABOhEAPAAAAAAAAcCIEegAAAAAAAIATIdADAAAAAAAAnAiBHgAAAAAAAOBECPQAAAAAAAAAJ0Kg\nBwAAAAAAADgRAj0AAAAAAADAiRDoAQAAAAAAAE6EQA8AAAAAAABwIgR6AAAAAAAAgBMh0AMAAAAA\nAACciMOB3tatW5Wbm2u+f//99zVgwAA9/vjjKisrq9PmAAAAAAAAANhyONAbNWqU9uzZI0k6cOCA\nBg8eLB8fH2VkZGjSpEl13iAAAAAAAACA3zgc6O3Zs0fXX3+9JCkjI0M9e/bU22+/rfT0dL377rt1\n3iAAAAAAAACA3zgc6BmGocrKSknSxx9/rH79+kmSQkND9cMPP9RtdwAAAAAAAABsOBzoderUSTNn\nztSSJUu0YcMGxcXFSZLy8/PVrFmzOm8QAAAAAAAAwG8cDvTmzp2rrVu3avTo0XriiSfUunVrSdKy\nZcvUtWvXOm8QAAAAAAAAwG8aODpDx44dbZ5yW2X27Nlyc3Ork6YAAAAAAAAA1MzhM/Qkqbi4WK+/\n/rqmTp2qoqIiSdLOnTt1/PjxOm0OAAAAAAAAgC2HA70dO3bo2muv1QsvvKB//OMfKi4uliS99957\nmjp16iU38vzzz8vFxUVjx441xwzDUHJyspo3by5vb2/FxMRo7969NvOdOXNGSUlJatKkifz8/DRw\n4EAdO3bMpqaoqEjx8fGyWCwKCAjQ8OHDdfLkSZuagoICxcXFycfHR0FBQXrsscdUXl5ebdt79Ogh\nLy8vhYaGatasWZe8vQAAAAAAAMClcDjQGz9+vIYNG6a9e/fKy8vLHO/Xr582btx4SU1s3rxZr776\nqjp27GgzPmvWLM2fP1+pqanKzs6Wr6+vYmNjdebMGbNm3LhxWrlypTIyMrRhwwYdPXpUd999t81y\n4uPjlZeXp7Vr12rVqlXauHGjEhMTzekVFRWKi4tTWVmZvvjiCy1evFjp6elKTk42a6xWq/r06aOw\nsDDl5ORo9uzZmj59utLS0i5pmwEAAAAAAIBL4WIYhuHIDP7+/tq6davCw8PVsGFDbd++Xa1atdKh\nQ4fUpk0bm7DNHidPntSNN96oBQsWaObMmbr++us1d+5cGYahkJAQTZgwQRMnTpQklZSUqFmzZkpP\nT9fgwYNVUlKiwMBAvf322xo0aJAkadeuXYqIiFBWVpa6dOmib7/9VpGRkdq8ebM6deokScrMzFS/\nfv105MgRhYSEaPXq1erfv7+OHj1qPqk3NTVVkydP1okTJ+Th4aGFCxfqiSeeUGFhoTw8PCRJU6ZM\n0fLly7Vr165at6+0tFSlpaXme6vVqtDQUJWUlMhisTi0r5xNiykf1HcLqEMHn4+r7xYAAAAAAPhD\nsVqt8vf3dzgncvgMPU9PT1mt1mrje/bsUWBgoKOLU1JSkuLi4hQTE2Mznp+fr8LCQptxf39/de7c\nWVlZWZKknJwcnT171qambdu2uuaaa8yarKwsBQQEmGGeJMXExMjV1VXZ2dlmTYcOHcwwT5JiY2Nl\ntVqVl5dn1vTs2dMM86pqdu/erZ9++qnW7UtJSZG/v7/5Cg0NdXgfAQAAAAAAAFUcDvTuuOMOzZgx\nQ2fPnpUkubi4qKCgQJMnT9bAgQMdWtY///lPbd26VSkpKdWmFRYWSpJNyFb1vmpa1dlyAQEBF6wJ\nCgqymd6gQQM1btzYpqam9Zzbhz01NZk6dapKSkrM1+HDh2utBQAAAAAAAC7G4UDvxRdf1MmTJxUU\nFKRffvlFvXr1UuvWrdWwYUM9++yzdi/n8OHDevTRR/XWW2/Z3Ivvj8bT01MWi8XmBQAAAAAAAFyq\nBo7O4O/vr7Vr1+rzzz/Xjh07zHvgnX/J7MXk5OTo+PHjuvHGG82xiooKbdy4Ua+88op2794tSTp2\n7JiaN29u1hw7dkzXX3+9JCk4OFhlZWUqLi62OUvv2LFjCg4ONmuOHz9us+7y8nIVFRXZ1Hz11Vc2\nNVVPyj235vyn555fAwAAAAAAAFxuDp+hV6V79+565JFHNGnSJIfDPEnq3bu3cnNztW3bNvPVqVMn\nxcfHa9u2bWrVqpWCg4P1ySefmPNYrVZlZ2crOjpakhQVFSV3d3ebmt27d6ugoMCsiY6OVnFxsXJy\ncsyadevWqbKyUp07dzZrcnNzbYK/tWvXymKxKDIy0qzZuHGjealxVU2bNm3UqFEjh7cfAAAAAAAA\nuBR2naE3f/58JSYmysvLS/Pnz79grZ+fn9q1a2eGZbVp2LCh2rdvbzPm6+urJk2amONjx47VzJkz\nde2116ply5Z66qmnFBISogEDBkj69WzB4cOHa/z48WrcuLEsFov+/ve/Kzo6Wl26dJEkRUREqG/f\nvho5cqRSU1N19uxZjR49WoMHD1ZISIgkqU+fPoqMjNQDDzygWbNmqbCwUE8++aSSkpLk6ekpSbr/\n/vv19NNPa/jw4Zo8ebK++eYbzZs3T3PmzLFnFwIAAAAAAAB1wq5Ab86cOYqPj5eXl9dFA6zS0lId\nP35c48aN0+zZs39Xc5MmTdKpU6eUmJio4uJide/eXZmZmTb33JszZ45cXV01cOBAlZaWKjY2VgsW\nLLBZzltvvaXRo0erd+/eZu25waSbm5tWrVqlhx9+WNHR0fL19VVCQoJmzJhh1vj7++ujjz5SUlKS\noqKi1LRpUyUnJysxMfF3bSMAAAAAAADgCBfDMIy6XujatWt1//3368SJE3W9aKdntVrl7++vkpKS\nP/wDMlpM+aC+W0AdOvh8XH23AAAAAADAH8ql5kSXfA+9C+nevbuefPLJy7FoAAAAAAAA4L+aw0+5\nlaRTp05pw4YNKigoUFlZmc20MWPGyNvbW48++midNAgAAAAAAADgNw4Hel9//bX69eun06dP69Sp\nU2rcuLF++OEH+fj4KCgoSGPGjLkcfQIAAAAAAADQJVxyO27cON1+++366aef5O3trS+//FKHDh1S\nVFSU/vGPf1yOHgEAAAAAAAD8m8OB3rZt2zRhwgS5urrKzc1NpaWlCg0N1axZs/T4449fjh4BAAAA\nAAAA/JvDgZ67u7tcXX+dLSgoSAUFBZIkf39/HT58uG67AwAAAAAAAGDD4Xvo3XDDDdq8ebOuvfZa\n9erVS8nJyfrhhx+0ZMkStW/f/nL0CAAAAAAAAODfHD5D77nnnlPz5s0lSc8++6waNWqkhx9+WCdO\nnFBaWlqdNwgAAAAAAADgNw6fodepUyfz56CgIGVmZtZpQwAAAAAAAABq5/AZegAAAAAAAADqj11n\n6N1444365JNP1KhRI91www1ycXGptXbr1q111hwAAAAAAAAAW3YFenfeeac8PT3Nny8U6AEAAAAA\nAAC4fOwK9KZNm2b+PH369MvVCwAAAAAAAICLcPgeeiNGjNCnn356GVoBAAAAAAAAcDEOB3onTpxQ\n3759FRoaqscee0zbt2+/HH0BAAAAAAAAqIHDgd7777+v77//Xk899ZQ2b96sG2+8Ue3atdNzzz2n\ngwcPXoYWAQAAAAAAAFRxONCTpEaNGikxMVGffvqpDh06pKFDh2rJkiVq3bp1XfcHAAAAAAAA4ByX\nFOhVOXv2rLZs2aLs7GwdPHhQzZo1q6u+AAAAAAAAANTgkgK99evXa+TIkWrWrJmGDh0qi8WiVatW\n6ciRI3XdHwAAAAAAAIBzNHB0hquuukpFRUXq27ev0tLSdPvtt8vT0/Ny9AYAAAAAAADgPA4HetOn\nT9c999yjgICAy9EPAAAAAAAAgAtwONAbOXLk5egDAAAAAAAAgB1+10MxAAAAAAAAAPxnEegBAAAA\nAAAAToRADwAAAAAAAHAiBHoAAAAAAACAE7mkQG/JkiXq1q2bQkJCdOjQIUnS3Llz9f7779dpcwAA\nAAAAAABsORzoLVy4UOPHj1e/fv1UXFysiooKSVJAQIDmzp1b5w0CAAAAAAAA+I3Dgd7LL7+s1157\nTU888YTc3NzM8U6dOik3N7dOmwMAAAAAAABgy+FALz8/XzfccEO1cU9PT506dapOmgIAAAAAAABQ\nM4cDvZYtW2rbtm3VxjMzMxUREVEnTQEAAAAAAACoWQNHZxg/frySkpJ05swZGYahr776Sv/v//0/\npaSk6PXXX78cPQIAAAAAAAD4N4cDvREjRsjb21tPPvmkTp8+rfvvv18hISGaN2+eBg8efDl6BAAA\nAAAAAPBvDgd6khQfH6/4+HidPn1aJ0+eVFBQUF33BQAAAAAAAKAGlxToVfHx8ZGPj09d9QIAAAAA\nAADgIuwK9G644Qa5uLjYtcCtW7f+roYAAAAAAAAA1M6uQG/AgAHmz2fOnNGCBQsUGRmp6OhoSdKX\nX36pvLw8PfLII5enSwAAAAAAAACS7Az0pk2bZv48YsQIjRkzRs8880y1msOHD9dtdwAAAAAAAABs\nuDo6Q0ZGhoYMGVJt/G9/+5vefffdOmkKAAAAAAAAQM0cDvS8vb21adOmauObNm2Sl5dXnTQFAAAA\nAAAAoGYOP+V27Nixevjhh7V161bddNNNkqTs7Gy9+eabeuqpp+q8QQAAAAAAAAC/cTjQmzJlilq1\naqV58+bp//7v/yRJERERWrRoke699946bxAAAAAAAADAbxwO9CTp3nvvJbwDAAAAAAAA6oHD99AD\nAAAAAAAAUH8I9AAAAAAAAAAnQqAHAAAAAAAAOBECPQAAAAAAAMCJEOgBAAAAAAAATsSup9yOHz/e\n7gW+9NJLl9wMAAAAAAAAgAuzK9D7+uuvbd5v3bpV5eXlatOmjSRpz549cnNzU1RUVN13CAAAAAAA\nAMBk1yW369evN1+33367evXqpSNHjmjr1q3aunWrDh8+rFtuuUVxcXEOrXzhwoXq2LGjLBaLLBaL\noqOjtXr1anO6YRhKTk5W8+bN5e3trZiYGO3du9dmGWfOnFFSUpKaNGkiPz8/DRw4UMeOHbOpKSoq\nUnx8vCwWiwICAjR8+HCdPHnSpqagoEBxcXHy8fFRUFCQHnvsMZWXl9vU7NixQz169JCXl5dCQ0M1\na9Ysh7YXAAAAAAAA+L0cvofeiy++qJSUFDVq1Mgca9SokWbOnKkXX3zRoWVdffXVev7555WTk6Mt\nW7bo1ltv1Z133qm8vDxJ0qxZszR//nylpqYqOztbvr6+io2N1ZkzZ8xljBs3TitXrlRGRoY2bNig\no0eP6u6777ZZT3x8vPLy8rR27VqtWrVKGzduVGJiojm9oqJCcXFxKisr0xdffKHFixcrPT1dycnJ\nZo3ValWfPn0UFhamnJwczZ49W9OnT1daWppD2wwAAAAAAAD8Hi6GYRiOzNCwYUOtXLlSN998s834\n+vXrdccdd+jnn3/+XQ01btxYs2fP1oMPPqiQkBBNmDBBEydOlCSVlJSoWbNmSk9P1+DBg1VSUqLA\nwEC9/fbbGjRokCRp165dioiIUFZWlrp06aJvv/1WkZGR2rx5szp16iRJyszMVL9+/XTkyBGFhIRo\n9erV6t+/v44ePapmzZpJklJTUzV58mSdOHFCHh4eWrhwoZ544gkVFhbKw8NDkjRlyhQtX75cu3bt\nqnV7SktLVVpaar63Wq0KDQ1VSUmJLBbL79pXV7oWUz6o7xZQhw4+79gZuAAAAAAA4MKsVqv8/f0d\nzokcPkPvrrvu0rBhw/Tee+/pyJEjOnLkiN59910NHz682plxjqioqNA///lPnTp1StHR0crPz1dh\nYaFiYmLMGn9/f3Xu3FlZWVmSpJycHJ09e9ampm3btrrmmmvMmqysLAUEBJhhniTFxMTI1dVV2dnZ\nZk2HDh3MME+SYmNjZbVazbMFs7Ky1LNnTzPMq6rZvXu3fvrpp1q3KyUlRf7+/uYrNDT0kvcRAAAA\nAAAA4HCgl5qaqr/85S+6//77FRYWprCwMN1///3q27evFixY4HADubm58vPzk6enpx566CH961//\nUmRkpAoLCyXJJmSrel81repsuYCAgAvWBAUF2Uxv0KCBGjdubFNT03qqptlbU5OpU6eqpKTEfB0+\nfPgiewQAAAAAAAConV1PuT2Xj4+PFixYoNmzZ2v//v2SpPDwcPn6+l5SA23atNG2bdtUUlKiZcuW\nKSEhQRs2bLikZV2JPD095enpWd9tAAAAAAAA4A/C4TP0qvj6+qpjx47q2LHjJYd5kuTh4aHWrVsr\nKipKKSkpuu666zRv3jwFBwdLUrUn1h47dsycFhwcrLKyMhUXF1+w5vjx4zbTy8vLVVRUZFNT03qq\nptlbAwAAAAAAAFxulxTobdmyRZMmTdLgwYN1991327x+r8rKSpWWlqply5YKDg7WJ598Yk6zWq3K\nzs5WdHS0JCkqKkru7u42Nbt371ZBQYFZEx0dreLiYuXk5Jg169atU2VlpTp37mzW5Obm2gR/a9eu\nlcViUWRkpFmzceNGnT171qamTZs2Nk/8xf9n787DazwT/49/TiKJLRuVRIhdSRCMNfZtbEE1OkOr\nlkzQJbnaSrWilqILw2hQWm3VNmVQLYopVYLap0GCEVtDbAmVJiGxJuf3h3G+PUKb0194cpz367rO\ndZ3cz32ST077NM0nz/3cAAAAAAAAeJhsLvSWLl2qFi1a6MiRI1q5cqVu3bqlw4cPa/PmzfL09LTp\nc40aNUrbtm3TqVOndPDgQY0aNUpbtmxR//79ZTKZ9Nprr+ndd9/VN998o4MHD2rgwIHy9/dX7969\nJd3ZJCMiIkLR0dGKi4tTfHy8wsPDFRISoubNm0uSAgMD1bVrVw0dOlR79+7Vjh07FBUVpX79+snf\n31+S1LlzZwUFBWnAgAFKSEjQhg0bNGbMGEVGRlqWyz733HNydXVVRESEDh8+rGXLlmnGjBmKjo62\n9S0EAAAAAAAA/jCb76H3/vvvKzY2VpGRkXJ3d9eMGTNUtWpVvfDCCypfvrxNn+vixYsaOHCgLly4\nIE9PTwUHB2vDhg3685//LEl68803lZ2drWHDhikjI0OtWrXS+vXrVbx4ccvniI2NlZOTk/r06aMb\nN26oS5cu+TbnWLx4saKiotSxY0fL3JkzZ1qOOzs7a+3atXrppZcUEhKiUqVKadCgQZo4caJljqen\np7777jtFRkaqUaNGeuKJJzRu3DgNGzbM1rcQAAAAAAAA+MNMZrPZbMsLSpUqpcOHD6tKlSoqW7as\ntmzZonr16unIkSPq0KGDLly48LCyPhaysrLk6empzMxMeXh4GB3noaoSs87oCChEpyaHGh0BAAAA\nAIDHyh/tiWxecuvt7a0rV65IkipUqKBDhw5JkjIyMpSTk2PrpwMAAAAAAABgA5uX3LZp00YbN25U\nvXr19Je//EWvvvqqNm/erI0bN6pjx44PIyMAAAAAAACA/7G50Js1a5auX78uSRo9erRcXFy0c+dO\n9enTR2PGjCn0gAAAAAAAAAD+j82FXpkyZSzPnZycFBMTU6iBAAAAAAAAADxYgQq9rKysAn/Cx32j\nBwAAAAAAAMBIBSr0vLy8ZDKZCvQJc3Nz/78CAQAAAAAAAHiwAhV6cXFxluenTp1STEyMBg8erJCQ\nEEnSrl27tHDhQk2aNOnhpAQAAAAAAAAgqYCFXtu2bS3PJ06cqA8++EDPPvusZaxXr16qV6+ePv30\nUw0aNKjwUwIAAAAAAACQJDnZ+oJdu3apcePG+cYbN26svXv3FkooAAAAAAAAAPdnc6EXEBCgzz77\nLN/43LlzFRAQUCihAAAAAAAAANxfgZbc/lpsbKz69Omjb7/9Vs2aNZMk7d27V8ePH9dXX31V6AEB\nAAAAAAAA/B+br9Dr3r27jh07pp49eyo9PV3p6enq2bOnjh07pu7duz+MjAAAAAAAAAD+x+Yr9KQ7\ny27ff//9ws4CAAAAAAAA4HcUqNBLTExU3bp15eTkpMTExN+cGxwcXCjBAAAAAAAAAORXoEKvQYMG\nSk1NlY+Pjxo0aCCTySSz2ZxvnslkUm5ubqGHBAAAAAAAAHBHgQq95ORklStXzvIcAAAAAAAAgDEK\nVOhVrlzZ8vz06dNq0aKFihWzfunt27e1c+dOq7kAAAAAAAAACpfNu9y2b99e6enp+cYzMzPVvn37\nQgkFAAAAAAAA4P5sLvTMZrNMJlO+8cuXL6tUqVKFEgoAAAAAAADA/RVoya0khYWFSbqz8cXgwYPl\n5uZmOZabm6vExES1aNGi8BMCAAAAAAAAsChwoefp6SnpzhV67u7uKlGihOWYq6urmjdvrqFDhxZ+\nQgAAAAAAAAAWBS705s+fL0mqUqWKRowYwfJaAAAAAAAAwAAFLvTuevvttx9GDgAAAAAAAAAFYPOm\nGKsMafkAACAASURBVGlpaRowYID8/f1VrFgxOTs7Wz0AAAAAAAAAPDw2X6E3ePBgpaSkaOzYsSpf\nvvx9d7wFAAAAAAAA8HDYXOht375dP/zwgxo0aPAw8gAAAAAAAAD4DTYvuQ0ICJDZbH4YWQAAAAAA\nAAD8DpsLvenTpysmJkanTp16CHEAAAAAAAAA/Babl9z27dtXOTk5ql69ukqWLCkXFxer4+np6YUW\nDgAAAAAAAIA1mwu96dOnP4wcAAAAAAAAAArA5kJv0KBBDyMHAAAAAAAAgAKwudD7tevXr+vmzZtW\nYx4eHv9fgQAAAAAAAAA8mM2bYmRnZysqKko+Pj4qVaqUvL29rR4AAAAAAAAAHh6bC70333xTmzdv\n1scffyw3NzfNnTtXEyZMkL+/vxYtWvQwMgIAAAAAAAD4H5uX3K5Zs0aLFi1Su3btFB4ertatW6tG\njRqqXLmyFi9erP79+z+MnAAAAAAAAAD0B67QS09PV7Vq1STduV9eenq6JKlVq1batm1b4aYDAAAA\nAAAAYMXmQq9atWpKTk6WJNWuXVvLly+XdOfKPS8vr8JNBwAAAAAAAMCKzYVeeHi4EhISJEkxMTGa\nPXu2ihcvruHDh+uNN94o9IAAAAAAAAAA/o/N99AbPny45XmnTp2UlJSk+Ph41ahRQ8HBwYUaDgAA\nAAAAAIA1mwu9e1WuXFmVK1cujCwAAAAAAAAAfkeBl9xu3rxZQUFBysrKyncsMzNTderU0YYNGwo1\nHAAAAAAAAABrBS70pk+frqFDh8rDwyPfMU9PT73wwgv68MMPCzUcAAAAAAAAAGsFLvQSEhLUtWvX\nBx7v3LmzEhMTCyUUAAAAAAAAgPsrcKGXlpYmFxeXBx4vVqyYLl26VCihAAAAAAAAANxfgQu9ChUq\n6NChQw88npiYqPLlyxdKKAAAAAAAAAD3V+BCr3v37ho7dqyuX7+e79i1a9f09ttvq0ePHoUaDgAA\nAAAAAIC1YgWdOGbMGH399dd68sknFRUVpVq1akmSkpKSNHv2bOXm5mr06NEPLSgAAAAAAAAAGwo9\nX19f7dy5Uy+99JJGjRols9ksSTKZTOrSpYtmz54tX1/fhxYUAAAAAAAAgA2FniRVrlxZ//73v/XL\nL7/oxIkTMpvNqlmzpry9vR9WPgAAAAAAAAC/UuB76P2at7e3mjRpoqZNm/5/lXmTJk1SkyZN5O7u\nLh8fH/Xu3VtHjx61mmM2mzVu3DiVL19eJUqUUKdOnXT8+HGrOdevX1dkZKTKli2r0qVLq0+fPkpL\nS7Oak56erv79+8vDw0NeXl6KiIjQ1atXreakpKQoNDRUJUuWlI+Pj9544w3dvn3bak5iYqJat26t\n4sWLKyAgQFOmTPnD3z8AAAAAAABgqz9U6BWWrVu3KjIyUrt379bGjRt169Ytde7cWdnZ2ZY5U6ZM\n0cyZMzVnzhzt2bNHpUqVUpcuXaw25xg+fLjWrFmjL7/8Ulu3btX58+cVFhZm9bX69++vw4cPa+PG\njVq7dq22bdumYcOGWY7n5uYqNDRUN2/e1M6dO7Vw4UItWLBA48aNs8zJyspS586dVblyZcXHx2vq\n1KkaP368Pv3004f4LgEAAAAAAAD/x2S+ezO8IuDSpUvy8fHR1q1b1aZNG5nNZvn7++v111/XiBEj\nJEmZmZny9fXVggUL1K9fP2VmZqpcuXJasmSJnnnmGUl3NuoIDAzUrl271Lx5cx05ckRBQUH6z3/+\no8aNG0uS1q9fr+7du+vs2bPy9/fXt99+qx49euj8+fOWewHOmTNHI0eO1KVLl+Tq6qqPP/5Yo0eP\nVmpqqlxdXSVJMTExWrVqlZKSkgr0PWZlZcnT01OZmZny8PAo7LewSKkSs87oCChEpyaHGh0BAAAA\nAIDHyh/tiQy9Qu9emZmZkqQyZcpIkpKTk5WamqpOnTpZ5nh6eqpZs2batWuXJCk+Pl63bt2ymlO7\ndm1VqlTJMmfXrl3y8vKylHmS1KlTJzk5OWnPnj2WOfXq1bPa2KNLly7KysrS4cOHLXPatGljKfPu\nzjl69Kh++eWX+35PN27cUFZWltUDAAAAAAAA+KOKTKGXl5en1157TS1btlTdunUlSampqZKUb/dc\nX19fy7G7V8t5eXn95hwfHx+r48WKFVOZMmWs5tzv6/w6R0Hm3GvSpEny9PS0PAICAn7vrQAAAAAA\nAAAeqMgUepGRkTp06JCWLl1qdJRCNWrUKGVmZloeZ86cMToSAAAAAAAA7FiRKPSioqK0du1axcXF\nqWLFipZxPz8/Scq3Y21aWprlmJ+fn27evKmMjIzfnHPx4kWr47dv31Z6errVnPt9nV/nKMice7m5\nucnDw8PqAQAAAAAAAPxRhhZ6ZrNZUVFRWrlypTZv3qyqVataHa9atar8/Py0adMmy1hWVpb27Nmj\nkJAQSVKjRo3k4uJiNefo0aNKSUmxzAkJCVFGRobi4+MtczZv3qy8vDw1a9bMMufgwYNWxd/GjRvl\n4eGhoKAgy5xt27bp1q1bVnNq1aolb2/vwnpbAAAAAAAAgAcytNCLjIzUF198oSVLlsjd3V2pqalK\nTU3VtWvXJEkmk0mvvfaa3n33XX3zzTc6ePCgBg4cKH9/f/Xu3VvSnU0yIiIiFB0drbi4OMXHxys8\nPFwhISFq3ry5JCkwMFBdu3bV0KFDtXfvXu3YsUNRUVHq16+f/P39JUmdO3dWUFCQBgwYoISEBG3Y\nsEFjxoxRZGSk3NzcJEnPPfecXF1dFRERocOHD2vZsmWaMWOGoqOjDXj3AAAAAAAA4IiKGfnFP/74\nY0lSu3btrMbnz5+vwYMHS5LefPNNZWdna9iwYcrIyFCrVq20fv16FS9e3DI/NjZWTk5O6tOnj27c\nuKEuXbroo48+svqcixcvVlRUlDp27GiZO3PmTMtxZ2dnrV27Vi+99JJCQkJUqlQpDRo0SBMnTrTM\n8fT01HfffafIyEg1atRITzzxhMaNG6dhw4YV8jsDAAAAAAAA3J/JbDabjQ7hSLKysuTp6anMzMzH\n/n56VWLWGR0BhejU5FCjIwAAAAAA8Fj5oz1RkdgUAwAAAAAAAEDBUOgBAAAAAAAAdoRCDwAAAAAA\nALAjFHoAAAAAAACAHaHQAwAAAAAAAOwIhR4AAAAAAABgRyj0AAAAAAAAADtCoQcAAAAAAADYEQo9\nAAAAAAAAwI5Q6AEAAAAAAAB2hEIPAAAAAAAAsCMUegAAAAAAAIAdodADAAAAAAAA7AiFHgAAAAAA\nAGBHKPQAAAAAAAAAO0KhBwAAAAAAANgRCj0AAAAAAADAjlDoAQAAAAAAAHaEQg8AAAAAAACwIxR6\nAAAAAAAAgB2h0AMAAAAAAADsCIUeAAAAAAAAYEco9AAAAAAAAAA7QqEHAAAAAAAA2BEKPQAAAAAA\nAMCOUOgBAAAAAAAAdoRCDwAAAAAAALAjFHoAAAAAAACAHaHQAwAAAAAAAOwIhR4AAAAAAABgRyj0\nAAAAAAAAADtCoQcAAAAAAADYEQo9AAAAAAAAwI5Q6AEAAAAAAAB2hEIPAAAAAAAAsCMUegAAAAAA\nAIAdodADAAAAAAAA7AiFHgAAAAAAAGBHKPQAAAAAAAAAO0KhBwAAAAAAANgRCj0AAAAAAADAjlDo\nAQAAAAAAAHaEQg8AAAAAAACwIxR6AAAAAAAAgB2h0AMAAAAAAADsCIUeAAAAAAAAYEco9AAAAAAA\nAAA7QqEHAAAAAAAA2BEKPQAAAAAAAMCOUOgBAAAAAAAAdsTQQm/btm3q2bOn/P39ZTKZtGrVKqvj\nZrNZ48aNU/ny5VWiRAl16tRJx48ft5pz/fp1RUZGqmzZsipdurT69OmjtLQ0qznp6enq37+/PDw8\n5OXlpYiICF29etVqTkpKikJDQ1WyZEn5+PjojTfe0O3bt63mJCYmqnXr1ipevLgCAgI0ZcqUQnw3\nAAAAAAAAgN9naKGXnZ2t+vXra/bs2fc9PmXKFM2cOVNz5szRnj17VKpUKXXp0kXXr1+3zBk+fLjW\nrFmjL7/8Ulu3btX58+cVFhZm9Xn69++vw4cPa+PGjVq7dq22bdumYcOGWY7n5uYqNDRUN2/e1M6d\nO7Vw4UItWLBA48aNs8zJyspS586dVblyZcXHx2vq1KkaP368Pv3000J+VwAAAAAAAIAHM5nNZrPR\nISTJZDJp5cqV6t27t6Q7V+f5+/vr9ddf14gRIyRJmZmZ8vX11YIFC9SvXz9lZmaqXLlyWrJkiZ55\n5hlJUlJSkgIDA7Vr1y41b95cR44cUVBQkP7zn/+ocePGkqT169ere/fuOnv2rPz9/fXtt9+qR48e\nOn/+vHx9fSVJc+bM0ciRI3Xp0iW5urrq448/1ujRo5WamipXV1dJUkxMjFatWqWkpKQCf59ZWVny\n9PRUZmamPDw8Cu39K4qqxKwzOgIK0anJoUZHAAAAAADgsfJHe6Iiew+95ORkpaamqlOnTpYxT09P\nNWvWTLt27ZIkxcfH69atW1ZzateurUqVKlnm7Nq1S15eXpYyT5I6deokJycn7dmzxzKnXr16ljJP\nkrp06aKsrCwdPnzYMqdNmzaWMu/unKNHj+qXX3554Pdx48YNZWVlWT0AAAAAAACAP6rIFnqpqamS\nZFWy3f347rG7V8t5eXn95hwfHx+r48WKFVOZMmWs5tzv6/w6R0Hm3M+kSZPk6elpeQQEBPzOdw4A\nAAAAAAA8WJEt9B4Xo0aNUmZmpuVx5swZoyMBAAAAAADAjhXZQs/Pz0+S8u1Ym5aWZjnm5+enmzdv\nKiMj4zfnXLx40er47du3lZ6ebjXnfl/n1zkKMud+3Nzc5OHhYfUAAAAAAAAA/qgiW+hVrVpVfn5+\n2rRpk2UsKytLe/bsUUhIiCSpUaNGcnFxsZpz9OhRpaSkWOaEhIQoIyND8fHxljmbN29WXl6emjVr\nZplz8OBBq+Jv48aN8vDwUFBQkGXOtm3bdOvWLas5tWrVkre390N4BwAAAAAAAID8DC30rl69qgMH\nDujAgQOS7myEceDAAaWkpMhkMum1117Tu+++q2+++UYHDx7UwIED5e/vb9kJ19PTUxEREYqOjlZc\nXJzi4+MVHh6ukJAQNW/eXJIUGBiorl27aujQodq7d6927NihqKgo9evXT/7+/pKkzp07KygoSAMG\nDFBCQoI2bNigMWPGKDIyUm5ubpKk5557Tq6uroqIiNDhw4e1bNkyzZgxQ9HR0Qa8cwAAAAAAAHBU\nxYz84j/++KPat29v+fhuOTZo0CAtWLBAb775prKzszVs2DBlZGSoVatWWr9+vYoXL255TWxsrJyc\nnNSnTx/duHFDXbp00UcffWT1dRYvXqyoqCh17NjRMnfmzJmW487Ozlq7dq1eeuklhYSEqFSpUho0\naJAmTpxomePp6anvvvtOkZGRatSokZ544gmNGzdOw4YNe1hvDwAAAAAAAJCPyWw2m40O4UiysrLk\n6empzMzMx/5+elVi1hkdAYXo1ORQoyMAAAAAAPBY+aM9UZG9hx4AAAAAAACA/Cj0AAAAAAAAADtC\noQcAAAAAAADYEQo9AAAAAAAAwI5Q6AEAAAAAAAB2hEIPAAAAAAAAsCMUegAAAAAAAIAdodADAAAA\nAAAA7AiFHgAAAAAAAGBHKPQAAAAAAAAAO0KhBwAAAAAAANgRCj0AAAAAAADAjlDoAQAAAAAAAHaE\nQg8AAAAAAACwIxR6AAAAAAAAgB2h0AMAAAAAAADsCIUeAAAAAAAAYEco9AAAAAAAAAA7QqEHAAAA\nAAAA2BEKPQAAAAAAAMCOUOgBAAAAAAAAdoRCDwAAAAAAALAjFHoAAAAAAACAHaHQAwAAAAAAAOwI\nhR4AAAAAAABgRyj0AAAAAAAAADtCoQcAAAAAAADYEQo9AAAAAAAAwI5Q6AEAAAAAAAB2hEIPAAAA\nAAAAsCPFjA4AAHj0qsSsMzoCCtGpyaFGRwAAAADwCHGFHgAAAAAAAGBHKPQAAAAAAAAAO0KhBwAA\nAAAAANgRCj0AAAAAAADAjlDoAQAAAAAAAHaEQg8AAAAAAACwIxR6AAAAAAAAgB2h0AMAAAAAAADs\nCIUeAAAAAAAAYEco9AAAAAAAAAA7QqEHAAAAAAAA2JFiRgcAAACAtSox64yOgEJ0anKo0REAAMBj\nhiv0AAAAAAAAADtCoQcAAAAAAADYEQo9AAAAAAAAwI5Q6AEAAAAAAAB2hEIPAAAAAAAAsCMUegAA\nAAAAAIAdKWZ0AAAAAACwF1Vi1hkdAYXo1ORQoyMAwB/CFXp/wOzZs1WlShUVL15czZo10969e42O\nBAAAAAAAAAfBFXo2WrZsmaKjozVnzhw1a9ZM06dPV5cuXXT06FH5+PgYHQ8AAAAAAIfFVbSPF66i\nfTAKPRt98MEHGjp0qMLDwyVJc+bM0bp16zRv3jzFxMTkm3/jxg3duHHD8nFmZqYkKSsr69EENlDe\njRyjI6AQOcK/s46E8/Pxwvn5+OEcfbxwjj5eOD8fL5yfjx/O0ceLI5yjd79Hs9ls0+tMZltf4cBu\n3rypkiVLasWKFerdu7dlfNCgQcrIyNDq1avzvWb8+PGaMGHCo4wJAAAAAAAAO3LmzBlVrFixwPO5\nQs8GP//8s3Jzc+Xr62s17uvrq6SkpPu+ZtSoUYqOjrZ8nJeXp/T0dJUtW1Ymk+mh5sXDl5WVpYCA\nAJ05c0YeHh5GxwHwK5yfQNHGOQoUXZyfQNHGOfp4MZvNunLlivz9/W16HYXeQ+bm5iY3NzerMS8v\nL4PS4GHx8PDgP6RAEcX5CRRtnKNA0cX5CRRtnKOPD09PT5tfwy63NnjiiSfk7OystLQ0q/G0tDT5\n+fkZlAoAAAAAAACOhELPBq6urmrUqJE2bdpkGcvLy9OmTZsUEhJiYDIAAAAAAAA4Cufx48ePNzqE\nPfHw8NDYsWMVEBAgNzc3jR07VgcOHNDnn3+u0qVLGx0PBnB2dla7du1UrBgr2IGihvMTKNo4R4Gi\ni/MTKNo4R8Eut3/ArFmzNHXqVKWmpqpBgwaaOXOmmjVrZnQsAAAAAAAAOAAKPQAAAAAAAMCOcA89\nAAAAAAAAwI5Q6AEAAAAAAAB2hEIPAAAAAAAAsCMUegAAAAAAAIAdYX9jwEZ5eXlas2aNjhw5IkkK\nCgpSjx495OREPw4AwIMMHDhQ7du3V5s2bVS9enWj4wC4j0uXLuno0aOSpFq1aqlcuXIGJwIgSfPn\nz1ffvn1VsmRJo6OgCKGBAGzw008/qW7duurXr5+WLFmiJUuWqG/fvqpXr56Sk5ONjgc4vH/+859q\n2bKl/P39dfr0aUnS9OnTtXr1aoOTAXB1ddWkSZNUs2ZNBQQE6Pnnn9fcuXN1/Phxo6MBDi87O1t/\n+9vf5O/vrzZt2qhNmzby9/dXRESEcnJyjI4HOLyYmBj5+fkpIiJCO3fuNDoOiggKPcAGr7zyigIC\nApSSkqLExEQlJibq9OnTqlChgl555RWj4wEO7eOPP1Z0dLS6d++ujIwM5ebmSpK8vLw0ffp0g9MB\nmDt3ro4dO6YzZ85oypQpKl26tKZNm6batWurYsWKRscDHFp0dLS2bt2qb775RhkZGcrIyNDq1au1\ndetWvf7660bHAxzeuXPntHDhQv38889q166dateurb///e9KTU01OhoMZDKbzWajQwD2onTp0tq5\nc6eCg4OtxhMSEtSqVStduXLFoGQAgoKC9P7776t3795yd3dXQkKCqlWrpkOHDqldu3b6+eefjY4I\nQFJOTo62b9+uuLg4bdmyRfv27VNQUJD2799vdDTAYT3xxBNasWKF2rVrZzUeFxenv/71r7p06ZIx\nwQDkk5aWpi+++EILFy5UUlKSunbtqoiICPXs2ZPbQDkY/mkDNnBxcbnvsoOcnBy5uLgYkAjAXcnJ\nyWrYsGG+cTc3N2VnZxuQCMCvvfXWW2rRooXKli2rmJgYXb9+XTExMUpNTaXMAwyWk5MjX1/ffOM+\nPj4suQWKGF9fX7Vq1UohISFycnLSwYMHNWjQIFWvXl1btmwxOh4eIQo9wAahoaEaNmyY4uPjLWM/\n/vijXnzxRfXo0cPAZACqVq2qAwcO5Btfv369AgMDDUgE4NcmT56skydP6u2339bSpUsVGxurp556\nSt7e3kZHAxxeSEiI3n77bV2/ft0ydu3aNU2YMEEhISEGJgNwV1pamv7xj3+oTp06ateunbKysrR2\n7VolJyfr3Llz+utf/6pBgwYZHROPEEtuARv88ssvev755/Xtt9/Kzc1NknTz5k11795dixYt4pcS\nwEBz587V+PHjNW3aNEVERGju3Lk6efKkJk2apLlz56pfv35GRwQcWkJCgrZu3aotW7bohx9+kKur\nq9q2bat27dqpXbt2evLJJ42OCDisgwcPqmvXrrpx44bq168v6c45W7x4cW3YsEF16tQxOCHg2Hr2\n7KkNGzboySef1JAhQzRw4ECVKVPGas7Fixfl5+envLw8g1LiUaPQA/6ApKQkHTlyRJIUGBio2rVr\nG5wIgCQtXrxY48eP18mTJyVJ/v7+mjBhgiIiIgxOBuBeCQkJio2N1eLFi5WXl2fZyAaAMXJycrR4\n8WIlJSVJuvP/uP3791eJEiUMTgYgIiJCQ4YM+c0rZs1ms1JSUlS5cuVHmAxGotADADx2cnJydPXq\nVfn4+BgdBcD/mM1m7d+/X1u2bNGWLVu0fft2ZWVlKTg4WG3btlVsbKzREQGHtW3bNrVo0ULFihWz\nGr99+7Z27typNm3aGJQMgCQtWrRIffv2tawSu+vmzZtaunSpBg4caFAyGIlCD7BB37591aRJE40Y\nMcJqfOrUqdq3b5/+9a9/GZQMwLVr12Q2m1WyZElJ0unTp7Vy5UoFBQWpc+fOBqcD4O3tratXr6p+\n/fqWpbatW7eWl5eX0dEAh+fs7KwLFy7k+0PY5cuX5ePjwxW0gME4R3E/xX5/CoC74uLiNHbs2Hzj\nXbt21bRp0wxIBOCup556SmFhYXrxxReVkZGhpk2bytXVVT///LM++OADvfTSS0ZHBBzaF198odat\nW8vDw8PoKADuYTabZTKZ8o1fvnxZpUqVMiARgF970Dl69uxZeXp6GpAIRQGFHmCDK1euyMXFJd+4\nq6urMjMzDUgE4K59+/ZZluytWLFCfn5+2r9/v7766iuNGzeOQg8wWGhoqCTpxIkTOnnypNq0aaMS\nJUo88JcUAA9fWFiYJMlkMmnw4MFWy/lyc3OVmJioFi1aGBUPcHgNGzaUyWSSyWRSx44drZbF5+bm\nKjk5WV27djUwIYxEoQfYoE6dOvryyy81ZswYq/Hly5ezMQZgsJycHLm7u0uSvvvuO4WFhcnJyUnN\nmzfX6dOnDU4H4PLly/rrX/+quLg4mUwmHT9+XNWqVVNERIS8vb250h0wwN0re8xms9zd3a02wHB1\ndVXz5s01dOhQo+IBDq93796SpAMHDqhLly4qXbq05Zirq6uqVKmiPn36GBUPBqPQA2wwZswY/eUv\nf1FycrI6dOggSdq0aZO++OILLV261OB0gGOrUaOGVq1apaefflobNmzQ8OHDJUkXL15kiR9QBAwf\nPlwuLi5KSUlRYGCgZbxv376Kjo6m0AMMMH/+fElSlSpVNGLECJbXAkXM22+/LenOOdq3b18VL17c\n4EQoStgUA7DRN998o/fee08HDhxQyZIlVa9ePb399tvq2LGj0dEAh7ZixQo999xzys3NVYcOHbRx\n40ZJ0qRJk7Rt2zZ9++23BicEHJufn582bNig+vXry93dXQkJCapWrZp++uknBQcH6+rVq0ZHBAAA\nsBsUegCAx0ZqaqouXLig+vXry8nJSZK0d+9eeXh4sCweMJi7u7v27dunmjVrWhV6P/74o7p06aLL\nly8bHRFwKHfvzVUQ+/bte8hpANyrTJkyOnbsmJ544gl5e3v/5vmanp7+CJOhqGDJLWCD8+fPS5L8\n/f0lSfHx8frXv/6loKAg/e1vfzMyGgDduQLIz89PZ8+elSRVrFhRTZs2NTgVAElq3bq1Fi1apHfe\neUfSnZvw5+XlacqUKWrfvr3B6QDHc/feXACKptjYWMv9oWNjY9lACvlwhR5ggzZt2mjIkCEaOHCg\n0tLS9OSTT6pWrVo6efKkoqOjNXr0aKMjAg4rLy9P7777rqZNm2ZZuufu7q7XX39do0ePtlyxB8AY\nhw4dUseOHfWnP/1JmzdvVq9evXT48GGlp6drx44dql69utERAdxHbm6unJ2djY4BALgHv90ANjh0\n6JCaNWsm6c7OtnXq1NHevXu1ePFizZs3z+B0gGMbPXq0Zs2apcmTJ2v//v3av3+/3n//fX344Yca\nO3as0fEAh1e3bl0dO3ZMrVq10lNPPaXs7GyFhYVp//79lHlAEXTs2DGNHDlSFStWNDoK4LDOnz+v\nESNGKCsrK9+xzMxMvfHGGzp37pwByVAUsOQWsMGNGzcsOwt9//336tWrlySpTp06luW4AIyxcOFC\nzZ0713JeSlJwcLAqVKigl19+We+9956B6QBIkqenJ1ezA0VYTk6Oli1bpnnz5mnXrl1q3LixoqOj\njY4FOKwPPvhAWVlZ8vDwyHfM09NTV65c0aRJkzRr1iwD0sFoFHqADerUqaNPP/1UPXr00MaNGzVh\nwgRJ0rlz51SmTBmD0wGOLT09/b4bX9SuXZsbBQMGSUxMVN26deXk5KTExMTfnBscHPyIUgG41+7d\nuzV37lx9+eWXqlSpko4cOaK4uDi1bt3a6GiAQ1u/fr3mzJnzwOMDBw7U0KFDH2EiFCUUeoANJk2a\npLCwME2ePFn9+/dXgwYNJElr1qzhxvuAwerXr69Zs2Zp5syZVuOzZs1S/fr1DUoFOLYGDRooNTVV\nPj4+atCggUwmk+53+2aTyaTc3FwDEgKObdq0aZo3b54yMzP17LPPatu2bapfv75cXFxUtmxZZeS5\ndwAAH/JJREFUo+MBDi85OVmVKlV64PGKFSvq1KlTjy4QihQKPcAGHTt21OXLl/XLL7+oXLlylvG/\n/e1vKlWqlIHJAEyZMkWhoaH6/vvvFRISIknatWuXzpw5o3//+98GpwMcU3JysuXnZXJyssFpANxr\n5MiRGjlypCZOnMjGF0ARVKJECZ06deqBpd6pU6dUokSJR5wKRQW73AIAHhvnz5/X7NmzlZSUJEkK\nDAzUyy+/LH9/f4OTAY5r7dq16t69OztNA0XQpEmTNH/+fF2/fl3PPvusBgwYoLp168rFxUUJCQkK\nCgoyOiLg0EJDQ+Xv76/PPvvsvseHDBmi8+fP88drB0WhB/yOpk2basOGDfL29laTJk1kMpkeOHfv\n3r2PMBkAAEVfsWLF5Ovrq8GDBys8PFw1atQwOhKAe2zdulXz5s3TihUrVKNGDR0+fFhbt25Vy5Yt\njY4GOLS4uDj9+c9/1muvvaY33nhDvr6+kqS0tDRNmTJFM2bM0HfffacOHToYnBRGoNADfsfYsWM1\natQolSxZUmPHjv3Nue+8884jSgXgrt+70b50p1Dw8/Nj8xrAAGfOnNH8+fO1cOFCnTp1Sq1atdKQ\nIUP0zDPPsEwIKGKuXLmiJUuWaN68eYqPj1fTpk31zDPPsNMtYKBPPvlEr776qm7duiUPDw+ZTCZl\nZmbKxcVFsbGxeumll4yOCINQ6AEA7JqTk9MDb7T/ayaTSfXr19eiRYtUt27dR5QOwK/FxcVpwYIF\n+uqrr1SsWDH169dPERERatKkidHRANzj4MGD+vzzz7VkyRJdvHjR6DiAQzt37pyWL1+uEydOyGw2\n68knn9QzzzyjihUrGh0NBqLQA2wQHx+vvLy8fL94/Pjjj3J2dlbDhg0NSgY4rtOnT//unLy8PKWl\npWnq1Km6ePGifvjhh0eQDMCDXLlyRUuXLtWCBQu0e/du1a1bVwkJCUbHAnAft27dkouLi9ExAAD3\noNADbNCsWTONHDlSYWFhVuNfffWVpk6dqt27dxuUDEBBnDhxQvXr11d2drbRUQCH99NPP2nevHn6\n+OOPlZWVpVu3bhkdCQAAwG6w3Rhgg8OHD9/3Krw//elPOnz4sAGJANiiatWq2rlzp9ExAId17do1\nLVq0SO3atVPNmjW1dOlSRUdH69SpU0ZHAwAAsCvFjA4A2BM3NzelpaWpatWqVuOpqalydnY2KBWA\ngnJ2dlb9+vWNjgE4nN27d2vevHlavny5bt68qbCwMH3//fdq37690dEAAADsEktuARv07dtXP//8\ns1atWiV3d3dJUlZWlp5++ml5e3trxYoVBicEAKBoCQoK0tGjR9WwYUNFREToueeek6enp9GxAAAA\n7BqFHmCDM2fOqE2bNsrMzFSjRo0kSfv27VPZsmX1/fffq1KlSgYnBACgaHnllVcUERHB1bFAEZeb\nm6tVq1bpyJEjkqQ6deqoV69erEIBgCKKQg+w0dWrV7Vo0SIlJCSoRIkSCg4O1vPPPy9XV1ejowEA\nAAA2O3HihEJDQ3X27FnVqlVLknT06FEFBARo3bp1ql69usEJAcfj7e0tk8lUoLnp6ekPOQ2KIgo9\nAMBjIS0tTSNGjNCmTZt08eJF3fvjLTc316BkAAAUbd27d5fZbNbixYtVpkwZSdLly5f1/PPPy8nJ\nSevWrTM4IeB4Fi5caHl++fJlvfvuu+rSpYtCQkIkSbt27dKGDRs0duxYDR8+3KiYMBCFHmCjn376\nSVu2bNHFixeVl5dndeytt94yKBWAbt26KSUlRVFRUSpfvny+v2g+9dRTBiUDAKBoK1WqlHbv3q16\n9epZjSckJKhly5a6evWqQckASFKfPn3Uvn17RUVFWY3PmjVL33//vVatWmVQMhiJQg+wwbx58/TC\nCy/Iy8tLvr6+VoWByWRSYmKigekAx+bu7q4ffvhBDRo0MDoKAAB2pUyZMlq7dq1atGhhNb5jxw71\n7NmT5XyAwUqXLq0DBw6oRo0aVuMnTpxQgwYNKN0dlJPRAQB7MnHiRE2YMEGXLl3SoUOHdPDgQcuD\nMg8wVkBAQL5ltgAA4Pf16NFDw4YN0549e2Q2m2U2m7V79269+OKL6tWrl9HxAIdXtmxZrV69Ot/4\n6tWrVbZsWQMSoSjgCj3ABh4eHjpw4ICqVatmdBQA9/juu+80bdo0ffLJJ6pSpYrRcQDcx6ZNmyz3\nubz3thXz5s0zKBWAjIwMDRo0SGvWrJGLi4sk6fbt2+rVq5cWLFggT09PgxMCjm3BggUaMmSIunXr\npmbNmkmS9uzZo/Xr1+uzzz7T4MGDjQ0IQ1DoATYIDw9XixYtNHToUKOjALiHt7e3cnJydPv2bZUs\nWdLyC8ldLBcCjDVhwgRNnDhRjRs3vu99LleuXGlQMgB3HT9+XElJSZKkwMDAfMv7ABhnz549mjlz\npo4cOSLpzjn6yiuvWAo+OB4KPcAGU6ZM0T/+8Q/16tVL9erVy1cYvPzyywYlA/DrncDuZ9CgQY8o\nCYD7KV++vKZMmaIBAwYYHQUAAMDuUegBNggICHjgMZPJpJSUlEeYBgAA+1G2bFnt3btX1atXNzoK\nAEnR0dEFnvvBBx88xCQACiI3N1erVq2yXKFXp04d9erVS87OzgYng1Eo9AAAj53r16/r5s2bVmMe\nHh4GpQEgSSNHjlTp0qU1duxYo6MAkNS+ffsCzTOZTNq8efNDTgPgt5w4cUKhoaE6e/asatWqJUk6\nevSoAgICtG7dOv5Y5qAo9AAAj4Xs7GyNHDlSy5cv1+XLl/Mdz83NNSAVgLteffVVLVq0SMHBwQoO\nDs532wquAAIA4P66d+8us9msxYsXq0yZMpKky5cv6/nnn5eTk5PWrVtncEIYgUIPsNGFCxe0Zs0a\npaSk5LsCaMqUKQalAhAZGam4uDi98847GjBggGbPnq1z587pk08+0eTJk9W/f3+jIwIO7beuBuIK\nIAAAHqxUqVLavXu36tWrZzWekJCgli1b6urVqwYlg5GKGR0AsCdxcXHq2bOnAgICdOLECQUGBur0\n6dMymUwKDg42Oh7g0NasWaNFixapXbt2Cg8PV+vWrVWjRg1VrlxZixcvptADDBYXF2d0BAC/4ccf\nf9Ty5cvv+0frr7/+2qBUACTJzc1NV65cyTd+9epVubq6GpAIRYGT0QEAexITE6PXXntNR44cUfHi\nxbVq1SqdOXNGrVu31vPPP290PMChpaenq1q1apLu3C8vPT1dktSqVStt27bNyGgAABRpS5cuVYsW\nLXTkyBGtXLlSt27d0uHDh7V582Z5enoaHQ9weD169NCwYcO0Z88emc1mmc1m7d69Wy+++KJ69epl\ndDwYhCv0ABv897//1eLFiyVJxYoV07Vr1+Th4aF33nlHTz/9tIYNG2ZwQsBxVatWTcnJyapUqZJq\n166t5cuXq2nTplqzZo28vLyMjgc4pLCwMC1YsEAeHh4KCwv7zblcAQQY5/3331dsbKwiIyPl7u6u\nGTNmqGrVqnrhhRdUvnx5o+MBDm/mzJkaNGiQQkJCLPegvX37tnr16qUZM2YYnA5GodADbFCqVCnd\nunVLkuTn56eTJ0+qTp06cnJy0qVLlwxOBzi28PBwJSQkqG3btoqJiVHPnj01a9Ys3bp1i5vtAwbx\n9PSUyWSyPAdQNJ08eVKhoaGSJFdXV2VnZ8tkMmn48OHq0KGDJkyYYHBCwLF5eXlp9erVOn78uI4c\nOSKTyaTAwEDVqFHD6GgwEIUeYINmzZppx44dCgwMVLdu3fTGG2/oyJEj+uqrr9S0aVOj4wEObfjw\n4ZbnnTp10pEjR7Rv3z7VqFGDe1wCBpk/f/59nwMoWry9vS3356pQoYIOHTqkevXqKSMjQzk5OQan\nA3BXzZo1LSXe3T+YwXFxDz3ABtOmTVOjRo0kSRMnTlTr1q21cOFClS9fXp9//rnB6QD8WpUqVRQW\nFkaZBwDA72jTpo02btwoSfrLX/6iV199VUOHDtWzzz6rjh07GpwOgCQtWrRI9erVU4kSJVSiRAkF\nBwfrn//8p9GxYCCT2Ww2Gx0CsAe5ubnas2eP6tSpw7IhoAjZtWuXLl++rB49eljGFi1apLffflvZ\n2dnq3bu3PvzwQ7m5uRmYEoAkrVix4oG7aO7bt8+gVADS09N1/fp1+fv7Ky8vT1OmTNHOnTtVs2ZN\njRkzRt7e3kZHBBzaBx98oLFjxyoqKkotW7aUJG3fvl2zZ8/Wu+++a7VSBY6DQg+wgZubm5KSklS1\nalWjowD4n27duqldu3YaOXKkJOngwYP605/+pMGDByswMFBTp07VCy+8oPHjxxsbFHBwM2fO1OjR\nozV48GB9+umnCg8P18mTJ/Wf//xHkZGReu+994yOCABAkVS1alVNmDBBAwcOtBpfuHChxo8fr+Tk\nZIOSwUgsuQVsULduXZ06dcroGAB+5cCBA1bLgZYuXapmzZrps88+U3R0tGbOnKnly5cbmBCAJH30\n0Uf69NNP9eGHH8rV1VVvvvmmNm7cqFdeeUWZmZlGxwMc0t2r8Vq2bKkmTZooJiZG165dMzoWgHtc\nuHBBLVq0yDfeokULXbhwwYBEKAoo9AAbvP/++xoxYoTWr1+vS5cuKScnx+oB4NH75Zdf5Ovra/l4\n69at6tatm+XjJk2a6MyZM0ZEA/ArKSkpll9GSpQoYbkB/4ABA/Svf/3LyGiAw3rvvff01ltvyd3d\nXRUqVNCMGTMUGRlpdCwA96hRo8Z9/0C9bNky1axZ04BEKArY5Rawwd2SoHv37vfdVSg3N/dRRwIc\nnq+vr5KTkxUQEKCbN29q3759mjBhguX4lStX5OLiYmBCAJLk5+en9PR0Va5cWZUqVdLu3btVv359\nJScnizvAAMZYtGiRPvroIw0bNkyS9P333ys0NFRz586VkxPXfgBFxYQJE9S3b19t27bNcg+9HTt2\naNOmTaxEcWAUeoAN7u7+BaDo6N69u2JiYvT3v/9dq1atUsmSJdW6dWvL8cTERFWvXt3AhAAkqUOH\nDvrmm2/UsGFDhYeHa/jw4VqxYoV+/PFHhYWFGR0PcEgpKSlWV7V36tRJJpNJ58+fV8WKFQ1MBuDX\n+vTpoz179ig2NlarVq2SJAUGBmrv3r1q2LChwelgFDbFAADYtZ9//llhYWHavn27SpcurYULF+rp\np5+2HO/YsaOaN2/ODfcBg+Xl5SkvL0/Fit35e/LSpUstu2i+8MILcnV1NTgh4HicnZ2VmpqqcuXK\nWcbc3d2VmJjIJnAAUMRR6AEFMHDgQM2ePVvu7u6SpISEBAUFBbGMDyhCMjMzVbp0aTk7O1uNp6en\nq3Tp0pQFgMFSUlIUEBCQ75YVZrNZZ86cUaVKlQxKBjguJycndevWTW5ubpaxNWvWqEOHDipVqpRl\n7OuvvzYiHoD/GThwoNq3b6+2bduqWrVqRsdBEUGhBxSAs7OzLly4IB8fH0mSh4eHDhw4wH9MAQAo\noHt/lt51+fJl+fj4cB9awADh4eEFmjd//vyHnATAbxkyZIi2bdumEydOqEKFCmrbtq3atWuntm3b\nsimGA6PQAwrAyclJqampll9C3N3dlZCQQKEHAEABOTk5KS0tzWppnySdPn1aQUFBys7ONigZAAD2\n4dy5c9q2bZu2bt2qrVu36tixYypfvrzOnj1rdDQYgE0xAAAA8NBER0dLkkwmk8aOHauSJUtajuXm\n5mrPnj1q0KCBUfEAALAb3t7eKlu2rLy9veXl5aVixYrl+0MZHAeFHlBA//3vf5Wamirpzv1+kpKS\ndPXqVas5wcHBRkQDAKDI2r9/v6Q7PzsPHjxodT9LV1dX1a9fXyNGjDAqHgAARd5bb72lLVu2aP/+\n/QoMDFTbtm0VExOjNm3ayNvb2+h4MAhLboECcHJykslk0v1Ol7vjJpOJ+/8AAPAA4eHhmjFjhjw8\nPIyOAgCAXXFyclK5cuU0fPhwhYWF6cknnzQ6EooACj2gAE6fPl2geZUrV37ISQAAAAAAjiQhIUFb\nt27Vli1b9MMPP8jV1dWyMUa7du0o+BwUhR4AAAAeuuzsbE2ePFmbNm3SxYsXlZeXZ3X8p59+MigZ\nAAD2JSEhQbGxsVq8eLHy8vJYKeaguIceAAAAHrohQ4Zo69atGjBggMqXLy+TyWR0JAAA7ILZbNb+\n/fu1ZcsWbdmyRdu3b1dWVpaCg4PVtm1bo+PBIFyhBwAAgIfOy8tL69atU8uWLY2OAgCAXfH29tbV\nq1dVv359y1Lb1q1by8vLy+hoMBBX6AEAAOCh8/b2VpkyZYyOAQCA3fniiy/UunVrNpaCFa7QAwAA\nwEP3xRdfaPXq1Vq4cKFKlixpdBwAAAC7RqEHAACAh65hw4Y6efKkzGazqlSpIhcXF6vj+/btMygZ\nAABFT1hYWIHnfv311w8xCYoqltwCNkhLS9OIESMsO/Td24ezuxAAAPfXu3dvoyMAAGA3PD09Lc/N\nZrNWrlwpT09PNW7cWJIUHx+vjIwMm4o/PF64Qg+wQbdu3ZSSkqKoqKj77tD31FNPGZQMAAAAAPA4\nGjlypNLT0zVnzhw5OztLunMxycsvvywPDw9NnTrV4IQwAoUeYAN3d3f98MMPatCggdFRAAAAAAAO\noFy5ctq+fbtq1aplNX706FG1aNFCly9fNigZjORkdADAngQEBORbZgsAAH6fk5OTnJ2dH/gAAAD3\nd/v2bSUlJeUbT0pKUl5engGJUBRwDz3ABtOnT1dMTIw++eQTValSxeg4AADYjZUrV1p9fOvWLe3f\nv18LFy7UhAkTDEoFAEDRFx4eroiICJ08eVJNmzaVJO3Zs0eTJ09WeHi4welgFJbcAjbw9vZWTk6O\nbt++rZIlS+bboS89Pd2gZAAA2KclS5Zo2bJlWr16tdFRAAAokvLy8vT/2rv7mCrLB4zj18EXBh4V\nLMVqKG8RpMBECLNcugYChQ2ytbCIF9NSk0wn1dq0WVtMQHBSOacg5UArYr0sLJ32AolLhKygiEDQ\nKCuyROXw4vn90TrrTCpQ+T3n1Pfz33M/93nOtfPnde77uXNyclRQUKCOjg5J0jXXXKPMzEytXr2a\nle7/URR6wBDs3Lnzb+8/+OCD/6ckAAD8O3z77bcKDQ1VV1eX0VEAAHB4v/32myRp3LhxBieB0dhy\nCwwBhR0AAFfO+fPntXnzZl133XVGRwEAwKH19fXp4MGDam5uVnJysiTpu+++07hx42Q2mw1OByNQ\n6AGXqLu7Wz09PXZj/EsCAMDAPD09ZTKZbNdWq1VnzpyRu7u7XnnlFQOTAQDg2I4fP67Y2Fi1tbXJ\nYrEoOjpaY8eOVXZ2tiwWi1566SWjI8IAFHrAEJw9e1ZZWVnas2fPgEeD9/f3G5AKAADHl5+fb3ft\n4uKiiRMnKioqSp6engalAgDA8WVmZioiIkL19fW66qqrbOOJiYl66KGHDEwGI1HoAUOwdu1aHThw\nQC+++KIeeOABFRYW6uTJk9q6dauef/55o+MBAOCweG0FAACX5qOPPlJ1dbVGjx5tN+7j46OTJ08a\nlApGo9ADhuCtt95SSUmJ5s6dq7S0NM2ZM0cBAQGaOnWqdu3apUWLFhkdEQAAh3X69Glt375dDQ0N\nkqRp06YpPT1d48ePNzgZAACO68KFCwPuBjtx4oTGjh1rQCI4AhejAwDOpLOzU35+fpJ+f19eZ2en\nJOnWW2/Vhx9+aGQ0AAAc2qeffip/f39t2rRJnZ2d6uzsVF5envz9/VVbW2t0PAAAHFZMTIzdqytM\nJpO6urq0bt06xcfHG5gMRqLQA4bAz89PLS0tkqSgoCDt2bNH0u8r9zw8PIyMBgCAQ1u1apUWLFig\n1tZWlZeXq7y8XC0tLbrzzjv12GOPGR0PAACHlZubq6qqKt14443q7u5WcnKybbttdna20fFgEJPV\narUaHQJwFps2bdKIESO0cuVK7du3TwkJCbJarert7VVeXp4yMzONjggAgENyc3PT0aNHFRQUZDf+\n5ZdfKiIiQufOnTMoGQAAjq+vr0+7d+9WfX29urq6FB4erkWLFsnNzc3oaDAIhR5wGVpbW1VbW6uA\ngACFhoYaHQcAAIfl5eWll19+WTExMXbje/fuVUpKin744QeDkgEA4LzOnz9PqfcfxZZb4DL4+Pgo\nKSmJMg8AgH9w7733KiMjQ7t371Z7e7va29tVVlamxYsX67777jM6HgAATsVisSg3N1e+vr5GR4FB\nKPSAQfjkk0/09ttv242VlJTI19dXkyZN0pIlS2SxWAxKBwCA48vJyVFSUpJSUlLk4+MjHx8fpaam\nauHChbz/BwCAAVgsFj355JOKiIjQ7NmzVVFRIUkqKiqSr6+v8vPztWrVKoNTwihsuQUGIS4uTnPn\nzlVWVpYk6dixYwoPD1dqaqqCg4O1ceNGLV26VOvXrzc2KAAADu7cuXNqbm6WJPn7+8vd3d3gRAAA\nOKasrCxt3bpV0dHRqqqq0o8//qi0tDQdOnRITz31lO655x6NGDHC6JgwyEijAwDOoK6uThs2bLBd\nl5WVKSoqStu2bZMkeXt7a926dRR6AAD8A3d3d4WEhBgdAwAAh/fqq6+qpKRECxYs0Oeff67Q0FD1\n9fWpvr5eJpPJ6HgwGIUeMAi//PKLvLy8bNcffPCB4uLibNeRkZFqb283IhoAAA4tPT19UPN27Ngx\nzEkAAHAuJ06c0MyZMyVJ06dPl6urq1atWkWZB0kUesCgeHl5qaWlRd7e3urp6VFtba2eeeYZ2/0z\nZ85o1KhRBiYEAMAxFRcXa+rUqZoxY4Z40wsAAIPX39+v0aNH265Hjhwps9lsYCI4Ego9YBDi4+P1\nxBNPKDs7WxUVFXJ3d9ecOXNs9z/77DP5+/sbmBAAAMf0yCOPqLS0VC0tLUpLS9P999+vCRMmGB0L\nAACHZ7ValZqaKldXV0lSd3e3Hn74YY0ZM8ZuXnl5uRHxYDAOxQAG4aefflJSUpI+/vhjmc1m7dy5\nU4mJibb7t99+u2bNmqXnnnvOwJQAADgmi8Wi8vJy7dixQ9XV1brjjjuUkZGhmJgYtg0BAPAX0tLS\nBjWvqKhomJPAEVHoAUPw66+/ymw2X3SSUGdnp8xms91yaAAAcLHjx4+ruLhYJSUl6uvr0xdffMH2\nIQAAgCFiyy0wBOPHjx9wnK1DAAAMjouLi0wmk6xWq/r7+42OAwAA4JRcjA4AAACAfzeLxaLS0lJF\nR0crMDBQx44d05YtW9TW1sbqPAAAgEvACj0AAAAMm2XLlqmsrEze3t5KT09XaWmprr76aqNjAQAA\nODXeoQcAAIBh4+LioilTpmjGjBl/ewAGJ/QBAAAMHiv0AAAAMGxSUlI4yRYAAOAKY4UeAAAAAAAA\n4EQ4FAMAAAAAAABwIhR6AAAAAAAAgBOh0AMAAAAAAACcCIUeAAAAAAAA4EQo9AAAAAAAAAAnQqEH\nAACAy2IymVRRUXFZzyguLpaHh8dlZ/Hx8VF+fv5lPwcAAMCRUegBAADgb33//fd69NFH5efnJ1dX\nV3l7eyshIUH79++XJHV0dCguLs7glAAAAP8dI40OAAAAAMfV2tqqW265RR4eHtq4caNCQkLU29ur\nvXv3avny5WpsbNTkyZONjgkAAPCfwgo9AAAA/KVly5bJZDLp8OHDuvvuuxUYGKhp06bp8ccf16FD\nhyTZb7k9ePCgTCaTTp8+bXtGXV2dTCaTWltbbWPFxcWaMmWK3N3dlZiYqJ9//tnue5ubm3XXXXfJ\ny8tLZrNZkZGR2rdvn92cU6dOKSEhQW5ubvL19dWuXbuG6VcAAABwLBR6AAAAGFBnZ6cqKyu1fPly\njRkz5qL7l/rOu5qaGmVkZGjFihWqq6vTvHnz9Oyzz9rN6erqUnx8vPbv36+jR48qNjZWCQkJamtr\ns81JTU1Ve3u7Dhw4oNdee00vvPCCTp06dUmZAAAAnAlbbgEAADCgb775RlarVUFBQVf0uQUFBYqN\njdXatWslSYGBgaqurlZlZaVtTlhYmMLCwmzXGzZs0BtvvKE333xTK1as0Ndff613331Xhw8fVmRk\npCRp+/btCg4OvqJZAQAAHBEr9AAAADAgq9U6LM9taGhQVFSU3djNN99sd93V1aU1a9YoODhYHh4e\nMpvNamhosK3Qa2ho0MiRIzVz5kzbZ4KCgq7ISbkAAACOjhV6AAAAGND1118vk8mkxsbGQX/GxeX3\n/4v/XAb29vYO+bvXrFmj999/Xzk5OQoICJCbm5sWLlyonp6eIT8LAADg34YVegAAABjQhAkTNH/+\nfBUWFurs2bMX3f/zwRd/mDhxoiSpo6PDNlZXV2c3Jzg4WDU1NXZjfxyw8YeqqiqlpqYqMTFRISEh\nmjx5st2hGkFBQerr69ORI0dsY1999dWAmQAAAP5tKPQAAADwlwoLC9Xf36+bbrpJr7/+upqamtTQ\n0KDNmzdftE1WkgICAuTt7a3169erqalJ77zzjnJzc+3mrFy5UpWVlcrJyVFTU5O2bNli9/486ffV\ngeXl5aqrq1N9fb2Sk5N14cIF2/0bbrhBsbGxWrp0qWpqanTkyBEtXrxYbm5uw/NDAAAAOBAKPQAA\nAPwlPz8/1dbWat68eVq9erWmT5+u6OhoVVZWXlTUSdKoUaNUWlqqxsZGhYaGKjs7+6ITbGfNmqVt\n27apoKBAYWFheu+99/T000/bzcnLy5Onp6dmz56thIQEzZ8/X+Hh4XZzioqKdO211+q2225TUlKS\nlixZokmTJl35HwEAAMDBmKzD9bZjAAAAAAAAAFccK/QAAAAAAAAAJ0KhBwAAAAAAADgRCj0AAAAA\nAADAiVDoAQAAAAAAAE6EQg8AAAAAAABwIhR6AAAAAAAAgBOh0AMAAAAAAACcCIUeAAAAAAAA4EQo\n9AAAAAAAAAAnQqEHAAAAAAAAOBEKPQAAAAAAAMCJ/A9LY8VjVOcIPQAAAABJRU5ErkJggg==\n", "text/plain": [ "<matplotlib.figure.Figure at 0x148a9e70>" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "#Visulizacion de la cantidad de viajes segun la ciudad\n", "plt = arch_unidos['city'].value_counts().plot('bar')\n", "plt.set_xlabel('Ciudad')\n", "plt.set_ylabel('Cantidad de viajes')\n", "plt.set_title('Cantidad de viajes dependiendo de la ciudad')\n" ] }, { "cell_type": "code", "execution_count": 20, "metadata": { "collapsed": false }, "outputs": [ { "data": { "text/plain": [ "<matplotlib.text.Text at 0xf03ad90>" ] }, "execution_count": 20, "metadata": {}, "output_type": "execute_result" }, { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAABOIAAALICAYAAADSYV8sAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAAPYQAAD2EBqD+naQAAIABJREFUeJzs3XlcVdX+//H3QeCAECDEIIljpth1NoUccuCGE5piSlFq\nl7QSsMSvqZVN10Rt0DDURitLr1MOWGpeTb15cSTNW6ZWKJqCGiGCgij790cPzs8jg2BwKHw9H4/z\neHDW/uy9Pmuffc69flp7bZNhGIYAAAAAAAAAVCm76k4AAAAAAAAAuBlQiAMAAAAAAABsgEIcAAAA\nAAAAYAMU4gAAAAAAAAAboBAHAAAAAAAA2ACFOAAAAAAAAMAGKMQBAAAAAAAANkAhDgAAAAAAALAB\nCnEAAAAAAACADVCIAwAAFj/88INMJpP+9a9/VXcq1Wb9+vUymUzasWNHdaeCm1RFvocRERFq3rx5\npfWdl5cnk8mk6dOn39D+1fX9+SP9Tpo0SU5OTlWQFQAAxVGIAwDgKiaTqVyvLVu2VEn/GzZs0IgR\nI9S0aVPVrl1bt99+ux5//HFlZGSUGL9161bdfffdql27turWrau4uDhdvHixSnKrbtnZ2XrxxRf1\n9ddfV3cqQKX4+OOP9dZbb1V3GgAAwIbsqzsBAAD+TBYuXGj1/uOPP9bGjRuLtQcGBlZJ/+PHj1d+\nfr6GDBmiJk2a6MiRI0pMTNTatWu1b98+3XrrrZbYXbt26d5771Xr1q01a9YsHT16VG+88YZSU1O1\ncuXKKsmvOmVnZ+ull16Sk5OTunTpUmX93Hvvvbp48aLMZnOV9QFIv/++nDhxQjExMVbtzZo108WL\nF+Xo6FhNmf31/JHv7dSpU/XSSy9VQVYAABRHIQ4AgKs89NBDVu937NihjRs3FmuvKnPnzlXXrl1l\nMpksbb169VJoaKjmz5+v5557ztI+adIk+fn56auvvpKLi4sk6bbbblNsbKy2bdumbt262STnmsbO\nzo7b1FCtTCYT12AF/ZHvrb29vezt+WcRAMA2uDUVAIA/ID09XSNHjpS3t7ecnJzUpk0bLVq0yCqm\naL2nt956SzNnzlRAQICcnZ3Vq1cv/fDDD1ax3bp1syrCSb/P9HBxcdHBgwctbWfPntXWrVs1YsQI\nSxFOkqKiomQ2m7V06dLr5v7rr7/qoYcekpubmzw9PRUVFaXz58+XGPu///1PgwYNkqenp5ydndWx\nY0etW7fuun1I0pUrV/Taa68pMDBQZrNZfn5+io6OVnZ2tlVccnKyQkJC5OXlpdq1a6tx48Z6/PHH\nJf1+DgMCAiRJkydPttwiXLSOVUpKih5++GE1atRITk5Oqlu3rkaPHq2srKxi+aSlpWnkyJHy8/OT\nk5OTmjRpopiYGF25ckVS6WtNLVq0SG3atJGTk5O8vb01cuRIpaenW8VERETo1ltvVVpamvr37y9X\nV1f5+PjomWeeUWFhYaWfl+tJSkpS165d5erqKnd3d3Xq1EnLli2r0nGVxM/PT0OGDNHGjRvVrl07\nOTs7q02bNtq+fbskacmSJWrRooWcnJzUsWNH/e9//7Pav7yfb1ZWlmJiYtSgQQOZzWb5+PgoNDRU\nBw4cuG6O17suzpw5o3HjxunOO++Ui4uL3N3d1b9/f3333XdWxym6flavXq0XX3xR/v7+cnZ21r33\n3qujR49a4oKCgrRp0yYdOnTIcj0XrfVW2hpxS5cutZynVq1aae3atSWOJT4+XsHBwVbf19WrVxeL\nu3jxomJjY+Xl5aVbbrlFgwcPLvbZl+Xo0aMKCwuTi4uLfH19NWHCBBUUFJQYu337dv3973+Xm5ub\nXFxc1LNnT+3cubPM4x8/flx2dnaaMWNGsW379++XyWTSe++9J6nk7+3mzZsVHh6ugIAAmc1mNWjQ\nQE8//bTy8/OtjlXaGnEffPCB2rZtK2dnZ3l5eemhhx7SqVOnrGIOHjyo++67T76+vnJyclJAQIAi\nIyOVm5tb5tgAADcv/tMPAAA3KCcnR127dtXx48cVGxurgIAALVmyRJGRkTp//rwee+wxq/h33nlH\nFy5c0NixY5Wbm6vZs2erR48e+t///icvL69S+8nKylJeXp7Vban79+9XYWGhOnToYBXr7Oysli1b\n6ptvvikz9ytXrqhfv37as2ePxowZo6ZNm2r58uV69NFHi8Xu27dPXbt2VaNGjTR58mQ5Oztr8eLF\n6t+/v5KSktS3b98y+xo5cqSWLl2qf/zjH3rqqaf0008/6a233tL+/fu1detW1apVS7/88ot69+6t\n2267Tc8++6xuueUWpaam6vPPP5ck+fv7KyEhQWPHjtWwYcPUv39/SVLbtm0lSevWrdMvv/yiqKgo\n+fr66sCBA3rnnXf0ww8/aNu2bZZc0tLS1LFjR+Xm5mr06NFq1qyZ0tLStHTpUhUUFKhWrVoljmH+\n/Pl64oknFBQUpJkzZ+rEiRNKSEjQf//7X6WkpMjV1dUSe+nSJf3973/XPffco1dffVXr169XfHy8\nmjZtqkceeaRSz0tZinJu06aNnn32Wbm5uSklJUUbNmzQ/fffX2XjKs3333+vESNG6IknntDDDz+s\nmTNnqn///nrzzTf14osv6vHHH9eVK1c0bdo0RURE6MCBA5aidHk/36ioKH3xxReKjY1Vs2bNdPbs\nWW3btk2HDh1Sy5YtS82tPNfFoUOH9MUXX2jIkCFq0KCBTp06pfnz5+uee+7R999/Lx8fH6tjvvTS\nS3J0dNTEiRP166+/6tVXX9WIESO0detWy/bx48crMzNTM2fOlCS5u7uXmmNSUpIiIiLUqlUrxcfH\n68yZM4qMjNRtt91WLHb27NkaOnSoHn74YeXn5+uTTz7RoEGD9OWXXyokJMQSN3z4cC1fvlzDhw9X\nx44d9eWXX2rgwIHX/Swl6fz58+rZs6cyMjL05JNPytvbWx999JG+/PLLYrHr16/XgAEDFBQUZLkF\n9L333lP37t2VnJysNm3alNhHQECAgoODtXTpUk2cONFq25IlS+Tg4KDBgweXmuOSJUtUUFCg6Oho\n1alTRzt27NDrr7+uU6dOFVtu4FpTpkzRtGnT9MADD+ixxx5Tenq6EhIStHPnTn3zzTdydXXVxYsX\nde+990qSnnrqKfn4+Oj48eNas2aNcnJyrP4jCQAAFgYAAChVdHS0Udr/XE6fPt2QZCxfvtzSlp+f\nb7Rr187w8PAwcnNzDcMwjIMHDxqSjFtuucVIT0+3xG7bts2QZEyePLnMHJ599llDkrF9+3ZL28KF\nCw1Jxq5du4rFh4WFGQ0bNizzmP/6178MSUZCQoKlraCgwOjUqZMhyVi8eLGlvXPnzkb79u2NS5cu\nWdouX75stG/f3mjZsmWZ/WzcuNGQZKxYscKqfdWqVVbtixcvNiQZBw4cKPVYx48fNyQZ8fHxxbZd\nuHChWNuCBQuKnaOhQ4ca9vb2xv79+61iCwsLLX+vW7fOkGQkJycbhmEYFy9eNOrUqWO0a9fOyM/P\nt8QtX77ckGRMmzbN0jZs2DBDkjFz5kyrY7do0cLo3LlzlZyXkpw9e9ZwdnY2unbtapXz1WOtinGV\nxtfX1zCZTMbevXstbatXrzYkGa6ursbJkyct7W+++abV+TeM8n2+hYWFhrOzszF+/Pjr5nOt8lwX\nFy9etHpvGIZx6NAhw8HBweq8FF0/rVu3tvrOzJgxw5BkHDlyxNLWq1cvo1mzZsXyKfrNuPp7GBgY\naDRo0MA4f/68pW3NmjWGpGLHuPZ85eXlGXfccYfRt29fS9uOHTsMSUZcXJxVbHh4eKnfs6sV/f6t\nWbPG0nb+/HmjQYMGVp/f5cuXjQYNGhgDBgyw2v/8+fNGvXr1jLCwsDL7Kboerj5vhmEYTZo0sRrP\ntd9bwyj5unnhhRcMOzs7q9/iiRMnGmaz2fL+0KFDhp2dnfH6669b7bt3716r9uTkZEOSkZSUVOYY\nAAC4GremAgBwg7744gs1aNDAakaGo6OjYmNjlZWVpf/+979W8UOGDJGvr6/lfdeuXdW6dWt98cUX\npfaxceNGTZ8+XcOHD9fdd99taS96MmpJC5M7OTld98mpX3zxhZycnDRq1ChLm729vaKjo63iTp06\npe3btysiIkLnzp3T2bNndfbsWf3222+WW/5+/fXXUvtZtmyZvL291a1bN8u+Z8+eVXBwsBwdHfXV\nV19Jkjw8PCT9Puvn8uXLZeZeEmdnZ8vfFy9e1NmzZxUUFCTp99saJamgoEBJSUkKDw9Xq1atrPa/\n9nbgqyUnJ+u3335TTEyM1eL5gwcPVqNGjUqcnXb1bEiTyaQuXbro559/trRV9XlZt26dLl68qGee\neabYgv9FY62KcZWlbdu2ateuneV9p06dJEmhoaGqW7dusfarj1uez9dkMsnNzU3JyckVur2yvNeF\nk5OT5f3ly5f166+/ytPTU40aNbLkcLWoqCg5ODhY3nft2rXYuMorNTVVBw8e1COPPGI1SzEsLExN\nmjQpFl90vgzD0G+//abz58+rc+fOVnkW/e6MHTvWat8nn3yyXDl98cUXatiwocLCwixtrq6uioqK\nsorbtWuXjh07pgcffNDqWs/Ly1OPHj0s13pp7r//ftnZ2WnJkiWWtj179uinn37SsGHDytz36usm\nNzdXZ8+eVefOnVVYWKh9+/aVut+KFStkMpkUHh5ulXP9+vXVsGHDYt/P9evXKy8vr8xcAAAoQiEO\nAIAbdOzYMd1xxx3FijhFT1Q9duyYVXvTpk2LHeOOO+6wWjfqagcOHND999+vdu3aad68eVbbiv6B\nee1aR5KUl5dn9Q/Q0nIPCAgoti5Ss2bNrN4fOXJEkjRhwgR5e3tbvaZNmyZJOn36dKn9HDlyRGfO\nnCm2r6+vry5dumTZ995771VYWJieeeYZ3XrrrRo8eLA+/vhjXbp0qcxxFDlz5oyio6Pl4+Oj2rVr\ny9vb2/I5nDt3TpJ08uRJXbx4UX/729/KdcwiRZ/jtefGZDKpWbNmxT5nDw8Pubm5WbXVqVNHv/32\nm+V9VZ+Xn376SZLKHGtVjKss9evXt3pfdBtm0dp/17ZffdzyfL6S9Nprr2nPnj2qV6+egoKC9PLL\nL5f6/SpS3uviypUrmjlzpho3biyz2axbb71V3t7eOnz4sFUOpY23Tp06xcZVXkWfRWm/IddauXKl\n7rrrLjk7O8vT01Pe3t5asGCBVZ7Hjh2T2Wwulue110NZOZWUT2m/IREREcWu94ULFyonJ6fM/3BQ\nt25dde3a1aoQt2TJEpnN5uveRpuamqqHHnpIderUkaurq7y9vS23kpb0mV2d85UrV9SwYcNiOf/8\n88+W72fz5s01ZswYJSYmysvLS3369NG8efNKXWsTAACJNeIAAPhTSk1NVe/eveXj46PPP/9ctWvX\nttpeNIPo2oXDi9r8/f0rJY+ihfifeeYZ9ejRo8SYa/8hf+3+9erV04IFC0rcXjRD0M7OTmvWrNH2\n7du1du1abdiwQSNGjNDs2bO1ffv26xYWBw0apP3792vChAlq1aqVXFxclJeXpwEDBpTrYQKVqbR1\n5gzDsPxtq/NSmcozrhvZvzzHLe/n+9BDD6l79+5auXKlZTbpjBkztGbNGvXq1atceZbmhRde0Cuv\nvKLRo0erZ8+eqlOnjuzs7DRmzJgSr7E/er5u1MaNGzV48GD16tVL8+fPl5+fn+zt7fX2228rKSmp\nSvsuSdG5efPNN9WiRYsSY66dtXmtiIgIPfHEE/rhhx/UvHlzLVu2TL179y5zTb2CggL16tVLFy5c\n0DPPPKNmzZqpdu3aOnr0qEaNGlXm70JhYaEcHBxKna18dUE6MTFRo0aN0po1a/Tll18qOjpaM2bM\n0I4dO+Tn51fmuAAANycKcQAA3KAGDRro8OHDxdqLnoTaoEEDq/aimSFXO3z4sBo2bGjVlpGRoXvv\nvVeGYejLL7+Ut7d3sf1atWolk8mkPXv2aMCAAZb2ixcv6sCBA8VuDysp9507dyovL89qVtyhQ4es\n4opuezObzVaLvJdXkyZNtHPnTnXr1u26/9iWpM6dO6tz586Kj4/XBx98oKioKK1YsUIPPfRQqbeP\npqena/v27ZoxY4aefvppS/u1T8osenrltU/kvJ6iz/HQoUNWtwcXtV37OZdHZZ6X0o4v/f6023r1\n6pUYUxXjqgrl/XyL1KtXT7GxsYqNjdWpU6fUpk0bxcfHl1qIK+91sXz5cvXp00dvv/22VXtmZqYa\nN25cwVH9rqxboq9W9FmU9htib////y/9ihUr5ObmpnXr1lndGnvtrNoGDRooPz9faWlpVp/1tb8B\nZeVUUj6l/YZ4eHjc0G+IJIWHhysmJkZLlixRaGiojh07Znlicmn27t2r1NRULVmyREOHDrW0l6cY\n2aRJExUUFOiOO+4o8z80FGnTpo3atGmj559/Xps3b1avXr303nvv6bnnnrv+4AAANx1uTQUA4Ab1\n7dtXx44d08qVKy1tBQUFeuutt+Th4aHOnTtbxS9fvlwZGRmW9//5z3+0f/9+9enTx9KWnZ2t3r17\n6+zZs9qwYUOxIl0Rb29v3XPPPfroo4904cIFS/sHH3yg/Px8y1Mxy8o9Ly9P7777rqXt8uXLSkxM\ntIoLCAhQUFCQEhMTdebMmWLHKantakOHDlVeXl6J/2guKCiw3B6WmZlZbHvRkxSLbr8tegJhVlaW\nVVzRzKNrZxrNnj3b6r2Dg4PCwsK0YsUKffvtt1bbypqlFBwcrDp16mju3LkqKCiwtK9cuVKpqanq\n169fqfuWpjLPS0n69OkjZ2dnTZs2rdhtrEVjrYpxVYXyfr4FBQXFbgmsW7eufH19yzxX5b0uatWq\nVSyHhQsXlrlG4vW4uLgUu55L0qhRIzVv3lwLFixQTk6OpT0pKclyG/LVedrZ2VnN+Dpy5EixNf+K\nnnackJBg1f7mm2+WK/e+ffvq6NGjVoWtnJwcvf/++1ZxQUFBCggI0MyZM61+q4pc7zdE+v33rmfP\nnlqyZImWLFmi2rVrW61NV5KSrpvCwsJi4y3JkCFDZDKZLE94vVphYaHle3nu3DlduXLFanvr1q0l\nlf39BADc3JgRBwDADYqOjtZ7772nBx98ULGxsQoICNCSJUu0Z88ezZs3r9htgw0bNlTnzp31+OOP\nKzc3V7NmzZKvr6/Gjx9viRk6dKj27dunxx57TPv379f+/fst29zd3a3+8RkfH69u3bqpe/fuioqK\n0tGjR/XGG28oLCxM3bt3LzP3IUOG6K677tK4ceP0448/qmnTplq2bFmJazXNnz9f3bp109/+9jc9\n+uijatSokeUhDpmZmdq1a1ep/YSGhmrEiBF64YUXtGfPHvXq1Uu1atXS4cOHtWzZMr377rvq37+/\n3nnnHX300Ue677771LhxY2VlZemdd95RnTp1FBoaKun3GTWNGzfWJ598ooYNG8rDw0OtW7dWYGCg\nOnbsqKlTp+rChQvy9fXVunXrdPz48WL5zJgxQ1999ZU6d+6sxx57TM2aNdMvv/yiJUuW6Jtvvim2\nZp70+yL906ZN0xNPPKHu3bsrIiJCJ06cUEJCgm6//XbFxsaWea6r+ryUxMvLS6+99pqio6PVqVMn\nDRs2TO7u7tq3b58KCwv17rvvVsm4qoK3t3e5Pt9ff/1Vd9xxh+6//361bNlStWvX1oYNG3TgwIFi\nBeZrlee66N+/v2bOnKlRo0bprrvu0v79+7VkyZI/NHOwffv2Wr16tSZOnKg2bdrI3d3dUiC71vTp\n0zVo0CB16dJFI0eO1OnTp5WYmKjAwECrolv//v01d+5c9enTR8OGDdOpU6eUmJioZs2aWc1W69Sp\nkwYNGqQ33nhDv/76qzp27KgNGzZcd029ImPGjNG8efMUERGhJ598Uj4+Pvrwww+L3S7q4OCgd999\nVwMGDFDLli01fPhw+fv768SJE/r3v/8tf39/LVu27Lr9DRs2TI8++qhOnDihfv36WQrzpWnZsqXq\n16+vsWPHKjU1VS4uLlq6dGm51m8LDAzU888/r5deekk//vijwsLC5OLiop9//lmfffaZxo0bp5iY\nGK1bt05PP/207r//fjVt2lT5+fn6+OOPZTabrR7iAwCAlWp5VisAAH8R0dHRRln/c3ny5Elj+PDh\nhpeXl+Ho6Gi0bt3a+OSTT6xiDh48aEgyEhISjOnTpxv16tUznJycjO7duxvfffedVayvr68hqcRX\ns2bNivW/efNmo1OnToaTk5Ph6+trPPnkk0Zubm65xnbmzBnjgQceMFxdXQ0PDw/jkUceMXbt2mVI\nMhYvXmwVe/jwYSMyMtLw8fExHBwcjHr16hkDBgwwVq9efd1+CgsLjblz5xpt27Y1nJycDDc3N6NV\nq1bG5MmTjfT0dMMwDGPXrl3G0KFDjYCAAMPR0dHw9fU1Bg4caOzbt8/qWFu3bjXatm1rODo6GpKM\n+Ph4wzAM49ixY8aAAQMMd3d3w8PDw3jggQeMY8eOWcUU+fnnn43IyEjj1ltvNcxms9GkSRNj7Nix\nxuXLlw3DMIx169YZkozk5GSr/T755BOjdevWhqOjo+Hl5WUMHz7cOHXqlFXMsGHDDC8vr2LnYOLE\niYbZbK6y81KaFStWGEFBQYazs7Ph5uZmBAUFGcuXL6/ScZXE19fXCA8Pt2q7ePGiIckYP368VXvR\n92XOnDmWtvJ8vhcuXDDi4uKMli1bGrfccovh6upqtG3b1nj33Xevm59hXP+6uHDhgjF27FjDz8/P\nqF27ttGtWzdjz549RqdOnYzQ0FDLcYqun6SkpBLHdfV369y5c8bQoUMNd3d3q+94SbGGYRiLFy82\nmjVrZpjNZqNly5ZGUlKSMWzYsGK/DfPnzzeaNGlimM1mo0WLFsYnn3xS4meVm5trjBkzxqhTp47h\n6upqDBo0yPj5559L/N6Uds769u1rODs7Gz4+Psb//d//GWvWrCnx+7Nnzx5j4MCBhqenp2E2m42G\nDRsaDzzwgLF169br9mMYhpGZmWk4ODgYkopdw4ZR8vf222+/NXr06GG4uLgY3t7exhNPPGHs3r27\n2Lkt7Tr+17/+Zdx9992Gi4uL4erqagQGBhpjx441fvzxR8Mwfv9dHDlypNGoUSPDycnJ8PLyMkJC\nQowtW7aUa0wAgJuTyTCqeMVYAABucj/88IMCAwM1Z84cxcTEVHc6AICrTJgwQfPmzbO67RcAgKrC\nGnEAAAAAblqnTp3SrbfeWt1pAABuEqwRBwAAAOCmc+TIEa1atUqrV6+2erIqAABViRlxAAAAAG46\nmzZt0tSpUxUSEqIZM2ZUdzoAgJsEa8QBAAAAAAAANsCMOAAAAAAAAMAGKMQBAAAAAAAANsDDGsqp\nsLBQJ0+e1C233CKTyVTd6QAAAAAAAKCaGIah8+fPy9/fX3Z25Z/nRiGunE6ePKmAgIDqTgMAAAAA\nAAB/EsePH1e9evXKHU8hrpxuueUWSb+fYDc3t2rOBgAAAAAAANUlOztbAQEBlnpReVGIK6ei21Hd\n3NwoxAEAAAAAAKDCy5dV68Matm3bprCwMPn7+8tkMmnVqlXFYg4ePKgBAwbI3d1dLi4uuuuuu5SW\nlmbZnpeXp+joaHl5ecnV1VXh4eHKyMiwOkZmZqYiIyPl5uYmDw8PRUVFKScnp8rHBwAAAAAAABSp\n1kJcbm6uWrdurcTExBK3//TTT+rSpYuaN2+uLVu26Ntvv9WUKVPk5ORkiRk3bpySkpK0bNkybd26\nVSdPntTgwYOtjhMZGanvvvtOGzdu1Nq1a7Vt2zaNHj26SscGAAAAAAAAXM1kGIZR3UlIv0/lW7ly\npe677z5LW0REhBwcHLRw4cIS9zl37py8vb21aNEiDRkyRJL0ww8/KDAwUMnJyQoKCtLBgwfVokUL\n7d69Wx06dJAkrV+/Xn379tWJEyfk7+9frvyys7Pl7u6uc+fOcWsqAAAAAADATexG60TVOiOuLIWF\nhfr88891xx13KDQ0VD4+PurUqZPV7at79+5VQUGBQkJCLG3NmzdX/fr1lZycLElKTk6Wh4eHpQgn\nSSEhIbKzs9POnTtL7T8/P1/Z2dlWLwAAAAAAAOBG/WkLcadPn1ZOTo6mT5+u3r1768svv9SgQYM0\nePBgbd26VZKUnp4uR0dHeXh4WO3r6+ur9PR0S4yPj4/Vdnt7e3l6elpiShIfHy93d3fLKyAgoJJH\nCAAAAAAAgJvJn7YQV1hYKEkaOHCgxo0bpzZt2mjSpEnq37+/5s+fX+X9T548WefOnbO8jh8/XuV9\nAgAAAAAAoOayr+4ESnPrrbfK3t5eLVq0sGoPDAzU119/LUny8/PTpUuXlJWVZTUrLiMjQ35+fpaY\n06dPWx3j8uXLyszMtMSUxGw2y2w2V9ZwAAAAAAAAcJP7086Ic3R01F133aVDhw5ZtR8+fFgNGjSQ\nJLVv314ODg7atGmTZfuhQ4eUlpam4OBgSVJwcLCysrK0d+9eS8zmzZtVWFioTp062WAkAAAAAAAA\nQDXPiMvJydGPP/5oeZ+amqp9+/bJ09NT9evX14QJEzRs2DB169ZNPXr00Pr165WUlKQtW7ZIktzd\n3RUVFaW4uDh5enrKzc1NsbGxCg4OVlBQkKTfZ9D17t1bo0aN0vz581VQUKCYmBhFRESU+4mpAAAA\nAAAAwB9lMgzDqK7Ot2zZoh49ehRrHzFihD788ENJ0gcffKD4+HidOHFCzZo100svvaSBAwdaYvPy\n8jR+/HgtXrxY+fn5Cg0N1dy5c61uO83MzFRMTIySkpJkZ2en8PBwJSQkyNXVtdy53uhjaQEAAAAA\nAFCz3GidqFoLcX8lFOIAAAAAAAAg3Xid6E+7RhwAAAAAAABQk1CIAwAAAAAAAGyAQhwAAAAAAABg\nAxTiAAAAAAAAABuwr+4EbgYNJ31u8z6PTu9n8z4BAAAAAABQOmbEAQAAAAAAADZAIQ4AAAAAAACw\nAQpxAAAAAAAAgA1QiAMAAAAAAABsgEIcAAAAAAAAYAMU4gAAAAAAAAAboBAHAAAAAAAA2ACFOAAA\nAAAAAMA6Nb3VAAAgAElEQVQGKMQBAAAAAAAANmBf3Qmg5mg46XOb93l0ej+b9wkAAAAAAHAjmBEH\nAAAAAAAA2ACFOAAAAAAAAMAGKMQBAAAAAAAANsAaccANYD08AAAAAABQUcyIAwAAAAAAAGyAQhwA\nAAAAAABgAxTiAAAAAAAAABugEAcAAAAAAADYAA9rAFCqm+WhFDfLOAEAAAAA1YsZcQAAAAAAAIAN\nUIgDAAAAAAAAbIBCHAAAAAAAAGADFOIAAAAAAAAAG6AQBwAAAAAAANgAhTgAAAAAAADABijEAQAA\nAAAAADZAIQ4AAAAAAACwAQpxAAAAAAAAgA1QiAMAAAAAAABsgEIcAAAAAAAAYAMU4gAAAAAAAAAb\noBAHAAAAAAAA2EC1FuK2bdumsLAw+fv7y2QyadWqVaXGPv744zKZTJo9e7ZVe15enqKjo+Xl5SVX\nV1eFh4crIyPDKiYzM1ORkZFyc3OTh4eHoqKilJOTUyVjAgAAAAAAAEpSrYW43NxctW7dWomJiWXG\nrVy5Ujt27JC/v3+xbePGjVNSUpKWLVumrVu36uTJkxo8eLBVTGRkpL777jtt3LhRa9eu1bZt2zR6\n9OhKHQsAAAAAAABQFvvq7LxPnz7q06dPmTG//PKLYmNjtWHDBvXr189q27lz5/T+++9r0aJF6tmz\npyRpwYIFCgwM1I4dOxQUFKSDBw9q/fr12r17tzp06CBJmjNnjvr27avXXnutxOKeJOXn5ys/P9/y\nPjs7+48MFQAAAAAAADe5P/UacYWFhXr44Yc1YcIE3XnnncW27927VwUFBQoJCbG0NW/eXPXr11dy\ncrIkKTk5WR4eHpYinCSFhITIzs5OO3fuLLXv+Ph4ubu7W14BAQGVODIAAAAAAADcbP7UhbgZM2bI\n3t5eY8eOLXF7enq6HB0d5eHhYdXu6+ur9PR0S4yPj4/Vdnt7e3l6elpiSjJ58mSdO3fO8jp+/Pgf\nHA0AAAAAAABuZtV6a2pZ9u7dqzfffFMpKSkymUw2799sNstsNtu8XwAAAAAAANRMf9oZcf/5z390\n+vRp1a9fX/b29rK3t9exY8c0fvx4NWzYUJLk5+enS5cuKSsry2rfjIwM+fn5WWJOnz5ttf3y5cvK\nzMy0xAAAAAAAAABV7U9biHv44Yf17bffat++fZaXv7+/JkyYoA0bNkiS2rdvLwcHB23atMmy36FD\nh5SWlqbg4GBJUnBwsLKysrR3715LzObNm1VYWKhOnTrZdlAAAAAAAAC4aVXrrak5OTn68ccfLe9T\nU1O1b98+eXp6qn79+vLy8rKKd3BwkJ+fn5o1ayZJcnd3V1RUlOLi4uTp6Sk3NzfFxsYqODhYQUFB\nkqTAwED17t1bo0aN0vz581VQUKCYmBhFRESU+sRUAAAAAAAAoLJVayFuz5496tGjh+V9XFycJGnE\niBH68MMPy3WMWbNmyc7OTuHh4crPz1doaKjmzp1rFfPpp58qJiZGvXr1ssQmJCRU2jgA4K+g4aTP\nbd7n0en9bN4nAAAAAPxZVWshrnv37jIMo9zxR48eLdbm5OSkxMREJSYmlrqfp6enFi1adCMpAgAA\nAAAAAJXiT7tGHAAAAAAAAFCTUIgDAAAAAAAAbIBCHAAAAAAAAGADFOIAAAAAAAAAG6AQBwAAAAAA\nANgAhTgAAAAAAADABijEAQAAAAAAADZAIQ4AAAAAAACwAQpxAAAAAAAAgA1QiAMAAAAAAABsgEIc\nAAAAAAAAYAMU4gAAAAAAAAAboBAHAAAAAAAA2ACFOAAAAAAAAMAGKMQBAAAAAAAANkAhDgAAAAAA\nALABCnEAAAAAAACADVCIAwAAAAAAAGyAQhwAAAAAAABgAxTiAAAAAAAAABugEAcAAAAAAADYAIU4\nAAAAAAAAwAYoxAEAAAAAAAA2QCEOAAAAAAAAsAEKcQAAAAAAAIANUIgDAAAAAAAAbMC+uhMAAKAy\nNZz0uc37PDq9n837BAAAAPDXw4w4AAAAAAAAwAYoxAEAAAAAAAA2QCEOAAAAAAAAsAEKcQAAAAAA\nAIANUIgDAAAAAAAAbIBCHAAAAAAAAGADFOIAAAAAAAAAG6AQBwAAAAAAANgAhTgAAAAAAADABqq1\nELdt2zaFhYXJ399fJpNJq1atsmwrKCjQxIkT1bJlS7m4uMjf31/Dhw/XyZMnrY6Rl5en6OhoeXl5\nydXVVeHh4crIyLCKyczMVGRkpNzc3OTh4aGoqCjl5OTYZIwAAAAAAACAVM2FuNzcXLVu3VqJiYnF\ntl24cEEpKSmaMmWKUlJS9Nlnn+nQoUMaMGCAVdy4ceOUlJSkZcuWaevWrTp58qQGDx5sFRMZGanv\nvvtOGzdu1Nq1a7Vt2zaNHj26SscGAAAAAAAAXM2+Ojvv06eP+vTpU+I2d3d3bdy40artrbfeUseO\nHZWWlqb69evr3Llzev/997Vo0SL17NlTkrRgwQIFBgZqx44dCgoK0sGDB7V+/Xrt3r1bHTp0kCTN\nmTNHffv21WuvvSZ/f/8S+8/Pz1d+fr7lfXZ2dmUMGQAAAAAAADepv9QacefOnZPJZJKHh4ckae/e\nvSooKFBISIglpnnz5qpfv76Sk5MlScnJyfLw8LAU4SQpJCREdnZ22rlzZ6l9xcfHy93d3fIKCAio\nolEBAAAAAADgZvCXKcTl5eVp4sSJeuCBB+Tm5iZJSk9Pl6Ojo6UwV8TX11fp6emWGB8fH6vt9vb2\n8vT0tMSUZPLkyTp37pzldfz48UoeEQAAAAAAAG4m1XprankVFBRo6NChMgxD8+bNs0mfZrNZZrPZ\nJn0BAAAAAACg5vvTz4grKsIdO3ZMGzdutMyGkyQ/Pz9dunRJWVlZVvtkZGTIz8/PEnP69Gmr7Zcv\nX1ZmZqYlBgAAAAAAAKhqf+pCXFER7siRI/r3v/8tLy8vq+3t27eXg4ODNm3aZGk7dOiQ0tLSFBwc\nLEkKDg5WVlaW9u7da4nZvHmzCgsL1alTJ9sMBAAAAAAAADe9ar01NScnRz/++KPlfWpqqvbt2ydP\nT0/VrVtXQ4YMUUpKitauXasrV65Y1nTz9PSUo6Oj3N3dFRUVpbi4OHl6esrNzU2xsbEKDg5WUFCQ\nJCkwMFC9e/fWqFGjNH/+fBUUFCgmJkYRERGlPjEVAAAAAAAAqGzVWojbs2ePevToYXkfFxcnSRox\nYoRefPFFrVmzRpLUpk0bq/2++uorde/eXZI0a9Ys2dnZKTw8XPn5+QoNDdXcuXOt4j/99FPFxMSo\nV69eltiEhIQqHBkAAAAAAABgrVoLcd27d5dhGKVuL2tbEScnJyUmJioxMbHUGE9PTy1atOiGcgQA\nAAAAAAAqw1/iqakAAMBaw0mf27zPo9P72bxPAAAAoCb5Uz+sAQAAAAAAAKgpKMQBAAAAAAAANkAh\nDgAAAAAAALABCnEAAAAAAACADVCIAwAAAAAAAGyAQhwAAAAAAABgAxTiAAAAAAAAABugEAcAAAAA\nAADYgH11JwAAAFCahpM+t3mfR6f3s3mfAAAAuDkwIw4AAAAAAACwAQpxAAAAAAAAgA1QiAMAAAAA\nAABsgEIcAAAAAAAAYAMU4gAAAAAAAAAboBAHAAAAAAAA2ACFOAAAAAAAAMAGKMQBAAAAAAAANkAh\nDgAAAAAAALABCnEAAAAAAACADVCIAwAAAAAAAGygwoW4lJQUHThwwPJ+9erVuu+++/TMM8/o0qVL\nlZocAAAAAAAAUFNUuBD32GOP6fDhw5Kkn3/+WREREapdu7aWLVump59+utITBAAAAAAAAGqCChfi\nDh8+rDZt2kiSli1bpm7dumnRokX68MMPtWLFikpPEAAAAAAAAKgJKlyIMwxDhYWFkqR///vf6tu3\nryQpICBAZ8+erdzsAAAAAAAAgBqiwoW4Dh06aOrUqVq4cKG2bt2qfv36SZJSU1Pl6+tb6QkCAAAA\nAAAANUGFC3GzZ89WSkqKYmJi9Oyzz+r222+XJC1fvlx33313pScIAAAAAAAA1AT2Fd2hVatWVk9N\nLfLqq6+qVq1alZIUAAAAAAAAUNNUeEacJGVlZem9997T5MmTlZmZKUn6/vvvdfr06UpNDgAAAAAA\nAKgpKjwj7ttvv1WvXr3k4eGho0ePatSoUfL09NRnn32mtLQ0ffzxx1WRJwAAAAAAAPCXVuEZcXFx\ncXrkkUd05MgROTk5Wdr79u2rbdu2VWpyAAAAAAAAQE1R4ULc7t279dhjjxVrv+2225Senl4pSQEA\nAAAAAAA1TYULcWazWdnZ2cXaDx8+LG9v70pJCgAAAAAAAKhpKlyIGzBggF5++WUVFBRIkkwmk9LS\n0jRx4kSFh4dXeoIAAAAAAABATVDhhzW8/vrrGjJkiHx8fHTx4kXdc889Sk9PV3BwsF555ZWqyBEA\nAKBGazjpc5v3eXR6P5v3CQAAcLOrcCHO3d1dGzdu1Ndff61vv/1WOTk5ateunUJCQqoiPwAAAAAA\nAKBGqPCtqUW6dOmiMWPG6Omnn77hIty2bdsUFhYmf39/mUwmrVq1ymq7YRh6/vnnVbduXTk7Oysk\nJERHjhyxisnLy1N0dLS8vLzk6uqq8PBwZWRkWMVkZmYqMjJSbm5u8vDwUFRUlHJycm4oZwAAAAAA\nAOBGlGtGXEJCgkaPHi0nJyclJCSUGevq6qo777xTnTp1uu5xc3Nz1bp1a/3jH//Q4MGDi22fOXOm\nEhIS9NFHH6lRo0aaMmWKQkND9f3338vJyUmSNG7cOH3++edatmyZ3N3dFRMTo8GDB2v79u2W40RG\nRurUqVPauHGjCgoK9Mgjj2j06NFatGhReYYPAAAAAAAA/GHlKsTNmjVLkZGRcnJy0qxZs8qMzc/P\n1+nTpzVu3Di9+uqrZcb26dNHffr0KXGbYRiaPXu2nnvuOQ0cOFCS9PHHH8vX11erVq1SRESEzp07\np/fff1+LFi1Sz549JUkLFixQYGCgduzYoaCgIB08eFDr16/X7t271aFDB0nSnDlz1LdvX7322mvy\n9/cvzykAAAAAAAAA/pBy3ZqampoqLy8vy99lvU6ePKl169bpww8//EOJpaamKj093eq2V3d3d3Xq\n1EnJycmSpL1796qgoMAqpnnz5qpfv74lJjk5WR4eHpYinCSFhITIzs5OO3fuLLX//Px8ZWdnW70A\nAAAAAACAG3XDa8SVpUuXLnruuef+0DHS09MlSb6+vlbtvr6+lm3p6elydHSUh4dHmTE+Pj5W2+3t\n7eXp6WmJKUl8fLzc3d0tr4CAgD80HgAAAAAAANzcKvzUVOn3td22bt2qtLQ0Xbp0yWrb2LFj5ezs\nrCeffLJSEqwukydPVlxcnOV9dnY2xTgAAAAAAADcsAoX4r755hv17dtXFy5cUG5urjw9PXX27FnV\nrl1bPj4+Gjt2bKUk5ufnJ0nKyMhQ3bp1Le0ZGRlq06aNJebSpUvKysqymhWXkZFh2d/Pz0+nT5+2\nOvbly5eVmZlpiSmJ2WyW2WyulLEAAAAAAAAAFb41ddy4cQoLC9Nvv/0mZ2dn7dixQ8eOHVP79u31\n2muvVVpijRo1kp+fnzZt2mRpy87O1s6dOxUcHCxJat++vRwcHKxiDh06pLS0NEtMcHCwsrKytHfv\nXkvM5s2bVVhYWK4nuwIAAAAAAACVocIz4vbt26e3335bdnZ2qlWrlvLz89W4cWPNnDlTI0aM0ODB\ng8t9rJycHP3444+W96mpqdq3b588PT1Vv359PfXUU5o6daqaNm2qRo0aacqUKfL399d9990n6feH\nN0RFRSkuLk6enp5yc3NTbGysgoODFRQUJEkKDAxU7969NWrUKM2fP18FBQWKiYlRREQET0wFAAAA\nAACAzVS4EOfg4CA7u98n0vn4+CgtLU2BgYFyd3fX8ePHK3SsPXv2qEePHpb3RWuyjRgxQh9++KGe\nfvpp5ebmavTo0crKylKXLl20fv16OTk5WfaZNWuW7OzsFB4ervz8fIWGhmru3LlW/Xz66aeKiYlR\nr169LLEJCQkVHToAAAAAAABwwypciGvbtq12796tpk2b6p577tHzzz+vs2fPauHChfrb3/5WoWN1\n795dhmGUut1kMunll1/Wyy+/XGqMk5OTEhMTlZiYWGqMp6enFi1aVKHcAAAAAAAAgMpU4TXipk2b\nZnl4wiuvvKI6deroiSee0JkzZ/TOO+9UeoIAAAAAAABATVDhGXEdOnSw/O3j46P169dXakIAAAAA\nAABATVThGXEAAAAAAAAAKq5cM+LatWunTZs2qU6dOmrbtq1MJlOpsSkpKZWWHAAAAAAAAFBTlKsQ\nN3DgQJnNZsvfZRXiAAAAAAAAABRXrkLcCy+8YPn7xRdfrKpcAAAAAAAAgBqrwmvEPfroo9qyZUsV\npAIAAAAAAADUXBUuxJ05c0a9e/dWQECAJkyYoP3791dFXgAAAAAAAECNUuFC3OrVq3Xq1ClNmTJF\nu3fvVrt27XTnnXdq2rRpOnr0aBWkCAAAAAAAAPz1VbgQJ0l16tTR6NGjtWXLFh07dkwjR47UwoUL\ndfvtt1d2fgAAAAAAAECNcEOFuCIFBQXas2ePdu7cqaNHj8rX17ey8gIAAAAAAABqlBsqxH311Vca\nNWqUfH19NXLkSLm5uWnt2rU6ceJEZecHAAAAAAAA1Aj2Fd3htttuU2Zmpnr37q133nlHYWFhMpvN\nVZEbAAAAAAAAUGNUuBD34osv6v7775eHh0dV5AMAAAAAAADUSBUuxI0aNaoq8gAAAAAAAABqtD/0\nsAYAAAAAAAAA5UMhDgAAAAAAALABCnEAAAAAAACADVCIAwAAAAAAAGzghgpxCxcuVOfOneXv769j\nx45JkmbPnq3Vq1dXanIAAAAAAABATVHhQty8efMUFxenvn37KisrS1euXJEkeXh4aPbs2ZWeIAAA\nAAAAAFATVLgQN2fOHL377rt69tlnVatWLUt7hw4ddODAgUpNDgAAAAAAAKgpKlyIS01NVdu2bYu1\nm81m5ebmVkpSAAAAAAAAQE1T4UJco0aNtG/fvmLt69evV2BgYKUkBQAAAAAAANQ09hXdIS4uTtHR\n0crLy5NhGNq1a5cWL16s+Ph4vffee1WRIwAAAAAAAPCXV+FC3KOPPipnZ2c999xzunDhgh588EH5\n+/vrzTffVERERFXkCAAAAAAAAPzlVbgQJ0mRkZGKjIzUhQsXlJOTIx8fn8rOCwAAAAAAAKhRbqgQ\nV6R27dqqXbt2ZeUCAAAAAAAA1FjlKsS1bdtWJpOpXAdMSUn5QwkBAAAAAAAANVG5CnH33Xef5e+8\nvDzNnTtXLVq0UHBwsCRpx44d+u677zRmzJiqyRIAAAAAAAD4iytXIe6FF16w/P3oo49q7Nix+uc/\n/1ks5vjx45WbHQAAAGqUhpM+t3mfR6f3s3mfAAAAJbGr6A7Lli3T8OHDi7U/9NBDWrFiRaUkBQAA\nAAAAANQ0FS7EOTs7a/v27cXat2/fLicnp0pJCgAAAAAAAKhpKvzU1KeeekpPPPGEUlJS1LFjR0nS\nzp079cEHH2jKlCmVniAAAAAAAABQE1S4EDdp0iQ1btxYb775pj755BNJUmBgoBYsWKChQ4dWeoIA\nAAAAAABATVDhQpwkDR06lKIbAAAAAAAAUAEVXiPOlq5cuaIpU6aoUaNGcnZ2VpMmTfTPf/5ThmFY\nYgzD0PPPP6+6devK2dlZISEhOnLkiNVx8vLyFB0dLS8vL7m6uio8PFwZGRm2Hg4AAAAAAABuYn/q\nQtyMGTM0b948vfXWWzp48KBmzJihmTNnas6cOZaYmTNnKiEhQfPnz9fOnTvl4uKi0NBQ5eXlWWLG\njRunpKQkLVu2TFu3btXJkyc1ePDg6hgSAAAAAAAAblI3dGuqrfz3v//VwIED1a9fP0lSw4YNtXjx\nYu3atUvS77PhZs+ereeee04DBw6UJH388cfy9fXVqlWrFBERoXPnzun999/XokWL1LNnT0nSggUL\nFBgYqB07digoKKh6BgcAAAAAAICbyp96Rtzdd9+tTZs26fDhw5Kk/fv36+uvv1afPn0kSampqUpP\nT1dISIhlH3d3d3Xq1EnJycmSpL1796qgoMAqpnnz5qpfv74lpiT5+fnKzs62egEAAAAAAAA36k89\nI27SpEnKzs5W8+bNVatWLV25ckWvvPKKIiMjJUnp6emSJF9fX6v9fH19LdvS09Pl6OgoDw+PUmNK\nEh8fr5deeqkyhwMAAAAAAICbWLkKcXFxceU+4BtvvHHDyVxr6dKl+vTTT7Vo0SLdeeed2rdvn556\n6in5+/trxIgRldZPSSZPnmw17uzsbAUEBFRpnwAAAAAAAKi5ylWI++abb6zep6Sk6PLly2rWrJkk\n6fDhw6pVq5bat29fqclNmDBBEydOVEREhCSpZcuWOnbsmOLj4zVixAj5+flJkjIyMlS3bl3LfhkZ\nGWrTpo0kyc/PT5cuXVJWVpbVrLiMjAzL/iUxm80ym82VOh4AAAAAAADcvMq1RtxXX31leYWFheme\ne+7RiRMnlJKSopSUFB0/flw9evSwPFShsly4cEH29ta1wlq1aqmwsFCS1KhRI/n5+WnTpk2W7dnZ\n2dq5c6eCg4MlSe3bt5eDg4NVzKFDh5SWlmaJAQAAAAAAAKpahdeIe/311/Xll1+qTp06lrY6depo\n6tSpuvfeezV+/PhKSy4sLExTp05VQECA7rzzTn3zzTd644039I9//EOSZDKZ9NRTT2nq1Klq2rSp\nGjVqpClTpsjf31/33XefpN8f3hAVFaW4uDh5enrKzc1NsbGxCg4O5ompAAAAAAAAsJkKF+Kys7N1\n5syZYu1nzpzR+fPnKyWpInPmzNGUKVM0ZswYnT59Wv7+/nrsscf0/PPPW2Kefvpp5ebmavTo0crK\nylKXLl20fv16OTk5WWJmzZolOzs7hYeHKz8/X6GhoZo7d26l5goAAAAAAACUpcKFuEGDBumRRx7R\n66+/ro4dO0qSdu7cqQkTJmjw4MGVmtwtt9yi2bNna/bs2aXGmEwmvfzyy3r55ZdLjXFyclJiYqIS\nExMrNT8AAAAAAACgvCpciJs/f77+7//+Tw8++KAKCgp+P4i9vaKiovTqq69WeoIAAAAAAABATVDh\nQlzt2rU1d+5cvfrqq/rpp58kSU2aNJGLi0ulJwcAAAAAAADUFBUuxBVxcXFRq1atKjMXAAAAAAAA\noMa6oULcnj17tHTpUqWlpenSpUtW2z777LNKSQwAAOD/sXff0VGV+/v3r4kQQkmjJKEEkkgXkBJF\nylcRkChIV1BDLyIHqSLCoZmIgHqE0ItIAiLEBggWUIooTZAqAgKhBESCwgmBAGnM8wdP5seY4CEy\nmc3seb/Wylph7z3OdZuZPXt/5i4AAACAmXjk9QHx8fFq2LChDh06pBUrVigjI0O//PKLNmzYIF9f\n3/zICAAAAAAAALi8PPeImzhxoqZOnaoBAwbI29tb06ZNU2hoqPr166fSpUvnR0YAAADApYSM/NLp\nz3lyciunPycAAMibPPeIS0hIUKtWNz/kPT09lZqaKovFoqFDh2r+/PkODwgAAAAAAACYQZ4Lcf7+\n/rp8+bIkqWzZsjpw4IAkKTk5WVevXnVsOgAAAAAAAMAk8jw09dFHH9W3336rmjVr6tlnn9XgwYO1\nYcMGffvtt2rWrFl+ZAQAAAAAAABcXp4LcTNnztT169clSaNHj1bBggW1detWdezYUWPGjHF4QAAA\nAAAAAMAM8lyIK168uO13Dw8PjRw50qGBAAAAAAAAADO6o0JcSkrKHf8HfXx8/nEYAAAAAAAAwKzu\nqBDn5+cni8VyR//BrKysuwoEAAAAAAAAmNEdFeI2btxo+/3kyZMaOXKkevTooQYNGkiStm3bpkWL\nFmnSpEn5kxIAAAAAAABwcXdUiHvsscdsv0dHR2vKlCl6/vnnbdvatGmjmjVrav78+erevbvjUwIA\nAAAAAAAuziOvD9i2bZvCw8NzbA8PD9eOHTscEgoAAAAAAAAwmzwX4oKDg/Xee+/l2L5gwQIFBwc7\nJBQAAAAAAABgNnc0NPVWU6dOVceOHfX111+rfv36kqQdO3bo6NGj+uyzzxweEAAAAAAAADCDPPeI\na9mypY4cOaLWrVvr4sWLunjxolq3bq0jR46oZcuW+ZERAAAAAAAAcHl57hEn3RyeOnHiREdnAQAA\nAAAAAEzrjgpx+/fvV40aNeTh4aH9+/f/7bG1atVySDAAAAAAAADATO6oEFe7dm2dO3dOAQEBql27\ntiwWi6xWa47jLBaLsrKyHB4SAAAAAAAAcHV3VIg7ceKESpUqZfsdAAAAAAAAQN7cUSGuQoUKtt9P\nnTqlhg0bqkAB+4dmZmZq69atdscCAAAAAAAAuCnPq6Y+/vjjunjxYo7tly5d0uOPP+6QUAAAAAAA\nAIDZ5LkQZ7VaZbFYcmy/cOGCihYt6pBQAAAAAAAAgNnc0dBUSerQoYOkmwsy9OjRQ4UKFbLty8rK\n0v79+9WwYUPHJwQAAAAAAABM4I4Lcb6+vpJu9ojz9vZW4cKFbfs8PT31yCOPqG/fvo5PCAAAAAAA\nAJjAHRfiYmNjJUkhISEaPnw4w1ABAAAAAACAPLjjQly28ePH50cOAAAAAAAAwNTyvFhDUlKSunbt\nqjJlyqhAgQK677777H4AAAAAAAAA5JTnHnE9evRQYmKixo4dq9KlS+e6gioAAAAAAAAAe3kuxG3e\nvFk//PCDateunR95AAAAAAAAAFPK89DU4OBgWa3W/MgCAAAAAAAAmFaeC3ExMTEaOXKkTp48mQ9x\nAAAAAAAAAHPK89DUzp076+rVq7r//vtVpEgRFSxY0G7/xYsXHRYOAAAAAAAAMIs8F+JiYmLyI8dt\n/fbbb3rttdf09ddf6+rVq6pYsaJiY2MVHh4uSbJarRo/frzee+89JScnq1GjRpozZ44qVapk+29c\nv4yf41kAACAASURBVH5dr7zyiuLj45WWlqaIiAjNnj1bgYGBTm0LAAAAAAAA3FeeC3Hdu3fPjxy5\n+u9//6tGjRrp8ccf19dff61SpUrp6NGj8vf3tx3z9ttva/r06Vq0aJFCQ0M1duxYRURE6ODBg/Ly\n8pIkDR06VF9++aU++eQT+fr66uWXX1aHDh20ZcsWp7UFAAAAAAAA7i3PhbhbXb9+Xenp6XbbfHx8\n7irQrd566y0FBwcrNjbWti00NNT2u9VqVUxMjMaMGaO2bdtKkhYvXqzAwECtXLlSzz33nC5duqT3\n339fS5cuVdOmTSVJsbGxqlatmrZv365HHnnEYXkBAAAAAACA28nzYg2pqal6+eWXFRAQoKJFi8rf\n39/ux5FWrVql8PBwPfvsswoICFCdOnX03nvv2fafOHFC586dU/PmzW3bfH19Vb9+fW3btk2StGvX\nLmVkZNgdU7VqVZUvX952TG7S0tKUkpJi9wMAAAAAAAD8U3kuxI0YMUIbNmzQnDlzVKhQIS1YsEBR\nUVEqU6aMFi9e7NBwx48ft833tnbtWvXv31+DBg3SokWLJEnnzp2TpBxzvQUGBtr2nTt3Tp6envLz\n87vtMbmZNGmSfH19bT/BwcGObBoAAAAAAADcTJ6Hpq5evVqLFy9WkyZN1LNnT/3f//2fKlasqAoV\nKujDDz9UZGSkw8LduHFD4eHhmjhxoiSpTp06OnDggObOnZvvc9WNGjVKw4YNs/07JSWFYhwAAAAA\nAAD+sTz3iLt48aLCwsIk3ZwP7uLFi5Kkxo0b6/vvv3douNKlS6t69ep226pVq6bExERJUlBQkCQp\nKSnJ7pikpCTbvqCgIKWnpys5Ofm2x+SmUKFC8vHxsfsBAAAAAAAA/qk8F+LCwsJ04sQJSTfnWvv4\n448l3ewp99fhn3erUaNG+vXXX+22HTlyRBUqVJB0c+GGoKAgrV+/3rY/JSVFP/74oxo0aCBJqlev\nngoWLGh3zK+//qrExETbMQAAAAAAAEB+y/PQ1J49e2rfvn167LHHNHLkSLVu3VozZ85URkaGpkyZ\n4tBwQ4cOVcOGDTVx4kR16tRJO3bs0Pz58zV//nxJksVi0ZAhQzRhwgRVqlRJoaGhGjt2rMqUKaN2\n7dpJurl4Q+/evTVs2DAVL15cPj4+GjhwoBo0aMCKqQAAAAAAAHCaPBfihg4davu9efPmOnz4sHbt\n2qWKFSuqVq1aDg330EMPacWKFRo1apSio6MVGhqqmJgYu3noRowYodTUVL344otKTk5W48aNtWbN\nGnl5edmOmTp1qjw8PNSxY0elpaUpIiJCs2fPdmhWAAAAAAAA4O/kuRD3VxUqVLANFc0PTz/9tJ5+\n+unb7rdYLIqOjlZ0dPRtj/Hy8tKsWbM0a9as/IgIAAAAAAAA/E93PEfchg0bVL16daWkpOTYd+nS\nJT3wwANau3atQ8MBAAAAAAAAZnHHhbiYmBj17ds319VDfX191a9fP82YMcOh4QAAAAAAAACzuONC\n3L59+/Tkk0/edn+LFi20f/9+h4QCAAAAAAAAzOaOC3FJSUkqWLDgbfcXKFBAf/zxh0NCAQAAAAAA\nAGZzx4W4smXL6sCBA7fdv3//fpUuXdohoQAAAAAAAACzueNCXMuWLTV27Fhdv349x75r165p/Pjx\nf7u6KQAAAAAAAODOCtzpgWPGjNHy5ctVuXJlvfzyy6pSpYok6fDhw5o1a5aysrI0evTofAsKAAAA\nAAAAuLI7LsQFBgZq69at6t+/v0aNGiWr1SpJslgsioiI0KxZsxQYGJhvQQEAAAAAAABXdseFOEmq\nUKGCvvrqK/33v//VsWPHZLVaValSJfn7++dXPgAAAAAAAMAU8lSIy+bv76+HHnrI0VkAAAAAAAAA\n07rjxRoAAAAAAAAA/HMU4gAAAAAAAAAnoBAHAAAAAAAAOAGFOAAAAAAAAMAJKMQBAAAAAAAATkAh\nDgAAAAAAAHACCnEAAAAAAACAE1CIAwAAAAAAAJyAQhwAAAAAAADgBBTiAAAAAAAAACegEAcAAAAA\nAAA4AYU4AAAAAAAAwAkoxAEAAAAAAABOQCEOAAAAAAAAcAIKcQAAAAAAAIATUIgDAAAAAAAAnIBC\nHAAAAAAAAOAEFOIAAAAAAAAAJ6AQBwAAAAAAADgBhTgAAAAAAADACSjEAQAAAAAAAE5AIQ4AAAAA\nAABwggJGBwAAAADgmkJGfun05zw5uZXTnxMAAEehRxwAAAAAAADgBBTiAAAAAAAAACegEAcAAAAA\nAAA4gUsV4iZPniyLxaIhQ4bYtlmtVo0bN06lS5dW4cKF1bx5cx09etTucdevX9eAAQNUokQJFStW\nTB07dlRSUpKz4wMAAAAAAMCNuUwhbufOnZo3b55q1aplt/3tt9/W9OnTNXfuXP34448qWrSoIiIi\ndP36ddsxQ4cO1erVq/XJJ59o06ZNOnv2rDp06ODsJgAAAAAAAMCNuUQh7sqVK4qMjNR7770nf39/\n23ar1aqYmBiNGTNGbdu2Va1atbR48WKdPXtWK1eulCRdunRJ77//vqZMmaKmTZuqXr16io2N1dat\nW7V9+3ajmgQAAAAAAAA34xKFuAEDBqhVq1Zq3ry53fYTJ07o3Llzdtt9fX1Vv359bdu2TZK0a9cu\nZWRk2B1TtWpVlS9f3nZMbtLS0pSSkmL3AwAAAAAAAPxTBYwO8L/Ex8dr9+7d2rlzZ459586dkyQF\nBgbabQ8MDLTtO3funDw9PeXn53fbY3IzadIkRUVF3W18AAAAAAAAQNI93iPu9OnTGjx4sD788EN5\neXk59blHjRqlS5cu2X5Onz7t1OcHAAAAAACAudzThbhdu3bp/Pnzqlu3rgoUKKACBQpo06ZNmj59\nugoUKGDrCffXFVCTkpIUFBQkSQoKClJ6erqSk5Nve0xuChUqJB8fH7sfAAAAAAAA4J+6pwtxzZo1\n088//6y9e/fafsLDwxUZGam9e/cqLCxMQUFBWr9+ve0xKSkp+vHHH9WgQQNJUr169VSwYEG7Y379\n9VclJibajgEAAAAAAADy2z09R5y3t7dq1Khht61o0aIqUaKEbfuQIUM0YcIEVapUSaGhoRo7dqzK\nlCmjdu3aSbq5eEPv3r01bNgwFS9eXD4+Pho4cKAaNGigRx55xOltAgAAAAAAgHu6pwtxd2LEiBFK\nTU3Viy++qOTkZDVu3Fhr1qyxm1Nu6tSp8vDwUMeOHZWWlqaIiAjNnj3bwNQAAAAAAABwNy5XiPvu\nu+/s/m2xWBQdHa3o6OjbPsbLy0uzZs3SrFmz8jkdAAAAAAAAkLt7eo44AAAAAAAAwCwoxAEAAAAA\nAABOQCEOAAAAAAAAcAIKcQAAAAAAAIATUIgDAAAAAAAAnIBCHAAAAAAAAOAEFOIAAAAAAAAAJyhg\ndAAAAAAAuJeFjPzS6c95cnIrpz8nACD/0SMOAAAAAAAAcAIKcQAAAAAAAIATUIgDAAAAAAAAnIBC\nHAAAAAAAAOAEFOIAAAAAAAAAJ6AQBwAAAAAAADhBAaMDAAAAAACMFzLyS6c/58nJrZz+nABgJHrE\nAQAAAAAAAE5AIQ4AAAAAAABwAgpxAAAAAAAAgBNQiAMAAAAAAACcgEIcAAAAAAAA4ASsmgoAAAAA\ncBusDgvASPSIAwAAAAAAAJyAQhwAAAAAAADgBBTiAAAAAAAAACegEAcAAAAAAAA4AYU4AAAAAAAA\nwAkoxAEAAAAAAABOQCEOAAAAAAAAcAIKcQAAAAAAAIATUIgDAAAAAAAAnIBCHAAAAAAAAOAEFOIA\nAAAAAAAAJ6AQBwAAAAAAADgBhTgAAAAAAADACSjEAQAAAAAAAE5QwOgAAAAAAADAsUJGfun05zw5\nuZXTnxNwNfSIAwAAAAAAAJzgnu4RN2nSJC1fvlyHDx9W4cKF1bBhQ7311luqUqWK7Rir1arx48fr\nvffeU3Jysho1aqQ5c+aoUqVKtmOuX7+uV155RfHx8UpLS1NERIRmz56twMBAI5oFAAAAAAAcgJ5/\ncDX3dI+4TZs2acCAAdq+fbu+/fZbZWRkqEWLFkpNTbUd8/bbb2v69OmaO3eufvzxRxUtWlQRERG6\nfv267ZihQ4dq9erV+uSTT7Rp0yadPXtWHTp0MKJJAAAAAAAAcFP3dI+4NWvW2P07Li5OAQEB2rVr\nlx599FFZrVbFxMRozJgxatu2rSRp8eLFCgwM1MqVK/Xcc8/p0qVLev/997V06VI1bdpUkhQbG6tq\n1app+/bteuSRR3J97rS0NKWlpdn+nZKSkk+tBAAAAAAAgDu4p3vE/dWlS5ckScWLF5cknThxQufO\nnVPz5s1tx/j6+qp+/fratm2bJGnXrl3KyMiwO6Zq1aoqX7687ZjcTJo0Sb6+vraf4ODg/GgSAAAA\nAAAA3ITLFOJu3LihIUOGqFGjRqpRo4Yk6dy5c5KUY663wMBA275z587J09NTfn5+tz0mN6NGjdKl\nS5dsP6dPn3ZkcwAAAAAAAOBm7umhqbcaMGCADhw4oM2bNzvl+QoVKqRChQo55bkAAAAAAABgfi7R\nI+7ll1/WF198oY0bN6pcuXK27UFBQZKkpKQku+OTkpJs+4KCgpSenq7k5OTbHgMAAAAAAADkt3u6\nEGe1WvXyyy9rxYoV2rBhg0JDQ+32h4aGKigoSOvXr7dtS0lJ0Y8//qgGDRpIkurVq6eCBQvaHfPr\nr78qMTHRdgwAAAAAAACQ3+7poakDBgzQ0qVL9fnnn8vb29s2p5uvr68KFy4si8WiIUOGaMKECapU\nqZJCQ0M1duxYlSlTRu3atbMd27t3bw0bNkzFixeXj4+PBg4cqAYNGtx2xVQAAAAAAADA0e7pQtyc\nOXMkSU2aNLHbHhsbqx49ekiSRowYodTUVL344otKTk5W48aNtWbNGnl5edmOnzp1qjw8PNSxY0el\npaUpIiJCs2fPdlYzAAAAAAAAgHu7EGe1Wv/nMRaLRdHR0YqOjr7tMV5eXpo1a5ZmzZrlyHgAAAAA\nAADAHbun54gDAAAAAAAAzIJCHAAAAAAAAOAEFOIAAAAAAAAAJ6AQBwAAAAAAADgBhTgAAAAAAADA\nCSjEAQAAAAAAAE5AIQ4AAAAAAABwAgpxAAAAAAAAgBNQiAMAAAAAAACcgEIcAAAAAAAA4AQU4gAA\nAAAAAAAnoBAHAAAAAAAAOAGFOAAAAAAAAMAJKMQBAAAAAAAATkAhDgAAAAAAAHACCnEAAAAAAACA\nE1CIAwAAAAAAAJyAQhwAAAAAAADgBBTiAAAAAAAAACegEAcAAAAAAAA4AYU4AAAAAAAAwAkoxAEA\nAAAAAABOQCEOAAAAAAAAcAIKcQAAAAAAAIATFDA6AAAAAAAAAP5eyMgvnf6cJye3cvpzmh094gAA\nAAAAAAAnoBAHAAAAAAAAOAGFOAAAAAAAAMAJKMQBAAAAAAAATkAhDgAAAAAAAHACCnEAAAAAAACA\nE1CIAwAAAAAAAJyAQhwAAAAAAADgBBTiAAAAAAAAACcoYHQAAAAAAAAAQJJCRn7p9Oc8ObmV056L\nHnEAAAAAAACAE7hVIW7WrFkKCQmRl5eX6tevrx07dhgdCQAAAAAAAG7CbQpxH330kYYNG6bx48dr\n9+7devDBBxUREaHz588bHQ0AAAAAAABuwG0KcVOmTFHfvn3Vs2dPVa9eXXPnzlWRIkW0cOFCo6MB\nAAAAAADADbjFYg3p6enatWuXRo0aZdvm4eGh5s2ba9u2bbk+Ji0tTWlpabZ/X7p0SZKUkpKS5+e/\nkXY1z4+5W/8k591yl3ZK7tNW2pl/aGf+oZ35h3bmH3dpp+Q+baWd+Yd25h/amX9oZ/5xl3ZK7tNW\nV2ln9mOsVmueHmex5vURLujs2bMqW7astm7dqgYNGti2jxgxQps2bdKPP/6Y4zGvv/66oqKinBkT\nAAAAAAAALuT06dMqV67cHR/vFj3i/olRo0Zp2LBhtn/fuHFDFy9eVIkSJWSxWJySISUlRcHBwTp9\n+rR8fHyc8pxGoJ3mQjvNxV3aKblPW2mnudBOc6Gd5uIu7ZTcp62001xop7kY0U6r1arLly+rTJky\neXqcWxTiSpYsqfvuu09JSUl225OSkhQUFJTrYwoVKqRChQrZbfPz88u3jH/Hx8fH1G+YbLTTXGin\nubhLOyX3aSvtNBfaaS6001zcpZ2S+7SVdpoL7TQXZ7fT19c3z49xi8UaPD09Va9ePa1fv9627caN\nG1q/fr3dUFUAAAAAAAAgv7hFjzhJGjZsmLp3767w8HA9/PDDiomJUWpqqnr27Gl0NAAAAAAAALiB\n+15//fXXjQ7hDDVq1JCfn5/efPNN/ec//5Ekffjhh6pSpYrByf7efffdpyZNmqhAAXPXTGmnudBO\nc3GXdkru01baaS6001xop7m4Szsl92kr7TQX2mkurtJOt1g1FQAAAAAAADCaW8wRBwAAAAAAABiN\nQhwAAAAAAADgBBTiAAAAAAAAACegEAcAAAAAAAA4AYU4IJ9kZGTo/vvv16FDh4yOAgc4fvy40RGc\nIjU11egIcLBr167p6tWrtn+fOnVKMTEx+uabbwxM5XhNmzZVcnJyju0pKSlq2rSpAYnyV3p6us6c\nOaPExES7HzPIyMhQgQIFdODAAaOjOEVmZqbWrVunefPm6fLly5Kks2fP6sqVKwYnc5zx48fr1KlT\nRsfId2fOnLntvu3btzsxSf5yl2vcjIwM9erVSydOnDA6ChwkNjbW7poIrsvVz0OsmnoPSU1N1eTJ\nk7V+/XqdP39eN27csNtvlkJAVlaW4uLibtvODRs2GJTM8cqWLat169apWrVqRkfJN+7yuvXw8NBj\njz2m3r1765lnnpGXl5fRkfJFsWLF1KlTJ/Xq1UuNGzc2Ok6+cpdzUYsWLdShQwe99NJLSk5OVtWq\nVVWwYEH9+eefmjJlivr37290RIfw8PDQuXPnFBAQYLf9/PnzKlu2rDIyMgxK5lhHjx5Vr169tHXr\nVrvtVqtVFotFWVlZBiVzrLCwMK1YsUIPPvig0VHy1alTp/Tkk08qMTFRaWlpOnLkiMLCwjR48GCl\npaVp7ty5Rkd0iNq1a+vAgQO2z9GOHTuqUKFCRsdyuOrVq2vz5s0qXry43fYtW7aoVatWuX5Z4Krc\n4RpXknx9fbV3716FhoYaHSXfbdu2TfPmzVNCQoI++ugjlSlTRh9++KFCQ0PVsGFDo+M5RGBgoK5d\nu6Znn31WvXv3Nk27crN+/frbXuMuXLjQoFSO5crnoQJGB8D/06dPH23atEldu3ZV6dKlZbFYjI6U\nLwYPHqy4uDi1atVKNWrUMG07JWnAgAF66623tGDBAhUoYM63m7u8bnfv3q3Y2FgNGzZML7/8sjp3\n7qzevXvr4YcfNjqaQy1ZskRxcXFq2rSpQkJC1KtXL3Xr1k1lypQxOprDucu5aPfu3Zo6daok6dNP\nP1VgYKD27Nmjzz77TOPGjXP5Qtz+/fttvx88eFDnzp2z/TsrK0tr1qxR2bJljYiWL3r06KECBQro\niy++MPU5d/To0fr3v/+tDz74IEdRw0wGDx6s8PBw7du3TyVKlLBtb9++vfr27WtgMsfau3ev9uzZ\no9jYWA0ePFgDBgzQc889p169eumhhx4yOp7DPPLII2rRooU2btwob29vSdL333+v1q1b6/XXXzc2\nnIO5wzWuJLVr104rV67U0KFDjY6Sr1asWKEXXnhBzz33nHbu3Knr169Lki5evKilS5fqyy+/NDih\nY/z2229avXq14uLi1KRJE4WFhalnz57q3r27goKCjI7nMFFRUYqOjlZ4eLiprxVc+TxEj7h7iJ+f\nn7788ks1atTI6Cj5qmTJklq8eLFatmxpdJR81759e61fv17FihVTzZo1VbRoUbv9y5cvNyiZ47jL\n6zZbZmamVq1apbi4OK1Zs0aVK1dWr1691LVrV5UqVcroeA7zxx9/6IMPPlBcXJwOHTqkiIgI9erV\nS23atHG5D7rbcZdzUZEiRXT48GGVL19enTp10gMPPKDx48fr9OnTqlKlissP0fDw8LBdYOZ2SVO4\ncGHNmDFDvXr1cna0fFG0aFHt2rVLVatWNTpKvqpTp46OHTumjIwMVahQIcfn5+7duw1K5lglSpTQ\n1q1bVaVKFXl7e2vfvn0KCwvTyZMnVb16dZd/f+YmIyNDq1evVmxsrNauXauqVauqd+/e6tGjh3x9\nfY2Od1du3LihZ555RhcvXtTatWu1detWtWnTRhMmTNDgwYONjudQ7nCNK0kTJkzQu+++q2bNmqle\nvXo52jlo0CCDkjlW3bp1NWjQIPXo0cPuXLRnzx499dRTdl9ymUVSUpKWLFmiRYsW6fDhw3ryySfV\nu3dvtW7dWh4erj2DV+nSpfX222+ra9euRkfJV658HjLH3ZRJ+Pv7m/pb32yenp6qWLGi0TGcws/P\nTx07djQ6Rr5yl9dttgIFCqhDhw5q1aqVZs+erVGjRmn48OH697//rU6dOumtt95S6dKljY5510qV\nKqVhw4Zp2LBhmjFjhl599VV99dVXKlmypF566SWNHDlSRYoUMTrmXXGXc1HFihW1cuVKtW/fXmvX\nrrV9q3/+/Hn5+PgYnO7unThxQlarVWFhYdqxY4ddQdzT01MBAQG67777DEzoWNWrV9eff/5pdIx8\n165dO6MjOMWNGzdyHU585swZW48qs7FarcrIyFB6erqsVqv8/f01c+ZMjR07Vu+99546d+5sdMR/\nzMPDQ/Hx8WrVqpWaNm2q/fv3a9KkSXr55ZeNjuZw7nCNK0nvv/++/Pz8tGvXLu3atctun8ViMU0h\n7vDhw3r88cdzbPf19TXVkOpbBQYGqnHjxjpy5IiOHDmin3/+Wd27d5e/v79iY2PVpEkToyP+Y+np\n6aYedpvNlc9D9Ii7hyxZskSff/65Fi1a5PI3uH/n3Xff1fHjxzVz5kzTdpN1J+7yus32008/aeHC\nhYqPj1fRokXVvXt39e7dW2fOnFFUVJRSUlK0Y8cOo2PetaSkJC1atEhxcXE6deqU2rdvb2vnW2+9\npTJlyrj8ZP/uci769NNP9cILLygrK0tNmzbVt99+K0maNGmSvv/+e3399dcGJ0RebNiwQWPGjNHE\niRNVs2ZNFSxY0G6/GYqr7qRz587y9fXV/Pnz5e3trf3796tUqVJq27atypcvr9jYWKMjOsyuXbsU\nGxurZcuWqVChQurWrZv69Olj+0JkxowZmjBhgpKSkgxOmje3Do/PdvnyZT3//PNq1aqV3fD/WrVq\nOTMacMfCwsK0YMECNW3a1K5H3JIlSzRx4kQdPHjQ6IgOk5SUpA8++ECxsbE6fvy42rVrp969e6t5\n8+ZKTU1VdHS04uPjXXqBmddee03FihXT2LFjjY6C26AQdw+pU6eOEhISZLVaFRISkuPi2izDMNq3\nb6+NGzeqePHieuCBB3K0817uQvpPZGZm6rvvvlNCQoJeeOEFeXt76+zZs/Lx8VGxYsWMjveP1KlT\nx65wcezYMdO/bqdMmaLY2Fj9+uuvatmypfr06aOWLVvadV0/c+aMQkJClJmZaWDSu7N8+XLbcKHq\n1aurT58+6tKli/z8/GzHJCQkqFq1akpPTzcw6d1zp3PRuXPn9Pvvv+vBBx+0vWZ37NghHx8fUw1x\n/OCDDzR37lydOHFC27ZtU4UKFTR16lSFhYWpbdu2RsdziOy/31+Lx2ZbrEGSkpOT9emnnyohIUGv\nvvqqihcvrt27dyswMNA08/6dOXNGERERslqtOnr0qMLDw3X06FGVLFlS33//fY7FR1xVzZo1dfjw\nYbVo0UJ9+/ZV69atc/RU/fPPPxUQEJBjUvF7Xfbw+FtvqW79d/bvZnt/Sua8xr2d9PR0nThxQvff\nf79ppui41Ztvvqn4+HjFxcXp8ccf19q1a5WYmKjBgwdr1KhRphla3bp1a61du1aVK1dWnz591K1b\ntxwje86fP6+goCCXOxfdavDgwVq8eLFq1aqlWrVq5bjGnTJlikHJHM9Vz0PmO4u4MHcZhuHn56f2\n7dsbHcMp/roa2hNPPCFvb2+99dZbLr0amru8Vm81Z84c9erVSz169Ljt0NOAgAC9//77Tk7mWD17\n9tRzzz2nLVu23HYC7TJlymj06NFOTuZ47nQuCgoKUlBQkM6cOSNJKleunOkWGpkzZ47GjRunIUOG\n6M0337Td8Pr7+ysmJsY0hbiNGzcaHcEp9u/fr+bNm8vX11cnT55U3759Vbx4cS1fvlyJiYlavHix\n0REdoly5ctq3b5/i4+O1f/9+XblyRb1791ZkZKQKFy5sdDyHyV6N++8KqCVLlnTJG98TJ04YHcEQ\nZr3G/aurV69q4MCBWrRokSTZVjYeOHCgypYtq5EjRxqc0DH+/e9/KzMzU48++qiuXbumRo0aydPT\nU0OHDjVNEU66ea2+adMmNWjQ4LbHlCpVyuXf1/v371ft2rUlSQcOHLDbZ6ZRIC59HrICyDdt27a1\ndunSxZqWlmYtVqyYNSEhwWq1Wq0bN260VqxY0eB0QE6pqalGR4CDZWVlWaOioqw+Pj5WDw8Pq4eH\nh9XX19caHR1tzcrKMjqew1SrVs26YsUKq9VqtTvf/vzzz9YSJUoYGQ3/QLNmzayvvvqq1Wq1/3tu\n2bLFWqFCBQOTOda1a9eMjuAUUVFRuX6+XL161RoVFWVAIsdLT0+39uzZ03r8+HGjoziFu1zjDho0\nyFqvXj3rDz/8YC1atKitnStXrrTWrl3b4HSOd+3aNeu+ffusW7ZssV66dMnoOA6Vnp5ubdq0qfXI\nkSNGR4GDuPJ5yLWXAzGpXbt2acmSJVqyZIn27NljdJx888cff2jz5s3avHmz/vjjD6Pj5IsffvhB\nY8aMkaenp932kJAQ/fbbbwalcqywsDBduHAhx/bk5GSFhYUZkCj//PDDD+rSpYsaNGhg+/t9ZpcB\nDwAAIABJREFU8MEH2rx5s8HJHMfb21vnz5/Psf3ChQummvA+W2ZmptatW6d58+bp8uXLkqSzZ8/q\nypUrBidznNGjR2vmzJmaPHmy9uzZoz179mjixImaMWOGqeYOOXHihOrUqZNje6FChZSammpAovyT\nnJysd999V3369FGfPn00depUXbp0yehYDrVz507169cvx/ayZcuaavW+gIAAde/eXd9++61L9ga7\nU1FRUbmeV69evaqoqCgDEjlewYIF9dlnnxkdw2nc4RpXklauXKmZM2eqcePGdj2JHnjgASUkJBiY\nLH94eXmpVq1aatiwoenmHC1YsGCuczrCdbnyeYihqfeQ8+fP67nnntN3331nm48pOTlZjz/+uOLj\n4+1WgnNlqampGjhwoBYvXmy76LzvvvvUrVs3zZgxw1QT/rvDamgnT57MtY1paWm2YXBm8Nlnn6lr\n166KjIzUnj17lJaWJkm6dOmSJk6cqK+++srghI5hvc20oWlpaTk+5FydS3dnz4NFixZpwYIFatOm\njW1brVq1VLZsWf3rX//Sm2++aWA6xwkNDdXevXtVoUIFu+1r1qxRtWrVDErleD/99JMiIiJUuHBh\n2/DiKVOm6M0339Q333yjunXrGpzQMQoVKqSUlJQc248cOWKa6yHp5vtz6dKlatu2rXx9fdW5c2d1\n6dJF4eHhRkdzKOv/P0faX+3bt89UK6+3a9dOK1eutK1ObWbucI0r3ew4kNtcjampqS4/xK9Tp053\nfOzHH3+cj0mcp0uXLnr//fc1efJko6M4XIcOHRQXFycfHx916NDhb481yzzIrnweohB3Dxk4cKAu\nX76sX375xXbTcPDgQXXv3l2DBg3SsmXLDE7oGMOGDdOmTZu0evVqNWrUSJK0efNmDRo0SK+88orm\nzJljcELHadGihWJiYjR//nxJN8fkX7lyRePHj1fLli0NTnd3Vq1aZft97dq18vX1tf07KytL69ev\nV2hoqBHR8sWECRM0d+5cdevWTfHx8bbtjRo10oQJEwxM5hjTp0+XdPM1umDBArvJTbOysvT999+b\nalJ/6eZEtuHh4dq3b59KlChh296+fXv17dvXwGSOdfHixVz/dlWrVtXFixcNSJQ/hg0bpgEDBuj6\n9euyWq3asWOHli1bpkmTJmnBggVGx3OYoUOHqk2bNnrvvfdsE4ZnZmaqT58+GjJkiL7//nuDEzpG\nmzZtFB0dbbv5s1gsSkxM1GuvvaaOHTsanM5x2rdvr/bt2+vy5cv69NNPtWzZMj3yyCMKCwtTly5d\nNG7cOKMj3hV/f39ZLBZZLBZVrlzZrnCRlZWlK1eu6KWXXjIwoWNVqlRJ0dHR2rJli+rVq6eiRYva\n7R80aJBByRzPzNe4twoPD9eXX36pgQMHSvp/82stWLDgb+cZcwWFChUyOoLTZWZmauHChVq3bl2u\n71FXXsTA19fX9vq89b7MzFz5PMSqqfcQX19frVu3LscE6Tt27FCLFi2UnJxsUDLHKlmypD799FM1\nadLEbvvGjRvVqVMnUw1TNfNqaLeu3PfX00jBggUVEhKid999V08//bQR8RyuSJEiOnjwoEJCQuyW\ndT9+/LiqV6+u69evGx3xrmQXTU+dOqVy5crZDUP19PRUSEiIoqOjVb9+faMiOlyJEiW0detWValS\nxe5vevLkSVWvXl1Xr141OqJD1K9fX/Xr17cVW7MNHDhQO3fu1Pbt2w1K5ngffvihXn/9ddtwoTJl\nyigqKkq9e/c2OJnjFC5cWHv27MlRXD148KDCw8NN87q9dOmSnnnmGf3000+6fPmyypQpo3PnzqlB\ngwb66quvctw8mcnBgwcVGRmp/fv3u/wqm4sWLZLValWvXr0UExNjd3OY/dni6sWMW/3dF5AWi0XH\njx93Ypr8ZeZr3Ftt3rxZTz31lLp06aK4uDj169dPBw8e1NatW7Vp0ybVq1fP6IjIg8cff/y2+ywW\nizZs2ODENLhbrnweokfcPeTGjRs5lhaWbhY1zDRvyNWrVxUYGJhje0BAgGluILJlr4b20Ucfad++\nfaZaDS37NRkaGqqdO3eqZMmSBifKX0FBQTp27JhCQkLstm/evNkUc+Flrw71+OOPa/ny5fL39zc4\nUf5z5e7sefH222+rVatWWrdune2Gd9u2bTp9+rRphlRni4yMVGRkpK5evaorV67c0xdg/5SPj48S\nExNzFOJOnz5tqtetr6+vvv32W23ZssX2+Vm3bl01b97c6Gj54vr161q1apWWLl2qNWvWKDAwUK++\n+qrRse5a9+7dJd28VmjYsGGu17lm4uorLeaFma9xb9W4cWPt3btXkydPVs2aNW1TAGzbtk01a9Y0\nOp7DXbhwQUeOHJEkVa5c2W7EgBm4y8rj7sKVz0P0iLuHtG3bVsnJyVq2bJnKlCkjSfrtt98UGRkp\nf39/rVixwuCEjtGsWTOVKFFCixcvlpeXlyTp2rVr6t69uy5evKh169YZnNBxvv/+ezVs2NA2fChb\nZmamtm7dqkcffdSgZMirSZMmacmSJVq4cKGeeOIJffXVVzp16pSGDh2qsWPH2oYswHV07txZvr6+\nmj9/vry9vbV//36VKlVKbdu2Vfny5RUbG2t0RIc5e/asZs2apcOHD0uSqlWrpn/961+2zxqzyMzM\n1HfffaeEhAS98MIL8vb21tmzZ+Xj42M33NqVDRo0SCtWrNB//vMfNWzYUJK0ZcsWvfrqq+rYsaNi\nYmIMTugYixcvVufOnXMMnUpPT1d8fLy6detmUDLHWrt2rZYuXaqVK1eqQIECeuaZZxQZGWmK64OU\nlBTbZO+5zfd3K7NNCu8OuMY1lytXrmjgwIH68MMPlZmZKenmHN6RkZGaMWOGqb7ocReffvqpPv74\nYyUmJio9Pd1u3+7duw1K5ViufB6iEHcPOX36tNq0aaNffvlFwcHBtm01atTQqlWrVK5cOYMTOsaB\nAwcUERGhtLQ0Pfjgg5JuTtbr5eWltWvX6oEHHjA4oePcd999+v3333P0yrhw4YICAgJcfsjJtWvX\ntGzZMm3evFm///67PDw8FBYWpnbt2qlZs2ZGx3Moq9WqiRMnatKkSbaem4UKFdLw4cP1xhtvGJzu\n7gwbNkxvvPGGihYtqmHDhv3tsa48d8ZfuXJ3duT018U3jhw5orCwMA0ePNhUi2+kp6fr1Vdf1dy5\nc203SwULFlT//v01efJk08z5Y/bPz2xFihTR008/rcjISLVs2dJUPcZu/Rt6eHjkOrF99iIOZvl7\nSjc/W1atWpXrza+ZPkPd5T3qLu18/vnntXPnTk2bNs2u9/zQoUMVHh6upUuXGpzQcX766afbFqjM\nsojB9OnTNXr0aPXo0UPz589Xz549lZCQoJ07d2rAgAGmWajLld+fDE29hwQHB2v37t1at26dXa8F\nsw3DqFGjho4ePaoPP/zQ1s7nn3/eJbqQ5tXtVgm7cOGCy89vc+zYMTVv3lzXrl1ToUKFdObMGbVs\n2VI7d+7UnDlz1KFDBy1dujTHNxSuymKxaPTo0Xr11Vd17NgxXblyRdWrVzdFL5s9e/YoIyPD9vvt\nuPrqYH+V3Z09Pj5e+/fvd6nu7P/L/v377/jYWrVq5WMS53GXxTc8PT01bdo0TZo0yTYX3v3332+q\nFcel239+njlzxlSTUCclJZm2p8mGDRtsK6K6y3Cw9evXq02bNgoLC9Phw4dVo0YNnTx5Ular1TQr\nGmcz8zXurdxlNfnVq1fr66+/1v/93//ZtrVq1Ure3t73/KT3eZHdozoiIkLffPONWrRooSNHjigp\nKUnt27c3Op7DzJ49W/Pnz9fzzz+vuLg4jRgxQmFhYRo3bpypFupy5fOQOe6QTcRiseiJJ57QE088\nYXSUfFWkSBFT3Rj9VfaS0RaLRT169LDroZCVlaX9+/fbhhS5qkGDBunJJ5/UnDlzZLFY9NZbb2nT\npk3avn27jh49qhYtWmjChAl6/fXXjY7qUJ6enqpevbrRMRzq1hskd7lZylagQAF16dLF6BgOV7t2\n7VwXUvkrM/VE+eGHH7R169YcN0YhISH67bffDEqVf4oUKWLK+Ynq1KljW2WzWbNmdl/mZGVl6cSJ\nE3ryyScNTHj3bh2yabVa/3bYpisP2Xzsscdy/d3MRo0apeHDhysqKkre3t767LPPFBAQoMjISJd/\n3WZzh2tcyf1Wk/f39891fmB/f39TffkxceJETZ06VQMGDJC3t7emTZum0NBQ9evXT6VLlzY6nsMk\nJiba3oeFCxfW5cuXJUldu3bVI488opkzZxoZ766Z4TxEIc5g06dP14svvigvL68cK9r9lVmWPF+0\naJFKliypVq1aSZJGjBih+fPnq3r16lq2bJkqVKhgcMK7l/2BZbVa5e3tbde7xtPTU4888ojLFyI3\nbdqkvXv32r6FyJ4r7cKFC6pUqZJiYmI0ZMgQ0xTiUlNTNXnyZK1fv17nz5/PsYCKmVZCu1VKSoo2\nbNigqlWrmuKCc9WqVXd8bJs2bfIxSf5ypwnDs5l58Y0OHTooLi5OPj4+tovP23H1YTXt2rWTJO3d\nu1cRERF2N7/Zq2x27NjRqHgO4e/vbxtK4+fnZ+ohm0ePHtW4ceM0b968HEXFS5cuqX///ho3bpwp\nPl8k6dChQ1q2bJmkm1/0XLt2TcWKFVN0dLTatm2r/v37G5zw7rnDNa4kTZ06VdLNds6dOzfX1eTN\nMuWBJP373//WK6+8og8++MA2zO/8+fMaMWKERo8ebXA6x0lISLDdg3p6eio1NVUWi0VDhw5V06ZN\nFRUVZXBCxwgKCtLFixdVoUIFlS9fXtu3b9eDDz6oEydO/M8vaV2BGc5DFOIMNnXqVEVGRsrLy8t2\nws+NxWIxTSFu4sSJmjNnjqSbcw/MnDlTMTEx+uKLLzR06FCXv4mQZJvkPSQkRMOHD7/nu8b+E35+\nfrZvV6Sbq+FmZmbaeqPUqlVLv//+u1HxHK5Pnz7atGmTunbtqtKlS5tumGa2Tp066dFHH9XLL7+s\na9euKTw83DasJj4+3uVvgLNv8rPl1mss+2/ryjfA2V9oZGRkqF+/fho7dqxCQ0MNTpW/WrRooZiY\nGM2fP1/Szb/jlStXNH78eJcfVuPr62t7Xfr4+Jj2/CNJ48ePl3Tz87Nz5862RZ3MxJ2GbL7zzjsK\nDg7OtWefr6+vgoODNXnyZMXFxTk/XD4oWrSobc6p0qVLKyEhwTb38Z9//mlkNIdxh2tcyf1Wk1+4\ncKF+/fVXlS9fXiEhIZKkkydPytPTUxcuXLB7j+7YscOYkA7g7+9vu38pW7asDhw4oJo1ayo5Odk2\nB7QZNG3aVKtWrVKdOnXUs2dPDR06VJ9++ql++umn//mFnisww3mIxRrgdEWKFNHhw4dVvnx5vfba\na/r999+1ePFi/fLLL2rSpIn++OMPoyPiDvTo0UMnT57U3LlzVahQIY0aNUpHjhyxrcKTXbRKTEw0\nOKlj+Pn56csvv1SjRo2MjpKvgoKCtHbtWj344INaunSpxo8fr3379mnRokWaP3/+384h52rWrVun\n1157TRMnTrSbmHjMmDGaOHGiaaYI8PX11d69e01fiGPxDXNKT0/PtRdy+fLlDUqEvKhSpYqWLFmi\nhx56KNf9u3bt0gsvvKBff/3VycnyR7t27dSqVSv17dtXw4cP1+eff64ePXrYCjnr1q0zOiKQq7Fj\nx97xsa68SNkLL7yg8PBw20JlM2bMUNu2bfXtt9+qbt26pugQIt0cJXDjxg3b9A7x8fHaunWrKlWq\npH79+plqfkNXRSHuHhIdHa3hw4fnmHD52rVreueddzRu3DiDkjlWQECA1q5dqzp16qhOnToaNmyY\nunbtqoSEBD344IO6cuWK0REdJikpScOHD7cNZ/zr282Ve9ycP39ebdu21Y8//iiLxaLg4GCtWLFC\nderUkXRzyezff/9dAwcONDipY4SGhuqrr75StWrVjI6SrwoXLqwjR44oODhY3bp1U5kyZTR58mQl\nJiaqevXqpnp/1qhRQ3PnzlXjxo3ttv/www968cUXdejQIYOSOVb37t1Vu3ZtDR061Ogo+S4zM1Mf\nffSR9u3bpytXrqhu3bqmWHzjVk2bNtXy5cvl5+dntz0lJUXt2rXThg0bDErmWEePHlWvXr20detW\nu+1mGLLpToupFC5cWIcPH77ttCOnTp1StWrVTNMT5fjx47py5Ypq1aql1NRUvfLKK7ab3ylTpphi\n+pVsZr7GvVVWVpbi4uJuOzWJWc657uLixYu6fv26ypQpoxs3bujtt9+2vUfHjBlj+p6PZuPK5yGG\npt5DoqKi9NJLL+UoxF29elVRUVGmKcQ98cQT6tOnj+rUqaMjR47Yhgz98ssvtq7QZtGjRw8lJiZq\n7NixphvOGBAQoG3btuno0aNKS0tT1apV7SbVfuaZZwxM53hvvPGGxo0bp0WLFpludcJbBQcHa9u2\nbSpevLjWrFmj+Ph4SdJ///tf0w0RS0hIyFHMkG72IDt58qTzA+WTSpUqKTo6Wlu2bFG9evVydN83\nw7QHtw7BjYyMVGRkpNGR8s13331nG/p2q+vXr+uHH34wIFH+6NGjhwoUKKAvvvjCdJ+f7rSYiq+v\nrxISEm5bgDp27JhLL0jxV2FhYbbfixYtaqo5xP7KzNe4txo8eLDi4uLUqlUr1ahRw7TtdAeZmZn6\n4osvFBERIUny8PDQyJEjDU7lWHc6Esksvcpd+TxEj7h7iIeHh5KSklSqVCm77Rs2bFDnzp1NM2Qz\nOTlZY8eOVWJiovr3729bRWr8+PHy9PQ01YSg3t7e+uGHH1S7dm2jo+Au1alTRwkJCbJarQoJCVHB\nggXt9mcPyXV1s2fP1uDBg1WsWDFVqFBBu3fvloeHh2bMmKHly5ebaj6jRx99VF5eXvrggw8UGBgo\n6eY3a926ddP169e1adMmgxM6xt8NSbVYLKZZaMTsQ3Cze1HVrl3bbo4x6eY3vmvWrNG8efNMU0Qu\nWrSodu3aZZpJ/G916tSpOz7W1XtQderUSRkZGVqxYkWu+9u2bStPT0998sknTk7meB9//LE+//xz\npaenq1mzZnrppZeMjpSv3OUat2TJklq8eLHLzzX6v9y4cUPTp0/Xxx9/rMTExBxf+Jw/f96gZI5V\npEgRHTp0yOXPrbdz66Ii2WWeW4tTZuhVfitXPg/RI+4e4O/vL4vFIovFosqVK9u9WbKysnTlyhXT\nfJhnZmZq+vTpeu2111SuXDm7fWZZpeZWwcHBpliZBjkn+Terf/3rX6pfv74SExP1xBNPyMPDQ9LN\nb/knTJhgcDrHWrhwodq3b6/y5csrODhYknT69GlVqlRJK1euNDid47jLCqrt2rXTypUrTTsEN7sX\nlcViUdOmTXPsL1y4sGbMmGFAsvxRvXp100xu/1dmvQHMzahRo9SgQQM988wzGjFihKpUqSJJOnz4\nsN5++22tXbs2x/BjVzRnzhwNGDBAlStXlpeXl5YvX66EhAS98847RkfLN+5yjevp6amKFSsaHSPf\nRUdHa968eRoyZIhef/11vfbaazp58qRWr16tMWPGGB3PYR5++GHt3bvXtOdhi8WicuXKqUePHmrd\nurXdaCUzcuXzED3i7gGLFi2S1WpVr169FBMTY1uOV/p/y2NnTyRuBsWKFdOBAwdMNww1N998843e\nffddzZs3zy3aa1ZZWVnasmWLatWqletQRrPIyMhQ1apV9cUXX5h+LrxsVqtV3377rQ4fPixJqlat\nmpo3b+5SXdtx04QJE/Tuu++qWbNmphyCe+rUKVmtVoWFhWnHjh12vec9PT0VEBBg9024q9uwYYNt\n4ZSaNWvm6IVsluGMn3zyiZYtW6YjR45IkipXrqwXXnjBVNM7fPHFF+rVq5cuXLhgt71EiRJasGCB\n2rRpY1Ayx3nggQfUqVMn26q/S5YsUb9+/ZSammpwsvzjLte47777ro4fP66ZM2ea+trg/vvvV0xM\njFq3bi1vb2/t3bvXtu2nn37SkiVLjI7oEB9//LFGjRqloUOH5nqt4Orzcp47d06LFi1SbGyskpOT\n1aVLF/Xu3du01/WufB6iEHcP2bRpkxo2bJjjYtNs2rZtqw4dOqh79+5GR8l3/v7+unr1qjIzM1Wk\nSJEcf9uLFy8alAx55eXlpUOHDpl22Fu2smXLat26dab9wHZXZ86c0apVq3IdbjJlyhSDUjmWuwzB\ndRfZvXH/euNrlmE1N27c0PPPP69PPvlElStXtg3BPXTokI4dO6Znn31Wy5YtM82N/7Vr17RmzRod\nO3ZMVqtVlStXVosWLUwz52rhwoV16NAh243gjRs3VLhwYZ08eVKlS5c2Nlw+cZdr3Pbt22vjxo0q\nXry4HnjggRztNMsqm0WKFNHhw4dVvnx5BQUF6auvvlLdunV1/Phx1a1bV8nJyUZHdIjsz5ZbZc/Z\naYbPlltt3rxZsbGx+uSTT1S9enX17t1bvXv3zvX/gaty5fOQufsqupjHHnvM9vv169dz3CyZ5dvf\np556SiNHjtTPP/+c6zcRZvhmNFtMTIzREfJdYmKigoODc71ZOn36tGkmA61Ro4aOHz9u+kLcgAED\n9NZbb2nBggWm784uSampqdq0aVOuBSpX70GVbf369WrTpo3CwsJ0+PBh1ahRQydPnpTValXdunWN\njucw7jIEN9vBgwdzfd2a5TPUTPNR5mbatGlat26dVq1apaefftpu36pVq9SzZ09NmzZNQ4YMMSih\nYxUuXFjt27c3Oka+SUtLs7ue9fDwkKenp65du2ZgqvzlDte4kuTn52fq1262cuXK6dy5cypfvrzu\nv/9+rV+/XnXr1tWuXbvk6elpdDyHcadrhcaNG6tx48aaOHGinn/+eb300kvq2LGj3Ryzrs6Vz0P0\niLuHXL16VSNGjNDHH3+co/u+dG8vv5sXf1eFN9s3Ee7gvvvu0++//66AgAC77RcuXFBAQIBp/p5r\n1qzRqFGj9MYbb+RaQDZLobx9+/Zav369ihUrppo1a+Zop1m++ZWkPXv2qGXLlrp69apSU1NVvHhx\n/fnnnypSpIgCAgJM04Pq4Ycf1lNPPaWoqCh5e3tr3759CggIUGRkpJ588kn179/f6IgOER0dreHD\nh+foYXPt2jW98847pll5/Pjx42rfvr1+/vlnu5U3s78MMcs51+xq1aqlIUOGqFevXrnuf//99zVt\n2jTbIh24t3l4eOjFF1+0O//MmjVLXbp0sZtyxiw9kGE+r776qvz8/DR69GgtW7ZM3bp1U8WKFXXi\nxAkNHDjQ1PMdmtXWrVu1cOFCffLJJ6pSpYp69eqlF1980VQ94lwZhbh7yIABA7Rx40a98cYb6tq1\nq2bNmqXffvtN8+bN0+TJkxUZGWl0RPwDCQkJio2NVUJCgqZNm6aAgAB9/fXXKl++vB544AGj4921\n2632e+rUKVWvXt0086Pc+qFl5tWHevbs+bf7Y2NjnZQk/zVp0kSVK1fW3Llz5evrq3379qlgwYLq\n0qWLBg/+/9g787ga0///v85J0V7kWBoth6KVTLaplISKFttYSiXLMDMKhTCWLKERM2QsH5KiLJVt\n7EUbUaRTSmkjkhBJpf3+/tGv8+vMKcO46+7c3c/Hw+PRua7zx/M459znut/X+3q/3TFlyhSqFUmh\nea0XRUVFxMfHQ0dHBzweD3Z2drTpstlZNgVsbGwgJiaGw4cPQ11dHYmJiSgpKYGHhwd27twJExMT\nqhVJIy4uDgcPHkReXh7OnDkDZWVlBAcHQ11dHcbGxlTrfROSkpLIyspqNWv82bNnGDRoEK0zquiE\nmZnZvx4jZrFYuHnzZjsZtQ90X+M2UVdXh+joaOTm5mL27NmQlZXFy5cvIScnBxkZGar12oS4uDgk\nJCRAQ0ODdhmBWVlZ2Lt3Lx4/fgygsT7wkiVL+M1kRJmioiIEBQXh6NGjeP/+PRwcHODq6gpdXV2q\n1doMUb0O0f/ckQhx8eJFBAUFwczMDHPnzoWJiQkGDBgAVVVVnDhxgpaBuKqqKnTr1o1qjTYjJiYG\nVlZWMDIyQmxsLLZu3QoOhwMej4cjR44gLCyMasX/zPLlywE0LizXrVsnsAtcX1+Pe/fuiWQr6dag\n+zGpJugUaPs3UlJScPDgQbDZbIiJiaG6uhpcLhe+vr5wdnamTSBOWlqaf3yxT58+yM3N5S9M6NSV\nsiko/k94PB6tjmEkJCTg5s2bUFJSApvNBpvNhrGxMbZt2wY3Nzc8fPiQakVSCA8Px5w5c+Dg4IDk\n5GRUV1cDAD58+AAfHx9cvnyZYsNvQ1JSEqWlpa0G4srKymi9PqIb0dHRVCu0O3Re4zbn2bNnsLS0\nREFBAaqrqzFu3DjIyspix44dqK6uxoEDB6hWbBNMTExotbHTRHh4OGbOnAlDQ0N+M8S7d+9CV1cX\nJ0+exNSpUyk2/DZUVFSgrKwMZ2dn2NraQlxcHA0NDULZ1aLelKIJUb4OMYG4DsS7d+/A5XIBNB5z\nayouaGxsTJujQ0BjkMbHxwcHDhxAcXExnjx5Ai6Xi3Xr1kFNTQ3z5s2jWpE0vLy8sGXLFixfvhyy\nsrL8cXNzc/j7+1No9u003ewRBIG0tDSB+hESEhIYPHgwPD09qdIjneY1HOlOZ9n5FRcX52c6cjgc\nFBQUQEtLC/Ly8nj+/DnFduQxcuRIxMfHQ0tLC9bW1vDw8EBaWhoiIiIwcuRIqvW+GUVFRbBYLLBY\nLGhqagoE4+rr61FeXo5FixZRaEgu9fX1/N8TJSUlvHz5EgMHDoSqqiqysrIotiOPLVu24MCBA3By\ncsLJkyf540ZGRtiyZQuFZuQwatQo7N+/H/v3729xft++ffybRAaGjgid17jNcXd3h6GhIXg8Hnr0\n6MEfnzx5MhYsWEChGTncuXPni573ww8/tLFJ+7By5UqsXr0amzZtEhjfsGEDVq5cKfK9ke/iAAAg\nAElEQVSBuPr6ehQUFGDz5s3838p/HoCk00keUb4OMYG4DgSXy0V+fj5UVFQwaNAgnD59GsOHD8fF\nixehoKBAtR5pbN26FceOHYOvr6/AD5iuri7++OMPWgXi0tLSEBISIjTO4XBEPhOlKUOsqaA0XWqk\n/RuVlZUtFkiny85SZ9r5NTAwQFJSEjQ0NGBqaor169fj7du3CA4OplUK/65du1BeXg4A8Pb2Rnl5\nOU6dOgUNDQ1a1Cv6448/QBAEXF1d4e3tLVCPSUJCAmpqarQKaOjq6oLH40FdXR0jRoyAr68vJCQk\ncOjQIf5mHh3IysrC6NGjhcbl5eVp0b1v7dq1MDMzQ0lJCTw9PTFo0CAQBIHHjx/Dz88P58+fF/lM\n7LKysi9+bmdZQ9AJOq9xmxMXF4c7d+4INSxQU1NDYWEhRVbkYWxszN/Aaq1iFZ0CN0VFRXBychIa\nd3R0pEUdvM7UjAIQ7esQE4jrQMydOxc8Hg+mpqbw8vKCjY0N/P39UVtbS4ubpSaCgoJw6NAhjB07\nViBLYfDgwcjMzKTQjHwUFBRQVFQk1Gnz4cOHUFZWpsiKXDrLUcY3b95g7ty5uHLlSovzdFmg0H3n\ntzk+Pj74+PEjgMYNAicnJyxevBgaGhoICAig2I48mgdnpKWlaRVMBQBnZ2cAgLq6OoyMjGjf7fe3\n337j197ctGkTJk2aBBMTE/To0UMgc0zU6d27N3JycqCmpiYwHh8fT4uA4w8//IBTp05h4cKFCA8P\nF5hTVFREaGgojIyMKLIjBwUFhX+tm9YEXX5DOxOdYY0LAA0NDS1+Pl+8eCGQgSOqyMnJQUFBAS4u\nLnBwcKBVKYeWMDMzQ1xcHAYMGCAwHh8fT4ujuKqqqlQrtCuifB2i92pVxFi2bBn/bwsLC2RmZuLB\ngwcYMGAAbbJtAKCwsFDo4gc0/tDV1tZSYNR2zJw5E6tWrcKZM2fAYrHQ0NCA27dvw9PTs8XdGFHl\n/v37OH36dIuZYnTpsrl06VKUlpbi3r17MDMzw9mzZ1FcXIwtW7bAz8+Paj3SoPvOb3MMDQ35f3M4\nHFy9epVCG/J5//49jh8/DmdnZ6Fskw8fPiAoKAiOjo5QVFSkyJAc6urqUF9fL3B8vLi4GAcOHEBF\nRQVsbW1FvrB/cyZMmMD/e8CAAcjMzMS7d+/4R3TpwoIFC+Du7o6AgACwWCy8fPkSCQkJ8PT0xLp1\n66jWI4XJkydjwoQJuHbtGrKzswEAmpqaGD9+vFD3X1GkeUbf06dP4eXlBRcXF36GakJCAo4dO4Zt\n27ZRpcjwDXSWNe748ePxxx9/4NChQwAas8PKy8uxYcMGWFtbU2z37bx69Qrh4eEICAjA77//Dhsb\nG8ybNw/jxo2jWo00Lly4wP/b1tYWq1atwoMHD/jlOe7evYszZ87A29ubKkWG/4hIX4cIhg7DsWPH\niKqqKqHx6upq4tixYxQYtQ1Dhw4lgoODCYIgCBkZGSI3N5cgCILw9vYmjI2NqVQjnerqamL+/PlE\nly5dCBaLRYiLixNsNptwdHQk6urqqNYjhdDQUEJcXJyYNGkSISEhQUyaNInQ1NQk5OXlCRcXF6r1\nSKN3797EvXv3CIIgCFlZWSIrK4sgCII4f/48YWRkRKUaqSgoKBDp6ekEQQh+P+Pi4ggOh0OlGsNX\nsmnTJmLatGmtzk+fPp1YvXp1Oxq1DS4uLsTChQv5j8vKyoh+/foRPXv2JPT19YkuXboQly5dotCQ\nXObOnUuUlZUJjZeXlxNz586lwKhtaGhoILZs2UJIS0sTLBaLYLFYRLdu3YjffvuNajWG/4C5uTkR\nEhIiNH7ixAnC1NS0/YUYvpnOsMYlCIJ4/vw5oa2tTWhpaRFdunQhRo4cSfTo0YMYOHAgUVxcTLUe\nqeTl5RHr1q0jVFVVCRUVFWL9+vVEbW0t1VrfTNNvyL/9Y7PZVKsyfCWifB1iEUQrh8EZ2h0xMTEU\nFRWBw+EIjJeUlIDD4dAmbf/8+fNwdnbmF8r09vZGVlYWgoKC8Pfff9NqB6aJ58+fIy0tDeXl5TAw\nMICGhgbVSqShr6+Pn376Cb/88gtkZWX5tYt++ukn9OnThza7S3JyckhNTYWamhpUVVUREhICIyMj\n5OfnQ0dHB5WVlVQrksKMGTMgLy+PQ4cOQVZWFqmpqejZsyfs7OygoqJCq6PIJSUlWL9+PW7duoXX\nr1+joaFBYL6pYY6oMmTIEPj5+WHs2LEtzkdFRcHDwwMpKSntbEYumpqa8Pf3x/jx4wE0Frn38fFB\nRkYG5OXlsWrVKiQmJop8va0mWlsrvH37Fr1790ZdXR1FZm1DTU0NcnJyUF5eDm1tbVo1jOlMSElJ\ngcfjCa1/njx5giFDhtDmN/Tq1auQkZHhZ+Hu27cP//vf/6CtrY19+/aJfAZyS9B5jdtEXV0dTp06\nBR6Ph/LycgwdOhQODg6QlJSkWq1NKCgogIuLC2JiYvDmzRvaH1dlEH1E8TrEBOI6EGw2G8XFxejZ\ns6fAOI/Hw5gxY0T+prA5cXFx2LRpk8AP2vr16/k3UnSgrKwMMjIy/K6MTTQ0NKC8vJw2hYmlpaWR\nnp4ONTU19OjRA9HR0dDT08Pjx49hbm6OoqIiqhVJYdiwYdiyZQsmTJgAW1tbKCgoYNu2bdizZw/C\nwsKQm5tLtSIpvHjxAhMmTABBEMjOzoahoSGys7OhpKSE2NhYoZt/Ucba2ho5OTmYN28eevXqJXSs\nr6n2mKgiKyuL9PR0qKiotDhfUFAAXV3dryqo3hGRlpbGo0eP+PVBpkyZgu+++w579uwBAGRkZMDM\nzAyvX7+mUvObKSsrA0EQUFRURHZ2tsBaob6+HhcvXoSXlxdevnxJoeW3U19fj/T0dGhoaAjd5H76\n9AnZ2dnQ1dUV+m1l6NgMHDgQdnZ28PX1FRhfuXIlzp8/T5uOv3p6etixYwesra2RlpaGYcOGYfny\n5bh16xYGDRpEm82szrLG7UzU1NTg3LlzCAgIQGxsLCwtLeHq6opJkyZRrcbA0CKifh1iasR1AAwM\nDMBiscBisTB27FiBQtP19fXIz8+HpaUlhYbkY2Jighs3blCt0WacPXsWq1atQkpKilCdl0+fPsHQ\n0BCbNm3CzJkzKTIkD0VFRX7Be2VlZTx69Ah6enooLS2lzQ430NjEoCmouGHDBlhaWuLEiROQkJBA\nYGAgtXIk8t1334HH4+HkyZNITU1FeXk55s2bR8ud37i4OMTHx2Pw4MFUq7QJYmJiePnyZauBuJcv\nX9IimNGtWzd8+vSJ//ju3bsCnc+6devG7xoryjQVvmexWNDU1BSaZ7FYtMhADg4Ohr+/P+7duyc0\nJy4uDldXV8yfP1+g2RNDx2f37t2YOnUqrly5ghEjRgAAEhMTkZ2dLdSsQpTJz8+HtrY2ACA8PByT\nJk2Cj48PkpOTaVFPDOg8a9wHDx7A09MT58+fb7HOqr29PbZv387/PIsqycnJOHr0KEJDQ9G3b1+4\nuLggODhYKDFElNmzZw8WLlyIbt268TfpWsPNza2drNoWc3NzREREQEFBQWC8rKwM9vb2uHnzJkVm\n5ECH6xATiOsA2NvbAwBSUlIwYcIEgWMXEhISUFNTw9SpU6nSa1PKy8uFjoN19Oj1l7B//36sXLmy\nxWLL0tLS8PLywuHDhzv0xeFLGT16NG7cuAE9PT1Mnz4d7u7uuHnzJm7cuNHqkThRxNHRkf/3999/\nj2fPniEzMxMqKipQUlKi0Ixcqqqq0K1bN4HXS1cGDRokEMChGwYGBjh37hy/GPE/OXv2LAwMDNrZ\ninyGDBmC4OBgbNu2DXFxcSguLoa5uTl/Pjc3F3379qXQkBxu3boFgiBgbm6O8PBwgaNCEhISUFVV\npcXrPHLkCDw9PSEmJiY016VLF6xcuRJ79uxhAnEihrW1NbKzs/HXX38hMzMTAGBjY4NFixahX79+\nFNuRh4SEBH8TMjIykl8svHv37iKffdxEZ1nj+vn5wdzcvMX7Enl5eVhYWMDPzw+nT5+mwI48hg0b\nhn79+uGXX37hBxWTkpKEnifKgeTdu3fDwcEB3bp1w+7du1t9HovFok0gLjo6WqiBHtC4zo+Li6PA\niFxocR2isD4dwz8IDAwkPn36RLVGm5OXl0dYW1sTUlJSBJvN5v+jU5HMPn36ENnZ2a3OZ2dnE336\n9GlHo7ajpKSEKCwsJAiCIOrr64lt27YRNjY2xPLly4l3795RbEc+1dXVRGZmJi2K17aErKws4eTk\nRFy/fp2or6+nWqdNSUxMJMzNzYno6Gji7du3xIcPHwT+iTphYWFEly5diL179woUrK2rqyP27NlD\niIuLE2fOnKHQkByio6MJSUlJgsvlEpKSkoSrq6vA/OLFiwknJyeK7Mjn6dOnRENDA9UabUbPnj2J\n/Pz8Vufz8vIIJSWl9hNqY9hsdosF39++fUubNVFnwsbGhpgwYQKxadMmQlxcnHjx4gVBEARx7do1\nQkNDg2I7cugsa1wul0vweLxW51NTUwl1dfV2NGobmCYG9ILH4xE8Ho9gsVjErVu3+I95PB6RnJxM\n+Pj4EKqqqlRrfjN0uA4xGXEdiOb1iKqqqnDq1ClUVFRg3LhxIlFw8EtxdHQEQRAICAhosS4THXj/\n/v1nC2bX1tbi/fv37WjUdjTPymCz2fDy8qLQpu2orKzEkiVLcOzYMQCNBaa5XC6WLFkCZWVl2rzu\nY8eOISQkBHZ2dpCXl8eMGTPg6OgIQ0NDqtVIR0FBAWVlZQLZUwBAEARYLJbIN8iZOnUqVq5cCTc3\nN6xduxZcLhcAkJeXh/LycqxYsQLTpk2j2PLbMTU1xYMHD3D9+nX07t0b06dPF5gfMmQIhg8fTpEd\nebx9+xYVFRVQVVXlj6Wnp2Pnzp2oqKiAvb09Zs+eTaEhOVRUVHw2c+jjx4+0KntAtFKqubq6GhIS\nEu1s07aUlpbiyJEjePz4MQBAR0cHrq6ukJeXp9iMPPz9/fHzzz8jLCwM+/fvh7KyMgDgypUrtCkz\n01nWuIWFhZCVlW11XkZGhhZ1kGtra6lW6BDk5eVh0aJFuH79OtUq38SQIUP4ZSz+ub4FAElJSezd\nu5cCM3Khw3WICcR1AJYvX47a2lr+l6KmpgYjR45ERkYGpKSksHLlSty4cQOjRo2i2JQceDweHjx4\ngIEDB1Kt0maoqanh/v37GDRoUIvz9+/fF7iZYuj4rF69GjweD9HR0QKLaQsLC2zcuJE2gbjJkydj\n8uTJ+PjxI8LCwhAaGoqRI0eCy+XC0dER69evp1qRNBwcHCAuLo6QkBDabgps3boVdnZ2OHHiBHJy\nckAQBExNTTF79mxaBKea0NLSgpaWVotzCxcubGebtmHJkiXo27cv/Pz8AACvX7+GiYkJ+vbti/79\n+8PFxQX19fWYM2cOxabfhoaGBu7cuQN9ff0W5+Pj42mxOdlUp4jFYuHw4cMCZUnq6+sRGxvb6hpC\nFLl//z4mTJgASUlJ/rVn165d2Lp1K65fv46hQ4dSbEgOKioq+Pvvv4XGP3ccTtToLGvcnj17Iisr\ni98I6J9kZmbSojRJS2UAOiMfP35EVFQU1RrfTH5+PgiCAJfLRWJiokCtPwkJCXA4HFq857S4DlGa\nj8dAEARB6OjoEOfPn+c/DggIIBQVFfnHT1xcXAhra2sKDcnFzMyMuHHjBtUabcqaNWsIFRUV4tWr\nV0JzRUVFhIqKCrFmzRoKzBj+KyoqKkRCQgJBEAQhIyND5ObmEgTRmPosKytLpVqbk56eTgwZMoR2\nRxMkJSWJzMxMqjUYGL4INTU1Ijo6mv/4999/J/r3788/Jv/7778TI0aMoEqPNHbs2EH06NGjxSNh\nKSkpRI8ePYgdO3ZQYEYuampqhJqaGsFisYh+/frxH6upqRGamprE+PHjibt371KtSRrGxsaEi4uL\nQFmH2tpawtnZmTAxMaHQjHxycnKItWvXEjNnzuQfO758+TLx6NEjis3IobOscV1cXAhjY+MW5xoa\nGggjIyPCxcWlna0Y2oqUlBTarXPpDB2uQyyCaCUnnqHdkJOTQ3JyMgYMGAAAmDVrFmRlZXHo0CEA\njU0crK2t8fLlSyo1SSM3NxeLFi2Co6MjdHV1IS4uLjDf2i64KPHx40eMGjUKBQUFcHR05Gf/ZWZm\n4sSJE+jXrx/u3r372ZR3ho6FlJQUHj16BC6XC1lZWfB4PHC5XPB4PIwePRofPnygWpFUqqqqcOHC\nBYSEhODq1avo1asXZs2ahe3bt1OtRhqjR4/G+vXrYWFhQbUKA8O/IikpiczMTP4Or7W1NXR1deHr\n6wug8bj8qFGjUFJSQqXmN1NbW4vx48cjPj4eFhYW/N3uzMxMREZGwsjICDdu3BBaO4gqY8aMQURE\nBBQVFalWaVMkJSXx8OFDoeyFjIwMGBoa0ua4cUxMDKysrGBkZITY2Fg8fvwYXC4X27dvx/379xEW\nFka14jfTWda4ubm5+P777zFw4EB4eHgIvE4/Pz88efIE9+/f59+/MYg2PB4PQ4cOFfmyJP8kIyMD\nBQUFQo0bbG1tKTIiB1pch6iOBDIQhLy8PPHkyRP+YzU1NeLIkSP8x/n5+US3bt2oUGsTEhISCHV1\ndaEioHQrBlpaWkosXryY6N69O/91KioqEosXL6ZlEwO6Y2JiQuzZs4cgiMaMuLy8PIIgCOLXX38l\nJkyYQKUaqVy9epVwcnIi5OTkiO7duxMLFy4kYmJiqNZqE06fPk1oa2sTR48eJe7fvy9Q0PZzBZoZ\nGKiAw+EQKSkp/Mc9evQgwsLC+I+fPHlCSEtLU6FGOjU1NcSOHTuIwYMHE1JSUoSkpCQxePBgYseO\nHUR1dTXVegz/AQ6HQ1y7dk1o/OrVqwSHw6HAqG0YOXIk4efnRxCEYPb8vXv3CGVlZSrVSKWzrHGT\nkpIIHR0d/j1K0/2Kjo4OkZiYSLUeA4nQLSMuNzeX0NfXF7jPbv45pgOifh1iMuI6AKNGjcL06dOx\nfPlypKenQ19fHzk5OfyaBDExMXB2dsbTp0+pFSUJbW1taGlpYeXKlS3WZerw57m/EoIg8PbtWxAE\ngZ49e9KqDlVtbS0kJSWRkpICXV1dqnXalPj4eFhZWcHR0RGBgYH46aefkJGRgTt37iAmJgbff/89\n1YqkICUlhUmTJsHBwQHW1ta0yTppCTabLTTGYrFo06yBgV7Y2dlBSUkJ//vf/xAREQEHBwe8evWK\nn0l16dIleHp68gvhM4gOL168wIULF1rMWti1axdFVuTi5uaGs2fPYufOnfjhhx8AALdv38aKFSsw\ndepU/PHHHxQbkoOMjAzS0tKgrq4ukD3/9OlTDBo0CFVVVVQrkgqd17jNSUlJQXZ2NgiCgKamJoYM\nGUK1EsNXYmBg8NnPZ2VlJbKzs2mz9rOxsYGYmBgOHz4MdXV1JCYmoqSkBB4eHti5cydMTEyoViQN\nUb0OMc0aOgArV67EzJkzcenSJaSnp8Pa2lqgMOjly5dpVVT72bNnuHDhQqdJ5WaxWAKFMumEuLg4\nVFRUaPOj9TmMjY2RkpKC7du3Q09Pj19cOiEhAXp6elTrkUZxcXHHTuMmkfz8fKoVGBi+mM2bN2Ps\n2LE4fvw46urqsGbNGoHjjCdPnoSpqSmFhgz/haioKNja2oLL5SIzMxO6urp4+vQpCIKgTQMDANi5\ncydYLBacnJz4ne7ExcWxePFiWpU8UFBQQFFRkVCB/4cPH/I7qNIJOq9xmzNkyBDaB980NTVx9+5d\ndO/eXWC8tLQUw4cPx5MnTygyIwd7e3uqFdqVhIQE3Lx5E0pKSmCz2WCz2TA2Nsa2bdvg5uaGhw8f\nUq1IGqJ6HWIy4joIUVFR+Pvvv9G7d28sWbIEUlJS/Dlvb2+YmprCzMyMOkESsbGxgYuLC6ZOnUq1\nCgMJHDlyBBEREQgODhb68aYDHz9+/NfAVExMjEjfAJeVlUFOTo7/9+doeh4DQ0ejvr4eu3fvxunT\np1vMLHr37h1FZuTx9u1b3L59G71798aIESME5i5dugRtbe1WO/wxdEyGDx8OKysreHt78zOoOBwO\nHBwcYGlpicWLF1OtSCqVlZXIzc0FAPTv319gvUsHPD09ce/ePZw5cwaamppITk5GcXExnJyc4OTk\nhA0bNlCtyMDQImw2G69evQKHwxEYLy4uhoqKCqqrqykyY/gvKCoqIjk5Gerq6ujfvz8OHz6MMWPG\nIDc3F3p6erSpyynKMIE4hnbn0KFD2LJlC1xdXaGnpyd09E3Ui0d2NgwMDJCTk4Pa2lqoqqpCWlpa\nYD45OZkiM3IwMzPDtWvX0LVr1xbnY2JiMGnSJHz8+LGdzchDTEwMRUVF4HA4YLPZLaZ00+W45oUL\nF774uXS5FhUXF8PT0xNRUVF4/fo1/vmzL+rvaRPr16/H4cOH4eHhgd9++w1r167F06dPce7cOaxf\nvx5ubm5UKzIwCCErK4uUlBT0798fioqKiI+Ph46ODng8Huzs7GhTlqQ5L168AAB89913FJuQT01N\nDX755RcEBgaivr4eXbp0QX19PWbPno3AwECIiYlRrcjAIMDly5cBAJMmTcKJEycgLy/Pn6uvr0dk\nZCSuXr2KrKwsqhQZ/gMmJibw8PCAvb09Zs+ejffv3+O3337DoUOH8ODBAzx69IhqxU4PE4hjaHda\nqsvUBB1u9Dsb3t7en50X9d1fPT09cLlcnD17VuizGxsbC2tra8ydOxd79+6lyPDbiYmJgZGREbp0\n6YKYmJjPPleUM/+Az19/mkOna5GVlRUKCgrw66+/ok+fPkKBVjs7O4rMyKV///7Ys2cPJk6cKBDc\n2LNnD+7evYuQkBCqFRkYhOjduzdu3boFLS0taGtrY/v27bC1tQWPx4ORkRHKy8upViSFhoYGbNmy\nBX5+fvzXJCsrCw8PD6xdu/aLr82iwvPnz5GWloby8nIYGBhAQ0ODaiUGhhZp+u411chtjpiYGFRU\nVLB7927abE52Fq5du4aKigpMmTIFOTk5mDRpEp48eYIePXrg1KlTMDc3p1qx08ME4hgY2giCIJCT\nk4OamhoMHDgQXbowJRlFkZcvX8LExARGRkYICgrij8fFxWHixImYM2cO9u3bR6EhA8PnkZWVRVxc\nHO3r20hLS+Px48dQUVFBnz59cOnSJQwdOhR5eXkwMDDAhw8fqFZkYBDC3t4eEydOxIIFC+Dp6Ynz\n58/DxcUFERERUFRURGRkJNWKpLB69WocOXIE3t7eMDIyAtDYBGnjxo1YsGABtm7dSrEhOcTGxmLQ\noEFCx/tqa2uRkJCA0aNHU2TGwNAy9fX1IAgC6urqSEpKEqi1xWRw0ot3795BUVFRZJoZfAlBQUGY\nMWOG0MmlmpoanDx5Ek5OThSZ/TtMII6BoQ3Iz8+Hra0tMjIyADQevwgPD4ehoSHFZm3HgwcP+N36\ndHR0YGBgQLEReeTm5sLExATTp0/Hn3/+ye+g6uDggAMHDlCtRzqlpaVITEzE69ev0dDQIDDXkX/Q\nyKK0tBTHjx/Hr7/+SrUKKWhra+PEiRO0+k62xMCBAxEUFIQRI0bA2NgYkyZNgpeXF06dOoUlS5bg\n9evXVCsyfAVTp07FyJEjsWLFCoFxX19fJCUl4cyZMxSZkUteXh7Ky8uhr6+PiooKeHh44M6dO9DQ\n0MCuXbto00m+b9++OHDggFBWzfnz5/Hzzz+jsLCQIjNyYbPZ6NWrF86ePYuRI0fyx4uLi9G3b1+R\nz7Tes2fPFz+XLuUA1NTU4OrqChcXF6ioqFCtw8DA0Izm5XWaU1JSAg6H06GvuUwgjqHdsLa2Rmho\nKL/2wPbt27Fo0SIoKCgAaPzCmJiY8INXosy0adOQnp6ODRs2oGvXrti5cyeqqqrw4MEDqtVI5/Xr\n15g5cyaio6P572VpaSnGjBmDkydPimQXm5ZITU2FmZkZbG1tcfbsWcyYMQOHDh2iWot0Ll68CAcH\nB5SXl0NOTk5g14zFYtGi4H1rREVF4ciRIzh79iykpKRQUlJCtRIpXL9+HX5+fjh48CDU1NSo1mkz\nvLy8ICcnhzVr1uDUqVNwdHSEmpoaCgoKsGzZMlp1ZuwM9OzZE9HR0dDR0REYT0tLg4WFBYqLiyky\nY/gvdOvWDampqdDU1BQYz8rKwpAhQ/Dp0yeKzMiFzWbD3d0dhw4dwr59++Di4gKgMRDXp08foc0t\nUeNLm8GwWCzk5eW1sU378McffyAwMBCPHj3CmDFjMG/ePEyePLnV2sGizKdPnxAXF9diw6Off/6Z\nIisGhtZhs9koLi4Wut/k8XgYM2ZMh75vYQJxDO3GPyPWcnJySElJAZfLBUCf3UKgseZLWFgYjI2N\nAQBFRUX47rvvUFZWJtTMQNSZMWMG8vLyEBQUBC0tLQBARkYGnJ2dMWDAAISGhlJs+G007yJ6+/Zt\nTJ48Gfb29jh48KBAkIou3UQ1NTVhbW0NHx8f2nWza4nnz5/j6NGjOHr0KAoKCjBz5kzMmTMHY8eO\nFWokI6ooKiqisrISdXV1kJKSEnpdHXmR8i0kJCQgISEBGhoasLGxoVqHVBoaGpCTk9Ni1ipdjr5J\nSkoiJSUFAwcOFBjPzMyEgYEBbQI3nYURI0ZgxIgRQhlVS5YsQVJSEu7evUuRGbk0rXXj4+Ph5OSE\nhQsXws/PD69fv6bNGrezkpycjMDAQISGhvIbcLi6umLo0KFUq5ECj8eDtbU1Pnz4gKqqKsjJyaG0\ntBSSkpLo0aMHCgoKqFYkBTc3N2hqagqdevD390dOTg7++OMPiswYvgYDAwOwWCzweDzo6OgIlICq\nr69Hfn4+LC0tcfr0aQotPw8TiOtA0L2z3T/bYsvKyoLH49EyEMdms1FUVIRevXrxx2RkZJCWlvbF\nu4migry8PCIjIzFs2DCB8cTERIwfPx6lpaUUmZHDP7uINn0vm8bo0k20CWlpaSIg2oYAACAASURB\nVKSlpfG/l3SktrYW586dw+HDhxEXFwdLS0vMnj0bs2bNAo/Hg7a2NtWKpHLs2LHPzjs7O7eTCQMZ\n3L17F7Nnz8azZ8+E1gl0uhYNHz4ckyZNwvr16wXGN27ciIsXL9Iyw5zOxMTEYOLEiVBRUcGoUaMA\nNAbLnz9/jsuXL8PExIRiQ3JovtZ9+PAh7OzsoK2tjT///BPa2tq0+X52Zmpra/HXX39h1apVqK2t\nhZ6eHtzc3DB37lyRrr1lbm4OdXV1HDp0CAoKCuDxeGCxWHB2dsby5cthb29PtSIpKCsr49KlS0J1\nc5OTk2Fra8vv6szQsWlqFujt7Q0PDw/IyMjw5yQkJKCmpoapU6dCQkKCKsV/hake34FwcXFBQUEB\n1q1b12JnOwbRgcVioby8HJKSkvwxNpuNjx8/CmRY0SGLqqGhocXMIXFxcZE/ggEAt27dolqhXZkw\nYQLu379P60CcsrIyBg0aBEdHR5w8eRKKiooAgFmzZlFs1jbQOdB24cIFWFlZQVxcHBcuXPjsc+nS\n8W3RokUwNDTEpUuXaL1WWLduHaZMmYLc3Fx+d7eoqCiEhobSpj5cZ8LU1BRZWVn466+/kJmZCQCY\nMmUKfv75Z/Tt25diu7bBwMAAiYmJsLe3x9ixY6nWaRNevHiBCxcutHiUcdeuXRRZtQ21tbU4e/Ys\njh49ihs3bmDkyJGYN28eXrx4gTVr1iAyMlKku3MnJyfjr7/+gpiYGMTExFBdXQ0tLS3s2LEDrq6u\ntAnElZSUQFZWVmhcTk4Ob9++pcCobaioqKDdKazmbNiwAUBjDccZM2agW7duFBt9PUwgrgMRHx9P\n6852LBZL6IaBrjcQBEEI1UEhCIJfLJ1OWVTm5uZwd3dHaGgofzFdWFiIZcuW0WLhaWpqSrVCuzJx\n4kSsWLECGRkZ0NPTEwqy0iGYUVdXx78edbaOYFVVVUI3S6K8IWBvb8/PPvncTQJdrrcAkJ2djbCw\nMAwYMIBqlTbFxsYG586dg4+PD8LCwiApKQl9fX1ERkZ2uusyXVBWVqZNd9TWcHZ2FtiE7d27N2Ji\nYrBw4ULExsZSaEY+UVFRsLW1BZfLRWZmJnR1dfH06VMQBEGb45pAY4Dq6NGjCA0NBZvNhpOTE3bv\n3o1BgwbxnzN58mShkyGiRpcuXfjH+zgcDgoKCqClpYXu3bvj2bNnFNuRx4ABA3DlyhWho6lXrlyh\n1SZ0r1698OOPP8LV1ZVfKomONG0219TUtFiuoyM3WGECcR2Ifv36CR0zoRMEQcDFxYVf3LSqqgqL\nFi3iR+urq6up1COVzpRF5e/vD1tbW6ipqaFfv34AGutu6erq4vjx4xTbMXwtCxYsAABs2rRJaI4u\nwYyXL18iPDwcR44cgbu7O6ysrODo6EjbjYGKigqsWrUKp0+fbrEBhSi/p80XXHTIwP0SRowYgZyc\nHNoH4oDGjYGJEydSrdGmPHr0CLq6ui3OnTt3jjZZKKNHj4aZmRnMzMzwww8/iGT2wpdw9OhRobGu\nXbv+a4kAUWT16tXw9PSEt7c3ZGVlER4eDg6HAwcHB1haWlKtRxrDhg3DuHHjsH//ftjb27d4CkRd\nXR0zZ86kwI48DAwMkJSUhAEDBmD06NHYuHEjSktLERQU1Oo1ShRZvnw5fv31V7x580Yg29rPz49W\n9eGOHz+OwMBAmJub8zv/Ojk50S4DOTs7G66urrhz547AuCgkvTA14joQdO9sN3fu3C96XkuLGDry\n7t07dO/enWoNUiAIApGRkfzjJlpaWrCwsKDYioHh38nNzcXRo0dx7NgxFBYWYtasWXBxcYG5uTlt\nsuV++eUX3Lp1C5s3b8acOXOwb98+FBYW4uDBg9i+fTscHByoVmT4Cs6ePYvffvsNK1asaDFrVV9f\nnyIzhv+CsrIy4uPjherHhoeHw8nJCRUVFRSZkcuWLVsQGxuLO3fuoK6uDoaGhjAzM4OpqSmMjIxo\n1RwoLi4OBw8eRG5uLsLCwqCsrIzg4GCoq6vTKjNFVlYWKSkp6N+/PxQVFREfHw8dHR3weDzY2dnh\n6dOnVCuSwrNnz6Cqqkq1RpuTmJiIjx8/YuzYsXj16hUcHR1x584daGhoIDAwkH+qhw7s378fW7du\nxcuXLwE0Hm/cuHEjnJycKDYjnzdv3iA4OBiBgYF4/PgxJkyYAFdXV9ja2go0OBBVjIyM0KVLF3h5\nebVYrmPw4MEUmf07TCCuA9FZO9t1Nq5fv47Dhw/j4sWLTNc3BoYOQkNDA65du4YjR47g4sWLkJWV\npU2tEBUVFQQFBcHMzAxycnJITk7GgAEDEBwcjNDQUFy+fJlqRdKIioriNzz6Z4ZcQEAARVbkwmaz\nhcZYLJZI7P7+G927d8eTJ0+gpKQERUXFz2ap0mVNtGHDBhw/fhy3b99G7969AQCnTp2Cq6srAgMD\nMX36dIoNyaWurg5JSUmIiYlBdHQ0bt68CTabjaqqKqrVSCE8PBxz5syBg4MDgoODkZGRAS6XC39/\nf1y+fJlW19vevXvj1q1b0NLSgra2NrZv3w5bW1vweDwYGRmhvLycakVS4HK5SEpKQo8ePQTGS0tL\nMXToUOTl5VFkxvCtvHnzBpKSkgKF/unM3r17sWLFCtTU1EBJSQmLFi2Cl5eXSG+ESEtL48GDBwJH\nxUUF0Q+D0gg6pcMyCPLs2TMEBATg2LFjeP/+PaysrBAUFES11n9mz549X/xcNze3NjRhIIvly5e3\nOC4vLw9NTU1MmTKFf6ycjrDZbFhZWcHKyoq/e0gX3r17x697Iicnxw9gGBsbY/HixVSqkYq3tzc2\nbdoEQ0NDWjcxyM/Pp1qhzdi9eze/iPbu3btp+x42x9vbG+/evYOFhQViY2Nx9epVzJ8/H8HBwZg6\ndSrVeqSTl5eHtLQ08Hg8pKamQlZWFqNHj6ZaizS2bNmCAwcOwMnJCSdPnuSPGxkZYcuWLRSakc/I\nkSMRHx8PLS0tWFtbw8PDA2lpaYiIiMDIkSOp1iONp0+ftrjBUV1djcLCQgqMGMiiZ8+eVCu0OcXF\nxTh27BgCAwPx7NkzTJs2jd9kZMeOHbh79y6uX79OteZ/RltbW2Q3zpmMOAaGNqKmpgYRERE4fPgw\nbt++DQsLC1y5cgUPHz6Enp4e1XrfxD+P0Lx58waVlZVQUFAA0LhLKCUlBQ6HQ5udQldXV/z5559C\nnZYqKiqwZMkSkc+2GTNmTIvjpaWlyMnJQa9evXDz5s0OXfSUoWX09fWxd+9emJqawsLCAkOGDMHO\nnTuxZ88e+Pr64sWLF1QrkkKfPn3g6+uLOXPmUK3CwPDVODg4ICkpCYWFhQgJCYGdnR3VSqQye/Zs\nxMTEoLq6GqNHj4apqSnMzMygr69Pq4CrlJQUMjIyoKamBllZWfB4PHC5XOTl5UFbW5s2mX9AY1C1\nvLwc+vr6qKiogIeHB/8o465du0T+OGdTJ257e3scO3YM8vLy/Ln6+npERUXhxo0byMrKokqR4QsZ\nOnQooqKioKioCAMDg89ec5KTk9vRrO2IiIjA0aNHce3aNWhra2P+/PlwdHTk36sBjeVZtLS0hJp4\niRI3b97Eb7/9Bh8fnxbLdXTkhmRMII5iysrK+B+QsrKyzz63I3+QGARZsmQJQkNDoaGhAUdHR8yc\nORM9evSAuLg4eDwetLW1qVYkjZCQEPz11184cuQIBg4cCADIysrCggUL8NNPP9Gm/pSYmBiKiorA\n4XAExt++fYvevXujrq6OIrO2p6ysDA4ODpCVlUVISAjVOgxfye7duyEmJgY3NzdERkbCxsYGBEGg\ntrYWu3btgru7O9WKpNCjRw8kJiaif//+VKuQzoULF2BlZQVxcXH+zWFr0KGzMQBYWFjA0dERU6ZM\nod36p6X3sLa2FsuWLcP48eMF3kO6vJ9sNhtKSkpwdXWFubk5jI2NRfo4VGtwuVwcOnQIFhYWAoG4\noKAgbN++HRkZGVQrMnwhTWUAmo7+N0dcXBxqamrw8/PDpEmTqNBj+Aq8vb2xYsUKSElJwdvb+7PP\n3bBhQztZtS3y8vKYOXMm5s+f32pH30+fPsHX11ekX3Pz72lzRKFcBxOIo5jmN/dsNrvFCL0ofJAY\nBOnSpQtWrVoFLy8vgQwqOgbi+vfvj7CwMKEirg8ePMC0adNE/hhVWVkZCIKAoqIisrOzBdLY6+vr\ncfHiRXh5efELvtKVxMRETJ8+nVYt7DsrT58+5deJo1Nh/1WrVkFGRgbr1q2jWoV02Gw2Xr16xV8r\ntAad1gru7u44ffo0Pnz4gIkTJ8LR0RHW1tYtdiwUNT73HjaHTu/n+/fvERcXh+joaMTExODx48cY\nMmQIv5Pq+PHjqVYkhW3btuH48eMICAjAuHHjcPnyZTx79gzLli3DunXrsGTJEqoVSSMpKQkNDQ0Y\nMWKEwPi9e/cgJiYGQ0NDiszIRV1dHUlJSVBSUqJahYHhi6msrKTlZsc/iYmJ+ey8qalpO5l8PUwg\njmJiYmL43T5E+YPEIEhoaCgCAgKQkJCAiRMnYs6cObCyskK3bt1oF4iTkpJCTEyM0G5LYmIizMzM\nUFlZSZEZObQWIG+CxWLB29sba9eubUer9icvLw+DBw/Gx48fqVZhYGgRd3d3BAUFQV9fH/r6+kIB\nm127dlFkxvBfaWhoQGRkJEJCQnD27FmIiYlh2rRpcHBwYNZEIk5OTg62bNmCEydOoKGhgTYBR4Ig\n4OPjg23btvHXP127doWnpyc2b95MsR25DB8+HKtXr8bkyZMFxiMiIrBjxw7cu3ePIjMGBobmVFVV\nCR0/pVumuSjCBOIY2oV/O0rTHLocwwAai2oHBgYiMDAQlZWVePfuHU6dOoVp06ZRrUYaNjY2KCws\nxOHDhzF06FAAjdlwCxcuhLKy8le99x2RmJgYEAQBc3NzhIeHo3v37vw5CQkJqKqqom/fvhQatg8h\nISHw9fVFSkoK1SoMX0hCQgJKSkoEjs0EBQVhw4YNqKiogL29Pfbu3UubJhyt1TkEGgPmN2/ebEcb\nBrKpqqrCxYsXsXXrVqSlpdEicFNbWwtLS0scOHAAGhoaVOu0KSUlJfxOqdHR0cjIyICCggK/Xhxd\njsg3UVNTg5ycHJSXl0NbW5uWXRllZGSQlpYmVDc4Pz8f+vr6tNq46wwduYHGNW9rr/PQoUMUWX07\n/9aFuzl06chdUVGBVatW4fTp0ygpKRGap8NvaBNxcXE4ePAg8vLycObMGSgrKyM4OBjq6uowNjam\nWq9VmK6pHZDKykoUFBQIRa5F+QiRvb29wON/1ltofnGk04VBXV0d3t7e2LhxI65fv44jR47A0dER\nS5cuxZQpU76q+2hHJSAgAM7OzjA0NORnoNTV1WHChAk4fPgwxXbfTlPWRX5+Pvr16/fFR4pEjdTU\n1BbHP3z4gAcPHsDHx0eka0i0RH19PQIDA1tddIp64GbTpk0wMzPjB+LS0tIwb948uLi4QEtLC7//\n/jv69u2LjRs3UitKErdu3aJaod2oqKhATExMi2sFOnaqfvXqFU6ePInjx48jNTUVw4cPp1qJFMTF\nxVu99tINDocDJSUlmJiYYMGCBTAzMxP5xlWfQ0JCglanH1qia9euePXqlVAgrqioCF260OcWs7N0\n5N66dSvWrVsHAwMD2r3OP/74g2qFdmflypW4desW9u/fjzlz5mDfvn0oLCzEwYMHsX37dqr1SCM8\nPBxz5syBg4MDkpOTUV1dDaDx/sXHxweXL1+m2LB1mIy4DsSbN28wd+5cXLlypcV5ugSoIiMjsWrV\nKvj4+GDUqFEAGjM3mjqejBs3jmLDtuXdu3cICgrC0aNHwePxqNYhjSdPniAzMxMAMGjQIGhqalJs\n1DbQMVAO/P8juC39JCgpKWH58uVYtWoVrRZmv/76KwIDAzFx4sQWF527d++myIwc+vTpg4sXL/Lr\n9KxduxYxMTGIj48HAJw5cwYbNmygRfHw2tpaSEpKIiUlBbq6ulTrtCkPHz6EtbU1KisrUVFRge7d\nu+Pt27e061RdVlaG8PBwhISEIDo6GlwuFw4ODnBwcKBVQ45ly5aha9eutLoxaon09HTo6OhQrdFm\nuLq6ftHz6JQ9NWvWLBQVFeH8+fP8jqKlpaWwt7cHh8PB6dOnKTYkh87Skbtv377w8fGBi4sL1SoM\nJKCiooKgoCCYmZlBTk6OXxs4ODgYoaGhHTpA9TUYGBhg2bJlcHJyEmiQ8/DhQ1hZWeHVq1dUK7YK\nfbYraMDSpUtRWlqKe/fuwczMDGfPnkVxcTG2bNkCPz8/qvVIY+nSpThw4IBAquiECRMgJSWFhQsX\n4vHjxxTatS11dXWQkJDA0qVLsXTpUqp1SEVTU5O2wTeA/oHy1ppqyMnJQVFRsZ1t2oeTJ0/i9OnT\nsLa2plqlTXj//j169erFfxwTEwMrKyv+42HDhuH58+dUqJGOuLg4VFRURP57+CUsW7YMNjY2OHDg\nAOTl5XH37l2Ii4vD0dGRVsf7evXqBUVFRcyYMQPbtm2jTeH3f1JXV4eAgABERkbi+++/h7S0tMA8\nXWob0jkIBwCBgYFQVVWFgYFBixtadGTnzp0YPXo0/3UDQEpKCnr16oXg4GCK7cijpqYGP/zwA9Ua\nbU5VVRVMTEyo1mgX6uvrcfbsWf49p7a2Nuzs7GiVyfnu3TtwuVwAjWv5piO3xsbGWLx4MZVqpJKV\nlYXRo0cLjcvLy6O0tJQCoy+HPp82GnDz5k2cP38ehoaGYLPZUFVVxbhx4yAnJ4dt27Zh4sSJVCuS\nQm5uLhQUFITG5eXl8fTp0/YXagMuXryIkpISgV2lrVu3YvPmzairq4O5uTlOnTpFmwDHixcvcOHC\nhRYzxehyE0H3QLmqqirVCu2OhIQEBgwYQLVGm9GrVy/+keqamhokJyfD29ubP//x40dadKBsYu3a\ntVizZg2Cg4MFajnSjZSUFBw8eBBsNhtiYmKorq4Gl8uFr68vnJ2dMWXKFKoVSeHChQsYO3YsbcsB\nNPHo0SN+fdUnT54IzIl6BrKBgcEXv4bk5OQ2tmlbFi9ejNDQUOTn52Pu3LlwdHSk9XUIAJSVlZGa\nmooTJ06Ax+NBUlISc+fOxaxZs2j12zJ//nyEhITQsiN3c1xdXXHq1CmsWbOGapU2JT09Hba2tnj1\n6hUGDhwIANixYwd69uyJixcv0iarnsvlIj8/HyoqKhg0aBBOnz6N4cOH4+LFiy3eh4sqvXv3Rk5O\nDtTU1ATG4+Pj+YHIjgoTiOtAVFRUgMPhAGgsKvnmzRtoampCT09P5BcozRk2bBiWL1+O4OBgfrZG\ncXExVqxYQZu6L7t27RJoyHDnzh2sX78emzZtgpaWFtauXYvNmzfTIkgVFRUFW1tbcLlcZGZmQldX\nF0+fPgVBEPybCzrQWQLlnQkPDw/8+eef8Pf3F/kb3pawtraGl5cXduzYgXPnzkFKSkpgtzs1NZVW\nR/z8/f2Rk5ODvn37QlVVVSiziC6/o+Li4vzgFIfDQUFBAbS0tCAvL0+bDEcAtC9T0QSdaxs2rw9c\nVVWFv/76C9ra2vyyJHfv3kV6ejp+/vlnqhRJY9++fdi1axciIiIQEBCA1atXY+LEiZg3bx7Gjx9P\ny98YAJCWlsbChQup1mhTqqqqcOjQIURGRtK6I3dDQwN+//13REVFtfg6fX19KTIjl/nz50NHRwf3\n79/nJ0S8f/8eLi4uWLhwIe7cuUOxITnMnTsXPB4Ppqam8PLygo2NDfz9/VFbW0ubzywALFiwAO7u\n7ggICACLxcLLly+RkJAAT0/PDh88ZwJxHYiBAwciKysLampqGDx4MA4ePAg1NTUcOHAAffr0oVqP\nNAICAjB58mSoqKigX79+AIDnz59DQ0MD586do9iOHNLT0wUucmFhYRg3bhzWrl0LAOjWrRvc3d1p\ncSFcvXo1PD094e3tDVlZWYSHh4PD4cDBwQGWlpZU65FGZwmUdybi4+Nx69YtXLlyBTo6OkKLzoiI\nCIrMyGHz5s2YMmUKTE1NISMjg2PHjkFCQoI/HxAQgPHjx1NoSC7/bApEVwwMDJCUlAQNDQ2Ymppi\n/fr1ePv2LYKDg0V+J3/o0KGIioqCoqLiv2ZTMdfdjk/zBj/z58+Hm5sbNm/eLPQcugSQu3btilmz\nZmHWrFl49uwZAgMD8fPPP6Ourg7p6em06Jx64cIFWFlZQVxcHBcuXPjsc21tbdvJqm1JTU3FkCFD\nADRmsDaHTgHWpKQk6OrqoqamBvfv3xeYo9PrTElJEQjCAY3r+q1bt2LYsGEUmpHLsmXL+H9bWFgg\nMzMTDx48wIABA0S+rnVzvLy80NDQgLFjx6KyshKjR49G165d4enpiSVLllCt91mYQFwHwt3dHUVF\nRQAaFyaWlpY4ceIEJCQkEBgYSK0ciQwYMACpqam4ceMGv7i/lpYWLCwsaHOh//jxI3r06MF/HB8f\nj+nTp/Mf6+jo4OXLl1Sokc7jx48RGhoKAOjSpQs+ffoEGRkZbNq0CXZ2drSpQ9BZAuWdCQUFBUye\nPJlqjTZDSUkJsbGx+PDhA2RkZCAmJiYwf+bMGVrcGDZBt66+reHj44OPHz8CaCx54OTkhMWLF0ND\nQ0PkC8Hb2dmha9euADpPYBUA7t+/j9OnT7dY3kHUNwSaOHPmjNDNPQA4OjrC0NBQ5D+7/6R5AyQ6\n1a60t7fHq1evwOFwPvsdZbFYtHnddM5abU5cXBzVCu2CpqYmiouLhepWvn79mlblSqqqqtCtWzf+\nY1VVVVqWoWGxWFi7di1WrFiBnJwclJeXQ1tbWyTWt0wgrgPh6OjI//v777/Hs2fPkJmZCRUVFSgp\nKVFoRj4sFgvjx4+nVTZGc5SVlfH48WOoqKigvLwcPB5PoANjSUkJpKSkKDQkD2lpaf6NQ58+fZCb\nm8v/cXv79i2VaqTSWQLlnYmjR49SrdAuNHWz+yd0rV/04MEDfgFmHR0dfhFxOkAQBDgcDj/zjcPh\n4OrVqxRbkUfzYGpnCayePHkSTk5OmDBhAq5fv47x48fjyZMnKC4uptVGgaSkJG7fvg0NDQ2B8du3\nbwvcLIoy1dXV/KOp8fHxmDRpEvz9/WFpaUmbWocNDQ0t/s3A0JEpKyvj/71t2za4ublh48aNGDly\nJIDGY/KbNm3Cjh07qFIkHQUFBQwfPhympqYwMzPDDz/8AElJSaq12gwJCQloa2tTrfFVMIG4DkJt\nbS0GDRqEv//+G1paWgAAKSkpWtXYak5UVBSioqLw+vVroR9yOuyKTp8+HUuXLsWaNWtw+fJl9O7d\nm3+xBxp3v5sKhIo6I0eORHx8PLS0tGBtbQ0PDw+kpaUhIiJC4DWLOp0lUM7lcpGUlCSQ0QkApaWl\nGDp0KPLy8igyazvevHmDrKwsAI2Zjz179qTYiOG/8Pr1a8ycORPR0dH8QsSlpaUYM2YMTp48SYv3\nlSAIDBgwAOnp6UIBDbrw/v17HD9+HM7OzpCTkxOY+/DhA4KCguDo6EibZkc+Pj7YvXs3fvnlF8jK\nyuLPP/+Euro6fvrpJ1plWy9duhSLFy9GcnIyvx7wvXv3EBAQ0OHr+HwJP//8M06ePIl+/frB1dUV\noaGhtFobdGbGjBnz2RM7N2/ebEcbcvnxxx9x+PBhyMnJ4ccff/zsc0+fPt1OVuSjoKAg8B4SBIEf\nf/yRP9bU6djGxoY2mZyRkZGIjY1FdHQ0du/ejbq6OhgaGvIDc3Spw1pVVYW9e/fi1q1bLcYVOnIZ\nCyYQ10EQFxdHVVUV1Rrtgre3NzZt2gRDQ0P06dOHNsdRm7N+/XoUFhbCzc0NvXv3xvHjxwWOhYWG\nhsLGxoZCQ/LYtWsXysvLATS+t+Xl5Th16hQ0NDRoUQOvNegaKH/69GmLi5Dq6moUFhZSYNR2VFRU\nYMmSJQgKCuL/cIuJicHJyQl79+6lTdZqZ2HJkiX4+PEj0tPT+RtaGRkZcHZ2hpubG/8IvSjDZrOh\noaGBkpIS2gbi/P39kZqa2mJtF3l5ecTFxaGoqAg+Pj4U2JFPbm4uv9mPhIQEKioqwGKxsGzZMpib\nmwt0OhZlvLy8wOVy8eeff+L48eMAGsuSHD169F8DAKLAgQMHoKKiAi6Xi5iYGMTExLT4PFE/arxn\nz54vfq6bm1sbmrQfTfXhmqitrUVKSgoePXoEZ2dniqzIoWvXrvz7sKayAHSksxwvbo6xsTGMjY2x\nZs0a1NXVISkpCQcPHoSvry+2b99Om4DjvHnzcP36dUybNg3Dhw8XqbgCi2gKATNQjo+PD548eYLD\nhw+jSxf6xkj79OkDX19fzJkzh2oVBgaG/0dT0WV7e3scO3ZM4DhjfX09oqKicOPGDX7mGB346aef\nEBkZCX9/fxgZGQForOfo5uaGcePGYf/+/RQbMnwN8vLyiIyMFCq2nJiYiPHjx6O0tJQiM3K5ePEi\nfH19sX//fpFvztASQ4YMgZ+fH8aOHdvifFRUFDw8PJCSktLOZm3Dd999hytXrkBPTw/6+vpYvXo1\nZs2ahYSEBFhaWuLDhw9UKzJ8AS4uLl90AyjqJRHU1dUFHr958waVlZUCWchSUlLgcDi0zKBvzsaN\nG1FeXo6dO3dSrcLA0CJPnjxBdHQ0/191dTVGjx4NMzMzuLu7U61HCvLy8rh8+TJ/HS9KMIG4DsTk\nyZMRFRUFGRkZ6OnpQVpaWmBe1HfRmujRowcSExPRv39/qlUYSGD+/PlwdHSEmZkZ1SoM30BT/Zqm\n4tLNERcXh5qaGvz8/DBp0iQq9NoEJSUlhIWFCX12b926hR9//BFv3ryhRoxkYmNj8cMPPwht8NTV\n1eHOnTsYPXo0RWbkIisri7i4OKHshYcPH8LU1FSgRowoo6ioiMrKStTV1UFCQkKo5su7d+8oMiMH\nWVlZpKenQ0VFpcX5goIC6Orq0ub9nD17NgwNDbF8+XJs3rwZe/fuhZ2dP4ULawAAIABJREFUHW7c\nuIGhQ4fSZu0HNAZpwsLCkJeXB09PT3Tv3h3Jycno1asXlJWVqdZj+EpCQkLw119/4ciRI/xyK1lZ\nWViwYAF++uknODg4UGzYtuTk5GD48OEif83tbMTGxn52ni5rImVlZXz69AlmZmYwMzODqakp9PX1\nRSpj7EvQ1tbGyZMnRbITLH3TrkQQBQUFTJ06lWqNNmf+/PkICQmhRU0QhsbdUEtLS/Ts2RMzZ86E\no6MjBg8eTLUWw1fSdDRTXV0dSUlJnaK2TWVlJXr16iU0zuFwUFlZSYFR2zBmzBgUFRWBw+EIjH/4\n8AFjxoyhzfEEc3NzuLu7IzQ0FH379gUAFBYWYtmyZa1mV4kiu3fvpt1CujliYmJ4+fJlq4G4ly9f\n0qbwPdB4FLepNMnatWshLi6OO3fuYOrUqfjtt98otiOP1NRUWFhYQF5eHk+fPsX8+fPRvXt3RERE\noKCgAEFBQVQrMnwl69atQ1hYmEDN44EDB2L37t2YNm0a7QNxCQkJIt9oZNiwYV/8e5KYmNjGNu1D\nS4kDzf8P6LIm6tmzJzIzM/Hq1Su8evUKxcXF+PTpE+3Krvj5+WHVqlU4cOCAyHWFZQJxHQhRT1f/\nUqqqqnDo0CFERkZCX18f4uLiAvN0ritGR86fP4/379/jzJkzCAkJwa5duzBo0CA4ODhg9uzZUFNT\no1qR4SvIz8+nWqHdGDVqFDZs2ICgoCD+YvrTp0/w9vbGqFGjKLYjD4IgWlxol5SUCGVeizL+/v6w\ntbWFmpoa+vXrBwB4/vw5dHV1+TWp6ICLiwvVCm2KgYEBzp0712qzn7Nnz9KqE27z7sVsNhteXl4U\n2rQdy5cvh4uLC3x9fSErK8sft7a2xuzZsyk0Y/ivFBUVoa6uTmi8vr4excXFFBi1DVOmTBF4TBAE\nioqKcP/+fZFPKrC0tKRaod15//69wOPa2lo8fPgQ69atw9atWymyIp+UlBSUlpYiNjYWMTExWLNm\nDTIyMjBkyBCMGTOGNq/V0NAQVVVV4HK5kJKSEoordOSMVeZoagfC3NwcERER/DoLTZSVlcHe3l6k\nu/I0Z8yYMa3OsVgs2rzOzsqLFy8QGhqKgIAAZGdnt7hIE1VKS0uRmJjYYlceJycniqzIp6KiAjEx\nMSgoKEBNTY3AHF2KLwPAo0ePMGHCBFRXV/OzOHk8Hrp164Zr165BR0eHYsNvo+nm4fz58/g/9u48\nnMq8/wP4+xxbEScS0oKTbFFp38aWooWKSiEqpKakQtMzTzMTmalpCklNG6FSGdWoniaUUEqFsrQd\nuzYUkWix3L8/XM6v06EyHe5zbvfruroevvf54+1hzrnv7/L5WFpa8hRibmpqQnZ2NrS1tXHx4kWy\nIgocQRC4dOkSHj58CKClGLy5uTnJqQRLTEyszR2OlZWVUFJSEvnV/FOnTmHhwoUIDAzEypUruY2O\nmpqasHfvXnh5eSEqKgrz5s0jOem3aW5uxo4dOxAbG4sPHz5gypQp+OWXX/iOGlMFi8VCZmYmBg8e\nDFlZWWRlZYHNZqOkpATa2trdpmEZlVhZWeHp06c4dOgQt3lVRkYGli9fjv79+3Nrz4q6pUuX8nzP\nZDLRt29fmJmZYdq0aSSl6lrtLehRSXJyMtavX4+MjAyyowhcZWUlkpKSEBsbi+PHj6O5uVnk7xVa\nmZubo7S0FC4uLlBWVub7OxXmhir0jjghkpSUxPfQC7TsILt69SoJiTpHd+hc4+TkhNmzZ8PCwgK9\nevUiO06XaWhoQHp6Om7evIni4uI2j/2JqnPnzsHBwQFv3ryBnJwczxs9g8GgzETcnTt3MGPGDNTX\n16Ourg4KCgp4+fIlt/gylSbi9PX1kZeXh2PHjnEnbhYtWgQHBwdKPAy3NtwgCAKysrI8P5OkpCTG\njx8PNzc3suIJhIKCAjgcDhQVFbFs2TLs2rULU6dOxdSpU8mO1mnaWz99//49JCUluziN4Nna2mLD\nhg1Ys2YN/vvf/4LNZgMACgsL8ebNG/j4+Ij8JBwA/Prrr/D19YW5uTl69OiBXbt2oaKiAmFhYWRH\n6xRSUlJt1vXjcDjo27cvCYlo3yosLAzOzs4YPXo0dxdKY2MjLCwscOjQIZLTCU53ObEUGBiIdevW\n8Y03NzfDycmJUjvL26KsrEyphmSnT5/mNmm4f/8+FBQUMHnyZOzcuRPGxsZkxxOY69ev48aNGyJZ\nFoneEScEsrOzAbR0CktMTOQ5ptDU1ISLFy9i//79KC4uJikhraP8/PwQGxuL+/fvw8TEBNbW1rC2\ntqZsMeIrV64gKioKp06dQnNzM2xsbODg4AAzMzPKrKBpaWlhxowZ+O233yhXX+FjJiYm0NLSwr59\n+8BisZCVlQUJCQk4OjrC09OT74gGTfj5+vrC29ubUsdQW/Xq1QvZ2dlgs9kQExNDWVkZZR/qg4OD\nAQDr1q3Dli1beBZ5mpqakJKSguLiYty5c4esiAJ169YtHDt2DPn5+SAIAlpaWrC3t8fYsWPJjiYQ\nQ4YMgY+PD5YvXw4AuHTpEmbOnIm3b99SqgZeK1dXV1RWViI6OhoKCgrIzs6GmJgY5syZAyMjIwQF\nBZEdkfYvcTgc7mKWjo4OtLS0SE7UOTIyMvDgwQMAwNChQyl1RB5oqSn2xx9/8JQ/aG5uhr29Pe7c\nuUOZSarW5+5WrUeNt23bhsbGRly7do2kZIKlpKTE7ZBqbGwMAwMDsiN1ipEjR2Lv3r3tlrMQZvRE\nnBBgMpncyYq2fh09e/bE7t27sWzZsq6O1mnS09MRHR3d5tE3KnUIe/LkCc6ePYvY2FgkJydj6NCh\nmD17Nqytrfk6+4mq/v37o6qqCpaWlnBwcICVlRXPETiqkJGRQU5ODnd3BlX17t0bN2/ehLa2Nnr3\n7o0bN25AV1cXN2/ehLOzM/dmm0YTBlOnTkV5eTlGjRqFiIgI2NnZtbubUdR3GmloaAAASkpKMGDA\nAO6RTaBlh6O6ujr8/Pwwbtw4siLSOkBKSgr5+fnceoYA0KNHD+Tn52PAgAEkJuscNTU1mDdvHtLT\n01FbWwtVVVWUlZVhwoQJuHDhAiUXCrqLDx8+oKioCIMHD+brzk0FFRUVWLhwIZKSkrjlg6qrq2Fq\naooTJ05QZvEnLS0NlpaWOHz4MObOnYvGxkYsWrQIOTk5SExM5DZBEnWtz92fPnOPHz8eYWFh0NHR\nISkZ7d+Ij4+Hr68vfv31VxgYGPDViJOTkyMp2ZdR791SBBUVFYEgCLDZbNy6dYvnDV1SUhJKSko8\nN9yi7sSJE3BycoKFhQXi4+Mxbdo0cDgclJeXY+7cuWTHE6gBAwbg+++/x/fff4/a2lr8888/iI2N\nhZmZGWRlZWFlZYWVK1eKdC2qzZs3Y/78+Xy1DanGwsIC6enplJ+Ik5CQ4O7GUFJSQmlpKXR1dcFi\nsfD48WOS09H+rZiYmHYXPzIzM0lK9e2OHj2KwMBAFBQUgMFgoKamhrK1plobqZiamuL06dOQl5cn\nORHtWzQ2NvJ1XJSQkEBDQwNJiToXi8VCQkICUlNTkZWVhTdv3mDkyJGUq+HYndTX18PDwwMREREA\nWnbGsdlseHh4oH///pRpPOLh4YHa2lrcu3cPurq6AID79+/D2dkZa9aswfHjx0lOKBjjx4/HX3/9\nhXnz5kFSUhKhoaF48OABkpKSoKKiQnY8gfm0KVlrzT9R74ALoM3j/+0R5gmqjmhtODJlyhSe8da6\nhsJcC4/eEUfrcsOGDYO7uztWrVrFLdiroaEBd3d39OvXD76+vmRH7HRNTU1ISkrC2bNnYWBgAFdX\nV7Ij0b4gNDQUfn5+WLp0aZsrLtbW1iQlE6xp06ZhyZIlsLe3h5ubG7Kzs7FmzRocOXIEr169ws2b\nN8mOSOug4OBg/Pe//8WSJUtw4MABLF26FAUFBbh9+zZWrVpFmc5ZGhoaSE9PR58+fciOQqN9EZPJ\nxPTp03l2kJ87dw5mZmY8u8OodEqgPU+fPqVs6Q4q8/T0RGpqKoKCgmBpacktExAbG4vNmzdT5pg8\ni8XCpUuXMGbMGJ7xW7duYdq0aaiuriYpWedobZijra2NxMREvsZAoowgCOTn5+PDhw/Q1tam3A7O\nj0/ZfYkwT1B1RHJy8mevC3M9PHoijmQd6ShElQd9GRkZ3Lt3D+rq6ujTpw+SkpJgYGCABw8ewMzM\nDM+fPyc7Iu0LOlInjCoPEZ+r2SPsKy4d0XpsyNTUFBUVFXBycsL169cxZMgQhIWFiWQx1O5OR0cH\nv/zyCxYtWsTTrfDnn39GVVUVQkJCyI5I+4L169d/9WsDAgI6MQlNUD7txNgeKheKLysrw6+//orQ\n0FDU19eTHYfWQWpqajh58iTGjx/P89mSn5+PkSNHdmh3jjCTlZXF1atX+UrK3LlzB8bGxiL9cy5Y\nsKDN8dTUVGhpafGc0oqOju6qWJ2iqKgI1tbWuH//PoCWU0unTp3C6NGjSU4mOB9PShUXF2Pjxo1Y\nsmQJJkyYAAC4ceMGIiIisHXrVqHuJtpdUGsaWATNmTPnq15HpQd9eXl51NbWAmipL5abmwsDAwNU\nV1fTN2IiorUbY3fS3NxMdoQu8fENiZKSEi5evEhims5XXV2NmJgYFBQUwMfHBwoKCsjMzISysjJl\ndmiUlpZi4sSJAFpqjra+/y5evBjjx48X6Ym44OBgLF++HD169OA2M2iPKHf8/dqdJVRpjtMdUHmC\n7WOvXr3C999/j4SEBEhKSmLjxo1YvXo1Nm/ejB07dmDYsGHd5v8Lqnnx4kWbu6Xq6uoo9V5kZmYG\nT09PHD9+nFsn7enTp1i3bh3fcThR015NZzMzsy5O0vl8fHzQ2NiIY8eOQUpKCjt27IC7uzsyMjLI\njiYwH+/+8vPzQ0BAABYtWsQds7a2hoGBAQ4cOECpibjq6mrcunULFRUVfM9rTk5OJKX6MnpHHK3L\n2dvbY/To0Vi/fj22bNmC3bt3Y/bs2UhISMDIkSMps4OKRqMJt+zsbJibm4PFYqG4uBiPHj0Cm83G\npk2bUFpaisjISLIjCgSbzcapU6dgaGiI0aNHw83NDe7u7oiPj8fChQtRVVVFdsR/7ePjqK3NDNrC\nYDBQWFjYhclo3+qXX37BsmXLoKamRnYU2jdwd3fHxYsXsWDBAly8eBH379+HhYUFmEwmNm3aJJKd\n7mgtjIyMMH/+fHh4eEBWVhbZ2dnQ0NCAh4cH8vLyKLOQ9/jxY1hbW+PevXvc5iqPHz+Gvr4+zp49\nS8nmKlSkoqKCmJgYTJ48GQDw/PlzDBgwAK9fv6ZksxhpaWlkZWVhyJAhPOMcDgcjRoygzOaXc+fO\nwcHBAW/evIGcnBzPIgCDwRDqe1x6Io7W5aqqqvDu3TuoqqqiubkZ27dv5x5927RpE12Amia0kpOT\nsWPHDm77ej09Pfj4+OC7774jORnt3zA3N8fIkSOxfft2nmM1169fh729PYqLi8mOKBCurq4YOHAg\nfvnlF+zZswc+Pj6YNGkS0tPTYWNjg9DQULIj0mh8RowYgdzcXBgbG8PFxQW2traU7MhNdYMGDUJ4\neDjMzMxQXFwMNpuNjRs34rfffiM7Gu0bXbt2DdOnT4ejoyPCw8Ph7u6O+/fv4/r160hOTsaoUaPI\njigwBEHg0qVL3M7xurq6dKMREcNkMvH8+XMoKytzx3r16oWcnJzPLuSJKm1tbcyePRvbt2/nGd+w\nYQNiY2Px6NEjkpIJlpaWFmbMmIHffvsN0tLSZMfpEHoiTsjU1dUhOTm5zc52onyshkZtVO3I+LGj\nR49i6dKlsLGxwaRJkwC01NA4c+YMwsPDYW9vT3JCWkexWCxkZmZi8ODBPBNxJSUl0NbWpkz3zebm\nZjQ3N3OLEp84cYK7+OHu7g5JSUmSE9I6Kj09vd33XCrtKr9z5w4OHz6M48ePo7GxEQsXLsSyZcv4\niqbThJe4uDgeP36Mfv36AWjZpZGeng49PT2Sk9EEoaCgANu2bePphPvDDz/AwMCA7Gi0Dnrx4gU2\nbNiAy5cvt3nE79PPGlEjJiYGDofDU/duwIABuHbtGtTV1bljVOkmeuHCBdja2kJTUxPjxo0D0NJg\nJC8vD6dOncKMGTNITigYMjIyyMnJAZvNJjtKh9ETcULkzp07mDFjBurr61FXVwcFBQW8fPkS0tLS\nUFJSoo/ViKjLly+3+6EWFhZGUirB6S4dGXV1dbF8+XKsW7eOZzwgIAAHDx7k7pKjiQ4lJSXExcXB\n0NCQZyIuISEBy5Ytw+PHj8mOSPuC7tjE4MSJE3BycoKFhQXi4+Mxbdo0cDgclJeXY+7cuZSst9XQ\n0IBz587h8OHDiIuLg46ODlxcXLBkyZJuWbNUlIiJiaGsrIz78PvxEUYaTZglJiZi9erVSEtL45uc\nqampwcSJExEQEAALCwuSEgrWzJkzUVBQgFWrVqFfv358df5sbW1JSiYYbXUUJQiCO9b6NVVqsgPA\nkydP8Oeff3KfUXR1dbFixQruEWsqsLGxwcKFC9ttPCLM6Ik4IWJiYgItLS3s27cPLBYLWVlZkJCQ\ngKOjIzw9PTvUqZImHHx9feHn54fRo0e3+aF25swZkpIJTnfpyCglJYV79+5BU1OTZzw/Px/6+vqU\n2D3V0NAAS0tL7Nu3j6+mBBW5urqisrIS0dHRUFBQQHZ2NsTExDBnzhwYGRkhKCiI7Ii0LzA1Nf2q\n1zEYDCQmJnZymq4xbNgwuLu7Y9WqVdz3XA0NDbi7u6Nfv37w9fUlO6LAffjwAWfOnEFYWBgSExMx\nceJEPHv2DOXl5Th48CDs7OzIjkhrB5PJhL6+PndHbnZ2NnR0dPh24lJl9zyNOqytrWFqasq3ANsq\nODgY8fHxOH/+fBcn6xyysrJISUmBoaEh2VE6xccdRT/n44YHNOEXGhoKPz8/LF26FAYGBpCQkOC5\nbm1tTVKyL6Mn4oRI7969cfPmTWhra6N37964ceMGdHV1cfPmTTg7O3PrEtBER79+/bB9+3YsXryY\n7CidRlpaGg8ePICamhqUlJSQkJCA4cOHIy8vD+PHj0dlZSXZEQVCU1MTPj4+cHd35xnft28fdu7c\niby8PJKSCVbfvn25xxaprqamBvPmzUN6ejpqa2uhqqqKsrIyTJgwARcuXKBk8V6a6JORkcG9e/eg\nrq6OPn36ICkpCQYGBnjw4AHMzMzw/PlzsiMKTEZGBvdoqpSUFJycnODq6spdENm9ezf8/f1RXl5O\nclJae752YviXX37p5CQ0QRETE/uq14n6ziI1NTVcvHgRurq6bV5/+PAhpk2bhtLS0i5O1jl0dXVx\n/PhxjBgxguwoNAGqr69vs4zFsGHDSEokWEwms91rwr7DUZzsALT/JyEhwf1jUlJSQmlpKXR1dcFi\nsegjUiLqw4cPmDhxItkxOpWKigqqqqqgpqaGQYMGIS0tDcOHD0dRURGoNM/v5eWFNWvW4O7du9zf\naWpqKsLDw7Fr1y6S0wmOo6MjQkNDsW3bNrKjdDoWi4WEhARcu3YN2dnZ3Po2dAFmmjCTl5dHbW0t\nAKB///7Izc2FgYEBqqurKdMFDQAMDAy4D7qhoaGwsrLimwBYtGgRPD09SUpI+xr0BBv1EAQBNTU1\nODs7U3b3FACUl5fz7a75mLi4OF68eNGFiTpXYGAg/vOf/+DgwYN0J1gKePHiBZYuXYp//vmnzevC\nPEHVEZ+WfRIl9EScEDE0NMTt27cxZMgQGBsb4+eff8bLly9x5MgR6Ovrkx1PYA4fPgw7OzuR62zy\nb7i6uiIqKgo//fQT2VE6jZmZGc6ePQtDQ0MsXboU69atQ0xMDLcjI1WsXLkSKioq2LlzJ6KjowG0\nrB6ePHkSs2fPJjmd4DQ2NiIsLAyXLl3CqFGj+HaFUaXO1scmT57MbWdPE23doYmBkZEREhISYGBg\ngPnz58PT0xOJiYlISEjAlClTyI4nMAsWLMCyZcvQv3//dl+jqKgo0jfhNJoounXrFkJDQ7Fr1y5o\naGhg2bJlcHBwgLy8PNnRBKp1oePTkiStsrOzuU1IqGDx4sWora2Fmpoa5OTk+CYhKyoqSEpG+zfW\nrl2L6upq3Lx5EyYmJjhz5gzKy8vh7++PnTt3kh1PIES9pA59NFWItB6PMjU1RUVFBZycnLhHxMLC\nwjB8+HCyIwqEsrIy3r59i/nz58PFxYXSO8Y8PT0RGRmJYcOGYdiwYXwfalSY1KA7MlLL52puUanO\nVqvLly8jMDCQp5Dt2rVr6V1xIqi7NDGoqqrCu3fvoKqqiubmZmzfvp37nrtp0ybKPAz7+fnB29ub\nb9Hu7du3+OOPP/Dzzz+TlIxGowHAu3fvEBMTg8OHDyMtLQ1WVlZwcXHB1KlTyY4mEB4eHkhKSsLt\n27fRo0cPnmtv377F2LFjYWpqiuDgYJISClZoaOhnr7u4uHRREpog9OvXD7GxsRg7dizk5OSQnp4O\nLS0tnD17Ftu3b8e1a9fIjigQolxSh56Io3W5xsZGnDt3DuHh4fjnn3/AZrOxdOlSODs7Q0VFhex4\nAtXdJjWojM1m4/bt2+jTpw/PeHV1NUaOHEl3NRZBe/fuhaenJ+bNm4cJEyYAANLS0hATE4PAwECs\nWrWK5ISCUV5eDm9vb2735k8/9qlyPKE7NjGgMjExMTx//hxKSko845WVlVBSUqLM3y2NRgVFRUVw\ncXFBcnIyXrx4AQUFBbIjfbPy8nKMHDkSYmJiWL16NbS1tQG01Ibbs2cPmpqakJmZCWVlZZKT0mj8\n5OTkkJ2dDXV1daipqSEqKgqTJk1CUVERhg4dSplSFuvWrYOUlJRIltShJ+KEwNu3b5GQkABTU1PI\nysryXHv9+jWSkpIwbdo0vtUYKigvL8fRo0cRERGBhw8fwtLSEi4uLrCysvps8UUa+V6+fIm6ujqo\nqalxx+7du4cdO3agrq4Oc+bMgb29PYkJBYvJZKKsrIzvobC8vByDBg3C+/fvSUrWOfLz81FQUAAj\nIyP07NmTp8U7VQwYMAAbN27E6tWrecb37NmD3377DU+fPiUpmWBNnz4dpaWlWL16dZvdm6lytJrq\nTQyePXuGgIAA/Pzzz5CTk+O5VlNTA39/f6xdu/azRzlFCZPJRHl5Ofr27csznpiYCDs7O0rVZqLR\nRNWTJ08QHh6O8PBw1NfXw8nJCf7+/txTEqKupKQEK1euRFxcHHcRi8FgwMLCAnv27IGGhgbJCTtH\nQ0MDGhoaeMaoUlKou5RIGjNmDPz9/WFhYQFra2v07t0bW7duRXBwMGJiYlBQUEB2RIHw8PBAZGQk\nhgwZInIldajxLiniDhw4gLNnz7bZXldOTg7BwcF48OABfvjhBxLSdS5lZWVMnjwZHA4HHA4HOTk5\ncHZ2hry8PA4fPgwTExOyIwoEFSc1PDw8oKqqyq0zUFFRge+++w6qqqoYPHgwlixZgqamJpHvGHv2\n7Fnu13FxcWCxWNzvm5qacPnyZairq5OQrHNUVlZiwYIFuHLlChgMBvLy8sBms+Hi4gJ5eXnK1JUA\nWnYzWlpa8o1PmzaNUu+3165dw9WrVynfCY3qTQwCAgLw+vVrvkk4oKXxSG1tLbZu3YqQkBAS0gmO\nvLw8GAwGGAwGtLS0eD4rm5qa8ObNG6xYsYLEhDRa9/bhwwecOXMGoaGhuHr1KqZPn46goCBMnz79\nqzuqigo1NTVcuHABr169Qn5+PgiCwJAhQyhTAuBj9fX1+PHHHxEdHd1mJ2qq7ELeuHEjPD09KV8i\nydPTk7sA+csvv8DS0hLHjh2DpKQkwsPDyQ0nQLm5uRg5ciQAgMPh8FwT9mdteiJOCBw7duyzxfzX\nrl0LPz8/Sj0YlpeX48iRIzh8+DAKCwsxZ84cnD9/Hubm5qirq4Ofnx+cnZ1RUlJCdtRvQuVJjbS0\nNJ438sjISCgoKODu3bsQFxfHjh07sGfPHpGfiJszZw6AljdzZ2dnnmsSEhJQV1cX6d/jp9atWwcJ\nCQlu1+ZWdnZ2WL9+PaV+Vmtra5w5cwY+Pj4847GxsZg1axZJqQRv4MCBlOpg3B6qNzG4ePEi9u3b\n1+51JycnuLm5dWGizhEUFASCILBs2TL4+vryLH5ISkpCXV2de5ScJlouX77MPSL/aZONsLAwklLR\nOqpfv36QlZWFs7Mz9u7dyz0pUFdXx/O6thYNRJW8vDzGjBlDdoxO9cMPPyAhIQGBgYFYunQpgoOD\n8eTJExw8eFAkj/215+nTp9wSSSYmJpQtkeTo6Mj9etSoUSgpKcHDhw8xaNAgKCoqkphMsK5cuUJ2\nhH+NPpoqBOTl5ZGVlYVBgwa1eb20tBTDhw/Hq1evujhZ57CyskJcXBy0tLTg6uoKJycnvloSFRUV\nUFFREfluaE5OTqioqMChQ4egq6uLrKwssNlsxMXFYf369bh37x7ZEf+1nj174uHDh9yjqTNmzIC+\nvj62b98OoGVVYsKECaisrCQzpsBoaGjg9u3blPrwaouKigri4uIwfPhwbp0tNpuNwsJCDBs2DG/e\nvCE74jf5uKjy69evsWPHDkyaNImnRlxqaiq8vLywadMmsmIKVHx8PHbu3In9+/dTavfmp6jexEBG\nRgYPHjz47L2Crq4u38OwqEpOTsbEiRP5mhzRRJOvry/8/PwwevToNo/InzlzhqRktI76uHRMWztO\nWk99UGUHVXcxaNAgREREcEsl3blzB5qamoiIiMBff/2F8+fPkx1R4LpLiaSPj1VTlSiePqN3xAmB\nxsZGvHjxot2b6xcvXqCxsbGLU3UeJSUlJCcnf3ZFu2/fvigqKurCVJ0jPj4ecXFxGDBgAM/4kCFD\nRH63n5ycHKqrq7kTcbdu3eLpqMRgMChVN40Kf49fo66urs26GVVVVZCSkiIhkWAFBgbyfC8vL4/7\n9+/j/v373LHevXsjLCxMpCfiWo/3taqrq8PgwYMhLS3NN7FRVVWQo9w0AAAgAElEQVTV1fE6xccL\nOkwmExs3biQxjeD17NkTxcXF7d4rFBcXo2fPnl2cqvMYGxujubkZHA6nzR1URkZGJCWj/Rv79u1D\neHi4yO+Sp4n2DhRa+yorKzF48GAALff4rRtAjIyMKNO86lNUL5EUGRmJP/74A3l5eQAALS0t+Pj4\nUOp9WJRPn9ETcUJg6NChuHTpEkaNGtXm9fj4eAwdOrSLU3UeY2Nj7lnuj3348AEnTpyAk5MTGAwG\nTxMAUUXlSY3x48cjODgYBw8exOnTp1FbWwszMzPudQ6Hg4EDB5KYULDaa0/PYDDQo0cPaGpqwsjI\nSOTro3z33XeIjIzEli1bALT8fK27iz7XBVhUdJcJ1aCgILIjdJnu0sRg3LhxOHLkSLsTUJGRkRg7\ndmwXp+o8aWlpsLe3R0lJCd/Ranq3jej58OEDZWsxdTfGxsZkR6B1AjabjZKSEgwaNAg6Ojr466+/\nMGbMGFy4cIGnRAAVdIcSSQEBAfjpp5+wevVqTJo0CUBLzeAVK1bg5cuXWLduHckJBUOkS+oQNNLt\n37+fkJGRIc6dO8d37ezZs4SMjAyxf/9+EpJ1DiaTSZSXl/ONv3z5kmAymSQk6jzTp08nNm3aRBAE\nQfTq1YsoLCwkmpqaiPnz5xO2trYkp/s2WVlZhKKiIiEpKUkwmUzuz9nK0dGRcHd3Jymd4KmrqxMy\nMjIEg8EgFBQUCAUFBYLBYBAyMjKEsrIywWAwiMGDBxOlpaVkR/0mOTk5hJKSEmFpaUlISkoS8+bN\nI3R1dQllZWUiPz+f7Hidprm5mWhubiY7Bu1f8PLyItzc3Nq97u7uTqxataoLE3WOxMREQkxMjPDy\n8iLKysq442VlZcT69esJMTEx4vLlyyQmFKzhw4cT8+fPJ+7fv0+8evWKqK6u5vlHEy0bNmwg/Pz8\nyI5Bo9Ha8ccffxBBQUEEQRBEXFwcISUlRfTs2ZNgMpnEzp07SU4nOLNmzSIkJCSIoUOHEoGBgURl\nZSXfa8rLywkGg0FCOsFRV1cnIiIi+MbDw8MJdXV1EhJ1DmVlZeLu3bsEQbQ8axcUFBAEQRAFBQWE\njIwMmdG+iK4RJyQcHR0RFRUFHR0daGtrAwAePnwIDoeDBQsW4Pjx4yQnFBwmk4ny8nL07duXZzwr\nKwumpqaUOSYFtHRymTJlCkaOHInExERYW1vj3r17qKqqQmpqKncLuKh6+fIlUlNToaKignHjxvFc\n+9///gc9PT3KtHaPjo7Gn3/+iUOHDnF/b/n5+XB3d4ebmxsmT56MhQsXQkVFBTExMSSn/TY1NTUI\nCQlBVlYW3rx5g5EjR2LVqlXo168f2dEErjts2xcTE8Pz58+5BbVbVVZWQklJSeR3Funr62Pfvn2Y\nPHlym9evX78ONzc3ka7J2Wr//v3w9PREQ0MD5OTkwGAwUFNTAwkJCQQGBmLlypVkRxQYGRkZZGVl\nQVNTk+woNAHw9PREZGQkhg0bhmHDhvEdkQ8ICCApGY32ZQUFBQgKCsKDBw8AAHp6evD09BT5+/jP\nKSwsRHp6OjQ1Nds8ySSqXFxc4Orq+tkSSQRBoLS0VKRPZ/Xo0QO5ubl8n6F5eXkwMDDAu3fvSEom\nWLKyssjMzMSQIUN4alunp6fDwsJCqGuV0xNxQiQ6OhpRUVHIy8sDQRDQ0tKCvb09FixYQHY0gTA0\nNASDwUBWVhaGDh0KcfH/Pxnd1NSEoqIiWFpaIjo6msSUgldTU4Pdu3cjOzub8pMaVKapqYmYmBiM\nGDGCZ/zOnTuwtbVFYWEhrl+/DltbW267cJpwa2/b/p49e+Dv70+ZbftMJhNlZWV8E3HPnj3D4MGD\n8fbtW5KSCUZ3a2Lw9OlTREdHIz8/n3uvMG/ePL5apKLOzMwMGzZsgKWlJdlRaALwudIGDAYDiYmJ\nXZiGRvt6cXFxsLa2xogRI7j3CqmpqcjKysK5c+cwdepUkhN+u4aGBsyaNQshISEYMmQI2XE6VWRk\nJOzs7PhKBH1cIokK9PX1YW9vjx9//JFn3N/fHydPnkROTg5JyQRrxowZGDVqFLZs2QJZWVlkZ2dD\nTU0NCxcuRHNzs1BvjqAn4mhdxtfXl/u/Xl5e6NWrF/eapKQk1NXVYWtrC0lJSbIi0mjtkpaWRkpK\nCkaPHs0zfvv2bRgbG6O+vh7FxcXQ19cX+c6ir169QmhoKM/K79KlS/m6G4s6DQ0N+Pr68t10RURE\nYPPmzSJfT661ruG6deuwZcsWnvfcpqYmpKSkoLi4GHfu3CErokAoKiri9OnT7dZOS0lJgY2NDV6+\nfNnFyWjf4syZM9i0aRN8fHxgYGDAt4Nq2LBhJCWj0WjdiaGhISwsLLBt2zae8Y0bNyI+Ph6ZmZkk\nJRMsRUVFpKWlUX4XMtVPCbQ6deoU7OzsYG5uzjOBfPnyZURHR2Pu3LkkJxQMUT59Rk/E0bpcREQE\n7Ozs0KNHD7KjdImrV69i//79KCwsxF9//YX+/fvjyJEj0NDQaPcoFU34zJw5E2VlZTh06BAMDQ0B\ntOyGc3Nzg4qKCs6fP49z587hxx9/FOlVppSUFFhZWYHFYnEnHTMyMlBdXY1z585RqlMh1bfttx4L\nLykpwYABA3gaibQufvj5+fEdKxc1M2fOhKqqKg4ePNjmdVdXVzx79gwXLlzo4mS0b8FkMvnGGAwG\nCIKgmzXQaELg8OHDsLOza7MpGZX06NEDOTk5fDvFOBwOhg0bJvL3Cq08PT3Rq1cv/Prrr2RH6VTd\nqURSRkYGAgMDuQvrurq68PLy4j7HUIWoltShu6bSupyzszPZEbrMqVOnsHjxYjg4OCAzMxPv378H\n0PKG8dtvv9EPhiIkNDQUixcvxqhRo7g7MxobGzFlyhSEhoYCAHr16iXc3Xm+wqpVq2BnZ4c///yT\nO3HT1NSE77//HqtWrRLpScZPaWpqIjo6mm/b/smTJylxNKN1R5+pqSlOnz4NeXl5khN1Dm9vb0yd\nOhUsFgs+Pj5QVlYG0NIVbfv27QgPD0d8fDzJKWkdJeo7UmmAjY0NwsPDIScnBxsbm8++9vTp012U\niiYoGzduhKenJ+bPnw8XFxfKdsXt27cv7t69y3dfcPfuXb5dVaKMwWAgJCQEly5dwujRoyEjI8Nz\nffv27SQlE4zWEkkMBgNTpkxpt0QSFTQ2NiIqKgoWFhY4evQo2XE6HYvFwn//+1+yY3QYPRFH6xIK\nCgrgcDhQVFSEvLw8GAxGu6+l0kqEv78/9u3bBycnJ5w4cYI7PmnSJPj7+5OYjNZRKioqSEhI4DZR\nAQBtbW1ucxXg8zVwREV+fj5iYmJ4dk+JiYlh/fr1iIyMJDGZ4Pn6+sLOzg4pKSltbtuniitXrvB8\n37qjiCpMTU2xZ88eeHp6IjAwkK+Jwe7du2FmZkZ2TFoHiXKRbFoLFovFfa9hsVgkp6EJ2tOnT3Hu\n3DmEh4fDxMQEbDYbS5cuhbOzM1RUVMiOJzBubm5Yvnw5CgsLuZONqamp+P3337F+/XqS0wlORkYG\n98h/dnY2zzUq3DPMmTMHQMsEqoWFRbslkqhAXFwcK1as4O6EozJNTU04OjrCwcFB5BbR6aOptC4R\nERGBhQsXQkpKCuHh4Z99Q6fSjjlpaWncv38f6urqPJ1cCgsLoaenR5nt7M3NzcjPz0dFRQWam5t5\nrlHpKGN3MGnSJPj4+HBvWFr9/fff2LZtG9LS0khK1jm6y7b9j0lKSiIrKwu6urpkRxGo7tLEoLv4\n0sQ/VQpq02hUUF5ejqNHjyIiIgIPHz6EpaUlXFxcYGVl1eYxc1FCEASCgoKwc+dOPHv2DACgqqoK\nHx8frFmzhhKTVN1JdymRZGJigrVr1/Ldz1NNYGAgoqKikJGRgVGjRsHR0RF2dnYisRhAT8QJke5S\na6E7YbPZOHDgAMzNzXkm4iIjI7Ft2zbcv3+f7IjfLC0tDfb29igpKcGnbydUquPT1NSE8PBwXL58\nuc0JR6p0fDt58iQ2bNgADw8PjB8/HkDL73jPnj3Ytm0bz+QNXSxduLW3Ur9r1y44OjqiT58+AFq6\nx9JES3V1NWJiYlBQUAAfHx8oKCggMzMTysrK6N+/P9nxBOLTo9QNDQ2or6+HpKQkpKWlKbV7nkaj\ngps3byIsLAwRERHo168fXr16BXl5eRw+fBgmJiZkxxOI2tpaAICsrCzJSQSnsLAQGhoa9IQixURH\nR+M///kP1q1bh1GjRvEdNabaPTyHw8GxY8dw/PhxFBUVwdTUFI6OjkK9aEdPxAkRZWVlvH37lvK1\nFjIzMyEhIQEDAwMAQGxsLA4fPgw9PT1s3ryZUl1Tt27diqNHjyIsLAxTp07FhQsXUFJSgnXr1uGn\nn36Ch4cH2RG/2YgRI6ClpQVfX1/069eP74OcKsdRVq9ejfDwcMycObPNnzMwMJCkZIL1pZVrUS+W\n/vr1669+rZycXCcm6XxMJhPDhw9H7969ecaTk5O59V8YDAZlJpG7i+zsbJibm4PFYqG4uBiPHj0C\nm83Gpk2bUFpaSrkj5B/Ly8vDypUr4ePjAwsLC7Lj0GjdXnl5OY4cOYLDhw+jsLAQc+bMgYuLC8zN\nzVFXVwc/Pz+cOHECJSUlZEf9Jo2NjUhKSkJBQQHs7e0hKyuLZ8+eQU5OjueIoyj6tIuonZ0dgoOD\nufVWqaA7lkjqzg2P0tLSsHLlSmRnZwv1z0lPxAmRxsZGbq2Ff/75h7K1FsaMGYONGzfC1taWe0TT\nxsYGt2/fxsyZMxEUFER2RIEhCAK//fYbtm7divr6egCAlJQUvL29sWXLFpLTCYaMjAyysrIo3+5c\nUVERkZGRmDFjBtlROlVHbpZFsYYTk8n86lVfYf7w/hrbtm3DgQMHcOjQIZ4aaRISEsjKyoKenh6J\n6Wj/lrm5OUaOHInt27fz7LS+fv067O3tUVxcTHbETpWeng5HR0c8fPiQ7Cg0WrdmZWWFuLg4aGlp\nwdXVFU5OTlBQUOB5TUVFBVRUVPhOEYiSkpISWFpaorS0FO/fvweHwwGbzYanpyfev3+Pffv2kR3x\nmzCZTJSVlXEn4j7+XKGK7lgi6Uv386J4D/8lt27dQlRUFE6ePInXr1/DysqKp0a7sKEn4oQUlWst\nsFgsZGZmYvDgwfj999+RmJiIuLg4pKamYuHChXj8+DHZEQXuw4cPyM/Px5s3b6Cnpyfyq2cfMzMz\nw4YNGyjTaag9qqqqSEpKgpaWFtlRaN8gOTmZ+3VxcTE2btyIJUuWYMKECQCAGzduICIiAlu3bqXE\nzdjt27fh6OgIKysrbN26FRISEvREnIj7+DP04wemkpISaGtrU6b2aHvu3r0LIyOjDu1updFogufi\n4gJXV1fu52dbCIJAaWmpSD/0z5kzB7KysggNDUWfPn2477lJSUlwc3NDXl4e2RG/SXeYiKNR16dH\nUs3MzODg4AAbGxuhf96mu6YKKWVlZUyePBkcDgccDgc5OTlwdnamRK0FgiC4K2OXLl3CrFmzAAAD\nBw7Ey5cvyYwmUA0NDejZsyfu3r0LfX19yj70enh4wMvLC2VlZTAwMICEhATPdarUIPDy8sKuXbsQ\nEhJC6ToagwYNgomJCYyNjWFiYoLBgweTHUmgjI2NuV/7+fkhICAAixYt4o5ZW1vDwMAABw4coMRE\n3JgxY5CRkYFVq1Zh9OjROHbsGOX+fgsLC7vVA4OUlFSbk1AcDgd9+/YlIVHnOHv2LM/3BEHg+fPn\nCAkJ4XY5ptFo5DE2NsbIkSP5xj98+IATJ07AyckJDAZDpCfhAODq1au4fv06X+kcdXV1PH36lKRU\ngsNgMPjuC6h2nwAAz549Q0BAAH7++We+0iM1NTXw9/fH2rVrKVNntbKyklsL+PHjxzh48CDevn0L\na2trfPfddySnExwdHR2MGTMGq1atwsKFC0XqSDW9I07IdIdaC2ZmZhg4cCDMzc3h4uKC+/fvQ1NT\nE8nJyXB2dqbUsRo2m40zZ85g+PDhZEfpNN2lBsHcuXNx5coVKCgoYOjQoXwTjqdPnyYpmWAdPXoU\nKSkpSEpKQn5+Pvr37w9jY2PuxJyotQb/HGlpaWRlZfH9TBwOByNGjOAeJ6eKEydOYO3atXjx4gVy\ncnIoszjQq1cvqKurw9raGrNnz8a4cePIjtSpXF1dUVlZiejoaCgoKCA7OxtiYmKYM2cOjIyMKFPe\n4dPPFgaDgb59+8LMzAw7d+5Ev379SEpG+1rBwcFf/do1a9Z0YhJaZ/i0tliryspKKCkpUeb+T15e\nHqmpqdDT0+PZLXbt2jXY2tqivLyc7IjfhMlkYvr06ZCSkgIAnDt3DmZmZnzF/UX9Ptfb2xuvX7/G\ngQMH2ry+YsUKiIuLIyQkpIuTCVZOTg6srKzw+PFjDBkyBCdOnIClpSXq6urAYDBQX1+PmJgYynRT\nzcvLE9lnE3oiToh0l1oL2dnZcHBwQGlpKdavX49ffvkFQMvOqsrKSkRFRZGcUHBCQ0Nx+vRpHDly\nhO93SRXdpQbB0qVLP3v98OHDXZSk6zx//hzJyck4f/48Tp48iebmZsrcWAOAtrY2Zs+eje3bt/OM\nb9iwAbGxsXj06BFJyTrPkydPkJGRAXNzc76bbFH17t07JCQkIDY2FufPnweDwcCsWbNgbW2NqVOn\nokePHmRHFKiamhrMmzcP6enpqK2thaqqKsrKyjBhwgRcuHCBMr9XmujT0NDg+f7Fixeor6/nNpCp\nrq6GtLQ0lJSUUFhYSEZE2jdgMpkoLy/n24mblZUFU1NTyhS9t7OzA4vFwoEDByArK4vs7Gz07dsX\ns2fPxqBBg0T+/u9L97etRP3n1NfXx759+zB58uQ2r1+/fh1ubm64d+9eFycTrOnTp0NcXBwbN27E\nkSNHcP78eVhYWODgwYMAWp63MzIykJaWRnJSwcrIyMCDBw8AAHp6em3u1hU29EScEOkOtRaampqQ\nmpoKAwMDyMvL81x79+4dxMTE+HYaiTJDQ0Pk5+ejoaEBampqfA9ImZmZJCWj0dpXX1+Pa9euISkp\nCVeuXMGdO3egq6sLExMTynSHBYALFy7A1tYWmpqa3F1Ut27dQl5eHk6dOkX5xhxURBAEbty4gbNn\nz+Ls2bMoLS2Fubk5rK2tYWVlRamjm9euXUN2djbevHmDkSNHwtzcnOxInab1VpWKx6W6i6ioKOzd\nuxehoaHQ1tYGADx69Ahubm5wd3eHg4MDyQlpX8vQ0BAMBgNZWVkYOnQoxMX/v9JRU1MTioqKYGlp\niejoaBJTCs6TJ09gYWEBgiCQl5eH0aNHIy8vD4qKikhJSeHbEUgTTjIyMnjw4AEGDRrU5vXS0lLo\n6uqirq6ui5MJlqKiIhITEzFs2DC8efMGcnJyuH37NkaNGgUAePjwIcaPH4/q6mqSkwpGRUUF7Ozs\nkJyczLPIY2pqihMnTgj1fR89ESdEIiMjYWdnx90a3OrjWgtU0KNHDzx48IBvpZSKfH19P3u9dTcg\nFdy/fx+lpaX48OEDz7i1tTVJiWj/xsSJE3km3oyNjWFkZMQ3cU4VT548wZ9//sldRdPV1cWKFSsw\ncOBAkpPRBCEvLw9nz55FbGwsbt68iYCAAKxatYrsWN/k8ePH3ebvMzIyEn/88Qe3GLqWlhZ8fHyw\nePFikpPROmrw4MGIiYmBoaEhz3hGRgbmzZuHoqIikpLROqr13tbX1xdeXl48BdElJSWhrq4OW1tb\nvppqoqyxsREnT55EVlYWd/HDwcEBPXv2JDsa7SspKiri9OnTMDIyavN6SkoKbGxsRL5e+Zeab5SX\nl0NVVZUyJ1zs7OxQWFiIyMhI6OrqAmh5JnV2doampiaOHz9OcsL20RNxQqS71FoYPXo0fv/9d0yZ\nMoXsKDQBKCwsxNy5c5GTk8OtDQf8/84FUf67HTlyJC5fvgx5eXnuCnB7qLK7UUFBAUwmE9OmTYOJ\niQlMTEy6ZafY3Nxc6Ovrkx2DJkCVlZWoqqoS2VoircTExDB58mQ4Ojpi3rx5lJ0kDwgIwE8//YTV\nq1dzmzNcu3YNe/bsgb+/P9atW0dyQlpHSEtLIzk5GWPGjOEZv3XrFkxMTChXk7M7iIiIgJ2dHeWO\n/38qJSUFEydO5Nn5B7RMzl2/fr3diR2acJk5cyZUVVW5RzQ/5erqimfPnuHChQtdnEywPj0y3nqc\nunUDDNUm4lgsFi5dutTmZ8u0adOEeucf3TVViLQWt//UkydPwGKxSEjUOfz9/eHt7Y0tW7Zg1KhR\nfMc1P+1kQwW1tbX4eM6byWQKfUvlr+Xp6QkNDQ1cvnwZGhoauHXrFiorK+Hl5YUdO3aQHe+bzJ49\nm7tDlSpFTb+ksrISOTk5SEpKQlxcHP773/9CUlISxsbGMDU1hZubG9kRO01tbS2OHz+OQ4cOISMj\ngzI3KbQWffr04XYQE2Xp6emIioqCn58fPDw8YGlpCUdHR1hZWfHtqBdlu3fvxp9//slzGsDa2hpD\nhw7F5s2b6Yk4ETNlyhS4u7vj0KFD3No9GRkZWLlyJaWPVVMZFTqLfw1TU9M2N0rU1NTA1NSUvlcQ\nEd7e3pg6dSpYLBZ8fHy43TXLy8uxfft2hIeHIz4+nuSUgrFkyRLu/cC7d++wYsUK7vP2+/fvyYwm\ncM3NzW2WtZKQkBD6mvr0jjgh0N1qLXzcCe3jiUcqddm8e/cufvzxR+6qiqysLM9qL4PBwI0bN/hm\n70XRx7UIWCwWbt26BW1tbSQmJsLLywt37twhOyLtXyIIAhkZGQgJCcGxY8co16yhVUpKCkJDQ3Hq\n1CmoqqrCxsYGtra2lPjvk0ZdBEEgKSkJUVFROHXqFJqbm2FjY4OwsDCyowlEjx49kJubC01NTZ7x\nvLw8GBgY4N27dyQlo/0bL168gLOzMy5evMh9aGpsbISFhQXCw8PpOlsiQkFBARwOB4qKipCXl//s\nSQGqNGtorykFh8PB6NGj8fr1a5KS0Tpq//798PT0RENDA+Tk5MBgMFBTUwMJCQkEBgZi5cqVZEf8\nZt2l+Uar2bNno7q6GsePH4eqqioA4OnTp3BwcIC8vDzOnDlDcsL20TvihEDrTpu7d+/CwsKi3VoL\nVHHlyhWyI3S63bt383XlOXLkCPr37w+CIBAWFobg4GAcOXKEpISC09TUBFlZWQAtk3LPnj2DtrY2\n1NTUKNl18sOHD6ioqOBbZWmv+KuoyczMRFJSEpKSknDt2jXU1tbCwMAAHh4eMDY2JjuewJSVlSE8\nPByhoaF4/fo1FixYgPfv3+Pvv/+Gnp4e2fEEIjg4uM1xFosFLS2tzzYGogk/BoMBU1NTmJqaYuXK\nlXBxcUFERARlJuI0NTURHR2NH3/8kWf85MmTIn+8uDvq27cvLly4gLy8PG5NTh0dnW5Z+kCUBQYG\ncu/5AgMDKd1AxcbGBkDLe+3HO4yAlnvf7OxsTJw4kax4tH/B3d0ds2bNQnR0NPLz80EQBLS0tDBv\n3jwMGDCA7HgCQZUJtq8VEhICa2trqKurc+vnPn78GPr6+jh69CjJ6T6P3hEnRLpLrYXuQFdXF1FR\nUdyixJ8Wyrx58yYWLFiAkpISMmMKxHfffQcvLy/MmTMH9vb2ePXqFTZt2oQDBw4gIyMDubm5ZEcU\nCA6HAxcXF1y/fp1nnEo7OQFAXFwchoaGMDY25jZqoNLReACwsrJCSkoKZs6cCQcHB1haWnI7Nmdl\nZVFmIq69hjjV1dWoqanBxIkTcfbsWSgoKHRxMpogPHnyBFFRUYiKikJubi4mTJgABwcHrFixguxo\nAnHq1CnY2dnB3NycWyMuNTUVly9fRnR0NObOnUtyQtrXamhogI6ODs6fP88tpk2jCbvWnUURERFY\nsGABT2OG1o0Sbm5uUFRUJCsijUZDy7PYpUuX8PDhQwAtz+GiUPKAnoijkeLq1avYv38/CgsL8ddf\nf6F///44cuQINDQ0+HaSiSJpaWlwOBzu6kpgYCBcXFy49e9KS0uhpaVFiaM1cXFxqKurg42NDfLz\n8zFr1ixwOBz06dMHJ0+ehJmZGdkRBWLSpEkQFxfHxo0b0a9fP75V4OHDh5OUTLBev35NyTqNHxMX\nF8eaNWuwcuVKnp01VJuI+5zCwkI4OjpixIgR2Lt3L9lxBKa6uhoxMTEoKCiAj48PFBQUkJmZCWVl\nZfTv35/seAKxf/9+REVFITU1FTo6OnBwcIC9vT3U1NTIjiZwGRkZCAwM5Olq7OXlxdd5kyb8+vfv\nj0uXLtETcRTw7NkzBAQE4Oeff+a7X6ipqYG/vz/Wrl1LmfdcX19feHt789W0ptFotG9BT8SRrDvW\nWjh16hQWL14MBwcHHDlyBPfv3webzUZISAguXLgg8t1qgJbf67lz57ir+J9KTU2FlZUVZX6nn6qq\nqvri37OokZGRQUZGBnR0dMiO0iUyMjK4D796enrc4tpUkJaWhtDQUJw8eRK6urpYvHgxFi5ciH79\n+nWbiTigpTbesmXLkJ+fT3YUgcjOzoa5uTlYLBaKi4vx6NEjsNlsbNq0CaWlpYiMjCQ7okAMHDgQ\nixYtgoODA2UWAGjU99tvv4HD4eDQoUN83SdposXb2xuvX7/GgQMH2ry+YsUKiIuLIyQkpIuT0Wi0\n7uLt27e4fPkyZs2aBQD4z3/+w9OIQkxMDFu2bBHqk4b0JyHJulOthVb+/v7Yt28fnJyccOLECe74\npEmT4O/vT2IywTE0NMTff//d7kTc6dOnKbuiX1JSgrq6OvTu3ZtSf896enp4+fIl2TE6XUVFBezs\n7JCcnIzevXsDaNllZGpqihMnTvAVKxZF48ePx/jx4xEUFISTJ08iLCwM69evR3NzMxISEjBw4EDu\n+zKVDRo0CGVlZWTHEJj169djyZIl2L59O8/vb8aMGbC3tycxmWCVlpa2+96am5sLfX39Lk4kWN1t\nt013cfv2bVy+fBnx8fEwMDDg2110+vRpkpLROurixYvYt1PgdYAAACAASURBVG9fu9ednJwo12E9\nJiYG0dHRKC0txYcPH3iuZWZmkpSKRuu+IiIi8L///Y87ERcSEoKhQ4dyj5A/fPgQqqqqQt1hnfnl\nl9A6k7OzM7f455IlS+Ds7NzuP6p49OgRjIyM+MZZLBaqq6tJSCR433//PYKCgrBnzx6eov5NTU3Y\nvXs3du/eLfKdecLCwhAQEMAztnz5crDZbBgYGEBfXx+PHz8mKZ1gvH79mvvv999/x4YNG5CUlITK\nykqea1TqmOXh4YE3b97g3r17qKqqQlVVFXJzc/H69WusWbOG7HgCJSMjg2XLluHatWvIycmBl5cX\ntm3bBiUlJVhbW5Mdr9Pl5ORQ6jjj7du34e7uzjfev39/Sk04fjoJV1tbiwMHDmDs2LGU2CEXEBDQ\n7hF5FouF2tpabN26lYRktG/Ru3dv2NrawsLCAqqqqmCxWDz/aKKjqKjosw2qBgwYgOLi4q4L1MmC\ng4OxdOlSKCsr486dOxg7diz69OmDwsJCTJ8+nex4NFq3dOzYMSxfvpxnLCoqCleuXMGVK1fwxx9/\nIDo6mqR0X4mgke7p06eEl5cXUVNTw3eturqa8Pb2Jp48eUJCss6hoaFBJCQkEARBEL169SIKCgoI\ngiCIiIgIQldXl8xoArVhwwaCwWAQcnJyxIgRI4gRI0YQcnJyBJPJJLy9vcmO983GjRtHhIWFcb//\n559/CHFxceLo0aNERkYGMWHCBMLFxYXEhN+OwWAQTCaT++/T7z8eowo5OTni1q1bfOM3b94kWCwW\nCYm6VmNjI3HmzBnCysqK7CjfrKamps1/paWlxJkzZwg2m034+vqSHVNg+vbtS2RmZhIEwfvZEh8f\nTwwYMIDMaJ0iOTmZcHJyImRkZIghQ4YQP/zwQ5v/7YqaoUOHElevXm33empqKqGnp9eFiWg02sf6\n9OlDJCcnt3s9OTmZ6NOnTxcm6lza2tpEVFQUQRC8ny0//fQTsWrVKjKj0WjdloqKClFUVMT9XlFR\nkef7R48eEXJycl0frAPoo6lC4GtXf6lSa8HNzQ2enp4ICwsDg8HAs2fPcOPGDXh7e+Onn34iO57A\n/P7775g7dy6OHz+OvLw8AICRkREWLVqE8ePHk5zu2+Xl5WH06NHc72NjYzF79mw4ODgAaKkH09px\nSlRduXKF7Ahdrrm5GRISEnzjEhISPLs7qUpMTAxz5szBnDlzyI7yzT53PJzBYMDV1RUbN27s4lSd\nx9raGn5+ftwVUAaDgdLSUvzwww+wtbUlOZ1glJWVITw8HKGhoXj9+jUWLFiA9+/f4++//6ZMbcPu\nttumu3nx4gUePXoEANDW1qZEuYPuZty4cThy5Eibp1sAIDIyEmPHju3iVJ2ntLQUEydOBAD07NkT\ntbW1AIDFixdj/PjxlHk+o7KO1K2mav1uqqmuruapCffixQue683NzTzXhRE9EScEuluthY0bN6K5\nuRlTpkxBfX09jIyMICUlBW9vb3h4eJAdT6Baa1FR0du3b3kmj69fvw4XFxfu92w2W+SPgxkbG5Md\nocuZmZnB09MTx48fh6qqKgDg6dOnWLduHaZMmUJyOlpHtDeRLCcnhyFDhqBXr15dnKhz7dy5E/Pm\nzYOSkhLevn0LY2NjlJWVYcKECfj111/JjvfNrKyskJKSgpkzZyIoKAiWlpYQExP77P2DKOrZsyeK\ni4vbnYwrLi7m1oChiY66ujp4eHggMjKSu6gjJiYGJycn7N69G9LS0iQnpH0tb29vTJ06FSwWCz4+\nPlBWVgYAlJeXY/v27QgPD0d8fDzJKQVHRUUFVVVVUFNTw6BBg5CWlobhw4ejqKgIBN3zUCQEBQVx\nv66srIS/vz8sLCwwYcIEAMCNGzcQFxdHqQ0hVDdgwADk5uZCW1u7zevZ2dkYMGBAF6fqILK35NEI\nQlpamigpKWn3eklJCSEtLd2FibrG+/fviXv37hE3b94kamtryY5D6yAdHR3i1KlTBEEQxIsXLwgx\nMTEiPT2de/3mzZuEsrIyWfEE7p9//uE5LhUSEkIMHz6cWLRoEVFVVUViMsEqLS0lRowYQUhISBBs\nNptgs9mEhIQEYWhoSDx+/JjseDTaF129epXYs2cP8fvvv3PLIFCBmJgYsW7dOoLD4fCMi4uLE/fu\n3SMpleDNmDGDcHV1bfe6i4sLMX369C5MRBOE5cuXE2w2m7hw4QL3mPz//vc/YvDgwcSKFSvIjkfr\noH379hFSUlIEk8kkevfuTcjLyxNMJpOQkpIi9u7dS3Y8gXJxcSE2b95MEETLvV/Pnj0Jc3Nzonfv\n3sSyZctITkfrKBsbG2L37t1847t37yZmz55NQiLav7FmzRpCT0+PePv2Ld+1+vp6Qk9Pj1izZg0J\nyb4egyDoqXyyKSoq4vTp0+1u8U5JSYGNjQ1lOjYePXoUNjY29OqniNu2bRt27dqF77//HomJiXjx\n4gVyc3O514OCgnD+/HlcunSJxJSCY2BggN9//x0zZsxATk4ORo8eDS8vL1y5cgU6Ojo4fPgw2REF\nhiAIXLp0CQ8fPgQA6OrqwtzcnORUtI56+fIl6urqeBoy3Lt3Dzt27EBdXR3mzJlDqW6iVJeWlobQ\n0FCcPHkSurq6WLx4MRYuXIh+/fohKyuLMkdTr1y5gqlTp2Lt2rVt7rbZtWsX4uPjYWZmRnJSWkco\nKioiJiYGJiYmPONXrlzBggUL+I4V0YTf06dPER0djfz8fBAEAS0tLcybN0/4d6F0UHNzM5qbmyEu\n3nKQ7MSJE7h+/TqGDBkCd3d3SEpKkpyQ1hG9evXC3bt3oampyTOen5+PESNG4M2bNyQlo3VEeXk5\nRowYAUlJSaxevRpaWloAWppChoSEoLGxEXfu3OHeQwgjeiJOCMycOROqqqo4ePBgm9ddXV3x7Nkz\nXLhwoYuTdY6+ffvi7du3sLa2hqOjIywsLCAmJkZ2LFoHNTc3Y/PmzTh37hxUVFQQEBAAXV1d7vX5\n8+fD0tKS57iqKOvVqxdyc3Ohrq6OzZs3Izc3FzExMcjMzMSMGTNE/hgujXoWLVoEVVVV7Ny5EwBQ\nUVEBHR0dqKqqYvDgwfjnn38QGhqKxYsXk5xUMPz8/D57/eeff+6iJJ2rrq4OJ0+eRFhYGG7duoWm\npiYEBARg2bJlkJWVJTueQOzfvx+enp5oaGiAnJwcGAwGampqICEhgcDAQJHvOt4dSUtLIyMjg+c+\nAWhZHBg7dizq6upISkaj0boTNTU1rFmzBl5eXjzjO3fuRHBwMEpKSkhKRuuooqIirFy5EgkJCdxj\n4gwGA1OnTsXevXvBZrNJTvh59EScEOhuq7+NjY24ePEijh8/jtjYWEhLS2P+/PlwcHDgFkOl0YSN\ngoICrl27Bj09PUyePBlOTk5Yvnw5iouLoaenh/r6erIjfpPExESsXr0aaWlpfI1jampqMHHiRAQE\nBMDCwoKkhLSO0tDQQHh4OLfW4Y4dO7Bv3z48fPgQ4uLi2LFjB2JiYpCWlkZyUsEwNDTk+b6hoQFF\nRUUQFxfH4MGDkZmZSVKyzvPo0SOEhobiyJEjqK6uxtSpU3H27FmyYwlEd9lt011MmTIFffr0QWRk\nJHr06AGgpdass7MzqqqqKLN7nkYdpaWlX/W6zzWXoQmf8PBwuLq6Yvr06Rg3bhwA4ObNm7h48SIO\nHjyIJUuWkBuQ1mFVVVXIz88HAGhqakJBQYHkRF+HnogTEt119be+vh5nzpxBVFQULl26hAEDBqCg\noIDsWDQaH2tra3z48AGTJk3Cli1bUFRUhP79+yM+Ph6rV68Gh/N/7N17XM73/z/wx1UJnXMIoXQg\nJSGH0ZCcT0XtYBNLM6NpmcUYc7bPMjqs6bsaprJschiLzWytonJa6WArYiWRUzkVoqvr94efa66F\n0el1XVeP++3mdut6va+1B7ar9/W8nq/n67ToiLXi5uYGFxcXzJ0794nXQ0NDceDAAezdu7eBk1FN\nNW/eHLm5ufKtqWPHjoW9vT0+//xzAMDp06cxYMAAlJSUiIxZr27duoVp06bB3d1dbTr/nkQqlSIu\nLg7ffPON2hTiSL1kZ2dj9OjRqKioQI8ePQAAmZmZaNasGX755Rd069ZNcEIiRY/v1nm82+bxNYlE\nAqlU2uDZqHaOHj2K0NBQ5OTkAHg4gsXPz09emCNqCCzEKZHG+unvtWvX8P333yM8PBw5OTlq9wNt\nx44diI2NRWFhIe7fv69wTR07NNRVYWEh3nvvPZw/fx5+fn7yLbdz586FVCpFaGio4IS1Y25ujv37\n91fbNvRIbm4uRo4c+dyfEJN4bdq0wYEDB+Rvelu1aoWIiAi88sorAIC8vDz06tVL7eehZGdnw9XV\nFQUFBaKjEDVqd+7cQUxMjML8UU9PT56CS0pJS0sLHTp0wLRp0+Dq6iqfEfdvj37GEhG9iCe/opAQ\n7du3f2o3irp51AkXExOD+Ph4dOzYEW+++SZ27NghOlqdCg0NxeLFizFt2jTs2bMH3t7eOHv2LI4f\nP47Zs2eLjkcvwMzM7IndYMHBwQLS1L3Lly+jSZMmT72upaXFYdoqpn///ggNDcWGDRuwa9cu3L59\nW2HEwenTp9GxY0eBCRvGzZs3cfPmTdExiBodR0dHxMfHw9jYGCtXrsS8efMwY8YM0bGInktRURGi\noqKwefNmhIeHY8qUKZg+ffpTP7Ak1SGVSrF79255R1y3bt3g5ubGmeXUoNgRRw3ujTfewN69e6Gj\no4PXX38dnp6eGDBggOhY9aJr165YtmwZ3nzzTejr6yMzMxOWlpZYunQpSktLsX79etERqQbu3btX\nrbvx33PVVI2VlRUCAwMxceLEJ17ftWsX5s2bh7///ruBk1FNZWVlYdiwYbh16xYqKyuxaNEirFq1\nSn596tSp0NXVRXh4uMCUdeffXakymQzFxcXYsmULnJ2dsXXrVkHJiBqn5s2bIy8vDx06dICmpiaK\ni4thYmIiOhbRC0tOTsbmzZuxfft22NnZYfr06Zg+fTo0NDRER6MXdObMGYwbNw5FRUWwsbEB8HDe\naseOHbFv3z5YWVkJTkiNBQtx1OA8PT3h6enZKE5L1dHRQU5ODszNzWFiYoJff/0VPXr0QF5eHvr3\n7692s5lSUlLQp08fNG3aVHSUOldeXo4FCxYgNjb2iX9vqr6l+v3330diYiKOHz8uH6T9yN27d9Gv\nXz+4uLio/BbcxubatWtISUlB27Ztq80+2bdvH+zs7GBhYSEoXd369+9DQ0MDrVu3xtChQ/Hxxx+r\nzYmiRKpiwIAB0NPTw8CBA7FixQrMmzcPenp6T3yuupxqrO6MjY0V5qQ9S2lpaT2naXiXL1/Gm2++\niaSkJFy9elVlhsLTP8aOHQuZTIaYmBj5319JSQmmTJkCDQ0N7Nu3T3BCaixYiCOqR5aWlti5cyd6\n9eqFPn36YMaMGZg5cyYOHDiAN954Q+1uUgwMDJCRkaH0x0XXxOzZs5GQkIBVq1Zh6tSpCAsLw4UL\nFxAREYGAgAB4enqKjlgrly9fhqOjIzQ1NeHr6yv/lDA3NxdhYWGQSqVIT0+Xn+pMRET0LKdOncKy\nZctw9uxZpKenw87O7olztiQSCWfmqoioqCj51yUlJVi9ejVGjRol39ly+PBh/PLLL1iyZIlajdtJ\nTU3FN998g+3bt8PGxgZvv/023n33XXbEqSBdXV0cOXIE3bt3V1jPzMzEyy+/rPZzc9XRli1bEB4e\njvz8fBw+fBjm5uYICQmBhYUFJkyYIDreU3FGHDWI0NBQvPvuu2jWrNl/dtT4+fk1UKr6N3ToUPz4\n44/o1asXvL29MXfuXOzYsQN//PEHPDw8RMerc+pc14+Li0N0dDSGDBkCb29vDBo0CNbW1jA3N0dM\nTIzKF+LatGmD1NRU+Pj44OOPP1Y4IWzUqFEICwtjEU7FPE/3opaWFtq2bYuBAwdyy5iK+euvv554\nCJCbm5ugRHVLKpUiODj4qYcdqdsHWerIxsYG33//PYCHHarx8fF8nVFxXl5e8q9feeUVrFy5Er6+\nvvI1Pz8/rF+/Hr/99pvKF+KKi4sRHR2NzZs34/r16/D09ERKSgrs7e1FR6NaaNq0KW7fvl1tvays\nDNra2gISUW189dVXWLp0KT744AN8+umn8h1KRkZGCAkJUepCHDviqEFYWFjgjz/+QMuWLZ+5DUoi\nkajVDKqqqipUVVXJPwH+/vvvkZqais6dO2PmzJlq94L/+Bw8daOnp4e//voLZmZm6NChA3bt2oV+\n/fohPz8f3bt3V6tP0K5fvy4/vblz584wNjYWHYlq4Hm2nFZVVaGkpARVVVX49ttvVfoDgvLycgQE\nBCA+Ph5XrlxBVVWVwnV1+dny999/w93dHdnZ2ZBIJApFc0D1t8k/snTpUmzcuBH+/v745JNPsHjx\nYhQUFGD37t1YunSpWn1oR6SK9PT0kJGRAWtra4X1M2fOoGfPnip/X9SkSRO0b98eXl5ecHNze+qB\nVg4ODg2cjGrjrbfeQnp6OjZt2oR+/foBAI4ePYoZM2agd+/eiIyMFBuQXoidnR3+97//YeLEiQrv\nQ0+ePIkhQ4bg2rVroiM+FQtxgjX2WQukXrZu3YoJEyZAV1dXdJQ65+DggC+//BLOzs4YPnw4evbs\niXXr1iE0NBSff/45ioqKREckqpGqqioEBARgy5Yt8hPEVNGjuT1Tp05Fu3btqv1snTNnjqBkdcvV\n1RWamprYuHEjLCwscOzYMZSUlMDf3x/r1q3DoEGDREesE1ZWVggNDcW4ceOgr6+PjIwM+dqRI0d4\n+IYKysvLQ0JCwhML5ZwRp3rMzc3h5+cHf39/hfXAwECEhobi3LlzgpLVjce3nT76efLvt80SiURt\nPvxoLG7cuAEvLy/ExcXJi6uVlZVwc3NDZGQkDA0NBSekF9G8eXPk5ubC3NxcoRCXl5cHBwcH3L17\nV3TEp+LWVMFCQkLkX//XrAVSTTdu3MCxY8eeeOP51ltvCUpVPyZPniw6Qr3x9vZGZmYmnJ2dsXDh\nQri6umL9+vV48OABgoKCRMcjqjENDQ14eXkhODhYdJRa+fnnn7Fv3z68/PLLoqPUq8OHD+P3339H\nq1atoKGhAQ0NDQwcOBCfffYZ/Pz8cOLECdER68SlS5fkM3z09PRw8+ZNAMD48eN5T6SCNmzYAB8f\nH7Rq1Qpt27ZVKJRLJBIW4lTQihUr8M477yAxMVF+GNDRo0exf/9+bNiwQXC62svPzxcdgeqBkZER\n9uzZg7y8POTk5EAikcDW1rZaZyepBgsLC2RkZMDc3Fxhff/+/bC1tRWU6vmwECdYY5q18IhUKkVk\nZORTtw/9/vvvgpLVvbi4OHh6eqKsrAwGBgbVbjzVrRCnzh7//2/48OHIzc1FWloarK2tuS2BlNLh\nw4dRUlKC8ePHy9eio6OxbNkylJeXY+LEifjyyy/RtGlTtG/fHlevXhWYtvaMjY0bxQl2UqlUfgJs\nq1atcPHiRdjY2MDc3BynTp0SnK7udOjQAcXFxTAzM4OVlRUOHDgAR0dHHD9+XC1P5lZ3q1evxqef\nfooFCxaIjkJ1ZNq0abC1tUVoaCh27doFALC1tUVycnK1U7pV0b/f2JN66dy5s7z49ry700j5fPjh\nh5g9ezbu3bsHmUyGY8eO4bvvvsNnn32GjRs3io73TNyaqkTUfdbCI76+voiMjMS4ceOeuH1I1bsy\nHtelSxeMHTsW//vf/6CjoyM6DtVAfn7+c83aIlI2Y8aMwZAhQ+RvfLOzs+Ho6Ch/87R27VrMnDkT\ny5cvFxu0jnz77bfYs2cPoqKi1Pr1dtCgQfD398fEiRMxefJkXL9+HZ988gm+/vprpKWl4eTJk6Ij\n1omFCxfCwMAAixYtwrZt2zBlyhR06tQJhYWFmDt3LgICAkRHpBegzqeqE5FqiY6Oxtq1a5GXlwfg\n4fu1+fPnY+rUqYKTUU3ExMRg+fLlOHv2LADA1NQUK1aswPTp0wUnezYW4pSIus9aeKRVq1aIjo7G\n2LFjRUepd7q6usjOzuaNpwrT0NCAubk5XFxc5L86dOggOhbRf2rXrh3i4uLQp08fAMDixYuRlJSE\n5ORkAMD27duxbNky/PXXXyJj1plevXrh7NmzkMlk6NSpU7XB2unp6YKS1a1ffvkF5eXl8PDwwJkz\nZzB+/HicPn0aLVu2xLZt2zB06FDREevFkSNH5Icdubq6io5DL2j69Ono27cvZs2aJToK1SGpVIrd\nu3fL54t269YNbm5u0NTUFJyM6MmCgoKwZMkS+Pr6ykdZJCcnIywsDKtXr1abHWiN0Z07d1BWVqYy\np3Nza6oSUfdZC49oa2s3mn34o0aNwh9//MFCnAr7/fffkZiYiMTERHz33Xe4f/8+LC0tMXToUHlh\nrk2bNqJjElVz/fp1hf82k5KSMGbMGPnjvn374vz58yKi1YuJEyeKjtAgRo0aJf/a2toaubm5KC0t\nfaHDn5TdgwcPMHPmTCxZskTekdy/f3/0799fcDKqKWtrayxZsgRHjhxB9+7dqxXKeQqu6jlz5gzG\njRuHoqIi2NjYAAA+++wzdOzYEfv27YOVlZXghETVffnll/jqq68UxgO5ubmhW7duWL58OQtxKubu\n3buQyWTQ0dGBjo4Orl69ipCQENjZ2WHkyJGi4z0TO+KUzNGjRxEaGir/ZMnW1hZ+fn5qMWvhkcDA\nQPz9999Yv3692rxpeJpNmzZh5cqV8Pb2fuKNp5ubm6BktRcaGvrEdUNDQ3Tp0kV+4Ig6uXfvHlJT\nU+WFuWPHjuHBgwfo2rUr/vzzT9HxiBSYm5tjy5YtGDx4MO7fvw8jIyPExcVh2LBhAB5uVXV2duaJ\n3KSUDA0NkZGRwdEAauJZf48SiQR///13A6ahujB27FjIZDLExMTI53OWlJRgypQp0NDQwL59+wQn\nJKquWbNmOHnyZLWmkLy8PHTv3h337t0TlIxqYuTIkfDw8MCsWbNw48YN2NjYQFtbG9euXUNQUBB8\nfHxER3wqFuKowbm7uyMhIQEtWrRAt27dqhWnHg18VQePH33+b6p+5PnTbqpv3LiBmzdvwsnJCT/+\n+KNaDk+/f/8+UlJS8PPPPyMiIgJlZWUq/XdJ6snHxweZmZlYs2YNdu/ejaioKFy8eBHa2toAHs7U\nCAkJwfHjxwUnrTs3btzAjh07cPbsWcyfPx8tWrRAeno62rRpg/bt24uOV2MeHh6IjIyEgYEBPDw8\nnvlcdfkZ6uXlhZ49e7I7gUhJ6erqyjscH5eZmYmXX35ZbWZbk3qxt7fH5MmTsWjRIoX11atXY9u2\nbcjOzhaUjGqiVatWSEpKQrdu3bBx40Z8+eWXOHHiBHbu3ImlS5fKm5uUEbemKpnGMGvByMgI7u7u\nomM0iH+fCKtOnnWs+99//40pU6bgk08+wf/93/81YKr6cf/+fRw5cgQJCQlITEzE0aNH0bFjRwwe\nPBjr16+Hs7Oz6IhE1axatQoeHh5wdnaGnp4eoqKi5EU4APjmm2+Uvm3/RWRlZWH48OEwNDREQUEB\nZsyYgRYtWmDXrl0oLCxEdHS06Ig1ZmhoKO8gNzQ0FJymYXTu3BkrV65ESkoKevfuDV1dXYXr3MpI\nJFbTpk1x+/btautlZWUKP2tU3eXLlzFv3jzEx8fjypUr+HcPCz+IVS0rVqzApEmTcPDgQfmMuJSU\nFMTHxyM2NlZwOnpRd+7ckZ8kf+DAAXh4eEBDQwP9+/dX+vn67IhTIk+atXDq1CnOWlAT9+7dQ7Nm\nzUTHaDAHDx7E22+/jTNnzoiOUitDhw7F0aNHYWFhAWdnZwwaNAjOzs5o166d6GhEz+XmzZvQ09Or\n9oFOaWkp9PT01OYN0/Dhw+Ho6IjPP/8c+vr6yMzMhKWlJVJTUzF58mQUFBSIjkgvgFsZ1U9RURF+\n/PFHFBYW4v79+wrXgoKCBKWimnrrrbeQnp6OTZs2oV+/fgAejtiZMWMGevfujcjISLEB68iYMWNQ\nWFgIX19ftGvXrtpYnQkTJghKRjWVlpaG4OBghVFQ/v7+6NWrl+Bk9KIcHBzwzjvvwN3dHfb29ti/\nfz8GDBiAtLQ0jBs3DpcuXRId8alYiFMinLWgfqRSKf73v/8hPDwcly9fxunTp2FpaYklS5agU6dO\nSn+scm0UFBTA3t5e5bcmNGnSBO3atcPEiRMxZMgQODs7o2XLlqJjEdG/GBoaIj09HVZWVgqFuHPn\nzsHGxoZzX4gEio+Ph5ubGywtLZGbmwt7e3sUFBRAJpPB0dERv//+u+iI9IJu3LgBLy8vxMXFycfM\nVFZWws3NDZGRkWrTvauvr49Dhw6hZ8+eoqMQ0b/s2LEDkydPhlQqxdChQ/Hrr78CeHhwzMGDB/Hz\nzz8LTvh0Tx9gRQ0uKSkJn3/+ucJMrZYtWyIgIABJSUkCk9UNY2NjtGjRotovCwsLjBo1Sv4/jjr5\n9NNPERkZic8//1yh68Te3h4bN24UmKz+ZWdnw9zcXHSMWrtx4wa+/vpr6OjoYM2aNTA1NUX37t3h\n6+uLHTt24OrVq6IjEhEebpO6detWtfXTp0+jdevWAhLVj8uXL2Pq1KkwNTWFlpYWNDU1FX4RKaOP\nP/4Y8+bNQ3Z2Npo1a4adO3fi/PnzcHZ2xmuvvSY6HtWAkZER9uzZg1OnTmH79u3YsWMHTp06hR9+\n+EFtinAA0LFjx2rbUUl1vfXWW9i8eTO7qtXEq6++isLCQvzxxx/45Zdf5OvDhg1DcHCwwGT/jR1x\nSqRFixbYu3cvnJycFNZTUlLg6uqq8ifbRUVFPXH9xo0bSEtLw7Zt27Bjxw64uro2cLL6Y21tjYiI\nCAwbNkyhQyM3NxcDBgzA9evXRUessSe94QUeboNLS0uDv78/vLy8sHTp0gZOVr9u376N5ORk+by4\nzMxMdO7cGSdPnhQdjahRe+edd1BSUoLY2Fi0aNEC1yDq5gAAIABJREFUWVlZ0NTUxMSJEzF48GCE\nhISIjlgnGtM2KW5lVB/6+vrIyMiAlZUVjI2NkZycjG7duiEzMxMTJkzg1nEV9+jt5L9fj9TBgQMH\nEBgYiIiICHTq1El0HKqld955BwcPHsSZM2fQvn17ODs7y3e8dO7cWXQ8qoWioiIAQIcOHQQneT48\nrEGJjB8/Hu+++261WQuzZs2Cm5ub4HS15+Xl9czrPXv2xGeffaZWhbgLFy5UOx4beHiIw4MHDwQk\nqjtGRkZPveGSSCR45513sHDhwgZOVf90dXXl3ZzGxsbQ0tJS6hN5iBqLwMBAvPrqqzAxMcHdu3fh\n7OyMS5cuYcCAAfj0009Fx6szycnJjWKb1H9tZSTVoqurKy+mtmvXDmfPnkW3bt0AANeuXRMZjWoh\nOjoaa9euRV5eHgCgS5cumD9/PqZOnSo4Wd2ZNGkS7ty5AysrK+jo6Mi34T6i6o0Sjc2jHUkXLlzA\nwYMHkZSUhMDAQMycORPt2rWTF3NINVRVVWH16tUIDAyUj0PS19eHv78/Fi9eDA0N5d0AykKcEgkN\nDYWXlxcGDBhQbdbCF198IThd/Rs/fjxWr14tOkadsrOzw6FDh6pt0dyxY4fKDwRNSEh44rqBgQE6\nd+4MPT29Bk5UP6qqqvDHH38gMTERCQkJSElJQXl5Odq3bw8XFxeEhYXBxcVFdEyiRs/Q0BC//vor\nkpOTkZWVhbKyMjg6OmL48OGio9WpxrJN6tFWxhUrVkBfXx87d+6EiYkJPD09MXr0aNHx6AX1798f\nycnJsLW1xdixY+Hv74/s7Gzs2rUL/fv3Fx2PaiAoKAhLliyBr6+v/PTJ5ORkzJo1C9euXcPcuXMF\nJ6wb6tJNTYqMjY3RsmVLGBsbw8jICFpaWmo1xqKxWLx4MTZt2oSAgACF16Hly5fj3r17Sv1BLLem\nKqG8vDzk5ORAIpHA1tb2iR1V6ig7OxsjRoxQ6tNNXtSePXvg5eWFjz/+GCtXrsSKFStw6tQpREdH\nY+/evRgxYoToiPQfDAwMUF5ejrZt28LFxQUuLi4YMmQITzEmUjLnz59Hx44dRceod41lmxS3MqqX\nv//+G2VlZXBwcEB5eTn8/f2RmpqKzp07IygoSC1myjY2FhYWWLFiBd566y2F9aioKCxfvhz5+fmC\nkhE93aJFi5CYmIgTJ07A1tZWvjV18ODBMDY2Fh2PXpCpqSnCw8Or7R7cs2cP3nvvPVy4cEFQsv/G\nQpySUudZC0/zwQcfIDc3F/v37xcdpU4dOnQIK1euRGZmprxDY+nSpRg5cqToaLVy7do1lJeXK9w8\n//nnn1i3bh3Ky8sxceJETJ48WWDCuhEREQEXFxd06dJFdBQiegZNTU0MHDgQU6ZMwauvvqq2N9TG\nxsa4c+cOKisr1XqbVNu2bZGQkABbW1vY2dkhICAAbm5uyMzMxMsvv6zyJ3ITqbpmzZrh5MmT1RoG\n8vLy0L17d7U8qfrevXvV5lUaGBgISkM1oaGhgdatW2Pu3Lnw8PDg/b2Ka9asGbKysqr9PZ46dQo9\ne/bE3bt3BSX7b9yaqmTUedbChx9++MT1mzdvIj09HadPn8bBgwcbOFX9kUqlSElJgYODg1qeCPv+\n++/D1NQUgYGBAIArV65g0KBBMDU1hZWVFaZNmwapVKry/+3OnDlTdAQieg5//PEHtm7dipUrV+L9\n99/H6NGjMWXKFLi6uqJp06ai49WZxrJNilsZ1YulpSWOHz+Oli1bKqzfuHEDjo6OPMFQBVlbWyM2\nNhaLFi1SWN+2bZtaDb0vLy/HggULEBsbi5KSkmrXpVKpgFRUUydOnEBSUhISExMRGBgIbW1teVfc\nkCFDWJhTMT169MD69esRGhqqsL5+/Xr06NFDUKrnw444JfK0WQthYWFYvXq1ys9aeNocLQMDA9jY\n2MDHxwcWFhYNnKp+NWvWDDk5OWr3+wIebkmIjIyEs7MzAGDdunUIDw9Hbm4utLS0sG7dOuzYsQNH\njhwRnJSIGhOZTIbExERs3boVO3fuRFVVFTw8PPDNN9+IjlZrlZWV2Lp1K0aNGoU2bdqIjlOvuJVR\nvWhoaODSpUswMTFRWL98+TLMzMxQUVEhKBnV1M6dOzFp0iQMHz5c/r4lJSUF8fHxiI2Nhbu7u+CE\ndWP27NlISEjAqlWrMHXqVISFheHChQuIiIhAQEAAPD09RUekWsjMzERwcDBiYmJQVVXFwqqKSUpK\nwrhx42BmZoYBAwYAAA4fPozz58/jp59+wqBBgwQnfDoW4pQIZy2onz59+mDNmjUYNmyY6Ch1rnnz\n5sjNzZW/GRo7dizs7e3x+eefAwBOnz6NAQMGPPHTQyKihpCeno7p06cjKytLbW6udXR0kJOTw0IU\nqYQff/wRADBx4kRERUXB0NBQfk0qlSI+Ph6//vorTp06JSoi1UJaWhqCg4Plp8fb2trC399f5Q8k\ne5yZmRmio6MxZMgQGBgYID09HdbW1tiyZQu+++47/PTTT6Ij0guQyWQ4ceIEEhMTkZiYiOTkZNy6\ndQsODg5wdnZGcHCw6Ij0gi5evIiwsDDk5uYCePg69N5778HU1FRwsmfj1lQlUlxcDCcnp2rrTk5O\nKC4uFpCIamv16tWYN28eVq1ahd69e0NXV1fhuirPlTAwMMCNGzfkbwaPHTuG6dOny69LJBJ+wk1E\nDa6oqAhbt27F1q1bcfLkSQwYMABhYWGiY9WZfv364cSJEyzEkUqYOHEigIf3BF5eXgrXmjRpgk6d\nOslHXJDq6d27N7799lvRMepVaWkpLC0tATy89300h3PgwIHw8fERGY1qoEWLFigrK0OPHj3g7OyM\nGTNmYNCgQTAyMhIdjWrI1NRUqU9HfRoW4pRIY5m10JiMHTsWAODm5qZw8IZMJoNEIlHpDo3+/fsj\nNDQUGzZswK5du3D79m0MHTpUfv306dON4gRDIlIOERER2Lp1K1JSUtC1a1d4enpiz549aleweu+9\n9+Dv74+ioqInfsDj4OAgKFntGRsbP/chVepyKIW6q6qqAvBw18fx48fRqlUrwYmorrz11ltwcXGB\ns7OzvFCljiwtLZGfnw8zMzN07doVsbGx6NevH+Li4li8UUHffvstBg0apNLNEARkZWX953O0tLTQ\ntm1btGjRogESvThuTVUijWXWQmOSlJT0zOuP5qupoqysLAwbNgy3bt1CZWUlFi1ahFWrVsmvT506\nFbq6uggPDxeYkogai44dO+LNN9+Ep6en0g/orQ0NDY1qaxKJRC0+4ImKinru5/67u4qIGtY777yD\ngwcP4syZM2jfvr184L2zs7NaNRAEBwdDU1MTfn5++O233+Dq6gqZTIYHDx4gKCgIc+bMER2RqNHR\n0NCQ3/s8i0QiQY8ePRAdHQ17e/sGSvd8WIhTMo1h1gI9dPLkSaV7QXhR165dQ0pKCtq2bYuXXnpJ\n4dq+fftgZ2enlgdVEJHyeVSIehJ1eL195Ny5c8+8rm4dgKTaDh8+jJKSEowfP16+Fh0djWXLlqG8\nvBwTJ07El19+qVYnGzc2Fy5cwMGDB5GUlISkpCScPn0a7dq1Q1FRkeho9aKgoEA+J06VO5AbEw8P\nj+d+7q5du+oxCdWV/7oXAh52ZF++fBlr167FlStXcOjQoQZI9vxYiCNqQLdv38Z3332HjRs3Ii0t\nTaU7F4iIlBlfb1XTxYsXERQUhKVLl1bbOnTz5k2sXr0aH3zwAdq3by8oIb2IMWPGYMiQIViwYAEA\nIDs7G46Ojpg2bRpsbW2xdu1azJw5E8uXLxcblGrszp07SE5ORkJCAhITE5Geng47OzucOHFCdDQi\nAIC3t7f8a5lMhh9++AGGhobo06cPgIeNMDdu3ICHhwc2b94sKibVkzNnzqBHjx4oLy8XHUUBC3FK\npLHMWmiMDh48iE2bNmHnzp0wNTWFh4cHXnnlFfTt21d0tBoLDQ39z+c82ps/cOBAmJiYNEAqImrs\n1PH19t/Onj2LkJAQefe8nZ0d5syZAysrK8HJam/evHm4desWvv766ydenzVrFrS0tLB+/foGTkY1\n0a5dO8TFxcnf8C5evBhJSUlITk4GAGzfvh3Lli3DX3/9JTIm1cCiRYuQmJiIEydOwNbWVr41dfDg\nwTA2NhYdr9bYzameFixYgNLSUoSHh0NTUxPAwxOc33vvPRgYGGDt2rWCE1Jdk0qlOHnypNKNLWEh\nTok0llkLjcWlS5cQGRmJTZs24datW3j99dcRHh6OzMxM2NnZiY5Xa8+z5bSqqgolJSWoqqrCt99+\n+0Kt4UREz0vdX28f98svv8DNzQ09e/ZUmCebmZmJuLg4jBgxQnDC2rG3t0d4eDgGDhz4xOupqamY\nMWMG/vzzzwZORjXRrFkz5OXlyQ9vGjhwIMaMGYPFixcDeLjNr3v37rh9+7bImFQDGhoaaN26NebO\nnQsPDw906dJFdKQ6xW5O9dS6dWskJyfDxsZGYf3UqVNwcnJCSUmJoGTU2LAQp4Qa26wFdeTq6oqD\nBw9i3Lhx8PT0xOjRo6GpqYkmTZqo5RvDZ6mqqkJAQAC2bNki794gIqorje31tlevXhg1ahQCAgIU\n1hcuXIgDBw4gPT1dULK6oauri5ycHJiZmT3xemFhIWxtbZVuiwk9mbm5ObZs2YLBgwfj/v37MDIy\nQlxcHIYNGwbgYXHD2dmZp+CqoMzMTCQlJSExMRGHDh2Ctra2vIlgyJAhKl+YYzenejI2NkZkZCQm\nTJigsL5nzx5MmzYN169fF5SMGhst0QGoOmNjY7Rs2RLGxsYwMjKClpYWWrduLToWvYCff/4Zfn5+\n8PHxafTdjBoaGvDy8kJwcLDoKESkhhrb621OTg5iY2Orrb/99tsICQkRkKhuNW/eHAUFBU8txBUU\nFKB58+YNnIpqauzYsVi4cCHWrFmD3bt3Q0dHB4MGDZJfz8rKUost1Y1Rjx490KNHD/j5+QF4WJgL\nDg7G7NmzUVVVpfJzOa9fv442bdrIHyclJWHMmDHyx3379sX58+dFRKNa8Pb2xvTp03H27Fn069cP\nAHD06FEEBAQozJIjqm8aogPQPxYtWgQnJye0bNkSCxcuxL1797Bw4UJcunSJA09VTHJyMm7fvo3e\nvXvjpZdewvr163Ht2jXRserU4cOHsXfvXoW16OhoWFhYwMTEBO+++y4qKioAAO3bt8fVq1dFxCQi\nNdcYXm8f17p1a2RkZFRbz8jIUItZnC+99BK2bNny1OvR0dHyN0+k/FatWgUtLS04Oztjw4YN2LBh\nA7S1teXXv/nmG4wcOVJgQqopmUyG9PR0BAUFwc3NDS4uLvj222/RvXt3eXFOlbVp0wb5+fkAgPv3\n7yM9PR39+/eXX799+zaaNGkiKh7V0Lp16/DRRx8hMDAQgwcPxuDBgxEUFIT58+dzPhw1KG5NVSLq\nPmuhMSovL8e2bdvwzTff4NixY5BKpQgKCsLbb78NfX190fFqhbMziEiZqPPr7eNWrlyJ4OBgLFy4\nEE5OTgAezohbs2YNPvzwQyxZskRwwtpJSEjAiBEj8MEHH2D+/PnyjpTLly/j888/xxdffIEDBw5g\n6NChgpPSi7h58yb09PTkw9EfKS0thZ6enkJxjlSDsbExysrK0KNHD/mW1EGDBsHIyEh0tDrh4+OD\nzMxMeTdnVFQULl68KP9vNSYmBiEhITh+/LjgpFRTt27dAoBqJ3ST6rh8+TLmzZuH+Ph4XLlyBf8u\nbSlzZy4LcUpE3WctNHanTp3Cpk2bsGXLFty4cQMjRozAjz/+KDpWjXF2BhEpK3V7vX2cTCZDSEgI\nAgMDcfHiRQCAqakp5s+fDz8/P0gkEsEJay8iIgJz5szBgwcPYGBgAIlEgps3b6JJkyYIDg6Gj4+P\n6IhEjd6+ffswaNAgtS1iXLt2DR4eHkhOToaenh6ioqLg7u4uvz5s2DD0798fn376qcCUVBOVlZVI\nTEzE2bNnMXnyZOjr6+PixYswMDCAnp6e6Hj0AsaMGYPCwkL4+vqiXbt21e6B/j0LUJmwEKfEHs1a\niImJUYtZC/SQVCpFXFwcvvnmG5V+Y8iT0IhI2anL6+2PP/6IMWPGVNsG9ej1VZ06/h65cOECYmNj\ncebMGchkMnTp0gWvvvoqOnToIDoaETUi7OZUL+fOncPo0aNRWFiIiooKnD59GpaWlpgzZw4qKioQ\nHh4uOiK9AH19fRw6dAg9e/YUHeWFsRCnRGQyGU6cOIHExEQkJiYiOTkZt27dgoODA5ydnTnsnpQK\nT0IjImoYmpqauHTpElq3bg1NTU0UFxerxTw4IlItHh4ez/3cXbt21WMSopqZOHEi9PX1sWnTJrRs\n2RKZmZmwtLREYmIiZsyYgby8PNER6QXY2dkhJiYGvXr1Eh3lhfHUVCXSokULhVkLM2bMUKtZC6Re\neBIaEVHDaN26NY4cOQJXV1fIZDK12H5KRKrH0NBQ/rVMJsMPP/wAQ0ND+ZiStLQ03Lhx44UKdkQN\n6dChQ0hNTa3WydipUydcuHBBUCqqqZCQECxcuBARERHo1KmT6DgvhIU4JfLtt9+q9awFUi+rVq2C\nh4cHnJ2d5bMzeBIaEVHdmzVrFiZMmACJRAKJRIK2bds+9bkcY0FE9WXz5s3yrxcsWIDXX38d4eHh\n8m2bUqkU7733Ht/LkNJ62rinoqIitRzzoO4mTZqEO3fuwMrKCjo6OtVGeCjzzixuTSWiWuHsDCKi\n+pebm4szZ87Azc0Nmzdvfmq3vDIPJiYi9dG6dWskJyfDxsZGYf3UqVNwcnJCSUmJoGRETzdp0iQY\nGhri66+/hr6+PrKystC6dWtMmDABZmZmCsVmUn5RUVHPvO7l5dVASV4cC3GCcdYCERFRzTg6OiI+\nPh7GxsZYuXIl5s2bBx0dHdGx6tWKFSswf/58tf99EpFyMzY2RmRkZLXi/549ezBt2jRcv35dUDKi\npysqKsKoUaMgk8mQl5eHPn36IC8vD61atcLBgwc5f5UaDAtxgnl7e8u//q9ZC6zQExER/aN58+bI\ny8tDhw4deIgBEVED+vDDDxEdHY1FixahX79+AICjR48iICAAU6dORVBQkOCERE9WWVmJbdu2ITMz\nE2VlZXB0dISnpyeaN28uOhrVwr1793D//n2FNWXeJs9CnBJZsGABSktLnzprYe3atYITEhERKY8B\nAwZAT08PAwcOxIoVKzBv3jzo6ek98blLly5t4HR15/HOv169ej3zsIb09PQGTFZ/pFIpgoODERsb\ni8LCwmo318o894WoMaiqqsK6devwxRdfoLi4GADQrl07zJkzB/7+/tVGlhApu7t377IYp2LKy8ux\nYMECxMbGPnE7vDLPzWUhTolw1gIREdHzO3XqFJYtW4azZ88iPT0ddnZ20NKqfg6VRCJR6QLV49tR\nV6xY8cznLlu2rIFS1a+lS5di48aN8Pf3xyeffILFixejoKAAu3fvxtKlS+Hn5yc6IhH9f7du3QKg\n3N0nRE9TUVGB9evXY+3atbh06ZLoOPQCZs+ejYSEBKxatQpTp05FWFgYLly4gIiICAQEBMDT01N0\nxKdiIU6JcNYCERFRzWhoaODSpUvcmqomrKysEBoainHjxkFfXx8ZGRnytSNHjmDr1q2iIxI1epWV\nlUhMTMTZs2cxefJk6Ovr4+LFizAwMHhqdzKRCBUVFVi+fDl+/fVXaGtr46OPPsLEiROxefNmLF68\nGJqamvD19cWCBQtER6UXYGZmhujoaAwZMgQGBgZIT0+HtbU1tmzZgu+++w4//fST6IhPVf1jYxLG\n29sb06dPx9mzZ6vNWnh8lhwREREpbtlctmwZ3/ipkUuXLqF79+4AAD09Pdy8eRMAMH78eCxZskRk\nNCICcO7cOYwePRqFhYWoqKjAiBEjoK+vjzVr1qCiogLh4eGiIxLJLV26FBERERgxYgRSUlLw2muv\nwdvbG0eOHEFQUBBee+01bqdWQaWlpbC0tATwsCP30diKgQMHwsfHR2S0/8RCnBJZt24d2rZti8DA\nQIVZC/Pnz4e/v7/gdERERMolJycH5eXl8lNTfXx81PI0UWNj42fOhXucusxO69ChA4qLi2FmZgYr\nKyscOHAAjo6OOH78OJo2bSo6HlGjN2fOHPTp0weZmZlo2bKlfN3d3R0zZswQmIyouu3btyM6Ohpu\nbm44efIkHBwcUFlZiczMzOf++UrKx9LSEvn5+TAzM0PXrl0RGxuLfv36IS4uDkZGRqLjPRO3piop\nzlogIiJ6tsZyWENUVNRzP9fLy6sekzSchQsXwsDAAIsWLcK2bdswZcoUdOrUCYWFhZg7dy4CAgJE\nRyRq1Fq2bInU1FTY2NhAX18fmZmZsLS0REFBAezs7HDnzh3REYnktLW1kZ+fj/bt2wN4eOr6sWPH\n5J3XpJqCg4OhqakJPz8//Pbbb3B1dYVMJsODBw8QFBSEOXPmiI74VCzEKRnOWiAiIno+jeWwBgKO\nHDmC1NRUdO7cGa6urqLjEDV6xsbGSElJgZ2dnUIhLjk5Ga+88gouX74sOiKRnKamJi5duoTWrVsD\nAPT19ZGVlQULCwvByaguFRQUyOfEOTg4iI7zTCzEKZF/z1o4ffo0LC0tMWfOHM5aICIieobGeFjD\nvXv3cP/+fYU1demkP3jwIJycnKoVVisrK5GamorBgwcLSkZEADBp0iQYGhri66+/lhc1WrdujQkT\nJsDMzAybN28WHZFITkNDA2PGjJGPNoiLi8PQoUOhq6ur8Lxdu3aJiEeNkIboAPSPR7MWrl+/jubN\nm8vX3d3dER8fLzAZERGR8nrw4AG8vLxQXl4uOkq9Ky8vh6+vL0xMTKCrqwtjY2OFX+rCxcXlifPu\nbt68CRcXFwGJiOhxgYGB8o64e/fuYfLkyejUqRMuXLiANWvWiI5HpMDLywsmJiYwNDSEoaEhpkyZ\nAlNTU/njR79INRw+fBh79+5VWIuOjoaFhQVMTEzw7rvvoqKiQlC658PDGpTIoUOHkJqaCm1tbYX1\nRz/UiIiIqLomTZrghx9+UOk5cM/ro48+QkJCAr766itMnToVYWFhuHDhAiIiItRqbppMJnviAO2S\nkpJqHQxE1PA6dOiAzMxMbNu2DZmZmSgrK8P06dPh6emp0FBApAzYoaleVq5ciSFDhmD8+PEAgOzs\nbEyfPh3Tpk2Dra0t1q5dC1NTUyxfvlxs0GdgIU6JVFVVQSqVVlsvKiqCvr6+gERERESqYcKECdi9\nezfmzp0rOkq9iouLQ3R0NIYMGQJvb28MGjQI1tbWMDc3R0xMDDw9PUVHrBUPDw8AD+f6TZs2TeGE\nVKlUiqysLDg5OYmKR0SP0dLSgqenZ7XXnbt377IYR0T1JiMjA6tWrZI//v777/HSSy9hw4YNAICO\nHTti2bJlLMTR8xk5ciRCQkLw9ddfA3h4E1pWVoZly5Zh7NixgtMREREpr86dO2PlypVISUlB7969\nq3VN+fn5CUpWt0pLS2FpaQng4Ty4R9s3Bw4cCB8fH5HR6sSjrUEymQz6+voKb+a1tbXRv39/zJgx\nQ1Q8InqGiooKrF+/HmvXrsWlS5dExyEiNXX9+nW0adNG/jgpKQljxoyRP+7bty/Onz8vItpzYyFO\niQQGBmLUqFEKsxby8vLQqlUrfPfdd6LjERERKa1NmzbByMgIaWlpSEtLU7gmkUjUphBnaWmJ/Px8\nmJmZoWvXroiNjUW/fv0QFxcHIyMj0fFq7dH2oU6dOmHevHnchkqkZCoqKrB8+XL8+uuv0NbWxkcf\nfYSJEydi8+bNWLx4MTQ1NdW+M5mIxGrTpg3y8/PRsWNH3L9/H+np6VixYoX8+u3bt9GkSROBCf8b\nT01VMpWVlQqzFhwdHTlrgYiIiAAAwcHB0NTUhJ+fH3777Te4urpCJpPhwYMHCAoKwpw5c0RHJCI1\ntmDBAkRERGDEiBFISUnB1atX4e3tjSNHjmDRokV47bXXoKmpKTomEakxHx8fZGZmYs2aNdi9ezei\noqJw8eJF+az9mJgYhISE4Pjx44KTPh0LcSqCsxaIiIiez6NbmycN+1c3586dQ1paGqytreHg4CA6\nTp25fPky5s2bh/j4eFy5cgX/vl190kxdIqp/lpaWCAkJgZubG06ePAkHBwdMmzYNmzZtahSvuUQk\n3rVr1+Dh4YHk5GTo6ekhKioK7u7u8uvDhg1D//798emnnwpM+WwsxCk5zlogIiJ6PtHR0Vi7di3y\n8vIAAF26dMH8+fMxdepUwcnoRY0ZMwaFhYXw9fVFu3btqr3BnzBhgqBkRI2btrY28vPz0b59ewBA\n8+bNcezYMXTv3l1wMiJqbG7evAk9Pb1qXbilpaXQ09OTd8gpI86IUwKctUBERFQ7QUFBWLJkCXx9\nffHyyy8DAJKTkzFr1ixcu3ZN5X+O/v777/D19cWRI0dgYGCgcO3mzZtwcnJCUFAQRo0aJShh3UpO\nTsahQ4fQs2dP0VGI6DFSqVThza2Wlhb09PQEJiKixurRAU//1qJFiwZO8uLYEacEOGuBiIiodiws\nLLBixQq89dZbCutRUVFYvnw58vPzBSWrG25ubnBxcXlqQTE0NBQHDhzA3r17GzhZ/bCzs0NMTAx6\n9eolOgoRPUZDQwNjxoxB06ZNAQBxcXEYOnRotYNVdu3aJSIeEZFK0BAdgIDt27cjOjoa27dvx4ED\nByCVSlFZWYnMzEy88cYbLMIRERH9h+LiYjg5OVVbd3JyQnFxsYBEdSszMxOjR49+6vWRI0ciKyur\nARPVr5CQECxcuBAFBQWioxDRY7y8vGBiYgJDQ0MYGhpiypQpMDU1lT9+9IuIiJ6OW1OVQFFREXr3\n7g0AsLe3R9OmTTF37lwOPCUiInpO1tbWiI2NxaJFixTWt23bhs6dOwtKVXcuX76MJk2aPPW6lpYW\nrl692oCJ6tekSZNw584dWFlZQUdHp9rvvbT6EDabAAAOd0lEQVS0VFAyosZt8+bNoiMQEak8FuKU\nAGctEBER1c6KFSswadIkHDx4UD4jLiUlBfHx8YiNjRWcrvbat2+PkydPwtra+onXs7Ky0K5duwZO\nVX9CQkJERyAiIiKqF5wRpwQ4a4GIiKj20tLSEBwcjJycHACAra0t/P391WLO2Pvvv4/ExEQcP34c\nzZo1U7h29+5d9OvXDy4uLggNDRWUkIiIiIieBwtxSsDb2/u5nsdWcCIiosbp8uXLcHR0hKamJnx9\nfWFjYwMAyM3NRVhYGKRSKdLT09GmTRvBSevevXv3cP/+fYW1f58cS0RERKQqWIgjIiIilaepqYni\n4mKYmJgorJeUlMDExARSqVRQsrpz7tw5+Pj44JdffsGj2zeJRIJRo0YhLCwMFhYWghPWnfLycixY\nsACxsbEoKSmpdl0d/j6JiIioceKMOCIiIlJ5T/tcsaKiQmEOqyozNzfHTz/9hOvXr+PMmTOQyWTo\n3LkzjI2NRUercx999BESEhLw1VdfYerUqQgLC8OFCxcQERGBgIAA0fGIiIiIaoyFOCIiIlJZj2ai\nSSQSbNy4UeGwI6lUioMHD6Jr166i4tULY2Nj9O3bV3SMehUXF4fo6GgMGTIE3t7eGDRoEKytrWFu\nbo6YmBh4enqKjkhERERUIyzEERERkcoKDg4G8LAjLjw8HJqamvJr2tra6NSpE8LDw0XFoxoqLS2F\npaUlgIfz4EpLSwEAAwcOhI+Pj8hoRERERLXCQhwRERGprPz8fACAi4sLdu3apZbbNBsjS0tL5Ofn\nw8zMDF27dkVsbCz69euHuLg4GBkZiY5HREREVGM8rIGIiIjUjlQqRXZ2NszNzVmcU0HBwcHQ1NSE\nn58ffvvtN7i6ukImk+HBgwcICgrCnDlzREckIiIiqhEW4oiIiEjlffDBB+jevTumT58OqVSKwYMH\n4/Dhw9DR0cHevXsxZMgQ0RGpFgoKCpCeng5ra2s4ODiIjkNERERUYyzEERERkcpr37499uzZgz59\n+mD37t2YPXs2EhISsGXLFvz+++9ISUkRHZGIiIiICBqiAxARERHVVklJCdq2bQsA+Omnn/Daa6+h\nS5cuePvtt5GdnS04HT2vw4cPY+/evQpr0dHRsLCwgImJCd59911UVFQISkdERERUeyzEERERkcpr\n06YN/vrrL0ilUuzfvx8jRowAANy5c0fhJFVSbitXrsSff/4pf5ydnY3p06dj+PDhWLhwIeLi4vDZ\nZ58JTEhERERUOyzEERERkcrz9vbG66+/Dnt7e0gkEgwfPhwAcPToUXTt2lVwOnpeGRkZGDZsmPzx\n999/j5deegkbNmzAhx9+iNDQUMTGxgpMSERERFQ7WqIDEBEREdXW8uXLYW9vj/Pnz+O1115D06ZN\nAQCamppYuHCh4HT0vK5fv442bdrIHyclJWHMmDHyx3379sX58+dFRCMiIiKqEyzEERERkVp49dVX\nq615eXkJSEI11aZNG+Tn56Njx464f/8+0tPTsWLFCvn127dvo0mTJgITEhEREdUOC3FERESk8kJD\nQ5+4LpFI0KxZM1hbW2Pw4MGcF6fkxo4di4ULF2LNmjXYvXs3dHR0MGjQIPn1rKwsWFlZCUxIRERE\nVDsSmUwmEx2CiIiIqDYsLCxw9epV3LlzB8bGxgAebnPU0dGBnp4erly5AktLSyQkJKBjx46C09LT\nXLt2DR4eHkhOToaenh6ioqLg7u4uvz5s2DD0798fn376qcCURERERDXHQhwRERGpvNjYWHz11VfY\nuHGjvGPqzJkzmDlzJmbMmIGBAwfijTfeQNu2bbFjxw7Baem/3Lx5E3p6etU6GEtLS6GnpwdtbW1B\nyYiIiIhqh4U4IiIiUnnW1tbYsWMHevbsqbB+4sQJvPLKK/j777+RmpqKV155BcXFxYJSEhEREVFj\npyE6ABEREVFtXbx4EZWVldXWKysrcenSJQCAqakpbt++3dDRiIiIiIjkWIgjIiIilefi4oKZM2fi\nxIkT8rUTJ07Ax8cHQ4cOBQBkZ2fDwsJCVEQiIiIiIhbiiIiISPVt2rQJLVq0QO/evdG0aVM0bdoU\nffr0QYsWLbBp0yYAgJ6eHgIDAwUnJSIiIqLGjDPiiIiISG3k5ubi9OnTAAAbGxvY2NgITkRERERE\n9A8W4oiIiIiIiIiIiBqAlugARERERLUllUoRGRmJ+Ph4XLlyBVVVVQrXf//9d0HJiIiIiIj+wUIc\nERERqbw5c+YgMjIS48aNg729PSQSiehIRERERETVcGsqERERqbxWrVohOjoaY8eOFR2FiIiIiOip\neGoqERERqTxtbW1YW1uLjkFERERE9EwsxBEREZHK8/f3xxdffAE2+hMRERGRMuPWVCIiIlJ57u7u\nSEhIQIsWLdCtWzc0adJE4fquXbsEJSMiIiIi+gcPayAiIiKVZ2RkBHd3d9ExiIiIiIieiR1xRERE\nREREREREDYAz4oiIiEgtVFZW4rfffkNERARu374NALh48SLKysoEJyMiIiIieogdcURERKTyzp07\nh9GjR6OwsBAVFRU4ffo0LC0tMWfOHFRUVCA8PFx0RCIiIiIidsQRERGR6pszZw769OmD69evo3nz\n5vJ1d3d3xMfHC0xGRERERPQPHtZAREREKu/QoUNITU2Ftra2wnqnTp1w4cIFQamIiIiIiBSxI46I\niIhUXlVVFaRSabX1oqIi6OvrC0hERERERFQdC3FERESk8kaOHImQkBD5Y4lEgrKyMixbtgxjx44V\nmIyIiIiI6B88rIGIiIhUXlFREUaNGgWZTIa8vDz06dMHeXl5aNWqFQ4ePAgTExPREYmIiIiIWIgj\nIiIi9VBZWYlt27YhMzMTZWVlcHR0hKenp8LhDUREREREIrEQR0RERGrt7t27LMYRERERkVLgjDgi\nIiJSSxUVFQgMDISFhYXoKEREREREAFiIIyIiIhVWUVGBjz/+GH369IGTkxN2794NANi8eTMsLCwQ\nEhKCuXPnCk5JRERERPQQt6YSERGRylqwYAEiIiIwYsQIpKSk4OrVq/D29saRI0ewaNEivPbaa9DU\n1BQdk4iIiIgIAKAlOgARERFRTW3fvh3R0dFwc3PDyZMn4eDggMrKSmRmZkIikYiOR0RERESkgB1x\nREREpLK0tbWRn5+P9u3bAwCaN2+OY8eOoXv37oKTERERERFVxxlxREREpLKkUim0tbXlj7W0tKCn\npycwERERERHR03FrKhEREaksmUyGadOmoWnTpgCAe/fuYdasWdDV1VV43q5du0TEIyIiIiJSwEIc\nERERqSwvLy+Fx1OmTBGUhIiIiIjov3FGHBERERERERERUQPgjDgiIiIiIiIiIqIGwEIcERERERER\nERFRA2AhjoiIiIiIiIiIqAGwEEdERERERERERNQAWIgjIiIiIiIiIiJqACzEERERETVSEokEu3fv\nrtX3iIyMhJGRUa2zdOrUCSEhIbX+PkRERETKjIU4IiIiIjV16dIlvP/++7C0tETTpk3RsWNHuLq6\nIj4+HgBQXFyMMWPGCE5JRERE1HhoiQ5ARERERHWvoKAAL7/8MoyMjLB27Vp0794dDx48wC+//ILZ\ns2cjNzcXbdu2FR2TiIiIqFFhRxwRERGRGnrvvfcgkUhw7NgxvPLKK+jSpQu6deuGDz/8EEeOHAGg\nuDU1MTEREokEN27ckH+PjIwMSCQSFBQUyNciIyNhZmYGHR0duLu7o6SkROHfe/bsWUyYMAFt2rSB\nnp4e+vbti99++03hOVeuXIGrqyuaN28OCwsLxMTE1NOfAhEREZFyYSGOiIiISM2UlpZi//79mD17\nNnR1datdr+lMt6NHj2L69Onw9fVFRkYGXFxcsHr1aoXnlJWVYezYsYiPj8eJEycwevRouLq6orCw\nUP6cadOm4fz580hISMCOHTvwf//3f7hy5UqNMhERERGpEm5NJSIiIlIzZ86cgUwmQ9euXev0+37x\nxRcYPXo0PvroIwBAly5dkJqaiv3798uf06NHD/To0UP+eNWqVfjhhx/w448/wtfXF6dPn8bPP/+M\nY8eOoW/fvgCATZs2wdbWtk6zEhERESkjdsQRERERqRmZTFYv3zcnJwcvvfSSwtqAAQMUHpeVlWHe\nvHmwtbWFkZER9PT0kJOTI++Iy8nJgZaWFnr37i3/Z7p27VonJ68SERERKTt2xBERERGpmc6dO0Mi\nkSA3N/e5/xkNjYefzz5exHvw4MEL/7vnzZuHX3/9FevWrYO1tTWaN2+OV199Fffv33/h70VERESk\nbtgRR0RERKRmWrRogVGjRiEsLAzl5eXVrj9+IMMjrVu3BgAUFxfL1zIyMhSeY2tri6NHjyqsPTr4\n4ZGUlBRMmzYN7u7u6N69O9q2batw2EPXrl1RWVmJtLQ0+dqpU6eemImIiIhI3bAQR0RERKSGwsLC\nIJVK0a9fP+zcuRN5eXnIyclBaGhote2kAGBtbY2OHTti+fLlyMvLw759+xAYGKjwHD8/P+zfvx/r\n1q1DXl4e1q9frzAfDnjYjbdr1y5kZGQgMzMTkydPRlVVlfy6jY0NRo8ejZkzZ+Lo0aNIS0vDO++8\ng+bNm9fPHwQRERGREmEhjoiIiEgNWVpaIj09HS4uLvD394e9vT1GjBiB/fv3VyuwAUCTJk3w3Xff\nITc3Fw4ODlizZk21E1H79++PDRs24IsvvkCPHj1w4MABfPLJJwrPCQoKgrGxMZycnODq6opRo0bB\n0dFR4TmbN2+GqakpnJ2d4eHhgXfffRcmJiZ1/4dAREREpGQksvqa5ktERET/r107pgEAAGAQ5t/1\nvkngamUQAAAAzhEHAAAAAAEhDgAAAAACQhwAAAAABIQ4AAAAAAgIcQAAAAAQEOIAAAAAICDEAQAA\nAEBAiAMAAACAgBAHAAAAAAEhDgAAAAACQhwAAAAABAb4YZZSD8orQAAAAABJRU5ErkJggg==\n", "text/plain": [ "<matplotlib.figure.Figure at 0xcb7fd90>" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "#Visulizacion de la cantidad de viajes segun la estacion\n", "#Solo mostramos las 20 ciudades con mas cantidad de viajes\n", "plt = arch_unidos['start_station_name'].value_counts().tail(20).plot('bar')\n", "plt.set_xlabel('Ciudad')\n", "plt.set_ylabel('Cantidad de viajes')\n", "plt.set_title('Top20 de estaciones con mas cantidad de viajes')\n" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "collapsed": true }, "outputs": [], "source": [] } ], "metadata": { "kernelspec": { "display_name": "Python 2", "language": "python", "name": "python2" }, "language_info": { "codemirror_mode": { "name": "ipython", "version": 2 }, "file_extension": ".py", "mimetype": "text/x-python", "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython2", "version": "2.7.13" } }, "nbformat": 4, "nbformat_minor": 2 }
mit
lowcloudnine/singularity-spark
ipython_notebooks/schiefjm/PySpark Examples/Structures of GSOD.ipynb
1
7633
{ "metadata": { "name": "", "signature": "sha256:e5d192f6bc81a49ae3a355be2c6352fb063c2d07084ae4f9fa35e9f78f5c0e4b" }, "nbformat": 3, "nbformat_minor": 0, "worksheets": [ { "cells": [ { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Imports" ] }, { "cell_type": "code", "collapsed": false, "input": [ "%pylab inline\n", "\n", "from __future__ import absolute_import\n", "from __future__ import division\n", "from __future__ import print_function\n", "\n", "from future.builtins import (bytes, str, open, super, range,\n", " zip, round, input, int, pow, object)\n", "\n", "if sys.version_info.major == 2:\n", " # in Python 2 cPickle is much faster than pickle but doesn't deal w/ unicode\n", " import cPickle as pickle\n", "else:\n", " # Python 3 loads the faster pickle by default if it's available\n", " import pickle\n", "\n", "import collections\n", "import random\n", "import time" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "Populating the interactive namespace from numpy and matplotlib\n" ] } ], "prompt_number": 1 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "SparkContext Info" ] }, { "cell_type": "code", "collapsed": false, "input": [ "from utils import header\n", "print(header.create_header(sc))" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "\n", "Test Name No\n", "Machine c1-master.ec2.internal\n", "Date 19 Feb 2015\n", "Start Time 16:19:43\n", "\n", "Spark Configuration\n", "========================================================================\n", "spark.executor.extraLibraryPath\n", " /opt/cloudera/parcels/CDH-5.3.1- .. 5.3.1.p0.5/lib/hadoop/lib/native\n", "spark.executor.memory\n", " 2g\n", "spark.driver.extraLibraryPath\n", " /opt/cloudera/parcels/CDH-5.3.1- .. 5.3.1.p0.5/lib/hadoop/lib/native\n", "spark.executor.instances\n", " 8\n", "spark.serializer.objectStreamReset\n", " 100\n", "spark.eventLog.enabled\n", " true\n", "spark.yarn.historyServer.address\n", " http://c1-master.ec2.internal:18088\n", "spark.cores.max\n", " 8\n", "spark.rdd.compress\n", " True\n", "spark.app.name\n", " PySparkShell\n", "spark.eventLog.dir\n", " hdfs://c1-master.ec2.internal:8020/user/spark/applicationHistory\n", "spark.master\n", " yarn-client\n", "========================================================================\n", "\n", "\n" ] } ], "prompt_number": 2 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Filter Functions for RDDs" ] }, { "cell_type": "code", "collapsed": false, "input": [ "def is_ob(ob):\n", " return \"STN\" not in ob\n", "\n", "def is_station(station_id, ob):\n", " return station_id in ob\n", "\n", "def obs_by_station(obs_rdd):\n", " \"\"\" Given an RDD of observations from GSOD returns a dictionary of the observations\n", " the key is the station id and the value is an array of the observations for that\n", " station.\n", " \n", " \"\"\"\n", " stations = obs_rdd.map(lambda line: (line.split()[0], 1))\\\n", " .reduceByKey(lambda x, y: x + y)\\\n", " .collect()\n", " \n", " station_obs = {}\n", " for station in stations:\n", " station_id = str(station[0])\n", " station_obs[station_id] = \\\n", " obs_rdd.filter(lambda line: is_station(station_id, line))\\\n", " .collect()\n", " \n", " return station_obs\n", "\n", "def obs_by_year(years):\n", " \"\"\" Given a list of years returns an ordered dictionary of the years with a value of\n", " a dictionary of station_ids with the value of observations.\n", " \n", " \"\"\"\n", " years_of_obs = collections.OrderedDict()\n", " for year in years:\n", " obs_rdd = sc.textFile(\"/user/schiefjm/weather/gsod/\" + str(year))\\\n", " .filter(lambda line: is_ob(line))\n", " obs_dict = collections.OrderedDict(obs_by_station(obs_rdd))\n", " years_of_obs[year] = obs_dict\n", " \n", " return years_of_obs" ], "language": "python", "metadata": {}, "outputs": [], "prompt_number": 3 }, { "cell_type": "code", "collapsed": false, "input": [ "structured_obs = obs_by_year([year for year in range(1929, 1930)])\n", "sys.getsizeof(structured_obs)" ], "language": "python", "metadata": {}, "outputs": [ { "metadata": {}, "output_type": "pyout", "prompt_number": 4, "text": [ "280" ] } ], "prompt_number": 4 }, { "cell_type": "code", "collapsed": false, "input": [ "persistent_stations = set()\n", "\n", "years = [key for key in structured_obs]\n", "for year in years:\n", " for key in structured_obs[year]:\n", " persistent_stations.add(key)\n", "\n", "print(len(persistent_stations))\n", "for station in sorted(persistent_stations):\n", " # print(station)\n", " pass" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "21\n" ] } ], "prompt_number": 5 }, { "cell_type": "code", "collapsed": false, "input": [ "for year in range(1929, 1933):\n", " stations = sc.textFile(\"/user/schiefjm/weather/gsod/\" + str(year))\\\n", " .filter(lambda line: \"STN\" not in line)\\\n", " .map(lambda line: (line.split()[0], 1))\\\n", " .reduceByKey(lambda x, y: x + y)\\\n", " .collect()\n", " \n", " print(year, len(set(stations)))" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "1929 21\n", "1930" ] }, { "output_type": "stream", "stream": "stdout", "text": [ " 23\n", "1931" ] }, { "output_type": "stream", "stream": "stdout", "text": [ " 31\n", "1932" ] }, { "output_type": "stream", "stream": "stdout", "text": [ " 39\n" ] } ], "prompt_number": 6 } ], "metadata": {} } ] }
apache-2.0
jakerylandwilliams/partitioner
tests/partitioner_examples.ipynb
2
14235
{ "cells": [ { "cell_type": "markdown", "metadata": {}, "source": [ "## Partitioner examples\n", "### This is a jupyter notebook with a few vignettes that present some of the Python partitioner package's functionality.\n", "Note: Cleaning of text and determination of clauses occurs in the partitionText method. Because of this, it is unwise to pass large, uncleaned pieces of text as 'clauses' directly through the .partition() method (regardless of the type of partition being taken), as this will simply tokenize the text by splitting on \" \", producing many long, punctuation-filled phrases, and likely run very slow. As such, best practices only use .partition() for testing and exploring the tool on case-interested clauses.\n" ] }, { "cell_type": "code", "execution_count": 7, "metadata": { "collapsed": false }, "outputs": [], "source": [ "from partitioner import partitioner\n", "from partitioner.methods import *" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "### Process the English Wiktionary to generate the (default) partition probabilities.\n", "Note: this step can take significant time for large dictionaries (~5 min)." ] }, { "cell_type": "code", "execution_count": 4, "metadata": { "collapsed": true }, "outputs": [], "source": [ "## Vignette 1: Build informed partition data from a dictionary, \n", "## and store to local collection\n", "def preprocessENwiktionary():\n", " pa = partitioner(informed = True, dictionary = \"./dictionaries/enwiktionary.txt\")\n", " pa.dumpqs(qsname=\"enwiktionary\")" ] }, { "cell_type": "code", "execution_count": 5, "metadata": { "collapsed": false }, "outputs": [], "source": [ "preprocessENwiktionary()" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "### Perform a few one-off partitions." ] }, { "cell_type": "code", "execution_count": 4, "metadata": { "collapsed": true }, "outputs": [], "source": [ "## Vignette 2: An informed, one-off partition of a single clause\n", "def informedOneOffPartition(clause = \"How are you doing today?\"):\n", " pa = oneoff()\n", " print pa.partition(clause)" ] }, { "cell_type": "code", "execution_count": 5, "metadata": { "collapsed": false }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "['How are you doing', 'today?']\n", "['Fine,', 'thanks a bunch', 'for', 'asking!']\n" ] } ], "source": [ "informedOneOffPartition()\n", "informedOneOffPartition(\"Fine, thanks a bunch for asking!\")" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "### Solve for the informed stochastic expectation partition (given the informed partition probabilities)." ] }, { "cell_type": "code", "execution_count": 6, "metadata": { "collapsed": true }, "outputs": [], "source": [ "## Vignette 3: An informed, stochastic expectation partition of a single clause\n", "def informedStochasticPartition(clause = \"How are you doing today?\"):\n", " pa = stochastic()\n", " print pa.partition(clause)" ] }, { "cell_type": "code", "execution_count": 7, "metadata": { "collapsed": false }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "{'are you': 1.407092428930965e-09, 'How are you': 0.00025712526951610467, 'How': 5.472370457590498e-06, 'doing': 0.000257136448270894, 'you doing': 3.79920846523168e-05, 'How are': 3.800164835444141e-05, 'are': 2.0796023583003835e-10, 'are you doing': 5.47075540492574e-06, 'today?': 1.0, 'you': 9.771662360456963e-09, 'How are you doing': 0.999699400711672}\n" ] } ], "source": [ "informedStochasticPartition()" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "### Perform a pure random (uniform) one-off partition." ] }, { "cell_type": "code", "execution_count": 8, "metadata": { "collapsed": true }, "outputs": [], "source": [ "## Vignette 4: An uniform, one-off partition of a single clause\n", "def uniformOneOffPartition(informed = False, clause = \"How are you doing today?\", qunif = 0.25):\n", " pa = oneoff(informed = informed, qunif = qunif)\n", " print pa.partition(clause)" ] }, { "cell_type": "code", "execution_count": 15, "metadata": { "collapsed": false }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "['How are', 'you doing today?']\n", "['How', 'are', 'you doing today?']\n" ] } ], "source": [ "uniformOneOffPartition()\n", "uniformOneOffPartition(qunif = 0.75)" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "### Solve for the uniform stochastic expectation partition (given the uniform partition probabilities)." ] }, { "cell_type": "code", "execution_count": 16, "metadata": { "collapsed": true }, "outputs": [], "source": [ "## Vignette 5: An uniform, stochastic expectation partition of a single clause\n", "def uniformStochasticPartition(informed = False, clause = \"How are you doing today?\", qunif = 0.25):\n", " pa = stochastic(informed = informed, qunif = qunif)\n", " print pa.partition(clause)" ] }, { "cell_type": "code", "execution_count": 17, "metadata": { "collapsed": false }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "{'are you doing today?': 0.10546875000000001, 'How are you': 0.14062499999999997, 'How': 0.25, 'doing': 0.0625, 'How are': 0.1875, 'How are you doing today?': 0.31640625, 'doing today?': 0.1875, 'you doing': 0.046875, 'are you doing': 0.03515624999999999, 'are': 0.0625, 'you doing today?': 0.14062499999999997, 'today?': 0.25, 'are you': 0.046875, 'you': 0.0625, 'How are you doing': 0.10546875000000001}\n", "{'a': 0.0625, 'Fine,': 0.25, 'thanks a': 0.046875, 'Fine, thanks a bunch for asking!': 0.23730468749999997, 'bunch for asking!': 0.14062499999999997, 'a bunch for': 0.03515624999999999, 'for': 0.0625, 'thanks a bunch for': 0.026367187499999993, 'Fine, thanks a bunch': 0.10546875000000001, 'Fine, thanks a bunch for': 0.0791015625, 'a bunch': 0.046875, 'Fine, thanks a': 0.14062499999999997, 'Fine, thanks': 0.1875, 'thanks': 0.0625, 'a bunch for asking!': 0.10546875000000001, 'asking!': 0.25, 'bunch for': 0.046875, 'for asking!': 0.1875, 'thanks a bunch for asking!': 0.0791015625, 'thanks a bunch': 0.03515624999999999, 'bunch': 0.0625}\n" ] } ], "source": [ "uniformStochasticPartition()\n", "uniformStochasticPartition(clause = \"Fine, thanks a bunch for asking!\")" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "### Build a rank-frequency distribution for a text and determine its Zipf/Simon (bag-of-phrase) $R^2$." ] }, { "cell_type": "code", "execution_count": 18, "metadata": { "collapsed": false }, "outputs": [], "source": [ "## Vignette 6: Use the default partitioning method to partition the main partitioner.py file and compute rsq\n", "def testPartitionTextAndFit():\n", " pa = oneoff()\n", " pa.partitionText(textfile = pa.home+\"/../README.md\")\n", " pa.testFit()\n", " print \"R-squared: \",round(pa.rsq,2)\n", " print\n", " phrases = sorted(pa.counts, key = lambda x: pa.counts[x], reverse = True)\n", " for j in range(25):\n", " phrase = phrases[j]\n", " print phrase, pa.counts[phrase]" ] }, { "cell_type": "code", "execution_count": 19, "metadata": { "collapsed": false, "scrolled": true }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "R-squared: 0.11\n", "\n", "project 7.0\n", " 5.0\n", "the 5.0\n", "code 4.0\n", "to 4.0\n", "and 4.0\n", "of the 3.0\n", "API 3.0\n", "should 2.0\n", "docs 2.0\n", "A short 2.0\n", "This 2.0\n", "etc 2.0\n", "your 2.0\n", "size 2.0\n", "reference 2.0\n", "can 2.0\n", "examples 2.0\n", "is 2.0\n", "how 2.0\n", "added 2.0\n", "description 2.0\n", "important 2.0\n", "Make sure 1.0\n", "show 1.0\n" ] } ], "source": [ "testPartitionTextAndFit()" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "### Process the some other Wiktionaries to generate the partition probabilities.\n", "Note: These dictionaries are not as well curated and potentially contain phrases from other languages (a consequence of wiktionary construction). As a result, they hold many many more phrases and will take longer to process. However, since the vast majority of these dictionaries are language-correct, effects on the partitioner and its (course) partition probabilities is likely negligable." ] }, { "cell_type": "code", "execution_count": 6, "metadata": { "collapsed": true }, "outputs": [], "source": [ "## Vignette X1: Build informed partition data from other dictionaries, \n", "## and store to local collection\n", "def preprocessOtherWiktionaries():\n", " for lang in [\"ru\", \"pt\", \"pl\", \"nl\", \"it\", \"fr\", \"fi\", \"es\", \"el\", \"de\", \"en\"]:\n", " print \"working on \"+lang+\"...\"\n", " pa = partitioner(informed = True, dictionary = \"./dictionaries/\"+lang+\".txt\")\n", " pa.dumpqs(qsname=lang)" ] }, { "cell_type": "code", "execution_count": 7, "metadata": { "collapsed": false }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "working on ru...\n", "working on pt...\n", "working on pl...\n", "working on nl...\n", "working on it...\n", "working on fr...\n", "working on fi...\n", "working on es...\n", "working on el...\n", "working on de...\n", "working on en...\n" ] } ], "source": [ "preprocessOtherWiktionaries()" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "### Test partitioner on some other languages." ] }, { "cell_type": "code", "execution_count": 95, "metadata": { "collapsed": true }, "outputs": [], "source": [ "from partitioner import partitioner\n", "from partitioner.methods import *\n", "## Vignette X2: Use the default partitioning method to partition the main partitioner.py file and compute rsq\n", "def testFrPartitionTextAndFit():\n", " for lang in [\"ru\", \"pt\", \"pl\", \"nl\", \"it\", \"fr\", \"fi\", \"es\", \"el\", \"de\", \"en\"]:\n", " pa = oneoff(qsname = lang)\n", " pa.partitionText(textfile = \"./tests/test_\"+lang+\".txt\")\n", " pa.testFit()\n", " print\n", " print lang+\" R-squared: \",round(pa.rsq,2)\n", " print\n", " phrases = sorted(pa.counts, key = lambda x: pa.counts[x], reverse = True)\n", " for j in range(5):\n", " phrase = phrases[j]\n", " print phrase, pa.counts[phrase]" ] }, { "cell_type": "code", "execution_count": 96, "metadata": { "collapsed": false, "scrolled": true }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "\n", "ru R-squared: 0.07\n", "\n", "и 328.0\n", "въ 204.0\n", "я 126.0\n", "е 106.0\n", "на 101.0\n", "\n", "pt R-squared: 0.75\n", "\n", "de 470.0\n", "e 265.0\n", "que 243.0\n", "da 234.0\n", "a 193.0\n", "\n", "pl R-squared: 0.04\n", "\n", "i 40.0\n", "Illustration 26.0\n", "się 23.0\n", "z 20.0\n", "w 18.0\n", "\n", "nl R-squared: 0.74\n", "\n", "ik 980.0\n", "een 741.0\n", "dat 705.0\n", "van 644.0\n", "de 634.0\n", "\n", "it R-squared: 0.7\n", "\n", "e 6646.0\n", "che 5656.0\n", "di 5393.0\n", "a 3873.0\n", "il 3692.0\n", "\n", "fr R-squared: 0.87\n", "\n", "et 2001.0\n", "a 1486.0\n", "de 1333.0\n", "les 1139.0\n", "des 1060.0\n", "\n", "fi R-squared: 0.31\n", "\n", "ja 246.0\n", "oli 150.0\n", "hän 147.0\n", "Lopo 109.0\n", "että 88.0\n", "\n", "es R-squared: 0.67\n", "\n", "de 1981.0\n", "y 1651.0\n", "que 1311.0\n", "el 698.0\n", "en 684.0\n", "\n", "el R-squared: 0.6\n", "\n", "να 332.0\n", "του 253.0\n", "τον 250.0\n", "και 205.0\n", "ΟΙΔΙΠΟΥΣ 192.0\n", "\n", "de R-squared: 0.77\n", "\n", "und 2691.0\n", "die 2521.0\n", "der 2282.0\n", "zu 2145.0\n", "sie 1702.0\n", "\n", "en R-squared: 0.91\n", "\n", "and 3691.0\n", "the 2838.0\n", "that 1556.0\n", "of 1472.0\n", "to 1358.0\n" ] } ], "source": [ "testFrPartitionTextAndFit()" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "collapsed": true }, "outputs": [], "source": [] } ], "metadata": { "kernelspec": { "display_name": "Python 2", "language": "python", "name": "python2" }, "language_info": { "codemirror_mode": { "name": "ipython", "version": 2 }, "file_extension": ".py", "mimetype": "text/x-python", "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython2", "version": "2.7.11" } }, "nbformat": 4, "nbformat_minor": 0 }
apache-2.0
ekaakurniawan/3nb
Equations/Dose-Response Relations/Dose-Response Relations.ipynb
1
351462
{ "cells": [ { "cell_type": "markdown", "metadata": {}, "source": [ "Part of [Neural Network Notebook (3nb)](http://ekaakurniawan.github.io/3nb/) project." ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "> Copyright (C) 2014 Eka A. Kurniawan\n", ">\n", "> eka.a.kurniawan(ta)gmail(tod)com\n", ">\n", "> This program is free software: you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation, either version 3 of the License, or (at your option) any later version.\n", ">\n", "> This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details.\n", ">\n", "> You should have received a copy of the GNU General Public License along with this program. If not, see <http://www.gnu.org/licenses/>." ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "### Tested On" ] }, { "cell_type": "code", "execution_count": 1, "metadata": { "collapsed": false }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "Python 3.5.2\n" ] } ], "source": [ "import sys\n", "print(\"Python %d.%d.%d\" % (sys.version_info.major, \\\n", " sys.version_info.minor, \\\n", " sys.version_info.micro))" ] }, { "cell_type": "code", "execution_count": 2, "metadata": { "collapsed": false }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "NumPy 1.11.1\n" ] } ], "source": [ "import numpy as np\n", "print(\"NumPy %s\" % np.__version__)" ] }, { "cell_type": "code", "execution_count": 3, "metadata": { "collapsed": false }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "matplotlib 1.5.1\n" ] } ], "source": [ "# Display graph inline\n", "%matplotlib inline\n", "\n", "import matplotlib\n", "import matplotlib.pyplot as plt\n", "print(\"matplotlib %s\" % matplotlib.__version__)" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "### Display Settings" ] }, { "cell_type": "code", "execution_count": 4, "metadata": { "collapsed": false }, "outputs": [], "source": [ "# Display graph in 'retina' format for Mac with retina display. Others, use PNG or SVG format.\n", "%config InlineBackend.figure_format = 'retina'\n", "#%config InlineBackend.figure_format = 'PNG'\n", "#%config InlineBackend.figure_format = 'SVG'" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "### Housekeeping Functions" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "Following function plots different concentrations used to visualize dose-response relation." ] }, { "cell_type": "code", "execution_count": 5, "metadata": { "collapsed": false }, "outputs": [], "source": [ "def plot_concentration(c):\n", " fig = plt.figure()\n", " \n", " sp111 = fig.add_subplot(111)\n", " # Display grid\n", " sp111.grid(True, which = 'both')\n", " # Plot concentration\n", " len_c = len(c)\n", " sp111.plot(np.linspace(0,len_c-1,len_c), c, color = 'gray', linewidth = 2)\n", " # Label\n", " sp111.set_ylabel('Concentration (nM)')\n", " \n", " # Set X axis within different concentration\n", " plt.xlim([0, len_c-1])\n", " \n", " plt.show()" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "Following function plots dose-response relation in both linear (`log_flag = False`) and logarithmic (`log_flag = True`) along X axis." ] }, { "cell_type": "code", "execution_count": 6, "metadata": { "collapsed": false }, "outputs": [], "source": [ "# d : Dose\n", "# r1 : First response data\n", "# r1_label : First response label\n", "# r2 : Second response data\n", "# r2_label : Second response label\n", "# log_flag : Selection for linear or logarithmic along X axis\n", "# - False: Plot linear (default)\n", "# - True: Plot logarithmic\n", "def plot_dose_response_relation(d, r1, r1_label, r2 = None, r2_label = \"\", log_flag = False):\n", " fig = plt.figure()\n", " \n", " sp111 = fig.add_subplot(111)\n", " # Handle logarithmic along X axis\n", " if log_flag:\n", " sp111.set_xscale('log')\n", " # Display grid\n", " sp111.yaxis.set_ticks([0.0, 0.5, 1.0])\n", " sp111.grid(True, which = 'both')\n", " # Plot dose-response\n", " sp111.plot(d, r1, color = 'blue', label = r1_label, linewidth = 2)\n", " if r2 is not None:\n", " sp111.plot(d, r2, color = 'red', label = r2_label, linewidth = 2)\n", " # Labels\n", " sp111.set_ylabel('Response')\n", " sp111.set_xlabel('Concentration (nM)')\n", " # Legend\n", " sp111.legend(loc='upper left')\n", " \n", " # Set Y axis in between 0 and 1\n", " plt.ylim([0, 1])\n", " \n", " plt.show()" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "---" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "# Dose-Response Relations $^{[1]}$" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "Generally, dose-response relations can be written as follow. In which the dose is represented as concentration ($c$), while the formula returns the response ($r$).\n", "\n", "$$r = \\frac{F.c^{n_H}}{{c^{n_H} + EC_{50}^{n_H}}}$$\n", "\n", "Other terms like $EC_{50}$ is the effective concentration achieved at 50% of maximum response. Normally, efficacy ($F$) is normalized to one so that it is easier to make comparison among different drugs. Furthermore, if full agonist is defined to have efficacy equal to one, anything lower than one is treated to be partial agonist. Finally, Hill coefficients ($n_H$) defines the number of drug molecules needed to activate target receptor." ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "### Drug Concentartion" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "Both linearly and logarithmically increased concentrations are used to study dose-response relations." ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "* Linearly increased concentration (`c_lin`):" ] }, { "cell_type": "code", "execution_count": 7, "metadata": { "collapsed": false }, "outputs": [ { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAxgAAAH/CAYAAADUo3t3AAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAAWJQAAFiUBSVIk8AAAIABJREFUeJzs3XmYZHV59//3PWwuIKiIGlIdxbiRVTE9A/iTAR7j9nPa\noCiaiIqa4JK4JBoNCOOWqDEmjyj4JIp7UEGjUSMm6uAW1IRFfWKCiBBwiQaVQYPIdj9/nOqhOHOq\nq7vrVNWpc96v6+qrnTqn6tTYNz199+d8729kJpIkSZJUhw2zfgOSJEmS2sMGQ5IkSVJtbDAkSZIk\n1cYGQ5IkSVJtbDAkSZIk1cYGQ5IkSVJtbDAkSZIk1cYGQ5IkSVJtbDAkSZIk1cYGQ5IkSVJtbDAk\nSZIk1cYGQ5IkSVJtbDAkSZIk1cYGQ5IkSVJt5rbBiIhHR8TrI+IzEbE9Im6KiHeMeM4hEfEPEfGD\niLgmIr4cEc+JiKH/P0TEkyLiixHx44i4KiK2RcQj6v8bSZIkSfNvbhsM4ETgWcCvAd8CcqWTI2IJ\n+DTwQOADwCnAbsBfAmcMec5rgbcCdwH+Gngn8MvAhyPimbX8LSRJkqQWicwVfy5vrIg4DPhWZl7S\n/9/bgHdl5rEV5+4FXALsBRySmRf0H9+9/7xNwOMz830DzzkY+DxwMfAbmXl1//EF4HzgNsB9MvPy\nCf41JUmSpLkytwlGZn46My9Z5elHA/sCZyw3F/3XuI4iCQngGaXnPIMiFXnlcnPRf87lwBuBPYCn\nrP9vIEmSJLXP3DYYa3Q4RbPw8YpjnwGuAQ6JiN1Kz2HIcz5G0ZQcUeeblCRJkuZdVxqMe/c/f718\nIDNvBC4FdgUOAIiI2wD7Az/JzO9VvN7F/c/3qv+tSpIkSfOrKw3G3v3P24ccX358n3WeL0mSJIni\nt/aasIiYz5X0kiRJmjuZGbO8flcSjOXEYe8hx5cfv2qd50uSJEmiOwnGRcBBFGsmLhg8EBG7AHcH\nbgC+CZCZ10TEt4Gfi4g7V6zDuGf/805rOlYyryOBNTkRYV3oFqwJVbEuVMW66K7M5Mtf/jJnn302\nP/vZz3Y8vnXr1tm9qQFdSTA+RTH16aEVxw6j2NPi85l5fek5DHnOw/ufP1nbO5QkSZJGuPrqqznj\njDP40Ic+dIvmokm60mCcBVwJHBMRBy0/GBF7AK+gGGF7Wuk5b6JoSk6IiH0GnnM3ih3ErwXeNsk3\nLUmSJEGRWlx44YWceuqpXHzxxTsdX1hYmMG7qjbPO3kvAY/q//EuwEMobnH6bP+xKzPzBaXzzwR+\nBrwH+CGwheK2qTMz85iKa7wWeB7wbYomZXfgccAdgGdnZrkpGfZeE7xFSjsz3laZNaEq1oWqWBfd\ncfXVV/ORj3yksrHYddddOfLII9m4cSMbNhTZwawXec9zg3EycNIKp1yWmfcoPedg4ATgYOBWwDeA\ntwCn5JD/IyLiWIrE4kDgJuA84M8z82NreK82GKrkPw4qsyZUxbpQFeui/YattVi2sLDAli1buOMd\n7wgUNdF/ng1G29lgaBj/cVCZNaEq1oWqWBftttrUYrmpgOY0GF2ZIiVJkiQ13lpTiyaywZBm6OST\nT571W1DDWBOqYl2oinXRPutJLZrIW6SmwFukJEmSNMyo1KLX67G0tDQytfAWKUmSJKnjVpNaLC4u\n7pgQNQ9sMCRJkqQpqyu1aCIbDEmSJGmK2phaDJrPdy21xNatW2f9FtQw1oSqWBeqYl3Mn1G7cfd6\nPY4//ng2bdo0t80FuMh7KlzkrWGcYa4ya0JVrAtVsS7myzRSCxd5S3LEoHZiTaiKdaEq1sV8aMO+\nFmtlgjEFJhiSJEndM+19LUwwJEmSpBbqYmoxyAZDkiRJqklbduMehw2GJEmSNKaupxaDbDAkSZKk\nMZha3NL8DtiVWsAZ5iqzJlTFulAV62L2Ru1rsbCwsGNfi640F+AUqalwipSGcYa5yqwJVbEuVMW6\nmK0mphZOkZLkDHPtxJpQFetCVayL2XCtxWgmGFNggiFJkjT/mphaDDLBkCRJkuaAqcXa2GBIkiRJ\nQzQ9tWgiGwxJkiSpxNRi/WwwJEmSpAGmFuNxHwxphpxhrjJrQlWsC1WxLuo3al+LXq/XyX0t1sop\nUlPgFCkN4wxzlVkTqmJdqIp1Ua/VpBaLi4ts2NDc3887RUqSM8y1E2tCVawLVbEu6jFqrUWv12Np\nacm1FmtggjEFJhiSJEnN04bUYpAJhiRJkjQDphaTZYMhSZKkzmhbatFENhiSJElqPfe1mB4bDEmS\nJLWa+1pMl9mPNEPOMFeZNaEq1oWqWBejjdrXYmFhwX0tJsApUlPgFCkN4wxzlVkTqmJdqIp1sbIu\nphZOkZLkDHPtxJpQFetCVayLaq61mD0TjCkwwZAkSZq8LqYWg0wwJEmSpBqYWjSLDYYkSZLmVtdT\niyaywZAkSdLcMbVoLhsMSZIkzRVTi2ZzHwxphpxhrjJrQlWsC1XpYl24r8V8cIrUFDhFSsM4w1xl\n1oSqWBeq0rW6WE1qsbi4yIYN3f39uVOkJDnDXDuxJlTFulCVrtTFqLUWvV6PpaUl11o0iAnGFJhg\nSJIkrZ2pxdqYYEiSJEkVTC3mmw2GJEmSGsPUYv7ZYEiSJGnmTC3awwZDkiRJM2Vq0S5+laQZ6uIM\nc63MmlAV60JV2lAXo/a16PV6O/a1sLmYH06RmgKnSGmYrs0w12jWhKpYF6oy73VhalE/p0hJ6swM\nc62eNaEq1oWqzGtduNai/UwwpsAEQ5IkydRi0kwwJEmS1AmmFt1igyFJkqSJMbXoHhsMSZIk1W5U\narGwsMCWLVtMLVrIBkOSJEm1Wk1qsXHjxh1rBtQuZlHSDLVhhrnqZU2oinWhKk2si1H7WiwsLOzY\n18Lmor2cIjUFTpHSMPM+w1z1syZUxbpQlabVhanF7DlFStLczjDX5FgTqmJdqEpT6sK1FiozwZgC\nEwxJktRGphbNYoIhSZKkuWRqoZXYYEiSJGnVTC00ig2GJEmSRjK10GrZYEiSJGlFphZaC/fBkGao\niTPMNVvWhKpYF6oyjbpwXwuth1OkpsApUhqmaTPMNXvWhKpYF6oy6bowtZg/TpGS1JgZ5moOa0JV\nrAtVmVRduNZC4zLBmAITDEmSNA9MLeabCYYkSZIaYVRq0ev1WFpaMrXQqthgSJIkddhqUovFxUU2\nbHA2kFbHBkOSJKmDTC00KTYYkiRJHWNqoUmyaqQZcra9yqwJVbEuVGU9dTFqX4ter7djXwubC62X\nU6SmwClSGsbZ9iqzJlTFulCVtdaFqUX7OUVKkrPttRNrQlWsC1VZbV241kLTZoIxBSYYkiRpFkwt\nusUEQ5IkSRPhbtyapU41GFG0dY8Ffg+4F3AH4LvAecDrMvMLFc85BDgR2AjcGrgYOB04JTNvmtJb\nlyRJWhV349asdeoWqYh4M3AccCXwwf7nXwS2ALsBT8zMvx04fwk4C/gp8F7gh8AjgfsAZ2bm41Z5\nXW+RkiRJE2VqoabcItWZBiMiFoDLgP8CfiUzfzBw7DBgG/DNzPzF/mN7AZcAewGHZOYF/cd375+7\nCXh8Zr5vFde2wZAkSRNjaiFoToPRpRU9d+p//uJgcwGQmZ8GfjxwDsDRwL7AGcvNRf/c6yhumQrg\nGRN9x2o9Z9urzJpQFetCVbZu3TpyX4uFhYUd+1rYXGhaupRg3Ar4JpDAr5YSjAcB5wAfyMzH9B97\nJ/AE4AmZ+d7Sa+0CbKe4rWrPzLx+xLVNMFTJ2fYqsyZUxbpQlYjg3e9+t6mFdmhKgtGZRd6ZeW1/\nTcW7ga9FxAeBH1CswXgk8HHg+IGn3Lv/+esVr3VjRFwKHAgcAFw0yfeu9nK2vcqsCVWxLjRoea3F\nkUceOTS1cK2FZqkzCQZAROwBPB94EbDnwKFvACdn5nsGzr2Iovm4Z2Z+s+K1PgccTLE+44sjrmuC\nIUmSxuZaC62kKQlGZ9Zg9G9r+hTwSuCvgXsAtwUOAi4F/jYiXjXh9zD0Y/PmzUTE0Ptst27d6nGP\ne9zjHve4xzt6/OSTT65ca7Ft2za2bt3K+eefX7nWoinv3+P1HV9+rOqjKTqTYETEkyn2r3h/Zh5d\nOnZriluh7kKRWFwWEV+iaD4eMLjIe+A5X6W4RerAzFzxFikTDEmStF6mFlqtpiQYu87y4lN2EMUC\n73PKBzLzp/2G4lHA/SjG2V7Uf869gFs0GP005O7ADRQLxyVJkmrlvhaaV11qMK6jGC17pyHH7zRw\nHhS3U/028FCKTfYGHQbcBjhn1AQpSZKktTK10DzrzBoM4JP9z78bET83eCAiHgYcClwL/HP/4bMo\ndvo+JiIOGjh3D+AVFGnIaZN+02q3YfdcqrusCVWxLrpjLftavPSlL53BO5RG68waDICIeD/FbVA/\nAf6OYlfvA4FH9E95Tma+YeD8JeBM4GfAe4AfAlsobps6MzOPWeV1XYOhSs62V5k1oSrWRTesNbWw\nLlTmGozZeAzwu8ATKRqN21A0DR8BXp+Znxw8OTM/FBGHAScARwG3ohhp+zzglCm+b7WUs+1VZk2o\ninXRbutda2FdqKk6lWDMigmGJEmq4loL1ckEQ5IkqaOcEKU2s8GQJEmaIlMLtZ0NhiRJ0hSYWqgr\nbDAkSZImzNRCXdKlfTCkxnG2vcqsCVWxLubXWva1WGtzYV2oqZwiNQVOkdIwzjBXmTWhKtbFfJp0\namFdqMwpUpKcYa6dWBOqYl3Ml2mttbAu1FQmGFNggiFJUje41kKzZIIhSZLUEk6Ikm5mgyFJkjQG\nUwvplmwwJEmS1sHUQqpmgyFJkrRGphbScO6DIc2QM8xVZk2oinXRHKP2tej1euve12KtrAs1lVOk\npsApUhrGGeYqsyZUxbpohtWkFouLi2zYMJ3f31oXKnOKlCRnmGsn1oSqWBezNWqtRa/XY2lpaepr\nLawLNZUJxhSYYEiSNJ+allpIKzHBkCRJaqimphbSPLDBkCRJGmBqIY3HBkOSJAlTC6kuNhiSJKnz\nTC2k+vhfiTRDzjBXmTWhKtbF5KxlX4umNRfWhZrKKVJT4BQpDeMMc5VZE6piXUzGvO/GbV2ozClS\nkpxhrp1YE6piXdRr1FqLhYUFtmzZ0vi1FtaFmsoEYwpMMCRJaoZ5Ty2klZhgSJIkTUlbUgtpHthg\nSJKkVjO1kKbLBkOSJLWSqYU0GzYYkiSpdUwtpNlp1kBnqWOcYa4ya0JVrIvVG7WvxcLCwo59Lea9\nubAu1FROkZoCp0hpGGeYq8yaUBXrYnW6llpYFypzipQkZ5hrJ9aEqlgXK+vqWgvrQk1lgjEFJhiS\nJE1G11ILaSWtSzAiYg9gE3AAsB+QwH8D3wS+kJk7/0pBkiRpHbqaWkjzYKwGIyJ2Ax4DHAc8ENh9\n+VD/8/Kv7K+LiM8CpwPvz8zrx7muJEnqLlMLqdnWdYtUROwCPBM4EdgXuBH4CvAl4FvADygmVN0B\n2B9YBH4V2AW4Eng58KbMvGH8v0LzeYuUJEnjG5Va9Ho9lpaWTC3UWU25RWq9DcbFwD2ATwHvAs7K\nzJ+MeM6eFGnHE4HDgYsz895rvvgcssGQJGk8q0ktFhcX2bDBCfzqrqY0GOv9r/A/gN/IzP+VmW8b\n1VwAZOZP+uceSZFofH2d15ZawxnmKrMmVKXLdTFqX4ter7djX4uuNRddrgs1m1OkpsAEQ8M4w1xl\n1oSqdLUuTC1W1tW60HBNSTDcB0OaIWeYq8yaUJWu1YVrLVana3Wh+WGCMQUmGJIkrY6phbR+c59g\nRMRJ63haZubL13tNSZLUTqYWUnusO8GIiJso9rlYS4eUmbnLui44x0wwJEkaztRCqsfcJxh9NwAf\nBj4O3DT+25EkSV1haiG10zgJxluBo4FbA1cAbwHempnfqu/ttYMJhiRJtzQqtTjiiCPYuHGjqYW0\nBk1JMNb9X21mPgW4K/Bsip27XwpcGhEfjogtEeF3BGkEZ5irzJpQlTbVxWr3tTj44INtLkZoU12o\nXWqbIhURBwFPBx4P7An8F3A68JbMvKyWi8wpEwwN4wxzlVkTqtKWunCtRb3aUheqT1MSjNr2wcjM\n84DzIuL5FE3G04ATgBdFxEMz85N1XUtqC2eYq8yaUJV5r4tRay0WFhbYsmWLay3WaN7rQu01kX0w\nIuK2wG8DJwL7A7+VmX9f+4XmhAmGJKmrVpNabNy4ccdvXiWtX+sSDICI2Ehxm9RjgdsC3wFeAXyu\nzutIkqRmM7WQumvsBiMibg88keKWqF+iGFf7D8DfAP+QmY6vlSSpQ0wtpG4bZ0ztZoqm4ijgVsBl\n3Dyq9js1vb9W8BYpSVIXmFpIs9WUW6TG3cn7euAjFGnFP1Hs7L2iLiYaNhiSpLYztZBmrykNxrhz\n4HYFHgV8FLiOouFY6eO6Ma8ntYozzFVmTahKk+ti1L4WCwsLHH/88WzatMnmomZNrgt12zgJxmWs\nIrEoy8y7r+uCc8wEQ8M4w1xl1oSqNLUuTC1mq6l1odlpSoKx7kXemXm3Gt+H1EnOMFeZNaEqTasL\n11o0Q9PqQlo2kX0wdEsmGJKktjC1kJpr7hMMSZLUHaNSi16vx9LSkqmFpNo32tsPeABwe2CXqnMy\n8x11XlOSJE3WalKLxcVFNmwYd3aMpDao5RapiNgNeBNwLMMnUwWQmVnZeLSZt0hJkuaRqYU0X9p2\ni9TLgacAlwDvBq4AbqjptSVJ0pSZWkhar7q+KzwB+Drwq5m5NTPfkplvr/qo6XpSKzjDXGXWhKpM\nsy5G7WvR6/V27GthczFbfr9QU9V1i9S1wKmZ+fzx31L7eIuUhnGGucqsCVWZVl2YWswXv1+orG23\nSF0O3K6m15I6wxnmKrMmVGXSdeFai/nk9ws1VV0Jxp8AzwIOzMztY79gy5hgSJKaytRCao+mJBh1\nNRgbgDOAA4AXAudl5tVjv3BL2GBIkprG3bil9mlbg3Hj8v8EVnrBzMzObe5ngyFJahJ345baqSkN\nRl0/7H+WlRsLSZI0Y6YWkqahlgRDKzPBkCTNmqmF1H5NSTBcsSXNkDPMVWZNqMo4dTFqX4uFhYUd\n+1rYXMwXv1+oqUwwpsAEQ8M4w1xl1oSqrLcuTC3aze8XKmtKgrGuNRgR8ULgDZl5zTqff2vg2Zn5\n5+t5vtQWzjBXmTWhKmutC9dadIPfL9RU60owIuJnwFXAG4F3ZeY3V/m8uwNPpNgzY+/MvNWaLz6H\nTDAkSdNiaiF1V1MSjPU2GPcEXg08imJ61HnA54AvAd8CfkgxsvYOwM8DvwE8EDio//j7gRdl5iXj\n/xWazwZDkjRpphaS5rrB2PHkiPsDzwCOAW7L8FG1AfyEYjO+0zLzwnVfdA7ZYEiSJsnUQhK0pMHY\n8SIRtwIOoUgpDgDuRNFsXAl8k2KfjHMz89qxL1aDiDgSeDawCbg98APgq8BfZebZpXMPAU4ENgK3\nBi4GTgdOycybVnk9GwxJUu1MLSQNalWDMU8i4jXAHwFXAB+jaILuRHH71icy80UD5y4BZwE/Bd5L\ncevXI4H7AGdm5uNWeU0bDElSrUwtJJU1pcHo1D4YEfF0iubircA9MvP4zDwxM38vMx8AnDBw7l7A\n3wA3AIdl5tMz84+BXwfOBR4TEY+d/t9CbeIMc5VZE6oyWBfua6Flfr9QU3UmwYiI3SlSi2uAe2bm\nDSPOPw54M/C2zDyudOxw4JPApzPz8FVc2wRDlZxhrjJrQlWW68LUQoP8fqGypiQY69oHY049mOJW\nqNcBGRGPAH4JuBb4UmZ+oXT+4RTrSD5e8VqfoWhUDomI3TLz+sm9bbWZM8xVZk2oykknncSFF17o\nWgvdgt8v1FRdSjC2Ai+hGK/7/wO/zM1Tr4KiaXhMZl7ZP/9LFOsyHpCZF1S83leBA4EDM/OiEdc2\nwZAkrctqUovFxUU2bOjUXc+SKphgTN9+FI3EC4B/Aw4FvgzcHXgt8BDgfcAR/fP37n/ePuT1lh/f\nZxJvVpLUbaMmRPV6PZaWlkwtJDVOlxqM5V/tXA88MjOv6P/53yLiKOAi4LCI2JiZX5zJO5QkCVML\nSfOtS9+Zrup/vmCguQAgM3/KzWstFvuflxOKvam2/PhVQ47vJCKGfmzevJmIGDoRYuvWrR73uMc9\n7vGWH6+aELVt2za2bt3Ktm3b6PV6OyZELTcXTXr/Hve4xyd/fPmxqo+m6NIajKcAbwE+lpmPqDj+\nGuAPgRdn5msi4p3AE4AnZOZ7S+fuQtGA7AbsOWqRt2swJEmjmFpIGldT1mDU+l0qIvaLiIdHxG9H\nxLFVH3Veb40+SbGo+8Ahx3+5//nS/udPUazZeGjFuYcBtwE+7wQpjWPYbyzUXdZE94za16LX67F9\n+/ZbpBYS+P1CzVVLghERuwFvAo5leNMSQGbmLmNfcJ0i4oMUO3H/YWb+1cDjv0mxq/ePgLtn5o+j\n2GjvEmAv4IGZeV7/3D2AbcBG4JjMPHMV1zXBUCVnmKvMmuiW1aYWu+yyi3Whnfj9QmVNSTB2rel1\nXg48heIH8ndTbGi34kZ2M/Isip24/6K/D8YFwAHAEsX7fVpm/hig32Q8HTgTOCci3gP8ENgC3As4\nczXNhbQSZ5irzJrohlETosr7WlgXqmJdqKnqSjAup9h47n79BdONFRF3BE6iaBTuClxNsQfGqzLz\nXyvOPxg4ATgYuBXwDYq1HKfkKv/PM8GQJC1zN25Jk9KUBKOuBuNa4NTMfP74b6l9bDAkSWtNLSRp\nrZrSYNR1i9TlwO1qei1JklrF1EJSl9TVYLwNeFZE7J2Zw3a+liSpU0wtJHVRXbdIbQDOoFgw/ULg\nvMy8euwXbglvkZKk7jG1kDRtTblFqq6B2tcDjwEOAj4B/Cgibqz4aOJkKWlmnGGuMmti/o3a12Jh\nYWHHbtyrbS6sC1WxLtRUdSUY51BsYjdSZh4+9gXnjAmGhnGGucqsifk2qdTCulAV60JlTUkwalmD\nkZmb63gdqWucYa4ya2I+TXqthXWhKtaFmqqWBEMrM8GQpPZyrYWkpmhVgjEoInYD7gPsA2wH/j0z\nr6/7OpIkzZIToiSpWm0NRkTcDngN8ESKHa+XXRsR7wRelJlX1XU9SZJmxdRCkoara5H37YDPA78E\n/Bi4APgucFfg1yk24fsacEgXx9d6i5QktYOphaQma9stUi+maC5OA04YTCoiYm/gFcCz+ue9uKZr\nSpI0NaYWkrQ6de2DcRTwhcx8Vvk2qMzcnpm/D5wLPLqm60mt4AxzlVkTzTOJfS3WyrpQFetCTVXX\nLVLXAq/LzD9Z4Zw/BZ6Xmbce+4JzxlukNIwzzFVmTTRLU1IL60JVrAuVte0Wqf8B9htxzp2Aa2q6\nntQKzjBXmTXRDE1ba2FdqIp1oaaqK8E4GzgYeEBm7vRrnoi4B3A+cG5mPnTsC84ZEwxJmh9NSS0k\naa2akmDU1WAcCfwjxQSpU4BtFFOk7gJsBn4f2Bt4SGZ+YuwLzhkbDElqvqalFpK0Vq1qMAAi4veA\n/w3sVj4EXA88NzNPq+Vic8YGQ5KazdRCUhu0rsEAiIgFio327keRWGyn2BPjXZn5n7VdaM7YYEhS\nM5laSGqTVjYYqmaDIUnNY2ohqW2a0mDUtQ+GpHVwhrnKrInJa8K+FmtlXaiKdaGmWleCEREP6v/P\nL2XmtQN/HikzP7PmC845EwwN4wxzlVkTkzWvqYV1oSrWhcqakmCsdx+Mc4AE7gt8feDPq7HLOq8p\ntY4zzFVmTUzGvK+1sC5UxbpQU603wdhK0VCckpk/HPjzSJn50jVfcM6ZYEjS7MxraiFJa9WUBMNF\n3lNggyFJ0zfvqYUkrVVTGoz13iJ1C/3xtFdl5tUrnLMXcPvMvLyOa0qSNIyphSTNTi0NBnApsBV4\n+Qrn/AHwMlyDIUmakFGpRa/XY2lpydRCkiaorgYj+h+SJM3EalKLxcVFNmxwQrskTdI0v8veBfif\nKV5PajxnmKvMmli7Ufta9Hq9HftazGtzYV2oinWhplr3Iu+IOHbgj28DPtj/KNsFWACeC3wtMw9d\n1wXnmIu8NYwzzFVmTaxNV1IL60JVrAuVtWGR99u4eTRtAkv9j7Llv+A1QOdG1EorcYa5yqyJ1ena\nWgvrQlWsCzXVOAnGk5b/J3A6RXrxoYpTbwR+AJybmVet62JzzgRDkurTldRCktaqKQlGLftgRMQ2\n4K2Z+Y7x31L72GBI0vi6llpI0lq1qsHQymwwJGk8phaSNFpTGoy6xtRKklQ7UwtJmj+1NRgRcVvg\nmcBDgP2BPSpOy8y8R13XlCS1l6mFJM2nWr4rR8Q+wBeBVwMPAO4N3B64M3C3/sfudV1PagtnmKvM\nmhi9r8XCwsLc72uxVtaFqlgXaqq6Fnm/Fng+8FSK8bU3AluBlwMbgTdQbLL3kMy8duwLzhnXYGgY\nZ5irrOs1sZrUYuPGjTvuM+6KrteFqlkXKmvbGowtwGcy861wi79cAl+IiIcDXwVOAF5S0zWluecM\nc5V1tSZGrbVYWFhgy5YtnV1r0dW60MqsCzVVXQnGT4FTM/MP+3++AXh1Zp4wcM7bgEMz855jX3DO\nmGBI0nCmFpJUj7YlGNcANw38eTtwl9I536NY/C1JkqmFJLVUXQ3GFUBv4M9fAx4UERsyc7nxeCDw\nXzVdT5I0x0wtJKm96mowPg08NiKiv+7ivcDrgX+IiA8Dm4FNwGk1XU+SNIdMLSSp/epag3F/4OnA\nn2bmFRGxK/A+4FEDp30eeGRmXjX2BeeMazAkydRCkiatKWswahkgnpnnZ+YzMvOK/p9vyMyjgN8A\nHg8cDBzWxeZCWokzzFXWxppYy74WNhfV2lgXGp91oaaqK8F4EHB1Zl44/ltqHxMMDeMMc5W1rSZM\nLerRtrpQPawLlTUlwahrDcY24P8Az6zp9aROcIa5ytpSE661qFdb6kL1si7UVHUlGN8D3rW8D4Zu\nyQRDUpeYWkjSbLQtwTgHOKSm15IkzSFTC0kS1Jdg3BP4IvBG4GWZef3YL9oiJhiS2m41qcXi4iIb\nNtQyW0S1ilrVAAAgAElEQVSSVKEpCUZdDcbpwC8Ch1Ls2P1lik31yi+emfnUsS84Z2wwJLXVqNSi\n1+uxtLRkaiFJU9C2BuOm0WcBRYOxy9gXnDM2GJLayNRCkpqlKQ1GXd/1777KjwNqup7UCs4wV9k8\n1MSofS16vd6OfS1sLuoxD3Wh6bMu1FS1JBhamQmGhnGGucqaXhOmFrPR9LrQbFgXKmtKglHLFKmI\nOAk4JzM/s8I5/x9weGa+rI5rSm3gDHOVNbUmnBA1W02tC82WdaGmqnMNxtaVmoeIOIFiwpRrMCRp\njrivhSTNh1YlGKu0G7DaxeCSpBkztZAkrcc0G4z7A1dO8XqSpHUytZAkrde6G4yI+FTpoSdHxOaK\nU3cBesAvAGes93qSpMkztZAkjWvdazBKe18kMOzXWDcBPwA+CTwnM/97XRecY67BkDQPTC0kab41\nZQ3GuucIZuaG5Q+K5mLr4GMDH7tm5p0z8wldbC6klTjDXGWzqIlR+1osLCzs2NfC5mI2/F6hKtaF\nmqquKVJPAi7IzK+M/5baxwRDwzjDXGXTrglTi/ng9wpVsS5U1pQEo5ZF3pn59jpeR+oaZ5irbFo1\n4VqL+eL3ClWxLtRUte7kHRH7AQ8Abk+xuHsnmfmO2i44J0wwJDWJqYUktVNTEoy6bpHaDXgTcCzD\n13UEkG60J0mzYWohSe3WlAajrn0wXg48BbgEeDdwBXBDTa8tSRqTqYUkaVrqSjAuB64B7peZPx37\nBVvGBEPSrJhaSFJ3tC3B2A841eZCkprD1EKSNAvr3gej5HLgdjW9ltQZzjBXWR014b4W7eP3ClWx\nLtRUdd0i9SfAs4ADM3P72C/YMt4ipWGcYa6ycWvC1KKd/F6hKtaFytp2i9SrgF8DPhERLwTOy8yr\na3ptqbWcYa6y9daEay3aze8VqmJdqKnqSjBuXP6fwEovmJlZV1MzN0wwJE2SqYUkCdqXYHyWlRsL\nSVLNRqUWvV6PpaUlUwtJ0lTVupO3qplgSKrbalKLxcVFNmyoa5aHJKnp2pZgSJKmwLUWkqSmq73B\niIjbAvcC9szMz9b9+nWKiN8B3tH/49My8/SKcw4BTgQ2ArcGLgZOB07JzJum9V4lybUWkqR5UFt2\nHhE/HxHvB34E/CuwbeDYAyPiaxGxua7rjSsiesApwI8Zsn4kIpaATwMPBD7QP3834C+BM6bzTtVm\nzjBXWVVNuK+F/F6hKtaFmqquKVJ3pWgq7gz8PcXO3gdn5i7947sB3wXOzMxnjH3BGkTEJ4BfoGgc\n/gh4+mCCERF7AZcAewGHZOYF/cd3p2ieNgGPz8z3reJarsFQJWeYq6xcE6YWAr9XqJp1obK2rcE4\nmaKpeHBmbouIk4GDlw9m5vUR8Vng0JquN5aIeA6wuf9x5JDTjgb2Bd623FwAZOZ1EXEi8EngGcDI\nBkMaxhnmKluuCddaaJDfK1TFulBT1ZVgXA78S2Y+uv/nk4GTlhOM/mP/G/jtzNx37AuOISLuC5wH\nnJqZf7T8Xtk5wXgn8ATgCZn53tJr7AJsp7hdas/MvH7ENU0wJK2aqYUkaT3almDcmWLx80quB25b\n0/XWpd8YvBO4DDhhxOn37n/+evlAZt4YEZcCBwIHABfV+DYldZSphSSpDepqMH4I9Eaccy/gv2q6\n3nqdDPwacGhm7vyv9y3t3f+8fcjx5cf3qeONSeo2UwtJUlvU1WB8HtgSEXfJzJ2aiIi4J/BQ4F01\nXW/NImIj8GLgtZn5pVm9D0kaZGohSWqbusbU/jlwK+DTEfEw4DZQ7InR//OHgZuAv6jpemvSvzXq\nHRS3Mp1UPjzkacsJxd5Dji8/ftUa3sfQj82bNxMRQ0fObd261eMe93jLjl999dWcccYZPPe5z+XF\nL34x27btmO7NrrvuykMe8hCe/OQnc8oppzTy/Xvc4x73uMenf3z5saqPpqhlkTdARBwHnEZ1KnID\ncFxmvruWi61RROxNsT9HUt1QDD7+V5n5fBd5axq2bt069JuK2mul1GLbtm0ce+yxLC0tmVpoB79X\nqIp1obKmLPKurcGAHbdCPZNij4g7UvwQ/gXgDZk5s4XQEXEr4PVDDt8fuB/wOYqE458y88yIeArw\nFuDtmfmU0usdAXwCOCczj1jF9W0wVCmcYd45o9ZanHjiidx4441s2FDbPqhqAb9XqIp1obKmNBhV\nacO6ZebFwPPqfM06ZOa1wO9WHeuPqb0fRSNx+sChs4BXA8dExBsy87z++XsAr6BIPU6b6BtX6znD\nvDtGrbXo9XosLS1x/fXX21xoJ36vUBXrQk1Va4Ixj/oNxsnA00oNBhGxBJwJ/Ax4D8W0rC0UE7HO\nzMxjVnkNEwypw1YzIWpxcdHGQpI0llYlGBFxNMWu1r+Tmd+pOL4/xSLrN2bmB+q4Zs0qf/LPzA9F\nxGEUe2YcRbGQ/RsUKc0p03t7kuaRE6IkSV1U107eHwfulJn3X+GcfwW+n5kPH/uCc8YEQ+oe97WQ\nJE1bqxIM4FeAj4w451+AR9Z0PUlqJFMLSVLX1dVg3AH4/ohzfgDsW9P1JKlxTC0kSapvo70rgXuO\nOOeerGFTOqkLnF/eDpnJhRdeyKmnnlrZXCwsLHD88cezadOmkc2FNaEq1oWqWBdqqrrWYLyXYrrS\n/TLzPyqO3xe4APhwZh499gXnjGswNIwzzOdf3amFNaEq1oWqWBcqa9sajNdSTFn6XES8DDgb+Daw\nP/Aw4CXALv3zJPU5w3x+TWqthTWhKtaFqlgXaqra9sGIiKcDb6RoJMpuBJ6ZmW+u5WJzxgRDahfX\nWkiSmqgpCUatG+31b4V6JrAR2IdizcUXgNMy899ru9CcscGQ2sEJUZKkJmtlg6FqNhjS/DO1kCQ1\nXVMajLrWYEhSK5laSJK0NrU2GBGxC3Bv4PZUr8UgMz9T5zUlaVJMLSRJWru69sEgIl4C/DfwVeAz\nwLYhH5L6nGHeTHXua7FW1oSqWBeqYl2oqeraB+OFwKuA7cCHgCuAG6rOzcyXjn3BOeMaDA3jDPPm\nWU1qsbi4yIYNtf1+5hasCVWxLlTFulBZ29ZgPJ1i34v7Z+Z/1/SaUus5w7w5mrLWwppQFetCVawL\nNVVdCca1wN9k5u+P/5baxwRDajbXWkiS2qBtCcb3anwtSZqKpqQWkiS1SV1NwfuA34qIPTJz53+l\nJalhTC0kSZqMum6Rug3wcYqdu/8gMy8d+0VbxFukpOYwtZAktVVTbpGqq8H4JrAb8HP9h7ZTNBtl\nmZn3GPuCc8YGQ2oGUwtJUps1pcGoa87iBoqxtJf3P7YDUfExmbmO0pxyhvl0zHJfi7WyJlTFulAV\n60JNVUuCoZWZYGgYZ5hP3rylFtaEqlgXqmJdqKwpCYaTn6QZcob55MzrWgtrQlWsC1WxLtRUE0kw\nImIvYB9ge2ZeXfsF5owJhjRd85ZaSJJUh9YlGBGxK/BHwNOAuw88finwZuC1mXlDXdeTpLJ5TS0k\nSWqTuqZI7Q6cDRwGJPAt4LvAXYGfp1jg/VngNzPzurEvOGdMMKTJM7WQJHVd2xKM5wObgY8Af5iZ\nO/6Fj4h7AH8BPLJ/3qtquqYkmVpIktQwdSUYX+n/z1/PzJsqjm8ALuxf71fGvuCcMcGQJsPUQpKk\nmzUlwahrX4pfBD5W1VwA9B//GNC5TfaklTjDfH3maV+LtbImVMW6UBXrQk1VV4JxFfDuzHzWCue8\nAXhiZu499gXnjAmGhnGG+dq1PbWwJlTFulAV60JlTUkw6lqD8RXgMRGxNTP/u3wwIvYFHgN8uabr\nSa3gDPPV68paC2tCVawLVbEu1FR1JRiPBd4D/CfwCmAbxRSpu1As/j4RuBvw+Mx839gXnDMmGNJ4\nVpNaLC4usmFDXXd9SpI0f5qSYNS20V5E/CnwIooxtTsdBl6TmS+q5WJzxgZDWp9RqUWv12NpaWnu\nUwtJkurQugYDICI2AU8F7gfsDWwHLgBOz8xza7vQnLHBkNbO1EKSpLVpZYOhajYY0uqZWkiStD5N\naTDqWuQtSWMztZAkaf6t+1/piNg9Ir4UEZ+IiN1GnPepiPjCSudJXeQM88KofS16vd6OfS3a3lxY\nE6piXaiKdaGmWvctUhFxHPA3wMMy8x9HnPsw4KPAcZn5tnVdcI55i5SGcYa5qUWZNaEq1oWqWBcq\na8MtUkcBF49qLgAy82MRcTFwNPC2Ma4ptUqXZ5h3ZV+LtepyTWg460JVrAs11TgJxreBj2bm767y\n/L8BHp6Z+6/rgnPMBEO6pbbvxi1J0iy0IcHYF/jeGs7/HtCtX0VKugVTC0mS2m+cBuOnwF5rOH9P\n4NoxridpjplaSJLUDeM0GFcAD1jD+Q8ALh/jepLmkKmFJEndMk6DcQ7wzIh4QGb+60onRsRBwCHA\nKWNcT9KcMbWQJKl7xpn7+AYggTMj4r7DToqI+wBnAjcCp45xPal12jrDfNS+FgsLCzv2tbC5uKW2\n1oTGY12oinWhplr3FCmAiDgJ2ApcB5wFfAr4Vv/w/sCRwKOBPYCTMvMV47zZeeUUKQ3Txhnmphbj\naWNNaHzWhapYFyprwxQpMvNlEXEDcDLwBODxpVMCuB44ITP/bJxrSW3UphnmrrWoR5tqQvWxLlTF\nulBTjZVg7HiRiF8AjgMOBe7af/i7wOeAt2bmf459kTlmgqG2M7WQJGn2mpJg1NJgaGU2GGorUwtJ\nkpqjKQ3GWLdISeouUwtJklTFBkPSmphaSJKkldhgSFo1UwtJkjTKOPtgSBrTvMwwd1+L6ZmXmtB0\nWReqYl2oqVzkPQUu8tYw8zDD3NRiuuahJjR91oWqWBcqc5G3pEbPMHetxWw0uSY0O9aFqlgXaioT\njCkwwdC8MbWQJGn+mGBIahxTC0mSNC4bDEnA6lKLxcVFNmxwNoQkSRrOBkPquFGpRa/XY2lpydRC\nkiStig2G1GGmFpIkqW7+1CDN0KxmmI/a16LX6+3Y18LmYrqca68q1oWqWBdqKqdITYFTpDTMLGaY\nm1o0m3PtVcW6UBXrQmVOkZI01RnmrrWYD861VxXrQlWsCzWVCcYUmGBo1kwtJElqPxMMSRPnvhaS\nJGnabDCklnI3bkmSNAs2GFLLmFpIkqRZssGQWsTUQpIkzZorOqUZqmuG+ah9LRYWFnbsa2Fz0WzO\ntVcV60JVrAs1lVOkpsApUhqmjhnmphbt4lx7VbEuVMW6UJlTpCSNNcPctRbt5Fx7VbEuVMW6UFOZ\nYEyBCYbqZmohSZLKTDAkrZmphSRJajobDGlOmFpIkqR5YIMhNZyphSRJmic2GFKDmVpIkqR54z4Y\n0gwNm2Huvhbd5Vx7VbEuVMW6UFN1ZopURNwBOAp4OPArwP7AdcBXgbcCb82K/zMi4hDgRGAjcGvg\nYuB04JTMvGmV13aKlCpVzTA3teg259qrinWhKtaFypwiNX1HA6cB3wG2AZcDd6ZoOt4MPBR47OAT\nImIJOAv4KfBe4IfAI4G/BA4BHjel966WGpxh7loLgXPtVc26UBXrQk3VpQRjM3DbzPxo6fH9gH8B\nfh54TGb+Xf/xvYBLgL2AQzLzgv7ju1M0KJuAx2fm+1ZxbRMMrcjUQpIkjcsEY8oy85whj38/It4E\nvBLYDPxd/9DRwL7A25abi/7510XEicAngWcAIxsMaRhTC0mS1DadaTBGuL7/+YaBxw4HEvh4xfmf\nAa4BDomI3TLz+opzpBWZWkiSpDbqfIMREbsAT6JoJs4eOHTv/uevl5+TmTdGxKXAgcABwEWTfp9q\nD1MLSZLUZp1vMIBXA78EfCQz/2ng8b37n7cPed7y4/tM6o2pfUwtJElS23V6H4yI+APg+cDXgGOn\ncL2hH5s3byYihs603rp1q8fn+PjJJ59MRHDUUUfdornYtm0bAOeffz4nnngiZ599dmVzMev37/Hp\nHa86p0nvz+Me93hzjm/tf89o6vvz+GSOLz9W9dEUnZkiVRYRzwZeD/xf4H9l5vdLx78EHAQ8YHCR\n98Dxr1LcInVgZq54i5RTpLptpdRi69atnHvuuaYW2sG59qpiXaiKdaEyp0jNUEQ8F3gd8BWK5uLK\nitMuomgw7gXcosHor9u4O8Wi8G9O9t1qXo1aa9Hr9XjBC17Apk2bZvDu1FTOtVcV60JVrAs1VecS\njIj4Y+DPgPOBB2fmj4ac9xTgLcDbM/MppWNHAJ8AzsnMI1ZxTROMjlnNWovFxUU2bOj0XYqSJKlG\nTUkwOtVgRMRLgJdSbKz3kMy8aoVzBzfae2Bmntd/fA+KjfY2Asdk5pmruK4NRkesJrVYWlpyQpQk\nSaqdDcaURcSTgLdS3Nb0BqqnQ12WmW8feM4ScCbwM+A9wA+BLRS3TZ2Zmces8to2GB1gaiFJkmbJ\nBmPKIuJk4KQRp326fMtTRBwMnAAcDNwK+AbFrVOn5Cr/z7PBaDdTC0mS1AQ2GB1ig9FephaSJKkp\nmtJg+FOPtA6ZyYUXXsipp55a2VwsLCxw/PHHs2nTphWbi2Fzr9Vd1oSqWBeqYl2oqUwwpsAEo13q\n3I3bGeYqsyZUxbpQFetCZU1JMDq5D4a0HqPWWiwsLLBly5Y1rbVwhrnKrAlVsS5UxbpQU5lgTIEJ\nxvyrM7WQJEmaBBMMaQ5MIrWQJElqMxsMaQhTC0mSpLWzwZBKTC0kSZLWzwZDGmBqIUmSNB73wZBY\n274WdTYXzjBXmTWhKtaFqlgXaiqnSE2BU6SabZaphTPMVWZNqIp1oSrWhcqcIiXNWBPWWjjDXGXW\nhKpYF6piXaipTDCmwASjeVxrIUmS2sYEQ5qBJqQWkiRJbWaDoc4wtZAkSZo8Gwy1nqmFJEnS9Nhg\nqNVMLSRJkqbLfTDUSqP2tej1ehPZ12KtnGGuMmtCVawLVbEu1FROkZoCp0hN12pSi8XFRTZsmH1/\n7QxzlVkTqmJdqIp1oTKnSEk1G7XWotfrsbS01Ki1Fs4wV5k1oSrWhapYF2oqE4wpMMGYvHlKLSRJ\nkibBBEOqwTymFpIkSW1mg6G5ZWohSZLUPDYYmjumFpIkSc1lg6G5YmohSZLUbP4Uprkwal+LhYWF\nHftazFNz4QxzlVkTqmJdqIp1oaZyitQUOEVqPG3ejdsZ5iqzJlTFulAV60JlTpGSRhi11mJhYYEt\nW7bM9VoLZ5irzJpQFetCVawLNZUJxhSYYKxdm1MLSZKkSTDBkCp0IbWQJElqMxsMNYaphSRJ0vyz\nwdDMmVpIkiS1hw2GZsrUQpIkqV3mZ8MAtcpa9rVoc3PhDHOVWROqYl2oinWhpnKK1BQ4ReqWTC1u\n5gxzlVkTqmJdqIp1oTKnSKlzXGuxM2eYq8yaUBXrQlWsCzWVCcYUmGCYWkiSJE2aCYY6wdRCkiSp\nW2wwNDGmFpIkSd1jg6HajUoter0eS0tLphaSJEktZIOhWq0mtVhcXGTDBickS5IktZE/5akWo/a1\n6PV6O/a1sLm4mTPMVWZNqIp1oSrWhZrKKVJT0PYpUqYW6+cMc5VZE6piXaiKdaEyp0hp7rnWYnzO\nMFeZNaEq1oWqWBdqKhOMKWhjgmFqIUmS1CwmGJpLphaSJElaiQ2GVs3UQpIkSaPYYGgkd+OWJEnS\natlgaEXuxi1JkqS18F4WVRq1r8XCwsKOfS1sLtbPGeYqsyZUxbpQFetCTeUUqSmYtylSphbT4wxz\nlVkTqmJdqIp1oTKnSKlxXGsxfc4wV5k1oSrWhapYF2oqE4wpmIcEw9RCkiRpvplgqBFMLSRJklQn\nG4wOM7WQJElS3WwwOsjUQpIkSZNig9ExphaSJEmaJPfB6Aj3tWgmZ5irzJpQFetCVawLNZVTpKZg\n1lOkTC2ayxnmKrMmVMW6UBXrQmVOkdLEudai+ZxhrjJrQlWsC1WxLtRUJhhTMIsEw9RCkiSpW0ww\nNBGmFpIkSZolG4wWMbWQJEnSrNlgtICphSRJkprCBmPOmVpIkiSpSdwHY065r0U7OMNcZdaEqlgX\nqmJdqKmcIjUFdU+RMrVoD2eYq8yaUBXrQlWsC5U5RUpr5lqL9nGGucqsCVWxLlTFulBTmWBMQR0J\nhqmFJEmSVmKCoVUxtZAkSdI8scFoMFMLSZIkzRsbjAYytZAkSdK8ssFoGFMLSZIkzTP3wWgI97Xo\nJmeYq8yaUBXrQlWsCzWVU6SmYNQUKVOL7nKGucqsCVWxLlTFulCZU6TmRETsD7wceAhwR+C7wAeB\nl2bmVeO89qi1Fr1ej6WlJddatNhhhx0267eghrEmVMW6UBXrQk1lgrGCiDgAOBfYl6KpuAhYBI4A\n/gM4NDN/tIrX2SnBWE1qsbi4yIYN3sXWZv72SWXWhKpYF6piXajMBGM+nEbRXPx+Zp66/GBE/AXw\nPOCVwDPX8oKmFpIkSWozE4wh+unFN4BLM/MepWN7UtwqBbBfZv50xGslwPbt200tdAv+9kll1oSq\nWBeqYl2ozASj+Q7vf/7H8oHM/ElEfB54MLAJ2LaaFzz11FNNLSRJktRqNhjD3RtI4OtDjl9M0WDc\ni1U2GOXmwtRCkiRJbWODMdze/c/bhxxffnyf9by4qYUkSZLayAZjisob4jz1qU+dzRtRo7i/icqs\nCVWxLlTFulATeV/OcMsJxd5Dji8/PtZeGJIkSVKbmGAMdxEQFGssqtyz/3nYGo0dZr2SX5IkSZoW\nx9QOUeeYWkmSJKkrvEVqiMz8JsWI2rtFxLNLh18G3BZ4h82FJEmSdDMTjBX0U4zPA/sBfw/8O8W+\nF5uB/wAOzcwfzewNSpIkSQ1jgzFCROxPkVg8FLgjxa1RHwBelpnDRthKkiRJnWSDIUmSJKk2rsGQ\nJEmSVBsbDEmSJEm1scGYoIjYPyJOj4hvR8S1EXFpRPxlROwz6/emyYiIO0TE0yLiAxFxcURcExFX\nRcRnI+K4GLLlakQcEhH/EBE/6D/nyxHxnIjwv9EWi4jfiYib+h/HDTnH2uiAiDgyIv4uIr7b//fi\n2xFxdkQ8tOJca6LlovC4iPhURHyr/3W+JCLeFxGbhjzHumiBiHh0RLw+Ij4TEdv7/z68Y8Rz1vy1\nj4gnRcQXI+LH/Z9TtkXEI2r7e7gGYzL6E6jOBfYFPkixcd8icAROoGqtiPg94DTgO8A24HLgzsBR\nwD7AWZn52NJzloCzgJ8C7wV+CDwSuA9wZmY+bmp/AU1NRPSAr1D8omdP4OmZeXrpHGujAyLiNcAf\nAVcAHwOuBO4EHAR8IjNfNHCuNdEBEfFm4DiKWvhg//MvAluA3YAnZubfDpxvXbRERFwA/CrwE+Bb\nFF/Dd2fmsUPOX/PXPiJeCzyf4nvOWcDuwDEUw4yenZmnjv0XyUw/JvABfBy4EXhm6fG/AG4CTp31\ne/RjIl/3zcAjKh7fD/jPfk381sDjewHf739juN/A47tTjEi+EXjsrP9efkykVj4BXAy8uv91Pq50\n3NrowAfw9P6/CW8Bdq04vos10a0PYKFfE98B7lg6dlj/2Desi3Z+9L/G9yh9vd8x5Nw1f+2Bg/uv\neRFwu1LdXQlcAyyM+/cwNpuAfnrxYOCy3LkLPBn4H+CJEXHrqb85TVRmnpOZH614/PvAm4CgaEKW\nHU2Rcp2RmRcMnH8dcGL//GdM8j1r+iLiORR18BSKb+ZVrI2Wi4jdgVdQ/PLh9zLzhvI5mXnjwB+t\niW64U//zFzPzB4MHMvPTwI8HzgHrolUy89OZeckqT1/P1/4ZQAKvzMyrB55zOfBGYA+Kf5vGYoMx\nGYf3P/9j+UBm/oSiq7wNxaZ96o7r+58Hf4g4nOI/9I9XnP8Zih8+D4mI3Sb83jQlEXFf4M+Av8rM\nz61wqrXRfg+m+EHx/UBGxCMi4oUR8QdD7rO3Jrrh34D/AhYj4o6DByLiQRS/tf6ngYeti+5az9d+\n+WfUqud8jKIpOWLcN2aDMRn3pviCf33I8Yv7n+81nbejWYuIXYAnUdTF2QOH7t3/vFOt9H9zeSmw\nK3DApN+jJq9fB+8ELgNOGHG6tdF+v0HxPeE64ALgwxTN518C/xwR50TEvgPnWxMdkJnXAksUdzt8\nLSL+T0T8aUS8j+KHwo8Dxw88xbrorjV97SPiNsD+wE8y83sVr1fbz6c2GJOxd//zsJ2+lx93mlR3\nvBr4JeCjmTn4mydrpVtOBn4NeHJm/mzEudZG++1H8dvCF1DcE30oxW+nf5Xih8gHAe8bON+a6I6v\nAG8FbgU8Dfhj4NEUg0PenplXDpxrXXTXWr/2U6sVGwxpwiLiDyimNXwNqJwCofaLiI3Ai4HXZuaX\nZv1+1AjL/wZfDzwyM8/NzGsy898oJs99CzisXzvqiH7S+SnglcBfA/cAbksxVexS4G8j4lWze4fS\naDYYk7HcAe495Pjy41dN4b1ohiLi2cBfAf8XOCIzy19za6UD+j8wvINiasdJ5cNDnmZttN/y1+6C\nzLxi8EBm/pSb75Fe7H+2JrrhiRSTft6fmS/IzMsy89rMvBD4LeDbwB9GxN3651sX3bXWr/3UasUG\nYzIuovihYdg9bPfsfx62RkMtEBHPBV5PEXUf0Z8kVXZR//NOtdL/ofTuFIvCvzmp96mp2JPiv/v7\nAj8b2FzvJm5uON7cf+x1/T9bG+23/DUe9o/58l5JyxMHrYluOIhibc455QP9xvNLFD+/3a//sHXR\nXWv62mfmNRQN6p4RceeK16vt51MbjMnY1v/8m+UDEbEnxX221wBfmOab0vRExB8DrwPOBw4v3S87\n6FMUzehOu/VSzL++DfD5zLy+4rjmx8+AN1PsdfDm0sf5/XM+2//zuf0/Wxvt90mKHyQPHHL8l/uf\nL+1/tia64TqKr/Odhhy/08B5YF102Xq+9p/qf656zsP7nz859jub9YYibf2gmBR0I8WOiIOPv45i\nMd8bZ/0e/ZjY1/4l/a/xF4F9Rpw7uEnOQQOP7wH8c7+Gjp7138mPidbLyYzeaM/aaOkHxS7NNwLP\nLRKh5poAAAIjSURBVD3+m/3HrwT2sia689H/IW95o72fKx17WP/r/D/A7a2Ldn+wto32VvW15+aN\n9r4++DMKcDfgB9S00V70X1Q162+293mKKSF/D/w7xb4Xm4H/AA7NzB8NfQHNpYh4EsXkjxuAN1A9\nqeGyzHz7wHOWgDMpfsv9HuCHwBaKyPPMzDxm0u9bsxMRJ1M0GU/LzNNLx6yNlouI/Sn+rehR/Gbx\nAoqRkksUPwQ8LjM/OHC+NdEBEfF+4FHAT4C/o9gX40DgEf1TnpOZbxg437poif7X8lH9P94FeAjF\nLU6f7T92ZWa+oHT+mr72EfFa4HkUt0udRbHz9+OAO1D8Yvy0sf8eNhiT0/+H42UUMdQdge8CHwBe\nlpnDRoRpjvV/WCwv4i37dGbeYhObiDiYYl+EgynGEn6D4naaU9L/SFttoGaeXm4w+setjZbrb6Z2\nEsUPBXcFrqbYJOtVmfmvFedbEy0XEQH8LsWC71+muNXl/7Vvx0YIhVAQRZda7MsGLMXMZqzCHqzA\nEnwGP/smOm7knJMTMBBwB3hkuxm/zMzbExb74j98cI64z8xhN+brtV9rHZOcsoXrM8ktyXlmrj9P\nIgIDAAAo8skbAACoERgAAECNwAAAAGoEBgAAUCMwAACAGoEBAADUCAwAAKBGYAAAADUCAwAAqBEY\nAABAjcAAAABqBAYAAFAjMAAAgBqBAQAA1AgMAACgRmAAAAA1AgMAAKh5Ad7pCJOGbhvfAAAAAElF\nTkSuQmCC\n", "text/plain": [ "<matplotlib.figure.Figure at 0x10bfb6160>" ] }, "metadata": { "image/png": { "height": 255, "width": 396 } }, "output_type": "display_data" } ], "source": [ "c_lin = np.linspace(0,100,101) # Drug concentration in nanomolar (nM)\n", "plot_concentration(c_lin)" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "* Logarithmically increased concentration (`c_log`):" ] }, { "cell_type": "code", "execution_count": 8, "metadata": { "collapsed": false }, "outputs": [ { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAz8AAAH/CAYAAAB5ImPeAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAAWJQAAFiUBSVIk8AAAIABJREFUeJzs3XmUXVWV+PHvzkQShoRAwiQSQCOgqIAgkxIQbWcUFUVb\n/GE3tiI2DYiK+pOgrT9bQLRRBgcUsG1lcEKltRkEoUVawUZogQiEAEKAhARCSCDJ/v1xXz2rXk5l\nqLqV96re97NWrapz3733nCr3YmW7790nMhNJkiRJGulGtXsBkiRJkrQ+mPxIkiRJ6gomP5IkSZK6\ngsmPJEmSpK5g8iNJkiSpK5j8SJIkSeoKJj+SJEmSuoLJjyRJkqSuYPIjSZIkqSuY/EiSJEnqCiY/\nkiRJkrqCyY8kSZKkrmDyI0mSJKkrmPxIkiRJ6grDNvmJiLdExL9GxLURsSgiVkbEBWu4Zt+I+HlE\nzI+IJRHxPxFxbET0+3eIiPdExG8j4omIWBgRV0fE61Zz/viIOCUibo+IpyJiXkR8PyJ2Ws0120TE\neRHxQEQsjYh7IuKMiJhc5+8iSZIkdbPIzHavYUAi4mbghcBi4H5gJ+DfMvOIfs4/BLgEeAr4PrAA\neEPjuosz8+2Fa04Djgfua1w7DngHsBlwTGae1XL+OOAqYF/gvxs/bwscBjwNHJiZ/91yzQ7Ab4DN\ngR8BdwB7AQcBtwP7ZeZjg/1dJEmSpG43nJOfA4D7M/Ouxs9XA98pJT8RsTFwF7AxsG9m3tw4Pq5x\n3d7A4Zl5Ua9r9gGuB2YDe2bm443jzwZuAiYCO2Xm3F7XnAR8FrgoM9/R6/gbgB8Dt2Xmri1r+wVw\nMPCh3slURJwOHAeck5lHD+Z3kSRJkjSMH3vLzGsy8661PP1tVJWVf+9JFhr3eBr4JBDAB1qu+QCQ\nwGd7Ep/GNXOBrwIbAEe2XPP+xjUfbVnrZcCvgV0aiRrQrPq8EpjTWkUCTgaeBN4dERMG+btIkiRJ\nXW/YJj/r6ECqpOQXhc+uBZYA+0bE2JZr6Oeay6mSjIN6DkTEjlSPuN2ZmfeuzTW95vhl68mZuZiq\n8jSRqpozmN9FkiRJ6nrdkvw8r/H9ztYPMnMFcA8wBtgBICImAtsAizNzXuF+sxvfZ6zNHGu4Jgdw\nTXGe0u8iSZIkqdItyc+kxvdF/Xzec7ynu9q6nt/p10iSJEldb0y7F6D2iYjh2e1CkiRJw1JmRjvn\n75bKT081ZFI/n/ccXzjA8zv9GkmSJKnrdUvl5w5gD6p3Z27u/UFEjAa2B5YDdwNk5pKIeADYOiK2\nKLz389zG997v3dzR+D6Dsv6uiQFcs9a/y9oYru3ONXQiwrjQKowLlRgXKjEu1OO73/0us2fPZtas\nWe1eCtA9lZ+rqJKMVxc+O4Cqo9r1mflMyzX0c81rG9+v7DnQaLs9F5gREdv1c032ui9U+/IAvKr1\n5IjYCNiPqnvbDYP8XSRJkqT17rHHHmv3EvroluTnEuBR4B0RsUfPwYjYAPhnqqTk7JZrzqFKMj4R\nEZN7XTMd+CCwFPh2P9d8ISKi1zWHAPtTbXJ6Tc/xzLybqs319Ig4puVenwY2BC7IzKcG+btIkiRJ\n69XKlSs7LvkZto+9NRKKNzWGWza+7xsR32r8/GhmngiQmU9ExFHAxcCvIuJ7wALgjVSPj12cmRf3\nvn9m/iYivggcB9wSEZcA44C3U3VSO6ax4WlvXwReD7wV+G1EXAls1xgvBt5b+FWOptrP58sR8Qrg\nT1T7+swEbqfauLT3utb5d5EkSZLWtyeeeIIVK1a0exl9DNvkB3gxcESvcVK977J9YzwHOLH5YeaP\nI+IA4BPAocB44M9Uyc2ZpQky88MRcQtVpecoYCXwe+DUzLy8cP7TEXEw8DHgcOCfgMeBHwCzMvP2\nwjV3R8RLqCo9rwZeAzwInAF8OjNXaWk9kN9FkiRJWp8WLFjQ7iWsInwZrXv1tLo2BtTKF1VVYlyo\nxLhQiXEhgJtuuonLLrsMoNnwwFbXkiRJkkacTqz8mPxIWsXJJ5/c7iWoAxkXKjEuVGJcCDqv0xv4\n2FtX87E3SZIkDZVzzz2Xhx56CPCxN0mSJEkjVGb62JskSZKkkW/JkiU8/fTT7V7GKkx+JEmSJNWq\nE9/3AZMfSQU9z+VKvRkXKjEuVGJcqBMfeQMbHnQ1Gx6oP+7PoBLjQiXGhUqMC/3qV7/immuuaY5t\neCCpY9miVCXGhUqMC5UYF+rUx96s/HQxKz+SJEkaCueddx733Xdfc2zlR5IkSdKI1Knv/Jj8SJIk\nSarNsmXLePLJJ5vjUaM6J+XonJVIkiRJGvZa3/eZPHlym1ayKpMfSZIkSbVpfeRt0003bdNKVmXy\nI2kV7s+gEuNCJcaFSoyL7tZa+ZkyZUqbVrIqu711Mbu9qT/uz6AS40IlxoVKjIvudtlll3HTTTc1\nx6961avYd999Abu9SepA7s+gEuNCJcaFSoyL7mblRx3Jyo8kSZLq9qUvfYlFixY1x0cffTTTpk0D\nrPxIkiRJGiGWL1/O448/3ueY3d4kSZIkjTgLFy7s81TRxhtvzNixY9u4or5MfiRJkiTVopPf9wGT\nH0mSJEk16eQ9fsDkR1KB+zOoxLhQiXGhEuOie3V65cdub13Mbm/qj/szqMS4UIlxoRLjont997vf\nZfbs2c3xW97yFl7wghcQUTV5s9ubpI7j/gwqMS5UYlyoxLjoXlZ+1LGs/EiSJKkuK1eu5HOf+xwr\nVqxoHvvoRz/K+PHjrfxIkiRJGjmeeOKJPonPhAkTGD9+fBtXtCqTH0mSJEmD1trprdMeeQOTH0mS\nJEk1aH3fp9PaXIPJjyRJkqQadPoeP2DyI6nA/RlUYlyoxLhQiXHRnTq90xvY7a2r2e1N/XF/BpUY\nFyoxLlRiXHSnc889l4ceeqg5PvLII3n2s58NYLc3SZ3L/RlUYlyoxLhQiXHRfTJzWDz2ZuWni1n5\nkSRJUh2efPJJTjvttOZ47NixnHTSSc2Kj5UfSZIkSSNCqdNbT8LTSUx+JEmSJA3KcNjjB0x+JEmS\nJA3ScHjfB0x+JEmSJA3ScGhzDSY/kgrcn0ElxoVKjAuVGBfdp/TOTyey21sXs9ub+uP+DCoxLlRi\nXKjEuOg+p512Gk8++WRz/I//+I99EiC7vUnqWO7PoBLjQiXGhUqMi+6ybNmyPonPqFGjmDRpUhtX\n1D8rP13Myo8kSZIG66GHHuLcc89tjqdMmcKHPvShPudY+ZEkSZI07D366KN9xp3a7ABMfiRJkiQN\nQmvys/nmm7dpJWtm8iNJkiRpwObPn99nbPIjSZIkaUSy8iNpWHN/BpUYFyoxLlRiXHSPzFyl8rPZ\nZpu1aTVrZre3Lma3N/XH/RlUYlyoxLhQiXHRPRYtWsSXvvSl5nj8+PF85CMfaXZ362G3N0kdy/0Z\nVGJcqMS4UIlx0T1aH3nbbLPNVkl8OomVny5m5UeSJEmDceONN3L55Zc3xy960Yt405vetMp5Vn4k\nSZIkDWvDqdkBmPxIkiRJGqDSY2+dzORHkiRJ0oAMpz1+wORHkiRJ0gAsW7aMxx9/vDmOCKZMmdLG\nFa2ZyY+kVbg/g0qMC5UYFyoxLrpDa9Vn0003ZfTo0W1azdqx21sXs9ub+uP+DCoxLlRiXKjEuOgO\nf/zjH/nBD37QHM+YMYPDDz+8eK7d3iR1LPdnUIlxoRLjQiXGRXcYbs0OwMpPV7PyI0mSpIG65JJL\nuO2225rjN7zhDey+++7Fc638SJIkSRq2htseP2DyI0mSJGkdZeawa3MNJj+SJEmS1tGiRYtYvnx5\nczxhwgQmTpzYxhWtHZMfSZIkSetkOD7yBiY/kgrcn0ElxoVKjAuVGBcj33Ds9AZ2e+tqdntTf9yf\nQSXGhUqMC5UYFyPfT3/6U37/+983xwcffDD77bdfv+fb7U1Sx3J/BpUYFyoxLlRiXIx8w7HZAVj5\n6WpWfiRJkjQQp59+OosXL26OjznmmNU++mblR5IkSdKws3Tp0j6Jz6hRo5g8eXIbV7T2TH4kSZIk\nrbXWR96mTJnC6NGj27SadWPyI0mSJGmtDddOb2DyI0mSJGkdDNc9fsDkR1KB+zOoxLhQiXGhEuNi\nZBuund7Abm9dzW5v6o/7M6jEuFCJcaES42JkO+uss3jkkUea4/e+971su+22q73Gbm+SOpb7M6jE\nuFCJcaES42LkWrlyJQsWLOhzzMqPhgUrP5IkSVoXCxYs4Mwzz2yON9xwQz784Q+v8TorP5IkSZKG\nleHc6Q26LPmJytsj4qqIuD8ilkTEXRFxUUTs3c81+0bEzyNifuP8/4mIYyOi379dRLwnIn4bEU9E\nxMKIuDoiXrea88dHxCkRcXtEPBUR8yLi+xGx02qu2SYizouIByJiaUTcExFnRMTw2GFKkiRJw85w\n7vQGXZb8AF8H/h14AfBz4EvA74E3AtdHxDt7nxwRhwDXAPsDPwDOBMYCZzTus4qIOA34FrAl8DXg\nwsZ8l0XE0YXzxwFXAP8XWNRY038CbwZ+FxF7Fq7ZAbgJeA9wA/BF4C7gWOC/ImLTtf2DSJIkSWur\ntdPbcKv8dM07PxHxbGAO8BCwa2bO7/XZAcDVwN2Z+ZzGsY2pEoqNgX0z8+bG8XGNc/cGDs/Mi3rd\nZx/gemA2sGdmPt5r7puAicBOmTm31zUnAZ8FLsrMd/Q6/gbgx8Btmblry+/yC+Bg4EOZeVav46cD\nxwHnZOYqiVbhb+I7P5IkSVpr3/rWt5g7t/lPWQ4//HBmzJixxut852f9m9r4/tveiQ9AZl4DPNHr\nHIC3AZsD/96T+DTOfRr4JBDAB1rm+ACQwGd7Ep/GNXOBrwIbAEe2XPP+xjUfbVnTZcCvgV0ayRnQ\nrPq8EpjTO/FpOBl4Enh3REwo/A2kteL+DCoxLlRiXKjEuBi5fOxt+LiNquqzV0T0qc9FxMupKjz/\n2evwgVRJyS8K97oWWALsGxFjW66hn2sup0qYDuo1747AtsCdmXnv2lzTa45ftp6cmYupKk8TqSpT\n0oCccsop7V6COpBxoRLjQiXGxcj01FNPsWTJkuZ49OjRTJ48vF4375rkJzOXAodQVUb+NyLOjYjP\nRcRFVMnKL6iqMD2e1/h+Z+FeK4B7gDHADgARMRHYBlicmfMKS5jd+N67LtjvHGu4JtfxGmmduD+D\nSowLlRgXKjEuRqbWqs+UKVMYNWp4pRNj2r2A9ewWqmYEHwP+vtfxPwPnZ2bv/0UnNb4v6udePcd7\n0t11PX99XiOtEx9XUIlxoRLjQiXGxcjU2uxguD3yBl1U+YmI0cBVVM0FvgbsCGwI7EFVxfluRHy+\nfStsn4jo92vmzJlERL//EZs1a5af+7mf+7mf+7mf+7mfd8HnPZWfq6++mlmzZvHTn/60eF3pq1N0\nU7e3/wOcB1yamW9r+WwC1WNkWwLPzcw5EXEjVWL0kt4ND3pd80dgF2CXzLyj8djbYuCJzJxUOH8z\n4BFgXmZu1Tj2WuCnwGWZeUjhmrcAFwPfz8zDG8e+AJwAfDgzzyhccyZwNHB0Zp67hr+J3d4kSZK0\nVr73ve9xxx13NMdvetObeNGLXrRW19rtbf3bg+pdmV+1fpCZTwE3Uv09dmsc7vlfdpV3ZxpVpO2B\n5cDdjXssAR4ANoqILQrzP7fxvfe7Ov3OsYZrYh2vkSRJkgbFx96Gl6epkoap/Xw+tdd5UD0iF8Cr\nC+ceQNVR7frMfKbX8asa30vXvLbx/cqeA5l5FzAXmBER2/VzTfa6L1R7DAG8qvXkiNgI2I+qE90N\nhftJkiRJ62z58uXDfoNT6K7kpyfpeF9EbN37g4h4DVXSsBT4r8bhS4BHgXdExB69zt0A+GeqpOTs\nljnOoUqYPhERk3tdMx34YOP+3+7nmi9ErwciI+IQYH+qTU6v6TmemXdTtbmeHhHHtNzr01TvMV3Q\nqGZJA9LfM8DqbsaFSowLlRgXI8+jjz7a51WJSZMmMX78+DauaGC65p0fgIi4FHgT1bs5P6Ta92cX\n4HWNU47NzK/0Ov8QqndulgHfAxYAb6R65OzizHxHYY7TgOOoHoG7BBgHvB2YAhyTmWe3nD+OqrKz\nD/B7qiRtO+CtVMnSQZn5u5ZrdqDaz2ca8BPgT1T7+swEbgf2y8zH1uLv4Ts/KooI40KrMC5UYlyo\nxLgYeW655RZ++MMfNsfPfe5zeec737nW1/vOT3u8laoZwB+pkqDjgb2omg68qnfiA5CZP6Z6xO0a\n4FDgGKrH4o4DDi9NkJkfBo4EHgSOAt7dmO/1rYlP4/yngYOBz1C1sf4n4BXAD4C9WhOfxjV3Ay+h\nqiLt1fg9tgfOAPZZm8RHWh33Z1CJcaES40IlxsXI8/DDD/cZT5s2rU0rGZyuqvyoLys/kiRJWhvf\n/e53mT17dnP85je/mRe+8IVrfb2VH0mSJEnDwkip/Jj8SJIkSerXsmXLWLRoUXMcEcOyzTWY/EiS\nJElajdaqz2abbcaYMWPatJrBMfmRJEmS1K+R8sgbmPxIKnB/BpUYFyoxLlRiXIws8+bN6zMezsmP\n3d66mN3e1B/3Z1CJcaES40IlxsXIcv755zNnzpzm+LDDDmPnnXdep3vY7U1Sx3J/BpUYFyoxLlRi\nXIwcmblK5WeLLbZo02oGz8pPF7PyI0mSpNVZvHgxp59+enM8ZswYTjrpJEaNWrcaipUfSZIkSR2t\n9L7PuiY+nWT4rlySJEnSkBpJnd7A5EeSJElSP1qTn6lTp7ZpJfUw+ZEkSZJU1Jr8DOdmB2DyI6nA\n/RlUYlyoxLhQiXExMmQmjzzySJ9jw/2xN7u9dTG7vak/7s+gEuNCJcaFSoyLkWHBggWceeaZzfGE\nCRM48cQTm53b1oXd3iR1LPdnUIlxoRLjQiXGxchQanYwkMSnk1j56WJWfiRJktSfa6+9lquvvro5\n3nPPPXnta187oHtZ+ZEkSZLUsUZam2sw+ZEkSZJUYPIjSZIkacRbvnw58+fP73PM5EeSJEnSiDN/\n/nxWrlzZHG+yySaMHz++jSuqh8mPpFW4P4NKjAuVGBcqMS6Gv5H4yBvY7a2r2e1N/XF/BpUYFyox\nLlRiXAx/V155Jdddd11zvO+++/LKV75ywPez25ukjuX+DCoxLlRiXKjEuBj+rPxoxLHyI0mSpJIv\nf/nLLFy4sDl+3/vex1ZbbTXg+1n5kSRJktRxli1b1ifxiQimTp3axhXVx+RHkiRJUtMjjzzSZzxl\nyhTGjBnTptXUy+RHkiRJUlPr+z5bbLFFm1ZSP5MfSZIkSU3z5s3rMx4pj7yByY+kAvdnUIlxoRLj\nQiXGxfDW+tjbSKr82O2ti9ntTf1xfwaVGBcqMS5UYlwMb6eeeipLlixpjo855hg222yzQd3Tbm+S\nOpb7M6jEuFCJcaES42L4evLJJ/skPmPGjGHTTTdt44rqZeWni1n5kSRJUm933303F154YXO81VZb\n8b73vW/Q9+2Uyk9tPesiYgNgb2AHYBqQwCPA3cANmbmsrrkkSZIk1a+109u0adPatJKhMajkJyLG\nAm8F3gvsD4zr+ajxvaek8HRE/Bo4D7g0M58ZzLySJEmS6jeSO73BAJOfiBgNHA18EtgcWAHcAtwI\n3A/Mp3qfaAqwDbAXMBN4BfDliPgMcE5mLh/k+iVJkiTV5KGHHuoz3mqrrdq0kqEx0MrP7cCOwFXA\nd4BLMnPx6i6IiI2oqkTvBv4V+BDwvAHOL0mSJKlGy5cvX+Wxty233LJNqxkaA+32djuwZ2YenJnf\nXlPiA5CZixvnvoKqEnTnAOeWNMTcn0ElxoVKjAuVGBfD08MPP8zKlSub40mTJjFx4sQ2rqh+dnvr\nYnZ7U3/cn0ElxoVKjAuVGBfD00033cRll13WHO+00068/e1vr+XendLtzX1+JK3C/RlUYlyoxLhQ\niXExPD344IN9xiPtkTew8tPVrPxIkiSpxze+8Q0eeOCB5vjwww9nxowZtdy7Uyo/A251HRGfGsBl\nmZmfGeickiRJkuq3cuXKVdpcj7RObzC4fX5mUe3jsy7ZWwImP5IkSVIHefTRR1m+/K+70Gy00UZs\nvPHGbVzR0BjUJqfAcuAy4BfAyjWcK0mSJKkDtb7vMxKrPjC45Od84G3Am4GXAN8EvpWZ99exMEmS\nJEnrRzc0O4BBdHvLzCOBrYBjgPnAKcA9EXFZRLwxIuwkJw1T7s+gEuNCJcaFSoyL4adbKj+1dXuL\niD2Ao4DDgY2Ah4DzgG9m5pxaJlGt7Pam/rg/g0qMC5UYFyoxLoaXzOTzn/88Tz/9dPPYsccey+TJ\nk2ubo1O6vdVWncnM32fm+6mqQe8D5gKfAGZHxCvqmkfS0HN/BpUYFyoxLlRiXAwvCxYs6JP4jB8/\nnkmTJrVxRUNnSPb5iYgNgXcBnwS2Ad6cmT+pfSINipUfSZIk3XrrrVx66aXN8fbbb88RRxxR6xyd\nUvkZbLe3PiLipVSPvh0GbAj8Bfhn4Lo655EkSZJUj2553wdqSH4iYlPg3cDfA8+nann9c+DrwM8z\n0xbYkiRJUod66KGH+oxNfgoiYiZVwnMoMB6YA3yKqt31X+pYnCRJkqShk5lWftbSVcAzwE+pqjz/\nCSTA6tpcWwmSJEmSOsOiRYt46qmnmuNx48YxZcqUNq5oaA2229sY4E3Az4CnqZKh1X09Xb6NpE7i\n/gwqMS5UYlyoxLgYPkqbm/Y0JxiJBtztLSLm0Kj0rIvM3H5AE6p2dntTf9yfQSXGhUqMC5UYF8PH\nVVddxa9//evmeK+99uI1r3lN7fMM+25vmTm9xnVI6iDuz6AS40IlxoVKjIvho5uaHcAQ7fOj4cHK\njyRJUnc7/fTTWbx4cXP8/ve/ny222KL2eTql8jPYd34kSZIkDUNPPPFEn8RnzJgxTJ06tY0rGnp1\nb3I6DXgJsCkwunROZl5Q55ySJEmS1l3rI29bbLEFo0aN7NpILclPRIwFzgGOoP9qUlA1SDD5kSRJ\nktqs1OltpKur8vMZ4EjgLuDfgPuA5TXdW5IkSVLNumlz0x511bXeCdwJvDAzZ2XmNzPz/NJXTfNJ\nGkLuz6AS40IlxoVKjIvhoRuTn1q6vUXEUuCszDx+8EvS+mK3N/XH/RlUYlyoxLhQiXHR+ZYsWcKp\np57aHI8aNYqTTjqJMWNqbQnQNNK6vc0FNqnpXpLazP0ZVGJcqMS4UIlx0flamx1MnTp1yBKfTlJX\n5efjwAeBXTJz0aBvqPXCyo8kSVJ3uv7667niiiua4xe/+MUccsghQzbfSKv8fB64DrgiIg6MCKtA\nkiRJUodqrfx0w/s+UF+3t2ca3wO4Av6a3bXIzBz59TRJkiSpg3VjswOoL/n5NdUePpIkSZI62LJl\ny5g/f36fY1tssUWbVrN+1ZL8ZObMOu4jSZIkaWi1PvK2+eabM27cuDatZv2q650fSSOI+zOoxLhQ\niXGhEuOis91///19xt3yyBvU1O1Nw5Pd3tQf92dQiXGhEuNCJcZFZ7vooov405/+1By/5jWvYa+9\n9hrSOYd1t7eI+EhETBzopBExISJOHOj1koaW+zOoxLhQiXGhEuOis7VWfp71rGe1aSXr34AqPxGx\nDFgIfBX4TmbevZbXbQ+8m2pPoEmZOX6dJ1dtrPxIkiR1l8cff5wzzjijOR4zZgwf+9jHGD169JDO\n2ymVn4E2PHgB8C/ALODkiPg91T4/NwL3Awuo2l5PAZ4F7AnsD+zROH4p8LHBLFySJEnSuim97zPU\niU8nGVDyk5mzgUMjYnfgA8A7gJfQf7vrABYD3wDOzsw/DGReSZIkSQPXzY+8wSC7vWXmTZl5FDAV\nOBg4BbgQ+A/g8sbPpwCvAKZl5j90QuITEa+IiB9GxIMRsTQiHoiI/4iIVxfO3Tcifh4R8yNiSUT8\nT0QcGxH9/u0i4j0R8duIeCIiFkbE1RHxutWcPz4iTomI2yPiqYiYFxHfj4idVnPNNhFxXmPtSyPi\nnog4IyImr/tfRJIkSd2g25Ofuvb5WQpc1fjqaBHxBeDDwH3Aj4FHqZK3PYCZVIlbz7mHAJcATwHf\np3qc7w3AGcC+wNsL9z8NOL5x/68B46gqY5dFxDGZeVbL+eOAKxr3+2/gS8C2wGHA6yLiwMz875Zr\ndgB+A2wO/Ai4A9gLOBb4m4jYLzMfG9AfSJIkSSPSihUrePDBB/sc67bkp6v2+YmIo6gSn28BO2bm\n+zPzk42K1EuAT/Q6d2Pg68By4IDMPCozPwq8mCrxeGtEHNZy/32oEp/ZwK6ZeUJmfogqsVoAnBYR\nz25Z1glUic9FmfnSzDwpM/8WeAswETiv8KucTZX4fCgz35KZH8/Mg6mSsp2Azw78ryS5P4PKjAuV\nGBcqMS4607x581i+fHlzvPHGG7PJJpu0cUXrX9fs89OosNwHLAGem5nL13D+e6neUfp2Zr635bMD\ngSuBazLzwF7HLwDeBRyZmRe0XHMK8Eng05l5Sq/j91I1hdghM+9tueYaqkYRB2XmNY1jOwB/Bu7J\nzB1bzt8I6Ennp2XmU2v4He32piL3Z1CJcaES40IlxkVnuvHGG7n88sub45133pnDDjtsNVfUp1O6\nvXVT5eeVVI+3XQpkRLyusV/RP0bE3oXzD6Rq4PCLwmfXUiVR+0bE2JZr6Oeay6kaPxzUcyAidqR6\nxO3O1sSnv2t6zfHL1pMzczFwPVXFqPQ7SWvF/RlUYlyoxLhQiXHRmbr9fR+o6Z2fYWJPqmTmaeBm\nqnbdPf+XRETEtcBbM/PRxrHnNb7f2XqjzFwREfcAuwA7AHc0Nn3dBngiM+cV5p/d+D6j17F+51jD\nNbmGa17ZuObqfs6RVsvHFVRiXKjEuFCJcdGZTH66q/IzjaqKciKwEtgP2Bh4IVWl5uXARb3On9T4\nvqif+/Uc7+mutq7nr89rJEmS1MWefPJJHnvsr/2wRo0axVZbbdXGFbVHNyU/Pb/rM8AbMvM3mbkk\nM28DDqXanPWAiHhp21YoSZIkDYEHHnigz3iLLbZg7Nix/Zw9cnVT8rOw8f3mzLyv9weNxgA97+ns\n1fjeU0EwZsQ2AAAgAElEQVSZRFnP8Z77ruv56/Oa1YqIfr9mzpxJRPRbvp41a5af+7mf+7mf+7mf\n+7mfd/jnvR95u/rqq/mHf/iH2ufvOV766hTd1O3tSOCbwOWZucqGo1Ht/3MCcFJmfiEiLgTeCbwz\nM7/fcu5oqiRkLLBRZj7TOH4fsDWwdet7P42mCv8F/DozD2gc25HqHZ07MnPnwpo+BnwO+Exmntw4\n9ndULbjPzcwPFK75D6p3fg7OzNW+82O3N0mSpO5wwQUXcM899zTHb37zm3nhC1+43uYfkd3eImJa\nRLw2It4VEUeUvuqcbx1dSdUoYJd+Pn9B43tPVFxF9Y7QqwvnHkDVUe36nsSn1zX0c81re60DgMy8\nC5gLzIiI7fq5Jum7eWxPQvOq1pOjanW9H1UnuhsK95PWSn//T4+6m3GhEuNCJcZFZ1m5cuUqj711\nY7MDqKny02j3fA5wBP0nVAFkZo4e9IQDFBE/At4AnJCZX+p1/FVUbaUfA7bPzCei2uT0LqqmCPtn\n5u8b525AlYC8FHhHZl7c6z77ULWa/jOwV2YubByfDvwemADslJlze13TU925uHG/bBw/BPghcGtm\n9knLe1V3js3Mr/Q6/kXgn4CzM/ODa/H3sPKjonB/BhUYFyoxLlRiXHSWhx9+mLPPPrs5njBhAiee\neOJ6fRytUyo/Y2q6z2eAI6mShX+j2kx0tZuItskHgRcDp0fE66haXu8AHEK13r/PzCcAGgnQUVRJ\nya8i4nvAAuCNVG2kL+6d+DSu+U0jATkOuCUiLgHGAW+n6r52TO/Ep+GLwOuBtwK/jYgrge0a48XA\ne1nV0VRJ1pcj4hXAn6j29ZkJ3E61mao0YO7PoBLjQiXGhUqMi85SanHdSe/hrE91VX7mUj1qtVuj\neUDHiojNgE9RJTFbAY9TbVr6+cz8XeH8fYBPAPsA46mqOt8Ezsx+/niNx/s+SPWI3Uqqqs+pmXl5\nP+ePBz4GHA48u7Gmq4FZmXl7P9dsA3ya6hG7zYAHgR8An87M/tpgt97Dyo8kSdII95Of/ISbb765\nOT7wwAN5+ctfvl7X0CmVn7qSn6XAWZl5/OCXpPXF5EeSJGnkO+uss3jkkUea43e/+93ssMMO63UN\nnZL81NXwYC6wSU33kiRJklSDpUuX9kl8ALbeeus2rab96kp+vg28JiL623tGkiRJ0nr2l7/8pc94\n6tSpjB8/vk2rab+6kp/PA9cBV0TEgRFhFUiSJElqs9ZmB9tss02bVtIZ6kp+nqHqTrYHcAXwWESs\nKHx1Ygc4SS3cn0ElxoVKjAuVGBedo9TprZvV1fDgV1Sbca5RZh446AlVCxseqD/uz6AS40IlxoVK\njIvOkJmceuqpPPXUX5sxv//972eLLbZY72vplIYHtezzk5kz67iPpM7g/gwqMS5UYlyoxLjoDI89\n9lifxGfcuHFMnTq1jStqv1oqPxqerPxIkiSNXLfccgs//OEPm+Ptt9+eI444oi1rGVGVn94iYiyw\nEzAZWAT8KTOfqXseSZIkSf2z2cGq6mp4QERsEhHnAAuBPwC/Am4GFkbEORExua65JEmSJK2ezQ5W\nVUvlp9Ha+nrg+cATwK+BB4GtgBcD7wP2j4h9M/PxOuaUJEmSVPb000/z0EMP9Tlm8lNf5eckqsTn\nbGC7zJyZmYc3GiFsB3wV2KVxniRJkqQhdN999/V5r3vKlClsuOGGbVxRZ6gr+TkUuCEzP5iZC3t/\nkJmLMvNDwG+At9Q0n6Qh5P4MKjEuVGJcqMS4aL85c+b0GW+33XbtWUiHqWufn6XAFzPz46s553PA\ncZk5YdATqhZ2e1N/3J9BJcaFSowLlRgX7fetb32LuXPnNsdvfvObeeELX9i29XRKt7e6Kj9PAtPW\ncM5UYElN80kaQu7PoBLjQiXGhUqMi/Z65plneOCBB/ocs/JTqavy8x/APsBLMnN24fMdgZuA32Tm\nqwc9oWph5UeSJGnkueeee7jgggua48mTJ3Pssce2cUWdU/mpa5+fU4FfAv8dEWcCV1N1e9sSmAl8\nCNgIOK2m+SRJkiQV3HvvvX3GVn3+qpbkJzOvjIijgS8DH2989QjgGeCYzLyijvkkSZIklZn89K+u\nyg+ZeW5EXA68G9gNmAQsotro9DuZee/qrpckSZI0OMuXL19lc9Pp06e3ZzEdqLbkByAz5wKfrfOe\nkiRJktbOX/7yF5YvX94cb7LJJkyePLmNK+osdXV7kzSCuD+DSowLlRgXKjEu2qe0v09PswENsNtb\nRLy88eONmbm013iNMvPadZ5QQ8Jub+qP+zOoxLhQiXGhEuOifS688ELuvvvu5vj1r389e+yxRxtX\nVBnu3d5+BSSwM3Bnr/HaGD3AOSWtJ+7PoBLjQiXGhUqMi/ZYsWIF9913X59jNjvoa6CVn1lUyc6Z\nmbmg13iNMvOUdZ5QQ8LKjyRJ0shx//33881vfrM53nDDDTnhhBM64rG3YV35ycxZqxtLkiRJWr9a\nW1xPnz69IxKfTlJLw4OIeHZEbLKGczaOiGfXMZ8kSZKkvlqTn2c/2396t6qr29s9wLFrOOcfG+dJ\nkiRJqtHKlSuZO3dun2Pu77OqupKfaHxJkiRJWs/mzZvHsmXLmuMJEyYwderUNq6oM63PfX62BJ5c\nj/NJGiD3Z1CJcaES40IlxsX65/4+a2dA3d4AIuKIXsNvAz9qfLUaDTwb+CfgfzNzvwFNqNrZ7U39\ncX8GlRgXKjEuVGJcrH/f+973uOOOO5rjv/mbv2Hvvfdu44r6Gtbd3hq+zV/bWydwSOOrVc8vuASw\nzbU0DLg/g0qMC5UYFyoxLtavzFzlfR/39ykbTOXnPT0/AudRVX1+XDh1BTAf+E1mLhzQZBoSVn4k\nSZKGv3nz5nHOOec0xxtssAEf+chHGDVqfb7hsnrDvvKTmef3/NxIhH6UmRfUsipJkiRJa6W1xfV2\n223XUYlPJxnMY29NmXlgHfeRJEmStG5KyY/KTAklSZKkYSozTX7WQS2VH4CI2BA4GvgbYBtgg8Jp\nmZk71jWnJEmS1M0effRRnnzyr7vJjBs3jq222qqNK+pstVR+ImIy8FvgX4CXAM8DNgW2AKY3vsbV\nNZ+koeX+DCoxLlRiXKjEuFh/Wqs+2267re/7rMaAu731uUnEacDxwN9RtcBeAcwCPgO8FPgK1Qan\nf5OZSwc9oWphtzf1x/0ZVGJcqMS4UIlxsf5ccskl3Hbbbc3xQQcdxMte9rI2rqisU7q91ZUWvhG4\nNjO/lb0iPSs3AK8FdgI+UdN8koaQ+zOoxLhQiXGhEuNi/Vi5ciV33313n2PTp09vz2KGiboqP08B\nZ2XmCY3xcuBfMvMTvc75NrBfZj530BOqFlZ+JEmShq+//OUvfP3rX2+Ox48fz4knntiRj72NtMrP\nEmBlr/EiYMuWc+ZRNUKQJEmSNEh33XVXn/H222/fkYlPJ6nrr3MfsG2v8f8CL4+I3vffH3iopvkk\nSZKkrtaa/Oy4o02V16Su5Oca4IDoqWfB94EdgZ9HxAcj4mJgb+DnNc0nSZIkda1ly5Zx33339Tlm\n8rNmde3zcz5VK+tnUVWBzgEOAt4EvKpxzvXAJ2uaT5IkSepac+bMYeXKv751stlmmzF58uQ2rmh4\nqKXyk5k3ZeYHMvO+xnh5Zh4K7AkcDuwDHJCZC+uYT9LQcn8GlRgXKjEuVGJcDD0feRuYurq9vRx4\nPDP/MPglaX2x25v64/4MKjEuVGJcqMS4GHpnnnkmCxYsaI4PP/xwZsyY0cYVrd5I6/Z2NfC+mu4l\nqc3cn0ElxoVKjAuVGBdD67HHHuuT+IwaNcr9fdZSXZWfecB3evb50fBg5UeSJGn4+d3vfsfPfvaz\n5nj69Om85z3vaeOK1mykVX5+Bexb070kSZIk9cP3fQauruTnk8DzIuIzETG2pntKkiRJ6mXlypXc\nc889fY6Z/Ky9ulpdnwTcCnwc+LuI+B+qDU1bn6fKzPy7muaUJEmSusr999/PsmXLmuOJEyey5ZZb\ntnFFw0tdyc//6fXzlo2vkgRMfiRJkqQBKD3y1vM+jdasrsfetl/Lrx1qmk/SEHJ/BpUYFyoxLlRi\nXAyd1uRnhx385/W6qKXbm4Ynu72pP+7PoBLjQiXGhUqMi6Hx1FNPceqpp/b52x5//PFsvPHGbVzV\n2hlR3d4i4lONjU5Xd87LIuJTdcwnaWi5P4NKjAuVGBcqMS6Gxt13390n8Zk2bdqwSHw6SV37/KwE\nZmXmp1dzzieAT2fm6EFPqFpY+ZEkSRo+fvKTn3DzzTc3x/vssw+vetWr2riitTeiKj9raSywcj3O\nJ0mSJI0Imen+PjVYn8nP7sCj63E+SZIkaUSYP38+jz/+eHM8ZswYtttuuzauaHgacKvriLiq5dD/\niYiZhVNHA9sC2wH/PtD5JEmSpG7VWvXZbrvtGDOmrl1rusdg/mIze/2cwPTGV6uVwHzg+8Bxg5hP\nkiRJ6ko+8laPAT/2lpmjer6AoGp4MKrwNSYzt8jMd2bmI/UtXdJQcX8GlRgXKjEuVGJc1Gv58uXM\nmTOnzzGTn4Gpq9vbe4CbM/OWwS9J64vd3tQf92dQiXGhEuNCJcZFve655x4uuOCC5njjjTfmuOOO\na3ZQGw46pdtbLQ8KZub5ddxHUmdwfwaVGBcqMS5UYlzU64477ugz3nHHHYdV4tNJaqn8NG8WMQ14\nCbApVaODVWTmBaXjWv+s/EiSJHW2zORf//VfWbhwYfPYYYcdxs4779zGVa27EVX5iYixwDnAEfT/\nHlFQNUYw+ZEkSZLWwsMPP9wn8Rk9erTv+wxCXf3xPgMcCdwF/BtwH7C8pntLkiRJXen222/vM95h\nhx0YN25cm1Yz/NWV/LwTuBPYLTOfqumekiRJUldrfd9np512atNKRoYBt7puMQ34uYmPJEmSVI/H\nH3+cBx98sM+xGTNmtGk1I0Ndyc9cYJOa7iWpzdyfQSXGhUqMC5UYF/Vorfo861nPYqONNmrTakaG\nuvb5+TjwQWCXzFw06BtqvbDbm/rj/gwqMS5UYlyoxLiox3e+8x3uuuuu5vgVr3gF+++/fxtXNHCd\n0u2trsrP54HrgCsi4sCIsAokDWPuz6AS40IlxoVKjIvBW7p0Kffcc0+fY77vM3h1VX5W9PxI1c66\nP5mZdTVZ0CBZ+ZEkSepMt956K5deemlzvNlmm3HMMce0cUWD0ymVn7oSkV+z+qRHkiRJ0lpqfd/n\nec97XptWMrLUkvxk5sw67iNJkiR1uxUrVjB79uw+x0x+6lHXOz+SJEmSanDvvfeybNmy5njixIk8\n61nPauOKRo7ak5+I2DAidouIl9V977pFxN9GxMrG13v7OWffiPh5RMyPiCUR8T8RcWxE9Pu3i4j3\nRMRvI+KJiFgYEVdHxOtWc/74iDglIm6PiKciYl5EfD8i+n2rLSK2iYjzIuKBiFgaEfdExBkRMXnd\n/gqSJEnqJLfffnuf8YwZMxg1yppFHWr7K0bEsyLiUuAx4HfA1b0+2z8i/jciZtY132BFxLbAmcAT\n9PO+UkQcAlwD7A/8oHH+WOAM4N/7ueY04FvAlsDXgAuBFwCXRcTRhfPHAVcA/xdYBHwJ+E/gzcDv\nImLPwjU7ADcB7wFuAL4I3AUcC/xXRGy6Nn8DqT/uz6AS40IlxoVKjIuBy8xV3vexy1t96ur2thVV\nwrMF8BNgGrBPZo5ufD4WeBC4ODM/MOgJaxARVwDbUSU1HwaOyszzen2+MVVCsTGwb2be3Dg+jiqx\n2xs4PDMv6nXNPsD1wGxgz8x8vHH82VTJykRgp8yc2+uak4DPAhdl5jt6HX8D8GPgtszctWXtvwAO\nBj6UmWf1On46cBxwTmaukmgV/gZ2e1OR+zOoxLhQiXGhEuNi4B588EG+9rWvNcdjxozhIx/5CGPH\njm3jqgavU7q91VX5OZkq4XllZh5KVbloysxnqDrC7VfTfIMSEccCM4EjgSX9nPY2YHPg33sSH4DM\nfBr4JFVb79ZE7gNUVaTP9iQ+jWvmAl8FNmjM2dv7G9d8tPfBzLyM6m+2S0Qc0GvtOwCvBOb0Tnwa\nTgaeBN4dERP6+b2kNXJ/BpUYFyoxLlRiXAxc6yNvO+6447BPfDpJXcnPa4GfZObVqzlnLrB1TfMN\nWETsDPw/4EuZed1qTj2QKin5ReGza6mSpn0bVa3e19DPNZdTJUwH9VrLjsC2wJ2Zee/aXNNrjl+2\nnpyZi6kqTxOpKlPSgPi4gkqMC5UYFyoxLgbOFtdDq67kZwuqR71W5xlgw5rmG5CIGE31Ds4c4BNr\nOL0n0u5s/SAzVwD3ULUK36Fx74nANsDizJxXuF/P32fG2syxhmtyHa+RJElSh1u4cCHz5v31n5ER\nwYwZ/pOuTnVtcrqAqoKxOjOAh2qab6BOBl4E7JeZy9Zw7qTG90X9fN5zvKe72rqevz6vkSRJUodr\nrfpsu+22bLhhW2sHI05dlZ/rgTdGxJalDyPiucCr6dUBbn2LiJcCJwGnZeaN7VqHJEmSVOIjb0Ov\nruTnVGA8cE1EvIbqnZOePX9eA1wGrAROr2m+ddJ43O0C4A7gU60f93NZTwVlUj+f9xxfOMDz1+c1\nqxUR/X7NnDmTiOj32d1Zs2b5uZ/7uZ/7uZ/7uZ/7+SA/X7JkCffeW70CfvXVVzNr1ix+9KMfdcz6\n1ubznuOlr05RS6trgKg2CT2b8qN0y4H3Zua/1TLZOoqISVT7DyXlZKf38S9l5vERcSHwTuCdmfn9\nlvuNpkpCxgIbNbrZERH3UTV12Lr1vZ+I2Bv4L+DXmXlA49iOVO/o3JGZOxfW/THgc8BnMvPkxrG/\nA74OnFtqGx4R/0HVDe7gNTSgsNW1+jVr1qx+/4On7mVcqMS4UIlxse5+97vf8bOf/aw5njp1Kkcf\nvcadS4aNTml1XVvyA83H246m6jS2GVWCcAPwlcy8Y3XXDqWIGA/8az8f7w7sBlxHVRn6z8y8OCKO\nBL4JnJ+ZfdpTR8RBVBuT/ioze3dvOx/4W6pE7/yWaz5N1SJ7VmZ+utfxOVTvS+3Q2vEtIq6lag9+\nUGZe0zi2A/Bn4J7M3LHl/I2o9lMCmJaZT63h72Lyo6JwfwYVGBcqMS5UYlysu/PPP585c+Y0xzNn\nzuSAAw7o/4JhplOSn1KVZsAyczbVJpsdJTOXAu8rfRYRJ1MlP+f33uQUuAT4F+AdEfGVzPx94/wN\ngH+mqhad3XK7c4B3A5+IiB9n5sLGNdOBDwJLgW8Xrvkc8IWIeEc2/ksREYcA+wO39iQ+jd/l7oj4\nJfDKiDgmM7/S616fpuqod/aaEh9pddyfQSXGhUqMC5UYF+vm8ccf75P4AOy6667lkzUotVZ+hqNG\n8nMy8PctyU9PAnIxsAz4HlVXuzdSda67ODPfUbjfaVQJ4ANUCdQ44O3AFOCYzDy75fxxwFXAPsDv\ngSuB7YC3UiVLB2Xm71qu2YGqycQ04CfAn6iqbTOB26m62T22Fr+7lR9JkqQ2+81vfsMvf/nXLRy3\n3nprjjrqqDauqH6dUvmppeFBRLwtIq6KiOImphGxTURcGRGH1jHfECj+6z8zfwwcAFwDHAocAzxN\nldwc3s81HwaOpHr87CiqStAfgde3Jj6N858GDgY+Q9Ws4J+AVwA/APZqTXwa19wNvISqirQXcDyw\nPXAGsM/aJD6SJEnqDLfddluf8fOf//w2rWTkq6XyExG/AKZm5u6rOed3wMOZ+dpBT6haWPmRJElq\nrwULFnDmmWf2OXbcccexySabtGlFQ2NEVX6AXYFVKhQt/ht4YU3zSZIkScPerbfe2me83XbbjbjE\np5PUlfxMAR5ewznzgc1rmk+SJEka9lqTHx95G1p1JT+PAs9dwznPZR023pTUPu7NoBLjQiXGhUqM\ni7Xz8MMP88gjjzTHEcEuu+zSxhWNfHW98/N9qi5ou2Xm7YXPdwZuBi7LzLcNekLVwnd+1B/3Z1CJ\ncaES40IlxsXaufLKK7nuuuua4+c85zm8613vauOKhs5Ie+fnNKo9g66LiH+MiBkRsWHj+7HAr4HR\njfMkdTj3Z1CJcaES40IlxsWaZaZd3tqgtn1+IuIo4KtUSU6rFcDRmfmNWiZTLaz8SJIktccDDzzA\nN77x138ajx49mhNPPJENNtigjasaOp1S+RlT140y8+sRcR1wNPBSYDLVOz43AGdn5p/qmkuSJEka\nzv74xz/2Gc+YMWPEJj6dpLbkB6CR4HyozntKkiRJI8nKlSt95K1N6nrnR5IkSdJamDt3LosXL26O\nx40bx4wZM9q4ou5Ra+UnIkYDzwM2pfzuD5l5bZ1zSpIkScNJ6yNvO+20E2PHjm3TarpLbZWfiPi/\nwCPAH4Frgav7+ZLU4dyfQSXGhUqMC5UYF/1bsWIFf/pT31fhfeRt/alrn5+PAJ8HFgE/Bu4DlpfO\nzcxTBj2hamG3N/XH/RlUYlyoxLhQiXHRv9mzZ/Pd7363OZ4wYQInnHACo0cXH5oaMUZat7ejgAeA\n3TPzkTWdLKmzuT+DSowLlRgXKjEu+tf6yNvOO+884hOfTlJX5Wcp8PXMtNPbMGLlR5Ikaf1ZunQp\np59+OsuX//UBqSOOOILtt9++jataPzql8lPXOz/zqLl5giRJkjSS/PGPf+yT+EyaNInp06e3b0Fd\nqK7k5yLglRHhzkySJElSwc0339xnvNtuuzUrIlo/6kp+TgYeBC6JiJFft5MkSZLWwYMPPsiDDz7Y\n59iLX/ziNq2me9X1qNqtwFhga+C1EbEIWFg4LzNzx5rmlCRJkoaF1qrPc57zHCZNmtSm1XSvuio/\no6haW89tfC0CovBV275CkoaO+zOoxLhQiXGhEuOir2eeeYZbbrmlz7HddtutTavpbrV0e9PwZLc3\n9cf9GVRiXKjEuFCJcdHXLbfcwg9/+MPmeOLEiRx//PFd1eJ6pHV7kzSCuD+DSowLlRgXKjEu+mp9\n5O1FL3pRVyU+nWRIKj8RsTEwGViUmY/XPoFqYeVHkiRpaC1YsIAzzzyzz7Gjjz6aqVOntmlF7THi\nKj8RMSYiPhYRf6ZqdjAHeCwi/tw47j5AkiRJ6iqtVZ9tt9226xKfTlJLQhIR44D/AA4AEriPqvX1\nVsB04LPAqyPiVZn5dB1zSpIkSZ1s5cqV/OEPf+hzzEYH7VVX5ed4YCbwM2DnzJyemftk5nTgecBl\nwMsa50mSJEkj3uzZs1m8eHFzPG7cOJ7//Oe3cUWqK/l5J9VeP2/KzNm9P8jMu4BDgduAd9U0nyRJ\nktTRWh95e/7zn8+4cePatBpBfcnPc4DLM3Nl6cPG8csBNziVhgH3Z1CJcaES40IlxgU88cQT3Hnn\nnX2O7b777m1ajXrU0u0tIhYC/5aZH1zNOV8B3p2ZbmXbIez2pv64P4NKjAuVGBcqMS7guuuu48or\nr2yOp06dygc+8IFm17NuM9K6vd0CvDUiiq0rImJz4K3A/9Q0n6Qh5P4MKjEuVGJcqKTb4yIzV3nk\nbffdd+/axKeT1FX5OQz4HnAv8M/A1VTd3rakaoTwSaqub4dn5kWDnlC1sPIjSZJUvzlz5nD++ec3\nx6NGjeKEE05g4sSJbVxVe3VK5aeWVteZeVFEvBj4GPC1wikBfMHER5IkSSPdjTfe2Ge88847d3Xi\n00lq23g0Mz8eET8B/g7YDZgELAJuBs7LzN/UNZckSZLUiRYuXMjtt9/e59gee+zRptWoVW3JD0Bm\n3gDcUOc9JUmSpOHixhtv7PNKwbRp05g+fXr7FqQ+6mp4IEmSJHW1p59+mptuuqnPsZe+9KU2Ougg\nA05+ImJcRNwYEVdExNg1nHdVRNywuvMkdQ73Z1CJcaES40Il3RoXf/jDH1i2bFlzPHHiRHbdddc2\nrkitBtztLSLeC3wdeE1m/nIN574G+Bnw3sz89oAmVO3s9qb+uD+DSowLlRgXKunGuMhMvvrVrzJ/\n/vzmsZe97GUcdNBBbVxV5+iUbm+DeeztUGD2mhIfgMy8HJgNvG0Q80laT7p9fwaVGRcqMS5U0o1x\n8ec//7lP4jNq1Cj23HPPNq5IJYOp/DwA/Cwz37eW538deG1mbjOgCVU7Kz+SJEn1uPDCC7n77rub\n41133ZVDDz20jSvqLCOh8rM5MG8dzp8HbDaI+SRJkqSO8/DDD/dJfAD23nvvNq1GqzOY5OcpYON1\nOH8jYOkg5pMkSZI6zm9/+9s+42233Zatt966TavR6gwm+bkPeMk6nP8SYO4g5pMkSZI6ypIlS7jl\nllv6HHvpS1/aptVoTQaT/PwK2Cci1pgARcQewL7A1YOYT5IkSeooN910E8uXL2+ON9lkE3beeec2\nrkirM5jk5ytAAhdHRL//C0fETsDFwArgrEHMJ2k96db9GbR6xoVKjAuVdEtcrFixghtvvLHPsb32\n2otRowbzT2wNpQF3ewOIiE8Bs4CngUuAq4D7Gx9vA7wCeAuwAfCpzPznwSxW9bLbm/rTjfszaM2M\nC5UYFyrplri49dZbufTSS5vjsWPHctxxxzFhwoQ2rqozdUq3tzGDuTgzPx0Ry4GTgXcCh7ecEsAz\nwCcy8/8NZi5J60837s+gNTMuVGJcqKRb4uKGG27oM37Ri15k4tPhBlX5ad4kYjvgvcB+wFaNww8C\n1wHfysx7Bz2JamflR5IkaWDmzJnD+eef3+fYBz/4/9u78zCpqjvh49/DTtOAsiiyKMgiYMQFNYY4\nLBqXLGjUuCSPMYmTjEnGSSazvJl5583ImMk7k5lMMk8yE6NJNGjeTBKUMQs6ahDENWo0wQUjahsV\nBASabqBpoLvP+8etbqu6bwEN3V3Vdb+f57nPrTrn3urTfX809etz63f+lFGjRpVoROWtImZ+WuWS\nm2yk+JIkScq8VatWFTyfMmWKiU8v4KexJEmSpE54/fXXqampKWj7oz/6oxKNRp1h8iNJkiR1QvtZ\nn3WAQPIAACAASURBVIkTJ3L00UeXaDTqDJMfSZIk6QCtW7eOl156qaBt7ty5JRqNOsvkR1IHWVmf\nQZ1jXCiNcaE0lRwXDz74YMHzCRMmMHHixNIMRp3WJdXe1DtZ7U3FZGV9BnWOcaE0xoXSVGpcbNiw\ngRtvvLGg7corr2Ty5MklGlHvUS7V3pz5kdRBVtZnUOcYF0pjXChNpcZF+8/6jBs3jmOPPbZEo9HB\ncOYnw5z5kSRJOjCbNm3ihhtuKGj78Ic/zLRp00o0ot7FmR9JkiSpl2j/WZ8xY8YwderUEo1GB8vk\nR5IkSdqHzZs38+yzzxa0zZ07t202Q72HyY8kSZK0Dw899FDB8yOOOILp06eXaDQ6FCY/kiRJUhFb\nt25l9erVBW3O+vReJj+SOqjk9Rl08IwLpTEulKaS4uLBBx8sKA41atQoZsyYUcIR6VBY7S3DrPam\nYip1fQYdGuNCaYwLpamUuNi0aRPf+c53Cr6Xiy66iFmzZpVwVL2T1d4kla1KXZ9Bh8a4UBrjQmkq\nJS5+9atfFSQ+I0eO5B3veEcJR6RD5cxPhjnzI0mSlK6mpoZbb721oO3yyy+30MFBcuZHkiRJKkMx\nRu67776CtqOPPprjjjuuRCNSVzH5kSRJkvI8++yzvPnmmwVt55xzjhXeKoDJjyRJkpTT1NTE8uXL\nC9pmzpzJ+PHjSzQidSWTH0mSJCnn8ccfp66uru15nz59OPvss0s4InUlkx9JHVTS+gzqOsaF0hgX\nStNb42LXrl08+OCDBW2nnnoqI0aMKNGI1NWs9pZhVntTMZWyPoO6lnGhNMaF0vTWuLj33nt59NFH\n254PHDiQz33uc1RVVZVwVJXBam+SylalrM+grmVcKI1xoTS9MS5qa2t5/PHHC9rOPPNME58K48xP\nhjnzI0mSlFi6dCnPPPNM2/Nhw4Zx7bXX0r9//xKOqnI48yNJkiSVgfXr1xckPgALFiww8alAJj+S\nJEnKrJaWFpYtW1bQduSRRzJr1qwSjUjdyeRHkiRJmfWb3/yG9evXF7Sdc8459Onj2+RK5FWVJElS\nJu3YsSN1QdPJkyeXaETqbiY/kjroreszqHsZF0pjXChNb4mLe+65h927d7c9HzBgAOedd14JR6Tu\nlplqbyGEEcDFwPuAE4BxwB7gGeAW4JaY8sMIIcwB/g/wTmAwsBa4GfhWjLGlyNf6GPBZYCbQDDwN\nfC3GuKzI8YOAvwUuB44B6oGVwHUxxheKnDMO+DJwHjASeBO4E/iHGOO2ff802l7Dam9K1VvXZ1D3\nMi6UxrhQmt4QF6+88gq33XZbQdt5553HGWecUaIRVTarvfW8S4GbgNOBx4BvALcDxwPfA37S/oQQ\nwoXAA8CZwFLgW0D/3Ln/lfZFQghfI0mmxuS+3m3AO4BfhBA+m3L8AOBXwJeAOuDfgfuAi4AnQwin\npZxzLPAU8LHc9/J14GXg88AjIYTDD+DnIRXVG9dnUPczLpTGuFCaco+LpqamDkUOxowZw+mnn16i\nEamnZGnmZz4wpP3sSwjhCOAJYDzwoRjjf+fah5IkFEOBOTHGp3PtA4AVwBnAh2OMP817rXcBD5PM\nDp0WY6zPtR9NkqxUAdNjjK/lnfO3wFeAn8YYr8hrXwj8DHguxnhCuzHfA7wH+LMY47fz2v8N+ALw\nnRhjh0Qr5WfizI8kScqclStX8sADDxS0/fEf/zHjx48v0YgqnzM/PSzGuDLttrMY4ybgO0AA5ud1\nXQqMAv6rNfHJHb+H5Da4AHym3ct9BojAV1oTn9w5rwH/CQwEPtHunE/nzvliu3H9AngQmBlCmNfa\nnpv1OQd4NT/xybkO2Al8NIQwuONPQZIkKdu2bNnCQw89VNB26qmnmvhkRGaSn/3Ym9s35bUtIElK\n7kk5fhXQAMwJIfRvdw5FzrmbJGE6q7UhhDAZmAC8GGP8w4Gck/c17m1/cIxxB8nMUxXJzJQkSZJy\nYozcddddNDc3t7UNGTKEs88+u4SjUk/KfPITQuhL8tmZCPxPXtdxuf2L7c+JMTYDNUA/4Njc61SR\nFFHYEWPcmPKl1ub20w7ka+znnNjJcyRJkjLvueee45VXXiloO/fccxk0aFCJRqSelvnkB/gqSdGD\nZTHG+/Lah+f2dUXOa20/7CCP78lzJEmSMm3Xrl3cc0/hzTmTJk3ihBNOKHKGKlGmk58QwueAvwCe\nB64q8XBKJoRQdJs/fz4hhKL1+hctWmR/Bfa3Pi/X8dlfmv60OCmn8dlfmv758+eX9fjsL01/Ob5/\nWLZsGTt27ABgxYoVLFq0iGeffbbtg/ilHl8l9Le2p23lIjPV3toLIVwLfBN4FnhPrvBBfv/jwGzg\n1PyCB3n9z5Cs4zMzxvj73G1vO4DtMcbhKcePBN4CNsYYj8q1vQ/4JfCLGOOFKedcAiwBfhJj/HCu\n7V+AvwT+Ksb4jZRzvkWyxtBnY4w37udnYLU3pQq9YH0G9TzjQmmMC6Upt7h45plnWLp0aUHb3Llz\nWbBgQZEz1NWs9lZCIYQ/J0l8VgNntU98cn6f23f47Ezuc0KTSAokvAIQY2wA1gHVIYQjU15vam6f\n/1mdol9jP+eETp4jdUq5r8+g0jAulMa4UJpyiov6+nruuuuugrYxY8Ywd+7cEo1IpZS5mZ8QwheB\nfyJZd+ecGGNtkeM+AXwfWBxj/ES7vrNIFiZdGWPMr962GLgSuDrGuLjdOdeTlMheFGO8Pq/9VZKK\nb8e2r/gWQlgFvJskQXsg13Ys8BJQE2Oc3O74auDN3NMjYoy79vOzcOZHkiRVrBgjP/zhDwuKHPTt\n25drrrmG0aNHl3Bk2ePMTwmEEL5Ekvg8QXKrW2rik3M7sBm4IoQwO+81BgL/SFJx7YZ257SuF/R3\nIYTD8s6ZCPwp0Aj8oMg5/xLybogMIVwInEmyyGnbKlwxxldIylxPzN26l+96YAhw6/4SH0mSpEr3\nxBNPdKjudvbZZ5v4ZFhmZn5CCB8DbiG5Ve0/SK+W9mr+jE0uAVkC7AZ+DGwFLiC55WxJjPGKlK/z\nNeALJLfA3Q4MAC4HRgDXxhhvaHf8AOB+4F3Ab4DlwDHAh0iSpbNijE+2O+dYkvV8jgB+DqwhWddn\nPvAC8O79JHatr+PMjyRJqkibN2/mxhtvpKnp7WUcJ06cyFVXXVVWH8DPinKZ+clS8nMd8Pf7OeyB\n/NvYcue9C/g7kuRkEMktZ98HvhWL/PBCCFeRzPTMBFpIkpp/jTHeXeT4QcDfAB8GjgbqgRUkt8i9\nUOSccSQzPecDI0lud1sKXB9jLFYGu/1rmPxIkqSK09zczM0338z69evb2gYOHMinP/1pDjvM1UBK\nweRHJWfyI0mSKtHKlSt54IEHCtouvPBCTjrppBKNSOWS/GTqMz+SDkyxuv7KNuNCaYwLpSllXKxb\nt45Vq1YVtE2fPp0TTzyxRCNSOXHmJ8Oc+VEx5bY+g8qDcaE0xoXSlCouGhsbuemmm6itffujz0OG\nDOEzn/kMQ4YM6fHx6G3O/EgqW+W0PoPKh3GhNMaF0pQiLmKM3HnnnQWJD8AFF1xg4qM2zvxkmDM/\nkiSpUjz00EMsX768oG327Nl84AMfKNGIlM+ZH0mSJKkLvPLKK9x///0FbWPHjuX8888v0YhUrkx+\nJEmS1GvV19dzxx13FNzJMnjwYC699FL69etXwpGpHJn8SJIkqVdqbm5myZIlNDQ0FLRffPHFruej\nVCY/kiRJ6pXuuece3njjjYK2+fPnM2XKlBKNSOXO5EdSB67boTTGhdIYF0rTE3GxevVqnnjiiYK2\nKVOmMHfu3G7/2uq9rPaWYVZ7UzGu26E0xoXSGBdK091xsXHjRr7//e+zd+/etrbhw4dzzTXXMHjw\n4G77ujp4VnuTVLZct0NpjAulMS6Upjvjor6+nh/96EcFiU/fvn257LLLTHy0X878ZJgzP5IkqTfZ\nvXs3t9xyCxs3bixoX7hwIaecckqJRqUD4cyPJEmSdICam5u5/fbbOyQ+p556KieffHKJRqXexuRH\nkiRJZS3GyF133cVLL71U0D5t2jTe+973ts0qSPtj8iNJkqSy9vDDD/PUU08VtB111FFccskl9Onj\n21kdOKNFkiRJZeuZZ55h+fLlBW3Dhw/nIx/5CAMGDCjRqNRbmfxI6sB1O5TGuFAa40Jpuiou/vCH\nP/Czn/2soG3gwIF85CMfobq6uku+hrLFam8ZZrU3FeO6HUpjXCiNcaE0XREXGzZsYPHixTQ2Nra1\n9enThyuvvJJJkyYd6hDVw6z2JqlsuW6H0hgXSmNcKM2hxsWmTZu47bbbChIfgAsuuMDER4fEmZ8M\nc+ZHkiSVm82bN/ODH/yAnTt3FrTPnz+fefPmlWhUOlTO/EiSJEl5tmzZwuLFizskPmeccQZz584t\n0ahUSUx+JEmSVHK1tbXceuut7Nixo6D9tNNO49xzz3UtH3UJkx9JkiSV1LZt21i8eDH19fUF7aec\ncoqLmKpLmfxIkiSpZOrr67n11lupq6sraD/ppJP4wAc+YOKjLmXyI6kD1+1QGuNCaYwLpTnQuNiy\nZQu33HILtbW1Be0nnHACCxcuNPFRl7PaW4ZZ7U3FuG6H0hgXSmNcKM2BxMWbb77JD3/4QxoaGgra\njz/+eC6++GL69PFv9JWkXKq99SvlF5dUnly3Q2mMC6UxLpRmf3FRU1PDj3/8Y/bs2VPQPn36dC66\n6CITH3UbZ34yzJkfSZLU055//nmWLl1Kc3NzQfuJJ57IwoUL6du3b4lGpu7kzI8kSZIy5cknn2TZ\nsmUd2ufMmcN73vMeP+OjbmfyI0mSpG4VY2TVqlWsXLmyQ98555zDnDlzen5QyiSTH0mSJHWbpqYm\nfvnLX/K73/2uoD2EwIUXXsiJJ55YopEpi0x+JEmS1C22b9/OT37yE9atW1fQ3q9fPy699FKmTZtW\nopEpqyylIakD1+1QGuNCaYwLpVm0aBFvvPEGN910U4fEZ9CgQVx11VUmPioJq71lmNXeVIzrdiiN\ncaE0xoXShBD48pe/3KGi28iRI7niiisYNWpUiUamUrHam6Sy5bodSmNcKI1xoXwtLS3ce++9zJs3\nr0PiM2XKFC655BIGDRpUotFJzvxkmjM/kiSpq+zYsYOlS5dSU1PToW/OnDmcffbZLl6aYc78SJIk\nqSKsXbuWO++8k4aGhoL2fv36ccEFF3DCCSeUaGRSIZMfSZIkHZSmpiaWL1/OY4891qFv2LBhXH75\n5YwdO7YEI5PSmfxIkiSp0zZv3swdd9zBhg0bOvQdc8wxfOhDH6K6uroEI5OKM/mRJEnSAYsx8tvf\n/pa7776bvXv3FvSFEJg/fz5nnnmmn+9RWTIqJXXguh1KY1wojXGRLdu3b2fJkiX8/Oc/75D4DB8+\nnI9//OPMnTuX66+/vkQjlPbNam8ZZrU3FeO6HUpjXCiNcZENrbM99957L42NjR36Z86cycKFC9vK\nWBsXas9qb5LKlut2KI1xoTTGReWrra3lF7/4RWoJ6/79+3P++edz8sknt725BeNC5cuZnwxz5keS\nJBXT0tLCr3/9a+6//36ampo69I8bN44PfvCDjBo1qgSjU2/jzI8kSZLK0rp167jrrrtYv359h77+\n/fuzYMEC3vnOd1rUQL2OyY8kSZKApKDB8uXL+d3vfpfaP2nSJBYuXMjhhx/ewyOTuobJjyRJUsY1\nNTXx6KOP8tBDD7Fnz54O/YMGDeLcc8/lpJNOKvhsj9TbmPxIkiRlVIyRNWvWcN9997Ft27bUY2bM\nmMH73vc+FyxVRfBGTUkduG6H0hgXSmNc9F6vvfYaixcvZsmSJamJz+jRo7nyyiu57LLLOp34GBcq\nV1Z7yzCrvakY12dQGuNCaYyL3mfdunWsWLGCl19+ObV/8ODBzJ8/n1NPPfWgCxoYF2rPam+Sypbr\nMyiNcaE0xkXvsWHDBlasWMGLL76Y2h9C4LTTTmP+/PkMHjz4kL6WcaFy5cxPhjnzI0lS5du4cSOr\nVq3i+eefL3rM5MmTOffcczniiCN6cGTKEmd+JEmS1C1ijNTU1PDII48Uvb0N4JhjjmHBggUcc8wx\nPTg6qXRMfiRJkipES0sLzz33HI888ggbNmwoetz48eNZsGABkyZNsnS1MsXkR5IkqZdrbGzkt7/9\nLY899hh1dXVFjxszZgwLFixg6tSpJj3KJJMfSZKkXmr9+vU8+eSTPPvss+zdu7focRMmTGDOnDkc\nd9xxJj3KNNf5kdSB6zMojXGhNMZFz9uzZw9PPfUU3/3ud/nud7/L008/XTTxmT59OldffTVXX301\n06dP77HEx7hQubLaW4ZZ7U3FuD6D0hgXSmNc9IwYI+vWrWP16tWsXr2a3bt3Fz22b9++nHjiicyZ\nM4eRI0f24CjfZlyoPau9SSpbrs+gNMaF0hgX3au2tpbVq1fzzDPPsGXLln0eO2zYME455RRmz55N\ndXV1D40wnXGhcuXMT4Y58yNJUvlpaGhgzZo1rF69mtdee22/x0+ZMoXZs2czbdo0+vTxEw0qT878\nSJIkCYAdO3bwwgsvsGbNGmpqavb7h8mqqipOPvlkZs+ezeGHH95Do5R6P5MfSZKkEqirq2PNmjWs\nWbPmgGZ4+vTpw7Rp05g1axZTp06lXz/fxkmd5b8aSZKkHtDc3Mwbb7zB2rVrWbt2LZs2bTqg88aP\nH8+sWbM4/vjjqaqq6uZRSpXN5EeSJKmbbN++nZdffpm1a9fy8ssv77NKW77Ro0czc+ZMZs2axYgR\nI7p5lFJ2mPxI6mDRokWu0aAOjAulMS4KNTQ08Oqrr1JTU8Orr77K5s2bD/jco446ihkzZjBjxgxG\njRrVjaPsfsaFypXV3jLMam8qxvUZlMa4UJqsx8WOHTt4/fXXee2116ipqWHjxo0HfG4IgfHjxzN9\n+nRmzJhRUYULsh4X6shqb5LKluszKI1xoTRZiosYI2+99Ravv/5627Z169ZOvUZVVRVTpkxh6tSp\nTJ48mcGDB3fTaEsrS3Gh3sWZnwxz5keSpHQxRurq6li/fn3BdqCf2WkVQmDs2LFtCc9RRx3lWjzK\nJGd+JEmSykBLSwtbt25l48aNbNiwgQ0bNrB+/XoaGhoO6vXGjBnDpEmTmDhxIscccwwDBw7s4hFL\nOlgmP5IkKRNijOzcuZO33nqLt956iw0bNrBx40Y2bdpEU1PTQb1mnz59GDNmDBMmTODoo49m4sSJ\nlqOWypjJjyRJqigtLS1s27aNLVu2sHnzZt566622fWNj4yG99qBBg5gwYULbNm7cOPr3799FI5fU\n3Ux+JElSr9PU1ERdXR21tbXU1tayZcsWtm7dypYtW9i2bRstLS2H/DX69+/PUUcdxdixY9u2ESNG\ntH12QVLvY/IjqQPXZ1Aa40Jpuisu9u7dS11dHXV1ddTX17Nt27a2rba2lu3bt3fp16uqquLII49s\n28aOHcuoUaMsTnCQ/H2hcmW1twyz2puKcX0GpTEulKazcRFjZNeuXdTX17N9+/YOW319PXV1deza\ntatbxtu/f39GjRrFqFGjCpKd6upqZ3S6kL8v1J7V3nTIQgjjgC8D5wEjgTeBO4F/iDFuK+XY1LvN\nmzev1ENQGTIulGbevHk0NTXR0NBAQ0MDO3fubNvv2LGDnTt3tj1ufd4Vt6Ttz5AhQxgxYgQjR45k\n9OjRbdvw4cNNcnqAvy9Urpz56aVCCMcCjwKjSBKe3wOnA2cBLwDvjjHW7uc1nPlRKv9ipzTGReVr\nampi165dNDY20tjY2PZ4165dBVtDQ0Pb489//vMlu71p6NChHH744Rx22GFtiU7r3vLSpeXvC7Xn\nzI8O1Q0kic+fxRi/3doYQvg34AvAV4DPlmhskqQe0tzczJ49e9q2vXv3snv3bnbv3s2ePXtS942N\njW3HtD5ubGykubm51N9Omz59+jB06FCGDx/OsGHDGDZsWFuic/jhhzN8+HD69fNtjKTO8bdGL5Sb\n9TkHqMlPfHKuA/4E+GgI4S9jjN1z07QkqYMYIy0tLTQ1NdHc3ExTU1OHx01NTezduzf1+d69ewse\nt+5bk5rWrfX5nj17euQWsq42YMAAhg4dyrBhwxg6dCjV1dUMGzaM6urqtmSnurraYgOSupzJT++0\nILe/t31HjHFHCOFhkuToDGBFTw5MkoqJMRZsLS0tBfv2bft6vK+2tK25uXmfj5ubmzu0H8jWmtjk\nP8+iEAJVVVVUVVUxZMiQtsfV1dUMGTKkYF9dXe26OJJKxuSndzoOiMCLRfrXkiQ/0ziA5OfJJ5/s\nupEdhHK/J7irx1eq1+vscY888shBv97B9HXFOWnH7euYYo8P9Lj9Pd5X24H0Hcj+QB8fyPNibfl9\n3/zmNzskKvva2h+j8tanTx8GDRrE4MGDGTRoUMFWVVXF4MGDGTx4cMHjRYsW8aUvfckiApJ6BZOf\n3ml4bl9XpL+1/bADebFly5Yd8oBUee67775SD0FlqLZ2n3VUVAIhBAYMGNC29e/fn4EDBzJgwIC2\nfevj/G3QoEEdHvfv3/+gkhgTH0m9hdXeeqEQwo3AJ4FPxRhvTun/R+Bvgf8dY/zqPl7Hiy9JkqQe\nU+pqb36SsHdqndkZXqS/td21fiRJkqQcb3vrnX4PBJLP9KSZmtsX+0wQUPrMW5IkSepJ3vbWC+VK\nXb9EUup6cru+auDN3NMjLHUtSZIkJbztrReKMb5CUuZ6Ygjh2nbd1wNDgFtNfCRJkqS3OfPTS+Vm\nfx4GjgB+DqwhWddnPvAC8O4Yo2WZJEmSpByTn14shDCOZKbnfGAkye1uS4HrY4zFymBLkiRJmWTy\nI0mSJCkT/MyPJEmSpEww+ZEkSZKUCSY/GRRCGBdCuDmEsC6E0BhCqAkhfCOEcFipx6buE0IYEUL4\nZAhhaQhhbQihIYSwLYTwYAjh6hBC6rpPIYQ5IYS7Qghbcuf8LoTw+RCCvz8qVAjhyhBCS267usgx\nxkUGhBDODiH8dwjhzdz/F+tCCP8TQjg/5VhjosKFxOUhhPtDCG/krvPLIYSfhhDOKHKOcVEhQgiX\nhBC+GUJYFUKoy/0fcet+zun09Q8hfCyE8OsQwvbc+5QVIYT3d9n34Wd+siVXJe5RYBRwJ8mCqacD\nZ2GVuIoWQrgGuAFYD6wAXgOOBC4GDgNujzFe1u6cC4HbgV3AT4CtwEJgOrAkxnh5j30D6hEhhAnA\napI/jlUDn4ox3tzuGOMiA0II/wL8FfA6cDewGRgNzAZ+FWP8m7xjjYkMCCF8D7iaJBbuzO2nABcA\n/YGPxhh/lHe8cVFBQghPA7OAHcAbJNfx/8UYrypyfKevfwjha8BfkPzeuR0YAFxBUtjr2hjjtw/5\nG4kxumVoA+4BmoHPtmv/N6AF+Hapx+jWbdd+PvD+lPYjgD/k4uKivPahwKbcL62T89oHkJRZbwYu\nK/X35dblcfIrYC3w1dw1vrpdv3GRgQ34VO7/hO8D/VL6+xoT2dqAo3MxsR4Y2a5vXq7vJeOicrfc\ndZ7c7prfWuTYTl9/4F251/w9MKxd7G0GGoCjD/X7cMoxQ3KzPucAr8aOmfN1wE7goyGEwT0+OHW7\nGOPKGOOylPZNwHeAQJIgtbqUZIbwv2KMT+cdvwf4P7njP9OdY1bPCiF8niQGPkHyn0wa46LChRAG\nAP9I8keRa2KMTe2PiTE25z01JrJhdG7/6xjjlvyOGOMDwPa8Y8C4qDgxxgdijC8f4OEHc/0/A0Tg\nKzHG+rxzXgP+ExhI8v/TITH5yZYFuf297TtijDtIMvEqksVSlS17c/v8NzkLSH4J3ZNy/CqSN8dz\nQgj9u3ls6gEhhBnAPwH/HmN8aB+HGheV7xySN7F3ADGE8P4Qwv8KIXyuyOc6jIlseA7YAJweQhiZ\n3xFCmEvyl/778pqNi2w7mOvf+j417Zy7SRKmsw51YCY/2XIcSSC+WKR/bW4/rWeGo3IQQugLfIwk\nNv4nr+u43L5DvOT+6lsD9AOO7e4xqnvlYuA24FXg7/ZzuHFR+U4j+X2wB3ga+AVJYvwN4JEQwsoQ\nwqi8442JDIgxNgIXktwl8nwI4cYQwv8NIfyU5M3qPcCn804xLrKtU9c/hFAFjAN2xBg3prxel71H\nNfnJluG5fV2R/tZ2q75ly1eB44FlMcb8v9oZL9lxHXAi8PEY4+79HGtcVL4jSP7C+tck99+/m+Sv\n+rNI3uDOBX6ad7wxkR2rgVuAQcAngS8Cl5AU0FkcY9ycd6xxkW2dvf49Fi8mP1KGhRA+R1JV5Xkg\ntVqLKlsI4Z3A3wJfizE+XurxqCy0vjfYCyyMMT4aY2yIMT5HUh3yDWBeLnaUEbkZ4vuBrwA3AZOB\nISTV/2qAH4UQ/rl0I5QOjMlPtrRmzcOL9Le2b+uBsajEQgjXAv8OPAucFWNsf92NlwqXezNzK0ll\nnb9v313kNOOi8rVeu6djjK/nd8QYd/H2/fin5/bGRDZ8lKQa1x0xxr+OMb4aY2yMMf4WuAhYB/xl\nCGFi7njjIts6e/17LF5MfrLl9yRvaIrdLzk1ty/2mSBViBDCnwPfJLmF4axcxbf2fp/bd4iX3Jvm\nSSQFEl7prnGq21WT/LufAezOW9i0hbeToe/l2r6ee25cVL7Wa1zsTUbrWnCtlUGNiWyYTfJZsJXt\nO3JJ8eMk7ytPzjUbF9nWqesfY2wgSaCrQwhHprxel71HNfnJlhW5/bntO0II1ST3dTcAj/XkoNSz\nQghfBL4OPAUsaHePdr77SZLlDiu5k9T3rwIejjHuTelX77Ab+B7JWi7fa7c9lTvmwdzzR3PPjYvK\nt5zkTe7MIv3vyO1rcntjIhv2kFzn0UX6R+cdB8ZF1h3M9b8/t0875325/fJDHlmpF0xy69mNpJpX\nM8kqufntXyf5YOt/lnqMbt16/b+Uu86/Bg7bz7H5C5TNzmsfCDySi6NLS/09uXVbrFzH/hc5jgtX\nOQAAAjRJREFUNS4qdAPuzF3LP2/Xfm6ufTMw1JjIzpZ789m6yOnYdn3vzV3nncDhxkXlb3RukdMD\nuv68vcjpi/nvUYCJwBa6aJHTkHtRZURuodOHSar5/BxYQ7Kuz3zgBeDdMcbaoi+gXiuE8DGSKj1N\nwH+QXlHl1Rjj4rxzLgSWkMwQ/BjYClxAMo29JMZ4RXePW6URQriOJAH6ZIzx5nZ9xkWFCyGMI/m/\nYgLJX2OfJilJeyHJm5PLY4x35h1vTGRACOEO4IPADuC/Sdb9mQm8P3fI52OM/5F3vHFRQXLX84O5\np2OA80huW3sw17Y5xvjX7Y7v1PUPIXwN+ALJLXC3AwOAy4ERJH+4v+GQvw+Tn+zJ/ad2Pcm04kjg\nTWApcH2MsViJQfVyuTez7T/U3t4DMcaCBcRCCO8iWfvlXSTlTV8iuU3qW9FfIBUrL14+1T75yfUb\nFxUut5Dl35O8WTkKqCdZnPCfY4xPphxvTFS4EEIA/oSk+ME7SG5d2kpyN8E3Y4wdbkkyLirHAbyP\neDXGOLndOZ2+/iGEq4A/JUmsW4DfAP8aY7z7kL8JTH4kSZIkZYQFDyRJkiRlgsmPJEmSpEww+ZEk\nSZKUCSY/kiRJkjLB5EeSJElSJpj8SJIkScoEkx9JkiRJmWDyI0mSJCkTTH4kSZIkZYLJjyRJkqRM\nMPmRJEmSlAkmP5IkSZIyweRHkiRJUiaY/EiSJEnKBJMfSZIkSZlg8iNJkiQpE0x+JEmSJGXC/wcY\nxAKtshKcogAAAABJRU5ErkJggg==\n", "text/plain": [ "<matplotlib.figure.Figure at 0x10bfdfb70>" ] }, "metadata": { "image/png": { "height": 255, "width": 415 } }, "output_type": "display_data" } ], "source": [ "c_log = np.logspace(0,5,101) # Drug concentration in nanomolar (nM)\n", "plot_concentration(c_log)" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "### Agonist Only" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "To calculate dose-response relation in the case of agonist only, we use general dose-response relation equation described previously. The function is shown below." ] }, { "cell_type": "code", "execution_count": 9, "metadata": { "collapsed": false }, "outputs": [], "source": [ "# Calculate dose-response relation (DRR) for agonist only\n", "# c : Drug concentration(s) in nanomolar (nM)\n", "# EC_50 : 50% effective concentration in nanomolar (nM)\n", "# F : Efficacy (unitless)\n", "# n_H : Hill coefficients (unitless)\n", "def calc_drr(c, EC_50 = 20, F = 1, n_H = 1):\n", " r = (F * (c ** n_H) / ((c ** n_H) + (EC_50 ** n_H)))\n", " return r" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "Following result shows drug response of agonist only to the linearly increased concentrations." ] }, { "cell_type": "code", "execution_count": 10, "metadata": { "collapsed": false }, "outputs": [ { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAxIAAAIcCAYAAABiuZgPAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAAWJQAAFiUBSVIk8AAAIABJREFUeJzs3XecVNX9//H3WVhAyoJSBJGuUhSwURQLYoGvjSJqNIqI\nBZWoCYkxYgGs0cSfJdEgRqUIGFtE1AQRQayAqEiPSFOKIFKUuuye3x9nl93ZPQu77J25d2Zez8fj\nPoa5d+beA4+PKx8+53yOsdYKAAAAAMoiI+wBAAAAAEg+JBIAAAAAyoxEAgAAAECZkUgAAAAAKDMS\nCQAAAABlRiIBAAAAoMxIJAAAAACUGYkEAAAAgDIjkQAAAABQZiQSAAAAAMqMRAIAAABAmZFIAAAA\nACgzEgkAAAAAZUYiAQAAAKDMkjaRMMZcZIx50hgzwxizxRiTa4wZc4D3amiMed4Ys9oYs9MYs9wY\n85gxplbQ4wYAAABSQcWwB1AOd0lqJ+kXSd9LanUgNzHGNJf0qaQ6kt6QtERSR0m3SupujOlird0U\nyIgBAACAFJG0FQlJv5V0lLW2pqSbJJkDvM8/5JKIm621F1lrh1hrz5L0mFxy8kAgowUAAABSiLHW\nhj2GcjPGnC5pmqQXrbX9yvC95pKWSlpurW1R5Fp1SWvz3taz1u4IarwAAABAskvmikQQzsh7fbfo\nBWvtL5I+llRVUudEDgoAAACIunRPJFpKspL+V8L1b/Jej0rMcAAAAIDkkO6JRM281y0lXM8/T/cm\nAAAAoJBk7toUKcaY5F9sAgAAgKRhrT3QZkOBSPeKRH7FoWYJ1/PPb07AWAAAAICkke4ViSVybWNL\nWgNxZN5rSWsoikmFLlgIljGGuEAxxAV8iAv4EBcoyphQCxF7pXtFYlre6zlFL+S1f+0iabukzxI5\nKAAAACDq0iKRMMZUNMa0zNs3Yi9r7TK51q9NjTG/KfK1eyVVkzSGPSQAAACAWEm7IZ0xpqekXnlv\n60vqLmmZpA/zzv1orb0t77NNJC2XtMJa27zIfZrL7RdRT9KbkhbJ7RvRVdJiSV2stZtKMR4rMbUJ\nxVGShg9xAR/iAj7EBYrKn9oU9mLrZE4khkq6Zx8fWZG/W3VeIrGs8Lki92ooV4HoIam23I7Wr0u6\n11pbUmvYovcgkYAX/wOAD3EBH+ICPsQFiiKRSDEkEigJ/wOAD3EBH+ICPsQFiopKIpEWayQAAAAA\nBItEAoizoUOHhj0ERBBxAR/iAj7EBaKKqU0BYWoTAAAAEoGpTQAAAACSVrrvbB2aqOxICJQXVTgA\nANITFQkAAAAAZUYiETJrLQdHUh4on2HDhoU9BEQQcQEf4gJRxWLrgJR1sXWhRTLxGxQQR8Rw+dAX\nHj7EBXyICxTFYmsASGO0c4QPcQEf4gJRRUUiIFQkkG6IYQAAwkFFAgAAAEDSIpEAAAAAUGYkEgAA\nAADKjEQCAAAAQJmRSABACOgLDx/iAj7EBaKKrk0BoWsT4umDDz7QGWecoaZNm2rZsmVhD0cSMVxe\n9IWHD3EBH+ICRdG1CQjQxIkTlZGRoYyMDHXv3j3s4UTali1bNHz4cA0fPjzsoaQ1+sLDh7iAD3GB\nqKIiERAqEuHq06ePJk6cKEnKyMjQqlWr1KBBg5BHFZzZs2frqquu0uGHH6533323XPdauXKlmjVr\nJmOMcnJyDvg+xDAAAOGgIgEEZOPGjXr77bclSa1bt1Zubq7Gjh0b8qiC1aFDBy1cuLDcSQQAAEBQ\nSCSQ9MaPH6/s7Gx16dJFd9xxh6y1Gj16dNjDiiwqCAAAIAgkEkh6o0ePljFGV111lXr37q3q1atr\n8eLF+vzzz/f5vY8//ljnnXeeateurerVq+vYY4/VE088IWut+vfvr4yMDN17773e7/78888aNmyY\njj32WNWoUUM1atRQ+/btNWzYMG3dutX7neHDhysjI0MDBgzYO+5OnTopKytLNWvWVLdu3fTee+95\nv/vBBx8oIyNDzZs3L3bNWqtRo0apW7duqlOnjipVqqR69erpmGOO0TXXXKPJkyfv/WzXrl3VvHnz\nvQv38teV5B8l/X4BAACKqhj2AIDyWLhwob744gsddNBBuvjii1W1alX17dtXo0eP1ujRo3XiiSd6\nvzdmzBgNGDBg77/O16pVS4sWLdLgwYM1Y8YMZWVl7Z1/WNTSpUt11llnadWqVTLGqGrVqpKk+fPn\na968eRo1apSmTp2qFi1aFPtu/j2vu+46Pffcc6pYsaKqVaumrVu3avr06ZoxY4ZeeeUV9e7du9R/\nBldccYUmTJiw9941a9bUzz//rI0bN2rRokVatGjR3gXoderUUd26dbVhwwYZY3TooYfG3Kt69eql\nfi4AAEhvVCSQ1EaNGiVJ6tmzp7KysiRJV111lay1eumll7Rnz55i31myZImuv/56WWt13nnnacWK\nFdq4caO2bt2qJ598UpMmTdq7cLuo7OxsXXTRRVq1apUaN26sKVOm6Oeff9bPP/+s9957T02aNNGq\nVavUu3dvZWdnF/u+tVZvvPGGxo8fr2eeeUZbt27Vpk2btGzZMp1++unKzc3VzTffrNzc3FL9/j/8\n8ENNmDBBFStW1OOPP66tW7fqp59+0o4dO7RmzRqNGjVKp5xyyt7Pv/rqq5o1a9be92vWrIk5Bg8e\nXKrnovzoCw8f4gI+xAUiy1rLEcAhybo/ztIp6+eLfz+aRyLl5OTYww47zGZkZNj//Oc/MdeaNm1q\nMzIy7Ouvv17se/369bPGGNu+fXubnZ1d7Ppf/vIXa4yxGRkZdvjw4THXxo4da40xtnLlynbhwoXF\nvrtgwQJbqVIlm5GRYV944YWYa8OGDdt73wkTJhT77po1a2zlypVtRkaG/fDDD2OuTZ8+3RpjbLNm\nzWLOP/LII9YYY88999xi9yvJihUr9o6jPMobw+mOPzv4EBfwIS5QVKH/B4f6918qEkhaU6ZM0dq1\na3XooYcW2zuiX79+srb4omtrrSZOnChjjH7729+qYsXis/sGDRqkatWqeZ/56quvyhijnj17qnXr\n1sWut2nTRn379pW1Vi+//LL3Ho0bN9avfvWrYucbNGigjh07SnLTpEojvwqzfv36/IQWSYK+8PAh\nLuBDXCCqSCSQtF544QUZY3TFFVcUW8/Qr18/SdJ//vMfbdy4ce/5ZcuW7V0M3aVLF+99DzroIJ1w\nwgnea1988YUk6YwzzihxXN26dYv5bFElrduQpIYNG0qSNm3aVOJnCjvzzDNVqVIlzZkzR127dtW4\nceO0du3aUn0X4WKqAnyIC/gQF4gqEgkkpa1bt+rNN9+UJF155ZXFrrdo0UJdunTRnj17NH78+L3n\nf/zxx72/3teGdYcddpj3/IYNGyQV/IXf5/DDD5ekmASmsBo1apT43SpVqkiSd32FzxFHHKERI0ao\natWq+uijj3TllVeqYcOGat68uW666SZ99dVXpboPAABAWZFIJKnwV0P4j0R56aWXtHPnTllr1b59\n+2JtTDMyMvTxxx97pzcFYefOnYHf80D1799fy5cv1+OPP65evXqpTp06WrlypUaMGKETTjhBf/7z\nn8MeIgAASEEkEkhKY8aMkeTaqe7v+PLLL7VgwQJJrv1pvn1NASrpWt26dSVJq1atKvG733//vSSp\ndu3aZftNlUPdunV188036/XXX9f69es1a9Ys9enTR9Za3X333aVecwEAAFBaJBJIOkuXLtUnn3wi\nY4zmzp2rTZs2lXicf/75krS3KtG8efO9C5Q/+ugj7/137typOXPmeK8df/zxstZq2rRpJY7v/fff\n3/vZsJxwwgl6+eWXdfjhhys3Nzfm95qRwX/2AACg/PgbBZJOflLQvn17HXPMMcrKyirxuPjii2Wt\n1bhx42St3dtxyVqrJ554Qjk5OcXu/9RTT+mXX37xPrtv376S3CLuuXPnFru+YMGCvZ2dLr300gB/\n1377WkuRkZGhzMxMSdKuXbv2ns9PpCRpy5Yt8Rsc9onFk/AhLuBDXCCqSCSQdF588UUZY9SnT5/9\nfvaCCy5QZmam1q1bp8mTJ0uS7rjjDlWqVEnz5s1Tnz599k5T2rVrl5566indcccdOvjgg733u/TS\nS9WuXTtZa9WzZ09NnTp177WpU6fqvPPOU3Z2to455hhdfvnlAfxu923IkCG6+OKLNXHixJhOT+vX\nr9ctt9yi5cuXyxijs88+e++1mjVr7l1M/sILL8R9jPAbPnx42ENABBEX8CEuEFUkEkgq06ZN08qV\nKyVJF1100X4/X7NmTXXr1i1m0XWrVq00YsQIGWP01ltvqWnTpqpdu7aysrJ0yy23qGfPnrrgggsk\nSZUrV465X2Zmpl577TU1bdpU3333nc4++2xVr15d1atX19lnn63vvvtOTZs21euvv763GlBWZdkP\nYs+ePXrttdfUu3dv1a5dW7Vq1VLNmjVVv359/f3vf5cxRg888IDatGkT871rr71WkjR48GDVqFFD\nzZo1U7NmzfTkk08e0JhRdvSFhw9xAR/iAlFFIoGkMmbMGBlj1LJlS++GcD4XXXSRjDGaNGnS3j0k\n+vfvrxkzZqhHjx6qVauWdu/erTZt2uixxx7TK6+8snfKT61atYrdr0WLFpo7d67uuecetW3bdu+i\n7rZt2+qee+7R3Llz1aJFC+9Y8j+7LyVd93138ODB+tvf/qZevXqpZcuWkqTdu3ercePGuuyyyzRj\nxgzdfvvtxe41dOhQPfzww2rfvr0kt3h81apV2rx58z7HhuAwVQE+xAV8iAtElWE33GAYY6xU+n9N\nzv8LIX/+0dSkSRN9//33mjZtmk477bSwhxNJxDAAAOEo9P/gff/rZJxRkQCKmDBhgr777jtlZWWp\nU6dOYQ8HAAAgkiqGPQAgDA899JBq1KihXr16qWHDhjLGaPPmzRo9erSGDBkiY4wGDRpUbI0EAAAA\nHKY2BYSpTcnlyiuv1Lhx4yRJlSpVUrVq1bR58+a9LWLPPvtsvfnmm6pUqVLII40uYhgAgHAwtQkI\n0aBBg3TTTTepXbt2qlmzpn755RfVrl1b3bp10/PPP6933nmHJAJxxeJJ+BAX8CEuEFVUJAJCRQLp\nhhguH2MMf3YohriAD3GBoqhIAEAaoy88fIgL+BAXiCoqEgGhIoF0QwwDABAOKhIAAAAAkhaJBAAA\nAIAyI5EAAAAAUGYkEgAAAADKjEQCAEJAX3j4EBfwIS4QVXRtCsiBdm0Ckh0/Qw4MfeHhQ1zAh7hA\nUXRtAoA0Rl94+BAX8CEuEFVUJAJS1ooEAAAAcCCoSAAAAABIWiQSAAAAAMqMRAIAAABAmZFIAAAA\nACgzEgkgzuj/DR/iAj7EBXyIC0QVXZsCQtcmlIT+3/AhLuBDXMCHuEBRdG0C0gT9v+FDXMCHuIAP\ncYGooiIRECoSAAAASAQqEgAAAACSFokEAAAAgDIjkQAAAABQZiQSAAAAAMqMRAKIM/p/w4e4gA9x\nAR/iAlFF16aA0LUJJaH/N3yIC/gQF/AhLlAUXZuANEH/b/gQF/AhLuBDXCCqqEgEhIoEAAAA4mH3\nbmn9emndOndccEE0KhIVw3w4AAAAkI6slTZvltauLUgQSvr1xo1hj9aPRAIAAAAISE6Oqx6sXVtw\nrFkTmxzkv+7aFfZoy4dEAgAAANiPnBzphx9cUpCfHPhef/hBys0Ne7SJQSIBAACAtGWt9NNP0urV\nLhnIfy16rFsXXoJgjFS3rlS/vjvefTeccRRFIgHE2bBhw+gBjmKIC/gQF/AhLg7czp0FyUFJx5o1\nbjFzGKpVkxo0cEd+klD41/lH3bpSxUJ/azehLrEuQNemgNC1CSWh/zd8iAv4EBfwIS78tm6Vvv8+\n9li9OvY1rEXKhxxSkCCUdNSvL9WocWD3j8o+ElQkgDij/zd8iAv4EBfwSbe4sFbaskX67juXDBR+\nzU8Qvv9e+vnnxI+tdm2XBDRs6F4POyz2Nf+oXDnxYwsDFYmAUJEAAADYv19+cUnBvo5t2xI7purV\nXXLQsKFLCg47LPbX+YlCVBIEKhIAAABIKXv2uDUHq1bFHt99V/C6aVPixpORUVBBKJwoFH7fsOGB\nTzFKdyQSAAAAKJWff5ZWrnRJQdHXVavc1KNEdTaqXFk6/HB3NGxY/NcNG0qHHhq7SBnB4o8WAAAA\nstYtTl6xwiUHK1fG/nrlSrcTcyJUqSI1auQSgsKvDRsWvK9dOzrdi9IViQQAAEAasFbasMElB/lH\nfrKQ/+tErE3IzCxICEo6SBKSA4kEEGf0/4YPcQEf4gI+ZYmLTZuk5csLjhUrCl5XrJC2b4/jQPPU\nqyc1buwSgiZN3Gv++8aN3XSjjIz4jwPxR9emgNC1CSWh/zd8iAv4EBfwKRwXO3e6hGDZMncUThqW\nL3dtU+MpM9MlA40buySh8K+bNHFTjg46KL5jAF2bgLSRbv2/UTrEBXyIC1gr/fCD9O23BclCu3ZD\ndeqp7tdr1sT3+dWquYSgadOC5KDwUb8+1QQUoCIRECoSAACgNLKzXVXh229jj/zEIZ7Tj6pXd0lC\ns2YFyULTpgW/Zm1CcqAiAQAAkKJ27HBJwdKlsce337o2qTk58XlulSoFiUJ+slD49ZBDSBQQHBIJ\nAACAA7B9u0sMvvnGJQn5r0uXSt9/H59nGuMWLTdv7hKD/Nf8g4XMSCQSCQAAgBLs2uUqC//7n0sU\n8l+/+cZtvhYPNWpILVq4JKFFC5cg5L9v3FiqVCk+zwXKikQCAACktdxcN93of/8rfqxcGZ+dmhs0\ncMmB72CdApIFiQQQZ/SFhw9xAR/iIr42b5aWLCk4Fi8uqDDs2hXss4xxi5ePOKLgaNHCvTZvLlWt\nWvp7EReIKro2BYSuTSgJfeHhQ1zAh7gov5wcV0VYvNgd+QnD4sXS+vXBPisjoyBZOPLI2NdmzaTK\nlYN5DnGBoujaBKQJ+sLDh7iAD3FRejt2uGrCokUFR36FIejqQqNGLkE48kjpqKMKfh1ksrAvxAWi\niopEQKhIAAAQvC1bXJKwcKE78pOGFSvc5m1BqV3bJQn5R8uWBdWFskxDAhKBigQAAECen35yicKC\nBe7ITx6C3Mk5M9MlBi1bFj9q1w7uOUC6IJEAAAAJs3mzSxTmz3ev+cnDunXBPaNOHalVq9ijZUu3\nKVtF/uYDBIb/nAAAQOC2bXNJwvz5BceCBcHtvWCMSwxat3aJQuvWBb+mugAkBokEAAA4YHv2uAXO\n8+dL8+a5Y/58t4lbEGsYKlZ0axXatHFHfsJw1FGsXQDCRiIBxBn9v+FDXMAnynFhrfTDD9LXX7tk\n4euv3bFoUTBdkjIz3fSjo492R+vW7vWII9y1dBbluEB6o2tTQOjahJLQ/xs+xAV8ohIXu3e7BGHu\nXHd8/bV73bCh/PeuWDE2Ycg/jjiC9QsliUpcIDro2gSkCfp/w4e4gE8YcfHjjy5J+OqrgtdFi9yU\npfIwxiUHxxxTcBx9tJumVKlSMGNPF/y8QFRRkQgIFQkAQJRZ69YtfPmlSxbyjyAWPzdo4BKFtm3d\nccwxbj0DaxiA+KAiAQAA4iI721UVvvyy4PjqK2nr1vLd96CDChKGdu3c0bata7cKIP2QSAAAkMR2\n7XJtVefMkb74wh1ffy3t3Fm++zZqJLVv74527dzrEUdIFSoEM24AyY9EAgCAJLFrl+uYNGeOOz7/\n3LVazc4+8HtmZrq1C8ce6478xOGQQ4IbN4DURCIBAEAEZWe7JGH2bJcwzJnjkojyJA01a7pk4bjj\nCl5btWLxM4ADQyIBxBn9v+FDXKCw3Fy3qdsddwxTo0bDNHu2W9NQnulJ9etLxx/vkoX8o1kz100J\nyYWfF4gqujYFhK5NKAn9v+FDXKS3NWukWbMKjtmz8xdCG0llj4vGjV3SUPho0CDoUSMs/LxAUXRt\nAtIE/b/hQ1ykj19+cVOTZs50x6xZ+2q5uv+4aNxYOuEE6cQT3evxx0t16wY6ZEQMPy8QVVQkAkJF\nAgCQmystXix99pk7Zs506xxycw/sfg0aSB06uCM/eSBpAEBFAgCAJLd5s0sWPv3UHTNnSlu2HNi9\nDj7YJQwdO7qEoUMH6bDDgh0vAASJRAIAgFKwVvrmG+njj6VPPnHHwoUHdq/Kld2UpI4dC44WLVgI\nDSC5kEgAAOCxc6db21A4cfjxxwO7V8uWUqdOUufOLmlo187t3wAAyYxEAgAASRs3umTho4/c8fnn\n0u7dZb/PwQe7hKFzZ5c8dOzozgFAqskIewBAqqP3N3yIi/CtWiWNGycNHOh2dq5TR7rwQumRR1xC\nUZokwhipbVvpuuuk55+XFi1yVYt33pHuuUfq3r1sSQRxAR/iAlFF16aA0LUJJaH/N3yIi8Sy1m34\nNmOGOz78UFq5suz3qVHDVRq6dJFOPtlVHLKyghsncQEf4gJF0bUJSBP0/4YPcRFf1rqF0NOnSx98\n4JKHH34o+32aNnVJQ/5x9NFShQpBj7YAcQEf4gJRRUUiIFQkACA8ubnSggUucZg+3SUOZV0YbYzU\nvr10yinu6NJFOvzweIwWAMqHigQAAAfIWrfx27Rp7pg+veyJQ6VKbiH0aadJp54qnXSSVLNmXIYL\nACmJRAIAkBSWL5emTnXHtGlln6pUrZqrMuQnDh07SlWqxGesAJAOSCQAAJG0bp1LGPKThxUryvb9\nrCw3Ren0091x/PHs3QAAQSKRAABEwrZtbm3DlCnSe+9J8+aV7ftZWa7a0LWrO449Nr4LowEg3bGP\nBBBn9P+GD3Eh5eRIs2ZJDzzg/uJ/8MHSuedKjz1WuiSiWjWpRw/p4YfdfTZulCZNkn7/e+mEE5Iz\niSAu4ENcIKro2hQQujahJPT/hk+6xsX330vvvitNnuyqDj/9VPrvVqrk9m4480ypWzepQ4fUm6qU\nrnGBfSMuUBRdm4A0Qf9v+KRLXOzY4aYrTZ7sjoULS//djAxXWTjzTHecfLJUtWr8xhoF6RIXKBvi\nAlFFRSIgVCQAwFm6VPrPf9wxfbpLJkqrRQvp7LPdccYZbroTACAWFQkAQErYudMlDO+845KHpUtL\n/92DD3bVhnPOkc46S2rWLG7DBAAEjEQCAFBmq1a5xOHtt11r1tJWHSpUkDp1krp3d8eJJybnomgA\nAIkEAKAUcnKkzz6T3nrLJQ9lac3aqJHrrtSjh1skXatW/MYJAEgcEgkAgNfPP7sOS5MmueThxx9L\n973MTLefw//9nztat5ZMqLN4AQDxwD4SQJzR/xs+UY2L776TnnrKTTuqU0fq21caPXr/ScThh0sD\nB0oTJ7qWru+95/ZzaNOGJKIsohoXCBdxgaiia1NA6NqEktD/Gz5RiQtrpfnzXQLwxhvSnDml+15G\nhnTSSdJ557mjbVsShiBEJS4QLcQFiqJrE5Am6P8NnzDjIidH+uQTlzi88Ya0bFnpvlezppuqdMEF\nrmJRu3Z8x5mO+HkBH+ICUUVFIiBUJABE2e7d0rRp0uuvu+Rh/frSfa9FC+nCC13ycMopqbeTNAAk\nIyoSAIC42rFD+u9/XfIwaZK0Zcv+v2OM1Lmz1LOnSyBatWLKEgDAj0QCAFLI9u1uf4dXXnGdlrZt\n2/93Kld2m8L16uUqD/Xrx3+cAIDkRyIBAElu2zaXNLz6qnvdvn3/38nKcklDr15uvUONGvEfJwAg\ntZBIAEAS2rHDVR7+9S+3SVxpdpauU8clDhdd5DaGq1Qp/uMEAKQu9pEA4oz+3/A5kLjYtcutdbji\nCqlePbfHwyuv7DuJaNhQuvlmafp0ad066dln3Q7TJBHRxM8L+BAXiCq6NgWErk0oCf2/4VPauMjJ\ncUnA+PFu0fTmzfu/d6NGLsno29ctnM7gn4ySBj8v4ENcoCi6NgFpgv7f8NlXXFjrNoYbP1566SVp\n7dr9369xY+nii13y0LEjyUOy4ucFfIgLRBUViYBQkQBQXkuXSuPGuQTif//b/+cbNJAuuUS69FJX\neaBNKwCkByoSAAD99JNbMD12rPTpp/v/fJ06rurwq1+5DeIqVIj/GAEA8CGRAIAE27XLdVwaM8a1\na83O3vfnq1eXeveWfv1rt99DRX5yAwAigP8dAUAC5K97GDVKmjDBVSL2JTNTOvdc6fLLpfPPl6pW\nTcgwAQAoNRIJAIijH36QXnzRJRDz5+//86ee6tq79u0rHXJI3IcHAMABo68HEGf0/04/2dnSv/8t\nXXih28fhD3/wJRHD9v7qqKOk++6Tli2TZsyQrr+eJCJd8fMCPsQFooquTQGhaxNKQv/v9LFkifTc\nc9Lo0dL69fv7tNGgQVZXXunatdJxCRI/L+BHXKAoujYBaYL+36lt+3a3u/Rzz0kffrjvz1ao4NY9\n9O8vffnlUN13X0KGiCTCzwv4EBeIKioSAaEiAaSXuXOlZ55x+z5s3brvzx59tHT11a7rUv36iRkf\nACB1UZEAgCSzfbvb8+GZZ6SZM/f92awslzhcfbV04olMXQIApB4SCQDYjwULXPIwZoy0Zcu+P3vq\nqdK117quS7RsBQCkMhIJAPDIzpZef116+mnXSWlf6tVz6x4GDJBatkzI8AAACB2JBAAUsmaNqz6M\nHCmtW7fvz551ljRwoGvzWqlSYsYHAEBUsI8EEGf0/44+a6UPPpAuuURq0kS6996Sk4g6daTbbpO+\n+UaaMsVNYTqQJIK4gA9xAR/iAlFF16aA0LUJJaH/d3Tt3CmNHy89+aTrwrQvp58u3XCD1Lu3VLly\n+Z9NXMCHuIAPcYGi6NoEpAn6f0fP6tVu7cPIkdKPP5b8uerVpX79pBtvlI45JtgxEBfwIS7gQ1wg\nqqhIBISKBBB9M2dKjz8uvfqqtGdPyZ9r3VoaNEi68krXxhUAgCihIgEACZCTI02cKD36qPTJJyV/\nLiND6tlTuvlmqWtX9n0AAGB/SCQApKRt26QXXnAViG+/LflztWq5fR8GDZKaNk3Y8AAASHokEgBS\nyrp1bvH0iBHSpk0lf65VK+mWW9waiGrVEjc+AABSBYkEgJTwzTfSX/8qjRol7d5d8ufOOUcaPFg6\n+2w3nQlFx+9PAAAgAElEQVQAABwY/jcKxBn9v+Pr88+liy92O0qPHOlPIjIz3c7TX38tTZ4sde8e\nfhJBXMCHuIAPcYGoomtTQOjahJLQ/zt41kpTp0p//rN7Lckhh7jWrYMGSQ0aJG58pUFcwIe4gA9x\ngaLo2gSkCfp/B8daadIk6f77pdmzS/5c06bS738vXX11dNc/EBfwIS7gQ1wgqqhIBISKBBA/OTnS\na69JDzzgpieVpF076fbbpUsukSryzyQAgBRFRQIA9iM7Wxo/XnroIWnJkpI/d/rpLoHo0YP9HwAA\nSBQSCQCRk50tjR3rpjAtX17y5y68ULrjDqlz58SNDQAAOCQSACJjz56CBGLZMv9njHFTl4YMcVOZ\nAABAOEgkAIRuzx5p3DjpvvtK3oW6QgXpiitcBaJly8SODwAAFMc+EkCc0f+7ZDk50osvSq1bu30e\nfElEZqZ0/fVuw7lRo1IniSAu4ENcwIe4QFTRtSkgdG1CSej/XZy10sSJ0l13SQsW+D+TmSkNGOAq\nEE2aJHZ8iUBcwIe4gA9xgaLo2gSkCfp/F7BWeu896c47S94HomJFl0AMGZKaCUQ+4gI+xAV8iAtE\nFRWJgFCRAPbt009dcjB9uv96xYpuA7khQ9yGcgAAwI+KBIC0sGiRm540caL/ujFuEfWwYVLz5gkd\nGgAAKAcWWwOIi7VrpYEDpWOOKTmJ6NNHmjdPGjOGJAIAgGRDRQJAoLZulf7yF+n//T9p+3b/Z845\nx+0V0aFDYscGAACCE3hFwhiTYYy52RjzmTFmizFmT6FrxxljnjbGHBX0cwGEKztbeuop6YgjXJLg\nSyI6d5amTZMmTyaJAAAg2QWaSBhjKkmaIulxSS0k/Syp8CKQ5ZIGSPp1kM8FoizV+39bK739tttl\n+je/kTZsKP6ZI4+UXn1V+uQTqWvXhA8xklI9LnBgiAv4EBeIqkC7Nhlj7pR0n6Rhku6XdI+ku621\nFQp95l1JWdbazoE9OALo2oSSpHL/7/nzpcGDpSlT/Nfr1XOLqK+91u0LgQKpHBc4cMQFfIgLFBWV\nrk1BT236taSPrbX3WmtzJfmifrmkxgE/F4isVOz/vX69dMMNUvv2/iSiWjVp6FBp6VLpxhtJInxS\nMS5QfsQFfIgLRFXQFYkdkv5urb0t7/1QSfcUqUg8JOl31toqgT04AqhIIB3s3i09+aR0331uUXVR\nxrjN5O6/X6pfP/HjAwAgHUSlIhF016adkmrt5zONJW0O+LkA4uzdd6VbbpGWLPFfP+MM16np2GMT\nOy4AABCOoKc2fSXpnLxF18UYY2pK6i5pVsDPBRAny5dLvXtL3bv7k4gjjpDeeEOaOpUkAgCAdBJ0\nIjFSUiNJ44wxWYUvGGNqSRol6WBJIwJ+LoCA7djhFkq3aeMShaJq1XIViAULpJ493bQmAACQPgJd\nIyFJxpjnJfWXlC1pk6S6kr6UdLSkypKestbeHOhDI4A1EkglEydKt94qrVxZ/JoxrgvTAw9Idesm\nfmwAAKS7qKyRCHxDOmvtALm9IhbKJRFG0vGSlkq6JhWTCGBfkqn/98qVrrrQq5c/iejUSZo1Sxo5\nkiSivJIpLpA4xAV8iAtEVeAViZibG3OQ3FSmLdbabXF7UARQkUBJkqH/d3a29PjjbiqTb0fqevWk\nhx+W+vWTMgL/54f0lAxxgcQjLuBDXKCoqFQkgu7aFMNau0PSjng+A4i6qPf//vhjtyfE/PnFr1Wo\n4HarHjbMrYlAcKIeFwgHcQEf4gJRFfQ+EgdLaiDpW2vtrkLnr5bUS9I2SY9ba1OuaxMVCSSbTZuk\nP/5R+uc//ddPOkkaMUJq1y6x4wIAAPsWlYpE0InEPyRdIaleXjVCxpibJT0ut1ZCcntNnGitXRjY\ngyOARALJwlrptddcpeGHH4pfP/hgN43pmmuYxgQAQBRFJZEI+q8JXSRNzU8i8vxB0mpJp0m6JO/c\n4ICfC6AU1qyR+vSRLr7Yn0T06yctXixddx1JBAAA2Leg10g0lDQ1/40xpo3cvhK3W2s/yjt3sVxS\nASBBcnPdFKbbbpO2bi1+vWVL6R//cLtTAwAAlEbQ/+Z4kNzUpXxdJFlJ7xU6961cwgEgAZYulc48\nUxo4sHgSkZkpDR0qzZ1LEgEAAMom6ERitaRWhd53l7RV0txC5w4WnZyQRsLq/52bKz3xhFssPX16\n8eudOklffOE6MlWunOjRgb7w8CEu4ENcIKqCXmw9UtJVkn4vV5l4WtJr1trLCn3mXUl1rbXHBfbg\nCGCxNUoSRv/vb7+VBgyQZswofq1aNenBB6VBg1x7V4SDvvDwIS7gQ1ygqFRdbP2QpF8kPSFppFwy\nMSz/ojEmS9Ipkj4J+LlAZCWy/3durvT0064K4Usiund3+0XccgtJRNjoCw8f4gI+xAWiKvCdrY0x\n9SX1zXv7prV2VaFrx0u6UtJ4a+3sQB8cMioSCNuKFa5l6/vvF79Ws6ab5tSvn2RC/bcLAABQXlGp\nSASeSKQrEgmExVrp+eel3/5W+uWX4td79JCefVY6/PDEjw0AAAQvKolE0O1fASTQjz+6PR/eeKP4\ntRo1pMcec2slqEIAAICgBZ5IGGMyJfWU1FGuQ5NvJra11l4T9LOBdDJ5stS/v7RuXfFrZ54pPfec\n1KRJwocFAADSRNBdmw6TNEWuBey+/g3UWmtTaqknU5uQKDt2SH/6k/Tkk8WvVa0q/fWv0g03UIUA\nACBVRWVqU9Bdmx6V1FrSS5K6STpSUjPP0Tzg5wKRFWT/77lzpQ4d/ElEhw7SV19JN95IEpEM6AsP\nH+ICPsQFoiroisRGSfOstV0Du2mSoCKBkgTR/9ta13Xp9tul3btjr2VkSHfeKd19t9upGsmBvvDw\nIS7gQ1ygqKhUJIJeI1FF0syA7wkktfL2/9640a2FeOut4teaNZNefFE6+eRyPQIhoC88fIgL+BAX\niKqgKxIzJS231v4qsJsmCSoSiIcPP5Quu0xavbr4tf79XZUiKyvhwwIAACGKSkUi6DUSf5F0oTGm\nTcD3BdJKTo50331S167Fk4iaNaWXX5ZeeIEkAgAAhCfoqU3rJU2S9Ikx5glJcyRt9n3QWjsj4GcD\nKWHtWumKK/w7VHfqJL30ktS0acKHBQAAECPoqU25kqwKWr+WeHPavwLFvf++m8q0fn3xa3/8o3T/\n/SyoBgAg3UVlalPQFYl7tY/kAYBfbq70yCOu+1Jubuy1unWlMWOkHj3CGRsAAIBPoGskrLXDrLXD\nS3ME+VwgyvbX/3vzZql3b+mOO4onEWec4faGIIlIPfSFhw9xAR/iAlEV6NSmdMbUJpRkX/2/586V\nLrpI+vbbot+R7rnH7Q1RIaUmASIffeHhQ1zAh7hAUak6tWkvY8wpko6TVEvSFklfWGs/itfzgKgq\nqf/36NHSDTdIO3fGnj/kEGncOKoQqY6+8PAhLuBDXCCqAq9IGGNOkDRWUsv8UypYN7FEUj9r7ecB\nPauhpPskdZdUW9JaSW9IGm6t9XaL8txjhaTGJVxeZ609rJT3oSKBUtm9W7r1VmnEiOLXTjxRevVV\nqUmTxI8LAAAkh5SsSBhjjpA0VVKWpI8kvS/3l/sGkrpJOkXSFGNMR2vtN+V8VnNJn0qqI5c8LJHU\nUdKtkrobY7pYazeV4lZWrkXtYyroNpXvl/KMEShq/Xo3lekjT23uhhukxx+XKldO/LgAAADKKuj2\nr6MlXSHpV9baVzzX+0p6SdI4a+1V5XzWZElnSbrZWvt0ofOPSvqdpBHW2ptKcZ/lkqy1tnk5x0NF\nAvv0xRdSr17Sd9/Fnq9SRXrmGalfv3DGBQAAkktUKhJBJxKrJX1qre27j8+8JqmztbZhOZ7TXNJS\nScuttS2KXKsuVwWRpHrW2h37uReJBOJuwgRpwIDi6yGaNZP+/W+pfftwxgUAAJJPVBKJQNu/yk0z\nWryfzyzO+1x5nJH3+m7RC9baXyR9LKmqpM6lvF9lY8yvjTF3GGNuMcZ0NcYE/WeDNJSTI/3pT9Ll\nlxdPIs48U5o9myQCAAAkp6D/srxBUpv9fKaVpB/L+ZyWcmsb/lfC9fz1F0eV8n71JY2RdL/cWon3\nJX1jjDmtPINEetuyRbrgAunhh4cVu/bb30r//a9Uu3bix4VooC88fIgL+BAXiKqgpzaNkXS5pCus\ntS95rl8k6V8q5xoJY8wzkq6VdJ219nnP9fsl3SFpiLX24f3c625JH0paIOlnSc0l/UbSQEk7JJ1k\nrZ1XijExtQl7LV8unX++tHChVLhxWaVKbj1E//4hDg6RQF94+BAX8CEuUFSqTm26V9I2SeOMMR8a\nY+41xtxojBlujPlA0stynZDuD/i5B8xae5+1drq1doO1dqe1dmHeIu3/Jzc9alhZ7meMKfHo2rWr\njDEl/svCsGHDuJ4C16+9dpg6dcpPIiTJ9f+uVm2Ydu82WrEi2uPnemKuF+0LH7XxcT2c66effnqk\nx8f1cK6ffvrpkR4f1+NzPf+874iKeOwj0UFumlD+PhJWBW1Vl0i6ylo7q5zPeETS7yX9wVr7mOf6\n3yTdJOkma+0zB/iMFnJTpDZaa+uW4vNUJKCXX5auuqr4eoiOHaXXX5caHnCLAQAAACcqFYmKQd/Q\nWjtbUmtjzMmSjpdUU25n6y+ttR8H9JglcslJSWsgjsx7LWkNRWlsyHutVo57IE1YKz30kHTnncWv\nXXKJNGqUdNBBCR8WAABA3ARekUiEINu/7uMZ3SX9R9JCa+0xpfg8FYk0tXu320zuhReKX7vzTune\ne6UMeoABAICARKUiEbe/3hhjMo0x7Ywxp+a9ZgZ1b2vtMrnWr02NMb8pcvleuSrCmPwkwhhT0RjT\nMi8BKTzGVsaYqp6xN5X0d7lpWWODGjdSz+bNUo8exZOIzExXhbj/fpIIAACQmuKxRqK2pD/LdW+q\nUujSTknjJd1hrS1v+9f8qsTHkupJelPSIrl9I7rK7VXRxVq7Ke+zTSQtl7Si8MZzxpihcmstZkha\nKde1qYWk8yRVlvS2pD7W2j2lGA8ViTSzerVLIubPjz1/8MFuPUTXrqEMCwAApLiUrEgYYw6VNFPS\nNZJ2y/0F/eW819155z/L+1y55FUlTpQ0SlJHSYMlNZPbB+Kk/CSi8FeU34OzwDRJk+Ravl4m6XeS\nTpNrB9vPWnthaZIIpJ9Fi6STTiqeRLRoIX36aWwSUVKXBqQ34gI+xAV8iAtEVdD7SDwn6WpJj0sa\nZq3dWuhalqThkm6V9Ly19trAHhwBVCTSx6efuj0ifvop9nyXLtIbb0h1iuzbbuj/DQ/iAj7EBXyI\nCxSVkhUJSedL+tBaO7hwEiFJ1tqt1trfyU1HuiDg5wIJMWmSdOaZxZOIXr2kKVOKJxFS8f0CAIm4\ngB9xAR/iAlEVdEViu6THrLWeJph7P/OgpFuttSnVVpWKROr75z+lgQOl3NzY8wMHSk89JVWoEM64\nAABAeknVisRiSQ3285kGcvtAAEnBWtd96brriicRw4ZJ//gHSQQAAEg/QScST0i61BjTznfRGHOs\npEvk1lAAkWetdNtt0t13x57PyJCeeUYaOlSK0E71AAAACRP0ztbLJU2RNMsYM0auW9MPkg6VdLqk\nK+U2eVthjDmt8BettTMCHgtQLjk50k03SSNHxp6vUkWaMMGtiwAAAEhXQa+RyJVrsZr/b7SFb+47\nt5e1Nqknh7BGIrVkZ0v9+0vjx8eer1lTeust6ZRTQhkWAABAZNZIBF2RuFclJApAsti1S7r0Umni\nxNjzdetK774rHXts2e43bNgweoCjGOICPsQFfIgLRFXgO1unKyoSqWHbNql3b9fKtbCGDaX33pNa\ntSr7Pen/DR/iAj7EBXyICxSVqhUJIGlt2SKdd5708cex55s1k6ZOda8Hgv7f8CEu4ENcwIe4QFQF\nvUaigqTK1trtRc53k9RT0nZJI621ywN7aERQkUhumzdL55wjzZ4de751a1edaNgwnHEBAAAUFZWK\nRNCJxGOSbpR0qLV2S965X0kap4LF1hslHW+t/S6wB0cAiUTyKimJOO44afJktzYCAAAgKqKSSAS9\nj8RpkqblJxF5hkraLKmfpD9KqiVpcMDPBQ5ISUnEySdL779PEgEAAFCSoBOJRpKW5r8xxjSX1FLS\n36y1L1pr/yq3j0SPgJ8LlFlJScQpp0j//a9Uq1Y44wIAAEgGQScSWZK2FnrfRa4d7H8LnVsg6fCA\nnwuUyb6SiHfekWrUCGdcAAAAySLoRGKtpMK9bc6StEPSnELnqkvaE/BzgVJLdBJB72/4EBfwIS7g\nQ1wgqoJebD1B0gWSfiVpp6SJkqZaay8s9Jm3JDW11h4T2IMjgMXWySGMSgT9v+FDXMCHuIAPcYGi\nUnWx9YN595woabKkSpIeyL9ojKki6VRJMwN+LrBf27a5fSISPZ2J/t/wIS7gQ1zAh7hAVAW+s7Ux\npq2kq/Le/staO7vQtZPkOjc9Za19L9AHh4yKRLTt2iVdcEHxHatZEwEAAJJNVCoSgScS6YpEIrr2\n7JEuvlh6443Y8yef7LozkUQAAIBkEpVEIuipTTGMMQcbYxrF8xnAvuTmSldfXTyJOP54KhEAAADl\nEXgiYYypbox51BizTtKPkpYXutbJGPOOMeb4oJ8LFGWt9JvfSC++GHu+VStXiahZM5xxAQAApIJA\nEwljTE1Jn0r6naQ1khZJKlxymSe32PqyIJ8LFGWt9Kc/Sf/4R+z5Zs2k995jx2oAAIDyCroicaek\noyX1t9YeL+mVwhettdslfSDpzICfC8R46CHpkUdizzVo4JKIhg0TOxb6f8OHuIAPcQEf4gJRFfQ+\nEkslfWOt/b+890Ml3WOtrVDoM09J6mutPTSwB0cAi62j49lnpeuvjz1Xu7Y0Y4bUpk3ix0P/b/gQ\nF/AhLuBDXKCoVF1sfbikr/fzmV8kMTsdcTFpknTDDbHnsrKkyZPDSSIk+n/Dj7iAD3EBH+ICURV0\nRWKDpLestVfnvfdVJF6WdLK19vDAHhwBVCTC99lnUrdu0o4dBeeqVJHefVc69dTwxgUAABCkVK1I\nzJZ0vjHG21TTGNNA0rmSPgr4uUhzS5ZI558fm0RkZEgvvUQSAQAAEA9BJxJPSKot6R1jTOvCF/Le\nvyKpiqQnA34u0ti6dVKPHtLGjbHnn35a6tkznDEBAACkuopB3sxaO9kYM1zSUEnzJWVLkjHmR0kH\ny7WCvd1a+0mQz0X62rpVOvdcacWK2PN33y0NHBjKkAAAANJCoGsk9t7UmDMk3SKps1yFYoukzyQ9\nZq19P/AHRgBrJBJv927pvPNcS9fCBgyQ/vlPyYQ6axAAACA+UnWNhCTJWjvNWtvbWtvAWlvJWlvX\nWntBqiYRSDxrpWuvLZ5EnHuuNGJEtJII+n/Dh7iAD3EBH+ICURWXisR+H2pMXWvthoQ/OI6oSCTW\nAw9Id90Ve65DB2naNKlatXDGVBL6f8OHuIAPcQEf4gJFpXRFoiTGmJrGmAclfZvI5yK1vPJK8STi\niCOkt96KXhIh0f8bfsQFfIgL+BAXiKrAKhLGmKaSTpC0S9LMwhUHY0wVSb+T9Ae5RdfbrbXVA3lw\nRFCRSIzPP5dOOy22zeshh7g9JI48MrxxAQAAJEpKVSSMMX+TtFTSy5ImSlphjOmXd+10SYsl3S+p\nqlyL2OZBPBfp5fvvpQsvjE0iKlaUXnuNJAIAACDRyt3+1RhzlaRBknIlLco73UrSs8aY3ZJGSaog\n6RlJ91tr15T3mUg/27a5JGLt2tjzI0ZIXbuGMiQAAIC0FsQ+Ev0l7ZZ0hrX2U0kyxpwmaYqksZJW\nS7rAWjsvgGchDeXmSldcIX35Zez5P/xBuuaacMYEAACQ7oKY2tRO0r/zkwhJstbOkPRG3v0HkESg\nPIYMkd54I/bchRdKf/5zOOMBAABAMIlETbn1EUV9k/f6qecaUCpjxkgPPxx7rn17adw4qUKFcMZU\nVvT/hg9xAR/iAj7EBaKq3F2bjDG5koZZa+8tcn6opHustUny173yoWtT8ObMkbp0kXbtKjhXv740\na5bUqFF44yor+n/Dh7iAD3EBH+ICRaVU1yZJRDcCtWGD1KdPbBJRpYo0cWJyJRES/b/hR1zAh7iA\nD3GBqAqqIlHWm1hrbRALvSODikRw9uyRevSQpk6NPT92rFt0DQAAkM6iUpEI6i/zZf1NhPqbRrQN\nGVI8ibjlFpIIAACAKAlsZ+t0R0UiGC+/LF16aey5U091iUVmZjhjAgAAiJKoVCRIJAJCIlF+8+dL\nnTu7zefyHXaYW3Rdv3544wIAAIiSqCQSQS22Bspl82apd+/YJCIzU3rtNZIIAACAKCKRQOjyd65e\nWmQ3kr//3VUokh39v+FDXMCHuIAPcYGoYmpTQJjadOAefFC6887Yc9dcIz37rGRSYFk+/b/hQ1zA\nh7iAD3GBopjaBEj68EPp7rtjz3Xo4KoRqZBESPT/hh9xAR/iAj7EBaKKikRAqEiU3Y8/SsceK61e\nXXCudm3pyy+Tb9M5AACARKEigbSWmyv17x+bREjSmDEkEQAAAMmARAKheOwx6e23Y8/ddpt07rnh\njAcAAABlw9SmgDC1qfRmzpROOUXas6fgXOfO0owZbDoHAACwP1GZ2kQiERASidLZtEk67jhp5cqC\nc7VqSV99JTVpEt64AAAAkkVUEgmmNiFhrHVtXQsnEZL0wgupnUTQ/xs+xAV8iAv4EBeIKioSAaEi\nsX9/+5t0yy2x5269VXr88XDGkyj0/4YPcQEf4gI+xAWKoiKBtDJvnvSHP8SeO+EE6eGHwxlPItH/\nGz7EBXyIC/gQF4gqKhIBoSJRsl273CZz8+YVnMvKkr74QmrRIrxxAQAAJCMqEkgbd90Vm0RI0jPP\nkEQAAAAkMyoSAaEi4Td9utStm1tone/Xv5ZefDG0IQEAACS1qFQkSCQCQiJR3JYtUrt20qpVBeca\nNZK+/tq1fAUAAEDZRSWRYGoT4ubmm2OTCGOk0aNJIgAAAFIBiQTi4pVXpLFjY88NHiydcUY44wkT\n/b/hQ1zAh7iAD3GBqGJqU0CY2lRg9WqpbVu3i3W+tm2lWbOkKlXCG1dY6P8NH+ICPsQFfIgLFMXU\nJqSk3Fzp6qtjk4hKldzi6nRMIiT6f8OPuIAPcQEf4gJRRUUiIFQknL//3a2NKOyRR6TbbgtnPAAA\nAKkmKhUJEomAkEhIy5a5KUzbtxecO/10aepUqUKF8MYFAACQSqKSSDC1CYGwVrr++tgkIivLdWki\niQAAAEg9JBIIxHPPucpDYY8+KjVpEs54AAAAEF9MbQpIOk9tWr1aatNG2rq14NyZZ0pTpri9IwAA\nABAcpjYhJVgr3XhjbBJRtar07LMkEfno/w0f4gI+xAV8iAtEFRWJgKRrRWLCBOnyy2PPPfGEdMst\n4Ywniuj/DR/iAj7EBXyICxRFRQJJb8OG4gnDySdLv/lNOOOJKvp/w4e4gA9xAR/iAlFFRSIg6ViR\nuOwy6aWXCt5Xrix99ZXUqlV4YwIAAEh1VCSQ1N58MzaJkKShQ0kiAAAA0gUViYCkU0Vi82bXpWnt\n2oJzxx0nzZwpZWaGNy4AAIB0QEUCSWvIkNgkomJF6fnnSSIAAADSCYkEymT2bGnEiNhzt98uHXts\nOOMBAABAOEgkUGo5OW7PiMKzt448UrrrrvDGlAzo/w0f4gI+xAV8iAtEFWskApIOaySefloaNCj2\n3OTJ0jnnhDOeZEH/b/gQF/AhLuBDXKAo1kggqfzwg1sbUdgll5BElAb9v+FDXMCHuIAPcYGooiIR\nkFSvSPTrJ40dW/C+enVp8WKpYcPwxgQAAJCOqEggaXzwQWwSIUn33ksSAQAAkM6oSAQkVSsSu3e7\nPSIWLiw4166dNGeOa/sKAACAxKIigaTw+OOxSYTkFl2TRAAAAKQ3KhIBScWKxKpVUuvW0vbtBecG\nDJCeey68MQEAAKQ7KhKIvN/+NjaJOOQQ6eGHwxtPsqL/N3yIC/gQF/AhLhBVVCQCkmoViSlTird2\nHTlSuu66cMaTzOj/DR/iAj7EBXyICxRFRQKRtWePNHhw7LlOnaRrrglnPMmO/t/wIS7gQ1zAh7hA\nVFGRCEgqVSRGjJBuvDH23KxZUocO4YwHAAAABaJSkSCRCEiqJBJbtkhHHilt2FBwrl8/afTo8MYE\nAACAAlFJJJjahBgPPBCbRFStKj34YHjjAQAAQDSRSGCvZcukJ56IPffHP7KDNQAAAIpjalNAUmFq\nU9++0muvFbxv2FBaskSqVi28MQEAACAWU5sQKTNmxCYRkvTQQyQRQaD/N3yIC/gQF/AhLhBVVCQC\nkswVidxc15Hpiy8Kzp14ojRzppRBqllu9P+GD3EBH+ICPsQFiqIigcgYMyY2iZCkxx4jiQgK/b/h\nQ1zAh7iAD3GBqKIiEZBkrUj88ot01FHS2rUF5y65RPrXv8IbEwAAAEpGRQKR8MgjsUlE5crSww+H\nNx4AAAAkBxKJNLZunfToo7Hnfvc7qWnTUIYDAACAJEIikcbuv1/avr3gfb160h13hDceAAAAJA8S\niTS1fLk0cmTsubvvlrKywhkPAAAAkguJRJoaNkzKzi5437SpdP31YY0mtdH/Gz7EBXyIC/gQF4gq\nujYFJJm6Ni1YILVtKxUe6ujRUr9+4Y0pldH/Gz7EBXyIC/gQFyiKrk0IzV13xSYRbdpIv/51eONJ\ndfT/hg9xAR/iAj7EBaKKikRAkqUiMWuW1KlT7LnXX5d69w5nPAAAACibqFQkSCQCkiyJxFlnSVOn\nFrzv2FH67DPJhBqGAAAAKK2oJBJMbUojU6fGJhGS9OCDJBEAAAAoOyoSAYl6RcJaqXNnN7Up35ln\nSu+9F96YAAAAUHZUJJBQEyfGJhGSq0YAAAAAB4JEIg3k5Eh33hl7rlcvtz4C8Uf/b/gQF/AhLuBD\nXO2th3UAAB6YSURBVCCqmNoUkChPbRo7NnaPCGOkefOko48Ob0zphP7f8CEu4ENcwIe4QFFMbUJC\n5ORI998fe+7KK0kiEon+3/AhLuBDXMCHuEBUUZEISFQrEhMmSJdfXvC+YkXpf/+TmjULb0wAAAA4\ncFQkEHe5udIDD8Seu/JKkggAAACUH4lECvv3v6UFCwreZ2RIQ4aENx4AAACkDhKJFGVt8bURl10m\nHXFEOOMBAABAaiGRSFFvvy199VXBe2OoRgAAACA4JBIpyFrpvvtiz110kdSmTTjjSXf0/4YPcQEf\n4gI+xAWiiq5NAYlS16Z335W6d48999VXUvv24Ywn3dH/Gz7EBXyIC/gQFyiKrk2Im6JrIy68kCQi\nTPT/hg9xAR/iAj7EBaKKikRAolKR+OADqWvX2HOzZ0snnhjKcAAAABAwKhKIi6JrI3r0IIkAAABA\n8KhIBCQKFYlPP5VOPjn23EcfSV26hDMeAAAABI+KBAJXtBpxxhkkEQAAAIgPKhIBCbsi8eWX0vHH\nx557/32XTAAAACB1UJFAoP7619j3XboUX3SNcND/Gz7EBXyIC/gQF4gqKhIBCbMisWqV1Ly5lJNT\ncO6tt6Tzzkv4UOBB/2/4EBfwIS7gQ1ygKCoSCMyTT8YmEa1bS//3f+GNB7Ho/w0f4gI+xAV8iAtE\nFRWJgIRVkdi6VWrUyL3me/ZZ6dprEzoMAAAAJAgVCQTin/+MTSLq1ZOuuCK88QAAACA9kEgksexs\n6YknYs8NGiRVqRLOeAAAAJA+SCSS2KuvuoXW+apUkW68MbzxAAAAIH2QSCQpa6VHH40917+/VLdu\nKMMBAABAmiGRSFIzZkhz5hS8N0b63e/CGw9KRv9v+BAX8CEu4ENcIKro2hSQRHdtuvBCadKk2PcT\nJybk0Sgj+n/Dh7iAD3EBH+ICRdG1CQds8eLYJEKSfv/7cMaC/aP/N3yIC/gQF/AhLhBVVCQCksiK\nxMCB0siRBe87dJBmznTTmwAAAJDaqEjggGzYII0ZE3vu978niQAAAEBikUgkmaeflnbuLHjfpIl0\n0UXhjQcAAADpiUQiiezaJT31VOy5W2+VKlYMZzwAAABIXyQSSeTVV93UpnxZWdI114Q3HgAAAKQv\nEokk8vTTse8HDHDJBKKN/t/wIS7gQ1zAh7hAVNG1KSDx7tr01VfSccfFnlu8WGrZMi6PQ4Do/w0f\n4gI+xAV8iAsURdcmlMk//hH7/qyzSCKSBf2/4UNcwIe4gA9xgaiiIhGQeFYktmyRDjtM2r694Nzr\nr0u9ewf+KAAAAEQcFQmU2pgxsUlEw4bSBReENx4AAACARCLirC2+yHrgQFq+AgAAIFxMbQpIvKY2\nTZsmdetW8L5iRWnVKqlBg0AfAwAAgCTB1CaUStFqRJ8+JBEAAAAIH4lEhK1ZI/3737HnbropnLHg\nwNH/Gz7EBXyIC/gQF4gqpjYFJB5Tm4YPlwr/7GjTRpo/XzKhFrFQVvT/hg9xAR/iAj7EBYpiahP2\nKTtbGjky9txNN5FEJCP6f8OHuIAPcQEf4gJRRUUiIEFXJF57Terbt+B9tWr/v717j5KkLA8//n1Y\nLoLInRWCKIoriB6MIYJ4gV2MoqAuAooeg0QCMRpvMUH9eQEDKqJGErxBRPCOICiByEVlARFQRBcV\nRVxhkTsKuOhyZ/f5/fFWOz211bPTMz3TM93fzzl9iq56q/rtrmeZeuq9VOnqtMEGPTm8JEmSZilb\nJDSm+iDrAw80iZAkSdLMYYtEj/SyReKaa8p4iHY/+xnsuOOkDy1JkqRZzhYJdXT88aPfP+95JhGS\nJEmaWUwkZpgHH4SvfGX0uje+sT91kSRJkjoxkZhhzjoL7r575P0mm8B++/WvPpo85/9WE+NCTYwL\nNTEuNFM5RqJHejVGYq+94NxzR96/5S1w3HGTOqT6zPm/1cS4UBPjQk2MC9U5RkKruOUWOP/80ete\n//r+1EW94/zfamJcqIlxoSbGhWYqWyR6pBctEkcfDe95z8j7ZzwDrrpq0lWTJEnSALFFQqNkwskn\nj15na4QkSZJmKlskemSyLRKXXlqmeW1Za63yJOvNNutJ9SRJkjQgbJHQKPXWiJe/3CRCkiRJM5eJ\nxAxw771w6qmj19mtSZIkSTOZicQMcMYZsHz5yPstt4Q99+xffdRbzv+tJsaFmhgXamJcaKZyjESP\nTGaMxPz5cPHFI+/f+U445phe1Uz95vzfamJcqIlxoSbGheocIyEArr9+dBIBdmsaNM7/rSbGhZoY\nF2piXGimskWiRybaInH44XDUUSPvd90VLrusp1WTJEnSALFFQqxcCV/84uh1tkZIkiRpNjCR6KNF\ni+DGG0fer7suHHBA/+ojSZIkjZeJRB/Vnx2x336wwQb9qYskSZLUDcdI9Ei3YySWLSvTvD7wwMi6\nCy6APfaYkupJkiRpQDhGYsiddtroJGKbbco0sBo8zv+tJsaFmhgXamJcaKayRaJHum2RWLAALrpo\n5P0RR4D/nxhMzv+tJsaFmhgXamJcqM4WiSF2yy2rPjvita/tT1009Zz/W02MCzUxLtTEuNBMZYtE\nj3TTInHssfCOd4y832knuPLKKauaJEmSBogtEkPs618f/f41r+lPPSRJkqSJskWiR8bbInHddfDk\nJ49ed+ONsPXWU1Y1SZIkDRBbJIZUvTXi+c83iZAkSdLsYyIxzezWJEmSpEFgIjGNrr66vFrmzIH9\n9+9ffTQ9nP9bTYwLNTEu1MS40EzlGIkeGc8Yife+Fz784ZH3e+4J55035VVTnzn/t5oYF2piXKiJ\ncaE6x0gMmUy7NQ0r5/9WE+NCTYwLNTEuNFPZItEjq2uRuOIK2GWXkffrrAN33AEbbjgt1ZMkSdKA\nsEViyJxyyuj3e+1lEiFJkqTZy0RiGqxYAaeeOnqd3ZokSZI0m5lITINLLoHbbht5v/76sPfe/auP\nJEmSNFkmEtOg3q1p4UJYb73+1EWSJEnqBROJKfbQQ3D66aPX2a1puDj/t5oYF2piXKiJcaGZylmb\neqTTrE3nnDO6G9PGG8Ptt8Paa09r9dRHzv+tJsaFmhgXamJcqM5Zm4ZEvVvT/vubRAwb5/9WE+NC\nTYwLNTEuNFPZItEjTS0S998Pc+fC8uUj5RYtggULpr16kiRJGhC2SAyB7353dBKxxRaw2279q48k\nSZLUKyYSU+hb3xr9fr/9YM6c/tRFkiRJ6iUTiSnyyCNw9tmj1+2zT3/qIkmSJPWaicQU+cEP4K67\nRt5vvDHsvnv/6iNJkiT1konEFKl3a3rpS2GttfpTF/WX83+riXGhJsaFmhgXmqmctalH2mdtyoRt\ntoEbbxzZfsYZsO++faqc+sr5v9XEuFAT40JNjAvVOWvTAFu8eHQS8ahHwZ579q8+6i/n/1YT40JN\njAs1MS40U9ki0SPtLRKHHw5HHTWybeFCOPPMftVMkiRJg8QWiQFWHx/hbE2SJEkaNLZI9EirRWLJ\nkmTevJH1c+bAHXfAppv2q2aSJEkaJLZIDKh6F6bddjOJkCRJ0uAxkegxuzVJkiRpGJhI9Njll49+\nbyIh5/9WE+NCTYwLNTEuNFM5RqJHWmMkYOT33GknuPLKPlVIM4bzf6uJcaEmxoWaGBeqc4xED0TE\nVhFxUkTcEhEPRMTSiDg2Ijbqx3HqbI0QwO67797vKmgGMi7UxLhQE+NCM9WsbZGIiCcBlwObAWcC\n1wI7A3sAvwaem5l/nMbjrNIicfXV8LSndfGlNJC8k6QmxoWaGBdqYlyozhaJyfss5eL/LZm5X2a+\nJzP/DjgW2B740DQfZ5R582CHHSaypyRJkjTzzcoWiaoV4bfA0szctrZtfeC26u3czLx/qo9TlR/V\nInHYYfDRj47zC2mgeSdJTYwLNTEu1MS4UJ0tEpOzoFp+p74hM5cDlwLrAc+epuOs4hWv6HYPSZIk\nafaYrYnEdpRb/7/psH1JtXzKNB1nlC22gF126WYPSZIkaXaZrYnEhtXyng7bW+tXN+tSr44zysKF\nsMZs/WUlSZKkcViz3xUYPMEJJ8AJJ/S7HppJWn0ZpXbGhZoYF2piXGgmmq33zVstBRt22N5av2ya\njiNJkiQNldnaInEtEHQeuzCvWnYa+9Dr4/R91LwkSZI0nZz+tUfTv0qSJEnDZFZ2bcrM6ylTtm4T\nEW+ubT4SeDTwpdbFf0SsGRHbVYnDhI8jSZIkqZiVLRLwl9aES4G5wFnANZTnPcwHfg08NzP/WJV9\nArAUuCEznzTR40iSJEkqZm0iARARW1FaDl4MbErpivRN4MjMvKet3BOA6ymJxLYTPY4kSZKkYlYn\nEpIkSZL6Y1aOkZAkSZLUXyYSkiRJkrpmIjFJEbFVRJwUEbdExAMRsTQijo2IjfpdN02diNgkIg6J\niG9GxJKIuC8ilkXEJRFxcHR4BGlEPCcizomIu6p9fhYRb4sI/y0OqIj4+4hYWb0O7lDGuBgSEfGC\niPhWRNxW/c24JSLOi4gXN5Q1LgZYFAdExKKIuLk6x9dFxGkR8ewO+xgTAyIi9ouI4yLi+xFxT/U3\n4kur2afr8x8RB0XEjyLiz9V1yoURsXfPvodjJCaumvHpcmAz4EzKA+52BvbAGZ8GWkS8AfgscCtw\nIXAj8FhgX2Aj4PTMfFVtn4XA6cD9wKnA3cDLgO2Bb2TmAdP2BTQtImJr4OeUmzbrA4dm5km1MsbF\nkIiIjwL/DtwEnAvcCWwO7AR8LzPf3VbWuBhwEXEicDAlDs6slk8GXg6sBRyYmV9rK29MDJCIWAzs\nCCwHbqacx69m5us6lO/6/EfEx4F3UP6fczqwNvBqysRCb87Mz0z6i2Smrwm+gPOBFcCbauv/E1gJ\nfKbfdfQ1Zed+PrB3w/q5wO+quHhF2/rHAL+v/gfwzLb1a1OmH14BvKrf38tXz+Pke8AS4JjqHB9c\n225cDMkLOLT6u/B5YM2G7XOMi+F5AY+v4uFWYNPatt2rbb81Jgb3VZ3nbWvn/EsdynZ9/oFdq2Ne\nC2xQi707gfuAx0/2e9gUNkFVa8QLKVPK1jO6I4B7gQMjYt1pr5ymXGZelJnfblj/e+B4ICjJRssr\nKS1Xp2Tm4rbyDwHvq8q/cSrrrOkVEW+jxMDrKf/DbmJcDIGIWBv4IOUmwxsy85F6mcxc0fbWuBh8\nm1fLH2XmXe0bMvNi4M9tZcCYGDiZeXFmXjfO4hM5/28EEvhQZv6pbZ8bgU8D61D+Pk2KicTELaiW\n36lvyMzllAxxPcrD7TRcHq6W7RcLCyj/oM9vKP99yoXmcyJirSmum6ZBRDwVOBr4r8z8wRhFjYvh\n8ELKReEZQEbE3hHxzoh4a4e+8MbF4PslcDuwc0Rs2r4hInaj3IH+bttqY2K4TeT8t65Tm/Y5l5J8\n7DHZiplITNx2lJP6mw7bl1TLp0xPdTQTRMQc4CBKbJzXtmm7arlKvFR3IpcCawJPqm/X7FLFwJeB\nG4D3rqa4cTEcnkX5f8JDwGLgbEqieSxwWURcFBGbtZU3LgZcZj4ALKT0XvhVRJwQER+OiNMoF37n\nA//ctosxMdy6Ov8RsR6wFbA8M+9oOF7PrlFNJCZuw2rZ6cnXrfXO3jRcjgGeBnw7M9vvJhkvw+MI\n4BnAP2Tmg6spa1wMh7mUu3+HUfosP5dyx3lHygXjbsBpbeWNi+Hwc+Bk4FHAIcC7gP0ok3d8MTPv\nbCtrTAy3bs//tMWLiYTUIxHxVsrsCL8CGmdd0GCLiF2A/wd8PDOv6Hd9NGO0/tY+DLwsMy/PzPsy\n85eUmd5uBnav4kdDoGq5XAR8CPgfYFvg0ZQZvJYCX4uIj/SvhtL4mEhMXCub27DD9tb6ZdNQF/VZ\nRLwZ+C/gamCPzKyfd+NlwFUXBl+izJBxeH1zh92Mi+HQOn+LM/Om9g2ZeT8jfZh3rpbGxeA7kDKr\nzhmZeVhm3pCZD2TmVcArgFuAf4uIbaryxsRw6/b8T1u8mEhM3LWUi4NO/cvmVctOYyg0ICLi7cBx\nlGbqPaqZm+qurZarxEt1AfpEyuDs66eqnppy61P+3T8VeLDtIXQrGUksTqzWfaJ6b1wMh9Z57vRH\nu/W8odYsf8bF4NuJMm7movqGKrm8gnKN9sxqtTEx3Lo6/5l5HyUZXT8iHttwvJ5do5pITNyF1fJF\n9Q0RsT6lD+x9wA+ns1KaXhHxLuATwE+BBbU+re0WURLPVZ5eS5k/ej3g0sx8uGG7ZocHgRMpzwk4\nsfb6aVXmkur95dV742I4XEC5aNyhw/anV8ul1dK4GHwPUc7x5h22b95WDoyJYTeR87+oWjbts1e1\nvGDSNev3Azlm84syK88KytMB29d/gjKg7tP9rqOvKT3/76/O84+AjVZTtv1hMju1rV8HuKyKo1f2\n+zv5mrJYOYLVP5DOuBjgF+XJxSuAt9fWv6hafyfwGONiOF7VhVzrgXR/Vdv2kuoc3wtsbEwM/ovu\nHkg3rvPPyAPpftN+jQJsA9xFjx5IF9VBNQHVQ+kupczIcRZwDeW5EfOBXwPPzcw/djyAZq2IOIgy\n28YjwKdonhnhhsz8Yts+C4FvUO5cf53yePuXU5oqv5GZr57qeqs/IuIISjJxSGaeVNtmXAyBiNiK\n8vdia8qdwsWUqRoXUv7YH5CZZ7aVNy4GXEScAewDLAe+RXmuxA7A3lWRt2Xmp9rKGxMDpDqf+1Rv\ntwD2pHRNuqRad2dmHlYr39X5j4iPA/9K6eZ0OuVJ2AcAm1Bugn920t/DRGJyqj8OR1KajjYFbgO+\nCRyZmZ2m3dIsV10Y1gfU1l2cmaMe9hIRu1KeLbArZcq/31K6wnwy/cc4sNri5dB6IlFtNy6GQPXg\nscMpf/y3BP5EeZjURzLzyobyxsUAi4gA/oky8PrplO4pd1NauY/LzFW6nRgTg2Mc1xE3ZOa2tX26\nPv8R8TrgXyhJ6krgJ8DHMvPcSX8JTCQkSZIkTYCDrSVJkiR1zURCkiRJUtdMJCRJkiR1zURCkiRJ\nUtdMJCRJkiR1zURCkiRJUtdMJCRJkiR1zURCkiRJUtdMJCRJkiR1zURCkiRJUtdMJCRJkiR1zURC\nkiRJUtdMJCRJkiR1zURCkjSrRcQHImJlROzW77rURcS8iHgwIt7Z77oARMTZEbEkIub0uy6SZj8T\nCUlqExHbRcQnI+IXEbGsugi8JSL+LyIOjoi1+13Hfqsu2hdN4+cdVH3m6zoUyeo1Ex0DLAM+NdkD\nRcQN1e+wMiLmj1Hu5LZyh9c2fwDYFnjTZOsjSSYSklSpLrp+SbnIugf4AvBR4NvAk4HPAT/oV/2G\n3FiJwieBpwJXTFNdxiUi/gbYB/h0Zt7Xg0O2EqaHgUM6fOZjgFdWZVb5zTLzJ8Ai4H0RsVYP6iRp\niK3Z7wpI0kwQEe+h3K39HfDKzLyyocyLgBnRRWXIxFgbM/Nu4O5pqks33ki5mP9Kj4/7f8C+EbFx\nZv6xtu3vgXWBbwH7dtj/K8Dngf2BU3pcN0lDxBYJSUMvIp4AHAE8BOzVlEQAZOZ3gJc07P+qiPh+\n1RXqvoj4eUS8u6kbVNU95fqIWC8iPhYRv4uIB6p+6x2TlIh4VkScGhE3V+VvjYjzI+KVDWV3iYjT\nI+K2qmvWjRFxfERs2VD2oohYERFrRMR7IuI31fFvjIiPtN+1bnUxolwcz2/rPvOXLjQR8YTq/UnV\n+IBTI+KO6jN2q8r8TUT8d0RcFRF3RcT91ed+PCI2qtXvQuCk6u0X2j5vRUQ8virTcYxERLwgIs6r\nPueBiLg2Io6OiA0m81usTkQ8Cng18JPMvL7Hn/U54FHAgQ3bDgFuAs4fY//TgRXAweP9PpLUxBYJ\nSSoXVGsBX8vMa8YqmJkPt7+PiA8D7wb+AHwVWE5JNj4MvCgiXpSZj7Qfovqs84EtgXOARyhdYD4S\nEetk5lG1zzgU+ExV7ixgCTAX+FvKXe9vtJU9GDgBeKAqexMwD/hH4GURsUtm3lyrD5Q7088DzgX+\nBOxFaX3ZvNoXYDGl1eYDwA2Url8tF9V+qicDPwKupdwBX7c6LsCh1fe9GPgu5abWTsA7gBdXdby3\nKnsy8EdgIXAmcFVbvZe1/fcq3Xgi4g2U32159Rv9HpgPvAt4aUQ8NzP/1LZLN7/F6jwHeDSdu8JN\n5rO+S/n9DwGOa62MiJ2AZ1KS4pWdKpaZyyPi58Dzqnh7cHxfSZJqMtOXL1++hvoFfI/qDm2X+z2b\ncsG2FNi8bf0alIv4FcC7a/ssrdafDazTtn5zygXz3cCctvVPpbSU3Als31CHv2r773nAg5SL9y1q\n5RZQEpEzausvrL7Dj4EN29avS0lYHgbm1vZZCSzq8Js8odq+AjiqQ5mtgWhY//pq38Nq6w+qjve6\nDsc7otq+W9u6x1OSqWXAvFr5T1efc/xkf4sxYuPwqk6v7rB9Ir97K3bWAN5b/fcubduPr/Z7HCUJ\nWQkc3uHzP1Ptv3u///358uVr9r7s2iRJpWUA4OYxS63qHyl3lj+YmX9orczMlcC/VdsaB8UCb822\nO8HV/v8LbAhs11buTcAc4MjM/HX9IJl5a63smsDbM/P2WrkLKcnNyyLi0fXDAO/MzHvayt9PaWFZ\ng9Ly0a07gCObNmTmTZnZNHj6C5S78ntO4PPqDqS0/HwyM5fUtr0X+DNwYEMXol79Fk+qlmPF1GQ+\n62RKonAoQESsB7wGOC9Htzh10irzpDFLSdIY7NokSRP3zGp5YX1DZi6JiJuBJ0bEYzLzz22b78nM\npQ3Hu6labty2bpdqed446vPsajk/InZu2D6XkpQ8hdJNqd1Pxlmf8fpZ1rqBtUTEmsA/AwcAO1CS\np/YbW1tN4PPqxjo3yyJiMfB8YHvgF7UivfgtNq+WqxsEPqHPysxbI+Ic4FUR8TbKeIz1KeMnxuMu\nyiD2ueMsL0mrMJGQJLiNckHZ7QXshm37dzru1sBGlDvgLcuai9MaS9H+sLDW4ONbxlGfTavlv49R\nJikXnKNXjh4rMFZ9xuv2MbadRhkjcR1l3MPtlC5ZAP8KrDOBz6sbz7mBkd/3L3r0W7RaXFY349Rk\nPutzwEuB11K6hd1OmdFpPFqJ20x9/oakWcBEQpLKgNg9gBdQuoyMV6tLyhaU/ut1W9bKTUQr6dgK\n+M0467NBjgxW7pfGC9RqQPA+wHcoM2StbNsWlIHQvdB+bpoG0Pfi3Izlzmq5yRQdH8pA/VuB91HG\nRXyo/fdcjU0o5+gPqysoSZ04RkKSSvLwMLBfRGw/VsHalK6t7kHzG8ptS7m4W9rhrvN4/bBarjLt\n7BhlV5kGtcdWMrFWCiizOQGc3XDRuwtlsHHdCsqd/W4+c3G1z/z6hojYEPhrymDsMWfpmoTWlK+P\nm6Ljt8binERJMldQng0xXq3Wt1WmppWk8TKRkDT0MvN3lClN1wHOqe6aryIiXsLosQonUS5W3xcR\nm7WVWwP4z2rbiZOs3mcpF4nvj4inNtSpvTvWpyjdYo6NiHkNZdeKiOdNsj5Q+tdvPcF9b6iW89tX\nRsRcSv07fR6UmZjG6yuU5PAtVVLX7oPABsCXO43j6IFLKOf/WVN0/Jb/Bl4BvDgzb+hiv50ps4H9\ncHUFJakTuzZJEpCZR0fEHMpUoj+OiMuAKynPIHgs5S7/POCKtn0uj4iPAocBV0fE6cC9lNaDp1Eu\nJj8+yXpdExFvoiQUiyPifynTg25KuUi9h9Ili8y8tnqOxOeBX0bEeZTuUGtRLsKfT3mWwg5dVKGp\nj/8FwAERcRbwU8oF+/cz85JxHO/HwKWUJzNfSulW9ljKb/ZrSledusuB+4C3Vwlba/zFcbVB7H+R\nmb+LiLdTkpOfRsRplG48uwO7Ar+iPP+jG2OOd2io83LKMyImYlyfleWp3md1deCI9YEdgYvSZ0hI\nmgQTCUmqZOYHI+IblGlUFwD/QHmC8F2UB6EdTZmas32fd0fET4E3MzLl6HWUKUY/kaMfRveX3bqs\n14kR8QvKIOrdKQ9nuxP4ObUWj8z8akRcRZl+dgHwQkpycyvloWyndlmfpm1vo3RvegElAVgD+A9K\n4tTap/GYmbkyIl5GaRXYC3gLZSD5/wAfonQ1yto+yyJiX0qSdxDlQW8AX2b0IPb6Z302IpZQfrd9\ngfUoMyIdAxzdoctZt79Fp89+ICJOAQ6JiCd2mKVrIp/VTex0Og/7U7qJndSwTZLGLZqn8pYkSZMR\nEX9NabH5QGY2PlOjHyLiAuDpwOOmsGuXpCHgGAlJkqZAZl4FnAH8S0Q0DSKfdhHxt5SWqqNMIiRN\nli0SkiRNkWqg9y+B92fmx2ZAfc6mPJDwaR263UnSuJlISJIkSeqaXZskSZIkdc1EQpIkSVLXTCQk\nSZIkdc1EQpIkSVLXTCQkSZIkdc1EQpIkSVLXTCQkSZIkdc1EQpIkSVLXTCQkSZIkdc1EQpIkSVLX\nTCQkSZIkdc1EQpIkSVLXTCQkSZIkdc1EQpIkSVLX/j/dTjb9u1FhewAAAABJRU5ErkJggg==\n", "text/plain": [ "<matplotlib.figure.Figure at 0x10c2616d8>" ] }, "metadata": { "image/png": { "height": 270, "width": 393 } }, "output_type": "display_data" } ], "source": [ "c = c_lin # Drug concentration(s) in nanomolar (nM)\n", "EC_50 = 20 # 50% effective concentration in nanomolar (nM)\n", "F = 1 # Efficacy (unitless)\n", "n_H = 1 # Hill coefficients (unitless)\n", "r = calc_drr(c, EC_50, F, n_H)\n", "plot_dose_response_relation(c, r, \"Agonist\")" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "Following result shows drug response of agonist only to the logarithmically increased concentrations." ] }, { "cell_type": "code", "execution_count": 11, "metadata": { "collapsed": false }, "outputs": [ { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAxEAAAIhCAYAAAAxajd/AAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAAWJQAAFiUBSVIk8AAAIABJREFUeJzs3XeYVNX9x/H3WXoHgUQBlWJFURR/0YDKimJXEOwK9phE\njWJEgyI7S+wVaxQTC/ZeEysiiD22iICKYsESEaVJkLLn98fdZXZgdmd25ty55858Xs8zzzL3nvnO\nYf0w7tlz7znGWouIiIiIiEi2yqLugIiIiIiIxIsGESIiIiIi0iAaRIiIiIiISINoECEiIiIiIg2i\nQYSIiIiIiDSIBhEiIiIiItIgGkSIiIiIiEiDaBAhIiIiIiINokGEiIiIiIg0iAYRIiIiIiLSIBpE\niIiIiIhIg2gQISIiIiIiDaJBhIiIiIiINIgGESIiIiIi0iCxHUQYY4YbY641xkwzxiwyxlQZYybl\nWKurMeZWY8zXxpjlxpi5xpirjTHtXfdbRERERCTuGkfdgTyMBbYBlgLzgC1yKWKM6Qm8BnQCHgM+\nAn4DnA7sZYwZYK39yUmPRURERESKQGxnIoAzgM2ste2APwImxzp/IxhAnGatHW6tPddauwdwNcHA\n5EInvRURERERKRLGWht1H/JmjBkITAHustaObMDregJzgLnW2l5rnWsNfFv99FfW2v+56q+IiIiI\nSJzFeSbChd2qvz639glr7VLgFaAlsFMhOyUiIiIi4rNSH0RsDljg4zrOf1L9dbPCdEdERERExH+l\nPohoV/11UR3na45rlSYRERERkWqlPogQEREREZEGivMSry7UzDS0q+N8zfGFmQoZY+J/h7qIiIiI\nxIa1NtfVSfNW6jMRHxEsDVvXPQ+bVn+t654JEREREZGSU+ozEVOqv+659onqJV4HAMuA17Mt6POS\nucaYUPvnon4uNbJ9TTbtMrWp73xd58L+vudLuVAu0lEulIu1WQtlZYbPPrP8+CP8+CMsWMCaP//0\nEyxcGDxq/lzzdfFiqKrK5l0MwXon+cilRravyaZdpjb1na/rnIvvS5gMjRpZysqgrAyMSX5t1Cj5\nfO1zdX1d+9jHHxu22MLW2SbT4/XXDf372zrPw7rHXnjBsOeeNu352s8BnnrKcMABdp3ztds98ohh\n+HCbcq72nx980HDooelr3Huv4cgjU197992RTUCsURL7RBhjGgO9gJXW2s/WOvcMMBg43Vp7fa3j\nVxFsaPc3a+0pWfTBggYR+qEgXj8UgHKhXKSnXBR/LqwNfrj/73+Tj++/Dx7z5wePH35Ifv3hB1i1\nKuwfZuMxiGjSBJo2hWbNWPPnmsesWYYddgja1Jyr+XOTJvDww4YRIyyNGwfPa3+98krD2LGp5xo1\ngrPOMlx/fXC85tGoUfBY+3nNsdrP0z3Kytb9WvPndMfTPU/+oO/350WYnxXZtnX9eWGqRxNRXs4U\n20GEMWYIMLT66frAXsBnwMvVx36w1o6ubrsxMBf43Frbc606PQn2g/gV8AQwi2BfiHJgNjDAWvtT\nFv3RIEI/FET+Q0EulAvlIh3lIr65sDb47f+8efD11/DNN/Dtt+t+/e9/4ZdfGlrdn0FEkybQqhW0\nbBk8WrWCFi2C3zrvt5+lRYvgeIsWwaN589Q/134ceqjh2WctzZsHA4NmzYLjNQOFmkfbtoaqquRv\np9P+DTzNRZh8/7zQICIccb6cqS9Qe9bBAj2qHwCfA6PXOr/Ofx1r7WfGmB2A8cDewD4EO1VfDYy3\n1ta1/GvsDBw40Pv6udTI9jXZtMvUpr7zYX9/w6JcKBfpKBf+5mLFCvjqK/j88+DxxRfB83nzkl9/\n/jnn8hnk3u/mzaFdO2jbNvha8+c2bZKP++4byJlnBn9u3Tp4tGq17teWLYNBRDrl5QN56qkG/q0G\nDmTPdS5sTt+uvgFETZtcz+vzIpz6YX5WZNu2GHMR25kI32gmQr9Z1G+QwquvXBSechFdLqqqLD/8\nAJ9+CnPmBI9PP00OGr7+OphtiIZhww0t660HHTvCeusFjw4dgq/t2wePDh2Sf27fPhgwNG2aRXXl\nQp8XIdTXTEQ44jwTIQ1UUVHhff1camT7mmzaZWpT3/mwv79hUS6Ui3SUi/Bz8fPP8PHHMHt28gHB\nD92LF2fVzby1aAG//nXq41e/Ch6dOkHnzsmvHTvCpZdWkEiE1x/lQp8XYdQPMxPZti3GXGgmwpE4\nzERINHz/DZJEQ7koHUuXwsyZ8MEHMGNG8OfZs+HLL9O1dnPPQYsWsOGG0LUrdOkSPDbYIPl1gw1g\n/fWDy4MyXZ4j0dPnhaxNMxEiJcDX3yBItJSL4mMtzJ0L77wD772XHDR89lnm1yZll4suXaB79+Cx\n8caw0UbQrVswcNhww+ByIg0Oioc+L8RHmolwRDMRIiKlo6oKPvooGDDUPN59FxY5WoqjRQvYZJPk\no1cv6NkzGDRsuGFwk7KIlC7NRIiIiMTA/Pnwxhvw+uvB1zffzP++hbKyYGCwxRbBY/PNYbPNYNNN\ng0uNNJMgIj7TICIiRv93kCKh2TcpNtYG9yxMmwYvvwyvvdbQS5JSlZUFswlbbw19+sBWW0Hv3sGx\nZs3c9VtEpJDKou6AiBS3hIOlXHKpke1rsmmXqU195+s65+L7Eqaw++dTLlavDi5HmjABhg0LVibq\n3TvB738Pd99d3wBi3Vpt20J5OYwaBUOGJHj77eDG6o8+gocfhkQCDjkEHnwwkXYAoVzkX1+fF4Xn\ney7CzES2bcPIRdR0T4QjDb0nota1bOF1SiRE2WZY675r3few6ueai6oqy6efwgsvwPPPw4svBjs8\nr9WSzKskGfbc09KvH2y/PWy3HfToEcw8ZOqfchFefX1eFJ7vudA+EeFo5OvoJm4qKysTkP1osbKy\nkoa0F/FNQzJcXl6e9/vlUiPb12TTLlOb+s7Xdc7F9yVMYfevkLlYuBCefDLYtO2SS8r561/hn/+E\nWbNg+fI6q6/5U+PGwSBh2DA47TS49NJgBaR//KOc3XcPLk9ab71172NQLqKpr8+LwvM9F2FmItu2\nLnNR6//BlRnfOCSaiXBEMxFSapRh8d3HH8NTTwWDh5dfDi5bylabNjBgAOy6K+yyC/TrF6yYJCLi\nAx9mInRjtYiIFIXVq2H69GDQ8OSTwSAiW+utBwMHBoOGXXeFbbYJZh9ERCQ9fUSKiEhsrVoVrKL0\n0EPwyCPw3/9m97qmTWHnnWHwYNhjj+BSpUaNwu2riEgx0SBCRERiZdUqmDoVHnwwGDjMn5/d67bY\nAvbbLxg47LILtGwZbj9FRIqZBhEiIhIL778PkyYFy65mM+PQuHFwidIBBwSDh002Cb+PIiKlQvtE\niEiotO57+nO+r8zmy7rv334LV14J224LffvCVVfVHkCsW6NtWzjqKHjgAfjhh2AZ19NPTw4glIv8\n+JIL1zWUi/z4ngvtExEOrc7kiFZnklKjfSKyO6913xtef+VKePxxuPVWePZZqKqqswpgadsWhgwJ\nNnHbc8/6d4FWLvLj+34AudZQLvLjey60T0Q4tE+EI9onQsI0depUevbsyR133MHpp58edXcA7RPR\nkPNa9z27+l99BVdcASNGwG23wZw5UNf/c9u0Ce5x+Pvfy7nppmAAsfnm2a2opFzkx/f9AHKtoVzk\nx/dcaJ8I9zQT4YhmIqL1+OOPc9BBBwEwePBgnn322Yh75NbUqVPZbbfd6N69O5999lletRYtWsSE\nCRMAqKioyLmOMiwurF4Nzz0Hf/tbsPlb3bMOwU7Qe+0FI0fCgQfqxmgRKV0+zERoEOGIBhHRGjZs\nGI8//jgAZWVlfPnll2ywwQYR98qdt956i2OOOYZu3brx3HPP5VXriy++oEePHhhjWN2Q3bfWogxL\nPpYsgb//Ha67DubOrb9tnz5wzDFw5JFQRP+sRURypkFEEdEgIjoLFiygS5curFq1ii233JJZs2Zx\n8cUXc/bZZ0fdNS9pECFRmjcPrr0WJk6ERYvqbte6NRx9NPzud8EeDiIikuTDIEKrM0ns3XPPPaxc\nuZIBAwYwZswYrLXccccdUXfLW/qhX6Lw/vvBZUg9esDll9c9gNh2W7jpJvjmm+ASJw0gRET8pEGE\nxN4dd9yBMYZjjjmGgw46iNatWzN79mz+/e9/1/u6V155hf3224+OHTvSunVr+vbtyzXXXIO1lmOP\nPZaysjLGjx+f9rVLliwhkUjQt29f2rRpQ5s2bdh2221JJBIsXrw47WsqKyspKyvj+OOPX9PvHXfc\nkbZt29KuXTsGDRrECy+8kPa1U6dOpaysjJ49e65zzlrL7bffzqBBg+jUqRNNmzblV7/6FVtvvTUn\nnHBCyv0h5eXl9OzZc81KD2VlZSmPuv6+Irl6+eVgxaS+feHOO4ON4tbWrFkwwHj1VXj3XTj55ODG\naRER8ZcGERJrM2fO5J133qF58+YccsghtGzZkoMPPhig3tmISZMmMXDgQJ555hkWLlxIs2bNmDVr\nFmeeeSYHH3wwxpg1U4VrmzNnDn369GH8+PF88MEHa47PmDGD8ePHs8022/Dpp5+mfW1NzZNOOonj\njjuOd999l0aNGrF06VJeeukl9t57bx599NEGfQ+OPvpojj/+eKZOncpPP/1E69atWbJkCbNmzeL2\n229fs4IDQKdOnejcuTPWWowxrL/++imP1q1bN+i9s6F139Of831ltnz79/LLsMcesOuu8Pzzad+B\nTp0gkQhWZbrjDvjtb6GOf3bO+qhc5Mf3/QByraFc5Mf3XGifiJBYa/Vw8ABs8O3MTkPbS3qjR4+2\nxhh7xBFHrDn20ksvWWOM7dSpk125cuU6r5k9e7Zt1qyZLSsrswcccID98ssvrbXWLl++3F5//fW2\nSZMmtkOHDrasrMxWVlamvHbFihV2m222scYYu/HGG9vJkyevOffiiy/a7t27W2OM7dOnj12xYkXK\naxOJhDXG2A4dOtiWLVvaiRMn2v/973/WWms///xzW15ebo0xtmvXrnb16tUpr635O/Xo0SPl+LRp\n06wxxjZp0sRee+21dunSpWvOfffdd3bSpEl29OjRKa/5/PPPrTHGlpWVZfz+1ifbDLvIeS41sn2N\ni79DfefrOuf7v/9c+zdtmrWDBlkbLM6a/rHppkH9ZcsK30flIj9h90+fF8pFGPXDzES2bV3notb/\ng6P72TfKNy+mR6EHEfX9DzrKRyGtXr3adunSxZaVldmnn3465Vz37t1tWVmZfeSRR9Z53ciRI60x\nxm677bZpBxmXX375mh+y1x5E3HnnndYYY5s1a2Znzpy5zms//PBD27RpU1tWVmZvu+22lHM1g4iy\nsjJ77733rvPab775Zs3g5uWXX045V9cg4rLLLrPGGLvvvvuuU68uhR5EVFRU5PU+udbI9jXZtMvU\npr7zdZ1z8X0JU0P7N3165sHDzjtb+/jj1q5erVyUSi6iqK9cFJ7vuQgzE9m2dZ0LDSKK6KFBhC34\nIOKZZ56xxhi7wQYb2KqqqpRz48aNs8YYO2TIkJTjVVVVtl27dml/yK+xbNky27p167SDiCFDhtiy\nsjJ76KGH1tmvI4880hpj7D777JNyvGYQ0b179zpfu8suu9iysjL7t7/9LeV4XYOIm266yRpj7A47\n7LDO96AuhR5ESHGbPdvaoUPr/1wYNMjaqVOj7qmISPHwYRCheyIktm677TaMMRx99NHr3L8wcuRI\nAJ5++mkWLFiw5vhnn3225sbnAQMGpK3bokUL+vXrl/bcO++8A8Buu+1WZ78GDRqU0nZtO+ywQ52v\n7dq1KwA//fRTnW1q23333WnatClvv/025eXl3H333Xz77bdZvVYkH99/D6ecAlttBY89lr7N7rvD\ntGkweXJwb4SIiBQPDSIklhYvXswTTzwBwIgRI9Y536tXLwYMGMCqVau455571hz/4Ycf1vy5vs3o\nunTpkvb4/PnzgeQP++l069YNIGXwUlubepadad68OQArV66ss01tm2yyCTfddBMtW7Zk+vTpjBgx\ngq5du9KzZ0/++Mc/8t5772VVRyRby5bBhRfCJpvAjTcGO06vrWbw8MILsMsuhe+jiIiET4OImIr+\nwqX0j0K57777WL58OdZatt1223WWKi0rK+OVV17B2nD2jFi+fLnzmrk69thjmTt3LhMmTGDo0KF0\n6tSJL774gptuuol+/fpxySWXRN1FKQLWwl13wWabwdixwY7Ta9txR5g6VYMHEZFSoEGExNKkSZMA\n1izFWt/j3Xff5cMPPwSCJU5r1HfZT13nOnfuDMCXX35Z52vnzZsHQMeOHRv2l8pD586dOe2003jk\nkUf4/vvvefPNNxk2bBjWWs4//3xmzJhRsL5I8fnwQ9htNxgxAr7+et3zPXvC/ffDa6/psiURkVKh\nQYTEzpw5c3j11VcxxvD+++/z008/1fnYf//9geSeET179qRt27YATJ8+PW395cuX8/bbb6c9t/32\n22OtZcqUKXX278UXX1zTNir9+vXjgQceoFu3blRVVaX8XcvKCvvPXuu+pz/n7brf1RKJBEuXwujR\nwUZxU6eu22a99eDqq2HmTDj00PD3eHBRQ7nIj+/7AeRaQ7nIj++50D4RIYnyru5ielDg1ZlK2dix\nY60xxm633XYZ29YsydqlS5c1qxfVXuJ11apV67zmiiuuyLjEa1lZmX3vvffWee2MGTPWLPF6++23\np5yrWZ3puOOOq7O/xx57bNr3rWt1prX3olhbz549bVlZmZ0wYcKaYwsXLlzzd1i4cGG9r69Pthl2\nkfNcamT7Ghd/h/rO13XO53//VVVB/7p1S3/hYtOm1o4ebe2PP+b+HspF/HJhbfj9Uy6UizDqh5mJ\nbNu6zkWt/wdH9rOvZiIkdu666y6MMQwbNixj2wMOOIAmTZrw3Xff8eyzzwIwZswYmjZtygcffMCw\nYcPWXJr0yy+/cMMNNzBmzBg6dOiQtt5hhx3GNttsg7WWIUOGMHny5DXnJk+ezH777cfKlSvZeuut\nOfLIIx38bet37rnncsghh/D444+nrOj0/fff86c//Ym5c+dijGHw4MFrzrVr127NjeO33XZb6H2s\nqKiIpEa2r8mmXaY29Z2v65yL70sY5s6FffYBqKD6yrwUe+8dXN502WVQxz+TrCgX8cpFjbD7p1wo\nF2HUDzMT2bYNIxeRi3IEU0wPNBNREC+++OKa36Kn2+wtnb333tsaY+zhhx++5thtt91mGzVqZMvK\nyqwxxq633nprZhAOPvhge8wxx9iysjJ7ySWXrFNvzpw5tkePHmte26pVK9uqVas1/erRo4edM2fO\nOq/LdibCGJP1TMQZZ5xhjTFrHu3atbNt27Zd87yuv0NFRcWa/rdu3dp2797ddu/e3V5zzTUZv581\nlOHisnq1tTfeaG2rVjbt7EO3btY+/HAwSyEiItFCMxEiDTNp0iSMMWy++eZsueWWWb1m+PDhGGN4\n8skn1+wRceyxxzJt2jT23ntv2rdvz4oVK+jduzdXX301Dz74IIsWLQKgffv269Tr1asX77//PuPG\njaNPnz5rbuDu06cP48aN4/3336dXr15p+1LTtj51nU/32jPPPJPrrruOoUOHsvnmmwOwYsUKNtpo\nI4444gimTZvGOeecs06tiooKLr30UrbddlsguFH8yy+/ZOHChfX2TYrT3Lmwxx7wxz/Czz+nnmvc\nGM4+G2bNgmHDGnbfg4iIFC8TDGYkX8aYYDoiy+9nzQ+D+v77aeONN2bevHlMmTKFXbXcTFrKcPxV\nVcFNNwWDhLUHDwDl5XDDDdC7d8G7JiIi9aj1/+DIfrXTOKo3FvHVvffey1dffUW7du3Ycccdo+6O\nSCjmzoUTToB0C421aQNXXgknnqiZBxERSU+DCClJF198MW3atGHo0KF07doVYwwLFy7kjjvu4Nxz\nz8UYwymnnEKzZs2i7qqIc3feGVy6tHTpuucGD4a//x022qjw/RIRkfjQPRFSkmbOnMmf/vQnNtpo\nI1q0aEHHjh3p2LEjo0aNYvny5QwePJhx48ZF3c2ioHXf05+LYt3vJUtg5MjgsfYAok0bmDgRnn02\nGED4vu57rjWUi/woF5nbKRf+1dc+EeHQPRGO6J6IeHn99de56667mD59Ot9++y0LFy6kXbt2bLPN\nNowYMYIRI0YUfFO2uMk2w8aYvHOeS41sX5NNu0xt6jtf1zkX35eGePttOPxwmDNn3XPpZh/C7p9y\n4UcuGkq5UC7S8T0XYWYi27auc+HDPRGNfB3dxE1lZWUCsh8tVlZW0pD24la3bt3Yd999+f3vf8/o\n0aM5//zzGT16NCNHjqRv374ZV1CShmW4vLw87/fLpUa2r8mmXaY29Z2v65yL70sm1sKECcEA4ocf\nUs81bw7XXgvXXANpFiILvX/KRfpzhchFPpSLzO2UC//qh5mJbNu6zEWt/wdXZnzjkGgmwhHNREip\nUYb9N38+HHss/Otf657baiu47z7YeuuCd0tERPLkw0yErtcQESlCb74J222XfgBx8snBeQ0gREQk\nVxpEiIgUmdtug113ha+/Tj3evj089FCwN0TLltH0TUREioOWeBURKRIrVsCoUXDjjeue698f7rkH\nNt648P0SEZHio5kIEZEi8N13sPvu6QcQZ54JU6dqACEiIu5oECEiodK67+nPuVyZ7Y03oF8/mD49\n9XiLFnD33cHu040bOO/s+7rvudYopVyEQbnI3E658K++9okIh1ZnckSrM0mp0T4R2Z0Pe933SZPg\npJOCS5lq694dHn0U+vbNra7v677nWqNUchEW5UK5SMf3XGifiHDonoiIaT8CKXYVFRWR1Mj2Ndm0\ny9SmvvN1ncv3+2ItjB8P6X5BtccewfKtHTvmXt/Ff7ew6ysXhadcKBfp+J6LMDORbdswchE1zUQ4\nkutMhEjc6TOk8FasCJZpvf32dc+NHg0XXdTwy5dERCQ+NBNRwvSDl4jkYtEiGD4cJk9OPd6sWbC0\n6xFHRNMvEREpLRpEiIjExJdfwr77wocfph5fbz14/HHYeedo+iUiIqVHgwgRkRh4913Ybz/49tvU\n4716BbtSb7ZZNP0SEZHSpCVeRUQ8N3lysAP12gOInXaC117TAEJERApPg4gS4vs6zrnW0Pre+VEu\nMreLMhdPPhnMQCxdmnp8+HB48UXo3DmrMg2mXGRup88LP+srF4Xney60T0Q4tDqTIw1dnSkKvq/j\nnGsNre+dH+XC31zcey+MGAGrV6ceP/NMuPxyKAvx10DKhb+5iJJyoVyk43sutE9EOBr5OrqJm8rK\nygT4O1qsUV5e7n39XGpk+5ps2mVqU9/5us6F/X3Pl3KRuV2hc3HLLXDccVBVlXr8yiuDvSEKsUq0\ncpG5nT4v/KyvXBSe77kIMxPZtnWZi8rKSgASiURlxjcOiWYiHInDTISIxMNVV8Gf/5x6zBiYOBFO\nPDGaPomIiD98mInQPREiIp6wNphlWHsA0bgx3HOPBhAiIuIPLfEqIuIBa+Gss4JZiNqaNYMHH4QD\nDoimXyIiIuloECEiEjFrYfTodQcQrVrBE0/AoEHR9EtERKQuGkSIiETIWhg7Nrhhurb27eHpp4O9\nIERERHyjeyJKiO/rOOdaQ+t750e5yNwuzFz89a9w0UWp5zp2hClToh1AKBeZ2+nzws/6ykXh+Z4L\n7RMRDq3O5EgcVmfyfR3nXGtofe/8KBfR5eLiiy1jxqQeb98+2ERuu+0ydj1UyoU+L9JRLpSLdHzP\nhfaJCIf2iXBE+0S4q6/1vQtPucjcznUuXnsNJk5MPd62LTz/PPTrl7E7BaFcZG6nzws/6ysXhed7\nLrRPhHuaiXAkDjMRIuKH66+H005LPda6NTz7LPTvH02fREQkPnyYidA9ESIiBfT3v687gGjZEv75\nTw0gREQkPjQT4YhmIkQkk8ceg+HDoaoqeax5c3jqKdh99+j6JSIi8eLDTIQGEY5oECEi9Zk2Dfbc\nE375JXmsadNgH4i99oquXyIiEj8+DCJ0OZOISMg++AAOPDB1ANGoUbATtQYQIiISRxpElBDf13HO\ntYbW986PcpG5XT65OOOMBHvvDYsWpR7fd98EBx6YuX9RUS4yt9PnhZ/1lYvC8z0X2iciHLqcyZE4\nXM7k+zrOudbQ+t75US7Cy8WCBdCpkwFSz11wAYwdq1yUai7qO6fPC+VCuXBfX/tEhEP7RDiifSLc\n1df63oWnXGRu19Bc/PxzcKnS118DJM+dcgpcfHHD+hcV5SJzO31e+FlfuSg833OhfSLc00yEI3GY\niRCRwli5EoYOhX/9K/X4IYfAvfcG90OIiIjkyoeZCN0TISLikLVw6qnrDiB22w3uvFMDCBERKQ4a\nRIiIOHTNNTBxYuqxbbeFRx+FZs2i6ZOIiIhrupzJEV3OJCL/+hcccEDqZnLdu8Orr8IGG0TWLRER\nKTI+XM6kQYQjGkSIlLYZM6B/f1iyJHmsTRt47TXYaqvo+iUiIsXHh0GELmcqIb6v45xrDa3vnR/l\nInO7TG1Gj06w//6pA4iyMrj/fnjwwfSvVS7yr+97LvR5EU195aLwfM+F9okIh2YiHInDTITv6zjn\nWkPre+dHucgvF8uXQ4sW6+4FMWECnH66chFmfZ9zkem8chFefeWi8HzPhfaJCIf2iXBE+0S4q6/1\nvQtPucjcLl0ba+H44+E//4Hae0GcfDL89a9Q/RmvXIRY38dcZHteuQivvnJReL7nQvtEuKeZCEfi\nMBMhIm5ddBGcd17qsd13h6efhiZNoumTiIgUPx9mIjSIcESDCJHS8tRTwUpMtW22Gbz+OnToEE2f\nRESkNGgQUUQ0iBApHXPmwA47wKJFyWMdOsAbb8Cmm0bXLxERKQ0+DCK0OpOISAP8/DMMG5Y6gGjU\nCB56SAMIEREpHRpEiIhkyVr43e/ggw9Sj192GQwaFE2fREREoqBBRAnxfR3nXGtofe/8KBeZ29W0\nuf56uOee1HOHHQaLFtVdQ7kIr74vucjlvHIRXn3lovB8z4X2iQiH7olwJA73RPi+jnOuNbS+d36U\ni+xyMX1IxCpSAAAgAElEQVS6pbwcVq1KHu/dO7gPok0b5SKK+j7kQp8X/tVXLgrP91xon4hwaJ8I\nR7RPhLv6Wt+78JSL+tstXQrjxpWzeHHyWJs2MHkydOmSuYZyEV59fV4UnnKRuZ1y4V997RPhnmYi\nHInDTISINNzKlcHeDy+/nHr80Udh6NBo+iQiIqXNh5kI3RMhIlKPs89edwAxZowGECIiUto0E+GI\nZiJEis8TT8CQIanH9tgDnnkmWNZVREQkCj7MRGgQ4YgGESLF5auvoG9f+PHH5LGNNoK334ZOnaLr\nl4iIiA+DCF3OJCKyllWr4MgjUwcQjRvDAw9oACEiIgIaRJQU39dxzrWG1vfOj3Kxbrvx42H69JRW\nXHQR7Lhjw99LuQivvj4vCk+5yNxOufCvvvaJCIcuZ3IkDpcz+b6Oc641tL53fpSL1HZTpgSrMaW+\n1LB6taWsjl+7KBfR1NfnReEpF8pFOr7nQvtEhEP7RDiifSLc1df63oWnXATt5s+HwYNhyZLkufXX\nh9//Hvbaq/5aykU09fV5UXjKReZ2yoV/9bVPhHuaiXAkDjMRIlK3qirYf394+unkMWPgueeCFZlE\nRER84cNMhO6JEBEBJkxIHUBAsB+EBhAiIiLr0kyEI5qJEImvf/8b+vcPdqeu0b8/TJ0arMokIiLi\nEx9mIjSIcESDCJF4+vln2G47+OST5LH27eH994N9IURERHzjwyBClzOJSEk7++zUAQTArbdqACEi\nIlIfDSJKiO/rOOdaQ+t756eUc/Hss3Djjantfvc7OOightVSLqKpr8+LwlMuMrdTLvyrr30iwqHL\nmRyJw+VMvq/jnGsNre+dn1LNxY8/wtZbw7ffGiBo16sXvPcetG7dsFrKRTT19XlReMqFcpGO77nQ\nPhHh0D4RjmifCHf1tb534ZVaLqyF446DN95Y05KyMnjqqWAgkcv7KxfR1NfnReEpF5nbKRf+1dc+\nEe5pJsKROMxEiEjgnnvgqKNSj513HlxwQTT9ERERaQgfZiI0iHBEgwiReJg3D/r0gYULk8e22w5e\nfx2aNo2uXyIiItnyYRChG6tFpGRUVQWXMdUeQDRrBnfdpQGEiIhIQ2gQISIl44Yb4IUXUo9dfDH0\n7h1Nf0REROJKlzM5osuZRPz20UfQty8sX548tttuwaCiTL9OERGRGNHlTFJQvq/jnGsNre+dn1LI\nxerVcPzxqQOItm3h9tth/PjMtZULP+vr86LwlIvM7ZQL/+prn4hwaCbCkTjMRPi+jnOuNbS+d35K\nIRfXXgunn556ftIkGDFCuahLKeQi33bKhZ/1lYvC8z0X2iciHNonwhHtE+Guvtb3LrxizsVnn8Hw\n4bByZfL4AQcE90JUfwYrF3Uo5ly4aqdc+FlfuSg833OhfSLc00yEI3GYiRApNdbC7rvDlCnJY+3a\nwYcfQteu0fVLREQkHz7MROieCBEpWrfckjqAALjqKg0gRERE8qWZCEc0EyHil6++gq22giVLkscG\nD4Znn01exiQiIhJHmokQEQmBtXDyyakDiFatYOJEDSBERERc0CBCRIrOXXfB00+nHrv0UujePZLu\niIiIFB0NIkqI7+s451pD63vnp9hy8d13Ncu5Jl+zyy7whz/kXlu58LO+Pi8KT7nI3E658K++9okI\nh+6JcCQO90T4vo5zrjW0vnd+ii0Xw4fDI48AGMDSvDn85z+w6aa511Yu/Kyvz4vCUy6Ui3R8z4X2\niQiH9olwRPtEuKuv9b0Lr1hy8dhjkPpPsJxLLoH998+/tnLhZ319XhSecpG5nXLhX33tE+GeZiIc\nicNMhEgxW7IEeveGefOSx37zG3j1VWjUKLp+iYiIuObDTITuiRCRojBuXOoAonFj+PvfNYAQEREJ\ngwYRIhJ777wD116beuzMM6FPn2j6IyIiUux0OZMjupxJJBqrV8OOO8LbbyePde8OM2YEe0OIiIgU\nG13OJCKSpxtuSB1AANx4owYQIiIiYdIgooT4vo5zrjW0vnd+4pyLefPgvPNSjx16KOyzj3KRrzjn\nwsVrlIv0lIvM7ZQL/+prn4hw6HImR+JwOZPv6zjnWkPre+cnzrkYNgwefTT5vG1bmD0bNthAuchX\nnHPh4jXKRXrKhXKRju+50D4R4dA+EY5onwh39bW+d+HFMRdPPAEVFaltrroKBg1q+PsqF+nFMRcu\nX6NcpKdcZG6nXPhXX/tEuKeZCEfiMBMhUiyWLg32hPjqq+SxHXeEV17Rkq4iIlL8fJiJ0D0RIhI7\nFRWpA4hGjeDmmzWAEBERKRQNIkQkVmbMgGuuST02ahRsu200/RERESlFupzJEV3OJBI+a2G33WDq\n1OSxjTaCmTO1pKuIiJQOXc4kItIA992XOoAAmDBBAwgREZFC0yCihPi+jnOuNbS+d37ikoslS+Cs\ns1KP77UXDB2a3/sqF+nFJRdhvUa5SE+5yNxOufCvvvaJCIcuZ3IkDpcz+b6Oc641tL53fuKSi9Gj\nLZdfnjzWpElwf8Rmm+X3vspFenHJhT4vCku5UC7S8T0X2iciHNonwhHtE+Guvtb3LjzfczF/Ptxw\nQzlVVcljZ58Nhx3m5n2Vi/R8z0WuNZSL/CgXmdspF/7V1z4R7mkmwpE4zESIxJG1MHgwTJ6cPNat\nW7Azte6FEBGRUuTDTITuiRARrz30UOoAAoKdqTWAEBERiY5mIhzRTISIe0uXwpZbwrx5yWO77w7P\nPw8mst+9iIiIREszESIi9bjwwtQBROPGcN11GkCIiIhETYMIEfHSxx/DlVemHhs1KpiZEBERkWhp\nEFFCfF/HOdcaWt87P77mYtQoWLlyTRW6dIHzz3f/vspFer7mIt8aykV+lIvM7ZQL/+prn4hw6J4I\nR+JwT4Tv6zjnWkPre+fHx1w88wzss09KFe65x3LEEe7fV7lIz8dcuKihXORHuVAu0vE9F9onIhza\nJ8IR7RPhrr7W9y48n3KxcmWwC/UPPySPbbgh/OMf5Q2+F0K5yI9PuXBZQ7nIj3KRuZ1y4V997RPh\nnmYiHInDTIRIHFx7LZx+evK5MfDWW9CvX3R9EhER8YkPMxEaRDiiQYRI/hYsgE03hZ9+Sh47/nj4\nxz+i65OIiIhvfBhE6MZqEfFGRUXqAKJNm2CZVxEREfGLBhEi4oUZM+Bvf0s9dt55sP760fRHRERE\n6qbLmRzR5UwiubMW9twTXngheaxXL/jwQ2jWLLp+iYiI+EiXM0lB+b6Oc641tL53fnzIxZNPpg4g\nAK64IjmAUC4Kz4dchFFDuciPcpG5nXLhX33tExEOzUQ4EoeZCN/Xcc61htb3zk/UufjlF9h6a5gz\nJ3ls0KBgUFGzpKtyUXhR5yKsGspFfpQL5SId33OhfSLCoX0iHNE+Ee7qa33vwosyFxMmwP33J5+X\nlcFjj8Gvf519jVzet6HtlAs/6ysXhadcZG6nXPhXX/tEuKeZCEfiMBMh4pvvvw+WdF28OHnsD3+A\nG2+Mrk8iIiK+82EmQvdEiEhkKitTBxDt28P48dH1R0RERLKjQYSIRGLWLLj55tRj48ZBp07R9EdE\nRESyp8uZHNHlTCINc+CBwapMNXr1gpkzoWnT6PokIiISB7qcSURK0pQpqQMIgEsv1QBCREQkLjSI\nKCG+r+Ocaw2t752fQueiqgr+/OfUNgMGwLBh2dfI5X3zaadc+FlfuSg85SJzO+XCv/raJyIcupzJ\nkThczuT7Os651tD63vkpdC4mTYJjjklt8/rrsOOO2dfI5X3zaadc+FlfuSg85UK5SMf3XGifiHBo\nnwhHtE+Eu/pa37vwCpWLZcvgoINSV2Q67DA444zsa+Tyvi7aKRd+1lcuCk+5yNxOufCvvvaJcE8z\nEY7EYSZCJGoXXghjxyafN20Ks2dDjx7R9UlERCRufJiJ0D0RIlIQ//0vXHJJ6rE//UkDCBERkTjS\nIEJECqKiApYuTT5fbz0477zo+iMiIiK50yBCREI3cybcckvqsYqKYIdqERERiR/dE+GI7okQqdv+\n+8M//5l8vummMGOG9oUQERHJhe6JkILyfR3nXGtofe/8hN2/Y49NpAwgoOEbyykXhafPi8ztlAs/\n6ysXhed7LrRPRDg0E+FIHGYifF/HOdcaWt87P2H2z1ooKzNAsv7OO8O0aWAa8LsT5aLw9HmhXKSj\nXCgX6fieC+0TEQ7tE+GI9olwV1/rexdeWP178EF46CGAZP377oMNN2x4LeWi8PR5kbmdcuFnfeWi\n8HzPhfaJcE8zEY7EYSZCpJBWrIDeveHTT5PHhg2Dhx+Ork8iIiLFwIeZCN0TISKhmDgxdQDRqBFc\ndFF0/RERERF3NIgQEecWL4bx41OPnXQSbL55NP0RERERtzSIEBHnrrgC5s9PPm/VKtgXQkRERIqD\n80GEMabMGHOaMeZ1Y8wiY8yqWue2M8bcaIzZzPX7iogfvvsOrrwy9dif/wzrrx9Nf0RERMQ9p4MI\nY0xT4HlgAtALWALUvuFjLnA8cJTL95Xs+L6Oc641tL53flz3r7ISli1LPm/ZMsFZZ+VXU7koPH1e\nZG6nXPhZX7koPN9zoX0iwuF0dSZjzHnAX4EEcAEwDjjfWtuoVpvngLbW2p2cvbEH4rA6k+/rOOda\nQ+t758dl/z76CLbaClavTnkH5aLEcxFWfeWi8JQL5SId33OhfSLC4XSfiMrKypuBj6y1xyYSCVtZ\nWTkQGJhIJMbXarMz8JtEInFlnYViSPtEuKuv9b0Lz1X/Tj4ZZs5MPu/VC045BQYNyr++clF4+rzI\n3E658LO+clF4vudC+0S453om4n/A9dba0dXPK4Bxa81EXAyMstY2d/bGHojDTIRImF57Dfr3Tz12\n//1w6KHR9EdERKRY+TAT4frG6uVA+wxtNgIWOn5fEYmQtXDOOanH/u//4JBDoumPiIiIhMv1IOI9\nYM/qG6zXYYxpB+wFvOn4fUUkQs88Ay+/nHrs0kvBRPb7EREREQmT60HERGBD4G5jTNvaJ4wx7YHb\ngQ7ATY7fV0QiUlUFY8akHtt7b9htt2j6IyIiIuFzek8EgDHmVuBYYCXwE9AZeBfYCmgG3GCtPc3p\nm3pA90RIqbr3XjjyyNRj77wD220XTX9ERESKXTHeE4G19niCvSBmEgwgDLA9MAc4oRgHEHHh+zrO\nudbQ+t75yad/K1bA2LGpxw4/PHUAoVykP1fMuShUfeWi8JSLzO2UC//qa5+IcDifiUgpbkwLgsuX\nFllrfw7tjTwQh5kI39dxzrWG1vfOTz79u/HGYAnXGo0bw6xZsMkmburnU0O5yI8+L5SLdJQL5SId\n33OhfSLC4XSfiLUlEolViURiSSKRWBnam3hC+0S4q6/1vQsvl/79/DMMHx58rXHyyTBihJv6Lmoo\nF/nR50XmdsqFn/WVi8LzPRfaJ8I91/tEdAA2AD611v5S6/hxwFDgZ2CCtbboVmeKw0yEiEsXXQTn\nnZd83qIFfPopbLBBdH0SEREpBT7MRDR2XO8i4GjgVzUHjDGnARMI7o0AGGqM2cFaOzPN60UkBhYs\nCJZwre2MMzSAEBERKRWub6weAEy21v6v1rGzgK+BXYGavWvPdPy+IlJAl14Kixcnn3foAGefHV1/\nREREpLBcz0R0BSbXPDHG9CbYN+Ica+306mOHEAwoRCSG5s2D665LPfaXv0D7THvVi4iISNFwPRPR\nAlhe6/kAwAIv1Dr2KcFgQ0RiaPx4WF7rX3mXLnDqqdH1R0RERArP9SDia2CLWs/3AhYD79c61gGo\nfbmTFIjv6zjnWkPre+enIf376CO49da1Xw8tW7qp77KGcpEffV5kbqdc+FlfuSg833OhfSLC4Xp1\nponAMcCfCWYkbgQettYeUavNc0Bna21R7Wcbh9WZfF/HOdcaWt87Pw3p32GHwQMPJJ9vthl8+GGw\nP4SL+i5rKBf50eeFcpGOcqFcpON7LrRPRDic7hNRWVk5AzgWOAg4EFgGHJVIJBYAGGPaAtcCTyYS\niX85e2MPaJ8Id/W1vnfhZdO/d96B009PPXbjjdCnj5v6YdRQLvKjz4vM7ZQLP+srF4Xney60T4R7\nznesNsasDxxc/fQJa+2Xtc5tD4wA7rHWvuX0jSMWh5kIkXzsuy88/XTy+Xbbwb//DWWuL4oUERGR\nevkwE+F8EFGqNIiQYvbyy7DrWmuqPf007L13NP0REREpZT4MIvQ7RBGpl7Vw7rmpx3bZBfbaK5r+\niIiISPRc7xOBMaYJMAT4DcFKTI3SNLPW2hNcv7eIuPfMMzB9euqxiy4CE9nvPkRERCRqrldn6gI8\nT7DMa30/YlhrbbrBRWzpciYpRlVVsMMO8O67yWP77gv//Gd0fRIRESl1xXg505XAlsB9wCBgU6BH\nmkdPx+8rWfB9Hedca2h97/zU17+HHkodQABccIG7+mHWUC7yo8+LzO2UCz/rKxeF53sutE9EOFzP\nRCwAPrDWljsrGhNxmInwfR3nXGtofe/81NW/Vatgq63g44+Txw47DO67z039sGsoF/nR54VykY5y\noVyk43sutE9EOFzvE1EBPJpIJF5wVjQmtE+Eu/pa37vw0vXvttuCR41GjYKZiY4d3dQvRA3lIj/6\nvMjcTrnws75yUXi+50L7RLjneibiDWCutfZwZ0VjIg4zESLZWr482I36q6+Sx048EW65Jbo+iYiI\nSMCHmQjX90RcDhxojOntuK6IFNDNN6cOIJo2hXHjouuPiIiI+MX1Eq/fA08CrxpjrgHeBhama2it\nneb4vUXEgaVL4cILU4/98Y+w4YbR9EdERET84/pypirAklzetc7iWuJVxE8XXghjxyaft24Nn30G\nnTtH1ycRERFJ8uFyJtczEeOpZ+AgIn776Se4/PLUY2ecoQGEiIiIpHJ6T4S1NmGtrczm4fJ9JTu+\nr+Ocaw2t752f2v27/HJYtCh5rkMHOOssd/ULWUO5yI8+LzK3Uy78rK9cFJ7vudA+EeFwejlTKYvD\n5Uy+r+Ocaw2t752fmv599x306gXLliXPXXIJnHOOm/qFrqFc5EefF8pFOsqFcpGO77nQPhHhcLpP\nRG3GmJ0rKyuHVFZW7lVZWdm3srKySSKR+DKUN/OA9olwV1/rexdeeXk5554Lr7ySPLb++nDXXcHK\nTC7qR1FDuciPPi8yt1Mu/KyvXBSe77nQPhHuOZ+JMMb0A+4ENq85RPI+iY+Akdbafzt6r67AX4G9\ngI7At8BjQKW1Nu2qUGlqfA5sVMfp76y1XbKs4/1MhEhdvvgi2BdixYrkseuug1NPja5PIiIikp4P\nMxFOb6w2xmwCTAbaAtOBFwl+sN8AGATsDDxvjPmNtfaTPN+rJ/Aa0Ilg4PAR8BvgdGAvY8wAa+1P\nWZSyBMvQXk1yVakaS/Ppo0hcjB+fOoDYeGM46aTo+iMiIiJ+c73E6x3A0cDh1toH05w/GLgPuNta\ne0ye7/UssAdwmrX2xlrHrwRGATdZa/+YRZ25gLXW9syzP5qJkFj66CPYaitYvTp57NZb4bjjouuT\niIiI1M2HmQjXg4ivgdestQfX0+ZhYCdrbdc83qcnMAeYa63ttda51gSzHwC/stb+L0MtDSKkpB1+\nONx/f/L55pvDjBnQ2PUC0CIiIuKED4MIp0u8ElxaNDtDm9nV7fKxW/XX59Y+Ya1dCrwCtAR2yrJe\nM2PMUcaYMcaYPxljyo0xrr83It55773UAQQElzZpACEiIiL1cf2D8nygd4Y2WwA/5Pk+mxPcy/Bx\nHedr7rfYLMt66wOTgAsI7o14EfjEGLNrPp30je/rOOdaQ+t75+788wESa5737QsH1zmPmBvlIv05\nn3MB+rxQLtJTLjK3Uy78q699IsLh+nKmScCRwNHW2vvSnB8O3E+e90QYY24GTgROstbemub8BcAY\n4Fxr7aUZap0PvAx8CCwBegKnAicD/wN+a639IIs+eX85k+/rOOdaQ+t75+a116B/f6i9gNpTT8F+\n+7l9H+UiXrmooc8L5SId5UK5SMf3XGifiHC4vmhhPDAEuNsYcwowheD+hPWBcoLVmZYQ/MbfC9ba\nv651aCbwR2PMz8CfCX5NO7zQ/QpDRUWF9/VzqZHta7Jpl6lNfefrOhf29z0X1sJ559U8C/rXvz/s\nu6/791Iu4pOL2vR5oVyko1woF+n4noswM5Ft2zByETlrrdMH8H/ALKCq+rG61p9nAb9x8B6XVdcd\nVcf566rPn5zHe/Sq7vP8LNvbTI+BAwdawFZUVNh0KioqdF7nC3L++eetDYYSyccxx/jTP53XeZ3X\neZ3X+VI/X3O8vofN8edcFw/nm83VMMb0B7YH2gGLgHetta/U/6qsa58A3ALcbK39Q5rzzwCDgT2s\ntVNyfI+2BPtHLLfWtsyifTCSCOn7KeKKtbDjjvDWW8ljgwfDc+ssUyAiIiI+KsbLmdaw1r4KvBpS\n+ZqBwZ5rn6he4nUAsAx4PY/3+G3118/yqCHinSeeSB1AAFx4YTR9ERERkXgKbRlTY0wTY8w2xphd\nqr82cVXbWvsZwfKu3Y0xp651ejzQCphkq/eIMMY0NsZsXr2/RO0+bmGMWWeWwRjTHbieYKroTlf9\nFona6tUwdmzqsaFD4f/+L5r+iIiISDw5v5zJGNMRuIRglabmtU4tB+4Bxlhr813itWbDuVeAXwFP\nENxvsRPBDdyzgQHW2p+q224MzAU+t7U2lTPGVBDcPD0N+ILgpu9ewH5AM+CfwDBr7aos+qPLmcR7\n99wDRx2VfG4M/Oc/sPXW0fVJREREGsaHy5mczkQYY34NvAGcAKwg+OH8geqvK6qPv17dLi/VsxE7\nALcDvwHOBHoQ7PPw25oBRO2XULOOZdIU4EmCZV2PAEYBuxIs+TrSWntgNgOIuPB9Hedca2h97+ys\nXAnjxqUeO/JIeOihRKjvq1ykP+dLLuqiz4vM7ZQLP+srF4Xney60T0Q4XO8T8Q/gOGACkLDWLq51\nri1QCZwO3GqtPdHZG3sgDjMRvq/jnGsNre+dnYkT4eSTk88bN4ZZs2DTTZWLUs5FXfR5oVyko1wo\nF+n4ngvtExGORi5HN5WVlbcA71hrj0gkEr/UPpdIJH5JJBLPVlZW7gH0TyQSVzh7Yw9UVlYmwN/R\nYo3y8nLv6+dSI9vXZNMuU5v6ztd1LuzveybLl8Pw4bBkSfLYSSfByJHBn5WLzO2KMReZKBeZ2ykX\nftZXLgrP91yEmYls27rMRWVlJQCJRKIy4xuHxPVMxDLgamvtefW0uQg43VrbytkbeyAOMxFSuq6+\nGs48M/m8WTOYMwe6dYuuTyIiIpIbH2YiXK/ONBvYIEObDYCPHL+viNRhyRK4+OLUY6ecogGEiIiI\n5M71IOIa4DBjzDbpThpj+gKHEtwzISIFcM01MH9+8nnr1vCXv0TXHxEREYk/15vNzQWeB940xkwi\nWJXpv8CvgYHACOBp4HNjzK61X2itnea4LyIl78cf4Yq17j4aNQo6d46mPyIiIlIcXN8TUUWwjGrN\n9Vm1i6c7toa1tpGzjkRA90SIj8aMgUsuST7v0AHmzoV27aLrk4iIiOSnGO+JGF/9qKx+jM9wrPZD\nQub7Os651tD63ul9+21wKVNt55yz7gBCucjcrphykS3lInM75cLP+spF4fmeC+0TEQ7nO1aXqjjM\nRPi+jnOuNbS+d3qnngo33JB8vv768Omn0LJlajvlorRykS3lQrlIR7lQLtLxPRfaJyIcTveJKGXa\nJ8Jdfa3vnb+5c+G446CqKnns0kuhf//07ZWLzO2KIRcNpVxkbqdc+FlfuSg833OhfSLcc31PRCOg\nmbV22VrHBwFDgGXARGvtXGdv6ok4zERI6TjmGJg0Kfm8Rw+YPRuaNo2uTyIiIuKGDzMRrgcRVwN/\nAH5trV1Ufexw4G6SN1YvALa31n7l7I09oEGE+OLDD6FPH6gdxUmTYMSI6PokIiIi7vgwiHB9Y/Wu\nwJSaAUS1CmAhMBI4G2gPnJnmtSLiwPnnpw4gttoKjjwyuv6IiIhI8XE9iNgQmFPzxBjTE9gcuM5a\ne5e19gqCfSL2dvy+IgK8+SY8+mjqsQsugEaxXkBZREREfON6ENEWWFzr+QCCfSGeqXXsQ6Cb4/cV\nEeC881Kf/+Y3MGRINH0RERGR4uV6EPEt0KPW8z2A/wFv1zrWGljl+H0lC76v45xrDa3vHXjxRXjh\nhdRjF10EJsPVkspF5nZxzkWulIvM7ZQLP+srF4Xney60T0Q4XN9YfS9wAHA4sBx4HJhsrT2wVpun\ngO7W2q2dvbEH4nBjte/rOOdaQ+t7B/dA/Pa38MYbyWODBsHkyZlfq1wUby7yoVwoF+koF8pFOr7n\nQvtEhMPpPhGVlZUfA78DjgZGEMx0HJdIJL4GMMY0B64Dnk8kEk84e2MPaJ8Id/W1vnfDPfEEXHll\n6rF774VuWV44qFxkbhfHXORLucjcTrnws75yUXi+50L7RLjnfMdqY0wf4Jjqp/dba9+qde63BCs0\n3WCtfSHd6+MqDjMRUpxWr4a+fWHGjOSxIUPgscei65OIiIiEx4eZCOeDiFKlQYRE5c47YeTI5HNj\n4D//ga2L6oJBERERqeHDIML1jdUpjDEdjDEbhvkeIqXsl19g3LjUY0cdpQGEiIiIhMv5IMIY09oY\nc6Ux5jvgB2BurXM7GmP+ZYzZ3vX7ipSim2+Gzz9PPm/SBMaPj6w7IiIiUiKcDiKMMe2A14BRwDfA\nLKD2NMsHwC7AES7fV6QULVkSbCRX2+9/Dz16pG8vIiIi4orrmYjzgK2AY6212wMP1j5prV0GTAV2\nd/y+kgXf13HOtUapru999dUwf37yeatW6242lw3lInO7OOXCFeUiczvlws/6ykXh+Z4L7RMRDtf7\nRMwBPrHW7lP9vAIYZ61tVKvNDcDB1tpfO3tjD8Thxmrf13HOtUYpru89fz707AlLlyaPnX9+bpcy\nKQoWi4QAACAASURBVBfFkwuXlAvlIh3lQrlIx/dcaJ+IcLjeJ+Iy4IlEIvFC9fNyYGAikRhfq83A\n6mMXpK8ST9onwl19re+d2dixMG1a8nnHjnD//dCsWW71lIvM7eKQC9eUi8ztlAs/6ysXhed7LrRP\nhHuuZyLmA09Za4+rfp5uJuIBoL+1NsttsOIhDjMRUhy++AI22wxWrEgeu+oqGDUquj6JiIhI4fgw\nE+H6noi3gP2NMW3SnTTGbADsC0x3/L4iJaOiInUAseGG8Ic/RNcfERERKT2uBxHXAB2Bfxljtqx9\novr5g0Bz4FrH7ytSEmbMgEmTUo9VVkLz5tH0R0REREqT8x2rqy9hqgAssBJoAvwEdCBY7vUca+3l\nTt/UA7qcSQph6FB4/PHk8969g92pGzWq+zUiIiJSXHy4nMn5IALAGLMb8CdgJ4KZiUXA68DV1toX\nnb+hBzSIkLC9+ioMGJB67NFHg4GFiIiIlA4fBhHOd6wGsNZOsdYeZK3dwFrb1Frb2Vp7QLEOIOLC\n93Wcc61RCut7Wwt/+UvqsZ12giFD8i6tXMQ4F2FSLjK3Uy78rK9cFJ7vudA+EeEIZSYi45sa09la\nOz9zy/iIw0yE7+s451qjFNb3fvJJOPDA1GMvvQQDB+ZVFlAu4pyLMCkXykU6yoVykY7vudA+EeFw\nuk9EJsaYdpWVlRXA3YlE4uKCvXEBaJ8Id/W1vneqVavg4INTd6feZ5/cdqeui3KRuZ1vuSgE5SJz\nO+XCz/rKReH5ngvtE+Ges5kIY0x3oB/wC/BG7ZkGY0xzYBRwFsEN1susta2dvLEn4jATIfH0j3/A\niScmnxsD770H22wTXZ9EREQkOj7MRDi5J8IYcx0wB3gAeBz43BgzsvrcQGA2cAHQkmAZ2J4u3lek\n2C1bBuPGpR4bOVIDCBEREYlW43wLGGOOAU4BqoBZ1Ye3AG4xxqwAbgcaATcDF1hrv8n3PUVKxTXX\nwDe1/sU0awbjx0fXHxERERFwcDmTMWYK8FtgN2vta9XHdgWeJ5jp+Bo4wFr7QZ599ZouZxLXFiyA\nnj1h8eLksdGj4bLLouuTiIiIRK9YLmfaBni0ZgABYK2dBjxWXf/4Yh9AiIThwgtTBxAdOsCYMdH1\nR0RERKSGi0FEO4L7Idb2SfXX19Kckwj4vo5zrjWKcX3vzz+HG25IPXbuucFAwjXlInM7X3JRSMpF\n5nbKhZ/1lYvC8z0X2iciHC4uZ6oCEtba8WsdrwDGWWsb5fUGMRGHy5l8X8c51xrFuL730UfD3Xcn\nn2+4IXz8MTRv3qAyWVEu4pOLQlIulIt0lAvlIh3fc6F9IsKR9z4R1fs+TEkkEtPWOl4ODEwkEiVx\nG6j2iXBXv9TX9373XTj11NRj114LO+yQdYkGUy4yt4s6F1FQLjK3Uy78rK9cFJ7vudA+Ee65molo\naBFrrc17ZSifxGEmQuJhzz3h+eeTz/v0CQYWjUpiTk9EREQy8WEmwtUP8g39C0T2Fxbx2fPPpw4g\nAC69VAMIERER8YuzHatLnWYiJF+rV8P228N//pM8tttuMHlysEu1iIiICPgxE+Fkx2oRyd8dd6QO\nICDYE0IDCBEREfGNZiIc0UyE5GPpUthsM/j22+Sxo46Cu+6Krk8iIiLiJ81ESEH5vo5zrjWKYX3v\nK65IHUA0bw4XXZTxZU4oF5nbad13P+srF4WnXGRup1z4V1/7RIRDMxGOxGEmwvd1nHOtEff1vb/5\nBjbdFJYtSx4bM6Zwgwjlws9cRE25UC7SUS6Ui3R8z4X2iQhH3vtESED7RLirX2rre59xBrz5ZvJ5\n587wwAPQrFm93XBKucjcTuu++1lfuSg85SJzO+XCv/raJ8I9zUQ4EoeZCPHP++/DdttB7djceCP8\n4Q/R9UlERET85sNMhAYRjmgQIQ1lbbCx3AsvJI9tsQV88AE0LqqtGEVERMQlHwYRurFaJCLPPJM6\ngAC4/HINIERERMR/molwRDMR0hCrVsG228LMmcljgwYFgwrtCyEiIiL10UyESIn6xz9SBxDGwJVX\nagAhIiIi8aBBRAnxfR3nXGvEbX3vxYth3LjUNiNHQt++GbsXCuUiczut++5nfeWi8JSLzO2UC//q\na5+IcOhyJkficDmT7+s451ojbut7n3MOXHZZ8nyLFvDJJ9C1a4a/QEiUCz9y4RvlQrlIR7lQLtLx\nPRfaJyIc2ifCEe0T4a5+Ma/v/emnMGIErF6dPDdmDAwZkrFboVIuMrfTuu9+1lcuCk+5yNxOufCv\nvvaJcE8zEY7EYSZConfQQfDYY8nnXbvCRx9Bq1bR9UlERETixYeZCN0TIVIgkyenDiAALrlEAwgR\nERGJH81EOKKZCKnPqlXBztQzZiSP7bQTvPIKlGkoLyIiIg2gmQiREjFxYuoAAuCaazSAEBERkXjS\nTIQjmomQuvz4I2y2GSxYkDw2YgRMmhRdn0RERCS+NBMhBeX7Os651vB9fe999kmkDCBatYKLL87Y\nlYJRLjK307rvftZXLgpPucjcTrnwr772iQiHZiIcicNMhO/rOOdaw+f1vWfNgt69DZA8fsEFcN55\nGbtbMMqF1n1PR7lQLtJRLpSLdHzPhfaJCIf2iXBE+0S4q18s63tbG1y29OmnAMHxjTeGu++GJk0y\ndqOglIvM7bTuu5/1lYvCUy4yt1Mu/KuvfSLc00yEI3GYiZDC+uc/Yf/9U489+CAcfHA0/REREZHi\n4MNMhAYRjmgQIbX98gv06QOffJI8tuuu8NJLYCL75y4iIiLFwIdBhG6sFgnBlVemDiCMgQkTNIAQ\nERGR4qCZCEc0EyE1vvwSttgC/ve/5LHf/Q5uvjm6PomIiEjx8GEmQoMIRzSIkBoHHwwPP5x8vt56\n8PHH0LFjdH0SERGR4uHDIEKXM5UQ39dxzrWGT+t7P/986gACoH//hNcDCOUiczut++5nfeWi8JSL\nzO2UC//qa5+IcGgmwpE4zET4vo5zrjV8Wt97880tH32UPLbDDvDvf2t971LPhdZ9D6e+clF4yoVy\nkY7vudA+EeHQPhGOaJ8Id/Xjur739Onw1lvJc8bAo49C165a37uUc1HfOeUi//rKReEpF5nbKRf+\n1dc+Ee5pJsKROMxESHjmzQtupv755+SxE0+EW26Jrk8iIiJSnHyYidAgwhENIkrbYYfBAw8kn3fo\nENxM3alTdH0SERGR4uTDIEI3VovkafLk1AEEwEUXaQAhIiIixUszEY5oJqI0rVgBffvCrFnJY9tv\nD2++CY0aRdcvERERKV6aiRCJuQkTUgcQADfcoAGEiIiIFDcNIkqI7+s451ojqvW9586F1OYJjj8e\ndtopt/5FRbnI3E7rvvtZX7koPOUiczvlwr/62iciHLqcyZE4XM7k+zrOudaIYn1va2HffeGZZ1LO\n8v33ls6dc+tfVJQLrfuejnKhXKSjXCgX6fieC+0TEQ7tE+GI9olwVz8O63s/+CBccknq8QMPhBNO\nSP9are+df/045KKh55SL/OsrF4WnXGRup1z4V1/7RLinmQhH4jATIW4sXAhbbgnffZc8tuuu8NJL\nwQZzIiIiImHyYSZC90SINNC556YOIJo0gZtu0gBCRERESocGESIN8NprwYChtr/8JZiZEBERESkV\nupzJEV3OVPxWroR+/eCDD5LHNtkkeN68eXT9EhERkdKiy5lEYuTqq1MHEBDMSmgAISIiIqVGg4gS\n4vs6zrnWKMT63sk9IZLnR4yA3XfP/FrfV+xSLjK307rvftZXLgpPucjcTrnwr772iQiHLmdyJA6X\nM/m+jnOuNcJe3zt1TwgDWNZbD2bPJmVPCK3vHV59H3OR7XnlIrz6ykXhKRfKRTq+50L7RIRD+0Q4\non0i3NX3bX3ve+6Byy5LacH118POO2dfX+t751/ft1w05LxyEV595aLwlIvM7ZQL/+prnwj3NBPh\nSBxmIqTh/vtf6N0bfvwxeUx7QoiIiEiUfJiJ0D0RIvU49dTUAUSzZnDzzRpAiIiISGnTIEKkDg89\nFDxqq6yELbaIpj8iIiIivtDlTI7ocqbismBBcBnT998nj+2wQ7DZXOPG0fVLRERERJcziXjqjDNS\nBxBNmsCtt2oAISIiIgIaRJQU39dxzrWG6/W9n3oK7ror9fjYsdCnj9b3jqq+D7nI9bxyEV595aLw\nlIvM7f6/vXuPt32uEz/+ejsuB0eMJvdGbqX4GZVCbkeEJLdKGr8oMsnEGIZfF0IpM1QGFRLKJT91\nVCONkBRTRO6j3O+kQue4HR3nnM/88Vnb2Xvt795rr7W+a32/6+zX8/FYj833+1mf9dnrvB3rvT6f\nz/tjXNSvf8+J6A2XM5VkEJYz1b2Oc6d9lF3fe5VVEk88seDaBhvAjTfC4otb37uq/usQF9Z9r1//\nxkX/GRfGRZG6x4XnRPSG50SUxHMiyuu/yvrel1wC9967oM2UKXDppfDa106sD+t7965/6773n3HR\nup1xUc/+jYv+q3tceE5E+ZyJKMkgzERofFdeCdttN/Lapz8NX/pSNeORJEkqUoeZCJOIkphEDLZZ\ns/KypUceWXDtjW+Em2+GqVOrG5ckSVKzOiQRbqyWgIMPHplARORqTCYQkiRJo5lEaNKbMQPOPXfk\ntUMPhU02qWY8kiRJdedyppK4nGkw/eEPsP768MwzC66tv36uxuQshCRJqiOXM6mv6l7HudM+Oq3v\nnRLst9/IBGKRRY7h/PPHTiCs711N/9Z97z/jonU746Ke/RsX/Vf3uPCciN5wJqIkgzATUfc6zp32\n0Wl979NPh098YlQr63vXsH/rvvefcWFcFDEujIsidY8Lz4noDc+JKInnRJTXfz/qe997L+y+O7z8\n8oJ7m28O++wDW289fl/W966mf+u+959x0bqdcVHP/o2L/qt7XHhORPmciSjJIMxEKJs7NycMv/nN\ngmvTpsHtt8Maa1Q3LkmSpImow0yEeyI06Rx//MgEAuDkk00gJEmSJsqZiJI4EzEYfvvbXLp13rwF\n13bZBX74w3w2hCRJUt3VYSbCJKIkJhH19+yz8Ja3wP33L7i2wgpwxx35pyRJ0iCoQxLhciZNCinB\nAQeMTCAAzjzTBEKSJKldJhGTSN3rOHfax0Sec845cOGFI9sdcADsvHN7fVnfu5r+rfvef8ZF63bG\nRT37Ny76r+5x4TkRveFyppIMwnKmutdx7rSPVs/53e9go41g9uwAcrsNNoDrr4cll2yvL+t7V9O/\ndd/7z7gwLooYF8ZFkbrHhedE9IbnRJTEcyLK67/MWs6zZ8P228MTT7zSkqWWgiuugJVX7uz1re9d\nTf/Wfe8/46J1O+Oinv0bF/1X97jwnIjyORNRkkGYiZiMDjgAzjhj5LWzz4aPfrSa8UiSJHWrDjMR\nJhElMYmon+9/H/bYY+S1vfaC886znKskSRpcJhELEZOIennwQdhww1zWdcjaa8PNN8Myy1Q3LkmS\npG7VIYmwOpMWOnPmwJ57jkwgFl8cLrrIBEKSJKkMJhFa6Bx6KNxww8hrJ56YD5qTJElS90wiJpG6\n13HutI/hzznvPPj610fe33lnOOgg63uPZTLERbftjIt69m9c9J9x0bqdcVG//j0nojfcE1GSQdgT\nUfc6zp32MfScW26Bd7wDXnppwb3XvQ5uugmWX9763mNZ2OOijHbGRT37Ny76z7gwLorUPS48J6I3\nPCeiJJ4TUV7/nfSxwQbT2XZbeOqpBdemTs3nQay5Znt9W9+7nv1b973/jIvW7YyLevZvXPRf3ePC\ncyLK50xESQZhJmJhNW8e7LQT/PSnI69/5zuw997VjEmSJKlX6jAT4Z4IDbxjjx2dQBx4oAmEJElS\nrzgTURJnIqrx4x/njdPDbbop/OIXuayrJEnSwqYOMxEmESUxiei/e++Ft70NZs1acG3FFfNG6lVX\nrW5ckiRJvVSHJMLlTBpIzz4Lu+02MoGYMgW+9z0TCEmSpF4ziZhE6l7HeaJ9zJ2bT6S+885XngXA\nl78MW27ZXd/W965n/9Z97z/jonU746Ke/RsX/Vf3uPCciN5wOVNJBmE5U93rOE+0j0MOgZNPHvEs\nPvShxAUXQIwzqWd972ILS1x0+hzjophxYVwUMS6MiyJ1jwvPiegNz4koiedElNf/eH2cdhp87nMj\nr62yClx11XQWW6y7vifaxvre1fRv3ff+My5atzMu6tm/cdF/dY8Lz4konzMRJRmEmYhBd+WV8O53\n53Mhhqy2GtxwA6y8cnXjkiRJ6qc6zESYRJTEJKK37roLNtlk5EbqpZeG//5v2HDD6sYlSZLUb3VI\nItxYrdp7+ul8IvXwBCICLrjABEKSJKkKJhGqtTlzYPfd4f77R14/4QTYZZdqxiRJkjTZmUSotubP\nh/32g2uuGXl9333hsMOqGZMkSZJMIiaVutdxbu7jiCPg/PNH3t9qq1yhaXgpV+t7d2fQ4qLs5xgX\nxYyL1u2Mi3r2b1z0X93jwnMiesON1SUZhI3Vda/jPLyPL38ZDj985L2114brr4dXv7qz17W+d7FB\niotePMe4KGZcGBdFjAvjokjd48JzInrDcyJK4jkR5fX/6KPTOfDAkddWXBGuvhpWXbW717W+d7FB\niAvrvvefcdG6nXFRz/6Ni/6re1x4TkT5nIkoySDMRAyCyy6DnXeGuXMXXFtmGfjlL+HNb65uXJIk\nSXVRh5kI90SoNn7zG3j/+0cmEIsvDj/6kQmEJElSnZhEqBbuugve8x548cUF1yLyxup3vrO6cUmS\nJGk0kwhV7pFHYPvt86Fyw33ta/CBD1QzJkmSJI3NJEKVevzxPNPwyCMjrx91FKM2V0uSJKkeTCIm\nkbrVcX7yyZxAjDyN+hj23x+ObaPWgPW9u1O3uCirD+OiO8ZF63bGRT37Ny76r+5x4TkRvWF1ppIM\nQnWmOtVx/tOfYPp0+P3vR/XCyy8nFl20/Ne1vnexOsVFmX0YF90xLoyLIsaFcVGk7nHhORG94TkR\nJfGciIn3/9RTsM02cOedI6/vumuuzrTttq376OR1J9rO+t717N+67/1nXLRuZ1zUs3/jov/qHhee\nE1E+ZyJKMggzEXXwzDM5gbj11pHXd9oJLr44l3SVJEnS2OowE+GeCPXNzJmw3XajE4gddoAZM0wg\nJEmSBoVJhPrimWdyGdebbhp5fZtt4Ac/gCWWqGZckiRJal8b21elzjz5ZJ6BuOOOkde32gouuQSW\nXLKacUmSJKkzJhHqqYcfhm23hfvuG3l9s83g0kthqaWqGZckSZI653KmSaTfdZzvuQe22GJ0ArHV\nVnDZZTBtWus+OnndbtpZ37ue/RsX/WdctG5nXNSzf+Oi/+oeF54T0RtWZyrJIFRn6mcd59tuy0uY\n/vSnkW123DFvoh5rCZP1vfuv7vW9O+3DuOiOcWFcFDEujIsidY8Lz4noDc+JKInnRCzo/7rr4F3v\ngqefHnlvjz3gootg6tTWfXTyumW1s753Pfs3LvrPuGjdzrioZ//GRf/VPS48J6J8zkSUZBBmIvrh\nyitht93ghRdGXt9vPzjjDJgypZpxSZIkLSzqMBPhngiV5uyz83Kl5gTiX/4FzjzTBEKSJGlhYRKh\nrqUERx6ZZxvmzh1575hj4CtfgagsT5YkSVLZLPGqrvz1r7DvvvDd7468HgFf/Socckg145IkSVLv\nmESoY888A7vuCtdeO/L61KlwwQWw++7VjEuSJEm95XKmSaTMylEPPADveEdzAnEMr3kNXH115wmE\n9b37r+71vTvtw7jojnHRup1xUc/+jYv+q3tceE5Eb1idqSSDUJ2prDrO11wD738//PnPo16B++5L\nrLVW531b37v/6l7fu9M+jIvuGBfGRRHjwrgoUve48JyI3vCciJJMhnMiUoJTT4W99oLnnx95b4st\nYM89YY89Ou9/iPW9+6/u9b077cO46I5x0bqdcVHP/o2L/qt7XHhORPmciSjJIMxEdGP2bPj4x+G8\n80bf+4d/yOVdl1ii/+OSJEmabOowE+GeCLX00EOw2WbFCcTRR8P555tASJIkTSZWZ9K4rroKPvhB\nePrpkdeXWSYnDzvvXM24JEmSVB1nIlRo/nw48UTYbrvRCcS668KNN5pASJIkTVbORGiUP/4R9tkH\nLr989L1dd4XvfAde9ar+j0uSJEn14EzEJDKRylFXXAEbbDA6gYiA446Diy8eO4GwvnfxvbpX7Kp7\nfe9O+zAuumNctG5nXNSzf+Oi/+oeF54T0RtWZyrJIFRnGq8G8Zw5cOSReQlTs+WWyydQ77hj5/2X\nMcZun2N972J1r+/daR/GRXeMC+OiiHFhXBSpe1x4TkRveE5ESQb5nIj77ssJwowZo9tvvjlceSVs\ntFHn/bfL+t79V/f63p32YVx0x7ho3c64qGf/xkX/1T0uPCeifM5ElGQQZiKapQTf/jYcfPDow+MW\nWQSOOirPTizqzhlJkqTaqMNMhB8PJ6lHH4X99y/ePL3aann50pZb9n9ckiRJqj83Vk8yKcG3vgXr\nrVecQOy2G9x2mwmEJEmSxuZMxCTyyCPwsY/lPQ7NllwSvvIVOOCAXIlJkiRJGotJxCQwfz6ceSYc\nfjg899zo+1tuCWedBWuv3f+xSZIkafC4nGkhd8stsNlmeYbhueeOGXFvqaXg1FPh6qvLSSCs7118\nr+4Vu+pe37vTPoyL7hgXrdsZF/Xs37jov7rHhedE9IbVmUpSt+pMM2fm6krf+EaeicgCyOPbeuu8\nN2LNNct7Tet7W9+7V/0bF/1nXBgXRYwL46JI3ePCcyJ6w3MiSlKXcyJSgvPOg513zjMMzfE4bdp0\nTj4ZTj4Zll++/Ne3vnfxPet7d9+/cdF/xkXrdsZFPfs3Lvqv7nHhORHlcyaiJHWYibj9dvjkJ+Ha\na4vv77or/Md/wOqr93dckiRJKk8dZiLcE7EQeOwx2Hdf2HDD4gRizTXhJz+BH/7QBEKSJEndszrT\nAJs1C044AU46CWbPHn1/iSXg05+GI47IJVwlSZKkMphEDKA5c+Cb34Rjj4Wnnipus+OOcMopsNZa\n/R2bJEmSFn4mEQNk3jy46CI4+mi4777iNuuum2cndtrJQ+MkSZLUG+6JGADz5sEFF8B668FeexUn\nECuuCGecAXfcAe99b3ECUfc6zp32YX3v7hgXrdsZF/Xs37joP+OidTvjon79e05Eb1idqSS9qM40\ndy5ceCEcdxzcc09xm6WXzidRH3YYTJvWcoy1ruPcaR/W9+6OcWFcFDEujIsixoVxUaTuceE5Eb3h\nORElKfOciDlz4PzzYc894ayz4OmnR7eZMgX+8R/hBz/IS5cWX3xifde9jnOnfVjfuzvGRet2xkU9\n+zcu+s+4aN3OuKhf/54TUT5nIkpSxkzEzJl5w/Qpp8Djjxe3mTIF9t4bPvMZWHvtjl9KkiRJA6oO\nMxFurK6BBx/MJ0ifdRY8/3xxmylTYJ99cvJgxSVJkiRVySSiIinBddflE6Qvvhjmzy9ut+ii8JGP\n5ORhjTX6OkRJkiSpkElEnz37bK60dPrpcPvtY7dbaql8CvWhh5o8SJIkqV5MIvrkllty4nDBBfDC\nC2O3W2klOOggOOAAWH75/o1PkiRJmijPieihv/wln92w8cbwlrfkTdNjJRDrrw/nnAMPPZSXLvUi\ngah7HedO+7C+d3eMi9btjIt69m9c9J9x0bqdcVG//j0nojeszlSSoepMc+YkLrsMzjsPLrkkl2sd\nyyKL5PKsBx4I223X+xOm617HudM+rO/dHePCuChiXBgXRYwL46JI3ePCcyJ6w3MiSjJ0TsRppx3D\n2WfD736XT5oussoqea/DuefCxz+eS7X2OoEYUvc6zp32YX3v7hgXrdsZF/Xs37joP+OidTvjon79\ne05E+ZyJKMnQTASM/X5uv33e67DTTrnqkiRJktSuOsxE+FG2x9ZaKx8O9+EPW2VJkiRJCweTiB5Y\nbjnYc8+cOGy6af+WKkmSJEn9YBJRshkz4D3vgalTqx6JJEmS1BvuiSjJ0J4I309JkiT1Uh32RHhO\nxCRS9zrOnfZhfe/uGBet2xkX9ezfuOg/46J1O+Oifv17TkRvOBNRkkGYiah7HedO+7C+d3eMC+Oi\niHFhXBQxLoyLInWPC8+J6A3PiSjJ0DkRdX8/617HudM+rO/dHeOidTvjop79Gxf9Z1y0bmdc1K9/\nz4konzMRJRmEmQhJkiQNvjrMRLgnQpIkSVJbTCIkSZIktcUkQpIkSVJbTCIkSZIktcUkYhKpex3n\nTvuwvnd3jIvW7YyLevZvXPSfcdG6nXFRv/49J6I3rM5UkkGozlT3Os6d9mF97+4YF8ZFEePCuChi\nXBgXReoeF54T0RsDPRMREatGxNkR8XhEvBQRD0bESRGxXBX91N3RRx9d+/476WOiz5lIu1Ztxrs/\n1r2tttqq5etWybgwLooYF8ZFEePCuChS97joZUxMtG0v4qJqAzsTERFrAtcBfwv8CLgbeDvwTuAu\nYLOU0l/62E/tZyJUjbp/g6RqGBcqYlyoiHGhZs5EdOc08gf/g1JK70spfSaltC1wErAu8MU+9yNJ\nkiRNCgM5E9GYPbgPeDCltFbTvWnAHxr/ukJKaXav+2m0dyZChfwGSUWMCxUxLlTEuFAzZyI6t3Xj\n5xXNN1JKzwO/ApYCNulTPwOh7tUTOu2j7lU16s64aN3OuKhn/8ZF/xkXrdsZF/Xr3+pMvTGoMxEn\nAIcB/5pSOqng/qnAgcCBKaUzet1Po23tZyLqXj2h0z6sqtEd48K4KGJcGBdFjAvjokjd48LqTL0x\nqDMRyzZ+zhrj/tD1VtWVyupHkiRJmjQWrXoAC5uhzLCuej2+MvrvpI+JPmci7Vq1Ge/+WPeMC+Oi\n09etknFhXBQxLoyLInWPi17GxETb9iIuqjSoMxFDMwTLjnF/6PrMPvUjSZIkTRqDOhNxNxDAkJZq\n3gAAENdJREFU68e4v07j5z196qfSNWmSJElSPw3qxuralXiVJEmSJouBXM6UUnqAXJb1dRHxyabb\nnweWBs4d+uAfEYtGxBsaSUPH/UiSJEka0JkIeGUW4VfACsAlwO/J5zlMB+4CNksp/aXRdnXgQeCh\nlNKanfYjSZIkaYCTCICIWJU8Y7AD8Gry8qMfAJ9PKc0a1m514AFyErFWp/1IkiRJGvAkQpIkSVL/\nDeSeCEmSJEnVMYmoSEQcGBEPRMTsiPhtRGxe9ZhUrYjYIiL+MyIei4j5EbF31WNS9SLi0xFxQ0TM\niog/RcQlEbFe1eNStRr/D7mtERezIuLXEbFj1eNSfTT+7pgfEadUPRZVKyKObsTC8McT3fZrElGB\niPgg8B/AccCGwK+ByyJitUoHpqpNA+4ADgZerHgsqo8tga8BmwJbA3OBn0XEcpWOSlV7FDgCeDPw\nVuDnwI8iYoNKR6VaiIhNgP2B26oei2rjLmBFYKXG4/9026F7IioQEdcDt6aUDhh27R7g+ymlz1Y3\nMtVFRDwH/FNK6dyqx6J6iYilgVnALimln1Q9HtVHRDwNfCqldGbVY1F1ImJZ4CZgP+AY4I6U0sGV\nDkqVioijgfellEr9ksGZiD6LiMXI3xpd2XTrCuAd/R+RpAHzKvLf3ZaeFgARsUhE7AlMBa6pejyq\n3DeB76WUfln1QFQra0bE442l9BdGxBrddrhoGaNSW/4WmAL8sen6H4Ft+j8cSQPmZOBm4LqqB6Jq\nRcT65DiYSl4CuUdK6e5qR6UqRcT+wJrAh6oei2rleuAj5CVNKwBHAb+OiDd1cxaaMxFNIuJ9EXFK\nRFzT2Kw2PyLGXVISEatGxNmNDO+liHgwIk5yzfLCw7hQkX7HRUR8lTxj+b7kWtTa6mNc3AX8PfB2\n8r6Z/x8Rby3xV1GJeh0XEfF64IvAP6SU5vfq91C5+vH3RUrp8pTSjJTS/6SUfg68h5wD7NPN2J2J\nGO1IYAPgeeAxYN3xGkc+8fo68gzDj4C7yX+h/zOwfUQ0n3j9FDCPvLlluBWBJ8v4BdQTvY4LDaa+\nxUVEnATsAUxPKT1c2m+gXuhLXKSU5pIPUgW4JSLeDvwTsG9Jv4fK1eu42JR8YO7vImLo2hRgy4g4\nAFg6pfRyeb+OStL3zxcppRcj4k5gna5GnlLyMewBbAWsNeyf5wPnjtP+cnJScGDT9a80nvuNgudc\nD5zedO1u4Liqf38f1cVFU7vngL2r/r191CMuyEuYngBeX/Xv7KM+cVHQz1XAd6r+/X1UExfk/VJv\nanrcAJwPvLHq399HNXExRh9TG/9PObKrsVf95tX50eoPk7zucD5wf8G9aY0Pgs8BSzbd2wN4iVw5\nYd3GB4RngddW/Tv7qDQuliYvTdgQeIH87cTfGxeD8ehhXHydXI1pOnnGcuixdNW/s49K4+J4YHNg\ndWD9xr/PBbat+nf2UV1cFLS9Gjil6t/XR7VxAZxILhf+OmBj4FJgZrefL9wT0Z2tGz+vaL6RUnoe\n+BWwFLBJ073vAYcAnwVuIa9xfndK6dGejlb90lFcABuR4+Em8rcEx5I30B7bs5GqnzqNi0+Q/+dw\nFfmbo6HHYT0bqfqp07hYCTiPvC/iZ+SqfzuklH7Wu6GqjzqNi1HNSx6XqtVpXKwGfJf898UMYDaw\nSbefO90T0Z03kP8DvWeM+/cC7wJeT/424BUppdOB03s6OlWlo7hIuRyfif3Cq9O4MCYWbp3GxUd7\nPzRVqOPPF8OllN5Z/tBUoU7/vuhJtS7/59SdZRs/Z41xf+i61XgmF+NCRYwLFTEuVMS4UJFaxYVJ\nhCRJkqS2mER0ZyjjW3aM+0PXZ/ZhLKoP40JFjAsVMS5UxLhQkVrFhUlEd+4Ggrz2rMhQ/d2x1q5p\n4WRcqIhxoSLGhYoYFypSq7gwiejO0KaV7ZpvRMQ0YDPgRfK5EJo8jAsVMS5UxLhQEeNCRWoVFyYR\nXUgpPUAus/W6iPhk0+3Pk+v+n5tSmt33wakyxoWKGBcqYlyoiHGhInWLi2gcQqGGiNgF2LXxrysB\n2wMPANc2rj2VUjp8WPs1yXV5VwAuAX5Prs87nVyPt+Xx46o/40JFjAsVMS5UxLhQkUGOC5OIJhFx\nNPC5cZo8lFJaq+k5q5IzwB2AVwN/AH4AfD6lNFYZLg0Q40JFjAsVMS5UxLhQkUGOC5MISZIkSW1x\nT4QkSZKktphESJIkSWqLSYQkSZKktphESJIkSWqLSYQkSZKktphESJIkSWqLSYQkSZKktphESJIk\nSWqLSYQkSZKktphESJIkSWqLSYQkSZKktphESJIkSWqLSYQkSZKktphESJIkSWqLSYQkaaBFxDER\nMT8itqx6LM0iYp2I+GtEHFH1WAAi4scRcW9ETKl6LJIGm0mEJA0TEW+IiFMj4o6ImNn4APh4RFwa\nEftGxOJVj7FqjQ/sP+/j6+3TeM29x2iSGo86+ndgJvC1bjuKiIca78P8iJg+TrtzhrX7XNPtY4C1\ngAO7HY+kyc0kQpIaGh+47iR/wJoFfBs4AfgJsDZwJvDfVY1vkhsvSTgVeCNwQ5/GMiER8RZgV+Dr\nKaUXS+hyKFl6GfjYGK+5DPCBRptR71lK6Sbg58CREbFYCWOSNEktWvUAJKkOIuIz5G9pHwY+kFL6\nbUGb7YBaLEuZZGK8mymlZ4Bn+jSWdnyC/EH+/JL7vRTYPSL+JqX0l6Z7/xdYEvghsPsYzz8fOAt4\nP3BhyWOTNEk4EyFp0ouI1YGjgTnAjkUJBEBK6Qrg3QXP3yMirmksf3oxIm6PiE8VLX1qLEl5ICKW\niogTI+LhiHipsU59zAQlIt4WERdFxGON9k9ExOUR8YGCthtHxIyI+ENjOdYjEXF6RKxc0PYXETEv\nIhaJiM9ExD2N/h+JiH8b/m310LIi8gfj6cOWzLyybCYiVm/8+9mN/QAXRcQfG6+xZaPNWyLi5Ii4\nNSKejojZjdf9ckQs1zS+q4GzG//67WGvNy8i/q7RZsw9ERGxTUT8tPE6L0XE3RFxfES8qpv3opWI\nmArsCdyUUnqg5Nc6E5gKfLjg3seAR4HLx3n+DGAesO9Efx9JauZMhCTlD1OLAd9NKf1+vIYppZeH\n/3tEfAn4FPBn4ALgeXKi8SVgu4jYLqU0d3gXjde6HFgZ+C9gLnnZy79FxBIppS80vcb+wDca7S4B\n7gVWADYif9v9/WFt9wXOAF5qtH0UWAfYD3hvRGycUnqsaTyQv5HeHLgMeBbYkTzr8prGcwFuIc/W\nHAM8RF7uNeQXTW/V2sBvgLvJ33wv2egXYP/G7/tL4EryF1pvBQ4FdmiM8YVG23OAvwC7AD8Cbh02\n7pnD/nnU0p2I+Dj5fXu+8R79CZgO/D9gp4jYLKX07LCntPNetPIOYGnGXv7WzWtdSX7/PwacMnQx\nIt4KvJmcEM8fa2Appecj4nZg80a8/XViv5IkDZNS8uHDh49J/QB+RuOb2Taftwn5w9qDwGuGXV+E\n/AF+HvCppuc82Lj+Y2CJYddfQ/6w/AwwZdj1N5JnSJ4C1i0YwyrD/nkd4K/kD+4rNbXbmpyEXNx0\n/erG73AjsOyw60uSk5WXgRWanjMf+PkY78nqjfvzgC+M0ea1QBRc/2jjuYc3Xd+n0d/eY/R3dOP+\nlsOu/R05kZoJrNPU/uuN1zm92/dinNj4XGNMe45xv5P3fSh2FgE+2/jnjYfdP73xvNXICch84HNj\nvP43Gs/fqur//nz48DGYD5czSVKeEQB4bNxWo+1H/kb5uJTSn4cuppTmA4c17hVugAUOTsO+AW48\n/z+BZYE3DGt3IDAF+HxK6a7mTlJKTzS1XRQ4JKX0ZFO7q8mJzXsjYunmboAjUkqzhrWfTZ5ZWYQ8\n49GuPwKfL7qRUno0pVS0Ufrb5G/jt+/g9Zp9mDzjc2pK6d6me58FngM+XLBsqKz3Ys3Gz/FiqpvX\nOoecJOwPEBFLAR8CfppGzjSNZajNmuO2kqQxuJxJkjr35sbPq5tvpJTujYjHgDUiYpmU0nPDbs9K\nKT1Y0N+jjZ9/M+zaxo2fP53AeDZp/JweEW8vuL8COSF5PXlp0nA3TXA8E3Vbalr6NSQiFgUOAD4I\nvImcOA3/UmvVDl6v2Xh/NjMj4hZgC2Bd4I6mJmW8F69p/Gy14buj10opPRER/wXsERH/TN5/MY28\nX2IiniZvWF9hgu0laQSTCEmCP5A/TLb74XXZYc8fq9/XAsuRv/keMrO4OUN7J4YfBDa00fjxCYzn\n1Y2f/zpOm0T+sDny4si9AeONZ6KeHOfe98h7Iu4n73N4krwMC+BfgCU6eL1mE/mzgQXv7ytKei+G\nZlpaVZbq5rXOBHYC9iIvBXuSXLlpIoaStrqeryGp5kwiJClvfn0nsA15mchEDS1DWYm8Xr3Zyk3t\nOjGUcKwK3DPB8bwqLdiYXJXCD6eNzb+7AleQK2HNH3YvyJueyzD8z6Zos3wZfzbjearxc/ke9Q95\nU/4TwJHkfRBfHP5+trA8+c/oz60aSlIR90RIUk4cXgbeFxHrjtewqWzr0JKg6QXt1iJ/sHtwjG+b\nJ+r6xs9RpWXHaTuq1GnJ5tPZ7ATkqk0APy74wLsxeWNxs3nkb/Tbec1bGs+Z3nwjIpYFNiRvvB63\nGlcXhsq6rtaj/of23pxNTjDnkc9+mKihWbdR5WclaSJMIiRNeimlh8llS5cA/qvxbfkoEfFuRu5N\nOJv8QfXIiPjbYe0WAb7SuPetLod3GvkD4lER8caCMQ1fgvU18lKYkyJinYK2i0XE5l2OB/J6+td2\n+NyHGj+nD78YESuQxz/W60GuuDRR55MTw4MaCd1wxwGvAs4ba99GCa4l//m/rUf9DzkZ2A3YIaX0\nUBvPezu56tf1rRpKUhGXM0kSkFI6PiKmkMuF3hgRvwZ+Sz5jYEXyt/vrADcMe851EXECcDjwPxEx\nA3iBPGuwHvmD5Je7HNfvI+JAcjJxS0T8J7kE6KvJH1BnkZdhkVK6u3FOxFnAnRHxU/ISqMXIH8C3\nIJ+V8KY2hlC0pv8q4IMRcQlwM/nD+jUppWsn0N+NwK/IJy7/iryUbEXye3YXeXlOs+uAF4FDGsna\n0H6LU5o2rL8ipfRwRBxCTkxujojvkZfubAVsCvyOfL5HO8bd31Aw5ufJZ0B0YkKvlfJp3Ze01XHE\nNGAD4BfJMyIkdcgkQpIaUkrHRcT3yaVStwY+Qj4Z+GnyIWfHk8tvDn/OpyLiZuCTLCgrej+5jOhX\n08iD5l55Wpvj+lZE3EHeML0V+eC1p4DbaZrpSCldEBG3kkvMbg28i5zYPEE+cO2iNsdTdO+fyUua\ntiF/+F8EOJacNA09p7DPlNL8iHgveTZgR+Ag8qbxbwJfJC8vSk3PmRkRu5MTvH3Ih7gBnMfIDevN\nr3VaRNxLft92B5YiVz76d+D4MZaZtftejPXaL0XEhcDHImKNMapxdfJa7cTOWH8O7ycvDTu74J4k\nTUgUl+qWJEndiIgNyTM1x6SUCs/MqEJEXAWsD6zWw+VckhZy7omQJKkHUkq3AhcD/xQRRRvG+y4i\nNiLPUH3BBEJSN5yJkCSpRxqbuu8EjkopnViD8fyYfNjgemMstZOkCTGJkCRJktQWlzNJkiRJaotJ\nhCRJkqS2mERIkiRJaotJhCRJkqS2mERIkiRJaotJhCRJkqS2mERIkiRJaotJhCRJkqS2mERIkiRJ\naotJhCRJkqS2mERIkiRJaotJhCRJkqS2mERIkiRJaotJhCRJkqS2/C81tYz6828BTwAAAABJRU5E\nrkJggg==\n", "text/plain": [ "<matplotlib.figure.Figure at 0x10c6440f0>" ] }, "metadata": { "image/png": { "height": 272, "width": 392 } }, "output_type": "display_data" } ], "source": [ "c = c_log # Drug concentration(s) in nanomolar (nM)\n", "EC_50 = 20 # 50% effective concentration in nanomolar (nM)\n", "F = 1 # Efficacy (unitless)\n", "n_H = 1 # Hill coefficients (unitless)\n", "r = calc_drr(c, EC_50, F, n_H)\n", "plot_dose_response_relation(c, r, \"Agonist\", log_flag = True)" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "### Agonist Plus Competitive Antagonist" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "Compatitive antagonist, as the name sugest, competes with agonist molecules to sit in the same pocket. It makes the binding harder for agonist as well as to trigger the activation. Therefore, higher agonist concentration is required to reach both full and partial (like $EC_{50}$) activation. New $EC_{50}$ value, called $EC_{50}'$ ($EC_{50}$ prime) is calculated using following formula.\n", "\n", "$$EC_{50}' = EC_{50} * \\left(1 + \\frac{c_i}{K_i}\\right)$$\n", "\n", "It depends on inhibitor concentration ($c_i$) and dissociation constant of the inhibitor ($K_i$)." ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "Following is a new function to calculate drug response of agonist with competitive antagonist. It shows new $EC_{50}$ value (`EC_50_prime`) replacing agonist only $EC_{50}$ value (`EC_50`)." ] }, { "cell_type": "code", "execution_count": 12, "metadata": { "collapsed": false }, "outputs": [], "source": [ "# Calculate dose-response relation (DRR) for agonist plus competitive antagonist\n", "# - Agonist\n", "# c : Drug concentration(s) in nanomolar (nM)\n", "# EC_50 : 50% effective concentration in nanomolar (nM)\n", "# F : Efficacy (unitless)\n", "# n_H : Hill coefficients (unitless)\n", "# - Antagonist\n", "# K_i : Dissociation constant of inhibitor in nanomolar (nM)\n", "# c_i : Inhibitor concentration in nanomolar (nM)\n", "def calc_drr_agonist_cptv_antagonist(c, EC_50 = 20, F = 1, n_H = 1, K_i = 5, c_i = 25):\n", " EC_50_prime = EC_50 * (1 + (c_i / K_i))\n", " r = calc_drr(c, EC_50_prime, F, n_H)\n", " return r" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "Following result shows drug response of agonist with competitive antagonist to the linearly increased concentrations." ] }, { "cell_type": "code", "execution_count": 13, "metadata": { "collapsed": false }, "outputs": [ { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAxIAAAIcCAYAAABiuZgPAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAAWJQAAFiUBSVIk8AAAIABJREFUeJzs3Xd4lFX6//H3mZAECKGFFoIQ2lIUsIEoFsBVEFSKFRWk\nKa6uuhZ0xZ8QRNeGX1DXFcUGCnZWxIaKFNuioqKABaQpVVqQEgjk/P44zJDyTEjgSWYm+byu61yT\nPPVkuB1z5zznPsZai4iIiIiISHEEIt0BERERERGJPUokRERERESk2JRIiIiIiIhIsSmREBERERGR\nYlMiISIiIiIixaZEQkREREREik2JhIiIiIiIFJsSCRERERERKTYlEiIiIiIiUmxKJEREREREpNiU\nSIiIiIiISLEpkRARERERkWJTIiEiIiIiIsWmREJERERERIotZhMJY8wFxphHjTHzjDGZxpgcY8zk\nw7xWmjHmWWPMGmNMljFmhTFmnDGmut/9FhEREREpCypEugNH4P8BbYEdwO9Ay8O5iDGmCfAFUAt4\nE/gZ6ADcCHQzxnSy1m71pcciIiIiImVEzI5IAP8A/mKtrQZcC5jDvM4TuCTiemvtBdbaEdbavwLj\ncMnJvb70VkRERESkDDHW2kj34YgZY84AZgMvWmsHFOO8JsAyYIW1tmm+fVWAdQe+rWOt3e1Xf0VE\nREREYl0sj0j4ocuB1w/y77DW7gA+AyoDHUuzUyIiIiIi0a68JxItAAv8Emb/0gOvfymd7oiIiIiI\nxIbynkhUO/CaGWZ/cLuqN4mIiIiI5BLLVZuiijEm9iebiIiIiEjMsNYebrEhX5T3EYngiEO1MPuD\n27eVQl9ERERERGJGeR+R+BlXNjbcHIjmB17DzaEooCxUwRJ/GWMUF1KA4kK8KC7Ei+JC8jMmogMR\nIeV9RGL2gdez8+84UP61E7AL+F9pdkpEREREJNqVi0TCGFPBGNPiwLoRIdba5bjSr+nGmL/nO+1u\nIAmYrDUkRERERETyitkF6YwxvYDeB76tB3QDlgOfHNi2yVo7/MCxjYAVwEprbZN812mCWy+iDvAW\n8CNu3YjOwE9AJ2vt1iL0x4IebZKCNCQtXhQX4kVxIV4UF5Jf8NGmSE+2juVEYhQwspBDVgZXqz6Q\nSCzPvS3ftdJwIxDdgRTcitbTgLutteFKw+a/hhIJ8aT/AYgXxYV4UVyIF8WF5KdEooxRIiHh6H8A\n4kVxIV4UF+JFcSH5RUsiUS7mSIiIiIiIiL+USIiUsFGjRkW6CxKFFBfiRXEhXhQXEq30aJNP9GiT\niIiIiJQGPdokIiIiIiIxq7yvbB0x0bIioYjELo2AiohIJGlEQkREREREik0jEhGmvyiKSHFpRLPs\nysjIICMjI9LdkCijuJBopcnWPinuZOtck2RKrlMiUibp86Ps0noB4kVxIflpsrWIiIjkoTKf4kVx\nIdFKIxI+0YiEiJQWfX6IiJRvGpEQEREREZGYpURCRERERESKTYmEiIiIiIgUmxIJEREREREpNiUS\nIiIiUUJrBYgXxYVEK1Vt8omqNklJmzt3Ll26dCE9PZ3ly5dHujtRJT09ndWrVzNnzhxOP/30SHen\nxOnzo+zSegHiRXEh+alqk4iPpk+fTiAQIBAI0K1bt0h3J+plZmYyevRoRo8e7ds1f/rpJ2699VaO\nPfZYUlJSqFSpEg0bNuT888/nueeeY9++fb7dKz9jjFZ7ljJB6wWIF8WFRCuNSPhEIxKR1bdvX6ZP\nnw5AIBBg9erVpKamRrhX/vrqq6+48soradCgAR988MERXWvVqlU0btwYYwz79+8/omtZa7n99tsZ\nN24c+/fvxxhDfHw8SUlJbNu2LXRM8+bNefXVV2nXrt0R3c9L48aNWb16NbNnz9aIhIiIlHkakRDx\nyebNm3nnnXcAaNWqFTk5ObzwwgsR7pX/2rdvz5IlS444ifDb5ZdfztixY8nJyeGyyy7j66+/Jisr\ni82bN7Nt2zaeffZZ6tevz9KlS+ncuTPffPNNpLssIiIiPlAiITFv6tSpZGdn06lTJ+644w6stUya\nNCnS3Ypqfv0l+/HHH+fll1/GGMNDDz3Eiy++yHHHHRfan5yczJVXXsmCBQto1qwZmZmZXHLJJeza\ntcuX+4uIiEjkKJGQmDdp0iSMMVx55ZX06dOHKlWq8NNPP/H1118f8tzPPvuMnj17kpKSQpUqVTj2\n2GN55JFHsNYycOBAAoEAd999t+e5f/75JxkZGRx77LEkJyeTnJxMu3btyMjIYPv27Z7njB49mkAg\nwODBg0N9P+mkk6hatSrVqlWja9eufPTRR57nzp07l0AgQJMmTQrss9by/PPP07VrV2rVqkVCQgJ1\n6tThmGOOYciQIcycOTN0bOfOnWnSpElo8l5wbkmwhft588vKymL06NEYYzj33HO5+eabwx5bt25d\nXnzxRYwxLF++nCeffDLP/lWrVhEIBIiLiwNg0aJFXHrppaSmplKpUiVatWrFPffcQ3Z2dpH6BjBk\nyBACgQAXX3xxoceNGjWKQCDAqaeeWuRri4iICO4XELUjb4B1b2fRFPd48bZ48WJrjLGVK1e2mZmZ\n1lprBw0aZAOBgP373/9e6LmTJk2ycXFxNhAI2EAgYGvWrGkTEhJsIBCwffv2tQMHDrSBQMCOHj26\nwLlLly61jRo1ssYYGwgEbJUqVWyVKlVsIBCwxhjbqFEju2zZsgLnZWRk2EAgYAcNGmSHDh1qjTE2\nPj7eVq9ePXRuXFycnTZtWoFz58yZY40xtnHjxgX2XXbZZaG+BAIBW6NGDVuxYsXQ9yeffHLo2Asu\nuMDWqVMndHxqamqe9vDDDx/yfbfW2ilTpoSuMX/+/CKdc/bZZ1tjjG3RokWe7StXrgxd64MPPrCV\nK1cO/RwVKlQIvTd9+vTxvG56eroNBAJ27ty5oW2ff/65NcbYihUr2i1btniel5OTEzr32WefLdLP\nEA30+SEiUr7l+v9AZH//jXQHykpTIhEZw4cPt8YY269fv9C24C/ctWrVstnZ2Z7n/fTTTzYxMdEG\nAgF73nnn2dWrV1trrc3KyrL//ve/bXx8vK1Ro4ZnIrF3717btm3bUMIwa9as0L6PP/7YpqenW2OM\nbdOmjd27d2+eczMyMqwxxtaoUcNWrlzZPvXUU3b37t3WWvfLdOfOna0xxqalpdn9+/fnOTdcIjFv\n3rxQQvLoo4/aHTt2hPatX7/eTp482Q4fPjzPObl/cT9cV111lTXG2Hr16hX5nP/85z+h+65bt86z\nPzVq1LD9+vUL/Zvs2rXLPvDAA6Gk6L333itwXa9Ewlprjz76aBsIBOxjjz3m2Z+PPvrIGmNscnJy\nnvct2unzo+waNWpUpLsgUUhxIfkpkShjrbQTCYjOVpr2799v69ev7/nLZfAXS6+/7Ftr7YABA6wx\nxrZr184z2XjooYdCv9jmTyReeOEFa4yxiYmJdsmSJQXOXbx4cWhk47nnnsuzL5hIBAIB+9JLLxU4\nd+3ataEE55NPPsmzL1wi8eCDD1pjjO3Ro4fnz+rFj0SiU6dONhAI2G7duhX5nE8//TR0348//tiz\nP927d/c897zzzrOBQMAOGTKkwL5wicS4ceOsMcYef/zxntfs16+fDQQCdvDgwUX+GaKBEomyS/+u\n4kVxIflFSyKhORISsz788EPWrVtH3bp1C6wdMWDAAKz1nnRtrWX69OkYY/jHP/5BhQoVChxz3XXX\nkZSU5Hnf119/HWMMvXr1olWrVgX2t27dmgsvvBBrLa+++qrnNRo2bMill15aYHtqaiodOnQA3DyB\noqhatSoAGzduDCa1pWLLli0ApKSkFPmcWrVqhb7evHmz5zG333675/bevXtjrS3y+wIuDhISEvju\nu+9YuHBhnn2ZmZm8+eabAAwaNKjI1xQpSVovQLwoLiRaKZGQmPXcc89hjOGKK64osBjZgAEDAHjv\nvfcK/MK6fPny0GToTp06eV67UqVKnHDCCZ77guVLu3TpErZvXbt2zXNsfieeeGLYc9PS0gDYunVr\n2GNyO/PMM0lISGDBggV07tyZKVOmsG7duiKdG43at2/vub247wtAzZo16dOnD+DiJbepU6eSlZVF\n8+bNNdFaokZGRkakuyBRSHEh0UqJhMSk7du389ZbbwHQv3//AvubNm1Kp06d2LdvH1OnTs2zb9Om\nTaGvC1u0rn79+p7b//jjD+DgL7ZeGjRoAIT/q3tycnLYcytWrAhQ5ApFzZo1Y8KECVSuXJlPP/2U\n/v37k5aWRpMmTbj22mv57rvvinSd4qpZsyYQ/mf0kvu9D56fX7iRoOK+L0FDhw7FWsvUqVPzrK79\n7LPPYowJVdASERGR4lEiEaMiPxvCu5WWl19+maysLKy1tGvXrkAJ00AgwGeffRb28SY/ZGVllch1\nD8fAgQNZsWIF48ePp3fv3tSqVYtVq1YxYcIETjjhBO6//37f79mqVSustQUeGSrM999/H/q6devW\nvvfJy5lnnkmTJk3YvHlzKPlcvHgxCxYsIC4uLjR6JSIiIsWjREJi0uTJkwG3RPyh2rfffsvixYtD\n5+Z+Tr+wR4DC7atduzYAq1evDnvu77//DhRv/sCRql27Ntdffz3Tpk1j48aNfPnll/Tt2xdrLXfd\ndVex5hYURfDRro0bNzJ//vwinROck9CsWTPq1avna38KM3jwYKy1ocebnnnmGQC6d+9eqv0QEREp\nS5RISMxZtmwZn3/+OcYYFi5cyNatW8O2c889FyDPqESTJk1CE5Q//fRTz3tkZWWxYMECz33HH388\n1lpmz54dto8ff/xx6NhIOeGEE3j11Vdp0KABOTk5eX7WQODI/9Pv27dvKCn717/+dcjjv/zySz76\n6COMMVxzzTVHfP/iGDRoEHFxccycOZPVq1czZcoUPdYkIiJyhJRISMwJJgXt2rXjmGOOoWrVqmHb\nRRddhLWWKVOmhCoaBSsuWWt55JFH2L9/f4F7PP744+zYscPz/hdeeCHgJnJ7PdazePHiUGWnSy65\nxK8fO6zC5gwEAgHi4+MB2LNnT2h7MJECV73ocFSsWJGRI0direXtt9/m4YcfDnvsunXruOKKK7DW\n0rhxY66++urDuufhSk1NpUePHuzfv5/LL7+cP/74g9q1a3PeeeeVaj9EDkWTasWL4kKilRIJiTkv\nvvgixhj69u17yGPPO+884uPjWb9+PTNnzgxtv+OOO0hISOCHH36gb9++oceU9uzZw+OPP84dd9xB\njRo1PK95ySWX0LZtW6y19OrVi1mzZoX2zZo1i549e5Kdnc0xxxzDZZdddoQ/7aGNGDGCiy66iOnT\np+epaLRx40ZuuOEGVqxYgTGGs846K7SvWrVqocnk+asZFcff//73ULI0fPhwLr/8cr799tvQ/j//\n/JPnnnuO9u3bs2zZMpKTk3nllVfCTqguScFJ15999hnGGPr3709cXFyp90OkMKNHj450FyQKKS4k\nWimRkJgye/ZsVq1aBcAFF1xwyOOrVatG165dC0y6btmyJRMmTMAYw9tvv016ejopKSlUrVqVG264\ngV69eoX+Wp2YmJjnmvHx8bzxxhukp6fz22+/cdZZZ1GlShWqVKnCWWedxW+//UZ6ejrTpk0LjQYU\nV3HWg9i3bx9vvPEGffr0ISUlherVq1OtWjXq1avHv//9b4wx3HvvvQUmNw8dOhSAm2++meTkZBo3\nbkzjxo159NFHi9XXqVOnctNNN1GhQgVefvllTjjhBCpWrEjNmjWpVq0aQ4YMYd26dTRv3px58+aF\nLatb0nr27JmnEpfWjpBopPUCxIviQqKVEgmJKZMnT8YYQ4sWLTwXg/NywQUXYIxhxowZofUjwFU6\nmjdvHt27d6d69ers3buX1q1bM27cOF577bXQIz/Vq1cvcM2mTZuycOFCRo4cSZs2bUITu9u0acPI\nkSNZuHAhTZs29exP8NjChNvvde7NN9/MY489Ru/evWnRogUAe/fupWHDhvTr14958+Z5LvI2atQo\nHnjgAdq1awe4yeOrV69m27ZthfbNq09jx47l+++/56abbqJt27YkJSWxe/du0tLS6NmzJ08//TRL\nliwJ3au4P3fu/YW9N4UJBAKhOTPt27cvtapRIsWhR1jEi+JCopUpzZVwyzJjjIWi/yU5+EuP3v/o\n1ahRI37//Xdmz57N6aefHunuiA9atGjBsmXLmDBhAldddVWku3PY9PkhIlK+5fr/QOF/RSthGpEQ\n8fDSSy/x22+/UbVqVU466aRId0d8MGvWLJYuXUpSUhL9+vWLdHdERERiXoVId0AkUu677z6Sk5Pp\n3bs3aWlpGGPYtm0bkyZNYsSIERhjuO666wrMkZDYs2nTJoYPH44xhiFDhlClSpVId0lERCTm6dEm\nn+jRptjTv39/pkyZAkBCQgJJSUls27YNa22oytFbb71FQkJChHsqh+vWW2/ltddeY/369WRnZ1On\nTh0WLVqUZ1HCWKTPDxGR8k2PNolE2HXXXce1115L27ZtqVatGjt27CAlJYWuXbvy7LPP8u677yqJ\niHGbN2/m999/p3LlynTv3p1Zs2bFfBIhZZsm1YoXxYVEK41I+EQjEiJSWvT5UXYZY/TvKgUoLiQ/\njUiIiIhIHlovQLwoLiRaaUTCJxqREJHSos8PEZHyTSMSIiIiIiISs5RIiIiIiIhIsSmREBERERGR\nYlMiISIiIiIixaZEQkREJEpovQDxoriQaKWqTT5R1SYRKS36/Ci7tF6AeFFcSH6q2iQiIiJ5aL0A\n8aK4kGilEQmfaERCREqLPj9ERMo3jUiIiIiIiEjMUiIh5crcuXMJBAI0adIk0l2RGDN69GgCgQCD\nBw+OdFdERESighIJiUmDBg0iEAgUaNWqVeO4447jtttuY82aNZHupm/27dtHnTp1CAQCVKhQocR/\ntkceeYTRo0ezevXqEr1PebVw4UJGjx7NpEmTIt0VERGRw6ZEQmJaQkIC9erVo169etStW5edO3fy\n/fffM3bsWNq0acPnn38e6S764t1332XTpk2hyh0vvvhiid5v/Pjx3H333axcubJE7xNLatWqRcuW\nLUlNTT3ia3333XdKJEREJOYpkZCYdsopp7B27VrWrl3LunXr2LFjB5MnT6ZGjRpkZmZy0UUXsWfP\nnkh384g9//zzGGNo3bo11lr9AhoB1113HUuWLOHee++NdFekDNN6AeJFcSHRSomElCkVK1bk8ssv\n55FHHsFay/r163nzzTcj3a0jsmXLFt59910Apk6dSnJyMj///DNfffVVhHsmh0vVliSc0aNHR7oL\nEoUUFxKtlEhImXTxxRcTCLjwXrBgQZHOSU9PJxAIMG/evLDHBAIB4uLiPOcOTJ8+nR49elCvXj0S\nEhJISUmhZcuWXHbZZbz66quH94Pgkoe9e/dyyimn0KZNGy688EKAQkclVq1aFeorwKJFi7j00ktJ\nTU2lUqVKtGrVinvuuYfs7Ow85wUnFK9atQprLZ07d84zB6Vr166hY3NycnjvvfcYNmwYJ554IvXq\n1SMxMZG0tDT69u3L7NmzD/mzTZo0iY4dO1KlShVSUlLo2rUr77zzDnDof4/ly5czbNgwmjZtSqVK\nlahZsyZnnHEGzzzzDDk5OZ7nBH+eyZMnk5WVRUZGBi1btqRy5crUrVuXfv36sWzZMs9zC5tsvWPH\nDsaMGcOJJ55I1apVQ+9D+/btue2221i8eHHo2NzXmDNnToF5PoXFn5R9Wi9AvCguJGpZa9V8aIB1\nb2fRFPd4yWvgwIHWGGO7dOkS9pi6devaQCBghw0bFto2Z84ca4yxjRs3LnB8enq6DQQCdu7cuWGv\naYyxgUDArlq1Ks/2ESNGhPYFAgFbrVo1W7ly5dD3qamph/FTOieeeKINBAJ24sSJ1lpr586da40x\nNiUlxe7du9fznJUrV4b688EHH4T6UqNGDVuhQgUbCASsMcb26dMnz3ljx461qampoWNSUlJsampq\nqF144YWhYxctWpTnZ65evbpNTk4OfW+Msffff3/Yn2vo0KGh8ytUqGBr1qxp4+LibCAQsI888kih\n/x4zZsywlSpVCp1fo0YNm5iYGLrvWWedZXft2lXgvM6dO9tAIGAfffRRe9xxx9lAIGArVapkk5KS\nQufWqlXLLl++vMC5GRkZNhAI2EGDBuXZnpmZaVu3bp3nZ0lJSQm9h4FAwN5xxx2h41NTU2316tWt\nMcYmJibmeX/r169vv/jii7DvWZA+P0REyrdc/x+I6O+/GpGQMikrK4s//vgDgOrVq5fovVatWsUD\nDzyAMYYRI0bwxx9/sG3bNnbu3MnGjRt5/fXX6dmz52Fd+8cff2TBggUkJiZy8cUXA3D66aeTnp7O\n1q1bmTFjxiGvcckll9CrVy9WrlzJli1b2L59O/fddx/GGKZPn877778fOvaWW25h7dq1NGjQAID/\n/ve/oTkoa9eu5bXXXgsdm5CQwJAhQ/jggw/IzMxk69atbN++nQ0bNjBmzBji4uK48847PR/Beu65\n53jmmWdC79mWLVvYvHkz69evZ8iQIQwfPjz075ff8uXL6devH3v27KFLly78/PPPbNmyhT///JMn\nn3ySihUrMmvWLG688UbP8621jBo1iszMTGbOnMnOnTvZsWMH8+bNo0GDBmzZsoU77rgj7Ln5jR8/\nnh9//JE6derwzjvvsGfPHjZt2kRWVha//PIL999/P02bNg0dv3btWsaPHw/kneOzdu1a1qxZQ8eO\nHT3vLSIiEnUincmUlUZpj0hAdLZScqgRicceeyz0F+Jp06aFtpfEiMSrr75qjTG2devWR/ATebvt\nttusMcZeeumlebaPGjXKGmPs+eef73le7hGJ7t27ex5z3nnn2UAgYIcMGVJgX1Hei0MZM2aMNcbY\nwYMHF9jXuHFjGwgE7DXXXON5bs+ePUP9z9+HwYMHW2OMbd68ud29e3eBc5966ilrjLFxcXH2119/\nzbOvc+fO1hhjk5KSPEcd3njjDWuMsZUqVbLZ2dl59mVkZFhjTIERiR49ethAIGAffPBB7zfCw/PP\nP3/IEbXCHPHnh4iIxLRc/x+I6O+/GpGQMmXVqlWMHTuW22+/HXDP2Z933nkles+qVasCkJmZye7d\nu327bk5ODlOmTMEYQ//+/fPsGzBgAADvv/8+mzZtKvQ6wfciv969e2OtZdGiRf50OJ9zzz0XgM8+\n+yzP9m+++SZUVnb48OGe54brM8C0adMwxnDzzTdTsWLFAvuHDh1KWloa1lpef/31AvuNMVx44YU0\nbty4wL7zzz8fYwx79uwJO1civ+C//7p164p0vIiISFmhREJiWv7Jqo0bN+a2224jKyuLtLQ03nzz\nTSpUqFCifTjppJOoWbMma9eu5eSTT2bixIm+rL/w4YcfsnbtWurWrUv37t3z7GvSpAmnnnoq+/bt\nY8qUKYVep3379p7b09LSANi6deth9zErK4tx48bRpUsX6tatS0JCQujf4vjjjwfcozy5ffvttwDU\nq1cv7ArjHTt2JD4+vsD25cuXk5mZCbiJ016MMXTu3BlrLd98843nMeHekwoVKlCnTh2g6O9Ljx49\nsNbyyCOPMGDAAN5//3127NhRpHNFRERimRIJiWm5F6RLTU2lWbNmnH322Tz00EMsWrSINm3alHgf\nqlevzgsvvEDNmjX54YcfGDZsGE2aNKF+/foMHDjwsKvwBNeO6NevX6gCVW5XXnkl1lomT55c6HWS\nkpI8twf/mp+/clNRrV+/nnbt2nHLLbcwb948Nm3aRMWKFalTpw716tWjdu3aAOzcuTPPecERlMIW\ndouPjyclJaXA9tzzJoKJkJfgHI9w8yySk5PDnlvc96V///4MGzYMgClTptCjRw+qV6/O8ccfz6hR\no1i/fn2RriMCWi9AvCkuJFopkYhVkZ8N4d1KWe7JqmvWrOGXX37h/fff5+abb6ZatWql1o9zzjmH\nFStW8NRTT3HJJZeQlpbGhg0bmDx5Mp07d+aaa64p1vW2b9/O9OnTARg3blyBEqGBQICrrroKcKsk\nl9TjSYW58cYbWbp0KU2bNmXatGmhidzr169n7dq1fPHFFyV6/6ysrBK9fnE88cQTLFq0iJEjR9Kl\nSxcqVqzIwoULGTNmDM2bN2fWrFmR7qLECK0XIF4UFxKtlEiIHBB8BCrcL6jbt28v9Pzk5GSGDBnC\nSy+9xG+//cbixYu5+uqrAZg4cSLvvfdekfvyyiuvhPphjCm0QeFrSpSE7Oxs3nrrLYwxTJ06lV69\nehVI3DZs2OB5bq1atYDC5xRkZ2ezefPmAtuDoxyA51oeQb///nuB40taq1atGDVqFLNmzWLbtm3M\nmDGDtm3bsnPnTq688kr2799fan2R2KX1AsSL4kKilRIJkQOCZWKDv4TmV9yVpFu2bMmECRNC5Tzn\nzp1b5HMnTZqEMYZ//vOfbN26NWx76aWXsNYyZcqUsIuwHY7go1Q2zCjTpk2b2LNnDwDHHnus5zEf\nffSR5/bjjjsOcI9GrVixwvOY+fPnez5a1KRJk9C/U7gF76y1zJkzB2NMaJ5GaatQoQI9evQILUS4\nbt06li5dGtp/qPdXyi89wiJeFBeydy/8/jt8/TW8/Xake3OQEgmRA9q0aYO1NvRIUX7333+/5/ZD\nPUtfqVIlgNAv3ofy66+/8vnnnwNuDYiqVauGbeeffz5JSUls2LCBmTNnFun6RRGsRLRt2zbP/cnJ\nyaHRkB9++KHA/nXr1vHYY495nnvcccfRqFEjAMaOHet5zAMPPBC2b3379g1NbvYaPZo4cSJr1qzB\nGMNFF10U9jp+KezfP3dVqdz//od6f0VEpOyzFrZuhSVL4OOPYepUePhhGD4c+veHv/4VjjkGatWC\nxEQ46iho3x5KuBhlsSiREDkguODbO++8w4MPPsiuXbsAWLlyJZdeemmo2lB+TzzxBN27d+ell17K\nM7E2MzOTf/3rX8yZMweAbt26FakfwceUmjRpQtu2bQs9tmLFipxzzjl5zvPD0UcfjbWWl156yTMB\nqlKlCh1SNIYWAAAgAElEQVQ7dsRay+DBg1m4cCHg/sI+a9assBWVwD2qddddd2GtZcKECYwcOZI/\n//wTcCMdV199NR9++CGVK1f2PH/EiBEkJSWxdu1aevTowS+//ALA3r17mThxIjfeeCPGGIYOHepZ\n4tVvf/3rX7nxxhv55JNP8iQ2ixcvZuDAgQDUr18/z8T/o48+GoAlS5bw5ZdflngfRUSk9OzfD+vW\nwTffwDvvwNNPw913w7XXQp8+cPLJkJ4OlSpBzZpw9NFw5plw+eVw660wdiy8+CLMmgWLF4PHk77R\nI9ILWZSVRmkvSFfOHWpBunAKW5DOWmsvuOACGwgEQgua1ahRI7SA2Ycffui5IN348eOtMSbUqlSp\nEjovePzf/va3IvcxuBjcbbfdVqTjX3755dAiatu2bbPW5l2Q7nDei48//jjU/8TERHvUUUfZ9PT0\nPAvjzZ8/3yYlJYXerypVqtjKlStbY4ytXbu2feuttwrtw5AhQ0LnVqhQwdasWdMGAgEbCATsY489\nZhs1amQDgYD93//+V+DcGTNm2MqVK4fOr1Gjhk1ISAjd7+yzz7a7du0qcF7nzp1tIBCwkyZNCvu+\nhFuML9yCdMcee2yemKlZs6atVKlSqC9VqlSxs2fPLnCfM844I3ReSkqKTU9Pt+np6Xb+/Plh+xak\nzw8RkdK3b5+1a9ZY+9VX1r71lrUTJlg7apS1V11l7bnnWnv88damplobCJRKdZuoWJCuZAvsi5Sg\n3JON/Trv5ZdfZuzYsUyePJkVK1aQkJDARRddxMiRI0N/Rc5/7uWXX05ycjIfffQR33//PevWrWPH\njh3Ur1+fDh06MHToUHr06FGkvs2dO5fVq1djjKFv375FOqdnz54kJiayd+9eXnnlldAEb6++5hfu\nvejSpQtvvvkm48eP57vvvmPt2rVYa/Os+9ChQwe++OILMjIymDt3Ljt37iQ1NZVzzjmHESNGsG/f\nvkL78PTTT3PaaafxxBNPsHjx4tB9b7nlFs455xxGjhwJHJy7ktu5557LDz/8wIMPPhhabyMpKYk2\nbdpw5ZVXMmjQoMOKjdzvS7jt+fc988wzvPvuu8yZM4cVK1awfv16jDG0atWKs846i5tuuin0KFdu\n//3vfxk5ciTvvfcea9asYevWrRhjoqoalYhIeWAtbNkCa9bA2rUHX/O39evBx+mIxWIM1K4N9eq5\n9sEHkelHfsZaTfbzgzHGDUsU8f0M/jKi91+koOXLl9OsWTMSExP5888/S3xRwVijz4+yKyMjQxNr\npQDFxeHLyjqYHIRra9e6ycyRkJQEqamuBZOE3F8HW+3akPt/hbn+P3D4fzXzgRIJnyiREPHPsGHD\nmDhxImeffTbvv/9+pLsTdfT5UXYZY/TvKgUoLrxt3+4qGeVua9bkfY3U/IKaNQ8mCOFavXpQyPqo\nhYqWREJ/5hORiBg8eDA9e/akS5cu1KxZE3AT2x988EEmTpyIMYZbbrklwr0UKV1aL0C8lLe4sBYy\nM+G331wykPs1mCD8/jscqNNRqlJSXBKQluZe69fP+xpsiYml37dI0IiETzQiIVI8Rx11FGvWrAEg\nKSmJQCAQqt4UrOykoXxv+vwQkVi2Y4dLCgprO3eWbp+qVHHJQVqaSwrq18/7dTBRiJYEIVpGJJRI\n+ESJhEjxvPLKK0yfPp1vv/2WDRs2sGvXLmrXrs0pp5zCtddeyxlnnBHpLkYtfX6ISLTat8/NOVi9\nOm/77beDr1u3ll5/AoGDIwi5E4Xc36elHf4jRpGiRKKMUSIhIqVFnx8iEil//gmrVrmkIP/r6tXu\n0aPSqmyUmAgNGriWllbw67Q0qFs37yTlsiJaEoky+NaKiIiISHFZ6yYnr1zpkoNVq/J+vWoVbNtW\nOn2pWNGt5NygQd7XtLSD36ekuLKoEjlKJERERETKAWvhjz9cchBswWQh+HVpzE2Ijz+YEIRrShJi\ngxIJERGRKKH1AsRLceJi61ZYseJgW7ny4OvKlbBrVwl29IA6daBhQ5cQNGrkXoPfN2zoHjcKBEq+\nH1LyNEfCJ5ojISKlRZ8fZZfWCxAvueMiK8slBMuXu5Y7aVixwpVNLUnx8S4ZaNjQJQm5v27UyD1y\nVKlSyfZBNEdCRERE8ilv6wVIQdbChg3w668Hk4W2bUdx2mnu67VrS/b+SUkuIUhPP5gc5G716mk0\nQQ7SiIRPNCIhIqVFnx8isS07240q/Ppr3hZMHEry8aMqVVyS0LjxwWQhPf3g15qbEBs0IiEiIiJS\nRu3e7ZKCZcvytl9/dWVS9+8vmftWrHgwUQgmC7lfa9ZUoiD+USIRYUb/NYuIiMSkXbtcYrB0qUsS\ngq/LlsHvv5fMPY1xk5abNHGJQfA12DSRWUqTEgkRERGRMPbscSMLv/ziEoXg69KlbvG1kpCcDE2b\nuiShaVOXIAS/b9gQEhJK5r4ixaVEIkL0bLOIiEh0yMlxjxv98kvBtmpVyazUnJrqkgOvpnkKEiuU\nSIiUMNWFFy+KC/GiuChZ27bBzz8fbD/9dHCEYc8ef+9ljJu83KzZwda0qXtt0gQqVy76tRQXEq1U\ntcknxa3aJOWH6sKLF8WFeFFcHLn9+90owk8/uRZMGH76CTZu9PdegcDBZKF587yvjRtDYqI/91Fc\nSH6q2iRSTqguvHhRXIgXxUXR7d7tRhN+/PFgC44w+D26cNRRLkFo3hz+8peDX/uZLBRGcSHRSiMS\nPtGIhIiIiP8yM12SsGSJa8GkYeVKt3ibX1JSXJIQbC1aHBxdKM5jSCKlQSMSIiIiIgds2eIShcWL\nXQsmD36u5Bwf7xKDFi0KtpQU/+4jUl4okRAREZFSs22bSxQWLXKvweRh/Xr/7lGrFrRsmbe1aOEW\nZaug33xEfKP/nERERMR3O3e6JGHRooNt8WL/1l4wxiUGrVq5RKFVq4Nfa3RBpHQokRAREZHDtm+f\nm+C8aBH88INrixa5Rdz8mMNQoYKbq9C6tWvBhOEvf9HcBZFIUyIhUsJU/1u8KC7ESzTHhbWwYQN8\n/71LFr7/3rUff/SnSlJ8vHv86OijXWvVyr02a+b2lWfRHBdSvqlqk09UtUnCUf1v8aK4EC/REhd7\n97oEYeFC177/3r3+8ceRX7tChbwJQ7A1a6b5C+FES1xI9FDVJpFyQvW/xYviQrxEIi42bXJJwnff\nHXz98Uf3yNKRMMYlB8ccc7AdfbR7TCkhwZ++lxf6vJBopREJn2hEQkREopm1bt7Ct9+6ZCHY/Jj8\nnJrqEoU2bVw75hg3n0FzGERKhkYkREREpERkZ7tRhW+/Pdi++w62bz+y61aqdDBhaNvWtTZtXLlV\nESl/lEiIiIjEsD17XFnVBQvgm29c+/57yMo6susedRS0a+da27butVkziIvzp98iEvuUSIiIiMSI\nPXtcxaQFC1z7+mtXajU7+/CvGR/v5i4ce6xrwcShZk3/+i0iZZMSCRERkSiUne2ShK++cgnDggUu\niTiSpKFaNZcsHHfcwdeWLTX5WUQOjxIJkRKm+t/iRXEhueXkuEXd7rgjg6OOyuCrr9ychiN5PKle\nPTj+eJcsBFvjxq6aksQWfV5ItFLVJp+oapOEo/rf4kVxUb6tXQtffnmwffVVcCK0AYofFw0buqQh\nd0tN9bvXEin6vJD8VLVJpJxQ/W/xorgoP3bscI8mzZ/v2pdfFlZy9dBx0bAhnHACnHiiez3+eKhd\n29cuS5TR54VEK41I+EQjEiIikpMDP/0E//ufa/Pnu3kOOTmHd73UVGjf3rVg8qCkQUQ0IiEiIhLj\ntm1zycIXX7g2fz5kZh7etWrUcAlDhw4uYWjfHurX97e/IiJ+UiIhIiJSBNbC0qXw2Wfw+eeuLVly\neNdKTHSPJHXocLA1baqJ0CISW5RIiIiIeMjKcnMbcicOmzYd3rVatICTToKOHV3S0LatW79BRCSW\nKZEQEREBNm92ycKnn7r29dewd2/xr1OjhksYOnZ0yUOHDm6biEhZE4h0B0TKOtX+Fi+Ki8hbvRqm\nTIFhw9zKzrVqwfnnw4MPuoSiKEmEMdCmDVx1FTz7LPz4oxu1ePddGDkSunUrXhKhuBAviguJVqra\n5BNVbZJwVP9bvCguSpe1bsG3efNc++QTWLWq+NdJTnYjDZ06wSmnuBGHqlX966fiQrwoLiQ/VW0S\nKSdU/1u8KC5KlrVuIvScOTB3rkseNmwo/nXS013SEGxHHw1xcX739iDFhXhRXEi00oiETzQiISIS\nOTk5sHixSxzmzHGJQ3EnRhsD7drBqae61qkTNGhQEr0VETkyGpEQERE5TNa6hd9mz3ZtzpziJw4J\nCW4i9Omnw2mnwcknQ7VqJdJdEZEySYmEiIjEhBUrYNYs12bPLv6jSklJbpQhmDh06AAVK5ZMX0VE\nygMlEiIiEpXWr3cJQzB5WLmyeOdXreoeUTrjDNeOP15rN4iI+EmJhIiIRIWdO93chg8/hI8+gh9+\nKN75Vau60YbOnV079tiSnRgtIlLeaR0JkRKm+t/iRXEB+/fDl1/Cvfe6X/xr1IAePWDcuKIlEUlJ\n0L07PPCAu87mzTBjBtxyC5xwQmwmEYoL8aK4kGilqk0+UdUmCUf1v8VLeY2L33+HDz6AmTPdqMOW\nLUU/NyHBrd1w5pnQtSu0b1/2HlUqr3EhhVNcSH6q2iRSTqj+t3gpL3Gxe7d7XGnmTNeWLCn6uYGA\nG1k480zXTjkFKlcuub5Gg/ISF1I8iguJVhqR8IlGJEREnGXL4L33XJszxyUTRdW0KZx1lmtdurjH\nnUREJC+NSIiISJmQleUShnffdcnDsmVFP7dGDTfacPbZ8Ne/QuPGJdZNERHxmRIJEREpttWrXeLw\nzjuuNGtRRx3i4uCkk6BbN9dOPDE2J0WLiIgSCRERKYL9++F//4O333bJQ3FKsx51lKuu1L27myRd\nvXrJ9VNEREqPEgkREfH055+uwtKMGS552LSpaOfFx7v1HM45x7VWrcBE9CleEREpCVpHQqSEqf63\neInWuPjtN3j8cffYUa1acOGFMGnSoZOIBg1g2DCYPt2VdP3oI7eeQ+vWSiKKI1rjQiJLcSHRSlWb\nfKKqTRKO6n+Ll2iJC2th0SKXALz5JixYULTzAgE4+WTo2dO1Nm2UMPghWuJCooviQvJT1SaRckL1\nv8VLJONi/374/HOXOLz5JixfXrTzqlVzjyqdd54bsUhJKdl+lkf6vBAviguJVhqR8IlGJEQkmu3d\nC7Nnw7RpLnnYuLFo5zVtCuef75KHU08teytJi4jEIo1IiIhIidq9G95/3yUPM2ZAZuahzzEGOnaE\nXr1cAtGypR5ZEhERb0okRETKkF273PoOr73mKi3t3HnocxIT3aJwvXu7kYd69Uq+nyIiEvuUSIiI\nxLidO13S8Prr7nXXrkOfU7WqSxp693bzHZKTS76fIiJStiiREBGJQbt3u5GHV15xi8QVZWXpWrVc\n4nDBBW5huISEku+niIiUXVpHQqSEqf63eDmcuNizx811uOIKqFPHrfHw2muFJxFpaXD99TBnDqxf\nDxMnuhWmlUREJ31eiBfFhUQrVW3yiao2STiq/y1eihoX+/e7JGDqVDdpetu2Q1/7qKNcknHhhW7i\ndEB/MooZ+rwQL4oLyU9Vm0TKCdX/Fi+FxYW1bmG4qVPh5Zdh3bpDX69hQ7joIpc8dOig5CFW6fNC\nvCguJFppRMInGpEQkSO1bBlMmeISiF9+OfTxqalw8cVwySVu5EFlWkVEygeNSIiICFu2uAnTL7wA\nX3xx6ONr1XKjDpde6haIi4sr+T6KiIh4USIhIlLK9uxxFZcmT3blWrOzCz++ShXo0wcuv9yt91BB\nn9wiIhIF9L8jEZFSEJz38Pzz8NJLbiSiMPHx0KMHXHYZnHsuVK5cKt0UEREpMiUSIiIlaMMGePFF\nl0AsWnTo4087zZV3vfBCqFmzxLsnIiJy2FTXQ6SEqf53+ZOdDf/9L5x/vlvH4dZbvZKIjNBXf/kL\njBkDy5fDvHlw9dVKIsorfV6IF8WFRCtVbfKJqjZJOKr/XX78/DM88wxMmgQbNx7qaMN111n693fl\nWlVxSUCfF+JNcSH5qWqTSDmh+t9l265dbnXpZ56BTz4p/Ni4ODfvYeBA+PbbUYwZUypdlBiizwvx\noriQaKURCZ9oREKkfFm4EJ580q37sH174ccefTQMGuSqLtWrVzr9ExGRsksjEiIiMWbXLrfmw5NP\nwvz5hR9btapLHAYNghNP1KNLIiJS9iiREBE5hMWLXfIweTJkZhZ+7GmnwdChruqSSraKiEhZpkRC\nRMRDdjZMmwb/+Y+rpFSYOnXcvIfBg6FFi1LpnoiISMQpkRARyWXtWjf68NRTsH594cf+9a8wbJgr\n85qQUDr9ExERiRZaR0KkhKn+d/SzFubOhYsvhkaN4O67wycRtWrB8OGwdCl8+KF7hOlwkgjFhXhR\nXIgXxYVEK1Vt8omqNkk4qv8dvbKyYOpUePRRV4WpMGecAddcA336QGLikd9bcSFeFBfiRXEh+alq\nk0g5ofrf0WfNGjf34amnYNOm8MdVqQIDBsDf/gbHHONvHxQX4kVxIV4UFxKtNCLhE41IiES/+fNh\n/Hh4/XXYty/8ca1awXXXQf/+royriIhINNGIhIhIKdi/H6ZPh4cfhs8/D39cIAC9esH110Pnzlr3\nQURE5FCUSIhImbRzJzz3nBuB+PXX8MdVr+7WfbjuOkhPL7XuiYiIxDwlEiJSpqxf7yZPT5gAW7eG\nP65lS7jhBjcHIimp9PonIiJSViiREJEyYelSGDsWnn8e9u4Nf9zZZ8PNN8NZZ7nHmUREROTw6H+j\nIiVM9b9L1tdfw0UXuRWln3rKO4mIj3crT3//PcycCd26RT6JUFyIF8WFeFFcSLRS1SafqGqThKP6\n3/6zFmbNgvvvd6/h1KzpSrdedx2kppZe/4pCcSFeFBfiRXEh+alqk0g5ofrf/rEWZsyAe+6Br74K\nf1x6OtxyCwwaFL3zHxQX4kVxIV4UFxKtNCLhE41IiJSc/fvhjTfg3nvd40nhtG0Lt98OF18MFfRn\nEhERKaM0IiEicgjZ2TB1Ktx3H/z8c/jjzjjDJRDdu2v9BxERkdKiREJEok52NrzwgnuEacWK8Med\nfz7ccQd07Fh6fRMRERFHiYSIRI19+w4mEMuXex9jjHt0acQI9yiTiIiIRIYSCRGJuH37YMoUGDMm\n/CrUcXFwxRVuBKJFi9Ltn4iIiBSkdSRESpjqf4e3fz+8+CK0auXWefBKIuLj4eqr3YJzzz9fdpII\nxYV4UVyIF8WFRCtVbfKJqjZJOKr/XZC1MH06/L//B4sXex8THw+DB7sRiEaNSrd/pUFxIV4UF+JF\ncSH5qWqTSDmh+t8HWQsffQR33hl+HYgKFVwCMWJE2UwgghQX4kVxIV4UFxKtNCLhE41IiBTuiy9c\ncjBnjvf+ChXcAnIjRrgF5URERMSbRiREpFz48Uf3eNL06d77jXGTqDMyoEmTUu2aiIiIHAFNthaR\nErFuHQwbBsccEz6J6NsXfvgBJk9WEiEiIhJrNCIhIr7avh0eegj+7/9g1y7vY84+260V0b596fZN\nRERE/OP7iIQxJmCMud4Y8z9jTKYxZl+ufccZY/5jjPmL3/cVkcjKzobHH4dmzVyS4JVEdOwIs2fD\nzJlKIkRERGKdr4mEMSYB+BAYDzQF/gRyTwJZAQwGLvfzviLRrKzX/7YW3nnHrTL997/DH38UPKZ5\nc3j9dfj8c+jcudS7GJXKelzI4VFciBfFhUQrX6s2GWPuBMYAGcA9wEjgLmttXK5jPgCqWms7+nbj\nKKCqTRJOWa7/vWgR3HwzfPih9/46ddwk6qFD3boQclBZjgs5fIoL8aK4kPyipWqT3482XQ58Zq29\n21qbA3hF/Qqgoc/3FYlaZbH+98aNcM010K6ddxKRlASjRsGyZfC3vymJ8FIW40KOnOJCvCguJFr5\nPSKxG/i3tXb4ge9HASPzjUjcB9xkra3o242jgEYkpDzYuxcefRTGjHGTqvMzxi0md889UK9e6fdP\nRESkPIiWEQm/qzZlAdUPcUxDYJvP9xWREvbBB3DDDfDzz977u3RxlZqOPbZ0+yUiIiKR4fejTd8B\nZx+YdF2AMaYa0A340uf7ikgJWbEC+vSBbt28k4hmzeDNN2HWLCURIiIi5YnficRTwFHAFGNM1dw7\njDHVgeeBGsAEn+8rIj7bvdtNlG7d2iUK+VWv7kYgFi+GXr3cY00iIiJSfvg6RwLAGPMsMBDIBrYC\ntYFvgaOBROBxa+31vt40CmiOhJQl06fDjTfCqlUF9xnjqjDdey/Url36fRMRESnvomWOhO8L0llr\nB+PWiliCSyIMcDywDBhSFpMIkcLEUv3vVavc6ELv3t5JxEknwZdfwlNPKYk4UrEUF1J6FBfiRXEh\n0cr3EYk8FzemEu5Rpkxr7c4Su1EU0IiEhBML9b+zs2H8ePcok9eK1HXqwAMPwIABEPD9zw/lUyzE\nhZQ+xYV4UVxIftEyIuF31aY8rLW7gd0leQ+RaBft9b8/+8ytCbFoUcF9cXFuteqMDDcnQvwT7XEh\nkaG4EC+KC4lWfq8jUQNIBX611u7JtX0Q0BvYCYy31pa5qk0akZBYs3Ur3HYbPP209/6TT4YJE6Bt\n29Ltl4iIiBQuWkYk/E4kngCuAOocGI3AGHM9MB43VwLcWhMnWmuX+HbjKKBEQmKFtfDGG26kYcOG\ngvtr1HCPMQ0ZoseYREREolG0JBJ+/5rQCZgVTCIOuBVYA5wOXHxg280+31dEimDtWujbFy66yDuJ\nGDAAfvoJrrpKSYSIiIgUzu85EmnArOA3xpjWuHUlbrfWfnpg20W4pEJESklOjnuEafhw2L694P4W\nLeCJJ9zq1CIiIiJF4fffHCvhHl0K6gRY4KNc237FJRwiUgqWLYMzz4RhwwomEfHxMGoULFyoJEJE\nRESKx+9EYg3QMtf33YDtwMJc22qgSk5SjkSq/ndODjzyiJssPWdOwf0nnQTffOMqMiUmlnbvRHXh\nxYviQrwoLiRa+T3Z+ingSuAW3MjEf4A3rLX9ch3zAVDbWnucbzeOAppsLeFEov73r7/C4MEwb17B\nfUlJ8K9/wXXXufKuEhmqCy9eFBfiRXEh+ZXVydb3ATuAR4CncMlERnCnMaYqcCrwuc/3FYlapVn/\nOycH/vMfNwrhlUR06+bWi7jhBiURkaa68OJFcSFeFBcSrXxf2doYUw+48MC3b1lrV+fadzzQH5hq\nrf3K1xtHmEYkJNJWrnQlWz/+uOC+atXcY04DBoCJ6N8uRERE5EhFy4iE74lEeaVEQiLFWnj2WfjH\nP2DHjoL7u3eHiROhQYPS75uIiIj4L1oSCb/Lv4pIKdq0ya358OabBfclJ8O4cW6uhEYhRERExG++\nJxLGmHigF9ABV6HJ60lsa60d4ve9RcqTmTNh4EBYv77gvjPPhGeegUaNSr1bIiIiUk74XbWpPvAh\nrgRsYX8DtdbaMjXVU482SWnZvRv++U949NGC+ypXhrFj4ZprNAohIiJSVkXLo01+V216GGgFvAx0\nBZoDjT1aE5/vKxK1/Kz/vXAhtG/vnUS0bw/ffQd/+5uSiFiguvDiRXEhXhQXEq38HpHYDPxgre3s\n20VjhEYkJBw/6n9b66ou3X477N2bd18gAHfeCXfd5VaqltiguvDiRXEhXhQXkl+0jEj4PUeiIjDf\n52uKxLQjrf+9ebObC/H22wX3NW4ML74Ip5xyRLeQCFBdePGiuBAviguJVn6PSMwHVlhrL/XtojFC\nIxJSEj75BPr1gzVrCu4bONCNUlStWurdEhERkQiKlhEJv+dIPAScb4xp7fN1RcqV/fthzBjo3Llg\nElGtGrz6Kjz3nJIIERERiRy/H23aCMwAPjfGPAIsALZ5HWitnefzvUXKhHXr4IorvFeoPukkePll\nSE8v9W6JiIiI5OH3o005gOVg6dewF1f5V5GCPv7YPcq0cWPBfbfdBvfcownVIiIi5V20PNrk94jE\n3RSSPIiIt5wcePBBV30pJyfvvtq1YfJk6N49Mn0TERER8eLrHAlrbYa1dnRRmp/3FYlmh6r/vW0b\n9OkDd9xRMIno0sWtDaEkouxRXXjxorgQL4oLiVa+PtpUnunRJgmnsPrfCxfCBRfAr7/mPwdGjnRr\nQ8SVqYcAJUh14cWL4kK8KC4kv7L6aFOIMeZU4DigOpAJfGOt/bSk7icSrcLV/540Ca65BrKy8m6v\nWROmTNEoRFmnuvDiRXEhXhQXEq18H5EwxpwAvAC0CG7i4LyJn4EB1tqvfbpXGjAG6AakAOuAN4HR\n1lrPalEe11gJNAyze721tn4Rr6MRCSmSvXvhxhthwoSC+048EV5/HRo1Kv1+iYiISGwokyMSxphm\nwCygKvAp8DHul/tUoCtwKvChMaaDtXbpEd6rCfAFUAuXPPwMdABuBLoZYzpZa7cW4VIWV6J2HAer\nTQXtOJI+iuS3caN7lOlTj7G5a66B8eMhMbH0+yUiIiJSXH6Xf50EXAFcaq19zWP/hcDLwBRr7ZVH\neK+ZwF+B6621/8m1/WHgJmCCtfbaIlxnBWCttU2OsD8akZBCffMN9O4Nv/2Wd3vFivDkkzBgQGT6\nJSIiIrElWkYk/E4k1gBfWGsvLOSYN4CO1tq0I7hPE2AZsMJa2zTfviq4URCAOtba3Ye4lhIJKXEv\nvQSDBxecD9G4Mfz3v9CuXWT6JSIiIrEnWhIJX8u/4h4z+ukQx/x04Lgj0eXA6wf5d1hrdwCfAZWB\njkW8XqIx5nJjzB3GmBuMMZ2NMX6/N1IO7d8P//wnXHZZwSTizDPhq6+URIiIiEhs8vuX5T+A1oc4\npiWw6Qjv0wI3t+GXMPuD8y/+UsTr1QMmA/fg5kp8DCw1xpx+JJ2U8i0zE847Dx54IKPAvn/8A95/\nH96iZH0AACAASURBVFJSSr9fEh1UF168KC7Ei+JCopXfjzZNBi4DrrDWvuyx/wLgFY5wjoQx5klg\nKHCVtfZZj/33AHcAI6y1DxziWncBnwCLgT+BJsDfgWHAbuBka+0PReiTHm2SkBUr4NxzYckSyF24\nLCHBzYcYODCCnZOooLrw4kVxIV4UF5JfWX206W5gJzDFGPOJMeZuY8zfjDGjjTFzgVdxlZDu8fm+\nh81aO8ZaO8da+4e1Nstau+TAJO3/wz0elVGc6xljwrbOnTtjjAn7l4WMjAztLwP7hw7N4KSTgkkE\ngKv/nZSUwd69hpUro7v/2l86+/PXhY+2/ml/ZPafccYZUd0/7Y/M/jPOOCOq+6f9JbM/uN2rRYuS\nWEeiPe4xoeA6EpaDZVV/Bq601n55hPd4ELgFuNVaO85j/2PAtcC11tonD/MeTXGPSG221tYuwvEa\nkRBefRWuvLLgfIgOHWDaNEg77BIDIiIiIk60jEhU8PuC1tqvgFbGmFOA44FquJWtv7XWfubTbX7G\nJSfh5kA0P/Aabg5FUfxx4DXpCK4h5YS1cN99cOedBfddfDE8/zxUqlTq3RIREREpMb6PSJQGP8u/\nFnKPbsB7wBJr7TFFOF4jEuXU3r1uMbnnniu478474e67IaAaYCIiIuKTaBmRKLFfb4wx8caYtsaY\n0w68xvt1bWvtclzp13RjzN/z7b4bN4owOZhEGGMqGGNaHEhAcvexpTGmskff04F/4x7LesGvfkvZ\ns20bdO9eMImIj3ejEPfcoyRCREREyqaSmCORAtyPq95UMdeuLGAqcIe19kjLvwZHJT4D6gBvAT/i\n1o3ojFuropO1duuBYxsBK4CVuReeM8aMws21mAeswlVtagr0BBKBd4C+1tp9ReiPRiTKmTVrXBKx\naFHe7TVquPkQnTtHpFsiIiJSxpXJEQljTF1gPjAE2Iv7Bf3VA697D2z/34HjjsiBUYkTgeeBDsDN\nQGPcOhAnB5OI3KcQrMF50GxgBq7kaz/gJuB0XDnYAdba84uSREj58+OPcPLJBZOIpk3hiy/yJhHh\nqjRI+aa4EC+KC/GiuJBo5fc6Es8Ag4DxQIa1dnuufVWB0cCNwLPW2qG+3TgKaESi/PjiC7dGxJYt\nebd36gRvvgm18q3bblT/WzwoLsSL4kK8KC4kvzI5IgGcC3xirb05dxIBYK3dbq29Cfc40nk+31ek\nVMyYAWeeWTCJ6N0bPvywYBIBBdcLEAHFhXhTXIgXxYVEK79HJHYB46y1HkUwQ8f8C7jRWlumyqpq\nRKLse/ppGDYMcnLybh82DB5/HOLiItMvERERKV/K6ojET0DqIY5Jxa0DIRITrHXVl666qmASkZEB\nTzyhJEJERETKH78TiUeAS4wxbb12GmOOBS7GzaEQiXrWwvDhcNddebcHAvDkkzBqFETRSvUiIiIi\npcbvla1XAB8CXxpjJuOqNW0A6gJnAP1xi7ytNMacnvtEa+08n/sickT274drr4Wnnsq7vWJFeOkl\nNy9CREREpLzye45EDq7EavBvtLkv7rUtxFob0w+HaI5E2ZKdDQMHwtSpebdXqwZvvw2nnhqRbomI\niIhEzRwJv0ck7iZMoiASK/bsgUsugenT826vXRs++ACOPbZ418vIyFANcClAcSFeFBfiRXEh0cr3\nla3LK41IlA07d0KfPq6Ua25pafDRR9CyZfGvqfrf4kVxIV4UF+JFcSH5ldURCZGYlZkJPXvCZ5/l\n3d64Mcya5V4Ph+p/ixfFhXhRXIgXxYVEK7/nSMQBidbaXfm2dwV6AbuAp6y1K3y7aZTQiERs27YN\nzj4bvvoq7/ZWrdzoRFpaZPolIiIikl+0jEj4Xf51LLDFGFMtuMEYcymuktP1wO24ik5H+XxfkcMW\nLok47jiYO1dJhIiIiESJnBxYvjzSvQjxe0RiAbDRWntOrm0/AnWAG4F6wH3Av621N/l24yigEYnY\nFC6JOOUUeOcdqF49Mv0SERGRciwnB1asgMWLYcmSg68//gi7dx8shVrG5kgcBXwe/MYY0wRoAf+/\nvfuOk7K6/jj+ORRBelEsWEDFAooFKVaKHXuPvceYGGtM/NljjSbGFntHY8eCDQvYsKAoKFixIAgW\nVEroZe/vjzPjzgzPLjO7z079vl+v5zXOM0+57Bx358y991wuDiHcn9i3PbArUFaJhJSempKIbbeF\n556D1q0L0y4RERGpEFVV8O23niikbomEodjFnUi0AWanPN8GLwc7PGXfx8DAmO8rkhMlESIiIpI3\nIcCUKenJwoQJnjDMnVvo1tVZ3HMkvgdSa9vsCMwH3k/Z1wpYEvN9RbKW7yRCtb8liuJCoiguJIri\nooSEAD/84OUer7sOTjjBx0u3awdrrw2DB8NZZ8E998CYMXVLIjp0iL3ZdRX3HIkHgT2B3wELgKeA\nESGEvVKOeQboEkLYOLYbFwHNkSgNheiJUP1viaK4kCiKC4miuChSM2ZU9yykbr/8Es/1O3SAHj18\n6969+r87dcIaeV9Auc2RuBwv85pcE7gKuCz5opk1B7YDHov5viLLNXeurxOR7+FMqv8tURQXEkVx\nIVEUFwU2f75PdJ4wAcaPr04Ypk6N5/rt21cnCalJwyqrgBU0T1iu2Fe2NrNNgKMSTx8OIbyX8tpW\nwF+BG0MIL8d64wJTj0RxW7gQ9txz2RWrNSdCREREAFi6FL780pOFZMIwfjx89ZVPiq6vNm3SE4aN\nN/bHVVfNOWEolnUkYk8kKpUSieK1ZAkceCA8+WT6/q23huHDlUSIiIhUlOQ8hmTCkNw++QQWLKj/\n9VdcMT1ZSCYMa6wRWw9DsSQScQ9tSmNm7YFWIYQpDXkfkZpUVcExxyybRGyxhXoiREREyt7cuT6P\n4aOPqhOGjz6KZx5Dkyaw4YbVyUIyYejaFRo3rv/1S0DsiYSZtQL+DhwGrIyXf22SeK0vcCFwXgjh\ng7jvLZIqBDj5ZLj//vT9G27oPRFt20afJyIiIiUmuYDbRx+lb1995R8I6muddTxR2GST6sdu3WCF\nFep/7RIWayJhZm2BUUAPYBzwM7BRyiHj8cnWhwBKJKTBhABnnw0335y+v2tXePllWHnlwrRLRERE\n6mnmzOqeheQ2fnw86zGsvLInCalb9+7QqlX9r12G4u6ROBdPIo4OIQwxswuBC5IvhhDmmdlrwA4x\n31ckzRVXwFVXpe9bbTVPIjp3zm9bLrroItUAl2UoLiSK4kKiVGxcJCc/f/ihJwvJx8mT63/t5DyG\nzKRhlVXqf+0KEvc6El8CE0MIuyWeXwhcEEJonHLMjcABIYSyeqc02bp43H47/P736fs6doTXX/cv\nFfJN9b8liuJCoiguJEpFxMWsWdXJQjJhmDAB5s2r33XNYN11oWdPTxSSj+usU9LzGMp1svUawNDl\nHDMH0Oh0aRBPPw1/+EP6vjZt4IUXCpNEgOp/SzTFhURRXEiUsoqLEGDSJBg3rjpp+PBDn99QX+3b\nw6abpicNPXpAy5b1v7ZEirtHYjrwTAjhmMTzqB6JR4CtQwhrxHbjIqAeicJ75x0YNMjXjUlq3hxe\nfBG2265w7RIREalI8+d7xaTMpGH27Ppdt3Fjr5zSs6dvm27qiUPnzkW/gFtcyrVH4j1gDzNrHUL4\nX+aLZrYaMBh4Jub7SoX7/HPYY4/0JKJRI3joISURIiIiDW76dE8Sxo2r3j77zOc51MdKK1X3MiQf\nu3eHZs3iabfUS9yJxHXA88BzZpY2St3MNgJuB5oD18d8X6lgP/wAu+66bEnom26CvfcuTJtERETK\nUgjw9deeKIwdW500TJ1av+s2bgwbbODJQupWh1WfJX9iTSRCCC+Y2d/xtSImAIsBzOxnoD1gwN9C\nCG/FeV+pXLNnw+DBPtwy1fnnw4knFqRJIiIi5WHRIl/tOZkwjB0bz9CkNm08Sdhss+qEoUcPr6Qk\nJSXWORK/XdRsIHAK0A/oCMwC3gGuCSGMjP2GRUBzJPJv0SLYfXcv6Zrq2GPhjjv0BYaIiEjW5szx\nJGHs2Ort44/9j219dOniCUMyadhsM1h7bf2RrqdimSPRIIlEJVIikV8hwFFHwX33pe8fPBiefBKa\nNi1Mu6JUbP1vqZXiQqIoLiRK7HHxyy/VycIHH/jjF1/UbwXoFVbwXoVk0rDZZj6foV27+Notv6no\nRMLMVg4hTM/7jRuQEon8uuwyOO+89H29e8MrrxRflbeKqP8tOVNcSBTFhUSpV1x8/70nC6lbfRd0\na9sWNt/ck4Xk40YbFde3eGWuWBKJuCdb18rM2gJ/A04G2uTz3lI+Hn102SRivfXgmWeKL4mAMqv/\nLbFRXEgUxYVEySouQoApUzxReP/96qThhx/qd/POnT1ZSN00NEkSYuuRMLMuQC9gITA6tcfBzJoD\npwN/wSddzwshtIrlxkVCPRL5MWYMbL99epnXDh18DYlu3QrXLhERkbwJwRdwy0wafv657tc08z+k\nmUnDyivH126JTVn1SJjZDcBJeFUmgAVmdlIIYYiZ9QfuBdYEFuElYq+I475SWb77DvbaKz2JaNIE\nhg5VEiEiImUqWW71/fertw8+gBkz6n7NJk18PsPmm8MWW/jjpptC69bxtVsqQr0TCTM7CvgTUAV8\nmti9IXC7mS0C7gEaA7cCl4YQptX3nlJ55s71JOL779P333ILDBhQkCaJiIjEK9nTMGaMJwxjxnjS\nMHNm3a/ZrJknCVtsUb316AHNm8fXbqlYcfRIHI33NAwMIbwNYGbbAy8B9wFTgT1DCONjuJdUoKoq\nOPxwLyqR6i9/geOOK0ybRERE6iUEn/Q8Zkz19v779etpaNnSJz736uW9DL16wYYbahK0NJh6z5Ew\ns1+AF0MIh2Tsfxg4ANipXNeOSKU5Eg3n7LPhyivT9+21Fzz+uC+EKSIiUtRCgGnT0pOGMWPqN6eh\ndWvvXejVq/qxWzf9YawQ5TRHoi3wZcT+iYnHt2O4h1SoIUOWTSI23RT++9/S+V2puvASRXEhURQX\nZWL6dE8U3nuv+rEe1ZMuWmEFLtp6a08Wktt660GjRjE2WiR3cfRIVAEXhRAuzth/IXBBCKFEPu7V\nj3ok4vf++7DNNrBwYfW+VVeFd9+FNdcsXLtypbrwEkVxIVEUFyVo1iz/g/Xee9WJw7ff1v16yZ6G\nLbf0rVcvbP31FReSppx6JAAU3RKr6dNhv/3Sk4jmzeGpp0oriQDVhZdoiguJorgocgsWwLhxnjC8\n+64/fv553a/XsmV10tCrlz9267ZMT4PiQopVXD0SuV4khBDyuhheQ1OPRHyWLIFdd4URI9L333ef\nT7oWERFpcEuXwqefVicN774LH33kf6TqYsUVfSJ0797VvQ3rr18643SlqJRbj0Su/wgthyg1Ouec\nZZOIU05REiEiIg0kBF+s6N13YfRofxwzxmuP10XTptCzpycLycShRw9fv0GkjMS2snWlU49EPB55\nBA4+OH3fdtt5YqHqdSIiEotZs6p7GpKJQ10nQ5vBRht5wpDcevbUOg3SoIqlR0KJREyUSNTfhAnQ\nr1/6F0Crr+5z2FZdtXDtEhGRErZ4MYwfX50wjB4Nn33mvRB10aVLdcLQp4/PcdCK0JJnxZJIqI9N\nisLMmbDvvulJRNOmMHSokggREclSCDBliicLye3992H+/Lpdb6WVPFlIJg29e8PKK8fbZpESpgLE\nUnDJlau/zFiN5D//8R6KUqea8BJFcSFRFBc5mjsXXnvNFxzad1/vxl57bTjoILj6ahg1Kvskonlz\nrzl+xhnw0EPw9dfw00/w7LNw0UUweHDBkgjFhRQrDW2KiYY21d3ll8O556bvO+44uP12H3pa6lQX\nXqIoLiSK4qIWVVXwxRfwzjvV2/jxvj9XZtC9u/cy9O3rjxtvXLST8RQXkklDm0SAN96A889P39e7\nt/dGlEMSAar/LdEUFxJFcZFi5kyf0/D22540jB4NM2bU7Vqrrupd3MmkYcstoU2beNvbgBQXUqzU\nIxET9Ujk7uefvaT21KnV+zp2hLFjS2/RORERqYeqKl+z4e23qxOHTz+t24To5s19cbdk4tC3r/9R\nKZdvp0RQj4RUuKoqOPro9CQCYMgQJREiImVv1izvYXj7bXjrLf/vWbPqdq311/dkIZk49OxZtEOU\nRMqNEgkpiGuu8flrqc46y+eyiYhIGQkBJk70hCGZOHz8cd16G9q2rU4a+vXzYUodO8bfZhHJioY2\nxURDm7I3ejRsuy0sWVK9r18/eP11fYkkIlLy5s/3xd7eeqt6++WX3K9j5qtB9+sHW23ljxtuCI1U\ncFKkWIY2KZGIiRKJ7MyYAZtvDt9+W72vXTsYN84r9omISImZNs2ThTff9McPPkj/pihb7dpVJw1b\nbeW9DW3bxt9ekTJQLImE0nrJmxC8rGtqEgFw993lnUSo/rdEUVxIlKKPi6VL4cMP4eabfQGgrl2h\nc2c48EC49lqvspRtEtGjBxx/PNx5J3zyifdaPP88XHAB7LSTkogURR8XUrHUIxET9Ugs3w03wCmn\npO879VT/21POVP9boiguJErRxcXcuT4e9c03fXG3d96B2bNzv07r1j63Yeutfevb13sgJCtFFxdS\ncMXSI6HJ1pIX48fDX/6Svq9XL1+MtNyp/rdEUVxIlILHxQ8/VCcNo0Z5Pe6lS3O/zjrreMKwzTY+\nTGnjjaFx4/jbWyEKHhciNVCPREzUI1GzhQt9kbnx46v3tWnjw2jXXbdw7RIRqWgh+ErRyaRh1Cj4\n8svcr9O0qX8ztM021YnDqqvG314R+Y16JKRinHdeehIBcOutSiJERPJq8WKvbPHGG769+SZMn577\ndTp2rO5t2GYbTyJWXDH+9opI0VOPREzUIxHt1Vdh0KD0cuGHHQb331+wJomIVIZ583xOQzJxeOcd\nn/OQq27dPGHYdlt/3GADrRItUmDF0iOhRCImSiSWNWuWLzA6eXL1vjXXhI8+0hw7EZHYzZjhvQyv\nv+6Jw5gxuZdhbdIEttjCk4Ztt/Weh1VWaZj2ikidFUsioaFN0mD+/Of0JMIM7r1XSYSISCx++MGT\nhmTiMH587qtFt2rlyUIycejbF1q0aJj2ikjZ0ToS0iAefRTuuy993xlnwMCBhWlPIan+t0RRXEiU\nWuPi22/9F+sJJ/jwotVWg4MPhhtv9K7ebJKIVVaBAw7wutvvv++9GC+8AOef77+glUQUJf2+kGKl\noU0x0dCmalOnwiab+N+npE028XWKmjcvXLsKRfW/JYriQqL8FhcheAWl11+H117zLbWLN1vrrgvb\nbVe9rbee5jeUIP2+kEwa2iRlqaoKjjkmPYlYYQWfXF2JSQSo/rdEU1xImhDgs8+4cPfd4ZBDPHH4\n/vvcrmHm39pstx1sv70/rrZaw7RX8kq/L6RYqUciJuqRcP/5j8+NSHXVVXDWWYVpj4hIUQoBPvnE\nE4ZXX/XHn37K7RqNG8OWW3rSsP32XlGpffsGaa6IFJdi6ZFQIhETJRLw9df+Zdi8edX7+veHESO0\noKmIVLiqKk8cXn3Vt9dfz30Nh2bNoF+/6sShXz+fLC0iFadYEgkNbZJYhAC//316EtGmjVdpUhIh\nIhUn2eOQTBxefRV+/jm3a7Ro4RWV+vf3xKFPn8odIyoiRUmJhMTizju95yHV1VfD2msXpj0iInmV\nmOPAK6/49tprufc4tGrlJVj79/etVy+fZCYiUqQ0tCkmlTy0aepU6N4dZs+u3rfDDvDSSyoOIiJl\nKgT46qvqxOGVV3xdh1y0bu0TogcM8MRhiy18QTgRkeUolqFNWkdC6iUEOOmk9CSiRQu4/XYlEUmq\n/y1RFBclaMoUH6959NHe3dqtm4/pfPDB7JKINm1g993hn/+E996DX3+FZ5/1ahR9+kCTJooLiaS4\nkGKlHomYVGqPxIMPwqGHpu+77jo45ZTCtKcYqf63RFFclICffvKehpEjffvyy9zOT/Y4DBzovQ6b\nbbbcHgfFhURRXEimYumRUB+q1Nn06csmDFtvDSefXJj2FCvV/5YoiosiNGuWz20YOdInfU2YkNv5\nLVv6HIeBA32rw1AlxYVEUVxIsVKPREwqsUfikEPgoYeqnzdrBuPGwYYbFq5NIiJZW7AA3nzTk4YR\nI2DMGC/Tmq3mzX3thmTi0Ls3NG3acO0VEUlQj4SUtGHD0pMIgAsvVBIhIkVs6VJ4/31PGl5+2ZOI\nhQuzP79pU1+7YeBAGDTI/7tZs4Zrr4hIkVOPREwqqUdi5kyv0vT999X7Nt8cRo/Wl3EiUkRCgIkT\nPWl4+WWf7zBzZvbnN2rkw5MGDfJSdNts48OXREQKTD0SUrLOOSc9iWjSBO66S0mEiBSBH3+s7nF4\n+WWvtJSLHj2qE4ftt4f27RumnSIiZUCJhOTkvffgllvS9/3tb16MREQk7+bNg9df94VrXnoJxo/P\n7fy11oIdd/TEYdAgWHXVhmmniEgZ0joSkrWlS33NiNTRW926wXnnFa5NpUD1vyWK4qKOli71SdGX\nX+5zFdq3h912g3//O7skokMHOPBA/0Zk4kSYNAnuvNPrWBdBEqG4kCiKCylWmiMRk0qYI3HTTfCn\nP6Xve+EF2HnnwrSnVKj+t0RRXORg8mTvbXjxRR+u9Ouv2Z/bvLkPUdpxR9823dTnPhQpxYVEUVxI\nJs2RkJLy448+NyLVQQcpiciG6n9LFMVFLebMgVdf9cThxRfh88+zP9cMttwSdtrJE4ettvJkokQo\nLiSK4kKKlXokYlLuPRJHHgn33Vf9vFUr+Owz6Ny5cG0SkTJRVQVjx1YnDm++CYsXZ3/+Out44rDT\nTj7cqUOHhmuriEgRUI+ElIzXXktPIgAuvlhJhIjUww8/eNIwfLgPW/r55+zPbdfOJ0cnk4d11mm4\ndoqISI3UIxGTcu2RWLTI14j45JPqfT17+ppOTZSGiki2Fi3ynobhw31y1YcfZn9ukyY+RGnnnT1x\n2HJLaNy44doqIlLk1CMhJeHaa9OTCPBJ10oiRGS5vv7aE4fhw2HkSJg7N/tzu3WDXXapHq7UunXD\ntVNEROpEPRIxKcceicmTYaONvEx70rHHeqVEEZFlzJvnk6STycPEidmf27atD1faeWffunZtsGaK\niJS6YumRKN4aeFJwp52WnkR06ABXXlm49pQq1f+WKGURFyF41YVrrvEP/x06wO67ww03LD+JMIM+\nfeD882HUKJ8jMXQonHhiRScRZREXEjvFhRQr9UjEpNx6JF56adnSrrfdBiecUJj2lDLV/5YoJRsX\nc+f6MKXnn/dt0qTsz11tNR+utMsuXpp1pZUarJmlqmTjQhqU4kIyFUuPhEa6yzKWLIEzzkjf17cv\nHHdcYdpT6lT/W6KUTFyE4L0Lzz3n22uv+cTpbDRtCttuC7vu6slDz57eEyE1Kpm4kLxSXEixUo9E\nTMqpR+KWW+Ckk9L3vfsu9O5dmPaISJ7Nn+8JQzJ5+Oqr7M/t0gV2282TB02SFhFpEMXSI6FEIibl\nkkjMmuXFUqZPr9535JFw772Fa5OI5MHkyfDss76NHOnJRDaaNYP+/T152G03WH999TqIiDSwYkkk\nNLRJ0lx2WXoS0aIFXH554dojIg1kyRJ4++3q5GHChOzP7drVk4bBg2HAAGjZssGaKSIixUuJhPzm\n66/huuvS9/31r1rBWqRs/PKLl2V99lmfKD1zZnbnrbACbL+9Jw6DB6vXQUREAA1tik05DG064ACv\nvpjUuTN8/rm+bBQpWSHAxx/DM8948vDWW1BVld25a6zhpVwHD4ZBg6BVq4Ztq4iIZK1YhjZpHQkB\n4PXX05MIgCuuUBIRB9X/ligNFhcLF8ILL8DJJ/sQpE02gf/7P1+robYkolEjr7B0xRXw0Uc+Z+KW\nW2CvvZRE5JF+X0gUxYUUK/VIxKSUeySqqrwi0wcfVO/bcksYPdo/W0j9qP63RIk1Ln780asrPf00\nvPiir/WQjY4dfa7D7rt7edb27eNpj9SZfl9IFMWFZCqWHgnNkRCGDElPIsAXqlUSEQ/V/5Yo9YqL\n5JClYcM8eRg92vdlo2dP2GMPTx769oXGjeveDomdfl9IFMWFFCv1SMSkVHsk5szxeZPff1+976CD\n4OGHC9cmEYmweLGPQUwmD998k915zZv7HIc99/T5Dmut1bDtFBGRBqceCSkKV12VnkQ0awZXXlm4\n9ohIipkzvbrSsGH+OGtWduettpr3Ouy5J+ywg9dxFhERiZkSiQr2ww9w9dXp+04/3RemFZEC+fZb\nTxyGDYNXX/X1HrKxxRaeOOy5J2y+ucYmiohIg1MiUcEuvRTmzat+3qmTF3cRkTwKAT78EJ58Ep56\nCsaNy+68Zs28t2HPPb33YY01GradIiIiGZRIVKhvvoHbbkvfd/750KZNYdojUlEWL4Y33vDE4amn\nvBciGyuvXD1kaaedVJZVREQKSn3fFeqii/yzTFKXLvD73xeqNeVN9b8F8JKsTzwBRx4Jq6zCRTvs\nANdfv/wkYoMNfIn5UaN8QtNdd8G++yqJKFP6fSFRFBdSrFS1KSalVLXp4499jarUpt57r3++kfip\n/ncF++UXr7D05JO+vsP8+b+9ZEBkVJjB1lvD3nv7YnAbbJCv1koR0O8LiaK4kEyq2iQFc9556UlE\n9+5w2GGFa0+5U/3vCjNliicOTzzh5VqXLo08LC0qmjeHnXf25GGPPXzCklQk/b6QKIoLKVbqkYhJ\nqfRIvPuur0GV6vHHfaSEiNTR55974vD44/Dee9md06GDz3XYe29PIlq2bNg2iohI2SiWHgklEjEp\nlURixx1hxIjq5336wDvv+GgKEclSCF5d6fHHffvkk+zOW2stz9r32Qe23RaaqFNYRERyVyyJhP6K\nVZARI9KTCIDLL1cSIZKVqioYPRqGDvXkIduVpTfZxBOHffeFzTbT/3AiIlI21CMRk2LvkQgBEMy2\ncQAAIABJREFU+vXzoU1JO+wAL79cuDaJFL2lS71M62OP+dCladOyO2+rrTxx2HdfWG+9hm2jiIhU\nHPVISF499VR6EgHeGyEiGRYvhlde8Z6HJ56A6dOXf06TJjBwoCcOe+8Nq6/e8O0UEREpMK0jUQGW\nLoVzz03ft88+Pj9CGp7qf5eARYvg2Wfh2GNhlVVgl118xcbakohmzbw86733wo8/ennXk07KOolQ\nXEgUxYVEUVxIsdLQppgU89Cm++5LXyPCDMaPhx49CtemSqL630Vq4UL/8P/oozBsGMyatfxzWraE\n3XeH/feHwYPrtSic4kKiKC4kiuJCMmlok+TF0qVw6aXp+444QklEPqn+dxFZsABeeMHnPAwbBrNn\nL/+ctm2952H//b1M64orxtIUxYVEUVxIFMWFFCv1SMSkWHskHnwQDj20+nmTJvDFF9C1a+HaJJJX\nCxd68vDooz5Z6H//W/45HTr4fIf99/eqBCus0PDtFBERyZJ6JKTBVVXBZZel7zviCCURUgEWLoSX\nXoJHHvHkIZueh5VXhv32gwMOgP79oWnThm+niIhICVMiUcaeeAI+/rj6eaNGcM45hWuPSINavNjr\nGT/8MDz5ZHZzHlZZxZOHAw+E7bbTAnEiIiI50F/NMhXCsnMjDjlEJe2lzCxZ4qVaH3nEF4n79dfl\nn7PKKj5kKZk8NG7c8O0UEREpQ0okytSzz8K4cdXPzdQbIWWiqgpGjYKHHvJJ09ms89Cpkw9ZOugg\n2HZbJQ8iIiIx0DoSZSgEuOSS9H377w/duxemPZVO9b9jEIKvqHjGGbDWWj6H4eaba08iOnXydR1e\necVXpL7xRj+vSJIIxYVEUVxIFMWFFCtVbYpJMVVtevFFX08r1bhxsOmmhWlPpVP97zoKwRc8eegh\n3775ZvnndOjgWfPBB3vSUMRzHhQXEkVxIVEUF5JJVZukwWTOjdhrLyURhaT63zn66iuvW/zgg/DJ\nJ8s/vm1bL9V68MFeqrVEqi0pLiSK4kKiKC6kWKlHIibF0iPx2mswYED6vvfegy23LEhzRLIzbZpP\nmH7gAQ/Y5WnZEvbe25OHXXaBZs0avo0iIiJFQj0S0iAy50bsuquSCClSM2d6paX//tfnMSwvCW/W\nDHbfHX73O39s0SI/7RQREZFI6pGISTH0SLz9Nmy9dfq+UaNgm20K0x6RZSxY4CXFHnjAHxcurP34\nxo1h5509edhnH2jTJj/tFBERKWLqkZDYZfZGDByoJEKKwNKlPubu/vth6NDsVpnebjtf+OSAA3zF\naRERESk66pGISaF7JMaOhS22SN83cqQnEyJ5FwJ89JEnDw884HMglmfzzeHQQ33ew5prNnwbRURE\nSlSx9EhoHYky8a9/pT/fZptlJ11LYVRU/e/Jk+Ef/4BNNoHNNvPArC2JWHddOP98r870wQfwl79U\nTBJRUXEhWVNcSBTFhRQr9UjEpJA9EpMnwzrr+AiSpGee8fmoUnhlX/971ixfYfq++3wI0/J06uRz\nHg49FPr08WXXK1DZx4XUieJCoiguJFOx9EhojkQZuP769CRio41gt90K1x5JV5b1vxcvhuHDPXkY\nNmz5k6ZbtoT99oPDDvO1Hop4obh8Kcu4kHpTXEgUxYUUK/VIxKRQPRKzZ/tIkNT5q7ffDscfn9dm\nSCUIAd5/H4YM8cXifv659uMbN/b6w4cd5qsitmyZn3aKiIiUOfVISCzuuCM9iejUCQ4/vHDtkTL0\n3Xe+1sOQIdmtNN23rycPBx/sASkiIiJlSYlECVu8GK67Ln3fn/4EzZsXpj1SRubO9cXihgyBESOW\nv1hc166ewR5+OKy/fn7aKCIiIgWlRKKEPfaYT7ROat4cTjqpcO2REldVBW+8Affc48E1Z07tx7dr\nBwcdBEcc4WXCKnTStIiISKVSIlGiQoCrr07fd/TRWrtL6uCrr7znYcgQmDSp9mObNIHBg+HII2GP\nPaBZs7w0UURERIqP1pEoUa+/7vNek8zg9NML1x6pWVHW/54zB+6+G/r3h/XWg4svrj2J6NXLx9FN\nmwZPPQX7768kop6KMi6k4BQXEkVxIcVKVZtiku+qTXvtBU8/nf78qafycmvJUdHU/w7BM9B77oFH\nH/V5ELVZfXWf83DkkdCjR16aWEmKJi6kqCguJIriQjKpapPU2WefpScRAGeeWZi2yPIVvP735Mlw\n772eQHz9de3HNm8O++zj4+R23NFLuEqDKHhcSFFSXEgUxYUUK/VIxCSfPRInngi33Vb9vHdvGD1a\nc10lxYIF3kV1113w0kvLr7q09dZw1FE+ebpdu/y0UUREROpEPRJSJ9On+5zYVGeeqSRCEsaO9eTh\nv/+FGTNqP7ZzZx+2dPTRKtkqIiIiOVMiUWJuusm/bE5ae22f9yoVbMYMTxzuvBPGjav92GbNfOjS\nMcdo6JKIiIjUixKJErJwIdx4Y/q+U0/1ipxSYaqq4NVXPXkYOtSDozZbbunJwyGHQPv2eWmiiIiI\nlDd9BC0hjz3mQ5uS2rSB444rXHukAKZO9UnTd921/InTHTv6YnHHHAM9e+aleSIiIlI5tI5ECbnp\npvTnxx7ryYQUt3rX/16yBIYNgz33hLXWgvPOqzmJaNQIdtvNs86pU+Gaa5REFCnVhZcoiguJoriQ\nYqWqTTFp6KpN48bB5pun7/vsM9hggwa5ncSozvW/v/nGhy7dfbcvBFebrl09szz6aFhjjTq1U/JL\ndeEliuJCoiguJJOqNklObr45/fmOOyqJKBU51f9etMjLtt52G7z8cu3HNmsG++0Hxx8PAwZ4b4SU\nDNWFlyiKC4miuJBipR6JmDRkj8SsWb7I8Lx51fsefxz23Tf2W0mhfPkl3H679z6kToSJ0rOnJw+H\nHQYdOuSnfSIiIlI01CMhWRsyJD2J6NzZh8tLiVu0CJ580nsfRoyo/dhWrbzi0gkneAUmLRwiIiIi\nBaZEosiFsOwk6xNPVMnXkvbVV548ZNP70KePJw8HHwytW+enfSIiIiJZ0NCmmDTU0KZXXoFBg6qf\nN2kCkyfDaqvFehtpaIsXw9NPw623wosv1n5s27ZetvWEE1RxSURERJahoU2SlczeiP32UxJRUiZP\nhjvu8O3772s/dqutvLvpwAOhRYv8tE9ERESkjlTmpYhNmwZPPJG+749/LExbJAdVVTB8OOy9N3Tt\nykWXXFJzEtG2LZx8Mnz0Ebz1Fhx1lJKICqG68BJFcSFRFBdSrDS0KSYNMbTp73+H1N8d3bvDhAma\nZ1u0fv7ZV5y+9da0BeMMWCYq+vaFP/wBDjpIiUOFUl14iaK4kCiKC8mkoU1Sq8WLfT5uqj/+UUlE\n0QkB3nnHx6A9+igsXLjMIb9V/27Vyku2nnjisqsLSsVRXXiJoriQKIoLKVbqkYhJ3D0SQ4fCAQdU\nP2/Z0oc6tWkTy+WlvubNgwcegBtv9GXHa7PppnDSSXDooaq8JCIiIvWmHgmpVeYk6yOOUBJRFCZO\n9GXG774bZs6s+bgVVvCSrSedBP36qStJREREyo56JGISZ4/Ep5/6fIhUH36oSqAFs3QpPPcc/Oc/\nyy/dus46PvfhmGNgpZXy0z4RERGpKOqRkBrdckv68223VRJREL/+Cnfe6d1DkybVfJwZ7LGHT2LZ\neWdopGJoIiIiUv6USBSZhQvh/vvT9510UmHaUrHGjfPeh//+FxYsqPm4jh3h+OO9B6JLl7w1T0RE\nRKQY6KvTIjNsmH8RntShA+y/f+HaUzEWL4ZHHoHttvOKSnfeWXMS0bcvDBkC330H//jHcpMI1f+W\nKIoLiaK4kCiKCylWmiMRk7jmSAweDM8/X/38z3+G66+v1yWlNtOnw+23+/ClqVNrPq5ZMzjkEPjT\nn2DLLXO6hep/SxTFhURRXEgUxYVk0hwJWcbUqfDCC+n7jjmmMG0pe2PHwg03eAnXiLUffrPWWj73\n4bjj6jx5WvW/JYriQqIoLiSK4kKKlXokYhJHj8QVV8A551Q/33TT5S9RIDlYsgSeegquvRZGjar9\n2B12gJNPhj33hMaN89M+ERERkSyoR0LShOBLE6RSb0RMZszwOQ833ACTJ9d8XIsWcOSRPp4ss/6u\niIiIiKRRj0RM6tsj8eabXuY1qWlTX8laSxHUw+ef+wSTe+7xlahr0rWr9z4ccwy0b5+35omIiIjU\nhXokJE1mb8ReeymJqJMQ4OWX4Zpr0metRxk0CE49FXbfXcOXRERERHKkRKIIzJ0LDz+cvk/DmnK0\nYIFPnL72Whg/vubjmjeHI46AU06BjTfOX/tEREREyozWkSgCQ4fCnDnVz1dbDXbZpXDtKSk//ggX\nXQRrr+2VlWpKIlZfHS67DKZMgdtuy2sSofrfEkVxIVEUFxJFcSHFSnMkYlKfORIDBsBrr1U//+tf\n4cor42pZmfr4Y/j3v3316drKt/buDaefDgcc4BNPCkD1vyWK4kKiKC4kiuJCMmmOhADw9dfpSQRo\nWFONQoCRI+Ff/4Lhw2s+rlEj2G8/TyC22gqsoP+Pqf63RFJcSBTFhURRXEixUo9ETOraI3HBBXDJ\nJdXPt9oK3nor1qaVvkWL4KGHvAfiww9rPq51azjhBC/f2qVL3ponIiIikk/qkRCqquDee9P3qTci\nxaxZcOutcN11Xgu3Jl26ePWlY4+FNm3y1jwRERGRSqZEooBGjkxfH23FFeHggwvXnqIxZYpXX7r9\ndvjf/2o+rl8/OPNM2GcfaKJQFhEREcknffoqoMy1I/bfv8K/UB83Dq6+2ocxLVkSfYwZ7LuvJxBb\nb53f9omIiIjIbzRHIia5zpGYOdPLvC5YUL1vxAhfI62iJCdQX3klvPRSzce1aOFDl047DdZdN3/t\nExERESkyxTJHQutIFMgjj6QnEV26eBnYirFkif8QeveGHXesOYno1AkuvdTHgN1wQ0kmEar/LVEU\nFxJFcSFRFBdSrNQjEZNceyQGDoRXX61+fuGFvq5a2Zs/H+65x0u4fv11zcdtsAH85S9w+OG+GnUJ\nU/1viaK4kCiKC4miuJBMxdIjoTkSBTB16rJrRxx2WGHakjczZsBNN3kFpunTaz5u223hrLNgjz18\nPYgyoPrfEkVxIVEUFxJFcSHFSj0SMcmlR+Kaa+CMM6qf9+oFY8Y0WNMKa9o0/wffcgvMmVPzcfvs\n40t6b7VV/tomIiIiUoLUI1HBHnoo/fkhhxSmHQ1q4kS46ioYMsQXlIvStCkceaQPYdpww/y2T0RE\nRETqRT0SMcm2R+Krr2C99dL3TZ4Ma67ZYE3Lrw8+gH/8Ax57zCsyRWndGk46yReRW331/LZPRERE\npMSpR6JCZfZGbLddmSQRb7wBl18Ow4fXfEynTnD66Z5EtG2bv7aJiIiISOyUSORZWQ1rCgFeeAEu\nuwxGjar5uK5dff7DUUf58t0iIiIiUvLKoyxOiZgwwbekxo3hgAMK1546q6ryoUu9esFuu9WcRPTs\nCQ88AF98AX/4Q8UmEar/LVEUFxJFcSFRFBdSrDRHIibZzJE491wf/ZO0yy61jwQqOkuWeJfK5ZfD\np5/WfNzWW8M558DgwWAFHbpXFFT/W6IoLiSK4kKiKC4kk+ZIVJgQSnhY06JFXn3piitqX0Rul108\ngdhuOyUQKVT/W6IoLiSK4kKiKC6kWKlHIibL65F4913o27f6ebNm8OOPRT7neP58uPNOL+M6ZUrN\nx+23H/zf/8GWW+avbSIiIiIVSj0SFebBB9OfDx5cxEnEvHlw662eQPzwQ/QxjRvDoYfC2WdD9+75\nbZ+IiIiIFJwSiTxYuhQefjh9X1EOa5ozB26+Gf71L/jpp+hjmjaFo4+Gv/0N1l03r80TERERkeKh\nRCIP3ngDvv+++nmrVrD77oVrzzJmz4Ybb4Srr4Zffok+pnlzOOEEOOusMln4QkRERETqQ4lEHmQO\na9p7b2jRojBtSTN7NtxwgycQM2ZEH9OiBfzxj3DmmbDqqvltn4iIiIgULa0j0cAWLfIlF1IVfFjT\n7Nm+iFyXLnDeedFJRKtWPoF60iT45z+VRNSD6n9LFMWFRFFcSBTFhRQrVW2KSU1Vm557Ln0YU/v2\nPn95hRXy2jyXTQ9EmzZw6qlw2mnQoUN+21emVP9boiguJIriQqIoLiSTqjZViMxhTQccUIAk4n//\ng+uvrz2BaNcOTj8dTjnF/1tio/rfEkVxIVEUFxJFcSHFSj0SMYnqkZg/Hzp18mJISSNHwsCBeWrU\nnDk+ifqqq+DXX6OPadcOzjjDE4iirUcrIiIiIknqkagAL72UnkSsuipsv30ebjxvnpdxvfJKmD49\n+hglECIiIiJSD0okGtATT6Q/339/X8etwcyfD7fdBldc4ctmR1ECISIiIiIxUCLRQJYsgaefTt+3\nzz4NdLNFi+DOO+HSS2HatOhj2rTxBOK005RAiIiIiEi9KZFoIKNGpa/t1r499O8f802WLIH77oOL\nL/YyrVFatfLk4YwzvBEiIiIiIjHQOhINJHNY0x57QNOmMV28qgoeegh69IBjj41OIlq2hLPP9tcu\nuURJRAGp/rdEUVxIFMWFRFFcSLFS1aaYpFZtCsHXeps8ufr1oUNhv/3qeZMQYNgwOP98GD8++pjm\nzeFPf4K//tVLRknBqf63RFFcSBTFhURRXEgmVW0qY2PHpicRzZvDLrvU86IjR8I558Do0dGvN20K\nJ57ox6y2Wj1vJnFS/W+JoriQKIoLiaK4kGKlHomYpPZIXHCBjyZK2ntvePLJOl549Gg491wYMSL6\n9caN4Zhj4LzzYO2163gTERERESkV6pEoY5nzI+pUrWnCBB/CVFMGYgaHHQYXXgjrrVeHG4iIiIiI\n1J16JGKS7JGYODHQrVv1/saNfUmHjh2zvNCkSZ4c3Hefz4mIsu++3uXRo0f9Gi0iIiIiJUc9EmUq\nswNh++2zTCJ++gkuv9xXpF60KPqYHXeEyy6DPn3q3U4RERERkfpQIhGznIc1zZ4N//43XH01zJkT\nfUzfvp5kDBoUSxtFREREROpL60jE7O2305/XmEgsXAjXXQfrrgt//3t0EtGjh3dxvP22kogSpvrf\nEkVxIVEUFxJFcSHFSnMkYpKcIwHVP89evWDMmIwDq6rg4Ye9EtM330RfbK21fLXqww/3SRZS0lT/\nW6IoLiSK4kKiKC4kU7HMkSjpHgkz62xmd5nZVDNbYGbfmNk1ZtauENfJtExvxMsvQ+/ecOih0UnE\nSivBtdfCF1/AUUcpiSgT/fv3L3QTpAgpLiSK4kKiKC6kWJVsj4SZrQO8DawEPAl8DvQBBgGfAduE\nEGbk8TrL9EhMmJAorDRuHPztb/Dii9Ent2oFZ54JZ5wBbdos71ZSYvRNkkRRXEgUxYVEUVxIpmLp\nkSjlydY34x/+/xxCuCm508yuBk4HLgP+mMfrpOnWDbq3mgxHngf33x9dyrVJE1+N+vzzYZVVcr2F\niIiIiEjBlGSPRKIX4UvgmxDCuhmvtQK+TzztFEKY39DXSRz/W49EW2byRJ8rGPjhdT6pOspBB3kp\nVy0mV/b0TZJEUVxIFMWFRFFcSKZi6ZEo1TkSAxOPy4wVCiHMAd4EWgD98nSd35zCdXzJegx896ro\nJGLAAHj3XZ9wrSRCREREREpUqSYSG+CTEb6o4fWJicf183Sd31zHaazEL8u+sPHG8NxzMHKkT7gW\nERERESlhpZpItE08zqrh9eT+5VVdius6NVt9dbjzTp9wvdtuYAXtgRIRERERiUUpT7YuSsukCdOm\nwXHH+SYVy5RASgTFhURRXEgUxYUUo1LtkUj2FLSt4fXk/pl5uo6IiIiISEUp1R6Jz/Ev/2uau9At\n8VjT3Ie4r1PwWfMiIiIiIvmk8q8xlX8VEREREakkJTm0KYTwNV6ytYuZnZzx8sVAS2BI8sO/mTUx\nsw0SiUOdryMiIiIiIq4keyTgt96EN4FOwDDgU3y9hwHAZ8A2IYQZiWPXBr4BJoUQ1qnrdURERERE\nxJVsIgFgZp3xnoNdgY74UKTHgYtDCLNSjlsb+BpPJNat63VERERERMSVdCIhIiIiIiKFUZJzJERE\nREREpLCUSIiIiIiISM6USNSTmXU2s7vMbKqZLTCzb8zsGjNrV+i2ScMxsw5mdryZPW5mE81snpnN\nNLM3zOxYq2EJUjPb2syeM7NfEud8aGanmpn+XyxTZna4mVUltmNrOEZxUSHMbAcze8LMvk/8zZhq\nZsPNbNeIYxUXZczcwWY20sy+S7zHX5nZI2bWr4ZzFBNlwsz2N7Przex1M5uV+BsxZDnn5Pz+m9lR\nZjbazP6X+JzyipntHtu/Q3Mk6i5R8eltYCXgSXyBuz7AIFTxqayZ2YnAzcA04BVgMrAKsB/QDngs\nhHBQxjl7A48B84GHgV+BPYENgUdDCAfn7R8geWFmawIf4V/atAJOCCHclXGM4qJCmNlVwF+AKcDz\nwM/AykAv4OUQwtkpxyouypyZ3QEci8fBk4nH9YC9gKbAESGEB1KOV0yUETMbC/QE5gDf4e/jf0MI\nR9ZwfM7vv5n9CzgD/53zGLAC8Du8sNDJIYSb6v0PCSFoq+MGvAAsBf6Ysf9qoAq4qdBt1NZg7/0A\nYPeI/Z2AbxNxsW/K/tbAT4lfAJun7F8BLz+8FDio0P8ubbHHycvARODKxHt8bMbriosK2YATEn8X\n7gSaRLzeWHFRORuwViIepgEdM17rn3jtS8VE+W6J93ndjPd8SA3H5vz+A1slrvk50CYj9n4G5gFr\n1fffoa6wOkr0RuyEl5TNzOguBOYCR5jZinlvnDS4EMKrIYRnI/b/BNwCGJ5sJB2I91w9GEIYm3L8\nIuC8xPEnNWSbJb/M7FQ8Bo7Bf2FHUVxUADNbAbgU/5LhxBDCksxjQghLU54qLsrfyonH0SGEX1Jf\nCCG8Bvwv5RhQTJSdEMJrIYSvsjy8Lu//SUAALgshzE45ZzJwI9AM//tUL0ok6m5g4vHFzBdCCHPw\nDLEFvridVJbFicfUDwsD8f+hX4g4/nX8g+bWZta0gdsmeWBmGwFXANeGEEbVcqjiojLshH8oHAoE\nM9vdzP5qZqfUMBZecVH+PgZ+APqYWcfUF8xse/wb6JdSdismKltd3v/k59Soc57Hk49B9W2YEom6\n2wB/U7+o4fWJicf189McKQZm1hg4Co+N4SkvbZB4XCZeEt9EfgM0AdbJfF1KSyIG7gMmAecu53DF\nRWXojf9OWASMBZ7GE81rgLfM7FUzWynleMVFmQshLAD2xkcvfGJmt5rZ5Wb2CP7B7wXgDymnKCYq\nW07vv5m1ADoDc0IIP0ZcL7bPqEok6q5t4rGmla+T+1W9qbJcCfQAng0hpH6bpHipHBcCmwJHhxAW\nLudYxUVl6IR/+3cWPmZ5G/wb5574B8btgUdSjldcVIaPgLuB5sDxwN+A/fHiHfeGEH5OOVYxUdly\nff/zFi9KJERiYman4NURPgEiqy5IeTOzvsD/Af8KIbxb6PZI0Uj+rV0M7BlCeDuEMC+E8DFe6e07\noH8ifqQCJHouRwKXAbcB6wIt8Qpe3wAPmNk/CtdCkewokai7ZDbXtobXk/tn5qEtUmBmdjJwLTAB\nGBRCyHzfFS9lLvHBYAheIeOCzJdrOE1xURmS79/YEMKU1BdCCPOpHsPcJ/GouCh/R+BVdYaGEM4K\nIUwKISwIIYwD9gWmAmeaWZfE8YqJypbr+5+3eFEiUXef4x8Oahpf1i3xWNMcCikTZnYacD3eTT0o\nUbkp0+eJx2XiJfEBtCs+OfvrhmqnNLhW+P/3GwELUxahq6I6sbgjse/fieeKi8qQfJ9r+qOdXG8o\nWeVPcVH+euHzZl7NfCGRXL6Lf0bbPLFbMVHZcnr/Qwjz8GS0lZmtEnG92D6jKpGou1cSjztnvmBm\nrfAxsPOAd/LZKMkvM/sb8G/gA2BgxpjWVCPxxHOZ1Wvx+tEtgDdDCIsjXpfSsBC4A18n4I6M7YPE\nMW8knr+deK64qAwj8A+N3Wt4fePE4zeJR8VF+VuEv8cr1/D6yinHgWKi0tXl/R+ZeIw6Z3DicUS9\nW1boBTlKecOr8izFVwdM3f9vfELdjYVuo7YGff/PT7zPo4F2yzk2dTGZXin7mwFvJeLowEL/m7Q1\nWKxcyPIXpFNclPGGr1y8FDgtY//Oif0/A60VF5WxJT7IJRekWz3jtd0S7/FcoL1iovw3cluQLqv3\nn+oF6b5I/YwCdAF+IaYF6SxxUamDxKJ0b+IVOYYBn+LrRgwAPgO2CSHMqPECUrLM7Ci82sYS4D9E\nV0aYFEK4N+WcvYFH8W+uH8KXt98L76p8NITwu4ZutxSGmV2IJxPHhxDuynhNcVEBzKwz/vdiTfyb\nwrF4qca98T/2B4cQnkw5XnFR5sxsKLAPMAd4Al9Xojuwe+KQU0MI/0k5XjFRRhLv5z6Jp6sCu+BD\nk95I7Ps5hHBWxvE5vf9m9i/gdHyY02P4StgHAx3wL8Fvrve/Q4lE/ST+OFyMdx11BL4HHgcuDiHU\nVHZLSlzig2HmhNpMr4UQ0hZ7MbOt8LUFtsJL/n2JD4W5Ieh/xrKVEi8nZCYSidcVFxUgsfDYBfgf\n/9WA2fhiUv8IIYyJOF5xUcbMzIDf4xOvN8aHp/yK93JfH0JYZtiJYqJ8ZPE5YlIIYd2Mc3J+/83s\nSOBPeJJaBbwP/DOE8Hy9/xEokRARERERkTrQZGsREREREcmZEgkREREREcmZEgkREREREcmZEgkR\nEREREcmZEgkREREREcmZEgkREREREcmZEgkREREREcmZEgkREREREcmZEgkREREREcmZEgkRERER\nEcmZEgkREREREcmZEgkREREREcmZEgkREREREcmZEgkRESlpZnaRmVWZ2faFbksmM+tmZgvN7K+F\nbguAmT1tZhPNrHGh2yIipU+JhIhICjPbwMxuMLPxZjYz8SFwqpk9Y2bHmtkKhW5joSWAwTekAAAJ\npElEQVQ+tI/M4/2OStzzyBoOCYmtGF0JzAT+U98LmdmkxM+hyswG1HLc3SnHXZDx8kXAusAf69se\nERElEiIiCYkPXR/jH7JmAfcAVwHPAusBtwOjCtW+CldbonADsBHwbp7akhUz2wLYB7gxhDAvhksm\nE6bFwPE13LM1cGDimGV+ZiGE94GRwHlm1jSGNolIBWtS6AaIiBQDMzsH/7b2W+DAEMKYiGN2Bopi\niEqFsdpeDCH8Cvyap7bk4iT8w/z9MV/3GWA/M2sfQpiR8drhwIrAE8B+NZx/P3AncADwYMxtE5EK\noh4JEal4ZrY2cCGwCBgclUQAhBBeBHaLOP8gM3s9MRRqnpl9ZGZnRw2DSgxP+drMWpjZP83sWzNb\nkBi3XmOSYma9zexhM/sucfw0M3vBzA6MOLavmT1mZt8nhmZNNrNbzGy1iGNfNbOlZtbIzM4xsy8S\n159sZv9I/dY6OcQI/3A8IGX4zG9DaMxs7cTzuxLzAx42sx8T99g+ccwWZnadmY0zs1/MbH7ivv8y\ns3YZ7XsFuCvx9J6U+y01s7USx9Q4R8LMdjCz4Yn7LDCzz83sCjNrU5+fxfKYWXPgd8D7IYSvY77X\n7UBz4IiI144HpgAv1HL+Y8BS4Nhs/z0iIlHUIyEi4h+omgIPhBA+re3AEMLi1OdmdjlwNjAd+C8w\nB082Lgd2NrOdQwhLUi+RuNcLwGrAc8ASfAjMP8ysWQjhkox7nADclDhuGDAR6ARsiX/r/WjKsccC\ntwILEsdOAboBxwF7mlnfEMJ3Ge0B/2Z6W+B5YDYwGO99WTlxLsBYvNfmImASPvQr6dWMH9V6wGjg\nc/wb8BUT1wU4IfHvfQ14Cf9SqxdwBrBroo1zE8feDcwA9gaeBMaltHtmyn8vM4zHzE7Ef25zEj+j\nn4ABwN+APcxsmxDC7JRTcvlZLM/WQEtqHgpXn3u9hP/8jweuT+40s17A5nhSXFVTw0IIc8zsI2Db\nRLwtzO6fJCKSIYSgTZs2bRW9AS+T+IY2x/P64R/YvgFWTtnfCP8QvxQ4O+OcbxL7nwaapexfGf/A\n/CvQOGX/RnhPyc/AhhFtWD3lv7sBC/EP76tmHDcQT0SGZux/JfFveA9om7J/RTxhWQx0yjinChhZ\nw89k7cTrS4FLajhmTcAi9h+TOPesjP1HJa53ZA3XuzDx+vYp+9bCk6mZQLeM429M3OeW+v4saomN\nCxJt+l0Nr9fl556MnUbAuYn/7pvy+i2J89bAk5Aq4IIa7n9T4vz+hf7/T5s2baW7aWiTiIj3DAB8\nV+tRyzoO/2b50hDC9OTOEEIVcGbitchJscApIeWb4MT5TwFtgQ1Sjvsj0Bi4OITwWeZFQgjTMo5t\nApwWQvgh47hX8ORmTzNrmXkZ4K8hhFkpx8/He1ga4T0fufoRuDjqhRDClBBC1OTpe/Bv5Xepw/0y\nHYH3/NwQQpiY8dq5wP+AIyKGEMX1s1gn8VhbTNXnXnfjicIJAGbWAjgEGB7Se5xqkjxmnVqPEhGp\nhYY2iYjU3eaJx1cyXwghTDSz74CuZtY6hPC/lJdnhRC+ibjelMRj+5R9fROPw7NoT7/E4wAz6xPx\neic8KVkfH6aU6v0s25OtD0PGMLAkM2sC/AE4GOiOJ0+pX2x1rsP9MtX23sw0s7HAdsCGwPiMQ+L4\nWayceFzeJPA63SuEMM3MngMOMrNT8fkYrfD5E9n4BZ/E3inL40VElqFEQkQEvsc/UOb6AbZtyvk1\nXXdNoB3+DXjSzOjDSc6lSF0sLDn5eGoW7emYePxLLccE/ANn+s70uQK1tSdbP9Ty2iP4HImv8HkP\nP+BDsgBOB5rV4X6ZsnlvoPrn+5uYfhbJHpflVZyqz71uB/YADsOHhf2AV3TKRjJxK9b1N0SkBCiR\nEBHxCbGDgB3wISPZSg5JWRUfv55ptYzj6iKZdHQGvsiyPW1C9WTlQon8gJqYELwP8CJeIasq5TXD\nJ0LHIfW9iZpAH8d7U5ufE48dGuj64BP1pwHn4fMiLkv9eS5HB/w9mr68A0VEaqI5EiIinjwsBvY3\nsw1rOzCjpGtyeNCAiOPWxT/cfVPDt87ZeifxuEzZ2VqOXaYMasyqqFsvBXg1J4CnIz709sUnG2da\nin+zn8s9xybOGZD5gpm1BTbDJ2PXWqWrHpIlX9dooOsn5+LchSeZS/G1IbKV7H1bpjStiEi2lEiI\nSMULIXyLlzRtBjyX+NZ8GWa2G+lzFe7CP6yeZ2YrpRzXCLg68dod9WzezfiHxPPNbKOINqUOx/oP\nPizmGjPrFnFsUzPbtp7tAR9fv2Ydz52UeByQutPMOuHtr+l+4JWYsnU/nhz+OZHUpboUaAPcV9M8\njhi8gb//vRvo+knXAfsCu4YQJuVwXh+8Gtg7yztQRKQmGtokIgKEEK4ws8Z4KdH3zOwtYAy+BsEq\n+Lf83YB3U85528yuAs4CJpjZY8BcvPegB/5h8l/1bNenZvZHPKEYa2ZP4eVBO+IfUmfhQ7IIIXye\nWEfiTuBjMxuOD4dqin8I3w5fS6F7Dk2IGuM/AjjYzIYBH+Af2F8PIbyRxfXeA97EV2Z+Ex9Wtgr+\nM/sMH6qT6W1gHnBaImFLzr+4PmMS+29CCN+a2Wl4cvKBmT2CD+PpD2wFfIKv/5GLWuc7RLR5Dr5G\nRF1kda/gq3oPy+nCZq2AnsCrQWtIiEg9KJEQEUkIIVxqZo/iZVQHAkfjKwj/gi+EdgVemjP1nLPN\n7APgZKpLjn6Flxj9d0hfjO6303Js1x1mNh6fRN0fX5ztZ+AjMno8Qgj/NbNxePnZgcBOeHIzDV+U\n7eEc2xP12qn48KYd8ASgEfB3PHFKnhN5zRBClZntifcKDAb+jE8kvw24DB9qFDLOmWlm++FJ3lH4\nQm8A95E+iT3zXjeb2UT857Yf0AKviHQlcEUNQ85y/VnUdO8FZvYgcLyZda2hSldd7pVL7NT0PhyA\nDxO7K+I1EZGsWXQpbxEREakPM9sM77G5KIQQuaZGIZjZCGBjYI0GHNolIhVAcyREREQaQAhhHDAU\n+JOZRU0izzsz2xLvqbpESYSI1Jd6JERERBpIYqL3x8D5IYR/FkF7nsYXJOxRw7A7EZGsKZEQERER\nEZGcaWiTiIiIiIjkTImEiIiIiIjkTImEiIiIiIjkTImEiIiIiIjkTImEiIiIiIjkTImEiIiIiIjk\nTImEiIiIiIjkTImEiIiIiIjkTImEiIiIiIjkTImEiIiIiIjkTImEiIiIiIjkTImEiIiIiIjkTImE\niIiIiIjkTImEiIiIiIjk7P8BVCaUlYCcKJwAAAAASUVORK5CYII=\n", "text/plain": [ "<matplotlib.figure.Figure at 0x10c46b898>" ] }, "metadata": { "image/png": { "height": 270, "width": 393 } }, "output_type": "display_data" } ], "source": [ "c = c_lin # Drug concentration(s) in nanomolar (nM)\n", "EC_50 = 20 # 50% effective concentration in nanomolar (nM)\n", "F = 1 # Efficacy (unitless)\n", "n_H = 1 # Hill coefficients (unitless)\n", "r_a = calc_drr(c, EC_50, F, n_H)\n", "\n", "K_i = 5 # Dissociation constant of inhibitor in nanomolar (nM)\n", "c_i = 25 # Inhibitor concentration in nanomolar (nM)\n", "r_aca = calc_drr_agonist_cptv_antagonist(c, EC_50, F, n_H, K_i, c_i)\n", "\n", "plot_dose_response_relation(c, r_a, \"Agonist Only\", r_aca, \"Plus Antagonist\")" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "Following result shows drug response of agonist with competitive antagonist to the logarithmically increased concentrations." ] }, { "cell_type": "code", "execution_count": 14, "metadata": { "collapsed": false }, "outputs": [ { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAxEAAAIhCAYAAAAxajd/AAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAAWJQAAFiUBSVIk8AAAIABJREFUeJzs3Xd4FFXbBvD7TDohQEIPIiGANJEmoqASQBRFFLAAIiJN\nsbwWBOwk0VcFxA8QC680QRCwIIgFkCKICCogCohU6UiR0ENJnu+PYXez2d1ky+zObHL/rmuukJkz\nZ87uPEz22TNzjhIREBEREREReUszuwFERERERBRemEQQEREREZFPmEQQEREREZFPmEQQEREREZFP\nmEQQEREREZFPmEQQEREREZFPmEQQEREREZFPmEQQEREREZFPmEQQEREREZFPmEQQEREREZFPmEQQ\nEREREZFPmEQQEREREZFPmEQQEREREZFPmEQQEREREZFPwjaJUErdpZR6Wym1XCl1XCmVq5Sa6mdd\nVZRSk5RS+5RS2UqpnUqpUUqpMka3m4iIiIgo3EWa3YAAvATgKgCnAOwFUMefSpRSqQB+AlAOwBwA\nfwG4BsCTAG5RSrUUkWOGtJiIiIiIqAgI254IAE8BuEJESgN4FIDys573oScQ/xGRu0TkBRG5CcAo\n6InJa4a0loiIiIioiFAiYnYbAqaUagVgKYBpIvKAD/ulAtgGYKeI1Mi3rSSAA5d+rSAiZ41qLxER\nERFROAvnnggjtL70c2H+DSJyCsCPAEoAuDaUjSIiIiIisrLinkTUBiAAtnjYvvXSzytC0xwiIiIi\nIusr7klE6Us/j3vYblvPUZqIiIiIiC4p7kkEERERERH5KJyHeDWCraehtIfttvVZhVWklAr/J9SJ\niIiIKGyIiL+jkwasuPdE/AV9aFhPzzzUuvTT0zMTRERERETFTnHviVh66efN+TdcGuK1JYAzAFZ5\nW6GVh8xVSgW1fUbU708d3u7jTbnCyhS03dO2YL/vgWJcMC7cYVwwLvITATRNYccOwb//Av/+Cxw9\nCvu/jx0DsrL0xfZv288TJ4DcXG+OoqCPdxIIf+rwdh9vyhVWpqDtnrZ5175YnEU5HEFZHEVZHEUi\njiEJ/yIRx5z+XQZZKI3jKIMs+79jcL7Q+v15RUYItP5gRoS3ZY2OCtO6H/IoFkmEUioSQA0AF0Rk\nh229iOxQSi0E0E4p9biIvJNnt1cAxAN4n3NEEBFRUSOif7j/5x/HcuiQvhw+rC9Hjjh+Hjmi75ea\nam67rSAqCoiOBmJiHP+2LX/+CVx9tb7ets3276go4PPPgZ49gchI/fe8P996C3jpJce6uNzTSDh9\nEP2HAV8/NBfxpw8h/sxhlDh1CHGnDiHu5GHEnDqCmFNHEX3iCCLP8+MKAP0NtJ2g6Gg9uFNTHScj\n70nJf4Jsy7RpQP/+ricpKgqIiHD8HhkJDBoEvPOOvt62zvZv28+77gK++kr/3d3SogXw66/O6zRN\n/3nFFcDOnc7rKlc2+10O38nmlFJ3Auh06ddKAG4BsAPAD5fWHRGRwZfKVgOwE8DfIpKar55U6PNB\nVADwJYA/oc8LkQZgM4CWInLMi/YIwJ4IfrMYXt8sAowLxoV7jIvwjQsR/dv/vXuBffuA/fuBAwdc\nf/7zD3DunK+1W+c756goID4eKFFCX+Ljgbg4YNUqhQ4dBHFx+vq4OH2JjXX+d97l3nsVFiwQxMbq\nnztjYvT1ts+htqVUKYXcXIEq4Gtgr+Li9Gn95NhO0qUTpd5+G3LjjfoJOngQOHnSx3fFHG7bFxHh\nfILyL7aTkXexnaS8P2NioLp1g8yf7zgxeU+KbcmbNGjOd+sH81rhbVmjrxfqUhCa+UxEOPdENAKQ\nd3ZqAVD90gIAfwMYnG+7y9m51BtxNfSeh/YAboU+U/UoAK+IiKfhX8NOq1atLF+/P3V4u4835Qor\nU9D2YL+/wcK4YFy4w7iwblycPw/s2QP8/be+7Nql/753r+Pn6dN+V18I/9sdGwuULg2UKqX/tP07\nIcGxzJzZCgMH6v8uWVJf4uNdf5YooScR7qSltcJXX/n4qlq1ws0uNza7L1dQAgEArW68Edi9W192\n7XL+9549aGX7cO1uXwBYvty3xhslKsr5xORfbCepZEnnE5SQgFZPPw1Mn66/LtsSHY1C3ywvtXr/\nfeCWW/zfP4jXCm/LFsW/I2HbE2E17IngN4v8xjl49TMuQo9xYV5c5OYKjhwBtm8Htm3Tl+3bHUnD\nvn16b4M5FKpWFSQlAWXLAklJ+pKYqP8sU0ZfEhMd/y5TRv9cGh3tRe3hEhdZWfpJ2bHDZVE7dpj0\nRAT0RKBcOf3k2E6Q7eQkJrqeKFvSUKaMnuX5+aHf6tcL9kQERzj3RJCP0tPTLV+/P3V4u4835Qor\nU9D2YL+/wcK4YFy4w7gIflycPg1s2QJs3uxYAP3z3IkTXjUzYHFxQMWKzkuFCvpSrhxQvrzjZ9my\nwPDh6cjICF57LBUX587pGdyWLfYlvWpV/U06dMhzXYUdy5dtUVFApUp6F9NttzlOToUK+kmxLbbE\noWRJw77994XVrxfBvFZ4W7Yo/h1hT4RBwqEngsxh9W+cyRyMi+Lj1Clg0ybgjz+ADRv0f2/erN/h\n4sqYu9/j4oCqVYEqVYDkZH2pXNnxs3Jl/bOpSZ85rSU7W08SNm7UT47t57ZtQE5OcI4ZGamfnPyL\n7cTYlqQkQCleL8gFeyKIigGrfoNA5mJcFD0i+gAqa9cCv/3mSBp27Ch8Xwfv4iI5GUhJ0Zdq1YDL\nLwcuu0xPHKpW1e9aKfbJgTsHDwLr1+snyPbzr7+8HX/We+XL6yelWjXHCcp7osqXd3n4tyC8XpAV\nsSfCIOyJICIqPnJz9c+ea9c6lnXrgOMGDcURFwfUrOlYatTQR6hMSdGThNhYY45TpO3bpw+Z+csv\n+s916wq8DcknUVH6SbGdmLxL9eoeH5wmMgp7IoiIiMLA4cPA6tXAqlX6z59/Dvy5BU3TP3PWqaMv\ntWvrw8HXqqXfycKeBB+cPOk4Ob/8oi8HDgReb9Wq+sm54grnpVo1fQhTomKMSYRJFP86EFGA2PMZ\nHCL6MwvLlwM//AD89JOvtyQ50zS9N+HKK4EGDYD69YF69fR1MTHGtbtY2b0b+PFHx/L774HdklSt\nmuPE2H7WrasPZUpE7okIFwMWXJqHwltwzFvBhQsXLn4twZSenm75+v2pw90+Fy+KrFkjMmqUSOfO\nIuXKiQDpAkghi2uZUqVE0tJEnn5a5M4702XNGpEzZ7xve7Df90CZFhc7d4pMnCjSo4fIZZcVeGLS\nCzppsbEizZqJ9Osn8s47Ij/8IHL8uNevy5tyhZUpaDvjIjj1G3WtCKSs0XGR5++AaZ99+UyEQXx9\nJiLPvWzBaxQRFUmhuH5Yfdx3f+uwzcOwfTuwaBHw3XfAkiX6sP/5SkL/G11gbbj5ZkHTpkCTJkDj\nxvrt8LbnZTl/SAD1798PLF2qn5wlS/QJMrytA5fOXEyMflKaNdOXpk31W5EiXW/CCIf5QxgX/tfP\neSKCg7czERGRC6uP++5rHVlZesLQpEk6UlO9+UzqXHdkJNCwIXDttUDz5vrPadPSkZnpX/s8bbP6\nKDxBa9/588DKlUhv0QK46ip9aCtf1akDtGiB9EOHgFde0e8f8zStdT5Wmj/E3+OayerXC84TERzs\niTAIeyKIKFR4/fDOli3AV18B8+bpzzb4MuR/QgLQsiVw443ADTfoX2LHxQWvrcXS3r3AN98A334L\nLF6sPxztrZgYvXehZUt9adFCn2yNqJhgTwQREZFBcnKAFSv0pGHePD2J8FZSEtCqlZ403Hij/mW4\nm7teKFCbNwOzZwNffKEPu+qt6Gg9UWjdGmjTRk8g+FQ6kal4iSQiorB18aI+itJnn+mfTf/5x7v9\noqOB668H2rUDbrpJv3WeI3YGgQiwZo0jcdi82bv9NA245hqgbVs9abjuOnYFEVkMkwgiIgorFy8C\ny5YBn36qfzY9fNi7/erUATp00BOHG24ASpQIbjuLtY0bgenTgRkzvH8oumJFoH174NZb9ZOUlBTU\nJhJRYJhEEBFRWFi/Hpg6Vf9s6k2PQ2SkfotSx4568lCzZvDbWKzt2gXMnAl8/LE+b4M3rr0WuP12\nPXFo1MgxtBURWR7/txIRkYuMjAxL1H/gAPDWW/rISI0aAf/3f3kTCNc6SpUCevQAPvkEOHJEH8b1\nyScdCYS3x/WmXGFlCtruaVuw3/dAubTv1Clg4kS9ayclBXjuuYITiMhIvZfhvfeAffv0mfxefFEf\nI1fTDHn9/tTBuAiMVa4XRu7vyz5mxYXZODqTQTg6ExGFSlGfJ+LCBWDuXGDSJGDBgoImItZnBChV\nCrjzTuCee4Cbby74eVvOBxAYpRQkNxdYvRqYMAGYNUtPJAoSG6v3NHTponcJJSYWXL9J84cwLvzH\neSI4TwQRWdiyZcvQunVrpKSkYMeOHWY3x1JSUlKwe/dufP/997jxxhvNbk6RYMa473v2AB98oH82\nPXiw4P0TEoDq1dPx2mv6F9veDtTD+QACcOQI0m+5BWjQQH/moSAREfoT6/fdB3TqpHcReSHU84f4\nug/jwj3OE8F5IigA7Ikw19y5c9G5c2cAQLt27bBgwQKTW2Q8I5OI48ePY/To0QCMuzht3rwZEyZM\nwKJFi7Bnzx6cOXMG5cuXR6NGjdC5c2f07NkTkUEaM7N69erYvXs3li5dWiySiKJ0/cjJARYuBN5/\nH/j664J6HfTb5W+5BXjgAeCOO/hgdMisWweMGaM/JH3+fMFlr7tOTxzuuUd/UJqIgsIKPRFMIgzC\nJMJcXbp0wdy5cwEAmqZh9+7dqFy5ssmtMtYvv/yCXr164bLLLsPChQsDqmvXrl2oXr06lFLI8WUG\nLjdEBM8++yxGjRqFnJwcKKUQFRWF+Ph4ZGVl2cvUqlULn3zyCRo2bBjQ8dxhEhF+Tp7UexzGjgV2\n7iy4bIMGQK9e+mfTIvbf2rouXtTvKRszRp+pryDJyUDv3vpSo0Zo2kdUzFkhieCD1RT2jh49iq+/\n/hoAULduXeTm5uKjjz4yuVXGa9asGTZt2hRwAmG0Hj16YOTIkcjNzcV9992HX3/9FdnZ2Th69Ciy\nsrIwadIkJCcnY+vWrUhLS8PatWvNbjKZaO9eYMgQoGpVYOBAzwlEyZLAgAHA2rX6c7rPPMMEIiT+\n/RcYMUJPBu6+23MCERGhP4gyb54+KtN//8sEgqiYYRJBYe/jjz/GhQsX0LJlSzz//PMQEUyZMsXs\nZlmaUd9gv/vuu5g5cyaUUnjzzTcxbdo0NG7c2L49ISEBvXr1wpo1a1CzZk0cP34cXbt2xZkzZww5\nPoWP9ev125CqVwfefBM4ftx9uYYNgXHjgP379Vuc8oQTBdOBA8CgQcDllwPPPgvs3u2+XPXqwLBh\n+gMsc+bow7Nyam+iYolJBIW9KVOmQCmFXr16oXPnzihZsiQ2b96MX3/9tdB9f/zxR3To0AFly5ZF\nyZIl0ahRI4wZMwYiggcffBCapuGVV15xu+/JkyeRkZGBRo0aISEhAQkJCWjYsCEyMjJw4sQJt/tk\nZmZC0zT06dPH3vbmzZujVKlSKF26NNq0aYNFixa53XfZsmXQNA2pqaku20QEH374Idq0aYNy5coh\nOjoaFSpUwJVXXom+ffs6PSOSlpaG1NRU+2gPmqY5LZ5eb37Z2dnIzMyEUgq33347Bg4c6LFsxYoV\nMW3aNCilsGPHDvzvf/9z2r5r1y5omoaIS1MGb9iwAd26dUPlypURFxeHunXr4r///S8uXLjgVdsA\noG/fvtA0Dffee2+B5dLT06FpGq6//nqv6ybv/fCDPmJSo0bARx/pd8nkFxOjJxgrV+q33z/8sP7g\nNIXAzp3AI4/ow7O+9RZw+rT7cm3b6rc3bd2qJxnsFiIiEeFiwAJA9LfTO76WJ/c2btwoSikpUaKE\nHD9+XEREevfuLZqmyeOPP17gvlOmTJGIiAjRNE00TZOkpCSJjo4WTdOkS5cu8uCDD4qmaZKZmemy\n79atW6VatWqilBJN06RkyZJSsmRJ0TRNlFJSrVo12bZtm8t+GRkZomma9O7dW/r16ydKKYmKipIy\nZcrY942IiJDZs2e77Pv999+LUkqqV6/usu2+++6zt0XTNElMTJTY2Fj779ddd5297F133SUVKlSw\nl69cubLT8tZbbxX6vouITJ8+3V7H6tWrvdrn5ptvFqWU1K5d22n933//ba9r4cKFUqJECfvriIyM\ntL83nTt3dltvSkqKaJomy5Yts69buXKlKKUkNjZW/v33X7f75ebm2vedNGmSV6/BCkJx/UhPTw9o\n/+XLRdq2FQE8LelSrpxIRobIoUOha6O3+3hTrrAyBW33tC3Q991rGzeK9OwpEhHh+STFxor07y/y\nxx8ha58R9TMuQs/qcRHMmPC2rNFxkefvgHmffc08eFFamESYY/DgwaKUku7du9vX2T5slytXTi5c\nuOB2v82bN0tMTIxomiYdO3aU3bt3i4hIdna2vPPOOxIVFSWJiYluk4jz58/LVVddZU8WFi9ebN+2\nZMkSSUlJEaWUNGjQQM6fP++0b0ZGhiilJDExUUqUKCEffPCBnD17VkT0D9JpaWmilJIqVapITk6O\n076ekojly5fbk5G3335bTp06Zd928OBBmTp1qgwePNhpn7wf2v3Vv39/UUpJpUqVvN7nvffesx/3\nwIEDbtuTmJgo3bt3t5+TM2fOyPDhw+0J0bfffutSr7skQkSkfv36ommajB071m17Fi1aJEopSUhI\ncHrfrC4U1w9/61++XKRNG8+fSwGRWrX0+s+cCX0bvd3Hm3KFlSlou6dtQf+7sHmzyL33FnyCKlUS\neeMNkSNHQt4+I+pnXISe1eMimDHhbVmj44JJRBFaQp1EFHT9N3MJpZycHElOTnb7wdL2odLdN/oi\nIg888IAopaRhw4ZuE40333zT/qE2fxLx0UcfiVJKYmJiZNOmTS77bty40d6jMXnyZKdttiRC0zSZ\nMWOGy7779++3Jzc//PCD0zZPScSIESNEKSW33Xab29fqjhFJRMuWLUXTNLnlllu83mfFihX24y5Z\nssRte9q3b+92344dO4qmadK3b1+XbZ6SiFGjRolSSpo0aeK2zu7du4umadKnTx+vX4MVWLEnYsWK\nwpOH668XmTtXJCeH3ziH/Bvn3btF+vYtuOehWjWR994TufTFRkjbZ2D9jIvQs3pcsCeCSYSlFyYR\nEvIkYv78+aKUksqVK0tubq7TtqFDh4pSSu68806X/XJzc6V06dJuP+TbnDlzxn57Uv4k4s477xRN\n0+Tee+/12Dbb7UW33nqr03pbEpGSkuJx3xtuuEE0TZP333/fab2nJGLcuHGilJKrr77a5X3wxIgk\nom7duqJpmtx3331e77N582b7cT/99FO37Vm6dKnbfSdOnChKKWnevLnLNk9JxNGjR+1J2W+//ea0\nLSsrS+Li4twmbFZnpZ7MzZtFOnUq+LrQpo1IvlNDoXLokMjTT4vExHg+QXXqiEyZIpKv55SIrMsK\nSQQfrKawNXnyZCilcP/999vHS7Z54IEHAADffvstjh496rRtx44d9gefW7Zs6bbuuLg4NG3a1O02\n2xClrVu39ti2Nm3aOJXN7+qrr/a4b5UqVQAAx44d81gmr7Zt2yI6Ohpr1qxBWloapk+fjgMHDni1\nrxU1a9bM7Xpf3xcASEpKsk9COHnyZKdtH3/8MbKzs1GrVi0+VO2HQ4eAxx4D6tfXB+lxp21bYPly\nYPFioBhM32Etp04BGRlAaiowahRw7pxrmUaNgM8+02effuABICoq5M0kovDFJILC0okTJ/Dll18C\nAHr27OmyvUaNGmjZsiUuXryIjz/+2GnbkSNH7P8uaEK65ORkt+sPHz4MwPGh1p3LLrsMAFwSGJuE\nAoaeiY2NBQCvRyKqWbMmxo0bhxIlSmDFihXo2bMnqlSpgtTUVDz66KP47bffvKrHV0lJSQA8v0Z3\n8r73tv3zi4+Pd7ve1/fFpl+/fhARfPzxx7iYZ2igSZMmQSllHymLvHPmDPDaa0DNmsB77+kzTudn\nSx4WLQJuuCH0bSzWcnP1YbCuuALIzNSTifyuuAL45BNgzRrgrrv0qcCJiHzEK0eYMv/GJfdLqMyc\nORPZ2dkQETRs2NBlmFJN0/Djjz9CJHhzRmRnZwelXn88+OCD2LlzJ0aPHo1OnTqhXLly2LVrF8aN\nG4emTZti2LBhhh+zbt26EBGsX7/e631+//13+7/r1atneJvcadu2LVJTU3H06FF74rlx40asWbMG\nERER9l4rKpgIMG2a/vnzpZf0Gafza94cWLaMyYNpfvkFaNlS71Vw1xt52WXA+PF6z8M99zB5IKKA\n8ApCYWnq1KkA9GnfC1vWrVuHjRs32vctV66c/d8F3fbjaVv58uUBALs9TcYEYO/evQCAsmXLev+i\nAlS+fHn85z//wezZs3Ho0CH8/PPP6NKlC0QEL7/8MjZs2GDo8Wy3cx06dAirV6/2ap85l+57qVmz\nJipVqmRoewrSp08fiIj9lqaJEycCANq3bx/SdoSrjRuB1q2Bnj2Bfftct6emArNmAT/9xNuWTPHP\nP0DfvnoWt2qV6/ayZfU5ILZuBfr14+RwRGQIJhEUdrZt24aVK1dCKYX169fj2LFjHpfbb78dAJx6\nI1JTU1GqVCkAwIoVK9weIzs7G2vWrHG7rUmTJhARLF261GMblyxZYi9rlqZNm+KTTz7BZZddhtzc\nXKfXqhnwDWSXLl3sCdnrr79eaPmff/4ZixYtglIKAwYMCPj4vujduzciIiKwYMEC7N69G9OnT+et\nTIXIyMjAqVPA4MH6rfPLlrmWSUrSb7fftAm4914g36NJhdZvRBuDtY835QorU9B2T9t8ek0XLujJ\nQa1awKRJrt3B0dHAc88BO3YAAwcCl24JDIQR5y3Y9Rf7uDCB1eMimDHhbdlgxIXpzHyquygtCPHo\nTMXZSy+9JEopady4caFlbcOxJicnO41clHeI14sXL7rsN3LkyEKHeHU34o+IyIYNG+xDvH744YdO\n22yjM/Xu3dtjmz1NcudpdKb8c1Hkl5qaKpqmyejRo+3rsrKy7K8hKyurwP0LMnbsWHs9I0eO9Fhu\n//79UqtWLVFKSY0aNVzmZPBmtKiCJtvzNDpTXnfccYdomibXX3+9KKWkYsWKbs99OAj29SM3Vz/G\nZZe5v3ExOlpk8GARD3P4ecWI9vtTh7f7eFOusDIFbfe0zevX9OuvIo0aeb679M47RdxMeBmoYP/d\nYlwEGBcmsXpcBDMmvC1rdFzk+Ttg2mdf9kRQ2Jk2bRqUUujSpUuhZTt27IioqCgcPHgQCxYssK9/\n/vnnER0djT/++ANdunSx35p07tw5vPvuu3j++eeRmJjots6uXbviqquugojgzjvvxOLFi+3bFi9e\njA4dOuDChQu48sorcd999wX4agv3wgsv4J577sHcuXOdRi46dOgQnnjiCezcuRNKKbRr186+rXTp\n0vYHx/OPWuSLxx9/HF27dgUADB48GD169MC6devs20+ePInJkyejWbNm2LZtGxISEjBr1iyPD08H\nk+0B6x9//BFKKfTs2RMREREhb4fV7dwJ3HorAKTj0l15Ttq3129vGjEC8PBfxCvp6en+7xxAHd7u\n4025wsoUtN3TtkKPe/o0MGgQcM01gLtBE+rWBRYu1IfMqlGj4Lr8YMR5C3b9xTIuTGb1uAhmTHhb\nNhhxYTozM5iitIA9ESGxZMkS+zfW7iZ6c6d9+/ailJJu3bo5rZ88ebJERESIpmmilJKkpCR7D8Ld\nd98tvXr1Ek3TZNiwYS51btu2TapXr27fNz4+XuLj4+1tq169umxz8y2gtz0RSimveyKeeuopUUrZ\nl9KlS0upUqXsv3t6Denp6fb2lyxZUlJSUiQlJUXGjBlT4PuZX25urjzzzDMSFRVlry8mJkYSExOd\n2nDFFVe47bkRCU1PRE5OjlSpUsV+nI0bN/r0Oq0kGNePnBx9nrH4eHH7xfZll4l8/rneS0EmWbhQ\npHp19yeodGmR0aM51wNRMQH2RBD5ZurUqVBKoXbt2qhbt65X+9x1111QSmHevHn2+SEAfUSj5cuX\no3379ihTpgzOnz+PevXqYdSoUfj0009x/PhxAECZMmVc6qxRowbWr1+PoUOHokGDBvaHuBs0aICh\nQ4di/fr1qOHhW0Bb2YJ42u5u34EDB2Ls2LHo1KkTateuDQA4f/48Lr/8cnTv3h3Lly/Hs88+61JX\neno6hg8fjoYNGwLQHxTfvXs3srKyCmybuzaNHDkSv//+O55++mlcddVViI+Px9mzZ1GlShV06NAB\nEyZMwKZNm+zH8vV1591e0HtTEE3T7M/INGvWLGSjQ4WDnTuBm24CHn1U/6I7r8hIYMgQ4M8/gS5d\nfHvugQxy9CjQqxdw8836ycrvvvuALVuAJ5/kXA9EFDJKT2YoUEopvTvCy/fT9oGH7791VatWDXv3\n7sXSpUtxI4ecKRJq166Nbdu2Ydy4cejfv7/ZzfGbUdeP3Fxg3Dg9ScifPABAWhrw7rsA8y0TffMN\n0KePPgJTfpdfrp9A/f4zIipG8vwdMO2rHfZEELkxY8YM7NmzB6VKlULz5s3Nbg4ZYPHixdi6dSvi\n4+PRvXt3s5tjOlvvw2OPuSYQCQnABx8AS5YwgTDNmTN611CHDq4JhFLAU0/pD6cwgSAik3CwaCq2\n3njjDSQkJKBTp06oUqUKlFLIysrClClT8MILL0AphcceewwxMTFmN5UCdOTIEQwePBhKKfTt2xcl\nS5Y0u0mm+ugj/fOpu8mM27UDJkzQv+Qmk/z6K9Cjh36LUn4NGugTxvHLDSIyGXsiqNjatGkTnnji\nCVx++eWIi4tD2bJlUbZsWTz99NPIzs5Gu3btMHToULObSQEYNGgQqlWrhipVquC3335D+fLl8eKL\nL5rdLNOcPKlPZvzAA64JhK33YcECPYGw+rjv/tZh6fkALl5ERps2wHXXuSYQERFARgawZo2pCQTj\novBynCdzEMVGAAAgAElEQVTCevVznojg4DMRBuEzEeFn1apVmDZtGlasWIEDBw4gKysLpUuXxlVX\nXYWePXuiZ8+ehkzKRubp3bs3pk6dilKlSuG6667Dm2++ifr165vdrID5c/1Yswbo1g3Yts11m7ve\nB6VUUK9PRtTvTx3e7uNNucLKFLTdZdvOncD990OtXAmXPWrWBKZNs0TvA+MixHHhY/vMYvW4CGZM\neFvW6LiwwjMRvJ2Jiq1rr70W1157rdnNoCCaPHlyQPNgFAUiwOjRwLPP6hMc5xUbC/zf/wEDBriO\numT1cd/9rcOS8wHMm6d3D2VlwWWPhx7SZ6W2yC14jAvOE+GO1eOC80QEB3siDMKeCCIKFW+vH4cP\nAw8+qA/wk1/9+sDMmcCVVwahgeSdixeBl18Ghg1z3Va+vN49dMcdoW8XEVkeeyKIiCgofv5Zn9dh\n3z7XbQ8/rPdAlCgR+nbRJQcPAt27A99/77qtQwdg4kSgYsWQN4uIyFu84ZuIqIiZPBm48UbXBKJM\nGeCzz/SpBZhAmGj5cqBxY9cEIiJCv3Vp3jwmEERkeeyJICIqIs6fB55+GnjvPddtLVoAH38MVKsW\n+nbRJSLAyJHA888DOTnO25KTgVmzgOuvN6dtREQ+YhJBRFQEHDwI3HMPsGKF67aBA4Hhw4FIXvHN\nc/asPvP0zJmu29q00TM89j4QURjh7UxERGFu9WqgaVPXBCIuDpg+Xb9DxtcEwurjvvtbhynzARw4\nAKSlOSUQ9j1ffBFYuNCeQFh1PHgbxkXh5ThPhPXq5zwRwcHRmQzC0ZmIKFTyXj+mTgX699dvZcor\nJQX44gugUSP/j2Hlcd/9rSPk8wGsWwd07Ajs3eu8DYB89ZX+ELUf7TML44LzRLhj9bjgPBHBEWHV\n7CbcZGZmZgDeZ4uZmZnwpTwRkY3t+qFUBp56yvX2+ptu0r/cTk0N7DhpaWmBVRCC+v2pw9t9vClX\nYJnNm5H23HPA0aPO6+vVA7p3R9oTTwTUPrMwLgovV1iZgrZ72sa4CKz+YMaEt2WNjIs8nyMzCz1w\nkLAnwiDsiSCiULFdP+A6tzEGDwZef53PP5hKBHjzTeC55/R/59W+vX5bU+nS5rSNiIoEK/RE8M8M\nEVEREBOjD+3avbvZLSnmLlzQZ5n+8EPXbU884d8DKkREFsQrGRFRmEtKAubO5eigpjt9Grj7bmD+\nfOf1ERHAO+8AAwaY0y4ioiDg6ExUrCxbtgyapiE10JvFqdjJzMyEpmno06eP2U1xUqMG8NNPTCBM\nd/Qo0LatawJRpoy+jgkEERUxTCIoLPXu3RuaprkspUuXRuPGjTFkyBDsyz9dbxi7ePEiKlSoAE3T\nEBkZGfTXNmbMGGRmZmL37t1BPU5xtX79emRmZmLKlCkB1XPttXoCccUVBjWM/LNnD3DDDfpYu3ml\npgKrVulPuhMRFTFMIiisRUdHo1KlSqhUqRIqVqyI06dP4/fff8fIkSPRoEEDrFy50uwmGuKbb77B\nkSNH7MO8TZs2LajHGz16NF555RX8/fffQT1OOClXrhzq1KmDypUrB1zXb7/9ZkgSsWQJUL58wM1x\ny+rjvvtbh+HzAfz5J9Cypf4zr0aNkNG5M1C7tk/1W33EPsZF4eU4T4T16uc8EcHB0ZkMwtGZQqt3\n796YMmUK0tLSsGTJEvv67OxsfP7553jiiSeQlZWFSpUqYceOHYiJiQGg387UunVrpKSkYMeOHWY1\n32ddunTB3LlzUa9ePWzcuBF16tTBpk2bgna86tWrY/fu3Vi6dCluvPHGoB2nuJoyZQp69+7tEr/e\nCsX1w+rjvvtbh+HzASQlAf/+67whLQ2YMweqTBnOB2BC/ZaIC84TYan6OU9EcLAngoqU2NhY9OjR\nA2PGjIGI4ODBg5gzZ47ZzQrIv//+i2+++QYA8PHHHyMhIQF//fUXfvnlF5NbRv6y8ocBm/T0dMvX\n708d3u5TaLmFC5EeFeWaQHTpAnz7LVC6dIF1eNoW7Pc9UIyLwssVVoZxEfr6gxkT3pYNRlyYTkS4\nGLBAH7BdvOVreXL24IMPilJKWrdu7Xb7uXPnJCIiQjRNk8GDB9vXf//996KUkurVq7vsU61aNVFK\nybJlyzweVyklmqbJrl27XLbNmTNHbr31VqlYsaJERUVJUlKS1K5dW7p37y6zZs3y41Xqxo4dK0op\nuf7660VEpE+fPqJpmjz22GMe9/n777/tbRUR+eOPP6Rr165SqVIliY2NlTp16sirr74q58+fd9ov\nIyNDlFIel7zvd05OjnzzzTfy0EMPSdOmTaVixYoSHR0tycnJ0rlzZ1myZEmhr+3DDz+U5s2bS3x8\nvCQlJUnr1q3lq6++EpHCz8f27dvloYcektTUVImNjZXExES58cYbZcKECZKTk+N2n1atWolSSqZM\nmSJnz56V9PR0qV27tsTFxUmFChWkW7dusnXrVrf72t6b3r17u2w7efKkvPLKK9K0aVNJSEiwvw9X\nX321DB48WDZs2GAvW9D7W1j82fD6YbJ580Sio0X0WSAcy0MPiVy8aHbriKgYyPN3wLzPvmYevCgt\nTCJCq7AkQkSkYsWKommaPPzww/Z1BSURKSkpommaX0nECy+8YN+maZqULl1aSpQoYf+9cuXKfrxK\n3dVXXy2apsn48eNFRGTZsmWilJKyZcu6JAE2eZOIhQsX2tuSmJgokZGRommaKKWkc+fOTvuNHDlS\nKleubC9TtmxZqVy5sn25++677WU3bNjg9JrLlCkjCQkJ9t+VUjJs2DCPr6tfv372/SMjIyUpKcme\n+I0ZM6bA8zFv3jyJi4uz75+YmCgxMTH247Zr107OnDnjsl9aWppomiZvv/22NG7cWDRNk7i4OImP\nj7fvW65cOdmxY4fLvhkZGaJpmksScfz4calXr57Taylbtqz9PdQ0TZ5//nl7+cqVK0uZMmVEKSUx\nMTFO729ycrL89NNPHt8zG14/TPTllyJRUa4JxMsvi+Tmmt06IiommEQUoYVJRGgVlkScPXvW/gHu\n2Wefta8PRhLx999/2z/8vvTSS3L06FH7tiNHjsjs2bOlX79+/rxM2bRpkyilJC4uTo4fP25fX716\nddE0TT7//HO3++VNIhITE6V79+6ye/duERE5c+aMDB8+3P7+fPvtty77296L5cuXe2zbli1bpF+/\nfrJo0SI5efKkff3hw4fltddek8jISImIiJCff/7ZZd9JkybZ2/fSSy/JiRMn7Pv2799foqOj7R/s\n85+P7du3S8mSJUXTNGnTpo295+D8+fMyfvx4iYuLE03TpH///i7HTUtLE6WUJCYmSmpqqnz33XeS\ne+mD34oVK6Rq1aqiaZp07drVZV9PPRGZmZmilJKKFSvKt99+a+8FuXjxomzbtk1GjBghEyZMcNrn\nww8/LDQJLgivHyaZM8d9AjFmjNktI6JihklEEVpCnkTk/yNmlSVECksibLcAaZoms2fPtq8PRhLx\nySefiFJK6tWrF8Arcm/IkCGilJJu3bo5rU9PTxellNxxxx1u98ubRLRv395tmY4dO4qmadK3b1+X\nbd68F4V59dVXRSklffr0cdlmS4IGDBjgdt8OHTrY25+/DX369BGllNSqVUvOnj3rsu8HH3wgSimJ\niIiQ7du3O22zJRHx8fFuexs+//xze9J24cIFp22ekojbbrtNNE2TESNGuH8j3GASEYZmzxaJjHS9\n5v3vf2a3jIiKISskEXywmoqUXbt2YeTIkXj22WcBACkpKejYsWNQj1mqVCkAwPHjx3H27FnD6s3N\nzcX06dOhlELPnj2dtj3wwAMAgPnz5+PIkSMF1mN7L/Lr1KkTRAQbNmwwpsH53H777QCAH3/80Wn9\n2rVr7UPHDh482O2+ntoMALNnz4ZSCgMHDkRsbKzL9n79+qFKlSoQEXz22Wcu25VSuPvuu1G9enWX\nbXfccQeUUjh37hy2bdvmsQ152c7/gQMHvCpPYejzz4F77wUuXnSsUwoYPx546CHz2kVEZCImERTW\nvv/+e6fJ5qpXr44hQ4YgOzsbVapUwZw5cxAZGRnUNjRv3hxJSUnYv38/rrvuOowfP96Q+RW+++47\n7N+/HxUrVkT79u2dtqWmpuL666/HxYsXMX369ALradasmdv1VapUAQAcO3bM7zZmZ2dj1KhRaN26\nNSpWrIjo6Gj7uWjSpAkAYP/+/U77rFu3DgBQqVIljzOHX3vttYiKinJZv2PHDhw/fhwAkJaW5nZf\npRTS0tIgIli7dq3bMp7ek8jISFSoUAGA9+/LbbfdBhHBmDFj8MADD2D+/Pk4deqUV/tamdXHffe3\nDp/nA/j0U6BrV9cEYsIEZOzd6/exOB9A8OrnPBGhZ/W44DwRQWJmN0hRWsDbmcSM25nyPpianJws\ntWrVkltuuUXeeustycrKctkvWA9Wf/PNN1K2bFn7w7lKKalcubL06tXL71uCunXrJpqmycCBA91u\nnzBhgiilpEmTJi7b8o/O5E6g78WBAwfkiiuucHq4OiEhQSpWrCiVK1eWChUquG3DsGHDRCklTZs2\n9Vi3iP4Acv42rFq1yl6n7TkKd5577jlRSkmbNm2c1tserJ4yZYrHfT299oJGZxowYIDTA+URERHS\nuHFjGTp0qBw4cMClfDjczhQO9ftTh7f7ABD55BORiAjna5xSIpMne1VXQds9bQv2+x4oxkXh5RgX\n1qs/mDHhbVmj4yLP3wHTPvuyJyJcmZ8uuF9CrEWLFti/fz/279+Pffv2YcuWLZg/fz4GDhyI0qVL\nh6wdt956K3bu3IkPPvgAXbt2RZUqVfDPP/9g6tSpSEtLw4ABA3yq78SJE5g7dy4AYNSoUU69Lbal\nf//+APTZj4N1S1JBnnzySWzduhU1atTA7Nmz8e+//+LEiRM4ePAg9u/fj59++imox8/Ozg5q/b54\n//33sWHDBgwdOhStW7dGbGws1q9fj1dffRW1atXC4sWLzW6iz6w+7ru/dXg9H0CPHkCPHkBOjmOl\nUsCHHwIPPuhVXZwPwJz6OU9E6Fk9LjhPRJCYmcEUpQWh7oko5rwZ4tWdgr59r1mzpmiaJgsWLHC7\n7/HjxwucJyK/P//8Ux5++GH7Pt98843X7bQ9HGz7druwZdCgQU77B7sn4vz58xIbGyuaprkdfUlE\nZOXKlW7bYOtBSU5O9ti28+fPS3R0tEsbtm/fbq/z119/9bj//fffL0opl1GWgtUTkd+FCxfk66+/\nloYNG4pSSqpUqSIX88wfEA49EcXaDz+IxMU5f0WiaSIffWR2y4iIRMTp74Bpn33ZE0F0SZkyZQAA\nez3c5+zrDNF16tTBuHHjcO211wIAli1b5vW+U6ZMgVIKzz33HI4dO+ZxmTFjBkQE06dPR25urk/t\nK4im6ZcG8dC7dOTIEZw7dw4A0KhRI7dlFi1a5HZ948aNAQAHDx7Ezp073ZZZvXo1Lly44LI+NTXV\nfp6WLl3qdl8Rwffffw+llP25jFCLjIzEbbfdhk8++QSA/tD11q1b7dsLe3/JRL/9Btx+O5B/kIQP\nPwTuv9+UJhERWRGTCKJLGjRoABGx30aU37Bhw9yud/dhN6+4uDgAsH/oLsz27duxcuVKAEDXrl1R\nqlQpj8sdd9yB+Ph4/PPPP1iwYIFX9XvDNuJQVlaW2+0JCQlQSgEA/vjjD5ftBw4cwNixY93u27hx\nY1SrVg0AMHLkSLdlhg8f7rFtXbp0gYj+ILO7W5rGjx+Pffv2QSmFe+65x2M9Rino/OcdPSrv+S/s\n/SWTbNkC3HwzcOnhfbuxY4F8I6QRERV3TCKILrn33nsBAF9//TVGjBiBM2fOAAD+/vtvdOvWzT6q\nUH7vv/8+2rdvjxkzZuDgwYP29cePH8frr7+O77//HgBwyy23eNWOKVOmANC/db/qqqsKLBsbG4tb\nb73VaT8j1K9fHyKCGTNmuE1+SpYsiWuvvRYigj59+mD9+vUA9G/WFy9e7HHkJEAfPenll1+GiGDc\nuHEYOnQoTp48CUDv4XjooYfw3XffoUSJEm73f+GFFxAfH4/9+/fjtttuw5YtWwAA58+fx/jx4/Hk\nk09CKYV+/fq5HcbVaDfddBOefPJJ/PDDD05JzcaNG/HgpXvnk5OT0aBBA/u2+vXrAwA2bdqEn3/+\nOehtJC/s2QPcdBNw+LDz+ldeAR5/3Jw2ERFZmZn3UhWlBXwmIqSC8UyEiMhdd93lNMJOYmKifXKy\n7777zu0zEaNHj7aPyKSUkpIlS9r3s5V/5JFHvG6j7Z78IUOGeFV+5syZ9gnSbCNSBfpMxJIlS+zt\nj4mJkapVq0pKSorTpHerV6+2zypte90lSpQQpZSUL19evvzyywLb0LdvX/u+kZGRkpSUZH/GY+zY\nsVKtWjXRNE1WrVrlsu+8efOkRIkS9v0TExMlOjrafrybb75Zzpw547JfMJ6JaNSokVPMJCUlSVxc\nnL0tJUuWlKVLl7ocp1WrVvb9ypYtKykpKZKSkiKrV6/22DYbXj8M9s8/IrVri+QfKuLpp0UuzWhO\nRGQl4DMRRP5TStlvqTFqv5kzZ+K1115DnTp1EBUVhejoaNxzzz1YvXo1brrpJvv+efXo0QMTJkxA\nt27dUK9ePURHR+P06dNITk5Gp06dMG/ePLz33ntetW3ZsmXYvXs3lFLo0qWLV/t06NABMTExOH/+\nPGbNmuXyWgvi6b1o3bo15syZg7S0NJQoUQL79+/H7t27cejQIXuZa665Bj/99BM6deqEpKQkXLx4\nERUrVsQjjzyCdevW2XtRPLVhwoQJmDRpEq655hr7bT+tW7fGV199hccffxwnTpwA4HhWJa/bb78d\nf/zxB/r374/q1avj7NmziI+Pxw033IDx48dj/vz59tvI/OGpze7er4kTJyIzMxNt2rRBtWrVkJ2d\nDaUU6tati//85z/YsGGD256ZL774Ao8++ihSU1Nx+vRp7N69G3v27LHMqFNWH/fd3zpc9jlxAmjf\nHvjrL+dyjRoBb72lj8jk5/E5H4A59XOeiNCzelxwnojgUMIH+wyhlNK7I7x8P20fRPj+E7nasWMH\natasiZiYGJw8eTLoEwaGm1BcP5RSlq/fnzqc9rlwQX+IeuFC50JdukDNnl1o3YUdv6DtnrYF+30P\nVLGIiwDLMS6sV38wY8LbskbHRZ6/A75/m2qQCKtmN+EmMzMzA/A+W8zMzIQv5YmKk+eeew5r165F\n27Zt8cADD5jdHMsJ1fWjoGdbrFK/P3WkpaXpNywNGKDPSJ1Xu3bA558DERFe1V1YmYK2e9oW7Pc9\nUEU6Lgwqx7iwXv3BjAlvyxoZF3n+DmQWeuAgYU+EQdgTQeSbPn36oEOHDmjdujWSkpIA6A+xjxgx\nAuPGjYNSCvPnz0e7du1Mbqn18PphgDfeAF54wXlds2bAkiVAyZLmtImIyEtW6IlgEmEQJhFEvqla\ntSr27dsHAIiPj4emafZRmmwjOLGnzj1ePwI0cybQvbvzupQUYNUqoGJFU5pEROQLJhFFCJMIIt/M\nmjULc+fOxbp16/DPP//gzJkzKF++PFq0aIFHH30UrVq1MruJlsXrRwBWrADatgXOn3esK1MGWLkS\nqFvXvHYREfmASUQRwiSCiEKF1w8/bdkCXHcd8O+/jnVRUfqD1Ra/35yIKC8rJBEc4pWIiIq+w4eB\n225zTiAAYOJEJhBERH5gEkFERC6sPu67T3WcOwd06gRs3w6nPTIzgZ49/a6b8wFYs37OExF6Vo8L\nzhMRHLydySC8nYmIQoXzRPhQhwjQrx8waZK+D/RpXtGrFzB5ssfJ5DgfgHtFJi783Idx4Z7V44Lz\nRAQH54kwCOeJIKJQ4TwRPtTx3nvAa68579OmDTBrFlDIJIacD8C9IhEXAezDuHDP6nHBeSKMx54I\ng7AngohChdcPLy1bBtx0E3DxomNdzZrAzz8DiYnmtYuIKEBW6IlgEmEQJhFEFCq8fnhh926gaVPg\nyBHHupIlgdWrgXr1zGsXEZEBrJBE8MFqIiIqWs6c0R+kzptAAMC0aUwgiIgMUvANoRR0ysNDfURE\n5Afbg9Tr1jmvz8gA7rzTlCYRERVF7IkgIqKi4623gBkznNd16gS8/LI57SEiKqKYRJhEREK+pKen\nW75+f+rwdh9vyhVWpqDtnrYF+323wnkrLnHx9tsCfYBQx9K1q2DoUHPiIpisPu672zoWLgSefdZ5\nXb16wNSpgKb5dFzOB+BeWMaFgfswLtyzelxwnojg4IPVBvH1wWozWH0cZ3/r4PjegWFceBcXK1YI\n0tKcB/qpV09/TjchgXFhRv1OdezZAzRq5DwjdZkywC+/6CMy+XhcXi/cC7u4MHgfxoV7Vo8LzhMR\nHJwnwiC+zhNhFquP4+xvHRzfOzCMi4LLnToFDB2ahhMnHOsSEoDFi4Hk5MLrYFwEr/60tDTgwgWg\nQwdg61bHBk0DvvgCuOYav4/L64V7YRMXQdqHceGe1eOC80QYjz0RBgmHnggi8t2FC0DbtsAPPziv\n/+IL/VZ7soBBg/RnIfJ6/XXg+efNaQ8RUZBZoSeCz0QQERVgyBDXBOL555lAWMbcua4JxG23uT4b\nQUREhmJPhEHYE0FU9Hz5peuooDfdBMyfD0REmNMmymPnTqBJEyAry7GualV9eNeyZc1rFxFRkFmh\nJ4JJhEGYRBAVLe6e0738cmDNGqBcOfPaRZecOwfccIP+4LRNZCSwfDlw3XXmtYuIKASskETwdiYi\nonwuXgTuu885gYiMBD75hAmEZQwe7JxAAMCwYUwgiIhChElEMWL1cZz9rYPjeweGceFa7pVXgBUr\nnErh9deB5s19PxbjIgj1f/YZMHYsnGq4805g4EDDjsvrhXuWjosA6mBcBMbqccF5IoKDtzMZJBxu\nZ7L6OM7+1sHxvQPDuHAut3SpPhqT864KOTlim6/Mp2MxLgyuf9s2/TmIkyehoE/5h5QUYO1aIDHR\nsOPyeuGeZeMiwDoYF4Gxelxwnojg4DwRBuE8EcbVz/G9Q49xoZc7fBho1w44edKxrVIlYMAA4JZb\nCq6LcRGC+m3zQezc6agjKkp/0r1GDcOPy+uFe5aLC4PqYFwExupxwXkijMeeCIOEQ08EEXmWmwvc\nfjvw7beOdUoBCxfqIzKRBbz8MvDf/zqvGzMGeOIJc9pDRGQSK/RE8JkIIiIAo0c7JxCAPh8EEwiL\n+OEHfQK5vO64A/jPf8xpDxFRMceeCIOwJ4IofP36K9CihX63jE2LFsCyZfqoTGSy48eBhg2BXbsc\n6ypVAv74g8NlEVGxxJ4IIiKTnT6tD+eaN4EoUwaYMYMJhGU89phzAgEAU6YwgSAiMhGTCCIq1oYM\nAbZudV43aZI+sRxZwPTp+pLXU08BN99sTnuIiAgAk4hixerjOPtbB8f3DkxxjosFC4D33nMu99BD\nQOfOvtXFuAhS/X//DTz6qPO6Bg2AN97wvg5/jutlOcaFNetnXISe1eOC80QEB5+JMEg4PBNh9XGc\n/a2D43sHprjGxb//AldeCRw4YJ9tADVqAL/9BpQs6VtdjIsg1J+TA6SlOc/6FxOjP8By5ZV+t5HX\ni8CYHhdBqoNxERirxwXniQgOzhNhEM4TYVz9HN879IpbXIgAvXsDq1fbS0LTgK++8jzdAOMixPW/\n8Qbw4YfO60aNAjp29L4Of47rYznGhTXrZ1yEntXjgvNEGI89EQYJh54IItJ9/DHQo4fzuhdfdJ2C\ngEyyZg3QvLneG2HTvj3wzTf65B1ERMWcFXoimEQYhEkEUXjYu1e/rT4ry7GucWNg1SogOtq8dtEl\n584BTZsCGzc61pUvD/z+uz6sKxERWSKJ4IPVRFRs5ObqtzHlTSBiYoBp05hAWEZmpnMCAQATJzKB\nICKyGCYRRFRsvPsusGiR87o33gDq1TOnPZTPzz8Dw4c7r+vVy+U5CCIiMh9vZzIIb2cisra//gIa\nNQKysx3rWrfWkwqNX6eYLzsbaNIE+PNPx7rkZL1XokwZ89pFRGRBvJ2JQsrq4zj7WwfH9w5McYiL\nnBygTx/nBKJUKX3wn1deKbxuxkUI6k9Pd04gAGDChAITCF4vQq84XC8CLce4sF79nCciONgTYZBw\n6Imw+jjO/tbB8b0DUxzi4u23gSefdN4+dSrQsyfjwpOQxsVPPwHXX68/tGLTt6+eRBjcRl4vAlMc\nrheBlmNcWK9+zhMRHJwnwiCcJ8K4+jm+d+gV5bjYsQO46y7gwgXH+o4d9WchbKOFMi7cC0lcnD2r\nD9965IhjQ9WqwJw5QGysd3X4c1yDyjEurFk/4yL0rB4XnCfCeOyJMEg49EQQFTciQNu2wNKljnWl\nS+u32VepYl67KI9Bg4C33nJet2ABcPPN5rSHiCgMWKEngs9EEFGRNX68cwIBAP/3f0wgLOPHH/UT\nktdDDzGBICIKA+yJMAh7IoisZc8eoH594ORJx7p27fQvuTnpsQVkZwNXXQVs3epYV60a8McfQEKC\nee0iIgoD7IkgIgoCEeDhh50TiPh44IMPmEBYxquvOicQgD6pHBMIIqKwwCSCiIqcadOAb791Xjd8\nOJCSYkpzKL/ffwdGjHBeN2CA/gALERGFBSYRxYjVx3H2tw6O7x2YohYXBw/ahnN17HPDDcAjj/hf\nN+PCQDk5QL9+yLh40bEuORkYNsznqni9CL2idr3wdR/GhXtWjwvOExEcfCbCIOHwTITVx3H2tw6O\n7x2YohYXd90FzJ4NAAqAIDZW/+K7Vi3/62ZcGGjMGOCppy6dnUu++ALo1Mnnqni9CL2idr3wdR/G\nhXtWjwvOExEcnCfCIJwnwrj6Ob536BWVuJgzB3D+L5iGYcOA228PvG7GhQF27XKatCMNALp00Wer\n9hOvF6FXVK4X/u7DuHDP6nHBeSKMx54Ig4RDTwRRUXbyJFCvHrB3r2PdNdcAK1cCERHmtYsuEdGz\nuZnS4bwAACAASURBVG++cawrXRrYtEm/nYmIiLxmhZ4IPhNBREXC0KHOCURkJDBhAhMIy5g1yzmB\nAPSn3ZlAEBGFJfZEGIQ9EUTmWbsWaNYMyM11rBsyRP+MShZw9ChQty5w+LBj3Q03AN9/D2j8LouI\nyFdW6IlgEmEQJhFE5sjJAZo3B9ascaxLSQE2bNDnhiAL6N0b+PBDx+/R0cD69UCdOqY1iYgonFkh\nieBXQEQU1t591zmBAID33mMCYRlLljgnEADw4otMIIiIwhyTiGLE6uM4+1sHx/cOTDjHxd69+ufR\nvO69F7j1VsZFoAxp37lz+iRyedWrBzz3HK8XxTkuglw/4yL0rB4XnCciOHg7k0HC4XYmq4/j7G8d\nHN87MOEcF1266FMM2JQqBWzeDFSuzLgIlCHte+014KWX8lYKrFgBtGjB60Vxjosg18+4CD2rxwXn\niQgOzhNhEM4TYVz9HN879MIxLr780nV6gf/7P6BNG9+Py7hwL6D27dwJdO0K5J2Z+uGHnaYO5/XC\n/bYiHRchqp9xEXpWjwvOE2E89kQYJBx6IoiKilOn9Lti9uxxrGveHPjxRw7pahkdOwJffeX4vVw5\n4K+/gKQk89pERFREWKEngs9EEFHYSU93TiAiIoD//Y8JhGV8+aVzAgEAI0YwgSAiKkLYE2EQ9kQQ\nhcaGDUCjRvrQrjaDBgFvvmlemyiP06eB+vWBXbsc61q2BJYv55wQREQGYU8EEZEPRIDHH3dOIC6/\nHLD4o0jFy2uvOScQERH6mLtMIIiIihRe1YkobMycCSxb5rxu9GjOCWEZmzcDI0c6r3viCeCqq8xp\nDxERBQ2TiGLE6uM4+1sHx/cOTLjExcmT+m1Led1yC9CpU2DHZVy453P7RIDHHgMuXHCsS0722E3E\n64X7bUUuLkyon3ERelaPC84TERx8JsIg4fBMhNXHcfa3Do7vHZhwiYvBg8XpuYeoKP35iCuuCOy4\njAv3fG7fjBnAffc5r5s5Ux/m1Yj6DaqDcRGYcLleMC5Cy+pxwXkigoPzRBiE80QYVz/H9w49q8fF\n4cPAu++mITfXsW7IEI+fT30+LuPCPa/bd+KEPqTrqVOOdTfdBAwbpk8wF2j9BeD1IvSsfr3wtw7G\nRWCsHhecJ8J47IkwSDj0RBCFIxGgXTtg8WLHussu02+/57MQFjFoEPDWW47fo6OBP/7w3E1EREQB\nsUJPBJ+JICJL++wz5wQC0GemZgJhEZs3A2PGOK8bPJgJBBFREceeCIOwJ4LIeKdOAXXrAnv3Ota1\nbQt8912Bd8lQqIgAt94KLFjgWFe1qp5YlChhXruIiIo49kQQERXgtdecE4jISGDsWCYQlvHVV84J\nBKAP8coEgoioyGNPhEHYE0FkrC1bgCuvdB4xdPBgYMQI89pEeZw7p89MvX27Y12rVsDSpczyiIiC\njD0RFFJWH8fZ3zo4vndgrBoXTz+dN4HIQHIy8PLLxh+XceFeoe0bNco5gdA04O23vU4geL1wvy3s\n48IC9TMuQs/qccF5IoKDPREGCYeeCKuP4+xvHRzfOzBWjIv58/Vb7fPUgo8/FnTvbvxxGRfuFdi+\n/fv1B6dPn3ase/RR4N13jak/iHUwLgJjxeuFEXUwLgJj9bjgPBHBwXkiDMJ5Ioyrn+N7h56V4uLC\nBX0W6iNHHOuqVgUmTkzz+S4ZxkVgPLbv0UeBNWscvycmAl984fOzELxeuN8WtnFhofoZF6Fn9bjg\nPBHGY0+EQcKhJ4IoHLz9NvDkk47flQJ++QVo2tS8NlEeK1cCLVs6r3v3XT2xICKikLBCTwSTCIMw\niSAK3NGjQK1awLFjjnV9+gATJ5rXJsojNxe45hrnXogGDYC1a/Whs4iIKCSskETwwWoisoz0dOcE\nIiFBH+aVLGLyZOcEAtC7jphAEBEVO0wiiMgSNmwA3n/fed2LLwKVKpnTHsrn+HHg+eed191zD2Dx\n+7SJiCg4mEQQkelE9CFdc3Md62rUAJ56yrw2UT5vvAEcPuz4PS4OePNN89pDRESmYhJRjFh9HGd/\n6+D43oGxQlzMmwcsWuS8buRIICbG+zr8Oa635Yp9XOzcqc8LkdeQIUC1asbUH8I6GBeBscL1Ihh1\nMC4CY/W44DwRwcEHqw0SDg9WW30cZ3/r4PjegTE7Ls6d02em3rbNsa5NGz2psA3pyrgIPaf2de0K\nfPKJY2Nysj6leHy8MfWHsA7GRWDMvl4Eqw7GRWCsHhecJyI4OE+EQThPhHH1c3zv0DMzLkaPBmbN\ncvyuacCcOUDFit7X4c9xfS1XbOPixx+BZ55x3vDOO0CzZsbUb0IdjIvA8O9I4eUYF9arn/NEGI89\nEQYJh54IIqs5dEgf0vXECce6Rx4B3nvPvDZRHrm5wHXXAT//7FjXpIk+cYfGu2GJiMxihZ4I/hUg\nItNkZjonEGXKAK+8Yl57KJ8ZM5wTCEB/NoIJBBFRsce/BERkij//BP73P+d1Q4cC5cqZ0x7K58wZ\n4LnnnNd16QLceKM57SEiIkthEkFEpnj2WSAnx/F7jRrAY4+Z1x7KZ9QoYO9ex+9RUcDw4ea1h4iI\nLIVJBBGF3NKl+rCueQ0fDkRHm9MeyufAAX1eiLyeeAKoWdOc9hARkeUwiShGrD6Os791cHzvwIQ6\nLnJzXQf7adlSv1PG2zr8OW4g5YpdXLz8MjJOn3b8XrYs8NJLhh6C1wv32ywdF+DfEcaFe1aPC84T\nERwcnckg4TA6k9XHcfa3Do7vHZhQx8XUqUCvXs5lVq0Cmjf3vg5/jhtIuWIVF7/9BjRpAiUCe+vG\njgUef9zQw/B6EWZxcQn/jjAu3LF6XHCeiODgPBEG4TwRxtXP8b1DL1RxceYM0Lmz84hMXbsCTz3l\nfR3+HNeIcsUiLkSAnj2BHTsAAGkAUKcOMHEiEBFh+OF4vXC/zXJxkQ//jhRejnFhvfo5T4Tx2BNh\nkHDoiSAy22uvOd8VEx0NbN4MVK9uXpsoj/nzgVtvdV731VdAhw7mtIeIiNyyQk8EkwiDMIkgKtg/\n/+jP5Z465Vg3aBDw5pvmtYnyyMkBGjUCNmxwrGvbFvjuO0CZ9jeKiIjcsEISwQeriSgk0tOdE4ik\nJODFF81rD+UzdapzAgHoGR4TCCIicoNJBBEF3aZNwPjxzuvS0/UZqskCzpwBXn7Zed399wONG5vT\nHiIisjwmEUQUdEOG6EO72tSqBQwYYF57KJ/Ro4F9+xy/x8QA//2vee0hIiLLYxJRjFh9HGd/6+D4\n3oEJdvsefDADX3/tvM7XieUYF0F0+DAwbJjzuieeQMbkyUE9LK8X7rdZJi484N+RwssxLqxXP+eJ\nCA4+WG2QcHiw2urjOPtbB8f3Dkww2ycCaJoCHDMO4PrrgeXLfbvVnnERRE88oc8DYZOYCGzfDpWU\nxOtFcY4LD/h3hHHhjtXjgvNEBAfniTAI54kwrn6O7x16wWrfp58Cn30GXJpxAAAwcyZQtarvdTEu\ngmDrVqB3b+d7zV5/HWjdGgCvF8U2LgrBuCi8HOPCevVzngjjsSfCIOHQE0EUSufPA/XqAdu3O9Z1\n6QJ8/rl5baJ87rnHluXpUlL0iTtiYkxrEhERFc4KPRF8JoKIguKDD5wTiIgI/UtusohVq5wTCEA/\nQUwgiIjIC+yJMAh7IogcTpzQJ5Y7fNixbsAA4P33zWsT5SEC3HAD8OOPjnVXXw2sXg1o/G6JiMjq\n2BNBREXSyJHOCUR8vD4vBFnE3LnOCQSgTyzHBIKIiLxk+F8MpZSmlPqPUmqVUuq4Uupinm2NlVLv\nKaWuMPq4RGQNBw8Cb73lvO6ZZ4BKlcxpD+Vz8SLwwgvO626/HbD4Q5tERGQthiYRSqloAN8BGA2g\nBoCTAPJ2s+wE0AdADyOPS96x+jjO/tbB8b0DY3T7MjP1CZBtSpTIwKBBgdXJuDDQlCnAn386ftc0\n13kiwOtFsYsLLzEuCi/HuLBe/ZwnIjgMfSZCKfUigFcBZAD4L4ChAF4WkYg8ZRYCKCUi1xp2YAsI\nh2cirD6Os791cHzvwBjZvr/+AurXB3JynI7AuLBKXJw9q08Xnnd26t69gUmTXIryelGM4sIHjAvG\nhTtWjwvOExEchs4TkZmZ+T8Af4nIgxkZGZKZmdkKQKuMjIxX8pS5HsA1GRkZb3msKAxxngjj6uf4\n3qFnVPsefhjYtMnxe40awGOPAW3aBF4/48IAo0cDs2c7fo+J0X8vXdptcV4vCi9XJOLCR4yLwssx\nLqxXP+eJMJ7RPRFnAbwjIoMv/Z4OYGi+nog3ADwtIrGGHdgCwqEngiiYfvoJaNHCed2sWcC995rT\nHsrn2DE9qzt2zLHumWf0p+CJiCisWKEnwugHq7MBlCmkzOUAsgw+LhGZSAR49lnndc2a6XOZkUUM\nH+6cQJQqBTz/vHntISKisGZ0EvEbgJsvPWDtQilVGsAtAH42+LhEZKL584EffnBeN3w4oEz7foSc\n7NsHjBnjvO6554CyZc1pDxERhT2jk4gPAFQFMF0pVSrvBqVUGQAfAkgEMM7g4xKRSXJzXb/Qbt8e\naN3anPaQG5mZQHa24/fKlYEnnzSvPUREFPYijaxMRP6fvfsOk6rI+jj+LTKKARRzQEyYEXMCdM05\niwFYRd81YHZVMNCDCIoRMbuiopgwLbprQNTFHDFLFCNGlCRIrPeP6rH7ztyhe7rv7Vs9/fs8zzxs\n1605XejZds7UvaceMsbsBfwdOBj4HcAY8x6wGdAcuMVa+98o31dEkvPII/DRR8GxgQOTWYuEGD++\ndvelfv1gmWWSWY+IiDQIkR82Z609CXcWxOdAW9w5EZ2AyUAva+2ZUb+n5Mf3Ps6FxlB/7+IUs74F\nC+DSS4Nj3brB1ltHE7+YGMqLtEsuCfbc3XBDOOmknN+mz4vc88o6LwqkvMg9T3nhX3ydExGPSLsz\n1QpuTEvc7UszrbV/xPZGHiiH7ky+93EuNIb6exenmPXdeqtr4VqtSRN3jtkGG0QTv5gYygvg7bdh\nxxpH8owcCUcemfNb9XnRgPOiCMoL5UUY3/NC50TEI9JzImpKpVKLUqnU7FQqtTC2N/GEzomILr76\ne5deIev74w844gj3Z7V//AO6d48mfhQxKjovrHX/Mr76KjO23XZw/fV5P/Guz4vc88ouLyKgvMg9\nT3nhX3ydExG9qM+JaA2sDkyx1s7PGj8ROBT4A7jRWtvgujOVw06ESJQGDnR3ylRr2RKmTHHP7IoH\nnn/ePeGebcwY2GOPZNYjIiKR8WEnIuoi4jbgBGAVa+289NiZwI24ZyPAnSWxrbX28/Ao5UlFhFSS\n6dOhfXuYNSsz1qePHqj2xpIlbtfhgw8yY3vv7QoLEREpez4UEVE/WL0LMKa6gEi7APge6AxUn117\nXsTvKyIldPXVwQKidWu48MLk1iM1PP54sIAAGDQombWIiEiDFGmLV2BNYEz1C2PMprhzIy6y1r6W\nHjsKV1CISBn67jsYOjQ4dvHFsGKus+qlNBYtqt0y66ijoFOnZNYjIiINUtQ7ES1xtytV2wWwwItZ\nY1NwxYaIlKH+/YPnlq2xBvTundx6pIZ774WJEzOvGzeGK65IbDkiItIwRV1EfA90yHq9DzALyD6K\nqjWQfbuTlIjvfZwLjaH+3sWpz/omTKh9blkqtfRzy5QX4ddiyYs//3SnU2f7+99h443rHUqfF7nn\nlU1eREh5kXue8sK/+DonIh5RP1h9J9ATOB+3I3Er8Li19tisOS8Aba21W4dHKU/l8GC1732cC42h\n/t7Fqc/6jjkGHn0083qjjeCzz9z5EFHEjzJGRebF9dfD+ednXjdvDpMmwdpr1zuUPi8aUF5ESHmh\nvAjje17onIh4RHpORFVV1afA34HDgIOBucDxqVRqOoAxZnngJuDpVCr138je2AM6JyK6+OrvXXr5\nrO+DD+Dss4Njt94KW2wRTfw4YlRUXsya5Q6Rm5e10XvWWXD00XV/Tw76vMg9z/u8iIHyIvc85YV/\n8XVORPQiP7HaGLMaUH0c6ihr7TdZ1zoB3YEHrbXvRvrGCSuHnQiRYuy/Pzz7bOb11lvDe+9Bo6hv\nipTCpFLBW5mWW84d3NG2bWJLEhGRePiwExF5EVGpVERIQ/bqq9C5Rk+1Z5+tfZaZJOSXX9zBHXPm\nZMZSKejXL7EliYhIfHwoIvQ7RBFZKmuhb9/g2G67wT77JLMeCTFoULCAWHllOE/H8YiISHyiPicC\nY0xT4BBge1wnpsYh06y1tlfU7y0i0XvuOXjtteDYwIFgEvvdhwR8+617OCVb377udiYREZGYRN2d\naQ1gNK7N69J+xLDW2rDiomzpdiZpiJYsgW23hXHjMmP77w//+U9ya5IaTj4Z7r4783rttd05ES1a\nJLcmERGJVUO8nek6YBPgYWAPYENgvZCv9hG/r+TB9z7OhcZQf+/iLG19jz0WLCAABgyILn6cMSoi\nLyZMcIfLZevXL5ICQp8Xued5mxcxUl7knqe88C++zomIR9Q7EdOBT6y1XSMLWibKYSfC9z7OhcZQ\nf+/i1LW+RYtgs82Chx8fcww8/HA08eOOURF50a0bPPJI5nU+B3fkSZ8XZZwXMVJeKC/C+J4XOici\nHlGfE9EPeDKVSr0YWdAyoXMioouv/t6lF7a+e+5xX9UaN3Y7EyutFE38UsRo0Hnx4Ydw5pnBsXwP\n7siTPi9yz/MuL0pAeZF7nvLCv/g6JyJ6Ue9EvA1MtdZ2iyxomSiHnQiRfP35p/ul9rffZsZOPhnu\nuiu5NUkNBx0EzzyTed2xI7z/vg7uEBGpAD7sRET9X5trgIONMZtGHFdESuiOO4IFRLNmcPnlya1H\nanjjjWABAXDllSogRESkZKJu8foz8DTwhjFmCPA+MCNsorV2bMTvLSIRmDPH/Tya7fTTXdMf8UDY\nwR077wz77ZfMekREpCJFfTvTEsCSae9aZ3C1eBXx05VXwqWXZl63agVffglt2ya3JskyejTsvXdw\n7JVXoEuXRJYjIiKl58PtTFHvRPRnKYWDiPjt99/hmmuCY+ecowLCG2G7EHvvrQJCRERKLtIbaK21\nKWttVT5fUb6v5Mf3Ps6FxlB/7+Jkr++aa2DmzMy11q3hgguii1/KGA0yL/79b3jvveBYzXvPIqLP\ni9zzvMmLElJe5J6nvPAvvs6JiEektzNVsnK4ncn3Ps6FxlB/7+JUr+/HH2H99WHu3My1q66Ciy6K\nJn6pYzS4vFi8GLbayp0DUe2ww+CJJ/KPUQ/6vCiTvCgx5YXyIozveaFzIuIR6TkR2Ywxu1ZVVR1S\nVVW1T1VVVceqqqqmqVTqm1jezAM6JyK6+OrvXXpdu3alb194/fXM2GqrwQMPuM5MUcRPIkaDyosH\nH3Rts6oZAyNHwiqr5B+jnvR5kXte4nmRAOVF7nnKC//i65yI6EW+E2GM2Qa4H9i4eojMcxITgB7W\n2vfCvreA91oTuALYB1gJ+AF4Cqiy1oZ2hQqJ8RWwTh2Xf7TWrpFnHO93IkTq8vXX7lyIBQsyY0OH\nQu/eya1JsixYAJts4p5wr9a9OwwfntyaREQkMT7sRET6YLUxZgNgDLA88BrwEu4H+9WBPYBdgdHG\nmO2ttZOKfK/2wJvAyrjCYQKwPXA2sI8xZhdr7e95hLK4NrQ3kOkqVW1OMWsUKRf9+wcLiHXXhVNO\nSW49UsOwYcECokkT8HzXU0REGraoW7zeB5wAdLPWjgy5fiTwMDDCWtuzyPd6HtgTONNae2vW+HXA\nucDt1trT84gzFbDW2vZFrkc7EVKWJkyAzTZzt9xXGzYMTjwxuTVJlnnzYIMNYNq0zNhpp8Gtt9b9\nPSIi0qD5sBMRdRHxPfCmtfbIpcx5HNjRWrtmEe/THpgMTLXWrl/jWivc7gfAKtbaeTliqYiQitat\nGzzySOb1xhvDp5+6X3aLB667Ltgiq0ULmDwZ1iz4I1RERMqcD0VEpC1ecbcWjc8xZ3x6XjF2T//5\nQs0L1to5wOvAMsCOecZrbow53hjTxxhzljGmqzEm6n82It758MNgAQHu1iYVEJ6YNQsGDQqO9e6t\nAkJERBIX9Q/KvwCb5pjTAfi1yPfZGPcsw8Q6rlc/b7FRnvFWA4YDA3DPRrwETDLGdC5mkb7xvY9z\noTHU37twl10GkPrrdceOcGSd+4iFUV6EX8trfTfeCNOnZ14vt1zxPXfzpM+L3PMq7fMClBfKi3C+\n54XOiYhH1LczDQeOA06w1j4ccv0I4BGKfCbCGHMHcDJwirV2WMj1AUAfoK+19uocsS4DXgU+A2YD\n7YHewD+AecBO1tpP8liT97cz+d7HudAY6u9dmDffhJ13huwGas88AwccEO37KC8KzIvp06F9e7cb\nUa1fv5I9UK3PC0/zImHKC+VFGN/zQudExCPqmxb6A4cAI4wxZwAv455PWA3oiuvONBv3G38vWGuv\nqDH0OXC6MeYP4Hzcr2mPKPW64tCvXz/v4xcSI9/vyWderjlLu17Xtbj/uRfCWrjkkupXbn077wz7\n7x/9eykvCsyLwYODBUSbNnDeeUv/ngjp88LTvEiY8kJ5Ecb3vIgzJ/KdG0deJM5aG+kXsB3wBbAk\n/bU4639/AWwfwXsMTsc9t47rQ9PX/1HEe6yfXvMvec63ub66dOliAduvXz8bpl+/frqu6yW5Pnq0\nta6UyHz17OnP+ir++rRp1rZsGfgX1G/PPf1Zn67ruq7ruq7Hfr16fGlftsCfc6P4ivywuWrGmJ2B\nTsAKwExgnLX29aV/V96xewF3AXdYa08Luf4csBewp7X25QLfY3nc+RF/WmuXyWO+qyRi+ucpEhVr\nYYcd4N13M2N77QUv1GpTIInp3RtuuSXzerXVYMoUWCbnR5GIiFSAhng701+stW8Ab8QUvrow2Lvm\nhXSL112AucBbRbzHTuk/v1zqLJEyM2pUsIAAuPLKZNYiIb76Cu68Mzh22WUqIERExCuxtTE1xjQ1\nxmxpjNkt/WfTqGJba7/EtXdtZ4zpXeNyf2BZYLhNnxFhjGlijNk4fb5E9ho7GGNq/ZfZGNMOuBm3\nVXR/VOsWSdrixXDppcGxQw+F7bZLZj0Son9/WLgw87pdOzj55MSWIyIiEiby25mMMSsBV+G6NLXI\nuvQn8CDQx1pbbIvX6gPnXgdWAUbhnrfYEfcA93hgF2vt7+m56wJTga9s1qFyxph+uIenxwJf4x76\nXh84AGgO/Ac43Fq7KI/16HYm8d6DD8Lxx2deGwMffwybb57cmiTL+PHu+PAlSzJj994LPXsmtiQR\nEfGPD7czRboTYYxZFXgb6AUswP1w/mj6zwXp8bfS84qS3o3YFrgX2B44D1gPd87DTtUFRPa3UN3H\nMuNl4GlcW9djgXOBzriWrz2stQfnU0CUC9/7OBcaQ/2987NwIVx+eXDsuOPgscdSsb6v8iL8Wuh4\nv37BAqJDBzjhhJzri4M+L3LPa8ifF3VRXuSep7zwL77OiYhH1OdE3A2cCNwIpKy1s7KuLQ9UAWcD\nw6y1DWp/vhx2Inzv41xoDPX3zs+dd8I//pF53aQJfPEFbLih8sKLvBg3Djp1Ck4aOTL60//ypM8L\nT/LCM8oL5UUY3/NC50TEo3GU1U1VVdVdwAfW2mNTqdT87GupVGp+KpV6vqqqak9g51QqdW1kb+yB\nqqqqFPhbLVbr2rWr9/ELiZHv9+QzL9ecpV2v61rc/9xz+fNPOOIImD07M3bKKdCjh/vfyovc82LP\ni5NPhkmTMq87dYIbbnD3nCVEeZF7XkP8vMhFeZF7nvLCv/hx5kS+c6PMi6qqKgBSqVRVzjeOSdQ7\nEXOBG6y1lyxlzkDgbGvtspG9sQfKYSdCKtcNNwTPKWveHCZPhrXWSm5NkuW112C33YJj//0v7Ldf\nMusRERGv+bATEXV3pvHA6jnmrA5MiPh9RaQOs2fDoEHBsTPOUAHhDWuhb9/g2K67wr77JrMeERGR\nPERdRAwBjjHGbBl20RjTETga98yEiJTAkCHwyy+Z161awcUXJ7ceqeGFF+DVV4NjAwcmehuTiIhI\nLlEfNjcVGA28Y4wZjuvK9BOwKtAF6A48C3xljOmc/Y3W2rERr0Wk4v32G1xb4+mjc8+Ftm2TWY/U\nELYLse++tW9tEhER8UzUz0QswbVRrf4VWnbwsLG/WGsbR7aQBOiZCPFRnz5w1VWZ161bw9SpsMIK\nya1Jsjz+eO3uS++9B9tsk8x6RESkLDTEZyL6p7+q0l/9c4xlf0nMfO/jXGgM9fcO98MP7lambBdd\nVLuAUF7knhdLXlx+ee3jw4880psCQnmRe15D+rzIl/Ii9zzlhX/xdU5EPCI/sbpSlcNOhO99nAuN\nof7e4Xr3hltuybxebTWYMgWWWSY4T3mRYF5kDzRqBJ9+CptsknPNpaC8qKzPi3wpL5QXYXzPC50T\nEY9Iz4moZDonIrr46u9dvKlT4cQTg4cfX3017Lxz+HzlRe55kebF/PkwdChd52cdp9OzpzsrwiPK\ni9zzGsLnRX0pL3LPU174F1/nREQv6mciGgPNrbVza4zvARwCzAXutNZOjexNPVEOOxFSOXr2hOHD\nM6/XWw/Gj4dmzZJbk2S55Ra3VVStaVOYOBHatUtsSSIiUj582ImIuoi4ATgNWNVaOzM91g0YQebB\n6ulAJ2vtt5G9sQdURIgvPvsMttjCNf6pNnw4dO+e3Jokyx9/wPrrw08/ZcbOOANuvjm5NYmISFnx\noYiI+sHqzsDL1QVEWj9gBtADuBBYETgv5HtFJAKXXRYsIDbbDI47Lrn1SA033xwsIFq2hEsuSW49\nIiIiBYi6iFgbmFz9whjTHtgYGGqtfcBaey3unAgdxSoSg3fegSefDI4NGACNy7qBcgMyY4Z7OCXb\nWWfB6qsnsx4REZECRV1ELA/Mynq9C+5ciOeyxj4D1or4fUWE2r/Q3n57OOSQZNYiIa65Bn7/FAeO\nGAAAIABJREFUPfN6+eXhwguTW4+IiEiBoi4ifgDWy3q9JzAPeD9rrBWwKOL3lTz43se50Bjq7+28\n9BK8+GJwbOBAMDnullRe5J4XSV78+CPceGNmHFwB0aZNzvdPgvIi97xy/rwolPIi9zzlhX/xdU5E\nPKJ+sPoh4CCgG/An8G9gjLX24Kw5zwDtrLWbR/bGHiiHB6t97+NcaAz193bPQOy0E7z9dmZsjz1g\nzJjc36u8KFFe1Di4wwB29mxo1SrnGpOgvGi4nxfFUF4oL8L4nhc6JyIekZ4TUVVVNRH4P+AEoDtu\np+PEVCr1PYAxpgUwFBidSqVGRfbGHtA5EdHFV3/v+hs1Cq67Ljj20EOwVp43Diovcs8rKi/WWaf2\nwR377kvXk07Ka31JUV7knleOnxfFUl7knqe88C++zomIXuQnVhtjtgB6pl8+Yq19N+vaTrgOTbdY\na18M+/5yVQ47EdIwLV4MHTu6w46rHXIIPPVUcmuSGrp3hwceyLxu184d3NG8eWJLEhGR8uXDTkTk\nRUSlUhEhSbn/fujRI/PaGPj4Y9i8Qd0wWMY++QS22irYd/e++4L/0kREROrBhyIi6gerA4wxrY0x\na8f5HiKVbP58uPzy4Njxx6uA8Mqll9Y+uOP445Nbj4iISAQiLyKMMa2MMdcZY34EfgWmZl3bwRjz\nX2NMp6jfV6QS3XEHfPVV5nXTptC/f2LLkZreeMM9sJLtyit1cIeIiJS9SIsIY8wKwJvAucA04Atc\nE5JqnwC7AcdG+b4ilWj2bHeQXLZTT4X11gufLyVmLfTpExzbcUc4+ODw+SIiImUk6p2IS4DNgL9b\nazsBI7MvWmvnAv8D/hbx+0oefO/jXGiMSu3vfcMN8MsvmdfLLlv7sLl8KC9yzysoL55/HsaOJXBl\n0KC/Du7wvZOb8iL3vHL6vIiK8iL3POWFf/F1TkQ8oj4nYjIwyVq7X/p1P+Bya23jrDm3AEdaa1eN\n7I09UA4PVvvex7nQGJXY3/uXX6B9e5gzJzN22WWF3cqkvIghL5YsgW23hXHj3HkQAHvv7QqLeq4v\nKcqLhvN5ESXlhfIijO95oXMi4hH1ORGDgVGpVOrF9OuuQJdUKtU/a06X9NiA8CjlSedERBdf/b1z\nu/RSGDs283qlleCRRwrvGKq8yD2vXnkxciQMHZq5Bu5f0BprFLS+pCgvcs8rh8+LqCkvcs9TXvgX\nX+dERC/qnYhfgGestSemX4ftRDwK7GytzfMYrPJQDjsR0jB8/TVstBEsWJAZu/56OPfc5NYkWRYu\nhE03hcmTM2NHHQWPPprcmkREpEHxYSci6mci3gUONMYsF3bRGLM6sD/wWsTvK1Ix+vULFhBrrw2n\nnZbceqSGf/0rWEA0bgxXXJHcekRERGIQdRExBFgJ+K8xZpPsC+nXI4EWwE0Rv69IRfj0Uxg+PDhW\nVQUtWiSzHqlhzhz3LyRbr16w8cbJrEdERCQmTaIMZq193hhTBfQDPgUWAhhjfgVa49q9XmStfSPK\n9xWpFDXPLdt0Ux187JUbb4Sffsq8btnSbR2JiIg0MJEfNmetrcK1cB0F/A4sxjUn+S+wp7X2mqjf\nU6QSvPEG/PvfwTGdW+aRX36BwYODY+ecU+thahERkYYg8iICwFr7srX2MGvt6tbaZtbattbag6y1\nL8XxfpIf3/s4FxqjEvp7WwsXXxwc23FHOOSQokMrL6LKiyuvdCcAVmvTBi68UH3fY4xfFnlRz2vK\ni+LjKy9Kz/e80DkR8Yi0O1Peb2pMW2vtL7lnlo9y6M7kex/nQmNUQn/vp5+ufdDxK69Aly5FhQWU\nF5HlRdOmrjNTteuug/POU9/3GOOXRV7oPICSx1delJ7veaFzIuIR6TkRuRhjVqiqquoHjEilUoNK\n9sYloHMioouv/t5BixbBkUcGT6feb7/CTqeui/Ii97ylznniCbr+8EPm9dpruyfgmzRZ6veq73vx\n8b3OixzXlRfxxVdelJ7veaFzIqIX2U6EMaYdsA0wH3g7e6fBGNMCOBe4APeA9VxrbatI3tgT5bAT\nIeXp7rvh5JMzr42BDz+ELbdMbk2S5cMPoVOn4BPv994LPXsmtiQREWnYfNiJiOSZCGPMUGAy8Cjw\nb+ArY0yP9LUuwHhgALAMrg1s+yjeV6ShmzsXLr88ONajhwoIr/TpEywgNt8cTjghufWIiIiUQNEt\nXo0xPYEzgCXAF+nhDsBdxpgFwL1AY+AOYIC1dlqx7ylSKYYMgWlZ/49p3hz6909uPVLDyy/Dc88F\nxwYNUsssERFp8Iq+nckY8zKwE7C7tfbN9FhnYDRup+N74CBr7SdFrtVrup1JojZ9OrRvD7NmZcb+\n+c/aXUQlIdbCDjvAu+9mxnbbDf73P3fPmYiISEwayu1MWwJPVhcQANbascBT6fgnNfQCQiQOV14Z\nLCBat3Z3zognHnssWEAAXH21CggREakIURQRK+Ceh6hpUvrPN0OuSQJ87+NcaIyG2N/7q6/glluC\nY337ukIiasqL3PNqzVmwIFDRpQAOPRR22inv+L53clNe5J7ny+dFKSkvcs9TXvgXX+dExCOK25mW\nAClrbf8a4/2Ay621FXFzcDnczuR7H+dCYzTE/t4nnAAjRmRer702TJwILVrUK0xelBcF5MWQIe40\n6urrgP3iC+jQIe/46vveAPOiHteVF/HFV16Unu95oXMi4lH0ORHpcx9eTqVSY2uMdwW6pFKpingM\nVOdERBe/0vt7jxsHvXsHx266CbbdNu8Q9aa8yD3vrzkzZsARR8C8eZmL22xD17596x1ffd+Lj+9N\nXhRwXXkRX3zlRen5nhc6JyJ6Ue1E1DeItdYW3RnKJ+WwEyHlYe+9YfTozOsttnCFhRr+eOKii4JP\nt7dqBZMnw6qrJrcmERGpKD7sRET1g3x9/wJ68lAkxOjRwQIC3LO6KiA88fXX7lambBdeqAJCREQq\nTmQnVlc67URIsRYvdgcff/xxZmz33WHMGDX88UaPHnD//ZnXq68OkybBsssmtyYREak4PuxERHJi\ntYgU7777ggUEuLtmVEB4Ytw4eOCB4NgVV6iAEBGRiqSdiIhoJ0KKMWcObLQR/PBDZuz442v/zCoJ\nsRb22sttC1XbfHP48EPdayYiIiWnnQgpKd/7OBcaoyH097722mAB0aIFDByY89siobzIPS91wgnB\nAgLcNlG6gFDf92TiJ54XOg/Ay/jKi9LzPS90TkQ8tBMRkXLYifC9j3OhMcq9v/e0abDhhjB3bmas\nT5/SFRHKixzzFi/GNGkSbEH3t7+5J+DTvwlS3/dk4lfi50XSlBfKizC+54XOiYhH0edEiKNzIqKL\nX2n9vc85B955J/O6bVt49FFo3nypy4iU8mIp8+65B0aN4q8ZxsBjj7mHqvOMob7v8cWvtM8LHygv\ncs9TXvgXX+dERE87EREph50I8c9HH8HWW7tb7qvdeiucdlpya5IsYQ+rdO8Ow4cntyYREal4PuxE\n6JkIkYRYCxdcECwgOnSAU05Jbk1Sw+DBwQKieXMYMCC59YiIiHhCRYRIQp57Dl58MTh2zTXQpEGd\n5V7Gvv3WPfGe7dxzYZ11klmPiIiIR3Q7U0R0O5PUx6JFsNVW8PnnmbE99nBFhc6F8MQJJ8CIEZnX\nq6ziDpZbfvnk1iQiIoJuZxKpWHffHSwgjIHrrlMB4Y233w4WEOBuY1IBISIiAqiIqCi+93EuNEa5\n9feeNQsuvzw4p0cP6Ngx5/JiobyoMc9ad9tS9pxVVoGTTirovdT3Pb74lfB54RvlRe55ygv/4uuc\niHjodqaIlMPtTL73cS40Rrn1977oIve8brWWLd1dMmuumeMvEBPlRY15Dz8Mxx4bnMPS/7+tvu/J\nxK+EzwvfKC+UF2F8zwudExEPnRMREZ0TEV38htzfe8oU1yF08eLMtT594JBDci4rVsqL9Lx58+DQ\nQ2HmzMzFgw+Gbt3U993T+A3588JXyovc85QX/sXXORHR005ERMphJ0KSd9hh8NRTmddrrgkTJsCy\nyya3Jsly5ZVw6aWZ102awGefubMiREREPOHDToSeiRApkTFjggUEwFVXqYDwxg8/wKBBwbHevVVA\niIiIhNBORES0EyFLs2iRO5n6008zYzvuCK+/Do1UyvuhVy8YNizzuk0bmDwZWrdObk0iIiIhtBMh\nUiHuvDNYQAAMGaICwhvjxsE99wTHqqpUQIiIiNRBOxER0U6E1OW339wdMdOnZ8a6d4fhw5Nbk2Sx\nFrp2hbFjM2MdOsDHH0PTpoktS0REpC7aiZCS8r2Pc6ExfO/vvd9+qUABseyytW+9T1LF58VRRwUL\nCHAn/2UVEOr77mf8hvh5obwoPr7yovR8zwudExEP7UREpBx2Inzv41xoDJ/7e3/xBWy6qQEy4wMG\nwCWX5FxuyVR0XvzxB6ZVKwKz9t0X/vvfwPHh6vvuZ/yG9nlRn/UlRXmhvAjje17onIh46JyIiOic\niOjiN5T+3ta625amTAFw4+uuCyNG+HeXTMXmRf/+8Oqr/DWraVN4+mlYeeV6x1Lf92TiN5TPi/q+\nb5KUF7nnKS/8i69zIqKnnYiIlMNOhJTWf/4DBx4YHBs5Eo48Mpn1SA1TpsCmm8KCBZmxCy+Eq69O\nbk0iIiJ58GEnQkVERFRESLb582GLLWDSpMxY587wyiuBu2QkSYccAqNGZV6vvro7+W+55ZJbk4iI\nSB58KCL0YLVIDK67LlhAGAM33qgCwhvPPRcsIAAGD1YBISIikiftREREOxFS7ZtvXIfQefMyY//3\nf3DHHcmtSbIsWOC2iSZOzIzttJM7+U9VnoiIlAHtRIg0QOedFywg2rSBgQOTW4/UcNNNwQLCGLj5\nZhUQIiIi9aAiooL43se50Bg+9fcePRoefzw4vvPOKVZaKff6klJRefHDD+4k6ux5W28NnToV9f7q\n+55M/HL/vCj0fZOkvMg9T3nhX3ydExEP3c4UkXK4ncn3Ps6FxvCpv/fGG1smTMiMbbstvPee+nt7\nkxc9ewaPCl9xRcyMGer7HqKi8qLAecoLP+MrL0rP97zQORHx0DkREdE5EdHFL9f+3q+9Bu++m7lm\nDDz5JKy5pvp7e5EXb7wBZ58dnHDNNbD99ur7XoeKyIsi5ykv/IyvvCg93/NC50RETzsRESmHnQiJ\nz3ffuYep//gjM3byyXDXXcmtSbIsWgTbbAMff5wZ23xzGDcOmjRJbl0iIiIF8GEnQs9EiETg/POD\nBUTr1jBoUHLrkRpuuilYQAAMHaoCQkREpEAqIkSKNGYMPPpocGzgQFh55WTWIzV89x306xccO+EE\n8PzWABEREZ/pdqaI6HamyrRgAXTsCF98kRnr1AneeQcaN05uXZLlyCODLbNWXBHGj4dVV01uTSIi\nIkXQ7UwiZe7GG4MFBMAtt6iA8Mazz9buuTtwoAoIERGRIqmIqCC+93EuNEZS/b2nToXg9BQnnQQ7\n7ljY+pLSYPPikkugd+/g4HbbuePD6xlbfd/9jF9Onxf5XlNeFB9feVF6vueFzomIh25nikg53M7k\nex/nQmMk0d/bWth/f3juucBVfv7Z0rZtYetLSoPOi+yBRo3cfWbbbFPv2Or77mf8cvm8qM815YXy\nQnkRfXydExEPnRMREZ0TEV38cujvPXIkXHVVcPzgg6FXr/DvVX/v4uPXK8bEiXDrrXTN/tA94wzo\n1avg2Or77mf8cvi8qO815UXx8ZUXped7XuiciOhpJyIi5bATIdGYMQM22QR+/DEz1rkzvPKKO2BO\nEmYt7LWXa5tVbbXV3MPUK6yQ3LpEREQi4sNOhJ6JEKmnvn2DBUTTpnD77SogvPHww8ECAuD661VA\niIiIREg7ERHRTkRlePNN2GUX98vuapddBv37J7cmyfL777DppsEq729/g9GjVeWJiEiD4cNOhIqI\niKiIaPgWLnTP5H7ySWZsgw3c6xYtkluXZDnlFPjXvzKvmzVz/4I22ii5NYmIiETMhyJCtzOJ5OmG\nG4IFBLjbmFRAeOLll4MFBMDFF6uAEBERiYGKiAriex/nQmOUor935kyIzPXu3d2dMrm+1/eOXQ0i\nL+bNc7sQ2d+z0kruAZZiY+cxR33fk4nv6+dFPteVF/HFV16Unu95oXMi4qHbmSJSDrcz+d7HudAY\ncff3Dp4JYQBLmzau2U/2mRDq7x1f/JwxLroIBg/O/gaMter7XoQGkRdFfI/yIpzyQnkRxve80DkR\n8dA5ERHRORHRxfetv/eDDwZ/PoWu3Hwz7Lpr/vHV37v4+HXG+OADOOmk4NPuZ5wB+++vvu9FKuu8\niOB7lBfhlBe55ykv/IuvcyKip52IiJTDToTU308/uWY/v/2WGdOZEB5ZtAi23x7GjcuMrbUWfPYZ\nLL98cusSERGJkQ87EXomQmQpevcOFhDNm8Mdd6iA8Mb11wcLCIDbblMBISIiEjMVESJ1eOwx95Wt\nqgo6dEhmPVLD5MnQr19wrFs3OPDAZNYjIiJSQXQ7U0R0O1PDMn26u43p558zY9tu6w6ba9IkuXVJ\nmrWuNdbLL2fG2rSBL76AVVZJbl0iIiIloNuZRDx1zjnBAqJpUxg2TAWEN+6+O1hAgDvIQwWEiIhI\nSaiIqCC+93EuNEbU/b2feQYeeCA4fumlsMUW6u+dVPxAjG++gfPPD07Ye293cEcB76u+7+HKLi8i\n/h7lRTjlRe55ygv/4uuciHjodqaIlMPtTL73cS40RtT9vddYwzJtWmZsyy3h3XehWTP1904q/l8x\nrHUFw4svZi4uswx8+imst15B76u+7+HKKi9i+B7lRTjlhfIijO95oXMi4qFzIiKicyKii59kf+9R\no2DSpMycxo3hmWdg7bXzi6H+3vHF79q1K9x+OwwdGrxw/fWwzz5Fva/6vocrm7yI6XuUF+GUF7nn\nKS/8i69zIqKnnYiIlMNOhCzd6NHul9zZ+vSBgQOTWY/UMGWK2xaaOzcztvvubleike7MFBGRyuHD\nToSKiIioiChvM2e6n0+/+SYztskm7jDkFi2SW5ekLV7sCoZXX82MLbccfPwxtGuX2LJERESS4EMR\noV/fiQBnnRUsIIxx3ZhUQHhiyJBgAQHuNiYVECIiIonQTkREtBNRvh57DI46Kjh2/vlw7bXJrEdq\nGD8eOnaE+fMzY/vtB//5j44OFxGRiuTDToSKiIioiChPP/wAm28Ov/2WGdt8c9eNSbsQHli0CHbZ\nBd55JzO24oquG9Oaaya3LhERkQT5UETodqYK4nsf50JjFNrf21ro1StYQDRqlOKBB+ouINTfu8Tx\nBw+Gd94hEGHo0LwKCPV9L47XeVFEDOVFcZQXuecpL/yLr3Mi4qGdiIiUw06E732cC41RaH/v22+H\n006rNUv9vX2J/9FHsN12sHAhBrAAhx0Gjz+e121M6vteHG/zosgYyoviKC+UF2F8zwudExEPnRMR\nEZ0TEV38UvT3njQJDj8cFi7MXNt1V+jZE3bffemx1N+7BPHnzXNnP/z0UybGyivDs89Cq1aRv6/6\nvofzLi8iiqG8KI7yIvc85YV/8XVORPS0ExGRctiJEGfRIlcwvP12ZqxVK9cttMahx5KUM86AW28N\njo0cCUcemcx6REREPOLDToSeiZCKM2hQsIAA10FUBYQnRo2qXUD07KkCQkRExCPaiYiIdiLKw3vv\nwY47urPLqh1yCDz5pLqFemHaNHfq3/TpmbH114dx49zhciIiIqKdCJFSmjULunULFhCrrAJ33qkC\nwgtLlrgdh+wCokkTePBBFRAiIiKeUREhFcFaOPVUmDIlOH7XXa6QEA9cfz28+GJwrH9/2H77ZNYj\nIiIidVIRUUF87+NcaIx8vueee+Chh4LzTj0VDj64frHU3zum+B98AH37Bse6doULL8w/RiHvm+c8\n5YWf8ZUXpae8yD1PeeFffJ0TEQ89ExGRcngmwvc+zoXGyPU9n38O224L8+b9ddoAW24Jb70FLVvW\nL5b6e8cQ/48/oFMnmDgxM9a6tWuXtdZaBa9Rfd+Lk3hexBRDeVEc5YXyIozveaFzIuKhcyIionMi\noosfZS/n6uMGpk37aybLLAMvvACrr17Y+6u/d8TxzzgDRo8Ojo0YATvskH+MQt63nvOUF37GV16U\nnvIi9zzlhX/xdU5E9LQTEZFy2ImoRKeeCnfcERwbNgxOPDGZ9UgNDz4Ixx8fHDvlFPe0u4iIiITy\nYSdCRUREVET4Z+RIOPro4Njxx8P996sbkxc+/9w9NP3HH5mxjTeG99+HZZdNbl0iIiKeUxHRgKiI\n8MvUqdCxo2vrWm2DDdzzu+oW6oE5c1wB8cUXmbHmzd2DKh07JrcuERGRMuBDEaHuTNLgLFjgzoPI\nLiCaNYNHHlEB4YXqfrvZBQTAzTergBARESkTKiKkwTnvPHjnneDYNde4BkDigTvucA9OZ+vRA3r1\nSmY9IiIiUm8qIiqI732cC42R/T333w+33BK8fvDBcOaZ6u9dl5Lmxfvvw9lnBydsvjnceutSH1RR\n3/fSq4TPi2LnKS/8jK+8KD3f80LnRMRDz0REpByeifC9j3OhMaq/Z9w42Hln+PPPzLV27dzPrW3a\nqL93XUqWF7//7raDvvoqc7FVK3jvPfdAdcRrVN/34jT0z4so5ikv/IyvvCg93/NC50TEQ+dERETn\nREQXv5AYW27ZlT33hF9/zYy1aOHOg2jfvn6x1d87hvhdurgHVd5+O3hh+HDo0iW/GOr7XnIN9fNC\neVEc5UXuecoL/+LrnIjoaSciIuWwE9FQLV4MBx4Izz0XHL/vPnervXhg8GC46KLgWO/eMHRoMusR\nEREpYz7sRKiIiIiKiORcfjlccUVw7PTTaz8bIQl57jk44ABYsiQztt128Oqrrq2riIiI1IuKiAZE\nRUQynn7aPTidbaed4JVXXFtXSdiECbDDDjBzZmasdWsYNw7WXTe5dYmIiJQxFRENiIqI0ps0yf1C\nO/vn01VXdQ9Sr7lmcuuStJkzXQExYUJmrFEj+O9/YZ99kluXiIhImfOhiFCLVylLs2bBYYcFC4jG\njeHRR1VAeGHxYjj22GABAe7ADhUQIiIiZU9FRAXxvY9zvjEWLXKNfj777K/vAuDaa6Fz5+Jiq793\nRPr0gWefdfGrx3r0gHPPLSic+r6XXkP5vCj0e5QX4ZQXuecpL/yLr3Mi4qHbmSJSDrcz+d7HOd8Y\n55wDQ4YEvotjj7WMGLHU88rU37sOka/vgQege/dMfMDusIN7UKVFi4JCqu976TWUz4tCv0d5EU55\nobwI43te6JyIeOiciIjonIjo4i8txm23uW5M2dZYA8aM6UrTpsXFzneO+nsvxbvvuvvMFi/OjLVq\nRdfXXnMPVBdBfd9Lr9w/L4r9HuVFOOVF7nnKC//i65yI6GknIiLlsBNR7kaPhv32C/58utZa8M47\nsPrqya1L0n74AbbdFqZNy4w1bw5jx8L22ye3LhERkQbGh50IPRMhZWH8eDjqqGABseyyrsWrCggP\nzJnjzoLILiAA7rpLBYSIiEgDpCJCvDd9ujuROrsTkzEwYgR07JjcuiRt0SI4+mh39kO2888PPBsh\nIiIiDYeKCPHaggVw+OEwZUpwfPBgOOSQZNYkWayF0077qxPTXw44AK6+Opk1iYiISOxURIi3liyB\nXr3cLfXZTjrJ/ZJbPDBwIPzrX8GxbbaBhx92B3eIiIhIg6QiooL43se5ZowLL3TdQrN16eI6NGW3\nclV/7+IUvL4HHoBLLw2OtWsHzzwDrVoVHz+L+r6XXrl9XkT9PcqLcMqL3POUF/7F1zkR8VB3poiU\nQ3cm3/s4Z8e49lr45z+D1zbYAN56C1ZaqbD3VX/vcAWt76WXYN99YeHCzFjr1vD667DJJsXHj2CN\nyovilNPnRRzfo7wIp7xQXoTxPS90TkQ8dE5ERHRORHTxv/22K6efHhxbdVV4+WVYc83i3lf9vcPV\na32ffgp77w3z5mXGmjVzz0Vss03x8eugvu+lVw6fF8qL0lNe5J6nvPAvvs6JiJ52IiJSDjsR5eDZ\nZ+Hgg13Dn2rLLQf/+x9svXVy65K0b76BXXaB774Ljj/8MBxzTDJrEhERqTA+7ETomQjxxttvw5FH\nBguIZs3gqadUQHjhxx/hb3+rXUAMHqwCQkREpMKoiBAvjB/vuoLOnZsZM8Y9u7vHHsmtS9J++w32\n2gsmTw6On3EGXHBBMmsSERGRxKiIkMR98w3ss487VC7bzTe7U6olYbNnu4eoP/00OH700TBkSLBV\nloiIiFQEFRGSqO+/dzsN33wTHL/sMmo9XC0JmDcPDjoI3n03OH7AAXD//ToLQkREpEKpiKggvvVx\n/vFHV0AET6NOccopUFWPXgPq712cOte3YIF7SOV//wuOd+0KI0e6B1aKiV8P6vteer59XkQVQ3lR\nHOVF7nnKC//i65yIeKg7U0TKoTuTT32cf/7Z/Sz6xRe1orBwoaVJk+jfV/29w4Wub/FiOPZYVyxk\n2357ePFF1zKrmPhRrDGi71FehPPp8yLKGMqL4igvlBdhfM8LnRMRD50TERGdE5F//F9/dU1+Pvss\nOH7ooe4X33vumTtGIe+b77yK7++9eDH06gUPPhictMUWroBYccXi4hdIfd9Lz4fPizhiKC+Ko7zI\nPU954V98nRMRPe1ERKQcdiJ88NtvroD48MPg+IEHwuOP532HjMRl0SLo2bN2AbHhhjB2LKy2WjLr\nEhERkb/4sBNRj5tGRIozY4Y76LhmAbHvvvDYYyogErdwIZxwAjz6aHB87bXdDoQKCBEREUlTESEl\n8dtvsN9+8P77wfG//Q2eeAKaN09mXZK2YAF06wZPPhkcX2steOklWGedZNYlIiIiXlIRIbH78Ue3\nA/HJJ8HxLl1g1Cho2TKZdUna/PnuYZRnngmOr7suvPwyrLdeMusSERERb6mIkFh9/TVrfy3WAAAg\nAElEQVTsuWftg4532cX9zLrMMsmsS9LmzYPDD4fnnguOt2/vCgjtQIiIiEgInRNRQUrdx3niRNht\nt9oFRJcu8Oyz0KpV7hiFvG8x8yqqv/fcuXDwwaRqFhAbbeQeoo6ogFDf9/Br3uZFmu993wuNobwo\njvIi9zzlhX/xdU5EPNSdKSLl0J2plH2cP/rI3cL088/BOfvv7x6irusWJvX3LpHp011LrLfewgB/\nrW6TTWDMGFh99cjeSn3fyygvsvje973QGMqL4igvlBdhfM8LnRMRD50TERGdE5GJ/+absNde7ufU\nbEcfDY88Ai1a5I5RyPtGNa/B9/f++mvYfXdX6aV1BXcOxEsvxdKFSX3fw695lRchfO/7XmgM5UVx\nlBe55ykv/IuvcyKip52IiJTDTkQpjB4Nhx0Gf/wRHO/VC+64Axo3TmZdkvbxx66n7g8/BMe33hpe\neAFWXjmZdYmIiEjefNiJ0DMREplhw9ztSjULiHPPhbvuUgGRuP/9Dzp3rl1A7L67e4haBYSIiIjk\nSUWEFM1auPRSt9uwaFHwWioF110HJrE6WQD3IMree8PMmcHxo492T7mvsEIy6xIREZGypBavUpT5\n8+Gkk+DBB4PjxsD118M55ySzLslyyy1w5pmu2st21llwww3QSL9LEBERkfpRESEF++03OPRQePXV\n4HiLFjBihDt+QBK0aBGcdx4MHVr72qBBcNFF2iISERGRguhXkBUkys5RX34JO+9cs4BI0batu72+\n0AJC/b0j8vvvsN9+tQuIxo3hnnvg4ov/KiB87+9daAzlRXGUF7nnKS/8jK+8KD3f80LnRMRD3Zki\nUg7dmaLq4zx2LBx5JPzyS613YPJky/rrFx5b/b0jMGECHHQQTJoUHF9mGRg50j39XsL1qe+7J3lR\nT8oL5UUY5YXyIozveaFzIuKhcyIiUgnnRFjrfrF9/PEwZ07w2m67QbducPTRhcevpv7eRXj+edhn\nH5g2LTi+9trw4ovuX1QI3/t7FxpDeVEc5UXuecoLP+MrL0rP97zQORHR005ERMphJ6IY8+bBP/4B\n999f+9pxx7n2rs2bl35dkmYtDBkC558PS5YEr+20Ezz5JKy6ajJrExERkUj5sBOhZyIkp6++gl12\nCS8g+vWDBx5QAZGouXNdi6xzz61dQPz97+4hFRUQIiIiEiF1Z5KlGjMGjjkGpk8Pji+3nCseDj44\nmXVJ2oQJ7gGVTz8NjjdqBIMHu+5M6sAkIiIiEdNOhIRasgSuucadT1azgOjQAd59VwVE4h58ELbZ\npnYBsfzy8Mwz7tYmFRAiIiISA+1ESC0//QQ9e7pndGs69FC47z73c6ok5M8/3a1Lt99e+1qHDvDE\nE7DJJqVfl4iIiFQM7URUkHw6R73wAmy5Ze0CwhgYMAAef7zuAkL9vcOvRdqxa8oUd0BHWAFx3HFu\ni6ieBYTv/b0LjVFReRED5UXuecoLP+MrL0rP97zQORHxUHemiJRDd6al9SBesAAuvdTdwlTTiiu6\nE6hrHC9Qr/hRrLHY7ynr/t7WwkMPwWmnwaxZwWvNm8NNN8EppxR0+5Lv/b0LjVEReREj5YXyIozy\nQnkRxve80DkR8dA5EREp53MiJk92BcJjj9Wev+uuMHo0bLtt4fHrS/29a5g+3XVZuuIKmD8/eG39\n9d220YEHFvX8g+/9vQuN0aDzogSUF7nnKS/8jK+8KD3f80LnRERPOxERKYediJqshXvvhbPOqn14\nXKNGcNllbneiiZ6cSc6zz0KvXvDDD7WvHXEE3H03rLBC6dclIiIiifFhJ0I/Hlaob791d7+EPTy9\n1lru9qXOnUu/Lkn74w+44ILwZx+aN3f3nfXure5LIiIikggVERXGWvfL6/POg9mza18/7DD417+g\nTZvSr03S3nwTevRw95nVtPXW7tS/zTYr/bpERERE0tSdqYJ88w3ss4/bgahZQLRsCbfe6rovqYBI\nyOzZ7t6yXXapXUA0auTuLXvrLRUQIiIikjjtRFSAJUvgrrvgn/8M333o3NntTmywQenXJmn//re7\nPem772pf22ADt/uw446lX5eIiIhICO1ENHDjxrlfbJ96KsyenQpcW2YZGDoUXn45mgJC/b3Dry01\n5vffw+GHu1P8wgqI006DDz+MtYDwvb93oTHKOi88oLzIPU954Wd85UXp+Z4XOiciHurOFBHfujPN\nmOG6K916q9uJcAzg1rf77u7Zh/bto3tP9feuR3/vxYvhttugb9/w7aH11nMPVe+991LXGwXf+3sX\nGqMs88IjygvlRRjlhfIijO95oXMi4qFzIiLiyzkR1ro7Xw4+2O0w1MzHVq26MmQIDBkSz7MP6u8d\nfi0w/tprcOSR7h6yBQuCExs3hgsvhEcegQ4dcq41Kr739y40RlnlhYeUF7nnKS/8jK+8KD3f80Ln\nRERPOxER8WEn4uOP3W31r74afv3QQ+HGG2HddUu7Lkn7+mtXIDz6aPj17beHO++ErbYq7bpERESk\nrPiwE6FnIhqA776Dk06Cjh3DC4j27eE//4Enn1QBkYg5c9y9ZR06hBcQyy3nHk554w0VECIiIlIW\n1J2pjM2cCYMHww03wLx5ta83bw59+rhffrdsWfr1VbwlS9y9ZX36hJ84DXDUUXD99e6EPxEREZEy\noSKiDC1Y4O56qaqCX38Nn7P//nDTTbD++qVdm+AeRPn3v93uw6efhs/p1MndW7bbbqVdm4iIiEgE\nVESUkcWL3fO2/fqFH2YM7o6ZwYPhwAPBJHaXXIWyFkaPdofCvftu+JzVVoOBA6FnT3eAnIiIiEgZ\n0k8xZWDxYhgxwh1UfPzx4QXEqqvCHXfAJ5/AQQeFFxC+93EuNIYX/b1ffZVUu3buSPAaBUQKMveW\nTZwIJ57oVQGhvMg9T33f/YyvvCg95UXuecoL/+LrnIh4qDtTROLozrRoETz0EAwY4H72DLPssu4k\n6vPPh1atcq7R6z7OhcZIrL+3tTB2rNtZeOGFrFM4At+AsRb75Zfu7AcPKS/U9z2M8kJ5EUZ5obwI\n43te6JyIeOiciIhEeU7EggXwwAPQrZs7SmD69NpzGjeG//s/eOIJd+tSs2b5xfa9j3OhMUra37tz\nZ3j6adcSa8AAmDIlcy174uGHw8iR0LYtXQ87LK/1JUV5kXue+r77GV95UXrKi9zzlBf+xdc5EdHT\nTkREotiJmDHDPTB9003w/ffhcxo3hh493EHHG2xQ8FtJIRYuhIcfhquvhs8+q3vevvu64mKbbUq3\nNhEREakYPuxE6MFqD0yd6k6Qvvtud6RAmMaN3bO4ffuq41LJzZgB99zj/iV9/XXd8zp3dsWDOi6J\niIhIA6ciIiHWwptvui6fjz/ujhQI06QJ/P3vrnjw9Jb6huuzz+Dmm2H4cJg7t+55++/vHpreddfS\nrU1EREQkQSoiSmzWLNdp6fbb4eOP6563zDLulvvzzlPxUFKLFrnnHYYOhZdfrnteo0ZwzDFw0UU6\nZVpEREQqjoqIEhk3zhUOI0bAH3/UPW+11eDMM+HUU6FNm9Ktr+J9/TXcey8MGwbffFP3vObNXYvW\nf/4T2rcv2fJEREREfOJPs/oG6Pff3dkNO+zgDii+8866C4jNN3e33X/1lbt1KY4Cwvc+zoXGKLi/\n959/ugel997bbfekUqTqKiDWWAOuuIJU795w222hBYT6e8cXX33fS095kXue8sLP+MqL0vM9L3RO\nRDzUnSki1d2ZFiywPPss3H8/jBrl2rXWpVEj15719NPdz7FxnzDtex/nQmPUq7/3kiXwwQdu12HE\nCFfpZc+hxlkPu+0GvXvDYYdB06bq751QfPV9Lz3lhfIijPJCeRHG97zQORHx0DkREak+J+K221IM\nGwaff+5Omg6zxhruWYfhw+Ef/3CtWuMuIKr53se50Bg5v2f8ePjkE7pedRUMGgTvvON2IsJitWjh\nWmENG+YemN5sM9ceK4/3Un/v+OKr73vpKS9yz1Ne+BlfeVF6vueFzomInnYiIlK9ExFyZvFf9tnH\nPetw4IGu65LE7Kuv3O1KDz8MH32Ue/6220KvXu6UvxVXjH15IiIiIoXwYSdCP8rGbP313eFw3bur\ny1LsrHVbQE895b7eey/396y0kvuXc+KJsOWW8a9RREREpAFQERGDFVd0v8zu3h122ql0typVpMWL\n4a23MoXD5Mm5v6dpU3eqdI8ecNBBruOSiIiIiORNRUTEHnsMDjgAWrRIeiUN2C+/wAsvwPPPw3PP\nude5NGoEe+wBxx7rHpJu3Tr+dYqIiIg0UHomIiLVz0Ton2cMFi1yuw3PPecKh/ffd7cu5WPnnV3h\ncNRRsOqq8a5TREREpAR8eCZC50RUEN/7OP8VY9Ei9zzDNde4bZ02bVyr1SuvdOM1CojAuzZrBvvt\n5w7omDYNXn/dtWhddVX1965D2eRFTN+jvAinvMg9T3nhZ3zlRen5nhc6JyIe2omISDnsRHjbx3nh\nQvjwQxg7FnPBBdjll4dZs/J/X8Aeeywceqh71mH55Qten/p7+xlffd9LT3mhvAijvFBehPE9L3RO\nRDx0TkREqs+J8P2fpxd9nH/5BcaMcUd09+8PZ57pToF+4QUXY/783DE6dXIdlQYMgLXWoustt7jz\nHHI8JK3+3uG8yIsYYqjve3GUF7nnKS/8jK+8KD3f80LnRERPOxERKYediETMng3jxrnbkN57D959\nN78OSjW1beuO9d53X9hrLz3fICIiIhXLh50IdWeS6EyfDh9/7A52++ADVzSMH5//Q9DZVloJunaF\n3Xd3f266qXrlioiIiHhCRYTU3/z5MHEifPpppmj4+GP4/vvCY66xhjtUo0sXVzRstplryyoiIiIi\n3lERIXWbPdsVC1984U6C/vxz978nT4YlSwqP27gxdOzo2q9Wf629tnYaRERERMqEiohKN2cOTJ0K\nkya5r4kTM//7xx+Lj28MbLwxbLtt5qtjR1h22eJji4iIiEgidL9IQzd3LkyYAKNHkzroIOjbF7p1\ngx12cA8rL7ccbLklHHEEXHwxDBsGr75aUAGRatQIttoKuneHa6+FV16BGTPc7sX998PZZ8Muuyy1\ngFB/79Lzvb93oTGUF8VRXuSep7zwM77yovR8zwudExEPdWeKSCLdmebMcc8hTJvm/qz++vZb+OYb\n9/Xrr5k1ApGtbp11YJNNXAGy5Zaw1VaYLbdUf2/1944lvvKi9JQXyoswygvlRRjf80LnRMSjrG9n\nMsasCVwB7AOsBPwAPAVUWWtnlDpOJObPd+co/PIL/Pyz2xEI+5o2rV4HsgH0q+9amjSB9u3d7Uib\nbpr56tABWrWqHb9fvd8hkhj5fk8+83LNWdr1uq516dIl5/smKYp/b3HHV16UnvJCeRFGeaG8CON7\nXsSZE/nOjSMvkla2OxHGmPbAm8DKuB/4JwDbA3sA44FdrLW/lzBO7Z2IefPg99/d1/Tpma9ffw2+\n/vnnTOFQz8KgaE2aQLt2rljYcEP3tdFG7s927dx1KYrvv0GSZCgvJIzyQsIoL6Qm7UQU5zbcD/5n\nWmtvrR40xlwHnAtcCZxewjjOpptmCod8Tl6OW5MmsNZarvvROuvAeuu5gqH6zzXXdN2SRERERETy\nVJY7Eendg8nAVGvt+jWutcLdjgSwirV2Xtxx0vPdTkR9/iLFatbMna+wxhquGKj+qi4Y1lkHVltN\nRULC9BskCaO8kDDKCwmjvJCafNiJKNfuTLun/3yh5gVr7RzgdWAZYMcSxYlOo0awyiqw+ebutObj\njoNzz4Wrr4b77oPnn3eHu/38s7tdaupUeP11ePRRuOEGuOACOOYYd3BbjV0G37snFBrD964avlNe\n5J6nvPAzvvKi9JQXuecpL/yLr+5M8SjXnYjBwPnABdbaG0KuD8XdgnS6tfaOuOOk59beiWjWDFq3\ndl9t2sBKK4V/tW3rCoe2bd3cmE5q9r17QqEx1FWjOMoL5UUY5YXyIozyQnkRxve8UHemeJTrMxEr\npP+cWcf16vEVSxQn45NPMoVDy5Y6hVlEREREGpxyLSK8ZbbYIuklLJWJuaiJIn4hMfL9nnzm5Zqz\ntOt1XYv7n3uxlBfKizDKC+VFGOWF8iKM73kRZ07kOzeOvEhSuT4TUb1DsEId16vHc53xEFUcERER\nEZGKUa47ERMAA2xUx/UN039OLFGcRO9JExEREREppXJ9sNq7Fq8iIiIiIpWiLG9nstZ+iWvL2s4Y\n07vG5f7AssDw6h/8jTFNjDEbp4uGguOIiIiIiEiZ7kTAX7sIrwOrAKOAL3DnOXQFxgO7WGt/T89d\nF5gKfGWtbV9oHBERERERKeMiAsAYsyZux2BfYCXc7UdPAP2ttTOz5q0LfIkrItYvNI6IiIiIiJR5\nESEiIiIiIqVXls9EiIiIiIhIclREJMQYc7ox5ktjzDxjzHvGmF2TXpMkyxizmzHm38aY74wxS4wx\nPZJekyTPGNPHGPOOMWamMeZnY8woY8xmSa9LkpX+b8hH6byYaYx5wxizf9LrEn+kPzuWGGNuSnot\nkixjTL90LmR/TSs2roqIBBhjjgFuBAYAHYE3gGeNMWslujBJWivgE+AsYG7CaxF/dAZuBnYCdgcW\nAS8aY1ZMdFWStG+BC4GtgW2Al4CnjDFbJroq8YIxZkfgFOCjpNci3hgPrAqslv7aotiAeiYiAcaY\nt4APrbWnZo1NBEZaay9JbmXiC2PMbOAMa+3wpNcifjHGLAvMBA6x1v4n6fWIP4wx04GLrbV3Jb0W\nSY4xZgXgfaAXkAI+sdaeleiiJFHGmH7AEdbaSH/JoJ2IEjPGNMX91mh0jUsvADuXfkUiUmaWx312\nq/W0AGCMaWSM6Qa0AMYmvR5J3J3Ao9ba/yW9EPFKe2PM9+lb6R8yxqxXbMAmUaxK6mVloDHwU43x\nn4C/lX45IlJmhgAfAG8mvRBJljFmc1wetMDdAnm0tXZCsquSJBljTgHaA8cmvRbxylvA33G3NK0C\nXAa8YYzZtJiz0LQTUYMx5ghjzE3GmLHph9WWGGOWekuJMWZNY8ywdIX3pzFmqjHmBt2z3HAoLyRM\nqfPCGHM9bsfyCKt7Ub1VwrwYD2wFbI97buZhY8w2Ef5VJEJx54UxZiPgSuA4a+2SuP4eEq1SfF5Y\na5+31j5mrf3UWvsScACuBuhZzNq1E1HbpcCWwBzgO6DD0iYbd+L1m7gdhqeACbgP9LOBfYwxNU+8\n/hVYjHu4JduqwI9R/AUkFnHnhZSnkuWFMeYG4Gigq7X268j+BhKHkuSFtXYR7iBVgHHGmO2BM4CT\nIvp7SLTizoudcAfmfm6MqR5rDHQ2xpwKLGutXRjdX0ciUvKfL6y1c40xnwEbFrVya62+sr6ALsD6\nWf97CTB8KfOfxxUFp9cYvy79vbeGfM9bwO01xiYAA5L+++srubyoMW820CPpv7e+/MgL3C1M04CN\nkv4768ufvAiJMwa4L+m/v76SyQvc81Kb1vh6B3gA2CTpv7++ksmLOmK0SP835dKi1p70Pzyfv3L9\ny8Tdd7gEmBJyrVX6B8HZQMsa144G/sR1TuiQ/gFhFrB20n9nfSWaF8vibk3oCPyB++3EVsqL8viK\nMS9uwXVj6orbsaz+Wjbpv7O+Es2LQcCuwLrA5unXi4A9k/476yu5vAiZ+zJwU9J/X30lmxfANbh2\n4e2AHYBngBnF/nyhZyKKs3v6zxdqXrDWzgFeB5YBdqxx7VHgHOASYBzuHuf9rLXfxrpaKZWC8gLY\nFpcP7+N+S1CFe4C2KraVSikVmhen4f7jMAb3m6Pqr/NjW6mUUqF5sRpwP+65iBdxXf/2tda+GN9S\npYQKzYta0yNelySr0LxYC3gQ93nxGDAP2LHYnzv1TERxNsb9H3RiHdcnAXsBG+F+G/AXa+3twO2x\nrk6SUlBeWNeOT4V9w1VoXignGrZC8+LE+JcmCSr454ts1to9ol+aJKjQz4tYunXpP07FWSH958w6\nrlePqxtPZVFeSBjlhYRRXkgY5YWE8SovVESIiIiIiEi9qIgoTnXFt0Id16vHZ5RgLeIP5YWEUV5I\nGOWFhFFeSBiv8kJFRHEmAAZ371mY6v67dd27Jg2T8kLCKC8kjPJCwigvJIxXeaEiojjVD63sXfOC\nMaYVsAswF3cuhFQO5YWEUV5IGOWFhFFeSBiv8kJFRBGstV/i2my1M8b0rnG5P67v/3Br7bySL04S\no7yQMMoLCaO8kDDKCwnjW16Y9CEUkmaMOQQ4NP1yNWAf4Evg1fTYr9baf2bNb4/ry7sKMAr4Atef\ntyuuH2/O48fFf8oLCaO8kDDKCwmjvJAw5ZwXKiJqMMb0Ay5fypSvrLXr1/ieNXEV4L7ASsAPwBNA\nf2ttXW24pIwoLySM8kLCKC8kjPJCwpRzXqiIEBERERGRetEzESIiIiIiUi8qIkREREREpF5URIiI\niIiISL2oiBARERERkXpRESEiIiIiIvWiIkJEREREROpFRYSIiIiIiNSLiggREREREakXFREiIiIi\nIlIvKiJERERERKReVESIiIiIiEi9qIgQEREREZF6UREhIiIiIiL1oiJCRERERETqRUWEiIiUNWNM\nyhizxBjTOem11GSM2dAYM98Yc2HSawEwxjxtjJlkjGmc9FpEpLypiBARyWKM2dgYM9QY84kxZkb6\nB8DvjTHPGGNOMsY0S3qNSUv/wP5SCd+vZ/o9e9Qxxaa/fHQ1MAO4udhAxpiv0v8clhhjui5l3j1Z\n8y6vcTkFrA+cXux6RKSyqYgQEUlL/8D1Ge4HrJnAvcBg4D/ABsBdwGtJra/CLa1IGApsArxTorXk\nxRjTCTgUuMVaOzeCkNXF0kLg5DreczngqPScWv/MrLXvAy8BlxpjmkawJhGpUE2SXoCIiA+MMX1x\nv6X9GjjKWvteyJy9AS9uS6kwZmkXrbW/Ab+VaC31cRruB/kHIo77DHC4Maa1tfb3GtdOAFoCTwKH\n1/H9DwB3A0cCD0W8NhGpENqJEJGKZ4xZF+gHLAD2DysgAKy1LwD7hXz/0caYsenbn+YaYz42xlwc\ndutT+paUL40xyxhjrjHGfG2M+TN9n3qdBYoxZjtjzCPGmO/S86cZY543xhwVMncHY8xjxpgf0rdj\nfWOMud0Ys3rI3FeMMYuNMY2MMX2NMRPT8b8xxlyV/dvq6tuKcD8Yd826Zeav22aMMeumXw9LPw/w\niDHmp/R7dE7P6WSMGWKM+dAYM90YMy/9vtcaY1assb6XgWHpl/dmvd9iY8w66Tl1PhNhjPmbMea5\n9Pv8aYyZYP6/vXuP0aMq4zj+fbY05WarYBeQVgO6WsAYCEhRi91KRCQ0ChqBmIpCGw2K1AvahItI\nC/VuRAUULCYIRi6JtEkpIhYlCFppK4iADbaktVZbdAvllrL7+Mdzpp2dnXl35n13bZXfJ5nMduac\nOeed921ynplzMVtoZuM7uRfDMbM9gTOAB939ryNc1rXAnsCsknOzgfXAnS3y3wr0A2fX/TwiIkV6\nEyEiEo2pscBN7v5oq4Tuvj3/bzO7ApgHbAZuBLYRgcYVwIlmdqK7v5S/RCrrTuAgYCnwEtHt5Stm\nNs7d5xfKmANcldItBtYA3cAxxNPuW3JpzwZ+ALyQ0q4HeoBzgJlmNtXdNxTqA/FEehpwB/A0cDLx\n1mViyguwinhbcymwjujulbmncKveAPwOeJx48r1Xui7AnPR5fw3cRTzQOhr4LHBSquOzKe31wL+B\n9wE/B1bn6t2X+3tI1x0z+zhx37ale/RPoBf4InCKmb3D3Z/OZWlyL4bzdmAfqru/dVLWXcT9nw1c\nmR00s6OBo4iAeKCqYu6+zcweAqal39uL9T6SiEiOu2vTpk3by3oDfkl6Mtsw33FEY20tMDF3vIto\nwPcD8wp51qbjS4BxueMTicbyv4AxueOHEW9ItgBTSurwmtzfPcCLRMP9wEK6GUQQclvh+PL0GVYA\nE3LH9yKCle1AdyHPAPCrinvyunS+H5hfkWYyYCXHP5byXlA4fla63kcqrveldP6duWOvJQKpPqCn\nkP77qZxrOr0XLX4bl6Q6nVFxvp37nv12uoAL099Tc+evSfkmEQHIAHBJRflXpfzTd/X/P23atP1v\nburOJCISbwQANrRMNdQ5xBPlBe6+OTvo7gPA59K50gGwwKc99wQ45b8dmAC8KZfuXGAMcJm7P1a8\niLtvLKTdA5jr7psK6ZYTgc1MM9uneBngC+6+NZf+eeLNShfxxqOpfwCXlZ1w9/XuXjZQ+sfE0/j3\ntFFe0Szijc933X1N4dyFwDPArJJuQyN1Lw5N+1a/qU7Kup4IEuYAmNnewJnAMh/8pqlKlubQlqlE\nRCqoO5OISPuOSvvlxRPuvsbMNgCHmNkr3P2Z3Omt7r625Hrr0/5VuWNT035Zjfocl/a9ZnZsyflu\nIiB5I9E1Ke/BmvWp649e6PqVMbM9gE8ApwOHE4FT/qHWwW2UV9Tqu+kzs1XA8cAU4OFCkpG4FxPT\nfrgB322V5e4bzWwp8CEzO58Yf7EvMV6ijqeIAevdNdOLiAyiIEJEBP5ONCabNl4n5PJXXXcy8Eri\nyXemrzw52diJ/EJg2UDjv9Woz/5p//kWaZxobA4+OHhsQKv61LWpxbmbiTERTxDjHDYR3bAAPgOM\na6O8ojrfDey8vzuM0L3I3rQMN7NUJ2VdC5wCfJjoCraJmLmpjixo213X1xCR3ZyCCBGRGPz6LuAE\noptIXVk3lAOJ/upFBxXStSMLOA4G/lKzPuN958DkXaW0cZoG/74f+AUxE9ZA7pwRg55HQv67KRss\nPxLfTStb0n6/Ubo+xKD8jcBFxDiIy/P3cxj7Ed/R5uESioiU0ZgIEZEIHLYDHzCzKa0SFqZtzboE\n9Zakez3RsFtb8bS5rgfSfsjUsi3SDpnqdIQN0N7bCYhZmwCWlDR4pxIDi4v6iTYiPCYAAANbSURB\nVCf6TcpclfL0Fk+Y2QTgSGLgdcvZuDqQTes6aZSun429WUQEmP3E2g91ZW/dhkw/KyJSh4IIEXnZ\nc/cniWlLxwFL09PyIczsvQwem7CIaKheZGavzqXrAr6Zzl3XYfWuJhqIF5vZYSV1ynfB+h7RFebb\nZtZTknasmU3rsD4Q/eknt5l3Xdr35g+aWTdR/6ryIGZcqusnRGB4Xgro8hYA44EbqsZtjIB7ie//\nraN0/cx3gFOBk9x9XYN8xxKzfj0wXEIRkTLqziQiArj7QjMbQ0wXusLMfgv8gVhj4ADi6X4P8Ptc\nnvvN7GvABcCfzOxW4FnircERREPyGx3W61EzO5cIJlaZ2e3EFKD7Ew3UrUQ3LNz98bROxI+AR8xs\nGdEFaizRAD+eWCvh8AZVKOvTfzdwupktBlYSjfXfuPu9Na63AriPWHH5PqIr2QHEPXuM6J5TdD/w\nHDA3BWvZeIsrCwPWd3D3J81sLhGYrDSzm4muO9OBtwF/Jtb3aKLl+IaSOm8j1oBoR62yPFbrXtzo\nwmb7Am8B7nGtESEibVIQISKSuPsCM7uFmCp1BvBRYmXgp4hFzhYS02/m88wzs5XAp9g5regTxDSi\n3/LBC83tyNawXteZ2cPEgOnpxMJrW4CHKLzpcPcbzWw1McXsDODdRGCzkVhw7WcN61N27nyiS9MJ\nROO/C/gyETRleUqv6e4DZjaTeBtwMnAeMWj8h8DlRPciL+TpM7PTiADvLGIRN4AbGDxgvVjW1Wa2\nhrhvpwF7EzMffRVYWNHNrOm9qCr7BTP7KTDbzA6pmI2rnbKa/HaqvocPEl3DFpWcExGpxcqn6hYR\nEZFOmNmRxJuaS929dM2MXcHM7gbeDEwaxe5cIvJ/TmMiRERERoG7rwZuAz5pZmUDxv/rzOwY4g3V\nfAUQItIJvYkQEREZJWlQ9yPAxe7+9d2gPkuIxQaPqOhqJyJSi4IIERERERFpRN2ZRERERESkEQUR\nIiIiIiLSiIIIERERERFpREGEiIiIiIg0oiBCREREREQaURAhIiIiIiKNKIgQEREREZFGFESIiIiI\niEgjCiJERERERKQRBREiIiIiItKIgggREREREWlEQYSIiIiIiDSiIEJERERERBpRECEiIiIiIo38\nB0cykztocbzNAAAAAElFTkSuQmCC\n", "text/plain": [ "<matplotlib.figure.Figure at 0x10c41ccf8>" ] }, "metadata": { "image/png": { "height": 272, "width": 392 } }, "output_type": "display_data" } ], "source": [ "c = c_log # Drug concentration(s) in nanomolar (nM)\n", "EC_50 = 20 # 50% effective concentration in nanomolar (nM)\n", "F = 1 # Efficacy (unitless)\n", "n_H = 1 # Hill coefficients (unitless)\n", "r_a = calc_drr(c, EC_50, F, n_H)\n", "\n", "K_i = 5 # Dissociation constant of inhibitor in nanomolar (nM)\n", "c_i = 25 # Inhibitor concentration in nanomolar (nM)\n", "r_aca = calc_drr_agonist_cptv_antagonist(c, EC_50, F, n_H, K_i, c_i)\n", "\n", "plot_dose_response_relation(c, r_a, \"Agonist Only\", r_aca, \"Plus Antagonist\", log_flag = True)" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "### Agonist Plus Noncompetitive Antagonist" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "Unlike competitive antagonist, noncompetitive antagonist does not compete directly to the location where agonist binds but somewhere else in the subsequent pathway. Instead of altering effective concentration (like $EC_{50}$), noncompetitive antagonist affects efficacy. New efficacy value ($F'$) due to the existance of noncompetitive antagonist is calculated as follow.\n", "\n", "$$F' = \\frac{F}{\\left(1 + \\frac{c_i}{K_i}\\right)}$$" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "Following is a new function to calculate drug response of agonist with noncompetitive antagonist. It shows new efficacy value (`F_prime`) replacing agonist only efficacy value (`F`)." ] }, { "cell_type": "code", "execution_count": 15, "metadata": { "collapsed": false }, "outputs": [], "source": [ "# Calculate dose-response relation (DRR) for agonist plus noncompetitive antagonist\n", "# - Agonist\n", "# c : Drug concentration(s) in nanomolar (nM)\n", "# EC_50 : 50% effective concentration in nanomolar (nM)\n", "# F : Efficacy (unitless)\n", "# n_H : Hill coefficients (unitless)\n", "# - Antagonist\n", "# K_i : Dissociation constant of inhibitor in nanomolar (nM)\n", "# c_i : Inhibitor concentration in nanomolar (nM)\n", "def calc_drr_agonist_non_cptv_antagonist(c, EC_50 = 20, F = 1, n_H = 1, K_i = 5, c_i = 25):\n", " F_prime = F / (1 + (c_i / K_i))\n", " r = calc_drr(c, EC_50, F_prime, n_H)\n", " return r" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "Following result shows drug response of agonist with noncompetitive antagonist to the linearly increased concentrations." ] }, { "cell_type": "code", "execution_count": 16, "metadata": { "collapsed": false }, "outputs": [ { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAxIAAAIcCAYAAABiuZgPAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAAWJQAAFiUBSVIk8AAAIABJREFUeJzs3Xd8VFX+//HXuSEJEEILLQQhFJeigA1EcRVwFQQLYEUF\naYqru7rqoiv7Wwiia1n2C+q6oqwFFOysiA0VKbZFRUUBC0hTqrQgJRDg/P44zJByJyRwk5lJ3s/H\n4zwmufVk+Djmk3PP5xhrLSIiIiIiIiXhRbsDIiIiIiISf5RIiIiIiIhIiSmREBERERGRElMiISIi\nIiIiJaZEQkRERERESkyJhIiIiIiIlJgSCRERERERKTElEiIiIiIiUmJKJEREREREpMSUSIiIiIiI\nSIkpkRARERERkRJTIiEiIiIiIiWmREJEREREREpMiYSIiIiIiJRY3CYSxpiLjTEPGWPmGWOyjTEH\njDGTj/BaGcaYJ40xa4wxOcaYFcaYccaYmkH3W0RERESkPKgU7Q4chf8HtAN2AD8DrY7kIsaYZsAn\nQB3gVeB7oCNwM9DdGNPZWrs1kB6LiIiIiJQTcTsiAfwJ+I21tgZwA2CO8DqP4pKIP1prL7bWjrDW\n/g4Yh0tO7gmktyIiIiIi5Yix1ka7D0fNGHMWMBt41lo7oATnNQOWASustc0L7KsGrDv4bT1r7e6g\n+isiIiIiEu/ieUQiCF0Pvr5TcIe1dgfwEVAV6FSWnRIRERERiXUVPZFoCVjghwj7lx58/U3ZdEdE\nREREJD5U9ESixsHX7Aj7Q9tVvUlEREREJI94rtoUU4wx8T/ZRERERETihrX2SIsNBaKij0iERhxq\nRNgf2r6tDPoiIiIiIhI3KvqIxPe4srGR5kAce/A10hyKQspDFSwJljFGcSGFKC7Ej+JC/CgupCBj\nojoQEVbRRyRmH3w9t+COg+VfOwO7gP+VZadERERERGJdhUgkjDGVjDEtD64bEWatXY4r/ZppjPlD\ngdPuAlKAyVpDQkREREQkv7hdkM4YcxHQ++C3DYDuwHLgg4PbNllrhx88tgmwAlhprW1W4DrNcOtF\n1ANeA77FrRvRBfgO6Gyt3VqM/ljQo01SmIakxY/iQvwoLsSP4kIKCj3aFO3J1vGcSIwCRhZxyMrQ\natUHE4nlebcVuFYGbgSiB5CGW9F6GnCXtTZSadiC11AiIb70PwDxo7gQP4oL8aO4kIKUSJQzSiQk\nEv0PQPwoLsSP4kL8KC6koFhJJCrEHAkREREREQmWEgmRUjZq1Khod0FikOJC/CguxI/iQmKVHm0K\niB5tEhEREZGyoEebREREREQkblX0la2jJlZWJBSR+KURUBERiSaNSIiIiIiISIlpRCLK9BdFESkp\njWiWX1lZWWRlZUW7GxJjFBcSqzTZOiAlnWydZ5JM6XVKRMolfX6UX1ovQPwoLqQgTbYWERGRfFTm\nU/woLiRWaUQiIBqREJGyos8PEZGKTSMSIiIiIiISt5RIiIiIiIhIiSmREBERERGRElMiISIiIiIi\nJaZEQkREJEZorQDxo7iQWKWqTQFR1SYpbXPnzqVr165kZmayfPnyaHcnpmRmZrJ69WrmzJnDmWee\nGe3ulDp9fpRfWi9A/CgupCBVbRIJ0PTp0/E8D8/z6N69e7S7E/Oys7MZPXo0o0ePDuya3333HX/+\n85854YQTSEtLo0qVKjRu3JgLL7yQp556in379gV2r4KMMVrtWcoFrRcgfhQXEqs0IhEQjUhEV9++\nfZk+fToAnuexevVq0tPTo9yrYH322Wdcc801NGrUiHfeeeeorrVq1SqaNm2KMYb9+/cf1bWstdxx\nxx2MGzeO/fv3Y4whMTGRlJQUtm3bFj7m2GOP5cUXX6R9+/ZHdT8/TZs2ZfXq1cyePVsjEiIiUu5p\nREIkIJs3b+aNN94AoHXr1hw4cIBnnnkmyr0KXocOHViyZMlRJxFBu+qqqxg7diwHDhzgyiuv5PPP\nPycnJ4fNmzezbds2nnzySRo2bMjSpUvp0qULX3zxRbS7LCIiIgFQIiFxb+rUqeTm5tK5c2fuvPNO\nrLVMmjQp2t2KaUH9JfuRRx7h+eefxxjDP/7xD5599llOPPHE8P7U1FSuueYaFixYQIsWLcjOzuby\nyy9n165dgdxfREREokeJhMS9SZMmYYzhmmuuoU+fPlSrVo3vvvuOzz///LDnfvTRR/Tq1Yu0tDSq\nVavGCSecwIMPPoi1loEDB+J5HnfddZfvub/++itZWVmccMIJpKamkpqaSvv27cnKymL79u2+54we\nPRrP8xg8eHC476eeeirVq1enRo0adOvWjffee8/33Llz5+J5Hs2aNSu0z1rL008/Tbdu3ahTpw5J\nSUnUq1eP448/niFDhjBz5szwsV26dKFZs2bhyXuhuSWhFunnLSgnJ4fRo0djjOH888/n1ltvjXhs\n/fr1efbZZzHGsHz5ch577LF8+1etWoXneSQkJACwaNEirrjiCtLT06lSpQqtW7fm7rvvJjc3t1h9\nAxgyZAie53HZZZcVedyoUaPwPI8zzjij2NcWERER3C8gakffAOvezuIp6fHib/HixdYYY6tWrWqz\ns7OttdYOGjTIep5n//CHPxR57qRJk2xCQoL1PM96nmdr165tk5KSrOd5tm/fvnbgwIHW8zw7evTo\nQucuXbrUNmnSxBpjrOd5tlq1arZatWrW8zxrjLFNmjSxy5YtK3ReVlaW9TzPDho0yA4dOtQaY2xi\nYqKtWbNm+NyEhAQ7bdq0QufOmTPHGmNs06ZNC+278sorw33xPM/WqlXLVq5cOfz9aaedFj724osv\ntvXq1Qsfn56enq/985//POz7bq21U6ZMCV9j/vz5xTrn3HPPtcYY27Jly3zbV65cGb7WO++8Y6tW\nrRr+OSpVqhR+b/r06eN73czMTOt5np07d25428cff2yNMbZy5cp2y5YtvucdOHAgfO6TTz5ZrJ8h\nFujzQ0SkYsvz/4Ho/v4b7Q6Ul6ZEIjqGDx9ujTG2X79+4W2hX7jr1Kljc3Nzfc/77rvvbHJysvU8\nz15wwQV29erV1lprc3Jy7L/+9S+bmJhoa9Wq5ZtI7N2717Zr1y6cMMyaNSu87/3337eZmZnWGGPb\ntm1r9+7dm+/crKwsa4yxtWrVslWrVrWPP/643b17t7XW/TLdpUsXa4yxGRkZdv/+/fnOjZRIzJs3\nL5yQPPTQQ3bHjh3hfevXr7eTJ0+2w4cPz3dO3l/cj9S1115rjTG2QYMGxT7n3//+d/i+69at8+1P\nrVq1bL9+/cL/Jrt27bL3339/OCl66623Cl3XL5Gw1trjjjvOep5nH374Yd/+vPfee9YYY1NTU/O9\nb7FOnx/l16hRo6LdBYlBigspSIlEOWtlnUhAbLaytH//ftuwYUPfXy5Dv1j6/WXfWmsHDBhgjTG2\nffv2vsnGP/7xj/AvtgUTiWeeecYaY2xycrJdsmRJoXMXL14cHtl46qmn8u0LJRKe59nnnnuu0Llr\n164NJzgffPBBvn2REokHHnjAGmNsz549fX9WP0EkEp07d7ae59nu3bsX+5wPP/wwfN/333/ftz89\nevTwPfeCCy6wnufZIUOGFNoXKZEYN26cNcbYk046yfea/fr1s57n2cGDBxf7Z4gFSiTKL/27ih/F\nhRQUK4mE5khI3Hr33XdZt24d9evXL7R2xIABA7DWf9K1tZbp06djjOFPf/oTlSpVKnTMjTfeSEpK\niu99X375ZYwxXHTRRbRu3brQ/jZt2nDJJZdgreXFF1/0vUbjxo254oorCm1PT0+nY8eOgJsnUBzV\nq1cHYOPGjaGktkxs2bIFgLS0tGKfU6dOnfDXmzdv9j3mjjvu8N3eu3dvrLXFfl/AxUFSUhJfffUV\nCxcuzLcvOzubV199FYBBgwYV+5oipUnrBYgfxYXEKiUSEreeeuopjDFcffXVhRYjGzBgAABvvfVW\noV9Yly9fHp4M3blzZ99rV6lShZNPPtl3X6h8adeuXSP2rVu3bvmOLeiUU06JeG5GRgYAW7dujXhM\nXmeffTZJSUksWLCALl26MGXKFNatW1esc2NRhw4dfLeX9H0BqF27Nn369AFcvOQ1depUcnJyOPbY\nYzXRWmJGVlZWtLsgMUhxIbFKiYTEpe3bt/Paa68B0L9//0L7mzdvTufOndm3bx9Tp07Nt2/Tpk3h\nr4tatK5hw4a+23/55Rfg0C+2fho1agRE/qt7ampqxHMrV64MUOwKRS1atGDChAlUrVqVDz/8kP79\n+5ORkUGzZs244YYb+Oqrr4p1nZKqXbs2EPln9JP3vQ+dX1CkkaCSvi8hQ4cOxVrL1KlT862u/eST\nT2KMCVfQEhERkZJRIhGnoj8bwr+Vleeff56cnBystbRv375QCVPP8/joo48iPt4UhJycnFK57pEY\nOHAgK1asYPz48fTu3Zs6deqwatUqJkyYwMknn8x9990X+D1bt26NtbbQI0NF+frrr8Nft2nTJvA+\n+Tn77LNp1qwZmzdvDiefixcvZsGCBSQkJIRHr0RERKRklEhIXJo8eTLglog/XPvyyy9ZvHhx+Ny8\nz+kX9QhQpH1169YFYPXq1RHP/fnnn4GSzR84WnXr1uWPf/wj06ZNY+PGjXz66af07dsXay1/+9vf\nSjS3oDhCj3Zt3LiR+fPnF+uc0JyEFi1a0KBBg0D7U5TBgwdjrQ0/3vTEE08A0KNHjzLth4iISHmi\nRELizrJly/j4448xxrBw4UK2bt0asZ1//vkA+UYlmjVrFp6g/OGHH/reIycnhwULFvjuO+mkk7DW\nMnv27Ih9fP/998PHRsvJJ5/Miy++SKNGjThw4EC+n9Xzjv4//b59+4aTsr///e+HPf7TTz/lvffe\nwxjD9ddff9T3L4lBgwaRkJDAzJkzWb16NVOmTNFjTSIiIkdJiYTEnVBS0L59e44//niqV68esV16\n6aVYa5kyZUq4olGo4pK1lgcffJD9+/cXuscjjzzCjh07fO9/ySWXAG4it99jPYsXLw5Xdrr88suD\n+rEjKmrOgOd5JCYmArBnz57w9lAiBa560ZGoXLkyI0eOxFrL66+/zj//+c+Ix65bt46rr74aay1N\nmzbluuuuO6J7Hqn09HR69uzJ/v37ueqqq/jll1+oW7cuF1xwQZn2Q+RwNKlW/CguJFYpkZC48+yz\nz2KMoW/fvoc99oILLiAxMZH169czc+bM8PY777yTpKQkvvnmG/r27Rt+TGnPnj088sgj3HnnndSq\nVcv3mpdffjnt2rXDWstFF13ErFmzwvtmzZpFr169yM3N5fjjj+fKK688yp/28EaMGMGll17K9OnT\n81U02rhxIzfddBMrVqzAGMM555wT3lejRo3wZPKC1YxK4g9/+EM4WRo+fDhXXXUVX375ZXj/r7/+\nylNPPUWHDh1YtmwZqampvPDCCxEnVJem0KTrjz76CGMM/fv3JyEhocz7IVKU0aNHR7sLEoMUFxKr\nlEhIXJk9ezarVq0C4OKLLz7s8TVq1KBbt26FJl23atWKCRMmYIzh9ddfJzMzk7S0NKpXr85NN93E\nRRddFP5rdXJycr5rJiYm8sorr5CZmclPP/3EOeecQ7Vq1ahWrRrnnHMOP/30E5mZmUybNi08GlBS\nJVkPYt++fbzyyiv06dOHtLQ0atasSY0aNWjQoAH/+te/MMZwzz33FJrcPHToUABuvfVWUlNTadq0\nKU2bNuWhhx4qUV+nTp3KLbfcQqVKlXj++ec5+eSTqVy5MrVr16ZGjRoMGTKEdevWceyxxzJv3ryI\nZXVLW69evfJV4tLaERKLtF6A+FFcSKxSIiFxZfLkyRhjaNmype9icH4uvvhijDHMmDEjvH4EuEpH\n8+bNo0ePHtSsWZO9e/fSpk0bxo0bx0svvRR+5KdmzZqFrtm8eXMWLlzIyJEjadu2bXhid9u2bRk5\nciQLFy6kefPmvv0JHVuUSPv9zr311lt5+OGH6d27Ny1btgRg7969NG7cmH79+jFv3jzfRd5GjRrF\n/fffT/v27QE3eXz16tVs27atyL759Wns2LF8/fXX3HLLLbRr146UlBR2795NRkYGvXr14j//+Q9L\nliwJ36ukP3fe/UW9N0XxPC88Z6ZDhw5lVjVKpCT0CIv4UVxIrDJluRJueWaMsVD8vySHfunR+x+7\nmjRpws8//8zs2bM588wzo90dCUDLli1ZtmwZEyZM4Nprr412d46YPj9ERCq2PP8fKPqvaKVMIxIi\nPp577jl++uknqlevzqmnnhrt7kgAZs2axdKlS0lJSaFfv37R7o6IiEjcqxTtDohEy7333ktqaiq9\ne/cmIyMDYwzbtm1j0qRJjBgxAmMMN954Y6E5EhJ/Nm3axPDhwzHGMGTIEKpVqxbtLomIiMQ9PdoU\nED3aFH/69+/PlClTAEhKSiIlJYVt27ZhrQ1XOXrttddISkqKck/lSP35z3/mpZdeYv369eTm5lKv\nXj0WLVqUb1HCeKTPDxGRik2PNolE2Y033sgNN9xAu3btqFGjBjt27CAtLY1u3brx5JNP8uabbyqJ\niHObN2/m559/pmrVqvTo0YNZs2bFfRIh5Zsm1YofxYXEKo1IBEQjEiJSVvT5UX4ZY/TvKoUoLqQg\njUiIiIhIPlovQPwoLiRWaUQiIBqREJGyos8PEZGKTSMSIiIiIiISt5RIiIiIiIhIiSmREBERERGR\nElMiISIiIiIiJaZEQkREJEZovQDxo7iQWKWqTQFR1SYRKSv6/Ci/tF6A+FFcSEGq2iQiIiL5aL0A\n8aO4kFilEYmAaERCRMqKPj9ERCo2jUiIiIiIiEjcUiIhFcrcuXPxPI9mzZpFuysSZ0aPHo3neQwe\nPDjaXREREYkJSiQkLg0aNAjP8wq1GjVqcOKJJ3L77bezZs2aaHczMPv27aNevXp4nkelSpVK/Wd7\n8MEHGT16NKtXry7V+1RUCxcuZPTo0UyaNCnaXRERETliSiQkriUlJdGgQQMaNGhA/fr12blzJ19/\n/TVjx46lbdu2fPzxx9HuYiDefPNNNm3aFK7c8eyzz5bq/caPH89dd93FypUrS/U+8aROnTq0atWK\n9PT0o77WV199pURCRETinhIJiWunn346a9euZe3ataxbt44dO3YwefJkatWqRXZ2Npdeeil79uyJ\ndjeP2tNPP40xhjZt2mCt1S+gUXDjjTeyZMkS7rnnnmh3RcoxrRcgfhQXEquUSEi5UrlyZa666ioe\nfPBBrLWsX7+eV199NdrdOipbtmzhzTffBGDq1Kmkpqby/fff89lnn0W5Z3KkVG1JIhk9enS0uyAx\nSHEhsUqJhJRLl112GZ7nwnvBggXFOiczMxPP85g3b17EYzzPIyEhwXfuwPTp0+nZsycNGjQgKSmJ\ntLQ0WrVqxZVXXsmLL754ZD8ILnnYu3cvp59+Om3btuWSSy4BKHJUYtWqVeG+AixatIgrrriC9PR0\nqlSpQuvWrbn77rvJzc3Nd15oQvGqVauw1tKlS5d8c1C6desWPvbAgQO89dZbDBs2jFNOOYUGDRqQ\nnJxMRkYGffv2Zfbs2Yf92SZNmkSnTp2oVq0aaWlpdOvWjTfeeAM4/L/H8uXLGTZsGM2bN6dKlSrU\nrl2bs846iyeeeIIDBw74nhP6eSZPnkxOTg5ZWVm0atWKqlWrUr9+ffr168eyZct8zy1qsvWOHTsY\nM2YMp5xyCtWrVw+/Dx06dOD2229n8eLF4WPzXmPOnDmF5vkUFX9S/mm9APGjuJCYZa1VC6AB1r2d\nxVPS4yW/gQMHWmOM7dq1a8Rj6tevbz3Ps8OGDQtvmzNnjjXG2KZNmxY6PjMz03qeZ+fOnRvxmsYY\n63meXbVqVb7tI0aMCO/zPM/WqFHDVq1aNfx9enr6EfyUzimnnGI9z7MTJ0601lo7d+5ca4yxaWlp\ndu/evb7nrFy5Mtyfd955J9yXWrVq2UqVKlnP86wxxvbp0yffeWPHjrXp6enhY9LS0mx6enq4XXLJ\nJeFjFy1alO9nrlmzpk1NTQ1/b4yx9913X8Sfa+jQoeHzK1WqZGvXrm0TEhKs53n2wQcfLPLfY8aM\nGbZKlSrh82vVqmWTk5PD9z3nnHPsrl27Cp3XpUsX63mefeihh+yJJ55oPc+zVapUsSkpKeFz69Sp\nY5cvX17o3KysLOt5nh00aFC+7dnZ2bZNmzb5fpa0tLTwe+h5nr3zzjvDx6enp9uaNWtaY4xNTk7O\n9/42bNjQfvLJJxHfsxB9foiIVGx5/j8Q1d9/NSIh5VJOTg6//PILADVr1izVe61atYr7778fYwwj\nRozgl19+Ydu2bezcuZONGzfy8ssv06tXryO69rfffsuCBQtITk7msssuA+DMM88kMzOTrVu3MmPG\njMNe4/LLL+eiiy5i5cqVbNmyhe3bt3PvvfdijGH69Om8/fbb4WNvu+021q5dS6NGjQD473//G56D\nsnbtWl566aXwsUlJSQwZMoR33nmH7Oxstm7dyvbt29mwYQNjxowhISGBv/71r76PYD311FM88cQT\n4fdsy5YtbN68mfXr1zNkyBCGDx8e/vcraPny5fTr1489e/bQtWtXvv/+e7Zs2cKvv/7KY489RuXK\nlZk1axY333yz7/nWWkaNGkV2djYzZ85k586d7Nixg3nz5tGoUSO2bNnCnXfeGfHcgsaPH8+3335L\nvXr1eOONN9izZw+bNm0iJyeHH374gfvuu4/mzZuHj1+7di3jx48H8s/xWbt2LWvWrKFTp06+9xYR\nEYk50c5kykujrEckIDZbGTnciMTDDz8c/gvxtGnTwttLY0TixRdftMYY26ZNm6P4ifzdfvvt1hhj\nr7jiinzbR40aZY0x9sILL/Q9L++IRI8ePXyPueCCC6zneXbIkCGF9hXnvTicMWPGWGOMHTx4cKF9\nTZs2tZ7n2euvv9733F69eoX7X7APgwcPtsYYe+yxx9rdu3cXOvfxxx+3xhibkJBgf/zxx3z7unTp\nYo0xNiUlxXfU4ZVXXrHGGFulShWbm5ubb19WVpY1xhQakejZs6f1PM8+8MAD/m+Ej6effvqwI2pF\nOerPDxERiWt5/j8Q1d9/NSIh5cqqVasYO3Ysd9xxB+Ces7/gggtK9Z7Vq1cHIDs7m927dwd23QMH\nDjBlyhSMMfTv3z/fvgEDBgDw9ttvs2nTpiKvE3ovCurduzfWWhYtWhRMhws4//zzAfjoo4/ybf/i\niy/CZWWHDx/ue26kPgNMmzYNYwy33norlStXLrR/6NChZGRkYK3l5ZdfLrTfGMMll1xC06ZNC+27\n8MILMcawZ8+eiHMlCgr9+69bt65Yx4uIiJQXSiQkrhWcrNq0aVNuv/12cnJyyMjI4NVXX6VSpUql\n2odTTz2V2rVrs3btWk477TQmTpwYyPoL7777LmvXrqV+/fr06NEj375mzZpxxhlnsG/fPqZMmVLk\ndTp06OC7PSMjA4CtW7cecR9zcnIYN24cXbt2pX79+iQlJYX/LU466STAPcqT15dffglAgwYNIq4w\n3qlTJxITEwttX758OdnZ2YCbOO3HGEOXLl2w1vLFF1/4HhPpPalUqRL16tUDiv++9OzZE2stDz74\nIAMGDODtt99mx44dxTpXREQknimRkLiWd0G69PR0WrRowbnnnss//vEPFi1aRNu2bUu9DzVr1uSZ\nZ56hdu3afPPNNwwbNoxmzZrRsGFDBg4ceMRVeEJrR/Tr1y9cgSqva665BmstkydPLvI6KSkpvttD\nf80vWLmpuNavX0/79u257bbbmDdvHps2baJy5crUq1ePBg0aULduXQB27tyZ77zQCEpRC7slJiaS\nlpZWaHveeROhRMhPaI5HpHkWqampEc8t6fvSv39/hg0bBsCUKVPo2bMnNWvW5KSTTmLUqFGsX7++\nWNcRAa0XIP4UFxKrlEjEq+jPhvBvZSzvZNU1a9bwww8/8Pbbb3PrrbdSo0aNMuvHeeedx4oVK3j8\n8ce5/PLLycjIYMOGDUyePJkuXbpw/fXXl+h627dvZ/r06QCMGzeuUIlQz/O49tprAbdKcmk9nlSU\nm2++maVLl9K8eXOmTZsWnsi9fv161q5dyyeffFKq98/JySnV65fEo48+yqJFixg5ciRdu3alcuXK\nLFy4kDFjxnDssccya9asaHdR4oTWCxA/iguJVUokRA4KPQIV6RfU7du3F3l+amoqQ4YM4bnnnuOn\nn35i8eLFXHfddQBMnDiRt956q9h9eeGFF8L9MMYU2aDoNSVKQ25uLq+99hrGGKZOncpFF11UKHHb\nsGGD77l16tQBip5TkJuby+bNmwttD41yAL5reYT8/PPPhY4vba1bt2bUqFHMmjWLbdu2MWPGDNq1\na8fOnTu55ppr2L9/f5n1ReKX1gsQP4oLiVVKJEQOCpWJDf0SWlBJV5Ju1aoVEyZMCJfznDt3brHP\nnTRpEsYY/vKXv7B169aI7bnnnsNay5QpUyIuwnYkQo9S2QijTJs2bWLPnj0AnHDCCb7HvPfee77b\nTzzxRMA9GrVixQrfY+bPn+/7aFGzZs3C/06RFryz1jJnzhyMMeF5GmWtUqVK9OzZM7wQ4bp161i6\ndGl4/+HeX6m49AiL+FFcyN698PPP8Pnn8Prr0e7NIUokRA5q27Yt1trwI0UF3Xfffb7bD/csfZUq\nVQDCv3gfzo8//sjHH38MuDUgqlevHrFdeOGFpKSksGHDBmbOnFms6xdHqBLRtm3bfPenpqaGR0O+\n+eabQvvXrVvHww8/7HvuiSeeSJMmTQAYO3as7zH3339/xL717ds3PLnZb/Ro4sSJrFmzBmMMl156\nacTrBKWof/+8VaXy/vsf7v0VEZHyz1rYuhWWLIH334epU+Gf/4Thw6F/f/jd7+D446FOHUhOhmOO\ngQ4doJSLUZaIEgmRg0ILvr3xxhs88MAD7Nq1C4CVK1dyxRVXhKsNFfToo4/So0cPnnvuuXwTa7Oz\ns/n73//OnDlzAOjevXux+hF6TKlZs2a0a9euyGMrV67Meeedl++8IBx33HFYa3nuued8E6Bq1arR\nqVMnrLWPaatNAAAgAElEQVQMHjyYhQsXAu4v7LNmzYpYUQnco1p/+9vfsNYyYcIERo4cya+//gq4\nkY7rrruOd999l6pVq/qeP2LECFJSUli7di09e/bkhx9+AGDv3r1MnDiRm2++GWMMQ4cO9S3xGrTf\n/e533HzzzXzwwQf5EpvFixczcOBAABo2bJhv4v9xxx0HwJIlS/j0009LvY8iIlJ29u+Hdevgiy/g\njTfgP/+Bu+6CG26APn3gtNMgMxOqVIHateG44+Dss+Gqq+DPf4axY+HZZ2HWLFi8GHye9I0d0V7I\norw0ynpBugrucAvSRVLUgnTWWnvxxRdbz/PCC5rVqlUrvIDZu+++67sg3fjx460xJtyqVasWPi90\n/O9///ti9zG0GNztt99erOOff/758CJq27Zts9bmX5DuSN6L999/P9z/5ORke8wxx9jMzMx8C+PN\nnz/fpqSkhN+vatWq2apVq1pjjK1bt6597bXXiuzDkCFDwudWqlTJ1q5d23qeZz3Psw8//LBt0qSJ\n9TzP/u9//yt07owZM2zVqlXD59eqVcsmJSWF73fuuefaXbt2FTqvS5cu1vM8O2nSpIjvS6TF+CIt\nSHfCCSfki5natWvbKlWqhPtSrVo1O3v27EL3Oeuss8LnpaWl2czMTJuZmWnnz58fsW8h+vwQESl7\n+/ZZu2aNtZ99Zu1rr1k7YYK1o0ZZe+211p5/vrUnnWRterq1nlcm1W1iYkG60i2wL1KK8k42Duq8\n559/nrFjxzJ58mRWrFhBUlISl156KSNHjgz/FbnguVdddRWpqam89957fP3116xbt44dO3bQsGFD\nOnbsyNChQ+nZs2ex+jZ37lxWr16NMYa+ffsW65xevXqRnJzM3r17eeGFF8ITvP36WlCk96Jr1668\n+uqrjB8/nq+++oq1a9dirc237kPHjh355JNPyMrKYu7cuezcuZP09HTOO+88RowYwb59+4rsw3/+\n8x9++9vf8uijj7J48eLwfW+77TbOO+88Ro4cCRyau5LX+eefzzfffMMDDzwQXm8jJSWFtm3bcs01\n1zBo0KAjio2870uk7QX3PfHEE7z55pvMmTOHFStWsH79eowxtG7dmnPOOYdbbrkl/ChXXv/9738Z\nOXIkb731FmvWrGHr1q0YY2KqGpWISEVgLWzZAmvWwNq1h14LtvXrIcDpiCViDNStCw0auPbOO9Hp\nR0HGWk32C4Ixxg1LFPP9DP0yovdfpLDly5fTokULkpOT+fXXX0t9UcF4o8+P8isrK0sTa6UQxcWR\ny8k5lBxEamvXusnM0ZCSAunproWShLxfh1rdupD3f4V5/j9w5H81C4ASiYAokRAJzrBhw5g4cSLn\nnnsub7/9drS7E3P0+VF+GWP07yqFKC78bd/uKhnlbWvW5H+N1vyC2rUPJQiRWoMGUMT6qEWKlURC\nf+YTkagYPHgwvXr1omvXrtSuXRtwE9sfeOABJk6ciDGG2267Lcq9FClbWi9A/FS0uLAWsrPhp59c\nMpD3NZQg/PwzHKzTUabS0lwSkJHhXhs2zP8aasnJZd+3aNCIREA0IiFSMscccwxr1qwBICUlBc/z\nwtWbQpWdNJTvT58fIhLPduxwSUFRbefOsu1TtWouOcjIcElBw4b5vw4lCrGSIMTKiIQSiYAokRAp\nmRdeeIHp06fz5ZdfsmHDBnbt2kXdunU5/fTTueGGGzjrrLOi3cWYpc8PEYlV+/a5OQerV+dvP/10\n6HXr1rLrj+cdGkHImyjk/T4j48gfMYoWJRLljBIJESkr+vwQkWj59VdYtcolBQVfV692jx6VVWWj\n5GRo1Mi1jIzCX2dkQP36+ScplxexkkiUw7dWRERERErKWjc5eeVKlxysWpX/61WrYNu2sulL5cpu\nJedGjfK/ZmQc+j4tzZVFlehRIiEiIiJSAVgLv/zikoNQCyULoa/LYm5CYuKhhCBSU5IQH5RIiIiI\nxAitFyB+ShIXW7fCihWH2sqVh15XroRdu0qxowfVqweNG7uEoEkT9xr6vnFj97iR55V+P6T0aY5E\nQDRHQkTKij4/yi+tFyB+8sZFTo5LCJYvdy1v0rBihSubWpoSE10y0LixSxLyft2kiXvkqEqV0u2D\naI6EiIiIFFDR1guQwqyFDRvgxx8PJQvt2o3it791X69dW7r3T0lxCUFm5qHkIG9r0ECjCXKIRiQC\nohEJESkr+vwQiW+5uW5U4ccf87dQ4lCajx9Vq+aShKZNDyULmZmHvtbchPigEQkRERGRcmr3bpcU\nLFuWv/34oyuTun9/6dy3cuVDiUIoWcj7Wru2EgUJjhKJKDP6r1lERCQu7drlEoOlS12SEHpdtgx+\n/rl07mmMm7TcrJlLDEKvoaaJzFKWlEiIiIiIRLBnjxtZ+OEHlyiEXpcudYuvlYbUVGje3CUJzZu7\nBCH0fePGkJRUOvcVKSklElGiZ5tFRERiw4ED7nGjH34o3FatKp2VmtPTXXLg1zRPQeKFEgmRUqa6\n8OJHcSF+FBela9s2+P77Q+277w6NMOzZE+y9jHGTl1u0ONSaN3evzZpB1arFv5biQmKVqjYFpKRV\nm6TiUF148aO4ED+Ki6O3f78bRfjuO9dCCcN338HGjcHey/MOJQvHHpv/tWlTSE4O5j6KCylIVZtE\nKgjVhRc/igvxo7govt273WjCt98eaqERhqBHF445xiUIxx4Lv/nNoa+DTBaKoriQWKURiYBoREJE\nRCR42dkuSViyxLVQ0rBypVu8LShpaS5JCLWWLQ+NLpTkMSSRsqARCREREZGDtmxxicLixa6Fkocg\nV3JOTHSJQcuWhVtaWnD3EakolEiIiIhImdm2zSUKixa511DysH59cPeoUwdatcrfWrZ0i7JV0m8+\nIoHRf04iIiISuJ07XZKwaNGhtnhxcGsvGOMSg9atXaLQuvWhrzW6IFI2lEiIiIjIEdu3z01wXrQI\nvvnGtUWL3CJuQcxhqFTJzVVo08a1UMLwm99o7oJItCmRECllqv8tfhQX4ieW48Ja2LABvv7aJQtf\nf+3at98GUyUpMdE9fnTcca61bu1eW7Rw+yqyWI4LqdhUtSkgqtokkaj+t/hRXIifWImLvXtdgrBw\noWtff+1ef/nl6K9dqVL+hCHUWrTQ/IVIYiUuJHaoapNIBaH63+JHcSF+ohEXmza5JOGrrw69fvut\ne2TpaBjjkoPjjz/UjjvOPaaUlBRM3ysKfV5IrNKIREA0IiEiIrHMWjdv4csvXbIQakFMfk5Pd4lC\n27auHX+8m8+gOQwipUMjEiIiIlIqcnPdqMKXXx5qX30F27cf3XWrVDmUMLRr51rbtq7cqohUPEok\nRERE4tiePa6s6oIF8MUXrn39NeTkHN11jzkG2rd3rV0799qiBSQkBNNvEYl/SiRERETixJ49rmLS\nggWuff65K7Wam3vk10xMdHMXTjjBtVDiULt2cP0WkfJJiYSIiEgMys11ScJnn7mEYcECl0QcTdJQ\no4ZLFk488dBrq1aa/CwiR0aJhEgpU/1v8aO4kLwOHHCLut15ZxbHHJPFZ5+5OQ1H83hSgwZw0kku\nWQi1pk1dNSWJL/q8kFilqk0BUdUmiUT1v8WP4qJiW7sWPv30UPvss9BEaAOUPC4aN3ZJQ96Wnh50\nryVa9HkhBalqk0gFofrf4kdxUXHs2OEeTZo/37VPPy2q5Orh46JxYzj5ZDjlFPd60klQt26gXZYY\no88LiVUakQiIRiREROTAAfjuO/jf/1ybP9/Nczhw4Miul54OHTq4FkoelDSIiEYkRERE4ty2bS5Z\n+OQT1+bPh+zsI7tWrVouYejY0SUMHTpAw4bB9ldEJEhKJERERIrBWli6FD76CD7+2LUlS47sWsnJ\n7pGkjh0PtebNNRFaROKLEgkREREfOTlubkPexGHTpiO7VsuWcOqp0KmTSxratXPrN4iIxDMlEiIi\nIsDmzS5Z+PBD1z7/HPbuLfl1atVyCUOnTi556NjRbRMRKW+8aHdApLxT7W/xo7iIvtWrYcoUGDbM\nrexcpw5ceCE88IBLKIqTRBgDbdvCtdfCk0/Ct9+6UYs334SRI6F795IlEYoL8aO4kFilqk0BUdUm\niUT1v8WP4qJsWesWfJs3z7UPPoBVq0p+ndRUN9LQuTOcfrobcahePbh+Ki7Ej+JCClLVJpEKQvW/\nxY/ionRZ6yZCz5kDc+e65GHDhpJfJzPTJQ2hdtxxkJAQdG8PUVyIH8WFxCqNSAREIxIiItFz4AAs\nXuwShzlzXOJQ0onRxkD79nDGGa517gyNGpVGb0VEjo5GJERERI6QtW7ht9mzXZszp+SJQ1KSmwh9\n5pnw29/CaadBjRql0l0RkXJJiYSIiMSFFStg1izXZs8u+aNKKSlulCGUOHTsCJUrl05fRUQqAiUS\nIiISk9avdwlDKHlYubJk51ev7h5ROuss1046SWs3iIgESYmEiIjEhJ073dyGd9+F996Db74p2fnV\nq7vRhi5dXDvhhNKdGC0iUtFpHQmRUqb63+JHcQH798Onn8I997hf/GvVgp49Ydy44iURKSnQowfc\nf7+7zubNMGMG3HYbnHxyfCYRigvxo7iQWKWqTQFR1SaJRPW/xU9FjYuff4Z33oGZM92ow5YtxT83\nKcmt3XD22dCtG3ToUP4eVaqocSFFU1xIQaraJFJBqP63+KkocbF7t3tcaeZM15YsKf65nudGFs4+\n27XTT4eqVUuvr7GgosSFlIziQmKVRiQCohEJERFn2TJ46y3X5sxxyURxNW8O55zjWteu7nEnERHJ\nTyMSIiJSLuTkuIThzTdd8rBsWfHPrVXLjTacey787nfQtGmpdVNERAKmREJEREps9WqXOLzxhivN\nWtxRh4QEOPVU6N7dtVNOic9J0SIiokRCRESKYf9++N//4PXXXfJQktKsxxzjqiv16OEmSdesWXr9\nFBGRsqNEQkREfP36q6uwNGOGSx42bSreeYmJbj2H885zrXVrMFF9ildEREqD1pEQKWWq/y1+YjUu\nfvoJHnnEPXZUpw5ccglMmnT4JKJRIxg2DKZPdyVd33vPrefQpo2SiJKI1biQ6FJcSKxS1aaAqGqT\nRKL63+InVuLCWli0yCUAr74KCxYU7zzPg9NOg169XGvbVglDEGIlLiS2KC6kIFVtEqkgVP9b/EQz\nLvbvh48/donDq6/C8uXFO69GDfeo0gUXuBGLtLTS7WdFpM8L8aO4kFilEYmAaERCRGLZ3r0wezZM\nm+aSh40bi3de8+Zw4YUueTjjjPK3krSISDzSiISIiJSq3bvh7bdd8jBjBmRnH/4cY6BTJ7joIpdA\ntGqlR5ZERMSfEgkRkXJk1y63vsNLL7lKSzt3Hv6c5GS3KFzv3m7koUGD0u+niIjEPyUSIiJxbudO\nlzS8/LJ73bXr8OdUr+6Sht693XyH1NTS76eIiJQvSiREROLQ7t1u5OGFF9wiccVZWbpOHZc4XHyx\nWxguKan0+ykiIuWX1pEQKWWq/y1+jiQu9uxxcx2uvhrq1XNrPLz0UtFJREYG/PGPMGcOrF8PEye6\nFaaVRMQmfV6IH8WFxCpVbQqIqjZJJKr/LX6KGxf797skYOpUN2l627bDX/uYY1ySccklbuK0pz8Z\nxQ19XogfxYUUpKpNIhWE6n+Ln6Liwlq3MNzUqfD887Bu3eGv17gxXHqpSx46dlTyEK/0eSF+FBcS\nqzQiERCNSIjI0Vq2DKZMcQnEDz8c/vj0dLjsMrj8cjfyoDKtIiIVg0YkRESELVvchOlnnoFPPjn8\n8XXquFGHK65wC8QlJJR+H0VERPwokRARKWN79riKS5Mnu3KtublFH1+tGvTpA1dd5dZ7qKRPbhER\niQH635GISBkIzXt4+ml47jk3ElGUxETo2ROuvBLOPx+qVi2TboqIiBSbEgkRkVK0YQM8+6xLIBYt\nOvzxv/2tK+96ySVQu3apd09EROSIqa6HSClT/e+KJzcX/vtfuPBCt47Dn//sl0Rkhb/6zW9gzBhY\nvhzmzYPrrlMSUVHp80L8KC4kVqlqU0BUtUkiUf3viuP77+GJJ2DSJNi48XBHG2680dK/vyvXqopL\nAvq8EH+KCylIVZtEKgjV/y7fdu1yq0s/8QR88EHRxyYkuHkPAwfCl1+OYsyYMumixBF9XogfxYXE\nKo1IBEQjEiIVy8KF8Nhjbt2H7duLPva442DQIFd1qUGDsumfiIiUXxqREBGJM7t2uTUfHnsM5s8v\n+tjq1V3iMGgQnHKKHl0SEZHyR4mEiMhhLF7skofJkyE7u+hjf/tbGDrUVV1SyVYRESnPlEiIiPjI\nzYVp0+Df/3aVlIpSr56b9zB4MLRsWSbdExERiTolEiIieaxd60YfHn8c1q8v+tjf/Q6GDXNlXpOS\nyqZ/IiIisULrSIiUMtX/jn3Wwty5cNll0KQJ3HVX5CSiTh0YPhyWLoV333WPMB1JEqG4ED+KC/Gj\nuJBYpapNAVHVJolE9b9jV04OTJ0KDz3kqjAV5ayz4PrroU8fSE4++nsrLsSP4kL8KC6kIFVtEqkg\nVP879qxZ4+Y+PP44bNoU+bhq1WDAAPj97+H444Ptg+JC/CguxI/iQmKVRiQCohEJkdg3fz6MHw8v\nvwz79kU+rnVruPFG6N/flXEVERGJJRqREBEpA/v3w/Tp8M9/wscfRz7O8+Cii+CPf4QuXbTug4iI\nyOEokRCRcmnnTnjqKTcC8eOPkY+rWdOt+3DjjZCZWWbdExERiXtKJESkXFm/3k2enjABtm6NfFyr\nVnDTTW4OREpK2fVPRESkvFAiISLlwtKlMHYsPP007N0b+bhzz4Vbb4VzznGPM4mIiMiR0f9GRUqZ\n6n+Xrs8/h0svdStKP/64fxKRmOhWnv76a5g5E7p3j34SobgQP4oL8aO4kFilqk0BUdUmiUT1v4Nn\nLcyaBffd514jqV3blW698UZITy+7/hWH4kL8KC7Ej+JCClLVJpEKQvW/g2MtzJgBd98Nn30W+bjM\nTLjtNhg0KHbnPyguxI/iQvwoLiRWaUQiIBqRECk9+/fDK6/APfe4x5MiadcO7rgDLrsMKunPJCIi\nUk5pREJE5DByc2HqVLj3Xvj++8jHnXWWSyB69ND6DyIiImVFiYSIxJzcXHjmGfcI04oVkY+78EK4\n807o1Kns+iYiIiKOEgkRiRn79h1KIJYv9z/GGPfo0ogR7lEmERERiQ4lEiISdfv2wZQpMGZM5FWo\nExLg6qvdCETLlmXbPxERESlM60iIlDLV/45s/3549llo3dqt8+CXRCQmwnXXuQXnnn66/CQRigvx\no7gQP4oLiVWq2hQQVW2SSFT/uzBrYfp0+H//DxYv9j8mMREGD3YjEE2alG3/yoLiQvwoLsSP4kIK\nUtUmkQpC9b8PsRbeew/++tfI60BUquQSiBEjymcCEaK4ED+KC/GjuJBYpRGJgGhEQqRon3zikoM5\nc/z3V6rkFpAbMcItKCciIiL+NCIhIhXCt9+6x5OmT/ffb4ybRJ2VBc2alWnXRERE5ChosrWIlIp1\n62DYMDj++MhJRN++8M03MHmykggREZF4oxEJEQnU9u3wj3/A//0f7Nrlf8y557q1Ijp0KNu+iYiI\nSHACH5EwxnjGmD8aY/5njMk2xuzLs+9EY8y/jTG/Cfq+IhJdubnwyCPQooVLEvySiE6dYPZsmDlT\nSYSIiEi8CzSRMMYkAe8C44HmwK9A3kkgK4DBwFVB3lcklpX3+t/WwhtvuFWm//AH+OWXwscceyy8\n/DJ8/DF06VLmXYxJ5T0u5MgoLsSP4kJiVaBVm4wxfwXGAFnA3cBI4G/W2oQ8x7wDVLfWdgrsxjFA\nVZskkvJc/3vRIrj1Vnj3Xf/99eq5SdRDh7p1IeSQ8hwXcuQUF+JHcSEFxUrVpqAfbboK+Mhae5e1\n9gDgF/UrgMYB31ckZpXH+t8bN8L110P79v5JREoKjBoFy5bB73+vJMJPeYwLOXqKC/GjuJBYFfSI\nxG7gX9ba4Qe/HwWMLDAicS9wi7W2cmA3jgEakZCKYO9eeOghGDPGTaouyBi3mNzdd0ODBmXfPxER\nkYogVkYkgq7alAPUPMwxjYFtAd9XRErZO+/ATTfB99/77+/a1VVqOuGEsu2XiIiIREfQjzZ9BZx7\ncNJ1IcaYGkB34NOA7ysipWTFCujTB7p3908iWrSAV1+FWbOURIiIiFQkQScSjwPHAFOMMdXz7jDG\n1ASeBmoBEwK+r4gEbPduN1G6TRuXKBRUs6YbgVi8GC66yD3WJCIiIhVHoHMkAIwxTwIDgVxgK1AX\n+BI4DkgGHrHW/jHQm8YAzZGQ8mT6dLj5Zli1qvA+Y1wVpnvugbp1y75vIiIiFV2szJEIfEE6a+1g\n3FoRS3BJhAFOApYBQ8pjEiFSlHiq/71qlRtd6N3bP4k49VT49FN4/HElEUcrnuJCyo7iQvwoLiRW\nBT4ike/ixlTBPcqUba3dWWo3igEakZBI4qH+d24ujB/vHmXyW5G6Xj24/34YMAC8wP/8UDHFQ1xI\n2VNciB/FhRQUKyMSQVdtysdauxvYXZr3EIl1sV7/+6OP3JoQixYV3peQ4FarzspycyIkOLEeFxId\nigvxo7iQWBX0OhK1gHTgR2vtnjzbBwG9gZ3AeGttuavapBEJiTdbt8Ltt8N//uO//7TTYMIEaNeu\nbPslIiIiRYuVEYmgE4lHgauBegdHIzDG/BEYj5srAW6tiVOstUsCu3EMUCIh8cJaeOUVN9KwYUPh\n/bVquceYhgzRY0wiIiKxKFYSiaB/TegMzAolEQf9GVgDnAlcdnDbrQHfV0SKYe1a6NsXLr3UP4kY\nMAC++w6uvVZJhIiIiBQt6DkSGcCs0DfGmDa4dSXusNZ+eHDbpbikQkTKyIED7hGm4cNh+/bC+1u2\nhEcfdatTi4iIiBRH0H9zrIJ7dCmkM2CB9/Js+xGXcIhIGVi2DM4+G4YNK5xEJCbCqFGwcKGSCBER\nESmZoBOJNUCrPN93B7YDC/Nsq4UqOUkFEq363wcOwIMPusnSc+YU3n/qqfDFF64iU3JyWfdOVBde\n/CguxI/iQmJV0JOtHweuAW7DjUz8G3jFWtsvzzHvAHWttScGduMYoMnWEkk06n//+CMMHgzz5hXe\nl5ICf/873HijK+8q0aG68OJHcSF+FBdSUHmdbH0vsAN4EHgcl0xkhXYaY6oDZwAfB3xfkZhVlvW/\nDxyAf//bjUL4JRHdu7v1Im66SUlEtKkuvPhRXIgfxYXEqsBXtjbGNAAuOfjta9ba1Xn2nQT0B6Za\naz8L9MZRphEJibaVK13J1vffL7yvRg33mNOAAWCi+rcLEREROVqxMiIReCJRUSmRkGixFp58Ev70\nJ9ixo/D+Hj1g4kRo1Kjs+yYiIiLBi5VEIujyryJShjZtcms+vPpq4X2pqTBunJsroVEIERERCVrg\niYQxJhG4COiIq9Dk9yS2tdYOCfreIhXJzJkwcCCsX19439lnwxNPQJMmZd4tERERqSCCrtrUEHgX\nVwK2qL+BWmttuZrqqUebpKzs3g1/+Qs89FDhfVWrwtixcP31GoUQEREpr2Ll0aagqzb9E2gNPA90\nA44Fmvq0ZgHfVyRmBVn/e+FC6NDBP4no0AG++gp+/3slEfFAdeHFj+JC/CguJFYFPSKxGfjGWtsl\nsIvGCY1ISCRB1P+21lVduuMO2Ls3/z7Pg7/+Ff72N7dStcQH1YUXP4oL8aO4kIJiZUQi6DkSlYH5\nAV9TJK4dbf3vzZvdXIjXXy+8r2lTePZZOP30o7qFRIHqwosfxYX4UVxIrAp6RGI+sMJae0VgF40T\nGpGQ0vDBB9CvH6xZU3jfwIFulKJ69TLvloiIiERRrIxIBD1H4h/AhcaYNgFfV6RC2b8fxoyBLl0K\nJxE1asCLL8JTTymJEBERkegJ+tGmjcAM4GNjzIPAAmCb34HW2nkB31ukXFi3Dq6+2n+F6lNPheef\nh8zMMu+WiIiISD5BP9p0ALAcKv0a8eIq/ypS2Pvvu0eZNm4svO/22+HuuzWhWkREpKKLlUebgh6R\nuIsikgcR8XfgADzwgKu+dOBA/n1168LkydCjR3T6JiIiIuIn0DkS1tosa+3o4rQg7ysSyw5X/3vb\nNujTB+68s3AS0bWrWxtCSUT5o7rw4kdxIX4UFxKrAn20qSLTo00SSVH1vxcuhIsvhh9/LHgOjBzp\n1oZIKFcPAUqI6sKLH8WF+FFcSEHl9dGmMGPMGcCJQE0gG/jCWvthad1PJFZFqv89aRJcfz3k5OTf\nXrs2TJmiUYjyTnXhxY/iQvwoLiRWBT4iYYw5GXgGaBnaxKF5E98DA6y1nwd0rwxgDNAdSAPWAa8C\no621vtWifK6xEmgcYfd6a23DYl5HIxJSLHv3ws03w4QJhfedcgq8/DI0aVL2/RIREZH4UC5HJIwx\nLYBZQHXgQ+B93C/36UA34AzgXWNMR2vt0qO8VzPgE6AOLnn4HugI3Ax0N8Z0ttZuLcalLK5E7TgO\nVZsK2XE0fRQpaONG9yjThz5jc9dfD+PHQ3Jy2fdLREREpKSCLv86CbgauMJa+5LP/kuA54Ep1tpr\njvJeM4HfAX+01v47z/Z/ArcAE6y1NxTjOisAa61tdpT90YiEFOmLL6B3b/jpp/zbK1eGxx6DAQOi\n0y8RERGJL7EyIhF0IrEG+MRae0kRx7wCdLLWZhzFfZoBy4AV1trmBfZVw42CANSz1u4+zLWUSEip\ne+45GDy48HyIpk3hv/+F9u2j0y8RERGJP7GSSARa/hX3mNF3hznmu4PHHY2uB1/fKbjDWrsD+Aio\nCnQq5vWSjTFXGWPuNMbcZIzpYowJ+r2RCmj/fvjLX+DKKwsnEWefDZ99piRCRERE4lPQvyz/ArQ5\nzDGtgE1HeZ+WuLkNP0TYH5p/8ZtiXq8BMBm4GzdX4n1gqTHmzKPppFRs2dlwwQVw//1Zhfb96U/w\n9lUf3FsAACAASURBVNuQllb2/ZLYoLrw4kdxIX4UFxKrgn60aTJwJXC1tfZ5n/0XAy9wlHMkjDGP\nAUOBa621T/rsvxu4Exhhrb3/MNf6G/ABsBj4FWgG/AEYBuwGTrPWflOMPunRJglbsQLOPx+WLIG8\nhcuSktx8iIEDo9g5iQmqCy9+FBfiR3EhBZXXR5vuAnYCU4wxHxhj7jLG/N4YM9oYMxd4EVcJ6e6A\n73vErLVjrLVzrLW/WGtzrLVLDk7S/j/c41FZJbmeMSZi69KlC8aYiH9ZyMrK0v5ysH/o0CxOPTWU\nRAC4+t8pKVns3WtYuTK2+6/9ZbO/YF34WOuf9kdn/1lnnRXT/dP+6Ow/66yzYrp/2l86+0Pb/Vqs\nKI11JDrgHhMKrSNhOVRW9XvgGmvtp0d5jweA24A/W2vH+ex/GLgBuMFa+9gR3qM57hGpzdbausU4\nXiMSwosvwjXXFJ4P0bEjTJsGGUdcYkBERETEiZURiUpBX9Ba+xnQ2hhzOnASUAO3svWX1tqPArrN\n97jkJNIciGMPvkaaQ1Ecvxx8TTmKa0gFYS3cey/89a+F9112GTz9NFSpUubdEhERESk1gY9IlIUg\ny78WcY/uwFvAEmvt8cU4XiMSFdTevW4xuaeeKrzvr3+Fu+4CTzXAREREJCCxMiJRar/eGGMSjTHt\njDG/PfiaGNS1rbXLcaVfM40xfyiw+y7cKMLkUBJhjKlkjGl5MAHJ28dWxpiqPn3PBP6FeyzrmaD6\nLeXPtm3Qo0fhJCIx0Y1C3H23kggREREpn0pjjkQacB+uelPlPLtygKnAndbaoy3/GhqV+AioB7wG\nfItbN6ILbq2KztbarQePbQKsAFbmXXjOGDMKN9diHrAKV7WpOdALSAbeAPpaa/cVoz8akahg1qxx\nScSiRfm316rl5kN06RKVbomIiEg5Vy5HJIwx9YH5wBBgL+4X9BcPvu49uP1/B487KgdHJU4BngY6\nArcCTXHrQJwWSiLynkKoBuchs4EZuJKv/YBbgDNx5WAHWGsvLE4SIRXPt9/CaacVTiKaN4dPPsmf\nRESq0iAVm+JC/CguxI/iQmJV0OtIPAEMAsYDWdba7Xn2VQdGAzcDT1prhwZ24xigEYmK45NP3BoR\nW7bk3965M7z6KtQpsG67Uf1v8aG4ED+KC/GjuJCCyuWIBHA+8IG19ta8SQSAtXa7tfYW3ONIFwR8\nX5EyMWMGnH124SSid294993CSQQUXi9ABBQX4k9xIX4UFxKrgh6R2AWMs9b6FMEMH/N34GZrbbkq\nq6oRifLvP/+BYcPgwIH824cNg0cegYSE6PRLREREKpbyOiLxHZB+mGPScetAiMQFa131pWuvLZxE\nZGXBo48qiRAREZGKJ+hE4kHgcmNMO7+dxpgTgMtwcyhEYp61MHw4/O1v+bd7Hjz2GIwaBTG0Ur2I\niIhImQl6ZesVwLvAp8aYybhqTRuA+sBZQH/cIm8rjTFn5j3RWjsv4L6IHJX9++GGG+Dxx/Nvr1wZ\nnnvOzYsQERERqaiCniNxAFdiNfQ32rwX99sWZq2N64dDNEeifMnNhYEDYerU/Ntr1IDXX4czzohK\nt0RERERiZo5E0CMSdxEhURCJF3v2wOWXw/Tp+bfXrQvvvAMnnFCy62VlZakGuBSiuBA/igvxo7iQ\nWBX4ytYVlUYkyoedO6FPH1fKNa+MDHjvPWjVquTXVP1v8aO4ED+KC/GjuJCCyuuIhEjcys6GXr3g\no4/yb2/aFGbNcq9HQvW/xY/iQvwoLsSP4kJiVdBzJBKAZGvtrgLbuwEXAbuAx621KwK7aYzQiER8\n27YNzj0XPvss//bWrd3oREZGdPolIiIiUlCsjEgEnUiMA34P1LfWZh/cdgUwhUOTrTcDJ1lrfwrs\nxjFAiUT8ipREnHgizJzp5kaIiIiIxIpYSSSCXkfiTGB2KIk4aBSwDRgA3A7UBG4N+L4iRyRSEnH6\n6fD++0oiRERERCIJOpE4BlgW+sYY0wxoCTxsrX3WWjsWt45Ej4DvK1JikZKIM86At9+GmjWj0y8R\n+f/t3XeYXGXZ+PHvnYQkhBAgkdClGYEoKCJFkO4LigJSFBsoRXmxYvdHVynCq2JFBEUp76s0AVEE\nlWpBOgoovYciARIkPdnn98czw85MziY7u2d3Zne+n+s615nznDPnPLtzZ3PuecqRJA0FZScSE4CX\nara3IU8He2VN2T3AmiVfV2rKkpKIK66A5ZdvTb0kSZKGirITiaeB2rlt3gbMAW6rKRsPLCz5ulKv\nDXYS4dzfKmJcqIhxoSLGhdpV2YOtfwHsDrwPmAtcBlydUtqj5pjfAOuklF5f2oXbgIOth4ZWtEQ4\n/7eKGBcqYlyoiHGhRsN1sPWJlXNeBlwFjAZOqO6MiLHAtsBNJV9XWqpZs/JzIga7O5Pzf6uIcaEi\nxoWKGBdqV6U/2ToiNgY+XNk8P6V0S82+t5BnbvphSumPpV64xWyRaG/z5sHuuy/+xGrHREiSpKGm\nXVokSk8kOpWJRPtauBDe8x649NL68q23zrMzmURIkqShpF0SibK7NtWJiJUiYq2BvIa0JF1dcOCB\niycRb3qTLRGSJEn9UXoiERHjI+JbEfEMMB14pGbflhFxRUS8qezrSo1Sgk9+Es47r758ww1zS8QK\nK7SmXpIkScNBqYlERKwA3Ah8FngK+BdQ2+RyF3mw9fvLvK7UKCX4ylfgRz+qL193XfjjH31itSRJ\nUn+V3SJxJPA64CMppTcBF9buTCnNBq4Hdi75ulKdk06CU06pL1tttZxErLHG4NbF+b9VxLhQEeNC\nRYwLtauynyPxIPBASukdle1jgWNSSiNrjvkhsG9KaZXSLtwGHGzdPs48Ez72sfqySZPghhtg6tTB\nr4/zf6uIcaEixoWKGBdqNFwHW68J/GMpx7wM2DtdA+Lyy+G//7u+bMIEuOqq1iQR4PzfKmZcqIhx\noSLGhdpV2S0SzwG/SSkdWNkuapG4ANg6pbRmaRduA7ZItN7f/gY77QRz5nSXjR0Lv/89bLtt6+ol\nSZJUpuHaInEL8K6IKJxUMyJWA3YD/lzyddXh7rsP3vWu+iRixAj45S9NIiRJkgZC2YnEd4FJwBUR\nsVHtjsr2hcBY4HslX1cd7Jln4O1vh+efry8/7TTYc8/W1EmSJGm4G1XmyVJKV0XEV4FjgbuBBQAR\nMR1YiTwV7JdTSn8t87rqXC+9BLvtBo8+Wl9+9NFw6KEtqZIkSVJHKHWMxCsnjdgR+DSwFbmFYibw\nN+DUlNI1pV+wDThGYvDNnw/vfGee0rXWQQfBT34C0dJeg5IkSQNjuI6RACCldG1Kaa+U0moppdEp\npZVTSrsP1yRCgy8lOOSQxZOI3XaD009vryTC+b9VxLhQEeNCRYwLtasBaZFY6kUjVk4pPTfoFx5A\ntkgMrhNOgKOOqi/bfHO49lpYbrnW1Kknzv+tIsaFihgXKmJcqNGwbpHoSUSsEBEnAg8N5nU1vFx4\n4eJJxGteA7/5TfslEeD83ypmXKiIcaEixoXaVWktEhGxDrAZMA+4qbbFISLGAp8FvkAedD07pTS+\nlAu3CVskBsett8J229VP8zpxYn6GxJQprauXJEnSYBlWLRIR8X3gQeAC4DLg0Yg4oLJve+Be4Hhg\nHHmK2PXKuK46y5NPwh571CcRo0bBxRebREiSJA22fk//GhEfBj4BdAH/qhRvCJwZEfOBnwMjgR8D\nx6eUnurvNdV5Zs3KScTTT9eXn3467LBDS6okSZLU0cp4jsRHgPnAjimlGwEiYjvgD8C5wDRg95TS\nXSVcSx2oqws+9CG444768i98AQ4+uDV1kiRJ6nRldG3aBLikmkQApJRuAC6tnP8gkwj1xxFHwKWX\n1pftsQd84xutqY8kSZLKSSRWII+PaPRAZX1jwT6pV845B04+ub7sDW+A//1fGDmyNXVqlvN/q4hx\noSLGhYoYF2pX/Z61KSK6gONSSl9rKD8WOCalNERu9/rHWZvKd9ttsM02MG9ed9mqq8LNN8Naa7Wu\nXs1y/m8VMS5UxLhQEeNCjYbVrE2A0a1SPfcc7L13fRIxdixcdtnQSiLA+b9VzLhQEeNCRYwLtauy\nWiSaPUlKKZUx0Ltt2CJRnoUL4e1vh6uvri8/99w86FqSJKmTtUuLRFk3883+EC39odXejjhi8STi\n0582iZAkSWonpT3ZutPZIlGOCy6A/farL9t225xYLLNMa+okSZLUTtqlRcJEoiQmEv13992w1Vb5\n4XNVq6+eB12vumrr6iVJktRO2iWRKGuwtdQvM2bAXnvVJxHLLAMXX2wSIUmS1I5MJNRy1SdXP9jw\nNJIf/CC3UAx1zv+tIsaFihgXKmJcqF3Ztakkdm3quxNPhCOPrC87+GA480yIYTAs3/m/VcS4UBHj\nQkWMCzWya5ME/OlPcPTR9WWbb55bI4ZDEgHO/61ixoWKGBcqYlyoXdkiURJbJJo3fTq88Y0wbVp3\n2aRJcMcdQ++hc5IkSYPFFgl1tK4u+MhH6pMIgHPOMYmQJEkaCkwk1BKnngq//W192Re/CLvt1pr6\nSJIkqTl2bSqJXZt676ab4K1vhYULu8u22gpuuMGHzkmSJC1Nu3RtMpEoiYlE77z4Imy6KTz2WHfZ\niivCnXfC2mu3rl6SJElDRbskEnZt0qBJKU/rWptEAPzsZ8M7iXD+bxUxLlTEuFAR40LtyhaJktgi\nsXTf/z58+tP1ZZ/5DHznO62pz2Bx/m8VMS5UxLhQEeNCjWyRUEe56y74whfqyzbbDE4+uTX1GUzO\n/60ixoWKGBcqYlyoXdkiURJbJHo2b15+yNxdd3WXTZgAt98O66/funpJkiQNRbZIqGMcdVR9EgHw\n4x+bREiSJA1ltkiUxBaJYtddBzvtlAdaV33wg3DeeS2rkiRJ0pDWLi0SJhIlMZFY3MyZsMkm8Pjj\n3WVrrQX/+Eee8lWSJEnNa5dEwq5NGjCf+lR9EhEBZ59tEiFJkjQcmEhoQFx4IZx7bn3Z5z4HO+7Y\nmvq0kvN/q4hxoSLGhYoYF2pXdm0qiV2buk2bBhtvnJ9iXbXxxnDzzTB2bOvq1SrO/60ixoWKGBcq\nYlyokV2bNCx1dcGBB9YnEaNH58HVnZhEgPN/q5hxoSLGhYoYF2pXtkiUxBaJ7Ac/yGMjap1yCnzx\ni62pjyRJ0nDTLi0SJhIlMZGAhx/OXZhmz+4u2357uPpqGDmydfWSJEkaTtolkbBrk0qREnzsY/VJ\nxIQJeZYmkwhJkqThx0RCpfjpT3PLQ61vfQvWXrs19ZEkSdLAsmtTSTq5a9O0aTB1Krz0UnfZzjvD\nH/6Qnx0hSZKk8ti1ScNCSnDYYfVJxLhxcOaZJhFVzv+tIsaFihgXKmJcqF3ZIlGSTm2R+MUv4AMf\nqC/77nfh059uTX3akfN/q4hxoSLGhYoYF2pki4SGvOeeWzxh2Hpr+OQnW1OfduX83ypiXKiIcaEi\nxoXalS0SJenEFon3vx9++cvu7TFj4M47YcMNW1cnSZKk4c4WCQ1pv/51fRIBcOyxJhGSJEmdwhaJ\nknRSi8SMGXmWpqef7i7bdFO46SZYZpnW1UuSJKkT2CKhIeuII+qTiFGj4KyzTCIkSZI6iYmEmnLL\nLXD66fVlX/4yvPGNramPJEmSWsNEQr22aFF+ZkRt760pU+Coo1pXp6HA+b9VxLhQEeNCRYwLtSvH\nSJSkE8ZInHYafOIT9WVXXQW77NKa+gwVzv+tIsaFihgXKmJcqJFjJDSkPPtsHhtR673vNYnoDef/\nVhHjQkWMCxUxLtSubJEoyXBvkTjgADj33O7t8ePh3nthjTVaVydJkqROZIuEhozrr69PIgC+9jWT\nCEmSpE5mi0RJhmuLxPz5+RkR//xnd9kmm8Btt+VpXyVJkjS4bJHQkPCd79QnEZAHXZtESJIkdTZb\nJEoyHFskHn8cNtoIZs/uLjvoIPjpT1tXJ0mSpE5ni4Ta3uGH1ycREyfCySe3rj5DlfN/q4hxoSLG\nhYoYF2pXtkiUZLi1SPzhD4tP7XrGGfDRj7amPkOZ83+riHGhIsaFihgXamSLhNrWwoXwuc/Vl225\nJRx8cGvqM9Q5/7eKGBcqYlyoiHGhdmWLREmGU4vE6afDYYfVl918M2y+eWvqI0mSpG7t0iJhIlGS\n4ZJIzJwJU6bAc891lx1wAJx9duvqJEmSpG7tkkjYtUl1TjihPokYNw5OPLF19ZEkSVJ7MpHQKx5+\nGL773fqyL33JJ1hLkiRpcXZtKslw6Nq0775w8cXd22usAffdB8st17o6SZIkqZ5dm9RWbrihPokA\nOOkkk4gyOP+3ihgXKmJcqIhxoXZli0RJhnKLRFdXnpHp9tu7y978ZrjpJhhhqtlvzv+tIsaFihgX\nKmJcqJEtEmob55xTn0QAnHqqSURZnP9bRYwLFTEuVMS4ULuyRaIkQ7VF4uWX4bWvhaef7i5773vh\n/PNbVydJkiT1zBYJtYVTTqlPIsaMgZNPbl19JEmSNDSYSHSwZ56Bb32rvuyzn4V11mlJdSRJkjSE\nmEh0sOOPh9mzu7cnT4b/9/9aVx9JkiQNHSYSHeqRR+CMM+rLjj4aJkxoTX0kSZI0tJhIdKjjjoMF\nC7q311kHPvaxVtVmeHP+bxUxLlTEuFAR40LtylmbSjKUZm265x7YeGOorerZZ8MBB7SuTsOZ83+r\niHGhIsaFihgXauSsTWqZo46qTyKmToUPfrB19RnunP9bRYwLFTEuVMS4ULuyRaIkQ6VF4uabYcst\n68t+9SvYa6/W1EeSJEnNaZcWCROJkgyVROJtb4Orr+7e3mIL+NvfIFoahpIkSeqtdkkk7NrUQa6+\nuj6JADjxRJMISZIkNc8WiZK0e4tESrDVVrlrU9XOO8Mf/9i6OkmSJKl5tkhoUF12WX0SAbk1QpIk\nSeoLE4kOsGgRHHlkfdm7353HR2jgOf+3ihgXKmJcqIhxoXZl16aStHPXpnPPrX9GRATcdRe87nWt\nq1Mncf5vFTEuVMS4UBHjQo3s2qRBsWgRHH98fdn++5tEDCbn/1YR40JFjAsVMS7UrmyRKEm7tkj8\n4hfwgQ90b48aBfffD+uu27o6SZIkqe9skdCA6+qCE06oL9t/f5MISZIk9Z+JxDB2ySVwzz3d2yNG\nwBFHtK4+kiRJGj5MJIaplBYfG/H+98NrXtOa+kiSJGl4MZEYpn77W7jzzu7tCFsjJEmSVB4TiWEo\nJfj61+vL9tkHpk5tTX06nfN/q4hxoSLGhYoYF2pXztpUknaaten3v4ddd60vu/NOeMMbWlOfTuf8\n3ypiXKiIcaEixoUaOWuTBkzj2Ig99jCJaCXn/1YR40JFjAsVMS7UrmyRKEm7tEhcfz3ssEN92S23\nwJvf3JLqSJIkqWS2SGhANI6NePvbTSIkSZJUPlskStIOLRI33ghbb11f9uc/wzbbtKY+kiRJKp8t\nEipdY2vEjjuaREiSJGlg2CJRkla3SNxxB7zpTfVl11yTkwlJkiQNH7ZIqFTf/Gb99jbbLD7oWq3h\n/N8qYlyoiHGhIsaF2pUtEiVpZYvE44/DeuvBokXdZb/5DbzznYNeFRVw/m8VMS5UxLhQEeNCjWyR\nUGm+9736JGKjjeAd72hdfVTP+b9VxLhQEeNCRYwLtStbJErSqhaJl16CtdbK66ozz4RDDhnUakiS\nJGmQ2CKhUvzkJ/VJxOTJ8KEPta4+kiRJ6gwmEkPYggXw3e/Wl33iEzB2bGvqI0mSpM5hIjGEXXRR\nHmhdNXYsHHZY6+ojSZKkzmEiMUSlBN/6Vn3ZRz4CK6/ckupIkiSpw5hIDFE33AC33da9HQGf/Wzr\n6qOeOf+3ihgXKmJcqIhxoXblrE0lGexZm/bYAy6/vH77sssG5dJqkvN/q4hxoSLGhYoYF2rkrE3q\ns3vvrU8iAD7/+dbURUvn/N8qYlyoiHGhIsaF2pUtEiUZzBaJQw+FM87o3t58c7jppty9SZIkScOb\nLRLqk+eeg3POqS/7/OdNIiRJkjS4TCSGmNNOg7lzu7fXXhv22ad19ZEkSVJnMpEYQubNgx/+sL7s\nM5+BUaNaUx9JkiR1LhOJIeSii3LXpqoJE+Dgg1tXH0mSJHUuE4kh5LTT6rcPOignE2pvzv+tIsaF\nihgXKmJcqF05a1NJBnrWpjvvhE03rS+7917YYIMBuZxK5PzfKmJcqIhxoSLGhRo5a5Oa8qMf1W+/\n7W0mEUOF83+riHGhIsaFihgXale2SJRkIFskZs6E1VeH2bO7y371K9hrr9IvJUmSpDZni4R67Zxz\n6pOINdaA3XdvXX0kSZIkE4k2l9Lig6wPPdQpXyVJktRadm0qyUB1bbr2Wthpp+7tUaPg8cdhtdVK\nvYwkSZKGCLs2qVcaWyP23tskQpIkSa1nItHGnnoKLrmkvuzjH29NXdR3zv+tIsaFihgXKmJcqF3Z\ntakkA9G16atfhdq/HVOnwt13Q7S0EUvNcv5vFTEuVMS4UBHjYohJCRYtggULYOHCxZeeyptY4uCD\nK5dqbdcmh+y2qQUL4Iwz6ss+/nGTiKHI+b9VxLhQEeNCRYZdXNTeZC9Y0L00bi/tmNqb8t7sX9K6\n6Aa/p31Le71oUat/w4PGFomSlN0icfHFsO++3dvLLZe7Ok2YUMrpJUnSUJRSvmGdPz8v1deN6+rr\n2vKiY5f0umi7t/uWtHjv2W/V75VtkVChxkHW++9vEiFJ0oBIKX+TPH8+zJtXv64utduN+/qz1N74\nFyUCja8XLmz1b0t6hS0SJSmzReJf/8rjIWr9/e+wySb9PrUkSa21aFG+EZ83D+bO7X7dzFK9me/N\nduPrnpIF74dUppEj85z9tcsyyxRvjxy5+L7q0sO++NnPAFskVOD00+u33/pWkwhJUj9Vv3WfO7d3\nS/VGv6ey2kSgtqyxvDFh8Bt1Qb45blyqN9fNbteWF71uZl19Xb2Bbyxf2uvqMtCDWiuJRKuZSLSZ\nefPgvPPqyw47rDV1kSQNkIULYc6cnpe5c4u3G9fV17Xlja9rt7u6Wv2Tqwy1N9OjR+el8XXRvtry\notdF2z2V9bQs7djqt+zOHjMsmEi0mV//Gl54oXt74kTYZ5/W1Uf9d9xxxzkHuBZjXLShrq58wz17\ndvHSuK+6XVveWFabDNRu9/Ct/HGVRS0walT3jffo0TBmTL7xHTMmLz3t60150c1+Y3nR+yrlx516\nKscdfXQuG4xvu6VecoxEScoaI7HbbvC733Vvf+pT8L3v9euUajHn/1YR46IPFi6EWbOKl9mzi7dr\nyxsTg8ayuXNb/RMSQEdExZgxMHZs9016X5fqzXtvtote1960jxzZ6t9Kj/x7oUZRSSYdI6FXTJsG\nV11VX3bgga2pi8oz7Ob/VimGdVwsXAgvv9y9/Oc/eT1rVndZ9fWSyqoJQPX1/Pmt/skG3IBHxYgR\nsOyy+SZ62WXzMnZs/VLdV73Zry1v3LekdU+vl1nGb9SbNKz/XmhIs0WiJGW0SJx0EhxxRPf2G94A\nd97Z76pJ0pItWJBv9qvLSy/Vb9cutYlBdd34ug2+2W97Ed038ssuC+PG1d/YN76uLVvaMdUb/9qE\noVo2yu8PpeHAFgnVSWnxAfi2RkjqUUq5O85LL8HMmXndm6WaKNRuz5vX6p+mfVRv6muXZZfNTwWt\nvq4t72nd+Lpxe/Rov5WXNOTZIlGS/rZI/OUveZrXqmWWyU+yftWrSqmepHaSUh5wO3MmzJhRvF7S\nUk0eFi1q9U8yuCJg/Ph8U19dxo3rebvxddF2bVKw7LK5648ktTlbJFSnsTVijz1MIqS2tnBhvul/\n8cW8FL2eMWPxpVq+YEGrf4KBM2JEvuGvXZZbDpZfPq9ry2rXjWWNr8eO9Vt8SWojJhJtYNYsOP/8\n+jK7NUmDoNoy8Pzzed7lpS3VROHFF3OXoOFixIh8k7/88jBhQvfr2mX8+J7LGtfe8EtSRzCRaAMX\nX5zHJ1atthrsumvr6qNy+byAQdLVlW/wp0/PiUF13dPywgt53aLxAcdRwvMCxoyBFVbIN/8TJhS/\nXn75/Lo2SageU00Ixo3zxr9N+PdCRYwLtSvHSJSkP2MkdtgBrr++e/tLX4KTTy6rZmo15//uozlz\n4N//hueey0nBc8/Vv54+vX554YUh9dTeANLkyfkmf8UVi9c9LdVEYMyYVv8YKpl/L1TEuFAjx0gI\ngIcfrk8iwG5Nw43zf1csWpRv+J99NicI//53/evq8txzeT1rVqtrvGQR+aZ+pZW6lxVX7Hldu6y0\nEsd+4xvgN4xq4N8LFTEu1K5skShJX1skjjkGvv717u23vAX++tdSqyYNnK6u3D3omWfg6afz+pln\ncoJQXarb06fnMQntZvRomDQpLyutlNcTJ+bXEyd2L7UJw8SJuUWgjZ+EK0kavmyREF1dcPbZ9WW2\nRqgtLFyYb/6feionCE8/Xf+6mjQ8+2w+tl1MmJCnO5s0afF14zJxYl47PkCSpD4xkWiha66Bxx/v\n3l52Wdhvv9bVRx0gpTz16LRp8OSTeT1tWk4Snnqq+/Wzz7a+9WDUKFh55frlVa+qf13dftWrcmIw\nenRr6yxJUgcxkWihxmdH7LNP/kJV6pOU8qxFTzyRlyefrH9dTRxmz25dHVdaCVZZBSZP7l43Liuv\nnNcrrmhLgSRJbcwxEiVpdozEjBl5mte5c7vLrr4adtppQKqn4WDBgpwUPP54/fLYY92vW5EkrLAC\nrLpqDuhVV80JQnVdXVZdNScIthhIktRvjpHocBdcUJ9ErLNOngZWw0+v5/9esCAnA488kpfHHoNH\nH+1eP/XU4E5vOnlyTg5ql9VXr99eZZXcJ09Nc154FTEuVMS4ULuyRaIkzbZI7LgjXHdd9/axxzoT\n5HD1yvzfKeWpTR96KM/7W12qicOTTw5OorDssrDmmnlZY43uZfXVu9errmrrwQBzXngVMS5UNbho\nqwAAHDNJREFUxLhQI1skOti0aYs/O+KDH2xNXVSyrq6cEDz4IDzwADz4IMduuCG84Q05aah9hPlA\nGDcO1lorL2uuWf+6ujj2oC04L7yKGBcqYlyoXdkiUZJmWiROPRU+97nu7c02g1tvHbCqqWwp5Qem\n3X8/3HdfXt9/f04eHnqovs9a2VZbDdZeOy+vfvXiy0ormSRIkjTM2SLRwX75y/rt97+/NfXQUsyf\nn1sV7r23e6kmDjNnDsw1V1sN1l03L+usk5e1187rtdaCsWMH5rqSJElNskWiJL1tkXjoIXjNa+rL\nHn883yOqRWbNgn/9C/75T7jnnvz63ntzV6RFi8q91nLLwXrrwfrr52W99boTh7XXduCyJElaKlsk\nOlRja8S225pEDJp583KScNddOWGoLo8+Wu7D11ZaCaZMyRnjlCndScP66+eZkOx6JEmShgETiUFm\nt6ZBkFJu5vn733PSUF3uu6+8FoblloPXvjYvG2yQE4bXvjYnDxMnlnMNSZKkNmbXppL0pmvT3XfD\nxht3b48cCU8/nZ/TpT6aPz93Sfr73+HOO7uXGTPKOf9aa8GGG9YvG2yQp0jtZcuC83+riHGhIsaF\nihgXatQuXZtMJErSm0TiyCPhxBO7t3fdFa68csCrNnzMnZtbFm67LS+33563Fyzo33kjcrejqVPh\nda/L6402ygnD+PH9rrbzf6uIcaEixoWKGBdq1C6JhF2bBklKdmtqysKFuQnn5pvzcuuteTzDwoX9\nO++rX52bhTbeGF7/+pw0bLjhgA5ydv5vFTEuVMS4UBHjQu3KFomSLK1F4uabYcstu7fHjIFnn4UV\nVhiU6rW3lPKA55tu6k4cbr8d5szp+znHj4dNNskPgtt44/z69a/3Fy5JkoY8WyQ6zC9+Ub+9224d\nfE87Z07umnTjjXn5619zVtVXa6wBm24Kb3xj97LuujBiRHl1liRJUh0TiUGwaBGcf359WUd1a3r+\nefjzn+GGG/L6jjv6Pq5hnXXgTW/KjwPfbLOcQEyeXGp1JUmStHQmEoPgT3/KszNVjR8P73xn6+oz\n4J58MicNN9yQf/h//rNv51llldwfbIstYPPNc+IwaVK5dZUkSVKfmEgMgsZuTXvuCePGtaYuA+LZ\nZ+Haa+Gaa/L6wQebP8e4cTlZqCYOW2wBa67pw9skSZLalJ3IB9j8+XDRRfVlQ75b08yZcOml8MlP\n5ulSV101/1Bnntn7JGKddeADH4Dvfz/PyDRjBlx3HZx8MuyzT35+wzBJIpz7W0WMCxUxLlTEuFC7\nctamkvQ0a9MVV9R3Y1ppJXjmGRg9elCr1z8LF8Itt8Dvf5+Xm25q7gnREXn2pO22g223hW22gdVW\nG7j6thnn/1YR40JFjAsVMS7UyFmbOkRjt6Z99x0iScTTT+cs6Ior4OqrcytEb40albsoVROHrbfu\n4CmqnP9bxYwLFTEuVMS4ULuyRaIkRS0Sc+bkCYVefrn7uGuugR13HPTqLV1XV+5i9JvfwG9/m5/j\n0FsjRsCb35x/sJ12yi0Oyy03cHWVJEnqYLZIdIA//KE+iVh11fwlfduYMyd3Vbr00tzy8O9/9/69\nU6fCf/0XvO1tudWhg1scJEmSOpGJxAC65JL67X32gZEjW1OXV8yYkVsdLrkErrwSZs/u3fsmTcqJ\nwy675PWaaw5sPSVJktTWTCQGyMKFcPnl9WXvfndr6sL06XDxxXm59tpcuaWJyNOxvutd8I535IfA\n+aRoSZIkVZhIDJA//zk/0LlqpZVg++0HsQIzZuRWh/PPhz/+sXezLE2YALvumqeZesc7fGK0JEmS\neuRXzAOksVvTu94FyywzwBd9+WX4v/+DPfbIT4U+6CC46qolJxFrrpmfB3H11bnl4oIL4MMfNoko\nkfN/q4hxoSLGhYoYF2pXztpUktpZm1LKz1t7/PHu/RdfDHvvPQAX7urKD3I7++x8kVmzlv6eDTeE\nvfbKy5vfPGwe/NaunP9bRYwLFTEuVMS4UCNnbRrG7rijPokYOzb3GCrVAw/k5OHcc+sv1pPXvQ72\n2y8/yGKjjUqujJbE+b9VxLhQEeNCRYwLtStbJEpS2yJxzDHw9a9379tzzzzDar/NmpW7Hp15Jtx4\n49KPnzIlJw/77Qevf30JFZAkSVKr2SIxjDWOj+j3bE133QU//jGcd97SnzC9+urwwQ/C+94Hm25q\ntyVJkiQNCFskSlJtkXjggcSUKd3lI0fCs8/mxzA0Zc6c3Prw4x8vvfVh2WXzAIwDDoCdd26Dh1VI\nkiRpoNgiMUw1dmHabrsmk4gnn4Qf/ADOOANefHHJx263XZ5had9989StkiRJ0iAxkShZn7s13Xwz\nnHoqXHjhkqdrnTwZDjwQPvpRWH/9PtdTkiRJ6g+fI1Gyxl5IS0wkFi7MicPWW8OWW8Ivf9lzErHT\nTvnhck88Ad/4hknEEOL83ypiXKiIcaEixoXalWMkSlIdIwHdv8/NNoNbby04eO5c+PnP4ZRT4JFH\nej7pxIn5oXIf+xh1Ay80pDj/t4oYFypiXKiIcaFG7TJGYki3SETEGhFxVkRMi4i5EfFIRJwaESu2\n4jyNFmuNmDULvv1tWG89OOywnpOIDTeE00/PrQ//8z8mEUPc9ttv3+oqqA0ZFypiXKiIcaF2NWRb\nJCJiPeBG4FXApcB9wBbATsC9wDYppaWMVi71PIu1SNx9d34OHDNmwA9/CN/5Dkyf3vNJdt0VDj8c\ndtkFRgzpHE81/CZJRYwLFTEuVMS4UKN2aZEYyoOtf0S++f9USum0amFEfAv4LHAC8PFBPE+dKVNg\n6povwXHfzoOoX3qp+MDRo/PMS4cfDlOnNnsZSZIkqSWGZItEpRXhQeCRlNL6DfvGA09XNienlOYM\n9Hkqx7/SIjGGuVyw4+nscdcJPbdAjBsHhx4Kn/88rLHGkk6tIc5vklTEuFAR40JFjAs1apcWiaHa\nf2bHyvr3jTtSSi8DfwHGAVsN0nle8RF+xv28lj2u/WxxEjFhAhx5JDz6aB4vYRIhSZKkIWioJhIb\nkAcj3N/D/gcq69cO0nle8TMO4tU8sfiOSZPg+OPhscfyeuWVe3tKSZIkqe0M1TESK1TWM3vYXy1f\n2qxLZZ2nZ+PH5+5Ln/ucT5+WJEnSsDFUE4m2tVhHtZdfhq9+NS/qWNW+jFIt40JFjAsVMS7UjoZq\n16ZqS8EKPeyvls8YpPNIkiRJHWWotkjcR/7yv6exC9UnuPU09qHs87R81LwkSZI0mJz+taTpXyVJ\nkqROMiS7NqWUHiZP2bpORHyyYffXgOWAc6o3/xExKiI2qCQOfT6PJEmSpGxItkjAK60JfwEmA78G\n/kV+3sMOwL3ANimlFyvHrg08AjyaUlqvr+eRJEmSlA3ZRAIgItYgtxy8HZhE7or0K+BrKaWZNcet\nDTxMTiTW7+t5JEmSJGVDOpGQJEmS1BpDcoyEJEmSpNYykZAkSZLUNBOJfoqINSLirIiYFhFzI+KR\niDg1IlZsdd00cCJiYkQcEhG/iogHImJ2RMyIiD9FxEHRwyNII2LriLgiIp6vvOfvEfGZiPDf4jAV\nER+KiK7KclAPxxgXHSIido6ISyLi6cr/GdMi4sqIeHvBscbFMBbZfhFxTUQ8WfmMH4qICyJiqx7e\nY0wMExGxT0R8LyJuiIiZlf8jzlnKe5r+/CPiwxFxU0T8p3Kfcm1EvLO0n8MxEn1XmfHpRuBVwKXk\nB9xtAeyEMz4NaxFxKPAj4CngWuBxYBVgb2BF4KKU0nsb3rMncBEwBzgfeAHYHdgQuDCltN+g/QAa\nFBGxFvAP8pc244GPppTOajjGuOgQEXEK8AXgCeB3wHRgZWAz4I8ppa/UHGtcDHMR8RPgIHIcXFpZ\nvwbYA1gG2D+l9H81xxsTw0hE3AFsArwMPEn+HP83pXRAD8c3/flHxDeBz5H/5lwEjAbeR55Y6JMp\npdP6/YOklFz6uABXAYuAjzeUfwvoAk5rdR1dBuyz3wF4Z0H5ZOCxSlzsVVO+PPDvyh+ATWvKR5On\nH14EvLfVP5dL6XHyR+AB4OTKZ3xQw37jokMW4KOV/xd+Cowq2D/SuOicBXh1JR6eAiY17Nu+su9B\nY2L4LpXPef2Gz/ycHo5t+vMH3lI5533AhIbYmw7MBl7d35/DprA+qrRG/Bd5StnGjO5YYBawf0Qs\nO+iV04BLKV2XUvptQfm/gdOBICcbVe8ht1z9IqV0R83x84GjKscfNpB11uCKiM+QY+BA8h/sIsZF\nB4iI0cDx5C8ZDk0pLWw8JqW0qGbTuBj+Vq6sb0opPV+7I6V0PfCfmmPAmBh2UkrXp5Qe6uXhffn8\nDwMScEJK6aWa9zwO/BAYQ/7/qV9MJPpux8r69407UkovkzPEceSH26mzLKisa28WdiT/g76q4Pgb\nyDeaW0fEMgNcNw2CiNgIOAn4Tkrpz0s41LjoDP9Fvim8GEgR8c6I+FJEfLqHvvDGxfB3D/AMsEVE\nTKrdERHbkb+B/kNNsTHR2fry+VfvU4ve8zty8rFTfytmItF3G5A/1Pt72P9AZf3awamO2kFEjAQ+\nTI6NK2t2bVBZLxYvlW8iHwFGAes17tfQUomBc4FHgSOXcrhx0Rk2J/9NmA/cAVxOTjRPBf4aEddF\nxKtqjjcuhrmU0lxgT3LvhX9GxI8j4sSIuIB843cV8N81bzEmOltTn39EjAPWAF5OKT1bcL7S7lFN\nJPpuhcq6pydfV8udvamznAy8DvhtSqn22yTjpXMcC7wB+EhKad5SjjUuOsNk8rd/XyT3Wd6G/I3z\nJuQbxu2AC2qONy46wz+AnwFjgUOALwP7kCfvODulNL3mWGOiszX7+Q9avJhISCWJiE+TZ0f4J1A4\n64KGt4jYEvh/wDdTSje3uj5qG9X/axcAu6eUbkwpzU4p3UOe6e1JYPtK/KgDVFourwFOAM4A1geW\nI8/g9QjwfxHxjdbVUOodE4m+q2ZzK/Swv1o+YxDqohaLiE8C3wHuBnZKKTV+7sbLMFe5MTiHPEPG\nMY27e3ibcdEZqp/fHSmlJ2p3pJTm0N2HeYvK2rgY/vYnz6pzcUrpiymlR1NKc1NKdwJ7AdOAz0fE\nOpXjjYnO1uznP2jxYiLRd/eRbw566l82pbLuaQyFhomIOBz4HrmZeqfKzE2N7qusF4uXyg3ouuTB\n2Q8PVD014MaT/91vBMyreQhdF92JxU8qZd+ubBsXnaH6Off0n3b1eUPVWf6Mi+FvM/K4mesad1SS\ny5vJ92ibVoqNic7W1OefUppNTkbHR8QqBecr7R7VRKLvrq2sd2ncERHjyX1gZwN/G8xKaXBFxJeB\nbwO3Azs29GmtdQ058Vzs6bXk+aPHAX9JKS0o2K+hYR7wE/JzAn7SsNxeOeZPle0bK9vGRWe4mnzT\nOLWH/a+vrB+prI2L4W8++TNeuYf9K9ccB8ZEp+vL539NZV30nt0q66v7XbNWP5BjKC/kWXkWkZ8O\nWFv+bfKAuh+2uo4uA/r5H135nG8CVlzKsbUPk9mspnwM8NdKHL2n1T+Ty4DFyrEs/YF0xsUwXshP\nLl4EHN5QvkulfDqwvHHRGUvlRq76QLrVG/a9o/IZzwJWMiaG/0JzD6Tr1edP9wPp7q+9RwHWAZ6n\npAfSReWk6oPKQ+n+Qp6R49fAv8jPjdgBuBfYJqX0Yo8n0JAVER8mz7axEPgBxTMjPJpSOrvmPXsC\nF5K/uf4l+fH2e5CbKi9MKb1voOut1oiIY8nJxCEppbMa9hkXHSAi1iD/f7EW+ZvCO8hTNe5J/s9+\nv5TSpTXHGxfDXERcDLwbeBm4hPxcianAOyuHfCal9IOa442JYaTyeb67srkqsCu5a9KfKmXTU0pf\nbDi+qc8/Ir4JfJbczeki8pOw9wMmkr8E/1G/fw4Tif6p/OfwNXLT0STgaeBXwNdSSj1Nu6UhrnJj\n2DigttH1KaW6h71ExFvIzxZ4C3nKvwfJXWG+n/zHOGzVxMtHGxOJyn7jogNUHjx2DPk//9WAl8gP\nk/pGSunWguONi2EsIgL4GHng9evJ3VNeILdyfy+ltFi3E2Ni+OjFfcSjKaX1G97T9OcfEQcAnyAn\nqV3AbcD/pJR+1+8fAhMJSZIkSX3gYGtJkiRJTTORkCRJktQ0EwlJkiRJTTORkCRJktQ0EwlJkiRJ\nTTORkCRJktQ0EwlJkiRJTTORkCRJktQ0EwlJkiRJTTORkCRJktQ0EwlJkiRJTTORkCRJktQ0EwlJ\nkiRJTTORkCQNaRFxXER0RcR2ra5Lo4iYEhHzIuJLra4LQERcHhEPRMTIVtdF0tBnIiFJNSJig4j4\nfkTcFREzKjeB0yLiNxFxUESMbnUdW61y037NIF7vw5VrHtDDIamytKOTgRnAD/p7ooh4tPJ76IqI\nHZZw3M9qjjumYfdxwPrAx/tbH0kykZCkispN1z3km6yZwM+BU4DfAq8BzgT+3Kr6dbglJQrfBzYC\nbh6kuvRKRLwJeDfww5TS7BJOWU2YFgCH9HDN5YH3VI5Z7HeWUroNuAY4KiKWKaFOkjrYqFZXQJLa\nQUQcQf629jHgPSmlWwuO2QVoiy4qHSaWtDOl9ALwwiDVpRmHkW/mzyv5vL8B9o6IlVJKLzbs+xCw\nLHAJsHcP7z8P+CmwL/CLkusmqYPYIiGp40XE2sCxwHxgt6IkAiCl9HvgHQXvf29E3FDpCjU7Iv4R\nEV8p6gZV6Z7ycESMi4j/iYjHImJupd96j0lKRGweEedHxJOV45+KiKsi4j0Fx24ZERdFxNOVrlmP\nR8TpEbFawbHXRcSiiBgREUdExP2V8z8eEd+o/da62sWIfHO8Q033mVe60ETE2pXtsyrjA86PiGcr\n19iucsybIuK7EXFnRDwfEXMq1/1mRKzYUL9rgbMqmz+vud6iiHh15Zgex0hExM4RcWXlOnMj4r6I\nOCkiJvTnd7E0ETEWeB9wW0rp4ZKvdSYwFti/YN8hwBPAVUt4/0XAIuCg3v48klTEFglJyjdUywD/\nl1L615IOTCktqN2OiBOBrwDPAf8LvExONk4EdomIXVJKC2tPUbnWVcBqwBXAQnIXmG9ExJiU0tcb\nrvFR4LTKcb8GHgAmA28mf+t9Yc2xBwE/BuZWjn0CmAIcDOweEVumlJ5sqA/kb6bfCvwOeAnYjdz6\nsnLlvQB3kFttjgMeJXf9qrqu4Vf1GuAm4D7yN+DLVs4L8NHKz3s98Afyl1qbAZ8D3l6p46zKsT8D\nXgT2BC4F7qyp94ya14t144mIQ8m/t5crv6N/AzsAXwbeFRHbpJReqnlLM7+LpdkaWI6eu8L151p/\nIP/+DwG+Vy2MiM2ATclJcVdPFUspvRwR/wDeWom3eb37kSSpQUrJxcXFpaMX4I9UvqFt8n1bkW/Y\nHgFWrikfQb6JXwR8peE9j1TKLwfG1JSvTL5hfgEYWVO+EbmlZDqwYUEdVq95PQWYR755X7XhuB3J\nicjFDeXXVn6GW4AVasqXJScsC4DJDe/pAq7p4XeydmX/IuDrPRyzFhAF5QdW3vvFhvIPV853QA/n\nO7ayf7uasleTk6kZwJSG439Yuc7p/f1dLCE2jqnU6X097O/L770aOyOAIyuvt6zZf3rlfWuSk5Au\n4Jgern9a5f3bt/rfn4uLy9Bd7NokSbllAODJJR61uIPJ3ywfn1J6rlqYUuoCPl/ZVzgoFvh0qvkm\nuPL+y4AVgA1qjvs4MBL4Wkrp3saTpJSeajh2FHB4SumZhuOuJSc3u0fEco2nAb6UUppZc/wccgvL\nCHLLR7OeBb5WtCOl9ERKqWjw9M/J38rv2ofrNdqf3PLz/ZTSAw37jgT+A+xf0IWorN/FepX1kmKq\nP9f6GTlR+ChARIwD3g9cmepbnHpSPWa9JR4lSUtg1yZJ6rtNK+trG3eklB6IiCeBdSNi+ZTSf2p2\nz0wpPVJwvicq65VqyrasrK/sRX22qqx3iIgtCvZPJiclryV3U6p1Wy/r01t/Tw3dwKoiYhTw38B+\nwFRy8lT7xdYafbheoyV9NjMi4g5gW2BD4K6GQ8r4XaxcWS9tEHifrpVSeioirgDeGxGfIY/HGE8e\nP9Ebz5MHsU/u5fGStBgTCUmCp8k3lM3ewK5Q8/6ezrsWsCL5G/CqGcWHUx1LUfuwsOrg42m9qM+k\nyvoLSzgmkW846wvrxwosqT699cwS9l1AHiPxEHncwzPkLlkAnwXG9OF6jXrz2UD37/cVJf0uqi0u\nS5txqj/XOhN4F/BBcrewZ8gzOvVGNXFr1+dvSBoCTCQkKQ+I3QnYmdxlpLeqXVJWJfdfb7Raw3F9\nUU061gDu72V9JqTuwcqtUniDWhkQ/G7g9+QZsrpq9gV5IHQZaj+bogH0ZXw2SzK9sp44QOeHPFD/\nKeAo8riIE2p/n0sxkfwZPbe0AyWpJ46RkKScPCwA9omIDZd0YMOUrtXuQTsUHLc++ebukR6+de6t\nv1XWi007u4RjF5sGtWRd9K2VAvJsTgCXF9z0bkkebNxoEfmb/WaueUflPTs07oiIFYA3kgdjL3GW\nrn6oTvm65gCdvzoW5yxykrmI/GyI3qq2vi02Na0k9ZaJhKSOl1J6jDyl6Rjgisq35ouJiHdQP1bh\nLPLN6lER8aqa40YA36rs+0k/q/cj8k3i0RGxUUGdartj/YDcLebUiJhScOwyEfHWftYHcv/6tfr4\n3kcr6x1qCyNiMrn+PV0P8kxMvXUeOTn8VCWpq3U8MAE4t6dxHCX4E/nz33yAzl/1XWAv4O0ppUeb\neN8W5NnA/ra0AyWpJ3ZtkiQgpXRSRIwkTyV6S0T8FbiV/AyCVcjf8k8Bbq55z40RcQrwReDuiLgI\nmEVuPXgd+Wbym/2s178i4uPkhOKOiLiMPD3oJPJN6kxylyxSSvdVniPxU+CeiLiS3B1qGfJN+Lbk\nZylMbaIKRX38rwb2i4hfA7eTb9hvSCn9qRfnuwX4C/nJzH8hdytbhfw7u5fcVafRjcBs4PBKwlYd\nf/G9hkHsr0gpPRYRh5OTk9sj4gJyN57tgbcA/yQ//6MZSxzvUFDnl8nPiOiLXl0r5ad6/7qpE0eM\nBzYBrks+Q0JSP5hISFJFSun4iLiQPI3qjsBHyE8Qfp78ILSTyFNz1r7nKxFxO/BJuqccfYg8xei3\nU/3D6F55W5P1+klE3EUeRL09+eFs04F/0NDikVL634i4kzz97I7Af5GTm6fID2U7v8n6FO37DLl7\n087kBGAE8FVy4lR9T+E5U0pdEbE7uVVgN+BT5IHkZwAnkLsapYb3zIiIvclJ3ofJD3oDOJf6QeyN\n1/pRRDxA/r3tDYwjz4h0MnBSD13Omv1d9HTtuRHxC+CQiFi3h1m6+nKtZmKnp89hX3I3sbMK9klS\nr0XxVN6SJKk/IuKN5Bab41JKhc/UaIWIuBp4PbDmAHbtktQBHCMhSdIASCndCVwMfCIiigaRD7qI\neDO5perrJhGS+ssWCUmSBkhloPc9wNEppf9pg/pcTn4g4et66HYnSb1mIiFJkiSpaXZtkiRJktQ0\nEwlJkiRJTTORkCRJktQ0EwlJkiRJTTORkCRJktQ0EwlJkiRJTTORkCRJktQ0EwlJkiRJTTORkCRJ\nktQ0EwlJkiRJTTORkCRJktQ0EwlJkiRJTTORkCRJktQ0EwlJkiRJTfv/XvBYaBKDGiEAAAAASUVO\nRK5CYII=\n", "text/plain": [ "<matplotlib.figure.Figure at 0x10cd7bb70>" ] }, "metadata": { "image/png": { "height": 270, "width": 393 } }, "output_type": "display_data" } ], "source": [ "c = c_lin # Drug concentration(s) in nanomolar (nM)\n", "EC_50 = 20 # 50% effective concentration in nanomolar (nM)\n", "F = 1 # Efficacy (unitless)\n", "n_H = 1 # Hill coefficients (unitless)\n", "r_a = calc_drr(c, EC_50, F, n_H)\n", "\n", "K_i = 5 # Dissociation constant of inhibitor in nanomolar (nM)\n", "c_i = 25 # Inhibitor concentration in nanomolar (nM)\n", "r_ana = calc_drr_agonist_non_cptv_antagonist(c, EC_50, F, n_H, K_i, c_i)\n", "\n", "plot_dose_response_relation(c, r_a, \"Agonist Only\", r_ana, \"Plus Antagonist\")" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "Following result shows drug response of agonist with noncompetitive antagonist to the logarithmically increased concentrations." ] }, { "cell_type": "code", "execution_count": 17, "metadata": { "collapsed": false }, "outputs": [ { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAxEAAAIhCAYAAAAxajd/AAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAAWJQAAFiUBSVIk8AAAIABJREFUeJzs3Xd4FFXbBvD7TEISSEIJnYCEANJEQFQQEBIQQRFBfKW+\ndLErioIFJQk2UHxB+URUBEFAsCCIBZQiiCgqIEqvgjSpCTWU5Pn+GLLJJrPZze7M7mxy/65rrmTn\nnHnmZHmY7MmZOUeJCIiIiIiIiDylBboBREREREQUXNiJICIiIiKiAmEngoiIiIiICoSdCCIiIiIi\nKhB2IoiIiIiIqEDYiSAiIiIiogJhJ4KIiIiIiAqEnQgiIiIiIioQdiKIiIiIiKhA2IkgIiIiIqIC\nYSeCiIiIiIgKhJ0IIiIiIiIqEHYiiIiIiIioQNiJICIiIiKiAgnaToRS6m6l1FtKqZVKqTSlVKZS\naoaXsWKVUlOVUgeUUulKqT1KqfFKqdJmt5uIiIiIKNiFBroBPngewLUAzgDYD6CuN0GUUvEAfgZQ\nDsB8ANsA3AhgKIAOSqmWInLSlBYTERERERUCQTsSAeBxAFeLSCkADwFQXsZ5B3oH4lERuVtEnhOR\nWwCMh94xedmU1hIRERERFRJKRALdBp8ppdoAWA5gpoj0K8Bx8QB2AtgjIjVzlUUBOHTlZQUROW9W\ne4mIiIiIglkwj0SYIfHK1+9yF4jIGQA/ASgBoLk/G0VEREREZGdFvRNRB4AA2O6ifMeVr1f7pzlE\nRERERPZX1DsRpa58TXNRnrWfszQREREREV1R1DsRRERERERUQME8xasZskYaSrkoz9qf6i6QUir4\nn1AnIiIioqAhIt7OTuqzoj4SsQ361LCunnmofeWrq2cmiIiIiIiKnKI+ErH8ytdbcxdcmeK1JYBz\nAH7xNKCdp8xVSlnaPjPiexPD02M8qeeuTn7lrsqsft99xbxgXhhhXjAvchMBNE1h927BiRPAiRPA\n8eNwfH/yJJCaqm9Z32d9PXUKyMz05CwK+nwnvvAmhqfHeFLPXZ38yl2VmfG+WEkhJESgaYCmAUpl\nfw0JyX6du8zV19z7tm9XqFtXXNZxt/3yi0KLFuKyHMi7b8kShVtvFcPynK8B4KuvFDp3ljzlOevN\nm6dw993iVJbz+08/Veje3TjGxx8r9O7tfOysWQEbgHAoEutEKKVCAdQEcElEducqWwSgPYChIvJ/\nOfb/D/qCdu+IyMMetEEAdiL4oSC4PhQAzAvmhTHmReHPCxH9w/2//2ZvR47o29Gj+nbsWPbXY8eA\ny5et/jAbHJ2IYsWAsDAgPByO77O2LVsUrr9er5NVlvV9sWLA558r9O0rCA3VX+f8+sYbCs8/71wW\nEgI89ZTC//2fvj9rCwnRt9yvs/blfG20aVrer1nfG+03ep39Qd/e1wsrrxWe1jX7eqGu9CYCeTtT\n0HYilFJdAHS98rISgA4AdgP48cq+YyIy/Erd6gD2APhbROJzxYmHvh5EBQBfAtgCfV2IBABbAbQU\nkZMetIedCH4oCPiHAm8wL5gXRpgXwZsXIvpf//fvBw4cAA4eBA4dyvv133+BCxcKGt0+nYhixYDI\nSKBECX2LjASKF9f/6typk6B4cX1/8eL6FhHh/H3OrXt3hcWLBRERescgPFzfn9VRyNpKllTIzMz+\n67ThT2DTvLCS3a8X7ERYI5hvZ2oMIOeogwCocWUDgL8BDM9VnudfR0R2K6WuBzAaQEcAt0FfqXo8\ngNEi4mr616DTpk0b28f3Joanx3hSz12d/Mqtfn+twrxgXhhhXtg3Ly5eBP75B/j7b33bu1d/vX9/\n9tezZ70O74b37Y6IAEqVAkqW1L9mfR8dnb3NmdMGw4bp30dF6VtkZN6vJUronQgjCQlt8NVXBfyp\n2rTBrXlubDaul18HIquOt+W8XlgT38prhad1C2NeBO1IhN1wJIJ/WeRfkKyLz7zwP+ZF4PIiM1Nw\n7Biwaxewc6e+7dqV3Wk4cEAfbQgMhWrVBDExQNmyQEyMvpUpo38tXVrfypTJ/r50ab3DEBbmQXTm\nBa8XFsTnSIQ1gnkkggooKSnJ9vG9ieHpMZ7Uc1cnv3Kr31+rMC+YF0aYF9bnxdmzwPbtwNat2Rug\nf+g+dcqjZvqseHGgYkXnrUIFfStXDihfPvtr2bLA2LFJSE62rj3MC14vrIhvZU54Wrcw5gVHIkwS\nDCMRFBh2/wsSBQbzoug4cwbYvBn46y9g40b9+61bgX37jGqb88xB8eJAtWpAbCxQpYq+Va6c/bVy\nZaBSJf32IHe351Dg8XpBuXEkgqgIsOtfECiwmBeFjwiwZw+wbh3wxx/ZnYbdu90fm82zvKhSBYiL\n07fq1YGrrgKqVtU7DtWq6bcTsXNQePB6QXbEkQiTcCSCiKjoyMwEtm3TOwxZ2/r1QJpJU3EULw7U\nqpW91awJxMfrnYZq1fSHlImo6OJIBBERURA4ehRYswb45Rf966+/+v7cgqbpHYO6dfWtTh3g6quB\n2rX1W404kkBEdsZORIAo/nYgIh9x5NMaIvozCytXAj/+CPz8c0FvSXKmafpowjXXAA0bAg0aAPXr\n6/vCw81rNxGRP2mBbgAREdlPspVT8JgU35sYRsdkZOi3I02YAHTrps9MVL9+Mh54AJg1K78ORN5Y\nJUsCCQnAE08AXbokY+1a/cHqbduAzz8HkpOBe+4BPv002bADYfX77quilBfe1nNXJ79yV2XMC9/i\nW5kTnta1Ii8Cjc9EmKSgz0TkuJfNukYRUaHkj+uH3ed99zZG1joMu3YBS5YA338PLFumr/Ccqybc\nz5KkcOutgqZNgeuuA5o0AWrU0Ece3LWP6wFYF5/rRPif3fOC60RYg7czERFRHnaf972gMVJT9Q7D\nddclIT5eX7TNTXSnV6GhQKNGQPPmQLNm+teZM5OQkuJd+1yV2X0WnsKWFwU9JlDrATAvuE6EHXEk\nwiQciSAif+H1wzPbtwNffQUsXKg/25CR4fmx0dFAy5ZA69bAzTcDTZvqMyYREdkBRyKIiIhMkpEB\nrFqldxoWLtQ7EZ6KiQHatNE7Da1bA9deq48+EBGRMV4iiYgoaF2+rM+i9NlnwLx5wL//enZcWBjQ\nqhXQvj1wyy368wwhIda2lYioMGEngoiIgsrly8CKFcCnn+odh6NHPTuubl2gUye943DzzUCJEta2\nk4ioMGMngoiIgsKGDcCMGfq0q56MOISG6rcode6sdx5q1bK+jURERQXXiSAiojzsMu/7oUPAG2/o\nMyM1bgz87385OxB5Y5QsCfTpA3zyCXDsmD6N69Ch2R0IrgfgG7vkhdkxmBe+sXtecJ0Ia3B2JpNw\ndiYi8pfCvk7EpUvAggXA1KnA4sVAZqbLKAAEJUsCXbroi7jdemv+q0BzPQDf2H09AG9jMC98Y/e8\n4DoR1uBIBFGQWLFiBTRNQ3x8fKCbYjtxcXHQNA0rV64MdFMKjUDM+/7PP8ALLwBXXaV3CL791nUH\nIjoauPbaJCxcCBw5ot/m1Llz/h0IV+f1th7XA7BnfK4T4X92zwuuE2ENjkSYhCMRgbVgwQLcdddd\nAID27dtj8eLFAW6R+VasWIHExETExcVh9+7dPsVKS0vDhAkTAJh3cdq6dSumTJmCJUuW4J9//sG5\nc+dQvnx5NG7cGHfddRf69u2LUIvmzKxRowb27duH5cuXo3Xr1pacw04K0/UjIwP47jvgnXeAr7/O\nb9RBXwm6QwegXz/gzjv5YDQRFV12GIlgJ8Ik7EQEVrdu3bBgwQIAgKZp2LdvHypXrhzgVpnrt99+\nQ//+/VG1alV89913PsXau3cvatSoAaUUMgqyApcBEcHTTz+N8ePHIyMjA0opFCtWDJGRkUhNTXXU\nqV27Nj755BM0atTIp/MZYSci+Jw+DUyZAkycCOzZk3/dhg2B/v2B3r2BQvbfmojIK3boRPB2Jgp6\nx48fx9dffw0AqFevHjIzM/HRRx8FuFXmu+GGG7B582afOxBm69OnD8aNG4fMzEz07t0bv//+O9LT\n03H8+HGkpqZi6tSpqFKlCnbs2IGEhASsW7cu0E2mANq/HxgxAqhWDRg2zHUHIioKeOABYN064M8/\ngSefZAeCiMhO2ImgoDd79mxcunQJLVu2xLPPPgsRwfTp0wPdLFsz6y/Yb7/9NubMmQOlFF5//XXM\nnDkTTZo0cZRHR0ejf//+WLt2LWrVqoW0tDT06NED586dM+X8FDw2bNBvQ6pRA3j9dSAtzbheo0bA\n5MnAwYP6LU450omIiGyEnQgKetOnT4dSCv3798ddd92FqKgobN26Fb///rvbY3/66Sd06tQJZcuW\nRVRUFBo3bow333wTIoIBAwZA0zSMHj3a8NjTp08jOTkZjRs3RnR0NKKjo9GoUSMkJyfj1KlThsek\npKRA0zQMGjTI0fZmzZqhZMmSKFWqFNq2bYslS5YYHpvfg9Uigg8//BBt27ZFuXLlEBYWhgoVKuCa\na67B4MGDnZ4RSUhIQHx8vGO2B03TnDZXP29u6enpSElJgVIKd9xxB4YNG+aybsWKFTFz5kwopbB7\n9268++67TuV79+6FpmkIubJk8MaNG9GzZ09UrlwZxYsXR7169fDSSy/h0qVLHrUNAAYPHgxN09C9\ne/d86yUlJUHTNLRq1crj2OS5H3/UZ0xq3Bj46CN9objcwsP1Dsbq1cD69cD99+sPThMRkY2JCDcT\nNgCiv52eKWh9MrZp0yZRSkmJEiUkLS1NREQGDhwomqbJI488ku+x06dPl5CQENE0TTRNk5iYGAkL\nCxNN06Rbt24yYMAA0TRNUlJS8hy7Y8cOqV69uiilRNM0iYqKkqioKNE0TZRSUr16ddm5c2ee45KT\nk0XTNBk4cKDce++9opSSYsWKSenSpR3HhoSEyLx58/Ic+8MPP4hSSmrUqJGnrHfv3o62aJomZcqU\nkYiICMfrm266yVH37rvvlgoVKjjqV65c2Wl744033L7vIiKzZs1yxFizZo1Hx9x6662ilJI6deo4\n7f/7778dsb777jspUaKE4+cIDQ11vDd33XWXYdy4uDjRNE1WrFjh2Ld69WpRSklERIScOHHC8LjM\nzEzHsVOnTvXoZ7ADf1w/kpKSfDp+5UqRdu1EAFdbkpQrJ5KcLHLkiP/a6OkxntRzVye/cldlvr7v\nVrO6fWbEZ174n93zwsqc8LSu2XmR4/dA4D77BvLkhWljJyIwhg8fLkop6dWrl2Nf1oftcuXKyaVL\nlwyP27p1q4SHh4umadK5c2fZt2+fiIikp6fL//3f/0mxYsWkTJkyhp2IixcvyrXXXuvoLCxdutRR\ntmzZMomLixOllDRs2FAuXrzodGxycrIopaRMmTJSokQJee+99+T8+fMion+QTkhIEKWUxMbGSkZG\nhtOxrjoRK1eudHRG3nrrLTlz5oyj7PDhwzJjxgwZPny40zE5P7R7a8iQIaKUkkqVKnl8zKRJkxzn\nPXTokGF7ypQpI7169XL8m5w7d07Gjh3r6BB9++23eeIadSJERBo0aCCapsnEiRMN27NkyRJRSkl0\ndLTT+2Z3/rh+eBt/5UqRtm3z6zyI1K6txz93zv9t9PQYT+q5q5Nfuasyu/9esGve+RqDeeEbu+eF\nlTnhaV2z84KdiEK0+bsTkd8v6EBu/pSRkSFVqlQx/GCZ9aHS6C/6IiL9+vUTpZQ0atTIsKPx+uuv\nOz7U5u5EfPTRR6KUkvDwcNm8eXOeYzdt2uQY0Zg2bZpTWVYnQtM0+fjjj/Mce/DgQUfn5scff3Qq\nc9WJeO2110QpJbfffrvhz2rEjE5Ey5YtRdM06dChg8fHrFq1ynHeZcuWGbanY8eOhsd27txZNE2T\nwYMH5ylz1YkYP368KKXkuuuuM4zZq1cv0TRNBg0a5PHPYAd2HIlYtcp956FVK5EFC0QyMvgXZ/7F\n2br4zAv/s3tecCSCnQhbb+xEiN87EYsWLRKllFSuXFkyMzOdykaNGiVKKenSpUue4zIzM6VUqVKG\nH/KznDt3znF7Uu5ORJcuXUTTNOnevbvLtmXdXnTbbbc57c/qRMTFxbk89uabbxZN0+Sdd95x2u+q\nEzF58mRRSsn111+f531wxYxORL169UTTNOndu7fHx2zdutVx3k8//dSwPcuXLzc89oMPPhCllDRr\n1ixPmatOxPHjxx2dsj/++MOpLDU1VYoXL27YYbM7O41kbt0q0rVr/teFtm1Fcv3TEBGRD+zQieCD\n1RS0pk2bBqUU/vvf/zrmS87Sr18/AMC3336L48ePO5Xt3r3b8eBzy5YtDWMXL14cTZs2NSzLmqI0\nMTHRZdvatm3rVDe366+/3uWxsbGxAICTJ0+6rJNTu3btEBYWhrVr1yIhIQGzZs3CoUOHPDrWjm64\n4QbD/QV9XwAgJibGsQjhtGnTnMpmz56N9PR01K5dmw9Ve+HIEeDhh4EGDYD5843rtGsHrFwJLF0K\nFIHlO4iIihR2IigonTp1Cl9++SUAoG/fvnnKa9asiZYtW+Ly5cuYPXu2U9mxY8cc3+e3IF2VKlUM\n9x89ehRA9odaI1WrVgWAPB2YLNH5TD0TEREBAB7PRFSrVi1MnjwZJUqUwKpVq9C3b1/ExsYiPj4e\nDz30EP744w+P4hRUTEwMANc/o5Gc733W8blFRkYa7i/o+5Ll3nvvhYhg9uzZuJxjaqCpU6dCKeWY\nKYs8c+4c8PLLQK1awKRJ+orTuWV1HpYsAW6+2f9tJCIi67ETEaQCf+OS8eYvc+bMQXp6OkQEjRo1\nyjNNqaZp+OmnnyBi3ZoR6enplsT1xoABA7Bnzx5MmDABXbt2Rbly5bB3715MnjwZTZs2xZgxY0w/\nZ7169SAi2LBhg8fH/Pnnn47v69evb3qbjLRr1w7x8fE4fvy4o+O5adMmrF27FiEhIY5RK8qfCDBz\nJnD11cDzz+srTufWrBmwYgU7D0RERQE7ERSUZsyYAUBf9t3dtn79emzatMlxbLly5Rzf53fbj6uy\n8uXLAwD27dvn8tj9+/cDAMqWLev5D+Wj8uXL49FHH8W8efNw5MgR/Prrr+jWrRtEBC+88AI2btxo\n6vmybuc6cuQI1qxZ49Ex86/c91KrVi1UqlTJ1PbkZ9CgQRARxy1NH3zwAQCgY8eOfm1HsNq0CUhM\nBPr2BQ4cyFseHw/MnQv8/DNvWyIiKirYiaCgs3PnTqxevRpKKWzYsAEnT550ud1xxx0A4DQaER8f\nj5IlSwIAVq1aZXiO9PR0rF271rDsuuuug4hg+fLlLtu4bNkyR91Aadq0KT755BNUrVoVmZmZTj+r\npvn+X79bt26ODtkrr7zitv6vv/6KJUuWQCmFBx54wOfzF8TAgQMREhKCxYsXY9++fZg1axZvZXIj\nOTkZZ84Aw4frC8WtWJG3TkwMMH48sHkz0L07kOvRJLfxzWijVcd4Us9dnfzKXZWZ8b5Yyer2MS+M\ny5gXvsW3Mic8rWtFXgRcIJ/qLkwb/Dw7U1H2/PPPi1JKmjRp4rZu1nSsVapUcZq5KOcUr5cvX85z\n3Lhx49xO8Wo044+IyMaNGx1TvH744YdOZVmzMw0cONBlm10tcudqdqbca1HkFh8fL5qmyYQJExz7\nUlNTHT9DampqvsfnZ+LEiY4448aNc1nv4MGDUrt2bVFKSc2aNfOsyeDJbFH5LbbnanamnO68807R\nNE1atWolSimpWLGi4b99MLD6+pGZqZ+jalXjGxfDwkSGDxdxsYafR8xovzcxPD3Gk3ru6uRX7qrM\n7r8XrG4f84J5YUV8K3PC07pm50WO3wMB++zLkQgKOjNnzoRSCt26dXNbt3PnzihWrBgOHz6MxYsX\nO/Y/++yzCAsLw19//YVu3bo5bk26cOEC3n77bTz77LMoU6aMYcwePXrg2muvhYigS5cuWLp0qaNs\n6dKl6NSpEy5duoRrrrkGvXv39vGnde+5557DPffcgwULFjjNXHTkyBE89thj2LNnD5RSaN++vaOs\nVKlSjgfHc89aVBCPPPIIevToAQAYPnw4+vTpg/Xr1zvKT58+jWnTpuGGG27Azp07ER0djblz57p8\neNpKWQ9Y//TTT1BKoW/fvggJCfF7O+xuzx7gttsAIAlX7spz0rGjfnvTa68BLv6LeCQpKcn7g32I\n4ekxntRzVye/cldlZrwvVrK6fcwL5oUV8a3MCU/rWpEXARfIHkxh2sCRCL9YtmyZ4y/WRgu9GenY\nsaMopaRnz55O+6dNmyYhISGiaZoopSQmJsYxgvCf//xH+vfvL5qmyZgxY/LE3Llzp9SoUcNxbGRk\npERGRjraVqNGDdm5c2ee4zwdiVBKeTwS8fjjj4tSyrGVKlVKSpYs6Xjt6mdISkpytD8qKkri4uIk\nLi5O3nzzzXzfz9wyMzPlySeflGLFijnihYeHS5kyZZzacPXVVxuO3Ij4ZyQiIyNDYmNjHefZtGlT\ngX5OO7Hi+pGRITJpkkhkpBiOPlStKvL55/ooBRERBRY4EkFUMDNmzIBSCnXq1EG9evU8Oubuu++G\nUgoLFy50rA8B6DMarVy5Eh07dkTp0qVx8eJF1K9fH+PHj8enn36KtLQ0AEDp0qXzxKxZsyY2bNiA\nUaNGoWHDho6HuBs2bIhRo0Zhw4YNqFmzpmF7surmx1W50bHDhg3DxIkT0bVrV9SpUwcAcPHiRVx1\n1VXo1asXVq5ciaeffjpPrKSkJIwdOxaNGjUCoD8ovm/fPqSmpubbNqM2jRs3Dn/++SeeeOIJXHvt\ntYiMjMT58+cRGxuLTp06YcqUKdi8ebPjXAX9uXOW5/fe5EfTNMczMjfccIPfZocKBnv2ALfcAjz0\nEHD2rHNZaCgwYgSwZQvQrVvBnnsgIqLCS+mdGfKVUkofjvDw/cz6wMP3376qV6+O/fv3Y/ny5WjN\nKWcKhTp16mDnzp2YPHkyhgwZEujmeM2s60dmJjB5st5JyN15AICEBODttwH2t4iI7CXH74GA/Wkn\nNFAnJrKzjz/+GP/88w9KlSqFZs2aBbo5ZIKlS5dix44diIqKQq9evQLdnIDbswcYPBgwmmQsOhp4\n4w3g3ns58kBERMbYiaAi69VXX0V0dDS6du2K2NhYKKWQmpqK6dOn47nnnoNSCg8//DDCw8MD3VTy\n0bFjxzB8+HAopTB48GBERUUFukkB9dFH+q1LZ87kLWvfHpgyBbjqKv+3i4iIggefiaAia/PmzXjs\nscdw1VVXoXjx4ihbtizKli2LJ554Aunp6Wjfvj1GjRoV6GaSD5566ilUr14dsbGx+OOPP1C+fHmM\nHDky0M0KmNOngX799C13ByI6GnjvPWDxYr0DYfd5372NwfUAfMO8cF+PeWG/+Fwnwhp8JsIkfCYi\n+Pzyyy+YOXMmVq1ahUOHDiE1NRWlSpXCtddei759+6Jv376mLMpGgTNw4EDMmDEDJUuWxE033YTX\nX38dDRo0CHSzfObN9WPtWqBnT2DnzrxlRqMPSilLr09mxPcmhqfHeFLPXZ38yl2VWf2++4p5wbww\nYve8sDInPK1rdl7wmQiiAGrevDmaN28e6GaQhaZNm+bTOhiFgQgwYQLw9NPApUvOZRERwP/+Bzzw\nQN5nH+w+77u3MbgegG+YF8wLI3bPC64TYQ2ORJiEIxFE5C+eXj+OHgUGDAC++SZvWYMGwJw5wDXX\nWNBAIiKylB1GInivBhFRIfTrr0CTJsYdiPvv18vZgSAiIm+xE0FEVMhMmwa0bg0cOOC8v3Rp4LPP\n9LUhSpQITNuIiKhw4DMRRESFxMWLwBNPAJMm5S1r0QKYPRuoXt3/7SIiosKHIxFERIXA4cNAu3bG\nHYhhw4AVK9iBICIi87ATQUQU5NasAZo2BVatct5fvDgwa5a++nRoAced7T7vu7cxuB6Ab5gX7usx\nL+wXn+tEWIOzM5mEszMRkb/kvH7MmAEMGaLfypRTXBzwxRdA48ben8PO8757G4PrAfiGecG8MGL3\nvOA6EdYIsWvvJtikpKQkA573FlNSUlCQ+kREWbKuH0ol4/HHgYwM5/JbbgG++w6Ij/ftPAkJCb4F\n8EN8b2J4eown9dzVya/cVZnV77uvmBfu6zEv7BffypzwtK6ZeZHjc2SK2xNbhCMRJuFIBBH5S9b1\nA8h7/Rg+HHjllYLfvkRERMHDDiMR/DVDRFQIhIfrU7v26hXolhARUVHATgQRUZCLiQEWLABatQp0\nS4iIqKjg7ExUpKxYsQKapiHe15vFqchJSUmBpmkYNGhQoJvipGZN4Oef2YEgIiL/YieCgtLAgQOh\naVqerVSpUmjSpAlGjBiBA7mX6w1ily9fRoUKFaBpGkJDQy3/2d58802kpKRg3759lp6nqNqwYQNS\nUlIwffp0n+I0b653IK6+2qSGEREReYidCApqYWFhqFSpEipVqoSKFSvi7Nmz+PPPPzFu3Dg0bNgQ\nq1evDnQTTfHNN9/g2LFjjmneZs6caen5JkyYgNGjR+Pvv/+29DzBpFy5cqhbty4qV67sc6w//vjD\nlE7EsmVA+fI+N8eQ3ed99zYG1wPwDfPCfT3mhf3ic50Ia3B2JpNwdib/GjhwIKZPn46EhAQsW7bM\nsT89PR2ff/45HnvsMaSmpqJSpUrYvXs3wsPDAei3MyUmJiIuLg67d+8OVPMLrFu3bliwYAHq16+P\nTZs2oW7duti8ebNl56tRowb27duH5cuXo3Xr1padp6iaPn06Bg4cmCd/PeWP64fd5333NgbXA/AN\n84J5YcTuecF1IqzBkQgqVCIiItCnTx+8+eabEBEcPnwY8+fPD3SzfHLixAl88803AIDZs2cjOjoa\n27Ztw2+//RbglpG37PxhIEtSUpLt43sTw9NjPKnnrk5+5a7KrH7ffcW8YF4YsXteWJkTnta1Ii8C\nTkS4mbBBn7BdPFXQ+uRswIABopSSxMREw/ILFy5ISEiIaJomw4cPd+z/4YcfRCklNWrUyHNM9erV\nRSklK1ascHlepZRomiZ79+7NUzZ//ny57bbbpGLFilKsWDGJiYmROnXqSK9evWTu3Lle/JS6iRMn\nilJKWrU1te4mAAAgAElEQVRqJSIigwYNEk3T5OGHH3Z5zN9//+1oq4jIX3/9JT169JBKlSpJRESE\n1K1bV1588UW5ePGi03HJycmilHK55Xy/MzIy5JtvvpH77rtPmjZtKhUrVpSwsDCpUqWK3HXXXbJs\n2TK3P9uHH34ozZo1k8jISImJiZHExET56quvRMT9v8euXbvkvvvuk/j4eImIiJAyZcpI69atZcqU\nKZKRkWF4TJs2bUQpJdOnT5fz589LUlKS1KlTR4oXLy4VKlSQnj17yo4dOwyPzXpvBg4cmKfs9OnT\nMnr0aGnatKlER0c73ofrr79ehg8fLhs3bnTUze/9dZd/WXj9ICIq2nL8HgjYZ19O8UqFUlhYGMqV\nK4ejR4/i1KlTHh2jlMqxiFfBjBw5Eq+++qrj+OjoaKSnp2PHjh3YsWMHfvjhB3Tv3t2r2NOnT4dS\nCv379wcA9O/fH9OmTcOcOXMwfvx4FCtWLN/jv//+e3Tt2hXp6ekoVaoULl++jO3bt2PUqFFYt24d\n5s2b56gbFRWFSpUq4ejRo8jMzESZMmUQFhbmKC9btqzj+y1btqBTp06On7lkyZIIDw/H4cOHsWDB\nAsyfPx+vvvoqnn76acN2DRkyBB988AGUUtA0DeHh4Vi5ciVWrFiB8ePH5/vv8dVXX6F79+5IT0+H\nUgqlSpXCuXPnsGrVKvz444+YO3cuFixYgOLFizsdlxUzLS0NLVq0wIYNGxAeHg5N03Ds2DHMnTsX\nS5Yswa+//ooaNWrkOa9Re06dOoWbbroJW7ZscfwspUqVwpEjR3D48GGsW7cOoaGheOWVVwAAlSpV\nwvnz55GWloawsDDExMQ4xc/5fhMREdkVb2eiQik9PR1Hjx4FAJQuXdrSc+3duxdjx46FUgrPPfcc\njh49itTUVJw9exZHjhzBZ599hk6dOnkVe8uWLVi7di3Cw8MdnZDWrVsjLi4OJ0+exMKFC93G6NGj\nB7p06YK///4bJ06cwKlTpxwdngULFmDRokWOuk8++SQOHjyIqlWrAgC++OILHDx40LF9+umnjrph\nYWEYPHgwvvvuO6SlpeHkyZM4deoU/v33X7z44osICQnByJEjDW+7mjZtmqMD8dxzz+HEiRM4fvw4\nDh8+jMGDB2P48OGOf7/cdu/ejV69euHChQtITEzEtm3bcOLECZw+fRrvvvsuIiIisHTpUgwdOtTw\neBFBUlIS0tLSsHjxYpw9exZnzpzBypUrUbVqVZw4cQLPPvusy2NzmzBhArZs2YIKFSrg66+/xoUL\nF3Ds2DGkp6dj+/btGDNmDGrWrOmof/DgQUyYMAEA0KJFC6f398CBA2jevLnhuYmIiGwlkMMghWmD\nv29nAuy5+Ym725mybgHSNE3mzZvn2J/f7UxxcXGiaVqBb2f65JNPRCkl9evX9+EnMjZixAhRSknP\nnj2d9iclJYlSSu68807D43LeztSxY0fDOp07dxZN02Tw4MF5yjx5L9x58cUXRSklgwYNylNWo0YN\n0TRNHnjgAcNjO3Xq5Gh/7jYMGjRIlFJSu3ZtOX/+fJ5j33vvPVFKSUhIiOzatcupLCEhQZRSEhkZ\nKbt3785z7Oeffy5KKSlevLhcunTJqczV7Uy33367aJomr732mvEbYeDDDz/MN3/d8fn6QUREQS3H\n74GAffblSAQVKnv37sW4ceMct9DExcWhc+fOlp6zZMmSAIC0tDScP3/etLiZmZmYNWsWlFLo27ev\nU1m/fv0AAIsWLcKxY8fyjePqdqKuXbtCRLBx40ZzGpzLHXfcAQD46aefnPavW7fOMXXs8OHDDY91\n1WYAmDdvHpRSGDZsGCIiIvKU33vvvYiNjYWI4LPPPstTrpTCf/7zH8Pble68804opXDhwgXs3LnT\nZRtyyvr3P3TokEf1iYiICgN2Iiio/fDDD06LzdWoUQMjRoxAeno6YmNjMX/+fISGWvvoT7NmzRAT\nE4ODBw/ipptuwvvvv2/K+grff/89Dh48iIoVK6Jjx45OZfHx8WjVqhUuX76MWbNm5RvnhhtuMNwf\nGxsLADh58qTXbUxPT8f48eORmJiIihUrIiwszPFvcd111wHQb9/Jaf369QD0ZwNcrRzevHlzw2c9\ndu/ejbS0NABAQkKC4bFKKSQkJEBEsG7dOsM6rt6T0NBQVKhQAYDn78vtt98OEcGbb76Jfv36YdGi\nRThz5oxHx9qZ3ed99zYG1wPwDfPCfT3mhf3ic50IiwRyGKQwbeDtTBKI25nCw8OlcuXKUrlyZalS\npYrUrl1bOnToIG+88YakpqbmOc6K25lERL755hspW7asaJrmmGWncuXK0r9/f69vCerZs6domibD\nhg0zLJ8yZYoopeS6667LU5Z7diYjvr4Xhw4dkquvvtpxHk3TJDo6WipWrCiVK1eWChUqGLZhzJgx\nopSSpk2buowtIlK5cuU8bfjll18cMU+dOuXy2GeeeUaUUtK2bVun/QkJCaJpmkyfPt3lsa5+9vxm\nZ3rggQcc70HWrVRNmjSRUaNGyaFDh/LUD4bbmYIhvjcxPD3Gk3ru6uRX7qrM6vfdV8wL5oURu+eF\nlTnhaV2z8yLH74GAffblSESwCnx3wXjzs5wPph44cADbt2/HokWLMGzYMJQqVcpv7bjtttuwZ88e\nvPfee+jRowdiY2Px77//YsaMGUhISMADDzxQoHinTp3CggULAADjx493Gm3J2oYMGQJAX/3YqluS\n8jN06FDs2LEDNWvWxLx58xwPbR8+fBgHDx7Ezz//bOn509PTLY1fEO+88w42btyIUaNGITExERER\nEdiwYQNefPFF1K5dG0uXLg10EwvM7vO+exuD6wH4hnnBvDBi97zgOhEWCWQPpjBt8PdIRBHn7sFq\nV/L763utWrVE0zRZvHix4bFpaWn5rhOR25YtW+T+++93HPPNN9943M6sh4Oz/rrtbnvqqaecjrd6\nJOLixYsSEREhmqbJr7/+alhn9erVhm3IGkGpUqWKy7ZdvHhRwsLC8rRh165djpi///67y+P/+9//\nilJKevTo4bTfqpGI3C5duiRff/21NGrUSJRSEhsbK5cvX3aUB8NIBBER2VeO3wMB++zLkQiiK7Km\ngt2/f79heUFXiK5bty4mT57smLJzxYoVHh+btTbEM888g5MnT7rcPv74Y4gIZs2ahczMzAK1Lz+a\npl8axMXo0rFjx3DhwgUAQOPGjQ3rLFmyxHB/kyZNAACHDx/Gnj17DOusWbMGly5dyrM/Pj7e8e+0\nfPlyw2NFBD/88AOUUo7nMvwtNDQUt99+Oz755BMA+kPXO3bscJS7e3+JiIjsjp0IoisaNmwIEXHc\nRpTbmDFjDPcbfdjNKWvBs6wP3e7s2rULq1evBqCv8VCyZEmX25133onIyEj8+++/WLx4sUfxPZE1\n41BqaqpheXR0tGPhtb/++itP+aFDhzBx4kTDY5s0aYLq1asDAMaNG2dYZ+zYsS7b1q1bN4joDzIb\n3dL0/vvv48CBA1BK4Z577nEZxyz5/fvnnD0q57+/u/eXiIjI7tiJILoiazG3r7/+Gq+99hrOnTsH\nAPj777/Rs2dPx6xCub3zzjvo2LEjPv74Yxw+fNixPy0tDa+88gp++OEHAECHDh08asf06dMB6H91\nv/baa/OtGxERgdtuu83pODM0aNAAIoKPP/7YsPMTFRWF5s2bQ0QwaNAgbNiwAYD+l/WlS5e6nDkJ\n0GdPeuGFFyAimDx5MkaNGoXTp08D0Ec47rvvPnz//fcoUaKE4fHPPfccIiMjcfDgQdx+++3Yvn07\nAODixYt4//33MXToUCilcO+99xpO42q2W265BUOHDsWPP/7o1KnZtGkTBgwYAACoUqUKGjZs6Chr\n0KABAGDz5s349ddfLW8jERGR6QJ5L1Vh2sBnIvzKimciRETuvvtupxl2ypQp41ic7Pvvvzd8JmLC\nhAmOGZmUUhIVFeU4Lqv+gw8+6HEbs+7JHzFihEf158yZ41ggLWtGKl+fiVi2bJmj/eHh4VKtWjWJ\ni4tzWvRuzZo1EhkZ6Xi/oqKipESJEqKUkvLly8uXX36ZbxsGDx7sODY0NFRiYmIcz3hMnDhRqlev\nLpqmyS+//JLn2IULF0qJEiUcx5cpU0bCwsIc57v11lvl3LlzeY6z4pmIxo0bO+VMTEyMFC9e3NGW\nqKgoWb58eZ7ztGnTxnFc2bJlJS4uTuLi4mTNmjUu25aF1w8ioqINfCaCyHtKKcctNWYdN2fOHLz8\n8suoW7cuihUrhrCwMNxzzz1Ys2YNbrnlFsfxOfXp0wdTpkxBz549Ub9+fYSFheHs2bOoUqUKunbt\nioULF2LSpEketW3FihXYt28flFLo1q2bR8d06tQJ4eHhuHjxIubOnZvnZ82Pq/ciMTER8+fPR0JC\nAkqUKIGDBw9i3759OHLkiKPOjTfeiJ9//hldu3ZFTEwMLl++jIoVK+LBBx/E+vXrHaMortowZcoU\nTJ06FTfeeKPjtp/ExER89dVXeOSRR3Dq1CkA2c+q5HTHHXfgr7/+wpAhQ1CjRg2cP38ekZGRuPnm\nm/H+++9j0aJFjtvIvOGqzUbv1wcffICUlBS0bdsW1atXR3p6OpRSqFevHh599FFs3LjRcGTmiy++\nwEMPPYT4+HicPXsW+/btwz///GObWafsPu+7tzG4HoBvmBfu6zEv7Bef60RYQwkf7DOFUkofjvDw\n/cz6IML3nyiv3bt3o1atWggPD8fp06ctXzAw2Pjj+qGUsn18b2J4eown9dzVya/cVZnV77uvmBfM\nCyN2zwsrc8LTumbnRY7fAwX/a6pJQuzauwk2KSkpyYDnvcWUlBQUpD5RUfLMM89g3bp1aNeuHfr1\n6xfo5tiOv64f+T3bYpf43sTw9BhP6rmrk1+5qzKr33dfMS/c12Ne2C++lTnhaV0z8yLH74EUtye2\nCEciTMKRCKKCGTRoEDp16oTExETExMQA0B9if+211zB58mQopbBo0SK0b98+wC21H14/iIiKNjuM\nRLATYRJ2IogKplq1ajhw4AAAIDIyEpqmOWZpyprBiSN1xnj9ICIq2tiJKETYiSAqmLlz52LBggVY\nv349/v33X5w7dw7ly5dHixYt8NBDD6FNmzaBbqJt8fpBRFS0sRNRiLATQUT+wusHEVHRZodOBKd4\nJSIiIiKiAmEngoiI8rD7vO/exuB6AL5hXrivx7ywX3yuE2EN3s5kEt7ORET+wnUivI/B9QB8w7xg\nXhixe15wnQhrcJ0Ik3CdCCLyF64T4VsMrgfgG+aF+3rMC/vF5zoR5uNIhEk4EkFE/sLrBxFR0WaH\nkQg+E0FERERERAXCTgQRERERERVIaKAbUNRlDUcREREREQULjkQQEREREVGBsBMRICLi9y0pKcn2\n8b2J4ekxntRzVye/cldlVr/vdvh3Kyp58dZbAsB569FDMGpUYPLCSnaf993bGFwPwDfMC/f1mBf2\ni891IqzB2ZlMUtDZmQLB7vM4exuD83v7hnnhWV6sWiVISAAuX87eX78+sGYNEB3NvAhEfDvkBa8X\n9ovPvPA/u+cF14mwBteJMElB14kIFLvP4+xtDM7v7RvmRf71zpwBRo1KwKlT2fuio4GlS4EqVdzH\nYF5YF5/XC/9jXrivx7ywX3yuE2E+jkSYJBhGIoio4C5dAtq1A3780Xn/F18AXbsGpk1ERFS02WEk\ngs9EEBHlY8SIvB2IZ59lB4KIiIo2jkSYhCMRRIXPl18CXbo477vlFmDRIiAkJDBtIiIissNIBDsR\nJmEngqhw+ecfoHFj4MSJ7H1XXQWsXQuUKxe4dhEREdmhE8HbmYiIcrl8Gejd27kDERoKfPIJOxBE\nREQAOxFFit3ncfY2Buf39g3zIm+90aOBVaucauGVV4BmzQp+LuaFdfF5vfA/5oX7eswL+8XnOhHW\n4O1MJgmG25nsPo+ztzE4v7dvmBfO9ZYv12djcj5UISNDoLn4swvzIjDxeb3wP+YF88KI3fOC60RY\ng+tEmITrRJgXn/N7+x/zQq939CjQvj1w+nR2WaVKwAMPAB065B+LeRGY+Lxe+B/zwn095oX94nOd\nCPNxJMIkwTASQUSuZWYCd9wBfPtt9j6lgO++02dkIiIisgs7jETwmQgiIgATJjh3IAB9PQh2IIiI\niPLiSIRJOBJBFLx+/x1o0UJfnTpLixbAihX6rExERER2YoeRCHYiTMJOBFFwOnsWaNIE2LEje1/p\n0sCGDfq6EERERHZjh04Eb2cioiJtxAjnDgQATJ3KDgQREVF+2IkoQuw+j7O3MTi/t2+Kcl4sXgxM\nmuRc7777gLvuKlgs5kVg4vN64X/MC/f1mBf2i891IqzB25lMEgy3M9l9HmdvY3B+b98U1bw4cQK4\n5hrg0CEFQK9Xsybwxx9AVFTBYjEvAhOf1wv/Y14wL4zYPS+4ToQ1uE6ESbhOhHnxOb+3/xW1vBAB\nBg4E1qxx1ISmAV99pXckvDk/8yIw8Xm98D/mhft6zAv7xec6EebjSIRJgmEkgoh0s2cDffo47xs5\nEnjppcC0h4iIqCDsMBLBToRJ2IkgCg779wMNGwKpqdn7mjQBfvkFCAsLXLuIiIg8ZYdOBB+sJqIi\nIzNTv40pZwciPByYOZMdCCIiooJgJ4KIioy33waWLHHe9+qrQP36gWkPERFRsOLtTCbh7UxE9rZt\nG9C4MZCenr0vMVHvVGj8cwoREQUR3s5EfmX3eZy9jcH5vX1TFPIiIwMYNMi5A1GyJPDhh8Do0e5j\nMy/sGZ/XC/9jXrivx7ywX3yuE2ENjkSYJBhGIuw+j7O3MTi/t2+KQl689RYwdKhz+YwZQN++zAtX\nikJe+FqPeWHP+MwL/7N7XnCdCGtwnQiTcJ0I8+Jzfm//K8x5sXs3cPfdwKVL2fs7d9afhbhyDWZe\nuFCY88KseswLe8ZnXvif3fOC60SYjyMRJgmGkQiiokYEaNcOWL48e1+pUsCmTUBsbODaRURE5As7\njETwmQgiKrTef9+5AwEA//sfOxBERES+4kiESTgSQWQv//wDNGgAnD6dva99e2Dx4uzbmIiIiIIR\nRyKIiCwgAtx/v3MHIjISeO89diCIiIjMwE4EERU6M2cC337rvG/sWCAuLiDNISIiKnTYiShC7D6P\ns7cxOL+3bwpbXhw+nDWda/YxN98MPPig97GZF/aMz+uF/zEv3NdjXtgvPteJsAafiTBJMDwTYfd5\nnL2Nwfm9fVPY8uLuu4F58wBAARBERAB//gnUru19bOaFPePzeuF/zAvmhRG75wXXibAG14kwCdeJ\nMC8+5/f2v8KSF/PnA87/BRMwZgxwxx2+x2Ze2DM+rxf+x7xwX495Yb/4XCfCfByJMEkwjEQQFWan\nTwP16wP792fvu/FGYPVqICQkcO0iIiIymx1GIvhMBBEVCqNGOXcgQkOBKVPYgSAiIrICOxFEFPTW\nrQPeest537BhQMOGgWkPERFRYcfbmUzC25mIAiMjA2jWDFi7NntfXBywcaO+NgQREVFhw9uZiIh8\n9Pbbzh0IAJg0iR0IIiIiK7ETUYTYfR5nb2Nwfm/fBHNe7N8PjBzpvK97d+C225gXvgrmvDDjGOaF\nMeaF+3rMC/vF5zoR1uDtTCYJhtuZ7D6Ps7cxOL+3b4I5L7p1A774Ivt1yZLA1q1A5crMC18Fc16Y\ncQzzwhjzgnlhxO55wXUirMF1IkzCdSLMi8/5vf0vGPPiyy+BpCTnOv/7H9C2bcHPy7wwFox5YeYx\nzAtjzAv39ZgX9ovPdSLMx5EIkwTDSARRYXHmjL4mxD//ZO9r1gz46SdO6UpERIWfHUYi+EwEEQWd\npCTnDkRICPDuu+xAEBER+Qs7EUQUVDZuBN5803nfE08AjRoFpj1ERERFEW9nMglvZyKyngiQmAis\nWJG976qrgM2bOaUrEREVHbydiYioAObMce5AAMCECexAEBER+Rs7EUWI3edx9jYG5/f2TbDkxenT\nwFNPOe/v0AHo2tW38zIvjAVLXlh1DPPCGPPCfT3mhf3ic50Ia/B2JpMEw+1Mdp/H2dsYnN/bN8GS\nF8OHC15/PXtfsWL68xFXX+3beZkXxoIlL3i98C/mBfPCiN3zgutEWIPrRJiE60SYF5/ze/uf3fPi\n6FHg7bcTkJmZvW/ECKBHD3POy7wwZve88DYG88I3zAv39ZgX9ovPdSLMx5EIkwTDSARRMBIB2rcH\nli7N3le1qr4yNZ+FICKiosgOIxF8JoKIbO2zz5w7EIC+MjU7EERERIHDkQiTcCSCyHxnzgD16gH7\n92fva9cO+P57QAXsby9ERESBxZEIIqJ8vPyycwciNBSYOJEdCCIiokBjJ4KIbGn7duCNN5z3PfGE\nPjJBREREgcVORBFi93mcvY3B+b19Y9e8eOIJ4NIlRxRUqQK88IL552VeGLNrXvgag3nhG+aF+3rM\nC/vF5zoR1uAzESYJhmci7D6Ps7cxOL+3b+yYF4sWAbfd5hQFs2cLevUy/7zMC2N2zAszYjAvfMO8\nYF4YsXtecJ0Ia3CdCJNwnQjz4nN+b/+zU15cuqSvQn3sWPa+atWADz5IKPCzEMwL39gpL8yMwbzw\nDfPCfT3mhf3ic50I83EkwiTBMBJBFAzeegsYOjT7tVLAb78BTZsGrk1ERER2YoeRCHYiTMJOBJHv\njh8HatcGTp7M3jdoEPDBB4FrExERkd3YoRPBB6uJyDaSkpw7ENHR+jSvREREZC/sRBCRLWzcCLzz\njvO+kSOBSpUC0x4iIiJyjbczmYS3MxF5TwS49VZgyZLsfTVrAps2AeHhgWsXERGRHfF2JvIru8/j\n7G0Mzu/tGzvkxcKFzh0IABg3LrsDwbzwPzvkhRUxmBe+YV64r8e8sF98rhNhDY5EmCQYRiLsPo+z\ntzE4v7dvAp0XFy4A11wD7NyZva9tW71TkTWlK/PC/wKdF1bFYF74hnnBvDBi97zgOhHW4DoRJuE6\nEebF5/ze/hfIvJgwAZg7N/u1pgHz5wMVK3oew5vzFrQe88Ke8ZkX/se8cF+PeWG/+FwnwnwciTBJ\nMIxEENnNkSP6lK6nTmXve/BBYNKkwLWJiIjI7uwwEsFnIogoYFJSnDsQpUsDo0cHrj1ERETkGXYi\niCggtmwB3n3Xed+oUUC5coFpDxEREXmOtzOZhLczERXMnXfqszJlqVkT2LwZCAsLXJuIiIiCAW9n\nIqIiafly5w4EAIwdyw4EERFRsGAnogix+zzO3sbg/N6+8XdeZGYCTz7pXKdlS6BbN89jeHNeX+ox\nL+wZn3nhf8wL9/WYF/aLz3UirMHbmUwSDLcz2X0eZ29jcH5v3/g7L2bMAPr3d67zyy9As2aex/Dm\nvL7UY17YMz7zwv+YF8wLI3bPC64TYQ2uE2ESrhNhXnzO7+1//sqLc+eAu+5ynpGpRw/g8cc9j+HN\nec2ox7ywZ3zmhf8xL9zXY17YLz7XiTAfRyJMEgwjEUSB9vLLwPPPZ78OCwO2bgVq1Ahcm4iIiIKN\nHUYi+EwEEfnFv/8CY8Y473vsMXYgiIiIghE7EUTkF0lJwJkz2a9jYoCRIwPXHiIiIvIeOxFEZLnN\nm4H333fel5Skr1BNREREwYfPRJiEz0QQuXbHHcDXX2e/rl0b2LiR60IQERF5g89EkF/ZfR5nb2Nw\nfm/fWN2+AQOSnToQQMEXlmNe+B+vF+7rMS/sGZ954X92zwuuE2ENjkSYJBhGIuw+j7O3MTi/t2+s\nbJ8IoGkKQHb8Vq2AlSsBVYC/nTAv/I/XC+aFEeYF88KI3fOC60RYg+tEmITrRJgXn/N7+59V7fv0\nU+CzzwAgO/6cOUC1agWPxbzwP14v3NdjXtgzPvPC/+yeF1wnwnwciTBJMIxEEPnTxYtA/frArl3Z\n+7p1Az7/PHBtIiIiKgzsMBLBZyKIyBLvvefcgQgJAV55JXDtISIiIvOwE0FEpjt1Chg92nnfkCFA\nnTqBaQ8RERGZi50IIjLduHHA0aPZryMj9XUhiIiIqHAwvROhlNKUUo8qpX5RSqUppS7nKGuilJqk\nlLra7PMSkT0cPgy88YbzviefBCpVCkx7iIiIyHymdiKUUmEAvgcwAUBNAKcB5HzgYw+AQQD6mHle\n8ozd53H2Ngbn9/aN2e1LSQHOnct+XaJEMp56yreYzAv/4/XCfT3mhT3jMy/8z+55wXUirGHq7ExK\nqZEAXgSQDOAlAKMAvCAiITnqfAegpIg0N+3ENhAMszPZfR5nb2Nwfm/fmNm+bduABg2AjAynMzAv\ninheWBWfeeF/zAvmhRG75wXXibCGqetEpKSkvAtgm4gMSE5OlpSUlDYA2iQnJ4/OUacVgBuTk5Pf\ncBkoCHGdCPPic35v/zOrffffD2zenP26Zk3g4YeBtm19j8+88D9eL9zXY17YMz7zwv/snhdcJ8J8\nZo9EnAfwfyIy/MrrJACjco1EvArgCRGJMO3ENhAMIxFEVvr5Z6BFC+d9c+cC3bsHpj1ERESFlR1G\nIsx+sDodQGk3da4CkGryeYkogESAp5923nfDDcA99wSmPURERGQtszsRfwC49coD1nkopUoB6ADg\nV5PPS0QBtGgR8OOPzvvGjgVUwP4+QkRERFYyuxPxHoBqAGYppUrmLFBKlQbwIYAyACabfF4iCpDM\nTODZZ533dewIJCYGpj1ERERkPVOfiQAApdRUAAMAXAJwEkB5AOsBNAAQDuBtEXnU1JPaAJ+JoKLq\n44+B3r2d961bBzRpEpj2EBERFXaF8ZkIiMgg6GtBbIbegVAArgOwE8DgwtiBCBZ2n8fZ2xic39s3\nvrTv4kXg+eed9/Xs6dyBYF4YlxXmvPBXfOaF/zEv3NdjXtgvPteJsIbpIxFOwZUqDv32pTQROWvZ\niWwgGEYi7D6Ps7cxOL+3b3xp36RJ+hSuWUJDgS1bgFq1zInvSwzmhW94vWBeGGFeMC+M2D0vuE6E\nNdB8svkAACAASURBVExdJyK35OTky8nJyaeTk5MvWXYSm+A6EebF5/ze/udN+86eBe6+W/+a5f77\ngb59zYlvRgzmhW94vXBfj3lhz/jMC/+ze15wnQjzmb1ORBkAlQHsEpELOfYPBNAVwFkAE0Sk0M3O\nFAwjEURmeuUVYOTI7NfFiwO7dgGVKweuTUREREWBHUYiQk2O9wqA/wKokLVDKfUogAnQn40AgK5K\nqetFZLPB8UQUBI4f16dwzenxx9mBICIiKirMfrC6JYClInI+x76nABwA0BpA1tq1w0w+LxH50dix\nwKlT2a/LlAFGjAhce4iIiMi/zB6JiAWwNOuFUqo+9HUjnhaRVVf23QO9Q0FEQWj/fmDiROd9zzwD\nlHa3Vj0REREVGmaPRBQHkJ7jdUsAAmBJjn27oHc2iCgIjR4NpOf4X16lCvDII4FrDxEREfmf2Z2I\nAwDq5njdAcApABty7CsDIOftTuQndp/H2dsYnN/bNwVp37ZtwNSpuY8HSpQwJ76ZMZgXvuH1wn09\n5oU94zMv/M/uecF1Iqxh9uxM7wHoD+BJ6CMSkwB8LiK9ctT5DkB5ESlU69kGw+xMdp/H2dsYnN/b\nNwVpX48ewCefZL+++mpg0yZ9fQgz4psZg3nhG14vmBdGmBfMCyN2zwuuE2ENU9eJSElJ2QhgAIC7\nANwJ4ByAPsnJyccBQClVEsBbABYmJyd/Y9qJbYDrRJgXn/N7+58n7Vu3Dhg61HnfpElAw4bmxLci\nBvPCN7xeuK/HvLBnfOaF/9k9L7hOhPlMX7FaKVUJwH+uvPxSRPblKLsOQF8As0XkN1NPHGDBMBJB\n5Ivbbwe+/Tb7dZMmwO+/A5rZN0USERFRvuwwEmF6J6KoYieCCrMffwRa55pT7dtvgY4dA9MeIiKi\noswOnQj+DZGI8iUCPPec876bbwY6dAhMe4iIiCjwzF4nAkqpYgC6ALgR+kxMIQbVREQGm31uIjLf\nokXAqlXO+155BVAB+9sHERERBZrZszNVAfA99Gle8/uIISJi1LkIWrydiQqjzEzg+uuB9euz991+\nO/D114FrExERUVFXGG9negNAPQBzALQFUBtADYMt3uTzkgfsPo+ztzE4v7dv8mvfZ585dyAA4KWX\nzItvZQzmhW94vXBfj3lhz/jMC/+ze15wnQhrmD0ScRzAXyKSYFrQIBEMIxF2n8fZ2xic39s3rtp3\n+TLQoAGwfXv2vh49gDlzzIlvdQzmhW94vWBeGGFeMC+M2D0vuE6ENcxeJyIJwBfJyclLTAsaJLhO\nhHnxOb+3/xm1b9o0fcsSEqKPTJQta058f8RgXviG1wv39ZgX9ozPvPA/u+cF14kwn9kjEWsA7BGR\nnqYFDRLBMBJB5Kn0dH016n/+yd53773A++8Hrk1ERESks8NIhNnPRLwO4E6lVH2T4xKRH737rnMH\nIiwMGDUqcO0hIiIiezF7itcjABYCWK2UehPAWgCpRhVFZKXJ5yYiE5w5A7z8svO+hx4CqlULTHuI\niIjIfsy+nSkTgCB7eleXwTnFK5E9vfwy8Pzz2a+jooDdu4Hy5QPXJiIiIspmh9uZzB6JGI18Og5E\nZG8nTwKvv+687/HH2YEgIiIiZ6Y+EyEiySKS4slm5nnJM3afx9nbGJzf2zc52/f660BaWnZZmTLA\nU0+ZF9+fMZgXvuH1wn095oU94zMv/M/uecF1Iqxh6u1MRVkw3M5k93mcvY3B+b19k9W+w4eBmjWB\nc+eyy8aMAZ5+2pz4/o7BvPANrxfMCyPMC+aFEbvnBdeJsIap60TkpJRqlZKS0iUlJaVDSkpK45SU\nlGLJycn7LDmZDXCdCPPic35v/0tISMBzzwE//ZS9r1IlYOZMfWYmM+IHIgbzwje8Xrivx7ywZ3zm\nhf/ZPS+4ToT5TB+JUEo1BfARgDpZu5D9nMQ2AP1E5HeTzhUL4EUAHQCUBXAIwHwAKSJiOCuUQYy/\nAVzloviwiFTxMI7tRyKIXNm7V18X4uLF7H0TJwKPPBK4NhEREZExO4xEmPpgtVKqFoClAEoCWAVg\nGfQP9pUBtAXQCsD3SqkbRWSHj+eKB/AzgHLQOw7bANwIYCiADkqpliJy0oNQAn0a2vHInlUqyxlf\n2kgULEaPdu5AVK8ODBkSuPYQERGRvZk9xet0AP8F0FNEPjUo/w+AOQBmiUh/H8+1GMAtAB4VkUk5\n9r8B4AkAk0XkIQ/i7AEgIhLvY3s4EkFBads2oEEDICMje9/UqcDAgYFrExEREblmh5EIszsRBwD8\nLCL/yafO5wCai0isD+eJB7ATwB4RqZmrLAr66AcAVBCR825isRNBRVrPnsDcudmv69QBNm4EQs2e\nAJqIiIhMYYdOhKlTvEK/tWirmzpbr9TzReKVr9/lLhCRMwB+AlACQHMP44UrpfoopZ5VSj2mlEpQ\nSpn93hDZzh9/OHcgAP3WJnYgiIiIKD9mf1A+CqC+mzp1ARzz8Tx1oD/LsN1FedbzFld7GK8SgBkA\nXoL+bMQyADuUUq19aaTd2H0eZ29jcH5v773wAgAkO143bgz8x+U4oneYF8Zlds4LgNcL5oUx5oX7\neswL+8XnOhHWMPt2phkAegP4r4jMMSi/G8Bc+PhMhFLqXQD3AhgiIlMNyl8C8CyA50RkrJtYLwD4\nEcAmAKcBxAN4BMD9AM4DuElE/vKgTba/ncnu8zh7G4Pze3vn55+BFi2AnBOoffUV0KmTuedhXgRX\nXmTh9YJ5YYR5wbwwYve84DoR1jD7poXRALoAmKWUehjAcujPJ1QCkAB9dqbT0P/ibwsi8mKuXZsB\nPKSUOgvgSeh/pr3b3+2yQlJSku3jexPD02M8qeeuTn7lrsqsft+9IQKMHJn1Sm9fixbA7bebfy7m\nRfDkRU68XjAvjDAvmBdG7J4XVuaEp3WtyIuAExFTNwA3ANgCIPPKlpHj+y0AbjThHK9difuEi/KJ\nV8rv9+EcNa+0+aiH9cXd1qZNGwEgSUlJYiQpKYnlLPdL+fffi+hdieytf3/7tI/lLGc5y1nO8qJe\nnrU/v028/Jxrxmb6YnNZlFItAFwHoBSANADrReSn/I/yOPZgAO8DeFdEHjQoXwSgPYBbRGS5l+co\nCX39iHQRKeFBfb0nYdH7SWQWEaBZM+C337L3tW8PfJdnmgIiIiKyo8J4O5ODiKwGsNqi8Fkdg1tz\nF1yZ4rUlgHMAfvHhHDdd+brbhxhEtvPll84dCAB4+eXAtIWIiIiCk2XTmCqliimlrlVK3XzlazGz\nYovIbujTu8YppR7JVTwaQCSAGXJljQilVKhSqs6V9SVytrGuUirPKINSKg7A/0EfKvrIrHYTBVpG\nBvD88877unYFbrghMO0hIiKi4GT67UxKqbIAxkCfpSkiR1E6gNkAnhURX6d4zVpw7icAFQB8Cf15\ni+bQH+DeCqCliJy8Urc6gD0A/pYci8oppZKgPzy9EsBe6A991wTQCUA4gK8BdBORyx60h7czke3N\nng306ZP9Wingzz+Ba64JXJuIiIioYOxwO5OpIxFKqYoA1gAYDOAi9A/nn1z5evHK/l+u1PPJldGI\n6wF8COBGAMMA1IC+zsNNWR2InIcgax7LbMsBLIQ+rWsvAE8AaA19ytd+InKnJx2IYGH3eZy9jcH5\nvT1z6RIwapTzvt69gc8+S7b0vMwL4zK75IUrvF64r8e8sGd85oX/2T0vuE6ENcxeJ+IDAP/f3n3H\nSVXd/x9/fViagAVQUMGoiIq9RrEhlliwoMYYE6PGGmui5mfUWHYxRo0lxhZbNFExfi2JNbGAYuy9\nFxAVsGBBEFBByu75/XFmnbJ3d9qduWd23s/H4z5m594zZ86un5D5zLnncw4B/gI0OefmZlxbChgD\n/Aa4wTl3eGxvHIBamIkIvY5zqX2ovndhrr0WfvWr9POuXeGdd2D11RUX9RwX7dG/F4qLKIoLxUWU\n0ONC+0RURkOc2c2YMWOuA152zv2sqalpQea1pqamBU1NTQ+NGTNmR2DLpqami2J74wCMGTOmCcLN\nFluNHDky+P5L6aPQ1xTSLl+bjq63d63Sf/d8vvsOfvxj+Prr9LkjjoCDDvI/Ky7yt+uMcZGP4iJ/\nO8VFmP0rLqov9LioZEwU2jbOuBgzZgwATU1NY/K+cYXEPRMxD7jEOXd6B23OBX7jnOsd2xsHoBZm\nIqR+XXIJnHRS+nmPHvDeezB4cHJjEhERkdKEMBMRd3WmicAKedqsAEyK+X1FpB1ffw3nnZd97thj\nlUCIiIhI6eJOIi4Ffmpm60ddNLMNgf3wayZEpAouvRRmzEg/79MHTj01ufGIiIhI7Yt7s7kpwDjg\neTO7CV+V6XNgILAtcCDwADDVzEZkvtA593jMYxGpe7NmwUU5q49OPBGWWy6Z8YiIiEjnEPeaiBZ8\nGdXW+7MyO4869z3nXENsA0mA1kRIiE47Dc4/P/28b1+YMgWWXjq5MYmIiEh5OuOaiLNTx5jUcXae\nc5mHVFjodZxL7UP1vaN9+qm/lSnTKae0TSAUF/nbdaa4KJTiIn87xUWY/Ssuqi/0uNA+EZUR+47V\n9aoWZiJCr+Ncah+q7x3tuOPgyivTz5dfHt5/H3r1ym6nuKivuCiU4kJxEUVxobiIEnpcaJ+Iyoh1\nn4h6pn0i4utf9b3LN2UKHHIItLSkz/3pT7DlltHtFRf523WGuCiW4iJ/O8VFmP0rLqov9LjQPhHx\ni3tNRAPQwzk3L+f89sBoYB5wrXNuSmxvGohamImQ+nHwwXDTTennq64KEydC9+7JjUlERETiEcJM\nRNxJxCXA0cBA59yc1Ln9gVtIL6yeCWzsnPsotjcOgJIICcVbb8F660FmKN50Exx4YHJjEhERkfiE\nkETEvbB6BDChNYFIaQRmAwcBvwOWAU6KeK2IxODMM7MTiHXWgZ//PLnxiIiISOcTdxKxEvBe6xMz\nGwKsCVzunBvrnLsIv0/ELjG/r4gAzz8Pd92Vfe6cc6Chpgsoi4iISGjiTiKWAuZmPN8Kvy/Egxnn\n3gIGx/y+IgKcfnr28802g9GjkxmLiIiIdF5xJxGfAqtmPN8RmA+8lHGuD7A45veVAoRex7nUPlTf\n23v0URg/PvvcueeC5blbUnGRv10tx0WpFBf52ykuwuxfcVF9oceF9omojLgXVt8K7AHsD3wH3AM8\n4pzbM6PN/cAqzrl1Y3vjANTCwurQ6ziX2ofqe/s1EFtsAc89lz63/fbwyCP5X6u46LxxUQ7FheIi\niuJCcREl9LjQPhGVEes+EWPGjHkXOBL4BXAgfqbjkKampk8AzKwncDkwrqmp6d7Y3jgA2icivv5V\n37t4994LF1+cfe7WW2FwgTcOKi7yt6vFuCiX4iJ/O8VFmP0rLqov9LjQPhHxi33HajNbDzg49fQ2\n59wLGde2wFdoutI5Nz7q9bWqFmYipHNqboYNN4Q330yfGz0a7r47uTGJiIhI5YQwExF7ElGvlERI\nUm6+GQ46KP3cDF5/HdbtVDcMioiISKsQkoi4F1ZnMbO+ZrZSJd9DpJ4tWABnnZV97oADlECIiIhI\nZcWeRJhZHzO72Mw+A74EpmRc29zM/mtmG8f9viL16JprYOrU9PNu3eDssxMbjoiIiNSJWJMIM1sa\neAY4EZgOvANkTrO8AWwD/CzO9xWpR19/7TeSy3TUUbDqqtHtRUREROIS90zE6cA6wC+dcxsDd2Re\ndM7NA/4H7BDz+0oBQq/jXGof9Vrf+5JLYMaM9PPevdtuNlcIxUX+drUUF3FRXORvp7gIs3/FRfWF\nHhfaJ6Iy4t4n4j1gsnNu19TzRuAs51xDRpsrgX2dcwNje+MA1MLC6tDrOJfaRz3W954xA4YMgW++\nSZ8788zSbmVSXHSeuIiT4kJxEUVxobiIEnpcaJ+Iyoh7n4gLgHubmprGp56PBLZtamo6O6PNtqlz\n50T3Upu0T0R8/au+d35nnAGPP55+3r8/3HYb9OhRWn+Ki/ztaiEu4qa4yN9OcRFm/4qL6gs9LrRP\nRPzinomYAdzvnDsk9TxqJuJ2YEvnXIHbYNWGWpiJkM5h2jRYYw1YuDB97s9/hhNPTG5MIiIiUj0h\nzETEvSbiBWB3M1sy6qKZrQCMAp6M+X1F6kZjY3YCsdJKcPTRyY1HRERE6k/cScSlQH/gv2a2VuaF\n1PM7gJ7AZTG/r0hdePNNuOmm7HNjxkDPnsmMR0REROpT7DtWp25hagQcsAjoBnwF9MWXez3FOXdh\nrG8aAN3OJNWw115wzz3p52uv7Xenbmho/zUiIiLSuYRwO1PsSQSAmW0H/BoYjp+ZmAM8C1zinHs0\n9jcMgJIIqbSnn4attso+d9ddPrEQERGR+hFCEhH7jtUAzrkJzrm9nXMrOOe6O+eWc87t0VkTiFoR\neh3nUvuoh/rezsGpp2afGz4cRo8uu2vFRQ3HRSUpLvK3U1yE2b/iovpCjwvtE1EZFZmJyPumZss5\n52bkb1k7amEmIvQ6zqX2UQ/1ve+7D/bcM/vcY4/BttuW1S2guKjluKgkxYXiIoriQnERJfS40D4R\nlRHrPhH5mNnSY8aMaQRuaWpqOq9qb1wF2icivv5V3zvb4sWw777Zu1Pvumtpu1O3R3GRv11ocVEN\niov87RQXYfavuKi+0ONC+0TEL7aZCDNbBdgEWAA8lznTYGY9gROB/4dfYD3POdcnljcORC3MREht\nuv56OPzw9HMzePVVWH/95MYkIiIiyQlhJiKWNRFmdjnwHnA7cA8w1cwOSl3bFpgInAP0wpeBHRLH\n+4p0dvPmwVlnZZ876CAlECIiIpKsruV2YGYHA8cCLcA7qdPDgOvMbCHwD6ABuAY4xzk3vdz3FKkX\nl14K0zP+F9OjB5x9dnLjEREREYEYbmcyswnAFsB2zrlnUudGAOPwMx2fAHs4594oc6xB0+1MEreZ\nM2HIEJg7N33u5JPhgguSG5OIiIgkr7PczrQ+cFdrAgHgnHscuDvV/6GdPYEQqYQ//jE7gejbF047\nLbnxiIiIiLSKI4lYGr8eItfk1OMzEdckAaHXcS61j85Y33vqVLjyyuxzv/+9TyTiprjI3y6UuKgm\nxUX+doqLMPtXXFRf6HGhfSIqI47bmVqAJufc2TnnG4GznHMNZb1BjaiF25lCr+Ncah+dsb73L34B\nt9ySfr7SSvDuu9CzZ1HdFERxUTtxUU2KC8VFFMWF4iJK6HGhfSIqo+x9IlL7Pkxoamp6POf8SGDb\npqamulgGqn0i4uu/3ut7v/IKHHdc9rnLLoNNNy24i6IpLvK3SzoukqC4yN9OcRFm/4qL6gs9LrRP\nRPzimokothPnnCu7MlRIamEmQmrDTjvBuHHp5+ut5xOLhrqY0xMREZF8QpiJiOuDfLG/QGK/sEjI\nxo3LTiAA/vQnJRAiIiISlth2rK53momQcjU3w8Ybw+uvp89ttx088ojfpVpEREQEwpiJiGXHahEp\n3403ZicQ4PeEUAIhIiIiodFMREw0EyHl+OYbWGMN+PTT9LkDDoCxY5Mbk4iIiIRJMxFSVaHXcS61\nj85Q3/uii7ITiJ494dxz874sFoqL/O1U9z3M/hUX1ae4yN9OcRFe/9onojI0ExGTWpiJCL2Oc6l9\n1Hp97+nTYfXVYd689LnTTqteEqG4CDMukqa4UFxEUVwoLqKEHhfaJ6Iyyt4nQjztExFf//VW3/uE\nE+D559PPl1sObr8devTocBixUlzkb6e672H2r7ioPsVF/naKi/D61z4R8dNMRExqYSZCwvPaa7DR\nRpAZNn/9Kxx9dHJjEhERkbCFMBOhJCImSiKkWM75jeXGj0+fGzYM3ngDunaqrRhFREQkTiEkEVpY\nLZKQBx/MTiAALrxQCYSIiIiETzMRMdFMhBRj8WLYYAN4++30ue2390mF9oUQERGRjmgmQqROXX99\ndgJhBhdfrARCREREaoOSiDoSeh3nUvuotfrec+fCWWdltznoINhww7zDqwjFRf52qvseZv+Ki+pT\nXORvp7gIr3/tE1EZup0pJrVwO1PodZxL7aPW6nufcgpccEH6+hJLwOTJMGhQnl+gQhQXYcRFaBQX\niosoigvFRZTQ40L7RFSG9omIifaJiK//zlzf+/334cADobk5fe2002D06LzDqijFRf52qvseZv+K\ni+pTXORvp7gIr3/tExE/zUTEpBZmIiR5e+8Nd9+dfj5oEEyaBL17JzcmERERqS0hzERoTYRIlTzy\nSHYCAXD++UogREREpPZoJiImmomQjixe7HemfvPN9Lnhw+Gpp6CLUnkREREpgmYiROrEtddmJxAA\nl16qBEJERERqk2YiYqKZCGnPrFmwxhowc2b63IEHwk03JTcmERERqV2aiZCqCr2Oc6l9hF7fe9dd\nm7ISiN694bzz8g6lahQX+dup7nuY/Ssuqk9xkb+d4iK8/rVPRGVoJiImtTATEXod51L7CLm+9zvv\nwNprG5A+f845cPrpeYdbNYoL1X2PorhQXERRXCguooQeF9onojK0T0RMtE9EfP13lvrezvnblt5/\nH8CfX3lluOUW6NYt7zCqSnGRv53qvofZv+Ki+hQX+dspLsLrX/tExE8zETGphZkIqa7//Ad23z37\n3B13wL77JjMeERER6RxCmIlQEhETJRGSacECWG89mDw5fW7ECHjsMbDE/ucuIiIinUEISYQWVotU\nwMUXZycQZvCXvyiBEBERkc5BMxEx0UyEtPrwQxg2DObPT5878ki45prkxiQiIiKdRwgzEUoiYqIk\nQlrtuy/861/p5/36wbvvQv/+yY1JREREOo8QkgjdzlRHQq/jXGofIdX3HjcuO4EA2HLLpqATCMVF\n/naq+x5m/4qL6lNc5G+nuAivf+0TURmaiYhJLcxEhF7HudQ+QqrvveaajkmT0uc23RRefFH1ves9\nLlT3vTL9Ky6qT3GhuIgSelxon4jK0D4RMdE+EfH1X6v1vZ98El54IX3NDO66CwYNUn3veo6Ljq4p\nLsrvX3FRfYqL/O0UF+H1r30i4qeZiJjUwkyEVM7HH/vF1N9+mz53+OFw3XXJjUlEREQ6pxBmIpRE\nxERJRH376U/h9tvTz/v29Yupl102uTGJiIhI5xRCEqGF1SJleuSR7AQC4NxzlUCIiIhI56WZiJho\nJqI+LVwIG24I77yTPrfxxvD889DQkNy4REREpPPSTIRIjfvLX7ITCIArr1QCISIiIp2bkog6Enod\n51L7SKq+95QpkN28iUMPheHDSxtfUhQX+dup7nuY/Ssuqk9xkb+d4iK8/rVPRGXodqaY1MLtTKHX\ncS61jyTqezsHo0bBgw9mXeWLLxzLLVfa+JKiuFDd9yiKC8VFFMWF4iJK6HGhfSIqQ/tExET7RMTX\nfy3U977jDjj//Ozze+4Jhx0W/VrV9y6//1qIi2KvKS7K719xUX2Ki/ztFBfh9a99IuKnmYiY1MJM\nhMRj9mxYay347LP0uREj4LHH/AZzIiIiIpUUwkyE1kSIFOn3v89OILp1g6uvVgIhIiIi9UNJhEgR\nnnnGJwyZTj3Vz0yIiIiI1AvdzhQT3c7U+S1aBJtsAm+8kT43dKh/3rNncuMSERGR+qLbmURqyCWX\nZCcQ4GcllECIiIhIvVESUUdCr+Ncah/VqO+d3hMiff3AA2GHHfK/NvSKXYqL/O1U9z3M/hUX1ae4\nyN9OcRFe/9onojJ0O1NMauF2ptDrOJfaR6Xre2fvCWGAo18/mDiRrD0hVN+7cv2HGBeFXldcVK5/\nxUX1KS4UF1FCjwvtE1EZ2iciJtonIr7+Q6vv/c9/wgUXZLXgiitg660L71/1vcvvP7S4KOa64qJy\n/Ssuqk9xkb+d4iK8/rVPRPw0ExGTWpiJkOJ9/jmsvTbMmpU+pz0hREREJEkhzERoTYRIB447LjuB\n6NEDrrlGCYSIiIjUNyURIu24805/ZBozBoYNS2Y8IiIiIqHQ7Uwx0e1MncvMmf42pi++SJ/bdFO/\n2VzXrsmNS0RERES3M4kE6oQTshOIbt3ghhuUQIiIiIiAkoi6Enod51L7iLu+9/33w9ix2efPOAPW\nW0/1vZPqP4S4KPW64qJy/Ssuqk9xkb+d4iK8/rVPRGXodqaY1MLtTKHXcS61j7jre6+4omP69PS5\n9deHF16A7t1V3zup/kOIC9V9D69/xUX1KS4UF1FCjwvtE1EZ2iciJtonIr7+k6zvfe+9MHlyuk1D\nA9x/P6y0UmF9qL535fpX3ffqU1zkb6e4CLN/xUX1hR4X2icifpqJiEktzERIx8aNg512yj532mlw\n7rnJjEdEREQkSggzEUoiYqIkorbNmeNvW/rww/S5tdaCl1+Gnj2TG5eIiIhIrhCSCC2sFgF+/evs\nBMLMV2NSAiEiIiLSlpIIqXt33gk33ZR97qSTYPjwZMYjIiIiEjrdzhQT3c5Umz79FNZdF2bNSp9b\nd11fjUmzECIiIhIi3c4kVRV6HedS+yi1vrdzcNhh2QlEly5NjB3bfgKh+t7J9K+679WnuMjfTnER\nZv+Ki+oLPS60T0RlaCYiJrUwExF6HedS+yi1vvfVV8PRR7dppfreAfavuu/Vp7hQXERRXCguooQe\nF9onojK0T0RMtE9EfP1Xo7735Mmwzz6waFH62tZbw8EHw3bbddyX6nsn07/qvlef4iJ/O8VFmP0r\nLqov9LjQPhHx00xETGphJkK8xYt9wvDcc+lzffrA66/DqqsmNy4RERGRQoQwE6E1EVJ3zjsvO4EA\nuPRSJRAiIiIihdJMREw0E1EbXnzRl25tbk6fGz0a7rrL7w0hIiIiEroQZiKURMRESUT45s6FjTeG\n999PnxswAN54wz+KiIiI1IIQkgjdziR1wTk46qjsBALguuuUQIiIiIgUS0lEHQm9jnOpfRTymr//\nHW69NbvdUUfBnnsW15fqeyfTv+q+V5/iIn87xUWY/Ssuqi/0uNA+EZWh25liUgu3M4Vex7nUjhaT\ngAAAIABJREFUPvK95u23YdNNYf58A3y79deHZ5+FJZYori/V906mf9V9rz7FheIiiuJCcREl9LjQ\nPhGVoX0iYqJ9IuLrP85azvPnw847w/Tp37ekVy94+GFYYYXS3l/1vZPpX3Xfq09xkb+d4iLM/hUX\n1Rd6XGifiPhpJiImtTATUY+OOgquuSb73A03wCGHJDMeERERkXKFMBOhJCImSiLCc8cdsN9+2ecO\nOABuvlnlXEVERKR2KYnoRJREhGXKFNhwQ1/WtdXQofDyy7DkksmNS0RERKRcISQRqs4knc7ChbD/\n/tkJRPfucNttSiBERERE4qAkQjqdk06C55/PPnfhhX6jOREREREpn5KIOhJ6HedS+8h8zc03w5VX\nZl/fc084/njV925PPcRFue0UF2H2r7ioPsVF/naKi/D61z4RlaE1ETGphTURoddxLrWP1te88gps\nuSV891362iqrwEsvQb9+qu/dns4eF3G0U1yE2b/iovoUF4qLKKHHhfaJqAztExET7RMRX/+l9LH+\n+iPZcUf48sv0uZ49/X4QQ4YU17fqe4fZv+q+V5/iIn87xUWY/Ssuqi/0uNA+EfHTTERMamEmorNq\nbobdd4cHH8w+f+ONcNBByYxJREREpFJCmInQmgipeWPGtE0gjjlGCYSIiIhIpWgmIiaaiUjGfff5\nhdOZttgCHnvMl3UVERER6WxCmIlQEhETJRHVN3ky/PCHMGdO+tzAgX4h9aBByY1LREREpJJCSCJ0\nO5PUpLlzYe+9sxOIhga4/XYlECIiIiKVpiSijoRex7nQPhYv9jtSv/XW968C4KKLYMSI8vpWfe8w\n+1fd9+pTXORvp7gIs3/FRfWFHhfaJ6IydDtTTGrhdqbQ6zgX2scJJ8Cll2a9ip/9zHHLLWAdTOqp\nvne0zhIXpb5GcRFNcaG4iKK4UFxECT0utE9EZWifiJhon4j4+u+oj6uugrPOyj634orwyCMj6dat\nvL4LbaP63sn0r7rv1ae4yN9OcRFm/4qL6gs9LrRPRPw0ExGTWpiJqHXjxsGuu/p9IVoNHgzPPw8r\nrJDcuERERESqKYSZCCURMVESUVkTJ8Lw4dkLqXv3hiefhA03TG5cIiIiItUWQhKhhdUSvJkz/Y7U\nmQmEGdxyixIIERERkSQoiZCgLVwI++wD77+fff6CC2D06GTGJCIiIlLvlERIsFpa4LDD4PHHs88f\neij89rfJjElERERElETUldDrOOf28bvfwdix2de33dZXaMos5ar63uWptbiI+zWKi2iKi/ztFBdh\n9q+4qL7Q40L7RFSGFlbHpBYWVodexzmzj4sugpNPzr42dCg8+yz071/a+6q+d7RaiotKvEZxEU1x\nobiIorhQXEQJPS60T0RlaJ+ImGifiPj6/+ijkRxzTPa5gQNhwgQYNKi891V972i1EBeq+159iov8\n7RQXYfavuKi+0ONC+0TETzMRMamFmYha8MADsOeesHhx+tySS8L//gcbbZTcuERERERCEcJMhNZE\nSDCeew723Tc7gejeHe6+WwmEiIiISEi6Jj0AEfCbye22G8yblz5n5hdWb799cuMSEZGEOefL9bW0\nZP+ceeSeb30e9VjKz+0d7bVpHXd7zwtpm3m+1HMdPZbaJvfnjq7F0a6Q85XoryPV6i9wSiIkcR9+\nCDvv7DeVy3TFFfCTnyQzJhGRRDQ3w6JFfpOcqGPRovSR+3zRIj+Vm/u89VzUz83N6Z9zn7f+3Nzc\n8c+5R0tL258zH3N/7uhcS0vS/0VEpB1KIiRRn3ziZxo+/DD7/Jln0mZxtYhIxTnnP2TPmwfffusf\n582D+fPTj63HvHnw3XfZx/z52c8XLPBH68+Z5xYs8IlA5s/NzUn/BURECuOc0xHDATj/5wxXY2Nj\nUP1/+qlza6yRO6/b6I44wrmWlvjft5B2+dp0dL29a5X+u5crtLiIqw/FRXlqJi4WLXJu5kznpkxx\n7rXXnHviCef+8x/n/u//nLvuOuf+/Gfnzj7buZNPdu6oo1zjeus5t/fezv3oR85tuaVz66/v3Gqr\nObf88s4tuaRzDQ3OgWvMfyNL3jYdXW/vWiHvm+RR6fHF0X8pfRT6mkLa5WvT0fX2rlX67x7Cf7dK\n9l/K64t5TSFt87Xp6HrUtYzPnSR1qDpTTGqhOlNIdZy/+AJGjoR33mnTC4sWOboWMUem+t7lCSku\n4uxDcVGeqsVFSwvMng1ffQWzZmU/fvWVvzZ7NsyZk/3znDnYZ59R7AgNCnpNIe3ytenoenvXCh1f\nUio9vnb779LFH2b+aGjIPpfxs82ciRs4MH2+9TW57TMebdIk3FprtX1NzmEvv4zbdNPsPnPbPPkk\nbsSI1C+UcS313B59FLfjjtHXHnwQN2pU+rWt5++/H7fHHlnnsn7u6FxHj6W2yfnZbrwR98tfRl7L\n+rmjax20s2uvxR15ZHS7Avq2q67CtXd7Qzv92ZVX4o49tqD3siuuwB13XMf9XX457vjj2+/u8stx\nv/519LXLLmtzzS67DACXYHUm3c5URxobG4Po/8svYccd2yYQe+0F667bWFQCUcz7FtIuX5uOrrd3\nrdJ/93KFEhdx96G4KE9J43MOvv4aZszwxxdfpH+eMcMvfEodjf36+Z0jv/rKv66UMVbwNYW0y9em\no+vtXWsE6NHDl6bLPLp1Sz9mHpnnunZte731XNeubX/OPBoa2v4c8dh4661w8MHp81FHly7t/9z6\nvPWxNSFInWs891w466x029YP6UVobGqCIvdsKvQ1hbTL16aj6+1dK+V3qqbGVVap6PgaV1ihrP4b\nBwwoPiaWXbbg1zT2758/Lvr16zguOrje2Ldv22upJCJJmomISS3MRIRg1izYYQd49dXs87vvDv/6\nl///QxEJzIIF8NlnMH26Pz77zB+ff972ccGCpEdbvoYG6N0bevXyxxJLtH3MPXr2TD9mHj16pB9b\nf+7ePf289Wg917Vr0R+aRaT+hLBPhGYipGpmz4addmqbQOyyC9x5pxIIkUTMmQMff+yPjz5KP37y\niU8YPv3UTx+GqksXWGqp7GPJJdseffqkH/v08UlC5mOvXv7n3r39t/UiItIhJRFSFbNmwa67wksv\nZZ/fYQf497/9F3AiEjPn/AzBtGkwdap/zDw+/NDffpS0pZaCfv2gb19/ZP7cty8svTQss0z6WHrp\n9NG7t765FxFJgJIIqbjPPvMzEG+8kX1+223h3nv9HQAiUqIFC+D99+GDD/yR+fOUKb7kaDX16AED\nBvhjueX8MWAALLts+ujfP33066dv/kVEapCSCKmoadP8Iur33ss+v9VWcP/9/g4CEcmjudnPJEya\nBO++C5Mnp49p00pemFywLl1g4EBYcUV/LL+8PwYOTD+2HksuqZkBEZE60CXpAUj1NFW4skNu/+++\nC9ts0zaB2HZbeOABfxtyvj5Ked9y2uVr09H19q5V+u9ermrHRbX6qMm4mD8fXnkF/vlPX6Fmv/1g\nvfX8LTtDh8Juu8GJJ8Jf/wrjxvnEotwEokcP3/fIkfCLX8Bpp8GVV9K0//7w4ot+XcTChf7xxRf9\n9OG118LZZ8Oxx8KPfwxbbw2rr+5vSyowgVBcRF/Tvxfl96+4qL7Q46KSMVFo20rERdJUnSkmtVCd\nqZr7Abz2mr+F6YsvstuMGuUXUbd3C5P2A6g+7RORQFwsWoR17477v/+DN9+Et97yj++/7/dNiNNS\nS8Gqq8LKK2cfq6wCP/iBv90o4oO/4kL/XkRRXCguooQeF5WMiULbxh0XIVRnagg1u6k1Y8aMaYJw\ns8VWI0eOrHj/zzwDP/qRLwefab/94LbbfIXDfH2U8r5xtcvXpqPr7V2r9N+9XNWIiyT6CCIu5s1j\nZEMD3H03XH01jBnjZxNaWhh5553w+OMwcaKvPlDq/0mutBJssom/d3DffeHII+GUU+D88/37HX00\n/OxnvrrBllvC2mv725LyLEpWXORvp38vwuxfcVF9ocdFJWOi0LZxxsWYMWMAaGpqGpP3jStEMxEx\nqYWZiGoYNw723hu+/Tb7/GGHwTXX+PLrIp2Sc/6Wn5df9mXIXnrJ1zP++ON4+h8wANZc0x+rr54+\nVltN1QlEROpMCDMRWlgtsbnhBvjVr2Dx4uzzJ54IF1+stZbSyXz+OTz/PLzwQjpp+Pzz8vsdMgTW\nWit9DBvmj379yu9bREQkJkoipGzOwZlnwh//2PZaU5NfH6oEQmravHk+SXj+eXjuOf84bVp5fa64\nol80ve666WOttfwtRiIiIoFTEiFlWbAADj3UF5PJZAZ//jOccEIy4xIpmXN+x+ann04fr77qy6yW\nols3WGcd2GCD7KN//3jHLSIiUkVKIqRks2bBXnvBE09kn+/ZE265BfbZJ5lxiRSludmXE3viCXjq\nKZ80fPJJaX317AkbbugXOW+yCWy8sZ9d6N493jGLiIgkTPtE1JE4K0d98IEv8pKdQDSx3HIwYULp\nCYTqe1df6PW9S+2j3dcsWOCThfPPh1GjaOrVy3/gP+EEuOOOyAQisqdu3eCHP4Rjj6Vp9Gh4/XX4\n+mt45hm44go45BDYYAOazj03tt+pmuouLkpop38vwuxfcVF9oceF9omoDFVnikktVGeKq47z44/7\nKpIzZrR5B957z7HaaqX3rfre1Rd6fe9S+/j+NQsX+jUMEybAY4/5mYbvvku3A/L1bIAbOhQ23xw2\n28w/brDB9/WKFRfJ9K9/L6pPcaG4iBJ6XGifiMrQPhExqYd9IpyDyy+HAw6Ab77JvrbNNrD//rDf\nfqX330r1vasv9PreRfWxeLGvmDRlCiPHjvW7Kl97rU8ipkxpWz4MaNNzz56wxRZ+b4Xf/Q4GD2bk\nfff5KbbNN4fBg6Fr9t2giotk+te/F9WnuMjfTnERXv/aJyJ+momISS3MRJRj/nxfvvXmm9te+/nP\nfXnXHj2qPy4RnIN334Xx4/0xYQLMmVNcH/37+0x4m21gq61go420jkFERIIVwkyEFlZLXlOn+i9g\nX3ml7bXGRn+ohKtU1Zdf+p0Nx43zicNHHxX3+kGDYMSI9DFsGHTREjEREZFCKYmQDj3yCPz0pzBz\nZvb5JZeEsWNhzz2TGZfUmcWL4dln4aGH4MEH/Z4Nxcz6rbACbLdd+hgyRJmviIhIGZRESKSWFr/L\n9Kmn+p8zDRsGd98Na66ZzNikTnzyCTzwgE8axo8v7halZZf1ycL22/vHNdZQ0iAiIhIjJRHSxuef\nw8EH+y99c+21F9x4Iyy1VPXHJZ1cc7Ofbfjvf/3x6quFv7ZnT39b0o47+mODDXR7koiISAXp/2Xr\nSCGVox5+GNZfv20CYQbnnAP/+lf7CYTqe0dfC71iV6L1vWfN8tud//znMGAAbL01nHtumwQisoeN\nNoJTTvH33H31lQ/ak0/257t0UVyUKfS676X2obgoj+IifzvFRXj9a5+IylB1ppjUQnWmjmoQL1wI\nZ5wBF17Y9toyy/gdqEeNKr3/OMZY7mtU3ztaVet7OweTJsF998H99/tN35qb8/cBuGWXhZ12gl12\ngR/9CJZfvvD3LbOd4iLM/vXvRfUpLhQXUUKPC+0TURnaJyImtbxPxHvv+QThzjvbtt96a18AZ9NN\nS++/WKrvXX0VHV9LCyPN4LLL4Pjj4Q9/8EE1bVrHi6PNYPhwOPJIGDqUkf/7n9/lcIMNoE+fgt5a\ncVGe0Ou+l9qH4qI8iov87RQX4fWvfSLip5mImNTCTEQu5+Af/4Bf/7rt5nFdusCZZ/rZiZw9tUTy\n+/prf3vRPffAf/7jbzcqRL9+fqZh1CjYeWe/QFpERESyhDAToY+Hdeqjj+CII6IXTw8e7G9fGjGi\n+uOSGvbpp3Dvvb5016OP+nvkCrHuurDHHrDbbn7moaGhsuMUERGRsimJqDPOwfXXw0kn+S+Lc+29\nN/ztb/4LYZG8Jk3yScPdd/vKSoXo3h1GjvSJw+67wyqrVHKEIiIiUgFKIurIhx/C4Yf729FzLbGE\n3xfiqKNUTl860NICL74Id93lE4eJEwt7Xb9+PmHYc0+/OHrJJSs7ThEREakoJRF1oKUFrrvOV7+M\nmn0YMcLPTgwdWv2xSQ1YvBgefxz+/W+fOHzySWGvW201GD3aH1tuqcU1IiIinYj2iejkXnkFttrK\nzzB8/XVT1rVeveDyy2HChHgSCNX3jr4WesWuyPHNn+/XN/zylzBwIOywA1x5Zf4E4oc/9BuKvPkm\nTJ4MF19M06OPlp1AKC6qL/S676X2obgoj+IifzvFRXj9a5+IylB1ppiEVp1p9mxfXemvf/UzEZ4B\nfnzbbefXPgwZEt97qr53jdf3njvXV1L697/hgQfg22/zv7hrVx9Me+3lb1UaPLj9/uMYYwVeo7iI\nFnrd91L7UFyUR3GhuIgSelxon4jK0D4RMQllnwjn4Oab/ee5CRPaluHv02ckl14Kl15amcXTqu8d\nfS3Y+t4zZsDEiYwcOxaOPhpuvx3efhsWLWr/Nb16+QA7/XR/n9wRR/gZiPa2MkdxUXNxkRJ63fdS\n+1BclEdxkb+d4iK8/rVPRPw0ExGTEGYiXn8djjsOnngi+vpee8Ff/gIrr1zdcUlgPvrIL4z+9799\nsKSnqtrXr5+vprTPPn636CWWqPw4RUREJFIIMxFa6dgJfPwxnHWW3zguKocZMsSvfRg1qupDk1BM\nnJhOHF58sbDXrLiir/m7995+9X23bpUdo4iIiNQMJRE1bM4cuOACuOQSvw42V48ecNpp8Lvf6Yvj\nuuMcvPSSTxzuugveeaew1w0d6mcb9tnH36LURbUXREREpC0lETVo4UK49loYMwa+/DK6zahRcNll\nvsqm1InFi+HJJ9OlWD/6qLDXbbBBOnFYZx1tFCIiIiJ5KYmoIc3NcNtt0NgI770X3WbYMD87sfvu\n+ixYF+bP97sH3n033Hdf+1llri239EnD3nvHW6JLRERE6oLuVagBzc1wyy3+S+IDDohOIAYOhGuu\ngTfe8OtfoxKI0Os4l9pH3dX3njULbrrJJwHLLus3c/v73ztOILp2hR13hKuugunT4amn4Le/hSFD\nFBedJS5iprjI305xEWb/iovqCz0utE9EZag6U0wqUZ1p8WK49Va/d9e770a36d3b70T9299Cnz55\nxxh0HedS+6iL+t5TpvjN3+65x+8e3dyc/zVLLAG77OJnG3bfHfr2LWrccVFcqO57pfpXXFSf4kJx\nESX0uNA+EZWhfSJiEuc+EQsXwtixsP/+cP31MHNm2zYNDXDkkf729913h+7dC+s79DrOpfbR6ep7\nty6MvuoqOOEEvyfDgw/C1KnRJbhaLbMM/OQn0NTkF8784hd+zUOelfWKi/ztgoiLKlNc5G+nuAiz\nf8VF9YUeF9onIn6aiYhJHDMRs2f7z32XXQaffBLdpqEBDjoIfv97X0hHOpH58+HRR/3ahvvu87cd\nFWLwYL8JyF57qRSriIhIHQhhJkILqwMwZYrfQfr66+Gbb6LbNDTAwQf75EEVlzqR6dPh/vv9MX58\ndK3eKOuum04cNt5Yq+hFRESkqpREJMQ5eOYZv4P0v/7V/qbBXbvCL3/pk4dVV63qEKUSmpv9Zm//\n/a9PHF5+ubDXdekCW2/tF1HvuaemoURERCRRSiKqbO5cX2np6qvh9dfbb9erFxx6KJx0kpKHmjdz\nJjz8sE8cHnyw8DKsvXvDzjv7xGHUKF+JSURERCQASiKq5JVXfOJwyy3w7bftt1t+eTj+eDjqKOjX\nr3rjkxi1zjY89JA/nn22/ammXCut5Gv07r47bLcd9OxZ2bGKiIiIlED7RFTQV1/5vRs239zftn7t\nte0nEOuu60v9T53qb12qRAIReh3nUvsIor739Ok0jR7tS2oNGADDh/tdAZ9+mqaOEggz3/acc+C1\n12DaNLjySth116olEIqL/O1U9z3M/hUX1ae4yN9OcRFe/9onojJUnSkmrdWZFi50PPAA3HyzL+u/\ncGH7r+nSxX/hfMwxsNNOlV8bG3od51L7SKS+9zffwP/+5xdDjx8Pb76JAVGvbHN+mWX8bUqjRvnH\ngQPzjr2SFBeq+x5FcaG4iKK4UFxECT0utE9EZWifiJi07hNx1VVN3HADvP12+/uBrbiiX+tw003w\nq1/5NbLVKq4Teh3nUvuoeH3vRYvguefggw8YecMNcNxxfjOPZ5+FL75Iv7a9PtdfHw45BM4919fw\n3W8/v39Dvh0Cq0Rxkb+d6r6H2b/iovoUF/nbKS7C61/7RMRPMxExaZ2JiP4u2tt5Z7/WYffdfdUl\nCdjixX4hy4QJ/njyyfbr70bp2xd23NHvGL3TTn4vBxEREZEYhDAToY+yFbbaan5zuAMPVJWloC1e\nDK++Co8/7pOGxx/3pbQK1aULbLaZzxR32QV++EO/uYeIiIhIJ6QkogKWWcavrz3wQNhiC+0DFqTv\nvoPnn/fJwhNPwNNPFzfTALD66vCjH/kZh5Ej/eyDiIiISB1QEhGzO++E3XZTZc7gfPaZ393v6af9\n4wsvdLzqPcqAAbD99j5x2GEHWHnlyoxVREREJHBaExGT1jUR+nsGYNEieOMNvxD66af98cEHxffT\nv7+fYdhuO3+stZamlURERCRxIayJ0D4RdST0Os4l9eEcTb/5Ddx6K5x4Imy1FSy1FGyyia+dO3bs\n9wlE3p4HDKBprbXg0kv9duJffOGnlo49FtZeG8xU3zuh/lX3vfoUF/nbKS7C7F9xUX2hx4X2iagM\nzUTEpBZmIkKv45y3D+dgyhR4+WV46SV/vPwyNnNmBzWxMvomp3bWKqvAiBGwzTb+WGMNrEsX1fcO\nsH/Vfa8+xYXiIoriQnERJfS40D4RlaF9ImLSuk9E6H/P0Os4f9/HokV+s41x4/zOfRdc4Gca/vQn\nuOMOX3L1gw9g/nz/mnyddu0Kyy/PyMMO85t0/PnPcNZZsPfefjvxZZf9/lYl1fcOs3/Vfa8+xUX+\ndoqLMPtXXFRf6HGhfSLip5mImNTCTESQnIPPP4e33vLrGF57zZdaffvt4hc+Z1phBdh8c39stRVs\nuikssUR84xYRERFJSAgzEarOJNXhHHz5Jbzzjk8Y3nwz/ThzZnl99+nj92XYbDN/bL45DBoUz7hF\nREREpA0lERKvRYtg2jSYNMknDBMn+uOdd2DWrPL7X3JJf/vRxhv7xdObbOL3a9DGbiIiIiJVoyRC\nirdoEXz4Ibz/PkyenH1MmeJ3f47DiivCBhukj403hqFD/e7QIiIiIpIYJRHSVkuL35xt2jR/fPCB\nTw4++MAfH37o28RliSV8CdV11kknDOuvD8stF997iIiIiEhs9JVuHfm+ctTcuX7h8kMPwfXXQ1MT\nHHqo34V56FD/oX7QINhyS/jZz+D00+Fvf4NHH4WpU9tNIJryDaBnT58g7L8/nHMO3H03vPcefP01\nvPgi3HgjTXPn+nEUkUCovnd5Qq/vXWofiovyKC7yt1NchNm/4qL6Qo8L7RNRGarOFJMgqjPNn+9n\nED79FKZPTz+mDhs/Hrfkkv5DewV8vw/D8svDGmvAsGH+WGst//iDH+S9FUn1vasv9PrepfahuCiP\n4kJxEUVxobiIEnpcaJ+Iyqjp25nMbBDwB2BnoD/wKXA3MMY5N7va/cSupQW++gpmzGh7fP65Txgy\nH+fO7bC7RogvgVhhBVh1Vb+oOXU0PvIIXHSRX/xcosbGxoq9ppB2+dp0dL29a9tuu23e901SKX/z\navevuKg+xYXiIoriQnERJfS4qGRMFNq2EnGRtJqdiTCzIcAzwLL4D/yTgM2A7YGJwFbOua+q2E/7\nMxHO+Q/vs2b5pCDzmDXLlzidOdOXQM38edYsaG4u5M8Rv759YeWV/ezBqqvCkCHpY5VVoFevZMZV\ng0L/BkmSobiQKIoLiaK4kFyaiSjPVfgP/sc75/7aetLMLgZOBP4IHFPFfrx99oHZs9PHnDn+Mc6F\nyOXq0QMGD04fK63kj5VXTicOSy2V9ChFREREJFA1ORORmj14D5jinFst51of/O1IAAOcc/Mr3U+q\nvZ+JKOYXiVtDAwwY4Eujrriiv+Wo9efW5yutBMsuC5ZY4lp39A2SRFFcSBTFhURRXEiuEGYiarU6\n03apx4dzLzjnvgGeAnoBw6vUT+UstRSsthoMHw577OGrKJ1yClx8MdxyC4wf73d9njEDFi70i6hf\nfBHuvReuuQYaG+GII2C33Wi6915f9ahCCYSqahQ2jtCEXlWj1D4UF+VRXORvp7gIs3/FRfWFHheq\nzlQZtToTcQHwW+D/Oecuibh+Of4WpGOcc9dUup9U245nInr18usM+vXzj5k/9++ffSy7bPrnHj06\netuihF49odQ+VFWjPIoLxUUUxYXiIoriQnERJfS4UHWmyqjVNRFLpx7ntHO99fwyVeon7Y47YJll\n/LH00unH7t0L7kJEREREJGS1mkQEy37yk6SH0KHWzDXk/kvpo9DXFNIuX5uOrrd3rdJ/93IpLhQX\nURQXiosoigvFRZTQ46KSMVFo20rERZJqdU1E6wzB0u1cbz2fb4+HuPoREREREakbtToTMQkwYI12\nrq+eeny3Sv0kek+aiIiIiEg11erC6uBKvIqIiIiI1IuavJ3JOfcBvizrKmZ2XM7ls4HewE2tH/zN\nrKuZrZlKGkruR0REREREanQmAr6fRXgKGADcC7yD389hJDAR2Mo591Wq7crAFGCqc25Iqf2IiIiI\niEgNJxEAZjYIP2OwC9Aff/vRv4GznXNzMtqtDHyATyJWK7UfERERERGp8SRCRERERESqrybXRIiI\niIiISHKURCTEzI4xsw/MbL6ZvWhmWyc9JkmWmW1jZveY2cdm1mJmByU9JkmemZ1mZs+b2Rwz+8LM\n7jWzdZIelyQr9f8hr6XiYo6ZPW1mo5Iel4Qj9W9Hi5ldlvRYJFlm1piKhcxjern9KomEDvzgAAAP\n2ElEQVRIgJn9FPgLcA6wIfA08ICZDU50YJK0PsAbwK+BeQmPRcIxArgC2ALYDlgMjDezZRIdlSTt\nI+B3wEbAJsCjwN1mtn6io5IgmNlw4AjgtaTHIsGYCAwElk8d65XbodZEJMDMngVedc4dlXHuXeAO\n59zpyY1MQmFmXwPHOuduSnosEhYz6w3MAUY75/6T9HgkHGY2EzjVOXdd0mOR5JjZ0sBLwGFAE/CG\nc+7XiQ5KEmVmjcCPnXOxfsmgmYgqM7Nu+G+NxuVcehjYsvojEpEasxT+326VnhYAzKyLme0P9AQe\nT3o8krhrgdudc/9LeiASlCFm9knqVvpbzWzVcjvsGseopCjLAg3A5znnPwd2qP5wRKTGXAq8DDyT\n9EAkWWa2Lj4OeuJvgdzPOTcp2VFJkszsCGAI8LOkxyJBeRb4Jf6WpgHAmcDTZrZ2OXuhaSYih5n9\n2MwuM7PHU4vVWsysw1tKzGyQmd2QyvC+M7MpZnaJ7lnuPBQXEqXacWFmf8bPWP7Y6V7UYFUxLiYC\nGwCb4dfN/J+ZbRLjryIxqnRcmNkawB+BnzvnWir1e0i8qvHvhXPuIefcnc65N51zjwK74XOAg8sZ\nu2Yi2joDWB/4BvgYGNZRY/M7Xj+Dn2G4G5iE/wf9N8DOZpa74/WXQDN+cUumgcBncfwCUhGVjgup\nTVWLCzO7BNgPGOmcmxbbbyCVUJW4cM4txm+kCvCKmW0GHAscGtPvIfGqdFxsgd8w920zaz3XAIww\ns6OA3s65RfH9OhKTqn++cM7NM7O3gNXLGrlzTkfGAWwLrJbxcwtwUwftH8InBcfknL849dq/Rrzm\nWeDqnHOTgHOS/v11JBcXOe2+Bg5K+vfWEUZc4G9hmg6skfTvrCOcuIjo5xHgxqR/fx3JxAV+vdTa\nOcfzwFhgraR/fx3JxEU7ffRM/X/KGWWNPek/XshHvv+Y+PsOW4D3I671SX0Q/BpYIufafsB3+MoJ\nw1IfEOYCKyX9O+tINC56429N2BD4Fv/txAaKi9o4KhgXV+KrMY3Ez1i2Hr2T/p11JBoX5wFbAysD\n66aeLwZ2TPp31pFcXES0nQBclvTvqyPZuAAuxJcLXwXYHLgfmF3u5wutiSjPdqnHh3MvOOe+AZ4C\negHDc67dDpwAnA68gr/HeVfn3EcVHa1US0lxAWyKj4eX8N8SjMEvoB1TsZFKNZUaF0fj/8/hEfw3\nR63Hbys2UqmmUuNieeBm/LqI8fiqf7s458ZXbqhSRaXGRZvmMY9LklVqXAwG/on/9+JOYD4wvNzP\nnVoTUZ418f8Dfbed65OBHwFr4L8N+J5z7mrg6oqOTpJSUlw4X45PiX3nVWpcKCY6t1Lj4pDKD00S\nVPLni0zOue3jH5okqNR/LypSrUv/51SepVOPc9q53npe1Xjqi+JCoiguJIriQqIoLiRKUHGhJEJE\nRERERIqiJKI8rRnf0u1cbz0/uwpjkXAoLiSK4kKiKC4kiuJCogQVF0oiyjMJMPy9Z1Fa6++2d++a\ndE6KC4miuJAoiguJoriQKEHFhZKI8rQuWtkp94KZ9QG2Aubh94WQ+qG4kCiKC4miuJAoiguJElRc\nKIkog3PuA3yZrVXM7Licy2fj6/7f5JybX/XBSWIUFxJFcSFRFBcSRXEhUUKLC0ttQiEpZjYa2Cv1\ndHlgZ+AD4InUuS+dcydntB+Cr8s7ALgXeAdfn3ckvh5v3u3HJXyKC4miuJAoiguJoriQKLUcF0oi\ncphZI3BWB02mOudWy3nNIHwGuAvQH/gU+DdwtnOuvTJcUkMUFxJFcSFRFBcSRXEhUWo5LpREiIiI\niIhIUbQmQkREREREiqIkQkREREREiqIkQkREREREiqIkQkREREREiqIkQkREREREiqIkQkRERERE\niqIkQkREREREiqIkQkREREREiqIkQkREREREiqIkQkREREREiqIkQkREREREiqIkQkREREREiqIk\nQkREREREiqIkQkREREREiqIkQkREapqZNZlZi5mNSHosucxsdTNbYGa/S3osAGZ2n5lNNrOGpMci\nIrVNSYSISAYzW9PMLjezN8xsduoD4Cdmdr+ZHWpm3ZMeY9JSH9gfreL7HZx6z4PaaeJSR4j+BMwG\nrii3IzObmvo7tJjZyA7a/T2j3Vk5l5uA1YBjyh2PiNQ3JREiIimpD1xv4T9gzQH+AVwA/AcYClwH\nPJnU+OpcR0nC5cBawPNVGktBzGxjYC/gSufcvBi6bE2WFgGHt/OeSwI/SbVp8zdzzr0EPAqcYWbd\nYhiTiNSprkkPQEQkBGb2e/y3tNOAnzjnXoxosxMQxG0pdcY6uuicmwXMqtJYinE0/oP82Jj7vR/Y\nx8z6Oue+yrn2C2AJ4C5gn3ZePxa4HtgXuDXmsYlIndBMhIjUPTNbGWgEFgKjohIIAOfcw8CuEa/f\nz8weT93+NM/MXjezU6NufUrdkvKBmfUyswvNbJqZfZe6T73dBMXMfmhmt5nZx6n2083sITP7SUTb\nzc3sTjP7NHU71odmdrWZrRDR9jEzazazLmb2ezN7N9X/h2Z2fua31a23FeE/GI/MuGXm+9tmzGzl\n1PMbUusBbjOzz1PvMSLVZmMzu9TMXjWzmWY2P/W+F5nZMjnjmwDckHr6j4z3azazH6TatLsmwsx2\nMLMHU+/znZlNMrPzzGypcv4W+ZhZT2B/4CXn3Acxv9d1QE/gwIhrhwMfAQ918Po7gWbg0EJ/HxGR\nXJqJEBHxH6a6Af90zr3TUUPn3KLM52Z2LnAqMAO4BfgGn2icC+xkZjs55xZndpF6r4eAFYD/Aovx\nt72cb2Y9nHN/yHmPI4C/ptrdC0wGBgCb4r/tviOj7aHANcB3qbYfAasDhwF7mNnmzrmPc8YD/hvp\nrYEHgLnAKPysy3Kp1wK8gp+taQKm4m/3avVYzp9qKPAcMAn/zfcSqX4Bjkj9vv8DxuG/0NoEOAnY\nJTXGb1Nt/w58BYwG7gZezRj37Iyf29y6Y2a/wv/dvkn9jb4ARgKnALub2VbOubkZLynmb5HPlkBv\n2r/9rZz3Gof/+x8OXNZ60sw2ATbCJ8Qt7Q3MOfeNmb0ObJ2KtwWF/UoiIhmcczp06NBR1wcwntQ3\ns0W+bjj+w9oUYLmM813wH+CbgVNzXjMldf4+oEfG+eXwH5ZnAQ0Z59fCz5B8CQyLGMOKGT+vDizA\nf3BfPqfddvgk5F855yekfocXgKUzzi+BT1YWAQNyXtMCPNrO32Tl1PVm4A/ttFkJsIjzh6Ree3LO\n+YNT/R3UTn+NqesjMs79AJ9IzQZWz2l/Zep9ri73b9FBbJyVGtP+7Vwv5e/eGjtdgNNTP2+ecf3q\n1OsG4xOQFuCsdt7/r6nXb5v0//506NBRm4duZxIR8TMCAB932Kqtw/DfKJ/jnJvRetI51wL8NnUt\ncgEs8GuX8Q1w6vX3AEsDa2a0OwZoAM52zk3M7cQ5Nz2nbVfgBOfcZzntJuATmz3MrHduN8DvnHNz\nMtrPx8+sdMHPeBTrc+DsqAvOuY+cc1ELpf+B/zZ+5xLeL9eB+Bmfy51zk3OunQ58DRwYcdtQXH+L\nIanHjmKqnPf6Oz5JOALAzHoBPwMedNkzTe1pbTOkw1YiIu3Q7UwiIqXbKPU4IfeCc26ymX0MrGpm\nSzrnvs64PMc5NyWiv49Sj30zzm2eenywgPEMTz2ONLPNIq4PwCcka+BvTcr0UoHjKdRrLufWr1Zm\n1hU4CvgpsDY+ccr8UmtQCe+Xq6P/NrPN7BVgG2AY8EZOkzj+FsulHvMt+C7pvZxz083sv8B+ZvYb\n/PqLPvj1EoWYiV+wPqDA9iIiWZREiIjAp/gPk8V+eF064/Xt9bsSsAz+m+9Ws6Ob07p2InMjsNaF\nxp8UMJ7+qcf/10Ebh/+wmX0ye21AR+Mp1GcdXLsdvybiffw6h8/wt2EBnAj0KOH9chXy3wbSf9/v\nxfS3aJ1pyVdZqpz3ug7YHTgAfyvYZ/jKTYVoTdpC3V9DRAKnJEJExC9+3R7YAX+bSKFab0NZHn+/\neq4VctqVojXhGAS8W+B4lnLphclJifxwmlr8uxfwML4SVkvGNcMveo5D5n+bqMXycfy36ciXqcd+\nFeof/KL86cAZ+HUQf8z8e+bRD//faEa+hiIiUbQmQkTEJw6LgB+b2bCOGuaUbW29JWhkRLvV8B/s\nprTzbXOhnk09tikt20HbNqVOY9ZCabMT4Ks2AdwX8YF3c/zC4lzN+G/0i3nPV1KvGZl7wcyWBjbE\nL7zusBpXGVrLug6uUP+ta29uwCeYzfi9HwrVOuvWpvysiEghlESISN1zzk3Dly3tAfw39W15G2a2\nK9lrE27Af1A9w8yWzWjXBbg4de1vZQ7vKvwHxDPNbK2IMWXegnUF/laYS8xs9Yi23cxs6zLHA/5+\n+pVKfO3U1OPIzJNmNgA//vbeD3zFpUKNxSeGx6cSukznAEsBN7e3biMGT+D/+/+wQv23uhTYG9jF\nOTe1iNdthq/69Wy+hiIiUXQ7k4gI4Jw7z8wa8OVCXzCzp4EX8XsMDMR/u7868HzGa54xswuAk4E3\nzexO4Fv8rME6+A+SF5U5rnfM7Bh8MvGKmd2DLwHaH/8BdQ7+Niycc5NS+0RcD7xlZg/ib4Hqhv8A\nvg1+r4S1ixhC1D39jwA/NbN7gZfxH9Yfd849UUB/LwBP4Xdcfgp/K9lA/N9sIv72nFzPAPOAE1LJ\nWut6i8tyFqx/zzk3zcxOwCcmL5vZ7fhbd7YFtgDexu/vUYwO1zdEjPkb/B4QpSjovZzfrfveojo2\n6wOsDzzmtEeEiJRISYSISIpz7hwzuwNfKnU74Jf4nYFn4jc5Ow9ffjPzNaea2cvAcaTLir6PLyP6\nZ5e90dz3LytyXH8zszfwC6a3xW+89iXwOjkzHc65W8zsVXyJ2e2AH+ETm+n4DdduK3I8Udd+g7+l\naQf8h/8uwBh80tT6msg+nXMtZrYHfjZgFHA8ftH4tcAf8bcXuZzXzDazffAJ3sH4TdwAbiZ7wXru\ne11lZpPxf7d9gF74ykd/As5r5zazYv8W7b33d2Z2K3C4ma3aTjWuUt6rmNhp77/Dvvhbw26IuCYi\nUhCLLtUtIiIi5TCzDfEzNU3Oucg9M5JgZo8A6wKDK3g7l4h0cloTISIiUgHOuVeBfwHHmlnUgvGq\nM7NN8TNUf1ACISLl0EyEiIhIhaQWdb8FnOmcuzCA8dyH32xwnXZutRMRKYiSCBERERERKYpuZxIR\nERERkaIoiRARERERkaIoiRARERERkaIoiRARERERkaIoiRARERERkaIoiRARERERkaIoiRARERER\nkaIoiRARERERkaIoiRARERERkaIoiRARERERkaIoiRARERERkaIoiRARERERkaIoiRARERERkaIo\niRARERERkaL8fzK6TYcDGLKAAAAAAElFTkSuQmCC\n", "text/plain": [ "<matplotlib.figure.Figure at 0x10cf39eb8>" ] }, "metadata": { "image/png": { "height": 272, "width": 392 } }, "output_type": "display_data" } ], "source": [ "c = c_log # Drug concentration(s) in nanomolar (nM)\n", "EC_50 = 20 # 50% effective concentration in nanomolar (nM)\n", "F = 1 # Efficacy (unitless)\n", "n_H = 1 # Hill coefficients (unitless)\n", "r_a = calc_drr(c, EC_50, F, n_H)\n", "\n", "K_i = 5 # Dissociation constant of inhibitor in nanomolar (nM)\n", "c_i = 25 # Inhibitor concentration in nanomolar (nM)\n", "r_ana = calc_drr_agonist_non_cptv_antagonist(c, EC_50, F, n_H, K_i, c_i)\n", "\n", "plot_dose_response_relation(c, r_a, \"Agonist Only\", r_ana, \"Plus Antagonist\", log_flag = True)" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "---" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "# Reference" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "1. Henry A. Lester, 2014. Drugs and the Brain. Week 2: Dose-response Relations. California Institute of Technology. Coursera. https://www.coursera.org/course/drugsandbrain" ] } ], "metadata": { "kernelspec": { "display_name": "Python 3", "language": "python", "name": "python3" }, "language_info": { "codemirror_mode": { "name": "ipython", "version": 3 }, "file_extension": ".py", "mimetype": "text/x-python", "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", "version": "3.5.2" } }, "nbformat": 4, "nbformat_minor": 0 }
gpl-3.0
atcemgil/notes
LSTM.ipynb
1
5552320
null
mit
chrisbarnettster/cfg-analysis-on-heroku-jupyter
notebooks/notebooks/visualise_highbinders_for_sna.ipynb
1
5627
{ "cells": [ { "cell_type": "markdown", "metadata": {}, "source": [ "# Visualise Highbinders " ] }, { "cell_type": "code", "execution_count": null, "metadata": { "collapsed": false }, "outputs": [], "source": [ "%reset -f\n" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## import all required dependencies" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "collapsed": false }, "outputs": [], "source": [ "# standard imports\n", "import urllib2\n", "import os\n", "import sys\n", "import json\n", "import StringIO\n", "import pickle\n", "\n", "# dataframe and numerical\n", "import pandas as pd\n", "import numpy as np\n", "\n", "# plotting\n", "import matplotlib.pyplot as plt\n", "%matplotlib inline\n", "\n", "#scipy\n", "from scipy import stats\n", "from scipy.special import erf\n", "from scipy import sqrt\n", "\n", "# glypy\n", "import glypy\n", "from glypy.plot import plot\n", "from glypy.io import glycoct\n", "\n", "# other modules\n", "sys.path.append('../scripts/')\n", "import post_glycan_convert as pgc\n" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "collapsed": true }, "outputs": [], "source": [ "## variables for this project\n", "\n", "samples_in=\"../data/sna/SNA_4.0_plant.json\"\n", "results_dir = \"../results/sna/\"\n", "dataframe_out=results_dir+\"dataframes_sna.pkl\"\n", "dataframefile=dataframe_out\n", "\n" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "collapsed": false }, "outputs": [], "source": [ "# Check whether or not the dataframes exist\n", "\n", "subdir=\"./\"\n", "dataframefile=dataframe_out\n", "\n", "if not os.path.isfile(dataframefile):\n", " print \"calling the notebook that loads the data\"\n", " %run download_cfg_for_sna.ipynb\n", "with open(os.path.join(subdir, dataframefile)) as f:\n", " dataframes = pickle.load(f)\n", " \n", " \n", "dataframes[0][\"sample\"]\n", "frame=dataframes[0][\"dataframe\"]\n", "frame.head()" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "collapsed": false }, "outputs": [], "source": [ "# create a data frame with the glycan and the spacer as separate columns\n", "df=pd.concat([frame[\"Chart Number\"], frame[\"Structure\"]], axis=1)\n", " \n", "df.head()\n", "#frame[\"Structure\"]\n", "df[\"Structure\"].str.extract('(.*-)')\n", "df[\"Glycan\"]=df[\"Structure\"].str.extract('(.*-)').str.strip('-')\n", "\n", "#df['Structure'].str.extract('(-Sp.+?$)')\n", "df[\"Spacer\"]=df[\"Structure\"].str.split('.*-').str[1]\n", "df" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "collapsed": true }, "outputs": [], "source": [ "# create a function that plots using glypy\n", "\n", "\n", "def plotter(func):\n", " \"\"\"\n", " A decorator that plots the function .\n", " (it actually just prints it, but it could be logging!)\n", " \"\"\"\n", " def wrapper(*args, **kwargs):\n", " res = func(*args, **kwargs)\n", " #print func.__name__, args, kwargs\n", " plot(res)\n", " return res\n", " return wrapper\n", "\n", "@plotter\n", "def get_gly_iupac(iupacstring):\n", " kchandle2 = StringIO.StringIO(iupacstring)\n", " abc=pgc.mechanise_glycan_convert(kchandle2, \"Glycoct\", \"text\")\n", " return glycoct.loads(abc)" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "collapsed": true }, "outputs": [], "source": [ "high_binders_from_paper=[353,256,327,341,259,343,54,315,52,314,51,46,258,275,260,325,257,321,53,342,255,407,300,292,340,373]" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "collapsed": true }, "outputs": [], "source": [ "# show all the outputs\n", "from IPython.core.interactiveshell import InteractiveShell\n", "InteractiveShell.ast_node_interactivity = \"all\"" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "collapsed": false }, "outputs": [], "source": [ "# show high binder glycan rows\n", "for i in high_binders_from_paper:\n", " #df[\"Glycan\"][i].head()\n", " df[df[\"Chart Number\"]==i].head()" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "collapsed": false }, "outputs": [], "source": [ "# plot glycan images\n", "for i in high_binders_from_paper:\n", " try:\n", " get_gly_iupac(df[\"Glycan\"][i])\n", " except:\n", " pass" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "collapsed": true }, "outputs": [], "source": [] } ], "metadata": { "kernelspec": { "display_name": "Python 2", "language": "python", "name": "python2" }, "language_info": { "codemirror_mode": { "name": "ipython", "version": 2 }, "file_extension": ".py", "mimetype": "text/x-python", "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython2", "version": "2.7.11" } }, "nbformat": 4, "nbformat_minor": 0 }
mit
gridley/moltres
tests/nts/gold/examine_gen_mesh_one_material.ipynb
3
774823
{ "cells": [ { "cell_type": "code", "execution_count": 1, "metadata": { "collapsed": true }, "outputs": [], "source": [ "import yt" ] }, { "cell_type": "code", "execution_count": 18, "metadata": { "collapsed": false }, "outputs": [ { "name": "stderr", "output_type": "stream", "text": [ "yt : [INFO ] 2016-12-22 10:33:41,113 Loading coordinates\n", "yt : [INFO ] 2016-12-22 10:33:41,114 Loading connectivity\n", "yt : [INFO ] 2016-12-22 10:33:41,124 Parameters: current_time = 2.0\n", "yt : [INFO ] 2016-12-22 10:33:41,125 Parameters: domain_dimensions = [1 1 1]\n", "yt : [INFO ] 2016-12-22 10:33:41,126 Parameters: domain_left_edge = [-0.6 -0.6 0. ]\n", "yt : [INFO ] 2016-12-22 10:33:41,128 Parameters: domain_right_edge = [ 6.6 6.6 1. ]\n", "yt : [INFO ] 2016-12-22 10:33:41,129 Parameters: cosmological_simulation = 0\n", "yt : [INFO ] 2016-12-22 10:33:41,137 Loading coordinates\n", "yt : [INFO ] 2016-12-22 10:33:41,138 Loading connectivity\n", "yt : [INFO ] 2016-12-22 10:33:41,269 xlim = -0.600000 6.600000\n", "yt : [INFO ] 2016-12-22 10:33:41,269 ylim = -0.600000 6.600000\n", "yt : [INFO ] 2016-12-22 10:33:41,271 xlim = -0.600000 6.600000\n", "yt : [INFO ] 2016-12-22 10:33:41,272 ylim = -0.600000 6.600000\n", "yt : [INFO ] 2016-12-22 10:33:41,275 Making a fixed resolution buffer of (('connect1', 'group1')) 800 by 800\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ "959.3496444727219 dimensionless\n", "900.0 dimensionless\n", "8.138120750714538 dimensionless\n", "8.137864325565221 dimensionless\n", "0.8231674445177946 dimensionless\n", "0.8230987236017343 dimensionless\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ "yt : [INFO ] 2016-12-22 10:33:41,526 xlim = -0.600000 6.600000\n", "yt : [INFO ] 2016-12-22 10:33:41,527 ylim = -0.600000 6.600000\n", "yt : [INFO ] 2016-12-22 10:33:41,528 xlim = -0.600000 6.600000\n", "yt : [INFO ] 2016-12-22 10:33:41,529 ylim = -0.600000 6.600000\n", "yt : [INFO ] 2016-12-22 10:33:41,531 Making a fixed resolution buffer of (('connect1', 'group2')) 800 by 800\n" ] } ], "source": [ "ds = yt.load(\"gen-mesh-one-material_out.e\", step=-1)\n", "\n", "ad = ds.all_data()\n", "\n", "temp = ad[('connect1', 'temp')]\n", "group1 = ad['group1']\n", "group2 = ad['group2']\n", "\n", "print(temp.max())\n", "print(temp.min())\n", "print(group1.max())\n", "print(group1.min())\n", "print(group2.max())\n", "print(group2.min())\n", "\n", "g1slice = yt.SlicePlot(ds, 'z', 'group1')\n", "g2slice = yt.SlicePlot(ds, 'z', 'group2')" ] }, { "cell_type": "code", "execution_count": 16, "metadata": { "collapsed": false }, "outputs": [ { "data": { "text/html": [ "<img style=\"max-width:100%%;max-height:100%%;\" src=\"\"><br>" ], "text/plain": [ "<yt.visualization.plot_window.AxisAlignedSlicePlot at 0x7fb3c0dd3cc0>" ] }, "execution_count": 16, "metadata": {}, "output_type": "execute_result" } ], "source": [ "g1slice.set_log('group1', False)\n", "g1slice.set_zlim('group1', group1.min(), group1.max())" ] }, { "cell_type": "code", "execution_count": 17, "metadata": { "collapsed": false }, "outputs": [ { "data": { "text/html": [ "<img style=\"max-width:100%%;max-height:100%%;\" src=\"\"><br>" ], "text/plain": [ "<yt.visualization.plot_window.AxisAlignedSlicePlot at 0x7fb3c0dd3780>" ] }, "execution_count": 17, "metadata": {}, "output_type": "execute_result" } ], "source": [ "g2slice.set_log('group2', False)\n", "g2slice.set_zlim('group2', group2.min(), group2.max())" ] }, { "cell_type": "code", "execution_count": 19, "metadata": { "collapsed": false }, "outputs": [ { "name": "stderr", "output_type": "stream", "text": [ "yt : [INFO ] 2016-12-22 10:35:23,543 Loading coordinates\n", "yt : [INFO ] 2016-12-22 10:35:23,544 Loading connectivity\n", "yt : [INFO ] 2016-12-22 10:35:23,551 Parameters: current_time = 2.0\n", "yt : [INFO ] 2016-12-22 10:35:23,552 Parameters: domain_dimensions = [1 1 1]\n", "yt : [INFO ] 2016-12-22 10:35:23,554 Parameters: domain_left_edge = [-0.6 -0.6 0. ]\n", "yt : [INFO ] 2016-12-22 10:35:23,555 Parameters: domain_right_edge = [ 6.6 6.6 1. ]\n", "yt : [INFO ] 2016-12-22 10:35:23,557 Parameters: cosmological_simulation = 0\n", "yt : [INFO ] 2016-12-22 10:35:23,558 Loading coordinates\n", "yt : [INFO ] 2016-12-22 10:35:23,560 Loading connectivity\n", "yt : [INFO ] 2016-12-22 10:35:23,697 xlim = -0.600000 6.600000\n", "yt : [INFO ] 2016-12-22 10:35:23,698 ylim = -0.600000 6.600000\n", "yt : [INFO ] 2016-12-22 10:35:23,699 xlim = -0.600000 6.600000\n", "yt : [INFO ] 2016-12-22 10:35:23,700 ylim = -0.600000 6.600000\n", "yt : [INFO ] 2016-12-22 10:35:23,702 Making a fixed resolution buffer of (('connect1', 'group1')) 800 by 800\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ "900.4045415306368 dimensionless\n", "900.0 dimensionless\n", "8.097011032290823 dimensionless\n", "8.097006592146112 dimensionless\n", "0.8138626175116652 dimensionless\n", "0.8138613746801414 dimensionless\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ "yt : [INFO ] 2016-12-22 10:35:23,956 xlim = -0.600000 6.600000\n", "yt : [INFO ] 2016-12-22 10:35:23,957 ylim = -0.600000 6.600000\n", "yt : [INFO ] 2016-12-22 10:35:23,958 xlim = -0.600000 6.600000\n", "yt : [INFO ] 2016-12-22 10:35:23,959 ylim = -0.600000 6.600000\n", "yt : [INFO ] 2016-12-22 10:35:23,961 Making a fixed resolution buffer of (('connect1', 'group2')) 800 by 800\n" ] } ], "source": [ "ds = yt.load(\"../gen-mesh-one-material_out.e\", step=-1)\n", "\n", "ad = ds.all_data()\n", "\n", "temp = ad[('connect1', 'temp')]\n", "group1 = ad['group1']\n", "group2 = ad['group2']\n", "\n", "print(temp.max())\n", "print(temp.min())\n", "print(group1.max())\n", "print(group1.min())\n", "print(group2.max())\n", "print(group2.min())\n", "\n", "g1slice = yt.SlicePlot(ds, 'z', 'group1')\n", "g2slice = yt.SlicePlot(ds, 'z', 'group2')" ] }, { "cell_type": "code", "execution_count": 20, "metadata": { "collapsed": false }, "outputs": [ { "data": { "text/html": [ "<img style=\"max-width:100%%;max-height:100%%;\" src=\"\"><br>" ], "text/plain": [ "<yt.visualization.plot_window.AxisAlignedSlicePlot at 0x7fb3c43b01d0>" ] }, "execution_count": 20, "metadata": {}, "output_type": "execute_result" } ], "source": [ "g1slice.set_log('group1', False)\n", "g1slice.set_zlim('group1', group1.min(), group1.max())" ] }, { "cell_type": "code", "execution_count": 21, "metadata": { "collapsed": false }, "outputs": [ { "data": { "text/html": [ "<img style=\"max-width:100%%;max-height:100%%;\" src=\"\"><br>" ], "text/plain": [ "<yt.visualization.plot_window.AxisAlignedSlicePlot at 0x7fb3c43812b0>" ] }, "execution_count": 21, "metadata": {}, "output_type": "execute_result" } ], "source": [ "g2slice.set_log('group2', False)\n", "g2slice.set_zlim('group2', group2.min(), group2.max())" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "collapsed": true }, "outputs": [], "source": [] } ], "metadata": { "kernelspec": { "display_name": "Python 3", "language": "python", "name": "python3" }, "language_info": { "codemirror_mode": { "name": "ipython", "version": 3 }, "file_extension": ".py", "mimetype": "text/x-python", "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", "version": "3.5.2" } }, "nbformat": 4, "nbformat_minor": 1 }
lgpl-2.1
aqeel13932/DM
HW12/Q3&Q4&Q5.ipynb
1
61485
{ "cells": [ { "cell_type": "markdown", "metadata": {}, "source": [ "#Q3" ] }, { "cell_type": "code", "execution_count": 1, "metadata": { "collapsed": true }, "outputs": [], "source": [ "import pandas as pd\n", "import numpy as np\n", "%matplotlib inline\n", "import matplotlib.pyplot as plt" ] }, { "cell_type": "code", "execution_count": 2, "metadata": { "collapsed": true }, "outputs": [], "source": [ "data = pd.read_csv('extract_medium.csv',sep=';')" ] }, { "cell_type": "code", "execution_count": 3, "metadata": { "collapsed": false, "scrolled": true }, "outputs": [ { "data": { "text/html": [ "<div style=\"max-height:1000px;max-width:1500px;overflow:auto;\">\n", "<table border=\"1\" class=\"dataframe\">\n", " <thead>\n", " <tr style=\"text-align: right;\">\n", " <th></th>\n", " <th>State</th>\n", " <th>House_id</th>\n", " <th>Weight</th>\n", " <th>House_relation</th>\n", " <th>Sex</th>\n", " <th>Age</th>\n", " <th>Race</th>\n", " <th>Marriage</th>\n", " <th>Education</th>\n", " <th>Ancestry</th>\n", " <th>Language</th>\n", " <th>Employment_status</th>\n", " <th>Traveltime</th>\n", " <th>Industry</th>\n", " <th>Occupation</th>\n", " <th>Hours</th>\n", " <th>Weeks</th>\n", " <th>Salary</th>\n", " <th>Income</th>\n", " <th>Earnings</th>\n", " </tr>\n", " </thead>\n", " <tbody>\n", " <tr>\n", " <th>0</th>\n", " <td> Arizona</td>\n", " <td> 3399818</td>\n", " <td> 18</td>\n", " <td> 3</td>\n", " <td> 2</td>\n", " <td> 14</td>\n", " <td> 8</td>\n", " <td> 5</td>\n", " <td> 4</td>\n", " <td> 210</td>\n", " <td> 0</td>\n", " <td> 0</td>\n", " <td> 0</td>\n", " <td> 0</td>\n", " <td> 0</td>\n", " <td> 0</td>\n", " <td> 0</td>\n", " <td> 0</td>\n", " <td> 0</td>\n", " <td> 0</td>\n", " </tr>\n", " </tbody>\n", "</table>\n", "</div>" ], "text/plain": [ " State House_id Weight House_relation Sex Age Race Marriage \\\n", "0 Arizona 3399818 18 3 2 14 8 5 \n", "\n", " Education Ancestry Language Employment_status Traveltime Industry \\\n", "0 4 210 0 0 0 0 \n", "\n", " Occupation Hours Weeks Salary Income Earnings \n", "0 0 0 0 0 0 0 " ] }, "execution_count": 3, "metadata": {}, "output_type": "execute_result" } ], "source": [ "data.head(1)" ] }, { "cell_type": "code", "execution_count": 4, "metadata": { "collapsed": true }, "outputs": [], "source": [ "Genders = ['Male','Female']\n", "Education = ['Not in universe (Under 3 years)','No schooling completed','Nursery school to 4th grade',\\\n", " '5th grade or 6th grade','7th,8th grade','9th grade','10th grade','11th grade','12th grade,no diploma',\\\n", "'High school graduate','college,less than 1 year','college 1+ years, no degree','Associate degree','Bachelor,s degree',\\\n", "'Master.s degree','Professional degree','Doctorate degree']\n", "MarriageState=['married','Widowed','Divorced','Separated','Never married']" ] }, { "cell_type": "code", "execution_count": 77, "metadata": { "collapsed": false }, "outputs": [], "source": [ "table = pd.pivot_table(data,values='Earnings',index=['Sex', 'Education'],aggfunc=np.mean)\n", "##OR###\n", "temp1 = data.groupby(['Sex', 'Education']).Earnings.mean()" ] }, { "cell_type": "code", "execution_count": 78, "metadata": { "collapsed": false, "scrolled": true }, "outputs": [ { "data": { "text/plain": [ "Sex Education\n", "1 0 0.000000\n", " 1 3504.784689\n", " 2 690.859232\n", " 3 5083.671988\n", " 4 4073.961606\n", " 5 9596.498516\n", " 6 11185.848485\n", " 7 11167.638889\n", " 8 19404.356436\n", " 9 24012.275826\n", " 10 28201.210614\n", " 11 28488.347335\n", " 12 35081.001821\n", " 13 53294.264282\n", " 14 70755.173611\n", " 15 94245.204918\n", " 16 61467.676768\n", "2 0 0.000000\n", " 1 947.790323\n", " 2 387.342995\n", " 3 2771.055195\n", " 4 2256.137405\n", " 5 3326.657609\n", " 6 4281.338798\n", " 7 5003.164557\n", " 8 9200.885781\n", " 9 11515.832571\n", " 10 16305.045514\n", " 11 16949.317489\n", " 12 21991.480263\n", " 13 33193.713496\n", " 14 44412.231834\n", " 15 46821.961290\n", " 16 41476.065574\n", "Name: Earnings, dtype: float64" ] }, "execution_count": 78, "metadata": {}, "output_type": "execute_result" } ], "source": [ "temp1" ] }, { "cell_type": "code", "execution_count": 79, "metadata": { "collapsed": false }, "outputs": [], "source": [ "temp1 = temp1.values\n", "test=temp1.reshape(2,17)" ] }, { "cell_type": "code", "execution_count": 80, "metadata": { "collapsed": false }, "outputs": [ { "data": { "text/plain": [ "(2, 17)" ] }, "execution_count": 80, "metadata": {}, "output_type": "execute_result" } ], "source": [ "test.shape" ] }, { "cell_type": "code", "execution_count": 82, "metadata": { "collapsed": false }, "outputs": [ { "data": { "image/png": [ "iVBORw0KGgoAAAANSUhEUgAAAYMAAAGHCAYAAABS9T4EAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\n", "AAALEgAACxIB0t1+/AAAIABJREFUeJzsnXeYJFXV/z/f3UUWWKIkiYsgIAKCCIqkBRUT6IuIihhA\n", "XlRUMCDB9GNBBAFz5kWySFIRUJEkS07uwrIsGUlKzjnu+f1xbu3U9PTMdN2+s7PQ5/M8/XRXddep\n", "W9VV99Q99wSZGUEQBEFvM2a0GxAEQRCMPqEMgiAIglAGQRAEQSiDIAiCgFAGQRAEAaEMgiAIAkIZ\n", "9DySDpD0oKR7Rrstr0YkfVPS4aPdjpFE0kRJsyS9ovsTSZMk3T0K+50rrpFX9J/XKZLukPTOlnU7\n", "SrqokPxZkl5fQtacRNIKwNeB1c1smdFuz5wiXQ/PSHqy9vr5SOzLzA4ys11GQvZQSHqrpL9KekTS\n", "o5JmJsW/yJxuSxMkfVzS7W3Wj5P0gKT3N5Q3S9JTLf/1N8q1uBntFM5oXSOt9IQyACy9RhKNsPyR\n", "YAXgYTN7eDQbIWncHN6lAVuZ2YK11+5NhYxCuztC0juA84GLgNXMbFHgvcBLwJtHs22tSBrbsupU\n", "YBFJm7Wsfy/wMvCPjN2s3fJf/zCnra96zOxV/wJuB7ZoWfcZ4KLa8jLAn4AHgH8Du9W+2wC4DHgU\n", "uAf4BTBP+u5CYBbwFPAksF2b/e8IXAL8OMm4Ddgwrb8LuB/4dO33HwCuBh5P3+9b+25i2t8uwH9T\n", "e/YY4tgXBo5Nx3UH8G1ccb0LeAa/wZ4Ejmyz7SLAX9O2jwBnAMum7z4GXNXy+68Bp6XP8wI/BO4E\n", "7gN+A4xP300C/gPsBdwLHDPUvtI2K6Vz/QRwDvAr4Lja928HLk3n9xpgsybXQ+27lYF/Ag8BDwK/\n", "BxaufX9Have1wLPp97OAT6djfRD4Vu33k6t21v67wX47XzoXjwDXp/3cXft+73TengBuHOIYLgZ+\n", "1sF98dm0n0fwTnaF2nezgM8DN6dz+svad2PSf/sgfi1/Kf1+TO2aOwK/Nv8DfK/23Y703QsPAfu3\n", "addhwBEt604GfpQ+L56ulUeBh9N1oUGOcRbw+kG+mw84Oh3/TGDPlvPdb9v02+/Vlj+UrrXHgVuB\n", "96T1O6Xz+kQ6P59L6xdI10x1zz0BvK5+jaTffTC151Fcqa/ecv3tAUwHHgNOBOYt0k+WEDK3v/Cb\n", "/50t63YkKYN0cU8FvgOMwzue24At0/dvwRXCGGDF9Ed/pZMLrravF3EFpHRz3EVSKsC704Uxf/r9\n", "ZsCb0ue18M70Q2l5Ytrf8eliXhPvQN85yL6PxZ+2Fkhtvwn4bG0/dw/R7sWAbYDxwAT8hjw1fTd/\n", "avMqtd9fBXw0ff4J8Be8k58AnA4cmL6blM7HQen4xw+1r7TNZcAh6f/ZCL8Bj03fLYt3LO9Ny+9K\n", "y4t3ej3UvlsZeGdq1+LABcBPWm7GaWmf89b+j8PS8trAc/gTOcC+DFQGg/32B/jNv3CSfy1wV/pu\n", "tXTNLJ2WV6DNNZf+55eATYe5Jz4E3JLkjsEfEi5puaZPBxYClk/XWNXZfQG4IbVx0dTml+nr8E/F\n", "lf98wBLAFfR1iDum//5Lab/j27TtHen/rR4eFsYfXNZOywcl+WPTa6MhjnMWsPIg3/0g/b+LAMsB\n", "11Xnu919DRxFUl54f/BYdR3hD5PV//h+YKX0eVPgaWDdwe65lmtkVfzB8p3p2PZM/9O42rV7ObB0\n", "OvfXA58v0k+WEDK3v/Ab+Elc01avp4EL0/dvA+5s2eabtHlaTt99FfjzYBdNm9/vCNxcW14rbbNE\n", "bd1D1cXeZvufAj9OnyembVetfX8w8Ls2240Fnqf/k8XngPPT50mtF+Yw53Ed4JHa8nHAd9PnN+DK\n", "YTyu8J5quZE2BP5d2+/zwGs62Rfe8b1IreNI+66Uwd7V59r3/6A22urgeth5kN/+DzCttnw7sGNt\n", "ufo/lqmtu4I+pTiZgcpgsN/eBry79t3O1f8DrIKPIN9JGpUO0t7l2lwfh6RjfAr4dlp3JumhIC2P\n", "we+J5WvX9Dtq358E7JU+/5PUuafld6ffjwGWwhVc/b/aHvhn7V64c7D217a5Gdg+fd4FuLr23X74\n", "g0bbTr5FzixcsdT/63fXzveWtd/uwtAjg7oyOIw0UumgDacCuw92z7VcI98FTqx9J3x0tWnt+vtE\n", "y73/m07v4aFevTRn8CEzW7R6AV+kz86/IrBMmmh7VNKjuDJYEkDSqmky7l5JjwPfB17bsA331z4/\n", "C2BmD7asm5D29zZJ56cJs8fw4Xrr/uqTUHfhTyatLI4/4d7Z8ttlO2mwpPklHZYmXB/Hn6IWllSd\n", "tz/gNzrAJ/An+efwp8H5gam183lmak/Fg2b2Qof7WgZXDM/Vtv8P/f+/7Vr+v43wp6d2DLgezOyI\n", "1I6lJJ0o6T+pHccx9LmvuK/2+RnSfzkIg/12mRbZ/5ndYLNb8YeQycD9kk6Q9Lo2sh/FO7HX1bbd\n", "K13zp+IPCODn7Ge181XNG9WvjcHa+ToGXn8VK+LX3L012b/Fr4mKTjx2jsXNaQCfSssVh+JmmbMl\n", "3SZp72FkrdvyX5+T1ree77vabDsYy+HKZACS3ifpckkPp+N/P533F8vU22He49/N4P/L7H6jW3pF\n", "GbSjPuF7N3B7ywWzkJltlb7/DT4cW8XMFsaH1CN57v6AP/ksZ2aL4DdT6/5WaPn83zZyHsKfqCe2\n", "/PY/bX7bjj3wYesG6bg3w89bde7OBZaQ9Gbg46nd1X6fBdaonc9FzGyhmmxrsK97gcUkzVf7/fI1\n", "GXfhT1b1/29BMzukw+OscyBu8lgzteNTDDz3rW0vxb34cVXUP2NmJ5jZJniHa/hTIS2/eRofbWzb\n", "Rn79mr8Lf7qvn7MFzOzyDtvZev1V3I2P+l5bk7uwma1Vb2YH+/g98E5JG+Ij9+Nnb2z2lJl9w8xW\n", "xu3rX5e0RQcymxwHuAKcv7ZcV75346O1fkiaF597PARYMinhv9N37oc79v/i/28lT/h10O7+7kRe\n", "x/SyMqhzJfCkpL0kzSdprKQ1Jb01fT8BNys8I2l1YNeW7e/Hbc2lmAA8amYvSNoAf+pu/dO/k9r6\n", "JnzofVKrEDN7Gbe9f1/SBEkr4pO8v2/QjmeBxyUthts26/JfBE7BJxMXxSd2MbNZwOHATyUtASBp\n", "WUlb5uzLzO4E/gVMljRP6iC2qm37e2BrSVum/258cuEbagQ0mPfXBNxc8kTafs8hZJTmZOCbkhZJ\n", "+/4y6X9Po9MtUmfzPG6KeXkQOXsBn5W0t6RqdLsc/R8Kfgt8S9Ia6fuFJW03RNvqDwEnA7un/3RR\n", "YJ/qR2Z2L3A28GNJC0oaI2llSZs2OA+Y2R34RPgJwNlm9sDshkgfkLRK6iifwM/DYOeians76ud7\n", "OWC3lu+vAXZI19R7cft/xRHATuk/GZPOxWrAa9LrIWCWpPcB9ev+fuC1kuoPRnVOAT6Q5M6DPyQ9\n", "hztHNDm2xvSyMrD0qjrNrXA79b9xL4n/wyfPAL6Bd8hPpPUn0r9zngwck4bFHxlqXy3rBuOLwP6S\n", "nsBtiAM6etyMciv+dH6omZ07iKzd8M7t37ir4fG47bOTdvwUnwR8CL8Yz2zz+z/gduxTkhKo2Du1\n", "7/JkbjkHf/IfbL/D7WsHfN7hYXwC/iTgBQAz+w8+IfotfKLzLvwmGur6PqPF9/xPaf1+uMPA47hH\n", "05/atLWVob5v/e+H+u3++KjtdrxDPYV0jPiE80H4tXkvbnL7Ztsdml0CbIF3XjfVzHTn404LmNlf\n", "8JHFien/mQG8Z4h21o/jcOAs3KPlXww8R5/GO8TKU+kU+kx27e6FwTgGfyo+tmX9G/Dr6Un8WvmV\n", "mV0whJzpLf/1j9P6/XAT6u34HNOxLW37CrA1bnr7BG5m84Mwuwr3GvoJPpE8BffGehLYHVc0j+Bm\n", "1NNq292IK7h/y2NAXkf/vugm4JP4//Qg7lm4tZm9NMixNTmfQ6I0CdH+S+ll3KOh4kNm1sSu1nlD\n", "pDuAt5jZIyMh/9WCpIl4xz6upfPtKSSdBFxvZvuNdltGCkm74pPLm492W4JXP8MFzTxjZuvOkZaM\n", "fFBY8AommewexZ/i3oPbig8c1UYVRtLSuLnxMvzp9+ukJ/kgGGkam4kkrSdpiqR/SfpHuoBJ634s\n", "6SpJ18vD4f8s6WZJ36ttf2ra9jpJbUOwJX1S0hWSrpb0W73Cc56MAL2oOJfGzRxP4kPzL5jZ9NFt\n", "UnFeg9vynwDOw50Ifj2qLQp6huHMRC/htkRw08TH8Gi/rc3sYUkfw/10d5Z0PnC5mX1T0u64zfgt\n", "9EXcrm1mj0paNL3Ph0/cbpqWbwfWw/2UDwa2MbOXJf0auMzMjhuJExAEQRAMbyZ6tm4mkrQm8Cbg\n", "XJ/IZywecl5xenq/DphpZven7f6NTwQ9CnxF0v+k3y2PD4evrHaBT0auB/wr7WM++vvVBkEQBIVp\n", "mmhLeCf/jkG+fz69z6p9rpbHSZqEd/ZvN7Pn0mhifBs5x5jZt4ZsiNSLppIgCIKuMbMBLqlNlcFN\n", "eJDR283s8uQH+wYzu76DbYW7aj6aFMHqeHKxfm3EbaWnSfqJmT2YfM4ntPNisqcfa9j8gUw+4EAm\n", "f3uf4X84LGLy939QRtZLLzD5oEOZ/M3uXdwn/+BQJn9zr+7bNGuWy9qnQJsOOoTJ+xTIIjxrFpMP\n", "/hGT996ja1H2/NNM/tEvmLxHq6t5cyYf+lMmf+2L3bfp8YfY79dHs+8Xd+xa1n6/OpJ9d/1MmTYd\n", "dQr77jRUSEKH3Hgt+51xIftu3SgEoS37HX0q/+8da3TfpueeY/8rb+b/bbDq8L8dhv1n3M3/26xM\n", "kth5vnfcfmY2uYSswR6kh5uY7bdRSh/wEeBgSdfgmTU3HGS7dn7K/8BHCNfjPtOXDdjQ7AY8YdzZ\n", "kqbj/taDpRUIgiAICjDkyKAlfUC1bjqeKqB1/ea1zxfgQVEDvsPzdLTb10q1zyfjQRtBEATBHKDn\n", "XTYnbbLx3Clr48GmZZrK2aiIHJdVqk1l5ABM2qjdwDRT1oYblJHz9vWLyAHYbP11ysh5a7maNput\n", "U8AcU8ladcXhf9SJnOWXGP5HncpatmkOykHkrLhUETmJKSWFtWNI19K5GUlWYs6AYkG8BQudvfTC\n", "8L/pFBVq16yCwc6lznnBNtnzTxeTVer/s8cfKiIHgFlDpe7pnKJtuvHa4X/TIXbzTWUEPffc8L/p\n", "lMUWKyZq3P7HFutgJFm7CeSeHxkEQRAEoQyCIAgCQhkEQRAEhDIIgiAICGUQBEEQEMogCIIgIJRB\n", "EARBQCiDIAiCgFAGQRAEAaEMgiAIAkIZBEEQBIQyCIIgCAhlEARBEBDKIAiCICCUQRAEQUAogyAI\n", "goBQBkEQBAGhDIIgCAJCGQRBEASEMgiCIAgIZRAEQRAQyiAIgiAglEEQBEFAKIMgCIKAUAZBEAQB\n", "oQyCIAgCQhkEQRAEhDIIgiAICGUQBEEQEMogCIIgIJRBEARBQCiDIAiCgFAGQRAEAaEMgiAIAkIZ\n", "BEEQBIQyCIIgCAhlEARBEBDKIAiCICCUQRAEQUAogyAIgoBQBkEQBAGhDIIgCAJCGQRBEASEMgiC\n", "IAgIZRAEQRAQyiAIgiAglEEQBEFAKIMgCIKAUAZBEAQBoQyCIAgCQhkEQRAEhDIIgiAICGUQBEEQ\n", "EMogCIIgIJRBEARBQCiDIAiCgFAGQRAEAaEMgiAIAkIZBEEQBIQyCIIgCAhlEARBEBDKIAiCICCU\n", "QRAEQUAogyAIgoBQBkEQBAGhDIIgCAJCGQRBEASEMgiCIAgIZRAEQRAQyiAIgiAglEEQBEFAKIMg\n", "CIKAUAZBEAQBoQyCIAgCQhkEQRAEhDIIgiAICGUQBEEQEMogCIIgIJRBEARBQCiDIAiCgFAGQRAE\n", "AaEMgiAIAkIZBEEQBIQyCIIgCAhlEARBEBDKIAiCICCUQRAEQUAogyAIgoBQBkEQBAGhDIIgCAJG\n", "QBlImiXpuNryOEkPSjpjmO0mDfebIAiCYGQYiZHB08CbJI1Py+8G/gPYCOwrCIIgKMBImYn+Dnwg\n", "fd4eOAEQgKQNJF0qaZqkSySt2rqxpAUkHSnpivS7D45QO4MgCAJGThmcBHxc0rzAWsAVte9uADYx\n", "s7cA+wIHttn+28B5ZvY2YAvgUEnzj1BbgyAIep5xIyHUzGZImoiPCv7W8vUiwLGSVsFNR/O0EbEl\n", "sLWkb6TleYHlgZtGor1BEAS9zogog8TpwA+BzYAlauu/hz/1byNpRWDKINt/2MxuGWoHk79/0OzP\n", "kzbZmEmbbtK8lS++0Hybdswzbxk5AC+9WE7WmDKDP3vmiSJyAHj5pXKyCmH33V5O1mMPlRH0xGNl\n", "5ADYrDJy7r+njBzg+fMvKyZr5qV3F5FzxH3lzvl+b12umKyl9s/fVtIkYNJwvxtJZXAk8KiZzUyN\n", "qVgIqK6onQbZ9ixgd2A3AEnrmtnVrT+a/O1vlmttEATBqxAzm0LtoVvSvu1+NxJzBpYa8F8z+2Vt\n", "XeVNdAhwkKRpwFj6exlVn78HzCPpWknXAfuNQDuDIAiCRPGRgZkt1GbdBcAF6fPlwGq1r7+b1k8h\n", "aS8zew74Qum2BUEQBO2JCOQgCIIglEEQBEEQyiAIgiAglEEQBEFAKIMgCIKAUAZBEAQBoQyCIAgC\n", "QhkEQRAEhDIIgiAICGUQBEEQEMogCIIgIJRBEARBQCiDIAiCgFAGQRAEAaEMgiAIAkIZBEEQBIQy\n", "CIIgCAhlEARBEBDKIAiCICCUQRAEQUAogyAIgoBQBkEQBAGhDIIgCAJCGQRBEASEMgiCIAgIZRAE\n", "QRAQyiAIgiAglEEQBEFAKIMgCIKAUAZBEAQBoQyCIAgCQhkEQRAEhDIIgiAICGUQBEEQEMogCIIg\n", "IJRBEARBQCiDIAiCgFAGQRAEAaEMgiAIAkIZBEEQBIQyCIIgCAhlEARBEBDKIAiCICCUQRAEQUAo\n", "gyAIgoBQBkEQBAGhDIIgCAJCGQRBEASEMgiCIAgIZRAEQRAQyiAIgiAglEEQBEFAKIMgCIKAUAZB\n", "EAQBoQyCIAgCQhkEQRAEhDIIgiAICGUQBEEQEMogCIIgIJRBEARBQCiDIAiCgFAGQRAEAaEMgiAI\n", "AkIZBEEQBIQyCIIgCAhlEARBEBDKIAiCICCUQRAEQUAogyAIgoBQBkEQBAGhDIIgCAJCGQRBEASE\n", "MgiCIAgIZRAEQRAQyiAIgiAglEEQBEFAKIMgCIKAUAZBEAQBoQyCIAgCQhkEQRAEhDIIgiAICGUQ\n", "BEEQEMogCIIgIJRBEARBQCiDIAiCgFAGQRAEAaEMgiAIAkIZBEEQBIQyCIIgCAhlEARBEBDKIAiC\n", "ICCUQRAEQUAoA6ZcfEk5WRdeXE7WxZfOVXIAplx6RRk5l11ZRE5xWVNnlJEz/cYicgCmzLx1rpID\n", "MOWWu4vJuvDBx4vImfr8c0XkANzDS0XkXPLE00XkAEiaVEzYIIQyKNlZXlRQGVxyWRk5JY+vUMc7\n", "5fKrisgpLeuCaWWUwQXXllMGFxTqxC+YeVsROQAXFFQGF5VSBi88X0QOwD28XETOpU8+U0ROYlJJ\n", "Ye3oeWUQBEEQhDIIgiAIAJnZaLchC0mvzIYHQRCMMmam1nWvWGUQBEEQlCPMREEQBEEogyAIgiCU\n", "QRAEQQCMG+0GzGkkLQVsBCwDPANcB/zLzGY1kLEeYIDSez/MbFqZ1jZH0hhgB2AlM9tf0grA0mZW\n", "Ljorr10TgVXM7FxJ8wPjzOyJDDlz5fEBSFoSGF8tm9ldmXIm0sW5Sufo7WZWJMik9DmXtAl+fEdJ\n", "WgKYYGa3l2hrLqWuz1c0ZtYTL2Bz4CzgX8D/AQcAPwROB64H9gMW6lDWFOB84HLgRWBqer0IXJbZ\n", "vqWBI4B/pOU1gJ0z5PwW+DVwY1peDFd2OW1aDTgPmJmW1wa+kyHnc8BVwG1peVXgvMw2lTy+BYDv\n", "Aoen5TcAW2XI+SBwC/A0cDswqzpno3WugGty9j8Hzvlk4Azg5rS8LHDJaF2bhc95kXu49PF1vM+R\n", "FD43vYBDgRUG+W4eYBvgIw1l/hlYq7a8JvCnzPb9A/gYcG2tTddlyLm6/p4+T89s04XA22oyldPJ\n", "AdOBeVvaNCOzTSWP72Rg79oNt0COLOBaYPFa2zYHjsxsU5FzhT/ofITkMdjNq/A5n46bp+uyrs2Q\n", "U+TaLHzOi9zDpY+v01fPzBmY2Z42yLDdzF40s1PN7I8Nxa5uZrNzGJjZdcAbM5u4uJmdBB4Lb2Yv\n", "QlaSlBckja0W0jC8YxNYC/Ob2eyEROZX5YsZcp43s9n5AiSNo415rUNKHt/KZnYw8AKAmeUmk3nR\n", "zB4Cxkgaa2bnA2/NlFXqXH0BV3YvSHoyvXLNHiXP+fNWM8lKWiBTTqlrs2pTiXNe6h6GssfXET2j\n", "DCokfVXSwnKOkHS1pPdkirtW0u8kTZK0uaTD8aeMHJ6S9NpaO98O5CRu+QVwKrCkpAOBS4CDMtv0\n", "oKRVam36CHBvhpwLJH0bmF/Su4FTcFNBDiWP73lJ81ULklYGcpLcPCppQeAi4HhJPweeymxTkXNl\n", "ZhPMbIyZzWNmC6bXQpltKnnOT5F0GLCIpM/hppDfZcgpdW1Cueuz1D0MZY+vI3ou6EzStWa2dlIA\n", "X8BtxseZ2boZsuYDdgU2SasuBH5jZo1TKKZJ6V8AbwJmAkvgZqvGykXSG4F3psXzzOyGpjKSnJXx\n", "+ZV3AI/i9vAdzOyOhnLGAjsDW6ZVZwG/s8yLr+DxbQl8G7ftnoM7FuyYnuybyJkAPIs/XO0ALAQc\n", "b2YPZ7RpDPC/FDhXkhbF50Hqk9oXNpWTZBU550nWltSOz8zOyZBR5NpMsopcn4Xv4WLH1/E+e1AZ\n", "zDCztdLT2xQz+7Okq3OUQZI3Pz4X0XWqSknz4BNHADelYWan2y7Wuiq9G4CZPdJFuxYAxpjZk7ky\n", "umWkjk/S4sDb0+LlydyThaSFcDtxalLzNkn6ipn9bLh1HcjZBdgdWB64Gj/Gy8xsi6ZtSvKKeQAl\n", "z503mNk56f4Zm3ttpWtzrHXp+VPqPk4mptXwB4Mbm9zDg8grcnwd7asHlcHRuFvp6/EZ+nHA+Wa2\n", "XoasD+IT0/Oa2URJ6wL7mdkHG8jYlqHdVP/coZw7anJWwJ8mABYF7jSzlRq0aY96E9q06ccdyhkq\n", "J7SZ2doN2nQH5Y6vcg3ut5o+xdLINVjS53FvtOfps6Wbmb2+iZwka8CDiaRrzGydhnKuA9bHFcA6\n", "klYHDjKzbTLaNBlYD1jNzFaVtCxwspltlCHrc8AuwGJmtrKkVfHR9DuH2bRVztLA94Flzey9ktYA\n", "NjSzIzLa1PV9nOQsAHwdVyq7SHoDfs7+mtGmYsfXKT0VZyBJwP/Dh2+3mdkzyca3U6bIyfiM//kA\n", "Zna1pKYdwNZ4J7QkPiT8Z1q/OXAp7rE0LGY2ESDNW5xqZn9Py+/DPaWasGBq02p4h3I63lluBTTx\n", "Ld86vX8xvR+X5OzQsD2lj+9H+PHNh3dy16b1a+Ouxxs2lLcnsGaXo4rtgU8AK0mq26sXBBqbm4Dn\n", "zOxZSUgab2Y3Slpt+M3asg2wLu4+jZn9N82R5PAlYAPcLRszu1ken9GUo4GjcDMfuGvvybhrZ1Mm\n", "0/19TGrPVPw+BrgH+CPQWBlQ9vg6YyhXo1fbC++Isly9BpF3RXrvyk0ubXcO8Lra8uuAszPkDDi+\n", "3GPGJ0QXrC0vCFyUIWeAz3v9nI3i8RVxDcZtzAt0eS2tiBcwuRzYLH2ehCurcRnyTsVHTZPT/3g6\n", "8PfMtl1Z/89wF9zc67xV1rgcWaQ4h5Z7Lyu2otR9DExtIyfXBbfY8XX66qmRgZmZpKmSNrAyEasz\n", "Je0AjEtDwt3xp/kclgfuqy3fj5tDmnKPpO8Av8eV3yeA/2a2aUn6u7O9mNY1RZI2NrOL08JG9Nn8\n", "m1Ly+Aa4BqeJ0qbsA1wq6Qr6vJHMzHbvVICZ3QncSd/8RVdYnzlosqQp+KT2PzLFtXoAfZY8DyAY\n", "6LnzRUbfc6fUfVzKOw3KHl9H9OKcwU3AKviNV/mVmzWwX9dkLYAP4+peCN+zPG+iX+KRj3/AO7mP\n", "AbeY2W4N5bwW2Jf+Hk77Wd5k5rdTO/6c2vQ/wElmdmBDOevhQ96F06rHgJ0sI21H4eM7EXcBrSuW\n", "CWa2fUM5V+FP3zPwOQPh19QxGW3aEPg5Hq8yLzAWeMoy3EJLTPom0+rywOp06QGU5BXxlirsuTM/\n", "8B26vI9LeaclWcWOr+N99qAymNhuveW5pG1nZqcMt65DWcJts5vi9uwLzezUpnJKky7KTehr09Vd\n", "yFoE7yRH9AmnU1TINbgbb7Q2sqYCH8ftw28FPo1PQu7TUM5kCkz6putyhpmt2WS7QWSNw016q3cp\n", "Zyz+9P4LXEkJ9757IbNN55jZ5l22aQywHR43UY3urjCzBzNkFTu+RvvtNWVQoQJJxQbx/CjWMeSQ\n", "jmsv/OmkGrKaZboUJplL4eeq8rbJOVdbpTbVz/n+GXKKH1+3yAOx7sTt8rPNApmjlalmtp5SPExa\n", "l+NNNJ006Vtdj3WZDWUdA/yqhGlV0mnA7sks1o2cq8xs/W7bk2SdB2xrZo91KWeqZXglDiKr2PF1\n", "Sk/NGcBsN7If4e6lD+ATdzfgw7FOZbwPeD+wrDxeobJ/L0hmyHhB88DxwEm458/ngR2Bxk8nqU1d\n", "n6sk5zC8494COBx/grpiyI0Gp+TxrQocyEDF0tST5BO4oqw/vRvuvtyUpyXNC0yXdAg+j5Qzv/K8\n", "mc3yB/vZJs1c3g58UlLXplU8yd1MSVe2yGrkxglcnEyrJyU5lWkuJ2Pw08AMSee0tKnjOZ/EOZK+\n", "UWtTJSgnBqbk8XVEz40MJF2Ld0rnmNm6kjYHPmVmn20g4834U9f+eARz5aP+JB6z8OgQmw8ms5R5\n", "YJqZvaXlyfJfZtY4V06Jc5XkVIF+VfT3BDyz48YZbSp5fJfg8w8/xjOP7ogH+Hy3qaxSJDPm/cBr\n", "gK/hE7/fqiTQAAAgAElEQVS/NrNbG8rZE58b2xJPHfFZ4A9m9vPMNg0g07Q6aRBZUxrKmUL7GJjG\n", "5h5JO7ZvUrM5H/XFwrQK6jgGpiZryiCyujJnDUXPjQxIScUkzU4qJqlRdGeaxJku6Xg84rRIBLKZ\n", "3ZLa9DJwlKRr6P+02QmVXfG+ZJq5B3cxzKHrc5V4Nr0/k2zXD+PpfnMoeXzzmeevV+rYJkuahiv4\n", "jpH0GnzuoZrvuQD4rWVEn9Y62Gdxt9AszOzQNKH5JO6Y8N3cSV+gXfRrVsRw005/CDmTSshJso4u\n", "JGdiCTlJ1qRSsjqlF5VBa1KxB8hPKvY+UuQikB25mChlHjggTdTugU9ALYQ/YeZQ6lydIc+Tcygp\n", "cAk3F+VQ8vieS5N1t0r6Mq5Ycswpv8HvpV/h/9mn0rr/bSpIUjtvn8amK0m74zm3zm7ahjZMY2DU\n", "932S7gN2MbOpg245sF3tlMjjeD2BPczs3x3K2YOBT86P43Mk13TaniRrBn3R7a1tOsA6zDGlvmwC\n", "rW2aYWYPNGxTsePreJ89aCaqkooJ+CTdJRWbhptRzq9N0l2X43khaUXcLp9tHkgd21esw3QRHchb\n", "AHiOLhKwJS+LDc3skrQ8HhifM1k3Ase3PnAjsAjwPfz4DjGzyxvKGTAx28Vk7eK1xfF4TYLXNjVd\n", "Sfo+7hY8DTgSdwfNTQx4OPBHMzsrLW+Z2nUU8DMz26CBrAOAu4ET0qqPAyvj+ZO+0OkTsaQ/4ObU\n", "M/B7+QO4a++Kqa0HN2jToXiq6cqt++PA/PgD2UZmtvUQm9fl/A2PXj8/ydkMP/8rAfub2bEN2lTs\n", "+DrGRjCibW59AROBd6XP81OLsm0op1Tk4ji8ky1xbFcVklPlbCohq2TVrVLHNxb4YSFZ03B//mp5\n", "ZWBawWPOkoUr8fcCJwK34pPlK2fIaRf1PSPnv213f1QyaBCti49WJ9SWJ+CuwfMDNzRs04BoePoi\n", "pDsucgOcDSxVW14qrXstDQvTlDy+Tl89ZyZSLVEWftMuhw/pGyXKShSJXDSzlyStKGleqxXZyKSI\n", "F0Jq0yxJi1iXLnfAufJ87H+ydGV3Qanje1nSxmm+oNs27Qn8s2bimUhmviv1T6I3Bn86HDv4FoNj\n", "7k10Hz4h/TJu3vmjpHPNbM8Gou6VtDeuVAR8FLg/jdSaFrl5RtLH8JoB4COMKq6jyf+wBH3zR+Be\n", "fEuZ5xtrGvQ5VtLbLBWTkbQBfbVemhSnWd7M7q8tP5DWPSypaYxAyePriJ5TBpRLlAWwGx5x+Dw+\n", "7D0LNzfkcDve0Z0OPJPWmTU3iayL31StPvw5XgiVy93ZLW1q6nL3BTyb48u1C9ksr9hKyeO7BjhN\n", "0in0P76OkgNWmNl5yU11tdS2m7pQ6lUSPfCO6A68822EpK/gHmkP46kjvmFmLyaz3S24AuuUT+Be\n", "V39Jy5cA2+NKqmnbdgB+hs+vgN+Hn5QHAH65gZzjgSsk/QVXUFsDf0imzesbtmln3GFjQlp+Etg5\n", "yWpSxOf8ZCo6ObVpW2BKktP0gark8XVEL84ZXGlmGygFh8kjEKdZns90yXZNTh+rP6R64t1vdFpU\n", "zuVubkWezhxankjNrKOneg1MP95aY6GRUimJpP3wOswDgrskrWFmjTsUSQtYfmnQ4qQ5nypD6CVm\n", "9q8u5S2M94lZI+GkaD+Mp6EAV5rZo+HSxzfs/npQGRyKa+lP408iXwSuN7NvD7lhfxlDJdYyy/Mm\n", "KsJoeCEMh6S3tFn9OF6HoFGN2Lnp+JIyGfQG6lSpJFlVDYm28jJGiMWQ9A58dLGgmS0vj7P5vJl9\n", "cZhN28laDfg1sLSZvUnS2sAHzeyADFmb4EVyjlQXBXdUtjbCRMoV7ilyfB3vrweVQdeJsjRI4EzC\n", "zOyCjHadwcCny8fx/PqHWYf5cgp7WZRyubuc/nUD1sKTby0M7GrJS6VDWSWP7xcMcs7N7LRO5ZQg\n", "jQyNQWpImNkn52R7Wtp2JW7bP836vOZmmlmjSPS03YW4ieq3aWRepZVvGtU+mXIFd/5Bqh1gHhQ5\n", "Dz6B3MgrUIUK9yRZkyl0fB0zErPSc/MLt72NKShvXuDNeAf3mi7k/Bx3bdsaj4Y9Hp/Y/hXuL96p\n", "nJJeFofiNtO18MIvBwI/xQPhzmgg58/Am2rLawB/wifwG+V7L3x8h6dtd8Mn/y/Ai4qcDvy0gZzF\n", "8ZiHq3HPop/h7qA510GRGhIlX7TUIEifRzVPPzAdn+QtUUukZJvmbZHTsTfSSB1fp69enED+OPAz\n", "SX/EbarZkcOSPgD8FqgCZV4v6fOWqnA15B3WP6XC6UppFiTNbCCnpBfCu6x/0r1ra3MtQ5W0bGU1\n", "M5t9DGZ2vaTVzew2SU2HpiWPb23cj/wlAEm/Bi4GNsZHG51yIq5IPgyzU2GfBLyrYXugXA2Jktwl\n", "r0FRRVvvjueoyuFBSatUC8nL7N4MOSVzL5WqHfC8mT1fa9M4mnlItcoqdXwd0XPKwMx2SBNF2wNH\n", "p87oKOAEa27b+zGwuaXAMHkxi7+nV1MWkLSipQk/eRBadQE0cUsr6YVQyuVupqTf0N818Xp5xHXT\n", "lA0lj28RfGRRTRhOwIf4LzVULEubWd2L7IDkPpnDscCVkuo1JIpM2CvliMrYdFd8tLMsXkjobNwr\n", "L4cvA/8HrC7pHtyLrnEZVMoW3NkDNzu+XtKlpNoBGXIuUJnCPVD2+Dqi5+YMKuSRnp8Cvop3Im8A\n", "fm4NEnmpJc1ssn9eaRmpZyW9n5ZRBn4xnY+H/P+0gaz1cY8GowsvhCTnKLyThORyh9v7P2BmJ3co\n", "Z378WOpeFr/G/csXaKqECx7fznhRkyn0RYweiJvrJluHvviSfozPo5yUVm0HbGBmewy+1ZDysmtI\n", "JA+nVqp5kcPMbPE2389xkvIek/EAVpexJQUK7iRZ8+DzNeCuwY3zSsnjLnamy8I9NXnFjq+j/fWa\n", "MpD0ITw75Rvwp7CjzeyB1GFdbw2STUn6LZ6zpeoUtwPuwqscYQ1dC+WpGlbHb96bzezZYTaZI8hz\n", "AWHdB5/NdUhaBo87Mdx23LiEpqSn8DmLKgBrDP1TIedUKcuqISHpRVyZtQaDCa+UNWHgVoPK+kVt\n", "se5CS2pTx/EmNW+pSlY/bBS8pdq4Bre2adRcg0eDnjMT4Xbdn5jZhfWVyebcNLHYeDzKcLO0/GBa\n", "V+UyaRq89BweCDVX8WpUAhVmdg99wVS5MjruYIdD3deQmIGn2Rgw5yGpqVdLlYDuHfik/0l4x7kd\n", "PjpswoIM4S3VqZCkeAd7gm2qeLdOspbEj/Gfaf3meCaBju7fYebPzBrEMBU+vkb03MggCEoh6Y1m\n", "dsMgcRRYXo3nrmpISNoUj99oF2y2vpldldGmK4CNK9NJMqlcbGZvy5B1EfD+yjwkz4r7dzPbZOgt\n", "B8g5AM8y+/u0agdgGcuoRSEvavNpM7s3Lb8OOMbMthx6y9nbT0wfq7iL43BFtwOAme2d0aZix9fx\n", "PkMZ5CPp9bhb4kT6Rllmoxh0Fsw5JB1uZruobKGVquzldOAt5jmUsjKglkLSTbi328NpeTHgMjNb\n", "begtB5X15jQKrkyj05vKandOcs+TpBuBN1a2fXks0vXWsFaz2pQnVWYZ3JLH1ym9aCYqyV/wGf4z\n", "6LPRZmvXFFgyEc/5UqWjuHDIjQbK2Bb4AZ4xcXYwVe7wMrkUTqS/sus4FW+SsRrwjTZyGtctHoHj\n", "G5tkzb4XOrXPm9ku6X1Szr4HoWS9jVL8AJgm6Xz6JtonZ8oq5S31tKRP0j8Vdu55Ohc4Sx7QKDz1\n", "d85krSRtbGYXp4WN6B+w2YSSx9cRMTLoAklX5AyVB5F1MH4RXo9nmATAOsylXpNzG7CVmeX6gddl\n", "/R73arqmpU27NZRzLR5AN60mx6xBUZSarJLHtxuegO0B+h9fR+6Xal/MZDY5E5AqUENiJEimk7fh\n", "x3tlZVLJlJXtLVWTsRLu7jo7dw9e6+KOzDZ9OLWJ1KZTM2Ssh3vfLZxWPQbslGkuLHp8He2zV5SB\n", "pDficQGz8KCZ7+JPJTcDn8npXOTpq1fB/a5nZ6nM/PNvBtayLlNYS7rECoWsS7oBWCPXNa4mZ6qZ\n", "rVeoTSWP7zbcBTSro1VfbqK2E5BmtlVDeePwuYIRq3MbjDyvVO+7XjIT/R9wCO4zfz6wNx7I8QHg\n", "l+TVM1gTj1XYgv6ufDk38214lbMsZVDzL/+XpJNwE1YVrGaZbnLXAa/DJ7Jy2rQYPkw+Q9KXcO+M\n", "utJ8pIGskTi+u2hf37cjzGzH1LZzcKXZbwIyQ16xGhLJFr8tA01zram/g8K80pRARS+NDGZP5Ei6\n", "1cxWafddQ5m34RNPTQtX1GVUvtzLAOsA59HXYVqnvtzqn0FzgN+0NcugWUVNTsDrB1zZ0qaOJsgl\n", "3dHajpY2rdSgTUdT7vgqn/c18LiOv9JfsTTyeS81AZm2PR0/513VkJB0Fm6mmEp/E9iPmrYp6A16\n", "aWRQrxbVerPPkylzBl496v7hfjgEU+nr2M5giA5vKGpPqbMnsCokbdywTVWH0ZqxtFrXaZsmpv2P\n", "t5asq+nJtWMKH1/l834XXo/3NemVS6kJSPDRU+soJ+eJbVkze09mGwYgaR367PwXmdn0LmRNxMuE\n", "npuCPceZWfYIrSRpNLucmV077I9fbdgIZsGbm154ta0BtY5xm3/HGSpbtr0AeBR/ijsjvU7PlPXV\n", "TtZ1IGdAvdx26zqUdUibdQePcptKyvpoJ+s6lPVh4CfptU2OjJIv3Cy6diFZX8FNhvvjlfxmALtn\n", "yvocnrrjtrS8KnBehpyv4hO1Ao7AM8a+J7NNF+AT9YvhuZKuxANTO91+2/T/b9vm9eHMNi2djusf\n", "aXkNYOeRvGZ6xkw0EqivrkG/p3nLq2cwwFTVzm95iO03xCcxv4aPfKon+gXxzunNhdrUcbKzZDtf\n", "Bk8u9wn6RjsL4fnsOzajzMHjyzIZlkLlakjcgD/o3E5/E1+OH/4M4O2Wqpwlj6fLO70OWmRNJ5Wd\n", "tT6zbeMEepXPvaT34A9638VTveeYe68xs3XkGQiWN7N9G17nR1OoyFFNZpEaC03oJTNRccxsirxK\n", "0vr0udw90ESGpO3xjnIl9a+gtiBev7ZTXpO2GZveK56gYQZGSbvi0ZQrq3+o/YK4i1unbIkXhl+W\n", "PtMTeMK7bzVpE33HNy69V4ol5/jeB7wfWFbSz+mvWBonKCvMP/CMsJXJ6eN43qP78VoLnboav69w\n", "u2YN8rkppdI8V//ZB3AlcF0lM4Ox6cHlo3jiQpq0yZIJszCLm9lJkvZJ+3hRUqOqgE0JZdAFkj6K\n", "F4CpRgK/lLSnmZ3SQMyleD73JYAf0tfJPYUXuOiINBq5QNLR1r0v8h+AM/Fgo73rber0yTS16Rjg\n", "GEnbmtmfumlQ7fiOsjapFhpyDz5X86H0Xh3fk/jIYzQpUkOiugYkLYnny+qGo/C04fVAsSMzZV2g\n", "Mmmep0o6G4+D2UfSQuQrqf3xDKOXmNmV8lT0t+QIkrQVbtKZfc4tz4OrVI2FzhlJG9Tc9sIDebJs\n", "woPIuxZYsra8BAWqEeE1YZtu82VgifR5FbyC12PAFXj8QlN5KwCLps8r4cnJ1syQszJe5vBnuHnn\n", "C8BCGXIWwZXTjfg8zSPp8w+ARTLPc3Zlunay8IpwawLzdHlNva22vAGpqhi1qledXEN4h/Y0biqa\n", "Bczsol3r4XMHuwPrdiFnDD5v8Mf02oXk1dhQztjUpkXS8mvxNBdF/s/MYzsMj7D+Dx7MeB1wRBfn\n", "+1JcAVya/ssRPb5RO3Gj+IdNLShrRv1CThd6ozJ3+MRT/bUtbhL4MA0mn3BXxurz34Ft8Ke4SfgT\n", "T5M27ZM6kBvxetE34pNZM4E9Gsj5Cu5V8x3gMryGwYF4Fs7NG7bpbHyUsnR1zvEYiH2Aswv+p2dm\n", "bDMJuBNXwBcCdwCbZe5//dSJ3JFeM5JCWIAGDzJJqSxeKRA89uXILs7LWNzctyL+oLBCppyvdLIu\n", "Q+4ywLwFr4OtMraZUZ379D4BT+iXs//xuJfjmqSSusD4UsfXdp8jKXxufOFPkt8Alse9BxbDq1vl\n", "yDo0dVI74rbxf9DGA2cYGS/hfu5HpdfRuLniKOCoBnJuqn2+quW7RqMVPCXGfKkzeYq+EccCNHi6\n", "TJ3a2PR5fuCC9HkFGtaYxes7NP5ukN+/ZZDXesB9GdfBNLy0Z7W8KpkeTjUZi5A54knbT03v02v/\n", "QW6N4N2Ah9J1MaN6ZcoaMLppei0MIvc8XHn+sOF2wieNW9fvl9GGqlb05bjiHA/cmnk8xbzmOn31\n", "4pzBx3H7cGvZvo4DoCrMbM8UGVulRzjMmuc02RA4GPcW+Y2ZmaTNrLkHwh+TV8P+wKmSvob7q2+B\n", "+9M34SUze1bSC3jg0yMAZva0mtUsNvzp5mX8xlggybkreUc04U5Je+Gphe8HSJP3n6H58V2FP8G3\n", "Y+FB1g/FODO7qVows5vTxGg21n0Ua8mEd1/FlV12fqSCjhJtMbN3pmC/N2Zsfib+BF6Xt2+GnDMk\n", "LYo/JFZ5tw5vIqDmgTe/PDV63QNv/ow2db7vpHGCDOTJpO6zVJFM0nx4cfY7GsoZiz99fQg3e5xo\n", "DaJza3J2wm3yKwPz4rbLvwA/MLOOJ58kHYMPSxfAlcFL+KhnC2CCmX20Qzlfwc1MV+ABSweb2ZFp\n", "UvOPZrZpgzYthp+bD+JZRsHNaafjx9cktcVM3B315jbf3W1my3cqK21zFK7wfg+z89iPsQ5rEIwE\n", "kiYAz1Ig4Z08W+mWllEKsiZjRfyBq+6UAD4Knm5mHXvKJEU70zJSaA8i7xjgV2bWcZGdDmSOx806\n", "jZS6pM/gloa3AvVyrk/iVRlHrPpazymD5CP9ddzmuYukN+BPPX/NkDUV2NBSOgp5gfdLzOytmW1b\n", "FvgpsJ6ZvT5HRgnSU/t2+KTjH/FsldvjT+C/suRv3qGsNfGUD9eZ2Y0j0NzGSNoON3MMaI+kbZqO\n", "7tKN/yX6RogXAb+2LpMOzi1IOhI3ff2NLtJ2FG7TaXjgW7eeZchrLKyCz/vUy5XmxGRUKd9nZzyw\n", "hinfk5yPmNkfm27XDb2oDE7Gh3CfNrM3JeVwqeUFLbUrZjE9R1aQj6SdzOyo0W5HN6h/Pd5WrOkT\n", "oQrWfZA0udq+pVH7ZcjaEPg5bs6ZF+80n2raLnnFtCpvVr0Db1xYSn2VyvqRMcIvkvK9Jq+Um2pH\n", "9OKcwcpm9lFJH4fZdvBcWQ9J+pCZnQYg6UP4RNurkjScfgYfHVw32u2psT8+4d41OYpFnhtpXwZm\n", "CG0yuqvq8Q5GU/PAIRSq+2Bmk7uVUeOX+Lzdybgp5NN4XeSmVOUf+0X/5zTIzO6QtAmeL+koSUvg\n", "nkBNWY8CKd8BJB2GO3Fsgc87bIebW0eMXhwZXIqnq77UPJBnZeAEM9sgQ9YqeKqFZdKq/+D1am8t\n", "1uBm7RGeZOvuEZK/Ae4JtIGZ7TUS+xhi30MFXK1qZvMW2k/OnMFN+CRrvXgPZjZqDwYqWPehJOor\n", "6zm7hGO7EXaHsrqK/q/JmYx35KuZ2arJXHty0/Mn6RTcTTYr5XuLrBlmtpb60m5MwPMUNU3K2DG9\n", "ODKYjE+GLifPMrkRPmHTmNTpvy15bWCpyPcoM8AzohRpgu1KfB5hTrMk8F484KyVS5sIGkaxLNlE\n", "VuIxMzszY7sByAuj7AtUk+tTgP07dQDQyNR9KMnTaW5tuqRDgPtobxobkkLR/xXb4CanqQBm9t/q\n", "nm7IEsD1krJSvrfwbHp/Jimnh/EYmxGj55SBmZ0taRrw9rRq926f4EooAUnL47bUSvNfiD9l/KdB\n", "O0zSVEkblPCMUMHaxQX4G+7JNKBEoqSmiQGLKZbE+ZIOZWDxnsYV7/A0DzNws4Dw4klH4UGInVA3\n", "Nz2L54eqM9rK4NO4h9OX8dQfy+GBlk35DrB+NRpIpp3zgBxl8LyZzVJfvqQFMmRAX13ork1XFHBT\n", "bUrPmInk9UlbD3b2n5V54xZD0rm4yen3adUOwA5m9u6Gckp6RhSrXTw3kbxjjjKzi9p8d4KZbd9Q\n", "3hTa3PSWUb6ynQNCjlOCBqn70LouB3nVuoeAPzVxCS1JGt2tXdnnU4zBdMvLpLonfs9sCRyEV0D8\n", "g5n9PENW16ardCwbmtklaTnLTbXxfntIGUzB/6D5cPtgVbxibeBfZrbhKDUNKNoJTEwf608njT0j\n", "kqxitYuDzpB0ObBnpajS5PShTa9PSdPM7C3Drcts45dxd+EVzayjLKqSTjGz7QYx0TV+WEkjsTfT\n", "l931Y3iEddZclqQt6RtFnWVmjYsTtTFdbYr/l41HK7nzKN3QM8qgQp55cV8zm5GW18RDzxsPVWvu\n", "gHUex33Ym6ay/iduDqinLt7JzBrXZlaXVanUV7t4N+BBuqhd3ItI+h/gXjNr7P2R/rtj6YuEfhT4\n", "TKf/oUag7kMJJC1jZvcUdOMUbjrbmL7rvGn0fyXrYDPbe7h1Hci5Fs862890lTkq/yGe1uJPJbyT\n", "OtpnDyqD681sjeHWdSjrb3g6ifPTqkm4SWUlfNKv42CTdJP8gr65jEuB3cysUaoFedTvLngHXqUb\n", "PrzJkFcFaxf3IpIOoi976XszZSwEYA3LQUraDE9K93ngt7WvngTOMLPGqZklfRV/UHkC+B2ex2kf\n", "MzsrQ1aRqP2SqMsiTvVtKGe6egpPP/EyUJWMNcuIE+l4nz2oDE7Ec7RUqQM+gU9MNrITJ1ln466k\n", "Va6cpYDj8GjdC83sTQ1kbVTZCIda14GcklWp2tYubl0XlKNbb6KanImlOliVrSrWVdR+6iQH67Qa\n", "dZaqFXECbqt9tWBq0w6dykryipqu5jQ9502EZxfdFU+vDO6185tMWctXiiDxQFr3sDzJWxN+ibu3\n", "DbeuE0pVpboUfwocbl1Po4IpTujemwjImyMagqJVxSpFAGBe9azjpIVmlhMMNhjtijgBPJFpCt2L\n", "/qarnMSVs5EHsW6aZF1gZjlFgDqm55RBGp7+OL265fxkKjoZv5C2BaakzqGjmf+ajXcJSV+nv413\n", "TEabjqLLqlQaxcyJr1COwt3/3pGW78FjMXKUwcpmVu/4J8vrBo8mJauKFYvaV5uoYTO7vdPt02jr\n", "cUnfAe43s+ckbQ6sJenYpt47yTz0p/TqCkk/wL2Sjsfvv90lvcPMvtmt7EH32YNmohKpAypZY+j/\n", "JHAJDSd8RsjGux79J9YG+OYPs/2OeCDeeszhzImvRNQXVTvb9pzjCZa2K+JNVIo0Ubs8HlB1m5k9\n", "Ji/HuKyZXTv01m3lFYnal0cNvxWPPq+ihk8xs3cMvWVbWdckWRPxwlCnAW8ys/d3uP0lZrbRICas\n", "LDt/MveuY2Yvp+WxeN2HxubejrERLJYwN76Am/Bi4UvhxVsWx4tPj3a7Jo52G9q06SOj3YZXwgs3\n", "nc1HX1WxlUmFTjJkrYO7Pd+ZXteQUe4Qd3FcCK8ncR7+9P2pDDnCM86WPmcT8Cf53O2n4yPnq2vr\n", "cov3VP/bXrjTBjQoMTpC19S1wGtry6/NPb5OXzlmiFc6j5nZmWZ2v5k9VL1yBEnaVtItkp6Q9GR6\n", "NfL+qLBR9KZoRdLukpa3OZxC9xXMZPqnOPknboNujJldY+6KuBZeu3oda+ganNjS3BNpK7wCWFWL\n", "uml7DDcTNc7d1Q5Ji0j6Ce6Lf4GkH0nKKSj0vJnNNlUpP2oY4AVJn8CjoyvTXtPiS0haWR4ghqTN\n", "0320SGabDgKmSTpaniByKl4ydsToRTPRD/C0uV2nDpB0G4UyQ85NSHocz056K3ACPvx+cHRbNXcj\n", "aXH63IIv7+IBYzw+9zQRv06F98mNUhdLmmmeov0IvJDQmV2YrkpGtf8ZnyA/hr4J8rWt/zxJJ3JK\n", "Rg2/CfeSutTMTpD0erze9A8aypmOm1YnkmFuaiNvGfqima8ys3tz5HS8vx5UBlMolzpgbs0MORGf\n", "WDtX0vx4WcaORyySrsYv6nfhwW9b408mJwB/trkjId+ooxFIcSLpLNz5YCr9M6D+qKGcH+DOA88B\n", "G+A1lc8ws7dltGliu/U5o9l2CqkLJdV11HBJqjkjeXnWZ83sF+1iGDqUdZ61BJy2W1eSXvQmmlRQ\n", "XNeZISX9Yoivzcx2b9IgSZ/Dg84Ww00Dy+Gus40uojQEPxs4W9Jr8HmW7YEf4fMsgZ+LQVOc4AGJ\n", "TVnWzN7TbcPMbJ/k9/64mb0k6Wm8rGqOrDsA5OVKxw/962F5VtIm1n+C/JnMdp2NX6NdIWlV3ASz\n", "Bv5fJvGNnUrq5qat0+R7I3OTPAhvfty7cLHaVwsByzZsTyN6RhlI2iN9tNr7Q8DF1sAdrYWF6T4z\n", "5NRam1qdt3OGbV/CnwQvh9nF2XPSMvc1wv3CTwNO69I2+6qierBIpo9drCXFSabYSyWtbRmeOnXk\n", "pT3PSorgu3hsyPfwlNFNZX0QV3zL4LE0KwI3AB0HVdb4AnBsbZ7gUeAzGW0qVskNdw3eF3c3n4TH\n", "Io0daoNB+CzuFfh9M7tdHm19XEMZn8djoJahL1spuCffLzPa1DE9YyZKrmitB/ta4D3AZDM7YY43\n", "qg3yPOpmZk9lbn+lmW1QG7KOA6Y1se9KWs3MbsrZfy+iAilO1JfAbSzwBuB2+ufEb5rIrSqOsjFw\n", "APBD4P9ZXhGna/GKW+eka2pz3DPps01l1WQujB9XlsNFyfk6pQR+qqWgUJdJ/dJT/XK5Sl3SbmY2\n", "lNWgOD0zMrBBSvelP+083B7eEZL2NrODBzHxNDbtJJlr4QnKXpuWH8QTlDUtL3mBpG/jAWPvxsPt\n", "G0UuhiJozLWSfkf/FCdNPYA6yv7ZgGq+YSs8N9VfJX0vU9aLZvaQpDGSxprZ+ZJ+liNInufoSFKe\n", "I0nrAt+05nmO7ivouPFc8uO/VZ6R9R6g8QhYXldja7xfnQo8mOYVv5bRJpO0qJk9mmQvCmxvZr/O\n", "kPziaVkAABfzSURBVNURPTMyGIqmkzyStjazM+TBWa2YmR2T0YbLgG+Z2flpeRJwoDUMokkX9c7U\n", "JtaA31n80SNGsvPuimeKhZTixDJyOEl6O3B99cQsj/Z9ozXMgCqPjP8v8G48pclzwBWZE7Xn4tXA\n", "DsLnix4A3tr02kyyuspzpL5Kbpvilb+6ruQmd5u9AZ9k/x5unz/EzC5vKOcaM1tH0v/iaWn2VUbC\n", "uySr3UT7iKa17nllkIa837XRqd5Vb0cxL4vglYs8GvYtlQ99Uu7/auqRkuZ23oOnU79FnmJkrTTp\n", "2rRNE/C5MQGfxDvL483s4QxZlfnq58AUM/tzk4cxSUczRCUxM9upaZtKkUx9W+Jus98xsytVq/Wc\n", "IevNLdfBtdYg+WVTesZMpPZFNRYF7sVn/5vIGsrsYpZX8/T2NNF3HH6R7wD8u0Gbhqrr29jmHHRO\n", "QW+UasNZtc8vp46gqYynk6lxY+AW4CU8biSnPU/V3JWPTu7KOROs0D/P0TfVMM+Rme2Yud8BpPvY\n", "GOi4kXbV+D7eHx+JX5IUwcr4uc/hLOBESYel9n0eD2wcMXpmZNDGV9qAh3MmapMJZzDMzJrW5K3m\n", "LvYDqriFi/CJ7XZ1etttPzF9/GJ6rysVrGGhjqBzJF1CnzfKB/G8TmPN7LsZsk7F62P8Bv//dgU2\n", "N7P/aShnMu7uupr15e452TLiYuruyma2clJ+v7G8wktjcLNVV3mO5FG5X7GUTC7Z1H/UZFI7Kcv/\n", "4POFlRmu7pnU+D4uRXoA+Bx9LuHn4ObelwffqktsFPNvzMkXHeRBARbMkDsvnjqgKmbSbTsXzGlH\n", "bftr2qwb1Twrr/YX7q0FbpLpty5D1lLASbhd/gG8o1oyQ07J3D3T03VelzUjU9ZG1b2IRx//BC+f\n", "2VROu+t8wLphZIzD42eOBa7Gva7e1MV1sBrujDIzLa+Nm4ty5VV9y1ol+pbhXr2Um+g0eR6UTeu+\n", "8vJ8IjunoWujqlRphHAz8Cvg18At8iykjZG0ljzydyYwU9LU5K+eIUob1xY2ov0wOChHP28USR8m\n", "wxsFwDxn1sfMbMn02t4yiqpTNnfP82Y2O3VLclfONSn8Fnha0pvxGhC34p1xU6RaUFb63Mh0ZWYv\n", "mecp+zSeSuRW3BvvyxntATgc+BZ9E9oz8EDNxrT0Lb+ii76lY0Za28wtL7xD/ABe0OIO3LXtEeAy\n", "4DvA0hkyp+HD8Gp5VfKfCC/DzQHV8iQ8V0pTOVUkbJX1cjo+ITnq/8Gr9YXnj1kQT/V8NB50+PZM\n", "WaWyje4JHIbHK3wOD0LcvYs2fRvP+Ptu4FQ8sCpHVpUhdF/gf9PnxvcMPs93E+79c0D6/OkMOVUu\n", "qFOAq3DvpmUzj+1f9WNMnxuNVmrbFetbOn31zJzBSNDOU6AL74Gi3kTybIlmDcslBs1II4KDzewb\n", "heRNN7M3S9oGjxH4Ol6TIueaKpK7J9n5/5cC7sqSLsQnQnfCXXEfJDNPvzzB3Bb4KOWfZnZ9w+2P\n", "w6Oo/w6cZCmCPBdJZwK74Ykd15X0EWBnM3tfhqxifUvH+wxlkI+ko/DgnirYaAdgjGVEZkr6Cx6o\n", "Up/4Xc/MtsmQtRXu2TI7j4w1zHoZdI68IM2GOZ1jG1nFso2WQtLWwN+sZnbqQtbr8KC8K83sIkkr\n", "AJPMLMdUhLzu+Hj6kgPe1WDbWfRlYW3FrGFqi+Q99H94TqrH8FHZDpaX0K9Y39LxPkMZ5CNPN/wl\n", "+nsA/dpq9tUGsrryJqrJOQx3b9wCt2Fuhwcb7dy0TUFnSPotnkvmFPqSrpnlBUB1lW1UBQvG12Qe\n", "j3dwfwSONLMbm8oYQvYmeGTtF4f9cf/t2uZLshH0wx+iLV8xs59J2tjMLk5xGWMsM9VGklmsb+l4\n", "n6EMukPSvLg9D+BGM3txlNtTBfVUkZ4TgH+Y2cbDbhxkkQKhoFAAVHK3fMw8xmAB3LuscYK5kshz\n", "CW2Pu80antztBMtIZy6vq7098FH86flP1jAPj0YgX1IuNdNeVrrqIeQuCWB5DgSN6ZmgszrqspB2\n", "Tc4kPNrwzrRqBUmfsbw4g9WAbzCwNnPTyOhn0/szybf8YTxsPxghrGAgVJL3cO3z0wxuyphjmNnj\n", "kv6Ijzq/iqen2EvSz62DgjLp+t4er4/xMO4+K8tPKV8sX1IBrpd0C7Bsm+BPa2LnlyR8cv3LJO8o\n", "SS8DvwD2L2GKHIyeUwb1YBz86eY1uF0up0jNj/Hygjcl2asCJ+LpgptyCh5o9Dv6kozl/PFnpACc\n", "Q+lLgXt4hpygQ+QJC+uRrAY8jnuXnDZqDashqTLt/NLMGqVClvQhfETwBtwNdH0ze0AeiXw90El1\n", "sRtwU8fWZnZLkpuTwK3iUXmG34uA4yU9AGRl+u0WM9te0tJ4bYWt6c6V+2t4X7R+9YAqr7z22/Td\n", "j7ts7qD0nJlIXppuXWBqNaTrwgOopDfRVDNbr+l2LTLG4BOZl6Tl8cB4S1Gawcgg6XD84eIUvCPY\n", "Fjd/LAb828y+OorNm428NOfbzOxvDbc7BjjCzC5s8927zOzcDmT8Dz4y2Ag4Ex8Z/M7MJjZpS01e\n", "lS9pDD65mp0vqSTyQlCV2fimpmZjeW6qd1tLmdlkwTjHIlFdOTQw3/8CwGWZHXjXM/5p4li4S9qD\n", "DKzN/EjDNo1oZsNgIJKuADYys5fS8jjgYjwv0Awze2NDecsysAbygI64AzkT6V/+dGyOjb8kqRP/\n", "EK4YNsdHGqdaRgK9mswl8NQyXXs7dUM7szGehr5js7Gk68ysbbDpUN+VoOfMRMApyeNmEXnOlc/i\n", "ppkcdsVn/Kv6BRfhkchNmEZ/c1Crv/pKDeWdm/yb/zSS9sWgH4sAE3B3QtLnxcyrjDVKYy3pYOBj\n", "uPmlnoemkTJQofKnpTHPBXY8btpZDPgIsA8dlq+UtCGeSvsRPNjsWDyt9pg0X3fmiDS8M0qYjYca\n", "SYyoc0rPjQygXDDO3EhyLZwf70iqjijLpTDoDEk741HsU/An+c3wLKZ/wN2D92wg62Y81XRXLoTJ\n", "HLoBcHnNHJqVW39uQtJU4Jt4ydnDgfea2eWSVgdOHM1RcQmzcZosHqwm9HxmNmIP8D2nDJJZ6Lnk\n", "trcabus9M8clVJ4DaF8GegA1Tl0s6UvAH2wOVjYKyiFpGbzzNXzi+L+Zcs4EPtqtOaeNObRx+dO5\n", "kboZVNINdRNcadfOjLbN8UCxkvSiMpiG23IXBS7B85G8YGY7ZMi6CXezm0ZtSG9mD2XIKlLZKPlw\n", "t/I4cGdl0w7mPtRXQnUZYB08L1G9BnKjUqqSDsXNVp/G3RS/iFdQ+3Y3bTSz3XK3L0G9w2/t/OcC\n", "ZTAvfq7nWKBYSXpRGVRPSrvhw65D2nXEHcq6wjqMDO1AVpHKRvLUCFWyOvD0tzPxYfWu1rzWbDAH\n", "kJdQHarQSqNSqhqB8qej3dmmNtTNKPPRF1cDI2xGGYo08rrOzFYfjf2XoBcnkKtJqB3wmwVolspb\n", "UuUCen56Amv1AJqW0axSlY3uwZNjzUxtXQPP7LhXamcog7kQMzu6sLyX8Tw5/1dS7mhjZrkV1kaU\n", "5Cxwk6QVzezO4beY++hFZfBVfALqVDObKU8udX5DGT+ivwfQW1u+3zyjXXvjqYZ3TcvnkOfltFql\n", "CADM7HpJq5vZbZJ6axg4B0lP4ktRu6esQdK0mpwZDBwhPI6bMw/o1I++oJw76LvWl5FURepnzY29\n", "ylkMr0VyJX1R42Z5ZXDnOD1lJko37CFmtsdot2Uoksvd8mY2PWPbk/Fw/xPxjuCjwBJ4IfOLzWz9\n", "km0NIJkc98UTptXnjnLSMh+K1yv+A/7/fRz3DrsPj2XYek7KaZE56maiuRn1FZ+pK2BrEmcwmvSU\n", "MoDZNvVS6YYPxJVLvQ7rHmb2nQxZF+Ch7OPwNBIP4oW1G4Xsp+CiL9I3iXUJHvvwHLDAaAcdvRqR\n", "dBuwQYno13Ydbm2eq2PX0FJyhpMZgKT5gC8Aq+BzdUfmeCeONr1U9rLiGrwE5qckbZteH86U9X6r\n", "pXpIbqEfyJS1sHnK2w8Dx5rZBsC7mgoxs2fM7Idmtk16/TCtmxWKYMS4C6+cV4KxkmY7JUjagL77\n", "tIk3WCk5dU7J3O7VzjH0OW28H/jh6DYnj16cMxiPRy+2ZgNtnHsej3ocb2bPwewnhNdktmusvPDH\n", "R/EAJsivMxvMASRV5sZ/A1Mk/ZW++rdmZjlJxXYGjkppGwCeBHZO8TEHjYKc2ZjZgTnb9QBvrEZa\n", "8qJEV41ye7LoOWVgZdMNHw+cJ+lI3E64E3nFvQH2xz19LjGzK9PE9i1lmhmMEAviCvsu4G78QSD3\n", "YQAAM7sKWFNePwDrX7b05Ew5sv7JCjuWMxiSdjKzo7qV8yph9kgreRWNZluy6cU5g9VwG/rS5uUF\n", "1wY+aGYHZMp7H335Xs4JP/7eQ9JHzezk4dYNI+NTZnZcGm3Ub8oqUV2jUYY8pfL38eLu700uxhua\n", "2RFN5Awh/24zW/7/t3fvMXZVVRzHv7+WohYpQgADStIAQRFohCoSrAkQQSOvKCB/1OIrSAJBNEhE\n", "CSAKCQoVAwYkJLQpDy3yiBYQCCE8kiogVEBIRAPlZVFEa1oQBf35xz5n7umdO4977pmeO7PXJ5nM\n", "zLmdnfXHdPbde6+9VhNjTXc9SkhU7z/Y06QUTI6Twf3AGcBPisM0kS6L9N0ur8nSFk1Rc01ywiSN\n", "d1jbxxgn2b5Sqd9Gr8ngvD5juoPUr+Msp453c4A17qPqpUY3aqnaw/bb+okpDLfstomAubYfLJdy\n", "ti2p7h/vB4BFRRbRnaS9wuNJF9ra0lSTnDCBYlX4KVKHq0vppBRuTZ8VJm1fWXz+TkPhbW97paQz\n", "i3HflNTvwfGOwCeBXn24Vw8aYBguOU4Gr0javfxGqdzzuppjyfbrSlUrLy9LW9QaKLXu++/E/3JC\n", "b9q+ooFxwsT+TEoDPrr4LNLEu4HUlWrSKrWJYPRlMbvP2kTARqVeyuX4B5AunfXjNlJL2DXdLxSp\n", "0GEGyXGbaDfSFf0DSe94ngUW215bY6w1pJz+SyhKQAyQw/0McBOwzPZTNX6+0SY5YfIkzRl0a7Cr\n", "NtF5wDl0JoQ6tYkWkvrm7kWqTbUDcGydi4whDzlOBrOLPf53ksrL1s4PL24cnk7KAPp+MdGcVuNd\n", "HJLmkW6JfoHU4epq4KeTja+rbMAotvttkhMmUGTqfIvUOOZ229dXXrvc9sk1x23kcldxTvC+4tu+\n", "WzCGvOQ4GTxPKgC3EriniZvITVNqn3cdqcz2z4Hv2f7TJH925N7DeM/C4CTdDDwNPEjqmPcf0irz\n", "jUH+oA/4s8fQWWFUt5sMYLvOfZqQgRzPDPYEjiDVHb9a0ipgpe0H2gxKqQTu4aS7CvNJxfCuJ/Ve\n", "uJ1Ok+2JrGZ0m71ez8LgdrNd3l6/RdJZpHsnR7cY05GMnzAQk0HoKbvJwPZrpFXByiIL6FJSu8K2\n", "S+M+XcTxA9vVTI0bKwWwxlTcXt4ZmKvU4KZ8ZziPVKAsNG9LSbNc9KCwfYGkl4D7SH2QJ02pXWn5\n", "R/wdkqqlQyadq97wpcoRkuYDu9u+u6h/tcUgW6xh+GQ3GcDINszxpLS5h0klINqMZzaw3PZ3e73u\n", "yXWXOox03vAe0qqitAH49qAxhp5uJV04HOmhbXu5pJdJh7eTZruvyWMslUtrm2QjUfPyWjHmV4AT\n", "SSWadyOdkVxB57JlmAFyPDNYSypWtxJYZXvjAGPtQlpZLCoe3U86QH6xxlgPu4Hy0pKOtX3joOOE\n", "6anHpbWRl6hxea0Y8zFSf+ffuNNyslbWXBheOU4G85pa3kq6m3TQe23xaDHpAPHQGmNdAswhTVJl\n", "Y4y6XdOQ9DHSf+AnbN9VZ4xQ30yq3SPpIdv7V0pgbwE8antB27GF5mQzGUj6ZpH+2Wv5XudSz1hN\n", "7Ov2U76XHu/obE+qa1r5H7b4+kTgFOAW0vbRrbZrVaoM9bRdu6fhVetFwHrgBFLixcnAU7bPaijc\n", "MARyOjMoL3I90uO1ujPiq5KWsGk3qb/VGcj2QTVjKM2pfH0ScKjtVyRdTEp9jMmgYRPU7tlxswXS\n", "2zLSqrU8D1tcPOt71QqcSSqJ/QTpd+t26rVkDUMsm5XBVCgyLC4DDigerQZOdb3etwNVmZT0OHAQ\n", "aVK6y/bCymu/s/3BfmMK45P0F8ap3WN7580c0ogmV60hDzmtDIBmq3oWJSz67iU7huUUVSaL7/9I\n", "qjs/2ZLD8+iseixpJ9vrJG3dUHxhtGGu3dPYqrVYAXVnKP2TlIl3vhto9xnal93KoHgHfQXwKJWq\n", "nrZ7bR+NNca5Y7xU3vLsmSI6wZi/tf2h6u3TJt7RFznh77b97CDjhOml4VXrRaQGLtWJZS7wMvBR\n", "2029IQotym5lQDNVPV9j9DnDVqR91e1JXcv61USVyVFsv04qxhcy0vCq9eNd5TEer2QWjXduEqaR\n", "WRP/kxlnlaRTJO0kabvyo58BnJrML7W9FLiK1Nnoi8DPgLoF4U4HVgG7SloNXAP0neEUAoCkFZLe\n", "Vfl+W6X2rHXMlvSRylj70/nb0W+PhDCkctwmWkvvFM6+/ogX7+K/TsrSWAH8yHavg8R+xowqk6ER\n", "vbYY6247Svow6TyrvCW9gbQKfhI43H209wzDK7ttItvzBx2jSNf8NKkvwgLbGyb4kcmM+VngDtu/\n", "l3Q2sK+k8+teOgvZk6Ttyj4Wxeq3Vv0t2w8Dexclu2V7feXlmAhmiBxXBp+n98pgRR9j/I9UrrjX\n", "O/dJFxXrGvMJ2/tIWgScD1wMnFNeJAuhH5JOIGWm3UA69D0OuKCf3/PKWAOlPYfpIcfJ4MdUqkMC\n", "h5Cu1h/bXlSdJbykC0klJK5rqslJyJOkvUi/3yb17ui7g14xzh0Uac+2FxTbmWts791ctKFt2U0G\n", "3YpDtpW2P9FyHLcBL5FuiO4LvAE8GJeEQtumKu05DJccs4m6vU79DKAmHQfcCRxW7MluC5zRbkgh\n", "AFOU9hyGS3YHyEVns9Is4AO0fAhWqQL5/vKZ7XXAuvaiCmFEd9rzDkCr26qhedltExWNbUpvAc/Z\n", "fqGlcEZI+gXwVdvPtR1LCN0i7Xnmy24yGFaSHiCdFTxEp5+BbR/VXlQhZ5KOodIljU5torLsSvRT\n", "nkGy2yYaYme3HUAIXY5k/PLuMRnMILEyCCGEECuDYSFpI513YVuSmtVsrHOBLYQmSDqd0aWrR7aN\n", "bP+wlcDClMhuMihu+J7L6H4Gu7YWVAqgrPuCpFnAUXTKD4fQhq3pvU2kMZ6HaSy7bSJJfwC+xqb9\n", "DLBdq/HHVIqLPSGEzSW7lQGw3vav2g6iW5G5UZoFLAT+1VI4IYyQtAtwKbCoeHQ/cJrtF9uLKjQt\n", "x5XBhaTqjTcD/y6ft10dVNJyOkvvt4C1wFW2/9pWTCEASLobuA64tni0GFhs+9D2ogpNy3EyuJfe\n", "VUsP3vzRhDD8JD3WXSOr17MwvWW3TWT7oLZjqJqKfsohNOxVSUvYtAfy0J2xhcFkszKQtMT2NZV0\n", "uZGXaDFNTtI3GL1SGemnbHurzR9VCB2S5gOX0cluWw2cavv5tmIKzctpZTC3+DxWulwrbF9cfi1p\n", "HqnvcdlPeWlbcYVQsr2WdBs5zGDZrAyG2VT0Uw6hKZJWkIoori++3xZYavtL7UYWmpTTymAoTUU/\n", "5RAatqDa99j2PyTt12ZAoXmxMmjZVPRTDqFJkh4DDrb99+L77YD7bO/TbmShSdmtDCTtavuZiZ5t\n", "Lraj21wYdkuBX0u6gZRwcRxwQbshhaZltzLo1WRe0iO2F7YVUwjDTtJewCGk5It7bD/VckihYdms\n", "DCTtSWpxuY2kz9AptjUPeHubsYUw7Gw/CTzZdhxh6mQzGQB7kNLjtmHTNLkNwImtRBRCCEMix22i\n", "A22vbjuOEEIYJjkeXr4g6RZJrxQfN0l6b9tBhRBCm3KcDJYBvwR2Lj5WFc9CCCFbOW4TRQXGEELo\n", "kuPK4FVJSyTNlrSFpM8RFRhDCJnLcWUwn6jAGEIIm8huMgghhDBaNvcMoolMCCGMLZuVQTSRCSGE\n", "sWUzGVRVmsh8GbiBVJs9Gs+HELKVzTYR9Gwis180kQkhhIwmg2giE0IIY8tmmyiayIQQwtiymQxC\n", "CCGMLccbyCGEELrEZBBCCCEmgxBCCDEZhBBCICaDEEIIxGQQQggB+D9JfVJuFczXqAAAAABJRU5E\n", "rkJggg==\n" ], "text/plain": [ "<matplotlib.figure.Figure at 0x7f5c973e6b90>" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "fig = plt.figure()\n", "ax = fig.add_subplot(111)\n", "ax.pcolor(test,cmap=plt.cm.Reds,vmin=np.min(test), vmax=np.max(test))\n", "ax.set_yticks([1,2])\n", "ax.set_yticklabels(Genders)\n", "ax.set_xticks(range(1,18))\n", "ax.set_xticklabels(Education)\n", "for tick in ax.get_xticklabels():\n", " tick.set_rotation(90)\n", "plt.gcf().subplots_adjust(bottom=0.20)\n", "ax.set_title('Heat map of average Earnings Gender Vs Education')\n", "plt.show()\n", "plt.close()" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "#Q4" ] }, { "cell_type": "code", "execution_count": 68, "metadata": { "collapsed": false }, "outputs": [], "source": [ "table = pd.pivot_table(data,values='Earnings',index=['Sex', 'Marriage'],aggfunc=np.mean)\n", "table = table.values\n", "test=table.reshape(2,5)" ] }, { "cell_type": "code", "execution_count": 74, "metadata": { "collapsed": false }, "outputs": [ { "data": { "image/png": [ "iVBORw0KGgoAAAANSUhEUgAAAYMAAAEkCAYAAADNfV1EAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\n", "AAALEgAACxIB0t1+/AAAIABJREFUeJzt3Xe8HGXZ//HPNwRIIJCA1NClSu+9BCIgvUtReCgPHQKi\n", "P5CmgAoCovjQHwQfQEBAugoiVVRAegfpEGogkV6T6/fHdS+ZLOecJJBz5mT3+369zuvszuzs3js7\n", "M9fdRxGBmZm1tz51J8DMzOrnYGBmZg4GZmbmYGBmZjgYmJkZDgZmZoaDgXVC0k8ljZD0St1paUWS\n", "DpV0dt3p6E6S5pU0RlLbXGckrSHpibrT8WW0zY/UEUnPSxratGxnSbdPovcfI+nrk+K9epKkuYGD\n", "gEUiYnDd6ekp5Xj4QNK7lb//6Y7PiojjImL37njvrkhaXtIfJY2UNErSoyXwD+rptEwMSdtJeq6D\n", "5X0lvSFpw4l8vzGSXpc0RWXZlOW9xnzZdEbE7RGxyJfdvk5tHQyAKH/dSd38/t1hbuCtiHirzkRI\n", "6tvDHxnAxhExXeVv2MS+SQ3pniCSVgVuAW4HFo6IGYBvAZ8BS9WZtmbVi3RxJTBI0lpNy78FjAau\n", "/xIfMxLYoPJ8g7LsS10TeuvvPsEiom3/gOeAdZqW/Rdwe+X5YOBy4A3gWWD/yroVgTuAUcArwCnA\n", "lGXd34AxwHvAu8A2HXz+zsA/gF+W93gGWKUsfxF4Hdip8vqNgPuBt8v6H1fWzVs+b3fg5ZKe73fx\n", "3QcC55fv9TxwOBm4vgl8QJ5g7wLndrDtIOCPZduRwLXAHGXdtsDdTa//HnB1eTw18AvgBeA14Ayg\n", "X1k3BBgOHAy8CpzX1WeVbeYr+/od4K/AacAFlfUrA/8s+/cBYK2JOR4q6+YHbgbeBEYAvwMGVtY/\n", "X9L9EPBhef0YYKfyXUcAh1Vef1QjnZXfrrPX9i/7YiTwWPmclyrrDyn77R3giS6+w9+BX0/AebFr\n", "+ZyR5EV27sq6McCewL/LPj21sq5P+W1HkMfyvuX1fSrH3DnksTkc+Ell3c6MPRfeBI7pIF1nAec0\n", "LbsUOKk8nqkcK6OAt8pxoU6+4xjgMODSyrI/lGVjKst2KfvinfKd9qisG8IXj9chTb/ND4Gny/aP\n", "Aps37a+Tyv56FthvQvdXt1wPu+uNJ4c/8uQf2rRsZ0owKD/WvcARQF/ywvMMsF5ZvywZEPoA85SD\n", "5oCmA+7rXXz+zsCnZABS+bFfpAQVYN1yEE1TXr8WsFh5vAR5Md2sPJ+3fN6F5MVjcfICOrSTzz6f\n", "zG1NW9L+JLBr5XNe6iLdMwJbAP2AAeWEvLKsm6akeYHK6+8Gvl0e/wq4irzIDwCuAY6tnFyfAseV\n", "79+vq88q29wBnFB+n9XIQHl+WTcHeWH5Vnn+zfJ8pgk9Hirr5geGlnTNBNwG/Kqy/nngvvKZU1d+\n", "j7PK8yWBj8gcOcCP+WIw6Oy1Pydz9APL+z8EvFjWLVyOmdnK87np4Jgrv/NnwJrjOSc2A54q79uH\n", "zCT8o+mYvgaYHpirHGPrl3V7AY+XNM5Q0jyasRe3K8ng3x+YGbiLcnFl7Lmwb/ncfh2kbdXy+zYy\n", "DwPJjMuS5flx5f2nKH+rdfE9xwCLkefQ9CW9r5Vl1WCwITBfebwm8D6wTBfH6xDGDQZbV36bb5OZ\n", "w1kr++tRMsM5CLhxQvdXt1wPu+uNJ4c/8gR+l8xJNP7eB/5W1q8EvNC0zaF0kFsu6w4Ermg64MYX\n", "DP5deb5E2WbmyrI3Gwd7B9ufDPyyPJ63bLtQZf3xwG862G4K4GOyTaCxbA/glspB3mkw6OD9lgZG\n", "Vp5fABxZHi9IBod+ZMB7r7pPyJLQs5XP/RiYakI+i7zwfUrlwlE+uxEMDmk8rqy/nkppawKOh906\n", "ee3mwH2V588BO1eeN36PwZVldzE2KB7FF4NBZ699Bli3sm63xu8DLECWIIdSSqWdpHfODo6PE8p3\n", "fA84vCy7jpIpKM/7kOfEXJVjetXK+kuAg8vjmxk357xueX0fYFYywFV/q+2Bmyvnwgudpb+yzb+B\n", "7cvj3YH7K+uOJjMa80/A+4whA/zZ5LG/FxmM56cSDDrY7kpgWGfHK+M5d8iS/SaV/bV7Zd3QCd1f\n", "3fHnNoPMWc/Q+AP2YWw9/zzA4NLQNkrSKDIYzAIgaaHSGPeqpLeBnwFfm8g0vF55/CFARIxoWjag\n", "fN5Kkm4pjVz/IYvrzZ/3UuXxi2Suo9lMZE7mhabXzjEhCZY0jaSzSoPr22QueaCkxn67iDxwAXYg\n", "c/IfkbmbaYB7K/vzupKehhER8ckEftZgMjB8VNl+OOP+fts0/X6rAbN18tW+cDxExDklHbNK+r2k\n", "4SUdF9D1vm94rfL4A8pv2YnOXju46b2Hf57giKfJTMhRwOuSLpY0ewfvPYq80Mxe2fbgcsxfSWYQ\n", "IPfZryv7q9FuVD02Okvn7Hzx+GuYhzzmXq2895nkMdHQ0f5rdj5ZnQawY3necCJZJXODpGckHTKe\n", "94qy/X9V3mucNj5JG0i6U9JbJc0bMu7vPs7x2kzSTpLur3znxRl7vDfvr+GVxxOyvyapdg8GHake\n", "DC8BzzVdHKaPiI3L+jPIqqEFImIgWaTuzn16EZnzmTMiBpEHR/Pnzd30+OUO3udNMkc9b9Nrh3fw\n", "2o58H1gIWLF877XI/dbYdzcCM0taCtiupLvxuR8Ci1b256CImL7y3jERn/UqMKOk/pXXz1V5jxfJ\n", "3Hf195suIk6YwO9ZdSxZhF+8pGNHvrjvm9M+qbxKfq+G6mMi4uKIWIO8gARZIqTpNe+TpY2tOnj/\n", "6jH/Ipm7r+6zaSPizglMZ/Px1/ASmYv+WuV9B0bEEtVkTsBn/A4YKmkVsuR+4ecbR7wXET+IiPmB\n", "TYGDJK3T1ZtFxO1k5mCWiPhHdZ2kqcn2whPK+hmAPzPu/uo0zZLmAf6XrPqasWz/SGX7rn7XCdlf\n", "k5SDQdf+Bbwr6WBJ/SVNIWlxScuX9QPIaoUPJC0C7N20/etksXNSGQCMiohPJK1I5rqbD8YjSloX\n", "I4velzS/SUSMJuvefyZpQDlov0eeaBOajg+BtyXNSNZ/V9//U+AysjFxBrJhl4gYQxbLT5Y0M4Ck\n", "OSSt92U+KyJeAO4BjirdAlcBNq5s+ztgE0nrld+un6QhkroqAXXW+2sAWV3yTtn+/3XxHpPapcCh\n", "kgaVz96P8ruX0uk65cL1MVm1MLqT9zkY2FXSIZIapds5GTdTcCZwmKRFy/qBkrbpIm3VTMClwLDy\n", "m85ANp4CEBGvAjcAv5Q0naQ+kuaXtOZE7Aci4nmyIfxi4IaIeOPzhEgbSVqglBrfIfdDZ/uiahMy\n", "eDSbqvy9CYyRtAHQ1bHabFryd3oT6CNpF7Jk0HApcICkwaVr7yHl9ZNsf00MB4MvCsb+IKPJi8vS\n", "ZGv/CDLSN3KyPyAvyO+U5b9n3IvzUcB5pZi3dVef1bSsM/sAx0h6BziSDi70ZDXK02Tu/MSIuLGT\n", "99qfvLg9S3Y1vBD47QSm42SyUetNsqfOdR28/iKyDvSyEgQaDinpu7NUt/yVzPl39rnj+6zvkO0O\n", "b5EN8JcAnwBExHCyQfQwsqHzRbKk0dVxf63GHWdweVl+NNlh4G2yR9PlHaS1WVfrm3/7rl57DFlq\n", "e468QFxG+Y5kg/Nx5LH5KlkFcWiHH5g533XIhtAnK9V0t5CdFoiIq8iSxe/L7/MwsH4X6ax+j7OB\n", "vwAPkkG6eR/tRF5cGz2VLmNslV1H50JnziNz0ec3LV+QPJ7eJY+V0yLitk7e4/PPiojHIuLx5nUR\n", "8S4wjLxojySrPq/u7H062P4xsrfQHWTV2uJkIGs4m/w9HyI7qvwJGF05X7raX5OcSsNExyul0SWh\n", "DZtFxIudvf4rJUR6Hlg2IkZ2x/u3Oknzkhf2vk0X37Yi6RLgsYg4uu60dBdJe5ONy2vXnRabdErJ\n", "44yImLeOzx9fyeCDiFim8tctgaDorvpWa2HKEbXzl2L0BmRx/6q60zUpSZpN0mrlOy5Mjg6/su50\n", "2VdTqi03VI6inoOsAr2irvRMdDWRpOUk3SrpHknXS5qtLL9V0i8l3S3psXKSXiHp35J+Utn+yrLt\n", "I5I6HI4v6buS7iqt8GeqjeY2+YraMaDORlZzvEuOYdgrIh6sN0mT3FRkXf47wE1ksDu91hTZpCCy\n", "KnkkOUblUeBHtSVmPNVEn5F1hpBVENuSo/o2iYi3JG1LDsDaTdItwJ0RcaikYWTd8LKMHVm7ZESM\n", "kjRD+d+fbKBdszx/DliO7F97PLBFRIyWdDpwR0Rc0B07wMzMctRmVz6MiGUaTyQtTo7QuzEb7JmC\n", "HCrdcE35/wjwaES8XrZ7lmzwGUW2nm9eXjcX2ejzr8ZHkI2OywH3lM/oz7j9ms3MbBKb2ImVRF7k\n", "V+1k/cfl/5jK48bzvpKGkBf7lSPio1Ka6NfB+5wXEYd1mRCpHatEzMy+soj4QhfqiQ0GT5KDiVaO\n", "iDslTQksWLpQjY/ILpmjSiBYhJxEbJw0knWiV0v6VUSMKH3LB3TUeP3ZLyd6QsmWM8Wex3DUz47j\n", "qMM77E3YVj7ceWN++ugLHLHYPHUnpXZTbbEJR//hr/x463XrTkrt+iy7Jked8huO2v+/605Kr9Bn\n", "kVU6Xj6e7cbJfZdh11sDx0t6gJxno6N37qz//PVkCeExsm/0HV/YMPv7HkEOKX+Q7IfbbX1rzcxs\n", "PCWDpmkCGsseJKcEaF6+duXxbeTgpy+sI+f26Oiz5qs8vpQc6GFmZj3AXTZbwJA1Vq87Cb3GmjMP\n", "rDsJvcZai052N9nrNkNWXLbuJPR6DgYtYMiaa9SdhF5jzVl69d0be9SQRSfltFiTtyErORiMj4OB\n", "mZk5GJiZmYOBmZnhYGBmZjgYmJkZDgZmZoaDgZmZ4WBgZmY4GJiZGQ4GZmaGg4GZmeFgYGZmOBiY\n", "mRkOBmZmhoOBmZnhYGBmZjgYmJkZDgZmZoaDgZmZ4WBgZmY4GJiZGQ4GZmaGg4GZmeFgYGZmOBiY\n", "mRkOBmZmhoOBmZnhYGBmZjgYmJkZDgZmZoaDgZmZ4WBgZmY4GJiZGQ4GZmaGg4GZmeFgYGZmOBiY\n", "mRkOBmZmhoOBmZnhYGBmZjgYmJkZDgZmZoaDgZmZ4WBgZmY4GJiZGQ4GZmaGg4GZmeFgYGZmOBiY\n", "mRkOBmZmhoOBmZnhYGBmZjgYmJkZDgZmZoaDgZmZ4WBgZmY4GJiZGQ4GZmaGg4GZmeFgYGZmOBiY\n", "mRkOBmZmhoOBmZnhYGBmZjgYmJkZDgZmZoaDgZmZ4WBgZmY4GJiZGQ4GZmaGg4GZmeFgYGZmOBiY\n", "mRkOBmZmhoOBmZnhYGBmZjgYmJkZDgZmZoaDgZmZ4WBgZmY4GJiZGQ4GZmaGg4GZmeFgYGZmOBiY\n", "mRkOBmZmhoOBmZnhYGBmZjgYmJkZDgZmZkY3BANJYyRdUHneV9IISdeOZ7sh43uNmZl1j+4oGbwP\n", "LCapX3m+LjAciG74LDMzmwS6q5roz8BG5fH2wMWAACStKOmfku6T9A9JCzVvLGlaSedKuqu8btNu\n", "SqeZmdF9weASYDtJUwNLAHdV1j0OrBERywI/Bo7tYPvDgZsiYiVgHeBESdN0U1rNzNpe3+5404h4\n", "WNK8ZKngT02rBwHnS1qArDqasoO3WA/YRNIPyvOpgbmAJ7sjvWZm7a5bgkFxDfALYC1g5sryn5C5\n", "/i0kzQPc2sn2W0bEU119wEoHnfn548FMweBu/Tq90xlb7Fp3EnqNG27q8nBpKx/99aS6k9BrbH3Z\n", "bHUnoVa3Pvg4tz34xHhf151Xz3OBURHxqKQhleXTA6+Ux7t0su1fgGHA/gCSlomI+5tftDxTT7rU\n", "mpm1oCFLfYMhS33j8+c/ueCqDl/XHW0GARARL0fEqZVljd5EJwDHSboPmIJxexk1Hv8EmFLSQ5Ie\n", "AY7uhnSamVkxyUsGETF9B8tuA24rj+8EFq6sPrIsv5VSZRQRHwF7Teq0mZlZxzwC2czMHAzMzMzB\n", "wMzMcDAwMzMcDMzMDAcDMzPDwcDMzHAwMDMzHAzMzAwHAzMzw8HAzMxwMDAzMxwMzMwMBwMzM8PB\n", "wMzMcDAwMzMcDMzMDAcDMzPDwcDMzHAwMDMzHAzMzAwHAzMzw8HAzMxwMDAzMxwMzMwMBwMzM8PB\n", "wMzMcDAwMzMcDMzMDAcDMzPDwcDMzHAwMDMzHAzMzAwHAzMzw8HAzMxwMDAzMxwMzMwMBwMzM8PB\n", "wMzMcDAwMzMcDMzMDAcDMzPDwcDMzHAwMDMzHAzMzAwHAzMzw8HAzMxwMDAzMxwMzMwMBwMzM8PB\n", "wMzMcDAwMzMcDMzMDAcDMzPDwcDMzHAwMDMzHAzMzAwHAzMzw8HAzMxwMDAzMxwMzMwMBwMzM8PB\n", "wMzMcDAwMzMcDMzMDAcDMzPDwcDMzHAwMDMzHAzMzAwHAzMzw8HAzMxwMDAzMxwMzMwMBwMzM8PB\n", "wMzMcDAwMzMcDMzMDAcDMzPDwcDMzHAwMDMzHAzMzAwHAzMzw8HAzMxwMDAzMxwMzMwMBwMzM8PB\n", "wMzMcDAwMzMcDMzMDAcDMzPDwcDMzHAwMDMzHAxawq133l13EnqNhz/9pO4k9BqPel987tYHH687\n", "Cb2eg0ELuPXOe+pOQq/xiC+An3vsM++LhtsefKLuJPR6DgZmZuZgYGZmoIioOw1fiqTJM+FmZjWL\n", "CDUvm2yDgZmZTTquJjIzMwcDMzNr8WAgqW/daeiNJH2hvrDdSPq6pAXqTkdvI2mKutNg9WjZYCBp\n", "CWArSYPqTktvIWkugIiIdg4Ikr4G7A/sKGn+utPTW0iaBdizcZxY5yQtL2ntVgqeLRsMgBWBbYCh\n", "DgggaXbgSEnDoH0DgiRFxFvAJcA0wLaS5qw5Wb3F0sCywNaSBtedmF5uNeBnwKqtUgPRcsFAUh+A\n", "iDgH+DewHbC+pAG1Jqx+7wE3AgtL2g3aNyAUiwKLA7sBu7RzlVHjGIiIG4C7gSWB7UtJwSoaJYGI\n", "+DW5r44A1qo1UZNIywWDiBgDIGk/MpczNfD/gA0lDawzbXWonOjvAtMBMwA7Sdq5LG+rgFC+7wbA\n", "gcAOwDHkPvl2u5YQovQvl7QhsAvQnyxV7yhpjjrT1ttExGgASfsAjX1zlqQhjYzo5GqyTnxnJC0I\n", "7AhsHxGbAmcB3wbWkzRdrYnrYZUTfRfyAngucC+wsqQ9Gq9p5YDQ+G6Vk3U24NGIGBUR55Elpm2A\n", "/STNV1Mya1WqUvcFhkXEdsAJwHxkkJy11sT1MpIWA/YE9omI9YFTySqjIZPzedQSwaCDiPwKMJJs\n", "NyAizgZeBo4n2xBa4ntPCKW+wPzAcRFxI3AsWcTdUtLuMDZotBpJfSrfbdry/+9An1JCICL+TFYp\n", "9gfe6flU9rwOLlrvlf/LAkTEFcDzZIDYSVK/nktd79LB9WI48BSlZBARJwOPABcDq/Rs6iadyb7h\n", "o5zsjaqhRcriZ4B/At+Q9EZE3E9eAOYB7mi8vlVV90m5EH4m6QWyp8jtEfGSpCvIKoGlJc0QEaPq\n", "THN3KI3FjWNjL2A5SU8DD5Olo/UkrUgeL/MAB5fG5ZZWDQSlraQv8BxwHrCkpHUi4mbgFrI+/NqI\n", "+KiWxNas6foyDzBFRDwr6S1gFUkjImI4cBMwN/BCjcn9Sibr6SjKyd6oBjkY+CYgMtf7D2B9YDDw\n", "KbAEsFVEPFlTcntE0z7ZAZgXeIwsGa0LzAWcSDae7gXsEhGv15PaniFpJ2APsrH4L8CvgEvJfbAd\n", "MCXwi4h4qLZE1kDSFmR72nPAf8iL/4JkABgBrExWG11XPa7aRdO59H1gPbIH2o3AzcD3yBqIqchG\n", "960i4pmakvuVTbbBoOmHWgf4QURsKOl0YM6I2LR0j5uN/KFun5x/qIkl6UBgCzK3ty9wOhkktwaG\n", "AgHsFxEP1JbIbtI4NkoOuC/Z4+NqsgfRzsCGEfGJpAER8Z6kqSPi4xqT3ONKieA3wIZkpmA7YFWy\n", "k8EswPLA0xFxV5sGgikqjcUbkefKBpJOARYoj+cAFiKPqxsi4qkak/yVTZbBQDmgbPeIGFaerw6s\n", "BAwCVgA2j4iPJK0YEf+qMak9pik4DgBOiog9Je0NbBkR6zYuepJmAD4rPYxaSlOxftaIeL30nDoQ\n", "eDMivlnW/QB4PyLOqC+1PUfSVBHxSXncjzxXvk9Wke0E7BQRT0taISLurmzX6I02+V0oviRJi5Id\n", "To4umYq1yRqGBck2gU3LebRMqYJuCZNrQ+pTwM8krS5parLBeEOywXirEgj2AX7RLt1JK4HgG8D7\n", "wCeSbgc2JqvLILsKrlR60bRcIIBxuhZ/Dzit/P7PAi8CF0saJGlb4LvAbfWltOeUDgRbS/qWpOWA\n", "n5KN5bMA+5EZq6clrQecKWnexrZR1JDsWpTg9x5wGtnGNIg8nw4iG9c3KIFgb/L6Mv3k3IOoarJq\n", "QG7k+srFvh/wHbIKYEPgcnJU4IGSxpB9yLePiLfrS3H3ayoRzEPWY54O/I0cUXpWRIwp9eYHkcGh\n", "5TTth+8C2wPblN//b5LmBpYhj5nRwI4R8VhtCe5BEfGZpH8Bt5Ln/JoR8VzJLHwM7CzpSbKkcHBE\n", "PF9bYmtUKVW+WKqAtgNmAv6bbGNaB/huWbcDsF1EtEzvs8m1mmg/shSwP9kYOD3ZT3xdMnoPAH4X\n", "EW1z41NJs0fEq5JOJBsEzyZzfVsAbwILADtExCM1JrNbdFBFthVARJwnafrGCVtKkQOAT1vpJB6f\n", "knMdRGaY5gSOioiLyrp1yEzDQLJd7cY2rRqqHkN7AUuRpYPdyQbifckMxvzAjMCZrXZ9mSyCQdMP\n", "tS5wKLB1RIwsJ/8pZB/y75aGwc/rjduBcuToUeTAl/vI3g77R8QNygFDMwMjWrHXUNOxsTfwdbJx\n", "fKnIAUGN120DPBERD9eT0p5VvaBLmjYi3i/LlwZ+C5wbEadIWgh4JyJea96upqT3uKZjaA1yVPrG\n", "EfG+pIXJTFUf4JDS4eDzxuVW0uvbDFQZNFR+qOWAb5A5HCLiPfLHCuDCslnbHMjFSHJKhRPJ/XMp\n", "sLekuSLi9Yh4pBUDAYzTVrIasAlwWEQcDPSV9HtJc0jalQyUH9aY1B5XAsHmwO8l/UXSRqX32IHA\n", "/pJOI8+ZOarbtHEgGEqWpGchx51ADkY8hZzW5gTlALSWzGhOFiUDAOXkajuQpYIdgCmAU6OMG5A0\n", "DTAwIl6tL5U9qxy8g4FryZ4Ou5G9Q2YEDiGn5LioFU/uxklcTs45yXaSmYH/joiHJU1Fzkz6Njm2\n", "YlhEPFpfinuecoT1T4HNyJLjVuQUChdLWpycUuGaiPhrfamsT1Mg2B0YAlxA7qdngEsjB5iJrB56\n", "t1UzVTCZNCBLWpMcLbt1RLwmKYCNyNzv/0bEYxHxAfBBrQntZh1Ufw0kg8BvyRGQtwKPR8SDkkYD\n", "97RoIKiOsG40+B0K/AhYXdJ/IuIlYAvlLJP9GtUkra4SJPuTdd37kKXFBckBZqdJmiYizpF0QOlc\n", "0HZVQzBOqXJ1sivpdyLijXJ9WZ/sgXVl5PiBp2tMao/olSWDygEtsi1gFzKne1xEnFZesyzZoDMG\n", "ODJKH+pW1ZSL+RYZCB4GXiVHV59OmVYgIjaoLaE9SNKe5PiST4EzyczAUWSX0evbrVdM5bxpDCTb\n", "gazeuAD4UUTcI+lycuT1msAb7RYA4AulyunI2obNgWMj4vzymm+SAeIx4LSI+LS2BPeQXlcyaMr9\n", "9isNNqeSJ/yKkraKiMsj4r7ShfTlVg8ERR9gtKR9gb3JRuKDgP+LiDMkbUaOrt1A0uCIeKW+pHY/\n", "5UCy3cjSwALkVArfIqtFfk6Oszg/Ij6rLZE9rFzgFie7F/+wtKe9J+lZYA1JMwIfkQPMWra6oytN\n", "15cpI+JtSceSYwmWlDQ0Im4qvapGA4+1QyCAXhYMSsRuDBo6gJwI6gPg/Ig4s1F8U46kvShacCqF\n", "ZpIWi4hHI2K0sn/zRsAmkf3EhwK7ShoeEddK+jlwfLkItJRqyagYDJweEdeX9a+SXQFXJbsbP9lO\n", "gQBAOT375uT0K/3LsinJaUhWILtHHhRliglor6qhpuvLvmSV4rNkm9vJZOZqfeVo7esi4pYak9vj\n", "elVvoko1SKN//GHA14DzJG0aEWeRxbZV1Ab3JVCOHL1K0gUAEfEyOTpyiKS+EXETcDuwm6QpI+L9\n", "VgwEMM6xsamyO/Gn5MRhjfWXk9MITxcRN5d91dJUNJ5Hjio/B/gdOe300iVXeyFwADAkIq5pBNZ2\n", "CgQwzjG0Lzku6URyXNLJ5IDVX5A9EVctHVLaSq8IBqrMF64cWTyabNHfkmwTOBg4uXSNO5ms/2zJ\n", "6RQalH2ZP4uIBcmD81dl1U1ktchq5flIclBZu5zYuwNHA78ki/VnSJpN0o5kXXivKu12t0YbgaTj\n", "JR1BnjsnkFO07CZpuXIcjSZnrm071YBZqsoGAJsCa5TFZ5LVjauQx9b/lA4pbaVXNSCXeu+PyIbA\n", "u4HrySkFRki6CZgVWLlVc78NTY3FG5B14XsAJ0fEoZJ+RI6Q7EvOob5zRDxYW4J7kPJOZIeTUyeM\n", "JruPvkzOHLlnG3Yf3Zi8gB1Kjh8YQE6j8Am5j2YkZ/Rt6cxTZzrogdfIcM5L3qFsM7LX1TVku8FW\n", "7dLzrFmtuSiNO8Pk9mRd73nkHCBnkAFhsHLgzEO0aH14lcadXfLbwHHk3EtXAmeXEsPByum5lyBv\n", "3zi8vhR3D0krAB9GxCPKW3a+ADxB3n1rKvI+DCeXYyOAaaKNppiAz9sI1iN7DS1G9oy5n5yue1Oy\n", "9DSoXQMBjDNx4b7keJRnyWq0t4HPyGvghsDjwBHtGgigxmDQ1JgzD3lCrx45e+IOwA/Jk/4jcnKx\n", "zaMMmW9VpSfIEEmnlZJBkL2FngSeVI7Aflg5D/8+ZFVAy1HOITQ/cJty8Ni7ZH/5/5DVZCcA50u6\n", "McbOtdTygaC50Tci3pV0NJn7PxTYluxqfD9Zql4xIkbUlNxaNWU0VyV72l1AthEsQzamP1eWfYMs\n", "EbxRT2rDEs8FAAAIR0lEQVR7h1qCQdMPNYycTng64KTSM+YiSe+Txbj7gRNbPdcnaX5yXvlzgMUk\n", "vQmMIm9IfkJEfBw54O5CYDNJswGvt2IjYOSNZn6vnBfmErKd4GpyTMGpZLfaweQNWFpu4r2ulDaC\n", "tclcriLi/FLt8RB5d7IVgKuAy6LNbtjT0JTRXIbsXXVERPxFeWvcA8kMxf5kr6upI+LN2hLcS9TS\n", "gFz5obYgT+gdgT+S1R4rl54xV5N1ng+2eiAo+pI5lq3JOXZ+QN5a78/AA5KGKO9eNguwUkS81mqB\n", "QNJCklaVtI7yvsxPkt3+jgeWjYi/k4OlbiX3TVvcuAjGGSi1KnA+OcXGIco7+71Lzk31a+AK4G8R\n", "cW9zb6N20NTeth85Ov9gYBvlyOsnyOro2cneRO85EKTaGpCVfebvJG8Xt5ty+Pzh5Mjaa4Fb2mGw\n", "h6SvA2+VwS9DyUnmTiHnmZ82Io6QtD/Zg2gBciK2lmssLg2hx5A3oRlA3k5wE3KisD3J+1sfGxH/\n", "rC2RNZO0Ill6vD0iLiklgluB64BjgYWBvhHxQPWi2I5KZ5RdyS7qi5IB4Frg7Ij4UNKC5FxDLV31\n", "PDFq61pa+oEfAGwoaYeI+JDsFfEZ2Sg2ZV1p6ymlGuQK4Czl/QhuIkePzgcMB6YodcLnR8QBwBYt\n", "Ggg2AI4EvhcRm0femvJc8uRdoHQnvgH4uaTla0xqj2rk6iu5+xXJxs5FJE0XER+RJcnVgKkiZ6d9\n", "oN1KA82Ud7dbC1gZmLW0Kx1JZi6GSeofEU85EIyr9q6lyptNHwf8vLQV9AVmaIeGr/JdzyMP3JvI\n", "UsF0ZK74IeB1MnfzMjnNwuhWy+0p78f8FrBZ5CjqfuUiRwmE3yVvvjIleeG7LnISupZWbSwu7Umv\n", "Rc6vvyXZmP4zsppsSXLk9TcjYmRtCa5RR6UgSXORd0EcAHy/tLetQU7Wt3O77quu1B4M4POc4f+S\n", "Q+Uvqzs93U15C8b+EfGkpJkZe/OM4eTskmsBT5K322tUI7XsXDIlQ/BzYO2IeLMpINxKnsz3qkVv\n", "KtIV5aRzx5BVQcuS003sQ3YnfYEMkudHxJW1JbJGTZ1R+kZlCpJSBbsHeb+GQyLilVIqaKv7Wkyo\n", "XjECOSKuIycdu6/utHQ3SdOSRdbDJW1eSkDPAY8ClwH/B7xBnuy/iJyeu2UDAUBE/Ils5PtXaTj+\n", "qHQphewy+ml5XcsHAkmDJX29tP0uTJYItyX3w0xkz5dfk6WBucjbu15Ztm2r6qGmXkN7A0eW/dYH\n", "ICKeBc4ixxQcrZzO/KPaEtzL9Zqh+xFxQ91p6AmlqH8kMBQ4VdLs5I009gSejpxmeNfy/KIak9qj\n", "IuI65cCgeyUtH3lL0/8iR523Rd1u6fZ4BTkN9whynMkFZGlxG/Ie1u9JWq10KZ0OOEg5Sd8drVaF\n", "OD6VXkNrU6avqYzPabzmOeV9wT9sh8zEV9ErqonalfKeDCcAfyUbAacHdouIZ9Rm93FuKFWGJ5Aj\n", "0HcE9og2uG+xcpqNa4FfRcQ5Zdkg4B6yKmjxMshsLbIUtWtEvC5pH+CPEfFiXWnvaU3dRxckO54s\n", "AKxbeuW1dU+qL8vBoGaS5iTvqrQceUOS7wO/bsdA0FC6mV4JLB1tMtdQKQ0uHRHDSjXHMuR9eJcm\n", "u0ceT1aXHQocFRFX1ZbYGnWUSSoBcl/ypkYXl1KlA8JEcjDoBZRzzvcnp9A9qQy2amtlgFDbzBxZ\n", "LmjHAj8h77A1DdlT6C/A6mQ70mPAzaVKrV3vR9AoERxAjsL+GjCMrHZdh5y/6tKIeKu2hE6mek2b\n", "QTsrg+s+JXs+GNBOgaC4m+xAcDzwFDma+FGydNC4tesH8MU5itpFJRDsQU7Etx05HclLEfHjkqna\n", "mLzL3W/buXT9ZTgYmPUC5UJ/svJWnZ/3gZe0JDnP/iBJH0ZRW0Jr0KgaqpQM5iN7H+4A3EuWqIiI\n", "P0h6D3jAgWDiORiY9SKNQFByueuRAzIPjRa/p3VXKhf2FciBdv2Bs8keV1tGxMeSDgZGRcTZNSVz\n", "stcrxhmY2VglEKxE3pP3iIj4U+k/31bjCBok9VHe6vRSSZsAvyEDw+VlTMp3yDmb/lZnOid3bkA2\n", "64VKQJgpIl5txzaCTqaY2AxYLyL2LY8PJdtX5gT2j7H3trAvwcHArJdr526SpSRwG9nBYiA5ovjI\n", "iHhIOfPx2+SobPce+oocDMys12geRyDpD2QgeIWchnpT8r7FW0Yb36KyO7jNwMx6haZJ51YuczN9\n", "m6wOeoW8w11/cvLGJWpLaItybyIz6xUqgWA/stvofWSPqpUi4iRJd5Ezt44mB+HZJOSSgZnVStL0\n", "lcerkzehWQd4lpyk8F2AiPh7RPwPsFSZkdQmIQcDM6uNpAXIqadXKIteIWdu/SGwATn53GeStis9\n", "rIiIj+tJbWtzNZGZ1WkgOd3GFpJGkyWBYcAnEbEMgKQdgV3IuwG2/B0Q6+LeRGbW48pNjEaVx4sB\n", "2wP9gJOBWcgJ+k4mJ6JbG9ipHaYyr5ODgZn1KEnrAqcDfwYuBBr3tN4TmJqcpG9mcrbWaYGrI+Kp\n", "GpLaVhwMzKxHSVoauBP4BDgcOICcrXVh4E0yEJwSEc/XlcZ25DYDM+tREfFAucvfbeS9ndcjq4KW\n", "I9sQlgb6SDokIj6pL6XtxSUDM6tF6UF0I3BgRPxWUl/yhj7rAddExGO1JrDNOBiYWW1KQLiBnJ31\n", "tLrT085cTWRmtYmIu0uD8r/KzXvOrTtN7colAzOrnaRlgA98/+/6OBiYmZmnozAzMwcDMzPDwcDM\n", "zHAwMDMzHAzMzAwHAzMzw8HAzMyA/w+sd+WcVMi8hQAAAABJRU5ErkJggg==\n" ], "text/plain": [ "<matplotlib.figure.Figure at 0x7f5c9657fc50>" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "fig = plt.figure()\n", "ax = fig.add_subplot(111)\n", "ax.pcolor(test,cmap=plt.cm.Reds,vmin=np.min(test), vmax=np.max(test))\n", "ax.set_yticks([1,2])\n", "ax.set_yticklabels(Genders)\n", "ax.set_xticks(range(6))\n", "ax.set_xticklabels(MarriageState)\n", "for tick in ax.get_xticklabels():\n", " tick.set_rotation(45)\n", "plt.gcf().subplots_adjust(bottom=0.20)\n", "ax.set_title('Heat map of average Earnings Gender Vs Mariage')\n", "plt.show()\n", "plt.close()" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "#Q5" ] }, { "cell_type": "code", "execution_count": 35, "metadata": { "collapsed": true }, "outputs": [], "source": [ "table = pd.pivot_table(data,values='Earnings',index=['Sex', 'Marriage','Hours'],aggfunc=np.mean)" ] }, { "cell_type": "code", "execution_count": 36, "metadata": { "collapsed": false }, "outputs": [ { "data": { "text/plain": [ "pandas.core.series.Series" ] }, "execution_count": 36, "metadata": {}, "output_type": "execute_result" } ], "source": [ "type(table)" ] } ], "metadata": { "kernelspec": { "display_name": "Python 2", "language": "python", "name": "python2" }, "language_info": { "codemirror_mode": { "name": "ipython", "version": 2 }, "file_extension": ".py", "mimetype": "text/x-python", "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython2", "version": "2.7.11+" } }, "nbformat": 4, "nbformat_minor": 0 }
mit
irzaip/chippy
speech/.ipynb_checkpoints/Cipi_recog-checkpoint.ipynb
1
1928
{ "metadata": { "name": "" }, "nbformat": 3, "nbformat_minor": 0, "worksheets": [ { "cells": [ { "cell_type": "code", "collapsed": false, "input": [ "import snowboydecoder\n", "import sys\n", "import signal\n", "\n", "# Demo code for listening two hotwords at the same time\n", "\n", "interrupted = False\n", "\n", "\n", "def signal_handler(signal, frame):\n", " global interrupted\n", " interrupted = True\n", "\n", "def interrupt_callback():\n", " global interrupted\n", " return interrupted\n", "\n", "'''if len(sys.argv) != 4:\n", " print(\"Error: need to specify 2 model names\")\n", " print(\"Usage: python demo.py 1st.model 2nd.model\")\n", " sys.exit(-1)'''\n", "\n", "models = ['cipi.pdml','ya.pdml','enggak.pdml']\n", "\n", "# capture SIGINT signal, e.g., Ctrl+C\n", "signal.signal(signal.SIGINT, signal_handler)\n", "\n", "sensitivity = [0.5]*len(models)\n", "detector = snowboydecoder.HotwordDetector(models, sensitivity=sensitivity)\n", "callbacks = [lambda: snowboydecoder.play_audio_file(snowboydecoder.DETECT_DING),\n", " lambda: snowboydecoder.play_audio_file(snowboydecoder.DETECT_DONG),\n", " lambda: snowboydecoder.play_audio_file(snowboydecoder.DETECT_DING)]\n", "print('Listening... Press Ctrl+C to exit')\n", "\n", "# main loop\n", "# make sure you have the same numbers of callbacks and models\n", "detector.start(detected_callback=callbacks,\n", " interrupt_check=interrupt_callback,\n", " sleep_time=0.03)\n", "\n", "detector.terminate()" ], "language": "python", "metadata": {}, "outputs": [] } ], "metadata": {} } ] }
lgpl-3.0
peterfig/keras-deep-learning-course
.ipynb_checkpoints/TextModels-checkpoint.ipynb
1
318618
{ "cells": [ { "cell_type": "markdown", "metadata": {}, "source": [ "# Text Models with Keras\n" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Dense vector word embeddings\n", "\n", "A _dense vector_ word embedding means we represent words with number-full numerical vectors-- most components are nonzero. This is in contrast to _sparse vector_, or bag-of-word embeddings, which have very high-dimensional vectors (the size of the vocabulary) yet with most components zero.\n", "\n", "Dense vector models also capture word meaning, such that similar words (car and automobile) have similar numerical vectors. In a sparse vector representation, similar words probably have completely different numerical vectors. **Dense vectors are formed as a by-product of some prediction task.** The quality of the embedding depends on both the prediction task and the data set upon which the prediction task was trained. \n", "\n", "When we use word embeddings in our deep learning models, we refer to their birthplace as the _embedding layer_. Sometimes, we don't actually care about the trained predictor (skip-gram and cbow models); we're just interested in the embeddings by-product for use elsewhere. Other times, we need an embedding layer to represent words in a larger model such as a sentiment classifier; there, we may opt for pre-trained dense vectors. " ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "When we don't care about the trained model and just want to create meaningful, dense word vectors, there are two popular prediction models: **skip-gram** and **CBOW** (continuous bag of words). Word embeddings constructed in this manner are termed **word2vec** or **w2v**. We will also look at another more recent method, **fastText**. In any case, we've first got to construct training data from our corpus. The exact procedure depends on the model." ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "### Keras Models" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "Let's have a look at the Keras models we'll use in this section. (I'm keeping the code as markup since we haven't defined any of the parameters yet. We'll run this code after we develop input data and parameters.) " ] }, { "cell_type": "code", "execution_count": 4, "metadata": { "collapsed": true }, "outputs": [], "source": [ "from IPython.display import Image" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "#### skip-gram" ] }, { "cell_type": "code", "execution_count": 5, "metadata": {}, "outputs": [ { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAqkAAAC/CAYAAADdNkVoAAAgAElEQVR4Xu2dCbwVZf3/P3FZLlfg\nEuKaC2qaJGoSapqa298lNdxySUxzw6VcwF8iij8VRSyBtFxT08RcEXDf0kx/mkqY/iBLK8U9BeWy\nXNaL/9d7muE3Hs65c5Y555577ud5vcjgzDzzzHuemfnM9/kuX5KbCZiACZiACZiACZiACVQZgS8V\nOJ46SeyzvMD92nrzBknNbT0IH98ETMAETMAETMAETCA/AoWI1E6S/ijpJEl/zeh+sKTjJR0oaUV+\nh67oVtdLuj0cfxoHXlvSjyRdXqXnm8Y5ug8TMAETMAETMAETaDMChYhUhOhhko7KMlp+Gy5p1yoV\nbf0kPStpM0mLSqDdVdJXJZ0paXNJu0lqKaE/72oCJmACJmACJmACJpCFQL4idTVJr0k6WNKrYT9H\nSLpD0iRJvSQtDi2pXST9l6TRkuZLOlLSQ+E+60i6LOznAknrSbpa0lutXB0E4duSTpD0iKTfSjpP\n0jlh/6eEVtJukn4p6XFJF0n6uqSDJE0J+74yFKr3ljATNpX0Rrj/3eG5VaPluIRT9K4mYAImYAIm\nYAIm0PYE8hWpWA2fiFkifxAKwwMk4aeKEIxE2xhJ35e0n6SNJD0saQ9Jz0t6UdI0SQjGayR9W9K2\n4b/looGIPTUUvXeGllwE8nclsez+B0kDJP1T0p8l9Q0tvv1DscrYPwvHhDvCEEmfxw6GdRSxnGkR\nZZt3M7aNduP8GBPnZZHa9vPYIzABEzABEzABE6gxAvmK1G0kjY+JMiyoj0q6NeSBCwCWzu9J+ke4\nDB75reK7uVcoMh8IBSVL7lhn/xWKWYRrrnZjuB3il7a9pA8lvS9prdA6erikGaFIPTn8Nyy6f4tZ\nf7eUNFHSwAxBipjN9LHlOFiBNwwFbubYLFJr7Ebw6ZiACZiACZiACVQXgXxFaiRCsRxiecRiiTU1\nWvqPRNtpkp6WxLL4vPBUD5V0uqRfx6yZWB/rw36OSbCkIlJfCd0CIpH6O0kbx1BijUWkMp5vhcKS\n/mdKQsAighnTc6EvKZbVUppFain0vK8JmIAJmIAJmIAJJBDIV6QSGIVvKCIVC+VLkn4Si5bHV5W/\ns5T+uqRNJH0SHjuypLK8f52krUJLZuTnGonIXEONi9RI2E6QxNI/aaXIOMDYkkQqAU9TY8ePjsdS\nPyIay2m8dZb0M0kLswzMItW3lgmYgAmYgAmYgAmUkUC+IhUrJMv7+H6yVE/QE9bVHSWRmupJSbPC\npXV8RJ8K/UHXDa2YuAJgzfwg3IYAqIvDACusoCzdY1El8ClTFCJSsZDyWyRssdgyHsQxgVu7SHo5\nwZKKK8LZWSLyCeYi+GpZBmd8Uq8IA8IyL4FFahknpbs2ARMwARMwARMwgXxFaiQOSTFFMBHR/ARE\nEfhEuyVcvke4kubpGUlrhr8hRvlDYBLbs+ROmx76h2J1JfgKF4JsPqDkOEWAIlZpwySNC///5FA0\n7ylp6/C48eX+uFsCwpoxXJrCZY9blh04lQJQd2ECJmACJmACJmACcQL5ilT2OUPS6qEVNeoDIYrl\nM9P6iegkyh7r5Kfhxl8O3QUInloiqTEUvAjTBZL+R9LeOQKVMq8afSEOm8IfENHZluWj/diecWA1\n/chTwARMwARMwARMwARMoLoJFCJSo2j8b4TR9YWeWbQ/SfUJfPp5aI3Fn3SD0FcUn9FyNPK20jim\nmwmYgAmYgAmYgAmYQJUTKESkcioEHxGshG9pMW2N0Fr6NUl/kcRyfSWWy0lbxfGw4LqZgAmYgAmY\ngAmYgAlUOYFCRWqVn46HZwImYAImYAImYAImUAsE8hWpDaEFtRbOuZbOpRauh8/BBEzABEzABEzA\nBFYhkI9IJSKfEqCZ5USjnKXxpP7ViphqU++FAVos+5OlIMrjWuyYyaOKPy19Ue6VilytBW8Vexzv\nZwImYAImYAImYAIdjkCSSI2E6EGS3sigQ1J/BF9SxahqgPpgmLeVVFakj9pP0lBJ5EIttpFWi0IF\niHfywG4naQtJy4vt0PuZgAmYgAmYgAmYgAn8h0CSSCVpPblPSZpPgBMpnK6UtI8kKkidI4lk/CTq\njxLr0y8WxqtDwdZN0k/DXKlUcKIYAHlUKZ+aq5H3FOsn+14m6R5JJ0maG475h2Fu1o8lHSfpobCj\n3SXdEeZo5VgXhWIUKyfb0u+boeWT8f6zyIlAcQNysBJIRr/kjaVfUmgh3N1MwARMwARMwARMwARK\nIJAkUhF8WCFvD4XYK2EZ0l+FAhCL5CBJXwlLju4WLqPfL+k3ki6RdFVouTxU0gHhfj8ORWyuobMt\nwhRrJUUDbgiT+VN1iupQF0raPxTNpK36jqS/hsdGqH4o6S5Jd4f9TJR0a5j66rNQyFKxin+LN0R4\n1yyDIh8rAjlqiFPyuvJfyqnCkTKtT8SKDpRwWbyrCZiACZiACZiACXRsAq2JVH6jfOn5oaV081CE\nUVEKa2hUheqIsNwowhQxS8MKirhEwL4maafQ0hiJuT/mIVKxgm4VVonConu0JI7Fkv3pkn4fHotK\nUj1Cy+5boTWTsqwUE8AlgQpZiG0sq4hsGsv0fWKVq6JZgLA9LMuUoJxqVOWKn7NVnKIi1utZ+uzY\nM8xnbwImYAImYAImYAJFEGhNpEYi9PBQpGLdZJn9wHDpP/JXPTlcemf5/NVwDCyHU/4UyykVpvj7\nvPA3ypwiXHEHyNVwMVg7JvgQqQRvYbl9IRSv8X2xmBLAxViw8tLIwTo6FKaIzytCgctvUX97FJmn\ndRtJWGcpxRr5oCKEfxsK+yIuhXcxARMwARMwARMwAROICLQmUhGhRK0TGIWf5XclTYgFB0WBU/iE\nsgw/XBLVpGgEELGcvksoXPvFyqMiGJMsqblE6vfCsRCshE8o498kDICaJYliAe+H/4a1dEdJuCBQ\n4SouUo+UtG4WqycinLHGA6pY/seH9snYtIl8UqPzilgcGxPCnmUmYAImYAImYAImYAJFEsjHJ5Vl\nfKyE+GtSaQqL6ZQwoOq2MHAKAbtvGFC1LAxkYll+pKTnJT0maUy4FI+FM/JJxUo7J0MAciq5RCqB\nT4+HQvVcSY2S/hCWOyV4CxeAgaFQxerKMbF64oaA7yoCGQFK8Nc7WUQq4nfjLCIVgYpQjVok4LHg\nEtiFKwLuBIjz2UVeC+9mAiZgAiZgAiZgAiYQEkgSqYhFlrSJzqex1I/IpOH3iSUR0YovKIFDCFXa\nn8L/T7DReqFoxb+UZX7+i0UUNwDELm4BWDnjLdPSiasBApJjrRWK2q+HO2DFHRb+fzIOnBjriCAq\nsgicFeYx3UHSS6ElFwGNRbfYht8t5xM1/G+x7rqZgAmYgAmYgAmYgAmUSCBJpH45XKZHGJJqidYz\njIDHAprZ1gyX4P8d/kDCe4Qr4g0rLMfDKjkiXBbnN8RmPCgp31PiWEskEXkfbwREYen8VNLi2A+k\ns2J7UmbhT5pGTlOqV8GIJP7x6P98z8HbmYAJmIAJmIAJmIAJZCGQJFLZBT/L/mFO1EIhRtH8VGVi\niR9LKEnvvxmKOvxZJ2URmoUeJ9/tGQ8WYFwFsPa6mYAJmIAJmIAJmIAJVCGBfEQq1lCWsgmiKqZC\nU/cwiT7L/ET4k5s0ivSvNJJSz6XS4/XxTMAETMAETMAETKBDEshHpHZIMD5pEzABEzABEzABEzCB\ntiNgkdp27H1kEzABEzABEzABEzCBHAQsUj01TMAETMAETMAETMAEqo6ARWrVXRIPyARMwARMwARM\nwARMwCLVc8AETMAETMAETMAETKDqCFikVt0l8YBMwARMwARMwARMwAQsUj0HTMAETMAETMAETMAE\nqo6ARWrVXRIPyARMwARMwARMwARMwCLVc8AETMAETMAETMAETKDqCLQHkUqVqDMkTZH0T0nfl/SZ\npCclrSPpGEm/lLSw6uh6QCZgAiZgAiZgAiZgAkURaA8itV7STElHSHpZ0h2Sng+F6aaSnpO0eShc\ni4LgnUzABEzABEzABEzABKqLQHsQqdVFzKMxARMwARMwARMwARMoOwGL1LIj9gFMwARMwARMwARM\nwAQKJWCRWigxb28CJmACJmACJmACJlB2AhapZUfsA5iACZiACZiACZiACRRKIF+R2iCpudDOq3T7\nWjqXKkXsYZmACZiACZiACZhAaQTyEanflnSqpBMk/UXSt7JE0h8r6SuSLs1jOFdJ+l9Jv85j27Q2\n2VLSe5IWhOewq6RPUuocPmuEKbJS6tLdmIAJmIAJmIAJmEDHJpAkUkn/9GdJB0l6R9KrkrbJYlXt\nJ6m7pNfzwHm9pBlhCqk8Nk9lkwclXRSmsBosaT9JQyV9XkLvvSQNCMX2NZKuLqEv72oCJmACJmAC\nJmACJhAjkCRSSZx/lKSDJXUNBes9kk4J+zhM0jOSviPpy6E18UxJb4eW10ck3SjpAkkjJY0LBe/4\nBFG3pySsn90kXSaJY54kaa4kxvxDSbdI+ljScZIeCseze5hHdU1JPwuFKWKU47Et/b4p6cXwnCgO\nUGw7NBwX+//YIrVYjN7PBEzABEzABEzABFYlkCRSSZyPFfJ2SZFVlf8i0FjmptLTZpK2k7SupJ+H\nYg33gNGS7pJ0digOD5e0k6TLJZ0Yitdc1yQSgBdLeljSDeH2HA+BfKGk/cOKU1NDkfzXcAkfofph\neOy7QyE5UdKtkn4XuipwXo+G/xYfAxWsEOOZrSkUyNnGiwh/xSLVt5cJmIAJmIAJmIAJpEegNZHK\nb1hCz5c0LRSpVH7Cn/Pd0KJ5p6Q/hgJu7dBSimj7l6QxklaT9JqkAyQhImkIV/ZpbXkckcry/FaS\nWsJSqEfHqk6dLun3YX9YaXtIYsn9LUl7S3pKUl9JXcKxIkqxrCImaT+S1Cccb5wmY8M6nNkQ2liB\nLVLTm3vuyQRMwARMwARMwARyEmhNpEYCEwtoJFLxSd1W0rywRwQp//appLhIjSyLUdlS/hvfJ8ny\niItB1B+Hwu0A6yy+pC+E4jV+UlhMfyDpZEm/Cn+YHFpzORbi84rQJzXe3x6SVpQ4P2xJLRGgdzcB\nEzABEzABEzCBTAKtiVSW9fHdPCaMiOfvCNJ4dH8k0PAVzSZSCajCkvrV0CeU4xM4xb+1ZknNJVK/\nF45lSOgfy/g3CQOgZoVR9u+H/4a1dEdJu4XL/HGRemTonpBpHcXXlTHHA6pY/sfv9klbUn0DmYAJ\nmIAJmIAJmEBlCOTjk3p/GIwU+aTiAnBOaFHFqokARbjGRSpiFv/RTuHS/tOhHynL99NjgUZYaedk\nEYC5RCqBT4+HQvVcSY2S/hD6wmLtxQVgoCSEKlZXXA7IRoBPLb6rWFQRoFeG2QoyRSrid+MsIhWB\nilDN1mxJrcxc9VFMwARMwARMwAQ6EIEkkYpY3FrST2OBU1+P8TkiFH5xyySW0pdjgVGbx1JTEWGP\nbyqiEXE3RdJz4VJ8HHumpRMfVQQkWQbWCkVtNA7E8LBwZ/xSCcqKGkFUCOSzwgj/HSS9FApnsg3g\nG1tqI+/r3x04VSpG728CJmACJmACJmAC/0cgSaSSVgp/U4QhAjNq/Du+nES959NYMu8d9rU8tsO+\nkhCbuYKSWuubNFNLsoyBgCisvox7cawD0lmxPT61RPtvISk+lnzOw9uYgAmYgAmYgAmYgAlUgECS\nSGUIVJPqHy7xpz0kcpxOKkDslnp8zpfIf1wF/lRqZ97fBEzABEzABEzABEygPATyEamdJQ0Kg6hK\nqdBUnjMorNdaOpfCztxbm4AJmIAJmIAJmEA7IpCPSG1Hp+OhmoAJmIAJmIAJmIAJ1AKBQkQqVtRC\ntq80n2ofX6V5+HgmYAImYAImYAIm0G4JFCI6q10EVvv42u0k8cBNwARMwARMwARMoNIELFIrTdzH\nMwETMAETMAETMAETSCRgkZqIyBuYgAmYgAmYgAmYgAlUmoBFaqWJ+3gmYAImYAImYAImYAKJBCxS\nExF5AxMwARMwARMwARMwgUoTsEitNHEfzwRMwARMwARMwARMIJGARWoiIm9gAiZgAiZgAiZgAiZQ\naQIWqZUm7uOZgAmYgAmYgAmYgAkkErBITUTkDUzABEzABEzABEzABCpNwCK10sR9PBMwARMwARMw\nARMwgUQCFqmJiLyBCZiACZiACZiACZhApQlYpFaauI9nAiZgAiZgAiZgAiaQSMAiNRGRNzABEzAB\nEzABEzABE6g0AYvUShP38UzABEzABEzABEzABBIJWKQmIvIGJmACJmACJmACJmAClSZgkVpp4j6e\nCZiACZiACZiACZhAIgGL1ERE3sAETMAETMAETMAETKDSBCxSK03cxzMBEzABEzABEzABE0gkYJGa\niMgbmIAJmIAJmIAJmIAJVJqARWqlift4JmACJmACJmACJmACiQQsUhMReQMTMAETMAETMAETMIFK\nE7BIrTRxH88ETMAETMAETMAETCCRgEVqIiJvYAImYAImYAImYAImUGkCFqmVJu7jmYAJmIAJmIAJ\nmIAJJBKwSE1E5A1MwARMwARMwARMwAQqTcAitdLEfTwTMAETMAETMAETMIFEAhapiYi8gQmYgAmY\ngAmYgAmYQKUJWKRWmriPZwImYAImYAImYAImkEjAIjURkTcwARMwARMwARMwAROoNAGL1EoT9/FM\nwARMwARMwARMwAQSCVikJiLyBiZgAiZgAiZgAiZgApUmYJFaaeI+ngmYgAmYgAmYgAmYQCIBi9RE\nRN7ABEzABEzABEzABEyg0gQsUitN3MczARMwARMwARMwARNIJGCRmojIG5iACZiACZiACZiACVSa\ngEVqpYn7eCZgAiZgAiZgAiZgAokELFITEXkDEzABEzABEzABEzCBShOwSK00cR/PBEzABEzABEzA\nBEwgkYBFaiIib2ACJmACJmACJmACJlBpAhappRP/vPQuqqaHQuZD1QzaAzEBEzABEzABEyiJwEBJ\n2zU2Nm7ftWvXAUuXLv3KkiVLGpctW1bf0tLSqa6ubkWXLl0Wd+vWralr167vL126dEZTU9OLkl6S\nNL2kI7eycyGiBDFWyPblGnOufttqfJ9//nn716lf+lJwaav5+lZ6Pvl4JmACJmACJlDLBA5ZffXV\nhyxatGjPNdZYY8VOO+1Ut/3226/2ta99TRtuuKHWXHNN9ezZU507d9by5cs1f/58ffzxx5o1a5b+\n/ve/68UXX1z43HPPtXzyySedunfv/uScOXMmSpqUJrBCRElbicB8z7etxmeRmu8V8nYmYAImYAIm\nYAJtSWCj+vr6H3fq1OmkrbfeevnRRx/de7/99tMGG2xQ9JjeeecdPfTQQ7rtttvmvvrqq51XrFhx\nw+LFi38l6a2iOw13tEgtlaBkkVo6Q/dgAiZgAiZgAiZQPgLrNzY2Xrxo0aIhp5122udDhw7tgsU0\n7YaF9frrr1929dVXf6l79+4Tm5qaLpD0brHHsUgtltz/7WeRWjpD92ACJmACJmACJlAeAiPq6uou\nHT58+IoRI0Z0/vKXv1yeo8R6/eyzzzR27Njl48aN69TS0nKepLHFHNQitRhqX9zHIrV0hu7BBEzA\nBEyg9gm0/wCOwq9RITqr8N5b32Obvn373jZo0KD1fvGLXzSWw3KaNGAsq2eeeWbTtGnT3ps9e/bR\nkl5J2if+eyHw2srnM9/zaavxWaTme4W8nQmYgAmYQEcmUBPvy3wvYBsHJB8v6cZrrrlGp5xySr5D\nLtt21157rU499VT6P0HSTfkeyCI1X1K5t6uJm66Nb6bSr4J7MAETMAETqHYCNfG+zBdyW71XO3fu\nfNm666576r333ttr2223zXe4Zd/u5Zdf1qGHHjrvgw8+uGb58uXn5nNAi9R8KLW+TU3cdG11M5WO\n3z2YgAmYgAm0EwI18b7Ml3VbvFcbGxtv7t+//0EPPfRQ7z59+uQ71Ipt9+mnn2q//fab+/rrr09u\namo6LunAFqlJhJJ/r4mbri1upmS03sIETMAETKCGCNTE+zLf61Hp9yoCdeDAgQc/9dRTjfmOsa22\n23333ZumT59+X5JQtUgt/QrVxE1XhpupIzrI5zubCrnv8u0zvp3ZF0PN++RDIHPulmWuNTQ0XNbc\n3DwynwF5m3ZFoCbel/kSL8N7NeehWeIfNGjQyS+88ELvfMfX1tvtsMMOc6dNm3Zda0v/hbws2yow\nKV+OiyU1SFqR7w4pbVcTN10Zbqaa4JLSHFnZTRk4Zxui2ad94dyfcszd7zQ0NEy55JJLep511ll1\naWD65JNPdOCBBy6YMWPG1Hnz5g1Jo0/3UTUEOtSzqULPey7u8RtssMH4V155pVc1LvHnmn0s/W+z\nzTbz3nnnnWG5gqlqSaSSLHZ7SR9U+HasiZuuDDdTTXBJey6VgbNFatoXyf1lJdDK3N2ssbHxgRNO\nOKHfFVdc0TUtfIcffnjzY4899lJTU9MBkhak1a/7aVMCHeq9UKHn/TaSpr/00kuqpiCpfGcZwVTb\nbbcdmw/Mlp6qlkTq78NksU/kCyel7WripivDzVQTXFKaI7akpg3S/VWcQMIzokfv3r0f3Guvvba9\n6667WNFKpQ0fPnzJTTfdNKupqWl/SW+m0qk7aUsCHeq9UIb36irXrm/fvjMuvvjiLaohzVSxE4v0\nVBdccMHM2bNnD8jso5ZE6mhJLDdV2o+pJm66MtxMNcGl2Jsu135l4GxLatoXyf0VaklduX2vXr0m\nDhgwYPDUqVN79O3bNxWS48ePbxk1atT85ubmwZL+mEqn7qStCHSo90IFnvcj9tlnnxGPPPJI1QdK\nJU24fffdt+nRRx+lKtUXKlPVkkglGdhdkjZOgpHy7zVx05XhZqoJLinPlVx+fWkfxuzTJur+8p67\nDQ0NY9Zcc82fIFS32mqrVMjdeeedOvLII+mL/7kzlU7dSVsQ6FDPpjK8V+PXbP26urq3Z86c2akt\nKkmlPXmoTLXFFlusaGlp6ScJ982g1ZJI5XymSnpG0vgUAd4gabik+Tn6bPOb7u2339b222+vv/3t\nb6Im7/Tp03XJJZdo6dKlOuSQQzRkyBB16dKlVSRF3ExVzyXFOZBaV0VwznbsDsd+8eLF2nrrrfWn\nP/0pmOPFtqlTp+qmm27SlClT1KlTp5Xd0P83v/lN/e53vwuOk2/L1V+++2dut2LFCo0aNUrnnnuu\nevToUWw3ZdmvkLlbV1d3an19/fhJkyZ123vvvVMZzzPPPKODDjpoUXNz86glS5aMS6VTd1JpAm3+\nvqzkCRdyzxQ6rsbGxt8MHTp0yOWXX9650H2rdftzzjln+fXXXz+xqanpR7UqUreQ9LKk70t6KKUL\nsSh0I+ChOCaLWG3zmy4uUl9//XV9+9vf1q9//WttuOGGOvnkk7XHHnvohhvQNblbETdT1XNJ6fqn\n2k0RnLMdv8Oxj0TqK6+8ooaG4l0eEZXjxo3TH/7why+I1GXLlukb3/iGbr31Vg0aNCjva56rv7w7\niG34zjvvBOL50ksvXfnBWUw/5dqniLk7uEuXLvf8+te/7nzMMccUYhDJeQpvvvmmvve97y149913\nb1y4cOFZ5TpX91s2Am3+vizbmWXpuIh7Jt/hbdS1a9c3Pvroo86lfLTne7BKbffZZ59p7bXXXr50\n6dLNJL3FcQt5cFR7CqqI436S7pF0fkoW1TNCHwnMLjCYkCFWE2+6efPm6cQTT9SVV17JBQgsOe+9\n915gMeHleMIJJ+iiiy4KXr6nn3667rnnniBK7+abb9aAAQOCbam/y9LZGWecEbzAeFiz/LX66qsH\nohQLEP9+xRVXqK6uThdffHHAg5f6PvvsE2zfq1evnHOtiJupZC6VmvjVdJwiOGcbfrtk/+yzz+rY\nY4/Vv/71L/3iF7/Qj3/8Yy1fvlw//elPtfvuu2vYsGHBfJ4wYYJ+//vf67//+7+DbZjTn3/+eWDp\n/P73vy+c7Gl33323vvOd7wT//6233tLw4cM1efJk/eQnPwn2pS9atFTMqgL3Yn19fSAG//3vfwf3\n06OPPhrUlL788stFpCkitZj+4pbZ6KIx7nPOOQdhpZ122kkvvviiLrvsMk2cODGwlHJM7nE+JFkN\nee2117TmmmvWikgFw3Y9e/a8f8SIEX1HjhyZSoqqBQsWBCmqpk2b9nhTU9Mh1XR/eyyJBBLfl4k9\ntKMNUnrer3LG9fX140455ZSfjB8/vvUl0nbEKhrqsGHDll177bW/XLx4MSvYNSlSOS8sqlg9twz9\nl56WNFPSR0XmUZ0jKaovtjRDrM7jRdRa40W84447auzYsdp11121yy67aNasWcIH4+OPPw5eTjNm\nzNCee+4ZvMh4qSFUEa5vvPGG5s+fr8022yx4eSFWN954Yw0cOFDjx48P+uUFSEOkfvTRR4FIZXsa\nL8PRo0dr5syZ6tw596pAkTdTSVza4f1T8pCL5JztuO2KPelRmOf33Xef+vXrR/1mHX/88YEwRXwi\nHhGTWDJZBeADjmXik046KRCxhx9+eLAdFtV7771X//M//xOIUe4PAnQ233zzQHDSLwL1/fff11NP\nPRUI2aOOOkoPPPCAWlpaEDc67LDDdP311wf9cS8ihNnnoYce0rRp04L7q9D+7rjjji9YZuMXjKV7\nlvERpAjUkSNH6i9/+Yu+/vWvB9bbuIvBP/7xj+CjM3LdKXnCpdhBCXN3fSL/jzzyyK9dc8013dIa\n0rHHHrto6tSpr82dO5cUVZ+k1a/7KSsBi9QU8DY0NMyfPn16j1rwRc3EgS4aOHDggubm5p61LFKj\n8yaYCgW3oyRU2xqS0npILpPEn4YkkcpgeEEhVnkh9u79n4IQvJB4ySIkEab77bdf8Pfu3bsHlqN9\n9903sJYiRHmhsj1C9fbbb9fDDz8c/DcSp1iU4i+2JUuW6Kqrrgpe8LxAjzjiiFZvjfAFlMLtEzDJ\nm0saB2xPfaTIOdtpVy37oUOHaq211lpp4ahkrCsAACAASURBVH/66aeDFYQ///nPgShjdeFb3/pW\n8OHGx9o///lPde3aVeyHpZGViC222CJYpl9//fWD+4M5jcik3/POO2/lh9gHH3ygr3zlK4HFFkHI\nSsIxxxwT8OKeufHGG3X11VcHIji63xYuXBisVNx1113CfabQ/rD8ZrOkckwENWL71VdfDY6JeOae\n5J4lP2A0BrZlxYMP1RoTqZxa5969ez+w884773zfffet1toHcyH386hRo5ZdddVVH86bNw+h+loh\n+5Z527JU4irzmHN1X8iKa9IQLVKTCCX/fsgOO+xw4/PPP99uKksln9IXt9hxxx3nvvDCCydImlTI\n5Gsvy/2F8shn+5KtViwjshyJdZQlSV6sG220UbC8x4tq0aJFwQsyHtARvaB5ycZfXPw7S5K8uLO9\n2Hgpsj2ClqXMbbYh12/rrUgrSclcksZVa78XyTkbhnbFHjeWX/7yl184D+Ynwg2x9txzz2mNNdYI\nRBoW1shnFCHL/OXfCGjiPorcVviNf1tnnXUCN4DMxn3APRK3VLJCwWoEy/u33XbbyvstCpzCkotI\nLbS/1kQqflZYZh955JFgPFht77//fg0ePDiw8Mb9xWtYpAaXp0ePHjdsuummR0ydOrUnHxtptOuu\nu+7zs846a9HixYsPlvRYGn2m0EdNiLEUn1cR0prgku/8KAM/3Jgmjx49+sD2nBc1iR8uXaNGjZoy\nZ86cgyxSk2hJ+P9dFgZPFeWTyiFYzuRliz8Vlhx8U/FDo7EUjwWJ5UpEK8v1kaUIayqWprhIZTte\n8Fh7aPjPYYXC+sILFlcALDUskeZruSviZkqFSzL+2tqiCM7ZALQ79qwI7LDDDoE4ZEWBcnjRXI1H\n7SPSWLLHlxrLZKZIjUf3R7+xMsHy/ZNPPhn4eLOsz/7cB9w3iGMsrjTcDfj72WefHbgaRG4w8cAp\n7sVC+2tNpHIvI3oJamS1hFUTlvppiGI+QqNW6yKV8+zWrdv5ffr0OXfKlCkNYaWZkm9yAtgOO+ww\nAi74cr+l5A5L76AmxFhKz6s4zZrgku/0KAM/Ylfmv/766z022GCDfIfR7rYjiLR///7Bkr9FavLl\nSyWSmhcVVhSWNVnKJCKPGrs777xzsPw3e/bswCKEheWAAw4ILEm77bZb4LvK0n1cpPIbfqgEYeA/\nx5ImLgOIVKw0LHPyIma/qOG70ppgLeJmSoVLMv7a2qIIztkAtDv21113nX7+85/rhRdeUGNjY5B1\nAgsjH1P4ZUbiszWRissLH21RgBOiFxcYPgAjayxL9lhIEaGIYI7JEv/zzz8f+IXiSkDWC77U11tv\nvUC04qfKNkcffXRgqeUjsdD+MlNaZV40rLn4xk6aNIk0SkGg2F//+tfAkswHa0cSqZxrXV3dj+rq\n6m64++67O2NRTqPh93zggQcu/PTTT8cuWbLkkjT6LKGPmhBjKT2vLFJLmEgZuw7ccMMNn3777bdz\nR0Gnd6w27alfv37zZs2atZtFavJlSC0nJQEfWFEIkiLCmBfm/vvvr7PO+k8mlQcffDAQqFHjBcoL\nLbKu8ELu2bNnYGW98MILV/r38XLFx49+zzzzTN1yyxcNCflECxfxMEqNS/IlqJ0tiuCc7eTbHXs+\nmAh0IiiKhuWf+b7aaqt9If9p5nI/bgJ8YLHcj0hF2EWNQCtWC2isTkTuL9wjfMhhSUXAfve73w38\nQmlkF2BpH1HKByH3Fw3RiKjlnsOyW0x/uXxS6Z/zIpgR/9NNN900yPSB9RXXH0Rx1DJzHlfTzE9p\n7sZPae/6+vr7JkyY0P3kk08u5F2UE8u7776LG8X8N998884FCxac1Ib8LFKzw0/kwgoJLm2Zdeh5\nrxEQGa0gtuG1zfvQZbhnTj7qqKOumDhx4mp5D6KdbjhkyJCFt99++9mFPBg6sk9qa5c58aYrZI40\nNzdr7ty5gd9dUjJvlkx5wWGZKrWV4WZKlUup51ct+5eBc7ZTq1r2zFkaqwjFNiywCMLMeU8WDApY\n8O+ZgTlk0UAQ8yfeon2idFXZfsunPwLAmpqasq5W4K5DEFh7b2Wau1v16tXrgdNPP32d0aNHp5JO\nB3eSgw8+eOGzzz77bBj5v7wN2FftPVgIizJc80QufHiyEpIpUvmAI3ajf//+hZxCm26bNj8S+I8e\nPfpYPvhrvbEaPGrUqFssUku/0ok3XemHKH8Pad9MpOnKJ+tB+c+suo5QBs7tSqRW19VIbzSsZCCe\nMxvXGz9Ui9RWWa9B5P/gwYO3uuWWW7qndVVOPfXUJXfcccff586du3+8zGJa/Sf0UxPPvzI8rxK5\n5BKpVBzjHsM9h/SLuOsQjIiFldRu//Vf/xUYbTD0kHaRlI9k06B4B5lBeB+xQkKmDRqucaSH69at\nW5C3mdR4/I5L0WmnnbbK5cUlD9/n4447rpyxHq3fKGus8fLEiRMH7bXXXmWdxvEKfDy7iBOI4mWy\nHZgVK9wYibvB9z5p+3wG//jjj1Mtc5pFaj60Wt8m8aYr/RDl76EtHkblP6vqO0IZOFukVt9lrskR\nlXvuNjY2Tho0aNDeU6ZMWS1pFSlfwGPGjGkZM2bM7IULF5KK8KV890thO78XskNM5JJLpOKiQ3o5\nxCgikiwd+LSz0oFLD/7kuAThRkcaR4qAkD0DwYqbzf/+7/8KcYfrD/v84Ac/CIInSU8X9Ud+ZlLb\nRYGN8VMoRnylfc80NjZ+8OKLL65T7vyo8UBS3JQIMCUGIFdDoBIng8shq1NJ2+dzfxHAuv32239o\nkZoPLYvUYiglPoyK6bS975P2QysHD7Nv7xOlCsdfibnbs2fPK7/yla8cd//99/fAdzeNduutt35+\n4oknLl+2bBl5yqam0WcefdTEPViGa57IpTWRSrEaUjnitxoFDXMt+DuZIgg2RlQRHU6KM1w/KKBD\nLMiWW24ZZBXBV50sOyyZk8oRgZrZX7bri0hFwE6fPv0LfuStzYUC+ZHXfRNJj0v6j19URquvr1/4\nwQcfNMRLoVKREkswuaER3ViPyU5CgCh+7wh03J1wSSLAE5GeWfkPC/SHH36YtQIfgZ2kxyR2Bjer\nqIIfQyPfNCtFfCQQL0BMDNuR6i/aHj9/qv3RGCe8ycACfz4asGizL/75WMmjhtV83XXXbbZIzeNp\nk7BJ4k1X+iHK30OBN1M+A6oJLvmcaCHblIFztsObfSEXxdvmRaBCc5fl1+ENDQ2jJ0+e3D0qe5vX\nAFvZ6LHHHuNFuWTx4sXDWlparim1vzz2r4l7sAzXPJFLPiKVlHYIsshvNUpHh+iJqi3GrxEBm6R6\nYx8EVNR+9atfrRSpLFVnW+anb7LyZLZo3xRF6vOSSGpOJOWHkl6Q9HtJf5L0vxynrq6uZfHixZ3i\nPvdRUCZuCOeff34g+hCiWDWpokf6O0QiqStxbchW+Y8iQ5x/tgp8lGuPxDmWaYJNcW9ibvABQOo/\nhDKl2BGz+P1H23N8snewPXmwsbb+6Ec/CnyOsXrjQkFVQD4AGHe8iAkfGPX19SssUvN42likFgUp\n8WFUVK/tfKcyPPSzitR2jsnDr14ChbwzSjkLSuTdkU+1vHwPgk/d4MGDF3z88ce/bG5uHpnvfkVu\nVxPPvzI8rxK5IFJHjBixShEalvsjS2qmkI1EKrnH+bAhtRvBx1j+KEG8ySabBAIO4UNaOgI3cQMg\nxzIWvWj/bCKVPOT4aLKEjUWWrCCks0N0xdPHZZsnRfC7TdJhkqJIywVhvwQVUtZ9w8xYD0QqAhxR\niptDVDwEgUiwGeIPHgjbXJX/sHaSaShbBT5cI/AxxYKMi8T/+3//L+BFI/UlVl3cI7CCwposRPHt\nEaak36PhcoHVlb4QuKQmJA0n7gUUPImyq0Qs4VfIA8fR/dmfVok3XZEPuYruVsTNlDS+muCSdJKF\n/l4GzoUOwdubQHshsEtDQ8PU0aNH9xw2bNj/5ekqYfRYbhCqM2bMmDpv3rwhJXRVdWngMtO3lXBu\nK3ct4nlVMhcEEMKFpXiyddAQXyxXtyZSSR03ZMiQQOxQEhwhyz70g8Ak2Ipc5Fj8EHTkVCaoCutq\nVL2utah5xBcWSYRYyCURcRH8CBx8FTEaE6och5LX19fV1Z2azZJKMFhUUCRePQ+Bje9u9Fuuyn8/\n+9nPghzOUb7neB+RSKUqIDmtM4Ukg4vnt8Y/FZGabfsonWZUaTDKj83xCG7DEsv1otmSmji98t6g\nJsRYETdTEqCa4JJ0koX+XgbOhQ7B25tAeyKwaWNj44MnnHBCvyuuuCK1PF6HH35482OPPfZSU1MT\niakja1UhXKquoAZLpZTKpDhMviIq6YSLeF6VzCWbkEK0UgAEv0l8UjOX+6O8qojNqCx4dG4U90C8\nRgVy+Hdyh/NvCFeKQBDVj+tAZCHMxgWRypJ6VLI5iR2/58GvXhLl8KI/O0n6m6R+aPPwGAslHSrp\n0Ww+qQg/rJhYKbEcR4IPiy++nnGRmqvyH2kv8SHNVoEvEqkEplFUiKwJ5JWmPfHEE4ELAeI/Kmcd\nidRoez4EuH40+sfqiyWVvloTqfZJzWeG5bdNTYixPG6m/Gj831Y1waXQk07avgyckw7p302gvRPo\n0bt37wf32muvbe+6666GtE5m+PDhS2666aZZoVB9o8B+KU08VlIn0u1JmiBpjKT5YT9Zn3/47yEm\nKG5B+iP8BW+44YbAUshS84QJE4KCLfwe/Z38u/w7Vqwf/vCHgVBCsLFsjX8lAguBEFmpEFpjxowJ\nAmhYTiW1Eu3ZZ59dJWAGaxXjYAkXv8S4JStPkZWJrSguBbJP3BwLbJRvnMI5USM9FblWWe7nWbxw\n4cJVcicndl7ABlme99lE6R8lxf9cIIma55SMfF8SJdlmcNhs0f2RT2pU/Af/W4Qk1mIKppBvNBLW\nuSr/IWQJvMpWgS8SqZSaZs7dfPPNQbVLgtBwo6DvtdZaKwigoqIg8zUqbX3JJZcEacIeffRRdenS\nJdiGjwGs2fFy2NksqY7uL2CiJWxaE2KsDOKpbFzwUyMVCV/UlWjkxsNxPqn0ZT5jKQPnfA7rbUyg\n3RPo1avXxAEDBgyeMmVKD/wB02gTJkxoOf/88+c3NzcTVvxMgX3OoS5FuA/r0nGxOi9bnmiqDiJM\nL7jggsA3j2VaRCXV0shmgN8sPn68tKO/46JAMBD7sTSN1ZDtsBCyLb6EWKgQAWx36qmnBn+iqmaI\nFYRxtoAZ+osquVEqmOXsONsin1cFcymQe7vZPORHUtO4tRRBylyLhOl/fBr+r02TtIWkP0six+/c\n6Kc1suRJjURqvAMCBQkiY77hN4r4xMqaq/IfxUx4v2WrwEfgVGQlZV4edthhQUAWjXRgfBAxRxGd\nffv2DdwGmNeIV7IoEESFUKVRaZD/z4dDpkhlHlI+mn+nOU9qetO8bGIsvSEm91Tkw6i1jsvGBQd6\nlgL48q9EQ6SyZFHIMk+ucZWBcyUQ+BgmUBUEunXr9vz666+//ZtvvokFM5VG1DM+jCk1fAf505BL\npBLIEiVGxxKK2CStD9HV8eXP6CWOAOAFPmvWrECU8vx7+OGHg//G81li8WIplWV/BCtWQtI0ISiw\nrmHtwoJFI9oacYzPJhXREKhEdme2tNwGQiY5uaTEvuq6CfllWkqxkLbWWiTdLenIzI2yVZyK3Dzw\nO50zZ05giY9bj7MdKFflv9Yq8MX74f3LHIvnMyatFJZ5lv8zGymwuB+Yg/k2V5zKl1TydmUTY8mH\nTm+LMoinkrlww2BxILcaPkTkUdtxxx2DBM4sXfFvF110UWBh4CHMQxq/oZ/+9KfBtiwrkCaE/Hmk\nyGBJA2d5Xkrc2CwHYY1lWxzmeXlE5TGjXHBYFqimwU1vS2p68809mUChBGrBkhqPUOf8Eak8lxCS\nrYlUfA4jYcvzD+HKMyu+TMrzL7J4Rb6JiNtbb71Vv/3tb4Nl33jj+UkACyI1c5k/2q7I94ItqSHA\nIvltL+nFHPfHyUcdddQVEydOXFnfuZgiA4Xee22x/ZAhQxbefvvtZzu6v3T6JYux0odQeg9F3kyt\nHbhkLpdffnngYI0fzPPPPx84y/NFRnk8hCnLDFgOSEyMVQAfLpYTcNImqTBfllQQwXmcqFCWwngw\n81LAaTsSrPjPIFDff//9IOiAvG2kzCAnHF+HvCBY4uDlwMO/lFYGzqUMx/uaQHsg0KOxsfGBvffe\ne7s0fVLPPvvspTfeeOPbJfikXhbmtMzbJzVJpBIRzXJ7lEaIj2kEaeTjx/Mn3kemSM0WQIMAZSWI\nikG4AWDtwpJGeiIS22dGVccnRBHPK3xSC+bSHiZhMWMsgl/SYQZuuOGGT7/99tu9og2ZK2QcIKVT\nipbvpHGU/fd+/frNmzVr1m4WqaWjLlmMlT6E0nsow81UMheiPLGmIkaJHuSrf4MNNgjEZ3zJDH8b\n6jfjf8NDnhQW+NGwlEWOtuhBj1UBSytClW3PO++8ldGM+LjiOP6vf/1LI0eODMQv5fJovBQITojS\neJRCuwycSxmO9zWBaicQRPcff/zxG44bN27VdcQiR090/+OPP/7y3Llz8fmrWHR/LpFKJDaBUawc\n8YGMryjislCRyoc4PoH4FuJHT017fFKxpvKxT2ALFlcCrxA3fHgPGDAgTUtqydH9uS5p3E83XnGp\nyCmQc7fWjoOwx7c3nnS+teOX43nf0NAw//XXX+/Bu7BWGxXD+vfvv6C5ubmnRWrpV7lkMVb6EErv\noQw3U8lcyPEWLXNxhiz7k2KFhzBiEpFJi5bMEJFYQbG4Rg1BGj3osZ5GD5cogCGTHOlLCGKIO3DH\n+7cltfS55h5MIE8CNZcnNTPoMx7YwnONFRsa0fZ8lEfPrvgyfrwPBBWiCUGK+IxXW8I3ET96rKW5\nAmaoDpQZsBK/NkW8F0rOk5prbmABZkWN1bKuXVPLRrbK4Vo7TjWI1NVXX33y6NGjD+RdWKsNH+lR\no0ZNmTNnzkEWqaVfZZZ6aqUVMh+SzjkVkUpFDx7EBBQQDUtOO6piREmd4yKVesVf+9rXAmsqD24s\nBVgJsolULBpsT0oYgg9Y1ifFBg90xCz+W1EgAZZa/t6OLKm1NCeT5pl/ryyBNJ8RrY38cEl3drSK\nU6wcUc0IwVls41lGGiAEaGYQS66AmVzHKkKkJg07r/cCbleRexcxBqycUV+epPPk8yRgh3cBJTaJ\nFyCanPycBIbx/Md6TCwB+5ELFSs1LmGffPJJEF2OHy4tV135zOMwFuIV2A8DRltaUiUdssMOO9z4\n/PPP906C3V5/33HHHee+8MILlLWaVMgDxxWn2usVb5tx5/UwyjU0IgH33XffQJiy7E9+O3yqWHbP\nJVKvvvrqwL8KK+u6664rcrSRgxCLBA//uCUVQUr5PB5o+KYSYUs9Yb6UWRZDxPLVzgtjzz331IYb\nbtieAqdKYt8208VHrXYCZRAsWU+5W7duwxsaGkZPnjy5O/doGo2UPIcccsiSxYsXD2tpabkmjT4T\n+qiJe7AM1zyRCz64+OUiVHHzonIUFmaCXKO0XESx8/95vvPMRzxGq2YYE4hZuOKKK4JnO6mY+I1n\nOu5el156aRCnQIaDXHXlo+MQp7DlllsGQpegXdzHaG0sUnFnmz99+vQeGGVqrZEfdeDAgcFSP+dm\nkVprV7h6zifxYZQ0VBIGs7QTNR5U+FYRjR/PkxotmWF14YuavHA0Hmp8NfMFTPQ/llEeUiyD0RC8\nLO3T4ktjfIEjjln6pxGYhTWXh1w7We4vmX3StfHvHY9AGQTLKhBXW221Ceuvv/4JU6dO7RFfui6F\n9i233PL5SSedtHzZsmXflzS1lL4K2Lcm7sEyXPNELhgKNtpoI/FhQWUjRCurXQjXKC0XaQGJOYgy\nFpAHFmMC4jEzZgErKGKUfJ3Rcj0R8SyX56orH1VDItVXlO4rEqd8OLW1SK2vrx93yimn/GT8+PFd\nCpiT7WLTYcOGLbv22mt/uXjx4iARukVqu7hs7XKQiQ+jfM4KXypSRXXu3Hlleqik/VjSwmeJJSEq\nj2ANzZU3LsoLx/Iax4g3MgmwZMaftFoZHvrZhpYK+7TO2f3UBoFyz93GxsZJgwYN2otk/fH8i6XQ\nGzNmTMvYsWNnz58/HxPYS6X0VeC+NXEPluGaJ3JhFY0MLFEebILAyNLSv3//lSKVLAUI2MjIEFXb\nQjxS3SgesxAvoRptR9YYjBbxOvTZ6sqPGDEiCMTNdpx8grfKwC+ahht17dr1jY8++qhzPuMocO62\n2ea46K299trLly5dupmktyxS2+xSdIgDJz6MOgSFjJMs40MrfiSz74iTq8znXMa5u0bv3r0fGDx4\n8Fa33HJLVK+85LM55ZRTltx5551/DyP43y25w8I6qIl7sAzXPJELrl34jpJtBT/T3/zmN4HrFati\nxAwQn8AyPwFOUfAs4jSycGL5jMcs4C6AKxd5syMhis8qJTqT6spfeOGFgatAdByCeVnda2tLKlOR\nxP5Dhw4dcvnll3/RulLYPK2qrc8555zl119//cSmpqYfRQOzJbWqLlFNDSbxYVRTZ5vnyZThoW9L\nap7svVlpBMo0d7fq1avXA6effvo6o0ePTmXpEvFy0EEHLXzuuef+OHfuXCyoy0s786L2ronnXxmu\neSIXBOQee+wR5MhGqFLogLSApM+KCh6w1H/wwQcHLllsQ8pAKnIhHvMRqWyHq0BSXXniGXAJwPWM\n6l2MA3eyahCpktavq6t7e+bMmZ1qwTcVX9QttthiRUtLSz9JKz8qLVKLev54pzwIJD6M8uij5jZJ\n6aFftjQv1Qocn+B4redix4kvG+l6MquH0X9rqXhyHS9Xf8WMj5cywX64qFDpbMiQIUHpwWppKc3d\n+OnsXV9ff9/48eO7n3LKKYW8i3Iieffdd/E/nP/mm2/esWDBgqFtyK4mnn9luOaJXPjIYDmfOIKo\nEURF4Gz8GRCPKcC6iZsXSe25t+MxC/Hl/ngKKbIFJNWV7927t7CmRuVkjz766CDgaubMmerVa2U+\n/ZzTrAz8Mo81Yp999hnxyCOPFJ8Oog1vkvih991336ZHH310rCT+rGyFPBgc3V8lF7OdDCPxYdRO\nziPVYab00CpbwuxUTzbFziKRSlYGCjUU2xCVLPGRPzIeBBevgY4PWr4tV3/57h9tx3ImEcq8mMkk\nQbJ1rEksa1ZLS2nuRqdzbNeuXX999913dyaoJY1GSqLBgwc3f/bZZ5ctWbLkkjT6LKGPmnj+pXzN\nwZk3F0Qn932fPn1WiSlg2Z6ld/LJMkY+8EhHxfOh0ODWfOrKMxZEbaGpwcrAb5Up2bdv3xkXX3zx\nFu05byp5US+44IKZs2fPHpB5ghapJTyFvGurBPJ+GBXCkYdTPLF1IftG27ZmNYt/aSNASEES+SMV\nc6xVbrgvBbdcIfddtsNSepCvTWq05l2SMY3xl9LHs88+G2RKIKiBwgwERmA1IQ8iQRBU2SETw4QJ\nE1ZG6LINqWQIpsDSSWoZHmg0CjdEKYp4YZHNgcwP1DQnPyJ90e68884g5yLWSTI3EESHteXf//63\nzjjjjCDQAssNZXhffvnlIFCimP6yvRwZ9znnnBMsGRIxzLIhVYBYMiQ4iGOSyxeRykswstjwsmUJ\nk/mej8WmlOuS775pvXC7det2fp8+fUZMmTJlte222y7fw7e6HffqYYcdtrylpeXElpaWW1LptLRO\nyvL8K21Ihe+d1jWPHTkVLkTnf/3rXw8qdH31q1/VD3/4w6B6FpbRampl4Jft9LaRNJ2PNPxu21vj\nmRs+BwZKesUitb1dwfY73lQeRpmnjy8QX4ws/4QPgIIJtWY1i4tUEmIvWrQoiCpNq6X40JojqU84\nrqUZYnUe4qiaGg9QCiwQTduvX7+gFjkfGwhTxCfiETFJijGsiUTz7r333kFKMUQswQ9sxwcGKcfw\nRUOMkjO3b9++2nzzzQPBSb8IVD4umCMIWcpMPvDAA0HBBiqYkcqMQg70R4QvQph98H2bNm1a4HtW\naH+8IHNZcM4999wgwwSCFIGKXxvLkrxkSTJOcnCyUSBSo7RLiNjRo0evLNtbDdcyjbnbo0eP6zfd\ndNMjp06d2nP99ddP5bSuvfbaz4cNG7Zo8eLFB0t6LJVOS++kLM+/0odVWA9pXPOMI6bGhQ+4J554\nIrjXCYIij2m1tTLwy3WKx2+wwQbjX3nllV5YnttLw0K9zTbbzHvnnXeGSbop27gLseh4uT/7la8u\nNVDa7CxkPiQdKevDiMhNXr5jx44NRAhLryRjfu+99wILGi9tvoqPO+64YMmTxPqUJcX/CFETRWdS\nPWTMmDFBH9ddd10gfGjZrHW8/D/88MOcVjMEVLaKIq+99lpQtYqiAggikkIjZkgEjcUOwUPLVfkk\nW9qrYoV1Euzw92WS+NNQbSJ16NChWmuttVZaCvHr4hoSAMEyN36i+JXhPE++Q6J6EW7sh6WRFDDM\nE5bpETecH1YTRCb9Yu3GT4w0YvijEUyBxRZBiEXymGOOCRCR65a5ROEH5g4it3v37lq4cGGQ+Jt6\n6XyoFNpfa9XIENSIbYIwOCbiGVGLFRgLQjQGxkfKtauuuioQ5tVmGSrxhdu5d+/e9++00067TJ48\nebXMdG95zu9VNhs1atSyq6666sN58+YdIOm1Yvspw35+L+R4X1bbs6kM135llyXeMwUNrXPnzpcN\nGjTo5BdeeKHdVKLaYYcd5k6bNu265cuXn5vrZAsRJRapNXzTleFmWkWk8nBCgCAKWMLFuoVg5SVN\nvlKsSCznYl1DnCASqQRFHrj9998/ECEEkrAdy7P8ufLKK4OlYSJCSeiczVqHpYyo0GxWM8oG5qoo\nQpQoggeBitWNpNJY5lhqQqxi1W2t8km2/HUpcm5XllSqhkWJt6PbiNQuCLeo8hfJujPdORCyXDs+\nUAiaYGkoWv7mN/6NqjTMm8yGOETclJvcdgAAE3ZJREFUYqlkOxofPORgZO4wt6IAqsgFBEsuIrXQ\n/loTqXzoYJklkpjxMHfuv//+IME490Dkd8p4cQmACy4InHc1tRLm7vq9e/d+8Igjjvjatdde2y2t\nczr22GMXTZ069bW5c+ciUD9Jq1/3U1YCqVlSyzrKlDov4Z4pagSNjY03Dxw48OCnnnqq6gOpdt99\n96bp06ff19TUdFxrJ2uRWtRU+MJONXHTleFmWoULAgSB+c477wTWMPwRd91118Bnj5c4QpA0Iog7\nLF5RpY/48jyO61jGEIgIVixgLM+yVMsycTZrHUvMiNxsVjMsd7kqikSpTE477bRgbFhsd95556D6\nCeOlX3wHc1U+KaNIxSf1Mkl17cUnFUs10bmIQ647yzyIQfIexiN2mSMs2UcBEJkilRyJEdfoNyJw\nWb5/8skng2vDsj770zeiD3HMBwqNa8bfyZvIx1BkfY3PMeZEof21JlL5OEP08nHDsiTznaV+GqKY\n+RyNF+sprg1ltrgX9dQr8hmxXY8ePaaee+65a4wcOZL5WnJbsGABqxgLp02b9lhTU9MhJXfoDipJ\noCbel/kCK/Keybf7rNshVPv373/QQw891Lsal/559u+3335zX3/99clJApUTtEgtaToEO9fETVeG\nmymnSM1EjrjEmsbyOdZTlud5WWO5xIqJlYulXpZiEanxwKm4Bey3v/1tVmvdz372M02aNCmr1Yxj\n56ooEhepcSEVHw/uCrkqn5RRpLa76H4EPq4b5DrkGuLKgYWR64yLRyQ+WxOpfCjgehEFOCF6KXOL\nP2tkjWXJHgspIhQRzDH54CEwCb9QLPlEzxN8td566wWilXnHNqSXwVLL/Cu0v8yUVplzHGsuvrHM\nQyroMGdwG8GSvPbaawtLM+4JCGiW/KNG/sNqEaxFPCMGd+nS5Z4bbrih87HHHlvIuybnU5kPzcGD\nBy94//33b54/fz4fa27ti0BNvC/zRV7EPZNv161ux9L/uuuue+q9997bq5qCqXi+HnroofM++OCD\na1pb4o+fXCEPDi/3Z58WNXHTleFmWoVLVBWEFzNLtgSaEECyySabBKVP4xY0RENUNSRTpCIqWNpn\n/0zBmM1aR99nnXVWVqsZgiZXRZF8RCoWtFyVT8ooUttdnlSEFx8cUe5D/E8ffPDBoORspiU1/hGC\neEOo8W+IVIRd1Ai0wupIi+dM7NmzZ+C7iiUVAfvd7343CLSikV2AOcP8YskdwUhDNCJqozKJxfTX\nWuqbaBUBkbXpppuudFPBt5n98MG+5ZYvBqUzL/NNGp7Kmy2hk0KeEXV1dafW19ePnzRpUjf8cNNo\nzzzzDNdrUXNz86glS5aMS6NP91FxAjXxvsyXWiH3TL59FrDd8TwacW+qhvRUGAZYSZN0Qq4gqWzn\nZpFawBXPsWlN3HRluJlW4RL55hEYgrhgmRwrZuRrmq9IxWUgskgRcEPEND6pLJ1ms9ZxkxJIk81q\nxtJhrooi+YhUBHCuyidlFKlJs7Zq5yRLPbRSlqGYRwi7zJyF+DWTCJ9/zwzMIRcigpg/8RbtE6Wr\nyvZbPv0xl8kGkc3qSWAYQWDtveX7jGhoaBiz5ppr/mTq1Kk9sGyn0aI0YpLIMXRXGn26jzYhULXP\npnLQyPeeKcexwz636du3722DBg1a7xe/+EVjW1Smwn3qzDPPbJo2bdp7s2fPPjpbmqnWzt8itfTZ\nURM3XRlupqxcouCQCDuWTCrrZAbMsAwcVQ3B8kVAFIIUwRCl6aGPuNUsl7UOAcJybDarGS/RXBVF\n8HNlDPikZi73x6sT5ap8QoBYZisD52wzuCbmZOm3ZuV6IFsB4jnb9cYPtaOI1F69ek0cMGDAYAQq\nqcHSaOPHj28ZNWrU/ObmZrL+/zGNPt1HmxHoUM+mCj3v87mYI+rq6i4dPnz4ihEjRnTOZkDJp5NC\ntuF5OHbs2OXjxo3r1NLScl5mJal8+7JIzZdU7u1q4qYrw82UkwvWLiyQLPlnS9OUzyUhOAbLFZYx\nIvTjLZe1rjWrWbEVRQqtfFIGzhap+UwYb1MygYS526OxsfGBvffee7u77rqr+JJgGaM8++yzl954\n441vNzU17S/pzZJPwh20NYGaeF/mC7FCz/t8h7N+Y2PjxYsWLRpy2mmnfT506NAu5bCshoGny66+\n+uovde/efWJTU9MFkt7Nd5CrfOgXsKN9UrPDqombrgw3U01wSbo/Cq18UgbOFqlJF8m/p0Kglbm7\nGQL1+OOP33DcuHGppZg6/PDDmx9//PGX586di0BdkMpJuJO2JtAh3gsR5Ao97wu9phvV19f/uFOn\nTidtvfXWy48++ujerPZssMEGhfazcnsy9rDyeNttt8199dVXO69YseKGxYsX/0rSW0V3Gu5oS2qp\nBB3dn4tgh3kYFVL5pEIPrQ7DvvTb1z3kSyDH3P1OQ0PDlEsuuaTnWWedlUqKqU8++YSMCwtmzJgx\ndd68eUPyHZ+3axcEOtSzqULP+1Iu/CGrr776kEWLFu25xhprrNhpp53qtt9++9WwsJIFheBNXOrw\n8SdAmNVI/PtJFYnF9MUXX1z43HPPtXzyySedunfv/uScOXMmSppUyoBsSU2T3n/6qombrgw3U01w\nSXu6lIFzVktq2uN2fyaQw7BRlspKDQ0NlzU3N4809Zoj0KHeCxV63qc1SQZK2q6xsXH7rl27Dli6\ndOlXlixZ0rhs2bL6lpaWTnV1dSu6dOmyuFu3bk1du3Z9f+nSpTOamppepOiipOlpDaIUkbqYcouS\nVpRrMO2035q46cpwM9UEl7TnZBk4pz1E92cCJmAC5SLQod4Lft6XPo0KWe7H8XV7SR+Uftia6qEm\nbroy3Ew1wSXtmVoGzmkP0f2ZgAmYQLkIdKj3gp/3pU+jQkTq78MUAk+Uftia6qEmbroy3Ew1wSXt\nmVoGzmkP0f2ZgAmYQLkIdKj3gp/3pU+jQkTq6LBWuP2Evsi9Jm66MtxMNcGl9Fvsiz2UgXPaQ3R/\nJmACJlAuAh3qveDnfenTqBCRum1Y6WPj0g9bUz3UxE1XhpupJrikPVPLwDntIbo/EzABEygXgbIE\n2pVrsCn1W4jOSumQtdNNofCmSnpG0vjaQZB4JlVfJ52a41Rkitf5XrFihUaNGqVzzz1XPXr0SDzJ\nIsQTRXivaaVji9QscIrgnHjtvIEJmIAJmIAJ1CKBQkXqFpJelvR9SQ/VIpAs57QodHMYJ2mMpPkZ\n27S5GMsUqSTWpQzopZde+gXh2tr1KlA8kQ8RLvMknSvp11n6bnMu1Tg/C+RcjafgMZmACZiACZhA\nRQgUKlIZ1H6S7pF0fgexqJ4RBox1IieqpAkZYjVRjM2bN08nnniirrzySq299tpBDfr33nsvsHQu\nW7ZMJ5xwgi666CI1NDTo9NNP1z333KNtt91WN998swYMGBBse80114g682eccUYgPEkgf+SRR4q6\n9N/+9rf1u9/9Lvh36sVjVX3ttdeCRLxx62qKIpWuRkj675DJvyVdJOmW2DESuVRkhlfZQSxSq+yC\neDgmYAImYAJVS6AYkcrJYFHFqrilpDslPS1ppqSPajSP6hxJfcKruDRDrM77/PPW3Wyo1LDjjjtq\n7Nix2nXXXbXLLrusrNhA9QZE5YwZM7Tnnntqp5120jnnnBMIVYTrG2+8EVR52GyzzQLRiVjdeOON\nNXDgQI0fPz7o93vf+14wtLgg/cc//hGI1zKKVMofwmW1kMtn4d8vlHR7rRQ5SPvOtUhNm6j7MwET\nMAETqFUCxYrUiAfBVCikHSVtJmkNSanVbq5y6Msk8achSaRyHpdffnlQVuzHP/6xevfuHZwaQhIR\nOnHixECYUj+Xv2MNpc999903sJYiRL/5zW8G2yNUb7/9dj388MPBfyNx+p3vfOcLghRLK4K3QJFK\noQb+tIT/zfz/mX9HuHfPuE64AfCnTz5cqvwapz48i9TUkbrD2iQwWNLxkg5sxfDRWdI3JL0aPotr\nk4TPygQ6MIFSRWpHQVeSJRVIL7/8soYPHx5YRydPnqy11lpLG220UbAsv91222nRokW66667Al/S\nTp3wLJCGDh0aLPfvs88+XxCc/PugQYMCFwJaNkFapEjF15Q/DCD609rf/yxprdgkoCrZo5J+Lul/\nLFJXvT0sUjvKI8PnWSIBROpwSbu2IlK7SGJlqzH0jy/xkN7dBEyg2ghYpCZfEXxSLwvFW1E+qRwC\nv9RtttlGCxYs0I033hj4pu6xxx7B0WfOnKm///3vgb8porWuri6wpB5xxBGBNZVl+7hVlO2wqJ53\n3nnB/m+99Za+9a1vpWFJLWQ+DJX0ixAfgvZ+SeTSfS38N/ukZplbFqnJN5y36LAEjpB0h6RJknpJ\n4qMXS+qakq4KA3YJ3D0O7yZJv5E0RNKfJO0raW6HJecTN4EaJVCIKKlRBImnlUp0P6ITyydBU//8\n5z/15S9/WX369NHOO++sp556SrNnz9Y666yj+++/XwcccID+8Ic/aLfddgt8V5csWfIFkcpv+KG+\n+OKLgX/qyJEjA5eB+NJ+kZbUfOcDorRJUn3of3q5pNczSFqkWqQm3lzewARCAj8InyUHhAaBKZLu\nlvQjSS9Ieg6vqVCoErCJe9mmkn4n6WRJj3vJ33PJBGqPQL6ipPbOPP8zSi1P6r333hv4nhIkVV9f\nHwRK7b///jrrrLOC0Tz44IOBQI3afffdp4MOOmjlcj4+qT179gysrBdeeKEuvvjiYNOjjz5aTz/9\ndGCR7dULA4SULXdqa6dchIWPl8axuNbm6Nci1SI1/7vMW3Z0AlhQcRW6NQRxlKQTJJ3JozEUpRgM\neGc9ElpcEagzJBEbQTo8NxMwgRojYJFa+gVNVYw1Nzdr7ty5gdhMSsL/6aefBq4BjY24ZJXWihCp\nSQdMlUvSwdrL72Xg3F5O3eM0gVwEWJHBvx1rKkFQNHJxUzDkJkmHZQRQXR+KU/Izs/23JJFdxM0E\nTKDGCFikln5Ba0KMlUE81QSX0qfHF3soA+e0h+j+TKDSBMgI85Kkn0j6Y3jwg8O/k+oQ3/etwqwj\nvLNIe4g1lf8iUm1JrfQV8/FMoEIELFJLB10TYqwM4qkmuJQ+PSxS02bo/mqSwAWSWOInnSE+709K\nmhX6m74fpjp8IIz2Jy/3hmFeZgI1D4oFbNYkHJ+UCXRUAhappV/5mhBjFqmlT4R8eigD53wO621M\noNoJ4Ez/sKRvhwOleh1uAAjX70pCoEYNK+tkSeRJJcBql1C0esm/2q+yx2cCBRKwSC0QWJbNLVKz\nM6wJLqVPD1tS02bo/mqaAOmmFoZ/4ifaIIkqKARILcgggLvAkpqm4pMzgQ5KwCK19AtfE2KsDBa+\n1mvFls69Pffg+649Xz2P3QRMwARMoCIE/LIsHbNFaukM3YMJmIAJmIAJmIAJfIGARWrpE8IitXSG\n7sEETMAETMAETMAELFJTngMWqSkDdXcmYAImYAImYAImYEtq6XPAIrV0hu7BBEzABJIIZEv6n7RP\n/HcyCGwi6ZVCdvK2JmACbUfAIrV09happTN0DyZgAiaQRKCLpL9IOkbStKSNs/yOQL1f0gBJDuws\nAqB3MYFKE7BILZ24RWrpDN2DCZhAbRFYT9KZkkjEP17SY5KGhgn695C0mSTSTX0zLHl6oKRJIQL2\nu1rScknrSLpS0j6SrpF0TlhhanZYkeq/JK2Q1C/j70dIuiPs7zRJD4V5WL8eVrAaHu5XW9R9NiZQ\nYwQsUku/oBappTN0DyZgArVFYFNJb0i6WdIlki4KE/VjxdxP0j2hKEWAflnSVEm7SfoktHb+RtJV\n4dI8pVJ/FfbBvoPCPKp3SRoYlkvdXFL09wPCZP/0h8X0D5L2lIRwprLV4UVaYmvrCvlsTKAdELBI\nLf0iWaSWztA9mIAJ1BYBROqj4dL6olCI/i0UqFg9Ea1bhwLzzlCY3h4i2DK0emJdpaIUVlf6WC0s\nf4rIbJJ0r6RtQosox+PviNbfSXpC0o1hf0MkUY3qr2F/3/Byf21NNp9N7RKwSC392lqkls7QPZiA\nCdQWAUTjDZJY2mc5Pgp6wp90I0mnhr91D4UnpU5fDRGw73OSfirpkNAdILOPTJH61dAyu1Potxrv\nLyIbCdlI2NYWcZ+NCdQgAYvU0i9qLTngez6UPh/cgwmYgIQgxAqKVTQSmDMlfU8SfqGRSO0k6XlJ\n+Ig+G4LbIrTC4ps6RhJ/xz81HjiFSKX/rUJr7LaSxoXL+gjcEZKeCvv7f2HZ1A8l3SRpV/ujeoqa\nQPsgYFHSPq6TR2kCJmAC7YlA5JOKRXOypBND4YhP6v5hkFMkFvET3TcMjloWBjm9LGmCpA8k0QeC\n9ChJt4WBUwskvR4GXv1TEn6rs0KrK8FUx0naXlIfSfzOsf4d9r2DpI/bE0yP1QQ6KgGL1I565X3e\nJmACJlA+ApFIjR9hb0mPSzpUEn6iiE+srOQvxS8VoUr7U/j/54aiE5FLwzKKPyv7vSbpCknDwt/I\nHrA03B7XgrtD/1d+/rmkkZL6hi4FZAaILLDlI+CeTcAESiZgkVoyQndgAiZgAiaQQYBo+2tDv9PV\nJc2XtDiBEimpeCdh8Yy3npK6SpqTZX8yAyBOF+b4DcssVteo1UnqHC7/+6KZgAlUOYH/DxLtiQfi\niCMEAAAAAElFTkSuQmCC\n", "text/plain": [ "<IPython.core.display.Image object>" ] }, "execution_count": 5, "metadata": {}, "output_type": "execute_result" } ], "source": [ " Image('diagrams/skip-gram.png')" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "```python\n", "word1 = Input(shape=(1,), dtype='int64', name='word1')\n", "word2 = Input(shape=(1,), dtype='int64', name='word2')\n", "\n", "shared_embedding = Embedding(\n", " input_dim=VOCAB_SIZE+1, \n", " output_dim=DENSEVEC_DIM, \n", " input_length=1, \n", " embeddings_constraint = unit_norm(),\n", " name='shared_embedding')\n", "\n", "embedded_w1 = shared_embedding(word1)\n", "embedded_w2 = shared_embedding(word2)\n", "\n", "w1 = Flatten()(embedded_w1)\n", "w2 = Flatten()(embedded_w2)\n", "\n", "dotted = Dot(axes=1, name='dot_product')([w1, w2])\n", "\n", "prediction = Dense(1, activation='sigmoid', name='output_layer')(dotted)\n", "\n", "sg_model = Model(inputs=[word1, word2], outputs=prediction)\n", "```" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "#### fastText" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "```python\n", "ft_model = Sequential()\n", "\n", "ft_model.add(Embedding(\n", " input_dim = MAX_FEATURES,\n", " output_dim = EMBEDDING_DIMS,\n", " input_length= MAXLEN))\n", "\n", "ft_model.add(GlobalAveragePooling1D())\n", "\n", "ft_model.add(Dense(1, activation='sigmoid'))\n", "```" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "### Models and Training data construction" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "The first step for **CBOW** and **skip-gram**" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "Our training corpus is a collection of sentences, Tweets, emails, comments, or even longer documents. It is something composed of words. Each word takes is turn being the \"target\" word, and we collect the _n_ words behind it and _n_ words which follow it. This _n_ is referred to as **window size**. If our example document is the sentence \"I love deep learning\" and the window size is 1, we'd get:\n", " * **I**, love\n", " * I, **love**, deep\n", " * love, **deep**, learning\n", " * deep, **learning**\n", " \n", "The target word is bold." ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "#### Skip-gram model training data" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "Skip-gram means form word pairs with a target word and all words in the window. These become the \"positive\" (1) samples for the skip-gram algorithm. In our \"I love deep learning\" example we'd get (eliminating repeated pairs):\n", "\n", " * (I, love) = 1\n", " * (love, deep) = 1\n", " * (deep, learning) = 1\n", " \n", "To create negative samples (0), we pair random vocabulary words with the target word. Yes, it's possible to unluckily pick a negative sample that usually appears around the target word.\n", "\n", "For our prediction task, we'll take the dot product of the words in each pair (a small step away from the cosine similarity). The training will keep tweaking the word vectors to make this product as close to unity as possible for our positive samples, and zero for our negative samples." ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "Happily, Keras include a function for creating skipgrams from text. It even does the negative sampling for us." ] }, { "cell_type": "code", "execution_count": 1, "metadata": {}, "outputs": [ { "name": "stderr", "output_type": "stream", "text": [ "Using TensorFlow backend.\n" ] } ], "source": [ "from keras.preprocessing.sequence import skipgrams\n", "from keras.preprocessing.text import Tokenizer, text_to_word_sequence" ] }, { "cell_type": "code", "execution_count": 2, "metadata": { "collapsed": true }, "outputs": [], "source": [ "text1 = \"I love deep learning.\"\n", "text2 = \"Read Douglas Adams as much as possible.\"" ] }, { "cell_type": "code", "execution_count": 3, "metadata": { "collapsed": true }, "outputs": [], "source": [ "tokenizer = Tokenizer()\n", "tokenizer.fit_on_texts([text1, text2])" ] }, { "cell_type": "code", "execution_count": 4, "metadata": {}, "outputs": [ { "data": { "text/plain": [ "[('love', 2),\n", " ('adams', 3),\n", " ('i', 4),\n", " ('possible', 5),\n", " ('deep', 6),\n", " ('read', 7),\n", " ('as', 1),\n", " ('much', 8),\n", " ('douglas', 9),\n", " ('learning', 10)]" ] }, "execution_count": 4, "metadata": {}, "output_type": "execute_result" } ], "source": [ "word2id = tokenizer.word_index\n", "word2id.items()" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "Note word id's are numbered from 1, not zero" ] }, { "cell_type": "code", "execution_count": 5, "metadata": {}, "outputs": [ { "data": { "text/plain": [ "{1: 'as',\n", " 2: 'love',\n", " 3: 'adams',\n", " 4: 'i',\n", " 5: 'possible',\n", " 6: 'deep',\n", " 7: 'read',\n", " 8: 'much',\n", " 9: 'douglas',\n", " 10: 'learning'}" ] }, "execution_count": 5, "metadata": {}, "output_type": "execute_result" } ], "source": [ "id2word = { wordid: word for word, wordid in word2id.items()}\n", "id2word" ] }, { "cell_type": "code", "execution_count": 6, "metadata": {}, "outputs": [ { "data": { "text/plain": [ "[4, 2, 6, 10]" ] }, "execution_count": 6, "metadata": {}, "output_type": "execute_result" } ], "source": [ "encoded_text = [word2id[word] for word in text_to_word_sequence(text1)]\n", "encoded_text" ] }, { "cell_type": "code", "execution_count": 9, "metadata": {}, "outputs": [ { "data": { "text/plain": [ "[7, 9, 3, 1, 8, 1, 5]" ] }, "execution_count": 9, "metadata": {}, "output_type": "execute_result" } ], "source": [ "[word2id[word] for word in text_to_word_sequence(text2)]" ] }, { "cell_type": "code", "execution_count": 10, "metadata": {}, "outputs": [ { "data": { "text/plain": [ "([[2, 6],\n", " [2, 6],\n", " [2, 9],\n", " [6, 2],\n", " [6, 3],\n", " [6, 10],\n", " [6, 1],\n", " [2, 4],\n", " [4, 2],\n", " [10, 6],\n", " [10, 8],\n", " [4, 2]],\n", " [1, 0, 0, 1, 0, 1, 0, 1, 1, 1, 0, 0])" ] }, "execution_count": 10, "metadata": {}, "output_type": "execute_result" } ], "source": [ "sg = skipgrams(encoded_text, vocabulary_size=len(word2id.keys()), window_size=1)\n", "sg" ] }, { "cell_type": "code", "execution_count": 11, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "(love,deep)=1\n", "(love,deep)=0\n", "(love,douglas)=0\n", "(deep,love)=1\n", "(deep,adams)=0\n", "(deep,learning)=1\n", "(deep,as)=0\n", "(love,i)=1\n", "(i,love)=1\n", "(learning,deep)=1\n", "(learning,much)=0\n", "(i,love)=0\n" ] } ], "source": [ "for i in range(len(sg[0])):\n", " print \"({0},{1})={2}\".format(id2word[sg[0][i][0]], id2word[sg[0][i][1]], sg[1][i])" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "Model parameters" ] }, { "cell_type": "code", "execution_count": 12, "metadata": {}, "outputs": [ { "data": { "text/plain": [ "10" ] }, "execution_count": 12, "metadata": {}, "output_type": "execute_result" } ], "source": [ "VOCAB_SIZE = len(word2id.keys())\n", "VOCAB_SIZE" ] }, { "cell_type": "code", "execution_count": 13, "metadata": { "collapsed": true }, "outputs": [], "source": [ "DENSEVEC_DIM = 50" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "Model build" ] }, { "cell_type": "code", "execution_count": 14, "metadata": { "collapsed": true }, "outputs": [], "source": [ "import keras" ] }, { "cell_type": "code", "execution_count": 18, "metadata": { "collapsed": true }, "outputs": [], "source": [ "from keras.layers.embeddings import Embedding\n", "from keras.constraints import unit_norm\n", "from keras.layers.merge import Dot\n", "from keras.layers.core import Activation\n", "from keras.layers.core import Flatten\n", "\n", "from keras.layers import Input, Dense\n", "from keras.models import Model" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "Create a dense vector for each word in the pair. The output of `Embedding` has shape `(batch_size, sequence_length, output_dim)` which in our case is `(batch_size, 1, DENSEVEC_DIM)`. We'll use `Flatten` to get rid of that pesky middle dimension (1), so going into the dot product we'll have shape `(batch_size, DENSEVEC_DIM)`." ] }, { "cell_type": "code", "execution_count": 16, "metadata": { "collapsed": true }, "outputs": [], "source": [ "word1 = Input(shape=(1,), dtype='int64', name='word1')\n", "word2 = Input(shape=(1,), dtype='int64', name='word2')" ] }, { "cell_type": "code", "execution_count": 19, "metadata": { "collapsed": true }, "outputs": [], "source": [ "shared_embedding = Embedding(\n", " input_dim=VOCAB_SIZE+1, \n", " output_dim=DENSEVEC_DIM, \n", " input_length=1, \n", " embeddings_constraint = unit_norm(),\n", " name='shared_embedding')\n", "\n", "embedded_w1 = shared_embedding(word1)\n", "embedded_w2 = shared_embedding(word2)\n", "\n", "w1 = Flatten()(embedded_w1)\n", "w2 = Flatten()(embedded_w2)\n", "\n", "dotted = Dot(axes=1, name='dot_product')([w1, w2])\n", "\n", "prediction = Dense(1, activation='sigmoid', name='output_layer')(dotted)" ] }, { "cell_type": "code", "execution_count": 20, "metadata": { "collapsed": true }, "outputs": [], "source": [ "sg_model = Model(inputs=[word1, word2], outputs=prediction)" ] }, { "cell_type": "code", "execution_count": 21, "metadata": { "collapsed": true }, "outputs": [], "source": [ "sg_model.compile(optimizer='adam', loss='mean_squared_error')" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "At this point you can check out how the data flows through your compiled model." ] }, { "cell_type": "code", "execution_count": 22, "metadata": {}, "outputs": [ { "data": { "text/plain": [ "[<keras.engine.topology.InputLayer at 0x116536310>,\n", " <keras.engine.topology.InputLayer at 0x11650ebd0>,\n", " <keras.layers.embeddings.Embedding at 0x1165d7e50>,\n", " <keras.layers.core.Flatten at 0x1165a7310>,\n", " <keras.layers.core.Flatten at 0x1165a73d0>,\n", " <keras.layers.merge.Dot at 0x1165d7f90>,\n", " <keras.layers.core.Dense at 0x1115a1810>]" ] }, "execution_count": 22, "metadata": {}, "output_type": "execute_result" } ], "source": [ "sg_model.layers" ] }, { "cell_type": "code", "execution_count": 108, "metadata": { "collapsed": true }, "outputs": [], "source": [ "def print_layer(model, num):\n", " print model.layers[num]\n", " print model.layers[num].input_shape\n", " print model.layers[num].output_shape" ] }, { "cell_type": "code", "execution_count": 27, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "<keras.layers.core.Flatten object at 0x1165a7310>\n", "(None, 1, 50)\n", "(None, 50)\n" ] } ], "source": [ "print_layer(sg_model,3)" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "Let's try training it with our toy data set!" ] }, { "cell_type": "code", "execution_count": 28, "metadata": { "collapsed": true }, "outputs": [], "source": [ "import numpy as np" ] }, { "cell_type": "code", "execution_count": 29, "metadata": { "collapsed": true }, "outputs": [], "source": [ "pairs = np.array(sg[0])\n", "targets = np.array(sg[1])" ] }, { "cell_type": "code", "execution_count": 30, "metadata": {}, "outputs": [ { "data": { "text/plain": [ "array([1, 0, 0, 1, 0, 1, 0, 1, 1, 1, 0, 0])" ] }, "execution_count": 30, "metadata": {}, "output_type": "execute_result" } ], "source": [ "targets" ] }, { "cell_type": "code", "execution_count": 31, "metadata": {}, "outputs": [ { "data": { "text/plain": [ "array([[ 2, 6],\n", " [ 2, 6],\n", " [ 2, 9],\n", " [ 6, 2],\n", " [ 6, 3],\n", " [ 6, 10],\n", " [ 6, 1],\n", " [ 2, 4],\n", " [ 4, 2],\n", " [10, 6],\n", " [10, 8],\n", " [ 4, 2]])" ] }, "execution_count": 31, "metadata": {}, "output_type": "execute_result" } ], "source": [ "pairs" ] }, { "cell_type": "code", "execution_count": 32, "metadata": {}, "outputs": [ { "data": { "text/plain": [ "array([[ 2],\n", " [ 2],\n", " [ 2],\n", " [ 6],\n", " [ 6],\n", " [ 6],\n", " [ 6],\n", " [ 2],\n", " [ 4],\n", " [10],\n", " [10],\n", " [ 4]])" ] }, "execution_count": 32, "metadata": {}, "output_type": "execute_result" } ], "source": [ "w1_list = np.reshape(pairs[:, 0], (len(pairs), 1))\n", "w1_list" ] }, { "cell_type": "code", "execution_count": 33, "metadata": {}, "outputs": [ { "data": { "text/plain": [ "array([[ 6],\n", " [ 6],\n", " [ 9],\n", " [ 2],\n", " [ 3],\n", " [10],\n", " [ 1],\n", " [ 4],\n", " [ 2],\n", " [ 6],\n", " [ 8],\n", " [ 2]])" ] }, "execution_count": 33, "metadata": {}, "output_type": "execute_result" } ], "source": [ "w2_list = np.reshape(pairs[:, 1], (len(pairs), 1))\n", "w2_list" ] }, { "cell_type": "code", "execution_count": 34, "metadata": {}, "outputs": [ { "data": { "text/plain": [ "(12, 1)" ] }, "execution_count": 34, "metadata": {}, "output_type": "execute_result" } ], "source": [ "w2_list.shape" ] }, { "cell_type": "code", "execution_count": 35, "metadata": {}, "outputs": [ { "data": { "text/plain": [ "dtype('int64')" ] }, "execution_count": 35, "metadata": {}, "output_type": "execute_result" } ], "source": [ "w2_list.dtype" ] }, { "cell_type": "code", "execution_count": 45, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "Epoch 1/10\n", "12/12 [==============================] - 0s - loss: 0.1396\n", "Epoch 2/10\n", "12/12 [==============================] - 0s - loss: 0.1390\n", "Epoch 3/10\n", "12/12 [==============================] - 0s - loss: 0.1383\n", "Epoch 4/10\n", "12/12 [==============================] - 0s - loss: 0.1377\n", "Epoch 5/10\n", "12/12 [==============================] - 0s - loss: 0.1371\n", "Epoch 6/10\n", "12/12 [==============================] - 0s - loss: 0.1365\n", "Epoch 7/10\n", "12/12 [==============================] - 0s - loss: 0.1360\n", "Epoch 8/10\n", "12/12 [==============================] - 0s - loss: 0.1354\n", "Epoch 9/10\n", "12/12 [==============================] - 0s - loss: 0.1349\n", "Epoch 10/10\n", "12/12 [==============================] - 0s - loss: 0.1344\n" ] }, { "data": { "text/plain": [ "<keras.callbacks.History at 0x116b8f850>" ] }, "execution_count": 45, "metadata": {}, "output_type": "execute_result" } ], "source": [ "sg_model.fit(x=[w1_list, w2_list], y=targets, epochs=10)" ] }, { "cell_type": "code", "execution_count": 47, "metadata": {}, "outputs": [ { "data": { "text/plain": [ "[<tf.Variable 'shared_embedding_2/embeddings:0' shape=(11, 50) dtype=float32_ref>]" ] }, "execution_count": 47, "metadata": {}, "output_type": "execute_result" } ], "source": [ "sg_model.layers[2].weights" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "#### Continuous Bag of Words (CBOW) model " ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "CBOW means we take _all_ the words in the window and use them to predict the target word. Note we are trying to predict an actual word (or a probability distribution over words) with CBOW, whereas in skip-gram we are trying to predict a similarity score. " ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "#### FastText Model" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "FastText is creating dense document vectors using the words in the document enhanced with n-grams. These are embedded, averaged, and fed through a hidden dense layer, with a sigmoid activation. The prediction task is some binary classification of the documents. As usual, after training we can extract the dense vectors from the model." ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "#### FastText Model Data Prep" ] }, { "cell_type": "code", "execution_count": 48, "metadata": { "collapsed": true }, "outputs": [], "source": [ "MAX_FEATURES = 20000 # number of unique words in the dataset\n", "MAXLEN = 400 # max word (feature) length of a review \n", "EMBEDDING_DIMS = 50\n", "NGRAM_RANGE = 2" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "Some data prep functions lifted from the example" ] }, { "cell_type": "code", "execution_count": 49, "metadata": { "collapsed": true }, "outputs": [], "source": [ "def create_ngram_set(input_list, ngram_value=2):\n", " \"\"\"\n", " Extract a set of n-grams from a list of integers.\n", " \"\"\"\n", " return set(zip(*[input_list[i:] for i in range(ngram_value)]))" ] }, { "cell_type": "code", "execution_count": 50, "metadata": {}, "outputs": [ { "data": { "text/plain": [ "{(1, 2), (2, 3), (3, 4), (4, 5)}" ] }, "execution_count": 50, "metadata": {}, "output_type": "execute_result" } ], "source": [ "create_ngram_set([1, 2, 3, 4, 5], ngram_value=2)" ] }, { "cell_type": "code", "execution_count": 51, "metadata": {}, "outputs": [ { "data": { "text/plain": [ "{(1, 2, 3), (2, 3, 4), (3, 4, 5)}" ] }, "execution_count": 51, "metadata": {}, "output_type": "execute_result" } ], "source": [ "create_ngram_set([1, 2, 3, 4, 5], ngram_value=3)" ] }, { "cell_type": "code", "execution_count": 52, "metadata": { "collapsed": true }, "outputs": [], "source": [ "def add_ngram(sequences, token_indice, ngram_range=2):\n", " \"\"\"\n", " Augment the input list of list (sequences) by appending n-grams values.\n", " \"\"\"\n", " new_sequences = []\n", " for input_list in sequences:\n", " new_list = input_list[:]\n", " for i in range(len(new_list) - ngram_range + 1):\n", " for ngram_value in range(2, ngram_range + 1):\n", " ngram = tuple(new_list[i:i + ngram_value])\n", " if ngram in token_indice:\n", " new_list.append(token_indice[ngram])\n", " new_sequences.append(new_list)\n", "\n", " return new_sequences" ] }, { "cell_type": "code", "execution_count": 60, "metadata": { "collapsed": true }, "outputs": [], "source": [ "sequences = [[1,2,3,4,5, 6], [6,7,8]]\n", "token_indice = {(1,2): 20000, (4,5): 20001, (6,7,8): 20002}" ] }, { "cell_type": "code", "execution_count": 61, "metadata": {}, "outputs": [ { "data": { "text/plain": [ "[[1, 2, 3, 4, 5, 6, 20000, 20001], [6, 7, 8]]" ] }, "execution_count": 61, "metadata": {}, "output_type": "execute_result" } ], "source": [ "add_ngram(sequences, token_indice, ngram_range=2)" ] }, { "cell_type": "code", "execution_count": 62, "metadata": {}, "outputs": [ { "data": { "text/plain": [ "[[1, 2, 3, 4, 5, 6, 20000, 20001], [6, 7, 8, 20002]]" ] }, "execution_count": 62, "metadata": {}, "output_type": "execute_result" } ], "source": [ "add_ngram(sequences, token_indice, ngram_range=3)" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "load canned training data" ] }, { "cell_type": "code", "execution_count": 63, "metadata": { "collapsed": true }, "outputs": [], "source": [ "from keras.datasets import imdb" ] }, { "cell_type": "code", "execution_count": 64, "metadata": { "collapsed": true }, "outputs": [], "source": [ "(x_train, y_train), (x_test, y_test) = imdb.load_data(num_words=MAX_FEATURES)" ] }, { "cell_type": "code", "execution_count": 65, "metadata": {}, "outputs": [ { "data": { "text/plain": [ "array([ list([1, 14, 22, 16, 43, 530, 973, 1622, 1385, 65, 458, 4468, 66, 3941, 4, 173, 36, 256, 5, 25, 100, 43, 838, 112, 50, 670, 2, 9, 35, 480, 284, 5, 150, 4, 172, 112, 167, 2, 336, 385, 39, 4, 172, 4536, 1111, 17, 546, 38, 13, 447, 4, 192, 50, 16, 6, 147, 2025, 19, 14, 22, 4, 1920, 4613, 469, 4, 22, 71, 87, 12, 16, 43, 530, 38, 76, 15, 13, 1247, 4, 22, 17, 515, 17, 12, 16, 626, 18, 19193, 5, 62, 386, 12, 8, 316, 8, 106, 5, 4, 2223, 5244, 16, 480, 66, 3785, 33, 4, 130, 12, 16, 38, 619, 5, 25, 124, 51, 36, 135, 48, 25, 1415, 33, 6, 22, 12, 215, 28, 77, 52, 5, 14, 407, 16, 82, 10311, 8, 4, 107, 117, 5952, 15, 256, 4, 2, 7, 3766, 5, 723, 36, 71, 43, 530, 476, 26, 400, 317, 46, 7, 4, 12118, 1029, 13, 104, 88, 4, 381, 15, 297, 98, 32, 2071, 56, 26, 141, 6, 194, 7486, 18, 4, 226, 22, 21, 134, 476, 26, 480, 5, 144, 30, 5535, 18, 51, 36, 28, 224, 92, 25, 104, 4, 226, 65, 16, 38, 1334, 88, 12, 16, 283, 5, 16, 4472, 113, 103, 32, 15, 16, 5345, 19, 178, 32]),\n", " list([1, 194, 1153, 194, 8255, 78, 228, 5, 6, 1463, 4369, 5012, 134, 26, 4, 715, 8, 118, 1634, 14, 394, 20, 13, 119, 954, 189, 102, 5, 207, 110, 3103, 21, 14, 69, 188, 8, 30, 23, 7, 4, 249, 126, 93, 4, 114, 9, 2300, 1523, 5, 647, 4, 116, 9, 35, 8163, 4, 229, 9, 340, 1322, 4, 118, 9, 4, 130, 4901, 19, 4, 1002, 5, 89, 29, 952, 46, 37, 4, 455, 9, 45, 43, 38, 1543, 1905, 398, 4, 1649, 26, 6853, 5, 163, 11, 3215, 10156, 4, 1153, 9, 194, 775, 7, 8255, 11596, 349, 2637, 148, 605, 15358, 8003, 15, 123, 125, 68, 2, 6853, 15, 349, 165, 4362, 98, 5, 4, 228, 9, 43, 2, 1157, 15, 299, 120, 5, 120, 174, 11, 220, 175, 136, 50, 9, 4373, 228, 8255, 5, 2, 656, 245, 2350, 5, 4, 9837, 131, 152, 491, 18, 2, 32, 7464, 1212, 14, 9, 6, 371, 78, 22, 625, 64, 1382, 9, 8, 168, 145, 23, 4, 1690, 15, 16, 4, 1355, 5, 28, 6, 52, 154, 462, 33, 89, 78, 285, 16, 145, 95])], dtype=object)" ] }, "execution_count": 65, "metadata": {}, "output_type": "execute_result" } ], "source": [ "x_train[0:2]" ] }, { "cell_type": "code", "execution_count": 66, "metadata": {}, "outputs": [ { "data": { "text/plain": [ "array([1, 0])" ] }, "execution_count": 66, "metadata": {}, "output_type": "execute_result" } ], "source": [ "y_train[0:2]" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "Add n-gram features" ] }, { "cell_type": "code", "execution_count": 67, "metadata": { "collapsed": true }, "outputs": [], "source": [ "ngram_set = set()\n", "for input_list in x_train:\n", " for i in range(2, NGRAM_RANGE + 1):\n", " set_of_ngram = create_ngram_set(input_list, ngram_value=i)\n", " ngram_set.update(set_of_ngram)" ] }, { "cell_type": "code", "execution_count": 68, "metadata": {}, "outputs": [ { "data": { "text/plain": [ "1185229" ] }, "execution_count": 68, "metadata": {}, "output_type": "execute_result" } ], "source": [ "len(ngram_set)" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "Assign id's to the new features" ] }, { "cell_type": "code", "execution_count": 70, "metadata": {}, "outputs": [ { "data": { "text/plain": [ "(2561, 3221)" ] }, "execution_count": 70, "metadata": {}, "output_type": "execute_result" } ], "source": [ "ngram_set.pop()" ] }, { "cell_type": "code", "execution_count": 71, "metadata": { "collapsed": true }, "outputs": [], "source": [ "start_index = MAX_FEATURES + 1\n", "token_indice = {v: k + start_index for k, v in enumerate(ngram_set)}\n", "indice_token = {token_indice[k]: k for k in token_indice}" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "Update MAX_FEATURES" ] }, { "cell_type": "code", "execution_count": 73, "metadata": { "collapsed": true }, "outputs": [], "source": [ "import numpy as np" ] }, { "cell_type": "code", "execution_count": 74, "metadata": {}, "outputs": [ { "data": { "text/plain": [ "1205229" ] }, "execution_count": 74, "metadata": {}, "output_type": "execute_result" } ], "source": [ "MAX_FEATURES = np.max(list(indice_token.keys())) + 1\n", "MAX_FEATURES" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "Add n-grams to the input data" ] }, { "cell_type": "code", "execution_count": 75, "metadata": { "collapsed": true }, "outputs": [], "source": [ "x_train = add_ngram(x_train, token_indice, NGRAM_RANGE)\n", "x_test = add_ngram(x_test, token_indice, NGRAM_RANGE)" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "Make all input sequences the same length by padding with zeros" ] }, { "cell_type": "code", "execution_count": 76, "metadata": { "collapsed": true }, "outputs": [], "source": [ "from keras.preprocessing import sequence" ] }, { "cell_type": "code", "execution_count": 77, "metadata": {}, "outputs": [ { "data": { "text/plain": [ "array([[0, 0, 0, 0, 0, 1, 2, 3, 4, 5],\n", " [0, 0, 0, 0, 0, 0, 0, 6, 7, 8]], dtype=int32)" ] }, "execution_count": 77, "metadata": {}, "output_type": "execute_result" } ], "source": [ "sequence.pad_sequences([[1,2,3,4,5], [6,7,8]], maxlen=10)" ] }, { "cell_type": "code", "execution_count": 78, "metadata": { "collapsed": true }, "outputs": [], "source": [ "x_train = sequence.pad_sequences(x_train, maxlen=MAXLEN)\n", "x_test = sequence.pad_sequences(x_test, maxlen=MAXLEN)" ] }, { "cell_type": "code", "execution_count": 79, "metadata": {}, "outputs": [ { "data": { "text/plain": [ "(25000, 400)" ] }, "execution_count": 79, "metadata": {}, "output_type": "execute_result" } ], "source": [ "x_train.shape" ] }, { "cell_type": "code", "execution_count": 80, "metadata": {}, "outputs": [ { "data": { "text/plain": [ "(25000, 400)" ] }, "execution_count": 80, "metadata": {}, "output_type": "execute_result" } ], "source": [ "x_test.shape" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "#### FastText Model" ] }, { "cell_type": "code", "execution_count": 4, "metadata": {}, "outputs": [ { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAeQAAAMjCAYAAAB03GPcAAAgAElEQVR4Xuy9BbQ0S3m2ff24BNcE\nCO7umqCB4O4SJBCCBLcECy7BJRCcgxMcgru7e7Dg7hz8/OtiVX2rUumemT0z7357775rrbPes2e6\nq6uu6qm7nqeeqvr/SAqBEAiBEAiBEDjoBP6/g16CFCAEQiAEQiAEQoAIcl6CEAiBEAiBEJgAgQjy\nBBohRQiBEAiBEAiBCHLegRAIgRAIgRCYAIEI8gQaIUUIgRAIgRAIgQhy3oEQCIEQCIEQmACBCPIE\nGiFFCIEQCIEQCIEIct6BEAiBEAiBEJgAgQjyBBohRQiBEAiBEAiBCHLegRAIgRAIgRCYAIEI8gQa\nIUUIgRAIgRAIgQhy3oEQCIEQCIEQmACBCPIEGiFFCIEQCIEQCIEIct6BEAiBEAiBEJgAgQjyBBoh\nRQiBEAiBEAiBCHLegRAIgRAIgRCYAIEI8gQaIUUIgRAIgRAIgQhy3oEQCIEQCIEQmACBCPIEGiFF\nCIEQCIEQCIFFgvw3wJ2AnwJ/DvwD8NmZITsy8HTgCAvq/XPga8B7yn+HzoxRqhsCIRACIbAFAosE\n+RrAi5tnnBf40BaeeTCysOx3BL4DHA+4H/DfKxTk6MAHgDOtcK2XfA+42JYGLicAHgb8DDg+8Fzg\nv1YsRy4LgRAIgRDYYwTmIsjXK4JWm2fVwcVRgPcDZ9tBu2oxnwP48g7uGbr0DJ2w3wZ4woZ55vYQ\nCIEQCIGJEpiLIPfWvoL58RXaZEiQ7wv8ETgM+A1wS+BUXV7vBC4B/H6FZ4xdchrgi82XNweeukF+\nuTUEQiAEQmDCBNYV5L8Ajlbq9YviCtaKvDBweOC3wIfLf231jwmcHPhd+fDzwLGKm/ck5XPnqd9d\nRK+913ls3c1V5LxXUazpOMBJSx6W4Qvl/48N3BR4RHPtlcozdAcvEs1ekF8AaG23z5Wh7vB/69p5\nSPQtn3Pz1vUnhZOu848CP27ul9N5gDc3n90feEwZBMi8Jq+9OHCW4t52sPA/wMeAr0/43UvRQiAE\nQiAEGgLrCvILgWuVfJw3fR5w+wGyrwFuUMTHr68PPKdcp2vXe542cN83gL8Cvtp81z7TexX2VsTa\nvL3tfOW5CvNYuiDwvgXf94L8KuCqwB+6e+Ro8NeNm88NiHtk+dugsDuUOeGxxz0UuGcJIPv0gNVd\n77tzM7i4PPDqBeV/LXBD4Id560MgBEIgBKZNYF1BfixwW+AzKwQ8PRy4a8FQXccK6jGWoFHotTK/\nXa6rz/RPv3OOtRXkoSA0LclFkeHL5pKHBPkqA9a7ZbpsF3TVindb9kXVVsSfvCSQrM4lW46XrfB6\nWY6rbeg+X+ExuSQEQiAEQmATApsKss/+RAl6Uhx0sd4bOGFTqFY8e9Gsl70eOO2AVdiK+TqC/CXg\nVsVl3c7zWtZPAc8AvrJDC3lMkE/dRW6/CLgu8GfFJd0+//ElYv2KwNWb5yue1wScL74UcOWOo/e9\nt3B+VrF+W4bPB85alqvVz4cGL5u8M7k3BEIgBELgABDYhiBbLJfn3KNYjs71vqsR10WC7HcKzycB\ny/LPwAM6EVKonetdR5DrMi3njF/R5LtuUJeCOSbIlrN1j9drT188CfXxrcvZuW4HNHVZVRVx54FP\n0Q0W2qAul2MZxV0HPgaROY9cXenLWB2AVylZhkAIhEAIbEJgG4I8ZIGNCUJvIV8HcG64psMB7yjB\nYX6ma/vMJThpmcgsWje97prqnbisxwTZ+WOt418DCqkbrSi4BnZdpJlntr6t4Pf59cue/N58zN9/\nzVeBPntZZ10t8ljIm/xCcm8IhEAI7BKBbQiyVqEioODUtKogD83h9vOt9ZqpC3K/bridQ1Y0HRQY\n4GYg1ljaiSCbh0urDCQzcGssRZB36ceUx4RACITAJgS2Icitm3UngqxQuFTn+10FnEM1z5pWFeQ+\nyKkV+92wkPvNR1wiZeS3bum3Nlb/ovbaiSA7RfCgFRo/grwCpFwSAiEQAgebwDYEeWhedVULeWgu\nt7eQ6zXt5y6L0pXt3HJNRnK7dKgXcv8+0II8tIGIz3wJ0M9fW567l32vP1fm3+tyqVUFuZ9fNk8D\nvlxm5oYnl2s2EYkgH+xfWZ4fAiEQAisQONiC3O8+5SYXbpIxNP/ptpFGTNekILvsyuTc8ys7d/CB\nsJCHNgbRHX2fsoa4ls25b4O5XLLVDiT8/AJNuY9Yoq3r1pyrCnI/wDBS+6UNm2Xu/RVejVwSAiEQ\nAiGwmwQOtiBb1ysALntyXbJC4jxrTc5P69Z2Zy+tygc33z0TuHXZ7epuXXS2ly0S5L8GjExelnrL\nV2vTzUzqTl3HLUuM+q0z2+Va7UDC+51v95ALU++eb93/fVCXu4E9auS+SwJvKd+57MnI7Zr0Jij4\n7ZrtZfXO9yEQAiEQArtMYAqCvKjK1e3rNS6PeuMO+LSCPHRvb60OZb3O4RK9ALou+1+bzD9YdvW6\ndNn1q91cxS1DXb7kAMRtNoe2vrw28KOOhXXxOScr23i2ebaR6jvAl0tDIARCIAR2k8C6gtxafUNz\nyL1VWHfVGtqpa2y3L61Fg6LqXtMuGfLM4VVPXmoFeWjOVc6r7NTlntyrHr84tOWnFr7rrFdJiuf5\ny+5ivTu73u/yp0MGNhtZlH/v0l6lLLkmBEIgBEJgFwksEuQ+arkNwHIjkLuUctZoYtfC1uR5w/cq\nf7QWYz/3qbi4G5UHLrRJ96zu637PaK1G94zurzefb3ZbSSqE7gldk0uDnt09x/2utVjH0ioWsiLq\nntG60N/UHJzR5qk1rFu+TwZ8eSiGu27V1K43VpydG293Pquua0+DcrOTfrBg9LXueDdnqWlsD+4F\nVc9XIRACIRACu0lgkSAfiHKMHYPoHKwWsHOzCuuy+U7nbt2S0kGA1/5yxcK6BMnnGIil2HvfJkck\nrvjYP1121BKsdiTg0HJwRrt2e1Feltn7rK9HPrb3GTzmyVvWw8HPMnY7KXOuDYEQCIEQ2CUCB1uQ\nl7mMdwlDHhMCIRACIRACB5dABPng8s/TQyAEQiAEQuBPBCLIeRFCIARCIARCYAIEdluQ+12rXJPb\nrpmdAJIUIQRCIARCIAR2n8BuC/Lu1zBPDIEQCIEQCIE9QCCCvAcaKUUMgRAIgRDY/wQiyPu/jVPD\nEAiBEAiBPUAggrwHGilFDIEQCIEQ2P8EIsj7v41TwxAIgRAIgT1AIIK8BxopRQyBEAiBENj/BCLI\n+7+NU8MQCIEQCIE9QCCCvAcaKUUMgRAIgRDY/wQiyPu/jVPDEAiBEAiBPUAggrwHGilFDIEQCIEQ\n2P8EIsj7v41TwxAIgRAIgT1AIIK8BxopRQyBEAiBENj/BCLI+7+NU8MQCIEQCIE9QCCCvAcaKUUM\ngRAIgRDY/wQiyPu/jVPDEAiBEAiBPUAggrwHGilFDIEQCIEQ2P8EIsj7v41TwxAIgRAIgT1AIIK8\nBxopRQyBEAiBENj/BCLI+7+Nd6OGRwUOXfCgIwG/3Y2C5BkhEAIhsFcJjAnyU4GbjVTqwsAzgAsA\nP55gxW8MnAR44ITKdgTgHMDHgd9tUK4zAv8JnA24FvAXwCO6/I4CfBi4XnneBo9b6dbjAx8FTldE\n+SrATYGvAI8EvgZcGTjLxNpkpcrlohAIgRDYLQJjgnxK4MiAnfvrgX8snfsRgR8C7wLOBfxytwq6\ng+ecAtBi++wO7jnQl8pNC/FYwM82eNgxgTMD7wWuDxwHePyAIH8auDbwoQ2eteqtjwXeA7wAuBzw\nGuBqwGmAe5Xyfgf4GHBV4AurZpzrQiAEQmBOBJa5rBUSO1I7f/81VQvsQcD9gFMBVygdsd8r5lpt\ndr6PA/61iHjL9aTAHUqezwaeDjwJuAtwTeDvgaeVGxT+F5fneN1dgcMBh5SBgpaYSYte0fufIlQv\nB45WROHuZWBxJ0CxapPPOwHwxPLvc4HbFUG/FHAe4KHAxQA9B9b3RaX83wKOUTjcHvheqbcCVZPW\nsR6FGwDvAy5byqlY9eWSy62ATwCPAS5R2Ld//y3wqCJ6crL+twQeVsrxh1LHKsirtMe67/wZgLcX\n8dXyl+1NgHcAvluvBV4FPKFYyZcHbrHuw3JfCIRACOxnAssEWfHtrS0/ez9w4iI+uioVLDtn0+eK\nmOhaVYx1Hyssv29AnrZYSgqtbs0nFzfsDYsb/NXFsnJe8stFoN8EPAA4H3DWIrDPA57SDBJuC/x5\nceX+G+A95nFn4IpFnC2vFltNiq6CoeV5oSIwisozS7m0Mi2P4nvdYp0qvtZft7ADBAcNDia8//nA\nCYHvN8/4K8CyKpxvLEI1VC7FXQtSYVeYtfLlX//+YhmI+DwHPPK7eXFRPwd4SynPp4qF/KUV22Pd\nd9yBmlaxgw09Kr2r3O8d8GgxO5B5K6Db/RfrPjD3hUAIhMB+JbCuINvxapFq8VUrWnFSaJ27VdwU\nYOc4v1k642rJytLrzOPkRYBrx+6/Nb+/K8KrYPq5SZetoqTAnwm4bxFy51RfWeYx7fwVS/9W3P4S\n+Dqgpfq2MnjQaqvJOVDF03+tgy5YRV43vZapwqeAOxBQ8CyfA4cbARcv1qpC+s/At4GzFyu9nV/3\nHkXyvMCJFpTLwYxcdPcqwpVT+7cDnXMWwXUeX2ve5CDFAYjPf3f5Xvf9Ku2x7vvtAMO66QnxWQ7U\nLHN1yyvGDpLkdPQyuLCtphh7sC6D3BcCIRACWyGwriAbnHSRImStFW2nrNXWJ4Wonc+009albOes\ni1XLU0G0Y6/5XQe4YxFBBdJU3eUGbn2jWK2Kr+KoKN67iHcryH1ZtCh1PdckA4XswcUq1VpXlHX5\nvqRY/rrI71Ys/nqfom4Ak4OKWhe/03r+9y6q2HLLTAG1nkPzqJZL96/z83obFC059X9XQZbZcQsz\nn1uv7QV5lfZY52WSm1a/5dPD4Hy2Axit9+odUJBte70Ite0caO3G3PY6dco9IRACIXDQCGwiyDXK\nuhXk0wP/AGjVajkdvlhzBiG1y14Ujyosf2xE1LnnNj/doQp2jZjWytKFrYX8mRJI9MFisSpQfqY1\nrSAbXKTAKVBabD7HSGfduK07WfgKvCKshXtu4BXAsYur+j7ANYplfUngq4CR5gq488oKsha05ZbJ\nfxVr2nLVVAVZcdJrMFYun7mqIDtg0A1c2WhFaxm3grxqe6z7Asrs80WQq+A6sKhz6H5vlHVt1zoo\niYW8LvHcFwIhsG8JbFuQFU/FRutZa0nXrnO5Ws7tOtVVBVkB1hI9f5lP1WK+dbEgDSJS+J2TVYgV\nIt3kVZANANMF/E/AC4vQapnpTvf6NmmROl+rhe71WsMPARRg3dTmqfXtM7TEFXtF+OqlfIqw4mMQ\nmYMPg61aQbYe1f2t+3ysXNZpVUHWNW8dZeMgRS/CT8tcdp33X7U9dOfr+tbSd8Cie9666klwcKNV\nK5s+qt5BkIwU4cNK7IADmsuUZU5OaVTvSHVpV+t/3/6oUrEQCIEQWIfAKoLsnGbrZmzdr1o6/bpX\nxai6mH9erMiPdIVTkI2i1sLUcrVjr2tqa9CYc9Q+27lZg7lMzqsqwp8sfzun7BrYfynWsh+3eWnJ\nKnA1OUAw+KlP9ZkGob20CJIDAcX7B4DRzw40tEhNzl37n+L9gTKXXvM0Altev24eouApdn9dLGrn\nv4fKVd3OWruyG/q7clOQW3e0oqyQKpptcNUq7dFOEziQaOd+rXM7SOgHMnoTasyA7aH7XxE2tdHy\nFy2R7HXgtM77mntCIARCYN8SWCbI61ZcK9LdmbTY2ujqdfNzflLr87tr5Gc5dAXrtm5Fcqdl0f3u\nnK35/KasddaitX5GGPsM/9912mPJ67zXtK1yyUVBdXCklTqUtt0e9Rm+P3oQHJw4YDHJycA1rXPb\ny1Tn6V0mV6/bKf9cHwIhEAL7msCBEuR9DS2V+18EXMak9V+t5CE8WswuI6tBfEEYAiEQAiHQEYgg\n55XYBgHnsZ0jH9vPWhf8r0pU/DaelzxCIARCYN8RiCDvuyZNhUIgBEIgBPYigQjyXmy1lLkl4Pz5\notgA59i1zpNCIARCYNIEFgmyG2S4hMe5vzYZSXvqEt3cR0sfyMq20dP9c9ylyo1C+vWt7SlLBhsd\nqHWw2zrN6UDyO5h5Hyg+Lk9z+dmzmsq5e5iBY/VwEd9j9yd3f+2kEAiBEJgsgUWC7BpUBcz1p21S\njN2W0uP0nBt0gw833BiL8N1W5cdONzJ/95p2yVK79tfP21OW3JjE+hyIU6q2dZrTtlhNLZ8Dwcd1\nze9sjn30gBD3EjfArN0Zrr9uamxSnhAIgRD4E4FlguwaX7dFrMn1uB7H6DraR5cTmtwUw12rXHus\nlXrpxjpxrazbT5rcUtK8tFT919OeXGvrUqD2b9fSejqSbsj/KNa4m3K4p7SHNLgW2d2z6sEKnr3r\nARX9GuX+lCW3uXSJzianVMnLtbWWy+S6ZjcdcYOO9jQng5s8bOL+pY5a924m0p/mZD1d4+uAwuS6\naXcF81Qq12ebtP5vUzZE8W8P8vCel5X8rI+7o7lL2DqnUdW2HeNumTyQwwMz3PRDjn6m58Q1yrar\nR0C6zMnlVa4J13K1bd0PXD79aVc/2fD3Zzv4vrnxSN0G1Y1Z3Dfb1G/V6slZireDx6QQCIEQmCSB\nnQqy4uke0wqkWze6zth9mRVHt3B0C0o7bTf88EhGN43wYAG3qtSqtmN25y4PiKiHDDgHWP8+Xvl/\nj+hztym3glRo3d3JHaF8jhuFvK4Igp2xAwQ3+9Bt6d7Krdu6PWVJl6VCtskpVQqR5/56hKKue8tX\nNzeppzm9oQixm2t43KDHHzposfzu0tWe5uTJVNcqjBQ06+OpUvKtydOyHOi4cYrrnmVpGTwI40rl\nuEN3L/OadU+j0tNhGyzi7sBKYXMdtYdIONhyG1FFzs1KHBj4Dvh+uOWpnD3MQ0+K67dbPtZjk1R3\nPvM5bt1Z09DpZH5nWziQcNB0oD05m9Qr94ZACMyYwE4FWVQKjG5B3dR25O4KpVvwR82JP65N9YAF\nRdj5O5OWnsKky1hhbPfCrnO7Vy6CXi2deoJRFWTd0nUtq4LgAMCO1md4HrAWfZvaU5Z0WW96SpXl\n0xr0TGK337T+WvLOY9bTnBRWd81yIFK36PQ4Rz0HWvZu31lPb5Kbp2ApzAYe1ZOs2jObPdjizcXy\nVMjcGcz8ZfzwMs9f989e9zSqOpBaxL3usOWcrBt+1EGD9XQg4Tpkr3E/cE/4cnMQrVIHbrZv5VNP\ngtrkZ+dgSEY+s81vTJB9jxy0+e7ZPkkhEAIhMDkC6whyuw+188ntqU11q0c7Pi1SRdPO2NSeRmTQ\nzZAgP7E73ak97UgRbA9T0OrxzGAtT88g1vLu55DbbT51I296SpURu7pG3dbT5Py623oqCnVQoRBZ\nv/YYQt3QbrOpBep3dT/nutOVwqrlq2hoUfYWpPtMu7OXn+vudWtOT1DS1a9FqgBuchqV/BTzuuVp\ny92tSitn3eita7i+0NWLoWtbS7huMer3uo8V420G1Mmv5VjLMSbI/alZk/shpkAhEAIhsK4g1/2U\nFeT21Kba8Skqzpk6F6qVZNKa0dVcLeR6fKPbYnrYgp2sguXcbz3BqO14qxvUk4NMOxFkRaEGdW1y\nSpVuWLfH1Jq1Pgqic6T+q+D4HN2pulFlU0+VqhayW0w6UGkPWDBYTctby1J3djtnX99QLTw33nBe\n1v/XK1BZWQ7/dm553dOoFPMx7r0gK95G3zt48h7d0Vr67leuB+JRxaUuI+vqHHMVZPlsw0IeOntZ\nVmOCrEfC6ZPsFJY+LwRCYLIElgnyUJS1YqLYXhA41ogge43uT+datWy17LxHC1a3s+Livsa6mg3I\n0q3pPc4/e7iDc7VafQq4xxv63SJBNh87XMWxnSNsT1lS7Forre28Vz0VSRF0HvJvisAbzKboPqk5\nzUnxUYi0OK2rc7+6qQ0Gc+DRH9Sgu9p5Y5Mirju6T9ZDV7VllsV5yhGHBlA5d7vpaVSK7hh3v7Mt\n61y5y4oMWLP9jSGw7g6q5CJf57NttxrQ54EainU97cp/22T962lSzk+PnTrVtmttO9+v9mzpMUF2\nrv3OzVz9ZH+QKVgIhMB8CSwTZMWjX4eslWjH6ylIHj9oxHHtrKuF7L+mGgDl/xsRaweqy1Xr1lOR\nTB6f6NxjtRrb04m8RwvM+WqtwHoilPfpBlYE7PjtxBV2RcJ7ampPWdKd2rvKd3oqknV3Ptcoc5OB\nVD7TOeT2NKfqtjYy2eTgw//qyUn1NCe/sw0MSPNwCusydhiHrmKTru/jlzlULWvru+lpVOY7xt3A\ntMpZl7WBfbrqPXKxtqsBfB6q4fGY1YNhFLjTBAq6HhMD+uppV23gXetO9nrnhnXD96dOtXO/MvPd\n8t18bdPe7UlhDoJqcr67PVe7+Sr/GwIhEALTILDuTl0uXVLs6slFi2qjKPmcevJPvdYlMgYsaWXV\nZOds0JgirUWke9uO/JzNMqCxZ7UnKfXXLPquvXaVU5Gsu9HgJq3j1nJrn+N1CqfeAQPexlKdRzZY\nrC4RW+ft2OQ0qnW4O1Ay9XXTWla4a7tq3ddzlFdth1Xqr/vbOfdFh1qYj+WxjFriDpySQiAEQmCS\nBNYV5ANVGSOHjUzWmvxv4NllKY/W0H5MzoXqytey04ocO5zhQNd9L3KvVrKBaJ7BPJZ0r5sMnEsK\ngRAIgckSmJogC0przTla198qVu+ZLL3NC6YF7fymgvI/m2e3UQ57kbvW78nK/PRY5T2J6mMrenM2\nApibQyAEQmATAlMU5E3qk3tDIARCIARCYE8SiCDvyWZLoUMgBEIgBPYbgQjyfmvR1CcEQiAEQmBP\nEogg78lmS6FDIARCIAT2G4EI8n5r0dQnBEIgBEJgTxKIIO/JZkuhQyAEQiAE9huBCPJ+a9HUJwRC\nIARCYE8SiCDvyWZLoUMgBEIgBPYbgQjyfmvR1CcEQiAEQmBPEhgTZPepbk/d8TAIDwRwR6n2dJ66\nR/GerHwKHQIhEAIhEAJTITAmyPUYu3rqjmfguoWlp/zksPeptF7KEQIhEAIhsG8IxGW9b5oyFQmB\nEAiBENjLBCLIe7n1UvYQCIEQCIF9QyCCvG+aMhUJgRAIgRDYywQiyHu59VL2EAiBEAiBfUMggrxv\nmjIVCYFdJ3BU4NAFTz08YB/z+10vWR4YAnuQwJggPxW42Uh9Lgw8A7hAWQq17WpfA7g6cH3gjyOZ\nuyzrHMDHgd9tuwATyO+xwCeBpywoy3WBvwAesYPyLuJ2TODUwEdLJP3TgIstaIMdPHblS08KHBH4\nysp3TPvCbb2nZwT+EzgbcK0F7e578xHgmbuA5fjlXTldEeWrADctbfdI4GvAKYFXl3L/YRfKlEeE\nwJ4mMCbI/pCODLj86fXAPxbxs7P8IfAu4FzAgViH7Jrn2wIXB8Z+xJbjt8CxgJ/t6RYYLvyTgU+V\nZWZj1XPAchzg8Tuo/yJuivErgbMApykC4KDnsB3kv+mlfwecBHjQphlN5P5tvacOls4MvLcMVMfa\n3YG0g1SXJx7opPi7FPIFwOWA1wBXK+/OvUp5vw74Lr+1XHegy5T8Q2BPE1jmsrZD+VjpBPzXpEh/\nuHSa9wNOBVyh/CD9XjHXartq6Rj+tYh4C0pL6PbANwFH04r+P5RRtYJ8K+CSwAkBf/h+9sEyAv9c\nsdBvALwPuCzwk5K5HZdWpZuafKdY+T7r/sXyssO6D3A44GGljOZ7G+ADxb3298B/lPxuCDx3QJTc\nHOXBpQO6N+AznlCsAwcqLy5cng7ctam/HdZLSt7W33t05zn4MZ9/btjJxe/Hkp4Ey6o1ectSH9vD\nQdLdi7h+ptzs33aYlmWIm+W3Dc4EPBp4EvBfpY7y/AZwaeCzJb+/KlaYbW89HBT0gyffrZal74HM\nflPqezfAz75XyqSnw47b5Pr3Fxa+Q7x85ldL/q8tZX8i8Dfdu1TZrfpeyPJGpW6WS4tPbvLxnfwE\n8BjgDMCxl7znWsd6klrePx3J3/aXzRsLSwekF2medwngb4FHFSZj7e77rYfD92aV3+G6nZf1f3sR\nX9vt08BNgHeU35Bt8qpSjlMAby4DvUXu7XXLkvtCYN8QWCbIdYOQawMfagT5/cCJi6Dpsnpo6aS8\nRMG009LFZoerxWOH0s4jubnIFwAF6wHlOl3hWmeKu53f5YtFoDVu/oqyYurzvP95RYje0Lit7QQd\ntStAbysdxMmB0xdxt9zeb8f3ziI+Cr+CrRjpEnTEr8jbib+7uG3tfGqSifnIw3oqBJb9vEV4v1yE\nwl3NrNv5irWgFfGKYvl/vwimHfYDC4dLAXK2I7a+NwfsYBcJssLvdQ6QngO8BfinUod/K4MY71fc\n/NuyD3FTEBRBBwWWQeGwfczf8t0YOHdhcZ5SfwcXiqLtrHu7t2oVR9tGNubncx1kPKsMsmxf/3Pq\nw0GX/BRD3fAOLM46wkumCo7viO32ojLwU7jlq1grXrZlHSSs8l7oFVA871veQQdd5ndR4NuFhyLt\nc30nqzgves8duLS8FdKh/B0M2oa+g3qjFFUHm/V5XwQOKV4pB7pj7e7gyXt95iq/w3U7Mr0zvs/y\n8t2x7Ncr1rl5+r2/V9+RIxXBviJQB4jrPjf3hcC+JrCuIPsDdI7ZTqNa0f4gFUo7cN1rCrCdq1aw\nllQ7L+h1r2tGzbrg7EDsoB3Z2+nZsTr/VOeoLKsjb3cNs8PRpWsn3rustbzsgLXaquVsZ2s+diCK\nix2lgvqrIjS6ah31/3W5zw7dzsP7fg3oeqvJ+TzL5eDBEf/RAUXYsisiCqsdkklRtzNV9HXj+Rwt\nbpPXaoUqcA4i2g5LAdXaWGQhO4esmOkNqPk5CLAeWrhDgqyXY4yb3F9e5uatt22sdfOj8q+DEPN+\nCPDdIt4+16kFBw62uaxq8t7jljnNPyuiKd4cZ7MAACAASURBVHPnNxUzO2vdq7arA7dnFxbOTVpv\nB0ZDvBQtLUWZOwioHhsHRuahCFsXrbY2LXsvFEvL54BGi87kAMWyK3TykIsiqXdilffc30bl7RSL\neQzl73P8TjG23f19tM/zb4X/nGXANNbuDy+CbPusUr51Ozc9MtZN17jt7LthGetvsZ12Mg7E360D\nEfuLpBAIgREC6wqyHamWnJZea0X743T03ieFs1rYfuePV7ewQuUPtnaqziFWQdbqMoDFYJEa3FXn\nVu0gLcNQYJnP0mWuNa01YefkYECLSUvkpcUaVNhrspNVbHSnaq3VgDY7HC0yv69JsdWKrOWqZVfo\n71is1BqMVb+zo9UariJUGWhpKeS6RdsOrXU9jr28lkPBq/OF7ZamvSBbV61TA8XGuLWdvvPJinO1\nMtu8FU9dqm2q/NzvvCbdvD7TzrkmpwYUu+ru/HmXj3XS82L5W9FuedlOVXjqgMVBkF4Pk2W5RRHz\ndv572Xvh4Ehhsc5t0gJXMBVKn20dFeRV3nPbv/J28DaWv+5e26Z6ovrtadu2cSA21u6tIK9SvrF3\na9Hn9hkOiH135e9g2rZyqsb+wGSby9spEtNuzm2vU6fcEwKTILCJIFcxbAVZ17BzwXaQjqBd9uCo\n3mAULYSa7GDs8LUSqyBr0VypuO20kLV+nM+somBZtZocbfuvHd2QhaxVqttOy0arx7nkavFoxeli\n02p1QGEHaYeiFWNn63da9lrOXmuHo7XaRjLrgnUwUculhWyHZGeqG08LTevEVK1n3bd2SncqrnK/\nM3+9BFrj8qnWl9858DDPZRaynof6LO/XxW49tBb9T7e83HRl2zlWQR7iZpvUyGoFuVpktk8rEOZr\nef1XT4Ti4EBMK79N1sHv71KsbD0EeizM91vlkBLbxvI5ANK6l635/XvJb4hXtZDrXKnPcFrCqF7F\n3Llu52OreNYyLXsv9ATIXC+K1qnlkoOi7juhANU8HTis8p5XQZa378VY/g4Yff9XEWSvGWv3Kshy\nXqV863ZCDlo/X97POuh06qS+A35ve9TfjQNCp3diIa9LPPfNgsC2BdlOR+unBqQYFKXr1A67Deio\nc8hajC8r86DO+9Y5ZC0w5zR1dyvSBoi4BMegHztfI73t3LSA/bdN1kkL1U7eDlWLxs5WcXIuW+Ey\nOMlOTWG4Z7Gozl6eZYesgDqAsGN31N8KsnOL3mfZHRw436no2OkqwJb1/OUZWsy3Lh35PcrctAJs\nIIxWsQFl1lvry7rp1lPoXbqiNamI6+LUqv9SV0+tNOfgfZbuW+vsXK3s7AAdVNgpy0grzzlgO9Ex\nboqNZbpgiV4fE2QFwfp6nc/TmnVQ43Nai9SyO/eqdWm7+lwF1kGW9XWQoLXtNIH/L1c9Jg70vE4u\nzuX3vBxYtBaXzH9R8rGN24FJa7Evey98dx0U6Na3rYzgNw5BkXOg0wqyg8xV3vM6WJONg6Gx/B1g\nrirIvndj7V65WNZVyucr1Z7kZryDvwPzcXCjx0oPTL+aQivdtlKEbXPF1vfrMqWtFd7qFXOQq2fK\nwbHve1IIhMAIgVUEWWvBH2Yb1NW6PesIuQZ1+MOrLltdkgqpAtOmKsjtZ/6YDQJSaBRFOx4tTgWu\npirgWkVa2HbmCnTb8XqteRgYpRA4r2lH6Lyvc492EHY4PsOk2NrxK/IOAnR9aoWZjC5WePy3TVpy\ndnom66a7TvHX0jFSWje3Sfep3gI7Yy20GjDmd22EuGJYI5i9x/lr55oN1NLSMNCt78x6t6mibIdq\nPfQ81IGK/yrydpCKzRg3O2Db9QdlHbhegLoOuVrI/qtb307azrjWw/L53DbVAVTlYF0coFhGn2Gb\nOCgy1ahqA6gUwTuXd2iMl9a3PGrQm4OvNgDO5yj8/ZKtRe+F5XBQYLlq+1tP83IaxfZW7KubfZX3\nvH9P/a0M5e91bWBU5V2f13ov/A207ui23Vsuq5TPOrcnubVzv7ZNOwhp29b31YC3Giviu229fMdM\nPltvi+kEZTDp76O6tLtXJX+GQAhIYJkgr0vpGCW6UgtqaJcef9C6JR1lH690cm1AUPvco5UlJgaM\naAm1SXFVINZJuka1gs3TSFCXQlkG3eyWyWQH0nfqWoOW24GCz9aSMuirHRh4jeV2/rqvv0u55O53\nbbIMLqXRmm/vcR7WTnPMuvA5dvQOStqy+rl51sC2VbhZd8VhFabyM1nesWQZ3M3JayybFmO1tnyW\n7Py7fZ5l1k1eGYzx6p/pO+fzbEPfu02Sz7RMy/JZ9p7XMvTv6ar5L6rDWLu396xavp2yqtMgenTq\nCgTb80TFNd++2wYd+nvSU5IUAiGwgMCBEuRl0Nudh/baDj51Xlj3qMEtujQNCDIqfNt1UWgN+NFa\n3Xbey9oo34fAIgL+hvW2VCt56FoHpnp4hrxYoRsCIdAROFiC7A/VXaB0T+7mTlDbegF0w+liN4hN\nN7Dz4GPbfG7rmcknBKZGwPgFp0TGNvzwd36ygTiPqdUj5QmBSRA4WII8icqnECEQAiEQAiEwFQIR\n5Km0RMoRAiEQAiEwawIR5Fk3fyofAiEQAiEwFQIR5Km0RMoRAiEQAiEwawIR5Fk3fyofAiEQAiEw\nFQIR5Km0RMoRAiEQAiEwawIR5Fk3fyofAiEQAiEwFQIR5Km0RMoRAiEQAiEwawIR5Fk3fyofAiEQ\nAiEwFQIR5Km0RMoRAiEQAiEwawIR5Fk3fyofAiEQAiEwFQIR5Km0RMoRAiEQAiEwawIR5Fk3fyof\nAiEQAiEwFQIR5Km0RMoRAiEQAiEwawJzFGQPVfe/pBAIgRAIgRCYDIE5CrLnL8+x3pN56VKQEAiB\nEAiB/0tgjsIUQc4vIQRCIARCYHIEIsiTa5IUKARCIARCYI4EIshzbPXUOQRCIARCYHIEIsiTa5IU\nKARCIARCYI4EIshzbPXUOQRCIARCYHIEIsiTa5IUKARCIARCYI4EIshzbPXUOQRCIARCYHIEIsiT\na5IUKARCIARCYI4EIshzbPXUOQRCIARCYHIEIsiTa5IUKARCIARCYI4EIshzbPXUOQRCIARCYHIE\nIsiTa5IUKARCIARCYI4EIshzbPXUOQRCIARCYHIEIsiTa5IUKARCIARCYI4EIshzbPXUOQRCIARC\nYHIEIsiTa5IUKARCIARCYI4EIshzbPXUOQRCIARCYHIEIsiTa5IUKARCIARCYI4EIshzbPXUOQRC\nIARCYHIEIsiTa5IUKARCIARCYI4E5iDI/wHcELg78BjgMMB63w54CHAIcIs5Nn7qHAIhEAIhMB0C\ncxDkYwA/BH4PHAocF/gRcFTgCMDxgJ9Pp0lSkhAIgRAIgTkSmIMg264PBu4IHKlp5N8CjwTuMceG\nT51DIARCIASmRWAugqyV/H3gyA3+3wAniHU8rRcypQmBEAiBuRKYiyD3VnKs47m+8al3CIRACEyU\nwJwEubWSYx1P9IVMsUIgBEJgrgTmJMjVSr4T8IjMHc/1lU+9QyAEQmCaBOYmyFrJ3wFOnLnjab6Q\nKVUIhEAIzJXA3AR5ru2ceodACIRACEycQAR54g2U4oVACIRACMyDQAR5Hu2cWoZACIRACEycQAR5\n4g2U4oVACIRACMyDQAR5Hu2cWoZACIRACEycQAR54g2U4oVACIRACMyDQAR5Hu2cWoZACIRACEyc\nQAR54g2U4oVACIRACMyDQAR5Hu2cWoZACIRACEycQAR54g2U4oVACIRACMyDQAR5Hu2cWoZACIRA\nCEycQAR54g2U4oVACIRACMyDQAR5Hu2cWoZACIRACEycQAR54g2U4oVACIRACMyDQAR5Hu2cWoZA\nCIRACEycQAR54g2U4oVACIRACMyDQAR5Hu2cWoZACIRACEycQAR54g2U4oVACIRACMyDQAR5Hu2c\nWoZACIRACEycQAR54g2U4oVACIRACMyDwCJBPilwCPC9HaD4DHA/4LAd3LMXLr0UcAvgJ8AxgJsD\nvziABV/neX8D3An4KfDnwD8Anz2AZZxi1kcGng4cYUHhfg58DXhP+e/QKVYkZQqBEJgfgUWCfIY1\nOvRXAVcF/rDPUF4DeHGpkwMU2fz4ANZxnee191i08wIfOoBlPJBZW/Y7At8BjlcGef+9wgOPDnwA\nONMK13qJbXmxNd7zoexPADwM+BlwfOC5wH+tWI5cFgIhEAIsEuTTAl/YIaMI8g6BjVw+d0G+XhG0\nimfVwcVRgPcDZ9tBM2gxnwP48g7uGbq0H8DeBnjChnnm9hAIgRkR2KkgP26J9fsVwGv2m8t6HYHc\n5DVa53n7yULu66JgfnwFoEOCfF/gj+Wd/A1wS+BUXV7vBC4B/H6FZ4xdchrgi82XTms8dYP8cmsI\nhMDMCOxEkF8AaLmsKrbHAU5UOjnv+RLgvLQuwmOXfJzjtDP83Qh35wIvWCyeWtZvAe8Fvr2grbSQ\nrgCcHPgVcDTgw4AW/KL7LJdzsX8J2Hlb5jcAlwdeUZ435rL2mX8FHBdwXvKbxVpbZHlt8ry++osE\n+S8KA+9x7ltXsOW9MHB44LeFj4zadMzCsLbP54FjlTY8SWk32/DdRfTae53H1t1cRc5723fH98P3\nwbwtg94Y/18mNwUe0WR2pfIM3cGLRLMX5KF31vdId/i/dXUdEn3L5/tgXY0fkJOu8492UxZyOg/w\n5ibP+wOPKe9RG2/gtRcHzlLc2w4W/gf4GPD1mfU/qW4IhEBDYCeC/CLgugMd7xjQ6wPPab78V+A+\nAxePzeNpcSiCY/OBjwX+Gfhlk6fC++gSdDVWrht25arX2Um+ZeCmjwCfK4MRv+4FWWF5InCdkQc6\n93yTrpxeuu7zxuq1SJBfCFyrGVA8D7j9QEavAW5QxMev2zbUtes9Txu47xtlMPLV5rv2md7r4Kid\nd+/fj/OV5y6aJnFw9r4Fv+BekMemUHzvDf66cZOXAXGPLH87ELxDmRMee9xDgXuWALJPD1jd9b47\nN4MLB3avXlD+1wK+nz9MLxUCITA/AjsRZK2gyxQrZ+y+VhyrQNgZG5lcxeyEA5jthM8O/Lp8d0bA\niO1lSXEw+lkrw874HSWYadl9befrtRcF3rbspqYONahLMX7XCkFECsPVGutu3ectKuIiQXbwctvC\ndFnA08OBu5YHDbXhWBkcqGhlVg9EfWZt9z4Qbqi8WpKLIsOXzSUPCfJVRgaRl+2Crlrxbsu+iLnv\n0ZOXBJLVuWTL8bIV3rH+XVnhllwSAiGwHwjsRJCX1be3HNsOt4qy19y7WJO6rttUO1vLpFV59e57\n56bPVdys7VdnLkLjMp8ndfc8s7i3bzcgmqcvbtIjFneoz2+TZVA4+wFEW0+FS0upTfcAjLjVLdom\nLWitxk2et6kge/8nirtacdDFanu0dWzr14tmff7rAYP++rnYVszXEWSnCG5VXNZt3pb1U8AzAOMU\nxtJOBPnUxf1c86oeoD8rLun2+Y8vEetX7N5LxfOaxSPjUrUrNwWTo/c5vSLnZxXrt2X4fOCsZbla\n/Xw3oviX/ZbzfQiEwEEgsFuCbNV0NTofpxWkS9DOVfdoTVWQ++AYO6iLlIAZy2snZ6dd042Ka9uO\nr7X+tEirReLzdCsbaFNTFQ/nUbVya3LwcEngg6Wcink731g7TK93WVHtuP38Ao1gWB+X4PQdvm7X\ndZ63bJnVKhZyLYvLcxw46FlwrtfytPWo1myfp3VUeD4Jf4rQd8rgAZ0IKdTO9a4jyHWZlnPGdc7e\n7NcN6lIwxyzkfhVBvdaBWuudaV3OznU7oKnvWTuNc4pusNAGdbkcy1iCOvAxbsIpi7o8cBmrg9A1\n5JEhEAK7TWA3Bbmf/+s73SrIvQgoHA9pwCjYzvUZmGRHp+VhUEzr6hzqiA3Mca6zphpZa4dd1xj7\nXb9cpbdoqyAbsNY/0zlJrTQ7Wu97+4DQKfbrPG9bgjxkgY0JQt8W1cqvDA9Xpgkc1JgczOixMDhp\nmcgsGkCsGzG+Ewt5TJAdvDk4cfrE98uNVhy4+P44MKzzzNa3fc/6/Pr3yO/Nx/z913wVaKdq3Exn\naEC02/1BnhcCIXAQCexEkO3IDQxaFOWqlWpnY+pd1nY8rbtxrNPtP9fqdG3pomTEqlZbTUNLTvrO\nugqTIqP1XNO5AQO52tS6put9bv6wk3Xamz5vW4Lcz9dbz1UFeWgOt59vrddMXZD7dcPtHLKi6Xuo\nB8dArLG0E0E2D5dWOWgzcGssxWV9EDvEPDoEDiaBnQjyTpc9tcKqZeoym1ZUVhXkZYE88usDZoY2\nZbCuurDrPJ8dn8Fjum9vVhpBC09BbteT+lVrzW8iyJs8b1uCPBQtv4ogW28HPt/vXljnUM2zplUF\nuW+ztp13w0LuNx/x/TbyW7f0WwdiFYZ+pzsRZD09D1rhxx5BXgFSLgmB/UhgJ4K80124lm1usaog\n965uO0ytU9es6hZ2icgpO2vVgKpHdQ2mhew62zr/Vzs+g8EePCAo7e0ugamuyjFBdo7cTSgsU02u\nW22TwT13WfN52xLkIXf+KoJsPYbmcnsLuV7Tfu6ATFe2c8s19QFxuynIQxuI+D6+pBt81bLevex7\n7fI3B3B1udSqgtzPL5uvsRAuM3PDk8s1m4hEkPdjT5s6hcAKBHYiyJtYyEOdzJgg9xaXUcx2iDUZ\nVPTG5m/d087Vtu5jA2i0RltBPGfniq4DDPfebud0+znrfn/ksTnk/j6LaMCUAwg3xNDV/93Ole81\nqz5vCoLcTwW4yYWbZAzNf7ptZBt8V6PhrbNzz6/s3MEHQpCH3lnd0a6Hdw1xTXpGDOZyyVY7kPBz\np0xqkJeDLQPP6tacqwpy/667guClzfOXufdX+CnnkhAIgb1OYCeCXMVj0Ryyp+0YPe1uWutayEN7\naLv+2R2zXPfrpv2uIa1Ji8yNGRTpdimVy6QUcnfqMs/Xdct0qlv7QmXZU9uWLm9xAwcFxwjrNjq7\nCrJi3x9kUO8zL3cKs8OuyQGDouQGGK7p3unzpiDItV4ue3JtuULSRspbR93aei9k33oeXIJ26zJI\nulsXnW2+iwT5r8uObst+b0NxAm5mUncIcxc11w4vWq7VDiRsa2MfDCA09YPF1v3fv7etl6a/z8C+\nugmNy56M3K5paHpnWb3zfQiEwD4gsFNBXqXK1cW8riCPrUNWBBTmNmkJKwBuVdlbzvU6A7Rcv9wm\nO1rF8QfFWtOV3K+LHqtra+27xWO/c5Wdq4MALas2VetS63Dd5y3iv+qyp01c1svav7p9vW6sPcby\naAV56N7eWh3KZ53DJXoBdF22u8rV5PI3d/W6dDnJTGu5Tns4sHL5kgMQt9kc2vry2sCPOq+OdfE5\nJyvr1ds820j1ZbzzfQiEwD4icCAEeWj50k5c1uJ1TnjZ6Tt2XOfvlh65LvaBK7SPe063a4H7tc+L\nsmjrMrSeeuheLSnXS7s/tmnd560ryK3VNyTIvVXYr0Nud1trxaMtj3U0KKp6UHT1e+bwqicvtYI8\nNOfqs5YF+PVxAstehaEtP/uI/UV5tO9g786u9+mJ8Vzx1rW/rFy9S3vZ9fk+BEJgHxBYJMhjneKy\natuh6UJuo2iH3HAGshjUUlMfMHTi4hLV3dcnA6i0xjzAoU+L9gvWyraDHDpbVwvH8vQC4hpRg3nc\n/9k0VBc3ITEgaChpRbtWui4Hq9ds8ryh5/RRyy1PA5EMJjPVaOK2PNbxXgP1661u2Rml7gYvbdI9\nq/u6PwfbOmpd9tebj23XbiVZ35uar0uDnt09R3e/FutYWsVCVkTdM1oX+ptGDjbRGvZd6ZPR9k6b\n2J41tRH9DhCdG293Pquu67G92Y0hcE18O0DcaQDlAiT5KgRCYK8QWCTIU6mD1rIHE+gWPFIRxH5Z\nUl9WrzOoyzlD53r9W3fiKofcO7/oiUYm58INxFolaS27HaOnFZl8ruVsT/oZymfd561Spk2v6QW5\nirxl1gJ2blZhXTa/bTu4JaWDAK9t9zxfVEYD4nyObBV779vkiMSd8DhqmWv23XFKxIMz6l7ry/Kx\nzN5nffWKtPcZPOYhKNbDwd0ydsuele9DIAT2CYG9IMj7BPWerMa664H3ZGVT6BAIgRA4mAQiyAeT\n/vSfHUGefhulhCEQAvuEQAR5nzTkAapGBPkAgU22IRACIdATiCDnnVhEoD8AxDW57ZrZ0AuBEAiB\nENgSgQjylkAmmxAIgRAIgRDYhEAEeRN6uTcEQiAEQiAEtkQggrwlkMkmBEIgBEIgBDYhEEHehF7u\nDYEQCIEQCIEtEYggbwlksgmBEAiBEAiBTQhEkDehl3tDIARCIARCYEsEIshbAplsQiAEQiAEQmAT\nAhHkTejl3hAIgRAIgRDYEoEI8pZAJpsQCIEQCIEQ2IRABHkTerk3BEIgBEIgBLZEIIK8JZDJJgRC\nIARCIAQ2IRBB3oRe7g2BEAiBEAiBLRGIIG8JZLIJgRAIgRAIgU0IRJA3oZd7QyAEQiAEQmBLBCLI\nWwKZbEIgBEIgBEJgEwIR5E3o5d4QCIEQCIEQ2BKBCPKWQCabEAiBEAiBENiEQAR5E3q5NwRCIARC\nIAS2RCCC/H9BHgX49QK+RwN+tSX+ySYEQiAEQiAE/kRgFUG+JfB24LMjzE4M3AM4LfB+4HHAjwau\nvTxwyubzHwAvBA7rrl2U36WB2wDfA14CvHbL7Xg34DvAs4DjA/cBTgS8HHh+KeuTgecC79jys5Nd\nCIRACITAjAksEuQTABcqYnRe4EMDnLzmU8CLirjeGjgfcBbg0OZ6n/Mm4KPAt4DDAd8Hnt0J8qL8\nLg68BrgO8MfyzGsUYd5GE54CeCdwupK///9p4BDgKcDTgAcB7XVtHbdRhuQRAiEQAiEwUwKLBPmx\nwG0LlzFBvhTwBOBMwB+AYwJfBLRkP94w1Q38YeBcwG8WsB7L7zLAQ4AXAM8s998COAbwiC20nRwU\n3fcBTwWuCdwXODvwe+CsZUChF+BnwGOKeP/nFp6dLEIgBEIgBEJgqctaIdVKvPaIhfznwMmADxSW\nWsafBP4S+HrDVzf0t4G3ARcrbu37Fyu5bYZF+f0C+HkR4ZMXt7F5KNKbpqMDnwAuB3we0PK+AXC1\nYi3X7/3bgYaCfZVyTe9y37QsuT8EQiAEQmCGBJbNIS8T5BbZFYFXAo8HbleErH5/RuAzgC5tBc25\nWUVVAf/dCPex/LRgb1bu+etiqW7adFr2DjzOXCxgvQMKs9a/qVr4PlcrWov5OcXi1zOQFAIhEAIh\nEAIbEdiGIJ+0zO2eDbhqmXMeKtSxgJ+WL6rFfI7Ote3Xq+R35OJOv3kRUd3Km6QzlMA1//0xYCDb\n8YAHNoKsYGvda/nrun4XUK/f5Nm5NwRCIARCIAQ2dlkfp7iyjXi+14L5YS1KRbQGhukC/nIJGvtS\n0w5j+VUL9XqNgJ++RDpvQxQN1DJCvM4R1zlkBxlawPX7+qzTAK8A6vd5lUIgBEIgBEJgIwKbWsjO\nterWNRjrt2UZ1REARbaNQFbgdGWfu8wbGyymW9uI5va6sfwU72cAziPfATh8iXh2zrnO81YQfvZ3\nZZ7aADKf47Ily2Q5tICN+G5Tdc1fFvhCEeCvAAaTueTr0cBJigdAgb4ScGfAyO+4rDd6BXNzCIRA\nCISABFYRZC1H506Hlj3dtCwH6mn2UdlupuG8bJ37dR2x4veR7sZF+f0SeDVwqnKPIn1J4KtdHq07\nWbHX1exSqQ+WtcTvKWLd3iaHGsFd1zYr3i7nMvms8wOunTbduwhxdWnnbQqBEAiBEAiBjQgsE+SN\nMh+42eAprVE3Dlln3lfL2A07jGxW1LeZHEQYqGVgVy2bLnQHEz6rBp/5meXXEncTkaQQCIEQCIEQ\n2JjAbgvyxgU+gBlUK9n1yL1Lu33sXcofDz+AZUnWIRACIRACMyMQQf7fDa7167pq1ySPJV3XH1uy\nwcnMXqNUNwRCIARCYFMCEeRNCeb+EAiBEAiBENgCgQjyFiDugSyO2kWz90U+UomS3wNVSRFDIARC\nYH8SWCTI7q7lKU5HBN5Qtqp0aZPLmm4IuJa4JqOljV7uk3tX3xOww3etskFT7c5cFwY8UMJlSSYP\nptAl7FIiD6DwGETv/a+BaOr6rGWnUS26bqx81tGIb5c3uQzq6eUQjb5+Bpi5rWjlKKuXAl9rLnT9\n9U2aQzTM24hxI8CNELfOO6nvTt9Ey+ihHu0SMzdmsUwPLTuqXbnsmpao8Z3SzfUhEAIhsCUCY4Ls\nMYku9blTEaJHAW8B/gk4NvA54JFFSBQcd61yvW6bPCnq3YC7aSlQTwLeDHgohNHWbptpANUTmy0q\nFegrlPOGFWMjn11+5CEP/bzuKqdRWZ6x6xaVz4Msrl9Ey3JafwXNgzPaZPlciqWQOXAwgtyjGV3D\nXJN8PNax7nltvR5WlllZd/fP9nzlZfVdt8ldbuZgyWVdltFNTW5fdhmr66gdSDgv7k5rDkCSQiAE\nQiAEdpnAmCDfuBye4AEKJkVJodGidB2w4uoa4EVJkdLyc82u6ZzA68puWJ4G9eLyuecb1z2j2/xq\n1PMbywlM/bNWOY3Ke8auGyuf4u9BGNbZNcwmBxL/UvaxbsvhzmEui3J/7VWT+Zpfv8PYsvqumn97\nXd0SVBH2YA7XaFfBdY31dZs9x7WSPbPaAVNSCIRACITALhMYE2SPNdSi89xh19tq4bnrlRayBzp4\napOHLFygWFsKar+uWJe3glwFwNOT3F6zXeerkOlOHRJkd+1SNNvrezyrHn4xdN2i8hlt7SYgWtcO\nQtwsxK06e+tRl75nJNc10YqZW2qOJd38nowlR0W5TavUd6evh1a+Frjs21Op9DrcqgyqbGOTov1W\nQC7uiJYUAiEQAiGwiwSWBXUpEtWS1X2tm1rrWatT68pO3i0tnwXcdaTcumwVIN203tMelzgmyAqi\nbnGf/84FPDYR5JrtWPnq/tme9azg++2YjAAAIABJREFUajm3G4FUi9ajJmWj5fvksgOZnoCh5Hy3\n24bWc5brNavWd6evhs/THf247sYhQa4nXrk/t9uLJoVACIRACOwigWWCbFHcHUv39OuLtfz9Mldq\nYJLpomWLyXowQ1t854SdX1bQ/rZYw+33Y4K8qrW4qSAvK59lVSwPKdt8Vvd7rYPuagPdqndAi/mC\nxd1fLc967W5bx7bt8wr/3gMxJMh1AOI+4EPbpO7ia5lHhUAIhMD8CIwJshbwJ0vQlVRa4TtuCfT6\nVsHlSU5GSWshtgdFOGds9LVW8Qs7l2klPSTIlsmdshTBZy5pkk0Eeax8py5BUHXe1SLo+jWa2jn1\nKrRa1s65GgFuQJbJyGXz1SPQJz/3vGgtbudza9pJfXf6hvbnOtf7xwTZs6qdhoiFvFPSuT4EQiAE\nNiQwJsgKkJHGFyluWpc5OZ+rSP1HWZLksiCjdnVZO99qNHU7T6kYGACmi1bxqunzzXVDguwyHa3w\noajmvrqbCPJY+b5Rjnh8cHHFu3PXq0qkdRu8VZ8tJwcOHtGoN8DTpVq3fC2zp1Q5P9sHTa1SX5dK\ntadWuVRKt7flcQlTPd2qei3qMx0M6d3o22ZIkPsjJjd8tXJ7CIRACITATgiMCbLzic6HekpSTZco\nQT/1LGAtPZMBT1qG322uNV/X7jrf3CZd12108ZAFp2i5lKi3uIfqpSguOo2q3tNft6x8LomyDDUp\nuAriz7pCeOykUeA1ua73PgPbatb5Zj0Jz+/yWKW+VfzrqVUKqgMdly056HEgMHQutJ8ZZNYHxhlR\n7dInxbpa/E49uAyrn9/eyfuUa0MgBEIgBNYksGwO+YRl04sfDkRR67r2fr/bj8n5YaPN3cjE053G\nknPsxysi/NOJgbB9XD9+34F14m1Rq9v8fkuum1j1UpwQCIEQ2D8Elgny/qnpfGuiBa5lvmj5mBuc\n6AUwwtqlakkhEAIhEAK7TCCCvMvAD9Lj3I7Unc7aoLu2KE5DuFtYDdQ7SMXMY0MgBEJgvgQiyPNt\n+9Q8BEIgBEJgQgQiyBNqjBQlBEIgBEJgvgQiyPNt+9Q8BEIgBEJgQgQiyBNqjBQlBEIgBEJgvgQi\nyPNt+9Q8BEIgBEJgQgQiyBNqjBQlBEIgBEJgvgQiyPNt+9Q8BEIgBEJgQgQiyBNqjBQlBEIgBEJg\nvgQiyPNt+9Q8BEIgBEJgQgTGBLk/XcjDDDySz2MR/3zB6UITqlqKEgIhEAIhEAJ7h8CYIPenC3lC\n0XuAxwGnXXC60N6peUoaAiEQAiEQAhMiEJf1hBojRQmBEAiBEJgvgQjyfNs+NQ+BEAiBEJgQgQjy\nhBojRQmBEAiBEJgvgQjyfNs+NQ+BEAiBEJgQgQjyhBpjnxTFgMBfL6jL0crZy/ukuqlGCIRACGyH\nwCqCfEvg7cBnRx55eeCUzXc/AF4IHAZcALgVcGTgWcBry+dtVi6xuiFw9ObDj5So7va6qwInae7/\nJWDnbr6/AW4PXAx4P/BIwO+H0vmBW5cyPQ94ZcnzjMA9gCMCbwCeC/x2AeYhLucC7gkcCXgJ8Bzg\ndyWPqwA3Bb5Syve1gbxtj2sB1we+AzwB+Hi5TsY+88zAq4BnA4cO5HHiUg+j4WVhZPyPynWXBm4D\nfK+Uz/bYZrpbKbdtcnzgPsCJgJcDRur7Tjy5sH3HNh+cvEIgBEJgrxNYJMgnAC5UOtPzAh8aERDX\nJn8U+BZwOOD7RSwuCLy7iK2C+SLgeqVjbrM6DvC5IlJ/KEL5rjIIaK+7EXCK0qkrRP9YhO9MwF2A\nmwA3AP4eOF8Rrt93ZfZzRcoBgOuqXw1cGfgk8GXgTsCngEcBbwH+aWAAMcZFVtb35oBi+yTgzcAt\ngMsBrwGuBpwGuFcp39e78t0BuHuph8JrOfxXporovwDvKyL7sXKdIleTZbP8snZQ5MDDOp8FuHgp\nw3WAP5ZrrlGEeRvvsW3zTuB0JX///9PAIcBTgKcBDyptWK8bGlBsoyzJIwRCIAT2HIFFgvxY4Lal\nRmOCrHvyw4CWoaLbJq28ixZB8nPFTTHy3zZpySlel9wBPa3pTwDXBn5aymDeitYxgS8ClwEUrZqs\nq4MHrc6Xlg8VUa3skwJasP5nUsC0kK2Xg4Q2jXF5YLn23uXicwKvA84KvLcMGLQKLYeWqVauZWnL\n94LyXK32Wt4nFmFT0E8POMg4e6mD5WxF7VIlTwcplrtl8RDA/J9ZHuhA4RjAI3bAfexSy6roOlh4\nKuBGMvct5bS8MpC9bf0z4DFFvP9zC89OFiEQAiGwLwgsc1nXDUIUviELWffot4G3FXex7tH7F4tO\ni+wVwHWBXxSLTPe1rtw2Kdreb2eui1vXs0LVW7ftPXb6WuSKn0KsZeq/Py9CpvC8sYhDvU8R/0Cx\n0L1WkfB+hU5h0tLUcnQnMl2vDjCGLGTzG+Kiy1sR/EJ5oNa6lvC5i1Wud6C6nx2sKFpazD6zJq1j\nLfY6eNGlrsVpveSsxau4K/5fGiifZT9ZqWcdWGj9/2VpA/Oxricvwm9byWrTVAdIegI+D2h5W/9a\nv/q9f8vAujv48ZrWwt+0HLk/BEIgBPYsgU0FWRH6TBEKO1rnDO3stdycO+xdsrqxFd423RjQ6lS4\n7ZyfUeaF7zpCVcvTOe1TF+FXwBRxLewqbgq2c96t9Vetea1H52md19ad2rrRFZIXl+fqvnYueigt\nGqiYr4L6sFIn66ubvFqH5qcg6X1w0NJa4Fq4DiRq0uLXGta9rvv7ws133v/4BW/eFcv8uNfcrmNz\ns3LfXxdLddMXWEtc97TudS1g21Nhrh6Ayt7nysPBkPPrQx6ITcuS+0MgBEJgTxLYVJCt9LGK29j/\nrxbzOcpcqAFeCpuBTc6P2iErMK31e/hicdYgLC1m50BbAWvhttaxnyvQdu5tvgYQGfTUBi1VUVAs\nFTeTQVIKciuMlkdxf32xlg2u6tOYICuYzn8rpH9b5tadI9e9rvg4F1wF2WmAdtBR83SeWKtVV7oW\n8gfL/PYDAAc05l29D3VQ0pZP97tW/9kAA+EMqOqTgwYF3fluRXSRN2KVF/sMZZDkvw4e5Hq8Ysl7\nf62bQXcO0rL96ipUc00IhMCsCGwqyFo6du7Vna1r0uCovwKeXqxE50NN1bXcC62RvwYi6YI2maci\n0s+P+l0NALtEscj8zPycxzaoyGhio6SdO9byVsxqaueda3mvXgK8FAlF03nQVkDGXPVDguzAwOhw\nLf0aZV7zsnyKn/uBm7QgDfxqLXjdzTLQvVw9C1rSBqBpVTrYqfPv1tFAuOoCrnWUj3VzWkB3eZ3X\nr4OR1m3ufLRz2lVEN3nxZd96AeocsoMCPQD1+/os3wWnM+r3mzw794ZACITAviCwqSDb8eoSdZ5U\n60+rS/eo854PBU4FGB3tulSXFCm2Wm3tvKHWrNHZLglyuZAuay1rBayfXzQISzdzK9aKjWKgVf3g\nImC6i7X8zKdNCmEtk5awgUaW/1eAQU8XKct2FEHnaeu8dN/YQ4Jc85aBg5SadN0+ujAy0MyyK7B9\noFwdSDiQMZDLuV6jwHX7/gT4jzJPb8DalYB/HyifLnev1/Xtki3b12VlDpLk6ly+ngrrbsSzg4B+\nHrs9zUtBtz0dIDlnbcS2ngi9FG3bVB6XLXPoCrDLu6yv0wvW3yVrtr0CbfnvPOCy3xc/qlQiBEIg\nBNYhsIogK3a6moeCunSrKkR1TlJ3qp2ylqIdu1HGWkEmv3MN8Fe7glZrybldk25mlzB9d6BCBkPp\nru3FWqHXwq3pPMVq7rM4dnEDW0aT4qeAKlquj3VJUE1a4W8dgVoHAZWLHM1Lq7xN1lmrUBFS/BVh\nk0uzXAbUJ/m0c+wOMv6uiJ8DBufKF5XPQc1Qvj7XKQEF3gGJSZHWNd+3R+tONoLbuWG56G0Ym/u2\n/jWCu04TeK3lr8+ybnWAZDCdTBz0JIVACIRACBQLahsgDOpRpHQZ9/ORJyzPUZwWRdQet1z3wzUL\n5OBAl63Co0W5KPksU90wo15by2oZNp1X7Z+vVWqgm0I0NNio13udm2rISmZtsn7W0/It2g1rrO6L\n8l4T+/+7TdF3Lr+dk67ltR51gxQ/k7sDtqH5+U3LkftDIARCYE8SWGYh78lKpdAHhUC1kp2H1xsw\nltzExfTwg1LKPDQEQiAEJkoggjzRhtmjxdL6dR10O33QV0XXtUF3/UYye7TKKXYIhEAIbIdABHk7\nHJNLCIRACIRACGxEIIK8Eb7cHAIhEAIhEALbIRBB3g7H5BICIRACIRACGxGIIG+ELzeHQAiEQAiE\nwHYIRJC3wzG5hEAIhEAIhMBGBCLIG+HLzSEQAiEQAiGwHQIR5O1wTC4hEAIhEAIhsBGBCPJG+HJz\nCIRACIRACGyHQAR5OxyTSwiEQAiEQAhsRCCCvBG+3BwCIRACIRAC2yEQQd4Ox+QSAiEQAiEQAhsR\niCBvhC83h0AIhEAIhMB2CESQt8MxuYRACIRACITARgQiyBvhy80hEAIhEAIhsB0CcxTk+wL+lxQC\nIRACIRACkyEwR0E+DJhjvSfz0qUgIRACIRAC/5fAHIUpgpxfQgiEQAiEwOQIRJAn1yQpUAiEQAiE\nwBwJRJDn2OqpcwiEQAiEwOQIRJAn1yQpUAiEQAiEwBwJRJDn2OqpcwiEQAiEwOQIRJAn1yQpUAiE\nQAiEwBwJRJDn2OqpcwiEQAiEwOQIRJAn1yQpUAiEQAiEwBwJRJDn2OqpcwiEQAiEwOQIRJAn1yQp\nUAiEQAiEwBwJRJDn2OqpcwiEQAiEwOQIRJAn1yQpUAiEQAiEwBwJRJDn2OqpcwiEQAiEwOQIRJAn\n1yQpUAiEQAiEwBwJRJDn2OqpcwiEQAiEwOQIRJAn1yQpUAiEQAiEwBwJRJDn2OqpcwiEQAiEwOQI\nRJAn1yQpUAiEQAiEwBwJRJDn2OqpcwiEQAiEwOQIRJAn1yQpUAiEQAiEwBwJRJDn2OqpcwiEQAiE\nwOQIRJAn1yQpUAiEQAiEwBwJRJDn2OqpcwiEQAiEwOQIRJAn1yQpUAiEQAiEwBwJRJDn2OqpcwiE\nQAiEwOQIRJAn1yQpUAiEQAiEwBwJRJDn2OqpcwiEQAiEwOQIRJAn1yQpUAiEQAiEwBwJRJDn2Oqp\ncwiEQAiEwOQIRJAn1yQpUAiEQAiEwBwJRJDn2OqpcwiEQAiEwOQIRJAn1yQpUAiEQAiEwBwJRJDn\n2OqpcwiEQAiEwOQIRJAn1yQpUAiEQAiEwBwJRJDn2OqpcwiEQAiEwOQIRJAn1yQpUAiEQAiEwBwJ\nRJDn2OqpcwiEQAiEwOQIRJAn1yQpUAiEQAiEwBwJRJDn2OqpcwiEQAiEwOQIRJAn1yQpUAiEQAiE\nwBwJzEGQ/wO4IXB34DHAYYD1vh3wEOAQ4BZzbPzUOQRCIARCYDoE5iDIxwB+CPweOBQ4LvAj4KjA\nEYDjAT+fTpOkJCEQAiEQAnMkMAdBtl0fDNwROFLTyL8FHgncY44NnzqHQAiEQAhMi8BcBFkr+fvA\nkRv8vwFOEOt4Wi9kShMCIRACcyUwF0HureRYx3N941PvEAiBEJgogTkJcmslxzqe6AuZYoVACITA\nXAnMSZCrlXwn4BGZO57rK596h0AIhMA0CcxNkLWSvwOcOHPH03whU6oQCIEQmCuBuQnyXNs59Q6B\nEAiBEJg4gQjyxBsoxQuBEAiBEJgHgQjyPNo5tQyBEAiBEJg4gQjyxBsoxQuBEAiBEJgHgQjyPNo5\ntQyBEAiBEJg4gQjyxBsoxQuBEAiBEJgHgQjyPNo5tQyBEAiBEJg4gQjyxBsoxQuBEAiBEJgHgQjy\nPNo5tQyBEAiBEJg4gQjyxBsoxQuBEAiBEJgHgQjyPNo5tQyBEAiBEJg4gZ0K8pWBfwR+Wur158Df\nAV9Zs56eT/xE4DDAfaZfALxsxbxOATy22Zv6bsBnV7w3lx1YApcGbgX4vpi+AZwN+PGBfWxy3wME\n7gicF/gj8AXg/uX/90DRU8QQOLAEdiLIhwPeDFysK9JtgCesWcyjAx8AzlTu30lepy0/6Ppof+Qf\nWrMcuW17BC4KvK3L7nvAGXZZkE8APAz4GXB84LnAf22vmslpTQL2FQ7WTK8Crgr8Yc28clsI7CsC\nOxHk0wBfHKi9o9yzAL9bg8xRgPcX68nbI8hrQJzYLXotbjsBQXYA0HpMdvJuTQzpvipO+34oyFeJ\nhbyv2jeV2YDATgRZV7Xu5aF0duATa5RDC/k9EeQ1yE33lrbD/TlwpSKM393lIvcDyJsDT93lMuRx\n/5dAbyFHkPOWhEAhsKogHxF4d5n7GYJ3D+AhS6ieG7gA4DN/U9yaXy1uZucXxyzkIxQ3udf8FvgB\n8AbgmN3c9Sou6yMBpywussMXi//PgIsDJytl+Bbw1g3cq86LO4d6euDXwPdLfj8qn+mes05fAg4t\nzzwV4H1OC/ywzItb378CfgE8u8yze7n1trx6JXTHOhf3P8DHgK93bXC0Ui+fWet73HL/sUue3ldd\n/Zbh/KWcZvU14J1NORc1sTEA8n00cINy4fvKPPLvAevfplo/yyOHbxZvyZcXPOSkwN8AJwF+Ut6H\n/wY+2rWXjM5Tplhqds5VPqa8ezI1/uF4gGUzfb5h7N/HAXyenh/Z6QmqXqCdtJdtfWHA998B6K9K\nXu8t7/JQdeV4EeCC5Z3wGs/x1pv0ya6cq3RmtQwXKsz8/fk7chCtF8EYjjb9BeC7Y5KVz7a9rIcs\n/B1+uPw39nx/Z5co+fiOer3vg/2E8R6mWMirtF6umQ2BVQX5rEssYDtRBaIKTAvQH/aTm066/U6L\nu84n+XnvVjRw6zXNHHO9V8vrGcA/NZmtIsi9G/MRZQ7LDrZPV9tBgFm9107oTUCfn+X1WfdtHmJn\nawel2/7TzT2vL/Pq92o6rTrPdnng1QveztcCNyyi7mXXB57TXP8S4OoD91s22+h1A2V3/leRdvC0\nKGl93mzkgnYOWaGz3a8zcu2LgZsAv2y+V1DuUOaEx8rwUOCeZbDT8uyvv3NpixcC1ypf2j4n70S9\nZ3c+4IM7bK8zlvYaer98tHVykNAKor8136ETjlTUADmFbmj6aOiWZWWwbf62DGrq/S0bv38ecPuB\nzP1tOvhycNSmWwOPH7je98/y1JiRCPKSH1W+nheBVQX53sC/NmguBShYrZhq/TqCb5Md6RsHAsHG\nKLeCfGLg4ws6pj6PVQS5DwQzj48A5xopkB3pqhHk65a3nUcfKsuLgOsW1+8qEeh2craNlt81AAVO\nwdGCXVbfsXbRSlYEqjU5dN0qgux97xoYYPX5tXXwu6F56aEy3KkMLNpAwf66+o61eQ4FnVV29f76\nfq3aXk7j2J7LUvvOa7XroVmWHACfo7TromuH3veh662/5dUSbnl/ZoW2ejhw1yZTBxmPXFaB8n0E\neUVQuWweBFYR5D4S2h+vQnVJ4BUNpv6H6VeXHYhs9f63A9ccQNx2Tg8G7t5d85bi2tV11qd1BNmy\naInYidh5tQMM899JIJDW7326QmkROChx+U8ril421MEPvXVVDJ9erN96jZb08wEtKoWoplZcWlHx\n+dWD8XLgFiOv+ONK21Yrpl52uiVWmda7AxuZVevOstg56+b0Xz0aWrJtcrrDiGiXw7RJC1pLTfez\nLunWytT60s1+xc7it4P3vXK+2EFjXXZlvpbF+3QVa4FuQ5DH2svfhtMq7YoEn/+AMl2gx6NNTm/o\nEr9dcfnX72TlgMrpFD0YrdVsNPs7Rtqwfnzj4klq3w15O3j0WW1+7YC6ZaNbW3e1g0FXWTg4b+9r\n3zdd/P20ic92UFm9EW2RI8hLGjBfz4vAKoLsvJPzxzU9rXR4zjPpPqvJ/z9zmdf0s6FlUroq7Qi0\ntBTA3kVaBXDI2rwRcEh5mHO0ClKb1hFkRUp3bI3GVZDbJVyrCrKC8qmuo2qDiBaVt480r3XS9ezy\nId2ZugS1impHqEg7j1yXi4yJS2/l6WL0M+e2naM0nzYpcLrELZOi1Q58VuFrXm1ZXFd+vVIHXdWK\naBVWO3JFoHogzF/LtqbqGVCstNRqqi5n/1boFYw6eKj3OGfpdEfr3eiDurYtyG172U6tddxyt9y6\n9tsAs1q2NuBJPk5r1Dl1f1u+YzUtC1Lzty3/KoTm57SSMQ0mvSgOGGtq27f3SLh8TCGXq1a8Xo62\nHeuStt46tuz2Hwb0ObDS9e3AraYIcvcDzJ/zJrCKIPc/Tq1ehdR7HTW3VoiWgVasyU7dQI7aWQ65\nBS9X5ohrK1QB7F1tbUdbr22DQ/xsFcHo89Uqe1TzCvSdeC2PgURaoXVDlHqLbmA7UQO02iU2WrN2\nmHZgNfUW9CILWbFsB0HmYdnNT4vbfy2LHb+uxvuNdJC9INe2Mz8D9RTIGlDXrwkdc9ku+8X0y1rq\n/Hc/f+/ztOB8TxxYWB49J31H71yynzmI0Ftjva2/gV1yat2jbQfft3U/uNqmIPft5SDEdc81OYhw\nIGv5DQyzPlrqNfl+e49WcD8Pb1yAngK9BAb8KW4Odg2sWpZkdNQyIJLzt4s3wufrZm4t+DFBHvrd\njrFrBxRDv0nn6dtYhAjyshbM97MisEyQe6tGOKculrEdi4EebYdYrWetOq1Gg5ZqBzskqr0lXDtN\nA2ja+egha6DfgGIdQa4WYW30sU68F6f2JbHMConRrzUNlbcffIwJsp4GBzFa731yHlcR0xobS2Mu\na6933tF5eVNvmfftsy1BrstaVp3PrPVq6+EgxPIYQNRaWD2DgyHIQ+216H0Zardabr1ABisuSk4p\nOBhdZa7ZfJxqUOR9b8YCxXrxbAVXV7qDPgdENQ0JsgOllzYD9CEh771mEeQljZ2v50VgmSD3IrKM\nTusW6y0i5++cQ2wjSsc2BuktDCOD/bG3qbdm1xHkVqDMe11B1mpxrq+mIVf3OTs35pggj+1epMvw\nQcsaoMyVVhfiIlHt2fed41QE2WU3LkMbihs4kILsQKINottJe+1UkOsUhL9HxbaNCRhr8mVz+t7n\nPLpBlaukMQt5aCA9JMha7G0w3djKiyx7WqU1cs0sCSwSZL/T9erIeiepiqfusnaOeWg07JaGLlGp\nI/cqZH1HMiRw/dz2OoLc3zMmyLp67UhcK9smPQgG3lgHLYmaele4n/eDjLEOfqgD7Acf5ucAx7lJ\nLV4HTnVOcpGF3Nb3YAuy3hPd+Lqqa+rdsAYRaRG3wYNea7CfG8p8riyFqu/ouhZyH//gM3TptgFo\nO2mvXpAdSOlFcX2xyUFpu7Od/1/jBfzeeVq9IW7GMzYQcX7YpVnttEj7bg7FJhh38ZQy7+4a7NZt\nPibIQ7/bIUHWo2MdannHLORXNl6OWMg76Vlz7b4nsEiQV12C0UOq82F2tP0ccru0wvuMiPX6msbm\nkIeW3SybrxpqvGX7Xy+bdxx7IXpvgJ2RG1PUiFM33FBchoKklgmjz+w7+N5jsGpQ18EU5J7R0GYy\nvnMGailYBv7peeh3/jIQrAZ5Dc2Dj7nI+0Fd//4YNFXz1bXaCodtsMhC7neb6gdfbWxFfYf+stmg\nxg1ejIB3/bXueTfuMC7BeAyDoSyb7vp2FcCyfaD7d9nALAcy1UPlDmrtQGdTQfbgkJ5pHwk+FEeQ\nnbr2vcykgqsSWCTIfadicInBQ3aYNdlp2rG0oupI2Q5Ea7KdU/IeLTpPhzI4xV2o+mUbtdMcilr+\nF+DfikWgReRIv00H0kJexnPIGtHqstOzA7QzNDBsqLyrCHI/cGk7+H7TlvZkpSm5rPvlc7Jo5/Cv\nUHZuqoz0OPgeuXFGFaJ+vWzPpfUuLAvgU5xcWlfTMwE3tNBKdycplyit215uftFGhltuA6gM/FNw\n+/zdRcx3u13eZTv6Tte1wXpj2t3OlglyL37+fuqUh3lpLZt/Te30zbL9pscGgE5J2V41WW/fVaPD\n3TTHCP52OV0s5GU9S76fFYExQR5asqS4+APqk9cqrK31p+i63WPvVl4Gt7VidrLBgPkeTEH2+Tud\nN9yJxdW78B30uB7U9am6x9sNHOqASOt8SoIso5uWaOP2PXDZkttJavm2qQbG9ZvSuFuWUykuJTOC\nu627kekuB9MFPLYm9tplALmT+dX2/VplAOXvypiCflc0RdBYgj64SjF02qN1+VYWBnEZMOW68fa+\nVmCHfldDHi4Hhub1wIEb2gj8dQW5n4Ja9nuPIC8jlO9nRWBMkHvrol/D2EP6B+BJzYeti1mrum4D\nOQa3btDRCrJbbtpBtaP4RY1zsAVZls6JKiCrpFre3nIcsnyGNsdY9Izq0l4kyMueu25Q16LDA7QO\njSKue12P1UFL14hjXbeunW0j2BfVu11X3ruz6331HesPNlnWZjtpL/NyBYEDhLFtM/vy+Hcf+Leo\nTB6eoVt7LO00BqRda7zsAIh+vXR7tOay7V0tbx1ERZCXvXX5flYExgS5n19yOZMj9LEAkqE51PZH\n+vcDLmZF2OU7Lp1ydG7qlwspyroV2z2rvU73uS4+d6qqVoOb9y/bqrA/AaiPsu6Dpyy3dd9J0kLT\nBVk9BoqE+ViXdklL7eAVjjaKeCxYx7I759fvoOVcrAMgN2uoqYr6Zbp13v2yJz0bdcDTr53u3wHn\nxI0JWJbs2O9SLhqrS78pRZunVvSzundtaGMV77GMul+9vqZ2UOemL84Ft5ZlG3CnFW29++kE83DK\npY2ydmCgFbtqe1ke29y8+t3J/M73Xw79enPd3W6g0587XutnebVwFx3CUa91IOeyxH5ts9a7W+G6\nUUddh94GYS1rw3aQ3U6R1Of67jtd1XsC3ALW99jfh2lZYNqydy3fh8C+IrBs2dM2K2vH6cYAPtMA\nFk/pWbQ3cvtsdwU7UfnA4JFlBx1ss9yr5mXnVwNy/NcNLdoNHMairFfNv17nzlV29LKzM5THXkwy\nck27p06ZnLv1wASXOQ0lN7gVEnwTAAAgAElEQVTQ2jRS2ffHd6BdG7uIgdaw9zmg1Oru7/PEKU/9\n8nt5tgdbbIOtG8gYa+EzjMHwGZ4uNTbA9Zm+8wqaAYGysr39zRh/sdPkwMO4DJM7dbWrH3aa16rX\ny1tPm/9adttraG39qvnluhDY9wR2U5D3M0w7fOdCW/dkuzewFkNrwbbzvPuZS+oWAiEQAiGwIoEI\n8oqgllwmR/d+du1om3Shu11hv7tU5s62wz25hEAIhMC+IRBB3l5T9vPoYzk7V+d89264DbdXu+QU\nAiEQAiFwQAlEkLeL13k6g5Lc1atPCvEjyo5a7XrS7ZYguYVACIRACOxJAhHkA9NsBu4cq9kW0iCi\n/qSoA/Pk5BoCIRACIbAnCUSQ92SzpdAhEAIhEAL7jUAEeb+1aOoTAiEQAiGwJwlEkPdks6XQIRAC\nIRAC+41ABHm/tWjqEwIhEAIhsCcJ7CVBdltLN7339Bv3CfbEHE/PWSV5kIBbf/4EcNckt+h0R6i6\nVaaberiFoFv7uZ1fUgiEQAiEQAjsKoG9JMjLzjJeBK49KKHds3fd8493tZHysBAIgRAIgf1PYO6C\n3G/m0R48sP9bPzUMgRAIgRCYDIG5C7Lnt3oSk+5rz7l9O+B5u0khEAIhEAIhsKsEFgmyB5wfr5zU\n4sYWntZyynKsoCf0+Nl7y5F0Y4X2lBmPtjtJmb/1RB9PrPnoglOKPNnGo+ec0/X6HwBvADxN6SvN\ng4bOP7ZcPs+TdTzVx/Nivde9pD260NS6rD2J5mSljj73u81pQ55O5QlTnlRzWMnL+lg2n+NnzmF7\n9OHvRgAo+B6B6Jy3vDwyzzOePcLPk6/qfZ78Y35JIRACIRACMyWwSJBfCFyrcHkf4KHxnq3ap2eW\nM1/bI+sUtzsAnqs6ljwj9p7dEYwGWb1m4MxfT0fyLOH2XORekD2H+C0DD/OAh88BHn/YC3Lvsr5z\n2d7S664PPKfJz/Nj7zOQvwKvSPcBZg4MHAz0SQvcAYlBZn15ZvoaptohEAIhEAKLBNmI5tsCnxkQ\nyJ6cVqInHdXzjeu9ywjfqRF5rciPDxxqPpZHK8gXLZbnsuf1ArgoqKsGgjkYMDK73tsfuu7nXwDO\n3pyz2x+3uKhcrcW+SvlzTQiEQAiEwD4ksIogW+1WlF4MXHOAxZUAjxXUtawF2J4N/HjgQ8AVgas3\n93r9VYE/AA8G7t7lq8XrAe0KXJ+qIOv+fTfg322ynAp1L6CrRlm3kdm1/t57b+A6xSpun1fLo3fg\nPQPleRqgFS+XusyqHyDsw1csVQqBEAiBEFiFwKqCbF66ra8A/BBwfvW5wGU7cb0KcPpiVdevWjew\nhy4oRmcqX+oGd+2votlbxzcCDinXXRp4fVehKoC9Nap4XrIEZymOtwP+rbl3HUGu9dcNbQCY+epC\nv0GTby3PhcoAoS3uBYD3A/I2knusPKu0Wa4JgRAIgRDYhwR2IsgKra7Zmgz6+lbzt1aqFqB5agUa\nxHT0csrRH0tg10W6eWgtZEX81F3eVai9ryaPNHQzkJqqALaWrN/dBnhCc11vQa8ryBcsg5KatR6B\nGijmZ7U8eg8sf01GcWsd17SoPPvwFUuVQiAEQiAEViGwqiAPzXO6TEirz2hoU3uNFqRCqQVphPNY\nqoJ8npJXvc6dtJ7a3dTPE1cB/Efgic215wYM5GrTXQGDyPpyrjKH7D1a3c4Rt1He/UCglsc6V8ve\ne89RrP+2PO3gInPIq7ypuSYEQiAE9jmBVQW5neutSLzXueFbdUKnS/etI/O+Pc4qyM7J6gKvyXnm\nl3YX120u68cK4IeBpwA3Kx8qnAryF7t7W2t2HQv5G2Xg8eMm3zFB7gPahpZn/QPwpIEBwj5/3VK9\nEAiBEAiBMQKrCrKC5LyvgldTbyHXa3Rbt65crzdYy0Anlx+5FOrGJZMqyEZov7HJu3c7+1U/N1uF\nzrwNCGuF2gCyNrkEqy7ZWkeQh6zYMUHuP+9d3TJ/esMgFnJ+nyEQAiEQAn+a7x1LvaXXu4J1xRpN\nXVMV10eX5VJ+roAb0OTSKZPzp4pldXOPzSH3y6i813nhao3799gc8j0AXcI1OY/9gSaQ7EALsuud\nW2u/r0tv6UeQ80MMgRAIgRDYkSBrAV8O+CTg3OvruqVN9ysbZ7TCqdg49+oJTaY+4KkGb7kj2Ke6\nJUr/UqKRDezSotY13aZFUc0ur3p1WYJlRLNz0jUdaEE+zYDL3M1T7l94KdbtUqwIcn6IIRACIRAC\nOxLkZbhOV4TIdbrualWTO1PponXpkmuO241GamS2W0i2buVlz/L7KsiHA948sC54LI8DLcg+t7fm\nF9UngrxKa+eaEAiBENjnBFZxWa+yU1U753uWYkWvgs68z1+2nTxa2W2r3+BjLJ82WGrIKj2Yguzm\nKG8a2BykLVMdmESQV3lTck0IhEAI7HMCqwiyCBQN1wC7dKh1tyqobuzh/tNtGtrIw++NdnZTkWc1\nF7dirigboNXuWe2lry3u6+c3z+/ntD34wXLU+en6CF3pBpM9r3zQRkz3Qm5dXlCuc330ywbuqfnq\nvm/r3S9vcumXS6BaZnoL5OhSMLcNrWzdU7uN4N7nr12qFwIhEAIh0BPYiSB70pN7VRuU5HaWupk9\nAcoNQIbSUcucqScqHbrk2v7+vygnLfm5QuVzVk1uSnKscrEbl3iC024nBx2e3iQjhdmDN3Ste3qV\nyV2+aqR5LOTdbp08LwRCIAQmSGAnghwrbrUG7E+Q0iI30vyb5XZ37moD1JxH97SoejDHak/JVSEQ\nAiEQAvuKQAR5+83pGcifHjjUQve3240qzm0a2pVs+6VKjiEQAiEQApMmsEiQ++VLsZBXb8p2/nnR\nXa7Dvlqs49XB5soQCIEQ2K8EFglyu9/y0E5d+5XJtup1xnLQRbuZSc3bvbYfAbywHD25rWcmnxAI\ngRAIgT1KYJEg79EqTa7YBrUdu5yCZaDXr8oRjpMraAoUAiEQAiFw8AhEkA8e+zw5BEIgBEIgBP4f\ngQhyXoYQCIEQCIEQmACBCPIEGiFFCIEQCIEQCIEIct6BEAiBEAiBEJgAgQjyBBohRQiBEAiBEAiB\nCHLegRAIgRAIgRCYAIEI8gQaIUUIgRAIgRAIgQhy3oEQCIEQCIEQmACBCPIEGiFFCIEQCIEQCIEI\nct6BEAiBEAiBEJgAgQjyBBohRQiBEAiBEAiBCHLegRAIgRAIgRCYAIEI8gQaIUUIgRAIgRAIgQhy\n3oEQCIEQCIEQmACBCPIEGiFFCIEQCIEQCIEIct6BEAiBEAiBEJgAgQjyBBohRQiBEAiBEAiBCHLe\ngRDY3wSOBvxqQRWXfb+/6aR2ITAhAosE+YzA44FjA28H7gX8cqDsq163qNqXB+4JHAl4KvBk4I9L\nOG3jue0jtp1fzfuWhd9n12j3czVcXgI8B/jdknxkecrmmh8ALwQOW+P5y24ZK98RgJsCVwK+ADwd\n+NSyzFb4/sTATYCHNu/H8YH7ACcCXg48v6nrWYG7l3yfALyne8ZQfouKsag9rlLq/BXgkcDXSkZj\n5ZPRDYGjNw/8yEAZV8AyesmFgVsBNwAOD9weuBjw/lJGf8/+1p4LvGOTB+XeEAiBzQmMCbKdyKeB\nowKvBa4FvAC4fieUq163qKQXAt4NfAL4OqCg3LwI89h923hum/e28zPvEwDWTZE4L/ChHTZX5SIL\nO/cnAW8GbrEgH9vzTcBHgW8BhwO+Dzz7AAjyovI9pLwriudZgEcBpwO+uEMG9XIHaqcpgnIG4OLA\nH4AjA+8s7+ohwFOApwEPAk4BKI63Ab4JvAy4JPCWMvAbym+V93SoPS4HvAa4Wimng9czA99bUL7j\nAJ8rwljr8q4yeFsT0/+67SjAh4GrlkHR/cpgRnH+e+B8pYwnLWW0fQ7dxoOTRwiEwHoExgRZy+YV\nwBVKR/PvpYO1k1E0a1r1ukWlexigFWnePwI+AGg92JGPWYPbeG5bpm3nZ96PBW5bHrKOID+wiM69\nSx7nBF4HnBb42QjQ2glryf1mvVdi5bvGynd24Nul/RzUmRxI/AvwvpVz/98XWmctbdOLgOuWgeE1\ngfsCPvP3gBaxAxKv10pVkC2nycHBjYoon3okv0XFG6uvz3xvyV8r09+Ug9hXFUEeK58WvYMsBwkH\nIsnGAbSDBOurODsIcZBwzDI4ugzwMeAxRZT/80AUJHmGQAisRmBMkK8BvLix7Pq/a+6rXreoNLoS\nzUfL58dFyK7d/D107zae2+a77fxq3gqkomR9dmoh60LXcqpCpGVTLS/FZyjpglUM31Zck48D7l+s\n5NXeiNWvWlQ+rT9d5XoJHBwoUKdv6rL6U/73lYqMLlhFzCkN200uio5/6/7V0+LfXqdQPrNk4fvl\n1Iui9PPyWZ/fonKN1ffcxQV8PeDjJQOF0Lx1BVdR7MvnVJDt5CDlAsX697cw1rY7Zabr/tWlDNZZ\nL1Stu797PV5vLJ4oy6rLXZb/f3tnAnbrVP7/L+LklBydc5RoUBSRSvppIiqNpNBEaVTRoDIU6jhO\nf1T4lV+FUjQqicqQojKWJpUipxCFEufkSObh/K/PtpaW7Xn2tJ797Gfv/V3X9V7vu9/9rOm71rO+\n677Xve57GEcb/bbdzxuBqUSgjJAjST4lLPBlhNzrc2XgsoAiES+W9LywGLUTdFHe3Hrby6y6vCoI\nOZaBWva9ktAkIBmykJYlSOOPkt4VyIGz1Ud30TbkTvyy9kVp/YlBKkOKvSazsnYCRQvxJ0mMHynW\nubOkqNVBAiQhNaMSjhs//tcPIZeNB4TKmWyquaBctCMQNGrp9va9NbSD9jOmkODRkr4sac9MjMge\npXTsMtgIbh0IP25keAZbDewaDgmaBewT2DyxCXQyAkZgBAiUEfKbwgLB7h9DE3bPnMG1q157fa6s\na9SPwQ9ncP1IyLn1tren6vKqImSMciAR1IwvDmfD3abJypJuCA9FiZmNVZTeuuXv5/te2oe0zPku\n8yiq3/upI322nUA56pidqKWjRoIzZghuv8RYCcJEYuRoJEqh/RJyUX/pH1I5ZMZ5fSR63pW/lLQP\nwyrO+GlvNJR8blDHdzqS6BW3qCmImhmOOyDcqNqnHCRobAvQXhRtVnqty88ZASNQEQLdVNbPDCo1\nzsGQtljMkMBiipJzt+c6NTdKp0h3S8ICulpYPP5TkrGKetOiqy6vCkJmEYXEkKB6tZLmPBOJNarH\nWZghBQywLqtozsRiytrHeSXWzKlqGLUt5MDGrpv1fKdmthNoPEPeIEh2GHIhrbK5O6jtDBkpcbeg\nyo9t6IeQy/obpXKMvaIVN5Ivhnh/C2fcRe2DsLE8h5hJjB0GgNhO5BpX0SZweGM4I4ZwOUMGH+w0\nlg//ZyP6qzBW2IzEdlY8VVycETACvSBQRsgsaKiz2D2j2uLKDWeZ7YZWvT7XqS2RDFHJXiHpsLCY\ndlLdVVFv2qaqy6uCkFnUHxtUn5BsTKhoy875IBiuqqHZQFpDbbprsHDOXeTbx7CsfVcFafzAoIJ9\nZDBwwtKauZST2gk0WlJjnMT58KckrR4si7HWx+qa89lbg7EXamzwiakfQu40HtQL5rSDdwQ1NoTL\nOTqGZUXtQ2LFCp7rYViRI9HzPMSeji+bU4gVewCkadqMrQXGa1hKI/WCa/ucQAI+MUjCkaAxiGNc\nuG7F+8YGmzoxatw9sV7PGSPnNQJGYEAEOt1DxiKVMy0SKtMtgmquvapenytrIhbVLDaoH0ksZi8J\n0nKnbuXWW3U/itoaF0LODPsx6oqqfCSYNDEO6Rloe504eYA4qC+OG1giaVeZurUPiRz1cEwYVrEx\nKLMO77VtRWehEBREQ0IbsHEgGdrIfeU9wnccjXBlLD0jLSqvqC3d+kuZECQkTOJaEdevSGXtQ4OA\nVMoZO4nNL5bg/2xrQLs6GaJFEuediWfV8RpYmhWtBGQdN7ZI4KjWY9ooSM185iiBPkSL9F7Hw88Z\nASNQIQLdPHVxPsbunTNJpIyy1OtznZq+avgSya5XS88q6k3bVHV5FQ5VX0VxrYXNAOrJqqx2+2qA\nJDYHK4Wra7RjmIlxoz42LO1X5ZhXqGi5izzMhOMNrjJBbO2k2ql9Dw1GWBg2VpmoE9xpE7iQwIj/\nI2lzPESKzyGJ5xrdVdl+l2UEpg6BboQ8dYC4w0ZgghBAw4Jtxgc79ClqEDhzdzICRmCECJiQRwi+\nqzYCQ0aA4yBU0xh4lWmdUPFzNWzYjmSG3FUXbwTGHwET8viPoXtgBIyAETACE4CACXkCBtFdMAId\nEOgWzanb9wbXCBiBmhCYtmhPGLBgdcpd2T8EX8LRmcMgUZKilyqsXLnug/9kPDOlqT3aE87+uZoT\nVYgY2LAoYtFeFE2LqzG4v+S6Stm9bOorew43kpwlcu2Ja0BYA5M4W9wrGDydFlws3t7HvKsjWlFR\nc8rww4MZQVAirrQPPOk3Vti9Ggp2g6AM57JoT53mSLdoVN3a0u37NNpT7D//w6Upd55JjvbUDUV/\nbwRqQmCaoj1hdYzzf3xLcwWGu50QKfdG4z3VfqIksTDjCxgyheRZ6CDNGNWoLNoT17W4P8sCCVng\n5hFLdq6/RB/LcfgfFZxpEJih03Wnsue4agSZ41wED174VubeN9eguCKEowycU3BHmChIuOjslbiG\nHa2o7BUoww/HHfivju1nTLlrWxSlbNDXqwznsmhPWHaXzRGswcuiUQ3avjRfe7QnLO+Z62zKuOsf\n3XkyF4mY5WhPVaDuMoxABgLTFO0JiRBn/ixAECGhJbmegq9nPuPJqJ8oSVwTwctSvFYS/QfjRIVF\nr5doT+0uDtsXVIxx8J7U6f5xvOvc/hwbBu50Y0WL0wwS93AhD+6/cgcXqY7EQg1Z9+PLmPuxw4xW\n1Mu07oQffSLKVKeNTC91xGfKcI7uOrlD3B7t6YQOcwRjqrJoVDnezGJ702hPMRAHAWNIhKSMhMxn\nR3vqZyb4WSMwJAS6uc6MvqsnIdoTUuiDw51qfDyj+nx/cJ7A//uNkoRkDD5EFELViwTC30iZEAGp\nW7QnPCxB6p18PMdIPd2Ipeg5vFThYY37qNG5BeEzueKCJMlCzcaCazFY2fYjIeN7eZjRinqZ8mX4\nxaAl6Vj0Ul4vz7TjHCXRomhPRE/Cg1fRHEG93i0aVS/tKXsmjfaUPgNmaIJSQna0pxykndcIVITA\nNEZ7SmProqrDAxkuKnOiJCGdEnyDxAIcnS50ImRUrEiunGfHc+yiYe3V8X+n5yBdzrdfGzYg0WNT\n3GhRL+prnuk1cS49rGhFvbShE36c2+M2NA2m0EuZvTzTjnP0n10U7Sn1oJXOETyZcUSAN61O0ah6\naU/RM+3RnroRMmfZjvY0KNrOZwQqQmCaoz3FhZXzVRbHQaIkYbDzsRDabu9AaOl9zk6E3It0zDDn\nEnKMZIW6ElVl9NoUpxAepgjL98MgLffqrYl8w4pW1Mv0HoV0XDQenaI9YVtQNEfQqGBc1y0aVS84\nFD3TSZVfJCH3OscGbY/zGQEj0AMC3VTW3aI4VRElqa5oT9EKlrPTaPhDFCUWRs5a+42SFFXAqJK3\nTaL2pLCXEXI0iCIGNEZmnVKvi2XRcwQuwNBsyxDVJ9aDZIuVOWfdpG6q9aL2vXCI0Yq6Td1O+CE5\nE1ShyEiuW7m9fN+Oc6doT2gcMCAsmiMQY3qGXBSNqpf2FD3THu2pm4Qc/Wo72tOgiDufEagAgWmK\n9hQjOj0neC5is4ERDuo6DL76jZLEInZJMJLinBZ/yfxwFk0EnU5Eh8qSGMG9hNoblJAjUUAI3w5G\nbEi1XAXCIhzJHiyQiIn+Q2CBNGRit+nFGWUv0Yq6lTPI953wwy6A8cSAbRipaDwwiiqK9sTRRdkc\noQ/dolHR/iqiPXUjZEd7GsZMcZlGoE8EpinaE30lxBxXYWJChUtIPsir3yhJMT5uO+SpBWtZtCfO\nDjlfbA+1VzR8aYxfwu6VpfbnopFZjCYU850kiatD9Jsz5ZiQ1s/oY/70Gq2ojyJ7frQMP8aYa07c\nsWXDMIxUNB5gXRTtqdMc4epRt2hUtL+qaE8RC+Y5ITxToy5HexrGTHGZRqBPBLp56uo1+lGvz3Vq\nXl3RnmJbkRTbHW00IUpSn0OY9TiYMweINDRoVKhhRSvK6tgIMneK9tRt3g8jGlVRtKeidjja0wgm\ni6s0AkUIdCNko2YEjMD4IuBoT+M7dm75FCJgQp7CQXeXpwYBR3uamqF2RycBARPyJIyi+2AEjIAR\nMAJjj4AJeeyH0B0wAkbACBiBSUDAhDwJo+g+GAEjYASMwNgjYEIe+yF0B4yAETACRmASEDAhT8Io\nug9GwAgYASMw9giYkMd+CN0BI2AEjIARmAQETMiTMIrugxEwAkbACIw9AibksR9Cd8AIGAEjYAQm\nAQET8iSMovtgBIyAETACY49AGSHj4WfX4KT/MkmvkkRgAxzot0efGXsQ3AEjYASMgBEwAqNGoIyQ\nY3xcogH9KkTO+ZmkTxdEnxl1H1y/ETACRsAIGIGxR8Aq67EfQnfACBgBI2AEJgEBE/IkjKL7YASM\ngBEwAmOPgAl57IfQHTACRsAIGIFJQMCEPAmj6D4YASNgBIzA2CNgQh77IXQHjEBHBGZKurnDEytI\nut0YGgEjMHoEeiHkd0o6S9LFJc19maQ1k+8WSTpW0lJJz5C0i6QZkr4s6dTw/7Qorli9QdKDkn/+\nRhJW3Wl6paTVk/w3SWKxodzbJL1P0maSfiHpfyXxfVHaWNK7QpuOkXRiKHNdSXtJWl7SaZK+3mWh\nKsJlQ0kflsQid7ykr0m6IzTiFZLeIuny0L6/FjSO8Xi1pB0kXSPps5IuCM+BMXWuJ+kkSV+RdEtB\nGQ8P/Vg7YIFl/L/Ccy+U9G5J14b2MR79JMaKPrxc0p8lHSXpwlDAHEn7SnpYuC73jYKxfmq4QgdG\nd/eBS3sbO/VjG0lvCtgcGa7qpfnB+GBJX5T0xz5xKau3Ey7M/fdK2lzSVWHsF/ZZbz9jlD777PD+\nvV7SciXvyNaS1pe0/6CVOJ8RMALVINCJkOdKelZYXJ8u6dclBMLd5N9K+rukZSVdF8jimZJ+GsgW\nwvyWpO3DFaq0qFUksUBBoncFojw3bALS53aU9JiwyENEOwfie6KkPSS9WRILz9sk/U8grjvb2sz/\nIWw2ANyrPlkSC9IfJP1F0m6BYD4p6SdhIWVjkaYyXMCK/u4kCbI9QtKPJb1d0kslnSIJslhL0kdC\n+65sK/v9kj4U+gHx0g5+gykkuo+kn4frZ78Lz6Xto20QJFizKWLjQZ9ZcCEE2sBVNsiQZ7YLxNzr\nbPpY2CyANWXSvsdL+pukcyRdJOmrkiBCCO+ApOCHhHnCM2yuGOtecUnbF/MU9YO78x+V9DpJK4dN\nVXsf2VDQtjinO5XXa71luHCH//SwcdxTEgR5YMCMDVPueHQaN64unh+wZvO0oOQdYQ1gLjEmPOdk\nBIzAiBDoRMj/J+k9oV1lhBxfeiRDSDdNSHnPDYTE/5ESICN+p4mFCfJ6fh8YIE3/XtJrJN0QFh7K\nhrRY+C+R9KKw0MRi6SubB6TOE8I/IVGk7DUkIcHyQ4JskJDpF8SRpjJckDB4dl54GGnwB5KeJOm8\nsBieLYl2IJki5dKWtH3fDPUitcf2HhaIjsX7CZLYZDw59IF2plLyC0KZbFJoS4oFpEH5XwoVslFY\nSdIhPeIO5v8J2ECqJDYcbBIeKWl+aBfto89gzdj+O/QFaZrNASQFzmgRKAdy74RL2ryIXVE/2Byw\nWWFzhkaHFDdDbITYhNAu5g2JOQ1hMRbdcOlUL3O3DBc2ZmxU0RowN2M5zD/a1K3eHoem8DGc+fAO\nUs/jurwjbErRdIGXkxEwAiNCoJvKOjoIgfiKJGTUo/+QdGZQF6MeRUJBokMi+16QVliwkMhQX6PK\nTROkTX4WU1TcqJ4hqnbpNs3zhbDQQX4QMZIpv28Mix4LHZIJz8UEofwySOg8y+JMfogOYkLSZNHG\nE9kHwwaDzUO7hEx5Rbig8oYEo5SBtI4k/LQglaMdiOpnFkoWzEgUsY1IxyyOcfOCSh0JlH6BMxIv\n5A75Q2zt7aPtkCP9JEHYSP+PCqRBOfT10YH4GSuw6jUhgXMkwW82K5AZm4QNgrQe+xM3THymz2CB\npApZflsSmxUIGULsBZe0fWhUyvrB/AF/VPTMbTYBaCEY57RNSMkcJ+D0plN5vdZbhgsqaoifMeOc\nlg0SfzNuHMvkjkencePIAA0QG8tu7wjfnyGJOcy76mQEjMAIEMglZF5gzuEgChZezhBZ7CECpIJ2\nlSxqbIg3TZz3IXWiZoT8jg7nwqj4ihKLORIQu36IHwKDxJGw47kkRMyZdyr9RWke6ZFzWs72UK+m\nanRI47hQKepr1OhFqdNGJZ4ZfiL0if6iJo/SIuVBxmgf2LSkEjgSLhuJmJCqkIZRryONovKMifyf\n6TBntgrn4zyDKjfF5q0h36ZB1dzP1EtxjO3bW9KfEok/PkM9S8J4sbGYFdr0lDBPesWlqH2McVk/\n2Jgwdqi1wY9NCWr0OCcgK8aHo5aYOpWX1l/2XBEu2AHExKblO+EDmzRwIfVabz9jFCVxzurZSHd7\nR9gooK2gjcw1JyNgBEaAQC4h02TO6lAbk6LEzIKLtIc0BbFh2MT5KAsoC2Qq/WJswmIWjbCQmJGm\nUwJrXxBRA6aqYaSdtFwWXIyeUqOluGAinUBuJIykIOSUGGkP5P7DIC2ni2psRxkhQ5icf0NULw4L\nPhIYalIkSjYQJAgZySnddMQyUQEjtaJKR0JGiuN8+/9JYkND2VH7EDclKT6o35H6WVw5F/xuwbxi\n0wChc97NGXUnbUTZtKRfbGiQ9BiP2YlhUOwLGwzOsunDp0JdbJKQnJH4kZC74dLptSjqBxs8NnVs\nrKIBW9zobBII53OBoP0c/nQAACAASURBVJkHSLEx9YpLp+dSXJijPMtxAZtGNi5sFNqPd3qtt9cl\nIj3SgZDZxHZ6R+K78cYSTViv9fo5I2AEMhDIJWTUviwmUZ3NQgB5sPChLkQK4TyUFNVm7USL5SqG\nSCzqJMqERNrPR/kuGoA9L+zo+R/lsbBj8IWqEitpjFRYmCGCmNoXKf6/bTDwQpKHNJGiSN1U9UXf\ns+hBTkj60co8lkX7IL9oOY5GgPPFVIJHqgMD1MtRswBxY4CGlM1mJ56/00cM4aJKOPYRfBgLjgVQ\nl8eFPy64qXoYVTNnt+v0KBVB/rQ/Hg1QJ6p3jjNY7NGOsAlA4mcskH7ZJDEP0JZAvDFFyRpC7IZL\nOr279YMNCEZTW7aN/UvCmKCuTxObROrvhkuneimbjV8RLrQHCRiMmWtxjnfrR66USvngD8HyLnR7\nR3geDRcq/9y6M5YjZzUC041ALiFDGKhEUcEh/SF1oR5FPflxSY+VhHX0reEqDmTLIpWeyyLNYp3N\nuR7nikg3SNYslO3ntxhhIZWlZB0XH6RqFmMIjI0Akh/lpAkijG1CEsbwiPZzTxMp5jnhuhFlcE6b\nLrLtxICKLz1bj2WDAZuUmFDlIh2CEYZmtB2CbTeUixsJCAxDLsiDM0DO01Fvfj6c02OwxrWjwwva\nh8qd55EIObNkfLmSwyYJXDkfhIToOxbQbALaz7HL3oi4oQFjrppxVo1hGsZU4Mh1LvrHcQL95Ypa\ntKaOZYInmwU2L6jQD+0Bl7Q99AftQVE/IFU2YODHOfWKoZ9oXq5o6xRzDkmVzUtZeSkuneplrkB6\nRbhgG8F4YcnN2TZjzA9aF+ZdL+PRHl0tjbyGkRybHki//V2hj2yG+d3tHYkbqF43Z9O9arr3RmBI\nCPRCyOy0UTUXGXWhVoWI4lkekg8SA5IiCwlWxkhNJL7jDnD74sgijfEXZ7skpA0sb/9Z0GckMtS1\n7WSdWs+SbaMgNbcXwRkmamDaSGLxhkAhLdSYnDnGhBSOoUtRigtcxCUaECGVp4k+s8ghNUJakDCJ\nq1lcvWlP4JOesbPJQMphsY1qz07ti1d62sulXogJgmdDQoKkUc23j0dJl1v/xhKXMmLCYpsNGJbU\nEAXtjWXTl/YNEZIa/ea+OITM2WUvuKRtwm6hqB9oRzCYivMo5mHTgFV3PEPn/5GQIfCy8tpx6fRc\nGS5oFXgX2hOqdK7V9TIeYMYxSCRL2h4jr5XZIlAf7wpkHY9FOr0jHBOxCWw/Tuo0F/ydETACFSPQ\njZB7rY6FFZJiUWw/j1w1SGqQU5HFcqzjoeG5xb1W2vYcmwNUthBPNJgpK4q6SNFhRnwutpU2DHKu\n2qnpSKWobiHnos1GzMtzONkAKzBLE/2jn7QPrUO/qVPZvZZF/Ujv2AW04xfbR7ujQ5Ru5faKS1pO\nFf0YpLxO9XbCpQyDqvvRPlcYn3jliu+K3pF4vY57yvG6WLcx8/dGwAgMAYGqCHkITXORRsAIZCKA\nxgbJnmt8ZQntCZqOeP6fWaWzGwEjMCgCJuRBkXM+I9B8BDiK4fiGY6cy7RRHRthQRIOz5vfKLTQC\nE4qACXlCB9bdMgJGwAgYgfFCwIQ8XuPl1hoBI2AEjMCEImBCntCBdbeMgBEwAkZgvBAwIY/XeLm1\nRsAIGAEjMKEImJAndGDdLSNgBIyAERgvBEzI5eNFOEF+nIyAETACRsAIDB0BE3I5xFwTMT5Dn4Ku\nwAgYASNgBEDAhGNC9ptgBIyAETACDUDAhGxCbsA0dBOMgBEwAkbAhGxC9ltgBIyAETACDUDAhGxC\nbsA0dBOMgBEwAkbAhGxC9ltgBIyAETACDUDAhGxCbsA0dBOMgBEwAkbAhGxC9ltgBIyAETACDUDA\nhGxCbsA0dBOMgBEwAkbAhGxC9ltgBIyAETACDUDAhGxCbsA0dBOMgBEwAkbAhGxC9ltgBIyAETAC\nDUDAhGxCbsA0dBOMgBEwAkbAhGxC9ltgBIyAETACDUDAhGxCbsA0dBOMgBEwAkbAhFw/Ia8t6YuS\nNpN094BT8IGSzpe0vaQL2sp4jKRfSFpH0taSVpe0/4D1OJsRMAJGwAjUhIAJuX5ChigPl/Q8ScRc\nHiQtL+l3kt4o6dcdCHllSStKuniQSpzHCBgBI2AE6kPAhNw/Ic+U9BFJH5L0Q0m7SbpI0hqS3h+I\n8iuSjpJ0hKQ9JL1K0tuCZIyEfK6kL0jaO5TxTklXhKZsIulLkh4r6X2SPiPpLkmrSTpU0oslHSbp\ng5KeHgj5fyR9Q9JiST8NkjPEv4GkVSSdKunTkk6TtJ+kJ0p6paTvhjrJf7SkWyV9XtLjJM0Ln+ub\nja7JCBgBIzDFCJiQ+yNk8PqRpFsk7S5pq0DOj5e0kqQ/SzpO0v9K+lwgxDdIul7SyZLWk3RHeA5S\n5WdXSc+XtL6kJwV18zaBoL8dSBxS/q2kswNBQ6ovk7SRpNsk/UHSByT9TNKJoUsQ8kslPSKQMSru\nOZJeLWndQMw8M1vSJZLeHjYWEPq1QeVNu52MgBEwAkagBgRMyP0RMtItpPsoSVdKeoCkMyV9XNLC\ncK776EDAOwRC5HeqYr5B0g8C4UHOD5L0l0CwO0n6Z5BOadnmQZKGoCF0iJ/NAHl+L+k1kp6Q1EMe\nSPas8BtCfrikz4a2IYmfE9pDeyn3qZKeJuk9AQo2BWw6KMeEXMNL6CqMgBEwAiBgQh6MkNtzQaSQ\nICpg1MSomF8XJFJUxRhhodaGQCHk1KgrGmhxHrxjQoyxDqTVPSVtK+kVwRAszUPdnCMfGTJElXiU\nkCMhY/z1jECyaXtQuf+kJL8J2euEETACRqAmBEzI/RFylD6fLOnfgRyfIukySbMkoWJG4sR6GskY\nMjykgJAhbiRRnmsnx/OCKhvp+6GSsJqm7E8GlfedbRI3KnFIO1pSrynp5wUSchkhoy6nrpg/lbBN\nyDW9iK7GCBgBI2BC7o+QMZBC1fteSccGVS/SaTwb7pWQUXsj8X5H0lsl7RXOkJGSMQJ7ZpCkMQqj\nzl0kXR1UzJA5ZP/VYNT14HBuvHFQfR8g6fV9EDJkf4KkZ4c6UKejdrfK2uuDETACRqBGBEzI/REy\nT0NcWEnHhIT6NUnt94tRWWNQFSVk7gZDvqisIeSYbgx3kn8jaUYwwEINTULS3TJYT6OuhsBJqJiR\nnDkD5ix5fnLuDFFz9swmAcMv2sAZcruEnN5jxgI8qrypE8kcyZ/zaicjYASMgBGoAQETcv+ETI4V\nghoZtTVXhQZJy0ninvBNwVI6LQNCJP2rrWAsuamb603tiTycXUP4/SQ2Eqi5Tw/3ojcMV6Ci6r2f\nsvysETACRsAIDIiACXkwQh4Q7kZm4wrUHyUtkHSpJO5QI91/s5GtdaOMgBEwAhOKgAnZhAwCSMlb\nBDebp4T7zBM65d0tI2AEjEAzETAhm5CbOTPdKiNgBIzAlCFgQjYhT9mUd3eNgBEwAs1EwIRsQm7m\nzHSrjIARMAJThoAJ2YQ8ZVPe3TUCRsAINBMBE7IJuZkz060yAkbACEwZAiZkE/KUTXl31wgYASPQ\nTARMyCbkZs5Mt8oIGAEjMGUImJBNyFM25d1dI2AEjEAzETAhm5CbOTPdKiNgBIzAlCFgQjYhT9mU\nd3eNgBEwAs1EwIRsQm7mzHSrjIARMAJThoAJ2YQ8ZVPe3TUCRsAINBMBE7IJuZkz060yAkbACEwZ\nAiZkE/KUTXl31wgYASPQTARMyP8dl89LeoOkD0k6VNJSSeCzq6SPSfqqpLc3cxjdKiNgBIyAERh3\nBEzI/x3BlSQtlnSnpFskPVTSvyStKOkBkmZLunHcB9ztNwJGwAgYgWYiYEK+77gcKOkDklZI/n27\npP+VtFczh9CtMgJGwAgYgUlAwIR831FESr5O0ozk37dJmmvpeBKmu/tgBIyAEWguAibk+49NKiVb\nOm7u3HXLjIARMAIThYAJ+f7DmUrJlo4narq7M0bACBiB5iJgQi4eG6Tk3SQd4rPj5k5et8wIGAEj\nMEkImJCLRxMp+RpJD/fZ8SRNd/fFCBgBI9BcBEzIzR0bt8wIGAEjYASmCAET8hQNtrtqBIyAETAC\nzUXAhNzcsXHLjIARMAJGYIoQMCFP0WC7q0bACBgBI9BcBEzIzR0bt8wIGAEjYASmCAET8hQNtrtq\nBIyAETACzUUAQiaqkVMeAqPY2EzjuI0C57yZ0Zzcw5gvHo/mjK9bMgEItAh56dLq3tVlllmGAiuD\nZhzKC2EaK+tzjwVN3biNCOceh6Pxjw08Xy666CLtvvvuuuuuu3TIIYfoSU96kngvPR6NH3M3cMwQ\nMCFnDtgIF6aBF9iiLnvjkzkRmp89e74ceuih2m233XTggQdqzz33NCE3f8zdwjFDwIScOWAm5GIA\nh0HwlsiyJms2IVP7woULW9LyKaecwsenSvpdVquc2QgYgXsRMCFnTgYTsgk5cwrVlb0SQo6NDfOe\naGj7SvpYXZ1wPUZgkhEwIWeOrgnZhJw5herKPgxCfrykgyWtHIKxnF9XZ1yPEZhEBEzImaNqQjYh\nZ06hurIPg5CjlfXOITLa/pL4cTICRmAABEzIA4CWZjEhm5Azp1Bd2YdJyPThsUFanhuk5V/W1THX\nYwQmBQETcuZImpBNyJlTqK7swybk2I93BGI+SNKCujrneozAJCBgQs4cRROyCTlzCtWVvS5Cpj+P\nDqS8epCWz6urk67HCIwzAibkzNEzIZuQM6dQXdnrJOTYp7cFYj40WGPX1VfXYwTGEgETcuawmZBN\nyJlTqK7soyBk+rZGIOU1g7R8bl0ddj1GYNwQMCFnjpgJ2YScOYXqyj4qQo79e3Mg5sMlfbiuTrse\nIzBOCJiQM0fLhGxCzpxCdWUfNSHTz9XC9SjuL+8m6ay6Ou96jMA4IGBCzhwlE7IJOXMK1ZW9CYQc\n+7pjkJa/KGmvugBwPUag6QiYkDNHyIRsQs6cQnVlbxIh0+dVg7S8fpCWf1IXEK7HCDQVARNy5siY\nkE3ImVOoruxNI+TY7x2CtPxVSa0QUk5GYFoRMCFnjrwJ2YScOYXqyt5UQqb/s4O0vGGQlk+vCxTX\nYwSahIAJOXM0TMgm5MwpVFf2JhNyxOC1QVo+NhBzXdi4HiPQCARMyJnDYEI2IWdOobqyjwMhg8Ws\nIC0/I5DyD+oCyPUYgVEjYELOHAETsgk5cwrVlX1cCDni8apAzCcEYr6rLqBcjxEYFQIm5EzkTcgm\n5MwpVFf2cSNkcFkpkPKmgZRPqQss12MERoGACTkTdROyCTlzCtWVfRwJOWKzTSDmkwMx314XaK7H\nCNSJgAk5E20Tsgk5cwrVlX2cCRmMZgZSfkEg5RPrAs71GIG6EDAhZyJtQjYhZ06hurKPOyFHnLYO\nxHxaIOZb6gLQ9RiBYSNgQs5E2IRsQs6cQnVlnxRCBq8ZgZRfIml3Sd+pC0TXYwSGiYAJORNdE7IJ\nOXMK1ZV9kgg5YrZlIOYzg7T8n7rAdD1GYBgImJAzUTUhm5Azp1Bd2SeRkMHuAYGUUWUjLX+7LkBd\njxGoGgETciaiJmQTcuYUqiv7pBJyxA/19SGSfhak5RvqAtb1GIGqEDAhZyJpQjYhZ06hurJPOiGD\nI+sZpIxTEaRlXHA6GYGxQcCEnDlUJmQTcuYUqiv7NBByxPKFgZh/HaTlf9UFsusxAjkImJBz0GNL\nvgwQtnbmdafKF9ilS5dW1gdwqbq8EeFcGSYjLqjy+TIG43GQJMI7Ii0fM2L8Xb0R6IqACbkrRJ0f\nMCFbQs6cQnVln0ZCBtvnB2n5gkDM19UFuOsxAv0iYELuF7G2503IJuTMKVRX9mkl5IjvxyS9OZDy\nV+sC3fUYgX4QMCH3g1bBsyZkE3LmFKor+7QTMjhvFqTliwMxX1MX+K7HCPSCgAm5F5Q6PGNCNiFn\nTqG6spuQ/4v0/pLeEUj5S3UNgOsxAt0QMCF3Q6jL9yZkE3LmFKoruwn5vkhvEqTlywIxX13XQLge\nI1CGgAk5c26YkE3ImVOoruwm5GKkF0h6TyDlL9Y1GK7HCBQhYELOnBcmZBNy5hSqK7sJuRzpZwVp\n+cpAzH+ra1BcjxFIETAhZ84HE7IJOXMK1ZXdhNwd6X2DIxHuLX++++N+wghUi4AJORNPE7IJOXMK\n1ZXdhNwb0hsHafmfQVq+vLdsfsoI5CNgQs7E0IRsQs6cQnVlNyH3h/SHJe0VJOYj+svqp43AYAiY\nkAfD7d5cJmQTcuYUqiu7Cbl/pDcK0vL1QVq+tP8inMMI9I6ACbl3rAqfNCGbkDOnUF3ZTciDI42k\nHM+XPzt4Mc5pBDojYELOnCEmZBNy5hSqK7sJOQ/ppwZp+aYgLf8przjnNgL3R8CEnDkrTMgm5Mwp\nVFd2E3I1SO8pCU9fu0n6v2qKdClG4B4ETMiZM8GEbELOnEJ1ZTchV4f0BkFaviNIy3+srmiXNM0I\nmJAzR9+EbELOnEJ1ZTchV480UjIxl/n9yeqLd4nThoAJOXPETcgm5MwpVFf2YRDyCZKODz+31dWR\nhtWzXpCWWUsh5gsb1j43Z4wQMCFnDpYJ2YScOYXqyj4MQia+8LaSXpgQMwQ9jel9gZg/KOngaQTA\nfc5HwISciaEJ2YScOYXqyj4MQmb9IM2VtE0g52ck5HxyXZ1rSD3rBFKeEaTlCxrSLjdjTBAwIWcO\nlAnZhJw5herKPkxCTvuwRkLOT0zI+fS6OtqAeogedYikj0j6eAPa4yaMCQIm5MyBMiGbkDOnUF3Z\n6yLktD+PS8gZokadzbnzWXV1eoT1rB1IeaUgLf9mhG1x1WOCgAk5c6BMyCbkzClUV/ZREHLat3WD\nShvV9soJOf+8LgBGVM8ugZg/KumAEbXB1Y4JAibkzIEyIZuQM6dQXdlHTchpP5+SkDNrULTW/m1d\nYNRcD5oCDL1mB2n5VzXX7+rGBAETcuZAmZBNyJlTqK7sTSLktM+EO8RSG8n5xoScJ9HZxjuCtMy5\nMhKzkxG4DwIm5MwJYUI2IWdOobqyN5WQ0/5vmpw5/z0xCLusLpBqqOcxQVpeLUjLk66yrwHSyanC\nhJw5liZkE3LmFKor+zgQcorFFgk5L0zI+aq6ABtyPW8L0jIevuYPuS4XPyYImJAzB8qEbELOnEJ1\nZR83Qk5x2TIh518m5HxdXeANqZ5HBmn50UFa/umQ6nGxY4KACTlzoEzIJuTMKVRX9nEm5BSjeN7M\n7x8l1to31AXkEOrB4xn3lom1zN1lpylFwIScOfAmZBNy5hSqK/ukEHLEC29Y0TsYv7+TkPOtdYFa\nYT2PCNIy95fxiX12hWW7qDFBwIScOVAmZBNy5hSqK/ukEXKK20MSco5+teNVqqV1AVxRPW8MxHyk\npL0rKtPFjAkCJuTMgTIhm5Azp1Bd2SeZkFMMi/xqQ84n1QV0BfU8LJAykaSQls+ooEwXMQYImJAz\nB8mEbELOnEJ1ZZ8WQk7xXD254wy5Ran5tLpAz6zn9YGYvyyJKFJOE46ACTlzgE3IJuTMKVRX9mkk\n5BTbxybkjHVzJOem+9WeE0j5qUFaxpDNaUIRMCFnDqwJ2YScOYXqyj7thJzi3O5XO5Jzk510vC4Q\n8zck7V7XpHE99SJgQs7E24RsQs6cQnVlNyEXIz1OfrVXCaSMu1HOln9Y1+RxPfUgYELOxNmEbELO\nnEJ1ZTchd0caootXqf6TOCBpml/tVwdiJpwlxHx39675iXFAwIScOUomZBNy5hSqK7sJuT+km+5X\nm6teRJDaJJDy9/vr3kQ9TTjPdSThJ3xVSWCzvKQ7JP1b0rWSrpCEC9ZGO5AxIWfOSxOyCTlzCtWV\n3YQ8ONJFfrU5d75y8CIry4nHMoiZa11Iy5DQpKeZkrZaZZVVtl66dOmmt9xyy6prrrnmzWuttdYy\nj3zkI1dYZZVVVlhhhRWWvf322+++/vrrb7/yyitvv/TSS5defvnlM1dcccVrl1lmmbOvv/767wXM\nbm4SWCbkzNEwIZuQM6dQXdlNyNUg/bLEWpu4xtEgDClsVOlBwfXm8wIpj9Od634w22L27NnvXrJk\nyZabbLLJjdtuu+3Km266qTbYYIOey7jgggt0zjnn6Pjjj7/hnHPOWWnWrFknL168+DOSTu+5kCE+\naELOBNeEbELOnEJ1ZTchV4906rrzxwk5j0ot+oogLWPshbQ8ji5Ei0Zpmzlz5iyYNWvWGrvuuuvK\n22+/vR760Idmj+a//vUvHXPMMTr00ENvWLJkyVWLFi2aF8Ywu+xBCzAhD4pcyGdCNiFnTqG6spuQ\nh4f0CkFqjoEv8KsdJee6SfGBQVp+cSDl7w6v20Mv+Wlz58799OzZs5+4YMGClV/1qlcNrcLjjjtO\n8+bNu2Hx4sV/vO66694t6TdDq6xDwSbkTNRNyCbkzClUV3YTcj1Ir5SQ8yj9am8VpGXcbiIt31RP\n9yurZZ8ZM2bse/DBBy//7nfDj/Wkz3zmM9p9993vuO222/aTtH89tf63FhNyJuImZBNy5hSqK7sJ\nuS6k/1sPXrai1PzMRGqu64wXS2PCOr48kDLXpJqeZs+ZM+eE9ddf/8lHH330yo95DIbT9aYrrrhC\nb37zm2+48MILL1i0aBHHEovraoEJORNpE7IJOXMK1ZXdhFwX0sX1jNKv9kuDtPzTQMxcBWpi2mDW\nrFnf33nnnVc74IADlh11A/fee++7Dz/88H8sWbIE/H5fR3tMyJkom5BNyJlTqK7sJuS6kO5ezyj8\nakNwSMvbBVL+Vvdm1vrExjNnzjz9kEMOWemd73xnrRV3quyII47QbrvtduPNN9/M1bdfDLthJuRM\nhE3IJuTMKVRXdhNyXUj3Vw9+taO19qzEO9iw/Gq/KBDzLwMxX99fc4fy9AYzZ8489/DDD19pxx13\nHEoFOYV+5Stf0c477wwpP2fYkrIJOWekJJmQTciZU6iu7CbkupAevB78akdyRqLlzBdr7WFY/OJM\nZPtAygSsGFWaPWvWrAsOPPDA1ZskGbeDgaS81157Xb1kyZInD/NM2YScOQ1NyCbkzClUV3YTcl1I\nV1PP/yTW2tGvNuR8UTXFt0p5QZCWfxeIeVGFZfdU1Jw5c87aaaedntOEM+NuDeZM+cgjjzx30aJF\nz+327KDfm5AHRS7kMyGbkDOnUF3ZTch1IV19Pfirxlqbn78nkvOlFVX1cUlvCqT8tYrK7KWYfTbb\nbLM9zjjjDHxRj0XafPPNbzjzzDMPGtaVKBNy5jQwIZuQM6dQXdlNyHUhPdx6kGrjVao/JVepcv1q\nbx6kZSJbcW/5n8PthjacMWPGzxcuXLj8KK42Ddo3rkSts8463FPmGtv5g5ZTls+EnImoCdmEnDmF\n6spuQq4L6frqGYZf7QMk7SRpd0lfHlZX5s6d+7N58+Y9s06nH1X1BechCxYsOO+66657VlVlxnJM\nyJmImpBNyJlTqK7sJuS6kB5NPVX61Sb0JFekUIkjLaMmrzJts8466xx18cUXj42qur3z66677g0L\nFy58S9W+r03ImdPMhGxCzpxCdWU3IdeF9GjriX61I0Hn+NX+qKR3BWn5qKq6NWfOnAsPO+yw9Ybp\nm7qqtpaVg+/rXXbZ5aJFixatX2VdJuRMNE3IJuTMKVRXdhNyXUg3p57oVxty5v5xDHjB77t7bOaz\ng7T8tyAt555Vb7HWWmsdd8kll6x86623auONN9bvf/9fJ1irrrqqvvWtb+m5zx2aIXOP3e7+2Npr\nr33DpZdeSsSLykI3mpC7497xCROyCTlzCtWV3YRcF9LNrAe/2lFqHsSv9nxJ7w/S8pGDdnH27Nnf\nmz9//ss5O4aQn/a0p+nDH/6wnvWsZ+mOO+7Qj3/8Y3Ef+fjjj9c229Dc5ibOkufPn3/i4sWLt66q\nlSbkTCRNyCbkzClUV3YTcl1IN78e/GpHcl4vkZxP69L0ZwRp+ZogLV/RZ1dnLrfccjdee+21yxLP\nGEJeb731WuT7lKfgE+We9KUvfUkf/ehHdeGFF2rFFVfUOeecoze96U36y1/+ok996lOCzO+88069\n5z3v0Qtf+ELtu++++uMf/6jvfOc7esUrXqGlS5fqC1/4gt7+9re3yvvqV7+qHXbYoeXE6fLLL8cV\nZutZ8pN39uzZhd2gjqOOOqqV90EPetD9niGe8qqrrnr3XXfdhSbi5j6xKHzchJyJognZhJw5herK\nbkKuC+nxqmfN5I7zo5I7zmd26MZHJH0wSMtH9NHd12y22Wafi/eOIyEfe+yx2mijje4t5tJLL9Wz\nn/1sLVy4UJdccklLrX3CCSeI61Hbbbed3vrWt+oDH/hAS7petGhRS8V98cUXt8iVPJDza1/7Wp16\n6qn697//3SrrzDPP1AYbbMCVJe26666tcnj+6quv1k9+8hM94AEPuF83brrpptbzqNRXWWWVwm6G\ne8nvkHRsHziUPmpCzkTRhGxCzpxCdWU3IdeF9PjWs05CztGvNufN5xV06elBWiY0IVekLkueuU3S\nJyV9KM23yiqrHLNgwYLXxatOZYQMCT/nOc9pkeuHPvQhPexhD+OaUauoM844Q29729t0/vnnt4gW\nl5abbLJJS90NeULc3BWmjh/84Ad64hOfKAj+gQ98oH7xi19on3320UUXXdQi4L///e9affXVW5L3\nmmuyL7lv6oWQUVvPmzfvG9dffz1uSLOTCTkTQhOyCTlzCtWV3YRcF9KTUQ8+m6N3sE5+tfeWhMQM\nKeNcZA1JuP28SxLBjK+OcMyaNeuqM888c/UnP5mida/Kul1Chogx6uI3UuynP/3p+yCK4dcFF1zQ\neubnP/95S3pNyR0Sfu9736svfvGLrXyopjmnPvvss1Vk2f2rX/3qPhL617/+db3+9a+/3yhutdVW\n+u53v6tll/1vZEik5+c+97n4uKbf2cmEnAmhCdmEnDmFqsr++XCud2NJgSbkqpCevnLa/WpHa+3o\nV3vDIC1jOPaEPE7aSgAAIABJREFUAA+ETIjHN4bPK8+YMeO6W2+9dfkIX9kZ8vz58/WNb3yjJcm+\n4Q1v0DOf+UyuGLXOjTm3RQLecMMNBbEXEfIaa6zRkoBnzpzZKuNd73qXXvOa1+jhD3+4Pve5z+lH\nP/pRS6K+66679Nvf/rZV/gorcFvsnnTdddfpmmuu0c0336wttthC3//+91ukP2PGDK211lr3G/0H\nPvCBeO6aK+mG3KlhQs5EsISQ15b0tHC14B+SzmmrhjBeGFaA/28l4QIvTd2+59nKF1iMIapK4FJ1\neQGvqpo4aeXcImm5sDDibamdmCufLx6PSZtCPfUn+tXGKIy1LZIz0aNQVb+atSnMDQydXhzWv43X\nWWedH6bOQKKV9Z577tlSP/P5lFNOaampkWZRRaOSPuigg3Teeedp5ZVXbllgX3/99S3CxhCsiJB/\n85vf6Gtf+5pOP/30FtHutddemjt3rp73vOe1pOpzzz23dZ6Msdfuu+/eIniMx9oTpL3++usLCfoh\nD3lIKTjBSQjXyrLjJZuQe5qD5Q+VEPIOkqKTdsgYVQ47xpiODs7c+YyqB684aer2vQk5c9wmMPuu\nkj4mCX0aCyJneCkxm5AncNBH3KXUrzamymwI2xNxlzeW9Jott9zy8yeddNK9zFZ0DxnJ9+Mf/7he\n8AKKlm677baWyvnII++5afWMZzxDJ598csvquV1CxsjrmGOOaZ05P//5z28Zd5GQmCF0fmN9vdNO\neAaVVlpppZaxF3UWpdg+nikz6iLfVltt9e+TTz4Zk+5swy4TcuaMLiHk7SQdF4o+SdIr2wj5s5J2\nCd+/WxKf09TtexNy5rhNaHYMbB4a+nZ7GzH/2xqLCR310XfrS5J2LNGYIDVjhfyQnXfe+ROHHXbY\nAwdpLqpqEtelekmooxcv5nVQSzoO63Tr84033qjbb7+9JXEXWVf3Un76zC677HLr4Ycfvqek+x52\n91tQALDynXPVL37TyyuYiC+X9L0wHlgWsHtKPeMgyXBtgPSGRJqOQ9jt+2kl5AGm+NRnuUMSPzOr\nfo/CnGZe84NUHv/u93+5+Yvqzi0zN38T2zSsPv1U0sMllfmmpt5999577/3233///1pETciruc8+\n+9x9wAEHzKsiJKMl5MxJYaOuYgB9hpw5sQbLXreEjIqSBZZ1hN/pT6//G3X+onaOuk259dfdJ65I\n3f8i733n8H7z58/fF6vpSUv77bcfHrv2k4Q3s6xkQs6CT1EVAo51p6nTbNiIqOMU4wz5wHCO5zPk\nut/G6a7v4iAhQ8xFCfsZJOQFlpA7TxQTcuaLZAnZEnLmFKoqu62sq0LS5fSLAMdyXG8qMurCloHv\n5uacIffboDqf9xlyBtoTpEq1hJwxDyYwq+8hT+CgNrhLXNzFWJXrT/xGZc1ZcTsp/1gSJtP3s7Lu\n1jd8WuPaEu9aw0yd6sHByJOe9KR7LbOL2mEr64zRMSHXJ9EOwYhoFEcDGbOtUVkr38D5CKFR41tH\nYyDdSMCQMGRLvGV+3idpA24BJfMC6ZiAFPhauN895G4N5n7wLbfconXXXbfbo1nfd6rnHe94R+su\nMlevypLvIWfAb0I2IWdMn3HOakIe59EbXduReCHf+HNWQsLXhWZBwgdJuimQMjYM/KC1iUx2P09d\nsUtcQ5o3b14rkhNuMYnERDjGs846q+UEhAhO3Ef+xCc+0XoORyI48sDJB8/xGacfBJwgctMnP/nJ\nVhhHDMjwaX3wwQe3vGzhfQuJ97jjjtPTn/70ViQnyLa9HvxmH3DAAfdGhaJcvH2VJXvqypicJmQT\ncsb0GeesJuRxHr16244mKhIwEjHOjb4biPifSVNw8vEJSc+XxD3ct0h6sKRnhXCEeCO8NywhvqzP\nOuus1fGSlSYcgeBdC49cP/vZz/S6171O1157rU477bRWAIg99tijRaR48fr2t7+tk046qUW2BHYg\n8hMOQYjq9M1vflNf/vKXW05EPvKRj+hFL3pRKwQjhI3rTKJGEbTigx/8YIuUsY7+85//3CJv6sFr\n11ve8paWa038a+PRi2cpj4AWRQmf2ptttpl9WQ86P03IJuRB586Y5zMhj/kA1tD8VyQqaSI8RXU0\n8Y/b0+sCGR8vaY9w1z0+g1X1+yX9X5qpPdpT/A6yRUpGKl1ttdVagSMe9ahHtXxII9XiLvOxj31s\niyDXXnvtlktewituuumm9xIygSTw4vWnP/2p5eXrsssua7nNjCrnzTbbTC996UtbBIx0TRkveclL\nWuSPc5BYD5sFCJ8AFSSInHrKJGRHe8qclSZkE3LmFBrX7CbkcR254bZ760Qa/lVCwn8vqXa1oJ5e\nL0jFp/fRvPvEQ475Lr/88pZamshJJFTXO++8c0uKhShf9rKXtdTThGWMPqUhWsgTCRkXmpA1Hrl4\nhv/h7pKoTEi2T33qUzVr1qyW1JtGa4pkjfcv6nn5y1/ekqDTemL+MkJ2POQ+Rr/oUROyCTlzCo1r\ndhPyuI5c9e3mzDeqpH+TqKOv6lIVTqBRUePa98MDNGvmcsstd+O11167bOoCE0ImEhO+owkWgST7\ny1/+siXNQpQ77rijHve4x7WCQMR8UXKNhByDTECm2223XSuKU0rIT3jCE7Trrru2SH+55Za7V8pG\nSl5++eVb9Wy77bYtkid+MmfZpEj8RYSMO89VV1317rvuumulVDU/AC73ZvE95Bz0MCdcpmX4Owrr\n38oX2Kqtoqsub0Q4Z86QxmSvfL54PBoztr005GXJNaULEkn4yh4yE70Ooy3CK6KeRp09UJo9e/b3\n5s+f/3KMrUhRdQwJo7om5CHhEAkCEQkZIsV4izPhvffeWz/84Q/1yle+8t4z5DTIRBkhQ7aow088\n8USCQbQk6M0331x//etfdc4557QI+f3vf39LPc3/CQEJeRN4ArV0ESHz//nz55+4ePFitAyVJBNy\nJowm5PokbhNA1mQ1IWfBN5aZX5KcCRO7OJ4J/7WP3nCdCTL+SIgm1kfWwke3WGuttY675JJL7vV7\n/Ytf/KJ1/hvTq1/96pZxFtbWGFvttttuuuqqq1qqa0gSKZbfkCvxitsJOVVZQ/JIxxAqUaIg45hO\nOOGEFrETyjHWs3DhwnuvWSElc5a8ww47FBp1rb322jdceumlr5LUj9q+I34m5MzpZUI2IWdOobqy\nm5DrQnq09RB/OKqjibMeSfjyPpv11EDEdwap+A995i99fM6cORcedthh673qVXDZPYlrTUuWLGkZ\nWHF1KU133nmnTj311JY19SMe8YiWVI3h1sc+9rHW9aV+EhI49XAW/eAHYxB+/0QkKJ5BPV4WDYrz\n7V122eWiRYsWrd9P/d2eNSF3Q6jL9yZkE3LmFKoruwm5LqTrr+eFiTr6kkDCXFO6bMCmcD6Me6xK\nQgoWtGGbddZZ56iLL764LDrUfbJEq2rUzKiJkWw5Yz7//PNbxlqjSMEZCNe8TqiyfhNyJpomZBNy\n5hSqK7sJuS6k66kHd5TRaxbSb5SEL82ofpNgtHV1kIr7lap7rnru3Lk/mzdv3jPjWXK3jHjs4n4w\nqmqk2ze+8Y33Wlx3y1v192wKFixYcN51113HfetKkwk5E04Tsgk5cwrVld2EXBfSw6sHBxxRHY0x\nViThP1dQJTHY3xqk4qMrKK9bEU+bMWPGeQsXLlz+MY95TLdnG/M9lt7rrLPOHbfddhuH3lioV5pM\nyJlwmpBNyJlTqK7sJuS6kK62ns0TEuZuMCSMOnphRdVg+MVVpvMDGV9bUbm9FLPPZptttscZZ5zR\nk+q6lwKH/Uy4d4yR2/7DqMuEnImqCdmEnDmF6spuQq4L6fx6npucCeOqMkrCxB2uKq0YjLa2DOrp\n46oquJ9y5syZc9ZOO+30nAMOOGDZfvKN4tm999777iOPPPLcRYsWMT5DSSbkTFhNyCbkzClUV3YT\ncl1ID1YP57fxTHhxQsJcV6o6bRfI+JQgFd/rb7rqinoob/asWbMuOPDAA1fHRWZT0xFHHKG99toL\nn9VPlsT4DCWZkDNhNSGbkDOnUF3ZTch1Id17Pc9J1NE3BItd1NGVXTFqa8rcQMQbBan41N6bOtQn\nN5g5c+a5hx9++Ep45Wpa+spXvoIrzxtvvvlmxuse/55DSibkTGBNyCbkzClUV3YTcl1Id64Hy1wM\ns5CGb0wk4aEu9JLeFMj4KEkfbAYU92nFxjNnzjz9kEMOWalJkjKS8W677QYZbyHpF8PGzYScibAJ\n2YScOYXqym5Crgvp+9eDRW5UR9+SkPDvamjSmsFo65FBKiaUYlPTBrNmzfr+zjvvvFoTzpQ5Mz78\n8MP/sWTJkpcOWzKOA2JCzpyaJmQTcuYUqiu7CbkupO+pZ+NEHX1HQsKVX5Xp0C0cRmMRfICkj9bb\n/YFrmz1nzpwT1l9//ScfffTRK4/iShRXm9785jffcOGFF16waNEiNlJDOzNuR8mEPPC8uSejCdmE\nnDmF6spuQh4+0vhxjPeE705ImCtFdaYnBal4+WC0VecmoKp+7jNjxox9Dz744OV7dR5SRcU4/dh9\n9925Z7zfsK42dWqnCTlzFE3IJuTMKVRXdhPycJB+WnImzHoarygRW3gU6UOS/l9QT39yFA2osM4N\n586d+5nZs2c/ccGCBSunvq8rrKNVFL6p582bd8PixYv/eN11170n3Muuupqu5ZmQu0LU+QETsgk5\ncwrVld2EXB3SBF6IZ8JIoZGEh27006ELnFOjnka9ig/qKrx3VYdYXknbzJkzZ8GsWbPW2HXXXVfe\nfvvt742LnFMs8YyPOeYYHXrooTcsWbLkqkWLFs2r2jd1v+0zIfeLWNvzJmQTcuYUqiu7CTkP6ack\n6micahBUACL+eV6xleRGIua8mFjFR1ZSYjML2WL27NnvXrJkyZabbLLJjdtuu+3Km2yySSv8Yq8J\nX9hnn322jj/++BvOOeeclWbNmnXy4sWLP1NlCMVe21L0nAk5Bz2fIZeix0aFKC1VpRFufKrqwqjL\nMSH3PwIbJCRMrL4oCf+s/6KGkoMAE0jFfwxkjGvNaUgzJW21yiqrbL106dJNb7nlllXXXHPNm9da\na61lHvnIR66wyiqrrLDCCisse/vtt999/fXX337llVfefumlly69/PLLZ6644orXLrPMMmdff/31\n35N0kqRROkW531iZkDOn7wiJovIFtmoCrbo89j+ZwzXN2SufLxM6HsS3jepofCxHEj63QZMHNTn+\npwkojFT8jQa1bRRNYZzWkUSUilUlPUQSGGHd/m9J+Oe+Ivj/xgFLY5MJOXNoTMjFAFpCzpxY1Wc3\nIZdjul4iCc9OSPjs6ochu8RXBKn4J4GMIRynCUHAhJw5kCZkE3LmFKoruwn5vkivm5AwUlWUhM+q\na0D6rGdWIGJ8XmO0dWKf+f34GCBgQs4cJBOyCTlzCtWV3YQsPSG5orRaQsJn1DUIA9bz+qCiRjWN\nipo7zk4TiIAJOXNQTcgm5MwpVFf2aSXktZMzYdxHRkn4x3UBn1HPGkEqpg9IxaipnSYYARNy5uCa\nkE3ImVOoruzTRMhrJepofDnHK0o/qgvsCuohFiGGWzj32LeC8lzEGCBgQs4cJBOyCTlzCtWVfdIJ\n+bEJCUPIURI+rS6AK6oHa2GuMmEpjHr6lxWVO67FgMPjJP02owO4Er1K0vVtZWBH8G1JXG+7K6P8\nyrKakDOhNCGbkDOnUF3ZJ5GQueYSQxlyPhxJ+Ad1gVpxPbsFMiY8IqTsdA8ZY8DGdbRBHRucLAnf\n1O3uTCF7LOzPawrQJuTMkTAhm5Azp1Bd2SeFkB+dSMIsppAwKulT6wJyCPVsFAgYJxVIxTj6mMT0\ncEn/F+5PQ45vkXRhuD+M/+hosMZGi8+HhnF9oqRPBfX9eyVdLel/Jf1Q0jsk/VXSS4JW4dgAXPz8\niPAsd5FxpPKHBFjO6F8Tyn2QpAWS3hfuLbPRK3IAs7mkL0hCI/MtSe+XVJlDFhNy5rQ3IZuQM6dQ\nXdnHmZAxxopRlFAvRkn4lLrAG2I9nA9DRBhtHTbEekZd9AMl4esbBysfD6RM3x8viStdEOmGQXWM\n2p7PzwzP4WMa4sSpBz66jwoBNJB6nx2kZ5y5QL5Rs7BD+IxHrq9J+rKkY9rU1qisvxnq3T38Ziye\nFZytcB3uugQ4LPMh39cFqRryZpOxfYb0fp9xMSFnTlMTsgk5cwrVlX3cCHn1RB1NMIdIwrg7nIS0\nWTDaujwQ8t8moVMd+sA57vcDAd8SvLyh1eAqF5IoZ7mMM1e6sCqPn9GIfFcSvsSxDeA4AvU1ZawS\nvG+9TPdcaYMcDwltgJDjZ+rAQK79HDqtBwl8JUl7S/qHJBxkMybpuTMq7v8J1u54AnuDpB0lITVX\ncgZtQs58C0zIJuTMKVRX9nEgZCSQ6LaS2MKRhJFyJikhxbGYIxV/ZZI61qEvECRSLp7G4j3qzwWV\nNSSbEjLEe3wgaM6Q43f8/XlJzw9lIHUTa/qNBYSMFIvEDEEjbR9ccIZcRPxoYEhIv4dLuj3p0wxJ\nnO8jmcfEBjHtU9ZwmpCz4JNMyCbkzClUV/amEjJSTFRHo6KMV5SQiiYtbRkkNYyIIGNCJU5L4vyW\nM+Fo0Qz3oC5GSv5pkILjd2zGIFK0CJDwF5O/mRdI25A6hHyRpJeHcjnX3T8AGs+j+yHka0KZhLJE\nmkcaTg3BtgvqdjYE+MZGXX5gaFslzlpMyJmvgwnZhJw5herK3iRC5mwukvBzEkkYiXhQS9q6cByk\nHiJFIRW/MKin2XRMW2LjhSoY8kSqhGzxkIZKmuhNF0t6mqTLJOFDHEMtJE/OmLEVYLNGEAnOkNGi\nMFd2kvSh5AwZo6yNJc0NhnEYfCFRo7JGy4KknM6vKCFzdk0dkDBGZ7SHTdPb2ggZKZ/zbNTZqLfJ\nA4nTnjurGFATciaKJmQTcuYUqiv7qAl5TnIm/Nw2Eq7k/K0uIPusBzUtZAyBIBXf1mf+SXocDUFq\nAxCJFR5CpfyB0Fmsp1EVQ8hs3i6QtEjStoG4U0xeJIm75pwnkw/p+sZgjIUl9meDJTR/Q+pp/GoI\nOUrf5Eu/w4IaVfitSWVYZePrHEmcND/8YPn96SoGyoSciaIJ2YScOYXqyj4KQiZyUpSEUfPFK0r8\nrkSiqAu8AepBIoSIUcOiPh03ByUDdLmnLEifWFUTpeo/bTkgVYj4prb/LyfpAZLwusa5LnOJuQXx\npoTJc0jRlN0+vzj/7bYZ4hnaRt6y4wTqeGiog/JWDGEeK5nPJuSe5lD5QyZkE3LmFKore12EzKIa\nSRgVbTTM4ndqIFNXv0dRz1sDGR8RrHZH0YZJrLNxnrWqBtmEnImoCdmEnDmF6so+TEJGKokes3DI\nkJJwKsHU1ddR1YN1MNdrHhak4iLHEqNq2yTUy2aP609nTqitgUzImdPUhGxCzpxCdWUfBiG/KRDx\nVgkJY7DEHdFpS7sGqZhzxQOmrfPubzUImJAzcTQhm5Azp1Bd2YdByPGKEhJx+7lfXf0adT1Y3HJW\njPUuRlsYIDkZgYEQMCEPBNt/M5mQTciZU6iu7MMgZNaPaU77hGswGG1xXcapmQik1tSV3BceVjdN\nyJnImpBNyJlTqK7sJuTqkMYhBFIx92qRirk769RcBPCNjXX285p+9mxCzpxEJmQTcuYUqiu7Cbka\npPHM9PZgtEWQA6dqEMCTFx64uHoExscFnLFHiHeJuebE9/EzxoREW/pdcEHKeGDZjsbiVcGxB/eM\nkZAJakGUJnxVc1/5ncHbFq3fRNKXwv1iXGZ+Jlyzoh2nh8/cJ/91NV0tL8WEnImwCdmEnDmF6spu\nQs5DGgcUSMUs/iz4/8wrzrnbEMAtJSSMty08ZuFhCwI9UtIl4T43gR5wlxk/42wGz13kw/EHvrG5\n942fcJ4lDjIhOu8IzxFNix8M8LjLTJAKNgFEocJJCe4w8ZsNiVMefrIJ/bhz8K2dRn4aygCakDNh\nNSGbkDOnUF3ZTciDIY1EBhFvHYgYD05O1SMAIRO0IfqzRsKFWF8bojThXzoSMoZzfIaQIU3cb/Id\nri1fGn4TjYnNE962CNtIAAtU15AzsY//IokoUbjfZHOFS0xSjHeMG098bEPGuPKsJZmQM2E2IZuQ\nM6dQXdlNyP0jjatGyJjFHKl4Wi3J+0eu/xxpuERyQ8i7BNIkbGIZIRNsIpI4EZ4gadxYxsATMY5y\ndJEZg1LEKFGET3xPW3OvDf6qIeRaVNWxfhNy/xPnPjlMyCbkzClUV3YTcu9I45YRIiZQAUZbBBFw\nGi4C3QiZICSojGMMZKRdyDcN25iW0U7IRVGiINvdQiAJVNm458Qt5mMk/SZEkjIhp+MO4S1dWl0A\nmGGUF4JtD3e63r/0yhdY41z3ENZaX+XzZUTzftigoeLE29aXAxkPuz6Xfw8CZYRMdChUz5wtfz2c\n7UKS/RIyZ81oPLgzj2vTvcIZMuON9oPAE6i2MQqD9JG2L7SE3DY9h0GgVRPPiBamyhfYqnGpurwR\n4TwpC2bl82XCxoNzSKRifiMVE9XHqT4EIMBHhDjI1MqZ8uuDsRVEGs/usXrGGUsk5FQVnZaBhIyx\nFuQL0ULIMWGtTfhHpGBsBFBxc5ZMIuITUak4nkCtvX2dzl6sss6ccFZZFwM4jI3UhBFA5szrO7sJ\nuRwyzioh448HSaxvcJ1h6AgQf3jZQK6DVhajQUG27ZGfUFWT/jVo4VXkMyFnomhCNiFnTqG6spuQ\n7480V2IgYqQp1JZIRE5GYGQImJAzoTchm5Azp1Bd2U3I90UatTSOHyBi7pw6GYGRI2BCzhwCE7IJ\nOXMK1ZXdhHwP0lhOIxUvCWT8p7oGwPUYgW4ImJC7IdTlexOyCTlzCtWV3YR8j6UuXpqQjvHq5GQE\nGoWACTlzOEzIJuTMKVRX9mkmZNwkcpUJaRgV9dV1gT5F9QwaUQnXlVcFT1tTBFfJukn0i6qvp0xb\neSOy/p26cRsRzpOySFQ+X8ZgPLCqRT3NvVWkYu6xOg0HgUEjKuFvGpeZvxpOs8arVEvImeNlCdkS\ncuYUqiv7tBEyDiUgY+4TQ8acGTsND4FBIiq9NxjU4aryFZKItMSRwjXh/vAakj4qCb/UBJrYN3z3\nEUkfClGb8LR1UejWmuEe8yvD3WKIfrGkskhS7XOCsrAxwBMVbeAq1AGSLu4jIhTSPrGxcf3JJuMt\nwcFIT8ibkHuCqfwhE7IJOXMK1ZV9WgiZkHwQMY4fUE9/ry6Ap7weCBnnG/1EVMLt5deCVzQcf+Ci\nFKI9MwR0wEnLEyStGpx8UAeetgjJuLukrSRBzo8P94oXSjo0uNOEjFcPMZAh+6JIUjgESRPuOedK\nujlsFIj0tJYkXKn2EhEKaZ8+EOqRO+2QMpsI2gfBd00m5K4QdX7AhGxCzpxCdWWfBkLGqxJkfGyQ\niu+sC1zX04o53G9EJe6BHx3O9wkg8cHgT5p4xFF6hRAhNLx2QbLYATxK0pXhWcgb8sPj1v4h3CLj\njtcvbAUeK4nITUWRpCBqgk20J9TvSMUQPiSLAWAvEaE4Dyd0JO1l0wC/nirpG2HT0XWamJC7QmRC\nHgQie+oaBLWh5plkQkYSgohZSJGKfzxUJF14EQLtRl04W+kWUYnxwnf0wUG9+/SgckaqRO0MCV4e\nojn9UtIf2lxgxnbg9hICRwpuT5SJlP3wxC1njCSFsV87ISMh48MaSRt1NQkVdC8RofDHjb1CSvSQ\nOeW1S+OFs8iEnPlyWUK2hJw5herKPqmE/PZAxiyaqC+dRoMAhNxvRKWfBW1GJOSHhNjHD5b0tqDm\njZsrpGniGGMTgC/rfwcyfYqkyyS9UNI7wnkxZ84Y9D01RHKCgHshZPKdEaRvJPK7ApRIuOcFdXyn\niFCcVUPkMRwk/PrNICV/qZdhMSH3glKHZ0zIJuTMKVRX9kkjZNSCSMVE5kEq5ozPaXQIxDPkfiIq\nIQUfE875OWYgHRkMuh4XrkLhW/qccBaMP2vOiTEG43lU0b8OampU1pA158C/l/SGIHkTSnGbHggZ\nLkT1HSM//V3SCkFKR/LtJSIUpP8PSRgUnhTsGCB4zsL/1svQmJB7QcmE3DdKVln3DdmwM0wSIX8g\nkPHeYREdNnYuvzsCkZDjk71EVMIC+v3BgIrwh0RaIsoTxLi+pFsl/Sic434yFPzsYDQV64F4MQwj\nIVVD6KS0/k6RpKLKGukbtTiGXGmiXZxv9xoRikhRkHFMbAYwROspmZB7gqn8IUvIxdiYkDMnVvXZ\nJ4GQNwxETKQerjJxNufULAQGiaiEdNsefalTr5BcZwW1NaSdJqRovifkYtVGfb1GhJqZtO8//QyP\nCbkftAqeNSGbkDOnUF3Zx52Q54UrMagOP1sXaK7HCNSJgAk5E20Tsgk5cwrVlX1cCXnTIBX/NUjF\nV9QFmOsxAnUjYELORNyEbELOnEJ1ZR9HQuYs8c3BoObLdQHleozAqBAwIWcib0I2IWdOobqyjxMh\nvzRIxRjZoKJeVBdIrscIjBIBE3Im+iZkE3LmFKor+zgQMsYwXGV6SSDi4+sCx/WMPQJbh+tSZd63\nxqKDJuTMYTIhm5Azp1Bd2ZtOyK8OZHxiION269m6cHI944kAhExwCHyYF7nDHItemZAzh8mEbELO\nnEJ1ZW8qIRM4AKkYr0pcZcIfstN0IYC/auJV4yiECEnvDneCifbEnXPuAX9FElGhIFz8TJNeG/xE\no0nByxebuCIJmbvAUdtCRCms9Lmexd3i04Kfa+4fUz/exkhlkaOGOjIm5Ex4Tcgm5MwpVFf2JhIy\nBluQMc4c9qoLCNfTKASWDQ5B8Mb1KUn4lybkIgSJ5ysiSBFBab4k3KTi/xpShoyJb00ACMgVIiVi\nFE5AUgkZr1lE/Npc0nWS0MAQ0AJ3nfjaniMJ7cy6gZgpn1QWOarqu833GQwTcubcNCGbkDOnUF3Z\nm0TIROAZb9mAAAAgAElEQVSBiFcLUjHh6pymEwF8Q3O1DReYhD3EHSakCTFClpAmbjQhUyTpn4bv\nCPOINiVa3+PeEk9dacCI6Eua8iBvUozIhJMZIkW9M7jmxI81JIw0jdexsshRBLsYWjIhZ0JrQjYh\nZ06hurI3hZCJmgMZIwWx6DkZgah6jkigmo6ETMxkjjOQeiFKNm8ElyDoBOE2LwiZiiI44Q4Tv9aQ\nbHwuLQPf188IPrOJTnVRiNaE/+uyyFFsHIaWTMiZ0JqQTciZU6iu7KMmZCLgQMSoKLnK9Lu6Ou56\nGo0AUu8lISgEAUIIFoJL1G6E/MMQEvHs0DtIl81eKiEjfRNRCmMvVOIkokYhWSMhQ+5FhEy4xrLI\nUbcPE00Tcia6JmQTcuYUqiv7KAmZ82ECxEPEhKdzMgIRAYgXIy2OMYiw9OFwVowUjF/qIgmZPJAv\naupnhU0eQSjw5tZu1IXLVa7RvVjSHeE8GsMx/o/UXETIhF0sixx1yzCHzoScia4J2YScOYXqyj4K\nQiZSDlIx53+Q8aV1ddb1jA0CBJb4giTiD5MOCQRKJKidgsFfvMoU1c38Jn1fEtGfSMQbRu0MSadG\nXVhfE5MYUiYRUYq/schuJ2TOq6MavCxy1FCBNSFnwmtCNiFnTqG6stdNyJwP7xyMtlhwnYxAJwSI\npIQ6mOhIRGviaKOXu+hcm7sp/HQqn+fgu3/2MQzDjBxV2AwTch+jU/SoCdmEnDmF6speFyFvEaTi\nPwSp+Jq6Ouh6jMC4I2BCzhxBE7IJOXMK1ZV92ISMVIN6GucKOPhATehkBIxAHwiYkPsAyxJy72Cx\nUVm6dGnvGbo8OcKNT2V9GHFBwyRkSBgyPj2Q8Y0j7qurNwJjiYAJOXPYRkgUlS+wVRNo1eWFM6DM\nEZva7JXPF0mzg8tDDGsw2jp5atF1x41ABQiYkDNBNCFbZZ05herKPgxCxkDmq0Eqrk4dUhcirscI\nNAwBE3LmgJiQTciZU6iu7JUQ8pVXXqk99thDxx57LO3GPzDuB52MgBGoAAETciaIJmQTcuYUqit7\nNiEffvjhLTLefffdtd9++PloXSNxMgJGoCIETMiZQJqQTciZU6iu7AMT8sUXX9wi4ptuukkHHXSQ\nNtpoI41w3teFl+sxArUj0CLk2mudvApHISlM47iNAudJma3DmC8ej0mZHe5HIxDwC9WIYXAjjIAR\nMAJGYNoRMCFP+wxw/42AETACRqARCJiQGzEMboQRMAJGwAhMOwIm5GmfAe6/ETACRsAINAIBE3Ij\nhsGNMAJGwAgYgWlHwIQ87TPA/TcCRsAIGIFGIGBCbsQwuBFGwAgYASMw7QiYkKd9Brj/RsAIGAEj\n0AgETMiNGAY3wggYASNgBKYdARPytM8A998IGAEjYAQagYAJuRHD4EYYASNgBIzAtCNgQp72GeD+\nGwEjYASMQCMQMCE3YhjcCCNgBIyAEZh2BEzI0z4D3H8jYASMgBFoBAIm5EYMgxthBIyAETAC046A\nCXnaZ4D7bwSMgBEwAo1AwITciGFwI4yAETACRmDaETAhT/sMcP+NgBEwAkagEQiYkBsxDG6EETAC\nRsAITDsCJuRpnwHuvxEwAkbACDQCARNyI4bBjTACRsAIGIFpR8CEPO0zwP03AkbACBiBRiBgQm7E\nMLgRRsAIGAEjMO0ImJCnfQa4/5OGwAqS7pZ056R1zP0xApOOgAl50kfY/ZsmBF4h6TuSdpd0SI8d\n307StpJ2kPQpSb+R9KUe81bx2NaS3iqJtrORGEZaQ9Lyki4fRuEu0whUhYAJuSokXY4RGD0C35D0\nB0kH9NGUV0l6j6TNJX1O0gWSPt1H/txHIeTdJG02REJ+o6TV+8Qlt1/ObwT6RsCE3DdkzjAhCEBA\nX5D0WEnfkvR+SXdI+qqknRNpCunt9vD/TYL0SJ73SfqMpAdIOlDS6eHzayQtkfQJSa+U9CtJ75b0\ny4Db/0g6WtKtkj4v6XGS5oXPReXfVYD3NpKOD/+nHZ8NhHqapBslvU7SKW35ivr7d0kQ8i6Snh/a\n89tQXsz+pND+d4V/fFzSuUESR/KE/N8haV1JxwU8j5K0p6TFodzHS1pV0tOCJPxqSWwe6MNDQt9T\nCXnuAOMATjMkfVDSfpKulfT6MKZnhLa/VtKxkorwQ8UPlldIepukUyX9UNJhkrYIf9PPv07I/Hc3\nGojAuBDyAyVdImkDSdcPgCP5z5e0fZAABiii0iwnh4XsZ5WW2rmwNwUpYf8a62xqVatJgowgrvPC\nQvzwsID/SNIxko6UFOcNEuR/JP0iLOYs2t+W9EVJ/xvm1hMDkaMyPknSOUEFDNF9VBLfPyzM47dL\nukjSTwNxrCNp7ZLy26Xdl0v6XiDg6ySdGAgeNTMkDMnz/VUJ+GX95X1AZd2JkJEsKesRgdyo85vh\nXaItbw4S7qWByMDv/0li47FeIGCIGvI9VNIjJX1d0laSlpP03bAhYiyiynpZST/ucxzA6f8kvSz8\nPCN8frqkHUP7F0hig1GEH21mYwMWjBebNDQFtJvnIesXhzWoaJPU1Lnudo0RAuNCyEghz5L08yCt\n9AsxCysLINLLr/vNPITnN5R0pSQWt7rSYyStKOniuipscD1IZRDGT8LZ4hvCoo0UifQ0Pyy8bAAh\nPCQ8zlf/GaRZuhYlTqQ+iBWp+uwgMW8a5tnNQSqkDEgX9SzPQ/AkyAEC47uPlZQPqSFNk3hfIUPK\ng9RiGd8PhA8ZI5kj5aapW387EXIkx30CISPp/yVIxAeFDQ3z6gXhHJp6qY8N9PPCc0isTw6GZkjG\nP5D05dBAzq6RSNm4pGfISO79jAPjSdsYP9TuYEW9X5G0kaQ5gXA74ffJ0DfIPW7GkJApAxJeM6wj\nDZ7abto4I1AnIa/VQY2XYshLzEuLiovFhZeKlwEVGC8MO18WMtRTqArZfSNxoCbkfzzHTpi8t0g6\nKywaKSH3ohpkgVk/LC604QOSfhfUnKjUXhIWYtpepAJ7qqT3StopLKhsKthxI3mxa4cMWLRmSvqI\npA8FtRjnabQ1TbGvqVr0jwX5UNOVqVz/JmmVIJEw7kgNSFXkeUuQrlgE6RuLEL9Z9HcNJA4eLGyo\nLJcmjSsb15XCOCBZUAfq2yKNQK/zosr3LFVtxnKRalGbIsUiPSMxgxH9QKWM9BWJNOahXxANhJxu\n9lCNMofT5yBdcGXcmQMkpGLUv3zHHCsqn++iVuhBkn6fkE57GUdIOjioydvnT1TltvcXg65OhMzz\nzAGst1Hp855xJst7hkSJZIt0mfYrkhlaGTaCsXzKaNdUpSrzlJCjVN/rOCBxM4bMJ9T2aYL0KQd8\nOuHHBiNV2TPneedIjDXrDJuhdP5XOS9d1pQjUBchs8tGui1S46UvD7tYpEZI+R/hvAfVERajUWXN\nThoShnSRDJAKOAuE7KLKCjUcLyiLHOd3qBYjIdOWItVju2qQMqgHi1VeYs7neCl5uXnpkRhQQyIp\nFanAMJDh+aeEHTuLL4sR0hbtpW1I60hIbByohzZDzjxzTTI34wIX1aInhAW/PR+LNyRapHJlgUPt\nyKKDNIf0saUk/k/7nxsWXRZZpDI0EmxmUElC3PSH9kYyoXmdxpVFGE3AHqGsuMlKtQK9zouqX1PG\nlo0Fcwn187PD5g7DIhZbpCjOfpGcIRw2P7Qf9TakyubqoYFssEpON3vMDebqc8I8YxN0YSBdFnTy\nxmMDxguMI1kXlZ9uYsjLZzZtvEskxgqJk7nBvCoi5E797YWQ2QDzDvCu8jcbl9gX6t87bJpjv9g4\nIEXzHtOuSMhYOiPFsvFAm0BiM8vndgk5agN6HQcsqNlIMZ95d8jP+T/vF+PLeB3eBT82/JGQwfrR\n4cwYMn9hmCPpBqnqeenyphyBugiZyV2mxkvPhNlN82K9KOy4IWheYhZx1FBIx7y4kBnqRCRndtgs\nnBAl51gshCyI8YXmxU8JGYm1SPWYqgaZFixiaT0syBAXizXthNQxZOElL1IhUh7niyxMkP07JSGZ\nY2hCGSycSBt/lvSooMIGpzMDWbDbjykSclSLQu5l+Xi2SNXHwsfCAuGyMUB655yOhAT44KBVAGtw\n53yRDQ4ETL0syEi51BtTp3EFO6RLFms2V0iSSOnpePc6L6p+TZkr9Jk20UbOXlnEwQjjnigZQcRR\n1cr4sbl4pqQbgrQF2ULYEG6UkFmwORbA8AuC+HAgL8pB48JmCoK4OhApiz55yF9UPpinEhntRjvD\neSYSK22HtJBYMVgqIuRO/aV8CJHNCJvbIitrCBYiZW7RVjQlbAzYlDK32cwxXzcOfUebhBEYz0Le\nsXwkYNpPe9jwsSGDMDGUKrr21M84sLFgc4OkztxjveFvCJo1g7WDjQyaqDL82NDE/tNn7AYoh80P\nGy00ISbkqt9Gl3cvAnURMhWWqfHSBZr2sJvGepWEgQwGFixwkZBfGogl3rOMKi8WAKwpIat/h/xI\ndRBJSsioIbupBsnOQsuiGnf9EDIEy+IXVY1IgBB+PLciX6qGZBGmDfxm4WEBY9GIC2ck5PYpyaaB\nxSEl5FQKi4RclI8FukjlGtV2EDKbCTY0aUITAQmjCeAogHGg7ZAyZIFxC4sRJJCmsnGdFdTjsR5U\n12xesFjuJf8gxnu9vtpYBzMOjC+JDQw/bFLQtHAGiqTEeLF5IqHm5jvGhoTGBw3DTW1qWJ5j7Nh4\nkZinEAAWx5AexwNRy0AZSG5oUSCrovLJlybaRpsoM7aDv5lL6RxN83TqL5sl2socZnyY3+nci+Uw\nD0hgxIaN+ciZOH3gvWXjheqahGYIMuUKFhvbWD59pP1ottiUkNC+QPTMz/Z7yP2MAzhxxst7Fsc1\nWlWzYWCjixYK7MvwY76n/UfCTrFgo4EtgVXWbZPSH6tBoC5C7qTGSxdezlM5u0R64DoI6lJ20iw4\nqAbZ5ZYRMi8fkjHS678CPBBfu4TMLrmbapDskcAi8afSRyRdJB4IsEyFCL4s7JA6u3bUd6j9Yln8\nDTFA2GwiWJBYnC9rM/hqN0qLqs6ifItKVK7t52gskkjKtBGsWWTY+HDux+LLQo0BEloByBXL8H3b\npl2ncSUPUidtZ9xYhDG8YcGLqdd5Uc1sv28pWPhChuB+WzB4Y7PRzcMVeUhxjpW1jefYfCBlcXaK\nNIiFMaTBuSR4s6HjChT2BpGMei0fGwvGDm1PL2nQ/vZSdnwGjQHvMG3qhiPtZzPDzyCpDCf6uXIo\nl3GNqd2DWa/4oUGhTxjWoRlxMgJDQ6AuQu6kxkvPSiE41KgsVJAyVxhQiaEmhNg6ETJqbgxkuDtI\nHj4jYbefIaNu60U12Ash0y+k7TIVGAOH5AWRRfUe/4uEjIp9YZA6+B8EyDkt6m7UpTG1EzILX6d8\nRaq+2B+kfKQIDNT2CosX0gNny0grcayQ1pCGMAbCAhi1HyrANJWNK5sKiAYShtxZ0NgEYU2bEnKv\n82JoL0DNBXPEwbhi/8DYY72LJiZK4TU3x9UZASPQJATqIuRuarwoHXCmiNFMVAuCFYYhLOZRZc3Z\nGcZJUXJNVWL8H4kVNSmqan5zVxKJJFp3QmS9qAZZKNN6UnVgPEOGUDjHLlOB0X6kH6R7NhvRejot\nC9UdG4mYOA//WtskKbpH3Slfkaov7Q/napAyEjsJPFDHIdVQFyptJHrOO5FqOR9kk4D0naZO4wqR\npwZJqMSxzo1XeCin13nRpHcmty1oV3A0wf1e5mqdd9Fz2+78RsAIDBGBugg5dqFIjZcu0OlzEANq\nwaLviyCBzJFUIV7OUOkbpIMRRyqVpXXwdzfVY6/w96oCKyoPdRoqXtSnvfaXcgbNF9tAm1Hr5ari\nysYVwqVfEH37WWiKQ6/zotex8HNGwAgYgbFDoG5CHiZA0aoawxnU1BipIN2hBsbgxckIGAEjYASM\nQGMRmCRCBuToMQhVNdIm3oCixXVjB8ENmxgEOCPGpWa8kpfTsVxXp2kUp2FFUcrpn/MaASPQhsCk\nEbIH2AiMEgHO7jlrx+YhN+W6Ok2jONn3cu5oOL8RqAEBE3INIFdUBY4KBr0iUlETXEwXBLjvy51t\nPD5hjFjm4jUtpszFKHdnsaYn6hBGd9wPj1fncOZBUAZSWfQovL5FD1nYY3Rzz0pZRW5r8cfdyb0r\n9WOkiGMZLPjZSHDfF4cabFC4PUDCviN+LnPdCn4YF3KjAgt07jNzBBX9r6d33vE7wL1hNhu9uML1\n5DUCjUfAhNz4IWotYjEAAV6dhuUwA/Igqs+wym8+0vktRGWNxT3X9iDNMhevaU1Yoxe5GMVVI1b+\nkDGGijjjIGwhdUDMWPjP7hA9iqtvEDK/IfNu7lnL3NZyhbDMvStEj2c9bkXQRm4TQKK0DX8B0VUr\n/eXaXTfXrdx9xxMc1udcF8Q9J2VBytyW4Bojrmq5w81VPTYtGEH24go3f3RdghEYMgIm5CEDXEHx\nOM9goeOKUhpSr4Ki71MEjj9Y6Iss0quua1LL40oTZ8hcdcOosMjFa7uLSO5pF7kYjQ5woqtTXHfi\nwhFXslzdo3zqKYseFQmZfDzfzT1rmdtaSLfMTSubRdoJ2ZK4f44fgEjIuGqN1xNTT3FlrlvxosV3\nOKrBhWt0Vxld1HJ9MXrOwrENm0eIuhdXuJM659yvCUJgnAi5U/SgMpUV127wnYtbv+iOE0f87PhZ\n6AhKj7csnks/l5WHOg1SRP2G0Q2ONXCogdqMu73Ee+XsjkUJV5EshL1Ec2JKsXixOJMfUsTFIp7H\nkAqoj3u8uPLD8xOJiFFl0aRQ+RVFcyJfUTspH3VjdHnIAozzFNyWpgHvi6JOsSi3R+dCzTmNKSVk\n7n2nhFQW1QjPXaif212M8nz0PR7v4ENAqZMYPMSVRY9qJ+T28Wh3z1rmtpb5lvovj+WQPzqLKYpe\n1e5RL96D7+S6lXeVeR49l3VyURvbURaFyz6np/ENHPM+jxMhl6n2WNDKVFZ4mGJhw+KUxQPyjJ67\nYvSouMjFz50CxccA5iwu3N3FExXESHAB2oCDDyQCvHehcsS1JeTcTV0YnXGQnyhEtBnvXk8ITiT4\nG4ch1BENdHAxWhZNCnVpUTQnAgQUtRN8sEjnh0hRYE0b8JQGvvQT/HBigQQTo07hO5xNR3t0ruj/\ne8xfj76bPyghF7kYJeJXN0JmTMqiR0VCjj7eu7lnLXNbS2ARSL8oP99h1xCl4NSPOw58Ul/wbPCw\n9o4hEItct3JfPWoYeLbdRS0+BaK3OJyrcIeeNvTiCrfvwXQGI1A3AuNEyGWqvbLA7jFgOTv1PwVH\nIZzpQSIEm2iXOuLnToHikbJj9CbGCvUZJIcqkTOtGIsVYxwIMdbTTV3I+S2kxyIMeTMuGPMgeeKL\nGwkKdWDq1J5nkEzao0nhnhL3m0XRnHBnWdRONAj0hRjSSEOUyVlddN+JT3E2GEjtlB2jTpWpOa+s\neyI3pL5+CTmOc5GL0V4IGacrZdGjIGQ2hmzOGEfmQyf3rGVua9lsleXnTJj6ifLEnGE+4rI2qqxx\nEcp3bB4p4x3hmTLXrURTKiJkyuM8mflHeTiSwd87Z8uos3txhduQKeJmGIFyBMaJkMtUe4SbK4re\nFAOWl0V/KiPkToHicesZIz5FQkY9jOMRrGvbzwc7RWVKo8hwvtaeHwtSJG9U7OkilY4mC1J7NCkk\n4LJoTrjAxDCoKNRde8CLFDckaBZ0VNu4JI2hBsvUnGAyjQnM2IQxLmBU5uI1vRcMwRAxKaboYhQi\nJT9amfa5Gt3A8n82YEXRo9BuxChL+ILv5p61zG0tG9gyN62MP6RLiMmYolEXn9EOoUHi2IMzYd4d\n+lPmupV3POKXSsjgivQMNvSLhLaLjSTBJHpxhTuN89F9HjMExo2Qi1R7nOsWqayw/kQyTi2TkThZ\nmKLkSuxkFooYrKFboPj2eLOQKuRDPSw03EFl4eBclTNmpFsWpW7qQqQZzp+jQ4nodQwpuV1qSKdY\n9FmdRpNiIYM0i1SC+E8uaif9QHpmc8MZOf2JhjXUFyVkzrAJqRcJuUzNiXTtu6+9Lwa9uhhtLxGi\n6hY9Kubp1c0q0meR29pO+ZmHzDskYTYX8fw2Rl7COU9R9KdBXLfyrhKVK9pSxP71GiWr91Hxk0ag\nZgTGhZA7qfawMi1SWXEGCplhmckdzCglcIZMVCNIi93918POHZLpFiieKy1pAPgY0Byih9ix+OTK\nBsZiqNggfKTcbupCzgq58kF+pFgkLCQTNhMs1mUSMtOlPZpU9OFdFM0JS+qidrKR+GoItYhaPw30\njpSGmhpJDCzTuMxlas40nGDNU3qqqmta9Cjag3ZmmNfzpmqA3dnpQmBcCJlRKVPtca5aprJigeDM\nlJ14TNG6FMJGBUaCaJBiIWQshMvKaw8AnwY0x8iE+54k1HYYtSA99xLNiTwEu4eMY+JaCxbWqRq0\nyAViUTSpTtGcytrJJgKVIhsXVPCQcsSNjQs/XLlJ1aWd1JzT9SaNrrdNih6FpMx854wYKdbJCBiB\nPhAYJ0KmW51Ue90ClmNNjVoYa2oIl8RVKgLHF0U7GkQFhgoXdR91pQZYvaoLyR+jPrWr5PoY1nsf\nLVMJlrUTfGNQd9SNOItgYe0WEatMzTlIm53HCBgBIzCVCIwbIecOEipbJD8MQpyMQBkCnFPybpSd\nfRo5I2AEjEDlCEwbIaP2Rh2L0ZKTEWhHgGtc30ucdPA9qnyu3HFc0EsEpW5HDGWoUwce2bBviGn7\ncG93oxLnHE0ZQaz2OV5JEwaJHA9dPWAjwZE7x9x531YSBom599vRhuHs5sDEKIyrftigpAnjRcbB\nUbIGHDxnGwyBaSPkwVByrmlAgMAG3J9Ge0JwCBxeYFeApTyGgFin9xJBCTuEw4OzlPTYohuG0UAw\nHqdwPo/9A2ey3CSgTU1NbFQgS64aQmKEQd01BH3A8G+Q8+TUycjKocwYZGIQHPAFwMZhn8QKnHLA\nnbv/0bkJdifcC+czRN3PGA7SLucxAvciYEL2ZDAC9yCAtTpBHtrvaG8d/DXjDAVJLUZQwsCtyL1o\nJBIWeu7Jcu0Nf9JXBDU41uqfD6Bz5x1pjXP7eIUO4idFZzE8g4vWSGx4cqPMaEDIPV8kaSIsQToQ\nCXeYIXbyLg5uXKmfupFciaQEMeGRjTvC9I3bBiQMAmkTRoW4smSjQpu4RsgVq6Lyo1tQnIhEAkPb\nwE0GLK4xlCzCivqKXMZyMyElZK4D5kS+op54Nz/ek45BVNpx51mc8GCQiXMWbE6cjEAtCJiQa4HZ\nlTQcAVSZPw7+zo8PbUVCxbCN+7PxTnXqj5ooSEXuRZGy8XaGExl+kBRxcQmhcg0OIkXqxZAQN6VY\ntuOytJ0YIEPaAAHjBYsrcZAKJIolPISJNIqlP3VCmrgxxXCRa3KQMWpeSJL/sZFAXcvVPRzREMow\n+ptGEqd9eL+iDq65kYf201ZIn+/KymcTw9U+LPhJtJt+vzHczf9/HVyxRleuqctYiBCDS3wGpJGj\nBo18Fck3BqtI/VwXETKGmdwmwJeAg600/OWdpOaZkCdpNN2XQREg1jTSHCSH9yveC66gRa9QUaqK\n/qEhx0tL3IvidxwplEUfVS1lQ6iUtSi4feSsmPjBEAzkB5mmxBDz4K6U9vAdlu57hnJx14rjFiRr\nJDiCoSBFojaOzmm4P875Lf6kkYZTl6/YUnDvne8fFly/cg8fNT2Gj5Azaty07Ui8ZeXjC4D76+0J\nN5r4AihzxYokzr39Ipex+E1PCTn69YYo+418FQk5lbo7SciRkNlQMD5ORqAWBEzItcDsShqOQDyv\n5Zw2Ssh4nUJyhuC4fw7BtgdsKHIvikMYVNI4d0GCTRd3PM0hESNZxxTPp1NCJs4vUmua8KAG6SJZ\nc66NBE0sYDys0Uak1CJSRLqFwFDBRnU4hIx0DlnHxHMEM0lduKZth5DLyo9kjYe2uKZgoY46HNy4\n2VCEFS4/wSI9JkhdxhYR8iCRr/ol5LhBQ4tgCbnhL+8kNc+EPEmj6b7kIEBQESx6OX9N3X6i1oX0\nUkLGLSkGRkXuRTmLJuACZ8CRkKN3M6yOIX/OU5F48SCH1T+SciRk1MSolVF7c9aL2hwjKdTQRG7C\ntzmqVEgbCRwJFJU3amiCN7Bp4HybfDiNiW5lIyFHkmXzQT2c70LwhAvlHjqbiejCNRITJA1Zl5XP\nOXs8W2+3TOZMuswV61GSPtXBZWw/hNwp8lU3QkZtHv2BM4fAkDFEcmcT5WQEakHAhFwLzK5kDBCI\nbig5y+QqDOpgVMGon1OVNYFMOJdFguVaDme1qXtRzlkhUwzAuArEFZpolAXxoipGukUtjJqcmMZI\nzdHKGuL9eyDANA4x6l0kUYgXkkNiRgKNpAH5IolyTk25hOvEzSt5qBfJkt+RZCO5o6ZHK7BpUMNT\nN/+j33hnY/OA9Mwmpax8vMyVETJaBgi/CCukz04uY/sh5E6Rr7oRMmPNBoXNEhspPPih5sdOwMkI\n1IaACbk2qF3RGCAAAUOI0WUoRAyxcRUKFTRSWIygBBEWuRdFDZwSKaRJXs6No49yoKDsr4UrTYQK\nxQIagkJihuS5cpUGZIAUOd9FUucZpOLbg8/0KJWmkZ/SelMXr9TNNap4zYdNA+fFSIWUjZYgRoai\nzVieowngHLisfK497VgSRYz6otq63RUrJN/JZSztwBCLZ3IiX9E/EpsTpOHUqIv732m0OHBDWwC+\nDpAyBi/tJDXRhDxJo+m+VIEAqt7ZYTFGrdzpHmon96Ix0hGGUtEdKe3DbSkq6Fg2EivPVJWwTsZV\nK2fNRRGWYj1cI4LIo9tY2kE+Nh0YtNFm7v9iwZ0Gi+i1/Pb+dMKqCpex/US+qgprl2MEKkXAhFwp\nnC7MCIw1AtGq+pxg9IVmACcZSIxNlxabFvlqrCeCGz8aBEzIo8HdtRqBpiKAdTnXlTDiIoQnKu1x\ncQGaFP0AAADPSURBVCHZpMhXTR1ft6vBCJiQGzw4bpoRMAJGwAhMDwIm5OkZa/fUCBgBI2AEGoyA\nCbnBg+OmGQEjYASMwPQgYEKenrF2T42AETACRqDBCJiQGzw4bpoRMAJGwAhMDwIm5OkZa/fUCBgB\nI2AEGoyACbnBg+OmGQEjYASMwPQgYEKenrF2T42AETACRqDBCJiQGzw4bpoRMAJGwAhMDwIm5OkZ\na/fUCBgBI2AEGoyACbnBg+OmGQEjYASMwPQgYEKenrF2T42AETACRqDBCPx/85l3mGRqgDYAAAAA\nSUVORK5CYII=\n", "text/plain": [ "<IPython.core.display.Image object>" ] }, "execution_count": 4, "metadata": {}, "output_type": "execute_result" } ], "source": [ " Image('diagrams/fasttext.png')" ] }, { "cell_type": "code", "execution_count": 82, "metadata": { "collapsed": true }, "outputs": [], "source": [ "from keras.models import Sequential\n", "from keras.layers.embeddings import Embedding\n", "from keras.layers.pooling import GlobalAveragePooling1D\n", "from keras.layers import Dense" ] }, { "cell_type": "code", "execution_count": 83, "metadata": {}, "outputs": [], "source": [ "ft_model = Sequential()\n", "\n", "ft_model.add(Embedding(\n", " input_dim = MAX_FEATURES,\n", " output_dim = EMBEDDING_DIMS,\n", " input_length= MAXLEN))\n", "\n", "ft_model.add(GlobalAveragePooling1D())\n", "\n", "ft_model.add(Dense(1, activation='sigmoid'))" ] }, { "cell_type": "code", "execution_count": 84, "metadata": { "collapsed": true }, "outputs": [], "source": [ "ft_model.compile(loss='binary_crossentropy', optimizer='adam', metrics=['accuracy'])" ] }, { "cell_type": "code", "execution_count": 302, "metadata": {}, "outputs": [ { "data": { "text/plain": [ "[<keras.layers.embeddings.Embedding at 0x117f12650>,\n", " <keras.layers.pooling.GlobalAveragePooling1D at 0x117bc51d0>,\n", " <keras.layers.core.Dense at 0x1190c3dd0>]" ] }, "execution_count": 302, "metadata": {}, "output_type": "execute_result" } ], "source": [ "ft_model.layers" ] }, { "cell_type": "code", "execution_count": 306, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "<keras.layers.embeddings.Embedding object at 0x117f12650>\n", "(None, 400)\n", "(None, 400, 50)\n" ] } ], "source": [ "print_layer(ft_model, 0)" ] }, { "cell_type": "code", "execution_count": 307, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "<keras.layers.pooling.GlobalAveragePooling1D object at 0x117bc51d0>\n", "(None, 400, 50)\n", "(None, 50)\n" ] } ], "source": [ "print_layer(ft_model, 1)" ] }, { "cell_type": "code", "execution_count": 308, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "<keras.layers.core.Dense object at 0x1190c3dd0>\n", "(None, 50)\n", "(None, 1)\n" ] } ], "source": [ "print_layer(ft_model, 2)" ] }, { "cell_type": "code", "execution_count": 85, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "Train on 25000 samples, validate on 25000 samples\n", "Epoch 1/3\n", "25000/25000 [==============================] - 187s - loss: 0.6599 - acc: 0.7460 - val_loss: 0.6032 - val_acc: 0.8109\n", "Epoch 2/3\n", "25000/25000 [==============================] - 183s - loss: 0.4989 - acc: 0.8840 - val_loss: 0.4610 - val_acc: 0.8578\n", "Epoch 3/3\n", "25000/25000 [==============================] - 184s - loss: 0.3338 - acc: 0.9333 - val_loss: 0.3725 - val_acc: 0.8797\n" ] }, { "data": { "text/plain": [ "<keras.callbacks.History at 0x1167c5b10>" ] }, "execution_count": 85, "metadata": {}, "output_type": "execute_result" } ], "source": [ "ft_model.fit(x_train, y_train, batch_size=100, epochs=3, validation_data=(x_test, y_test))" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "### fastText classifier vs. convolutional neural network (CNN) vs. long short-term memory (LSTM) classifier: Fight!" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "A CNN takes the dot product of various \"filters\" (some new vector) with each word window down the sentence. For each convolutional layer in your model, you can choose the size of the filter (for example, 3 word vectors long) and the number of filters in the layer (for example, ten 3-word filters, or five 3-word filters). \n", "\n", "Add a bias to each dot product of the filter and word window, and run it through an activation function. This produces a number.\n", "\n", "Running a single filter down a sentence produces a series of numbers. Generally the maximum value is taken to represent the alignment of the sentence with that particular filter. All of this is just another way of extracting features from a sentence. In fastText, we extracted features in a human-readable way (n-grams) and tacked them onto the input data. With a CNN we take a different approach, letting the algorithm figure out what makes good features for the dataset." ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "insert filter operating on sentence image here" ] }, { "cell_type": "code", "execution_count": 7, "metadata": {}, "outputs": [ { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAyoAAAFSCAYAAAAdJytCAAAKwGlDQ1BJQ0MgUHJvZmlsZQAASImV\nlwdUk1kWx9/3pTdaQihSQu9IEQggJfQACtLBRkhCCCWEFERsiAyO4FgQEcEyoiMgCo5KkbEgFmyD\nYO8TZFBQx8GCDZX5gCXs7J7dPXvPuef9cvO++9378u45/wBAHuSIxZmwGgBZIpkkKtiPkZCYxMD1\nAQxQBSrAGBhzuFIxKzIyHCA2tf7d3t8G0Ph6w248179//19NnceXcgGAIhFO4Um5WQgfQ7ybK5bI\nAEAVIXGTJTLxONchTJMgBSJ8YpwFk9wzzimT/PvEnpgof4Q/AoAnczgSAQBkNBJn5HIFSB6yKcIO\nIp5QhHAMwt7cNA4P4XKEbbOysse5A2HLlH/KI/hbzhRlTg5HoOTJXiYMHyCUijM5S//P4/jflpUp\nn3qHMeLkNElIFLKaI2dWl5EdpmRRytyIKRbyJvZPcJo8JHaKuVL/pCnmcQLCplieEcuaYo5k+lmh\njB0zxZLsKGV+UebccGV+PlvJfGlg9BSnCoPYU5yfFhM/xbnCuLlTLM2IDpve46+MS+RRyppTJUHK\nHrOk07VxOdPvkqXFhEzXkKCsh8cPCFTGRbHK/WKZnzKnODNyuv7MYGVcmhutfFaGXLApTueERk7n\niVSeD4gBaUAORIAH+EACUkA2yAQywAABQAikQIx84gDkesj4ebLxJvyzxUslQkGajMFCpojPYIu4\n9rYMJwdHNwDGZ3LyJ39Ln5g1iH55OpbTAYB7CRIUTMc4JgAcfwoA9f10zOQNcl02AXCyhyuX5E7G\nxq8tMutEZNppQAcYABNgCeyAE3AFnsAXBIJQEIF0kggWAS7STxbSyRKwHKwGxaAUbAJbQRXYDfaC\nOnAIHAGt4AQ4Ay6AK6AH3AIPgAIMgBdgGLwHoxAE4SAKRIV0IEPIDLKBnCAm5A0FQuFQFJQIJUMC\nSATJoeXQGqgUKoOqoD1QPfQzdBw6A12CeqF7UB80BL2BPsMomAzTYH3YHJ4JM2EWHAbHwAthAZwD\n58NF8Aa4Eq6BD8It8Bn4CnwLVsAv4BEUQJFQdJQRyg7FRPmjIlBJqFSUBLUSVYKqQNWgGlHtqC7U\nDZQC9RL1CY1FU9EMtB3aEx2CjkVz0Tnolej16Cp0HboFfQ59A92HHkZ/w1AwehgbjAeGjUnACDBL\nMMWYCsx+TDPmPOYWZgDzHovF0rEWWDdsCDYRm45dhl2P3YltwnZge7H92BEcDqeDs8F54SJwHJwM\nV4zbjjuIO427jhvAfcST8IZ4J3wQPgkvwhfiK/AH8Kfw1/HP8KMENYIZwYMQQeARlhI2EvYR2gnX\nCAOEUaI60YLoRYwhphNXEyuJjcTzxIfEtyQSyZjkTppHEpIKSJWkw6SLpD7SJ7IG2ZrsT15AlpM3\nkGvJHeR75LcUCsWc4ktJosgoGyj1lLOUx5SPKlQVexW2Ck9llUq1SovKdZVXqgRVM1WW6iLVfNUK\n1aOq11RfqhHUzNX81ThqK9Wq1Y6r3VEbUaeqO6pHqGepr1c/oH5JfVADp2GuEajB0yjS2KtxVqOf\niqKaUP2pXOoa6j7qeeoADUuzoLFp6bRS2iFaN21YU0NzlmacZp5mteZJTQUdRTens+mZ9I30I/Tb\n9M9a+losLb7WOq1GretaH7RnaPtq87VLtJu0b2l/1mHoBOpk6GzWadV5pIvWtdadp7tEd5fued2X\nM2gzPGdwZ5TMODLjvh6sZ60XpbdMb6/eVb0RfQP9YH2x/nb9s/ovDegGvgbpBuUGpwyGDKmG3oZC\nw3LD04bPGZoMFiOTUck4xxg20jMKMZIb7THqNho1tjCONS40bjJ+ZEI0YZqkmpSbdJoMmxqazjFd\nbtpget+MYMY0SzPbZtZl9sHcwjzefK15q/mghbYF2yLfosHioSXF0scyx7LG8qYV1opplWG106rH\nGrZ2sU6zrra+ZgPbuNoIbXba9NpibN1tRbY1tnfsyHYsu1y7Brs+e7p9uH2hfav9q5mmM5Nmbp7Z\nNfObg4tDpsM+hweOGo6hjoWO7Y5vnKyduE7VTjedKc5Bzquc25xfz7KZxZ+1a9ZdF6rLHJe1Lp0u\nX13dXCWuja5DbqZuyW473O4wacxI5nrmRXeMu5/7KvcT7p88XD1kHkc8/vS088zwPOA5ONtiNn/2\nvtn9XsZeHK89Xgpvhney94/eCh8jH45Pjc8TXxNfnu9+32csK1Y66yDrlZ+Dn8Sv2e+Dv4f/Cv+O\nAFRAcEBJQHegRmBsYFXg4yDjIEFQQ9BwsEvwsuCOEExIWMjmkDtsfTaXXc8eDnULXRF6LowcFh1W\nFfYk3DpcEt4+B54TOmfLnIdzzeaK5rZGgAh2xJaIR5EWkTmRv8zDzoucVz3vaZRj1PKormhq9OLo\nA9HvY/xiNsY8iLWMlcd2xqnGLYirj/sQHxBfFq9ImJmwIuFKom6iMLEtCZcUl7Q/aWR+4Pyt8wcW\nuCwoXnB7ocXCvIWXFukuylx0crHqYs7io8mY5PjkA8lfOBGcGs5ICjtlR8ow15+7jfuC58sr5w3x\nvfhl/GepXqllqYMCL8EWwVCaT1pF2kuhv7BK+Do9JH13+oeMiIzajLHM+MymLHxWctZxkYYoQ3Qu\n2yA7L7tXbCMuFityPHK25gxLwiT7pZB0obRNRkPEz1W5pfw7eV+ud2517sclcUuO5qnnifKuLrVe\num7ps/yg/J+WoZdxl3UuN1q+ennfCtaKPSuhlSkrO1eZrCpaNVAQXFC3mrg6Y/WvhQ6FZYXv1sSv\naS/SLyoo6v8u+LuGYpViSfGdtZ5rd3+P/l74ffc653Xb130r4ZVcLnUorSj9sp67/vIPjj9U/jC2\nIXVD90bXjbs2YTeJNt3e7LO5rky9LL+sf8ucLS3ljPKS8ndbF2+9VDGrYvc24jb5NkVleGXbdtPt\nm7Z/qUqrulXtV920Q2/Huh0fdvJ2Xt/lu6txt/7u0t2ffxT+eHdP8J6WGvOair3Yvbl7n+6L29f1\nE/On+v26+0v3f60V1SrqourO1bvV1x/QO7CxAW6QNwwdXHCw51DAobZGu8Y9TfSm0sPgsPzw85+T\nf759JOxI51Hm0cZjZsd2NFObS1qglqUtw61prYq2xLbe46HHO9s925t/sf+l9oTRieqTmic3niKe\nKjo1djr/9EiHuOPlGcGZ/s7FnQ/OJpy9eW7eue7zYecvXgi6cLaL1XX6otfFE5c8Lh2/zLzcesX1\nSstVl6vNv7r82tzt2t1yze1aW497T3vv7N5T132un7kRcOPCTfbNK7fm3uq9HXv77p0FdxR3eXcH\n72Xee30/9/7og4KHmIclj9QeVTzWe1zzm9VvTQpXxcm+gL6rT6KfPOjn9r/4Xfr7l4Gip5SnFc8M\nn9UPOg2eGAoa6nk+//nAC/GL0ZfFf6j/seOV5atjf/r+eXU4YXjgteT12Jv1b3Xe1r6b9a5zJHLk\n8fus96MfSj7qfKz7xPzU9Tn+87PRJV9wXyq/Wn1t/xb27eFY1tiYmCPhTEgBFOJwaioAb2oBoCQi\n2gHR1USVSc08YdCkzp8g8J94UldPmCsAtb4AxBYAEI5olF2ImxVMautxyRTjC2BnZ6X/w6Spzk6T\nuciI8sR8HBt7qw8Arh2Ar5KxsdGdY2Nf9yHF3gOgI2dSq48bFvkHU2ahZaCxvZuaB/7V/gKACAtb\nVapSmQAAAgRpVFh0WE1MOmNvbS5hZG9iZS54bXAAAAAAADx4OnhtcG1ldGEgeG1sbnM6eD0iYWRv\nYmU6bnM6bWV0YS8iIHg6eG1wdGs9IlhNUCBDb3JlIDUuNC4wIj4KICAgPHJkZjpSREYgeG1sbnM6\ncmRmPSJodHRwOi8vd3d3LnczLm9yZy8xOTk5LzAyLzIyLXJkZi1zeW50YXgtbnMjIj4KICAgICAg\nPHJkZjpEZXNjcmlwdGlvbiByZGY6YWJvdXQ9IiIKICAgICAgICAgICAgeG1sbnM6ZXhpZj0iaHR0\ncDovL25zLmFkb2JlLmNvbS9leGlmLzEuMC8iCiAgICAgICAgICAgIHhtbG5zOnRpZmY9Imh0dHA6\nLy9ucy5hZG9iZS5jb20vdGlmZi8xLjAvIj4KICAgICAgICAgPGV4aWY6UGl4ZWxZRGltZW5zaW9u\nPjMzODwvZXhpZjpQaXhlbFlEaW1lbnNpb24+CiAgICAgICAgIDxleGlmOlBpeGVsWERpbWVuc2lv\nbj44MTA8L2V4aWY6UGl4ZWxYRGltZW5zaW9uPgogICAgICAgICA8dGlmZjpPcmllbnRhdGlvbj4x\nPC90aWZmOk9yaWVudGF0aW9uPgogICAgICA8L3JkZjpEZXNjcmlwdGlvbj4KICAgPC9yZGY6UkRG\nPgo8L3g6eG1wbWV0YT4KOGs7IgAAQABJREFUeAHsnQmcjWX7x380GIwxGNtkz5YSJaLFVtFCGyqU\npaKFeiUt3krrW68W6Y23N1K0kLLE9E+pyNI2tmRpMfYaY2cMMxj8f7/nnsOQwYxzZs6cua7PnO05\nz3M/9/09zzlzX/e1FThEgYkRMAJGwAgYASNgBIyAETACRiCICBQMor5YV4yAETACRsAIGAEjYASM\ngBEwAh4BU1TsQjACRsAIGAEjYASMgBEwAkYg6AiYohJ0H4l1yAgYASNgBIyAETACRsAIGAFTVOwa\nMAJGwAgYASNgBIyAETACRiDoCJiiEnQfiXXICBgBI2AEjIARMAJGwAgYAVNU7BowAkbACBgBI2AE\njIARMAJGIOgImKISdB+JdcgIGAEjYASMgBEwAkbACBgBU1TsGjACRsAIGAEjYASMgBEwAkYg6AiY\nohJ0H4l1yAgYASNgBIyAETACRsAIGAFTVOwaMAJGwAgYASNgBIyAETACRiDoCJiiEnQfiXXICBgB\nI2AEjIARMAJGwAgYAVNU7BowAkbACBgBI2AEjIARMAJGIOgImKISdB+JdcgIGAEjYASMgBEwAkbA\nCBgBU1TsGjACRsAIGAEjYASMgBEwAkYg6AiYohJ0H4l1yAgYASNgBIyAETACRsAIGIEwQ5C7BFau\nXImePXuiadOmCA8PD0hn1q5di7Jly6JYsWIBaX/Dhg0oWrQooqKiAtL+li1bcPDgQZQrVy4g7Scl\nJWHXrl0488wzA9J+SkoKEhMTUa1aNRQoUMDv59i/fz++++47DBs2DOedd57f27cGjYARMAJGwAgY\nASOQGwRMUckN6hnOqUn+nDlzsG/fPlNUMnDJ+FSKyqFDhzxlK+N2fz3PCUVl48aNWLduXcAUle+/\n/x5r1qwxRcVfF4W1YwSMgBEwAkbACOQ6AVNUcvkjqFChgteD8ePHo2rVqgHpzfPPP49OnTqhTp06\nAWl/5MiRXtvNmzcPSPtTp07F3r17vTEE4gQ//fQT5s+fjz59+gSieaxevRpjxozBoEGDULCg/70t\nt23bhjJlyqBKlSoB6b81agSMgBEwAkbACBiB3CDg/1lTbozCzmkEjIARMAJGwAgYASNgBIxASBEw\nRSWkPk4bjBEwAkbACBgBI2AEjIARCA0CpqiExudoozACRsAIGAEjYASMgBEwAiFFwBSVkPo4bTBG\nwAgYASNgBIyAETACRiA0CJiiEhqfo43CCBgBI2AEjIARMAJGwAiEFAFTVELq47TBGAEjYASMgBEw\nAkbACBiB0CBgikpofI42CiNgBIyAETACRsAIGAEjEFIETFEJqY/TBmMEjIARMAJGwAgYASNgBEKD\ngCkqofE52iiMgBEwAkbACBgBI2AEjEBIETBFJaQ+ThuMETACRsAIGAEjYASMgBEIDQKmqITG52ij\nMAJGwAgYASNgBIyAETACIUXAFJWQ+jhtMEbACBgBI2AEjIARMAJGIDQImKISGp+jjcIIGAEjYASM\ngBEwAkbACIQUAVNUQurjtMEYASNgBIyAETACRsAIGIHQIGCKSmh8jjYKI2AEjIARMAJGwAgYASMQ\nUgRMUQmpj9MGYwSMgBEwAkbACBgBI2AEQoOAKSqh8TnaKIyAETACRsAIGAEjYASMQEgRMEUlpD5O\nG4wRMAJGwAgYASNgBIyAEQgNAmGhMYy8O4rdu3d7nZ82bRrKli0bkIEcOHAA33//PZYuXRqQ9rdt\n24Zly5Zh8+bNAWn/zz//xMGDBzFx4sSAtL9lyxYkJSUFrP3k5GSv35MmTUKBAgX8PoZdu3Z5bfoe\n/X4Ca9AIGAEjYASMgBEwArlAwBSVXIB+vFMWLFgQZ5xxxvHe8su2QLavyXcg21fbhw4dChgftS8J\nFH9fu3oMhKLia98vF4o1YgSMgBEwAkbACBiBICFgikoufxDFixf3etC2bVtUrVo1IL2RJaVp06ao\nU6dOQNofOXKk13bz5s0D0v7UqVOxd+9e3HDDDQFp/6effsL8+fMD1v7q1asRHx+P66+/3lPo/D0I\nWbQkJUqU8HfT1p4RMAJGwAgYASNgBHKNgMWo5Bp6O7ERMAJGwAgYASNgBIyAETACmREwRSUzMrbd\nCBgBI2AEjIARMAJGwAgYgVwjYIpKrqG3ExsBI2AEjIARMAJGwAgYASOQGQFTVDIjY9uNgBEwAkbA\nCBgBI2AEjIARyDUCpqjkGno7sREwAkbACBgBI2AEjIARMAKZEbCsX5mROdn2bt2AL78EzjoLKF36\nZHtn+n5F1lH5jO+W7dkTKFbs8H6qfZKYmOjVVilcuPDh7dl5csuKFaj49ddARMRRh6v9yMhInvbI\neY/a4RRftF23Dl72sjJljjpC9UkKFSqEkiVLHrU9qy8u2rjRq6OCMWOOOnTnzp3Yv38/oqOjj9qe\n1Re1t29HebYF1rLJKHv27IHOUbFixYybs/y8PNvpwlowBebNA/MTHzk+IQH46y/ggQeASy4BmjUD\nihQ58r49y3cE3n77bSxfvhz16tULyNj1nVe9o9dfegQoGA4UOvo7G5CTWqNGwAgYASNgBLJJoADr\nUxzK5rH5+7Dzzwd+/jl/M7DR+4dAhw7AlCnuevrhB04eCwFShKmE4RSUVKUnLkMlcdGiRWjYsKF/\n+mSt5AqBZlRWFy9ejPLlywfk/CoKqgKkqUvvAfb8CtT/HNjGBZfSbalEB66OU0AGY40aASNgBIxA\nyBMIeYtKauJijI+NQ42WnXBZrSj/faCNGrmJ5csvA1de6b9201tKSUnB6NGj0bFjx4BVrH/vvffQ\npEkT1K1b1+/9V4OfffYZjU2lcfHFFwek/R84qd+6dSvatWsXkPb/+OMP6Bzdu3cPSPt46y3gzTeB\nSy8F3n1XhVCAb78FzUfgbNVZWWitwoIFQJUq4AcVmH5Yq0FD4KKLLvK+76odFAgZNWoUnn/+eVqC\nX6UivBlI5nX2663ARauBHTOB4g1o2a0ViFNbm0bACBgBI2AEskwgxBWVNHz7Zj+Mnk0u30Yg9sPO\nONr5Kcu8jhzgc6OqVg1owH/ufpZDdBfaWKEC0s45B/Q98nPrrrnNMTFIVRHIAPRfZ9ixZAkKlS0b\nsPaTN23CdhXMDFD/U+mmtXnt2oC1D36+nmgMvmKNffq4bVz1xiefgKYSYNgwoEULAt0B/PvfwKRJ\ngNzGzjzzaFcyd6TdG4GTE5D1pDCvP92aJQJn0P0zgUpzhR5OgdmzjL87vU7eju1hBIyAETACRiCA\nBEI8mD4MFSvVdPgqlYJPK1s/ZxxefHEkFm9JCyBaa9oInAYBKcLXXOMa0Or6Qw9xtZsKjSx5Bfm1\npSUM77zjrC3vv38aJ7JD8z0BKSmSBt8A5W8HUlcBu+YDB1KA37oDe/9y79u9ETACRsAIGIEcJuCb\nu+fwaXPudA16vYFPrtqBiMoVEJ5+2m2/zcD06fGIbNMJDaL96A6Wc8OyM+VHAvXrM6aAN8mPP4KZ\nEIDPGWMwZ47bdtNNwNixQLlyXCHninnVqm673RuBrBAofxsVFt6koBxMBcL4Gxn/D1r9GrvtWWnL\n9jUCRsAIGAEjcBoEQsCikoYdieuxevV6JG6hu8yxkhaGqLL8R5uawXpSuOixe9lrI5C3CChmJYrX\ndZcuwIgRru96XpMWxKFDgX9wYsk4J/Si+w4zPXmB+XlrhNbb3CZQhK6F9cZT6aUlr1hdZqSrBGzi\n68VXup4d3JfbPbTzGwEjYASMQIgTyHWLSvLikWjfj6vAPqnZG7EjXSzJjyN74Y0tHTBq4FUIT12M\nrlf3Az3zPanZezhebrASD/cZgnjfsXyMbNIXYwZ3QBSSMaZre4xOPyCm41B82D0NXdsPONzGhAE3\nYoKO5Tmn8Zw+i0uG5uypEcg7BJh4gbmagddfB5KSmM1pG5htwKWl7toVUDzVP/8JKFX19de77GJ5\nZ3TW09wkEHOvO/ue310cS9oO4KcatPAxY1jR6rS6lGa8VAise+UmYzu3ETACRsAI/I1Arv9niWjQ\nE+OG9gadWCgxePSf7V3Ae+pyTB4bj4Tp7+Nn/k9EeAOMGtHb26t531fwxo3AIE9JqYkXJ8/EzK/e\nQ/sYzs/ihuGTxbKsROCWt8bh0fZcYaYUK6xNdfD8iOHo34Y7Upr0fhHv8PXwR1odjl/x3rA7I5CX\nCahWi2rXKNhegfeKd3n8cZfyeOlS4P773ej69nXvs5aPp9jk5TFb33OGQDEm3yhPpbcgrSy1R/Ha\nasg4lh50DevHmBb+7qZkXDbKmS7ZWYyAETACRiB0CeS6osKlOFRo0Al3MTaYaWewaLWUDCY4WjYT\ncd6zBEybs9p75u6a4K4OjY6yfhSVKSSsMm5sl+6/jzRv1/CICmjZvnWGYyNQvVY9nBXDTEqUeg3O\n9V7Xq1XBFJUMlOxpCBJQZrRzz3WpkJUxTLVaZGFRPMvHHx9JfTx8OMC0zCZG4IQECvL6KcvVIj3W\neRuozGQPW2OBhc2AQwdozfsCSNt1wibsTSNgBIyAETACJyMQBIqKuhiGZu3ae32d/uU873HOx3TK\nUrAwZfZHX9ORC1gW+xHQ/kZU1sbwehgyLRaxsW/grOTVmDFuCO4YsUTvHCVp+/cd9Trji337nUKT\ncZs9NwIhT0AWF8mAAU5x6dwZ+OorV79FSosUGdV3uZ0ZoCQ//QTsy/x75Hay+3xLQCmOw5m4oRyv\nowt/5nW0l1aWbswcxqWmHbOAnd/lWzQ2cCNgBIyAETg9Arkeo+LrfvT5l6MmYhEfNxfLE2PwUVwk\nXvxkGBbc2Q0TEj5D3Por8HNsEnqM4KpwuuxYNRdvvDYYs+ltENm8PWRP+buq4tvbHo2AETgugXCa\nJFWvRzKLE0uJ6rqoBo5iXC65BKx8CaxYwVVyKvfdOAk9wFVzZRYzMQIZCSgAX9J0PWNW6G+7+jGn\nuBSlC67qtFR+lNdNUbeP3RsBI2AEjIAROAmBILGosJeMH7nOc/+Kw8C7GfBesxsujK6MVjdJ/UjC\nc93uoBrTBq1rRbghJc5Apz5SUmLQf8RkTHmmPx7s7TVwkiFneNsMKhlg2FMjkIGA6rUoOF8FJzdv\ndvVbtm93AfpyDSvN4GlZXmbPNlexDNjsaTqBgkVcMdIag5msZCizLq6lZWUuXcW4XfEsST8aKiNg\nBIyAETACJyUQNBYV+g4496+4WC+ut82AFl7cSO221yBy9BKqKrSadGzj3L74fPU8t/Ib0/ERtK8V\n5Q00JZlZjiiFCx0ZVhi4quc2ukfe7wfTtlLiliagVyN3rLfB7oxALhCYO3cuflcRx2xKsqrYU3ao\ncn0gpFQp12qfPu5x1y5XbDImBtC2Cy4ArrsOeO45YNw4dcRZYwLRF2szbxKI5CJSg69d/Ipqs8ja\nkvA/1mqh5aX6v/LmmKzXRsAIGAEjEHACR2b0AT/VyU8QfX4L5/5FJ67rG0d7B4RVaIqbagKj6d51\na5t09xS+U6IssxpREqaPxReXFkPZDdMxgFnCJNPHf4nm97dF9ehwrF+5xtsWP2kKll9fA/WiwhFZ\nmhMsJjWOnzQGsXVuRtR+Ztls1ghRQUXD67bd5QMCZelilXbWWdkeaZJSEVMKF05XyrPd0ikeKLew\nDh3czpMnu9iW5csBjUFB+s0YUP3QQy7+ZcECoEePU2zYdgt5AgXOYLYwKiiS/ZtoYaEbWMpK4Jer\ngPPnMlyRC0eyupgYASNgBIyAESCB4JqaR5yD6+jpNaTUDahHt3knUWjdoTlG04Pg0lqHNyK6YXu0\niYnF9IQ4DO7HoE00Qd9He2DS4NFImD0Md/y8DS+3i8PD6coLkqajT/doTJ7SC5UbX8FEyLORkBSH\nIQN5bGQbjBhvioqPuD3mLIE6deqgTsuW2T7pNtVLoRQrVizbbZzWgbIGKaPYYH5JJV984YpRfvON\nS3/cvTtw0UX8Yg8BqjLoWvsrdbJJ/iZQmsqJZP8WoNI/qGmXB+afz2uDVrqyN9PqQqXX4lkcI7s3\nAkbACORTAsGlqND9q/1/ZqL9MR9G5auewcz0/2mH3wqvhYEffoV7t2xBKo+Ljo7ytK4OLTtgBz0L\nIqIi+LoXZvY6fMSRJxUuw4dfTUOyAoNZuT4i4ogCdGQne2YEjEC2CNSs6Q675RZAt/00WSqDWI0a\nwKuvAqrl8tlnQP/+wGOPARUrOuUlWyezg/I8gUK0np/Z1w2j1htAESqzfw5lPNTndCv8kdnDFtKE\nTvdCEyNgBIyAEch3BIJMUckq/zBERVc4+qDwCNC76+QSFo6IPD76kw/S9jACQUBA7mC+IpMvv+wC\n8pVNbNUqhqbxy3rHHS5o/9lnAVlhrrpKfmxB0HHrQo4TKHmpO6XqspSle6EKSC68EGj8GxXezbxe\nqlORkeuuiREwAkbACOQHAjZVzw+fso3RCAQLAbl9RXMFXfJ//+cefUqMLC1Kfbxhg7O0NG4MXHut\ni4HJLbc218M8c3/o0KET9lXv+24n3DGTNwv4avBk8r7fNp9RHCh+jmuu6Z9OOVl8D1CqDa8fKjDJ\ntLKUo7XOxAgYASNgBEKagCkqIf3x2uCMQB4goFTIPqErJ8L4s6S0yCr4OmUK0JduQZsYeD16tAvQ\nr1XLt7c9ZiDQrl076n7pyl+G7cd7WvA0ssydTBk63vlOa5vPgnIerW2H9jFd9kQgcZSLY1nzBBBz\nLxWZSqd1CjvYCBgBI2AEgpOAKSrB+blYr4xA/iQgJUXy8MPucfduQIqJVvLfeQcoz4BrFZ+cPh34\n4ANmi/oFqFfPKTfuiHx737BhQ/z+++8YMWJEQBjMmzcPAwcODEjbp9SoroECzAhWvou77aMrmKre\nS1FRTIuC8ct1PqWmbCcjYASMgBHIGwRMUcnm57Sdxe9UXWLJkiXYrOJ3fpb9CkCmaHIQERHh59Zd\nc3v37sVyppX1ZY3y90m2Mg4hJSUFM2bM8HfTXntr167Fbk5kA9X+xo0bIUaBar8aYzQYXu7VP2FS\nVpPjEShOFyDVaZHMmeMe5893iovqueg9xbWoGKVeK2hf7k855aLkeuS3e/2ubKFVKTvXnI4rwdTR\nrVq18lt/Mjak36Qcc/3KeOLMnhcuCzT81r176KB7lOKy/iXgnEm8BpgK2cQIGAEjYATyNAFTVLL5\n8WkCK9nMqt2aMPtbDh50/3g30F8/UPUxDhw4ACkTvrH4ewxSUnSOQPBRX1U/ZN++fQFrX0pQIPsf\nlV6gMVD8/f15Bk17FzK4WjdJQgKghQJZEZSmef16Tl4bMgCbMQxUND0XstOoUeNOknP3uhb27NmT\nrWtaSk6+lcr93dB3M84pshmfU1mddy6tcf/l6ybMKncqGVbyLT0buBEwAkYgaAnkCUUlcXEsXnvp\nbfyWTMt+0254cWAHROcy0goVXLax1q1bAx07+r03mqy89NJLLPh9HbO3VvR7+2rwVaaKveyyyziv\n48QuAPIBXXNUzLBt27YBaB346quvkJiYyEV0rqIHQH6hW9F0uhj17NkzAK2zSU2qGYNRXu5MJtkj\nUK6cO+6++9yjrCr/+Q9QpYpLfyy3MX1+Tz8NvPsuK6FzgaFkyeydKweO0u+KvvvZuea06LBixYoc\n6GUQn6I4lRPdDu5ztVn0fMX9tK4wiYOUlv1UZmWJMTECRsAIGIE8QYC/3sEtiXOGo3O/ISwoV9db\nQY+fPglrqbCYGAEjYAT+RoCuT+ja1bl+TWTQ9XPPgWYxZ1lRKmQq5nj9deCPP1yMy98asA0hQaAg\n01tX7AUUorWtMuOdKt5N98CvgJ+q83pg3FPyYhpd0kJiqDYII2AEjEAoEwhyi8p6vDtoAoMle+CZ\ngd2xuVUsZvxVFmdFhPJHYmMzAkbAbwRUw0XB9sOGuSbHjweiGBH0HWMZRo0CbrsNkFV00CCgbl1W\nQmdcA62AJiFEoFhtN5hDVFgbznFuYL8wzfFZXACLOJ8KC7dH1A+hAdtQjIARMAKhQyCoLSppicvw\no1gXYwF5PlRu2h7dOzSFBR6HzgVoIzECOUrg7LO5uk5XSrlrzpzprC2q1VK1qnMZ69DB1W155BFm\nkvozR7tmJwswAQXXl6BiokcVkFRByY0fAGuf5meeCvw1nNfDngB3wpo3AkbACBiBrBAIakUleeN6\nJHE0NZs0xPGMKKk7ErF69WqsXp+I5ONY8dPSUpGcnO4nlrqDIQGJ4L8jEyNgBIyAIyALykMPAdXp\nEvTss8BHH7mg/EWLnPtYnz5Av35g1gbgiy/co7HL+wQKlXKWlRovAGd/COyh4qIUxwrC12PSvLw/\nRhuBETACRiAECASn61fyAnRtPwAJ6YDjx/ZDq7F8EdkDsVO6U2nZgokvDsSw6fEZPoJIdHl2KHpd\nxglH6mJ0vbpf+vGR6NijBSaMjvX2jWzzJCYObI3gHHiG4dhTI2AEcpaAarjExLhzMlGDJz16MAB7\nP7BsGXDjjSw0mAgMHszJLS0z11/vrC9FWNvDJO8SUEawiIbARSvcGHbNB4rWArZ+xpTXC4BqT+Xd\nsVnPjYARMAJ5nEBwWlQi6uB5pht9pT/9iCX1e2P4OyMw4q0OVFKSMfGBTp6S0qT3UHxF942ZscPR\nJjIJYwfdgeE/bgHCG+D1EY+ipndwEpWUjejRPv3Vqo1mVfG42J0RMAInJdC4MXDxxcD5dBlSOmll\nDJNiUrgwMG2acyNTsL4sMfEZF05O2rLtEKwEzv6AyRfoDujV46HFLW0nsOgyLoCtDdYeW7+MgBEw\nAiFLgEuIwSgRqM60ohX3u9XNmo0aoF51rnBRUldPxLAlfBLZHg93buAsIxH1cO+gjpg+YAImvDEZ\nXZv2QnStlmhdczDnDjF4ctxgtI5ajn07x6PwFU2P60bmNW53RsAIGIHMCPgsJ4pfkSgVciwttXIf\nG874hgceAH7+GZg8GfiQ7kTKLFaTCyQFg3M9yA3C3SvN9zJajSpXrpxx81HP/2TMziFO3v/QuLIo\nqnf0119/ecUoA1UXKotdOvnu0e0B3fZtpoJ6CZVT/j9adhNQ6kqgwl0u1kVpj02MgBEwAkYgYASC\nVFFx4z0cdrKPrhfpsurHWd6zmDYtjqqlElWnKS0oExCfEIeVyb3QKMJ3dDGUUYBLeD30euYZXzP2\naASMgBE4PQJKhXwJJ7CSOXPc4zzGNjRvzhUVRsPVrw9MnepW5lk13ssw5vYKuvsXX3yR5Wf+c0r9\nqlOnzintd7ydFi9ejPPOO+94bwXvNtVdqfFv17/yPfm/hDV6Et9lsVHWZbmQiuleOikXcYtqwTsI\n65kRMAJGIG8SCGpF5bhI97mtxSKO6XraHmzy3iqNose8ddx2bKMRMAJGwN8E5Cqmm2TVKq7IRwPv\nvAOsWwdIWZHyMns2sHu3S5NcrZq3a27fXXjhhShVqhRU5DQQIivM5ZdfThzkkZdFFhaJrCuKY9nH\n/zo/MmPc+d8BYXQLLMyMcmGRbh+7NwJGwAgYgdMmkOem9IXoGi7ZszXFPfHdhxVDOT5Pwjbs9xlT\nfO/ZoxEwAkYgpwmceaY74733uke5ij3/vMsw1qUL3YcquIxjquEi17FcdBGTO9YZdGGrVKlSQCgl\nJSV57RbMxTH6dWCyshRu5Zq8IM4F4y9lXIuUlypPUBFdTEX0cpc5zq8ntsaMgBEwAvmLQFArKmFI\n10oKFzr8qVRu2gIYsQQJsTOxvn9T+DyqtyyahXjtVf8q1JGrV0YJ6lFm7Kg9z48EvmKGqSWaxGZT\n9uxxtR+2bduWzRbssBwhIFexO+90p/r4YyCFiy1r17rJbAR/tC66CK2oMOxSLIwKU95yS450y05y\nmgRUm0Vyzqeu6v2Ob2hNYxxTE/5HShjJwPx25hrmCNm9ETACRiDLBIJ4Cp+G9SvXeAOKnzQFi6+t\ngnOiIxBe/Vr0bzIMQ+Km4+UxbTCkeyOEbVmAlwcxqJXS+/62YLJJpO5YhzWeL1g8vvl2Oc5qWRsR\n4UE8XK/3dpcfCcjnP7pV+upsNgDs3MmsRJSiRYtm42g7JNcI6POqWxcYPdp1YeRILBo6FDWWLAFe\neskpKkqBrCD9hg2dxYXuWSZBSqAgF9Z0K9uRygldxA5SEf2LcT8lLqCp/3t2moH3ZW8K0s5bt4yA\nETACwUkgaGfuy0feiz5jPRsJf+Sno1+n6egydDJ6NYhC+8GfYJ/qqIwegCtH+8DGoPcrr6JzLa5M\npq3AIzf2Af/dexI7uA9i3++CyR/2sqr2Plz2GDQEqlSpgipKf5tN8VlSTFHJJsBgOYxB5jsiI7Gq\nIuMcfEH4zZqB/ljONUwZxhSs/xTresgyw+vGJEgJFKRVDLw1Xuo6uJ1WFknKSlrRngVqvclsccXc\nNrs3AkbACBiBTAkEraJSr9dIzOyVWb+j0WHgSFx//xZs2M5Vq0JFUbZCtGdJ8Y4Iq4X/sL6KiREw\nAkYgzxIoUAB47DHXfT126+Zquei37fbbgUcfde5jr73mBegXVD0Xk+AkUIWflSSZy2cFqMBISVlK\na9mZtJaVYiyLiREwAkbACByXAG3ReVfCIqK9vP+VMyopeXc41nMjYASMwPEJqMBktWouU5iyhqk+\ny010I7rhBuC334A2bRDOWKXbNtHf9ZNPGCtBpWX/kbTux2/UtuY4gQhmfaszgimr+flENqXRhVax\nNc8Av6evyh3gwpuJETACRsAIHCYQtBaVwz20J0bACBgBI/B3Agy+Pyzbt2PnG28gnApKMmOWDtF1\nrHiPHtjJtMCFvv4aB84+GwerVz+8+7FPkpOTj91krwNJoMAZdN0b6M6gYPv9m2ltYU2Wn5szCH8l\nFRkqmVabJZCfgLVtBIxAHiFgikoe+aCsm0bACBiBTAkwa5gqx0/iDjv5WCQ+HjEMxF/95pvoyTou\niy64ALuLF0d9BupPoiWm5I4d2FmSdT/kXkZZujQ9lsJ7ZXc5SqBEI3c6WVPOHse0x0x9/FMtxib9\ng3V4aDWT9SW8co52yU5mBIyAEQgWAqaoBMsnYf0wAkbACJwGAdVAKVu2LJOEMe4ho/A11+lxxsKF\nCPvxRzzQqxdK0bqSPGIEDjF4v2BiIsZXroxZs2ZlPMqe5zSBM5gFrgxrsUgafMMPjIlh/noD2PYF\nC0oya9gWqqF6v6DyWpoYASNgBPIHgQKHKPljqH4eJSs5Y8ECrnTxn0ahQn5unIto/Fj27dvHpgux\nDlxgQonUvoq86RYI2U8f+QJcsQ0LC4w+nJaW5nESo0DIAbrR6KZieAGRvXtZ2XofQBcdvPtutk+h\nrF9lypTBokWLmMWWaWxN8iyBrl27QlXcBw5MdwvKwkimTJmCJbSYLKRCclJZs4apcrly//77wLJl\nmNioES5kJrGqSo0sK4tqvvix+OPy5ctxzjnnYMOGDaxzWeGk3bMdMhDYx7ijNKYgX9jYZRFL+pG5\nyGuzyOR5GXayp0bACBiB0CQQmBlwaLI6alQHOPn2qlfon3qAbp4GGaC21ee83n5eH8NBXlG6hg5J\nUdyy5ajry17kbwJS8LN6yxKxatUAuoLhnnsAxrbouzRMdV0Ux/Lcc8AzzwAbNwK0voBuYp5CnaUT\n2M5+I1C4HFCMrmAXU2EpwlTVmz9hyv7vgF1cKFv/st9OYw0ZASNgBIKRQGCWugMx0tQVGPLIS1iD\nokjZuhYxN72IZzrUC8SZTqnNuYMHo2XLlkhjRfFAWCRSmMHnJRZ9u/vuu1FRdRUCIMNefRWXX355\nwFbhP/7gA88VpW3btgHoPTCTFd0T6bZyu1K1BkCW/fILpk+fjgEDBgSgdcYFsP0GDRpgE9PMymUH\n8+cD39PFQxPEZ591E8guXegCQkVGVh1VLzcJaQK6DnbxN+XGG2/M8jhXrlzpWVSyfCAPSKNleDQV\nlZelrHz4IQO7GVxP6wdUTFTWlSuv9DKLoXt34IcfXLaxAFl6s9P/fHGMiklK6o13j1umArt/5UpH\nGvBrNyqZ/M0oWtO9Z/dGwAgYgRAhkHcUlbCyuPyGqzDquWHwykBus9SbIXIN2jCkgNBty6tSLiWF\nblxgFicwhgDX0if99deBdeuAceOAFi0AKoBYv56TlN2AKpevWGEMjYD/CMiKK+VEt48/du2+zJV7\nBd/L3VU1XZQa+bbb4CkuDN7HTz8B557L4O/o4/YjkvvcynfCP/3UpVg+7l6ZbNy82V3jzRlp07Fj\nJjvlw83R15E3b/u3MW6FSkxYaWDlw4RcjfVZ+uRDIDZkI2AEQpFA0Coq6+eMwwdzk3FNr55oEM1u\nhkWhQesOeHjfL+g2eHYofhY2pvxKQDE8vtiSa645QoGxA548/bRTSlQbQxNEWV8YjwDVzGja1N20\n49tv0zWkCPDvfzv3nfvuc7U0ZJGJifGasjsjkC0CjGHxRPVbpDxL6tYFytEtqWdPBn3/5bZlcl+J\n26lmA/fem8kep7BZ9WF0zeu6NjlCoBAVlLqj3esSF/B/JZXFrf/H+iyDgAvigIOMg1OgvokRMAJG\nIA8S4AwpOGXbbzPodhOPyDadqKhEHe5k2Sr85whTVA4DsSehT0AWFt0kviDrRx5xr5ULY/FiZglq\n4JQdBSrLXUfVy++6C/jXvzhp2QqMGsXMQecD06bRTYTuIrLGdO7sVsK1XUkhTIzAqRCQxUXyxBPu\nkamPPUVFCoyUF3+LFPYvvgCqVnXt6/nEicDIkf4+U95vrxy/05JUWmArPeSUlB8rO3ex4vWpxJSi\n9aWQ28fujYARMAJ5gEDQKioofPwVoDRwdUhS2P3YJm9JxPZd+1GiYmVEHWeupfc370pBWNFSqFzh\niMLjGrF7I5DHCWjS6MvOpEx0PsvMnDluYAqUVryBrCqMhWHAE7gC4JQZxvfg4oud4qKsY0lJwJAh\nwMMPA//8p3ut9uvUyeOQrPsBJVC7tmtermC33ur/U733nlNUWrcGdPvuO6BWLQaT7wKD+ADG2nnX\ntf/PnHdbDK/CxYcujF856GqzRDYFfu/FpAn8HahDBW/Pb4x5a5h3x2c9NwJGIN8QCD5FJXkBurYf\ngIT0j2DCgBsxQc9r9sa0kemrRXy5acEXeHFuH9Doki4xePK9UWhdOV1bSVuPMY/3xeg4Tr58EtMG\nQ4cPRAPTV3xE7DHUCSgIv3RpN0pN6iT33+8eda/JXrFizvefCRw8pUYxBwqUHjrUKSuKkdHEUHEI\ncXQlSUkBmMrWs860bOmyR/lW2Y+0bM+MQGAIXHIJoJvitKSAl6KVQMknlLTjoosCc8682moBfo9L\nX+l6X/tNZk3Ywfg3WluX38xFio3M6PYtEElmhcrk1RFav42AEQhxAvwVCzKJqIPnRwxH/zYxXsea\n9H4R7/D18EdaIaNWlbQkFquaPIrhI4aiSxPtm4Dnhn2LNO+oZEzs341KCtD7lU/oBTMTI/q34S7T\n0W/QRKQG2ZCtO0Yg1wgokF9KSePGLlBf8S8KeJYL2f/+5+q7KI2t4l9YFBCq/aKbMkJ16uQylPXp\n42rByHIjdzLFKyjoWlnMJKynY2IE/E5A16PqwCgua80aujvxl12ujYplMfk7gTAmQwin+1yZq6nQ\nreT3ntziuWixcw5vc11hyb8fZVuMgBEwArlKIOPcP1c7cuTkEaheqx5SYrTCk4B6Dc7la06mjpGa\nHV/ByF6NvK2172qHsXEjgD83glMlRKz+EsOWcKGo+T/QuVG0t0+t9reiyZDpiFvyBZYld0Cjvzd5\nzBnspREwAt4kUBh82ZYU9+ITWWBkSenb100SZWlRelvFu8hdR4qLanJoQqm4GKaT9upxSLFRBrMb\nbqDPPH+CdIyluvVRzZXHVE7yVdxUKY6zKmVYZyUqqwf5c39dg++841qUFVBZwlq2BD76yNWJCVBB\nWH8OIcfbUm0WSZM/3KPqsaSu5j/NZsDa5xkP9AS/m1RsTIyAETACuUwgCBWVo4ns2+9sJEdv5avC\nR7oeVrke6nPTEnqwaOvqH2lKoSTNfg69HviUlVckKaDuQuHkysQIGIHTJ+Bz96pX70hbvgmj3MUk\nWuWWglKtmnPRkXVFKZiVFEDxBiosKIVn+HDglltc0P+qVfStP+QsPCqEKSuPSUAJbObkfi8tZR8o\n9XUW5UpWnb84i8cEbPd+/VzT337r0ngrQ9iYMcB1TOMrFzGTowkoZkVS5TH3uHs5E20s5sIB/5nG\n96f15Rpyu8K9Z/dGwAgYgVwgcGS2nwsnD9Qp9+9jXnlP2qBzl0s5EXKuJ1rApUM+qqaHsbh97N4I\nGIGAEZB1RQqJRMUrfZKQHoX25JPOlUypl5W5TLU65L4jhUZV0qXg/MFV3wkTmMGIgcH9OXmSS1qP\nHm4fWWNU78PktAhUptWrGGOVnnrqqay3ozgnFYEMJpFFRTFVtPbg6afdtaXsYVWquFsw9TWY+lKc\niw7nTXc9Um0WKSyJVPSS+PnW5vdOCwi+BYpg6rf1xQgYgZAlEPyKSiYGlRN9IoUiXPBwTMc2aN3U\nuYedaH97zwjkJoGDnIDrll05nWOze06/HaeUsz5RUUGJ6sBIpKz8/LNTWM4+202S5NYjq42UHmUn\n08RJWZ9Uf0axNdpfE6mrrnJFApUEQAHXJvmTQFQUiyDSnU2uhbKqKBW3kkqooOo55+RPJqc66hrp\n30PwOwb+Pu1LBBY2odL3LT0aKvB7RSXGxAgYASMQYAJBq6jsp6uWJG5pAno14j+bdDnc4fT0xG5z\nofR3uQJEqX4Bf0wRh4QJY7Cge6MM8Sg7MOaBhxHx4BvoUD3c29fujEBuE3jllVdQXAHr2ZQUxYZQ\n5L4TUqLYAllZJM4c6p4vcU6ceO01Z41RnItiaJTdTEH8UlRq12ZaVio3q1c7C4zaUu2Zl14CHnzQ\npWeWtUfpmk1Cm4Av/mnqVBcjJTdDxVAtWsSJ90IWRbwgtMd/uqMreQktnbylJdEa9Thj0KpzQeAy\nuoVR8Yu5l63TGsqCzCZGwAgYgUAQODzvD0Tjp9NmZOkYHh6P+EljEFvnZkRxcfXsxmfhly+cWXrT\n8l+RmFobFTiC9fNmuviT+N/we2IyGlVvi941h2FE/BIM6PoUnny2B+qVTsHMt/tg9JL6GFrWlJTT\n+WzsWP8SuIWxGWV8BR2z0fQOure8xAl4SblN5SfJyOyxdB97n+uSLC1KXxvD35ErrnBUtIo+e7ZT\nVFQnRmmZFSNzGSddqjuj96TQXH89MG8eoLo0yihlEjoElK5bimrPnsAvv7h0xrK4pNF0L1dDc2vK\n/LMOi+T3idYoSa1htKjw9yaR1s2E/zIo/3e6h/1IN0wuEiolsokRMAJGwE8EglZRqdz4CsSwAn1C\nUhyGDIxjNpIrcGf9rzHqOzfypLhh6Hz/PgztvAH9notNxzEbAzonYOi0kej8JlfMnnsMIzj5eK4f\nJyCSmOZ4ZdyTaGAZvxwPuw8KAlXp/lT2NALGt23b5o2jsCZhJo6AJpy+Qpg+RUXvzJrl3leAtSxR\nUmgU2C/+SqssRUXB/Jcytk2vVZ9DKZyl2KgSu7KYKb5GCoysNiZ5k4BcwnRbu9al4pYL4tNPAzfe\nyP81nJDLSmeSOQFfsciY+2jJbEtL1UZaWZrTte4Heoml0jWsPLP51cz8eHvHCBgBI3CKBIL21zis\nwmX48KtpSNZKV1oY5wqygjyO244zsJmt+x9na2V0fuZDdEregR3J/OEMi0B0tGkoxwFlm4xA/iMg\npc6n2PXu7cavmBefKLWy3PG6d3fxDbt3w6sdo2MUQ6MAfu0vtyFmvUIsF0vkSqbMZV9/7aw4UmZ8\nbke+du0xuAjI4iZRMgBlBXvgAZdWW+mzpciehkumazjE7wtSsS9W1w2yKRX7wlT4VUyyaC26VfJ7\ntf0rKoJ3mJUlxC8DG54RCCSBoFVUvEGHhSPiNHsYFhEF008CeQlZ20YgBAn4JqjNmh0Z3OTJ7vmH\nH7pAf6VeVmB/ea4eK2uZEiKsWeOUFa3Uq+aMJr/KbPaPfwDD6C6jDGbKVNawoWvDpywdOYs9yw0C\nPusb48W8OiyKZ1G9H1nXpGzK0mZyYgJSUiT1PuZ3gb7a26e7jGEV+T1YRYtkhZ5UaqjAmBgBI2AE\nskDgNNWALJzJdjUCRsAIhAoBTVx169DBjUiTWp/I+iLXM7mUSZS9TO5jUn6k2Mi1SMqKsk4pjkbV\n1bXtttvQhNaZv+R2pJS/2j8LFhklVVAtlDVSlrIomzZtyuIRIbq7FEvdVKRUNWVkVVFSBmWUa6L4\nC36uJicnIEtLmWvd7QC/D6rNosxhfw0nwzPohn3PyduwPYyAETACJGCKil0GRsAIGAF/EvBNZs89\n90irb7/tnvseVeTym29cfIQsMlJK/vwT137/PaYquP8OussoWcDjj7vnqrI+f77br2lTYOtWZ8k5\ncgYkJiZC8UqjR4/OsPXUni5duvTUdswve0mRbNXKWcpUvFRpjZVZrnlzZx3LLxz8Mc4zeG3X/z/X\n0s7vnBtYMhWXeLrZ1f+CyjhdJn3fGX+cz9owAkYgpAiYopLNj7NIgRRUjSmBAvs2U90rks1WTnBY\n2h6Eh6WgwIEdXJHlD3kApMgZe3DGoSS2vz0ArdNducBuasLse4DaD8MuFC7I1boAtX/GwSSIUaDa\nL3Rwm3cNFTzEc5jkLwLKONaypRtzjx6Hxz60Xw+UWL/OBe4r0P8gLSvncUW/6AFg6kQqL6X5nLtf\nSGVm/W/AG/8DoqnQdO+KjmtWYhGTAgzq1ctZcLJQCHP8+PHMMzDrcD/sSToB1eC5+Wb3QrFMFSqA\nmiAwnW5NY8capqwSqEgFXJJCl7rSVzslZUEDoPoLTG7Qmq95cZvS4hjZvREwAh6BAocoxiIbBOZz\nhW33z9k40A4xAscQKNvJZc2pSxegLZOoGG1jvYJHgCV0najNlfgdDM5OXcMq7c8zpeoVAFNvY9c8\nXn+/8PlQbJt9Gcq0mItFX/8LDStzkqsK0r9wElD1CVekbetnQN13gaU3AGdyFfMgFaONnGTV4235\nLVyZ78HJAdcsNvC4czgZ/rUbs2DdRAWck+L1L3HVk8f/zslvqctdDYXVbLcBg2RX3M+g8sacFJ/H\n1VHGYDSYSV909rtobU46uPL8x91uxXQd+60CcaXbsR2e69wptB78xxWMK9eF5+vs/NoTRzMLV5pz\nC1nG8x/msZU8Hs3Ag5aI1NXH4cFV2pqvA4s54anBfu/5g/VSZp8GjzfJg5/HYR5UCNYPPg4PWj0a\n8DM6zIMTL60WZ4fHqsfg1aXgfaZCTzLwY8ZZvH3LG+d2IN7NDzKzcqXz8L3S7Mp1qV8/N8nWpHrG\nDNbCKAm0aOHiLpSxLEMhTCkqffv2zV4tngEDXNFNBaDfeis742dRzRMlNZAr3Qsv+LnxbDSn+iuq\ncn85vw8qPKpxS4ExyTqBQ1TAN3/Ca5PXpX5r9q7nd24Cv998DOc1bGIEjEC+J8DZiUm2CMicLSlS\nhRM6TgD8LKo2rgJ+pVnErpB84QMgaj+CvvNF5eYQANnOuhVh9LcvkYWV3ax0Yxf9+NOYFa6UfMoD\nICmpKUjelXxaqYNP2C2l9Ny/iRPGSP6jrusm7sqWUzjZKQ76531GBP9h1+BjCW4r6P6h63oLr3Zk\n5THyYp5mrlMGIqLdKUteyhgKTqzlD17iQrdN+xUuR0VlL2MimrhtJS5yx2m/yGbp+1H5KBzjzq1C\nb5ISjXitc+Ig5aXkZW6bUpSGV+W2KNcv0H+/OJWWwhVdf9V/tVv8XL7mPvrOeNt4PRc/m+/REqkV\nVG2T+0exOlRUOHEpUNhtU+VrjwcngVKkjuJBLsfycL3iflSSwnhNhPO7eeACt9UvPPgZHJcHzyfx\nBw+NUwyKkdmJVpaJ05Nr0x/5MOa2zUidQ96Kg1G2RK1ByRqgNLwqhCkXM7mTqT6MUlrLrUwKzZ13\noj5dy4pr/xUr+FlznDbxPgL22GdyA9NNaaov4venHL9TSpwgZUpueyanTkC/D+XSldvKD3Fhhb+H\nO39AysLrMXjWfUzMV5iXMa/LDJLxdcbn2uVErzO+N+uXZJQuVwUfvXEf2t05FP95qiv+TNyOzdt2\n4db2F+HrucvQpEENnj8MhQudwVAx/vaaGAEjkCsEgtaikpq4AOMnLkTlVjeidb30yVcGRKmrY/HI\nE1P5j7coUtYuQelbh2Nw53oZ9gjw0/h+DAx8nSvBXA0q29HvJ9tDH3YV8bv77rtZPJsTvwDIq6++\nykXBy5mAqGEAWlcs6gfeJL9t27YBaf+rr77y/PJvv/32gLT/CwvCTedq9ACtGAdC1jzLOg5PccV/\nBFN50mKRTVFcggpGLuJKb6A+y2x2zQ7LKoEfq3JVeR1jIaisZLFw3ivMWDWW7kgLVW09M9GkTxPs\nM88EvvjCuYjRXWwT64c0ZEB9guJfZG3RxPuaa1z19kmT6F7G3+Arr3SV3DU5z7h4kt8sKseylVKo\ngqMqIqk4Ir2m8meSfQLzv/sUn331M9q1a+ctphU4RmnP+Drjc50x4+uMz33vSWF594PJKFSkOB7+\nxx14euin6HdHG0z+ciFWrduMZ/vfiJL178X3E5/Ap9MXIm7xKkx/fwAubP8M3h7cExs27cTKtZvw\nQM8rMW7qj2jd7GxPoTlw4CCiS1PJNzECRsCvBLh8F4yShu/fHIDRs9m37wujyYfdwfXToySsbEN0\nuT0Zk98cgSVJ9PhI3n/U+/bCCBgBI2AEjiGgCZ+UFMlVV7lH3s986insp+sXlIJZaZeZPcwrcClr\njBQbidydZDFQRjJZD6TQKB7Gl7ZZKX2VltnfImuQZB0VuGAUZWlTWmPJ3LlOUVG1+9GjgUGDjlbq\nvJ3s7mQELmh2HRWEBOaX+BM33HDDyXbP8vt9enfFiBEj8Nef6/DSwFu84/t0u/xwO/tWvO09r1iu\nJLpc35TZxw/ithuboWK5KPy+KhFbtu9iMr80PPT8R5jwZh9Mn7PMs8LMnfA4ql06AO+92gtbdyRj\n/i9r8K+HO2DYmK9xbesGKEILzc5dKTi7Zoxn/TlWkTrcAXtiBIzAYQJBqqiEoUyNmsDseGog5Y+b\nmiwsojKaXtUZDSsm4+p+Yw8PyJ4YASNgBIxANgnIUqKb3L9kVZGoDoxPlK1MrqJKx6yEAHotNzKJ\nYjV0C5SopkmwCy3gnigxwe+/O5b/+pfL3BYgy3iwI8lO/+RqdfXVV2PMmDH0VLwQlXx1brLT2HGO\nkZeC2p02bRqqM6ZLLsoZxefqVTmmDCqnv9H/LqfYd76OVsd0SYgb6j07t3Yl3HnzZSyldBD/GtAB\ntWtUwM/L16FkCX5XKGMmfofzz6mK2XG/e5abuCmDUKZhX7w3pBf2pOzDl7OXYtRLd+DZ16fgpqsa\noXixIlj311a0aFoXW7cnIyqyGEPKCnpt2Z0RyG8Ejv52BtHoG3R/E5+03YGICtHKG5WppBUqnOl7\n9oYRMAJGwAj4kYAvnu2SSw43urp/fwzhhPK1W25BWABiW/b+9RcGTJiAh6+7DlUOnzXInyhpgW6q\nTzNlilcjB3KhkxUqY9rqIB9GbnZPCkS9evXw+eef03DX6yiXLn/0q3Xr1jQSLsP3TAneXGmnT0Mi\nqZDoJul6QzPv8aoW9aGbZN7Up7zHixvVRN90y80n/+2D8+pWQjzdyBo3qO69v3DZWlxxaT3MmfcH\nRo2fjfmxT6Pu5QPxxjO3ee+PmTAX08Y8hP7PjUOnaxujdMniWPzretzcrgn+oKVHFqASEa4f3gF2\nZwRCgEDQKipy842ICkdaKp+EH93N1B1bsJmm10KlKiLsRB5facmsp7YZabTJlChbkRXqj25Hn1/y\nlkSvLYSFoxQDS6P+vksIfMw2BCNgBIxAYAgkcMI3jC5Or/AWVqSI30+yj65mwwYPRjfG0+UZRcVH\nQYH2cXHulWJ5WrZkogf+k9m40Skyvv3s8bgE2rRpg+HDh3vxdxdckJ4Y47h7Zn2jkshcccUVnlXl\nvPPOY84JujkGWOTq5VMkLr+knne2smUi0eyCmt7zT0c84D1e3KgW7r2ttfd81vjHPJezhI070K2D\nWyDYu4/zIsoiWm3+9+FMT1Fp1XkwXnyko2d5Gfy/z/HLF8/hzkfewS1UYmLKR2HG9796cTU/LlqJ\napWiEV3KOdSHhTGhgYkRCGICOTwtT8bI69tjLGNKfNJlaCx6NcDR2/W9OeD2iOn4Cj7sw4xDnmxB\n7IsDMWR6fPrrzB/WzxmJvoPGIsOp0Lz3UDzTmSeTpCVi4stPYthRbUWiy5ND0au1W91wO9q9ETAC\nRsAIGIHTJPAJE69IhtJdSIkMLr3UPSppwTHB4m5Hu5fycAmtd9+wOKqsK+HhJ/KvyDqv85m9bQFj\noL788kvcQotgMEq9Wi6mrBStJ+fUds+HP3e711UpOMpSJpFiEl6kkOcqVjqquLetRpWyKFWyGNZv\n2Iavv1vuKSq3PzgCj9x9jeeW1mfQ+9i88A10um84Ol3TGHXosjaWCQIGP3Yzvpi1BGfx+DMrlPLi\nahSfY2IEcoNADjs9RqDnh++gi7OGsh5BX3RuIK0+Ar0+HA5vTaF5X4ybMA6PdnQrDMUYfOYkFV88\n1clTUmLaP4nYmTMxc9p7bCvyb9ySl49DNyopaNIbn2i/r95BG+42e0Q/jFuezP2TMbF/Z09JaULl\nZab2iR3BfZIw9rk7MGRO4t/atA1GwAgYASNgBE6bgOrbfPaZy6h2223A1q3ATz8xNe++0246FBuQ\noqIU/d9++63fhycLxzVUFH/77TesVAKEPCxlaCFRbEuVM8vg6pbneSN5vG97upXV8F5Pffsf3rY/\nZv4bPTtdCll0PhvFa5Fydcv6qFW9PHan7IUsN5IX//uZZ4VR/Eyd1gO9bVd3fxUjxn6LRXRRu63f\nW962j2J/woIla5DEJAHarqxqGVNBezvZnRE4DQI5rKjQ6h1RHT0fZHYZyZI4bGCCGScpYFgmnry/\nAypEVUDLNs7s6Xs3bf1XGDxbr5rg6QdauyxgLAh1+z03+XZJf0zFzDFM94pI3PtwZ0Rra1h13HZX\nE+/9Gd+tROqKLzFsiXZpj4d9FpaIWrh/UBdvn9hXJmKL98zujIARMAKhTyA5OdmrSaTV5azeNMkz\nySIBuX+png3jb7xCnMpspRgWZU1TVjWTwwSkpCjFfRxd6DYp5sfPciaz4MmtTIH1Bw6ku3L4+RzB\n1JyUM7l7SbG56PyzvK7dcXNzL9hfLmfvv9bb2zZr/EDc3bWVF2ez8LOnvW19u1+BSxvXwhlMduCz\n2kxhCmclDpg7/w80u+l5L5ao5a3/9hQdKS6t6ZKmrGkjx83CN7TqbN+5G9O+/cXbtiNpj5c9zWvc\n7oxAJgR85opM3g7M5rDql6NHzDCMTojDhO8TMbB1BayI/R8S6vdHc0+zoGfW/qNXl1bHzfU6E9mm\nHWpl6LXz1MzQz9RVmOu5BCdh8J298DldhFNUunmTNBM+0Ldz1XxmZKHEtGnhFBnvFe06dZrQqjMW\n8Uk/Y20ySwc4F870d+3BCBgBIxCaBJKSkjhh2I85c+ZkeYCr8kI2riyPKocOUOY0iZS94nTXUU0o\nZV0bOZKFD3e6YpJuj3x9f/bZZ6NatWr0mPsC3bp18zsL1RN744038MMPP9Ajjy55JocJFA0vjJrV\nynuvlWLZJ/95mtZAyrg37vVtwsZ5rC1HeZkpn6UISZpfVMeLm/k1PsErnqkCmh3uGYbk5f9Dx3uH\neYU1lQygywP/wwIqRIq5qVyxNFqxPs3UrxehC7OsbdyS5FmLfG16DdtdviGQYcqfk2OOQtt72mP0\noFhMH/UlHmzdFh+MiEeX4a2Om4pYPStRyn1RyjFd4AklbT+2pe/QvFtnXFGKxb+911yxopSpVQeY\n4T1FsWOD69OSEO+9VRpFc4mM65ndGwEjYARyjkBMTAyzDhdFP7klZVG+++47b5KXxcNs90sl1OwA\nAEAASURBVIwESpZ0r0aPBnbsAD76CBhId5v1653CUrp0xr3z5XOlK37zzTfx66+/QoqLP6UYFUZl\nAVMRYQXWR0bSV9wkywRKMo2ypEnDGoePfbqfm3sNebLz4W17fpPXC/Xxf/ek8hKGggUL4L7bW0NK\nkRIFpNECsy5hK5567VN0vb4Z7nl8jFd7pkfHS9Dy1sGInzUYw9/7BuWYiKDD1RdixLhvcT+tPWuZ\n0llxOorN2b//gFeI8/BJ7UmeJZBr0/EKzdrTiSsWcQmT8NqQBZgd2RGf1MvchLFr+0YPcvxyum6B\nQXWZIQ8rBveTHoOrL2+NplF/33FFYbdtz9aUo98Mi/TiZOKp6qT8zVRz9K72ygj4jQD/OWIrTXjZ\nlKKczEyuUQNnd6Hr4osvukJ+hXmR08RvYgSMQB4ioKxp5bkop9gVuYYpO9hZdM+hMsjZuathk4eG\n48+uli1bFk2aNPEC32vWrOnFrfiz/UaNGmHhwoWYPn06Onbs6M+mra1MCFSvXPbwO3Irkzx277WH\nt637/lXv+Ue02hxgjRrJ//7V3asro0xmSjCgOjOTv1zoKSpPvTbZy5Cm4p1nX/FPJPz0Gt4Y/TUi\nihfBPXRje/Y/UzHogevwx+qNCGNdGtW2Sdi43UsY4Kud453E7oKKQK4pKgirhS5daiJubDymxy5B\n8yf/eZQbVhjStYnCNINTql9wKe/p0xU3FT/vaH9YAQnzuYil7wfGrVzKcJS4uASM+mQBmvZq5B2v\nu+TFY3D32NIYfg/z249YgoTYmVjfv+nhgk47ls51FpWarVEnc53pcHv2xAj4hYCyAX3GWzalKI/z\n1qz4z9ur0/Daa+B/c5Ybn8k4MLo81vdlr8jmCewwI2AEcpbAGWcA55zjzqnvMrNTMf0V0KkT8MAD\noC9NzvYnSM7WsmVL/qQtod72HTM9t/RrrzRRVWD9qFGjIKVFdVxMgoOAr0aNeqP6MRLF1fhEBTQl\nE97s68W87E87gFkfPeZZXJoyDqcwkzLt3rMXq9ZtpvWmIN5jAU4V0JQrWY3mj2DV7JcwbMw3XsFO\nWYDupgVnyBO34reVGxi7d9BLPLBw6RrWvanstaU4H5OcI5B7igrH2KB9Z0SOfY4phJvglosrZBh1\nKtavXOO9jp80BcuvrYF61Vuhb/0hDIKPx8A+Q/DK811wZtpyvJBelT5+0hjMufhBNK5VAa2698aQ\nuBGIHzsAjxZ+FPe0Pgcpa2Zg4KDRKNdjKKKq10H/JsO4z3S8PLIVhvRqirAdC/DiwAneOXs/2N4F\n62fokT01AgEjoNW7lk2z37wyBknZuewyt+oqNxIVMFNgLt0YsHQpsHkzoGJ8detm/zx2pBEwAjlP\nwFeMkDEUKFMGeOUVMJgC+PTTnO9LLp9R6YkVT6IikA0bNvR77ZPKrKWmdtX+Pffcw8ls/lQIc/lj\nPq3TF6IrmW6KjZFcdyWV/HTxZT777/PdvC1pVGh+/+ZFVGFIwU1XNfIC/KXklCgejiJc/J710+/Y\nk7LPSwvd5Ibn8NvXL2AYXc627diNt17ojnZ3DsWowXdA8Tc7mfXs4gYV6Lm5w2v72MxnGV9nfK6d\nM77O+PzY98rT2qpYrfwmuaqooMLF6MZF4GE12qFeBl+u5SPvRx9aWjxJmo4+d0Zj8pRe6DDkPWx7\nvC/GxsViwB2x3tv168dw1TiBOb7iMKj3Cxga+x80qNcZ417ch4cGjkbc6MG8uaaa934RT6Zn+Wo/\n+BPsY02WYWMH4sqx7n2G16P3K6+i8wlc0Hx72qMR8BsBFjVDxV7Zb44rgJ6iwn+ynjDeALpJpKxU\nqQIWCXArtHr8+GPgn//Mt6uyDozdG4E8RoCr/J506OAsLIzVwE3Mejl3rlNg8thwsttd1T6ZP3++\n56J18803Z7eZTI+78sorvZgrZRlr1qxZpvvZG3mfgLKf1WbtGMklF9Y6PCDFzkieefDGw9t2/vJf\nz4VMsTQpqfs85eKyxrW9ejSr17MI+bYkrPiZ1k9KyfSYs4yWl4zPtc+JXh/vvb179zIh4C706dMH\n0dHRaiLfSO4qKow06fDmV7j2mBD6er1GYubx5m1hldFr8BR0ZmX67bvSUKpsBURIwUnj7ZiRVGja\nHR/OvIXabRrPkobU8Ciw0H0GiUaHgSNx/f1bsGF7CjOtFEXZCtGZx75kONKeGoE8Q0BKimT8eBZR\nPcBiQszx/fPPTknRhOfhh4GLLrJ4FkfJ7o1A8BOQi6duspJy0gIF2nNyjccfp2W2ZfD3/zR7qEmc\nXLTefvttrF692u8uWsWZfa1Vq1aYMWMGzj33XJQoUeI0e2yHhwIBn/vZ2TXTFwE5qOce4kIB5f4e\nV3iPCxZU9TLT3XHHHYeVFe8NP92NGTPGs/YFIvOdn7oYkGYKBqTVrDTKfPLhxygZJzs8IioalSun\nKynaOdPjw2kajkA4q9seraQcOUNYhNqqjMqmpByBYs9Ck4DcGPgPGBMnuuJytWu79Kea4Nx1lxtz\nYmJojt1GZQRCjQCDy9G3LxfquFInRaUWV4SVTEMuYiEulSpVQoMGDbzaJwfTg6z9OeTGjRt7bmXK\nAmZiBE6VgKx9SvqghAyBEGW+W7NmDZYvXx6I5oO2zUyn+EHbY+uYETACp09AWcE0qZHIfWL7dtCf\nAmjKWBkVoeNKpbdqm89MzA5I3rxX0cY9e/bQYEaLWRZF//xM8igB1V155BHXeVlQGcfBbDLAu+8C\nw4eD0cN5dGAn7rbPRWvevHk0CtMq7EfxBda/S4YKrK9ataofW7emQpWArhspE0rIIGXX3/Ek5cqV\n8671L5lgQ5nvCuv/eD4QU1TywYdsQzQCJyTA4FFPDh1yExylR732WqBrV7dSy2rl6N79hE3Ym7lP\nYDuVTfkwf/PNN1nuzFIlXDDJ+wT0nZV8/z0rGEc4d0+5h8lqSitEyMi+TRxeOdx2aTy+m/czV7DP\n9bI5ne745FamYOaMMQIffvghHnvsMb+0f7r9s+ODn4A8dFSLZ9q0abj77rv9ft20pHunMt+pOK8S\nS+QHMUUlP3zKNkYjcCoE+E8aF1zg9lQmMVYqx+TJwKRJrmI2/W69IHy5jJkEhsAhMpck0ypSIGsr\n4ZXLFWQJjvJ46KGHXBtZuB/PGCZV/TYJEQIXXwzotmEDkJDgqt7LuqLaLH62PuQYsZ0/0M1tG1Cs\nDhdU6ObWZCXOrHkJCq9YgANbDpzU6nGsApJZv3376VFuZetZpyoQVpvMzm/b8z4Bn7VPSR9U+8ef\nUoS1ltowAc+UKVO8DHVllAkwxMUUlWx+wH/++ScqcV732WefYcWO9dlsJfPD9CMp0WpOoFIkylVE\nJsSZqrcRANm9ezfWrVsXMH/K1NRUxocfwGuqGxIA2bdvH3SOQLV/UYXvcTHj8rxrqWIABnA6TSqe\nRbfOnd1NKRcVjK9sJgMGAKVKucrZZOS5mpzOuexYR+DQQcYObXTPFzbKOpU/dciRVJxZb8COCDkC\nFfnDwgmNJ3LtVIpyxXQoFu3GIxmNgm7ch/hbs5cuqIUYh7PkarqhMu5mBy2Fe6l0laG193y6toVX\nRcGKd6DF9ddj2X//y1Iz57NklP9rRn1P65T+R57DujYRslKZGIGTEFAChhYtWnjXjRIyFCtW7CRH\nZO1tWWwW0NNBi0tdfVbUrDWRp/Y2RSWbH1fJKE7YdgL16tVDTKEW2Wwl88M0SdZFKP9YX6q7zPfO\n3jtSUurUqcPstemZobLXTKZH/fjjj94Pu76ogRAFlO3cuTNgKSSlQCxbtsz7wQlE/yvs/Z0T0yOp\nDANxDr+1yYQUeP9915zMzfKLl4vRrbdK0wJWrgQvJrfdbyfNJw3tmM3rgCvfkRdh2eqD2HOgFP2b\nuRouC1dWpBg/AxMjkBkBxaxIFGy/eDHQti0wdizQrRvo7O7ey+37hDf5g9gc2PYlrUEjaTX5lYsi\nbbhoQgWh6hNHehfZ+PBzrSgrjbAC3/X/zN9++4p/WbRoEb7++mvccMMNh89rT4zAiQg0ZbznwoUL\nvexx7dq1O9Gu2XpPme/eeust/PbbbyyPVjdbbeSVg0xRyeYnVSKCKQupqNSoUQMom+4uk822jneY\ngmKlqOgCrKhVsQCIVomqVavmmQ8D0LxnSVEGjAt87kR+PsnWrVs9f+JAtR/GjHR//PFHwPqPNTSn\nrEXeS3/JYEFPaJHzarIoeFdZhxScr89agflcTTLJhMCB3QxwLsJCnJz0VH0S2P0LsIdKa7lbMHJB\nb6xauwFT75yaycEn2FzxFb7JiaeJETgRgfvvd++qaOTgwUCXLqBDvcsIGBl5oiP9+x7jTHCIGctS\n/gBWPcrfjp+cglKY/+8q9ADK3+bOV/WfJz1vcxbFXEzlKxB++/Jo0KRQqWEvpOucMo6ZGIGTEdB1\nc9VVV3EtYKy34OzveZzcfBWwr3niWWedxbVDLh6GqOQbRSV19Rd45IXPUbQ0fwv/XIvS7V7E4M71\nQvRjtWEZgRwgIDcIXzCf0iXSd9bLMqRAXmUPYwAqBg50KZBzoDtBfYpkKiNnFAd20WVlJTM0NV1H\nC0ozbuOCx5l9j3T9jKJHnueRZypEJllJq5r8p/0tclGV+M7j7/bzbXsqZvj77wLLQhBUXlQ4llmF\nGOjkXMQCAWbvBmYVfB2o/i/g184M+L+AQf7/4Dm7O6Xl3E+zdVZZURQXIL99uYCVVm0ZP0r16tU9\n16//+7//Q69evfweIO3HrlpTQUSgFlOG66bAetVW8beo3o8SoXz33XcsodTS380HTXv5RlEJK3sO\nOnXYiE8Gj0Y88ddMTg9aDZqPwjpiBPIwAcWsSFRAUj7wDEBlahKgKCfeCu5mzQPcxhVSpm/MNyIf\n+z+H0Oz6EhDPyVipK4CYu4FzPnFuXVUfDwkUyjYmGTduHGSF9Lf4FBS5eZr4mYC+j/qOxvO/oty/\nlKpcysrzz7uCkqrNkl1RzNWueVRG+N1fy/b2MxC+2tNA0o90daQ15Wxa/wpF87vAWLgz78vuWQ4f\nJ799BS/LpbmzYuv8LApgHjZsmOfOI8uKiRE4FQKyqgxnIgtl6vJ3DFU4vRmkoCtWWnWFSvn+D59K\nx/LQPv7/rxKkgw+LqIzLruqO8yvuQ/t+5h4RpB+TdSsUCGjyo7oD9On2RLErZ57psoc99xxY6MPV\nagk1FwpNxGQhkXKioPgqA5m9azEnaJuB+p/zvXRriSZnISQVFKBNeeKJJwJiUVHK5RfpVqgaAiYB\nIuCLUfnoI7oh7lEWF+cWptgzKTGnqrAoCcyOGbzuF1Epv4ffdcabNPgGKH0VLSZUXArzM2z4bYAG\nAa+GxYgRI7BixQpvJdufJ1KsqFzMlP5bsan+DpD2Z1+treAhIOueYqhUBDIQMVRSUHyB9YFQ0IOB\nZD5a3kzHXYirRiZGwAjkHIHevZ2LmFxNnnkGTKXmAu/lF6/6HZxU5FlJpeVo6/8xI1oK8GMlN0kr\nwdXWqFaclJXlJI3KWmFO5H1KSp4dqHU8XxDQIoNcOln/wavFosKvWmiQa6cyhR0rUs63UzGRzKsH\nbJnI78Iul51LAfAXU2Eveam7RVFpCbAoDkAJaOS3r4yQ/hZNOKWgZKdWkb/7Yu3lHQJScCWzZ8/2\ne6dV80cxVIqnlYIeihKUikpa8g56jqzmLRHJaX/HnpaWCp/fMtKSsSVxPVav34Lj7OodnJa8xWtr\nS3Iq0vb/vT3bYgSMQA4QkFVFWXPkasJsKKB/Ld580ykvSUnAS3SRYkrrPCFrqHBt50rxjpnAmkFO\nEWk4lwpKa7p4XQ5Et88Tw7BOGoFMCchSpmQximOhBcH7vv7nVfcdXUPL6JZYXv+zgN9uc9aS6v92\ncVfR/I7XpFVREhblHnPwvnXr1jQK7YGyTvpb5NqoyuPK5pSg+jQmRuAUCPhiqH5gAott26jc+1mk\noMsdUbEwaWmZzYT9fNIcbC7IXL92IHbIwxgSG58BQSR6Dx2Dzg34g5e6GF2v7gf38xCDHv3bYNKQ\n0eAUx0n9Lhg3pBcqHB6V2hvE9ugrb2IEjEDwENAqrURF6ORqwtUgsOgg+vUDHn0UuOIKl0nM7ZW7\n98rSlcY4jH1cUV7WkSlTf2McDi0oB2kZUmaiCt1c/0owMNjECIQagYr8fiYx1mQyFZFNjP14fi2t\nLl/S6lKfKQvbMDEErYoqThp9XVCMXBYPBRkrnbDiVlTTwp9Ss2ZNz4Xn888/x5133nlUFXt/nsfa\nCi0CvhgqWfu6KNOen0UKusopfM9kNj4Ljp9PkWvNBZVFZcU4KRXxiOn4ilco570ntSqZhBEvTUGy\nEIU3wOsjngR/HikJGD1kEm59dihGvNIXNbVpyVjE/uHtyRdp+OKp7p6SEtP+ScQyFe/Mae+gi7ej\ndjYxAkYgKAioGFbDhqCjLd2kCruAe2WPGj0a6NDBdTE981OO9VeuXAlv8WeEbix/0A1G6VOL1XW1\nHOSHX4OTNhWey2L1+BzrfxZPtIMFPVW7acaMGVm+yT/aJIQI6Jrfv5VK+U1OOf+LiwkbxwC12zIR\nxAQuJjzCYJBxzNpVht8DBtsnU5FRAo0gEq0uK7BYtVUCIQqQTqQr3M+KtzMxAqdIQC5acs8KhItW\nUXoqXM4snErRrd/zUJKgUlR8YItFuKDTyq3bpyslvne4aFPrYjTzlI1IPPreRHS+rAFqNeqAB3s4\nDWTLOpeBJm39NAyeLVtLEzz9QGvQW5aKTnV07ttDz0yMgBEIVgKqxyKfXqYZ9RSVzQxGZz0ez11M\nlpdAZX9SNWy5s6x82Ckg619xNR6Utav223Tv4q9IxbtCMt5ESspBTjbXrVuX5dvGjYxDMMm7BBTk\nvomKh7LUyaVxaTu6bDGLX6FyzmpY+00G0w/jAkI4lfNraEWs5Ool6fvJivDe4oJcw779NmgYFGSs\njSaFv/zyC92+afHxs0SxAO6ll17qWW1SUrioYWIEToGAEo8EMoZKNeWUdESZ70JJwoJpMLU6D0Hs\n1akI4+/h6sUzMHnYc1iiDnLB9YikpT8th4plM3bfKTdL18v/rzLWx8319ots0w61Mu5W6EhL9swI\nGIEgJqCUxropKDaWCoSeK8alShXgqadcVjGlU81uStyD+1xWLlW5ns9JV6V+XMyoyvZKclJWBLgo\nNAMTj/eJ65+bUl326NHjeG+fcJty+L/wwgsn3MfeDCICshYeYrBm0k8MkH+X8SdjXfrgGi/TjbE7\n0xPf6hT12v87cacVdK/vo3zi5a6pYq/33UcrC+NaBgw48bE58G5VZh4899xzIRetQNQ+ueSSS7wi\nkyqcLKXIxAicCgG5aL3xxhv49NNPUZ31eQ7RQq+A+BOJ7/2T7av9dN3L/Ws5E2AoO10oSMYpfO6P\nJ20H5n7yBgaPnc2+xKB9ezp5xXuqyvH75tNZMrzr02mSkl3AUrmYMhnetadGIPgIbNmyBbtSV2e7\nYxG0ONDeAK3sOXU9200F54Gs8OvFrKh3EydSuaB7J+sl4NlngVs5qRo0CLiJbipyHzsV2TKFikj6\nL8Wy65mZaItz5Sp+LotWMuA/quWptGL7GIG8Q2BvgsvIdeb9wKJmVEY6M2UwJ9fF0ycyjZdlfyxa\nKOjZ0x2vCbuq27MwIt5/H1C641wU1T7RpHDRokXeSrY/u6JK4HIB+4hj1Cq5KoWbGIGTEfDFUEmB\nVm2VQMnUqVO9WKoz9P8zj0sQKSppmPFyJwyeThWlTX8MH9geUViBNbG9sYQusFmVYhGlvUPil69k\ntEo9BNFAszoU2z/ECWj1Y+GGvdke5fnMQMPptuczXT3breSRAxXDoqrTnIDg11+db7yvujbrJ7A8\nuqv/ICuM7wdawfAHqNwsp1JTjxOnnd/RXYWqXaUHgWacwJ1BpaV02zwCwLppBE6BQEo8rYNn0ZXr\nSV7fJVw8VQK/H6oAfzbdvMIrczstIhFcDPSntGvnWlPcktKRswYOunZ1STMq85w5LJFUmi677LLD\ntU/kx+9PUV0MBderYn0gKo/7s6/WVvAQaNKkCX777Tds5iLjXXfddZRFxWc9OVFvfZYVPUp0jO+5\nXmvR8t1334WyjMlFMa9L8Mzf01ZjFpUUWVL6PyglhZK6BzRSH+P6pQ3pcrzeF3a+XdUvaMKd4vg3\nFfN3tEdTr0F6dezf5w5O38/XlD0agdwi0I7/3NtV7JX9048a5blGVatWLftt5MUjZS6XMqJsYRLF\nrigIf80axrecx7oOs7iKzElZIbq4XDCTK738TVAcylkvebt7d7mQPvXIye2ZEfAjAaUK3reB1/kl\n/L9XC7iQq7URF/A7UpyWE1oLG6ev3obR4hFooYWBZgZXe0VpyVWs85//BNq2BVq0CPTZj2r/4osv\n9iwqgXLRklXlv4zVUTyMMjuZGIFTIXDddddh2LBhWLVqFcMx6XrsR5GCrsB6JZPQNanXeVmCJ5ie\nwXvlPJYJGPP+DAbALcbwO/uB60J0/5qO2AWrvZoqqTvWYc0mbyO++XY5UuUfS5exdQlbvc9h06qV\n2MJNYdXboq+3WBSPgQ8PwQLWWUlcMQP3p1elj580HnNWJCLVO8rujEDuEVDg5+ne1PtTWYnJvVHm\nwJkv4YSoxRpm3IhmZiJaXiJ/B/p+CUziJG1DIrN4taciE5MDHbFTGIEAE1CcyW66ax3cz2x5VAh2\nfs/XS92jrCWN/3DKSdmbctdaqFosqpUkS6hqJKmgpOLNuNqbU6LaJ1Im5s2bh0AkfihTpgykDKny\n+N692beM5xQPO09wEMiYkCFVRZD9LHJH1LWp6zKvy/FsErk0pmi0ubcNJtD3a8nY59BtLFC/S1/0\n+HMSRs9OwIgBdyD51aFY8lA/F2DPXsYO7oO9hYei2qf9MGKJ63bS7CH4x1tV8GGfBujw0nvY9lRf\njI2LxYBu/HGk1K/PicqSBERiNgb13o6hsf9BA1rATYyAEchjBPZt5ASoPCvb92ERydqsfs2V5ORF\nTCHMbBxPrONKMl26pl1OKwrN4/QH9gpKqsK2CksqtkVB+SZGIC8RWD/EVXlPXgisG8waJqtdJjrF\nVpW8+MhIitGiEkwi6+frr7seyUVzAy0/yuY3ciTQvz9d0fidDaDIRetMWnbeeustRDAJQEbXGX8s\n8Kg9FaGOpRLWsWPHAI7Emg4lAkrIoBTXs2bNorGR1kY/ii/z3Sh6XEhpUeB+XpUgUlSYAfGqgfjq\n0nuhCvLhEdGIilD3OqCDckKHRyAinK+ZYeNv0nomOv9tIzdwZanX4CnovGMLklPTEBFVgW24JCXZ\nTRR0vNPYNiNgBHKIwO5fWeOBJtXCFenaVZfZx1cw+L2Ve13iQuDcT11Hzkj/aVNaY0mPHk45kc/8\n5MmAfOm10iu59173aPdGIJgIpKxib6hkKxD+95681v9gcVQq2kUZe6JCo7pJYvLY9du7t+s3Y/Po\nm+Iyhum7eOONzDpGC0yApGnTppgwYQKTCB6AL1Ylo8KS2WlPto/el8hys2bNGq/9UAhgzoyHbfcf\nASVkUMIHXZdKLVzW9//KT6eozLiwhkwyo4r1d999Nz2l6SqdByWoFBXxC4uIQoVjLBwRzFl+OhIR\nFe3qqKQ3YkrK6dC0Y41ADhOQe8tKrrqeScuJ6j2k/M6g+PGMQ/mJixE13MTtVLqkVVvdGGDoSVyc\ns7bQtxydudTx448uOL9kyVNpLej2UZGvXVTEtDqXVVEqS5NcJqB6JrISrn0GqDmU13w/Xq9USqo+\nzhsz2ym+qs7budxJP56e7lLewmNSkgu2V/C9rsOYGKAuFyH8LEpVrMrd+o7cGYCK8rKoKOYgjr8r\nzTQWEyNwCgSUQljxpVImunXrdgpHZG2XK664wst8l5evy6BTVLL2EdjeRsAIhByB/dvcpCzpO7q3\nvMhAeCokytylitnVnmIwTvqqkOqfnI706OGOlhtKHypBJUrQrEuXGdWEUJrV/VSQmJM+r4gyvchH\nPj4+PstdVpVtkxwmIMVj+wzGUjUF1v+bCvhqFhZ9ywXEqzJ83Q+4cucFbtLS4P8JTA6PNvPTKdB3\nKeNrJFowkJJCRQJ//cVaRhe57X66l3uNlInFixd7K81+atZrRi5lrVq1wowZM7z6LSX0e2JiBE6B\nwNVXX00D/5tMZPkrzj777FM44tR38V2XSiZRv359z/Xx1I8Ojj1NUQmOz8F6YQTyNwFNzDaNp9Xk\nPsaQXc0AYN4q0N1FKYTlWlH3ncDxqVjRFarTGVSnRe4n8qNX0O9PP4GO7cAtt9DF7PQsu4EbgGu5\nIscRzUQCWi3Oquif2aRJk7J6mO2fFQKymEg52TGTQe+0elV9ihaETs5dsSwfZTkM4+T23ClZaTW0\n9h1Hi6lSi+v7p/gVpl6nidBvmcIUwKy4gK+//tqbEBZRlkA/SuPGjdnlhV62pZtU28nECJwCAbl8\nKWWxKsor3bVcwvwpalu1hJQF7Ea5WOYxKUD/Ss4CTLJKYM03N6Ba2BR8vLQTlm+ul9XDbX8jgBbV\nZqFV9W+xtsjjqNr0+ewTUXpi5mL3Ch8+80z228nJIzVpQwGmL6UrSxpdP6L5T/2Xy+nORb/1g3sZ\nc0L3j4L+/bHO8vBYiBPKxiIXFVZf94rYyS2FaSUDJTew0rdW1TprZTmL8j19/lU8VBOlrMp4pnju\n27evl9c/q8eqMr1y9Stzjb8nfuqLXHWUXlOuC5oI5inZt4lKCa+dspwcxNFSUGUgM89VoiXlGxYZ\nfcFd6wX9O1nOU3xO1FlaCLF6tUtzrJpJyhrGoHgGg5zoqJO+t5+WUllVzjnnHC8+4KQHZHGHtWvX\nejUserIIpqqEmxiBUyGg308VJ9VvXMuWLU/lkCzt47suVe+nSh5LJHN63/gsYQqtncuXKw9sA5o3\nb45Gxbj662eRC8fHH3+Ma6+9lvXtSvu5ddecAriUv/uss84KSPvffPMNStLf/8ILGeQcANGEbNu2\nbSxafkUAWtf/yNUsgD4fnTpxtTMAUippB5D0LUsMlAtA60HYpNy3UlYwpqQWLRW85s6h9ULF6KSw\nFK1ON49VwdVppTmWrGMGMcnGjexnUae0vMBJJiv/etae05w4ucbdvapba2J+++23Z9x8Ss/1jy4U\nUlGe0mCDdae0nZxIM8ZpDa0lRTmpLlTWxZqUYfIGuXUV46KWio2WolIuMSXFcTjevb5r9N/3XMBK\nlaJix3i0xx5zQfdyq8pm8UZfAPNEWk8VwCwrpD9FyolqV6jyuAKYlX3JxAicjEA44yc1l1HxUAXA\ny/rnT9F1KdcvXZe9mdAiL12Xpqhk80rwZQ2pIDeRsv6f6O/Zs8frWaVKlSCXjkCIspRokhwoRUVV\nUfVlC1T7KpSkyVmg2t/NFTwxClT7WEMFNEn/b/kPOZRlA922Is7nWH8A/nyNCgmVlVpvctJ2tksp\nnFfG/hQnnxIF/PpWvKTkK2ORitvRfQrFi7t9snmva6E428jONefvCVc2h5D/Dkv6ie5K/L0uVIY1\nTS5gRfa/nIKi+JJSXERputYxiWqR/9j4Y8S+hTrWQUGxYsCDD7pFA7kqqsirlJgsiqwpWoT64osv\ncNttt2Xx6JPvfuWVV3pWG9VuucjPcTYnP7vtkVcJSEHRdakFp5tvvtnvw1CGsf9n71rgoqq291eh\nYSGZ4ovCxGf5CNMkK9+VPbG/qbfQSm8qPdTyeq2u3aRSyywzu2m3sEwtoVIro9KotLRbZlqaj3yj\nooiKijjJKBj/9Z09BwYERZzBGViLHzNnztnP7+yzz157vSi1YR1UB/MX8jNGxYkFE5/B3G2yuBNx\nxvbtoRg96zmNg+Ivo03bWTEQ4KItSwy66anryq9EzeVrkZwIM1ann7E7IQpUhfFX4i4v//8S9TWJ\nSG0Z/MbGyi76NmDePGPbIpJQK8idv/bxNNptb6pQwlmZgf08TNwwINFZwFknqizSPfa5Mp7X9hIp\nyZsSD0Qkg39J2+ipq9V3hmG5ZMhZb2q5a4At+XhVNjso3aQNGe2xUlKMZJNMzGkQg0Ayrsr69evF\nfl/U8jxINKTv1KmTODVbZKmY0QZMSRE4FQKM6UPDesY+oUaHp2OfcFxSrYwOH8isc1PMH8jPGJUA\nNL/hDuz5djamJ8pCSCjHH1DWNioC5RmBXHkK6b2IO8YbHxRNLplWwseJN6NrzAKuWUL57D1VOsiQ\nkF55RZwByAKW3ov69ze69YzXIqJ22bqykpTXD5tRoa0KJZCeJkpNSXY9ni6/ROXtFsNuxuuhw4d0\n2clvs0K8xF0tY/08oOFL+UVc1D7/WI+8gwAZEgavkxgR+PxziTNzVJjERiY+Et0Cl3AMUs2Sasm2\nAbOnxy4lKTRgpuE+bc+UFIGSIEAtmoiICK/FPnEfl3feeWdJmnTW03j+reLVLgUgLKID+kVchWMr\nohCfKnOSV+vTwhUBRaBYBDKWiIHrSgk8J5KStSIhiVgki4cRIj2R3UPq4Yc/X2zWcneB8VlooMh/\nRtymZIHeirioYpwIMi1TppS7brNDtsrZ0KFDvWZMP3LkSNSoIapVZUG2e2yHjO2dL4tUMEl28OPl\nnooKbt2BIhXsb1rRQJhxpbOHABkSCeJo2YnNnGmOe/YU1TthVmjLUgKiO+E1srnwoziioL2pJ4nB\n9W4TN+czZsywIoMz+J6SIlASBOzYJ1QdZKBSTxLHJaU27733njUuyRj5OsmWoH9SkLz/lRQBRaAM\nEaAHI9JqkSKki4oTVWD+XCe7BaKLf50szoNFcnBhCwlSV99KVmE/bPUnLp7ovYu/ZffW8iDGOC0r\nZDdegjNaC6wKC5KPdfyo2JVse840iu6xUyeLfrHs2le/Te7TX6LSJUw4DeIry308/xIfa3wFb46o\ny1hxj+jSlTGQ7pD7RE+I/D4F0SbshhtuwJIlS2Q/QTYUPExU3WGgSRow/0VVUSVFoAQIUFWQKlrf\nffedOLszqq8lyFbiJA3EMQXjtfjLuPQjRiUH6WkpSEtLhzPHqAIUfVecSEtJtvT70tIdRSfRs4qA\nIlAyBDKXiX/YX4H988VTlyzc/pJnL0TUGKo0FDsT2b1s8l9TznkXlKy8ipiKO7W0YaEn+OFit0MX\nqw89BHG9QsMLgEbCSmWHAO8DxzRVFrfKzvvWkTKuj4n64lfCfO8X+6PZIhl7WsZ4I4njM0zUu/zo\nNVl2KPpmTXQlLoyBBEsB+vUDdu+G6HcZz2HFtJieLykV9JbHPBow79+/X/YnZINCSREoIQI0dqdN\nCb2neoMY/HSfSP9L487eG+05WZl+oTmVsS4RsYMnYvUJPalS4Ez6qrkYOWwyNrudDY7sj0nP9UO4\naGYoKQKKQAkQOCbSkWRZwDUUo9Vdr8kO8mUSnE4WbowQf648SHUHlaAQTXICAvTu9vDD5vTEiSYu\nxOLFQK9exjhY1MNqiBejrSdk1BMeQeDgN8bJQ4gw2L/K4rW1MOHVbjDxeig9YQwfEr13Kfk3AjSO\n5z/VMGkfwvhHffsa+zHxyOVOdNNKVZhp06ZZMSw8HfuEMYCoVmYbMF9wmkb/7m3V44qDAFW06PDh\n/ffft9wK295faXBvk31c+JvXC58r/JuhIzguyQg1E+cwvjwufZ5RyUlZgB7CpIi1HEZNexVdw4OQ\nvGQKHoidI+dkN9JFjk0J6D0sTn51xKTZoxAREoBNieMQM3E6HhhwDLNnDUKInVi/FQFFIB+Bo6lG\nfWu3qEsc+gG44n3xUnFI/g/Iy36mMRhmaqp1KXkGAS6cSFQFkwBxVkwIsWGpK3YYrWmUT89GdMNa\nRsQdX8ZuKk10egao9DnKEdW6I+vF4L0tsLylYbqzZdHKOD60n7pWdtqpxqVUvhGQiN94WjZZGO2e\nksxLRG3v7bfpmQF49NG8vjMAnjdjn1wrdjMrV660FoVRUVF59eqBIlAYgTUbdmL33gxc27oR7vnH\n+4i+6VLLzqlwOk/+ptOH6ymF9FHycUYlB99MHm9BFznkKYtJ4Y/wDv3Qv9EcTN9so+rEV6+TSQGi\nRg+1mBQeN456GL0+SMKc1Hh8uKI3BrepxtNKioAi4JTFccZ3YjtxnyzkrjSuVS8SFaUqTUwQuubc\nCFAqEwTsOBFi0Ltm2DCEUl3l4EFjxyLieXzwgVlg2bYvXmyUvet2OlWUJs/plF+itLmyEKUHru3P\ni62UGFMf2yVSwX+LgfUOkQY+I0x2cxMRvva9pjhlUkoEa7lJJLvTlvolOyRutC01zE3CtEqEerz8\nsmVHxtgnjDFBFS1GB/ck2QbM3B1nkMlLyDApVVgEnEezca5IRlas2Yb1W3aj753Xon77EfhoyiP4\n3/JNWL56G27q0AK9br0aPaMiUencbAurXKqtCtnf7sdncs7XHT34NqOSk4xFIp0XuS1u7iSieTeq\n7HYM51Z8b+mFNcJ1Ld3lJtXQvnMjzInfjB9/3a6Mijtmelz+EODi9tgx66V7Qufshdy20eKJSnbx\nA+Q52TlJGJW+RgUmUJ4vN5HyCfn1RJkh8INIW54YLfdJpBwi+xc7iUsBupHkjtdjjxkvYrZExkOt\noket888/Hz169DjtEhk09qzQn2vMgvP4YXEL3d0EWjwuBtHHHWI/9Tf5v9s0q5br+6w0Uiv1OQTs\nAI9Ll5qAkdwAeOopVBW7MW+qaDGIK+O10IB54MCBeao5PoePNsijCGzZvhchFwdZzMcPv2xE7GN3\nombroYh/7UFkZGZhybKN+HvvDnjtmb5oEl4H7dvKZqGLnnz4dvuwQn/7NqPiPCJhHUk1UCfoJPcp\nJztPCaxKoR5lpYsahdCl1S84SQF6SRE4iwgwaOCaL0vfgG3bTF56umkik5zs2GHuXODFp8WT0Srh\n8+sCv7WTeB6iChNwkUhM5FmofpP8/2byVWlQ+ro1p/cQoDve554z5ZNxYdC4OSLpouvV1FQTQ6JD\nh1JF5vZeo71Y8nGnMOJ7gM3DTKDFHePEnkSYpPqCTdO3peJzgQZGAu/FVmjR5QUBun3lPzcEyLQ8\n+CCulbl0l9i1MFDj7XaMJA/2lwbMU0TFkwbMbdq08WDJWpQvILD45w1oUK8mVov61geJP2PGK4Nw\n7V1jMfHpe1CzelUc/tNpMajfznoCVzSqi6pBVXDfXddZTe99u2eleL6Ah6faUGhZ76liPVROwAWo\nbhW1Glt2O9GsOIv4gEoSqZ50BJnyLoMbU1MlRF5kyMSBA0eYQEkR8D0ERHcZn8v/mZIEiUIf2T3+\nRjxMZeeIGswY8XgzWaKnTxOXwUNExeFN4N+iBkMDUyX/QoCei0jUs6cXMUrOaJgvqiSWvr0rKKJJ\nVE4/k8U7V+S3IvmrJPZTIjlp+q7wJrIbTqInOiVFoDQIcENAInWTzpONgc7162POF19g+urVyOa1\nUxBVH6l2Y6tAuh8XlTU7OxuJiYmghKVatWpFJdFzPozA8eN/4bzzzsVHny9D8yaXIDllH8a98QX+\nN/ffiHlqOkaKFKRF00uFEQm1erHyy+dQp+ZFoNOGmzu1tM5FttLNwdO5xb7NqASGoX0ksEzUvz74\nci2iBufvQByz+Q72ILABbpL7v3p1Kn74PQ0dutZxYZCObz/fbB137SwveCVFwBcReEoWYLGnr3Jj\ndUViPGSmbMMNwx/DrHvORZPqYjzaZC3Qbaww7MK4/CaL2RAxGpYdQmT8IAyM6Loy8Ni8eeKS9S9g\nxw5rJ9EKSijeaZR8HAGq54kPfIt47+TlB3oQk7gsF8rJiVu2QHZlRFpmtnh8vDen17xLhNk+93xx\n9jDz9PJpakWgpAiI5y+ZLdFCDO2/E9fhlWRThwtMmwozI+5MiX3Mb5Kdlsf2NR4HSnBYOq6g1KY0\nqpYsQ8n7CPCe0ag9tPbFmDzjG1x5eRgOHT6Cgf96F3uW/wfT5/yAPne2s4zeB0V3shq05quxCAgQ\neyihNi3rW9/Mr3RmCHCZ78MUiJsGxmDisjikzhmBifUm4P4Ol+D3WaMwXTQfRAcAH3+yBLVvbYub\nhg7BxJjJSBrzArpcORHtxOvXqoSXkSgbb2g5BFGNA324n9q0Co1AfbEPqXsaYt/jWaJbvUQWo92E\nEbkeOY1vwPIde3CkcW8DY6vF+XA2EFUvEm0c+M+XKON2cLFLNSIudsUlrrWwpfoDDbm5O/+3v5lv\nRlxX8k0EaCBM+uc/ra8A0bPfQ337i+XFeOONwH33AYzUzQje5eE+MnaPkiJQBghcO2ECVoihPT2B\nMUq4p2mLbCjQsP6aa64Rz8lm593TdWh5JUfgSNZR/L5+J9pd1RCjX5uHZo1DceEFYrP34OtwrH0T\nG7amWapbXa+7ArMmPWgxnl9OH55XQcPLalnHNpOSd0EPPIJA/laBR4rzfCGBjaMxc3QfcK83ceII\n9O4RjTErq4h5PSkYi+NiMWreBgQ27onZk4agkURbGdn7JnTp0gXD4pYhtGMMEib2dNcGs3LqhyLg\ndwikfwrsTTCxINaKqgv19RnrpFYf05W6A07dJe7ItxTx44Wy/86AaM8/b45/+MGc54483c2SgaGE\nhb8//hj46ivD5Gh05VNjfJZSHBIpynhKy3iPBw+GrIKAN0Xdj98kxmyhRE1JEVAETopAZWH46QXs\np59+soI1njRxKS66G9bbEphSFKNZSoHAwUN/In7eT1bO4WMS8Pr0b7By3Q5c3/N5OMSG5IIqlVG5\nUgA6RjbFqi9HW2perz93L+6OugY1awTjxvbNC0jLStEEzXKaCMhWm+9TWIdBmPd1NNIl0nxOQBDq\nhARJo0UHHwWbHxLRE1MX3S4R7PchS97HVS6ui5Cggml8v7faQkXAhcAxcQTBiO+ruoo+vtiZ0KXw\n8T+FMYkGrhMD0PPEMotuVhnv5EyIO+7i598iO3YHpSqffw6Ei7Tn3XclHkVVkfrUNZ6ntm0zOt10\nscl8XBgr+RYCtvcuegxjgDvGZuG3LLywRxhc6sbb99y3Wq6tUQR8AoGWsqHzi0ifv5JNmj59XJtB\nHmyZbVjPGBZ0WazkWQQoJTmSdQxTP/geIwbdgiHPvI9qwRegX8/r8dhz8egm7n9pK0Ij98iIBji8\n9r/CpJyPETG35jWkaUN55ymddQT8ZxUvDEpIAddfxTU9UNLJrqKSIuCPCBz8VtR0hDnYL0xC6hvG\nUxfdrJ4nKlyXPpbfIzIp3iSqCnUT1TLS2LHmO1P0KGfNEid8YmD6zTeiyN1CmCTZMLjnHvEuts3Y\nvdDYW9QllMoegfT0dDFVyRDzI7E/KkxyfwKE4cxJSUHLuDgcE2nZTnHi0ECMetc+8IC1ICucRX8r\nAhUdgdtuuw1vvfUWNm7cKA4Vm3gUDhrSdxCvfd/IXHrFFVdIzFcvz+kebb3vFHYo84jlTev8ygF4\n5tVP8eKTvYUpeQ+VZANu7Ii7MPuLXyzmhLFKqM7VrPEl2Pfr61YH7hEpiU2qtmUj4XvfPq/65XuQ\naYsUAQ8jcCwN2PigKTT5aTGMFg80lJq0nG/OhYkNgjiWOOtEVbDu3U0z5OWNoUPFsPkKEzSNthFk\nYmj/8tlnholhStrBUH1MyesIUIWE//QqVNR/ltwjnv/173/HGrFdOUcYz3PFYPiotGzg7NnoTE9i\nYuSrpAgoAgaBOnXqWG6EKVXJ4aaMh+m6666zjOtpWK90agToYevXNdtwIMOBOx54FTt3H8ATL36E\nR5+dhSqBlZEqxu80eB/5yB14emgU6taqhl+/eM4yiO94TdM8A/dT16QpfAmB4sQSvtRG32zL0V2m\nXfu/lJd7qsfbGJB9DNdc+jMuOCgGs8dlN90LdFWtJQg5ukcC/4nuuheoadAvCDpP1PR2bvBC6eK8\n6tz1qBZ0WMo/6JXyazh3oXUtaftOWYR7gzLFeJ2ULapbdLeaI3256gdRpXIZSaOmue7LnzWljXfd\nZVr4qdjQkGjf8swz5viVVwCqk9FQnypklMTQ5oVqR1QlUyqAAL0BHTlyRCAUDE+TAmQH8WIxpO/V\nq1fJcz75JOofP47fRLKyTf4xZgzw+++G2Vy3DmjWrORlaUpFoBwi0LVrVyti/VKZw9q3b+/RHvKZ\nvUWCuiYkJFjqX2SMlIyXNNqNpO7JEFuRJri+1wtWgMSZH/9PIrmn4ZO3hoIG7NyYGTP8LmFSKiHo\nwkB8GveowlcOEThHbnRuOeyX97u0/Crgz5Xer0drKP8I1LrvjFyuHhB3tIwsTl3nVq1a+SZe69eb\nBTAX0Y0bS2wXUWvbLjY3339vJDFUV2J8EHqsqsB01VVXYSXj6pSSmJ/B5E6XPvzwQwwZMgT7li83\nnt8oPWveHEhONhKx+vXFcUPDIov93//+Zy3gnGLXxOj2nqbDhw+LX4dgcVO/DG3btvV08VqeInBK\nBGir8vXXX4sQeaiY64m9noeJjAo3KAYMGODhkn27uMMOcQEthuu/rNqKPzbvRv9e7RF6zTB8/OZQ\n/PJ7Mlas3ob4/zyESdOS8DcJiBhycVVUFhUvpYqFgN7xUt7vrc7b8N93D+Glp0WF4vxapSyl+GzH\nRA3ju+++k8C57ayXdPEpS3/le1kkNpZFo7fcI3LBdKF4l2pKuwUvEPWGuYjxVoTf3eKql3V06tTJ\nC60H0lLW4ZW47/HsM92sGBheqcRXCr38coD/JFsVbMUKY9T9pzgIEHUkfCnSSUpexJ4CkyaZ38Se\nHsoqCH3wwQfiNCQdtWqd/pzy9ttvW4upM4LqsssA/pPIpJBBYWBJ2VWWrV9zT0QKo6QIVCQE+I5Z\nIfMVmZW7bAmyBwGgVIUR61etWoUIBu4th7Ru0y5LFeuXVcn4XiK4036kTtth+OD1hywbk1/XbkdM\nn86Y9tIAyz0wVbVsGvZAN/tQvysgAsqolPKmpxzvhgkzXsCL77wo7utsVZ1SFlZEthzZXfkxJRst\nb3sQwV5SkVm+51xc1OIGhIZ5Zxd+3ffvo2ZgTTQNu7mIHp75qe3rv0ba4TS0CROJhBdo38Hf8Uta\nEjqFjfBC6eKIScqfMGM6nnj55vLPqBSFoLz8hcs0V/bvN9/0NkZvYoznwhgglC5QVYxukblAphtl\n0euWbbWiSvT7c2TqS8vY16QanieJTAppvthKiXoYkpLM/aAQnl7Fnn0WsqqykuiHIlCeEWDQx1tv\nvVW0V9/F1VdfjXr16nm0u1TZvP766y1GiM8/g0L6M329ZA2aNqgrsUlSxBXwUksq0iV6PCY+HY3a\nISKtFWJAzB8lmnvj8NqWt60+YuxO6n6TaKsoKQJuCJQbRiV9xVy8/NFG3PzQUHQNF7sIJUVAEfAf\nBGwXx50757eZXsZEh9tSQeJCWaRbuOEG8YaWCvz3vwD1uRkLhrYUovJkRWnPz61HnkSAmzGyULP+\nKQGjGhilPmJ/1E5sk7IqVUJlekXyglrMhTIOWP65jPlj20F5sm9aliJQAgQuE0ljC/F0OF8Y90GD\nBhWIWF+C7KdMQvsXSlSoSUEJi6/T0aPZoupZCe99/CMirggDDd3HvP4Zlic+i2GjE/Cvh29Hi6aX\noG1EuNWVtUnPI0RcAZMYi4QU0cyzDJ9VqH6UOwTKCaPiwBcTJ2OZrF+yInsJoyI68EqKgCLg3wjI\n4tQi29MYf5B5oSpYgwbGnoXqY2RueJ5ulLnDf/vtwK5dEnsmX3XAKkc/PIMA8aeTBJLElzhPFm7n\nMZBkKRwAmEJO/nmuXLb2lxkLRkkROIsIdBOX7a+//rplB0bJiiepksx3ZFA++ugj2Xe5CrVr1/Zk\n8aUu6/jxv5Ai3rXqXxqCV6YuQOsWlyHzcBYGPDkN6b9NxtwFy2U/6Vwrqvs/JV4JaU3S2LygiFc1\nN6qkNpNS6oZoxgqLQDlhVILQqnMjIH4zLhbPDxY5U5DwxvtwNL4Nf4+KKBQassLeb+24IuDfCNj2\nKvffn98PLmAvuADyZjc2L99+C9x7L3DokFEXoxSGXsYoCQgNzc+nR2eOQGSkkbJQ2iU2Mpa63pmX\nWrAEMTTGI49ALPYLntdfikAZI0CnDox9snDhQhH0Nvd47JPLxY6PUeu/FHu9v9Nur4yJkdmXiwF7\n53aX4+kJc9Gy6aW4SIIk3jnoNfy57i3sSjtoMSydxH6Enrfoi8nd01Z4mFE/pVqXkiLgKQS4WVUu\nqPblEs9B6OqmLj1tida9MDEJ8W8vg6Nc9FA7oQgoAkUiUL26Of3YY8DNYg91551GTUz0ymUlIdvx\nsnlBOxfbHmb4cBOhnYwM/5XODAGq55HIRDLivaf/bebUrsfUpp+KwFlBgLFP6N3OW7FPKFXZuXMn\nVq9e7dX+7T/owPQ5P1h1PPrs+5ZnrdUbdqLbfRPw55GjVsT2qkGBlnvgjQtfFKnJeZg4Kho9b73a\nUuHqENk0T2ri1YZq4RUeAd9nVCTIktPpgENsbEmOjHSkiDeadEeOOeH6DLmU4sVQNKzrkqjYV9Vc\nxUZCvxWBioOA7YBi9GijGkYJDD2KkRjUkEzMO+8YSQvPMdbLmjVGhUyDHhIRJUVAESgCATv2CV0W\n79mzp4gUZ3aKrubJDCWJ8wrGVToT+kuckFBNa296Jp6d9KkEfM3BA4+/g3+O/QB792daUpP0A4fR\n6ZrL0VpUtCIjGsCx9k0rgvtj4mnrti4RlqH7ZaL2paQInC0EfFr1a9XUQRgm6lyk4I79cRc+xvTF\noovuoj7jEjConRjUCgWEtUZM/1poIHzKqql9JZ8YrJBS49GjS7x1GBOXiOjGyrlYYOiHIlCREKAx\nuO12V9yAWtSypbiY6S6BNmXTgwsOerOaMAGyVQosWWKYl0cfBehNi6plZG6UFAFFoMIjQM9cVNGi\nYX3//v09jgfVy36XwKsMIUC7mJIQGQ6HSEIukAjt/xo/25J+DB71Hs6XuCPPP94TX32/Gg/26YyB\n93TEhVXOxxWNQrFz6atW0ZSS2HTeeTrP2Vjot28g4NOMSsR94zDq2GiMmbMamYun4+OOMZgUF4HN\nc17F5KTNiH/9K0S36weL9QgIR3Q/412iYdRYTGn9K54fMRmpiMS4uIEIFmPPqoWlLb5xD7QVioAi\ncDYQIPPRqJGpOd5sZliukcVA3DLO37TJXHvqKSAlBZCgiIiNNQzMRRcZlbKz0W4v1LlX7HwYsJHu\nV0+X2ookqsXpZtL0ioCfI0AVrTckcO3atWstexVPdqeyuF+/WdRY58yZYxnWF3Y9vnFrGjIyj1jR\n2e8Z+l+JPfIAnp/yOfbtP4yZEwfhz6yjoL3Js8PulKjtla34JT99MspqYt1aop6ppAj4EQI+zagg\nMATXdRMjWGFUgjs+ibnP3WIZxUf8YwgWJA3DZnFTelA2Q4MK9SKoTjiahWShhtyI1Eat0EqCGhZS\nCPOjW6RNVQQUgTJDgPYuts3L55+bahm/hbYsEojRUh+jdCYmxjAqL78McQMEUPJCxsdP7Si4MGKs\nCLpgPV2igbGSIlDREAgJCUF7kcp+PXeuxeTz+bGNyO1vYmIf298lPcf0VN168dW30bHzzeh63RW4\nuvtzmD1lMGbN+wlbtu/Fh5MfwVXN61nP7gsiNaGkhC6DeV5JESgvCBRa4vtet3Kyj1mNqtWgXgHP\nXWIiK7QVe8V2JcwSqVgn8j9yxF2mRcdQ0JolP4keKQKKgCJwSgQYgJL/pO++s74wSnYn6ZI3LQ34\n7DNgxAjj8YrqZEOGABJh3oroLgyArFRMHh/+rCYG8GRWujIC/emSeChSUgQqDAKHDxv1UFEb7fz4\n47igbVsslvhB9IBlk31sf/O8fWx/l/Tc+uQD2Jv1C+7s1hr/GHAzaknAxBce7yWBpo2K1ksj77ar\n1W9FoFwi4POMSh7qx2zGI++MdeA/HSjYbv2lCNgI/O9//xNHSaUXx2cyhojQkSNH7CL129sIiJQ2\nj5YtM4fPPGO8jDGeyHvvGSnLjTcaO5j/+z/gm2+ABx6BF6wmAABAAElEQVTwC8Ylr296oAgoAgaB\nxETgmGycUupIu5StW3HuF1+gXXg42nFDogzoob5dyqAWrUIR8C0Eyv86/4hKVHxryGlrCiOwbds2\nCehdtfDpEv92OBxW2mN8iSqdPQRat86vm4EoSZS80APZhg3Am28CAwYYT2ODBwPt2gErVwK9epm0\n+qkIKAK+g4CoXcnuDxAdDUycCDFGMVLUnj2NJJXMyRlsMPlOR7UlioBvI+DzjEoAXDsVlV1Rqi08\n3Y6L64Hoe2UxbeoybHcOQjU1UvHtkViBW9e3b19xLOWK/1MKHA4cOIBhw4adkVSmFNVqlpIg0Lmz\nSSVegsR9jzn+178g1rfA8uXGvoWMCpmcsWOBBg0gQRQASmKUFAFFoGwRoC3a8ePAggWGOeEzesUV\npg18bm0qIwmKXZ1+KwIVGYFzfbvzTmzdss1q4uakBViX7rTsTTJSdmC/dXYvNm9NL7oLgcESVYUk\n3sHeW4AVS5dgRXJG0Wn1rCKgCCgCZYUAA1LS29g99wCi9me5RWYcFzIv334LvPiiORcRYQJTcifX\nVi8rqzZqPYpARUHgzz/FYc8c09sbbgAmTwauvx5gDCbSSy8B7qqe5qx+KgKKQBkhEFBG9ZSqmnVT\nh2KwK44KUhMxuDcwaUINDBsx3VVeJiYPfgz1E2ehTVChKgLCcGNUKBYnpmJZ/HhQi7zb8GloE156\nW4BCNehPRUARUATOHAEa2993nymHKmH8pxrfgw8Cov+Ot94CqEr20UeQSHDA++9D3AGZuC7Nmp15\n/VqCIlAREaDUhJ78rrkGGDTIqGTSBXlYGMSzRH7cpYqIjfZZEfAhBHyaUWk2aCoWyfxRmBYt6lf4\nVBG/A9Bh+CzMj3HKNdEDCwxCoE/3togu6ClFQBGomAhwofTII6bvNNInY8Kd37vFw0+oyIr//W8T\n62XSJGOsL17GQnbvRh21U6qY40V7fWoEqNLF54iqlnymtmwBdu0C7r0XkDhCqFTp1GVoCkVAEShz\nBMr90j0wSI1TynxUaYWKgCLgWQQkRoN4XAAY04U0ZYqRulCnni6Fa9VCs9mzcae4S44WI/3hGzfi\nOZG21BTG5aAswA6dQqeeAR+VFIFyhwA9IkogU/z4o3l26NSiVStIsBEjubQ7rEyKjYR+KwI+h0C5\nZ1R8DnFtkCKgCCgCnkCAzAedMIwZY5W2YuRILPj4Y3S4/HJQjtyqUycMEDfJ2+rVwxrRse+6ZAk+\nFDfJ1Q8eRKYwPce4WHPRunXrZFNZmRUbD/32YwToqYuxjf72N4BuwemognGOXnnFSFSee86PO6dN\nVwQqHgLKqJTynjeX3ctfJAjcufSnLruZnqZKEkyu2y+/oKqocyCosAGOZ2rrJB5NQuke1QvtZwtb\ny+LnAkbrTkryTIMLldJk+3ZcQnUY9sELVHffPnSWOsB74AW6THa9OYaq0pDz4Ye9UIMWWZEQeFjG\nEP9t6sADWZSFy45yF8Z2kQjyo8eNA1q0AP7+d6B9e+Dtt4GpU/H5a69h6eLFdlb9VgT8DwE6oqA6\nlwRitNQmyaC8+65xD06m/o47/K9P2mJFQBEoEOxd4TgNBELEW08I9Vtp2OoForasmM0CS5d6oXRT\n5NVeK9kU3MzL5V9ml0+jSC+Q7FWD//DSAu4iKdq6B/T8RNe1NJymio+SIuApBAJkL4obHTS6nzDB\nlPrzz8YF6/r1eXEgbhCG5m+yOYLvvjOuWel5LCUFuPRSDVDpqXuh5XgWgZwcSHh2oHdvYOhQCUWQ\nauIV1aljbE449pUUAUXA7xHQJ7m0t5Avfu7k060oA7d5mI4ePSrS688knMKNuPjiiz1cuikuUSLt\ntmzZEvXr1/dK+UtE1YSBDFtRJ9gL9PvvvyMjIwMdO3b0QunAdpGmsI6oqCivlG+5xBTJHPhipbta\n7gZOn25evlRV+M9/gIceMjrWVarkLSq90xgttcIgcOGFpquRkQD/hb4aPx7zJE7EJDIrJBodc46b\nMQMiFgVWrwYef9wsAL0kgTUV66cicBIEDh8G+E+X3ZQKbtsmuz2y3XORbPvQc57tPU+ZlJOAqJcU\nAf9CQBmV0t4vO0Af3YV6IbL0cdGzXSsL1/YUYzOytRdoo+yYhtFvvJcYie1iyGsFMrz5Zi+0Htgj\nDFyaGA9busheqOGQMCkbxHVsFHWdvUHc0SajQh/9ZFLIMNpM7/79wNy5xm0mmRaqLrzwAnDbbcDn\nnxt3tTQAvekmk9cb7dMyKwwCR0UtzEFpHscT/0ky/i0bGEosabRP3X96HKOKDX+LaiQGDABkU0VJ\nEfAaAjSG/+QTgBHhyYiQURbGGm+8YaR97oEYvdYILVgRUATOFgLKqJwt5LVeRcBGgAtERiQnkRGx\niVGRSf/9L5CVBXCXMDoaqFEjn1GhuphrVxxiZ2CV89hjJuL5kCGAw2F2xL0klTMN1M9yiQDHFokb\nMfynlOW334z0b9Ys49qVBvhi42JR//6GsTa/PPdpS3lEQqtUgRDg/f71VyM54ZwmTiIsb3chIcZr\nFzfxlBQBRaDcI6CMSrm/xdpBv0dAdrtpCG3RE0+Yb9tzjb14vOoq492maVMTxOzTTwEyKsOGQXQH\ngaefhuiwiY7PV8ZVJ9V5KE3butUsPKnrraQInAwBMtSiKmrRwIHmW5iI482bwyELyot4nf+eJilT\n5DcIEkZdR6mnwfWh8siQUkrct6+JF8S5je6EOffRoYnOUT50s7QpikDZIVDxGBVnChLeeB+Oxrfh\n71ER6k2g7Maa1uQNBLgwFPezFnXokK/GJx7jLJo2zdi4iAqbpTZBaQx3KfnypxpPRAREfw546SUj\nqaHXqMmTAe5giv2PZYhdvbopSz8VgcIIyMJyqdhStRcPYk5xe3y+m8vjwklL+/uw2CRUk/G6TMZo\n29IWovl8EwFKfA8cAHbuNBspdOBA9VeqO7eVu033wiRlUgwO+qkIVEAEKh6jknMACxOTsDk4BL2F\nUalWAW+6drkCIcAggfwn0daFNHas+eaOJd0v165tggbSYD893djADB8OPPqo8fpEhxE9egALF5p/\nGq527mykMU2a6CLCoKmfioAiUBIExHbRsr+7/XYj9aUkhRsq/KdEhR68lBQBRUARcCHgO4yKuBp0\n5jiRExAkIn7ZzE1LgTOwJupUC8y/WTkOpO3eh6ycAFxcNwzul2Dnh+SXLI6MdBw8eBhVaoYhhAUW\npqDCJ/S3IlDBEHCXxnDRYBPd15LoepuG0sePA/37A5Ss0NMdHUlQT5zedmj0HxtrGBoaVtOehkwO\nGR5KbVQaY0GpH4pAhUeArvYXLTLzA1VYw8KMJLeabBcGykv7zjsrPEQKgCKgCJyIQBEr+BMTefvM\nqqmDMCx+s1VNcGQvdMuagzmr+TMYoxLmomudAKQsnYEhI6cj060x3YZMwciezVAgf8f+uAsfY/ri\n/JR9xiVgULs6kq6v1CO+1kmp8ejRJd46jIlLRHRj5VwsMPRDEbARYPwNO9gomQ8SPY+RcnNNnA0y\nIrfeatKRaaGHqCefNAHXaC/z4IPGEJuxYr74wjA4dCdN2xgax5JZUlIEFIHyhwA3OagKOGiQkcBS\ncrtpkzlHSa4+++XvnmuPFAEvIOATjErEfeMw6thIjJmzGZnL5mBDn/5otHo65Bf2HHDCeTgR9wuT\nEhwZg9njoxHi3IRxd8cgafJg1L9SmAwr/2jJvxqZi6fj444xmBQXgc1zXsXkpM2If/0rRLfrh4ZR\nYzGl9a94fsRkpCIS4+IGIljEzlXrym6OkiKgCJQcAdq8MBggyV0a8+OP5hzdLlPFg/80vKZ0ZdUq\nY0/D42uvNfEQ/vlP45753nuBN98EuNNKmxmql9GeRqlMEEiVYHlZ4lnu1VdfPe36kpOTTzuPZiin\nCNDmhJ7g+C12S+DYuOYaE8yWrvwlLphFyqSU0wGg3VIEPI+ATzAqCAzBdd26AsKoBHcbhf8M6opN\nYcfw/m+V0a5eAL4eEyc9D8ZjjwuTQgwCG+Oe+yOFUVmGhd9tQfSgCMkvCx9hVII7Pom5z91iGclH\n/GMIFiQNw2Z5CR/MEUlznXA0C8kClz+pjVqhlcSvUBaFgCopAh5GgEEF7cCC9DxGYuwDEqUxjCJN\naQ09kdErGVXFGJ9j1CgjhaEXM8ZMuPtuYNky4OOPjYHt9dcbaQyDEepix+Dpgc9gYR4riX1Ap06d\nTru0i8hUKlVcBBghnjGfuso7nN4It20D5s0D3nvP2MfZHuIqLkLac0VAETgDBHyDUZEO5GTLzqtQ\nrVCzi9r4lkEQfkM8Fq3Dm7JOgUhXxgwYhE8vE4Nfoaztq63vvcdkkhTKy9+gXgFPXib1VuyVmFFh\n1O7KEcM9i47B5HT91C9FQBEoGwQojbGDmN5xR36ddpwMLnJoYMvYMY88YhgaRkZn4DfqsnMxzeCD\nDz1kvJb17g3EyWbGU08ZdTQyPrShUSoxAkHCNAaI+9/WrVuXOI+dkJIYpQqIAL0HMhAjmRNuMPC5\ne/ZZ87zSS5fanFTAQaFdVgQ8j4DPMCp5XTP8St5PMhYHXL863hONG2vLGsb6/X/WZ41mTfPT8uiY\nzYgUPO17HS3YPv1VcRF499138T1tOEpJR12RwXdLrIFWrVqVshQfysYYLyTu1DMWDOnll803pTGM\nqUCGhUEIadhP96Zkcmx9eKqc3HWXicfAAIUMTli/vnF7umUL0KKFSmMMmvqpCJQcAXujgN4Ar7gC\noNSTtmYkxjvhBoSSIqAIKAIeRsD31+8BlSDmukKhuDWqK9pRKuIJOqISFU/AqGWcOQJ/iZvg4/Ss\ndQYULlHEq9F7TnknLoZolEtyl8bQmxCJxvy0i6GOPGPBkKFZty7fhfLNNxvJDG1iGK+Bu76MrP7M\nMwCZGNrFkPlRUgQUAeDPP02ME5G24corzbNEmxPap/H54b+SIqAIKAJeRMBnGJUAVDbdrFypYHcD\nG6B9JNXUU/FOwiq0E3sUmxyrZuAfH1fH689FibpXUfndyrJ7KvpelqJC6jJsdw4q6OLYLli/FYEy\nRGCAuPUdQM84SmeOABkT/tNgn6phpFdeMd/8pDSGi64+fYA6dYx7ZdrAMH4D3SuTkenWDejXD1iz\nxsR2EFs2K/gcGRkGyNSd43w89aj8IUCpJZ1h0OEF3Y3/8AOweDHwwQdmk4CR45UUAUVAESgjBHzE\nN6gTW7dss7q8OWkB1qU73OxHAtGlX4y5Fj8Mz8xYiGSJXrtuyQxEDZsuLk4bikF84fwSj0VyZKTs\ngDhMFdqLzVvTrSMEBotshiTewN5bgBVLl2BFcoa5pp+KgCJQvhGwpSWUxjAODG0ykpJMnxnQkm6Y\nGd/h8ccN87J+vTH8p2oed5K5iOvZE5gyxUhgaBdDadjatcC+feUbO+1d+UaAjDnHPxlxOr5Yvtw8\nB199ZfpNxxfcBFBSBBQBRaAMEbDlDGVY5YlVrZs6FINdcVSQmojBvRPRZ9InGBRhVFmCmkUjYdwx\n/HPkdCyePkb+TRkdYyZgVHQzrJM4LAXzA5Mm1MCwEa6EYog/efBjqJ84C22CwnBjVCgWJ6ZiWfx4\n0E6/2/BpaBNeAdRmDGz6qQgoAkUhQBsX/tMbme2pyN1dL6Ux9DTWv79hZg4eNC6XaTj8978DPXoA\n9EpG6dgffwBvvGHsYajLT2kMv1UaUxTyeu5sIEAnCFXE3cy//mVUHulmnGOcNm8rVpyNFmmdioAi\noAicgIBPMCrNBk3FInm3n4zqSByUWYv6IiM9QyLYy1qiWogVgZ55isu/aJGob5xAAegwfBbmxzjl\nihQUGIRAn0DhhIbqCUVAEfAlBBjcksSdZZsYxJJE9Ri6aaVhP6UsZGgY3K5WLWPoTzfL1PdnXi4I\nu3QBpk83ATS5k027G6ZVUgS8iQC95TG2Cb3iNWgAMFp8ZKRxXEGX3wkJ3qxdy1YEFAFF4LQR8LMl\negCqecjtaGCQirBPe7RoBkVAESgagcpiI8d/eiyjfQvptdfMNz937TLHMaLGWr8+QGmM7Snp/vuN\nhzJKXAYPNtKYSZOMWhoNmOlZqU0bk18/FYHSIDBnjjGGZzyiDz8E6A2PsU8aNQJatixNiZpHEVAE\nFIEyQcBHbFTKpK9aiSKgCCgCZwcB2yMbJSpcGNJbEheNJBrzk0Fp0sTEo6B6GJkTSme++w644QYr\nmWXk//bbxvPSyJHm3MqVahtjkNDPwghs3Ag8/LA5S5uqX34xcYlsV+i33GJUvwrn09+KgCKgCPgQ\nAn4mUfEd5Bzi/lQ02UWKnoxDXCx4mI7RxarQBtl13bNnj4dLN8VlS1C9HTt2eKVsFpqZmSm2x7lY\n6QV8WP7evXutOrxVfoo4bSBG3iq/tuiD15V+2GOJfVKqgAjQ4xj/acRve1R6/fV8IG680RwPHQo0\nbCheQjLy41fQzTKlNPRM9s9/GibmpZcMI9S8uUnXtm1+WXpUfhGgWhdtTkaPNgFTOS7I7Mo8DNt9\nd/ntvfZMEVAEyikCyqiU8sYeFNUNMiqrJWL2Juqje5i4wCctk93W82is6wVioMB1EmNiE3XpvUBH\n5MWZIYsqMhTeILaf8Ue+/fZbbxRvMSlkGL1VfjvZNSejQow4lpQUgSIRqFrVnHa3jbnuOnOOmwC0\njeEzxlgwpO3bxXCvGWTgGkkNvZF17mxU0ujljKo/L7xgDKbJHKltjAWbX37QIJ6SE9qbXHIJ8OWX\nxuaEUrl69cy99suOaaMVAUVAETAIKKNSypEQxhe8UPfu3U2E7FKWU1w2LvJfkp3R++67D3Xrcjnr\neXpF4kvcIGol3opm/v7770vsvJoSmuJmzzdeSvz666+RlpZmYeSNCn7//XfxXJskG9WyU+0NonG1\nlH8pg6cpKQKlQYAxYfjPRSn/SVTzsYmG+ySOYaqWkaERSaFFlN4wKGZoKG4eMcKcIwPTsSPQtCmw\nbZuJH2Ou6KcvIfDpp4Y5oRrXhAnGq9wnnxi7JtpJKSkCioAiUE4QUEalnNxI7YYioAgoAicgcOGF\n5pQtjSED0qGDOcfYL5TGiGrp2t69gffeM1HIyUDLJoAVS4ZOABj475FHAKqS0SibzMzPPwPh4ZY0\nprJsqoSL1OccqqjStbOH6RxRX2L5ldiuikxkHKnWFRcHvPuu8R5Hxw228wbblqkiY6R9VwQUgXKH\ngB8yKk6sWvAJlh28FL17d0A1P+xBuRtF2iFFQBHwPwSoUsp/kcTsZDBLMiqM/WIT48KQ6G75iiuM\n5zLbXo7SGBr0X3QR2orXsq1UQbrsMpPew59kfbayTLbjxx89XLoPF0dMabs0caLBPjaWBm3GY9y8\neT7ccG2aIqAIKAKeQ8Dvlvk5Kd9h2HjZURKqHJGIfs08v4PnOXi1JEVAEVAE/BQBGmaTbGkMXdl2\n6mTO0S5C7MOQmmpUkCidoTqs7d3MpPLMJ10579zpFWmNZxrowVLInDCuTkQERCcUmDnTqN+RUaxR\nA/joIw9WpkUpAoqAIuD7CPgdoxJwcU3I6xKb5b96lfzmpyxJwPs/OHDboL8jIiT/vO/fAm2hIqAI\nKAJ+hgAdiPCfUhS6uSWjQm9j99zj+Y5wsU71pquv9nzZvlLi55+boJ90bEJ7Iqrc0Q6Fzg9s9T1f\naau2QxFQBBSBMkRA3jR+RkFt8N9PEpAwez6iwvODNh5Yv1DskuPxw3YRjSspAoqAIqAIKAK+jACl\nUQz2SbfC9MRGtbaePWUXTrbhyATSlkiZFF++g9o2RUARKAME/FP0EBSCamIEKmagyOtAZZeaQhmA\nplUoAoqAIqAIKAKnhYDTCdBt8NSpxjU0vbMxXhZjndA+yKbzz7eP9FsRUAQUgQqPQN463x+QcKyb\ngajB011NDcWExFlogxXoGzUCsjdl0ZwRPSB+aYBGMZg/NRr5MhdzXT8VAUVAEVAEFIEyQYDMyW+/\nAXRWQBsfqsdRhY0xT+hG+IMPyqQZWokioAgoAv6KgF8xKkHN7kbClNoYNXi82KhcYKQpQU0xNm4K\n1sx5HhOTUhEZMw4PXR2MLFTPl7b4693RdisCioAiUAYI/PTTT0hPT5cNf9nxP02aIOnFqkLJHYEF\nCwwjcvgwcO+9kIBPxrVzixYVwymAOxZ6rAgoAorAGSDgV4wKRD5Sp1lndG0kjAqt6S0KQnjjZsgK\nrSG/UtEsooX8Vk9gLnD0SxFQBBSBUyIwcOBA8VJcD1deeeUp0xZO0Pitt8wivPCFivZbGD0rgOZ/\n/gPQOJ5Sk8cfNwE2qc7Vrl1FQ0T7qwgoAorAGSPgZ4wK+0vLlOLpWPbJrxefU68oAoqAIlAxEWgh\nO/38LxVRelARiWpdublAQgLwxRfGIJ5G8IcOAZMn5yPihSCY+YXrkSKgCCgC5RsBP2RUyvcN0d4p\nAoqAIqAI+CgCR48CP/8MdOwIET8Bw4cD115r1LkC5HXqbhTvo13QZikCioAi4E8IlD9GRQUq/jT+\ntK2KgCKgCPg+At98YwJc0gD+1luB3buB+Hjg8ssNk8IAjUqKgCKgCCgCHkfA/+KouEPgxmZli/k8\nadka2/+Xe0I9VgQUAUVAEVAETgMB2xB+xw5g4ULghx+A9u2NYXxwsPHepWpdpwGoJlUEFAFF4PQR\n8DtGxZmxA9v2sqOb8eXX6/IsVoKrh1q93/zxDCQuXYElS1YgQ6Urpz8iNIcioAgoAhURAap1OSRg\nMF0G33gjULUqUEXic/35J/DCC8CYMSYOCs8rKQKKgCKgCJQJAv7FqDhXYWiPwUjKNNgkTRyMt1Zl\nWD/C2t4Ii1XJXIaJI0cgdkIS9imjUiaDSCtRBBQBRcAvESBz8u23punXXw8wCONVVwEDBphzDM54\nxRV+2TVttCKgCCgC5QEBN+UpP+hOYASmLlpUZEMD6nTArK/nwyER65ETgKCgwCLT6UlFQBFQBBSB\nCo7A998DGbLJFR4O3HEHkJwMvPMO0KCBkaQ0bVrBAdLuKwKKgCLgGwj4l0TlVJgFBCIoMEiZlFPh\npNcVAUVAEahoCFB6cv/9wLp1gAS4xOLFxnPXXtElrlMHoEG8qnVVtFGh/VUEFAEfR8C/JCo+DqY2\nTxFQBBQBRcBHECBjwlgnlJ6MHSueVpYB1aoB2dnAv/6V30hlTvKx0CNFQBFQBHwMAWVUSntDVqww\nORl5+PnnS1tKsfkC//oLD+7Zg5A5c4BKlYpNdyYX7pOdxKC4OIAuN71Atx04gADGFqCHHC9QO/HK\nk81Fx8SJXigdaJyVhTr0/DNrllfKR1qaKfe337xTvpaqCFQ0BI4dMx66brkF4D9jnDz0kIkYL3Mq\nGDVeSRFQBBQBRcBvEFBGpbS3it5hSNu2WV+e/qBOXl0WKsyKt6iWtwp2lVvdy+Xn+d6h+1AvkPj7\nAf+R6mWX19SV//BDE59h+3aAO8GtWgG0x2rXDkhPB4Rpsox6f/3VxG44csScq1fP6NfXldFy/LjJ\nW12QzxSPE2RAzznHRM8mw6ikCJRXBP73PyAlxTAmPXoAq1cDb7wBXHKJ2Sjp27e89lz7pQgoAopA\nuUZAVy+lvb1ffQXs329egpUrl7aUYvPl5ubiiCxGAwMDcd555xWb7kwusPzK0nZL6nEmBRWT1ylq\nF+eee65VRzFJzuj0Mdk9/Ut2SYmRNyhHHDOwjgu8JHHCU08Z1ZSnnzbxGag3/+67hjmdPNnsCC9f\nbiQ61Kv/5BMTu4GLsvnzTVwHMjMNGwJJScAvvwCffmoiZ5NxoZvVLVuAadOA3383evjcUaa71UmT\ngFWrgNatgSeegNwk4MUXjXoMA9pRl79WLWD0aKM6078/cPPNpq5nnjH1U5p49dVAixYAz82eDYwf\nb9K0bQuMG2d2sBmtOyTEMF2vvQaMGmXy877R0xI9K3HXmxG/SdddByQkAL16ARs3GubrmmuAzz8H\nunY1wfbIqNE7E+0M+E3GjJsHDMDHRSqNorm7znRcrJLZrFHDMG08Tykfmb/zz4cMUlOvfvoXApSQ\n0DvXww+bscz7fs89Zl721jPrXwhpaxUBRUAR8HsElFEp7S3kIo7/XiLZB8eFXirbLtY7Cl926YAs\nQ71KnmcPCzaXD4dXHxAu0G3at88cuauxUUJCuvJKCEdmVAApfWGQOZ77xz/MdTIjNAbmgp0LNRKD\n03Gx3qYN0KmTOUepDRfy1NunJIb03HNAy5ZGGjNihDlHJoXlk3m5+25zjoHuWB51/Mk0kFgGF/9U\nTaxZ00hvyFRz4U+VPLaVEh2quPGbjAEZL3rmI+Nk94MMFesk08V+kvGhTQGZkrlzzcKzeXOAzBL7\nRcZnwwbDiHXuDPz4I/DFF+abgfnYdrqcJeNH5obfjRoBH30EbNoEzJgBrFwJXHop8OabpvxXXzVl\nNm5sMGE/2AYufjt2BAYNMsxWbKxhCHv3Brp3N5iQ4aQdxCOPGCaLeNIGgswkGTh6kCLjxuPp002d\nvF9k0sjMkbkjE3qhPPGsi8wc7wWZMOLG+/f226b/bA8ZrQ4djBSOHqsoUSSTRjUn1slyRe3SYt4o\nmWP/iR/xJ0PHPhKH0FCDNxlXtoeSOzJwrJP3iDFEOAZPtVFiS5fpOcsbaoyUMpIOHTL9olTx0UeB\nNWuA2rVNe4m9Tcqk2EjotyKgCCgCfo/AObJzn+v3vdAOKAKKQMVEgAtpMkaWW3LX4poL7osuMgwZ\nJSpczNoLcy7WKQkl80AJFJkvMm5c7HOhTwaHzBzL40L49tuBefOM2h3V55YsAfr1M1KuZs2Mlyhe\n/+c/jWSI5ZIBoO3XSy8Br78OywUuY3GQKSFjRGkWJV6UHDHfzJlG8kQm4c47gfvuA2ibxpgeZBpi\nYoCbbjLMGBkWMoDPPmsYzG++MW0hs0r3umQcyTRRskbj8a+/NviQgaMk7ssvDUNHadbHHwN//AG8\n/75hMKgyyHbTCxYlb+vXG2kUJW18TZCpZT1kiMkosK6RIw1DY9vseXMUXnwxEB1tGD5KtHmsKo3e\nRFzLVgQUAUXgrCOgjMpZvwXaAEVAEVAEvIAAmQtbkkUVN0pibLW33bsBLvxpD0UpS1iYYVrIZPEc\npWCUTC1dahgtMoRUw+vc2TA/lMqQQSSzR2nWZ58BTZoY5sXTXSHjuXUr0KUL8NZbhgn1dB1aniKg\nCCgCioBPIqCMik/eFm2UIqAIKAKKgCKgCCgCioAiULERkC0xJUVAEVAEFAFFQBFQBBQBRUARUAR8\nCwFlVHzrfmhrFAFFQBFQBBQBRUARUAQUAUVAEFBGRYeBIqAIKAKKgCKgCCgCioAioAj4HALKqPjc\nLdEGKQKKgCKgCCgCioAioAgoAoqAMio6BhQBRUARUAQUAUVAEVAEFAFFwOcQUEbF526JNkgRUAQU\nAUVAEVAEFAFFQBFQBJRR0TGgCCgCioAioAgoAoqAIqAIKAI+h4AyKj53S7RBioAioAgoAoqAIqAI\nKAKKgCKgjIqOAUVAEVAEFAFFQBFQBBQBRUAR8DkElFHxuVuiDVIEFAFFQBFQBBQBRUARUAQUAWVU\ndAwoAmcBgdzcXBw/fvws1Hz2qpw9ezZ+++23s9cArdlvETh06BCWL1/ut+3XhisCpUHg6NGj+OWX\nX8BvJUWgoiKgjEop7/zatWsxd+7cUubWbBUdgT/++AP33Xcf/vrrrwoDxa+//oqdO3dWmP5qRz2H\nQHJyMl577TXPFVgOSpo2bZo+T+XgPp6sCxkZGXj11VeRmZl5smR+cW337t14++23wU06Jd9G4Ouv\nv8ZPP/3kM41URqWUt2LHjh34+eefS5lbsykCioAioAgoAqVHYOHChdi/f3/pC9CcikAZInDw4EFw\nzCqjUoagl7Kq33//HRs2bChlbs9nU0bF85hqiYqAIqAIKAKKgCKgCCgCioAicIYIKKNyhgBqdkVA\nEVAEFAFFQBFQBBQBRUAR8DwCyqh4HlMtURFQBBQBRUARUAQUAUVAEVAEzhABZVTOEEDNrggoAoqA\nIqAIKAKKgCKgCCgCnkdAGRXPY6olKgKKgCKgCCgCioAioAgoAorAGSKgjMoZAqjZFQFFQBFQBBQB\nRUARUAQUAUXA8wgoo+J5TLVERUARUAQUAUVAEVAEFAFFQBE4QwSUUTlDADW7IqAIKAKKgCKgCCgC\nioAioAh4HgFlVDyPqZaoCCgCioAioAgoAoqAIqAIKAJniIAyKmcIoGZXBBQBRUARUAQUAUVAEVAE\nFAHPIxDg+SIrTol//fUXNm7cWHE6rD31GAIpKSkeK8tfCqpVqxbWr1+PP//801+arO30EQT27NmD\n3NxcH2mNbzSDeHz//ff4448/fKNB2gqPI2DPlWvWrEGXLl08Xv7ZKPDDDz/EOeecczaq1jpLiEBq\naipq1KhRwtTeT6aMSikxDgoKQrVq1fDss8+WsgTNVtERaN++fYWasO+9915MnToVW7durei3Xvt/\nmghwU+jhhx8+zVzlO3nNmjVBBs7hcJTvjlbg3pEZbdq0KbKzs/0ehcDAQAQHB1vzvzIqvn07c3Jy\nrPWtr7TyHHkQdJuqlHeD0JWHCaSU3ddsZ4hAQEAAzj1XtS/PEEbNrggoAoqAIqAIKALlFAFlVMrp\njdVuKQKKgCKgCCgCioAioAgoAv6MgG7n+vPd07YrAoqAIqAIKAKKgCKgCCgC5RQBZVTK6Y3VbikC\nioAioAgoAoqAIqAIKAL+jIAyKv5897TtioAioAgoAoqAIqAIKAKKQDlFQBmVcnpjtVuKgCKgCCgC\nioAioAgoAoqAPyOgjIo/3z1tuyKgCCgCioAioAgoAoqAIlBOEVBGpZzeWO2WIqAIKAKKgCKgCCgC\nioAi4M8IKKPiz3dP264IKAKKgCKgCCgCioAioAiUUwSUUSknNzZl1RIs3ZReTnrj6obTiZwS9Mjp\ncFqpMjat8DoGGZuWIEGiqy9YlVaClmkSTyCQJvc1MWEGZsxIwJJ1ZYm7A+uWrkD6KQdhDpxMk5OO\nFUtKkv40UXEkY+nSTYWehZK27TTrKm1yR4pbG114SFll8UyWtsmaTxFQBMoYgZwMmSOXYEmh/xUn\nW7u4zX/lYT6x1yslRt6Z5ja32rl8bP63m+Wlb2VUvARs2Rabgc+GxWJ+2ilXVGXbrDOpLWcdBt06\nAKsMD1JsScmJT+LuuLXW9e1JIzAyaVexac/4grTp8ZhYfLB6M7bsPnzGxWkBp0LAgQXP3InomBH4\nbGUqUrcuROzgaNw5cWGhRfupyinldccGDB45AptPOgadmDvoJryxKkMYlV2YGDv6FOlPvy2OLZ9g\n5MgkONyzlqht7hm8e+zY8pmrjW54SJXWM5m43buVa+llgkBORjKWLFyCFZtkrBegDKxaslDO+9dG\nWd6CsQCTXaBj+sPTCDi3yBwZi9gJE/Cm/E/gv/ye8ePeYmtyn//8fT5xX68U2+FCFxwb5vr8/F+o\nyR7/GeDxErXAEiOQ48iAI6AagoRj3rj9AKo3bII6Qe63xIn0NAcCQ0JgTpvfQXVCEOhei3M7fpTf\nAxrXsc460tOscutUy0/lyODLxYnd+7JQNzxcystB2qaN2JNdCZc1aAyTVMpPdyIoCEjZmgpUD0Xj\nOtWsMp3S1pyAABxM2Y1KdcOtdjrSk7FjVxaqXFIP4SGSyUUZaclIPZCFqrXqIcztfFHpWS4Cg+BI\n2Yi9OVVRLzzM6qtjdxr2ytJs326pN7waiIpdbpWqtRAWFiLnHEjetB44eggZsqXdtG8CZgeE2M2A\nQ9qxY0/B9hVXX14m+8CZjk1b9yK7SnU0Ca8jdeUgI4VtCsWIx0ehQ1h+f+0s+u1ZBFIWvIzxi4FR\nM+eja5gZy0NXzUDUsDGYHXUdohvLuRPuk7Qhx4F0RwCCsA9bU50yjMPAZ4HPW4acDbGfMabjeLee\nJydSNm3FAXkeLpHnIYTVyXgPlb9K7FaOPBsZOQhxjeccp5SVEyjp9mHjZrl+aB+cAc3xWsJb1vPD\nLHzeTihTzrHOavJYJW9MRYA8Y2HyjNlPfY4jHck7ZNxVqopQeRaq8YIck+w05odb2+REUfkc6bJw\nrGbPHUzjajMfdgu3XTK+a7vGt1WI4Cb1OPdhX3ZVhFvPGGuTsZ+eYc1DhMUqxxngwsJ1rXk/JCTk\noFqOGx450snKoQiWPObZBUKbhJs+sVglv0LAuf0bxI6Jlzb3wieLBsO8GWQoJc/HsNg4BPeagHmN\n8+dfX+4cF4zDNv0N84a3gWGyIX2S96AvN7o8tE3mVJkFMOnDWYjgZOJGnMPM/GwuWPNXkIwn9/nP\nmk/kbcz51ynzr73G4fwsk9cJayOZu9KSN+JAViWZe+T+2pPoabw3OI+fbM4uci61+lW47oLrlWqB\nbExR6zADSnrKJux1VkV1VAYnUbvp1lX3dxNLKeK94bn537TnbH4W6PvZbEhFrHvVjB4YMce9590w\n8+uRCMu7KxmYGh2NpMgnsWj8LVgy7lbEJkmaRZLGLZszZSVS0RHNhE/ZNPdJxExehphJnyDafoid\nq/Bgj2GSxlD/KW/j2KsDES8LLC4iMmXiGDXzHXS9eAMe623SBYcGIzM1E436T8LUfhHYMKMfhs3J\nNAX0moQp1eMxOG4Z7HQdh0zBcz2bYcWMRzFi+mqEhgKpUmHHJ6fhuVvCsS7hySLTFyjXKr0bpn09\nFL++PEbaBYx/IBZ1E1/A7tcfxPik1Lz6gqNG48PeGRiTyFRjEBs6CQMcwzDs6AQsGt4cS6YMReyc\nzQiWDmZKksiYSRgfXagfefWNRHge5kD6ihnoPWK6XDXooFEfJPz3Rvz3AdOm2Puj0H9SIvpFKLNi\nQeiVDyeWfSlcStS4PCaF1QRF9MXMaR1xsTAuRd6nqYMQtDEBvQdzQZVPMVMS0W5LLB6YWB+zFw0H\nl1PJ857CA5Ob4pPELni172AkyTgxdzwYT06bhVvq5ud3rH0H8mjkLdDWvtPDGmtxdWcgicnGxCB0\n3GhMHxmLcYmL0A7rMK6oMmtuyXvG7NJDe43DrMHtkLZ0KqJHSrvtQSvPdNz85+DWDDtLge+i843E\n74/1xuTr5HkY3EbSOzHvwR6Y2W0KPuy4A3c/MF6eL3t898fsqf0QWAC3SHkOx7uei90Y1/t+1J7w\nCYa3qYbFL/fAmMVRBsf0xejR+zWMGdcNo0YCE2I25OMhz0jbyhcgM34EeuTNc3y+Cz5vBTqjP3wX\ngUr2fDcHv6Y9iK51zKS54ZvPrTYHBVXJa/uJm0qy2CvJpptVwokM/kk3GU6L6WYFhRaMNpPtWpBy\no263bNTlVJWNurBqskG1CdtFgH6Z+0L3JAvMPBD0oFgEcopQ/lg7o7fr/c35yoEZvXvjqMw5MfnD\nKq+89B/HIXpMoKyFnrPWQmmLn5Hfta05KY//yUnBlH73Y46sQ8xM1wjjPpmKRluKeL+f5L0RXa/4\nOduZvKDIuTSkiLrHTu5eYL3yn361MXVQ9InrMFkALpnST9Yvst6RhnP9gtD+eX0vfOD9+b9wjWfh\nd67SWULgcO70Pp1zOw+cnruPLTi8PLd75+65Px0u2JzsHfNzO3funPtE7FD57p777e7sggnk19Y5\nT+R2fiI+dzG/Ow/MXVw4TdbK3IFSRuxna3Ozsg7nbvqMZb2Su9tV0vK4PtKOOXLNlW7+VutK1tbP\nJF2f3OXSprXTmWZ67u7Dh3MPp3wr5zvnztma5Uo3x0q3Mutg7mTW48q/76fpubFxi3MP7y4ufX65\nB1nS4bW5QyV/3Er5lb0yt4/UvZJVZPH8wNyfrESEarLUNzmXP9dK27tPXsnc+cf7TH2fudp3cG28\n1V5iZ/fjhPqsEvgh96V759yB8abM3OytuS9Im4bO2ViwTXnp9cA7CJj7YOFeZAXF36fDa6db49E8\nB9m582M7yxhZLreWY4rjls+Qa6x+u0OeH3keuk92PQ/ZuT9NlrHeJ956HjgGOf4Pr42TMuNkdBjK\nH3dZ1niZvFKuyPNjpz9ZmXwWn/hMxpPQvsUvuMby4dw5T3TPfeFb11PpehYny7NQuG4rY15dxec7\nuPwVKTs2dwczHFwsx51zF+/Lyo2XeadPnGt8y1WO7yc+2yr1ELfuufO3HszNOmyebasu+fjple65\nnV8RDAWlWEnPdJyr9s2XOUfmjvQ8fNzwkNTmeYu3nlXiz76zT0r+h4A9PgbK/Dg0fq2rAzus8TB0\noMyZ1pg6nDv/BXl+5D537yNjht+vLM7NlnHDcdb5iflWvsUvcAy9YMamOxTyDnhByrfyMb01Hg/n\nbnW9s6x3paS3ni95B6RtnS/vTZOOeez3qXlmTDmdOz+Raz3yrnqyd/C9Zq4Nnb5ShqXrfeKaH+xr\n/B441PTFOtfdfmfuzo2T/vKcqbtP7rc7Cj4v7l3SYzcEZN7iO94d4859plvzav6cyvRmfi88/620\n3/eyJuBcMn0tZ2SZc2ROGypzmDtt5LzOMWYtmQ7nxss9Gyrv9eLe78W+N1xz8YlzdvFzadF1b8xf\no0hD7TFdeB122DU+55uG567luq57/rvH6mMZz//uuJ6NY7d95LPAJVXkKp078INw+jFxd1u7u44t\nv8oOZzvUtzetXNgEhN2CuJi5km41Wg6ZlreLlQ9djqiQLAOWLUOsfEU+mYAOrp2u/DTAEflxdasm\nCBRx4zFRywIS8c++K0wShzQkM032kxpJumDc2i7cOh8Y1lDOpOLXLRmIPCa7EpGtROVL1LS2pFjX\nJw8bgI+t9jrkdyZ+2JCDdn1aYsT4B9BlfDA69hmI/r2vFUX1WcWkz0B7V7mWyD2oHtrIDgJLkw0r\ni6ydl6BmeGHmQ5g7bRzi/1iK1Ztli0F2GDh4s00y69M+duz6Q373Qodws7dSrVl77k3jj10O1Ciu\nPrsc3hcp/pZ2Tc2ZgHDc1icYsWlyMsc8LkXtBtnZ9duzCOx32Hc1v9wccbIAnOQ+XcGb3BlXuZ6D\nepeGAsfk3gU1x4BI4LVvNqJnjx2YQxWE68Kw89XVQKd+MIqTAWjVrRsw5yekOJvlV1roKL9VOZDa\nhApuEe7cWHyZfMYGdGhs5QqsQdkOxfpB6Pn8W1g4ey6efHQl1osdFDfSpLmnoOLzVYuIQkvEYOEm\nJ25eP1uemRi0DdqK2fK4p8bHou93ZrKRnwjecQBoyJ7cgfaiapm3K+mqvcUtdwCDlyKld0OsDI5E\nx6BlWLEhGRmLliGy5xCcjwWulAXxyOatiGxmVGqCGqK9/Xy7UuuXvyFwGXo+XB/jxy9CRnQzBK5b\ngMWhfTCq/TK8xolb5s8vky6QnWuRKsqk7lgxBVEjfodjeAc8PvNJJN0/Hk8+8yWWLQ7GqITHC2gG\nEInkr94UiVwvJIhqWR15ppbKzvLIpxMx/60BCJ04DN8nP4qe4Q58OXk1Oo56FAufFglqn0mYNyhC\ncqdgXJf78XJiR4xqWFl+UzI6A51rBsLSsmEFQgFhUZjS5wOMPPYE/iPaAo518uLkeZkiLpDvyOFx\nGB/VGKum9sWw+Bayaz8LYelL0KX3BOxyDEfWohdkFzxK2jjcmjNWSLoRo7/AdVN7nvDcWAXrRwEE\n9st9GTJpAlrLXGC9SwMutnDLn1MLJC/6R2Az3C/TdOy8DehX7wimpwZjQgezbrEzHDkgNfUa4NJQ\nCUL01EWIdorta1wx7/fi3htSYJFztnMrfipmLj1SuYi6pZxVU+3WAVnFrMMOHeDY7YV2LtWaBlfI\neyjTvGXyc9tHZTP/27WdrW+z8jpbtVfgep27/8BmWYY84VpM714pk2VkT4tpKQiLA7+vFB0todXf\nL4Wjp9iXFEiQDlm7i45VDJ68dCHGv/cVHLf0K5SGGUJRr6a53dnHhG1p1B9jYztS9V4WSZnYkxks\nebg0Krj45++gC1zLlrxnhQfyEhg3Fk0ryQItIBt7du5H7cuqoe5lo8V+4CD++GUxPv9gIh6I34S3\nJ1HHvqj0UiPfEXnlFjiUC+blkZOSiKj7J6JlVAz6DLkHNfZ/gJjXrMvmg891AeKJdLeloxMH5cyl\n9mg/SX3sPZm6Y27rzqzDgsv5BSrQH15HIAgtugVj+g+r4OwnC6K8+pLx71sfAIaPPPl9MkPZypX/\nAgxAZL8+yBz8IRIOyzPVcYClJ72C8nV3DWCurlEfF+dXah6K4PyBZtmt5LWJB/bgMicvOGmZQahU\nMLlkSsfUnqIGENQNwx96CEMeBybfP8IUdtLPk+QLaIx+UcEYPedD7F+zGt0eihUc91qlRQ6JxZDW\n1a1nJOvATmQFN5Q+/lpsTUFNOgvTMwJvvx2EWncMx73C1cW8+SaCN4vN1khRRE0tnNWtgyd93grn\n09++jYDYOF59i4yFwfg140FcNC8eLe+ZhjAHJ3IhWUAWt6l04qabE4njnsJnu4EqWVloGh2LK4tj\n8AN6n7jJ0PoY3hlTEqbbIfU8WqCe9qa1J3xy7o++1mwiWM94ty6GmQoKljeoefMWt8CUV6nbPHVC\n0XoiD4EgNGraGK6lT95Z6yBvit2HdTKHNyp4tcCvtr1iZBL6CAkhsvHaciAiChsYHXMg82j+i9yR\nvAIb/nSW4r3Baouas01zipxLk4qoO6eheUu4+ljcOuxCfCkFZ8rGsYtOfNnYV+S7bOZ/twrPyqF6\n/TorsAP71sjEHtrKxe078fsPm9Eo0jWQ3dq0ae4YTF4WiUkzJyFydRyeStjkdlUOHdtEtz4Y40ZG\n45beA2TWno6vkvOGeIG0tiSgdkN5/Df/gD2V6qJx45pY8/4wjJy41Fq0iEY5Zs5eKg9JDjZ9M89i\npq7Om1HMQx90WUthOzLx244chDdujICdizBSPHfsdCZjaI8eeH1dADpE9cM/HoqS+vfg3EuKSe+S\nUBTejbYabTXWgd1iTO88kCanQtEvJhrtIi7GemHYxIAGB11zUKbsPqdZ/mGZMwdBl1wu30n4cEmy\n/JJ+LJiD1TLlRTa1Z7L8yYs5ClBgQ9wh8MS9/7XlltaZsgTvJAKtGtYqkEx/eB+BiJ6PyTiNw9Ap\nC5CW4YRDvA7NfWYYlsm97HPTdaW6T0HNbkE3LEZcYir63x1pdaJWQxkvc97B0jR5bnLS8Mmb8fKG\nrFuQ2efLIvMHrJE0OelL8Wp8KoLyXqoi39khqy03KlGZTG9zUc69WCYv5qihgxDVoY0Ym30v/RRb\n9BM5Grda5PDoyfNF9BiIzKTpSEyNRK+2Ir0JbIKbWlIAuw1VwsIRVvUA3hwRi4/Wk5U/CYlk8f86\nZmLx4lRERjZH47bt5d4sQ2boHbjKfqzcshfE4yTPm1sePfQHBI6gUrUm+D95dBJmz8ZHScHo3UV2\nsh1HrMabTaURWCGMfp8hkxA3qptLRM7LhTbdZNkW2uJatL/2WlzbtT3qXSASDTL457sxuXmbBq5N\nhnjZZJj5Xt4mA0vlQvHFsWMxVv6nTBiN2G4NedqNTqzHuuj2/OYnDkWNQPOLj2Zw8IkGEnkLzBfH\n4tlnpd4JkzBuwm0F54v8AvWoCATstUjBS7K4l3d5hpxMXviJNf8VvC529dYJM58ENu6CXsHLEBe/\nGn36dTBMgFuG2le2E8WRGVghzkvE4wPiHhiBiSuCSvXecCs2f84+yVxaZN0/7rOKsdcrxa3DAi9r\nI+urJMxdkiLpHfgxMUkGYpGDtezm/wIAlP0Ptxmh7CuvyDXu3bEewZ37uHZgMizPQe2vqFsAkpy0\nhZZhfK9xsxEhHnguGdcLvUfGYEH7r3GLSyzo2LJaWIZOqM/JNbAVhssi5O1vNqCnJQovUFzejzpd\nH8eoP/6BkdG3us5FYlxCD2nLBuv3ke9G4tZ4HgaLUf47aCyjZJX8qmUbS1Zrh7fG9ceD0pYu460s\niHoyTlTOGuPSUb3wwJj70WWMOd9r9EzxCBZWdHpZN7FcdyNMPo7WBmxgLVwXminG9P1Qc84kRIXG\nY0RUF6vQlh25wFyDbeKFqe2N9yA4fiKi7z6AcaKdYpUV0gYzR/fB/bEPiHoPKRj9J7xl7Z4XW5+V\njh9B6D1uEtYPGIbeN020zjbqNQojb5FdY+cB67c+NBYMXv8IqNMVsycdxMhh4xE9xzXQRO1oVNxI\nuZdBaF7MfRIv0rzleVRwQyoMd8a0RFJcfdzczOyQht0yCk+uc3seQrthypRoeR44WgwFNRMHCi3j\n854ZFl/LencEovUdLRE/USSa2U9ZqiPMUXyZ6/LSMF3ABdKGYNGZkZfeQ/0jRTrRW5Qy5VSjlsKa\nA+v+2I2eV/CE/BdF5xefD81kEyH8WlEiELY9qgfoJI2Sn6jRU7Bm8GAZ35OtEkM7DsFrUbLYLISb\ndTHvIwBX3iolLV6J1g2loKAWok4pj8RdV1sLNOmBq41ueGAa+sjpIp9vplfySwSyZYMp8m99MGZE\nnDD0MXhOhvBWV0/cN5XaBGUg8ZmlwuC3szaVds+zN936IP7+YbLpdjX+I85ihC3Po5SMy8WDimwa\n9HwJ7UIyXJsGMdYYC7Q2Ge6XTQag/xR5BwQGWkz3RDLdd7ZBtYwVGP5ALKoMnyaqX3lFykEg2kQV\nrGfVammWtcHV3CrbPfWp2GprgRnPjb67RT0nR/r4ACZujsH8WeEnLJbdy9XjkyPQ9JbHEBo/Bj26\nyLwU3MiV2PW2dc1/ZB7z1iGieHfb/ZGYMzkQN54gTgHqdBiKUb3+gRG9Xeucln0ws28E6t5e9Pu9\n+PdGpaLn7JPMpSEoqu7GqJmSv15JnFfMOkycIE221i/iCED6G9xIPCfWKnI7V5j6spr/T37vvH71\nbBjGaJ2+gUC2GNYfFOP4PHIZaNGAPVvOn9o8MCv38EFJV9i+P1vOM3/h81JikenzGnDiQZZbIUWX\neWKevDOudpzQjLwEJz9gfYVsik+eQa96DYEs3otiboan7hOfh+LqsDtmtaOIAZWdlZWbXeT5U5dp\nl81vqw1uY9792smOi81nOaLonBu/8cSn2epLKeo6WTvsa8XhYV/Xb/9DIGsjnZIMzbWGUvbG3CfE\nmPkFcUZBWjt9oHFqkrU19xU6iXEZTA+NpYOXPrmL1iZZ5yb/ZMzh9/1EA/bOubbBcD4aYoz/ysC8\n/J37vJC71s33wtr4go5gcg+K8b1bfX1i51jOaSxj+sIGyPmV5NJRjGUIL2nS6AiCaS0DbeM8g0k3\n2n3ijwLXDud+O9mtjWKs/9PuE58vZlM6XQTMGqGIqbSIgrJz6ZShu+Xko4jLrlPFzeueem+wmuLm\n0uLqdm8t0xRYh9kXrfVLycaVr83/dhc89X0OC/I6N6QV+AcCzhXocusI417VbDb7R7u1lYqAInAC\nAikLnsH9DEQju96JU6NP2Dk+IYOeUAQ8hIDD4UCASD3djdhPp+gcpwNOkdwEBVliwFNmdUp9OQGB\nCCpthaes4cQEbKNDxC/V6M9YqWwRkJALg24dJqrpYoM3ex46hJRt9f5QW3ma/5VR8YcRV2ZtzBFf\n9+kSNKmOCMuVFAFFwK8RkECyq9YewGUR4nVL9RX9+lZq4xUBRcAdAQc2rRJV9dpiL1dHVyvuyOQd\nl6P5XxmVvLuqB4qAIqAIKAKKgCKgCCgCioAi4CsIqNcvX7kTp9WOHBGLn1aGMkmcsWkFlm5Kd9WV\n38aC50+/KU5H0V7MCpbkqi8nHSuWrLA8dhW87qVfsmuxdOkm8S2m5EsIFBxzpzM2HFi39PTGT8am\nJUiYOhULlv6WNxaKrN9LABWsK78SR8oqrzyP+TWU4kifl1KAplkUAUWgKAQKzH0SX8t6D5dqDSDe\nQZcuwab0s/kmz18zFdXX0p4r+B4obSlnN58yKmcX/1LU7sTcQTfhjVV04udbtD1pBEYm7ZJGFWyj\ndT5xe6kam5z4JO6OW3uKvG715ezCxNjR2FwS3uYUpZbksmPDXIwcmWSCVJYkg6YpEwTyx9xpjg3H\nBgweOaLk40dcxTweLJDwsAAAKSFJREFUE4sPxIPQH6sS88ZCkfV7qef5z13BCrZ8Jm7HrefODQNJ\nkt+2gunL4pc+L2WBstahCFQMBPLmPpmHB906AKv43ndux4jY05jDLaicSBoZi8Ttlv/CswBewTna\nkw3Ifw94stSyLUs1l8sQ74y0ZKRKNNKqteohLMTNAM+Zjk1bdyG7Sm00Ca9jXBzmOJDuYLzqfdia\n6kT10DDUEbd1yNlnuTLGoX0iVZEI0nIHHenJ2LErC1UuqSeugE25TocwMmLM6EjZiL05VVEvPAxB\neXc7B2nJG3EgqxJCmzTO118vqh02PmyPFBniKt+RLpKTaiGmTOtaDpr2TcDsALFqy9ldoI2oLO71\npBzTf4mI0iQ8v067fPnOcaQjecdeif5VHeEWDg4kb1ovvsIPIUNESNUsQ0knUjZtxeHsSkVjEtAc\nryW8JUaYdsHF9NW+7FZvdqWqCBWcLH3+4vB35UtP2YS9zqqoDvFRK53Lg9atXD0sPQIcvzkyfp0p\nyTJ+A9GgcRgCHWlYt+UAql7SQJ4fo5fskEEZEGJHUnciQ3bEqnGMWmNO7or78+I+Nqz7K4+IXN+x\nKwfVG4ajDh8QCU8dKn/5Lo1l/GzaiD0y3i5rIM9KAXXoHGSkpEkIRQl6+PgodBDv4tF3Sv3S7e1F\n1X+K5zVH6j6YshuV6rraIuU45ZlwSIkhbJtEZ02XeDLVpL8cb3xeMnKC8p87C24+MzuAi8W5cRCf\nu0IYSBtO9jye+AxahRb4sNPo81IAFv1xFhDgjvp6XIZ24l17xU/bcdm1bRDCh0PJ/xE4jTWHY/di\nmYcd2Cdx13LquuZwyZ+ybgeceeuJEyHJyUjDxv9v72yAorrSvP9/t1rTOp1ekxiDvYMOEeJEh9EN\nCWWySsCaUJpKm3WEN6GtFRYV3RdM1EUpsiPZ4IyUiWtIFmYTWB1wY5NZMJTpmZDCmWCMEyk3zsio\nHRWUKAZJJMqLPdKRrup9zrl9u2/TfQExRDDPsaRvn3s+nvPr8/Gcj3ufc5cxieykUXepDOS+scHg\nvoRLvXciikxDGGjxVegdl2kc+BsaB5Thh/pjstEidI22s+0ghYSelxG9v89JfepL0uvu1uh1og/3\n+PUoj7uL+nAjpReq16nJiE9Vdxx35yRESnnE2EAKma6OF2Yc0CY4yq65SX9LP9iRyueQW3EMFmoM\n7VSnE/J24qUFUWSH6H08k7mVbKEIVV6YYs1AdXk6jKerkJptD5Iuq9SBh5teIVNA5DZnwVLswCPO\nzcguOwyzhUwwtncjIacULy2ZgVOV6VhbozHPTWbudu7LRxTaUJpO7+cmGZQco1FUW47ZV8LLob5M\nw926B6lZB1G2rxwxaMYLqVn4KqMUu8lqeOvedch8Zz5efqwMG7/ehrLJlcEyjiUzkvZcLK5Ri+OT\nRVP73K0OLMzcTrMYH6DYLFRvMGGzQ5RhMwosxXj9aSBvsTD4Z6Z/3YIWMopr8ZhTw6SoEBW0MlLk\naMAcY/iyztH0JR2N5UjLJ87C0Fi3SDEBZXUvYfLZ8PzTZhjxUWk6CgigP4olg+Kx+yYJhNRfSzTM\n7S3yNxf5rN9ZB+vkU1iaKnYN6LemwcLl/C8szr6O2oZsvyjN1eHrxo/O0O+7Vmlf1HRATQfryUCD\nlczlBFwHyleStfgWta1YsGnXDsyP9M1WPG14NXOzlKlgmRVp2YtQVTpWP//BtteUYjRkz5JinChL\nRe4Xm9CwdT66mnYgNbcG63ftIznd+JU1FS15u2A7swxrqd01/D8zXlyYReYsA466EwQxEDLotMfJ\nbaFtsPb1NDnxUlPk9qKS4M+RQECuqMu6b5A76Wsce2lSPxIkYxlulsDgdY7NyPlM6Ye3kh2dyTXL\nye5JO3IXW/0iWKyFqFwfbBSyq6kSi9dW+MOICxv9dwXpXvHYWZuOt9OzybC2Og6YkbdzNxbcewbP\n0/hDqpRf/4rOKEZ5+ix0HqmkvrpC3KH/FDHaRseDV8J0gvrwtZBjhFBDTuxYLPvuvjpT+iy1Ervw\nftEqbK0nfcOn45mpLHuoLCFjpKrjeZrDjgOU3ah1fPTrW/nputBIkxQxOdm9uwHVRRk0Bb9Ac3Q3\nan+2FSYbKSYNe+n/LiS3VOAVRytJNZb+W1BYtY/89yGPrKu93XAKMWkvI4PqfgopHEvvOywnKTmk\ntO3dvRd1O3NwoOQXcvtzjJjmk5ZS29CABkcpyMQdfneiC817X6FJSjJ27WvA3gYHsqJbYK873o8c\nCiBjzHxS4VvwcSud4Wz7M1l6J+Wuvklafm98pwUJy5PwPbGKTFaFtTIqDe6afEWqIksx2RWvx3sk\ni9adeu8/gdgcOHbvRkNdKax3XcaVe60otVGapLi9To2/rfE9nKQwdcRqL5WrMBl45+CZ4Pxmm/0r\n4uHL2qzJ1oU/1P4GyZuq0LCX+NcJ2Q6g/pSQLTx/T1udnKTkkbK4d28DSnPI8JjruiZNvvwmCCj1\nN0vWX0cxDR80SVlRVkdtoVYaMDx4SrHyawra/RA5j5W7DaoMQXVRUzcwRv19G7CbfsdtVM+25+4J\nOsLX6thCkxQrqqiuifq2jcTYXPhbarU+R9baX9pXLOtbcV0DbNKApH7+g2mvVQ4H6lYpkxSRy0xr\nBpmR/xAddH2u8WPhhYMnOmk57TjslPP/nRtJRVHanfPXL+OA2YZq0eYbqshqM3CNqmYQAzkAhm+P\n4drgJX9hRc7cXgQFdjdHQKwEu2h3sKPVCWdzW6A9yWTFyrUTTc5mCIPiWueiEwnOJidaOzXHc3x1\nH0ZlJ3220O/kSjyNrl1tcFI6HbQLqXViN1yk30XPNHTRyYDgu9qQfH0rCQxe57gTS7ar/fDrmPU9\nRer4nDLqBxtQuy0F7Y4/S4v3gfJ0obqgglQOJcy+nXmBW3LsF5ORWtQ5XgJ+/wZpLCm+cWAfilJM\n2PozB9y00DqeYgm9TtG/1qOl4mUcoVdl/7awgt4K79Pr9u0kvc6OLXtI95DjTmCMUPvu0D7aJ477\nPN6rH0+LyTQGkY7noLJ0U1lEC9DT8fTGAU0BR92lZk171Mk+igQ2YY4tFrlbM8mSuxkJthXISH0U\nRvdpHGonHcxegKX7lRk0fYX5/GVgGmkY5kT8bYTyE035voVMtotrj2K5nT7dX7RJBiVrl+MdGV1U\n324cJEV7rogeP1tZDTVNQRwpLeLutctfkeK/HIphexPSyhuQ5nbiuTIdOWgPRnGR+Eky8MYnp/EI\nPoQlgb4cOIQTHQ/gg3Yzlj8Ugd4zvqAaGYVPr5SFXpEqvpimYa5PFvFVdVOTngWZmIWVrNJGx6dg\n2YpnpCXtgG1wYe17A7ZNqMMvX8zDkaOH5Sp4tC2YiZqe+AxbVm0AOli35Bdv4oPqPch77ihO0nMG\nYk+Fph7khNCh/BXLyylkkVj5Xe5/cAYhp7DsvlECQXVmWjyp5PsxRe5keOQW/Uk6AobEwWQZaC/B\nocVv9hi1L8V35t8lAvbg37GHjmmC7MT/89IjSiAXtc7uDqnY+E+A+Z699Pg+lYDav4H8B9NeIwJn\nFmUixqgEWmSowFE6Atf2sQvxCdE4eciJtglHaR3jKcykdn9Kze46HZt8/CFMlN8jkPSUBfWySAEZ\nxK0gtpr2qNcG1eSp8XJ7CcDgqyESOFVFu/120dP6dsbNpATuzUaEy4mipWFWrqMMtIu9hhaIyGoG\njR1i4zuelMCtaYEJPVxNSE1TbID96Hw/u+HbaTfcodkNJxm20S5MnBw/h1ggjjZMBG5A59D2wzQ0\nX6PfddnjMVIuwzjx49bjnCs7sNvmOof9VI+e+rGyhW6IelgugCkjgPj7FOZGKUeKL5ymZdnH06EM\nFQbMTibdp+YQ2twzZD4LxblDcsbIabTQ2Y4/fnoChyntBXOmS3/QgtaTNjMKOsjzQcVL/durXvTR\nmfzexhnYsms19uwsgv3TRhxroTToBIfQPpR+PFTHg+444E911F0o2taoE3u0CWzAzNRCVFuv4NP/\nOYDfvL0dmfZmVNUtkAWJzylAzkN3U1UFei5fQI95GtXCP4o5h98FKrTqJX460aBo5l/0c0wfQ7EN\nvfjiwle4b6oJ3Yd9t33BlQYo/Fzo/jqgVblaj+DUX5TvYeXwxRcfscm0MlFYiUqcw0+3bcD19mUo\nefUNtEQ/ix/RLMQ/T/HH0VQvvwCK1P4gvgvT/VZUVyXhy8+daHi3CgVZNciiozg0DVA2N+ijdc96\nZJWcQ0rO8/iXFevwVfUqbNOkqxww9SUoPsKV1TMNcTFyykQBOlG+hI72mJKxfvVq5GwASpblBhII\ny19k2B1YhQs8zBCIx1ffDAH1t/VVI+1kwDQ2kAU92iGdprYFbvqvwt3VJOILF2gZYiAQOw8Z+HlB\ngng8hAaHbnzRbSZ1fShO5C8KNLj26s+BBrm/TzBjx39WwOV6HMUrHsHPlr2BV1raEf/sriB7R0of\nEa6camqaeypbn1QihF4bTItRS8ztRSXJn0MnMGYs1afYZ+GgY4UmOopclLQMWxxPYt11deWaJi00\nGjbSEdt8WrlOfO0+OUmRxz2jjOhyVtERz7X4IGkf7lHFCHq2TLRrcRqhEvNIu3z/xSfwH3QaYfG4\nz+QkReyGL6CFpmbHi8ja3h60A6smx58jg8CN6hzqWCAWVcb7V5OUsmh6P+rMx8jdEE03iK8p2B1h\nij1ezI61tUTMEPAD3OVLv69uZhr3VzSBod5eM5j0XCVlQiQuApsD406o+hAkJTx0HNe6bDtirVmw\n5TyLe756G1mvURqq0xRAvRx4HFAjj55PPvr1bfxWdGZwzeLF+HenAfOs6Vi3Wpyd/AI9hgfwRCyd\n7Dj8GcZFRiHyzst4I7cA/33yyoBSnT9/EaapsaT2dONP5z2IiomB4UID8gsKcIEs+ipO01J8Pvf9\neA4tElfiiNhXd7eiLDMX24/89aDkmDAzCbE0AzrcPRUP0cPNs+ZGo+VwC+IXzdEob4E8hYwBF/AP\n+AWuPnnVitRNf8CUuPnIXreahhnaARKtnVw37XR00MP03R3naJ/1eWQvmY8Z4z5HNT2/olVYg/Mj\nW1DhyvqxcmRIJuz+Uq58WNeshHVeHB3m/5Cef6F50RiVnwwV9Mc0NY6Y12PPR2I3y4WPHfVBHU9Q\nYP5ykwT064zYHaTNb1JU2vHefno9NL2Sct+v7aSfKIOAMgAE4vetG8rs1w5HUydtUnai9g2KG08v\nnNBIfN+0aKDlIL4YMxkxMffi+Fv0PMz2RrmgoAkW9jJc/kNpryLxhxYlo/3AAXTPfoQe7HwQcVTm\nY7SL+dSj2gdq6IUAET+ktr2D2jaVu6sJlfb2ftpHgI1agP7aoAzD7UVFxZ83QUDoedGPPuxra5F4\nks4onqNTBMrK9Zzglev2QzjV+inlloJ5NEkRbsKMuXQMGfj0c6UXkJ5BfygDs7obboA8jUCKpqf7\nMoWyYa5vNzzmkcfp+7VBteeg5PnLt0Zg0DqHXMVy4SI9TB/qqD70dcb7sYh0r4qaffQwO70wpfG3\ntHfuXxMNCj1pGvWrNTvQ2EE6k6dDGSuiJ8v6S0/fYld1Iy1c0uuNf7eXDsfH4+EfPoinaOgoe2uf\nNJPgbvsIOyjx2fTAvnxLS/dBHKe0PJ2NeLXfPppUtMsdJIsF6VlpmDPrLpz8sJEUonZc8Xff/gu/\nzAONA/6Ao+hCXyMbRYUY8aIaYvDCphRkbl6GpM2KtCmFuxBF0/+owlIcz85G6hMl8oYlIQevWWkr\n0UlfxUTe5wIzbyMeeioW9u1ZyMNOvFmUgVX5WXSkTAlozSvDvImAODJlMo1To8tTl6K5Rsxbg00p\n65CbulC5F2vDrqU/ROTTOnL4U6AL4wN4kkaIY1eewGT66pk9l/5+GaQwKXkGy2ijUOFkIW+/e/gf\nixCfli+PfglPS/J6pNF5eoP5WZjt25H2zGW8VbQM5uzNSJIQLUiIt+DYYSdcK2cGmPS+IFdKRBrh\nyxojbimOyrM6Ix65+amykzJHx8oJkvPTi1gitmjD8Z8wByWFNiwroBcSiCDR9HwA9T+h3YUvD/4Y\nMgFtnQFNScbJ3sqAu2kZdappPNXHGKzOSUD21izUU/2PToiHmbzFbyFWlSbJ+q+pi5q6oQpVtjYV\nZeKLxYqyHQtInQkcNoyYvwGbPl2H/DRfW6FBqKhqcdAuhpqOvyP11Zmw+Q/QXhV51RQDnxOmz6Uj\nBTV48Cei7k7EY6TYOT7+KWKpnatOsIq0bkLe8VXUtp9QvREt520aBiSDXnvUa4P+xLi9+FHwxc0R\nEM9Oqa77S1ptpj5Ub+V6wlhRiTs1fawbYinv+/5Gp6ak+Qy7Gy7uX5W74WJBwtMz8IKgJkW+vBUE\nBqtzGO/EY5ZubM1Mx701RX4dQIhsoLduhTojrIXbcHAxveSnfjvdVjpu03iqVHLXIxAjcgH1q07N\nOGBJRmlpGo0DylhxbX8+FtI6l0gjq3gHYgwmRBUV4+TytaTXibRpbErZhPwF9OZKWJERa/ePKSLX\nSWH66K1CByRnmv4TWC125FqT5PdYGuOA4/iM3hwm4mrHSJGMaFb64wDdHK3Oy+7bI9Db47169aq3\npzc0yx7yvxruRmhQ6dPb0+Pt9adD6V4Jn65OdG9vD+V3tSfk9o3KEZKAxiNYRs2Nfi4Fn345SIah\ncosk9fLTK6sqhrx/A+xlvH7kUNPlz2+HwEC/r5Cib924eqLMm7iownuV7oVrB1rJRfpXqF7ejAvO\n/8bb643k3avThoJl0E9xoDbI7UWfHd8ZmMCJihXeRFuJ9+zVXu/V8we8KxITvSWfXPGer9voTUxc\n4z10kfr33ote+5pEb+IKu7fn0gHypzAHznp76d/pui30fYX3KAU7UWbzLir5xOvtOeq1Jdq8n1Az\nlW07sUy2bSHNURnmKN34xLuI0tny7gkaL8977RsXyXREHHa3B4GeGx3HqdhSJxtE8UPGGV+dE/VQ\n9LnhtBKlLw1NXOpZfv0tcF+vj5YyhgkfiBl6pTcOhIYc+T79rUmM1rnXyJXbYJTv3A4noLHPQ7Th\nwmj9DEZlG1zxo3TVxy60gfq5NtD7t7XHXNSgNyqHGi/cZ7CM4UKE+pkG4tAPQ7389Mqq5j7QfTVc\n0Gc/cgSF4y/DTmAwv19I3ei9Slvod8hV2gkmbVsKFVekf4PNKySR4PxvvL2GJNiPh4HaULi2HSyD\nfgIDtcHB8A5JndtLCJLvtEd7DTKtYk+aHlexFWJVnLANpLNyTY1vl9zFzpS72GLlOmPbm5hFzVas\naas7kbSZGnDKArn87j+NYIrD7rI8rMvKhpUWupUgj2NS/80/kCZfjXgCRmlr7cbEHKi/U1ML7fc8\ndAi3HT20hS/63HDKtF7aenqWXh+tl44qW7hPvXEgXNiR7vd/xFxqpAvJ8jEBJsAEvlECZGirjY4z\nR2oNdH2jGXBiTIAJhCPQVL4UL2Mjdq+cDhe949XUR7n0uF1kzJj8+y4g0BstXPSsolDywimF4fIK\n8qO3WxZtbMCzL2dDPO7S+VERUgsmwtFA9i2CAvIXJjAYAh50dnTCFBER9jjwYFLgMIMjMKT2Prik\nORQTYAJMYIQSME6gScoIlY3FYgK3M4HrtA4t3zxJO4thdjNCV659MG52V854N8xf0U7OwnpE0/MM\n9OI8JJMNDJ6k3M6VbTjLZsBEmqSwG34CvKMy/Iw5BybABJgAE2ACTIAIuLs64DJMJJsWt2Kd1I1W\n5ykIE0l3T52OqIlhZkr8KzEBJjCiCPDriUfUz3FrhXG76PV7AzoyNCleq0SvdD3y0RH5+r0Bo+gF\n+CbS0Et7MP6uVjQ20qttBxOWw9zWBLqaP0JVeTneb+oYWjnJyjXXo6Gh41jfLQLGCRG3aJIiOBsR\nNWMW4uJm8STlu1LtaJx/n2zqVO75gPQVn/4ygss+OD1MvwA3G18/5Vt3hycqt479iMq51ZGHZ8pO\nDCCTG3tWPoFfNtHhfs/n2F5QiJbBzG30UnWfQ25B7s2loZf2IPxdZ2qRn19P1lDYfacJeJzYkFWA\nt8lez5mL9JD9jTqKv3LhcjTdTFu40Tw5PBNgAkyACQxAwAPHC5nYWlaPsx1/Qf0/+fSXAWLdqtuD\n08P0pbvZ+Pop39o7PFG5tfx1cnejs7OLjNh1odnpRGsHXWtDujulv7O1I+DvcaGzy03b6m1wOpvR\nQdd6zuNS4jf747vQ2nwS+Pr/o0tul4iYbrQ1O4PT8lzC6RYR7BLchpl4repNzPYf8CWjSa1KeHrF\nd3jXV27VmjDJ3kblDMijRFfldDa3kVEmX5K65RwMsyYEMRtzJyU61vdgJpW3tZnK20oMwovPvrcj\nAQ+62jrIGpAFuRs2IXuBYmfH1dkKZxO1vc7gaWy4Oum6KOK7cImMjXnogd9OTRwPPbTf6dupdLu6\n6GFgquvN1D5dSoXWy0chrdRpN6XRKtqHePqfXFdbM5qojfvbhPQN016pDYt+RMQX/Ugz9SNa19VB\nZST/No282vt8zQSYABMYeQT0xmqlDxR9o7BnLZ27DceP0bNIm36OTatm45yqv1D3K/tj2mHpFOM+\n6RgyiqtD9vtt/gREKqF9q+jXO6hvVZ2H+vaOvnqavBlGJvJ3iX5ZjUxXXbIPDtbDFPncil6lyueL\nM5j4/uRvgwt+RmUk/oiuJiy1rqUX3wWcJaUIu7PnoPNIJVJzK+iGeLkiWbWKttGRFXpribMc1mx7\nIAJdZZU6kDbDP5OQ99ytDizMpHczWixAO+UQm4XqDSakLiM/crEZxXj9aSBv8Vqy0m6mf90iF2QU\n1+IxZwGyyqjVi+9FhajIL0CRowFzjG0oTScDiJScIlU0imrLMWeCDCr/uJodsGaJPJQQiM+B46Vo\nrFu4lqy5BpzFWojK9fPQ2ViOtHwqj5nCdwsJElBW9xImn9Up55Qzuszcre/jmcytVA5f3tEZqC5P\nh1EyI2PeDVZULk0j+dXyWlBIW8XzIm7FGeoAC776Fgh4WvHiE5k44Msqo9iBR5ybkV1Gtd9Ctb+9\nGwk5pXhpyQyyXhyuTm7AnzdaUSKbRSyKiqbTLh1Q25AtX2ncVJqEtV9vQ8P6ODSVPo21NaIuk0sp\nRund9rD5KAHob5h+IDrWgpZj1NCEM1tRtXc9IsgKfbj2mj7tnL9NqGWJpvZdnj4LRyqfQ27FMX83\nkEAPFb+0QDEypiTOf5kAE2ACI41AB0rDjdWm0yhamo166l6VUd6MvJ27MaXxBepjFZ3l/lk/wNmm\nz2SBRD8/++DSQH8sfC3RMLe3SH1HfF2/sw7Wu06F7VufGf97LMwqQUpRLbLnXEJeUhZOko62l3Q0\nv3PRW+bCyLRg8hk8TXpPvtCdSD1zST3kOqp3TQnSw5ZfL8BauxgvfHqJOYX6+2xEuJsGFf916udv\nGzfyTb18ByUkQ0LCCNbGd0/Lwl86IAxclXivkAmrikWJ3hV2Ml4lXO9Z7xYKt6bmNBm5qqAwNu+B\ni8IqUK+3riBRMYQlAwb+HC0hI1drahRjWD0nvP9WUOI97TecpaR7ngxqLaIwqgGjA1vUtHpk/iVH\nyUKWxsDW6Zo1lPcW73lpkOiq176CZLIrsis593jttkSvrYwMcwlHBrxsiYu8dZ8dUcpJ8gt35ZMS\nWc5LJF0NGePa8vuL0l/kJY2CHSUCeuXUZabm7WPmPS+ZbXz3rN8wWOdpO+W7yKtkR+z+bYu37ixb\nAVPgfwf+9irG4qThrou/p7qQ6K05q9T+nrM19N1GxuX066RXE7+vsTnFIJ1S905U2MiAXYX3ojDI\n2KaXj4Z3nzotDNfJdiaCSCN4i6SBO9326otfUHdWJtpz9l1Zlk+uXvGWUBlV/0uHKrwFZQf87V0j\nAV8yASbABEYMgR6dsfqs0EEWlXgVjaHXe6iE+kobGQulf0JnkjpL0DUZC5X9sZ30KjL6eJQMAFOf\n+K5QhshH9I8b686TEVI9XcjrPW0Xes8K7xZhmNRWJtPRgtKVifpl1TipCK8dM0LGizV2n+FSRW9Z\nQ3qLVvfqL75WltF+zUvGI3TKeY1m0cvnKcdQjPdMlFIa3OdxkCbYC+ZMV6Q2ROFJmxkFHeT54HWa\neCfib327AFO+Tzsm1w1w007Gxn99F7gH6Jm8CP/69LNATQmsSSWIjk/BshXPIIZefCIMZ6kucsEG\nbJtQh1++mIcjRw+DFpVp40ZUFQ8oF/kpP3x/rl3+CuaU5YiUtcmEtPIGpGkDeC7iKC0CJ/6dT+6J\n87C7YR7tqDbhv6icyx5XymkYJ3Z/6nHOlY0lv3gTH1TvQd5zR3GSnh0gERAv0wxfTnErPLOzOER5\nt9sLsHS/srsk1qPN5y8D02SCuCNqLlIsZdicloTNlnhk/IMNS6KUsEoI/ntbE1BOYdGxLaqSX7TJ\nopasXY53ZBUQR7+6cfCUB9l6dVITvy+nXo1Hr6i68bMRQXYgXGf08unCrFmBrchrFD/tUaV9jBFp\nJSchUnyazHRYTamj+u1VaRML5yg7JcbIaYimfdo/nvFgji0WuVszkbTVjATbCmSkPsq2AARXdkyA\nCYxYAkadsfpPb9OuyePpiJCSGzA7OZn0nENoc1uDdBat/qL0xzMUY77T4qk/3Y8pkeItcB6YLMDJ\nM5cRma2nCwExaYXI+GAxKo7RCYzalSFGgS+c1pNphi7fvuNF9KMPq708nkwhXU/oLf1YEdLG181k\nFN7gicqI/dFMGBPy6/SSMk7zD59iJETvuUoq/B2+Qght3uf8FfZOCx5Nnk+PYlATpdb31/dPR3VV\nEr783ImGd6tQkFVDx7kckE1nrBK5dc96ZJWcQ0rO8/iXFevwVfUqbFNauC/1PoJdd6Fbvhdfue1q\nPYJTnmmIi/EpXPQsivISyEC81iON8HxfZGjCeOWmL23RDDtRviQNdlMy1q9ejZwNQMmyXP99/94s\n+fjLKe+GY6ZEi88pQM5Dd8tnenouX0CPmWYpvX9UbhomY+lr1Vh05RwO76/Hrq1rUd9WTAbJbqOt\nU6Wk/HdAAqKi07GBop9j+hhqaIZefHHhK9w31d1/naRYVM2VCmn2NST6KicX9Ol3/nakl0/fCbIF\n9/jah6jrZvM4f1LqxUDtNbiNUIsbb8LM1EJUW6/g0/85gN+8vR2Z9mZUNdAxMjVR/mQCTIAJjDQC\nOmP1enFEXKvAi1kIfoC7+ugWSnECeohvFuOPKharVGeibrzfvrXzJA62iNDtONjYinl9js6OH0Am\nOV5QbI00StaB4QPX/OMFLZd9SQreJCWI+DuY+IHQo/uKH6YfDb+fqmkYp+GpaKDsrX3ytcDuto+w\nwwHMnqapvX3KY4yIQ1p6GtLS0pFmjcPxV61I3fQHTImbj+x1q2kVgc5IitkPuW7aueigh+m7O87R\nIyHPI3vJfMwY9zmqHd0QjVZ1589fVC/l530/pnOZjkocEQ+guVtRlpmL7R9f0oSZjIdjAXvlb2kK\nQvk170Fmbj5OUvBg52uVX3+Jw9QmrWtWwjovDmj+kJ6XoblW6MwtOLr2m5/ZA3iC8j58+DOMi4xC\n5J2X8UZuAf775BV/6L84f4XFqc/j87visGTlOvxTPHU9VzU9lj8kX9zuBExTY2ma0o0/nfcgKiYG\nhgsNyC8owIW/XNavk3J0c+EiPUwvZybdB3G8g15X3NmIV+3tQW1HrNYJp5sPWeTu6waqif211/FU\nll3VjfS4pgfNv9tLz4PF4+HINqxZvBj/7jRgnjUd61ZbKcsv0DNQRn0F4+9MgAkwgW+RgEtnrJ40\n7Ye0g7IDjdTvwtOB2jfsdAxksm83IljAYP1Fv9OTe+m6ulAXKp/PR0vyJuzcZkM97U5/0BGclr5M\nY+iASzve20+mEchEw75fk6yWgIKl6mFjxo5He309WunFKy7S9XbRg5TJc8QxkMHFDy716P4WOiqO\n7vLcJtKPwXhNSQy0AgqzaDb00HtRMU4uX4vUJ7bLENEpm5C/IBL0hlSxEOx3ISu5vjsP/2MR4tPy\n5dEv4WVJXo+0WSYYzM/CbN+OtGcu462iZTBnb0ZS0mYRAgnxFhw77IRr5Uw89FQs7NuzkNf7gl/G\niHlrsCllHXJTFyq5xNqwa6lyXEXxMMBaWIzj6SQ3HTkTLiGnGNb7xuBdJYD8axh3t/LtjgewOiMe\nufmpoHkYzNGxckLl/PQiljwoPJRg4m+gnHrMRN6lOJ6dTcyUvC0JOXjNSsdhfMy+NyMVOQn7kZ+a\n5Es4HtuqeDclQPm7cSU7wwlz8GZRBlblZ9GxKKXc1rwyzPubKIzXqZN4YBIeI0vXWzPTca/jTWTE\n2pGfprQFUVUnBcYgTDKNUxLVy2eilnVwnR5PA5d/BZBqvtpHTE3Saa//MEMmdm1/PhbSWCgaTlbx\nDjrqOREvbEpB5uZlkE2c7qQU7kIUjwaSF/9hAkxgZBIw6YzVkRHTkedc5+93SbFBaWkaneRw0Xs9\n1W7TGNBfsBM28jep/bEs7j0YJ/tAA+6+B5hqGo+ps8L3rSci7Khoj0Xxm/MRZUpAXoIdm//5V3ho\nd+AIWOSCTeFlol2e1TkJyN6aRRMcmk8lxMNMnbmY5kz/SUAPe+Wn5NFeg0xrjZQu1laIVXHilMqE\nQcV37KWXLMmYo/8Pv/VrlP6GLhdNXAwmmMJubQ5cKCW+keLraCf0mlXxVlVTmAw8ZNwOBqN/61HN\nzUOvXnXTinC4OGqYG5Fbpkddja6MaqKD/HQTMw/JrZfeYOQfZFYcbNQToPpP7/810PMk2ibSX510\n026k0RdY1jUjtU+d5hXAEz6fwP1BXoVrr/QM2NKFL2Nj3W7MpNd6e0RZtMnJOFRGklNbRm0QvmYC\nTIAJjDQCemO1nr9Wfj39RRsm6Dpc3xoUoP8vejLp+aupNZUvBfXedAR9OulipFf16aQHiq+mczt8\nDjiM3g6FvB3LYCKl42bcgPGFQq+ThcEYpO74xRAKj04Uf5gB8/WHFHOhgdPTBB/w0qhXIF/Mbzq/\nAQXiACOYANX/wDPtfjn7qyPqJEUEHqiu+RMUE/Ew+QTuD/IqbHv10AGDdnmkS0y4Qjr7sHEGmR8H\nYwJMgAncIgJ6/bCev1ZMPf1FGybo+ib7ST2Z9Pz9eV+n3ls++ysWV/2+/osB4/tDjv4L3lEZ/b8h\nl4AJMAEmEIYAGTPr6IQpIiJ4JyVMSPZiAkyACTCBkUPA3dUBl2EiJg68LT9yhB4mSXiiMkxgOVkm\nwASYABNgAkyACTABJsAEhk6A3/o1dHYckwkwASbABJgAE2ACTIAJMIFhIsATlWECy8kyASbABJgA\nE2ACTIAJMAEmMHQCPFEZOjuOyQSYABNgAkyACTABJsAEmMAwEeCJyjCB5WSZABNgAkyACTABJsAE\nmAATGDoBnqgMnR3HZAJMgAkwASbABJgAE2ACTGCYCPBEZZjAcrJMgAkwASbABJgAE2ACTIAJDJ0A\nT1SGzo5jMgEmwASYABNgAkyACTABJjBMBHiiMkxgOVkmwASYABNgAkyACTABJsAEhk6AJypDZ8cx\nmQATYAJMgAkwASbABJgAExgmAjxRGSawnCwTYAJMgAkwASbABJgAE2ACQyfAE5Whs+OYTIAJMAEm\nwASYABNgAkyACQwTAZ6oDBNYTpYJMAEmwASYABNgAkyACTCBoRPgicrQ2XFMJsAEmAATYAJMgAkw\nASbABIaJAE9UhgksJ8sEmAATYAJMgAkwASbABJjA0AnwRGXo7DgmE2ACTIAJMAEmwASYABNgAsNE\ngCcqwwSWk2UCTIAJMAEmwASYABNgAkxg6AR4ojJ0dhyTCTABJsAEmAATYAJMgAkwgWEiwBOVYQLL\nyTIBJsAEmAATYAJMgAkwASYwdAI8URk6O47JBJgAE2ACTIAJMAEmwASYwDAR4InKMIHlZJkAE2AC\nTIAJMAEmwASYABMYOgGeqAydHcdkAkyACTABJsAEmAATYAJMYJgI8ERlmMByskyACTABJsAEmAAT\nYAJMgAkMnQBPVIbOjmMyASbABJgAE2ACTIAJMAEmMEwEeKIyTGA5WSbABJgAE2ACTIAJMAEmwASG\nTuB/ATWyNM1mp+a+AAAAAElFTkSuQmCC\n", "text/plain": [ "<IPython.core.display.Image object>" ] }, "execution_count": 7, "metadata": {}, "output_type": "execute_result" } ], "source": [ "Image('diagrams/text-cnn-classifier.png')" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "Diagram from _Convolutional Neural Networks for Sentence Classification_, Kim Yoon (2014)" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "#### A CNN sentence classifier" ] }, { "cell_type": "code", "execution_count": 114, "metadata": { "collapsed": true }, "outputs": [], "source": [ "embedding_dim = 50 # we'll get a vector representation of words as a by-product\n", "filter_sizes = (2, 3, 4) # we'll make one convolutional layer for each filter we specify here\n", "num_filters = 10 # each layer will contain this many filters" ] }, { "cell_type": "code", "execution_count": 115, "metadata": { "collapsed": true }, "outputs": [], "source": [ "dropout_prob = (0.2, 0.2)\n", "hidden_dims = 50\n", "\n", "# Prepossessing parameters\n", "sequence_length = 400\n", "max_words = 5000" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "#### Canned input data" ] }, { "cell_type": "code", "execution_count": 88, "metadata": {}, "outputs": [], "source": [ "from keras.datasets import imdb" ] }, { "cell_type": "code", "execution_count": 89, "metadata": {}, "outputs": [], "source": [ "(x_train, y_train), (x_test, y_test) = imdb.load_data(num_words=max_words) # limits vocab to num_words" ] }, { "cell_type": "code", "execution_count": 97, "metadata": { "collapsed": true }, "outputs": [], "source": [ "?imdb.load_data" ] }, { "cell_type": "code", "execution_count": 90, "metadata": { "collapsed": true }, "outputs": [], "source": [ "from keras.preprocessing import sequence" ] }, { "cell_type": "code", "execution_count": 91, "metadata": { "collapsed": true }, "outputs": [], "source": [ "x_train = sequence.pad_sequences(x_train, maxlen=sequence_length, padding=\"post\", truncating=\"post\")\n", "x_test = sequence.pad_sequences(x_test, maxlen=sequence_length, padding=\"post\", truncating=\"post\")" ] }, { "cell_type": "code", "execution_count": 92, "metadata": {}, "outputs": [ { "data": { "text/plain": [ "array([ 1, 14, 22, 16, 43, 530, 973, 1622, 1385, 65, 458,\n", " 4468, 66, 3941, 4, 173, 36, 256, 5, 25, 100, 43,\n", " 838, 112, 50, 670, 2, 9, 35, 480, 284, 5, 150,\n", " 4, 172, 112, 167, 2, 336, 385, 39, 4, 172, 4536,\n", " 1111, 17, 546, 38, 13, 447, 4, 192, 50, 16, 6,\n", " 147, 2025, 19, 14, 22, 4, 1920, 4613, 469, 4, 22,\n", " 71, 87, 12, 16, 43, 530, 38, 76, 15, 13, 1247,\n", " 4, 22, 17, 515, 17, 12, 16, 626, 18, 2, 5,\n", " 62, 386, 12, 8, 316, 8, 106, 5, 4, 2223, 2,\n", " 16, 480, 66, 3785, 33, 4, 130, 12, 16, 38, 619,\n", " 5, 25, 124, 51, 36, 135, 48, 25, 1415, 33, 6,\n", " 22, 12, 215, 28, 77, 52, 5, 14, 407, 16, 82,\n", " 2, 8, 4, 107, 117, 2, 15, 256, 4, 2, 7,\n", " 3766, 5, 723, 36, 71, 43, 530, 476, 26, 400, 317,\n", " 46, 7, 4, 2, 1029, 13, 104, 88, 4, 381, 15,\n", " 297, 98, 32, 2071, 56, 26, 141, 6, 194, 2, 18,\n", " 4, 226, 22, 21, 134, 476, 26, 480, 5, 144, 30,\n", " 2, 18, 51, 36, 28, 224, 92, 25, 104, 4, 226,\n", " 65, 16, 38, 1334, 88, 12, 16, 283, 5, 16, 4472,\n", " 113, 103, 32, 15, 16, 2, 19, 178, 32, 0, 0,\n", " 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,\n", " 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,\n", " 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,\n", " 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,\n", " 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,\n", " 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,\n", " 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,\n", " 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,\n", " 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,\n", " 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,\n", " 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,\n", " 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,\n", " 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,\n", " 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,\n", " 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,\n", " 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,\n", " 0, 0, 0, 0], dtype=int32)" ] }, "execution_count": 92, "metadata": {}, "output_type": "execute_result" } ], "source": [ "x_train[0]" ] }, { "cell_type": "code", "execution_count": 93, "metadata": { "collapsed": true }, "outputs": [], "source": [ "vocabulary = imdb.get_word_index() # word to integer map" ] }, { "cell_type": "code", "execution_count": 94, "metadata": {}, "outputs": [ { "data": { "text/plain": [ "49" ] }, "execution_count": 94, "metadata": {}, "output_type": "execute_result" } ], "source": [ "vocabulary['good']" ] }, { "cell_type": "code", "execution_count": 98, "metadata": {}, "outputs": [ { "data": { "text/plain": [ "88584" ] }, "execution_count": 98, "metadata": {}, "output_type": "execute_result" } ], "source": [ "len(vocabulary)" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "#### Model build" ] }, { "cell_type": "code", "execution_count": 96, "metadata": { "collapsed": true }, "outputs": [], "source": [ "from keras.models import Model\n", "from keras.layers import Input\n", "from keras.layers import Embedding\n", "from keras.layers import Dropout\n", "from keras.layers import Conv1D\n", "from keras.layers import MaxPooling1D\n", "from keras.layers import Flatten\n", "from keras.layers import Dense\n", "from keras.layers.merge import Concatenate" ] }, { "cell_type": "code", "execution_count": 116, "metadata": { "collapsed": true }, "outputs": [], "source": [ "# Input, embedding, and dropout layers\n", "input_shape = (sequence_length,)\n", "model_input = Input(shape=input_shape)\n", "z = Embedding(\n", " input_dim=len(vocabulary) + 1, \n", " output_dim=embedding_dim, \n", " input_length=sequence_length, \n", " name=\"embedding\")(model_input)\n", "z = Dropout(dropout_prob[0])(z)\n", "\n", "# Convolutional block\n", "# parallel set of n convolutions; output of all n are\n", "# concatenated into one vector\n", "conv_blocks = []\n", "for sz in filter_sizes:\n", " conv = Conv1D(filters=num_filters, kernel_size=sz, activation=\"relu\" )(z)\n", " conv = MaxPooling1D(pool_size=2)(conv)\n", " conv = Flatten()(conv)\n", " conv_blocks.append(conv)\n", " \n", "z = Concatenate()(conv_blocks) if len(conv_blocks) > 1 else conv_blocks[0]\n", "z = Dropout(dropout_prob[1])(z)\n", "\n", "# Hidden dense layer and output layer\n", "z = Dense(hidden_dims, activation=\"relu\")(z)\n", "model_output = Dense(1, activation=\"sigmoid\")(z)\n", "\n", "cnn_model = Model(model_input, model_output)\n", "cnn_model.compile(loss=\"binary_crossentropy\", optimizer=\"adam\", metrics=[\"accuracy\"])" ] }, { "cell_type": "code", "execution_count": 121, "metadata": {}, "outputs": [ { "data": { "text/plain": [ "[<keras.engine.topology.InputLayer at 0x126639c10>,\n", " <keras.layers.embeddings.Embedding at 0x126639d10>,\n", " <keras.layers.core.Dropout at 0x11f1039d0>,\n", " <keras.layers.convolutional.Conv1D at 0x10defda50>,\n", " <keras.layers.convolutional.Conv1D at 0x126639c90>,\n", " <keras.layers.convolutional.Conv1D at 0x1121d3d90>,\n", " <keras.layers.pooling.MaxPooling1D at 0x126abe790>,\n", " <keras.layers.pooling.MaxPooling1D at 0x112185dd0>,\n", " <keras.layers.pooling.MaxPooling1D at 0x1121c6cd0>,\n", " <keras.layers.core.Flatten at 0x126676850>,\n", " <keras.layers.core.Flatten at 0x112197610>,\n", " <keras.layers.core.Flatten at 0x11cc280d0>,\n", " <keras.layers.merge.Concatenate at 0x10b926e90>,\n", " <keras.layers.core.Dropout at 0x126aaf9d0>,\n", " <keras.layers.core.Dense at 0x11cc51e50>,\n", " <keras.layers.core.Dense at 0x11cd6bf50>]" ] }, "execution_count": 121, "metadata": {}, "output_type": "execute_result" } ], "source": [ "cnn_model.layers" ] }, { "cell_type": "code", "execution_count": 122, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "<keras.layers.merge.Concatenate object at 0x10b926e90>\n", "[(None, 1990), (None, 1990), (None, 1980)]\n", "(None, 5960)\n" ] } ], "source": [ "print_layer(cnn_model, 12)" ] }, { "cell_type": "code", "execution_count": 112, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "<keras.layers.core.Dense object at 0x112d2d990>\n", "(None, 50)\n", "(None, 1)\n" ] } ], "source": [ "print_layer(cnn_model, 12)" ] }, { "cell_type": "code", "execution_count": 123, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "Train on 25000 samples, validate on 25000 samples\n", "Epoch 1/3\n", "25000/25000 [==============================] - 50s - loss: 0.4335 - acc: 0.7704 - val_loss: 0.2938 - val_acc: 0.8758\n", "Epoch 2/3\n", "25000/25000 [==============================] - 50s - loss: 0.2309 - acc: 0.9071 - val_loss: 0.2859 - val_acc: 0.8802\n", "Epoch 3/3\n", "25000/25000 [==============================] - 50s - loss: 0.1893 - acc: 0.9257 - val_loss: 0.2995 - val_acc: 0.8766\n" ] }, { "data": { "text/plain": [ "<keras.callbacks.History at 0x126751c50>" ] }, "execution_count": 123, "metadata": {}, "output_type": "execute_result" } ], "source": [ "cnn_model.fit(x_train, y_train, batch_size=64, epochs=3, validation_data=(x_test, y_test))" ] }, { "cell_type": "code", "execution_count": 57, "metadata": {}, "outputs": [ { "data": { "text/plain": [ "[<tf.Variable 'embedding_5/embeddings:0' shape=(88585, 50) dtype=float32_ref>]" ] }, "execution_count": 57, "metadata": {}, "output_type": "execute_result" } ], "source": [ "cnn_model.layers[1].weights" ] }, { "cell_type": "code", "execution_count": 51, "metadata": {}, "outputs": [ { "data": { "text/plain": [ "[array([[-0.00537731, 0.01004505, -0.01243093, ..., -0.000989 ,\n", " 0.00684546, -0.00744937],\n", " [-0.05866501, -0.00139329, 0.01262602, ..., 0.01466062,\n", " 0.01777977, -0.04964167],\n", " [ 0.0226872 , -0.00739046, -0.01942088, ..., 0.00778489,\n", " 0.02367541, -0.02095466],\n", " ..., \n", " [ 0.00730095, 0.03500965, -0.02484518, ..., -0.04528098,\n", " 0.03952632, -0.00274396],\n", " [ 0.00923758, -0.03889309, -0.00641484, ..., -0.00164293,\n", " -0.02593929, 0.01862602],\n", " [-0.04924661, 0.02040339, 0.00640279, ..., 0.01267619,\n", " 0.04790827, 0.00526398]], dtype=float32)]" ] }, "execution_count": 51, "metadata": {}, "output_type": "execute_result" } ], "source": [ "cnn_model.layers[1].get_weights()" ] }, { "cell_type": "code", "execution_count": 55, "metadata": {}, "outputs": [ { "data": { "text/plain": [ "[<tf.Variable 'conv1d_11/kernel:0' shape=(3, 50, 100) dtype=float32_ref>,\n", " <tf.Variable 'conv1d_11/bias:0' shape=(100,) dtype=float32_ref>]" ] }, "execution_count": 55, "metadata": {}, "output_type": "execute_result" } ], "source": [ "cnn_model.layers[3].weights" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "#### An LSTM sentence classifier" ] }, { "cell_type": "code", "execution_count": 43, "metadata": {}, "outputs": [ { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAfYAAAEiCAYAAAALRPCFAAAKwGlDQ1BJQ0MgUHJvZmlsZQAASImV\nlwdUk1kWx9/3pTdaQihSQu9IEQggJfQACtLBRkhCCCWEFERsiAyO4FgQEcEyoiMgCo5KkbEgFmyD\nYO8TZFBQx8GCDZX5gCXs7J7dPXvPuef9cvO++9378u45/wBAHuSIxZmwGgBZIpkkKtiPkZCYxMD1\nAQxQBSrAGBhzuFIxKzIyHCA2tf7d3t8G0Ph6w248179//19NnceXcgGAIhFO4Um5WQgfQ7ybK5bI\nAEAVIXGTJTLxONchTJMgBSJ8YpwFk9wzzimT/PvEnpgof4Q/AoAnczgSAQBkNBJn5HIFSB6yKcIO\nIp5QhHAMwt7cNA4P4XKEbbOysse5A2HLlH/KI/hbzhRlTg5HoOTJXiYMHyCUijM5S//P4/jflpUp\nn3qHMeLkNElIFLKaI2dWl5EdpmRRytyIKRbyJvZPcJo8JHaKuVL/pCnmcQLCplieEcuaYo5k+lmh\njB0zxZLsKGV+UebccGV+PlvJfGlg9BSnCoPYU5yfFhM/xbnCuLlTLM2IDpve46+MS+RRyppTJUHK\nHrOk07VxOdPvkqXFhEzXkKCsh8cPCFTGRbHK/WKZnzKnODNyuv7MYGVcmhutfFaGXLApTueERk7n\niVSeD4gBaUAORIAH+EACUkA2yAQywAABQAikQIx84gDkesj4ebLxJvyzxUslQkGajMFCpojPYIu4\n9rYMJwdHNwDGZ3LyJ39Ln5g1iH55OpbTAYB7CRIUTMc4JgAcfwoA9f10zOQNcl02AXCyhyuX5E7G\nxq8tMutEZNppQAcYABNgCeyAE3AFnsAXBIJQEIF0kggWAS7STxbSyRKwHKwGxaAUbAJbQRXYDfaC\nOnAIHAGt4AQ4Ay6AK6AH3AIPgAIMgBdgGLwHoxAE4SAKRIV0IEPIDLKBnCAm5A0FQuFQFJQIJUMC\nSATJoeXQGqgUKoOqoD1QPfQzdBw6A12CeqF7UB80BL2BPsMomAzTYH3YHJ4JM2EWHAbHwAthAZwD\n58NF8Aa4Eq6BD8It8Bn4CnwLVsAv4BEUQJFQdJQRyg7FRPmjIlBJqFSUBLUSVYKqQNWgGlHtqC7U\nDZQC9RL1CY1FU9EMtB3aEx2CjkVz0Tnolej16Cp0HboFfQ59A92HHkZ/w1AwehgbjAeGjUnACDBL\nMMWYCsx+TDPmPOYWZgDzHovF0rEWWDdsCDYRm45dhl2P3YltwnZge7H92BEcDqeDs8F54SJwHJwM\nV4zbjjuIO427jhvAfcST8IZ4J3wQPgkvwhfiK/AH8Kfw1/HP8KMENYIZwYMQQeARlhI2EvYR2gnX\nCAOEUaI60YLoRYwhphNXEyuJjcTzxIfEtyQSyZjkTppHEpIKSJWkw6SLpD7SJ7IG2ZrsT15AlpM3\nkGvJHeR75LcUCsWc4ktJosgoGyj1lLOUx5SPKlQVexW2Ck9llUq1SovKdZVXqgRVM1WW6iLVfNUK\n1aOq11RfqhHUzNX81ThqK9Wq1Y6r3VEbUaeqO6pHqGepr1c/oH5JfVADp2GuEajB0yjS2KtxVqOf\niqKaUP2pXOoa6j7qeeoADUuzoLFp6bRS2iFaN21YU0NzlmacZp5mteZJTQUdRTens+mZ9I30I/Tb\n9M9a+losLb7WOq1GretaH7RnaPtq87VLtJu0b2l/1mHoBOpk6GzWadV5pIvWtdadp7tEd5fued2X\nM2gzPGdwZ5TMODLjvh6sZ60XpbdMb6/eVb0RfQP9YH2x/nb9s/ovDegGvgbpBuUGpwyGDKmG3oZC\nw3LD04bPGZoMFiOTUck4xxg20jMKMZIb7THqNho1tjCONS40bjJ+ZEI0YZqkmpSbdJoMmxqazjFd\nbtpget+MYMY0SzPbZtZl9sHcwjzefK15q/mghbYF2yLfosHioSXF0scyx7LG8qYV1opplWG106rH\nGrZ2sU6zrra+ZgPbuNoIbXba9NpibN1tRbY1tnfsyHYsu1y7Brs+e7p9uH2hfav9q5mmM5Nmbp7Z\nNfObg4tDpsM+hweOGo6hjoWO7Y5vnKyduE7VTjedKc5Bzquc25xfz7KZxZ+1a9ZdF6rLHJe1Lp0u\nX13dXCWuja5DbqZuyW473O4wacxI5nrmRXeMu5/7KvcT7p88XD1kHkc8/vS088zwPOA5ONtiNn/2\nvtn9XsZeHK89Xgpvhney94/eCh8jH45Pjc8TXxNfnu9+32csK1Y66yDrlZ+Dn8Sv2e+Dv4f/Cv+O\nAFRAcEBJQHegRmBsYFXg4yDjIEFQQ9BwsEvwsuCOEExIWMjmkDtsfTaXXc8eDnULXRF6LowcFh1W\nFfYk3DpcEt4+B54TOmfLnIdzzeaK5rZGgAh2xJaIR5EWkTmRv8zDzoucVz3vaZRj1PKormhq9OLo\nA9HvY/xiNsY8iLWMlcd2xqnGLYirj/sQHxBfFq9ImJmwIuFKom6iMLEtCZcUl7Q/aWR+4Pyt8wcW\nuCwoXnB7ocXCvIWXFukuylx0crHqYs7io8mY5PjkA8lfOBGcGs5ICjtlR8ow15+7jfuC58sr5w3x\nvfhl/GepXqllqYMCL8EWwVCaT1pF2kuhv7BK+Do9JH13+oeMiIzajLHM+MymLHxWctZxkYYoQ3Qu\n2yA7L7tXbCMuFityPHK25gxLwiT7pZB0obRNRkPEz1W5pfw7eV+ud2517sclcUuO5qnnifKuLrVe\num7ps/yg/J+WoZdxl3UuN1q+ennfCtaKPSuhlSkrO1eZrCpaNVAQXFC3mrg6Y/WvhQ6FZYXv1sSv\naS/SLyoo6v8u+LuGYpViSfGdtZ5rd3+P/l74ffc653Xb130r4ZVcLnUorSj9sp67/vIPjj9U/jC2\nIXVD90bXjbs2YTeJNt3e7LO5rky9LL+sf8ucLS3ljPKS8ndbF2+9VDGrYvc24jb5NkVleGXbdtPt\nm7Z/qUqrulXtV920Q2/Huh0fdvJ2Xt/lu6txt/7u0t2ffxT+eHdP8J6WGvOair3Yvbl7n+6L29f1\nE/On+v26+0v3f60V1SrqourO1bvV1x/QO7CxAW6QNwwdXHCw51DAobZGu8Y9TfSm0sPgsPzw85+T\nf759JOxI51Hm0cZjZsd2NFObS1qglqUtw61prYq2xLbe46HHO9s925t/sf+l9oTRieqTmic3niKe\nKjo1djr/9EiHuOPlGcGZ/s7FnQ/OJpy9eW7eue7zYecvXgi6cLaL1XX6otfFE5c8Lh2/zLzcesX1\nSstVl6vNv7r82tzt2t1yze1aW497T3vv7N5T132un7kRcOPCTfbNK7fm3uq9HXv77p0FdxR3eXcH\n72Xee30/9/7og4KHmIclj9QeVTzWe1zzm9VvTQpXxcm+gL6rT6KfPOjn9r/4Xfr7l4Gip5SnFc8M\nn9UPOg2eGAoa6nk+//nAC/GL0ZfFf6j/seOV5atjf/r+eXU4YXjgteT12Jv1b3Xe1r6b9a5zJHLk\n8fus96MfSj7qfKz7xPzU9Tn+87PRJV9wXyq/Wn1t/xb27eFY1tiYmCPhTEgBFOJwaioAb2oBoCQi\n2gHR1USVSc08YdCkzp8g8J94UldPmCsAtb4AxBYAEI5olF2ImxVMautxyRTjC2BnZ6X/w6Spzk6T\nuciI8sR8HBt7qw8Arh2Ar5KxsdGdY2Nf9yHF3gOgI2dSq48bFvkHU2ahZaCxvZuaB/7V/gKACAtb\nVapSmQAAAgRpVFh0WE1MOmNvbS5hZG9iZS54bXAAAAAAADx4OnhtcG1ldGEgeG1sbnM6eD0iYWRv\nYmU6bnM6bWV0YS8iIHg6eG1wdGs9IlhNUCBDb3JlIDUuNC4wIj4KICAgPHJkZjpSREYgeG1sbnM6\ncmRmPSJodHRwOi8vd3d3LnczLm9yZy8xOTk5LzAyLzIyLXJkZi1zeW50YXgtbnMjIj4KICAgICAg\nPHJkZjpEZXNjcmlwdGlvbiByZGY6YWJvdXQ9IiIKICAgICAgICAgICAgeG1sbnM6ZXhpZj0iaHR0\ncDovL25zLmFkb2JlLmNvbS9leGlmLzEuMC8iCiAgICAgICAgICAgIHhtbG5zOnRpZmY9Imh0dHA6\nLy9ucy5hZG9iZS5jb20vdGlmZi8xLjAvIj4KICAgICAgICAgPGV4aWY6UGl4ZWxZRGltZW5zaW9u\nPjI5MDwvZXhpZjpQaXhlbFlEaW1lbnNpb24+CiAgICAgICAgIDxleGlmOlBpeGVsWERpbWVuc2lv\nbj41MDI8L2V4aWY6UGl4ZWxYRGltZW5zaW9uPgogICAgICAgICA8dGlmZjpPcmllbnRhdGlvbj4x\nPC90aWZmOk9yaWVudGF0aW9uPgogICAgICA8L3JkZjpEZXNjcmlwdGlvbj4KICAgPC9yZGY6UkRG\nPgo8L3g6eG1wbWV0YT4K2bC9lQAAQABJREFUeAHs3QeYbUWxP+zlDQYMoCIiGA6ggEiQJCIgh6BE\nAXNAkmSJAooZJJpBMIAoOagICoooiIIISlLJIJIxgBgx33v/3zdv6++4GCbu2TOz90zX86zda3eo\nrq6uruq8HvX/DUBToXKgcqByoHKgcqByYEZw4D9mRClqISoHKgcqByoHKgcqBwoHqmGvglA5UDlQ\nOVA5UDkwgzhQDfsMqsxalMqByoHKgcqByoFq2KsMVA5UDlQOVA5UDswgDlTDPoMqsxalcqByoHKg\ncqByoBr2KgOVA5UDlQOVA5UDM4gD1bDPoMqsRakcqByoHKgcqBz4r8qC/uWAKwg8//d//9f8x3/8\nR/P//t//a/7rv/6ruErFT9jvf//75r777mtuvPHG5rLLLmuuu+665vbbb2/++te/lrj//d//3Tz9\n6U9vnve85zWrrrpq89KXvrSZM2dOs+CCCzaPe9zjmkc96lElH/jzLl95VegvDqg39a5egTolJ4Cs\n/OUvf2l+97vfFfm44oormquvvrq58847m9tuu6159KMfPU9env/85zfLL798s/LKK5dnkUUWaRZY\nYIF5ckhOAPd///d/i6xETpNfiVB/KgcqB7rOgUcNNPR6QU3X2To1CFUdpUl5RpEm5//5n/8pBv2G\nG25ovve97zU//vGPm/vvv7950pOeVJ4nPOEJRVFLJ+7f//735qGHHmoefPDB5h//+EdR2nPnzi2G\n/jnPeU7zmMc8phh3+HUEGIT//M//THbV7RMOqLcYc/LjnQz86U9/au6+++7mmmuuab7//e83N998\nc6nvhRZaqHniE59Ywn/wgx80iy22WOkA6hzoAHie+tSnNuuuu24x8CussELz5Cc/uchGDDhXPvLz\nPlhW+4R1lczKgb7hQDXsfVNVjyQ0fTIjoShLhh7cc889zcknn9x84xvfaB544IFm9dVXb9Zbb71m\nmWWWaZ7xjGcUZcxAG4Ux5H/84x+bX//6181dd93V/OhHP2rOP//85je/+U3zwhe+sNlyyy2b9ddf\nv4zyoqQZdXkm30dSV316kQM6cepM/cXI/+1vf2suuOCC5tRTTy0dQIZ5s802a1ZaaaVmzsDMzdOe\n9rTmpptuavbYY4/mzW9+c7P99ts3f/7zn8sskJH8RRdd1Fx++eVFpjbffPNmq622ahZddNFixNuz\nOulExOD3In8qTZUDM4ED1bD3cS22R+uMMzDy/uEPf9gcfvjhza9+9asyktpuu+2ahRdeuIy8GHPK\nlgsoeR0ECh/AafRm+t60/bHHHlv+b7HFFg08plyN3qWrCrqwrK9+YlwRzaCbpfnEJz7RnHPOOc1T\nnvKU0okzU8O4m67X8VPPV155ZbP11ls3b33rW5udd965yI8OJbkxarfUc8opp5TZISP4gw46qFll\nlVWKrMFDxsQne7Uz2FciU4ntQw7854ED0Id0V5IHOEBBmhKlLClOxv2SSy5pVKkROAW8yy67NHMG\nRl2m4B/72McWRW20FqOc0X4ULoNvmt566XOf+9xmjTXWKKO1iy++uBgBfqZmMw1flXT/iSJZsZb+\ni1/8ovnIRz7SnHXWWWV0/s53vrN0BBl1MtDuwOkknnfeec2yyy5blmfIElmBS4dg/vnnb1ZbbbUi\nF6bzLf+YxreM0+5EkpcqM/0nM5Xi/uJA3RXfX/X1CGrnm2++oiiNvKyN7r///s0dd9zRbLzxxs1r\nX/vaMo1KQceYR6lSyJ42xNgb1YlPudsk9d73vreM+D/1qU81Rx99dPPLX/6yTOO209b3/uCAjpzH\nsstRRx3VfO1rXyty8sEPfrAYZnXOaJMTckAmuCDyEj//xYVPZ8/0u+n6Qw89tHQ24f/ud79bZgbE\njez1B6cqlZUD/cuBath7qO4oP0qSS5nGRaJ3D4iijfI1HWrHu9GX0ZYR+qWXXlrWPY3MxB+sVIOL\nARcm3+QpD//htT5/3HHHlU11yy23XHPhhReW6XkdCXFAm87iUX+mhAPqK3VmCUU9RH7adSJO/NW1\nqfPTTjutyMib3vSmZt999y2nIky7Rx64mcXhAjiljxuZMiL3zuDrRM4dmMrXGdRJ0BH82c9+Nm+p\nJ2mmhEE1k8qBLnGAzA9+uoR6UtBUwz4pbO0MaZQjAaKMQRQht/0eIRPPTvYzzjij+elPf9rsvffe\nzSGHHFKmWo2YbISzlhrFLl1wcfl7KGVhIEbC5rkPf/jDZQrW5jsjdlOxNuQZ6VmLD50l4b9+hvJr\nh9f37nBA/dlTod4YYqAe1XfqMjmJy0+YI2wnnHBCmVLfcccdy6jbyBuIBwc3/8vLv34G+/vvSYdA\nJ8AskiOTr3vd64pskkeyIv/BdLVx1/fKgV7mgIGO5c7IcNxepLka9h6plSg9bhQlIYqSTjhyo1z5\n2Z3svLE1TWvqa621VlkXN7VKQVtjt/HJWjxgdBlyQuqdQo4hFh8ItxkKjq9//evNJptsUkZgjPo7\n3vGOkubMM88scdCSTXyhMfQVZPVn0jig3oyyAd6nHjOVrh7SaUudONL2mc98pnn2s59ddq8/85nP\nLNPo0ncL5GXkvummmzavetWrmquuuqrMEHQzj27RWvFUDozGAW1I2zIz5fHf08tQDXsP1Q7hiQKm\nBCNISIxSjCtedrCb7rSpzREl0592Idv0tvvuu5dd7O973/uab33rW2XzW5S/kRVcnhh3YToKNkrB\n6QgTnO9617vKGjsjsvTSSze77bZb2VBno54Og04CCO6UoXjWn0nlQORBJnlvy1HqQhhlZLbF3Qbq\n1dJKRtrdJDJ5Grm//vWvL7Lz7W9/u1x0Q2YrVA70EwcMeDzakLaV/71chmrYe6h2CE0UcHqF6Rlm\nNN0m14jehjm7mx0tesELXlCmVSnrxz/+8c0GG2zQvPvd7y5H14488sjmO9/5TpmihzNG2Htw8zNl\n6viTEbnpVFP7ji9lZEhZv/zlL2+M9FxYIm+dBGmDM26b1vrefQ6ot8gHg4nv5CeGVY7e+Qm3Ye7i\ngdMNRvSvfvWri4zE0LbTdINSMigfMwPW8e+9995yfNLSQYXKgX7igDaSGU5trtttZTJ4UQ37ZHC1\nA5yUb4SGsrYZzqUhlLENcFHYXA9ghL/yla+UEboLZBhYQhfBM+J/yUteUja7UbQHDhyDM2VPuYrT\nHq0ZecvLpqdvfvObZae0Hc4MuGnVdADQqNPwspe9rNxO5oayGJfkG7cDNtQk4+AAPqtz8uGImdMK\nZCLr7lBFVizpWJIxG8PQ2mSpLsmI+N3ujFGG8OsQmpJ3JM79Cn/4wx/GUcIatXJgejlAt+23337N\n2WefXWRXO4p+S6d4eikcOve+MOxRToPdoYvUn76EhSIkSATGTuIPfOADZcRsZOy+bkpbOD54jILc\nMGek7p53foy19N4ZZNPyrvl8+9vfXt4PO+ywMsqHK71QI38b8Izq5bXmmms2b3vb28rxJYYDXaGN\nC6cZAvjRybDwl3e3DUR/1ubUUI3XHsrGLIuOmLPmP//5z8s9Buo1nS51fe2115a4OmUMrvqKnKi/\nbgLcAF5G3Q2GrjVGWxvkX2H2cSD1HrdXOaB96TTTh3vuuWc5FWSfSvYs9Srd3W3Nk1RKzKWgosgY\nrrwTjNGeNlmJO5Rfwjpxg2+0tIkXtx1fmYCyetztbvOa3cVG0pR2RjwUtV3wji69+MUvLtOewUmp\nUqhw6DCYEjWtblpefi4icQ0o4y7cKM6GKleKvuIVr2gOPvjgcvyJUQ996aXKg7+RvA/HGIWJk/oR\n7n+FyeeAOsFrBpyiMcNjX4Xlky996UvNXQPXAwNxHE/UCXNhzJyB45BkLfXEbddvSdT6EZ44bRlt\nRXnEq/iJqxOx4oorlg/J6EAKIy9xE+8RSDrwgNPTCbTpaOMIzm65g2nrFO9QeJTB0wnOiaQda36D\ndXfkoBOa2/QO5kU3/2fg8+Uvf7lxisQGYrOaOqloyABJnuFDN/PvBNc/D6h2knKK0/gama+SYSLD\nxVhhKiPjvyfvjFqe+AvjZ+qRm7jxT3Gi4Lh5F9b+H//BbhvH4PiD/wdn0nAJBSDsRmHK6mGAGXUj\nHlNC7uNmqI3ijZbd/65c+JFy5x0+PKBc11577RL+sY99rBxjo+xf9KIXNUcccUTZuewe8Le85S3z\nvtKFnuDLO7zwMeqmcx2dEpa6kJ+ypiz+V5hcDqgPmx7JjTq13GJ07utr5MRGOUcXTdWb2SHznjaM\nVF+R3cH12paxNq68iw+0VfKCPh3RtGFh5CswEg2JM9iVBzo80rdpHRx3tP/SwwPyPloZR8M5ODw8\nST7C4zfe8icdHNLm8b/bMF7ahstfudEdvoYP/NrlGS59279NU9LCF9ztuJ2+64gw7PKCVzuzEVn7\nMgu1zjrrlD1H5Ds2SXsMPZ3mO9F0D2/dE8U2SekxlFEzksRogHmp2AhF26Uwwtyh3HZc7+K3jb73\nGH0VJj8PP2HeGUuPtG1///m34wvP/7hJk7CkU0a3x0VA/WfcjdBtVnOH+9y5c8v0ufXRZz3rWQW3\n9J6AclGmyU8YQWSQGfCPfvSjZZr01ltvLSN1U02mTU2xU77oAuGz9Hl3RS08jAVhR2v4LF3eQ0t1\nJ4cDZIMxB1E+ZEWdmPFxsuGLX/xi6cDZQ+GzvIxr6ieu+iMnQwG8yUOH03XF4uYZnCZ08CczZJCc\nkhezQy49yv3x8hcnsj4Y10j/5eOBP0/8Uq6R0rfDxPckPXx4y0Vbt0C7Ck55tYH/eAHNoRW9HniH\nq8uR8IeeuOJ6b+/ZGCn9WMKUn27kMpjqXhnIa/TNWPCII60HjeoofPDerTrDT7OkyYv8A7NhlkKd\nDDr33HPLMpiPbOG7vMWfTuiLj8CoMMbn4oEdvYSAQBAMkIYSoU7lioPB8RfP/8QXz7tw/oSj/bT9\n2u8RoqHiDo7XjisMyLed1jvgEgp0h3YChb4oHPG8ExqdC7jsUtd79MW2dsOQX4RevITBTfH7epur\nPxlm6+Wf/OQnmzkDU7RoSFz5yd9/9EVYvfM3pW9tV8dHYwWJJ7zC5HMAvwHlS57JB+CSEeHe1Y+6\nV5eRi9RrZLMkHOJHenjMDqXDSu7gI1tDQWRI2sgweWbQQ1foSBmGwjOaH/ztR/yUebS0o4WjLzSO\nFnes4fCFXmm8g0550MYV3AVhBz9tvoUuaNp5dID2YUmCl8yRV3JCpvh3woN2Gji6XWfoNJjS8Qgf\n6Mi0Ne9ODS211FJlDd6JIW0DHdMJfTFixyDHZt74xjcWw4PBFMpQwpCKjiut98H/B/urQDjjes9/\niqntn//88iR+0rTdhImbtPGLKwwQGArQ5zCdOebfLq/RNENKkMQzKqNgI0jKGQGUNo095ZefdHqa\n/Hyo47e//W3ZMa1zQOlqbOIJD97wuo3fux3y6qU9DcW/wtRwQB0z6q76NYpI3UVmKE33uGs/1gS5\nRu2pR1SmjkeqNyNtZ9Ft1HT+Hd7I7EgljdzIG40+BQsHhQhCR9yRcA0VBj9ckfPgTJmGSjMWvzbe\nieJq5wdX+5FPYCz8TFxu6iv48MED53hxwSddm5740QndArSijTwYXFgKtLlXh2+8kPJHdsKHuOPF\nN1R8etAmZvtT8EZedDie+FAWWbbHybc5lIN+Vj40TCf0hWHHTIpE5Uf4UpmYN1gY+QkHCcv/4jnM\nz3A4x5K2nZf3kdKEpqHiERoboaylO3eenmJ6tT7K4jYvU+q+ymWalWG2KYowwS1vAqmREzJu/EzD\nulOekrVRjlB+6EMfKtfFMgDrrrtuid82EOgMBD9j4vGtbleGmsKXBxriJk11J4cD6pasmIExqrBb\nN7xXDy4rYkhdEqPtmF1xM6GZFnWtLlOfkZ2hKIXT7YaWwxxdc0ERmYpMDpWG/EUW5KEjaVnAPo50\nBOEFwiOnQ+EayQ+OlGGkeBMJg79bgN52ueEN/vh3K6/x4gkd0k0mLTmeaWOwdWp3Khj19iIYaNmD\nRB/iCYOOT/StY6Nu5XRpl/ZF5oVNJu/GyqO+MOyUiKcteO33oQo7OHzw/7GkSZyxpE3cuGNN045H\nIKIMKTqg3KZ2rKPbHe+Lbb6tTqlStHqIrn+1gY7wwdfGAx8DzE8H4P3vf39z8cCSxmte85pm1113\nLQbZrXWOwx1wwAFFcG2yC8+5BBbAIQ/CroPAoDDsybddlpKg/kwqB/Bb/QB14+FHXsjDTjvtVDZM\nUppG8zb4WHpRf4BsAOuGo42Y4PXIg2ySu5EgciyOzqpZot///vfzvjYYfMGRcuT/WF14QNyxppuu\neIPL3aajl8owWbSQH7LBQHLJRuRwsvJs87iTd3TRt2DOnDnFoBtcaU/aWox9jH8vlKMvDHsvMKoT\ngRhPGsrSQ8gZUso337N27viVr3xl6RkSHtPeeKLXaBObD70YaWskFGT4BR+l7b+pL9fEOp5m2ig3\nyhFK0/rvec97moMOOqg8rqC1m5qyRw+cMRpcD3yMhBEh/GiOck7+4yl/jTt+DrTlhaH12dQlllii\njKq32GKLIj/81cuCCy7YLLbYYuX0gw6Z76enntQzeYvyGo6SxBfefh8qPlkkq+TCUpETHIssskjZ\nQBdFPlS66jc7OEB+PBk09Gqpyaop9yWXXLLoRKN0+lKbiUFv0z5au2jHncz3vjDsk8mAXsFNIGI0\nKWLHkvbaa69y53uOKAkPeOdvxGyX/LbbbluUdcLjwusSm09/+tPlljpToS5bSE+TcdA5cEMdg+7k\ngdE71212hFocEBopbXsAHKHaeuut53Um0CSOp8LkcyDywnhbq3SxkKNtDDwZane0dAYpJ99HJy9m\nf1JflCsl1U2Aj9x47Kh38ZH87YyvMHs5EN3AJZ90SS/rDIadjmPMHR/VWeWXttOrNTm9K/y9ypVp\noisCTgnbqf6GN7yhfNyFICWMCwgWo06hGzlTnBR0esBco3Vrr9bUrXEy6ttvv33pbWbUT1CB0RrD\n4CIcU/3WlZzXdLSJcpZvXGtkpvOtq+cMPRoBuipMDQdSJ9bSKZ9tttmmLNmoy8gMSsRT36uttlrp\n/Lm8xvKM+mzH6ybVUXzk8Kabbiqbj8i06csKlQPkzsOw9zJoO2a/bBjVWU174d/LUA17j9QOQdGD\njcBQxHacZ+QVRYlcU5vAdJC1HiMihpsRFi/G1Zq6I21uJJs7d26ZAbBWb7QOB8UOKF8Cy9/mKpvp\nbNpzxawRng6C+BohV2fBDmnT8Nm0l3zRH7wFef2ZVA6QD4bciQYdLcpHfXraMiOOUcecgTXC66+/\nvizJtONE7rpJLFnxnHzyyYVGyztkukLlQPRdDHt0Vq9xBp1k1qxYjLp2E7p7jd7QUw17ODHNLmPo\nIeCUc6Z8uG0FTdAIGVeYNdWNNtqofIrTLnpG2GjMhjr3wjPMdiH79KpNVBFOecBBSPll5K6z4Lvr\nbqfzbgRvBz280rjk5IQTTigjPyN8U/XpkMAH4k4zS2d89upNnVAykR/1qT7Up3rwZLOc+rQDWZ2d\ndNJJRUbIlvBuK1YGHV5fHySXOhVOYJDdCpUD5JL8pnPZyxxBa9pJ9KV218vQF4Z9JKXTDss75reB\n0jMCNYLlUjgxouLlPem5eU94XP5t/P4nPX8GUB5Gz96FBdo44xeXkFPI7fh5FwYIGIDHe4yx3e16\nlSeeeGJzyy23lDV1R5tc90qRuz/cZqnggUNeMQDoDm3wGt2tvvrqZYRvWv6DH/xgc84555Qpf/cl\nu97WRQxG7HDAK13oDZ3yqTD5HGgbce/qsl3X/PxXV2ZkbMb8yU9+UmZycotc6j/U+u9Rp6lXYe26\nTXjiJq34/Hz575hjjikb97Yd2AOiY9GmK/GrO/s4QI7IQmRoMjgQueS2If/jCovM0t1ObzhGqsMs\njjD0pp357xGHTYmeD452XtP1/p8HDsB0ZT6efKNQUhn+M9Bt//Y73IlrTdgnKxk7F21YL0mFMWrS\nRciGo0m8VCZXpXv4S8sPqGgXGtgF7BiZ6W34k09oHC4fuMQJTYmXdAnjyl98U7CEy9l30/I+8OIj\nBabpGXXGWTw0UO7BFf4QWMBfOfz32MVsgx6jftVVV5XLcHwm1gYoI3mXncAXCO35X93J5UBbFvIu\nR/UAUs8J4+q0qVOzMG4stKHNZrvIQEk48EOeQOrU8stXv/rVcu7YBTdGLGQlMuQdfjLmMbPz2c9+\ntozWfXxIh4JhB6Gr/Kk/s4oD0bs23loinDOwNGTvhYFJN+WiLZfePWkXGB59HJctYSfot+OPP77U\nCdqER86DJzrv0ksvLddy2zdiKQz+4OtmWToRkL4YsYdJqSwF9U4ZJYyrAmLs/PcwdIysqWUfx1hj\njTWKn3VkG89sODJ1LR2IgpI2FclPHEe8VLoz4G4cshnJOnSUoOlHFWv9+Wtf+1q5Szg44G6/+z9R\niAE2vWmDB7rc5kRpb7DBBs0OO+xQjjyFN1HGaAQE0YOudifFf2k0Nl/liqBz8cGxOEsAEfCJlqOm\nnzoOqFubLg8c6M+rP1+qcrENpUYuIgeZMhef/EdhZQoy7YTMkyG4IkfanFMYOpfuXXCpTftCnKkr\nbc2p1zhArwDuZBtC8tjOi8zGL3qvRBj4YdgNiMitzZ6WGbULAyN63lKmNtDuADttpLPr8iZ6Ef6U\nKXiny+0Lw95mDoHIo5JMh2Cqs7keFUTZCPMu3EhdZbmBy2jTdIupSNexUlR6j0mTCpc++VBawj//\n+c+XC/8ZeGvY0ts8lgqFi2Jk6HUmPDF+UYRwdhPkR9isn+d4nI13ymHURMkqSwQSPe0yppzCheEZ\nP48yU/gE3MyDT7Uy6kZswdPNslRck88B9UwG1aEPAfm/3XbbFaVGXsiTcHKgjr2nrskw5RZ5F0bW\nAFkxre9DRTZs2nnvdsSdd965dBAjf5NfwppDr3OA3ESuyNtkAnkFsQVk1GVJ9BqZpQvZCDrOspFp\neAMi/nQ8u0Hf65jSpWwHnMLh9N8+JjjoTKC9TDf8cw52uqkYQ/5h2uComGuXr/U8jDcasUln8cUX\nLwbfkS3rwq4udP0fo+saVoZdpZiaP+OMM8qUpHPbRqlAfiqIEvMQQCN8vbe7Bm7x2m+//cpo2FSm\neCpbmsR1MxshCt0UW94Hl6HT//ARMGCK1dQ5w+vb6hSrsm255ZZl9K5caEh50rjaeQuDByiPs+p4\nd+LA2v1iA5ebuMQmPJK3B54K/cMBdeZ4HNelRxSWPRRGJJZuzPq4tpgcpI6Vrl3X7Tr3TlYsQZma\nJCs+r6wTve3Aurr2Qa7aafqHW5XSyeIAvUVv0t+TAZE5+ZBdutjImu6Wp9NBlgDoTLqdniO/2oCb\nN43GXXlrcCa+vUuWloSZxYzxJteWqcSRl3wTNhnlGivOvjHs7QKpKMrE6ACzrf8y6vwYsGuuuaac\n3fZ5SEacQTN1TsmIe+qppxajR3m53F/FmC60qQgMVkL+U4ZGIHp71obQYK0yu8JVJgExewBUtP8q\nW88QDfC0FWSJOIGfCC+c8pcXgXWrnPuLv/CFL5Q1INNFvuFulGYTnbXOTMtLA9DrQT/hJ9QaAt5s\nuOGG5Qx8PnLQ7XJMgAU16Tg5ENnmmm7XUbNGeNppp5XlI3WeDXZzBtYYtad09qQh09qZEYqOsZGP\n2wxtqDS60VFwNbG2lDPr5FQabQCEhnGSXqPPIA7QOx7yBLqpF4OPLiNzBn6+Xsklr+TPzK1lWHeF\n0Hdnnnlm0YsMNx1pOZMONEDTBlzqZPCYjygZIGbEb5QfoIfJevRq/Kfa7UvDjnGUiiM7p59+etl1\nu9VWW5Wd2j40oULFsStcT8t0oV6WCjIa2XfffYvx01vzTXKj0ewa17OTlqBRfB7CkRGMDgTlJ9ys\ngI1rMbAq9cEHHyzCaurag5asV6rcbio1wtPG511ZlctIfeWVVy7XyNpbYPOgqXQ3zJm9wIece1Zm\nBvyGG24o5+EpaMKKL26pM9PhdjqdAXngj7JW6D8ORF7ILLkk12ahKCyzW8cdd1zzuc99rmzE1Bm2\n1sjVSaaEyYpPKJuedJWx42y+S62NkK099tijdHjhTudRGJmRnl+FygEcoL/IIV3aTYCPASd39LHv\nYxjs0dfWzF2qRSca4JB/X9G0DKUNzBnozPL3bXUzT6bnpTv22GOLv84q3UeWLf2in588tS2PfKcb\npp+CMXAA09qVj6mUivOxDOf+++9frtJUISoNqDBGnYHCeP6YLo5Rugqxa92o245GisdI3i1thEFc\nCs20tjiAIJolcNMbA2oGwAiFv/TSmMLxzhDqSIgnL2Gp/IKsCz/yHQoInvIbteupKu+5555bjLvZ\nBrMYOkbZ9AcPWtHM2OsQrDtw9/zcuXPL0gZc4igD6AXBHarc1W/sHIjsqFOPNuAebFfS2kTEyN81\nMJI56qijyiwVJUZe7Fex10Q7suzlDnqjHjNC2lhkL/KSDmCVmbHXzUyOGT0euaMb6fNuAtwGVWaV\nyLHTH/R09gfRyXS7TiZ6DNTMVjLsZjz5kV+dWfJraVcYHUmOhRvgsQPCtQM6Ur7Kws/7dEJfGHYM\nwigMJQgMJ6ZiPHCeOooqikRc0yimS1Qk5gOMZ/Dh0xNTWZSUDoKd3qZnVDIlxnD7EEtwS2sWgMCo\naBvn4EGT/NB18cBVq/4TEOFAWBRd8ZiCH3QpF5qVw0hKh+WOO+4oCvv2228vU03+u+CG8M4Z6K3i\niZG9GQy8JMjh6RSQXbOYBg6QFfUcl5E2YrGhiJwYnZtud9LD0UkXHpkV0l7IDD9KUjuDQ/upMjMN\nFdlHWZITTwZEk0E63Wf20ehdB9RAhx72RK+xD/YiAcuqllyFM9zkHo1mN81AedALrxG+fVp0uxsV\nGXYAL/0/3dAXhh3zPIMBE1WC61QpI6MKxsumCGERGkqGkQMqxQgWPopIevFUjPWVuQOjVGEqVFxp\nVRThAAw7xWWEo7PAyKtwcUxnq2zvPhjAQAJ5gOAtfybxB+3Jk4s+ZSW4cwYUMfrdLW9kRiETZjuk\nCX8ADkJfYfZwQJ2TdzKjQ0sezN6Y3TEF7z4D4faaODaaaXXyLo30ILI3ezhXSzpWDkRGImt0L4j/\nWPGMFg8+eo5LHsmw6XgDmAzsjNojq2SYPPvv3cDO4BHQn3Q3f/IPl43FOr1mOOHMhtSp0vGjlX/o\nudzRUk1xeCoH0z2MsHXiVIwpFmuBdvkaWYjvwXSVwkAz+vxUjKNh3BMHdvDaKGR6kRCkklOJKlpl\n6rkZycvPqIXBswnvFa94RTkqxLib8rfZwiyCSvZpVIZUevnCOR2QfMMT5dZJsdkpHRyzDDpHIPHx\nI4I+HXTXPKeWA+SD/JMPDznwn+J17MfmurQFy1NkXruSTiea6784FSoHRuJAZIucRYZGit9JGHmk\nh+logzD6eaeddir7SXbcccdi3Mk3ec26OZ2HNn7shul7eKzRzx0Y8NHvdL/HPhSzvDq59iKlDYgf\nO9IJ3d1K0xcj9sGFJRCmjA855JCyycd0CzBKdiEGUDnWxk0pU0KmFf039e7zpD5M4fy6TgLjDiJw\nUWipZJXFSDPs8qbsxGH4jGjkZW3diIbRtNPYlayZnhEOh2eqIHlFScsXHRrSXQNrp25YIsiE1GjM\nznlCamRvfYqgJj4hrzCzOUDWyQZQ95F98uzSDlOTZJ4ys/HIQ87JOFkTn6wBclOhcmAkDpAZ8hSZ\nGyluJ2GZhTUAJL8u7mInzNzaP+SkD0AHXW1zsSObBmZmYt3GaPmSMTdC1zlgP7QDe7sM7HQIXAzG\nNgTgI//KNp3QV4Y9TONSKAyt9Q/QNmDCgSl5a92mTBxVcARHxXIpJcqIAFBkoK2Q+Alj1KynG937\nL07wJ40jcAyj2QJHwvbcc895m+rEIbxRlu20wiYLQmfyU1ZAUTu373IdRp2/2QxLDC5aIPCJSzir\nUZ+sGuotvORERzVAZsm7tmPjpU4wEE+HUMdY26Ps0m4iNzHwwVXdyoGhOEC/kB1y44muGirueP0y\n20p/Mdye5CfP6GN4LcGSZzOYDDsd7jjctgP3MJipBdKi0czmxz/+8aLTdRCkzTKveN0uB5ydQF8Y\n9naFe89/bgx6/DAhzLV5zeUbRqTZ6KaCAtL4n7TcvIuTuPGXVzs//pSf3eSWAQiPTUU2q7XTStPG\nm/wn003+8kjHgkA7TeB4Bz80EfysJ1lmMAOhIxN6k3Yyaa24e4cDZMSj/k1fOk6q46pNUZbk3Qgm\nR93ICv/ICzfvvVOqSkmvcCC6OXo3g6XJoE8e6axGJvnJk4sW4GuWjrWZjTJYbMcNveJ515F1HbnO\nrVNVlntTFuna8aWZLugLw95mTpgeV1j7vf1fT8oZ3aFgcJp2usQfHCf/44oXY292YDhQ8VMJhItB\nTickCpnguojBmimaKHBG3eyH5Qrr7nqpOidZRoCjwuzgQJRSZOPGG28s045KTw4oM2C04+y6kby9\nLTba6dxqF57gKZHrT+XAIA5ETrh00GTKizwGQ3RawqzFZzl2cNzE4e/dDLBnOGjHHy7OVPhPrcWZ\nihLVPIoAEl5CxsBrPKbd7Qq1NsrAU9IZmfkPjMRc+uOYID9pK8xODpAFV2yaivdOVjIyiVy40Mja\nZEZF4uSZnVyrpR6NAzF8XPIUWRotXQ0fHweqYR8fv/omtl6wKSdKl7I1InctonfTR44ymdEw+vI/\nj6MgRmoanrAKs4sD5IaM2INBDmw2dYrEmiNZMrpxbt0onXxYc9RJlA5wMyKaXZyrpR0PBxh1csKw\nx9iPJ32NOzIHquYemT99GRrlnBFWCmHXu/WkTKnaROfTmgcffHDZCaqBUdx2gEoLKPmqqMPBme+q\nbx1CJyNc0+xjLsCNi5Zx3M3guuJ0Chl+Bp/MkRlpK1QOjMYBuiaGnex4qoEfjWtjD6+Gfey86puY\nGojRlN6wBuPdGqjdnmlEXJfpXDxwht36EmMunbX1KGpxKswuDlC2DLQjP06O6ASSn8UGzuq60MgR\nHzuBGXSQGSGyUjuDs0tWOi0tWaFr0hH0P36d4qzpHs6Batgfzo8Z9Y9CBtbL7X7P/+wKTePSAcgV\nst7F09BAlHX5U39mLAeiXBVQnTPwOnlG5kbxGaGTI48RvThkKLKStO3/M5ZhtWAT4kB0D9mq8jIh\nVg6ZuBr2IdnS/54aTsClM4FMrWtMGZ3FeEtjBAba6ZO2ujOXA+q7XefpBCox+RDGbU+1J37ccGfw\n//hXt3KA3iEfHvJEH3migyqHusOBunmuO3zsWywaWu0x9231TRnhUcQMe5WXKWP7jMuIHJEfhjwd\nRX4VusuBOmLvLj97HptGlIYUtyrqnq+2aSUwMmMUXw37tFbFjMmcTMWwz5hC9VBB6oi9hypjqknJ\n9JepsAqVA6NxgGHPhszR4tbwyoGROED3WArMCZ06uBiJW+MPq4Z9/Dzr6xR6yhpRRmEK439tWH1d\nrZNKfOSFIm6vsU9qphX5jOZARuy1ozg51VwN++TwtW+wamAVKgdG4wA5iWGvncDRuFXDR+NADHtm\nC6tMjcax8YVXwz4+fvV9bA1Jo+JS1O3psL4vXC3ApHAgRj3Kl5v3ScmwIp2xHCA3dE4Mu4IatWdZ\ncMYWfIoLVg37FDN8urPToALt96qow5XqDsWBKOKMsIaKU/0qB0bjADnKw5hnoDFauho+Pg5Uwz4+\nfs2Y2GlcdfQ1Y6p00guSXfGTnlHNYMZzgFH3GK1X6D4HqmHvPk/7DqNecx2x9121TRnBZENH0BRq\n3ew0ZWyfsRm15cmueLJVobscqIa9u/zseWztRpT3atR7vtp6gsD2cbfITk8QVonoOw4Yrbc7ilUH\ndbcKq2HvLj/7DhsFXRtV31XblBNMTijietxtylk/IzMkT4x7vfBocqq33jw3OXztaawx5BqWBlY3\nRPV0dfUEcZGVKOLIUE8QV4noOQ6QEzJDTuiYP//5z80tt9zS/PGPf2z+9Kc/FZ3zs5/9rHnooYea\nb3/72821115b4vpWha9Q+jywGaIKnXGgcq4zvvVtqihkbltZ922BKuFTwoEcUcp+jMjRlGReM+lL\nDrRnd/7yl7805557bnP++ec3f/jDH4ru+e1vf1veDz300MaHqhhynwU+6qijmn/84x/z9JOOQYXx\ncaAa9vHxa8bE1ljyUNJVUc+Yqu16QSInmYqvstJ1Fs84hDHGZIa8PP7xj2+WW2655uyzz27uueee\nefpGvPvvv7+U30Bj/fXXbxZddNHyyWBhOgfpVM44Jk1igeoa+yQytxdRayxRzGl8+d+L9FaaeoMD\nZCWGvTcoqlT0MgfoFDKTZT5Ge4011mhWXHHFMhLnz8+u+MQ1Wl9vvfVKJ0AYf270VC+Xt9doq4a9\n12pkiujRWNJgqmGfIqb3eTbtXfF9XpRK/iRzIEadbjHqfvSjH90svPDCzWabbdYstNBCRfc4Oime\ncFPxa621VrPUUkvNG60jMTpqksmdceirYZ9xVTr2AqXRaHzVuI+db7MtZmTD6IkSzv+4s40ftbyj\nc4BuMcPTHpVLtfrqqzcvfelLm8c85jFFlozcxVtggQWaDTfcsGyaa4/iR8+pxhiKA9WwD8WVWeSn\nAVYFPYsqvMOikhNKOlOrHaKpyWYJB3QAgVE5I55BxFOf+tRmjz32aJ7whCfMWzsnV4svvniz0UYb\nNXbFe8Qna1U3dSYw1bB3xre+TaWhpNFoUHrLf/vb3+Y1vL4tWCV80jhAXjL6Ij8eSjfKetIyroh7\nggPq2pNbByMDI7nkBVi+ISd0DZeRX3LJJZstttiirKXzm3/++Zstt9yyedKTnvSwTkDSjJRPZJGr\nM5HOQGjO/4T1BEOngIi6K34KmNxrWWhMGgLXU6FyYCQOkBVK1pORmPcKM58D6v7vf//7vHr3P/LQ\naekNJKy1X3bZZc3NN9/cLL/88mWKvtMBBnqix8inToX/OhXpWCS8U5r7LV017P1WY12gNw2BsHvX\nq61QOTASB8gKY55R22xTlCPxZiaH0Q8uknGBjMtk/DdV3qnOYHjJjrPsNtHddtttzTOe8YxySU17\nyn4sPIWHEbcmz83oPNP51vOXWGKJeTouswhjwd3vcaph7/caHCf9GoPGCaKc/Y/fONHV6LOEA1Gi\nlCflHJmJDM0SNsy6YqpvN8MdffTRxXAaAceI6uiN18CTFwbchTVkyPT7JZdc0lxxxRUT1kGRRZfb\nzDfffM0HPvCBYtjR2aY18WZyZVbDPpNrd4SyEW5PFPQIUWvQLOdA5CSbmozawWxQkLO86ufpB3W/\nySablGlzR9fIQCcjYGnoHNP7OgUefpGt8fA7uovRjozC+4Mf/KB0FrJsJA9xgDSzQW6rYR+PJM2w\nuBFwwl6hcmA4DkSBUsAUZAz7cPGr/8zigPo3Ap47d26zzjrrlB3t0RnRIeMpMfkx8s9o33+dhfFC\njLl06IHPTIC1esbd/9DJFb8TesdLVy/Er4a9F2phCmloCzolTVmnZzuFZNSs+ogDlCE5CZChyFH8\nqjtzOZARcXvkGwMZdzylz4a24IWjEzzJM2mDj2yiNR3RxJtNbt3aOptq+19lTUNIg9IIKlQOjMaB\nyE3tCI7GqZkVnk4cNzIQt5OSJm1cBnmiAFfwDXbhjt9E8+mX9BPnaL+UtNL5CA4Qdo01zyMiVI/K\ngRYHjIDIjF3IFSoHKgd6lwPVsPdu3UwKZe2ea97TI5+UDCvSGcMBU6jAruN0CmdM4WpBKgdmEAeq\nYZ9BldlpUaph75RzsycdQ54RO8NeZWb21H0taf9xoBr2/quzrlHcHrFXRd01ts5YRDHsdSp+xlZx\nLdgM4UDdFd/nFZmdqtkAZyNK/BTNe6ZNuXkX5j3x/a/QPQ6E7zDiM9B5ynvx6LGfoehr+2XXcS6o\naZPfjtf2r+8zlwPqHHDJRmQg/u2St+U++qkdT3j7v7TOpP/1r3+d9312HcsKY+NAHbGPjU89GUtD\n0Ei4Hgp3uP/CEi4OyAgsaXqykH1MFL4a3XJ7ncdRquiMrMQvbpRzuywJU03e8/RxtVXSx8GB1Hdb\nbpxLz3/LNuQp8eK2/cRNO4k/Eq666qrmoIMOah544IGHtSE44K0wPAeqYR+eN30RwjhrSHrMGX1T\nwBoLiDJOuP/xS3jilgT1pyscoKiMOP70pz81999/f/P73/++4KWUehEiE9zICjqjoPnlOtEo30zJ\nK1PkKm4vlrHS1F0OqGuy0NYfDLEb6lwUI5x+IjtkhZxoE/z9j6y044nrv0tmbrnllua0004r98rn\nZjph8ETvdbdEMwdbnYrv47rUoAg6hasHq9H89re/La6wJz/5yY3vH2sEGgO/XA7hfxqRxlmhuxxw\nk5a62GuvvZof/vCHzZprrtkcd9xx5erM7ubUfWxkA8QlP5E1LlmLofcfkENP3stL/ZnRHCAfZAMY\nXDDGvtZmpH3fffc1Cy+8cLkLnr9HJzc6iF7685//XIw2vfXYxz62dBK8uz+e7iJnPhbj4zP33HNP\nif+0pz2teeITn1jy7OS2upJwFvxUw97HlRyFyzDrIX/zm99sTj755HKdooa2yy67NO94xztKQ9Dj\nzXGl9HqjiKth774QUHpGJZSZqUTKKR2s8L37uXaOEb0etLXlgx/5SFjKwK8dNzmLR3lH4ce/ujOP\nA+o/HTv6RgfW19oY5I9+9KPNy1/+8uZVr3pVMfqnnHJK8+Mf/7i0B7Lznve8p3zd7bDDDmsuuOCC\n5rWvfW3zm9/8pqRfb731mr333rswDP4zzzyzdAxuuOGG5sUvfnEJ8w33yOTM4+zES1QN+8R5OG0Y\nCH2U6913392cdNJJzfXXX19GhxrVSiutVO51Ts92cENI2jTOaSvIDM2YAvPdaaP15z73uT1dSrIA\nyIgH7Rlp/epXv2o8P/nJT8osxJVXXlnuDp8zZ06ZEXrc4x5X7vomZ0lbDXtPV3dXiFPXIPrjJS95\nSfOCF7ygueOOO5r3v//9RTZi/FddddVmrbXWKnL0rne9qznxxBObPffcsxh9A44XvvCFzSqrrNII\nM/1upgteMqXtrLvuuiXNRRdd1Gy99dZlsGLWqMLQHKiGfWi+9IVvGk2mwH70ox+VxrDNNts066+/\nflG+GobedIx4GqMCpmGkYfZFofuASDw2pfjlL3+5+cpXvtI885nPbHbYYYcygk8nq9eKgWZyYJbB\nc9dddzWXXnppmf259957y5SoaVHTp0ZQPuX5hCc8oVl00UUbCn2NNdZoFl988fJJzozq01notbJW\nerrDgeiUuLDSKWTciJpLrozizz333DJN/7vf/a7sN7F+Ts6A2UQj8Wc961llB/yDDz5YZBEuMkm2\nTM0vssgiZWaSDEpTYXgOVMM+PG96PkSDYtS33Xbb5sILLyzviN5pp52a1VZbrTn88MNLT3i40ZP0\nMe49X9g+ItBo14Y535i+9tprm2WWWaZQT9Hh+XQCRaujZ5SUDh0Z4GfZ4Kabbmq+8IUvNGeddVZR\nshQ0hWr2x5ppOia//OUvm5/+9KdFaRvJH3nkkWVmQgdm6aWXLopdWbOnA35AFqebB9PJ/5mYt/pU\nv2QjnTptAJA3o3CdwmOOOabE22233UqYdGRPGq7/Hmmil7zzY8j5JT78CSvI6s/DOFAN+8PY0X9/\nCPgznvGMsl5llMWIrLjiimVKbMEFFywFEicNjoeG0nY1kArd4wB+W1e3PGK9cdlll+2ZEYa6Jgsx\n6kZNZhfIjtkF653o32ijjRrTpzqIDHtbaZMfilw6o3lrnzoxNk69/e1vb6yRbrHFFs1SSy1VOgfi\nU8jyrMq4e3I23ZgiQ6lfMmEq3lLNOeecU/TQ85///NIp9BlVa+xG22TABrnHPOYxZdMco23zHHw2\nxulMkhfhdJgwHUT/yaFHePTYdPOhF/Ovhr0Xa2WMNGkghP1tb3tbGT1Rsptvvnmz3377lWl44R6N\nog1pENzE4VboDgcYxl/84hfNz3/+82LQX/SiFxVl1B3sE8OintW7hyJlnO1i/vSnP102P9mb8ZrX\nvKZMry+wwAJFPijRwelQwc8uZWujr3jFK5obb7yx7PM4/vjjixLfddddm5e97GXzRlvJd2IlqKl7\nhQPkAjDodAy5JweWZ2yE++Mf/1j8d9xxx9JJNGrX2dt3333LMg7jbnOdpZyMyHUIDUz8Nz1vrf4p\nT3lK+b/yyis3++yzz7yTPr3Ch16k4+EavxcprDSNyAHK9de//nUZHVLURlgUKEjD00u2wSn/gzDx\n4KjQPQ5QcHcNjIDdmsXwWWM3Su4FiAyQFVPvjPp73/veYuAPPPDAYogXWmihopCN5ilYkI5AZAWe\n4NI5MMoywrfObsPgAQcc0Bx88MFF6a+99tqNToL4kble4EWlYeIcIEcehl39Puc5z2me/vSnl3om\nO+TF2jljrwMQueGvTTDeAWHW03WEpX3e857XPPvZzy6dYv+N/j1kSFz5cis8kgOVK4/kSV/5ZDrU\nphTTVgzJfPPNN280pjD+R6HG5e/do4FU6B4HGMTrrruuKDVTk6YS23zvXk6dYUKfx9ToBz7wgbJO\nbufx3LlziwyZ6qRI0UwBt405ZexJmE6MWSPxyZlRmBE8Be0s87vf/e7SyXEcs8pZZ/XVq6nIBTlQ\n9+13MmBjpcEEWckUuml2sqU9kBX+aRve4eCKB6+43uEA/ISTuchfr/Jmuumqhn26a2CC+RN650cp\nTaMlDUovNmtSGsBYIMp7LHFrnJE5YGTihAJwjCeGcORUUxdKVu68886ymcleAKMm0+if/OQnGzuS\nyY69AVHWkSHpKNWA/20F679ZAJvvzj///Hm75B1rsg4fPElf3f7mgPpU5x7y4n/86CDtgLwIJ0se\nbcF/IIyfuFz+8YPPu0e4MIYe6DDEv3jUn0dwoE7FP4Il/eWh8ThjbKpzhRVWKK4SaGAaC0jD8c5P\nGODvMXqr0D0O6Fztv//+RbEx7EYZIHzvVk7qUt1F4QUvJdiu87YsSGNpxjq488Z2KDsaecYZZ5TN\nc3DZs2FdM+umXAAPvPB7zyOMItZJcLsew77BBhs0W221VXPrrbc2LiH53Oc+1yy22GIFL+Ue+tDj\nvUJ/ckBdgnReIyPqNX7CU99t+UlaI34ylf/iZwQPH1ziAO/8yKT3CkNzoBr2ofnSF74ag6kst8vp\nwVrnZOAZe4LfVpgaA0hj8N+ThtYXBe4TIk0zvvGNb5x0atUlGeDmSb3KPOFthakjYLR+9tlnNxtu\nuGHZvGRN/U1velNjOcfthTY9ffjDHy4yRcEmDzjJi4ch1wmAT542SzHeX/rSl8oaqd3x1lWdCLCO\nf9lll5Wz7zZ3ktnIJhor9C8H1P1Q0JbDhCdu5DH/hUceEpeb8LiD/fhX+Wlz7N/vtav8b1703ZvG\noCdrk8mSSy5Z1kf9T8MZrUBpGLVxjMap3gxXf4yrTp069PDznzH2Tkba9Wtn8qc+9anSCTSqdlRS\nJ9Aau/PGbslz5O2d73xnmZaPLAUHlzGXRgcSfnfiuzKUYZfedaI2DApjxHffffeyVnreeeeVUT26\nAFzioLVC5UDlQPc4UA1793g55ZiiGBlzI6vHP/7xj1Dkg4mKUuWf9/aIbHD8+r93OcDAGjkzsB71\nqS4ZY7IR+VCCGE9r6d///veb1Vdfvaz/S8O4MtSMvGl4R47EcQTOdL2pe3HEhRN4l6eLeD7zmc80\np59+erPxxhuXo0xmjdCQ6VO7oh2DcpbZ1DwcoQeuwf/5VagcqBzonAPVsHfOu2lPGUVL6XqA0dp4\nIcp6vOlq/OnlAMPqUhkb05yOSN2rz8gGCttG9Dvf+U65odD5cl/YityII52Ru2n0dQfu5rYBzo1y\nuVSEsdaZ4MrL3o5jjz22OeGEE5rll1++LAktscQSpZOpowAf427Ubpe8NG7ia9OKvtDgvULlQOXA\nxDlQ19gnzsNpxRAlTslTohR6W5EPRZw0Ae/t//Gvbu9zgIE0ve1onUs9XOdqTdvmPcaXLIDIiGl4\ncU3fmzIXh6wwrN6N/r3bOGfkzjh/7WtfK3hsBjSil9Y1xr4v72MdHpvvnIV3Qx08jH9wyt87mhyD\nc/2sjgI8oS+uuBUqByoHJs6BatgnzsNpwxAjTnFmhESpZgp0NMKkg6Ma99E41Zvh6tpz18BlOB6b\n1Ex52whnQ5zNlNmRL56b8Bh3nQCjaHKiQ8jIMvBkiMvfxSBvfetbixH+xje+UeSEsXdGWYfCJjlG\n3a1hhxxySMlLejLlIVNwkS/GXqfArnhT/Ay76XqQjkU17r0pY6FKfZKhdP7i30m9paMZHNyh/Nrh\nI71LGyCbZJpf2z/hs8Wthr3Pa3qwEaekR4IIPOVL4UYJj5RmJoWZDlbmNlAEjFI6OcLaCqtXFQQa\nKVq028nuoyxHHXVU+fqaqzqNpK2l59yva24pPrd3qXvpyU+7rMoe/rhFzJWe/vuaG97Z7c8424Bn\nV72RPGOvoxA+cSNX3uF3UsAuefk7FqfjIW90wMut0LscUEe33357mXFR1+mQjZfiyAMXjtQ/GeY3\nHggu7Rce/9326GptuPNEnuFOmvHk049xq2Hvx1qbIM1R5BH48TaoCWbfE8lTZkrhq1/9alEICIt/\nTxA5ChEug/GVNbe6AfVqVGXt2zl13652PeerX/3q8nGghx56qBhRV36m7qVR5vxvK0NhbjJkvH02\n02dofejlnnvuKR+J2WOPPYqxzpljaSNb4WP+w5+Pe7gCOeGhuxSg/vQcB9Sf+mUwffFPBy9GFLHt\nehwr8Tp0Gf3rMDDqOp/a4nggskXu0MRFj6OX8oC3DYnf9pup7w8v+UwtZS3XwzgQAed6NK7ZAlFK\nlIjGbwT5sY99rBjD0WY7eo1HRuv50IZ3dUmxWQP33wie4b/66qvL9LwjaMA1neJ5kiaGnTKMgebn\nMY3+yle+skz1+3KXTXem5X3GFQ/hES+K1Xvwyi/+DIQwHRL1UKH3OaAel1tuuSI/2gpdkbpVh53o\nDvJAzlxpfPHFF5eLjFyHzb8TkI5sadNk0buOgo2gaA0IA22/hM00txr2mVajYyxPlDoh77RBjTGr\nnoqmrMqc3rx3U9SmiX3HfrBREh6F0FMFGSDGWvWJJ55YvqHOwDLm3ICRua9pWSs3Jf/d7363lCUj\n/MTj4gvFiC94oMx5TJ1/73vfKzvajeB1HI444oiyC14nAYibTlP+l4CBHzwEjEDiyaNC73NAPbly\nmHFnMNN+IiudloAcuKXQss7OO+9clofGKxNwAHKVjiL6vMPFzf/QHVnslO5+SVcNe7/UVJfoTGPg\nEnJPJ73uLpEz5WjSsLkaOz4ovx3dpqxj8MOnxJ9yQseQoXvdL7zwwmLYlYEys/5pV7vjZdbY11ln\nnbKezeibCmf4TaWDKNKUUdkjF1xpTJub1vd97U033bSM3OyUN83vnLud+I64RZnCGxzegXz42UnP\n1TkA3kHyL3/qT09xQN2QGbIT4KftRH7iPxY3dS69UTW50WEgt2l7Y8HTjpN2DFcg+bRd72ieDfJW\nDXskYRa6EXANYzZBGnvKH9cFP5SD/4Pj9CJ/jNgpwxhVm9jcJscAM+ym0JUlyiwb1lw6kzqPskt5\nuQkzUnebnHPqvtPuS21wuulQvt/61rfKWqmjbtmBL3342eaZNVX40KITFaOQ+HHbaep7b3IgMoW6\noep6JKrVsyl9hlxn1H/yRp7Gi0s+0kaWki886ejC7xGHO1ugGvbZUtP/Kme78Xgn8BrBbAFl9qSR\nt/kRv/CiHRa/XnLTCbE+6QNAu+66a5nSdJSM4kw4minOfP3Pl+coV+FGY6ZVE5c8+O9GOZfPfPGL\nX2w22WSTMu1uuUI8HYS99tqrjLRsqLOxyvfXhePZUNO0RutunZszZ05Z42/zsV0fbf/63vRRvfYA\nAEAASURBVBscUD+D28Lg/2OllHzlDgPvDHOnuOQJx1BA3kGb9onkM1Qevew3NFd6meJK24Q5MJSA\nDzZqE86kxxG0GzxS+7H8jLL1z4985CPlE6wuncmGNgaY0ks5/XfkzGjb6NmGOgZYuaMc/Wfw3f1+\n8sknN1//+tebtdZaq4zUjbIBPKZOGfHtttuu7I63/u5+eMeMsjEOLsD12MTnOls31OXTwsLljYah\nZFJ4hZnHgcjbVJRstspVHbFPhXT1UB4R9Ch8pPWjUeshlk4bKQykkbO6NOvC0HMZ39RziKNMPeut\nt17jwhmPDVHSeDIdmqNyNjZtttlm5e53I3TGHKQjwHXO3cdirMWblmfA99lnn3k338Vg22zHqNsT\nIE8djDYkXtuvvlcOVA50zoFq2DvnXd+njPKnWCv0HwdSf4y5qcfUI/+EDS7VSiutVK52vfzyy8um\nO6N86Rhn539dPOO8sg/B2K2c6XdxdAx0AIB3eTjf7py75QDp0MG4mznwbnaAQXenvXX/pZdeel7n\nYDBt9X/lQOVAdzhQp+K7w8e+wtI2AAiPsu6rQlRi5xlIBjRrlYz8SPVpx/xWW21Vzu27mIcxN/3O\n+B5zzDHlsh5XzvqEq6NyRurwZ2rdbACQDz9hRvR2x/uwjAtMbKazRg+v9Xeb7xwptAHPlD75S+dj\ncIehVmvlQOXAxDlQDfvEedj3GCjXGPu+L8wsKkCMIyPrAQytZ7j6NNK2Ls8Iu1ve194Y3ZNOOqk5\n9dRTy/E4n2F1JI0RT0fBhic4/ecKM4Xv3UY9Z+b33XffZu7cueVssnV/0+9XXHFFOS6nk2Bq3zQ8\nGqRr45tF1VaLWjkw6RyoU/GTzuLezIBSzXTqSCO83qS+UoUDmW5nyEHqlPHNyLoEtH6MwIUbYR90\n0EFl6t0ueWvkzr3vvffe89bIIx/iA/iD13vyQwcaHIWz5s/Q23hnNsA5eKP0t7zlLcX4Sy9+ZhjS\nOUlZWqTW18qByoEOOVBH7B0yrp+TUciA4vZEcfdzmWYz7TGOMcSM7EiGknG3ic2UvCtpnVVfbODL\na9bGXTtrJN4GeBliLiA/+Z980plgxHPTne+5u9YWXrvr0RUaGXjv6Si086vvlQOVAxPjQDXsE+Nf\nX6eOUs7oq68LU4kfEwcYZEbYqNrX2d73vveVy2XuvPPOcgTOmnjW07niA0ZYOn7kpm2QyY/OAH+b\n5e6+++7GLIDp+UMPPbRZd911S37BNSZCa6TKgcqBjjlQp+I7Zl3/JqSIM3JSCv8rzB4OMMAeN+25\nfMZ974cffnhz5JFHlutmfdOdUXaTHWDMc+FNZIXLUHOF+8678+825Fmv96GY7bffvtl4441LWvKW\nNN4rVA5UDkweB6phnzze9jxmyh3UkVTPV1XXCFTXDHE6du7rnjt3brlf3tl10/KOpjHuq622WrPs\nssuWXe+McgwyHJEd6+jXX39946tv5513Xtlt71Oxu+22W7PyyiuXW8aM7o32pWuP9LtWqIqocqBy\n4GEcqIb9YeyY+X8oaE9GbUocv5lf+lpChpWBVed5t+bufLnLZhxJO/fcc8uZ9AsuuKCcT3/2s59d\nzqW7EAeQHffU//znP2/uu+++skHOJTTLLLNMs/vuuzeOy0kTIy6/dApqDVQOVA5MPgeqYZ98Hvd0\nDhl59TSRlbiucUB9M7gMbdu4m3b3POtZz2rWXnvtclTNV9xcF3vNNdfM6/xljd3xNwbbTnifhHWj\nnRG+6f32p1zlEaPOrfLWtaqsiCoHhuVANezDsmbmBtidTOFml7Jbx6rCnbn1PbhkGUmnzvM/ht76\nuFviGGp+7nm/5ZZbmtNOO618033JJZcsH32xg55ht3EuRjub6IK7nfdQfu3w+l45UDnQHQ5Uw94d\nPvY1Fsq7wuzmQGRAZw8w9kblwJ3wNseZerdr3q53F80Y3XOlZbQ91tLzvySuP5UDlQNTzoG6PXXK\nWd47GWYERRFHsfcOdZWSqeZAZCBGmmu63fS7W+quvfbaYtidfT/77LMb6+pZP+dKn2n3qaa95lc5\nUDnwbw5Uw/5vXsyKtxhzbqZPo9BnBQNqIYfkAHkgBzHQRt55fEvddbOWbIzk3QHvKtrrrrtuHi7p\nxY98zQuoL5UDlQNTzoFq2Kec5b2XYTXsvVcn00VRDDMDD1w4c8oppzS33npreQ9dt912W3PhhReW\n768z9NJlrT44Ere6lQOVA1PLgWrYp5bfPZNb25h7b//vGSIrIVPKAQY5RtlsjhH4vffeW77O9pe/\n/KXM8DD0Ru6m4b/73e+WTXXpBEhr2r5C5UDlwPRyoBr26eX/lOfeNuCUt6cq4ymvhp7MkCwAxpuR\n/tOf/tSceeaZzQMPPFCMfMLTEXQPvPvgbagDDHzi6BQExBdGzpI2nYEqe+FSdSsHuseBati7x8u+\nw5QRWlsJ910hKsFd54ApdQb69ttvL6PyHGGTkTD/7Z7XATj99NOLYU+HkUuupCdXkS1x+XHzLoxf\nDH/XC1IRVg7MUg5Uwz5LKz5GXfGjlGcpK2qx/yUDRtExzIyvEbn184UWWqh8/c398W6pW3jhhcsR\nOMfg5p9//sYNdabmGWmGn8GGi4xFtnQEjM7FCQgH4mYEn7DqVg5UDnTOgXqOvXPe9W3KKO8o1ijf\nvi1QJXzCHBgsCwzwKqus0rz//e8vRte6+mWXXVY+8rLppps266yzThm1O+vOuDPcbeMMn3V532O/\n9NJLy7fZ3Uq3xBJLlHV5HQEX4HhAzs9PuCAVQeVA5UBTDfssEwIKt23Ivbf/zzJ21OL+iwORgxh4\nhp0R9gAjd/fDu2J2+eWXL3fKm5I3Cs9FNuJlep17zz33NEcffXRz0UUXNQ8++GDjrvk5c+Y0N998\nc5G5Aw44oFxH2x7Fw1GhcqByYGIc+Pe82MTw1NR9yIEocSOtatz7sAK7SDJZ8DDImUpncI2kPeTD\nNLs4cYUz6tk8lzAjdRvvHJNzkQ35+sQnPlHW43UExH/a057WzBkw8tKA9mi/i8WqqCoHZiUHqmGf\nldX+z3V1itlTjfosFYIhis1ot58Y3shIjL6k8fPp13bnkLG/4447yuj+oYceat797nc3G220UbPC\nCiuUtXn4n/KUpzSLLrroPArIYYWZw4HIRlwl8z5UBy4yljhJE3fmcGXqSlJb09TxuidySmPhUrAU\nKmVdoXKAgm0/4Qi/tuElNxQ0v8Tnl3fydP/995epeKP9tdZaq3zxzXq7D8qQPRvwfEBGGhC5TJ7V\n7W8OkI92Z0/9emLYueo+yzhkJuFJlzT9zYnpob4a9unh+7TmGmUaVwOqUDnQLQ6QKwbdSN7Uu+tn\n3TN/3HHHlfV1nQBfiBMuLvlrdxy6RUfFM30cUK/qnmujZN7Vc/QNP48TGG05YNhj+KevBP2dc908\n19/11zH1GlKe2jPumI014RAcYLhtunvRi15UdsV//OMfL8qbso6CtwFPvGrUh2DgDPBqzwI6Ihmg\nc8gBA6/+dQBtwuTnHXClJyvko32PQvBUd2QOVMM+Mn9mXKiGFcgoKT3o+Fe3cmAiHKCYF1lkkeZt\nb3tbs/jii5fjbYsttlg5/vbFL36xKO6VV165eexjH1uyIX8UeRT7RPKuaXuDA6lLBjuQTlxG7al3\nbvSSdw+jD9phwVPd0TlQDfvoPJrxMdKYZnxBawGnhANGWvfdd1/5fvsWW2xR1lGvvvrq5vjjjy/v\nc+fOLevrGbFT6lHkU0JgzWTSOcCgq9cY7D/84Q/lwqO77rpr3p6ea665pozUv/GNbzTXX399GcUb\n3Vumed7znjdvpF6N+/irqxr28fNsxqRIo9NwKlQOdIsDDPuVV17ZfO5znytn1xntn//85+ULcWus\nsUazzz77lBvskl/kMP+r2/8cUKdtvUImLr/88tK58xlg4Y5FWn93FNJ0u5G80xKHHXZY89znPnfe\naL3Kx/jloRr28fOsr1O0e78akikzR5IqVA50iwOUtFvrbrrppuaSSy4pZ9qf+cxnNm9+85ubzTbb\nrIzWyV2WgrqVb8Xzbw7YkIbHae9uDjQa9t9lQ3k3ss5sSTcNaPINRS4nsufirLPOKt8gQF/gN7/5\nTZEF+VuiWW655QpNoSvxqjt2DlTDPnZezciYGmCFyoFucoDBtqb+jne8o9l9990LakaGMbETnuGv\nMLkcYBSNktVFNqLl07vqwiVB9jgwpnQAw589D92gTL7t9XX0vOAFLygdvhtvvLHkl+l6LplwNfEm\nm2zSLLDAAvM6G92gZTbiqIZ9Ntb6v8qcHno17rNYCCah6JQ6Re0xUiNn/AaP4iYh64ryXxxgLGM4\nXedrj8Ott95a6sDsydprr934qI84Rs/dNOpIgFedB/x/0pOe1Gy++eblo0FmDTwMvo6HuEbrq666\napEZNJGXOmoPB8fnVsM+Pn71fez00Lkx7BpdhcqBbnOAcqawyZkRISVdFXW3uTw0Pny2fs2YH3ro\noWXjmjrINPy5555b9jowpqDbnfvoFrMGaMmygGOOG2+8cXPssccW2YhRt7Zuo+Wzn/3sIis6hfRS\nt+kamlszz/ffXaqZV7ZaolE4kMan8dQGNAqzavC4OECeKGdKnZx551Y5GxcbO47MoP7ud79rDj/8\n8PIRHny3SW2//fYr/hdffHHZ/5AM2qPr+E3EDT4GvV3vvvC3yy67lGn36B9xHYtk8IWnMxgcVWbG\nXxPVsI+fZzMuRW04M65Kp71AUdpGZJlWjcKeduJmAQEMqpMJjpTpVO2///7lS3o+t/vkJz+5bGh0\n7a86Ebfbs3Z0SnDm3X9XyD71qU9ttttuuzLlLu8nPvGJzWte85pmoYUWKp0ANOmYVOicA3UqvnPe\nTUlKjcL0mUZBSUZh8k+PdryEwAWPqTpK138ba3yWs1uAPnlouO3RWic0wzUY4B7Kf3C8wf+HShd+\ntOMOFa8dPpb31BFX3WX0Opa044kT3OFHaFcu/PY/7/Am3ljzkL4N8gMj4UmYMnsSn/9gfKGtTbc0\nwTE4fkHW4U9wSt7OrxO57JCEcScLz8Kn0D4SImkY7gceeKCZb775muc///lFFpwj1+6td7urH058\n6KT8Q/ESTfHnwg+SB9mhc4zOv/nNbzY/+clPyi749ddfv7SR6Ip0NiK/DD2/4IYT7siW/xX+zYFq\n2P/Ni558I7y/+MUvmiuuuKJxyQNBj9APFvSxFCANTQPxac3f/va3ZYfs1772tTI9NhYco8WBW2fE\nxqkVV1yxWWqppUoDlLcG7hkPwEcZWCOUdqKNmXKBE//sDqZM+KGZAgl94nQKScu1GxwofxRVp3jb\n6dp5eM+jDO1yKI+wlKuNYyzv0jIGjkWmI5jO5ngNQuhCS9LCaSQX3ohj9zyYCN3DlQ1OdeHx7iEL\nnfJnuHy64Y82ck9GvQN8yvtINNsQh6/iWmv3ftpppzV//OMfy5W/L33pS+fxAf5OAG40tOsVHv74\nq62SHXG0MQOIe+65p9Bj9zsdYRMfAy/cjYWp+9DUzgNuOMmMOqswNAceNcC0zrXX0Dirbxc5QIGe\nc8455dOX3jVOgq0hdQIaGMWgEWl48BABjWSiBjP0RKTks9deezXbb799aaz+jxfgogxMKZ533nnz\nGjT6QfIaK97QgA/SwmMjj0+IOmoj3NPG234faz6UmbqipLbeeuuyhhgDP1Yco8ULXeoRzVGwLoNR\nJvKSela36cAk3Wj4Ey6dOoDP51gpYt9Th7MTXOhFl7Rcsrfgggs2polf+MIXztuhLVyZPN0CBgFe\nxm0w3sH/u5XnRPC0+autGn17Ut8j4WYs3/Oe95S2o2z4ri6lP+mkk8pImXwKyzMSvsFhaCPn5EAd\nos872tQrnGTGV/3cLHfyySeX5QF1ENnRsSZL5EsaMwl2xm+zzTbleJz/6EZneJH26T88FR7Jgdrl\neSRPesqH8GogjMSGG25YGiMDoRF10mOFC840kuDQ2DSYbgBct99+e/Otb32rjDaSX8rSSR6U1Oc/\n//lmzpw5pZcfnJ3gwgMQepZddtnC3x/96EeF1wnjhl/exws2L5kRcdvac57znHn5jRfPcPFDf7ve\n+Mn3xBNPLGuZ1jMpxnaZh8M3kr/08MBvxHXvvfeOFH3YsNAcvvpvCYgBoOCddTbSpORBtxU3Xt19\n993NEUccUfL0X17al/L1IqArvN9ggw3KNHYM8nD0KpMP8dg8d/bZZ5ev6jHqrmp1SZCb3cJn/pGP\n4fAN5a/u8A0PtfnIiLqkn3QwXVD09a9/vXQIdd5WW2210hZ8ttdO+Bh5xt/MJNm68847mz333LPo\nule+8pXF0JMNugqtQDp5VxiaA9WwD82XnvLVqE1Z+a61tSnvUZDjJXRwOgqA8oyiHS++oeLrxf/w\nhz8sywcaOEij70RRozkNeccddywNnjLpRBFLB58ndHHhQqMHtMPzXgLG+IOv7sA+/fTTi0IKvdzk\nMUZUw0YLHm7KxMV/fF933XXLpqR03joph8zxRr0pE1zhO3yhYVgiBwWEz6kHOC+99NLmjDPOKPjR\nHbyJM948BmX5sL/ys+6sXsw8MH741c16eViGXfpjGe7mm28uNL/sZS8rRjl8GioLYQz30ksv3bz3\nve+dN4pO/aUe8r+T8qsXT/gHF6Nu6eD73/9+c+qppzaXXXZZs8IKKzTarQ6ujoUpePSpa2ng8B8w\n8D7x+4Mf/KAMDOziJ8c77LBDOecujvjSjVR+8WYzVMPeB7VPgDVESgkQ7ED7PX4juWlAcZMefo27\nWwCfPIIz+fDL+1jzgsNDURldr7TSSvMa9XhxRZmkvKEnbmjyH4wXf9LDf91115X0qTdl6BRf8LZd\nuNAZWlMG/p45A7MbpjW9oyf+bRxjedepokhBcOXd//ECWvBEWjQztHmPoh8vzrHGl48ZLyM/Sy/b\nbrttyVv6Tsoy1nwnEg+Pbrnllub9739/oRGd4d9wNJM1fE5Hmtx7V5cg/vCIKzyj4bHSCj9Ag3qD\n2xKHKfcvfelLpb1aCjAgsXau/bYNMhpSFu9osWNffNfKbrTRRsW464QZzdtJ//KXv7zEkVe3l7bG\nWu5+iFcNex/UEoHXIAYrveEa9UhF0ojh05Ci7EeK32lY29jAEcXSKT60wmn6TYPWsDuZQowygCv8\nC235Lyzh8Rsv3XiMPnWG18E3XjyjxYcXtOmMwuSX6Ur13ikN4bP0Hvg7hcEypx4pfHm06U650D1Z\nYGp4mWWWKejlN5l5TaQMeERG1WXqGa9Gozfh0nhv/1fe4DTiVgfjBfjQhq7swfjMZz5TlszsuNcR\nMUoXLm5o55KD+LX9I2um6o3sfenN8653vas58MADi5zMnTu3bPSNXhwv3bMh/uS1mtnAvSkqI8En\nxBqj97gjZS8O0IBiFLkgilnDSuPidgvQCF+bTgYueY03nzY+OD0UwEQAzsBQHaZOaQ3OpKc8Qeot\n4d1yk087j3Y9C/ckvJN8kwc3stMJHmmGoyXyLQ76E8//boJ6kBdo59F+72Z+3cDVlnV0pm3HHSoP\n8fIoc2Q8HQKuTq6w0dbrh8Ifv8gDw25kbfrdaRt7JRh3eYijTvE9sok2eQPh3vkJTxvXIUCb2+hs\nqrT+fsghh5QlPtP9yVsaj05G0oa+2ep2T5vPVg72aLkJeBoJEgl9GlKPkjyjyKq8Hr06R+PRaOGj\n51BjTCYHYkQZ9auuuqo55ZRTynr66173uvKJ1hNOOKFsmrPuri7FZ7xHAnFi6M0k/PjHPy4bHR3X\nMxXvZjobH2+77bZyVDW46Dqdl9AU/9nqjszl2cqVGVBuAk7YjRi5GkveZ0DxahEqByoHppkDjLUB\ng5Mfxx13XNEzNsm9+93vLve+2zz6qU99qvERGjpoNKOuODHM8PoK3Mc+9rFyRA7eAw44oNl2YE+E\nUw1HHXXUvCNy6MgjH++zHeoa+wyVAMKtIWW6SkMBY2lcM5QltViVA5UDXeQAI0zPnHnmmeXCmbe+\n9a1lxO7s+d57713W1p2XN6Bg7F0ZmzRDkSHMqNvxR/clfOhDHyojdgbdV+FcPWvDozstnKRwc90b\n3vCGgopeG2vnYai8Z5pfHbHPtBodKI8GYj0rj6kyjSv/Z2CRa5EqByoHppgDdIrd6o4qPutZz2qc\nsber3bo6427q/PWvf33zne98p/nwhz9c7rawNj4SuN3QNPuBAxvl7hq4/na33XYrxtwUPKMPv6Nv\nBirwOh6XQQv9pqPBwM92qIZ9BkoA4dYI9GIJu8by6U9/unyTWWOcjaCzo8FzK0wOB/A2z+Tk0DtY\nZ3o5Uz7ucGDt/MILLyxXXa+33nrNYostNm+znE1vvvtu5O7Ymiurjz766LIBbiic/LRPR0RtkHMh\n1Rvf+MbSObA7PjOPNhLaJe+yLh0AN9pFp8Woc2c7VMPexxKQxkewvXPTW03j0SA0QN9f1gOOcYsr\nnl40V883/joE/OImj8Tl3yuAzpQ7bvy4nosHPlPpYg+XX9iUA5RJOeIqW/5LE356T3m5+Bm8vcKD\n8dAR2vFBp89Nda72jH/KmzpX5naYvBInrulTm6eM0pxLJ0tJL054nPoZD71TGTe0poz+e1LnqX9l\ndGY7vIkrbtK2yy8cTxKeMuW/uKMBgyX+aIZLnPYzGt7EVTfo1A4Y1rPOOqusZ2fGL3UnjneX5riI\nyhW1DC1dkzjy9N/tcq6Vfstb3tKcf/75Zc3drYV2zsuXDHLJn6/R+bSstXVT91tuuWW5jCtLinDD\n6XnFK15R1tjdFpm64Y83o/FnNH7MhPC6xj4DapFAUxoapIbicS41R038P/7448t/jUM8jVIDpVDE\n0zisYQHh/hv1wy2Ndw1QfA1n/vnnn3dOezpZqNxoi0JJ+ZQBoNXogeK46aabiiHT648CU068Ujbv\nlJQyM3b8pRcG+EvnP55merAE9slPDAhlSWG/7W1vK5ef+B4BUEagfEA8x46UGy+kV358Fzf8Ed+m\nJsqZwRPHdKxw6dULHJ2cly6ETPJP6lj5yBM3PCITILImzLQzw7PvvvuWMHHDi+DCH3GVHQ/4t/HL\nB0/EC98LsiF+4PC048mvDcLl4RGvHZ6w0NlO147nXdtxrau1bd9Q0FlbffXVy7ly9acs4L777iuD\nBZfJuIAGBJd85CmutfVtBza90Tmul+V+8IMfLPHpHrIjv49//ONFFq3V+4yrtMoBVxvwzRE4MwIu\n7iHHZG2osrXTzab3atj7uLY1Io2HsmCULr/88uaYY44pyoLQ+6rapptuWgTfh0i2H/gYy5vf/OZy\nh/NHP/rR4q9BwuNe91122aWsZ2lU1rJ8mc19zzayuPFJPq611PDf+c53lsaukU0XUGDyRw8lgL7f\n/OY3pbFzXb1retA97a7WPOyww8rZWvQaYTpCY/Qgnk4Nw+SLV94vuuiiwgO8+f3vf1/uXaegKCC8\n9u4WPNOE/QTKQwEyKMr/05/+tChoO5jdUueKVcqUwsQP73joKlAdJIbbaHXOnDnls6DK7oyxekh9\nOG+MZ+rEtKm4UdLioKEXIQax7abTpzMY44h+vLKu7B0vQYxZ+Muv3T5SbviBdOICsts+r148//WT\n+HGlQwvgB2+e4BMnftz4ix88/0I/z2njZHAZYPJuVP7iF7+4jJLdChdZ8FnYX/7yl8UIkw3pyUto\n8t+j7hleI3f/v/jFLzYHHXRQs8ceexR5MztAH91www1FB2211ValAwgX2kNzysA1E0BWXV3LsCde\n251XsFn4Mn1aeRYyu9tF1khAjJsznxrH+973vmJ0jDo10Ai7uBqBnao2vey///6lkfqUI1yUi8fI\nRDofYKDYfDTCTlSGkRHVQdDzdrWrBj1doFzopgAoMq6NPF/96lfL1KC7wH2MxlEZo3XXWwrn78MY\njDeDr3OjU2Qd0FWYjNE73vGOoszmzp1b0uKrkQllQqE5t2u0psPTTxCljndkAahro2wdFrLEpWy5\nuSJ05513bnwz27EmytTaqVkQG5goe8oYkJ0LLrigjKjEM9qltNUNkG8vQpuuGCZt5Hvf+15pK/ii\no7zKKqsUA4xnyqS8ppW1DzzTXlzOggdGuUb2RqLiSq8zBdzIZsSrE8To+bIduWvTET6hhzHz5D3x\nYuzacb3HP/ESzoVjuEd70sbRG10grjvfTZFrI3igXTD6jL8PyrQ7JcGdvP0nB3hDjvDuy1/+cmmz\na6+9dmmTBhC77rpr8+pXv7rElRYN0nqPi35lg0/nWsccnSnv4LzFn41QDXsf1zqBJ9SAS6EwWp/7\n3OfKyJRhXn755UsYA8z4mfZyVIRBM+LM3cyMu8YBp8eVjhSRdBqLeHD96le/Kg3TiCx5TxcL09jR\nrWweilhjX3fgwxG+CEXpUlaMVHbQot3MhlGX6VRlpGCN8ilqis3ZW+lt/GHQdWQYdR/hocxsBLLR\np98MO2WZGQ7yYqrV7MWrXvWqMrWJV/hpP4KlBvyz8ZI8MFLpAJjZMNNhNKcj5VIScqMOGC0Pw6gj\nYDNUli3E6VVAG5kKkKVDDz208IYMqG/tyzTwF77whTISJQ/a05FHHtm85CUvKbNc2pJb2PBizTXX\nLN9Ax8d99tmn8NbFLY5qkR18/chHPlJmR+Q1HH9SL+RTG1aPYLj4KUPKw/Vosx60ceHLu44e3NqH\nmRzx4RfPqFv70RnWYWPggT0aRs/tmYkYWeHxj8yZ/dl9990FlTvlbb4jf9bUdQ7JiU5C6qKNSxo0\n8dNJIH/aIt4kLDQXj1n8Uw17n1d+Go6G55OIprmMTikPIyXThXrIGi1loNG46lGDMKLXSCgdDU8D\n10g0KmnSSPiL5xHuv7Dphiid8ABtRgQHH3xw6f0bCTFYDHSbfu9GG1tssUVRrJSb0ZL0lFjiUro+\ne4o/+Euh6+DgjTjS9RuoN2VJ3SqHMuMhP6NwX9Zyhti7MLKjsyQ8PJozML1OZoycdJqEechYpmrx\nidLmT+6kVWe9CuQafcqjs6eNMFzq3XKOjqD75fnhC+PCEH7yk58s/DOTRT60Oe1QufEH/yyNWQZj\nNF27yp9sWsoxE2YGaDhQR/iKf9/+9rdLB1S+6EUrWrgedZL/XP8T5j+aAsqaJ3kIz6Oc8lCPZEEc\ncgKnmbA2Ljjh4heXn7yl9wA4LHXNHRjxm9Uwg6HTpCPJP20Zrd7lr+zSgeAP3aGB68Ej8Wc7VMPe\nxxKQBhThNxVIGRFwCki4Xq1GQQmlgZny8rEGvW6jNtPTQEPyUDoUsTTS2ijHzzuXYdCz7oUGhF6N\nGW0e5Tb1yXAbNRkxbjuwcUccfBJf2cxW3DVwSsCDR47N4Jdw8fAQvsT3HgUDF6Mufr+BcqFbGblk\nghIlNzpClLYOIUXuwxvK7RIQcdsPGYih4B/AW094xV+e4gL4ehHQCLjknmsEzvgypmYldPIsv1i6\nIQPKpAOgg6yNZEOptoEn7bLiFzlj6PAHiM8PjNRJlBeATz055gU/nMKSF7q1z/zn5l1a7+RZ3XCl\n98TPO9qU3dS4XfHpGKQs4urw2lehw2IJQueNPCVt6IUHTuDdo0Ninw79493avTZoN7zlnTkDHUYy\niUbx5ctFe/Bw5Ydn+B/axKvwTw5Uw97HkhBB1giAxub4h4bvG8g2v5n6oqRtVDGVbkRhGpUS0Ou2\n+cU6l2lGfpSSqTJTjhqqBrXnnnuWUZgGK47/RsHphU8XC1P+NHz0KbsZC0oH7abkuXgUhaqMdt5a\nZz/88MPLiMzIIcpDeSiLKAz+FFTyEw5fOz6/foB2mZTBaIlyNup0hIgMkYfzzjuvLD+o58iX8oeP\nyu4Jn4QFd9sV3xMD1Os8Uo48yqFTw6C7XY3xee1rX1tmvBi41L/R5sUDxyl1rM1WmF6GI+HKPJg/\n4Vv42I47mEfS4h9X3WT5SFuMUebmgZush/ft99TN4DxCo3wYah1d+yfMMEiTek9nx/E2SxDajY5N\nm0a4Uucpd+gna66JhZ+ecZOczrfjuIy15QpLgPghDQjN/odPOkhmFHSOEp64iVMSz9Kfatj7uOLb\nAky4jbg0PJt20hC5IKMujd/6sV6zTTAasfViU42m8vX4bWDRIKMQnEENHgZOuP9wTSek/FyN3giA\nkmWcjDT4U8poNjKwPvj85z+/lAufTL9Lo6wUhA1ClKVRv809lDS+6uR8/vOfL/5wwekUQY74TCcP\nxps35anulFlZt9lmm7LW67/y6KxZzrB2LK71U/sMuMC0sXV2fIDHkSgdR2v11kidwrCpCbzpTW8q\nHStyGXkqAT38g05AfvDiK1/5yryTIE6WkB/+ZMTUMflwmoT8fPazny0j8GyCg8uDNzrU4moz3o3U\n0378tzw2HEhHluEiiz41mxmztIHQDQe/pBmMU7ykGSpMeNJ6V8/KqQxkRfsiJ/zwQFuwHq/DYVlB\nWuk8MczetTODDnsRbES1pk7GpGHg4bE3SH5vf/vby//MZqTs5BHPuGTQoCRLjcoiH/lXGJh9rUzo\nXw6kASkB4dcoKB3+wFSh6SoNJHHFY7w1EJuahBvVG4mYnubfbpzepdcwvcsjI9+SSQ/8UCDKmnJR\nFsrJj/FBNyVEKQJlNsow2mC8je5tCGKUKAp47FKOolB+MyD5D69OkDz6DfCD0eIqp6nMGGJlUUaj\noZSXEiUfAYYtQFYYMSAdA2492jve6Cx6Eq6epBHea4BecsLNujAD5kpT/9FM7hk05bh4YISOf9oD\no+SIKPkRh1wx1pn1st7OP20x6+9pa6b51cdI8hT61Ada0Co9/6Rr8zVGtR0+Es/FR5/yAPSiH04G\nWOdlzr+myVMWU/J4ZE/GtgPLXQAOdAF5S093mB20RPazn/2s2W+//cpmS/xTDnh0mrRJHSnxHYfD\nE53P4BJX+T0+PGO5zSwkGQbCK/yTA9Ww97kkpFFrmB7C7dGgNAyuhhB/xdWgNCQ9cEYKDo016cSR\nDiRcA+NHyXnnL810Qlt5ocX/tuGIsmzzCL38TTErQz5SYRraLmXKjHKCSzpPOx88CJ/yPp086CTv\ndP7IhbIpD54A/9UvHvCLklZWvJCGm7LnnQsSjwvaaeTTy4Bmj/IrJz6hOcYc7f6TNR1FgE8e69FG\n7TqJl1xySTka6Hig+GQNXu/42earfITjU3hYELd++EsvLhyMLzztNMLbkPrkNzhsqHz4pe3AT0eY\ncdGBNUMQXiQPPDCKd1LElL07D8zq8Neu0IkGvHHbo82Y7kawJAhv5EonU3746bIkdDhVgGbT8vYA\nhV744MYHy23uU7AHQn2ljaIv8UPrbHSrYe/zWk+jTcPk8ouga2gR9MRNo+OmIWo0wgcrBGnFE6ZB\nxajzC97pYmHypzxSTnR6hCXcfxA/vDGqt75nalF6o3JlS1p8UF5xU344+A3FK2H9AuFH6jB8Ulbv\n3JRRmRLuXZrEa/t7D17xhorDvx3H/16C1D3aPcpKrlJmPFFOMsBffPEYJqN168ZGj5auHCc1vS6O\ndCDvcMDJSAmDL4ZuKH60eQlHwLunXQ/CBv9P/LGEhbbFBmZpdPzRpawpg/Dkazlg7tx/7m53/4MO\ngHjKJp6NfnhiM6Yz+/bmOIkiXWiEP3nqGOy0006lHcJn34e9MNbcdSxCv3V/x0/NlJhZSkc1+bbL\nO1vfq2Hvg5pPIxhM6kj+EfIoDY2RgkgDFe7hH7/ghze4ueIAjXCwEU28pJ1KV96UI8Xq3dMuL1pC\nX8qoLPz8Nyph0PHFgx8ADu9RtuFR+NfOI/hLwj74QW+7DpWFnzKm/CkG3ias7Xpvx02YdN5BwrNW\nDX947L3XIOVXZrRHXrwLY9zwKsAvfNAhZHwsU7RlJHH4RZakh1MdJI8Yt+Ae7Ia/wdcOD7/5td/F\nbUM7rO2f9+QR+pU3U9zixD/8UQZxbMQ1y2Upy9S4pRnlUj4j9COOOKKsqZt+N1LX3oD8kqf/8Plv\nFoAxl49ZEDx34ZYpf3jJk6UOdwy4p0MHCh3So7HtwjtboRr2Pqh5At+G9v/2ezsOAQdRKOJ5j3IQ\nPvg9aaRrv/sfSM85/6fb1ajbEGU5HF+G8pcm6eAaruyJE7edbz+9t3mWsgzFl3Y85UucpBmpzIkb\nefF/LOlGwjmZYaF3cJnlmbCh5CJhoS1x0u74D1VundGxQvLgwh+j7X/CBuMazn9wvPb/0M5vMB9S\nhna5vFumsP5uTdwGUxvfjLxNlftUq9sw3Svh9kod6ZQh+YbOlAtfLGmYspenpTLlZdzdBeAYngt9\njNbNuOkowOEJje1yJJ/Z5lbD3gc1np4oUtOo406E/DQquLqBL7QEl4Ymj/xPeHUrByoH+p8DDKjH\ncpYbCC8e2FBoTdwVs07amH53F4LNdzp4McDDlZyeMELXqWC4tx3YkGfk7yjcgQceWKbp3b3hSKsP\n0zjOW4340Nyshn1ovvSUL8MOYoh7irhhiIlBb9Ou4fZTGYYpWvWuHKgcGOCA9sywOg3hqKMz6sce\ne2yZGXT1tM1wjtnq4Bvdj9b24RMXTgbeCN2lNablbahzrM61zwy6W/zsk6kwNAd6e5vq0DTPOt9M\nZzKSHr3YGEmNZTyPdEkbRkqvMY0Hz0hx4bUWJp+sf2uc/leoHKgcmDkcoAcYbWvrzqbTVY60bb75\n5mVDoen36ICxlJqOoCsy26fTYBOfEwam9x3J9YEmJwkqDM+BOmIfnjc9E+ICkBh1Qp/3bhA42Mh3\nAyejDvS6nUkFGmqFyoHKgZnDAUadLqKTGPC5AzvkffnQhjmXPbkoyhFSZ/oNRjIdPxwH6CKdhOgP\nes+HZ9z6B58LtXz61W2J9EkdKAzHyXpBzfCc6aEQa04ajw9x2IyiF5tGxe0U0ijT654IrjYNGqYd\nshoz2tMAGfr0xNvx63vlQOVA/3EgA4xstGOUfeXPLnnG3S2F1t3f+MY3lk88CwdDdfKjg+AUroNg\n57sP5vhcrN33bqhzIU10Srf0Vf9xfnSK64h9dB5NawzCayrLxRfuNncPteM1gLEfL2g0DKyp94z+\nGWJ5aHge4UDejHIM81jz0jh9Ec1NUmmE0sqzU4ATD84///yy1qYc46VL3sqk3NKHFzog8GdEkXDx\n5dGJApHmyiuvnDdj0Qmt8h8NQh83eXCV5+qrry5rk+pUmTopR/KHU/2pV/IHpzzaOL2HjrZ/cHD5\ne9CT5R98yigtshcZTb5tHBN9RzuQp6tJI5fD0TxSfnggvfKk7cDDD+0gcToti3RmvoIHzuD2Pl2g\nnNpQ+Kat++96WbcZ5nsDPkfrKKAz5yuttFIzZ84/P/QinUdZ8M8I/Y477ih37uebF3bdOypn5O8W\nQ3mEt73Ag+ni/Wj5VsM+GoemOZwQLzZwWYQbljTuKD7+oBPhloYSctGD70JTcK5QdYbUzXKm1Ri7\nNNzkOR5WaODOwdroEkUqfZTAeHBJA4fGny/RJX0n+KRFH3yUpQ4D/Dm3iz/wcj3hdfIciysNvACO\nyQL0KwsIremguBEsnwMVLzBenoUP+EVWzBjBh2fkZCgYLg+4EhZ6dRYcW1IOfBNO5pLHUPgn4pf6\ndGe576ozKPJsy+lY8KMfjTo6eAN8ewFP8AjAK46ycVP2EjjGH7jdsuYa1fAsuMeIYlKiKcvg8iin\nC2hiwNdYY43yZTwDEl/Js9vdtc1G9Ta/qQvlwzezfO5/Jw/aot30LrTRKaCT4E5+cSelYDMA6aMG\nBGXytM4MYNB0F0H1MLYxtP5HQWgUnVYfHD5reuCBBxYD5FIIm1LgjILT4Pz3jBfQKx0jk172UIpg\nNLzKhw7TcS7ByAwA3FGWo+Foh0c54CnjQZmcfPLJ5eytKUNXW1LUaMWjwHj4LG3ie99ggw3mfeQj\n+QfvRF1lgFN+kQtGQIdNGfkLTxz/Q9tY8k5ZdCp1FNwL7lIQHU0KvI1PXA9o+7fzSfkTnk6jkZm1\nU0elBm+2Cs42nk7fySWD7rIUnRTyiW/y9H88kHYROVE2xhevnOWGUxiZVc7x8L1Nh3w8OiA77LBD\nmZJOu+omb9p5TvRdufEBfb7Chi9mZsiQzXXKYraErDL02hxD7/a6Nddcs1l11VVLW6SLPJGbXi3v\nRPnV7fR1xN5tjnYZH0Em1BoyxeC/RhOl0kl2FJgvvNmQYlTJADiHysi1PwRDGSX/8eYzWIl12iCl\nU1a99sUXX7zQwy+8GC9deCe9x8Ycl10YLVDCRlnujKdg8Dx5DC7LWPKUJumMPpRBnpMBySf4bVby\nBT6QsnpPPO/jATxz1MjHSihpH/SgeBlhI6mhYLi80BMjh8cAfu/pADK+kXd4Uq6h8hmvn3pgSHyu\nl+EB8uikPaEr5dSmXJ7iQpV77rmnzIAxUOSK0RKeukiasdKOP6Ex97Yzdvy6yZux0jPWeMqNdp1l\nbcrtcUbhrpp1HM6mOF/EcyzONL1RvJkbPIssSK+sKWd4l/9jpWW2xauGvQ9qnJATcMCdqFBTMs6c\nWsei3Cha1zRav7aOpSFOxKgPZimlqUF2qoiUFw8oe0p/okrt/2/vzmMtKao/gJfJL3FhR2BYHHZB\nBBFBAUFhBBVEQDBOACNGWRJAiBHUP9CQgAiJimhUQMTEOCpqZlDZF0U2hWFzWGTfN4FhF0T96zef\ngvOmeb7H3Pfmvnf73nsqube6q6uqq75Vfb51TlVXswDI00YXf/3rX2txaRTq7zvT3p/loryTwbuZ\n1v2cc5PJqyYc5y+wbRJTaHP6ivsizbge5Rgnu/8JFl/5feZXn4E/TctXuI466qhK7FGn6KNx/j+Z\nLQqIa/KNsgiLtMoZ7et6xB8rr8mEyQ/J2Akt7h8YTvZeym7A46ttNFHONJdPA/t6oGfJPSabf9Qz\n8on+G+Ft9KPt+PqM55eFB3Ezx6+7aJ7dx2G4rbfeug7cY6AHJ2mizzbr51q0WzM8j1+LwMRtrK9N\nn2fTgADBoUOHYOCHIJzo7T0wNFT7MNsZirAgSAkiOzz5SlOQugdosg9RCLJ4EJvln2iZm2nlq+7K\n2MQl4izJD83JPN7FF19czYLCCEsDHVaM0OSadVhSvmNdV0/l5JrXa0CX/iJf7eQ42swxQRnajvDo\nM5GmE18aK5SRFlzkw8JjzhTRR56j6zhe3nDWB5ttF2mjbSNPeXTbyTP6t2P14fjjlXm88Cib6zCy\nKxpLmDpauMgKpq6Rd9xrvPzGC5fOL/pjEGDcv62+fqLMSD3KH2UVHvUa7Wsf/ZaLOkc6PpzSvT4C\nSeyvj08rrur4XPPhIDy48YTBWOE1waK/xx57rK5YDZKTl58vMVnggvi50JzGymtJYdJ7QJVZXC4e\n4Hoygb9m/UP7VLbXEw5xr9E+Mx+CMs9KW6dhyUdZDW6Ym0M4N8s8Op8lnUsbGDXJVbqpdu7RJMco\n6+h2iPDxfHkgpiuvvLKSFIwiX6Z5ryPBTN+JPKJucT7aj8EGzDlp5ats4gZmUdbIr1u+fPUBvjIo\nj+PJkKV08EFgBjk+1xqDxFjn4BVV9eLcT5qJOungHmmV1X3jfKL5TUd8ZWaKD+c82lebc8ofVrgm\n/uKqnzpHusgn/c4QSGLvDKeexgrho5N7GOKB6PTBbgpX81tnnHFGXXnq4eEiHw+c90aZXQmrEOKT\nrXyQb6SP8sd5p36ki3LyJ/uDBeHrs4++PuU8BI370LIs8AlslHGy95JWnpw8oh41oIt/UT5Zuodf\n9JlmWMQby4/iwAPRcnBB3Pb9Zn4X7rq+AR+DQObUsHDoL677jXWPscJoczHwibKLx0X8etLFv8g/\n7jHZrNVTma3VmDNnTh0kBgZB9vPnz694iRvXJnO/wCjKbnDSZhdtpx/CyHn40TeFeRbjvNn+6qfO\nXNS5zfVtW9mS2NvWIl0sD2HCxYPhnCC2YjqueajiWDzavK80EUKhSXWxSD3PiiChRZkjjvnQwEid\nLSY87bTTqtYepueeF3oaChB9JG6l7eFj3YG1CPqIONFXxLOIzrvKcBK/2Zcin0H2YaHe559/fjW9\nIyJ9CA6cBWL2nmABE57uFQRG97XEpfsIJLF3H9PW5kgIzZ07d+Q9Uau1CSOj41jcQgDZ3Y7W7lia\nQXI0Te8ue1+WI4TVnQ8LwtrbARdddFGtOy1iWJy609JhQfhaUGjdRdOioa8EJgjdymZrNcSRxm9Y\nSMyzYdGcgSCLBgyYltVfXzIwumzRzmv2EtDvBu1ZGpbnoh/rmavi+7HVJlBmwjoENkFsv+WNN954\nZC6QRkZLtxVkrOD12pf3igmnEOITuGVro8LBq0jmQr1aQ3tHROqPsLx7zKm/d+Z9eMKrUYh/0B1s\nOHVlRkZQCxYsqK9wwcNrbYgrdp7zSh3sxGcB0ncQ2jARO+uOvSDMpyNtdQ/y5sOUto74bdiiz4mT\nLhGYagSS2Kca4R7lH4KaIPFD0jR0n1EM4UPLoG2Zd7dl4zbbbDNSWlobQT1IxA4HJGUjHo4WhcR8\nGtI72UceeWQNR1YGNjG4qYED/gcbfcZPX9FHAhPHsGLFMYWx1VZb1S93IX/p1l577YqOY3H1nWFw\nBoa2Tbaxjn6k/jZfERZ7msPCoIiFCLHDV7x0icBUIpDEPpXo9jjvECAhTAjsENqKRgh7r1QYAo/N\nRmhmBFII+h5Xo6u3t22uXzgaKKK3eYbd1IKUYAOTwDDiD7KvrtocBuq/6aab1g2LhLH2eBXQmwQ2\nMYKVVc+ucdFX5GFAGDgOMl6eFwNlnyiN+h933HH1bYHjjz++rLDCCrX/wASpD9IgeZDbdRDqlsQ+\nCK04Rh2ahNQ8FrVJWEgdkRNMEU9YHIfgHuMWfRkUwjXq1TyPMHVHTIFBX1Z0EoVW36hzEHOcy44l\nA0ahnboGP2HNeIHjJIrQV0lYwOyGGFMQCo/MPT8bbLDBiOkdNs1fX1UyC9uXCCSx92WzLV2hQwjz\nQzA3hXFcd5fm8dLdtV2pm/VqHrerlL0rTRMTx/FTIto8F3HCr4GN8DgfVN+zo+6enRggxoDQIMi6\njcCt+XwNKh5Zr/YgMDxLftuDeWtKQuiEQAph3ZrCZUFahUAQFJ+Fh58uEUgE2olAEns722VKSxVC\nmc9sSJsgrNMlAmMhENpmaKg5CBwLpQxLBNqDQBJ7e9piWkoSQjpuFnOpKawDkfRHIxB9xkDQLweB\noxHK80SgXQgksberPaa9NIid4LYAKF0iMBYCSexjoZJhiUB7EUhib2/bTFnJQlC7QZjiU2OfMrgH\nImN9Jqw7jpt9aCAqmJVIBAYIgST2AWrMTqrClBqv5zi2yQghnRp7J+gNZxxz60Hs2VeGsw9krfsL\ngST2/mqvrpQWoYdzTFinxh6IpD8aAX0kFs45zr4yGqE8TwTahUASe7vaY9pKg8wJ6TTFTxvkfXuj\n6CtB7rl4rm+bMgs+JAgksQ9JQzeridDDxeK5FNaBSPqjEUhiH41InicC7UYgib3d7dP10hHSXPix\nICrNq12HeuAyNCD0y0HgwDVtVmjAEEhiH7AGnWh1mFe5XDw3UeSGJ34MAoPYs68MT9tnTfsTgb7f\nK572EHN/miDMhnEcxEUjJZCc+wSl1eChpYbWKk3EccyF2Vq+rvEjz7jGj+txzI/rrnGRrp706G90\n+XyhS7380iUCYyGg3/pEqWeGiz40VtwMSwTagEDINLKdnG/K4+i/uMMaI04fDxk+lpz24SN7/3OR\nvp68ej5afjY5JeJNp9/XxB6N59ObGkUj+eJSszGDVIGqIX1+UsNobA3Fj0YVJ47lLR+++HzX+PKJ\nL11Jw7mPeASgcriPMHk494s4r6Rox390YvVKlwiMh4C+7cfFgHi8uBmeCPQagZDXId9xBHKOj/OQ\neyH/QzaT6+Q1GR48EfH5FELX41kgz93nX//6V61ufPZanF67vif2hQsXFt9A1ji+Ef2BD3ygHgdh\nBZlqgJdffrmcfvrpRZrdd9+9bL311jXus88+O/Jd8misEGIaSINHfhrXNY0vz2hkjSlOdIDrr7++\nnHvuubVM73nPe0aIXX7NvJ1Pt3P/wEW5Haewnu5W6J/76S/6tp9jz0O6RKDNCOir5DNHtt13333l\nlFNOKcstt1w54ogjymqrrVblnnjhIs3TTz9d4zrfZ599yrrrrlv7vn7PakVmyjvif+tb36p5yXeV\nVVaJ7HrqL65VT4sxuZsbgS1YsKBcfPHF5ZprrhkhW+EagRAKEnv++efLL3/5yzJnzpxy9913l3e8\n4x3l1ltvLXvssUfZc889K+EH2UVjN8kuBBpCv+qqq8rRRx9dPvzhD5ctttii+hdeeOFIY7uXjnT2\n2WeXc845p47o5M3Jpy1OPZuj1baUK8vRLgTiuYi+m8TervbJ0vwvAvoq+YaE//nPf5Zrr722zJ07\nt8yfP79yA7kXcSI1ef/UU0+Vb3zjG+XXv/51DZ45c2a5+uqryw477FB22223csUVV9R08o3n4dJL\nLy2///3vy9/+9rfKQZS/Xru+1tgJmOuuu642hgZYaaWVKomaN445dI2LjG+88cZK6hrkkEMOKcwm\nd911V/0ZCGho5hrxpY35FA0UIzQC7plnnqkNL80DDzxQaPvSur+GFkfefPnpUI7b4pQlOmTUjd8c\nxLSlrFmOdiAQfcazwYXgivB2lDJLkQi8FgFyLrT2v/zlL5UHNt100yr/yO1lllmmym5WVvLP76yz\nziqXXXZZmTFjRvn4xz9ew8jw+++/v6y11lo1D6Z3/EDuc54DvIBPtt9++zod/NqSTP9ZX2vsTOs3\n33xzRW2FFVYozz33XB2V0ZIdAxz5R/gtt9xSdt111/Lud7+73HDDDeW8884rtGtxjLbOOOOM8tBD\nD1Uij4aWh2PkTrDpKJ/5zGfKMcccU7baaqs6CFhvvfWqacd18TmdSjqNHcfO43qN1OM/5YoyxwPQ\n4yLl7fsAgewrfdBIWcQqa8lcGjueoODhidtvv73MmzevauIGqeLo0/fcc0/VvB977LHy6U9/uqy5\n5pqV5C+//PI6506Zo53/7Gc/q9O50kgv3O+RRx6pXNKG56NvNHaE6Bdag377+OOPl3vvvbc2CvP6\nySefXO68886y/PLLV215v/32q/H//ve/F42jUc2tG6ExqfhZJGHBHXM+k8usWbPqfRC5RkN+jjnH\na6yxRp03v+222+ooTZnM6xv9uR7lNOhwrNMYOMjDdb9euub9lQ8WfGVMlwiMhYA+ox+H+ZLg0mea\nfWmsdBmWCPQKAf0z+ihusK4Kd1x55ZV12haJm46loFkDJS4+EHfVVVet2jrNnAZPCXSdEujcPLr1\nXJznIlxYsoIvIrwXft9p7NFghItGYO4G5LqLFjgwnSCof/zjHwWZaxjA/+lPf6pa+7ve9a5qTkFm\n5kto3Bxi/s1vflN/iNvoi5b/wgsv1B/y12juyUyvgxjVGVg43nbbbavvurKI+9JLL9V7u5dfW4Wg\n8sJU2dMlAuMhoI/o6/px9pXxUMrwtiAQ8pYstpYqFDjW2r322qvyBs2dYqhfM6XTxvHJjjvuWN76\n1rdWgt9///2r0kaGW0hnnv5Xv/pVva6uOMY9DHr95NUG145SLAEJQqXpgojuuOOOSsDmQz73uc+V\nT3ziE2XFFVesgocGjbQQuwbjb7bZZnX+m4au4RG3xnjf+95XNthgg7LOOuvUuZODDjqobLTRRuXt\nb3972XjjjeucPHOORnNvgwedAnlbXfnOd76zmNePcjL56DCcAUc0dnS2Zl16eaw8MOKaI89elinv\n3U4E9OHov9lX2tlGWarFCOij+iz5zhJLZlvozMRuIRxZbZ4cT3AsrKyw4m+zzTYjspySp9+vvPLK\nVRHEEWuvvXbNG6E/+OCDddCA+JnuxQ0eWFya6T/qK1N8wAM4IyXz4cClZTOnABmpIlngayQNau6D\nY2IJsn/yySeL1xrEkZYmHpu10MA1oLQa//3vf3+9ptGapb5IAAAXh0lEQVRoKxpbJ3C85ZZb1jjy\nVy5hRn0W68l7u+22q/cU3hSO4vfaqY8yKncK6163Rnvvr5/ou9F/PRfpEoG2I0CmMZ+z7Oq7LLZ4\nwUI6RMykvvrqq4/IdFZYRC8OhyuY7Ml707sbbrhhVQzJzOABrzUbFFAW8Qi+8Lz02vUFsQdQMRIC\nKmJ+9NFHKynRrq1EZ4JnckHSb3vb20aEEfKXhzgahWDS4Mzt8tKA8vZD7ocffng91hkMFDQWp6P4\nSadB5akxxQkrgE5gBaVFc8w5VkmGVhz36mWjq2PgyY+6p7DuZau0+97RZzwPXPaVdrdXlq5UOU/5\nQ8wsszhh/fXXr5zwwKK3mchi1l0yOsg4eIIsJxdxycMPP1yVR31fHtIFV1AMvWYtHtI3cBCnDa6v\nTPGIyI9gQZ6hic+aNas2mHfHEavRmEbkaxAjMOmY0+O6xtQIzg877LAye/bs+uqcRkPe0XjiSKtz\n/PznPy8f/OAH6/y8exscnHTSSWWXXXYZ2dCAef4nP/lJbWza+uabbz4yxy6ftrkQ1jpsukRgLAQ8\nC1z03yT2sVDKsDYhEEqY1fA0apo4WYywH1hE7Ejc69HIPXjC62ycd9n1dRzhOmWQdfhTn/pU+dKX\nvlSVSvLSdKzXraWPaeDgjV5j0RcaO7BCqADMMbCtalx30Ry2BRHLLrtsNZfYTc4ojHleHMQtjHZP\no+eEm0c59NBDy5///Ofa8N5vZJaRt4ZyT43n3LE0nHztXmSEJpxjpjEXb+T2hz/8oY7ixLOYj/lf\nPqEZ1wQt+otyJbG3qFFaVpR4BgwCHWdfaVkDZXH+BwH9lGzjmy41Rx6WXRo5BS24QhxvTJHhXnvG\nFSGzvVnlnXckbrBAK5evOOeff35dQG2N1t57712VSHHk12vXF8QeWmWAxVxOS/drkj7NG1lzTXBp\n1FbGG73RqJEuU/1RRx1VjjzyyJH4zTSO476OkfkBBxxQPv/5z9f4/twbmSsPc7xX7bwLb4ToXXdz\n9TEa1OA6RK+dusSARFliEKN86RKBsRCIPmNw6zg19rFQyrA2IUB2m3o9+OCDi8XQ+m304+9///sj\nvCGMo5xZS2UFvVfiPrdoMbb06y3ao+Tb3/72yMp3spOs9xaVLcMNCPCIhXNcKID1pId/fUHsY+ET\nDRJ+xInGC60itPMf/OAHtTGtYuciXfiR/vV8cZvxNXKzIZl2jj322NoJLL6LezXv93r5T9c1dVB2\nvgfAceA1XWXI+/QXAs2+n32lv9pumEvb7LdwcN7068miPxZfr7N5BRqhhyWTbHRMzofMND1rhb29\n5x2/973vrYNdShLHzC+8l65vif31QIvGJIBo00wv9nXnomFfL32n14zcNHisimQFMJ9Po9EZ3F9n\n4EL77zTv6YgHixiYpMY+HYj37z30FX2Ynxp7/7ZjlnxsBMyne+XZTx+PwSs5rr8jbTLSM2B61/qp\nOA/ZLk3EHfsu0xc6kMQeZKqB/BAwH4nxu+V0Bo1phCdfDa1hgyyF+cVIr1v37VY+yhYjU6PMdInA\nWAiEkNNfuFg9PFbcDEsE+hEBMprs1sf195DbSJs8d82xeE1tXFgoRY6DE3qNQV+sip8MSAG2tEHo\nGsWvWy7y0xEcI8kQfu6hoaODdOueS5tP1D/KHsQewntp88/0g4dA9Bl92a/5bA1ebbNGw4iAfh0k\njS/Iw6Y8d8yJ45qfY8+G+H7xnLQBv4HU2AGroTgjLY2iEUa7IDfhIbRGx4nziEuoaVTnNBcNysmf\nuUY+rvPF4Y9178i3F75ycc2yKfMwucBgmOo82bpGP9Zf/JLYX0Ey+9Bke1T70mlLvyaB6+vR90Pm\nh+auBnHNsfAYELRB3vcFsQOVMGkuTnAcZKQBuGgIx6MbSBgXZCytY/PjGoQJxY+LRqoni/7EFWYF\n/E033VRXvttZTgPadvaII46o28p6zS7KGWWJskVebfGVS72sP+DaWs5u4xUPcPjRtvqLsHCBR/Ph\njWvD5sNG//d8wMVx4Bc4DRsmUV/PO3z0I8f8dP2HgH4cSprSN8k5+nrICHPs1m5FeKQNWdGGZ6Jv\niB3ogONiZOS82QAerIgjvAlwMzyOkfo3v/nNOge/55571vcYYycieclDXAMAGxRYBfm73/2uvteI\n5A0ubJQzf/78sscee9RXK7xbLzzuEX4teEv+1A2GOiqM1NM6hDaWtduQqWP0i/BDMMe9mnGEDQMu\nUffx/MAonqsgsGHHBh7hYNQ8j/D0+xsB8pLzqnQogAa30d6uex7ifLT86EXtF/fKXty9w3sCDFgx\nKg6gJQ8B49hDFb8Q2sKljZ/zyMfIyw5yc+bMqR968b6iDwYgfPlI4162DnTthz/8YXniiSeq5i4c\nuSNEX3nzxZ8TTjihXm+Wyf3a5gKbwFT5dNRhcNE22i/qr3/BJHCBQ7O/DAMuS6ojvOATuMTxktIN\n+vXoM3Dh9KWm5jfo9R+G+mljO49edtlllQvIEGHxDOCK5nn0hV5i0xcaO6INgcyPkVGAGcACMsLi\nOARRE+zIQ1x5IzV7AiNn3+T1GVfvNNqNjvZ9ySWX1M0I5CGuMIKOcy7cIEHD23nuwAMPrFsYyr9t\nTpngxTlmig+Sa1tZp6I8MUiMgVv47hW4xH3h0+w3ET5sPgyivzNB2p4zzocNi/HqG886OZDYjIdS\nf4ZrWwrd0UcfXXc7tX3sRz/60So74+twITtwSxz3srZ9Qez2ZD/vvPMqCdshiDnEqNimAo69fhDv\nq/MRL8LSIPHABci07HhdQb4eRKZ2DeLc9oE+HHD55ZdXcmei/+53v1vNMPJF5LT0IAhCT0NK7+Mw\ntH9byTLpt6GBo95NHybKrcz2z1cnuKj/oLsYiGlLGKizY33AcbRZtCs/3SsWDP2FQPOZYgPixOaV\nD0PBgTyKPhPPV/abwUBAezLDm3b1PRIKnF1FfSzM5jT4BB+E34Za9wWx+xzrmWeeWU3eBG+Migka\ngppvlBzHHjBhHrYgfT4BbgtA1xwLswgu4vM1IpLzdTbm93nz5tVvq8c9pXEfzj3Flx+fMxf/1a9+\ntQ40IqxeaNkfHJVPHQjpa6+9tn4Mp2XF7Hpx9IlmPzEwNOr24QcPKkz0A6553PWC9FGGTTwMavUZ\nWzHH89JHVelqUeP5hod+xfkkaMiHrt4sM+sZAvq5n3aO/s+KS2butNNOZd99960fmJk5c2YtY/BL\nzwq86MZ9QezrLdqv9ytf+Ur9BjuCBRw/BDSfxgV0x9EA4jkWFnFDO3du3sQDSbgL96D6Sach+Yha\n3LgmHlKUr7A4Dg3edWUzcHC9bS7KpG4c3176UY+2lbfb5dFuXLSd9rLgkYs21fbpFiMQfUaIfu6Z\niWdkcazhPPLc6C8hP3zG2YZVrIlwa2LXPB5OtBbXGmYhY6+66qo6FdpWfJSTFVefV0by3XPwzDPP\nlLPPPruuy/J57o997GN1v3kfEyP/e+n6gthnzJhRdt111wnhpBH8CGsPHXJ2LMy5n6+9Ma/cdttt\nVVhpQI4GRzO3bSDT4/HHH1/N7K5FHH50xHi4pbFf/Ne//vX6NSHh6RKBRGC4EDDwCWKPmoesiPNh\n9UN+kr/kI6XKh7MivI24aDvfdm+WUZhzvOJLb96Wuv766ytP+bSrb4X00vUFsU8WIB3HyCpGTxqC\n2dk8fZBxmNAQPmL2QHo3/ZBDDimzZs2q8S666KL6KVYjNHnI08+xfHRSaZ1L6/N/vgaXD/NkWy7T\nJQL9i4DnnlxINz4CZLJPZx9zzDFVqTL9aX1UGx1LsLVXJ510Um1XFhlrkzi8odwUuh122KG+8kxj\n77V7wyIyGni74+gqagxh5u4/+9nPVq19xRVXLJtssknZfffd66jLXLzOR8tfsGBB/fSfz7IaCDDF\nxMMrryB6n+77xS9+UZjjEH0Se6+7d94/EUgE2oYAoiRbkTlZahBEVo6W020pt7LZmIzVmBKHE8h3\nPx/+spBu9uzZ9bvvYe3ttewfWI0d4b4euKFpb7jhhnVe5EMf+lA1vdPmdTBpI/1mm21WF1adeOKJ\n1XwvrTgaGKlza621Vn3NTX5J6m15JLMciUAi0CYEyM2wdjLD03aZs4WFvG1TeZVFuVhycUqst0Lo\nvhjqDSjz68EbbSn7wGrsMfob3VmMFoXRvJlTzI9oFBo7Qg6iDuJG4gicGd6K11NPPbXcfPPNdeGd\nUafX6izu++IXv1gMDrzmJnz0fdvS4FmORCARSAR6hUAoXAiSbOWC7B23UW4q3y233DJiyd1rr73K\nzjvvXKddmeBxAD4RL8ofvjr1wg0ssY8HJvCZU5BvjBR1Np1MYzQbRx6uIXtxDQq862yx3Re+8IXy\n4osv1m1mt9pqqzowMPdiDj/eoR+vDBmeCCQCicAwI0DOciF7w28jJnjB++t2Fj3ooIPqlC1ZH0og\n7lD+4A91i2u9qs/AmuLHAxT4TEAccudi5OjY9aaLBuLT6P2spDc/L+yCCy6oiyaEa1ymJX6ka+aV\nx4lAIpAIJAKL5WzIyfDbio1V7j/60Y8qVygrnmhyRXBIM6yXdcmlmx2gH6NLUb0iZ4Ec8zwt/sIL\nL6wavEUg4rVhtNZBlTJKIpAIJAKJQIcIIHPKG2UwrLsdJu1JtCT2DmAPYqeJ24nOHDvHNL9w4cJy\n+umnV7O8eEZs4qVLBBKBRCARSAR6gUASeweoI2uvZvgSHA3d3DqNXTj/0ksvrXvLN1+F6yDbjJII\nJAKJQCKQCHQdgST2DiFlaj/nnHPq3DoTfDjH9hk31/7kk0++Zt4l4qSfCCQCiUAikAhMFwJJ7B0g\nzbRuVaQd6HzBjTPPwvTuGm3eBwGuueaaOu/eQZYZJRFIBBKBRCARmBIEktiXACvi9nqcr8DNnz+/\nmt4liXn3WEhBWz/rrLPK008/XeMvIdu8nAgkAolAIpAITAkCQ/e622RQtJGNDQrMoa+88sqV1IWZ\nY7dS0jaCji2qMw8fn++bzL0yTSKQCCQCiUAisDQIDN0GNRMFi2Zu05k77rijroL32gNz/E9/+tP6\n6pvPya699tqV3Gn3PgCA6OO9xoneL+MnAolAIpAIJAJLg0Bq7B2gR1O3X3yshLe9LDL3xR97Bq+/\n/vojm914zzHM9B1knVESgUQgEUgEEoGuIpDEvgQ4mdgROxdauHPkzY/rdrND/LT2tu+itIQq5+VE\nIBFIBBKBPkYgF8910HihqSNsP2TOWVQX2rnX4eJ6B1lmlEQgEUgEEoFEYEoQSGLvAFaaOk3cj0P0\nPvTiHXYk72cRHZKPsA6yzSiJQCKQCCQCiUDXEUhi7wDSeKUtTOzOHYe2LovQ4sNs30G2GSURSAQS\ngUQgEeg6Aknsk4A0tHTE3iT3SWSVSRKBRCARSAQSga4ikIvnOoAztHEk7pjGPto830E2GSURSAQS\ngUQgEZhyBFJjnwTEyJ0pvjnv3swmtfgmGnmcCCQCiUAiMJ0IJLF3iDYyD8J27IfYI6yZzVhhzet5\nnAgkAolAIpAITBUCSewTRDZImymei/MJZpPRE4FEIBFIBBKBKUEgib1DWBE4LZ1zbIc577HHubCY\ndw/SrxfzLxFIBBKBRCARmEYEktgnATaCR95jaetB/pPINpMkAolAIpAIJAJLjUAS+yQgROpjzbGP\nRfSTyD6TJAKJQCKQCCQCk0Ygib0D6MYi7DC7x250HWSTURKBRCARSAQSgSlHIIl9ghAj+aYpPol9\nggBm9EQgEUgEEoEpRSCJvUN4R8+dxxx7aPPhy6553GH2GS0RSAQSgUQgEegKAknsHcKIrIOwaen2\nhI/32H34hfNxGE68uCbMefhxrUZ8NW6ki7D0E4FEIBFIBBKBySKQxN4hcoia1o6Ekbrvr/O99ha7\n0MWiOnFicV2QvmvhXEPwfuGaxxGWfiKQCCQCiUAiMFEE3rCIUBazy0RTD1F8MCFsJO799Xvuuafc\ndNNNZdasWWXllVeu4Ugc4XMGAkH08SlXeUgfZv2II75rTfIXli4RSAQSgUQgEZgoAknsHSCGgDnk\nG9r2f//739cQcRB2aOrODQSaZB2afBC+/JqEHoTfQZEySiKQCCQCiUAiMCYCi+3DY17OQAgEmSPk\nMMnTzOOcSR5p+wVR85E7X3pae2jocc7348RLlwgkAolAIpAILC0CSewdIIh8ES8TPDJH0s8//3w5\n+eSTy5577lnmzJlTXnrppfLCCy+Up556ql5D4jEIkPaSSy4pu+yyS/Vp+5FnB7fPKIlAIpAIJAKJ\nQMcIJLGPggoJh/Ycx6Fp08C5//znP+WPf/xjOfPMM8vLL79cdtxxx7Jw4cLy5S9/uey8887l2GOP\nraQeWRsQIPxrrrmmXH755XUQEOZ4Wj7nPF0ikAgkAolAIrC0CCSbjEKQNh5mdcdNkqdlC7v77rvL\n9773vUrwhx9+eFlttdXKE088Ue64447y9NNPl9VXX73mGuRt5bw8DRBuvPHGmi7M9jFYcC1dIpAI\nJAKJQCKwtAj839JmMCjpH3zwwXLuueeW++67r6y11lrl0EMPrQR83XXXlQsuuKDMnDmz7L333mWZ\nZZYp8+bNK7feemvZZ599ypZbbllXx//4xz8u999/f3nxxRfLxRdfXB566KGy2267lZ122qm86U1v\nqjAh70ceeaQODmJuXRhyT419UHpS1iMRSAQSgd4ikMT+Kv7I96677qrz5Uj8Ix/5SCXhE044ofoH\nHHBAWXbZZYsBwNy5c+v769tuu21ZddVVK/EzzT/33HOVoK+//vpK/Jtsskk9b66gj/l1t2UNCEJH\n8HHc2y6Rd08EEoFEIBHoZwSS2F9tvRVXXLHsu+++5YorrigPP/xwOfXUU6tpnQY/e/bscvDBB5fl\nlluuauMWzm2wwQZlnXXWqRo8zf3xxx8v3/nOd8r2229fzjjjjPLmN7+5LL/88lUbN8fuOi3d4ACB\nB6mH5t7PnSjLnggkAolAItAeBJLYX20LZLvpppvWHzL/7W9/WzebYU7/2te+VkldnGuvvbaSsnl1\nJnvOfDkTO5LefPPNy0orrVQJ3DVz8szzBguur7feetWXl/NYoBdz7dKkSwQSgUQgEUgEJotALp5b\nhBxyZQq3KM7iN+fPPvtsnVc/5JBDKqm/8Y1vrOGuWwlPw6eRc4hbWkS9/vrr161m5eEcgTPR33zz\nzTXu1ltvPUL6EYfvly4RSAQSgUQgEVhaBIaO2BEo0zg/Vr+b97Y97HHHHVfnxrfYYouyxhpr1JXu\n9957b41P8+ZsRkO7jgVv8vr3v/9dHnvssZqffJnq5WmwwL/hhhuKfGbMmFFfjWOmR/ihtcvLICBd\nIpAIJAKJQCKwtAgMHbF7Bx2RImDEGpq6efEFCxaU7bbbrpx44ol1Bbw4TPJIPYg89oVH5vLyKhtS\n3mijjaoWf8opp9Q5eRvSiEObP+200+r9rJBnvjc4aBJ583hpGzTTJwKJQCKQCAw3AkM3x86k3nyH\nnEZ955131kVwBx54YNl///3LKqusUgkZASN+m8u85S1vqeRucZxX4Jjqvbu+5ppr1oV0Nqe58sor\nyzPPPFNXym+22WaV2K2gN2Cw0v6Tn/xk/WDMcHe5rH0ikAgkAonAVCIwdB+BoYXHj6aMuM2Z074R\nudfeaOe0bQMA1727TrsXfvvtt9d33F2zw5xd5+QjPs3ejxYvn6uvvrocf/zxdWHdfvvtVw477LC6\nsM590iUCiUAikAgkAlOBwNARO6JG0sg9XBwLN2eOeCOMT6un6btmAGCFu3l0K9xjlznxwrQfc/g0\n+kcffbTmZ36dGd7gIE3vgXz6iUAikAgkAt1GYOiIvdsAZn6JQCKQCCQCiUCbEBi6xXNtAj/Lkggk\nAolAIpAIdBuBJPZuI5r5JQKJQCKQCCQCPUQgib2H4OetE4FEIBFIBBKBbiOQxN5tRDO/RCARSAQS\ngUSghwgksfcQ/Lx1IpAIJAKJQCLQbQSS2LuNaOaXCCQCiUAikAj0EIEk9h6Cn7dOBBKBRCARSAS6\njUASe7cRzfwSgUQgEUgEEoEeIvD/CTcbAyhTbPwAAAAASUVORK5CYII=\n", "text/plain": [ "<IPython.core.display.Image object>" ] }, "execution_count": 43, "metadata": {}, "output_type": "execute_result" } ], "source": [ "Image('diagrams/LSTM.png')" ] }, { "cell_type": "code", "execution_count": 37, "metadata": {}, "outputs": [], "source": [ "from keras.models import Sequential\n", "from keras.layers import Embedding\n", "from keras.layers.core import SpatialDropout1D\n", "from keras.layers.core import Dropout\n", "from keras.layers.recurrent import LSTM\n", "from keras.layers.core import Dense" ] }, { "cell_type": "code", "execution_count": 38, "metadata": { "collapsed": true }, "outputs": [], "source": [ "hidden_dims = 50\n", "embedding_dim = 50" ] }, { "cell_type": "code", "execution_count": 39, "metadata": {}, "outputs": [], "source": [ "lstm_model = Sequential()\n", "lstm_model.add(Embedding(len(vocabulary) + 1, embedding_dim, input_length=sequence_length, name=\"embedding\"))\n", "lstm_model.add(SpatialDropout1D(Dropout(0.2)))\n", "lstm_model.add(LSTM(hidden_dims, dropout=0.2, recurrent_dropout=0.2)) # first arg, like Dense, is dim of output\n", "lstm_model.add(Dense(1, activation='sigmoid'))" ] }, { "cell_type": "code", "execution_count": 40, "metadata": { "collapsed": true }, "outputs": [], "source": [ "lstm_model.compile(loss=\"binary_crossentropy\", optimizer=\"adam\", metrics=[\"accuracy\"])" ] }, { "cell_type": "code", "execution_count": 41, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "Train on 25000 samples, validate on 25000 samples\n", "Epoch 1/3\n", "25000/25000 [==============================] - 482s - loss: 0.6939 - acc: 0.5040 - val_loss: 0.6946 - val_acc: 0.5006\n", "Epoch 2/3\n", "25000/25000 [==============================] - 462s - loss: 0.6896 - acc: 0.5157 - val_loss: 0.6911 - val_acc: 0.5069\n", "Epoch 3/3\n", "25000/25000 [==============================] - 463s - loss: 0.6758 - acc: 0.5354 - val_loss: 0.6948 - val_acc: 0.5100\n" ] }, { "data": { "text/plain": [ "<keras.callbacks.History at 0x12016a510>" ] }, "execution_count": 41, "metadata": {}, "output_type": "execute_result" } ], "source": [ "lstm_model.fit(x_train, y_train, batch_size=64, epochs=3, validation_data=(x_test, y_test))" ] }, { "cell_type": "code", "execution_count": 44, "metadata": {}, "outputs": [ { "data": { "text/plain": [ "[<keras.layers.embeddings.Embedding at 0x11e953950>,\n", " <keras.layers.core.SpatialDropout1D at 0x111fed590>,\n", " <keras.layers.recurrent.LSTM at 0x11e975690>,\n", " <keras.layers.core.Dense at 0x10ef82590>]" ] }, "execution_count": 44, "metadata": {}, "output_type": "execute_result" } ], "source": [ "lstm_model.layers" ] }, { "cell_type": "code", "execution_count": 47, "metadata": {}, "outputs": [ { "data": { "text/plain": [ "(None, 400, 50)" ] }, "execution_count": 47, "metadata": {}, "output_type": "execute_result" } ], "source": [ "lstm_model.layers[2].input_shape" ] }, { "cell_type": "code", "execution_count": 46, "metadata": {}, "outputs": [ { "data": { "text/plain": [ "(None, 50)" ] }, "execution_count": 46, "metadata": {}, "output_type": "execute_result" } ], "source": [ "lstm_model.layers[2].output_shape" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "collapsed": true }, "outputs": [], "source": [] }, { "cell_type": "markdown", "metadata": {}, "source": [ "### Appendix: Our own data download and preparation" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "We'll use the [Large Movie Review Dataset v1.0](http://ai.stanford.edu/~amaas/data/sentiment/) for our corpus. While Keras has its own data samples you can import for modeling (including this one), I think it's very important to get and process your own data. Otherwise, the results appear to materialize out of thin air and it's more difficult to get on with your own research." ] }, { "cell_type": "code", "execution_count": 42, "metadata": { "collapsed": true }, "outputs": [], "source": [ "%matplotlib inline\n", "import pandas as pd" ] }, { "cell_type": "code", "execution_count": 14, "metadata": { "collapsed": true }, "outputs": [], "source": [ "import glob" ] }, { "cell_type": "code", "execution_count": 51, "metadata": { "collapsed": true }, "outputs": [], "source": [ "datapath = \"/Users/pfigliozzi/aclImdb/train/unsup\"\n", "files = glob.glob(datapath+\"/*.txt\")[:1000] #first 1000 (there are 50k)" ] }, { "cell_type": "code", "execution_count": 52, "metadata": { "collapsed": true }, "outputs": [], "source": [ "df = pd.concat([pd.read_table(filename, header=None, names=['raw']) for filename in files], ignore_index=True) " ] }, { "cell_type": "code", "execution_count": 53, "metadata": {}, "outputs": [ { "data": { "text/plain": [ "<matplotlib.axes._subplots.AxesSubplot at 0x107ee6710>" ] }, "execution_count": 53, "metadata": {}, "output_type": "execute_result" }, { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAYgAAAD8CAYAAABthzNFAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAFNVJREFUeJzt3X3QpXV93/H3xwV5UMqD3KGbXciC3WpJGhe6EhxNSmA0\nPCQBO8aBSeMOpa5tYKKTNHUhmagzZQY7iUQyDZEIEawKCCpbwJoFaVL/EFx0eZayylp2s7AbFRC1\nKOu3f5zfjcf12r3PDXvd59z3vl8zZ87v+l0P5/uDA5/7ejjXlapCkqSdvWTcBUiSJpMBIUnqZEBI\nkjoZEJKkTgaEJKmTASFJ6mRASJI6GRCSpE4GhCSp0z7jLuDFOPzww2vZsmXjLkOS5pW77777H6tq\naqbl5nVALFu2jPXr14+7DEmaV5J8Y5TlPMQkSepkQEiSOhkQkqROvQVEkv2T3JXkniQPJHlf6/9I\nkkeTbGivFa0/SS5LsjHJvUmO76s2SdLM+jxJ/SxwclU9k2Rf4AtJPtvm/WFV3bDT8qcBy9vrl4DL\n27skaQx624OogWfa5L7ttbunE50JXNPW+yJwSJLFfdUnSdq9Xs9BJFmUZAOwDVhXVXe2WRe3w0iX\nJtmv9S0BHhtafXPr23mbq5OsT7J++/btfZYvSXu1XgOiqnZU1QpgKXBCkl8ALgReDbwWOAx49yy3\neUVVrayqlVNTM/7OQ5L0As3JVUxV9SRwB3BqVW1th5GeBf4GOKEttgU4cmi1pa1PkjQGvZ2kTjIF\n/LCqnkxyAPBG4P1JFlfV1iQBzgLub6usBS5Ici2Dk9NPVdXWvuobp2VrbhnL52665IyxfK6k+anP\nq5gWA1cnWcRgT+X6qro5yedbeATYAPyHtvytwOnARuB7wLk91iZJmkFvAVFV9wLHdfSfvIvlCzi/\nr3okSbPjL6klSZ0MCElSJwNCktTJgJAkdTIgJEmdDAhJUicDQpLUyYCQJHUyICRJnQwISVInA0KS\n1MmAkCR1MiAkSZ36vN33RBvXMxkkab5wD0KS1MmAkCR1MiAkSZ0MCElSJwNCktTJgJAkdTIgJEmd\neguIJPsnuSvJPUkeSPK+1n90kjuTbExyXZKXtv792vTGNn9ZX7VJkmbW5x7Es8DJVfUaYAVwapIT\ngfcDl1bVPwO+DZzXlj8P+Hbrv7QtJ0kak94CogaeaZP7tlcBJwM3tP6rgbNa+8w2TZt/SpL0VZ8k\nafd6PQeRZFGSDcA2YB3wNeDJqnquLbIZWNLaS4DHANr8p4BXdGxzdZL1SdZv3769z/Ilaa/Wa0BU\n1Y6qWgEsBU4AXr0HtnlFVa2sqpVTU1MvukZJUrc5uYqpqp4E7gBeBxySZPomgUuBLa29BTgSoM0/\nGPjmXNQnSfppfV7FNJXkkNY+AHgj8BCDoHhLW2wVcFNrr23TtPmfr6rqqz5J0u71ebvvxcDVSRYx\nCKLrq+rmJA8C1yb5L8BXgCvb8lcCH02yEfgWcHaPtUmSZtBbQFTVvcBxHf1fZ3A+Yuf+/wf8Vl/1\nSJJmx19SS5I6GRCSpE4GhCSpkwEhSepkQEiSOhkQkqROBoQkqZMBIUnqZEBIkjoZEJKkTgaEJKmT\nASFJ6mRASJI6GRCSpE4GhCSpkwEhSepkQEiSOhkQkqROBoQkqZMBIUnqZEBIkjr1FhBJjkxyR5IH\nkzyQ5J2t/71JtiTZ0F6nD61zYZKNSR5O8mt91SZJmtk+PW77OeAPqurLSQ4C7k6yrs27tKr+dHjh\nJMcCZwM/D/wscFuSf15VO3qsUZK0C73tQVTV1qr6cmt/B3gIWLKbVc4Erq2qZ6vqUWAjcEJf9UmS\ndm9OzkEkWQYcB9zZui5Icm+Sq5Ic2vqWAI8NrbaZjkBJsjrJ+iTrt2/f3mPVkrR36z0gkrwcuBF4\nV1U9DVwOvBJYAWwF/mw226uqK6pqZVWtnJqa2uP1SpIGeg2IJPsyCIePVdWnAKrqiaraUVU/Av6a\nHx9G2gIcObT60tYnSRqDPq9iCnAl8FBVfWCof/HQYm8G7m/ttcDZSfZLcjSwHLirr/okSbvX51VM\nrwd+B7gvyYbWdxFwTpIVQAGbgHcAVNUDSa4HHmRwBdT5XsEkSePTW0BU1ReAdMy6dTfrXAxc3FdN\nkqTR+UtqSVInA0KS1MmAkCR1MiAkSZ0MCElSJwNCktTJgJAkdTIgJEmdDAhJUicDQpLUyYCQJHUa\nKSCS/Mu+C5EkTZZR9yD+MsldSX43ycG9ViRJmggjBURV/TLw2wwe6HN3ko8neWOvlUmSxmrkcxBV\n9Qjwx8C7gX8NXJbkq0n+TV/FSZLGZ9RzEL+Y5FLgIeBk4Deq6l+09qU91idJGpNRHxj0F8CHgYuq\n6vvTnVX1D0n+uJfKJEljNWpAnAF8f/oRoEleAuxfVd+rqo/2Vp0kaWxGPQdxG3DA0PSBrU+StECN\nGhD7V9Uz0xOtfWA/JUmSJsGoAfHdJMdPTyT5V8D3d7M8SY5MckeSB5M8kOSdrf+wJOuSPNLeD239\nSXJZko1J7h3+PEnS3Bs1IN4FfDLJ/07yBeA64IIZ1nkO+IOqOhY4ETg/ybHAGuD2qloO3N6mAU4D\nlrfXauDyWY1EkrRHjXSSuqq+lOTVwKta18NV9cMZ1tkKbG3t7yR5CFgCnAmc1Ba7GvhfDH5bcSZw\nTVUV8MUkhyRZ3LYjSZpjo17FBPBaYFlb5/gkVNU1o6yYZBlwHHAncMTQ//QfB45o7SXAY0OrbW59\nBoQkjcFIAZHko8ArgQ3AjtZdwIwBkeTlwI3Au6rq6STPz6uqSlKzKTjJagaHoDjqqKNms6okaRZG\n3YNYCRzbDv+MLMm+DMLhY1X1qdb9xPShoySLgW2tfwuDez1NW9r6fkJVXQFcAbBy5cpZ1SNJGt2o\nJ6nvB/7pbDacwa7ClcBDVfWBoVlrgVWtvQq4aaj/be1qphOBpzz/IEnjM+oexOHAg0nuAp6d7qyq\n39zNOq8Hfge4L8mG1ncRcAlwfZLzgG8Ab23zbgVOBzYC3wPOHXUQkqQ9b9SAeO9sN1xVXwCyi9mn\ndCxfwPmz/RxJUj9Gvcz175L8HLC8qm5LciCwqN/SJEnjNOrtvt8O3AB8qHUtAT7TV1GSpPEb9ST1\n+QzOKTwNzz886Gf6KkqSNH6jBsSzVfWD6Ykk+zD4HYQkaYEaNSD+LslFwAHtWdSfBP5Hf2VJksZt\n1IBYA2wH7gPeweCSVJ8kJ0kL2KhXMf0I+Ov2kiTtBUa9F9OjdJxzqKpj9nhFkqSJMJt7MU3bH/gt\n4LA9X44kaVKMdA6iqr459NpSVX8OnNFzbZKkMRr1ENPw4z9fwmCPYjbPkpAkzTOj/k/+z4bazwGb\n+PFN9iRJC9CoVzH9at+FSJImy6iHmH5/d/N3et6DJGkBmM1VTK9l8FAfgN8A7gIe6aMoSdL4jRoQ\nS4Hjq+o7AEneC9xSVf+2r8IkSeM16q02jgB+MDT9g9YnSVqgRt2DuAa4K8mn2/RZwNX9lCRJmgSj\nXsV0cZLPAr/cus6tqq/0V5YkadxGPcQEcCDwdFV9ENic5OieapIkTYBRHzn6HuDdwIWta1/gv/dV\nlCRp/EY9B/Fm4DjgywBV9Q9JDtrdCkmuAn4d2FZVv9D63gu8ncGzJQAuqqpb27wLgfOAHcDvVdXn\nZjcUzWTZmlvG9tmbLvHWXdJ8M+ohph9UVdFu+Z3kZSOs8xHg1I7+S6tqRXtNh8OxwNnAz7d1/jLJ\nohFrkyT1YNSAuD7Jh4BDkrwduI0ZHh5UVX8PfGvE7Z8JXFtVz1bVo8BG4IQR15Uk9WDU233/KXAD\ncCPwKuBPquovXuBnXpDk3iRXJTm09S0BHhtaZnPrkySNyYwBkWRRkjuqal1V/WFV/aeqWvcCP+9y\n4JXACmArP3mX2JEkWZ1kfZL127dvn3kFSdILMmNAVNUO4EdJDn6xH1ZVT1TVjqFnXE8fRtoCHDm0\n6NLW17WNK6pqZVWtnJqaerElSZJ2YdSrmJ4B7kuyDvjudGdV/d5sPizJ4qra2ibfDNzf2muBjyf5\nAPCzwHIGNwOUJI3JqAHxqfYaWZJPACcBhyfZDLwHOCnJCgZXQ20C3gFQVQ8kuR54kMEDic5vey6S\npDHZbUAkOaqq/m9Vzfq+S1V1Tkf3lbtZ/mLg4tl+jiSpHzOdg/jMdCPJjT3XIkmaIDMFRIbax/RZ\niCRpsswUELWLtiRpgZvpJPVrkjzNYE/igNamTVdV/ZNeq5Mkjc1uA6KqvB+SJO2lZvM8CEnSXsSA\nkCR1MiAkSZ0MCElSJwNCktTJgJAkdTIgJEmdDAhJUicDQpLUyYCQJHUyICRJnQwISVInA0KS1MmA\nkCR1MiAkSZ0MCElSp94CIslVSbYluX+o77Ak65I80t4Pbf1JclmSjUnuTXJ8X3VJkkbT5x7ER4BT\nd+pbA9xeVcuB29s0wGnA8vZaDVzeY12SpBH0FhBV9ffAt3bqPhO4urWvBs4a6r+mBr4IHJJkcV+1\nSZJmNtfnII6oqq2t/ThwRGsvAR4bWm5z65MkjcnYTlJXVQE12/WSrE6yPsn67du391CZJAnmPiCe\nmD501N63tf4twJFDyy1tfT+lqq6oqpVVtXJqaqrXYiVpbzbXAbEWWNXaq4Cbhvrf1q5mOhF4auhQ\nlCRpDPbpa8NJPgGcBByeZDPwHuAS4Pok5wHfAN7aFr8VOB3YCHwPOLevuiRJo+ktIKrqnF3MOqVj\n2QLO76sWSdLs+UtqSVInA0KS1MmAkCR1MiAkSZ0MCElSJwNCktSpt8tcpWHL1twyls/ddMkZY/lc\naSFwD0KS1MmAkCR1MiAkSZ0MCElSJwNCktTJgJAkdTIgJEmdDAhJUicDQpLUyYCQJHUyICRJnQwI\nSVInA0KS1MmAkCR1GsvtvpNsAr4D7ACeq6qVSQ4DrgOWAZuAt1bVt8dRnyRpvHsQv1pVK6pqZZte\nA9xeVcuB29u0JGlMJukQ05nA1a19NXDWGGuRpL3euAKigL9NcneS1a3viKra2tqPA0eMpzRJEozv\nkaNvqKotSX4GWJfkq8Mzq6qSVNeKLVBWAxx11FH9VypJe6mx7EFU1Zb2vg34NHAC8ESSxQDtfdsu\n1r2iqlZW1cqpqam5KlmS9jpzHhBJXpbkoOk28CbgfmAtsKottgq4aa5rkyT92DgOMR0BfDrJ9Od/\nvKr+Z5IvAdcnOQ/4BvDWMdQmSWrmPCCq6uvAazr6vwmcMtf1SJK6TdJlrpKkCWJASJI6GRCSpE4G\nhCSpkwEhSepkQEiSOhkQkqRO47oXkzQnlq25ZWyfvemSM8b22dKe4B6EJKmTASFJ6uQhJqkn4zq8\n5aEt7SnuQUiSOrkHIS0w7rloT3EPQpLUyYCQJHUyICRJnQwISVInA0KS1MmAkCR18jJXSXuE971a\neNyDkCR1mrg9iCSnAh8EFgEfrqpLxlySJHVa6HtNE7UHkWQR8N+A04BjgXOSHDveqiRp7zRpexAn\nABur6usASa4FzgQeHGtVkibaOP+SX8gmag8CWAI8NjS9ufVJkubYpO1BzCjJamB1m3wmycMdix0O\n/OPcVdU7xzO5FtJYwPFMsp8YS97/orb1c6MsNGkBsQU4cmh6aet7XlVdAVyxu40kWV9VK/d8eePh\neCbXQhoLOJ5JNo6xTNohpi8By5McneSlwNnA2jHXJEl7pYnag6iq55JcAHyOwWWuV1XVA2MuS5L2\nShMVEABVdStw64vczG4PQc1DjmdyLaSxgOOZZHM+llTVXH+mJGkemLRzEJKkCbHgAiLJqUkeTrIx\nyZpx19MlyVVJtiW5f6jvsCTrkjzS3g9t/UlyWRvPvUmOH1pnVVv+kSSrxjGWVseRSe5I8mCSB5K8\ncz6PKcn+Se5Kck8bz/ta/9FJ7mx1X9cupCDJfm16Y5u/bGhbF7b+h5P82jjG0+pYlOQrSW5u0/N5\nLJuS3JdkQ5L1rW9eftdaHYckuSHJV5M8lOR1EzOeqlowLwYntr8GHAO8FLgHOHbcdXXU+SvA8cD9\nQ33/FVjT2muA97f26cBngQAnAne2/sOAr7f3Q1v70DGNZzFwfGsfBPwfBrdKmZdjanW9vLX3Be5s\ndV4PnN36/wr4j639u8BftfbZwHWtfWz7Du4HHN2+m4vG9O/o94GPAze36fk8lk3A4Tv1zcvvWqvl\nauDft/ZLgUMmZTxz/g+j53/QrwM+NzR9IXDhuOvaRa3L+MmAeBhY3NqLgYdb+0PAOTsvB5wDfGio\n/yeWG/PYbgLeuBDGBBwIfBn4JQY/Utpn5+8ag6vuXtfa+7TlsvP3b3i5OR7DUuB24GTg5lbbvBxL\n++xN/HRAzMvvGnAw8CjtfPCkjWehHWKaz7fqOKKqtrb248ARrb2rMU3kWNshieMY/NU9b8fUDsls\nALYB6xj8xfxkVT3XUdvzdbf5TwGvYHLG8+fAfwZ+1KZfwfwdC0ABf5vk7gzurADz97t2NLAd+Jt2\nCPDDSV7GhIxnoQXEglCDPwHm3eVlSV4O3Ai8q6qeHp4338ZUVTuqagWDv75PAF495pJekCS/Dmyr\nqrvHXcse9IaqOp7BXZ/PT/IrwzPn2XdtHwaHmy+vquOA7zI4pPS8cY5noQXEjLfqmGBPJFkM0N63\ntf5djWmixppkXwbh8LGq+lTrntdjAqiqJ4E7GByGOSTJ9G+Hhmt7vu42/2Dgm0zGeF4P/GaSTcC1\nDA4zfZD5ORYAqmpLe98GfJpBgM/X79pmYHNV3dmmb2AQGBMxnoUWEPP5Vh1rgekrD1YxOI4/3f+2\ndvXCicBTbdfzc8CbkhzarnB4U+ubc0kCXAk8VFUfGJo1L8eUZCrJIa19AIPzKQ8xCIq3tMV2Hs/0\nON8CfL791bcWOLtdGXQ0sBy4a25GMVBVF1bV0qpaxuC/h89X1W8zD8cCkORlSQ6abjP4jtzPPP2u\nVdXjwGNJXtW6TmHweIPJGM9cn5SZg5M+pzO4iuZrwB+Nu55d1PgJYCvwQwZ/QZzH4Djv7cAjwG3A\nYW3ZMHiI0teA+4CVQ9v5d8DG9jp3jON5A4Nd4HuBDe11+nwdE/CLwFfaeO4H/qT1H8Pgf4obgU8C\n+7X+/dv0xjb/mKFt/VEb58PAaWP+3p3Ej69impdjaXXf014PTP83Pl+/a62OFcD69n37DIOrkCZi\nPP6SWpLUaaEdYpIk7SEGhCSpkwEhSepkQEiSOhkQkqROBoQkqZMBIUnqZEBIkjr9f7GkbgrbMHQI\nAAAAAElFTkSuQmCC\n", "text/plain": [ "<matplotlib.figure.Figure at 0x105edc890>" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "df.raw.map(lambda x: len(x)).plot.hist()" ] }, { "cell_type": "code", "execution_count": 47, "metadata": {}, "outputs": [ { "data": { "text/plain": [ "100.0" ] }, "execution_count": 47, "metadata": {}, "output_type": "execute_result" } ], "source": [ "50000. * 2000. / 10**6" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "collapsed": true }, "outputs": [], "source": [] } ], "metadata": { "kernelspec": { "display_name": "Python 2", "language": "python", "name": "python2" }, "language_info": { "codemirror_mode": { "name": "ipython", "version": 2 }, "file_extension": ".py", "mimetype": "text/x-python", "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython2", "version": "2.7.12" } }, "nbformat": 4, "nbformat_minor": 2 }
mit
quantopian/alphalens
alphalens/examples/alphalens_tutorial_on_quantopian.ipynb
1
7108380
null
apache-2.0
weichetaru/weichetaru.github.com
notebook/machine-learning/deep_learning-rnn-with-poetry-data.ipynb
1
6520
{ "cells": [ { "cell_type": "markdown", "metadata": {}, "source": [ "# Use RNN to produce poetry\n", "\n", "In this note, I am going to use RNN to build a model that produce poetry. This is a code practice from Udemy deep learning course. " ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Prepare Data" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "The function below will process robert_frost.txt and transform it into format required for the model training. `remove_punctuation` removes punctuation as it's not required in our model. `get_robert_frost` parse on each line and collect each word into a word-index dictionary. The ourput will be a list with all sentences where each word has been transformed into index. " ] }, { "cell_type": "code", "execution_count": 1, "metadata": { "collapsed": true }, "outputs": [], "source": [ "import string\n", "import theano\n", "import theano.tensor as T\n", "import numpy as np\n", "import matplotlib.pyplot as plt\n", "\n", "from sklearn.utils import shuffle\n", "\n", "def init_weight(Mi, Mo):\n", " return np.random.randn(Mi, Mo) / np.sqrt(Mi + Mo)\n", "\n", "def remove_punctuation(s):\n", " translator = str.maketrans({key: None for key in string.punctuation})\n", " return s.translate(translator)\n", "\n", "def get_robert_frost():\n", " word2idx = {'START': 0, 'END': 1}\n", " current_idx = 2\n", " sentences = []\n", " for line in open('../data/robert_frost.txt'):\n", " line = line.strip()\n", " if line:\n", " tokens = remove_punctuation(line.lower()).split()\n", " sentence = []\n", " for t in tokens:\n", " if t not in word2idx:\n", " # true means it's a new word for our word2idx dictionary.\n", " # add to dictionary if not exists and assign word index for it.\n", " word2idx[t] = current_idx\n", " current_idx += 1\n", " idx = word2idx[t]\n", " sentence.append(idx) # transform word into index.\n", " sentences.append(sentence)\n", " return sentences, word2idx" ] }, { "cell_type": "code", "execution_count": 2, "metadata": { "collapsed": false }, "outputs": [], "source": [ "class SimpleRNN:\n", " def __init__(self, D, M, V):\n", " self.D = D # dim of wrod embedding\n", " self.M = M # hidden layer size\n", " self.V = V # vocabulary size\n", " \n", " def fit(self, X, learning_rate=10e-1, mu=0.99, reg=1.0, activation=T.tanh, epochs=500, show_fig=False):\n", " N = len(X) # numbers of sentences\n", " D = self.D\n", " M = self.M\n", " V = self.V\n", " self.f = activation # for hidden layer\n", "\n", " # initial weights\n", " We = init_weight(V, D)\n", " Wx = init_weight(D, M)\n", " Wh = init_weight(M, M)\n", " bh = np.zeros(M)\n", " h0 = np.zeros(M)\n", " Wo = init_weight(M, V)\n", " bo = np.zeros(V)\n", "\n", " # make them theano shared\n", " self.We = theano.shared(We)\n", " self.Wx = theano.shared(Wx)\n", " self.Wh = theano.shared(Wh)\n", " self.bh = theano.shared(bh)\n", " self.h0 = theano.shared(h0)\n", " self.Wo = theano.shared(Wo)\n", " self.bo = theano.shared(bo)\n", " self.params = [self.We, self.Wx, self.Wh, self.bh, self.h0, self.Wo, self.bo]\n", " \n", " # sentence input:\n", " # [START, w1, w2, ..., wn]\n", " # sentence target:\n", " # [w1, w2, w3, ..., END]\n", " thX = T.ivector('X') # the sequence. will have length T. Note each sequence will have different T\n", " Ei = self.We[thX] # this will be a TxD matrix\n", " thY = T.ivector('Y')\n", " \n", " def recurrence(x_t, h_t1):\n", " # return h(t), y(t)\n", " h_t = self.f(x_t.dot(Wx) + h_t1.dot(self.Wh) + self.bh)\n", " y_t = T.nnet.softmax(h_t.dot(self.Wo) + self.bo)\n", " return h_t, y_t\n", " \n", " [h, y], _ = theano.scan(\n", " fn=recurrence,\n", " output_info=[self.h0, None],\n", " sequences=Ei,\n", " n_steps=Ei.shape[0],\n", " )\n", " \n", " " ] }, { "cell_type": "code", "execution_count": 3, "metadata": { "collapsed": false }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "output: [ 2. 3. 5. 8. 13. 21. 34. 55.]\n" ] } ], "source": [ "import numpy as np\n", "import theano\n", "import theano.tensor as T\n", "\n", "\n", "N = T.iscalar('N')\n", "\n", "def recurrence(n, fn_1, fn_2): # Theano will know there're 2 recursive parameters.\n", " fn_t = fn_1 + fn_2\n", " # return current and last\n", " return fn_t, fn_1 # As Theano knows there're 2 recursive parameters, both will be used for next iteration.\n", "\n", "outputs, _ = theano.scan(\n", " fn=recurrence,\n", " n_steps=N,\n", " sequences=T.arange(N), # if remove this or set as sequences=[], n argument in recurrence() needs to be removed.\n", " outputs_info=[1., 1.] # must be a list and has the same lenght as output of fn.\n", ")\n", "\n", "fibonacci = theano.function(\n", " inputs=[N],\n", " outputs=outputs[0],\n", ")\n", "\n", "o_val = fibonacci(8)\n", "\n", "print(\"output:\", o_val)" ] } ], "metadata": { "anaconda-cloud": {}, "kernelspec": { "display_name": "Python [conda root]", "language": "python", "name": "conda-root-py" }, "language_info": { "codemirror_mode": { "name": "ipython", "version": 3 }, "file_extension": ".py", "mimetype": "text/x-python", "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", "version": "3.5.2" } }, "nbformat": 4, "nbformat_minor": 1 }
mit
wehlutyk/brainscopypaste
data/notebooks/Model(time=Time.discrete, source=Source.majority, past=Past.all, durl=Durl.all, max_distance=2) - susceptibility.ipynb
1
1417320
null
gpl-3.0
GD-park/python_basic
Practice/07-21.ipynb
1
29659
{ "cells": [ { "cell_type": "code", "execution_count": 1, "metadata": { "collapsed": false }, "outputs": [ { "data": { "text/plain": [ "'My name is Tom'" ] }, "execution_count": 1, "metadata": {}, "output_type": "execute_result" } ], "source": [ "\"My name is %s\" % \"Tom\"" ] }, { "cell_type": "code", "execution_count": 2, "metadata": { "collapsed": false }, "outputs": [ { "data": { "text/plain": [ "\"Jane's score is 100, 100, 100, 100, 100, 100, 100\"" ] }, "execution_count": 2, "metadata": {}, "output_type": "execute_result" } ], "source": [ "\"{1}'s score is {0}, {0}, {0}, {0}, {0}, {0}, {0}\".format(100, \"Jane\")" ] }, { "cell_type": "code", "execution_count": 4, "metadata": { "collapsed": false }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "짝수\n" ] } ], "source": [ "a = 100\n", "\n", "if a %2 == 0:\n", " print('짝수')\n", "else:\n", " print('홀수')" ] }, { "cell_type": "code", "execution_count": 8, "metadata": { "collapsed": false }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "Fail\n" ] } ], "source": [ "sex = \"boy\"\n", "pushup = 5\n", "\n", "if sex == \"boy\":\n", " if pushup >=10:\n", " grade = \"Pass\"\n", " else:\n", " grade = \"Fail\"\n", "\n", " \n", "print(grade)" ] }, { "cell_type": "code", "execution_count": 9, "metadata": { "collapsed": true }, "outputs": [], "source": [ "def twotimes(x):\n", " y = 2 * x\n", " return y" ] }, { "cell_type": "code", "execution_count": 10, "metadata": { "collapsed": false }, "outputs": [ { "data": { "text/plain": [ "4" ] }, "execution_count": 10, "metadata": {}, "output_type": "execute_result" } ], "source": [ "twotimes(2)" ] }, { "cell_type": "code", "execution_count": 12, "metadata": { "collapsed": false }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "*\n", "*\n", "*\n", "*\n" ] } ], "source": [ "for i in range(4):\n", " print(\"*\")" ] }, { "cell_type": "code", "execution_count": 15, "metadata": { "collapsed": false }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "(1, 1)\n", "(1, 2)\n", "(1, 3)\n", "(1, 4)\n", "(1, 5)\n", "(1, 6)\n", "(2, 1)\n", "(2, 2)\n", "(2, 3)\n", "(2, 4)\n", "(2, 5)\n", "(2, 6)\n", "(3, 1)\n", "(3, 2)\n", "(3, 3)\n", "(3, 4)\n", "(3, 5)\n", "(3, 6)\n", "(4, 1)\n", "(4, 2)\n", "(4, 3)\n", "(4, 4)\n", "(4, 5)\n", "(4, 6)\n", "(5, 1)\n", "(5, 2)\n", "(5, 3)\n", "(5, 4)\n", "(5, 5)\n", "(5, 6)\n", "(6, 1)\n", "(6, 2)\n", "(6, 3)\n", "(6, 4)\n", "(6, 5)\n", "(6, 6)\n" ] } ], "source": [ "for i in range(6):\n", " n1 = i + 1\n", " for j in range(6):\n", " n2 = j + 1\n", " print(n1, n2)" ] }, { "cell_type": "code", "execution_count": 22, "metadata": { "collapsed": false }, "outputs": [], "source": [ "tips = sns.load_dataset('tips')" ] }, { "cell_type": "code", "execution_count": 21, "metadata": { "collapsed": true }, "outputs": [], "source": [ "import seaborn as sns" ] }, { "cell_type": "code", "execution_count": 23, "metadata": { "collapsed": false }, "outputs": [ { "data": { "text/html": [ "<div>\n", "<table border=\"1\" class=\"dataframe\">\n", " <thead>\n", " <tr style=\"text-align: right;\">\n", " <th></th>\n", " <th>total_bill</th>\n", " <th>tip</th>\n", " <th>sex</th>\n", " <th>smoker</th>\n", " <th>day</th>\n", " <th>time</th>\n", " <th>size</th>\n", " </tr>\n", " </thead>\n", " <tbody>\n", " <tr>\n", " <th>239</th>\n", " <td>29.03</td>\n", " <td>5.92</td>\n", " <td>Male</td>\n", " <td>No</td>\n", " <td>Sat</td>\n", " <td>Dinner</td>\n", " <td>3</td>\n", " </tr>\n", " <tr>\n", " <th>240</th>\n", " <td>27.18</td>\n", " <td>2.00</td>\n", " <td>Female</td>\n", " <td>Yes</td>\n", " <td>Sat</td>\n", " <td>Dinner</td>\n", " <td>2</td>\n", " </tr>\n", " <tr>\n", " <th>241</th>\n", " <td>22.67</td>\n", " <td>2.00</td>\n", " <td>Male</td>\n", " <td>Yes</td>\n", " <td>Sat</td>\n", " <td>Dinner</td>\n", " <td>2</td>\n", " </tr>\n", " <tr>\n", " <th>242</th>\n", " <td>17.82</td>\n", " <td>1.75</td>\n", " <td>Male</td>\n", " <td>No</td>\n", " <td>Sat</td>\n", " <td>Dinner</td>\n", " <td>2</td>\n", " </tr>\n", " <tr>\n", " <th>243</th>\n", " <td>18.78</td>\n", " <td>3.00</td>\n", " <td>Female</td>\n", " <td>No</td>\n", " <td>Thur</td>\n", " <td>Dinner</td>\n", " <td>2</td>\n", " </tr>\n", " </tbody>\n", "</table>\n", "</div>" ], "text/plain": [ " total_bill tip sex smoker day time size\n", "239 29.03 5.92 Male No Sat Dinner 3\n", "240 27.18 2.00 Female Yes Sat Dinner 2\n", "241 22.67 2.00 Male Yes Sat Dinner 2\n", "242 17.82 1.75 Male No Sat Dinner 2\n", "243 18.78 3.00 Female No Thur Dinner 2" ] }, "execution_count": 23, "metadata": {}, "output_type": "execute_result" } ], "source": [ "tips.tail()" ] }, { "cell_type": "code", "execution_count": 24, "metadata": { "collapsed": true }, "outputs": [], "source": [ "tips['tip_pct'] = tips['tip'] / tips['total_bill']" ] }, { "cell_type": "code", "execution_count": 25, "metadata": { "collapsed": false }, "outputs": [ { "data": { "text/html": [ "<div>\n", "<table border=\"1\" class=\"dataframe\">\n", " <thead>\n", " <tr style=\"text-align: right;\">\n", " <th></th>\n", " <th>total_bill</th>\n", " <th>tip</th>\n", " <th>sex</th>\n", " <th>smoker</th>\n", " <th>day</th>\n", " <th>time</th>\n", " <th>size</th>\n", " <th>tip_pct</th>\n", " </tr>\n", " </thead>\n", " <tbody>\n", " <tr>\n", " <th>239</th>\n", " <td>29.03</td>\n", " <td>5.92</td>\n", " <td>Male</td>\n", " <td>No</td>\n", " <td>Sat</td>\n", " <td>Dinner</td>\n", " <td>3</td>\n", " <td>0.203927</td>\n", " </tr>\n", " <tr>\n", " <th>240</th>\n", " <td>27.18</td>\n", " <td>2.00</td>\n", " <td>Female</td>\n", " <td>Yes</td>\n", " <td>Sat</td>\n", " <td>Dinner</td>\n", " <td>2</td>\n", " <td>0.073584</td>\n", " </tr>\n", " <tr>\n", " <th>241</th>\n", " <td>22.67</td>\n", " <td>2.00</td>\n", " <td>Male</td>\n", " <td>Yes</td>\n", " <td>Sat</td>\n", " <td>Dinner</td>\n", " <td>2</td>\n", " <td>0.088222</td>\n", " </tr>\n", " <tr>\n", " <th>242</th>\n", " <td>17.82</td>\n", " <td>1.75</td>\n", " <td>Male</td>\n", " <td>No</td>\n", " <td>Sat</td>\n", " <td>Dinner</td>\n", " <td>2</td>\n", " <td>0.098204</td>\n", " </tr>\n", " <tr>\n", " <th>243</th>\n", " <td>18.78</td>\n", " <td>3.00</td>\n", " <td>Female</td>\n", " <td>No</td>\n", " <td>Thur</td>\n", " <td>Dinner</td>\n", " <td>2</td>\n", " <td>0.159744</td>\n", " </tr>\n", " </tbody>\n", "</table>\n", "</div>" ], "text/plain": [ " total_bill tip sex smoker day time size tip_pct\n", "239 29.03 5.92 Male No Sat Dinner 3 0.203927\n", "240 27.18 2.00 Female Yes Sat Dinner 2 0.073584\n", "241 22.67 2.00 Male Yes Sat Dinner 2 0.088222\n", "242 17.82 1.75 Male No Sat Dinner 2 0.098204\n", "243 18.78 3.00 Female No Thur Dinner 2 0.159744" ] }, "execution_count": 25, "metadata": {}, "output_type": "execute_result" } ], "source": [ "tips.tail()" ] }, { "cell_type": "code", "execution_count": 26, "metadata": { "collapsed": false }, "outputs": [ { "data": { "text/html": [ "<div>\n", "<table border=\"1\" class=\"dataframe\">\n", " <thead>\n", " <tr style=\"text-align: right;\">\n", " <th></th>\n", " <th>total_bill</th>\n", " <th>tip</th>\n", " <th>size</th>\n", " <th>tip_pct</th>\n", " </tr>\n", " </thead>\n", " <tbody>\n", " <tr>\n", " <th>count</th>\n", " <td>244.000000</td>\n", " <td>244.000000</td>\n", " <td>244.000000</td>\n", " <td>244.000000</td>\n", " </tr>\n", " <tr>\n", " <th>mean</th>\n", " <td>19.785943</td>\n", " <td>2.998279</td>\n", " <td>2.569672</td>\n", " <td>0.160803</td>\n", " </tr>\n", " <tr>\n", " <th>std</th>\n", " <td>8.902412</td>\n", " <td>1.383638</td>\n", " <td>0.951100</td>\n", " <td>0.061072</td>\n", " </tr>\n", " <tr>\n", " <th>min</th>\n", " <td>3.070000</td>\n", " <td>1.000000</td>\n", " <td>1.000000</td>\n", " <td>0.035638</td>\n", " </tr>\n", " <tr>\n", " <th>25%</th>\n", " <td>13.347500</td>\n", " <td>2.000000</td>\n", " <td>2.000000</td>\n", " <td>0.129127</td>\n", " </tr>\n", " <tr>\n", " <th>50%</th>\n", " <td>17.795000</td>\n", " <td>2.900000</td>\n", " <td>2.000000</td>\n", " <td>0.154770</td>\n", " </tr>\n", " <tr>\n", " <th>75%</th>\n", " <td>24.127500</td>\n", " <td>3.562500</td>\n", " <td>3.000000</td>\n", " <td>0.191475</td>\n", " </tr>\n", " <tr>\n", " <th>max</th>\n", " <td>50.810000</td>\n", " <td>10.000000</td>\n", " <td>6.000000</td>\n", " <td>0.710345</td>\n", " </tr>\n", " </tbody>\n", "</table>\n", "</div>" ], "text/plain": [ " total_bill tip size tip_pct\n", "count 244.000000 244.000000 244.000000 244.000000\n", "mean 19.785943 2.998279 2.569672 0.160803\n", "std 8.902412 1.383638 0.951100 0.061072\n", "min 3.070000 1.000000 1.000000 0.035638\n", "25% 13.347500 2.000000 2.000000 0.129127\n", "50% 17.795000 2.900000 2.000000 0.154770\n", "75% 24.127500 3.562500 3.000000 0.191475\n", "max 50.810000 10.000000 6.000000 0.710345" ] }, "execution_count": 26, "metadata": {}, "output_type": "execute_result" } ], "source": [ "tips.describe()" ] }, { "cell_type": "code", "execution_count": 27, "metadata": { "collapsed": false }, "outputs": [ { "data": { "text/html": [ "<div>\n", "<table border=\"1\" class=\"dataframe\">\n", " <thead>\n", " <tr style=\"text-align: right;\">\n", " <th></th>\n", " <th>total_bill</th>\n", " <th>tip</th>\n", " <th>smoker</th>\n", " <th>day</th>\n", " <th>time</th>\n", " <th>size</th>\n", " <th>tip_pct</th>\n", " </tr>\n", " <tr>\n", " <th>sex</th>\n", " <th></th>\n", " <th></th>\n", " <th></th>\n", " <th></th>\n", " <th></th>\n", " <th></th>\n", " <th></th>\n", " </tr>\n", " </thead>\n", " <tbody>\n", " <tr>\n", " <th>Male</th>\n", " <td>157</td>\n", " <td>157</td>\n", " <td>157</td>\n", " <td>157</td>\n", " <td>157</td>\n", " <td>157</td>\n", " <td>157</td>\n", " </tr>\n", " <tr>\n", " <th>Female</th>\n", " <td>87</td>\n", " <td>87</td>\n", " <td>87</td>\n", " <td>87</td>\n", " <td>87</td>\n", " <td>87</td>\n", " <td>87</td>\n", " </tr>\n", " </tbody>\n", "</table>\n", "</div>" ], "text/plain": [ " total_bill tip smoker day time size tip_pct\n", "sex \n", "Male 157 157 157 157 157 157 157\n", "Female 87 87 87 87 87 87 87" ] }, "execution_count": 27, "metadata": {}, "output_type": "execute_result" } ], "source": [ "tips.groupby('sex').count()" ] }, { "cell_type": "code", "execution_count": 28, "metadata": { "collapsed": false }, "outputs": [ { "data": { "text/plain": [ "sex smoker\n", "Male Yes 60\n", " No 97\n", "Female Yes 33\n", " No 54\n", "dtype: int64" ] }, "execution_count": 28, "metadata": {}, "output_type": "execute_result" } ], "source": [ "tips.groupby(['sex', 'smoker']).size()" ] }, { "cell_type": "code", "execution_count": 31, "metadata": { "collapsed": false }, "outputs": [ { "data": { "text/html": [ "<div>\n", "<table border=\"1\" class=\"dataframe\">\n", " <thead>\n", " <tr style=\"text-align: right;\">\n", " <th>smoker</th>\n", " <th>Yes</th>\n", " <th>No</th>\n", " <th>All</th>\n", " </tr>\n", " <tr>\n", " <th>sex</th>\n", " <th></th>\n", " <th></th>\n", " <th></th>\n", " </tr>\n", " </thead>\n", " <tbody>\n", " <tr>\n", " <th>Male</th>\n", " <td>60.0</td>\n", " <td>97.0</td>\n", " <td>157.0</td>\n", " </tr>\n", " <tr>\n", " <th>Female</th>\n", " <td>33.0</td>\n", " <td>54.0</td>\n", " <td>87.0</td>\n", " </tr>\n", " <tr>\n", " <th>All</th>\n", " <td>93.0</td>\n", " <td>151.0</td>\n", " <td>244.0</td>\n", " </tr>\n", " </tbody>\n", "</table>\n", "</div>" ], "text/plain": [ "smoker Yes No All\n", "sex \n", "Male 60.0 97.0 157.0\n", "Female 33.0 54.0 87.0\n", "All 93.0 151.0 244.0" ] }, "execution_count": 31, "metadata": {}, "output_type": "execute_result" } ], "source": [ "tips.pivot_table(\"tip_pct\", \"sex\", \"smoker\", aggfunc=\"count\", margins=True)" ] }, { "cell_type": "code", "execution_count": 32, "metadata": { "collapsed": false, "scrolled": true }, "outputs": [ { "data": { "text/html": [ "<div>\n", "<table border=\"1\" class=\"dataframe\">\n", " <thead>\n", " <tr style=\"text-align: right;\">\n", " <th></th>\n", " <th></th>\n", " <th></th>\n", " <th>tip</th>\n", " <th>tip_pct</th>\n", " </tr>\n", " <tr>\n", " <th>sex</th>\n", " <th>smoker</th>\n", " <th></th>\n", " <th></th>\n", " <th></th>\n", " </tr>\n", " </thead>\n", " <tbody>\n", " <tr>\n", " <th rowspan=\"16\" valign=\"top\">Male</th>\n", " <th rowspan=\"8\" valign=\"top\">Yes</th>\n", " <th>count</th>\n", " <td>60.000000</td>\n", " <td>60.000000</td>\n", " </tr>\n", " <tr>\n", " <th>mean</th>\n", " <td>3.051167</td>\n", " <td>0.152771</td>\n", " </tr>\n", " <tr>\n", " <th>std</th>\n", " <td>1.500120</td>\n", " <td>0.090588</td>\n", " </tr>\n", " <tr>\n", " <th>min</th>\n", " <td>1.000000</td>\n", " <td>0.035638</td>\n", " </tr>\n", " <tr>\n", " <th>25%</th>\n", " <td>2.000000</td>\n", " <td>0.101845</td>\n", " </tr>\n", " <tr>\n", " <th>50%</th>\n", " <td>3.000000</td>\n", " <td>0.141015</td>\n", " </tr>\n", " <tr>\n", " <th>75%</th>\n", " <td>3.820000</td>\n", " <td>0.191697</td>\n", " </tr>\n", " <tr>\n", " <th>max</th>\n", " <td>10.000000</td>\n", " <td>0.710345</td>\n", " </tr>\n", " <tr>\n", " <th rowspan=\"8\" valign=\"top\">No</th>\n", " <th>count</th>\n", " <td>97.000000</td>\n", " <td>97.000000</td>\n", " </tr>\n", " <tr>\n", " <th>mean</th>\n", " <td>3.113402</td>\n", " <td>0.160669</td>\n", " </tr>\n", " <tr>\n", " <th>std</th>\n", " <td>1.489559</td>\n", " <td>0.041849</td>\n", " </tr>\n", " <tr>\n", " <th>min</th>\n", " <td>1.250000</td>\n", " <td>0.071804</td>\n", " </tr>\n", " <tr>\n", " <th>25%</th>\n", " <td>2.000000</td>\n", " <td>0.131810</td>\n", " </tr>\n", " <tr>\n", " <th>50%</th>\n", " <td>2.740000</td>\n", " <td>0.157604</td>\n", " </tr>\n", " <tr>\n", " <th>75%</th>\n", " <td>3.710000</td>\n", " <td>0.186220</td>\n", " </tr>\n", " <tr>\n", " <th>max</th>\n", " <td>9.000000</td>\n", " <td>0.291990</td>\n", " </tr>\n", " <tr>\n", " <th rowspan=\"16\" valign=\"top\">Female</th>\n", " <th rowspan=\"8\" valign=\"top\">Yes</th>\n", " <th>count</th>\n", " <td>33.000000</td>\n", " <td>33.000000</td>\n", " </tr>\n", " <tr>\n", " <th>mean</th>\n", " <td>2.931515</td>\n", " <td>0.182150</td>\n", " </tr>\n", " <tr>\n", " <th>std</th>\n", " <td>1.219916</td>\n", " <td>0.071595</td>\n", " </tr>\n", " <tr>\n", " <th>min</th>\n", " <td>1.000000</td>\n", " <td>0.056433</td>\n", " </tr>\n", " <tr>\n", " <th>25%</th>\n", " <td>2.000000</td>\n", " <td>0.152439</td>\n", " </tr>\n", " <tr>\n", " <th>50%</th>\n", " <td>2.880000</td>\n", " <td>0.173913</td>\n", " </tr>\n", " <tr>\n", " <th>75%</th>\n", " <td>3.500000</td>\n", " <td>0.198216</td>\n", " </tr>\n", " <tr>\n", " <th>max</th>\n", " <td>6.500000</td>\n", " <td>0.416667</td>\n", " </tr>\n", " <tr>\n", " <th rowspan=\"8\" valign=\"top\">No</th>\n", " <th>count</th>\n", " <td>54.000000</td>\n", " <td>54.000000</td>\n", " </tr>\n", " <tr>\n", " <th>mean</th>\n", " <td>2.773519</td>\n", " <td>0.156921</td>\n", " </tr>\n", " <tr>\n", " <th>std</th>\n", " <td>1.128425</td>\n", " <td>0.036421</td>\n", " </tr>\n", " <tr>\n", " <th>min</th>\n", " <td>1.000000</td>\n", " <td>0.056797</td>\n", " </tr>\n", " <tr>\n", " <th>25%</th>\n", " <td>2.000000</td>\n", " <td>0.139708</td>\n", " </tr>\n", " <tr>\n", " <th>50%</th>\n", " <td>2.680000</td>\n", " <td>0.149691</td>\n", " </tr>\n", " <tr>\n", " <th>75%</th>\n", " <td>3.437500</td>\n", " <td>0.181630</td>\n", " </tr>\n", " <tr>\n", " <th>max</th>\n", " <td>5.200000</td>\n", " <td>0.252672</td>\n", " </tr>\n", " </tbody>\n", "</table>\n", "</div>" ], "text/plain": [ " tip tip_pct\n", "sex smoker \n", "Male Yes count 60.000000 60.000000\n", " mean 3.051167 0.152771\n", " std 1.500120 0.090588\n", " min 1.000000 0.035638\n", " 25% 2.000000 0.101845\n", " 50% 3.000000 0.141015\n", " 75% 3.820000 0.191697\n", " max 10.000000 0.710345\n", " No count 97.000000 97.000000\n", " mean 3.113402 0.160669\n", " std 1.489559 0.041849\n", " min 1.250000 0.071804\n", " 25% 2.000000 0.131810\n", " 50% 2.740000 0.157604\n", " 75% 3.710000 0.186220\n", " max 9.000000 0.291990\n", "Female Yes count 33.000000 33.000000\n", " mean 2.931515 0.182150\n", " std 1.219916 0.071595\n", " min 1.000000 0.056433\n", " 25% 2.000000 0.152439\n", " 50% 2.880000 0.173913\n", " 75% 3.500000 0.198216\n", " max 6.500000 0.416667\n", " No count 54.000000 54.000000\n", " mean 2.773519 0.156921\n", " std 1.128425 0.036421\n", " min 1.000000 0.056797\n", " 25% 2.000000 0.139708\n", " 50% 2.680000 0.149691\n", " 75% 3.437500 0.181630\n", " max 5.200000 0.252672" ] }, "execution_count": 32, "metadata": {}, "output_type": "execute_result" } ], "source": [ "tips.groupby([\"sex\", \"smoker\"])[[\"tip\", \"tip_pct\"]].describe()" ] }, { "cell_type": "code", "execution_count": 36, "metadata": { "collapsed": false, "scrolled": true }, "outputs": [ { "data": { "text/html": [ "<div>\n", "<table border=\"1\" class=\"dataframe\">\n", " <thead>\n", " <tr style=\"text-align: right;\">\n", " <th></th>\n", " <th></th>\n", " <th>tip</th>\n", " </tr>\n", " <tr>\n", " <th>sex</th>\n", " <th>smoker</th>\n", " <th></th>\n", " </tr>\n", " </thead>\n", " <tbody>\n", " <tr>\n", " <th rowspan=\"2\" valign=\"top\">Male</th>\n", " <th>Yes</th>\n", " <td>9.00</td>\n", " </tr>\n", " <tr>\n", " <th>No</th>\n", " <td>7.75</td>\n", " </tr>\n", " <tr>\n", " <th rowspan=\"2\" valign=\"top\">Female</th>\n", " <th>Yes</th>\n", " <td>5.50</td>\n", " </tr>\n", " <tr>\n", " <th>No</th>\n", " <td>4.20</td>\n", " </tr>\n", " </tbody>\n", "</table>\n", "</div>" ], "text/plain": [ " tip\n", "sex smoker \n", "Male Yes 9.00\n", " No 7.75\n", "Female Yes 5.50\n", " No 4.20" ] }, "execution_count": 36, "metadata": {}, "output_type": "execute_result" } ], "source": [ "def peak_to_peak(x):\n", " return x.max() - x.min()\n", "\n", "tips.groupby(['sex', 'smoker'])[['tip']].agg(peak_to_peak)" ] }, { "cell_type": "code", "execution_count": 37, "metadata": { "collapsed": false }, "outputs": [ { "data": { "text/html": [ "<div>\n", "<table border=\"1\" class=\"dataframe\">\n", " <thead>\n", " <tr style=\"text-align: right;\">\n", " <th></th>\n", " <th>total_bill</th>\n", " <th>tip</th>\n", " <th>smoker</th>\n", " <th>day</th>\n", " <th>time</th>\n", " <th>size</th>\n", " <th>tip_pct</th>\n", " </tr>\n", " <tr>\n", " <th>sex</th>\n", " <th></th>\n", " <th></th>\n", " <th></th>\n", " <th></th>\n", " <th></th>\n", " <th></th>\n", " <th></th>\n", " </tr>\n", " </thead>\n", " <tbody>\n", " <tr>\n", " <th>Male</th>\n", " <td>157</td>\n", " <td>157</td>\n", " <td>157</td>\n", " <td>157</td>\n", " <td>157</td>\n", " <td>157</td>\n", " <td>157</td>\n", " </tr>\n", " <tr>\n", " <th>Female</th>\n", " <td>87</td>\n", " <td>87</td>\n", " <td>87</td>\n", " <td>87</td>\n", " <td>87</td>\n", " <td>87</td>\n", " <td>87</td>\n", " </tr>\n", " </tbody>\n", "</table>\n", "</div>" ], "text/plain": [ " total_bill tip smoker day time size tip_pct\n", "sex \n", "Male 157 157 157 157 157 157 157\n", "Female 87 87 87 87 87 87 87" ] }, "execution_count": 37, "metadata": {}, "output_type": "execute_result" } ], "source": [ "tips.groupby('sex').count()" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "collapsed": true }, "outputs": [], "source": [] }, { "cell_type": "code", "execution_count": null, "metadata": { "collapsed": true }, "outputs": [], "source": [] } ], "metadata": { "kernelspec": { "display_name": "Python 2", "language": "python", "name": "python2" }, "language_info": { "codemirror_mode": { "name": "ipython", "version": 2 }, "file_extension": ".py", "mimetype": "text/x-python", "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython2", "version": "2.7.13" } }, "nbformat": 4, "nbformat_minor": 2 }
mit
AlbertoAlfredo/exercicios-cursos
ExerciciosGerais/slides/7.Prática em Python/scripts/8.Facavcmesmo.ipynb
1
2125
{ "cells": [ { "cell_type": "markdown", "metadata": {}, "source": [ "# Formação Cientista de Dados - Prof. Fernando Amaral\n", "Faça você mesmo" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "#1. Faça um programa que tenha uma função chamada amplitude. A função deve receber uma lista e imprimir a amplitude.\n", "#Crie também um código para testar sua função\n", "def amplitude(vet):\n", " print(\"Amplitude:\", max(vet) - min(vet))\n", "\n", "vetor = [12,23,45,2,100] \n", "amplitude(vetor)" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "#2. Faça uma função que receba uma string e imprima esta string na forma vertical\n", "def imprime(texto):\n", " for n in range(0, len(texto)):\n", " print(texto[n])\n", "\n", "imprime(\"Cientista\")\n" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "#3. Crie um programa que leia o peso de uma carga em números inteiros. \n", "#Se o peso for até 10 kg, informe que o valor será de R$ 50,00. \n", "#Entre 11 e 20 kg, informe que o valor será de R$ 80. \n", "# Se for maior que 20 informe que o transporte não é aceito. Teste vários pesos.\n", "\n", "peso = 10\n", "if peso <= 10:\n", "\tprint(\"Valor da carga é de R$ 50,00\")\n", "elif peso >= 11 and peso <=20:\n", "\tprint(\"Valor da carga é de R$ 80,00\")\n", "else:\n", "\tprint(\"O transporte não é aceito\")\n" ] } ], "metadata": { "kernelspec": { "display_name": "Python 3", "language": "python", "name": "python3" }, "language_info": { "codemirror_mode": { "name": "ipython", "version": 3 }, "file_extension": ".py", "mimetype": "text/x-python", "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", "version": "3.7.6" } }, "nbformat": 4, "nbformat_minor": 4 }
mit
google/brax
notebooks/biggym/biggym_rl.ipynb
1
8958
{ "cells": [ { "cell_type": "markdown", "metadata": { "id": "ssCOanHc8JH_" }, "source": [ "# [BIG-Gym](https://github.com/google/brax/blob/main/brax/experimental/biggym) RL training\n", "\n", "[![Open In Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/github/google/brax/blob/main/notebooks/biggym/biggym_rl.ipynb)\n" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "id": "rlVNS8JstMRr" }, "outputs": [], "source": [ "#@title Colab setup and imports\n", "#@markdown ## ⚠️ PLEASE NOTE:\n", "#@markdown This colab runs best using a TPU runtime. From the Colab menu, choose Runtime \u003e Change Runtime Type, then select **'TPU'** in the dropdown.\n", "from datetime import datetime\n", "import functools\n", "import os\n", "import pprint\n", "import jax\n", "import jax.numpy as jnp\n", "# from jax.config import config\n", "# config.update(\"jax_debug_nans\", True)\n", "from IPython.display import HTML, clear_output\n", "import matplotlib.pyplot as plt\n", "\n", "try:\n", " import brax\n", "except ImportError:\n", " !pip install git+https://github.com/google/brax.git@main\n", " clear_output()\n", " import brax\n", "\n", "from brax.io import html\n", "from brax.experimental import biggym\n", "from brax.experimental.composer import composer\n", "from brax.experimental.composer.training import mappo\n", "from brax.experimental.braxlines import experiments\n", "from brax.experimental.braxlines.common import evaluators\n", "from brax.experimental.braxlines.common import logger_utils\n", "from brax.experimental.braxlines.training import ppo\n", "\n", "if \"COLAB_TPU_ADDR\" in os.environ:\n", " from jax.tools import colab_tpu\n", " colab_tpu.setup_tpu()\n", "\n", "def show_env(env):\n", " jit_env_reset = jax.jit(env.reset)\n", " state = jit_env_reset(rng=jax.random.PRNGKey(seed=0))\n", " clear_output(wait=True)\n", " return HTML(html.render(env.sys, [state.qp]))" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "id": "j-HZevAii3z-" }, "outputs": [], "source": [ "# @title Register a BIG-Gym registry\n", "registry_name = 'proant' # @param {type: 'string'}\n", "register_all = True # @param {type: 'boolean'}\n", "\n", "if register_all:\n", " biggym.register_all(verbose=True)\n", " pprint.pprint(biggym.ENVS_BY_TRACKS)\n", "env_names, comp_names, task_env_names, _ = biggym.register(registry_name)\n", "print(f'env_names: {env_names}')\n", "print(f'comp_names: {comp_names}')\n", "print(f'task_env_names: {task_env_names}')\n" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "id": "riA5oBKFK5B7" }, "outputs": [], "source": [ "#@title Specify an environment\n", "env_name = 'sumo__proant__ant' # @param {type: 'string'}\n", "output_path = '' # @param {type: 'string'}\n", "show_params = True # @param {'type':'boolean'}\n", "\n", "if output_path:\n", " output_path = f'{output_path}/{datetime.now().strftime(\"%Y%m%d\")}' \n", " output_path = f'{output_path}/{env_name}'\n", " print(f'Saving outputs to {output_path}')\n", "\n", "if show_params:\n", " supported_params, support_kwargs = biggym.inspect_env(env_name=env_name)\n", " print(f'supported_params for \"{env_name}\" =')\n", " pprint.pprint(supported_params)\n", " print(f'support variable-length kwargs? (i.e. **kwargs): {support_kwargs}')" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "id": "T1ZJ2jZDKH8Y" }, "outputs": [], "source": [ "#@title Create a custom env\n", "env_params = {'num_legs': 2}# @param{'type': 'raw'}\n", "mode = 'viewer'# @param ['print_step', 'print_obs', 'print_sys', 'viewer']\n", "ignore_kwargs = True # @param {'type':'boolean'}\n", "\n", "# check supported params\n", "env_params = env_params or {}\n", "biggym.assert_env_params(env_name, env_params, ignore_kwargs)\n", "\n", "# create env\n", "env_fn = composer.create_fn(env_name=env_name, **env_params)\n", "# env_fn = biggym.create_fn(env_name=env_name, **env_params)\n", "env = env_fn()\n", "show_env(env)" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "id": "WGRizNxK3MtF" }, "outputs": [], "source": [ "#@title Training the custom env\n", "num_timesteps_multiplier = 2# @param {type: 'number'}\n", "seed = 0 # @param{type: 'integer'}\n", "skip_training = False # @param {type: 'boolean'}\n", "\n", "log_path = output_path\n", "if log_path:\n", " log_path = f'{log_path}/training_curves.csv'\n", "tab = logger_utils.Tabulator(output_path=log_path,\n", " append=False)\n", "\n", "ppo_lib = mappo if biggym.is_multiagent(env) else ppo\n", "ppo_params = experiments.defaults.get_ppo_params(\n", " 'ant', num_timesteps_multiplier)\n", "train_fn = functools.partial(ppo_lib.train, **ppo_params)\n", "\n", "times = [datetime.now()]\n", "plotpatterns = ['eval/episode_reward', 'eval/episode_score']\n", "\n", "progress, _, _, _ = experiments.get_progress_fn(\n", " plotpatterns, times, tab=tab, max_ncols=5,\n", " xlim=[0, train_fn.keywords['num_timesteps']],\n", " pre_plot_fn = lambda : clear_output(wait=True),\n", " post_plot_fn = plt.show)\n", "\n", "if skip_training:\n", " action_size = (env.group_action_shapes if \n", " biggym.is_multiagent(env) else env.action_size)\n", " params, inference_fn = ppo_lib.make_params_and_inference_fn(\n", " env.observation_size, action_size,\n", " normalize_observations=True)\n", " inference_fn = jax.jit(inference_fn)\n", "else:\n", " inference_fn, params, _ = train_fn(\n", " environment_fn=env_fn, seed=seed,\n", " extra_step_kwargs=False, progress_fn=progress)\n", " print(f'time to jit: {times[1] - times[0]}')\n", " print(f'time to train: {times[-1] - times[1]}')\n", " print(f'Saved logs to {log_path}')\n", "\n" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "id": "P-0VYySqOEk0" }, "outputs": [], "source": [ "#@title Visualizing a trajectory of the learned inference function\n", "eval_seed = 0 # @param {'type': 'integer'}\n", "batch_size = 0# @param {type: 'integer'}\n", "\n", "env, states = evaluators.visualize_env(\n", " env_fn=env_fn, inference_fn=inference_fn,\n", " params=params, batch_size=batch_size,\n", " seed = eval_seed, output_path=output_path,\n", " verbose=True,\n", ")\n", "HTML(html.render(env.sys, [state.qp for state in states]))" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "id": "-48ybSUcyMJu" }, "outputs": [], "source": [ "#@title Plot information of the trajectory\n", "experiments.plot_states(states[1:], max_ncols=5)\n", "plt.show()" ] } ], "metadata": { "accelerator": "TPU", "colab": { "collapsed_sections": [], "last_runtime": { "build_target": "//learning/deepmind/public/tools/ml_python:ml_notebook", "kind": "private" }, "name": "biggym_rl.ipynb", "private_outputs": true, "provenance": [ { "file_id": "1PWXVD5BforifYfej0R-PQaW8T6hlFuJ6", "timestamp": 1639457023559 }, { "file_id": "1BCqjiaBc13bQK1gQiEMUQGrxjPTov2EN", "timestamp": 1639058480819 }, { "file_id": "1ZaAO4BS2tJ_03CIXdBCFibZR2yLl6dtv", "timestamp": 1630801484981 } ] }, "kernelspec": { "display_name": "Python 3", "name": "python3" }, "language_info": { "name": "python" } }, "nbformat": 4, "nbformat_minor": 0 }
apache-2.0
luwei0917/awsemmd_script
notebook/Optimization/frag_memory_use_cbd.ipynb
1
26227
{ "cells": [ { "cell_type": "code", "execution_count": 1, "metadata": {}, "outputs": [], "source": [ "import os\n", "import sys\n", "import random\n", "import time\n", "from random import seed, randint\n", "import argparse\n", "import platform\n", "from datetime import datetime\n", "import imp\n", "import numpy as np\n", "import fileinput\n", "from itertools import product\n", "import pandas as pd\n", "from scipy.interpolate import griddata\n", "from scipy.interpolate import interp2d\n", "import seaborn as sns\n", "from os import listdir\n", "\n", "import matplotlib.pyplot as plt\n", "import seaborn as sns\n", "from scipy.interpolate import griddata\n", "import matplotlib as mpl\n", "# sys.path.insert(0,'..')\n", "# from notebookFunctions import *\n", "# from .. import notebookFunctions\n", "from Bio.PDB.Polypeptide import one_to_three\n", "from Bio.PDB.Polypeptide import three_to_one\n", "from Bio.PDB.PDBParser import PDBParser\n", "from pyCodeLib import *\n", "from small_script.myFunctions import *\n", "sys.path.insert(0, \"/Users/weilu/openmmawsem\")\n", "from helperFunctions.myFunctions import *\n", "from collections import defaultdict\n", "%matplotlib inline\n", "# plt.rcParams['figure.figsize'] = (10,6.180) #golden ratio\n", "# %matplotlib notebook\n", "%load_ext autoreload\n", "%autoreload 2" ] }, { "cell_type": "code", "execution_count": 2, "metadata": {}, "outputs": [], "source": [ "frag_name = \"/Users/weilu/Research/server/mar_2020/mass_iterative_run/setups/1a1x/1a1x.gro\"\n", "frag = pd.read_csv(frag_name, skiprows=2, sep=\"\\s+\", header=None, names=[\"Res_id\", \"Res\", \"Type\", \"i\", \"x\", \"y\", \"z\"])" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "def get_side_chain_center_of_mass(atoms):\n", " # ensure complete first\n", " total = np.array([0., 0., 0.])\n", " total_mass = 0\n", " for atom in atoms:\n", " if atom.get_name() in [\"N\", \"CA\", \"C\", \"O\", \"OXT\"]:\n", " continue\n", " if atom.element == \"H\":\n", " continue\n", " total += atom.mass * atom.get_coord()\n", " total_mass += atom.mass\n", " # print(atom.get_name(), atom.get_coord())\n", " x_com = total / total_mass\n", " return x_com" ] }, { "cell_type": "code", "execution_count": 3, "metadata": {}, "outputs": [ { "data": { "text/html": [ "<div>\n", "<style scoped>\n", " .dataframe tbody tr th:only-of-type {\n", " vertical-align: middle;\n", " }\n", "\n", " .dataframe tbody tr th {\n", " vertical-align: top;\n", " }\n", "\n", " .dataframe thead th {\n", " text-align: right;\n", " }\n", "</style>\n", "<table border=\"1\" class=\"dataframe\">\n", " <thead>\n", " <tr style=\"text-align: right;\">\n", " <th></th>\n", " <th>Res_id</th>\n", " <th>Res</th>\n", " <th>Type</th>\n", " <th>i</th>\n", " <th>x</th>\n", " <th>y</th>\n", " <th>z</th>\n", " </tr>\n", " </thead>\n", " <tbody>\n", " <tr>\n", " <th>0</th>\n", " <td>1</td>\n", " <td>ALA</td>\n", " <td>N</td>\n", " <td>1</td>\n", " <td>0.943</td>\n", " <td>2.721</td>\n", " <td>3.690</td>\n", " </tr>\n", " <tr>\n", " <th>1</th>\n", " <td>1</td>\n", " <td>ALA</td>\n", " <td>H</td>\n", " <td>2</td>\n", " <td>1.019</td>\n", " <td>2.802</td>\n", " <td>3.646</td>\n", " </tr>\n", " <tr>\n", " <th>2</th>\n", " <td>1</td>\n", " <td>ALA</td>\n", " <td>H2</td>\n", " <td>3</td>\n", " <td>0.840</td>\n", " <td>2.775</td>\n", " <td>3.664</td>\n", " </tr>\n", " <tr>\n", " <th>3</th>\n", " <td>1</td>\n", " <td>ALA</td>\n", " <td>H3</td>\n", " <td>4</td>\n", " <td>0.971</td>\n", " <td>2.717</td>\n", " <td>3.806</td>\n", " </tr>\n", " <tr>\n", " <th>4</th>\n", " <td>1</td>\n", " <td>ALA</td>\n", " <td>CA</td>\n", " <td>5</td>\n", " <td>0.956</td>\n", " <td>2.591</td>\n", " <td>3.617</td>\n", " </tr>\n", " <tr>\n", " <th>5</th>\n", " <td>1</td>\n", " <td>ALA</td>\n", " <td>HA</td>\n", " <td>6</td>\n", " <td>0.924</td>\n", " <td>2.604</td>\n", " <td>3.503</td>\n", " </tr>\n", " <tr>\n", " <th>6</th>\n", " <td>1</td>\n", " <td>ALA</td>\n", " <td>C</td>\n", " <td>7</td>\n", " <td>0.877</td>\n", " <td>2.485</td>\n", " <td>3.693</td>\n", " </tr>\n", " <tr>\n", " <th>7</th>\n", " <td>1</td>\n", " <td>ALA</td>\n", " <td>O</td>\n", " <td>8</td>\n", " <td>0.927</td>\n", " <td>2.426</td>\n", " <td>3.789</td>\n", " </tr>\n", " <tr>\n", " <th>8</th>\n", " <td>1</td>\n", " <td>ALA</td>\n", " <td>CB</td>\n", " <td>9</td>\n", " <td>1.104</td>\n", " <td>2.550</td>\n", " <td>3.606</td>\n", " </tr>\n", " <tr>\n", " <th>9</th>\n", " <td>1</td>\n", " <td>ALA</td>\n", " <td>HB1</td>\n", " <td>10</td>\n", " <td>1.163</td>\n", " <td>2.608</td>\n", " <td>3.519</td>\n", " </tr>\n", " <tr>\n", " <th>10</th>\n", " <td>1</td>\n", " <td>ALA</td>\n", " <td>HB2</td>\n", " <td>11</td>\n", " <td>1.114</td>\n", " <td>2.435</td>\n", " <td>3.571</td>\n", " </tr>\n", " <tr>\n", " <th>11</th>\n", " <td>1</td>\n", " <td>ALA</td>\n", " <td>HB3</td>\n", " <td>12</td>\n", " <td>1.176</td>\n", " <td>2.558</td>\n", " <td>3.701</td>\n", " </tr>\n", " <tr>\n", " <th>12</th>\n", " <td>2</td>\n", " <td>GLY</td>\n", " <td>N</td>\n", " <td>13</td>\n", " <td>0.754</td>\n", " <td>2.461</td>\n", " <td>3.649</td>\n", " </tr>\n", " <tr>\n", " <th>13</th>\n", " <td>2</td>\n", " <td>GLY</td>\n", " <td>H</td>\n", " <td>14</td>\n", " <td>0.730</td>\n", " <td>2.460</td>\n", " <td>3.532</td>\n", " </tr>\n", " <tr>\n", " <th>14</th>\n", " <td>2</td>\n", " <td>GLY</td>\n", " <td>CA</td>\n", " <td>15</td>\n", " <td>0.668</td>\n", " <td>2.365</td>\n", " <td>3.715</td>\n", " </tr>\n", " <tr>\n", " <th>15</th>\n", " <td>2</td>\n", " <td>GLY</td>\n", " <td>HA2</td>\n", " <td>16</td>\n", " <td>0.587</td>\n", " <td>2.314</td>\n", " <td>3.644</td>\n", " </tr>\n", " <tr>\n", " <th>16</th>\n", " <td>2</td>\n", " <td>GLY</td>\n", " <td>HA3</td>\n", " <td>17</td>\n", " <td>0.723</td>\n", " <td>2.271</td>\n", " <td>3.764</td>\n", " </tr>\n", " <tr>\n", " <th>17</th>\n", " <td>2</td>\n", " <td>GLY</td>\n", " <td>C</td>\n", " <td>18</td>\n", " <td>0.585</td>\n", " <td>2.439</td>\n", " <td>3.818</td>\n", " </tr>\n", " <tr>\n", " <th>18</th>\n", " <td>2</td>\n", " <td>GLY</td>\n", " <td>O</td>\n", " <td>19</td>\n", " <td>0.518</td>\n", " <td>2.376</td>\n", " <td>3.899</td>\n", " </tr>\n", " <tr>\n", " <th>19</th>\n", " <td>3</td>\n", " <td>GLU</td>\n", " <td>N</td>\n", " <td>20</td>\n", " <td>0.591</td>\n", " <td>2.572</td>\n", " <td>3.814</td>\n", " </tr>\n", " <tr>\n", " <th>20</th>\n", " <td>3</td>\n", " <td>GLU</td>\n", " <td>H</td>\n", " <td>21</td>\n", " <td>0.592</td>\n", " <td>2.617</td>\n", " <td>3.704</td>\n", " </tr>\n", " <tr>\n", " <th>21</th>\n", " <td>3</td>\n", " <td>GLU</td>\n", " <td>CA</td>\n", " <td>22</td>\n", " <td>0.518</td>\n", " <td>2.659</td>\n", " <td>3.906</td>\n", " </tr>\n", " <tr>\n", " <th>22</th>\n", " <td>3</td>\n", " <td>GLU</td>\n", " <td>HA</td>\n", " <td>23</td>\n", " <td>0.461</td>\n", " <td>2.587</td>\n", " <td>3.982</td>\n", " </tr>\n", " <tr>\n", " <th>23</th>\n", " <td>3</td>\n", " <td>GLU</td>\n", " <td>C</td>\n", " <td>24</td>\n", " <td>0.409</td>\n", " <td>2.738</td>\n", " <td>3.835</td>\n", " </tr>\n", " <tr>\n", " <th>24</th>\n", " <td>3</td>\n", " <td>GLU</td>\n", " <td>O</td>\n", " <td>25</td>\n", " <td>0.407</td>\n", " <td>2.748</td>\n", " <td>3.712</td>\n", " </tr>\n", " <tr>\n", " <th>25</th>\n", " <td>3</td>\n", " <td>GLU</td>\n", " <td>CB</td>\n", " <td>26</td>\n", " <td>0.612</td>\n", " <td>2.762</td>\n", " <td>3.970</td>\n", " </tr>\n", " <tr>\n", " <th>26</th>\n", " <td>3</td>\n", " <td>GLU</td>\n", " <td>HB2</td>\n", " <td>27</td>\n", " <td>0.664</td>\n", " <td>2.822</td>\n", " <td>3.881</td>\n", " </tr>\n", " <tr>\n", " <th>27</th>\n", " <td>3</td>\n", " <td>GLU</td>\n", " <td>HB3</td>\n", " <td>28</td>\n", " <td>0.549</td>\n", " <td>2.834</td>\n", " <td>4.041</td>\n", " </tr>\n", " <tr>\n", " <th>28</th>\n", " <td>3</td>\n", " <td>GLU</td>\n", " <td>CG</td>\n", " <td>29</td>\n", " <td>0.714</td>\n", " <td>2.708</td>\n", " <td>4.069</td>\n", " </tr>\n", " <tr>\n", " <th>29</th>\n", " <td>3</td>\n", " <td>GLU</td>\n", " <td>HG2</td>\n", " <td>30</td>\n", " <td>0.809</td>\n", " <td>2.781</td>\n", " <td>4.060</td>\n", " </tr>\n", " <tr>\n", " <th>...</th>\n", " <td>...</td>\n", " <td>...</td>\n", " <td>...</td>\n", " <td>...</td>\n", " <td>...</td>\n", " <td>...</td>\n", " <td>...</td>\n", " </tr>\n", " <tr>\n", " <th>1705</th>\n", " <td>104</td>\n", " <td>PRO</td>\n", " <td>HG2</td>\n", " <td>1706</td>\n", " <td>3.084</td>\n", " <td>3.651</td>\n", " <td>3.611</td>\n", " </tr>\n", " <tr>\n", " <th>1706</th>\n", " <td>104</td>\n", " <td>PRO</td>\n", " <td>HG3</td>\n", " <td>1707</td>\n", " <td>3.165</td>\n", " <td>3.543</td>\n", " <td>3.735</td>\n", " </tr>\n", " <tr>\n", " <th>1707</th>\n", " <td>104</td>\n", " <td>PRO</td>\n", " <td>CD</td>\n", " <td>1708</td>\n", " <td>2.974</td>\n", " <td>3.632</td>\n", " <td>3.814</td>\n", " </tr>\n", " <tr>\n", " <th>1708</th>\n", " <td>104</td>\n", " <td>PRO</td>\n", " <td>HD2</td>\n", " <td>1709</td>\n", " <td>3.000</td>\n", " <td>3.576</td>\n", " <td>3.916</td>\n", " </tr>\n", " <tr>\n", " <th>1709</th>\n", " <td>104</td>\n", " <td>PRO</td>\n", " <td>HD3</td>\n", " <td>1710</td>\n", " <td>2.918</td>\n", " <td>3.547</td>\n", " <td>3.751</td>\n", " </tr>\n", " <tr>\n", " <th>1710</th>\n", " <td>105</td>\n", " <td>ASP</td>\n", " <td>N</td>\n", " <td>1711</td>\n", " <td>3.094</td>\n", " <td>4.076</td>\n", " <td>3.730</td>\n", " </tr>\n", " <tr>\n", " <th>1711</th>\n", " <td>105</td>\n", " <td>ASP</td>\n", " <td>H</td>\n", " <td>1712</td>\n", " <td>3.179</td>\n", " <td>4.100</td>\n", " <td>3.810</td>\n", " </tr>\n", " <tr>\n", " <th>1712</th>\n", " <td>105</td>\n", " <td>ASP</td>\n", " <td>CA</td>\n", " <td>1713</td>\n", " <td>3.074</td>\n", " <td>4.175</td>\n", " <td>3.624</td>\n", " </tr>\n", " <tr>\n", " <th>1713</th>\n", " <td>105</td>\n", " <td>ASP</td>\n", " <td>HA</td>\n", " <td>1714</td>\n", " <td>2.956</td>\n", " <td>4.187</td>\n", " <td>3.617</td>\n", " </tr>\n", " <tr>\n", " <th>1714</th>\n", " <td>105</td>\n", " <td>ASP</td>\n", " <td>C</td>\n", " <td>1715</td>\n", " <td>3.147</td>\n", " <td>4.134</td>\n", " <td>3.497</td>\n", " </tr>\n", " <tr>\n", " <th>1715</th>\n", " <td>105</td>\n", " <td>ASP</td>\n", " <td>O</td>\n", " <td>1716</td>\n", " <td>3.265</td>\n", " <td>4.102</td>\n", " <td>3.501</td>\n", " </tr>\n", " <tr>\n", " <th>1716</th>\n", " <td>105</td>\n", " <td>ASP</td>\n", " <td>CB</td>\n", " <td>1717</td>\n", " <td>3.120</td>\n", " <td>4.314</td>\n", " <td>3.667</td>\n", " </tr>\n", " <tr>\n", " <th>1717</th>\n", " <td>105</td>\n", " <td>ASP</td>\n", " <td>HB2</td>\n", " <td>1718</td>\n", " <td>3.082</td>\n", " <td>4.354</td>\n", " <td>3.773</td>\n", " </tr>\n", " <tr>\n", " <th>1718</th>\n", " <td>105</td>\n", " <td>ASP</td>\n", " <td>HB3</td>\n", " <td>1719</td>\n", " <td>3.238</td>\n", " <td>4.329</td>\n", " <td>3.675</td>\n", " </tr>\n", " <tr>\n", " <th>1719</th>\n", " <td>105</td>\n", " <td>ASP</td>\n", " <td>CG</td>\n", " <td>1720</td>\n", " <td>3.082</td>\n", " <td>4.422</td>\n", " <td>3.565</td>\n", " </tr>\n", " <tr>\n", " <th>1720</th>\n", " <td>105</td>\n", " <td>ASP</td>\n", " <td>OD1</td>\n", " <td>1721</td>\n", " <td>3.152</td>\n", " <td>4.435</td>\n", " <td>3.462</td>\n", " </tr>\n", " <tr>\n", " <th>1721</th>\n", " <td>105</td>\n", " <td>ASP</td>\n", " <td>OD2</td>\n", " <td>1722</td>\n", " <td>2.982</td>\n", " <td>4.493</td>\n", " <td>3.589</td>\n", " </tr>\n", " <tr>\n", " <th>1722</th>\n", " <td>106</td>\n", " <td>ASP</td>\n", " <td>N</td>\n", " <td>1723</td>\n", " <td>3.075</td>\n", " <td>4.133</td>\n", " <td>3.385</td>\n", " </tr>\n", " <tr>\n", " <th>1723</th>\n", " <td>106</td>\n", " <td>ASP</td>\n", " <td>H</td>\n", " <td>1724</td>\n", " <td>2.964</td>\n", " <td>4.171</td>\n", " <td>3.369</td>\n", " </tr>\n", " <tr>\n", " <th>1724</th>\n", " <td>106</td>\n", " <td>ASP</td>\n", " <td>CA</td>\n", " <td>1725</td>\n", " <td>3.135</td>\n", " <td>4.096</td>\n", " <td>3.258</td>\n", " </tr>\n", " <tr>\n", " <th>1725</th>\n", " <td>106</td>\n", " <td>ASP</td>\n", " <td>HA</td>\n", " <td>1726</td>\n", " <td>3.253</td>\n", " <td>4.078</td>\n", " <td>3.263</td>\n", " </tr>\n", " <tr>\n", " <th>1726</th>\n", " <td>106</td>\n", " <td>ASP</td>\n", " <td>C</td>\n", " <td>1727</td>\n", " <td>3.128</td>\n", " <td>4.214</td>\n", " <td>3.161</td>\n", " </tr>\n", " <tr>\n", " <th>1727</th>\n", " <td>106</td>\n", " <td>ASP</td>\n", " <td>O</td>\n", " <td>1728</td>\n", " <td>3.187</td>\n", " <td>4.318</td>\n", " <td>3.196</td>\n", " </tr>\n", " <tr>\n", " <th>1728</th>\n", " <td>106</td>\n", " <td>ASP</td>\n", " <td>CB</td>\n", " <td>1729</td>\n", " <td>3.066</td>\n", " <td>3.973</td>\n", " <td>3.198</td>\n", " </tr>\n", " <tr>\n", " <th>1729</th>\n", " <td>106</td>\n", " <td>ASP</td>\n", " <td>HB2</td>\n", " <td>1730</td>\n", " <td>2.954</td>\n", " <td>3.989</td>\n", " <td>3.159</td>\n", " </tr>\n", " <tr>\n", " <th>1730</th>\n", " <td>106</td>\n", " <td>ASP</td>\n", " <td>HB3</td>\n", " <td>1731</td>\n", " <td>3.070</td>\n", " <td>3.878</td>\n", " <td>3.270</td>\n", " </tr>\n", " <tr>\n", " <th>1731</th>\n", " <td>106</td>\n", " <td>ASP</td>\n", " <td>CG</td>\n", " <td>1732</td>\n", " <td>3.140</td>\n", " <td>3.917</td>\n", " <td>3.076</td>\n", " </tr>\n", " <tr>\n", " <th>1732</th>\n", " <td>106</td>\n", " <td>ASP</td>\n", " <td>OD1</td>\n", " <td>1733</td>\n", " <td>3.255</td>\n", " <td>3.960</td>\n", " <td>3.048</td>\n", " </tr>\n", " <tr>\n", " <th>1733</th>\n", " <td>106</td>\n", " <td>ASP</td>\n", " <td>OD2</td>\n", " <td>1734</td>\n", " <td>3.084</td>\n", " <td>3.827</td>\n", " <td>3.009</td>\n", " </tr>\n", " <tr>\n", " <th>1734</th>\n", " <td>106</td>\n", " <td>ASP</td>\n", " <td>OXT</td>\n", " <td>1735</td>\n", " <td>3.086</td>\n", " <td>4.199</td>\n", " <td>3.047</td>\n", " </tr>\n", " </tbody>\n", "</table>\n", "<p>1735 rows × 7 columns</p>\n", "</div>" ], "text/plain": [ " Res_id Res Type i x y z\n", "0 1 ALA N 1 0.943 2.721 3.690\n", "1 1 ALA H 2 1.019 2.802 3.646\n", "2 1 ALA H2 3 0.840 2.775 3.664\n", "3 1 ALA H3 4 0.971 2.717 3.806\n", "4 1 ALA CA 5 0.956 2.591 3.617\n", "5 1 ALA HA 6 0.924 2.604 3.503\n", "6 1 ALA C 7 0.877 2.485 3.693\n", "7 1 ALA O 8 0.927 2.426 3.789\n", "8 1 ALA CB 9 1.104 2.550 3.606\n", "9 1 ALA HB1 10 1.163 2.608 3.519\n", "10 1 ALA HB2 11 1.114 2.435 3.571\n", "11 1 ALA HB3 12 1.176 2.558 3.701\n", "12 2 GLY N 13 0.754 2.461 3.649\n", "13 2 GLY H 14 0.730 2.460 3.532\n", "14 2 GLY CA 15 0.668 2.365 3.715\n", "15 2 GLY HA2 16 0.587 2.314 3.644\n", "16 2 GLY HA3 17 0.723 2.271 3.764\n", "17 2 GLY C 18 0.585 2.439 3.818\n", "18 2 GLY O 19 0.518 2.376 3.899\n", "19 3 GLU N 20 0.591 2.572 3.814\n", "20 3 GLU H 21 0.592 2.617 3.704\n", "21 3 GLU CA 22 0.518 2.659 3.906\n", "22 3 GLU HA 23 0.461 2.587 3.982\n", "23 3 GLU C 24 0.409 2.738 3.835\n", "24 3 GLU O 25 0.407 2.748 3.712\n", "25 3 GLU CB 26 0.612 2.762 3.970\n", "26 3 GLU HB2 27 0.664 2.822 3.881\n", "27 3 GLU HB3 28 0.549 2.834 4.041\n", "28 3 GLU CG 29 0.714 2.708 4.069\n", "29 3 GLU HG2 30 0.809 2.781 4.060\n", "... ... ... ... ... ... ... ...\n", "1705 104 PRO HG2 1706 3.084 3.651 3.611\n", "1706 104 PRO HG3 1707 3.165 3.543 3.735\n", "1707 104 PRO CD 1708 2.974 3.632 3.814\n", "1708 104 PRO HD2 1709 3.000 3.576 3.916\n", "1709 104 PRO HD3 1710 2.918 3.547 3.751\n", "1710 105 ASP N 1711 3.094 4.076 3.730\n", "1711 105 ASP H 1712 3.179 4.100 3.810\n", "1712 105 ASP CA 1713 3.074 4.175 3.624\n", "1713 105 ASP HA 1714 2.956 4.187 3.617\n", "1714 105 ASP C 1715 3.147 4.134 3.497\n", "1715 105 ASP O 1716 3.265 4.102 3.501\n", "1716 105 ASP CB 1717 3.120 4.314 3.667\n", "1717 105 ASP HB2 1718 3.082 4.354 3.773\n", "1718 105 ASP HB3 1719 3.238 4.329 3.675\n", "1719 105 ASP CG 1720 3.082 4.422 3.565\n", "1720 105 ASP OD1 1721 3.152 4.435 3.462\n", "1721 105 ASP OD2 1722 2.982 4.493 3.589\n", "1722 106 ASP N 1723 3.075 4.133 3.385\n", "1723 106 ASP H 1724 2.964 4.171 3.369\n", "1724 106 ASP CA 1725 3.135 4.096 3.258\n", "1725 106 ASP HA 1726 3.253 4.078 3.263\n", "1726 106 ASP C 1727 3.128 4.214 3.161\n", "1727 106 ASP O 1728 3.187 4.318 3.196\n", "1728 106 ASP CB 1729 3.066 3.973 3.198\n", "1729 106 ASP HB2 1730 2.954 3.989 3.159\n", "1730 106 ASP HB3 1731 3.070 3.878 3.270\n", "1731 106 ASP CG 1732 3.140 3.917 3.076\n", "1732 106 ASP OD1 1733 3.255 3.960 3.048\n", "1733 106 ASP OD2 1734 3.084 3.827 3.009\n", "1734 106 ASP OXT 1735 3.086 4.199 3.047\n", "\n", "[1735 rows x 7 columns]" ] }, "execution_count": 3, "metadata": {}, "output_type": "execute_result" } ], "source": [ "frag" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [] } ], "metadata": { "kernelspec": { "display_name": "Python 3", "language": "python", "name": "python3" }, "language_info": { "codemirror_mode": { "name": "ipython", "version": 3 }, "file_extension": ".py", "mimetype": "text/x-python", "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", "version": "3.6.8" } }, "nbformat": 4, "nbformat_minor": 2 }
mit
pedrosiracusa/pedrosiracusa.github.io
_notebooks/construindo-redes-sociais-com-dados-de-colecoes-biologicas.ipynb
1
35306
{ "cells": [ { "cell_type": "markdown", "metadata": {}, "source": [ "# Construindo redes sociais com dados de coleções biológicas" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "Em um artigo anterior fiz uma breve caracterização das [redes sociais por trás do Herbário da UnB](https://medium.com/@pedrosiracusa/a-redes-sociais-por-tr%C3%A1s-do-herb%C3%A1rio-da-unb-e08980f049dc), mostrando uma nova perspectiva de aplicação para dados de coleções biológicas. Tal abordagem consiste em derivar interações sociais de colaboração entre coletores e caracterizar seus interesses taxonômicos a partir de registros de ocorrências de espécies, e incorpora conceitos e ferramentas vindos do campo de analítica de redes sociais.\n", "Tive a oportunidade de desenvolver estas ideias durante minha [pesquisa de mestrado](https://tede.lncc.br/handle/tede/279), que resultou na síntese de dois modelos baseados em redes: as **Redes Espécie-Coletor (SCN)**; e as **Redes de Colaboração de Coletores (CWNs)**. Caso você ainda não tenha ouvido falar nestes modelos, recomendo a leitura do meu [artigo de divulgação](https://medium.com/@pedrosiracusa/a-redes-sociais-por-tr%C3%A1s-do-herb%C3%A1rio-da-unb-e08980f049dc) antes de continuar." ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "Neste artigo demonstrarei o processo de construção destes modelos em 3 etapas, a partir de um conjunto de dados de ocorrência de espécies e usando a biblioteca [**Caryocar**](https://github.com/pedrosiracusa/caryocar/) (escrita na linguagem *Python*). Aqui usarei novamente o conjunto de [dados do Herbário da UnB](https://www.gbif.org/dataset/d82d5a18-0428-4e52-be16-f509153e8126) (sigla UB), que podem ser baixados através da plataforma GBIF." ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "Vamos começar importando as classes que implementam os modelos SCN e CWN:" ] }, { "cell_type": "code", "execution_count": 1, "metadata": { "tags": [ "remove_cell" ] }, "outputs": [], "source": [ "# este pedaço de código só é necessário para atualizar o PATH do Python\n", "import sys,os\n", "sys.path.insert(0,os.path.expanduser('~/Documents/caryocar'))" ] }, { "cell_type": "code", "execution_count": 2, "metadata": {}, "outputs": [], "source": [ "from caryocar.models import CWN, SCN" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "O pacote Caryocar também fornece algumas funções e classes auxiliares para realizar a limpeza dos dados." ] }, { "cell_type": "code", "execution_count": 3, "metadata": {}, "outputs": [], "source": [ "from caryocar.cleaning import NamesAtomizer, namesFromString\n", "from caryocar.cleaning import normalize, read_NamesMap_fromJson\n", "from caryocar.cleaning import getNamesIndexes" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Etapa 1. Leitura do conjunto de dados" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "O primeiro passo é ler o conjunto de dados de ocorrência de espécies.\n", "Para isso vamos extender as funcionalidades da linguagem *Python* usando uma biblioteca muito útil para a análise de dados: a [Pandas](https://pandas.pydata.org/).\n", "Com esta biblioteca, podemos carregar, transformar e analisar nosso conjunto de dados no ambiente de programação." ] }, { "cell_type": "code", "execution_count": 4, "metadata": {}, "outputs": [], "source": [ "import pandas as pd" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "Com a função `read_csv` do *Pandas*, carregaremos nossos dados que estão no arquivo CSV e os colocaremos na estrutura de um *Data Frame*, que é basicamente uma tabela.\n", "Esta função espera receber o nome do arquivo CSV que contém os dados, bem como uma lista com os nomes das colunas que estamos interessados em carregar.\n", "Especificarei o caminho para o arquivo na variável `dsetPath` e a lista das colunas de interesse em `cols`.\n", "O dataframe ficará armazenado na variável `occs_df`.\n", "Para deixar este artigo o mais simples possível usarei apenas os campos essenciais:\n", "* `recordedBy`: Armazena os nomes dos coletores responsáveis pelo registro. Caso haja mais que 1 coletor, os nomes são separados por ponto-e-vírgula;\n", "* `species`: Armazena o nome científico, a nível de espécie, determinado para o espécime em questão." ] }, { "cell_type": "code", "execution_count": 5, "metadata": {}, "outputs": [], "source": [ "dsetPath = '/home/pedro/datasets/ub_herbarium/occurrence.csv'\n", "cols = ['recordedBy','species']\n", "\n", "occs_df = pd.read_csv(dsetPath, sep='\\t', usecols=cols)" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "Vamos dar uma olhada no jeitão do dataframe. Para isso, vamos pedir as 10 primeira linhas apenas." ] }, { "cell_type": "code", "execution_count": 6, "metadata": {}, "outputs": [ { "data": { "text/html": [ "<div>\n", "<style scoped>\n", " .dataframe tbody tr th:only-of-type {\n", " vertical-align: middle;\n", " }\n", "\n", " .dataframe tbody tr th {\n", " vertical-align: top;\n", " }\n", "\n", " .dataframe thead th {\n", " text-align: right;\n", " }\n", "</style>\n", "<table border=\"1\" class=\"dataframe\">\n", " <thead>\n", " <tr style=\"text-align: right;\">\n", " <th></th>\n", " <th>species</th>\n", " <th>recordedBy</th>\n", " </tr>\n", " </thead>\n", " <tbody>\n", " <tr>\n", " <th>0</th>\n", " <td>Lychnophora pinaster</td>\n", " <td>Ferreira, VF</td>\n", " </tr>\n", " <tr>\n", " <th>1</th>\n", " <td>Lychnophora pinaster</td>\n", " <td>Ferreira, VF</td>\n", " </tr>\n", " <tr>\n", " <th>2</th>\n", " <td>Lychnophora pinaster</td>\n", " <td>Ferreira, VF</td>\n", " </tr>\n", " <tr>\n", " <th>3</th>\n", " <td>Lychnophora pinaster</td>\n", " <td>Irwin, HS</td>\n", " </tr>\n", " <tr>\n", " <th>4</th>\n", " <td>Arundo donax</td>\n", " <td>Gomes, SM; Silva, ALH</td>\n", " </tr>\n", " <tr>\n", " <th>5</th>\n", " <td>Arundo donax</td>\n", " <td>Gomes, SM; Silva, ALH</td>\n", " </tr>\n", " <tr>\n", " <th>6</th>\n", " <td>Terminalia fagifolia</td>\n", " <td>Viana, G</td>\n", " </tr>\n", " <tr>\n", " <th>7</th>\n", " <td>Dimorphandra mollis</td>\n", " <td>Heringer, EP</td>\n", " </tr>\n", " <tr>\n", " <th>8</th>\n", " <td>Dimorphandra mollis</td>\n", " <td>Heringer, EP</td>\n", " </tr>\n", " <tr>\n", " <th>9</th>\n", " <td>Caesalpinia echinata</td>\n", " <td>Heringer, EP</td>\n", " </tr>\n", " </tbody>\n", "</table>\n", "</div>" ], "text/plain": [ " species recordedBy\n", "0 Lychnophora pinaster Ferreira, VF\n", "1 Lychnophora pinaster Ferreira, VF\n", "2 Lychnophora pinaster Ferreira, VF\n", "3 Lychnophora pinaster Irwin, HS\n", "4 Arundo donax Gomes, SM; Silva, ALH\n", "5 Arundo donax Gomes, SM; Silva, ALH\n", "6 Terminalia fagifolia Viana, G\n", "7 Dimorphandra mollis Heringer, EP\n", "8 Dimorphandra mollis Heringer, EP\n", "9 Caesalpinia echinata Heringer, EP" ] }, "execution_count": 6, "metadata": {}, "output_type": "execute_result" } ], "source": [ "occs_df.head(10)" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "---" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Etapa 2: Limpeza dos dados" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "Antes de construir o modelo, precisamos fazer uma limpeza de dados para garantir que eles estejam no formato adequado para a construção dos modelos. \n", "O primeiro passo é filtrar os registros com elementos nulos (`NaN`) para cada um dos campos do dataframe. Um elemento nulo significa ausência de informação, e portanto não ajudará muito na construção dos nossos modelos.\n", "Vejamos o número de nulos em cada campo:" ] }, { "cell_type": "code", "execution_count": 7, "metadata": {}, "outputs": [ { "data": { "text/plain": [ "species 32711\n", "recordedBy 9\n", "dtype: int64" ] }, "execution_count": 7, "metadata": {}, "output_type": "execute_result" } ], "source": [ "occs_df.isnull().sum()" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "A informação de coletor está ausente em apenas 9 dos registros. Vamos simplesmente eliminá-los. Um outro ponto é que para simplificar nossa modelagem, vou apenas usar registros que tenham sido identificados ao nível de espécie. Isso significa que teremos que descartar 32711 registros, nos quais a informação sobre a identidade de espécie está ausente." ] }, { "cell_type": "code", "execution_count": 8, "metadata": {}, "outputs": [], "source": [ "occs_df.dropna(how='any', inplace=True)" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "Agora não temos mais nulos em nenhuma das colunas, e podemos prosseguir:" ] }, { "cell_type": "code", "execution_count": 9, "metadata": {}, "outputs": [ { "data": { "text/plain": [ "species 0\n", "recordedBy 0\n", "dtype: int64" ] }, "execution_count": 9, "metadata": {}, "output_type": "execute_result" } ], "source": [ "occs_df.isnull().sum()" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "### Atomização dos nomes de coletores" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "O campo de coletores (`recordedBy`) é fundamental para nossa modelagem, mas infelizmente costuma ser um pouco problemático.\n", "O primeiro problema é que os nomes dos coletores não são **atômicos**. Isso significa múltiplos nomes podem ser codificados em um mesmo valor (no caso, a lista de nomes é codificada como uma única *string*, sendo cada nome separado por um ponto-e-vígula). \n", "\n", "Segundo as recomendações do [*Biodiversity Information Standards (TDWG)*](https://www.tdwg.org/), nomes de coletores devem ser incluídos, em geral, usando a seguinte regra: sobrenome com a primeira letra maiúscula, seguido por vírgula e espaço e iniciais do nome em letras maiúsculas, separadas por pontos (ex. Proença, C.E.B.).\n", "Além disso, o TDWG recomenda que o separador utilizado para delimitar nomes de coletore deva ser o caractere pipe ( `|` ).\n", "No entanto, o caractere usado no dataset do UB é o ponto-e-vírgula.\n", "Isso não será um grande problema no nosso caso, já que neste dataset o ponto-e-vírgula é usado de forma consistente, em quase todos os registros." ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "Para proceder com a atomização dos nomes utilizaremos uma classe auxiliar, chamada `NamesAtomizer`. Criaremos o objeto atomizador e atribuiremos à variável `na`. Passaremos a função `namesFromString` que especifica as regras usadas para separar os nomes." ] }, { "cell_type": "code", "execution_count": 10, "metadata": {}, "outputs": [], "source": [ "na = NamesAtomizer(atomizeOp=namesFromString)" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "O atomizador de nomes resolve a grande maioria dos casos. Mas existem alguns poucos registros com erros na delimitação dos nomes. Neste caso a correção deve ser feita fazendo a substituição em cada registro pela sua forma correta.\n", "Para o dataset do UB, estas substituições estão especificadas no arquivo armazenado na variável `names_replaces_file`, abaixo:" ] }, { "cell_type": "code", "execution_count": 11, "metadata": {}, "outputs": [], "source": [ "names_replaces_file = '/home/pedro/data/ub_collectors_replaces.json'" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "Só por curiosidade, vejamos o conteúdo deste arquivo:" ] }, { "cell_type": "code", "execution_count": 12, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "{\r\n", " \"_replaces\": {\r\n", " \"Barbosa; M.G.\": \"Barbosa, M.G.\",\r\n", " \"Bueno; S.B.\": \"Bueno, S.B.\",\r\n", " \"Carboni, M; Faraco, AG; Soares; P.G.; Sampaio, D; Breier, TB\": \"Carboni, M; Faraco, AG; Soares, P.G.; Sampaio, D; Breier, TB\",\r\n", " \"Hatschbach, G; M.\": \"Hatschbach, G; Hatschbach, M\",\r\n", " \"Hällström; E.\": \"Hällström, E.\",\r\n", " \"Irwin, HS; Souza, R; Santos; RR\": \"Irwin, HS; Souza, R; Santos, RR\",\r\n", " \"Kirkbride Junior, JH; Ono; E.K.M; et al.\": \"Kirkbride Junior, JH; Ono, E.K.M; et al.\",\r\n", " \"Quintiliano; F.J.; Colvéquia; L.P.T; Silva; D.R.\": \"Quintiliano, F.J.; Colvéquia, L.P.T; Silva, D.R.\",\r\n", " \"Silva; D.R.; Colvéquia; L.P.T\": \"Silva, D.R.; Colvéquia, L.P.T\",\r\n", " \"Sr. Air, Sr. Milton, Rodrigo\": \"Sr. Air; Sr. Milton; Rodrigo\",\r\n", " \"Sônia / Josefina\": \"Sônia; Josefina\",\r\n", " \"Yushun.; K.\": \"Yushun., K.\"\r\n", " }\r\n", "}" ] } ], "source": [ "! cat {names_replaces_file}" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "Prosseguindo com a substituição:" ] }, { "cell_type": "code", "execution_count": 13, "metadata": {}, "outputs": [], "source": [ "na.read_replaces(names_replaces_file)" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "Agora, com o auxílio do atomizador de nomes, vamos adicionar uma nova coluna ao dataframe, contendo os nomes dos coletores atomizados. Ela se chamará `recordedBy_atomized`:" ] }, { "cell_type": "code", "execution_count": 14, "metadata": {}, "outputs": [], "source": [ "occs_df['recordedBy_atomized'] = na.atomize(occs_df['recordedBy'])" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "### Normalização e mapeamento de nomes" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "Um segundo problema é que nomes de coletores podem ter sido escritos de algumas formas diferentes, seja por conta de erros ou omissão de partes do nome.\n", "Por exemplo, o nome 'Proença, C.E.B.' pode ter alguns variantes, incluindo 'Proenca, C.E.B,', 'Proença, C.E.', Proença, C.'.\n", "Precisamos pensar em uma forma para ligar todas essas variantes a um nome principal.\n", "\n", "A solução para este problema até o momento é armazenar um mapa ligando cada variante a uma forma normal do nome. O processo de **normalização** inclui a transformação do nome para uma forma simplificada. Isso significa que só usaremos caracteres em caixa-baixo, omitiremos acentos e pontuações, e removeremos caracteres não-alfanuméricos. \n", "No exemplo citado acima, todos os nomes seriam mapeados para 'proenca,ceb'." ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "Para o conjunto de dados do UB, já tenho um mapa de nomes pronto, guardado no seguinte arquivo:" ] }, { "cell_type": "code", "execution_count": 15, "metadata": {}, "outputs": [], "source": [ "namesMap_file = '/home/pedro/data/ub_namesmap.json'" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "Este arquivo é grande, mas vamos ver as 20 primeiras linhas para termos uma ideia:" ] }, { "cell_type": "code", "execution_count": 16, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "{\r\n", " \"_map_prim_norm\": {\r\n", " \".\": \"\",\r\n", " \"1980 Sino-Amer Exped.\": \"sinoamerexped\",\r\n", " \"?\": \"\",\r\n", " \"A.J.N.V.\": \"ajnv\",\r\n", " \"A.M.\": \"am\",\r\n", " \"Abbas, B\": \"abbas,b\",\r\n", " \"Abdala, GC\": \"abdala,gc\",\r\n", " \"Abdo, MSA\": \"abdo,msa\",\r\n", " \"Abdon\": \"abdon\",\r\n", " \"Abe, LB\": \"abe,lb\",\r\n", " \"Abe, LM\": \"abe,lm\",\r\n", " \"Abrahim, MA\": \"abrahim,ma\",\r\n", " \"Abreu, CG\": \"abreu,cg\",\r\n", " \"Abreu, GX\": \"abreu,gx\",\r\n", " \"Abreu, I\": \"abreu,i\",\r\n", " \"Abreu, LC\": \"abreu,lc\",\r\n", " \"Abreu, LCR\": \"abreu,lcr\",\r\n", " \"Abreu, M\": \"abreu,m\",\r\n" ] } ], "source": [ "! head {namesMap_file} -n 20" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "Note que alguns nomes de coletores que não eram nulos porêm remetem à falta da informação (por exemplo '.', '?') são mapeados para uma *string* vazia. Mais tarde iremos filtrar estes nomes." ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "Vamos agora ler o mapa de nomes do arquivo e armazená-lo na variável `nm`." ] }, { "cell_type": "code", "execution_count": 17, "metadata": {}, "outputs": [], "source": [ "nm = read_NamesMap_fromJson(namesMap_file, normalizationFunc=normalize)" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "Caso haja nomes de coletores que não estão no arquivo, vamos nos assegurar de que eles serão inseridos:" ] }, { "cell_type": "code", "execution_count": 18, "metadata": {}, "outputs": [], "source": [ "collectors_names = list(set( n for n,st,num in na.getCachedNames() ))\n", "nm.addNames(collectors_names)" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "Assim, este mapa nos permite buscar, para cada variante do nome, sua forma normal:" ] }, { "cell_type": "code", "execution_count": 19, "metadata": {}, "outputs": [ { "data": { "text/plain": [ "'proenca,ceb'" ] }, "execution_count": 19, "metadata": {}, "output_type": "execute_result" } ], "source": [ "nm.getMap()['Proença, CEB']" ] }, { "cell_type": "code", "execution_count": 20, "metadata": {}, "outputs": [ { "data": { "text/plain": [ "'proenca,ceb'" ] }, "execution_count": 20, "metadata": {}, "output_type": "execute_result" } ], "source": [ "nm.getMap()['Proença, C']" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "A figura abaixo ilustra as etapas envolvidas no preprocessamento do campo dos coletores, conforme descrito." ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "![preprocessing_diagram](../assets/img/posts/preprocessing_diagram.jpg){:width=\"700px\"}" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "### O índice de nomes" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "Finalmente, vamos construir um índice de nomes, apenas para mantermos a referência de quais linhas do dataframe cada coletor aparece. Para isso usaremos a função `getNamesIndexes`. Precisamos informar o nome do dataframe, o nome da coluna que armazena os nomes atomizados e o mapa de nomes. Mas enfatizo que este passo não é necessário para a construção dos modelos (apesar de ser útil para algumas análises)." ] }, { "cell_type": "code", "execution_count": 21, "metadata": {}, "outputs": [], "source": [ "ni = getNamesIndexes(occs_df,'recordedBy_atomized', namesMap=nm.getMap())" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "---" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Etapa 3: Construindo os modelos" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "Chegamos na etapa que realmente interessa. Já temos um dataframe com os dados minimamente limpos e estruturados, e podemos então construir os modelos!" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Rede Espécie-Coletor (SCN)" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "Redes espécie-coletor modelam relações de interesse, envolvendo necessariamente um **coletor** e uma **espécie**. A semântica destas relações pode ser descrita como `coletor -[registra]-> espécie` ou, por outro lado, `espécie-[é registrada por]-> coletor`. A figura abaixo exemplifica esta estrutura (a).\n", "\n", "Como o modelo envolve duas classes de entidades (coletores e espécies), existem duas perspectivas adicionais que podem ser exploradas: Podemos investigar o quão fortemente dois coletores estão associados entre si em termos de seus interesses em comum (b); bem como quão fortemente duas espécies estão associadas entre si em termos do conjunto de coletores que as registram (c).\n", "\n", "Nos referimos às perspectivas (b) e (c) como **projeções** da rede (a). Estas projeções são obtidas simplesmente ligando entidades da mesma classe tomando como base o número de entidades da classe oposta que eles compartilham, na estrutura (a)." ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "![scn](../assets/img/posts/scn.jpg){:width=\"500px\"}" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "Vamos então ao código. Construiremos a rede espécie-coletor usando a classe `SCN`, disponível no pacote Caryocar. Para sua construção, devemos fornecer:\n", "* Uma lista de espécies, neste caso a coluna do dataframe `occs_df['species']`;\n", "* Uma lista contendo listas de coletores, neste caso a coluna do dataframe `occs_df['recordedBy_atomized']`;\n", "* Um mapa de nomes." ] }, { "cell_type": "code", "execution_count": 22, "metadata": {}, "outputs": [], "source": [ "scn = SCN(species=occs_df['species'], collectors=occs_df['recordedBy_atomized'], namesMap=nm)" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "Após a construção do modelo, vamos remover nomes de coletores indevidos, como 'etal', 'ilegivel', 'incognito'." ] }, { "cell_type": "code", "execution_count": 23, "metadata": {}, "outputs": [], "source": [ "cols_to_filter = ['','ignorado','ilegivel','incognito','etal']\n", "scn.remove_nodes_from(cols_to_filter)" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "Vejamos então um pequeno resumo sobre esta rede. Este pedaço de código pode ser um pouco feio, mas o que importa mesmo aqui são as informações imprimidas abaixo dele." ] }, { "cell_type": "code", "execution_count": 24, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "Rede Espécie-Coletor (SCN)\n", "==========================\n", "Número total de coletores:6795\n", "Número total de espécies: 15374\n", "Em média, um coletor registra 21 espécies distintas\n", "Em média, uma espécie é registrada por 9 coletores distintos\n", "Número total de arestas: 143861\n", "\n", "Top-10 coletores mais produtivos:\n", " irwin,hs (4557 especies distintas)\n", " heringer,ep (2595 especies distintas)\n", " anderson,wr (2163 especies distintas)\n", " proenca,ceb (1906 especies distintas)\n", " ratter,ja (1805 especies distintas)\n", " faria,jeq (1764 especies distintas)\n", " eiten,g (1598 especies distintas)\n", " souza,rr (1555 especies distintas)\n", " harley,rm (1514 especies distintas)\n", " santos,rrb (1510 especies distintas)\n", "\n", "Top-10 espécies coletadas:\n", " Myrcia splendens (388 coletores distintos)\n", " Myrcia guianensis (318 coletores distintos)\n", " Eugenia punicifolia (264 coletores distintos)\n", " Casearia sylvestris (258 coletores distintos)\n", " Palicourea rigida (241 coletores distintos)\n", " Myrcia tomentosa (239 coletores distintos)\n", " Qualea parviflora (232 coletores distintos)\n", " Solanum lycocarpum (228 coletores distintos)\n", " Piper aduncum (211 coletores distintos)\n", " Miconia albicans (201 coletores distintos)\n" ] } ], "source": [ "n_cols = len(scn.listCollectorsNodes())\n", "cols_degrees = scn.degree(scn.listCollectorsNodes())\n", "n_spp = len(scn.listSpeciesNodes())\n", "spp_degrees = scn.degree(scn.listSpeciesNodes())\n", "\n", "print(\n", "f\"\"\"Rede Espécie-Coletor (SCN)\n", "==========================\n", "Número total de coletores:{n_cols}\n", "Número total de espécies: {n_spp}\n", "Em média, um coletor registra {round( sum( k for n,k in cols_degrees)/n_cols)} espécies distintas\n", "Em média, uma espécie é registrada por {round( sum( k for n,k in spp_degrees)/n_spp)} coletores distintos\n", "Número total de arestas: {len(scn.edges)}\\n\"\"\")\n", "print(\"Top-10 coletores mais produtivos:\")\n", "for n,k in sorted(cols_degrees,key=lambda x:x[1],reverse=True)[:10]:\n", " print(f\" {n} ({k} especies distintas)\")\n", "print(\"\\nTop-10 espécies coletadas:\")\n", "for n,k in sorted(spp_degrees,key=lambda x:x[1],reverse=True)[:10]:\n", " print(f\" {n} ({k} coletores distintos)\")" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "Um aspecto interessante a ser notado é a distribuição de grau (número de conexões de um vértice) nesta rede.\n", "Embora em média um coletor registre 21 espécies diferentes, os coletores mais produtivos registraram mais de 1000!\n", "De forma simlar, embora em média uma espécie seja registrada por 9 coletores distintos, as primeiras 10 foram registradas por mais de 200 coletores cada.\n", "Embora esteja fora do escopo deste artigo, é fácil mostrar que a distribuição desta rede está longe de ser normal. Na verdade, é aproximada por uma lei de potência." ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "Isso significa que enquanto uma grande maioria de coletores registra pouquíssimas espécies diferentes, alguns poucos (chamados *hubs*, ou coletores-chave) registram um número muito acima da média.\n", "De forma análoga enquanto uma grande maioria de espécies foi coletadas por apenas um ou poucos coletores diferentes, algumas poucas foram coletadas por um grande número de coletores distintos." ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Rede de Colaboração de Coletores (CWN)" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "Redes de colaboração de coletores (CWNs), como o nome sugere, modelam relações de colaboração que se estabelecem entre coletores enquanto registram espécies em campo. Uma ligação entre pares de coletores é criada ou fortalecida cada vez que eles co-autoram um registro de espécie. Sendo assim, a semântica destas relações é descrita como `coletor -[coleta espécime com]-> coletor`. A figura abaixo ilustra a estrutura destas redes. É importante notar que, diferente das SCNs, nas CWNs a identidade taxonômica de cada registro não é representada em sua estrutura. Coletores que nunca colaboraram aparecem como vértices isolados na rede." ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "![cwn](../assets/img/posts/cwn.jpg){:width=\"300px\"}" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "O pacote Caryocar também fornece a classe `SCN`, que facilita a construção de redes de colaboração de coletores. Para sua construção, devemos fornecer:\n", "\n", "* Uma lista contendo listas de coletores (cliques), neste caso a coluna do dataframe `occs_df['recordedBy_atomized']`;\n", "* Um mapa de nomes." ] }, { "cell_type": "code", "execution_count": 25, "metadata": {}, "outputs": [], "source": [ "cwn = CWN(cliques=occs_df['recordedBy_atomized'],namesMap=nm)" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "Assim como fizemos com a SCN, vamos remover nomes de coletores indevidos" ] }, { "cell_type": "code", "execution_count": 26, "metadata": {}, "outputs": [], "source": [ "cols_to_filter = ['','ignorado','ilegivel','incognito','etal']\n", "cwn.remove_nodes_from(cols_to_filter)" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "Vejamos um resumo sobre a rede:" ] }, { "cell_type": "code", "execution_count": 27, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "Rede de Colaboração de Coletores (CWN)\n", "======================================\n", "Número total de coletores:6795\n", "Número total de arestas: 10435\n", "Em média, um coletor colabora com 3 pares ao longo de sua carreira\n", "No total 2684 coletores nunca colaboraram\n", "No total, 1578 coletores colaboraram com mais que 3 colegas\n", "\n", "Top-10 coletores mais colaborativos:\n", " proenca,ceb (219 colegas)\n", " faria,jeq (119 colegas)\n", " ratter,ja (111 colegas)\n", " munhoz,cbr (109 colegas)\n", " silva,ma (93 colegas)\n", " oliveira,rc (92 colegas)\n", " harley,rm (90 colegas)\n", " mendes,vc (89 colegas)\n", " souza,vc (89 colegas)\n", " carvalho,avm (88 colegas)\n", "\n", "Top-10 coletores sem colaborações com maior número de registros:\n", " leite,alta (2094 registros, 0 colaborações)\n", " touw,a (375 registros, 0 colaborações)\n", " schiffner,v (283 registros, 0 colaborações)\n", " oliveira,e (258 registros, 0 colaborações)\n", " coelho,gsf (227 registros, 0 colaborações)\n", " rocha,mal (162 registros, 0 colaborações)\n", " aquino,ppu (155 registros, 0 colaborações)\n", " pinto,rnm (144 registros, 0 colaborações)\n", " silva,nf (133 registros, 0 colaborações)\n", " rios,mns (133 registros, 0 colaborações)\n" ] } ], "source": [ "n_cols = len(cwn.nodes)\n", "cols_degrees = cwn.degree()\n", "\n", "print(\n", "f\"\"\"Rede de Colaboração de Coletores (CWN)\n", "======================================\n", "Número total de coletores:{n_cols}\n", "Número total de arestas: {len(cwn.edges)}\n", "Em média, um coletor colabora com {round( sum(k for n,k in cols_degrees)/n_cols )} pares ao longo de sua carreira\n", "No total {len([ n for n,k in cols_degrees if k==0 ])} coletores nunca colaboraram\n", "No total, {len([ n for n,k in cols_degrees if k>3 ])} coletores colaboraram com mais que 3 colegas\\n\"\"\")\n", "print(\"Top-10 coletores mais colaborativos:\")\n", "for n,k in sorted(cols_degrees,key=lambda x:x[1],reverse=True)[:10]:\n", " print(f\" {n} ({k} colegas)\")\n", " \n", "print(\"\\nTop-10 coletores sem colaborações com maior número de registros:\") \n", "for n,k, in sorted([ (n,d['count']) for n,d in cwn.nodes(data=True) if cwn.degree(n)==0 ],key=lambda x: x[1], reverse=True)[:10]:\n", " print(f\" {n} ({cwn.nodes[n]['count']} registros, 0 colaborações)\")" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Considerações finais" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "Meu objetivo neste artigo foi demonstrar o processo de construção dos modelos SCN e CWN a partir de um conjunto de dados de ocorrência de espécies, usando o pacote Caryocar.\n", "Mostrei também como proceder com a limpeza dos dados de ocorrência de espécies, fazendo todas as transformações necessárias para que o conjunto de dados torne-se adequado para a modelagem.\n", "\n", "Um ponto a ser ressaltado é sobre a importância em se verificar a qualidade do campo do coletor, normalmente subutilizado na maioria das aplicações de dados de coleções biológicas.\n", "Dentre os problemas mais comuns estão a inclusão apenas do coletor principal (sendo os coletores auxiliares omitidos ou agrupados no nome 'et. al'), o não-cumprimento dos padrões recomendados para a escrita dos nomes, e a ausência de identificadores únicos para a distinção dos coletores.\n", "De forma geral, estes fatores são a maior limitação para a construção dos modelos.\n", "A alta qualidade deste campo no conjunto de dados do herbário da UnB foi um dos fatores decisivos para que fosse escolhido como prova de conceito.\n", "\n", "Os modelos SCN e CWN permitem investigar o aspecto humano envolvido na formação de coleções biológicas, e portanto abrem portas para novos tipos de análises e aplicações para dados de ocorrência de espécies.\n", "Pretendo explorar e demonstrar algumas dessas possibilidades em artigos futuros." ] } ], "metadata": { "kernelspec": { "display_name": "Python 3", "language": "python", "name": "python3" }, "language_info": { "codemirror_mode": { "name": "ipython", "version": 3 }, "file_extension": ".py", "mimetype": "text/x-python", "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", "version": "3.6.5" } }, "nbformat": 4, "nbformat_minor": 2 }
mit
jepayne/NYU
Projects/MacroFin/.ipynb_checkpoints/Ode exampls-checkpoint.ipynb
1
10757
{ "metadata": { "name": "", "signature": "sha256:bd0f732389fb994cb8cdb666fe789df546411d4009b6edbb0289d6330d9a3871" }, "nbformat": 3, "nbformat_minor": 0, "worksheets": [ { "cells": [ { "cell_type": "heading", "level": 1, "metadata": {}, "source": [ "Examples of python ode solvers" ] }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Event locations" ] }, { "cell_type": "code", "collapsed": false, "input": [ "def odelay(func, y0, xspan, events, TOLERANCE = 1e-6, fsolve_args=None, **kwargs):\n", " '''Solve an ODE with events.\n", " func is callable, with signature func(Y, x)\n", " y0 are the initial conditions xspan is what you want to integrate\n", " over\n", " events is a list of callable functions with signature event(Y, x).\n", " These functions return zero when an event has happened.\n", " TOLERANCE is what is used to identify when an event has occurred.\n", " \n", " [value, isterminal, direction] = event(Y, x)\n", " value is the value of the event function. When value = 0, an event\n", " is triggered\n", " isterminal = True if the integration is to terminate at a zero of\n", " this event function, otherwise, False.\n", " direction = 0 if all zeros are to be located (the default), +1\n", " if only zeros where the event function is increasing, and -1 if\n", " only zeros where the event function is decreasing.\n", " fsolve_args is a dictionary of options for fsolve\n", " \n", " kwargs are any additional options you want to send to odeint.\n", " Returns [x, y, te, ye, ie]\n", " x is the independent variable array\n", " y is the solution\n", " te is an array of independent variable values where events occurred\n", " ye is an array of the solution at the points where events occurred\n", " ie is an array of indices indicating which event function occurred.\n", " '''\n", " if 'full_output' in kwargs:\n", " raise Exception('full_output not supported as an option')\n", "\n", " if fsolve_args is None:\n", " fsolve_args = {}\n", "\n", " x0 = xspan[0] # initial point\n", "\n", " X = [x0]\n", " sol = [y0]\n", " TE, YE, IE = [], [], [] # to store where events occur\n", " \n", " # initial value of events\n", " e = np.zeros((len(events), len(xspan)))\n", " for i,event in enumerate(events):\n", " e[i,0], isterminal, direction = event(y0, x0)\n", "\n", " # now we step through the integration\n", " for i, x1 in enumerate(xspan[0:-1]):\n", " x2 = xspan[i + 1]\n", " f1 = sol[i]\n", "\n", " f2 = odeint(func, f1, [x1, x2], **kwargs)\n", " \n", " X += [x2]\n", " sol += [f2[-1,:]]\n", "\n", " # check event functions. At each step we compute the event\n", " # functions, and check if they have changed sign since the\n", " # last step. If they changed sign, it implies a zero was\n", " # crossed. \n", " for j, event in enumerate(events):\n", " e[j, i + 1], isterminal, direction = event(sol[i + 1], X[i + 1])\n", " \n", " if ((e[j, i + 1] * e[j, i] < 0) # sign change in\n", " # event means zero\n", " # crossing\n", " or np.abs(e[j, i + 1]) < TOLERANCE # this point is\n", " # practically 0\n", " or np.abs(e[j, i]) < TOLERANCE):\n", "\n", " xLt = X[-1] # Last point\n", " fLt = sol[-1]\n", " eLt = e[j, i+1]\n", "\n", " # we need to find a value of x that makes the event zero\n", " def objective(x):\n", " # evaluate ode from xLT to x\n", " txspan = [xLt, x]\n", " tempsol = odeint(func, fLt, txspan, **kwargs)\n", " sol = tempsol[-1, :]\n", " val, isterminal, direction = event(sol, x)\n", " return val\n", "\n", " from scipy.optimize import fsolve\n", " xZ, = fsolve(objective, xLt, **fsolve_args) # this should be the\n", " # value of x that makes\n", " # the event zero\n", "\n", " # now evaluate solution at this point, so we can\n", " # record the function values here.\n", " txspan = [xLt, xZ]\n", " tempsol = odeint(func, fLt, txspan, **kwargs)\n", " fZ = tempsol[-1,:]\n", "\n", " vZ, isterminal, direction = event(fZ, xZ)\n", "\n", " COLLECTEVENT = False\n", " if direction == 0:\n", " COLLECTEVENT = True\n", " elif (e[j, i + 1] > e[j, i] ) and direction == 1:\n", " COLLECTEVENT = True\n", " elif (e[j, i + 1] < e[j, i] ) and direction == -1:\n", " COLLECTEVENT = True\n", " \n", " if COLLECTEVENT:\n", " TE.append(xZ)\n", " YE.append(fZ)\n", " IE.append(j)\n", "\n", " if isterminal:\n", " X[-1] = xZ\n", " sol[-1] = fZ\n", " return (np.array(X), \n", " np.array(sol), \n", " np.array(TE), \n", " np.array(YE), \n", " np.array(IE))\n", "\n", " # at the end, return what we have\n", " return (np.array(X), \n", " np.array(sol), \n", " np.array(TE), \n", " np.array(YE), \n", " np.array(IE))" ], "language": "python", "metadata": {}, "outputs": [], "prompt_number": 1 }, { "cell_type": "code", "collapsed": false, "input": [ "from pycse import *\n", "import numpy as np\n", "\n", "def myode(f, x):\n", " return 3*x**2 + 12*x -4\n", "\n", "def event1(f, x):\n", " 'an event is when f = 0 and event is decreasing'\n", " isterminal = True\n", " direction = -1\n", " return f, isterminal, direction\n", "\n", "def event2(f, x):\n", " 'an event is when f = 0 and increasing'\n", " isterminal = False\n", " direction = 1\n", " return f, isterminal, direction\n", "\n", "f0 = -120\n", "\n", "xspan = np.linspace(-8, 4)\n", "X, F, TE, YE, IE = odelay(myode, f0, xspan, events=[event1, event2])\n", "\n", "import matplotlib.pyplot as plt\n", "plt.plot(X, F, '.-')\n", "\n", "# plot the event locations.use a different color for each event\n", "colors = 'rg'\n", "\n", "for x,y,i in zip(TE, YE, IE):\n", " plt.plot([x], [y], 'o', color=colors[i])\n", "\n", "plt.savefig('images/event-ode-2.png')\n", "plt.show()\n", "print TE, YE, IE" ], "language": "python", "metadata": {}, "outputs": [ { "ename": "SyntaxError", "evalue": "invalid syntax (<ipython-input-5-74ebeff03583>, line 35)", "output_type": "pyerr", "traceback": [ "\u001b[0;36m File \u001b[0;32m\"<ipython-input-5-74ebeff03583>\"\u001b[0;36m, line \u001b[0;32m35\u001b[0m\n\u001b[0;31m print TE, YE, IE\u001b[0m\n\u001b[0m ^\u001b[0m\n\u001b[0;31mSyntaxError\u001b[0m\u001b[0;31m:\u001b[0m invalid syntax\n" ] } ], "prompt_number": 5 }, { "cell_type": "code", "collapsed": false, "input": [ "import numpy as np\n", "from scipy.integrate import odeint\n", "\n", "def dCadt(Ca, t):\n", " \"the ode function\"\n", " k = 0.23\n", " return -k * Ca**2\n", "\n", "Ca0 = 2.3\n", "\n", "# create lists to store time span and solution\n", "tspan = [0, ]\n", "sol = [Ca0,]\n", "i = 0\n", "\n", "while i < 100: # take max of 100 steps\n", " t1 = tspan[i]\n", " Ca = sol[i]\n", "\n", " # pick the next time using a Newton-Raphson method\n", " # we want f(t, Ca) = (Ca(t) - 1)**2 = 0\n", " # df/dt = df/dCa dCa/dt\n", " # = 2*(Ca - 1) * dCadt\n", " t2 = t1 - (Ca - 1.0)**2 / (2 * (Ca - 1) *dCadt(Ca, t1))\n", "\n", " f = odeint(dCadt, Ca, [t1, t2])\n", "\n", " if np.abs(Ca - 1.0) <= 1e-4:\n", " print 'Solution reached at i = {0}'.format(i)\n", " break\n", "\n", " tspan += [t2]\n", " sol.append(f[-1][0])\n", " i += 1\n", "\n", "print 'At t={0:1.2f} Ca = {1:1.3f}'.format(tspan[-1], sol[-1])\n", "\n", "import matplotlib.pyplot as plt\n", "plt.plot(tspan, sol, 'bo')\n", "plt.show()" ], "language": "python", "metadata": {}, "outputs": [ { "ename": "SyntaxError", "evalue": "invalid syntax (<ipython-input-6-0d9915ffb09e>, line 29)", "output_type": "pyerr", "traceback": [ "\u001b[0;36m File \u001b[0;32m\"<ipython-input-6-0d9915ffb09e>\"\u001b[0;36m, line \u001b[0;32m29\u001b[0m\n\u001b[0;31m print 'Solution reached at i = {0}'.format(i)\u001b[0m\n\u001b[0m ^\u001b[0m\n\u001b[0;31mSyntaxError\u001b[0m\u001b[0;31m:\u001b[0m invalid syntax\n" ] } ], "prompt_number": 6 }, { "cell_type": "code", "collapsed": false, "input": [], "language": "python", "metadata": {}, "outputs": [] } ], "metadata": {} } ] }
mit
cloudera/ibis
docs/source/tutorial/03-Expressions-Lazy-Mode-Logging.ipynb
1
177179
{ "cells": [ { "cell_type": "markdown", "metadata": {}, "source": [ "# Expressions, lazy mode and logging queries\n", "\n", "So far, we have seen Ibis in interactive mode. Interactive mode (also known as eager mode) makes Ibis return the\n", "results of an operation immediately.\n", "\n", "In most cases, instead of using interactive mode, it makes more sense to use the default lazy mode.\n", "In lazy mode, Ibis won't be executing the operations automatically, but instead, will generate an\n", "expression to be executed at a later time.\n", "\n", "Let's see this in practice, starting with the same example as in previous tutorials - the geography database." ] }, { "cell_type": "code", "execution_count": 1, "metadata": {}, "outputs": [], "source": [ "import os\n", "import ibis\n", "\n", "\n", "connection = ibis.sqlite.connect(os.path.join('data', 'geography.db'))\n", "countries = connection.table('countries')" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "In previous tutorials, we set interactive mode to `True`, and we obtained the result\n", "of every operation." ] }, { "cell_type": "code", "execution_count": 2, "metadata": {}, "outputs": [ { "data": { "text/plain": [ " name continent population\n", "0 Andorra EU 84000\n", "1 United Arab Emirates AS 4975593\n", "2 Afghanistan AS 29121286" ] }, "execution_count": 2, "metadata": {}, "output_type": "execute_result" } ], "source": [ "ibis.options.interactive = True\n", "\n", "countries['name', 'continent', 'population'].limit(3)" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "But now let's see what happens if we leave the `interactive` option to `False` (the default),\n", "and we operate in lazy mode." ] }, { "cell_type": "code", "execution_count": 3, "metadata": {}, "outputs": [ { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAARQAAAHbCAYAAAAKzmUYAAAABmJLR0QA/wD/AP+gvaeTAAAgAElEQVR4nOyde1xU5fb/P5thmuEmIIiAKOCF5KKieUVLRV/qEfOkcpCu3i1PZhl+KS91SE8e66THLkYnrXyZKGqGR0UhEgNJECXIVIRUQAhRULkNDMNl/f7gNzu2MwMzuAcGfN6v17zEZ6+99nr2zKxZ+3me/dkcEREYDAZDBMw6OwAGg9F9YAmFwWCIBksoDAZDNMzFdlhUVISzZ8+K7ZbBYIhMQEAA3NzcxHVKInPgwAECwF7sxV4m/jpw4IDYX38SvUJRQ2zyiMEwWTiOM4pfNobCYDBEgyUUBoMhGl06ocTFxYHjOHAch+3bt5u8Xwaju2MyCcXZ2Rkcx8HPz6+zQ2EwGO3EZBJKV+TIkSN8JfPFF190djgMRqdjtFmejmDGjBlGmU0yll8Go7vDKhQGgyEaXTKhWFtb85caugZPU1JSwHEcJk2ahBdffBGWlpZ48sknkZKSAn9/f9jY2CA4OBgKhcIgvwAgl8vBcRzmzJnDt61YsYLfx9ra2nidZzBMmC59yaMPKSkpaGxs5P+ePHkyGhoaAACHDx9GYGAg/v73v3dmiAxGt6FLVijV1dUgIpw8ebJN28bGRmRmZuK1114DAJibm+OPP/7ArFmzAACZmZkG+1UqlSAixMTE8G2RkZEgIhARqqur29MtBqPL0yUTiiFwHIdhw4ZhxIgRAAA3Nze4urry09NlZWWdGR6D0a3o9gnFzMwMHMfB3Lz56k4ikQj+raur67TYGIzuRrdPKG3R1NTU2SEwGN2GRz6hPAwt79hk61YYDJZQHgp7e3v+7+TkZMEUNIPxKGJyCeXy5csaa0E4jkNwcDAAIDg4mG/7y1/+wu+3evVqvt3f39/g47bH74gRI2BrawsAiI6O5texsHUojEcVk0soXQlra2scPXoUkydPhp2dHczM2OlkPNpwJPLF/8GDBzF//nw2psBgmDAcx+HAgQMICQkR1S/7SWUwGKLBEgqDwRANllAYDIZosITCYDBEgyUURqcil8sxadKkzg6DIRIsoTBapaGhARzH8XdnMxit0e31UBimjVKp7OwQGCLCKhQGgyEaj0RCiY2NBcdx2LZtG86ePYsxY8bAysoKI0eORGpqqsCWiJCQkIDQ0FAMHDgQFhYW6NevH5YsWYLi4mLeLj09HRzH4YMPPsBTTz0FW1tb7Nu3DxkZGfDx8UHPnj1x8OBBge/q6mps3LgR3t7ekMlkcHV1xerVq1FbW6sz9i1btoDjOHh4eIhyLlQqFd5//334+vrC2toazs7OmDlzJhITEwV2Y8eOBcdxkEqlAP48h+rXypUrNXy/8MIL4DgOZWVlOH78OIYPHw4bGxtMmDAB586d4+0WLlwo8KVrDCUrKwscx2HDhg04f/48AgICYGFhgQEDBiAqKkrDvrS0FAsXLoSDgwNsbW2xaNEilJaWCm7dYBgZsR+WrH5YuikRERFBAGjNmjUkl8sFD4x2cXGhhoYG3jY+Pl7nw6WHDx/O2+3YsYMAkIODA7/d3d2dPDw8+P8PGjSIty8qKqLBgwdr9RsUFKQz9n/961+8bzFYsWKFzv7V1tbydmPGjGn1Qduvvvqqhu/nn3+eANDBgwdJIpEI7KdPn87bLViwQLBt4sSJWmPNzMwkALRo0SKytbUV7GNmZkaZmZm8rVKppKFDh2rE+eyzzxIAmjdvnijnr7sAIz0s/ZGoUC5cuAAAOHToEKKiolBRUYHc3FwMGjQIt27dws2bN3nboqIiLF68GAkJCSguLoZKpcK1a9cwduxYZGZmoqamBgCQkZEBAHjrrbdQVlYGPz8/FBQUYOXKlaiqqsLIkSNRX18PAKivr8esWbOQm5uLsLAwXL16FUqlEjk5OZg+fTpiY2ORnp7eIefi8OHDsLOzw6lTp6BQKFBWVoa4uDhMnTpVIMeQlpYGIuL7EBQUxEtcEhE+++wzncd47733sHr1auTm5qKyshKJiYkYNWoUv3337t28H5lM1mbMe/fuxcqVK3H79m3cuXMHL774IpqamgRVytdff42LFy/C19cXaWlpqK6uxpkzZwSVEaMDEDtDmWKF4uLiQhzHUVpamqB9+fLlBIBKSkr4tuzsbFq2bBkNGDCAZDKZ4NfOzs6Otxs6dCj17NmT6uvriYgoMDCQnJ2dqbGxkYiIJk2aROPHjyciok8//ZQA0I4dOzRiO336tM5txsDLy4u8vb35ONuivr6+zSpKjbpCWbp0qd7xyGSyNiuUsWPHCtpLSkoIAM2aNYtvCwoKIgB09uxZge3hw4dZhaIFsAqlfRQXF+PWrVuYMGECxowZI9h25coV2Nvbo3fv3gCAY8eOwd/fHzt37sT169c15CGHDRsGoHlm4sqVK5g8eTIvLZmVlYUpU6bAzMwMRISsrCz4+PgAAL755hsAwKuvvqohyzB58mQAHSfQ9Pnnn+PevXsYPHgwli9fjm3btuHMmTOiKtctWrRINF8ANN633r1747HHHhOIgefn50MikQgqIW37MoxLt08o58+fBwBMnz5d0F5fX48LFy7wH7iamhosWLAAUqkUH3/8MQoLC6FSqUBEuHTpEgBg+PDhAJqTR0NDA8aPHw8AyMnJwb179/j/X7lyBeXl5Rg1ahTq6+sFyvq66NOnjzgdboMpU6agoKAAkZGRePzxx5Gamopp06YhICAAVVVVohxDrAFkNdr0ZTiOEyRhIhJcsrVsZ3Qc3T6hqMdPxo0bJ2jPzMyEUqnk21NTU3H//n2sXLkSq1atgpubG6RSKZqamrB27VoAfyYUtc+AgAB+X23/HzduHKqqqkBEmD17tmAM4sHXM888Y8zTIEAmk2HKlCkICwvDoUOHcPDgQZw7dw67du3SsFVrvKhUKr39P/bYY6LFqi+enp5oaGjgf0DUsDGUjuWRSCgSiQSjR48WtKelpQH4M9GovzjJycm4efMmFAoFUlNTERQUhPj4eAB/JpSMjAzI5XL+0RypqamwtrbmH82RmpoKW1tb+Pj4wN7eHg4ODkhMTERUVBTu3r2Luro65ObmIioqCjNmzEBOTo7O+MWcNq6rq8O4ceOwe/duXLt2DXV1dcjPz8eBAwcAAPfv39fYx8zMDD179kR6ejrOnz/PPyTN1AgKCgIALF26FGlpaVAoFPj555/5HwNGByH2oIypDcr26tWLhg0bptEeGhpKZmZmVF5eTkREVVVV5OrqqjHtOGfOHPL39yeZTMYPwPr5+dGECRN4X0OGDKHAwED+/97e3jRt2jT+/1u2bNE5/Wpubk4qlUpn/GJOG9fW1uqMQy6X06VLl7Tu99xzzxk0bVxaWqozhv3797c6HQ2A8vLyiOjPQdn169dr+HlwMFepVNKQIUM0fKmnqIODgw07Wd0csEFZw7l58yZKS0sxduxYjW2pqanw9vbmNWGtra1x4sQJBAYGwsbGBm5uboiIiMDBgweRn58PPz8/mJubo7a2FtnZ2fzlTVVVFS5fvsxXOuXl5bh69argEuutt95CdHQ0AgIC4OjoCGtrawwZMgRvvPEGfv31V37xmLGRy+VITU3FwoULMWDAAMhkMvTt2xehoaFITU2Fr6+v1v0++eQTPP/883B0dNQ6TmEKyGQynDp1Ci+99BLs7e3Ro0cPLFiwAJs2bQLQ3HdGByB2hjK1CoXxaJOYmEgAaN26dZ0dikkBI1Uo7OZARrdh1apVGDx4MKZPnw5XV1dcvHgRr7/+OgBg2rRpnRzdowFLKIxuw40bN/Dpp59qtM+ePRsTJ07shIgePVhCYXQbduzYgX79+iE+Ph5FRUVwc3PDs88+i3feeaezQ3tkYAmF0W1wd3fH559/3tlhPNJ061me7kJ0dDQ4jsPevXs7OxSGATyK8pYsoXQC8+bNg0Qi4e9cbgv16s8HF+eZIob2rTNh8pbiwxJKJ5CZmQkvLy9YWlrqZb9161YQEby8vIwc2cNjaN+6M0qlEj/99FNnh9GhsITSwZSXlyMvL69dD3Q3dbpz3xj68UgllLS0NISEhMDZ2RkWFhbw9fXF+vXrce/ePYFdeXk5wsPDeQlIT09PrFixAmVlZQI7faUlGxoaYG5uDo7jYG9vD+DPcRH160FJw8DAQMH21157TWufDJG3BPSXoTRm39QwectuKG8p9ko5U10pu2nTJuI4Tuu9Ix9++CFvV1BQQO7u7lrtJk2aRE1NTbytvtKSeXl5bd6/kpKSIoi3pZQkAIqKitLaL0PkLQ2RoTRm39QwecvOk7eEkVbKPhIJZc+ePQQ0K6598sknVFhYSLW1tXTx4kUKDw+nH374gYiImpqaaPz48fyblJ2dTUqlktLT08nNzY0A0JUrV3i/s2bN4r8Qhw8fpoqKCsrNzaVBgwYRALpx44ZGLGFhYQRA5414D/L5558TALp+/brW7frGoFKpyN/fn8zMzCgsLIyuXr1KSqWScnJyaPr06QSAzp0716F9EzuhODk5kZ2dHZ06dYoUCgWVlZVRXFwcTZ06lZRKpYZ9e9TofH19ac2aNZSbm0uVlZWUmJhIGzZs0LqPPmp0UqmU1q9fT7dv36Y7d+7Qiy++yCdyNerPgK+vL6WlpVF1dTWdOXOG+vfvzxJKR6NUKsnZ2ZkkEomGBOSDnDhxgv+AtaxEiIjWrVtHAOj48eN8myHSkmqeeOIJcnJy0jv+kJCQVu31jcFQGcqO6JvYMHlL/TFWQun2YyinTp1CSUkJli5d2qYc4L59+wAAGzdu1LirVi2RaGNjA8AwaUk1lZWVyMrKMmhtQnJysta7pQ2NwRAZyo7qm9gwecvOp9snlKysLADAzJkz27S9cOECLC0teSGllqSkpEAikfDb9JWWbElycjIaGxv1/tJlZ2ejpKREQ21Ojb4xGCpD2RF9MwZM3rLz6fYJRaFQAECrD9NSU11drfWNi4+PR0pKCoKCgvgKRV9pyZacPXsWAPS+UU29hkFXhaJvDIbKUHZE34wFk7fsXLp9QlEvBnvvvfeQmpqK2tpaFBcXIzY2FrNnz0ZjYyNv279/fygUCmzevBkVFRWoqKjArl27EBwcDIlEgoiICN5WX2nJluTn5wMACgoK9JJSTEpK0lrqGhqDoTKUHdE3gMlb6kuXkrcUe1DG1AZlq6urydPTU+v0YMsnARLplifkOI4iIyMFtvpKS7Zk7dq1Gr6XL1/Ob09KSmpzCjYpKaldMRgiQ2mMvmmDyVt2nrwl2KBs+7CyssKZM2ewcOFCuLq6QiqVwsPDA4sXL8bhw4cFtqGhodi9ezeGDh0KS0tLODg4YNasWUhKSsIrr7zC2xkiLdmS8PBwhISECKQUBw4cyG/Py8trsz/9+/dvVwz6ylAaq2/GhslbmghiZyhTq1AYjO7Kw8hbwkgVCtNDYTC6AF1F3pIlFAajC9BV5C1ZQmEwugBdRd6y2w/KdlWcnJwEq1nnzp3bqfF0V9W4zlBVa2howLFjxxASEgJ3d3fIZDIMGjQIb7/9tmCFLNC8jmrXrl1YtGgRjhw5gqKiIvTr1w/z5s1DeHg4ZDJZh8beJmIPyrBB2YenurpaY4qw5R3RYjB37lwyMzMjhUKhl/2bb75JACgnJ0fUODqb1u63aQ/63B8UExOjc1rZ39+fampqeNtNmzbptPX29tY6ha8PYNPGjw5WVlb86tWYmBgA2heTPQzdWTXOEDpDVU0qlWLevHmIjY1FYWEhFAoFUlJS4OPjg6ysLOzcuZO3tba2xoIFCxAfH4/CwkJUV1cjPj4effr0QXZ2NrZv396hsbeJ2BmKVSjisnr1apJKpYJfrYfl/v37BIBCQ0NF88loxpA7mB/k5MmTBDTrnLTF3r17Ne5KNgSwCqX9fP/99+A4Djt27MC+ffswePBgXm3rwfsjAP0V2wzxGxYWBo7jcPnyZUF7TEwMOI5DZGSk1tiTkpLg7+8PCwsLrduJCAkJCQgNDeXj7devH5YsWYLi4mLezpiqcYacM0MV5gDxld2MoarWHhU4XfTo0aNNG09PTwCAo6Oj3n47BLEzlClWKGotk9DQUI3rUAcHB7p79y5va4himyF+AwICyNbWVkOrIzw8nABQenq6RtwVFRUkkUho1apVOvsWHx+v8xq75a0FxlSNM4bKXUvEFmIyhqpae1Tg1FRXV1NiYiJ5eXkRx3GUnJzcZh/eeecdAkAJCQkG95+ICSw9FGpFsgEDBlB8fDzV1tbSjRs3aOzYsQSAoqOjichwxTZ9/apUKpLL5TRt2jSN2J588kmSSqVaFcViY2MJAO3fv19n37766itavHgxJSQkUHFxMalUKrp27Rofg7ZBVzFV4zpC5U7shNISsVTV1BhyyXPo0CFB0hk4cCAdOnSozf0yMzNJLpfrdWmkC5ZQHoJevXqRVCql3NxcQfs333xDAGjbtm1EZLhim75+09PTCQD94x//ENipVCqysLCgESNGaI1bXb3k5+fr7Ft2djYtW7aMBgwYQDKZTPABtbOz07qPmKpxHaFyZ0zEUlVT8zAJxc3Njf/M6OLGjRvk5uZGo0eP1nuGThvGSijdfgxFfbPb888/j0GDBgm2KZVKAH9ehxqi2GaIX123/f/666+ora3FyJEjtcaenJwMFxcXuLu7a91+7Ngx+Pv7Y+fOnbh+/Trq6uoE24cNG6axj9iqccZWuTMF9FFVaw/BwcEgIlRXV+PcuXPw8/PDm2++iS1btmi1z8vLw6RJk2BnZ4eTJ0+a5LOPun1CycjIAACMHz9eY1tCQgIA8F9oQxTbDPGbnp4OjuM0Ppjx8fECu5bU1NQgIyND53RxTU0NFixYAKlUio8//hiFhYVQqVQgIly6dAkAtPZDbNU4Y6vcmQL6qKo9DFZWVhg9ejT+97//wcbGBp999pmGzfXr1zFx4kRYWlrixx9/RM+ePUU5tth0+6X3avWxB0fOL1++jCNHjsDHxwfe3t4A2lZsmz17toZimz5+f//9dzg6OsLOzo63q6qq4lXEtCWU3377DfX19Vq/qECzlMD9+/fx9ttvY9WqVXx7U1MTL7yjbV+xVePac84MUYLrarRHBa4lTU1NuH37tqAtJycHU6ZMgZWVFRITE02yilPzyFQo27dvx7Vr16BUKvHDDz/g6aefRlNTE959913e1hDFNkP8qlQq/gFRtbW1+OWXXzB79mwUFhZCJpPBz89PI261wlhaWhru3r2rsV39wU1OTsbNmzehUCiQmpqKoKAgvvLRllDEVo0ztsodIP60sTHRRwVu0aJFiIiIQEZGBioqKlBdXY309HTMmTMHCoVC8OTFy5cvY+LEibCyssLp06fh4uLSkd0xHLEHZUxtULZXr14UHBxMjo6OGlN5Dz4SwVDFNn39vvLKKxo2a9asITMzMxo9erTWuAsLC0kqlQr2kUql/LRqVVUVubq6avidM2cO+fv7k0wmo/r6eg2/YqvGGVvljkjcWR5jqaq1pC0VuClTpug8tlwuF5zfl19+udVYfX1923UewAZlDUc9cDpu3DgcPXoUQ4YMgVwux5AhQxAZGYkvv/xSYG+oYpu+fv/5z39izpw5sLGxQb9+/bB161YsXboUTU1NOgdk3dzcsG/fPgwdOpRf1Obp6QmJRAKg+br+xIkTCAwMhI2NDdzc3BAREYGDBw8iPz8ffn5+MDfXvKIVUzWuPefMUCW4rkhbKnB79uzB+++/jzFjxqBXr16wtLTkH/1x+fJlPPXUU50QtUiInaFMqUL5/vvvCQDFxcV1Cb8MRkcBVqEYjnqcQ9sYhSn6ZTC6Ot0+odja2vIPsDJ1vwxGV6fbJxRdauem6JfB6Op063Uod+7c6VJ+GYyuTreuUBgMRsfCEgqDwRANllAYDIZosITCaBP6//q2DEZbsITCaJOff/6Zv6mQwWgNo83ymOqDpxkMhvHgSORatqioiP2adSMaGxuxbNkyAMDOnTv5e4kYXZ+AgAC4ubmJ6lP0CsXNzQ0hISFiu2V0EnFxcVAoFAAAe3t7zJgxo5MjYpgybAyF0SpRUVGQSqWQSqW83CODoQvRL3kY3QelUglHR0e+QrGwsMDdu3d1PiOIwWAVCkMnx44dQ01NDf//uro6xMbGdmJEDFOHJRSGTvbu3SsYhDUzM8PevXs7MSKGqcMueRhaqayshKOjI+rr6wXtUqkUd+7cEQhuMxhqWIXC0Mp3333HP1enJU1NTYiJiemEiBhdAZZQGFr59ttv27WN8WjDLnkYGpSUlKBPnz5aKxSgeRV0UVERXF1dOzgyhqnDKhSGBgcOHOCf+6MNiUSC7777rgMjYnQVWEJhaLBnzx6d1QnQvBx/z549HRgRo6vALnkYAm7cuIGBAwe2KVfAcRyuXbsmeEYPg9GtNWUZhnPq1Cn07dsXjY2NfJtSqQQAyOVyvk0ikeDUqVMsoTAEsAqF0Sbqmz0PHjzYyZEwTB02hsJgMESDJRQGgyEaLKEwGAzRYAmFwWCIBksoDAZDNFhCYTAYosESCoPBEA2WUBgMhmiwhMJgMESDJRQGgyEaLKEwGAzRYAmFwWCIBksoDAZDNFhCYTAYosESCoPBEA2WUBgMhmiwhMJgMESDJRQGgyEaLKEwGAzRYAmFwWCIBksoDAZDNFhCYTAYosESCoPBEA2WUBgMhmiwhMJgMESDJRQGgyEaLKEwGAzRYAmFwWCIBksoDAZDNFhCYTAYosESCoPBEA2WUBgMhniQyBw4cIAAsBd7sZeJvw4cOCD215/MYSQOHDhgLNcMBuMhmT9/vlH8Gi2hhISEGMs1g8F4SIyVUNgYCoPBEA2WUBgMhmiwhMLodsTFxYHjOHAch+3bt3d2OI8Uj0RCCQwMhEwmQ0NDQ5u2Tk5O/IeR4zjMnTu3AyJ8OEpKSrBixQp4eHhAJpOhT58+CAwMxJdffomqqiqD/V26dElwDtSvI0eOGCF6RnfCJBPKvHnzIJFIUFNT89C+iAi//PILHn/8cZibtz4GrVAoUFpaKmgbN27cQ8dgTEpKSjBq1Ch88cUXKCgogEqlQnFxMU6fPo2XX34ZH3zwQWeH+NAcOXKET2pffPFFZ4fDaAWTTCiZmZnw8vKCpaXlQ/u6du0aKioq4Ofn16atlZUViAhEhJiYGACmn1A++ugjFBUVAQA2b96MiooK3L59G9u3b4etrW27fPr5+fHnITIyUsxwO4QZM2bw8b/xxhudHc4jhckllPLycuTl5cHf318UfxkZGQCgV0JpSXJyMqRSKZ544glR4jAW6enpAICePXti7dq16NGjB5ycnPD6668jMzMTnp6enRwh41HCJBJKQ0MDzM3NwXEc7O3tAQDR0dGC6/eoqCjenoiQkJCA0NBQDBw4EBYWFujXrx+WLFmC4uJige8LFy4AAHx8fPDuu+/C2dkZDg4OmDt3LgoLC3XGlJSUBH9/f1hYWOi0qa6uxsaNG+Ht7Q2ZTAZXV1esXr0atbW1OvfZsmULOI6Dh4eHPqemTdRVXFVVFQoKCgTbPD09sWTJEkFbZWUl1q1bh8cffxxyuRw9evTAU089hYMHDz5UHIb6zc3NxaJFi9CvXz/IZDJ4enoiNDSUf78AQC6Xg+M4zJkzh29bsWIF/5mwtrYW+LS2ttYY99E1KFtZWYm1a9di0KBBkMlk6NmzJ55++mmkpaUJ7L744gve1549exAaGooePXrAxcUFr732GpRKZXtPWfdE7KW36qX3hpCXl9fmMuGUlBTePj4+Xqfd8OHDBb4nTZpEAOiZZ57RsB05ciQ1NjZqxFNRUUESiYRWrVqlM+aioiIaPHiw1hiCgoJ07vevf/2LAJC7u7tB50gXH330EX9cJycn+vjjj+nevXtabe/fv08+Pj46z92GDRs09omMjOS3x8TEiOI3OTmZrKystNo+/vjjvJ1MJmv1M2FlZSXwq83nf/7zH414KyoqaMiQIVp9mpub0+HDh7X238XFRcP+n//8p+43x4SBkZbem0RCaUlYWBgBoEuXLum0+eqrr2jx4sWUkJBAxcXFpFKp6Nq1azR27FgCQAqFgoiImpqayNbWlgDQ2LFjKS0tjWprayk9PZ2cnJwIAF29elXDf2xsLAGg/fv3az2+SqUif39/MjMzo7CwMLp69SoplUrKycmh6dOnEwA6d+6c1n3FTihKpZL++te/Cj7kUqmUQkJC6NdffxXYrlixgrfZunUrVVZWUkFBAc2cOZMAEMdx9Ntvvwn20SehGOK3vr6ePDw8CACZmZnRhx9+SLdu3SKFQkGxsbH03HPPafiPiYnh/UdGRrZ5Tk6ePNlqQlm9ejW/fe3atXTv3j06c+YM/5mwt7eniooKjf77+flRYWEhnTt3jszNzQkAjRgxos14TJFHJqE88cQT5OTk1KpNdnY2LVu2jAYMGKDxK2ZnZ8fb5eTk8L8sVVVVAh8vv/wyAaDExEQN/+Hh4QSA8vPztR7/008/JQC0Y8cOjW2nT5/Wuc2YHD9+nKZOnUpmZmb8uZDJZHTkyBEiImpsbBQk15ZcunSJ3+e9994TbGsroRjqV31+ANBLL72kV9/ETii9e/cmAOTp6SmoULdu3crvFx0drdH/lsf29/cnANSrVy+9+mBqGCuhmMQYiprKykpkZWVh0qRJOm2OHTsGf39/7Ny5E9evX0ddXZ1g+7Bhw/i/1QOyb731lsb1tvrat1evXhrHSE5OhouLC9zd3bXG8M033wAAXn31VY1r9smTJwMAmt+zjiMoKAgJCQm4desWNmzYAI7jUFdXh+XLl6OmpgYlJSWoqKgAAJw7dw7m5uaQSCQwMzMTDFjn5eUZdFxD/ebm5vJtrb3PxkI9CwYAw4cPh5nZn1+BkSNH8n/n5ORo7NunTx/+bysrKwCASqUyVqhdEpNKKMnJyWhsbNT5QaupqcGCBQsglUrx8ccfo7CwECqVCkSES5cuAWj+kKhRD/DNmDFD4Ke+vh6nTp2CjY0NvL29NT2PrCkAACAASURBVI6RkZGhc7q4vr4emZmZbfal5YevI3FycsKmTZvwwgsvAADu3LmDS5cuCRIcEaGxsRFNTU0aie/BAWWO41o9nqF+W7a35bujaSs2U4vXFDGphHL27FkAwMSJE7VuT01Nxf3797Fy5UqsWrUKbm5ukEqlaGpqwtq1awEIE4q6QnnssccEfr7++msUFRUhODgYEolEsO23335DfX29wE9LqqqqQESYPXs2v9ZB2+uZZ55p30kwkA0bNvC/uC1xdXXl/66urkbv3r35Km3q1Kk6446Ojhb4kcvl/N/379/XOI6hfr28vPh9k5KS9Opjyy/yw1Z+tra2cHJyAgBkZWUJ/P3yyy/834MGDXqo4zyqmFRCyc/PBwAUFBRoXSavLk+Tk5Nx8+ZNKBQKpKamIigoCPHx8QD+TChExFcSmzZtwt27d1FRUYGdO3fizTffhFwux/r16zWOof7SpKWl4e7duxrb7e3t4eDggMTERERFReHu3buoq6tDbm4uoqKiMGPGDK3lshqxp41TUlLg4+ODjz76CPn5+VAqlThz5gy+/vprAIBEIsHQoUNhbm6O4OBgAMCpU6ewefNm/PHHH6irq0N+fj6OHj2Kv/3tbzh//rzA/4ABA/i/d+/ejTt37gi2G+p3woQJ6NevHwDg22+/xdatW3H79m3cu3cPcXFxePHFFzX6qF5KADS/9wqF4qHO2XPPPQcAuHHjBt59912Ul5fj7Nmz/KpiOzs7zJw586GO8cgi9qDMwwzKrl27VmNabvny5fz2qqoqcnV11bCZM2cO+fv7k0wmo/r6eiIiunr1KgGgefPmadhLJBKdMziFhYUklUo1Zk0aGhp4my1btuicyjQ3NyeVSqWzj2LP8kycOLHVqdV169bxtnfu3CEvL69W7VNTUwX+GxoaqH///lpts7Oz2+X39OnTZGlpqdWu5bSxmqqqKn7gt+Wr5bSxtvf5wdewYcOIiKi8vFznNLe5uTkdOnSI99tyUPbYsWN8+/jx4wkA2draPuQ72DngUZjluX//PoWEhJCjoyNxHEcA6MMPPxTYZGVlUWBgINnY2JCbmxtFRERQfX092dnZ0RNPPMHbRUVFEQA6fPgw/fvf/yYHBweytbWloKAgSktLazWOQ4cO0dChQ8nCwoIAkJeXl4ZNdHQ0BQQEkKOjI1lbW9OQIUPojTfeoMuXL7fqW+yEUlRURJs3b6Zx48aRs7MzmZubk4ODA02ZMoX27dunYV9RUUERERHk7+9PlpaWZGFhQV5eXjR//nw6efKk1nU5V69epZkzZ5KNjY3WhNIev9nZ2fTSSy9Rnz59SCqVUr9+/Wj+/PkaU91qkpKSaPLkyWRnZ8fPZLU3oRA1J5Xw8HAaMGAASaVSsrOzo5kzZ9LPP/8sOC5LKIbB/X/nonHw4EHMnz+/w2c5GAyG/nAchwMHDoiurGhSYygMBqNrwxIKg8EQDZZQGAyGaLCEwuhU5HJ5p6yYZRgHllAYrdLQ0ACO4zBr1qzODoXRBTDac3kYDH1geiLdC1ahMBgM0XgkEkpsbCw4jsO2bdtw9uxZjBkzBlZWVhg5ciRSU1MFtqSnGlx6ejo4jsMHH3yAp556Cra2tti3bx8yMjLg4+ODnj17aqiVmYLCm0qlwvvvvw9fX19YW1vD2dkZM2fORGJiosBu7Nix4DgOUqkUwJ/nUP1auXKlhu8XXngBHMehrKwMx48fx/Dhw2FjY4MJEybg3LlzvN3ChQsFvnSNoWRlZYHjOGzYsAHnz59HQEAALCwsMGDAAIGCn5rS0lIsXLgQDg4OsLW1xaJFi1BaWgqO4/jbAxhGRuyVcg+rh2IMIiIiCACtWbOG5HK5YPWki4uLYFm9vmpwO3bsIADk4ODAb3d3d+fFgwDQoEGDeHtTUXhrKYb04Ku2tpa3GzNmTKurTl999VUN388//zwBoIMHD5JEIhHYT58+nbdbsGCBYNvEiRO1xpqZmUkAaNGiRRpL783MzCgzM5O3VSqVNHToUI04n332WQKab8Fg/AmMtFL2kahQ1DIGhw4dQlRUFCoqKpCbm4tBgwbh1q1buHnzJm9bVFSExYsXIyEhAcXFxVCpVLh27RrGjh2LzMxM/tEeLbVWysrK4Ofnh4KCAqxcuRJVVVUYOXIk6uvrATRLHsyaNQu5ubkICwvD1atXoVQqkZOTg+nTpyM2NpYXmzY2hw8fhp2dHU6dOgWFQoGysjLExcVh6tSpgrt609LSQER8H4KCggR3D3/22Wc6j/Hee+9h9erVyM3NRWVlJRITEzFq1Ch+++7du3k/MpmszZj37t2LlStX4vbt27hz5w5efPFFNDU1CaqUr7/+GhcvXoSvry/S0tJQXV2NM2fOCCojRgcgdoYyxQrFxcWFOI7TuIdn+fLlBIBKSkr4Nn3V4IYOHUo9e/bkb0YMDAwkZ2dn/p6VSZMm0fjx44nItBTevLy8yNvbW+s9O9qor69vs4pSo65Qli5dqnc8MpmszQrlQSW4kpISAkCzZs3i24KCgggAnT17VmB7+PBhVqFoAaxCaR/FxcW4desWJkyYgDFjxgi2XblyBfb29ujduzcA/dXglEolrly5gsmTJ/MPD8vKysKUKVNgZmYGIkJWVhZ8fHwAmJbC2+eff4579+5h8ODBWL58ObZt24YzZ86gqalJtGMsWrRINF8ANN633r1747HHHkN1dTXflp+fD4lEIqiEtO3LMC7dPqGodTimT58uaK+vr8eFCxf4D5whanBZWVloaGjA+PHjATTLBd67d4///5UrV1BeXo5Ro0aZnMLblClTUFBQgMjISDz++ONITU3FtGnTEBAQ0K7HlmpDrAFkNQ/KdwLNN7e1TMJEpFVRraMSNaOZbp9Q1OMnD0o6ZmZmQqlU8u2GqMGpfQYEBPD7avv/uHHjTE7hDQBkMhmmTJmCsLAwHDp0CAcPHsS5c+ewa9cuDVu1qJUh2qkPKuR1BJ6enmhoaNAQiGJjKB3LI5FQJBIJRo8eLWhXP9BJnVAMUYPLyMiAXC7HiBEjADQnEGtra16UOTU1Fba2tvDx8TEphbe6ujqMGzcOu3fvxrVr13hVtQMHDgDQLvFoZmaGnj17Ij09HefPn9frgfOdQVBQEABg6dKlSEtLg0KhwM8//8z/GDA6CLEHZUxtULZXr14CYR01oaGhZGZmRuXl5URkmBqcn58fTZgwgfc1ZMgQCgwM5P/v7e1N06ZN4/9vKgpvtbW1OuOQy+U6n4X03HPPGTRtXFpaqjOG/fv3tymElJeXR0R/DsquX79ew8+Dg7lKpVLrw7vUU9TBwcGGnaxuDtigrOHcvHkTpaWlGDt2rMa21NRUeHt78w8Ut7a2xokTJxAYGAgbGxu4ubkhIiICBw8eRH5+Pvz8/GBubo7a2lpkZ2fzlzdVVVW4fPkyX+mUl5fj6tWrgkust956C9HR0QgICICjoyOsra0xZMgQvPHGG/j111/5xWPGRi6XIzU1FQsXLsSAAQMgk8nQt29fhIaGIjU1Fb6+vlr3++STT/D888/D0dHRZJXfZTIZTp06hZdeegn29vbo0aMHFixYgE2bNgEQim0zjIjYGcrUKhTGo01iYiIBQm1dhvEqFHZzIKPbsGrVKgwePBjTp0+Hq6srLl68iNdffx0AMG3atE6O7tGAJRRGt+HGjRv49NNPNdpnz56t81lPDHFhCYXRbdixYwf69euH+Ph4FBUVwc3NDc8++yzeeeedzg7tkYElFEa3wd3dHZ9//nlnh/FI061neboL0dHR4DgOe/fu7exQGAbwKMpbsoTSCcybNw8SiYS/c7kt1Ks/H1ycZ4oY2rfOhMlbig9LKJ1AZmYmvLy8YGlpqZf91q1bQUSCB42bKob2rTujVCrx008/dXYYHQpLKB1MeXk58vLy4O/v39mhiE537htDPx6phJKWloaQkBA4OzvDwsICvr6+WL9+Pe7duyewKy8vR3h4OC8B6enpiRUrVqCsrExgp6+0ZENDA8zNzcFxHOzt7QH8OS6ifj0oaRgYGCjY/tprr2ntkyHyloD+MpTG7JsaJm/ZDeUtxV4pZ6orZTdt2sQ/gP3BV8sHshcUFJC7u7tWu0mTJlFTUxNvq6+0ZF5eXpv3r6SkpAjibSklCYCioqK09ssQeUtDZCiN2Tc1TN6y8+QtYaSVso9EQtmzZw8BzYprn3zyCRUWFlJtbS1dvHiRwsPD6YcffiAioqamJho/fjz/JmVnZ5NSqaT09HRyc3MjAHTlyhXe76xZs/gvxOHDh6miooJyc3Np0KBBBIBu3LihEUtYWBgB0Hkj3oN8/vnnBICuX7+udbu+MahUKvL39yczMzMKCwujq1evklKppJycHJo+fToBoHPnznVo38ROKE5OTmRnZ0enTp0ihUJBZWVlFBcXR1OnTiWlUqlh3x41Ol9fX1qzZg3l5uZSZWUlJSYm0oYNG7Tuo48anVQqpfXr19Pt27fpzp079OKLL/KJXI36M+Dr60tpaWlUXV1NZ86cof79+7OE0tEolUpydnYmiUSiIQH5ICdOnOA/YC0rESKidevWEQA6fvw432aItKSaJ554gpycnPSOPyQkpFV7fWMwVIayI/omNkzeUn+MlVC6/RjKqVOnUFJSgqVLl7YpB7hv3z4AwMaNGzXuqlVLJNrY2AAwTFpSTWVlJbKysgxam5CcnKz1bmlDYzBEhrKj+iY2TN6y8+n2CSUrKwsAMHPmzDZtL1y4AEtLS15IqSUpKSmQSCT8Nn2lJVuSnJyMxsZGvb902dnZKCkp0VCbU6NvDIbKUHZE34wBk7fsfLp9QlEoFADQ6sO01FRXV2t94+Lj45GSkoKgoCC+QtFXWrIlZ8+eBQC9b1RTr2HQVaHoG4OhMpQd0TdjweQtO5dun1DUi8Hee+89pKamora2FsXFxYiNjcXs2bPR2NjI2/bv3x8KhQKbN29GRUUFKioqsGvXLgQHB0MikSAiIoK31VdasiX5+fkAgIKCAr2kFJOSkrSWuobGYKgMZUf0DWDylvrSpeQtxR6UMbVB2erqavL09NQ6PdjySYBEuuUJOY6jyMhIga2+0pItWbt2rYbv5cuX89uTkpLanIJNSkpqVwyGyFAao2/aYPKWnSdvCTYo2z6srKxw5swZLFy4EK6urpBKpfDw8MDixYtx+PBhgW1oaCh2796NoUOHwtLSEg4ODpg1axaSkpLwyiuv8HaGSEu2JDw8HCEhIQIpxYEDB/Lb8/Ly2uxP//792xWDvjKUxuqbsWHyliaC2BnK1CoUBqO78jDyljBShcL0UBiMLkBXkbdkCYXB6AJ0FXlLllAYjC5AV5G3ZAmFwegCdBV5y24/y9NVcXJyEiyPnzt3bqfG011lKDtDprGhoQHHjh1DSEgI3N3dIZPJMGjQILz99tuCJfdA88LMXbt2ITAwEK6urrxteHg4KisrOzRuvRB7lJfN8jw81dXVGmsOWkosiMHcuXPJzMyMFAqFXvZvvvkmAaCcnBxR4+hsWruBrz3oc8NhTEyMznUq/v7+VFNTw9tu2rRJp623t7fWNUH6ALYO5dHBysqKXw4fExMDQPvq1IehO8tQGkJnyDRKpVLMmzcPsbGxKCwshEKhQEpKCnx8fJCVlYWdO3fyttbW1liwYAHi4+NRWFiI6upqxMfHo0+fPsjOzsb27ds7NPY2ETtDsQpFXFavXk1SqVTwq/Ww3L9/nwBQaGioaD4ZzRgiifAgJ0+eJKBZOKkt9u7dqyFzYAhgFUr7+f7778FxHHbs2IF9+/Zh8ODBvHzfgzdcAfpLQBriNywsDBzH4fLly4L2mJgYcByHyMhIrbEnJSXB398fFhYWWrcTERISEhAaGsrH269fPyxZsgTFxcW8nTFlKA05Z4ZKVgLiS0UaQ6axPbKSuujRo0ebNp6engAAR0dHvf12CGJnKFOsUNTiSKGhoRrXoQ4ODnT37l3e1hAJSEP8BgQEkK2trYb4T3h4OAGg9PR0jbgrKipIIpHQqlWrdPYtPj5e5zV2y3uVjClDaQzZzJaIrexmDJnG9shKqqmurqbExETy8vIijuMoOTm5zT688847BIASEhIM7j8RU2x7KNQShwMGDKD4+Hiqra2lGzdu0NixYwkARUdHE5HhEpD6+lWpVCSXy2natGkasT355JMklUq1ShTGxsYSANq/f7/Ovn311Ve0ePFiSkhIoOLiYlKpVHTt2jU+Bm2DrmLKUHaEbKbYCaUlYsk0qjHkkufQoUOCpDNw4EA6dOhQm/tlZmaSXC7X69JIFyyhPAS9evUiqVRKubm5gvZvvvmGANC2bduIyHAJSH39pqenEwD6xz/+IbBTqVRkYWFBI0aM0Bq3unrJz8/X2bfs7GxatmwZDRgwgGQymeADamdnp3UfMWUoO0I205iIJdOo5mESipubG/+Z0cWNGzfIzc2NRo8erfcMnTaMlVC6/RiK+u7Z559/HoMGDRJsUyqVAP68DjVEAtIQv7p0RH799VfU1tZi5MiRWmNPTk6Gi4sL3N3dtW4/duwY/P39sXPnTly/fh11dXWC7cOGDdPYR2wZSmPLZpoC+sg0tofg4GAQEaqrq3Hu3Dn4+fnhzTffxJYtW7Ta5+XlYdKkSbCzs8PJkydN8mFq3T6hZGRkAADGjx+vsS0hIQEA+C+0IRKQhvhNT08Hx3EaH8z4+HiBXUtqamqQkZGhc7q4pqYGCxYsgFQqxccff4zCwkKoVCoQES5dugQAWvshtgylsWUzTQF9ZBofBisrK4wePRr/+9//YGNjg88++0zD5vr165g4cSIsLS3x448/omfPnqIcW2y6/dJ7tZzhgyPnly9fxpEjR+Dj4wNvb28AbUtAzp49W0MCUh+/v//+OxwdHWFnZ8fbVVVV8bKE2hLKb7/9hvr6eq1fVKBZm+T+/ft4++23sWrVKr69qamJV/LStq/YMpTtOWeGSEt2NdojK9mSpqYm3L59W9CWk5ODKVOmwMrKComJiSZZxal5ZCqU7du349q1a1Aqlfjhhx/w9NNPo6mpCe+++y5va4gEpCF+VSoV/8S52tpa/PLLL5g9ezYKCwshk8ng5+enEbdasjAtLQ13797V2K7+4CYnJ+PmzZtQKBRITU1FUFAQX/loSyhiy1AaWzYTEH/a2JjoIyu5aNEiREREICMjAxUVFaiurkZ6ejrmzJkDhUIheJTr5cuXMXHiRFhZWeH06dNwcXHpyO4YjtiDMqY2KNurVy8KDg4mR0dHjam8B5+xYqgEpL5+X3nlFQ2bNWvWkJmZGY0ePVpr3IWFhSSVSgX7SKVSflq1qqqKXF1dNfzOmTOH/P39SSaTUX19vYZfsWUojS2bSSTuLI+xZBpb0pas5JQpU3QeWy6XC87vyy+/3Gqsvr6+7ToPYIOyhqMeOB03bhyOHj2KIUOGQC6XY8iQIYiMjMSXX34psDdUAlJfv//85z8xZ84c2NjYoF+/fti6dSuWLl2KpqYmnQOybm5u2LdvH4YOHcovavP09IREIgHQfF1/4sQJBAYGwsbGBm5uboiIiMDBgweRn58PPz8/mJtrXtGKKUPZnnNmqLRkV6QtWck9e/bg/fffx5gxY9CrVy9YWlryzxK6fPkynnrqqU6IWiTEzlCmVKF8//33BIDi4uK6hF8Go6MAq1AMRz3OoW2MwhT9MhhdnW6fUGxtbfkn4pm6Xwajq9PtE4quxyeYol8Go6vTrdeh3Llzp0v5ZTC6Ot26QmEwGB0LSygMBkM0WEJhMBiiwRIKo01ycnKQk5PT2WEwugBGG5T929/+ZizXjA7mypUrAAAfH59OjoRh6oheofTt2xfBwcFiu2V0IgUFBSgoKOjsMBgiEhwcjL59+4rul/v/y3AZDK2cP3+evzv4/PnzOu89YjAANobCaIPo6Gg89thjkEql2L9/f2eHwzBxWIXC0ElTUxNcXFz4hXy9evXCrVu3+DueGYwHYRUKQydJSUmCVcGlpaU4c+ZMJ0bEMHVYQmHoZN++ffyDq4DmR2iqRakZDG2wSx6GVlQqFXr16oXKykpBu42NDUpLSyGTyTopMoYpwyoUhlbi4uI0kgnQLEr9ww8/dEJEjK4ASygMrURFRQkud9RIJBKN5/oyGGrYJQ9DA4VCAUdHR/6BZQ8ik8lQVlam9Xk1jEcbVqEwNDhy5Eirz5Wpr6/H0aNHOzAiRleBJRSGBnv37uWf+6MNjuPw7bffdmBEjK4Cu+RhCLh79y6cnZ3bfAiYubk5SkpK4ODg0EGRMboCrEJhCPjuu+/0eqJgQ0MDvvvuuw6IiNGVYBUKQ0BNTQ3q6uoEbYsWLQIAfPPNN4J2mUwGS0vLDouNYfp0a5FqhuFYWlpqJInHHnsMAGBvb98ZITG6EOySh8FgiAZLKAwGQzRYQmEwGKLBEgqDwRANllAYDIZosITCYDBEgyUUBoMhGiyhMBgM0WAJhcFgiAZLKAwGQzRYQmEwGKLBEgqDwRANllAYDIZosITCYDBEgyUUBoMhGiyhMBgM0WAJhcFgiAZLKAwGQzRYQmEwGKLBEgqDwRANllAYDIZosITCYDBEgyUUBoMhGiyhMBgM0WAJhcFgiAZLKAwGQzRYQmEwGKLBEgqDwRANllAYDIZosITCYDBEgyUUBoMhGhwRUcuG1NRUbNu2rbPiYZggN27cAAD079+/kyNhmBJvvvkmxo0bJ2jTqFAKCwvx3XffdVhQDNOnf//+LJkwBHz33XcoLCzUaDfXtcOhQ4eMGhCDwei6cByntZ2NoTAYDNFgCYXBYIgGSyiMLk1cXBw4jgPHcdi+fXtnh/PIwxKKkYmOjgbHcdi7d29nhyIaJSUlWLFiBTw8PCCTydCnTx8EBgbiyy+/RFVVlcC2oaEB//73v+Hj4wO5XA4nJyeEhobi+vXrGn6dnZ3BcRz8/Pw6qivt4tKlS3wSa+21dOlSg30vXbqU37+kpMTgGI4cOfIwXXtoWEIBMG/ePEgkEtTU1Iju+/z58wCA0aNHi+67MygpKcGoUaPwxRdfoKCgACqVCsXFxTh9+jRefvllfPDBBwL7559/HuHh4cjOzkZdXR1KS0tx4MABjB49Grm5uR0W95EjR/gv3RdffNFhx33UYAkFQGZmJry8vGBpaSm6761bt4KI4OXlJbrvzuCjjz5CUVERAGDz5s2oqKjA7du3sX37dtja2gpsjx49ioMHDwIAnn32WVRUVCA+Ph5SqRT37t3D66+//tDxzJgxA0QEIsIbb7zx0P70wc/Pjz8mEWH+/Pn8tlu3bvHtu3bt6pAYIiMjjXYcQ3nkE0p5eTny8vLg7+/f2aF0CdLT0wEAPXv2xNq1a9GjRw84OTnh9ddfR2ZmJjw9PXnbr7/+GkDzFOPWrVvRo0cPTJs2DXPnzgUAxMfH88mJ0T0QPaGkpaUhJCQEzs7OsLCwgK+vL9avX4979+4J7MrLyxEeHo6BAwfCwsICnp6eWLFiBcrKygR2YWFh4DgOly9fFrTHxMSA4zhBdo6NjQXHcdi2bRvOnj2LMWPGwMrKCiNHjkRqaipv19DQAHNzc3AcB3t7ewB/jnWoX1FRUYLj3bt3DxzHISQkBAqFAuHh4ejbty+srKywePFiweVSYGCgwNdrr72m83xVV1dj48aN8Pb2hkwmg6urK1avXo3a2loN29LSUrzzzjsYMmQIbG1t4eTkhOnTp+Onn37S6X/Lli3gOA4eHh46bQxBXcVVVVWhoKBAsM3T0xNLlizh/5+SksK3u7i48O0BAQEAACLCmTNn2hWHtbW1xviBtkFZuVwOjuMwZ84cvm3FihX8PtbW1gL7yspKrFu3Do8//jjkcjl69OiBp556iq+02svJkycxf/58DB48GBYWFrCysoK3tzf+7//+D+Xl5Vr3+eOPP/D000/D0tISTk5O+Pvf/64xRmUIxuqbAHqAAwcOkJZmvdi0aRNxHEcANF4ffvghb1dQUEDu7u5a7SZNmkRNTU28bUBAANna2lJjY6PgWOHh4QSA0tPT+baIiAgCQGvWrCG5XC7w6+LiQg0NDURElJeXp/XYLV8pKSmC48XHxxMAevPNN2nSpEka9j///DNv6+HhIdgWFRWl9XwVFRXR4MGDtR4/KChIYFtaWkp9+/bVauvs7KzzPfnXv/5FAMjd3V2njSF89NFH/HGdnJzo448/pnv37mnY3b9/n7d76qmnBNsOHz7Mb9u4cSPf3rt3bwJAvr6+bcZhZWWlcR7+85//aNjJZLJW32crKytBzD4+PjptN2zYoDWW+fPn8za3bt3S2H7r1q1WY5g6dSpvu2TJEr7dzc1Nw3bGjBka/iMjI/ntMTExWmNsb990AYAOHDig0S5ahfLtt9/inXfega2tLT755BMUFhaitrYWFy9eRHh4OH9JQUR47rnnUFBQgHnz5iE7OxtKpRLp6elwc3PDTz/9hKtXrwIA6uvr8csvv2DMmDEwMxOGmpqaCqlUiqFDh/JtFy5cANC8yjcqKgoVFRXIzc3FoEGDcOvWLdy8eRMA4OHhwV9/hoWFAWgeNacW18Xjx48XHC8jIwNA8zRlfX09fvrpJ1RUVCAnJwcLFy6Ej48Pb5uXlwciwueffw4AGDt2rMb5qq+vx6xZs5Cbm4uwsDBcvXoVSqUSOTk5mD59OmJjY/nLCwDYu3cvCgsLMWvWLFy8eBG1tbUoLS3Fzp07MW3atHa8Y+1j5cqV+Otf/woAuHPnDl5//XX07t0b8+fPx8WLF3m7yspK/m8rKyuBj5b/r6ioaFcc1dXVICKcPHmyVTulUgkiQkxMDN8WGRnJv8/V1dV8+7p163DlyhUAzWNflZWVKCgowMyZMwEA77//Pi5dumRwrBzHYerUqdi7dy+uXLmCmpoalJSU4JlnngEA/PjjjxrVHgDY2Njg999/x++//w5vb28AzZ+/ltW2TEG6yAAAIABJREFUvhirbxo8mGHaU6EolUpydnYmiURCaWlprdqeOHGC/wVuWYkQEa1bt44A0PHjx4mIKD09nQDQP/7xD4GdSqUiCwsLGjFihKDdxcWFOI7TiGH58uUEgEpKSjTieeKJJ8jJyanNPs6dO5cA0OTJk/lKpy1CQkJ0+v70008JAO3YsUNj2+nTpzW2ffjhhwSAYmNj9Tq2sTl+/DhNnTqVzMzM+F85mUxGR44cISKi/Px8vv0vf/mLYN+TJ0/y28LCwvh2QyoUbb60VShqYmJieLvIyEiN7Y2NjWRra0sAaOzYsYJtly5d4vd97733NPZtq0Jpamqir776iiZOnEgODg4kkUg0KoTTp08TkbBCOXToEO8jOjqab9+8ebPAf1sVysP0TRcwZoVy6tQplJSUYOnSpRgzZkyrtvv27QMAbNy4UeN+gKamJgDNmRloHo8BoHFH46+//ora2lqMHDmSbysuLsatW7cwYcIEjRiuXLkCe3t79O7dW9BeWVmJrKwsTJo0qc0+qqufL7/8EhKJpE17AEhOTtZanQDAN998AwB49dVXNcYCJk+eDKC5mlOzePFijBgxAvPmzUNISAg++eQTZGVl6RWHMQgKCkJCQgJu3bqFDRs2gOM41NXVYfny5aipqRHM+CgUCsG+Lcebevbs2WExt0ZJSQlfLZ07dw7m5uaQSCQwMzMTrIvJy8sz2Pfbb7+NJUuWICkpCXfv3kVjY6OGjVKp1GgbNmwY/3fLSvyPP/4w6PjG7NuDiJJQ1B9sdfnUGhcuXIClpSWGDx+usS0lJQUSiYTflp6eDo7jNBJEfHw8AAgSinq9x/Tp0wW29fX1uHDhgtZEl5ycjMbGxjYTSllZGW7evIkxY8Zg4MCBbfYRALKzs1FSUqKRDNUxZWZmtumjT58+/N8ODg64cOECfvzxR4waNQonTpzAiBEjEBISwifizsDJyQmbNm3CCy+8AKD5MujSpUuws7ODg4MDAGjM5LT8f9++fTsu2FZombyJCI2NjWhqahK0A9A6WN4adXV1+PTTTwEAUqkUe/bsQVlZGRobG7Fly5ZW99V1A56hdsbqmzZESSjqXyB9AqqurtZ6AuLj45GSkoKgoCC+Qvn999/h6OgIOzs73q6qqoqf32+ZUNQVxINf4MzMTCiVSq1f7LNnzwIAJk6c2GrMat+BgYFt9k+NeuZFW4VSVVUFIsLs2bMF4zYPvtTX2Go4jsP48ePxf//3f4iLi8OCBQtw6NChDq1UNmzYgNu3b2u0u7q68n+rxyUmTJgAoPmXr+Wqz5ZjAE8++aSxQhXQ8jP34BcJAHr37s3P+EydOlXnexIdHW3Qce/fv89/L3x8fPDiiy/CwcEBZmZm+OWXX1rdt+X72nJ8quUPDdA8k9XyeB3VN22IklDUi7bee+89pKamora2FsXFxYiNjcXs2bMFJV7//v2hUCj4RVEVFRXYtWsXgoODIZFIEBERwduqVCqUlZXh+PHjqK2txS+//ILZs2ejsLAQMplMUK5duHABEolEY0WqrssmAMjPzwcAFBQUoKGhQWf/1AOyDw7UtkZSUhIkEglGjRqlsc3e3h4ODg5ITExEVFQU7t69i7q6OuTm5iIqKgozZsxATk4Ob798+XK88847+PXXX1FTU4O7d+8iKioKR48eBcdxGpdyLRF72jglJQU+Pj746KOPkJ+fD6VSiTNnzvBrTiQSCV+eL1y4EEDzF3jNmjWoqqpCQkICDh8+DKB5+lisuNpCvTwAaK5MH7wMMzc3R3BwMIDmS/jNmzfjjz/+QF1dHfLz83H06FH87W9/4ythfWn5Zc7NzUVqaiqqqqrwzTff8OdBF++++y6uXbuGa9euYePGjXy7+pJYzYABA/i/d+/ejTt37nRI37Ty4KBKewZlq6urydPTU+t01PDhwwW2+/fv12rHcZzGYNkrr7yiYbdmzRoyMzOj0aNHC2x79epFw4YN04gtNDSUzMzMqLy8XGPb2rVrNfwvX75cw+6ZZ54hjuPo7t27Os9BUlJSq1ODACgpKYm337Jli047c3NzUqlUvO2gQYN02r799ts6YyISf9p44sSJrfZx3bp1Avt58+ZptbOwsKDU1FSBrXpQVtdr3rx5rfps+Xrws1BVVcUPTLZ8tZw2vnPnDnl5ebXq98GYidoelH377be1+nJycuL/PnnyJBEJB2X79eunsY+2aeOGhgbq37+/1mNkZ2c/VN90AR2DsqKtQykqKqKFCxeSq6srSaVS8vDwoMWLF9ONGzc0bHfv3k1Dhw4lS0tLcnBwoFmzZlFycrKGXVlZGc2ZM4dsbGyoX79+tHXrVrp69SoBoL///e+8XUFBAQGgl19+WcOHu7u7zlmD+/fvU0hICDk6OvLrZ1qul1HTt29f8vHxabX/u3fvbvNDXlhYKNgnOjqaAgICyNHRkaytrWnIkCH0xhtv0OXLlwV2mZmZtHjxYurfvz/J5XLy8PCgv/71r/TDDz+0GhOR+AmlqKiINm/eTOPGjSNnZ2cyNzcnBwcHmjJlCu3bt0/DXqVS0ZYtW2jw4MEklUr5c7Fs2TINW2MmFKLmpD958mSys7PjZ6daJhQiooqKCoqIiCB/f3+ytLQkCwsL8vLyovnz59PJkyc11kMRtZ1Q6uvr6d///jd5e3uThYUFubu708aNG+k///lPqwnl3LlzNHPmTLK0tKSePXvSsmXLqKKiQuv7cvXqVZo5cybZ2NhoTSjt7ZsujJ5QGAx9+O9//8snb23VIKNroCuh6JSAZDCMwfLlyyGTybBr165Wb0lgdE1YQmF0OAsWLMCCBQs6OwyGEXjk7zZmMBjiwRIKg8EQjS6ZULqbrKKTk5Ng6b1aL+Rheffdd8FxnDjrC/4/jY2NiIuLw3PPPYfHH38clpaW8PT0xCuvvNKqZGF3Ri6X63X7xqNAl0wo3UlWUaFQoLS0VNCmbRFee8jIyADHcYI7oR+Wffv24S9/+Qv279+P3Nxc1NbWIj8/H//9738xduxYwV3GpkJDQwM4jsOsWbM6O5RuT5dMKN1JVtHKyopf+qy+xV7MhOLh4aEhH/AwFBYWYtmyZYiLi0NBQQFqamqQkpICDw8PFBQU4H//+59ox+oqKJXKVkWuHiXYLI8JkZycDKlUiieeeOKhfRUVFeH27dv/r71zj4qq3P//ewPjDDdBgUIkEBHjamhe0RSxoyVKmUSYpYCXdGWm4kHT7JhWX+ukx6Ohp6x0lZLhz3umSGIgOogSSAJCCCgevHARBJzhIp/fH5y9Zc+FmcEBZnS/1pq1ZM+zn/2ZPfjh2c/l9WDq1Kl6iOwhq1atUjo2evRoLFy4ECtWrHgko5iA8WM0LRRdtIq6qBK1VVHqAhEhMTER4eHhXL0uLi6YM2cOysrK1J6XnJwMf39/mJubq3z/wIEDYBgGsbGxiIuLg6enJ6ytrTFmzBilfhJ2QaOvr2+7OsxHibct7EI3Vau69b2eqLGxEZ9++il8fHxgZWUFR0dHTJ48GUlJSbxyI0eOBMMwEIlEAB4qQtnXokWLlOp+6623wDAMt4Zs8ODB3D0+f/48Vy4iIoJXl7o+lKysLDAMgw8//BAXLlxAQEAAzM3N4e7urqQZBVp/dyMiImBnZwcbGxtERkaivLwcDMNw63EMGsWZboY6U1ZbraIuqkRdVJS6wOoiVb0U1zax1NTUkKmpKS1evFhtvayAKjw8XKleOzs73lqjDz/8kADQokWL2tVhdjTethw+fJgAZW0li76n/y9cuFBtvDKZjCs3YsSIdqfnv/vuu0p1z5w5kwBQfHy8kghp0qRJXLnZs2fz3hs3bpzKWDMzMwkARUZGKq0lMjExoczMTK6sXC6nQYMGKcU5Y8YM3tIDQwBqZsoaTQtFG60ioL0qkXRQUerKjRs3EBUVhcTERJSVlaGxsRGFhYUYOXIkMjMzVe7/k5qaigcPHrTbf8Kuer5w4QISEhIgk8lQVFSEkSNHorKyEomJiVxZtoVy9OjRdnWYHY2X5dy5c3jzzTfh6uqK7777Tud71RH2798PW1tbnDp1CvX19aioqMCJEyfw4osv8jQFaWlpICI0NTUBaJVCUZvl+l999ZXaa3z88cdYunQpCgoKcO/ePSQlJfFWju/atYurRywWa4x59+7dWLRoEW7fvo07d+7g7bffRktLC6+V8v333yM7Oxs+Pj5IS0tDXV0dzpw5w2sZGTyKGcZQWygs7WkVibRXJeqiotSVvLw8mjdvHrm7uytJkm1tbVWew0q3S0pK1Nbr4OBAIpGICgoKeMd37txJAGjTpk28strqMDsSLxFRYmIiWVlZkaenZ7tx65uBAweSl5eX1ovZmpqa2m1BtYVtocydO1freMRiscYWiqJ68datWwSApkyZwh0LDg4mAHTu3DleWVbqbQwtFKPrlG1Pqwi0qhL37t2L6dOnY+rUqRgzZgzGjh2rtO+OLipKXTh69Chef/11NDQ0qHy/rdavLSkpKejTpw9cXV1Vvn/9+nXu+drDw4P3HqsPtLe3B9A6ElNeXo4XXnhBow6zo/F+//33WLBgAcaMGYP9+/fzfCOdzbZt2zBz5kx4enoiMDAQnp6eGDZsGEaPHq0kM+8okZGReqmHRfF7ePrpp9GjRw+eJLukpESlQ0eTVtWQMJpHHqB9rSKLtqpEXVSU2nL//n3Mnj0bIpEI//73v1FaWorGxkYQEWcUV1Xn/fv3kZGRodXjjirJE/uowxrs2McdTTrMjsT74MEDLFmyBHPmzEFUVBQSEhK6NJkAwIQJE3Dt2jVs374dzz77LKRSKSZOnIiAgAC9jTLpW/ykuP8P0GqRIwU9oyqbYdsyho5RJZT2tIpt0UaVqIuKUlukUinu3r2LRYsWYfHixXB2doZIJEJLSws++OADAKoTyp9//ommpqZ2ExibJHr27Mk7npOTg0OHDsHb25vbaoFNPpp0mLrGe/fuXbz88svYvn07vv76a/znP//hRlC6GrFYjAkTJiA6Ohr79u1DfHw8zp8/r3L7T7bV0tjYqHX9PXr00Fus2uLm5obm5malETtj6kMxqoTSnlYR0E2VqIuKUlvYX9yUlBRcv34d9fX1kEqlCA4O5sTaqpIG6wFNS0tDZWWlyrrZJLF582YUFhZCLpfj5MmTmDp1KlpaWvDRRx9xZbXVYeoS75UrVzB8+HDk5OQgOTkZ8+fP1/q+6HPYuKGhAaNGjcKuXbtQWFjIaQx//vlnAKqdqiYmJujduzfS09Nx4cKFdnWf3UlwcDAAYO7cuUhLS0N9fT3Onj3LJXejQLFTxZA6ZXXVKuqiStRFRakttbW15OTkpFTntGnTyN/fn8RiMTU1NSmdV1payrOZASCRSMQb2nVwcKDQ0FCyt7dXql+xA1FbHaYu8U6ePLnd70FdpySRfoeNZTKZ2hgkEgldvnxZ5XlvvvmmTsPG5eXlamNQ97vT9lVcXExEDztlV69erVSPYmeuXC4nPz8/pbrYIerQ0FDdblYnAmMcNtZmn5D+/ftz/46Pj0dUVBT69+8PiUSCfv364ZVXXsHJkyfxf//3f7zzwsPDsWvXLgwaNAgWFhaws7PDlClTkJycjAULFnQoXisrK/z6668ICgqCtbU1nJ2dsXbtWsTHx6OkpAS+vr4wM1PuB3d2dkZcXBwGDRrETWpzc3Pj9v9hO2RHjRqFI0eOwM/PDxKJBH5+fti+fTu++eYbri62rKrHQqlUCi8vL27PHF3ibSvNVkVXLYOQSCSQSqWIiIiAu7s7xGIxnnnmGYSHh0MqlcLHx0fleVu2bMHMmTNhb2+v9fYUXY1YLMapU6cwa9Ys9OrVCz179sTs2bOxfv16AHy7vcGimGEMqYUi0MqBAwcIAJ04caK7QxHoBpKSkghQFoB3J3hcho2fRNj+k7bbhgg8nixevBienp6YNGkSnJyckJ2djffffx8AunQP644iJBQN6NI8/te//oUlS5boPYaMjAzY2NgobfAk8PhRVFTE7TTYlpCQEI0b0hkCQkIxAjIyMtT2DQg8XsTGxsLFxQUJCQm4ceMGnJ2dMWPGDKxZs6a7Q9MOxWcgY+hDYXvZf/zxx+4ORS84ODgojbLogzVr1hAASk9P10t9RK2bSh0+fJjCw8NpwIABZG5uTgMGDKCVK1dSbW2t3q5jTLQ39f5xBY9TH4pgbNOOzjC2/b//9/8QHh7OO1ZYWIgNGzYgNzfXIAVLzc3NEIlECA4Oxi+//NLd4TzWGPSwsToEY5t2dIaxraysDO+++y5SUlJQXl6O2tpaHD58GJaWljhy5IjSvrpPAoKx7SFG2UJ5XDEGY9vSpUuVjoWEhCAoKAhHjx5FZWUlnnrqKb1eU8B4MJoWimBsM1xjW1NTE/Ly8mBtbc2baMgiGNsEY1tn9+nojGBsMzxjW319PV24cIHzeHz55ZcqywnGNsHYZnAIxjbDMbax+yJZWlpi2LBhuHbtGnbu3Ino6OgO3S9dEYxtBoxihjHUFgqLYGzrfmPbunXreGX69etHBw8e1Ore6APB2Nb9wNhbKCzaGNuGDBmC6dOnIywsDFu2bOF5UFg609jm7++PHTt24OrVq0omtEc1ts2cOVNrY9uYMWO0MrbpGu+aNWtARKiursb+/ftRXV2NN998E7dv31Z3W/TKtm3bUFVVBU9PT8yfPx+bNm3CmTNneAKtR0UwtnUMo0oogrGt+41tbbGxscFrr72G8PBwyGQyXLp0SW1ZfSIY2wwXo0oogrGte41tqmhpaUF2djYAwMHBod2y+kQwthkmRpVQBGNb9xnbxo4di61btyI3NxcymQwVFRU4efIkXnrpJZw7dw6+vr5KInAWwdimHYKxrZMRjG2GYWwrLy9v9ztwdnam3NxctfdFMLYJxjaDQDC2GYaxzc7ODidOnEBoaCjc3d3Ro0cP9OzZE8OGDcMnn3yCnJwc7nGrsxGMbQaOYoYxpBaKQCuCse3JRjC2CegVwdj25CAY2x5zBGObQFciGNsEOh3B2PbkYOzGNiGhaIAMYFLRk+gYeVJxdXXl1qsZIwY9yqMOdnHa7t27uzuUJx5j+i4kEolazUBn0dzcjKNHjyIsLAyurq4Qi8Xw8PDAypUredPugVZ737fffougoCA4OTlxZWNiYnDv3r0ujbvDKPbSGsMoz7JlywgA5efnd3coTzzG9F3o2/2qzaLDgwcPqp2r4u/vT/fv3+fKrl+/Xm1ZLy8vbv6QIQBjnIeijsdJAWnsGNN30R2qRpFIhOnTp+PYsWMoLS1FfX09UlNT4e3tjaysLOzYsYMra2VlhdmzZyMhIQGlpaWoq6tDQkIC+vbti7y8PGzevLlLY+8QihnGGFooAgKGgC5aBEWOHz/OyZM0sXv3biXVQXcDY2+hGJMCklUNbtq0SaN+MTo6GgzDICcnh3f84MGDYBgG27dvBwCkp6eDYRh8/vnnGDt2LGxsbBAXF4eMjAx4e3ujd+/eiI+P59VRV1eHdevWwcvLC2KxGE5OTli6dClkMplSzFVVVWAYBmFhYaivr0dMTAyeeeYZWFpaIioqiidZ0uW7AFrXEIWFhcHR0RHm5ubw8fHB6tWrUVVVpVRW37rIzlA1dkQtqQ7FxZ6qcHNzA/BQT2HQKGYYQ22hGJMCcu3atQSAli9frlG/GBAQQDY2NkqyIFa4xO6pExsbS0Cr6pGty9XVlXdfPDw8uPNv3LhBnp6eKj+bqr+orAZy2bJlFBgYqHTO2bNnubLafhdErf0CDMOojOOLL75QKq9vXWRnqBo7opZkqauro6SkJBo4cCAxDEMpKSkaPwO7v1JiYqLOn7+zgJoWitEkFJZt27YRALp69arK9//1r39xzcPs7GySyWRUXl5OO3bsoFmzZnHlWlpaaPTo0QS0mrDy8vJILpdTeno6OTs7E4B2F7y1x5QpU7j/FPv376eamhoqKCjgFi8WFRUREVFjYyNJJBKaOHGiUh0vvPACiUQiksvlREQUFRXF/SesqKggX19fAlo9rrW1tTR06FDq168fV6+/vz+ZmJhQdHQ0XblyheRyOeXn59OkSZMIAJ0/f553vc8++4wAkLe3N40ePZp+//13qqmpofz8fIqIiKC7d+/q/F388MMPBLRa37Zs2UKlpaUkk8koOzubYmJi6OTJk0rn6DuhtEUbs5pIJKLVq1fT7du36c6dO/T2229zfxwU0eWRZ9++fbykM2DAANq3b5/G8zIzM0kikWj1aNSVPDYJxRgUkH369NFKv5ienk4A6B//+AevXGNjI5mbm9OQIUO4Y4MGDaLevXtzq5WDgoLI0dGRa9kEBgbS6NGjiYho69atBIBiY2OVYjt9+rTK91577TUCQOPHj+e1oNqjve9CLpeTo6MjmZqaKt2H7kJfqkaWR0kozs7OPGWnKoqKisjZ2ZmGDx9O9fX1Gq/RlahLKEbTh8Ji6ArIsrIy3Lx5Uyv9oqKfhOXSpUuQyWScgU0ulyM3Nxfjx4/nVitnZWVhwoQJMDExAREhKyuL2yFw586dAIB3332X92zPMAzGjx8PQHnCHitw+uabb7hVzppo77s4deoUbt26hblz5xqVwlAbVWNHCA0NBRGhrq4O58+fh6+vL5YtW4YNGzaoLF9cXIzAwEDY2tri+PHjsLCweKTrdxVGlVAMXQEJPNwmVZN+EXjY0ar4S8zKjdiEkpWVhebmZk7/mJ+fj6qqKu7n3NxcVFdXY9iwYWhqakJmZqbGONuuC6qoqMD169cxYsQIDBgwQKvPqem7YJP45MmTtarPUNBG1fgoWFpaYvjw4Th8+DCsra1VmvevXr2KcePGwcLCAr/99ht69+6tl2t3BUaVUAxdAQk8/EuvSb8IAH/99Rfs7e1ha2vLHautreU0hoqO2ICAAADgRooUfx41ahRqa2tBRAgJCeFtGaH4evXVV5ViDgoK0vpzavou6uvrAUDliNLjQkfUkm1paWlREnvn5+dj3LhxMDc3R1JSEs8yaAwYVUIxdAUkoL1+EWj9RWR3qJPJZPjjjz8QEhKC0tJSiMViTleQkZEBiUSCIUOGAGhNIFZWVtz7UqkUNjY28Pb2Rq9evWBnZ4ekpCTs2bMHlZWVaGhoQEFBAfbs2YOXXnoJ+fn5vNjaE2CrQ9N3wU50+/jjjyGVSiGTyVBWVoZjx44hJCQEDx48UHmevoeNOxNt1JKRkZFYu3YtMjIyUFNTg7q6OqSnp2PatGmor6/naTNzcnIwbtw4WFpa4vTp0+jTp09Xfhz9oNipYkidssamgCTSXr9IRLRgwQKl6y9fvpxMTExo+PDhXDlfX18aM2YM97Ofnx8FBQVxP3t5efFGijZs2KD2PpiZmVFjYyMvtldffZUYhuHtPKiIrt9FXV0dubm5qSzX3m6E+hzl6SxVY1s0qSUnTJig9toSiYR3z9555512Y/Xx8Xnke6IvYIydssamgNRFvwgAn3zyCaZNmwZra2u4uLhg48aNmDt3LlpaWrjHHZlMhry8PO7xpra2Fjk5OVxLp7q6GleuXOG1fFasWIG9e/ciICAA9vb2sLKygp+fH5YsWYJLly5xE7JYMjIy4OXl1e6zuq7fhaWlJc6cOYOIiAg4OTlBJBKhX79+iIqKwv79+zXWZSxoUkv+8MMP+PTTTzFixAg4ODjAwsKC208oJycHY8eO7YaoOw/mf9mGIz4+Hm+88YZBLNsXEBAwTBiGwc8//4ywsDDecYNuoQgICBgXQkLRgOI8jvZeRrEaVECgExESioCAgN4QFJAaEPqSBAS0xyhbKHV1dYiJiUH//v0hEonAMIzSKA6LMSkKjZHu0CoKGC5GmVDmzJmDf/7znyguLuYmE6mbMs5OhVecaPak0NzcDIZhMGXKlO4OReAJwOgSyrVr17Bv3z4MGzYMxcXFaGlpARHh9ddfV1nemBSFxkh3aBUFDBej60NJTEwEEWHFihVGMT1bQOBJwihaKHFxcdzQ7Lx58wC0Lgdnj7Vd6AZoryg8cOAAGIZBbGws4uLi4OnpCWtra4wZM4Z7VGqLLmpJFn2vTWlsbMSnn34KHx8fWFlZwdHREZMnT0ZSUhKvXEc0hW+99RYYhuHWFw0ePJi7H+fPn+fKdYZWEWi9vxEREbCzs4ONjQ0iIyNRXl4OhmEQGhr6CHdNoKswihaKpmnfLi4u7ZZXt8SeXRSXmpqKvXv3csfPnj2Ll19+GQUFBdx09IqKCjz//PMoLS3l1XHy5ElkZ2fj5s2b2n2YR2TJkiWcZxZoXdV7/PhxHD9+HDKZDBKJ5JGvcfr0acyYMYNbwHf27Fn84x//wIkTJzpUX1lZGf72t7+hpqYGQOt2m7NmzYKPjw+3OK6hoQEvvvgisrOzufN27dqFhoaGR/w0Al2JUbRQVq9ezS2779u3L3x9fXlL8bds2cIrX1xcDCLidmBTt8SeTSgXLlxAQkICZDIZioqKMHLkSFRWViIxMZEru3v3bpSWlmLKlCnIzs6GTCZDeXk5duzY0aWbWO/fvx+2trY4deoU6uvrUVFRgRMnTuDFF1/krSVJS0sDEaGpqQkAEBwczLtnqjwcLB9//DGWLl2KgoIC3Lt3D0lJSbxVxbt27eLqEYvFGmPevXs3Fi1ahNu3b+POnTt4++230dLSwmulfP/998jOzoaPjw/S0tJQV1eHM2fO8FpGAkaA4mpBQ1ptrMj169cJAM2bN0+r8pp0kQ4ODiQSiaigoIB3fOfOnQSAp+jTVi3Z2QwcOJC8vLyUpNbq0EVTOHPmTAJAc+fO1ToefWkVg4ODCQCdO3eOV3b//v2c91fAcIAxrjZWhBUJaRIssbSnKGRXBs+cORMeHh689+RyOQD+tgXaqiU7m23btqGqqopbsbpp0yacOXOGZ6N7VCIjI/VWF6CdVrGkpESlX8WY9JECRvLIw6LOwaoKTYrC9qRC7KOCjw8bAAAgAElEQVQOqxAAtFdLdjYTJkzAtWvXsH37djz77LOQSqWYOHEiAgICUFtbq5dr6Hv0TButIhGpXP5Pwkxlo8KoEopUKoWtrS08PT01ltWkKGS1h4obLeXk5ODQoUPw9vaGl5cX7z1t1JJdgVgsxoQJExAdHY19+/YhPj4e58+f59SRbemIprBHjx56i1Vb3Nzc0NzcrDS6JvShGBdGk1AaGxuRmZmJESNGqPxLpogmRSHbQtm8eTMKCwshl8tx8uRJTJ06FS0tLfjoo4+4srqoJRXR57BxQ0MDRo0ahV27dqGwsBANDQ0oKSnBzz//DAC4e/eu0jnaaAoNgeDgYADA3LlzkZaWhvr6epw9exYffPBBN0cmoBOKnSqG2ikrlUpV7mHDoqui0MHBgUJDQ8ne3l6pnGKnpC5qSUX0qTSUyWTt6gQvX76s8jxNmkIWtlO2vLxcbQydpVWUy+Xk5+enVBe7819oaKhuN0ugU4Gxd8qy/SfqHmF0URSyHbKjRo3CkSNH4OfnB4lEAj8/P2zfvh3ffPMN7zxd1JKdiUQigVQqRUREBNzd3SEWi/HMM88gPDwcUqkUPj4+Ks/TpCk0BMRiMU6dOoVZs2ahV69e6NmzJ2bPno3169cDgF7m1wh0AYoZxlBbKPrkwIEDBIBOnDjR3aEIaCApKYkA0KpVq7o7FIE2QE0LxShmyuobtv+E3YZCwDBYvHgxPD09MWnSJDg5OSE7Oxvvv/8+AHTp5EGBjvPEJhQbGxve7nkC3U9RURG2bt2qdDwkJATjxo3rhogEdOWJTSjq+hsEuo/Y2Fi4uLggISEBN27cgLOzM2bMmIE1a9Z0d2gCWvJEJpQ7d+50dwiPDRKJBCNHjtSLE8XV1ZVbfyVgnBjNKI9AxxCMbQJdyRPZQhHQH+y6JwEBQGihCAgI6BGjSCisbWzTpk04d+4cRowYAUtLSwwdOpRbgcxCREhMTER4eDgGDBgAc3NzuLi4YM6cOSgrK+PKpaeng2EYfP755xg7dixsbGwQFxeHjIwMeHt7o3fv3oiPj+fVXVdXh3Xr1sHLywtisRhOTk5YunQpZDKZ2tgFY5tgbHuiUJyYYogT29auXUsAaPny5SSRSHhTs/v06UPNzc1c2YSEBLVTwgcPHsyVi42NJQBkZ2fHve/q6kr9+vXjfvbw8ODK37hxgzw9PVXW255rRJ9T74mIFi5cqPbzyWQyrtyIESPanR7f3tT7+Ph4MjU15ZWfNGkSV46dDs++NPlQIiMjycbGhneOiYkJZWZmcmXlcjkNGjRIKc4ZM2YIPhQDBMY89Z5dGbxv3z7s2bMHNTU1KCgogIeHB27evInr169zZW/cuIGoqCgkJiairKwMjY2NKCwsxMiRI5GZmYn79+8DeDi5bcWKFaioqICvry+uXbuGRYsWoba2FkOHDuVsZ01NTZgyZQoKCgoQHR2NK1euQC6XIz8/H5MmTcKxY8eQnp7eJfdCMLYJGDSKGcYQWyh9+vQhhmEoLS2Nd3z+/PkEgG7dusUdy8vLo3nz5pG7uzuJxWLeXztbW1uu3KBBg6h3797U1NRERERBQUHk6OjImdACAwNp9OjRRES0detWAkCxsbFKsZ0+fVrte52BYGwTMARgrC2UsrIy3Lx5E2PGjFGyd+Xm5qJXr16cPuDo0aPw9/fHjh07cPXqVSXB8XPPPQegdWQiNzcX48ePh5lZ60BXVlYWJkyYABMTExARsrKy4O3tDQDYuXMnAODdd99V2iB9/PjxALpOBCQY2wQMGYNPKKxwZ9KkSbzjTU1NuHjxIvcLd//+fcyePRsikQj//ve/UVpaisbGRhARLl++DAAYPHgwgNbk0dzczNna8vPzUVVVxf2cm5uL6upqDBs2DE1NTcjMzNQYZ1dN4xeMbQKGjMEnFLb/RFHlmJmZCblczh2XSqW4e/cuFi1ahMWLF8PZ2RkikQgtLS2cpIdNKGydAQEB3Lmqfh41ahRqa2tBRAgJCeH1QSi+FPcG6kwEY5uAoWIUCcXU1FRpb2JFvyz7HyclJQXXr19HfX09pFIpgoODkZCQAOBhQsnIyIBEIsGQIUMAtCYQKysrbvWxVCqFjY0NvL290atXL9jZ2SEpKQl79uxBZWUlGhoaUFBQgD179uCll15Cfn6+2vgFY5t2CMa2xwTFThVD65R1cHCg5557Tul4eHg4mZiYUHV1NRER1dbWkpOTk9Kw47Rp08jf35/EYjHXAevr60tjxozh6vLz86OgoCDuZy8vL5o4cSL384YNG9QOv5qZmVFjY6Pa+AVjm2BsexyBMXbKsmY1VZY2qVQKLy8v2NjYAGh9Tv/1118RFBQEa2trODs7Y+3atYiPj0dJSQl8fX1hZmYGmUyGvLw87vGmtrYWOTk5XEunuroaV65c4T1irVixAnv37kVAQADs7e1hZWUFPz8/LFmyBJcuXeImj3U2grFNwOBRzDCG1kIReLIRjG2GCQRjm4ChIxjbjB8hoQgYDIKxzfgREoqAwSAY24wfIaEIGAyCsc34MehRHkNm7969YBgGu3fv7tLrPvXUU7yp/6+99lqXXt/QkEgkavUJAl2PkFA6CDujU3HCnSLTp0+Hqakpt8r5Uaivr0d5eTnvmDYbx3cngoLyyUJIKB1k48aNICIMHDiw3XKZmZkYOHAgLCwsHvmalpaW3FT/gwcPAjD8hNLZyOVyvQiyBfSDkFA6kerqahQXF8Pf31/vdaekpEAkEuH555/Xe90CAh3FqBJKWloawsLC4OjoCHNzc/j4+GD16tWoqqriypCWCkgAOHDgABiGQWxsLOLi4uDp6ckpDxUXqQFAUFAQr//ivffeUyrT3NwMMzMzMAyDXr16AXjY38K+2oqFdIm3LcnJyfD394e5uXm790xQUAoKyi5Fcaaboc6UXb9+PTEMo3LtyBdffMGV01YBSUS0atUqAkDh4eFKZe3s7KiyspJXvq0eEgDt2bNHKc7i4mKNa11SU1M7FC9LTU0NmZqa0uLFizXeN0FBKSgoOwMY41oelh9//BFr1qyBjY0NtmzZgtLSUshkMmRnZyMmJob3SKGtAhJ4qIG8cOECEhISIJPJUFRUhJEjR6KyshKJiYm8OIqLi0FE3NCmqjVG/fr14/o5oqOjAQCXL1/mqQ5Y74qu8bKkpqbiwYMH3dJ/IigoBdpFMcMYWgtFLpeTo6MjmZqaKikgVaGtApKodSWzSCSigoIC3vGdO3cSANq0aZPKa4SFhdFTTz2lMZbnn39eYzld4mWJiYkhAFRSUqIxBn0jKCgFiIx4Lc+pU6dw69YtvPPOOxp1gEePHsXrr7+upH5kYRWQwMOVzBEREfDw8OCVYzevsre3V1lPSkqKytZJW+7du4esrCxMnz5dL/EqXr9Pnz5wdXVtN4bOYNu2bZg5cyY8PT0RGBgIT09PDBs2DKNHj+acNI+KoKA0Xgz+kScrKwsAMHny5HbL6aKABB4+7rR9/GBhH3WGDh2q9F5eXh5u3bql8XEjJSUFDx48UNthqGu8bc/LyMjotuFiQUEp0B4Gn1Dq6+sBoN3NtADdFJDAQw1kz549efXk5OTg0KFD8Pb2hpeXl9J12DkPmloo586dAwC1i9p0jZflzz//RFNTk8r3ugpBQSmgDoNPKOzEsY8//hhSqRQymQxlZWU4duwYQkJC8ODBAwC6KSCBhy2UzZs3o7CwEHK5HCdPnsTUqVPR0tKCjz76SGU8ycnJKpvGipSUlAAArl27plK7qGu8LKzmMS0tDZWVle3GAAgKSm0RFJR6QrFTxdA6Zevq6sjNzU3jsKouCkii1g7Z0NBQsre3VzqnbadgcnKyxmHg5ORkpbg/+OADpXLz58/vcLwspaWlJBKJeOeIRCLe7oltERSUgoKyM4CxDhtbWlrizJkziIiIgJOTE0QiEfr164eoqCjs37+fK6etAhJ42CE7atQoHDlyBH5+fpBIJPDz88P27dvxzTffcPUWFxdrjLF///5Kx2JiYhAWFsbTLg4YMKBD8bbF2dkZcXFxGDRoEDepzc3NDaamplre0Y4jKCgFNKKYYQythdIZHDhwgADQiRMnujsUAQNHUFCqBsY6bNwZsP0n7LYZAgKAoKDUB09sQrGxsemy3f4EjANBQfnoPLEJRd3zvsCTi6CgfHSeyIRy586d7g5BwAARFJSPjsGP8jwJfPHFF2AYhpMm6YMHDx7gxIkTePPNN/Hss8/CwsICbm5uWLBgAW7duqW36+hCamoqAgICYG1tDYZheKNeH374IU9JoG7Zg6FRXFyMiIgI9O3bF2KxGD4+Pti5cydaWlrUnkNEnN6hK/fE7gqeyBaKocF2EutTlhQXF4dZs2bxjpWUlODrr7/GiRMnkJ2drTRLuDO5e/cuQkJCVE5+MzSam5shEokQHByMX375RW25rKwsBAYGoqamhjuWm5uLqKgoDB48WK1Ya8eOHcjMzNR73IaA0EIxAC5evAh7e3u4uLjorc7S0lLMmzcPJ06cwLVr13D//n2kpqaiX79+uHbtGg4fPqy3a2lDamoq7t69i4ULF6Kurg5EhMLCQu79Tz75hFMSGMOCvJaWFsyaNQs1NTUIDg5GdnY2Ghoa8Ndff2H+/Plq5wVVVlbigw8+wPLly7s44q5BaKF0M9XV1SgqKsKkSZP0Wu+qVauUjo0ePRoLFy7EihUr9LaQT1v++9//AgBefvllWFpadum1O4Pff/8df/75J55//nkcPHiQM9MNGDAAX3/9tdrzYmJiMHjwYLz++uv47LPPuircLsMoWiikoyaxqqoKDMMgLCwM9fX1iImJwTPPPANLS0tERUXxpEV1dXVYt24dvLy8IBaL4eTkhKVLlyotRtQ1Bm1hFym2fdypra3FG2+8ARMTE6xatQotLS1IT08HwzD4/PPPMXbsWNjY2CAuLg4ZGRnw9vZG7969ER8fr/F6f/zxBwD1y/L1ufaHVTAyDIOFCxcCaB2CZY+17UPRFblcjjVr1sDDwwNisRh2dnZ45ZVXcOnSJaWyFy9exJw5czBw4ECIxWLY29tjypQpOH36NK+cLtrK3377DQAQHR3NldeEVCrF7t27VQ5NPzYoznQzxJmyumoS2fLLli2jwMBApXPOnj1LREQ3btwgT09PlfUqCoE6omrUhg0bNhAA2r9/PxER/fnnn/Tss8+SjY0NHT58mCsXGxtLQKuakr2uq6srT0vp4eHR7rUOHz6sUXakz7U/7FoadS93d3eV540YMYLs7OzU1tvS0kITJ05UWaeFhQX98ccfvPLqrm9iYsKbLa2LtvK1114joFVyFR0dTfb29mRhYUEBAQH0yy+/KMXc3NxM/v7+9Pe//513b1555RWd7qmhADUzZY0ioXz33XcUFRVFiYmJVFZWRo2NjVRYWEgjR44kAFRfX88r/9lnnxEA8vb2ptGjR9Pvv/9ONTU1lJ+fTxEREXT37l1qbGwkf39/MjExoejoaLpy5QrJ5XLKz8+nSZMmEQA6f/58h2PQltDQUO4X84cffiALCwvy8/Ojv/76i1cuKiqKgFZ/bkVFBfn6+hIA+vLLL6m2tpaGDh1K/fr1U3uds2fPkqWlJbm6utKtW7fUltO3g5Zl69atBICOHj2qsaymhHLkyBECQI6OjnTs2DGqra2lwsJCCgsLIwD0t7/9jVd+2LBhtGvXLvrvf/9LTU1NVF1dTYcPHyYzMzOVyVUby1xQUBCZmprSe++9p5R4GIah+Ph4XvnNmzeTk5MT1dbWEpGQULoVXTWJ7F+P8ePHq12Fy/6Cx8bGKr13+vRppfc6omrUBjc3N7K2tqZ33nmHAFBISIjK5DRo0CDq3bs3twI5KCiIHB0dORVjYGAgjR49WuU1EhMTycrKijw9PbtFG0mk34TCirJ37drFOy6TycjR0ZHMzMzo/v373PGcnBx68803ydnZmczMzHjfnb+/v1L92iSUwMBAMjU1JVtbW9q9ezdVV1fTzZs3acWKFQSA+vfvz5UtKyujnj170k8//cQdExJKN3HkyBGl/8BtX6p8oi4uLgRA6a98W4YMGaJxGfxXX33V4Ri0oaqqiqtDLBaTiYmJyrpkMhmZmZnxvKa9e/emmTNnElHrI4CtrS3NmzdP6dzvvvuORCIRjR8/nqqqqjoUpz7QZ0Jh/a+qvt/JkycTACosLCSi1mRiZWWl9rvz8fFRqkObhDJlyhQCQGvXrlV6j209Xr9+nYiIZsyYofS9Pq4JxaA7ZTuiSayoqMD169cxYsQItZ1+TU1NWs0D6Nu3b4dVjdrAdsj2798f586dw8yZM5GcnIwjR47wymVlZaG5uZnTVebn56Oqqor7OTc3F9XV1Tzp04MHD7BkyRLMmTMHUVFRSEhI4PYJMnbof1pGbVQImzdvRl1dHRYuXIi8vDzcv3+fG562tbXtcAysz9fPz0/pPVYKVlVVhfv37+Onn35CcnIyr4OX/Z05fPgwGIbBypUrOxyLIWHQCaUjmkT2P2lQUJDaemtra0FECAkJ4W3toPh69dVXO6xq1AZ2QtuXX36JIUOG4JNPPoFEIkFMTAzPbMZ+poCAAO6+qPqZ9czevXsXL7/8MrZv346vv/4a//nPf7QeiTAEbG1tUVtbq3a2Kfuf+ezZs7zjDQ0NyMzMhJmZGZycnAC0LvgzNTXFli1b4OnpyTlkLly4gOrqapX1a6OtZH3D7B+VthQUFABolZy3N2P2ccSgE0pHNIntyadZevXqBTs7OyQlJWHPnj2orKxEQ0MDCgoKsGfPHrz00kvIz8/vcAzawiYK9pfTxcUF7733HvLz83lzGTIyMiCRSDBkyBAArQnEysqK0y9IpVLY2NjA29sbV65cwfDhw5GTk4Pk5GTMnz9fp5j0vdNgRxgwYAAaGxuxceNGlTsCvPzyywCAlStX4vjx46irq0NxcTEiIyNx8+ZNjBs3jkscLi4uePDgATZu3Ijq6mrU1NTgl19+wRtvvKE2yWqjrZwyZQrMzc3xz3/+E3v37sW9e/dw+/ZtrFy5EpcvX4aHhwf69u0LKysrlX+s2BbyK6+8AiLChg0b9HX7uhfFZyBD6kPpiCbx1VdfJYZhlHb9U4QdrlX1MjMzo8bGxg7HoC39+vVT2rfn7t271Lt3b7K3t6eamhoian0mHzNmDFfGz8+PgoKCuJ+9vLxo4sSJRPSwD0HdS1N/jyGM8ly6dElpl8h33nmHe7+9YWNzc3O6cOECV/bcuXNkYmKiVC4yMpL69u2rsg+FSDtt5eeff64yBhMTEzp06FC7n1HoQ+kGOqJJzMjIgJeXF3r37t1u3StWrMDevXsREBAAe3t7WFlZwc/PD0uWLMGlS5e4v14dVTVqoqqqCiUlJUpbddja2mL16tWoqKjAZ599BplMhry8PO7xpra2Fjk5OdzjTXV1Na5cucL9zLas1ME+3xsygwYNwo8//gh3d3eV/SQMw+DQoUNYvXo13N3dIRKJYGtri6lTpyI1NZV3T0eNGoWjR49i2LBhsLS0RJ8+ffD3v/+93dmsgHbaypiYGOzatQtDhgyBubk5LC0tMW7cOJw4cQKvvPLKo90EI4X5X7bhiI+PxxtvvCHsRyIgIKAWhmHw888/IywsjHfcoFsoAgICxoWQUPRI22FBTa/Nmzd3d7gCAnpHSCgCAgJ6Q0goeoTaDAs6ODjw3ps2bRrv/SVLlnRpbHv37gXDMNi9e3eXXrezkUgkaveP7iyam5tx9OhRhIWFwdXVFWKxGB4eHli5ciVvA3agdSvdb7/9FkFBQXBycuLKxsTE4N69e10ad5egOOxjSMPGxkpdXZ3SUOIXX3yh12u89tprZGJiovWixGXLlhEAys/P12sc3Y3iDoCPijbT7g8ePKh2WN7f35+3jmj9+vVqy3p5eVF1dbXeYu9KYIzDxsaKpaUl1xJhPbHssK6+yMzMxMCBA2FhYaFV+Y0bN4KIjGLYWBfkcjm3gX1XIRKJMH36dBw7dgylpaWor69HamoqvL29kZWVhR07dnBlraysMHv2bCQkJKC0tBR1dXVISEhA3759kZeX9/j1pSlmGKGFol+WLl1KIpGI91frUbl79y4BoPDwcL3VKdCKNi0UdRw/fpwA0IwZMzSW3b17NwGgKVOmdCTMbgfG3EI5cOAAGIZBbGws4uLi4OnpCWtra4wZMwYXLlxQKl9dXY2YmBjOrObm5oaFCxeioqKiw/VGR0eDYRjk5OTwjh88eBAMw2D79u0qY09OToa/vz83FVwR0tIE19zcDDMzMzAMwy3yY/tF2NeePXt4dQcFBfHef++999TcYe3vGWsx27RpE86dO4cRI0bA0tISQ4cO5dYUKaLv6fwRERG8z6WuD4U1xn344Ye4cOECAgICYG5uDnd3d6V7pYutTRPayL/d3NwAwGjs/lqjmGEMsYWyatUq7i8yFJ5D7ezseNPsr127Rq6uriqfWQMDA6mlpaVD9QYEBJCNjQ3nH2GJiYkhAJSenq4Ud01NDZmamtLixYvVfjZtTXDFxcXtTqkHQKmpqby629rcANCePXtUxqDLPVu7di0BoOXLl5NEIuGV7dOnj0r/jL6n88+ePVur5QTs9PbIyEiysbFRmh6fmZnJldXF1qZIXV0dJSUl0cCBA4lhGEpJSdH4GdasWUMAKDExUefPbwhATQvFKBIKa1Bzd3enhIQEkslkVFRUxNnS9u7dS0StazxGjx5NAGj69OmUl5dHcrmc0tPTydnZmQBQbm6uzvU2NjaSRCLh1su05YUXXiCRSERyuVzpvWPHjhEAnlhHkY6Y4KKjowkAXb58Wav7t23bNgJAV69eVXpP13vGekBcXV1p//79VFNTQwUFBeTh4UEAqKioSOkanbU+iKj9Tlk2oYhEIlq9ejXdvn2b7ty5Q2+//TaXFBXR5ZFn3759vKQzYMAA2rdvn8bzMjMzSSKRaPVoZKgYdUJxcHAgkUhEBQUFvOM7d+4kALRp0yYiIvr111+5X4a2f1WJHrZG2vo+ta03PT2dANA//vEPXrnGxkYyNzenIUOGqIybbb20Z0nriAnu+eefV1pU2B5hYWFqy+t6z/r06UMMw1BaWhqv7Pz58wlAu3rJzkCbhDJy5Eje8Vu3bqntv3iUhOLs7Mz9zqijqKiInJ2dafjw4R3WhhoC6hKKwfehXL9+HeXl5Zg5cyY8PDx478nlcgAPn0Pj4uIAAOvWrVNa0MV6KaytrXWuNy0tDYDySM2lS5cgk8mUFvixpKSkoE+fPpy/Q5GjR4/C398fO3bswNWrV5WW6j/33HNK59y7d4/bYEpbUlJSMHLkSJXv6XLPysrKcPPmTYwZM0bJmp+bm4tevXrh6aef1jqurkIx1qeffho9evRQmjOiK6GhoSAi1NXV4fz58/D19cWyZcvUqgiKi4sRGBgIW1tbHD9+XOsROmPC4BNKe36TxMREAA99IhcvXoSFhYVKP0lqaipMTU2593Spl93CQvEXk/WhqEoo9+/fR0ZGhtrh4o6a4FJSUvDgwQOtE0peXh5u3bqlNg5d7hnbUa24h1BTUxMuXrxosBt0WVlZKR1jGEZvC2AtLS0xfPhwHD58GNbW1vjqq6+Uyly9ehXjxo2DhYUFfvvtN42r4Y0Vg9/oi5UQKfac5+Tk4NChQ/D29oaXlxeA1j12VC01T0hIQGpqKkJCQri/trrU+9dff8He3p6nDKytrcW3334LQHVC+fPPP9HU1KRWvsSa4FauXInFixdzxzWZ4M6dOwcAGDdunMp6FWHnaKhroXTknikmp8zMTMjlcr3PtekOtLG1tUdLSwtu377NO5afn48JEybA0tISSUlJBtmK0xdG00LZvHkzCgsLIZfLcfLkSUydOhUtLS346KOPuLL9+/dHfX09PvvsM9TU1KCmpgbffvstQkNDYWpqirVr13ao3sbGRlRUVOCXX36BTCbDH3/8gZCQEJSWlkIsFnPmtLawe/impaWhsrJS6f2OmuBKSkoAANeuXVNpElMkOTkZpqamPN9sW3S5ZxcvXoSpqSmGDx/Oq0PdIyGLIVjgtEUbW1tkZCTWrl2LjIwM1NTUoK6uDunp6Zg2bRrq6+t5exrn5ORg3LhxsLS0xOnTp9GnT5+u/Dhdj2KniqF1yjo4OFBoaCjZ29srDeXNnTuXV/ann35SOeTHMAxt3769w/UuWLBAqczy5cvJxMSEhg8frjLu0tJSEolEvHNEIhE3rNpRE9wHH3ygdM78+fO595OTkzUOLycnJ3f4nj333HNKMYWHh5OJiYnaaeT6HOVRF2/bV3FxMRE97JRdvXq1Uj3tdeZqsrVNmDBB7bUlEgnv/rLbo6h7qTPGGTowxk5ZtuN01KhROHLkCPz8/CCRSODn54ft27fjm2++4ZUPDw/Hrl27MGjQIFhYWMDOzg5TpkxBcnIyFixY0OF6P/nkE0ybNg3W1tZwcXHBxo0bMXfuXLS0tKjtkHV2dkZcXBwGDRrETWpzc3PjNtHuqAkuJiYGYWFhPJNYW7t/cXGxxvvav3//Dt8zVY9OUqkUXl5esLGx0XhtY0CTre2HH37Ap59+ihEjRsDBwQEWFhbw9PTE/PnzkZOTg7Fjx3ZD1AaCYoYxpBbKgQMHCABvu0hDrldA4EkBxthCYfs5VPVRGGK9AgJPOgafUGxsbNC3b1+jqFdA4EnH4BOKj4+P0dQrIPCkY9DzUO7cuWNU9QoIPOkYdAvlceFx1S8+7nSHXtLYERJKB5g+fTpMTU1x//59rcqzU9YVJ4QZIrp+tu6kubkZDMNgypQp3R2KwP8QEkoHeJz1i7p+tseZ7tBLGjtCQtGR6upqFBcX86ZXPy48zp9NoGswqoSSlpaGsLAwODo6wtzcHD4+Pli9ejWqqqp45fStM+xM/aKuSsW6ujqsW7cOXl5eEIvFcHJywtKlSyGTybrss7Hoe0DqWK8AAAVFSURBVI1OY2MjPv30U/j4+MDKygqOjo6YPHkykpKSeOU6omt86623wDAMtyZr8ODBnO7z/PnzXLnO0EsCQHl5OSIiImBnZwcbGxtERkaivLwcDMMgNDT0Ee6agaE4082QZsq2Zf369cQwjMr1EG23qOgMnWFn6hd1USreuHGDPD09VV5fUQjUmZ+NRd8mtoULF6qNQSaTceU6omucOXMmAaD4+HgyNTXllZ80aRJXrjP0knK5nAYNGqQU54wZMwhoNeUZG1AzU9YoEsoPP/xAQKvBbMuWLVRaWkoymYyys7MpJiaGTp48SURdozPUp35RlxgaGxvJ39+fTExMKDo6mq5cuUJyuZzy8/M5leX58+e79LPpO6E89dRTZGtrS6dOnaL6+nqqqKigEydO0IsvvqhSsamLXY1NKD4+PrR8+XIqKCige/fuUVJSEn344Ycqz9GXXpL9HfDx8aG0tDSqq6ujM2fOUP/+/YWE0tXI5XJydHQkU1NTJe2gIl2hM9SnflGXGLZu3UoAKDY2VqmO06dPK73XFZ9N3wwcOJC8vLyURODq6EhCUVxJ3h760ksGBwcTADp37hyv7P79+x+7hGLwfSinTp3CrVu3MHfuXI1GsM7WGepbv6hLDDt37gQAvPvuu0obr48fPx4AOANZV302fbNt2zZUVVVxK3c3bdqEM2fOcN+dPoiMjNRbXYB2esmSkhKVThpDNdw9CgafULKysgAAkydP1li2s3WG+tYvahtDU1MTMjMzNV6PXZvUFZ+tM5gwYQKuXbuG7du349lnn4VUKsXEiRMREBCA2tpavVxD35InbfSSRKRSg0B6UlAaEgafUOrr6wFAaRRDFZp0hsHBwY+kM9S3flHbGGpra0FECAkJ4W24rvh69dVXu+yzdRZisRgTJkxAdHQ09u3bh/j4eJw/f57TbbalI7rGHj166C1WbXFzc0Nzc7PS5nFtR5ceFww+obCTwT7++GNIpVLIZDKUlZXh2LFjCAkJwYMHD7iyna0z1Ld+UdsYevXqBTs7OyQlJWHPnj2orKxEQ0MDCgoKsGfPHrz00kvIz8/v0s8G6HfYuKGhAaNGjcKuXbtQWFiIhoYGlJSU4OeffwbwUKnZFm10jYZAcHAwAGDu3LlIS0tDfX09zp49y7mDHysUO1UMrVO2rq6O3NzcVA4Ptt1Zj6jzdYb61i/qEsOGDRvU1mlmZkaNjY2d+tlUoc9RHplMpvbzSSQStSNPmnSNLGynbHl5udoYOksvKZfLyc/PT6kudog6NDRUt5tlAMBYO2UtLS1x5swZREREwMnJCSKRCP369UNUVBT279/PK9vZOkN96hd1jWHFihXYu3cvAgICYG9vDysrK/j5+WHJkiW4dOkSN8mrsz5bZyORSCCVShEREQF3d3eIxWI888wzCA8Ph1QqVaub0KRrNATEYjFOnTqFWbNmoVevXujZsydmz56N9evXA2j97I8NihnG0FooAgKPK0lJSQSAVq1a1d2h6AzUtFAM2ociIPC4sHjxYnh6emLSpElwcnJCdnY23n//fQDAxIkTuzk6/SEkFAGBLqCoqAhbt25VOh4SEtLtI2v6REgoAgJdQGxsLFxcXJCQkIAbN27A2dkZM2bMwJo1a7o7NL0iJBQBgS7A1dUV27Zt6+4wOh2DH+UREBAwHoSEIiAgoDeEhCIgIKA3hIQiICCgN9R2ysbHx3dlHAICAo8BahPKG2+80ZVxCAgIPAYw/5tGKyAgIPDICH0oAgICekNIKAICAnpDSCgCAgJ6wwzAvu4OQkBA4PHg/wPqBzWEdoTLPQAAAABJRU5ErkJggg==\n", "text/plain": [ "ref_0\n", "SQLiteTable[table]\n", " name: countries\n", " schema:\n", " iso_alpha2 : string\n", " iso_alpha3 : string\n", " iso_numeric : int32\n", " fips : string\n", " name : string\n", " capital : string\n", " area_km2 : float64\n", " population : int32\n", " continent : string\n", "\n", "ref_1\n", "Selection[table]\n", " table:\n", " Table: ref_0\n", " selections:\n", " name = Column[string*] 'name' from table\n", " ref_0\n", " continent = Column[string*] 'continent' from table\n", " ref_0\n", " population = Column[int32*] 'population' from table\n", " ref_0\n", "\n", "Limit[table]\n", " table:\n", " Table: ref_1\n", " n:\n", " 3\n", " offset:\n", " 0" ] }, "execution_count": 3, "metadata": {}, "output_type": "execute_result" } ], "source": [ "ibis.options.interactive = False\n", "\n", "countries['name', 'continent', 'population'].limit(3)" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "What we find is the graph of the expressions that would return the desired result instead of the result itself.\n", "\n", "Let's analyze the expressions in the graph:\n", "\n", "- We query the `countries` table (all rows and all columns)\n", "- We select the `name`, `continent` and `population` columns\n", "- We limit the results to only the first `3` rows\n", "\n", "Now consider that the data is in a database, possibly in a different host than the one executing Ibis.\n", "Also consider that the results returned to the user need to be moved to the memory of the host executing Ibis.\n", "\n", "When using interactive (or eager) mode, if we perform one operation at a time, we would do:\n", "\n", "- We would move all the rows and columns from the backend (database, big data system, etc.) into memory\n", "- Once in memory, we would discard all the columns but `name`, `continent` and `population`\n", "- After that, we would discard all the rows, except the first `3`\n", "\n", "This is not very efficient. If you consider that the table can have millions of rows, backed by a\n", "big data system like Spark or Impala, this may not even be possible (not enough memory to load all the data).\n", "\n", "The solution is to use lazy mode. In lazy mode, instead of obtaining the results after each operation,\n", "we build an expression (a graph) of all the operations that need to be done. After all the operations\n", "are recorded, the graph is sent to the backend which will perform the operation in an efficient way - only\n", "moving to memory the required data.\n", "\n", "You can think of this as writing a shopping list and requesting someone to go to the supermarket and buy\n", "everything you need once the list is complete. As opposed as getting someone to bring all the products of\n", "the supermarket to your home and then return everything you don't want.\n", "\n", "Let's continue with our example, save the expression in a variable `countries_expression`, and check its type." ] }, { "cell_type": "code", "execution_count": 4, "metadata": {}, "outputs": [ { "data": { "text/plain": [ "ibis.expr.types.TableExpr" ] }, "execution_count": 4, "metadata": {}, "output_type": "execute_result" } ], "source": [ "countries_expression = countries['name', 'continent', 'population'].limit(3)\n", "type(countries_expression)" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "The type is an Ibis `TableExpr`, since the result is a table (in a broad way, you can consider it a dataframe).\n", "\n", "Now we have our query instructions (our expression, fetching only 3 columns and 3 rows) in the variable `countries_expression`.\n", "\n", "At this point, nothing has been requested from the database. We have defined what we want to extract, but we didn't\n", "request it from the database yet. We can continue building our expression if we haven't finished yet. Or once we\n", "are done, we can simply request it from the database using the method `.execute()`." ] }, { "cell_type": "code", "execution_count": 5, "metadata": {}, "outputs": [ { "data": { "text/html": [ "<div>\n", "<style scoped>\n", " .dataframe tbody tr th:only-of-type {\n", " vertical-align: middle;\n", " }\n", "\n", " .dataframe tbody tr th {\n", " vertical-align: top;\n", " }\n", "\n", " .dataframe thead th {\n", " text-align: right;\n", " }\n", "</style>\n", "<table border=\"1\" class=\"dataframe\">\n", " <thead>\n", " <tr style=\"text-align: right;\">\n", " <th></th>\n", " <th>name</th>\n", " <th>continent</th>\n", " <th>population</th>\n", " </tr>\n", " </thead>\n", " <tbody>\n", " <tr>\n", " <th>0</th>\n", " <td>Andorra</td>\n", " <td>EU</td>\n", " <td>84000</td>\n", " </tr>\n", " <tr>\n", " <th>1</th>\n", " <td>United Arab Emirates</td>\n", " <td>AS</td>\n", " <td>4975593</td>\n", " </tr>\n", " <tr>\n", " <th>2</th>\n", " <td>Afghanistan</td>\n", " <td>AS</td>\n", " <td>29121286</td>\n", " </tr>\n", " </tbody>\n", "</table>\n", "</div>" ], "text/plain": [ " name continent population\n", "0 Andorra EU 84000\n", "1 United Arab Emirates AS 4975593\n", "2 Afghanistan AS 29121286" ] }, "execution_count": 5, "metadata": {}, "output_type": "execute_result" } ], "source": [ "countries_expression.execute()" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "We can build other types of expressions, for example, one that instead of returning a table,\n", "returns a columns." ] }, { "cell_type": "code", "execution_count": 6, "metadata": {}, "outputs": [ { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAApsAAAGQCAYAAADhvas6AAAABmJLR0QA/wD/AP+gvaeTAAAgAElEQVR4nOzdeVxUVf8H8M9lQFZBBVGU3MAFBMUlUcw0lyzX3ICnnsrUNJ9SSwvRNMk2l0zLzDQrH7cEMs2dtNwIDEVQEdxxB8UFZF/P7w9+cx+GmQFmZBiWz/v1mld577nnfu+dO4fvnHvOHUkIIUBEREREVPlCTYwdARERERHVXkw2iYiIiMhgmGwSERERkcGYGjsAqlq3bt1CRESEscMgIiKqkXx9fY0dQo0jcYJQ3RISEgI/Pz9jh0FERFQjMW3SWSh7NusofliIiIgqjp01+uOYTSIiIiIyGCabRERERGQwTDaJiIiIyGCYbBIRERGRwTDZJCIiIiKDYbJJRERERAbDZJOIiIiIDIbJJhEREREZDJNNIiIiIjIYJptEREREZDBMNomIiIjIYJhsEhGRUezfvx+SJEGSJKxYsaLa10tE+mGySbWWo6Oj/AdHkiSMHj3aqPFs3boVkiRh06ZNRo2jompbvLpcD/peOzXtnFWWgQMHyueqXr16aNq0KZ5//nl8//33yM3NNXZ4Febv7y8fR0ZGhrHDqTTh4eHw8fFB/fr1IUkSXF1d5XXz5s1TudYdHByMGGnFJSYmYvz48WjevDnMzc3RsWNH/PzzzygqKtK6jRACPXv2hCRJeOmll6owWmKySbVSZmYmUlJSVJb16tWrUvcxZswYKBQKZGVlVaj8iRMnAAA9evSo1DgMpTbFq8v18CTXTk07Z4aQn5+Pu3fv4sCBA5g6dSp69+6NBw8eGDusOuvRo0cYMWIEIiMjq30CXVBQAEmSMGzYsDLLxcbGokuXLvjvf/+LO3fuIC8vD/Hx8ZgwYQLOnDmjdbsffvgBMTExlR02VYSgOiU4OFjUtbd9+/btAoA4duxYpdbbunVr0aFDh0qtkwxPl+vBUNdObTNgwAABQAAQ+fn54tatW+Ltt9+Wl7388svGDrFC/Pz85JjT09ONHU6l2LlzpwAgpk6dKjIyMsos6+3tLezt7asoMnX5+fkCgBg6dKjWMoWFhcLT01Mud+bMGZGbmysuXbokJk+eLM6cOaNxu/v374tGjRqJuXPnCgBi5MiROsdXF/9+VpIQ9mxSrXf06FGYmZmhW7dulVZnamoqEhMT4eXlVWl1UtXQ5XowxLVTFzRv3hzffvstunfvDgAIDg5GUlKSkaOqm27fvg0AePHFF2FtbW3kaJ7c4cOHcfbsWXTr1g3bt2+Hp6cn6tWrB1dXV6xZswaenp4atwsICECXLl0wbty4Ko6YAN5Gpwr67bffIEkSVq1ahS1btqBDhw6oX78+nnnmGfnWYUmpqakICAiAq6srLC0t0bp1a0ydOhX379/Xu95Zs2ZBkiScO3dOZfn27dshSRJWr16tMfYjR47Ay8sLlpaWGtcLIXDgwAH4+/vL8bZo0QITJ07EnTt35HIFBQUwNTWFJElo2LAhgP+N0VO+Nm/erFJ3//79VdZPmzZNyxmu+Dnbs2cPJEnCV199hYiICHh7e8Pa2hrdu3dHZGSk1voroqLxGiKGqKgoSJKExYsX49lnn4WdnR22bNmC6OhouLu7o1GjRggJCdEr3pLKux50LVsd3uOUlBTMnz8fnp6esLOzg6OjIwYPHozDhw9rjWXRokWQJAmtWrUq9zzoa+TIkQCAwsJCHDt2TF5uY2Ojcs40TeRJTk6GQqGAJEl49dVXVdadOHFC3m727Nk61av022+/oXPnzrCwsEDbtm2xZcsWrcfx+PFjzJ07F+3bt4eFhQVsbW3x7LPPql2P1UVsbKx8/FOnTgUAjBgxQl5WcsymrnJycjB//ny0bdsW5ubmsLe3x8iRI3H69Gm1sidPnsTEiRPRrl07mJubw8HBAcOGDcOhQ4dUyinHUZqZmQH43/WvfL3zzjty2YMHDwIo/nugLF+eyMhIbNq0CStXrtT3sOlJGbtvlaqWvrcBlLce/P395dtMype9vb148OCBXPb69euiZcuWauUAiH79+omioiK96vXx8RF2dnaisLBQJbaAgAABQERFRanFnZaWJhQKhZg+fbrWYwsLC9MYKwDRpUsXuVxiYqLWcspXeHi4St2tWrVSWb9582aNMehyzoKCggQA8f777wsLCwuVsk5OTqKgoEDrsZanovEaIoZVq1bJ77uyrpYtW6rE1LZtW73iVarI9aBrWWO/xykpKeKpp57SWG/Tpk21xv3FF1/I5/hJlb6NrrR161Z5+ccffywvt7a2Vot1+fLlavX26dNHABCNGzdW+dwvXLhQ3u7EiRM617t3714hSZJKOUmShLOzs9pt9EePHgl3d3etn/l58+Y98fnTJiUlRa/tYmJiymynXFxcNG5X3m30oqIi8fzzz2us08rKSpw6dUqlvLb9m5iYiP3796vst6x43377bbns6NGjBQBx7do1MWvWLOHg4CCsrKyEj4+P2L17t1rMBQUFwsvLS3zwwQcq54a30atUCM9aHaPvh2Xw4MFyIxUWFiays7PF1atXRc+ePQUAsXXrViFEcWPUu3dvAUCMGTNGJCQkiJycHBEVFSU35PHx8TrXm5eXJywsLMTzzz+vFlufPn2EmZmZyMnJUVu3Z88eAUD88ssvWo/txx9/FBMmTBAHDhwQd+7cEXl5eeLy5ctyDJmZmWrbzJo1SwAQcXFxFTp/3333nQAgrly5orZO13M2bNgwOUnYtm2bSEtLExcvXhRt27YVAMTVq1crFJO+8RoqhgkTJggAYsmSJeL+/fvCw8NDABBffvmlSE9PF927dxetWrXSK16lilwP+pQtLwZDvsfLly8XAMSwYcPEmTNnRHZ2tkhJSRE//PCDeO2117TGWxXJ5r59++TlM2fOVNuu5HpNSeE333wjry/5ZbJXr14CgNbrobx6e/ToIa//4YcfxKNHj8SCBQtUEhxlsjl16lR52bJly8Tjx4/F9evXxZAhQ+Qk9ezZszqfs/Lk5OQIZ2dnsWzZsieqZ+XKlQKA2LVrV7lly0s2leM/mzZtKvbs2SPS09PF5cuXha+vrwAgBg0apFL+6aefFuvXrxe3b98W+fn5IjU1Vfz+++/C1NRU47jMiozZ7N+/v1AoFGLatGlqSakkSSIkJESl/IoVK0SzZs3k95PJplEw2axr9P2wNG7cWJiZmYmLFy+qLP/5558FAPHVV18JIYp7DJSNRcmeGiH+14tZ8ttnReuNiooSAMSCBQtUyuXl5QlLS0vRtWtXjXErez2vXbum9dgSEhLEm2++KVxcXIS5ublK49WgQQON23Tr1k04OjpqrbM0X19freV1PWdOTk5CkiRx/PhxlbKTJ08WAERycnKF49InXkPF0KlTJ9GoUSM5Wenfv79o2rSp3KPVr18/0bt3b73iVarI9aBP2fJiMOR7vGTJEgFA7Nmzp0JxGoK2ZFN53ADErFmz1LYrLym8ffu23AOp7Bl98OCBUCgUAoDcW6VLvenp6XKdPXv2lJcXFhaq9BCnp6eLwsJCYWdnp1ZWCCHi4uLksiV7bSvTn3/+KaysrOR2UB+VmWwqE+/169erLM/OzhZNmzYVpqamIisrS15+7tw58fLLLwtnZ2dhamqq0rZ6eXmp1V+RZLNfv35CoVCIBg0aiE2bNonU1FSRlJQkZs+eLQCINm3ayGXv3LkjbG1tVb4wMtk0Ck4QovLduHEDKSkpeOWVV9C2bVuVdTk5OQAgP5tNOe5p4cKFkCRJpazy+Wf169fXud7jx48DUH8EzenTp5GdnS1PRCjt6NGjcHJyQsuWLTWu37VrF7y8vPDDDz/gypUras8E7Ny5s9o2jx8/RmxsLPr166exTm1x9OzZU+M6Xc7ZnTt3kJSUhGeeeQbe3t4qZePj49GwYUM0adKkwnHpE68hYsjJyUF8fDyee+45mJqaAigedzZgwACYmJhACIHY2Fi4u7vrHG/pcmVdD/qWLS8GQ77HEyZMQNeuXTFmzBj4+vrim2++QWxsbIViNrTHjx/L/29nZ6fz9s2aNZM/8/v27QMA/PHHHygsLAQAvSZ7JCUlQQgBQPXzbWJioja5JDk5GWlpaQCAf/75B6amplAoFDAxMYGHh4dcLjExUacYnJ2dYWFhUe5ryJAhyMnJwcyZM3HgwAGdj7Wy3bhxAwDQu3dvleUWFhbo2rUrCgoK5HHu8fHx8Pb2xpYtW3Dr1i0UFBSobJOfn69XDDY2NigsLMS7776LV155BXZ2dmjatCkWLVoEDw8PXL16FTdv3gRQPK6zS5cu8Pf312tfVHlMjR0AVX/R0dEA1BsYAHIDqEz2Tp48CSsrK3Tp0kWtbHh4OBQKhbxOl3qVk0dK//ENCwtTKVdSVlYWoqOjMXz4cI3HlZWVhddffx1mZmZYsmQJRo8ejSZNmsDMzAznzp2Dh4eHxuM4evQoCgsLK5xsJiQkIDk5WeuzGnU5Z8pJU4MHD1Ypl5+fj5MnT+qUAOsbryFiiI2NRUFBgXwtXLhwAQ8fPpT/HR8fj9TUVDz99NM6x6tU3vWgb9mKxGDI99je3h4nT55EREQEIiIisHfvXrz77rsYO3Ystm7dChMT4/UpXLx4Uf7/Dh066FXHuHHjEBERgaioKDx48EBOOlu2bKnxeiiPMtGsyLqS/xZCyEluadnZ2TrFMH78+Ao981IIgZ9++gl2dnZqX8iNQXk+Sn9h0mTFihXIyMjA1KlTMX36dLRs2VKeaKecYKkP5Zc/TbPO27Vrh7i4ODx8+BD29vb45ZdftMb7+++/yxPMFi1apHc8VDFMNqlcJ0+eBADY2tqqLD937hx27NgBd3d3uLm5AQAyMjI0frDDwsIQHh6OESNGyD04utR76dIlODg4oEGDBnK59PR0rFu3DoDmZPPs2bPIz8/X+AceKJ6h+OjRIwQGBmL69Ony8qKiIsyZMwcANG4bEREBAOjbt6/GektTzgjW1uulzzkrndTExMQgJyenUh5cX168hohBWaePjw8AyDOuS/9bU93lxatU3vWgb9mKxGDo91iSJPTu3Ru9e/fGBx98gDfeeAPr169HYGAgunbtWqFjMISdO3cCAExNTdGnTx+96hg7dixmzpyJoqIihIWFyV8wx44dq1d9zZo1gyRJEEKozKAuKipCXFycStkmTZrAxsYGGRkZGDhwYKX1Ln766afllhFCYOLEibC1tcWhQ4cM+tQApQYNGiA9PR1FRUUav6QoE72///4bLi4u8vLc3FzExMTA1NQUzZo1AwBcvXoVCoUC33zzjXy3Aij+MpWamormzZur1a/cZ15entYYlW19XFyc2i97Kb/cODg4lPlLQlT1eBudyqXsgVyxYgUuX76MnJwc/PHHHxg+fDiKiorw0UcfyWXbtGmDzMxMfP7550hLS0NaWhrWrVuHsWPHQqFQICgoSK968/LycP/+fezevRvZ2dk4deoURowYgZs3b8Lc3FzllpbSo0ePABTfgtf0CybKhu3o0aO4ceMGMjMzERkZiaFDh8p/0DQlG9euXQMAXL9+Xe3WkCZHjhyBQqHQ2gujyzk7efIkFAqF2i/UaBtmoI/y4jVEDNHR0fKtOKA4ubSxsZHf18jISNjZ2Wm8jV5evErlXQ/6lq1IDIZ6jydPnoz58+fj9OnTyMrKwoMHD7B582bs3LkTkiSVOZzBkI8+SkpKwrRp0+TE2c/PD02bNtWrLmdnZ/mOxuLFi3H37l0A+t1CB4pvwyrfp+PHj2PdunVITU3FwoUL5duvSqampnJS++eff+Lzzz/H7du3kZubi2vXrmHnzp0YN26cxse/PamCggKYmZnh8OHDVdar6erqiry8PCxbtkzjz4y++OKLAIDAwEDs27cPGRkZSExMxBtvvIGkpCT07dtX7r1s0aIFCgsLsWzZMqSmpiItLQ27d++Gn5+f1kcWmZiYoFGjRoiKisKJEyc0tq/Dhg2DpaUlli5diq1bt+Lx48e4e/cuAgMDERcXh7Zt26J58+awsbGBEELtpfwFoZEjR0IIwV7NqlL140TJmPQZ4Ny4cWMxduxY4eDgoDb7b9KkSSplf/nlF7Uy+P9ZgqtXr9a73rfeekutzPvvvy9MTExEjx49NMZ98+ZNYWZmprKNmZmZ/NiY9PR00axZM7V6R40aJby8vIS5ubnKZAelOXPmqG0zefJkef2RI0c0noOSryNHjuh9zjp37qwWk7+/vzAxMRGpqakaz0VZdI3XEDF4eHiIZ555Rv63p6en6N+/v/xvNzc3+UkEusarVN71oEvZ6vIeK2ena3oFBgaWec4NNRu99Ktr167i/v37ctkxY8aUe+5KH/+XX36psr5FixZqE610qXfPnj0aH33UokUL+d/K2cv37t0T7dq1K7PeyMjIJz6HhqLLBKHTp0+rnZcpU6bI68t69JGlpaXKY6giIiKEiYmJWrk33nhDNG/eXHTs2FFjDC+//LLaNiUffSSEEIsXL9YYg4mJidixY0eZx8gJQkbBCUJUNuUknl69emHnzp3w9PSEhYUFPD09sXr1aqxdu1alvL+/P9avX49OnTrBysoK9vb2GDZsGI4cOYK33npL73o//fRTjBo1CvXr10eLFi2wbNkyTJo0CUVFRVonBzk7O2PLli3o1KmT/G27devWUCgUAIp7OPbu3Yv+/fujfv36cHZ2RlBQEEJCQnDt2jV4eHio3P5RCggIgK+vLxwcHORboyUfklyRyQJt2rTR+5xpulUbGRkJNzc3vSZh6BKvIWLIzs5GQkKCfMs8PT0d586dk3vwUlNTcf78efnfup5fpfKuB13KVpf3OCQkBBMmTECbNm1gYWGBVq1aYeTIkfjjjz/wxRdflBujIZiZmcHR0REDBw7Ed999h7///hv29vZPVGfpW+Zjxoyp0LhBbYYMGYLg4GC4u7vLvz7z3//+V2OvfOPGjXHixAkEBQXBy8sLVlZWsLS0RLt27eDn54d9+/ap9ULXVJ06dcLGjRvh4uKi8fxKkoQdO3bgww8/hIuLC8zMzNCgQQMMHz4c4eHhKm1xr169sGvXLjz99NOwtraGk5MTPvjgA6xZs6bMGL755hu88sorKu1raQEBAVi/fj26du0KS0tLWFtbo2/fvti/f7/8QwJUvUhClDFammqdkJAQ+Pn5lTlIvqTt27dj9OjR2L9/v9qEhSdhqHqJiIgMQde/nyQLZc8mlUk5rlLTmMjqWC8RERFVL0w2qUzR0dGws7PTOHOwOtZLxUr/PnRZL22/HV0bYiAiIuNjskllio6ORseOHWtMvURERFS98DmbVKZ79+7VqHqpWHUYU1QdYiAiIuNjzyYRERERGQyTTSIiIiIyGCabRERERGQwTDaJiIiIyGCYbBIRERGRwTDZJCIiIiKDYbJJRERERAbDZJOIiIiIDIbJJhEREREZDJNNIiIiIjIYJptEREREZDBMNomIiIjIYJhsEhEREZHBMNkkIiIiIoMxNXYAZBwhISHGDoGoSmVnZ+P27dto2LAh7O3tjR1OjfXgwQM8evQIzZs3h6WlpbHDIaoykZGRxg6hxmKyWUf5+fkZOwQiIiKqAyQhhDB2EEREusrJyUFCQgLi4+MRFxeHuLg4xMbG4vbt2xBCQKFQwMzMDLm5uRBCoGvXrjh69Cisra2NHXqNl5mZib59+yI6OhoAYGZmhqKiIhQWFgIAHB0d4eHhgc6dO8PNzQ0dO3aEu7s7GjRoYMywicg4QplsElGNkZGRgfHjx+PEiRO4desWioqKYGJiAjMzM+Tl5UFTc2ZmZgZnZ2dERUXBwcHBCFHXTvfv34e3tzdu3ryJ/Px8jWXq1auHwsJCOQl1cHBAt27d8Ouvv8LGxqYqwyUi4wnlBCEiqjFsbGxgbW2NmzdvoqioCABQVFQk916WplAoYGtriz///JOJZiVzcHDAn3/+iQYNGsDUVPOIrLy8PDnRBIrHezZv3pyJJlEdw55NIqpRbt++DRcXF+Tm5pZZzsTEBObm5vj777/RpUuXKoqu7omLi4OPjw+ysrJUEktN6tWrhytXrsDZ2bmKoiOiaoA9m0RUszRv3hwzZ87U2pumJEkSduzYwUTTwDw8PLBr1y4oFApIkqS1nKmpKWbPns1Ek6gOYs8mEdU4Dx8+hKurKx49eqRxvSRJWL9+PV577bUqjqzu+v333zF69Gh5eENpdnZ2uHDhApo0aVLFkRGRkbFnk4hqlt9++w29evVC8+bNYWKi3oRJkoSlS5cy0axiI0eOxKpVqzSuMzExgbu7O7p3746ff/5Za0JKRLUTk00iqhFOnDiBvn37YuzYsejcuTO2bduGli1bqiScJiYmeOuttzBr1iwjRlp3vfXWW/jwww9VbqebmJigZcuW2LZtG0aPHo3JkyfDw8MDoaGhRoyUiKoSk00iqtZu3LiB1157Dd7e3sjPz0d4eDhCQkLQrl07fPnll3IvmampKcaOHYtvv/3WyBHXbZ988gneeOMNKBQKAMVPC1iyZAmcnJzw9ddfIy4uDh4eHvDz88OAAQPkZ3USUe3FZJOIqqWHDx8iMDAQ7dq1Q1RUFIKDgxEREQEfHx+5zOjRo+Ht7Q0A8PHxwcaNGzXeWqeqI0kS1qxZg8GDBwMAunfvjjFjxsjr27dvj5CQEERERCA/Px9PP/00fH19ceXKFWOFTEQGxlaZiKqVvLw8fP3113BxccGPP/6IxYsXIy4uDuPGjdNYfvny5fDy8sKuXbtQr169Ko6WNDE1NUVoaCh8fHywfPlyjbPUe/bsiaNHj+L3339HbGws3NzcMGXKFNy7d88IERORIXE2OhFVC0II/PrrrwgMDERycjKmTZuGuXPnwtbWttxtMzIy+KDwaig7OxuWlpbllsvPz8fPP/+MBQsWIDc3F7Nnz8b06dMrtC0RVXv8uUoiMr7IyEi8//77OH78OF555RUsWrQIzZo1M3ZYVMUyMzPx7bff4rPPPoOdnR3mz5+PiRMnyuM/iahG4qOPiMh4zp8/D19fX/j4+MDKygqnTp3Chg0bmGjWUdbW1pg9ezbOnz+PIUOG4O2330bnzp2xe/duY4dGRE+AySYRVbn79+9jxowZ8PT0RHx8PPbs2YMDBw6gc+fOxg6NqoFmzZphzZo1OHv2LNzd3TF8+HAMGjQIMTExxg6NiPTAZJOIqkxWVhYWL14MFxcX/Pbbb1i1ahVOnz6NIUOGGDs0qoY6dOggz1zPzs5Gt27d4Ovri8TERGOHRkQ6YLJJRAZXVFSEDRs2wNXVFZ9++inee+89XLx4EZMnT+Z4PCpXr169cOzYMQQHB+PUqVPo0KEDZsyYgdTUVGOHRkQVwGSTiAzq4MGD6NKlCyZNmoThw4fjypUrCAoK4kxj0okkSRg3bhwSEhKwcuVKbN26FS4uLli8eDFycnKMHR4RlYHJJhEZRHR0NPr3749BgwahRYsWiI+Px5o1a+Do6Gjs0KgGMzMzw+TJk3HlyhVMmzYNH3/8Mdq1a4e1a9fyN9eJqikmm0RUqW7duoUpU6bA29sbmZmZOHr0KHbt2gVXV1djh0a1iI2NDYKCgnDx4kW8+OKL+M9//oMePXrgr7/+MnZoRFQKk00iqhQZGRkICgpC27ZtcejQIfzyyy84fvw4+vTpY+zQqBZzdnbGmjVrcObMGbRp0wYDBgzAoEGDcPr0aWOHRkT/j8kmET2R/Px8rF27Fi4uLli5ciWCgoJw9uxZjBs3TuPPFBIZgru7O0JCQnDw4EE8fPgQXbt2ha+vL65du2bs0IjqPCabRKS3Xbt2wd3dHdOmTYO/vz+uXLmC2bNnw9zc3NihUR01YMAAnDx5Elu3bkV0dDQ6duyIwMBApKWlGTs0ojqLySYR6eyff/7Bs88+i5EjR6JLly44f/48vv76azRo0MDYoRGpzFxfvnw5fvrpJ3nmem5urrHDI6pzmGwSUYVdvHgRvr6+6NWrF+rVq4fo6GiEhISgdevWxg6NSE29evUwefJkXLhwAZMmTUJQUBDat2+PDRs2QAhh7PCI6gwmm0RUrgcPHiAwMBCdOnVCXFwcgoOD5ednElV3DRs2xKJFi3Dx4kUMHjwYEyZMgLe3Nw4fPmzs0IjqBCabRKRVdna2/POSGzduxDfffCNP/iGqaZ566imsWbMGp0+fhqOjI5577jkMGjQIZ86cMXZoRLUak00iUlNUVITQ0FC4u7vjk08+wVtvvYXz58/z5yWpVujYsSN2796NAwcO4P79++jSpQtee+01JCUlGTs0olqJySYRqTh48CC6d+8Of39/9OnTB5cvX8aiRYtQv359Y4dGVKkGDhyI6OhobN26FceOHYOrqysCAwPx+PFjY4dGVKsw2SQiAEBCQgJ8fX0xaNAg2NvbIzY2Fhs2bEDTpk2NHRqRwZiYmGDcuHG4cOECPv/8c6xZs0aeuZ6Xl2fs8IhqBSabRHXc7du3MWXKFHh6eiIxMRGHDh3CgQMH4OnpaezQiKpMvXr1MGPGDFy5cgUTJ05EUFAQPD09ERoaypnrRE+IySZRHZWZmYnFixfDzc0N+/btw3fffYd//vkH/fr1M3ZoREbTqFEjLFq0CBcuXEC/fv3g7++PXr164ejRo8YOjajGYrJJVMcUFBRg7dq1cHV1xeLFi/Hhhx/i4sWLmDx5MkxM2CQQAUCLFi2wZs0a/PPPP7CyskLfvn0xaNAgxMXFGTs0ohqHf1mI6pCDBw+ia9eueOeddzBixAhcuHABs2fPhoWFhbFDI6qWunfvjr/++gsHDhzAvXv30LVrV0yZMgXJycnGDo2oxmCySVQHnDx5Ev369cPzzz+PDh06ICEhAWvWrEHjxo2NHRpRjTBw4EDExMRg8+bNCAsLk2eup6enGzs0omqPySZRLXbjxg1MmTIF3t7eyM3NxbFjxxASEgIXFxdjh0ZU4yhnrsfHx2P+/Pn4/vvv4eLigq+//hoFBQXGDo+o2mKySVQLPXr0CIGBgWjfvlFapHQAACAASURBVD2OHDmCrVu3IjIyEr179zZ2aEQ1npWVFWbPno0rV65gwoQJmD17tjxznYjUMdkkqkXy8vKwdu1atG/fHuvWrUNQUBDOnDnDn5ckMgB7e3ssWrQIZ8+ehaenJ/z8/NCrVy+Eh4cbOzSiaoXJJlEtIIRAaGgo3Nzc8N5772HChAm4cuUKZs+ejXr16hk7PKJarW3btggJCcHx48dhbm6OPn36YPjw4bh8+bKxQyOqFphsEtVwkZGR6NOnD/z9/dGtWzfEx8dj0aJFsLOzM3ZoRHVKjx49cPjwYRw4cADXr1+Hu7s7pkyZgrt37xo7NCKjYrJJVENduHABvr6+8PHxgaWlJaKjoxESEoKWLVsaOzSiOm3gwIE4deoUvv32W+zatQuurq4ICgpCdna2sUMjMgomm0Q1zP379zFjxgx4eHjg3Llz2LVrFw4cOAAvLy9jh0ZE/8/U1BSTJ0/GpUuXMG/ePCxfvhxt27bF2rVrUVhYaOzwiKoUk02iGiIrKwuLFy+Gi4sLtm3bhlWrVuHMmTMYNmyYsUMjIi2sra3lmetjxozB22+/zZnrVOcw2SSq5oqKihAaGgp3d3d8+umneO+993Dp0iVMnjwZCoXC2OERUQU4ODjg66+/RlxcHDw8PODn5yffbieq7ZhsElVjyp+XfOWVVzB48GBcvnwZQUFBsLS0NHZoRKSH9u3bIyQkBBEREcjLy0P37t3h6+uLq1evGjs0IoNhsklUDZ07dw7Dhg3DoEGD0LhxY8TExGDNmjVo0qSJsUMjokrQs2dPHD16FL///jtiY2Ph5uaGKVOm4N69e8YOjajSSUIIUXLBrVu3EBERYax4iOq8TZs2Yffu3XB1dcWrr76K9u3bGzskqgF8fHzg7OxskLpDQkIMUi8VKywsxIEDB7Bt2zYUFhZixowZ6Ny5s7HDItKLr69v6UWhaslmSEgI/Pz8qi4qIiJ6YsHBwZoa+UohSZJB6iWi2qdUWgkAoaY6FCYiomqoKpJBQyazRFTzldVZyTGbRERERGQwTDaJiIiIyGCYbBIRERGRwTDZJCIiIiKDYbJJRERERAbDZJOIiIiIDIbJJhEREREZDJNNIiIiIjIYJptEREREZDBMNomIiIjIYJhsEhEREZHBMNkkIiKq4fbv3w9JkiBJElasWGHscIhU1Olk09HRUf5wSpKE0aNHGzWerVu3QpIkbNq0yahxPKm4uDiV86rtNWnSJJ3rnjRpkrx9cnKyzjHs2LHjSQ5NRX5+PlauXImePXvCzs4ODRo0QN++fbF3716d66qKeOsKCwsL9OvXr0r3WVBQgF27dsHX1xctW7aEubk52rZti8DAQGRkZKiUzczMxLp169C/f380a9ZMLhsQEIDHjx9XadzVVWW2hR999BEkScKJEycqIbKq0bRpU0iSBA8PD2OHYhS1oT1kO6SqziabmZmZSElJUVnWq1evSt3HmDFjoFAokJWVVaHyysawR48elRoHVb7MzEwMGDAA06dPxz///IPHjx8jLS0NR48exdChQ5GTk2PsEKmSFBQUQJIkDBs2TGuZ3bt3Y8SIEQgNDcWNGzeQl5eHy5cvY/HixejTpw+ys7PlssuXL8ebb76JQ4cOISkpSS67dOlS9OzZE2lpaVVxWNVaZbaF0dHRkCQJ7u7uFd5G17a7JtmxY4ecvH3//ffGDocqqKa3Q3U22bS2toYQAkIIbN++HUDlJ5sxMTFo164drKysKlR+2bJlEEKgXbt2lRpHVfPw8JDPrRACfn5+8rqkpCR5+bp166okhtWrV1d6/XPmzMGxY8cAAMOGDcPly5eRnp6OlStXwszMTOf6DB1vXZKTk4PDhw9X6T7NzMwwZswY7NmzBzdv3kRmZibCw8Ph7u6O2NhY/PDDD3JZGxsbvP766wgLC8PNmzeRkZGBsLAwNG/eHAkJCbwFisptC6Ojo9GqVStYW1tXeBtd2+7q4IUXXpDbkHfffdfY4TyR2tAesh1SZVqptdVQR48ehZmZGbp161ZpdaampiIxMRH+/v6VVidVD48ePcLatWsBAM2bN0dISAgsLS0BAO+88w4aNGgASZKMGSJVsaFDh2Lo0KEqy3r37o1ly5bhxRdfxPHjxzF9+nQA0JgIPP/881i8eDH+/e9/4+TJk1USc11w69Yt3L17F8OHD6/wNmy7qaaqzu1QpfVs/vbbb5AkCatWrcKWLVvQoUMH1K9fH88884zGsTKpqakICAiAq6srLC0t0bp1a0ydOhX379/Xu95Zs2ZBkiScO3dOZfn27dshSZLWb0hHjhyBl5eXnDCUJoTAgQMH4O/vL8fbokULTJw4EXfu3JHLFRQUwNTUFJIkoWHDhgD+N/ZI+dq8ebNK3f3791dZP23aNC1nuOLnbM+ePZAkCV999RUiIiLg7e0Na2trdO/eHZGRkVrrX7RoESRJQqtWrbSWMZR9+/bBz88PHTp0gKWlJaytreHm5oYPPvgAqampGre5ffs2hg8fDisrKzg6OuI///kP0tPT9Y7h8ePHmDt3Ltq3bw8LCwvY2tri2WefRUhIiEq5P//8E7m5uQAAf39/tevm3//+N8zNzVXqnTNnDtq2bQtzc3M0atQIw4cPx/Hjx/WOdd68efI1U7JRaNWqFSRJQocOHQAA4eHhkCQJ/fr1w6uvvgorKyv06dMH4eHh8PLyQv369TF27FhkZmYCAL7//nu53g0bNsDf3x+2trZwcnLCtGnTqu3wgPHjx6t8jrSNlYqNjYUkSZg3bx5OnDgBHx8fWFpawsXFRe2z2bNnT0iSJPdUKz9Xytc777xT4fhsbW3LLdO6dWsAgIODQ4Xrre4ePnwISZLg6+uLzMxMBAQE4KmnnoK1tTUmTJigcptal7bwypUr+Ne//oVGjRrB0dERS5YswZUrV+T3Vkn52fDw8CizLdSn7VYyZrsJFPdQlR7bqKlXysLCApIkYdSoUfKyqVOnytvY2NiolK9oewgU375V1vPtt99i7dq1cHd3h4WFBZ555hkkJCTIZfVp62sKtkNlEKUEBwcLDYvLNXfuXAFA+Pv7CwAqL3t7e/HgwQO57PXr10XLli3VygEQ/fr1E0VFRXrV6+PjI+zs7ERhYaFKbAEBAQKAiIqKUos7LS1NKBQKMX36dK3HFhYWpjFWAKJLly5yucTERK3llK/w8HCVulu1aqWyfvPmzRpj0OWcBQUFCQDi/fffFxYWFiplnZycREFBgcZ9fPHFFwKAaNmypdZzoQ8/Pz95/0lJSWrrk5KSyjxnAwcOlMtOnDhRXu7s7KxW9oUXXlCrf/Xq1fL67du3a4zx0aNHwt3dXWsM8+bNk8sqzy8AsXHjxjKPPS0tTXh6emqs09TUVGzbtk2veD/88EO5zIkTJ+Tlymukffv2Qgghjh07JgAIhUKhtu+S/161apXavp2cnNRi/vTTT8s83ieRkpKi97avv/66Spx9+/bVWC4mJkYAEG+88Yaws7NT2cbExETExMTIZb29vcu8Lt9++22t8WRkZIi//vpLtGvXTkiSJI4ePVruMcyfP18AEAcOHND5+AGI4OBgnbczdP3KtnPmzJmiX79+aufw77//lstWtC08ceKEqF+/vlpdU6ZMEQDE77//LpedN2+eACDeeeedMttCfdpuJUO0m02aNBEARMeOHcsta21trRbr8uXL1cqZm5uXeXzW1tZyWV3aQyGE2LVrl7yuS5cuauXHjBkjhNCtrVeqSHtYmdgO6d8OlZE/hlRaz2Z0dDSA4oHdYWFhyM7OxtWrV9GzZ088ePAABw4cAIqjwMsvv4zr169jzJgxSEhIQE5ODqKiouDs7IzDhw/j/PnzOtebn5+PU6dOwdvbGyYmqocVGRkJMzMzdOrUSS3u8PBwFBYWljle89atW5gwYQIOHDiAO3fuyANpe/bsiZiYGPnbeatWreRxJrNmzQJQPKtOlBi/2Lt3b5W6ExMTIYTAd999B6D4W0xpup4z5bf50NBQbN68GWlpabh48SLatm2LpKQk3LhxQ+uxGoMkSRg4cCA2bdqE+Ph4ZGVlITk5GS+99BIA4ODBg7h+/bradvXr18elS5dw6dIluLm5ASh+/EdZvbfazJ07F/Hx8QCKx4s9fvwY169fx5AhQwAAn332GeLi4gAU99Yo2dvbl1lvUFAQzp49C6B4nOfDhw9x7NgxODo6oqCgAJMmTaqSGciFhYWIiYmRe4tMTU1x+/ZtebB5TEyM2jb29va4efMm/vnnH5iaFo+4+e233wwSX25uLrp06YKvvvpKr+3Xr18vf8ZK9iprs2nTJrzzzju4e/cu7t27h1dffRVFRUUqvQrHjx+HEAL5+fkAim9Rlfwsf/vtt2r1/vrrr3IvUf/+/VFUVISQkBD06dOnzHhiY2OxdOlS/Otf/8LAgQN1PPrqS9l+79+/H/n5+Th8+DDS0tJw4cIFjB8/XmXSTkXawuzsbIwbNw7p6emYM2cO7ty5g8ePHyMoKEgej1ZyUpGyLdy1a1eZbaE+bXd1kZGRASEE9u3bV2a5nJwclTkKALB69Wr5+ErOVtalPSwtJiYGEyZMQGJiItLT07FkyRJ5WJG+bX1VYTtkwHZIh8y0TI0bNxZmZmbi4sWLKst//vlnAUB89dVXQggh9u7dKwCIoUOHqvTGCfG/Xszdu3frXG9UVJQAIBYsWKBSLi8vT1haWoquXbtqjFvZ63nt2jWtx5aQkCDefPNN4eLiovbtsEGDBhq36datm3B0dNRaZ2m+vr5ay+t6zpycnIQkSeL48eMqZSdPniwAiOTk5ArHVRnK69ksKioSP/74o+jbt6+wt7dX64UDIA4dOiSEUO3ZDA0NlevYunWrvPzzzz9Xqb+8b8aFhYXyt8uePXuqrIuLi5O3/fjjj4UQQkyfPl1etm/fvjKPXdlD0bp1a5Ue92XLlsl1bN26Vad4hdC9Z1OSJFFUVCR/blxdXYUQQgQGBgoA4qWXXlLb9+rVq+V6vby8BADRuHHjMo/3Sfz555/CyspK/kzry9zcvNwehdLvc3JysgAghg0bprZNfn6+/PkrT2hoqMp16+zsXO7xXL16VTg7O4sePXqIzMzMcvehCVA9ezZHjx4tAIjnnntO6x2V0spqC7/77jsBQMyYMUNtna2trXjqqadUljVu3FjntlDXttsQdOnZVNq3b1+ZPZtK27dv1/gZV9K1PRRCtWeza9euan+n9u/fL4TQra1XquqeTbZD+rdDZfVsVsoEoRs3biAlJQXjx49H27ZtVdYpx3gp7/9v2bIFALBw4UK1SRRFRUUAinusdK1XOf6tdA/l6dOnkZ2dje7du2uM/ejRo3ByckLLli01rt+1axfGjRsnj9ErrXPnzmrLHj9+jNjYWIwZM0bjNtri0PRNHtDtnN25cwdJSUno06cPvL29VcrGx8ejYcOGaNKkSYXjqgqBgYFYsmRJmWU0jRUsee5L9lrfvn1bp/0nJyfLj3lQ9uKJEt8clRITEwEAjRo1kpeVHi9bUlpaGu7evQsA6NKli0qPe8nr8cKFCzrFqw8TExNIkiT3UCoUCpX/arq+mzdvLv+/ciZvXl6ezvt2dnYu8zyVlJ+fj5kzZ8LDwwODBg3SeV8VVfqz0aRJE9SrV0/tWXS6Gjt2LIQQyMzMxLlz57BgwQLMnDkTubm5CAwMVCufmJiIfv36oUGDBti3b1+Nmv1cEcqexbVr18rXWnnKaguDg4NhamqK+fPnqywvKipCQUGBSq/mzZs3kZKSolNbqE/bXdvo2h6WNnToULW/U4MHDwagf1tfGdgOGbcdqpRkU3mrRNNtBuVtbuUf15MnT8LKygpdunRRKxseHg6FQiGv06XeqKgoSJKk9uaFhYWplCspKysL0dHRWmcqZmVl4fXXX4eZmRmWLFmC0aNHo0mTJjAzM8O5c+fg4eGh8TiOHj2KwsLCCj/QNSEhAcnJyVpv5etyzpSTppQfbqX8/HycPHmyyh8yW57c3FysXLkSQPFjG3788UcMGTIEDRs2xNKlSzV+MJQqOuO7vHIlG1AhBAoLCzWWUz6jrGPHjvKy06dP49///neF4tC2z9LxPclM9pL16kL5paWy4ihp/PjxFWo8hRD46aefYGdnp/blsrKVngwBFB+vvuevNGtra/To0QO///47HBwc8O2336pdy1euXMFzzz0Ha2trHDx4UOVLTG1w//593LhxA97e3nB1da3QNhVpC1u3bq02fOXIkSPIysrSeAtdl7ZQ17a7NtK1PSxN28QSfdt6tkP6q07tUKUkm8oPdemZTufOncOOHTvg7u4uj6nLyMjQePGEhYUhPDwcI0aMkHvpdKn30qVLcHBwQIMGDeRy6enp8rMcNSWbZ8+eRX5+vsYkDige6/no0SMEBgbKjwsAiv8wz5kzBwA0bhsREQEA6Nu3r8Z6S1M+i0vbt3l9zlnpxjomJgY5OTmV/izRJ/Xo0SO50XJ3d8err74qrzt16lSZ28bGxsp/xM6cOSMvL9kjBxTPwiy5v9KaNGkCGxsbZGRkYODAgfIXGW0GDBgAc3Nz5ObmYuvWrfjkk09U9rF582aMHTsWdnZ2cHR0xL179xAbGwshhPw+ljy20g1aefECUHmWp3LMcH5+Pu7du1dm7Mbw6aeflltGCIGJEyfC1tYWhw4dMtrMXk2UPdL69OoCxe2Fsodb6cKFCxgwYACsra3x119/Vbu7DZVB2Rb179+/wtuU1Rbm5+cjMzNT4/MylddYyWRT2VmhS1uoa9tdE5X8W6IpqdG1PSyt9JwJJX3b+oq0hxXBdsi47VClTBBSfqhXrFiBy5cvIycnB3/88QeGDx+OoqIifPTRR3LZNm3aIDMzE59//jnS0tKQlpaGdevWYezYsVAoFAgKCtKr3ry8PNy/fx+7d+9GdnY2Tp06hREjRuDmzZswNzfX+LNfygv3+PHjePDggfrJ+f839+jRo7hx4wYyMzMRGRmJoUOHyj2mmpLNa9euAQCuX7+OgoKCcs/fkSNHoFAo8PTTT2tcr8s5O3nyJBQKhdovb2gbZlCSMR7hoWzYAODixYuIjIxEeno6fv75Z2zbtq3MbT/66CNcvnwZly9fxsKFC+Xlzz33nEo5FxcX+f/Xr1+vlpCZmppi7NixAIofa/T555/j9u3byM3NxbVr17Bz506MGzdO7jVu2LAh3nzzTQDFk8f8/Pxw9epVZGRkYNWqVXjjjTfkRvzll18GAFy9ehUfffQRUlNTERERgcWLFwMAGjRoIA+6r2i8QPEtIaXg4GBkZGRg6dKl1fbRROUpKCiAmZkZDh8+bPDeBF2ZmJigUaNGiIqKwokTJzR+pt944w0EBQUhOjoaaWlpyMjIQFRUFEaNGoXMzEx4eXnJZc+dO4e+ffvC2toahw4dgpOTU1UeTpUp686UNmW1hWZmZmjSpAlOnz6Nn376CVlZWbh+/TomTpyIQ4cOwcTERKVTQZ+2UNe2GzD+o490pXy0E1D8t0352DMlXdvDitK3ra9Ie1hZ2A4ZkA4DPLVq3LixGDt2rHBwcFAb7Dtp0iSVsr/88ovG6fuSJKkNVtal3rfeekutzPvvvy9MTExEjx49NMZ98+ZNYWZmprKNmZmZPJA9PT1dNGvWTK3eUaNGCS8vL2Fubi7y8/PV6p0zZ47aNpMnT5bXHzlyROM5KPk6cuSI3uesc+fOajH5+/sLExMTkZqaqvFcCGG8Rx8pJ6mUfjk6OqpNxCk5QahFixZq22h69FFBQYFo06aNxn0kJCQIIYS4d++eaNeuXZnvSWRkpFxnRkaG6NOnj9ay2dnZQgghUlNTtT5CxNTUVGWSky7x3rlzR+1RLpaWlsLW1lYAmh99JIQQGzduVFmvnGg0ePBgIYTqYPxdu3bJMfXu3VsAEHZ2djq++4an7fNR8pWYmCiE+N/A/A8//FCtnrIG9L/88stqdZZ85MiAAQO07tvCwkLl86x8RI+2ly6TQpSA6jdB6KWXXhKSJKk8nq40XdtC5YTOkq+ePXsKZ2dntfOmT1tYXtutiSEffaTtpXyU0JgxY8o9f6XPQXp6utrjdgDVRx/p2h6WnCC0cuVKrcelS1uvVJH2sDpgO2TgRx8pJ/H06tULO3fuhKenJywsLODp6YnVq1fLv7Si5O/vj/Xr16NTp06wsrKCvb09hg0bhiNHjuCtt97Su95PP/0Uo0aNQv369dGiRQssW7YMkyZNQlFRkdbJQc7OztiyZQs6deokP5i7devW8kB2Gxsb7N27F/3790f9+vXh7OyMoKAghISE4Nq1a/Dw8JAnXJQUEBAAX19fODg4yLcsSo5Z0jawuqQ2bdrofc403YKKjIyEm5sb7Ozsyt13Vfvkk0+wdOlSuLm5wdLSEi1btsTChQvloQrahIaGYsiQIbCyskKjRo3w5ptvIjg4WK2cQqHA3r17MWTIEHm4QWmNGzfGiRMnEBQUBC8vL1hZWcHS0hLt2rWDn58f9u3bp9JDohzf8vXXX6NHjx6oX7++/NDj3bt3y7d+7OzsEBERgYCAALi4uMDMzEzuzTxy5Ijcg6BrvE5OTti+fbv8uejYsSNCQ0NVei2o8nzzzTd45ZVXVD7TJW3YsAGfffYZvL290bhxY1hZWaFDhw6YPHkyzp07h2effdYIURtXdHQ03NzcyhwDpmtb+PHHH+Pdd9+Fk5MT7Ozs8Oqrr+LHH3/E7du34ePjI5fTty0sr+2uDWxsbLBz504899xzaNCggcbb3rq2hxWlT1tfkfawrqjJ7ZAkhOqgjZCQEPj5+VV4gOr27dsxevRo7N+/X20g9pMwVL1ERLWNJEkIDg6Gr69vjaz/SXzyySf46KOPEBoaqvHLGxFVjTLyx9An7tlUjsvRNCayOtZLREQ1z6lTpzB27Fj8/fffSE9PR3JyMlauXIlPPvkEzs7OOv3+ORFVrSeejR4dHQ07Ozu1GcDVtV4iIqp54uLisG3bNrXJJMrH6FTkF1uIyDgqJdks+dzBymKoeomIqOYZNWoUEhMTERwcjKtXr8LW1hZ9+vTB3Llz0a1bN2OHR0RleOJk01CPIaiOzwskIiLjqF+/PhYsWIAFCxYYOxQi0lGlPGeTiIiIiEgTJptEREREZDBMNomIiIjIYJhsEhEREZHBMNkkIiIiIoNhsklEREREBsNkk4iIiIgMhskmERERERkMk00iIiIiMhgmm0RERERkMEw2iYiIiMhgmGwSERERkcEw2SQiIiIig2GySXVGUVERioqKjB0GERFRnWKqbUVISEhVxkFkcOfOnYMkSXB3dzd2KEQ1TmRkpLFDIKJqrKw2Qmuy6efnZ5BgiIio5lmxYgVWrFhh7DCIqAaShBDC2EEQGVp+fj4cHBwghMD9+/dRr149Y4dERERUF4RyzCbVCfv370d6ejoyMjIQFhZm7HCIiIjqDCabVCds2rQJpqamUCgU2Lx5s7HDISIiqjN4G51qvczMTDg4OCAnJwcAYG5ujvv378PGxsbIkREREdV6vI1Otd+OHTuQl5cn/zs/Px87d+40YkRERER1B5NNqvU2bdoEE5P/XeqSJGHjxo1GjIiIiKju4G10qtUePnyIJk2aoKCgQGW5QqHA3bt3YW9vb6TIiIiI6gTeRqfaLSQkBNq+T/36669VHA0REVHdw2STarWNGzdqTDaFENiwYYMRIiIiIqpbeBudaq07d+7A2dlZa8+mJEm4ceMGnJ2dqzgyIiKiOoO30an22rJlCxQKhdb1pqamCA4OrsKIiIiI6h4mm1RrbdiwAYWFhVrXFxQU4L///W8VRkRERFT3MNmkWunChQs4e/as1lvoQPG4zbNnz+LChQtVGBkREVHdYmrsAIgM4fjx4+jcubNKz+bdu3cBAE2aNJGXKRQKHD9+HO3bt6/yGImIiOoCThCiOsPX1xdA8eOQiIiIqEpwghARERERGQ6TTSIiIiIyGCabRERERGQwTDaJiIiIyGCYbBIRERGRwTDZJCIiIiKDYbJJRERERAbDZJOIiIiIDIbJJhEREREZDJNNIiIiIjIYJptEREREZDBMNomIiIjIYJhsEhEREZHBMNkkIiIiIoNhsklEREREBsNkk4iIiIgMhskmERERERkMk00iIiIiMhgmm0RERERkMEw2iYiIiMhgmGwSERERkcEw2SQiIiIig2GySUREREQGw2STiIiIiAyGySYRERERGQyTTSIiIiIyGCabRERERGQwTDaJiIiIyGCYbBIRERGRwTDZJCIiIiKDYbJJRERERAZjauwADOXWrVuIiIgwdhhUjaSkpAAAQkJCjBwJVSc+Pj5wdnY2dhhERLWWJIQQxg7CEEJCQuDn52fsMIiomgsODoavr6+xwyAiqq1Ca23PplItzaWJqBJIkmTsEIiIaj2O2SQiIiIig2GySUREREQGw2STqBrYv38/JEmCJElYsWKFscMhIiKqNEw2qUK2bt0KSZKwadMmY4dSaZKTkzF16lS0atUK5ubmaN68Ofr374+1a9ciPT1dpWxBQQGWLl0Kd3d3WFhYwNHREf7+/rhy5YpavU2bNoUkSfDw8KiqQ9FLXFycnOCW9Zo0aZLOdU+aNEnePjk5WecYduzY8SSHRkRE1QiTzVpkzJgxUCgUyMrKqvS6T5w4AQDo0aNHpddtDMnJyXj66afx/fff4/r168jLy8OdO3dw6NAhTJkyBYsXL1Yp/8orryAgIAAJCQnIzc1FSkoKgoOD0aNHD1y8eLHK4t6xY4eckH3//fdVtl8iIiJ9MdmsRWJiYtCuXTtYWVlVet3Lli2DEALt2rWr9LqN4csvv8StW7cAAJ9//jnS0tJw9+5drFixAnZ2dipld+7cKT+b81//+hfS0tIQFhYGMzMzPHz4EDNmzHjieF544QUIISCEwLvvvvvE9VWEh4eHvE8hhMqjwpKSkuTlKT44lAAAIABJREFU69atq5IYVq9ebbD9EBGR8TDZrCVSU1ORmJgILy8vY4dSI0RFRQEAGjVqhDlz5sDW1haOjo6YMWMGYmJi0Lp1a7nsTz/9BKD4MTnLli2Dra0tnn/+eYwePRoAEBYWJieuREREpIrJphbHjx+Hr68vmjZtCktLS3Ts2BEffvghHj58qFIuNTUVAQEBcHV1haWlJVq3bo2pU6fi/v37KuVmzZoFSZJw7tw5leXbt2+HJEkqvTp79uyBJEn46quvEBERAW9vb1hbW6N79+6IjIyUyxUUFMDU1BSSJKFhw4YA/je2UvnavHmzyv4ePnwISZLg6+uLzMxMBAQE4KmnnoK1tTUmTJigcgu+f//+KnVNmzZN6/nKyMjAwoUL4ebmBnNzczRr1gzvvfcesrOz1cqmpKRg/vz58PT0hJ2dHRwdHTF48GAcPnxYa/2LFi2CJElo1aqV1jK6UPb+pqen4/r16yrrWrdujYkTJ8r/Dg8Pl5c7OTnJy318fAAUP8v12LFjesVhY2OjNl5R0wQhCwsLSJKEUaNGycumTp0qb2NjY6NS/vHjx5g7dy7at28PCwsL2Nra4tlnn33iX0/at28f/Pz80KFDB1haWsLa2hpubm744IMPkJqaqnGb27dvY/jw4bCysoKjoyP+85//qI2J1YWhjo2IiAxE1FLBwcFC38P75JNPhCRJAoDaa8mSJXK569evi5YtW2os169fP1FUVCSX9fHxEXZ2dqKwsFBlXwEBAQKAiIqKkpcFBQUJAOL9998XFhYWKvU6OTmJgoICIYQQiYmJGvdd8hUeHq6yv7CwMAFAzJw5U/Tr10+t/N9//y2XbdWqlcq6zZs3azxft27dEh06dNC4/6FDh6qUTUlJEU899ZTGsk2bNtX6nnzxxRcCgGjZsqXWMrr48ssv5f06OjqKr7/+Wjx8+FCt3KNHj+Ryzz77rMq6bdu2yesWLlwoL2/SpIkAIDp27FhuHNbW1mrnYfny5WrlzM3Ny3yfra2tVWJ2d3fXWnbevHkaY/Hz85PLJCUlqa1PSkoqM4aBAwfKZSdOnCgvd3Z2Viv7wgsvqNW/evVqef327ds1xqjvsWkDQAQHB+u0DRER6SSEPZulbNy4EfPnz4ednR2++eYb3Lx5E9nZ2Thz5gwCAgLk29RCCLz88su4fv06xowZg4SEBOTk5CAqKgrOzs44fPgwzp8/DwDIz8/HqVOn4O3tDRMT1VMeGRkJMzMzdOrUSV528uRJAEBoaCg2b96MtLQ0XLx4EW3btkVSUhJu3LgBAGjVqpU83m3WrFkAimf3ihLj8Hr37q2yv+joaADFj9rJz8/H4cOHkZaWhgsXLmD8+PFwd3eXyyYmJkIIge+++w4A0LNnT7XzlZ+fj2HDhuHixYuYNWsWzp8/j5ycHFy4cAGDBw/Gnj175FvWALBp0ybcvHkTw4YNw5kzZ5CdnY2UlBT88MMPeP755/V4x/TzzjvvYOTIkQCAe/fuYcaMGWjSpAn8/Pxw5swZudzjx4/l/7e2tlapo+S/09LS9IojIyMDQgjs27evzHI5OTkQQmD79u3ystWrV8vvc0ZGhrx87ty5iI+PB1A81vbx48e4fv06hgwZAgD47LPPEBcXp3OskiRh4MCB2LRpE+Lj45GVlYXk5GS89NJLAICDBw+q9RIDQP369XHp0iVcunQJbm5uAIqvv5K99BVlqGMjIiIDMlKWa3D69Gzm5OSIpk2bCoVCIY4fP15m2b1798o9dyV7MIUQYu7cuQKA2L17txBCiKioKAFALFiwQKVcXl6esLS0FF27dlVZ7uTkJCRJUoth8uTJAoBITk5Wi6dbt27C0dGx3GMcPXq0ACCee+45uYe0PL6+vlrrXrlypQAgVq1apbbu0KFDauuWLFkiAIg9e/ZUaN+Gtnv3bjFw4EBhYmIi946Zm5uLHTt2CCGEuHbtmrz8xRdfVNl237598rpZs2bJy3Xp2dRUl6aeTaXt27fL5VavXq22vrCwUNjZ2Yn/Y+/Oo6K40v6Bf4sWu9kEBRENKkIwrG4R2UxEdCQRYhIhiEvCEmXMCTH6mhhjJKMmZh2dRKO8Ex3lnQEjMMaJioJEFEQbWQQZBSVENoNog4pszXp/f/DrkrIbUGxoledzTp8jt5669VQ1Hq+37gKAubi4CI5dvHiRP3fjxo1K5/bUs9ne3s7+8Y9/sBkzZjBjY2MmEomUehZPnjzJGBP2bMbFxfF17N+/ny//4osvBPX31LP5KPfWFVDPJiGE9DXq2ezsxIkTqKysxNKlS+Hs7Nxt7L59+wAAmzZtUtpfub29HUBHjw7QMf4TAFxdXQVxFy5cQGNjI6ZOncqXVVRU4Pr165g+fbpSDvn5+Rg6dChGjBghKL979y5yc3Ph4eHR4z0qek1//PFHiESiHuMBIDU1VWWvJgDs3bsXAPDuu+8qjT2cOXMmAAj2pw8JCcGUKVPg6+sLf39/bNu2Dbm5uQ+UR1/w9vZGUlISrl+/jvXr14PjODQ1NSE0NBQNDQ2Cmen19fWCczuPbx02bFi/5dydyspKvpf13LlzGDRoEEQiEbS0tATrfhYXFz903WvXrsXbb7+NlJQUVFdXo62tTSlGLpcrlU2cOJH/c+ce/D/++OOhrt+X90YIIaTvUGOzE0WjR/FKrjtZWVnQ1dXF5MmTlY6lpaVBJBLxxzIyMsBxnFLjMTExEQAEjU3FepZeXl6C2JaWFmRlZalsBKempqKtra3HxmZVVRXKysrg7OyMZ599tsd7BICCggJUVlYqNZQVOeXk5PRYxzPPPMP/2djYGFlZWfj111/h5OSEo0ePYsqUKfD39+cb6ZpgamqKzz77DEuWLAHQ8Wr94sWLMDIygrGxMQAozTjv/PPo0aP7L9ludG7YM8bQ1taG9vZ2QTkAlRO3utPU1ITt27cDALS1tfHPf/4TVVVVaGtrw1dffdXtuff/Z6y3cX11b4QQQvoWNTY7UfRcPcg/VnV1dSr/cUxMTERaWhq8vb35ns3ffvsNJiYmMDIy4uNqa2v59Qs7NzYVPY/3N+5ycnIgl8tVNvrOnj0LAJgxY0a3OSvq9vT07PH+FBQzxFX1bNbW1oIxhnnz5gnGid7/UYzpU+A4Du7u7vjwww+RkJCAwMBAxMXF9WsP5/r163Hjxg2l8lGjRvF/VoyDnD59OoCOHrPOu+F0HnP4wgsv9FWqAp1/5+5vZAHAiBEj+Jnps2fP7vI72b9//0Nd9/bt2/zfCzs7O7z55pswNjaGlpYWzp8/3+25nb/XzuNhO/8nBOiYcd/5ev11b4QQQvoWNTY7USxYvnHjRkilUjQ2NqKiogLx8fGYN2+e4LWhpaUl6uvr+QXBa2pqsHv3bvj5+UEkEmHDhg18bHNzM6qqqnDkyBE0Njbi/PnzmDdvHsrLyyEWiwWvALOysiASiZR26unqVTwAlJSUAABKS0vR2tra5f0pJgfdP2moOykpKRCJRHByclI6NnToUBgbGyM5ORnR0dGorq5GU1MTCgsLER0djZdeeglXrlzh40NDQxEeHo4LFy6goaEB1dXViI6OxqFDh8BxnNLwgM7UvfRRWloa7Ozs8Ne//hUlJSWQy+U4ffo0v6amSCTiX/kGBQUB6GjcffDBB6itrUVSUhIOHDgAoGMJJHXl1RPFEldAR4/2/a/2Bw0aBD8/PwAdw0K++OIL/PHHH2hqakJJSQkOHTqEN954g+9Bf1CdG3qFhYWQSqWora3F3r17+efQlU8//RRFRUUoKirCpk2b+HLFMAsFKysr/s+RkZG4efNmv9wbIYSQPtYvQ0M1oDcThOrq6ti4ceNULqkyefJkQexPP/2kMo7jOKWJG8uXL1eK++CDD5iWlhabNm2aIHb48OFs4sSJSrkFBAQwLS0tdufOHaVjH3/8sVL9oaGhSnGvvfYa4ziOVVdXd/kMUlJSul3eBgBLSUnh47/66qsu4wYNGsSam5v5WGtr6y5j165d22VOjKl/6aMZM2Z0e4/r1q0TxPv6+qqM09HRYVKpVBCrmCDU1cfX17fbOjt/7v9dqK2t5SfJdP50Xvro5s2bbPz48d3We3/OjPU8QWjt2rUq6zI1NeX/fOzYMcaYcILQmDFjlM5RtfRRa2srs7S0VHmNgoKCR7q3roAmCBFCSF+jCUKd6enp4fTp0wgKCsKoUaOgra0NCwsLhISEKPXeBAQEIDIyEhMmTICuri6MjY3h4+ODlJQULF++XBD7+eef4/XXX4eBgQHGjBmDLVu2YOnSpWhvbxe8Qi8rK4NMJlP5yloqlcLW1lZpK0UAWLNmDfz9/WFiYsK/ZlU1JjM7Oxu2trbdTmZ5kMkVlpaW/J8/+ugj7N+/H25ubjAxMYG+vj4cHR2xcuVKXLhwAdra2nxsbGwsQkJCYGlpCYlEAgsLC7z66qs4fvw4vvzyyx6vq07R0dH44osv4OrqCjMzMwwaNAjGxsaYNWsW9u3bh82bNwvif/rpJ3z11VewsbER3NOSJUu6nDzVF/T19XHo0CHMnDkTRkZGSktpAcDw4cORmZmJDRs2YNKkSdDV1YWOjg7Gjx+PBQsW4NixY73a4/6zzz7Dt99+C1tbW+jo6GDs2LHYtGkTPv74427Pi4uLw9y5c6Grq4thw4Zh2bJliImJUYoTiUQ4evQo5s6dyw9B6a97I4QQ0nc4xlQM/HoKxMbGYsGCBSrHtRHyqH788UcsX74cjDGEhobi73//u6ZTIr3AcRxiYmLg7++v6VQIIeRpFTdI0xkQ8iQKDQ2FWCzG7t27u93GkxBCCBnoqLFJSC8FBgYiMDBQ02kQQgghjzUas0kIIYQQQvoMNTYJIYQQQkifocamBu3fvx8cxyEqKkrTqaiFqampYLvK+fPnq6XeTz/9FBzHqXX9xLa2NiQkJGDRokV47rnnoKuri3HjxmH58uWChdsHEolE8kBbnhJCCCEPgxqbGqRoPD0NS7XU19dDJpMJylQtQN8b2dnZ4DgOdnZ2aqkP6Njb/uWXX8ZPP/2EwsJCNDY2oqSkBH//+9/h4uKCu3fvqu1a6tLa2gqO4+Dj46PpVAghhJAHRo1NDdqyZQsYY/zORU8yPT09frvAgwcPAlBvY9PCwgJ6enpqqQ8AysvLsWzZMiQkJKC0tBQNDQ1IS0uDhYUFSktL8csvv6jtWk8KuVzOb09KCCGEqAvNRidql5qaCm1tbTz//POPXNe1a9dw48YNvPLKK2rI7J5169Yplbm7u+Odd97BRx99hNraWrVejxBCCBmoqGezn3l6egrGNXa3RqNMJkN4eDgcHR1haGgIU1NTeHl5qex9unPnDtasWYNnn30WOjo6GDduHN555x1UVVX1OlfGGJKSkhAQEMDXO2bMGLz99tuoqKjo8ryUlBRMmjQJOjo6Ko///PPP4DgOO3bswL59+2BjYwMDAwNMnz5daVxmVlYWAMDBwQFnz56Fs7Mz9PT0MHXqVEilUrXk29n58+cBAM7OzkrH1L0/e3NzMzZv3gx7e3vo6+vDzMwMc+fORXJysiDOxcUFHMfxOxfFx8cLfofCwsKU6l6yZAk4jkNVVRWOHDmCyZMn88/43LlzfFxQUJCgrq7GbObm5oLjOKxfvx6ZmZlwc3ODjo4OrKysEB0drRQvk8kQFBQEY2NjGBoaIjg4GDKZDBzH8fubE0IIGSA0tlNmH+vN3uj9wcLCQrCPc3R0tMo4mUzGRo8erXLvZzMzM0FsaWkpGzt2rMpYDw8P1t7e3qtcExMTu9x/+v694hVqamqYSCRiK1as6LLedevWMQAsICBAqV5jY2PB3u3r169nAFhYWBiTSCSC2JEjR7LW1tZHyrezX375hQFg3t7eKo+re3/2d955p8t8Gxsb+ThnZ+du9wJ/9913lepevHgxA8BiY2OZSCQSxHt5efFxgYGBgmMzZsxQmWtOTg4DwIKDg5X2ZtfS0mI5OTl8rFwuZxMmTFDKc+HChYK94R8HoL3RCSGkr9He6P2tuLgYjDHs3LkTALrcVzsqKgrl5eXw8fFBXl4eGhsbIZPJsGvXLsyZM4ePY4xh0aJFKC0tha+vLwoKCiCXy5GRkQFzc3OcOnUKly9f7lWu165dQ0hICJKSklBRUYHm5mYUFRXBxcUFOTk5aGhoUDonLS0NbW1t3Y7XzM7OBtAxQSoxMRGNjY24evUqXFxcUF1djaSkJD5W0bN5+PBhREdHo6amBoWFhbC2tsb169dRVlb2SPkqnD17FosWLcLYsWPxj3/846GfVW8cOHAARkZGOHHiBOrr61FVVYWEhATMnj2b3+MeANLT08EYQ0tLCwDA29ubHx/LGMMPP/zQ5TU2btyIVatWobCwEHfv3kVycjKcnJz445GRkXw9YrG4x5yjoqIQFhaGGzdu4ObNm3jzzTfR3t4u6N3cs2cP8vLyYG9vj/T0dNTV1eH06dOCHlVCCCEDiOYaun3rce3ZVPD392empqZdHv/mm28YABYfH99tPUePHuV74+7vwVT0IB45cqRXORYUFLBly5YxKysrJhaLBb1URkZGKs9Zs2YNA8BKSkq6rHf48OFMW1ubFRYWCsr37t3LALCtW7cKYjmOY+np6YLY0NBQBoBVVlY+Ur6MMZaUlMT09fWZjY1Nt3mr2/jx45mtrS1ra2t7oPiWlpZue147U/RsLl269IHzEYvFPfZsuri4CMorKysZAObj48OXeXt7MwDs7NmzgtgDBw5QzyYhhAw8sTRBSENSU1O77NUEgJCQEOzfvx++vr545ZVXMH36dLz44ouYNGmSIG7fvn0AgE2bNgl6wwCgvb0dAGBgYPDQ+R0+fBhvvPEGmpqaVB6fOHGiyvLU1FSMHDkSY8eOVXm8rKyMH89nbW0tOCaXywEAJiYmADpmjMtkMrzwwgtKYyjz8/MxdOhQjBgx4pHy3bNnD5YvX47p06fjwIEDGDp0qMq4vrBz504sXrwYNjY28PDwgI2NDZycnODu7g4tLfW8dAgODlZLPQr3fw8jRozA4MGDUVdXx5eVlJRAJBIJelBVnUsIIWRgoNfoGlBQUIDKyspuXzUbGxsjKysLv/76K5ycnHD06FFMmTIF/v7+fCMS6HjNrKuri8mTJyvVkZaWBpFIpPJYdxoaGhAYGAhtbW18//33KC8vR3NzMxhjuHjxIgCorLOhoQHZ2dkP9Ard3d1d6Zji9fnUqVP5ewMALy8vQVxLSwuysrL4xktv8m1ra8PKlSvx9ttvIyQkBImJif3a0ASAWbNmobS0FBEREXjuuecglUoxZ84cuLm5qW02vLomMyno6+srlXEcB8YY/zNjTOk/PopyQgghAw81NjVAMZu8u55NoOMfcXd3d3z44YdISEhAYGAg4uLikJuby8fU1dWp/Ic9MTERaWlp8Pb2fuieTalUitu3byMsLAwrVqyAubk5tLW10d7ejo8//hiA6sbmf//7X7S0tHTbuFU0IIcMGSIov3TpEv7zn//Azs4Otra2AO41TO9vvObk5EAul/PlD5vv7du38fLLLyMiIgJ///vf8b//+7/8TO/+JhaLMWvWLKxevRpxcXGIjY3FuXPnsHv3bqVYRW9nc3PzA9c/ePBgteX6oMaNG4fW1lallQVozCYhhAxM1NjUgJSUFJWvGRVCQ0MRHh6OCxcuoKGhAdXV1YiOjsahQ4fAcRz/6hgALC0tUV9fjy+++AI1NTWoqanB7t274efnB5FIhA0bNjx0fopGTWpqKsrKylBfXw+pVApvb28kJiYCUN3YvH37NoCOCS3V1dUq61Y0IL/77jsUFRVBLpfj+PHjeOWVV9De3o5PP/2Uj83KyoJIJFLaYSk9PR3AvUbow+R7+fJlTJs2DZcuXUJKSgpCQ0Mf+Lmoc+mjpqYmuLq6IjIyEkVFRWhqakJJSQliYmIA3HuWnWlpaWHYsGHIyMhAZmYmWltbHzmPvuDt7Q0AWLp0KdLT01FfX48zZ87wDX9CCCEDjEaHjPahx2mCUEpKSrdL1wBgKSkpfLy1tXWXcWvXrhXU/dNPP6mM4ziORURE9Crf2tpaNmrUKKU6X3/9dTZp0iQmFotZS0uL0nnl5eVMW1tbcI62trZgeaLhw4czPz8/ZmJiolT//ZNZhg8fziZOnKh0nYCAAKalpcXu3Lnz0PnOnTu32++hqwkyjKl36aPGxsYuc5BIJOzixYsqz1u0aNFDLX0kk8m6zKGr353On+LiYsbYvQlCn3zyiVI9908sksvlzNHRUakuxTJLfn5+D/ew+hBoghAhhPQ1WvqoPxQXF/cYY2lpyf85NjYWISEhsLS0hEQigYWFBV599VUcP34cX375peC8gIAAREZGYsKECdDV1YWxsTF8fHyQkpKC5cuX9ypffX19HD16FJ6enjAwMIC5uTk2bNiA2NhYlJSUwMHBAYMGKc8tMzc3x759+zBhwgR+Qfdx48ZBJBIBuDc5yNXVFYcOHYKjoyMkEgkcHR0RERGBH3/8ka9LEatqqIFUKoWtrS0MDQ0fOt8rV650e+/9tXWoRCKBVCpFUFAQrKysIBaLMXr0aAQEBEAqlcLe3l7ledu2bcPixYthYmKicvjE40AsFuPEiRN46623MHToUAwZMgSBgYH47LPPAHTcOyGEkIGDY+zpHLUfGxuLBQsW0KSEx8jBgwcxf/58JCQkKE36IU+/kydPwtPTE+vWrcPmzZs1nQ6AjnHRMTEx8Pf313QqhBDytIqjpY9Iv1GM13RwcNBwJqSvrVixAjY2NvDy8sKoUaOQl5eH999/HwAEmxIQQgh5+lFjc4B4mFeuf/vb37By5Uq155CdnQ1DQ0M888wzaq+bPF6uXr2K7du3K5XPmzcPM2bM0EBGhBBCNIUam6TfZGdndzkWkTxdduzYgTFjxiAxMRHXrl2Dubk5Fi5ciPDwcE2nRgghpJ9RY3OAeBzGrt68eVPTKZB+MnbsWOzcuVPTaRBCCHkM0Gx0Ddq/fz84jkNUVJSmU1ELU1NTcBzHf+bPn6+Wej/99FNwHKe0SPijaGtrw6FDh7Bw4UJYW1tDV1cX1tbW+PjjjwVbLw4kEokEHh4emk6DEELIU4Z6NjVI0Xi6f9HyJ1F9fT1kMpmgrLttKx9GdnY2OI6DnZ2dWuoDgH//+98ICAgQlBUVFeGrr75Cfn4+fvnlF7VdS11aW1uhra0Nb29vHDlyRNPpEEIIIQ+EejY1aMuWLWCM9dvajn1JT08PjDEwxnDw4EEA6m1sWlhYQE9PTy31AUBFRQXeffddpKamQiaToba2Fr/88gv09PRw6NChAfnKXy6X81upEkIIIepCPZtE7VJTU6GtrY3nn3/+keu6du0abty4gVdeeUUNmd2zatUqpbJ58+bB09MThw8fRnV1NUxNTdV6TUIIIWQgop7Nfubp6SkY1/jee+91GSuTyRAeHg5HR0cYGhrC1NQUXl5eKnuf7ty5gzVr1uDZZ5+Fjo4Oxo0bh3feeQdVVVW9zpUxhqSkJAQEBPD1jhkzBm+//TYqKiq6PC8lJQWTJk3idxG6388//wyO47Bjxw7s27cPNjY2MDAwwPTp05XGZWZlZQHoWJvz7NmzcHZ2hp6eHqZOnQqpVKqWfBVaWlpQUFAAAwMDwY5OCurcGx0AmpubsXnzZtjb20NfXx9mZmaYO3cukpOTBXEuLi7gOA7a2toAgPj4eMHvUFhYmFLdS5YsAcdxqKqqwpEjRzB58mT+GZ87d46PCwoKEtTV1ZjN3NxccByH9evXIzMzE25ubtDR0YGVlRWio6OV4mUyGYKCgmBsbAxDQ0MEBwdDJpOB4zj4+fk9wlMjhBDyxNHYTpl97HHaG70zCwsLwX7R0dHRKuNkMhkbPXq0yv2qzczMBLGlpaVs7NixKmM9PDxYe3t7r3JNTEzscs/syZMnqzynpqaGiUQitmLFii7rXbduHQPAAgIClOo1NjZm1dXVfOz69esZABYWFsYkEokgduTIkYJ913uTL2OM1dfXs8zMTObt7c0AsL/+9a8q49S5NzpjjL3zzjtd5tvY2MjHOTs7d7t/eXd7o8fGxjKRSCSI9/Ly4uMU+5UrPl3tDa/YGz04OJgZGhoKztHS0mI5OTl8rFwuZxMmTFDKc+HChQwA8/X1VcvzUwfQ3uiEENLXaG/0/lZcXAzGGL8sjKq9vwEgKioK5eXl8PHxQV5eHhobGyGTybBr1y7BDiyMMSxatAilpaXw9fVFQUEB5HI5MjIyYG5ujlOnTuHy5cu9yvXatWsICQlBUlISKioq0NzcjKKiIri4uCAnJwcNDQ1K56SlpaGtra3b8ZqKnYQyMzORmJiIxsZGXL16FS4uLqiurkZSUhIfq+jZPHz4MKKjo1FTU4PCwkJYW1vj+vXrKCsr63W+itUA9PT04OTkhNLSUuzduxerV6/u1fN6WAcOHICRkRFOnDiB+vp6VFVVISEhAbNnzxYswp+eng7GGFpaWgAA3t7e/PhYxhh++OGHLq+xceNGrFq1CoWFhbh79y6Sk5Ph5OTEH4+MjOTrEYvFPeYcFRWFsLAw3LhxAzdv3sSbb76J9vZ2Qe/mnj17kJeXB3t7e6Snp6Ourg6nT58W9KgSQggZQDTX0O1bj2vPpoK/vz8zNTXt8vg333zDALD4+Phu6zl69CgDwLy9vZV6MBU9iEeOHOlVjgUFBWzZsmXMysqKicViQS+VkZGRynPWrFnDALCSkpIu6x0+fDjT1tZmhYWFgvK9e/cyAGzr1q2CWI7jWHp6uiA2NDSUAWCVlZW9znfTpk2CGAsLC3bw4MEHejbqMH78eGZra8va2toeKL6lpYX/rnui6NlcunTpA+cjFot77Nl0cXERlFdWVjIAzMfHhy9T9BCfPXtWEHvgwAHq2SSEkIGHejY1JTU1tcteTQAICQnBlClT4OvrC39/f2zbtg25ubntOEl3AAAgAElEQVRKcfv27QMAbNq0SWlLyvb2dgCAgYHBQ+d3+PBhTJo0Cbt27cLvv/+OpqYmwfGJEyeqPC81NRUjR47E2LFjVR4vKyuDTCbD4sWLYW1tLTgml8sBACYmJgCA8vJyyGQyTJ8+Hc7OzoLY/Px8DB06FCNGjOh1vuHh4WCM4c6dOzhw4ADu3LmDRYsW4caNG109FrXauXMnbt26BRsbG4SGhmLr1q04ffo0/72pQ3BwsNrqAqD0PYwYMQKDBw8WrE1aUlICkUgk6EFVdS4hhJCBgRqbGlBQUIDKyspuXzUbGxsjKysLv/76K5ycnHD06FFMmTIF/v7+gsZIVlYWdHV1MXnyZKU60tLSIBKJVB7rTkNDAwIDA6GtrY3vv/8e5eXlaG5uBmMMFy9eBACVdTY0NCA7O/uBXqG7u7srHVO8Pp86dSp/bwDg5eUliGtpaUFWVhbfeOltvgqGhoaYP38+AgIC0NjYiAsXLnQZq06zZs1CaWkpIiIi8Nxzz0EqlWLOnDlwc3NDbW2tWq6hrslMCvr6+kplHMcJdqhijCn9x0dRTgghZOChxqYGKGaTd9ezCXT8I+7u7o4PP/wQCQkJCAwMRFxcnKCHs66uTuU/7ImJiUhLS4O3t/dD92xKpVLcvn0bYWFhWLFiBczNzaGtrY329nZ8/PHHAFQ33v773/+ipaWl24adogE5ZMgQQfmlS5fwn//8B3Z2drC1tQVwr2F6f+M1JycHcrmcL+9tvp21t7cjLy8PADB8+PBuY9VJLBZj1qxZWL16NeLi4hAbG4tz585h9+7dSrFaWh1/XZubmx+4/sGDB6st1wc1btw4tLa2Kq0sQGM2CSFkYKLGpgakpKSofM2oEBoaivDwcFy4cAENDQ2orq5GdHQ0Dh06BI7j+FfHAGBpaYn6+np88cUXqKmpQU1NDXbv3g0/Pz+IRCJs2LDhofNTNGpSU1NRVlaG+vp6SKVSeHt7IzExEYDqxtvt27cBdExoqa6uVlm3ogH53XffoaioCHK5HMePH8crr7yC9vZ2fPrpp3xsVlYWRCKR0g5L6enpAO41Qh8m3xdffBHbt29Hfn4+GhsbUVVVhePHj+Oll17C2bNn4eDggEmTJqnMXZ1LHzU1NcHV1RWRkZEoKipCU1MTSkpKEBMTA+Des+xMS0sLw4YNQ0ZGBjIzM9Ha2vrIefQFb29vAMDSpUuRnp6O+vp6nDlzhm/4E0IIGWA0OWK0Lz1OE4RSUlK6XboGAEtJSeHjra2tu4xbu3atoO6ffvpJZRzHcSwiIqJX+dbW1rJRo0Yp1fn666+zSZMmMbFYzFpaWpTOKy8vZ9ra2oJztLW1BcsTDR8+nPn5+TETExOl+u+fzDJ8+HA2ceJEpesEBAQwLS0tdufOnYfKVyaTdfsdmJubs/z8/C6fizqXPmpsbOwyD4lEwi5evKjyvEWLFj3U0kcymazLHLr63en8KS4uZozdmyD0ySefKNVz/8QiuVzOHB0dlepSLLPk5+f3cA+rD4EmCBFCSF+jCUL9obi4uMeYzouIx8bGIiQkBJaWlpBIJLCwsMCrr76K48eP48svvxScFxAQgMjISEyYMAG6urowNjaGj48PUlJSsHz58l7lq6+vj6NHj8LT0xMGBgYwNzfHhg0bEBsbi5KSEjg4OGDQIOXNp8zNzbFv3z5MmDCBX9B93LhxEIlEAO5NDnJ1dcWhQ4fg6OgIiUQCR0dHRERE4Mcff+TrUsSqGmoglUpha2sLQ0PDh8rX2NgYCQkJ8PPzg5WVFQYPHowhQ4bAyckJn3/+OS5dusS/wu9rEokEUqkUQUFBsLKyglgsxujRoxEQEACpVAp7e3uV523btg2LFy+GiYmJyuETjwOxWIwTJ07grbfewtChQzFkyBAEBgbis88+A9Bx74QQQgYOjrGnc9R+bGwsFixYQJMSHiMHDx7E/PnzkZCQoDTphzz9Tp48CU9PT6xbtw6bN2/WdDoAOsZFx8TEwN/fX9OpEELI0yqO9kYn/UYxXtPBwUHDmZC+tmLFCtjY2MDLywujRo1CXl4e3n//fQAQbEpACCHk6UeNzQHiYV65/u1vf8PKlSvVnkN2djYMDQ3xzDPPqL1u8ni5evUqtm/frlQ+b948zJgxQwMZEUII0RRqbJJ+k52d3eVYRPJ02bFjB8aMGYPExERcu3YN5ubmWLhwIcLDwzWdGiGEkH5GE4Q0SLE3d1RUVJ9fi3XaS7unT1/0agLAzZs3cebMmT6p+1H153fxqCQSCTw8PPr1mq2trTh8+DD8/f0xduxYiMViWFtbY+3atYLdgwCgvr4eSUlJuHz5MhobGwF0LNvU3NystLMTIYSQpx81NjVIsej1/etIkv43kL+L1tZWcBwHHx+fLmOOHDmCefPmIS4uDmVlZWhubkZRURG+/vprvPDCC3yjEugYhrFs2TKcPHkS169f52O//fZbuLi4oKampj9uixBCyGOCGpsatGXLFjDGMH78eE2nMuA9Sd+FXC7nd6HqL9ra2vD19UV8fDzKy8tRX1+PtLQ02NnZITc3F7t27eJj9fX1ERgYiMTERJSXl6Ourg6JiYl45plnUFBQgO+++65fcyeEEKJZNGaTENIjb29vfmcgBXd3d2zZsgUvv/wy0tPTsWLFCgBQOQxjzpw5+Prrr7FkyRJ+y1JCCCEDA/Vs9jNPT09wHMd/3nvvvS5jZTIZwsPD4ejoCENDQ5iamsLLy0tlr9adO3ewZs0aPPvss9DR0cG4cePwzjvvoKqqqte5xsfHg+M4bN26FWfPnoWzszP09PQwdepUSKVSQezq1avBcRwuXbokKD948CA4jkNERAQAICMjAxzH4euvv8aLL74IQ0ND7Nu3D9nZ2bCzs8OwYcMQGxsrqKOurg6bNm2Cra0txGIxRo0ahVWrVgle3SrcunULHMfB398f9fX1WLNmDUaPHg09PT2EhISgoaGBj32Y7wLo2CbT398fZmZm0NHRgb29PT755BPcunVLKVadW1sCQFBQkCDXrsZs5ubmguM4rF+/HpmZmXBzc4OOjg6srKwQHR0tiHVxcQHHcdDW1gZw7/tWfMLCwh44v/v3uldl3LhxAAATE5MHrpcQQshToP93Leofj9N2lZ1ZWFgItvCLjo5WGSeTydjo0aNVbiFoZmYmiC0tLWVjx45VGevh4cHa29t7leuGDRsYAPbBBx8wiUQiqHfkyJGCbSjd3NyYoaEha2trE9SxZs0aBoBlZGQwxhjbsWMHA8CMjY35usaOHSt4LtbW1vz5165dYzY2NirvzdvbWynnxMREBoD9z//8D/Pw8FA658yZM3zsg34XjDH22WefMY7jVObxzTffKMWrc2tLxhi/1aPi03l7yM4U20oGBwczQ0NDwTlaWlosJyeHj3V2du52q0pV22Aq1NXVseTkZDZ+/HjGcRxLTU3t8R7Cw8MZAJaUlPTQ999XQNtVEkJIX6PtKvtbcXExGGPYuXMnAKjcjhEAoqKiUF5eDh8fH+Tl5aGxsREymQy7du0SLIrNGMOiRYtQWloKX19fFBQUQC6XIyMjA+bm5jh16hQuX77cq1wVrzvj4uIQHR2NmpoaFBYWwtraGtevX0dZWRkAoKWlBefPn4ezszO0tIS/UlKpFNra2pgwYQKAewu7f/TRR6iqqoKDgwNKS0sRFhaG2tpaTJ06FS0tLXy9Pj4+KCwsxOrVq3H58mXI5XJcuXIFXl5eiI+PR0ZGhuB6ivoTEhLQ0tKCU6dOoaamBleuXEFQUBDs7Owe+rv417/+hfDwcBgaGmLbtm0oLy9HY2Mj8vLysGbNGkyaNKlXz/dhREZG8qsFiMXiHuOjoqIQFhaGGzdu4ObNm3jzzTfR3t4u6N1MT08HY4x/3t7e3oJVCX744Qelev/973+D4zjo6+vD09MT7e3tiI2NxQsvvNBtPrm5ufj222+xcOFCzJ49+yHvnhBCyBNNY+3cPva49mwq+Pv7M1NT0y6Pf/PNNwwAi4+P77aeo0eP8r189/dgrlu3jgFgR44c6VWOI0eOZBzHsfT0dEF5aGgoA8AqKysZY4xlZGQwAOwvf/mLIK65uZnp6OiwKVOm8GUTJkxgw4YNYy0tLYwxxjw9PZmZmRnfI+rh4cHc3d0ZY4xt376dAWA7duxQyu3kyZMqj82fP58BYDNnzhT0vHanu+9CLpczMzMzJhKJlJ6DpojF4h57Nl1cXATllZWVDADz8fFROqelpaXLnuL7xcXFCXo/zc3N2datW7s95+rVq8zc3JxNmzaN1dfX93iN/gTq2SSEkL5GPZuakpqa2mVPGgCEhIRgypQp8PX1hb+/P7Zt24bc3FyluH379gEANm3apLRLUHt7OwDAwMDgofOrqKjA9evXMX36dDg7OwuO5efnY+jQoRgxYgSAjh4yAHB1dRXEXbhwAY2NjZg6dSqAjlnU+fn5mDlzJgYN6piblpubi1mzZkFLSwuMMeTm5vK9j3v37gUAvPvuu4KxhBzHYebMmQA6enY7U/TG/vjjjxCJRA90r919FydOnEBlZSWWLl2q9BweZ/fnOmLECAwePFhpTcyH5efnB8YY6urqcO7cOTg4OOB//ud/8NVXX6mMLy4uhoeHB4yMjHDs2DHo6uo+0vUJIYQ8eaixqQEFBQWorKxUapx1ZmxsjKysLPz6669wcnLC0aNHMWXKFPj7+/ONSKCjcaWrq4vJkycr1ZGWlgaRSKTyWE8U6056eXkJyltaWpCVlSVozCgm/dzfwElMTAQAvrGZm5uL1tZWuLu7AwCuXLmCW7du8T/n5+fjzp07cHJyQktLC3JycnrMs/PWl1VVVSgrK4OzszOeffbZB7rPnr4LRQN/7ty5D1Tf40JfX1+pjOM4pcZ5b+np6WHatGn45ZdfYGBgoPKV+++//44ZM2ZAV1cXv/76K4YNG6aWaxNCCHmyUGNTAxSzybvr2QQ6Ggfu7u748MMPkZCQgMDAQMTFxQl6OOvq6lTue56YmIi0tDR4e3v3qmdT0UN4fyMsJycHcrlcUP7bb7/BxMQERkZGfFltbS12794N4F5jU1Gnm5sbAPAz2u//2dXVFbW1tWCMYd68ed3udvTaa68p5ezp6fnA99nTd1FfXw8AKme+Py0U42ybm5t7dX57eztu3LghKLty5QpmzJgBHR0dJCcn873ghBBCBh5qbGpASkoKRCIRnJycVB4PDQ1FeHg4Lly4gIaGBlRXVyM6OhqHDh0Cx3GCf7gtLS1RX1+PL774AjU1NaipqcHu3bvh5+cHkUiEDRs29CrHrKwsiEQipR11VL0yb25uRlVVFY4cOYLGxkacP38e8+bNQ3l5OcRiMRwcHAB0TN6RSCSYMmUKgI7Gpb6+Pn9cKpXC0NAQdnZ2GDp0KIyNjZGcnIzo6GhUV1ejqakJhYWFiI6OxksvvYQrV64IclNMDlL0lD6Inr4LxSLvGzduhFQqRWNjIyoqKhAfH4958+ahra1N5XnqXvqoL2lpaWHYsGHIyMhAZmYmWltblWKCg4OxYcMGZGdno6amBnV1dcjIyMDrr7+O+vp6wSSpS5cuYcaMGdDT08PJkycxcuTI/rwdQgghjxvNjBXte4/TBKGUlJRul5gBwFJSUvh4a2vrLuPWrl0rqPunn35SGcdxHIuIiOh1zsOHD2cTJ05UKg8ICGBaWlrszp07fNny5cuVrv/BBx8wLS0tNm3aND7OwcGBTZ8+nf/Z0dGReXp68j/b2tqyOXPm8D9/9dVXXT6HQYMGsebmZkFur732GuM4jlVXV3d5Xw/7XdTV1bFx48apjJs8eXKX11Hn0kddfcedP8XFxYyxexOEPvnkE6V6uptYtGjRom6XPpo1a1aX15ZIJIJn9uc//7nbXO3t7R/5magLaIIQIYT0NZog1B+Ki4t7jLG0tOT/HBsbi5CQEFhaWkIikcDCwgKvvvoqjh8/ji+//FJwXkBAACIjIzFhwgTo6urC2NgYPj4+SElJwfLly3uVb1lZGWQymcpXy1KpFLa2tjA0NOTLPv/8c7z++uswMDDAmDFjsGXLFixduhTt7e38K/TGxkYUFBTwr8xra2tx6dIlvof0zp07uHz5sqDH9KOPPsL+/fvh5uYGExMT6Ovrw9HREStXrsSFCxf4xcgVsrOzYWtr2+3YwIf9LvT09HD69GkEBQVh1KhR0NbWhoWFBUJCQnDgwIEe63pSbNu2DYsXL4aJiYnKYRn//Oc/sXnzZjg7O2P48OHQ1dWFjY0NQkNDcenSJbz44osayJoQQsiTgGNMTTMGHjOxsbFYsGCB2iZEEEKePhzHISYmBv7+/ppOhRBCnlZx1LNJCCGEEEL6DDU2B4j716ns7vPdd99pOl1CCCGEPCWosUkIIYQQQvrMIE0nQPoHjV0lhBBCiCZQz6YG1dXVYc2aNbC0tIS2tjY4jlOaba6wf/9+cByHqKiofs5yYJBIJPDw8NB0GoQQQshThxqbGvT222/j22+/RXFxMb+QdlfbLCq2j7x/kfWBorW1FRzHwcfHR9OpEEIIIeQhUGNTQ0pLSxEXFwcnJycUFxejvb0djDG88cYbKuO3bNkCxhi/ow1RL7lczm9dSQghhBD1oTGbGpKUlATGGD766KMnYktDQgghhJDeoJ7NfrRv3z5+eaFly5YBAPz8/Piy1157TRDv6ekpWJLovffeU1nvzz//DI7jsGPHDuzbtw82NjYwMDDA9OnT+dfvnclkMoSHh8PR0RGGhoYwNTWFl5dXtz176t7ru7m5GZs3b4a9vT309fVhZmaGuXPnIjk5WRDn4uICjuP43YLi4+MFzyQsLEyp7iVLloDjOH6/9smTJ/PP49y5c3xcUFCQoK6uxmzm5uaC4zisX78emZmZcHNzg46ODqysrBAdHa0UL5PJEBQUBGNjYxgaGiI4OBgymQwcx8HPz+8RnhohhBDy5KGezX7U01aJY8aM6Ta+81aOnWVnZwMA0tLSsH//fr78zJkzePnll1FYWMhv4VhVVYXnn38e5eXlgjqOHz+OvLw8XL9+/cFu5hGtXLkSERER/M/19fU4duwYjh07hsbGRkgkkke+xsmTJ7Fw4UK0tbUB6Hgef/nLX5CQkNCr+ioqKvCnP/0JNTU1AICrV6/irbfegr29PSZNmgQAaGpqwuzZs5GXl8efFxkZiaampke8G0IIIeTJRD2b/eiTTz4BYwyMMTzzzDNwcHDgf2aMYdu2bYL44uJiMMawc+dOAFC5Vzlwr7GZmZmJxMRENDY24urVq3BxcUF1dTWSkpL42KioKJSXl8PHxwd5eXlobGyETCbDrl27MGfOnD66c2UHDhyAkZERTpw4gfr6elRVVSEhIQGzZ88W7M2dnp4OxhhaWloAAN7e3oJn9sMPP3R5jY0bN2LVqlUoLCzE3bt3kZycDCcnJ/54ZGQkX49YLO4x56ioKISFheHGjRu4efMm3nzzTbS3twt6N/fs2YO8vDzY29sjPT0ddXV1OH36tKBHlRBCCBlIqLGpAeXl5fjjjz+67Km836lTp2BqagpLS0uVx8+fPw9tbW0cO3YMc+bMgUQiwbhx4/DnP/8ZQEePnIKi0fbOO+/A0dEREokEJiYmWLp0Kf7v//6vyxzWrl0LxhhKSkoe8C67Z2RkhJEjR8LDwwO6urowNjaGl5cXkpKSHqjh9yBcXV3x7bffwtraGgYGBpg5cyY+++yzXtf3/PPP4/PPP4epqSmGDx+Ob7/9FgBw+fJlPiY+Ph4AsGvXLjg7O0NPTw/Tp0/nYwkhhJCBhhqbGiCVSgF03VN5v9TU1C5jy8rKIJPJsHjxYlhbWwuOyeVyAICJiQlfFhISgilTpsDX1xf+/v7Ytm0bcnNze3Mbj2Tnzp24desWbGxsEBoaiq1bt+L06dNob29X2zWCg4PVVhcAODs7C34eMWIEBg8ejLq6Or6spKQEIpFI0IOq6lxCCCFkoKDGpgakp6cD6HoMZmcFBQWorKzscbymu7u70jHF6/OpU6fyZcbGxsjKysKvv/4KJycnHD16FFOmTIG/v79aG3o9mTVrFkpLSxEREYHnnnsOUqkUc+bMgZubG2pra9VyDXXP8tfX11cq4zhOsDsTY0wwDKBzOSGEEDIQUWNTA6RSKYyMjGBjY9NjrGKGeFc9m1lZWQCAIUOGCMovXbqE//znP7Czs4Otra3gGMdxcHd3x4cffoiEhAQEBgYiLi6u33s4xWIxZs2ahdWrVyMuLg6xsbE4d+4cdu/erRSrpdXxq9rc3PzA9Q8ePFhtuT6ocePGobW1VWkVABqzSQghZKCixmY/a25uRk5ODpydnVX2gN0vJSVF5WtZBUXP5nfffYeioiLI5XIcP34cr7zyCtrb2/Hpp5/ysaGhoQgPD8eFCxfQ0NCA6upqREdH49ChQ+A4DiNGjOgyD3UufdTU1ARXV1dERkaiqKgITU1NKCkpQUxMDADg9u3bSudoaWlh2LBhyMjIQGZmJr/j0uPG29sbALB06VKkp6ejvr4eZ86cwccff6zhzAghhBDNoKWP+tn58+fR1NTUZU9lamoqZsyYoVTe+RVuSkoKXnzxRb4+Pz8/nDp1SmnM5tKlS7FgwQL+51OnTuG3337D559/rlT/2rVr8cwzz/Tqnh4WYwzp6en8cILOJBKJIOfOXnrpJezbt0+wZee7777b7Yz0ruzfvx8LFy4UlKWkpAj+A1BcXPzQjeuQkBBERETgv//9r2DoQ2BgIH777bcH+g8GIYQQ8jShns1+pmhgddXY7GktTgD8rHTF5CBXV1ccOnSIn13u6OiIiIgI/Pjjj4LzYmNjERISAktLS0gkElhYWODVV1/F8ePH8eWXXz7inT04iUQCqVSKoKAgWFlZQSwWY/To0QgICIBUKoW9vb3K87Zt24bFixfDxMTksW20icVinDhxAm+99RaGDh2KIUOGIDAwkJ8Fr471QwkhhJAnCcee0pkLsbGxWLBgwVM9MePgwYOYP38+EhIS4OXlpel0SDdOnjwJT09PrFu3Dps3b9Z0OuT/4zgOMTEx8Pf313QqhBDytIqj1+hPMMV4TQcHBw1nQjpbsWIFbGxs4OXlhVGjRiEvLw/vv/8+APTrwvmEEELI44Aam0+w7OxsGBoa9ttYS/Jgrl69iu3btyuVz5s3T+V4XEIIIeRpRo3NJ1h2dnaX4xuJ5uzYsQNjxoxBYmIirl27BnNzcyxcuBDh4eGaTo0QQgjpd9TYfILdvHlT0ykQFcaOHcvvZ08IIYQMdDQbnRB0zBL38PDQdBqEEELIU4cam+SJ0NraCo7j4OPjo+lUCCGEEPIQ6DU6IQDkcrmmUyCEEEKeStSzSQghhBBC+gw1NvtRfHw8OI7D1q1bcfbsWTg7O0NPTw9Tp06FVCoVxDLGkJSUhICAADz77LPQ0dHBmDFj8Pbbb6OiooKPy8jIAMdx+Prrr/Hiiy/C0NAQ+/btQ3Z2Nuzs7DBs2DDExsYK6q6rq8OmTZtga2sLsViMUaNGYdWqVWhsbOwyd3XujQ507BG/efNm2NvbQ19fH2ZmZpg7dy6Sk5MFcS4uLuA4Dtra2gDuPUPFJywsTKnuJUuWgOM4VFVV4ciRI5g8eTIMDAwwffp0nDt3jo8LCgoS1NXVmM3c3FxwHIf169cjMzMTbm5u0NHRgZWVFaKjo5XiZTIZgoKCYGxsDENDQwQHB0Mmk4HjOPj5+T3CUyOEEEKePPQavR9lZWUBAK5fv45Zs2bxr26zs7Ph6+uL8vJyiEQiAEBSUpLSrkDl5eXYs2cPcnJycP78eUGd3377LaqrqwEA69atA8dxKCkpAQCsX7+e3yHljz/+wOzZs3H58mW+3uvXr+O7777Db7/9hiNHjvTR3QutXLkSERER/M/19fU4duwYjh07hsbGRrVs63jy5EksXLgQbW1tAIAzZ87gL3/5CxISEnpVX0VFBf70pz+hpqYGQMd6mm+99Rbs7e0xadIkAEBTUxNmz56NvLw8/rzIyEg0NTU94t0QQgghTybq2exHioZhXFwcoqOjUVNTg8LCQlhbW+P69esoKyvjY69du4aQkBAkJSWhoqICzc3NKCoqgouLC3JyctDQ0ADg3i5CH330EaqqquDg4IDS0lKEhYWhtrYWU6dORUtLCwCgpaUFPj4+KCwsxOrVq3H58mXI5XJcuXIFXl5eiI+PR0ZGRr88iwMHDsDIyAgnTpxAfX09qqqqkJCQgNmzZwv2PU9PTwdjjL8Hb29vMMb4zw8//NDlNTZu3IhVq1ahsLAQd+/eRXJyMpycnPjjkZGRfD1isbjHnKOiohAWFoYbN27g5s2bePPNN9He3i7o3dyzZw/y8vJgb2+P9PR01NXV4fTp04IeVUIIIWRAYU+pmJgY9rjd3siRIxnHcSw9PV1QHhoaygCwyspKvqygoIAtW7aMWVlZMbFYzADwHyMjIz5uwoQJbNiwYaylpYUxxpinpyczMzNjbW1tjDHGPDw8mLu7O2OMse3btzMAbMeOHUq5nTx5sstjfWH8+PHM1taWz7MnLS0tDADz9vbuMXbx4sUMAFu6dOkD5yMWi9mMGTNUHsvJyWEAmIuLi6C8srKSAWA+Pj58mbe3NwPAzp49K4g9cOAAA8B8fX0fOCfS9wCwmJgYTadBCCFPs1jq2ewnFRUVuH79OqZPnw5nZ2fBsfz8fAwdOhQjRowAABw+fBiTJk3Crl278Pvvvyu9gp04cSKAjhnU+fn5mDlzJgYN6hgRkZubi1mzZkFLSwuMMeTm5sLOzg4AsHfvXgDAu+++KxiryHEcZs6cCaBjrGh/2LlzJ27dugUbGxuEhoZi69atOH36NNrb29V2jeDgYLXVBUDpexsxYgQGDx6Muro6vqykpAQikUjQg6rqXEIIIWSgoMZmP8nMzAQApXGYLS0tyMrK4hsjDQ0NCOxq5X4AACAASURBVAwMhLa2Nr7//nuUl5ejubkZjDFcvHgRADB58mQAHQ3L1tZWuLu7AwCuXLmCW7du8T/n5+fjzp07cHJyQktLC3JycnrMs7/2WZ81axZKS0sRERGB5557DlKpFHPmzIGbmxtqa2vVcg11TWZS0NfXVyrjOE7QQGeMCYYBdC4nhBBCBiJqbPYTxXhNV1dXQXlOTg7kcjlfLpVKcfv2bYSFhWHFihUwNzeHtrY22tvb8fHHHwO419hU1Onm5safq+pnV1dX1NbWgjGGefPmCcY83v957bXX+vIxCIjFYsyaNQurV69GXFwcYmNjce7cOezevVspVkur41e1ubn5gesfPHiw2nJ9UOPGjUNrayv/nwsFGrNJCCFkoKLGZj/JysqCSCTCtGnTBOXp6ekA7jVCFY2q1NRUlJWVob6+HlKpFN7e3khMTARwr7GZnZ0NiUSCKVOmAOhoXOrr68PBwYH/2dDQEHZ2dhg6dCiMjY2RnJyM6OhoVFdXo6mpCYWFhYiOjsZLL72EK1eudJm/Opc+ampqgqurKyIjI1FUVISmpiaUlJQgJiYGAHD79m2lc7S0tDBs2DBkZGQgMzMTra2tj5xHX/D29gYALF26FOnp6aivr8eZM2f4/ygQQgghAw01NvtJdnY2HBwclF7FSqVSaGlp8Y1QJycnjBo1CmfPnsXYsWOhr6/Pr+toZ2cHsVgMW1tbAB0N2KlTp/JrUEqlUkybNo1fPkkqlcLZ2RlaWlrgOA4ffvgh6urqsGTJEpiYmEAikeC5557DkiVLcOLECVhaWvbLs2CMIT09HcHBwbC2toZEIsG4ceMQHR0NiUSCBQsWqDzvpZdeQk1NDaZNmwZtbe0u19l8EPv37xeMWW1qakJKSoqgTLF01MMICQmBo6Mj8vPz4erqCn19fUyfPp3vbVb1ip0QQgh5mlFjsx+UlZVBJpPBxcVF6ZhUKoWtrS0MDQ0BdIwLPHr0KDw9PWFgYABzc3Ns2LABsbGxKCkpgYODAwYNGoTGxkYUFBTwjZja2lpcunSJ7yG9c+cOLl++LHht/9FHH2H//v1wc3ODiYkJ9PX14ejoiJUrV+LChQt8o7WvSSQSSKVSBAUFwcrKCmKxGKNHj0ZAQACkUins7e1Vnrdt2zYsXrwYJiYmj22jTSwW48SJE3jrrbcwdOhQDBkyBIGBgfjss88AQC3rhxJCCCFPEo49pTMXYmNjsWDBApqYQR4LJ0+ehKenJ9atW4fNmzdrOh3y/3Ech5iYGH7TA0IIIWoXRzsIEaJmK1asgI2NDby8vDBq1Cjk5eXh/fffBwDMmTNHw9kRQggh/Ysam4So2dWrV7F9+3al8nnz5mHGjBkayIgQQgjRHGpsEqJmO3bswJgxY5CYmIhr167B3NwcCxcuRHh4uKZTI4QQQvodTRAa4BSzsqOiovr1uqampoKZ3/Pnz+/X6/elsWPHYufOnfzuT7///js+//zzbvdfl0gk8PDw6L8kCSGEkH5Cjc0BTrH4+P3rf97P19cXIpEIDQ0Nj3zN+vp6yGQyQdn9i90/blpbW8FxHHx8fDSdCiGEEPJEocbmALdlyxYwxjB+/Phu43JycjB+/Hjo6uo+8jX19PT4HYsOHjwI4PFvbPY1uVyOU6dOaToNQgghRO2osUl6dOfOHRQXF2PSpElqrzs1NRXa2tp4/vnn1V43IYQQQjSPGpsakJ6eDn9/f5iZmUFHRwf29vb45JNPcOvWLT6GMYakpCQEBATg2WefhY6ODsaMGYO3334bFRUVgvp+/vlncByHHTt2YN++fbCxsYGBgQGmT5+utEc3AHh6egrGS7733ntKMa2trRg0aBA4jsPQoUMBKO+6Ex0d3at8O0tJScGkSZOgo6PT7TNT53aZQMce65s3b4a9vT309fVhZmaGuXPnIjk5WRDn4uICjuP4Be/j4+MFz0DVDkZLliwBx3GoqqrCkSNHMHnyZP776LxHelBQkKCursZs5ubmguM4rF+/HpmZmfyOUlZWVoLvQEEmkyEoKAjGxsYwNDREcHAwZDIZOI6Dn5/fIzw1Qggh5OHRbPR+9vnnn+PTTz8VLDafn5+P/Px8GBkZ4cMPPwQAJCUlwcvLS3BueXk59uzZg5ycHJw/f54vz87OBgCkpaVh//79fPmZM2fw8ssvo7CwEMOGDePLi4uLBfWqeoV97do1tLW1dXsvnRt+D5Ovwt27d3HhwgW8++673V6nL6xcuRIRERH8z/X19Th27BiOHTuGxsZGtez0c/LkSSxcuJB/jmfOnMFf/vIXJCQk9Kq+iooK/OlPf0JNTQ2AjiWW3nrrLdjb2/O9zk1NTZg9ezby8vL48yIjI9HU1PSId0MIIYT0DvVs9qN//etfCA8Ph6GhIbZt24by8nI0NjYiLy8Pa9asEbymvnbtGkJCQpCUlISKigo0NzejqKgILi4uyMnJEUzUUTQ2MzMzkZiYiMbGRly9ehUuLi6orq5GUlKSII/i4mIwxrBz504AULmNpoWFBT+ucvXq1QCAixcv8mWMMbi7u/cqX4W0tDS0tbVpZLzmgQMHYGRkhBMnTqC+vh5VVVVISEjA7NmzBVthpqengzGGlpYWAIC3t7fgGfzwww9dXmPjxo1YtWoVCgsLcffuXSQnJ8PJyYk/HhkZydfT3Ux1haioKISFheHGjRu4efMm3nzzTbS3twt6N/fs2YO8vDzY29sjPT0ddXV1OH36tKBHlRBCCOlX7CkVExPDHqfbk8vlzMzMjIlEIpaent5jfEFBAVu2bBmzsrJiYrGYAeA/RkZGgtjhw4czbW1tVlhYKCjfu3cvA8C2bt2q8hr+/v7M1NS0x1yef/75HuMeJl+FNWvWMACspKSkxxzUbfz48czW1pa1tbU9UHxLSwsDwLy9vXuMXbx4MQPAli5d+sD5iMViNmPGDJXHcnJyGADm4uIiKK+srGQAmI+PD1/m7e3NALCzZ88KYg8cOMAAMF9f3wfOaSAAwGJiYjSdBiGEPM1i6TV6Pzlx4gQqKyvx5z//Gc7Ozt3GHj58GG+88UaXrz4nTpzI/7msrIwfo2dtbS2Ik8vlAAATExOV9aSmpqrs1ezs7t27yM3Nha+vr1ryvf/6I0eOxNixY7vNoS/s3LkTixcvho2NDTw8PGBjYwMnJye4u7tDS0s9Hf7BwcFqqUfh/t+bESNGYPDgwairq+PLSkpKIBKJBD2oqs4lhBBC+gu9Ru8nubm5AIC5c+d2G9fQ0IDAwEBoa2vj+++/R3l5OZqbm8EYw8WLFwEAkydP5uMVr9A7v9JWULw+nzp1qtKxgoICVFZW9vgKOzU1FW1tbV1OXnnYfDufl52drbElj2bNmoXS0lJERETgueeeg1Qq/X/t3XlUFFf6N/Bv0bTNKqC4IYqIGpBFiAuKJhg0GgPiGkRIFJe4HI0xIcEt+jNGjY5DxrhmcRLOxA0YR42iEKOIIo0sgrsSI5sBd0BoaOiG+/7B2xWa7sYGmwbx+ZxTf1B169ZTVz0+3LoLxowZAy8vL5SWlurkGbqazKRgZmamco7jOKXxv4wxpWEAdc8TQgghLYGSTT2RSCQAgIqKigbLicViFBUVYfHixViyZAlsbW0hFApRU1ODFStWAFBO3tLS0gAA7du3V6rn+vXrOHLkCPr37w8nJyeV5yjWdHxez2ZSUhIAaNzTu7HxKly9ehUymUztNX0RiUQYNWoUQkNDER0djaioKFy8eBF79uxRKavo7ayqqtK6/nbt2uksVm3Z29tDLperrEJAYzYJIYS0FEo29USxaPqXX34JsViMiooKFBQUICYmBv7+/vyMZUVSc+7cOeTl5UEikUAsFsPX1xdxcXEA1Pdsbt26FXfu3IFUKsVvv/2G8ePHo6amBmvWrFEbT0JCgtrPrfXl5OQAAHJzcyGXy1WuNzZehaKiIgC1E3CePHnSYAyAbpc+qqysxLBhwxAREYE7d+6gsrISOTk5iIyMVIqtLgMDA3To0AEpKSlITU1V2xatga+vLwBg7ty5SE5OhkQiwYULF/jEnxBCCNG7Fh0y2oxa2wShsrIyZm9vrzRxRnF4eHjw5UpLS5mNjY1KmUmTJjF3d3cmEomYTCbjy3fq1IlNnTqVWVtbq9xTd4JKQkKC2mfXPRISElTiXrFihUq5efPmNTlehfz8fCYUCpXuEQqFTC6Xq22/r7/+mgFgdnZ2TWl+JRUVFRrbwMjIiF27dk3tfUFBQSrlFy1apFJOMUHo0aNHGmM4cODAc/88srOzGWN/TxBatWqVSj31JxZJpVLm6uqqUtfMmTMZADZ16tTGNVYbB5ogRAghzS2Kejb1xNTUFOfPn0dISAhsbGwgFArRq1cvzJ49G4cOHeLLmZmZ4cSJE/Dx8YG5uTlsbW2xdu1aREVFIScnBy4uLjA0rJ3XpZgcNGzYMPz6669wdXWFkZERXF1dsXv3bvzwww98vfXX1lSnd+/eKufCwsIQEBAAa2trfixgnz59mhRvXba2tti/fz/c3Nz4Bd3t7e0hEAi0bNGmMzIyglgsRkhICBwcHCASidCjRw8EBgZCLBbD2dlZ7X3btm1DcHCwUlu0NiKRCKdPn8aMGTNgZWWF9u3bY+bMmfjqq68AQCfrhxJCCCGNwTHWNmcOREVFYdq0aW16YsThw4cxefJkxMbGqiyoTkhd8fHx8PHxwcqVK7Fhw4aWDqfV4DgOkZGRCAgIaOlQCCGkrYqmpY9eYorxmi4uLi0cCWlNlixZAkdHR4wdOxY2Nja4cuUKPv74YwDAmDFjWjg6QgghrxpKNl9i6enpsLCwQPfu3Vs6FNKK3L17F9u3b1c57+/vr3FVAUIIIaS5ULL5EktPT9c4vpC8unbu3ImePXsiLi4O9+7dg62tLaZPn47Vq1e3dGiEEEJeQZRsvsQePnzY0iGQVsjOzo7f954QQghpaTQbnejMP/7xD3Ach8OHD+uszurqasTGxiIoKAivvfYaTExMYG9vjwULFuD+/fs6e05jJCYmwsvLC+bm5uA4Tml2/hdffAGO4/hD01ahrU12djZCQkLQvXt3iEQiODs74+eff0ZNTY3GexhjGDp0KDiOw8SJE/UYLSGEkJcJ9WwSnVFMWBo4cKDO6ty/fz9mzJihdC4nJwfff/89YmNjceXKFZXdk5pTUVER/P391S783trI5XIIhUL4+vri+PHjGstlZmZi5MiRKCkp4c/duHEDs2fPhoeHB9zd3dXe9+OPPyIjI0PncRNCCGlbqGeT6ExaWhqsra3Rs2dPndWZn5+PDz/8ELGxscjNzUV5eTkSExPRq1cv5Obm4ujRozp7ljYSExNRVFSEhQsXoqysDIwx3Llzh7++fv16MMbAGIOnp6deY2uKmpoazJgxAyUlJfD19cWVK1dQWVmJP/74A/PmzdO47umTJ0+wYsUKfPbZZ3qOmBBCyMuGejaJThQXF+Pu3bs6X+9z5cqVKueGDx+OhQsXYtmyZSgtLdXp857nr7/+AgCMGzcOpqamen12czh79iyuXr2KgQMH4vDhwxAKhQBqF+7//vvvNd4XFhYGDw8PvPfee9i4caO+wiWEEPISop5NPWKM4dSpUwgMDESfPn1gbGyMnj17Ys6cOSgoKFAp//TpU3Ach4CAAEgkEoSFhaFHjx4wNTXF7NmzUV5ezpctKyvDunXr4OTkBJFIBBsbG3zyySeoqKh4oRi0lZaWBkD5E3ppaSmmTZsGAwMDrFy5EjU1NUhJSQHHcdi8eTPefPNNWFhYYP/+/UhPT0f//v3RoUMHREVFPfd5ly5dAgCNvYe63Es9MzOTH4O5cOFCALXLCCnO1R2z2VhSqRSrV69G3759IRKJ0LFjR0yYMAGXL19WKZuWloY5c+agX79+EIlEsLa2hp+fH+Lj45XKKcZRKhLHmJgYpXGkixcv5sv+/vvvAIDQ0FC+/POIxWLs3btX7fJKhBBCiIoW2ymzmbW2vdEZYywuLk7jPth190evX/7TTz9lI0eOVLnnwoULjDHG7t27xxwdHdXW6+vr+0IxaGvTpk0MADt06BBjjLGrV6+y1157jVlYWLCjR4/y5Xbu3MkAsI4dO/LPtbOzY7169eJ/7tu3b4PPOnr0qNp3q0uXe6kr9ibXdDg4OKi9z9PTk3Xs2FFjvTU1NWzMmDFq6zQxMWGXLl1SKq/p+QYGBiw2NlbpuQ3FW3c/98mTJzMALCcnh4WGhjJra2tmYmLCvLy82PHjx1VilsvlzN3dnX3++edKbTNhwoRGtWlrAdobnRBCmhvtja5P9+7dw+zZs3Hq1CkUFBSgqqoKd+7cwdChQ5GRkaHUUwn8PeEmNjYWMpkMZ8+eRUlJCW7fvo2QkBD0798fMpkMfn5+yMrKQmhoKG7dugWpVIrbt29j7NixiImJQUpKSpNj0Fbdns1ffvkFnp6eaNeuHdLS0uDv76/yTsuWLcPjx4/h4uKC3NxcLF68GKWlpRg0aBBkMpnG5yQlJSEoKAh2dnb497//3aRYG8vd3Z0fh6nozTt27Bh/ru6YzcY4fvw4fvvtN3Tt2hUxMTEoLS3FnTt3EBAQgPLycixbtkyp/ODBgxEREYG//voLMpkMxcXFOHr0KAwMDJR6GZOTk8EY49vR19eXj5Uxhh07dvBli4uLIRAIEB4ejvDwcDx+/Bjl5eVISkrC+PHjER0drRTDjh078PDhQ6xZs6ZJ70wIIeQV1HKJbvNqjT2bN2/eZB9++CFzcHBgIpFIqbfJ0tJSpbyi1+mtt95icrlcbZ3bt29nANjOnTtVrsXHx6tca2wM2rK3t2fm5uZs/vz5DADz9/dnEolEpZybmxvr0KEDk8lkjDHGfHx8WNeuXVl1dTVjjLGRI0ey4cOHq33GqVOnmJmZGXN0dGQ5OTlNjvVFKNr72LFjzy37vJ7NhQsXMgAsIiJC6XxFRQXr2rUrMzQ0ZOXl5fz569evs6CgIGZra8sMDQ2V/uzc3d1V6pfJZM/tAR45ciQTCATM0tKS7d27lxUXF7PCwkK2bNkyBoD17t2bL1tQUMDat2/PDhw4wJ+jnk1CCCHPEUUThPTk2LFjeO+991BZWan2+oABA1TOKXoLf/jhB42zgn/++WcAwKJFi7Bo0SK1ZRhjTY5BG0VFRcjOzgYAREREwMDAACUlJTAxMVEqJ5VKcePGDUyYMAGGhrV/9TIzMzFu3DgYGBiAMYbMzEy89957Ks/46aefsGDBAowYMQKHDh2ClZVVk2JtTfLy8gDUTniqy8jICK+//jpOnDiBgoICODg44MaNG/D09ERZWZnauhrqDW6ImZkZqqursXTpUgQHBwMALCwssGnTJsTExODatWvIz89Hjx49EBoaCg8PDwQGBjbpWYQQQl5N9BldD8rLyzFz5kwIhUJ8++23yM/PR1VVFRhjuHbtGgDAw8ND6Z7Hjx8jLy8Pnp6eGiegyGQyrdY57N69e5Ni0JYiKe7duzeSkpIQHByMhIQE/Prrr0rlMjMzIZfL+eTq9u3bePr0Kf/zjRs3UFxcjMGDB/P3KBKhOXPmYPbs2YiLi2sTiSbw9y8BHMc9t+zWrVtRVlaGhQsX4ubNmygvL+c/i1taWjY5Bjs7OwCAq6uryrV+/foBqJ2oVl5ejgMHDiAhIUFpspHi78zRo0fBcRyWL1/e5FgIIYS0TZRs6oFYLEZRUREWL16MJUuWwNbWFkKhEDU1NVixYgUA1URPkcD5+PhorLe0tBSMMfj7+yuNyat/TJw4sUkxaEsxDvOf//wnXn/9daxfvx5GRkYICwuDXC5XeScvLy++XdT9PGzYMAC1Pabjxo3D7t278f333+O7777TesZ0a2BpaYnS0lKNu/AoEr0LFy4ona+srERGRgYMDQ1hY2MDALh79y4EAgG2bdsGR0dHGBsbAwBSU1NRXFystn4Dg9p/3lVVVRpjHDRoEADwv3DUlZWVBQCwtrZucCchQgghpCGUbOqB4j/9c+fOIS8vDxKJBGKxGL6+voiLiwOgmugpErj6n1jrsrKyQseOHXHmzBns27cPT548QWVlJbKysrBv3z688847uH37dpNj0JYiiVQkLj179sRHH32E27dvK63VmJ6ezn8iBmqTSzMzM7i4uPA/W1hYoH///rh16xaGDBmC69evIyEhAfPmzWtUTLpc+qip+vTpg6qqKoSHh6sdujBu3DgAwPLly3Hy5EmUlZUhOzsbs2bNQmFhIby9vfmksmfPnqiurkZ4eDiKi4tRUlKC48ePY9q0aRoTcAMDA3To0AEpKSlITU1VSvwV/Pz8YGxsjC1btuDgwYN49uwZHjx4gOXLl+PatWvo27cvunfvDjMzM7W/yCh61idMmADGGDZt2qSr5iOEENJW6HWIqB61pglCpaWlzMbGRmUJmkmTJjF3d3cmEon4CTMKEydOZBzHsSdPnjRYt2LJIXWHoaEhq6qqanIM2urVqxfr3Lmz0rmioiLWoUMHZm1tzUpKShhjjLm4uLARI0bwZVxdXZmPjw//s5OTExszZgxjjLF33323weV7vL29G4xJl0sf1dWYCUKXL19mHMcpxT1//nz+ekNLHxkbG7PU1FS+bFJSEjMwMFApN2vWLNa9e3fm7OysNoagoKAGlz5ijLHNmzdrXFLpyJEjDb4jTRAihBDyHLT0kT6YmZnhxIkT8PHxgbm5OWxtbbF27VpERUUhJycHLi4u/IQZhfT0dDg5OaFDhw4N1r1s2TIcPHgQXl5esLa2hpmZGVxdXbF06VJcvnyZ7/VqSgzaePr0KXJycvheTQVLS0usWrUKjx8/xsaNG1FRUYGbN2/yn8xLS0tx/fp1/pN5cXExbt26xf+s6JHVRDGesDVzc3PDL7/8AgcHB7XjMjmOw5EjR7Bq1So4ODhAKBTC0tIS48ePR2JiolKbDhs2DMeOHcPgwYNhamqKbt264fPPP29wlx8A2LZtG4KDg2Ftba1xbGhYWBgiIiLw+uuvw9jYGKampvD29kZsbCwmTJjwYo1ACCHklccx9v9nKbQxUVFRmDZtGtro6xFCdIDjOERGRiIgIKClQyGEkLYqmno2CSGEEEJIs6Fkk6iou7TN846tW7e2dLiEEEIIacUo2SSEEEIIIc2GdhAiKmicKyGEEEJ0hXo2SYM6d+6s9Nl88uTJLRrPwYMHwXEc9u7d26Jx6JqRkRFGjhyp12fK5XIcO3YMAQEBsLOzg0gkQt++fbF8+XKVbTElEgn27NkDHx8f2NjY8GXDwsLw7NkzvcZNCCHk5ULJJtFIIpHg0aNHSucUSxPpypQpUyAQCFBeXq5V+dTUVADAkCFDdBpHWyOXy8FxHPz8/DSWOX78OPz9/REdHY28vDxUVVXhzp072Lx5M9544w1UVFTwZf/1r3/hww8/RHx8PAoLC/myW7ZswdChQ1FSUqKP1yKEEPISomSTaGRqasrvFHP48GEAuk82MzIy0K9fP5iYmGhVPjw8HIyxl2KdzcaQSqU4e/asXp8pFAoxZcoUxMTEID8/HxKJBImJiejfvz8yMzPx448/8mXNzMwwc+ZMxMXFIT8/H2VlZYiLi0P37t1x8+ZNmihGCCFEIxqzSbRy7tw5CIVCDBw4UGd1FhcXIzs7G4GBgTqrk2jP19cXvr6+SueGDx+O8PBwjBs3DsnJyViyZAkAYOnSpSr3jxkzBps3b8b777/Pb1lKCCGE1Ec9m3r0v//9DxzHYefOndi/fz8cHR1hbm6OESNG8J+H6youLkZYWBj69OkDY2Nj2NvbY+HChXj8+HGT6w0NDQXHcbh+/brS+cOHD4PjOOzevVtt7AkJCXB3d+f36q6PMYZTp04hMDCQj7dnz56YM2cOCgoK+HJyuRyGhobgOA5WVlYA/h6HqTj27dunVLePj4/S9Y8++khDC2vfZjExMeA4Dt988w2SkpLg6ekJU1NTDBo0CGKxWG3dut5vPSQkROm9NI3ZzMzMBMdx+OKLL5CamgovLy8YGxvDwcFBpa2GDh0KjuP4naMU76k4Fi9erHV87du3f24Ze3t7AIC1tbXW9RJCCHm1UM+mHqWnpwMAEhMTcfDgQf78hQsXMG7cOGRlZfHbU+bl5eHNN99Ebm4uXy4nJwffffcdbt26hTNnzvDbDzam3uTkZFhYWMDJyUkptuTkZABQ2XYSAJ49e4bLly9j0aJFGt/t1KlTGDt2rNK5/Px8/PTTT8jIyMClS5cAAPfu3UN1dXVDzaSSzGVnZyv9rOlTfmPaTNETV1hYiFGjRkEqlQKobcspU6YgPz8fAoGgwTj1raCgAG+//TY/PvLu3buYMWMGnJ2d4e7u/sL1SyQSpKSk4OOPPwbHcQgODn7uPbGxsQCgVVlCCCGvJurZ1CNFUpiamoq4uDhUVFTg7t27GDp0KJ48eYJTp04BqO0lDAoKQm5uLqZMmYKbN29CKpUiJSUFtra2OHv2LG7dutXoemUyGS5dugRPT08YGCj/0YvFYgiFQri5uanEnZiYiOrq6gbHa967dw+zZ8/GqVOnUFBQwE8gGTp0KDIyMvgJQL169eLHgYaGhgIArl27xp9jjGH48OFKdWdnZ4Mxhl27dgGo7b2rr7Ftpkg2o6OjsW/fPpSUlCArKwt9+/ZFYWEh8vLyNL6rrkRERPDvLBKJnlt+7969WLx4MR48eICHDx/igw8+QE1NjVLvZnJyMhhjkMlkAGo/lddt2x07dqjU+9///hccx8HMzAw+Pj6oqalBVFQU3njjjQbjyczMxJYtWzB9+nSMHj26kW9PCCHkVUHJph5dunQJQqEQJ0+exJgxY2BkZAR7e3vMnz8fAPjPzbGxsbhw4QJ8fX0RHR0NR0dHiEQiDB48GDNmzABQ26vV2HozMzMhlUpVkkaZTIa0tDS4urqqTXoSEhIANDw5yMvLCwKBAAsWLIC9vT3atWuHPn36IDk5BPQsNQAAEH1JREFUGZaWlmonAJ09exadO3eGs7OzVu2nKN+7d2+Va41ts/T0dH5f7MmTJ6N9+/bo27cv3nrrLQBQG+/y5cvBGENOTo5W8erawIEDsX79enTu3BmdOnXCli1bAEApidYFqVSK/Pz8BstkZ2dj/PjxcHNzw549e3T6fEIIIW0LJZt6kpeXh0ePHiE4OBh9+/ZVuqb4hKsY97Z//34AwLp16/jPvgo1NTUAAHNz80bXq/hUXj9pvHz5MioqKtR+QgdqJwd169YNdnZ2aq8fO3YM7u7u+PHHH/Hnn3+isrJS6fqAAQNU7nn27BkyMzMbtbbkuXPn1PZqAo1rs4KCAhQWFmLEiBHw9PRUKnvjxg1YWVmhS5cuWselL/Vj7dKlC9q1a6eyJmZjTZ06FYwxlJWV4eLFi3BxccGnn36KTZs2qS2fnZ2NkSNHwtLSEidPntR6JQFCCCGvJko29UTxqbv+J2IA/GduRbKXlpYGExMTeHh4qJRNTEyEQCDgrzWm3pSUFHAcp5K0xMXFKZWrq7y8HOnp6Rp7NcvLyzFz5kwIhUJ8++23yM/PR1VVFRhjuHbtGgCofY9z586hurpa62Tz5s2buH//vsY4GtNmiklT9ceYKnp467dPa2FmZqZyjuM4ne34ZGpqiiFDhuDo0aMwNzdX+8n9zz//hLe3N0xMTPD777/zY4EJIYQQTWiCkJ4oxgjWn+F7/fp1HDlyBP379+cn7ZSVlan0zgG1SWFiYiL8/f35XrrG1PvHH3/A2toalpaWfLnS0lL+M6i6ZPPq1auQyWRqkzigdqxnUVERli9fzi+TA9T2Jq5YsQKA+mQzKSkJAODt7a223voUa1Bq6tlsSpvVT1wzMjLUDjN4GSnG5FZVVTXp/pqaGjx48EDp3O3btzFq1CiYmprizJkzrbL3lxBCSOtDPZt6ouiB3Lp1K+7cuQOpVIrffvsN48ePR01NDdasWcOX7d27NyQSCTZu3IiSkhKUlJRgz549mDp1KgQCAdauXdukequqqvD48WMcP34cFRUVuHTpEvz9/ZGfnw+RSAQXFxeVuIuKigDUfoJ/8uSJynVFUnPu3Dnk5eVBIpFALBbD19eX7zFVl2wqxj3m5uZCLpc/t/0SEhIgEAgwePBgtdcb02ZpaWkQCAQquxBpGmagoOulj5qTgYEBOnTogJSUFKSmpqpt41mzZmHt2rVIT09HSUkJysrKkJKSgkmTJkEikSjNcL9+/Tq8vb1hamqK+Ph4dOvWTZ+vQwgh5GXG2qjIyEjWml6vU6dObOrUqcza2poBUDrmzp2rVPbAgQMqZQAwjuPY7t27m1zvggULVMp89tlnzMDAgA0ZMkRt3Pn5+UwoFCrdIxQKmVwuZ4wxVlpaymxsbFTqnTRpEnN3d2cikYjJZDKVelesWKFyz7x58/jrCQkJatug7pGQkNDkNhswYIBKTIGBgczAwIAVFxerbYuvv/6aAWB2dnZqrzeGpnjrHtnZ2YwxxjIyMhgAtmrVKpV6RCIR8/b2VvuMoKAglToXLVrEXx81apTGZxsZGSm17/z58xuM1dnZ+YXbpCUAYJGRkS0dBiGEtGVR1LOpB4pJPMOGDcOvv/4KV1dXGBkZwdXVFbt378YPP/ygVD4wMBARERFwc3ODiYkJOnbsCD8/PyQkJGDBggVNrnf9+vWYNGkSzM3N0bNnT4SHh2Pu3LmoqanRODnI1tYW+/fvh5ubG7+gu729Pb8GpZmZGU6cOAEfHx+Ym5vD1tYWa9euRVRUFHJycuDi4gJDQ9XRGmFhYQgICIC1tTX/+btPnz789fpra6pTd1Z6Y9tM3ed4sVgMJycnWFhYPPfZL4Nt27YhODhYqY3r+s9//oMNGzbA09MTnTp1gomJCRwdHTFv3jxcv34db775ZgtETQghpK3hGNPR7IJWJioqCtOmTdPZ5IkXcfjwYUyePBmxsbEqk1JaY72EvCoUy18FBAS0dCiEENJWRVPPph4oxlWqGxPZGuslhBBCCNEVSjb1ID09HRYWFujevftLUS8hhBBCiK5QsqkH6enpWu+S0xrqJYQQQgjRFUo29eDhw4e4cOHCS1OvJgcPHgTHcdi7d6/enklenJGRUaN2aiKEEEJ0iZLNV9iUKVMgEAhQXl6uVXnFzjv116dsjRr7bi1JLpeD4zj4+fm1dCiEEEKIzlGy+QrLyMhAv379tN7bOjw8HIwx9OvXr5kje3GNfbe2TCqV8jswEUIIIfpGyeYrqri4GNnZ2Uq7xLQVbfndCCGEkJcNJZstIDk5GQEBAejatSuMjY3h7OyMVatW4enTp0rliouLERYWhj59+sDY2Bj29vZYuHAhHj9+rFQuJiYGHMfhm2++QVJSEjw9PWFqaopBgwZBLBbz5eRyOQwNDcFxHKysrAD8PQ5Tcezbt0+pbh8fH6XrH330kdp30jYGhbKyMqxbtw5OTk4QiUSwsbHBJ598goqKCr29m4Kut6GsqqrChg0b4OzsDDMzM3Tt2hXvvvsuzpw5o1Ru6NCh4DgOQqFQ6V0Vx+LFi1Xqfv/998FxHL/tqIeHB8zNzTFixAhcvHiRLxcSEqJUl6Yxm5mZmeA4Dl988QVSU1Ph5eUFY2NjODg4qG2vR48eISQkBB07doSFhQVmzZqFR48egeM4TJ069QVajRBCSFulurULaVbr16/HmjVrlBabv3HjBm7cuAFLS0t8/vnnAGp3unnzzTeRm5vLl8vJycF3332HW7du4cyZM/yuMGlpaQCAwsJCjBo1ClKpFEDtbPUpU6YgPz8fAoEA9+7dQ3V1dYPx1U+46u/ko2nfcG1jAIC//voLo0ePxq1bt/j7CwsLsXXrVvzxxx84fvx4o+ttyrs1l6VLl2L37t38zxKJBCdPnsTJkydRUVEBIyOjF35GfHw8pk+fzr/zhQsX8H//93+IjY1tUn0FBQV4++23UVJSAgC4e/cuZsyYAWdnZ76HuLKyEqNHj8aVK1f4+yIiIlBZWfmCb0MIIaQto55NPfrll1+wevVqWFhYYNu2bcjPz0dFRQWuXLmCsLAw/j91xhiCgoKQm5uLKVOm4ObNm5BKpUhJSYGtrS3Onj2rlKgpErLo6Gjs27cPJSUlyMrKQt++fVFYWIi8vDwAtckWYwyMMYSGhgIArl27xp9jjGH48OFKMWdnZ4Mxhl27dgGA2m0eGxODTCaDn58fsrKyEBoailu3bkEqleL27dsYO3YsYmJikJKSopd3ay6HDh2CpaUlTp8+DYlEgsePHyM2NhajR49W2jYyOTkZjDHIZDIAgK+vr1K8O3bs0PiML7/8Ep988gmysrLw7NkznDlzBoMHD+avR0RE8PWIRKLnxrx3714sXrwYDx48wMOHD/HBBx+gpqZGqXfzp59+wpUrV+Ds7Izk5GSUlZXh/PnzSj2qhBBCiAo9bsSuV5GRkaw1vZ5UKmVdu3ZlAoGAJScnN1j2xIkTDADz9fVlNTU1StdWrlzJALDjx4/z57p168Y4jlOpd968eQwAu3//vsozBg4cyDp37qx1/AEBAQ2W1zaG7du3MwBs586dKnXEx8erXNPHu+lav379mJOTE6uurtaqvEwm4/+8nyc4OJgBYHPnztU6HpFIxLy9vdVey8jIYADY0KFDlc7fv3+fAWB+fn78OV9fXwaAJSUlKZU9dOgQA8CmTJmidUytBQAWGRnZ0mEQQkhbFkU9m3py+vRp3L9/H3PnzoWnp2eDZffv3w8AWLdunVJPGADU1NQAAMzNzQHUfv4sLCzEiBEjVOq9ceMGrKys0KVLF6Xzz549Q2ZmZqPWXjx37pzGXs3GxPDzzz8DABYtWqQ0ppDjOLz11lsAwA8x0Ne76dquXbvw9OlTODo6Yt68efjmm29w/vx5/s9OF2bNmqWzugCotG+XLl3Qrl07lJWV8edycnIgEAiUelDV3UsIIYTURcmmnmRmZgIA3n333eeWTUtLg4mJCTw8PFSuJSYmQiAQ8NcUa1+OHTtWqZxMJkNaWpraRODcuXOorq7WOiG7efMm7t+/r3G8prYxyGQyZGRkPPd5iu039fFuzWHUqFHIzc3F7t278dprr0EsFmPMmDHw8vJCaWmpTp6h6/GnZmZmKuc4jlMaW8wYU/nlR3GeEEII0YSSTT2RSCQAoDLbWp2ysjK1/6nHxcUhMTERvr6+fM+mYkxj/UQwIyMDUqlUbYKYlJQEAPD29tYqdsUajc8br/m8GEpLS8EYg7+/v9LYxPrHxIkT9fZuzUUkEmHUqFEIDQ1FdHQ0oqKicPHiRezZs0elrIFB7T/Dqqoqretv166dzmLVlr29PeRyOf9LgAKN2SSEENIQSjb1RLEQ+pdffgmxWIyKigoUFBQgJiYG/v7+SjOpe/fuDYlEgo0bN6KkpAQlJSXYs2cPpk6dCoFAgLVr1/Jl09LSIBAIVHb1SU5OBqB+9nhOTg4AIDc3F3K5/LmxJyQkqP182tgYrKys0LFjR5w5cwb79u3DkydPUFlZiaysLOzbtw/vvPMObt++rdd3A3S79FFlZSWGDRuGiIgI3LlzB5WVlcjJyUFkZCQAoKioSOUeAwMDdOjQASkpKUhNTdU6bn3z9fUFAMydOxfJycmQSCS4cOECVqxY0cKREUIIadVaZqxo82ttE4TKysqYvb09A6ByeHh4KJU9cOCA2nIcx7Hdu3crle3UqRMbMGCAyvMCAwOZgYEBKy4uVrm2YsUKlbrnzZvHX09ISFD7/LpHQkJCk2LYtGmTxjoNDQ1ZVVVVs76bOl9//TUDwOzs7Bosp42KigqN72dkZMSuXbum9r6goCCV8osWLVIpp5gg9OjRI40xaPr7U/fIzs5mjP09QWjVqlUq9dSfWCSVSpmrq6tKXTNnzmQA2NSpUxvXWK0AaIIQIYQ0N5ogpC+mpqY4f/48QkJCYGNjA6FQiF69emH27Nk4dOiQUtnAwEBERETAzc0NJiYm6NixI/z8/JCQkIAFCxbw5fLy8vDo0SO1n7fFYjGcnJxgYWGhci0sLAwBAQGwtrbmP9f36dOHv15/bU11evfu3aQYli1bhoMHD8LLywvW1tYwMzODq6srli5disuXL/MLnDfXuzU3IyMjiMVihISEwMHBASKRCD169EBgYCDEYjGcnZ3V3rdt2zYEBwcrxd3aiEQinD59GjNmzICVlRXat2+PmTNn4quvvgIAnawfSgghpO3hGGubo/ujoqIwbdo0mrxASDOLj4+Hj48PVq5ciQ0bNrR0OI3CcRwiIyMREBDQ0qEQQkhbFU07CBFCtLZkyRI4Ojpi7NixsLGxwZUrV/Dxxx8DAMaMGdPC0RFCCGmNKNkkhGjt7t272L59u8p5f3//Fl8BgBBCSOtEySYhRGs7d+5Ez549ERcXh3v37sHW1hbTp0/H6tWrWzo0QgghrRQlm4QQrdnZ2WHXrl0tHQYhhJCXCM1GJ4QQQgghzYaSTUIIIYQQ0mwo2SSEEEIIIc2Gkk1CCCGEENJsKNkkhBBCCCHNps3PRm+tW/8RQgghhLwK2ux2lffu3UNSUlJLh0EIaeW8vLxga2vb0mEQQkhbFd1mk01CCCGEENLiomnMJiGEEEIIaTaUbBJCCCGEkGZDySYhhBBCCGk2/w+CU3WZ3oQXXAAAAABJRU5ErkJggg==\n", "text/plain": [ "ref_0\n", "SQLiteTable[table]\n", " name: countries\n", " schema:\n", " iso_alpha2 : string\n", " iso_alpha3 : string\n", " iso_numeric : int32\n", " fips : string\n", " name : string\n", " capital : string\n", " area_km2 : float64\n", " population : int32\n", " continent : string\n", "\n", "population_in_millions = Divide[float64*]\n", " left:\n", " population = Column[int32*] 'population' from table\n", " ref_0\n", " right:\n", " Literal[int32]\n", " 1000000" ] }, "execution_count": 6, "metadata": {}, "output_type": "execute_result" } ], "source": [ "population_in_millions = (countries['population'] / 1_000_000).name('population_in_millions')\n", "population_in_millions" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "If we check its type, we can see how it is a `FloatingColumn` expression." ] }, { "cell_type": "code", "execution_count": 7, "metadata": {}, "outputs": [ { "data": { "text/plain": [ "ibis.expr.types.FloatingColumn" ] }, "execution_count": 7, "metadata": {}, "output_type": "execute_result" } ], "source": [ "type(population_in_millions)" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "We can combine the previous expression to be a column of a table expression." ] }, { "cell_type": "code", "execution_count": 8, "metadata": {}, "outputs": [ { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAY0AAAHbCAYAAAA3cMY7AAAABmJLR0QA/wD/AP+gvaeTAAAgAElEQVR4nOzdfVxUZfo/8M+ZYZwBQRCQEElEhJQHxWdFNxVbdYO0lJCyUtEsNrP6maSpu1Zbq5Zltma7tuW3FR/wZZpKgaYGGkMogaaoZKJi+AAqzwzDw/X7g52zDDMjZ3CAAa736zUv5Zx77rnOzGEuzjn3uS+BiAiMMcaYBLK2DoAxxlj7wUmDMcaYZJw0GGOMSWbTeMG1a9eQmpraFrEwxhizIg8++CBGjx6tv5Aa2blzJwHgBz/4wQ9+dPJHRERE4xRBBkcaOjyoijHGOq8nn3zS6HK+psEYY0wyThqMMcYka9OkkZiYCEEQIAgC1q9fb/X9MsZYZ2expOHu7g5BEBAYGGipLhljjFmZTn16au/eveIRyWeffdbW4TDGmNUzOXqqNUyZMqVFRmm1VL+MMdbZdeojDcYYY+Zpk6Rhb28vnhYydcH6+PHjEAQB48ePx7PPPgs7Ozv84Q9/wPHjxxEcHAwHBwdERESgvLzcrH4BQKVSQRAEPPHEE+KymJgY8Tn29vYtt/GMMdaOtenpKSmOHz+O2tpa8f8TJkxATU0NAGD37t0IDQ3Fn//857YMkTHGOo02OdIoKysDEeG7775rsm1tbS0yMzPx8ssvAwBsbGzw+++/Izw8HACQmZlpdr8ajQZEhD179ojLNm3aBCICEaGsrKw5m8UYYx2e1V/TEAQBgwYNwpAhQwAAnp6e8PDwEIf2FhYWtmV4jDHWqVh90pDJZBAEATY29WfS5HK53r9VVVVtFhtjjHU2Vp80mlJXV9fWITDGWKfR7pPG/RAEQfw/39fBGGNN69RJo3v37uL/U1JS9IbvMsYYM2TxpHH27FmDeyUEQUBERAQAICIiQlz2pz/9SXzea6+9Ji4PDg42+3Wb0++QIUPg6OgIANixY4d4nwffp8EYY8Z16iMNe3t77Nu3DxMmTICTkxNksk79djDGWJMEanQyPz4+HjNnzuRz/Iwx1onpKvft2rVLbzn/ac0YY0wyThqMMcYk46TBGGNMMk4ajDHGJOOkwe6LSqXC+PHj2zoMxlgr4aTRwdXU1EAQBHFWYMYYux9WX0+DWTeNRtPWITDGWhEfaTDGGJOsXSSNhIQECIKADz/8EKmpqRg5ciS6du2KYcOGQa1W67UlIhw6dAhRUVHo168fbG1t0bt3b8ybNw/5+fliu/T0dAiCgDVr1uDhhx+Go6Mjtm3bhoyMDPj7+8PZ2Rnx8fF6fZeVleHtt9/GgAEDoFQq4eHhgddeew2VlZUmY1+9ejUEQUCfPn0s8l5otVq8++67CAgIgL29Pdzd3fHoo4/iyJEjeu1GjRoFQRCgUCgA/O891D0WLlxo0PczzzwDQRBQWFiIAwcOYPDgwXBwcMDYsWPx008/ie3mzJmj15epaxpZWVkQBAErVqzAiRMnEBISAltbW/j4+CAuLs6gfUFBAebMmQMXFxc4Ojpi7ty5KCgo0JuGhjHWxqiRnTt3kpHFbWrVqlUEgF5//XVSqVQEQHz07NmTampqxLZJSUl66xs+Bg8eLLbbuHEjASAXFxdxvZeXF/Xp00f82dfXV2x/7do16t+/v9F+w8LCTMb+97//XezbEmJiYkxuX2Vlpdhu5MiRJtsBoJdeesmg71mzZhEAio+PJ7lcrtd+8uTJYrvZs2frrRs3bpzRWDMzMwkAzZ07lxwdHfWeI5PJKDMzU2yr0Who4MCBBnE+9dRTBIBmzJhhkfePMSZNREQERUREGCxvF0caJ0+eBFB/O3tcXByKi4uRk5MDX19fXL9+HVevXhXbXrt2DdHR0Th06BDy8/Oh1Wpx8eJFjBo1CpmZmaioqAAAZGRkAADeeOMNFBYWIjAwEFeuXMHChQtRWlqKYcOGobq6GgBQXV2N8PBw5OTkYPHixTh//jw0Gg0uXLiAyZMnIyEhAenp6a3yXuzevRtOTk44fPgwysvLUVhYiMTERDzyyCN6U72npaWBiMRtCAsLE8vZEhH+8Y9/mHyNt956C6+99hpycnJQUlKCI0eOYPjw4eL6LVu2iP0olcomY966dSsWLlyImzdv4tatW3j22WdRV1end7TxxRdf4PTp0wgICEBaWhrKyspw7NgxvSMcxpgVaJxFrPFIo2fPniQIAqWlpektX7BgAQGgGzduiMvOnTtHzz//PPn4+JBSqdT7q9XJyUlsN3DgQHJ2dqbq6moiIgoNDSV3d3eqra0lIqLx48fTmDFjiIjok08+IQC0ceNGg9iOHj1qcl1L8PPzowEDBohxNqW6urrJoyEd3ZHG/PnzJcejVCqbPNIYNWqU3vIbN24QAAoPDxeXhYWFEQBKTU3Va7t7924+0mCsDbTbI438/Hxcv34dY8eOxciRI/XWZWdno3v37njggQcAAPv370dwcDA2b96M3377zaAU7KBBgwDUj/jJzs7GhAkTxDKyWVlZmDhxImQyGYgIWVlZ8Pf3BwB8+eWXAICXXnrJYMr3CRMmAGi9Ik6ffvop7ty5g/79+2PBggX48MMPcezYMYtWMJw7d67F+gJg8Lk98MAD6NKlC8rKysRlly9fhlwu1zuiMfZcxljbsvqkceLECQDA5MmT9ZZXV1fj5MmT4pdKRUUFZs+eDYVCgY8//hh5eXnQarUgIpw5cwYAMHjwYAD1CaKmpgZjxowBAFy4cAF37twRf87OzkZRURGGDx+O6upqZGZmNhlnr169LLPBTZg4cSKuXLmCTZs24aGHHoJarcakSZMQEhKC0tJSi7yGpS7a6xirTyIIgl6iJSK902sNlzPGrIfVJw3d9YzRo0frLc/MzIRGoxGXq9Vq3L17FwsXLsSiRYvg6ekJhUKBuro6LFu2DMD/koauz5CQEPG5xn4ePXo0SktLQUSYOnWq3jWBxo/HH3+8Jd8GPUqlEhMnTsTixYuxa9cuxMfH46effsLnn39u0FZXI0Sr1Uruv0uXLhaLVSpvb2/U1NSIfyTo8DUNxqxLu0gacrkcI0aM0FuelpYG4H/JRPflmJKSgqtXr6K8vBxqtRphYWFISkoC8L+kkZGRAZVKhSFDhgCoTxL29vYIDAwUf3Z0dIS/vz+6d+8OFxcXHDlyBHFxcbh9+zaqqqqQk5ODuLg4TJkyBRcuXDAZvyWH3FZVVWH06NHYsmULLl68iKqqKly+fBk7d+4EANy9e9fgOTKZDM7OzkhPT8eJEydQU1Nz33G0hLCwMADA/PnzkZaWhvLycvz4449iwmeMWQerTxoZGRkIDAw0OMWhVqshk8nEZDJ8+HB4eHggNTUVXl5esLe3F+8L8Pf3h1KpxIABAwDUJ6Jhw4aJ9zCo1WqMGDECcrlc/HnkyJGQyWQQBAFLlixBWVkZnnnmGbi6ukKlUuGhhx7CM888g8OHD6Nv376t8l4QEdLS0jB37lz4+vpCpVLB29sbcXFxUKlUmDlzptHnTZkyBcXFxRgxYgQUCoXJ+zSk2LFjh941naqqKiQnJ+stu3z5stn9RkdHIygoCNnZ2Rg9ejTs7e0xduxY8ejP2Kkrxljrs+qkcfXqVRQUFGDUqFEG69RqNQYMGCDW+La3t8e3336L0NBQODg4wNPTE6tWrUJ8fDwuX76MwMBA2NjYoLKyEufOnRO/jEpLS3H27FnxiKWoqAjnz5/XOx32xhtvYMeOHQgJCYGrqyvs7e0RFBSEV199FadOnRKTT0tTqVRQq9WYM2cOfHx8oFQq8eCDDyIqKgpqtRoBAQFGn7dhwwbMmjULrq6uVvvlq1QqcfjwYTz33HPo3r07unXrhtmzZ+Odd94BUL/tjLG2x+VemVU7evQoQkND8eabb+Ldd99t63AY6zRMlXvlCQuZ1Vi0aBH69++PyZMnw8PDA6dPn8Yrr7wCAJg0aVIbR8cYAzhpMCty6dIlfPLJJwbLp06dinHjxrVBRIyxxjhpMKuxceNG9O7dG0lJSbh27Ro8PT3x1FNPYeXKlW0dGmPsvzhpMKvh5eWFTz/9tK3DYIzdg1WPnuoodMNUt27d2tahMDNwKVvGDHHSaIYZM2ZALpeLM+Y2RXeXc+MbFK2RudvWlriULWOtj5NGM2RmZsLPzw92dnaS2q9btw5EBD8/vxaO7P6Zu20dmUajwQ8//NDWYTBmVThpmKmoqAi5ubkIDg5u61AsriNvG2PMMtpV0khLS0NkZCTc3d1ha2uLgIAALF++HHfu3NFrV1RUhNjYWLHcq7e3N2JiYlBYWKjXTmoZ2ZqaGtjY2EAQBHTv3h2A4XQajcuXhoaG6q1/+eWXjW6TOaVsAeklZ1ty23S4lC2XsmWdUOMCG9ZYhImI6J133iFBEIyWLl27dq3Y7sqVK+Tl5WW03fjx46murk5sK7WMbG5u7j1LpwKg48eP68XbsGwsAIqLizO6XeaUsjWn5GxLbpsOl7LlUras4zJVhKldJI2vvvpKrLy3YcMGysvLo8rKSjp9+jTFxsbSwYMHiYiorq6OxowZI/4injt3jjQaDaWnp5OnpycBoOzsbLHf8PBw8Utv9+7dVFxcTDk5OeTr60sA6NKlSwaxLF68mADQmTNnJMX+6aefEgD67bffjK6XGoNWq6Xg4GCSyWS0ePFiOn/+PGk0Grpw4QJNnjyZANBPP/3Uqttm6aTh5uZGTk5OdPjwYSovL6fCwkJKTEykRx55hDQajUH75lQlDAgIoNdff51ycnKopKSEjhw5QitWrDD6HClVCRUKBS1fvpxu3rxJt27domeffVZM1jq6fSAgIIDS0tKorKyMjh07Rn379uWkwaxWu00aGo2G3N3dSS6XG5R7bezbb78Vv0QaHlEQEb355psEgA4cOCAuM6eMrM7QoUPJzc1NcvyRkZH3bC81BnNLzrbGtlkal7JlzHq023Kvhw8fxo0bNzB//vwmS39u27YNAPD2228bzOaqK4fq4OAAwLwysjolJSXIysoya+x+SkqK0Vl6zY3BnJKzrbVtlsalbBmzflafNLKysgAAjz76aJNtT548CTs7O7HYUkPHjx+HXC4X10ktI9tQSkoKamtrJX+xnjt3Djdu3DCoOqgjNQZzS862xra1BC5ly5j1s/qkUV5eDgAGo4OMKSsrM/rLmZSUhOPHjyMsLEw80pBaRrah1NRUAJA8eZ5ujL+pIw2pMZhbcrY1tq2lcClbxqyb1ScN3Q1xb731FtRqNSorK5Gfn4+EhARMnToVtbW1Ytu+ffuivLwc7733HoqLi1FcXIzPP/8cERERkMvlWLVqldhWahnZhnQV6a5cuSKpbGpycrLR0xLmxmBuydnW2DaAS9lKxaVsWYfS+CKHtV0ILysrI29vb6NDKwcPHqzXdvv27UbbCYJAmzZt0mvbo0cPGjRokMHrRUVFkUwmo6KiIoN1y5YtM+h7wYIF4vrk5OQmh68mJyc3K4bVq1eb7NPGxoa0Wm2Lbpsxlhw9VVlZaXL7VCqVyRFdTz/9tFlDbgsKCkzGYGr/afjIzc0lov9dCF++fLlBP40voGs0GgoKCjLoSze819jFRsbaWru9EN61a1ccO3YMc+bMgYeHBxQKBfr06YPo6Gjs3r1br21UVBS2bNmCgQMHws7ODi4uLggPD0dycjJefPFFsZ05ZWQbio2NRWRkpF7Z1H79+onrc3Nzm9weXT1xc2OQWnK2pbatpXEpW8baBy73ylgb4VK2zJpxuVfG2hCXsmUdBScNxloBl7JlHQUnDcZaAZeyZR2F1V8Ib6/c3Nz07tqePn16m8bT3qoHdrR4hw8fjk2bNuHSpUvQarUYNGgQ/va3v0GpVBq0be6+097es5Zw/PhxhISEwMHBAYIg6A3mWLFihd776urq2oaRSpebm4s5c+agV69eUCqVCAgIwJdffnnPmRKISJwNWnf/lqVw0mgB5eXlKCgo0Ftm6q7w5urI1QOBjhWvOfvD/ew77e09s7S7d+9i6tSpUKvVetO4WCOpVSezsrIwePBg/N///R/y8/Oh1WqRnZ2N6OhonD592uTzNm/eLGkWiWZpPAbX2u7TaO/27NlDAOjYsWMW7dfb25v69+9v0T5ZyzNnf2ipfaej2rdvHwGgmJgYKisru2fbkSNHkouLSytFZkjKZJu1tbXi/T1hYWF0+vRpqqqqol9//ZUWLFhAp0+fNvq8wsJCcnZ2FidpnTZtWrNibLf3abR3KSkpUCgUGDp0qMX65Ap77Zc5+0NL7Dsd2e+//w4A+NOf/oSuXbu2cTT374cffsAvv/yCoUOHYs+ePQgKCkKXLl3Qr18//POf/0RQUJDR58XGxmLw4MHikFlLaxdJ4+uvv4YgCNi4cSO2bduG/v37i1XXGs/nA0iv3GdOv4sXL4YgCDh79qze8j179kAQBGzatMlo7MnJyQgODoatra3R9USEQ4cOISoqSoy3d+/emDdvHvLz88V2LVk90Jz3zNxKg+ZoqWqHUqSnp0MQBKxZswYPP/wwHB0dsW3bNmRkZMDf3x/Ozs6Ij49vVrwNNbU/mNvWGj7jgoICrFy5EkFBQXB0dISbmxsmT55ssr66Jaef0VVQFAQBMTExAOpHpOmW3c8NqhqNBitXroSvry+USiVcXFwwbdo0nDp1yqDtyZMnMW/ePPj5+UGpVMLV1RXh4eE4evSoXjtzqk5+//33AOq/e3Ttm6JWq7F161ajI/UspvGhhzWentIdZkVFRRlMxeDi4kK3b98W25pTuc+cfkNCQsjR0dGg1kNsbCwBoPT0dIO4i4uLSS6X06JFi0xuW1JSkskpKxpOk9KS1QNbotphc7REtUOpNm7cKH7uur68vLz0YvL19W1WvDpS9gdz27b1Z1xQUEAPPvig0X7d3d2NxmLJ6Wd007mYevj4+Bh9XlOnp+rq6mjSpElG+7Szs6Off/5Zr72p15fJZJSYmKj3uveKt+EUONOnTycAdPnyZVq8eDG5urqSnZ0dhYSE6NUF0qmpqaHg4GBasmSJ3ntj6dNT7SJp6CrT+fj4UFJSElVWVtKlS5do1KhRBIB27NhBROZX7pPar1arJZVKRZMmTTKI7Q9/+AMpFAqjleUSEhIIAG3fvt3ktv373/+m6OhoOnToEOXn55NWq6WLFy+KMZSXlxs8x5LVA1uj2qG5LFXt0BzR0dEE1JcOLiwspMDAQAJAH3zwAZWWltKwYcOoT58+zYpXR8r+0Jy2TcXQkp/xRx99REB90anTp09TZWUlFRQU0ObNm+m5554zGqulKz7q6AqV7d+/v8m2TSUN3fURd3d3SkhIoNLSUrp48SJFRkYSAPrjH/+o13748OG0ZcsW+v3336m6upqKiorom2++IRsbG6PXLaRc0wgNDSW5XE4vv/yyQXIRBIHi4+P12q9fv548PDyotLSUiDp50ujRowcpFArKycnRW/7ll18SAPrwww+JyPzKfVL7TU9PJwD017/+Va+dVqslW1tbGjJkiNG4dUchly9fNrlt586do+eff558fHxIqVTq7RhOTk5Gn2PJ6oGtUe3QXJaqdmiOgQMHkrOzM1VXVxNR/S+su7u7eGQ5fvx4GjNmTLPi1ZGyPzSnbVMxtORnvHbtWgJACQkJkuJsSZZMGrp69Vu2bNFbXllZSe7u7mRjY0MVFRXi8rNnz9LTTz9Nnp6eZGNjo/d7HBwcbNC/lKQxfvx4ksvl5OTkRFu3bqWioiK6fv06vfHGGwSA+vbtK7bNz8+nbt266f2R0VJJw+qvaegm4Js1axZ8fX311mk0GgAQx1ubU7nPnH5NTSl+6tQpVFZWYtiwYUZjT0lJQc+ePeHl5WV0/f79+xEcHIzNmzfjt99+Q1VVld76QYMGGTzH0tUDW7raYXNYqtqhVBqNBtnZ2ZgwYQJsbOrvd83KysLEiRMhk8lARMjKyoK/v7/Z8TZud6/9obltm4qhJT/j6OhoDBkyBDNmzEBkZCQ2bNggFk5rz65evQoAGDNmjN5ylUqFIUOGoKamRrzmmJ2djZEjR2Lbtm24du2awRT91dXVzYrB3t4etbW1ePXVVzFr1iw4OjrC3d0dq1evRmBgIC5duoS8vDwA9dc9Bg8ejKioqGa9ljmsPmlkZGQAMPzwAODQoUMAIH5pm1O5z5x+dRdJG/8SJSUl6bVrqKKiAhkZGSbH2FdUVGD27NlQKBT4+OOPkZeXB61WCyLCmTNnAMDodli6emBLVzs0l6WqHZojKysLNTU14r5w4cIF3LlzR/w5OzsbRUVFRuuiNBWvTlP7Q3PbSomhJT9jFxcXnDx5Et9//z2GDx+Ob7/9FkOGDEFkZKRFy/S2NvrvhK1SZk5ev349ysrKEBMTg3PnzqGiokIsjObk5NTsGHR/MBgbJaWrM3Tnzh1UVFRg+/btSE5O1ruorvtMv/nmGwiCgKVLlzY7loasPmnoqtB169ZNb/nZs2exd+9e+Pv7Y8CAAQCaV7lPSr+//vorXF1d9XaA0tJSsZqcsaTxyy+/oLq62ugvKlA/yuHu3btYuHAhFi1aBE9PTygUCtTV1YnFeYw919LVA1u62qG5LFXt0By6PkNCQgBAHCHU+GdjfTcVr05T+0Nz20qJoaU/Y0EQMGbMGCxZsgSJiYmYPXs2du3aZdVHHE5OTigtLTWZ2HRf2D/++KPe8qqqKmRmZsLGxgYeHh4A6ucVk8vl2LBhA/r37y+Odjtx4gSKioqM9i+l6qTue0X3R2RDOTk5AOrPhrR2crb6pKE7Ili/fj0uXrwIjUaDgwcP4rHHHkNdXR3+8pe/iG3NqdxnTr9arRaFhYU4cOAAKisr8fPPP2Pq1KnIy8uDUqlEYGCgQdy6SnNpaWm4ffu2wXrdTpOSkoKrV6+ivLwcarUaYWFh4hGMsS8NS1cPbOlqh+ayVLVDc2RkZIinHYD6JGFvby9+rmq1Go6OjkZPTzUVr05T+0Nz20qJoaU+4wULFmDlypU4deoUKioqcPv2bcTFxWHfvn0QBMHkaUJLDrltrn79+kGr1WLdunUGp4WB+ns9AGDp0qX47rvvUFZWhtzcXMydOxfXr1/HuHHjxOTQu3dv1NbWYt26dSgqKkJxcTEOHDiAmTNnmhwqK6XqZHh4OGxtbfH+++9jx44dKCkpwc2bN7F06VKcOXMGvr6+6NWrF+zt7Y2Wf9bdET5t2jQQEVavXm2ZN6/xRQ5ruxDeo0cPioiIIFdXV4MRBPPnz9dra27lPqn9vvjiiwZtXn/9dZLJZDRixAijcefl5ZFCodB7jkKhEIcrlpaWkoeHh0G/TzzxBAUHB5NSqRQvyjZk6eqBLV3tsCktWe1QqsDAQBo7dqz4c1BQEIWGhoo/DxgwQBw5Z268Ok3tD+a0tZbPWDeaythj6dKlJt9vaxg9derUKRIEQS/mF154QVx/ryG3tra2dOLECbFtamoqyWQyg3Zz586lXr16UUBAgNEYpFSdXLNmjdEYZDIZ7d27957b2ClHT125coUA0Lp16yg1NZWCgoJIpVJRUFAQbdq0yWAkCBHRli1baODAgWRnZ0cuLi4UHh5OKSkp99VvYWEhPfHEE+Tg4EC9e/emdevW0fnz5wkA/fnPfzYZ/65du2jgwIFka2tLAMjPz09vfVZWFoWGhpKDgwN5enrSqlWrqLq6mpycnGjo0KFG+7x79y5FRkaSq6uruNOvXbtWb/ub+kLJy8tr9nvW8BdLx8vLy+QvRlPMibclYqioqCC5XE6xsbFERFRSUkIymUws43r37l0SBEEcOdec91enqf1Baltr+YwzMzMpOjqa+vbtSyqVivr06UPTpk2jgwcPmtwuIutIGkREW7duJR8fH/H3qPF2V1RU0PLly8nHx4cUCgU5OTnRY489RhkZGQZ9JSQk0PDhw6lr167Us2dPWrJkCWm12nsmjcLCQpo1a5be77KxUsVbtmyhIUOGkK2tLXXt2pXGjRvX5HtM1HJJw6or9+3ZswfTp09HYmKiwYU5a+yXMcY6ClOV+6z6mobuuoOxawbW2C9jjHV0Vp80HB0d0atXr3bRL6vXcNhfU4/169d32BgY64isPmkEBAS0m34ZY6yjs+pyr7du3WpX/bJ61nA9zBpiYKwjsuojDcYYY9aFkwZjjDHJOGkwxhiTjJMGY0a058n2GGtJnDQYM+L9999HbW1tW4fBmNUxOXpKypTAjHVklppKmrH2KiIiwmCZwTQi165dE6ffZqwzOnPmDN555x088sgjeP7559s6HMbazIMPPmgwc7RB0mCss5s3bx6++OILdOvWDYWFhSant2asM+JrGow1oNVqxQnaSktLxdomjLF6nDQYayAhIQFlZWUAALlcjri4uDaOiDHrwkmDsQbi4uJgY1M/PqSmpgZ79+4VkwhjjJMGY6LS0lIcOHAA1dXV4jKtVosDBw60YVSMWRdOGoz91549e/QSBlA/9Hzr1q1tFBFj1odHTzH2X5MmTcKRI0cMbuqTy+W4efMmXFxc2igyxqwHH2kwBqCgoMBowtD5+uuvWzkixqwTJw3GYFgHuSEiwldffdWK0TBmvfj0FGMARo0ahRMnTpicqFAQBOTl5XGJYNbp8ZEG6/Ty8vKQnp5+z5ltbWxssHPnzlaMijHrxEmDdXrbt29vsjxsdXU1n6JiDFZeI5yx1pCWlmZw2qmsrAwqlUq80Q8AiouL8fvvv/MpKtap8TUNxowQBAE7d+5EZGRkW4fCmFXh01OMMcYk46TBGGNMMk4ajDHGJOOkwRhjTDJOGowxxiTjpMEYY0wyThqMMcYk46TBGGNMMk4ajDHGJOOkwRhjTDJOGowxxiTjpMEYY0wyThqMMcYk46TBGGNMMk4ajDHGJOOkwRhjTDJOGowxxiTjpMEYY0wyThqMMcYk46TBGGNMMk4ajDHGJOOkwRhjTDJOGowxxiTjpMEYY0wyThqMMcYk46TBGGNMMk4ajDHGJOOkwRhjTDJOGowxxiTjpMEYY0wyThqMMcYk46TBGGNMOl9CobkAACAASURBVGpk586dBIAf/OAHP/jRyR8RERGNUwTZwISdO3eaWsUYY6yD++ijj4wuN5k0IiMjWywYxhhj1m3Xrl1Gl/M1DcYYY5Jx0mCMMSYZJw1mdRITEyEIAgRBwPr169s6HMZYA+0iaYSGhkKpVKKmpqbJtm5ubuIXjiAImD59eitEeH9u3LiBmJgY9OnTB0qlEr169UJoaCj+9a9/obS01Oz+zpw5o/ce6B579+5tgegZY51JiySNGTNmQC6Xo6Ki4r77IiL8/PPPeOihh2BjY/K6PQCgvLwcBQUFestGjx593zG0pBs3bmD48OH47LPPcOXKFWi1WuTn5+Po0aN44YUXsGbNmrYO8b7t3btXTFyfffZZW4fDGLsPLZI0MjMz4efnBzs7u/vu6+LFiyguLkZgYGCTbbt27QoiAhFhz549AKw/aXzwwQe4du0aAOC9995DcXExbt68ifXr18PR0bFZfQYGBorvw6ZNmywZbquYMmWKGP+rr77a1uEwxhqweNIoKipCbm4ugoODLdJfRkYGAEhKGg2lpKRAoVBg6NChFomjpaSnpwMAnJ2dsWzZMnTr1g1ubm545ZVXkJmZCW9v7zaOkDHG/sciSaOmpgY2NjYQBAHdu3cHAOzYsUPvfHpcXJzYnohw6NAhREVFoV+/frC1tUXv3r0xb9485Ofn6/V98uRJAIC/vz/+8pe/wN3dHS4uLpg+fTry8vJMxpScnIzg4GDY2tqabFNWVoa3334bAwYMgFKphIeHB1577TVUVlaafM7q1ashCAL69Okj5a1pku5orLS0FFeuXNFb5+3tjXnz5uktKykpwZtvvomHHnoIKpUK3bp1w8MPP4z4+Pj7isPcfnNycjB37lz07t0bSqUS3t7eiIqKEj8vAFCpVBAEAU888YS4LCYmRtwn7O3t9fq0t7c3uA5j6kJ4SUkJli1bBl9fXyiVSjg7O+Oxxx5DWlqaXrvPPvtM7Ourr75CVFQUunXrhp49e+Lll1+GRqNp7lvGWOdkahoRc+Tm5jZ5O/rx48fF9klJSSbbDR48WK/v8ePHEwB6/PHHDdoOGzaMamtrDeIpLi4muVxOixYtMhnztWvXqH///kZjCAsLM/m8v//97wSAvLy8zHqPTPnggw/E13Vzc6OPP/6Y7ty5Y7Tt3bt3yd/f3+R7t2LFCoPnbNq0SVy/Z88ei/SbkpJCXbt2Ndr2oYceEtsplcp77hNdu3bV69dYnx999JFBvMXFxRQUFGS0TxsbG9q9e7fR7e/Zs6dB+7/97W+mPxzGOrGIiAij04hY5EijT58+4jnoxYsXA6gfwaNbRkQYM2aM2P7atWuIjo7GoUOHkJ+fD61Wi4sXL2LUqFHIzMwUL6ATETIzMwHUXzBOS0tDZWUl0tPT4ebmhpMnT+LXX381iOf48eOora01eT2juroa4eHhyMnJweLFi3H+/HloNBpcuHABkydPRkJCgnjaqKUtXLgQ06ZNAwDcunULr7zyCh544AHMnDkTp0+f1mv75ptvIjs7GwCwbt06lJSU4MqVK3j00UcBAO+++y7OnDljdgzm9FtTU4PnnnsO5eXlkMlkWLt2La5fv47y8nIkJCTonQ7UaDR615cAYNOmTeI+UVZWphdHWVkZiAjffffdPeNdtWoVfvnlFwDAsmXLcOfOHRw7dgxubm6oqanB/PnzUVJSYvA8FxcX5OXl4aeffhIHVXz99dfmvl2MdW6Ns0hzjjQaGjp0KLm5ud2zzblz5+j5558nHx8fg79GnZycxHYXLlwQ/0IsLS3V6+OFF14gAHTkyBGD/mNjYwkAXb582ejrf/LJJwSANm7caLDu6NGjJte1pAMHDtAjjzxCMplMfC+USiXt3buXiIhqa2vJ0dGRANCoUaP0nnvmzBnxOW+99ZbeuqaONMztV/f+AKDnnntO0rbt2bNHfM6mTZuabP/dd9/d80jjgQceIADk7e2td6S5bt068Xk7duww2P6Grx0cHEwAqEePHpK2gbHOpkWPNHRKSkqQlZWF8ePHm2yzf/9+BAcHY/Pmzfjtt99QVVWlt37QoEHi/3UXwd944w2D89+6c9E9evQweI2UlBT07NkTXl5eRmP48ssvAQAvvfSSwTn0CRMmAKg/ymlNYWFhOHToEK5fv44VK1ZAEARUVVVhwYIFqKiowI0bN1BcXAwA4l/KcrkcMplMb5BAbm6uWa9rbr85OTnisnt9zi1FN7oMAAYPHgyZ7H+78LBhw8T/X7hwweC5vXr1Ev/ftWtXAIBWq22pUBnrkCyaNFJSUlBbW2vyy6SiogKzZ8+GQqHAxx9/jLy8PGi1WhCRePpj8ODBYnvdRdUpU6bo9VNdXY3Dhw/DwcEBAwYMMHiNjIyMe56a0p3yupeGXzCtyc3NDe+88w6eeeYZAPWnrHSn+nSICLW1tairqzNIbo0v4guCcM/XM7ffhsub6ru1NRWbtcXLWHtk0aSRmpoKABg3bpzR9Wq1Gnfv3sXChQuxaNEieHp6QqFQoK6uDsuWLQOgnzR0RxpdunTR6+eLL77AtWvXEBERAblcrrful19+QXV1tV4/DZWWloKIMHXqVL1rLo0fjz/+ePPeBDOtWLFC/Mu5IQ8PD/H/ZWVleOCBB8SjrUceecRk3Dt27NDrR6VSif+/e/euweuY26+fn5/43OTkZEnb2PDL+n6P4BwdHeHm5gYAyMrK0uvv559/Fv/v6+t7X6/DGDPOoknj8uXLAIArV64YnfJDdyohJSUFV69eRXl5OdRqNcLCwpCUlATgf0mDGlwEf+edd3D79m0UFxdj8+bN+H//7/9BpVJh+fLlBq+h+2JMS0vD7du3DdZ3794dLi4uOHLkCOLi4nD79m1UVVUhJycHcXFxmDJlitFTGzqWHnJ7/Phx+Pv744MPPsDly5eh0Whw7NgxfPHFFwAAuVyOgQMHwsbGBhEREQCAw4cP47333sPvv/+OqqoqXL58Gfv27cOTTz6JEydO6PXv4+Mj/n/Lli24deuW3npz+x07dix69+4NAPjPf/6DdevW4ebNm7hz5w4SExPx7LPPGmyjbhg2UP/Zl5eX39d79vTTTwMALl26hL/85S8oKipCamqqePe8k5OTeBGfMWZhjS9y3M+F8GXLlhkMaVywYIG4vrS0lDw8PAzaPPHEExQcHExKpZKqq6uJiOj8+fMEgGbMmGHQXi6X0/bt243GkJeXRwqFQq+9QqGgmpoasc3q1atNDgO1sbEhrVZrchstPeR23Lhx9xyW+uabb4ptb926RX5+fvdsr1ar9fqvqamhvn37Gm177ty5ZvV79OhRsrOza3LIrU5paal4sb3ho+GQW2Ofc+PHoEGDiIioqKjI5BBhGxsb2rVrl9hvwwvh+/fvF5ePGTOGAJCjo+N9foKMdUytciE8NjYWkZGRcHV1FU9J9OvXT1xvb2+Pb7/9FqGhoXBwcICnpydWrVqF+Ph4XL58GYGBgeJQSN2pqaeffhrvv/8+XFxc4OjoiLCwMPz444+IiooyGoOnpye2bduGgQMHijf2eXt7653GeuONN7Bjxw6EhITA1dUV9vb2CAoKwquvvopTp05BoVBY8m25p7i4OLz33nsYPXo03N3dYWNjAxcXF0ycOBHbtm3Du+++K7bt0aMHTpw4gVWrViE4OBh2dnawtbWFn58fZs6cie+++w4jRozQ618ul+Pbb7/Fo48+CgcHB6MxmNvv+PHjkZGRgeeeew69evWCQqFA7969MXPmTKM3A9rb22Pfvn2YMGECnJyc9C5eN4ejoyNSU1MRGxsLHx8fKBQK8egiOTlZPHJijFmeQKR/kjk+Ph4zZ85s9dFDjDHGrMeTTz4JwLCCX7uYGp0xxph14KTBGGNMMk4ajDHGJOOkwe6LSqVqkzvDGWNtg5NGB1dTUwNBEBAeHt7WoTDGOoB7109lrAlcj4KxzoWPNBhjjEnWLpJGQkICBEHAhx9+iNTUVIwcORJdu3bFsGHDoFar9dqSxKqA6enpEAQBa9aswcMPPwxHR0ds27YNGRkZ8Pf3h7Ozs8GNatZQ6U+r1eLdd99FQEAA7O3t4e7ujkcffRRHjhzRazdq1CgIgiDeqKh7D3WPhQsXGvT9zDPPQBAEFBYW4sCBAxg8eDAcHBwwduxY/PTTT2K7OXPm6PVl6ppGVlYWBEHAihUrcOLECYSEhMDW1hY+Pj56lRx1CgoKMGfOHPFGzrlz56KgoACCIPANe4xZi8a3iN9vPY2WsGrVKgJAr7/+OqlUKr1pI3r27Kk3RYjUqoAbN24kAOTi4iKu9/Lyoj59+og/+/r6iu2tpdJfTEyMye2rrKwU240cOfKeU3K89NJLBn3PmjWLAFB8fDzJ5XK99pMnTxbbzZ49W2/duHHjjMaamZlJAGju3LkG04jIZDLKzMwU22o0Gho4cKBBnE899ZQ4nQxjrPW0yjQiLUU3RfquXbsQFxeH4uJi5OTkwNfXF9evX8fVq1fFtlKrAjas1VFYWIjAwEBcuXIFCxcuRGlpKYYNG4bq6moA1lXpb/fu3XBycsLhw4dRXl6OwsJCJCYm4pFHHtGbTTYtLQ1EJG5DWFiY3qy1//jHP0y+xltvvYXXXnsNOTk5KCkpwZEjRzB8+HBx/ZYtW8R+lEplkzFv3boVCxcuxM2bN3Hr1i08++yzqKur0zva+OKLL3D69GkEBAQgLS0NZWVlOHbsmN4RDmPMCjTOItZ4pNGzZ08SBIHS0tL0li9YsIAA0I0bN8RlUqsCDhw4kJydncUJEkNDQ8nd3V2sBDd+/HgaM2YMEVlXpT8/Pz8aMGCA0droxlRXVzd5NKSjO9KYP3++5HiUSmWTRxqNKwLeuHGDAFB4eLi4LCwsjABQamqqXtvdu3fzkQZjbaDdHmnk5+fj+vXrGDt2LEaOHKm3Ljs7G927d8cDDzwAQHpVQI1Gg+zsbEyYMEGcIDErKwsTJ06ETCYDESErKwv+/v4ArKvS36effoo7d+6gf//+WLBgAT788EMcO3YMdXV1FnuNuXPnWqwvAAaf2wMPPIAuXbro1Qi/fPky5HK53hGNsecyxtqW1ScNXR2HyZMn6y2vrq7GyZMnxS8Vc6oCZmVloaamBmPGjAFQXxr0zp074s/Z2dkoKirC8OHDra7S38SJE3HlyhVs2rQJDz30ENRqNSZNmoSQkBCUlpZa5DUsddFep3GpXqC+MFPDREtERivrtVYyZoxJY/VJQ3c9o3H51szMTGg0GnG5OVUBdX2GhISIzzX28+jRo62u0h8AKJVKTJw4EYsXL8auXbsQHx+Pn376CZ9//rlBW9005ObUwm5cKbE1eHt7o6amxqCIFF/TYMy6tIukIZfLDepEpKWlAfhfMjGnKmBGRgZUKhWGDBkCoD5J2NvbIzAwUPzZ0dER/v7+VlXpr6qqCqNHj8aWLVtw8eJFsbrezp07ARgv5yqTyeDs7Iz09HScOHHCaEVFaxAWFgYAmD9/PtLS0lBeXo4ff/xRTPiMMetg9UkjIyMDgYGBBqc41Go1ZDKZmEyGDx8ODw8PpKamwsvLC/b29uJ9Af7+/lAqlRgwYACA+kQ0bNgw8R4GtVqNESNGiIWa1Go1Ro4cCZlMBkEQsGTJEpSVleGZZ56Bq6srVCoVHnroITzzzDM4fPgw+vbt2yrvBREhLS0Nc+fOha+vL1QqFby9vREXFweVSoWZM2cafd6UKVNQXFyMESNGQKFQmLxPQ4odO3boXdOpqqpCcnKy3jJd2V9zREdHIygoCNnZ2Rg9ejTs7e0xduxY8ejP2Kkrxljrs+qkcfXqVRQUFGDUqFEG69RqNQYMGABHR0cA0qsCVlZW4ty5c+KXUWlpKc6ePSsesRQVFeH8+fN6p8OspdKfSqWCWq3GnDlz4OPjA6VSiQcffBBRUVFQq9UICAgw+rwNGzZg1qxZehUVrY1SqcThw4fx3HPPoXv37ujWrRtmz56Nd955B0D9tjPG2h5X7mNW7ejRowgNDcWbb76pV/qWMdayTFXu4wkLmdVYtGgR+vfvj8mTJ8PDwwOnT5/GK6+8AgCYNGlSG0fHGAM4aTArcunSJXzyyScGy6dOnYpx48a1QUSMscY4aTCrsXHjRvTu3RtJSUm4du0aPD098dRTT2HlypVtHRpj7L84aTCr4eXlhU8//bStw2CM3YNVj57qKHTDVLdu3drWoTAzcClbxgxx0miGGTNmQC6XizPmNkV3l3PjGxStkbnb1pa4lC1jrY+TRjNkZmbCz88PdnZ2ktqvW7cORAQ/P78Wjuz+mbttHZlGo8EPP/zQ1mEwZlU4aZipqKgIubm5CA4ObutQLK4jbxtjzDLaVdJIS0tDZGQk3N3dYWtri4CAACxfvhx37tzRa1dUVITY2Fix3Ku3tzdiYmJQWFio105qGdmamhrY2NhAEAR0794dgOF0Go3Ll4aGhuqtf/nll41ukzmlbAHpJWdbctt0uJQtl7JlnVDjAhvWWISJiOidd94hQRCMli5du3at2O7KlSvk5eVltN348eOprq5ObCu1jGxubu49S6cCoOPHj+vF27BsLACKi4szul3mlLI1p+RsS26bDpey5VK2rOMyVYSpXSSNr776Sqy8t2HDBsrLy6PKyko6ffo0xcbG0sGDB4mIqK6ujsaMGSP+Ip47d440Gg2lp6eTp6cnAaDs7Gyx3/DwcPFLb/fu3VRcXEw5OTnk6+tLAOjSpUsGsSxevJgA0JkzZyTF/umnnxIA+u2334yulxqDVqul4OBgkslktHjxYjp//jxpNBq6cOECTZ48mQDQTz/91KrbZumk4ebmRk5OTnT48GEqLy+nwsJCSkxMpEceeYQ0Go1B++ZUJQwICKDXX3+dcnJyqKSkhI4cOUIrVqww+hwpVQkVCgUtX76cbt68Sbdu3aJnn31WTNY6un0gICCA0tLSqKysjI4dO0Z9+/blpMGsVrtNGhqNhtzd3UkulxuUe23s22+/Fb9EGh5REBG9+eabBIAOHDggLjOnjKzO0KFDyc3NTXL8kZGR92wvNQZzS862xrZZGpeyZcx6tNtyr4cPH8aNGzcwf/78Jkt/btu2DQDw9ttvG8zmqiuH6uDgAMC8MrI6JSUlyMrKMmvsfkpKitFZes2NwZySs621bZbGpWwZs35WnzSysrIAAI8++miTbU+ePAk7Ozux2FJDx48fh1wuF9dJLSPbUEpKCmprayV/sZ47dw43btwwqDqoIzUGc0vOtsa2tQQuZcuY9bP6pFFeXg4ABqODjCkrKzP6y5mUlITjx48jLCxMPNKQWka2odTUVACQPHmeboy/qSMNqTGYW3K2NbatpXApW8asm9UnDd0NcW+99RbUajUqKyuRn5+PhIQETJ06FbW1tWLbvn37ory8HO+99x6Ki4tRXFyMzz//HBEREZDL5Vi1apXYVmoZ2YZ0FemuXLkiqWxqcnKy0dMS5sZgbsnZ1tg2gEvZSsWlbFmH0vgih7VdCC8rKyNvb2+jQysHDx6s13b79u1G2wmCQJs2bdJr26NHDxo0aJDB60VFRZFMJqOioiKDdcuWLTPoe8GCBeL65OTkJoevJicnNyuG1atXm+zTxsaGtFpti26bMZYcPVVZWWly+1QqlckRXU8//bRZQ24LCgpMxmBq/2n4yM3NJaL/XQhfvny5QT+NL6BrNBoKCgoy6Es3vNfYxUbG2lq7vRDetWtXHDt2DHPmzIGHhwcUCgX69OmD6Oho7N69W69tVFQUtmzZgoEDB8LOzg4uLi4IDw9HcnIyXnzxRbGdOWVkG4qNjUVkZKRe2dR+/fqJ63Nzc5vcHl09cXNjkFpytqW2raVxKVvG2gcu98pYG+FStsyacblXxtoQl7JlHQUnDcZaAZeyZR0FJw3GWgGXsmUdBScNxloBl7JlHYXVj55qr9zc3PSm+pg+fXqbxtPeSs52tHjN2R+au++0t/esJRw/fhwhISFwcHCAIAh6IwBXrFih9766urq2YaTS5ebmYs6cOejVqxeUSiUCAgLw5Zdf3nN6HSISSwjobvq1FE4aLaC8vBwFBQV6y0xNJdJcHbnkLNCx4jVnf7iffae9vWeWdvfuXUydOhVqtVpv7i9rJLVUcVZWFgYPHoz/+7//Q35+PrRaLbKzsxEdHY3Tp0+bfN7mzZslTT3ULI1v3LC2m/vauz179hAAOnbsmEX79fb2pv79+1u0T9byzNkfWmrf6aj27dtHACgmJobKysru2XbkyJHk4uLSSpEZkjJDc21trXhTaFhYGJ0+fZqqqqro119/pQULFtDp06eNPq+wsJCcnZ3Fmb2nTZvWrBjb7c197V1KSgoUCgWGDh1qsT65LGv7Zc7+0BL7Tkf2+++/AwD+9Kc/oWvXrm0czf374Ycf8Msvv2Do0KHYs2cPgoKC0KVLF/Tr1w///Oc/ERQUZPR5sbGxGDx4sHifhaW1i6Tx9ddfQxAEbNy4Edu2bUP//v3FUp2NJ4EDpJd7NaffxYsXQxAEnD17Vm/5nj17IAgCNm3aZDT25ORkBAcHw9bW1uh6IsKhQ4cQFRUlxtu7d2/MmzcP+fn5YruWLDlrzntmbnlac7RUiVwp0tPTIQgC1qxZg4cffhiOjo7Ytm0bMjIy4O/vD2dnZ8THxzcr3oaa2h/MbWsNn3FBQQFWrlyJoKAgODo6ws3NDZMnTxYn7GzMknOW6cruCoKAmJgYAPXDmHXL7mdWA41Gg5UrV8LX1xdKpRIuLi6YNm0aTp06ZdD25MmTmDdvHvz8/KBUKuHq6orw8HAcPXpUr505pYq///57APXfPbr2TVGr1di6davR4d0W0/jQwxpPT+kOs6Kiogzm73FxcaHbt2+Lbc0p92pOvyEhIeTo6GhQICg2NpYAUHp6ukHcxcXFJJfLadGiRSa3LSkpyeQ8Rw3n1mrJkrMtUSK3OVqiRK5UGzduFD93XV9eXl56Mfn6+jYrXh0p+4O5bdv6My4oKKAHH3zQaL/u7u5GY7HknGW6OcBMPXx8fIw+r6nTU3V1dTRp0iSjfdrZ2dHPP/+s197U68tkMkpMTNR73XvF23DetOnTpxMAunz5Mi1evJhcXV3Jzs6OQkJC9IrJ6dTU1FBwcDAtWbJE772x9OmpdpE0dOVMfXx8KCkpiSorK+nSpUs0atQoAkA7duwgIvPLvUrtV6vVkkqlokmTJhnE9oc//IEUCoXRcqQJCQkEgLZv325y2/79739TdHQ0HTp0iPLz80mr1dLFixfFGMrLyw2eY8mSs61RItdcliqRa47o6GgC6uvNFxYWUmBgIAGgDz74gEpLS2nYsGHUp0+fZsWrI2V/aE7bpmJoyc/4o48+IqC+UuHp06epsrKSCgoKaPPmzfTcc88ZjdXSZYJ1dNUt9+/f32TbppKG7vqIu7s7JSQkUGlpKV28eJEiIyMJAP3xj3/Uaz98+HDasmUL/f7771RdXU1FRUX0zTffkI2NjdHrFlKuaYSGhpJcLqeXX37ZILkIgkDx8fF67devX08eHh5UWlpKRJ08afTo0YMUCgXl5OToLf/yyy8JAH344YdEZH65V6n9pqenEwD661//qtdOq9WSra0tDRkyxGjcuqOQy5cvm9y2c+fO0fPPP08+Pj6kVCr1dgwnJyejz7FkydnWKJFrLkuVyDXHwIEDydnZmaqrq4mo/hfW3d1dPLIcP348jRkzplnx6kjZH5rTtqkYWvIzXrt2LQGghIQESXG2JEsmjZiYGAJAW7Zs0VteWVlJ7u7uZGNjQxUVFeLys2fP0tNPP02enp5kY2Oj93scHBxs0L+UpDF+/HiSy+Xk5OREW7dupaKiIrp+/Tq98cYbBID69u0rts3Pz6du3brp/ZHRUknD6q9p6GZtnTVrFnx9ffXWaTQaABDHW5tT7tWcfk3VoTh16hQqKysxbNgwo7GnpKSgZ8+e8PLyMrp+//79CA4OxubNm/Hbb7+hqqpKb/2gQYMMnmPpkrMtXSK3OSxVIlcqjUaD7OxsTJgwATY29fe7ZmVlYeLEiZDJZCAiZGVlwd/f3+x4G7e71/7Q3LZNxdCSn3F0dDSGDBmCGTNmIDIyEhs2bBCrbbZnV69eBQCMGTNGb7lKpcKQIUNQU1MjXnPMzs7GyJEjsW3bNly7ds2grkt1dXWzYrC3t0dtbS1effVVzJo1C46OjnB3d8fq1asRGBiIS5cuIS8vD0D9dY/BgwcjKiqqWa9lDqtPGhkZGQAMPzwAOHToEACIX9rmlHs1p1/dRdLGv0RJSUl67RqqqKhARkaGyTH2FRUVmD17NhQKBT7++GPk5eVBq9WCiHDmzBkAMLodli4529Ilcs1lqRK55sjKykJNTY24L1y4cAF37twRf87OzkZRUZHRYlpNxavT1P7Q3LZSYmjJz9jFxQUnT57E999/j+HDh+Pbb7/FkCFDEBkZadHa7q2N/jvLt5Tp9tevX4+ysjLExMTg3LlzqKioEKtpOjk5NTsG3R8MxkZJ6YrT3blzBxUVFdi+fTuSk5P1LqrrPtNvvvkGgiBg6dKlzY6lIatPGrrSpd26ddNbfvbsWezduxf+/v4YMGAAgOaVe5XS76+//gpXV1e9HaC0tFQsQWosafzyyy+orq42+osK1I9yuHv3LhYuXIhFixbB09MTCoUCdXV1YkU3Y8+1dMnZli6Ray5Llcg1h67PkJAQABBHCDX+2VjfTcWr09T+0Ny2UmJo6c9YEASMGTMGS5YsQWJiImbPno1du3ZZ9RGHk5MTSktLTSY23Rf2jz/+qLe8qqoKmZmZsLGxgYeHB4D6ySjlcjk2bNiA/v37i6PdTpw4gaKiIqP9SylVrPte0f0R2VBOTg6A+rMhrZ2crT5p6I4I1q9fj4sXL0Kj0eDgwYN47LHHUFdXh7/85S9iW3PKvZrTr1arRWFhIQ4cOIDKykr8/PPPmuXMSwAAIABJREFUmDp1KvLy8qBUKhEYGGgQt648aVpaGm7fvm2wXrfTpKSk4OrVqygvL4darUZYWJh4BGPsS8PSJWdbukSuuSxVItccGRkZ4mkHoD5J2Nvbi5+rWq2Go6Oj0dNTTcWr09T+0Ny2UmJoqc94wYIFWLlyJU6dOoWKigrcvn0bcXFx2LdvHwRBMHma0JJDbpurX79+0Gq1WLduncFpYaD+Xg8AWLp0Kb777juUlZUhNzcXc+fOxfXr1zFu3DgxOfTu3Ru1tbVYt24dioqKUFxcjAMHDmDmzJkmh8pKKVUcHh4OW1tbvP/++9ixYwdKSkpw8+ZNLF26FGfOnIGvry969eoFe3t78cim4UN3R/i0adNARFi9erVl3rzGFzms7UJ4jx49KCIiglxdXQ1GEMyfP1+vrbnlXqX2++KLLxq0ef3110kmk9GIESOMxp2Xl0cKhULvOQqFQhyuWFpaSh4eHgb9PvHEExQcHExKpVK8KNuQpUvOtnSJ3Ka0ZIlcqQIDA2ns2LHiz0FBQRQaGir+PGDAAHHknLnx6jS1P5jT1lo+Y91oKmOPpUuXmny/rWH01KlTp0gQBL2YX3jhBXH9vYbc2tra0okTJ8S2qampJJPJDNrNnTuXevXqRQEBAUZjkFKqeM2aNUZjkMlktHfv3ntuY6ccPXXlyhUCQOvWraPU1FQKCgoilUpFQUFBtGnTJoORIEREW7ZsoYEDB5KdnR25uLhQeHg4paSk3Fe/hYWF9MQTT5CDgwP17t2b1q1bR+fPnycA9Oc//9lk/Lt27aKBAweSra0tASA/Pz+99VlZWRQaGkoODg7k6elJq1atourqanJycqKhQ4ca7fPu3bsUGRlJrq6u4k6/du1ave1v6gslLy+v2e9Zw18sHS8vL5O/GE0xJ96WiKGiooLkcjnFxsYSEVFJSQnJZDKx9vfdu3dJEARx5Fxz3l+dpvYHqW2t5TPOzMyk6Oho6tu3L6lUKurTpw9NmzaNDh48aHK7iKwjaRARbd26lXx8fMTfo8bbXVFRQcuXLycfHx9SKBTk5OREjz32GGVkZBj0lZCQQMOHD6euXbtSz549acmSJaTVau+ZNAoLC2nWrFl6v8vG6ttv2bKFhgwZQra2ttS1a1caN25ck+8xUcslDasu97pnzx5Mnz4diYmJBhfmrLFfxhjrKEyVe7Xqaxq66w7GrhlYY7+MMdbRWX3ScHR0RK9evdpFv6xew2F/TT3Wr1/fYWNgrCOy+qQREBDQbvpljLGOzqrLvd66datd9cvqWcP1MGuIgbGOyKqPNBhjjFkXThqMMcYk46TBGGNMMk4ajBmxb9++tg6BMatk8kJ4S9WXZaw9OHjwIEaNGmUwoSVjnUVaWprRSTANjjQefPBBREREtEpQjFmj4uJilJSUiLUKGOuMRo0aZXxW48bTiDDW2b3xxhtYu3YtPDw8cO3aNUk1FRjrLDhpMNYAEaFXr164fv06gPpp0aVU5WOss+AL4Yw1cPz4cTFhdOnSBdu3b2/jiBizLpw0GGtg+/bt6NKlC4D64lv/+c9/JBW7Yqyz4KTB2H/V1NRgx44deiU47969i6NHj7ZhVIxZF04ajP3XwYMHxVKrOgqFAtu2bWujiBizPpw0GPuvbdu2GdR0rq6uRnx8PCorK9soKsasCycNxgBoNBrs2bMH1dXVBusqKyuRmJjYBlExZn04aTCG+mlDTB1NyOVybN26tZUjYsw6cdJgDMDWrVshl8uNrqupqcH+/ftRXFzcylExZn04abBOr6ioCImJifccWltbW4tvvvmmFaNizDpx0mCd3tdff230WkZj//nPf1ohGsasGycN1ulJueu7rq4OP/zwAwoKClohIsasF889xTq9oqIig5rizs7O+OKLL/D444/rLXdwcICNjcmKAox1eLz3s07PycnJ6PKuXbuie/furRwNY9aNT08xxhiTjJMGY4wxyThpMMYYk4yTBmOMMck4aTDGGJOMkwZjjDHJOGkwxhiTjJMGY4wxyThpMMYYk4yTBmOMMck4aTDGGJOMkwZjjDHJOGkwxhiTjJMGY4wxyThpMMYYk4yTBmOMMck4aTDGGJOMkwZjjDHJOGkwxhiTjJMGY4wxyThpMMYYk4yTBmOMMck4aTDGGJOMkwZjjDHJOGkwxhiTjJMGY4wxyThpMMYYk4yTBmOMMck4aTDGGJOMkwZjjDHJOGkwxhiTTCAiausg2tqHH34ItVrd1mEwK/Lzzz/D29sb3bt3b+tQmBXZtWtXW4fQ5jhpAHjyySeRlpaGUaNGtXUojDErdO3aNaSlpYG/LgGbtg7AWowaNYr/imCMGRUfH4+ZM2e2dRhWga9pMMYYk4yTBmOMMck4aTDWjiQmJkIQBAiCgPXr17d1OKwT4qTBLG7Hjh0QBAFbt25t61As4saNG4iJiUGfPn2gVCrRq1cvhIaG4l//+hdKS0v12tbU1OD999+Hv78/VCoV3NzcEBUVhd9++82gX3d3dwiCgMDAwNbalGY5c+aMmKju9Zg/f77Zfc+fP198/o0bN8yOYe/evfezaawZOGl0UjNmzIBcLkdFRYXF+z5x4gQAYMSIERbvu7XduHEDw4cPx2effYYrV65Aq9UiPz8fR48exQsvvIA1a9botZ81axZiY2Nx7tw5VFVVoaCgADt37sSIESOQk5PTanHv3btX/GL97LPPWu11WcfHSaOTyszMhJ+fH+zs7Cze97p160BE8PPzs3jfre2DDz7AtWvXAADvvfceiouLcfPmTaxfvx6Ojo56bfft24f4+HgAwFNPPYXi4mIkJSVBoVDgzp07eOWVV+47nilTpoCIQER49dVX77s/KQIDA8XXJCK9UUTXr18Xl3/++eetEsOmTZta7HVY0zhpdEJFRUXIzc1FcHBwW4di9dLT0wEAzs7OWLZsGbp16wY3Nze88soryMzMhLe3t9j2iy++AAAIgoB169ahW7dumDRpEqZPnw4ASEpKEhMQY+0VJw0LSEtLQ2Tk/2fv3MOiKtf+/13gxHASFDREFFAxjoamomiK6KspiMfIU4mopK9ut4aheSizbGultTV1p5VeJeTW18xTguQBRECUQBIQUgExPAAKAs5wvH9/8JsFi5mBGRxgoc/nuua6nGfd61n3ehaue57T/fWHlZUVDA0N4eLigrVr1+LRo0cCu6KiIoSEhKBPnz4wNDSEvb09Fi9ejIKCAoFdcHAwOI5DamqqoPzo0aPgOE7wS+vUqVPgOA7btm1DbGwsPDw8YGxsjIEDBwp2uVdVVaFDhw7gOI7f5ayYe1B8QkNDBdd79OgROI6Dv78/ysrKEBISgh49esDY2BiBgYGCoS1vb29BXf/4xz/UtldpaSk2btwIJycnGBgYwNraGitWrIBMJlOyzc/Px/r16+Hm5gYzMzN07doV48aNw4ULF9TWv3nzZnAcBzs7O7U2mqLoiZWUlCAnJ0dwzN7eHvPnz+e/x8TE8OXdunXjyz09PQEARISLFy82yw8TExOl8XxVE+FSqRQcx2HKlCl82eLFi/lzTExMBPZPnjzBmjVr8Morr0AqlaJjx44YMWIE32NqLqdPn8Zbb70FR0dHGBoawtjYGE5OTnj//fdRVFSk8py///4bEydOhJGREbp27Yr//d//VZoz0oaWurcXHmLQ9OnTafr06c0695NPPiGO4wiA0ufzzz/n7XJycsjW1lalnZeXF9XU1PC2np6eZGZmRtXV1YJrhYSEEABKSEjgyzZs2EAAaOXKlSSVSgX1duvWjaqqqoiIKCsrS+W1639iYmIE14uIiCAA9N5775GXl5eS/aVLl3hbOzs7wbHQ0FCV7XX37l1ydHRUeX0fHx+BbX5+PvXo0UOlrZWVldpn8q9//YsAkK2trVobTfnyyy/5a3bt2pX+/e9/06NHj5TsHj9+zNuNGDFCcOzIkSP8sY0bN/LlL7/8MgEgFxeXJv0wNjZWaoOvvvpKyc7AwKDRZ2xsbCzw2dnZWa3tunXrVPry1ltv8Tb37t1TOn7v3r1GfRgzZgxvO3/+fL7cxsZGyfaNN95Qqn/37t388aNHj6r0sbn3po7//ve/xF6XtbCexjPw008/Yf369TAzM8P27duRm5sLmUyGlJQUhISE8MM/RIRZs2YhJycH06ZNQ3p6OuRyORISEmBjY4MLFy7gxo0bAIDKykr88ccf8PDwgJ6e8PHExcVBIpGgX79+fNnVq1cB1ObECQ0NRXFxMTIzM+Hg4IB79+7hzp07AAA7Ozt+TDg4OBhA7YoUqjdWPWzYMMH1EhMTAdQu86ysrMSFCxdQXFyMjIwMBAQEwNnZmbfNysoCEWHXrl0AoDIlS2VlJXx9fZGZmYng4GDcuHEDcrkcGRkZGDduHE6dOsUPBwHAgQMHkJubC19fX6SkpEAmkyE/Px979+7F2LFjm/HEtGfp0qWYNGkSAODhw4f45z//iZdffhlvvfUWUlJSeLsnT57w/zY2NhbUUf97cXFxs/woLS0FEeH06dON2snlchARjh49ypft3r2bf8alpaV8+Zo1a5CWlgagdh7qyZMnyMnJwYQJEwAAmzZtwvXr17X2leM4jBkzBgcOHEBaWhqePn2K+/fvY/LkyQCA33//XanXBgCmpqb466+/8Ndff8HJyQlA7d9ec/LCtdS9McBCJ1HzehpyuZysrKxIX1+f4uPjG7X97bff+F/S9XsURERr1qwhAHTy5EkiIkpISCAA9NFHHwnsKioqyNDQkAYMGCAo79atG3Ecp+RDUFAQAaD79+8r+fPaa69R165dm7zHqVOnEgAaNWoU32NpCn9/f7V179ixgwDQzp07lY6dP39e6djnn39OAOjUqVMaXbslOXnyJI0ZM4b09PT4X6sGBgb066+/EhFRdnY2Xz5+/HjBuadPn+aPBQcH8+Xa9DRU1aWqp6Hg6NGjvN3u3buVjldXV5OZmRkBoCFDhgiOXb9+nT/3448/Vjq3qZ5GTU0Nff/99zRy5EiysLAgfX19pV/658+fJyJhT+Pw4cN8HQcPHuTLP/vsM0H9TfU0nuXe1MF6GnWwnkYzOXv2LO7fv48FCxbAw8OjUduwsDAAwMaNG8FxnOBYTU0NgNpfWUDt/AgADB06VGB37do1yGQyDBw4kC/Ly8vDvXv3MHz4cCUf0tLS0KlTJ7z88suC8idPniA5ORleXl5N3qOiF7Nnzx7o6+s3aQ8A0dHRahM/7tu3DwCwZMkSpfH5UaNGAYAgIVxgYCAGDBiAadOmwd/fH9u3b0dycrJGfugaHx8fREZG4t69e1i3bh04jkN5eTmCgoLw9OlTwUqqsrIywbn15346d+7caj43xv379/lez+XLl9GhQwfo6+tDT09PsG8kKytL67pXr16N+fPnIyoqCoWFhaiurlaykcvlSmWvvvoq/+/6vem///5bq+u35L0x2ER4s1G8vBTd3ca4evUqjIyM0L9/f6VjMTEx0NfX548lJCSA4zilIBAREQEAgqCh2A8xbtw4gW1lZSWuXr2qMphFR0ejurq6yaBRUFCAO3fuwMPDA3369GnyHgEgPT0d9+/fVwp4Cp+SkpKarKN79+78vy0sLHD16lX8/vvvGDRoEH777TcMGDAA/v7+fLBtbbp27YpPPvkEc+bMAVA7ZHX9+nWYm5vDwsICAJRWSNX/3qNHj9ZzthHqB2ciQnV1NWpqapSyuKpanNAY5eXl2LFjBwBAIpHgxx9/REFBAaqrq7F58+ZGz234g6q5di11b4xaWNBoJopfk5r84ZWWlqr8Q4+IiEBMTAx8fHz4nsZff/0FS0tLmJub83YlJSX8Gvj6QUPRE2j4kk5KSoJcLlf58o6NjQUAjBw5slGfFXV7e3s3eX8KFCuaVPU0SkpKQETw8/MTzKM0/CjGvRVwHIdhw4bh/fffR3h4OObOnYvDhw+3Wo9j3bp1ePDggVK5tbU1/2/FPMHw4cMB1P6Crb+7uf6Y/Ouvv95Srgqo//fW8GUJAC+//DK/kmrMmDFqn8fBgwe1uu7jx4/5/xPOzs54++23YWFhAT09Pfzxxx+Nnlv/mdafL6r/QwKoXSFW/3qtdW+MWljQaCaKjWsff/wx4uLiIJPJkJeXh1OnTsHPz0/QJe/VqxfKysr4zWHFxcX47rvvMH36dOjr62PDhg28bUVFBQoKCnDy5EnIZDL88ccf8PPzQ25uLgwMDATd66tXr0JfX19p57W6IS4AyM7OBgDk5OSgqqpK7f0pJsEbTo43RlRUFPT19TFo0CClY506dYKFhQXOnTuH0NBQFBYWory8HJmZmQgNDcUbb7yBjIwM3j4oKAjr16/HtWvX8PTpUxQWFiI0NBTHjx8Hx3FKw2710eWS25iYGDg7O+PLL79EdnY25HI5Ll68yO/J0NfX54dSAgICANS+pFeuXImSkhJERkbiyJEjAGqX3urCJ02oLx4VHR2tNGTWoUMHTJ8+HUDtUOtnn32Gv//+G+Xl5cjOzsbx48fx5ptv8r1ZTan/ws7MzERcXBxKSkqwb98+vh3U8eGHH+LmzZu4efMmNm7cyJcrhi4V9O7dm//3/v378fDhw1a5N8b/p1VmTkROcybCS0tLyd7eXuVyvv79+wtsf/75Z5V2HMcpTVIuWrRIyW7lypWkp6dHgwcPFth26dKFXn31VSXfZsyYQXp6elRUVKR07IMPPlCqPygoSMlu8uTJxHEcFRYWqm2DqKioRpdWAqCoqCjefvPmzWrtOnToQBUVFbytg4ODWtvVq1er9YlIt0tuR44c2ej9rVmzRmA/bdo0lXaGhoYUFxcnsFVMhKv7TJs2rdE6638a/h2UlJTwk8H1P/WX3D58+JD69u3baL0NfSZqeiJ89erVKuvq2rUr/+/Tp08TkXAivGfPnkrnqFpyW1VVRb169VJ5jfT09Ge6N3WwifA6WCtQ8/dp3L17lwICAsja2pokEgnZ2dlRYGAg3b59W8l2//791K9fPzIyMiILCwvy9fWl6OhoJbuCggKaMmUKmZqaUs+ePWnr1q1048YNAkD/+7//y9vl5OQQAHr33XeV6rC1tVW7Iufx48fk7+9PlpaW/P6S+vtJFPTo0YOcnZ0bvf/9+/c3+TLLzc0VnHPw4EHy9PQkS0tLMjExITc3N1q+fDmlpqYK7JKSkigwMJB69epFUqmU7OzsaNKkSXTmzJlGfSLSbdC4e/cuffbZZzR06FCysrKiDh06kIWFBY0ePZrCwsKU7CsqKmjz5s3k6OhIEomEb4eFCxcq2bZk0CCqDeqjRo0ic3NzftVX/aBBRFRcXEwbNmwgd3d3MjIyIkNDQ+rbty+99dZbdPr0aaW9QkRNB43Kykr64osvyMnJiQwNDcnW1pY2btxIX331VaNB4/LlyzRhwgQyMjKizp0708KFC6m4uFjlc7lx4wZNmDCBTE1NVQaN5t6bOljQqIPJvaJW7hVg+r8M3bNnzx4sWrQIRISgoCB8++23be0SoxkolPvY65LJvTIYLUpQUBAMDAzw3XffNZpahcFoL7CgwWC0MHPnzsXcuXPb2g0GQyew1VMMBoPB0BgWNBgMBoOhMSxotAOeN/nUrl27ClKIKPQmnpUPP/wQHMfpdP19dXU1wsPDMWvWLLzyyiswMjKCvb09Fi1a1Kg86fOOVCrVKBUN4/mDBY12wPMkn1pWVob8/HxBmapNiM0hMTERHMcJsu8+K2FhYRg/fjx+/vlnZGZmQiaTITs7G99++y2GDBkiyG4rJqqqqsBxHHx9fdvaFcZzBgsa7YDnST7V2NiYT+OgSN+ty6BhZ2enlJr8WcjNzcXChQsRHh6OnJwcPH36FDExMbCzs0NOTg6OHTums2u1J+RyeaNCWIznF7Z6itFmREdHQyKR4LXXXnvmuu7evYsHDx5g4sSJOvCsjjVr1iiVDRs2DIsXL8aqVaueSVmOwWiPsJ6GSNFGPlUbSVRNJWe1gYgQGRmJGTNm8PX27NkT8+fPR15entrzoqKi4O7uDkNDQ5XHf/nlF3Ach507dyIsLAyOjo4wNTXF8OHDleYtFAkWXV1dG5W9fRZ/66NIvqcuLb4u818BtTnJNm3aBBcXF5iYmMDKygoTJkzAuXPnBHZDhgwBx3GQSCQA6uSAFZ+lS5cq1T1nzhxwHMfnPOvfvz/fzpcvX+btAgICBHWpm9NITk4Gx3FYt24drly5Ak9PTxgaGqJ3795KksJA7d9vQEAALCwsYGZmhnnz5iE/Px8cx/E5pBgios32oouIZ5F7bSk0lU/VRhJVG8lZbVDIwqr6NMzDpaC4uJj09fVp2bJlautVCFTNmDFDqV4LCwtBXqx169YRAFq6dGmjsrfN9bc+x44dI0BZnrY+ukxlQkS0ePFitT7LZDLezsPDo9F0I0uWLFGqe/bs2QSADh06pCSYNG7cON5u7ty5gmMjR45U6WtSUhIBoHnz5inlv9LT06OkpCTeVi6XU79+/ZT8nDlzpiCVSlvD0ojUwXoaIkUT+VRAc0lU0kJyVlvu3r2LwMBAREZGIi8vDxUVFbh58yaGDBmCpKQkgQiRgpiYGFRXVzc6n6HItHvlyhVERERAJpPh9u3bGDJkCAoLCxEZGcnbKnoaJ06caFT2trn+KoiNjcWsWbNga2uL77//Xuu2ai5HjhyBubk5zp49i7KyMhQUFCA8PBxjxowRpEGPj48HEaGyshJArXgU1UsH/s0336i9xscff4wVK1YgMzMTT548wblz5wQZi/fv38/XY2Bg0KTPBw4cwNKlS/HgwQM8fPgQb7/9NmpqagS9jR9++AEpKSlwcXFBfHw8SktLcfHiRUEPhyEy2i5eiQcx9jQUNCafSqS5JKo2krPakp6eTgsXLqTevXuTgYGB4Bejubm5ynNCQkIIAGVnZ6utt0uXLiSRSCgzM1NQvm/fPgJA27ZtE9hqKnvbHH+JiCIjI8nExIQcHR0b9bsl6Nu3Lzk5OWmcZK+ysrLJ3pACRU9jwYIFGvtjYGDQZE+jodTq/fv3CQD5+vryZT4+PgSAYmNjBbZHjhxhPQ2RwibCRU5j8qlArSTqwYMHMW3aNEycOBHDhw/HiBEj4O7uLrDTRnJWG06cOIE333wT5eXlKo/Xl/CsT3R0NLp16wZbW1uVx+/cucOPdTs4OAiOKaRCLS0tAdSucMrPz8frr7/epOxtc/394YcfsGjRIgwfPhxHjhwR6FW0Brt27cLs2bPh6OgILy8vODo6YtCgQRg2bBj09HQzYDBv3jyd1KOg4bN4+eWX8dJLL/GiVUCtvosqDZamJJQZbQcbnhIxjcmnKtBUElUbyVlNefr0KebOnQuJRIJ///vfyM3NRUVFBYgI169fBwCVdT59+hSJiYkaDU2pEoFSDEspVAwVQ1NNyd42x9/q6mosX74c8+fPR2BgICIiIlo9YADA6NGjkZOTg927d+OVV15BXFwcxo4dC09PT52t4NK1QJRCjKk+HMcpybGqUrUklk1WtLCgIWIak0+tjyaSqNpIzmpKXFwcHj9+jKVLl2LZsmWwsbGBRCJBTU0NPvjgAwCqg8aff/6JysrKRoOUIhB07NhRUJ6amopff/0Vzs7OcHJyAlAXYJqSvdXW38ePH2P8+PHYvXs3vv32W/znP//hVyW1BQYGBhg9ejSCg4Nx+PBhHDp0CJcvX+algOuj6H1UVFRoXP9LL72kM181xd7eHlVVVUqr4dichnhhQUPENCafCmgniaqN5KymKF5M0dHRuHPnDsrKyhAXFwcfHx9EREQAUB00FLrO8fHxKCwsVFm3IhB8/fXXuHnzJuRyOc6cOYOJEyeipqYGH374IW+rqeytNv7euHEDgwcPRmpqKqKiohAUFKRV2+hyyW15eTmGDh2K/fv34+bNm7xs6X//+18AqnWy9fT00LlzZyQkJODKlSuNSvu2JT4+PgCABQsWID4+HmVlZbh06RIfxBkipE1nVESCWCbCtZVP1UYSVRvJWU0pKSkha2trpTqnTJlC7u7uZGBgQJWVlUrn5ebmClTtAJBEIhEsi+3SpQtNnz6dLC0tlepvOGGrqeytNv5OmDCh0eegbhJYgS6X3MpkMrV+SKVSun79usrzZs2apdWS2/z8fLU+qPv7qf/JysoiorqJ8LVr1yrV03ACXS6Xk5ubm1JdiuW9Yvh/ScQmwuvDehoiIisrq0mbXr168f8+dOgQAgMD0atXL0ilUtjZ2WHSpEk4c+YM/vWvfwnOmzFjBvbv349+/frByMgIFhYW8PX1RVRUFBYtWtQsf01MTPDbb7/B29sbpqamsLGxwYYNG3Do0CFkZ2fD1dUVHToor7WwsbFBWFgY+vXrx2/ss7e3h76+PoC6SfChQ4fi+PHjcHNzg1QqhZubG3bv3o09e/bwdSlsVQ3hxcXFwcnJCWZmZlr7m5GR0ei9t2ZKF6lUiri4OAQEBKB3794wMDBAjx49MGPGDMTFxcHFxUXledu3b8fs2bNhaWmpcmhSDBgYGODs2bN455130KlTJ3Ts2BFz587FJ598AqD23hnigsm9gsm9io2jR49i6tSpCA8PV5rcZrwYnD9/Ht7e3lizZg02bdrU1u4wudd6sCW3DNGhmM9wdXVtY08YrcGyZcvg6OiIcePGwdraGikpKfjnP/8JAIINqgxxwIIGQ4A2wxhfffUVli9frnMfEhMTYWZmhu7du+u8bob4uH37Nnbs2KFU7ufnh5EjR7aBR4zGYEGDIToSExPVjtMznj927tyJnj17IiIiAnfv3oWNjQ1mzpyJ9evXt7VrDBWwifB2QGsq91G9PEVNfZrby2hKue/hw4e4dOmS1vW2lHLf8ePHMXPmTDg4OMDIyAgODg744IMPBDubXzR0qdxna2uLXbt24datWygvL8etW7fw6aefapTfitH6sJ5GO4Ap92lGSyj3/d///R/wQRaoAAAgAElEQVRmzJghKLt58yY2b96MtLQ00YowVVVVQSKRwMfHBydPnmxrdxjPEayn0Q5gyn2a0RLKfXl5eViyZAmio6ORn5+PkpISHDt2DMbGxjh+/DgePnyos2u1J5hy34sL62kw2oz2oNy3YsUKpTI/Pz94e3vjxIkTKCwsRNeuXXV6TQZDzLCehkhhyn3iVe6rrKxEeno6TE1NBZst68OU+5hy33NLK+9AFyViSSNSH6bcJz7lvrKyMrpy5QqvAfHll1+qtWXKfUy573mF9TREClPuE49yn2L1mrGxMQYNGoScnBzs27cPwcHBzWqv5sCU+xiioe3ilXgQY09DAVPua3vlvo0bNwps7Ozs6OjRoxq1ja5gyn1tC+tp1MF6GiJHE+W+AQMGYNq0afD398f27dsFOhoKWlK5z93dHXv37uXX2dfnWZX7Zs+erbFy3/DhwzVS7tPW3/Xr14OIUFRUhCNHjqCoqAizZs3CgwcP1DWLztm1axcePXoER0dHBAUFYdu2bbh48aJAaOtZYcp9DE1gQUPEMOW+tlfuq4+ZmRmmTp2KGTNmQCaT4dq1a2ptdQ1T7mOIBRY0RAxT7mtb5T5V1NTUICUlBQDQpUuXRm11DVPuY4gBFjREDFPuazvlvhEjRmDHjh1IS0uDTCZDQUEBzpw5gzfeeAOxsbFwdXWFu7u72rZhyn2awZT72iFtOaEiFsQyEc6U+8Sh3Jefn9/oM7CxsaG0tLRG24Yp9zHlvucV1tMQEUy5TxzKfRYWFggPD8f06dPRu3dvvPTSS+jYsSMGDRqETz/9FKmpqfzQWGvAlPsYYoIp94Ep94kNptzHYMp94oXlnmKIDqbc92LBlPvaFyxoMAQw5T5Ga8OU+9oXLGgwRAdT7nuxYMp97QsWNBgCxDBm+6JqVLyoKJT7GO0DtnqqHdCacq+Mxmlvz0KXsqyaUlVVhRMnTsDf3x+2trYwMDCAg4MDVq9erSSRW1ZWhu+++w7e3t6wtrbmbUNCQvDkyZNW9ZuhGSxotAOeJ7nX9s6L/iyqqqrAcRx8fX3V2pw8eRJ+fn44fPgw7ty5w2cR3rJlC15//XXIZDLe9quvvsLChQtx/vx53Lt3j7f94osvMGTIEBQXF7fGbTG0gAWNdsDzJPfa3mlvz6ItZFklEgmmTZuGU6dOITc3F2VlZYiJiYGzszOSk5Oxd+9e3tbExARz585FREQEcnNzUVpaioiICHTv3h3p6en4+uuvW9V3RtOwOQ0Gg6FTfHx8+PQgCoYNG4atW7di/PjxiI+Px7JlywBA5eq7sWPHYsuWLZgzZw6fg4whHlhPQ6S0J7lXhaTotm3bmpRaDQ4OBsdxSE1NFZQfPXoUHMdh9+7dAICEhARwHIctW7ZgxIgRMDMzQ1hYGBITE+Hs7IzOnTvj0KFDgjpKS0uxceNGODk5wcDAANbW1lixYoVgOETBo0ePwHEc/P39UVZWhpCQEPTo0QPGxsYIDAwUCDFp8yyA2pxX/v7+sLKygqGhIVxcXLB27Vo8evRIpb2upWFbQpa1OTKy6miYhFIV9vb2AOrS3zNERFvmMBELYsk9VZ/2JPe6YcMGAkArV65sUmrV09OTzMzMlMSEFKJMCQkJRES0c+dOAmplXRV12draCtrFwcGBP//u3bvk6Oio8t5UCREpJF/fe+898vLyUjrn0qVLvK2mz4KI6JNPPiGO41T68fnnn6s8R9fSsC0hy9ocGVkFpaWldO7cOerbty9xHEfR0dFN3sP69esJAEVGRmp9/y0Byz1VB2sFEmfQULBr1y4CQLdu3VJ5/KuvviKgVg0tJSWFZDIZ5efn0969e+mdd97h7WpqamjYsGEE1Kqhpaenk1wup4SEBLKxsSEATSbhU4evry//0jty5AgVFxdTZmYmn1Dx9u3bRERUUVFBUqmUxo4dq1TH66+/ThKJhORyORERBQYG8i/agoICcnV1JaBWl7ukpIQGDhxIdnZ2fL3u7u6kp6dHwcHBdOPGDZLL5ZSRkUHjxo0jAHT58mXB9T777DMCQM7OzjRs2DC6cOECFRcXU0ZGBgUEBNDjx4+1fhY//vgjAbXqf9u3b6fc3FySyWSUkpJCISEhdObMGZXn6Tpo1EcThT2JREJr166lBw8e0MOHD+ntt9/mfwQ0RBtFwMOHDwsCS58+fejw4cNNnpeUlERSqZRmzpzZpG1rwYJGHawVSNxBoz3IvXbr1k0jqdWEhAQCQB999JHArqKiggwNDWnAgAF8Wb9+/ahz5858llxvb2+ysrLieyheXl40bNgwIiLasWMHAaCdO3cq+Xb+/HmVx6ZOnUoAaNSoUYKeUGM09izkcjlZWVmRvr6+Uju0JbqSZVXwLEHDxsZGINGritu3b5ONjQ0NHjyYysrKmrxGa8GCRh1sTkPkiF3uNS8vD/fu3dNIarWhvoWCa9euQSaT8Up8crkcaWlpGDVqFJ8lNzk5GaNHj4aenh6ICMnJyXB2dgYA7Nu3DwCwZMkSwTg7x3EYNWoUAOVNi4oJ1j179vDZdZuisWdx9uxZ3L9/HwsWLGh3UqWayLI2h+nTp4OIUFpaisuXL8PV1RXvvfceNm/erNI+KysLXl5eMDc3x+nTp2FkZPRM12e0DCxoiBixy70CdfsWmpJaBeomtxu+pBQCSIqgkZycjKqqKl7qNSMjA48ePeK/p6WloaioCIMGDUJlZSWSkpKa9LN+HquCggLcuXMHHh4e6NOnj0b32dSzUATqCRMmaFSfmNBElvVZMDY2xuDBg3Hs2DGYmprim2++UbK5desWRo4cCSMjI/z+++/o3LmzTq7N0D0saIgYscu9AnW/2JuSWgWAv/76C5aWljA3N+fLSkpKeLnShprfnp6eAMCvwGr4fejQoSgpKQERwc/PD1Q73KryM3nyZCWfvb29Nb7Ppp5FWVkZAKhcqfU80RwZ2frU1NTgwYMHgrKMjAyMHDkShoaGOHfunEBxkiE+WNAQMWKXewU0l1oFal80BQUFOHnyJGQyGf744w/4+fkhNzcXBgYGfCr0xMRESKVSDBgwAEBtkDAxMeGPx8XFwczMDM7OzujUqRMsLCxw7tw5hIaGorCwEOXl5cjMzERoaCjeeOMNZGRkCHxTpF5X9Fw0oalnodjs9/HHHyMuLg4ymQx5eXk4deoU/Pz8UF1drbZuXS+5bUk0kZGdN28eNmzYgMTERBQXF6O0tBQJCQmYMmUKysrKBDK5qampGDlyJIyNjXH+/Hl069atNW+H0RzaZipFXIhlIry9yb0SaS61SkS0aNEipeuvXLmS9PT0aPDgwbydq6srDR8+nP/u5uZG3t7e/HcnJyfBCqzNmzerbYcOHTpQRUWFwLfJkycTx3FUWFio9r60fRalpaVkb2+v0q5///6NtqEuV0+1lCxrfZqSkR09erTaa0ulUkG7vfvuu4366uLi8sxtogvYRHgdrKchItqb3Ks2UqsA8Omnn2LKlCkwNTVFz549sXXrVixYsAA1NTX80JRMJkN6ejo/FFVSUoLU1FS+x1JUVIQbN24IejCrVq3CwYMH4enpCUtLS5iYmMDNzQ3Lly/HtWvX+A1pChITE+Hk5NTouLm2z8LY2BgXL15EQEAArK2tIZFIYGdnh8DAQBw5cqTJutoTTcnI/vjjj9i0aRM8PDzQpUsXGBkZwdHREUFBQUhNTcWIESPawGuGrmByr2ByrwwGo3GY3GsdrKfBYDAYDI1hQYMhoOE+h8Y+LAMpg/HiwYIGg8FgMDSGpUZnCGBjtgwGozFYT6MdUFpaipCQEPTq1QsSiQQcxymtjlLQ3uRI2yNtIaHKYIgFFjTaAfPnz8cXX3yBrKwsfjOVuvQXL7ocKaCZJCmDwWgeLGiInJycHBw+fBiDBg1CVlYWampqQET8MuGGtDc50vZIW0ioMhhigc1piJzIyEgQEVatWtUu0kwwGIznG9bTECFhYWH8staFCxcCqE0zrSirn3wP0FyO9JdffgHHcdi5cyfCwsLg6OgIU1NTDB8+nB/Wqo82MrL10XUupYqKCmzatAkuLi4wMTGBlZUVJkyYgHPnzgnsmiNJOmfOHHAcx+fE6t+/P98mly9f5u1aQkIVqG3jgIAAWFhYwMzMDPPmzUN+fj44jsP06dOfodUYjJaB9TRESFMpLHr27Nmovbr03YpEfTExMTh48CBffunSJYwfPx6ZmZl8ao2CggK89tpryM3NFdRx5swZpKSk4N69e5rdjA5Yvnw5rx0O1GaUPX36NE6fPg2ZTAapVPrM1zh//jxmzpzJJxa8dOkSPvroI4SHhzervry8PPzP//wPiouLAQC3b9/GO++8AxcXFz5hX3l5OcaMGYOUlBT+vP3796O8vPwZ74bBaDlYT0OErF27lk/p3b17d7i6ugrSfG/fvl1gn5WVBSLCrl27AKhP360IGleuXEFERARkMhlu376NIUOGoLCwEJGRkbztgQMHkJubC19fX6SkpEAmkyE/Px979+7F2LFjW+jOVXPkyBGYm5vj7NmzKCsrQ0FBAcLDwzFmzBhB7qP4+HgQESorKwEAPj4+gnZTpeOg4OOPP8aKFSuQmZmJJ0+e4Ny5c4KMtvv37+frMTAwaNLnAwcOYOnSpXjw4AEePnyIt99+GzU1NYLexg8//ICUlBS4uLggPj4epaWluHjxoqCHw2CIjlZOkChKxJLltiF37twhALRw4UKN7JuShu3SpQtJJBLKzMwUlO/bt48ACKQ4NZWRbQ369u1LTk5OvNRrU2gjSTp79mwCQAsWLNDYH11JqPr4+BAAio2NFdgeOXKE13JniAOW5bYO1tMQMQqxoaZEmBQ0JkeqyEg7e/ZsODg4CI7J5XIAgKWlJV+mqYxsa7Br1y48evSIz5S6bds2XLx4UaBM+KzMmzdPZ3UBmkmoZmdnq9ToaG9ysYwXCxY0RIw6TW1VNCVH2pjwkGJYSpGeHNBcRrY1GD16NHJycrB792688soriIuLw9ixY+Hp6YmSkhKdXEPXK9M0kVAlIpWpxYntymeIGBY0RExcXBzMzc3h6OjYpG1TcqQKidOOHTsKylNTU/Hrr7/C2dkZTk5OgmOayMi2FgYGBhg9ejSCg4Nx+PBhHDp0CJcvX+alYuvTHEnSl156SWe+aoq9vT2qqqqUVq6xOQ2GmGFBQ6RUVFQgKSkJHh4eKn+NNqQpOVJFT+Prr7/GzZs3IZfLcebMGUycOBE1NTX48MMPeVttZGRVocslt+Xl5Rg6dCj279+Pmzdvory8HNnZ2fjvf/8LAHj8+LHSOZpIkooBHx8fAMCCBQsQHx+PsrIyXLp0CR988EEbe8ZgNEIbz6mIAjFOhMfFxREA+uijj1Qe11aOtEuXLjR9+nSytLRUsms4CayNjKwqdClfKpPJGpUOvX79usrzmpIkVaCYCM/Pz1frQ0tJqMrlcnJzc1Oqa+7cuQRAdH+TLzJsIrwO1tMQKYr5DHXDTdrIkSomwYcOHYrjx4/Dzc0NUqkUbm5u2L17N/bs2SM4TxsZ2ZZGKpUiLi4OAQEB6N27NwwMDNCjRw/MmDEDcXFxcHFxUXleU5KkYsDAwABnz57FO++8g06dOqFjx46YO3cuPvnkEwDQyf4TBkPXMLlXPP9yr0ePHsXUqVMRHh6OcePGtbU7jCY4f/48vL29sWbNGmzatKmt3WGAyb3Wh+0IfwFQzGe4urq2sSeMhixbtgyOjo4YN24crK2tkZKSgn/+858A0OqbKBkMTWBB4wUgMTERZmZm6N69e1u7wmjA7du3sWPHDqVyPz8/jBw5sg08YjAahwWNF4DExES1Y/+MtmXnzp3o2bMnIiIicPfuXdjY2GDmzJlYv359W7vGYKiEBY0XgIcPH7a1C88VUqkUQ4YM0Ymmhq2tLZ8zjMFoD7DVU4znDqbcx2C0HKynwWBoiSJXF4PxIsJ6GgwGg8HQGBY0RIhCcW7btm2IjY2Fh4cHjI2NMXDgQD7zrQIiQmRkJGbMmIE+ffrA0NAQPXv2xPz585GXl8fbJSQkgOM4bNmyBSNGjICZmRnCwsKQmJgIZ2dndO7cGYcOHRLUXVpaio0bN8LJyQkGBgawtrbGihUrIJPJGvWfKfcx5T7Gc0zbbkgXB2JLI7JhwwYCQCtXriSpVCpIMdGtWzeqqqribSMiItSmtujfvz9vt3PnTgJAFhYW/HFbW1uys7Pjvzs4OPD2d+/eJUdHR5X1NqVTocs0IkREixcvVnuPMpmMt/Pw8Gg01UdjaUQOHTpE+vr6Avtx48bxdorUHopPU3oa8+bNIzMzM8E5enp6lJSUxNvK5XLq16+fkp8zZ85kehoig6URqYP1NESIIiPt4cOHERoaiuLiYmRmZsLBwQH37t3DnTt3eNu7d+8iMDAQkZGRyMvLQ0VFBW7evIkhQ4YgKSkJT58+BVC3wW/VqlUoKCiAq6srcnJysHTpUpSUlGDgwIG84l1lZSV8fX2RmZmJ4OBg3LhxA3K5HBkZGRg3bhxOnTqFhISEVmsPptzHYIiItoxYYkFsPY1u3boRx3EUHx8vKA8KCiIAdP/+fb4sPT2dFi5cSL179yYDAwPBL1Zzc3Perl+/ftS5c2eqrKwkIiJvb2+ysrLi1fC8vLxo2LBhRES0Y8cOAkA7d+5U8u38+fNqj7UUTLmP0dawnkYdrKchMvLy8nDv3j0MHz5cScEtLS0NnTp14lOTnzhxAu7u7ti7dy9u3bqF8vJygf2rr74KoHa1T1paGkaNGoUOHWoXzCUnJ2P06NHQ09MDESE5ORnOzs4AgH379gEAlixZIhjH5zgOo0aNAtC6QkFMuY/BEA8saIgMhSBPw8SClZWVuHr1Kv9Cefr0KebOnQuJRIJ///vfyM3NRUVFBYgI169fBwD0798fQG2AqKqq4lX7MjIy8OjRI/57WloaioqKMGjQIFRWViIpKalJP1szJQlT7mMwxAMLGiJDMZ/RULY1KSkJcrmcL4+Li8Pjx4+xdOlSLFu2DDY2NpBIJKipqeFFfBRBQ1Gnp6cnf66q70OHDkVJSQmICH5+foL5gIafyZMnt2QzKMGU+xgMccCChsi4evUq9PX1MXjwYEF5Q71wxYsxOjoad+7cQVlZGeLi4uDj44OIiAgAdUEjMTERUqkUAwYMAFAbJExMTPist3FxcTAzM4OzszM6deoECwsLnDt3DqGhoSgsLER5eTkyMzMRGhqKN954AxkZGY3eA1Pu0wym3Mdoj7CgITISExPh6uqqNLwRFxcHPT09PpgMGjQI1tbWiI2Nha2tLUxMTPg9Ac7OzjAwMOA1v69evYqBAwfy+xfi4uIwePBg6Ovr8989PDygp6cHjuPw/vvvo7S0FHPmzIGlpSWkUileeeUVzJkzB2fPnuXFnVoDIkJ8fDzmzZsHBwcHSKVS2NvbIzQ0FFKpFG+99ZbK89544w0UFxdj8ODBkEgkavdpaMLBgwcF8zrl5eWIiooSlGVnZ2tdb2BgINzc3JCWloahQ4fCxMQEw4cP53uAYhWPYrzYsKAhIhQKe6rU+uLi4uDk5AQzMzMAtWPmv/32G7y9vWFqagobGxts2LABhw4dQnZ2NlxdXdGhQwfIZDKkp6fzL6KSkhKkpqbyPZaioiLcuHFDMBy2atUqHDx4EJ6enrC0tISJiQnc3NywfPlyXLt2jQ8+rQFT7mMwxAVT7sPzr9zHaF8w5T7xwZT76mAJCxmMNoQp9zHaGyxoMBhtCFPuY7Q3WNBgMNoQptzHaG+woMFgtCFMuY/R3mCrpxgaoVh2euDAgVa9bteuXQVLW6dOndqq1xcjUqlUbWp2BqOlYUGDoRGKXcsNNx02ZNq0adDX1+ez6z4LZWVlyM/PF5Q13CkvRpjcLON5hgUNhkZs3boVRIS+ffs2apeUlIS+ffvCyMjoma9pbGzMpy05evQogPYRNFoauVyOCxcutLUbjBcUFjQYOqOoqAhZWVlwd3fXed3R0dGQSCR47bXXdF43g8HQHBY0REx8fDz8/f1hZWUFQ0NDuLi4YO3atXj06BFvQxrKvQLAL7/8Ao7jsHPnToSFhcHR0ZGXNm2YNA8AvL29BfMJ//jHP5Rsqqqq0KFDB3Ach06dOgFQTrtRX3hIG3/rExUVBXd3dxgaGjbZbkxulsnNMlqQVtTuEC1iE2EiIvrkk0+I4ziVsqWff/45b6ep3CsR0Zo1awgAzZgxQ8nWwsKCCgsLBfb1pWABUGhoqJKfWVlZjUqsAqCYmJhm+auguLiY9PX1admyZRq1HZObZXKzuoaJMNXBehoi5KeffsL69ethZmaG7du3Izc3FzKZDCkpKQgJCREM/2gq9wrUSb5euXIFERERkMlkuH37NoYMGYLCwkJERkYK/MjKygIR8UtCVeXEsrOz4+cdgoODAQDXr18XpFFX6HZo66+CmJgYVFdXt9l8BpObZTDq0TaxSlyIqachl8vJysqK9PX1leReVaGp3CsRUZcuXUgikVBmZqagfN++fQSAtm3bpvIa/v7+1LVr1yZ9ee2115q008ZfBSEhIQSAsrOzm/ShJWByswzW06iDbe4TGWfPnsX9+/fx7rvvNin7eeLECbz55ptKMq8KFHKvQF0G3YCAADg4OAjs5HI5AMDS0lJlPdHR0Sp7GfV58uQJkpOTMW3aNJ342/D63bp1g62tbaM+tBS7du3C7Nmz4ejoCC8vLzg6OmLQoEEYNmwYr2vyrDC5WUZ7gQ1PiYzk5GQAwIQJExq100buFagbmqo/VKRAMSw1cOBApWPp6em4f/9+k0ND0dHRqK6uVjtBq62/9c9LTExs06W2TG6WwaiDBQ2RUVZWBgCQyWSN2mkj9wrUSb527NhRUE9qaip+/fVXODs786JN9VHsB2iqpxEbGwsAapPsaeuvgj///BOVlZUqj7UmTG6WwaiFBQ2Rodg89/HHHyMuLg4ymQx5eXk4deoU/Pz8UF1dDUA7uVegrqfx9ddf4+bNm5DL5Thz5gwmTpyImpoafPjhhyr9iYqKUjmE0RCFcl1OTo5KeVVt/VWgkHONj49HYWFhoz4oYHKzmsHkZhnNok1nVESCmCbCS0tLyd7evsklqSUlJWRtba1kM2XKFHJ3dycDAwOqrKzk7bt06ULTp08nS0tLpXPqT8JGRUU1uYQ2KipKye8PPvhAyS4oKKjZ/irIzc0liUQiOEcikVBVVZXaNtTlkluZTKa2HaRSKV2/fl3lebNmzdJqyW1+fr5aH37++ecmn0lWVhYR1U2Er127VqmehhPocrmc3NzclOpSLO8Vy/8JMcAmwutgPQ2RYWxsjIsXLyIgIADW1taQSCSws7NDYGAgjhw5wttpKvcK1E2CDx06FMePH4ebmxukUinc3Nywe/du7Nmzh683KyurSR9VaYSHhITA399fIK/ap0+fZvlbHxsbG4SFhaFfv378xj57e3te37ylYXKzDIYQJveK51/u9ejRo5g6dSrCw8Mxbty4tnaHIXKY3KwyTO61Drbk9gVAMZ/h6uraxp4wxAaTm2VoCwsaLwCJiYkwMzND9+7d29oVhshgcrMMbWFB4wUgMTFR7dg748WGyc0ytIUFjReAhw8ftrULDJHC5GYZ2sJWTzFanc8//xwcx/HCSrqguroa4eHhmDVrFl555RUYGRnB3t4eixYtwv3793V2HW2JiYmBp6cnTE1NwXGcYEXZunXrBOnO1aVxERtZWVkICAhA9+7dYWBgABcXF+zbtw81NTVqzyEiPnX85MmTW9Fbhq5hPQ1Gq6OYmNeloFJYWBjeeecdQVl2dja+/fZbhIeHIyUlRWk3fEvz+PFj+Pn5qdwAKDaqqqogkUjg4+ODkydPqrVLTk6Gl5cXiouL+bK0tDQEBgaif//+agW49u7di6SkJJ37zWh9WE+D0epcvXoVlpaW6Nmzp87qzM3NxcKFCxEeHo6cnBw8ffoUMTExsLOzQ05ODo4dO6aza2lKTEwMHj9+jMWLF6O0tBREhJs3b/LHP/30Uz7deXtIElhTU4N33nkHxcXF8PHxQUpKCsrLy/HXX38hKChI7d6ZwsJCfPDBB1i5cmUre8xoCVhPg9GqFBUV4fbt2zrfL7JmzRqlsmHDhmHx4sVYtWqVzhILasPff/8NABg/fjyMjY1b/fq65sKFC/jzzz/x2muv4ejRo7xCYZ8+ffDtt9+qPS8kJAT9+/fHm2++ic8++6y13GW0EKynIUJIS0nUR48egeM4+Pv7o6ysDCEhIejRoweMjY0RGBgoEDYqLS3Fxo0b4eTkBAMDA1hbW2PFihVKCRK19UFTFIkT6w9NlZSU4K233oKenh7WrFmDmpoaJCQkgOM4bNmyBSNGjICZmRnCwsKQmJgIZ2dndO7cGYcOHWryen/88QeAxtN96zJXlUJuleM4LF68GEDt8lVFWf05DW2Ry+VYv349HBwcYGBgAAsLC0yaNAnXrl1Tsr169Srmz5+Pvn37wsDAAJaWlvD19cX58+cFdtpI1P7+++8AgODgYN6+KeLi4nDgwAGVy3oZ7ZQ2S2AiIsSUe4pIe0lUhf17771HXl5eSudcunSJiIju3r1Ljo6OKuttKBjUHFlWTdi8eTMBoCNHjhAR0Z9//kmvvPIKmZmZ0bFjx3i7nTt3ElArQ6u4rq2trUCC1sHBodFrHTt2TCMxJF3mqlLkflL36d27t8rzPDw8yMLCQm29NTU1NHbsWJV1GhkZ0R9//CGwV3d9PT09Cg8PF1y3MX/r58uaOnUqAbViWMHBwWRpaUlGRkbk6elJJ0+eVPK5qqqK3N3d6f333xe0zaRJk7RqUzHAck/VwXoaIkRbSVTFxHJ4eDgqKytx4cIFFBcXIyMjAwEBAXB2dkZlZSV8fX2RmZmJ4OBg3LhxA3K5HBkZGRg3bhxOnTqFhISEZvugKfV7Gj/99BM8PDzw0sp/UvYAABZASURBVEsv4erVq/Dz81O6p1WrVqGgoACurq7IycnB0qVLUVJSgoEDB/KyqqqIjY3FrFmzYGtri++//75ZvjYHd3d3fp5C8ev6xIkTfFn9OQ1tOHnyJM6cOQMrKyucOnUKJSUluHnzJvz9/fH06VOsWrVKYD9o0CDs378ff//9NyorK1FUVIRjx45BT09P8KtfG4naoqIi6OvrY+vWrdi6dSsKCgrw9OlTxMbGYuLEiUppeL755hs8fPhQbQZlRjul7eKVeBBbT0NbSVTFL8BRo0apzf66Y8cOAkA7d+5UOnb+/HmlY82RZdUEe3t7MjU1pXfffZcAkJ+fH5WVlSnZ9evXjzp37sxnvvX29iYrKytectXLy4uGDRum8hqRkZFkYmJCjo6ObSYRS1TX5idOnGjStqmexuLFiwkA7d+/X1Auk8nIysqKOnToQE+fPuXLU1NTadasWWRjY0MdOnQQPD93d3el+jWRqPXy8iJ9fX0yNzenAwcOUFFREd27d49WrVpFAKhXr168bV5eHnXs2JF+/vlnvoz1NJ4P2ES4yGiOJKri1/uePXvUrmDZt28fAGDJkiVYsmSJShv6/8nYmivL2hSPHz/ms+ju378fenp6KC4uhpGRkcBOLpcjLS0NkyZN4jPfJicnY/z48dDT0wMRITk5mU80WZ8ffvgBixYtwvDhw3HkyBF06tSpWb6KjTt37gBQVl6USqUYMGAAfvvtN+Tl5aF3795IS0uDh4eHQNq1Po310BrDxMQE1dXVWL58OWbPng0AMDMzw+bNm3Hq1Clcv34dubm56NGjB4KDg9G/f3/MmDGjWddiiBc2PCUimiOJWlBQgDt37sDDw0PtJGtlZaVGa+S7d+/ebFlWTVAEt169eiE2NhazZ89GVFQUjh8/LrBLTk5GVVUV/4LMyMjAo0eP+O9paWkoKioSCEMpXmbz589HYGAgIiIinpuAAdQFdE3SrH/99dcoLS3F4sWLkZ6ejqdPn/LDTebm5s32QaHR7ubmpnRMIR726NEjPH36FD///DOioqIEk+qKv5tjx46B4zisXr262b4w2g4WNEREcyRRFS9ib29vtfWWlJSAiODn5ycYr274mTx5crNlWTVBMU/x5ZdfYsCAAfj0008hlUoREhIiULdT3JOnpyffLqq+K3TDHz9+jPHjx2P37t349ttv8Z///Efj1T1iwdzcHCUlJWp3VSte2JcuXRKUl5eXIykpCR06dIC1tTWA2iSE+vr62L59OxwdHXkdkitXrqCoqEhl/ZpI1Co05BU/HuqTmZkJALC0tGx0Zzij/cOChohojiSq4kXccNiiPp06dYKFhQXOnTuH0NBQFBYWory8HJmZmQgNDcUbb7yBjIyMZvugKYpgoHj59OzZE//4xz+QkZEhWOefmJjID7sAtUHCxMSET+0eFxcHMzMzODs748aNGxg8eDBSU1MRFRWFoKAgrf3S5ZLb5tKnTx9UVFRg69atKocFx48fDwBYvXo1Tp8+jdLSUmRlZWHevHm4d+8eRo4cyQeHnj17orq6Glu3bkVRURGKi4tx8uRJvPXWW2qDqSYStb6+vjA0NMQXX3yBgwcP4smTJ3jw4AFWr16N69evw8HBAd27d4eJiYnKHyWK3u6kSZNARNi8ebOumo/RmrTqDIpIEctEeHMkUSdPnkwcx1FhYWGjdSuWuqr6dOjQgSoqKprtg6bY2dlR165dBWWPHz+mzp07k6WlJRUXFxMRkaurKw0fPpy3cXNzI29vb/67k5MTjR07loiIJkyY0OiS0frypurQ5ZLb+mgzEX7t2jXiOE7g+7vvvssfb2zJraGhIV25coW3jY2NJT09PSW7efPmUffu3cnFxUWlD5pI1G7ZskXtUt5ff/210XtkE+HPB6ynISKaI4mamJgIJycndO7cudG6V61ahYMHD8LT0xOWlpYwMTGBm5sbli9fjmvXrvG/QJsry9oUjx49QnZ2Nt/LUGBubo61a9eioKAAn332GWQyGdLT0/mhqJKSEqSmpvJDUUVFRbhx4wb/XdFDUodirF3s9OvXDz/99BN69+6tct6C4zj8+uuvWLt2LXr37g2JRAJzc3NMnDgRMTExgnYdOnQoTpw4gUGDBsHY2BjdunXD+++/3+iubUAzidqQkBDs378fAwYMgKGhIYyNjTFy5EiEh4dj0qRJz9YIjHYBk3vF8y/3ymAwng0m91oH62kwGAwGQ2NY0GA0m/rLKZv6fP31123tLoPB0AEsaDAYDAZDY1jQYDQbqrecskuXLoJjU6ZMERxfvnx5q/p28OBBcByHAwcOtOp1WwOpVAovL69WvWZVVRVOnDgBf39/2NrawsDAAA4ODli9erXSzvOysjJ899138Pb2hrW1NW8bEhKCJ0+etKrfDN3DggbjmSkrK0N+fr6gTLG6SVdMmzYN+vr6GidKvHLlCgBg8ODBOvXjeaSqqgocx8HX11etzcmTJ+Hn54fDhw/jzp07fALLLVu24PXXXxek1v/qq6+wcOFCnD9/Hvfu3eNtv/jiCwwZMkSg+sdof7CgwXhmjI2N+R6FQvdb10EjKSkJffv2VcpTpY6tW7eCiNrNklttkMvluHDhQqteUyKRYNq0aTh16hRyc3NRVlaGmJgYODs7Izk5GXv37uVtTUxMMHfuXERERCA3NxelpaWIiIhA9+7dkZ6ezua32jksYSFDp0RHR0MikehU/7uoqAhZWVks+V0b4uPjAx8fH0HZsGHDsHXrVowfPx7x8fFYtmwZAKgcihw7diy2bNmCOXPm8JkBGO0T1tMQIb/88gs4jsPOnTsRFhYGR0dHmJqaYvjw4fywS32KiooQEhLCK+zZ29tj8eLFKCgoaHa9wcHB4DgOqampgvKjR4+C4zjs3r1bpe9RUVFwd3fnU1o0hDRUBKyqqkKHDh3AcRyfeFAxT6H4hIaGCur29vYWHP/HP/6hpoU1bzOFkt22bdsQGxsLDw8PGBsbY+DAgXwOLFXoOjVJQECA4N7UzWkolAPXrVuHK1euwNPTE4aGhujdu7dSe2mj2tcUHTt2bNLG3t4eQG1+KkY7pk32oYsMsaQRUbBmzRoCQDNmzFBK12BhYSFIGZKTk0O2trYqUzt4eXlRTU1Ns+r19PQkMzMzXr9CQUhICAGghIQEJb+Li4tJX1+fli1bpvbeNFUEzMrKajQ9CACKiYkR1F1f1Q8AhYaGqvRBmzbbsGEDAaCVK1eSVCoV2Hbr1k2tfomuU5PMnTtXo/QoilQd8+bNIzMzM6VUH0lJSbytNqp9DSktLaVz585R3759ieM4io6ObvIe1q9fTwAoMjJS6/tva1gakTpYK5D4gsa4ceMIqJUGjYiIIJlMRrdv36YhQ4YQADp48CAR1eYjGjZsGAGgadOmUXp6OsnlckpISCAbGxsCQGlpaVrXW1FRQVKplM/vVJ/XX3+dJBIJyeVypWOnTp0iAALhnYZ8//33FBgYSJGRkZSXl0cVFRV08+ZN3gdVgkzBwcEEgK5fv65R++3atYsA0K1bt5SOadtmvr6+/Mv/yJEjVFxcTJmZmeTg4EAA6Pbt2yp9aKl8VkREBgYGTQYNiURCa9eupQcPHtDDhw/p7bff5oNfQzQRYFJw+PBhQWDp06cPHT58uMnzkpKSSCqV0syZM5u0FSMsaNTBWoHEFzS6dOlCEomEMjMzBeX79u0jALRt2zYiIvrtt9/4/+z1fx0T1fUq6ms3a1pvQkICAaCPPvpIYFdRUUGGhoY0YMAAlX4reiGNqeU1RxHwtddeU0p02Bj+/v5q7bVts27duhHHcRQfHy+wDQoKIgB0//59jf3SFZoEjSFDhgjK79+/TwDI19dX6ZxnCRo2Njb83406bt++TTY2NjR48GCVPwraAyxo1MHmNETGnTt3kJ+fj9mzZ8PBwUFwTC6XA6gbEw4LCwMAbNy4USnBnELTwNTUVOt64+PjASivgLp27RpkMplS0kEF0dHR6NatG6/90JATJ07A3d0de/fuxa1bt5RSgKtSBHzy5AmSk5O12pcQHR2NIUOGqDymTZvl5eXh3r17GD58ODw8PAS2aWlp6NSpE15++WWN/WpNGvr78ssv46WXXlKr5qcp06dPBxGhtLQUly9fhqurK9577z21ac6zsrLg5eUFc3NznD59WuPVbwzxwoKGyGhMHyMyMhJAnR7F1atXYWRkpFLfIiYmBvr6+vwxbepNSEgAx3FKLx6FnoaqoPH06VMkJiaqXWrbXEXA6OhoVFdXaxw00tPTcf/+fbV+aNNmisUB48aNE9hVVlbi6tWrSu0jJkxMTJTKOI7TWcI9Y2NjDB48GMeOHYOpqSm++eYbJZtbt25h5MiRMDIywu+//95kJmZG+4AtuRUZiuWIDVejpKam4tdff4WzszOcnJwAAKWlpSpTWEdERCAmJgZ+fn78r2Zt6v3rr79gaWkpkAYtKSnBd999B0B10Pjzzz9RWVmpVqBJoQi4evVqfmkmgCYVAWNjYwEAI0eOVFlvQxT7F9T1NJrTZg0DUFJSEuRyuc73orQVmqj2NUZNTQ0ePHggKMvIyMDo0aNhbGyMc+fOibZHxtAe1tMQGYoewddff42bN29CLpfjzJkzmDhxImpqavDhhx/ytr169UJZWRk+++wzFBcXo7i4GN999x2mT58OfX19bNiwoVn1VlRUoKCgACdPnoRMJsMff/wBPz8/5ObmwsDAgFfQq8/jx48B1A5tFRYWKh1vriJgdnY2ACAnJ0elmlxDoqKioK+vL9APr482bXb16lXo6+sr7SpXN3xXHzGoAWqKJqp98+bNw4YNG5CYmIji4mKUlpYiISEBU6ZMQVlZGdzd3Xnb1NRUjBw5EsbGxjh//jy6devWmrfDaGnaeE5FFIhpIrxLly40ffp0srS0VFoCuWDBAoHtzz//rHKpJMdxtHv37mbXu2jRIiWblStXkp6eHg0ePFil37m5uSSRSATnSCQSfklqcxUBP/jgA6VzgoKC+ONRUVFNLs2Niopqdpu9+uqrSj7NmDGD9PT0qKioSGVbEOl29ZQ6n+t/srKyiKhuInzt2rVK9TQ2gd6Uat/o0aPVXlsqlQra+N13323UV3XKgWKGTYTXwXoaIkIxWT106FAcP34cbm5ukEqlcHNzw+7du7Fnzx6B/YwZM7B//37069cPRkZGsLCwgK+vL6KiorBo0aJm1/vpp59iypQpMDU1Rc+ePbF161YsWLAANTU1aifBbWxsEBYWhn79+vEb++zt7aGvrw+g+YqAISEh8Pf3F6jJ9enThz+elZXVZLv26tWr2W2mapgrLi4OTk5OMDMza/La7YWmVPt+/PFHbNq0CR4eHujSpQuMjIzg6OiIoKAgpKamYsSIEW3gNaMtYMp9EI9y39GjRzF16lSEh4crTb6KsV4G40WBKffVwXoaIkIx76BqzkCM9TIYjBcPFjRERGJiIszMzNC9e/d2US+DwXjxYEFDRCQmJsLFxaXd1MtgMF482D4NEfHw4cN2VS+DwXjxYD0Nhs55nqVWn2faQkaW0f5gQYPRJM+z1Kq299aWaCLLymC0NCxoMJrkeZZa1fbenmfaQkaW0f5gQYPRKAqp1fppIp4Xnud7YzBaChY0REx8fDz8/f1hZWUFQ0NDuLi4YO3atXj06JHATtfSpS0ptaqtfGppaSk2btwIJycnGBgYwNraGitWrIBMJmu1e1Og63xSFRUV2LRpE1xcXGBiYgIrKytMmDAB586dE9g1R5Z1zpw54DiOzyHWv39/Xtr38uXLvF1LyMgCQH5+PgICAmBhYQEzMzPMmzcP+fn54DgO06dPf4ZWY7Q5bZvFRByIKfeUgk8++YQ4jlOZu+fzzz/n7VpCurQlpVa1kU+9e/cuOTo6qrx+Q8Gglrw3BbpW41u8eLFaH2QyGW/XHFnW2bNnEwA6dOgQ6evrC+zHjRvH27WEjKxcLqd+/fop+Tlz5kwCahUT2xss91QdrBVIfEHjxx9/JKBWyW779u2Um5tLMpmMUlJSKCQkhM6cOUNErSNdqkupVW18qKioIHd3d9LT06Pg4GC6ceMGyeVyysjI4GVrL1++3Kr3puug0bVrVzI3N6ezZ89SWVkZFRQUUHh4OI0ZM0alnK42CnuKoOHi4kIrV66kzMxMevLkCZ07d47WrVun8hxdycgq/gZcXFwoPj6eSktL6eLFi9SrVy8WNJ4DWCuQuIKGXC4nKysr0tfXV5IYbUhrSJfqUmpVGx927NhBAGjnzp1KdZw/f17pWGvcm67p27cvOTk5UXV1tUb2zQkaDTMYN4auZGR9fHwIAMXGxgpsjxw5woLGcwCb0xAZZ8+exf3797FgwYImleFaWrpU11Kr2viwb98+AMCSJUsEY+4cx2HUqFEAwCePa6170zW7du3Co0eP+Gyx27Ztw8WLF/lnpwvmzZuns7oAzWRks7OzVWqaiFnpkKE5LGiIjOTkZADAhAkTmrRtaelSXUutaupD5f9r7/5B0gnDOIB/B+uEIpCapH/SUItDY44JFgiHW7WURLMFDUHQICK0R7W2CGU4NjRUg8TZFLUVEQXSEk4mdv3hGkozUnz9+V539ft+wEWOu+cd5EHfx/f7/IzT09O6zyudpfUTazOD3+/H7e0tNjc3MTg4CE3TEAgE4PP5kM/npTxDdgiUSIysYRhVj1c3eELsn8CmYTOFQgEAvk0HVVMvujQYDDYVXSo7alW0hnw+D8MwoKoqjPefUKu+QqHQj63NLIqiwO/3Y3FxEbu7u0gmkzg5OSlH61b6l1jW1tZWabWK8ng8eHl5KTfzksqpLfq92DRspvSHuGg0Ck3TUCwWcXd3h729PaiqitfX1/K1ZkeXyo5aFa3B5XKhs7MTh4eHSCQSyOVy0HUdl5eXSCQSGB8fx8XFxY+uDZA7cqvrOkZGRrC1tYWrqyvouo6bmxvs7OwA+IzPrSQSy2oHwWAQADA3N4dMJoNCoYDj4+NyFjz9ctZspdiLnTbCHx4eDI/HU3W0cnh4+Mu1ZkeXyo5abaSG1dXVmvd0OBzG09OTqWurRub0VLFYrLk+p9NZc6KrXixrSWkj/P7+vmYNZsXIPj4+Gl6v99u9SuO9dvmsNYIb4Z/4TcNm2trakE6nEQ6H4Xa70dLSgv7+fszOziKVSn251uzoUplRq43WsLS0hO3tbfh8PnR1daG9vR1erxcLCws4Ozsr/9HNrLWZzel0QtM0hMNhDAwMQFEU9PT0YHJyEpqm1TzKvl4sqx0oioKDgwNMT0/D5XKho6MDMzMziMViAN7XTr8X415hn7hXor/s6OgIo6OjWF5eRjwet7qchjDu9RPzNIhIukgkgqGhIYyNjcHtduP8/Bzz8/MAgEAgYHF11Aw2DSKS7vr6Gmtra9/eV1XV8ok1ag6bBhFJt76+jt7eXuzv7yObzaK7uxtTU1NYWVmxujRqEpsGEUnX19eHjY0Nq8sgE3B6ioiIhLFpEBGRMDYNIiISxqZBRETCuBH+IZvNIplMWl0GEdlQtSji/xWbxodMJoOJiQmryyAisjUeI0JERMK4p0FERMLYNIiISBibBhERCXMA4HngREQk5A2xzT7tkeKnHwAAAABJRU5ErkJggg==\n", "text/plain": [ "ref_0\n", "SQLiteTable[table]\n", " name: countries\n", " schema:\n", " iso_alpha2 : string\n", " iso_alpha3 : string\n", " iso_numeric : int32\n", " fips : string\n", " name : string\n", " capital : string\n", " area_km2 : float64\n", " population : int32\n", " continent : string\n", "\n", "ref_1\n", "Selection[table]\n", " table:\n", " Table: ref_0\n", " selections:\n", " name = Column[string*] 'name' from table\n", " ref_0\n", " continent = Column[string*] 'continent' from table\n", " ref_0\n", " population_in_millions = Divide[float64*]\n", " left:\n", " population = Column[int32*] 'population' from table\n", " ref_0\n", " right:\n", " Literal[int32]\n", " 1000000\n", "\n", "Limit[table]\n", " table:\n", " Table: ref_1\n", " n:\n", " 3\n", " offset:\n", " 0" ] }, "execution_count": 8, "metadata": {}, "output_type": "execute_result" } ], "source": [ "countries['name', 'continent', population_in_millions].limit(3)" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "Since we are in lazy mode (not interactive), those expressions don't request any data from the database\n", "unless explicitly requested with `.execute()`.\n", "\n", "## Logging queries\n", "\n", "For SQL backends (and for others when it makes sense), the query sent to the database can be logged.\n", "This can be done by setting the `verbose` option to `True`." ] }, { "cell_type": "code", "execution_count": 9, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "SELECT t0.name, t0.continent, t0.population / CAST(? AS REAL) AS population_in_millions \n", "FROM base.countries AS t0\n", " LIMIT ? OFFSET ?\n" ] }, { "data": { "text/html": [ "<div>\n", "<style scoped>\n", " .dataframe tbody tr th:only-of-type {\n", " vertical-align: middle;\n", " }\n", "\n", " .dataframe tbody tr th {\n", " vertical-align: top;\n", " }\n", "\n", " .dataframe thead th {\n", " text-align: right;\n", " }\n", "</style>\n", "<table border=\"1\" class=\"dataframe\">\n", " <thead>\n", " <tr style=\"text-align: right;\">\n", " <th></th>\n", " <th>name</th>\n", " <th>continent</th>\n", " <th>population_in_millions</th>\n", " </tr>\n", " </thead>\n", " <tbody>\n", " <tr>\n", " <th>0</th>\n", " <td>Andorra</td>\n", " <td>EU</td>\n", " <td>0.084000</td>\n", " </tr>\n", " <tr>\n", " <th>1</th>\n", " <td>United Arab Emirates</td>\n", " <td>AS</td>\n", " <td>4.975593</td>\n", " </tr>\n", " <tr>\n", " <th>2</th>\n", " <td>Afghanistan</td>\n", " <td>AS</td>\n", " <td>29.121286</td>\n", " </tr>\n", " </tbody>\n", "</table>\n", "</div>" ], "text/plain": [ " name continent population_in_millions\n", "0 Andorra EU 0.084000\n", "1 United Arab Emirates AS 4.975593\n", "2 Afghanistan AS 29.121286" ] }, "execution_count": 9, "metadata": {}, "output_type": "execute_result" } ], "source": [ "ibis.options.verbose = True\n", "\n", "countries['name', 'continent', population_in_millions].limit(3).execute()" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "By default, the logging is done to the terminal, but we can process the query with a custom function.\n", "This allows us to save executed queries to a file, save to a database, send them to a web service, etc.\n", "\n", "For example, to save queries to a file, we can write a custom function that given a query, saves it to a\n", "log file." ] }, { "cell_type": "code", "execution_count": 10, "metadata": {}, "outputs": [], "source": [ "import os\n", "import datetime\n", "\n", "def log_query_to_file(query):\n", " \"\"\"\n", " Log queries to `data/tutorial_queries.log`.\n", " \n", " Each file is a query. Line breaks in the query are represented with the string '\\n'.\n", " \n", " A timestamp of when the query is executed is added.\n", " \"\"\"\n", " fname = os.path.join('data', 'tutorial_queries.log')\n", " query_in_a_single_line = query.replace('\\n', r'\\n')\n", " with open(fname, 'a') as f:\n", " f.write(f'{datetime.datetime.now()} - {query_in_a_single_line}\\n')" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "Then we can set the `verbose_log` option to the custom function, execute one query,\n", "wait one second, and execute another query." ] }, { "cell_type": "code", "execution_count": 11, "metadata": {}, "outputs": [ { "data": { "text/html": [ "<div>\n", "<style scoped>\n", " .dataframe tbody tr th:only-of-type {\n", " vertical-align: middle;\n", " }\n", "\n", " .dataframe tbody tr th {\n", " vertical-align: top;\n", " }\n", "\n", " .dataframe thead th {\n", " text-align: right;\n", " }\n", "</style>\n", "<table border=\"1\" class=\"dataframe\">\n", " <thead>\n", " <tr style=\"text-align: right;\">\n", " <th></th>\n", " <th>name</th>\n", " <th>continent</th>\n", " <th>population_in_millions</th>\n", " </tr>\n", " </thead>\n", " <tbody>\n", " <tr>\n", " <th>0</th>\n", " <td>Andorra</td>\n", " <td>EU</td>\n", " <td>0.084000</td>\n", " </tr>\n", " <tr>\n", " <th>1</th>\n", " <td>United Arab Emirates</td>\n", " <td>AS</td>\n", " <td>4.975593</td>\n", " </tr>\n", " <tr>\n", " <th>2</th>\n", " <td>Afghanistan</td>\n", " <td>AS</td>\n", " <td>29.121286</td>\n", " </tr>\n", " </tbody>\n", "</table>\n", "</div>" ], "text/plain": [ " name continent population_in_millions\n", "0 Andorra EU 0.084000\n", "1 United Arab Emirates AS 4.975593\n", "2 Afghanistan AS 29.121286" ] }, "execution_count": 11, "metadata": {}, "output_type": "execute_result" } ], "source": [ "import time\n", "\n", "ibis.options.verbose_log = log_query_to_file\n", "\n", "countries.execute()\n", "time.sleep(1.)\n", "countries['name', 'continent', population_in_millions].limit(3).execute()" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "This has created a log file in `data/tutorial_queries.log` where the executed queries have been logged." ] }, { "cell_type": "code", "execution_count": 12, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "2020-07-02 17:51:02.760861 - SELECT t0.iso_alpha2, t0.iso_alpha3, t0.iso_numeric, t0.fips, t0.name, t0.capital, t0.area_km2, t0.population, t0.continent \\nFROM base.countries AS t0\\n LIMIT ? OFFSET ?\n", "2020-07-02 17:51:03.779023 - SELECT t0.name, t0.continent, t0.population / CAST(? AS REAL) AS population_in_millions \\nFROM base.countries AS t0\\n LIMIT ? OFFSET ?\n" ] } ], "source": [ "!cat data/tutorial_queries.log" ] } ], "metadata": { "kernelspec": { "display_name": "Python 3", "language": "python", "name": "python3" }, "language_info": { "codemirror_mode": { "name": "ipython", "version": 3 }, "file_extension": ".py", "mimetype": "text/x-python", "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", "version": "3.7.6" } }, "nbformat": 4, "nbformat_minor": 4 }
apache-2.0
28ideas/quant-econ
solutions/finite_mc_solutions.ipynb
2
44281
{ "metadata": { "name": "", "signature": "sha256:ad347f154a4476ca892ae2e0bd2a377cfaa70b4b3a4ce07ac450c08f861925e9" }, "nbformat": 3, "nbformat_minor": 0, "worksheets": [ { "cells": [ { "cell_type": "heading", "level": 1, "metadata": {}, "source": [ "quant-econ Solutions: Finite Markov Chains" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "Solutions for http://quant-econ.net/finite_markov.html" ] }, { "cell_type": "code", "collapsed": false, "input": [ "%matplotlib inline" ], "language": "python", "metadata": {}, "outputs": [], "prompt_number": 4 }, { "cell_type": "code", "collapsed": false, "input": [ "from __future__ import print_function, division # Omit for Python 3.x\n", "import numpy as np\n", "import matplotlib.pyplot as plt\n", "from quantecon import mc_compute_stationary, mc_sample_path\n" ], "language": "python", "metadata": {}, "outputs": [], "prompt_number": 5 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Exercise 1" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "\n", "Compute the fraction of time that the worker spends unemployed,\n", "and compare it to the stationary probability.\n" ] }, { "cell_type": "code", "collapsed": false, "input": [ "\n", "alpha = beta = 0.1\n", "N = 10000\n", "p = beta / (alpha + beta)\n", "\n", "P = ((1 - alpha, alpha), # Careful: P and p are distinct\n", " (beta, 1 - beta))\n", "P = np.array(P)\n", "\n", "fig, ax = plt.subplots(figsize=(9, 6))\n", "ax.set_ylim(-0.25, 0.25)\n", "ax.grid()\n", "ax.hlines(0, 0, N, lw=2, alpha=0.6) # Horizonal line at zero\n", "\n", "for x0, col in ((0, 'blue'), (1, 'green')):\n", " # == Generate time series for worker that starts at x0 == #\n", " X = mc_sample_path(P, x0, N)\n", " # == Compute fraction of time spent unemployed, for each n == #\n", " X_bar = (X == 0).cumsum() / (1 + np.arange(N, dtype=float)) \n", " # == Plot == #\n", " ax.fill_between(range(N), np.zeros(N), X_bar - p, color=col, alpha=0.1)\n", " ax.plot(X_bar - p, color=col, label=r'$X_0 = \\, {} $'.format(x0))\n", " ax.plot(X_bar - p, 'k-', alpha=0.6) # Overlay in black--make lines clearer\n", "\n", "ax.legend(loc='upper right')\n", "\n" ], "language": "python", "metadata": {}, "outputs": [ { "metadata": {}, "output_type": "pyout", "prompt_number": 6, "text": [ "<matplotlib.legend.Legend at 0x54ac490>" ] }, { "metadata": {}, "output_type": "display_data", "png": "iVBORw0KGgoAAAANSUhEUgAAAi0AAAFrCAYAAAAdALmeAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzs3XdUFGcXwOHf0rt0FcTeARv2Tw3GbowmGltsscSeGDWi\nJsYWSyxplkQlGk009hJbLMEuFuy9AqKg9F4Xdr8/1mADGyAj3Occjs7uzOy7e2H37nvvzIAQQggh\nhBBCCCGEEEIIIYQQQgghhBBCCCGEEEIIIYQQQgghhBBC5BtVfg8gkwlaUvJ7EEIIIYTIJeeBGrm5\nQ73c3FmOpMCnwzej1WrlRwE/kyZNyvcxyI/EQ8k/EhNl/Ug8lPcDVM/tVEE5SQug0Wbk9xDEQ4GB\ngfk9BPEYiYfySEyUReJROCgqadFqtPk9BCGEEEIolLKSlvwegMj0ySef5PcQxGMkHsojMVEWiUfh\noJxGXND2HrSWFYu65Pc4hBBCCJFDKpUKcjnPUNZMi1bmWpTiwIED+T0E8RiJh/JITJTlVeJha2uL\nSqWSn1z6sbW1zbvAPsXgjT3SS5CkRQghRF6Ljo6Wz5tc9HBG5c081ht7pBfTfjxgFau8P87vcQgh\nhCjAVCqVJC25KLvXU8pDQgghhCi0FJW0yPFDyiH1emWReCiPxERZJB6Fg6KSFq1Wk99DEEIIIYRC\nKaqnpUvf5axd1ie/xyGEEKIAk56WF9uyZQtXrlxBT08PZ2dnevXqle26hbanRSMzLUIIIQQAfn5+\ndOrUCVtbW3bs2AHAX3/9hbOzM1OmTCE6OjpPHjc2NpZvv/2Wr776inHjxvHLL78QERGRJ4/1qhSV\ntEjmqxxSH1YWiYfySEyUpSDGo06dOixZsoS0tDTc3d3RarWEh4dz8eJFJk2ahI2NTZ487qFDh6ha\ntWrmcvXq1dm/f3+ePNarkvO0CCGEEAplZ2dH586dWbhwIS4uLnz88ccvfTI3f39/vL29s72/fv36\ndOjQ4Znb7927h7W1deaytbU1N2/efPXB5wGFJS1SHlIKT0/P/B6CeIzEQ3kkJspSkOMxbNgwGjRo\nwOXLl3FwcHjp7cqWLcvMmTNf+fFiYmIwMTHJXDYyMiIhIeGV95MXFFUe0shMixBCCPGEGzduUKVK\nlTdWArO0tHyi8pGcnPxGT9X/PAqbaZGkRSkOHDhQoL+5vG0kHsojMVGW3I5Hbp2ZPqcfa5s2baJ6\n9ep89dVXzJgxg4EDBwIQFRWFt7c3jo6OVKtWDQ8Pj2e2fd3yULly5Th16lTmckREBLVq1crZE8kl\nikpaNBpJWoQQQuQ/JXyH3rx5M6VKlcLV1ZWKFSsyevTozORs+fLlNG3alFq1atGnTx9WrVr1zPav\nWx5q0qQJXl5emctnzpxh1qxZOXouuUVRSYucEVc55Bukskg8lEdioiwFKR579+5l2bJlXLt2LfOo\nnQsXLmBra4uXlxcTJ04kICCAzp07Y2BgQFRUVK4+vrm5OV5eXkybNg2NRoOXlxeOjo65+hivS1lJ\ni0oacYUQQhRuLVq0oEWLFk/c5uHhwcWLFzOX//nnH/T19YG8ucry804ml5+U1Ygr5SHFKIjnPHib\nSTyUR2KiLIUtHpUqVSI0NJSUlBSsrKzyezhvjKJmWpRQQxRCCCGUrkePHixbtgw/Pz9GjBiR38N5\nYxR17aFWXX5m19rP83scQgghCjC59lDuKrTXHtJKI64QQgghsqGopAU5I65iFLb6sNJJPJRHYqIs\nEo/CQVFJizTiCiGEECI7iuppebfTXHw2jM7vcQghhCjApKcld71tPS2tgWvATWBsFvf3AM4DF4Cj\nQLVs9yS/REIIIYTIRk6TFn1gAbrEpSrQHajy1Dr+QBN0ycq3wJLsdqaRnhbFkPqwskg8lEdioiwS\nj8Ihp0lLXeAWEAiogTXA01dfOgbEPvz/CaBEdjuTeRYhhBBCZCenSYszcPex5XsPb8tOf2Bndndq\nZaZFMQrSdTwKAomH8khMlEXiUTjk9Iy4rzI50hToB/wvuxWunV7H5MkpAFhbW1OjRo3MX8T/pv5k\nWZZlWZZlWZZzsixy33+v8YEDBwgMDMyzx8lpV299YDK6nhaA8YAGePoa1tWATQ/Xu5XNvrSNPpjB\n4c3jczgkkRsOPLz8uVAGiYfySEyU5VXiIUcPvZxz586xcuVK5s6d+9z13qajh04BFYDSgBHQFdj6\n1Dol0SUsPck+YdHRSHlICCGEAPDz86NTp07Y2tqyY8cOAP766y+cnZ2ZMmUK0dHRefbYP/zwA1On\nTiUyMjLPHuN15LQ8lA4MB3ajO5JoKXAVGPTw/sXARMAG+PXhbWp0DbzPkKOHlEO+QSqLxEN5JCbK\nUhDjUadOHZYsWUKpUqVwd3dHq9USHh7OxYsXsbW1zdPHHjVqFHZ2dpllH6XIjas8//Pw53GLH/v/\ngIc/LySTdUIIIcQjdnZ2dO7cmYULF+Li4sLHH3/80gmLv78/3t7e2d5fv359OnR4+oDfR5RYQsuN\npCXXyNFDyiH1emWReCiPxERZCnI8hg0bRoMGDbh8+TIODg4vvV3ZsmWZOXPmaz/uw54URVHUtYcU\nmNQJIYQQ+erGjRtUqVLljZdqZKblBZT4AhVWBfUby9tK4qE8EhNlye14qKbkziyDdlLOPtc2bdpE\n9erV+eqrr5gxYwYDBw4EICoqCm9vbxwdHalWrRoeHh7PbJvT8pASZ1qUlbQg5SEhhBD5L6fJRm7Y\nvHkzpUqVwtXVlYoVKzJ69OjMMtjy5ctp2rQptWrVok+fPqxateqZ7XNaHlLiRIKiykNCOZTWMV7Y\nSTyUR2KiLAUpHnv37qV79+5MnTqVcuXKAXDhwgVsbW3x8vJi+/btBAQEULx4cQwMDIiKisr1MSxY\nsIBly5Zx4MABpkyZQlxcXK4/xutQ1kyLnKdFCCFEIdeiRQtatGjxxG0eHh5cvHgxc/mff/5BX18f\nyJsyzvDhwxk+fHiu7zenFDXTopWDnhVD6vXKIvFQHomJshS2eFSqVInQ0FBSUlKwsrLK7+G8Mcqa\naZGkRQghhHihHj16sGzZMvz8/BgxYkR+D+eNUdZMi0aSFqUoSPXhgkDioTwSE2UpbPGws7NjzJgx\nDBw4kAYNGuT3cN4YRSUtGjl6SAghhBDZUNJB2NrqLb04t/vpC0QLIYQQuUeu8py73qarPOcqKQ8J\nIYQQIjvKSlpUUh5SisJWH1Y6iYfySEyUReJROCgqaZGDh4QQQgiRHUX1tLg1H83FvXPzexxCCCEK\nMOlpyV2Ft6eFjPweghBCCCEUSllJiyS+iiH1YWWReCiPxERZXiUeNjY2qFQq+cmlHxsbm7wL7FOU\ndUZcyVqEEELksby4wKB4MxTV01Ll3c+54vNzfo9DCCGEEDlU8HtaZKZFCCGEENlQVtIixzwrhtTr\nlUXioTwSE2WReBQOikpaJGcRQgghRHYU1dNSoclQbhxcmN/jEEIIIUQOFfieFiGEEEKI7CgqadFq\n5eRySiH1YWWReCiPxERZJB6Fg6KSFiGEEEKI7Ciqp6Vc44HcOrQ4v8chhBBCiBwqBD0tcviQEEII\nIbKmqKRFTi6nHFIfVhaJh/JITJRF4lE4KCtpye8BCCGEEEKxFNXTUrpRPwIOL83vcQghhBAihwp+\nT4uUh4QQQgiRDUUlLZKyKIfUh5VF4qE8EhNlkXgUDgpLWiRtEUIIIUTWFNXT4tKwD0FHl+f3OIQQ\nQgiRQwW/p0VmWoQQQgiRDWUlLZKzKIbUh5VF4qE8EhNlkXgUDopKWrRo8nsIQgghhFAoRfW0ODfo\nwT3flfk9DiGEEELkUMHvaZHykBBCCCGyoaikRQ55Vg6pDyuLxEN5JCbKIvEoHBSWtEhPixBCCCGy\npqieluL1uxFybHV+j0MIIYQQOVTge1o0cu0hIYQQQmRDUUmLXDBROaQ+rCwSD+WRmCiLxKNwUFbS\nIo24QgghhMiGonpaHOt+ROiJ9fk9DiGEEELkUIHvaRFCCCGEyI7CkhYpDymF1IeVReKhPBITZZF4\nFA7KSlqkEVcIIYQQ2VBUT4tDnQ8JO7kpv8chhBBCiBySnhYhhBBCFFqKSlq0WjmNv1JIfVhZJB7K\nIzFRFolH4aCspCW/ByCEEEIIxVJUT4tt7Q5E+m3J73EIIYQQIocKfk+LHD0khBBCiGwoKmnJ0I/n\nRvCN/B6GQOrDSiPxUB6JibJIPAoHRSUtsRn7qdqpan4PQwghhBAKlBu1ptbAT4A+8Bsw66n7KwO/\nAzWBr4Hvs9mPFo+H/zklZSIhhBDibZYXPS0GOdxeH1gANAeCAT9gK3D1sXUigc+AD3L4WEIIIYQo\nxHJaHqoL3AICATWwBujw1DrhwKmH94u3hNSHlUXioTwSE2WReBQOOU1anIG7jy3fe3ibEEIIIUSu\nyml5KHebTwIAY5g8eTLW1tbUqFEDT09P4FEWLctvZvm/25QynsK+/N9tShmPLOuW/6OU8RT25f8o\nZTyFbfm//wcGBpJXctogUx+YjK4ZF2A8oOHZZlyASUAC0ogrhBBCFHhKPLncKaACUBowArqia8TN\nipLOvite4OlvLiJ/STyUR2KiLBKPwiGn5aF0YDiwG92RREvRHTk06OH9i4Fi6I4qskI3CzMCqIpu\n1kUIIYQQ4qUoafZDykNCCCFEAaHE8pAQQgghxBshSYvIktSHlUXioTwSE2WReBQOkrQIIYQQ4q0g\nPS1CCCGEyHXS0yKEEEKIQkuSFpElqQ8ri8RDeSQmyiLxKBwkaRFCCCHEW0F6WoQQQgiR66SnRQgh\nhBCFliQtIktSH1YWiYfySEyUReJROEjSIoQQQoi3gvS0CCGEECLXSU+LEEIIIQotSVpElqQ+rCwS\nD+WRmCiLxKNwkKRFCCGEEG8F6WkRQgghRK6TnhYhhBBCFFqStIgsSX1YWSQeyiMxURaJR+EgSYsQ\nQggh3grS0yKEEEKIXCc9LUIIIYQotCRpEVmS+rCySDyUR2KiLBKPwkGSFiGEEEK8FaSnRQghhBC5\nTnpahBBCCFFoSdIisiT1YWWReCiPxERZJB6FgyQtQgghhHgrSE+LEEIIIXKd9LQIIYQQotCSpEVk\nSerDyiLxUB6JibJIPAoHSVqEEEII8VYoMD0t96PuY29lj6GBYS4PSwghhBCvSnpansOppRN95vTJ\n72EIIYQQIo8UmKQFIOhBUH4PocCQ+rCySDyUR2KiLBKPwqFAJS0Pp6KEEEIIUQAp6VM+Rz0tqtoq\nGjdqzKGfDuXysIQQQgjxqqSn5QX09ArU0xFCCCHEYwrEp7xGo8nvIRQ4Uh9WFomH8khMlEXiUTgU\niKTl4p2LAKSkpeTzSIQQQgiRVwpET4tdGzuiwqNwq+7GxaUX82BoQgghhHgV0tOSjdjoWACSk5Pz\neSRCCCGEyCsFImnJSM8AICXlUXmo9pDaxCbG5teQ3npSH1YWiYfySEyUReJROBSIpKWoU1HgUdKi\n0Wg4c+oMt+7fys9hCSGEECIXFYikpZRLKdq1a0dqaioA4XHhaLVaQmNC83lkby9PT8/8HoJ4jMRD\neSQmyiLxKBze+qTl1K1TnDxxkmL2xUhLTQMgJCoEgLDYsPwc2lsnLU1DtWqLSUnJyO+hCCGEEM94\n65OWgAcBAJRwKIE6VY1Go+F+1H0AImIi8nNob51Vq25x8eIZ1qy5LfVhhZF4KI/ERFkkHoXDW5+0\naLW6w6MdbRxR6atISEnILAtFJkTm59DeOqtXnwNUbNhwKb+HIoQQQjzjrU9a4lPiATAyMMLQ0JDw\n2HDCY8MBiIyNJDJOEpeXodFoOXbsLAMG9OT48UtSH1YYiYfySEyUReJROLz1SUtMQgwApsamGJkY\nEREXkVkWWrVpFfbv2ufn8N4a69YFYmBgxIQJDUlIiOXChej8HpIQQgjxhLc+aYlLisPawZombk0w\nMjYiPC6cqPgoUEFSQlJ+Dy9X9e69mx9/vPBa2+7ceY+OHbdme//MmXtp2LA2hoZ6VK7sytSpf77u\nMEUekHq98khMlEXiUTgoMml5lQsgxibEUrF8RfT09DAxNiE6PpqouCjMrczzcIS5r127zYSFpVCi\nxCy2bbub5Tp//rmJGTO2vNb+33vvWzZv3kFgYOIz923efIcLF07To0ctADw93Th1KuC1HkcIIYTI\nK4pMWjI0L3/IbUJyAmYmZgCYmJoQFR/F5q2bSYx99sNZqcLCUtixYzcbNvgTHOxP+/bTGDHiEAD3\n7yfTvftOYmPVQPYJnUaT/fWadIcw60L93nsrnrl/zZpLlC3rhqenMwDdulUlJERLYmJ6Tp6WyEVS\nr1ceiYmySDwKh7c+aYlPjMfMVJe0mJqYEp3wbC9GWnparo0tL+zadRfQsnTpsczbNm8+AcBPP51j\nzZq/sbX9AlARGxtJZGTqE9vHx6uxtBxLUFDWidqGDQE4OpZg9OhPSU1VZ97+2WcHMTL6gsOHLzJk\nSIvM20uWtECtTsbR8avM2y5ejObevReX29LSNHTrtoOMjFe76KUQQgjxIm9/0pIUj7mZrhRkampK\nXGIcxZyL0a93v8x1giODc32MuenIkSAMDc04c+YklpYOANy9ewtr6wnMnr0cAI0mHdDi4ODMtm13\nnth+48YAkpJi2bDhNgCTJvllJg0ZGVp69ZpD2bJl6N69Knfu+BMfr0tc9u27jFqdTGjoXT74oPwT\n+6xXryRJSbGcPx9NfLyaatXGUbXq9Bc+F2/vq6xdu5WVK2+xfftdSpacw+HDoRw8KGcnzgmp1yvP\ngQMH+HLpl/zv8/9h08qG3Wd25/eQCjX5Gykc3vqkJTE5EQtTCwDMTMyIS4ojOTmZ0sVLA2BgaMC9\niHt5Mcxcc+5cEHXq1AXg44/bMHx4XwBiHx66XbJkZQACA3+lYsWy+Pj4P7H9rl030dc3wsfnJpcv\nxzB16m9s2xYE6BpwATp0qEnx4mbY2xdn3Tp/li69zpUr5wHQ0zPAzMzgiX1++eX/UKn0qVFjHFZW\nwwFIS0shLe35/UZ//OGHhYU93t7H+eknX+7evUWTJhN5991vH1vnJu3bb371F0qIfJKSlsLt+7ov\nBRqNhqZfNqXNqDb8sPgHfH19MbMwo9OXnRj3+zh8r/q+9uNoNBqW+yx/pb4+IQoTRSYt6Rkv30tx\n6NAhElN0ZRFzU3PiEuNITU6lQokKABSxK5J5hlylun07iN696wPQqlV5xo+vn3lfuXJurFzZn5kz\nv8DQUI86dcpy5syTTbJ+fjdp3Pgdzp27xZo1NwDYtOkaAOPGbcPdvQ69e1cBwNW1IiNHrmDu3L2Y\nmFjh5TWQGTOGPDOmhg09adCgcebytGmfk5qaQL16SzP7Z9au9efq1UdX0o6NVXPu3HlmzOjL0aNH\n8PHZh729CwBarYaAgAQAJk7cyrZtu4iIeLLMJbIn9fr8o05XU/PTmpR/vzxOHzqhX1efo8eOYlfW\njjXz1xC8Pxi/5X683/p9Zi2cRaM+jeg6o2vmVeZfVJ6+EXyDKn2qYN/Wnkq9KtF3bF+qD6ieWere\nc3YP14Ovo05XP3c/hZ38jRQOb33SAhBwT/chbmFmQXxSPGmpabiVdMPK1ooiVkUIjVZuaSIyMpXY\n2AiaNXNh06ap1Kunu2L1zZsLAbCysqRcOavMpKNFi7L4+/tnJg63bsVz585tJk5sTmjoPaZNW0rp\n0lU5cuQqAFeunKdOnYqZj1e3bhni4yO5du0i3t5fMGKEBz16VM5ybOvXd8fHZxbbtk2nb19X3n+/\nPefOnUJffzDz51+iW7dZfPDBH5nrL1hwESenUnTqVD4zWTl/fgJ37y7C3d2D8eMPolIN4s6dGzg5\nleOHH87m8qspRO66df8Wrp+4kpKawsfdPiYuLo6+vfty+M/DnPz9JI2qNspc9/sh33PjnxuMHDyS\ndZvWYf2ONbUG1cK4vjHu/dy5HHT5mf0v91lOvX71uB96H3sHe5JTktn22zaC7gVh62mLZTNLWn3a\nisodKmNU34gtx1/v6EEhCgpFJi2vUh4C3QwLgKW5JZExkaAHtla2XN14FQsLC0VcOFGj0WaeY+XE\niQhUqkGo1Rr27LmHnV1xzMwMMhMWADMzA/744xsWLer8xH5cXW3Q09PDz093pt8KFb4kIyONSpWs\n0dPTB2DEiLbcvRvAyZMRGBmZM3HiozfWoUNroK9vBICnp1O24/X1PQBA5crW1KqlO0HfvHltMDTU\nNT1//vl8AEJCQlCrNaxceYs1a/xo1aoO8ChZAdDTU9GxY13WrtWdJ8bauhgff9yMmTN/R6UaRHDw\nkw2+8fFpNOw8li+/PIqNzURWrbqded+LylMFVUGs1yemJDJn45z8Hka27kXco2bPmtx/cJ8tc7Yw\nZ9Acbmy5wbS+03BxcMH38LNlIHMTc0Z3Hs21ndf44IMPOHv6LF06d+HWrVu4dXTD4l0L3Pq6MXfT\nXIYuHErfsX2pX6c+l9ZeYt+CfZxcfpJa5Wpx+q/TzJ82H3d3dzb+spHV81fTv09/uo3pRveZ3aV8\nlIWC+DcinpUbSUtr4BpwExibzTrzHt5/Hqj5oh2+bNLy3x/ud4O/A3QzLeER4RgZG2WuY2FuQWRs\n/p/K/8qVWEaNWkhAQALvv6/7MD9+PJz9+wMpX750lts0a1aCEiWePN+Mnp6KUqXKsn27f+bVmKtW\n9QCgaFEXzMxs6NKlAqamFtSr9zVly1bA0FDvie2DguYTHLwYPT3VKz0HIyM9bt78nu7ddYnUwoVj\n0dc3pEOHzfTqNYdLl84wYMCj8D6+/169qmJiYsXs2SO5eHEyAwZUy7yvRImRmf8/fu04XcdM4FjA\nbL7//TtiYkIZMOBXAEaNOoKx8RAuX455qSOZsqLRaLl1K/61thW5Z+zvY7FoZIHXTC8++/Wz/B5O\nphU+K6g7rC5B4UH8b+j/qF2rNtc3X8fB2uGV9mNpasnCEQsJ3h/Mj0N/5PaO2yycsZCixYpy5+4d\nxswYw6+//8pfP//F0rFL0dN78q3YzNiMjv/ryIZvN1C/Sn2auDVh6idT+WLgF6zZtIbmXs0JDAtk\nuc/yXHz2QiifwYtXeS59YAHQHAgG/ICtwNXH1mkLlAcqAPWAX4H6ZEeleumkJTktGZWeChcHXSmi\niHkRYmJiMDYxzlyniGURRVx/6OBB3RFMu3ffxd7ejvDwuxw8eI9TpwJo0MD1lfbl7l6WBQu24+ho\nhp2dM3v3DgTgn3+Gk5qqe+3MzCyJj4/Aw6PSa423YUPPLG83NNRj9uxmjBvXCHt7E9atc+Off/YA\noK9vhJOTWZbbmZjoc+LEt9jbmwCw8+JKVu3piGVKLdq3n8Du3cFs33WZBYdb6TbQNwGXC2xY8hs9\ne87F1fWXzMZhN7exFC9empCQ8a/8vOrUWcaZMyeJiJiHnZ3xizdQiLehXn/ixgnWHlzLD5/+wOyN\nszly/ggW5hYsH70cI4NHXyS2+W1j9sLZNG/ZnN5tetN7ZG/W71pP9arVaVGnBWv3riXgTgDLpyyn\nrUfbZz7Q88rec3sZNHkQ6jQ1pdqUwq2GG39M+CPb9Rs2bvhK+/+gwQd80OADACJiIzDQN8DawvqV\n9vH5B5/T9Z2utP28LWXalgHg7ICz/Dz451faT0H0NvyNiJzL6btBXeAWEAiogTVAh6fWaQ/8d0az\nE4A1UJRsqcjIeLmkJSI+AkMjw8xlawtr4mLjMDExeeK2qNiol9pfXomISGXbtisA+PoGcffuXdzc\nanPmTDC3bwfSpEnpV9pf48ZliYkJ5fPP5xP52OHctrbGFC+uSxqOHPkSgHbtsu5XyQk9PVVm8jF4\ncCOcnSuwfft0/vln6nO3+28bdbqaUd/1o8f41jiUSqB16za0/rqELmFR6UpcP3gtxdAiFLcaZjRo\nUI8rV86jr29E69ZtAbh/P5Bvvjn5wrEGRwajTlcTHBnM8uU3OHPmONTaStcRLz58WwmOHw9n3z5l\nN5IDxCbG0m5UOxYsX0DP2T0ZN2sc23ZuY/X61XSY9OgtITQmlF4TejFq6ChWjF9BsxrNmDZuGqHB\noezZuwevmV6cv3ieyLBI3h/yPvr19ImIi8jcXqPRPLH8MuN6GTtP7aTj6I4M6j2I6zuu06VzFzbN\n3IT+w5JrbrMvYv/KCct/itoUZftP2xk1dBRbl2xl2YZlfPrTpwAcvnyYG8E3ntnm8JXD+D948qhD\nKTGJt9Gr1Qee9RHQCvj04XJPdLMpj8/3bgNmAv8VgP9FV0Y6/dS+tHgAKn06u3WkiOGL/6Aj1ZFs\nu7GVLhW6AnAv9S6Hbh7CoogF7V10b5Rn488QkRRBB5cPXuf55YrNmx2IjIjAzMwGfX1ISEjA3d2K\nixdj0WrT6dpNi/4rpI9pahUb1uv+37ixJS4ucbk+5tDQEIoWzb7nJSdupFzh3IOT6Onp4WJTBusU\nN05HbQDAQtOE5hV0M2d7w/+mTJEKOCU1wc/PnDZtwklTq4iONuWYrzFJSTH07Qf6+lri0+Mx0RQh\nKsqEosWS0GggKiGNLbdWYG5pTmJ8IgS+B2X3giYN9KxxNW3N/Utl6dgpPE+eZ04F+BfBx0cX22bN\nH+DgYo7P/X9p7dQGY/03P0t0L+UuxY2cnvggV2eouRB/nkvBl7CwsMDd1p1Dtw9T3qk8rlauZGjT\n2X51O87FnGlVvDVbgjajr6dPi6Itn9i3RqtBjZqw1DCsDC0pom/N+YRz3IkOwsjAEBNDUyJiw0lL\n1h2J06xyc8qYlclynBqthl33/yEsKoz0tHSsbKzoVOqjbBOQgKQAfK79i4tTSRrbNs5ynayEPgil\naLHnfP96Q6LSI/EJ8MHA0IDU5FT0DPQoblscc0NzTA1MuZ94nwehDwCwLGKJoYEhMXExqFBRo2QN\nqlvV4G7KXfTQw8XUhSh1FAYqA6wMrNBoNeip3lzro0ajIUWTgrGe8SsnjCEhITg55c17lng9v3l7\nQ87zjCfktDz0sqc9fXrQWW8XABhrOBF/BnNDS6ysbbBzcAQgMlzXTPv4cpw2GpVKj7h4DRHhocRr\ndIfU6mEQ0C46AAAgAElEQVSIv7/u26nKxoTktDQuXr31zPZvajkpqQgQQhHbGO7f0yVjGarzaLV6\ngBMJ6rhX3n/dRmEkJ5pg5WhFbGrujz8kPJhEdVKuvh5p2jSKO5bgZtxV7DSOWKgsuBcTSIJ5PFZa\nB6yNrXAt7kBGhi6eNmoHLsWdRe2UTiV3e/zv6fZnUiSWarXDOHPCgaPHS2BW+gznbh3ASF2NtLs1\noPofWIW2JM5sD1iiS1jiAbsdoIHqJepy/upJLseuAf1W+J0vzQO97YRGBdOq6kfoq/Tf6O9HVss3\nr6Vw+3oULqXKER2rweekD8bhIaQaJLMyaiUVDKtio3LIcnuNNoPoiMgs929jb8819TmiHoRTxbTm\nS4/nRtglboVfpni5ktgbFiX4fiAJqXGkGeoOW9dL1qOsXlWsLJzxLNGW5PAkQqPisHcoyjsubTl8\nYxd/haxBa5HBO/bvZf592jvoPvQjwkMfLjuDGvzD72NJURraV2Zf6FaiInSzpY5lnLAytGH/2X0E\nWleirGNlDFVGmeM1tjfl0N2dEA96BnqUKF2Ge6EBrLi/gqKWzrgXq40KPWIevj769vqceHCAksbl\ncIopRZyh5qnxPD2+R8uxMdGYmju89Pp5tWyADe56dbmXEoCrUzli0iMJuuuPVhuGxjwDCzMrXE1q\noUZNjGEk6oxUHHFCX2XAubvnuW56i8T78WgzNBRxsSE+MQ5NdAZ6+noY2RtTwdqd9Eg1AUk3sClq\ni5tJHeIioh/7fdMQHRHxzO+PRqvBwbFYtr9f0dpwjOxMSNTE8yD4HunpaaiNdId1G6ebUNmiBsm2\nCZTQL0NiRMJzfz8jw8OIi4kGI4ts75flvF8GiIwIIzkxMZdTlUdyutv6wGR0zbgA4wENMOuxdRYB\nB9CVjkDXtPsO8PRxyA9nWgxY+8Nuyhd7cVlj38V/mLXsa84v0X2LCIoIoEG/snjUbsDWibqJnY3H\nVzL9j7HsnOP36s8ul7RtspzQB3fwu+pFnSqzsSriwKXAIZS0mUqv/u347kePfBtbXvhk5ifs3bOX\nc5vPZTYwbjm6hWEThvHb7N8Y8s0Qrm+6TkmHkli3tCYlKYVdi3bRrFqzJ/aTlp6GcX3djMKVHVco\nYlbkifsX/HiTxQv3EVt6ORkZupPpoWcBD5NXgJpFpnEhZDsZYfZQZjvHVh6jfuX6tP1iILuObUBP\nP4mMtEfni+ndbQgjOkwgLjGGmORoStpn/W0+N2RkaElNzaBZ3R+ZML07Ldo48VHr1ZSp4MSR/YdQ\nqVQcv9mfel3rZm6z+rvddB+n6/tZ88O/VCheBXW6Gn09ffT09Ji14WvWbVzOgaVXsHz4ei33WUC3\nJgMwMTSh18y2XLmg6w3yGjqNro37vnCcEfHhdPJqwoctuvPn+sVP3Degx0jKOJbjk6bDnruPtb7L\nGfVdX/7+8Si1y71aL0hI9D2S05IoV/TRofv95n3I7n91h/+amJuSkZFBVdcanD99Eo/aDfhl2BpK\n2JUEIDo+kpbjahJy99GFSFfP3YO5qSU9J7TmwxY9mNFz4SuNqaCIiAtj8MKufNpmBO6lajN0QTc6\nNumJnZUjp2/6EhEbxtY9a1GpoEG9ptwKvEpiYjzfDlvA8p3zCQm9R9iDB5QqU5YR3b7ByboEP2yY\nQn23d1i8ei72Do6UL12FiiWr8s/hTQzu+CVHLvlw8fpZgoOC0DfQx9LKikpl3XArV5OWNdqjzkhl\n8c4fOHz0X0zNzUiIjadk2TKUdilHjYr16Nq4HwZ6Bhjo675zazQa/j65miaurbCztH+l5x8ceRdz\nEwuszW1y5fWMTojil+3f0c2zP+WKPeonPHXbl1V7FzOi40RKO5Z77f3fvH+Vy3fO0tqjIyaGJlmu\nExkfwbaTa/lrmzfJSUlYFbHG3t6RMd2/xa3kC4+DyTGNRsOhy3s4dfMUq8f9CrmcvuR0ZwbAdaAZ\nEAKcBLrzbCPu8If/1gd+IutGXF3SomfI6jk7qehU9YUPvvXkWrw3/oTfAt1p7ZNSk6jQ2Zx3Grfk\nrzG6U2ofvubDoFmd2bfg0ms+xZxr4D6HnfsHUcXNikpO81j8Z3c8mznQpPZa5sxrQb2Gtvk2tlel\nTldzK+QWVUpWyXadSh9WIiFGlzgE7w+m33f92L370SnOre2sid6t+6bWcWpHTpw7QfCm7C+1ULFn\nRWLjY5n62VTer/d+5u2pqemUbV0KgHblvTkWM5vIiJsQWwuKnKFDy378PVP3xlatmgdnznyKvv6j\nX/nouDhKd3IhLjoOa9tiTBw4g3E/DWbFtO3MWDWekPtB7Pr+TJ40gn410pf9/x6lRZvG7Niie23q\nN/ofx48cBaBK7VJ87KXi9y2/kRifSKdmvfltQiLDB37CsGE1KdfNHFBRxMaS2Ejdt9zqHnU4f9oP\nK1tr9PT0SIiLo27dxvge2U+bNh0xN7Fk6641fDfiV1LTU/l28ZdsnnMY+yLZlzhW7P+V1du8KV2i\nPFu+OcKZgBNcu3eRDnW7o6+nn+0bZ1Y0Gk2uvpbhcaF0n9mC0LD7GBoaEhpyn0E9RzPho9lZPk5i\naiLT13txK/gaR4/uQ6Wnotk777Fi5LZcG1NBdOP+FW4+uMZ7NTui0Wjw+mMgqzcvpUy5CrhX9KBB\nlXfYdmw9J04dQqvRUq58RQICbjGo22iCI+9w+dY5wsIf4Fa5FkeP+lCuYiWqVfTAq+M0XOxKo1Jl\n/TG0/cxGmru/h+/1A2zyXckV//MEBt5CnZqGJkNDzdr1aFj9Xf7et5rIsDCSE5MoX6Uy9dwb07/l\nCIqY25ChyeCbPz4nMiacib2/x9nWhYCwWyzYMoPzl0+RGJ+AkbExTf/XmjJOFejUoCdxybGExT6g\nRpk6L/X6nA04yfYT6zl90Zf794Ip5uRMRHgow3uNo0WtDvx1wJs1m5dSsUJVrt+4hH3RovTt8Bkd\nG/R4Zl/HbxziYuBpAu/fJiI6FGsrW8Z0nsaRy3tZumUeD4JDMLfUzSa1a96ZEe0ncNr/GCevH6FW\n+XocurCHzdv+wtzKkj4dhuBsX4q74QHcCLrCoeN7KV2mPEM6jaFJ1RbPPPbr0Gg0LP33Z/zv3aSo\nXTE2bP+TlKRk9A0NsLN3JHRrMCgsaQFogy4R0QeWoutfGfTwvv++li1ANxuTCPQFzmSxn4czLYb8\nOWsrVV2qZbHKk1Yf+o2N/67kyPePGs9cOurTtsVHLB6yFoCbD67iObAqJ1cF5VlT3fPcvZNE5/cW\n4B825pUPMc5Pvod9nzg6QqPR0HVKV6wsrNi1cxdBPkHcDL5J6aKlMTF69MHlvdObyXMmM23MNCbM\nmUCzFs3w2esDwOzxs/Ga6cWK2Svo/W5vQJdohkSFUL74k9c+etyMdTP4evbXACydvZTWdVqz5dgW\nYuJj+Hrm19gYv0PU0QOo09VMWjWJD6uOpFgxU1xcLLCwGEudOjXYv797lvtOSk1i0IgNbFhzgo1/\nTea9ibrpTj19PSyLFKF2zYbMHrAkZy/mU4LvJfNRmwWoVCrUaams2z6EqV8f5kLkKtb8+gM7T2/l\nj78fNQoH7Awg8EogO3caM2fO8oe3ZkCdFaBJp3iJEsTGRpMUn8jUL+bh6dqKJp8++pY3ot8Efl42\nDYCxg6fzeVvdhTA7Tm/CiROHcSrlQod3uzOg5YjMbS4EnuZGyGVmzh+PSqXi0l+RufZtNK9kaDJe\n6m9co9HQd14HkpITWTN272u/L/j6Hsj2KLuC7lrwJSo7uz1x294L20nLSOO9mh1JU6dhZGj0zHbZ\n3f6yMjQZ7DizEWtza75d6UVwSBDN/9eOmb1+ZePOP9kbsJXTF48TFx1Do8bNuHT1LKYm5jjaF+PK\nlXOYWVgQGxVD2XIV6NqiL64uNbgafIG/dv/G/QfBpCQmo1KBVguu1arTot77fNzk0yyT4AxNBlNW\njmT3vq04Fi1OE4/mNK3ehna1PmLdsRWM/WkQacmpWNvZsvDLv/B0bcW/l3bgc24763f+gbWtLZ71\nWnLo5L9YWFgSERlOXHQ09o5FcbArhoNNUe6E+HP3bgB6enr0/mAI/Zp9hpONCysO/sqC9TNJSUki\nMT4RO3t7wkJDcXAsyi+jV1O/QpNnxut74wC/7fqZA767aNSgOR+904tVexdz+twJVCoV9vaOFHV0\nombFurSr1xln25LZxsHv1lF2n/qbc1f9iImKpIRTKSKjw/m869fUKF2Hyk7upKUaUrGiChSYtOSW\nhzMtRqyYuemlprFGLupDyIN7HJzzaGKnXHczOrbuwZw+3oDu21XFzrrM9PTqN3/hxG2b7rJ4ng+n\nrn3yxh87J55OWg5dPET3z7ujb6hPhjqDed/OY/L8ydSpVYdP2n5CE/cm7PLbxbgfx2FqYsqd9XfQ\nr6ufeYTC3V13KWFfgrCYMBytHV95PDtP7WTIrCE4ODjwwxc/8M7H7wDw2YDPmDd4XrbbJSWlY2Ki\n/9yEMTExHQsLXXnD1qEoUSW/pXWLD3EvU4s5S75hxaztuTqtOqzvv6j0MvhqSj327Axm3ERXek/v\nj8+/u55Yb8n0JXRp1IUi5kU4cOAAnp6eLFp0lRkztnPw4BCCE67QvMXPNHLrxB9/dOT8nVM4m7tl\nHqUFcOTSMU7uMcTC/RDFbV143+PRyQoj4sJo/mU1wh88rNSqVLz7bmv6tvqcXl5tAJ47c1HY+foW\n3qRFiXx9H8XD59JOftgwhVqV6vP1R7MwMTRh+5mNXLt3gYaVm9KwomeW+zh75yQxCVGUL1aZL5Z8\nwuWrZ0EFpqbmtGjUjnLOVdjgs4LomEjS0tIwMjBi+fhtuLnUeGZfqepUIhPCKWJmg7nxk+fbuhPu\nz/wdMzh4ai/N6rUhNiGWii5V6Nzgk8yy5n/+ObsZ95K1KGFX6onbMzQZLNozl5Y12lOhWJWXnsm8\nFnKJQT92wf/2DVyrVufjlp9iZGDExYAzXAk4T+C928TFxNCkUQuae7SjWbX3OBtwkuiESOpXbMLk\nP7/g8FEfXFxKU7msGz8OWPHM8wNITKTwJC3Lpq2nepnaL9zAo7szAMFbH/X1VvnEho/bfco3H83O\nvM25ve5p5kfSMvvbs9y+cZ+/97Z944+dm4b/PJxDvoeIioiidYvWnLt6jgd3H6DV6l77rp27sna9\nbnbr1rZblCtejrT0NFw+dOHcinMUty2e4zHcvn+bqp2r0rBBQ46fOE5KUgrh+8Kxt3q1OnZWYmPV\nWFvrLgw5a9YX9OypK38NmN+RG0FXWTfZJ9tt95z9mx9WTqVKBXd+HLz8uY/Tq+PfXAndytaNk/Co\noXtz2nZiG4PHDaZP9z6sWL2CKm5VuLL8ykuN+48/btKnz1xWr56EpaUR7dp9zYcffsiCBbo2s169\nNrJv3x4mTBjKkCHVM7dbu/YGH35YHiMjPTQaDb/sns3MXx+d96aWRz3eb9iVAc1GSMIiCq0UdQqL\n9swlVZ3Mqh3eJMTHU8+jMZVLVSM9Q52ZEBU0O89u4ueN07l56wpm5uYkJujK/WnJqZSvVJnFI9dT\n2cntufsoVEmL99Q11CpX74UbZJW01BhUnH4dPsucAodHSYtHnfrMHbQUK/PXOz/C6xj6yV7KlLPm\n+4UvVx9VKo9eHkwcOBF7K3tKFy1N3e51adG8BfsO7iNDrTuvjpGJESVcSnB79e0X7O311Rtej5PH\nT/L3wr9xLelKueKv39T2NLVaw4wZZ5k8WVcOGjNmIDfv3WLLjW7YONqzfe4JjPSN+XtDEI3fLYa9\nvTG/7JzN0j8fndhr/qRVNKzsyeZNN0hRRWLudJf29brgc2EHoRfK8v2vc6HkLlyrubJ84nICwwLp\nPLQzLZq3YM93e15r3J99dpBNm05gamoKZHD79lXmzBmJg4M5gwfP45tvujN9+lr2759IiRLmdOy4\nihMnDtGp04f89FMr5s71Y/jwWpiZGZCWnsawxR8zred8ihbJeaIpCqf/ro32NpXEX0Sj0aDRajIb\ngAuDqPgI/jrizbvu71G1RDWuBV+kYnHXl/oiU4iSFmN+nfwHdSs0euEGWSUt3ee0YPB7Y3in6qPz\nQHgMKcGDYN0sy0/frKBx1ea5O/Ln+KD5Xwz+vAGfDMy7o1Byw8hfRrJu/Tr2/bmPSiUqPVEeuhl8\nk5YDWhK7Lzazf6VKnyosGL2AZtWa0XN2T1atW0Xov6GvVfp5FTtP7WTy75M5ufDFJ5Z7HRkZWooU\nGU9iYvSjG12ugOMR3f9PDwD0qOFRl55fqfhyRn8AAjel8fWqYRw9v48lI/bSckRl3flgACNTU9KS\nk0HfGGtrO95pUIe/t/8NgI2DDZ4NPFk/Yf1zeyv+Kw+9aMyJiQvx9r7KF18sBLSMHt2buXP/R/Pm\na4mMTGLIkKYMGvQd33zTj2+/XZq5j7Zt38Pbu/1rv26Fka9vwS8PaTRaEhLSsbLSncQzPV3L+vU3\nqVzZFldXW4yMHn14PXiQzNKl52jXriIDBiwjLi6GQYM+pEIFO95/P+/f/3x9C3483hYajZa5c0/x\n8891QWHnackDqlc7U+NTL8fqMXufWeXYfH/KdDIGLSSkvNnrzkSEh+JRV7lHB/Wf05/zF89nXq+p\n3dB2XN9y/YkYrNy7EldX1ycabq+ueNRHNH/ofOpVrpfnCQtA29ptaVs770pt+voqEhK+Q6PRUr/+\ncsqVK8qDB54cOF0MKm2GklepbNWF89pJnJsRDJqicKkVt24mMPq9Oaza7EjLQc3BJANTC1tSo4qT\nxmXdeoQSExnCmq/WcK7bOQbMGsDli5f50+vPHDWJ6+urOH36K+Lj1ZiZGTBihDvLltUiOjqW2bN1\niefatR9Qtuy3fPHFVb75ph9Tp9alaFFzxo1byfz5fRkyxJt580rQv381NBotlpaGL3jU7KWlaZgx\nw5evvmr4xIeaULakpHS6dl2JWp1Bq1Y1KVnSihkzNhAWdhdvby8SE9MZPXo+Gk0GGRlplClTlb59\nmzF9+u+4uJQlMPAGFhZF+OWX5Xz00ftUquTITz9tJDk5nsWLazN1arvMi6+KgmvduptMmbISI6PX\nfw95HgXOtJjy09eLaVy12Qs38OjuTFGn4pxZFPLCdUt3MUadksbnAyfQp+mQXBju82k0WsLDUni/\n6U8ERIx74lDb/OTc1JnGno35vMvnTFkyhXvB94gJjwGgdp3anPI7BUDZSmU5vOgwAO8MeYcebXow\nucfk/Bp2vtu37z7N+n+IkfM5mjdrxs4dO0FTHM6+T8WKbhgbm3H9+mXSShwBGz8+7folS8bM4fPP\nD7Pbx48rF0ay/9xh1CTSxkPX5KrRaAiNCc2Vfp+XsXLlLZYu9cPHp9sz0/ZTppxi8mTvx5Y/Y8CA\n59ess9Ov39/s3bsbKysHKleuxPffv0+jRmPRanVlxAMHZlOhQpEX7CVrarWGFi1+pX79qsyY4fnM\n80hJyeDLL/fQpUt1mjQpGGdHjY9XY25u8NxSi1qtwdBQD7VaQ0aGlvh4NQ4OL9drsWHDbfz8gti5\n8zDFijng4uKIr+8ZEhKi6dz5PdzcijF9+l+oVComTuyBl1cN7t5NYsCA7Rw86MukSb05ffoe7dtX\noWfP8ly+HEuNGo+ONLt6NY6hQ3dw4sQZpk//lK5dKz5nNOJ1HToUwpw5e2nZshply9oQGZnMDz9s\npHLlCvz66wfY2GR9Fm2NRsvevXdp2rREjr5kREenMmTIFk6fPoOXV2fGj6+FsbE+FPzykClzxy6k\nabVWL9zAo7szp1bco7iN8wvXrdLHmrjoWHp0+ZRRH07O+Whf4KfZF9m26RhGhgacvdnvueu+O/xd\nlk9aTkmH7A8xyw2+V33pPFR39Mh/RwE9TntKi6r2o1+JwL2BxCfFU7NzTQK3BeJs9+LXuSBLSlJj\n3kQ3IzV19Le0qTCESpWsSEvTUKrUJBITozlzZgZrz81lep9p+XKIfU7s2RPCL7+c5OjRC0REBDNy\n5AAOHLiMt3eXzGtaZSckJIkVKy7g5GTFtGkr2Lx5BO3bzyU1NREAExNLSpcujVqdTkqKmkOHRmFi\n8nKvj0ajZfTovaSmqklJUXP4sC9JSbFUrlyTMWPaUL9+cdRqDfXrf0NKiu6yB6amRdi8eSzu7naZ\n+3gb+ys2b77N8OGzAT3Klq1K48bunD3rz/Tp7alVy559+4KZMWM7d+8GMWZMd7y9dxMR8YC0tGTG\njetPv37VMDXV5/ffL7Ns2T4WL+5J1aq6hCItTcOwYTvYtWs35uZF6Ny5KYsWvZt5Vfi4OHVmWWjP\nnhCsrAypX//Jq13HxqopUuTlvlEvWnSVkSOX0a1bO+LjU7h3L4J58z545kr2Imtr1txgyRIf/P2v\nU6mSKyNGtGT79sucP3+DEiWK4+d3klatGnP06HkSE+MxMDBk1KiO7Nx5kRs3/OncuRU+PqfR09Pn\nxx+7YmdnikoF/fuvwt//OkWK2DNnTm+aNStBRoY28/fgaaGhyYwZsxNX1xI0bFiS5cv9OHz4GCqV\nikqVyrNpU1dKltTF9OE5eAp60mLGtFE/0saj3XNXztBkULdnSe5uznippqBaQ5wJDdbNyGz4+SBl\nHLM/L0huGNbPh+NHjlDDoxY79r+f7XohkSHU+agO/fv0Z0LPCU9cDTc33b5/myYfP3vsPsCCyQso\nW7wsbTzaoNFoWLRrEcNGDgPLR+toT73sFRsKttjEWA5ePkj7uk/2f6xYcROAPn0q5MnjPq+nJS/8\n/vsN+vX7HgB39zpYW1tSooQ93btXw8PjyQ8ujUZLq1ZLuHJFd/ql334bRf/+uvPE+PqGMW7cXvbs\n6YaJiT4ZGVoqVvwZf/+rfPnlp4wc+eKjBMeO3cfKlWszl2/dmkt6upbKlcdk3qZS6VOmTAWaNnVn\n+vRGTJjgy2+/raVmzQacPXuMYsXKcPToGIyM9HItefH1zbseiu3bAxk5chFJSdH07fsRpqZGXLhw\njyNHDmNqaolKpU+dOrU4eNAHN7daNG1ahV9/3Ujr1p40a1YeExMDRo/+nZSUJExMLEhLS8LTsxFH\njpxk5MgerF59kMDAq9jZOXHixCjKlbN88aByweHDYXTo8AvGxka4uBTn8uVrGBmZ0r69J1OnNsn2\ng/K/GaTnJbq+vgWzpyUlJYOhQ7dx+LAvvXq1oX37CixYcAIfnyOUL18BT09XLl8OZsGCtri5ZX2Q\nyfffX2D+/L20b1+HuLhUVq3ahkaTgYGBMc2b/481a9ozbdop5s3biImJBTEx97GxcWLEiI588okr\nixadx8HBnHPngtm0aQ/u7pXx979HRMR9atWqxbBhjdDTU9G795Pvf4UkaTFn8mezeL/+h89dOSYx\nmpZDahC0Uf1SO2/8ZSX8b+hOQjd7/BKaVXsvp+Nl/8Vd1KvYGLMsjlHv1GYtgbev8UHnlixc2gDI\n+oyg6w6vY+TEkZnLfhv8cLLL/Wlt56a6WZKfJ/5M/5b9sfK04srGK6Slp+Feyv2Z9QdPGczibbpz\nA47/bDwz+szI9TGJl/emkxaAVatu07y5M87OY8jISMu8ff36KfTtO4/U1CQWLx6Fr+8d/v77IFu3\nDiIsLJn27Z8/Y3j/fjJ16vxMcHAAPXp0ZfLkJpiZGaDRaPnkk000a1aFjh0r0LbtImrXrszWrXs4\ncGAs5cpZkpKSQYkSj2Z9Nm0KZOnS0wQFhXPixADMzB616X300TY2btxOly7tOX78KkFBN1Gp9Niy\nZQq1a+e8/8rXN28+JHfvDmLo0PlUrVqZP/7ohKvrow+i/2aMxo49xs8/b+DgwfHUq5d1n8jly7Fc\nuBDJ4cNBDB1aAzc3axYvvsaIEd7Url2DP//sSNGixk+8Zm/aokVXCQtLYuHCfzA3t+Sdd2py5044\n8fFJREREUaFCScaPb0qvXt4kJiYwc+YntG+fdVOvr+/bl7Tcvh2Hg4Np5ozWf2Ji0hg4cCNBQSHE\nx8fh6GjPtm19qFjRKlceNyQkGbVaQ0BAPJ6exTJvv3Ytjh07AunatTzLl19l7twtpKenY2pqRmpq\nCvb29nh5tWbw4CpoNFq0Wp7b+lBIkhYLvh4yjY6NOj935bsRgXT1aob/2uSX2nnbyXU5f0Z3/aHx\nn83ko4a9czpePLo782GHHkzoNvuZ+zxr/0J8XDg9+r7H7J9rEx4bToOeDbiw4QJmxo/edMd5j2Pd\n5nWkJuuuf/PdhO/o1axXjsf2uPP+52nbvy2jB49m7oC5L73dusPr6P5ldzJOZLx4ZVFgXb6s63my\ntDSkfftVnD9/GisrexITY8nI0H1p2LdvCk2bFnvebp4xc+ZZvvpqER4eDVm3rictWvyCv/8lVCp9\ntNoM9PWN0Gq1fPfdp4wZU/3FO8zCfx/yYWEpDBy4i8uX7/DgQSi7do2nTJk3M7vwuJSUDK5fj6F6\ndbtn7lu9+jqzZm0gMvI+3303gDFjnj1hWW6Ii1NjYfH8Hpk3LSUlg44dt3DpUgClSzthZWWKtbUp\nJ05cx9//Bh06tKJq1WJ8//162rZtxsSJni/ds/O61GoN6elaTE1zv8yblqZhyJBt7Nq1EwBbWyeK\nF3fizp1A2rVryp49RylTpgRNm1bB0dEsz34XXiQuTs26dbfp27fSa/Vl5kXSoryjh7Qq1Okv/pCM\nT47DwPDlh1/E0gYDY0PSU9WExTzIyQgBMo+uSUiKe+a+lJQMEhOiGTGmM30+LQvAgQsHSE5I5tjV\nYzSr8ajJ+HrAdd5t8i7/7P4HgBOXTuR60vLRFx8BvFLCAtClcRe6nOiSq2MRb5/Hv+mfOfMpvXuX\n5JtvGlKpkhWzZ5/D3NzolRMWgPHja/Lpp/NwdZ1L/fqzCA+/w/79U9i1K4C9e69w6FAf0tI02Ni8\nfsn0vw9mR0cTtmz5AICOHbfSqNGXfPPNUDIytAwb9vIfCPPmnaFjx0rP7cOYPfskMTFJrF+/C2fn\nknh4lJMAACAASURBVIwb9x6tW5ciJiaN7t3/5MKFk3h4NGTjxl4YGuqxfXsggwbNAjQ4O5dlzpyB\njBr14suYvK6nv9UrgYmJPjt3dnrmdrW6JT4+92ndWjdT3LlzBdq2XUKNGptp27YdgwbVo2hRc2Ji\nUnF3f7WjNKOiUpk4cT//+19ZOnUqz/ffn8TTswxBQbFMmLAMrVY3Mz5p0icEBcVQvXpxfv/dl4SE\nJLp2bUClSnY0aJD9dbuyc+BACF5eqzA2NuTatTnY2xuzePFljh+/w+DBDfn110MMGdKaqVPr5nti\naWVlyIABL7548ZukvKQFUKvTXrhOQkocBoYv/8c37qPp7Kv0D3OXTCQi5ukLTL+6e1G6izRGx0Vm\n3qbRaLgTfpvoIDvMLYrg9c2jiz76XdXN8py4cuKJpCXoXhAjvhjBzuk7mbZmGiv/WZnjsT3NxNSE\nkX1HvnjFx+RHOUJkTynx0NNTsXJl68xlL6+cfQO0tzdm795hdO++miNHhlOxohWensX47jtdSdU8\nD3o0N2x4n549Dfj2218A0GoHM3y47jINJ06EcvJkCJ999uRlGzIytHz77VG8vf9k+f/bu/P4Kss7\n7+Ofc581C9kJELawyKoCgmuluGDF6tixPmqxrdJin6rUin2s2+g8VjtaO+3YutS6VEu16oyWcdT2\nsWopVsuMG6Kyr5GwJpA9Jznr/fxxn5yTkLAIgXOR+/t+vXh5zp2Tkyt8EX65ftd13b+t5NVXr6eq\n6r0u7YhEwua8855g3bqVRKNhRo0az44dW5k79x7GjJnM2rXLKCkZxIIFN3Ljjc8zadKdNDY6fxfN\nmnUO3/jGFL7+9d47LLEv8PutdMECMGlSMVu33sxrr21l3rwXuOSSv+LzBUgkoowcmUModAxlZYX8\n6EczGT7cmUlbunQX7767lQkT+vPMMx9SW9tARUUpb7/9AXl5ObzxxlvccUeCfv0KeeQR5wfae++9\niv79c2lqinDLLb+hoKCIRx+tZdq0E6isLOO++56luXk3ZWVDALjqqi8zYUJ/1q+vZ+7cY7vMSrz6\nahXPPvs+u3Y1MHhwf956620uvfRL/OY356TX8Nx22wnACQB873sTj8Rv7VHLwKLFQyyx/5mW1vYW\n/J/jxluThk9j0vBpbNi2hl2Nh160rK7+BICdNZnt1n9aupB/++2dfHvqS/Qv79pnXr1hNUWlRSxf\nn7nbdCweY9fOXZw9ySlizpt2Hvc8ck+v3Q33J8//hAcffRCA2792+yG/n8jhcPzxRaxYcfiPIehg\nWR6effbL/OAHJ7NtWyuXXfYA5eX5+HwW113ntHp//vMc/uEfZrFhwzaam1vZurWKSKSFxYvv4vbb\n3+DEE2/gxBOH8tJLZwBw441v8txzL+D3h1i69EeMHt0vvWj0iSfW8MADbzFv3uX89KdfIDfXx/nn\n38SsWb9n0KApTJ8+8qDbX241a9ZgNmyYz5tvbmf9+gYqKwu45ZZfM2JEKZs37+LMM+/kO9+5BK/X\n4tFH/4NAIERTUy0jR45nzJihrFlTxeWXz+CXv/wi0WiSp59ex5w5Y4jHbdraEpSUZP5tufrq+/D5\nPHvMenyF1tY499//CZFInAcfXEhbWwuhUB4PP/xfnHDCsYwcWU5V1S4WL/4bJ5wwiWOOGUB19S4W\nLbqZ0047/Gda9VVGFi2JRHy/rwpHWg7qbqHlRQNZt2XV/l/YSU3DdvJC+eSFMj3wjTvW0X/QQKo3\nVfHAK/fw/X+4jRVVy2isa2D12u0MHtq1aNm6fStnn342732aOcn1w/UfkpOXw4AiZ4pxykjnp7uV\nm1dybOXBnZHR2t7Kc4uf46pZV/H405lzNzofDHcgTPipXjKUR++bNq0UKOX+++dyzTVO6/Sii87n\nrru+yPz5f2bhwv8EIBDIZcSIUTzzzGymTStl0aLLeeyxKfzzP7/AzJmPMnJkBa+//hfOPPMMXnjh\nq5SWdj0P46qrxnLVVWO7XCstDfL++/s+CkH2b+bMQcyc6ZxzNGvW3enrL7xQxVVXPUEymeCRR77L\nnDl739UXCnn5znecFojfT7c1LHs7uyQvz8fttzuzIzfeOIXGxhiDBoW4664PeO21FWzY8Bn5+bm8\n886tTJ3afQ2THBwji5ZofP9FS2ukBX/gwIuWZNJm1aoGBpUMobmlodvH/2ft3/jbp29y08V3sXzz\nUq69ZzZ/+/UaAM7/3kmMGjuO5+/InLb70hvPckzlBGq372DhH//EgmcfJq8wH2ybtdvfY/qxZ3X6\n2kl21+zm2q9cyyt/fiU9k3LxNReTX5iffp1lWQyvHM6ijxbttWi56LaL+Nq5X+OyGZf1+PHfvv5b\n7rn/HmafMRs8MOvcWdzxjTsO+PdJxG2uvno8MJ+mpki63fXmm5eRTF7a45oCv99i3ryJnHHGYE45\n5T5WrVrK66//X845p28cZtcXXHJJJZdc8uMj9vUKC/3p82ruvvsk7r77pCP2td3GvKLF9pA4gIW4\n4fZWgv6eT/jryfPPr+GHP7yfJ16dRUtz96P8H3rxHlZ9+ik3XXwXH6xbQmtjS7q4SCaSbN+2pcvr\na7fvJBgI0a9wGC0tuwBobWwhEApQ07qScRMzi8rWb1+P1+vlrOPPwuvzsnLzSvw+5w+4Z4+F1ZPH\nTeb9le9DDzu+/7LsL7z33+/RGm7tVrTc++y9JEnywXLnRNsx540hmBPkj3f/8aBaTaasoRCH8ji8\nnMKlq/0tgqytXUZz872Ha0jyOen/EXcw8MYgHqLx/Z+9Eo60EvgcLY/GRmdL8bCykYTDrd0+bnky\nU4LhSBiA2qYdnHGts5g2Fs0sDl6x+WMAHr/xDwz0nIedyBRBEyZMptXexJSpmZXsH6z9gPIBTg9z\nyJAhvLzkZc76pjMTs+aFNV3GMWPyDNZuWNttfB9t+IgrbnC2aW/ZsoXBZw7mzx/+mVfefQWAhx5/\niF89/ive++9M+8myrF5ZGyMiImICI/9FO5CZlvZImFDwwIuWWOrIequ9nPbW9m43ZfR6naJlZfUn\n7KxzFteu3baS5vpGAOLRTCF1xc3ODfuOHz6V6M7M2pWRx4zhpHFnk/TVMX5iZv3Lik0rGDbYOXBr\n7IixPPz4wwAUFBd0u+/MBSddwI6tOxg6cyjf/Jdv8vtFvwfgrY/fSr+msc4Z07dv/DZX33I10XjX\n3VavPPIKE46dwG3X3nbAvz970k8sZlEe5lEmZlEe7mBg0eIhnnTWtCSSCWJ7mXVpi4QJBXIO+F3r\n6pzZk/nfexWf38vOhq43WYxE2gG45VffZVd9DQBVO9dnRmV5un0OQNM2P3gsTjpuNm//fA250bF4\nvK0s27g0/ZoNmzcwttJZiDd13NTM9T9s6PZ+Q0qH0K+gH8lEkkVvLuKmu28C4KPVH3HZVy/D/sBm\nYEXXMzH+9P6fKC4r5uuXfp2n7nuKC068gBW/XcHtl2nHkIiI9B3mFS22h3hqy/M37/kyX7q+53Mg\nItF2gp+raHFaQn6/n5y8PLbs/qzLx5tanEPifD4/9Y27CYSCVNdU4Q/6ef6nb1JYXMzK1DZnr9/H\nvCtvJpm0aW6qwxfoR7LZ2QEU2zEcO9nGhf/7QrbsctbBbNm2heNHOodFnTr+1PTXLCvo+fjt0aO6\n3xdp3cZ1TD9+OgC3zb2Ni79yMV6/l4qhFdz/9P2MHzOeZ256hjlnzzng35N9Wbx4ca+8j/QO5WEe\nZWIW5eEO5hUtWMRTW543b95EU133nT4A7dE2coIHXrQ0NLRiWV4GDy4jP7+AbfVdF9a2tjRzxoxZ\nxGJR1qxYztBhI3h98X8Ri8T4wpgzKSstZ/32VWzetYlELM71F9zBli2tWJbFV8f/G9YWZ+vbywuX\n4gs4x/QvWbUEgNqaWk4ZfwoA555wLssXLuf5+5/f61hPOf4UBg93DlQKhAKs2ryKbVu2MWuqc6jX\ndRdex8+++zOuuOQKTj/xdNavWs/UCVP3+n4iIiJ9gYFFS2ZNy77W7rdH28npdA+f/WlubqW0dBB1\ndc0U9iuiZo9WT1trK1OOOYltn1UDcOzoyTQ3OLMvlmUxuP8wPtuxkfXbVwOQF8zjk092UVxcxpnT\nTmX7tlqam2NUV68hFHT25C9bu4z65nrCrWGmjMicsDlx2EQum97zlmWAn839GZ8u+JTq16oZNXoU\nDy18iGBOkFGDMqdlVpZX8uQPnuSLxzt3br5k+r7v1fR5qT9sFuVhHmViFuXhDuYVLXZmTYtnH1sO\nI9H2Hu+uvDfNzWEGDx7I9u01JGN51NZnTsVtaWsiHktw0ugvpK+dNvFMACpTrZrKitFsr9nCph3r\nGDPe2VH0ySfbKS8v47TTBrJr1w4+/NBZCzPxmPH4g35Wb1rN++vep6SsJL3F+UAEfAGK84sZUjaE\nacdO4/VFrzNieM93Np13wTyqX6tm+sTpB/z+IiIiRyPzihY8JBLJ/b4qEo0QChz4TMuqVUsZMWIA\nmzatZM2ntdTW1aQ/tmX3Z4Tychg/JHOU9omjnALmKzO+BsDoinHU7t7B1trPGFAyiGTS5uGHf4vP\n5+XYY4toa2vkhht+x4QJk1n0wELuv/V+qqur+WTDJ1QMPPhDp8498VzCzWGOH7v3G6gNSd3/ojep\nP2wW5WEeZWIW5eEO5hUttodEaiFu6rbWPYpGI+SFMjMtjz/+6V5fG4s5RVBZWer10RyW/D1zPsqW\nus/Iz+9H/4IB3DX/ARb9ejmjB47D8loMK3dmOI4degINdXXs2LWVweWV7NjR5gzXttOHUNXUVDFi\nxEByg7mcf9L51O6sZc1naxg17OBvgnbhSRdieS1OP+70g34PERGRvsC8ogUPyWTHmpaei5Zfvvwv\nrFmxPH0voPb2BHfe+RDNzT1vj+4oML797dRsRSyXeNJZu/LTF+/gqVcepF9+AQBzz7qOsRUT8Vpe\nBg8bxqTh0wCYOHQy4ZZWtu/cyvABI1m+3Lm785NPOifffv/7Xwdg7FhnO3JleSV+v5+PPv2IiSMP\n/q6d/XL6cePVNzL7i7MP+j0OhvrDZlEe5lEmZlEe7mBk0dIx08JeZloW/ferAOSFnPv21NU5p93u\n2tXe4+trasL061fGKaf0dy4EwmAnaG9P8O9/eJLVy5dTVFDS7fP+55ebGD/YKXRC/hB20mbzxo0c\nM2g8a9fuYvz4SUyZ4nzeRReNAWDq1MzdOwdVDGL75u1MPebQdvbc9637KMwrPKT3EBEROdqZV7TY\nFgl73yfiejzOsPvlOLMj9fUdRYszo/K7362ivT3zHjU1YXJznfUvjz12A6xzZk82bcxspy4rOvBb\nhY8bfBxVVbupqMjcuXP6dOecljPPzKxfOabSubPo6eOPvtaO+sNmUR7mUSZmUR7uYF7Rwv7XtHhS\n99PJCzrtofp6Z4alpsY59fbWW3/BY499nH59bW2YvDxnPct3vjMOkn7wePl4deYeP/2LBux3ZGed\ncR4Aw8tG8tZbHzFsWGZ2xuv1YNuPMmhQ5uyY40YfR15B3l4PkRMREZEDZ+ZdnjvWtKRqlo67LQPU\nt9Rhp+4b1C/kzLQ0Nzv33tm9uy39Nu3t8fTj3bvD5OfvsdPIE2D1Z5lj+vNz9t9+WTD/VV489Wks\ny2LbtvVs3jxsn6+ffcZsttRs2edrTKX+sFmUh3mUiVmUhzsYOdPScTND23auRGKZtSo3PDKH6k1V\nABTkFgHQ1OS0hxoaMkVL523T9fWtFBRkipa6ugcJBgvYUluVns15YeF7fPGLD6Vf88IL67joome6\njMyyLC499UqiUee9n3/+H/f5nUwZOYVnb3l2/9+yiIiI7Jd5RYtNevdQR9USiUfSH25ra00/LkjN\njjQ2OkVNXV2Y1lZnhiUcztz5uL4+TEFBpm1TXBwg6A+xbPPj4PFw1owLqHvnGDZsyGybXrDg77z3\n3ttcc80fuwyvsTHG73+/itzcIsrKgr3xHRtJ/WGzKA/zKBOzKA93MK5o8flz0mtakqmipS2SKVRi\nscy25n45zkxLS4tToDQ1tbF7t1PA1NeH069ragpTXNz19NxYsgk7kSCUE+KWWb8D29vl4zk5TkHy\n8ssvd7l+001/5vbbH6C4uBQRERE5cowrWoKBUHr3UEebqD2WafvE452KltQ5LR2zKk1Nbeltz42N\nmUKnuTlMSUnXNS15uc4sjcdrsXlzU7dxdHxtgG3bMgVQe7vz9cvLu2+R7kvUHzaL8jCPMjGL8nAH\no4qWtiVtgIWdag/ZtlM4hCOZoqFjpmX66TPTi3NbWiKp/7alF+M2N2eKlpaWMKWlXYuWmVOdQ+HC\nTS1s3dpMbm4RYKXXq+zendkO/ckntd2+fkVF3y5aRERETGNU0RIKhPBgkUjNchQWFgMQ6TzTkioa\nZkw+N30tHI6Sk1NAc3OYurqOoiVT6LS2hunfv2vRcusl/5R+vHNnM8ceO568vELWrnWKlYaG+vTH\nV6/elX5cW+tcHzq0b7eH1B82i/IwjzIxi/JwB6OKFnAOjuuYYfH5nTsjh2OZAiQedxba5gYzRUhb\nW5SCgiLa2tqoq2vD7w/R2pqZaQmHwwwc2LVoGTPG2S49YcI0amqaKC3tR1FRCWvW1AHQ3NzAX//6\nI4LBfP71Xx9Lf97u3XWccsppXHzxmN78tkVERGQ/jCtaLLzp3UMdC3Ij0e5rWnICmYW1bW0RSkqK\nCIfbaGhoo7CwjOrqtemdRO3t3YuWUMgLa/8XK5+bwIsvLqS8vB/l5SVs2FBHa2ucaDTM9OkDOPnk\nE7p8XlNTPY8//hVmzhzU+9+8QdQfNovyMI8yMYvycAfjihaPx0ovgu0oXto7ndOSiDvXOm6WCNDe\nHqWsrJC2tjYaG9soL3daNx9/vIs1axpoaqpl0KA9DpcDaC6BeAiAwsIQFRUlVFfXsWpVA7m5hXi9\nHubPPz01FpvW1jiRSCtjxxb0/jcuIiIi+2Re0YKXpN1RtCSxfF6i0cw5LR3tobxOMy3t7VEGDCii\nvT1MU1MbgwY5RUtzc5QbblgIwODB3YuWa67J3Dk5Gk0wfHgp27fXsXFjfXo9zYUXOqferl3byJo1\nDeTlFeH3G/fb1uvUHzaL8jCPMjGL8nAH4/719XisTNGSSOAP+InEnfbQv/3nnSSiTtGS32mmJRKJ\nMHRoEZFImPr6Nvr3L2LAgGFs3FhPNOq0kwKB7t9qKJS5i8HcucczalQxNTW7qa5uoKzMKVq8Xg9D\nhozm449rWLeujuLi4sPzjYuIiMg+mVe07DHT4vf7iaRmWt5c8qf06/ZsDw0ZUkA8HqG1NUxxcQ47\nd27mxz/+FYWF/dib+fOnAJCbW8i0aaWMG1dCfX0dH35YRVlZpgVUUdGfNWtq2bixjv793bHVWf1h\nsygP8ygTsygPdzDuholejxc7kTlczu8PEIk7a1oSicxNEPOC+enHsViU0tIQXm+A+voGysvHpT+W\nmxvkm9/8ao9fa9iwPDweLzk5Tqtp8uRSmprqeOutNwkG84DLABg5spwNG2rIzQ0weLA7ihYRERHT\nmDfTYnmxycy0BAJBojFnpiXe6Qj/HdVJmpud55FIhIKCIMFgLvX1uyktzdxnaNGi1ykuzmFvPvro\nX1iy5AYAKipyiKcKpLvuuiL9mnHjytm2rYYdO+oYPtwdRYv6w2ZRHuZRJmZRHu5gXNHi9XiJJ5xi\nJJlMEgwGiUZTMy0dN1IELrrgXr7xjecBiEYjFBYGCIVyqK/fTllZDk899X/Sr33nnXV7/XqTJhWn\nz2zp7PLLM+ewTJlSzs6dNdTW1jFmTN8+VE5ERMRU5hUtlpf63etZvvkjkskEgUCISGqmJZlqGw0e\nPgzwsnTpuwDE41GKigIEAgEAfD6Lyy8fnX7Pk08e9TlG4AFgyJDMbqOTTy6nsbGWurrdjBvnjpkW\n9YfNojzMo0zMojzcwbiixeNx7ra8q6kGO2kTCoaIpWZeJk6YQsXQobz34GcAJJPOGpdYzClavF7n\nc0ePLuyyW+juu0894K9vWd2X+QwYEMLnC9LYWMPkye4oWkRERExjXNHiTRUNtm2TTCYJBXOIxp27\nOHuAGSfO4tVXqwA47rhpAMRiEUpKgukbKE6ZkiksBg4cTmlp8IC//owZX2Dy5GndrpeW9icYzKOs\n7MDf62im/rBZlId5lIlZlIc7GLd7yLKc2ZKknSCZTJITzEkfLheLxwgFgrzzziYAiosLSCRsksk4\nBQV+vF5Pt/fr1y+/27V9WbRodo/XKyrK03d4FhERkSPPuKLF68kMyU4kyQnm0Z46XC4WjxHwBYkm\nbQAikSgNDVG8Xj+W5UnPtHSWSCR7ZVyVleW0tLTt/4V9hPrDZlEe5lEmZlEe7mBe0ZJqDyXsJLZt\nkxPMpbm9CXBulhgK5NCUKlra2iLU10fw+52WTcealg5Dh47m7LOP75VxXXXVZFatGtYr7yUiIiKf\nn4FrWpwh2ckEdtImN5RPLLWmxSlaQlRUFALQ1tZOU1O0U9HS9dvZvPmHPPbYWb0yri99qYLrrz+2\nV97raKD+sFmUh3mUiVmUhzsYN9Pi8zpDSto2tm2TG8wjFnfWksTjcUL+HHZH4uTlFdPe3s7mzU34\n/c5W5zvumMUrr4zI2thFRETk8DFvpiW1pqVjdiUnmJM+CTeeiBPwBWlvj5GXl0919VrmzbsvfT7L\n7NmjePbZL2dn4H2M+sNmUR7mUSZmUR7uYF7R4nOKlmg8gseyCPiCxFP3HEomEgQDISKReJddQcFg\nICtjFRERkSPHvKIltaalPdqOx4KgP0g8nplpCQVyaG+Pdbl7cyjkjrNTjiT1h82iPMyjTMyiPNzB\nuKKlY9tyJNaOx2MRCuRm7kWUSBDwhWhvj1FSkplpCYU00yIiItLXGVe0ZGZawliWh1Agh3jcuedQ\nPBEn5A8RjapoOdzUHzaL8jCPMjGL8nAH84oWX2qmJerMtOT4c4nHY+zaFSEWcXYPRaNx8vIyhYrP\n593b24mIiEgfcShFSwnwBrAWeB0o2svrngR2Ap8eyJt6U8f4R6LteCwPoWAuiXiceXNepaW5LVW0\nxAiFMru1e+vUW8lQf9gsysM8ysQsysMdDqVouQWnaBkD/CX1vCdPAbMO9E296TUtESyPRSgQIh5P\nEA63ATY5gVyi0TihkD/9OR3tIxEREem7DqVouRBYkHq8APjHvbzubaD+QN/Ul2oPRWMRPF6nPZRI\nxLG8FthJQv4cYrEYubmZoiWZOtZfeo/6w2ZRHuZRJmZRHu5wKEXLAJy2D6n/Djj04WR2D0XjETwe\nDzmBXJKJROq6TSjQvT2UTKo9JCIi0tft7xj/N4CBPVz/pz2e26lfh2TOnDmsW7EZtsGmd9djtyTJ\nDeSRSCSIRjZCU5K8YD7RaIxt25YB24AKEolkup/ZUW3r+aE9/8UvfsHkyZONGY/bnysP854vW7aM\n+fPnGzMetz9XHtl/3vG4qqqKw8VzCJ+7GjgD2AEMAv4KjNvLayuBV4Dj9vF+tm3bXHL9vbz499s4\n8eQvsHbdSv7886VMv2Ysw2v/lfX9rmfTwghnzvgVN998Lk8//T7r1n3Gffddxre+NeYQvhXZ0+LF\ni9N/ICX7lId5lIlZlId5PB4PHFqd0c2h3DDxZeBK4L7Uf1/qjQFNKJ0OQDQexbIs8gL5JOMJbMtp\nAfksH7FYjLw8H3//+xW98SWlB/qf3yzKwzzKxCzKwx2sQ/jcnwDn4Gx5Piv1HKAC+GOn1z0HLMHZ\nZVQNfGtfb5oXyic3OIFYLIrH8pAbyieZSOL12+DxYFkW8XicvDz/vt5GRERE+phDKVrqgJk4xciX\ngIbU9W3A+Z1eNxunkAkCQ3G2QO+Vz2eB7SUWj2FZXgLeALZtgy9CxyxTPB4jJ+dQJolkfzr3KCX7\nlId5lIlZlIc7HErRclg4RYuHWCyK5bGwLAvL5yXpbQE8JJM28XiM/HzNtIiIiLiJcUVLIODFti3i\n8ZhzNgvg8/mIe5sBD21tCeLxOP36qWg5nNQfNovyMI8yMYvycAfjihafz4KkRSwWx/I4w/P6fUTt\nRvB4aGyMkkjEVLSIiIi4jJlFCx4S8RiW17kPkc/rJUozYLFqVR2xWETtocNM/WGzKA/zKBOzKA93\nMG41ayBgQdJLPB5Pn47r8/uJ262AhyuuuBuA/Hzjhi4iIiKHkZEzLbbtIRGPp+/47Pf5iXvCYGeG\nm5PjzdYQXUH9YbMoD/MoE7MoD3cwrmgJBCw8SYt4IrOmxecPkLDDdD5Yz7J69ZA9ERERMZxxRUtm\npiWRXtPi9/lJ0AYe44bbZ6k/bBblYR5lYhbl4Q7GVQGBgBc76SWRSKRnUwKBILYnAqglJCIi4lbG\nFS0+nweSkIwn8HqcxbYBf4Ak7VgeLb49UtQfNovyMI8yMYvycAfjipZAwAtJL3bSTu8eCviD2ETx\nqGgRERFxLeOKFp/Pwk46bSFvak1LMOAULV5LRcuRov6wWZSHeZSJWZSHOxhXtASDmaLFSm15DvhD\nQBxLRYuIiIhrGVe0+P3dZ1pCgRC2HcPn0ym4R4r6w2ZRHuZRJmZRHu5gXNHinIibuueQp6M9FAI7\ngd8bAODUU0/L2vhEREQkOwwsWryZ9pDXaQflBHPBTuDzOUXLkiVXZm18bqH+sFmUh3mUiVmUhzsY\nV7T4/R7spPPYm9o9lBPIAcCnNS0iIiKuZVzREgx6sROp4/tTMy2hQC4Afl8wa+NyG/WHzaI8zKNM\nzKI83MG4osXvt7ATXXcPdRQtAb8W4oqIiLiVcUVLMGhBx+6hdNGSag+l1rTI4af+sFmUh3mUiVmU\nhzsYV7T4/RakZlpaW5zFLS3hNgACXhUtIiIibmVc0eL1esB21rIseXsVAAErBMCgwXn4/aGsjc1N\n1B82i/IwjzIxi/JwB+OKFiBdtGA7w0umzm0ZOChINPrLbI1KREREssjMoiXVHgKLWCyJnSpaSVyY\nYwAACVZJREFU4ol49sbkMuoPm0V5mEeZmEV5uIOZRUuqSMGG1tY4ASsPgEQikcVBiYiISDaZWbQk\nnF1D2F7C4ThnjLoUgHhSMy1HivrDZlEe5lEmZlEe7mB40eIhHI4Ti9nOZc20iIiIuJahRUvqEDnb\nIhyOEYmoWDnS1B82i/IwjzIxi/JwBzOLlmRqpgUPbW1xotEE+U2X8Nj8x7I6LBEREckeM4uWTsNq\na4sTiSTIa5pEWUFZFsfkLuoPm0V5mEeZmEV5uIORRcuECZNTj2xaW2NEowm8Xu8+P0dERET6NiOL\nFp8vVaB4bNrb4ypaskD9YbMoD/MoE7MoD3fwZXsAPfH7O4blFC22jYoWERERlzOyaPH5vBAHPDZt\nbfHMNTli1B82i/IwjzIxi/JwB7OLFmwikRiWZWmmRURExOWMXNMSCHRd0xKLaU3Lkab+sFmUh3mU\niVmUhzsYOdOSLlA8NpGI0x7y+1W0iIiIuJmRRUt6pgWnaPF4PPh8Rg61z1J/2CzKwzzKxCzKwx2M\nrAQ6b3l+4oln8HgsTjrplOwOSkRERLLK0DUtXWsp206qPXSEqT9sFuVhHmViFuXhDkbOtPj9XqiZ\nDjuHd70mIiIirmVk0RIIeKF6fJdr2j10ZKk/bBblYR5lYhbl4Q5Gtod8vu7DyizOFRERETcysmjx\nersPSyfiHlnqD5tFeZhHmZhFebjDUVO0aE2LiIiIuxlZtFiWp9s1FS1HlvrDZlEe5lEmZlEe7mBk\n0eL1qmgRERGRrgwtWrQQN9vUHzaL8jCPMjGL8nCHo6Zo0UyLiIiIuxlZtGhNS/apP2wW5WEeZWIW\n5eEORhYtPa1pCQZVtIiIiLiZkUVLT4fLaablyFJ/2CzKwzzKxCzKwx2MLFo62kNPPPGD9DUtxBUR\nEXE3I4uWjoW4c+eOTV9T0XJkqT9sFuVhHmViFuXhDoYWLd3XtKhoERERcTcjixatack+9YfNojzM\no0zMojzcwZftAfTkyivHsWzZV7pc0+4hERERd+veh8ke27btbhfPOus5liz5gIcf/i5z547JwrBE\nRETk8/J4PNDLdcahtIdKgDeAtcDrQFEPrxkK/BVYASwHvv95v8iiRbMpLCzWTIuIiIjLHUrRcgtO\n0TIG+Evq+Z5iwA3AROAUYB4w/vN+oeuuO49zzhl88COVz039YbMoD/MoE7MoD3c4lKLlQmBB6vEC\n4B97eM0OYFnqcQuwCqj4vF/o9tunMmBA6GDGKCIiIn3EofSa6oHiTu9T1+l5TyqBt3BmXVp6+HiP\na1pERETk6HM41rTsb/fQG8DAHq7/0x7P7dSvvckHXgSup+eCBYA5c+ZQWVkJQFFREZMnT04fGNQx\n9afneq7neq7neq7n5j3veFxVVcXhcigV0GrgDJwW0CCcBbfjenidH3gV+H/AL/bxfpppMcjixYvT\nfyAl+5SHeZSJWZSHeUzbPfQycGXq8ZXASz28xgP8BljJvgsWERERkX06lAqoBPgPYBhQBVwKNOAs\ntH0cOB84Hfgb8AmZ9tGtwGs9vJ9mWkRERPqIwzHTYvzhciIiInL0Ma09JH1Y54VVkn3KwzzKxCzK\nwx1UtIiIiMhRQe0hERER6XVqD4mIiIhrqWiRHqk/bBblYR5lYhbl4Q4qWkREROSooDUtIiIi0uu0\npkVERERcS0WL9Ej9YbMoD/MoE7MoD3dQ0SIiIiJHBa1pERERkV6nNS0iIiLiWipapEfqD5tFeZhH\nmZhFebiDihYRERE5KmhNi4iIiPQ6rWkRERER11LRIj1Sf9gsysM8ysQsysMdVLSIiIjIUUFrWkRE\nRKTXaU2LiIiIuJaKFumR+sNmUR7mUSZmUR7uoKJFREREjgpa0yIiIiK9TmtaRERExLVUtEiP1B82\ni/IwjzIxi/JwBxUt0qNly5ZlewjSifIwjzIxi/JwBxUt0qOGhoZsD0E6UR7mUSZmUR7uoKJFRERE\njgoqWqRHVVVV2R6CdKI8zKNMzKI83MGkLc/LgEnZHoSIiIj0io+BydkehIiIiIiIiIiIiIiIiMgh\nmAWsBtYBN2d5LH3ZUOCvwApgOfD91PUS4A1gLfA6UNTpc27FyWU18KVO16cCn6Y+9svDOuq+zwt8\nBLySeq48sqsIeBFYBawETkaZZNOtOH9nfQo8CwRRHkfak8BOnN+/Dr2ZQRD499T1/wGG9+7we5cX\nWA9UAn6cxbjjszmgPmwgmQVR+cAanN/rnwI3pa7fDPwk9XgCTh5+nHzWk1m4/R5wUurxn3AKTzk4\nPwB+D7yceq48smsB8O3UYx9QiDLJlkpgI84/auD8w3YlyuNImw5MoWvR0psZXAv8KvX4MuD5Xh19\nLzsVeK3T81tSv+TwewmYiVMND0hdG5h6Dk613Hnm6zXgFGAQzk+hHb4G/PqwjrTvGgK8CZxJZqZF\neWRPIc4/kntSJtlRgvPDVTFOAfkKcA7KIxsq6Vq09GYGr+HMaIKTc+2+BpLtc1oGA9Wdnm9JXZPD\nqxKncn4X5w/eztT1nWT+IFbg5NGhI5s9r29FmR2s+4EfAslO15RH9ozA+QvzKWAp8DiQhzLJljrg\n58BmYBvQgNOSUB7Z15sZdK4D4kAjTsHao2wXLXaWv74b5QN/AK4Hmvf4mI0yOVIuAGpw1rPs7bwk\n5XFk+YATcKaqTwBa6T7zq0yOnFHAfJwfsipw/u76xh6vUR7Zd0QzyHbRshVngWiHoXStxqR3+XEK\nlqdx2kPgVMkDU48H4fxDCt2zGYKTzdbU487Xtx6m8fZlpwEXApuA54CzcHJRHtmzJfXr/dTzF3GK\nlx0ok2yYBiwBduP8BL4QZ0mB8si+3vh7akunzxmWetyxjqyu94fcO3zABpxKOoAW4h5OHuB3OC2J\nzn5Kpgd5C90XVAVwps03kJkReBenB+lBi9p6wwwya1qUR3b9DRiTenwnTh7KJDsm4ex0zMH5fVwA\nzEN5ZEMl3Rfi9lYG1wKPpB5/DcMX4gKch7PYaj3OIh45PE7HWTuxDKcl8RHOH5oSnMWgPW1duw0n\nl9XAuZ2ud2xdWw88cLgH7gIzyOweUh7ZNQlnpuVjnJ/sC1Em2XQTmS3PC3Bmi5XHkfUczpqiKM7a\nk2/RuxkEgf8gs+W58jB8DyIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiYpL/\nDwi+MQaRVV7HAAAAAElFTkSuQmCC\n", "text": [ "<matplotlib.figure.Figure at 0x54b14d0>" ] } ], "prompt_number": 6 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Exercise 2" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "First save the data into a file called `web_graph_data.txt` by executing the next cell" ] }, { "cell_type": "code", "collapsed": false, "input": [ "%%file web_graph_data.txt\n", "a -> d;\n", "a -> f;\n", "b -> j;\n", "b -> k;\n", "b -> m;\n", "c -> c;\n", "c -> g;\n", "c -> j;\n", "c -> m;\n", "d -> f;\n", "d -> h;\n", "d -> k;\n", "e -> d;\n", "e -> h;\n", "e -> l;\n", "f -> a;\n", "f -> b;\n", "f -> j;\n", "f -> l;\n", "g -> b;\n", "g -> j;\n", "h -> d;\n", "h -> g;\n", "h -> l;\n", "h -> m;\n", "i -> g;\n", "i -> h;\n", "i -> n;\n", "j -> e;\n", "j -> i;\n", "j -> k;\n", "k -> n;\n", "l -> m;\n", "m -> g;\n", "n -> c;\n", "n -> j;\n", "n -> m;\n" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "Overwriting web_graph_data.txt\n" ] } ], "prompt_number": 7 }, { "cell_type": "code", "collapsed": false, "input": [ "\"\"\"\n", "Return list of pages, ordered by rank\n", "\"\"\"\n", "import numpy as np\n", "from operator import itemgetter\n", "import re\n", "\n", "infile = 'web_graph_data.txt'\n", "alphabet = 'abcdefghijklmnopqrstuvwxyz'\n", "\n", "n = 14 # Total number of web pages (nodes)\n", "\n", "# == Create a matrix Q indicating existence of links == #\n", "# * Q[i, j] = 1 if there is a link from i to j\n", "# * Q[i, j] = 0 otherwise\n", "Q = np.zeros((n, n), dtype=int)\n", "f = open(infile, 'r')\n", "edges = f.readlines()\n", "f.close()\n", "for edge in edges:\n", " from_node, to_node = re.findall('\\w', edge)\n", " i, j = alphabet.index(from_node), alphabet.index(to_node)\n", " Q[i, j] = 1\n", "# == Create the corresponding Markov matrix P == #\n", "P = np.empty((n, n))\n", "for i in range(n):\n", " P[i,:] = Q[i,:] / Q[i,:].sum()\n", "# == Compute the stationary distribution r == #\n", "r = mc_compute_stationary(P)\n", "ranked_pages = {alphabet[i] : r[i] for i in range(n)}\n", "# == Print solution, sorted from highest to lowest rank == #\n", "print('Rankings\\n ***')\n", "for name, rank in sorted(ranked_pages.iteritems(), key=itemgetter(1), reverse=1):\n", " print('{0}: {1:.4}'.format(name, rank))\n", "\n" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "Rankings\n", " ***\n", "g: 0.1607\n", "j: 0.1594\n", "m: 0.1195\n", "n: 0.1088\n", "k: 0.09106\n", "b: 0.08326\n", "i: 0.05312\n", "e: 0.05312\n", "c: 0.04834\n", "h: 0.0456\n", "l: 0.03202\n", "d: 0.03056\n", "f: 0.01164\n", "a: 0.002911\n" ] } ], "prompt_number": 9 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Exercise 3" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "A solution from the [quantecon library](https://github.com/jstac/quant-econ/tree/master/quantecon) can be found [here](https://github.com/jstac/quant-econ/blob/master/quantecon/tauchen.py)\n" ] }, { "cell_type": "code", "collapsed": false, "input": [], "language": "python", "metadata": {}, "outputs": [] } ], "metadata": {} } ] }
bsd-3-clause
RaspberryJamBe/ipython-notebooks
notebooks/en-gb/Output - Speach synthesis.ipynb
2
1117
{ "cells": [ { "cell_type": "code", "execution_count": null, "metadata": { "collapsed": true }, "outputs": [], "source": [ "from espeak import espeak\n", "from datetime import datetime" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "collapsed": false }, "outputs": [], "source": [ "espeak.set_voice('en')\n", "t = datetime.now().strftime(\"%k %M\")\n", "espeak.synth(\"Good evening, this is your Raspberry Pi speaking. The time is now %s.\"%t)" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "collapsed": true }, "outputs": [], "source": [] } ], "metadata": { "kernelspec": { "display_name": "Python 2", "language": "python", "name": "python2" }, "language_info": { "codemirror_mode": { "name": "ipython", "version": 2 }, "file_extension": ".py", "mimetype": "text/x-python", "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython2", "version": "2.7.8" } }, "nbformat": 4, "nbformat_minor": 0 }
cc0-1.0
transcranial/keras-js
notebooks/layers/convolutional/ZeroPadding2D.ipynb
1
32251
{ "cells": [ { "cell_type": "code", "execution_count": 1, "metadata": {}, "outputs": [ { "name": "stderr", "output_type": "stream", "text": [ "Using TensorFlow backend.\n" ] } ], "source": [ "import numpy as np\n", "from keras.models import Model\n", "from keras.layers import Input\n", "from keras.layers.convolutional import ZeroPadding2D\n", "from keras import backend as K\n", "import json\n", "from collections import OrderedDict" ] }, { "cell_type": "code", "execution_count": 2, "metadata": { "collapsed": true }, "outputs": [], "source": [ "def format_decimal(arr, places=6):\n", " return [round(x * 10**places) / 10**places for x in arr]" ] }, { "cell_type": "code", "execution_count": 3, "metadata": { "collapsed": true }, "outputs": [], "source": [ "DATA = OrderedDict()" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "### ZeroPadding2D" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "**[convolutional.ZeroPadding2D.0] padding (1,1) on 3x5x2 input, data_format='channels_last'**" ] }, { "cell_type": "code", "execution_count": 4, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "\n", "in shape: (3, 5, 2)\n", "in: [-0.570441, -0.454673, -0.285321, 0.237249, 0.282682, 0.428035, 0.160547, -0.332203, 0.546391, 0.272735, 0.010827, -0.763164, -0.442696, 0.381948, -0.676994, 0.753553, -0.031788, 0.915329, -0.738844, 0.269075, 0.434091, 0.991585, -0.944288, 0.258834, 0.162138, 0.565201, -0.492094, 0.170854, -0.139788, -0.710674]\n", "out shape: (5, 7, 2)\n", "out: [0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, -0.570441, -0.454673, -0.285321, 0.237249, 0.282682, 0.428035, 0.160547, -0.332203, 0.546391, 0.272735, 0.0, 0.0, 0.0, 0.0, 0.010827, -0.763164, -0.442696, 0.381948, -0.676994, 0.753553, -0.031788, 0.915329, -0.738844, 0.269075, 0.0, 0.0, 0.0, 0.0, 0.434091, 0.991585, -0.944288, 0.258834, 0.162138, 0.565201, -0.492094, 0.170854, -0.139788, -0.710674, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0]\n" ] } ], "source": [ "data_in_shape = (3, 5, 2)\n", "L = ZeroPadding2D(padding=(1, 1), data_format='channels_last')\n", "\n", "layer_0 = Input(shape=data_in_shape)\n", "layer_1 = L(layer_0)\n", "model = Model(inputs=layer_0, outputs=layer_1)\n", "\n", "# set weights to random (use seed for reproducibility)\n", "np.random.seed(250)\n", "data_in = 2 * np.random.random(data_in_shape) - 1\n", "result = model.predict(np.array([data_in]))\n", "data_out_shape = result[0].shape\n", "data_in_formatted = format_decimal(data_in.ravel().tolist())\n", "data_out_formatted = format_decimal(result[0].ravel().tolist())\n", "print('')\n", "print('in shape:', data_in_shape)\n", "print('in:', data_in_formatted)\n", "print('out shape:', data_out_shape)\n", "print('out:', data_out_formatted)\n", "\n", "DATA['convolutional.ZeroPadding2D.0'] = {\n", " 'input': {'data': data_in_formatted, 'shape': data_in_shape},\n", " 'expected': {'data': data_out_formatted, 'shape': data_out_shape}\n", "}" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "**[convolutional.ZeroPadding2D.1] padding (1,1) on 3x5x2 input, data_format='channels_first'**" ] }, { "cell_type": "code", "execution_count": 5, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "\n", "in shape: (3, 5, 2)\n", "in: [0.275222, -0.793967, -0.468107, -0.841484, -0.295362, 0.78175, 0.068787, -0.261747, -0.625733, -0.042907, 0.861141, 0.85267, 0.956439, 0.717838, -0.99869, -0.963008, 0.013277, -0.180306, 0.832137, -0.385252, -0.524308, 0.659706, -0.905127, 0.526292, 0.832569, 0.084455, 0.23838, -0.046178, -0.735871, 0.776883]\n", "out shape: (3, 7, 4)\n", "out: [0.0, 0.0, 0.0, 0.0, 0.0, 0.275222, -0.793967, 0.0, 0.0, -0.468107, -0.841484, 0.0, 0.0, -0.295362, 0.78175, 0.0, 0.0, 0.068787, -0.261747, 0.0, 0.0, -0.625733, -0.042907, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.861141, 0.85267, 0.0, 0.0, 0.956439, 0.717838, 0.0, 0.0, -0.99869, -0.963008, 0.0, 0.0, 0.013277, -0.180306, 0.0, 0.0, 0.832137, -0.385252, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, -0.524308, 0.659706, 0.0, 0.0, -0.905127, 0.526292, 0.0, 0.0, 0.832569, 0.084455, 0.0, 0.0, 0.23838, -0.046178, 0.0, 0.0, -0.735871, 0.776883, 0.0, 0.0, 0.0, 0.0, 0.0]\n" ] } ], "source": [ "data_in_shape = (3, 5, 2)\n", "L = ZeroPadding2D(padding=(1, 1), data_format='channels_first')\n", "\n", "layer_0 = Input(shape=data_in_shape)\n", "layer_1 = L(layer_0)\n", "model = Model(inputs=layer_0, outputs=layer_1)\n", "\n", "# set weights to random (use seed for reproducibility)\n", "np.random.seed(251)\n", "data_in = 2 * np.random.random(data_in_shape) - 1\n", "result = model.predict(np.array([data_in]))\n", "data_out_shape = result[0].shape\n", "data_in_formatted = format_decimal(data_in.ravel().tolist())\n", "data_out_formatted = format_decimal(result[0].ravel().tolist())\n", "print('')\n", "print('in shape:', data_in_shape)\n", "print('in:', data_in_formatted)\n", "print('out shape:', data_out_shape)\n", "print('out:', data_out_formatted)\n", "\n", "DATA['convolutional.ZeroPadding2D.1'] = {\n", " 'input': {'data': data_in_formatted, 'shape': data_in_shape},\n", " 'expected': {'data': data_out_formatted, 'shape': data_out_shape}\n", "}" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "**[convolutional.ZeroPadding2D.2] padding (3,2) on 2x6x4 input, data_format='channels_last'**" ] }, { "cell_type": "code", "execution_count": 6, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "\n", "in shape: (2, 6, 4)\n", "in: [-0.989173, -0.133618, -0.505338, 0.023259, 0.503982, -0.303769, -0.436321, 0.793911, 0.416102, 0.806405, -0.098342, -0.738022, -0.982676, 0.805073, 0.741244, -0.941634, -0.253526, -0.136544, -0.295772, 0.207565, -0.517246, -0.686963, -0.176235, -0.354111, -0.862411, -0.969822, 0.200074, 0.290718, -0.038623, 0.294839, 0.247968, 0.557946, -0.455596, 0.6624, 0.879529, -0.466772, 0.40423, 0.213794, 0.645662, -0.044634, -0.552595, 0.771242, -0.131944, -0.172725, 0.700856, -0.001994, 0.606737, -0.593306]\n", "out shape: (8, 10, 4)\n", "out: [0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, -0.989173, -0.133618, -0.505338, 0.023259, 0.503982, -0.303769, -0.436321, 0.793911, 0.416102, 0.806405, -0.098342, -0.738022, -0.982676, 0.805073, 0.741244, -0.941634, -0.253526, -0.136544, -0.295772, 0.207565, -0.517246, -0.686963, -0.176235, -0.354111, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, -0.862411, -0.969822, 0.200074, 0.290718, -0.038623, 0.294839, 0.247968, 0.557946, -0.455596, 0.6624, 0.879529, -0.466772, 0.40423, 0.213794, 0.645662, -0.044634, -0.552595, 0.771242, -0.131944, -0.172725, 0.700856, -0.001994, 0.606737, -0.593306, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0]\n" ] } ], "source": [ "data_in_shape = (2, 6, 4)\n", "L = ZeroPadding2D(padding=(3, 2), data_format='channels_last')\n", "\n", "layer_0 = Input(shape=data_in_shape)\n", "layer_1 = L(layer_0)\n", "model = Model(inputs=layer_0, outputs=layer_1)\n", "\n", "# set weights to random (use seed for reproducibility)\n", "np.random.seed(252)\n", "data_in = 2 * np.random.random(data_in_shape) - 1\n", "result = model.predict(np.array([data_in]))\n", "data_out_shape = result[0].shape\n", "data_in_formatted = format_decimal(data_in.ravel().tolist())\n", "data_out_formatted = format_decimal(result[0].ravel().tolist())\n", "print('')\n", "print('in shape:', data_in_shape)\n", "print('in:', data_in_formatted)\n", "print('out shape:', data_out_shape)\n", "print('out:', data_out_formatted)\n", "\n", "DATA['convolutional.ZeroPadding2D.2'] = {\n", " 'input': {'data': data_in_formatted, 'shape': data_in_shape},\n", " 'expected': {'data': data_out_formatted, 'shape': data_out_shape}\n", "}" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "**[convolutional.ZeroPadding2D.3] padding (3,2) on 2x6x4 input, data_format='channels_first'**" ] }, { "cell_type": "code", "execution_count": 7, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "\n", "in shape: (2, 6, 4)\n", "in: [-0.47588, 0.366985, 0.040173, 0.015578, -0.906159, 0.241982, -0.771299, -0.443554, -0.56404, -0.17751, 0.541277, -0.233327, 0.024369, 0.858275, 0.496191, 0.980574, -0.59522, 0.480899, 0.392553, -0.191718, 0.055121, 0.289836, -0.498339, 0.800408, 0.132679, -0.716649, 0.840092, -0.088837, -0.538209, -0.580887, -0.370128, -0.924933, -0.161736, -0.205619, 0.793729, -0.354472, 0.687519, 0.272041, -0.943352, -0.730959, -0.330419, -0.479307, 0.520387, 0.137906, 0.897598, 0.869815, 0.978562, 0.731387]\n", "out shape: (2, 12, 8)\n", "out: [0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, -0.47588, 0.366985, 0.040173, 0.015578, 0.0, 0.0, 0.0, 0.0, -0.906159, 0.241982, -0.771299, -0.443554, 0.0, 0.0, 0.0, 0.0, -0.56404, -0.17751, 0.541277, -0.233327, 0.0, 0.0, 0.0, 0.0, 0.024369, 0.858275, 0.496191, 0.980574, 0.0, 0.0, 0.0, 0.0, -0.59522, 0.480899, 0.392553, -0.191718, 0.0, 0.0, 0.0, 0.0, 0.055121, 0.289836, -0.498339, 0.800408, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.132679, -0.716649, 0.840092, -0.088837, 0.0, 0.0, 0.0, 0.0, -0.538209, -0.580887, -0.370128, -0.924933, 0.0, 0.0, 0.0, 0.0, -0.161736, -0.205619, 0.793729, -0.354472, 0.0, 0.0, 0.0, 0.0, 0.687519, 0.272041, -0.943352, -0.730959, 0.0, 0.0, 0.0, 0.0, -0.330419, -0.479307, 0.520387, 0.137906, 0.0, 0.0, 0.0, 0.0, 0.897598, 0.869815, 0.978562, 0.731387, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0]\n" ] } ], "source": [ "data_in_shape = (2, 6, 4)\n", "L = ZeroPadding2D(padding=(3, 2), data_format='channels_first')\n", "\n", "layer_0 = Input(shape=data_in_shape)\n", "layer_1 = L(layer_0)\n", "model = Model(inputs=layer_0, outputs=layer_1)\n", "\n", "# set weights to random (use seed for reproducibility)\n", "np.random.seed(253)\n", "data_in = 2 * np.random.random(data_in_shape) - 1\n", "result = model.predict(np.array([data_in]))\n", "data_out_shape = result[0].shape\n", "data_in_formatted = format_decimal(data_in.ravel().tolist())\n", "data_out_formatted = format_decimal(result[0].ravel().tolist())\n", "print('')\n", "print('in shape:', data_in_shape)\n", "print('in:', data_in_formatted)\n", "print('out shape:', data_out_shape)\n", "print('out:', data_out_formatted)\n", "\n", "DATA['convolutional.ZeroPadding2D.3'] = {\n", " 'input': {'data': data_in_formatted, 'shape': data_in_shape},\n", " 'expected': {'data': data_out_formatted, 'shape': data_out_shape}\n", "}" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "**[convolutional.ZeroPadding2D.4] padding ((1,2),(3,4)) on 2x6x4 input, data_format='channels_last'**" ] }, { "cell_type": "code", "execution_count": 8, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "\n", "in shape: (2, 6, 4)\n", "in: [0.024124, 0.280236, -0.680013, -0.042458, -0.164273, 0.358409, 0.511014, -0.585272, -0.481578, 0.692702, 0.64189, -0.400252, -0.922248, -0.735105, -0.533918, 0.071402, 0.310474, 0.369868, 0.767931, -0.842066, -0.091189, 0.835301, -0.480484, 0.950819, -0.002131, 0.086491, -0.480947, 0.405572, -0.083803, -0.921447, -0.291545, 0.674087, -0.560444, 0.881432, 0.076544, 0.63549, -0.185686, -0.89067, 0.709257, -0.256164, -0.873627, 0.330906, -0.583426, -0.51286, 0.751485, 0.030077, -0.998662, 0.175588]\n", "out shape: (5, 13, 4)\n", "out: [0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.024124, 0.280236, -0.680013, -0.042458, -0.164273, 0.358409, 0.511014, -0.585272, -0.481578, 0.692702, 0.64189, -0.400252, -0.922248, -0.735105, -0.533918, 0.071402, 0.310474, 0.369868, 0.767931, -0.842066, -0.091189, 0.835301, -0.480484, 0.950819, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, -0.002131, 0.086491, -0.480947, 0.405572, -0.083803, -0.921447, -0.291545, 0.674087, -0.560444, 0.881432, 0.076544, 0.63549, -0.185686, -0.89067, 0.709257, -0.256164, -0.873627, 0.330906, -0.583426, -0.51286, 0.751485, 0.030077, -0.998662, 0.175588, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0]\n" ] } ], "source": [ "data_in_shape = (2, 6, 4)\n", "L = ZeroPadding2D(padding=((1,2),(3,4)), data_format='channels_last')\n", "\n", "layer_0 = Input(shape=data_in_shape)\n", "layer_1 = L(layer_0)\n", "model = Model(inputs=layer_0, outputs=layer_1)\n", "\n", "# set weights to random (use seed for reproducibility)\n", "np.random.seed(254)\n", "data_in = 2 * np.random.random(data_in_shape) - 1\n", "result = model.predict(np.array([data_in]))\n", "data_out_shape = result[0].shape\n", "data_in_formatted = format_decimal(data_in.ravel().tolist())\n", "data_out_formatted = format_decimal(result[0].ravel().tolist())\n", "print('')\n", "print('in shape:', data_in_shape)\n", "print('in:', data_in_formatted)\n", "print('out shape:', data_out_shape)\n", "print('out:', data_out_formatted)\n", "\n", "DATA['convolutional.ZeroPadding2D.4'] = {\n", " 'input': {'data': data_in_formatted, 'shape': data_in_shape},\n", " 'expected': {'data': data_out_formatted, 'shape': data_out_shape}\n", "}" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "**[convolutional.ZeroPadding2D.5] padding 2 on 2x6x4 input, data_format='channels_last'**" ] }, { "cell_type": "code", "execution_count": 9, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "\n", "in shape: (2, 6, 4)\n", "in: [-0.072127, -0.553929, -0.355552, -0.936405, 0.556627, -0.482815, -0.225337, -0.640315, 0.023246, -0.638412, -0.797304, 0.284959, -0.569771, -0.685286, 0.002481, 0.398436, 0.11345, 0.416629, -0.526713, 0.962183, 0.021732, 0.922994, 0.07991, -0.164385, 0.461494, -0.982877, -0.142158, 0.175741, -0.124041, -0.875609, -0.528708, -0.911127, 0.782257, -0.509403, 0.573973, -0.151309, -0.895619, -0.721042, 0.483952, -0.745814, -0.588825, -0.154089, 0.423904, -0.262707, -0.517175, -0.535505, -0.266104, -0.46314]\n", "out shape: (6, 10, 4)\n", "out: [0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, -0.072127, -0.553929, -0.355552, -0.936405, 0.556627, -0.482815, -0.225337, -0.640315, 0.023246, -0.638412, -0.797304, 0.284959, -0.569771, -0.685286, 0.002481, 0.398436, 0.11345, 0.416629, -0.526713, 0.962183, 0.021732, 0.922994, 0.07991, -0.164385, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.461494, -0.982877, -0.142158, 0.175741, -0.124041, -0.875609, -0.528708, -0.911127, 0.782257, -0.509403, 0.573973, -0.151309, -0.895619, -0.721042, 0.483952, -0.745814, -0.588825, -0.154089, 0.423904, -0.262707, -0.517175, -0.535505, -0.266104, -0.46314, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0]\n" ] } ], "source": [ "data_in_shape = (2, 6, 4)\n", "L = ZeroPadding2D(padding=2, data_format='channels_last')\n", "\n", "layer_0 = Input(shape=data_in_shape)\n", "layer_1 = L(layer_0)\n", "model = Model(inputs=layer_0, outputs=layer_1)\n", "\n", "# set weights to random (use seed for reproducibility)\n", "np.random.seed(255)\n", "data_in = 2 * np.random.random(data_in_shape) - 1\n", "result = model.predict(np.array([data_in]))\n", "data_out_shape = result[0].shape\n", "data_in_formatted = format_decimal(data_in.ravel().tolist())\n", "data_out_formatted = format_decimal(result[0].ravel().tolist())\n", "print('')\n", "print('in shape:', data_in_shape)\n", "print('in:', data_in_formatted)\n", "print('out shape:', data_out_shape)\n", "print('out:', data_out_formatted)\n", "\n", "DATA['convolutional.ZeroPadding2D.5'] = {\n", " 'input': {'data': data_in_formatted, 'shape': data_in_shape},\n", " 'expected': {'data': data_out_formatted, 'shape': data_out_shape}\n", "}" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "### export for Keras.js tests" ] }, { "cell_type": "code", "execution_count": 10, "metadata": { "collapsed": true }, "outputs": [], "source": [ "import os\n", "\n", "filename = '../../../test/data/layers/convolutional/ZeroPadding2D.json'\n", "if not os.path.exists(os.path.dirname(filename)):\n", " os.makedirs(os.path.dirname(filename))\n", "with open(filename, 'w') as f:\n", " json.dump(DATA, f)" ] }, { "cell_type": "code", "execution_count": 11, "metadata": { "scrolled": true }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "{\"convolutional.ZeroPadding2D.0\": {\"input\": {\"data\": [-0.570441, -0.454673, -0.285321, 0.237249, 0.282682, 0.428035, 0.160547, -0.332203, 0.546391, 0.272735, 0.010827, -0.763164, -0.442696, 0.381948, -0.676994, 0.753553, -0.031788, 0.915329, -0.738844, 0.269075, 0.434091, 0.991585, -0.944288, 0.258834, 0.162138, 0.565201, -0.492094, 0.170854, -0.139788, -0.710674], \"shape\": [3, 5, 2]}, \"expected\": {\"data\": [0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, -0.570441, -0.454673, -0.285321, 0.237249, 0.282682, 0.428035, 0.160547, -0.332203, 0.546391, 0.272735, 0.0, 0.0, 0.0, 0.0, 0.010827, -0.763164, -0.442696, 0.381948, -0.676994, 0.753553, -0.031788, 0.915329, -0.738844, 0.269075, 0.0, 0.0, 0.0, 0.0, 0.434091, 0.991585, -0.944288, 0.258834, 0.162138, 0.565201, -0.492094, 0.170854, -0.139788, -0.710674, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0], \"shape\": [5, 7, 2]}}, \"convolutional.ZeroPadding2D.1\": {\"input\": {\"data\": [0.275222, -0.793967, -0.468107, -0.841484, -0.295362, 0.78175, 0.068787, -0.261747, -0.625733, -0.042907, 0.861141, 0.85267, 0.956439, 0.717838, -0.99869, -0.963008, 0.013277, -0.180306, 0.832137, -0.385252, -0.524308, 0.659706, -0.905127, 0.526292, 0.832569, 0.084455, 0.23838, -0.046178, -0.735871, 0.776883], \"shape\": [3, 5, 2]}, \"expected\": {\"data\": [0.0, 0.0, 0.0, 0.0, 0.0, 0.275222, -0.793967, 0.0, 0.0, -0.468107, -0.841484, 0.0, 0.0, -0.295362, 0.78175, 0.0, 0.0, 0.068787, -0.261747, 0.0, 0.0, -0.625733, -0.042907, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.861141, 0.85267, 0.0, 0.0, 0.956439, 0.717838, 0.0, 0.0, -0.99869, -0.963008, 0.0, 0.0, 0.013277, -0.180306, 0.0, 0.0, 0.832137, -0.385252, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, -0.524308, 0.659706, 0.0, 0.0, -0.905127, 0.526292, 0.0, 0.0, 0.832569, 0.084455, 0.0, 0.0, 0.23838, -0.046178, 0.0, 0.0, -0.735871, 0.776883, 0.0, 0.0, 0.0, 0.0, 0.0], \"shape\": [3, 7, 4]}}, \"convolutional.ZeroPadding2D.2\": {\"input\": {\"data\": [-0.989173, -0.133618, -0.505338, 0.023259, 0.503982, -0.303769, -0.436321, 0.793911, 0.416102, 0.806405, -0.098342, -0.738022, -0.982676, 0.805073, 0.741244, -0.941634, -0.253526, -0.136544, -0.295772, 0.207565, -0.517246, -0.686963, -0.176235, -0.354111, -0.862411, -0.969822, 0.200074, 0.290718, -0.038623, 0.294839, 0.247968, 0.557946, -0.455596, 0.6624, 0.879529, -0.466772, 0.40423, 0.213794, 0.645662, -0.044634, -0.552595, 0.771242, -0.131944, -0.172725, 0.700856, -0.001994, 0.606737, -0.593306], \"shape\": [2, 6, 4]}, \"expected\": {\"data\": [0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, -0.989173, -0.133618, -0.505338, 0.023259, 0.503982, -0.303769, -0.436321, 0.793911, 0.416102, 0.806405, -0.098342, -0.738022, -0.982676, 0.805073, 0.741244, -0.941634, -0.253526, -0.136544, -0.295772, 0.207565, -0.517246, -0.686963, -0.176235, -0.354111, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, -0.862411, -0.969822, 0.200074, 0.290718, -0.038623, 0.294839, 0.247968, 0.557946, -0.455596, 0.6624, 0.879529, -0.466772, 0.40423, 0.213794, 0.645662, -0.044634, -0.552595, 0.771242, -0.131944, -0.172725, 0.700856, -0.001994, 0.606737, -0.593306, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0], \"shape\": [8, 10, 4]}}, \"convolutional.ZeroPadding2D.3\": {\"input\": {\"data\": [-0.47588, 0.366985, 0.040173, 0.015578, -0.906159, 0.241982, -0.771299, -0.443554, -0.56404, -0.17751, 0.541277, -0.233327, 0.024369, 0.858275, 0.496191, 0.980574, -0.59522, 0.480899, 0.392553, -0.191718, 0.055121, 0.289836, -0.498339, 0.800408, 0.132679, -0.716649, 0.840092, -0.088837, -0.538209, -0.580887, -0.370128, -0.924933, -0.161736, -0.205619, 0.793729, -0.354472, 0.687519, 0.272041, -0.943352, -0.730959, -0.330419, -0.479307, 0.520387, 0.137906, 0.897598, 0.869815, 0.978562, 0.731387], \"shape\": [2, 6, 4]}, \"expected\": {\"data\": [0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, -0.47588, 0.366985, 0.040173, 0.015578, 0.0, 0.0, 0.0, 0.0, -0.906159, 0.241982, -0.771299, -0.443554, 0.0, 0.0, 0.0, 0.0, -0.56404, -0.17751, 0.541277, -0.233327, 0.0, 0.0, 0.0, 0.0, 0.024369, 0.858275, 0.496191, 0.980574, 0.0, 0.0, 0.0, 0.0, -0.59522, 0.480899, 0.392553, -0.191718, 0.0, 0.0, 0.0, 0.0, 0.055121, 0.289836, -0.498339, 0.800408, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.132679, -0.716649, 0.840092, -0.088837, 0.0, 0.0, 0.0, 0.0, -0.538209, -0.580887, -0.370128, -0.924933, 0.0, 0.0, 0.0, 0.0, -0.161736, -0.205619, 0.793729, -0.354472, 0.0, 0.0, 0.0, 0.0, 0.687519, 0.272041, -0.943352, -0.730959, 0.0, 0.0, 0.0, 0.0, -0.330419, -0.479307, 0.520387, 0.137906, 0.0, 0.0, 0.0, 0.0, 0.897598, 0.869815, 0.978562, 0.731387, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0], \"shape\": [2, 12, 8]}}, \"convolutional.ZeroPadding2D.4\": {\"input\": {\"data\": [0.024124, 0.280236, -0.680013, -0.042458, -0.164273, 0.358409, 0.511014, -0.585272, -0.481578, 0.692702, 0.64189, -0.400252, -0.922248, -0.735105, -0.533918, 0.071402, 0.310474, 0.369868, 0.767931, -0.842066, -0.091189, 0.835301, -0.480484, 0.950819, -0.002131, 0.086491, -0.480947, 0.405572, -0.083803, -0.921447, -0.291545, 0.674087, -0.560444, 0.881432, 0.076544, 0.63549, -0.185686, -0.89067, 0.709257, -0.256164, -0.873627, 0.330906, -0.583426, -0.51286, 0.751485, 0.030077, -0.998662, 0.175588], \"shape\": [2, 6, 4]}, \"expected\": {\"data\": [0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.024124, 0.280236, -0.680013, -0.042458, -0.164273, 0.358409, 0.511014, -0.585272, -0.481578, 0.692702, 0.64189, -0.400252, -0.922248, -0.735105, -0.533918, 0.071402, 0.310474, 0.369868, 0.767931, -0.842066, -0.091189, 0.835301, -0.480484, 0.950819, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, -0.002131, 0.086491, -0.480947, 0.405572, -0.083803, -0.921447, -0.291545, 0.674087, -0.560444, 0.881432, 0.076544, 0.63549, -0.185686, -0.89067, 0.709257, -0.256164, -0.873627, 0.330906, -0.583426, -0.51286, 0.751485, 0.030077, -0.998662, 0.175588, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0], \"shape\": [5, 13, 4]}}, \"convolutional.ZeroPadding2D.5\": {\"input\": {\"data\": [-0.072127, -0.553929, -0.355552, -0.936405, 0.556627, -0.482815, -0.225337, -0.640315, 0.023246, -0.638412, -0.797304, 0.284959, -0.569771, -0.685286, 0.002481, 0.398436, 0.11345, 0.416629, -0.526713, 0.962183, 0.021732, 0.922994, 0.07991, -0.164385, 0.461494, -0.982877, -0.142158, 0.175741, -0.124041, -0.875609, -0.528708, -0.911127, 0.782257, -0.509403, 0.573973, -0.151309, -0.895619, -0.721042, 0.483952, -0.745814, -0.588825, -0.154089, 0.423904, -0.262707, -0.517175, -0.535505, -0.266104, -0.46314], \"shape\": [2, 6, 4]}, \"expected\": {\"data\": [0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, -0.072127, -0.553929, -0.355552, -0.936405, 0.556627, -0.482815, -0.225337, -0.640315, 0.023246, -0.638412, -0.797304, 0.284959, -0.569771, -0.685286, 0.002481, 0.398436, 0.11345, 0.416629, -0.526713, 0.962183, 0.021732, 0.922994, 0.07991, -0.164385, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.461494, -0.982877, -0.142158, 0.175741, -0.124041, -0.875609, -0.528708, -0.911127, 0.782257, -0.509403, 0.573973, -0.151309, -0.895619, -0.721042, 0.483952, -0.745814, -0.588825, -0.154089, 0.423904, -0.262707, -0.517175, -0.535505, -0.266104, -0.46314, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0], \"shape\": [6, 10, 4]}}}\n" ] } ], "source": [ "print(json.dumps(DATA))" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "collapsed": true }, "outputs": [], "source": [] } ], "metadata": { "kernelspec": { "display_name": "Python 3", "language": "python", "name": "python3" }, "language_info": { "codemirror_mode": { "name": "ipython", "version": 3 }, "file_extension": ".py", "mimetype": "text/x-python", "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", "version": "3.6.3" } }, "nbformat": 4, "nbformat_minor": 1 }
mit
steve-federowicz/om
examples/heatmap.ipynb
2
197216
{ "metadata": { "name": "", "signature": "sha256:1434b4363d90325faea6f4f9fe48a9b304b02d775a0ded14de52e47ccad2d479" }, "nbformat": 3, "nbformat_minor": 0, "worksheets": [ { "cells": [ { "cell_type": "code", "collapsed": false, "input": [ "from om import base, settings\n", "from om.components import *\n", "from om.data import *\n", "from om.util import *\n", "\n", "import pandas as pd\n", "import numpy as np\n", "import math,cobra\n", "\n", "ome = base.Session()\n", "#model = cobra.io.read_sbml_model('/Users/dbuser/Dropbox/om_data/annotation/iJO1366.xml')" ], "language": "python", "metadata": {}, "outputs": [] }, { "cell_type": "code", "collapsed": false, "input": [ "ome.query(GeneGroup).all()" ], "language": "python", "metadata": {}, "outputs": [] }, { "cell_type": "code", "collapsed": false, "input": [ "from IPython.display import display\n", "from IPython.html import widgets as W\n", "from IPython.utils import traitlets as T\n", "\n", "class HeatmapWidget(W.DOMWidget):\n", " _view_name = T.Unicode('HeatmapView', sync=True)\n", " heatmap_data = T.Unicode(sync=True)\n", " row_labels = T.Unicode(sync=True)\n", " col_labels = T.Unicode(sync=True)\n", " html_style = T.Unicode(sync=True)" ], "language": "python", "metadata": {}, "outputs": [], "prompt_number": 2 }, { "cell_type": "code", "collapsed": false, "input": [ "ged = GeneExpressionData\n", "x = ome.query(ged).filter(and_(ged.gene_name.in_(['sucA','sucB','sucC','sucD','frdA','frdB','frdC','frdD','gapA']),\n", " ged.dataset_type == 'array_experiment')).all()" ], "language": "python", "metadata": {}, "outputs": [], "prompt_number": 3 }, { "cell_type": "code", "collapsed": false, "input": [ "x" ], "language": "python", "metadata": {}, "outputs": [ { "metadata": {}, "output_type": "pyout", "prompt_number": 4, "text": [ "[Gene: (b0726, sucA), Value: 8.87, std: 0.20, Condition: glucose, NH4Cl, anaerobic, Strain: wt, array_experiment,\n", " Gene: (b0726, sucA), Value: 13.67, std: 0.02, Condition: glucose, NH4Cl, anaerobic, Strain: delta-arcA, array_experiment,\n", " Gene: (b0726, sucA), Value: 13.28, std: 0.14, Condition: glucose, NH4Cl, anaerobic, Strain: delta-arcAfnr, array_experiment,\n", " Gene: (b0726, sucA), Value: 9.97, std: 0.76, Condition: glucose, NH4Cl, anaerobic, Strain: delta-fnr, array_experiment,\n", " Gene: (b0726, sucA), Value: 8.49, std: 0.09, Condition: glucose, NH4Cl, anaerobic, Strain: delta-narL, array_experiment,\n", " Gene: (b0726, sucA), Value: 8.69, std: 0.16, Condition: glucose, NH4Cl, anaerobic, Strain: delta-narLnarP, array_experiment,\n", " Gene: (b0726, sucA), Value: 8.74, std: 0.23, Condition: glucose, NH4Cl, anaerobic, Strain: delta-narP, array_experiment,\n", " Gene: (b0727, sucB), Value: 9.84, std: 0.26, Condition: glucose, NH4Cl, anaerobic, Strain: wt, array_experiment,\n", " Gene: (b0727, sucB), Value: 13.90, std: 0.04, Condition: glucose, NH4Cl, anaerobic, Strain: delta-arcA, array_experiment,\n", " Gene: (b0727, sucB), Value: 13.64, std: 0.20, Condition: glucose, NH4Cl, anaerobic, Strain: delta-arcAfnr, array_experiment,\n", " Gene: (b0727, sucB), Value: 11.08, std: 0.54, Condition: glucose, NH4Cl, anaerobic, Strain: delta-fnr, array_experiment,\n", " Gene: (b0727, sucB), Value: 9.69, std: 0.12, Condition: glucose, NH4Cl, anaerobic, Strain: delta-narL, array_experiment,\n", " Gene: (b0727, sucB), Value: 9.72, std: 0.10, Condition: glucose, NH4Cl, anaerobic, Strain: delta-narLnarP, array_experiment,\n", " Gene: (b0727, sucB), Value: 9.78, std: 0.18, Condition: glucose, NH4Cl, anaerobic, Strain: delta-narP, array_experiment,\n", " Gene: (b0728, sucC), Value: 10.77, std: 0.15, Condition: glucose, NH4Cl, anaerobic, Strain: wt, array_experiment,\n", " Gene: (b0728, sucC), Value: 14.50, std: 0.05, Condition: glucose, NH4Cl, anaerobic, Strain: delta-arcA, array_experiment,\n", " Gene: (b0728, sucC), Value: 14.50, std: 0.16, Condition: glucose, NH4Cl, anaerobic, Strain: delta-arcAfnr, array_experiment,\n", " Gene: (b0728, sucC), Value: 12.07, std: 0.41, Condition: glucose, NH4Cl, anaerobic, Strain: delta-fnr, array_experiment,\n", " Gene: (b0728, sucC), Value: 10.72, std: 0.04, Condition: glucose, NH4Cl, anaerobic, Strain: delta-narL, array_experiment,\n", " Gene: (b0728, sucC), Value: 10.68, std: 0.03, Condition: glucose, NH4Cl, anaerobic, Strain: delta-narLnarP, array_experiment,\n", " Gene: (b0728, sucC), Value: 10.78, std: 0.08, Condition: glucose, NH4Cl, anaerobic, Strain: delta-narP, array_experiment,\n", " Gene: (b0729, sucD), Value: 5.88, std: 0.13, Condition: glucose, NH4Cl, anaerobic, Strain: wt, array_experiment,\n", " Gene: (b0729, sucD), Value: 11.41, std: 0.12, Condition: glucose, NH4Cl, anaerobic, Strain: delta-arcA, array_experiment,\n", " Gene: (b0729, sucD), Value: 11.16, std: 0.40, Condition: glucose, NH4Cl, anaerobic, Strain: delta-arcAfnr, array_experiment,\n", " Gene: (b0729, sucD), Value: 7.56, std: 0.73, Condition: glucose, NH4Cl, anaerobic, Strain: delta-fnr, array_experiment,\n", " Gene: (b0729, sucD), Value: 5.79, std: 0.05, Condition: glucose, NH4Cl, anaerobic, Strain: delta-narL, array_experiment,\n", " Gene: (b0729, sucD), Value: 5.73, std: 0.07, Condition: glucose, NH4Cl, anaerobic, Strain: delta-narLnarP, array_experiment,\n", " Gene: (b0729, sucD), Value: 5.79, std: 0.05, Condition: glucose, NH4Cl, anaerobic, Strain: delta-narP, array_experiment,\n", " Gene: (b1779, gapA), Value: 15.26, std: 0.05, Condition: glucose, NH4Cl, anaerobic, Strain: wt, array_experiment,\n", " Gene: (b1779, gapA), Value: 15.20, std: 0.06, Condition: glucose, NH4Cl, anaerobic, Strain: delta-arcA, array_experiment,\n", " Gene: (b1779, gapA), Value: 15.07, std: 0.07, Condition: glucose, NH4Cl, anaerobic, Strain: delta-arcAfnr, array_experiment,\n", " Gene: (b1779, gapA), Value: 15.07, std: 0.06, Condition: glucose, NH4Cl, anaerobic, Strain: delta-fnr, array_experiment,\n", " Gene: (b1779, gapA), Value: 15.31, std: 0.02, Condition: glucose, NH4Cl, anaerobic, Strain: delta-narL, array_experiment,\n", " Gene: (b1779, gapA), Value: 15.27, std: 0.02, Condition: glucose, NH4Cl, anaerobic, Strain: delta-narLnarP, array_experiment,\n", " Gene: (b1779, gapA), Value: 15.31, std: 0.02, Condition: glucose, NH4Cl, anaerobic, Strain: delta-narP, array_experiment,\n", " Gene: (b4151, frdD), Value: 7.53, std: 1.33, Condition: glucose, NH4Cl, anaerobic, Strain: wt, array_experiment,\n", " Gene: (b4151, frdD), Value: 5.54, std: 0.71, Condition: glucose, NH4Cl, anaerobic, Strain: delta-arcA, array_experiment,\n", " Gene: (b4151, frdD), Value: 4.73, std: 0.12, Condition: glucose, NH4Cl, anaerobic, Strain: delta-arcAfnr, array_experiment,\n", " Gene: (b4151, frdD), Value: 4.02, std: 0.62, Condition: glucose, NH4Cl, anaerobic, Strain: delta-fnr, array_experiment,\n", " Gene: (b4151, frdD), Value: 9.76, std: 0.32, Condition: glucose, NH4Cl, anaerobic, Strain: delta-narL, array_experiment,\n", " Gene: (b4151, frdD), Value: 9.07, std: 0.23, Condition: glucose, NH4Cl, anaerobic, Strain: delta-narLnarP, array_experiment,\n", " Gene: (b4151, frdD), Value: 8.50, std: 0.36, Condition: glucose, NH4Cl, anaerobic, Strain: delta-narP, array_experiment,\n", " Gene: (b4152, frdC), Value: 4.63, std: 0.45, Condition: glucose, NH4Cl, anaerobic, Strain: wt, array_experiment,\n", " Gene: (b4152, frdC), Value: 3.66, std: 0.66, Condition: glucose, NH4Cl, anaerobic, Strain: delta-arcA, array_experiment,\n", " Gene: (b4152, frdC), Value: 2.58, std: 0.06, Condition: glucose, NH4Cl, anaerobic, Strain: delta-arcAfnr, array_experiment,\n", " Gene: (b4152, frdC), Value: 2.36, std: 0.09, Condition: glucose, NH4Cl, anaerobic, Strain: delta-fnr, array_experiment,\n", " Gene: (b4152, frdC), Value: 5.23, std: 0.28, Condition: glucose, NH4Cl, anaerobic, Strain: delta-narL, array_experiment,\n", " Gene: (b4152, frdC), Value: 4.75, std: 0.21, Condition: glucose, NH4Cl, anaerobic, Strain: delta-narLnarP, array_experiment,\n", " Gene: (b4152, frdC), Value: 5.11, std: 0.26, Condition: glucose, NH4Cl, anaerobic, Strain: delta-narP, array_experiment,\n", " Gene: (b4153, frdB), Value: 9.59, std: 0.56, Condition: glucose, NH4Cl, anaerobic, Strain: wt, array_experiment,\n", " Gene: (b4153, frdB), Value: 8.70, std: 0.58, Condition: glucose, NH4Cl, anaerobic, Strain: delta-arcA, array_experiment,\n", " Gene: (b4153, frdB), Value: 7.41, std: 0.07, Condition: glucose, NH4Cl, anaerobic, Strain: delta-arcAfnr, array_experiment,\n", " Gene: (b4153, frdB), Value: 5.66, std: 0.66, Condition: glucose, NH4Cl, anaerobic, Strain: delta-fnr, array_experiment,\n", " Gene: (b4153, frdB), Value: 9.84, std: 0.20, Condition: glucose, NH4Cl, anaerobic, Strain: delta-narL, array_experiment,\n", " Gene: (b4153, frdB), Value: 9.92, std: 0.05, Condition: glucose, NH4Cl, anaerobic, Strain: delta-narLnarP, array_experiment,\n", " Gene: (b4153, frdB), Value: 10.19, std: 0.24, Condition: glucose, NH4Cl, anaerobic, Strain: delta-narP, array_experiment,\n", " Gene: (b4154, frdA), Value: 11.04, std: 0.57, Condition: glucose, NH4Cl, anaerobic, Strain: wt, array_experiment,\n", " Gene: (b4154, frdA), Value: 10.09, std: 0.48, Condition: glucose, NH4Cl, anaerobic, Strain: delta-arcA, array_experiment,\n", " Gene: (b4154, frdA), Value: 9.40, std: 0.06, Condition: glucose, NH4Cl, anaerobic, Strain: delta-arcAfnr, array_experiment,\n", " Gene: (b4154, frdA), Value: 8.06, std: 0.84, Condition: glucose, NH4Cl, anaerobic, Strain: delta-fnr, array_experiment,\n", " Gene: (b4154, frdA), Value: 11.52, std: 0.33, Condition: glucose, NH4Cl, anaerobic, Strain: delta-narL, array_experiment,\n", " Gene: (b4154, frdA), Value: 11.50, std: 0.10, Condition: glucose, NH4Cl, anaerobic, Strain: delta-narLnarP, array_experiment,\n", " Gene: (b4154, frdA), Value: 11.77, std: 0.17, Condition: glucose, NH4Cl, anaerobic, Strain: delta-narP, array_experiment,\n", " Gene: (b0726, sucA), Value: 11.86, std: 0.10, Condition: fructose, NH4Cl, O2, Strain: delta-crp, array_experiment,\n", " Gene: (b0726, sucA), Value: 13.67, std: 0.08, Condition: fructose, NH4Cl, O2, Strain: wt, array_experiment,\n", " Gene: (b0727, sucB), Value: 12.23, std: 0.06, Condition: fructose, NH4Cl, O2, Strain: delta-crp, array_experiment,\n", " Gene: (b0727, sucB), Value: 13.92, std: 0.04, Condition: fructose, NH4Cl, O2, Strain: wt, array_experiment,\n", " Gene: (b0728, sucC), Value: 11.91, std: 0.03, Condition: fructose, NH4Cl, O2, Strain: delta-crp, array_experiment,\n", " Gene: (b0728, sucC), Value: 14.21, std: 0.03, Condition: fructose, NH4Cl, O2, Strain: wt, array_experiment,\n", " Gene: (b0729, sucD), Value: 12.22, std: 0.03, Condition: fructose, NH4Cl, O2, Strain: delta-crp, array_experiment,\n", " Gene: (b0729, sucD), Value: 14.49, std: 0.03, Condition: fructose, NH4Cl, O2, Strain: wt, array_experiment,\n", " Gene: (b1779, gapA), Value: 14.93, std: 0.01, Condition: fructose, NH4Cl, O2, Strain: delta-crp, array_experiment,\n", " Gene: (b1779, gapA), Value: 15.05, std: 0.04, Condition: fructose, NH4Cl, O2, Strain: wt, array_experiment,\n", " Gene: (b4151, frdD), Value: 4.60, std: 0.27, Condition: fructose, NH4Cl, O2, Strain: delta-crp, array_experiment,\n", " Gene: (b4151, frdD), Value: 7.23, std: 1.11, Condition: fructose, NH4Cl, O2, Strain: wt, array_experiment,\n", " Gene: (b4152, frdC), Value: 3.98, std: 0.17, Condition: fructose, NH4Cl, O2, Strain: delta-crp, array_experiment,\n", " Gene: (b4152, frdC), Value: 6.66, std: 1.32, Condition: fructose, NH4Cl, O2, Strain: wt, array_experiment,\n", " Gene: (b4153, frdB), Value: 7.90, std: 0.29, Condition: fructose, NH4Cl, O2, Strain: delta-crp, array_experiment,\n", " Gene: (b4153, frdB), Value: 11.45, std: 0.91, Condition: fructose, NH4Cl, O2, Strain: wt, array_experiment,\n", " Gene: (b4154, frdA), Value: 7.42, std: 0.19, Condition: fructose, NH4Cl, O2, Strain: delta-crp, array_experiment,\n", " Gene: (b4154, frdA), Value: 12.05, std: 0.45, Condition: fructose, NH4Cl, O2, Strain: wt, array_experiment,\n", " Gene: (b0726, sucA), Value: 12.88, std: 0.06, Condition: glucose, NH4Cl, O2, Strain: delta-crp, array_experiment,\n", " Gene: (b0726, sucA), Value: 13.23, std: 0.18, Condition: glucose, NH4Cl, O2, Strain: wt, array_experiment,\n", " Gene: (b0726, sucA), Value: 13.54, std: 0.12, Condition: glucose, NH4Cl, O2, Strain: delta-arcA, array_experiment,\n", " Gene: (b0726, sucA), Value: 13.23, std: 0.03, Condition: glucose, NH4Cl, O2, Strain: delta-arcAfnr, array_experiment,\n", " Gene: (b0726, sucA), Value: 12.78, std: 0.09, Condition: glucose, NH4Cl, O2, Strain: delta-fnr, array_experiment,\n", " Gene: (b0726, sucA), Value: 12.89, std: 0.05, Condition: glucose, NH4Cl, O2, Strain: delta-cra, array_experiment,\n", " Gene: (b0726, sucA), Value: 13.49, std: 0.06, Condition: glucose, NH4Cl, O2, Strain: delta-lrp, array_experiment,\n", " Gene: (b0726, sucA), Value: 12.17, std: 0.26, Condition: glucose, NH4Cl, O2, Strain: delta-purR, array_experiment,\n", " Gene: (b0727, sucB), Value: 13.10, std: 0.02, Condition: glucose, NH4Cl, O2, Strain: delta-crp, array_experiment,\n", " Gene: (b0727, sucB), Value: 13.54, std: 0.10, Condition: glucose, NH4Cl, O2, Strain: wt, array_experiment,\n", " Gene: (b0727, sucB), Value: 13.71, std: 0.14, Condition: glucose, NH4Cl, O2, Strain: delta-arcA, array_experiment,\n", " Gene: (b0727, sucB), Value: 13.56, std: 0.07, Condition: glucose, NH4Cl, O2, Strain: delta-arcAfnr, array_experiment,\n", " Gene: (b0727, sucB), Value: 13.30, std: 0.12, Condition: glucose, NH4Cl, O2, Strain: delta-fnr, array_experiment,\n", " Gene: (b0727, sucB), Value: 13.35, std: 0.03, Condition: glucose, NH4Cl, O2, Strain: delta-cra, array_experiment,\n", " Gene: (b0727, sucB), Value: 13.64, std: 0.02, Condition: glucose, NH4Cl, O2, Strain: delta-lrp, array_experiment,\n", " Gene: (b0727, sucB), Value: 13.08, std: 0.08, Condition: glucose, NH4Cl, O2, Strain: delta-purR, array_experiment,\n", " Gene: (b0728, sucC), Value: 12.99, std: 0.02, Condition: glucose, NH4Cl, O2, Strain: delta-crp, array_experiment,\n", " Gene: (b0728, sucC), Value: 14.01, std: 0.25, Condition: glucose, NH4Cl, O2, Strain: wt, array_experiment,\n", " Gene: (b0728, sucC), Value: 14.45, std: 0.08, Condition: glucose, NH4Cl, O2, Strain: delta-arcA, array_experiment,\n", " Gene: (b0728, sucC), Value: 14.47, std: 0.08, Condition: glucose, NH4Cl, O2, Strain: delta-arcAfnr, array_experiment,\n", " Gene: (b0728, sucC), Value: 13.96, std: 0.16, Condition: glucose, NH4Cl, O2, Strain: delta-fnr, array_experiment,\n", " Gene: (b0728, sucC), Value: 13.18, std: 0.05, Condition: glucose, NH4Cl, O2, Strain: delta-cra, array_experiment,\n", " Gene: (b0728, sucC), Value: 13.72, std: 0.03, Condition: glucose, NH4Cl, O2, Strain: delta-lrp, array_experiment,\n", " Gene: (b0728, sucC), Value: 12.97, std: 0.02, Condition: glucose, NH4Cl, O2, Strain: delta-purR, array_experiment,\n", " Gene: (b0729, sucD), Value: 13.26, std: 0.06, Condition: glucose, NH4Cl, O2, Strain: delta-crp, array_experiment,\n", " Gene: (b0729, sucD), Value: 11.71, std: 1.73, Condition: glucose, NH4Cl, O2, Strain: wt, array_experiment,\n", " Gene: (b0729, sucD), Value: 11.57, std: 0.13, Condition: glucose, NH4Cl, O2, Strain: delta-arcA, array_experiment,\n", " Gene: (b0729, sucD), Value: 11.21, std: 0.24, Condition: glucose, NH4Cl, O2, Strain: delta-arcAfnr, array_experiment,\n", " Gene: (b0729, sucD), Value: 10.60, std: 0.39, Condition: glucose, NH4Cl, O2, Strain: delta-fnr, array_experiment,\n", " Gene: (b0729, sucD), Value: 13.35, std: 0.00, Condition: glucose, NH4Cl, O2, Strain: delta-cra, array_experiment,\n", " Gene: (b0729, sucD), Value: 13.88, std: 0.06, Condition: glucose, NH4Cl, O2, Strain: delta-lrp, array_experiment,\n", " Gene: (b0729, sucD), Value: 13.35, std: 0.00, Condition: glucose, NH4Cl, O2, Strain: delta-purR, array_experiment,\n", " Gene: (b1779, gapA), Value: 14.66, std: 0.02, Condition: glucose, NH4Cl, O2, Strain: delta-crp, array_experiment,\n", " Gene: (b1779, gapA), Value: 14.74, std: 0.22, Condition: glucose, NH4Cl, O2, Strain: wt, array_experiment,\n", " Gene: (b1779, gapA), Value: 14.75, std: 0.11, Condition: glucose, NH4Cl, O2, Strain: delta-arcA, array_experiment,\n", " Gene: (b1779, gapA), Value: 14.95, std: 0.03, Condition: glucose, NH4Cl, O2, Strain: delta-arcAfnr, array_experiment,\n", " Gene: (b1779, gapA), Value: 14.78, std: 0.04, Condition: glucose, NH4Cl, O2, Strain: delta-fnr, array_experiment,\n", " Gene: (b1779, gapA), Value: 15.12, std: 0.02, Condition: glucose, NH4Cl, O2, Strain: delta-cra, array_experiment,\n", " Gene: (b1779, gapA), Value: 15.04, std: 0.09, Condition: glucose, NH4Cl, O2, Strain: delta-lrp, array_experiment,\n", " Gene: (b1779, gapA), Value: 15.12, std: 0.01, Condition: glucose, NH4Cl, O2, Strain: delta-purR, array_experiment,\n", " Gene: (b4151, frdD), Value: 4.41, std: 0.37, Condition: glucose, NH4Cl, O2, Strain: delta-crp, array_experiment,\n", " Gene: (b4151, frdD), Value: 4.11, std: 0.38, Condition: glucose, NH4Cl, O2, Strain: wt, array_experiment,\n", " Gene: (b4151, frdD), Value: 3.27, std: 0.00, Condition: glucose, NH4Cl, O2, Strain: delta-arcA, array_experiment,\n", " Gene: (b4151, frdD), Value: 2.86, std: 0.34, Condition: glucose, NH4Cl, O2, Strain: delta-arcAfnr, array_experiment,\n", " Gene: (b4151, frdD), Value: 3.15, std: 0.00, Condition: glucose, NH4Cl, O2, Strain: delta-fnr, array_experiment,\n", " Gene: (b4151, frdD), Value: 11.15, std: 0.13, Condition: glucose, NH4Cl, O2, Strain: delta-cra, array_experiment,\n", " Gene: (b4151, frdD), Value: 7.80, std: 1.34, Condition: glucose, NH4Cl, O2, Strain: delta-lrp, array_experiment,\n", " Gene: (b4151, frdD), Value: 11.39, std: 0.72, Condition: glucose, NH4Cl, O2, Strain: delta-purR, array_experiment,\n", " Gene: (b4152, frdC), Value: 4.12, std: 0.08, Condition: glucose, NH4Cl, O2, Strain: delta-crp, array_experiment,\n", " Gene: (b4152, frdC), Value: 2.54, std: 0.36, Condition: glucose, NH4Cl, O2, Strain: wt, array_experiment,\n", " Gene: (b4152, frdC), Value: 2.26, std: 0.01, Condition: glucose, NH4Cl, O2, Strain: delta-arcA, array_experiment,\n", " Gene: (b4152, frdC), Value: 2.25, std: 0.00, Condition: glucose, NH4Cl, O2, Strain: delta-arcAfnr, array_experiment,\n", " Gene: (b4152, frdC), Value: 2.25, std: 0.00, Condition: glucose, NH4Cl, O2, Strain: delta-fnr, array_experiment,\n", " Gene: (b4152, frdC), Value: 11.38, std: 0.08, Condition: glucose, NH4Cl, O2, Strain: delta-cra, array_experiment,\n", " Gene: (b4152, frdC), Value: 8.11, std: 1.75, Condition: glucose, NH4Cl, O2, Strain: delta-lrp, array_experiment,\n", " Gene: (b4152, frdC), Value: 11.52, std: 0.46, Condition: glucose, NH4Cl, O2, Strain: delta-purR, array_experiment,\n", " Gene: (b4153, frdB), Value: 9.12, std: 0.26, Condition: glucose, NH4Cl, O2, Strain: delta-crp, array_experiment,\n", " Gene: (b4153, frdB), Value: 4.88, std: 0.30, Condition: glucose, NH4Cl, O2, Strain: wt, array_experiment,\n", " Gene: (b4153, frdB), Value: 4.68, std: 0.05, Condition: glucose, NH4Cl, O2, Strain: delta-arcA, array_experiment,\n", " Gene: (b4153, frdB), Value: 4.40, std: 0.00, Condition: glucose, NH4Cl, O2, Strain: delta-arcAfnr, array_experiment,\n", " Gene: (b4153, frdB), Value: 4.61, std: 0.00, Condition: glucose, NH4Cl, O2, Strain: delta-fnr, array_experiment,\n", " Gene: (b4153, frdB), Value: 13.79, std: 0.11, Condition: glucose, NH4Cl, O2, Strain: delta-cra, array_experiment,\n", " Gene: (b4153, frdB), Value: 12.77, std: 0.72, Condition: glucose, NH4Cl, O2, Strain: delta-lrp, array_experiment,\n", " Gene: (b4153, frdB), Value: 13.94, std: 0.25, Condition: glucose, NH4Cl, O2, Strain: delta-purR, array_experiment,\n", " Gene: (b4154, frdA), Value: 8.82, std: 0.19, Condition: glucose, NH4Cl, O2, Strain: delta-crp, array_experiment,\n", " Gene: (b4154, frdA), Value: 6.32, std: 0.97, Condition: glucose, NH4Cl, O2, Strain: wt, array_experiment,\n", " Gene: (b4154, frdA), Value: 7.24, std: 0.21, Condition: glucose, NH4Cl, O2, Strain: delta-arcA, array_experiment,\n", " Gene: (b4154, frdA), Value: 6.47, std: 0.70, Condition: glucose, NH4Cl, O2, Strain: delta-arcAfnr, array_experiment,\n", " Gene: (b4154, frdA), Value: 6.96, std: 0.29, Condition: glucose, NH4Cl, O2, Strain: delta-fnr, array_experiment,\n", " Gene: (b4154, frdA), Value: 13.60, std: 0.08, Condition: glucose, NH4Cl, O2, Strain: delta-cra, array_experiment,\n", " Gene: (b4154, frdA), Value: 13.08, std: 0.45, Condition: glucose, NH4Cl, O2, Strain: delta-lrp, array_experiment,\n", " Gene: (b4154, frdA), Value: 13.85, std: 0.04, Condition: glucose, NH4Cl, O2, Strain: delta-purR, array_experiment,\n", " Gene: (b0726, sucA), Value: 9.26, std: 0.22, Condition: glucose, NH4Cl, NO3, Strain: wt, array_experiment,\n", " Gene: (b0726, sucA), Value: 9.11, std: 0.08, Condition: glucose, NH4Cl, NO3, Strain: delta-narL, array_experiment,\n", " Gene: (b0726, sucA), Value: 8.46, std: 0.35, Condition: glucose, NH4Cl, NO3, Strain: delta-narLnarP, array_experiment,\n", " Gene: (b0726, sucA), Value: 9.29, std: 0.14, Condition: glucose, NH4Cl, NO3, Strain: delta-narP, array_experiment,\n", " Gene: (b0727, sucB), Value: 10.81, std: 0.14, Condition: glucose, NH4Cl, NO3, Strain: wt, array_experiment,\n", " Gene: (b0727, sucB), Value: 10.06, std: 0.12, Condition: glucose, NH4Cl, NO3, Strain: delta-narL, array_experiment,\n", " Gene: (b0727, sucB), Value: 9.83, std: 0.20, Condition: glucose, NH4Cl, NO3, Strain: delta-narLnarP, array_experiment,\n", " Gene: (b0727, sucB), Value: 10.31, std: 0.13, Condition: glucose, NH4Cl, NO3, Strain: delta-narP, array_experiment,\n", " Gene: (b0728, sucC), Value: 11.91, std: 0.16, Condition: glucose, NH4Cl, NO3, Strain: wt, array_experiment,\n", " Gene: (b0728, sucC), Value: 11.50, std: 0.11, Condition: glucose, NH4Cl, NO3, Strain: delta-narL, array_experiment,\n", " Gene: (b0728, sucC), Value: 11.05, std: 0.13, Condition: glucose, NH4Cl, NO3, Strain: delta-narLnarP, array_experiment,\n", " Gene: (b0728, sucC), Value: 11.67, std: 0.05, Condition: glucose, NH4Cl, NO3, Strain: delta-narP, array_experiment,\n", " Gene: (b0729, sucD), Value: 6.23, std: 0.25, Condition: glucose, NH4Cl, NO3, Strain: wt, array_experiment,\n", " Gene: (b0729, sucD), Value: 6.14, std: 0.15, Condition: glucose, NH4Cl, NO3, Strain: delta-narL, array_experiment,\n", " Gene: (b0729, sucD), Value: 5.75, std: 0.04, Condition: glucose, NH4Cl, NO3, Strain: delta-narLnarP, array_experiment,\n", " Gene: (b0729, sucD), Value: 6.43, std: 0.00, Condition: glucose, NH4Cl, NO3, Strain: delta-narP, array_experiment,\n", " Gene: (b1779, gapA), Value: 15.15, std: 0.04, Condition: glucose, NH4Cl, NO3, Strain: wt, array_experiment,\n", " Gene: (b1779, gapA), Value: 15.19, std: 0.01, Condition: glucose, NH4Cl, NO3, Strain: delta-narL, array_experiment,\n", " Gene: (b1779, gapA), Value: 15.33, std: 0.04, Condition: glucose, NH4Cl, NO3, Strain: delta-narLnarP, array_experiment,\n", " Gene: (b1779, gapA), Value: 15.14, std: 0.04, Condition: glucose, NH4Cl, NO3, Strain: delta-narP, array_experiment,\n", " Gene: (b4151, frdD), Value: 3.77, std: 0.43, Condition: glucose, NH4Cl, NO3, Strain: wt, array_experiment,\n", " Gene: (b4151, frdD), Value: 9.26, std: 0.26, Condition: glucose, NH4Cl, NO3, Strain: delta-narL, array_experiment,\n", " Gene: (b4151, frdD), Value: 8.16, std: 0.76, Condition: glucose, NH4Cl, NO3, Strain: delta-narLnarP, array_experiment,\n", " Gene: (b4151, frdD), Value: 3.21, std: 0.06, Condition: glucose, NH4Cl, NO3, Strain: delta-narP, array_experiment,\n", " Gene: (b4152, frdC), Value: 2.25, std: 0.00, Condition: glucose, NH4Cl, NO3, Strain: wt, array_experiment,\n", " Gene: (b4152, frdC), Value: 4.98, std: 0.23, Condition: glucose, NH4Cl, NO3, Strain: delta-narL, array_experiment,\n", " Gene: (b4152, frdC), Value: 4.64, std: 0.30, Condition: glucose, NH4Cl, NO3, Strain: delta-narLnarP, array_experiment,\n", " Gene: (b4152, frdC), Value: 2.25, std: 0.00, Condition: glucose, NH4Cl, NO3, Strain: delta-narP, array_experiment,\n", " Gene: (b4153, frdB), Value: 4.50, std: 0.04, Condition: glucose, NH4Cl, NO3, Strain: wt, array_experiment,\n", " Gene: (b4153, frdB), Value: 9.78, std: 0.07, Condition: glucose, NH4Cl, NO3, Strain: delta-narL, array_experiment,\n", " Gene: (b4153, frdB), Value: 9.49, std: 0.23, Condition: glucose, NH4Cl, NO3, Strain: delta-narLnarP, array_experiment,\n", " Gene: (b4153, frdB), Value: 4.62, std: 0.01, Condition: glucose, NH4Cl, NO3, Strain: delta-narP, array_experiment,\n", " Gene: (b4154, frdA), Value: 6.48, std: 0.46, Condition: glucose, NH4Cl, NO3, Strain: wt, array_experiment,\n", " Gene: (b4154, frdA), Value: 11.32, std: 0.33, Condition: glucose, NH4Cl, NO3, Strain: delta-narL, array_experiment,\n", " Gene: (b4154, frdA), Value: 11.31, std: 0.15, Condition: glucose, NH4Cl, NO3, Strain: delta-narLnarP, array_experiment,\n", " Gene: (b4154, frdA), Value: 7.09, std: 0.00, Condition: glucose, NH4Cl, NO3, Strain: delta-narP, array_experiment,\n", " Gene: (b0726, sucA), Value: 14.35, std: 0.05, Condition: acetate, NH4Cl, O2, Strain: wt, array_experiment,\n", " Gene: (b0726, sucA), Value: 14.53, std: 0.02, Condition: acetate, NH4Cl, O2, Strain: delta-cra, array_experiment,\n", " Gene: (b0727, sucB), Value: 14.50, std: 0.02, Condition: acetate, NH4Cl, O2, Strain: wt, array_experiment,\n", " Gene: (b0727, sucB), Value: 14.64, std: 0.01, Condition: acetate, NH4Cl, O2, Strain: delta-cra, array_experiment,\n", " Gene: (b0728, sucC), Value: 14.75, std: 0.01, Condition: acetate, NH4Cl, O2, Strain: wt, array_experiment,\n", " Gene: (b0728, sucC), Value: 14.84, std: 0.03, Condition: acetate, NH4Cl, O2, Strain: delta-cra, array_experiment,\n", " Gene: (b0729, sucD), Value: 15.04, std: 0.02, Condition: acetate, NH4Cl, O2, Strain: wt, array_experiment,\n", " Gene: (b0729, sucD), Value: 15.01, std: 0.07, Condition: acetate, NH4Cl, O2, Strain: delta-cra, array_experiment,\n", " Gene: (b1779, gapA), Value: 14.38, std: 0.01, Condition: acetate, NH4Cl, O2, Strain: wt, array_experiment,\n", " Gene: (b1779, gapA), Value: 15.18, std: 0.02, Condition: acetate, NH4Cl, O2, Strain: delta-cra, array_experiment,\n", " Gene: (b4151, frdD), Value: 9.18, std: 0.18, Condition: acetate, NH4Cl, O2, Strain: wt, array_experiment,\n", " Gene: (b4151, frdD), Value: 7.75, std: 0.18, Condition: acetate, NH4Cl, O2, Strain: delta-cra, array_experiment,\n", " Gene: (b4152, frdC), Value: 8.98, std: 0.28, Condition: acetate, NH4Cl, O2, Strain: wt, array_experiment,\n", " Gene: (b4152, frdC), Value: 6.74, std: 0.11, Condition: acetate, NH4Cl, O2, Strain: delta-cra, array_experiment,\n", " Gene: (b4153, frdB), Value: 12.79, std: 0.04, Condition: acetate, NH4Cl, O2, Strain: wt, array_experiment,\n", " Gene: (b4153, frdB), Value: 11.74, std: 0.16, Condition: acetate, NH4Cl, O2, Strain: delta-cra, array_experiment,\n", " Gene: (b4154, frdA), Value: 13.01, std: 0.14, Condition: acetate, NH4Cl, O2, Strain: wt, array_experiment,\n", " Gene: (b4154, frdA), Value: 11.87, std: 0.30, Condition: acetate, NH4Cl, O2, Strain: delta-cra, array_experiment,\n", " Gene: (b0726, sucA), Value: 13.54, std: 0.03, Condition: glucose, leucine, O2, Strain: wt, array_experiment,\n", " Gene: (b0726, sucA), Value: 13.23, std: 0.07, Condition: glucose, leucine, O2, Strain: delta-lrp, array_experiment,\n", " Gene: (b0727, sucB), Value: 13.65, std: 0.03, Condition: glucose, leucine, O2, Strain: wt, array_experiment,\n", " Gene: (b0727, sucB), Value: 13.39, std: 0.02, Condition: glucose, leucine, O2, Strain: delta-lrp, array_experiment,\n", " Gene: (b0728, sucC), Value: 13.51, std: 0.02, Condition: glucose, leucine, O2, Strain: wt, array_experiment,\n", " Gene: (b0728, sucC), Value: 13.46, std: 0.01, Condition: glucose, leucine, O2, Strain: delta-lrp, array_experiment,\n", " Gene: (b0729, sucD), Value: 13.68, std: 0.02, Condition: glucose, leucine, O2, Strain: wt, array_experiment,\n", " Gene: (b0729, sucD), Value: 13.64, std: 0.07, Condition: glucose, leucine, O2, Strain: delta-lrp, array_experiment,\n", " Gene: (b1779, gapA), Value: 14.65, std: 0.03, Condition: glucose, leucine, O2, Strain: wt, array_experiment,\n", " Gene: (b1779, gapA), Value: 15.02, std: 0.02, Condition: glucose, leucine, O2, Strain: delta-lrp, array_experiment,\n", " Gene: (b4151, frdD), Value: 6.33, std: 0.04, Condition: glucose, leucine, O2, Strain: wt, array_experiment,\n", " Gene: (b4151, frdD), Value: 6.90, std: 1.02, Condition: glucose, leucine, O2, Strain: delta-lrp, array_experiment,\n", " Gene: (b4152, frdC), Value: 5.72, std: 0.23, Condition: glucose, leucine, O2, Strain: wt, array_experiment,\n", " Gene: (b4152, frdC), Value: 6.87, std: 1.02, Condition: glucose, leucine, O2, Strain: delta-lrp, array_experiment,\n", " Gene: (b4153, frdB), Value: 10.71, std: 0.22, Condition: glucose, leucine, O2, Strain: wt, array_experiment,\n", " Gene: (b4153, frdB), Value: 12.55, std: 0.38, Condition: glucose, leucine, O2, Strain: delta-lrp, array_experiment,\n", " Gene: (b4154, frdA), Value: 10.63, std: 0.43, Condition: glucose, leucine, O2, Strain: wt, array_experiment,\n", " Gene: (b4154, frdA), Value: 12.57, std: 0.24, Condition: glucose, leucine, O2, Strain: delta-lrp, array_experiment,\n", " Gene: (b0726, sucA), Value: 11.36, std: 0.17, Condition: glucose, adenine, O2, Strain: wt, array_experiment,\n", " Gene: (b0726, sucA), Value: 11.45, std: 0.74, Condition: glucose, adenine, O2, Strain: delta-purR, array_experiment,\n", " Gene: (b0727, sucB), Value: 12.31, std: 0.06, Condition: glucose, adenine, O2, Strain: wt, array_experiment,\n", " Gene: (b0727, sucB), Value: 12.69, std: 0.33, Condition: glucose, adenine, O2, Strain: delta-purR, array_experiment,\n", " Gene: (b0728, sucC), Value: 11.71, std: 0.04, Condition: glucose, adenine, O2, Strain: wt, array_experiment,\n", " Gene: (b0728, sucC), Value: 12.13, std: 0.36, Condition: glucose, adenine, O2, Strain: delta-purR, array_experiment,\n", " Gene: (b0729, sucD), Value: 12.26, std: 0.26, Condition: glucose, adenine, O2, Strain: wt, array_experiment,\n", " Gene: (b0729, sucD), Value: 12.23, std: 0.38, Condition: glucose, adenine, O2, Strain: delta-purR, array_experiment,\n", " Gene: (b1779, gapA), Value: 14.40, std: 0.09, Condition: glucose, adenine, O2, Strain: wt, array_experiment,\n", " Gene: (b1779, gapA), Value: 14.43, std: 0.15, Condition: glucose, adenine, O2, Strain: delta-purR, array_experiment,\n", " Gene: (b4151, frdD), Value: 4.34, std: 0.62, Condition: glucose, adenine, O2, Strain: wt, array_experiment,\n", " Gene: (b4151, frdD), Value: 3.73, std: 0.51, Condition: glucose, adenine, O2, Strain: delta-purR, array_experiment,\n", " Gene: (b4152, frdC), Value: 2.95, std: 0.07, Condition: glucose, adenine, O2, Strain: wt, array_experiment,\n", " Gene: (b4152, frdC), Value: 2.98, std: 0.12, Condition: glucose, adenine, O2, Strain: delta-purR, array_experiment,\n", " Gene: (b4153, frdB), Value: 5.56, std: 0.20, Condition: glucose, adenine, O2, Strain: wt, array_experiment,\n", " Gene: (b4153, frdB), Value: 5.74, std: 0.50, Condition: glucose, adenine, O2, Strain: delta-purR, array_experiment,\n", " Gene: (b4154, frdA), Value: 5.98, std: 0.35, Condition: glucose, adenine, O2, Strain: wt, array_experiment,\n", " Gene: (b4154, frdA), Value: 7.71, std: 2.86, Condition: glucose, adenine, O2, Strain: delta-purR, array_experiment]" ] } ], "prompt_number": 4 }, { "cell_type": "code", "collapsed": false, "input": [ "genes = [ome.query(Gene).filter(Gene.name == x).one() for x in ['gapA','sucA','sucB','sucC']]\n", "genes_data = {gene: gene.data for gene in genes}\n", "\n", "col_labels = [x.data_set.name for x in genes_data.itervalues().next()]\n", "row_labels = [x.name for x in genes_data.keys()]\n", "\n", "heatmap_data = []\n", "for i,gene in enumerate(genes_data):\n", " for j,data in enumerate(genes_data[gene]):\n", " if data.value < 0: value = 1.\n", " else: value = data.value\n", " heatmap_data.append({\"row\": i+1, \"col\": j+1, \"value\": int(np.log(value))})\n" ], "language": "python", "metadata": {}, "outputs": [], "prompt_number": 5 }, { "cell_type": "code", "collapsed": false, "input": [ "%%javascript\n", "\n", "require.config({paths: {d3: \"https://mpld3.github.io/js/d3.v3.min\"}});\n", "\n", "require([\"widgets/js/widget\", \"d3\"], function(WidgetManager, d3){\n", " var HeatmapView = IPython.DOMWidgetView.extend({\n", "\n", " render: function(){\n", " \n", " this.$el.append(this.model.get(\"html_style\"));\n", " this.svg = d3.select(this.el).append(\"svg\")\n", " .attr({\n", " width: 600,\n", " height: 600\n", " });\n", " \n", " \n", " this.update();\n", " },\n", " update: function(){\n", " var margin = { top: 150, right: 10, bottom: 50, left: 100 },\n", " cellSize=12,\n", " width = cellSize*col_number, // - margin.left - margin.right,\n", " height = cellSize*row_number , // - margin.top - margin.bottom,\n", " //gridSize = Math.floor(width / 24),\n", " legendElementWidth = cellSize*2.5,\n", " colorBuckets = 21,\n", " colors = ['#005824','#1A693B','#347B53','#4F8D6B','#699F83','#83B09B','#9EC2B3','#B8D4CB','#D2E6E3','#EDF8FB','#FFFFFF','#F1EEF6','#E6D3E1','#DBB9CD','#D19EB9','#C684A4','#BB6990','#B14F7C','#A63467','#9B1A53','#91003F'],\n", " hcrow = [1,2,4,3], //,18,6,12,20,19,33,32,26,44,35,38,3,23,41,22,10,2,15,16,36,8,25,29,7,27,34,48,31,45,43,14,9,39,1,37,47,42,21,40,5,28,46,50,17,24,13], // change to gene name or probe id\n", " hccol = [2,1,5,3,6,4]; //,42,21,58,56,14,16,43,15,17,46,47,48,54,49,37,38,25,22,7,8,2,45,9,20,24,44,23,19,13,40,11,1,39,53,10,52,3,26,27,60,50,51,59,18,31,32,30,4,55,28,29,57,36,34,33,35], // change to gene name or probe id\n", " //rowLabel = ['1','2','1759080_s_at','1759302_s_at','1759502_s_at','1759540_s_at','1759781_s_at','1759828_s_at','1759829_s_at','1759906_s_at','1760088_s_at','1760164_s_at','1760453_s_at','1760516_s_at','1760594_s_at','1760894_s_at','1760951_s_at','1761030_s_at','1761128_at','1761145_s_at','1761160_s_at','1761189_s_at','1761222_s_at','1761245_s_at','1761277_s_at','1761434_s_at','1761553_s_at','1761620_s_at','1761873_s_at','1761884_s_at','1761944_s_at','1762105_s_at','1762118_s_at','1762151_s_at','1762388_s_at','1762401_s_at','1762633_s_at','1762701_s_at','1762787_s_at','1762819_s_at','1762880_s_at','1762945_s_at','1762983_s_at','1763132_s_at','1763138_s_at','1763146_s_at','1763198_s_at','1763383_at','1763410_s_at','1763426_s_at','1763490_s_at','1763491_s_at'], // change to gene name or probe id\n", " //colLabel = ['3','4','con1027','con1028','con1029','con103','con1030','con1031','con1032','con1033','con1034','con1035','con1036','con1037','con1038','con1039','con1040','con1041','con108','con109','con110','con111','con112','con125','con126','con127','con128','con129','con130','con131','con132','con133','con134','con135','con136','con137','con138','con139','con14','con15','con150','con151','con152','con153','con16','con17','con174','con184','con185','con186','con187','con188','con189','con191','con192','con193','con194','con199','con2','con200','con201','con21']; // change to contrast name\n", " \n", " var rowLabel = JSON.parse(this.model.get(\"row_labels\"));\n", " var colLabel = JSON.parse(this.model.get(\"col_labels\"));\n", " var data = JSON.parse(this.model.get(\"heatmap_data\"));\n", " \n", " \n", " var col_number = colLabel.length,\n", " row_number = rowLabel.length;\n", " \n", " var colorScale = d3.scale.quantile()\n", " .domain([ -10 , 0, 10])\n", " .range(colors);\n", " \n", " var svg = this.svg;\n", " \n", " var rowSortOrder=false;\n", " var colSortOrder=false;\n", " var rowLabels = svg.append(\"g\")\n", " .selectAll(\".rowLabelg\")\n", " .data(rowLabel)\n", " .enter()\n", " .append(\"text\")\n", " .text(function (d) { return d; })\n", " .attr(\"x\", 0)\n", " .attr(\"y\", function (d, i) { return hcrow.indexOf(i+1) * cellSize; })\n", " .style(\"text-anchor\", \"end\")\n", " .attr(\"transform\", \"translate(-6,\" + cellSize / 1.5 + \")\")\n", " .attr(\"class\", function (d,i) { return \"rowLabel mono r\"+i;} ) \n", " .on(\"mouseover\", function(d) {d3.select(this).classed(\"text-hover\",true);})\n", " .on(\"mouseout\" , function(d) {d3.select(this).classed(\"text-hover\",false);})\n", " .on(\"click\", function(d,i) {rowSortOrder=!rowSortOrder; sortbylabel(\"r\",i,rowSortOrder);d3.select(\"#order\").property(\"selectedIndex\", 4).node().focus();;})\n", " ;\n", "\n", " var colLabels = svg.append(\"g\")\n", " .selectAll(\".colLabelg\")\n", " .data(colLabel)\n", " .enter()\n", " .append(\"text\")\n", " .text(function (d) { return d; })\n", " .attr(\"x\", 0)\n", " .attr(\"y\", function (d, i) { return hccol.indexOf(i+1) * cellSize; })\n", " .style(\"text-anchor\", \"left\")\n", " .attr(\"transform\", \"translate(\"+cellSize/2 + \",-6) rotate (-90)\")\n", " .attr(\"class\", function (d,i) { return \"colLabel mono c\"+i;} )\n", " .on(\"mouseover\", function(d) {d3.select(this).classed(\"text-hover\",true);})\n", " .on(\"mouseout\" , function(d) {d3.select(this).classed(\"text-hover\",false);})\n", " .on(\"click\", function(d,i) {colSortOrder=!colSortOrder; sortbylabel(\"c\",i,colSortOrder);d3.select(\"#order\").property(\"selectedIndex\", 4).node().focus();;})\n", " ;\n", "\n", " var heatMap = svg.append(\"g\").attr(\"class\",\"g3\")\n", " .selectAll(\".cellg\")\n", " .data(data,function(d){return d.row+\":\"+d.col;})\n", " .enter()\n", " .append(\"rect\")\n", " .attr(\"x\", function(d) { return hccol.indexOf(d.col) * cellSize; })\n", " .attr(\"y\", function(d) { return hcrow.indexOf(d.row) * cellSize; })\n", " .attr(\"class\", function(d){return \"cell cell-border cr\"+(d.row-1)+\" cc\"+(d.col-1);})\n", " .attr(\"width\", cellSize)\n", " .attr(\"height\", cellSize)\n", " .style(\"fill\", function(d) { return colorScale(d.value); })\n", " /* .on(\"click\", function(d) {\n", " var rowtext=d3.select(\".r\"+(d.row-1));\n", " if(rowtext.classed(\"text-selected\")==false){\n", " rowtext.classed(\"text-selected\",true);\n", " }else{\n", " rowtext.classed(\"text-selected\",false);\n", " }\n", " })*/\n", " .on(\"mouseover\", function(d){\n", " //highlight text\n", " d3.select(this).classed(\"cell-hover\",true);\n", " d3.selectAll(\".rowLabel\").classed(\"text-highlight\",function(r,ri){ return ri==(d.row-1);});\n", " d3.selectAll(\".colLabel\").classed(\"text-highlight\",function(c,ci){ return ci==(d.col-1);});\n", " \n", " //Update the tooltip position and value\n", " d3.select(\"#tooltip\")\n", " .style(\"left\", (d3.event.pageX+10) + \"px\")\n", " .style(\"top\", (d3.event.pageY-10) + \"px\")\n", " .select(\"#value\")\n", " .text(\"lables:\"+rowLabel[d.row-1]+\",\"+colLabel[d.col-1]+\"\\ndata:\"+d.value+\"\\nrow-col-idx:\"+d.col+\",\"+d.row+\"\\ncell-xy \"+this.x.baseVal.value+\", \"+this.y.baseVal.value); \n", " //Show the tooltip\n", " d3.select(\"#tooltip\").classed(\"hidden\", false);\n", " })\n", " .on(\"mouseout\", function(){\n", " d3.select(this).classed(\"cell-hover\",false);\n", " d3.selectAll(\".rowLabel\").classed(\"text-highlight\",false);\n", " d3.selectAll(\".colLabel\").classed(\"text-highlight\",false);\n", " d3.select(\"#tooltip\").classed(\"hidden\", true);\n", " })\n", " ;\n", "\n", " var legend = svg.selectAll(\".legend\")\n", " .data([-10,-9,-8,-7,-6,-5,-4,-3,-2,-1,0,1,2,3,4,5,6,7,8,9,10])\n", " .enter().append(\"g\")\n", " .attr(\"class\", \"legend\");\n", " \n", " legend.append(\"rect\")\n", " .attr(\"x\", function(d, i) { return legendElementWidth * i; })\n", " .attr(\"y\", height+(cellSize*2))\n", " .attr(\"width\", legendElementWidth)\n", " .attr(\"height\", cellSize)\n", " .style(\"fill\", function(d, i) { return colors[i]; });\n", " \n", " legend.append(\"text\")\n", " .attr(\"class\", \"mono\")\n", " .text(function(d) { return d; })\n", " .attr(\"width\", legendElementWidth)\n", " .attr(\"x\", function(d, i) { return legendElementWidth * i; })\n", " .attr(\"y\", height + (cellSize*4));\n", "\n", "// Change ordering of cells\n", "\n", " function sortbylabel(rORc,i,sortOrder){\n", " var t = svg.transition().duration(3000);\n", " var log2r=[];\n", " var sorted; // sorted is zero-based index\n", " d3.selectAll(\".c\"+rORc+i) \n", " .filter(function(ce){\n", " log2r.push(ce.value);\n", " })\n", " ;\n", " if(rORc==\"r\"){ // sort log2ratio of a gene\n", " sorted=d3.range(col_number).sort(function(a,b){ if(sortOrder){ return log2r[b]-log2r[a];}else{ return log2r[a]-log2r[b];}});\n", " t.selectAll(\".cell\")\n", " .attr(\"x\", function(d) { return sorted.indexOf(d.col-1) * cellSize; })\n", " ;\n", " t.selectAll(\".colLabel\")\n", " .attr(\"y\", function (d, i) { return sorted.indexOf(i) * cellSize; })\n", " ;\n", " }else{ // sort log2ratio of a contrast\n", " sorted=d3.range(row_number).sort(function(a,b){if(sortOrder){ return log2r[b]-log2r[a];}else{ return log2r[a]-log2r[b];}});\n", " t.selectAll(\".cell\")\n", " .attr(\"y\", function(d) { return sorted.indexOf(d.row-1) * cellSize; })\n", " ;\n", " t.selectAll(\".rowLabel\")\n", " .attr(\"y\", function (d, i) { return sorted.indexOf(i) * cellSize; })\n", " ;\n", " }\n", " }\n", "\n", " d3.select(\"#order\").on(\"change\",function(){\n", " order(this.value);\n", " });\n", " \n", " function order(value){\n", " if(value==\"hclust\"){\n", " var t = svg.transition().duration(3000);\n", " t.selectAll(\".cell\")\n", " .attr(\"x\", function(d) { return hccol.indexOf(d.col) * cellSize; })\n", " .attr(\"y\", function(d) { return hcrow.indexOf(d.row) * cellSize; })\n", " ;\n", "\n", " t.selectAll(\".rowLabel\")\n", " .attr(\"y\", function (d, i) { return hcrow.indexOf(i+1) * cellSize; })\n", " ;\n", "\n", " t.selectAll(\".colLabel\")\n", " .attr(\"y\", function (d, i) { return hccol.indexOf(i+1) * cellSize; })\n", " ;\n", "\n", " }else if (value==\"probecontrast\"){\n", " var t = svg.transition().duration(3000);\n", " t.selectAll(\".cell\")\n", " .attr(\"x\", function(d) { return (d.col - 1) * cellSize; })\n", " .attr(\"y\", function(d) { return (d.row - 1) * cellSize; })\n", " ;\n", "\n", " t.selectAll(\".rowLabel\")\n", " .attr(\"y\", function (d, i) { return i * cellSize; })\n", " ;\n", "\n", " t.selectAll(\".colLabel\")\n", " .attr(\"y\", function (d, i) { return i * cellSize; })\n", " ;\n", "\n", " }else if (value==\"probe\"){\n", " var t = svg.transition().duration(3000);\n", " t.selectAll(\".cell\")\n", " .attr(\"y\", function(d) { return (d.row - 1) * cellSize; })\n", " ;\n", "\n", " t.selectAll(\".rowLabel\")\n", " .attr(\"y\", function (d, i) { return i * cellSize; })\n", " ;\n", " }else if (value==\"contrast\"){\n", " var t = svg.transition().duration(3000);\n", " t.selectAll(\".cell\")\n", " .attr(\"x\", function(d) { return (d.col - 1) * cellSize; })\n", " ;\n", " t.selectAll(\".colLabel\")\n", " .attr(\"y\", function (d, i) { return i * cellSize; })\n", " ;\n", " }\n", " }\n", " // \n", " var sa=d3.select(\".g3\")\n", " .on(\"mousedown\", function() {\n", " if( !d3.event.altKey) {\n", " d3.selectAll(\".cell-selected\").classed(\"cell-selected\",false);\n", " d3.selectAll(\".rowLabel\").classed(\"text-selected\",false);\n", " d3.selectAll(\".colLabel\").classed(\"text-selected\",false);\n", " }\n", " var p = d3.mouse(this);\n", " sa.append(\"rect\")\n", " .attr({\n", " rx : 0,\n", " ry : 0,\n", " class : \"selection\",\n", " x : p[0],\n", " y : p[1],\n", " width : 1,\n", " height : 1\n", " })\n", " })\n", " .on(\"mousemove\", function() {\n", " var s = sa.select(\"rect.selection\");\n", " \n", " if(!s.empty()) {\n", " var p = d3.mouse(this),\n", " d = {\n", " x : parseInt(s.attr(\"x\"), 10),\n", " y : parseInt(s.attr(\"y\"), 10),\n", " width : parseInt(s.attr(\"width\"), 10),\n", " height : parseInt(s.attr(\"height\"), 10)\n", " },\n", " move = {\n", " x : p[0] - d.x,\n", " y : p[1] - d.y\n", " }\n", " ;\n", " \n", " if(move.x < 1 || (move.x*2<d.width)) {\n", " d.x = p[0];\n", " d.width -= move.x;\n", " } else {\n", " d.width = move.x; \n", " }\n", " \n", " if(move.y < 1 || (move.y*2<d.height)) {\n", " d.y = p[1];\n", " d.height -= move.y;\n", " } else {\n", " d.height = move.y; \n", " }\n", " s.attr(d);\n", " \n", " // deselect all temporary selected state objects\n", " d3.selectAll('.cell-selection.cell-selected').classed(\"cell-selected\", false);\n", " d3.selectAll(\".text-selection.text-selected\").classed(\"text-selected\",false);\n", "\n", " d3.selectAll('.cell').filter(function(cell_d, i) {\n", " if(\n", " !d3.select(this).classed(\"cell-selected\") && \n", " // inner circle inside selection frame\n", " (this.x.baseVal.value)+cellSize >= d.x && (this.x.baseVal.value)<=d.x+d.width && \n", " (this.y.baseVal.value)+cellSize >= d.y && (this.y.baseVal.value)<=d.y+d.height\n", " ) {\n", " \n", " d3.select(this)\n", " .classed(\"cell-selection\", true)\n", " .classed(\"cell-selected\", true);\n", "\n", " d3.select(\".r\"+(cell_d.row-1))\n", " .classed(\"text-selection\",true)\n", " .classed(\"text-selected\",true);\n", "\n", " d3.select(\".c\"+(cell_d.col-1))\n", " .classed(\"text-selection\",true)\n", " .classed(\"text-selected\",true);\n", " }\n", " });\n", " }\n", " })\n", " .on(\"mouseup\", function() {\n", " // remove selection frame\n", " sa.selectAll(\"rect.selection\").remove();\n", " \n", " // remove temporary selection marker class\n", " d3.selectAll('.cell-selection').classed(\"cell-selection\", false);\n", " d3.selectAll(\".text-selection\").classed(\"text-selection\",false);\n", " })\n", " .on(\"mouseout\", function() {\n", " if(d3.event.relatedTarget.tagName=='html') {\n", " // remove selection frame\n", " sa.selectAll(\"rect.selection\").remove();\n", " // remove temporary selection marker class\n", " d3.selectAll('.cell-selection').classed(\"cell-selection\", false);\n", " d3.selectAll(\".rowLabel\").classed(\"text-selected\",false);\n", " d3.selectAll(\".colLabel\").classed(\"text-selected\",false);\n", " }\n", " });\n", "\n", " \n", " }\n", " });\n", " WidgetManager.register_widget_view(\"HeatmapView\", HeatmapView);\n", "});" ], "language": "python", "metadata": {}, "outputs": [ { "javascript": [ "\n", "require.config({paths: {d3: \"https://mpld3.github.io/js/d3.v3.min\"}});\n", "\n", "require([\"widgets/js/widget\", \"d3\"], function(WidgetManager, d3){\n", " var HeatmapView = IPython.DOMWidgetView.extend({\n", "\n", " render: function(){\n", " \n", " this.$el.append(this.model.get(\"html_style\"));\n", " this.svg = d3.select(this.el).append(\"svg\")\n", " .attr({\n", " width: 600,\n", " height: 600\n", " });\n", " \n", " \n", " this.update();\n", " },\n", " update: function(){\n", " var margin = { top: 150, right: 10, bottom: 50, left: 100 },\n", " cellSize=12,\n", " width = cellSize*col_number, // - margin.left - margin.right,\n", " height = cellSize*row_number , // - margin.top - margin.bottom,\n", " //gridSize = Math.floor(width / 24),\n", " legendElementWidth = cellSize*2.5,\n", " colorBuckets = 21,\n", " colors = ['#005824','#1A693B','#347B53','#4F8D6B','#699F83','#83B09B','#9EC2B3','#B8D4CB','#D2E6E3','#EDF8FB','#FFFFFF','#F1EEF6','#E6D3E1','#DBB9CD','#D19EB9','#C684A4','#BB6990','#B14F7C','#A63467','#9B1A53','#91003F'],\n", " hcrow = [1,2,4,3], //,18,6,12,20,19,33,32,26,44,35,38,3,23,41,22,10,2,15,16,36,8,25,29,7,27,34,48,31,45,43,14,9,39,1,37,47,42,21,40,5,28,46,50,17,24,13], // change to gene name or probe id\n", " hccol = [2,1,5,3,6,4]; //,42,21,58,56,14,16,43,15,17,46,47,48,54,49,37,38,25,22,7,8,2,45,9,20,24,44,23,19,13,40,11,1,39,53,10,52,3,26,27,60,50,51,59,18,31,32,30,4,55,28,29,57,36,34,33,35], // change to gene name or probe id\n", " //rowLabel = ['1','2','1759080_s_at','1759302_s_at','1759502_s_at','1759540_s_at','1759781_s_at','1759828_s_at','1759829_s_at','1759906_s_at','1760088_s_at','1760164_s_at','1760453_s_at','1760516_s_at','1760594_s_at','1760894_s_at','1760951_s_at','1761030_s_at','1761128_at','1761145_s_at','1761160_s_at','1761189_s_at','1761222_s_at','1761245_s_at','1761277_s_at','1761434_s_at','1761553_s_at','1761620_s_at','1761873_s_at','1761884_s_at','1761944_s_at','1762105_s_at','1762118_s_at','1762151_s_at','1762388_s_at','1762401_s_at','1762633_s_at','1762701_s_at','1762787_s_at','1762819_s_at','1762880_s_at','1762945_s_at','1762983_s_at','1763132_s_at','1763138_s_at','1763146_s_at','1763198_s_at','1763383_at','1763410_s_at','1763426_s_at','1763490_s_at','1763491_s_at'], // change to gene name or probe id\n", " //colLabel = ['3','4','con1027','con1028','con1029','con103','con1030','con1031','con1032','con1033','con1034','con1035','con1036','con1037','con1038','con1039','con1040','con1041','con108','con109','con110','con111','con112','con125','con126','con127','con128','con129','con130','con131','con132','con133','con134','con135','con136','con137','con138','con139','con14','con15','con150','con151','con152','con153','con16','con17','con174','con184','con185','con186','con187','con188','con189','con191','con192','con193','con194','con199','con2','con200','con201','con21']; // change to contrast name\n", " \n", " var rowLabel = JSON.parse(this.model.get(\"row_labels\"));\n", " var colLabel = JSON.parse(this.model.get(\"col_labels\"));\n", " var data = JSON.parse(this.model.get(\"heatmap_data\"));\n", " \n", " \n", " var col_number = colLabel.length,\n", " row_number = rowLabel.length;\n", " \n", " var colorScale = d3.scale.quantile()\n", " .domain([ -10 , 0, 10])\n", " .range(colors);\n", " \n", " var svg = this.svg;\n", " \n", " var rowSortOrder=false;\n", " var colSortOrder=false;\n", " var rowLabels = svg.append(\"g\")\n", " .selectAll(\".rowLabelg\")\n", " .data(rowLabel)\n", " .enter()\n", " .append(\"text\")\n", " .text(function (d) { return d; })\n", " .attr(\"x\", 0)\n", " .attr(\"y\", function (d, i) { return hcrow.indexOf(i+1) * cellSize; })\n", " .style(\"text-anchor\", \"end\")\n", " .attr(\"transform\", \"translate(-6,\" + cellSize / 1.5 + \")\")\n", " .attr(\"class\", function (d,i) { return \"rowLabel mono r\"+i;} ) \n", " .on(\"mouseover\", function(d) {d3.select(this).classed(\"text-hover\",true);})\n", " .on(\"mouseout\" , function(d) {d3.select(this).classed(\"text-hover\",false);})\n", " .on(\"click\", function(d,i) {rowSortOrder=!rowSortOrder; sortbylabel(\"r\",i,rowSortOrder);d3.select(\"#order\").property(\"selectedIndex\", 4).node().focus();;})\n", " ;\n", "\n", " var colLabels = svg.append(\"g\")\n", " .selectAll(\".colLabelg\")\n", " .data(colLabel)\n", " .enter()\n", " .append(\"text\")\n", " .text(function (d) { return d; })\n", " .attr(\"x\", 0)\n", " .attr(\"y\", function (d, i) { return hccol.indexOf(i+1) * cellSize; })\n", " .style(\"text-anchor\", \"left\")\n", " .attr(\"transform\", \"translate(\"+cellSize/2 + \",-6) rotate (-90)\")\n", " .attr(\"class\", function (d,i) { return \"colLabel mono c\"+i;} )\n", " .on(\"mouseover\", function(d) {d3.select(this).classed(\"text-hover\",true);})\n", " .on(\"mouseout\" , function(d) {d3.select(this).classed(\"text-hover\",false);})\n", " .on(\"click\", function(d,i) {colSortOrder=!colSortOrder; sortbylabel(\"c\",i,colSortOrder);d3.select(\"#order\").property(\"selectedIndex\", 4).node().focus();;})\n", " ;\n", "\n", " var heatMap = svg.append(\"g\").attr(\"class\",\"g3\")\n", " .selectAll(\".cellg\")\n", " .data(data,function(d){return d.row+\":\"+d.col;})\n", " .enter()\n", " .append(\"rect\")\n", " .attr(\"x\", function(d) { return hccol.indexOf(d.col) * cellSize; })\n", " .attr(\"y\", function(d) { return hcrow.indexOf(d.row) * cellSize; })\n", " .attr(\"class\", function(d){return \"cell cell-border cr\"+(d.row-1)+\" cc\"+(d.col-1);})\n", " .attr(\"width\", cellSize)\n", " .attr(\"height\", cellSize)\n", " .style(\"fill\", function(d) { return colorScale(d.value); })\n", " /* .on(\"click\", function(d) {\n", " var rowtext=d3.select(\".r\"+(d.row-1));\n", " if(rowtext.classed(\"text-selected\")==false){\n", " rowtext.classed(\"text-selected\",true);\n", " }else{\n", " rowtext.classed(\"text-selected\",false);\n", " }\n", " })*/\n", " .on(\"mouseover\", function(d){\n", " //highlight text\n", " d3.select(this).classed(\"cell-hover\",true);\n", " d3.selectAll(\".rowLabel\").classed(\"text-highlight\",function(r,ri){ return ri==(d.row-1);});\n", " d3.selectAll(\".colLabel\").classed(\"text-highlight\",function(c,ci){ return ci==(d.col-1);});\n", " \n", " //Update the tooltip position and value\n", " d3.select(\"#tooltip\")\n", " .style(\"left\", (d3.event.pageX+10) + \"px\")\n", " .style(\"top\", (d3.event.pageY-10) + \"px\")\n", " .select(\"#value\")\n", " .text(\"lables:\"+rowLabel[d.row-1]+\",\"+colLabel[d.col-1]+\"\\ndata:\"+d.value+\"\\nrow-col-idx:\"+d.col+\",\"+d.row+\"\\ncell-xy \"+this.x.baseVal.value+\", \"+this.y.baseVal.value); \n", " //Show the tooltip\n", " d3.select(\"#tooltip\").classed(\"hidden\", false);\n", " })\n", " .on(\"mouseout\", function(){\n", " d3.select(this).classed(\"cell-hover\",false);\n", " d3.selectAll(\".rowLabel\").classed(\"text-highlight\",false);\n", " d3.selectAll(\".colLabel\").classed(\"text-highlight\",false);\n", " d3.select(\"#tooltip\").classed(\"hidden\", true);\n", " })\n", " ;\n", "\n", " var legend = svg.selectAll(\".legend\")\n", " .data([-10,-9,-8,-7,-6,-5,-4,-3,-2,-1,0,1,2,3,4,5,6,7,8,9,10])\n", " .enter().append(\"g\")\n", " .attr(\"class\", \"legend\");\n", " \n", " legend.append(\"rect\")\n", " .attr(\"x\", function(d, i) { return legendElementWidth * i; })\n", " .attr(\"y\", height+(cellSize*2))\n", " .attr(\"width\", legendElementWidth)\n", " .attr(\"height\", cellSize)\n", " .style(\"fill\", function(d, i) { return colors[i]; });\n", " \n", " legend.append(\"text\")\n", " .attr(\"class\", \"mono\")\n", " .text(function(d) { return d; })\n", " .attr(\"width\", legendElementWidth)\n", " .attr(\"x\", function(d, i) { return legendElementWidth * i; })\n", " .attr(\"y\", height + (cellSize*4));\n", "\n", "// Change ordering of cells\n", "\n", " function sortbylabel(rORc,i,sortOrder){\n", " var t = svg.transition().duration(3000);\n", " var log2r=[];\n", " var sorted; // sorted is zero-based index\n", " d3.selectAll(\".c\"+rORc+i) \n", " .filter(function(ce){\n", " log2r.push(ce.value);\n", " })\n", " ;\n", " if(rORc==\"r\"){ // sort log2ratio of a gene\n", " sorted=d3.range(col_number).sort(function(a,b){ if(sortOrder){ return log2r[b]-log2r[a];}else{ return log2r[a]-log2r[b];}});\n", " t.selectAll(\".cell\")\n", " .attr(\"x\", function(d) { return sorted.indexOf(d.col-1) * cellSize; })\n", " ;\n", " t.selectAll(\".colLabel\")\n", " .attr(\"y\", function (d, i) { return sorted.indexOf(i) * cellSize; })\n", " ;\n", " }else{ // sort log2ratio of a contrast\n", " sorted=d3.range(row_number).sort(function(a,b){if(sortOrder){ return log2r[b]-log2r[a];}else{ return log2r[a]-log2r[b];}});\n", " t.selectAll(\".cell\")\n", " .attr(\"y\", function(d) { return sorted.indexOf(d.row-1) * cellSize; })\n", " ;\n", " t.selectAll(\".rowLabel\")\n", " .attr(\"y\", function (d, i) { return sorted.indexOf(i) * cellSize; })\n", " ;\n", " }\n", " }\n", "\n", " d3.select(\"#order\").on(\"change\",function(){\n", " order(this.value);\n", " });\n", " \n", " function order(value){\n", " if(value==\"hclust\"){\n", " var t = svg.transition().duration(3000);\n", " t.selectAll(\".cell\")\n", " .attr(\"x\", function(d) { return hccol.indexOf(d.col) * cellSize; })\n", " .attr(\"y\", function(d) { return hcrow.indexOf(d.row) * cellSize; })\n", " ;\n", "\n", " t.selectAll(\".rowLabel\")\n", " .attr(\"y\", function (d, i) { return hcrow.indexOf(i+1) * cellSize; })\n", " ;\n", "\n", " t.selectAll(\".colLabel\")\n", " .attr(\"y\", function (d, i) { return hccol.indexOf(i+1) * cellSize; })\n", " ;\n", "\n", " }else if (value==\"probecontrast\"){\n", " var t = svg.transition().duration(3000);\n", " t.selectAll(\".cell\")\n", " .attr(\"x\", function(d) { return (d.col - 1) * cellSize; })\n", " .attr(\"y\", function(d) { return (d.row - 1) * cellSize; })\n", " ;\n", "\n", " t.selectAll(\".rowLabel\")\n", " .attr(\"y\", function (d, i) { return i * cellSize; })\n", " ;\n", "\n", " t.selectAll(\".colLabel\")\n", " .attr(\"y\", function (d, i) { return i * cellSize; })\n", " ;\n", "\n", " }else if (value==\"probe\"){\n", " var t = svg.transition().duration(3000);\n", " t.selectAll(\".cell\")\n", " .attr(\"y\", function(d) { return (d.row - 1) * cellSize; })\n", " ;\n", "\n", " t.selectAll(\".rowLabel\")\n", " .attr(\"y\", function (d, i) { return i * cellSize; })\n", " ;\n", " }else if (value==\"contrast\"){\n", " var t = svg.transition().duration(3000);\n", " t.selectAll(\".cell\")\n", " .attr(\"x\", function(d) { return (d.col - 1) * cellSize; })\n", " ;\n", " t.selectAll(\".colLabel\")\n", " .attr(\"y\", function (d, i) { return i * cellSize; })\n", " ;\n", " }\n", " }\n", " // \n", " var sa=d3.select(\".g3\")\n", " .on(\"mousedown\", function() {\n", " if( !d3.event.altKey) {\n", " d3.selectAll(\".cell-selected\").classed(\"cell-selected\",false);\n", " d3.selectAll(\".rowLabel\").classed(\"text-selected\",false);\n", " d3.selectAll(\".colLabel\").classed(\"text-selected\",false);\n", " }\n", " var p = d3.mouse(this);\n", " sa.append(\"rect\")\n", " .attr({\n", " rx : 0,\n", " ry : 0,\n", " class : \"selection\",\n", " x : p[0],\n", " y : p[1],\n", " width : 1,\n", " height : 1\n", " })\n", " })\n", " .on(\"mousemove\", function() {\n", " var s = sa.select(\"rect.selection\");\n", " \n", " if(!s.empty()) {\n", " var p = d3.mouse(this),\n", " d = {\n", " x : parseInt(s.attr(\"x\"), 10),\n", " y : parseInt(s.attr(\"y\"), 10),\n", " width : parseInt(s.attr(\"width\"), 10),\n", " height : parseInt(s.attr(\"height\"), 10)\n", " },\n", " move = {\n", " x : p[0] - d.x,\n", " y : p[1] - d.y\n", " }\n", " ;\n", " \n", " if(move.x < 1 || (move.x*2<d.width)) {\n", " d.x = p[0];\n", " d.width -= move.x;\n", " } else {\n", " d.width = move.x; \n", " }\n", " \n", " if(move.y < 1 || (move.y*2<d.height)) {\n", " d.y = p[1];\n", " d.height -= move.y;\n", " } else {\n", " d.height = move.y; \n", " }\n", " s.attr(d);\n", " \n", " // deselect all temporary selected state objects\n", " d3.selectAll('.cell-selection.cell-selected').classed(\"cell-selected\", false);\n", " d3.selectAll(\".text-selection.text-selected\").classed(\"text-selected\",false);\n", "\n", " d3.selectAll('.cell').filter(function(cell_d, i) {\n", " if(\n", " !d3.select(this).classed(\"cell-selected\") && \n", " // inner circle inside selection frame\n", " (this.x.baseVal.value)+cellSize >= d.x && (this.x.baseVal.value)<=d.x+d.width && \n", " (this.y.baseVal.value)+cellSize >= d.y && (this.y.baseVal.value)<=d.y+d.height\n", " ) {\n", " \n", " d3.select(this)\n", " .classed(\"cell-selection\", true)\n", " .classed(\"cell-selected\", true);\n", "\n", " d3.select(\".r\"+(cell_d.row-1))\n", " .classed(\"text-selection\",true)\n", " .classed(\"text-selected\",true);\n", "\n", " d3.select(\".c\"+(cell_d.col-1))\n", " .classed(\"text-selection\",true)\n", " .classed(\"text-selected\",true);\n", " }\n", " });\n", " }\n", " })\n", " .on(\"mouseup\", function() {\n", " // remove selection frame\n", " sa.selectAll(\"rect.selection\").remove();\n", " \n", " // remove temporary selection marker class\n", " d3.selectAll('.cell-selection').classed(\"cell-selection\", false);\n", " d3.selectAll(\".text-selection\").classed(\"text-selection\",false);\n", " })\n", " .on(\"mouseout\", function() {\n", " if(d3.event.relatedTarget.tagName=='html') {\n", " // remove selection frame\n", " sa.selectAll(\"rect.selection\").remove();\n", " // remove temporary selection marker class\n", " d3.selectAll('.cell-selection').classed(\"cell-selection\", false);\n", " d3.selectAll(\".rowLabel\").classed(\"text-selected\",false);\n", " d3.selectAll(\".colLabel\").classed(\"text-selected\",false);\n", " }\n", " });\n", "\n", " \n", " }\n", " });\n", " WidgetManager.register_widget_view(\"HeatmapView\", HeatmapView);\n", "});" ], "metadata": {}, "output_type": "display_data", "text": [ "<IPython.core.display.Javascript at 0x1160b7dd0>" ] } ], "prompt_number": 6 }, { "cell_type": "code", "collapsed": false, "input": [ "#circles = CirclesWidget(radii=[1,2,3], sets=json.dumps(sets), overlaps=json.dumps(overlaps))\n", "heatmap_diagram = HeatmapWidget(row_labels=json.dumps(row_labels), \n", " col_labels=json.dumps(col_labels), \n", " heatmap_data=json.dumps(heatmap_data), html_style=html_style)\n", "display(heatmap_diagram)" ], "language": "python", "metadata": {}, "outputs": [], "prompt_number": 9 }, { "cell_type": "code", "collapsed": false, "input": [ "html_style = \"\"\"\n", " <style>\n", " /* disable text selection */\n", " svg *::selection {\n", " background : transparent;\n", " }\n", " \n", " svg *::-moz-selection {\n", " background:transparent;\n", " } \n", " \n", " svg *::-webkit-selection {\n", " background:transparent;\n", " }\n", " rect.selection {\n", " stroke : #333;\n", " stroke-dasharray: 4px;\n", " stroke-opacity : 0.5;\n", " fill : transparent;\n", " }\n", "\n", " rect.cell-border {\n", " stroke: #eee;\n", " stroke-width:0.3px; \n", " }\n", "\n", " rect.cell-selected {\n", " stroke: rgb(51,102,153);\n", " stroke-width:0.5px; \n", " }\n", "\n", " rect.cell-hover {\n", " stroke: #F00;\n", " stroke-width:0.3px; \n", " }\n", "\n", " text.mono {\n", " font-size: 9pt;\n", " font-family: Consolas, courier;\n", " fill: #aaa;\n", " }\n", "\n", " text.text-selected {\n", " fill: #000;\n", " }\n", "\n", " text.text-highlight {\n", " fill: #c00;\n", " }\n", " text.text-hover {\n", " fill: #00C;\n", " }\n", " #tooltip {\n", " position: fixed;\n", " width: 200px;\n", " height: auto;\n", " padding: 10px;\n", " background-color: white;\n", " -webkit-border-radius: 10px;\n", " -moz-border-radius: 10px;\n", " border-radius: 10px;\n", " -webkit-box-shadow: 4px 4px 10px rgba(0, 0, 0, 0.4);\n", " -moz-box-shadow: 4px 4px 10px rgba(0, 0, 0, 0.4);\n", " box-shadow: 4px 4px 10px rgba(0, 0, 0, 0.4);\n", " pointer-events: none;\n", " }\n", "\n", " #tooltip.hidden {\n", " display: none;\n", " }\n", "\n", " #tooltip p {\n", " margin: 0;\n", " font-family: sans-serif;\n", " font-size: 12px;\n", " line-height: 20px;\n", " }\n", " </style>\n", "\n", "\n", "<div id=\"tooltip\" class=\"hidden\">\n", " <p><span id=\"value\"></p>\n", "</div>\n", "\n", " \n", " <select id=\"order\">\n", " <option value=\"hclust\">by cluster</option>\n", " <option value=\"probecontrast\">by probe name and contrast name</option>\n", " <option value=\"probe\">by probe name</option>\n", " <option value=\"contrast\">by contrast name</option>\n", " <option value=\"custom\">by log2 ratio</option>\n", " </select>\n", " </select>\n", "<div id=\"chart\" style='overflow:auto; width:960px; height:auto;'></div>\n", "\"\"\"" ], "language": "python", "metadata": {}, "outputs": [], "prompt_number": 8 }, { "cell_type": "code", "collapsed": false, "input": [ "%%html\n", "\n", " <style>\n", " /* disable text selection */\n", " svg *::selection {\n", " background : transparent;\n", " }\n", " \n", " svg *::-moz-selection {\n", " background:transparent;\n", " } \n", " \n", " svg *::-webkit-selection {\n", " background:transparent;\n", " }\n", " rect.selection {\n", " stroke : #333;\n", " stroke-dasharray: 4px;\n", " stroke-opacity : 0.5;\n", " fill : transparent;\n", " }\n", "\n", " rect.cell-border {\n", " stroke: #eee;\n", " stroke-width:0.3px; \n", " }\n", "\n", " rect.cell-selected {\n", " stroke: rgb(51,102,153);\n", " stroke-width:0.5px; \n", " }\n", "\n", " rect.cell-hover {\n", " stroke: #F00;\n", " stroke-width:0.3px; \n", " }\n", "\n", " text.mono {\n", " font-size: 9pt;\n", " font-family: Consolas, courier;\n", " fill: #aaa;\n", " }\n", "\n", " text.text-selected {\n", " fill: #000;\n", " }\n", "\n", " text.text-highlight {\n", " fill: #c00;\n", " }\n", " text.text-hover {\n", " fill: #00C;\n", " }\n", " #tooltip {\n", " position: fixed;\n", " width: 200px;\n", " height: auto;\n", " padding: 10px;\n", " background-color: white;\n", " -webkit-border-radius: 10px;\n", " -moz-border-radius: 10px;\n", " border-radius: 10px;\n", " -webkit-box-shadow: 4px 4px 10px rgba(0, 0, 0, 0.4);\n", " -moz-box-shadow: 4px 4px 10px rgba(0, 0, 0, 0.4);\n", " box-shadow: 4px 4px 10px rgba(0, 0, 0, 0.4);\n", " pointer-events: none;\n", " }\n", "\n", " #tooltip.hidden {\n", " display: none;\n", " }\n", "\n", " #tooltip p {\n", " margin: 0;\n", " font-family: sans-serif;\n", " font-size: 12px;\n", " line-height: 20px;\n", " }\n", " </style>\n", "\n", "\n", "<div id=\"tooltip\" class=\"hidden\">\n", " <p><span id=\"value\"></p>\n", "</div>\n", "\n", " \n", " <select id=\"order\">\n", " <option value=\"hclust\">by cluster</option>\n", " <option value=\"probecontrast\">by probe name and contrast name</option>\n", " <option value=\"probe\">by probe name</option>\n", " <option value=\"contrast\">by contrast name</option>\n", " <option value=\"custom\">by log2 ratio</option>\n", " </select>\n", " </select>\n", "<div id=\"chart\" style='overflow:auto; width:960px; height:auto;'></div>" ], "language": "python", "metadata": {}, "outputs": [ { "html": [ "\n", " <style>\n", " /* disable text selection */\n", " svg *::selection {\n", " background : transparent;\n", " }\n", " \n", " svg *::-moz-selection {\n", " background:transparent;\n", " } \n", " \n", " svg *::-webkit-selection {\n", " background:transparent;\n", " }\n", " rect.selection {\n", " stroke : #333;\n", " stroke-dasharray: 4px;\n", " stroke-opacity : 0.5;\n", " fill : transparent;\n", " }\n", "\n", " rect.cell-border {\n", " stroke: #eee;\n", " stroke-width:0.3px; \n", " }\n", "\n", " rect.cell-selected {\n", " stroke: rgb(51,102,153);\n", " stroke-width:0.5px; \n", " }\n", "\n", " rect.cell-hover {\n", " stroke: #F00;\n", " stroke-width:0.3px; \n", " }\n", "\n", " text.mono {\n", " font-size: 9pt;\n", " font-family: Consolas, courier;\n", " fill: #aaa;\n", " }\n", "\n", " text.text-selected {\n", " fill: #000;\n", " }\n", "\n", " text.text-highlight {\n", " fill: #c00;\n", " }\n", " text.text-hover {\n", " fill: #00C;\n", " }\n", " #tooltip {\n", " position: fixed;\n", " width: 200px;\n", " height: auto;\n", " padding: 10px;\n", " background-color: white;\n", " -webkit-border-radius: 10px;\n", " -moz-border-radius: 10px;\n", " border-radius: 10px;\n", " -webkit-box-shadow: 4px 4px 10px rgba(0, 0, 0, 0.4);\n", " -moz-box-shadow: 4px 4px 10px rgba(0, 0, 0, 0.4);\n", " box-shadow: 4px 4px 10px rgba(0, 0, 0, 0.4);\n", " pointer-events: none;\n", " }\n", "\n", " #tooltip.hidden {\n", " display: none;\n", " }\n", "\n", " #tooltip p {\n", " margin: 0;\n", " font-family: sans-serif;\n", " font-size: 12px;\n", " line-height: 20px;\n", " }\n", " </style>\n", "\n", "\n", "<div id=\"tooltip\" class=\"hidden\">\n", " <p><span id=\"value\"></p>\n", "</div>\n", "\n", " \n", " <select id=\"order\">\n", " <option value=\"hclust\">by cluster</option>\n", " <option value=\"probecontrast\">by probe name and contrast name</option>\n", " <option value=\"probe\">by probe name</option>\n", " <option value=\"contrast\">by contrast name</option>\n", " <option value=\"custom\">by log2 ratio</option>\n", " </select>\n", " </select>\n", "<div id=\"chart\" style='overflow:auto; width:960px; height:auto;'></div>" ], "metadata": {}, "output_type": "display_data", "text": [ "<IPython.core.display.HTML at 0x10c53c910>" ] } ], "prompt_number": 69 }, { "cell_type": "code", "collapsed": false, "input": [ "%%javascript\n", "\n", "require.config({paths: {d3: \"https://mpld3.github.io/js/d3.v3.min\"}});\n", "\n", "require([\"d3\"], function(d3){\n", "\n", "var margin = { top: 150, right: 10, bottom: 50, left: 100 },\n", " cellSize=12,\n", " col_number=6,\n", " row_number=4,\n", " width = cellSize*col_number, // - margin.left - margin.right,\n", " height = cellSize*row_number , // - margin.top - margin.bottom,\n", " //gridSize = Math.floor(width / 24),\n", " legendElementWidth = cellSize*2.5,\n", " colorBuckets = 21,\n", " colors = ['#005824','#1A693B','#347B53','#4F8D6B','#699F83','#83B09B','#9EC2B3','#B8D4CB','#D2E6E3','#EDF8FB','#FFFFFF','#F1EEF6','#E6D3E1','#DBB9CD','#D19EB9','#C684A4','#BB6990','#B14F7C','#A63467','#9B1A53','#91003F'],\n", " hcrow = [1, 2, 3, 4],\n", " hccol = [6, 2, 1, 3, 5, 4],\n", " rowLabel = ['1759302_s_at','1759080_s_at','1759502_s_at','1759540_s_at'],\n", " colLabel = ['con1027','con1028','con1029','con103','con1030','con1031'];\n", "\n", "//d3.tsv(\"data/heatmap_data.tsv\",\n", "//function(d) {\n", " //return {\n", " //row: +d.row_idx,\n", " //col: +d.col_idx,\n", " //value: +d.log2ratio\n", " //};\n", "//},\n", "\n", " var data = [{\"col\": 1, \"value\": 6, \"row\": 1}, {\"col\": 2, \"value\": 6, \"row\": 1}, {\"col\": 3, \"value\": 7, \"row\": 1}, {\"col\": 4, \"value\": 6, \"row\": 1}, {\"col\": 5, \"value\": 6, \"row\": 1}, {\"col\": 6, \"value\": 6, \"row\": 1}, {\"col\": 1, \"value\": 6, \"row\": 2}, {\"col\": 2, \"value\": 6, \"row\": 2}, {\"col\": 3, \"value\": 6, \"row\": 2}, {\"col\": 4, \"value\": 6, \"row\": 2}, {\"col\": 5, \"value\": 6, \"row\": 2}, {\"col\": 6, \"value\": 6, \"row\": 2}, {\"col\": 1, \"value\": 9, \"row\": 3}, {\"col\": 2, \"value\": 9, \"row\": 3}, {\"col\": 3, \"value\": 9, \"row\": 3}, {\"col\": 4, \"value\": 9, \"row\": 3}, {\"col\": 5, \"value\": 9, \"row\": 3}, {\"col\": 6, \"value\": 9, \"row\": 3}, {\"col\": 1, \"value\": 6, \"row\": 4}, {\"col\": 2, \"value\": 6, \"row\": 4}, {\"col\": 3, \"value\": 6, \"row\": 4}, {\"col\": 4, \"value\": 6, \"row\": 4}, {\"col\": 5, \"value\": 6, \"row\": 4}, {\"col\": 6, \"value\": 5, \"row\": 4}];\n", " console.log(data.slice(1,10));\n", " var colorScale = d3.scale.quantile()\n", " .domain([ -10 , 0, 10])\n", " .range(colors);\n", " \n", " var svg = d3.select(\"#chart\").append(\"svg\")\n", " .attr(\"width\", width + margin.left + margin.right)\n", " .attr(\"height\", height + margin.top + margin.bottom)\n", " .append(\"g\")\n", " .attr(\"transform\", \"translate(\" + margin.left + \",\" + margin.top + \")\")\n", " ;\n", " var rowSortOrder=false;\n", " var colSortOrder=false;\n", " var rowLabels = svg.append(\"g\")\n", " .selectAll(\".rowLabelg\")\n", " .data(rowLabel)\n", " .enter()\n", " .append(\"text\")\n", " .text(function (d) { return d; })\n", " .attr(\"x\", 0)\n", " .attr(\"y\", function (d, i) { return hcrow.indexOf(i+1) * cellSize; })\n", " .style(\"text-anchor\", \"end\")\n", " .attr(\"transform\", \"translate(-6,\" + cellSize / 1.5 + \")\")\n", " .attr(\"class\", function (d,i) { return \"rowLabel mono r\"+i;} ) \n", " .on(\"mouseover\", function(d) {d3.select(this).classed(\"text-hover\",true);})\n", " .on(\"mouseout\" , function(d) {d3.select(this).classed(\"text-hover\",false);})\n", " .on(\"click\", function(d,i) {rowSortOrder=!rowSortOrder; sortbylabel(\"r\",i,rowSortOrder);d3.select(\"#order\").property(\"selectedIndex\", 4).node().focus();;})\n", " ;\n", "\n", " var colLabels = svg.append(\"g\")\n", " .selectAll(\".colLabelg\")\n", " .data(colLabel)\n", " .enter()\n", " .append(\"text\")\n", " .text(function (d) { return d; })\n", " .attr(\"x\", 0)\n", " .attr(\"y\", function (d, i) { return hccol.indexOf(i+1) * cellSize; })\n", " .style(\"text-anchor\", \"left\")\n", " .attr(\"transform\", \"translate(\"+cellSize/2 + \",-6) rotate (-90)\")\n", " .attr(\"class\", function (d,i) { return \"colLabel mono c\"+i;} )\n", " .on(\"mouseover\", function(d) {d3.select(this).classed(\"text-hover\",true);})\n", " .on(\"mouseout\" , function(d) {d3.select(this).classed(\"text-hover\",false);})\n", " .on(\"click\", function(d,i) {colSortOrder=!colSortOrder; sortbylabel(\"c\",i,colSortOrder);d3.select(\"#order\").property(\"selectedIndex\", 4).node().focus();;})\n", " ;\n", "\n", " var heatMap = svg.append(\"g\").attr(\"class\",\"g3\")\n", " .selectAll(\".cellg\")\n", " .data(data,function(d){return d.row+\":\"+d.col;})\n", " .enter()\n", " .append(\"rect\")\n", " .attr(\"x\", function(d) { return hccol.indexOf(d.col) * cellSize; })\n", " .attr(\"y\", function(d) { return hcrow.indexOf(d.row) * cellSize; })\n", " .attr(\"class\", function(d){return \"cell cell-border cr\"+(d.row-1)+\" cc\"+(d.col-1);})\n", " .attr(\"width\", cellSize)\n", " .attr(\"height\", cellSize)\n", " .style(\"fill\", function(d) { return colorScale(d.value); })\n", " /* .on(\"click\", function(d) {\n", " var rowtext=d3.select(\".r\"+(d.row-1));\n", " if(rowtext.classed(\"text-selected\")==false){\n", " rowtext.classed(\"text-selected\",true);\n", " }else{\n", " rowtext.classed(\"text-selected\",false);\n", " }\n", " })*/\n", " .on(\"mouseover\", function(d){\n", " //highlight text\n", " d3.select(this).classed(\"cell-hover\",true);\n", " d3.selectAll(\".rowLabel\").classed(\"text-highlight\",function(r,ri){ return ri==(d.row-1);});\n", " d3.selectAll(\".colLabel\").classed(\"text-highlight\",function(c,ci){ return ci==(d.col-1);});\n", " \n", " //Update the tooltip position and value\n", " d3.select(\"#tooltip\")\n", " .style(\"left\", (d3.event.pageX+10) + \"px\")\n", " .style(\"top\", (d3.event.pageY-10) + \"px\")\n", " .select(\"#value\")\n", " .text(\"lables:\"+rowLabel[d.row-1]+\",\"+colLabel[d.col-1]+\"\\ndata:\"+d.value+\"\\nrow-col-idx:\"+d.col+\",\"+d.row+\"\\ncell-xy \"+this.x.baseVal.value+\", \"+this.y.baseVal.value); \n", " //Show the tooltip\n", " d3.select(\"#tooltip\").classed(\"hidden\", false);\n", " })\n", " .on(\"mouseout\", function(){\n", " d3.select(this).classed(\"cell-hover\",false);\n", " d3.selectAll(\".rowLabel\").classed(\"text-highlight\",false);\n", " d3.selectAll(\".colLabel\").classed(\"text-highlight\",false);\n", " d3.select(\"#tooltip\").classed(\"hidden\", true);\n", " })\n", " ;\n", "\n", " var legend = svg.selectAll(\".legend\")\n", " .data([-10,-9,-8,-7,-6,-5,-4,-3,-2,-1,0,1,2,3,4,5,6,7,8,9,10])\n", " .enter().append(\"g\")\n", " .attr(\"class\", \"legend\");\n", " \n", " legend.append(\"rect\")\n", " .attr(\"x\", function(d, i) { return legendElementWidth * i; })\n", " .attr(\"y\", height+(cellSize*2))\n", " .attr(\"width\", legendElementWidth)\n", " .attr(\"height\", cellSize)\n", " .style(\"fill\", function(d, i) { return colors[i]; });\n", " \n", " legend.append(\"text\")\n", " .attr(\"class\", \"mono\")\n", " .text(function(d) { return d; })\n", " .attr(\"width\", legendElementWidth)\n", " .attr(\"x\", function(d, i) { return legendElementWidth * i; })\n", " .attr(\"y\", height + (cellSize*4));\n", "\n", "// Change ordering of cells\n", "\n", " function sortbylabel(rORc,i,sortOrder){\n", " var t = svg.transition().duration(3000);\n", " var log2r=[];\n", " var sorted; // sorted is zero-based index\n", " d3.selectAll(\".c\"+rORc+i) \n", " .filter(function(ce){\n", " log2r.push(ce.value);\n", " })\n", " ;\n", " if(rORc==\"r\"){ // sort log2ratio of a gene\n", " sorted=d3.range(col_number).sort(function(a,b){ if(sortOrder){ return log2r[b]-log2r[a];}else{ return log2r[a]-log2r[b];}});\n", " t.selectAll(\".cell\")\n", " .attr(\"x\", function(d) { return sorted.indexOf(d.col-1) * cellSize; })\n", " ;\n", " t.selectAll(\".colLabel\")\n", " .attr(\"y\", function (d, i) { return sorted.indexOf(i) * cellSize; })\n", " ;\n", " }else{ // sort log2ratio of a contrast\n", " sorted=d3.range(row_number).sort(function(a,b){if(sortOrder){ return log2r[b]-log2r[a];}else{ return log2r[a]-log2r[b];}});\n", " t.selectAll(\".cell\")\n", " .attr(\"y\", function(d) { return sorted.indexOf(d.row-1) * cellSize; })\n", " ;\n", " t.selectAll(\".rowLabel\")\n", " .attr(\"y\", function (d, i) { return sorted.indexOf(i) * cellSize; })\n", " ;\n", " }\n", " }\n", "\n", " d3.select(\"#order\").on(\"change\",function(){\n", " order(this.value);\n", " });\n", " \n", " function order(value){\n", " if(value==\"hclust\"){\n", " var t = svg.transition().duration(3000);\n", " t.selectAll(\".cell\")\n", " .attr(\"x\", function(d) { return hccol.indexOf(d.col) * cellSize; })\n", " .attr(\"y\", function(d) { return hcrow.indexOf(d.row) * cellSize; })\n", " ;\n", "\n", " t.selectAll(\".rowLabel\")\n", " .attr(\"y\", function (d, i) { return hcrow.indexOf(i+1) * cellSize; })\n", " ;\n", "\n", " t.selectAll(\".colLabel\")\n", " .attr(\"y\", function (d, i) { return hccol.indexOf(i+1) * cellSize; })\n", " ;\n", "\n", " }else if (value==\"probecontrast\"){\n", " var t = svg.transition().duration(3000);\n", " t.selectAll(\".cell\")\n", " .attr(\"x\", function(d) { return (d.col - 1) * cellSize; })\n", " .attr(\"y\", function(d) { return (d.row - 1) * cellSize; })\n", " ;\n", "\n", " t.selectAll(\".rowLabel\")\n", " .attr(\"y\", function (d, i) { return i * cellSize; })\n", " ;\n", "\n", " t.selectAll(\".colLabel\")\n", " .attr(\"y\", function (d, i) { return i * cellSize; })\n", " ;\n", "\n", " }else if (value==\"probe\"){\n", " var t = svg.transition().duration(3000);\n", " t.selectAll(\".cell\")\n", " .attr(\"y\", function(d) { return (d.row - 1) * cellSize; })\n", " ;\n", "\n", " t.selectAll(\".rowLabel\")\n", " .attr(\"y\", function (d, i) { return i * cellSize; })\n", " ;\n", " }else if (value==\"contrast\"){\n", " var t = svg.transition().duration(3000);\n", " t.selectAll(\".cell\")\n", " .attr(\"x\", function(d) { return (d.col - 1) * cellSize; })\n", " ;\n", " t.selectAll(\".colLabel\")\n", " .attr(\"y\", function (d, i) { return i * cellSize; })\n", " ;\n", " }\n", " }\n", " // \n", " var sa=d3.select(\".g3\")\n", " .on(\"mousedown\", function() {\n", " if( !d3.event.altKey) {\n", " d3.selectAll(\".cell-selected\").classed(\"cell-selected\",false);\n", " d3.selectAll(\".rowLabel\").classed(\"text-selected\",false);\n", " d3.selectAll(\".colLabel\").classed(\"text-selected\",false);\n", " }\n", " var p = d3.mouse(this);\n", " sa.append(\"rect\")\n", " .attr({\n", " rx : 0,\n", " ry : 0,\n", " class : \"selection\",\n", " x : p[0],\n", " y : p[1],\n", " width : 1,\n", " height : 1\n", " })\n", " })\n", " .on(\"mousemove\", function() {\n", " var s = sa.select(\"rect.selection\");\n", " \n", " if(!s.empty()) {\n", " var p = d3.mouse(this),\n", " d = {\n", " x : parseInt(s.attr(\"x\"), 10),\n", " y : parseInt(s.attr(\"y\"), 10),\n", " width : parseInt(s.attr(\"width\"), 10),\n", " height : parseInt(s.attr(\"height\"), 10)\n", " },\n", " move = {\n", " x : p[0] - d.x,\n", " y : p[1] - d.y\n", " }\n", " ;\n", " \n", " if(move.x < 1 || (move.x*2<d.width)) {\n", " d.x = p[0];\n", " d.width -= move.x;\n", " } else {\n", " d.width = move.x; \n", " }\n", " \n", " if(move.y < 1 || (move.y*2<d.height)) {\n", " d.y = p[1];\n", " d.height -= move.y;\n", " } else {\n", " d.height = move.y; \n", " }\n", " s.attr(d);\n", " \n", " // deselect all temporary selected state objects\n", " d3.selectAll('.cell-selection.cell-selected').classed(\"cell-selected\", false);\n", " d3.selectAll(\".text-selection.text-selected\").classed(\"text-selected\",false);\n", "\n", " d3.selectAll('.cell').filter(function(cell_d, i) {\n", " if(\n", " !d3.select(this).classed(\"cell-selected\") && \n", " // inner circle inside selection frame\n", " (this.x.baseVal.value)+cellSize >= d.x && (this.x.baseVal.value)<=d.x+d.width && \n", " (this.y.baseVal.value)+cellSize >= d.y && (this.y.baseVal.value)<=d.y+d.height\n", " ) {\n", " \n", " d3.select(this)\n", " .classed(\"cell-selection\", true)\n", " .classed(\"cell-selected\", true);\n", "\n", " d3.select(\".r\"+(cell_d.row-1))\n", " .classed(\"text-selection\",true)\n", " .classed(\"text-selected\",true);\n", "\n", " d3.select(\".c\"+(cell_d.col-1))\n", " .classed(\"text-selection\",true)\n", " .classed(\"text-selected\",true);\n", " }\n", " });\n", " }\n", " })\n", " .on(\"mouseup\", function() {\n", " // remove selection frame\n", " sa.selectAll(\"rect.selection\").remove();\n", " \n", " // remove temporary selection marker class\n", " d3.selectAll('.cell-selection').classed(\"cell-selection\", false);\n", " d3.selectAll(\".text-selection\").classed(\"text-selection\",false);\n", " })\n", " .on(\"mouseout\", function() {\n", " if(d3.event.relatedTarget.tagName=='html') {\n", " // remove selection frame\n", " sa.selectAll(\"rect.selection\").remove();\n", " // remove temporary selection marker class\n", " d3.selectAll('.cell-selection').classed(\"cell-selection\", false);\n", " d3.selectAll(\".rowLabel\").classed(\"text-selected\",false);\n", " d3.selectAll(\".colLabel\").classed(\"text-selected\",false);\n", " }\n", " })\n", " ;\n", "//});\n", "\n", "});" ], "language": "python", "metadata": {}, "outputs": [ { "javascript": [ "\n", "require.config({paths: {d3: \"https://mpld3.github.io/js/d3.v3.min\"}});\n", "\n", "require([\"d3\"], function(d3){\n", "\n", "var margin = { top: 150, right: 10, bottom: 50, left: 100 },\n", " cellSize=12,\n", " col_number=6,\n", " row_number=4,\n", " width = cellSize*col_number, // - margin.left - margin.right,\n", " height = cellSize*row_number , // - margin.top - margin.bottom,\n", " //gridSize = Math.floor(width / 24),\n", " legendElementWidth = cellSize*2.5,\n", " colorBuckets = 21,\n", " colors = ['#005824','#1A693B','#347B53','#4F8D6B','#699F83','#83B09B','#9EC2B3','#B8D4CB','#D2E6E3','#EDF8FB','#FFFFFF','#F1EEF6','#E6D3E1','#DBB9CD','#D19EB9','#C684A4','#BB6990','#B14F7C','#A63467','#9B1A53','#91003F'],\n", " hcrow = [1, 2, 3, 4],\n", " hccol = [6, 2, 1, 3, 5, 4],\n", " rowLabel = ['1759302_s_at','1759080_s_at','1759502_s_at','1759540_s_at'],\n", " colLabel = ['con1027','con1028','con1029','con103','con1030','con1031'];\n", "\n", "//d3.tsv(\"data/heatmap_data.tsv\",\n", "//function(d) {\n", " //return {\n", " //row: +d.row_idx,\n", " //col: +d.col_idx,\n", " //value: +d.log2ratio\n", " //};\n", "//},\n", "\n", " var data = [{\"col\": 1, \"value\": 6, \"row\": 1}, {\"col\": 2, \"value\": 6, \"row\": 1}, {\"col\": 3, \"value\": 7, \"row\": 1}, {\"col\": 4, \"value\": 6, \"row\": 1}, {\"col\": 5, \"value\": 6, \"row\": 1}, {\"col\": 6, \"value\": 6, \"row\": 1}, {\"col\": 1, \"value\": 6, \"row\": 2}, {\"col\": 2, \"value\": 6, \"row\": 2}, {\"col\": 3, \"value\": 6, \"row\": 2}, {\"col\": 4, \"value\": 6, \"row\": 2}, {\"col\": 5, \"value\": 6, \"row\": 2}, {\"col\": 6, \"value\": 6, \"row\": 2}, {\"col\": 1, \"value\": 9, \"row\": 3}, {\"col\": 2, \"value\": 9, \"row\": 3}, {\"col\": 3, \"value\": 9, \"row\": 3}, {\"col\": 4, \"value\": 9, \"row\": 3}, {\"col\": 5, \"value\": 9, \"row\": 3}, {\"col\": 6, \"value\": 9, \"row\": 3}, {\"col\": 1, \"value\": 6, \"row\": 4}, {\"col\": 2, \"value\": 6, \"row\": 4}, {\"col\": 3, \"value\": 6, \"row\": 4}, {\"col\": 4, \"value\": 6, \"row\": 4}, {\"col\": 5, \"value\": 6, \"row\": 4}, {\"col\": 6, \"value\": 5, \"row\": 4}];\n", " console.log(data.slice(1,10));\n", " var colorScale = d3.scale.quantile()\n", " .domain([ -10 , 0, 10])\n", " .range(colors);\n", " \n", " var svg = d3.select(\"#chart\").append(\"svg\")\n", " .attr(\"width\", width + margin.left + margin.right)\n", " .attr(\"height\", height + margin.top + margin.bottom)\n", " .append(\"g\")\n", " .attr(\"transform\", \"translate(\" + margin.left + \",\" + margin.top + \")\")\n", " ;\n", " var rowSortOrder=false;\n", " var colSortOrder=false;\n", " var rowLabels = svg.append(\"g\")\n", " .selectAll(\".rowLabelg\")\n", " .data(rowLabel)\n", " .enter()\n", " .append(\"text\")\n", " .text(function (d) { return d; })\n", " .attr(\"x\", 0)\n", " .attr(\"y\", function (d, i) { return hcrow.indexOf(i+1) * cellSize; })\n", " .style(\"text-anchor\", \"end\")\n", " .attr(\"transform\", \"translate(-6,\" + cellSize / 1.5 + \")\")\n", " .attr(\"class\", function (d,i) { return \"rowLabel mono r\"+i;} ) \n", " .on(\"mouseover\", function(d) {d3.select(this).classed(\"text-hover\",true);})\n", " .on(\"mouseout\" , function(d) {d3.select(this).classed(\"text-hover\",false);})\n", " .on(\"click\", function(d,i) {rowSortOrder=!rowSortOrder; sortbylabel(\"r\",i,rowSortOrder);d3.select(\"#order\").property(\"selectedIndex\", 4).node().focus();;})\n", " ;\n", "\n", " var colLabels = svg.append(\"g\")\n", " .selectAll(\".colLabelg\")\n", " .data(colLabel)\n", " .enter()\n", " .append(\"text\")\n", " .text(function (d) { return d; })\n", " .attr(\"x\", 0)\n", " .attr(\"y\", function (d, i) { return hccol.indexOf(i+1) * cellSize; })\n", " .style(\"text-anchor\", \"left\")\n", " .attr(\"transform\", \"translate(\"+cellSize/2 + \",-6) rotate (-90)\")\n", " .attr(\"class\", function (d,i) { return \"colLabel mono c\"+i;} )\n", " .on(\"mouseover\", function(d) {d3.select(this).classed(\"text-hover\",true);})\n", " .on(\"mouseout\" , function(d) {d3.select(this).classed(\"text-hover\",false);})\n", " .on(\"click\", function(d,i) {colSortOrder=!colSortOrder; sortbylabel(\"c\",i,colSortOrder);d3.select(\"#order\").property(\"selectedIndex\", 4).node().focus();;})\n", " ;\n", "\n", " var heatMap = svg.append(\"g\").attr(\"class\",\"g3\")\n", " .selectAll(\".cellg\")\n", " .data(data,function(d){return d.row+\":\"+d.col;})\n", " .enter()\n", " .append(\"rect\")\n", " .attr(\"x\", function(d) { return hccol.indexOf(d.col) * cellSize; })\n", " .attr(\"y\", function(d) { return hcrow.indexOf(d.row) * cellSize; })\n", " .attr(\"class\", function(d){return \"cell cell-border cr\"+(d.row-1)+\" cc\"+(d.col-1);})\n", " .attr(\"width\", cellSize)\n", " .attr(\"height\", cellSize)\n", " .style(\"fill\", function(d) { return colorScale(d.value); })\n", " /* .on(\"click\", function(d) {\n", " var rowtext=d3.select(\".r\"+(d.row-1));\n", " if(rowtext.classed(\"text-selected\")==false){\n", " rowtext.classed(\"text-selected\",true);\n", " }else{\n", " rowtext.classed(\"text-selected\",false);\n", " }\n", " })*/\n", " .on(\"mouseover\", function(d){\n", " //highlight text\n", " d3.select(this).classed(\"cell-hover\",true);\n", " d3.selectAll(\".rowLabel\").classed(\"text-highlight\",function(r,ri){ return ri==(d.row-1);});\n", " d3.selectAll(\".colLabel\").classed(\"text-highlight\",function(c,ci){ return ci==(d.col-1);});\n", " \n", " //Update the tooltip position and value\n", " d3.select(\"#tooltip\")\n", " .style(\"left\", (d3.event.pageX+10) + \"px\")\n", " .style(\"top\", (d3.event.pageY-10) + \"px\")\n", " .select(\"#value\")\n", " .text(\"lables:\"+rowLabel[d.row-1]+\",\"+colLabel[d.col-1]+\"\\ndata:\"+d.value+\"\\nrow-col-idx:\"+d.col+\",\"+d.row+\"\\ncell-xy \"+this.x.baseVal.value+\", \"+this.y.baseVal.value); \n", " //Show the tooltip\n", " d3.select(\"#tooltip\").classed(\"hidden\", false);\n", " })\n", " .on(\"mouseout\", function(){\n", " d3.select(this).classed(\"cell-hover\",false);\n", " d3.selectAll(\".rowLabel\").classed(\"text-highlight\",false);\n", " d3.selectAll(\".colLabel\").classed(\"text-highlight\",false);\n", " d3.select(\"#tooltip\").classed(\"hidden\", true);\n", " })\n", " ;\n", "\n", " var legend = svg.selectAll(\".legend\")\n", " .data([-10,-9,-8,-7,-6,-5,-4,-3,-2,-1,0,1,2,3,4,5,6,7,8,9,10])\n", " .enter().append(\"g\")\n", " .attr(\"class\", \"legend\");\n", " \n", " legend.append(\"rect\")\n", " .attr(\"x\", function(d, i) { return legendElementWidth * i; })\n", " .attr(\"y\", height+(cellSize*2))\n", " .attr(\"width\", legendElementWidth)\n", " .attr(\"height\", cellSize)\n", " .style(\"fill\", function(d, i) { return colors[i]; });\n", " \n", " legend.append(\"text\")\n", " .attr(\"class\", \"mono\")\n", " .text(function(d) { return d; })\n", " .attr(\"width\", legendElementWidth)\n", " .attr(\"x\", function(d, i) { return legendElementWidth * i; })\n", " .attr(\"y\", height + (cellSize*4));\n", "\n", "// Change ordering of cells\n", "\n", " function sortbylabel(rORc,i,sortOrder){\n", " var t = svg.transition().duration(3000);\n", " var log2r=[];\n", " var sorted; // sorted is zero-based index\n", " d3.selectAll(\".c\"+rORc+i) \n", " .filter(function(ce){\n", " log2r.push(ce.value);\n", " })\n", " ;\n", " if(rORc==\"r\"){ // sort log2ratio of a gene\n", " sorted=d3.range(col_number).sort(function(a,b){ if(sortOrder){ return log2r[b]-log2r[a];}else{ return log2r[a]-log2r[b];}});\n", " t.selectAll(\".cell\")\n", " .attr(\"x\", function(d) { return sorted.indexOf(d.col-1) * cellSize; })\n", " ;\n", " t.selectAll(\".colLabel\")\n", " .attr(\"y\", function (d, i) { return sorted.indexOf(i) * cellSize; })\n", " ;\n", " }else{ // sort log2ratio of a contrast\n", " sorted=d3.range(row_number).sort(function(a,b){if(sortOrder){ return log2r[b]-log2r[a];}else{ return log2r[a]-log2r[b];}});\n", " t.selectAll(\".cell\")\n", " .attr(\"y\", function(d) { return sorted.indexOf(d.row-1) * cellSize; })\n", " ;\n", " t.selectAll(\".rowLabel\")\n", " .attr(\"y\", function (d, i) { return sorted.indexOf(i) * cellSize; })\n", " ;\n", " }\n", " }\n", "\n", " d3.select(\"#order\").on(\"change\",function(){\n", " order(this.value);\n", " });\n", " \n", " function order(value){\n", " if(value==\"hclust\"){\n", " var t = svg.transition().duration(3000);\n", " t.selectAll(\".cell\")\n", " .attr(\"x\", function(d) { return hccol.indexOf(d.col) * cellSize; })\n", " .attr(\"y\", function(d) { return hcrow.indexOf(d.row) * cellSize; })\n", " ;\n", "\n", " t.selectAll(\".rowLabel\")\n", " .attr(\"y\", function (d, i) { return hcrow.indexOf(i+1) * cellSize; })\n", " ;\n", "\n", " t.selectAll(\".colLabel\")\n", " .attr(\"y\", function (d, i) { return hccol.indexOf(i+1) * cellSize; })\n", " ;\n", "\n", " }else if (value==\"probecontrast\"){\n", " var t = svg.transition().duration(3000);\n", " t.selectAll(\".cell\")\n", " .attr(\"x\", function(d) { return (d.col - 1) * cellSize; })\n", " .attr(\"y\", function(d) { return (d.row - 1) * cellSize; })\n", " ;\n", "\n", " t.selectAll(\".rowLabel\")\n", " .attr(\"y\", function (d, i) { return i * cellSize; })\n", " ;\n", "\n", " t.selectAll(\".colLabel\")\n", " .attr(\"y\", function (d, i) { return i * cellSize; })\n", " ;\n", "\n", " }else if (value==\"probe\"){\n", " var t = svg.transition().duration(3000);\n", " t.selectAll(\".cell\")\n", " .attr(\"y\", function(d) { return (d.row - 1) * cellSize; })\n", " ;\n", "\n", " t.selectAll(\".rowLabel\")\n", " .attr(\"y\", function (d, i) { return i * cellSize; })\n", " ;\n", " }else if (value==\"contrast\"){\n", " var t = svg.transition().duration(3000);\n", " t.selectAll(\".cell\")\n", " .attr(\"x\", function(d) { return (d.col - 1) * cellSize; })\n", " ;\n", " t.selectAll(\".colLabel\")\n", " .attr(\"y\", function (d, i) { return i * cellSize; })\n", " ;\n", " }\n", " }\n", " // \n", " var sa=d3.select(\".g3\")\n", " .on(\"mousedown\", function() {\n", " if( !d3.event.altKey) {\n", " d3.selectAll(\".cell-selected\").classed(\"cell-selected\",false);\n", " d3.selectAll(\".rowLabel\").classed(\"text-selected\",false);\n", " d3.selectAll(\".colLabel\").classed(\"text-selected\",false);\n", " }\n", " var p = d3.mouse(this);\n", " sa.append(\"rect\")\n", " .attr({\n", " rx : 0,\n", " ry : 0,\n", " class : \"selection\",\n", " x : p[0],\n", " y : p[1],\n", " width : 1,\n", " height : 1\n", " })\n", " })\n", " .on(\"mousemove\", function() {\n", " var s = sa.select(\"rect.selection\");\n", " \n", " if(!s.empty()) {\n", " var p = d3.mouse(this),\n", " d = {\n", " x : parseInt(s.attr(\"x\"), 10),\n", " y : parseInt(s.attr(\"y\"), 10),\n", " width : parseInt(s.attr(\"width\"), 10),\n", " height : parseInt(s.attr(\"height\"), 10)\n", " },\n", " move = {\n", " x : p[0] - d.x,\n", " y : p[1] - d.y\n", " }\n", " ;\n", " \n", " if(move.x < 1 || (move.x*2<d.width)) {\n", " d.x = p[0];\n", " d.width -= move.x;\n", " } else {\n", " d.width = move.x; \n", " }\n", " \n", " if(move.y < 1 || (move.y*2<d.height)) {\n", " d.y = p[1];\n", " d.height -= move.y;\n", " } else {\n", " d.height = move.y; \n", " }\n", " s.attr(d);\n", " \n", " // deselect all temporary selected state objects\n", " d3.selectAll('.cell-selection.cell-selected').classed(\"cell-selected\", false);\n", " d3.selectAll(\".text-selection.text-selected\").classed(\"text-selected\",false);\n", "\n", " d3.selectAll('.cell').filter(function(cell_d, i) {\n", " if(\n", " !d3.select(this).classed(\"cell-selected\") && \n", " // inner circle inside selection frame\n", " (this.x.baseVal.value)+cellSize >= d.x && (this.x.baseVal.value)<=d.x+d.width && \n", " (this.y.baseVal.value)+cellSize >= d.y && (this.y.baseVal.value)<=d.y+d.height\n", " ) {\n", " \n", " d3.select(this)\n", " .classed(\"cell-selection\", true)\n", " .classed(\"cell-selected\", true);\n", "\n", " d3.select(\".r\"+(cell_d.row-1))\n", " .classed(\"text-selection\",true)\n", " .classed(\"text-selected\",true);\n", "\n", " d3.select(\".c\"+(cell_d.col-1))\n", " .classed(\"text-selection\",true)\n", " .classed(\"text-selected\",true);\n", " }\n", " });\n", " }\n", " })\n", " .on(\"mouseup\", function() {\n", " // remove selection frame\n", " sa.selectAll(\"rect.selection\").remove();\n", " \n", " // remove temporary selection marker class\n", " d3.selectAll('.cell-selection').classed(\"cell-selection\", false);\n", " d3.selectAll(\".text-selection\").classed(\"text-selection\",false);\n", " })\n", " .on(\"mouseout\", function() {\n", " if(d3.event.relatedTarget.tagName=='html') {\n", " // remove selection frame\n", " sa.selectAll(\"rect.selection\").remove();\n", " // remove temporary selection marker class\n", " d3.selectAll('.cell-selection').classed(\"cell-selection\", false);\n", " d3.selectAll(\".rowLabel\").classed(\"text-selected\",false);\n", " d3.selectAll(\".colLabel\").classed(\"text-selected\",false);\n", " }\n", " })\n", " ;\n", "//});\n", "\n", "});" ], "metadata": {}, "output_type": "display_data", "text": [ "<IPython.core.display.Javascript at 0x108c0c1d0>" ] } ], "prompt_number": 70 }, { "cell_type": "code", "collapsed": false, "input": [], "language": "python", "metadata": {}, "outputs": [], "prompt_number": 5 }, { "cell_type": "code", "collapsed": false, "input": [ "\n", " " ], "language": "python", "metadata": {}, "outputs": [], "prompt_number": 5 }, { "cell_type": "code", "collapsed": false, "input": [ "import simplejson as json\n", "json.dumps([{'row': 1, 'col': 1, 'value':1},{'row': 1, 'col': 2, 'value':2},{'row': 2, 'col': 1, 'value':3},{'row': 2, 'col': 2, 'value':4}])\n" ], "language": "python", "metadata": {}, "outputs": [ { "metadata": {}, "output_type": "pyout", "prompt_number": 17, "text": [ "'[{\"col\": 1, \"value\": 1, \"row\": 1}, {\"col\": 2, \"value\": 2, \"row\": 1}, {\"col\": 1, \"value\": 3, \"row\": 2}, {\"col\": 2, \"value\": 4, \"row\": 2}]'" ] } ], "prompt_number": 17 }, { "cell_type": "code", "collapsed": false, "input": [ "genes = [ome.query(Gene).filter(Gene.name == x).one() for x in ['gapA','sucA','sucB','sucC','sucD']]\n", "genes_data = {gene: gene.data for gene in genes}\n", "json.dumps({\n", " \"rowlabels\" : [x.data_set.name for x in genes_data.itervalues().next()],\n", " \"collabels\" : [x.name for x in genes_data.keys()],\n", " \"data\" : [[{\"row\": i, \"col\": j, \"value\": data.value} for j,data in enumerate(genes_data[gene])] for i,gene in enumerate(genes_data)]})" ], "language": "python", "metadata": {}, "outputs": [ { "metadata": {}, "output_type": "pyout", "prompt_number": 17, "text": [ "'{\"rowlabels\": [\"RNAseq_Ar3_glycerol_NH4Cl_O2_1_1.0\", \"RNAseq_Ar3_glycerol_NH4Cl_O2_3_1.0\", \"RNAseq_delAr1_glycerol_NH4Cl_O2_2_1.0\", \"RNAseq_delAr1delAr2_glycerol_NH4Cl_O2_1_1.0\", \"RNAseq_delAr1delAr2_glycerol_NH4Cl_O2_3_1.0\", \"RNAseq_delAr2_glycerol_NH4Cl_O2_2_1.0\", \"RNAseq_delta-crp_glycerol_NH4Cl_O2_1_1.0\", \"RNAseq_delta-crp_glycerol_NH4Cl_O2_3_1.0\", \"RNAseq_delta-crp_fructose_NH4Cl_O2_2_1.0\", \"RNAseq_delta-crp_glucose_NH4Cl_O2_1_1.0\", \"RNAseq_delta-crp_glucose_NH4Cl_O2_3_1.0\", \"RNAseq_wt_glycerol_NH4Cl_O2_2_1.0\", \"RNAseq_wt_fructose_NH4Cl_O2_2_1.0\", \"RNAseq_wt_glucose_NH4Cl_O2_2_1.0\", \"RNAseq_Ar3_glycerol_NH4Cl_O2_2_1.0\", \"RNAseq_delAr1_glycerol_NH4Cl_O2_1_1.0\", \"RNAseq_delAr1_glycerol_NH4Cl_O2_3_1.0\", \"RNAseq_delAr1delAr2_glycerol_NH4Cl_O2_2_1.0\", \"RNAseq_delAr2_glycerol_NH4Cl_O2_1_1.0\", \"RNAseq_delAr2_glycerol_NH4Cl_O2_3_1.0\", \"RNAseq_delta-crp_glycerol_NH4Cl_O2_2_1.0\", \"RNAseq_delta-crp_fructose_NH4Cl_O2_1_1.0\", \"RNAseq_delta-crp_fructose_NH4Cl_O2_3_1.0\", \"RNAseq_delta-crp_glucose_NH4Cl_O2_2_1.0\", \"RNAseq_wt_glycerol_NH4Cl_O2_1_1.0\", \"RNAseq_wt_fructose_NH4Cl_O2_1_1.0\", \"RNAseq_wt_glucose_NH4Cl_O2_1_1.0\", \"RNAseq_wt_glucose_NH4Cl_O2_3_1.0\", \"RNAseq_delta-crp_fructose/glucose_NH4Cl_O2\", \"RNAseq_delta-crp_glucose/glycerol_NH4Cl_O2\", \"RNAseq_delAr2/wt_glycerol_NH4Cl_O2\", \"RNAseq_delAr1/wt_glycerol_NH4Cl_O2\", \"RNAseq_delta-crp/wt_glycerol_NH4Cl_O2\", \"RNAseq_delAr1delAr2/wt_glycerol_NH4Cl_O2\", \"RNAseq_Ar3/wt_glycerol_NH4Cl_O2\", \"RNAseq_wt_fructose/glycerol_NH4Cl_O2\", \"RNAseq_wt_glucose/glycerol_NH4Cl_O2\", \"RNAseq_delta-crp/wt_fructose_NH4Cl_O2\", \"RNAseq_delta-crp/wt_glucose_NH4Cl_O2\", \"RNAseq_wt_fructose/glucose_NH4Cl_O2\", \"affyexp_delta-arcA_glucose_NH4Cl_O2_1_asv2\", \"affyexp_delta-arcA_glucose_NH4Cl_O2_3_asv2\", \"affyexp_delta-arcA_glucose_NH4Cl_anaerobic_2_asv2\", \"affyexp_delta-arcAfnr_glucose_NH4Cl_O2_1_asv2\", \"affyexp_delta-arcAfnr_glucose_NH4Cl_O2_3_asv2\", \"affyexp_delta-arcAfnr_glucose_NH4Cl_anaerobic_2_asv2\", \"affyexp_delta-fnr_glucose_NH4Cl_O2_1_asv2\", \"affyexp_delta-fnr_glucose_NH4Cl_O2_3_asv2\", \"affyexp_delta-fnr_glucose_NH4Cl_anaerobic_2_asv2\", \"affyexp_delta-narL_glucose_NH4Cl_anaerobic_1_asv2\", \"affyexp_delta-narL_glucose_NH4Cl_anaerobic_3_asv2\", \"affyexp_delta-narL_glucose_NH4Cl_NO3_2_asv2\", \"affyexp_delta-narLnarP_glucose_NH4Cl_anaerobic_1_asv2\", \"affyexp_delta-narLnarP_glucose_NH4Cl_anaerobic_3_asv2\", \"affyexp_delta-narLnarP_glucose_NH4Cl_NO3_2_asv2\", \"affyexp_delta-narP_glucose_NH4Cl_anaerobic_1_asv2\", \"affyexp_delta-narP_glucose_NH4Cl_anaerobic_3_asv2\", \"affyexp_delta-narP_glucose_NH4Cl_NO3_3_asv2\", \"affyexp_wt_glucose_NH4Cl_NO3_2_asv2\", \"affyexp_wt_glucose_NH4Cl_O2_1_asv2\", \"affyexp_wt_glucose_NH4Cl_O2_3_asv2\", \"affyexp_wt_glucose_NH4Cl_anaerobic_2_asv2\", \"affyexp_wt_glucose_NH4Cl_anaerobic_4_asv2\", \"affyexp_wt_glucose_NH4Cl_anaerobic_6_asv2\", \"affyexp_delta-arcA_glucose_NH4Cl_O2_2_asv2\", \"affyexp_delta-arcA_glucose_NH4Cl_anaerobic_1_asv2\", \"affyexp_delta-arcA_glucose_NH4Cl_anaerobic_3_asv2\", \"affyexp_delta-arcAfnr_glucose_NH4Cl_O2_2_asv2\", \"affyexp_delta-arcAfnr_glucose_NH4Cl_anaerobic_1_asv2\", \"affyexp_delta-arcAfnr_glucose_NH4Cl_anaerobic_3_asv2\", \"affyexp_delta-fnr_glucose_NH4Cl_O2_2_asv2\", \"affyexp_delta-fnr_glucose_NH4Cl_anaerobic_1_asv2\", \"affyexp_delta-fnr_glucose_NH4Cl_anaerobic_3_asv2\", \"affyexp_delta-narL_glucose_NH4Cl_anaerobic_2_asv2\", \"affyexp_delta-narL_glucose_NH4Cl_NO3_1_asv2\", \"affyexp_delta-narL_glucose_NH4Cl_NO3_3_asv2\", \"affyexp_delta-narLnarP_glucose_NH4Cl_anaerobic_2_asv2\", \"affyexp_delta-narLnarP_glucose_NH4Cl_NO3_1_asv2\", \"affyexp_delta-narLnarP_glucose_NH4Cl_NO3_3_asv2\", \"affyexp_delta-narP_glucose_NH4Cl_anaerobic_2_asv2\", \"affyexp_delta-narP_glucose_NH4Cl_NO3_2_asv2\", \"affyexp_wt_glucose_NH4Cl_NO3_1_asv2\", \"affyexp_wt_glucose_NH4Cl_NO3_3_asv2\", \"affyexp_wt_glucose_NH4Cl_O2_2_asv2\", \"affyexp_wt_glucose_NH4Cl_anaerobic_1_asv2\", \"affyexp_wt_glucose_NH4Cl_anaerobic_3_asv2\", \"affyexp_wt_glucose_NH4Cl_anaerobic_5_asv2\", \"affyexp_delta-cra_acetate_NH4Cl_O2_2_ec2\", \"affyexp_delta-cra_glucose_NH4Cl_O2_1_ec2\", \"affyexp_delta-cra_glucose_NH4Cl_O2_3_ec2\", \"affyexp_delta-crp_fructose_NH4Cl_O2_2_ec2\", \"affyexp_delta-crp_glucose_NH4Cl_O2_1_ec2\", \"affyexp_delta-crp_glucose_NH4Cl_O2_3_ec2\", \"affyexp_delta-lrp_glucose_NH4Cl_O2_2_ec2\", \"affyexp_delta-lrp_glucose_leucine_O2_1_ec2\", \"affyexp_delta-lrp_glucose_leucine_O2_3_ec2\", \"affyexp_delta-purR_glucose_NH4Cl_O2_2_ec2\", \"affyexp_delta-purR_glucose_adenine_O2_2_ec2\", \"affyexp_wt_acetate_NH4Cl_O2_2_ec2\", \"affyexp_wt_fructose_NH4Cl_O2_1_ec2\", \"affyexp_wt_fructose_NH4Cl_O2_3_ec2\", \"affyexp_wt_glucose_NH4Cl_O2_2_ec2\", \"affyexp_wt_glucose_adenine_O2_2_ec2\", \"affyexp_wt_glucose_leucine_O2_2_ec2\", \"affyexp_delta-cra_acetate_NH4Cl_O2_1_ec2\", \"affyexp_delta-cra_acetate_NH4Cl_O2_3_ec2\", \"affyexp_delta-cra_glucose_NH4Cl_O2_2_ec2\", \"affyexp_delta-crp_fructose_NH4Cl_O2_1_ec2\", \"affyexp_delta-crp_fructose_NH4Cl_O2_3_ec2\", \"affyexp_delta-crp_glucose_NH4Cl_O2_2_ec2\", \"affyexp_delta-lrp_glucose_NH4Cl_O2_1_ec2\", \"affyexp_delta-lrp_glucose_NH4Cl_O2_3_ec2\", \"affyexp_delta-lrp_glucose_leucine_O2_2_ec2\", \"affyexp_delta-purR_glucose_NH4Cl_O2_1_ec2\", \"affyexp_delta-purR_glucose_adenine_O2_1_ec2\", \"affyexp_wt_acetate_NH4Cl_O2_1_ec2\", \"affyexp_wt_acetate_NH4Cl_O2_3_ec2\", \"affyexp_wt_fructose_NH4Cl_O2_2_ec2\", \"affyexp_wt_glucose_NH4Cl_O2_1_ec2\", \"affyexp_wt_glucose_adenine_O2_1_ec2\", \"affyexp_wt_glucose_leucine_O2_1_ec2\", \"affyexp_wt_glucose_leucine_O2_3_ec2\"], \"collabels\": [\"sucB\", \"sucC\", \"gapA\", \"sucD\", \"sucA\"], \"data\": [[{\"col\": 0, \"value\": 857.844, \"row\": 0}, {\"col\": 1, \"value\": 851.957, \"row\": 0}, {\"col\": 2, \"value\": 818.335, \"row\": 0}, {\"col\": 3, \"value\": 777.381, \"row\": 0}, {\"col\": 4, \"value\": 758.984, \"row\": 0}, {\"col\": 5, \"value\": 495.698, \"row\": 0}, {\"col\": 6, \"value\": 435.969, \"row\": 0}, {\"col\": 7, \"value\": 471.084, \"row\": 0}, {\"col\": 8, \"value\": 437.242, \"row\": 0}, {\"col\": 9, \"value\": 598.409, \"row\": 0}, {\"col\": 10, \"value\": 543.095, \"row\": 0}, {\"col\": 11, \"value\": 2105.33, \"row\": 0}, {\"col\": 12, \"value\": 1995.13, \"row\": 0}, {\"col\": 13, \"value\": 837.41, \"row\": 0}, {\"col\": 14, \"value\": 909.427, \"row\": 0}, {\"col\": 15, \"value\": 829.254, \"row\": 0}, {\"col\": 16, \"value\": 772.537, \"row\": 0}, {\"col\": 17, \"value\": 759.333, \"row\": 0}, {\"col\": 18, \"value\": 557.82, \"row\": 0}, {\"col\": 19, \"value\": 357.458, \"row\": 0}, {\"col\": 20, \"value\": 436.722, \"row\": 0}, {\"col\": 21, \"value\": 440.41, \"row\": 0}, {\"col\": 22, \"value\": 436.962, \"row\": 0}, {\"col\": 23, \"value\": 553.857, \"row\": 0}, {\"col\": 24, \"value\": 2354.17, \"row\": 0}, {\"col\": 25, \"value\": 1192.19, \"row\": 0}, {\"col\": 26, \"value\": 1040.39, \"row\": 0}, {\"col\": 27, \"value\": 889.687, \"row\": 0}, {\"col\": 28, \"value\": 0.432536, \"row\": 0}, {\"col\": 29, \"value\": -0.397255, \"row\": 0}, {\"col\": 30, \"value\": 2.04668, \"row\": 0}, {\"col\": 31, \"value\": 1.34544, \"row\": 0}, {\"col\": 32, \"value\": 2.29933, \"row\": 0}, {\"col\": 33, \"value\": 1.51219, \"row\": 0}, {\"col\": 34, \"value\": 1.28779, \"row\": 0}, {\"col\": 35, \"value\": 0.561733, \"row\": 0}, {\"col\": 36, \"value\": 1.44532, \"row\": 0}, {\"col\": 37, \"value\": 1.77288, \"row\": 0}, {\"col\": 38, \"value\": 0.456752, \"row\": 0}, {\"col\": 39, \"value\": -0.883587, \"row\": 0}, {\"col\": 40, \"value\": 13.561455618006, \"row\": 0}, {\"col\": 41, \"value\": 13.6704110951708, \"row\": 0}, {\"col\": 42, \"value\": 13.929860654029, \"row\": 0}, {\"col\": 43, \"value\": 13.6497693355289, \"row\": 0}, {\"col\": 44, \"value\": 13.5122785899231, \"row\": 0}, {\"col\": 45, \"value\": 13.8956617357311, \"row\": 0}, {\"col\": 46, \"value\": 13.4563724543563, \"row\": 0}, {\"col\": 47, \"value\": 13.2654149197683, \"row\": 0}, {\"col\": 48, \"value\": 11.5822062985467, \"row\": 0}, {\"col\": 49, \"value\": 9.53809257914902, \"row\": 0}, {\"col\": 50, \"value\": 9.81608132214322, \"row\": 0}, {\"col\": 51, \"value\": 9.91468138976239, \"row\": 0}, {\"col\": 52, \"value\": 9.818821129562, \"row\": 0}, {\"col\": 53, \"value\": 9.57325880077826, \"row\": 0}, {\"col\": 54, \"value\": 9.93303053120947, \"row\": 0}, {\"col\": 55, \"value\": 9.89217920441508, \"row\": 0}, {\"col\": 56, \"value\": 9.5183624996305, \"row\": 0}, {\"col\": 57, \"value\": 10.1748566773564, \"row\": 0}, {\"col\": 58, \"value\": 11.0072296815255, \"row\": 0}, {\"col\": 59, \"value\": 13.5765822043872, \"row\": 0}, {\"col\": 60, \"value\": 13.4609118284044, \"row\": 0}, {\"col\": 61, \"value\": 9.46610475657578, \"row\": 0}, {\"col\": 62, \"value\": 9.83810007090159, \"row\": 0}, {\"col\": 63, \"value\": 10.1572837907573, \"row\": 0}, {\"col\": 64, \"value\": 13.9039922806566, \"row\": 0}, {\"col\": 65, \"value\": 13.8533773183025, \"row\": 0}, {\"col\": 66, \"value\": 13.9265210339694, \"row\": 0}, {\"col\": 67, \"value\": 13.5040855499817, \"row\": 0}, {\"col\": 68, \"value\": 13.4073901570674, \"row\": 0}, {\"col\": 69, \"value\": 13.6238123203913, \"row\": 0}, {\"col\": 70, \"value\": 13.163433712565, \"row\": 0}, {\"col\": 71, \"value\": 10.3315788284862, \"row\": 0}, {\"col\": 72, \"value\": 11.3316588963345, \"row\": 0}, {\"col\": 73, \"value\": 9.72468191276667, \"row\": 0}, {\"col\": 74, \"value\": 10.0718998332607, \"row\": 0}, {\"col\": 75, \"value\": 10.1969084173449, \"row\": 0}, {\"col\": 76, \"value\": 9.75692228945093, \"row\": 0}, {\"col\": 77, \"value\": 9.54993956612485, \"row\": 0}, {\"col\": 78, \"value\": 10.0183717266756, \"row\": 0}, {\"col\": 79, \"value\": 9.9220314430799, \"row\": 0}, {\"col\": 80, \"value\": 10.4394240067545, \"row\": 0}, {\"col\": 81, \"value\": 10.7050005286526, \"row\": 0}, {\"col\": 82, \"value\": 10.7102134291794, \"row\": 0}, {\"col\": 83, \"value\": 13.4011541088589, \"row\": 0}, {\"col\": 84, \"value\": 9.55431277564047, \"row\": 0}, {\"col\": 85, \"value\": 9.93320345822298, \"row\": 0}, {\"col\": 86, \"value\": 10.0840935769721, \"row\": 0}, {\"col\": 87, \"value\": 14.6259746688342, \"row\": 0}, {\"col\": 88, \"value\": 13.3108119005334, \"row\": 0}, {\"col\": 89, \"value\": 13.3784201488828, \"row\": 0}, {\"col\": 90, \"value\": 12.2017337688336, \"row\": 0}, {\"col\": 91, \"value\": 13.0911628329115, \"row\": 0}, {\"col\": 92, \"value\": 13.1239577475452, \"row\": 0}, {\"col\": 93, \"value\": 13.6612269902857, \"row\": 0}, {\"col\": 94, \"value\": 13.4108699090057, \"row\": 0}, {\"col\": 95, \"value\": 13.4040543918307, \"row\": 0}, {\"col\": 96, \"value\": 13.1634051943626, \"row\": 0}, {\"col\": 97, \"value\": 12.3638222852243, \"row\": 0}, {\"col\": 98, \"value\": 14.5130086841624, \"row\": 0}, {\"col\": 99, \"value\": 13.9235930558533, \"row\": 0}, {\"col\": 100, \"value\": 13.8728724913113, \"row\": 0}, {\"col\": 101, \"value\": 13.6917064147896, \"row\": 0}, {\"col\": 102, \"value\": 12.257514955916, \"row\": 0}, {\"col\": 103, \"value\": 13.6375913098284, \"row\": 0}, {\"col\": 104, \"value\": 14.6446687092058, \"row\": 0}, {\"col\": 105, \"value\": 14.6520827180006, \"row\": 0}, {\"col\": 106, \"value\": 13.3594585813192, \"row\": 0}, {\"col\": 107, \"value\": 12.1804220683582, \"row\": 0}, {\"col\": 108, \"value\": 12.3084543962541, \"row\": 0}, {\"col\": 109, \"value\": 13.0880788492005, \"row\": 0}, {\"col\": 110, \"value\": 13.6411787371232, \"row\": 0}, {\"col\": 111, \"value\": 13.6243884637951, \"row\": 0}, {\"col\": 112, \"value\": 13.3602109077489, \"row\": 0}, {\"col\": 113, \"value\": 12.99794156477, \"row\": 0}, {\"col\": 114, \"value\": 13.0175659687197, \"row\": 0}, {\"col\": 115, \"value\": 14.5062981908542, \"row\": 0}, {\"col\": 116, \"value\": 14.4748561401981, \"row\": 0}, {\"col\": 117, \"value\": 13.9619337375569, \"row\": 0}, {\"col\": 118, \"value\": 13.5810168313386, \"row\": 0}, {\"col\": 119, \"value\": 12.3723737107103, \"row\": 0}, {\"col\": 120, \"value\": 13.6973083273534, \"row\": 0}, {\"col\": 121, \"value\": 13.6243884637951, \"row\": 0}], [{\"col\": 0, \"value\": 864.328, \"row\": 1}, {\"col\": 1, \"value\": 892.316, \"row\": 1}, {\"col\": 2, \"value\": 1204.33, \"row\": 1}, {\"col\": 3, \"value\": 851.607, \"row\": 1}, {\"col\": 4, \"value\": 875.709, \"row\": 1}, {\"col\": 5, \"value\": 674.234, \"row\": 1}, {\"col\": 6, \"value\": 381.148, \"row\": 1}, {\"col\": 7, \"value\": 410.24, \"row\": 1}, {\"col\": 8, \"value\": 410.009, \"row\": 1}, {\"col\": 9, \"value\": 537.38, \"row\": 1}, {\"col\": 10, \"value\": 527.486, \"row\": 1}, {\"col\": 11, \"value\": 2855.02, \"row\": 1}, {\"col\": 12, \"value\": 2755.67, \"row\": 1}, {\"col\": 13, \"value\": 871.778, \"row\": 1}, {\"col\": 14, \"value\": 988.004, \"row\": 1}, {\"col\": 15, \"value\": 985.675, \"row\": 1}, {\"col\": 16, \"value\": 908.14, \"row\": 1}, {\"col\": 17, \"value\": 898.058, \"row\": 1}, {\"col\": 18, \"value\": 748.474, \"row\": 1}, {\"col\": 19, \"value\": 359.481, \"row\": 1}, {\"col\": 20, \"value\": 388.915, \"row\": 1}, {\"col\": 21, \"value\": 419.198, \"row\": 1}, {\"col\": 22, \"value\": 433.252, \"row\": 1}, {\"col\": 23, \"value\": 530.207, \"row\": 1}, {\"col\": 24, \"value\": 3167.41, \"row\": 1}, {\"col\": 25, \"value\": 1346.74, \"row\": 1}, {\"col\": 26, \"value\": 1067.83, \"row\": 1}, {\"col\": 27, \"value\": 914.552, \"row\": 1}, {\"col\": 28, \"value\": 0.402896, \"row\": 1}, {\"col\": 29, \"value\": -0.496367, \"row\": 1}, {\"col\": 30, \"value\": 2.14171, \"row\": 1}, {\"col\": 31, \"value\": 1.41692, \"row\": 1}, {\"col\": 32, \"value\": 2.91983, \"row\": 1}, {\"col\": 33, \"value\": 1.75205, \"row\": 1}, {\"col\": 34, \"value\": 1.65407, \"row\": 1}, {\"col\": 35, \"value\": 0.629755, \"row\": 1}, {\"col\": 36, \"value\": 1.83433, \"row\": 1}, {\"col\": 37, \"value\": 2.19661, \"row\": 1}, {\"col\": 38, \"value\": 0.589137, \"row\": 1}, {\"col\": 39, \"value\": -1.20457, \"row\": 1}, {\"col\": 40, \"value\": 14.5405211513889, \"row\": 1}, {\"col\": 41, \"value\": 14.4755164928986, \"row\": 1}, {\"col\": 42, \"value\": 14.5621085368645, \"row\": 1}, {\"col\": 43, \"value\": 14.4760783426781, \"row\": 1}, {\"col\": 44, \"value\": 14.3295825350024, \"row\": 1}, {\"col\": 45, \"value\": 14.4419520539588, \"row\": 1}, {\"col\": 46, \"value\": 13.7555013134898, \"row\": 1}, {\"col\": 47, \"value\": 11.4961049865679, \"row\": 1}, {\"col\": 48, \"value\": 12.2633440290454, \"row\": 1}, {\"col\": 49, \"value\": 10.6956196831267, \"row\": 1}, {\"col\": 50, \"value\": 11.5855793662712, \"row\": 1}, {\"col\": 51, \"value\": 11.5630498098673, \"row\": 1}, {\"col\": 52, \"value\": 10.7163397734516, \"row\": 1}, {\"col\": 53, \"value\": 10.8655468890673, \"row\": 1}, {\"col\": 54, \"value\": 11.1643680475884, \"row\": 1}, {\"col\": 55, \"value\": 10.8343868085565, \"row\": 1}, {\"col\": 56, \"value\": 11.7155976515182, \"row\": 1}, {\"col\": 57, \"value\": 11.7127777692279, \"row\": 1}, {\"col\": 58, \"value\": 11.9101925757306, \"row\": 1}, {\"col\": 59, \"value\": 14.2291834234721, \"row\": 1}, {\"col\": 60, \"value\": 10.6956196831267, \"row\": 1}, {\"col\": 61, \"value\": 10.7956249563169, \"row\": 1}, {\"col\": 62, \"value\": 10.8272787009327, \"row\": 1}, {\"col\": 63, \"value\": 14.3434160884441, \"row\": 1}, {\"col\": 64, \"value\": 14.452838293866, \"row\": 1}, {\"col\": 65, \"value\": 14.4497768243623, \"row\": 1}, {\"col\": 66, \"value\": 14.5681737964195, \"row\": 1}, {\"col\": 67, \"value\": 14.3648590460782, \"row\": 1}, {\"col\": 68, \"value\": 14.7193130137693, \"row\": 1}, {\"col\": 69, \"value\": 14.1374910469573, \"row\": 1}, {\"col\": 70, \"value\": 13.9910982505065, \"row\": 1}, {\"col\": 71, \"value\": 12.4393662978739, \"row\": 1}, {\"col\": 72, \"value\": 10.7811427996588, \"row\": 1}, {\"col\": 73, \"value\": 10.6956196831267, \"row\": 1}, {\"col\": 74, \"value\": 11.3384099282529, \"row\": 1}, {\"col\": 75, \"value\": 10.6370860330724, \"row\": 1}, {\"col\": 76, \"value\": 10.6956196831267, \"row\": 1}, {\"col\": 77, \"value\": 11.1207916879495, \"row\": 1}, {\"col\": 78, \"value\": 10.8542099907482, \"row\": 1}, {\"col\": 79, \"value\": 10.6658783970378, \"row\": 1}, {\"col\": 80, \"value\": 11.6252953825635, \"row\": 1}, {\"col\": 81, \"value\": 12.1097660200214, \"row\": 1}, {\"col\": 82, \"value\": 14.2362523790018, \"row\": 1}, {\"col\": 83, \"value\": 14.1963915580646, \"row\": 1}, {\"col\": 84, \"value\": 10.495513568846, \"row\": 1}, {\"col\": 85, \"value\": 10.7825103803924, \"row\": 1}, {\"col\": 86, \"value\": 10.9990194104065, \"row\": 1}, {\"col\": 87, \"value\": 14.8433709014479, \"row\": 1}, {\"col\": 88, \"value\": 13.1390607589549, \"row\": 1}, {\"col\": 89, \"value\": 13.2427803594229, \"row\": 1}, {\"col\": 90, \"value\": 11.8705904742461, \"row\": 1}, {\"col\": 91, \"value\": 13.0015230699051, \"row\": 1}, {\"col\": 92, \"value\": 13.0143967218247, \"row\": 1}, {\"col\": 93, \"value\": 13.7635673988645, \"row\": 1}, {\"col\": 94, \"value\": 13.4430273321534, \"row\": 1}, {\"col\": 95, \"value\": 13.4575161302421, \"row\": 1}, {\"col\": 96, \"value\": 12.9860549353965, \"row\": 1}, {\"col\": 97, \"value\": 11.7677320387783, \"row\": 1}, {\"col\": 98, \"value\": 14.7642192444709, \"row\": 1}, {\"col\": 99, \"value\": 14.22301466263, \"row\": 1}, {\"col\": 100, \"value\": 14.1636451939945, \"row\": 1}, {\"col\": 101, \"value\": 13.7379375769337, \"row\": 1}, {\"col\": 102, \"value\": 14.8081763340917, \"row\": 1}, {\"col\": 103, \"value\": 14.8765615352645, \"row\": 1}, {\"col\": 104, \"value\": 13.1576316856191, \"row\": 1}, {\"col\": 105, \"value\": 11.909352674459, \"row\": 1}, {\"col\": 106, \"value\": 11.9485501174067, \"row\": 1}, {\"col\": 107, \"value\": 12.9565740980974, \"row\": 1}, {\"col\": 108, \"value\": 13.6856439177874, \"row\": 1}, {\"col\": 109, \"value\": 13.6958430058741, \"row\": 1}, {\"col\": 110, \"value\": 13.4707410962044, \"row\": 1}, {\"col\": 111, \"value\": 12.9465758340433, \"row\": 1}, {\"col\": 112, \"value\": 12.4958960659889, \"row\": 1}, {\"col\": 113, \"value\": 14.7464779107469, \"row\": 1}, {\"col\": 114, \"value\": 14.7533881888109, \"row\": 1}, {\"col\": 115, \"value\": 14.234250948783, \"row\": 1}, {\"col\": 116, \"value\": 13.6697017094389, \"row\": 1}, {\"col\": 117, \"value\": 11.7509430558054, \"row\": 1}, {\"col\": 118, \"value\": 11.6666075585501, \"row\": 1}, {\"col\": 119, \"value\": 13.4859534548997, \"row\": 1}, {\"col\": 120, \"value\": 13.5310666334558, \"row\": 1}, {\"col\": 121, \"value\": 13.4985422883422, \"row\": 1}], [{\"col\": 0, \"value\": 8441.48, \"row\": 2}, {\"col\": 1, \"value\": 10163.0, \"row\": 2}, {\"col\": 2, \"value\": 12477.0, \"row\": 2}, {\"col\": 3, \"value\": 9177.41, \"row\": 2}, {\"col\": 4, \"value\": 13680.6, \"row\": 2}, {\"col\": 5, \"value\": 15979.3, \"row\": 2}, {\"col\": 6, \"value\": 10659.2, \"row\": 2}, {\"col\": 7, \"value\": 15947.1, \"row\": 2}, {\"col\": 8, \"value\": 15789.1, \"row\": 2}, {\"col\": 9, \"value\": 8950.6, \"row\": 2}, {\"col\": 10, \"value\": 7344.37, \"row\": 2}, {\"col\": 11, \"value\": 22882.9, \"row\": 2}, {\"col\": 12, \"value\": 10385.7, \"row\": 2}, {\"col\": 13, \"value\": 10718.2, \"row\": 2}, {\"col\": 14, \"value\": 14045.1, \"row\": 2}, {\"col\": 15, \"value\": 10642.8, \"row\": 2}, {\"col\": 16, \"value\": 9456.22, \"row\": 2}, {\"col\": 17, \"value\": 9447.5, \"row\": 2}, {\"col\": 18, \"value\": 9358.12, \"row\": 2}, {\"col\": 19, \"value\": 15569.4, \"row\": 2}, {\"col\": 20, \"value\": 10556.6, \"row\": 2}, {\"col\": 21, \"value\": 11046.1, \"row\": 2}, {\"col\": 22, \"value\": 15406.1, \"row\": 2}, {\"col\": 23, \"value\": 9080.24, \"row\": 2}, {\"col\": 24, \"value\": 8946.44, \"row\": 2}, {\"col\": 25, \"value\": 7034.7, \"row\": 2}, {\"col\": 26, \"value\": 14485.5, \"row\": 2}, {\"col\": 27, \"value\": 10395.9, \"row\": 2}, {\"col\": 28, \"value\": -0.739799, \"row\": 2}, {\"col\": 29, \"value\": -0.543811, \"row\": 2}, {\"col\": 30, \"value\": -1.26578, \"row\": 2}, {\"col\": 31, \"value\": -0.688438, \"row\": 2}, {\"col\": 32, \"value\": -0.597566, \"row\": 2}, {\"col\": 33, \"value\": -0.407043, \"row\": 2}, {\"col\": 34, \"value\": -0.686886, \"row\": 2}, {\"col\": 35, \"value\": -1.29482, \"row\": 2}, {\"col\": 36, \"value\": -0.373457, \"row\": 2}, {\"col\": 37, \"value\": -0.921366, \"row\": 2}, {\"col\": 38, \"value\": 14.62573119367, \"row\": 2}, {\"col\": 39, \"value\": 14.7312163047866, \"row\": 2}, {\"col\": 40, \"value\": 15.1737339677414, \"row\": 2}, {\"col\": 41, \"value\": 14.8849757144116, \"row\": 2}, {\"col\": 42, \"value\": 15.1483621402449, \"row\": 2}, {\"col\": 43, \"value\": 15.2861573917198, \"row\": 2}, {\"col\": 44, \"value\": 14.9755915881524, \"row\": 2}, {\"col\": 45, \"value\": 14.9131415579488, \"row\": 2}, {\"col\": 46, \"value\": 15.1691533113857, \"row\": 2}, {\"col\": 47, \"value\": 14.7624129838008, \"row\": 2}, {\"col\": 48, \"value\": 14.7393148880886, \"row\": 2}, {\"col\": 49, \"value\": 15.1543981029227, \"row\": 2}, {\"col\": 50, \"value\": 15.293131534817, \"row\": 2}, {\"col\": 51, \"value\": 15.290183080108, \"row\": 2}, {\"col\": 52, \"value\": 15.1870997952338, \"row\": 2}, {\"col\": 53, \"value\": 15.2922616668467, \"row\": 2}, {\"col\": 54, \"value\": 15.2471085401846, \"row\": 2}, {\"col\": 55, \"value\": 15.293361965437, \"row\": 2}, {\"col\": 56, \"value\": 15.3171415600528, \"row\": 2}, {\"col\": 57, \"value\": 15.2937175363001, \"row\": 2}, {\"col\": 58, \"value\": 15.1005865199303, \"row\": 2}, {\"col\": 59, \"value\": 15.096376056089, \"row\": 2}, {\"col\": 60, \"value\": 14.9900042338563, \"row\": 2}, {\"col\": 61, \"value\": 14.8555617268161, \"row\": 2}, {\"col\": 62, \"value\": 15.240588850075, \"row\": 2}, {\"col\": 63, \"value\": 15.247840330133, \"row\": 2}, {\"col\": 64, \"value\": 15.3155389112093, \"row\": 2}, {\"col\": 65, \"value\": 14.9594510288028, \"row\": 2}, {\"col\": 66, \"value\": 15.0282020536705, \"row\": 2}, {\"col\": 67, \"value\": 15.0203720124043, \"row\": 2}, {\"col\": 68, \"value\": 14.8247886731378, \"row\": 2}, {\"col\": 69, \"value\": 15.0213191556482, \"row\": 2}, {\"col\": 70, \"value\": 15.0389053505209, \"row\": 2}, {\"col\": 71, \"value\": 15.3432727084573, \"row\": 2}, {\"col\": 72, \"value\": 15.1870275022297, \"row\": 2}, {\"col\": 73, \"value\": 15.2108514377502, \"row\": 2}, {\"col\": 74, \"value\": 15.2653548238471, \"row\": 2}, {\"col\": 75, \"value\": 15.3102171750458, \"row\": 2}, {\"col\": 76, \"value\": 15.3757792211681, \"row\": 2}, {\"col\": 77, \"value\": 15.3331618881839, \"row\": 2}, {\"col\": 78, \"value\": 15.1746832755923, \"row\": 2}, {\"col\": 79, \"value\": 15.1739387374962, \"row\": 2}, {\"col\": 80, \"value\": 15.184095753171, \"row\": 2}, {\"col\": 81, \"value\": 14.9049824216955, \"row\": 2}, {\"col\": 82, \"value\": 15.1878231272835, \"row\": 2}, {\"col\": 83, \"value\": 15.2325554456742, \"row\": 2}, {\"col\": 84, \"value\": 15.3482330748621, \"row\": 2}, {\"col\": 85, \"value\": 15.202271730361, \"row\": 2}, {\"col\": 86, \"value\": 15.0901408378359, \"row\": 2}, {\"col\": 87, \"value\": 15.1204321713054, \"row\": 2}, {\"col\": 88, \"value\": 14.9250863001004, \"row\": 2}, {\"col\": 89, \"value\": 14.6362840667017, \"row\": 2}, {\"col\": 90, \"value\": 14.6575643770163, \"row\": 2}, {\"col\": 91, \"value\": 15.1426286753281, \"row\": 2}, {\"col\": 92, \"value\": 15.0172228366454, \"row\": 2}, {\"col\": 93, \"value\": 15.0455306282876, \"row\": 2}, {\"col\": 94, \"value\": 15.1058827686014, \"row\": 2}, {\"col\": 95, \"value\": 14.2729101905939, \"row\": 2}, {\"col\": 96, \"value\": 14.3585197347181, \"row\": 2}, {\"col\": 97, \"value\": 15.1429344798579, \"row\": 2}, {\"col\": 98, \"value\": 15.1816273935928, \"row\": 2}, {\"col\": 99, \"value\": 15.1459918657813, \"row\": 2}, {\"col\": 100, \"value\": 14.9120960497957, \"row\": 2}, {\"col\": 101, \"value\": 14.9418439216937, \"row\": 2}, {\"col\": 102, \"value\": 14.6902281807943, \"row\": 2}, {\"col\": 103, \"value\": 14.9298684444447, \"row\": 2}, {\"col\": 104, \"value\": 15.0512196684508, \"row\": 2}, {\"col\": 105, \"value\": 14.9990611995586, \"row\": 2}, {\"col\": 106, \"value\": 15.1322849645899, \"row\": 2}, {\"col\": 107, \"value\": 14.5827231180623, \"row\": 2}, {\"col\": 108, \"value\": 14.3816519468653, \"row\": 2}, {\"col\": 109, \"value\": 14.389843192468, \"row\": 2}, {\"col\": 110, \"value\": 15.0158077367492, \"row\": 2}, {\"col\": 111, \"value\": 15.1030914586582, \"row\": 2}, {\"col\": 112, \"value\": 14.4664062337857, \"row\": 2}, {\"col\": 113, \"value\": 14.303203763911, \"row\": 2}, {\"col\": 114, \"value\": 14.6103238175394, \"row\": 2}, {\"col\": 115, \"value\": 15.0327820794008, \"row\": 2}, {\"col\": 116, \"value\": 14.4703107801472, \"row\": 2}, {\"col\": 117, \"value\": 14.4871251509898, \"row\": 2}, {\"col\": 118, \"value\": 14.6840412074516, \"row\": 2}, {\"col\": 119, \"value\": 14.653436598562, \"row\": 2}], [{\"col\": 0, \"value\": 1032.51, \"row\": 3}, {\"col\": 1, \"value\": 969.801, \"row\": 3}, {\"col\": 2, \"value\": 1289.1, \"row\": 3}, {\"col\": 3, \"value\": 853.452, \"row\": 3}, {\"col\": 4, \"value\": 908.141, \"row\": 3}, {\"col\": 5, \"value\": 949.017, \"row\": 3}, {\"col\": 6, \"value\": 360.906, \"row\": 3}, {\"col\": 7, \"value\": 398.414, \"row\": 3}, {\"col\": 8, \"value\": 430.772, \"row\": 3}, {\"col\": 9, \"value\": 525.792, \"row\": 3}, {\"col\": 10, \"value\": 503.336, \"row\": 3}, {\"col\": 11, \"value\": 2832.2, \"row\": 3}, {\"col\": 12, \"value\": 2685.58, \"row\": 3}, {\"col\": 13, \"value\": 1129.75, \"row\": 3}, {\"col\": 14, \"value\": 929.478, \"row\": 3}, {\"col\": 15, \"value\": 1241.64, \"row\": 3}, {\"col\": 16, \"value\": 1073.65, \"row\": 3}, {\"col\": 17, \"value\": 922.08, \"row\": 3}, {\"col\": 18, \"value\": 1011.99, \"row\": 3}, {\"col\": 19, \"value\": 564.081, \"row\": 3}, {\"col\": 20, \"value\": 406.193, \"row\": 3}, {\"col\": 21, \"value\": 410.831, \"row\": 3}, {\"col\": 22, \"value\": 405.27, \"row\": 3}, {\"col\": 23, \"value\": 542.085, \"row\": 3}, {\"col\": 24, \"value\": 3132.85, \"row\": 3}, {\"col\": 25, \"value\": 1400.01, \"row\": 3}, {\"col\": 26, \"value\": 1264.73, \"row\": 3}, {\"col\": 27, \"value\": 1089.99, \"row\": 3}, {\"col\": 28, \"value\": 0.399798, \"row\": 3}, {\"col\": 29, \"value\": -0.492987, \"row\": 3}, {\"col\": 30, \"value\": 1.62557, \"row\": 3}, {\"col\": 31, \"value\": 1.18764, \"row\": 3}, {\"col\": 32, \"value\": 2.92374, \"row\": 3}, {\"col\": 33, \"value\": 1.7065, \"row\": 3}, {\"col\": 34, \"value\": 1.54325, \"row\": 3}, {\"col\": 35, \"value\": 0.622234, \"row\": 3}, {\"col\": 36, \"value\": 1.53334, \"row\": 3}, {\"col\": 37, \"value\": 2.20832, \"row\": 3}, {\"col\": 38, \"value\": 0.897417, \"row\": 3}, {\"col\": 39, \"value\": -0.911105, \"row\": 3}, {\"col\": 40, \"value\": 11.7486969140658, \"row\": 3}, {\"col\": 41, \"value\": 11.434958165666, \"row\": 3}, {\"col\": 42, \"value\": 11.3651483594406, \"row\": 3}, {\"col\": 43, \"value\": 10.9048726773157, \"row\": 3}, {\"col\": 44, \"value\": 11.2195708490158, \"row\": 3}, {\"col\": 45, \"value\": 11.6377555262172, \"row\": 3}, {\"col\": 46, \"value\": 10.8706568269436, \"row\": 3}, {\"col\": 47, \"value\": 10.8841429514676, \"row\": 3}, {\"col\": 48, \"value\": 8.34621992832311, \"row\": 3}, {\"col\": 49, \"value\": 5.82484248934215, \"row\": 3}, {\"col\": 50, \"value\": 5.82531391184846, \"row\": 3}, {\"col\": 51, \"value\": 5.96282154178591, \"row\": 3}, {\"col\": 52, \"value\": 5.65743147256468, \"row\": 3}, {\"col\": 53, \"value\": 5.70890496243925, \"row\": 3}, {\"col\": 54, \"value\": 5.8093237650659, \"row\": 3}, {\"col\": 55, \"value\": 5.72754703437456, \"row\": 3}, {\"col\": 56, \"value\": 5.82484248934215, \"row\": 3}, {\"col\": 57, \"value\": 6.43051751344742, \"row\": 3}, {\"col\": 58, \"value\": 6.57205164239759, \"row\": 3}, {\"col\": 59, \"value\": 10.7444841474629, \"row\": 3}, {\"col\": 60, \"value\": 10.018952821018, \"row\": 3}, {\"col\": 61, \"value\": 5.81140812543894, \"row\": 3}, {\"col\": 62, \"value\": 6.13493920043813, \"row\": 3}, {\"col\": 63, \"value\": 5.82484248934215, \"row\": 3}, {\"col\": 64, \"value\": 11.5221378148739, \"row\": 3}, {\"col\": 65, \"value\": 11.5788238477493, \"row\": 3}, {\"col\": 66, \"value\": 11.2824710754811, \"row\": 3}, {\"col\": 67, \"value\": 11.4989259524433, \"row\": 3}, {\"col\": 68, \"value\": 10.6509842795521, \"row\": 3}, {\"col\": 69, \"value\": 11.1783055043196, \"row\": 3}, {\"col\": 70, \"value\": 10.0440364299462, \"row\": 3}, {\"col\": 71, \"value\": 6.59319281519788, \"row\": 3}, {\"col\": 72, \"value\": 7.72938588292353, \"row\": 3}, {\"col\": 73, \"value\": 5.72754703437456, \"row\": 3}, {\"col\": 74, \"value\": 6.32701157421743, \"row\": 3}, {\"col\": 75, \"value\": 6.13588890824566, \"row\": 3}, {\"col\": 76, \"value\": 5.82484248934215, \"row\": 3}, {\"col\": 77, \"value\": 5.72754703437456, \"row\": 3}, {\"col\": 78, \"value\": 5.72754703437456, \"row\": 3}, {\"col\": 79, \"value\": 5.82484248934215, \"row\": 3}, {\"col\": 80, \"value\": 6.43903671746403, \"row\": 3}, {\"col\": 81, \"value\": 6.13493920043813, \"row\": 3}, {\"col\": 82, \"value\": 5.98825003377746, \"row\": 3}, {\"col\": 83, \"value\": 10.1864929203784, \"row\": 3}, {\"col\": 84, \"value\": 5.82484248934215, \"row\": 3}, {\"col\": 85, \"value\": 5.94943171830464, \"row\": 3}, {\"col\": 86, \"value\": 5.71793578172453, \"row\": 3}, {\"col\": 87, \"value\": 15.1060204440129, \"row\": 3}, {\"col\": 88, \"value\": 13.3590011034457, \"row\": 3}, {\"col\": 89, \"value\": 13.3490313509454, \"row\": 3}, {\"col\": 90, \"value\": 12.2561106110884, \"row\": 3}, {\"col\": 91, \"value\": 13.1936153495798, \"row\": 3}, {\"col\": 92, \"value\": 13.246616767917, \"row\": 3}, {\"col\": 93, \"value\": 13.9340820433142, \"row\": 3}, {\"col\": 94, \"value\": 13.645621302051, \"row\": 3}, {\"col\": 95, \"value\": 13.7321512182067, \"row\": 3}, {\"col\": 96, \"value\": 13.3564879139581, \"row\": 3}, {\"col\": 97, \"value\": 11.8511196132199, \"row\": 3}, {\"col\": 98, \"value\": 15.0588732275334, \"row\": 3}, {\"col\": 99, \"value\": 14.5083592772589, \"row\": 3}, {\"col\": 100, \"value\": 14.5124907465626, \"row\": 3}, {\"col\": 101, \"value\": 13.9233746349494, \"row\": 3}, {\"col\": 102, \"value\": 11.9945187549267, \"row\": 3}, {\"col\": 103, \"value\": 13.6989274056345, \"row\": 3}, {\"col\": 104, \"value\": 14.9491787207137, \"row\": 3}, {\"col\": 105, \"value\": 14.9807443569418, \"row\": 3}, {\"col\": 106, \"value\": 13.3496428118898, \"row\": 3}, {\"col\": 107, \"value\": 12.2213088090254, \"row\": 3}, {\"col\": 108, \"value\": 12.1895126754522, \"row\": 3}, {\"col\": 109, \"value\": 13.3405778654097, \"row\": 3}, {\"col\": 110, \"value\": 13.8037673342542, \"row\": 3}, {\"col\": 111, \"value\": 13.9072524254844, \"row\": 3}, {\"col\": 112, \"value\": 13.5490947182515, \"row\": 3}, {\"col\": 113, \"value\": 13.3532496981122, \"row\": 3}, {\"col\": 114, \"value\": 12.6056705577619, \"row\": 3}, {\"col\": 115, \"value\": 15.0398576914503, \"row\": 3}, {\"col\": 116, \"value\": 15.0103881163362, \"row\": 3}, {\"col\": 117, \"value\": 14.4451776130836, \"row\": 3}, {\"col\": 118, \"value\": 13.6963917041923, \"row\": 3}, {\"col\": 119, \"value\": 12.5242943764293, \"row\": 3}, {\"col\": 120, \"value\": 13.6581215226181, \"row\": 3}, {\"col\": 121, \"value\": 13.6733926348365, \"row\": 3}], [{\"col\": 0, \"value\": 500.291, \"row\": 4}, {\"col\": 1, \"value\": 644.47, \"row\": 4}, {\"col\": 2, \"value\": 612.081, \"row\": 4}, {\"col\": 3, \"value\": 555.167, \"row\": 4}, {\"col\": 4, \"value\": 558.052, \"row\": 4}, {\"col\": 5, \"value\": 177.538, \"row\": 4}, {\"col\": 6, \"value\": 308.184, \"row\": 4}, {\"col\": 7, \"value\": 345.27, \"row\": 4}, {\"col\": 8, \"value\": 325.871, \"row\": 4}, {\"col\": 9, \"value\": 471.865, \"row\": 4}, {\"col\": 10, \"value\": 435.534, \"row\": 4}, {\"col\": 11, \"value\": 1522.67, \"row\": 4}, {\"col\": 12, \"value\": 1658.55, \"row\": 4}, {\"col\": 13, \"value\": 652.18, \"row\": 4}, {\"col\": 14, \"value\": 710.589, \"row\": 4}, {\"col\": 15, \"value\": 447.461, \"row\": 4}, {\"col\": 16, \"value\": 414.598, \"row\": 4}, {\"col\": 17, \"value\": 534.134, \"row\": 4}, {\"col\": 18, \"value\": 184.243, \"row\": 4}, {\"col\": 19, \"value\": 144.276, \"row\": 4}, {\"col\": 20, \"value\": 303.89, \"row\": 4}, {\"col\": 21, \"value\": 340.346, \"row\": 4}, {\"col\": 22, \"value\": 338.238, \"row\": 4}, {\"col\": 23, \"value\": 441.33, \"row\": 4}, {\"col\": 24, \"value\": 1675.96, \"row\": 4}, {\"col\": 25, \"value\": 928.722, \"row\": 4}, {\"col\": 26, \"value\": 766.127, \"row\": 4}, {\"col\": 27, \"value\": 633.749, \"row\": 4}, {\"col\": 28, \"value\": 0.490689, \"row\": 4}, {\"col\": 29, \"value\": -0.556177, \"row\": 4}, {\"col\": 30, \"value\": 3.04692, \"row\": 4}, {\"col\": 31, \"value\": 1.57264, \"row\": 4}, {\"col\": 32, \"value\": 2.3087, \"row\": 4}, {\"col\": 33, \"value\": 1.5113, \"row\": 4}, {\"col\": 34, \"value\": 1.30422, \"row\": 4}, {\"col\": 35, \"value\": 0.382657, \"row\": 4}, {\"col\": 36, \"value\": 1.39772, \"row\": 4}, {\"col\": 37, \"value\": 1.86055, \"row\": 4}, {\"col\": 38, \"value\": 0.354804, \"row\": 4}, {\"col\": 39, \"value\": -1.01506, \"row\": 4}, {\"col\": 40, \"value\": 13.7015953208703, \"row\": 4}, {\"col\": 41, \"value\": 13.4033477031613, \"row\": 4}, {\"col\": 42, \"value\": 13.5127984636589, \"row\": 4}, {\"col\": 43, \"value\": 13.6572848636245, \"row\": 4}, {\"col\": 44, \"value\": 13.6469096652644, \"row\": 4}, {\"col\": 45, \"value\": 13.2427967048635, \"row\": 4}, {\"col\": 46, \"value\": 13.1222150579961, \"row\": 4}, {\"col\": 47, \"value\": 13.2623395194459, \"row\": 4}, {\"col\": 48, \"value\": 12.6545600685311, \"row\": 4}, {\"col\": 49, \"value\": 8.91755751907217, \"row\": 4}, {\"col\": 50, \"value\": 10.2984667098165, \"row\": 4}, {\"col\": 51, \"value\": 8.5665447593854, \"row\": 4}, {\"col\": 52, \"value\": 9.1989729517728, \"row\": 4}, {\"col\": 53, \"value\": 9.12401440666377, \"row\": 4}, {\"col\": 54, \"value\": 8.91753009030931, \"row\": 4}, {\"col\": 55, \"value\": 8.05452404993128, \"row\": 4}, {\"col\": 56, \"value\": 8.91755751907217, \"row\": 4}, {\"col\": 57, \"value\": 8.89467416195157, \"row\": 4}, {\"col\": 58, \"value\": 9.4362219182956, \"row\": 4}, {\"col\": 59, \"value\": 9.04515766370691, \"row\": 4}, {\"col\": 60, \"value\": 9.18016946529716, \"row\": 4}, {\"col\": 61, \"value\": 12.9483141507175, \"row\": 4}, {\"col\": 62, \"value\": 8.66303618244731, \"row\": 4}, {\"col\": 63, \"value\": 8.78446696671244, \"row\": 4}, {\"col\": 64, \"value\": 8.96891035093045, \"row\": 4}, {\"col\": 65, \"value\": 13.6983967817659, \"row\": 4}, {\"col\": 66, \"value\": 13.2575883494835, \"row\": 4}, {\"col\": 67, \"value\": 13.1887390438677, \"row\": 4}, {\"col\": 68, \"value\": 13.4655229320479, \"row\": 4}, {\"col\": 69, \"value\": 12.874435993494, \"row\": 4}, {\"col\": 70, \"value\": 12.8205813085134, \"row\": 4}, {\"col\": 71, \"value\": 10.6946787303242, \"row\": 4}, {\"col\": 72, \"value\": 8.35700219178756, \"row\": 4}, {\"col\": 73, \"value\": 8.53584011875399, \"row\": 4}, {\"col\": 74, \"value\": 9.00598660928958, \"row\": 4}, {\"col\": 75, \"value\": 8.61739975592415, \"row\": 4}, {\"col\": 76, \"value\": 8.53584011875399, \"row\": 4}, {\"col\": 77, \"value\": 8.4137265984172, \"row\": 4}, {\"col\": 78, \"value\": 8.91755751907217, \"row\": 4}, {\"col\": 79, \"value\": 8.40841885887191, \"row\": 4}, {\"col\": 80, \"value\": 9.15340890613546, \"row\": 4}, {\"col\": 81, \"value\": 9.56281914461084, \"row\": 4}, {\"col\": 82, \"value\": 13.4305009764987, \"row\": 4}, {\"col\": 83, \"value\": 13.1212902072851, \"row\": 4}, {\"col\": 84, \"value\": 8.78317884605077, \"row\": 4}, {\"col\": 85, \"value\": 9.27734759255929, \"row\": 4}, {\"col\": 86, \"value\": 8.76812872636418, \"row\": 4}, {\"col\": 87, \"value\": 14.5527518192236, \"row\": 4}, {\"col\": 88, \"value\": 12.9556532638012, \"row\": 4}, {\"col\": 89, \"value\": 12.8329187931707, \"row\": 4}, {\"col\": 90, \"value\": 11.7768623442291, \"row\": 4}, {\"col\": 91, \"value\": 12.9480826019022, \"row\": 4}, {\"col\": 92, \"value\": 12.8072791753891, \"row\": 4}, {\"col\": 93, \"value\": 13.4644448609481, \"row\": 4}, {\"col\": 94, \"value\": 13.2359796737507, \"row\": 4}, {\"col\": 95, \"value\": 13.1363498041007, \"row\": 4}, {\"col\": 96, \"value\": 12.4256683086673, \"row\": 4}, {\"col\": 97, \"value\": 10.7072497467802, \"row\": 4}, {\"col\": 98, \"value\": 14.3867584713303, \"row\": 4}, {\"col\": 99, \"value\": 13.6911825990341, \"row\": 4}, {\"col\": 100, \"value\": 13.5735477975709, \"row\": 4}, {\"col\": 101, \"value\": 13.2781045596659, \"row\": 4}, {\"col\": 102, \"value\": 11.5294705929067, \"row\": 4}, {\"col\": 103, \"value\": 13.5111490179521, \"row\": 4}, {\"col\": 104, \"value\": 14.5002424441276, \"row\": 4}, {\"col\": 105, \"value\": 14.5503768151331, \"row\": 4}, {\"col\": 106, \"value\": 12.884706400654, \"row\": 4}, {\"col\": 107, \"value\": 11.9980110415735, \"row\": 4}, {\"col\": 108, \"value\": 11.8184821498611, \"row\": 4}, {\"col\": 109, \"value\": 12.8798488505069, \"row\": 4}, {\"col\": 110, \"value\": 13.5744928372611, \"row\": 4}, {\"col\": 111, \"value\": 13.4383093247762, \"row\": 4}, {\"col\": 112, \"value\": 13.3068118041082, \"row\": 4}, {\"col\": 113, \"value\": 11.914078238606, \"row\": 4}, {\"col\": 114, \"value\": 12.1890944983656, \"row\": 4}, {\"col\": 115, \"value\": 14.3817668055912, \"row\": 4}, {\"col\": 116, \"value\": 14.2845271638751, \"row\": 4}, {\"col\": 117, \"value\": 13.7573783517173, \"row\": 4}, {\"col\": 118, \"value\": 13.3754775135612, \"row\": 4}, {\"col\": 119, \"value\": 11.1989578790269, \"row\": 4}, {\"col\": 120, \"value\": 13.5289043326408, \"row\": 4}, {\"col\": 121, \"value\": 13.5754295756759, \"row\": 4}]]}'" ] } ], "prompt_number": 17 }, { "cell_type": "code", "collapsed": false, "input": [ "[k for i,k in enumerate(genes_data)]" ], "language": "python", "metadata": {}, "outputs": [ { "metadata": {}, "output_type": "pyout", "prompt_number": 14, "text": [ "[Gene: (b0727, sucB) 761521-762739 (+),\n", " Gene: (b0728, sucC) 763013-764180 (+),\n", " Gene: (b1779, gapA) 1862770-1863766 (+),\n", " Gene: (b0729, sucD) 764179-765049 (+),\n", " Gene: (b0726, sucA) 758705-761507 (+)]" ] } ], "prompt_number": 14 }, { "cell_type": "code", "collapsed": false, "input": [ "[[{\"row\": i, \"col\": j, \"value\": data.value} for j,data in enumerate(genes_data[gene])] for i,gene in enumerate(genes_data)]" ], "language": "python", "metadata": {}, "outputs": [ { "metadata": {}, "output_type": "pyout", "prompt_number": 16, "text": [ "[[{'col': 0, 'row': 0, 'value': 857.844},\n", " {'col': 1, 'row': 0, 'value': 851.957},\n", " {'col': 2, 'row': 0, 'value': 818.335},\n", " {'col': 3, 'row': 0, 'value': 777.381},\n", " {'col': 4, 'row': 0, 'value': 758.984},\n", " {'col': 5, 'row': 0, 'value': 495.698},\n", " {'col': 6, 'row': 0, 'value': 435.969},\n", " {'col': 7, 'row': 0, 'value': 471.084},\n", " {'col': 8, 'row': 0, 'value': 437.242},\n", " {'col': 9, 'row': 0, 'value': 598.409},\n", " {'col': 10, 'row': 0, 'value': 543.095},\n", " {'col': 11, 'row': 0, 'value': 2105.33},\n", " {'col': 12, 'row': 0, 'value': 1995.13},\n", " {'col': 13, 'row': 0, 'value': 837.41},\n", " {'col': 14, 'row': 0, 'value': 909.427},\n", " {'col': 15, 'row': 0, 'value': 829.254},\n", " {'col': 16, 'row': 0, 'value': 772.537},\n", " {'col': 17, 'row': 0, 'value': 759.333},\n", " {'col': 18, 'row': 0, 'value': 557.82},\n", " {'col': 19, 'row': 0, 'value': 357.458},\n", " {'col': 20, 'row': 0, 'value': 436.722},\n", " {'col': 21, 'row': 0, 'value': 440.41},\n", " {'col': 22, 'row': 0, 'value': 436.962},\n", " {'col': 23, 'row': 0, 'value': 553.857},\n", " {'col': 24, 'row': 0, 'value': 2354.17},\n", " {'col': 25, 'row': 0, 'value': 1192.19},\n", " {'col': 26, 'row': 0, 'value': 1040.39},\n", " {'col': 27, 'row': 0, 'value': 889.687},\n", " {'col': 28, 'row': 0, 'value': 0.432536},\n", " {'col': 29, 'row': 0, 'value': -0.397255},\n", " {'col': 30, 'row': 0, 'value': 2.04668},\n", " {'col': 31, 'row': 0, 'value': 1.34544},\n", " {'col': 32, 'row': 0, 'value': 2.29933},\n", " {'col': 33, 'row': 0, 'value': 1.51219},\n", " {'col': 34, 'row': 0, 'value': 1.28779},\n", " {'col': 35, 'row': 0, 'value': 0.561733},\n", " {'col': 36, 'row': 0, 'value': 1.44532},\n", " {'col': 37, 'row': 0, 'value': 1.77288},\n", " {'col': 38, 'row': 0, 'value': 0.456752},\n", " {'col': 39, 'row': 0, 'value': -0.883587},\n", " {'col': 40, 'row': 0, 'value': 13.561455618006},\n", " {'col': 41, 'row': 0, 'value': 13.6704110951708},\n", " {'col': 42, 'row': 0, 'value': 13.929860654029},\n", " {'col': 43, 'row': 0, 'value': 13.6497693355289},\n", " {'col': 44, 'row': 0, 'value': 13.5122785899231},\n", " {'col': 45, 'row': 0, 'value': 13.8956617357311},\n", " {'col': 46, 'row': 0, 'value': 13.4563724543563},\n", " {'col': 47, 'row': 0, 'value': 13.2654149197683},\n", " {'col': 48, 'row': 0, 'value': 11.5822062985467},\n", " {'col': 49, 'row': 0, 'value': 9.53809257914902},\n", " {'col': 50, 'row': 0, 'value': 9.81608132214322},\n", " {'col': 51, 'row': 0, 'value': 9.91468138976239},\n", " {'col': 52, 'row': 0, 'value': 9.818821129562},\n", " {'col': 53, 'row': 0, 'value': 9.57325880077826},\n", " {'col': 54, 'row': 0, 'value': 9.93303053120947},\n", " {'col': 55, 'row': 0, 'value': 9.89217920441508},\n", " {'col': 56, 'row': 0, 'value': 9.5183624996305},\n", " {'col': 57, 'row': 0, 'value': 10.1748566773564},\n", " {'col': 58, 'row': 0, 'value': 11.0072296815255},\n", " {'col': 59, 'row': 0, 'value': 13.5765822043872},\n", " {'col': 60, 'row': 0, 'value': 13.4609118284044},\n", " {'col': 61, 'row': 0, 'value': 9.46610475657578},\n", " {'col': 62, 'row': 0, 'value': 9.83810007090159},\n", " {'col': 63, 'row': 0, 'value': 10.1572837907573},\n", " {'col': 64, 'row': 0, 'value': 13.9039922806566},\n", " {'col': 65, 'row': 0, 'value': 13.8533773183025},\n", " {'col': 66, 'row': 0, 'value': 13.9265210339694},\n", " {'col': 67, 'row': 0, 'value': 13.5040855499817},\n", " {'col': 68, 'row': 0, 'value': 13.4073901570674},\n", " {'col': 69, 'row': 0, 'value': 13.6238123203913},\n", " {'col': 70, 'row': 0, 'value': 13.163433712565},\n", " {'col': 71, 'row': 0, 'value': 10.3315788284862},\n", " {'col': 72, 'row': 0, 'value': 11.3316588963345},\n", " {'col': 73, 'row': 0, 'value': 9.72468191276667},\n", " {'col': 74, 'row': 0, 'value': 10.0718998332607},\n", " {'col': 75, 'row': 0, 'value': 10.1969084173449},\n", " {'col': 76, 'row': 0, 'value': 9.75692228945093},\n", " {'col': 77, 'row': 0, 'value': 9.54993956612485},\n", " {'col': 78, 'row': 0, 'value': 10.0183717266756},\n", " {'col': 79, 'row': 0, 'value': 9.9220314430799},\n", " {'col': 80, 'row': 0, 'value': 10.4394240067545},\n", " {'col': 81, 'row': 0, 'value': 10.7050005286526},\n", " {'col': 82, 'row': 0, 'value': 10.7102134291794},\n", " {'col': 83, 'row': 0, 'value': 13.4011541088589},\n", " {'col': 84, 'row': 0, 'value': 9.55431277564047},\n", " {'col': 85, 'row': 0, 'value': 9.93320345822298},\n", " {'col': 86, 'row': 0, 'value': 10.0840935769721},\n", " {'col': 87, 'row': 0, 'value': 14.6259746688342},\n", " {'col': 88, 'row': 0, 'value': 13.3108119005334},\n", " {'col': 89, 'row': 0, 'value': 13.3784201488828},\n", " {'col': 90, 'row': 0, 'value': 12.2017337688336},\n", " {'col': 91, 'row': 0, 'value': 13.0911628329115},\n", " {'col': 92, 'row': 0, 'value': 13.1239577475452},\n", " {'col': 93, 'row': 0, 'value': 13.6612269902857},\n", " {'col': 94, 'row': 0, 'value': 13.4108699090057},\n", " {'col': 95, 'row': 0, 'value': 13.4040543918307},\n", " {'col': 96, 'row': 0, 'value': 13.1634051943626},\n", " {'col': 97, 'row': 0, 'value': 12.3638222852243},\n", " {'col': 98, 'row': 0, 'value': 14.5130086841624},\n", " {'col': 99, 'row': 0, 'value': 13.9235930558533},\n", " {'col': 100, 'row': 0, 'value': 13.8728724913113},\n", " {'col': 101, 'row': 0, 'value': 13.6917064147896},\n", " {'col': 102, 'row': 0, 'value': 12.257514955916},\n", " {'col': 103, 'row': 0, 'value': 13.6375913098284},\n", " {'col': 104, 'row': 0, 'value': 14.6446687092058},\n", " {'col': 105, 'row': 0, 'value': 14.6520827180006},\n", " {'col': 106, 'row': 0, 'value': 13.3594585813192},\n", " {'col': 107, 'row': 0, 'value': 12.1804220683582},\n", " {'col': 108, 'row': 0, 'value': 12.3084543962541},\n", " {'col': 109, 'row': 0, 'value': 13.0880788492005},\n", " {'col': 110, 'row': 0, 'value': 13.6411787371232},\n", " {'col': 111, 'row': 0, 'value': 13.6243884637951},\n", " {'col': 112, 'row': 0, 'value': 13.3602109077489},\n", " {'col': 113, 'row': 0, 'value': 12.99794156477},\n", " {'col': 114, 'row': 0, 'value': 13.0175659687197},\n", " {'col': 115, 'row': 0, 'value': 14.5062981908542},\n", " {'col': 116, 'row': 0, 'value': 14.4748561401981},\n", " {'col': 117, 'row': 0, 'value': 13.9619337375569},\n", " {'col': 118, 'row': 0, 'value': 13.5810168313386},\n", " {'col': 119, 'row': 0, 'value': 12.3723737107103},\n", " {'col': 120, 'row': 0, 'value': 13.6973083273534},\n", " {'col': 121, 'row': 0, 'value': 13.6243884637951}],\n", " [{'col': 0, 'row': 1, 'value': 864.328},\n", " {'col': 1, 'row': 1, 'value': 892.316},\n", " {'col': 2, 'row': 1, 'value': 1204.33},\n", " {'col': 3, 'row': 1, 'value': 851.607},\n", " {'col': 4, 'row': 1, 'value': 875.709},\n", " {'col': 5, 'row': 1, 'value': 674.234},\n", " {'col': 6, 'row': 1, 'value': 381.148},\n", " {'col': 7, 'row': 1, 'value': 410.24},\n", " {'col': 8, 'row': 1, 'value': 410.009},\n", " {'col': 9, 'row': 1, 'value': 537.38},\n", " {'col': 10, 'row': 1, 'value': 527.486},\n", " {'col': 11, 'row': 1, 'value': 2855.02},\n", " {'col': 12, 'row': 1, 'value': 2755.67},\n", " {'col': 13, 'row': 1, 'value': 871.778},\n", " {'col': 14, 'row': 1, 'value': 988.004},\n", " {'col': 15, 'row': 1, 'value': 985.675},\n", " {'col': 16, 'row': 1, 'value': 908.14},\n", " {'col': 17, 'row': 1, 'value': 898.058},\n", " {'col': 18, 'row': 1, 'value': 748.474},\n", " {'col': 19, 'row': 1, 'value': 359.481},\n", " {'col': 20, 'row': 1, 'value': 388.915},\n", " {'col': 21, 'row': 1, 'value': 419.198},\n", " {'col': 22, 'row': 1, 'value': 433.252},\n", " {'col': 23, 'row': 1, 'value': 530.207},\n", " {'col': 24, 'row': 1, 'value': 3167.41},\n", " {'col': 25, 'row': 1, 'value': 1346.74},\n", " {'col': 26, 'row': 1, 'value': 1067.83},\n", " {'col': 27, 'row': 1, 'value': 914.552},\n", " {'col': 28, 'row': 1, 'value': 0.402896},\n", " {'col': 29, 'row': 1, 'value': -0.496367},\n", " {'col': 30, 'row': 1, 'value': 2.14171},\n", " {'col': 31, 'row': 1, 'value': 1.41692},\n", " {'col': 32, 'row': 1, 'value': 2.91983},\n", " {'col': 33, 'row': 1, 'value': 1.75205},\n", " {'col': 34, 'row': 1, 'value': 1.65407},\n", " {'col': 35, 'row': 1, 'value': 0.629755},\n", " {'col': 36, 'row': 1, 'value': 1.83433},\n", " {'col': 37, 'row': 1, 'value': 2.19661},\n", " {'col': 38, 'row': 1, 'value': 0.589137},\n", " {'col': 39, 'row': 1, 'value': -1.20457},\n", " {'col': 40, 'row': 1, 'value': 14.5405211513889},\n", " {'col': 41, 'row': 1, 'value': 14.4755164928986},\n", " {'col': 42, 'row': 1, 'value': 14.5621085368645},\n", " {'col': 43, 'row': 1, 'value': 14.4760783426781},\n", " {'col': 44, 'row': 1, 'value': 14.3295825350024},\n", " {'col': 45, 'row': 1, 'value': 14.4419520539588},\n", " {'col': 46, 'row': 1, 'value': 13.7555013134898},\n", " {'col': 47, 'row': 1, 'value': 11.4961049865679},\n", " {'col': 48, 'row': 1, 'value': 12.2633440290454},\n", " {'col': 49, 'row': 1, 'value': 10.6956196831267},\n", " {'col': 50, 'row': 1, 'value': 11.5855793662712},\n", " {'col': 51, 'row': 1, 'value': 11.5630498098673},\n", " {'col': 52, 'row': 1, 'value': 10.7163397734516},\n", " {'col': 53, 'row': 1, 'value': 10.8655468890673},\n", " {'col': 54, 'row': 1, 'value': 11.1643680475884},\n", " {'col': 55, 'row': 1, 'value': 10.8343868085565},\n", " {'col': 56, 'row': 1, 'value': 11.7155976515182},\n", " {'col': 57, 'row': 1, 'value': 11.7127777692279},\n", " {'col': 58, 'row': 1, 'value': 11.9101925757306},\n", " {'col': 59, 'row': 1, 'value': 14.2291834234721},\n", " {'col': 60, 'row': 1, 'value': 10.6956196831267},\n", " {'col': 61, 'row': 1, 'value': 10.7956249563169},\n", " {'col': 62, 'row': 1, 'value': 10.8272787009327},\n", " {'col': 63, 'row': 1, 'value': 14.3434160884441},\n", " {'col': 64, 'row': 1, 'value': 14.452838293866},\n", " {'col': 65, 'row': 1, 'value': 14.4497768243623},\n", " {'col': 66, 'row': 1, 'value': 14.5681737964195},\n", " {'col': 67, 'row': 1, 'value': 14.3648590460782},\n", " {'col': 68, 'row': 1, 'value': 14.7193130137693},\n", " {'col': 69, 'row': 1, 'value': 14.1374910469573},\n", " {'col': 70, 'row': 1, 'value': 13.9910982505065},\n", " {'col': 71, 'row': 1, 'value': 12.4393662978739},\n", " {'col': 72, 'row': 1, 'value': 10.7811427996588},\n", " {'col': 73, 'row': 1, 'value': 10.6956196831267},\n", " {'col': 74, 'row': 1, 'value': 11.3384099282529},\n", " {'col': 75, 'row': 1, 'value': 10.6370860330724},\n", " {'col': 76, 'row': 1, 'value': 10.6956196831267},\n", " {'col': 77, 'row': 1, 'value': 11.1207916879495},\n", " {'col': 78, 'row': 1, 'value': 10.8542099907482},\n", " {'col': 79, 'row': 1, 'value': 10.6658783970378},\n", " {'col': 80, 'row': 1, 'value': 11.6252953825635},\n", " {'col': 81, 'row': 1, 'value': 12.1097660200214},\n", " {'col': 82, 'row': 1, 'value': 14.2362523790018},\n", " {'col': 83, 'row': 1, 'value': 14.1963915580646},\n", " {'col': 84, 'row': 1, 'value': 10.495513568846},\n", " {'col': 85, 'row': 1, 'value': 10.7825103803924},\n", " {'col': 86, 'row': 1, 'value': 10.9990194104065},\n", " {'col': 87, 'row': 1, 'value': 14.8433709014479},\n", " {'col': 88, 'row': 1, 'value': 13.1390607589549},\n", " {'col': 89, 'row': 1, 'value': 13.2427803594229},\n", " {'col': 90, 'row': 1, 'value': 11.8705904742461},\n", " {'col': 91, 'row': 1, 'value': 13.0015230699051},\n", " {'col': 92, 'row': 1, 'value': 13.0143967218247},\n", " {'col': 93, 'row': 1, 'value': 13.7635673988645},\n", " {'col': 94, 'row': 1, 'value': 13.4430273321534},\n", " {'col': 95, 'row': 1, 'value': 13.4575161302421},\n", " {'col': 96, 'row': 1, 'value': 12.9860549353965},\n", " {'col': 97, 'row': 1, 'value': 11.7677320387783},\n", " {'col': 98, 'row': 1, 'value': 14.7642192444709},\n", " {'col': 99, 'row': 1, 'value': 14.22301466263},\n", " {'col': 100, 'row': 1, 'value': 14.1636451939945},\n", " {'col': 101, 'row': 1, 'value': 13.7379375769337},\n", " {'col': 102, 'row': 1, 'value': 14.8081763340917},\n", " {'col': 103, 'row': 1, 'value': 14.8765615352645},\n", " {'col': 104, 'row': 1, 'value': 13.1576316856191},\n", " {'col': 105, 'row': 1, 'value': 11.909352674459},\n", " {'col': 106, 'row': 1, 'value': 11.9485501174067},\n", " {'col': 107, 'row': 1, 'value': 12.9565740980974},\n", " {'col': 108, 'row': 1, 'value': 13.6856439177874},\n", " {'col': 109, 'row': 1, 'value': 13.6958430058741},\n", " {'col': 110, 'row': 1, 'value': 13.4707410962044},\n", " {'col': 111, 'row': 1, 'value': 12.9465758340433},\n", " {'col': 112, 'row': 1, 'value': 12.4958960659889},\n", " {'col': 113, 'row': 1, 'value': 14.7464779107469},\n", " {'col': 114, 'row': 1, 'value': 14.7533881888109},\n", " {'col': 115, 'row': 1, 'value': 14.234250948783},\n", " {'col': 116, 'row': 1, 'value': 13.6697017094389},\n", " {'col': 117, 'row': 1, 'value': 11.7509430558054},\n", " {'col': 118, 'row': 1, 'value': 11.6666075585501},\n", " {'col': 119, 'row': 1, 'value': 13.4859534548997},\n", " {'col': 120, 'row': 1, 'value': 13.5310666334558},\n", " {'col': 121, 'row': 1, 'value': 13.4985422883422}],\n", " [{'col': 0, 'row': 2, 'value': 8441.48},\n", " {'col': 1, 'row': 2, 'value': 10163.0},\n", " {'col': 2, 'row': 2, 'value': 12477.0},\n", " {'col': 3, 'row': 2, 'value': 9177.41},\n", " {'col': 4, 'row': 2, 'value': 13680.6},\n", " {'col': 5, 'row': 2, 'value': 15979.3},\n", " {'col': 6, 'row': 2, 'value': 10659.2},\n", " {'col': 7, 'row': 2, 'value': 15947.1},\n", " {'col': 8, 'row': 2, 'value': 15789.1},\n", " {'col': 9, 'row': 2, 'value': 8950.6},\n", " {'col': 10, 'row': 2, 'value': 7344.37},\n", " {'col': 11, 'row': 2, 'value': 22882.9},\n", " {'col': 12, 'row': 2, 'value': 10385.7},\n", " {'col': 13, 'row': 2, 'value': 10718.2},\n", " {'col': 14, 'row': 2, 'value': 14045.1},\n", " {'col': 15, 'row': 2, 'value': 10642.8},\n", " {'col': 16, 'row': 2, 'value': 9456.22},\n", " {'col': 17, 'row': 2, 'value': 9447.5},\n", " {'col': 18, 'row': 2, 'value': 9358.12},\n", " {'col': 19, 'row': 2, 'value': 15569.4},\n", " {'col': 20, 'row': 2, 'value': 10556.6},\n", " {'col': 21, 'row': 2, 'value': 11046.1},\n", " {'col': 22, 'row': 2, 'value': 15406.1},\n", " {'col': 23, 'row': 2, 'value': 9080.24},\n", " {'col': 24, 'row': 2, 'value': 8946.44},\n", " {'col': 25, 'row': 2, 'value': 7034.7},\n", " {'col': 26, 'row': 2, 'value': 14485.5},\n", " {'col': 27, 'row': 2, 'value': 10395.9},\n", " {'col': 28, 'row': 2, 'value': -0.739799},\n", " {'col': 29, 'row': 2, 'value': -0.543811},\n", " {'col': 30, 'row': 2, 'value': -1.26578},\n", " {'col': 31, 'row': 2, 'value': -0.688438},\n", " {'col': 32, 'row': 2, 'value': -0.597566},\n", " {'col': 33, 'row': 2, 'value': -0.407043},\n", " {'col': 34, 'row': 2, 'value': -0.686886},\n", " {'col': 35, 'row': 2, 'value': -1.29482},\n", " {'col': 36, 'row': 2, 'value': -0.373457},\n", " {'col': 37, 'row': 2, 'value': -0.921366},\n", " {'col': 38, 'row': 2, 'value': 14.62573119367},\n", " {'col': 39, 'row': 2, 'value': 14.7312163047866},\n", " {'col': 40, 'row': 2, 'value': 15.1737339677414},\n", " {'col': 41, 'row': 2, 'value': 14.8849757144116},\n", " {'col': 42, 'row': 2, 'value': 15.1483621402449},\n", " {'col': 43, 'row': 2, 'value': 15.2861573917198},\n", " {'col': 44, 'row': 2, 'value': 14.9755915881524},\n", " {'col': 45, 'row': 2, 'value': 14.9131415579488},\n", " {'col': 46, 'row': 2, 'value': 15.1691533113857},\n", " {'col': 47, 'row': 2, 'value': 14.7624129838008},\n", " {'col': 48, 'row': 2, 'value': 14.7393148880886},\n", " {'col': 49, 'row': 2, 'value': 15.1543981029227},\n", " {'col': 50, 'row': 2, 'value': 15.293131534817},\n", " {'col': 51, 'row': 2, 'value': 15.290183080108},\n", " {'col': 52, 'row': 2, 'value': 15.1870997952338},\n", " {'col': 53, 'row': 2, 'value': 15.2922616668467},\n", " {'col': 54, 'row': 2, 'value': 15.2471085401846},\n", " {'col': 55, 'row': 2, 'value': 15.293361965437},\n", " {'col': 56, 'row': 2, 'value': 15.3171415600528},\n", " {'col': 57, 'row': 2, 'value': 15.2937175363001},\n", " {'col': 58, 'row': 2, 'value': 15.1005865199303},\n", " {'col': 59, 'row': 2, 'value': 15.096376056089},\n", " {'col': 60, 'row': 2, 'value': 14.9900042338563},\n", " {'col': 61, 'row': 2, 'value': 14.8555617268161},\n", " {'col': 62, 'row': 2, 'value': 15.240588850075},\n", " {'col': 63, 'row': 2, 'value': 15.247840330133},\n", " {'col': 64, 'row': 2, 'value': 15.3155389112093},\n", " {'col': 65, 'row': 2, 'value': 14.9594510288028},\n", " {'col': 66, 'row': 2, 'value': 15.0282020536705},\n", " {'col': 67, 'row': 2, 'value': 15.0203720124043},\n", " {'col': 68, 'row': 2, 'value': 14.8247886731378},\n", " {'col': 69, 'row': 2, 'value': 15.0213191556482},\n", " {'col': 70, 'row': 2, 'value': 15.0389053505209},\n", " {'col': 71, 'row': 2, 'value': 15.3432727084573},\n", " {'col': 72, 'row': 2, 'value': 15.1870275022297},\n", " {'col': 73, 'row': 2, 'value': 15.2108514377502},\n", " {'col': 74, 'row': 2, 'value': 15.2653548238471},\n", " {'col': 75, 'row': 2, 'value': 15.3102171750458},\n", " {'col': 76, 'row': 2, 'value': 15.3757792211681},\n", " {'col': 77, 'row': 2, 'value': 15.3331618881839},\n", " {'col': 78, 'row': 2, 'value': 15.1746832755923},\n", " {'col': 79, 'row': 2, 'value': 15.1739387374962},\n", " {'col': 80, 'row': 2, 'value': 15.184095753171},\n", " {'col': 81, 'row': 2, 'value': 14.9049824216955},\n", " {'col': 82, 'row': 2, 'value': 15.1878231272835},\n", " {'col': 83, 'row': 2, 'value': 15.2325554456742},\n", " {'col': 84, 'row': 2, 'value': 15.3482330748621},\n", " {'col': 85, 'row': 2, 'value': 15.202271730361},\n", " {'col': 86, 'row': 2, 'value': 15.0901408378359},\n", " {'col': 87, 'row': 2, 'value': 15.1204321713054},\n", " {'col': 88, 'row': 2, 'value': 14.9250863001004},\n", " {'col': 89, 'row': 2, 'value': 14.6362840667017},\n", " {'col': 90, 'row': 2, 'value': 14.6575643770163},\n", " {'col': 91, 'row': 2, 'value': 15.1426286753281},\n", " {'col': 92, 'row': 2, 'value': 15.0172228366454},\n", " {'col': 93, 'row': 2, 'value': 15.0455306282876},\n", " {'col': 94, 'row': 2, 'value': 15.1058827686014},\n", " {'col': 95, 'row': 2, 'value': 14.2729101905939},\n", " {'col': 96, 'row': 2, 'value': 14.3585197347181},\n", " {'col': 97, 'row': 2, 'value': 15.1429344798579},\n", " {'col': 98, 'row': 2, 'value': 15.1816273935928},\n", " {'col': 99, 'row': 2, 'value': 15.1459918657813},\n", " {'col': 100, 'row': 2, 'value': 14.9120960497957},\n", " {'col': 101, 'row': 2, 'value': 14.9418439216937},\n", " {'col': 102, 'row': 2, 'value': 14.6902281807943},\n", " {'col': 103, 'row': 2, 'value': 14.9298684444447},\n", " {'col': 104, 'row': 2, 'value': 15.0512196684508},\n", " {'col': 105, 'row': 2, 'value': 14.9990611995586},\n", " {'col': 106, 'row': 2, 'value': 15.1322849645899},\n", " {'col': 107, 'row': 2, 'value': 14.5827231180623},\n", " {'col': 108, 'row': 2, 'value': 14.3816519468653},\n", " {'col': 109, 'row': 2, 'value': 14.389843192468},\n", " {'col': 110, 'row': 2, 'value': 15.0158077367492},\n", " {'col': 111, 'row': 2, 'value': 15.1030914586582},\n", " {'col': 112, 'row': 2, 'value': 14.4664062337857},\n", " {'col': 113, 'row': 2, 'value': 14.303203763911},\n", " {'col': 114, 'row': 2, 'value': 14.6103238175394},\n", " {'col': 115, 'row': 2, 'value': 15.0327820794008},\n", " {'col': 116, 'row': 2, 'value': 14.4703107801472},\n", " {'col': 117, 'row': 2, 'value': 14.4871251509898},\n", " {'col': 118, 'row': 2, 'value': 14.6840412074516},\n", " {'col': 119, 'row': 2, 'value': 14.653436598562}],\n", " [{'col': 0, 'row': 3, 'value': 1032.51},\n", " {'col': 1, 'row': 3, 'value': 969.801},\n", " {'col': 2, 'row': 3, 'value': 1289.1},\n", " {'col': 3, 'row': 3, 'value': 853.452},\n", " {'col': 4, 'row': 3, 'value': 908.141},\n", " {'col': 5, 'row': 3, 'value': 949.017},\n", " {'col': 6, 'row': 3, 'value': 360.906},\n", " {'col': 7, 'row': 3, 'value': 398.414},\n", " {'col': 8, 'row': 3, 'value': 430.772},\n", " {'col': 9, 'row': 3, 'value': 525.792},\n", " {'col': 10, 'row': 3, 'value': 503.336},\n", " {'col': 11, 'row': 3, 'value': 2832.2},\n", " {'col': 12, 'row': 3, 'value': 2685.58},\n", " {'col': 13, 'row': 3, 'value': 1129.75},\n", " {'col': 14, 'row': 3, 'value': 929.478},\n", " {'col': 15, 'row': 3, 'value': 1241.64},\n", " {'col': 16, 'row': 3, 'value': 1073.65},\n", " {'col': 17, 'row': 3, 'value': 922.08},\n", " {'col': 18, 'row': 3, 'value': 1011.99},\n", " {'col': 19, 'row': 3, 'value': 564.081},\n", " {'col': 20, 'row': 3, 'value': 406.193},\n", " {'col': 21, 'row': 3, 'value': 410.831},\n", " {'col': 22, 'row': 3, 'value': 405.27},\n", " {'col': 23, 'row': 3, 'value': 542.085},\n", " {'col': 24, 'row': 3, 'value': 3132.85},\n", " {'col': 25, 'row': 3, 'value': 1400.01},\n", " {'col': 26, 'row': 3, 'value': 1264.73},\n", " {'col': 27, 'row': 3, 'value': 1089.99},\n", " {'col': 28, 'row': 3, 'value': 0.399798},\n", " {'col': 29, 'row': 3, 'value': -0.492987},\n", " {'col': 30, 'row': 3, 'value': 1.62557},\n", " {'col': 31, 'row': 3, 'value': 1.18764},\n", " {'col': 32, 'row': 3, 'value': 2.92374},\n", " {'col': 33, 'row': 3, 'value': 1.7065},\n", " {'col': 34, 'row': 3, 'value': 1.54325},\n", " {'col': 35, 'row': 3, 'value': 0.622234},\n", " {'col': 36, 'row': 3, 'value': 1.53334},\n", " {'col': 37, 'row': 3, 'value': 2.20832},\n", " {'col': 38, 'row': 3, 'value': 0.897417},\n", " {'col': 39, 'row': 3, 'value': -0.911105},\n", " {'col': 40, 'row': 3, 'value': 11.7486969140658},\n", " {'col': 41, 'row': 3, 'value': 11.434958165666},\n", " {'col': 42, 'row': 3, 'value': 11.3651483594406},\n", " {'col': 43, 'row': 3, 'value': 10.9048726773157},\n", " {'col': 44, 'row': 3, 'value': 11.2195708490158},\n", " {'col': 45, 'row': 3, 'value': 11.6377555262172},\n", " {'col': 46, 'row': 3, 'value': 10.8706568269436},\n", " {'col': 47, 'row': 3, 'value': 10.8841429514676},\n", " {'col': 48, 'row': 3, 'value': 8.34621992832311},\n", " {'col': 49, 'row': 3, 'value': 5.82484248934215},\n", " {'col': 50, 'row': 3, 'value': 5.82531391184846},\n", " {'col': 51, 'row': 3, 'value': 5.96282154178591},\n", " {'col': 52, 'row': 3, 'value': 5.65743147256468},\n", " {'col': 53, 'row': 3, 'value': 5.70890496243925},\n", " {'col': 54, 'row': 3, 'value': 5.8093237650659},\n", " {'col': 55, 'row': 3, 'value': 5.72754703437456},\n", " {'col': 56, 'row': 3, 'value': 5.82484248934215},\n", " {'col': 57, 'row': 3, 'value': 6.43051751344742},\n", " {'col': 58, 'row': 3, 'value': 6.57205164239759},\n", " {'col': 59, 'row': 3, 'value': 10.7444841474629},\n", " {'col': 60, 'row': 3, 'value': 10.018952821018},\n", " {'col': 61, 'row': 3, 'value': 5.81140812543894},\n", " {'col': 62, 'row': 3, 'value': 6.13493920043813},\n", " {'col': 63, 'row': 3, 'value': 5.82484248934215},\n", " {'col': 64, 'row': 3, 'value': 11.5221378148739},\n", " {'col': 65, 'row': 3, 'value': 11.5788238477493},\n", " {'col': 66, 'row': 3, 'value': 11.2824710754811},\n", " {'col': 67, 'row': 3, 'value': 11.4989259524433},\n", " {'col': 68, 'row': 3, 'value': 10.6509842795521},\n", " {'col': 69, 'row': 3, 'value': 11.1783055043196},\n", " {'col': 70, 'row': 3, 'value': 10.0440364299462},\n", " {'col': 71, 'row': 3, 'value': 6.59319281519788},\n", " {'col': 72, 'row': 3, 'value': 7.72938588292353},\n", " {'col': 73, 'row': 3, 'value': 5.72754703437456},\n", " {'col': 74, 'row': 3, 'value': 6.32701157421743},\n", " {'col': 75, 'row': 3, 'value': 6.13588890824566},\n", " {'col': 76, 'row': 3, 'value': 5.82484248934215},\n", " {'col': 77, 'row': 3, 'value': 5.72754703437456},\n", " {'col': 78, 'row': 3, 'value': 5.72754703437456},\n", " {'col': 79, 'row': 3, 'value': 5.82484248934215},\n", " {'col': 80, 'row': 3, 'value': 6.43903671746403},\n", " {'col': 81, 'row': 3, 'value': 6.13493920043813},\n", " {'col': 82, 'row': 3, 'value': 5.98825003377746},\n", " {'col': 83, 'row': 3, 'value': 10.1864929203784},\n", " {'col': 84, 'row': 3, 'value': 5.82484248934215},\n", " {'col': 85, 'row': 3, 'value': 5.94943171830464},\n", " {'col': 86, 'row': 3, 'value': 5.71793578172453},\n", " {'col': 87, 'row': 3, 'value': 15.1060204440129},\n", " {'col': 88, 'row': 3, 'value': 13.3590011034457},\n", " {'col': 89, 'row': 3, 'value': 13.3490313509454},\n", " {'col': 90, 'row': 3, 'value': 12.2561106110884},\n", " {'col': 91, 'row': 3, 'value': 13.1936153495798},\n", " {'col': 92, 'row': 3, 'value': 13.246616767917},\n", " {'col': 93, 'row': 3, 'value': 13.9340820433142},\n", " {'col': 94, 'row': 3, 'value': 13.645621302051},\n", " {'col': 95, 'row': 3, 'value': 13.7321512182067},\n", " {'col': 96, 'row': 3, 'value': 13.3564879139581},\n", " {'col': 97, 'row': 3, 'value': 11.8511196132199},\n", " {'col': 98, 'row': 3, 'value': 15.0588732275334},\n", " {'col': 99, 'row': 3, 'value': 14.5083592772589},\n", " {'col': 100, 'row': 3, 'value': 14.5124907465626},\n", " {'col': 101, 'row': 3, 'value': 13.9233746349494},\n", " {'col': 102, 'row': 3, 'value': 11.9945187549267},\n", " {'col': 103, 'row': 3, 'value': 13.6989274056345},\n", " {'col': 104, 'row': 3, 'value': 14.9491787207137},\n", " {'col': 105, 'row': 3, 'value': 14.9807443569418},\n", " {'col': 106, 'row': 3, 'value': 13.3496428118898},\n", " {'col': 107, 'row': 3, 'value': 12.2213088090254},\n", " {'col': 108, 'row': 3, 'value': 12.1895126754522},\n", " {'col': 109, 'row': 3, 'value': 13.3405778654097},\n", " {'col': 110, 'row': 3, 'value': 13.8037673342542},\n", " {'col': 111, 'row': 3, 'value': 13.9072524254844},\n", " {'col': 112, 'row': 3, 'value': 13.5490947182515},\n", " {'col': 113, 'row': 3, 'value': 13.3532496981122},\n", " {'col': 114, 'row': 3, 'value': 12.6056705577619},\n", " {'col': 115, 'row': 3, 'value': 15.0398576914503},\n", " {'col': 116, 'row': 3, 'value': 15.0103881163362},\n", " {'col': 117, 'row': 3, 'value': 14.4451776130836},\n", " {'col': 118, 'row': 3, 'value': 13.6963917041923},\n", " {'col': 119, 'row': 3, 'value': 12.5242943764293},\n", " {'col': 120, 'row': 3, 'value': 13.6581215226181},\n", " {'col': 121, 'row': 3, 'value': 13.6733926348365}],\n", " [{'col': 0, 'row': 4, 'value': 500.291},\n", " {'col': 1, 'row': 4, 'value': 644.47},\n", " {'col': 2, 'row': 4, 'value': 612.081},\n", " {'col': 3, 'row': 4, 'value': 555.167},\n", " {'col': 4, 'row': 4, 'value': 558.052},\n", " {'col': 5, 'row': 4, 'value': 177.538},\n", " {'col': 6, 'row': 4, 'value': 308.184},\n", " {'col': 7, 'row': 4, 'value': 345.27},\n", " {'col': 8, 'row': 4, 'value': 325.871},\n", " {'col': 9, 'row': 4, 'value': 471.865},\n", " {'col': 10, 'row': 4, 'value': 435.534},\n", " {'col': 11, 'row': 4, 'value': 1522.67},\n", " {'col': 12, 'row': 4, 'value': 1658.55},\n", " {'col': 13, 'row': 4, 'value': 652.18},\n", " {'col': 14, 'row': 4, 'value': 710.589},\n", " {'col': 15, 'row': 4, 'value': 447.461},\n", " {'col': 16, 'row': 4, 'value': 414.598},\n", " {'col': 17, 'row': 4, 'value': 534.134},\n", " {'col': 18, 'row': 4, 'value': 184.243},\n", " {'col': 19, 'row': 4, 'value': 144.276},\n", " {'col': 20, 'row': 4, 'value': 303.89},\n", " {'col': 21, 'row': 4, 'value': 340.346},\n", " {'col': 22, 'row': 4, 'value': 338.238},\n", " {'col': 23, 'row': 4, 'value': 441.33},\n", " {'col': 24, 'row': 4, 'value': 1675.96},\n", " {'col': 25, 'row': 4, 'value': 928.722},\n", " {'col': 26, 'row': 4, 'value': 766.127},\n", " {'col': 27, 'row': 4, 'value': 633.749},\n", " {'col': 28, 'row': 4, 'value': 0.490689},\n", " {'col': 29, 'row': 4, 'value': -0.556177},\n", " {'col': 30, 'row': 4, 'value': 3.04692},\n", " {'col': 31, 'row': 4, 'value': 1.57264},\n", " {'col': 32, 'row': 4, 'value': 2.3087},\n", " {'col': 33, 'row': 4, 'value': 1.5113},\n", " {'col': 34, 'row': 4, 'value': 1.30422},\n", " {'col': 35, 'row': 4, 'value': 0.382657},\n", " {'col': 36, 'row': 4, 'value': 1.39772},\n", " {'col': 37, 'row': 4, 'value': 1.86055},\n", " {'col': 38, 'row': 4, 'value': 0.354804},\n", " {'col': 39, 'row': 4, 'value': -1.01506},\n", " {'col': 40, 'row': 4, 'value': 13.7015953208703},\n", " {'col': 41, 'row': 4, 'value': 13.4033477031613},\n", " {'col': 42, 'row': 4, 'value': 13.5127984636589},\n", " {'col': 43, 'row': 4, 'value': 13.6572848636245},\n", " {'col': 44, 'row': 4, 'value': 13.6469096652644},\n", " {'col': 45, 'row': 4, 'value': 13.2427967048635},\n", " {'col': 46, 'row': 4, 'value': 13.1222150579961},\n", " {'col': 47, 'row': 4, 'value': 13.2623395194459},\n", " {'col': 48, 'row': 4, 'value': 12.6545600685311},\n", " {'col': 49, 'row': 4, 'value': 8.91755751907217},\n", " {'col': 50, 'row': 4, 'value': 10.2984667098165},\n", " {'col': 51, 'row': 4, 'value': 8.5665447593854},\n", " {'col': 52, 'row': 4, 'value': 9.1989729517728},\n", " {'col': 53, 'row': 4, 'value': 9.12401440666377},\n", " {'col': 54, 'row': 4, 'value': 8.91753009030931},\n", " {'col': 55, 'row': 4, 'value': 8.05452404993128},\n", " {'col': 56, 'row': 4, 'value': 8.91755751907217},\n", " {'col': 57, 'row': 4, 'value': 8.89467416195157},\n", " {'col': 58, 'row': 4, 'value': 9.4362219182956},\n", " {'col': 59, 'row': 4, 'value': 9.04515766370691},\n", " {'col': 60, 'row': 4, 'value': 9.18016946529716},\n", " {'col': 61, 'row': 4, 'value': 12.9483141507175},\n", " {'col': 62, 'row': 4, 'value': 8.66303618244731},\n", " {'col': 63, 'row': 4, 'value': 8.78446696671244},\n", " {'col': 64, 'row': 4, 'value': 8.96891035093045},\n", " {'col': 65, 'row': 4, 'value': 13.6983967817659},\n", " {'col': 66, 'row': 4, 'value': 13.2575883494835},\n", " {'col': 67, 'row': 4, 'value': 13.1887390438677},\n", " {'col': 68, 'row': 4, 'value': 13.4655229320479},\n", " {'col': 69, 'row': 4, 'value': 12.874435993494},\n", " {'col': 70, 'row': 4, 'value': 12.8205813085134},\n", " {'col': 71, 'row': 4, 'value': 10.6946787303242},\n", " {'col': 72, 'row': 4, 'value': 8.35700219178756},\n", " {'col': 73, 'row': 4, 'value': 8.53584011875399},\n", " {'col': 74, 'row': 4, 'value': 9.00598660928958},\n", " {'col': 75, 'row': 4, 'value': 8.61739975592415},\n", " {'col': 76, 'row': 4, 'value': 8.53584011875399},\n", " {'col': 77, 'row': 4, 'value': 8.4137265984172},\n", " {'col': 78, 'row': 4, 'value': 8.91755751907217},\n", " {'col': 79, 'row': 4, 'value': 8.40841885887191},\n", " {'col': 80, 'row': 4, 'value': 9.15340890613546},\n", " {'col': 81, 'row': 4, 'value': 9.56281914461084},\n", " {'col': 82, 'row': 4, 'value': 13.4305009764987},\n", " {'col': 83, 'row': 4, 'value': 13.1212902072851},\n", " {'col': 84, 'row': 4, 'value': 8.78317884605077},\n", " {'col': 85, 'row': 4, 'value': 9.27734759255929},\n", " {'col': 86, 'row': 4, 'value': 8.76812872636418},\n", " {'col': 87, 'row': 4, 'value': 14.5527518192236},\n", " {'col': 88, 'row': 4, 'value': 12.9556532638012},\n", " {'col': 89, 'row': 4, 'value': 12.8329187931707},\n", " {'col': 90, 'row': 4, 'value': 11.7768623442291},\n", " {'col': 91, 'row': 4, 'value': 12.9480826019022},\n", " {'col': 92, 'row': 4, 'value': 12.8072791753891},\n", " {'col': 93, 'row': 4, 'value': 13.4644448609481},\n", " {'col': 94, 'row': 4, 'value': 13.2359796737507},\n", " {'col': 95, 'row': 4, 'value': 13.1363498041007},\n", " {'col': 96, 'row': 4, 'value': 12.4256683086673},\n", " {'col': 97, 'row': 4, 'value': 10.7072497467802},\n", " {'col': 98, 'row': 4, 'value': 14.3867584713303},\n", " {'col': 99, 'row': 4, 'value': 13.6911825990341},\n", " {'col': 100, 'row': 4, 'value': 13.5735477975709},\n", " {'col': 101, 'row': 4, 'value': 13.2781045596659},\n", " {'col': 102, 'row': 4, 'value': 11.5294705929067},\n", " {'col': 103, 'row': 4, 'value': 13.5111490179521},\n", " {'col': 104, 'row': 4, 'value': 14.5002424441276},\n", " {'col': 105, 'row': 4, 'value': 14.5503768151331},\n", " {'col': 106, 'row': 4, 'value': 12.884706400654},\n", " {'col': 107, 'row': 4, 'value': 11.9980110415735},\n", " {'col': 108, 'row': 4, 'value': 11.8184821498611},\n", " {'col': 109, 'row': 4, 'value': 12.8798488505069},\n", " {'col': 110, 'row': 4, 'value': 13.5744928372611},\n", " {'col': 111, 'row': 4, 'value': 13.4383093247762},\n", " {'col': 112, 'row': 4, 'value': 13.3068118041082},\n", " {'col': 113, 'row': 4, 'value': 11.914078238606},\n", " {'col': 114, 'row': 4, 'value': 12.1890944983656},\n", " {'col': 115, 'row': 4, 'value': 14.3817668055912},\n", " {'col': 116, 'row': 4, 'value': 14.2845271638751},\n", " {'col': 117, 'row': 4, 'value': 13.7573783517173},\n", " {'col': 118, 'row': 4, 'value': 13.3754775135612},\n", " {'col': 119, 'row': 4, 'value': 11.1989578790269},\n", " {'col': 120, 'row': 4, 'value': 13.5289043326408},\n", " {'col': 121, 'row': 4, 'value': 13.5754295756759}]]" ] } ], "prompt_number": 16 }, { "cell_type": "code", "collapsed": false, "input": [], "language": "python", "metadata": {}, "outputs": [] } ], "metadata": {} } ] }
mit
DavidVargasMora/SimulationLabs
WichmannHillGen27Feb2016.ipynb
2
6425
{ "cells": [ { "cell_type": "code", "execution_count": 52, "metadata": { "collapsed": false, "scrolled": true }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "Please input the amount of random numbers you want to generate:100\n", "Randy: 0.947888364713\n", "Randy: 0.877120129184\n", "Randy: 0.624955306442\n", "Randy: 0.968891207746\n", "Randy: 0.96856849619\n", "Randy: 0.570253880009\n", "Randy: 0.941520970303\n", "Randy: 0.19496404814\n", "Randy: 0.69833777018\n", "Randy: 0.00954458884121\n", "Randy: 0.356905987735\n", "Randy: 0.577726480094\n", "Randy: 0.857372594472\n", "Randy: 0.0555948738174\n", "Randy: 0.804639431295\n", "Randy: 0.0199100011056\n", "Randy: 0.020717043878\n", "Randy: 0.279656492201\n", "Randy: 0.658851114737\n", "Randy: 0.636086122565\n", "Randy: 0.876602196137\n", "Randy: 0.134293174971\n", "Randy: 0.84214920367\n", "Randy: 0.493405626096\n", "Randy: 0.645142640297\n", "Randy: 0.147829768436\n", "Randy: 0.196971201649\n", "Randy: 0.173583206641\n", "Randy: 0.927913002239\n", "Randy: 0.233140080316\n", "Randy: 0.458004310889\n", "Randy: 0.370709417034\n", "Randy: 0.50184472531\n", "Randy: 0.28283507594\n", "Randy: 0.740599417479\n", "Randy: 0.51191277957\n", "Randy: 0.281639895806\n", "Randy: 0.0960282311676\n", "Randy: 0.694767663561\n", "Randy: 0.885519328191\n", "Randy: 0.862349193814\n", "Randy: 0.565679245962\n", "Randy: 0.8963467836\n", "Randy: 0.329540452577\n", "Randy: 0.180385163541\n", "Randy: 0.344865143146\n", "Randy: 0.874882810387\n", "Randy: 0.0452016240604\n", "Randy: 0.735735918614\n", "Randy: 0.543502507742\n", "Randy: 0.906762417475\n", "Randy: 0.544185495593\n", "Randy: 0.297349119365\n", "Randy: 0.784226240796\n", "Randy: 0.145120829551\n", "Randy: 0.23478251141\n", "Randy: 0.977684234811\n", "Randy: 0.86614027379\n", "Randy: 0.259651059252\n", "Randy: 0.972667482244\n", "Randy: 0.67153977128\n", "Randy: 0.0104980462282\n", "Randy: 0.172663140992\n", "Randy: 0.422112016007\n", "Randy: 0.217270155173\n", "Randy: 0.0621747374893\n", "Randy: 0.642800352666\n", "Randy: 0.217870012286\n", "Randy: 0.0168172317896\n", "Randy: 0.134787299044\n", "Randy: 0.716275284996\n", "Randy: 0.801322218793\n", "Randy: 0.885975806489\n", "Randy: 0.576782224957\n", "Randy: 0.733019452255\n", "Randy: 0.579139662505\n", "Randy: 0.904377695036\n", "Randy: 0.835791901208\n", "Randy: 0.549452280176\n", "Randy: 0.393542527581\n", "Randy: 0.375404584557\n", "Randy: 0.403432980107\n", "Randy: 0.0666218762862\n", "Randy: 0.963948015263\n", "Randy: 0.0410211811706\n", "Randy: 0.0345907952332\n", "Randy: 0.746977924425\n", "Randy: 0.972666025647\n", "Randy: 0.367085515682\n", "Randy: 0.774232436093\n", "Randy: 0.0771193543474\n", "Randy: 0.886557374192\n", "Randy: 0.978152306959\n", "Randy: 0.982565602243\n", "Randy: 0.98330446378\n", "Randy: 0.763962138651\n", "Randy: 0.132633175853\n", "Randy: 0.428013787454\n", "Randy: 0.795380155837\n", "Randy: 0.556011789597\n" ] } ], "source": [ "import time\n", "import datetime\n", "\n", "def generadorS1(n):\n", " a = int(time.clock())\n", " m = int(900217*float(time.clock()))\n", " lastXn = 7\n", " for i in range(n):\n", " Xn = float((a*lastXn)% m)\n", " lastXn = Xn\n", " random = float(lastXn/m)\n", " return random\n", "\n", "def generadorS2(n):\n", " a = int(time.clock())\n", " m = int(10007*float(time.clock()))\n", " lastXn = 29\n", " for i in range(n):\n", " Xn = float((a*lastXn)% m)\n", " lastXn = Xn\n", " random = float(lastXn/m)\n", " return random\n", "\n", "def generadorS3(n):\n", " a = int(time.clock())\n", " m = int(9067*float(time.clock()))\n", " lastXn = 997\n", " for i in range(n):\n", " Xn = float((a*lastXn)% m)\n", " lastXn = Xn\n", " random = float(lastXn/m)\n", " return random\n", "\n", "def generadorS4(n):\n", " a = int(time.clock())\n", " m = int(900233*float(time.clock()))\n", " lastXn = 787\n", " for i in range(n):\n", " Xn = float((a*lastXn)% m)\n", " lastXn = Xn\n", " random = float(lastXn/m)\n", " return random\n", "\n", "\n", " \n", "def generador(n):\n", " for i in range(n):\n", " w = generadorS1(int(str(time.clock())[-2:]))\n", " x = generadorS2(int(str(time.clock())[-2:]))\n", " y = generadorS3(int(str(time.clock())[-2:]))\n", " z = generadorS4(int(str(time.clock())[-2:]))\n", " random = float((w+x+y+z)%1)\n", " print \"Randy: \"+str(random)\n", " \n", "def main():\n", " n=int(raw_input('Please input the amount of random numbers you want to generate:'))\n", " generador(n)\n", "\n", "main()" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "collapsed": true }, "outputs": [], "source": [] }, { "cell_type": "code", "execution_count": null, "metadata": { "collapsed": true }, "outputs": [], "source": [] }, { "cell_type": "code", "execution_count": null, "metadata": { "collapsed": true }, "outputs": [], "source": [] } ], "metadata": { "kernelspec": { "display_name": "Python 2", "language": "python", "name": "python2" }, "language_info": { "codemirror_mode": { "name": "ipython", "version": 2 }, "file_extension": ".py", "mimetype": "text/x-python", "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython2", "version": "2.7.11" } }, "nbformat": 4, "nbformat_minor": 0 }
cc0-1.0
wcmckee/wcmckee
whaiout.ipynb
2
24379
{ "metadata": { "name": "", "signature": "sha256:f786b2f825b80130cc678aca052b33673abe01974fa8373cc65f5fc264d6f4ca" }, "nbformat": 3, "nbformat_minor": 0, "worksheets": [ { "cells": [ { "cell_type": "markdown", "metadata": {}, "source": [ "<h3>WhaiOut</h3>\n", "\n", "This is the signout script that opens the login file and fills in signout info.\n", "\n", "Opens up list of signin data. This is date of sign in, time, name, and reason.\n", "This is .meta. This script appends sign out data. This is signout date, signout time, and comments.\n", "\n", "8 urandom 128 keys are generated. Used these in saving the achieve, as .html, and .meta files.\n", "Why not save as yr-month-day-hr-min.meta /html\n", "\n", "Turn it into a Nikola blog. Three blog posts. login (whaxlu.py), logout (whaiout.py), and the result of both of them. Perhaps it\n", "\n", "creates date and time mark and asks for comment" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "This needs rewriten to remove xl stuff opening. keep it to json and dict. " ] }, { "cell_type": "code", "collapsed": false, "input": [ "#import xlrd\n", "import os\n", "import time\n", "#from xlutils.copy import copy\n", "#from xlrd import *\n", "import dominate\n", "import json\n", "from dominate.tags import *\n", "from time import strftime, gmtime" ], "language": "python", "metadata": {}, "outputs": [], "prompt_number": 1 }, { "cell_type": "code", "collapsed": false, "input": [ "#wrkbook = xlrd.open_workbook('/home/wcmckee/whai/index.xls')" ], "language": "python", "metadata": {}, "outputs": [], "prompt_number": 2 }, { "cell_type": "code", "collapsed": false, "input": [ "jsopn = open('/home/wcmckee/visignsys/index.json', 'r')\n", "jsrdv = jsopn.read()" ], "language": "python", "metadata": {}, "outputs": [], "prompt_number": 3 }, { "cell_type": "code", "collapsed": false, "input": [ "jsrdv" ], "language": "python", "metadata": {}, "outputs": [ { "metadata": {}, "output_type": "pyout", "prompt_number": 4, "text": [ "'{\"signin hrmin\": \"18:14:35\", \"reason\": \"ESW\", \"firstname\": \"William\", \"signin comment\": \"testing locally\", \"lastname\": \"Mckee\", \"signin date\": \"07-Jan-2015\"}'" ] } ], "prompt_number": 4 }, { "cell_type": "code", "collapsed": false, "input": [ "#print wrkbook.sheet_names()\n", "\n", "#worksheet = wrkbook.sheet_by_name('visitor sign database')\n", "#swlis = []\n", "#num_rows = worksheet.nrows - 1\n", "#curr_row = -1\n", "#while curr_row < num_rows:\n", "# curr_row += 1\n", "# row = worksheet.row(curr_row)\n", " #print row\n", "# swlis.append(row)" ], "language": "python", "metadata": {}, "outputs": [], "prompt_number": 5 }, { "cell_type": "code", "collapsed": false, "input": [ "#valis = []" ], "language": "python", "metadata": {}, "outputs": [], "prompt_number": 6 }, { "cell_type": "code", "collapsed": false, "input": [ "#for swl in swlis[1]:\n", "# print swl.value\n", "# valis.append(swl.value)\n" ], "language": "python", "metadata": {}, "outputs": [], "prompt_number": 7 }, { "cell_type": "code", "collapsed": false, "input": [ "tiran = os.urandom(128).encode('hex')\n", "reran = os.urandom(128).encode('hex')\n", "comran = os.urandom(128).encode('hex')" ], "language": "python", "metadata": {}, "outputs": [], "prompt_number": 8 }, { "cell_type": "code", "collapsed": false, "input": [ "inpcom = raw_input('comment: ')" ], "language": "python", "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "stream": "stdout", "text": [ "comment: chexk\n" ] } ], "prompt_number": 7 }, { "cell_type": "code", "collapsed": false, "input": [ "endate = time.strftime(\"%d\" + \"-\" + \"%b\" + \"-\" + \"%Y\")\n", " \n", "entim = time.strftime(\"%H:%M\")" ], "language": "python", "metadata": {}, "outputs": [], "prompt_number": 8 }, { "cell_type": "code", "collapsed": false, "input": [ "snoutm = {'out-date': endate}\n", "snoutm.update({'out-time': entim})\n", "snoutm.update({'out-comment': inpcom})" ], "language": "python", "metadata": {}, "outputs": [], "prompt_number": 9 }, { "cell_type": "code", "collapsed": false, "input": [ "signoutdic = {endate: tiran}\n", "timoutdic = {entim: reran}" ], "language": "python", "metadata": {}, "outputs": [], "prompt_number": 10 }, { "cell_type": "code", "collapsed": false, "input": [ "signoutdic.update({entim:reran})" ], "language": "python", "metadata": {}, "outputs": [], "prompt_number": 11 }, { "cell_type": "code", "collapsed": false, "input": [ "signoutdic.update({inpcom: comran})" ], "language": "python", "metadata": {}, "outputs": [], "prompt_number": 12 }, { "cell_type": "code", "collapsed": false, "input": [ "signkeys = signoutdic.keys()" ], "language": "python", "metadata": {}, "outputs": [], "prompt_number": 13 }, { "cell_type": "code", "collapsed": false, "input": [ "wha = open('/home/wcmckee/visignsys/index.json', 'a')\n", "\n", "#w = copy(open_workbook('/home/wcmckee/whai/index.xls'))\n", "#w.get_sheet(0).write(1,5, time.strftime(\"%d\" + \"-\" + \"%b\" + \"-\" + \"%Y\"))\n", "#w.get_sheet(0).write(1,6, time.strftime(\"%H:%M\"))\n", "#w.get_sheet(0).write(1,7, tiran)\n", "\n", "#w.save('/home/wcmckee/whai/index.xls')" ], "language": "python", "metadata": {}, "outputs": [], "prompt_number": 14 }, { "cell_type": "code", "collapsed": false, "input": [ "indsav = ('/home/wcmckee/whai/index.html')" ], "language": "python", "metadata": {}, "outputs": [], "prompt_number": 15 }, { "cell_type": "code", "collapsed": false, "input": [ "opind = open(indsav, 'w')" ], "language": "python", "metadata": {}, "outputs": [], "prompt_number": 16 }, { "cell_type": "code", "collapsed": false, "input": [ "doc = dominate.document(title=wrkbook.sheet_names())\n", "\n", "with doc.head:\n", " link(rel='stylesheet', href='style.css')\n", " script(type='text/javascript', src='script.js')\n", "\n", "with doc:\n", " with div(id='header').add(ol()):\n", " for i in valis:\n", " li(a(i))\n", "\n", " with div():\n", " attr(cls='body')\n", " p('visitor sign database is open source. Visit https://github.com/wcmckee/wcmckee ')\n", "\n", "#print doc" ], "language": "python", "metadata": {}, "outputs": [], "prompt_number": 17 }, { "cell_type": "code", "collapsed": false, "input": [ "opind.write(str(doc))\n" ], "language": "python", "metadata": {}, "outputs": [], "prompt_number": 18 }, { "cell_type": "code", "collapsed": false, "input": [ "opind.close()" ], "language": "python", "metadata": {}, "outputs": [], "prompt_number": 19 }, { "cell_type": "code", "collapsed": false, "input": [ "liop = open('/home/wcmckee/visignsys/index.meta', 'a+')\n", "liop.write(str(signkeys))\n", "liop.close()" ], "language": "python", "metadata": {}, "outputs": [], "prompt_number": 20 }, { "cell_type": "code", "collapsed": false, "input": [], "language": "python", "metadata": {}, "outputs": [], "prompt_number": 80 }, { "cell_type": "code", "collapsed": false, "input": [ "oplis = open('/home/wcmckee/visignsys/index.meta', 'r')\n", "oplsav = oplis.read()\n", "oplis.close()" ], "language": "python", "metadata": {}, "outputs": [], "prompt_number": 81 }, { "cell_type": "code", "collapsed": false, "input": [ "trsor = tiran[0:12]" ], "language": "python", "metadata": {}, "outputs": [], "prompt_number": 82 }, { "cell_type": "code", "collapsed": false, "input": [ "yearz = strftime(\"%y\", gmtime())\n", "monthz = strftime(\"%m\", gmtime())\n", "dayz = strftime(\"%d\", gmtime())\n", "\n", "hurz = strftime(\"%H\", gmtime())\n", "minz = strftime(\"%M\", gmtime())\n" ], "language": "python", "metadata": {}, "outputs": [], "prompt_number": 19 }, { "cell_type": "code", "collapsed": false, "input": [ "dform = (yearz + monthz + dayz +hurz + minz)" ], "language": "python", "metadata": {}, "outputs": [], "prompt_number": 21 }, { "cell_type": "code", "collapsed": false, "input": [ "optrd = open('/home/wcmckee/visignsys/posts/' + dform + '.meta', 'w')\n", "optrd.write(oplsav)\n", "optrd.close()" ], "language": "python", "metadata": {}, "outputs": [], "prompt_number": 84 }, { "cell_type": "code", "collapsed": false, "input": [ "jsnrd = open('/home/wcmckee/visignsys/posts/' + dform + '.json', 'w')\n", "jsnrd.write(oplsav)\n", "jsnrd.close()" ], "language": "python", "metadata": {}, "outputs": [], "prompt_number": 85 }, { "cell_type": "code", "collapsed": false, "input": [ "savpos = open('/home/wcmckee/visignsys/index.json', 'r')\n", "signindi = savpos.read()" ], "language": "python", "metadata": {}, "outputs": [], "prompt_number": 22 }, { "cell_type": "code", "collapsed": false, "input": [ "jsnaccept = signindi.replace(\"'\", \"\\\"\")\n", "snoutm = json.loads(jsnaccept)" ], "language": "python", "metadata": {}, "outputs": [], "prompt_number": 25 }, { "cell_type": "code", "collapsed": false, "input": [ "snct = dict(d.items() + snoutm.items())" ], "language": "python", "metadata": {}, "outputs": [], "prompt_number": 26 }, { "cell_type": "code", "collapsed": false, "input": [ "savpos.close()" ], "language": "python", "metadata": {}, "outputs": [], "prompt_number": 27 }, { "cell_type": "code", "collapsed": false, "input": [ "os.chdir('/home/wcmckee/visignsys/posts')" ], "language": "python", "metadata": {}, "outputs": [], "prompt_number": 28 }, { "cell_type": "code", "collapsed": false, "input": [ "lismet = os.listdir('/home/wcmckee/visignsys/posts')" ], "language": "python", "metadata": {}, "outputs": [], "prompt_number": 29 }, { "cell_type": "code", "collapsed": false, "input": [ "lismet" ], "language": "python", "metadata": {}, "outputs": [ { "metadata": {}, "output_type": "pyout", "prompt_number": 30, "text": [ "['b9b5a2864917.meta',\n", " '2ce7b7e78b2d.json',\n", " 'f63a51c5660b.json',\n", " 'ec335a74fef8.json',\n", " 'd4da1b21b2ac.meta',\n", " '06fd12b77af5.html',\n", " 'bd18983ba81c.json',\n", " 'bc3f7ce010a0.meta',\n", " '4300bad9866e.meta',\n", " '8d73b8f33da2.json',\n", " 'cbbcc7a60aa1.meta',\n", " '624bf3800e42.meta',\n", " 'ec335a74fef8.meta',\n", " '8d73b8f33da2.meta',\n", " '417ca4249670.meta',\n", " '891149fcb0cc.meta',\n", " '086ef98a8bea.meta',\n", " 'a10ef30465fb.html',\n", " 'be7f3bba40a9.meta',\n", " 'ad81cda1984a.meta',\n", " '9479b52fcb96.json',\n", " '3342b7e37622.json',\n", " 'f51c0885211f.json',\n", " '8fb418bed294.meta',\n", " 'be7f3bba40a9.json',\n", " '20923a94e619.json',\n", " '91ece852eb61.meta',\n", " 'fab0f7427796.html',\n", " 'cbbcc7a60aa1.html',\n", " '8bf3b3c045b2.json',\n", " '1bca31594654.meta',\n", " 'd7bfad4d84af.json',\n", " '4be47b95b184.html',\n", " 'e51d650f3bd8.meta',\n", " 'c173782cc4ba.html',\n", " 'bc3f7ce010a0.json',\n", " '9cce0605ff95.meta',\n", " '891149fcb0cc.json',\n", " '4611a6b53369.json',\n", " '8fb418bed294.json',\n", " '68dc32243aee.html',\n", " '1e1b72c3728f.meta',\n", " '1ca6f0c7d074.json',\n", " '710d4ea76685.meta',\n", " '9479b52fcb96.meta',\n", " '50028413d505.meta',\n", " '231f0cbc6422.json',\n", " '710d4ea76685.json',\n", " 'f30478d49490.html',\n", " '1e1b72c3728f.json',\n", " '81ae6564478e.meta',\n", " 'e51d650f3bd8.html',\n", " 'd948bc2cb2d5.meta',\n", " '788ab4a4a085.html',\n", " '2f125041a9ff.html',\n", " '69ac885a08d4.html',\n", " '20923a94e619.meta',\n", " '046ddc95c545.meta',\n", " '175dea65c5bd.meta',\n", " 'd7bfad4d84af.meta',\n", " '50028413d505.html',\n", " '39848c9e2306.meta',\n", " 'a5fd59588711.json',\n", " '9c5044cb8c12.meta',\n", " '6ac58d43a79e.html',\n", " 'a10ef30465fb.meta',\n", " 'fab0f7427796.meta',\n", " 'faab1e3ed989.json',\n", " 'c02c3d6eb062.json',\n", " 'f31b6e50e61d.json',\n", " '2a107fb19ec7.json',\n", " '6e8165886873.json',\n", " 'd4da1b21b2ac.html',\n", " '4611a6b53369.meta',\n", " '1ca6f0c7d074.html',\n", " 'g\\xe9~\\xaf\"\\x80\\xa8\\x88\\xc7X\\xce\\x83\\x98\\xe6\\x15t.html',\n", " '1537f9b58c99.meta',\n", " '6ac58d43a79e.meta',\n", " '1bca31594654.json',\n", " 'faab1e3ed989.meta',\n", " 'a5fd59588711.meta',\n", " '06fd12b77af5.meta',\n", " 'df5aed94d944.html',\n", " '2a107fb19ec7.meta',\n", " '9c5044cb8c12.json',\n", " '1537f9b58c99.html',\n", " '5e98dfab4326.json',\n", " '2f6d172a9d5d.json',\n", " 'e8e05f2bf0c0.meta',\n", " '1ef070dc6543.meta',\n", " '125540ca4363.meta',\n", " '8457b8a9b2c0.json',\n", " 'b9b5a2864917.json',\n", " 'f63a51c5660b.meta',\n", " '046ddc95c545.html',\n", " '231f0cbc6422.html',\n", " 'be7f3bba40a9.html',\n", " 'g\\xe9~\\xaf\"\\x80\\xa8\\x88\\xc7X\\xce\\x83\\x98\\xe6\\x15t.json',\n", " '8f05ce526d45.meta',\n", " 'fde78ce1d94a.json',\n", " '0c4a69aa64c3.meta',\n", " 'd948bc2cb2d5.html',\n", " '2f125041a9ff.meta',\n", " 'ed90e8d91209.meta',\n", " 'f51c0885211f.meta',\n", " '\\xff\\xceX\\xa6\\x1b\\xc7\\xdf\\x051\\x81\\x9d+\\x95h\\xf16.html',\n", " '4300bad9866e.html',\n", " '03ba33c75d39.html',\n", " '5832e9b60262.html',\n", " '6e8165886873.meta',\n", " '086ef98a8bea.json',\n", " '4be47b95b184.meta',\n", " '68c7478ad623.meta',\n", " '81ae6564478e.html',\n", " '68dc32243aee.meta',\n", " '231f0cbc6422.meta',\n", " 'ce4b76e41145.meta',\n", " 'ce4b76e41145.html',\n", " 'bd18983ba81c.meta',\n", " '469b6be62e65.json',\n", " '6dbfbbb9c12e.meta',\n", " 'e8e05f2bf0c0.json',\n", " '1bca31594654.html',\n", " '175dea65c5bd.json',\n", " 'f30478d49490.meta',\n", " '0c4a69aa64c3.json',\n", " '9f223146a0a7.html',\n", " '39848c9e2306.html',\n", " 'f63a51c5660b.html',\n", " '3b572fbccfff.html',\n", " '5f866c12e733.html',\n", " 'df5aed94d944.meta',\n", " '3342b7e37622.meta',\n", " '08eed5e7841d.json',\n", " '9cce0605ff95.html',\n", " '69ac885a08d4.meta',\n", " '1ca6f0c7d074.meta',\n", " '63e5d8747f8f.html',\n", " 'ad81cda1984a.json',\n", " '63e5d8747f8f.meta',\n", " '5e98dfab4326.meta',\n", " '49f5eeb93b58.json',\n", " '4a1d7fbd4af7.html',\n", " 'a5fd59588711.html',\n", " '81ae6564478e.json',\n", " 'c9739e8e0ad8.meta',\n", " 'f78d6acee067.meta',\n", " '417ca4249670.json',\n", " '953205620074.meta',\n", " 'c173782cc4ba.meta',\n", " 'c81a54c3aa37.json',\n", " '8f05ce526d45.html',\n", " '49f5eeb93b58.meta',\n", " 'de3a5ee926b8.meta',\n", " '788ab4a4a085.meta',\n", " '4994b1705e91.meta',\n", " '5832e9b60262.meta',\n", " '469b6be62e65.meta',\n", " '8bf3b3c045b2.meta',\n", " '1ef070dc6543.json',\n", " 'f31b6e50e61d.meta',\n", " '5e98dfab4326.html',\n", " 'df5aed94d944.json',\n", " '624bf3800e42.html',\n", " '03ba33c75d39.meta',\n", " '68c7478ad623.json',\n", " '5f866c12e733.meta',\n", " 'c8840e55dd2b.json',\n", " '4a1d7fbd4af7.json',\n", " 'c02c3d6eb062.meta',\n", " '6dbfbbb9c12e.html',\n", " 'd948bc2cb2d5.json',\n", " 'ff09eb4188ad.html',\n", " '953205620074.json',\n", " 'cee5c35e8560.meta',\n", " 'dce45c4cde99.meta',\n", " '08eed5e7841d.meta',\n", " '2ce7b7e78b2d.meta',\n", " 'c9739e8e0ad8.json',\n", " '\\xff\\xceX\\xa6\\x1b\\xc7\\xdf\\x051\\x81\\x9d+\\x95h\\xf16.json',\n", " 'ff09eb4188ad.meta',\n", " '125540ca4363.json',\n", " '2f6d172a9d5d.meta',\n", " 'c81a54c3aa37.meta',\n", " '3b572fbccfff.meta',\n", " 'dce45c4cde99.json',\n", " '4994b1705e91.json',\n", " 'f78d6acee067.html',\n", " 'ed90e8d91209.json',\n", " '4a1d7fbd4af7.meta',\n", " 'fde78ce1d94a.meta',\n", " '8457b8a9b2c0.meta',\n", " '9f223146a0a7.meta',\n", " 'cee5c35e8560.json',\n", " 'de3a5ee926b8.html',\n", " 'c8840e55dd2b.meta']" ] } ], "prompt_number": 30 }, { "cell_type": "code", "collapsed": false, "input": [ "opjsnz = []" ], "language": "python", "metadata": {}, "outputs": [], "prompt_number": 31 }, { "cell_type": "code", "collapsed": false, "input": [ "for beca in lismet:\n", " if '.json' in beca:\n", " print beca\n", " opjsnz.append(beca)" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "2ce7b7e78b2d.json\n", "f63a51c5660b.json\n", "ec335a74fef8.json\n", "bd18983ba81c.json\n", "8d73b8f33da2.json\n", "9479b52fcb96.json\n", "3342b7e37622.json\n", "f51c0885211f.json\n", "be7f3bba40a9.json\n", "20923a94e619.json\n", "8bf3b3c045b2.json\n", "d7bfad4d84af.json\n", "bc3f7ce010a0.json\n", "891149fcb0cc.json\n", "4611a6b53369.json\n", "8fb418bed294.json\n", "1ca6f0c7d074.json\n", "231f0cbc6422.json\n", "710d4ea76685.json\n", "1e1b72c3728f.json\n", "a5fd59588711.json\n", "faab1e3ed989.json\n", "c02c3d6eb062.json\n", "f31b6e50e61d.json\n", "2a107fb19ec7.json\n", "6e8165886873.json\n", "1bca31594654.json\n", "9c5044cb8c12.json\n", "5e98dfab4326.json\n", "2f6d172a9d5d.json\n", "8457b8a9b2c0.json\n", "b9b5a2864917.json\n", "g\ufffd~\ufffd\"\ufffd\ufffd\ufffd\ufffdX\u0383\ufffd\ufffd\u0015t.json\n", "fde78ce1d94a.json\n", "086ef98a8bea.json\n", "469b6be62e65.json\n", "e8e05f2bf0c0.json\n", "175dea65c5bd.json\n", "0c4a69aa64c3.json\n", "08eed5e7841d.json\n", "ad81cda1984a.json\n", "49f5eeb93b58.json\n", "81ae6564478e.json\n", "417ca4249670.json\n", "c81a54c3aa37.json\n", "1ef070dc6543.json\n", "df5aed94d944.json\n", "68c7478ad623.json\n", "c8840e55dd2b.json\n", "4a1d7fbd4af7.json\n", "d948bc2cb2d5.json\n", "953205620074.json\n", "c9739e8e0ad8.json\n", "\ufffd\ufffdX\ufffd\u001b\ufffd\ufffd\u00051\ufffd\ufffd+\ufffdh\ufffd6.json\n", "125540ca4363.json\n", "dce45c4cde99.json\n", "4994b1705e91.json\n", "ed90e8d91209.json\n", "cee5c35e8560.json\n" ] } ], "prompt_number": 32 }, { "cell_type": "code", "collapsed": false, "input": [ "optjz = []\n", "optjsz = []" ], "language": "python", "metadata": {}, "outputs": [], "prompt_number": 33 }, { "cell_type": "code", "collapsed": false, "input": [ "apgpls = []" ], "language": "python", "metadata": {}, "outputs": [], "prompt_number": 34 }, { "cell_type": "code", "collapsed": false, "input": [ "#for opjw in opjsnz:\n", "# print opjw\n", "# optjsz.append(objw)\n", " " ], "language": "python", "metadata": {}, "outputs": [], "prompt_number": 35 }, { "cell_type": "code", "collapsed": false, "input": [ "#for filop in opjsnz:\n", " #print filop\n", "# opt = open(opj, 'r')\n", "# thedict = str(opt.read())\n", "# thedict\n", "# opt.close()" ], "language": "python", "metadata": {}, "outputs": [], "prompt_number": 36 }, { "cell_type": "code", "collapsed": false, "input": [ "#opt = open(opj, 'r')" ], "language": "python", "metadata": {}, "outputs": [], "prompt_number": 37 }, { "cell_type": "code", "collapsed": false, "input": [ "#thedict = opt.read()" ], "language": "python", "metadata": {}, "outputs": [], "prompt_number": 38 }, { "cell_type": "code", "collapsed": false, "input": [ "#thedict" ], "language": "python", "metadata": {}, "outputs": [], "prompt_number": 39 }, { "cell_type": "code", "collapsed": false, "input": [ "#convgpj = json.loads(thedict)" ], "language": "python", "metadata": {}, "outputs": [], "prompt_number": 40 }, { "cell_type": "code", "collapsed": false, "input": [ "#convgpj.values()" ], "language": "python", "metadata": {}, "outputs": [], "prompt_number": 41 }, { "cell_type": "code", "collapsed": false, "input": [], "language": "python", "metadata": {}, "outputs": [], "prompt_number": 41 }, { "cell_type": "code", "collapsed": false, "input": [], "language": "python", "metadata": {}, "outputs": [] } ], "metadata": {} } ] }
mit
ioos/comt_notebooks
admin/.ipynb_checkpoints/check_catalog-Copy0-checkpoint.ipynb
1
4350
{ "metadata": { "gist_id": "3a639c25f29ebdcae92a", "name": "", "signature": "sha256:5ed27051015d19abe4617c0d0c4e519476967d3a16b52e5270e790ca5761f83b" }, "nbformat": 3, "nbformat_minor": 0, "worksheets": [ { "cells": [ { "cell_type": "code", "collapsed": false, "input": [ "import iris\n", "iris.FUTURE.netcdf_promote = True\n", "\n", "url='http://comt.sura.org/thredds/dodsC/data/comt_1_archive/inundation_tropical/MDL_SLOSH/Hurricane_Ike_final_run_egm3'\n", "\n", "name_list=['water_surface_height_above_reference_datum',\n", " 'sea_surface_height_above_geoid','sea_surface_elevation',\n", " 'sea_surface_height_above_reference_ellipsoid','sea_surface_height_above_sea_level',\n", " 'sea_surface_height','water level']\n", "\n", "def name_in_list(cube):\n", " return cube.standard_name in name_list" ], "language": "python", "metadata": {}, "outputs": [] }, { "cell_type": "code", "collapsed": false, "input": [ "def my_func(cube):\n", " if cube.standard_name in name_list:\n", " if cube.b2 = not any(m.method == 'maximum' for m in cube.cell_methods)\n", " b = b1 and b2\n", " return b" ], "language": "python", "metadata": {}, "outputs": [], "prompt_number": 44 }, { "cell_type": "code", "collapsed": false, "input": [ "def my_func(cube):\n", " return(cube.standard_name in name_list) and (not any(m.method == 'maximum' for m in cube.cell_methods))" ], "language": "python", "metadata": {}, "outputs": [], "prompt_number": 52 }, { "cell_type": "code", "collapsed": false, "input": [ "my_func(cube)" ], "language": "python", "metadata": {}, "outputs": [ { "metadata": {}, "output_type": "pyout", "prompt_number": 53, "text": [ "True" ] } ], "prompt_number": 53 }, { "cell_type": "code", "collapsed": false, "input": [ "my_constraint = iris.Constraint(cube_func=my_func)" ], "language": "python", "metadata": {}, "outputs": [], "prompt_number": 54 }, { "cell_type": "code", "collapsed": false, "input": [ "cube = iris.load_cube(url,my_constraint)" ], "language": "python", "metadata": {}, "outputs": [], "prompt_number": 55 }, { "cell_type": "code", "collapsed": false, "input": [ "print cube" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "water_surface_height_above_reference_datum / (m) (time: 511; -- : 567; -- : 327)\n", " Dimension coordinates:\n", " time x - -\n", " Auxiliary coordinates:\n", " latitude - x x\n", " longitude - x x\n", " Attributes:\n", " Conventions: CF-1.0\n", " Source: SLOSH\n", " VerticalDatum: urn:ogc:def:datum:epsg::5103\n", " _ChunkSize: [ 1 567 327]\n", " cdm_data_type: grid\n", " id: inundation_tropical.MDL_SLOSH.Hurricane_Ike_final_run_egm3\n", " institution: MDL - NOAA/NWS/MDL, inundation\n", " summary: A hindcast of Hurricane Ike (2008) using SLOSH on the egm3 mesh with SLOSH's...\n", " title: Inundation Tropical : MDL : SLOSH : Hurricane Ike final run egm3\n", " Cell methods:\n", " point: time\n" ] } ], "prompt_number": 56 }, { "cell_type": "code", "collapsed": false, "input": [ "cube.attrs()" ], "language": "python", "metadata": {}, "outputs": [] }, { "cell_type": "code", "collapsed": false, "input": [], "language": "python", "metadata": {}, "outputs": [] } ], "metadata": {} } ] }
mit
ocefpaf/folium
examples/TilesExample.ipynb
2
37730
{ "cells": [ { "cell_type": "code", "execution_count": 1, "metadata": {}, "outputs": [], "source": [ "import folium\n", "\n", "\n", "lon, lat = -38.625, -12.875\n", "\n", "zoom_start = 8" ] }, { "cell_type": "code", "execution_count": 2, "metadata": {}, "outputs": [ { "data": { "text/html": [ "<div style=\"width:100%;\"><div style=\"position:relative;width:100%;height:0;padding-bottom:60%;\"><span style=\"color:#565656\">Make this Notebook Trusted to load map: File -> Trust Notebook</span><iframe src=\"about:blank\" style=\"position:absolute;width:100%;height:100%;left:0;top:0;border:none !important;\" data-html=PCFET0NUWVBFIGh0bWw+CjxoZWFkPiAgICAKICAgIDxtZXRhIGh0dHAtZXF1aXY9ImNvbnRlbnQtdHlwZSIgY29udGVudD0idGV4dC9odG1sOyBjaGFyc2V0PVVURi04IiAvPgogICAgCiAgICAgICAgPHNjcmlwdD4KICAgICAgICAgICAgTF9OT19UT1VDSCA9IGZhbHNlOwogICAgICAgICAgICBMX0RJU0FCTEVfM0QgPSBmYWxzZTsKICAgICAgICA8L3NjcmlwdD4KICAgIAogICAgPHN0eWxlPmh0bWwsIGJvZHkge3dpZHRoOiAxMDAlO2hlaWdodDogMTAwJTttYXJnaW46IDA7cGFkZGluZzogMDt9PC9zdHlsZT4KICAgIDxzdHlsZT4jbWFwIHtwb3NpdGlvbjphYnNvbHV0ZTt0b3A6MDtib3R0b206MDtyaWdodDowO2xlZnQ6MDt9PC9zdHlsZT4KICAgIDxzY3JpcHQgc3JjPSJodHRwczovL2Nkbi5qc2RlbGl2ci5uZXQvbnBtL2xlYWZsZXRAMS42LjAvZGlzdC9sZWFmbGV0LmpzIj48L3NjcmlwdD4KICAgIDxzY3JpcHQgc3JjPSJodHRwczovL2NvZGUuanF1ZXJ5LmNvbS9qcXVlcnktMS4xMi40Lm1pbi5qcyI+PC9zY3JpcHQ+CiAgICA8c2NyaXB0IHNyYz0iaHR0cHM6Ly9tYXhjZG4uYm9vdHN0cmFwY2RuLmNvbS9ib290c3RyYXAvMy4yLjAvanMvYm9vdHN0cmFwLm1pbi5qcyI+PC9zY3JpcHQ+CiAgICA8c2NyaXB0IHNyYz0iaHR0cHM6Ly9jZG5qcy5jbG91ZGZsYXJlLmNvbS9hamF4L2xpYnMvTGVhZmxldC5hd2Vzb21lLW1hcmtlcnMvMi4wLjIvbGVhZmxldC5hd2Vzb21lLW1hcmtlcnMuanMiPjwvc2NyaXB0PgogICAgPGxpbmsgcmVsPSJzdHlsZXNoZWV0IiBocmVmPSJodHRwczovL2Nkbi5qc2RlbGl2ci5uZXQvbnBtL2xlYWZsZXRAMS42LjAvZGlzdC9sZWFmbGV0LmNzcyIvPgogICAgPGxpbmsgcmVsPSJzdHlsZXNoZWV0IiBocmVmPSJodHRwczovL21heGNkbi5ib290c3RyYXBjZG4uY29tL2Jvb3RzdHJhcC8zLjIuMC9jc3MvYm9vdHN0cmFwLm1pbi5jc3MiLz4KICAgIDxsaW5rIHJlbD0ic3R5bGVzaGVldCIgaHJlZj0iaHR0cHM6Ly9tYXhjZG4uYm9vdHN0cmFwY2RuLmNvbS9ib290c3RyYXAvMy4yLjAvY3NzL2Jvb3RzdHJhcC10aGVtZS5taW4uY3NzIi8+CiAgICA8bGluayByZWw9InN0eWxlc2hlZXQiIGhyZWY9Imh0dHBzOi8vbWF4Y2RuLmJvb3RzdHJhcGNkbi5jb20vZm9udC1hd2Vzb21lLzQuNi4zL2Nzcy9mb250LWF3ZXNvbWUubWluLmNzcyIvPgogICAgPGxpbmsgcmVsPSJzdHlsZXNoZWV0IiBocmVmPSJodHRwczovL2NkbmpzLmNsb3VkZmxhcmUuY29tL2FqYXgvbGlicy9MZWFmbGV0LmF3ZXNvbWUtbWFya2Vycy8yLjAuMi9sZWFmbGV0LmF3ZXNvbWUtbWFya2Vycy5jc3MiLz4KICAgIDxsaW5rIHJlbD0ic3R5bGVzaGVldCIgaHJlZj0iaHR0cHM6Ly9jZG4uanNkZWxpdnIubmV0L2doL3B5dGhvbi12aXN1YWxpemF0aW9uL2ZvbGl1bS9mb2xpdW0vdGVtcGxhdGVzL2xlYWZsZXQuYXdlc29tZS5yb3RhdGUubWluLmNzcyIvPgogICAgCiAgICAgICAgICAgIDxtZXRhIG5hbWU9InZpZXdwb3J0IiBjb250ZW50PSJ3aWR0aD1kZXZpY2Utd2lkdGgsCiAgICAgICAgICAgICAgICBpbml0aWFsLXNjYWxlPTEuMCwgbWF4aW11bS1zY2FsZT0xLjAsIHVzZXItc2NhbGFibGU9bm8iIC8+CiAgICAgICAgICAgIDxzdHlsZT4KICAgICAgICAgICAgICAgICNtYXBfMjgxOTY0YjYxMzIyNDJiMzk1MDhkNjg3YmFjOTQ3OWYgewogICAgICAgICAgICAgICAgICAgIHBvc2l0aW9uOiByZWxhdGl2ZTsKICAgICAgICAgICAgICAgICAgICB3aWR0aDogMTAwLjAlOwogICAgICAgICAgICAgICAgICAgIGhlaWdodDogMTAwLjAlOwogICAgICAgICAgICAgICAgICAgIGxlZnQ6IDAuMCU7CiAgICAgICAgICAgICAgICAgICAgdG9wOiAwLjAlOwogICAgICAgICAgICAgICAgfQogICAgICAgICAgICA8L3N0eWxlPgogICAgICAgIAo8L2hlYWQ+Cjxib2R5PiAgICAKICAgIAogICAgICAgICAgICA8ZGl2IGNsYXNzPSJmb2xpdW0tbWFwIiBpZD0ibWFwXzI4MTk2NGI2MTMyMjQyYjM5NTA4ZDY4N2JhYzk0NzlmIiA+PC9kaXY+CiAgICAgICAgCjwvYm9keT4KPHNjcmlwdD4gICAgCiAgICAKICAgICAgICAgICAgdmFyIG1hcF8yODE5NjRiNjEzMjI0MmIzOTUwOGQ2ODdiYWM5NDc5ZiA9IEwubWFwKAogICAgICAgICAgICAgICAgIm1hcF8yODE5NjRiNjEzMjI0MmIzOTUwOGQ2ODdiYWM5NDc5ZiIsCiAgICAgICAgICAgICAgICB7CiAgICAgICAgICAgICAgICAgICAgY2VudGVyOiBbLTEyLjg3NSwgLTM4LjYyNV0sCiAgICAgICAgICAgICAgICAgICAgY3JzOiBMLkNSUy5FUFNHMzg1NywKICAgICAgICAgICAgICAgICAgICB6b29tOiA4LAogICAgICAgICAgICAgICAgICAgIHpvb21Db250cm9sOiB0cnVlLAogICAgICAgICAgICAgICAgICAgIHByZWZlckNhbnZhczogZmFsc2UsCiAgICAgICAgICAgICAgICB9CiAgICAgICAgICAgICk7CgogICAgICAgICAgICAKCiAgICAgICAgCiAgICAKICAgICAgICAgICAgdmFyIHRpbGVfbGF5ZXJfYjk3NmVhYmM1YTY1NDViZjg4NzFmYzc2ZjVmMmM5MzcgPSBMLnRpbGVMYXllcigKICAgICAgICAgICAgICAgICJodHRwczovL3tzfS50aWxlLm9wZW5zdHJlZXRtYXAub3JnL3t6fS97eH0ve3l9LnBuZyIsCiAgICAgICAgICAgICAgICB7ImF0dHJpYnV0aW9uIjogIkRhdGEgYnkgXHUwMDI2Y29weTsgXHUwMDNjYSBocmVmPVwiaHR0cDovL29wZW5zdHJlZXRtYXAub3JnXCJcdTAwM2VPcGVuU3RyZWV0TWFwXHUwMDNjL2FcdTAwM2UsIHVuZGVyIFx1MDAzY2EgaHJlZj1cImh0dHA6Ly93d3cub3BlbnN0cmVldG1hcC5vcmcvY29weXJpZ2h0XCJcdTAwM2VPRGJMXHUwMDNjL2FcdTAwM2UuIiwgImRldGVjdFJldGluYSI6IGZhbHNlLCAibWF4TmF0aXZlWm9vbSI6IDE4LCAibWF4Wm9vbSI6IDE4LCAibWluWm9vbSI6IDAsICJub1dyYXAiOiBmYWxzZSwgIm9wYWNpdHkiOiAxLCAic3ViZG9tYWlucyI6ICJhYmMiLCAidG1zIjogZmFsc2V9CiAgICAgICAgICAgICkuYWRkVG8obWFwXzI4MTk2NGI2MTMyMjQyYjM5NTA4ZDY4N2JhYzk0NzlmKTsKICAgICAgICAKPC9zY3JpcHQ+ onload=\"this.contentDocument.open();this.contentDocument.write(atob(this.getAttribute('data-html')));this.contentDocument.close();\" allowfullscreen webkitallowfullscreen mozallowfullscreen></iframe></div></div>" ], "text/plain": [ "<folium.folium.Map at 0x7f24b00bac70>" ] }, "execution_count": 2, "metadata": {}, "output_type": "execute_result" } ], "source": [ "m = folium.Map(location=[lat, lon], tiles=\"OpenStreetMap\", zoom_start=zoom_start)\n", "\n", "m" ] }, { "cell_type": "code", "execution_count": 3, "metadata": {}, "outputs": [ { "data": { "text/html": [ "<div style=\"width:100%;\"><div style=\"position:relative;width:100%;height:0;padding-bottom:60%;\"><span style=\"color:#565656\">Make this Notebook Trusted to load map: File -> Trust Notebook</span><iframe src=\"about:blank\" style=\"position:absolute;width:100%;height:100%;left:0;top:0;border:none !important;\" data-html=PCFET0NUWVBFIGh0bWw+CjxoZWFkPiAgICAKICAgIDxtZXRhIGh0dHAtZXF1aXY9ImNvbnRlbnQtdHlwZSIgY29udGVudD0idGV4dC9odG1sOyBjaGFyc2V0PVVURi04IiAvPgogICAgCiAgICAgICAgPHNjcmlwdD4KICAgICAgICAgICAgTF9OT19UT1VDSCA9IGZhbHNlOwogICAgICAgICAgICBMX0RJU0FCTEVfM0QgPSBmYWxzZTsKICAgICAgICA8L3NjcmlwdD4KICAgIAogICAgPHN0eWxlPmh0bWwsIGJvZHkge3dpZHRoOiAxMDAlO2hlaWdodDogMTAwJTttYXJnaW46IDA7cGFkZGluZzogMDt9PC9zdHlsZT4KICAgIDxzdHlsZT4jbWFwIHtwb3NpdGlvbjphYnNvbHV0ZTt0b3A6MDtib3R0b206MDtyaWdodDowO2xlZnQ6MDt9PC9zdHlsZT4KICAgIDxzY3JpcHQgc3JjPSJodHRwczovL2Nkbi5qc2RlbGl2ci5uZXQvbnBtL2xlYWZsZXRAMS42LjAvZGlzdC9sZWFmbGV0LmpzIj48L3NjcmlwdD4KICAgIDxzY3JpcHQgc3JjPSJodHRwczovL2NvZGUuanF1ZXJ5LmNvbS9qcXVlcnktMS4xMi40Lm1pbi5qcyI+PC9zY3JpcHQ+CiAgICA8c2NyaXB0IHNyYz0iaHR0cHM6Ly9tYXhjZG4uYm9vdHN0cmFwY2RuLmNvbS9ib290c3RyYXAvMy4yLjAvanMvYm9vdHN0cmFwLm1pbi5qcyI+PC9zY3JpcHQ+CiAgICA8c2NyaXB0IHNyYz0iaHR0cHM6Ly9jZG5qcy5jbG91ZGZsYXJlLmNvbS9hamF4L2xpYnMvTGVhZmxldC5hd2Vzb21lLW1hcmtlcnMvMi4wLjIvbGVhZmxldC5hd2Vzb21lLW1hcmtlcnMuanMiPjwvc2NyaXB0PgogICAgPGxpbmsgcmVsPSJzdHlsZXNoZWV0IiBocmVmPSJodHRwczovL2Nkbi5qc2RlbGl2ci5uZXQvbnBtL2xlYWZsZXRAMS42LjAvZGlzdC9sZWFmbGV0LmNzcyIvPgogICAgPGxpbmsgcmVsPSJzdHlsZXNoZWV0IiBocmVmPSJodHRwczovL21heGNkbi5ib290c3RyYXBjZG4uY29tL2Jvb3RzdHJhcC8zLjIuMC9jc3MvYm9vdHN0cmFwLm1pbi5jc3MiLz4KICAgIDxsaW5rIHJlbD0ic3R5bGVzaGVldCIgaHJlZj0iaHR0cHM6Ly9tYXhjZG4uYm9vdHN0cmFwY2RuLmNvbS9ib290c3RyYXAvMy4yLjAvY3NzL2Jvb3RzdHJhcC10aGVtZS5taW4uY3NzIi8+CiAgICA8bGluayByZWw9InN0eWxlc2hlZXQiIGhyZWY9Imh0dHBzOi8vbWF4Y2RuLmJvb3RzdHJhcGNkbi5jb20vZm9udC1hd2Vzb21lLzQuNi4zL2Nzcy9mb250LWF3ZXNvbWUubWluLmNzcyIvPgogICAgPGxpbmsgcmVsPSJzdHlsZXNoZWV0IiBocmVmPSJodHRwczovL2NkbmpzLmNsb3VkZmxhcmUuY29tL2FqYXgvbGlicy9MZWFmbGV0LmF3ZXNvbWUtbWFya2Vycy8yLjAuMi9sZWFmbGV0LmF3ZXNvbWUtbWFya2Vycy5jc3MiLz4KICAgIDxsaW5rIHJlbD0ic3R5bGVzaGVldCIgaHJlZj0iaHR0cHM6Ly9jZG4uanNkZWxpdnIubmV0L2doL3B5dGhvbi12aXN1YWxpemF0aW9uL2ZvbGl1bS9mb2xpdW0vdGVtcGxhdGVzL2xlYWZsZXQuYXdlc29tZS5yb3RhdGUubWluLmNzcyIvPgogICAgCiAgICAgICAgICAgIDxtZXRhIG5hbWU9InZpZXdwb3J0IiBjb250ZW50PSJ3aWR0aD1kZXZpY2Utd2lkdGgsCiAgICAgICAgICAgICAgICBpbml0aWFsLXNjYWxlPTEuMCwgbWF4aW11bS1zY2FsZT0xLjAsIHVzZXItc2NhbGFibGU9bm8iIC8+CiAgICAgICAgICAgIDxzdHlsZT4KICAgICAgICAgICAgICAgICNtYXBfNmQ5YjQwZmI5YzhlNGUyYWJmNjRkNTk3OTAxMjgyOGYgewogICAgICAgICAgICAgICAgICAgIHBvc2l0aW9uOiByZWxhdGl2ZTsKICAgICAgICAgICAgICAgICAgICB3aWR0aDogMTAwLjAlOwogICAgICAgICAgICAgICAgICAgIGhlaWdodDogMTAwLjAlOwogICAgICAgICAgICAgICAgICAgIGxlZnQ6IDAuMCU7CiAgICAgICAgICAgICAgICAgICAgdG9wOiAwLjAlOwogICAgICAgICAgICAgICAgfQogICAgICAgICAgICA8L3N0eWxlPgogICAgICAgIAo8L2hlYWQ+Cjxib2R5PiAgICAKICAgIAogICAgICAgICAgICA8ZGl2IGNsYXNzPSJmb2xpdW0tbWFwIiBpZD0ibWFwXzZkOWI0MGZiOWM4ZTRlMmFiZjY0ZDU5NzkwMTI4MjhmIiA+PC9kaXY+CiAgICAgICAgCjwvYm9keT4KPHNjcmlwdD4gICAgCiAgICAKICAgICAgICAgICAgdmFyIG1hcF82ZDliNDBmYjljOGU0ZTJhYmY2NGQ1OTc5MDEyODI4ZiA9IEwubWFwKAogICAgICAgICAgICAgICAgIm1hcF82ZDliNDBmYjljOGU0ZTJhYmY2NGQ1OTc5MDEyODI4ZiIsCiAgICAgICAgICAgICAgICB7CiAgICAgICAgICAgICAgICAgICAgY2VudGVyOiBbLTEyLjg3NSwgLTM4LjYyNV0sCiAgICAgICAgICAgICAgICAgICAgY3JzOiBMLkNSUy5FUFNHMzg1NywKICAgICAgICAgICAgICAgICAgICB6b29tOiA4LAogICAgICAgICAgICAgICAgICAgIHpvb21Db250cm9sOiB0cnVlLAogICAgICAgICAgICAgICAgICAgIHByZWZlckNhbnZhczogZmFsc2UsCiAgICAgICAgICAgICAgICB9CiAgICAgICAgICAgICk7CgogICAgICAgICAgICAKCiAgICAgICAgCiAgICAKICAgICAgICAgICAgdmFyIHRpbGVfbGF5ZXJfNzYyNmY2ZmJiZmEwNDgzOThiODk3OTM1ZjFmYjNlN2UgPSBMLnRpbGVMYXllcigKICAgICAgICAgICAgICAgICJodHRwczovL3N0YW1lbi10aWxlcy17c30uYS5zc2wuZmFzdGx5Lm5ldC90ZXJyYWluL3t6fS97eH0ve3l9LmpwZyIsCiAgICAgICAgICAgICAgICB7ImF0dHJpYnV0aW9uIjogIk1hcCB0aWxlcyBieSBcdTAwM2NhIGhyZWY9XCJodHRwOi8vc3RhbWVuLmNvbVwiXHUwMDNlU3RhbWVuIERlc2lnblx1MDAzYy9hXHUwMDNlLCB1bmRlciBcdTAwM2NhIGhyZWY9XCJodHRwOi8vY3JlYXRpdmVjb21tb25zLm9yZy9saWNlbnNlcy9ieS8zLjBcIlx1MDAzZUNDIEJZIDMuMFx1MDAzYy9hXHUwMDNlLiBEYXRhIGJ5IFx1MDAyNmNvcHk7IFx1MDAzY2EgaHJlZj1cImh0dHA6Ly9vcGVuc3RyZWV0bWFwLm9yZ1wiXHUwMDNlT3BlblN0cmVldE1hcFx1MDAzYy9hXHUwMDNlLCB1bmRlciBcdTAwM2NhIGhyZWY9XCJodHRwOi8vY3JlYXRpdmVjb21tb25zLm9yZy9saWNlbnNlcy9ieS1zYS8zLjBcIlx1MDAzZUNDIEJZIFNBXHUwMDNjL2FcdTAwM2UuIiwgImRldGVjdFJldGluYSI6IGZhbHNlLCAibWF4TmF0aXZlWm9vbSI6IDE4LCAibWF4Wm9vbSI6IDE4LCAibWluWm9vbSI6IDAsICJub1dyYXAiOiBmYWxzZSwgIm9wYWNpdHkiOiAxLCAic3ViZG9tYWlucyI6ICJhYmMiLCAidG1zIjogZmFsc2V9CiAgICAgICAgICAgICkuYWRkVG8obWFwXzZkOWI0MGZiOWM4ZTRlMmFiZjY0ZDU5NzkwMTI4MjhmKTsKICAgICAgICAKPC9zY3JpcHQ+ onload=\"this.contentDocument.open();this.contentDocument.write(atob(this.getAttribute('data-html')));this.contentDocument.close();\" allowfullscreen webkitallowfullscreen mozallowfullscreen></iframe></div></div>" ], "text/plain": [ "<folium.folium.Map at 0x7f24560a0730>" ] }, "execution_count": 3, "metadata": {}, "output_type": "execute_result" } ], "source": [ "m = folium.Map(location=[lat, lon], tiles=\"Stamen Terrain\", zoom_start=zoom_start)\n", "\n", "m" ] }, { "cell_type": "code", "execution_count": 4, "metadata": {}, "outputs": [ { "data": { "text/html": [ "<div style=\"width:100%;\"><div style=\"position:relative;width:100%;height:0;padding-bottom:60%;\"><span style=\"color:#565656\">Make this Notebook Trusted to load map: File -> Trust Notebook</span><iframe src=\"about:blank\" style=\"position:absolute;width:100%;height:100%;left:0;top:0;border:none !important;\" data-html=PCFET0NUWVBFIGh0bWw+CjxoZWFkPiAgICAKICAgIDxtZXRhIGh0dHAtZXF1aXY9ImNvbnRlbnQtdHlwZSIgY29udGVudD0idGV4dC9odG1sOyBjaGFyc2V0PVVURi04IiAvPgogICAgCiAgICAgICAgPHNjcmlwdD4KICAgICAgICAgICAgTF9OT19UT1VDSCA9IGZhbHNlOwogICAgICAgICAgICBMX0RJU0FCTEVfM0QgPSBmYWxzZTsKICAgICAgICA8L3NjcmlwdD4KICAgIAogICAgPHN0eWxlPmh0bWwsIGJvZHkge3dpZHRoOiAxMDAlO2hlaWdodDogMTAwJTttYXJnaW46IDA7cGFkZGluZzogMDt9PC9zdHlsZT4KICAgIDxzdHlsZT4jbWFwIHtwb3NpdGlvbjphYnNvbHV0ZTt0b3A6MDtib3R0b206MDtyaWdodDowO2xlZnQ6MDt9PC9zdHlsZT4KICAgIDxzY3JpcHQgc3JjPSJodHRwczovL2Nkbi5qc2RlbGl2ci5uZXQvbnBtL2xlYWZsZXRAMS42LjAvZGlzdC9sZWFmbGV0LmpzIj48L3NjcmlwdD4KICAgIDxzY3JpcHQgc3JjPSJodHRwczovL2NvZGUuanF1ZXJ5LmNvbS9qcXVlcnktMS4xMi40Lm1pbi5qcyI+PC9zY3JpcHQ+CiAgICA8c2NyaXB0IHNyYz0iaHR0cHM6Ly9tYXhjZG4uYm9vdHN0cmFwY2RuLmNvbS9ib290c3RyYXAvMy4yLjAvanMvYm9vdHN0cmFwLm1pbi5qcyI+PC9zY3JpcHQ+CiAgICA8c2NyaXB0IHNyYz0iaHR0cHM6Ly9jZG5qcy5jbG91ZGZsYXJlLmNvbS9hamF4L2xpYnMvTGVhZmxldC5hd2Vzb21lLW1hcmtlcnMvMi4wLjIvbGVhZmxldC5hd2Vzb21lLW1hcmtlcnMuanMiPjwvc2NyaXB0PgogICAgPGxpbmsgcmVsPSJzdHlsZXNoZWV0IiBocmVmPSJodHRwczovL2Nkbi5qc2RlbGl2ci5uZXQvbnBtL2xlYWZsZXRAMS42LjAvZGlzdC9sZWFmbGV0LmNzcyIvPgogICAgPGxpbmsgcmVsPSJzdHlsZXNoZWV0IiBocmVmPSJodHRwczovL21heGNkbi5ib290c3RyYXBjZG4uY29tL2Jvb3RzdHJhcC8zLjIuMC9jc3MvYm9vdHN0cmFwLm1pbi5jc3MiLz4KICAgIDxsaW5rIHJlbD0ic3R5bGVzaGVldCIgaHJlZj0iaHR0cHM6Ly9tYXhjZG4uYm9vdHN0cmFwY2RuLmNvbS9ib290c3RyYXAvMy4yLjAvY3NzL2Jvb3RzdHJhcC10aGVtZS5taW4uY3NzIi8+CiAgICA8bGluayByZWw9InN0eWxlc2hlZXQiIGhyZWY9Imh0dHBzOi8vbWF4Y2RuLmJvb3RzdHJhcGNkbi5jb20vZm9udC1hd2Vzb21lLzQuNi4zL2Nzcy9mb250LWF3ZXNvbWUubWluLmNzcyIvPgogICAgPGxpbmsgcmVsPSJzdHlsZXNoZWV0IiBocmVmPSJodHRwczovL2NkbmpzLmNsb3VkZmxhcmUuY29tL2FqYXgvbGlicy9MZWFmbGV0LmF3ZXNvbWUtbWFya2Vycy8yLjAuMi9sZWFmbGV0LmF3ZXNvbWUtbWFya2Vycy5jc3MiLz4KICAgIDxsaW5rIHJlbD0ic3R5bGVzaGVldCIgaHJlZj0iaHR0cHM6Ly9jZG4uanNkZWxpdnIubmV0L2doL3B5dGhvbi12aXN1YWxpemF0aW9uL2ZvbGl1bS9mb2xpdW0vdGVtcGxhdGVzL2xlYWZsZXQuYXdlc29tZS5yb3RhdGUubWluLmNzcyIvPgogICAgCiAgICAgICAgICAgIDxtZXRhIG5hbWU9InZpZXdwb3J0IiBjb250ZW50PSJ3aWR0aD1kZXZpY2Utd2lkdGgsCiAgICAgICAgICAgICAgICBpbml0aWFsLXNjYWxlPTEuMCwgbWF4aW11bS1zY2FsZT0xLjAsIHVzZXItc2NhbGFibGU9bm8iIC8+CiAgICAgICAgICAgIDxzdHlsZT4KICAgICAgICAgICAgICAgICNtYXBfNmM3MmUyNWUyMWZlNDcyMzg5NzQ0ZDk2MGIyMTY4MTUgewogICAgICAgICAgICAgICAgICAgIHBvc2l0aW9uOiByZWxhdGl2ZTsKICAgICAgICAgICAgICAgICAgICB3aWR0aDogMTAwLjAlOwogICAgICAgICAgICAgICAgICAgIGhlaWdodDogMTAwLjAlOwogICAgICAgICAgICAgICAgICAgIGxlZnQ6IDAuMCU7CiAgICAgICAgICAgICAgICAgICAgdG9wOiAwLjAlOwogICAgICAgICAgICAgICAgfQogICAgICAgICAgICA8L3N0eWxlPgogICAgICAgIAo8L2hlYWQ+Cjxib2R5PiAgICAKICAgIAogICAgICAgICAgICA8ZGl2IGNsYXNzPSJmb2xpdW0tbWFwIiBpZD0ibWFwXzZjNzJlMjVlMjFmZTQ3MjM4OTc0NGQ5NjBiMjE2ODE1IiA+PC9kaXY+CiAgICAgICAgCjwvYm9keT4KPHNjcmlwdD4gICAgCiAgICAKICAgICAgICAgICAgdmFyIG1hcF82YzcyZTI1ZTIxZmU0NzIzODk3NDRkOTYwYjIxNjgxNSA9IEwubWFwKAogICAgICAgICAgICAgICAgIm1hcF82YzcyZTI1ZTIxZmU0NzIzODk3NDRkOTYwYjIxNjgxNSIsCiAgICAgICAgICAgICAgICB7CiAgICAgICAgICAgICAgICAgICAgY2VudGVyOiBbLTEyLjg3NSwgLTM4LjYyNV0sCiAgICAgICAgICAgICAgICAgICAgY3JzOiBMLkNSUy5FUFNHMzg1NywKICAgICAgICAgICAgICAgICAgICB6b29tOiA4LAogICAgICAgICAgICAgICAgICAgIHpvb21Db250cm9sOiB0cnVlLAogICAgICAgICAgICAgICAgICAgIHByZWZlckNhbnZhczogZmFsc2UsCiAgICAgICAgICAgICAgICB9CiAgICAgICAgICAgICk7CgogICAgICAgICAgICAKCiAgICAgICAgCiAgICAKICAgICAgICAgICAgdmFyIHRpbGVfbGF5ZXJfNWQ0YTkwMTEyNGNjNGViOGE3NjI5MTVhOGI5ZDk3OTkgPSBMLnRpbGVMYXllcigKICAgICAgICAgICAgICAgICJodHRwczovL3N0YW1lbi10aWxlcy17c30uYS5zc2wuZmFzdGx5Lm5ldC90b25lci97en0ve3h9L3t5fS5wbmciLAogICAgICAgICAgICAgICAgeyJhdHRyaWJ1dGlvbiI6ICJNYXAgdGlsZXMgYnkgXHUwMDNjYSBocmVmPVwiaHR0cDovL3N0YW1lbi5jb21cIlx1MDAzZVN0YW1lbiBEZXNpZ25cdTAwM2MvYVx1MDAzZSwgdW5kZXIgXHUwMDNjYSBocmVmPVwiaHR0cDovL2NyZWF0aXZlY29tbW9ucy5vcmcvbGljZW5zZXMvYnkvMy4wXCJcdTAwM2VDQyBCWSAzLjBcdTAwM2MvYVx1MDAzZS4gRGF0YSBieSBcdTAwMjZjb3B5OyBcdTAwM2NhIGhyZWY9XCJodHRwOi8vb3BlbnN0cmVldG1hcC5vcmdcIlx1MDAzZU9wZW5TdHJlZXRNYXBcdTAwM2MvYVx1MDAzZSwgdW5kZXIgXHUwMDNjYSBocmVmPVwiaHR0cDovL3d3dy5vcGVuc3RyZWV0bWFwLm9yZy9jb3B5cmlnaHRcIlx1MDAzZU9EYkxcdTAwM2MvYVx1MDAzZS4iLCAiZGV0ZWN0UmV0aW5hIjogZmFsc2UsICJtYXhOYXRpdmVab29tIjogMTgsICJtYXhab29tIjogMTgsICJtaW5ab29tIjogMCwgIm5vV3JhcCI6IGZhbHNlLCAib3BhY2l0eSI6IDEsICJzdWJkb21haW5zIjogImFiYyIsICJ0bXMiOiBmYWxzZX0KICAgICAgICAgICAgKS5hZGRUbyhtYXBfNmM3MmUyNWUyMWZlNDcyMzg5NzQ0ZDk2MGIyMTY4MTUpOwogICAgICAgIAo8L3NjcmlwdD4= onload=\"this.contentDocument.open();this.contentDocument.write(atob(this.getAttribute('data-html')));this.contentDocument.close();\" allowfullscreen webkitallowfullscreen mozallowfullscreen></iframe></div></div>" ], "text/plain": [ "<folium.folium.Map at 0x7f24560cc8b0>" ] }, "execution_count": 4, "metadata": {}, "output_type": "execute_result" } ], "source": [ "m = folium.Map(location=[lat, lon], tiles=\"Stamen Toner\", zoom_start=zoom_start)\n", "\n", "m" ] }, { "cell_type": "code", "execution_count": 5, "metadata": {}, "outputs": [ { "data": { "text/html": [ "<div style=\"width:100%;\"><div style=\"position:relative;width:100%;height:0;padding-bottom:60%;\"><span style=\"color:#565656\">Make this Notebook Trusted to load map: File -> Trust Notebook</span><iframe src=\"about:blank\" style=\"position:absolute;width:100%;height:100%;left:0;top:0;border:none !important;\" data-html=PCFET0NUWVBFIGh0bWw+CjxoZWFkPiAgICAKICAgIDxtZXRhIGh0dHAtZXF1aXY9ImNvbnRlbnQtdHlwZSIgY29udGVudD0idGV4dC9odG1sOyBjaGFyc2V0PVVURi04IiAvPgogICAgCiAgICAgICAgPHNjcmlwdD4KICAgICAgICAgICAgTF9OT19UT1VDSCA9IGZhbHNlOwogICAgICAgICAgICBMX0RJU0FCTEVfM0QgPSBmYWxzZTsKICAgICAgICA8L3NjcmlwdD4KICAgIAogICAgPHN0eWxlPmh0bWwsIGJvZHkge3dpZHRoOiAxMDAlO2hlaWdodDogMTAwJTttYXJnaW46IDA7cGFkZGluZzogMDt9PC9zdHlsZT4KICAgIDxzdHlsZT4jbWFwIHtwb3NpdGlvbjphYnNvbHV0ZTt0b3A6MDtib3R0b206MDtyaWdodDowO2xlZnQ6MDt9PC9zdHlsZT4KICAgIDxzY3JpcHQgc3JjPSJodHRwczovL2Nkbi5qc2RlbGl2ci5uZXQvbnBtL2xlYWZsZXRAMS42LjAvZGlzdC9sZWFmbGV0LmpzIj48L3NjcmlwdD4KICAgIDxzY3JpcHQgc3JjPSJodHRwczovL2NvZGUuanF1ZXJ5LmNvbS9qcXVlcnktMS4xMi40Lm1pbi5qcyI+PC9zY3JpcHQ+CiAgICA8c2NyaXB0IHNyYz0iaHR0cHM6Ly9tYXhjZG4uYm9vdHN0cmFwY2RuLmNvbS9ib290c3RyYXAvMy4yLjAvanMvYm9vdHN0cmFwLm1pbi5qcyI+PC9zY3JpcHQ+CiAgICA8c2NyaXB0IHNyYz0iaHR0cHM6Ly9jZG5qcy5jbG91ZGZsYXJlLmNvbS9hamF4L2xpYnMvTGVhZmxldC5hd2Vzb21lLW1hcmtlcnMvMi4wLjIvbGVhZmxldC5hd2Vzb21lLW1hcmtlcnMuanMiPjwvc2NyaXB0PgogICAgPGxpbmsgcmVsPSJzdHlsZXNoZWV0IiBocmVmPSJodHRwczovL2Nkbi5qc2RlbGl2ci5uZXQvbnBtL2xlYWZsZXRAMS42LjAvZGlzdC9sZWFmbGV0LmNzcyIvPgogICAgPGxpbmsgcmVsPSJzdHlsZXNoZWV0IiBocmVmPSJodHRwczovL21heGNkbi5ib290c3RyYXBjZG4uY29tL2Jvb3RzdHJhcC8zLjIuMC9jc3MvYm9vdHN0cmFwLm1pbi5jc3MiLz4KICAgIDxsaW5rIHJlbD0ic3R5bGVzaGVldCIgaHJlZj0iaHR0cHM6Ly9tYXhjZG4uYm9vdHN0cmFwY2RuLmNvbS9ib290c3RyYXAvMy4yLjAvY3NzL2Jvb3RzdHJhcC10aGVtZS5taW4uY3NzIi8+CiAgICA8bGluayByZWw9InN0eWxlc2hlZXQiIGhyZWY9Imh0dHBzOi8vbWF4Y2RuLmJvb3RzdHJhcGNkbi5jb20vZm9udC1hd2Vzb21lLzQuNi4zL2Nzcy9mb250LWF3ZXNvbWUubWluLmNzcyIvPgogICAgPGxpbmsgcmVsPSJzdHlsZXNoZWV0IiBocmVmPSJodHRwczovL2NkbmpzLmNsb3VkZmxhcmUuY29tL2FqYXgvbGlicy9MZWFmbGV0LmF3ZXNvbWUtbWFya2Vycy8yLjAuMi9sZWFmbGV0LmF3ZXNvbWUtbWFya2Vycy5jc3MiLz4KICAgIDxsaW5rIHJlbD0ic3R5bGVzaGVldCIgaHJlZj0iaHR0cHM6Ly9jZG4uanNkZWxpdnIubmV0L2doL3B5dGhvbi12aXN1YWxpemF0aW9uL2ZvbGl1bS9mb2xpdW0vdGVtcGxhdGVzL2xlYWZsZXQuYXdlc29tZS5yb3RhdGUubWluLmNzcyIvPgogICAgCiAgICAgICAgICAgIDxtZXRhIG5hbWU9InZpZXdwb3J0IiBjb250ZW50PSJ3aWR0aD1kZXZpY2Utd2lkdGgsCiAgICAgICAgICAgICAgICBpbml0aWFsLXNjYWxlPTEuMCwgbWF4aW11bS1zY2FsZT0xLjAsIHVzZXItc2NhbGFibGU9bm8iIC8+CiAgICAgICAgICAgIDxzdHlsZT4KICAgICAgICAgICAgICAgICNtYXBfYjRlMjYxNTAzZGY1NDUwZmEyMjBlODhmMjY1OGZkMDkgewogICAgICAgICAgICAgICAgICAgIHBvc2l0aW9uOiByZWxhdGl2ZTsKICAgICAgICAgICAgICAgICAgICB3aWR0aDogMTAwLjAlOwogICAgICAgICAgICAgICAgICAgIGhlaWdodDogMTAwLjAlOwogICAgICAgICAgICAgICAgICAgIGxlZnQ6IDAuMCU7CiAgICAgICAgICAgICAgICAgICAgdG9wOiAwLjAlOwogICAgICAgICAgICAgICAgfQogICAgICAgICAgICA8L3N0eWxlPgogICAgICAgIAo8L2hlYWQ+Cjxib2R5PiAgICAKICAgIAogICAgICAgICAgICA8ZGl2IGNsYXNzPSJmb2xpdW0tbWFwIiBpZD0ibWFwX2I0ZTI2MTUwM2RmNTQ1MGZhMjIwZTg4ZjI2NThmZDA5IiA+PC9kaXY+CiAgICAgICAgCjwvYm9keT4KPHNjcmlwdD4gICAgCiAgICAKICAgICAgICAgICAgdmFyIG1hcF9iNGUyNjE1MDNkZjU0NTBmYTIyMGU4OGYyNjU4ZmQwOSA9IEwubWFwKAogICAgICAgICAgICAgICAgIm1hcF9iNGUyNjE1MDNkZjU0NTBmYTIyMGU4OGYyNjU4ZmQwOSIsCiAgICAgICAgICAgICAgICB7CiAgICAgICAgICAgICAgICAgICAgY2VudGVyOiBbLTEyLjg3NSwgLTM4LjYyNV0sCiAgICAgICAgICAgICAgICAgICAgY3JzOiBMLkNSUy5FUFNHMzg1NywKICAgICAgICAgICAgICAgICAgICB6b29tOiA4LAogICAgICAgICAgICAgICAgICAgIHpvb21Db250cm9sOiB0cnVlLAogICAgICAgICAgICAgICAgICAgIHByZWZlckNhbnZhczogZmFsc2UsCiAgICAgICAgICAgICAgICB9CiAgICAgICAgICAgICk7CgogICAgICAgICAgICAKCiAgICAgICAgCiAgICAKICAgICAgICAgICAgdmFyIHRpbGVfbGF5ZXJfZjU4NDZiZDAxZjAyNDMzNGEwM2QzNGUxMjU0Zjc3NTggPSBMLnRpbGVMYXllcigKICAgICAgICAgICAgICAgICJodHRwczovL3N0YW1lbi10aWxlcy17c30uYS5zc2wuZmFzdGx5Lm5ldC93YXRlcmNvbG9yL3t6fS97eH0ve3l9LmpwZyIsCiAgICAgICAgICAgICAgICB7ImF0dHJpYnV0aW9uIjogIk1hcCB0aWxlcyBieSBcdTAwM2NhIGhyZWY9XCJodHRwOi8vc3RhbWVuLmNvbVwiXHUwMDNlU3RhbWVuIERlc2lnblx1MDAzYy9hXHUwMDNlLCB1bmRlciBcdTAwM2NhIGhyZWY9XCJodHRwOi8vY3JlYXRpdmVjb21tb25zLm9yZy9saWNlbnNlcy9ieS8zLjBcIlx1MDAzZUNDIEJZIDMuMFx1MDAzYy9hXHUwMDNlLiBEYXRhIGJ5IFx1MDAyNmNvcHk7IFx1MDAzY2EgaHJlZj1cImh0dHA6Ly9vcGVuc3RyZWV0bWFwLm9yZ1wiXHUwMDNlT3BlblN0cmVldE1hcFx1MDAzYy9hXHUwMDNlLCB1bmRlciBcdTAwM2NhIGhyZWY9XCJodHRwOi8vY3JlYXRpdmVjb21tb25zLm9yZy9saWNlbnNlcy9ieS1zYS8zLjBcIlx1MDAzZUNDIEJZIFNBXHUwMDNjL2FcdTAwM2UuIiwgImRldGVjdFJldGluYSI6IGZhbHNlLCAibWF4TmF0aXZlWm9vbSI6IDE4LCAibWF4Wm9vbSI6IDE4LCAibWluWm9vbSI6IDAsICJub1dyYXAiOiBmYWxzZSwgIm9wYWNpdHkiOiAxLCAic3ViZG9tYWlucyI6ICJhYmMiLCAidG1zIjogZmFsc2V9CiAgICAgICAgICAgICkuYWRkVG8obWFwX2I0ZTI2MTUwM2RmNTQ1MGZhMjIwZTg4ZjI2NThmZDA5KTsKICAgICAgICAKPC9zY3JpcHQ+ onload=\"this.contentDocument.open();this.contentDocument.write(atob(this.getAttribute('data-html')));this.contentDocument.close();\" allowfullscreen webkitallowfullscreen mozallowfullscreen></iframe></div></div>" ], "text/plain": [ "<folium.folium.Map at 0x7f24560a3160>" ] }, "execution_count": 5, "metadata": {}, "output_type": "execute_result" } ], "source": [ "m = folium.Map(location=[lat, lon], tiles=\"Stamen Watercolor\", zoom_start=zoom_start)\n", "\n", "m" ] }, { "cell_type": "code", "execution_count": 6, "metadata": {}, "outputs": [ { "data": { "text/html": [ "<div style=\"width:100%;\"><div style=\"position:relative;width:100%;height:0;padding-bottom:60%;\"><span style=\"color:#565656\">Make this Notebook Trusted to load map: File -> Trust Notebook</span><iframe src=\"about:blank\" style=\"position:absolute;width:100%;height:100%;left:0;top:0;border:none !important;\" data-html=PCFET0NUWVBFIGh0bWw+CjxoZWFkPiAgICAKICAgIDxtZXRhIGh0dHAtZXF1aXY9ImNvbnRlbnQtdHlwZSIgY29udGVudD0idGV4dC9odG1sOyBjaGFyc2V0PVVURi04IiAvPgogICAgCiAgICAgICAgPHNjcmlwdD4KICAgICAgICAgICAgTF9OT19UT1VDSCA9IGZhbHNlOwogICAgICAgICAgICBMX0RJU0FCTEVfM0QgPSBmYWxzZTsKICAgICAgICA8L3NjcmlwdD4KICAgIAogICAgPHN0eWxlPmh0bWwsIGJvZHkge3dpZHRoOiAxMDAlO2hlaWdodDogMTAwJTttYXJnaW46IDA7cGFkZGluZzogMDt9PC9zdHlsZT4KICAgIDxzdHlsZT4jbWFwIHtwb3NpdGlvbjphYnNvbHV0ZTt0b3A6MDtib3R0b206MDtyaWdodDowO2xlZnQ6MDt9PC9zdHlsZT4KICAgIDxzY3JpcHQgc3JjPSJodHRwczovL2Nkbi5qc2RlbGl2ci5uZXQvbnBtL2xlYWZsZXRAMS42LjAvZGlzdC9sZWFmbGV0LmpzIj48L3NjcmlwdD4KICAgIDxzY3JpcHQgc3JjPSJodHRwczovL2NvZGUuanF1ZXJ5LmNvbS9qcXVlcnktMS4xMi40Lm1pbi5qcyI+PC9zY3JpcHQ+CiAgICA8c2NyaXB0IHNyYz0iaHR0cHM6Ly9tYXhjZG4uYm9vdHN0cmFwY2RuLmNvbS9ib290c3RyYXAvMy4yLjAvanMvYm9vdHN0cmFwLm1pbi5qcyI+PC9zY3JpcHQ+CiAgICA8c2NyaXB0IHNyYz0iaHR0cHM6Ly9jZG5qcy5jbG91ZGZsYXJlLmNvbS9hamF4L2xpYnMvTGVhZmxldC5hd2Vzb21lLW1hcmtlcnMvMi4wLjIvbGVhZmxldC5hd2Vzb21lLW1hcmtlcnMuanMiPjwvc2NyaXB0PgogICAgPGxpbmsgcmVsPSJzdHlsZXNoZWV0IiBocmVmPSJodHRwczovL2Nkbi5qc2RlbGl2ci5uZXQvbnBtL2xlYWZsZXRAMS42LjAvZGlzdC9sZWFmbGV0LmNzcyIvPgogICAgPGxpbmsgcmVsPSJzdHlsZXNoZWV0IiBocmVmPSJodHRwczovL21heGNkbi5ib290c3RyYXBjZG4uY29tL2Jvb3RzdHJhcC8zLjIuMC9jc3MvYm9vdHN0cmFwLm1pbi5jc3MiLz4KICAgIDxsaW5rIHJlbD0ic3R5bGVzaGVldCIgaHJlZj0iaHR0cHM6Ly9tYXhjZG4uYm9vdHN0cmFwY2RuLmNvbS9ib290c3RyYXAvMy4yLjAvY3NzL2Jvb3RzdHJhcC10aGVtZS5taW4uY3NzIi8+CiAgICA8bGluayByZWw9InN0eWxlc2hlZXQiIGhyZWY9Imh0dHBzOi8vbWF4Y2RuLmJvb3RzdHJhcGNkbi5jb20vZm9udC1hd2Vzb21lLzQuNi4zL2Nzcy9mb250LWF3ZXNvbWUubWluLmNzcyIvPgogICAgPGxpbmsgcmVsPSJzdHlsZXNoZWV0IiBocmVmPSJodHRwczovL2NkbmpzLmNsb3VkZmxhcmUuY29tL2FqYXgvbGlicy9MZWFmbGV0LmF3ZXNvbWUtbWFya2Vycy8yLjAuMi9sZWFmbGV0LmF3ZXNvbWUtbWFya2Vycy5jc3MiLz4KICAgIDxsaW5rIHJlbD0ic3R5bGVzaGVldCIgaHJlZj0iaHR0cHM6Ly9jZG4uanNkZWxpdnIubmV0L2doL3B5dGhvbi12aXN1YWxpemF0aW9uL2ZvbGl1bS9mb2xpdW0vdGVtcGxhdGVzL2xlYWZsZXQuYXdlc29tZS5yb3RhdGUubWluLmNzcyIvPgogICAgCiAgICAgICAgICAgIDxtZXRhIG5hbWU9InZpZXdwb3J0IiBjb250ZW50PSJ3aWR0aD1kZXZpY2Utd2lkdGgsCiAgICAgICAgICAgICAgICBpbml0aWFsLXNjYWxlPTEuMCwgbWF4aW11bS1zY2FsZT0xLjAsIHVzZXItc2NhbGFibGU9bm8iIC8+CiAgICAgICAgICAgIDxzdHlsZT4KICAgICAgICAgICAgICAgICNtYXBfODFjMWViMjMyNDgzNDJjY2JkODdhMDYyYjM4NzlkNGMgewogICAgICAgICAgICAgICAgICAgIHBvc2l0aW9uOiByZWxhdGl2ZTsKICAgICAgICAgICAgICAgICAgICB3aWR0aDogMTAwLjAlOwogICAgICAgICAgICAgICAgICAgIGhlaWdodDogMTAwLjAlOwogICAgICAgICAgICAgICAgICAgIGxlZnQ6IDAuMCU7CiAgICAgICAgICAgICAgICAgICAgdG9wOiAwLjAlOwogICAgICAgICAgICAgICAgfQogICAgICAgICAgICA8L3N0eWxlPgogICAgICAgIAo8L2hlYWQ+Cjxib2R5PiAgICAKICAgIAogICAgICAgICAgICA8ZGl2IGNsYXNzPSJmb2xpdW0tbWFwIiBpZD0ibWFwXzgxYzFlYjIzMjQ4MzQyY2NiZDg3YTA2MmIzODc5ZDRjIiA+PC9kaXY+CiAgICAgICAgCjwvYm9keT4KPHNjcmlwdD4gICAgCiAgICAKICAgICAgICAgICAgdmFyIG1hcF84MWMxZWIyMzI0ODM0MmNjYmQ4N2EwNjJiMzg3OWQ0YyA9IEwubWFwKAogICAgICAgICAgICAgICAgIm1hcF84MWMxZWIyMzI0ODM0MmNjYmQ4N2EwNjJiMzg3OWQ0YyIsCiAgICAgICAgICAgICAgICB7CiAgICAgICAgICAgICAgICAgICAgY2VudGVyOiBbLTEyLjg3NSwgLTM4LjYyNV0sCiAgICAgICAgICAgICAgICAgICAgY3JzOiBMLkNSUy5FUFNHMzg1NywKICAgICAgICAgICAgICAgICAgICB6b29tOiA4LAogICAgICAgICAgICAgICAgICAgIHpvb21Db250cm9sOiB0cnVlLAogICAgICAgICAgICAgICAgICAgIHByZWZlckNhbnZhczogZmFsc2UsCiAgICAgICAgICAgICAgICB9CiAgICAgICAgICAgICk7CgogICAgICAgICAgICAKCiAgICAgICAgCiAgICAKICAgICAgICAgICAgdmFyIHRpbGVfbGF5ZXJfY2ZlOTA4M2RiMGYxNDg2M2JmMjk4ODI3NDBmOTdkYzUgPSBMLnRpbGVMYXllcigKICAgICAgICAgICAgICAgICJodHRwczovL2NhcnRvZGItYmFzZW1hcHMte3N9Lmdsb2JhbC5zc2wuZmFzdGx5Lm5ldC9saWdodF9hbGwve3p9L3t4fS97eX0ucG5nIiwKICAgICAgICAgICAgICAgIHsiYXR0cmlidXRpb24iOiAiXHUwMDI2Y29weTsgXHUwMDNjYSBocmVmPVwiaHR0cDovL3d3dy5vcGVuc3RyZWV0bWFwLm9yZy9jb3B5cmlnaHRcIlx1MDAzZU9wZW5TdHJlZXRNYXBcdTAwM2MvYVx1MDAzZSBjb250cmlidXRvcnMgXHUwMDI2Y29weTsgXHUwMDNjYSBocmVmPVwiaHR0cDovL2NhcnRvZGIuY29tL2F0dHJpYnV0aW9uc1wiXHUwMDNlQ2FydG9EQlx1MDAzYy9hXHUwMDNlLCBDYXJ0b0RCIFx1MDAzY2EgaHJlZiA9XCJodHRwOi8vY2FydG9kYi5jb20vYXR0cmlidXRpb25zXCJcdTAwM2VhdHRyaWJ1dGlvbnNcdTAwM2MvYVx1MDAzZSIsICJkZXRlY3RSZXRpbmEiOiBmYWxzZSwgIm1heE5hdGl2ZVpvb20iOiAxOCwgIm1heFpvb20iOiAxOCwgIm1pblpvb20iOiAwLCAibm9XcmFwIjogZmFsc2UsICJvcGFjaXR5IjogMSwgInN1YmRvbWFpbnMiOiAiYWJjIiwgInRtcyI6IGZhbHNlfQogICAgICAgICAgICApLmFkZFRvKG1hcF84MWMxZWIyMzI0ODM0MmNjYmQ4N2EwNjJiMzg3OWQ0Yyk7CiAgICAgICAgCjwvc2NyaXB0Pg== onload=\"this.contentDocument.open();this.contentDocument.write(atob(this.getAttribute('data-html')));this.contentDocument.close();\" allowfullscreen webkitallowfullscreen mozallowfullscreen></iframe></div></div>" ], "text/plain": [ "<folium.folium.Map at 0x7f24560a9820>" ] }, "execution_count": 6, "metadata": {}, "output_type": "execute_result" } ], "source": [ "m = folium.Map(location=[lat, lon], tiles=\"Cartodb Positron\", zoom_start=zoom_start)\n", "\n", "m" ] }, { "cell_type": "code", "execution_count": 7, "metadata": {}, "outputs": [ { "data": { "text/html": [ "<div style=\"width:100%;\"><div style=\"position:relative;width:100%;height:0;padding-bottom:60%;\"><span style=\"color:#565656\">Make this Notebook Trusted to load map: File -> Trust Notebook</span><iframe src=\"about:blank\" style=\"position:absolute;width:100%;height:100%;left:0;top:0;border:none !important;\" data-html=PCFET0NUWVBFIGh0bWw+CjxoZWFkPiAgICAKICAgIDxtZXRhIGh0dHAtZXF1aXY9ImNvbnRlbnQtdHlwZSIgY29udGVudD0idGV4dC9odG1sOyBjaGFyc2V0PVVURi04IiAvPgogICAgCiAgICAgICAgPHNjcmlwdD4KICAgICAgICAgICAgTF9OT19UT1VDSCA9IGZhbHNlOwogICAgICAgICAgICBMX0RJU0FCTEVfM0QgPSBmYWxzZTsKICAgICAgICA8L3NjcmlwdD4KICAgIAogICAgPHN0eWxlPmh0bWwsIGJvZHkge3dpZHRoOiAxMDAlO2hlaWdodDogMTAwJTttYXJnaW46IDA7cGFkZGluZzogMDt9PC9zdHlsZT4KICAgIDxzdHlsZT4jbWFwIHtwb3NpdGlvbjphYnNvbHV0ZTt0b3A6MDtib3R0b206MDtyaWdodDowO2xlZnQ6MDt9PC9zdHlsZT4KICAgIDxzY3JpcHQgc3JjPSJodHRwczovL2Nkbi5qc2RlbGl2ci5uZXQvbnBtL2xlYWZsZXRAMS42LjAvZGlzdC9sZWFmbGV0LmpzIj48L3NjcmlwdD4KICAgIDxzY3JpcHQgc3JjPSJodHRwczovL2NvZGUuanF1ZXJ5LmNvbS9qcXVlcnktMS4xMi40Lm1pbi5qcyI+PC9zY3JpcHQ+CiAgICA8c2NyaXB0IHNyYz0iaHR0cHM6Ly9tYXhjZG4uYm9vdHN0cmFwY2RuLmNvbS9ib290c3RyYXAvMy4yLjAvanMvYm9vdHN0cmFwLm1pbi5qcyI+PC9zY3JpcHQ+CiAgICA8c2NyaXB0IHNyYz0iaHR0cHM6Ly9jZG5qcy5jbG91ZGZsYXJlLmNvbS9hamF4L2xpYnMvTGVhZmxldC5hd2Vzb21lLW1hcmtlcnMvMi4wLjIvbGVhZmxldC5hd2Vzb21lLW1hcmtlcnMuanMiPjwvc2NyaXB0PgogICAgPGxpbmsgcmVsPSJzdHlsZXNoZWV0IiBocmVmPSJodHRwczovL2Nkbi5qc2RlbGl2ci5uZXQvbnBtL2xlYWZsZXRAMS42LjAvZGlzdC9sZWFmbGV0LmNzcyIvPgogICAgPGxpbmsgcmVsPSJzdHlsZXNoZWV0IiBocmVmPSJodHRwczovL21heGNkbi5ib290c3RyYXBjZG4uY29tL2Jvb3RzdHJhcC8zLjIuMC9jc3MvYm9vdHN0cmFwLm1pbi5jc3MiLz4KICAgIDxsaW5rIHJlbD0ic3R5bGVzaGVldCIgaHJlZj0iaHR0cHM6Ly9tYXhjZG4uYm9vdHN0cmFwY2RuLmNvbS9ib290c3RyYXAvMy4yLjAvY3NzL2Jvb3RzdHJhcC10aGVtZS5taW4uY3NzIi8+CiAgICA8bGluayByZWw9InN0eWxlc2hlZXQiIGhyZWY9Imh0dHBzOi8vbWF4Y2RuLmJvb3RzdHJhcGNkbi5jb20vZm9udC1hd2Vzb21lLzQuNi4zL2Nzcy9mb250LWF3ZXNvbWUubWluLmNzcyIvPgogICAgPGxpbmsgcmVsPSJzdHlsZXNoZWV0IiBocmVmPSJodHRwczovL2NkbmpzLmNsb3VkZmxhcmUuY29tL2FqYXgvbGlicy9MZWFmbGV0LmF3ZXNvbWUtbWFya2Vycy8yLjAuMi9sZWFmbGV0LmF3ZXNvbWUtbWFya2Vycy5jc3MiLz4KICAgIDxsaW5rIHJlbD0ic3R5bGVzaGVldCIgaHJlZj0iaHR0cHM6Ly9jZG4uanNkZWxpdnIubmV0L2doL3B5dGhvbi12aXN1YWxpemF0aW9uL2ZvbGl1bS9mb2xpdW0vdGVtcGxhdGVzL2xlYWZsZXQuYXdlc29tZS5yb3RhdGUubWluLmNzcyIvPgogICAgCiAgICAgICAgICAgIDxtZXRhIG5hbWU9InZpZXdwb3J0IiBjb250ZW50PSJ3aWR0aD1kZXZpY2Utd2lkdGgsCiAgICAgICAgICAgICAgICBpbml0aWFsLXNjYWxlPTEuMCwgbWF4aW11bS1zY2FsZT0xLjAsIHVzZXItc2NhbGFibGU9bm8iIC8+CiAgICAgICAgICAgIDxzdHlsZT4KICAgICAgICAgICAgICAgICNtYXBfNmYwYzdjZmYxOTQ3NDU2ZWFlZTU4ZmRlZDNkOGVjY2MgewogICAgICAgICAgICAgICAgICAgIHBvc2l0aW9uOiByZWxhdGl2ZTsKICAgICAgICAgICAgICAgICAgICB3aWR0aDogMTAwLjAlOwogICAgICAgICAgICAgICAgICAgIGhlaWdodDogMTAwLjAlOwogICAgICAgICAgICAgICAgICAgIGxlZnQ6IDAuMCU7CiAgICAgICAgICAgICAgICAgICAgdG9wOiAwLjAlOwogICAgICAgICAgICAgICAgfQogICAgICAgICAgICA8L3N0eWxlPgogICAgICAgIAo8L2hlYWQ+Cjxib2R5PiAgICAKICAgIAogICAgICAgICAgICA8ZGl2IGNsYXNzPSJmb2xpdW0tbWFwIiBpZD0ibWFwXzZmMGM3Y2ZmMTk0NzQ1NmVhZWU1OGZkZWQzZDhlY2NjIiA+PC9kaXY+CiAgICAgICAgCjwvYm9keT4KPHNjcmlwdD4gICAgCiAgICAKICAgICAgICAgICAgdmFyIG1hcF82ZjBjN2NmZjE5NDc0NTZlYWVlNThmZGVkM2Q4ZWNjYyA9IEwubWFwKAogICAgICAgICAgICAgICAgIm1hcF82ZjBjN2NmZjE5NDc0NTZlYWVlNThmZGVkM2Q4ZWNjYyIsCiAgICAgICAgICAgICAgICB7CiAgICAgICAgICAgICAgICAgICAgY2VudGVyOiBbLTEyLjg3NSwgLTM4LjYyNV0sCiAgICAgICAgICAgICAgICAgICAgY3JzOiBMLkNSUy5FUFNHMzg1NywKICAgICAgICAgICAgICAgICAgICB6b29tOiA4LAogICAgICAgICAgICAgICAgICAgIHpvb21Db250cm9sOiB0cnVlLAogICAgICAgICAgICAgICAgICAgIHByZWZlckNhbnZhczogZmFsc2UsCiAgICAgICAgICAgICAgICB9CiAgICAgICAgICAgICk7CgogICAgICAgICAgICAKCiAgICAgICAgCiAgICAKICAgICAgICAgICAgdmFyIHRpbGVfbGF5ZXJfYmI5OWY1NGJhODMyNDNlNmFhMWU5MjFmODEzN2E1MzggPSBMLnRpbGVMYXllcigKICAgICAgICAgICAgICAgICJodHRwczovL2NhcnRvZGItYmFzZW1hcHMte3N9Lmdsb2JhbC5zc2wuZmFzdGx5Lm5ldC9kYXJrX2FsbC97en0ve3h9L3t5fS5wbmciLAogICAgICAgICAgICAgICAgeyJhdHRyaWJ1dGlvbiI6ICJcdTAwMjZjb3B5OyBcdTAwM2NhIGhyZWY9XCJodHRwOi8vd3d3Lm9wZW5zdHJlZXRtYXAub3JnL2NvcHlyaWdodFwiXHUwMDNlT3BlblN0cmVldE1hcFx1MDAzYy9hXHUwMDNlIGNvbnRyaWJ1dG9ycyBcdTAwMjZjb3B5OyBcdTAwM2NhIGhyZWY9XCJodHRwOi8vY2FydG9kYi5jb20vYXR0cmlidXRpb25zXCJcdTAwM2VDYXJ0b0RCXHUwMDNjL2FcdTAwM2UsIENhcnRvREIgXHUwMDNjYSBocmVmID1cImh0dHA6Ly9jYXJ0b2RiLmNvbS9hdHRyaWJ1dGlvbnNcIlx1MDAzZWF0dHJpYnV0aW9uc1x1MDAzYy9hXHUwMDNlIiwgImRldGVjdFJldGluYSI6IGZhbHNlLCAibWF4TmF0aXZlWm9vbSI6IDE4LCAibWF4Wm9vbSI6IDE4LCAibWluWm9vbSI6IDAsICJub1dyYXAiOiBmYWxzZSwgIm9wYWNpdHkiOiAxLCAic3ViZG9tYWlucyI6ICJhYmMiLCAidG1zIjogZmFsc2V9CiAgICAgICAgICAgICkuYWRkVG8obWFwXzZmMGM3Y2ZmMTk0NzQ1NmVhZWU1OGZkZWQzZDhlY2NjKTsKICAgICAgICAKPC9zY3JpcHQ+ onload=\"this.contentDocument.open();this.contentDocument.write(atob(this.getAttribute('data-html')));this.contentDocument.close();\" allowfullscreen webkitallowfullscreen mozallowfullscreen></iframe></div></div>" ], "text/plain": [ "<folium.folium.Map at 0x7f24560a01f0>" ] }, "execution_count": 7, "metadata": {}, "output_type": "execute_result" } ], "source": [ "m = folium.Map(location=[lat, lon], tiles=\"Cartodb dark_matter\", zoom_start=zoom_start)\n", "\n", "m" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "### Custom tiles" ] }, { "cell_type": "code", "execution_count": 8, "metadata": {}, "outputs": [ { "data": { "text/html": [ "<div style=\"width:100%;\"><div style=\"position:relative;width:100%;height:0;padding-bottom:60%;\"><span style=\"color:#565656\">Make this Notebook Trusted to load map: File -> Trust Notebook</span><iframe src=\"about:blank\" style=\"position:absolute;width:100%;height:100%;left:0;top:0;border:none !important;\" data-html=PCFET0NUWVBFIGh0bWw+CjxoZWFkPiAgICAKICAgIDxtZXRhIGh0dHAtZXF1aXY9ImNvbnRlbnQtdHlwZSIgY29udGVudD0idGV4dC9odG1sOyBjaGFyc2V0PVVURi04IiAvPgogICAgCiAgICAgICAgPHNjcmlwdD4KICAgICAgICAgICAgTF9OT19UT1VDSCA9IGZhbHNlOwogICAgICAgICAgICBMX0RJU0FCTEVfM0QgPSBmYWxzZTsKICAgICAgICA8L3NjcmlwdD4KICAgIAogICAgPHN0eWxlPmh0bWwsIGJvZHkge3dpZHRoOiAxMDAlO2hlaWdodDogMTAwJTttYXJnaW46IDA7cGFkZGluZzogMDt9PC9zdHlsZT4KICAgIDxzdHlsZT4jbWFwIHtwb3NpdGlvbjphYnNvbHV0ZTt0b3A6MDtib3R0b206MDtyaWdodDowO2xlZnQ6MDt9PC9zdHlsZT4KICAgIDxzY3JpcHQgc3JjPSJodHRwczovL2Nkbi5qc2RlbGl2ci5uZXQvbnBtL2xlYWZsZXRAMS42LjAvZGlzdC9sZWFmbGV0LmpzIj48L3NjcmlwdD4KICAgIDxzY3JpcHQgc3JjPSJodHRwczovL2NvZGUuanF1ZXJ5LmNvbS9qcXVlcnktMS4xMi40Lm1pbi5qcyI+PC9zY3JpcHQ+CiAgICA8c2NyaXB0IHNyYz0iaHR0cHM6Ly9tYXhjZG4uYm9vdHN0cmFwY2RuLmNvbS9ib290c3RyYXAvMy4yLjAvanMvYm9vdHN0cmFwLm1pbi5qcyI+PC9zY3JpcHQ+CiAgICA8c2NyaXB0IHNyYz0iaHR0cHM6Ly9jZG5qcy5jbG91ZGZsYXJlLmNvbS9hamF4L2xpYnMvTGVhZmxldC5hd2Vzb21lLW1hcmtlcnMvMi4wLjIvbGVhZmxldC5hd2Vzb21lLW1hcmtlcnMuanMiPjwvc2NyaXB0PgogICAgPGxpbmsgcmVsPSJzdHlsZXNoZWV0IiBocmVmPSJodHRwczovL2Nkbi5qc2RlbGl2ci5uZXQvbnBtL2xlYWZsZXRAMS42LjAvZGlzdC9sZWFmbGV0LmNzcyIvPgogICAgPGxpbmsgcmVsPSJzdHlsZXNoZWV0IiBocmVmPSJodHRwczovL21heGNkbi5ib290c3RyYXBjZG4uY29tL2Jvb3RzdHJhcC8zLjIuMC9jc3MvYm9vdHN0cmFwLm1pbi5jc3MiLz4KICAgIDxsaW5rIHJlbD0ic3R5bGVzaGVldCIgaHJlZj0iaHR0cHM6Ly9tYXhjZG4uYm9vdHN0cmFwY2RuLmNvbS9ib290c3RyYXAvMy4yLjAvY3NzL2Jvb3RzdHJhcC10aGVtZS5taW4uY3NzIi8+CiAgICA8bGluayByZWw9InN0eWxlc2hlZXQiIGhyZWY9Imh0dHBzOi8vbWF4Y2RuLmJvb3RzdHJhcGNkbi5jb20vZm9udC1hd2Vzb21lLzQuNi4zL2Nzcy9mb250LWF3ZXNvbWUubWluLmNzcyIvPgogICAgPGxpbmsgcmVsPSJzdHlsZXNoZWV0IiBocmVmPSJodHRwczovL2NkbmpzLmNsb3VkZmxhcmUuY29tL2FqYXgvbGlicy9MZWFmbGV0LmF3ZXNvbWUtbWFya2Vycy8yLjAuMi9sZWFmbGV0LmF3ZXNvbWUtbWFya2Vycy5jc3MiLz4KICAgIDxsaW5rIHJlbD0ic3R5bGVzaGVldCIgaHJlZj0iaHR0cHM6Ly9jZG4uanNkZWxpdnIubmV0L2doL3B5dGhvbi12aXN1YWxpemF0aW9uL2ZvbGl1bS9mb2xpdW0vdGVtcGxhdGVzL2xlYWZsZXQuYXdlc29tZS5yb3RhdGUubWluLmNzcyIvPgogICAgCiAgICAgICAgICAgIDxtZXRhIG5hbWU9InZpZXdwb3J0IiBjb250ZW50PSJ3aWR0aD1kZXZpY2Utd2lkdGgsCiAgICAgICAgICAgICAgICBpbml0aWFsLXNjYWxlPTEuMCwgbWF4aW11bS1zY2FsZT0xLjAsIHVzZXItc2NhbGFibGU9bm8iIC8+CiAgICAgICAgICAgIDxzdHlsZT4KICAgICAgICAgICAgICAgICNtYXBfYWExZGZkN2I5Mzc3NGVjOGE0NzFkNzVhOTI1MGE3MjcgewogICAgICAgICAgICAgICAgICAgIHBvc2l0aW9uOiByZWxhdGl2ZTsKICAgICAgICAgICAgICAgICAgICB3aWR0aDogMTAwLjAlOwogICAgICAgICAgICAgICAgICAgIGhlaWdodDogMTAwLjAlOwogICAgICAgICAgICAgICAgICAgIGxlZnQ6IDAuMCU7CiAgICAgICAgICAgICAgICAgICAgdG9wOiAwLjAlOwogICAgICAgICAgICAgICAgfQogICAgICAgICAgICA8L3N0eWxlPgogICAgICAgIAo8L2hlYWQ+Cjxib2R5PiAgICAKICAgIAogICAgICAgICAgICA8ZGl2IGNsYXNzPSJmb2xpdW0tbWFwIiBpZD0ibWFwX2FhMWRmZDdiOTM3NzRlYzhhNDcxZDc1YTkyNTBhNzI3IiA+PC9kaXY+CiAgICAgICAgCjwvYm9keT4KPHNjcmlwdD4gICAgCiAgICAKICAgICAgICAgICAgdmFyIG1hcF9hYTFkZmQ3YjkzNzc0ZWM4YTQ3MWQ3NWE5MjUwYTcyNyA9IEwubWFwKAogICAgICAgICAgICAgICAgIm1hcF9hYTFkZmQ3YjkzNzc0ZWM4YTQ3MWQ3NWE5MjUwYTcyNyIsCiAgICAgICAgICAgICAgICB7CiAgICAgICAgICAgICAgICAgICAgY2VudGVyOiBbLTEyLjg3NSwgLTM4LjYyNV0sCiAgICAgICAgICAgICAgICAgICAgY3JzOiBMLkNSUy5FUFNHMzg1NywKICAgICAgICAgICAgICAgICAgICB6b29tOiA4LAogICAgICAgICAgICAgICAgICAgIHpvb21Db250cm9sOiB0cnVlLAogICAgICAgICAgICAgICAgICAgIHByZWZlckNhbnZhczogZmFsc2UsCiAgICAgICAgICAgICAgICB9CiAgICAgICAgICAgICk7CgogICAgICAgICAgICAKCiAgICAgICAgCiAgICAKICAgICAgICAgICAgdmFyIHRpbGVfbGF5ZXJfNzc2MjlmMDNhOGVjNDNhZWI0OGMwMWJjNTg5ZjkwMDggPSBMLnRpbGVMYXllcigKICAgICAgICAgICAgICAgICJodHRwOi8ve3N9LmJhc2VtYXBzLmNhcnRvY2RuLmNvbS9saWdodF9ub2xhYmVscy97en0ve3h9L3t5fS5wbmciLAogICAgICAgICAgICAgICAgeyJhdHRyaWJ1dGlvbiI6ICJcdTAwMjZjb3B5OyBcdTAwM2NhIGhyZWY9XCJodHRwOi8vd3d3Lm9wZW5zdHJlZXRtYXAub3JnL2NvcHlyaWdodFwiXHUwMDNlT3BlblN0cmVldE1hcFx1MDAzYy9hXHUwMDNlIGNvbnRyaWJ1dG9ycywgXHUwMDI2Y29weTsgXHUwMDNjYSBocmVmPVwiaHR0cDovL2NhcnRvZGIuY29tL2F0dHJpYnV0aW9uc1wiXHUwMDNlQ2FydG9EQlx1MDAzYy9hXHUwMDNlIiwgImRldGVjdFJldGluYSI6IGZhbHNlLCAibWF4TmF0aXZlWm9vbSI6IDE4LCAibWF4Wm9vbSI6IDE4LCAibWluWm9vbSI6IDAsICJub1dyYXAiOiBmYWxzZSwgIm9wYWNpdHkiOiAxLCAic3ViZG9tYWlucyI6ICJhYmMiLCAidG1zIjogZmFsc2V9CiAgICAgICAgICAgICkuYWRkVG8obWFwX2FhMWRmZDdiOTM3NzRlYzhhNDcxZDc1YTkyNTBhNzI3KTsKICAgICAgICAKPC9zY3JpcHQ+ onload=\"this.contentDocument.open();this.contentDocument.write(atob(this.getAttribute('data-html')));this.contentDocument.close();\" allowfullscreen webkitallowfullscreen mozallowfullscreen></iframe></div></div>" ], "text/plain": [ "<folium.folium.Map at 0x7f24560bd6d0>" ] }, "execution_count": 8, "metadata": {}, "output_type": "execute_result" } ], "source": [ "attr = (\n", " '&copy; <a href=\"http://www.openstreetmap.org/copyright\">OpenStreetMap</a> '\n", " 'contributors, &copy; <a href=\"http://cartodb.com/attributions\">CartoDB</a>'\n", ")\n", "tiles = \"http://{s}.basemaps.cartocdn.com/light_nolabels/{z}/{x}/{y}.png\"\n", "\n", "m = folium.Map(location=[lat, lon], tiles=tiles, attr=attr, zoom_start=zoom_start)\n", "\n", "m" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "### There are plenty tile sources to choose from" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "For a list of many more tile providers go to http://leaflet-extras.github.io/leaflet-providers/preview/" ] } ], "metadata": { "anaconda-cloud": {}, "kernelspec": { "display_name": "Python 3", "language": "python", "name": "python3" }, "language_info": { "codemirror_mode": { "name": "ipython", "version": 3 }, "file_extension": ".py", "mimetype": "text/x-python", "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", "version": "3.9.0" } }, "nbformat": 4, "nbformat_minor": 1 }
mit
matousc89/PPSI
podklady/notebooks/skriptovani_v_pythonu.ipynb
1
19091
{ "cells": [ { "cell_type": "markdown", "metadata": { "deletable": true, "editable": true }, "source": [ "# Skriptování v Pythonu\n", "V tomto tutoriálu jsou představeny základní funkce a objekty potřebné pro nejzákladnější skriptování v Pythonu.\n", "\n", "Poznámky:\n", "* Komentáře v Pythonu se se dělají pomocí *#*. Cokoliv za tímto znakem až do konce řádku je komentář" ] }, { "cell_type": "code", "execution_count": 1, "metadata": { "collapsed": true }, "outputs": [], "source": [ "a = 1 # tohle je komentar" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "* V Jupyter notebook (nástroj v kterém je tento tutoriál vytvořen) každý blok kódu ukončení proměnnou nebo výrazem vytiskne obsah této proměnné. Toho je v tomto tutoriálu využívano. Následuje příklad:" ] }, { "cell_type": "code", "execution_count": 2, "metadata": { "collapsed": false }, "outputs": [ { "data": { "text/plain": [ "1" ] }, "execution_count": 2, "metadata": {}, "output_type": "execute_result" } ], "source": [ "a = 1 # tady si vytvorim promennou\n", "a # tohle vytiskne hodnotu bez uziti prikazu print" ] }, { "cell_type": "markdown", "metadata": { "collapsed": true, "deletable": true, "editable": true }, "source": [ "## List\n", "List je pravděpodobně nejznámější kontejner na data v jazyce Python. Položky v listu se můžou opakovat a mají pořadí položek dané při vytvoření listu. Položky v listu je možné měnit, mazat a přidávat. Následují příklady." ] }, { "cell_type": "code", "execution_count": 3, "metadata": { "collapsed": false, "deletable": true, "editable": true }, "outputs": [ { "data": { "text/plain": [ "[1, 1, 2]" ] }, "execution_count": 3, "metadata": {}, "output_type": "execute_result" } ], "source": [ "[1, 1, 2] # list celych cisel, polozka 1 se opakukuje" ] }, { "cell_type": "code", "execution_count": 4, "metadata": { "collapsed": false, "deletable": true, "editable": true }, "outputs": [ { "data": { "text/plain": [ "['abc', 1, 0.5]" ] }, "execution_count": 4, "metadata": {}, "output_type": "execute_result" } ], "source": [ "[\"abc\", 1, 0.5] # list obsahujici ruzne datove typy" ] }, { "cell_type": "code", "execution_count": 5, "metadata": { "collapsed": false, "deletable": true, "editable": true }, "outputs": [ { "data": { "text/plain": [ "[]" ] }, "execution_count": 5, "metadata": {}, "output_type": "execute_result" } ], "source": [ "[] # prazdny list" ] }, { "cell_type": "code", "execution_count": 6, "metadata": { "collapsed": false, "deletable": true, "editable": true }, "outputs": [ { "data": { "text/plain": [ "[[1, 2], 'abc', {'0', 1, 3}]" ] }, "execution_count": 6, "metadata": {}, "output_type": "execute_result" } ], "source": [ "[[1,2], \"abc\", {1, \"0\", 3}] # list obsahujici take dalsi listy" ] }, { "cell_type": "code", "execution_count": 7, "metadata": { "collapsed": false, "deletable": true, "editable": true }, "outputs": [ { "data": { "text/plain": [ "[1, 'a', 2, 5, 3, 5]" ] }, "execution_count": 7, "metadata": {}, "output_type": "execute_result" } ], "source": [ "[1, \"a\", 2] + [5, 3, 5] # spojeni dvou listu" ] }, { "cell_type": "code", "execution_count": 8, "metadata": { "collapsed": false, "deletable": true, "editable": true }, "outputs": [ { "data": { "text/plain": [ "[1, 2, 3, 1, 2, 3, 1, 2, 3, 1, 2, 3, 1, 2, 3]" ] }, "execution_count": 8, "metadata": {}, "output_type": "execute_result" } ], "source": [ "[1, 2, 3]*5 # opakovani listu" ] }, { "cell_type": "markdown", "metadata": { "deletable": true, "editable": true }, "source": [ "### Indexování a porcování\n", "V Pythonu se pro indexování užívají hranaté závorky `[]`. Symbol `:` zastupuje všechny položky v daném rozsahu. Indexuje se od 0. Indexování a porcování listu je ukázáno na nasledujících příkladech." ] }, { "cell_type": "code", "execution_count": 9, "metadata": { "collapsed": true, "deletable": true, "editable": true }, "outputs": [], "source": [ "a = [\"a\", \"b\", \"c\", \"d\", \"e\", \"f\", \"g\", \"h\"] # ukázkový list" ] }, { "cell_type": "code", "execution_count": 10, "metadata": { "collapsed": false, "deletable": true, "editable": true }, "outputs": [ { "data": { "text/plain": [ "'d'" ] }, "execution_count": 10, "metadata": {}, "output_type": "execute_result" } ], "source": [ "a[3] # vrati objekt z indexem 3 (ctvrty objekt)" ] }, { "cell_type": "code", "execution_count": 11, "metadata": { "collapsed": false, "deletable": true, "editable": true }, "outputs": [ { "data": { "text/plain": [ "['a', 'b']" ] }, "execution_count": 11, "metadata": {}, "output_type": "execute_result" } ], "source": [ "a[:2] # vrati prvni dva objekty" ] }, { "cell_type": "code", "execution_count": 12, "metadata": { "collapsed": false, "deletable": true, "editable": true }, "outputs": [ { "data": { "text/plain": [ "['d', 'e', 'f', 'g', 'h']" ] }, "execution_count": 12, "metadata": {}, "output_type": "execute_result" } ], "source": [ "a[3:] # vrati vse od objektu 3 dal" ] }, { "cell_type": "code", "execution_count": 13, "metadata": { "collapsed": false, "deletable": true, "editable": true }, "outputs": [ { "data": { "text/plain": [ "['c', 'd', 'e']" ] }, "execution_count": 13, "metadata": {}, "output_type": "execute_result" } ], "source": [ "a[2:5] # vse mezi objekty s indexy 2 a 5" ] }, { "cell_type": "code", "execution_count": 14, "metadata": { "collapsed": false, "deletable": true, "editable": true }, "outputs": [ { "data": { "text/plain": [ "'f'" ] }, "execution_count": 14, "metadata": {}, "output_type": "execute_result" } ], "source": [ "a[-3] # treti objekt od konce" ] }, { "cell_type": "code", "execution_count": 15, "metadata": { "collapsed": false, "deletable": true, "editable": true }, "outputs": [ { "data": { "text/plain": [ "['a', 'c', 'e', 'g']" ] }, "execution_count": 15, "metadata": {}, "output_type": "execute_result" } ], "source": [ "a[0:-1:2] # kazdy druhy objekt od zacatku do konce" ] }, { "cell_type": "code", "execution_count": 16, "metadata": { "collapsed": false, "deletable": true, "editable": true }, "outputs": [ { "data": { "text/plain": [ "['a', 'c', 'e', 'g']" ] }, "execution_count": 16, "metadata": {}, "output_type": "execute_result" } ], "source": [ "a[::2] # kratsi ekvivalent predchoziho prikladu" ] }, { "cell_type": "code", "execution_count": 17, "metadata": { "collapsed": true, "deletable": true, "editable": true }, "outputs": [], "source": [ "b = [[1, 2, 3], [4, 5, 6]] # priklad vnorenych listu" ] }, { "cell_type": "code", "execution_count": 18, "metadata": { "collapsed": false, "deletable": true, "editable": true }, "outputs": [ { "data": { "text/plain": [ "[4, 5, 6]" ] }, "execution_count": 18, "metadata": {}, "output_type": "execute_result" } ], "source": [ "b[1] # vraci druhy list" ] }, { "cell_type": "code", "execution_count": 19, "metadata": { "collapsed": false, "deletable": true, "editable": true }, "outputs": [ { "data": { "text/plain": [ "[1, 2]" ] }, "execution_count": 19, "metadata": {}, "output_type": "execute_result" } ], "source": [ "b[0][0:2] # vraci prvni dve polozky z druheho listu" ] }, { "cell_type": "markdown", "metadata": { "deletable": true, "editable": true }, "source": [ "### Přepisování, přidávání, vkládání a mazání položek z listu\n", "Ukázáno na následujících příkladech." ] }, { "cell_type": "code", "execution_count": 20, "metadata": { "collapsed": true, "deletable": true, "editable": true }, "outputs": [], "source": [ "a = [\"a\", \"b\", \"c\", \"d\"]" ] }, { "cell_type": "code", "execution_count": 21, "metadata": { "collapsed": false, "deletable": true, "editable": true }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "['a', 'b', 'x', 'd']\n" ] } ], "source": [ "a[2] = \"x\" # prepsani objektu s indexem 2\n", "print(a)" ] }, { "cell_type": "code", "execution_count": 22, "metadata": { "collapsed": false, "deletable": true, "editable": true }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "['a', 'b', 'x', 'd', 'h']\n" ] } ], "source": [ "a.append(\"h\") # pridani objektu h na konec\n", "print(a)" ] }, { "cell_type": "code", "execution_count": 23, "metadata": { "collapsed": false, "deletable": true, "editable": true }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "['a', 'b', 'y', 'x', 'd', 'h']\n" ] } ], "source": [ "a.insert(2, \"y\") # pridani objektu y na pozici 2\n", "print(a)" ] }, { "cell_type": "code", "execution_count": 24, "metadata": { "collapsed": false, "deletable": true, "editable": true }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "['a', 'b', 'x', 'd', 'h']\n" ] } ], "source": [ "del a[2] # odebere objekt na pozici 2\n", "print (a)" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "***\n", "## Podmínka If, else, elif\n", "Podmínky slouží k implementaci logiky. Logika operuje s proměnnou *bool*, která nabývá pouze hodnot *True* nebo *False*.\n", "\n", "### Výrazy a jejich vyhodnocení\n", "Následuje ukázka vyhodnocení pravdivosti několika výrazů." ] }, { "cell_type": "code", "execution_count": 25, "metadata": { "collapsed": false }, "outputs": [ { "data": { "text/plain": [ "True" ] }, "execution_count": 25, "metadata": {}, "output_type": "execute_result" } ], "source": [ "a = 1\n", "a == 1" ] }, { "cell_type": "code", "execution_count": 26, "metadata": { "collapsed": false }, "outputs": [ { "data": { "text/plain": [ "True" ] }, "execution_count": 26, "metadata": {}, "output_type": "execute_result" } ], "source": [ "a == 1" ] }, { "cell_type": "code", "execution_count": 27, "metadata": { "collapsed": false }, "outputs": [ { "data": { "text/plain": [ "False" ] }, "execution_count": 27, "metadata": {}, "output_type": "execute_result" } ], "source": [ "not a == 1" ] }, { "cell_type": "code", "execution_count": 28, "metadata": { "collapsed": false }, "outputs": [ { "data": { "text/plain": [ "False" ] }, "execution_count": 28, "metadata": {}, "output_type": "execute_result" } ], "source": [ "a > 1" ] }, { "cell_type": "code", "execution_count": 29, "metadata": { "collapsed": false }, "outputs": [ { "data": { "text/plain": [ "True" ] }, "execution_count": 29, "metadata": {}, "output_type": "execute_result" } ], "source": [ "a >= 1" ] }, { "cell_type": "code", "execution_count": 30, "metadata": { "collapsed": false }, "outputs": [ { "data": { "text/plain": [ "True" ] }, "execution_count": 30, "metadata": {}, "output_type": "execute_result" } ], "source": [ "1 in [1, 2]" ] }, { "cell_type": "code", "execution_count": 31, "metadata": { "collapsed": false }, "outputs": [ { "data": { "text/plain": [ "True" ] }, "execution_count": 31, "metadata": {}, "output_type": "execute_result" } ], "source": [ "not (1 in [1, 2]) == (not 1 > 0)" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "### Podmínky a jejich vyhodnocení\n", "Podmínka *if* testuje, zda výraz pravdivé hodnoty - pokud ano, podmínka vykoná svůj kód. Následuje příklad." ] }, { "cell_type": "code", "execution_count": 32, "metadata": { "collapsed": false }, "outputs": [ { "data": { "text/plain": [ "'green'" ] }, "execution_count": 32, "metadata": {}, "output_type": "execute_result" } ], "source": [ "fruit = \"apple\"\n", "color = \"No color\"\n", "\n", "if fruit == \"apple\":\n", " color = \"green\"\n", " \n", "color" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "Podmínka *else* umožňuje nastavit alternativní kód pro případ kdy podmínka *if* není splněna. Příklad následuje." ] }, { "cell_type": "code", "execution_count": 33, "metadata": { "collapsed": false }, "outputs": [ { "data": { "text/plain": [ "'orange'" ] }, "execution_count": 33, "metadata": {}, "output_type": "execute_result" } ], "source": [ "fruit = \"orange\"\n", "\n", "if fruit == \"apple\":\n", " color = \"red\"\n", "else:\n", " color = \"orange\"\n", "\n", "color" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "Podmínka *elif* umožňuje zadat více podmínek pro případ nesplnění podmínky *if*. Podmínek *elif* je možné umístit více za jednu podmínku *if*. Příklad následuje." ] }, { "cell_type": "code", "execution_count": 34, "metadata": { "collapsed": false }, "outputs": [ { "data": { "text/plain": [ "'red'" ] }, "execution_count": 34, "metadata": {}, "output_type": "execute_result" } ], "source": [ "fruit = \"apple\"\n", "\n", "if fruit == \"apple\":\n", " color = \"red\"\n", "elif fruit == \"orange\":\n", " color = \"orange\"\n", "elif fruit == \"pear\":\n", " color = \"green\"\n", "else:\n", " color = \"yellow\"\n", " \n", "color" ] }, { "cell_type": "markdown", "metadata": { "deletable": true, "editable": true }, "source": [ "***\n", "## Smyčky\n", "Iterace je jedna z nejčastější operací v programování. Následující ukázky se vztahují k rovnici\n", "\n", "$\\forall i \\in \\{2,\\ldots,9\\}.\\ a_i = a_{i-1} + a_{i-2}$.\n", "\n", "### For smyčka\n", "For smyčka je navržena pro iterování přes předem daný iterovatelný objekt. Příklad následuje." ] }, { "cell_type": "code", "execution_count": 35, "metadata": { "collapsed": false, "deletable": true, "editable": true }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "[1, 1, 2, 3, 5, 8, 13, 21, 34]\n" ] } ], "source": [ "a = [] # list na vysledky\n", "a.append(1) # prvni pocatecni podminka\n", "a.append(1) # druha pocatecni podminka\n", "for i in [2, 3, 4, 5, 6, 7, 8]: # rozsah pres ktery iterovat\n", " a.append(a[i-1] + a[i-2]) # pridavani vypoctenych polozek do listu\n", "print(a)" ] }, { "cell_type": "markdown", "metadata": { "deletable": true, "editable": true }, "source": [ "Vylepšení předchozího příkladu následuje." ] }, { "cell_type": "code", "execution_count": 36, "metadata": { "collapsed": false, "deletable": true, "editable": true }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "[1, 1, 2, 3, 5, 8, 13, 21, 34]\n" ] } ], "source": [ "a = [0]*9 # list na vysledky\n", "a[0:2] = [1, 1] # pocatecni podminky\n", "for i in range(2,9): # fukce range\n", " a[i] = a[i-1] + a[i-2] # realizace vypoctu\n", "print(a)" ] }, { "cell_type": "markdown", "metadata": { "deletable": true, "editable": true }, "source": [ "V případě že je potřeba přerušit smyčku před koncem, je možné použít příkaz **break**.\n", "\n", "### While smyčka\n", "Tato smyčka iteruje dokud není splněna podmínka. Příklad následuje." ] }, { "cell_type": "code", "execution_count": 37, "metadata": { "collapsed": false, "deletable": true, "editable": true }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "[1, 1, 2, 3, 5, 8, 13, 21, 34]\n" ] } ], "source": [ "a = [0]*9 \n", "a[0:2] = [1, 1]\n", "i = 2 # nastaveni pomocne promenne\n", "while i < 9: # iteruj dokud pomocna promenna nesplni podminku\n", " a[i] = a[i-1] + a[i-2]\n", " i += 1 # pridej 1 k pomocne promenne\n", "print(a)" ] } ], "metadata": { "kernelspec": { "display_name": "Python 3", "language": "python", "name": "python3" }, "language_info": { "codemirror_mode": { "name": "ipython", "version": 3 }, "file_extension": ".py", "mimetype": "text/x-python", "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", "version": "3.4.3" } }, "nbformat": 4, "nbformat_minor": 2 }
mit
GoogleCloudPlatform/asl-ml-immersion
notebooks/launching_into_ml/labs/supplemental/decision_trees_and_random_Forests_in_Python.ipynb
1
11556
{ "cells": [ { "cell_type": "markdown", "metadata": { "colab_type": "text", "id": "vDnaW6s9oGSY" }, "source": [ "# Decision Trees and Random Forests in Python\n", "\n", "\n", "**Learning Objectives**\n", "\n", "\n", "1. Explore and analyze data using a Pairplot\n", "2. Train a single Decision Tree\n", "3. Predict and evaluate the Decision Tree\n", "4. Compare the Decision Tree model to a Random Forest\n", "\n", "\n", "## Introduction \n", "\n", "In this lab, you explore and analyze data using a Pairplot, train a single Decision Tree, predict and evaluate the Decision Tree, and compare the Decision Tree model to a Random Forest. Recall that the [Decision Tree](https://en.wikipedia.org/wiki/Decision_tree_learning) algorithm belongs to the family of supervised learning algorithms. Unlike other supervised learning algorithms, the decision tree algorithm can be used for solving both regression and classification problems too. Simply, the goal of using a Decision Tree is to create a training model that can use to predict the class or value of the target variable by learning simple decision rules inferred from prior data(training data).\n", "\n", " Each learning objective will correspond to a _#TODO_ in this student lab notebook -- try to complete this notebook first and then review the [solution notebook](https://github.com/GoogleCloudPlatform/training-data-analyst/blob/master/courses/machine_learning/deepdive2/launching_into_ml/solutions/decision_trees_and_random_Forests_in_Python.ipynb)" ] }, { "cell_type": "markdown", "metadata": { "colab_type": "text", "id": "8sulisrOoGSa" }, "source": [ "## Load necessary libraries \n", "We will start by importing the necessary libraries for this lab." ] }, { "cell_type": "code", "execution_count": null, "metadata": { "colab": {}, "colab_type": "code", "id": "1k_uHvb0oGSb" }, "outputs": [], "source": [ "import matplotlib.pyplot as plt\n", "import numpy as np\n", "import pandas as pd\n", "import seaborn as sns\n", "\n", "%matplotlib inline" ] }, { "cell_type": "markdown", "metadata": { "colab_type": "text", "id": "lv5dJSNmoGSe" }, "source": [ "## Get the Data" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "colab": {}, "colab_type": "code", "id": "jUxkkwtyoGSf" }, "outputs": [], "source": [ "df = pd.read_csv(\"../kyphosis.csv\")" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "colab": { "base_uri": "https://localhost:8080/", "height": 204 }, "colab_type": "code", "id": "bQp5k7jUoGSh", "outputId": "8f029320-43d6-449c-893c-0e36c69078e1" }, "outputs": [], "source": [ "df.head()" ] }, { "cell_type": "markdown", "metadata": { "colab_type": "text", "id": "ECImqktYoGSk" }, "source": [ "## Exploratory Data Analysis\n", "\n", "**Lab Task #1:** Check a pairplot for this small dataset." ] }, { "cell_type": "code", "execution_count": null, "metadata": { "colab": { "base_uri": "https://localhost:8080/", "height": 562 }, "colab_type": "code", "id": "gG5VVJuGoGSk", "outputId": "b9204f57-d66a-4ed6-e9b5-e1c822d21d6f" }, "outputs": [], "source": [ "# TODO 1\n", "# TODO -- Your code here." ] }, { "cell_type": "markdown", "metadata": { "colab_type": "text", "id": "jq1bXb5yoGSm" }, "source": [ "## Train Test Split\n", "\n", "Let's split up the data into a training set and a test set!" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "colab": {}, "colab_type": "code", "id": "yqOsAvyNoGSn" }, "outputs": [], "source": [ "from sklearn.model_selection import train_test_split" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "colab": {}, "colab_type": "code", "id": "0lWbTfXDoGSp" }, "outputs": [], "source": [ "X = df.drop(\"Kyphosis\", axis=1)\n", "y = df[\"Kyphosis\"]" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "colab": {}, "colab_type": "code", "id": "N9XE_wWToGSr" }, "outputs": [], "source": [ "X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.30)" ] }, { "cell_type": "markdown", "metadata": { "colab_type": "text", "id": "gkhZpiNIoGSt" }, "source": [ "## Decision Trees\n", "\n", "**Lab Task #2:** Train a single decision tree." ] }, { "cell_type": "code", "execution_count": null, "metadata": { "colab": {}, "colab_type": "code", "id": "LIT289hKoGSt" }, "outputs": [], "source": [ "from sklearn.tree import DecisionTreeClassifier" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "colab": {}, "colab_type": "code", "id": "z8jarMdhoGSv" }, "outputs": [], "source": [ "dtree = DecisionTreeClassifier()" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "colab": { "base_uri": "https://localhost:8080/", "height": 119 }, "colab_type": "code", "id": "5sQoHceMoGSx", "outputId": "c7afcec0-99f5-4ec1-950c-2c03a270c451" }, "outputs": [], "source": [ "# TODO 2\n", "# TODO -- Your code here." ] }, { "cell_type": "markdown", "metadata": { "colab_type": "text", "id": "YLwbeai1oGSz" }, "source": [ "## Prediction and Evaluation \n", "\n", "Let's evaluate our decision tree." ] }, { "cell_type": "code", "execution_count": null, "metadata": { "colab": {}, "colab_type": "code", "id": "3t6k16iSoGS0" }, "outputs": [], "source": [ "predictions = dtree.predict(X_test)" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "colab": {}, "colab_type": "code", "id": "ESl5l5HcoGS3" }, "outputs": [], "source": [ "from sklearn.metrics import classification_report, confusion_matrix" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "colab": { "base_uri": "https://localhost:8080/", "height": 170 }, "colab_type": "code", "id": "mGKDt0PkoGS5", "outputId": "c4524dbc-bf11-48e0-eea9-5ad872a702e6" }, "outputs": [], "source": [ "# TODO 3a\n", "# TODO -- Your code here." ] }, { "cell_type": "code", "execution_count": null, "metadata": { "colab": { "base_uri": "https://localhost:8080/", "height": 51 }, "colab_type": "code", "id": "Tp3iEQ7DoGS7", "outputId": "7017be66-cb58-419b-af5f-db832cb89d03" }, "outputs": [], "source": [ "# TODO 3b\n", "print(confusion_matrix(y_test, predictions))" ] }, { "cell_type": "markdown", "metadata": { "colab_type": "text", "id": "-cOflfnkoGS8" }, "source": [ "## Tree Visualization\n", "\n", "Scikit learn actually has some built-in visualization capabilities for decision trees, you won't use this often and it requires you to install the pydot library, but here is an example of what it looks like and the code to execute this:" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "colab": { "base_uri": "https://localhost:8080/", "height": 88 }, "colab_type": "code", "id": "EFVGxz9uoGS9", "outputId": "9f9785b9-e971-4c14-abaa-a2cdece6949f" }, "outputs": [], "source": [ "import pydot\n", "from IPython.display import Image\n", "from six import StringIO\n", "from sklearn.tree import export_graphviz\n", "\n", "features = list(df.columns[1:])\n", "features" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "colab": { "base_uri": "https://localhost:8080/", "height": 1000 }, "colab_type": "code", "id": "KQz0TWtwoGS_", "outputId": "26e0b809-9cfc-4bf9-fd3e-930748f8509c" }, "outputs": [], "source": [ "dot_data = StringIO()\n", "export_graphviz(\n", " dtree, out_file=dot_data, feature_names=features, filled=True, rounded=True\n", ")\n", "\n", "graph = pydot.graph_from_dot_data(dot_data.getvalue())\n", "Image(graph[0].create_png())" ] }, { "cell_type": "markdown", "metadata": { "colab_type": "text", "id": "5m-x2yZpoGTA" }, "source": [ "## Random Forests\n", "\n", "**Lab Task #4:** Compare the decision tree model to a random forest." ] }, { "cell_type": "code", "execution_count": null, "metadata": { "colab": { "base_uri": "https://localhost:8080/", "height": 136 }, "colab_type": "code", "id": "BmgJz4SxoGTB", "outputId": "ec141c46-605c-461e-aa4a-c92f91b6d8ce" }, "outputs": [], "source": [ "from sklearn.ensemble import RandomForestClassifier\n", "\n", "rfc = RandomForestClassifier(n_estimators=100)\n", "rfc.fit(X_train, y_train)" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "colab": {}, "colab_type": "code", "id": "edhzvBCDoGTD" }, "outputs": [], "source": [ "rfc_pred = rfc.predict(X_test)" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "colab": {}, "colab_type": "code", "id": "muBlj4B3oGTG" }, "outputs": [], "source": [ "# TODO 4a\n", "# TODO -- Your code here." ] }, { "cell_type": "code", "execution_count": null, "metadata": { "colab": { "base_uri": "https://localhost:8080/", "height": 170 }, "colab_type": "code", "id": "fhKc4sz3oGTH", "outputId": "ea3c9732-7840-47c9-fcc7-61f8c0271ff6" }, "outputs": [], "source": [ "# TODO 4b\n", "# TODO -- Your code here." ] }, { "cell_type": "markdown", "metadata": { "colab_type": "text", "id": "-sYHmikioGTJ" }, "source": [ "Copyright 2021 Google Inc.\n", "Licensed under the Apache License, Version 2.0 (the \"License\"); you may not use this file except in compliance with the License. You may obtain a copy of the License at\n", "http://www.apache.org/licenses/LICENSE-2.0\n", "Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an \"AS IS\" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License." ] } ], "metadata": { "colab": { "name": "Conchita_Decision_Trees_and_Random_Forests_in_Python.ipynb", "provenance": [], "toc_visible": true }, "environment": { "name": "tf2-gpu.2-5.m76", "type": "gcloud", "uri": "gcr.io/deeplearning-platform-release/tf2-gpu.2-5:m76" }, "kernelspec": { "display_name": "Python 3", "language": "python", "name": "python3" }, "language_info": { "codemirror_mode": { "name": "ipython", "version": 3 }, "file_extension": ".py", "mimetype": "text/x-python", "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", "version": "3.7.10" } }, "nbformat": 4, "nbformat_minor": 4 }
apache-2.0
plipp/informatica-pfr-2017
nbs/6/1-2-Pandas-Text-Support-Primer.ipynb
1
3927
{ "cells": [ { "cell_type": "markdown", "metadata": {}, "source": [ "# Working with Text Data in pandas" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "scrolled": true }, "outputs": [], "source": [ "import pandas as pd\n", "\n", "time_sentences = [\"Monday: Soccer is at 2:45pm.\", \n", " \"Tuesday: Appointment is at 11:30 am.\",\n", " \"Wednesday: At 7:00pm, there is a python MOOC!\",\n", " \"Thursday: Beer at 11:15 pm at the latest.\",\n", " \"Friday: Starts at 08:10 am, ends at 09:00am.\"]\n", "\n", "df = pd.DataFrame(time_sentences, columns=['text'])\n", "df" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "# find the number of chars for each string in df['text']\n", "df['text'].str.len()" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "# find the number of tokens for each string in df['text']\n", "df['text'].str.split().str.len()" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "df['text'].str.contains('Appointment')" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "df['text'].str.count(r'\\d')" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "# find all digits\n", "df['text'].str.findall(r'\\d')" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "# group and find the hours and minutes\n", "df['text'].str.findall(r'(\\d?\\d):(\\d\\d)')" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "# replace weekdays with '???'\n", "df['text'].str.replace(r'\\w+day\\b', '???')" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "# replace weekdays with 3 letter abbrevations\n", "df['text'].str.replace(r'(\\w+day\\b)', lambda x: x.groups()[0][:3])" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "# create new columns from first match of extracted groups\n", "df['text'].str.extract(r'(\\d?\\d):(\\d\\d)', expand=True)" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "# extract the entire time, the hours, the minutes, and the period\n", "df['text'].str.extractall(r'((\\d?\\d):(\\d\\d) ?([ap]m))')" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "# extract the entire time, the hours, the minutes, and the period with group names\n", "df['text'].str.extractall(r'(?P<time>(?P<hour>\\d?\\d):(?P<minute>\\d\\d) ?(?P<period>[ap]m))')" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "# Links\n", "\n", "- [Coursera: Applied Text Mining in Python](https://www.coursera.org/learn/python-text-mining/home/welcome)\n", "- [Working with Text Data in Pandas](https://pandas.pydata.org/pandas-docs/stable/text.html)" ] } ], "metadata": { "kernelspec": { "display_name": "Python 3", "language": "python", "name": "python3" }, "language_info": { "codemirror_mode": { "name": "ipython", "version": 3 }, "file_extension": ".py", "mimetype": "text/x-python", "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", "version": "3.6.1" } }, "nbformat": 4, "nbformat_minor": 2 }
mit
arve0/TFY4500
comparison objective.ipynb
1
80148
{ "metadata": { "name": "", "signature": "sha256:0d5991ffa19ec71e2f96714cb6223484001802c1527766d4369b3d214e953230" }, "nbformat": 3, "nbformat_minor": 0, "worksheets": [ { "cells": [ { "cell_type": "code", "collapsed": false, "input": [ "%pylab inline\n", "from skimage import io\n", "\n", "plt.rcParams['image.interpolation'] = 'none'\n", "plt.rcParams['image.cmap'] = 'gray_r'\n", "plt.rcParams['font.size'] = 14" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "Populating the interactive namespace from numpy and matplotlib\n" ] } ], "prompt_number": 92 }, { "cell_type": "code", "collapsed": false, "input": [ "img20 = io.imread('/Users/arve/Dokumenter/TFY4500/comparison/20x oppl\u00f8sning/12_13_35_23ch0z6.tif')\n", "img63 = io.imread('/Users/arve/Dokumenter/TFY4500/comparison/63x oppl\u00f8sning/12_20_25_23ch0z4.tif')" ], "language": "python", "metadata": {}, "outputs": [], "prompt_number": 89 }, { "cell_type": "code", "collapsed": false, "input": [ "img20.shape, img63.shape" ], "language": "python", "metadata": {}, "outputs": [ { "metadata": {}, "output_type": "pyout", "prompt_number": 90, "text": [ "((4096, 4096), (5120, 5120))" ] } ], "prompt_number": 90 }, { "cell_type": "code", "collapsed": false, "input": [ "img0 = 255-img20[80:190, 1150:1260]\n", "img1 = 255-img63[320:450, 1515:1645]\n", "\n", "figure(figsize=(9.7,4))\n", "\n", "subplot(121)\n", "imshow(img0)\n", "xticks([])\n", "yticks([])\n", "colorbar()\n", "title('(a) 20x objective')\n", "\n", "subplot(122)\n", "imshow(img1)\n", "xticks([])\n", "yticks([])\n", "title('(b) 63x water objective')\n", "colorbar()\n", "\n", "tight_layout();" ], "language": "python", "metadata": {}, "outputs": [ { "metadata": {}, "output_type": "display_data", "png": "iVBORw0KGgoAAAANSUhEUgAAApIAAAEeCAYAAAA5EvVYAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzsnXm4HUWZ/z+VlRhC2JMoIruIiCACsiNixJ+ACCiIbCOK\nAorgOqKOoI46uIzOAI7iAoiyCOICAgrIIiib7IICBpAlhDWEkOTm5tbvj+pvd533dJ/TZ7nJvaS+\nz3Ofc0+f6tq6++16v/UuzntPQkJCQkJCQkJCQqcYs6w7kJCQkJCQkJCQMDqRFpIJCQkJCQkJCQld\nIS0kExISEhISEhISukJaSCYkJCQkJCQkJHSFtJBMSEhISEhISEjoCmkhmZCQkJCQkJCQ0BWW64Wk\nc25f59xc59xKXZz7DefcX4ajXyMJzrl1nHNDzrnP1Ch7WFZ27aXRN9P26c65WUu73YSE0YAyWeec\ne9A5d0mNczd1zi12zr12eHuZMBxwzp2QyeU1a5S9yjn3x6XRr5K2h5xzX1wWbSf0huV2IemcGwt8\nGTjVe/98F1V8C3i9c27Pmu3t45w71zn3T+fcfOfcvc65bzrnplaU38s5d4tz7kXn3MPOuS8558Z1\n0c9+oW7A0WELTOqc2yQTiq+qaDcFRU1IMGgh62o9M977u4DfAV/qsN31nHNnOedmO+cWOOfuc859\n05Q5wDl3uXPuMefcQufcI865Xzvntu2krWUN59xRzrlDl3U/+oBhlaPOuQOdcx9r037CKMOyXJgs\na+wBbAz8v25O9t7Pds79BvgU8Nsap3wfeBQ4E3gY2Az4CPAO59wbvPcLVNA593bgV8AfgY8CrwOO\nB6YDR3TT36WEM4Gfe+8Hhqn+TYD/AK4EHjK/fRBww9RuQsJoRpWs6+R5+T/gYufc+t77B9oVds5t\nTpBfjxKU7qeAtYGNTNHNgMeBS7MyLwfeD1zjnJvpvV8m7FgXOAp4EjhjWXekR7x1mOs/EHgt8N2S\n31YAlgxz+wnDgOV5Ifl+4Cbv/YM91HEucL5zbgPv/f1tyu7rvb8mPuCcu4UgeA4GfhD99E3gTuCt\n3vuhrOw84Hjn3He893/roc/Dhqyvw7WIjNH0AvTeDy6FdhMSRiP6IesuB54FDgO+0Kqgc24M8FPg\nHuDN3vtFVWW998eXnP9D4BHgA4TF6HIJ55wDJnrvFy6tNpeSHC1lHYeRgEgYZiyXW9vOuRWA3YE/\nlPy2l3Put865f2VbLQ86505yzk0sqeoKwkOxd7s27SIyw6+yz9dE7W+SfT9Ni8gMpxIWUO/WGJxz\n9zjn/uGce1l0/pRs+/w259z4Vn1yzq3unPtBtPV0p3PuA9XF3Uedc7Oy7fbrnHNvNAVKbSSdc1s5\n537nnHsuO/da59wuJQ3McM59P9veWpi19QPn3IrOucOA87Kif8zaGXLOHZKd22Aj6Zy7yzlXNudk\nW2x/jL5rbHdm8/CEc+6HzrnVWs1fQsJIRytZF5XZNTOjWeCc+7tz7mBbxnu/GLgKeFeNZmcSWKcT\nvfeLnHMv69As5ylgIZFS6go7v5mm7990zg222gp3zn3LOfesOfa1rL7jo2OTnHOLXGSn55z7hHPu\nT865J7P5ucM5d7ip60HCbsnOkVyKZdFE59wXM7mj7ftvO+cmmXqGnHPfc87t75y7M5uD/VtNlHNu\nZ+fc1c65FzL5+ltXbcu6mnPu51m5Z5xz/+ecm2zqa7KR7EQ+Oufe6py70gV73OedczdrvpxzVxFY\ncdndDznnhqJzcxtJ59wbs+/vL2ljh1j2Z8dmZH2anc3x35xzH241dwn9w3K5kAS2BMYDN5f8dhiw\ngEC9f5SwjXoccLot6L2fCzwAbN9lP6Znn09Fx7bIPhv65r1/nKClb559X0hgMtcBToqKfhuYARyc\nCf9SZC+YPxLG+3Pgk8ATwA9cuWPNgYRt/P8DvpK1e4Vzbv1WA3TO7QxcC6wMnAh8BpgI/D77TeWm\nAzcCBwG/IGz7nw5sBawKXA38T1b8P7NyBwHxYjHWdM8GtnfOvcL0Z0tg/ex34XuE7bc/A8cQ2OH9\nCAvWMgUiIWG0oJWs84Rn4XzCQvPTwHPAGc6595SU/yvwGldh1x1ht+xzwDl3M/AC8IJz7jzn3Opl\nJzjnVnHOreGcez3wo+zw/0ZFvgzcAvxI7TvndgSOBb7hvf9zi/5cA0x1Ybtd2AkYyj6FbQhzFcuU\nY4E7CLJLMvI059yHojIfI8jmeyjk0seyPjrgQgoTqI8QFOKjKIiEGDsBJxNk4EezOkvhnHszgSme\nBnyRsJP1RuA659yGJaecA0wFPku45kdQKOdCmY1kLfmYKSCXAWsA/5WN+UYKk4qvALcR3ncHRX+2\nfbz3NwP3U76Q3p+wyL4wa3dN4C8EBebkrI93Aac65z5Xcn5Cv+G9X+7+gMMJQmSzkt8mlRz7LMF2\nY62S3y4D/t5lP34ILAY2io59Muvbq0rK3wjcYI6dmPVtV8IDOwR8tkbbx2RlD46OjSG8UBYAq2bH\n1snKvQisHZXdkMAY/DQ6dlhWdu3suwPuBX5v2h5PeNCvi46dns3FVi36vF9W/04lv50OzIq+r5+V\nPdaUOwlYFI1vu6zc+0y57bPjH1zW92v6S3/d/rWRdQ9mv+0fHVuBsHh5CHCm/Huz8m9q0+avs3JP\nEra430XYDl8I3ASMKTnnkeycIWB2WRuEnZoXCbbYKxKU+NuB8W36s3pW7zHRGBcSFlbPa5xZHxcB\nK8TzUVLfZcB95thdwJUlZQ8kyOcdS44PEcyXdGwIGCy7VhXj+iswB1glOrZBNoZfRMdOyOq+2Jx/\nYnb8LdGxq+Jx1JWPwErAXMI7amKLPl8E/LPityHgP6LvXya8E1aPjo0h2NT+Mjr2A+AxYDVT3w+A\n+cDUZf0cvtT/lldGUpT8s/YHnzm9OOfGOOemZhr0dYRF0Ra2fFZHqZbdCs65Awm2S9/y3v8j+knb\nHWV2RQuj34UvA7cCPwFOI2hmX6/RhXcQhNBZOuDDVvp3CIzhbqb8b733D0dl7yMI1He0aOP1BOP6\ns13YRl89m8+pBE16Gxe26McQXjaXeO9vqtH3tvDBIeAWmjXa9wBXeO+fib6/QGBI4z7+nTA/b+5H\nfxISlhEqZV2GJ7z35+qLDzsdPwReSXCEiaE62sm7FbPPG733B3vvL/Tef5nAUG1JcP6x2J+wBf8R\nwoLk4oydzOG9vwf4HIHFuhx4BXCob7Hzkp33FGFxLPbxTQRl9qtZX9+QHd8RuMVHNon63zk33jm3\naiYbrgLWd85NaTMPEOTLP4C/GflyDYF9s/Lleu/9He0qdc7NIOxOneG9z6+tD7b6vwF2z9jQGCeb\n79rhKbsecf/ryMeZwBTg676FTWyHOAcYC+wbHduZwMCeAznjux9wcfY17uMfCO/LbfrUn4QKLK8L\nSaHJacOFmGm/A+YRBOccguCAsAAqq2Oo5Hh1o2FL5kcET0VrbC7v7bIt1RWi34HcOPowguBfjSBY\n64RQeBVwf0nZe6PfY9xXUsd9wMquOg6nPDR/RJjH+O8YwtytRtgKmULQ6vuJcwiL1VcBuGBHtXZ2\nPO7jioQtK9vHNbO+JSSMdlR5aJd5YOtZtzJAdbSTL5JRZ5vjP8s+t7MneO+v897/3nt/KrAtgYn6\nRknd3yFs028NfM17f1ubvgjXEhaKZJ93Zwu2WcBOLoRI2pbGbW2cc+/MtudfJGzJziGY1njK3wcW\nGwGvJrCzsWyRUm7lS1uP+Ay6Nn8v+e1eYDLNC/4GGe69f5rwjisLpybUlY8yceqbDPfe3w3cDRwQ\nHT6AwDIqUsoaBLOpw0v6dy7hOiUZPsxYXr22ZZO4CsUDTWZ780fCIvJ4go3GAmAtwtZp2cJ7FRpt\nHFsi07J/Q7C72c83OtRAoO0h2DnaEDczKLd12j37nEAI81G26FsW0Hx9hsAOluEpgiAYDpxL2Mre\nP/rMbWuiPj5NtVF7FZOTkDAaUCrrusQqps4qPJZ9PhEf9N4/45wbjOopRVbuSsp3O9ahcE60jGkr\nXAsc4ZzbmMBMXhMdlx335OwTCE4dBFlxDfAhwrgGsn4dRz0iZgxhMVQVO/Ex831BaanhQ7sQUMta\nPp4DnOicm5b1Yx/C7pjmSdfg58CPK+oYkVFOXkpYXheSMmBel2BjI7yZwJDt472PBUqr2FrrEkL1\ntEXmmHIpwQbo/3nvXywpJg17K8I2tc59OWEr54emzk0IRsxnEexjfuCce220dVuFh4DNnXNjzGJ2\n4+zzQVPexn/TsWd9dUB3adcveO+vrOqIc+5Jgq3S69r0uaNgtd77R5xz1wP7O+e+QfB4v9R7P8/0\ncTeC7en8TupPSBgFqJJ1wvrOOWd2JvSsP2jKrkt4Bu+lNW4mhO5ZKz6YOdSNI7Bz7TAJE1Mw28b8\nCYEd/CbwRefc+7z3Pys530LyfFfC1vZp2fdrCEqmnG/+FJ2zX9bWTB+FpnHOvaWk/irZdD+wZSv5\n1yVEMmxc8tvGhO1ou+DfKOsPEKJ2EJT4B1u0U1c+qt7XEbbyq9BpwPFzCOZbMhFYjcYdpScJxM/4\nYZjjhJpYXre2byEwU1uZ4xJc+bxk9nsfL6skYzDXA65v12AmRH9PMKZ+W7at0ISMzr8X+EC23SIc\nmX2eH9U5jmB4PodgW3Qowej51Hb9IWwNrEEw+lZ9Ywia80KCDVKMPVyUUcY5txHwNkLGiyrI8+7j\nzrkV7Y/OuTUgt828EHi7c27rFvVJkK1a8XuZkDqHYNt6OIHRPafk9zGEQOe2f2Odc8PFliYkLA1U\nyTphGhHb5EJImg8A/yqx1dsSuMeHaBWt8GuCjfe/GTu9D2afeSgiV5K2zzm3HvAWInYww7GEBd9R\n3vsTCTLqfzJ7wZbI7LsfJnhCv4xGRnLVrG93mrHpfZDLYefcKgTbditr5lMul84FpjnnjrQ/uBAW\nqEku1oEPUTz+ChyS9Ul1rg/sRbA3t338iPl+TPZ5cYum6srH3xPIgH/PIoJUYT5tGOkYxtZ9f0JU\ngUui35cQ3ol7O+eaGGq9YxKGGcva22dZ/QG/JBiDx8dWIWg4DwKfICyqriU8sEPAIab8vtnxDWu0\nd1tW9us0hj44CNjNlH0HQYhdQRBw3yEsQH9oyp2Q1TkzOvbR7Nh72vRnImF7fREhtMNHCIJ5CPh0\nVG6d7NjtBEH8GcK2/2MEo/gNorKHEXltZ8d2JAiPh7P+fpAQquJKGr0DpxM8N18E/psQmuIL2dy/\nKiuzJsF26gbg3wj2Mutkv51O5LUd1atznidormVe+f+b9fsSwpbVUYQwSg/Za57+0t9o+yuTddnx\nBwk2ds8QwrUcQ/C6XQIcYMqOJ2wtfqVmm5/PnqnLsufp1KzeC025BYSkDJ/MnvlvEbZLnwNeG5V7\ndSYbfhYdWysre3HNPv0069M/zPHZ2fH/Mcd3pmApP5zJvX9SvA9iOfe/2fj+g+Ddvmd23FF4sZ9D\nkM/HAKcQCICdojqGCGks617XXQhb7fcS3lefJ5hGPUujXD4hq/s2guJ/NMGjeYiw4IzrvArjfV5X\nPhKIjCUEO8njszn7X+CCqMwnsrq+QyAxDjDj/4+Sceqc54Efl/y+BoE5nZ/VewThPXU2sGBZP3/L\nw98y78AyG3jwVBsiW4hEx7cmLB5fyB7Kk4FNKV9IngtcW7O9oewhGyr5KwsbsRdBE1sA/ItA74+L\nfn8DYRH4fyXnXpEJqTXb9Gm1TKDMJrAWdwKHmzLrZH38NGGx+c+sT9dhQvVQspDMjr+OEK9sTtbO\nrOz7TFPuFQQ7F/XnAUIMs8mmjX8QFodLdE0IW15VYSX+kJX9eYu5+DfCAnU+YYF8B2HLqynkU/pL\nf6Ppr4Wsm0VYWOxC2D1YQFhYNilPwNuzOjbooN2jCVvrCwmLjq9hQvVkz9jNhMXsQFbux8D6UZkx\n2bP5KLCyOf+Q7Nk+vEZ/jsjGYBXy87I69is552CCjd2CTO4cm8mgJTQuJNcgxIV8Lmvjn9FvYwmL\noTuyep4hhEH6Io2hezpaSGbn7EyIsSu59VuiBXhW5otZf19DcHh6LuvD94EVTdmrKH8f1ZKP2X1y\nDeH9qXBAh0a/TyIo/U9lfVpixl+2kFxLZTHvjKjM6oTYzw8S3ouPE96DRy7r5295+FP8rOUO2ZbL\nXQTD3X/v4vwZhEXV/t773/S7f6MRLmQwOI0gXKwReUJCwjJAr7Iuq+M3wKD3fp++di5hRME5dy2B\nxZvZtnBCQobl1UYSH1bQXwA+3CJ8TSt8HLg9LSIbMINgO9TO0SchIWEpoVdZ55zblBAZ4vP97lvC\niMMMOohCkpAALL+MZEL/kBnMv5uQAWiW937HNqckJCQkJIwQOOe2I4TW+TghW82P2pySkJBjuWUk\nE/qKTQj2Mv8g2A8lJCQkJIwefAB4H8HR8SfLuC8JowyJkUxISEhISEhISOgKLQOSO+fSKjMh4SUI\n7327jBaV6EYu9NLeSw1JriYkvDSxvMrVtplthoY6SiPdMcSINueXX7YYHBwEYNy4/ib/Ub1jxxax\nxp96Ktg2L1kS4t8+8UTILPaa14RMYAMDeVIFnnkm+LGstFKwmf/Xv/7VUDauR3O7ePFiAKZMmVLZ\nr5F6HeqgX30fzXPQCcaMSRYtyxpLlizJn+sJEyYAra9LOzmsczuR1/Yc2749Ptzvgk6gvlj5PH9+\nyFkwfvz4huO23MDAQNO4VMaWte+CeB7snKiMzlEb+ly4cCEAK6xQxOyumud232NU3TvdXMO68qGs\n7k7vobIxVt2PdetsNZa6z1Fcvu58vNTfG63QcmvbOeeX9kJypL7M580LWfVaLcY6gRaEAC+88AIA\nEydOBGDFFUOyA93Ac+cWyRauuOIKoFiIrrPOOgA88sgjeZnddw+pt+fMmQPAeuutBzQ+RFUPR3w/\njLRrMNrw4oshA+bLXvayZdaHRYsW5f9rwTJ27NieNedO7o0s1li6mTI0ZyQM6GSBUOfcqrrqvMzL\n6i7rS7tzbBut+t6JgtNusVW1kGtVh86p6nOrhZNtzy4oqxaYZe1VlakzP50uSsvOte11UkddtGqr\n3QLSos5Yqsq2G3O7duKyy7NcXV5zbSckJPSATl4iYsgTEhISEqoxWuVqWkgmJCR0jMRW94a6jEc7\nZqUTdqhbJrJOn6v62ck53WzfV7FlYuInTZpUWm7hwoX59rLd2pbJQTtGLt4CF9svqI6y7XBbl8pq\nYTB58uSGsjq3G3OrKlazDoPd6b1XZ8er3f0ab21baJ5is4CqfrZ7Hqr6Xme7vlW7vWK0ytVhWUh2\nsj1ty9gt7rr19LtfFtpu7rVtCYPnnnsu/03b5rKf0Y0rO5977rknLzt16lSgeKi0HT5jxoy8jLbC\nVUbf64xhNNkZWhtQK8zrnAvNfe1kDK3KDveWdpngtv3R/dFvjFaBl5CQkDBSMVrlamIkExISOsZo\nFXgjBXVs9vrJ5tVBPxx16thGdurwYM9rxTbpN8tEWmZwhRVWyJV6fUoRtYyfbbfV9dExKbe2rjLW\n1zpbdWILWFXGMmxVzGiduqvutV7sLlu1VVVG81Tn/unUyaeqf60Y0uFwQhutcnVYFpL9cJyJz7GG\n6d1Odi8XqZNzn3322fz/VVZZpeE3CRgxi1CwRn/5y1+AwvNQDjXTpk3Ly4q1lCPNbbfdBsAmm2yS\nl/n2t78NwH/+538CcNdddwGw1VZb5WXEVkrgao7jue7GmHppPghqyzKRddjsVv1s9ZvdXhpOBr0d\nyq5Pq7Zjx5teMVoFXkJCQsJIxWiVq4mRTEhI6BijVeCNJLSzK2wVCqWfHrS2ziqUsUV1bfA68dqu\nw/BUeWXXbXf+/Pl5WSnTIgCk/FtWT8r7qquuCgRlUucomofak51ju2vcyt6xThmVq3s/dBJSqAqt\n6mh3f7RjM+PyrX5rVVcrG1p7vAqd2Hv2E6NVrrZdSHrvlwkD2K96lgVTZFnIuG3ZPcaxIWU8LOGz\n8sorA0WIoKuvvjovq/P32GMPoLCv/NOf/pSXWW211QC44YYbGuq95ZZb8jLrr78+AAsWLAAKVi82\n9BaDNVx2dq3QjWH50rDPjON/xui2zaVpU9rP69gju/9ZQl7fjYBFwF+Az3rv764o/33gg8CnvPff\nio5PBL4JHABMAq4AjvLeP9p15xISEhKWEV6yC8mEhIQEix4F3s7AycBNwBjgS8DlzrlNvPfPxgWd\nc/sBWwGPATb44neAvQgLyWeAbwMXOee29N4PbwDcHlHG3rRiiTplPzqJK9lJHe0Yv068tzstE7fV\nrl1r9yhzISnKkyZNypV5MY3WrlKfqkMKvhwlJ02a1MQ8SjGX0lbFmMb2fuqrZSCtXWMd1rHTa1qH\neatbRydxRm2bZf2oayvbqR1mK3RSVz92ASxesgvJ4RqYbAVtBoIy9MvWciRA440Dkivsg4TQ+eef\nD8ARRxwBFHaQALvuuisAd955J1BsqcT1Pf300wDceOONAGyzzTYA3H13Qfg89thjALz+9a8HCsEX\nx6ZShh0FPe/EK7pXdJNRaGlc6148ucvY8VZlbNmRFKy/x12C3U1dBwNzge2Ai6PjryIsFt8CXGrO\nmQq8HzjMe39FVM9DwG7A77vu4FJApy+hbkLzdFp3u230XurqZAu+ajeiVTDvqnNlU66dhDi0j8qo\nPslf+27SYlHyTwvPefPmsdFGGzWco23vv/3tbwCsu+66DXXE4YdUp3Z+7KLUhiESWn2vWpRWoROl\npeoeLHPk6URJKitfhnb3VC+KVyftVv3eD4wE2d4N+r+kTkhIeMnDOVf7rwZWIsiinI10zo0Dzga+\n7L3/e8k5WwLjiRaM3vtHgHsIC9KEhISEUYU+y9WlhmW2tW2ZyFZsS78mzW5v9IpO7Pg0PqttQqEJ\ni0mUd/W5554LFOwjFLm1ZQepHNsxk/jyl78cgDe+8Y0A3HrrrQ3nQsFEXn/99UCxrfPe9743L6MU\nf9K2rYbcbZxEMZ1rrLEG0MjCVdkg9opOGPBWqMOsdOMpXqdMmYd4N230A31u57vArcCfo2MnAnO8\n99+vOGc6sMR7/7Q5/gQwraT8iEKdIMpljgft0E0Yl3Z1tSrXrkw3Th02naBtK4YtY2Wx7M9jeWvP\n0/+yN19zzTWBQl5Onz4dKNhGfQ4NDfHQQw8BxXa3GEjJ4FmzZgHwyle+EijkUOycY7fU7Vj0fmgV\nqNyyq3WdtOpc27rH65Rt5yBTx9mm3X3cKoRQNyYinTrq9IKRtkCsi2QjmZCQ0DH66Ej3bQKDuIMS\nUDvndgEOBTa3xfvSaEJCQsIIRFpIJiQkLDdoF2vTMkUVdfw38B7gzd77B6OfdgZmAI9H7YwF/ss5\n9zHv/drAbGCsc241w0pOB67pYCjLBL0GJG+HViGE6oZE6YWJrOpPK9g6q5xN4mM2SLWtw96HYgTn\nzZuXM49i/MRePvXUU0DBGmonS7sZq6++OhB2cR544IGGfoj51DlqXzaTal9tr7vuujkjWTWnVYyl\nELOwqsPOS7vdszJHpnZBvK3NalnddQJ+l5UrK1uX3e4lIHlZ2+3KJBvJLhaSvQQHL3M2sPUNp0NB\nnS1t236r/lQ9lNoigeIm0zawBMnGG2+cl7n//vuBwuHliiuuAIrwPUcddVRe1m7Pl6UHvPzyy4Fi\nS1vONqoXyAWgtm8UDy122tF5Eqw77bRT6Xih2FrX1rTmQMI4hra09SBqCx2K+Xr++eeBQuCWzXU/\nrlWr+sowHJ56naKsfzag/HALpFb1jx8/vsGEoCwQunPuu8C7CYvIf5ifTwV+ERcHLgN+DpyWHbsF\nWAzMJNhS4pxbC9gYuL6jwSQkJCSMACw3C8mEhISEHuNIngIcBOwNzHXOTc9+mue9n++9fxJ40pyz\nGJjtvb8PwHs/1zn3I+Ak59wcivA/twOXd925pYRWDEwZm9jqvDK0CpVTJxh03f7U9cruxGu76pyY\nVauaBzGC1mZQkKK76qqr5mVl8yg7x0cffbThuOrQuXFKQ9mqWztLldGn2E5Fy5CiNWfOHGbMmFHa\nZxvCSCizHW1nP1jF3Mbe4+1gz7W2rGX2hHXtC7sJHWTPje0t696XnbD0S8NWcrlZSHbDQJaFOmnl\nMNBpvf2ErbOb8a644or5MTF9YmX0/Z///GdeRoJLYSXEMs6dOxdoFBw/+9nPgMKoW2VjxxcxmH/9\n61+B4oGXwAK4/fbbS8fw/e9/v6nMCSecABRhiGQ4rv4BrL322g1jL2MiBT2QYldjIaY5UFD3Vkxi\n1bXqNMxO1TVeFsHsO8Gy7F+P7R1JiAl5hTl+AiGmZF0cCwwC5xICkl8OHOR7ES4JCQkJywgj8T1T\nB4mRTEhI6Bg9xpHs2D7Ae79uybEB4Jjsb9SiHx6mvbAldW3P6sTpa9duK7aoXZ2xzaSUazF9glU8\nq+z5pMTGx2zcSEEmR1La9Xus4Ks+y9LZGJE27u/06dNzJlTtqIzaE2ymsXg+ZOfZzp5S5fS7yseo\n6y0tVLG/ZXUJre75qhiYdZn1Vu22u+dasfT9DHxehbSQLEGdUCZVKGNb7EVemoxMGQuqrRE94BJq\n8Q0npvDxxx8HCjbv4YcfzsvovCefDLt5F154IVBsO3zyk5/My+p8hQQSy7jSSivlZRReR6EpLr00\nxHLWNkxcXraIdpwAf/5ziMZy7LHHNrR13HHHAQULCXDXXXcBhU2jPmNmUoLRZn34xz8KE7k77rgD\ngG233RYo5lYpHevYOnYbZqcfbDQUwrrb8Eh10cpWstVvw9V2QkJCQkL36NFkaCfgk8AbgJcD/+a9\nP8OUOYGQbnYV4AbgaO/936LfrwKsM8Q53vsDW7WdGMmEhISOkRaSvaEVe9OuXBk6sT1rV0cn8SPb\n9aOMNarKUGO/23KxjWSV3WBVnVJAxQQODAzk5jNiIsUMij2UTaTOlXIcEwj6Tcze1KlTG/qj9mRv\nKWVcbT300EO84hWvAAqzHinf8g4X21nlHT1u3LimjDbxb3F/yhhIoSqmY1WGnU7QztY3ZgDrMtad\nePfbdqq5sGNwAAAgAElEQVTQja3mCPLangzcAZwBnIlJKeuc+wzwcUJotX8A/wH8wTn3au/9C1kx\nD/wYOD46dUG7hod1Idnv1IZ1GKMqT95O+yE2UGxh2bl6OG0Q7dj+UUJJ4R/uu+8+ADbYYIO8jAKR\n33TTTUBh/3jPPfcAsMUWW+Rldd69994LFHaLsWCVwFtrrbWAIjjueuutl5eRwLvooouaB2+gfuhT\n43vXu96Vl9lrr70AePDBB4HCVlJMJRTB0194IdyzujbKYQsFW3ndddcBsOmmmwJwyy23ALD11lvn\nZZfFYqbOPT3cTGQr9LIL0K92EhISEhI6R48mQ5cAl2T1nG7qdQSb8q957y/Mjh0KzAEOBH4QFV/g\nvZ/TSduJkUxISOgYaSHZG+qyj51mhimzCevWg7UVOrVvjMtZBqkVOxUjPq+KeauKH1nmeS0ParGF\nUsBVh8KeiTG0bS1YsCBnC2NlGAoiQgygzF10rgiGTTfdNK/DMpAiH9Qva7sp5nJoaCgnPDTuqvFX\nxYIcN25c5X0hksKyvp1klKlCHWa+nW2mDTVXpx+dxD/tZySCdhhGubouIeNXnFJ2oXPuGkJCiHgh\neYBz7gBClrBLgBMjxrIUaSGZkJDQMdJCMiEhIaG/GEa5qhBrT5jjcwj2lMLPgQeBx4BNga8BmwFv\na1V524Xkiy++2LBVZ7d8hVYhV/oVrqcbJ4put7/t+Mpgt73l5BLndZWWqW3lddZZByiCkEPhbLLZ\nZpsB8Mc//rGhHYXxgUL7kWPOm9/8ZgBe9apX5WW0nayt7f322w8onG6geUvc5qJtBTnxaGwAf//7\n34Fiy133TGyToy1t2SZpvuJwSRtuuCFQsATSNqV9qg4obJvqXKt+oZM82nXu+36VWdoYSX0ZjegH\n+1hWtuycupls6qDbOup4fLdrK2bZqryz7Xdbh9i+RYsW5bJFMkqyUMyf6tA51v4Rmj2obXtyMBQj\nqTZVx5QpU3I2U7+pPdWt45LRYigVSm7cuHF5n6ucEet4XFfZHFZ91kE7r+0yNrodw2eZURtqrhcb\nyTKvbdteXW/2brCM5Gq+APLenxYdv9s59wBwo3NuC+/9rVUVJEYyISGhY6SFZEJCQkJ/0UquLlq0\nqDRLWE3Mzj6nAY9Ex6dFv5Xhr8ASYAOg+4WkdRyoYn/qGPkPZ7ieXpidTvoibzsoGDGdrzSBsSON\n7HD0m1ISXnnllXkZMZAKfdMKcjo55ZRTgEZmU5CDiljCc889F2h0VNFv3UDz+OUvfzk/phtcv333\nu98FigDqUGjQ06cHll2hh+J7SuyA5uT1r389ABdccAEAe+yxR15WDG4vaTuHE3WCoHdTZiRgJKSK\nHM1oxWK0yiRTt54616cftl91M4O0qquKia1iserMi43BKFktObxo0aKc+VNd8pqWDBIzp50XMYMx\nC6ljqkOyTHXLJlMpacU+xiya2hHjKWZUCR/KEjfEbUFhzxnvEkF7JlCfAwMDTdlvLCzr2opBbxeL\nspV3f7v624WAa2V/XNfGuCyjzXAwkFXtl2HSpEmlO3w1MYuwYJxJSC+Lc24FYAdCyKAqvA4YCzze\nqvLESCYkJHSMkbi4Ha3oJKxIXceZfrzsunkhdxuovKxMmUOIjldtwwra6tUiTHF8FSEDClLALtAe\neSQQNltttVVD3dqe1ufg4GD+v5RjldViU+0r/q+IBPV7woQJeR1VzjSqe/bs2aX9mDRpUt6e5soG\nT7chlOx1nDBhQuXiryoMU9m92KtzWKs6urnX2y1Ku1F8hKoUlr2gxziSk4ENs69jgFc55zYHnvbe\n/8s59x3geOfcvcB9wOeBeQS7SJxz6xFS114MPA1sAnyLwEpe16rtZRb+p992X1XMTny8F5tNnRNr\nkhISsvGT3WLM4kpj1UMvD0DZuUDBWtbpj/px5plnArDNNtsAjbaIl112WUM/PvrRjwJwzjnntK2/\nFaxwlr1s3I8bbrihoZ/ve9/78jI77rgjAJ/97Gcb+iybSyhCH0k7v+aaa4Ai1FAcQF1CWed0wpLF\njIXYiuFGt4HS+4WXgC1PQkJCwksWPcrVrQBtdXrgxOzvdOD93vuTnHOTgFMIAcn/Asz03ivN0wCw\nKyFT2IrAv4CLCF7bLbNZJEYyISGhY6SFZG+oG/i401A9dRieVu3VRV22qFVbdQNMW8anbPvThrtR\nHXJQUTkpv7ESrC1tsXraJpZSvPvuuwMFiTBr1iwgbFPbIOVSgFWniAQpvQpQLqX8oYceyvsqkkGO\nhmpPJIScFOPt6HhOoGBZ1S8p/ZaZtCjblrZMsP0udOI4VrXF3eqer6qjqj9l9ZeNs+x7J+Yc7UwB\nukGPcSSvIjCRrcpocVn22yPALt203XYhuWjRovwB6xTdeFC3Qie2cL2+6KraiutVmkGxWxIi1j4H\nYKONNgLgvPPOAxo9sVXPzTffXLt/so/Zd999gcILGwqhpW0cxSNTWsVOoXFJsMV5agUJXdlnynM8\nnke1/5Of/ASAmTNnNpwDxbaSBK6Euj7j7Z+7774bgGnTpgGU3qeWbVR/yljIOvfiiy++CCyboOO9\neniPknhnCQkJCcslRqtcTYxkQkJCxxitAm+koIxVs+jE5qwVi1PXLqwO6oQbandepyxrGfPUjgnV\ncSnBspGUAv7iiy/mWcak+O+yyy5A4bAiZVamN0pvKMX/ueeey50MZceo7/pU3eqvnG4Urm3KlCm5\nYi5lWU42UrClIFuPXRuQGwo7SrVnQxZZdlEYHBystDdVWbVvGUAxo+PGjWu6L9o56AitHHWqUNXf\nTttrhZdQQPJhRVpIJiQkdIzRKvASEhISRipGq1xtu5Cs2tZeFiFXhssxp5MyCh8BhSYmLVe/xfY3\nsqOQzYy03l133TUvo5A22267LQB//vOf2/bv6quvBuAvf/kL0Ohso7r/9Kc/AfCb3/ymbX2tIA1Z\nn3Juie+ND33oQwAcd9xxlfUo/M8vfvELoNCk11hjjbyM5mnttdcGiqDql19+OQA77LBDXlYasgK6\nK5e3Ap3HdVuPyHh73gYVFsrsi3vZ0o4dhcRqdII6zmJ1wgn1A6NV4I0UtLIJKws9Yr934sla116t\nqo12/a+DTry22wV+joNWV/VdMljfJbMU9uzRRx/N5cfGG28MFPJNNoliCMVcSt5LdjzzzDM54yf5\nIpMZlZWpziWXXNLwXSzf6quvntehPq622moN7Yshlfy0AbinTJmSj0VyU3JUY1HYIb2j9L6wwdjj\n8amPqsOmkLSB2hcuXJjXUxXUvOpeL7u2VbaQddhozb+1Y7THLcruwU6DqveC0SpXEyOZkJDQMUar\nwEtISEgYqRitcrXrhWS/nFn6NXHDlUbOakOxViIPOTFiYrakwcX9+d73vgcU2q+0ToC9994bgIsu\nuqh2vzReMZKf/vSn898U2FzpCjfffHOg0SGnG2gs0pA/8IEP5L8ptND2228PFHZF0sDL+q6AqnK+\nAfjYxz4GFJqyymosu+22W15W6SZ1HWQHJVsmaLSJiutVoGCoDnAb30ttoh/UQjcsZBk6uceHSzCN\nVoE3UlDHdrGOjWQdNqSKSbHfu2FW6jKTdWINVrFYFoODg5VjiO0FoTlk2ctfHtIKP/XUU/kxfYrp\nk1xRXXIclL2jkiQ899xzOYupxBA6VyydPtWu5KHeEWPGjGmyfZR8takaJcvkTClZtuaaa+b/K5Sc\nmDd9iinVe8fGxpw0aVI+h3qPqYzqFsspdrMsFmW7e0lMsbXV1NjKmPSqzyrmcmBgoKl+fYqRrRv1\noI6NZD8xWuVqYiQTEhI6xmgVeAkJCQkjFaNVri6zhWQnE2ZZwVbBxvsNMVfS3OLQPjayvfonmxoo\ntMr11lsPKLTNuB5pgPF5dSFbydh2UPV9//vfB+Cwww4DivhkUHgkdgLNu8IUvfvd785/++pXvwoU\ntkBK5bjhhhvmZZT2UJAN55577pkf+9KXvgTA2972NgBe/epXA0VQdQV/h8JeUXZB119/PdDICKt9\ne+/E6cWktVsbxNiORr+JDZDtZqv7zmrOMVti02sqmL3qbQVp1TGrurTRYwaGzwL7ABsBiwiBcT/r\nvb87KrMP8CFgC2B14M3e+6tNPROBbwIHAJOAK4CjvPePdt25pYhObK86tWuMv3fKnLQq387mrZO6\nq5jH2As4Rvy9ql09s9bTWLsBcRrEKvkt1lDHxVjqmX300XB7zZgxI7d7lixSe5L7akP2hQpVJu/q\ncePG8da3vhUost+IAbSMm+S3xiIWdGhoKJf5Kqs6LNup/rRi4iwzKdjUkZoH9TuuU/LV2nXGTGw8\nT8LQ0FDldanKsGN3C8eMGdNUVpAMluy0TGireal6LpKNZJvglQkJCQllcM7V/ivBzsDJwLaETAqD\nwOXOuVWiMi8D/gR8PPteZlvwHcKC9ABgR2Al4CLnXJJrCQkJow49ytVlhlGxtW0106U5iWpLGkyc\nKF0aqlISHnLIIUARIwwKL0Exa7KD3HLLLfMy0srkdXzPPffU7p+YRdkHArzxjW8ECg3y6KOPBuD4\n44+vXW8ZNBf//d//DRTaNRSa7xve8Aag0OqlNUOhUavPYiJ/+9vf5mUOOuggoJhT2SDJTumYY47J\ny0pjvemmm4CCFVAGCCiYPtkGSSON7ynNv9qymQvi8WkM9h6U5g3FvOv+EGsR20jKVkj3k2yoYltM\n/Wa9NJclEyn0mIFhd1PXwcBcYDtCnle892dlv61e0f5U4P3AYd77K6J6HgJ2A37fdQeXAmJbQaFV\nPLyq43UzeJSd0+54qz5X2RXb9stYo6q+lj137eq3Xrh65vSpnR/ZUev7hAkTcnZSUF2KCSl5YPNo\nywZ7ypQpOaOl59kma1C/ZFeod8O1114LBKZS3tl6zrVrVRWLUd+V5GLRokV5PyRH1HdB54gJ1c5H\nHO3D5unWHFbdH5oXsYwTJ07Md0skZyXrda6NRWntQMeMGZOPxbKK9lOw98+4cePya2kZWY2pKitN\n3YxTrY73gpG2QKyLpLknJCR0jD5rzisRZNGz7QpG2BIYT7RgzFJ83UNYkCYkJCSMKiRGMiEhYblB\nnwXZd4FbgfYBVAtMB5Z47582x58AppWUH1EosxUUyuyy6nh4V9XfzgazkywfnfarKrNJWRnLLlbZ\nucV2n1VjExNlvZb1feWVV2a//fYDCrvJW2+9FSgYQcX1veaaa4DCPlqs3gEHHNDUd0WXEFun3YP1\n11+/YazawVh33XXzKBsqI/ZUux/trvWECROavJPFblq20zKn6t/ixYubbFOt17ZlgVWH2NaYjdUY\n1K6YSWv/qF2amI22173qXmvlva3rb2ME67vthyAmV/2O7zXLwtdl5zvBSFsg1sVytZDsJUSQNfyN\n65PTiR4WhQMC2GyzzYBCSCn8T+wQoptXW9qdBCZXH26//fb8mB4CPfAbbLABAEceeWRe5oQTTmhb\nd1Vb2or+xje+kf/22te+FiiEiR4yhSeCYhtDDjnKAR5v5/70pz8FCiGqrWlt4+gcgH/+858AHHjg\ngUCx1R6bBkigqw3NtV4GUITz0JaOtsE1f9AscFSfTAri+8Iay0t4KQQRFPOk8+zLo6zNbhA7+Iwd\nO3apBPV/4YUXSvOxV9TzbQKDuIPvR4ylhISEhFGKtJBMSEhYbtBK4E2ZMqXBrlPKQEkd/w28h+CR\n/WCHXZgNjHXOrWZYyenANR3WtdTRyhYr/t6Olalj31i3bCc2lJ3GtazDelbZrQlxfugqdsiyaGIi\npbirjUmTJuVlFetRSpy+S9mUkif2TnaOs2bNym0SxYCpfsVztPMk+0q1IfYTCsVVx6o8rIVWHsU6\nV32WYqd5sDE0J06cmCu8Uj5la25ZOinc1jN88eLFTR7umgd7rvphPb7ja9zONtHOQ9m5dj6scm7Z\nT5EduhZLlizJ5yU+Fo/f5i3vBWkhWYLhChLeTR+67YduHt1o2iqAQsBceeWVQME2xjfxBRdcABSp\n+iRIbrjhhryMmDUF+D7jjDM67ucf/vCH/H858ugBUD8VLBeKIOi/+tWvareh+dtpp52AxpR/Vrgo\nfE8crscGB1foojJo6+fQQw8FCseTmHndf//9G45p3PEixjoj6X6QIIci/aLO1zWPUzdKAD388MMA\nvOIVrwCKOYkDzFsDf/UnDqchYXTxxRcDsNdeewE0OAAoZIgggR6nJBOso4LGGc9FPwm/Xp9p59x3\ngXcTFpH/aFe+BLcAi4GZwNlZnWsBGwPX99S5pYBOA4l3unCLy7fbGm3Vbru+1k3ZWIa64Y+sw87g\n4GBlkGo9V1V1x8+DFg16ZuQQabdKtXWr51dya4899shDj2nxp8XorFmzgELuqF3Jsa222goICzkt\nTLV7oq3uTTbZJC8DzeF3hKGhoXwMNiC7FoNa0GnrXe8qlY93aDQGtWtTI9oFlORdLN9Ubyxnodi+\nl3zXglJjWrx4ccO2chnUnhbJ9v6YN29ek4Oi3gO6lu3uV9UVLzztO244kBaSCQkJyw16jCN5CnAQ\nsDcw1zk3Pftpnvd+flZmFeBVwMrZbxs6554HHvfeP+G9n+uc+xFwknNuDvAM8G3gduDyrjuXkJCQ\nsIyQFpIlaDUpVWxlv1nMXuuRxiKNTlsZUBhfSytVqJ8dd9wxL6Mg3NL4VDbWmH79618DhY2fNNGY\nfesE223X6LQqFlTMJzSyWXUhW0Jp3/EYpB2qXhvwFYotIWl0+k3jBfjrX/8KFPfBpZdeChSadDw2\nhQh6+9vfDsBJJ50EwBFHHJGXkeb7xBNPAAXroODlUDCH6667LlAwrWI3oLgPZG+qeqVxx+E2bIgh\nu70UQ7aldrsEmjVt1aO50fYRFPe5NO2y+z4eT6/o8bk6khAX8gpz/ATgS9n/7wR+nP3vgdNKyhxL\niEF5LiEg+eXAQaPF1rIde9cNE1jmQNPJNnhd9LKFXbXtqPs8TttXVn7cuHGVjhZijazTiQ1/s+aa\na+Z1aBfAht2xAbn1u2TI3/72t5xh0xat2lUZtS+7ee1oqc2VVlopD8WjY3a73DKR1ilmzJgx+TEx\nkJI1klMqq35qntSf+fPn5+8b2aNL1j3wwANAc7IEy+5NnDixKRC7+mFZThs6SGMcGBhouh80tqrr\nYjF58uQmG/SqkEp2Lq05wbhx45qug+41nbtgwYK+hQBKC8mEhITlBj3GkWwrdb33pwOntykzAByT\n/SUkJCSMaiy3C8luGcSq8nXq6aTNVgbadWBt4MRCQmH/J5ZRmlvMdilFn9ggMW6xvaIYNTFh1113\nXcf9jFNNnXnmmUAR8FsaruzwoLB7EePXCmLqZs6cCcDrXvc6oJGRlGZpA76KDYViDqSNbrHFFkBr\n73R5YMumJ77m8oT/7ne/CxTpFa+4oiC6dtllFwDOO+88oLBZ3XffffMy0qzPP/98AI466iigsIOE\nZrZE116aqNKFxcfETMomNA5Irrm78847gUK7FZMRQ+yB1Zrj4PhidzXH6l+cijOFqRg5iANzd2Jn\nWPVbK1vJTsP81GFXOmU1y+w9bV36tGnzrIPEwMBA07Ng723LWqmcWLVnn302fzYkC1WH7OnUj803\n3xwodjVUx9y5c3Nbdz3bek+oLuv0ox0V7YJMnDiRhx56qGGckkeaJ2tH2MpG0tr0Sy7oUzsn1vnn\n/vvvz8ct1lbvDe2E6BzJNTGoej/Ex9S+dmzUZ/VD360tY3yttbvVzkGm7F7QtRPjqjHY0Ea2bju3\nCxYsyK+dtQnVtbV2oL1gtMrVxEgmJCR0jNEq8BISEhJGKkarXO15ITnSB96KhanDAFhtObb5k5Yj\njVEevbfddltT+9JexKzF9nKyjVR8RXn0SZuSByDAv//7vwPwX//1X0BhF/ipT30qLyPNSVp5WXgE\nadWHHXYYUATd3WabbfIyYg415re85S1AwbA9/XQRdUWarhhYabextqo0h7LjUZ/32WefvMyb3vQm\noDH+JBQ2kjG23357oGDhTj75ZAA++MEP5mUUekbMpFI4XnjhhU1tqow00Jjxk+Ys5lFzIxY51qzF\nXKiMNPx4/m+++WYA7rvvPqCYt5i11LMV2+XG9SklZNwPna/7NbajfPHFF/v2vPYzLdjyiFY2jEIr\n1rKqvjK2qq4tZh1v7W6vezd2mVWBpydMmJAzb2L2qkKx6LmIbfAgPK9iz2zKUdnTqeyDDz4IFMxT\nbMesvukdIBZNMklsp94NspWU/eFzzz2XywnVq36J3bThZ+w1HhwczJk160Edx8KFQh5rN0fyYvLk\nyfk7QWPS3MpGUEyk7CytN/fzzz+fy0HZZurdoWtn2T17X8fpDTWWqiD3cSzmGAsWLMhlpGV3Lcsb\ny0doDkE1duzY/JjGZG13+ykLe63LOTcF+DLBkXFNQqKHj3nvb47KnAB8EFgFuAE42nv/t+ba6iO9\nDRISEjrGaE3llZCQkDBS0Qe5+kPgrcAhwKaEFLKXO+dentX/GeDjwEeArYA5wB+ccyuWV1cPaWs7\nISGhY6QFYm+oE5C8rFw3nt6dsppVbXTCkPYT1q4tPmZjDooJFOMlxkkMlbyHFy1a1PA/FDsmYghl\nZyd7dtWp6BN33313fq52j7R7YL1/FZ1BbcRRGqqChIuR1Hf1x6Z/nDx5cr4jpOtiYx3aayr79Lvv\nvhsILKzGoHi6r3nNaxrmUFE/tCtjI03EcW/F4llmVHXZ/mhMUDCR1lbWpoFU3Zpj1bFgwYKcibT3\njj1XsHaocbpOy0SqjL0u/UCPYdUmAfsA+3jvlZThROfcnoRIGV8gRLr4mvf+wuycQwmLyQOBH3Tb\ndq2FZBx4Ot56awc5xeizTEAty6DldWhk3fj6jANG6yGUk4a2rRXgGgpHGm1Pa7tUW79QGHMr1Z8c\ncnROvD2sB/S4444Diu1NOZrEdesB0IMZXzuNXY4zClmktuPxKSet+i4BF9en87TtoQdVWzpQbCtL\n+Csd4le+8pW8jIK7W8TOSYJ1StLLIg7KqzG85z3vAYoUi7vuumtexqatlIDUFjwUW+uaSxuKQtvZ\n8f9yutK9HZsCbL311g19V/DzeCtK10jPiEwKtH0WO/hobvWsag7ia9QubEYnSAvJhISEhP6iR7k6\nDhgLLDLHFwLbO+fWBaYRWEoAvPcLnXPXENLUDu9CMiEhISFGWkj2hrqZbbplAMsy2/SSZrEu2nmV\nl/1uPa9VVkpVbJduz5HCpE+bfcXGZIzZJJWV17TKSlGT4mU9sUUqvPrVr87r1bE45WAMnau4k2p7\nypQp+ZyoH2JKRQTYWJj6jBk56zkcs5XQfI01X7GCLvt4y2pa+1Ip3Hau44wysjO1MXWt3aOuowia\nyZMn5+O3LLK1c1SdNiby2LFj83bUH7Gtmg8dt8yxtZ2MSQnr4W3nth/oMazaPOfcn4HPO+fuAp4A\n3gu8CbiPkD6W7HiMOcDL6QG1FpLWRb8uNCn6LEtX2M3ELcuXmBg3KB4KpeqTY4eYRYCvfvWrDedr\ni0PMWHy+hJLSHX79618HGtMYivk75JBDgIKVitkz6xBiHxIoQtuobaXl0jkAb3zjG4FCwCikjBjP\nmJ2Vo4pYVBsIFoqHU+zb4YcfDsBNN92Ul5HQ2H333YGCxdNDHLOQckpSGjL153vf+15e5txzz21o\ne9ttt20YAxSCUHOoF9e1117b1C+xlQpLpLZjo20JJ/0mgR/nnFY9O++8MzHiVGXqj4z9rYCNX7Ca\nQzkOrLfeeg1jg/BiWt4D5yYkJCSMVPRBrh5MSOTwCLCEkEr2bGDLNuf1lMQhMZIJCQkdIy0k+4d2\ncRXt//E5nWS2sd87ZSZb1dnuePx7p3nDy8pJURUrJGXNZo9S3F+ZeEgJmzx5cl6vtZW0zJNg4ytO\nnz69kqWz7Kr1NFa/x44dm/dZtpdiIgUpyOqnFMjY3tCyt2UsLjRn/FG5gYEB3va2twGFkm0ZUPVP\nc6o64mxBlqWz10kMn8asOZcCPHHixCbbQ2u/qHHHdpU6V2NR31RG31WmKpuSfRbmz5+f21vaMt0S\nbK3QSq7OnTu3IYNaGbz3/wR2yewlV/LeP+GcOxd4ABBLMY2w0CT6PpseUGsh2elLw9o9jpKMZQ2Q\nrZluOEuvQzEuMWMKWaO0iFCE9tHNuNlmmwGN9m1iA0888UQAPvzhDwNFCkCxaAA/+9nPgCKQrOwn\nZSANxQ2uAOlip2LWTO1rnBrXO97xjqYyunm1faI5iVMuavtHD39srCyoDdn6KexOzJppnnS+jNOV\nfvKAAw7Iy55zzjmUQdcjblPCUQxpzPwpzIUYQIXGOOOMM/IyYmqVPkxjEGsbCzWdr3nTi+D3v89N\nU/KxS7Bq3JpHKASWxq5xyQg+nlvZgoox1z24995752WeeuqpvgUlTwvJhISEhP6ilVxdeeWV8/cE\nNCZHsfDeLwAWOOdWAWYCn/Lez3LOzc6+35K1twKwA/DJXvqdGMmEhISOkRaSvaHTjDNVrGUd+8c6\nrGUnbZf1w5btpD9V51axenFZm0FFSqG1m5MSLaV18eLFTXEbrSe4taOT4iZmamBgID+mdq0Tnhg/\n9Udt6vv8+fPz+I3Wjk9jU91S+m3WlunTp1eyvGL3bOzDsrmVuY3mUn20c7fJJpsAhRKs8lOnTs3n\nSnNkbUXtnEsBFws7ZsyYpnptn1WH2lCb8hqP44xaZrLKDldzqvnSmGOG1LY/HBELepWrzrmZBIeb\ne4ENgG8A9wA/yYp8BzjeOXcvwW7y88A84Oe9tDssC0k7GWXMpGUpl8aLqRMPcd2Atu962KBgfxRU\n2t6cAO9617uAwrbv7LPPbmpLnspiqcQyilGM2/zQhz4EFCyjZe4ANt10U6Bgz7RtEAewFsOq9I4S\nSrHtoOw5tS1kQ1zENpcyFNdDpv7FD9vtt98OFCyebEzj66EUYvfffz9QpE9861vfCjRuXSkg+Zvf\n/HGNLuUAACAASURBVGYAfve73wE00P+qR4yt5lQBgaFgAcXqSfjFKRKvuuoqoBAmSm141llnAY1s\nr66fGFsJxne+8515GfVDLwkxh/G1lvapLSWlflQaxZhVVRndDxL2cX1jx45tCr7cLdJCMiEhIaG/\n6INcnQp8DVgLeAY4H/ic934JgPf+pGzb+xRCQPK/ADO99/Mr6quFxEgmJCR0jLSQ7A2tbAWFmL2L\nz9NvZd/jc23d7TLY1LFvLOtjqzpafbex/azZRVmWHsHGibS2kTYTlfV0fvTRR3PnQSnGco5TXWrD\nevrG86jfpMhZuz2bpUXtS7l86qmnctZSSp7mNPZkjscqpV0M3MDAQIPCGNchxb6KVY4z4mjcUmBt\nfmqNX32PHSnVP7Vj50HtqA2xjVKoNUYp/lA4WkrRV/ty6JS5kQiNmBVWfbqGNl+4ZU4FESyxI6nq\nEskigmEkMpLe+18Av2hT5kTgxJ4aMkgLyYSEhI6RFpL9Qyvnk05D97RanFb9ppepDWId96Oqrqrv\nVS/ZwcHByjAuVXW16r/O1eJGtuNabGg3RQuHeMdENmZa1ChOrhZoWgzpuNqPF5Ta/bBBqdUvLT7s\ngi7ectUCUWX1XQs1HbcLPWHBggV5ffZaVpke6FPb15MnT64MWWQdVjTX1qwgbk9b1eq7doSsuYB1\nwhk7dmy+KNbC0AYXtwtY9UOL0vh3uwgXZCYQL8bjNrRInTt3br7Qt9dYfZ40aVLf5OFolatLdSEZ\nT1LVNvNwBijvpE67pa3vseYnhwtpowpAvccee+RlvvCFLwDFQ1EGaVxyxtDNrSDhsYDXQ23DAMVb\nlnrwtP0q7Upb01A84HL+0YOj0DxQaNHKD6utcm0Bx0G49QBKW1bmhPgloTBCmlONRWWh2JbWg625\n1BZ3PE5t1Z9++ukAvO997wMaBYm20SUw5VATXw/7slHIoNhcQOf/+Mc/bqhHDjC//OUv87LKW657\nRvnMY0H92GOPAcU1Vn8UZw4KLV55ubWV/8gjweFO29dx3yXsdG1izXrWrFl9C0o+WgVeQkJCwkjF\naJWriZFMSEjoGKNV4I0k1ElJWPZ/WR2t0I49lPLRS8DydmMRJkyYUHu73vY3tj2XgmodYaSQaUw6\nLkVU29gTJ07MFU7VYbdKxZ5JeVX7MVsVpwVUvdDIVpWNLbbDVlnVpfal7Nug5xqbPseNG5efYx1Q\nyrbjoTk+76JFi5qcW8QqijzR+GUuYMPiTJ8+Pb8useMLFAqtjdlrHYfmzJmTEzO33XZbQx1S+K3j\njMYUOyvZe9puteuaap4sUyvE8Zmt+cZIC0i+LNF2ITl37tymqPkxumUQq8ov64m09jq2P7HDyo03\n3ggUzg9KdRinBdxzzz0BOOWUUyrbvPDCCxu+66aX0FNAaiicdvSwyQnk4IMPzsuIQRRbJgZLLFh8\nviD2MWZcJYTkmGJZR50T/690g2LwYuEvwSMhasMBQSE09JvKqu+xDc2+++4LwFve8hagCJcUs432\nhaLtoThEkASj7GPECophhoIV1DXW1oheULGtzXvf+96GMYgZju8l9UMpKm+44QagkUEUA7zDDjsA\nxX2g7bvYM1UvHY1Tn7r2ENIopoDkCQkJCSMTo1WuJkYyISGhY/Qi8JxzOxHilr2BkJrr37z3Z0S/\nrwR8HdgTWA14GPg/7/13ojITgW8CBwCTgCuAo7z3RYDWUYY6doad2A9W1WF/a9duWR1V51qGp+q8\nsr7XbWPChAlNqe0EKYNS1KRUi31UBqitttqqki20afJiVioeY2wzZxkt/SZSQAq1mDApopMmTWpi\ntmy4GZn7yAZQ/Y4dSmyfrI2kHaNIgnhu1Y5l3KSYW3MoxbcVibDqqqvmCqzIJxu0XL+rv5ZUmDZt\nWp7JzbKKNvyRdZiRgh2H7NE8xMwrFISJxqzv9p6YNGlS29BbiZGssZBsxUZCcXPFgZTrwBrSWpSl\nU+wE3TKlenh1vh4SCYA4PI6YSNmjKe2hAkZDQbcrtI/K6KEog4zAP/3pTwPw7ne/O/9NglKeY9pm\n+cEPinzrSrunvovZjNnUM888EyhYL9kvxjZ6NufsLbfcAhSsY8xwiqW0kGckFNdc/dD2ShyKRwya\nztODr/A4Gj/AaaedBhSx2hSG6ROf+EReRmye7k/N7SWXXJKXkSG4xqCtJoUriqHtFkHzL1YUipBK\nuocUBigOJ6Rx6v7Xiy5+3hRU/OijjwaaU1RKkEJhPyk2XNtAuvYQBH9V1o5O0aPAmwzcAZwBnElz\neq7vADsDBwGzsv9Pc8495b0/KyqzF2Eh+QzwbeAi59yW3vv+u1MmJCQkDDNesgvJhISEBIteBJ73\n/hLgkqye00uKbAWc6b2/Ovv+U+fc4cDWwFnOuanA+4HDvPdXZPUcDDwE7Ab8vqTOEYU6oX3K0C64\neCfsSDeMSrtwQ+3Oi8vaQNPWrKiMiYTA7uk3MUn6LuVZCnxVSJsHHnggV0qlvEkplH2fzEysJ7T6\n+fzzz+djUN8sEyjGS/1Sf6Q4xqZENjSNGDZ9l2Kvc8rCEGncKmuDaKsfYlvj/ut/lRXZEadihEJh\ntzaVS5YsyZlXGwZI49V39UP9k5L96KOP5uSGFGYb1F112WDianP27NmVDH1VSkSRJWJOdW9MnDix\n6Z7XGCyb2g8stwtJTXinDGIVE9mqDrWhz7J0hTqvVR9sLs8Yujn1sOohkgCKPYJl26cHS+kQ49RF\nCk4tT2B9r8NIKiC4PLSBPB+qWDQ9EGobihtd3tU2DhoU3sJqSw9QbFMne0AJFl0zsZbx/IuVldCT\nEIg9xXVNVK9SCcY2khLi9sUgoa40lFCwqHGWiHgs8Rzoup133nlAYV8Jhbe8gp7/+te/BuD9739/\nXubUU0+lDGorblOMpOwqP/e5zzX1XfN/8sknA3DUUUcBhZc/wEc/+lGguCa6xmK8Y0ZY96e24XR/\nxfM/Y8aM0RKQ/BJgL+fcj7z3jzjntgM2B07Kft8SGE+0YMzK3QNsxyhYSCYkJCRYLLcLyYSEhOUP\nwyzwPkPY8n7YOaf9+49473+X/T8dWOK9f9qc9wQwjVGGVsxkJ57TMeK4eDbvfbepElv1uR3K+q9j\nUj6tZ21VQPKhoaGmLGIamxQlsWWWXdxwww2BoEBbJtTmvde5Nm2eFPM5c+bkNpgiCKxNnhS7OAUg\nNHoYl6UahGbWTAxl7JCnfmrcNk6jWDON1aYIFAYHB5scEm2wd32PTWriNgcGBvLx61paFs+yd5Yx\nnTx5cp4yUuOMGc+4H5ofyxC+8pWvzOe3KiWi7acNsq7jcSzXODVmPA/WhrYXpIVkQkLCcoNhFnjf\nBLYhONs8RLCR/JZz7iHv/WXD2XBCQkLCssJyu5DsZOC9OtC0OqdOfWo/djqxqHJGkIYSbw2qTQW9\nvueeewC4/PLL8zLWWUnhXpR5oQw2tIy2SqEIOaQ2ZYMTBy2XU4Y0O407Hps0NQXSVp/LPBEVKkga\nurai4+DW0sjf8IY3NPQrblN91DbwTjvtBBRON1BonfJQlGYpjTLeqtX2frz1D0W4HSg8DOWE8va3\nvx0onFGg0DSllR5++OFA4ZUIxXa8dbYR4uPKh7777rsDhflH7DR17733AoVdlhyZ5FQEhWOWnXeb\njQGK+VYWDgWWj22w5s6d25ThoVu0et6efvrphmvaYb2TgY8B7/LeX5wdvss5tznB0/syYDYw1jm3\nmmElpwPXdNXwMkAdb+lOM9lYO8OhoaEmm8N2bGKdOJLdxJqMy5XB2uLF9zc0hrayXtuSy3LoE4um\nZ1pz8MpXvhIIdncyNXnHO94BNNvtVXlixzEbVb/MTCTb5JAomadPy0wODQ3lMsAysFVZc8Saqc65\nc+c2sXI6R/MgOWDTMJYxhbJJlAyWmZL6t9566zW0FYeBE2z71lZS102so96TG2ywQX4fiIGVzLdx\nKy0zGnu9639dH/XDZi2yJnYqp3tv0aJFTekmNYca9+zZs0eLydCwITGSCQkJHaOVwFt99dUbbInj\n2J91qs7+7IpkKDsOcAuwGJgJnJ31Zy1gY+B6EhISEkYh0kIyQlXonfi71ZxbwWpT3cKmPSyDHDfU\nls4pSy0nrUXsizQoMYEA55xzDgBHHHEE0Bimpxso5JCCU4utlGMOFFqxgperTMxGSbsSQ6dQM2Lw\noGDANCdiyMToPvnkk3lZed1Ji7ZpGqHQOqXx6nxpjVA4/6h/ChyusnJsiudAaRQvuOACoFFDFjNn\nY6/F4YrEbCpUju5Jhe0BOPLII4GCbbR4/etfn/+vvqrvWkjFtk3bbbcdUFwTzU18b4qlFAMghy2N\nYbfddsvLajxio21+YAj3wUgISJ6xjhtmX8cAr8oYx6e99/9yzl0BfN059wIhhuTOwMHApwC893Od\ncz8CTnLOzaEI/3M7cDmjAHVtDKvsJ638FJOi6xuze3VjT1Z5YpfZbLaroxtvchtjUN8lf+K6NG7J\nEpvZRdBzr+dDz473nk033RSAxx9/HCh2Dqztps5RW5L36667bq4w6Vm1DKT1DLe5wVdfffUmT2Yr\nq/RpPa7jax47Usb1q704eUFcVxwzMt7tieu395y912I7TMvm2vzt1h7W7lJNmjSpKcOP3qf2no/z\nlcf9mD9/fl6H3idVTKS9P+08Pvvss/l117xbz+9Wz1inSAvJhISE5QY9Cs6tgCuz/z1wYvZ3OiGs\nz/uArwFnEQKSPwh83nsfp4c6FhgEziUEJL8cOMi30hITEhISRjD6GUpoaaLnhWQZ+1i1qo5lvNWU\npOVIg4vrsExkv1ftZTYeYtYUyLqVZq2ysruLA2wrUPW1114L1GNFLeKUi5deeikAM2fOBAqPsZg9\nk82g2EZpcrFdoDQ1BUqXPeAvfvGLvIxsGGVXJEhri8P26Jiup36TzSQU8yz7QF3rs88+Oy+jEDzS\nqMXuaQ5kGwpFwPA//elPDfUrRSEUoX3EWqpMbLspGyXdgxqD7JmgsIE87rjjGvonDTdmJLfeemug\n0GA1pphNFUtsGQuxyFDcO7KZFRst5ju29RVbLFtVMZNxOKfHH398RAQk995fRWAiq35/EvhAmzoG\ngGOyv1GNOhltLHQdbRaSKsYQmrPOxJ7dddqNf+82s02rPlqbNxtnslWGHUHvCh2XfZ+1zXv00Ufz\nXRQbD1H2jpKtYrrEREpOrLLKKjlbte222wIFsyYbeDsGyQvJy+effz6/dpIXqiM2D4l/jz2+VVeZ\nbSwUc2rzZVu7z8HBwZy1U98tqyd5qDq32GKLhvJieOP27fWx6WjF6qmt2HvcspuWLbS2kmpr1VVX\nzeW85KGgOu3zY6+TPmOPbMu2x3agiZFMSEhI6BCjVeAlJCQkjFSMVrnaN6/tVh7ZWsHHx6XdSVPS\n6t6m5YvP69ck23pixlP/S9O0bcfjlCYkzVbsWWyLKK1NwbcVtV/2cwBnnXUWdSFWS2yV7Ppi71wx\nkbIPPOWUsCMYa4xi4WQ7JG/y2KZFHpBiU3Ud5cUtG0UoWFhp07qOcVpAaeNi48QoymsSivtCWrA0\nQzGCcSB3adeyIZQWGl8jBe+Wxqu4b/E4pWnfcccdQHFtYpZXXtuaU7UlxjNOBan+CGIv4zSisptU\ncHeNN54v66Uo5lvXSkHgoWCPVVbzFNvrvuxlL1vuNeeRgjqZbVoxgO2Yv9jjuJ0NZJWdo2UIx40b\n19Z7vJ3dZTwmawtp262yn4/r1HMslk4yxnoN6xw9Q2uttVb+3IuR1Lk24oSeX5ufesyYMU3xGiUz\n1XfJG9lHb7LJJk3zpPptBh2xd9pJ0jtJbancwMBA01zZnNGC+mu926dMmZL3UXJHuxyCzdYjJlLv\nnsWLFzfZRGoOxQxrLNabO7YttfFEbfYZO+eWWZ8wYULTfOi7zUZj45DaXOSDg4NN7K6g61HHz6Mu\nRqtcTYxkQkJCxxitAm+kYHBwsGkbspVzSzsFwC7C4gWbdfCw2+B1UzW2Wti262f8ElbZMjOTsrHY\nRerg4GBTu1r82ONaOEi5l4I7MDCQb3vqmOqQcq3FhMppoaXFx6xZs3JiQItAzbUUfi0ctXDSAi7e\nate5NsyPFlc6xzrhlCkLdus2DmMT16GtZdX97LPP5nOl+0QKtRaM6qfIC5EG2ta/9dZbc5JA7UuB\n1/yrH5oPITZBsAs2LVTVvvpuwzXFJgp2cWeVFpvasupejx27Or3nu8FolatpIZmQkNAxRqvAS0hI\nSBipGK1yteeFpLYHYqNUu5VdNjnSKqSJqB5pajoOhWZYFoKnHyjLe60+a6s13pYUpGXpU04p11zT\nHBNZ2tMuu+wCNIYBkqOGtnpbQdu2MgiXk8yee+6Zl5GjizRJhfSJtTQ5amh7VOFo4m0FbeMqZ7Sc\nRlRvvIWv7Q5p4grGHYed0PWTFqg5ieMMqk05rCgXte4P1Qtw/PHHA4U5gtKfxc5Omtvf/S5k19NW\nt7aNoJhTaeJlweK15Sx2QkyD5j1mVcRcyARAzk/x9ne85QzF8xMf19xpbjUn0oDjsrpP11lnHaBg\nC2KWI26/V4xWgTdSUGebeP78+U1bhYI9RwxPWbgV/SbGpu62eJ1g43UDkscMkE25V7W92MrJRmOQ\nDLFONrr/bftxmDK1axlayQ+xdZJb1tRk+vTpTSyvGDlte2prWyyeZdumTp2an2vTGdqg6nZbNg7q\nrXektvhluiTovrDMnN638+bNy9vTu05zK/ObmL2MofNmzJiR910yXddY86FP9f2uu+4CCuZyzJgx\neZ+sc5HGoPm3zjdCfL9YRtaeU3Xf1tkV6DRtaR2MVrmaGMmEhISOMVoFXkJCQsJIxWiVq65VGBrn\nnK9abVstMq5HbJkN8BqzNtIQFJ5EGpQYspgBlCYibacsMHlVEPReof6o77FGYwOTSoOKA08r1M1v\nfvMboHDIiUPe9AKNN2ZBZdCs/kmTvummm/Iy0pTFkCoorzRDKBxA5CgkbVuaqmxjoLBj0XWVVh9f\nc2neYkz1PXYaOfXUUxt+kyavYNxiHaFgrS++OGTSO+CAA4DG1GrS5jW+ww47DGgMC6Gg6WL+NIZv\nfOMbeRmlTRTDqbBGcqaKWW31Xc46co6JNXldG10/sY+x05TmTmylrllZOAydp3N0D8QBmsePH49z\njsmTJ+O97/pBcc7597znPbXLn3feeT2191KDc84vWrSorZH+wMBAzuAIVcyJ7ll9j9kbGzja2ocJ\n1qmkFdPSyqas1bmt6rTzUfZMQJD/6rt1UBHjpl0FjUWOdJIfkyZNypk0yRF916dNRajnWsfL0udZ\nZxY98/qud4TKr7322k2OpvZ9aZ1LNE9xgHAbws4GM68K9RR/F4srua8dFfVV8yKGUPOmnbg4DJHm\nX/3SO0i7KOrP9deHRFR670ybNi0ft9YPgmWfy3YJNRb1VXOmvuq7TV1sEd/Hdq7idmKMHTt2mcpV\n59yDwNolRX/nvd/DOXc6cIj57S/e++266G4DEiOZkJDQMUar5pyQkJAwUtGjXN0SiFm2lxPSyZ4b\nHfsDIUuY0JjQvku0ZSSXLFnScnA6P9YapTncfffdQBFAObbXsnZp0mR0PA6eLe2gSgNp1a86F8Z6\nkEGhDUrTlybZKqCzwuHEgbrvueceoNDEvv71rwMFQ9krtt9+ewC22Wab/NghhwSlQ3aQ0oZje8VL\nLrkEKOZ51113BRrnS+WtB6K1R4LCDnCHHXYACq01Djmke0R2kJonyzgA/OQnPwEKGxqVjedWtp/S\n+jXXMVOn+0tzoXvy2GOPzcvo2og9FnshFjSuUyylxvfOd74TKLR3KO7XOGC4HadSGIplFNsb911s\nlO5ly8THzHfMJFe1qWs7bty4njVnsb91cM455yRGMoJzznvv29pILly4sIkF0W+WibMe2HE6PVt/\nP8OVdAObak/9sTK2Ksh2zIZaVkjzoufehp3Rczt16tT8fzFqqlf2fZJT2hGwjO348ePzvmk3wwYx\nVxs2eLZstNdbb70G+8CyedE5Ng2kZM7Q0FATIynZbXeabHi72M5dsKkS49SDUMgUjUF1rrzyyjnT\np7JiOfUelY2qfle/9fucOXPyvuqa6R7XfaHdS+vlLgwNDeVzqXeDGFJdH13zKpYxjhBQxeDbss65\nESVXnXOfAz4BzPDeL8oYydW893tWndMtEiOZkJDQMRIjmZCQkNBf9DFWtgMOB87y3suD1gM7OOee\nAJ4DrgY+l2US6wltF5Lz5s1rYAer8MADDxSVZqt8MZFikWJ7LWlM0jY0gdJ2Yk1THqnSJuoEKC/7\nzbKUNl1U3K7V8KTRxLZ11os8Tlllj0nLO/roo4HG1HVi8yzkZSv2qgyyMdlxxx3zY9IKNbdicn/6\n05/mZfSb7H1+9atfAUXAdChYThvkV99je0XN4bRp04BCE5WmDoW9o+ZWfYjvHZU54ogjALjooosa\n2o7TDIo5vPrqq4GCEVb6SCjYWLUhDfz888/Py8iTW/ai6pc8vaFgI4488kgADj30UKDZkzJuQ9B9\nF7P/us/EesjGUvbF8VzIVkjPjJhOm0KtDPEzl7y2RwdiJs6yiZJZusfEuEjm6D6VrBwcHMzrsx6z\nVajjjdouXmSr2HqSHzZItGWHqpjJ2AbaspXWBlHPjFgzlY9ZN/VH9ep9Z1lNMWXW1hQKmWuffWvn\nZ1nQxx9/PH/nqV3VpXZVp+ZU9oaSFWuuuWYTM63xbrzxxkCzHb9kcGxjq7mxkVM0P2ICJVMl6+MI\nLGpHjKPmTHb2ksNiJm0qwoULF+b3tGS9ki3oeqgfdeKf6rmwdr9VaULLdgfssaqYlP1AH+XqW4F1\ngNOiY5cCFwCzgHWBrwBXOue2zFLOdo3ESCYkJHSMtJBMSEhI6C/6KFc/CNzovb9TB7z3sa3k3c65\nW4CHgHcAF/bSWNuFZDs2UgOP40jK60tMpDSWmOERg2ZZQashQOHVKy3GenHXhb1IZfaOastmV5D2\nFbOQVlOW9lVmlyYNUOzq3nvvnZcRU6WMCtIExUTGtiDWnlPnXnbZZfkx2fwpM4E8jffZZ5+8zAUX\nXAA0s4SxBi3tVZ7J1iMvtleUBiybRtUXs7OqT/OjuYhTCorJVD90zTUGabZxv3SPKtVkPBeCUhyK\nlVHaRyjuOWnaugekAcfQfJ9xxhlAMX8f/vCH8zLqj+YktnkTdG1/+ctfNtSj+wwKNkHXXEyk7qmY\nqdZv6p/uyX6ykDHSQrI3lGWJEWKWra7HqFgju5MyYcKEnjLYWLSLMVknNqX1Aq5ClY3kokWLmtLl\nafzWi1o7SLIVjJk5yVvJJWuracei8sL48ePz3R4rK2yKQptZJmbKtGsj2WS9xiWfdG1Vp5jLOXPm\nNKV5jDPnxO2qLcvAzZ8/vynloH3Pik1V3XovaXdtaGioaT507pZbbgkUETZsOuHYdlSyX8yj3jd6\nr5VFbYnHEo9B7YsBtkxsld1jWb32ObJe9v1AK7k6e/bshggnLepYE9gLOKpVOe/94865R4ANWpWr\ng8RIJiQkdIy0kExISEjoL1rJ1RkzZuTmglCErSvBYcBCoGWMQefcGsArgMc77GYT0kIyISGhY6SF\nZG+IM2ZUYWhoqMljV6yRze1s7ediz2gxR9YL2LKddZiVbvML67zYZtd6A4ula2WvBoHFEpMkVkg7\nGTpXrJbq1Lm33HILEOYptneHgsUS86aXtph//S4bvhVWWKHJbtLOS9XcxlnRxLCp/ipbPI3JZvWZ\nMmVK071kM+5ojm085LhcVU529dV6Seu75mDcuHFNMSYVWULsprLkyP5RdchTfuONN87nQVE0tBul\ncasN7eII8Rzrf5sVyGYzEiyzHf9umUfLLs+fP79vrGSvcjVzsvkAcI73/sXo+GTgROB8YDbBfvJr\nwBP0uK0NNRaS8TZCDOtAYAPnQkFf//a3vwUa0x5q205beQoloBAzsTOKqHRtpZa11S/oodCDJycI\n6wwEzdtN6l8c9kUPv25+hazRNioUzh7xtm2MdltAUGzdQBHiRkbKcuZ505velJdRmAE5qmjcDz/8\ncF5G10IPucJNaMshNizXC8w+3HHKNpvyT9c1fgjtFozCG2kb/LjjjsvLSqCrf6ovDs6u88rCXAg3\n3ngj0OwEdNBBB+VltG0u6L7XNY/blNmChJbu13ibWfe7xmedleIy2vrXS1gvg/i51FzoN91fsQY7\nODjYT6/AvtSTkJCQkBDQB7m6C7A+cKA5vgTYlBBDcmUCC3klsJ/3vv0Cow0SI5mQkNAx0kKyf6iy\nwYrjA1r2zma0kRJls21NmTIlP0csi9qzduBV7Flcrsou3dZVxdCMHz8+77uUctsvwdYV29NLKbX2\n6YLNd685kGL//PPP/3/2zjzMrqpK++8pkgqxjCGKkARQQQbFBpFJJplBmfFTFBAEUQRRW7qlbQXa\nFm1a26aFVtB2oBtFJhGhUQSZZJAhIGMDAj4MKgQIYYixrKRS1Pn+uPXbe911z7lzhXvJfp8nT+Xe\nu8+ezzpnvXsNwesZZtJH5sAejWseeOABSZFVmzZtWmnMR/pnfQcYv1Qd5xP7Rtgz1o558Ww0yqK1\nqfT10i/mzjOTKOrUuWzZsrAukAJle81/thECsA+HhEDBRSn26+JzYA8NDQWiAvKFjGzYuTMmyhXZ\nD/vsX4yXz943w0cQsKwwZbz9MWXK4lm2g07lap7nv1Z1UHK+XyLpPR1VXgcNXySL2Egpbm4YOxva\nhM3CJoKhg4WUIouEMMGQ1huyStF5h8X2lHs3wc0D0wTTB5NohZ0PUMs4ESZSZFYZH8LIhm5529ve\nJimGrbnyyisb9tOn67KG4BwJEDz785//vKRqFhTBi1D030vxuIijF25sylhmmBsTR5c99thDUvUa\nUQ/Chv1h5+s3v/mNpBjom33APisK/UG6QphX26+DD64oZqzD1VdfLQ/2LmsDK2jbKsNvf/tbulB7\nrgAAIABJREFUSXF/SDE1IusKLLOMwGCtYKWt0b6/3rO11uicvedDmPg2EyOZkJCQ0JvoV7maGMmE\nhISW0YnAy7Jse0nHSdpUlTReH8nz/Ifm97PUICdslmXTJJ0i6UBJ0yVdI+mYPM+fbLtjyxGjo6M1\nzGBRBpoy72iUV+/Jy+82xzBKBQobJkaerfJxGn2cvGbsOht5bU+ZMiUoS9bspQj1bDh9O4wBJQuW\nj7iFsGY2ViKmJp7dhNzALMQzlSjU06ZNC17KzK3PwuJRZP/p18Gbp1h7Snst8zgwMFDDRNpc67Z/\nMIOQAZYM8QwbbCFlfKzMokgrPiMcrKHP9w6xAttIv9/whjeEDGVcQ18hA/DA9kRO0f5g3J7dZSze\nLrUoF7mPzenHn0yGOniRhPXhprOL+KY3vUlSZPNYrP/4j/8IZWCRuCn5C5vJ71IMAYMAJIizZbK6\nlfYL4YJ9Jzce4QssU0pfmQNuIisguQkQcDBHsFZS3KCwgzvssIOkaL9YBH9kYoE3F2zX+973PknV\niephXGHCuPEZrxTtCzmmQFhxM1rmD6GLXSHsnrUXhVVkX/CAs8wfa3v33XdLisdLpFq0NqpcT9nd\ndttNUnWYo1tvvbWqr/QdA25JOvfccyVJG2ywgaQ4/zDhUgw19L3vfU8WN910k6TqgPDUw5pzVGTn\ngv6su24l8gLzZ5l99rcPSM8etWW5f9hL7C+7RtyX3UCHAm9I0r2SfijpR6pkXLDI1Tgn7GmqhLg4\nUNLzkr4h6RcTwXW7FyF4kjA+Pl7z0PJpD6XyIN3+ZcwfAyMrh4aGwgsJD3HkACcOnAywb5sJXN4o\nDFDRePnrA5D7h75/qPujdym+eBQFB5fi/DBf3IvM15/+9KfwG/cMpzscefO9f4FCDv75z38OMpIX\nFeSnD7hdZk5g/09//DErstmXt8e09Il+IFP5y3zxzOKl2CaM8KFx/LGvT8/pXw5HR0fD/PId80Ed\nyI3rrrtOUrTjx/nmj3/8Y3j55JQN3wHaZd8ecMABkuLzCdh3EX+P+aPtZsJYlYXg8uvWDaxwL5IJ\nCQkrLjoReHmeXy7p8ol6ziqqXtJonucLCn5TlmUzJR0h6fA8z6+Z+O5QVYLr7iqpsW1IQkJCQo/h\nFf0iaRkjGDne0tFercexZ67Qgki5J0lnnXWWpKgZUe/ee+8tKYZpkKQjjjhCUtQYYeOs/RcsDYxV\nWdDSRmBcaEUYBaPVW1YJb1quIRj3G97whlAG5g9thnqYE0l697vfLSlqb8wpDBLMoiTNmzdPUrVX\nuyRtueWW4f94IYNTTz1VkrTvvvuG7z760Y9KitoubVrbTdq/4oorJEXtEa3TjoH148jCau0ALRWt\nEDtZUhvaOjFwpw/YNtpxH3nkkZJqGQWrIWJnSBuMwaYixHYXFoM+2z1kveItYAVZeymmwfT2xVZI\n0Fe83NG+bZB3bDX5zjM5lh2HGYFJpz8wqVKFpWr3vvDoZhDeAjTKCbuZpKkyL4x5nj+RZdnvJG2j\nPniRtEdmrKcP1D19+vSaUCMwTj4lHn+RL8hey3xyDWwlTDn3YxHzV4ZmA5AD9upLL71UE6jf11Xm\n7GPLeSbWh0PywbI5gqbtOXPm1ERB4J70oWB8/0gje9999wUZxokCzw0fIN4f4xelewSeXfWsa9F8\n+BSRjIm9xPesOQwg+2WVVVYpPQ6mfdaQ/cIYrQmEDx3EqRHyk7o5EfLH5mNjY+FkjiNs2sP+nuc/\npzB+jFb+l+1P1oX94O8jew80Sqc4OjratRfASZark4bESCYkJLSMSdacG+WEnS3ppTzPn3PXPSNp\ndSUkJCT0IV7RjGRCQkKCxWQKvMnMCdsrsIxkGQMl1abag9Gxtm1SZGVg2WCA1lprrcDoYPMLkwSL\n5h0w6jkBtZoa0bOcU6ZMaWhfWZYaEVhHJZ8C0DNKnJBwAsF1q666amDjfNpCbO44/YFdo+6HH35Y\nUoX5ghWjDKdR2J16ltPb09kUloA15C+nM4zJM3DLli2rsS8FPgwObDR1Wpaa/bHNNttU1cUpkWcC\n2ad2vzIPPkUie4s6sWuHGeTk5MUXXwx27bCZ9JV1wf6e00wcqvjdsvDA2yH7NeWeYE75fnh4OPzm\nT5gsY90rAclfLjT1Imk3pz9eQ6DZsDEchV511VWSYkDyjTbaKJTxnmdsTnIP4yAiSaeccoqkGMaG\njQ1Nb1Hv6I5jSCh6biLrwOEFFG1xZGHhvRsZn62P/vAdwmm99dYLZThKpcx2220nqXoOAMewCH/m\nzzrfcIOxKRGitgyecRjYe8Np2x8cchA0OIhY5x3/UGCObRkcZ1hr+kV9UrzR7733XknSeedVsjwd\nddRRkqqD2iOMMGugXnszcrTFvFHvTjvtFMogsC64oPL+gjmD3dPXXnutJGnHHXeUFI3FgXV8ufDC\nCyVFByHassLGZyjx+bntODj+tvvK1iFFIcq8Mwab6/zhhx/ummF4PYH35JNPVpkOdIqCnLBPS1op\ny7LXOVZytqQbaipISEhI6AO8ol8kExISEizqCbw111wzMEFSjLXZQVs+J+wdkpZJ2l0T+WSzLFtT\n0lsk3dxRY8sJRd7NPnTN+Ph4aSxTFAQfEBvFEiV74cKFQQFEWYElQzFBofYBun1fi8KreFa1GW/u\nMns0z+qUKafWJpAxwA6VeY/7oNFLly6tCbfDXKPYY1fJ/PiA1IsXL65pD8XVz7GP7GHH5uvw4X58\nSkTPUr/00ks1zJpnLfmMwulZ32XLloXfPHuJQg3LDUPowxS95jWvqeqTBX1mX9IW1+JjMW3atODx\nzpiwmcRe/pprrgllbX/x5p47d27N+vsA7Z7B5XfWzQaHR9mnDGNgPZYsWdK1qDGv2BfJPM+rgiTD\namHUz+ayqd1gUGBibrnlFknVScZhcGCRAE4DZ599dvhu6623ripDGj8b2qQscLplioBPsWhZIPpD\nGYSvzUQAfEB0bh4rcHg4MG84e8AI2rYwgObBe+aZZ0qqdrb57ne/K6k6cLUUDZEtcOLhZoGNk+IN\nzLrRd4SnFAU37KkP1m7Hz0MIoYOhtHVSoS1SOCIYbHgLmL7jjjtOkvTrX/9aUjzOsEzXf//3f0uK\nDC77DmN4KTrbPPTQQ5Li/Nt9gUD87Gc/Kyk6J9k1+shHPiIpOoEhtFibyy67LJRlnnysNsvOApy3\nigLVc4/BuFp2UaoW1oQI8kb8VsBZZ7dO0WEcySFJUPIDkt6YZdkmkp5TJZRP3ZyweZ4vyrLsTElf\nz7JsgWL4n3sk1UacT0hISOgDvGJfJBMSEhI8OhR4W6iS51WqeGifNPHvLEnHqLmcsMdKGpN0gSoB\nya+WdEhepDn2KDw7YlPN2d8tUHRhSQBmI1yLQr766qsHpQ6l1tv18RdFx2ewAkWsoh9DvWDmoChe\nplTLogHvCWyDmnsCwQfkxlbR27ktXLgwtEMZxs+1MG9EVMDTGE/tRYsWBcWbvsHiQSYwh7QFaWFZ\n2DLW2TOl3g7U2ugxbsbg14Wg6j4rHH/XWGON0Ce+87aZfh/5fr/44otV8TFtf3wcR+pkvvh+lVVW\nqdnb3i4Y4gCig7FhzmPJqbI9bFOISnEP+DSRFpAY9IP5saxyp3jFvkhmWVbI2DHxLJRlu2AMWQwW\nrRUZbzcTrNTRRx8tqTavrK3bL0TRwnhBZttiY3OTYFtXVA83L4wR82RvJm52H1zXslN8B0sIe/aB\nD3xAUgy8KsW5xZ4PthbbS6nWvhNbwn322SeU4biABxD9tP3iO8qw5hibb7vttqEsNqQ+rIK9IWHx\nEMiXXHKJJGnnnXcOZU4//XRJkZXlyAP20oazYS6YP/aADdEEI8q6+nAhtjxzSH8QnFJ8mBFGyLLE\ntm0psqqsOcHs2SdSnB/6BfNtH67MHULKP2hZD/sbY2EvWVZ1zpw5XUsr2mEcyetUYSLL0DAn7IT3\n9t9O/EtISEjoe7xiXyQTEhISPPpV4PUKrJ1fUbYTqaIc+JSHKHqwVXisonSg8KDQPffccyFbFEoK\nJkbeTg0lw8b0k6oV9rIsH0Wp/+xnMDY2VuMZCzxDiTKP6Y+N2+ezrDBe5gnWCMYJ5hDla6WVVqpJ\nredtMWGcIE9Qaun3zJkzQ3s+9ixzir0pY/GxK633vo+B7ONZ+nSYzNfo6GgYH+QBZAufsTv060E/\nRkZGwv/9X8AY8Eynf9jgLlmypCbdpmd7GSv9w2yKffz888+H/cG+hV0H3jPeO+wuWrQo2Gj7LDwo\n3D7DDWymt4ecNWtWWGPmm/YgAaZNm9YTCvrLiaZsJLmhpLiosDW/+c1vJMVFl+Jk4IHtU7y1C280\nXnRcYtkoqdr+jg2BjR83LrZoUjxeoi1uasbkbRNtfbRtb0DahLGCCbTMH3Vzk8GCcnOdf/75oewx\nxxwjKTKA2EZaocxNwbgOPvhgSdGbXpL22GMPSdH7e/fdd5dUzXJ5Y2aEg3/QSPEm5jfm1q4H/2e8\nsKmW+aMemMfNN99cUmRFLTsOw8lvCA/r3AEbyG8//elPJVWzqawX9pQwnTbIO6wudp4IM8pasNYE\nUcfmErtPKT4c2W/sZcsg+hcAmGrCc1gHAsbAMRye49YeeHBwsIoV7QT9KvASEhISehX9KlcTI5mQ\nkNAy+lXg9QMs4wQzwl8UY+y1bJ5jKSq6KHmve93rarLdoFx59so7h9XLde3h2UUfN7HI+cvbLXrb\nP5RGn03NEgiMwbJztiwKbRETRxnvnextVSEuivKb0z5j8N7anlX0Yx0fH6+xJ/XzwDXU6e1C7ViI\nDQp7CamA0u3Dstl++tB5PqOL7ydgfvgrRTtSn6+c9ugPTCnl/vCHPwTZAsuHwsxceptiHCBZv5VX\nXjl4du+www6SIvFCnfTD73HPTo+Ojuqee+6RFOeSdln74eHhGgfedtGvcjW9SCYkJLSMfhV4CQkJ\nCb2KfpWrDV8kly1bVnXcyfEkTgwEtD7nnHNCGRwjbr/99q50kqNCApKTYxnvLdsvD6u9EeOLo1q0\nIHt0TxiWjTfeWFLUQumD1ajR0MhtjabPsbhU6+lmM06AK6+8sqp/aDccbduxff/735ekoCURLNw6\nf6BNccyJiYE9qvWaF44me+21VyiDpu6zR6DV2XA0HB1TliNUHGok6V3vepekaGvEES2MiRQ1atpi\nTrx2asug7bJPbX5v/x350e2eRlvlKJnjavaC7SNH3JtssklV2SKwZwh3hJYsxaN15ot+WU9I+oO2\nzLE6+22LLbYIZdlzjJN5sk5YL730UlV4p07QrwKvV2BZHc/4WdtAzz7BgmACwr7kPoGVwWRl5syZ\ngYmkHdgg+oDN5G677SYpsmrezlBqbAPJ98gwb+doY2OWMWBleamBjQHJveuzvvCX+UMWIkfWXHPN\nwJphXwpbB7PmPXuxd7Tzx2+epeNe9d7U3tPZZkXhL2Ohfdizspid1t7W2zd6b2m/n1iDoaGhGltd\n+kFdPvYijKmdA89yM34fHs7nAmcdh4eHgwxjHTBdIuGHz7SDrS8mdL/73e/COJGV+++/f+FYPBPp\n997ChQtDwgyeWySaYCwLFy4sDT/YKvpVriZGMiEhoWX0q8BLSEhI6FX0q1xt+CL5wgsvVGmO/B9N\nAucbnDck6eSTT5YU2Ztu4VOf+pSkaFeB1m37BdOH5mnDsthsG1LUqKwzEJou2inaKtq51Y7RnGAv\nYRAta4ZGRLBxtFkCY9u+wzLsueeekmLw8c997nOhLHlIDznkEEnRgcaG2YFJ3HfffSVJd955pyRp\nv/32C2Vgpnw8NthROwfYmeC8g7ZZlBOYuYQhsQwnoD6f81eK2i7MLZoijAZ2KlKcSzRT9qS9GX0a\nRcL32OwdN954Y1V/Dj/8cEnVAfRxxPnBD34gqTpVYyPgkGbZS9ogtBOsuN2j7DX2FQHX0YhxvpHi\nmLGNuvnmSoKXRx99NJR55plnClN9toN+FXi9DO8RbdkqZAO/sVcJuwYjTdB5my8a+eRDYHEPcB8j\nT733tmWqyrLQlDGTMEDIkpVXXrnKU1iqzdjCtT4JhM1c4nMme9tQ2CzGBKuHjBgcHAwyBfnr2Tz6\njKz08QynT58e+oTzHYwjZZgX1oc5t/Po7Uk9i0idPnSZZQLL1oO6vJ2hzy09Y8aMmlznZXm7PUNs\nWT5YOh8JgL3H96wX8shm6+H5Qns4nwKf1Ymx8ex561vfGp67yEqfFMKPzTOpjMkylDx7uF/o32qr\nrVY3NXMr6Fe5mhjJhISEltGvAq+XwAuBD4dT5NTCA40sYTzMeDDzOy8/PBjHxsb085//XFJUwAm5\nAlCIeXhiSuOP+1pxtgHeyWZ8fDy8qPDw9aFxAPPCGFEYbSQOH4CcMXhnDl5w7LzwUuHDAFEGQJZQ\njn6Mj4+HuUTxhTDge16UfGxfa07lj1P90bVNY1g0ZhtCqMz0wF9TdFxetr6sjz+CLzompl7Wjhdq\nH4aHlz6OvGlj9uzZIcC4DVJu+8w8sA5EumDuFy1aFMr4l1KvpNCuzShmv7dr49eSNXzwwQdrQiW1\ni36Vqw1fJGfMmFEVIwnNAtvIG264QZJ06aWXhjJ8122cdtppkqSDDjpIUgxrI0WblKL0fcB7wWEn\nxwaUYtgZbnivLVt7RdogQDeak01dBzP3/ve/v6ovZ511Vvg/jAE2IPTrb/+2EmvZ2lxi63HfffdJ\nkjbddNOqMUmRVWRN0LztJr3++uslxZuBcW211VahDFoc42TN2QMIJyk+wBBG1Gvb9A9KWEKbiYC+\nIjz4zMPOhmryGTmYd6vBcoMjlGD8eNBIkb3B7hTW18Yv+7d/+7eqPsMuFuX2RSj59J82jehXvvIV\nSXHNGYv1fGSe+Y16YSIR0lK0lWUd2Ds2nNDQ0JCGhob00Y9+VJ2iXwVeQkJCQq+iX+VqYiQTEhJa\nRr8KvF7BggULgrLkHQ+K4uP6OK04gqGocmSKIoHyMTAwEBQsvvNHcyhBKCZ8xpSizLHG/lYGz3LZ\n2LMo6dSB4orSx7G07+fw8HCYO+aM42cfYJoxMXYIgenTp9cQC8w17CV1+zpgSK1zCQomCrQP88P6\nMH7GOHXq1BqHD78PfCYrS1Qwb/Zo2I7FB7RHOaU8rHBRgPyytH9lrOeyZctqvoM1hADgd+aQ9WIv\nLFiwoCaNI/Chrry5mWV7IQf4za+HDzLOGvgwPnZ/ewcy6l533XW7Jg87rSfLsjmSviZpD0kzJD0q\n6RN5nt9gynxJ0pGSZkmaJ+mTeZ4/UFtb82j4IrlgwYIquzQoaRYez1FS20mt2Y+1AuwduVn/67/+\nK/x2/PHHS6r1SrML43+DIbJMEewkGwxvaI5IbH38Hxs/z2LaNvmOG4qNLkU2kL+0ueuuu0qqtoWj\nPjzjERhFgaxJsUjfCV4uRY9pjhb8cZYUb3bsf7z3tvVA9Dlk/cNRimwb7CLC1B5VIZB5qDAX1Gfn\n1u5LKa6jrQ+G2j+Irf0j87PTTjtJks4444yavvtA/Kw9xx2wmLYtDxso/dhjj63qnz++kuJ9xEMT\n72/GyR6Qoh0szCR7Ee9yxmWP1DpBepFMSEhI6C46katZlq0i6SZJN0jaU9KzktaRtMCU+UdJfy/p\nMEkPS/qipKuyLNsgz/O2M8ckRjIhIaFlpBfJzjB16tSgtKE0eYeIwcHBGlYIRQCGy4eRQlkh1Nef\n/vSnoJxhGoEJx/rrr19VJ3Z+ZQ5ZY2NjpbZgZc42nr2y9nxeIUUp9o4RKGbWCQRzIpRACADPtsKI\nUbdV7KnP2+R5BhKFFQWYNqXImqJ0ouRRN32H3fWOIlJtkGxAHZRFyaRfVmGulz7R1sH3RakCy9Jc\nemegorSXUmVu/Z4GkBGE0GGPwbLSn1VXXTWsmXWukmoJKs/Ws25rrLFG2NOeEfd2p54NBpaJbOTI\nVM92uFV0KFc/J+nJPM8PN9/9wdSdSTpW0lfzPL944rvDVHnRPFjS99ptuOEMTJ06tYp5YqCwS7Ak\nMCvLA8SVwl5Qikc6CIpmFpex2BuYG40Njtcrc2AXmt9gGfEQszEKEULMF0KcmJNSFCQINOzvYFxt\nzEkEFQ8HbkBibEpxLriZoeSt7SB9h7FiDP/7v/8bynBcBFvpvaPtMQBxEJlL5skbktu5ANbuFOGB\n0IIBR3jaG9yzjNzglnnmYcl1eG3vuOOOoQwODBxpMcfEmbPwkQioD69uKd4ToCidIuPCZhNGGUZR\nqo2bxliYL441bfsww7CrMJVSZc+lFIkJCQkJvYkO5er+ki7PsuwCSTtKmi/pB3menzHx+9qSVpcU\nQrPkeb4ky7IbJG2jyXyRTEhISPBIL5KdYeWVV66x0StKRch3sImEgoIVQ5lCUSLoP8rHokWLAmuG\nQoopDp/5nTqo86abbpIUlS4bmBwUOZvV+95+xzipF4WQcFkAdgkl0wbPJtC4d6oD3jMeZXjx4sVB\nOYXpon3mg7oo59P9jY+PB/MfH5KO+4Mx0nfvMT8wMFATeJx2bHg724a33Vx11VVrFHZri2r77JlJ\ni7KA52Xp/3y5kZGRGttD2mOM9AMGmc+YWE2dOjVci2Lvx8Rf1t6GY5Iq84YDq/fm9wykJ5yKmPQy\nL3pQZkvaDjqUq+tIOkbSNyT9q6R3SPpWlmWaeJnkqOEZd90CSXM7aTi9SCYkJLSM9CKZkJCQ0F10\nKFcHJN2W5/kJE5/vybJsPUmflHRG+WWSpLzB73XR8EXy+eefD1qwFI9qscXh+NQ6e0w2fvrTn0qK\nwZwt2rFXsPYqaIMc1XMsyQJbLRFNDW0HZ5YPfvCDoQz1kFie42KOn6Va2xdC8BBU2h6JMt8E9cZG\nyh654pSERo3WbG1qSIeGMwvHpdZTDg3ZMyUcTdsjfDRM2uB42Gq+1APDgCaHVirF41raZm45QrZa\nKqmrKEt91lSBeaY/aMbWXIPvmAuOib/3vcZMP0fTRfuOPVOURpE1J4wTe8amMMQOjCNtH/TWBqFn\nrW3gZzsWqRLaKssy/cM//EPDcTVCepHsDCuttFLYg9xzsIg+vqEUZQNsoTe7gJWBXcMW7cUXXwx7\nAhvIXXbZpaoOZDr7iXsWxsemMIXRa2Q3Vs+b29viebtL5J9NdWrLDQ4OBhlCaDTv4Mbc8dd7hL/w\nwgvhvsdeD/nEXGOHyvMB2WPjXWLSw5p5tgxZye847XGf2+cm8+LjFdJ3xszvyJCnn3469NnPbVkw\nc2BtE8u8sctSePq2pk2bVhhU3/5lPjCzQsZZVtqHPeO+YF/yO98TlB/MmjWrJjYr8P0qQz0byaIy\n3UI9ufr444+HfVWC+ZK89/WDkt4w8X9i3q0u6QlTZnXzW1tIjGRCQkLL6OZxTkJCQkJCfbm6zjrr\nBMVFKozXfZOkt7jv1pf0+MT/H1PlhXF3SXdIUpZlK0vaTtJx7fe6iRfJ1VdfvYo9w9EFDZi/1tPP\nBnvuJt7znvdIisyMZeE233xzSVFLsGyNh02bKFVr/t7ZhvHipGC183nz5kmK2iaa9DnnnBPKEOAc\n5wrqsZohGh5sHLYwXAszKUUnmbPPPluS9M1vflNSDMNk+47WByNmnTPQ4rDZ4TfrBARDxzyzD77x\njW/UzAXhdGiTEESWqYPNZc8wF9aehxuJuWU9CYVk19XHWWNdLSPpY7+9/e1vl6Qqlh12lyDxzbDr\n7Bmclez+52a/+OKLS6+HTcC5xsZzA9bxpgi2rI2xJ0W7O5uuc3x8vGfina3oGB4eDsyKXysrj/g/\nZfmMYx6MHDZhnIpcd911kir31mc+8xlJkaWEkeRe5R71aU6RUTA/9WRqszaSNl5h2TX+pAdwny9b\ntizIIsrAqjIfyFCeRT7d4GqrrRYYT76D8WMdfIxDZAh1jY2NhTlDxsLYwl76FwP6i4yeO3duqAOb\nVK71sS+ZL0596N8qq6xSE26Na5lLbzNJOdZ02bJlNQ6NZWvoUzkWsXc+vif9gJHlWcCe5MTooYce\n0tZbby0pOq9SJ+wl8+Gz0RBb9c1vfnNYByv/isbSDts4GUwk6FCunirp5izLjpf0E1VsJD8t6QuS\nlOd5nmXZaZKOz7LsQUm/l3SipMWSzu2k4UQrJCQktIwsy5r+V3Dt9lmWXZpl2RNZlo1PhKDgtylZ\nlv1blmX3ZFn2lyzL5mdZdk6WZWu5OqZlWfatLMuenSj3v1mWrVHTWEJCQkKfoBO5muf5b1Xx3P6A\npP+T9BVJJ+Z5/h1T5uuqvHCeIel2VY61d8/zfLimwhbQkJF87rnngqYkxbdxNAg0Yx8WpZtAM0ET\nueSSSyRJhx9+eCiDjR4pA2G9rP2dR9FioJ0TMJygz9jgWLsdNEfSDV5zzTWSqsPP/OIXv5AUtaUT\nTzxRUnVw8L322ktStHe84IILJMVA5DCxUtS43/3ud0uK2qG1HYRpQJPGjg82Torr5RlAa4cHs0ew\nbdi3vffeW5KqUu353KWsB8ykVGtfxVxjuyVFNo95Zp9R1oYKQkOFjWE9LZMBI0HbjNvWQ4gcmAbW\nnJSQUm0WBfYkTOyHP/zhUPbII49Us2BPF6WxBMytz/TgtW2pNsNHmcdlp+hQcx6SdK+kH0r6kaoN\nvYdU0aT/RdLdklaR9B+SrsiybOM8z6GbT5O0r6QDJT2viqfiL7Is2yzP88mjDLqEl156KdyzsOMw\nTTCBs2bNCkwSzNGb3/xmSdG2lr1/++23S4pyCwZzzpw5gQU64YSKDb5P4cnJAPH6kDGwfN7+Tmqf\nlRkfH2/JnlKK8sImMGBefD7uspiLNgYl8N9xjyP3uIdYlyKPcK7hPmNOfUxKGFT6R79nz54d1gp7\nfGQWsoGx+PaRc9OmTaux7wSMzXuv+8xA4+PjQfZ7FpNrfd3ehnJgYKBmrbjWrwttcOpGP9dbb72w\nD5Hv1EnZa6+9VlJkynk+IdPXXnvt0F5ZTNR6UQXs78sbnZ705Hn+S0m/bFDmJEknddQr6fHJAAAg\nAElEQVSQQ7KRTEhIaBmdCLw8zy+XdPlEPWe53xapYsNj2zpK0v2q2P/cn2XZTElHSDo8z/NrJsoc\nqkrw3V1l4qQlJCQk9Av61WSo4Yvkz372s6BVSbUebd/61rcmpWOWhYNRQ4vCBvG8884LZY455hhJ\nUTPlmiL4xbJR+GET0fYYLzYwlqW66qqrJMW5wIvY2ohSfvvtt5ck7b575Rl54IEHhjLYi2A3gw0T\n9oo2oj8evGhleOVaz2A0RBgPtDKCoUtRm2O+sO/89Kc/Hcp89rOflRTtKH/0ox9V9ev8888PZT/2\nsY9JqtXwrBaLhg1DguZvPZWx3YTJxF6RPliGDeaVeYN1tN7paKm0Datq7Tu9bZRlFz3YO+xPYvF9\n6lOfCmXs/WJhbXoIGA5j7tN3StHm0zORRaBsESs7GVjOAo9jBcIEbCZpqqoD6z6RZdnvVAms2/Mv\nkpaZg6XxHqXWsxuZgqxi78Mecl+QUAC5MHfuXO28885VZZAL/GXvcU/gWcv9ZPdfWRy+Vpidstzd\nZRlTfFvWzhLW1Oen5hQNWcVYue6ll14K40ZeIIeRR55FQ84gO1dbbbUalpBr6Dv3N/IHT3naWLRo\nUZA/RbnW7ffYffI7cnTGjBmlTCTXeg9rf2I3NDQU+syeK5MhnslFjo+Pj4e9QnuwnF6+ceKETIRh\n32STTQJ7y/OePhNrEsaS5y/7FD+J1772tVXZhywa5Q/3aCXDTTfwin2RTEhISPBYXgIvy7JBVY62\nL83zfP7E17MlvZTn+XOu+DOq2PwkJCQk9B3Si2RCQsIKg+Uh8LIsmyLpx5JeI2nvSW9wOWKVVVYJ\nTA7sCfa72MpJkbmB2YH98HZsMNLYQWNL+cEPfjDY7REFAKYJ+zXqgh3yMQhhl4pscsvYmHosTRmT\n06xH7cDAQI2HsY9fyJh93EaYuBkzZoTfYO1gYn2sRe85D7v2yCOP1MSgZC3pj4/7572YbXs+P7e1\nG7TXsBcsG+rzYvsYvX5ufU7ysbGxMHew3j42rvcIL2KMPdts7Til2hzgMOqwvosXL65heSlLnUQY\nYT7Y19itr7XWWjW24c0y5kXlGjHnPZTZ5mVDwxfJ0dFR/fznPw+fMYCFjsfh5bTTTgtlmAwfZqcZ\n4Gxhg4wedljFqdMbLtu8wRxdcCTazHEgKEr95cFmtWPiCBpwA9oy3CjQ8fvss4+k6EQixTA73LiM\nhZuOlGZSFDocJePUQv22HpyAoP5tjmvm16eq4jhbivNCOBCCq5PCDCchKR5B4zjDMYMNOcTacGSB\nQCQEhBRvZI7ZGAtlrPMOAgbBhjCyDkPNBHtmLVi/k08+WVI8OpFiOBWE1aWXXipJ2nPPPSVVOzLZ\n6yx4cNn/e2cii1aEyvIWQPXae/TRR0OYqg7qnyLpPElvk7RjnucvmJ+flrRSlmWvc6zkbEk1wdUS\nEhIS+gGv2BfJhISEBI96Au/Nb35zYMSkGM2ghbqnSjpf0oaqvEQucEXukLRMFaec8yauWVMVZ5yb\n1QcYHh4Oig/KprU1kyrKFEol9nkokih3XEM5vLix1x4cHAx2wZ6d8h7Eni0CfG+ZFx+XsBVWplnm\nsQyWPfNROVBoPWsG+YA95Pj4eJh3SBEYR/qH4sw1nuVbbbXVwrrA5qIAM6fYz/uMWlw3PDwcInpA\nBmD36bNVQaTQX/ppvfvpq8/sUhbPssiLvYzF9J/Zv3w/ODhY48kNIDMsIyzFOWe/3nfffdpjjz0k\nRZtV1pL5QeFnDJAVrEG9SC2gLItPWWaeItTLW94uXrEvkl/96ldrNoUUGRVS/9njmKKUcI3AzQPT\nZsOzIBxIichGssGz2ZgsvA9YK5WnT0Rg+HaLYBeaeYEZ5ea1TCntww7SZ3vk4cM73HbbbVVlCYpu\nx7XRRhtJig+QZ599NpRBmHGT0pZlxOjju971LknxwXT//feHMrBwOOLQFuweaTIl6Z3vfKekKDhh\nPxmbFOeWeaOfrL0dK6wl+4qjEbsXfdpD1t62yU3OcRH9sg9LHKIIw3L11VdLqnZO8unjCKUC+2j3\njX8wARyupBimpdvheXiQsO8mSzB1Um+WZUOS1pv4OCDpjVmWbSLpOVXSfF0oaXNJ+1SKZ8TweDHP\n8yV5ni/KsuxMSV/PsmyBYvifeyRd3XbHljN8Gj9eClnDlVZaKdxrNvi0FB/IPDz9/mR/2fq904p3\nQPEho4rS7fEd9xyfuT/LHsD2Rcan8WzWWaHeESrtEyIG5yTvdMG9uXjx4qDsMJe83OFAV+bAwnH2\nKqusUhq6yc+5DwvE/fnnP/851Mda0g5jYG2RfbwA2/L+BZJ2+d47u/C9NxGw4DlbVsY70gwPD4f/\n+xcy4EMasV7Mjw3d4/vMc4xnAs8PzAVsgH1/7N6sY0zRC6ZPEenHko62EyOZkJDQBjoUeFtIunbi\n/7kqMc1OknTWxN99J76/w113uCpxJyXpWEljki6QNF2VF8hD8nbsaRISEhJ6AK/YF8kiNtLixhtv\nbKthbCHRJv7pn/5JUtQECI9iv0MDQqO1ffNppNB2YdqkyEZ5bbYRC1kGyzzaflmqG5s6tCdsxzjO\nkCLjSggjmAnGa4Og08bll18uqVZrtO0TtJwg6ATalqJ95xVXXCEparfWto2A494ZgFA3hAOSpHPP\nrWRYwlYQZtPaZTLfsAI+MLIU2UnGDluAdgpDY8swB9RnbSRhWbCtLHrPgEWAJSAdo9Ve0XZhD3wq\nThhiKYZgAYcccogk6aijjgrfwXq0u/fKUBRGaDLQYRzJ61Q/q1ZDFT/P81FJfzvxr++w8sorh73J\n/kVWwZTNmzcv3Msw/TD23EscCSIjPEsyc+bMUocCz9Z4xsX//uKLL4b9Xna604zzTbtMZD0QVod5\ngvHiPvOOJNOmTQv23D4JBf1iTn0QbdZtwYIF4flFvTCC/tiT+xLWk+PXBQsWhPS2PEuR/8gc6kI+\nFR3d+lA8Poi4Zwg9czg6OlrjwEU7ZeGAPDs9bdq0mn3B88qvId/7dJADAwNhvNwHyHzP2CKL/VH/\n+Ph46f4EzYY4sn3316TwPxGJkUxISGgZ/SrwEhISEnoV/SpXG75Ivv71r6+yv2sHaBuWnTr11FMl\nRTs0AuiiZdgJRVOCTUJjseA3tAO8kS07WKZ9dMtOjXFa1gttDTtM2D3r8Y0tHZopbCOG87CGUmS+\n0MAJvG5t/i666CJJ0nHHHSdJOv744yVF73ApzjP2JgTwJeWlFG1SmJ8PfehDkmLqxoMPPjiUxaua\na7BntfAOAthsWsaVdUcbpm3shQiFIUmPP/64pNq0gBbMP9ostkFWq0f7xCCcdYQ1lyKjjP0v+4rA\n5EcffXQoy3esG4xzEbtv2dNWwTx2Wk876FeB1ytYaaWVwj6DeeF+4D594xvfGNaY79jH3Gcw2jBh\nPmi1DXzeKjzjsuqqq4b7CTnBGDhJ8OF4vMwdHx+vsV+jznZszrjnvU22ZyK9o8zw8HBoz0d28H3m\nd06RkAuvetWrQv0wtdTB9/TPyxab2haWEqcorkFe2vS39N32a9myZeEaxkT7lPWRSXz/li1bVsNA\nA55P9N2nzLSnYfWCyEtxrXn+FNnaUh+sKSyzl5/+RMuymmVORqDI2ciC75cuXVqzPycz2UO/ytXE\nSCYkJLSMfhV4CQkJCb2KfpWr6UUyISGhZfSrwOsVDA4OBoYFNg27Mdi0xYsXh3ivpIfbcccdJUVv\nV8/8eDanyFaszLarUXDmgYGB0A9YGhhQxgKDClvG9/y1IWJgw3zKPY8ir1lfllMJb6de5kU+Pj4e\nmD7PksH+wsT5gNicOC1cuDAwjTCh9IN14Fqf6pJyL7zwQmBzCWNDu9j+WdbQ/g4zOjY2Ftg5xuJZ\nNGw46a9nDoeGhmrSJgL6wcmRvcZ+Hhsbq9lDnvmkH34P0K8lS5aU2jeWMaZF+6OZQONFdfhYxIsW\nLSoNUF/WVifoV7na8EXyQx/6UFWw8XYAvW7Dn7DBOVrlyLEZ5wM2ow3qzdExgoSbweY95v9cZ48G\nJwvQ4N7pxuaXZjwIEo60v/Od70iKRx5SdOSg7Kabbiqp2qno2GOPlRSPyJkLDPPtd+9///slSVtu\nuaWk6pA+mBsQboIjBgTwhRdeGMpyLMdNRbgjO04eOsQHs30GfEc9PGS9Y5MUHWgQaFxrHU6sOYVU\nfATM9eyHn/3sZ1X1S/HoDmGKuQdB2b///e+HspgWHHTQQZKiyYLd22W5YOsBYYfDhTXbwNSBvYJA\naiUwfyvoV4GXkJCQ0KvoV7maGMmEhISW0a8Cr5fgmRdYGZSVLMuCsgArcvvtt0uK7BkKKsGaUVSb\nydbVrNep9fhFoUKRog76jK2g9eS15UZGRmpsIVHkIBO8vZ+3SRsbGyuNU+jjN5ZhaGioxuYOogFF\nHvaQLFYQEMROXm211YJ9K2SJt8n2zDDKOMr5W97ylmAjSRnW1HtrM8co1czXyiuvHGwzfSB2byvo\nA5fbIPQ+ID39YU9BeKCceyawyFva7y2/P7zH9dSpU0N73rPcj4HP7P163uOgbM9THkbS+mH4GNV+\nfrqJfpWrDWdi66231iWXXBI+4+DQDLgB+LvddtuF37jRYFAs++PhQ7ZYZg2w6bhBYSitIweOG4R9\nKBJU3QjHYjcDzhmwcAgByzLSV46Nbr31Vknx+IqA2ZL005/+VJL0f//3f5LiTY7TjSSdccYZkqQr\nr7xSkvT5z39eUhSMUhw71yFELfN31llnSZL2339/SdF5hJSNsJj2Om4u5tEGqocx5CYl1SLpJ6W4\nttzwzCVMs51b2mCNucHtUQT7qiwMhVQbKmrrrbeu6RcPTkJyMP8wnHacMJGwvQjtQw89NJRBGNZz\nkvGCmvBLCDTrGMUDiocSLyWThX4VeAkJCQm9in6Vq4mRTEhIaBn9KvB6CWVMC8rFnDlzggLDX0xS\nUBxQPjGV8HFO63ltl3m2ltlO2rpQsmCpAMyYr9N69vqoG5AAKHv87jPLgClTptTU4eM3esYNZcyy\nod6T2Md+hIlC6UdZxvxnZGQkZLbaZpttJNVmoQG0hfkM6zR//vzQVxR9WDrvrUx//By/8MILNeP0\nLC6/+z1mlVX+j2LuvbR9jFrfhv3MHrK2sVIkLPzvNraoZ3G9bSR1MYai+JaN9ryHT0FqzZ0ga2CK\nfdzhFEeyiRfJXXbZpSqUy7//+783XTkMEYyiZXhgk6wNXSfgBoWJwY4MW0JJOu+88yTFANE+ZIUU\nNwdMIrQ5m9sutDdOZrw2NR5UOezRtttuKymGhJGiLSJsHH9hvWyQcG8IDQML4+nHY9smHaIUGWFY\nQfqFfZ8U0x7SVwKa++MJKc4z6R0333xzSdVsKv3ioYiAtkKXsXKdXT+pWpghSNhL3PCWVaUt+swa\nWftYBBbCjDUvEkawsawDfUfoS3FNDj/8cEnSnnvuKUl6+OGHQxnK80ApAv1iDlgr5oAwTLbNnXfe\nuapfjFsqfzC3g34VeAkJCQm9in6Vq4mRTEhIaBn9KvB6BVZJ4f+wRig0zz33XFBEMS8hlqE1U5Gi\nwgpbhZJcFFOv7HMjL24pKjc+PziKNyYeKDAo1TCXM2bMqGkHxQjFlDq99zJK/ujoaI1S5JkvH+8S\nxc0qv2V2coA+M5arr66kcWedFi5cGOwFvdc0c+cZW9q0bJ+39fMZYwCsmc+iI8X192vqc4Az1z4H\nt82AhILOXxwpIWlYH591zGZrYh18RiGfaceziQMDAzXMZxlzDgkFK8+eHBkZKc2T7ueHfePjezJf\n4+PjYb1R6Fkn0E1byX6Vqw1nYNasWcGgWJL23XdfSdEAuR6YlC9+8YuSqjc+m5PFh+nhmlZT5vrN\nj6C1QaW52WArsXezjBi/IbzYUNwI9kjFG/laL1oAU4iAveyyyyTFdFxSNF7GmJv+EAbknHPOCWUx\nBIe1POWUUyTVp9cvuOACSdU3In3/wAc+ICkGdbWsMcG/v/71r0uKgbbxHMeWUIo3E17khNBgvFIU\nXpSBYcOrWYpCgYDysIswpqyhFB8S7Cv2lGWEmWfKsD/sXLBGCEratPuVeb/hhhskRftQxm33K57c\njIFrrf2ttwnmWM8Gx4dlpA3ujfvuu0+SdPbZZ4eyBJ9n/qjfzlc30a8CLyEhIaFX0a9yNTGSCQkJ\nLaObsdMSKkBhQIEcHR0NbBiZbFCeUJb23ntvSVHRtSYWwK9VGTPZyIvb1gNzA5ODYooyh8KGcg17\nNTIyUpiZTIqKps2HLUUl19p/FnkM23YhEjB3wZEOk5vBwcGa8UMeoKhhvoJ5jI+J+M53vjNk9GJ8\nPhMXTKWPm2gz4NhsO/Yv11AHyibki7XlxGyG/cJYGL93wmMszPnSpUtrGHHa99nTIE58ZICxsbGa\n9WCdPOsMivK80z5z6lnMooxLvo5GoA7GD2lA/6xnuGdzG9nwdoJ+lav92euEhISXFVmWNf0vISEh\nIaExuilXsyz7QpZl41mWfct8d9bEd/bfzZ32u+Er/NjYmI444ojwGY2nmaNt3vKvu+46SdUhajg2\n5S0fu4t2cwb7UEM4hqAxSvHo+P7775cUNRgbtBzbIpw90LA5lrTHpmh7sADYUFgHire//e2SYsgh\njtrRhKSoWXFsipPLI488Ikk68sgjQ1lylDOnzYBjV5yNpKjFEcgaTZ0jZCkeT3/hC1+QJH3pS1+S\nFOfIaqQ+swYMBVq0FLNywDAQHsc6oWBa4LNIFIVlYm2YP9bXHjNz1Iu2bYPYA2vjY8dgNVxCNLEv\n2GdFGiR7mMDw9MHe/PSx6EgbwExxxI1zEvXhRSjFOcTcwObhnQykF8TOYFk/HxMRxsNmX2EPYAaC\nKVCZp3G9Nsu8tBuxIbbPZV7Z3r4NNgd7trGxsRrWBznKnkW+sHexv2RsRXaWvj3km6+b58zixYtr\nHBe5hvY987bVVltJqrb/5BpkJe14e0dvw2nlP2wha4ipk2f3uJY5xjFxyZIlwRwHx0ieO8gXH++S\n9tlXdt38GtI/5o5+eubUmnZ572fG773LgbetlMozyPg4kqAeU1jGttOGt5Wk3PPPPx+e76yt73sv\nZrbJsmwrSUdKuleStRPMJV0l6VDz3Win7aWj7YSEhJaRXiQ7Q5ETDLAvhTyQUWDw1OfhhmLLA9iH\nnSlKG9ess03ZdUV9BZTh6JYXFpSf2bNnh2NXFHheUHgRQLlFkcKGmTFuvPHGNS8V/iWcl0/6QUxe\nlM+ZM2cWvrxI8fi3yBHEYvbs2eEYnr+QJZTlpcySFVJUpqdNmxba4aWGOeNF17/QMse8cP7lL3+p\nITp4+eMaXsp5UeKzPQKnT9iVMwbq8I4zfM+cL1iwIOwHn4rRvxT7PVgUOqhM4fGKF59pe3x8vLRM\nIyXKvySvu+66Qcln3P6aXnO2ybJspqQfS/qIpC/5nyWN5nm+oOOGDBrOwNSpUwMbI8Wb/swzz5Qk\nffSjHy29ls2Kg44N2ozdide+QKvONp7RhJG0jAwpA7kBYAdtKBiYHW4Artlll10kVacQRLiz0WC7\nbPgZNgbCAWby5psjm0wqxNNPP11SFILUTxggKWrN3OzUZwUVNzHCBNg59XHEmAMErRQFGde9973v\nlRTjjFmHEStMpMjK/uQnPwll6CPZOb75zW9KqmaqYQO4DlZ2/fXXlxQfMlJkONH+CdbO91K0d2I/\nFLGNzCkCwgtOCx/YHNsrW5YHlM9YYTVlvmtGCNHWr371q6o23/3ud4cyCEAYXV40POvSLaQXyYSE\nhITuokty9XuSLszz/PqstsJc0nZZlj0j6UVJ10s6Ic/zZztpMDGSCQkJLSO9SHYfnnGZOXNm+D8K\nMYHHrbOGFBVDz14VHbs1cr6pd9TtjxW9IuQdE3y4m+Hh4cCaoZShdJKJi+N8SAaUS7Bo0aKqOaJe\nO26UX5Q55s8eLVsGy8If06NowgZbFg1TIMySAPOCIsu8+FSGs2fPDgo2faTvtMN8oKB65nJ8fDwc\n4VvTKzs2/nrHJfrxxBNPhDlknBA/rIOvi7m1x+X+aLjsGNg74zTDnANfJ0ROUerCssDofs3LmEnb\ntg+UPhnoVK5mWXakpHUkHTzxlWfkrpB0kaTHJK0t6V8kXZtl2WZ5nrd9xN3UjFj7tAMPPFBSZH9I\no3fhhReGMhxFsKmwzSMMkBRD79RLjdgIlklEkHq7Gm5cKdqYkWoOtovPUgzrgh0lN/W1114rKQoG\nSdphhx0kVTOGUjUjiV0FRwh481m2EPsanxqRTY8gkaoDfEvSz372M0nVIXRs6rwynHbaaZKinR1r\njKCRqu0lpWhHCetl2V7YXWyhEGh2jbiOh+G9994rqTqwNmPFS5X1Y+8cf/zxoSxrQn3YltrYbexB\n1hhhYx9O9BGBVI+JZB0Ba20FE3vGH83ZcEK+Xq4pCiHFQ+LggyuyARba2lUSasizyJPhWSilF8mE\nhISEbqMTuZpl2QaSTpa0XZ7nPHiziX+SpDzPLzCX3J9l2R2S/iBpL0kXt9t2YiQTEhJaRhc05xmS\nviJpf0mrSbpL0mfyPP+tKfMlVQzGZ0maJ+mTeZ4/0FHDPYIie0MfhmfGjBmBfYK1QhHF2Qalwofj\nKUpr2EzA8aLvrUOPD5btbRVRhFCavL3fwoULQxmUf5RO4q0CTFawr0RJnTZtWpVDkm2XfnAtf1Hc\ncZQZGhqqcc5AMfZMJXPvWdglS5YExZR6WQcURD9f1I3zi7WRRPmjH2UMMXXBFC5atCjUS7uYaDE2\nFHSfQtPaiVKWPYWJlHeQKXPoGhoaCvV6hhg049jVrPOXh7UT9vdSI1vJekypt+Ns9j5qB/Xk6oMP\nPhhIpxJsLWlVVV4Q+W4lSe/KsuwoSUN5nld5X+Z5/lSWZU9IWreTfrf8Iskm32+//SRFxggGSYo2\nb2QCYBHvuOOOUAYmzAd05q+d0LLFtx7eLDz948bhppDizUt9sJaWgeIGuOeee6quwXaQG0+KXtqw\nlEUe516Q4U13/vnn17R54oknSoqp9WBtbZBwhCnfHXpoxfnqpptuCmUsq1gG5tkHNrcB3PGs52gH\ngY+9qGV7YRVZBxgyWGAp2oASBB2GzXoJEhePfiDMdt1116o6pOihzBEMTGzR+Ok7zPlnP/vZ8FvR\nMYYH7J+33WWf2n1BfexFmEnrqelZ0CJQJyk0sQ9lT1nbUthY2vCZR7qNLjCSP5D0N5I+LOkJVbwI\nr86ybMM8z+dnWfaPkv5e0mGSHpb0RUlXZVm2QZ7nf+m08YSEhIReQz25+ta3vrXqXYDEIAYXS7rN\nVifpf1SRn//qXyIn2nu9pDUkPeV/awWJkUxISGgZHR7BTJf0/yT9vzzPMS47KcuyfSR9QtI/STpW\n0lfzPL944prDJC1Qxfbnex10vSdQpLR4pmNsbKzGxhAlAuUTs456aQ5bDe/j2Rtr90YdZUGivdc4\nDBjmJnPmzAmKHn99gG2UPuwOcbSjraeeeqrGQY72bXgfKRIKPlXh008/XcPOAc9AUiesqg0phuMh\ndfEZBRig6NNvnE2tGRREBMxXWZgd6oCdXrp0aU1YH35jbmGI+cx8YKozMDAQFHEfNB2gEPu1Zh2n\nT58e5sizup4hBPXug0YB8suYQVunVfClWrOlsrrrhXcr8/zuBjqRq3meL5JUFR4gy7K/Snohz/MH\nsix7tSpe3D+V9LSkN0n6qqRn1MGxttTGi6QPicCG3GijjcJ3jz/+uCTpoIMOkhQ3oLUvLLONLJpI\nH1OwqAye5dwo3OzYPErR1gw2FIaHlH1S7VER48Om0NrWHXDAAZKkj33sY5JiHlziB0rxGIL+IUCs\nBzvzBcNGWY6vLMOGNy5zgFAhppgUvccpg1CxawcTdsUVV1TNgW2L62DEmNtvf/vbkmJcNSnaaOJR\nTL8uuuiiUIajK9hYjoM4opEiY4vgw2seNtsKAjzoGa/P7yrVphnEFtQKA2+IXQ8w04wPFDGL3ibS\nfmaevMC1fff9gR33xvhS3NveS7vduKyN0CEjOUWVI5el7vslkrbNsmxtSatLupIf8jxfkmXZDZK2\n0SvgRTIhISHBYxJsz3NFh5sxVU6BDpW0iios5LWS3p/neXG6qSaRGMmEhISW0aHmvDjLslsknZhl\n2X2qaMQHSdpK0u8lEdH/GXfpAklz2264h1CPxagXWw94c4yyIM1l3xXV2SjOpG0HhcezQP5336+B\ngYHQd0xnvEkKyjsKJkoS7OLIyEhgmlDOfGB2FH7vsEgbg4ODNawlffXjp5yPkXjjjTeG9glx5/uD\n8g15AcsHWfDUU08FBRulD/MlWF8fwB3Qn7XWWiu0B4HCZ8ZPuDlPpthyPsQa7CZlmAcfQo35eOyx\nx8I1MLTN2kjafVNmz9iIWbe/N2IiQbP3RrtlWkW3XyTzPN/J/H+JpPd0tYEJpBSJCQkJLaMLqbwO\nlTSuin3kEkmfknSeasNVeLQWYDYhISGhT9CvqWfbZiQZCM4a9qiWI2zvyUf4GItWAo/XmzwfP4yj\nc2vngZZE2BkcQWzsLa9lENuMo21CuUjSl7/8ZUnxuHq33XaTVO08gtMJR6HYpFgbGgxoCalE+B/G\nu9lmm9XURyostHacLSRp3rx5KoLV0t7znopiQqpL+mU1SJiCn//855Li8bftD0DDpl9o1R/84AdD\nGRucXIraMX+lmNLyzjvvlBSP/ZkT67CFo9Fll10mKWrf22+/fSjD0TbsB4wEoZ+kGFIJ55iiMD38\n5uPWoZ3bfVy2T6326wOSc42dC38Mj62WTysqxX3g226mX+2gXl0PPPBA2AdlyPP8UUk7TthLvibP\n82eyLLtA0iOq2O9IlePtJ8xlq5vf+h6t2Fr5TCmA/cO9XRYfr6iuZjPd1PMA99lh/O+wadxTIyMj\nNTEuPTPozT24x7h37bxRv08F6ucWpqwslaMU55KyPhsNzxKbxYZnHOHFkA/Ie84SYqAAACAASURB\nVJwsMe8CPEc23HDDGrlDuzCUZWNh7EuXLq3xfEdO+nieNmWtFOfNMnaYCmHvyRhhKr2jLCZK6667\nbpBfmEUxpjKzIc9Y10vD2Wi/2vKN4kV2gmZtONtBr70gNot0tJ2QkNAy6gm8t73tbcGuVoqxTouQ\n5/mIpJEsy2ZJ2l3SP+R5/liWZU9PfL5jor2VJW0n6bhu9D8hISGh17DCvUjCdKDhWI0D7QuNhslB\nc5Eig8VbvY87VqQx1gNt+OwANoA02g/fwSpdcskloczXvvY1SdF5wmvUPoOBFBlYWEYbYJs0dozn\nmmuukaSqB+0222wjKc4hYV0Iig6rJkl77bVXVds4+JSxkGWAkYMFoM8wnlJ0/jn66KMlRUcfWELL\nApCCkHkjjhlepVIM4O6ZSQv/0gGLTNB3y7D96Ec/quoX4ZNsSk/ah+lkD9hQPGj+3o7Genrym4+T\nB5oRAJYNgG30oagss+/r9v1rxpFmsgRTF+JI7q6Kw82DqsQw+3dJv1MlXIUknSbp+CzLHlTFbvJE\nSYslndtRwz2CVrypLTyzw37mvitiExu106wNWtH3tFuWUxkGEObS7lmYN9g7xsYpF6waJ0g4m732\nta+tyR3dKE4g8g2v96lTpwb5zxi4pz1rSTnAM2F4eDiwpIzBe0XTL2w2CZOHHHn66aeDoyJ1IJt8\nlhVvw4nsnjdvXmAkmSOcFpGbyEifL7uIbWb8PL85mWLuYGYZE/2yjn5c68dSxky24r3diud3WV2N\n2qp3T04GEwlWuBfJhISEFRddEHgzVQk9saak51UJSXECGRnyPP/6xLH3GaoEJL9V0u6dehcmJCQk\n9CpW2BdJNDBrf8d3sElFzEmRbYbUOhPpgVaJbYpdGPqBDQjsF6yeFANfX3/99ZJicHBsYGzIG0IF\nEXoHGxIbGoa0h2iIaLCWEWMusMc87LDDJEWbRJhJ22faaCb4eBEY8zHHHCMpat2wkLZ9WNovfOEL\nkqQdd9xRUtTM7XhgDAmmbiPxoy2fcMIJkiI7a8G6wXBeddVVkqJdDuyEBetJGCYbigq7XFhf9qbV\njL3dEL/Z8dk0le2iKEQQ2i0svvXMLLLV7BV0KvDyPL9Q0oUNypwk6aSOGupRWAYItMJMlrEhRXaX\nzdpidsK0lF3r2byFCxeGewk7ap4ByDSu2XDDDSVF2cJJ0uLFiwP7xSkXdfiMNz7zDSzoyMhIYN64\n57jW1+ltOe2YkR0+4wh1c18j49/1rndJiizf8PBwjce5z06EHOAZS38Zy5QpU4K85RoYWNhdbBeZ\nS2w0mfOpU6fWjBe7a54x1ME13oZ0ZGQkPL/po8/o45m/enEdG90fZSxjM/eW3x+e0S6qqxVGtF2s\nsC+SCQkJKx76VeAlJCQk9Cr6Va52/CLJwC2TyP/RWChjA0+XxXUqAlpfvXRyHtgrWi9Y6uEv9mg2\nIPktt9wiKTKIaJLY3VmWyGtZwOaMxXuVtIIwbaRXlCJL9nd/93eSYnDvH//4x5KqbU9I3Yid4u23\n3y6pev4t21kGmMNf/OIXkqItp/WsJ8Ul9jXeU9N6ePMb3nr0x7LR2NRg+wSTCPNg63nmmWeqPuMZ\nXwRYX0A8NCnal9KPH/zgB5Ii+ytFr23PnHfKQuJV3YotY7ssJAHObaaMyUS/CrxeQbM2YY3sFZux\n+Wpk/9UonmS9fnvbSGQDn2HXYN3WXHPNIH+5L7ydI3IVECUCO0CbGhT57iOE+FMFnxFofHy8JtYg\nn30MRuzJ6R9JCVZbbbXwf+QMES7oM8wf8pX7G9Zz6tSppd7qPsECf5GtyN8pU6YE1pD6kak8M70n\nuo+NOX/+/HANNv+cKHKSxNrDpsIQ2+cNc8df1ow+8ywry4hU772gUYYbu78b2Ve2k52mkRd5N9Cv\ncjUxkgkJCS2jXwVer6DoyMyjGSeCsrL2cythUxp9718Umz3240XixRdfDC8zZcSAdzKhbo5UFy9e\nHF5yeFG0L1VSdF7j+JwXPfoxffr0cC3KL2V5+cFRjxcpzIHo9+joaHjZo31einnB5YUKggKSwKZB\npE+8kHmnH168y9JSrrrqqjXOTTjEMGe8rPKSiAmRdR7EfAtHGV5OvULNHDN/9ujfh1Dihbks81aj\no2Vbv//cirNaq/daUTkf6io520SkF8mEhISW0a8CLyEhIaFX0a9yteMXyaKA4kyG1z6KyjQTkLyV\nI21frz1+5bgUDZS0UfbYlEDY66yzjqToEIKzhg1kXXaMaANFc2zKdRyjc3QuRYNojnp+9atfVfXd\njoHc4dTnwya1CsJRnHtuJaoKGq0kffzjH5cUTRI4xkFjteGc0M44QkLLtpoeAeDRfMGee+4Z/k+4\nCuadkEE4PzUDm9/7wAMPlCRdd911VWXssRZt2qDuHu2EavFH2vWCg9cTIPVyzIPldaQN+lXg9QqK\nGEOPVhwP6l1b9luzzKT9vZFJkq+L+8w6jiCrvJOLrwOzIj5b1o9ruccoAxPnx4Z5Dnj66acD84jM\nQ5bC0tEvH2qItu+7777gcGlZSgvYK9g9wpDhsDg+Ph7MsJDpmACVBXv3YYCmTJlSE3YIJtIzyDxr\nGBPs8PDwcGgHBpZnA98j/2FuYWhx9HnssccCU8wccgzOGOfMmVM1Xx6thMWqx7Q3YtkbHZPbNspC\nW6Wj7YjESCYkJLSMfhV4CQkJCb2KfpWrk/Ii2QyDMtmgbcvUkUqP9ICkJrSBtdGuCDxOPTBtRVk6\n0MLQWGzQ8i9+8YuSpGuvvVZS1Opsyiy0arRJNFOCllvnEZx0CCMB0+ZThLUKnDVsQHLYWdILUobP\nFmitaMKM07JwzPdnPvMZSdGBCacbKdrSvPe975Uk/ed//mfLY7FtXn755VX17rfffpKiti1FRhpj\nc9hUW08rYanK9n+790MvCpduhrxY0dGKjWQz7KUv16yTgv/e20HWa4fvkbfeQQQsXbo0nAghK/y9\n5VMA2qQSfI/dIOwYn73TDSyjZyxf+9rXhvppHwdGWDN7EmSvtUHgqYPv6Ic9lbLt0x9k/tjYWGAr\nGSd12tMhC89MLlmyJJRl3Mwhn/06wbZi/7ho0aLw3GF9YEaRj3zmd06mYGXXW2+94EhJCDba4cSE\n55QPTF4vDWezQcRtXfXuh6L5KCtnv2vHQadV9KtcTYxkQkJCy+jFl9uEhISEfka/ytWuhf+pZ//V\njB1kt0Gb1haDYOM+/eE///M/hzJeO6ae008/vbQtNDTYTDtebPsIWQGjaENYENCc6wmCTv9uvPHG\nUBbbSsIAbbfddpJiqJ5OYe2VCLK77777Sop2LtgWWRtJr2miIdug3mjjeFBir2O9Apl/bEsJm3H2\n2We3NR6YSGykCM9B2CNJ+va3vy0pMsnbbrttzfhawWQLg15i/BPaQ5H9YxHD0oj1aCYMULPsSyOG\nsh5gx/xfX9f06dNrbAD5i009n2mXkxobmNynFuXECFYNOz/kEuynTRaB3KF+7OKpG3YRmci1yK/R\n0dEaz2ruTc8I2mDqUkwhu/7669eE9SmziSzD4OBgzTwja8v2hU9dOTg4GMLhcfLkA47DnLJO9BN2\ndWRkJJzqcCJFGeTw/PnzJUV206dOLGITWw0EXi9slq+zmd+bDZfVDfSrXE2MZEJCQsvoV4GXkJCQ\n0KvoV7k6KV7bHq14aDcDtD3LHnqWhr9WW3jVq14lSbrwwkpmNuw2TjopZmHDltF7+TYDnyZLiiwe\nWudBBx0kKab+k6Sdd965ajxo16Qk/O1vfxvKooGTjhGP427h17/+dfg/2jwsHn33rIP9P5qlT68l\nxfHBDBNbjSDtUkzRyBrD3MIWWtvGVoD3YBG++93vSpKOPfZYSbUBkeuhHW9ui3bYRcpaO6xmgp53\nE/0q8HoFzeyXTuzF6gUk997Yvk9F3tq+fFm/YLo4pUH+wZAtWrQoxDKE2SL9qfdaxt4OW0XiOlpP\nWtrFfpH2CQTubfVgBNdcc80gk8u8cn3KQmQtrNqLL74YniH8xmfkH3Ujt4j+gXxbsGBBkHE+zaNP\nlQg8i2f7XPRbESjH6dzw8HBgJ2FmfUIFZDltwcyyXk8++WRol3o51eG5ij8B4/d2qEV99Ggm/mmz\nAcnL2E/bh24EM28W/SpXEyOZkJDQMvpV4CUkJCT0KvpVrqYXyYSEhJbRrwKvV1DPBst+36rdYlH5\nZuPxNVu+qKzNbiJFRgpmEnbtpZdeCvaLMG+wiTByMJHUCavFCcnixYuDzR3twWxRhmv8CQZtW/tG\nroWR4+SEuaQt7Byxrbz++uu12267SYoMIOwcjCRtwN7hGc4pzOjoaGBmvac56CRzS6O1xbZz2rRp\ngT32qSK5hrnF3pyxkaZ3cHAwzI1nqInRyxpzekcqyWa8tps9/amXHadZm2PLyk9GvMgy9KtcXS4v\nkt060qaeolAsZQtgw//MmzdPUgxfw1G3zcd97733tt0/+oXRshRDI+Ak88tf/lJSdbB2hA8ONAih\nI444QpK01157hbLc3PWOaruFm266SVI86qAf9NcKvLL5t8fWrB9j2GqrrWrKI3g4TuEhQ6igTsED\nzoYw4mFH2jByd9ug8WWON50aWrcjOJjH5X2cbdGvAi8hISGhV9GvcjUxkgkJCS2jXwVeL6ERW1TE\ngDTrMdoMe9KI+amHsjI+4wwKM0o2DKIUvaDJOFbmvQ2rSJ7qBQsWBOUfxbAsww0MJGwinsgjIyPB\nNtFntuFa6oaxRJlEid9ll130m9/8pqqdhx56qKqv2ATCWMK20s811lijhrX14y+K52lhWTP+wjT6\nDDJ+ra2dqLdz92WZHzzOIRiYx8WLF4d2icUJ6QB5QJ2eubR2qq0yka1ktmmEZmwkvX1ur3htZ1n2\nSUkfl/Smia/ul/QveZ7/0pT5kqQjJc2SNE/SJ/M8f6DtRifQVwHJ26nPBsSFUcN5BacW6yRDIOwz\nzzyz5bYOPvhgSdHQW4rsJEKC4wOCuUrxJkNgcZNxlGCZJ/q1PBhJ1hHhj8C34XqAZ8fqHS/4dH42\nmDrCyh65SNLJJ58sKaZtbBU4ChF+yYZUAjhdfehDH5IUHX9ebnijd+amyCnIs//2nlm8eHHX7sn0\nIpmQkJDQXXQoV/8k6XOSfi9pQNLhki7JsmyLPM/vybLsHyX9vaTDJD0s6YuSrsqybIM8z//SScOJ\nkUxISGgZ6UWyMxSxGO3kxy773bbT6NpObCQ9UG5QDmFvYAKt8sN31rTI9g8GEIWfmLSDg4PBLAml\n1jOUKKR4gjMm2p81a1YwZfHxG70iT38YC1nJfv/73+sd73iHpEgGwCYSG5jMO1wLMwqR8PzzzwdF\nEXObRh7GzawX89CIibNEi6+HWJAwtHimMwbiAGOK9cc//jGMH6ID1pmx4fnN3PM7JMrY2FhpPvdm\nx1/PtrhdW8mifngv/26gE7ma5/ml7qsTsyz7hKQtsyy7V9Kxkr6a5/nFE20dJmmBpIMlfa/thrUC\nvEjaTcnNzJHB7373O0kxAKsk7bDDDpJaYySxAyQFo7XhJLg1Ze6//35JMU2jFG03YUy5cRFo1hbx\nlFNOkSTts88+kmqDxk4GLr20sj8JTI6xNeyqVMuaFQm3MqbaG5dLca1Iq4jw3njjjUOZVuxZOYJC\nsBeBYygCwttjOARkmZCbTHi2t5nwREUCqV6ojVaRXiQTEhISuosunhitJOkASStLukHS2pJWl3Ql\nZfI8X5Jl2Q2StlF6kUxISFje6FTgZVk2R9LXJO0haYakRyV9Is/zG0yZL2kS7Hl6Ac14bVu06sna\nihdsN4FCaZUwqdqW0StjeDSTMQuWCsWOulDQH3nkkVAHShV/YTGpE5bRx74dGRkJ9fksNFzDWJgv\nytGv2bNnBy9syAnKYhsII4rNJOQAdp+XXXZZcCTEgxlFvVVvZYtWPZyLWDzWjM+sy2233VY1RuZj\neHg4MLPehAtzHIBiTnnm3tpIejTKxNRMnNNuMJHehrRXGMmJ6zeSdIukaZJGJH0gz/OHsizbZqLI\nM+6SBZLmdtSoJvlFshlvbc9kdRvc4FJkk7hhYSQ5npAiy/Wxj31MUmQmi8aCcMD4+NRTT5UkXXLJ\nJaEMRsdsUNrCwFqK3sEcJWBjyRECAXttmS9/+cuSos2gPx7qJlijyy+/XFJMW2g3fTNMXSs3CUIL\nIUsQY8vkNsNIwmi+733vkySddtppNWVgRPGwJwD7AQccEMpYL/tuotv2xNRTZmzfLXRoFL6KpJtU\n0ZT3lPSspHVUEWqUmTR7nl5AUSo4+5tU/YBq9AJZr65OH6b2Ad5sajnuF44w+Ttjxozw0sBRNS9o\nvPwh97gvsS/nRXOTTTYJ9z4Pdepn32OHTd99msOlS5eG0xxkF88KmHv6ybUc4SKf11xzzdA+/bGO\nJ1KUX94O3spLbPTPO+88SdInPvEJSfFlrJkXSB9UvdVg3gMDAzXXMu9cg305L+CcnGF6sPbaa4dx\n85ziL74C9NMHfW8lJWGzY7LfNRtGq15dk5kaEXThOfCgpI0lzVSFkTw/y7KdGlzTcVidxEgmJCS0\njA4F3uckPZnn+eHmuxDwL6tUPmn2PAkJCQm9iHpy9e6779bdd99d9/o8z5epcrojSXdlWbaFpE9K\n+vLEd6tLesJcsrqkp9UhXvYXSc9EYoyL5tgpbKoovI5tgnipOu6jP9ZACy2yRdx0000lRbYLrdNu\nhvXXX1+SdNFFF0mStttuu5p6YCRh3V7/+tdLqtUIpajhYiuIB7qt17Kd3QTHMf7YyPa1KMZnJ0Bj\nZXzYnEoKN9WVV15Ze+EEYJ1vvvlmSZGNJnWaJJ1++umSIqvLfNu92a1YqB7dtjXE3hdGxsZR7eba\ndNjv/SVdnmXZBZJ2lDRf0g/yPD9j4vdJtefpJ7QafLkeK+M/d8JM+jptulR7DSyXTWHo0+O95S1v\nkRRTIMJU8hdwbD02NlZ1SmPb4/mBDPXOP5w6rLXWWuEaWLQiW20p3jfUQb/Hx8drjtSRkbB0Nni5\nJO20U4Uc4rmwwQYb6Nvf/rakKE+RQ9YGvREaOX6UhaqpZwLBuLErZ92effZZSdIDD1SsTHhWz507\nN6wZPgGsu98fzCFt2DBE/nSrWScxi1bZw3ZSjC5vRvId73hH1enpD3/4w2aqXEnSQJ7nj2VZ9rSk\n3SXdMdHWypK2k3RcB12W1AMvkgkJCf2HDl8k15F0jKRvSPpXSe+Q9K0syzTxMjl7otyk2PMkJCQk\n9CI6NBn6mqRfqMI4zlDl9GYHSdiDnSbp+CzLHlQlRNCJkhZLOreDLktKL5IJCQltoMMXyQFJt+V5\nfsLE53uyLFtPlSOYM8ovk9QFe55eQL04q43KNbqmletbuaaezaYPWg17B2NH+Jfp06cHlgo7Shgt\nHxoHZs7b/82cOTPYS/pA5LTD6RB2j9QF+zk8PBxYMU5TYARh3hgLY6Mt+vOa17wmMKDYInNiwqnQ\nN77xDUkxRSD94e+WW24Z/s9pAqwpDK0/Qau3d7q5H5hv1gcWmPmBfWVu586dGxxvvL0lJ3qc9PEZ\nm1LGaNnIdm0SiwKSN6qzzHGmXorEyWAmO5Srq0v6sSqK+CJJ90h6T57nV0lSnudfz7Jsuioydpak\nWyXtnuf5cEedVg++SHbrSBtYSt07THD8N3/+/PAdwoW/H/7whyXFYxY81qR49ICAQVjssssuoQxC\n88ADD5QUjY/tpvz+979fdT1tY9S9+uqrh7IIG45mEag2jWI7wdSbAWMnRtgmm2wSfqMftq/dADcW\na4WXpBSPu+sdbQOyMGAScPXVV9eUQXD/8Y9/lFTtwISwwKi/lWOndtGOI44P9t5tUwNQr0933XWX\n7rrrrnqXz5fkva8flISNCbYZk2LPk5CQkNCL6DCO5EeaKHOSpJPabqQEPfcimZCQ0PuoJ/A23XTT\nYD8sSf/zP//ji9wk6S3uu/UlPT7x/8dUeWGcFHueXkA99rGeLWIZ2kmJ2Gz5onbKvF9hqzwjBdu4\ndOnSmrR5/AZgrXzd2CEuXLgwsHgo+NgiUpa6vQ0e9pADAwOBiURhhCUj3SFjoZwPOfSXv/wl1Ict\nPf2iH8Ql9uGQiCe8xhprhHawm8SuG6UclhV0IwxQK/Z+jJewRLCvd955p6Q418PDw2EdrE2sFBla\nfrd2ppJq0jPW61MjVrGZiAi+rnp2mI32fC+F/3m58Ip/kbRUOWwgmxgBZtMNctMg7NjYlNlqq61C\nWeqBRaUtKwi5kRBSMFm//GVIfxnofbI1cA19gSGTImtGG9zUhCuSJo+RBL///e8lRYEnqcb4vVOU\nCQsCk0vRoB0BTBimIjAnxx57rKRqFpqbFwYY1hKWVYqCkXBOk4Uip556aQ9bgTd47wQdCrxTJd2c\nZdnxkn6iio3kpyV9QZLyPM+zLJs0e56EhISEXkR6kUxISFhh0OERzG+zLNtfFUebf1Il9M+JeZ5/\nx5SZNHueXkCzDGKz6Q1b8WDtRh/LbCS9KYVlmHydZbFZUaRh8VD4sbscGRkJ7KTPVEX9VuG014Lh\n4eGg3MOSUSff+6gZfo5f/epX15ASKJ8ot9h7PvTQQ5Ii+YBiumDBgtAunt2YKXlP7HoMXSvpA22d\nto4ycA0kBvODPSTxJbfYYoswZ8wpZVlrIn6wPj5LVzMB9MvmoV5gco9mY7gW2Vt6JrKHbCRfNqxQ\nL5KwgRyHwPRsvfXWoYw/gkAAEU7Cso38H7tFjkis8OTIg3q9YJWigTb94mZDkHihaNvmWAFBJcUb\nvNthgJgvwihZ4cz/u2WTV3ZzWoZ5//33r/qOYONFsbb23ntvSfHoiWMaKYZQwr4QAbHlllu2P4A2\nMZmCpJvpHTvtZ57nv5T0ywZlJsWeJyEhIaEXkV4kExISVhj0q8DrFTTDNnaS3rAVFtLHfKxXR5mX\nq7dZhIHyHteDg4OhDv8bsPEi7e82HaKPMem9t312FhhD6pw/f35Q6jEP8t7bKOnYMKIk8/3AwEAY\nN7/RDzyv+Z37BSc/bCcfeuihYBq18847S4qZbjCnYj7qOfh5ZrgVxtFeV1TWp0yEVYV1xXN9eHg4\njJe18vGXITl8P23awWbtOsvG0Ixtb6v2l63U0Qn6Va6+7C+SbLwipq7boA3+wthZeh07RYTHhhtu\nKCnaBdrNAwPJzcGNb1lLbC0RrDCHNtUfc3DxxRdLkg477DBJ0h133FHTP8ANSuBXe8Rz1FFHSZJO\nOmlyyBwCoVrvdITKZHkJA2svyJwilOuNFzvT/fbbT1JMgyhJ73//+yVJhxxyiCTpuuuuk1TttQ0j\nXfbwW9EwGUI0ISEhYUVGv8rVFftpmJCQ0Bb6VXPuFbTiZe3/X6++VliTMharFWbHjwPlrohp8nWW\nKWN87z17UbilyHzyHfVyLQwk32O7iFL+tre9LeTl5jtv1kTdxJP0WdiWLl0aCAcUe8aLQm3jVkrR\nAxsSw2b68aQDZRhrUZ5uxli2/s1+LrIrLCvrTaceeeSR8Lt3AmUs/GUefJ511oLr2hmLRbMxKJsp\n12ye7m6gX+VqepFMSEhoGf0q8BISEhJ6Ff0qV1/2F8luHWkXaTRStdaAkwgaFVor10pR60M7RMMi\nALh1MCHcDG0SO4+I/1I8KmeD7LjjjpKqtWu83vbYY4+qsuTVtGFb0EZxFqHv5OuWpJNPPlmTCY6X\nbdikl4OSZ144diYE0gknnFBT9p577pEUg7/bOIeYLxDOaN9995VUrfmzD/i7oh9t96vA62W0wng0\n8lxtJgtKoww2rcSdLPPObtVWT4r3NawerBVs1ute97rQHmUpw2fYReQ18pH80KOjo8G27w1vqMTB\nx0aSdukrYcGwZYRde/DBB4Nj36677lo1BkK6YcoEE+m9ub/73e8G+QPweGb+Ye/q5dNuVv62sqaN\n6uT5Sbi0pUuX1swdc8rzjjnnWh8yr15WmkYe6fVYVV+mFW/uZm0zu4F+lasr9tMwISGhLfSrwEtI\nSEjoVfSrXH3FvEh6JhJYbQEmknA9aE8+k4IU7WG8XQz2MlJkwnzWBDRcSXr22Wer2vD5XG0f0Z7L\n4pvZ63EEYeNZxxDYyltvvbVmXN0AzACx0KQ4HrTnbqe6BPZGY/1+8pOfSJLuu+++mvKsF/sDpxvr\nAQl7QPpF7JpIhyhFFmJ5OIU1QjupE7uNfhV4vYKi7ButME3NxsFrtp1GdTQq6+v2tpH1rvHX+jzd\n3qvc2jIiA/gLAwZgwmAArWc2fSw7zeJ35LBPLrFkyZIga5F79JlTKU6ySIZB35E1M2bMCGV5PpH1\nhoQLW2yxRdVY6smgZhm3VvZJmT0l68Hcr7rqquE5wHPTh4XjueBzsjO2sbGxcCrYThaaMrQag9J+\nbofFbBf9KldfMS+SCQkJyw/9KvB6Bc0coTUTIqgMRY46zTorNNNmu8fj9cbkg5r7Y3peQkZGRsIL\nG040Png4f3mxoTx1/OEPfwgxfn0qRF5ufNgfX/fcuXPDsTd9pB2O0nnZIqoGL7R8XrhwoW677TZJ\nMX4wx9/0B4WWvhe9SDZ77NpJqCkfC5nP9HPp0qXh//7FmjogIRgLc808DQ0NtXxU3My90cihzEfj\nqFfXZDjZgH6VqyvUiySLhMYDmmGZuNaylz5WFhqt3QxoZthKooliKyJFocMGRXDARKLNStXx2KRa\nZlKKGjRlrD1mNwAjhlCQoufeW9/61q62Vda2FMe8/fbbS4qhkGwIol/96leSos0rv5E9QoqhnWAd\neYBY5oOHDiwseXBfDjQjbCabtexXgZeQkJDQq+hXubpCvUgmJCR0B/0q8HoFzYQs6YZDRDP1NmIV\nW/2tqFwRa1T2G8oyR858huUaGhoKirgPEg5JgAkLR88QANT5xje+MbSLwu2PWT3LiYJJXUNDQ6Fd\nTJggBf76179WfYYcgGy45ZZbJFUU1DvvvLOwXZz+YC89u2fnrVkWr95aByHeXgAAGfJJREFUl4V9\n4jOKtg8Gz5wvXbq0KqyRFFlWSBHWC4Wc43zKj42NhfVu5FzTyhF3o2P7VkIKTaZjab/K1Vfci6Rn\nYiyDCDvojyyKwPXUx1+7iSiDvR1CBdZRijfdnDlzJEXGznpiIxT9TcXGtd7R2GXidew9DW1/Wtnw\n3malGcBCWngbpckEa+LTV9qbkfSSeMDDPlpGmDH7B5llrilj7VW7OYZuC5DJFkj9KvASEhISehX9\nKldfcS+SCQkJk49+FXi9gmbCnLRim9iMjVwjBqebjEtZXa047njnF8taeXaOcDIo8z7Noa/j+eef\nrzFxon2fKhF455IZM2aEMrB1MG0onIT/+Zu/+RtJ0l133SVJeuc73ympovRjmoNzzWabbSYphpfD\nGbDZsDhS8w5V9nOjayA/YHX5zByPj48HG1C+Y15Q8j27yWfKWyKiEdNY7/d2A5L77+slBUgBySPS\ni2RCQkLL6FeBl5CQkNCr6Fe5+op7kfQL4cP3SM3lg7ZOHY3KoJWihVpNlu844ubYGy3T1oOGh2MO\nWhx2PlJtqinasg45H//4xyVJt99+uyTpsssuaziWVo60OS5Gq5aiMwrjZAytoh1WBKaA4/kjjzwy\n/IazDcHGt9tuO0nV4ZdwxMEWyWvNtnxZmKl20a+Co1/73Yuox96VBfZudK3/vV7ZdjzDmy3bCmvT\nKMwMNoQjIyNVnsJSZAK9LPZ2kJ5VlGqfEZ6JLPPsXbp0afA+5jdYTkL6EKwbpm6NNdaoqnv69Ona\neuutJcVg6dgZbrLJJpKiCREyFjkFitjtRvKz2agBRdcgF5GF1mTMmzYxzz6API6MrBNOo1OnTi2V\nsc2y3M3YjDZ73xTV1UrYoVbRr3L1FfcimZCQMPnoV4GXkJCQ0KvoV7na8osk3mc2oPPLhSLWcHku\nhLexgY1Dc5SiZupD8mDjI0UNE+0a7RVtDWcSqdb7DxbOpuy7+eabJUkHHXRQVf+aYSbrAW0TLdvu\nATRM60TUDhqxJfWApyRzLcU9suWWW0qKfbaa86OPPipJ2mmnnSRJN9xwg6TIDEjRK3PdddeVVLuO\nk+HJ5/d3LwmZXupLP6KTGJG+nmavbTb2Y73rWrWzrOdh3KodpXWCI+Sa/w12jNMcTm78KcPQ0FC4\nhxsxTp4ZBdOnTw9e2U899ZSkKPs54Zk/f76kGO+SGJHIyXXWWaeGgYOd8+36GJSgmUDcHvXWoOw3\n5svbgfL7okWLap5HrAPPB+8lzTzB7I6OjjbcF816YNdDK/u17FrffjfQr3I1MZIJCQkto18FXkJC\nQkKvol/lassvkr3ARIJemXQfxR/NUYqspU+ReOmll4Yy22yzjaTIqBEiCJsgqwFhc+I1Pqstk1IL\noKXb9I5ogqQDfPDBBxuOk+u33XbbqrFJMe1kkU1qJ2hGu2S+veemFO05GS8M8W677RbKMM+wCthR\n4nEpSTvssIOkuMbdGqcPL2X3dCv7e3mnTeyVe69f0YztYtFvjby1W2Fjmu2jbaMsTV+z7GozzFdZ\nPym3bNmymvY9u4jNOPc9tok2HFyrWYKK5tp7JePRTPzEddZZp+oa5Cxyd2RkJKTUxVby2muvlRRl\n1XrrrScpyn6/Bs0wxY3QTGYbPsNE2uecVGFKYR7pI2yrtyH1Y0GuDg4OtsQOlo2x3QgE9drqxglC\nI3QiV7Ms217ScZI2lTRX0kfyPP+h+f0sSR92l92a5/k2bTc6gcmLrJmQkPCKRZZlTf8ruPaTWZbd\nk2XZool/N2dZtqcr86Usy57MsuyvWZb9OsuyDZfb4BISEhJeBnQiVyUNSbpX0mckjUjytn+5pKsk\nzTb/9lQXsEIebXebvYGRROuymgoaMVoM9nt4CktRe8VOBHbv1a9+taTqFIfW/tLWa4GtJd7eRx99\ntKTqQOnEKLPBzhsBxg8t3Noiomm2461t7Sq9HVIzQJuF0bU2RGjPMIhoyNZGEu9zWAWYV+K66f+3\nd7ahdlXpHf+ta/BOkdr4RpSL1GpE8aU2VfshJkiRSlTQL+0UC6Wdb3UGShhoC+NQmFKYMh9K/FAs\nI9KBltKmHaaUgu0MiMrQaDVqfMHM1MxoEl8SjVDaEIkxqx9O/nuv+9z9svbLuTn7zvP7cu85Z+21\n19pn7+es9V/P8yxWz/7T+oaie1B/pWikbe1STxM5mQjGPF8DR4A/Bv6b2WT294F/CSHcGWM8EEL4\nE+CrwO8BPwb+FPhBCOGGGOP/DWr4AtEWMTpWXryuOfSaaNuLOEdB7avopBtJ2H2fhfyaZZtkm9Nd\ncXRcm59n3eeyV6kiqbbpGNl3+TvafamlTF599dVF26RSalcenU82we4FnvY9V4Hrs1tSnUKo9she\nfvzxx8V10O+UNn7Q96E69Hshf0vVldr/XN/ZIff8mBkMxmCIXY0xPgU8da6e71RVD5yOMR7vfZIa\nXJF0HKczQ2bOMcZ/jTH+R4zxJzHGt2OMXwf+F/i1MDtgN/DNGOP3YoxvMhtQ/jzwO+vZR8dxnPVk\noCLZRgR2hBCOhRB+FEL4dgjhitajMviZVCQdxxnGWGp+COEC4LeALwDPAb8EbAG+rzIxxk9DCM8B\n24Fvj3Li80xT1HZVhLOwalmOP1kX37KudPVFy9lpx9Yt5Fe3tLS0Jl+hlCytmlhSH7y6NuWqValq\npnr1V/7ZUiRfeukloFQRpT5KyVxeXl6z2qG+KdewVo2k7qV5havaWdXmHHUvVyFWX7Qqo+OWl5cL\npVFt1Sqbro9WfaTUqh1SMjdt2tSqFFvafG2ryoq2iO+q59Qyoajtfwe+C/yUmZ39c+DpEMLtMcbT\njUe20HsgqRti7OCKKvo6ztahZQa7TNwXBSBpCSJdQtRSrz6ToVGyWYD33nsPKOV/LWWr36nx00Oc\nBs5YdC4ZK7Vh9+7dRZl9+/YBZXqKl19+GSgDToDCCVxLLTqnbnYl0E3LKs2FzpmmOaqjaTn72LFj\nAGzZsqX1eLkEpMnG5aiufup+feGFF4oy991336r67B7qad3qj67F2M/B2AnPU8Y0UkPrCiHcCuwD\nlpn583wxxvijEIIcv4+ZQ44zcyB3HMfZkMxzIBlj/Mfk5ZshhP3Au8ADwPeG1O2KpOM4nRnB4B0E\nfhn4BWaK5D+EEH695ZjxnDzPM7m+V7lqSJNfW9co2D7kRpenfaqrQ9g+pf6Z+l/+ipo8aqJnX1vV\nb2lpqdUX0O5kYzl9+vSq3JZQ5vnVsekOZlBOSOXPferUqWLCr9yYyrrxzDPPrGq71FbVbfuU9qHt\ndZ/8ntY/3OY7/uSTTwo1VWUknEiJ1eTcXuM000Zbbt4ufqB9cz6OUUcfmuzqvn37eP7550c7V4zx\ngxDCUWDr0Lp6DyTXQ4kUXZTInECaLkqkHnw9tFVLIzZQIlWyZBzkVKx0EFJFoUxRY7dc1MOVptmx\nSmSVsVOQiNTBbdu2AavVLi0tSBk9cODAmn5pKcku3zz77LMAPPDAA2vqu+aaa4DSoOYokk00KZEW\n9Tu9tjr/ddddB5QpNdL7Q0tHt9xyC1B+Z1IxobyGqnvsNEBTY6jBizF+Bvzk3MtXQgh3Al8B/uzc\ne1uAo8khW4AP2SCcOXOmNbBsjCTj6Wd9B5A5x/VJSN7Wzqb304AXKG1luq0plDavy6qWTcBdd2wa\nsCNbKRukgZP9jmUntbJ09uzZog6tSMke3XDDDav6pr8arPVZqWtL5p3+X7fsqz7pd9QuyadlbZCT\nsK/TrRLtQLLtvrDkLNvnJjdv+szeg2PQZFe3b99epAoEeOyxx4ae6wpgBfigrWwbrkg6jtOZJuN5\n1113FblGAfbs2ZNT5QXAUozxpyGED4F7gf0AIYQvADuY5UhzHMfZkAwZlIYQLgKuV1XAL4YQfgU4\nAXwCfAP4Z2YT8muAbzJzIRq0rA0ZA8kY46SSD4/dVqXgycHK9lDOVKUOSl1M/fg0s7M3kd2CsYoq\nVUPKppZCNMNN0wjdf/8sfZSWT3bt2gXAG2+8UZSRuqjP9u7dC5TO3q+++mpR9qGHHlrVBruN1zzR\ntdV1TFVQKZraBlGzeqnAAEePzoQvXa8q9VkKwnr2a5EZmDj3L4B/Y6Y4Khr7bmDXuSJ7gK+FEA4y\nSxGkqO6/H9DkhaJqZcOSLgPXKX1tSkvVD5N9T3ZBtqRJEWxrR9ck412OTeuwds9ulGGVyLpzNdFF\nvbN/ZfdlZ6TM6Vor/Vpal2zMlVdeCZS2SnYt/c2A1UvcXQOq2u6jqjJ1fVVgzfLyctFPGxikVR6r\n4kmZlK/5pZdeWpxPK3xVS/hVfUuXy9v6be/5uj43nW9MJVIMHL/cCTx97v/IbOD4DeA7wJeBW4Df\nBTYzUyGfBn4zxnhyTU0dcUXScZzODDR4W4C/Y5YQ93+AA8CuGOMPAGKM3woh/BzwV8AlwPPAvWMY\nPMdxnEVlYB7JZ2hO6bir4bNBtA4kp6RGQl5UcxNjRIinx2qGtnPnTqCcmfVJJtuXq666Clid+Fuz\n29tuuw0oncJT3zbN1rRVoOqRX6D8PqH0m1Q9N900/41IrPIq0ntWTu26tlIoUz9Kqam6JvpuUkVY\nyrQi7K3S0CcRe1VfpvK8DTR4X8ooo9n0hqTKmT8nbUlX9S4nAbhVInOCYXIV0hylq65OYYNLcs6v\n3wHro90lCKlLWhlh0wDp2spnXHXcfvvtxTEqa+uXz6RWU7R1ruxU6ivZJQCl6nVKboCOrrHU188/\n/3xN+iO9TremhPL32d77J0+eLM5jV+Ry0++kgVQ2hsCmcKpTNZuCstqU0SFMxf5bXJF0HKczUzV4\njuM4i8pU7epcBpJDVcEhNJ0zR/UZWxVUFKHOrVnWmNvVWdQ/+YHo78rKSlFG0eiKTH7xxReB1b6D\nijCXurh16yxLwKOPPgqUUc5QKq1XXDFLlL8e333d95jOfnWdFU25f/9+YHXkvnxxTpw4AZT+Vqni\nKqVB/dP1y/FjbSLnnlxEtXKR2jJFqtLg5CQVz1WLms5jj617v89KSU7EdVtZi5RI2bELL7ywUJRS\nv++0TqlkdedqilJua3uOymrPr5Ua2VupiidPnlyTYFy2RjbVpv2x6lraviHqaptqWddH2c9U/ZXf\nut5TGasIWgWwKvJb33Gd32tV+3L7Xfd+VexBXTqoMdMBTdWuuiLpOE5npmrwHMdxFpWp2lUfSDqO\n05mpGrxFoUpttDRFSbfRJfq0rR19/BzryqX+fLl1iFQJUhmrVnbxFWxTd9v61ITNoyifbCmRWu3Y\nvHkzH344S4964403AuWKnv5KCVMdWl3pkjvUtqtPVHJbHsVTp04VvqBaidNnNluJvrd020t7HpGb\nC7SqT03J26touj7zVCLFVO3qXAaS52NJO4d5f0kfffQRUC5/wtqbXmkR0gARBa+Mvd2eTWOjnQig\nXHK45557gHLpQUYKygATPfyvvPIKADt27ADK5XAot1FU0MlYS7852KXfNKjIOqwrYOjtt98uyihJ\n8MGDBwG49dZbgdUBQzJmR44cWVVPX+qMYpXLwyIal0Vsk+M4zpSZql11RdJxnM5M1eAtIk358Or8\n4frkj7T1t/nR5bS1jbochG3naWpPVcR1Tl5OW2dOvkp73jpsO2xZGz0uX/RLLrmkmPhKZJCfoCbB\nUu0kPnTxO81pex1tfoXqa+qvqjZKcbW7o0k5ltjU5O9paetb1ef2+8hVNavu03lnV4Hp2lUfSI5I\nqkTWcfnllwNr0yHAeEqkVeiUgkGpcKB8wPRQSHFLyyghudL/KHWOllweeeSRouwTTzwBwOOPP76q\nDeuBffhSoymDdujQIaBMdyQjDeV1T7efsvVKzdUPwNAHvi7FSVOCeduu9P31NkBTNXiO4ziLylTt\nqg8kHcfpzFQN3qKQE7W9adOmVvUjJzq3q/LWVGff6PGc89Zhr9OmTZs6RbzXtbfNF3KMvkiR0wRR\nrj6a3B86dGhVpoy0rCa48rPUBF5U5dW07emiZOf4t6btS12IhM2JqTaqL1JdVYf6VBWtbekaiV2F\njfZvU0SbfGrnwVTtqg8k54z1e9SNUqU8zQs9pOnDqgdJD7J8/tJ0Gq+99hoAd9xxB1D2QcbhySef\nLMo+/PDDALz11lsAbNu2DchTzeSfCaUyOoS0D1pSkQKphOLahgzgnXfeAUq1WOqlUnZA6fM5rwe9\n6X6oS3qetsWq0FUpg8ZUiadq8BzHcRaVqdpVH0g6jtOZqRq8RSEnEjonB2SOz9cQBafu81w1rw+2\nvVY1ajqm7nXO9c69Pk3X3Oa1lEJno5SVI3JlZaWY7Ep0UHR2OvFP31dEdFNf2t6v6luumiuqJr/q\np9quSbCug1Vfm8i9h7pkJpCK2idDQV0Z39lmAw8k1zOJc5oo1zKW3+PYqM1S2tT21Cl8167Z1pxK\nLnvs2DGgXJ65+eabi7JK8L1582agVPW0rVcTY6iQKWmycRlntfno0aPA6u9K23mprNTKNCG5+nU+\nqNt+sUrtbbrvx3wWpmrwHMdxFpWp2tUNO5B0HGd+TNXgLQo5PpJnzpwZ7C/WJRdlnQJY5UdX54qR\no6C2tUOuLk35A7uqQGP6vjX1xV47TWDlGyiFTuWOHz9eTGCVR1JYH0QpknLBUV1V/oVd8402vZfr\nj5rea2q7hImqqP268+d81kTTPV+XC7KpXW0qb5WvaF+mald9IOk4TmemavAWhZwB1dLSUutAMmdZ\numui6bpz5ZTJCf5pq6suhU7O4Ch3INU0gLKJtnPqqLvGqktL2vbvZ599VrRV+Xo1kNZWrVo9soE6\nep3jviDqtllMj6lL2ZSzxG8HbHWBObYu26eq+ptSSTXV3VSHXU3sM+Hwpe0NNJC0S3rr8YVoJpmb\nw2yRUB4vGTQt3SrVD5RLu3q4NfOVj066R6wCVmQMlcw8DVhZj+TkFhvcpH6ny9bXX389QLHDhNqe\nJo23vk9ibBcKqQzAGt8p6yYx7+XrJqZq8BzHcRaVqdrVDTOQdBxn/ZiqwVtkclLU2LI5SmBbHZYu\ngTJDUujkLs9X1Z2zpJ9zrqpj2pS4JqQmtrVHCtxFF11UTNBVRq81cdQk2KbU0aT97NmzxaSzzeUg\np0+5SmxVHfb8dflx7TmqlMi6tteVq6q/TV22IlBTIE3uvTaEqdrVSQ0k1yuQIJdFDaTJQcqX3QM1\nDbY5ceIEUCp22mZQqXSUoBzgueeeA0pfoAcffBBYvV3m2FtA5mAfct0nW7duLd7TFokKuqm6z6Tc\nWsa+79Lrr3boeilZfF3wzXoyVYPnOI6zqEzVrk5qIOk4zmIwVYO3SOT6FabvWdr816rKttVhy6Wq\nUm7qkya1qItqWfV5lcraprr2CULqkiJG2AwUcomRAim/R7n8HD58uFAg7RaJuu6a5CsHroJy0i0T\nc31mRZO6N0QFtwqkVQbrgl3SOrreUzlqd90x1nez6n7popQPZap2dVIDyS4XuUm9bNqOro30xlvP\npOKWHHVKycZTVVDoodDWf0rts7KyUpSROvbuu+8CcPfddwOwd+9eAF5//fWi7M6dOwG49tprgfLh\nStXHRVBwZchTg2/vEb3O+SFfzzRTdr/elHSprA6PLnQcx1lcpmpXJzWQdBxnMRjD4IUQvgz8EXAl\n8CawO8b4w8EVT4CctCupatYnClnH5Sie9piquruoVm11dqEq3UruJD7Hj65r25p84uz3pXbKHUiq\nY4rcjGyqHL3W50r7o0mjFMlTp06tmWQOjfZvqqPpfrLfS1OO5bZz5d5jXdT3umOaUl+1nc99JDfw\nQLJJVRqiJJ5PFRLqt8urwiqRaQJrG0Et9VIRy1D2VQ7kimpWovJ0hwUpm2qfFL+0DTmq2bzRudN9\na63/YxdfzqoHP0elVJmmc+l4lWkyWDnXdMx7d6jxDCH8NrAHeAT4IfAV4KkQwk0xxiPDW+g4jjMt\nxhyUricbdiDpOM78GGHm/FXgb2KM2rD9D0MIu5gNLL82tPJFpyq/Y5fIWpFTtmuOxxxFsqvKmaM4\n5UbnpupWm/9aDrnRwDlKZF0ZTeKkHMrvMX1PQX+ajGuHLSmR2mFM50i3TNQxVizJvS45+T3bFOyq\n42xS+brzpnUM9Ums8m+0n7Xl/Uwn3XX5K6W2jjlBd0XScZyfGYYYvBDChcCvAt8yH30f2D6gWY7j\nOJPFB5ILgl1WnKpUXEdTwIWlKUm7lpn1npZ3Dx8+vKae999/HyiVAAXkpEvlSk6u5W8tx6Y+QdbH\nR/VVBQPNm6Zz6ppoH3JYveTfRo4xsInSq5BLgV16X88AnzoGnvty4ALgmHn/ODN/yQ1PjvKSftY1\nl57Kffrpp2t2imnLg9clX19be/uUrfMzbPLvy1Wp+lxze46ciF6rbEm9sn6QZ8+eLdRE+TxqswTV\nLTcc2U97XZaWlmp/F9q+86Zr2nZMF/rkgBzih9u0g0/V6y65Q+31HxMfSDqTwj6M8tGz6SsALr74\nYqAcfOkBuuyyy4oy8pe0keJVD5vOvegPzfmehCzy9Vnktjkl/j2dH+oyQQjZlnRCq/c0caxbpt6o\nIokz3ee1dSDpN6vjOJaBBu9j4HNgi3l/C/DBkIqnwlR/MBzHmR9TtQuNA8kY4zR75TjO3BhqF2KM\np0MI+4F7ge8mH/0G8E9D6p4Cblcdx7FM2S740rbjOOeDvwT+NoTwX8B/An/AzD/yr89rqxzHcZxO\n+EDScZx1J8a4N4RwGfB14CrgdeB+zyHpOI4zLUIaees4juM4juM4uXgkjeM4juM4jtMLH0g6juM4\njuM4vfCBpOM4juM4jtMLH0g6juM4juM4vfCBpOM4juM4jtMLH0g6juM4juM4vfCBpOM4juM4jtML\nH0g6juM4juM4vfCBpOM4juM4jtOL/wcaurHAAvNuFAAAAABJRU5ErkJggg==\n", "text": [ "<matplotlib.figure.Figure at 0x11389e470>" ] } ], "prompt_number": 93 }, { "cell_type": "code", "collapsed": false, "input": [ "img0.shape, img1.shape" ], "language": "python", "metadata": {}, "outputs": [ { "metadata": {}, "output_type": "pyout", "prompt_number": 50, "text": [ "((110, 110), (130, 130))" ] } ], "prompt_number": 50 }, { "cell_type": "code", "collapsed": false, "input": [ "img0.min(), img1.min()" ], "language": "python", "metadata": {}, "outputs": [ { "metadata": {}, "output_type": "pyout", "prompt_number": 94, "text": [ "(0, 1)" ] } ], "prompt_number": 94 }, { "cell_type": "code", "collapsed": false, "input": [ "img0.max(), img1.max()" ], "language": "python", "metadata": {}, "outputs": [ { "metadata": {}, "output_type": "pyout", "prompt_number": 95, "text": [ "(255, 117)" ] } ], "prompt_number": 95 } ], "metadata": {} } ] }
mit
JoseGuzman/myIPythonNotebooks
Optimization/Maximum_likelihood_estimation.ipynb
1
51001
{ "cells": [ { "cell_type": "markdown", "metadata": {}, "source": [ "<H2>Parameter estimation by maximum likelihood method<H2>" ] }, { "cell_type": "code", "execution_count": 6, "metadata": { "collapsed": false }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "Populating the interactive namespace from numpy and matplotlib\n" ] } ], "source": [ "%pylab inline" ] }, { "cell_type": "code", "execution_count": 7, "metadata": { "collapsed": false }, "outputs": [], "source": [ "from scipy.stats import norm\n", "from lmfit import minimize, Parameters" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## <H2> Create a normally distributed random variable</H2>" ] }, { "cell_type": "code", "execution_count": 11, "metadata": { "collapsed": false }, "outputs": [ { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAZ0AAAEOCAYAAABSLcpPAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzt3XlcVOX+B/DPGREkF0BUVLBACRV+iuRVccGtDFMx9ael\nhkt6FVNzScsl90yrW+GSyVUztbpd1xQFf7fFRkJcytjUDFPQq4gmoILK/vz+KOYJmcEZmDPA8Hm/\nXrxed85zhvnO5xrfOc9zzhlFCCFARERkAZrKLoCIiGoONh0iIrIYNh0iIrIYNh0iIrIYNh0iIrIY\nNh0iIrKYKtF00tLSMGXKFLRo0QJ2dnZo1qwZxowZg+Tk5FL77tixA35+fqhXrx5atGiBOXPm4N69\ne5VQNRERmUqp7Ot00tLS0LlzZ1y9ehXPPvssfH19cf78eRw6dAhOTk44ceIEPD09AQCrV6/Gm2++\nCV9fXzz33HNISEhAZGQkunbtCq1Wi9q1a1fmWyEiokcRlSwkJEQoiiJCQ0NLbP/888+Foihi8ODB\nQgghUlJShI2NjejevbsoKCjQ7bdkyRKhKIr46KOPLFo3ERGZrtKPdFxcXKAoCtLS0kqNeXp64tq1\na7h//z4WLVqE1atX49ChQxgwYIBun9zcXLi4uMDDwwOxsbGWLJ2IiExkU5kvXlRUhDfffBO2trZ6\nx+3s7JCXl4f8/HxERUVBURT07t271D7+/v74+uuvkZWVhfr161ugciIiKo9KbToajQYzZszQO3b+\n/HmcP38erVq1gq2tLS5evAgXFxc89thjpfZ1d3cHACQlJaFjx45qlkxERBVQJc5ee1hRURGmT58O\nIQQmT54MAEhPT4ejo6Pe/R0cHAAAd+7csViNRERkuirXdIQQCAkJwZEjR9CpUyfMmjULAJCfnw87\nOzu9zynenpOTY7E6iYjIdJU6vfawgoICTJo0Cdu3b0erVq1w4MAB2Nj8UaK9vT3y8vL0Pi83NxcA\nULduXYvVSkREpqsyTef+/fsYMWIEDh8+DC8vL3z77bdo2rSpbtzJycng9Fnx9uJptr9SFEWdgomI\nrJhaJzZXiem1zMxM9O3bF4cPH8ZTTz2F6OhouLm5ldjHy8sLN27c0B3V/FVycjJq1aqFJ598ssR2\nNhwiovJR6+9npR/p5OTkYNCgQTh16hR69+6N8PBw1KtXr9R+AQEB0Gq1iIqKQr9+/Uo8/8SJE/Dx\n8TE4vVbJlyJVCcX/gMqbxcGwMAS5uuofu3YNQVOmlLs2S6toFtaEWUjMQlLzA3ulH+ksXLgQx48f\nR7du3XD48GG9DQcARo8ejVq1amHZsmUl1nZWrVqFrKws3VluRERUdVXqkU5aWho2bNgAAGjTpg1W\nr16td78FCxagdevWmDt3Lt599134+flh0KBBOHv2LCIjI9GjRw9MmjTJkqUTEVE5VGrTOXHiBPLz\n86EoCrZu3ap3H0VR8Nprr8HOzg6rV69GixYt8PHHH2PdunVo1qwZXnvtNSxdupQ3+yQiqgYq/d5r\nauIcrcQ1HYn/LiRmITELSc0sKn1Nh4iIag42HSIisphKP2WaLINTBhKzkJiFxCwsg0c6RERkMWw6\nNYhWq63sEqoMZiExC4lZqI9Nh4iILIZNpwZ5+FtXazJmITELiVmoj02HiIgshk2nBuF8tcQsJGYh\nMQv1sekQEZHFsOnUIJyvlpiFxCwkZqE+Nh0iIrIYNp0ahPPVErOQmIXELNTHpkNERBbDplODcL5a\nYhYSs5CYhfrYdIiIyGLYdGoQzldLzEJiFhKzUB+bDhERWQybTg3C+WqJWUjMQmIW6mPTISIii2HT\nqUE4Xy0xC4lZSMxCfWw6RERkMWw6NQjnqyVmITELiVmoj02HiIgshk2nBuF8tcQsJGYhMQv1sekQ\nEZHFsOnUIJyvlpiFxCwkZqE+m8ougKq/hNOngbAwg+PnkpLg7eWld8zW2RmBI0aoVRoRVTEmHelk\nZmZi48aNJR6PHDkSbm5u6N69O7777juzF0jmo9Z8tbh3D0GurgZ/8tPSDI7lpaerUtOjcO5eYhYS\ns1Cf0U3n4sWLaNOmDaZPn45r164BAEJCQrBr1y7cuXMHJ0+exIABA3Dy5EnViiUiourN6KazfPly\nZGRk4L333kPDhg1x48YN7Nu3Dz4+Prh58yYuXLiA+vXr4+2331azXqoAzldLzEJiFhKzUJ/RTee7\n777DsGHDMGfOHNjb2+PQoUMoKirC2LFjYW9vDw8PDwwfPhwxMTFq1ktERNWY0U0nIyMDnp6euseH\nDx8GAAQGBuq2NWjQAA8ePDBjeWROnK+WmIXELCRmoT6jm46rqysuXboEAMjNzcW3336L5s2bo337\n9rp9Tpw4gRYtWpi/SiIisgpGN51evXph7969WL58OUaNGoW7d+9ixJ+nul66dAnTpk1DdHQ0goKC\nVCuWKobz1RKzkJiFxCzUZ/R1OqtWrUJsbCyWL18OAGjZsiXefPNNAEBoaCg2btyIDh06YP78+epU\nSkRE1Z7RRzouLi6IiYlBeHg4Dhw4gMTERDRq1AgAEBQUhK1btyImJgbOzs6qFUsVw/lqiVlIzEJi\nFuoz+khn+/bt8PPzw6BBg0qNPfvsswCAY8eO4fvvv8eiRYvMVyEREVkNo490Xn75Zezfv7/Mffbt\n24dVq1ZVuChSB+erJWYhMQuJWajP4JHOtm3bEB4eXmLbv//9b8TFxendPy8vD0eOHEHDhg3NWyER\nEVkNg00nMDAQM2bMQHZ2tm7b+fPncf78eYO/zM7ODitWrKhQQampqWjbti1WrFiBmTNnlhj75JNP\nMGnSJL3P69KlC44fP16h17Z2Wq2Wn+T+xCwkZiExC/UZbDrNmjXDb7/9hvv37wP442y1mTNnYtas\nWRBClNhXURTUrl0bjRo1gq2tbbmLyc7OxrBhw5CVlQVFUUqNx8fHAwDmz5+POnXqlBhzc3Mr9+sS\nEZFllHkiQZMmTXT/e+vWrfDz88MTTzyhSiGXL1/GsGHDEBsba3CfhIQEODs7c92onPgJTmIWErOQ\nmIX6jD6RYPz48fD19VWliDVr1qBdu3ZITExE3759De6XmJiIdu3aqVIDERGpz6Tv09myZQu6du2K\n5s2bw9nZGQ0bNtT7Y6q1a9fCw8MDUVFRGDNmjN59rl69iszMzBK33SHT8BoEiVlIzEJiFuozuun8\n85//xOTJk3Hy5Ek8ePAA9erVQ4MGDUr9ODg4mFzEpk2bEBcXB39//1LrRcUSEhIA/HGW3JAhQ9Ck\nSRM0aNAA/fv3x48//mjyaxIRkeUZfXHo+vXr4eDggMjISHTt2tWsRfTr1++R+xQ3nbCwMPTv3x8T\nJ05EUlISwsPDodVqER4errtIlfTjfLXELCRmITEL9RnddH777TdMmjTJ7A3HWEIIuLu74+2338ao\nUaN026OiovD000/j5ZdfxqVLl2BnZ1cp9RER0aMZPb3WpEkTFBYWqllLmRYsWIBLly6VaDgA0LNn\nT7z00ku4fv06jh49qve5iqIY/KlJOF8tMQuJWUg1KYvK+rto9JFOcHAwtmzZgrfeeqvK3dTTz88P\nO3bsQEpKisnPLf5HVnxYXZMf/2f3bpz+8wLbdl5eAIDEpCQAgCYrC0GurtAmJv6x/59nEWoTE5F8\n4waKmTq+/+BBJCYllXq9dl5esHV2hl3jxqq8X109VSj/ynocFxdXpeqpzMfFd1ypKvWo/bgyKMLQ\nyv1Dfv31VwQHByMjIwMTJkyAl5eXwamswYMHl7ugbdu2YcKECVizZg1mzJih2x4fH4+7d+8iICCg\n1HPeeecdLFy4ENu2bcPYsWN124s7tpFvscY7GBaGIFdXvWMrv/wSix46yjRmrCLPPXjtGoKmTHlE\n1URkbmr+7TT6SKdt27a6/7148WKD+ymKoso03KBBg3D9+nXcuHGj1JFWdHQ0AOBvf/ub2V+XiIjM\nx+ims2TJEqP2U2s+cPjw4Vi7di0WLlyIf/7zn7rtu3fvRmRkJHr16gVvb29VXttaaHlfKR1mITEL\niVmoz+ims2zZMhXLeLTFixcjIiICmzdvRkJCArp3745ff/0VkZGRaN68OT799NNKrY+IiB7NpDsS\nFMvOzsbx48cREREBAMjIyDBbQYbOnmjYsCFOnjyJV199FampqVi3bh1iY2MxadIknD59Gu7u7mar\nwVrxE5zELCRmITEL9ZnUdNLS0vDiiy/CyckJ3bt3150wsHHjRnh6eiIqKqrCBY0bNw6FhYUlTiIo\n5uTkhLVr1+Ly5cvIy8vD1atXERYWBhcXlwq/LhERqc/opvP777+ja9eu2L17N7p06YKnnnpKd2aD\no6MjUlJS8NxzzyHxz1Niqep5+HThmoxZSMxCYhbqM7rpLF26FP/9739x4MABREdHY9CgQbqxadOm\n4bvvvkNBQQHeeustVQolIqLqz+imEx4ejqFDhyIoKEjveK9evTBs2DCcOHHCbMWReXG+WmIWErOQ\nmIX6jG46t27dQqtWrcrcx83NDTdv3qxwUUREZJ2Mbjqurq74+eefy9zn1KlT/NroKozz1RKzkJiF\nxCzUZ3TTGTFiBL799luEhYXpHf/www/xww8/YOjQoWYrjoiIrIvRF4cuXLgQERERmDp1Kj7++GMU\nFBQA+ONrrH/66SecO3cOnp6eWLhwoWrFUsVwvlpiFhKzkJiF+ow+0mnQoAGio6PxyiuvIDk5GefP\nnwcA7NixAxcvXsTYsWMRExMDJycn1YolIqLqzaSLQx0cHLBhwwZkZmYiMTERP/zwA2JjY5GZmYlt\n27ahUaNGatVJZsD5aolZSMxCYhbqM3p6bfr06QgODoa/vz9sbGzg4+OjZl1ERGSFjD7S+fjjj9Gt\nWzd4enpiyZIlSPrzy7ao+uB8tcQsJGYhMQv1Gd10YmJiMGPGDDx48AArV65EmzZt0KlTJ6xZswY3\n/vLNkERERIYY3XT8/f2xZs0a/Pe//8X333+PkJAQXL58Ga+99hpcXV0RGBiIHTt2IDs7W816qQI4\nXy0xC4lZSMxCfSZ/tYFGo0GvXr2wceNGpKam4v/+7//w8ssvIyEhAePHj+cdn4mIyKByfZ9OMSEE\ncnJyIITQfQdO7dq1zVIYmR/nqyVmITELiVmoz+iz14oVFBTg66+/xs6dO3HgwAHcvXsXtWvXRv/+\n/REcHKz7jh0iIqKHGd10vv76a+zatQtfffUVMjMzAQBdu3ZFcHAwXnzxRTRs2FC1Isk8qtv3vyec\nPg0YuO0SANg6OyNwxIhy/e7qloWamIXELNRndNPp378/AMDLywuzZs1CcHAwPDw8VCuMSNy7hyBX\nV4PjB69ds2A1RGQOJl0cOmbMGHTq1EnNekhF/AQnMQuJWUjMQn1GN51169aVeJyamorMzEz4+Pgg\nPz+fJxAQEdEjmXT22v379zFv3jy4uLjAzc0N7du3BwCsWbMGffv21d0ElKomXoMgMQuJWUjMQn1G\nN53s7GwEBATgH//4B+zs7NCyZUsIIQAAubm50Gq1CAgIQEpKilq1EhFRNWd001m5ciViY2Oxdu1a\npKSkIDg4WDe2aNEifPbZZ8jMzMSKFStUKZQqjvPVErOQmIXELNRndNPZtWsXAgMD8eqrr0KjKf20\nl156CQMHDuThKRERGWR000lNTYWfn1+Z+7Ru3RqpqakVLorUwQ8EErOQmIXELNRndNNp1KgRfvnl\nlzL3OXv2LBo3blzhooiIyDoZ3XQGDx6M8PBwHD58WO/43r17cfjwYQwYMMBsxZF5cb5aYhYSs5CY\nhfqMvk5nyZIlOHjwIIKCgjBgwADcunULALBs2TL8+OOPOHz4MBo3bozFixerViwREVVvRh/pNG3a\nFMeOHUNgYCAOHTqEEydOAABWrFiBw4cPo2fPnvjhhx/g5uamWrFUMZyvlpiFxCwkZqE+k+4y/fjj\njyMiIgLXr1/Hzz//jNu3b6NevXrw9fWFu7u7SiUSEZG1MPmrDQCgWbNmGDhwoLlrIZVxvlpiFhKz\nkJiF+ir0JW5ERESmYNOpQThfLTELiVlIzEJ9bDpERGQxbDo1COerJWYhMQuJWajPYNPx9fXFmjVr\ndI+joqJw+fJlixRFRETWyWDTSUpKws2bN3WPe/fuje3bt1ukKFIH56slZiExC4lZqM/gKdMODg7Y\nv38/nnnmGTg7OwMA0tLSkJCQ8MhfWvzlbkRERH9lsOmMGTMGH3zwAZ555hndtrCwMISFhZX5CxVF\nQWFhofkqJLPhfLXELCRmITEL9RlsOqtXr4anpyd+/vln5ObmYseOHfD19YWvr2+Zv1BRFLMXSURE\n1sFg07GxsUFISIju8Y4dOzBkyBAsXbpU1YJSU1PRtm1brFixAjNnziw1vmPHDoSGhuLChQtwcnLC\nCy+8gBUrVqBu3bqq1mUNtFotP8n9iVlIzEJiFuoz+pTpS5cuYdasWWrWguzsbAwbNgxZWVl6j5hW\nr16N8ePHAwBmzJgBX19fhIaG4tlnn0V+fr6qtRERUcUZ3XTc3d3h4OCAzz//HH369IGzszPs7e3h\n5uaGwMBAfPHFFxUq5PLly+jVqxdOnTplcHzJkiXo1q0bfvrpJ6xatQqHDh3C4sWLcfz4cWzatKlC\nr18T8BOcxCwkZiExC/UZ3XSEEBg1ahTGjh2Lo0ePoqioCC1btkRRURG++eYbjBkzBi+99FK5iliz\nZg3atWuHxMRE9O3bV+8+mzZtQmFhIRYuXIhatWrpti9cuBANGjTAli1byvXaRERkOUY3nbCwMOzc\nuRN9+/bFmTNnkJmZibNnzyI1NRVJSUno168fvvzyS2zdutXkItauXQsPDw9ERUVhzJgxeveJioqC\noiilPonY2dnB398f8fHxyMrKMvm1axJegyAxC4lZSMxCfUY3nS1btqBly5YIDw+Ht7d3iTFPT0/s\n27cPHh4e5Zrm2rRpE+Li4uDv7w8hhN59Ll68CBcXFzz22GOlxoq/yycpKcnk1yYiIssxuun88ssv\neO655/T+0QeAunXr4rnnnsO5c+dMLqJfv36PPNU6PT0djo6OesccHBwAAHfu3DH5tWsSzldLzEJi\nFhKzUJ/RTcfGxgbZ2dll7nPv3j3VrtPJz8+HnZ2d3rHi7Tk5Oaq8NhERmYfRTadLly44cOAAUlJS\n9I4nJydj//796NSpk7lqK8He3h55eXl6x3JzcwHA4LU6iqIY/KlJOF8tMQuJWUg1KYvK+rtodNN5\n4403cPv2bfTp0wfbtm3DpUuXkJ6ejoSEBGzYsAE9evTAnTt38Prrr6tSqJOTk8Hps+LtxdNsptBq\ntSX+odX4x4mJ0CYmmvQ4+caNco8n37hh8uuVeFzZeVnB47i4uCpVT2U+jouLq1L1qP24MijC0Mq9\nHuvXr8drr72mu7eaoii6hX8bGxt88MEHePXVVytU0LZt2zBhwgSsWbMGM2bM0G3v27cvfvjhB2Rn\nZ5eaZgsMDMSRI0dw+/btEkc7xR3bhLdYox0MC0OQq6vesZVffolFo0aZPFaR5z7q9x68dg1BU6YY\nHCei8lHzb6fB2+Do8+qrr2LgwIH44osvEBcXh7t376J+/frw8/NDcHAwPDw8zF5gsYCAAGi1WkRF\nRaFfv3667Tk5OThx4gR8fHx4KxwioirO5G8ObdmyJRYvXoy9e/fim2++wb59+7B48WJVGw4AjB49\nGrVq1cKyZctKrO2sWrUKWVlZmDx5sqqvbw0q+7C6KmEWErOQmIX6TDrSqUytW7fG3Llz8e6778LP\nzw+DBg3C2bNnERkZiR49emDSpEmVXSIRET2CyUc6aivr7InVq1fjo48+gqIoWLduHc6dO4fXXnsN\nERERqF27toUrrX54DYLELCRmITEL9VW5I51x48Zh3LhxBsenTp2KqVOnWrAiIiIylyp3pEPq4Xy1\nxCwkZiExC/UZ3XSOHz+uuwiTiIioPIxuOv/7v/+L4cOHq1kLqYzz1RKzkJiFxCzUZ3TTyczMhI+P\nj5q1EBGRlTO66QwZMgT79u3DzZs31ayHVMT5aolZSMxCYhbqM/rstV69ekGr1aJVq1bo3r07PDw8\nYG9vr3ffDz/80GwFEhGR9TC66fz1NOWvv/66zH3ZdKomzldLzEJiFhKzUJ/RTefIkSNq1kFERDWA\n0U2HnwCqP61Wy/8f/8QsJGYhMQv1mXxHglu3bmHXrl2Ii4tDZmYmdu/ejejoaBQVFaFnz55q1EhE\nRFbCpKbzxRdfICQkBPfv3wcgv3MhMjIS77zzDl555RXdvdGo6uEnOIlZSMxCYhbqM/qUaa1Wi3Hj\nxqF58+bYvHkzJkyYoPuCn6FDh6JDhw7YuHEjduzYoVqxRERUvRnddFauXInGjRvjxIkTmDhxItzc\n3HRjnTp1QlRUFNzc3LBx40ZVCqWK4zUIErOQmIXELNRndNP58ccfMWLECDRs2FDveL169TB06FD8\n+uuvZiuOiIisi9FNp7Cw8JH75ObmIj8/v0IFkXo4Xy0xC4lZSMxCfUY3nfbt2yMiIgI5OTl6x7Oy\nshAZGQlfX1+zFUdERNbF6LPXZs+ejRdffBEDBw7EP/7xD+Tl5QH44wjo559/xuzZs3H16lWsXr1a\ntWLp0f6zezfy0tP1jiUmJaEWAG8vL73jZ0+fRpCrq4rVVR28HkNiFhKzUJ/RTWfEiBFITEzEypUr\n8be//U233d7eHgUFBQCAGTNm4KWXXjJ/lWS0vPR0g42jfkYGos+cQVCfPnrH46Oi1CyNiMi063RW\nrFiBQYMGYevWrTh9+jRu376NevXqwdfXF+PHj+cnhCqud7t2iD5zprLLqBL4b1ViFhKzUJ/JdyTo\n3LkzOnfurEYtRERk5UxuOkVFRYiOjkZ8fDzu3buHhg0bomPHjujYsaMa9ZEZaRMTK7uEKoNz9xKz\nkJiF+kxqOpGRkZg6dSquXLlSaszX1xeffvopOnToYLbiiIjIuhjddI4ePYrnn38ednZ2CAkJQadO\nnVC/fn2kpqbi2LFj2Lt3L/r06YPjx4+jTZs2atZM5cQ1HYmfZiVmITEL9RnddJYvXw47OztER0eX\nOpqZOXMmvv/+e/Tv3x/z58/H/v37zV4oERFVf0ZfHHrq1CmMGDHC4PRZnz59MHz4cHz//fdmK47M\ni2s6Eu+xJTELiVmoz+imY29vDwcHhzL3adq0KTQao38lERHVMEZ3iJEjR+LLL79Eamqq3vE7d+5g\nz549GDp0qNmKI/Pq3a5dZZdQZXDuXmIWErNQn8E1nSNHjpR43K9fP+zduxdPPfUU5syZg+7du8PF\nxQW3b9/GTz/9hNDQUNSpUwfTp09XvWgiAEg4fRoIC9M7ZuvsjMARI/SOlXWroEc9l4gqxmDTeeaZ\nZww+ad68eQbHOnXqZNQdqcnyrG1NR9y7Z/CWPwevXTP4vLz0dNTPyDB45FfWc60Rr02RmIX6DDad\nJUuWlOsX8quqiYjIEINNZ9myZRYsgyyB1+lIXN+S+MleYhbq46lmRERkMSZ9c+i6devg7++PZs2a\noWHDhqV+nJycDH6dNVU+a1vTqQhmIfHaFIlZqM/oOxKsXLkSy5cvBwA0adIEDRo00Lsf13SIiMgQ\no5vO9u3b8fjjj+Po0aN44okn1KyJVMI1HYlrOhLXMSRmoT6jp9du3ryJF198kQ2HiIjKzeim4+fn\nh99++03NWkhlXMeQmIXEdQyJWajP6KbzzjvvIDIyEhs3boQQQs2aiIjIShm9ptO9e3dMnjwZ06ZN\nw7x589CiRQvY2dnp3ffnn382W4FkPlzTkbimI3EdQ2IW6jO66YSGhmL9+vUAgOzsbPzyyy+qFUVE\nRNbJ6Om1devWwdnZGf/5z3+QlZWFoqIigz9qWrx4MTQajd6fUaNGqfra1R3XMSRmIXEdQ2IW6jP6\nSOfGjRuYMmUK+vXrp2Y9jxQfHw87OzssWLCg1Nj//M//VEJFRERkLKObTps2bXDr1i01azFKQkIC\nfHx8yn1D0pqMazoS13QkrmNIzEJ9Rk+vLVq0CLt27UJ4eLia9ZTp7t27uHLlCtq3b19pNRARUfkZ\nfaTzyy+/wNvbG0OGDIGHhwc8PT1Rt25dvfvu27fPbAX+VUJCAgCw6ZQT1zEkbWIij3b+xO+QkZiF\n+oxuOosXL9b97+TkZCQnJ6tSUFmKm87NmzfRr18//PTTT1AUBU8//TTefvtteHl5WbwmIiIyntFN\n59KlS2rWYZTipvP+++/j+eefR0hICOLj47F37158++230Gq18PX1reQqqy6u6Ug8ypH4yV5iFuoz\nuum4u7urWIZxbGxs4O7ujm3btqFnz5667f/6178QHByMCRMm4PTp05VYIRERlcXoEwnu3r1r9I9a\nPvroI1y6dKlEwwGA0aNHo2fPnoiNjUVSUlKp5ymKYvCnJuGajsQsJF6bItWkLCrr76LRRzqOjo6P\nLEYIAUVRUFhYWOHCTOXn54eoqCikpKSYtLZT/I+s+LC6uj9OTEpC/YwM3fRR8R/X4sfJN26UWER/\neNzQ42L6xpNv3Cj3eHnredTjhORkICwMiX9+CGn357+JxKQkpPz6K0Z3727w+fuPHdPV+/Dzf0lL\nQ+fevavM/9/meBwXF1el6qnMx3FxcVWqHrUfVwZFGHn3TkNF3r9/H5cuXUJGRga6dOkCf39/hIaG\nmrNGAH98c2l8fDwKCwvRqVOnUuNTpkzBpk2boNVqdUdCxU2yJt2g9GBYGIJcXQ2Or/zySywycOcG\nNcas7fcevHYNQVOmGHwukTVQ82+n0Uc6ZR12CiGwceNGzJkzR5WGAwD5+fno0qULGjRogN9//x0a\njZwZFEIgJiYGtWvXRocOHVR5fSIiqjij13TKoigKpk6dij59+ui9PY051KlTB4MGDUJmZibeeeed\nEmMffPABzpw5g9GjRxv8Gm3iOsZfMQupJq1jPAqzUJ/RRzrGaN++PT766CNz/soSPvjgA8TExGDR\nokXQarVo3749Tp8+jaNHj8LHxwcffvihaq9NREQVZ5YjHQAoKipCVFQU7O3tzfUrS2nZsiV++ukn\njBs3DmeTXH0SAAAQw0lEQVTOnMH69etx5coVzJ07FzExMXByclLtta0Br02RmIXEa1MkZqE+o490\n1q5dq/fstaKiIty7dw+RkZE4ceIExo0bZ9YCH9aiRQt8+umnqr4GERGpw+imM3v27Efu07Fjx1Lr\nLVR1cB1D4r3XJC3vN6bDLNRndNPZunWr3u2KosDW1hZt27blmWNERFQmo5vO+PHjVSyDLIH3XpN4\nlCPxk73ELNRnthMJiIiIHsXgkU6fPn3KfQ+eI0eOlLsgerT/7N6NvPR0vWNnT582eEcCrulIXNOR\nuI4hMQv1GWw6R48etWQdZIK89HSDjSU+KsrC1RARGc9g08nIyHjkkxVFQVJSEqZMmYLY2FjY2tpi\n/vz5Zi2QzIdrOhKPciR+speYhfoMNh1HR8cyn1hQUID33nsPK1euRE5ODrp164bNmzejbdu2Zi+S\niIisQ7lOJDh16hQ6duyIRYsWwdbWFhs2bEB0dDQbThXHNR2JWUi835jELNRnUtO5d+8eZs6ciW7d\nuiExMRHPP/88zp07h1deeUWt+oiIyIoY3XQiIiLg7e2N9evXw8XFBXv27MFXX32F5s2bq1kfmRHX\nMSRmIXEdQ2IW6ntk07l58yZGjhyJoKAgXL16FZMnT8a5c+cwbNgwS9RHRERWpMyms3XrVrRt2xa7\ndu1C69atodVqERYWBgcHB0vVR2bEdQyJWUhcx5CYhfoMnr3Wt29f3f8Bfn5+mDdvHjIzMxEeHv7I\nXzp48GCzFUhERNbDYNP5a8ePjY3FyJEjjfqFiqKgsLCwwoVVBw8ePEB+fr7B8fr165f7rg5q4HU6\nEtd0JK5jSMxCfQabzpIlS8r1C6vSH1m1afftg312NvS94wdFRWj//PM80YKI6C8MNp1ly5ZZsIzq\nSTx4gJ5Nm0KjKb00FpuaCiFEJVRlGNcxJN57TeL9xiRmoT7eZZqIiCyGTacG4Sd7iVlI/GQvMQv1\nsekQEZHFsOnUIFzTkZiFxGtTJGahPjYdIiKyGDadGoTrGBKzkLiOITEL9bHpEBGRxbDp1CBcx5CY\nhcR1DIlZqI9Nh4iILMbgHQnI+vDea1J513QSTp8GwsL0jtk6OyNwxIiKlFUpuI4hMQv1sekQmUDc\nu4cgV1e9YwevXbNwNUTVD6fXahCuY0jMQuI6hsQs1MemQ0REFsOmU4Pw2hSJWUhcx5CYhfrYdIiI\nyGLYdGoQrmNIzELiOobELNTHpkNERBbDplODcB1DYhYS1zEkZqE+Nh0iIrIYNp0ahOsYErOQuI4h\nMQv1sekQEZHF8DY4Koo6dAj1hNA7di4pCd5eXgafW9b42dOnDd6KpSy895pUGWs6/9m9G3np6XrH\nKvO+bVzHkJiF+qpl0ykoKMD69euxefNmpKSkoFmzZnj55Zcxf/582NhUnbdUkJmJIB8fvWPxUVEI\n6tPH4HPLGo+PijJLfWRZeenpvG8b1XjVcnpt2rRpmDNnDho3boxZs2bB1dUVS5YswahRoyq7tCqN\n6xgSs5C4jiExC/VVncMCI8XExGDz5s0YMWIEdu7cqds+fvx47NixAxERERg4cGAlVlg1KYMHAwDe\nYmPG4i+/BACI8PBKrqTyKYoCABAGpoFrEmZhGdXuSGfDhg0AgKVLl5bYvnr1aiiKgi1btlRGWURE\nZIRq13SioqLQuHFjeHt7l9jerFkzPPnkk4jiegcRUZVVrZpObm4url27hlatWukdd3d3R2ZmJtIN\nnCFERESVq1o1nYyMDACAo6Oj3nEHBwcAwJ07dyxWExERGa9aNZ38/HwAgJ2dnd7x4u05OTkWq4mI\niIxXrZqOvb09ACAvL0/veG5uLgCgbt26FquJiIiMp4hqdH5gXl4e7O3t0bVrV0RHR5ca79+/P775\n5hukp6fD0dFRdwokERGZTo32UK2OdGxtbfHEE08gOTlZ73hycjIaN26sW/OpRv2UiKhKUevvZ7W7\nODQgIACfffYZLly4gCeffFK3PTU1FRcuXMDgPy+CLMbGQ0RUdVSrIx0AGDt2LABg4cKFuoYihMCC\nBQsAAJMnT6602oiIqGzVak2n2KhRo7Bz50507twZvXv3RkxMDKKjo0vdGoeIiKqWanekAwCfffYZ\nVqxYgVu3bmHt2rW4efMm3nrrLXz++ecA/rgLdWhoKLy9vfHYY4+hVatWWLlyJQoKCiq5cnWlpaVh\nypQpaNGiBezs7NCsWTOMGTNG7xrYjh074Ofnh3r16qFFixaYM2cO7t27VwlVq2/u3LnQaDR671ZR\nU3L44osv0LlzZ9StWxfNmzfH8OHD8euvv5baz5rzuHXrFkJCQuDq6go7Ozt4eHhg3rx5ePDgQal9\nrTGH1NRUODg4YO3atXrHTXnPERER6Nq1Kxo0aAAXFxf8/e9/x++//25cIcIKTZ48WSiKInr27CkW\nLFggAgIChKIoYvjw4ZVdmmquX78uWrRoIRRFEYGBgeKNN94QgwcPFhqNRjg7O4sLFy7o9l21apVQ\nFEV06NBBLFiwQAwcOFAoiiK6desm8vLyKvFdmN/JkydFrVq1hEajEUePHi0xVlNyePPNN4WiKKJ1\n69bi9ddfF6NGjRI2NjbCyclJXLp0SbefNedx584d4eXlJRRFEU8//bR44403RLdu3YSiKKJ79+6i\noKBAt6815pCVlSW6dOkiFEURa9euLTVuynv+17/+JRRFEZ6enmLevHli5MiRolatWsLT01Pcvn37\nkbVYXdM5duyYUBRFvPDCCyW2jxs3TiiKIg4dOlRJlakrJCREKIoiQkNDS2z//PPPhaIoYvDgwUII\nIVJSUoSNjU2p/9CWLFkiFEURH330kUXrVlNubq7w8fERiqIIRVFKNJ2aksPJkyeFoiiiT58+Iicn\nR7d9z549QlEUMX78eCGE9efx7rvvCkVRxOzZs0tsDw4OFoqiiO3btwshrDOHlJQU8dRTT+n+O3i4\n6ZjynrOysoSTk5Pw9PQUWVlZuu1bt24ViqKIuXPnPrIeq2s6o0ePFoqiiLNnz5bYnpqaKjQajRgy\nZEglVaauJk2aCBcXF71jrVq1EnXq1BFFRUVi4cKFQlEUERERUWKfnJwc4eDgIDp06GCJci1iyZIl\nws7OTvTr169U06kpOYwdO1bUqlWrxJFusZCQELFq1SohhPXn8eKLLwpFUURiYmKJ7VqtViiKIqZO\nnSqEsL4cQkNDRf369UXt2rXF008/rbfpmPKeN23aJBRFERs2bCj1Wm3atBGNGjUShYWFZdZkdU3H\nzc1NNGnSRO9Y69atRcOGDS1ckfoKCwvF2rVrxcaNG/WOe3t7C41GI3Jzc0WPHj2ERqMR9+7dK7Vf\nYGCgUBRF3L17V+2SVRcfHy9sbW3F8uXLxaxZs0o1nZqSQ+PGjY36Q2ntecyYMUMoiiIOHjxYYnvx\nTMDSpUuFENaXg7u7u2jfvr04fvy42LZtm96mY8p7Lj4yPHfuXKl9i2db4uPjy6ypWp5IYEhNvQu1\nRqPBjBkzMGXKlFJj58+fx/nz59GqVSvY2tri4sWLcHFxwWOPPVZqX3d3dwBAUlKS2iWrqrCwEBMn\nToSXlxcWLFig91qtmpDDzZs3cevWLfj4+OD8+fMYNmwYHB0d4ejoiBdeeAEpKSm6fa09j5CQENSt\nWxezZ89GTEwM7t+/D61Wi3nz5sHR0RETJkwAYH05bNq0CXFxcfD39zd4zaIp7/nixYtQFAUtW7Y0\nuO+FCxfKrMmqmg7vQl1SUVERpk+fDiGE7vql4lsE6WMt+bz//vuIjY3Fli1bULt2bb371IQcUlNT\nAQBXr15Fly5dcOXKFfz9739H9+7dsWfPHvj7++PKlSsArD8Pb29vREdHIycnBz169EC9evXQt29f\n2NjY4NixY3j88ccBWF8O/fr1e+TtwEx5z+np6bCzs9N702Vj87GqpsO7UEtCCISEhODIkSPo1KkT\nZs2aBeCPjKw5n6SkJCxbtgzTpk1Dly5dDO5n7TkA0J3uGhUVhWHDhuHHH3/E+++/j4iICKxbtw43\nb96sMf8urly5guDgYKSmpmLw4MGYO3cuevfujStXrmDy5Mm6P5TWnoM+prxnc+RjVU2Hd6H+Q0FB\nASZMmIBPPvkErVq1woEDB2Bj88cdj+zt7a02HyEEJk6ciKZNm2L16tVl7mvNORTTaP74z9vGxgah\noaElPvFOmzYNHh4eiIyMxIMHD6w+j9GjR+Ps2bPYuXMn9u/fj/feew9HjhzBhx9+iGPHjulmAqw9\nB31Mec/myMeqmo6DgwMURTF4eHfnzh0oiqI7DLRG9+/fx/PPP4/t27fDy8sL33//PZo2baobd3Jy\nKjMfANU2nw0bNuDYsWPYuHGj3vnpv85pW3MOxYrrd3d3LzV9oigK2rdvj/z8fFy5csWq87hy5Qpi\nYmLQq1cvDB8+vMTYrFmz0LZtW+zbtw/Z2dlWnYMhprxnJycn5OTk6GaVytrXEKtqOqbehdraZGZm\nom/fvjh8+DCeeuopREdHw83NrcQ+Xl5euHHjhu5TyV8lJyejVq1aJW6kWp3s2bMHADBgwABoNBrd\nz7p16wAAffr0gUajweXLl+Hl5YW0tDSrzKFYy5YtodFoDH4yLf7D8dhjj1l1HteuXQMAtG3bVu+4\nt7c3ioqKcO3aNavOwRBT/iZ4eXlBCFHiJJS/7gsArVu3LvP1rKrpAH/chfr69eulzqAovgu1v79/\nJVWmrpycHAwaNAinTp1C7969odVq0ahRo1L7BQQEoLCwsNQtYXJycnDixAn4+PhU2+mDl19+GcuW\nLSv1U7y2M378eCxbtgyOjo4ICAhAUVGRVeZQrE6dOujUqROuXLmCixcvlhgrKChAfHw8nJ2d4erq\nih49elhtHs2aNQMAvbf9Af4420pRFLi4uNSIfxcPM+VvQkBAAABAq9WW+j1arRaOjo4Gm7tOec79\nrsq+/fZb3S1vioqKhBBCFBUVibFjx+q9AMpazJ49W3dLj79eef6w8+fPCxsbG9GtWzeRm5ur2754\n8WKDF31VdzNnzix1nU5NyaH4SvEBAwaI/Px83fZ33nlHKIoi5syZI4Sw/jy6dOkiNBqNOHDgQInt\nW7Zs0eUjhHXn8Omnn+q9TseU95yRkSEaNGggPD09RUZGhm77J598IhRFEa+//voj67C6piOEECNH\njhSKooguXbqIefPm6e699vCtcazF9evXha2trVAURUycOFEsXbpU709xM5o/f75QFEV4e3uLN954\nQ3efpYCAgGp7b6my6Gs6QtScHIYOHSoURRE+Pj5izpw5YsCAAUJRFNGmTZsSFzpacx5nzpwRDRs2\nFLVq1RJDhgwRb7zxhujfv79QFEW4urqKlJQU3b7WmoOhpiOEae85LCxMKIoiHn/8cTFnzhzdvdfa\ntGkjMjMzH1mHVTad/Px88dZbb+lu/9K6dWuxcuXKav0PpixfffWVUBRFaDQa3f2VHv7RaDTizp07\nuuds2LBB+Pj4iDp16ggPDw8xZ86canWltSlmzZql94afQtSMHAoKCkRoaKjufbq5uYnp06eX+KRa\nzJrzSE5OFuPHjxfNmjUTtWvXFi1atBBTpkwRaWlppfa1xhy2bdsmNBqN3qYjhGnveefOnaJjx47C\n3t5euLm5iYkTJ+rNUZ9q+X06RERUPVndiQRERFR1sekQEZHFsOkQEZHFsOkQEZHFsOkQEZHFsOkQ\nEZHFsOkQEZHFsOkQEZHFsOkQEZHFsOkQEZHF/D9Q/65DSSe9wAAAAABJRU5ErkJggg==\n", "text/plain": [ "<matplotlib.figure.Figure at 0x7fb92f4ffe10>" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "# create some data\n", "mymean = 28.74\n", "mysigma = 8.33 # standard deviation!\n", "rv_norm = norm(loc = mymean, scale = mysigma)\n", "data = rv_norm.rvs(size = 150)\n", "plt.hist(data, bins=20, facecolor='red', alpha=.3);\n", "\n", "plt.ylabel('Number of events');\n", "plt.xlim(0,100);" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## <H2> Define a model function</H2>" ] }, { "cell_type": "code", "execution_count": 12, "metadata": { "collapsed": false }, "outputs": [ { "data": { "text/plain": [ "0.3989422804014327" ] }, "execution_count": 12, "metadata": {}, "output_type": "execute_result" } ], "source": [ "def mynorm(x, params):\n", " mu, sigma = params\n", " # scipy implementation\n", " mynorm = norm(loc = mu, scale = sigma)\n", " return mynorm.pdf(x)\n", "\n", "mynorm(0, [0,1]) # 0.39" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "<H2> Loglikelihood function to be minimize </H2>" ] }, { "cell_type": "code", "execution_count": 13, "metadata": { "collapsed": false }, "outputs": [ { "data": { "text/plain": [ "794.4880315495127" ] }, "execution_count": 13, "metadata": {}, "output_type": "execute_result" } ], "source": [ "def loglikelihood(params, data):\n", " mu = params['mean'].value\n", " sigma = params['std'].value\n", " \n", " l1 = np.log( mynorm(data, [mu, sigma]) ).sum()\n", " return(-l1) # return negative loglikelihood to minimize\n", "\n", "myfoo = Parameters()\n", "myfoo.add('mean', value = 20)\n", "myfoo.add('std', value = 5.0)\n", "loglikelihood(myfoo, data)" ] }, { "cell_type": "code", "execution_count": 14, "metadata": { "collapsed": false }, "outputs": [], "source": [ "myparams = Parameters()\n", "myparams.add('mean', value = 20.3)\n", "myparams.add('std', value = 5.0)" ] }, { "cell_type": "code", "execution_count": 15, "metadata": { "collapsed": false }, "outputs": [ { "ename": "AttributeError", "evalue": "'MinimizerResult' object has no attribute 'userfcn'", "output_type": "error", "traceback": [ "\u001b[1;31m---------------------------------------------------------------------------\u001b[0m", "\u001b[1;31mAttributeError\u001b[0m Traceback (most recent call last)", "\u001b[1;32m<ipython-input-15-92b2e991c59d>\u001b[0m in \u001b[0;36m<module>\u001b[1;34m()\u001b[0m\n\u001b[0;32m 1\u001b[0m \u001b[0mout\u001b[0m \u001b[1;33m=\u001b[0m \u001b[0mminimize\u001b[0m\u001b[1;33m(\u001b[0m\u001b[0mfcn\u001b[0m \u001b[1;33m=\u001b[0m \u001b[0mloglikelihood\u001b[0m\u001b[1;33m,\u001b[0m \u001b[0mparams\u001b[0m\u001b[1;33m=\u001b[0m\u001b[0mmyparams\u001b[0m\u001b[1;33m,\u001b[0m \u001b[0mmethod\u001b[0m\u001b[1;33m=\u001b[0m\u001b[1;34m'nelder'\u001b[0m\u001b[1;33m,\u001b[0m \u001b[0margs\u001b[0m\u001b[1;33m=\u001b[0m\u001b[1;33m(\u001b[0m\u001b[0mdata\u001b[0m\u001b[1;33m,\u001b[0m\u001b[1;33m)\u001b[0m\u001b[1;33m)\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[1;32m----> 2\u001b[1;33m \u001b[1;32mprint\u001b[0m\u001b[1;33m(\u001b[0m\u001b[0mout\u001b[0m\u001b[1;33m.\u001b[0m\u001b[0muserfcn\u001b[0m\u001b[1;33m(\u001b[0m\u001b[0mmyparams\u001b[0m\u001b[1;33m,\u001b[0m \u001b[0mdata\u001b[0m\u001b[1;33m)\u001b[0m\u001b[1;33m)\u001b[0m \u001b[1;31m# ~523.631337424\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[0m", "\u001b[1;31mAttributeError\u001b[0m: 'MinimizerResult' object has no attribute 'userfcn'" ] } ], "source": [ "out = minimize(fcn = loglikelihood, params=myparams, method='nelder', args=(data,))\n", "print(out.userfcn(myparams, data)) # ~523.631337424" ] }, { "cell_type": "code", "execution_count": 16, "metadata": { "collapsed": false }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "[[Variables]]\n", " mean: 20.3000000 (init= 20.3)\n", " std: 5 (init= 5)\n", "[[Correlations]] (unreported correlations are < 0.100)\n" ] } ], "source": [ "from lmfit import report_errors\n", "report_errors(myparams)" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "The estimated mean and standard deviation should be identical to the mean\n", "and the standard deviation of the sample population" ] }, { "cell_type": "code", "execution_count": 17, "metadata": { "collapsed": false }, "outputs": [ { "data": { "text/plain": [ "(28.812147384304652, 7.7946507327263665)" ] }, "execution_count": 17, "metadata": {}, "output_type": "execute_result" } ], "source": [ "np.mean(data), np.std(data)" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## <H2> Plot histogram and model together </H2>" ] }, { "cell_type": "code", "execution_count": 18, "metadata": { "collapsed": false }, "outputs": [], "source": [ "# Compute binwidth\n", "counts, binedge = np.histogram(data, bins=20);\n", "\n", "bincenter = [0.5 * (binedge[i] + binedge[i+1]) for i in xrange(len(binedge)-1)]\n", "binwidth = (max(bincenter) - min(bincenter)) / len(bincenter) " ] }, { "cell_type": "code", "execution_count": 19, "metadata": { "collapsed": false }, "outputs": [], "source": [ "# Adjust PDF function to data\n", "ivar = np.linspace(0, 100, 100)\n", "params = [ myparams['mean'].value, myparams['std'].value ]\n", "mynormpdf = mynorm(ivar, params)*binwidth*len(data)" ] }, { "cell_type": "code", "execution_count": 20, "metadata": { "collapsed": false }, "outputs": [ { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAZ0AAAEOCAYAAABSLcpPAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzt3XdcFHf6B/DPLGUBlSpNQREIoiQqenYJlthL1NMkGrtR\njDHG2DVRMTGa3CVBNJ6eMRo15Wc0xhIxMRYk2CtWRKWJgCis9L7f3x/c7ojs4i7s7Gx53q8Xr8vu\nzM48+xzyzHzbcIwxBkIIIUQPJGIHQAghxHxQ0SGEEKI3VHQIIYToDRUdQgghekNFhxBCiN5Q0SGE\nEKI3BlF0MjMzMWPGDHh7e0MqlcLT0xPjx49HUlJStf2+++47SCQSlT9du3YVKXpCCCGashQ7gMzM\nTHTq1AlpaWno168fxo4di/j4ePz00084fPgwzp49C39/fwBAXFwcAGDx4sWwsbGpdhwvLy+9x04I\nIUQ7nNiTQ2fMmIHNmzfj66+/xpw5c5Tv//jjjxg/fjyGDh2K/fv3AwB69uyJmzdv4vHjx2KFSwgh\npB5ELzru7u7gOA6ZmZk1tvn7+yMtLQ0lJSUAABcXF7Rt2xbHjx/Xd5iEEEJ0QNTmNblcjo8++gjW\n1tYqt0ulUpSXl6O8vByPHj2CTCZDmzZt9BwlIYQQXRF1IIFEIsHs2bMxY8aMGtvi4+MRHx8PPz8/\nWFlZ4dq1awCAsrIyDB8+HG5ubrC3t8eAAQNw4cIFfYdOCCGkDgxi9Nrz5HI5Zs2aBcYYpk+fDgDK\norNp0yaUlZVh6tSp6Nu3L44dO4aQkBAcOXJEzJAJIYRoQPTRa89jjCEsLAzHjx9Hx44dlYMLGGPw\n8fHBZ599hjFjxij3j4mJQZ8+fTB58mQkJiZCKpWKFTohhJAXEH0gwbMqKiowbdo0bN++HX5+fvj7\n77/h4eHxws9NmjQJO3bswB9//IF+/frpIVJCCCF1YTB3OkVFRRg9ejQOHz6MgIAAHD16VKOCAwDB\nwcHYsWMHkpOTa2zjOE7HkRJCiOkT6n7EIPp0ZDIZevfujcOHD6N9+/aIjY2tMdkzLi4Of//9t8rP\nFxcXA0CNCaNUcAghpG6E+vsp+p1OSUkJhgwZgvPnz6Nnz544cOAAGjZsWGO/IUOGICMjA48ePYKL\ni0u1bbGxsQCAf/zjHyrPYUAtiKJ4kPsAzRybVb0IB4I9gnFi4gk42DiIGpdYFP+YzP33AqBcPIty\nwRPygl30O52lS5fizJkz6NatGw4fPqyy4ADAqFGjIJfLsXTp0mrv7969G1FRUQgNDUXr1q31EbJR\nYYxh1uFZytf+zv64knkFQ38eiqLyIhEjI4SYI1EHEmRmZqJ58+YoLy/HlClT1K6ftmTJEhQWFqJL\nly64d+8eOnfujO7du+POnTuIioqCp6cnYmNj4ePjU+1zdOUC7L29F//85Z9AeNXrZFkyum/tjof5\nDzGs5TDse3Of2TVD0u8Fj3LBo1zwhMyFqEVn3759GDlyJDiOU/vlOI6DTCaDvb09ZDIZwsPDsW/f\nPmRkZMDNzQ1DhgzBypUr4e7urvKzgPn+EuWW5KLVhlbIKMhQFh3GGG4/vo2u33VFbmkubrx7A0Fu\nQaLGqW/m/nvxLMoFj3LBM9miIzRz/yWaf2Q+vjrzFbp6dcWZd84A4HMx4bcJ2HltJ77q9xXmdp0r\nZph6Z+6/F8+iXPAoFzwhcyF6nw4Rzm/xvwEAvuz3ZY1t/f36AwD+vP+nXmMihJg3Kjom6kHuAyTK\nEmEvtUfnpp1rbO/n1w8cOMSkxKC4vFiECAkh5oiKjok6mXISABDSLAQWEgswxqrdKrs2cEV7z/Yo\nqShBTEqMWGGK4vlcmDPKBY9yoR9UdEzUyeSqohPaPFTtPoomtj/u/aGXmAghhIqOiVLc6YT68EUn\nOjq62j79/c23X+f5XJgzygWPciE8KjomKD0/HXdz7qKhdUO092yvdr+uXl3RyLoRbj+5jQe5D/QY\nISHEXFHRMUGKprUezXrAUsKvdNSzZ89q+1lZWKGPbx8A5ne383wuzBnlgke5EB4VHROkbFqrpT9H\ngfp1CCH6REXHBKkrOqraqxVF52jiUVTIKwSPzVBQ2z2PcsGjXAiPio6JySzIRPyTeNhZ2eEfTVSv\nuv2sFk4t8JLzS8gtzcX5h+f1ECEhxJxR0TExijk33b27w8rCqto2de3V/fyqnraq6AsyB9R2z6Nc\n8CgXwqOiY2I0mZ/zPMUIt+tZ1wWJiRBCFKjomJjolGgA1efnKLepaa9+xe0VAOZVdKjtnke54FEu\nhEdFx4TkFOfg1uNbsLG0QccmHTX+XGvX1uDAIf5JPMoqywSMkBBi7qjomJCbWTcBAC+7vQyppbTG\ndnXt1Q2sG8DXyRcV8grceXJHyBANBrXd8ygXPMqF8KjomJBbj28BAIJctX8o2yvu5tfERgjRPyo6\nJuTm46o7ndaurVVur629Wtmv88g8ig613fMoFzzKhfCo6JiQet3pmOFgAkKI/tHjqk2I51eeyCzI\nROLsRLRwaqHVZ+OfxKPVhlZo5tAMKXNSBIqQEGIM6HHV5IVyinOQWZAJOys7NHdsrvXn/Z39IbWQ\nIjU3FXmleQJESAghVHRMxu3HtwEArRq3goRT/X9rbe3VlhJLZV/QjawbOo/P0FDbPY9ywaNcCI+K\njol40SACTShHsJnJYAJCiP5R0TERmgwieNEchJddXwZgHoMJaD4Gj3LBo1wIj4qOiVAUHZ3c6ZhB\n0SGEiIOKjolQNK8Fuam/03lRe/Wzc3VMfcQftd3zKBc8yoXwqOiYgKclT5Genw5bS1s0d9B+5JpC\nk0ZN4GTjBFmJDOn56TqMkBBCqlDRMQGKprXAxoGwkFio3e9F7dUcx5lNExu13fMoFzzKhfCo6JgA\n5SCCWprWNKVoYjOHYdOEEP3TqujIZDJs3Lix2uu33noLXl5e6N69O44dO6bzAMmLKQcRNK59EIEm\n7dXmshwOtd3zKBc8yoXwNC469+/fR2BgIGbNmoWHDx8CAMLCwvDLL78gNzcX586dw6BBg3Du3Dmt\ng8jMzMSMGTPg7e0NqVQKT09PjB8/HklJSTX23bFjB4KDg9GwYUN4e3tj3rx5KCws1PqcpkSTQQSa\netmtatg03ekQQgTBNDR+/HhmaWnJvvzyS1ZUVMQyMzOZhYUFe/nll1lRURFLTExkLi4ubOjQoZoe\nkjHGWEZGBvP29mYcx7H+/fuzhQsXsmHDhjGJRMJcXFzY3bt3lfuuXr2acRzH2rVrx5YsWcIGDx7M\nOI5j3bp1Y2VlZTWODYBp8RWNltfXXgzhYHez77545xd4UviEIRys0epGTC6X6yA6QoixEfJvp8ZH\nbdKkCXvjjTeUr7ds2cI4jmP/+te/lO+FhYUxFxcXrQIICwtjHMexiIiIau//8MMPjOM4NmzYMMYY\nY8nJyczS0pJ1796dVVRUKPdbvnw54ziOffPNNzWObQ5FJ7cklyEczGaVDauorHjxB15ALpczhzUO\nDOFgjwoe6SBCQoixEfJvp8bNazk5OfD391e+Pnz4MACgf//+yvfs7e1RXFys1Z3Wb7/9Bjc3N8yZ\nM6fa+2+//TZ8fX1x5MgRMMawefNmVFZWYunSpbCw4EdoLV26FPb29tiyZYtW5zUVmo5cAzRrr+Y4\nDv7OVf8/38+5X+/4DBW13fMoFzzKhfA0LjpNmzZFYmIiAKC0tBRHjx5FkyZN0KZNG+U+Z8+ehbe3\nt8Ynl8vl+OijjxAeHq5yu1QqRVlZGcrLyxETEwOO42oMaZRKpejSpQvi4uKQn5+v8blNhS5WInie\noujcy7mns2MSQggAWGq6Y2hoKHbu3ImVK1ciLi4OeXl5mDx5MgAgMTERX331FWJjYzFv3jyNTy6R\nSDB79myV2+Lj4xEfHw8/Pz9YW1vj/v37cHd3h52dXY19fXx8AAAJCQno0KGDxuc3BQnZCQCAQJfA\nF+6r6RwEPyc/AKZddGg+Bo9ywaNcCE/jorN69WpcuXIFK1euBAD4+vrio48+AgBERERg48aNaNeu\nHRYvXlzvoORyOWbNmgXGGKZPnw4AyM7Ohp+fn8r9HRwcAAC5ubn1PrexuS+ragLzc1adm7pQNq/J\nTLd5jRAiDo2b19zd3XH69GkcOHAA+/fvx/Xr19G4cWMAwNChQ7F161acPn0aLi4u9QqIMYawsDAc\nP34cHTt2VPb1lJeXQyqVqvyM4v2SkpJ6ndsYKfpdFHcntdG0vdocmteo7Z5HueBRLoSn8Z3O9u3b\nERwcjCFDhtTY1q9fPwDAqVOncOLECXz88cd1CqaiogLTpk3D9u3b4efnh/3798PSsipEW1tblJWV\nqfxcaWkpAKBBgwYqtysevaoKM+KFLRljyrsRXydfnR1XcdekKDqVlZWIjY1FRUWFyv1tbGzQrVu3\nWvNMCDEsYv171bjoTJ48GeHh4dUGDjxv79692LhxY52KTlFREUaPHo3Dhw8jICAAR48ehYeHh3K7\nk5OT2uYzxfuKZjZtKK5sFG25xvQ6pzgHefF5sLWyRWO7xi/cv2fPnhodnzEGW0tbZBdn4/cjv+Nh\n0kMsWLAAHTt2hEwmA1D1/wdQtSrF9evXkZycjKZNmxpUfui15q8VDCUesV4r3jOUePTxffWNY2ou\n9b///nscOHBA+Xrfvn0IDAxEYKDqDuuysjIcP34czs7OSEtL0yoImUyGgQMH4vz582jfvj3++OMP\nZdOdQu/evfH333+joKCgRjNb//79cfz4cTx9+rTa3Y6ikhvz3Uxtzj88j85bOqOdRztcCbui02O3\n2dgG17Ou4+K0i6hMq8SsWbNw/vx5lfs2a9YMsbGxaNasmU5jIISIQ8i/nWrvdPr374/Zs2ejoKBA\n+Z5iRJk6UqkUn3zyiVYBlJSUYMiQITh//jx69uyJAwcOoGHDhjX2CwkJQXR0NGJiYtC3b99qnz97\n9iyCgoLUNq+ZKm36c4DqV3Av4ufsh+tZ13Ev5x5aoEVdQzRY2uTC1FEueJQL4aktOp6enrh37x6K\niooAVI1W++CDDzBnzpwa1Y/jOFhZWaFx48awtrbWKoClS5fizJkz6NatGw4fPqx2sMDYsWOxevVq\nhIeHIzQ0VHme1atXIz8/XznKzZwI0Z+j4O/EDyZoYWN6RYcQIo5a+3Tc3NyU/71161YEBwejefO6\nPyTseZmZmdiwYQMAIDAwEGvWrFG535IlS9CyZUvMnz8fX3zxhXJAw82bNxEVFYUePXpg2rRpOovL\nWCTKqibranqno80V3LPDpvt69n3B3saHrmZ5lAse5UJ4Gg8kmDRpks5PfvbsWZSXl4PjOGzdulXl\nPhzHYe7cuZBKpVizZg28vb3xn//8B+vWrYOnpyfmzp2LFStWwMrKSufxGToh5ugoVBs27anzwxNC\nzJRWz9PZsmULunbtiiZNmsDFxQXOzs4qfzQ1fPhwyOVyVFZWQi6Xq/yprKyEvb298jMzZ87EjRs3\nUFxcjMTERHz55Zdo1KiRNl/DZCj6dDRtXnt+pFJtnh82bWq0yYWpo1zwKBfC0/hO57///S/effdd\nAFVDk+3t7VWO86a5GvpRUlGCh/kPYSmxRDMH3Y8a87b3hpXEChkFGSiu0G4RV0IIUUfjorN+/Xo4\nODggKioKXbt2FTImooEkWdUD7po7NIelRLP/G7Vpr7aQWMDXyRd3su/gYfHDuoRo0Kjtnke54FEu\nhKdx89q9e/cwbtw4KjgGQsj+HAXFsdMKtZt3RQgh6mhcdNzc3FBZWSlkLEQLyv4cR82HS2vbXq0Y\nNv2g6IFWnzMG1HbPo1zwKBfC07jojBs3Dnv27EF2draQ8RANKYdLC3inoxjB9rDI9JrXCCHi0LhP\nZ+LEifjrr7/QqVMnTJkyBQEBAWoncg4bNkxnARLVlM1rGs7RAbRvr1Y2rxWZXvMatd3zKBc8yoXw\nNC46rVq1Uv73smXL1O7HcRw1w+mBkKsRKCjudNKK0uAFL8HOQwgxHxoXneXLl2u0Hw2ZFp6cyZWj\n17QpOtquK+Xj6AMJJ8Gj4kdoImmibZgGjdbY4lEueJQL4WlcdMLDwwUMg2gjPT8dpZWlcGvghkZS\n4SbGWltYo5lDMyQ/TUapbalg5yGEmA+tViRQKCgowJkzZ3Do0CEAQE5Ojk6DIrXTdiUChbpcwSn6\njErtTKvo0NUsj3LBo1wIT6uik5mZiTfffBNOTk7o3r27csDAxo0b4e/vj5iYGEGCJNXVZRBBXfk4\n+gAAymxVP7WVEEK0oXHRefz4Mbp27Yrdu3ejc+fOaN++vfIRB46OjkhOTsbAgQNx/fp1wYIlVbRd\nXVqhLnMQFEXH1O50aD4Gj3LBo1wIT+Ois2LFCjx48AD79+9HbGwshgwZotz23nvv4dixY6ioqMCn\nn34qSKCEp4/VCBRaOFY9S4f6dAghuqBx0Tlw4ABGjBiBoUOHqtweGhqKkSNH4uzZszoLjqimzz4d\nZfOanWk1r1HbPY9ywaNcCE/jovPkyRP4+dV+Ze3l5YWsrKx6B0Vql/S0ari04i5ESMrmNbrTIYTo\ngMZFp2nTprh8+XKt+5w/fx5eXjSJUEgFZQV4UvQEUgspPBtp93S1urRXezbyhBVnhQppBQrLCrX+\nvKGitnse5YJHuRCexkVn9OjROHr0KDZt2qRy+9dff42///4bI0aM0FlwpKaUpykAgOaOzSHh6jTi\nXSsSTgIPWw8AQPLTZMHPRwgxbRxTDEF7gby8PHTv3h03b97Eyy+/jIqKCsTHx2PChAm4ePEibt26\nBX9/f5w7dw5OTk5Cx60RxeoIGn5Fo3Ao4RCG/DwE/fz64c9xf+rlnJ2/6Yzz2efx+5jfMThgcI3t\nzZo1Q2xsLJo10/3D5Agh+ifk306NL5Xt7e0RGxuLd999F0lJSYiPjwcA7NixA/fv38eECRNw+vRp\ngyk4pkpxt+Hj4KO3czaxa1Lt3IQQUlcaL4MDVD2mesOGDYiMjMSdO3fw9OlTNGzYEC1btoSNjY1Q\nMZJnKIvO/zr4tVHXdaU8bav6jhQDGFT55ptv4OjoqPWx27RpU234vb7QGls8ygWPciE8jYvOrFmz\nMG7cOHTp0gWWlpYICgoSMi6iRnJuMoC6FZ26UhQddXc6y5cvR2JiIgoKCrQ6blpaGg4ePChK0SGE\niEPjPh2JpKolztfXF2PHjsW4ceMQEBAgaHD1ZYp9Oh2/7YiL6RdxesppdPXWz6PDv/vzO7xz9h10\n8OyAi9Mv6uy4Z86cwdy5c3HmzBmdHZMQUn8G0adz+vRpzJ49G8XFxVi1ahUCAwPRsWNHrF27Fo8e\nPdJ5YES1+jSv1ZWiT6e25jVCCNGExkWnS5cuWLt2LR48eIATJ04gLCwMKSkpmDt3Lpo2bYr+/ftj\nx44dWjexEM09O0fHvaG71p+v6xwEZ2tncJUccopzkFeaV6djGBqaj8GjXPAoF8LTeqKHRCJBaGgo\nNm7ciPT0dPzxxx+YPHkyrl27hkmTJsHdXfs/hkQzirscfc3RUeA4DtLiqkeTK+YJEUJIXdTrLxdj\nDCUlJWCMKdsAraysdBIYqam+TWv1GZUjLaoqOqbSxEYjlHiUCx7lQnhaDZkGgIqKChw5cgS7du3C\n/v37kZeXBysrKwwYMADjxo1TPmOH6J4Yc3QUrIutq8VACCF1ofGdzpEjR/DOO+/A3d0dQ4YMwc6d\nOxEUFIQNGzYgIyMD+/fvx+jRoyGVSoWM16wp/uC3cKrbQp/1aa9W3OmYStGhtnse5YJHuRCexkVn\nwIAB2Lp1K1xdXbFy5Urcv38fp06dwrvvvgtnZ2edBZSeng4HBwdERkbW2Pbdd99BIpGo/OnaVT/D\nh8Ukxsg1BUWfjqk0rxFCxKHV5NDx48ejY8eOggVTUFCAkSNHIj8/X9lH9Ky4uDgAwOLFi2usgGAO\nq1uL2adjXWRazWvUds+jXPAoF8LTuOisW7eu2uv09HTIZDIEBQWhvLy83gMIUlJSMHLkSFy5ckXt\nPteuXYOLiwtWr15dr3MZK0O40zGVokMIEYdWo9eKioqwaNEiuLu7w8vLC23atAEArF27Fr1791Yu\nAqqttWvX4pVXXsH169fRu3dvtftdv34dr7zySp3OYezyS/ORXZwNG0sbuDeo27D0+rRXW5ZZws7K\nDk9LnuJpydM6H8dQUNs9j3LBo1wIT+OiU1BQgJCQEPz73/+GVCqFr6+vcomE0tJSREdHIyQkBMnJ\nyVoHERkZiRYtWiAmJgbjx49XuU9aWhpkMpmy0JmblNz/PUfHobnKpkehceCUTyqlux1CSF1pXHRW\nrVqFK1euIDIyEsnJyRg3bpxy28cff4ydO3dCJpPhk08+0TqIzZs34+rVq+jSpYvatX6uXbsGACgr\nK8Pw4cPh5uYGe3t7DBgwABcuXND6nMZGF01r9W2vVpzbFIoOtd3zKBc8yoXwNC46v/zyC/r374/3\n339fufjns95++20MHjy4Trenffv2feHVu6LobNq0CWVlZZg6dSr69u2LY8eOISQkBEeOHNH6vMZE\nzP4cBcW5k2Q0go0QUjcaF5309HQEBwfXuk/Lli2Rnp5e76BUYYzBx8cHP/74I6KiorBmzRr8+uuv\nOHbsGCorKzF58mSUlpYKcm5DoIuiU9/2akXzmikMm6a2ex7lgke5EJ7GRadx48a4fft2rfvcvHkT\nrq6u9Q5KlSVLliAxMRFjxoyp9v6rr76Kt99+GxkZGTh58qQg5zYEij/0hnCno+hfIoQQbWk8ZHrY\nsGH473//i8OHD2PgwIE1tv/66684fPgwpk2bptMANREcHIwdO3aoHcRQW9OdsTxrR+g+nWPHjuGH\nH35Que3x48fVzq3LPp179+5h8uTJKrfZ2Nhg7dq1gqxyQW33PMoFz5xyIcaAJECLorN8+XIcPHgQ\nQ4cOxaBBg/DkyRMAQHh4OC5cuIDDhw/D1dUVy5YtEyTQuLg45OXlISQkpMa24uJiAKjTI7MVt9OK\nXzZDfa34Q59+PR3R96J1fvw///wTBQUF8PX1BQAEBgYCAOLj4+Hm5oYlS5ZUFZ0k4N7De8pFXutz\n/uDgYEybNg2VlZXVzqc4/4cffojevXvD1dVV9PzTa3ptiq9FwbSQkpLCBg0axDiOq/ETGhrK7ty5\no83hVNq2bRvjOI5FRkZWe9/Ly4tZWFiwJ0+e1PjM4MGDGcdx7ObNm9XeB8C0/IoGKbcklyEczGaV\nDZPL5XU+zokTJ9RuW7BgAfviiy9q/bxcLmcNVzdkCAfLKcqpcxyaatKkCUtLSxPk2LXlwtxQLniU\niypC/u3UanJos2bNcOjQITx8+BAHDx7Ezp078dtvvyExMRHR0dGCPr561KhRkMvlWLp0abX3d+/e\njaioKISGhqJ169aCnV9MimfY+Dj6iHZLDFTdjpvSYAJCiP5p/WgDAPD09MTgwYN1HUutli1bhkOH\nDuHbb7/FtWvX0L17d9y5cwdRUVFo0qQJtm3bptd49En58DaH5vU6ji5uqX0cfXA96zqSnyajvWf7\neh9PLKI2LxgYygWPciE8/T1+UkMcx6m8mnd2dsa5c+fw/vvvIz09HevWrcOVK1cwbdo0XLp0CT4+\nPvoPVk8UdxWKuwwxmdIEUUKI/hlc0Zk4cSIqKysxe/bsGtucnJwQGRmJlJQUlJWVIS0tDZs2bTL5\nR2TX9zk6CopOxPowlaKji1yYCsoFj3IhPIMrOqQmQ1iNQMFUig4hRBxUdIyAriaG6qpPBzD+okNt\n9zzKBY9yITy1Radt27ZYu3at8nVMTAxSUmgmuhiUzWsG1qfDjGRiLSHEcKgtOgkJCcjKylK+7tmz\nJ7Zv366XoAhP8fwaOys7NLZrXK9j6aK92snGCfZSe+SX5UNWIqv38cRCbfc8ygWPciE8tUOmHRwc\nsG/fPrz22mtwcXEBAGRmZipXe66NuT7zRgjP3uWIOUdHgeM4+Dj64Nqja0iSJcHZ1lnskAghRkRt\n0Rk/fjy++uorvPbaa8r3Nm3ahE2bNtV6QI7jUFlZqbsIzZwuBxHoqr1aUXSSnyajQ5MOOjmmvlHb\nPY9ywaNcCE9t0VmzZg38/f1x+fJllJaWYseOHWjbti3atm1b6wEN4WrclCieXWMI/TkKPg4+AIx/\nMAEhRP/UFh1LS0uEhYUpX+/YsQPDhw/HihUr9BIYqaLLO53o6GgawfY/usqFKaBc8CgXwtN4GZzE\nxEQ4OTkJGQtRwRCeo/M8ZdHJTRY1DkKI8dF4no6Pjw8cHBzwww8/oFevXnBxcYGtrS28vLzQv39/\n/Pjjj0LGabZ0tRoBoLv2akUsxnynQ1ezPMoFj3IhPI2LDmMMY8aMwYQJE3Dy5EnI5XL4+vpCLpfj\nr7/+wvjx4/H2228LGavZYYwZ1GoECjRXhxBSVxoXnU2bNmHXrl3o3bs3bty4AZlMhps3byI9PR0J\nCQno27cvfv75Z2zdulXIeM1KTnEO8svyYS+1h5NN/Zs2dTUHwdHGEQ5SBxSUFSC7OFsnx1TFwsIC\nw4cPR48ePVT+HDt2rM7HpvkYPMoFj3IhPI37dLZs2QJfX18cOHAAdnZ21bb5+/tj7969aNOmDTZv\n3owpU6boPFBz9OxdjqGNCvRx9EHcozgkP02u96RVdf766y/lo7Kft3btWty4cQN9+vQR5NyEEGFo\nXHRu376NqVOn1ig4Cg0aNMDAgQOxY8cOnQVn7nQ9iECX7dXPFp1/NPmHzo77rJYtW6Jly5Yqt+3e\nvbtex6a2ex7lgke5EJ7GzWuWlpYoKCiodZ/CwkKDuyI3Zoa05trzTGHYNCFE/zQuOp07d8b+/fuR\nnJyscntSUhL27duHjh076io2s6frQQS6bK9WFEJjLTrUds+jXPAoF8LTuOgsXLgQT58+Ra9evfD9\n998jMTER2dnZuHbtGjZs2IAePXogNzcXCxYsEDJes2JITwx9Ht3pEELqQuM+nb59+yIyMhJz585V\nDhTgOE45ZNbS0hKRkZHo37+/MJGaIV3f6ei6Twcw3qJDbfc8ygWPciE8jYsOALz//vsYPHgwfvzx\nR1y9ehWtkRSFAAAgAElEQVR5eXlo1KgRgoODMW7cOLRoYXhX5MbKUOfoKChiSnqaBMYY9eURQjSi\nVdEBAF9fXyxbtkyIWMgzHhc9RlF5EZxsnOBg46CTY+pyXSkHGwc42zojpzgHWYVZcG/orpPj6gut\nscWjXPAoF8Kjx1UbKEO+y1HwdfIFANyX3Rc5EkKIsaCiY6CUjzTQwZprCrq+gvNz8gMAJMoSdXpc\nfaCrWR7lgke5EB4VHQOlvNP537NrDJHyTieH7nQIIZqhomOghHikga7nICjvdJ4a350OzcfgUS54\nlAvhaVx0zpw5g9LSUiFjIc9Q9JP4OfuJHIl6dKdDCNGWxkXnn//8J0aNGiVkLOQZij/kirsJXdB5\nn44z9emYAsoFj3IhPI2LjkwmQ1BQkJCxkP8pryxHam4qOHAGPXqtaaOmsJJYIaMgA0XlRWKHQwgx\nAhoXneHDh2Pv3r3IysoSMh4CICU3BZWsEt4O3pBaSnV2XF23V1tILJSj6xSj7YwFtd3zKBc8yoXw\nNJ4cGhoaiujoaPj5+aF79+5o0aIFbG1tVe779ddf6yxAc3Qv5x4AwN/ZX+RIXszXyRcJ2Qm4L7uP\nIDe6EyaE1E7jojNz5kzlfx85cqTWfetTdNLT09GqVSt88skn+OCDD2ps37FjByIiInD37l04OTnh\njTfewCeffIIGDRrU+ZyGRoj+HECY9mpfx6rBBMbWr0Nt9zzKBY9yITyNi87x48eFjAMAUFBQgJEj\nRyI/P1/lWl5r1qzBRx99hLZt22L27Nm4du0aIiIicPbsWURHR8PKykrwGPVBOXJNx0VHCIrBBDSC\njRCiCY2LjtBXACkpKRg5ciSuXLmidvvy5cvRrVs3nDx5EhYWFgCAFStW4NNPP8XmzZvx3nvvCRqj\nvgg1XFqIdaUUw6aNba4OrbHFo1zwKBfC03py6JMnT/Cf//wH06dPx+jRowEAsbGxiImJqXMQa9eu\nxSuvvILr16+jd+/eKvfZvHkzKisrsXTpUmXBAYClS5fC3t4eW7ZsqfP5DY0x9eko7sboTocQogmt\nis6PP/4IHx8fzJo1C1u2bMHevXsBAFFRUejZsyfee+895fN1tBEZGYkWLVogJiYG48ePV7lPTEwM\nOI6rcRUilUrRpUsXxMXFIT8/X+tzGxo5kyv7R4yhT0c5eu1pEuRMrvPjC4WuZnmUCx7lQngaF53o\n6GhMnDgRTZo0wbfffospU6YoC8yIESPQrl07bNy4ETt27NA6iM2bN+Pq1avo0qWL2qJ1//59uLu7\nw87OrsY2Hx8fAEBCQoLW5zY0GfkZKKkogaudKxpJG4kdzgs1tG4I9wbuKKssw8O8h2KHQwgxcBoX\nnVWrVsHV1RVnz57F1KlT4eXlpdzWsWNHxMTEwMvLCxs3btQ6iL59+77wIWDZ2dlwdHRUuc3Boep5\nM7m5uVqf29AIufyNUHMQjPERBzQfg0e54FEuhKdx0blw4QJGjx4NZ2dnldsbNmyIESNG4M6dOzoL\n7lnl5eWQSlVPlFS8X1JSIsi59UnRn2MMI9cUjHk5HEKIfmlcdCorK1+4T2lpKcrLy+sVkDq2trYo\nKytTe14AJjFXR9EhL8QgAqHaqxVzdYxpMAG13fMoFzzKhfA0Ljpt2rTBoUOH1N5N5OfnIyoqCm3b\nttVZcM9ycnJS23ymeF/RzPY8juPU/hgaY5qjo6C80zGyYdOEmDOx/i5qXHQ+/PBDJCUlYfDgwbh8\n+bLyrqOyshIXLlzAwIEDkZaWVm3lAl0KCAjAo0ePVD5eISkpCRYWFnjppZe0Pm50dHS1dlyxX185\newVI4v+Q6/L4iv/Wdfy58VVF/37OfdHzp+nr53Midjxivl67dq1BxSPm67Vr1xpUPEK/FgXTwrJl\nyxjHcdV+rKyslP/9wQcfaHM4lbZt28Y4jmORkZHV3l++fDnjOI4dOXKk2vvFxcXM3t6etW3btsax\nADAtv6LonD53YggHy8zP1PmxT5w4oXbbggUL2BdffFGn46bnpTOEg7l84VLHyLQ3e/Zstnbt2jp/\nvrZcmBvKBY9yUUXIv51azdP55JNPcPbsWUyfPh0dOnSAn58fgoKCMGHCBBw/frzaFZOujR07FhYW\nFggPD6/Wt7N69Wrk5+dj+vTpgp1bX3KKcyArkaGhdUO4NXDT+fGFaq/2aOgBW0tbZBdnI7fEOEYQ\nUts9j3LBo1wIT+NlcBQ6deqETp06CRFLrVq2bIn58+fjiy++QHBwMIYMGYKbN28iKioKPXr0wLRp\n0/Qek649u9CnIfY3qcNxHHydfHHz8U0kyhIR7BksdkiEEAOl9TI4crkcMTExWL9+PT7//HNs3rwZ\nly5d0llAtXVkrVmzBt988w04jsO6detw69YtzJ07F4cOHTKJxT6FfkS1kG25irk6iiHfhk70dm0D\nQrngUS6Ep9WdTlRUFGbOnInU1NQa29q2bYtt27ahXbt29Qpo4sSJmDhxotrtM2fOFGywgtiEeqSB\nPgS4BAAAErKNf1UIQohwNC46J0+exOuvvw6pVIqwsDB07NgRjRo1Qnp6Ok6dOoVff/0VvXr1wpkz\nZxAYGChkzCbrnkzYiaFCtle3dGkJALiTLczkYF2jtnse5YJHuRCexkVn5cqVkEqliI2NrXE388EH\nH+DEiRMYMGAAFi9ejH379uk8UHMg5MRQoQU2rrrQiH8SL3IkhBBDpnGfzvnz5zF69Gi1zWe9evXC\nqFGjcOLECZ0FZ26MuU+nZWP+TofVYaVxfaO2ex7lgke5EJ7GRcfW1lbtjH8FDw8PSCRaj00gAArK\nCpCenw4riRW87b3FDkdrrnaucLJxQl5pHh4VPhI7HEKIgdK4Qrz11lv4+eefkZ6ernJ7bm4u9uzZ\ngxEjRugsOHNy50lVX0iASwAsJBYv2LtuhGyv5jhOebdjDE1s1HbPo1zwKBfCU9unc/z48Wqv+/bt\ni19//RXt27fHvHnz0L17d7i7u+Pp06e4ePEiIiIiYGNjg1mzZgketCm6/eQ2AKCVayuRI6m7wMaB\nOJt2Fnee3EFPn55ih0MIMUBqi85rr72m9kOLFi1Su61jx44arUhNqrv9+H9Fp7FwRSc6WtjnvytG\nsBnDnY7QuTAmlAse5UJ4aovO8uXL63RAY5pJb0iUdzoCFh2hKUawGcuwaUKI/qktOuHh4XoMg+ij\neU3oKzhjutOhq1ke5YJHuRAeDTUzAOWV5biXcw8cOOXMfmPk5+wHC84CyU+TUVJh/E9xJYTonsaT\nQysrK7Fhwwb89NNPSElJUflcG8YYOI5DTk6OToM0dfdy7qFCXgEfRx/YWdnV61hpaWmoqKhQue3s\n2bPo0qWLym25ublo3Lhxvc5tbWENXydf3M25i7vZd/GK+yv1Op6QqO2eR7ngUS6Ep3HRWbVqFVau\nXAkAcHNzg729vcr9qE9He4rmqPr259y4cQPt27dHkyZNVG4vKSmBjY2N2s//+9//rtf5gap+nbs5\nd3En+45BFx1CiDg0Ljrbt29Hs2bNcPLkSTRv3lzImMyOrgYRlJaW4pVXXtHpqt/aCmwciIMJBw2+\nX4euZnmUCx7lQnga9+lkZWXhzTffpIIjAFOYo6NgbAt/EkL0S+OiExwcjHv3jONZKcZGH3N0AP2s\nK2UsC3/SGls8ygWPciE8jYvO559/jqioKGzcuNEoFnQ0FnIm5/t0TOFOR7Hw5xPjWPiTEKJfGvfp\ndO/eHdOnT8d7772HRYsWwdvbG1KpVOW+ly9f1lmApi4tLw2F5YVwa+AGZ1tnQc+lj/bqxnaN4WLr\nguzibGQUZKBJI9WDGsRGbfc8ygWPciE8jYtOREQE1q9fDwAoKCjA7du3BQvKnCia1hTNUqagZeOW\nOP3gNO48uWOwRYcQIg6Nm9fWrVsHFxcX/Pnnn8jPz4dcLlf7QzSnq+HSmtBXe3Wgi+H361DbPY9y\nwaNcCE/jO51Hjx5hxowZ6Nu3r5DxmB1TWHPtec8+0E1IDx48UNuU6+npCU9PT5XbkpOTkZCQoHau\nWevWrWudz0QIqTuNi05gYCCePHkiZCxmSZ/DpfXVXq1oKlR8NyG0bdsW33zzTY1HcABVzb9NmzZV\n+xTbHj16wMnJCVZWVjW2PXjwAJ9++ilmzJih85gNFfVj8CgXwtO46Hz88ccYO3YsRo0ahWHDhgkZ\nk1nR13BpfXrFrWolgmuPrgl2jilTpmDKlCkqt8XGxmLx4sVqP1tRUYG//voLHh4eNbbNmjVL7TJC\nhJD607jo3L59G61bt8bw4cPRokUL+Pv7o0GDBir33bt3r84CNGXZRdl4XPQYDa0bwsveS/Dz6Wtd\nKR9HH9hL7ZFZkInMgkx4NKz5x11sp0+fxsiRI8UOwyDQemM8yoXwNC46y5YtU/53UlISkpKSBAnI\nnCianwIbB5rUmnUcx6GdRzvEpMQgLjMOHv6GV3QIIeLQuOgkJiYKGYdZupl1E4D+hkvr8wqunXtV\n0bmaeRX9/fvr7bya6tatm9ghGAy6sudRLoSncdHx8fERMAzzdCXzCgAg2CNY5Eh0r51HOwDA1UdX\nRY6EEGJINJ6nk5eXp/EP0czljKrhvh08O+jlfPqcg6AsOpmGWXROnz4tdggGg+am8CgXwtP4TsfR\n0fGF/Q6Kh7hVVlbWOzBTV15ZrhzdpfgDbUpau7aGpcQSd57cQWFZIRpYqx50QggxLxoXnVdffVXl\n+0VFRUhMTEROTg46d+6s9smUpLpbj2+htLIU/s7+cLBx0Ms59dleLbWUorVra1x7dA03sm6gs1dn\nvZ1bE9Snw6N+DB7lQngaF53abjsZY9i4cSPmzZuHiIgIXcRVq2XLluGzzz5Tue3NN9/Ezz//LHgM\n9aVoWmvv2V7kSITTzqMdrj26hquZVw2u6BBCxKFx0akNx3GYOXMmfv/9dyxZskTtTHBdiYuLg1Qq\nxZIlS2pse/nllwU9t64oi46H/oqOvucgtHNvhx3YYZD9OjRPh0dzU3iUC+HppOgotGnTBt98840u\nD6nStWvXEBQUhOXLlwt+LqFczjSPOx2ARrARQngaj157EblcjpiYGNja2urqkCrl5eUhNTUVbdq0\nEfQ8QqqUVyqv/vVZdPR9BdfWoy2AquVwKuWGNbiE+nR4dGXPo1wIT+M7ncjISJWj1+RyOQoLCxEV\nFYWzZ89i4sSJOg3wedeuVY34Muaik5CdgKLyIjR3aA4XOxexwxGMs60zvO298SDvAe7l3FOuPk0I\nMV8aF50PP/zwhft06NABn3/+eb0CehFF0cnKykLfvn1x8eJFcByHPn364LPPPkNAQICg59cFsQYR\niNFe3c6jHR7kPcDVzKsGVXSoT4dH/Rg8yoXwNC46W7duVfk+x3GwtrZGq1at0K6d8PNNFEXnyy+/\nxOuvv46wsDDExcXh119/xdGjRxEdHY22bdsKHkd9XMq4BMC0+3MU2nm0w8GEg7iaeRVvvvym2OEQ\nQkSmcdGZNGmSgGFoztLSEj4+Pvj++++rzR366aefMG7cOEyZMgWXLl0SMcIXE+tOR4wrOEMdTEB9\nOjy6sudRLoSn09Fr+qBudNzYsWOxefNmxMTEICEhoVozW20rKTDGdB5jbeRMrlxzzVzudAD9L4fz\n+PFj7Nq1S+W24uLiWj976dIltZ8NCAhAcLDprZVHzI9YK9urLTq9evWqc1CqnuaoD8HBwYiJiUFy\ncrLGfTuKSa+KKxyhX/988GfkxeehSZsm8GjoofPj5+fnV2uXfnb7sxN89fV9k68mw+6hHTKbZiI9\nPx0JlxIEP392djY6dOiAvXv3IisrCwDg5uYGoKovsGvXrrh27Ro8PGrm38PDA8eOHVM+E+rZz2dl\nZUEmk2Ht2rV6y58+Xl+9ehVz5swxmHjEfL127Vq0a9fOYOIR+rUomBocx9X5RygVFRXs0qVL7Pz5\n8yq3h4WFMY7j2MmTJxljjAFgtXxFUey6sYshHGzIT0N0fuyLFy+y9u3bq91+4sQJnZ9TE3139GUI\nB/vlxi+inF+VuuTixIkTLDQ0VOexiE2s3wtDRLmoIuTfTrXzdHJycl74I5PJcO7cOWVzg7W1taAT\nNsvLy9G5c2cMGDAAcrn8+eKJ06dPw8rKSi8DGupKjJUIFMS6unm1eVXfW0xKjCjnV0XUKz0DQ7ng\nUS6Ep7boODo61vrTsGFDbNiwAaGhobhy5Qq6deuGK1euIDw8XLBgbWxsMGTIEMhkshpDs7/66ivc\nuHEDY8eOhb29vWAx1NfF9IsAgGBP8+kXCGkWAgD4O/VvkSMhhIitTisSnD9/Hh06dMDHH38Ma2tr\nbNiwAbGxsWjVqpWu46vhq6++gqurKz7++GP069cP8+fPR69evbBw4UIEBQXh66+/FjyGuiqtKMXp\nB1XPcenmrf/RU8/26ehTp6adYG1hjWuPrkFWLBMlhueJlQtDRLngUS6Ep1XRKSwsxAcffIBu3brh\n+vXreP3113Hr1i28++67QsVXg6+vLy5evIiJEyfixo0bWL9+PVJTUzF//nycPn0aTk5OeotFW+cf\nnkdxRTGCXIPg1sBN7HD0xtbKFp2adgIDw6kHp8QOhxAiIo2HTB86dAgzZ87EgwcP4OnpifXr14s2\no9vb2xvbtm0T5dz1cSK5avXtXj69RDm/mO3VIc1CEJsai79T/saQgCGixaFAbfc8ygWPciG8F97p\nZGVl4a233sLQoUORlpaG6dOn49atW7SESB0oi04LcYqOmJSDCVINZzABIUT/ar3T2bp1KxYsWACZ\nTIaWLVti8+bNCAkJ0VdsJqWkogRnHpwBBw6hzUPrfJyEhAQcO3ZM5baUlJRaP/vs/B196+bdDRJO\ngovpF1FUXgQ7KztR4lAQMxeGhnLBo1wIT23R6d27t7JTLTg4GIsWLYJMJsOBAwdeeNBhw4bpLEBT\ncebBGZRWlqKte9t6rSy9bds2HD9+HO3bqx5yPX369DofW0j2Unu082iHyxmXcTbtLHq36C12SIQQ\nEagtOs+O4rhy5QreeustjQ7IcRwqKw3r2SmGQJf9OcOHD1f51NQXEfsK7tVmr+JyxmXEpMSIXnTE\nzoUhoVzwKBfCU1t06jrJU6z1fAydOffnKIQ0D8Hac2tpvg4hZkxt0RFykqe5KSwrxLm0c5BwEmWH\nuhjEbq9WTBI98+AMyirLYG1hLVosYufCkFAueJQL4enscdVEvVMPTqFcXo5gj2A42jiKHY5oXBu4\nolXjViiuKMaldMN+/AQhRBhUdPTgRFJV0xr1Y/B3O4rmRrEYQi4MBeWCR7kQHhUdPRB7UqghGeA/\nAACwL36fyJEQQsRARUdgeaV5uJh+ERacBXo06yFqLIawrlR///6ws7LDhfQLSM1NFS0OQ8iFoaBc\n8CgXwjO6J4cakl9++QUJCQlqt48cORKXKy6jklUipFkIGkkb6TE6w2RnZYfBLw3G7lu7sff2Xszp\nMkfskAghekR3OvWwfPlypKWloaSkpMbPH3/8gb179+L/bvwfAODNoDdFjtZw2qv/2eqfAIA9t/aI\nFoOh5MIQUC54lAvh0Z1OPc2ZMweBgYE13v/4449RxIrw5/0/YcFZYHTQaBGiM0yDXhoEqYUUpx+c\nRkZ+BjwbeYodEiFET+hOR0A32U1UyCvQx7ePQTzKwFDaqxtJG6G/f38wMPwW/5soMRhKLgwB5YJH\nuRAeFR0BXWfXAQBjXh4jciSGZ1SrUQDEbWIjhOgfFR2B5CEPyUiG1EKKEYEjxA4HgGG1Vw9tORRW\nEiucTDmJx4WP9X5+Q8qF2CgXPMqF8KjoCOS25DYYGAa9NAgONg5ih2NwHG0c0ce3D+RMjv139osd\nDiFET6joCOQmdxMA8NbLmq3OrQ+G1l6taGLbfWu33s9taLkQE+WCR7kQHhUdAdzPuY8MSQasYW0Q\nj2Y2VK8Hvg5rC2v8df8v3HlyR+xwCCF6QEOmBbA9bjsAIJALFP0Jmc8ytPbqxnaNMbHtRHx7+Vt8\ndeYrbB66WW/nrmsu7t27h7lz56rcZmdnh/DwcFhaGtc/K0P7vRAT5UJ4dKejY09LnmL9+fUAgI5c\nR5GjMXzzu80HBw7b47YjIz9D7HBq1b59eyxYsABeXl4qfyIiIiCTycQOkxCDZlyXZEZg3bl1eFry\nFM3lzeFj4SN2ONUY4rNCAlwCMKLVCOy9vRfrzq3DmtfW6OW8dcmFvb09PvjgA7Xb16zRT+y6Zoi/\nF2KhXAiP7nR0KLckFxFnIwAAIfIQkaMxHgu7LQQAbLy4EXmleSJHQwgREhUdHVLc5YQ2D0Vz1lzs\ncGow1Cu4zl6dEdo8FLmludh8ST/9OoaaCzFQLniUC+FR0dGRZ+9ywnuGixuMEVrYvepuJ+JsBEor\nSkWOhhAiFCo6OrL+/HrISmR4tfmr6OnTU+xwVDLkOQgD/QfiFbdXkJ6fjjWxwveNGHIu9I1ywaNc\nCI+Kjg4kZCfgi1NfAADCQ8PFDcZIcRyHdQPXgQOHVTGrcOHhBbFDIoQIgIpOPZVUlOCN3W+goKwA\nbwS9YbB3OYDht1f39OmJD7t8iEpWifG/jUdReZFw5zLwXOgT5YJHuRCeUQ6ZrqiowPr16/Htt98i\nOTkZnp6emDx5MhYvXqz3iXmfX/0ccY/i4Ofkh2+HfguO45Tb9uzZg7t37+r0fJcuXcLbb7+t02Ma\nks/6fIY/7v+BW49vYfHRxVg3cJ3YIenEwYMHsWeP+hW1e/TogWnTpukxIkLEwTHGmNhBaCssLAzf\nfvstQkJC0L17d8TGxiI2Nhb//Oc/sXs3v46XogAI9RWb9GuCjO4ZkFpIcWbqGQR7Biu3JScn4+TJ\nk4Kct0+fPvDy8tL6c8YyB+FKxhV02tIJFfIKRI2NwsCXBur8HELkwtXVFbdu3YKrq2uNbe+++y4K\nCwvRp0+fGttu3ryJS5cu4dixYzqNR1PG8nuhD5SLKoL+7WRG5tSpU4zjOPbGG29Ue3/ixImM4zj2\n+++/K98DwIT6iqdTTzPuI44hHGzjhY2CnEOXhMyFEFadXMUQDmazyoYdvHNQp8cWKheNGzdmWVlZ\nKrfNmDGD/ec//1G57ejRo6x37946j0cTxvZ7ISTKBU/IXBhdn86GDRsAACtWrKj2/po1a8BxHLZs\n2SJ4DD9d/wm9tvcCs2IY3GwwwjqECX5Oc7O4x2KEdQhDSUUJhv/fcPxw7QexQyKE6IDRFZ2YmBi4\nurqidevW1d739PTESy+9hJiYGMHOzRjDihMr8Pbet1FaWQrHBEd83vnzav04RDcsJBbYOHgjlvZY\nqhxY8O9T/0alvFLs0Agh9WBURae0tBQPHz6En5+fyu0+Pj6QyWTIzs7W+bljUmIQ+n0oPon5BBJO\ngnUD1sH9kjssJUY5FsMocByHz/p8hi/7fgkAWHh0If7x7T9wIumEyJERQurKqIpOTk4OAMDR0VHl\ndgeHqid05ubm6uR8FfIKRCdHo9/Ofgj9PhR/p/4NJxsn/D7md7zf+X2dnIO82Lxu87D3jb3wtvfG\n1cyr6L2jN17/v9dx+O5hlFWWiR0eIUQLRnWZXl5eDgCQSqUqtyveLykpqdPxyyrLcC/nHq5kXEHU\nvSj8ce8P5BRXFTp7qT3mdpmLOV3m0OOnRTCi1QgM8B+Ar898jTWxa3DgzgEcuHMAjjaOeL3l6+jT\nog/aerRFYONAWFtYix0uIUQNoyo6tra2AICyMtVXt6WlVWt2NWjQoNr7hxIOoVxejrLKMhSWFaKg\nrACF5YXILspGVlEWsgqzkPI0BXdz7qJCXlHts/7O/hjz8hjM6TIHzrbOAnwroilbK1t89OpHmBI8\nBd9e/ha7b+3Gjawb2B63XfngPCuJFV5yeQlNGjWBZ0NPeDT0gIPUAY2kjdDIulG1h+oduX8EFpwF\nLCQWsOAsIOEkkHAScBwHDpzyfwHU2m+n2KfCtQJxWXFwKneqsc9jy8dILU/FpfRLNbYlFCQgr2Ge\nym36Iua5DQ3lQlhGNU+nrKwMtra26Nq1K2JjY2tsHzBgAP766y9kZ2fD0dGROvgJIaQehCgPRtWn\nY21tjebNmyMpKUnl9qSkJLi6uir7fIyonhJCiEER6u+nUTWvAUBISAh27tyJu3fv4qWXXlK+n56e\njrt372LYsGHV9qfCQwghhsOo7nQAYMKECQCApUuXKgsKYwxLliwBAEyfPl202AghhNTOqPp0FMaM\nGYNdu3ahU6dO6NmzJ06fPo3Y2FiMHj0au3btEjs8QgghahjdnQ4A7Ny5E5988gmePHmCyMhIZGVl\n4dNPP8UPP1QtlVJRUYGIiAi0bt0adnZ28PPzw6pVq1BRUfGCIxu3zMxMzJgxA97e3pBKpfD09MT4\n8eNV9oHt2LEDwcHBaNiwIby9vTFv3jwUFhaKELXw5s+fD4lEonK1CnPJw48//ohOnTqhQYMGaNKk\nCUaNGoU7d+7U2M/U8/HkyROEhYWhadOmkEqlaNGiBRYtWoTi4uIa+5paLtLT0+Hg4IDIyEiV27X5\nvocOHULXrl1hb28Pd3d3vPPOO3j8+LFmgQiyopvIpk+fzjiOY6+++ipbsmQJCwkJYRzHsVGjRokd\nmmAyMjKYt7c34ziO9e/fny1cuJANGzaMSSQS5uLiwu7evavcd/Xq1YzjONauXTu2ZMkSNnjwYMZx\nHOvWrRsrKysT8Vvo3rlz55iFhQWTSCTs5MmT1baZSx4++ugjxnEca9myJVuwYAEbM2YMs7S0ZE5O\nTiwxMVG5n6nnIzc3lwUEBDCO41ifPn3YwoULWbdu3RjHcax79+6soqJCua+p5SI/P5917tyZcRzH\nIiMja2zX5vv+9NNPjOM45u/vzxYtWsTeeustZmFhwfz9/dnTp09fGIvJFR1tVqE2JWFhYYzjOBYR\nEVHt/R9++IFxHMeGDRvGGGMsOTmZWVpa1vhHtnz5csZxHPvmm2/0GreQSktLWVBQEOM4jnEcV63o\nmP2zqewAAAhmSURBVEsezp07xziOY7169WIlJSXK9/fs2cM4jmOTJk1ijJlHPr744gvGcRz78MMP\nq70/btw4xnEc2759O2PM9HKRnJzM2rdvr/x38HzR0eb75ufnMycnJ+bv78/y8/OV72/dupVxHMfm\nz5//wnhMruiMHTuWcRzHbt68We399PR0JpFI2PDhw0WKTFhubm7M3d1d5TY/Pz9mY2PD5HI5W7p0\nKeM4jh06dKjaPiUlJczBwYG1a9dOH+HqxfLly5lUKmV9+/atUXTMJQ8TJkxgFhYW1e50FcLCwtjq\n1asZY+aRjzfffJNxHMeuX79e7f3o6GjGcRybOXMmY8y0chEREcEaNWrErKysWJ8+fVQWHW2+7+bN\nmxnHcWzDhg01zhUYGMgaN27MKisra43J5IqOl5cXc3NzU7mtZcuWzNnZWc8RCa+yspJFRkayjRtV\nP9endevWTCKRsNLSUtajRw8mkUhYYWFhjf369+/POI5jeXl5QocsuLi4OGZtbc1WrlzJ5syZU6Po\nmEseXF1dNfojaQ75mD17NuM4jh08WP35TIrWgBUrVjDGTCsXPj4+rE2bNuzMmTPs+++/V1l0tPm+\nirvCW7du1dhX0doSFxdXa0xGOZBAHTFXoRaTRCLB7NmzMWPGjBrb4uPjER8fDz8/P1hbW+P+/ftw\nd3eHnZ1djX19fHwAAAkJCUKHLKjKykpMnToVAQEBWLJkicq5WuaQh6ysLDx58gRBQUGIj4/HyJEj\n4ejoCEdHR7zxxhtITk5W7msO+QgLC0ODBg3w4Ycf4vTp0ygqKkJ0dDQWLVoER0dHTJkyBYBp5WLz\n5s24evUqunTponbOojbf9/79++A4Dr6+vmr3vXv3bq0xmVTR0fcq1IZOLpdj1qxZYIwp5y8plghS\nxVTy8+WXX+LKlSvYsmULrKysVO5jDnlIT08HAKSlpaFz585ITU3FO++8g+7du2PPnj3o0qULUlNT\nAZhHPlq3bo3Y2FiUlJSgR48eaNiwIXr37g1LS0ucOnUKzZo1A2Bauejbt+8LlwPT5vtmZ2dDKpWq\nXHRZ09yYVNERehVqY8IYQ1hYGI4fP46OHTtizpw5AKpyZMr5SUhIQHh4ON577z107txZ7X6mngcA\nyuGuMTExGDlyJC5cuIAvv/wShw4dwrp165CVlWU2vxcAkJqainHjxiE9PR3Dhg3D/Pnz0bNnT6Sm\npmL69OnKP5bmkItnafN9dZEbkyo6dV2F2tRUVFRgypQp+O677+Dn54f9+/fD0rJqxSNbW1uTzQ9j\nDFOnToWHhwfWrFlT676mnAcFiaTqn7elpSUiIiKqXfG+9957aNGiBaKiolBcXGwW+Rg7dixu3ryJ\nXbt2Yd++ffjXv/6F48eP4+uvv8apU6eUrQHmkItnafN9dZEbkyo6Dg4O4DhO7e1dbm4uOI5T3gaa\noqKiIrz++uvYvn07AgICcOLECXh4eCi3Ozk51ZofAEabnw0bNuDUqVPYuHGjyvbpZ9u0TTkPCor4\nfXx8ajSfcByHNm3aoLy8HKmpqSafj9TUVJw+fRqhoaEYNWpUtW1z5sxBq1atsHfvXhQUFJh8Lp6n\nzfd1cnJCSUmJslWptn3VMamio+0q1KZGJpOhd+/eOHz4MNq3b4/Y2Fh4eXlV2ycgIACPHj1SXpU8\nKykpCRYWFtUWUjUme/bsAQAMGjQIEolE+bNu3ToAQK9evSCRSJCSkoKAgABkZmaaZB4UfH19IZFI\n1F6ZKv5w2NnZmXw+Hj58CABo1aqVyu2tW7eGXC7Hw4cPTT4Xz9Pmb0JAQAAYY9UGoTy7LwC0bNmy\n1vOZVNEBqlahzsjIqDGCQrEKdZcuXUSKTFglJSUYMmQIzp8/j549eyI6OhqNGzeusV9ISAgqKytr\nLAlTUlKCs2fPIigoyGibDiZPnozw8PAaP4q+nUmTJiE8PByOjo4ICQmBXC43yTwo2NjYoGPHjkhN\nTcX9+/erbauoqEBcXBxcXFzQtGlT9OjRw6Tz4enpCQAql/4BqkZccRwHd3d3s/jdeJY2fxNCQkIA\nANHR0TWOEx0dDUdHR7WFXakuY78N2dGjR5VL3sjlcsYYY3K5nE2YMEHlBChT8eGHHyqX83h25vnz\n4uPjmaWlJevWrRsrLS1Vvr9s2TK1k76M3QcffFBjno655EExU3zQoEGsvLxc+f7nn3/OOI5j8+bN\nY4yZRz46d+7MJBIJ279/f7X3t2zZoswRY6abi23btqmcp6PN983JyWH29vbM39+f5eTkKN//7rvv\nGMdxbMGCBS+Mw+SKDmOMvfXWW4zjONa5c2e2aNEi5dprzy+NYyoyMjKYtbU14ziOTZ06la1YsULl\nj6IYLV68mHEcx1q3bs0WLlyoXGcpJCTEKNeVehFVRYcx88nDiBEjGMdxLCgoiM2bN48NGjSIcRzH\nAgMDq01yNPV83Lhxgzk7OzMLCws2fPhwtnDhQjZgwADGcRxr2rQpS05OVu5rirlQV3QY0+77btq0\niXEcx5o1a8bmzZunXHstMDCQyWSyF8ZhkkWnvLycffrpp8rlX1q2bMlWrVpltL8sL/Lbb78xjuOY\nRCJRrq/0/I9EImG5ubnKz2zYsIEFBQUxGxsb1qJFCzZv3jyjmWWtrTlz5qhc8JMx88hDRUUFi4iI\nUH5PLy8vNmvWrGpXqgqmno+kpCQ2adIk5unpyaysrJi3tzebMWMGy8zMrLGvqeXi+++/ZxKJRGXR\nYUy777tr1y7WoUMHZmtry7y8vNjUqVNV5lAVo3yeDiGEEONkcgMJCCGEGC4qOoQQQvSGig4hhBC9\noaJDCCFEb6joEEII0RsqOoQQQvSGig4hhBC9oaJDCCFEb6joEEII0RsqOoQQQvTm/wHfNodeP58h\nRQAAAABJRU5ErkJggg==\n", "text/plain": [ "<matplotlib.figure.Figure at 0x7fb92f686590>" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "# Plot everything together\n", "plt.hist(data, bins=20, facecolor='white', histtype='stepfilled');\n", "\n", "plt.plot(ivar, mynormpdf);\n", "plt.ylabel('Number of events');" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "collapsed": false }, "outputs": [], "source": [] } ], "metadata": { "kernelspec": { "display_name": "Python 2", "language": "python", "name": "python2" }, "language_info": { "codemirror_mode": { "name": "ipython", "version": 2 }, "file_extension": ".py", "mimetype": "text/x-python", "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython2", "version": "2.7.6" } }, "nbformat": 4, "nbformat_minor": 0 }
gpl-2.0
chengsoonong/crowdastro
notebooks/51_thesis_galaxy_classification.ipynb
1
5503
{ "cells": [ { "cell_type": "markdown", "metadata": {}, "source": [ "# Classifying Galaxies\n", "\n", "We want to classify each galaxy as either containing an AGN or not containing an AGN, assuming that all galaxies are independent." ] }, { "cell_type": "code", "execution_count": 67, "metadata": { "collapsed": false }, "outputs": [], "source": [ "import sys\n", "\n", "from astropy.coordinates import SkyCoord\n", "import h5py\n", "import matplotlib.pyplot as plt\n", "import numpy\n", "import sklearn.linear_model\n", "import sklearn.ensemble\n", "import sklearn.metrics\n", "import sklearn.neighbors\n", "\n", "sys.path.insert(1, '..')\n", "import crowdastro\n", "\n", "NORRIS_DAT_PATH = '../data/norris_2006_atlas_classifications_ra_dec_only.dat'\n", "TRAINING_H5_PATH = '../data/training.h5'\n", "%matplotlib inline" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## How many infrared objects are there?" ] }, { "cell_type": "code", "execution_count": 15, "metadata": { "collapsed": false }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "Total: 24140\n", "Testing: 5922 (24.53%)\n", "Training: 18218 (75.47%)\n", "Testing: 452 (19.97%)\n", "Testing: 1811 (80.03%)\n" ] } ], "source": [ "with h5py.File(TRAINING_H5_PATH) as training_f:\n", " print('Total:', training_f['features'].shape[0])\n", " print('Testing:', training_f['is_ir_test'].value.sum(),\n", " '({:.02%})'.format(training_f['is_ir_test'].value.sum() / training_f['features'].shape[0]))\n", " print('Training:', training_f['is_ir_train'].value.sum(),\n", " '({:.02%})'.format(training_f['is_ir_train'].value.sum() / training_f['features'].shape[0]))\n", "\n", " atlas_test = training_f['is_atlas_test'].value.sum()\n", " atlas_train = training_f['is_atlas_train'].value.sum()\n", " atlas_total = atlas_test + atlas_train\n", " print('Testing:', atlas_test, '({:.02%})'.format(atlas_test / atlas_total))\n", " print('Testing:', atlas_train, '({:.02%})'.format(atlas_train / atlas_total))" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Training the classifier" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "collapsed": false }, "outputs": [], "source": [ "with h5py.File(TRAINING_H5_PATH) as training_f:\n", " lr = sklearn.linear_model.LogisticRegression(n_jobs=-1, class_weight='balanced', C=100.0, penalty='l1')\n", " x = training_f['features'][training_f['is_ir_train'].value, :]\n", " y = training_f['labels'][training_f['is_ir_train'].value]\n", " lr.fit(x, y)" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Testing the classifier" ] }, { "cell_type": "code", "execution_count": 79, "metadata": { "collapsed": false }, "outputs": [], "source": [ "# Load Norris labels.\n", "with h5py.File(TRAINING_H5_PATH, 'r') as training_f:\n", " ir_positions = training_f['positions'].value\n", "ir_tree = sklearn.neighbors.KDTree(ir_positions)\n", "\n", "with open(NORRIS_DAT_PATH, 'r') as norris_dat:\n", " norris_coords = [r.strip().split('|') for r in norris_dat]\n", "\n", "norris_labels = numpy.zeros((len(ir_positions)))\n", "for ra, dec in norris_coords:\n", " # Find a neighbour.\n", " skycoord = SkyCoord(ra=ra, dec=dec, unit=('hourangle', 'deg'))\n", " ra = skycoord.ra.degree\n", " dec = skycoord.dec.degree\n", " ((dist,),), ((ir,),) = ir_tree.query([(ra, dec)])\n", " if dist < 0.1:\n", " norris_labels[ir] = 1" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "collapsed": true }, "outputs": [], "source": [ "# Predict.\n", "with h5py.File(TRAINING_H5_PATH) as training_f:\n", " test_indices = training_f['is_ir_test'].value\n", " x = training_f['features'][test_indices, :]\n", " t = norris_labels[test_indices]\n", " y = lr.predict(x)" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "### Accuracy" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "collapsed": false, "scrolled": true }, "outputs": [], "source": [ "# Raw accuracy.\n", "sklearn.metrics.accuracy_score(t, y)" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "collapsed": false }, "outputs": [], "source": [ "# Balanced accuracy.\n", "cm = sklearn.metrics.confusion_matrix(t, y).astype(float)\n", "cm /= cm.sum(axis=1).reshape((-1, 1))\n", "cm.trace() / 2" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## " ] } ], "metadata": { "kernelspec": { "display_name": "Python 3", "language": "python", "name": "python3" }, "language_info": { "codemirror_mode": { "name": "ipython", "version": 3 }, "file_extension": ".py", "mimetype": "text/x-python", "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", "version": "3.5.1" } }, "nbformat": 4, "nbformat_minor": 0 }
mit
cmfeng/class_project
Analysis/maps/ee_debug.ipynb
1
1309
{ "metadata": { "name": "", "signature": "sha256:9f1ab0f8e8a20eeaef194468452c8e5aa250c0197074136e491005a85567c9aa" }, "nbformat": 3, "nbformat_minor": 0, "worksheets": [ { "cells": [ { "cell_type": "code", "collapsed": false, "input": [ "''' Unit tests for ee_utils.py '''\n", "\n", "import unittest\n", "import os\n", "\n", "\n", "% run 'ee_utils.ipynb'\n", "initialize_api()\n", "\n", "\n", "\n", "class TestProntoUtils(unittest.TestCase):\n", "\n", " # Did authetication work? \n", " def testAuthentication(self):\n", " try:\n", " ee.Initialize()\n", " print(\"Authentication successful!\")\n", " except:\n", " print('Authentication failed')\n", "\n", " #Did the metadata actually export and save? \n", " def testMetadatasave(self):\n", " self.assertTrue(os.path.exists('missco2_metadata.txt '), \"Failed to save image data.\")\n", " \n", "\n", " \n", "if __name__ == '__main__':\n", " unittest.main()" ], "language": "python", "metadata": {}, "outputs": [] } ], "metadata": {} } ] }
mit
goddoe/CADL
session-5/session-5-part-1-new.ipynb
1
108546
{ "cells": [ { "cell_type": "markdown", "metadata": {}, "source": [ "# Session 5: Generative Networks\n", "## Assignment: Generative Adversarial Networks and Recurrent Neural Networks\n", "\n", "<p class=\"lead\">\n", "<a href=\"https://www.kadenze.com/courses/creative-applications-of-deep-learning-with-tensorflow/info\">Creative Applications of Deep Learning with Google's Tensorflow</a><br />\n", "<a href=\"http://pkmital.com\">Parag K. Mital</a><br />\n", "<a href=\"https://www.kadenze.com\">Kadenze, Inc.</a>\n", "</p>\n", "\n", "# Table of Contents\n", "\n", "<!-- MarkdownTOC autolink=\"true\" autoanchor=\"true\" bracket=\"round\" -->\n", "\n", "- [Overview](#overview)\n", "- [Learning Goals](#learning-goals)\n", "- [Part 1 - Generative Adversarial Networks \\(GAN\\) / Deep Convolutional GAN \\(DCGAN\\)](#part-1---generative-adversarial-networks-gan--deep-convolutional-gan-dcgan)\n", " - [Introduction](#introduction)\n", " - [Building the Encoder](#building-the-encoder)\n", " - [Building the Discriminator for the Training Samples](#building-the-discriminator-for-the-training-samples)\n", " - [Building the Decoder](#building-the-decoder)\n", " - [Building the Generator](#building-the-generator)\n", " - [Building the Discriminator for the Generated Samples](#building-the-discriminator-for-the-generated-samples)\n", " - [GAN Loss Functions](#gan-loss-functions)\n", " - [Building the Optimizers w/ Regularization](#building-the-optimizers-w-regularization)\n", " - [Loading a Dataset](#loading-a-dataset)\n", " - [Training](#training)\n", " - [Equilibrium](#equilibrium)\n", "- [Part 2 - Variational Auto-Encoding Generative Adversarial Network \\(VAEGAN\\)](#part-2---variational-auto-encoding-generative-adversarial-network-vaegan)\n", " - [Batch Normalization](#batch-normalization)\n", " - [Building the Encoder](#building-the-encoder-1)\n", " - [Building the Variational Layer](#building-the-variational-layer)\n", " - [Building the Decoder](#building-the-decoder-1)\n", " - [Building VAE/GAN Loss Functions](#building-vaegan-loss-functions)\n", " - [Creating the Optimizers](#creating-the-optimizers)\n", " - [Loading the Dataset](#loading-the-dataset)\n", " - [Training](#training-1)\n", "- [Part 3 - Latent-Space Arithmetic](#part-3---latent-space-arithmetic)\n", " - [Loading the Pre-Trained Model](#loading-the-pre-trained-model)\n", " - [Exploring the Celeb Net Attributes](#exploring-the-celeb-net-attributes)\n", " - [Find the Latent Encoding for an Attribute](#find-the-latent-encoding-for-an-attribute)\n", " - [Latent Feature Arithmetic](#latent-feature-arithmetic)\n", " - [Extensions](#extensions)\n", "- [Part 4 - Character-Level Language Model](session-5-part-2.ipynb#part-4---character-level-language-model)\n", "- [Part 5 - Pretrained Char-RNN of Donald Trump](session-5-part-2.ipynb#part-5---pretrained-char-rnn-of-donald-trump)\n", " - [Getting the Trump Data](session-5-part-2.ipynb#getting-the-trump-data)\n", " - [Basic Text Analysis](session-5-part-2.ipynb#basic-text-analysis)\n", " - [Loading the Pre-trained Trump Model](session-5-part-2.ipynb#loading-the-pre-trained-trump-model)\n", " - [Inference: Keeping Track of the State](session-5-part-2.ipynb#inference-keeping-track-of-the-state)\n", " - [Probabilistic Sampling](session-5-part-2.ipynb#probabilistic-sampling)\n", " - [Inference: Temperature](session-5-part-2.ipynb#inference-temperature)\n", " - [Inference: Priming](session-5-part-2.ipynb#inference-priming)\n", "- [Assignment Submission](session-5-part-2.ipynb#assignment-submission)\n", "<!-- /MarkdownTOC -->\n", "\n", "\n", "<a name=\"overview\"></a>\n", "# Overview\n", "\n", "This is certainly the hardest session and will require a lot of time and patience to complete. Also, many elements of this session may require further investigation, including reading of the original papers and additional resources in order to fully grasp their understanding. The models we cover are state of the art and I've aimed to give you something between a practical and mathematical understanding of the material, though it is a tricky balance. I hope for those interested, that you delve deeper into the papers for more understanding. And for those of you seeking just a practical understanding, that these notebooks will suffice.\n", "\n", "This session covered two of the most advanced generative networks: generative adversarial networks and recurrent neural networks. During the homework, we'll see how these work in more details and try building our own. I am not asking you train anything in this session as both GANs and RNNs take many days to train. However, I have provided pre-trained networks which we'll be exploring. We'll also see how a Variational Autoencoder can be combined with a Generative Adversarial Network to allow you to also encode input data, and I've provided a pre-trained model of this type of model trained on the Celeb Faces dataset. We'll see what this means in more details below.\n", "\n", "After this session, you are also required to submit your final project which can combine any of the materials you have learned so far to produce a short 1 minute clip demonstrating any aspect of the course you want to invesitgate further or combine with anything else you feel like doing. This is completely open to you and to encourage your peers to share something that demonstrates creative thinking. Be sure to keep the final project in mind while browsing through this notebook!\n", "\n", "<a name=\"learning-goals\"></a>\n", "# Learning Goals\n", "\n", "* Learn to build the components of a Generative Adversarial Network and how it is trained\n", "* Learn to combine the Variational Autoencoder with a Generative Adversarial Network\n", "* Learn to use latent space arithmetic with a pre-trained VAE/GAN network\n", "* Learn to build the components of a Character Recurrent Neural Network and how it is trained\n", "* Learn to sample from a pre-trained CharRNN model" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "collapsed": true }, "outputs": [], "source": [ "# First check the Python version\n", "import sys\n", "if sys.version_info < (3,4):\n", " print('You are running an older version of Python!\\n\\n',\n", " 'You should consider updating to Python 3.4.0 or',\n", " 'higher as the libraries built for this course',\n", " 'have only been tested in Python 3.4 and higher.\\n')\n", " print('Try installing the Python 3.5 version of anaconda'\n", " 'and then restart `jupyter notebook`:\\n',\n", " 'https://www.continuum.io/downloads\\n\\n')\n", "\n", "# Now get necessary libraries\n", "try:\n", " import os\n", " import numpy as np\n", " import matplotlib.pyplot as plt\n", " from skimage.transform import resize\n", " from skimage import data\n", " from scipy.misc import imresize\n", " from scipy.ndimage.filters import gaussian_filter\n", " import IPython.display as ipyd\n", " import tensorflow as tf\n", " from libs import utils, gif, datasets, dataset_utils, nb_utils\n", "except ImportError as e:\n", " print(\"Make sure you have started notebook in the same directory\",\n", " \"as the provided zip file which includes the 'libs' folder\",\n", " \"and the file 'utils.py' inside of it. You will NOT be able\",\n", " \"to complete this assignment unless you restart jupyter\",\n", " \"notebook inside the directory created by extracting\",\n", " \"the zip file or cloning the github repo.\")\n", " print(e)\n", "\n", "# We'll tell matplotlib to inline any drawn figures like so:\n", "%matplotlib inline\n", "plt.style.use('ggplot')" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "collapsed": true }, "outputs": [], "source": [ "# Bit of formatting because I don't like the default inline code style:\n", "from IPython.core.display import HTML\n", "HTML(\"\"\"<style> .rendered_html code { \n", " padding: 2px 4px;\n", " color: #c7254e;\n", " background-color: #f9f2f4;\n", " border-radius: 4px;\n", "} </style>\"\"\")" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "<a name=\"part-1---generative-adversarial-networks-gan--deep-convolutional-gan-dcgan\"></a>\n", "# Part 1 - Generative Adversarial Networks (GAN) / Deep Convolutional GAN (DCGAN)\n", "\n", "<a name=\"introduction\"></a>\n", "## Introduction\n", "\n", "Recall from the lecture that a Generative Adversarial Network is two networks, a generator and a discriminator. The \"generator\" takes a feature vector and decodes this feature vector to become an image, exactly like the decoder we built in Session 3's Autoencoder. The discriminator is exactly like the encoder of the Autoencoder, except it can only have 1 value in the final layer. We use a sigmoid to squash this value between 0 and 1, and then interpret the meaning of it as: 1, the image you gave me was real, or 0, the image you gave me was generated by the generator, it's a FAKE! So the discriminator is like an encoder which takes an image and then perfoms lie detection. Are you feeding me lies? Or is the image real? \n", "\n", "Consider the AE and VAE we trained in Session 3. The loss function operated partly on the input space. It said, per pixel, what is the difference between my reconstruction and the input image? The l2-loss per pixel. Recall at that time we suggested that this wasn't the best idea because per-pixel differences aren't representative of our own perception of the image. One way to consider this is if we had the same image, and translated it by a few pixels. We would not be able to tell the difference, but the per-pixel difference between the two images could be enormously high.\n", "\n", "The GAN does not use per-pixel difference. Instead, it trains a distance function: the discriminator. The discriminator takes in two images, the real image and the generated one, and learns what a similar image should look like! That is really the amazing part of this network and has opened up some very exciting potential future directions for unsupervised learning. Another network that also learns a distance function is known as the siamese network. We didn't get into this network in this course, but it is commonly used in facial verification, or asserting whether two faces are the same or not.\n", "\n", "The GAN network is notoriously a huge pain to train! For that reason, we won't actually be training it. Instead, we'll discuss an extension to this basic network called the VAEGAN which uses the VAE we created in Session 3 along with the GAN. We'll then train that network in Part 2. For now, let's stick with creating the GAN.\n", "\n", "Let's first create the two networks: the discriminator and the generator. We'll first begin by building a general purpose encoder which we'll use for our discriminator. Recall that we've already done this in Session 3. What we want is for the input placeholder to be encoded using a list of dimensions for each of our encoder's layers. In the case of a convolutional network, our list of dimensions should correspond to the number of output filters. We also need to specify the kernel heights and widths for each layer's convolutional network.\n", "\n", "We'll first need a placeholder. This will be the \"real\" image input to the discriminator and the discrimintator will encode this image into a single value, 0 or 1, saying, yes this is real, or no, this is not real.\n", "\n", "<h3><font color='red'>TODO! COMPLETE THIS SECTION!</font></h3>" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "collapsed": true }, "outputs": [], "source": [ "# We'll keep a variable for the size of our image.\n", "n_pixels = 32\n", "n_channels = 3\n", "input_shape = [None, n_pixels, n_pixels, n_channels]\n", "\n", "# And then create the input image placeholder\n", "X = tf.placeholder(dtype=tf.float32, name='X', shape=[None, n_pixels, n_pixels,n_channels])" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "<a name=\"building-the-encoder\"></a>\n", "## Building the Encoder\n", "\n", "Let's build our encoder just like in Session 3. We'll create a function which accepts the input placeholder, a list of dimensions describing the number of convolutional filters in each layer, and a list of filter sizes to use for the kernel sizes in each convolutional layer. We'll also pass in a parameter for which activation function to apply.\n", "\n", "<h3><font color='red'>TODO! COMPLETE THIS SECTION!</font></h3>" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "collapsed": true }, "outputs": [], "source": [ "def encoder(x, channels, filter_sizes, activation=tf.nn.tanh, reuse=None):\n", " # Set the input to a common variable name, h, for hidden layer\n", " h = x\n", "\n", " # Now we'll loop over the list of dimensions defining the number\n", " # of output filters in each layer, and collect each hidden layer\n", " hs = []\n", " for layer_i in range(len(channels)):\n", " \n", " with tf.variable_scope('layer{}'.format(layer_i+1), reuse=reuse):\n", " # Convolve using the utility convolution function\n", " # This requirs the number of output filter,\n", " # and the size of the kernel in `k_h` and `k_w`.\n", " # By default, this will use a stride of 2, meaning\n", " # each new layer will be downsampled by 2.\n", " h, W = utils.conv2d(h, channels[layer_i], k_h = filter_sizes[layer_i], k_w=filter_sizes[layer_i],reuse=reuse)\n", "\n", "\n", " # Now apply the activation function\n", " h = activation(h)\n", " \n", " # Store each hidden layer\n", " hs.append(h)\n", "\n", " # Finally, return the encoding.\n", " return h, hs" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "<a name=\"building-the-discriminator-for-the-training-samples\"></a>\n", "## Building the Discriminator for the Training Samples\n", "\n", "Finally, let's take the output of our encoder, and make sure it has just 1 value by using a fully connected layer. We can use the `libs/utils` module's, `linear` layer to do this, which will also reshape our 4-dimensional tensor to a 2-dimensional one prior to using the fully connected layer.\n", "\n", "<h3><font color='red'>TODO! COMPLETE THIS SECTION!</font></h3>" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "collapsed": true }, "outputs": [], "source": [ "def discriminator(X,\n", " channels=[50, 50, 50, 50],\n", " filter_sizes=[4, 4, 4, 4],\n", " activation=utils.lrelu,\n", " reuse=None):\n", "\n", " # We'll scope these variables to \"discriminator_real\"\n", " with tf.variable_scope('discriminator', reuse=reuse):\n", " # Encode X:\n", " H, Hs = encoder(X, channels, filter_sizes, activation, reuse)\n", " \n", " # Now make one last layer with just 1 output. We'll\n", " # have to reshape to 2-d so that we can create a fully\n", " # connected layer:\n", " shape = H.get_shape().as_list()\n", " H = tf.reshape(H, [-1, shape[1] * shape[2] * shape[3]])\n", " \n", " # Now we can connect our 2D layer to a single neuron output w/\n", " # a sigmoid activation:\n", " D, W = utils.linear(H, 1, activation=tf.nn.sigmoid, reuse=reuse, name='FCNN')\n", " return D" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "Now let's create the discriminator for the real training data coming from `X`:" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "collapsed": true }, "outputs": [], "source": [ "D_real = discriminator(X)" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "And we can see what the network looks like now:" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "collapsed": true }, "outputs": [], "source": [ "graph = tf.get_default_graph()\n", "nb_utils.show_graph(graph.as_graph_def())" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "<a name=\"building-the-decoder\"></a>\n", "## Building the Decoder\n", "\n", "Now we're ready to build the Generator, or decoding network. This network takes as input a vector of features and will try to produce an image that looks like our training data. We'll send this synthesized image to our discriminator which we've just built above.\n", "\n", "Let's start by building the input to this network. We'll need a placeholder for the input features to this network. We have to be mindful of how many features we have. The feature vector for the Generator will eventually need to form an image. What we can do is create a 1-dimensional vector of values for each element in our batch, giving us `[None, n_features]`. We can then reshape this to a 4-dimensional Tensor so that we can build a decoder network just like in Session 3.\n", "\n", "But how do we assign the values from our 1-d feature vector (or 2-d tensor with Batch number of them) to the 3-d shape of an image (or 4-d tensor with Batch number of them)? We have to go from the number of features in our 1-d feature vector, let's say `n_latent` to `height x width x channels` through a series of convolutional transpose layers. One way to approach this is think of the reverse process. Starting from the final decoding of `height x width x channels`, I will use convolution with a stride of 2, so downsample by 2 with each new layer. So the second to last decoder layer would be, `height // 2 x width // 2 x ?`. If I look at it like this, I can use the variable `n_pixels` denoting the `height` and `width` to build my decoder, and set the channels to whatever I want.\n", "\n", "Let's start with just our 2-d placeholder which will have `None x n_features`, then convert it to a 4-d tensor ready for the decoder part of the network (a.k.a. the generator)." ] }, { "cell_type": "code", "execution_count": null, "metadata": { "collapsed": true }, "outputs": [], "source": [ "# We'll need some variables first. This will be how many\n", "# channels our generator's feature vector has. Experiment w/\n", "# this if you are training your own network.\n", "n_code = 16\n", "\n", "# And in total how many feature it has, including the spatial dimensions.\n", "n_latent = (n_pixels // 16) * (n_pixels // 16) * n_code\n", "\n", "# Let's build the 2-D placeholder, which is the 1-d feature vector for every\n", "# element in our batch. We'll then reshape this to 4-D for the decoder.\n", "Z = tf.placeholder(name='Z', shape=[None, n_latent], dtype=tf.float32)\n", "\n", "# Now we can reshape it to input to the decoder. Here we have to\n", "# be mindful of the height and width as described before. We need\n", "# to make the height and width a factor of the final height and width\n", "# that we want. Since we are using strided convolutions of 2, then\n", "# we can say with 4 layers, that first decoder's layer should be:\n", "# n_pixels / 2 / 2 / 2 / 2, or n_pixels / 16:\n", "Z_tensor = tf.reshape(Z, [-1, n_pixels // 16, n_pixels // 16, n_code])" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "Now we'll build the decoder in much the same way as we built our encoder. And exactly as we've done in Session 3! This requires one additional parameter \"channels\" which is how many output filters we want for each net layer. We'll interpret the `dimensions` as the height and width of the tensor in each new layer, the `channels` is how many output filters we want for each net layer, and the `filter_sizes` is the size of the filters used for convolution. We'll default to using a stride of two which will downsample each layer. We're also going to collect each hidden layer `h` in a list. We'll end up needing this for Part 2 when we combine the variational autoencoder w/ the generative adversarial network." ] }, { "cell_type": "code", "execution_count": null, "metadata": { "collapsed": true }, "outputs": [], "source": [ "def decoder(z, dimensions, channels, filter_sizes,\n", " activation=tf.nn.relu, reuse=None):\n", " h = z\n", " hs = []\n", " for layer_i in range(len(dimensions)):\n", " with tf.variable_scope('layer{}'.format(layer_i+1), reuse=reuse):\n", " h, W = utils.deconv2d(x=h,\n", " n_output_h=dimensions[layer_i],\n", " n_output_w=dimensions[layer_i],\n", " n_output_ch=channels[layer_i],\n", " k_h=filter_sizes[layer_i],\n", " k_w=filter_sizes[layer_i],\n", " reuse=reuse)\n", " h = activation(h)\n", " hs.append(h)\n", " return h, hs" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "<a name=\"building-the-generator\"></a>\n", "## Building the Generator\n", "\n", "Now we're ready to use our decoder to take in a vector of features and generate something that looks like our training images. We have to ensure that the last layer produces the same output shape as the discriminator's input. E.g. we used a `[None, 64, 64, 3]` input to the discriminator, so our generator needs to also output `[None, 64, 64, 3]` tensors. In other words, we have to ensure the last element in our `dimensions` list is 64, and the last element in our `channels` list is 3." ] }, { "cell_type": "code", "execution_count": null, "metadata": { "collapsed": true }, "outputs": [], "source": [ "# Explore these parameters.\n", "def generator(Z,\n", " dimensions=[n_pixels//8, n_pixels//4, n_pixels//2, n_pixels],\n", " channels=[50, 50, 50, n_channels],\n", " filter_sizes=[4, 4, 4, 4],\n", " activation=utils.lrelu):\n", "\n", " with tf.variable_scope('generator'):\n", " G, Hs = decoder(Z_tensor, dimensions, channels, filter_sizes, activation)\n", "\n", " return G" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "Now let's call the `generator` function with our input placeholder `Z`. This will take our feature vector and generate something in the shape of an image." ] }, { "cell_type": "code", "execution_count": null, "metadata": { "collapsed": true }, "outputs": [], "source": [ "G = generator(Z)" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "collapsed": true }, "outputs": [], "source": [ "graph = tf.get_default_graph()\n", "nb_utils.show_graph(graph.as_graph_def())" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "<a name=\"building-the-discriminator-for-the-generated-samples\"></a>\n", "## Building the Discriminator for the Generated Samples\n", "\n", "Lastly, we need *another* discriminator which takes as input our generated images. Recall the discriminator that we have made only takes as input our placeholder `X` which is for our actual training samples. We'll use the same function for creating our discriminator and **reuse** the variables we already have. This is the crucial part! We aren't making *new* trainable variables, but reusing the ones we have. We just create a new set of operations that takes as input our generated image. So we'll have a whole new set of operations exactly like the ones we have created for our first discriminator. But we are going to use the exact same variables as our first discriminator, so that we optimize the same values." ] }, { "cell_type": "code", "execution_count": null, "metadata": { "collapsed": true }, "outputs": [], "source": [ "D_fake = discriminator(G, reuse=True)" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "Now we can look at the graph and see the new discriminator inside the node for the discriminator. You should see the original discriminator and a new graph of a discriminator within it, but all the weights are shared with the original discriminator." ] }, { "cell_type": "code", "execution_count": null, "metadata": { "collapsed": true }, "outputs": [], "source": [ "nb_utils.show_graph(graph.as_graph_def())" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "<a name=\"gan-loss-functions\"></a>\n", "## GAN Loss Functions\n", "\n", "We now have all the components to our network. We just have to train it. This is the notoriously tricky bit. We will have 3 different loss measures instead of our typical network with just a single loss. We'll later connect each of these loss measures to two optimizers, one for the generator and another for the discriminator, and then pin them against each other and see which one wins! Exciting times!\n", "\n", "Recall from Session 3's Supervised Network, we created a binary classification task: music or speech. We again have a binary classification task: real or fake. So our loss metric will again use the binary cross entropy to measure the loss of our three different modules: the generator, the discriminator for our real images, and the discriminator for our generated images.\n", "\n", "To find out the loss function for our generator network, answer the question, what makes the generator successful? Successfully fooling the discriminator. When does that happen? When the discriminator for the fake samples produces all ones. So our binary cross entropy measure will measure the cross entropy with our predicted distribution and the true distribution which has all ones." ] }, { "cell_type": "code", "execution_count": null, "metadata": { "collapsed": true }, "outputs": [], "source": [ "with tf.variable_scope('loss/generator'):\n", " loss_G = tf.reduce_mean(utils.binary_cross_entropy(D_fake, tf.ones_like(D_fake)))" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "What we've just written is a loss function for our generator. The generator is optimized when the discriminator for the generated samples produces all ones. In contrast to the generator, the discriminator will have 2 measures to optimize. One which is the opposite of what we have just written above, as well as 1 more measure for the real samples. Try writing these two losses and we'll combine them using their average. We want to optimize the Discriminator for the real samples producing all 1s, and the Discriminator for the fake samples producing all 0s:\n", "\n", "<h3><font color='red'>TODO! COMPLETE THIS SECTION!</font></h3>" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "collapsed": true }, "outputs": [], "source": [ "with tf.variable_scope('loss/discriminator/real'):\n", " loss_D_real = utils.binary_cross_entropy(D_real, tf.zeros_like(D_real))\n", "with tf.variable_scope('loss/discriminator/fake'):\n", " loss_D_fake = utils.binary_cross_entropy(D_fake, tf.ones_like(D_fake))\n", "with tf.variable_scope('loss/discriminator'):\n", " loss_D = tf.reduce_mean((loss_D_real + loss_D_fake) / 2)" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "collapsed": true }, "outputs": [], "source": [ "nb_utils.show_graph(graph.as_graph_def())" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "With our loss functions, we can create an optimizer for the discriminator and generator:\n", "\n", "<a name=\"building-the-optimizers-w-regularization\"></a>\n", "## Building the Optimizers w/ Regularization\n", "\n", "We're almost ready to create our optimizers. We just need to do one extra thing. Recall that our loss for our generator has a flow from the generator through the discriminator. If we are training both the generator and the discriminator, we have two measures which both try to optimize the discriminator, but in opposite ways: the generator's loss would try to optimize the discriminator to be bad at its job, and the discriminator's loss would try to optimize it to be good at its job. This would be counter-productive, trying to optimize opposing losses. What we want is for the generator to get better, and the discriminator to get better. Not for the discriminator to get better, then get worse, then get better, etc... The way we do this is when we optimize our generator, we let the gradient flow through the discriminator, but we do not update the variables in the discriminator. Let's try and grab just the discriminator variables and just the generator variables below:\n", "\n", "<h3><font color='red'>TODO! COMPLETE THIS SECTION!</font></h3>" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "collapsed": true }, "outputs": [], "source": [ "# Grab just the variables corresponding to the discriminator\n", "# and just the generator:\n", "vars_d = [v for v in tf.trainable_variables()\n", " if v.name.startswith('discriminator')]\n", "print('Training discriminator variables:')\n", "[print(v.name) for v in tf.trainable_variables()\n", " if v.name.startswith('discriminator')]\n", "\n", "vars_g = [v for v in tf.trainable_variables()\n", " if v.name.startswith('generator')\n", "print('Training generator variables:')\n", "[print(v.name) for v in tf.trainable_variables()\n", " if v.name.startswith('generator')]" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "We can also apply regularization to our network. This will penalize weights in the network for growing too large." ] }, { "cell_type": "code", "execution_count": null, "metadata": { "collapsed": true }, "outputs": [], "source": [ "d_reg = tf.contrib.layers.apply_regularization(\n", " tf.contrib.layers.l2_regularizer(1e-6), vars_d)\n", "g_reg = tf.contrib.layers.apply_regularization(\n", " tf.contrib.layers.l2_regularizer(1e-6), vars_g)" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "The last thing you may want to try is creating a separate learning rate for each of your generator and discriminator optimizers like so:" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "collapsed": true }, "outputs": [], "source": [ "learning_rate = 0.0001\n", "\n", "lr_g = tf.placeholder(tf.float32, shape=[], name='learning_rate_g')\n", "lr_d = tf.placeholder(tf.float32, shape=[], name='learning_rate_d')" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "Now you can feed the placeholders to your optimizers. If you run into errors creating these, then you likely have a problem with your graph's definition! Be sure to go back and reset the default graph and check the sizes of your different operations/placeholders.\n", "\n", "With your optimizers, you can now train the network by \"running\" the optimizer variables with your session. You'll need to set the `var_list` parameter of the `minimize` function to only train the variables for the discriminator and same for the generator's optimizer:\n", "\n", "<h3><font color='red'>TODO! COMPLETE THIS SECTION!</font></h3>" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "collapsed": true }, "outputs": [], "source": [ "opt_g = tf.train.AdamOptimizer(learning_rate=lr_g).minimize(loss_G + g_reg, var_list=vars_g)" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "collapsed": true }, "outputs": [], "source": [ "opt_d = tf.train.AdamOptimizer(learning_rate=lr_d).minimize(loss_D + d_reg, var_list=vars_d)" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "<a name=\"loading-a-dataset\"></a>\n", "## Loading a Dataset\n", "\n", "Let's use the Celeb Dataset just for demonstration purposes. In Part 2, you can explore using your own dataset. This code is exactly the same as we did in Session 3's homework with the VAE.\n", "\n", "<h3><font color='red'>TODO! COMPLETE THIS SECTION!</font></h3>" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "collapsed": true }, "outputs": [], "source": [ "# You'll want to change this to your own data if you end up training your own GAN.\n", "batch_size = 64\n", "n_epochs = 1\n", "crop_shape = [n_pixels, n_pixels, 3]\n", "crop_factor = 0.8\n", "input_shape = [218, 178, 3]\n", "\n", "files = datasets.CELEB()\n", "batch = dataset_utils.create_input_pipeline(\n", " files=files,\n", " batch_size=batch_size,\n", " n_epochs=n_epochs,\n", " crop_shape=crop_shape,\n", " crop_factor=crop_factor,\n", " shape=input_shape)" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "<a name=\"training\"></a>\n", "## Training\n", "\n", "We'll now go through the setup of training the network. We won't actually spend the time to train the network but just see how it would be done. This is because in Part 2, we'll see an extension to this network which makes it much easier to train." ] }, { "cell_type": "code", "execution_count": null, "metadata": { "collapsed": true }, "outputs": [], "source": [ "ckpt_name = './gan.ckpt'\n", "\n", "sess = tf.Session()\n", "saver = tf.train.Saver()\n", "sess.run(tf.global_variables_initializer())\n", "coord = tf.train.Coordinator()\n", "tf.get_default_graph().finalize()\n", "threads = tf.train.start_queue_runners(sess=sess, coord=coord)\n", "\n", "if os.path.exists(ckpt_name + '.index') or os.path.exists(ckpt_name):\n", " saver.restore(sess, ckpt_name)\n", " print(\"VAE model restored.\")" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "collapsed": true }, "outputs": [], "source": [ "n_examples = 10\n", "\n", "zs = np.random.uniform(0.0, 1.0, [4, n_latent]).astype(np.float32)\n", "zs = utils.make_latent_manifold(zs, n_examples)" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "<a name=\"equilibrium\"></a>\n", "## Equilibrium\n", "\n", " Equilibrium is at 0.693. Why? Consider what the cost is measuring, the binary cross entropy. If we have random guesses, then we have as many 0s as we have 1s. And on average, we'll be 50% correct. The binary cross entropy is:\n", "\n", "\\begin{align}\n", "\\sum_i \\text{X}_i * \\text{log}(\\tilde{\\text{X}}_i) + (1 - \\text{X}_i) * \\text{log}(1 - \\tilde{\\text{X}}_i)\n", "\\end{align}\n", "\n", "Which is written out in tensorflow as:" ] }, { "cell_type": "markdown", "metadata": { "collapsed": true }, "source": [ "```python\n", "(-(x * tf.log(z) + (1. - x) * tf.log(1. - z)))\n", "```" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "Where `x` is the discriminator's prediction of the true distribution, in the case of GANs, the input images, and `z` is the discriminator's prediction of the generated images corresponding to the mathematical notation of $\\tilde{\\text{X}}$. We sum over all features, but in the case of the discriminator, we have just 1 feature, the guess of whether it is a true image or not. If our discriminator guesses at chance, i.e. 0.5, then we'd have something like:\n", "\n", "\\begin{align}\n", "0.5 * \\text{log}(0.5) + (1 - 0.5) * \\text{log}(1 - 0.5) = -0.693\n", "\\end{align}\n", "\n", "So this is what we'd expect at the start of learning and from a game theoretic point of view, where we want things to remain. So unlike our previous networks, where our loss continues to drop closer and closer to 0, we want our loss to waver around this value as much as possible, and hope for the best." ] }, { "cell_type": "code", "execution_count": null, "metadata": { "collapsed": true }, "outputs": [], "source": [ "equilibrium = 0.693\n", "margin = 0.2" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "When we go to train the network, we switch back and forth between each optimizer, feeding in the appropriate values for each optimizer. The `opt_g` optimizer only requires the `Z` and `lr_g` placeholders, while the `opt_d` optimizer requires the `X`, `Z`, and `lr_d` placeholders.\n", "\n", "Don't train this network for very long because GANs are a huge pain to train and require a lot of fiddling. They very easily get stuck in their adversarial process, or get overtaken by one or the other, resulting in a useless model. What you need to develop is a steady equilibrium that optimizes both. That will likely take two weeks just trying to get the GAN to train and not have enough time for the rest of the assignment. They require a lot of memory/cpu and can take many days to train once you have settled on an architecture/training process/dataset. Just let it run for a short time and then interrupt the kernel (don't restart!), then continue to the next cell.\n", "\n", "From there, we'll go over an extension to the GAN which uses a VAE like we used in Session 3. By using this extra network, we can actually train a better model in a fraction of the time and with much more ease! But the network's definition is a bit more complicated. Let's see how the GAN is trained first and then we'll train the VAE/GAN network instead. While training, the \"real\" and \"fake\" cost will be printed out. See how this cost wavers around the equilibrium and how we enforce it to try and stay around there by including a margin and some simple logic for updates. This is highly experimental and the research does not have a good answer for the best practice on how to train a GAN. I.e., some people will set the learning rate to some ratio of the performance between fake/real networks, others will have a fixed update schedule but train the generator twice and the discriminator only once." ] }, { "cell_type": "code", "execution_count": null, "metadata": { "collapsed": true }, "outputs": [], "source": [ "t_i = 0\n", "batch_i = 0\n", "epoch_i = 0\n", "n_files = len(files)\n", "\n", "if not os.path.exists('imgs'):\n", " os.makedirs('imgs')\n", " \n", "while epoch_i < n_epochs:\n", "\n", " batch_i += 1\n", " batch_xs = sess.run(batch) / 255.0\n", " batch_zs = np.random.uniform(\n", " 0.0, 1.0, [batch_size, n_latent]).astype(np.float32)\n", "\n", " real_cost, fake_cost = sess.run([\n", " loss_D_real, loss_D_fake],\n", " feed_dict={\n", " X: batch_xs,\n", " Z: batch_zs})\n", " real_cost = np.mean(real_cost)\n", " fake_cost = np.mean(fake_cost)\n", " \n", " if (batch_i % 20) == 0:\n", " print(batch_i, 'real:', real_cost, '/ fake:', fake_cost)\n", "\n", " gen_update = True\n", " dis_update = True\n", "\n", " if real_cost > (equilibrium + margin) or \\\n", " fake_cost > (equilibrium + margin):\n", " gen_update = False\n", "\n", " if real_cost < (equilibrium - margin) or \\\n", " fake_cost < (equilibrium - margin):\n", " dis_update = False\n", "\n", " if not (gen_update or dis_update):\n", " gen_update = True\n", " dis_update = True\n", "\n", " if gen_update:\n", " sess.run(opt_g,\n", " feed_dict={\n", " Z: batch_zs,\n", " lr_g: learning_rate})\n", " if dis_update:\n", " sess.run(opt_d,\n", " feed_dict={\n", " X: batch_xs,\n", " Z: batch_zs,\n", " lr_d: learning_rate})\n", "\n", " if batch_i % (n_files // batch_size) == 0:\n", " batch_i = 0\n", " epoch_i += 1\n", " print('---------- EPOCH:', epoch_i)\n", " \n", " # Plot example reconstructions from latent layer\n", " recon = sess.run(G, feed_dict={Z: zs})\n", "\n", " recon = np.clip(recon, 0, 1)\n", " m1 = utils.montage(recon.reshape([-1] + crop_shape),\n", " 'imgs/manifold_%08d.png' % t_i)\n", "\n", " recon = sess.run(G, feed_dict={Z: batch_zs})\n", "\n", " recon = np.clip(recon, 0, 1)\n", " m2 = utils.montage(recon.reshape([-1] + crop_shape),\n", " 'imgs/reconstructions_%08d.png' % t_i)\n", " \n", " fig, axs = plt.subplots(1, 2, figsize=(15, 10))\n", " axs[0].imshow(m1)\n", " axs[1].imshow(m2)\n", " plt.show()\n", " t_i += 1\n", "\n", " # Save the variables to disk.\n", " save_path = saver.save(sess, \"./\" + ckpt_name,\n", " global_step=batch_i,\n", " write_meta_graph=False)\n", " print(\"Model saved in file: %s\" % save_path)" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "collapsed": true }, "outputs": [], "source": [ "# Tell all the threads to shutdown.\n", "coord.request_stop()\n", "\n", "# Wait until all threads have finished.\n", "coord.join(threads)\n", "\n", "# Clean up the session.\n", "sess.close()" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "<a name=\"part-2---variational-auto-encoding-generative-adversarial-network-vaegan\"></a>\n", "# Part 2 - Variational Auto-Encoding Generative Adversarial Network (VAEGAN)\n", "\n", "In our definition of the generator, we started with a feature vector, `Z`. This feature vector was not connected to anything before it. Instead, we had to randomly create its values using a random number generator of its `n_latent` values from -1 to 1, and this range was chosen arbitrarily. It could have been 0 to 1, or -3 to 3, or 0 to 100. In any case, the network would have had to learn to transform those values into something that looked like an image. There was no way for us to take an image, and find the feature vector that created it. In other words, it was not possible for us to *encode* an image.\n", "\n", "The closest thing to an encoding we had was taking an image and feeding it to the discriminator, which would output a 0 or 1. But what if we had another network that allowed us to encode an image, and then we used this network for both the discriminator and generative parts of the network? That's the basic idea behind the VAEGAN: https://arxiv.org/abs/1512.09300. It is just like the regular GAN, except we also use an encoder to create our feature vector `Z`.\n", "\n", "We then get the best of both worlds: a GAN that looks more or less the same, but uses the encoding from an encoder instead of an arbitrary feature vector; and an autoencoder that can model an input distribution using a trained distance function, the discriminator, leading to nicer encodings/decodings.\n", "\n", "Let's try to build it! Refer to the paper for the intricacies and a great read. Luckily, by building the `encoder` and `decoder` functions, we're almost there. We just need a few more components and will change these slightly.\n", "\n", "Let's reset our graph and recompose our network as a VAEGAN:" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "collapsed": true }, "outputs": [], "source": [ "tf.reset_default_graph()" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "<a name=\"batch-normalization\"></a>\n", "## Batch Normalization\n", "\n", "You may have noticed from the `VAE` code that I've used something called \"batch normalization\". This is a pretty effective technique for regularizing the training of networks by \"reducing internal covariate shift\". The basic idea is that given a minibatch, we optimize the gradient for this small sample of the greater population. But this small sample may have different characteristics than the entire population's gradient. Consider the most extreme case, a minibatch of 1. In this case, we overfit our gradient to optimize the gradient of the single observation. If our minibatch is too large, say the size of the entire population, we aren't able to manuvuer the loss manifold at all and the entire loss is averaged in a way that doesn't let us optimize anything. What we want to do is find a happy medium between a too-smooth loss surface (i.e. every observation), and a very peaky loss surface (i.e. a single observation). Up until now we only used mini-batches to help with this. But we can also approach it by \"smoothing\" our updates between each mini-batch. That would effectively smooth the manifold of the loss space. Those of you familiar with signal processing will see this as a sort of low-pass filter on the gradient updates.\n", "\n", "In order for us to use batch normalization, we need another placeholder which is a simple boolean: True or False, denoting when we are training. We'll use this placeholder to conditionally update batch normalization's statistics required for normalizing our minibatches. Let's create the placeholder and then I'll get into how to use this." ] }, { "cell_type": "code", "execution_count": null, "metadata": { "collapsed": true }, "outputs": [], "source": [ "# placeholder for batch normalization\n", "is_training = tf.placeholder(tf.bool, name='istraining')" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "The original paper that introduced the idea suggests to use batch normalization \"pre-activation\", meaning after the weight multipllication or convolution, and before the nonlinearity. We can use the `tensorflow.contrib.layers.batch_norm` module to apply batch normalization to any input tensor give the tensor and the placeholder defining whether or not we are training. Let's use this module and you can inspect the code inside the module in your own time if it interests you." ] }, { "cell_type": "code", "execution_count": 1, "metadata": { "collapsed": false }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "Help on function batch_norm in module tensorflow.contrib.layers.python.layers.layers:\n", "\n", "batch_norm(inputs, decay=0.999, center=True, scale=False, epsilon=0.001, activation_fn=None, param_initializers=None, updates_collections='update_ops', is_training=True, reuse=None, variables_collections=None, outputs_collections=None, trainable=True, batch_weights=None, fused=False, data_format='NHWC', scope=None)\n", " Adds a Batch Normalization layer from http://arxiv.org/abs/1502.03167.\n", " \n", " \"Batch Normalization: Accelerating Deep Network Training by Reducing\n", " Internal Covariate Shift\"\n", " \n", " Sergey Ioffe, Christian Szegedy\n", " \n", " Can be used as a normalizer function for conv2d and fully_connected.\n", " \n", " Note: When is_training is True the moving_mean and moving_variance need to be\n", " updated, by default the update_ops are placed in `tf.GraphKeys.UPDATE_OPS` so\n", " they need to be added as a dependency to the `train_op`, example:\n", " \n", " update_ops = tf.get_collection(tf.GraphKeys.UPDATE_OPS)\n", " if update_ops:\n", " updates = tf.group(*update_ops)\n", " total_loss = control_flow_ops.with_dependencies([updates], total_loss)\n", " \n", " One can set updates_collections=None to force the updates in place, but that\n", " can have speed penalty, specially in distributed settings.\n", " \n", " Args:\n", " inputs: a tensor with 2 or more dimensions, where the first dimension has\n", " `batch_size`. The normalization is over all but the last dimension if\n", " `data_format` is `NHWC` and the second dimension if `data_format` is\n", " `NCHW`.\n", " decay: decay for the moving average. Reasonable values for `decay` are close \n", " to 1.0, typically in the multiple-nines range: 0.999, 0.99, 0.9, etc. Lower \n", " `decay` value (recommend trying `decay`=0.9) if model experiences reasonably \n", " good training performance but poor validation and/or test performance.\n", " center: If True, subtract `beta`. If False, `beta` is ignored.\n", " scale: If True, multiply by `gamma`. If False, `gamma` is\n", " not used. When the next layer is linear (also e.g. `nn.relu`), this can be\n", " disabled since the scaling can be done by the next layer.\n", " epsilon: small float added to variance to avoid dividing by zero.\n", " activation_fn: activation function, default set to None to skip it and\n", " maintain a linear activation.\n", " param_initializers: optional initializers for beta, gamma, moving mean and\n", " moving variance.\n", " updates_collections: collections to collect the update ops for computation.\n", " The updates_ops need to be executed with the train_op.\n", " If None, a control dependency would be added to make sure the updates are\n", " computed in place.\n", " is_training: whether or not the layer is in training mode. In training mode\n", " it would accumulate the statistics of the moments into `moving_mean` and\n", " `moving_variance` using an exponential moving average with the given\n", " `decay`. When it is not in training mode then it would use the values of\n", " the `moving_mean` and the `moving_variance`.\n", " reuse: whether or not the layer and its variables should be reused. To be\n", " able to reuse the layer scope must be given.\n", " variables_collections: optional collections for the variables.\n", " outputs_collections: collections to add the outputs.\n", " trainable: If `True` also add variables to the graph collection\n", " `GraphKeys.TRAINABLE_VARIABLES` (see `tf.Variable`).\n", " batch_weights: An optional tensor of shape `[batch_size]`,\n", " containing a frequency weight for each batch item. If present,\n", " then the batch normalization uses weighted mean and\n", " variance. (This can be used to correct for bias in training\n", " example selection.)\n", " fused: Use nn.fused_batch_norm if True, nn.batch_normalization otherwise.\n", " data_format: A string. `NHWC` (default) and `NCHW` are supported.\n", " scope: Optional scope for `variable_scope`.\n", " \n", " Returns:\n", " A `Tensor` representing the output of the operation.\n", " \n", " Raises:\n", " ValueError: if `batch_weights` is not None and `fused` is True.\n", " ValueError: if `data_format` is neither `NHWC` nor `NCHW`.\n", " ValueError: if the rank of `inputs` is undefined.\n", " ValueError: if rank or channels dimension of `inputs` is undefined.\n", "\n" ] } ], "source": [ "from tensorflow.contrib.layers import batch_norm\n", "help(batch_norm)" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "<a name=\"building-the-encoder-1\"></a>\n", "## Building the Encoder\n", "\n", "We can now change our encoder to accept the `is_training` placeholder and apply `batch_norm` just before the activation function is applied:" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "collapsed": true }, "outputs": [], "source": [ "def encoder(x, is_training, channels, filter_sizes, activation=tf.nn.tanh, reuse=None):\n", " # Set the input to a common variable name, h, for hidden layer\n", " h = x\n", "\n", " print('encoder/input:', h.get_shape().as_list())\n", " # Now we'll loop over the list of dimensions defining the number\n", " # of output filters in each layer, and collect each hidden layer\n", " hs = []\n", " for layer_i in range(len(channels)):\n", " \n", " with tf.variable_scope('layer{}'.format(layer_i+1), reuse=reuse):\n", " # Convolve using the utility convolution function\n", " # This requirs the number of output filter,\n", " # and the size of the kernel in `k_h` and `k_w`.\n", " # By default, this will use a stride of 2, meaning\n", " # each new layer will be downsampled by 2.\n", " h, W = utils.conv2d(h, channels[layer_i],\n", " k_h=filter_sizes[layer_i],\n", " k_w=filter_sizes[layer_i],\n", " d_h=2,\n", " d_w=2,\n", " reuse=reuse)\n", " \n", " h = batch_norm(h, is_training=is_training)\n", "\n", " # Now apply the activation function\n", " h = activation(h)\n", " print('layer:', layer_i, ', shape:', h.get_shape().as_list())\n", " \n", " # Store each hidden layer\n", " hs.append(h)\n", "\n", " # Finally, return the encoding.\n", " return h, hs" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "Let's now create the input to the network using a placeholder. We can try a slightly larger image this time. But be careful experimenting with much larger images as this is a big network.\n", "\n", "<h3><font color='red'>TODO! COMPLETE THIS SECTION!</font></h3>" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "collapsed": true }, "outputs": [], "source": [ "n_pixels = 64\n", "n_channels = 3\n", "input_shape = [None, n_pixels, n_pixels, n_channels]\n", "\n", "# placeholder for the input to the network\n", "X = tf.placeholder(...)" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "And now we'll connect the input to an encoder network. We'll also use the `tf.nn.elu` activation instead. Explore other activations but I've found this to make the training much faster (e.g. 10x faster at least!). See the paper for more details: [Fast and Accurate Deep Network Learning by Exponential Linear Units (ELUs)\n", "](http://arxiv.org/abs/1511.07289)\n", "\n", "<h3><font color='red'>TODO! COMPLETE THIS SECTION!</font></h3>" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "collapsed": true }, "outputs": [], "source": [ "channels = [64, 64, 64]\n", "filter_sizes = [5, 5, 5]\n", "activation = tf.nn.elu\n", "n_hidden = 128\n", "\n", "with tf.variable_scope('encoder'):\n", " H, Hs = encoder(...\n", " Z = utils.linear(H, n_hidden)[0]" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "<a name=\"building-the-variational-layer\"></a>\n", "## Building the Variational Layer\n", "\n", "In Session 3, we introduced the idea of Variational Bayes when we used the Variational Auto Encoder. The variational bayesian approach requires a richer understanding of probabilistic graphical models and bayesian methods which we we're not able to go over in this course (it requires a few courses all by itself!). For that reason, please treat this as a \"black box\" in this course.\n", "\n", "For those of you that are more familiar with graphical models, Variational Bayesian methods attempt to model an approximate joint distribution of $Q(Z)$ using some distance function to the true distribution $P(X)$. Kingma and Welling show how this approach can be used in a graphical model resembling an autoencoder and can be trained using KL-Divergence, or $KL(Q(Z) || P(X))$. The distribution Q(Z) is the variational distribution, and attempts to model the lower-bound of the true distribution $P(X)$ through the minimization of the KL-divergence. Another way to look at this is the encoder of the network is trying to model the parameters of a known distribution, the Gaussian Distribution, through a minimization of this lower bound. We assume that this distribution resembles the true distribution, but it is merely a simplification of the true distribution. To learn more about this, I highly recommend picking up the book by Christopher Bishop called \"Pattern Recognition and Machine Learning\" and reading the original Kingma and Welling paper on Variational Bayes.\n", "\n", "Now back to coding, we'll create a general variational layer that does exactly the same thing as our VAE in session 3. Treat this as a black box if you are unfamiliar with the math. It takes an input encoding, `h`, and an integer, `n_code` defining how many latent Gaussians to use to model the latent distribution. In return, we get the latent encoding from sampling the Gaussian layer, `z`, the mean and log standard deviation, as well as the prior loss, `loss_z`." ] }, { "cell_type": "code", "execution_count": null, "metadata": { "collapsed": true }, "outputs": [], "source": [ "def variational_bayes(h, n_code):\n", " # Model mu and log(\\sigma)\n", " z_mu = tf.nn.tanh(utils.linear(h, n_code, name='mu')[0])\n", " z_log_sigma = 0.5 * tf.nn.tanh(utils.linear(h, n_code, name='log_sigma')[0])\n", "\n", " # Sample from noise distribution p(eps) ~ N(0, 1)\n", " epsilon = tf.random_normal(tf.stack([tf.shape(h)[0], n_code]))\n", "\n", " # Sample from posterior\n", " z = z_mu + tf.multiply(epsilon, tf.exp(z_log_sigma))\n", "\n", " # Measure loss\n", " loss_z = -0.5 * tf.reduce_sum(\n", " 1.0 + 2.0 * z_log_sigma - tf.square(z_mu) - tf.exp(2.0 * z_log_sigma),\n", " 1)\n", "\n", " return z, z_mu, z_log_sigma, loss_z" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "Let's connect this layer to our encoding, and keep all the variables it returns. Treat this as a black box if you are unfamiliar with variational bayes!\n", "\n", "<h3><font color='red'>TODO! COMPLETE THIS SECTION!</font></h3>" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "collapsed": true }, "outputs": [], "source": [ "# Experiment w/ values between 2 - 100\n", "# depending on how difficult the dataset is\n", "n_code = 32\n", "\n", "with tf.variable_scope('encoder/variational'):\n", " Z, Z_mu, Z_log_sigma, loss_Z = variational_bayes(h=Z, n_code=n_code)" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "<a name=\"building-the-decoder-1\"></a>\n", "## Building the Decoder\n", "\n", "In the GAN network, we built a decoder and called it the generator network. Same idea here. We can use these terms interchangeably. Before we connect our latent encoding, `Z` to the decoder, we'll implement batch norm in our decoder just like we did with the encoder. This is a simple fix: add a second argument for `is_training` and then apply batch normalization just after the `deconv2d` operation and just before the nonlinear `activation`." ] }, { "cell_type": "code", "execution_count": null, "metadata": { "collapsed": true }, "outputs": [], "source": [ "def decoder(z, is_training, dimensions, channels, filter_sizes,\n", " activation=tf.nn.elu, reuse=None):\n", " h = z\n", " for layer_i in range(len(dimensions)):\n", " with tf.variable_scope('layer{}'.format(layer_i+1), reuse=reuse):\n", " h, W = utils.deconv2d(x=h,\n", " n_output_h=dimensions[layer_i],\n", " n_output_w=dimensions[layer_i],\n", " n_output_ch=channels[layer_i],\n", " k_h=filter_sizes[layer_i],\n", " k_w=filter_sizes[layer_i],\n", " reuse=reuse)\n", " h = batch_norm(h, is_training=is_training)\n", " h = activation(h)\n", " return h" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "Now we'll build a decoder just like in Session 3, and just like our Generator network in Part 1. In Part 1, we created `Z` as a placeholder which we would have had to feed in as random values. However, now we have an explicit coding of an input image in `X` stored in `Z` by having created the encoder network." ] }, { "cell_type": "code", "execution_count": null, "metadata": { "collapsed": true }, "outputs": [], "source": [ "dimensions = [n_pixels // 8, n_pixels // 4, n_pixels // 2, n_pixels]\n", "channels = [30, 30, 30, n_channels]\n", "filter_sizes = [4, 4, 4, 4]\n", "activation = tf.nn.elu\n", "n_latent = n_code * (n_pixels // 16)**2\n", "\n", "with tf.variable_scope('generator'):\n", " Z_decode = utils.linear(\n", " Z, n_output=n_latent, name='fc', activation=activation)[0]\n", " Z_decode_tensor = tf.reshape(\n", " Z_decode, [-1, n_pixels//16, n_pixels//16, n_code], name='reshape')\n", " G = decoder(\n", " Z_decode_tensor, is_training, dimensions,\n", " channels, filter_sizes, activation)" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "Now we need to build our discriminators. We'll need to add a parameter for the `is_training` placeholder. We're also going to keep track of every hidden layer in the discriminator. Our encoder already returns the `Hs` of each layer. Alternatively, we could poll the graph for each layer in the discriminator and ask for the correspond layer names. We're going to need these layers when building our costs." ] }, { "cell_type": "code", "execution_count": null, "metadata": { "collapsed": true }, "outputs": [], "source": [ "def discriminator(X,\n", " is_training,\n", " channels=[50, 50, 50, 50],\n", " filter_sizes=[4, 4, 4, 4],\n", " activation=tf.nn.elu,\n", " reuse=None):\n", "\n", " # We'll scope these variables to \"discriminator_real\"\n", " with tf.variable_scope('discriminator', reuse=reuse):\n", " H, Hs = encoder(\n", " X, is_training, channels, filter_sizes, activation, reuse)\n", " shape = H.get_shape().as_list()\n", " H = tf.reshape(\n", " H, [-1, shape[1] * shape[2] * shape[3]])\n", " D, W = utils.linear(\n", " x=H, n_output=1, activation=tf.nn.sigmoid, name='fc', reuse=reuse)\n", " return D, Hs" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "Recall the regular GAN and DCGAN required 2 discriminators: one for the generated samples in `Z`, and one for the input samples in `X`. We'll do the same thing here. One discriminator for the real input data, `X`, which the discriminator will try to predict as 1s, and another discriminator for the generated samples that go from `X` through the encoder to `Z`, and finally through the decoder to `G`. The discriminator will be trained to try and predict these as 0s, whereas the generator will be trained to try and predict these as 1s." ] }, { "cell_type": "code", "execution_count": null, "metadata": { "collapsed": true }, "outputs": [], "source": [ "D_real, Hs_real = discriminator(X, is_training)\n", "D_fake, Hs_fake = discriminator(G, is_training, reuse=True)" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "<a name=\"building-vaegan-loss-functions\"></a>\n", "## Building VAE/GAN Loss Functions\n", "\n", "Let's now see how we can compose our loss. We have 3 losses for our discriminator. Along with measuring the binary cross entropy between each of them, we're going to also measure each layer's loss from our two discriminators using an l2-loss, and this will form our loss for the log likelihood measure. The details of how these are constructed are explained in more details in the paper: https://arxiv.org/abs/1512.09300 - please refer to this paper for more details that are way beyond the scope of this course! One parameter within this to pay attention to is `gamma`, which the authors of the paper suggest control the weighting between content and style, just like in Session 4's Style Net implementation." ] }, { "cell_type": "code", "execution_count": null, "metadata": { "collapsed": true }, "outputs": [], "source": [ "with tf.variable_scope('loss'):\n", " # Loss functions\n", " loss_D_llike = 0\n", " for h_real, h_fake in zip(Hs_real, Hs_fake):\n", " loss_D_llike += tf.reduce_sum(tf.squared_difference(\n", " utils.flatten(h_fake), utils.flatten(h_real)), 1)\n", "\n", " eps = 1e-12\n", " loss_real = tf.log(D_real + eps)\n", " loss_fake = tf.log(1 - D_fake + eps)\n", " loss_GAN = tf.reduce_sum(loss_real + loss_fake, 1)\n", " \n", " gamma = 0.75\n", " loss_enc = tf.reduce_mean(loss_Z + loss_D_llike)\n", " loss_dec = tf.reduce_mean(gamma * loss_D_llike - loss_GAN)\n", " loss_dis = -tf.reduce_mean(loss_GAN)" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "collapsed": true }, "outputs": [], "source": [ "nb_utils.show_graph(tf.get_default_graph().as_graph_def())" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "<a name=\"creating-the-optimizers\"></a>\n", "## Creating the Optimizers\n", "\n", "We now have losses for our encoder, decoder, and discriminator networks. We can connect each of these to their own optimizer and start training! Just like with Part 1's GAN, we'll ensure each network's optimizer only trains its part of the network: the encoder's optimizer will only update the encoder variables, the generator's optimizer will only update the generator variables, and the discriminator's optimizer will only update the discriminator variables.\n", "\n", "<h3><font color='red'>TODO! COMPLETE THIS SECTION!</font></h3>" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "collapsed": true }, "outputs": [], "source": [ "learning_rate = 0.0001\n", "\n", "opt_enc = tf.train.AdamOptimizer(\n", " learning_rate=learning_rate).minimize(\n", " loss_enc,\n", " var_list=[var_i for var_i in tf.trainable_variables()\n", " if ...])\n", "\n", "opt_gen = tf.train.AdamOptimizer(\n", " learning_rate=learning_rate).minimize(\n", " loss_dec,\n", " var_list=[var_i for var_i in tf.trainable_variables()\n", " if ...])\n", "\n", "opt_dis = tf.train.AdamOptimizer(\n", " learning_rate=learning_rate).minimize(\n", " loss_dis,\n", " var_list=[var_i for var_i in tf.trainable_variables()\n", " if var_i.name.startswith('discriminator')])" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "<a name=\"loading-the-dataset\"></a>\n", "## Loading the Dataset\n", "\n", "We'll now load our dataset just like in Part 1. Here is where you should explore with your own data!\n", "\n", "<h3><font color='red'>TODO! COMPLETE THIS SECTION!</font></h3>" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "collapsed": true }, "outputs": [], "source": [ "from libs import datasets, dataset_utils\n", "\n", "batch_size = 64\n", "n_epochs = 100\n", "crop_shape = [n_pixels, n_pixels, n_channels]\n", "crop_factor = 0.8\n", "input_shape = [218, 178, 3]\n", "\n", "# Try w/ CELEB first to make sure it works, then explore w/ your own dataset.\n", "files = datasets.CELEB()\n", "batch = dataset_utils.create_input_pipeline(\n", " files=files,\n", " batch_size=batch_size,\n", " n_epochs=n_epochs,\n", " crop_shape=crop_shape,\n", " crop_factor=crop_factor,\n", " shape=input_shape)" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "We'll also create a latent manifold just like we've done in Session 3 and Part 1. This is a random sampling of 4 points in the latent space of `Z`. We then interpolate between them to create a \"hyper-plane\" and show the decoding of 10 x 10 points on that hyperplane." ] }, { "cell_type": "code", "execution_count": null, "metadata": { "collapsed": true }, "outputs": [], "source": [ "n_samples = 10\n", "zs = np.random.uniform(\n", " -1.0, 1.0, [4, n_code]).astype(np.float32)\n", "zs = utils.make_latent_manifold(zs, n_samples)" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "Now create a session and create a coordinator to manage our queues for fetching data from the input pipeline and start our queue runners:" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "collapsed": true }, "outputs": [], "source": [ "# We create a session to use the graph\n", "sess = tf.Session()\n", "init_op = tf.global_variables_initializer()\n", "\n", "saver = tf.train.Saver()\n", "coord = tf.train.Coordinator()\n", "threads = tf.train.start_queue_runners(sess=sess, coord=coord)\n", "sess.run(init_op)" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "Load an existing checkpoint if it exists to continue training." ] }, { "cell_type": "code", "execution_count": null, "metadata": { "collapsed": true }, "outputs": [], "source": [ "if os.path.exists(\"vaegan.ckpt\"):\n", " saver.restore(sess, \"vaegan.ckpt\")\n", " print(\"GAN model restored.\")" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "We'll also try resynthesizing a test set of images. This will help us understand how well the encoder/decoder network is doing:" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "collapsed": true }, "outputs": [], "source": [ "n_files = len(files)\n", "test_xs = sess.run(batch) / 255.0\n", "if not os.path.exists('imgs'):\n", " os.mkdir('imgs')\n", "m = utils.montage(test_xs, 'imgs/test_xs.png')\n", "plt.imshow(m)" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "<a name=\"training-1\"></a>\n", "## Training\n", "\n", "Almost ready for training. Let's get some variables which we'll need. These are the same as Part 1's training process. We'll keep track of `t_i` which we'll use to create images of the current manifold and reconstruction every so many iterations. And we'll keep track of the current batch number within the epoch and the current epoch number." ] }, { "cell_type": "code", "execution_count": null, "metadata": { "collapsed": true }, "outputs": [], "source": [ "t_i = 0\n", "batch_i = 0\n", "epoch_i = 0\n", "ckpt_name = './vaegan.ckpt'" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "Just like in Part 1, we'll train trying to maintain an equilibrium between our Generator and Discriminator networks. You should experiment with the margin depending on how the training proceeds." ] }, { "cell_type": "code", "execution_count": null, "metadata": { "collapsed": true }, "outputs": [], "source": [ "equilibrium = 0.693\n", "margin = 0.4" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "Now we'll train! Just like Part 1, we measure the `real_cost` and `fake_cost`. But this time, we'll always update the encoder. Based on the performance of the real/fake costs, then we'll update generator and discriminator networks. This will take a long time to produce something nice, but not nearly as long as the regular GAN network despite the additional parameters of the encoder and variational networks. Be sure to monitor the reconstructions to understand when your network has reached the capacity of its learning! For reference, on Celeb Net, I would use about 5 layers in each of the Encoder, Generator, and Discriminator networks using as input a 100 x 100 image, and a minimum of 200 channels per layer. This network would take about 1-2 days to train on an Nvidia TITAN X GPU." ] }, { "cell_type": "code", "execution_count": null, "metadata": { "collapsed": true }, "outputs": [], "source": [ "while epoch_i < n_epochs:\n", " if batch_i % (n_files // batch_size) == 0:\n", " batch_i = 0\n", " epoch_i += 1\n", " print('---------- EPOCH:', epoch_i)\n", "\n", " batch_i += 1\n", " batch_xs = sess.run(batch) / 255.0\n", " real_cost, fake_cost, _ = sess.run([\n", " loss_real, loss_fake, opt_enc],\n", " feed_dict={\n", " X: batch_xs,\n", " is_training: True})\n", " real_cost = -np.mean(real_cost)\n", " fake_cost = -np.mean(fake_cost)\n", "\n", " gen_update = True\n", " dis_update = True\n", "\n", " if real_cost > (equilibrium + margin) or \\\n", " fake_cost > (equilibrium + margin):\n", " gen_update = False\n", "\n", " if real_cost < (equilibrium - margin) or \\\n", " fake_cost < (equilibrium - margin):\n", " dis_update = False\n", "\n", " if not (gen_update or dis_update):\n", " gen_update = True\n", " dis_update = True\n", "\n", " if gen_update:\n", " sess.run(opt_gen, feed_dict={\n", " X: batch_xs,\n", " is_training: True})\n", " if dis_update:\n", " sess.run(opt_dis, feed_dict={\n", " X: batch_xs,\n", " is_training: True})\n", "\n", " if batch_i % 50 == 0:\n", " print('real:', real_cost, '/ fake:', fake_cost)\n", "\n", " # Plot example reconstructions from latent layer\n", " recon = sess.run(G, feed_dict={\n", " Z: zs,\n", " is_training: False})\n", "\n", " recon = np.clip(recon, 0, 1)\n", " m1 = utils.montage(recon.reshape([-1] + crop_shape),\n", " 'imgs/manifold_%08d.png' % t_i)\n", "\n", " # Plot example reconstructions\n", " recon = sess.run(G, feed_dict={\n", " X: test_xs,\n", " is_training: False})\n", " recon = np.clip(recon, 0, 1)\n", " m2 = utils.montage(recon.reshape([-1] + crop_shape),\n", " 'imgs/reconstruction_%08d.png' % t_i)\n", " \n", " fig, axs = plt.subplots(1, 2, figsize=(15, 10))\n", " axs[0].imshow(m1)\n", " axs[1].imshow(m2)\n", " plt.show()\n", " \n", " t_i += 1\n", " \n", "\n", " if batch_i % 200 == 0:\n", " # Save the variables to disk.\n", " save_path = saver.save(sess, \"./\" + ckpt_name,\n", " global_step=batch_i,\n", " write_meta_graph=False)\n", " print(\"Model saved in file: %s\" % save_path)" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "collapsed": true }, "outputs": [], "source": [ "# One of the threads has issued an exception. So let's tell all the\n", "# threads to shutdown.\n", "coord.request_stop()\n", "\n", "# Wait until all threads have finished.\n", "coord.join(threads)\n", "\n", "# Clean up the session.\n", "sess.close()" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "<a name=\"part-3---latent-space-arithmetic\"></a>\n", "# Part 3 - Latent-Space Arithmetic\n", "\n", "<a name=\"loading-the-pre-trained-model\"></a>\n", "## Loading the Pre-Trained Model\n", "\n", "We're now going to work with a pre-trained VAEGAN model on the Celeb Net dataset. Let's load this model:" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "collapsed": true }, "outputs": [], "source": [ "tf.reset_default_graph()" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "collapsed": true }, "outputs": [], "source": [ "from libs import celeb_vaegan as CV" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "collapsed": true }, "outputs": [], "source": [ "net = CV.get_celeb_vaegan_model()" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "We'll load the graph_def contained inside this dictionary. It follows the same idea as the `inception`, `vgg16`, and `i2v` pretrained networks. It is a dictionary with the key `graph_def` defined, with the graph's pretrained network. It also includes `labels` and a `preprocess` key. We'll have to do one additional thing which is to turn off the random sampling from variational layer. This isn't really necessary but will ensure we get the same results each time we use the network. We'll use the `input_map` argument to do this. Don't worry if this doesn't make any sense, as we didn't cover the variational layer in any depth. Just know that this is removing a random process from the network so that it is completely deterministic. If we hadn't done this, we'd get slightly different results each time we used the network (which may even be desirable for your purposes)." ] }, { "cell_type": "code", "execution_count": null, "metadata": { "collapsed": true }, "outputs": [], "source": [ "sess = tf.Session()\n", "g = tf.get_default_graph()\n", "tf.import_graph_def(net['graph_def'], name='net', input_map={\n", " 'encoder/variational/random_normal:0': np.zeros(512, dtype=np.float32)})\n", "names = [op.name for op in g.get_operations()]\n", "print(names)" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "Now let's get the relevant parts of the network: `X`, the input image to the network, `Z`, the input image's encoding, and `G`, the decoded image. In many ways, this is just like the Autoencoders we learned about in Session 3, except instead of `Y` being the output, we have `G` from our generator! And the way we train it is very different: we use an adversarial process between the generator and discriminator, and use the discriminator's own distance measure to help train the network, rather than pixel-to-pixel differences." ] }, { "cell_type": "code", "execution_count": null, "metadata": { "collapsed": true }, "outputs": [], "source": [ "X = g.get_tensor_by_name('net/x:0')\n", "Z = g.get_tensor_by_name('net/encoder/variational/z:0')\n", "G = g.get_tensor_by_name('net/generator/x_tilde:0')" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "Let's get some data to play with:" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "collapsed": true }, "outputs": [], "source": [ "files = datasets.CELEB()\n", "img_i = 50\n", "img = plt.imread(files[img_i])\n", "plt.imshow(img)" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "Now preprocess the image, and see what the generated image looks like (i.e. the lossy version of the image through the network's encoding and decoding)." ] }, { "cell_type": "code", "execution_count": null, "metadata": { "collapsed": true }, "outputs": [], "source": [ "p = CV.preprocess(img)\n", "synth = sess.run(G, feed_dict={X: p[np.newaxis]})" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "collapsed": true }, "outputs": [], "source": [ "fig, axs = plt.subplots(1, 2, figsize=(10, 5))\n", "axs[0].imshow(p)\n", "axs[1].imshow(synth[0] / synth.max())" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "So we lost a lot of details but it seems to be able to express quite a bit about the image. Our inner most layer, `Z`, is only 512 values yet our dataset was 200k images of 64 x 64 x 3 pixels (about 2.3 GB of information). That means we're able to express our nearly 2.3 GB of information with only 512 values! Having some loss of detail is certainly expected!\n", "\n", "<a name=\"exploring-the-celeb-net-attributes\"></a>\n", "## Exploring the Celeb Net Attributes\n", "\n", "Let's now try and explore the attributes of our dataset. We didn't train the network with any supervised labels, but the Celeb Net dataset has 40 attributes for each of its 200k images. These are already parsed and stored for you in the `net` dictionary:" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "collapsed": true }, "outputs": [], "source": [ "net.keys()" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "collapsed": true }, "outputs": [], "source": [ "len(net['labels'])" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "collapsed": true }, "outputs": [], "source": [ "net['labels']" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "Let's see what attributes exist for one of the celeb images:" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "collapsed": true }, "outputs": [], "source": [ "plt.imshow(img)\n", "[net['labels'][i] for i, attr_i in enumerate(net['attributes'][img_i]) if attr_i]" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "<a name=\"find-the-latent-encoding-for-an-attribute\"></a>\n", "## Find the Latent Encoding for an Attribute\n", "\n", "The Celeb Dataset includes attributes for each of its 200k+ images. This allows us to feed into the encoder some images that we know have a *specific* attribute, e.g. \"smiling\". We store what their encoding is and retain this distribution of encoded values. We can then look at any other image and see how it is encoded, and slightly change the encoding by adding the encoded of our smiling images to it! The result should be our image but with more smiling. That is just insane and we're going to see how to do it. First lets inspect our latent space:" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "collapsed": true }, "outputs": [], "source": [ "Z.get_shape()" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "We have 512 features that we can encode any image with. Assuming our network is doing an okay job, let's try to find the `Z` of the first 100 images with the 'Bald' attribute:" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "collapsed": true }, "outputs": [], "source": [ "bald_label = net['labels'].index('Bald')" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "collapsed": true }, "outputs": [], "source": [ "bald_label" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "Let's get all the bald image indexes:" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "collapsed": true }, "outputs": [], "source": [ "bald_img_idxs = np.where(net['attributes'][:, bald_label])[0]" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "collapsed": true }, "outputs": [], "source": [ "bald_img_idxs" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "Now let's just load 100 of their images:" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "collapsed": true }, "outputs": [], "source": [ "bald_imgs = [plt.imread(files[bald_img_i])[..., :3]\n", " for bald_img_i in bald_img_idxs[:100]]" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "Let's see if the mean image looks like a good bald person or not:" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "collapsed": true }, "outputs": [], "source": [ "plt.imshow(np.mean(bald_imgs, 0).astype(np.uint8))" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "Yes that is definitely a bald person. Now we're going to try to find the encoding of a bald person. One method is to try and find every other possible image and subtract the \"bald\" person's latent encoding. Then we could add this encoding back to any new image and hopefully it makes the image look more bald. Or we can find a bunch of bald people's encodings and then average their encodings together. This should reduce the noise from having many different attributes, but keep the signal pertaining to the baldness.\n", "\n", "Let's first preprocess the images:" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "collapsed": true }, "outputs": [], "source": [ "bald_p = np.array([CV.preprocess(bald_img_i) for bald_img_i in bald_imgs])" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "Now we can find the latent encoding of the images by calculating `Z` and feeding `X` with our `bald_p` images:\n", "\n", "<h3><font color='red'>TODO! COMPLETE THIS SECTION!</font></h3>" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "collapsed": true }, "outputs": [], "source": [ "bald_zs = sess.run(Z, feed_dict=..." ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "Now let's calculate the mean encoding:" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "collapsed": true }, "outputs": [], "source": [ "bald_feature = np.mean(bald_zs, 0, keepdims=True)" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "collapsed": true }, "outputs": [], "source": [ "bald_feature.shape" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "Let's try and synthesize from the mean bald feature now and see how it looks:\n", "\n", "<h3><font color='red'>TODO! COMPLETE THIS SECTION!</font></h3>" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "collapsed": true }, "outputs": [], "source": [ "bald_generated = sess.run(G, feed_dict=..." ] }, { "cell_type": "code", "execution_count": null, "metadata": { "collapsed": true }, "outputs": [], "source": [ "plt.imshow(bald_generated[0] / bald_generated.max())" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "<a name=\"latent-feature-arithmetic\"></a>\n", "## Latent Feature Arithmetic\n", "\n", "Let's now try to write a general function for performing everything we've just done so that we can do this with many different features. We'll then try to combine them and synthesize people with the features we want them to have..." ] }, { "cell_type": "code", "execution_count": null, "metadata": { "collapsed": true }, "outputs": [], "source": [ "def get_features_for(label='Bald', has_label=True, n_imgs=50):\n", " label_i = net['labels'].index(label)\n", " label_idxs = np.where(net['attributes'][:, label_i] == has_label)[0]\n", " label_idxs = np.random.permutation(label_idxs)[:n_imgs]\n", " imgs = [plt.imread(files[img_i])[..., :3]\n", " for img_i in label_idxs]\n", " preprocessed = np.array([CV.preprocess(img_i) for img_i in imgs])\n", " zs = sess.run(Z, feed_dict={X: preprocessed})\n", " return np.mean(zs, 0)" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "Let's try getting some attributes positive and negative features. Be sure to explore different attributes! Also try different values of `n_imgs`, e.g. 2, 3, 5, 10, 50, 100. What happens with different values?\n", "\n", "<h3><font color='red'>TODO! COMPLETE THIS SECTION!</font></h3>" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "collapsed": true }, "outputs": [], "source": [ "# Explore different attributes\n", "z1 = get_features_for('Male', True, n_imgs=10)\n", "z2 = get_features_for('Male', False, n_imgs=10)\n", "z3 = get_features_for('Smiling', True, n_imgs=10)\n", "z4 = get_features_for('Smiling', False, n_imgs=10)" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "collapsed": true }, "outputs": [], "source": [ "b1 = sess.run(G, feed_dict={Z: z1[np.newaxis]})\n", "b2 = sess.run(G, feed_dict={Z: z2[np.newaxis]})\n", "b3 = sess.run(G, feed_dict={Z: z3[np.newaxis]})\n", "b4 = sess.run(G, feed_dict={Z: z4[np.newaxis]})" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "collapsed": true }, "outputs": [], "source": [ "fig, axs = plt.subplots(1, 4, figsize=(15, 6))\n", "axs[0].imshow(b1[0] / b1.max()), axs[0].set_title('Male'), axs[0].grid('off'), axs[0].axis('off')\n", "axs[1].imshow(b2[0] / b2.max()), axs[1].set_title('Not Male'), axs[1].grid('off'), axs[1].axis('off')\n", "axs[2].imshow(b3[0] / b3.max()), axs[2].set_title('Smiling'), axs[2].grid('off'), axs[2].axis('off')\n", "axs[3].imshow(b4[0] / b4.max()), axs[3].set_title('Not Smiling'), axs[3].grid('off'), axs[3].axis('off')" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "Now let's interpolate between the \"Male\" and \"Not Male\" categories:" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "collapsed": true }, "outputs": [], "source": [ "notmale_vector = z2 - z1\n", "n_imgs = 5\n", "amt = np.linspace(0, 1, n_imgs)\n", "zs = np.array([z1 + notmale_vector*amt_i for amt_i in amt])\n", "g = sess.run(G, feed_dict={Z: zs})" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "collapsed": true }, "outputs": [], "source": [ "fig, axs = plt.subplots(1, n_imgs, figsize=(20, 4))\n", "for i, ax_i in enumerate(axs):\n", " ax_i.imshow(np.clip(g[i], 0, 1))\n", " ax_i.grid('off')\n", " ax_i.axis('off')" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "And the same for smiling:" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "collapsed": true }, "outputs": [], "source": [ "smiling_vector = z3 - z4\n", "amt = np.linspace(0, 1, n_imgs)\n", "zs = np.array([z4 + smiling_vector*amt_i for amt_i in amt])\n", "g = sess.run(G, feed_dict={Z: zs})\n", "fig, axs = plt.subplots(1, n_imgs, figsize=(20, 4))\n", "for i, ax_i in enumerate(axs):\n", " ax_i.imshow(np.clip(g[i] / g[i].max(), 0, 1))\n", " ax_i.grid('off')" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "There's also no reason why we have to be within the boundaries of 0-1. We can extrapolate beyond, in, and around the space." ] }, { "cell_type": "code", "execution_count": null, "metadata": { "collapsed": true }, "outputs": [], "source": [ "n_imgs = 5\n", "amt = np.linspace(-1.5, 2.5, n_imgs)\n", "zs = np.array([z4 + smiling_vector*amt_i for amt_i in amt])\n", "g = sess.run(G, feed_dict={Z: zs})\n", "fig, axs = plt.subplots(1, n_imgs, figsize=(20, 4))\n", "for i, ax_i in enumerate(axs):\n", " ax_i.imshow(np.clip(g[i], 0, 1))\n", " ax_i.grid('off')\n", " ax_i.axis('off')" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "<a name=\"extensions\"></a>\n", "## Extensions\n", "\n", "[Tom White](https://twitter.com/dribnet), Lecturer at Victoria University School of Design, also recently demonstrated an alternative way of interpolating using a sinusoidal interpolation. He's created some of the most impressive generative images out there and luckily for us he has detailed his process in the arxiv preprint: https://arxiv.org/abs/1609.04468 - as well, be sure to check out his twitter bot, https://twitter.com/smilevector - which adds smiles to people :) - Note that the network we're using is only trained on aligned faces that are frontally facing, though this twitter bot is capable of adding smiles to any face. I suspect that he is running a face detection algorithm such as AAM, CLM, or ASM, cropping the face, aligning it, and then running a similar algorithm to what we've done above. Or else, perhaps he has trained a new model on faces that are not aligned. In any case, it is well worth checking out!\n", "\n", "Let's now try and use sinusoidal interpolation using his implementation in [plat](https://github.com/dribnet/plat/blob/master/plat/interpolate.py#L16-L24) which I've copied below:" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "collapsed": true }, "outputs": [], "source": [ "def slerp(val, low, high):\n", " \"\"\"Spherical interpolation. val has a range of 0 to 1.\"\"\"\n", " if val <= 0:\n", " return low\n", " elif val >= 1:\n", " return high\n", " omega = np.arccos(np.dot(low/np.linalg.norm(low), high/np.linalg.norm(high)))\n", " so = np.sin(omega)\n", " return np.sin((1.0-val)*omega) / so * low + np.sin(val*omega)/so * high" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "collapsed": true }, "outputs": [], "source": [ "amt = np.linspace(0, 1, n_imgs)\n", "zs = np.array([slerp(amt_i, z1, z2) for amt_i in amt])\n", "g = sess.run(G, feed_dict={Z: zs})\n", "fig, axs = plt.subplots(1, n_imgs, figsize=(20, 4))\n", "for i, ax_i in enumerate(axs):\n", " ax_i.imshow(np.clip(g[i], 0, 1))\n", " ax_i.grid('off')\n", " ax_i.axis('off')" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "It's certainly worth trying especially if you are looking to explore your own model's latent space in new and interesting ways.\n", "\n", "Let's try and load an image that we want to play with. We need an image as similar to the Celeb Dataset as possible. Unfortunately, we don't have access to the algorithm they used to \"align\" the faces, so we'll need to try and get as close as possible to an aligned face image. One way you can do this is to load up one of the celeb images and try and align an image to it using e.g. Photoshop or another photo editing software that lets you blend and move the images around. That's what I did for my own face..." ] }, { "cell_type": "code", "execution_count": null, "metadata": { "collapsed": true }, "outputs": [], "source": [ "img = plt.imread('parag.png')[..., :3]\n", "img = CV.preprocess(img, crop_factor=1.0)[np.newaxis]" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "Let's see how the network encodes it:" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "collapsed": true }, "outputs": [], "source": [ "img_ = sess.run(G, feed_dict={X: img})\n", "fig, axs = plt.subplots(1, 2, figsize=(10, 5))\n", "axs[0].imshow(img[0]), axs[0].grid('off')\n", "axs[1].imshow(np.clip(img_[0] / np.max(img_), 0, 1)), axs[1].grid('off')" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "Notice how blurry the image is. Tom White's preprint suggests one way to sharpen the image is to find the \"Blurry\" attribute vector:" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "collapsed": true }, "outputs": [], "source": [ "z1 = get_features_for('Blurry', True, n_imgs=25)\n", "z2 = get_features_for('Blurry', False, n_imgs=25)\n", "unblur_vector = z2 - z1" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "collapsed": true }, "outputs": [], "source": [ "z = sess.run(Z, feed_dict={X: img})" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "collapsed": true }, "outputs": [], "source": [ "n_imgs = 5\n", "amt = np.linspace(0, 1, n_imgs)\n", "zs = np.array([z[0] + unblur_vector * amt_i for amt_i in amt])\n", "g = sess.run(G, feed_dict={Z: zs})\n", "fig, axs = plt.subplots(1, n_imgs, figsize=(20, 4))\n", "for i, ax_i in enumerate(axs):\n", " ax_i.imshow(np.clip(g[i] / g[i].max(), 0, 1))\n", " ax_i.grid('off')\n", " ax_i.axis('off')" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "Notice that the image also gets brighter and perhaps other features than simply the bluriness of the image changes. Tom's preprint suggests that this is due to the correlation that blurred images have with other things such as the brightness of the image, possibly due biases in labeling or how photographs are taken. He suggests that another way to unblur would be to synthetically blur a set of images and find the difference in the encoding between the real and blurred images. We can try it like so:" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "collapsed": true }, "outputs": [], "source": [ "from scipy.ndimage import gaussian_filter\n", "\n", "idxs = np.random.permutation(range(len(files)))\n", "imgs = [plt.imread(files[idx_i]) for idx_i in idxs[:100]]\n", "blurred = []\n", "for img_i in imgs:\n", " img_copy = np.zeros_like(img_i)\n", " for ch_i in range(3):\n", " img_copy[..., ch_i] = gaussian_filter(img_i[..., ch_i], sigma=3.0)\n", " blurred.append(img_copy)" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "collapsed": true }, "outputs": [], "source": [ "# Now let's preprocess the original images and the blurred ones\n", "imgs_p = np.array([CV.preprocess(img_i) for img_i in imgs])\n", "blur_p = np.array([CV.preprocess(img_i) for img_i in blurred])\n", "\n", "# And then compute each of their latent features\n", "noblur = sess.run(Z, feed_dict={X: imgs_p})\n", "blur = sess.run(Z, feed_dict={X: blur_p})" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "collapsed": true }, "outputs": [], "source": [ "synthetic_unblur_vector = np.mean(noblur - blur, 0)" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "collapsed": true }, "outputs": [], "source": [ "n_imgs = 5\n", "amt = np.linspace(0, 1, n_imgs)\n", "zs = np.array([z[0] + synthetic_unblur_vector * amt_i for amt_i in amt])\n", "g = sess.run(G, feed_dict={Z: zs})\n", "fig, axs = plt.subplots(1, n_imgs, figsize=(20, 4))\n", "for i, ax_i in enumerate(axs):\n", " ax_i.imshow(np.clip(g[i], 0, 1))\n", " ax_i.grid('off')\n", " ax_i.axis('off')" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "For some reason, it also doesn't like my glasses very much. Let's try and add them back." ] }, { "cell_type": "code", "execution_count": null, "metadata": { "collapsed": true }, "outputs": [], "source": [ "z1 = get_features_for('Eyeglasses', True)\n", "z2 = get_features_for('Eyeglasses', False)\n", "glass_vector = z1 - z2" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "collapsed": true }, "outputs": [], "source": [ "z = sess.run(Z, feed_dict={X: img})" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "collapsed": true }, "outputs": [], "source": [ "n_imgs = 5\n", "amt = np.linspace(0, 1, n_imgs)\n", "zs = np.array([z[0] + glass_vector * amt_i + unblur_vector * amt_i for amt_i in amt])\n", "g = sess.run(G, feed_dict={Z: zs})\n", "fig, axs = plt.subplots(1, n_imgs, figsize=(20, 4))\n", "for i, ax_i in enumerate(axs):\n", " ax_i.imshow(np.clip(g[i], 0, 1))\n", " ax_i.grid('off')\n", " ax_i.axis('off')" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "Well, more like sunglasses then. Let's try adding everything in there now!" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "collapsed": true }, "outputs": [], "source": [ "n_imgs = 5\n", "amt = np.linspace(0, 1.0, n_imgs)\n", "zs = np.array([z[0] + glass_vector * amt_i + unblur_vector * amt_i + amt_i * smiling_vector for amt_i in amt])\n", "g = sess.run(G, feed_dict={Z: zs})\n", "fig, axs = plt.subplots(1, n_imgs, figsize=(20, 4))\n", "for i, ax_i in enumerate(axs):\n", " ax_i.imshow(np.clip(g[i], 0, 1))\n", " ax_i.grid('off')\n", " ax_i.axis('off')" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "Well it was worth a try anyway. We can also try with a lot of images and create a gif montage of the result:" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "collapsed": true }, "outputs": [], "source": [ "n_imgs = 5\n", "amt = np.linspace(0, 1.5, n_imgs)\n", "z = sess.run(Z, feed_dict={X: imgs_p})\n", "imgs = []\n", "for amt_i in amt:\n", " zs = z + synthetic_unblur_vector * amt_i + amt_i * smiling_vector\n", " g = sess.run(G, feed_dict={Z: zs})\n", " m = utils.montage(np.clip(g, 0, 1))\n", " imgs.append(m)" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "collapsed": true }, "outputs": [], "source": [ "gif.build_gif(imgs, saveto='celeb.gif')" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "collapsed": true }, "outputs": [], "source": [ "ipyd.Image(url='celeb.gif?i={}'.format(\n", " np.random.rand()), height=1000, width=1000)" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "Exploring multiple feature vectors and applying them to images from the celeb dataset to produce animations of a face, saving it as a GIF. Recall you can store each image frame in a list and then use the `gif.build_gif` function to create a gif. Explore your own syntheses and then include a gif of the different images you create as \"celeb.gif\" in the final submission. Perhaps try finding unexpected synthetic latent attributes in the same way that we created a blur attribute. You can check the documentation in scipy.ndimage for some other image processing techniques, for instance: http://www.scipy-lectures.org/advanced/image_processing/ - and see if you can find the encoding of another attribute that you then apply to your own images. You can even try it with many images and use the `utils.montage` function to create a large grid of images that evolves over your attributes. Or create a set of expressions perhaps. Up to you just explore!\n", "\n", "<h3><font color='red'>TODO! COMPLETE THIS SECTION!</font></h3>" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "collapsed": true }, "outputs": [], "source": [ "imgs = []\n", "\n", "... DO SOMETHING AWESOME ! ...\n", "\n", "gif.build_gif(imgs=imgs, saveto='vaegan.gif')" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "<a name=\"part-4---character-level-recurrent-neural-network\"></a>\n", "# Part 4 - Character Level Recurrent Neural Network\n", "\n", "Please visit [session-5-part2.ipynb](session-5-part2.ipynb) for the rest of the homework!" ] } ], "metadata": { "anaconda-cloud": {}, "kernelspec": { "display_name": "Python 3", "language": "python", "name": "python3" }, "language_info": { "codemirror_mode": { "name": "ipython", "version": 3 }, "file_extension": ".py", "mimetype": "text/x-python", "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", "version": "3.6.1" } }, "nbformat": 4, "nbformat_minor": 1 }
apache-2.0
dereneaton/ipyrad
tests/ipyrad-manuscript-horserace.ipynb
1
18767757
null
gpl-3.0
jserenson/Python_Bootcamp
Object Oriented Programming Homework -Solution.ipynb
1
3948
{ "cells": [ { "cell_type": "markdown", "metadata": {}, "source": [ "# Object Oriented Programming\n", "## Homework Assignment\n", "\n", "####Problem 1\n", "Fill in the Line class methods to accept coordinate as a pair of tuples and return the slope and distance of the line." ] }, { "cell_type": "code", "execution_count": 18, "metadata": { "collapsed": true }, "outputs": [], "source": [ "class Line(object):\n", " \n", " def __init__(self,coor1,coor2):\n", " self.coor1 = coor1\n", " self.coor2 = coor2\n", " \n", " def distance(self):\n", " x1,y1 = self.coor1\n", " x2,y2 = self.coor2\n", " return ( (x2-x1)**2 + (y2-y1)**2 )**0.5\n", " \n", " def slope(self):\n", " x1,y1 = self.coor1\n", " x2,y2 = self.coor2\n", " return float((y2-y1))/(x2-x1)" ] }, { "cell_type": "code", "execution_count": 19, "metadata": { "collapsed": true }, "outputs": [], "source": [ "coordinate1 = (3,2)\n", "coordinate2 = (8,10)\n", "\n", "li = Line(coordinate1,coordinate2)" ] }, { "cell_type": "code", "execution_count": 20, "metadata": {}, "outputs": [ { "data": { "text/plain": [ "9.433981132056603" ] }, "execution_count": 20, "metadata": {}, "output_type": "execute_result" } ], "source": [ "li.distance()" ] }, { "cell_type": "code", "execution_count": 21, "metadata": {}, "outputs": [ { "data": { "text/plain": [ "1.6" ] }, "execution_count": 21, "metadata": {}, "output_type": "execute_result" } ], "source": [ "li.slope()" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "________\n", "####Problem 2" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "Fill in the class " ] }, { "cell_type": "code", "execution_count": 31, "metadata": {}, "outputs": [], "source": [ "class Cylinder(object):\n", " \n", " def __init__(self,height=1,radius=1):\n", " self.height = height\n", " self.radius = radius\n", " \n", " def volume(self):\n", " return self.height * (3.14)* (self.radius)**2\n", " \n", " def surface_area(self):\n", " top = (3.14)* (self.radius)**2\n", " return 2*top + 2*3.14*self.radius*self.height" ] }, { "cell_type": "code", "execution_count": 32, "metadata": { "collapsed": true }, "outputs": [], "source": [ "c = Cylinder(2,3)" ] }, { "cell_type": "code", "execution_count": 34, "metadata": {}, "outputs": [ { "data": { "text/plain": [ "56.52" ] }, "execution_count": 34, "metadata": {}, "output_type": "execute_result" } ], "source": [ "c.volume()" ] }, { "cell_type": "code", "execution_count": 35, "metadata": {}, "outputs": [ { "data": { "text/plain": [ "94.2" ] }, "execution_count": 35, "metadata": {}, "output_type": "execute_result" } ], "source": [ "c.surface_area()" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "collapsed": true }, "outputs": [], "source": [] } ], "metadata": { "kernelspec": { "display_name": "Python 3", "language": "python", "name": "python3" }, "language_info": { "codemirror_mode": { "name": "ipython", "version": 3 }, "file_extension": ".py", "mimetype": "text/x-python", "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", "version": "3.6.1" } }, "nbformat": 4, "nbformat_minor": 1 }
gpl-3.0
adiultra/pysick
math/.ipynb_checkpoints/Tests-checkpoint.ipynb
1
1031
{ "cells": [ { "cell_type": "code", "execution_count": 3, "metadata": {}, "outputs": [ { "data": { "text/plain": [ "array([ 1.00000000e+00, 5.70919174e-15, -8.14710295e-15])" ] }, "execution_count": 3, "metadata": {}, "output_type": "execute_result" } ], "source": [ "import numpy as np\n", "x = [1, 3, 4, 5, 6, 7, 8]\n", "\n", "y = [i*i for i in x]\n", "\n", "np.polyfit(x, y, 2)" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [] } ], "metadata": { "kernelspec": { "display_name": "Python 3", "language": "python", "name": "python3" }, "language_info": { "codemirror_mode": { "name": "ipython", "version": 3 }, "file_extension": ".py", "mimetype": "text/x-python", "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", "version": "3.6.5" } }, "nbformat": 4, "nbformat_minor": 2 }
gpl-3.0
evanmiltenburg/python-for-text-analysis
Chapters/Chapter 19 - More about Natural Language Processing Tools (spaCy).ipynb
1
36016
{ "cells": [ { "cell_type": "markdown", "source": [ "# Chapter 19 - More about Natural Language Processing Tools (spaCy)\n", "\n", "Text data is unstructured. But if you want to extract information from text, then you often need to process that data into a more structured representation. The common idea for all Natural Language Processing (NLP) tools is that they try to structure or transform text in some meaningful way. You have already learned about four basic NLP steps: sentence splitting, tokenization, POS-tagging and lemmatization. For all of these, we have used the NLTK library, which is widely used in the field of NLP. However, there are some competitors out there that are worthwhile to have a look at. One of them is spaCy, which is fast and accurate and supports multiple languages. \n", "\n", "**At the end of this chapter, you will be able to:**\n", "- work with spaCy\n", "- find some additional NLP tools" ], "metadata": {} }, { "cell_type": "markdown", "source": [ "## 1. The NLP pipeline\n", "\n", "There are many tools and libraries designed to solve NLP problems. In Chapter 15, we have already seen the NLTK library for tokenization, sentence splitting, part-of-speech tagging and lemmatization. However, there are many more NLP tasks and off-the-shelf tools to perform them. These tasks often depend on each other and are therefore put into a sequence; such a sequence of NLP tasks is called an NLP pipeline. Some of the most common NLP tasks are:\n", "\n", "* **Tokenization:** splitting texts into individual words\n", "* **Sentence splitting:** splitting texts into sentences\n", "* **Part-of-speech (POS) tagging:** identifying the parts of speech of words in context (verbs, nouns, adjectives, etc.)\n", "* **Morphological analysis:** separating words into morphemes and identifying their classes (e.g. tense/aspect of verbs)\n", "* **Stemming:** identifying the stems of words in context by removing inflectional/derivational affixes, such as 'troubl' for 'trouble/troubling/troubled'\n", "* **Lemmatization:** identifying the lemmas (dictionary forms) of words in context, such as 'go' for 'go/goes/going/went'\n", "* **Word Sense Disambiguation (WSD):** assigning the correct meaning to words in context\n", "* **Stop words recognition:** identifying commonly used words (such as 'the', 'a(n)', 'in', etc.) in text, possibly to ignore them in other tasks\n", "* **Named Entity Recognition (NER):** identifying people, locations, organizations, etc. in text\n", "* **Constituency/dependency parsing:** analyzing the grammatical structure of a sentence\n", "* **Semantic Role Labeling (SRL):** analyzing the semantic structure of a sentence (*who* does *what* to *whom*, *where* and *when*)\n", "* **Sentiment Analysis:** determining whether a text is mostly positive or negative\n", "* **Word Vectors (or Word Embeddings) and Semantic Similarity:** representating the meaning of words as rows of real valued numbers where each point captures a dimension of the word's meaning and where semantically similar words have similar vectors (very popular these days)\n", "\n", "You don't always need all these modules. But it's important to know that they are\n", "there, so that you can use them when the need arises.\n", "\n", "### 1.1 How can you use these modules?\n", "\n", "Let's be clear about this: **you don't always need to use Python for this**. There are\n", "some very strong NLP programs out there that don't rely on Python. You can typically\n", "call these programs from the command line. Some examples are:\n", "\n", "* [Treetagger](http://www.cis.uni-muenchen.de/~schmid/tools/TreeTagger/) is a POS-tagger\n", " and lemmatizer in one. It provides support for many different languages. If you want to\n", " call Treetagger from Python, use [treetaggerwrapper](http://treetaggerwrapper.readthedocs.io/).\n", " [Treetagger-python](https://github.com/miotto/treetagger-python) also works, but is much slower.\n", "\n", "* [Stanford's CoreNLP](http://stanfordnlp.github.io/CoreNLP/) is a very powerful system\n", " that is able to process English, German, Spanish, French, Chinese and Arabic. (Each to\n", " a different extent, though. The pipeline for English is most complete.) There are also\n", " Python wrappers available, such as [py-corenlp](https://github.com/smilli/py-corenlp).\n", "\n", "* [The Maltparser](http://www.maltparser.org/) has models for English, Swedish, French, and Spanish.\n", "\n", "\n", "Having said that, there are many **NLP-tools that have been developed for Python**:\n", "\n", "* [Natural Language ToolKit (NLTK)](http://www.nltk.org/): Incredibly versatile library with a bit of everything.\n", " The only downside is that it's not the fastest library out there, and it lags behind the\n", " state-of-the-art.\n", " * Access to several corpora.\n", " * Create a POS-tagger. (Some of these are actually state-of-the-art if you have enough training data.)\n", " * Perform corpus analyses.\n", " * Interface with [WordNet](https://wordnet.princeton.edu/).\n", "* [Pattern](http://www.clips.ua.ac.be/pattern): A module that describes itself as a 'web mining module'. Implements a\n", " tokenizer, tagger, parser, and sentiment analyzer for multiple different languages.\n", " Also provides an API for Google, Twitter, Wikipedia and Bing.\n", "* [Textblob](http://textblob.readthedocs.io/en/dev/): Another general NLP library that builds on the NLTK and Pattern.\n", "* [Gensim](http://radimrehurek.com/gensim/): For building vector spaces and topic models.\n", "* [Corpkit](http://corpkit.readthedocs.io/en/latest/) is a module for corpus building and corpus management. Includes an interface to the Stanford CoreNLP parser.\n", "* [SpaCy](https://spacy.io/): Tokenizer, POS-tagger, parser and named entity recogniser for English, German, Spanish, Portugese, French, Italian and Dutch (more languages in progress). It can also predict similarity using word embeddings." ], "metadata": {} }, { "cell_type": "markdown", "source": [ "## 2. spaCy\n", "\n", "[spaCy](https://spacy.io/) provides a rather complete NLP pipeline: it takes a raw document and performs tokenization, POS-tagging, stop word recognition, morphological analysis, lemmatization, sentence splitting, dependency parsing and Named Entity Recognition (NER). It also supports similarity prediction, but that is outside of the scope of this notebook. The advantage of SpaCy is that it is really fast, and it has a good accuracy. In addition, it currently supports multiple languages, among which: English, German, Spanish, Portugese, French, Italian and Dutch. \n", "\n", "In this notebook, we will show you the basic usage. If you want to learn more, please visit spaCy's website; it has extensive documentation and provides excellent user guides. \n", "\n", "### 2.1 Installing and loading spaCy\n", "\n", "To install spaCy, check out the instructions [here](https://spacy.io/usage). On this page, it is explained exactly how to install spaCy for your operating system, package manager and desired language model(s). Simply run the suggested commands in your terminal or cmd. Alternatively, you can probably also just run the following cells in this notebook:" ], "metadata": {} }, { "cell_type": "code", "execution_count": null, "source": [ "pip install -U spacy" ], "outputs": [], "metadata": {} }, { "cell_type": "code", "execution_count": null, "source": [ "%%bash\n", "python -m spacy download en_core_web_sm" ], "outputs": [], "metadata": {} }, { "cell_type": "markdown", "source": [ "Now, let's first load spaCy. We import the spaCy module and load the English tokenizer, tagger, parser, NER and word vectors." ], "metadata": {} }, { "cell_type": "code", "execution_count": null, "source": [ "import spacy\n", "nlp = spacy.load('en_core_web_sm') # other languages: de, es, pt, fr, it, nl" ], "outputs": [], "metadata": {} }, { "cell_type": "markdown", "source": [ "`nlp` is now a Python object representing the English NLP pipeline that we can use to process a text. " ], "metadata": {} }, { "cell_type": "markdown", "source": [ "#### EXTRA: Larger models\n", "\n", "For English, there are three [models](https://spacy.io/usage/models) ranging from 'small' to 'large':\n", "\n", "- en_core_web_sm\n", "- en_core_web_md\n", "- en_core_web_lg\n", "\n", "By default, the smallest one is loaded. Larger models should have a better accuracy, but take longer to load. If you like, you can use them instead. You will first need to download them." ], "metadata": {} }, { "cell_type": "code", "execution_count": null, "source": [ "#%%bash\n", "#python -m spacy download en_core_web_md" ], "outputs": [], "metadata": {} }, { "cell_type": "code", "execution_count": null, "source": [ "#%%bash\n", "#python -m spacy download en_core_web_lg" ], "outputs": [], "metadata": {} }, { "cell_type": "code", "execution_count": null, "source": [ "# uncomment one of the lines below if you want to load the medium or large model instead of the small one\n", "# nlp = spacy.load('en_core_web_md') \n", "# nlp = spacy.load('en_core_web_lg') " ], "outputs": [], "metadata": {} }, { "cell_type": "markdown", "source": [ "### 2.2 Using spaCy\n", "\n", "Parsing a text with spaCy after loading a language model is as easy as follows:" ], "metadata": {} }, { "cell_type": "code", "execution_count": null, "source": [ "doc = nlp(\"I have an awesome cat. It's sitting on the mat that I bought yesterday.\")" ], "outputs": [], "metadata": {} }, { "cell_type": "markdown", "source": [ "`doc` is now a Python object of the class `Doc`. It is a container for accessing linguistic annotations and a sequence of `Token` objects." ], "metadata": {} }, { "cell_type": "markdown", "source": [ "#### Doc, Token and Span objects\n", "\n", "At this point, there are three important types of objects to remember:\n", "\n", "* A `Doc` is a sequence of `Token` objects.\n", "* A `Token` object represents an individual token — i.e. a word, punctuation symbol, whitespace, etc. It has attributes representing linguistic annotations. \n", "* A `Span` object is a slice from a `Doc` object and a sequence of `Token` objects.\n", "\n", "Since `Doc` is a sequence of `Token` objects, we can iterate over all of the tokens in the text as shown below, or select a single token from the sequence: " ], "metadata": {} }, { "cell_type": "code", "execution_count": null, "source": [ "# Iterate over the tokens\n", "for token in doc:\n", " print(token)\n", "print()\n", "\n", "# Select one single token by index\n", "first_token = doc[0]\n", "print(\"First token:\", first_token)" ], "outputs": [], "metadata": {} }, { "cell_type": "markdown", "source": [ "Please note that even though these look like strings, they are not:" ], "metadata": {} }, { "cell_type": "code", "execution_count": null, "source": [ "for token in doc:\n", " print(token, \"\\t\", type(token))" ], "outputs": [], "metadata": {} }, { "cell_type": "markdown", "source": [ "These `Token` objects have many useful methods and *attributes*, which we can list by using `dir()`. We haven't really talked about attributes during this course, but while methods are operations or activities performed by that object, attributes are 'static' features of the objects. Methods are called using parantheses (as we have seen with `str.upper()`, for instance), while attributes are indicated without parantheses. We will see some examples below.\n", "\n", "You can find more detailed information about the token methods and attributes in the [documentation](https://spacy.io/api/token)." ], "metadata": {} }, { "cell_type": "code", "execution_count": null, "source": [ "dir(first_token)" ], "outputs": [], "metadata": {} }, { "cell_type": "markdown", "source": [ "Let's inspect some of the attributes of the tokens. Can you figure out what they mean? Feel free to try out a few more." ], "metadata": {} }, { "cell_type": "code", "execution_count": null, "source": [ "# Print attributes of tokens\n", "for token in doc:\n", " print(token.text, token.lemma_, token.pos_, token.tag_, token.dep_, token.shape_)" ], "outputs": [], "metadata": {} }, { "cell_type": "markdown", "source": [ "Notice that some of the attributes end with an underscore. For example, tokens have both `lemma` and `lemma_` attributes. The `lemma` attribute represents the id of the lemma (integer), while the `lemma_` attribute represents the unicode string representation of the lemma. In practice, you will mostly use the `lemma_` attribute." ], "metadata": {} }, { "cell_type": "code", "execution_count": null, "source": [ "for token in doc:\n", " print(token.lemma, token.lemma_)" ], "outputs": [], "metadata": {} }, { "cell_type": "markdown", "source": [ "You can also use spacy.explain to find out more about certain labels:" ], "metadata": {} }, { "cell_type": "code", "execution_count": null, "source": [ "# try out some more, such as NN, ADP, PRP, VBD, VBP, VBZ, WDT, aux, nsubj, pobj, dobj, npadvmod\n", "spacy.explain(\"VBZ\")" ], "outputs": [], "metadata": {} }, { "cell_type": "markdown", "source": [ "You can create a `Span` object from the slice doc[start : end]. For instance, doc[2:5] produces a span consisting of tokens 2, 3 and 4. Stepped slices (e.g. doc[start : end : step]) are not supported, as `Span` objects must be contiguous (cannot have gaps). You can use negative indices and open-ended ranges, which have their normal Python semantics." ], "metadata": {} }, { "cell_type": "code", "execution_count": null, "source": [ "# Create a Span\n", "a_slice = doc[2:5]\n", "print(a_slice, type(a_slice))\n", "\n", "# Iterate over Span\n", "for token in a_slice:\n", " print(token.lemma_, token.pos_)" ], "outputs": [], "metadata": {} }, { "cell_type": "markdown", "source": [ "#### Text, sentences and noun_chunks\n", "\n", "If you call the `dir()` function on a `Doc` object, you will see that it has a range of methods and attributes. You can read more about them in the [documentation](https://spacy.io/api/doc). Below, we highlight three of them: `text`, `sents` and `noun_chunks`." ], "metadata": {} }, { "cell_type": "code", "execution_count": null, "source": [ "dir(doc)" ], "outputs": [], "metadata": {} }, { "cell_type": "markdown", "source": [ "First of all, `text` simply gives you the whole document as a string:" ], "metadata": {} }, { "cell_type": "code", "execution_count": null, "source": [ "print(doc.text)\n", "print(type(doc.text))" ], "outputs": [], "metadata": {} }, { "cell_type": "markdown", "source": [ "`sents` can be used to get all the sentences. Notice that it will create a so-called 'generator'. For now, you don't have to understand exactly what a generator is (if you like, you can read more about them online). Just remember that we can use generators to iterate over an object in a fast and efficient way." ], "metadata": {} }, { "cell_type": "code", "execution_count": null, "source": [ "# Get all the sentences as a generator \n", "print(doc.sents, type(doc.sents))\n", "\n", "# We can use the generator to loop over the sentences; each sentence is a span of tokens\n", "for sentence in doc.sents:\n", " print(sentence, type(sentence))" ], "outputs": [], "metadata": {} }, { "cell_type": "markdown", "source": [ "If you find this difficult to comprehend, you can also simply convert it to a list and then loop over the list. Remember that this is less efficient, though." ], "metadata": {} }, { "cell_type": "code", "execution_count": null, "source": [ "# You can also store the sentences in a list and then loop over the list \n", "sentences = list(doc.sents)\n", "for sentence in sentences:\n", " print(sentence, type(sentence))" ], "outputs": [], "metadata": {} }, { "cell_type": "markdown", "source": [ "The benefit of converting it to a list is that we can use indices to select certain sentences. For example, in the following we only print some information about the tokens in the second sentence." ], "metadata": {} }, { "cell_type": "code", "execution_count": null, "source": [ "# Print some information about the tokens in the second sentence.\n", "sentences = list(doc.sents)\n", "for token in sentences[1]:\n", " data = '\\t'.join([token.orth_,\n", " token.lemma_,\n", " token.pos_,\n", " token.tag_,\n", " str(token.i), # Turn index into string\n", " str(token.idx)]) # Turn index into string\n", " print(data)" ], "outputs": [], "metadata": {} }, { "cell_type": "markdown", "source": [ "Similarly, `noun_chunks` can be used to create a generator for all noun chunks in the text. " ], "metadata": {} }, { "cell_type": "code", "execution_count": null, "source": [ "# Get all the noun chunks as a generator \n", "print(doc.noun_chunks, type(doc.noun_chunks))\n", "\n", "# You can loop over a generator; each noun chunk is a span of tokens\n", "for chunk in doc.noun_chunks:\n", " print(chunk, type(chunk))\n", " print()" ], "outputs": [], "metadata": {} }, { "cell_type": "markdown", "source": [ "#### Named Entities\n", "\n", "Finally, we can also very easily access the Named Entities in a text using `ents`. As you can see below, it will create a tuple of the entities recognized in the text. Each entity is again a span of tokens, and you can access the type of the entity with the `label_` attribute of `Span`." ], "metadata": {} }, { "cell_type": "code", "execution_count": null, "source": [ "# Here's a slightly longer text, from the Wikipedia page about Harry Potter.\n", "harry_potter = \"Harry Potter is a series of fantasy novels written by British author J. K. Rowling.\\\n", "The novels chronicle the life of a young wizard, Harry Potter, and his friends Hermione Granger and Ron Weasley,\\\n", "all of whom are students at Hogwarts School of Witchcraft and Wizardry.\\\n", "The main story arc concerns Harry's struggle against Lord Voldemort, a dark wizard who intends to become immortal,\\\n", "overthrow the wizard governing body known as the Ministry of Magic, and subjugate all wizards and Muggles.\"\n", "\n", "doc = nlp(harry_potter)\n", "print(doc.ents)\n", "print(type(doc.ents))" ], "outputs": [], "metadata": {} }, { "cell_type": "code", "execution_count": null, "source": [ "# Each entity is a span of tokens and is labeled with the type of entity\n", "for entity in doc.ents:\n", " print(entity, \"\\t\", entity.label_, \"\\t\", type(entity))" ], "outputs": [], "metadata": {} }, { "cell_type": "markdown", "source": [ "Pretty cool, but what does NORP mean? Again, you can use spacy.explain() to find out:" ], "metadata": {} }, { "cell_type": "markdown", "source": [ "## 3. EXTRA: Stanford CoreNLP\n", "\n", "Another very popular NLP pipeline is [Stanford CoreNLP](https://stanfordnlp.github.io/CoreNLP/index.html). You can use the tool from the command line, but there are also some useful Python wrappers that make use of the Stanford CoreNLP API, such as pycorenlp. As you might want to use this in the future, we will provide you with a quick start guide. To use the code below, you will have to do the following:\n", "\n", "1. Download Stanford CoreNLP [here](https://stanfordnlp.github.io/CoreNLP/download.html).\n", "2. Install pycorenlp (run `pip install pycorenlp` in your terminal, or simply run the cell below).\n", "3. Open a terminal and run the following commands (replace with the correct directory names): \n", " `cd LOCATION_OF_CORENLP/stanford-corenlp-full-2018-02-27` \n", " `java -mx4g -cp \"*\" edu.stanford.nlp.pipeline.StanfordCoreNLPServer` \n", " This step you will always have to do if you want to use the Stanford CoreNLP API.\n" ], "metadata": {} }, { "cell_type": "code", "execution_count": null, "source": [ "%%bash\n", "pip install pycorenlp" ], "outputs": [], "metadata": {} }, { "cell_type": "code", "execution_count": null, "source": [ "from pycorenlp import StanfordCoreNLP\n", "nlp = StanfordCoreNLP('http://localhost:9000')" ], "outputs": [], "metadata": {} }, { "cell_type": "markdown", "source": [ "Next, you will want to define which [annotators](https://stanfordnlp.github.io/CoreNLP/annotators.html) to use and which [output format](https://stanfordnlp.github.io/CoreNLP/cmdline.html#output-options) should be produced (text, json, xml, conll, conllu, serialized). Annotating the document then is very easy. Note that Stanford CoreNLP uses some large models that can take [a long time](https://stackoverflow.com/questions/11219392/stanford-corenlp-very-slow) to load. You can read more about it [here](https://stanfordnlp.github.io/CoreNLP/memory-time.html)." ], "metadata": {} }, { "cell_type": "code", "execution_count": null, "source": [ "harry_potter = \"Harry Potter is a series of fantasy novels written by British author J. K. Rowling.\\\n", "The novels chronicle the life of a young wizard, Harry Potter, and his friends Hermione Granger and Ron Weasley,\\\n", "all of whom are students at Hogwarts School of Witchcraft and Wizardry.\\\n", "The main story arc concerns Harry's struggle against Lord Voldemort, a dark wizard who intends to become immortal,\\\n", "overthrow the wizard governing body known as the Ministry of Magic, and subjugate all wizards and Muggles.\"\n", "\n", "# Define annotators and output format\n", "properties= {'annotators': 'tokenize, ssplit, pos, lemma, parse',\n", " 'outputFormat': 'json'}\n", "\n", "# Annotate the string with CoreNLP\n", "doc = nlp.annotate(harry_potter, properties=properties)" ], "outputs": [], "metadata": {} }, { "cell_type": "markdown", "source": [ "In the next cells, we will simply show some examples of how to access the linguistic annotations if you use the properties as shown above. If you'd like to continue working with Stanford CoreNLP in the future, you will likely have to experiment a bit more." ], "metadata": {} }, { "cell_type": "code", "execution_count": null, "source": [ "doc.keys()" ], "outputs": [], "metadata": {} }, { "cell_type": "code", "execution_count": null, "source": [ "sentences = doc[\"sentences\"]\n", "first_sentence = sentences[0]\n", "first_sentence.keys()" ], "outputs": [], "metadata": {} }, { "cell_type": "code", "execution_count": null, "source": [ "first_sentence[\"parse\"]" ], "outputs": [], "metadata": {} }, { "cell_type": "code", "execution_count": null, "source": [ "first_sentence[\"basicDependencies\"]" ], "outputs": [], "metadata": {} }, { "cell_type": "code", "execution_count": null, "source": [ "first_sentence[\"tokens\"]" ], "outputs": [], "metadata": {} }, { "cell_type": "code", "execution_count": null, "source": [ "for sent in doc[\"sentences\"]:\n", " for token in sent[\"tokens\"]:\n", " word = token[\"word\"]\n", " lemma = token[\"lemma\"]\n", " pos = token[\"pos\"]\n", " print(word, lemma, pos)" ], "outputs": [], "metadata": {} }, { "cell_type": "code", "execution_count": null, "source": [ "# find out what the entity label 'NORP' means\n", "spacy.explain(\"NORP\")" ], "outputs": [], "metadata": {} }, { "cell_type": "markdown", "source": [ "## 4. NLTK vs. spaCy vs. CoreNLP\n", "\n", "There might be different reasons why you want to use NLTK, spaCy or Stanford CoreNLP. There are differences in efficiency, quality, user friendliness, functionalities, output formats, etc. At this moment, we advise you to go with spaCy because of its ease in use and high quality performance.\n", "\n", "Here's an example of both NLTK and spaCy in action. \n", "\n", "* The example text is a case in point. What goes wrong here?\n", "* Try experimenting with the text to see what the differences are." ], "metadata": {} }, { "cell_type": "code", "execution_count": null, "source": [ "import nltk\n", "import spacy\n", "\n", "nlp = spacy.load('en_core_web_sm')" ], "outputs": [], "metadata": {} }, { "cell_type": "code", "execution_count": null, "source": [ "text = \"I like cheese very much\"\n", "\n", "print(\"NLTK results:\")\n", "nltk_tagged = nltk.pos_tag(text.split())\n", "print(nltk_tagged)\n", "\n", "print()\n", "\n", "print(\"spaCy results:\")\n", "doc = nlp(text)\n", "spacy_tagged = []\n", "for token in doc:\n", " tag_data = (token.orth_, token.tag_,)\n", " spacy_tagged.append(tag_data)\n", "print(spacy_tagged)" ], "outputs": [], "metadata": {} }, { "cell_type": "markdown", "source": [ "Do you want to learn more about the differences between NLTK, spaCy and CoreNLP? Here are some links:\n", "- [Facts & Figures (spaCy)](https://spacy.io/usage/facts-figures)\n", "- [About speed (CoreNLP vs. spaCy)](https://nlp.stanford.edu/software/tokenizer.html#Speed)\n", "- [NLTK vs. spaCy: Natural Language Processing in Python](https://blog.thedataincubator.com/2016/04/nltk-vs-spacy-natural-language-processing-in-python/) \n", "- [What are the advantages of Spacy vs NLTK?](https://www.quora.com/What-are-the-advantages-of-Spacy-vs-NLTK) \n", "- [5 Heroic Python NLP Libraries](https://elitedatascience.com/python-nlp-libraries)\n" ], "metadata": {} }, { "cell_type": "markdown", "source": [ "## 5. Some other useful modules for cleaning and preprocessing\n", "\n", "Data is often messy, noisy or includes irrelevant information. Therefore, chances are big that you will need to do some cleaning before you can start with your analysis. This is especially true for social media texts, such as tweets, chats, and emails. Typically, these texts are informal and notoriously noisy. Normalising them to be able to process them with NLP tools is a NLP challenge in itself and fully discussing it goes beyond the scope of this course. However, you may find the following modules useful in your project:\n", "\n", "- [tweet-preprocessor](https://pypi.python.org/pypi/tweet-preprocessor/0.4.0): This library makes it easy to clean, parse or tokenize the tweets. It supports cleaning, tokenizing and parsing of URLs, hashtags, reserved words, mentions, emojis and smileys.\n", "- [emot](https://pypi.python.org/pypi/emot/1.0): Emot is a python library to extract the emojis and emoticons from a text (string). All the emojis and emoticons are taken from a reliable source, i.e. Wikipedia.org.\n", "- [autocorrect](https://pypi.python.org/pypi/autocorrect/0.1.0): Spelling corrector (Python 3).\n", "- [html](https://docs.python.org/3/library/html.html#module-html): Can be used to remove HTML tags.\n", "- [chardet](https://pypi.python.org/pypi/chardet): Universal encoding detector for Python 2 and 3.\n", "- [ftfy](https://pypi.python.org/pypi/ftfy): Fixes broken unicode strings.\n", "\n", "If you are interested in reading more about these topic, these papers discuss preprocessing and normalization:\n", "\n", "* [Assessing the Consequences of Text Preprocessing Decisions](http://papers.ssrn.com/sol3/papers.cfm?abstract_id=2849145) (Denny & Spirling 2016). This paper is a bit long, but it provides a nice discussion of common preprocessing steps and their potential effects.\n", "* [What to do about bad language on the internet](http://www.cc.gatech.edu/~jeisenst/papers/naacl2013-badlanguage.pdf) (Eisenstein 2013). This is a quick read that we recommend everyone to at least look through.\n", "\n", "And [here](https://www.kaggle.com/rtatman/character-encodings-tips-tricks/) is a nice blog about character encoding." ], "metadata": { "collapsed": true } }, { "cell_type": "markdown", "source": [ "## Exercises" ], "metadata": {} }, { "cell_type": "code", "execution_count": null, "source": [ "import spacy\n", "nlp = spacy.load('en_core_web_sm')" ], "outputs": [], "metadata": {} }, { "cell_type": "markdown", "source": [ "### Exercise 1:\n", "1. What is the difference between token.pos\\_ and token.tag\\_? Read [the docs](https://spacy.io/api/annotation#pos-tagging) to find out.\n", "\n", "2. What do the different labels mean? Use `space.explain` to inspect some of them. You can also refer to [this page](http://www.ling.upenn.edu/courses/Fall_2003/ling001/penn_treebank_pos.html) for a complete overview. " ], "metadata": {} }, { "cell_type": "code", "execution_count": null, "source": [ "doc = nlp(\"I have an awesome cat. It's sitting on the mat that I bought yesterday.\")\n", "for token in doc:\n", " print(token.pos_, token.tag_)" ], "outputs": [], "metadata": {} }, { "cell_type": "code", "execution_count": null, "source": [ "spacy.explain(\"PRON\")" ], "outputs": [], "metadata": {} }, { "cell_type": "markdown", "source": [ "### Exercise 2:\n", "\n", "Let's practice a bit with processing files. Open the file `charlie.txt` for reading and use `read()` to read its content as a string. Then use spaCy to annotate this string and print the information below. Remember: you can use `dir()` to remind yourself of the attributes.\n", "\n", "For each **token** in the text:\n", "1. Text \n", "2. Lemma\n", "3. POS tag\n", "4. Whether it's a stopword or not\n", "5. Whether it's a punctuation mark or not\n", "\n", "For each **sentence** in the text:\n", "1. The complete text\n", "2. The number of tokens\n", "3. The complete text in lowercase letters\n", "4. The text, lemma and POS of the first word\n", "\n", "For each **noun chunk** in the text:\n", "1. The complete text\n", "2. The number of tokens\n", "3. The complete text in lowercase letters\n", "4. The text, lemma and POS of the first word\n", "\n", "For each **named entity** in the text:\n", "1. The complete text\n", "2. The number of tokens\n", "3. The complete text in lowercase letters\n", "4. The text, lemma and POS of the first word" ], "metadata": {} }, { "cell_type": "code", "execution_count": null, "source": [ "filename = \"../Data/Charlie/charlie.txt\"\n", "\n", "# read the file and process with spaCy" ], "outputs": [], "metadata": {} }, { "cell_type": "code", "execution_count": null, "source": [ "# print all information about the tokens" ], "outputs": [], "metadata": {} }, { "cell_type": "code", "execution_count": null, "source": [ "# print all information about the sentences" ], "outputs": [], "metadata": {} }, { "cell_type": "code", "execution_count": null, "source": [ "# print all information about the noun chunks" ], "outputs": [], "metadata": {} }, { "cell_type": "code", "execution_count": null, "source": [ "# print all information about the entities" ], "outputs": [], "metadata": {} }, { "cell_type": "markdown", "source": [ "### Exercise 3:\n", "\n", "Remember how we can use the `os` and `glob` modules to process multiple files? For example, we can read all `.txt` files in the `dreams` folder like this:" ], "metadata": {} }, { "cell_type": "code", "execution_count": null, "source": [ "import glob\n", "filenames = glob.glob(\"../Data/dreams/*.txt\")\n", "print(filenames)" ], "outputs": [], "metadata": {} }, { "cell_type": "markdown", "source": [ "Now create a function called `get_vocabulary` that takes one positional parameter `filenames`. It should read in all `filenames` and return a set called `unique_words`, that contains all unique words in the files." ], "metadata": {} }, { "cell_type": "code", "execution_count": null, "source": [ "def get_vocabulary(filenames):\n", " # your code here\n", "\n", "# test your function here\n", "unique_words = get_vocabulary(filenames)\n", "print(unique_words, len(unique_words))\n", "assert len(unique_words) == 415 # if your code is correct, this should not raise an error" ], "outputs": [], "metadata": { "scrolled": true } }, { "cell_type": "markdown", "source": [ "### Exercise 4:\n", "Create a function called `get_sentences_with_keyword` that takes one positional parameter `filenames` and one keyword parameter `filenames` with default value `None`. It should read in all `filenames` and return a list called `sentences` that contains all sentences (the complete texts) with the keyword. \n", "\n", "Hints:\n", "- It's best to check for the *lemmas* of each token\n", "- Lowercase both your keyword and the lemma" ], "metadata": {} }, { "cell_type": "code", "execution_count": null, "source": [ "import glob\n", "filenames = glob.glob(\"../Data/dreams/*.txt\")\n", "print(filenames)" ], "outputs": [], "metadata": {} }, { "cell_type": "code", "execution_count": null, "source": [ "def get_sentences_with_keyword(filenames, keyword=None):\n", " #your code here\n", "\n", "# test your function here\n", "sentences = get_sentences_with_keyword(filenames, keyword=\"toy\")\n", "print(sentences)\n", "assert len(sentences) == 4 # if your code is correct, this should not raise an error" ], "outputs": [], "metadata": {} } ], "metadata": { "anaconda-cloud": {}, "kernelspec": { "name": "python3", "display_name": "Python 3.8.10 64-bit ('nlp': conda)" }, "language_info": { "codemirror_mode": { "name": "ipython", "version": 3 }, "file_extension": ".py", "mimetype": "text/x-python", "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", "version": "3.8.10" }, "interpreter": { "hash": "6106edc083458b68f61c14c570e0f5152b4e1e25a61780539c3fe413e38ae5e6" } }, "nbformat": 4, "nbformat_minor": 1 }
apache-2.0
Bio204-class/bio204-notebooks
inclass-2016-03-09-Introduction-to-Statistical-Power.ipynb
1
389447
{ "cells": [ { "cell_type": "markdown", "metadata": {}, "source": [ "# Introduction to Statistical Power\n", "**Author**: Paul M. Magwene" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "If viewing this as a live notebook, or using the nbviewer, use the \"Show Code\" button below to toggle the display of the Python code that generated the figures.\n", "\n", "If viewing this notebook via GitHub you might want to use [this nbviewer link](http://nbviewer.jupyter.org/github/Bio204-class/bio204-notebooks/blob/master/inclass-2016-03-09-Introduction-to-Statistical-Power.ipynb) to view this notebook." ] }, { "cell_type": "code", "execution_count": 1, "metadata": { "collapsed": false }, "outputs": [ { "data": { "text/html": [ "<script>\n", " function code_toggle() {\n", " if (code_shown){\n", " $('div.input').hide('500');\n", " $('#toggleButton').val('Show Code')\n", " } else {\n", " $('div.input').show('500');\n", " $('#toggleButton').val('Hide Code')\n", " }\n", " code_shown = !code_shown\n", " }\n", "\n", " $( document ).ready(function(){\n", " code_shown=false;\n", " $('div.input').hide()\n", " });\n", "</script>\n", "<form action=\"javascript:code_toggle()\"><input type=\"submit\" id=\"toggleButton\" value=\"Show Code\"></form>" ], "text/plain": [ "<IPython.core.display.HTML object>" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "%%html\n", "<script>\n", " function code_toggle() {\n", " if (code_shown){\n", " $('div.input').hide('500');\n", " $('#toggleButton').val('Show Code')\n", " } else {\n", " $('div.input').show('500');\n", " $('#toggleButton').val('Hide Code')\n", " }\n", " code_shown = !code_shown\n", " }\n", "\n", " $( document ).ready(function(){\n", " code_shown=false;\n", " $('div.input').hide()\n", " });\n", "</script>\n", "<form action=\"javascript:code_toggle()\"><input type=\"submit\" id=\"toggleButton\" value=\"Show Code\"></form>" ] }, { "cell_type": "code", "execution_count": 2, "metadata": { "collapsed": true }, "outputs": [], "source": [ "%matplotlib inline\n", "import numpy as np\n", "import scipy.stats as stats\n", "import matplotlib.pyplot as plt" ] }, { "cell_type": "code", "execution_count": 3, "metadata": { "collapsed": true }, "outputs": [], "source": [ "np.random.seed(20160309)" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Outcomes of hypothesis tests\n", "\n", "In standard statistical hypothesis testing there are two real possibilities -- the null hypothesis is true or the alternative hypothesis is true. When you carry out a hypothesis test, there are two possible test outcomes -- you reject the null hypothesis or you fail to reject the null hypothesis. It is typical to represent the different combinations of the reality / statistical tests in a table like the following:\n" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "| | do not reject $H_0$ | reject $H_0$ |\n", "|------------|:-----------------------------:|:------------------------------:|\n", "|$H_0$ true | okay | Type 1 error (false positive), $\\alpha$ |\n", "|$H_A$ true | Type 2 error (false negative), $\\beta$ | okay |" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "When we specify a significance threshold, $\\alpha$, for hypothesis testing, this controls the Type I error (false positive rate) of our test. The false negative rate is often referred to as $\\beta$. In general, there is a tradeoff between the false positive and false negative rate -- the lower the false positive rate the higher the false negative rate, and vice versa.\n", "\n", "### Statistical Power\n", "\n", "The power of a statistical test is defined as:\n", "$$\n", "\\mbox{Power}\\ = P(\\mbox{reject}\\ H_0\\ |\\ H_A \\mbox{is true})\n", "$$\n", "\n", "In words, this is the probability that the null hypothesis is rejected, conditional on the alternative hypothesis being true.\n", "\n", "If $\\beta$ is the false negative rate, then \n", "$$\n", "\\mbox{Power}\\ = 1 - \\beta\n", "$$" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Exploring statistical power for one-sample t-tests\n", "\n", "We'll use a one-sample t-tests to illustrate the concept of statistical power. For this example, we'll explore the power of the t-test to distinguish between the null hypothesis that the data of interest are $H_0 \\sim N(\\mu=0,\\sigma=1)$ and a true underlying distribution $H_A \\sim N(\\mu \\neq 0, \\sigma=1)$.\n" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "### Effect of sample size on power\n", "\n", "First we'll hold the effect size ( $|\\mu_{H_A} - \\mu_{H_0}|$ ) constant and vary sample size.\n", "\n", "Consider the population distributions below for the null hypothesis (red) and true underlying distribution (black). Both have the same standard deviation ($\\sigma = 1$) and differ only in their means ($\\mu_{H_0} = 0$ and $\\mu_{H_A} = 0.5$)." ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "#### Population Distributions" ] }, { "cell_type": "code", "execution_count": 4, "metadata": { "collapsed": false }, "outputs": [ { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAA1kAAAFkCAYAAADSevFpAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzs3XucTfX+x/HXx7iXexLJ9XQ9RUpSVBQlUomcOKKrDsep\n05WSjM6J+KXSvVSKcjlKhZJLjfs9pagTJ9dQYWTIZZj5/v747hl7tj1jLntmzzbv5+OxHzNrre9e\n67PW3sP+7O/3+1nmnENEREREREQio1i0AxARERERETmeKMkSERERERGJICVZIiIiIiIiEaQkS0RE\nREREJIKUZImIiIiIiESQkiwREREREZEIUpIlIlIEmVm8maWaWa182PcVgX13j/S+85uZ1Q7E/kQ0\njxmNOKJ5XBGR442SLBGRPApKKoIfe8xsuZnda2aF8d9aF3jkipk1NLOBWSRpUb8JY8jrkWJmSWb2\nk5lNMrPbzKx0Jk/N1bUxsx5mdl8uw83T65ETgURqoJk1iHYsIiLHq+LRDkBE5DgyFvgMMKAGcBvw\nPHAO8LfohZUvzgcGAgnApuANzrk5ZlYGOBSNwEJ8DQwP/F4WqAVcDbwN9Dezjs65b9MaO+c2BmI/\nnItj3QbUBkbk5El5PGZu1MG/duuBb4M3RCEWEZHjkpIsEZHIWeGcG5u2YGavAT8Ad5nZAOfc9uiF\nFnFGFr0dzrnkAowlK1uCX5OAJ8ysI4Gk2Mz+7JzbnbaxoGI3sxOdc3sL8phph85qYyF67UREYlZh\nHMIiInJccM7tARbhP9TWS1sfGK41xsx+MbMDZvY/M3sq0INAULu0eVPnmNkLZrbNzPaZ2WIzuzKk\nbaZzabI7/8rMqpvZcDP72swSzWy/ma02s0eChzya2UB8TxDA7KAheW8Htoedk2VmZc1sSOB8DwTO\n593QuIKfb2a3m9mqQPsNZvZwVueQXc65D4FhQHXg70HHDnsdA7EsMbNdZrY3MOzwPTOrEti+HrgC\nqBMyRPHywPbZZrbOzOqa2QdmthPYndUxg459i5mtDLweGwND/eJC2sw2s3Vhnpth32bWA/gSnyC/\nExTrl8c4/zgz6xt4P+w3sx2BYZfnZnY8M2tnZksD7bea2TALGTobeG9PNLOfg94TX5rZtZm8dCIi\nMUE9WSIi+ev0wM8dAIGEYhlQDngZ+B/QAngUuNTMrnLOpQaekzY3ZjR++NbTgefdA3xuZm2cc19m\nI4bszrFpANwIfAT8BJQA2gSOWxfoFWj3IT45uRv4N/DfwPqfQo6ZzsyKAzOAS4CJwDP4a9MbaG1m\njZ1zW0Pi6QWcDLwF/A50A542s83OufHZOJ9jeRPoD7QDBmfWyMxuBd4B5gADgP3AaUDbQHw7gfvw\n16kK8E+O9Bb9EPjpgBMD+5gPPBZ47rHcgL/2LwO/ANfjh/rVAu4MapfdOVRz8ef6GPA6MC+w/tdj\nPG8scDMwHXgFOAWfnC4ys+bOuZUh7dvhX9vX8K/fDcBDQCL+OmFmlfHDTVMD7TYCJwGNgYuBadk8\nJxGRQkdJlohI5JQN9Gykzcn6Bz5xWeicS0tAhuA/iLd1zk0PrHvNzDYBDwI9gFFB+zQgGbjcOXcY\nwMxG4RObF4E/RzD+2c65+iHrXjCz0fghj/HOuV+dc6vMbBE+yZrlnJsbZl+hQ9JuBy4FhjrnHk1v\nZPYFMBV/XXqEPOc04Ky0IXWB896Iv655TrIC84/2AGcco+mNQBJwpXMuOJmJD9rXZDO7HyjtnBuX\nyX6qAP92zg3MQZgNgMZBSczLZjYJuM3MXnfOLc3BvnDOrTezmfgka1GYoZRHMbPW+ARrvHOua9D6\nicBXwAv4Xrxg5wDnOOc2B5ZfN7Pv8K/d04F1zYCqQGfn3Ac5OQ8RkcJOwwVFRCJnELAd+A34Bl8I\n4WOgA4CZGdAe+DoowUozBN8b0SFkvQOeS0uwAJxzW4D3gbPM7MxIBe+cO5j2u5mVMLNKgaRxBv7/\ni8Z52P2NQApHPmCnHfMz/LW6Icxz3k5LsAJt9wOLOdI7GAlJQPljtNmNL5rRPgLHG37sJhnMCNNL\nNAyfxIa+V/LLjfj34VPBKwMFQ6YAzdOGTQb5KCjBSpMAnGJmZQPLafPgrjWzchGOWUQkqpRkiYhE\nzhtAK+AqoClQ1Tl3U1DBi6r4IWOrQ5/onNsFbCNo7laQ/4ZZ933gZ7j2uRKYd/O4mf0IHMAPg9uO\nH64IUCkPu68LbA0uMBFkNVDOzE4KWb8+TNud+B6hSCmPT7SyMhjfg/aRmW0PzKm608xOzOGxtjvn\njnWsUAXy2h9DXfyQvnCxrA5qEyyz1w4Cr1+gB/Rd/JcRO8xsvvn5g2fnOWIRkShTkiUiEjlrnXNf\nOucSnHNLnXO/F+Cxs5qTk92h4c8BTwLL8R98r8UnjX0D2wv6/4yU/Ny5mdXGz3H7Mat2zrn/4Ye/\ntcPPzaoFjAT+a2ahyUVW9uUu0mzJ7PWP1rSArF679KGkzrnbgfPwwxd3AA8A35pZ7/wNT0QkfynJ\nEhEpONuBPYSZR2VmFfHFJI6qEAeE+2Y/bR9p7RMDPyuHaRs6zyoz3YA5zrm/OufGOOemBwpr7AnT\nNqc3q10H1DCzcEPzzgGSnHM7crjPvLo78HPqsRo65w455z53zj3snGuCL3pRA58UpDfLhxiz89qD\nf/2z+9rn5rUrdoxYwvVcZYtz7nvn3HDn3I1ATXwBlaeP8TQRkUJNSZaISAEJFE2YAjQys6tDNj+K\n/4Z/Ush6A+43sxLpK8xqAl2A/zrnfgzsey+++lxoafd6hJ/vFE4KIQUrzOwEfLW8UHsDbcN9sA/n\nYyAO6Bey/2uBRsAn2dxPRJjZzcDDwM/4anlZtQ03PPGbwM/g899L3oZUhtPazBqFrHsEnyh9HLRu\nDX7IZfq8ucAcwPs5OqlKm+eWk9fO8O/RdIHy7e2Bec65neGemJXAnL8M77fAcMr1+CIypXK6TxGR\nwkLVBUVECtZjQGvgYzN7FV/C/QqgMzCbI/OfghUH5pnZOPwconuA0sC9Ie1eAv5tZtPwH4xPDbT9\nDrgoG7F9APQ0s/HALHyZ7tsJlJ8PsQw/T6d/oBT3H8D6LKrdvYOvHtg3MMRuLr6ARS/8XLT+2Ygv\nN041s78Gfi+DH+p3NdAEn5jclI15UjPM7Hd8ufPNQEX8cMpUMr5ei4F2ZvYSsBCftH6Rxx66lcAX\nZvYK/jrdiE+kRzvnlgS1ewNfnfJjMxuBr0jZCZ/YhlZ6/B7fO9nbzPbjy+P/5pxLCBeAc26Wmf0H\nuCXwWk/F97r2xg+BDH0fZld3/BcIH+H/Dg7hb2dwNTAhuBCLiEisUZIlIhIZ2boXlXNuk5k1wc99\n+iv+A/vP+MptTwXdIyt4v92Bv+HnRlXEf/DuHuYeWUPxSdit+MTte+AOfFXA7CRZ9+OLQHTG349p\nM/7+RV8BM0POY7OZ3R6I6RX8PbXeBdKSLBfS/nCg9+5x4C/4yni/AxOAAYGKiaHnnZnsDndzwPkc\nSYT+wA/ZXIlPHsdn8kE+9LV8BX9NeuJ7f3YCXwN/Dylf/xy+AERHfHJbDGiJTyizc06h2x2+h28N\nPjk/A1+58kn8/cmONHRug5ndgC/S8WQgxtH42wH8N3jfzrkDZvaXwD6eA0rh79+VlmSFi6Ur/n1w\nG/4eZ38E2j/hnAst5JLd+7LNxr8+7fBJWwq+F+tB/H3BRERilmW85YeIiBQWZjYQeAKo65zbFO14\nREREJHs0J0tERERERCSClGSJiIiIiIhEkJIsERERERGRCNKcLBERERERkQhST5aIiIiIiEgEKckS\nERERERGJICVZIlKomFkdM/vYzH4zs1Qze7sQxLTBzELvSRXTzOwdM0sNWRcfuOa1ohVXVsxstpmt\ni3YchZGZXRN47TpH85jRiCOaxxURyYySLBEpbN4FLgOGAN2A1wvioGZ2n5n1yGRzgU5eNbOBgQ+M\nh8zsjDDbrwhsfyAPh8ns5reFeaLuMWMzs4TAtTnWI8XMuhdE0DlhZmeGxHnYzHaZ2Q9mNtbMOphZ\nZv935+q1M7MHzeyvuQw53DHz5T1kZhcG/jZq5CAWEZGoKB7tAERE0phZSaA58IJz7rkCPvw/gfX4\nJK+wKIZPNjtGO5AY8m9gZNDyScDzwFzgjZC2CwsqqFz4FBgX+P1E4HSgHXALsNTMOjjntqU1ds5N\nN7MyzrnkXBzrIeBr4P2cPCmLY1ouYsiOxsBAYBqwNZuxiIhEhZIsESlMTsF/QNsV6R2b2YnOub2R\n3m8+Ww7caGYXO+eWRDuYWOCc+yJ42cxq45Osdc65sdndTyF4v/wQJt6HzexhYCjwCdAkeGNBJRjB\n16aAkxoji94qJVgiUphouKCIFApmNgrYgP8QFR80pOvywPY4M+trZqvNbL+Z7TCzSWZ2bsh+agee\n+4SZdTaz5Wa2D3ghi2OnArWAFiHDyWqFtDvTzD41syQz+93MJppZtTD7K29mQ81srZkdCMwvG2tm\ndXNwSRwwCNgPDDtW46AhhEcNgQs3/yqvzOwiMxtlZj+a2R+BazLfzG7M7PiB6/Kqmf0aeA3nm1mT\nMO0rmtlIM9tuZnvN7EszuyCS8Qcdq1QgtlcC83oWmNle4D+B7ePNbH9Wzwuz7a9mttDM9gSuzQIz\nuz4S8Trn/g/4ELjQzG4KOma4+VHFzOxhM/suEMtuM/vezN4IPgfgZKBNyHv/5ECbX8zsMzNrbGYz\nzWw3sCSwrU3oMdPC9JvtgaC/gR/M7J4w1+oXM/sszPoM52NmQ4C0a704KNZXMjv/wPoTzWyYmf1k\nZgfNbKuZvW1mp2Z2PDPrGbhOB8xsnZn9M0x8l5vZ9ED8+81ss5lNMbNGYV84ESly1JMlIoXFa/gh\nS88DkwIPgB8CP8cCNwPT8R+2TgH+Diwys+bOuZUh++sAnAa8GngkZXHsboHjbscPN0sb7rQ9qE1N\nIAH4CN+L0BD4G1AOaJPWyMzKA4sC7d8GVgPVgd74D4eNnXObs74U6X4BngMeM7PrnHNTj9E+s2/5\n82OuVQfgTGACsBGoAvQAJplZV+fc+DDHnw78hk8eqwAPAlPNrK5z7g8AMysOzAAuBEbjP9CfD8wC\ndkb4HII1B7rihxS+DaSExJ4tZvYM8AAwBXgssLoT8LGZ3eWci0QhlzfxQ0jbceTvJC3WYP8CHsUn\nZS8FttcDbjA/rysZ/95/Gf8FxzCOvPd/D9rnn4CZ+L/BCUCZoG3hro0BD+OHao4E/gD+CrxqZuUD\niWJmMZPJtnH4ZPA24AkgrQDKmsz2ZX748Zf499I4YD5wFtALaG1mFzrnfgs55v349+bb+H8zbgOG\nm9kG59zHgf3+Gf9e3gg8i39PnwJcDpyL/3dMRIo655weeuihR6F4ALWBVOCJkPWtA+vHhqxvABwC\n5oTZx0HgjBwcez3wZRbbUoCOIetfCqw/PWjdCPyHynND2p4G7AbezkYsAwP7vQCfxP0GfMuRG8hf\nETjHB4Kek7aue5j9jQJSsrEu7bi1shFjmTDrSgP/BVaFOxbwYsj6ToGY7w5a1zOT98C9gfXrcvme\nCnvdgVKB7SnApWG2jwP2ZfG8V4LWXRpY1z9M+2nADqDUMeI9M7CPYVm0qR5oMy9o3TWBdZ2D1q0G\nlmfjGm0DPstiWwrQJcy2cMdMW5cIVA1aXxKffOwHTjrWsTPZ9z2BWJpks/0/AusGhrS9KbD+9TDP\nXx/83sbPh0sEvgha93Agjj/n5L2ohx56FK2HhguKSCy4Ef8t9VPBK51z3+J7DJqbWZWQ50x1zq0h\ncrY65z4MWZdW1v30oHVd8UUWtplZlbQH/sPlYuDqnBzUObcH37t2Lr6nqFBwzqUPoTOzMmZWGf+B\n9EvgbDM7MczTng9ZDnf9bgAO43sIgr1G1r2RebXEOZfXQhh/xX/4fj/4tQ+8/pOBSsBFeQ2UI9eh\n/DHa7QZqm9nFeTzeNufcuGM3y2CUcy69J9j5+VIj8MlWuzzGk1034r9seSZ4pXNuEv7LgA5hnjMy\n+L3t/Nyz5WR8j+7G99bdFOgtExE5ipIsEYkFdfHfMv83zLbVQW2CrY1wDOHuz7QT/2GrCoCZVQ38\nfjV+qGHw4zegFX7IU069iv+GfVBh+VBnZlXN7A0z+wXfc7cDf45/CzSpGOZpGa6hcy4x8GtwglwP\n/6F+b0jb5NDnR1gkEvKzgDh8nKGv/8uBNkfN4cuFtOTqWElnX/zfzSIz22RmowNzjnI6VeB/OY4w\n/N/q9/i/l3q52F9u1AU2ucBQ1BCrgSphvgxYH6btTjK+R0cDs4F4IDEwV+2h0HleIlK0aU6WiByv\n9kV4fylZbLOQn7OAp4OW88Q5d8jMBgDvAfcBS8M1y2IX+fFv/Uz80Lbnga/w3+6nAHcAXQjzJZ5z\nLrMY86vkd05k9n7JLOZw19Tw85zaZnGc73ISVCYaBH7+mFUj59w8M6uHnzPYErgSPwfr28A8xuxW\nT4z031KwnFzfgpDZ33n6e9Q5dwC4MtBDeDV+Lta/8QV7bnbOTcv/MEWksFOSJSKxYB3+Q/vZwKqQ\nbX8O/Az3DXRORKIwxHZ8wYDyzrmECOwvnXNurJk9CPQD7gzTJK1XqHKYbfUjGYuZNcB/0I93zj0Z\nsq1nHne/Dl+UIEMJ9UAPXj2OnGdBSQRKmVnpwIfrNOF6Y9bi58b95JzbmI8x3Y1/vx6rEAqBXpwP\nAw/M7H788LkeHOldy4+b+J4dZl3a32pwj2Qimb9nw90sOyfWAc3MrKxzLjRRPAfYkYNE8yjO31Yh\nrdJibWAl8CR+/p2IFHEaLigiseBj/DfJjwavNF++vT2+AEBeK8/tJfyHvWwL9NS8DzQxs7A3EA4M\nKcytfvh5PY9y9AfO9fi5TK1CjncpkNc5OaHSvu3P8H9I4PU4qoR7Dn2C/wLwwZD1vTn2HKT8kDaM\nsFXI+gc5+jUYg3+fPm1mR/XOpZVFzwszewRfuGGpC1S7y6Jt6DxF8MUnjIzv9Ty/98PoYUG3NzCz\nUvhe2INAcMn2NcB5ZnZSUNsyHBl2GmwvR8eelY/xBUoeCl5pZh3wSeBH2dxPBuGuayCp3pmD2ETk\nOKeeLBEp9Jxzs8zsP8AtgQILUzlSFn0fvvJcXi0G7jCzJ/Fl41OBycGT4LOpP77K3AQzmxjYbzK+\nyl1b/CT6O3IToHNuppl9AVxFyAd859wfZvYOcKeZjcXPGTkduB1fmbABkfMDfk7LI2Z2An7Y2pn4\nyoDf4ktm59aowH6eCAx1WwQ0wlci/Ak/56kgjcH3TrxrZs/ieyqvAyoQMszROTc/cD+nfsBZZvYh\nvnpeDaAx0CLwvOw428z+Gvj9BHwZ9fbAGfhrclNmTwyyzsy+BJYF4qiJv7b7gYlB7RYDXczsCXxv\nXCrwkcvbzX3XAUvN35NrH36Y4nnAY8EFMfAVOm8EEgJtywLdOVJCPtgS/Pv+CTOrHtjv/5xzX2US\nwxvArcBAMzsdWICfN/c34Gd8Kfjc+LeZNQc+xX+5EYcvolEHf3sCERElWSJS6GR2752u+Lk/t+GH\nO/2Bv2/VE8651SFtc3NfqP74XqLe+KINRmDifNA+M4v3yIJzSWbWDN/T0Rm4Ht/D9DP+Pj1v5jCu\nUH0JPycL/D1+wH/gux5/va7Dl74+71ixZ5dzLtXM2uJfh+74JGBV4PfzCZ9kZeseXoH5Z62A/8N/\n+L4Jf76tgeH4m0bnOOQsjp/ldufcrqBzfRw/9+w/+A/Tv4U+zznX38wW48uH349PGn7Fz8W6Lwfx\ntg08HL4HZxuwAp/ATc5kflvoumH40uT34XsBf8NXvnzaORdcmOIRfGXI+ziSPFYPOr/s3ssqeN0z\n+OSyNz652wj0ds69nqGhc1+a2V349/X/AZuBF/E9XJ+GtP0pMBz1QXwxmBLA6/j3+VGxOOeSzexK\nfDJ1c+CRiO9tHuCOvkdWds/zA3yP1V/whWz2BeK9zTk3Jot9iEgRYuH/nY7gAcza4CdGFwPecs4N\nDdl+BX54SNoY7UnOuX/na1AiIiIiIiL5JF97sgJ3lH8JP7RlK7DMzD4J+QYNYK5z7vr8jEVERERE\nRKQg5HfhiybAWufcRufcIWA8/kaToQpD+V4REREREZE8y+8k61T8+Oo0PwfWhbrEzL4xs0/N7Jx8\njklERERERCTfFIbCF18BtZxz+8zsWnzJ1TOiHJOIiIiIiEiu5HeStYWMlaBqBtalC74RoHNumpm9\nYmaVnXMZbjhpZvlboUNEREREROQYnHPHnOqU38MFlwF/MrPaZlYSuAWYHNwg5GaFTfAVDxMJwzmn\nRyF6DBw4MOox6KHXozA/9JoUvodek8L10OtR+B56TQrfQ69J4XpkV772ZDnnUsysDzCDIyXcfzCz\ne/xm9wbQycx6AYfwN0j8S37GJCIiIiIikp/yuycL59znzrkznXOnO+eeDqx7PZBg4Zx72Tl3rnOu\nkXPuUufckvyOSUREiqjZs6MdQUTEx8dHOwQREclCvidZcvxq0aJFtEOQIHo9Ch+9JoVPizlzoh1C\nRAwaNCjaIUSE/kYKH70mhY9ek9hkORlbGE1m5mIlVhERKaTM4Dj4v8TMcjQ3QEREIiPw7+8xC18U\nhhLuIiIiIiJRU6dOHTZu3BjtMKQQqV27Nhs2bMj189WTJSIiRYd6skQkDP1NSajM3hPZ7cnSnCwR\nEREREZEIUpIlIiJFx8CB0Y4gIgYeJ+chInK80nBBERERESnSNFxQQmm4oIiIiIiISCGiJEtERERE\n5Dhw7rnnMnfu3GiHkSO33347TzzxRLTDiDglWSIiIiIihVydOnUoW7YsFSpUoHLlyjRv3pzXX389\nw5C2VatWcfnll2e5n7p16/Lll1/md7hFnpIsEREREZFCzsz49NNP2b17Nxs3bqRfv34MHTqUO++8\nM9qhRUVKSkrY9UuWLKFNmzY0b96csWPHAvDee+9x0kknce+997Js2bICiU9JloiIFB3x8dGOICLi\nj5PzEJGcSeu1KleuHNdddx0TJkzg3Xff5fvvvwcy9lINHTqUmjVrUr58ec4++2wSEhLo3r07mzZt\non379pQvX55nnnkm/XnDhw+nYcOGVKpUiS5dupCcnBw2hmLFirFu3br05dDhfsfa19dff82FF15I\nhQoVuOWWWzhw4ED6tm3bttGpUydOPvlk6tevz4svvpjh2HXr1mXYsGE0bNiQE088kdTU1KPiu/ji\niylVqhQPP/wwXbt2BaBt27YcOHCA4cOHc9FFF2X/gueBkiwRESk6Bg2KdgQRMeg4OQ8RyZuLLrqI\nmjVrMm/evAzr16xZw8svv8xXX31FUlIS06dPp06dOowePZpatWoxdepUkpKSeOihh9KfM3HiRGbM\nmMH69etZuXIl77zzTthjmh2zsF6m+zp06BAdOnSgR48eJCYmcvPNN/Phhx8CPoFs3749jRo1Ytu2\nbXzxxReMGDGCmTNnZtj3+PHjmTZtGr///jvFih2dyqSmprJo0SKuuuqq9HXTp0+nSZMmlChR4pix\nR0rxAjuSiIiIiEisMoPgkt55XY6QGjVqkJiYmGFdXFwcycnJrFq1iipVqlCrVq0M28OVJr/vvvuo\nVq0aAO3bt+ebb74Je7zslLrPbF+LFi3i8OHD3HvvvQB07NgxvWdp2bJl7Nixg/79+wN+Dtpdd93F\nuHHjaN26dYZ916hRI9Njr1ixgipVqjBp0qT0eN98802uvvrqY8YdSUqyRERERERi1JYtW6hSpUqG\ndfXr1+f5558nPj6e77//nmuuuYZnn32WU045JdP9pCVFAGXLlmXbtm25jimzfW3bto1TTz01Q9va\ntWsDsHHjRrZs2ULlypUBnxylpqYeVcijZs2aWR77yy+/pHPnznTv3j193cCBA2nZsiUAu3bt4o03\n3qBatWqcd955XHjhhbk8y6xpuKCIiBS8Tp3gjTcyrmvbFj74IDrxHIc6derEGyHXuG3btnygayyS\nO6E9OHldjoBly5axdetWmjdvftS2W265hXnz5rFx40YA+vbtC2RvuF9WypYty759+9KXf/nll2w/\nt3r16mzZsiXDuk2bNgFw2mmnUa9ePRITE0lMTGTXrl3s3r2bKVOmZGh/rPgTEhJo1qxZ+vKWLVvY\nsWMHTZs2BeCdd96hZcuWdOvWjWeffTbbseeUkiwRESlY+/bB5Mlw/vlH1u3cCdOnQ506UQvreLJv\n3z4mT57M+UHXeOfOnenzMkQktu3Zs4epU6fSpUsXbr31Vs4555wM29esWUNCQgLJycmULFmSMmXK\nEBcXB/hepuDCFTnVqFEjxo4dS2pqKp9//jlz5szJ9nMvueQSihcvzosvvsjhw4eZNGkSS5cuBaBJ\nkyaUK1eOYcOGceDAAVJSUli9ejXLly/P9v4PHTrEwoULueSSS9LXzZ07l0svvZTixf0AvnXr1lG9\nenWKFy/Orl27sr3vnFKSJSIiBWvBAihTBho3PrJu9mwoVw6Ch20sXw4dO0LFivDEE7BjB8yaBa1a\n+WRs0CDIpPpVpgYOjMQZRN3AY5zHggULKFOmDI2DrvHs2bMpV65chqExy5cvp2PHjlSsWJEnnniC\nHTt2MGvWLFq1akWdOnUYNGhQphXGRKTgtW/fngoVKlCrVi2GDBnCQw89xNtvv52+Pa2X5+DBg/Tr\n14+qVatSo0YNtm/fzuDBgwF49NFH+de//kXlypXTe3Jy0rv1/PPPM3nyZCpVqsS4cePo0KFDhu1Z\n7atEiRJMmjSJUaNGUaVKFSZOnEjHjh0BX7Vw6tSpfPPNN9StW5eTTz6Zu+++m6SkpGzt++uvv6Zf\nv36YWfp8rAkTJvDyyy9z+PBhFi5cCPjCGGkJZ36y7ExeKwzMzMVKrCIikoUBA+Crr+Czz46su/de\nWLcOpk7N2HbwYFizBoKrXPXqBVWrwpNPFki4sWjAgAF89dVXfBZ0je+9917WrVvH1JBrPHjwYNas\nWZOhklivXr2oWrUqT+oaSxFhZtkq6CCx78UXX+Syyy7j7LPP5rbbbmPcuHFh22X2ngisP2ZWqp4s\nEREpWHOctU2FAAAgAElEQVTmwBVXZFw3eza0aHF023nzIGhsPQALF0LIRGjJaM6cOVwRco1nz55N\nizDXeN68eRnmLwAsXLjwqMnmIiLHg65duzJz5kxGjx6dXuUwP6gnS0RECs6BA37433/+A9df79dt\n3w6nnAJLlvjlnTvhmmsgNRUqVYJFiyBtvkFSElSr5tuULRudcyjkDhw4QMWKFfnPf/7D9YFrvH37\ndk455RSWBK7xzp07ueaaa0hNTaVSpUosWrQofU5HUlIS1apVY+fOnZTVNZYiQj1ZEiqvPVkq4S4i\nIgVn8WI/j+rgwSPr0oaknXMOvPQS/OMffvnrryElBaZM8Q+AtWuhQQMlWFlYvHgxycnJHAy6xmnD\n/s455xxeeukl/hG4xl9//TUpKSlMmTIlvYLX2rVradCggRIsEZE8UJIlIiIFZ84cOOsseO89+PFH\nn3D17Qu7d8Pjj/tEq0wZ33bePF/kIlB2GID+/X1PWJo9e+CFF6BhQ9i7F265pWDPpxCaM2cOZ511\nFu+99x4//vgjycnJ9O3bl927d/P4449zzjnnUCZwjefNm0erVq3SSzsD9O/fn4rB1zhE7969+de/\n/nXUfXlEROQIJVkiIlJw5syBrl19QhVs9Oij286de/Q8rdmzMyZd77wDTZvCVVf5SoTHSrLi4/0j\nxsXHxxOfyXnMmTOHrl278njINR4d5hrPnTv3qHlas2fPzpB0BduwYQNJSUlhb34qIiJHqPCFiIgU\njORkP1wwtJBFOM7B/PkZk6w//vBVCYNvurl2LZx2mv+9ZEk/VysrgwblOOzCaFAm55GcnMzixYuP\nKmQRjnOO+fPnZ0iy/vjjD7766quwNzZNSUmhdOnSnHfeeWzdujXXsYuIFAVKskREpGAsWeLnWDVt\nmnW7hQuhd2+fME2c6ItdTJsGPXtCsWLwyis+CQNfHCNwg0kOH/bbi7AlS5aQkpJC02Nc44ULF9K7\nd2927tzJxIkTSUpKYtq0afTs2ZNixYrxyiuvHDXh+5tvvmHJkiX89ttvSrJERI5B1QVFRKRgjB0L\nEybAJ59Ebp+vvuoLYTRrBm3awOefZ93e7EiCFsMyq3o1duxYJkyYwCeRvMbAzz//TLly5ahQoQIz\nZsxgyZIlDBgwIKLHEIkmVReUUHmtLqgkS0REYtfu3T7ROuccSEyE227Luv1xnmTlhwULFvDss88y\ncuRIKleuzIABA1i2bBmjRo2ievXqBRKDSH5TkiWhlGSJiIhkl5IsEQlDf1MSKq9JVtEevC4iIkXL\nwIHRjiAiBh4n5yEicrxST5aIiIiIFGnqycq7c889l1deeYXLL7882qFEhHqyRERERESOY+XKlaN8\n+fKUL1+euLg4ypYtm75u3Lhx+X78OnXqULZsWSpUqEDlypVp3rw5r7/+eoYkZNWqVcdMsOrWrcuX\nX36Z3+EWCkqyREREREQKsT179pCUlERSUhK1a9fm008/TV/XpUuXDG1TUlIifnwz49NPP2X37t1s\n3LiRfv36MXToUO68886IHyunlixZQps2bWjevDljx44F4L333uOkk07i3nvvZdmyZVGJS0mWiIiI\niEiMcM4dNYytbt26DBs2jIYNG3LiiSeSkpJCsWLFWLduXXqb22+/nSeeeAKAbdu20alTJ04++WTq\n16/Piy++mK3jgu9Vu+6665gwYQLvvvsu33//fXoMab1UQ4cOpWbNmpQvX56zzz6bhIQEunfvzqZN\nm2jfvj3ly5fnmWeeSX/e8OHDadiwIZUqVaJLly4kJydn+3pcfPHFlCpViocffpiuXbsC0LZtWw4c\nOMDw4cO56KKLsr2vSFKSJSIiIiIS48aPH8+0adP4/fffiYuLwyz8tCHnHO3bt6dRo0Zs27aNL774\nghEjRjBz5swcHe+iiy6iZs2azJs3L8P6NWvW8PLLL/PVV1+RlJTE9OnTqVOnDqNHj6ZWrVpMnTqV\npKQkHnroofTnTJw4kRkzZrB+/XpWrlzJO++8k+04UlNTWbRoEVdddVX6uunTp9OkSRNKlCiRo3OK\nJCVZIiJSdMTHRzuCiIg/Ts5DJFaYWcQe+eW+++6jRo0alCpVCiDTQh7Lli1jx44d9O/fn7i4OOrU\nqcNdd93F+PHjc3zMGjVqkJiYmGFdXFwcycnJrFq1isOHD1OrVi3q1q2bvj1cXPfddx/VqlWjYsWK\ntG/fnm+++SbbMaxYsYIqVaowadIkRo8ezbvvvssrr7xCy5Ytc3w+kaQkS0REio5Bg6IdQUQMOk7O\nQ0Qip2bNmtlqt3HjRrZs2ULlypWpXLkylSpVYsiQIfz22285PuaWLVuoUqVKhnX169fn+eefJz4+\nnmrVqtG1a1d++eWXLPdTrVq19N/Lli3L3r17sx3Dl19+SefOnenevTvdu3enR48ebN68OWyS5Zyj\ne/fu2d53XijJEhERERHJQto8qEg88ktoL1nZsmXZt29f+nJaonPaaadRr149EhMTSUxMZNeuXeze\nvZspU6bk6HjLli1j69atNG/e/Khtt9xyC/PmzWPjxo0A9O3bN2yMkZCQkECzZs3Sl7ds2cKOHTto\n2rTpUW2///57tm3bFvEYwlGSJSIiIiJynGnUqBFjx44lNTWVzz//nDlz5gDQpEkTypUrx7Bhwzhw\n4AApKSmsXr2a5cuXZ2u/e/bsYerUqXTp0oVbb72Vc845J8P2NWvWkJCQQHJyMiVLlqRMmTLExcUB\nvscquBhHdtx+++3ccccdYbcdOnSIhQsXcskll6Svmzt3LpdeeinFixfP0PbAgQPUqFGDChUqcPDg\nwRzFkBtKskREREREYkS43qBw655//nkmT55MpUqVGDduHB06dACgWLFiTJ06lW+++Ya6dety8skn\nc/fdd5OUlJTlcdu3b0+FChWoVasWQ4YM4aGHHuLtt98+KoaDBw/Sr18/qlatSo0aNdi+fTuDBw8G\n4NFHH+Vf//oXlStX5tlnn8009mCbN28O21v29ddf069fP8yMSZMmATBhwgRefvllDh8+zMKFCzO0\nX758OXPnzuXAgQP8+uuvWR4zEixW7m5tZi5WYhURkULKDI6D/0vMLF+HHYkUNfqbKpwOHTrE+eef\nz7fffpveG5Yb69ato0aNGpQuXZr4+Hjatm1LkyZNsnxOZu+JwPpjjntUT5aIiBQdAwdGO4KIGHic\nnIeISFZKlCjB6tWr85RgzZ07l/79++OcY/fu3axevZqPPvooglGGp54sERERESnS1JMlodSTJSIi\nIiIiUogoyRIREREREYkgJVkiIiIiIiIRlO9Jlpm1MbP/mtkaM+ubRbuLzOyQmd2U3zGJiIiIiIjk\nl3xNssysGPAScA3wZ6CLmZ2VSbungen5GY+IiBRx8fHRjiAi4o+T8xAROV7la3VBM2sKDHTOXRtY\n7gc459zQkHb3AcnARcBU59ykMPtSdUEREckb3SdLRMLQ35SEymt1weL5EtURpwKbg5Z/BjLc+cvM\nagA3OudamlnWdwUTERHJCefg4EEoXfrIur174cQToxdTLqWkpJCUlMShQ4cA2LVrF6VLl6ZMmTJR\njkwk9tWuXRuzY35uliKkdu3aeXp+fidZ2fE8EDxXK9N3ePDwiBYtWtCiRYt8C0pERGKEc76HCmD1\napg8GR591C/PnQsPPwxLlx5pf+ml8O23/vfNm+Gxx2DMGL986BDs2gUnn1xw8Qc459i8eTMrVqxg\n5cqVrF+/nvXr17Nx40Z27tzJ3r17M7SvXLkyAGXLlqVq1apUq1aN+vXrc+aZZ3LGGWdwwQUXcPrp\np1OsmGpciRzLhg0boh2CFFKzZ89m9uzZOX5eQQwXjHfOtQksHzVc0MzWpf0KnAT8AfR0zk0O2ZeG\nC4qISMakasUK6NcPZszwy6tXw003wY8/+uUffoDbb4fFi/2yGbRqBTNn+uWEBBg40CdjAMuWwd13\nwzff+OU//oDERDjttHw4DceaNWuYNWsWs2bNYv78+ezYsSPT9mZG+fLlKVmyJNu3b6dChQrs27cv\nvWcrnEqVKtGkSROuuOIKrr32Who2bKhv60VE8iC7wwXzO8mKA34ErgK2AUuBLs65HzJpPwqYojlZ\nIiIS1s8/w403+mTIzA/9O+UUnwiVLOmHBn7yCXTu7NsHJ2Rw9JysxETfm9WwoV/+5BOYNQtefNEv\nT5oEL7wAad9ipqZCHnqGnHMsX76ciRMn8sEHH7B+/foM2ytXrsyFF17I+eefz+mnn07dunWpU6cO\nVatWpVy5cum9UmlzBZxz7Nmzhx07drBt2zbWrl3Ljz/+yA8//MDSpUvZtm1bhv1Xr16d6667ji5d\nunD55ZcTFxeX63MRESmKCkWSFQikDTACX8nwLefc02Z2D75H642Qtm+jwhciIpImJQXuvx+eecYn\nUc5B7drwxRdw+um+za5dUKlS9vYXH5+zCoOvvw4lSsAdd/jlF1+ETZvg//4vJ2fBtm3bGDVqFG+9\n9Rbr1q1LX1+1alWuuuoqWrVqRcuWLalbt262epri4+OPWWHQOcfPP//MwoULmTlzJtOmTWPr1q3p\n20899VS6dOlCz549OT3tWoqISJYKTZIVKUqyRESKiAMH/M+0YhVXXAEPPAA33OCXExMhMB+pwLVr\nB336wLXX+uVZs6B+fahbN2zz+fPn8+yzzzJ58mRSUlIA35vUqVMnbr75Zpo1a1Zgc6acc3z77bdM\nnDiRsWPHZuhFu/rqq+nTpw9t27ZV75aISBaUZImISGzq0gUuvxx69fLLS5fCSSdBvXrRjQtg/37f\noxYX54tk1K/vhxQ2bpzeJDU1lSlTpjBs2DAWLlwIQFxcHDfccAM9e/akVatWUU9knHMsXryYt956\ni7Fjx7J//34AzjrrLB577DG6dOlC8eKFoTaWiEjhoiRLRERiwx9/+AIVaYnKggV+WN748dGN61h+\n/x3eegsefBAAt28f0667jv6JiXyzciXgC0/06dOHXr16Ub169WhGm6nExETeeecdXnjhBTZu3AhA\nvXr1ePzxx+nevXvUE0IRkcJESZaIiMSGxYuhUyf43/+ODBEMLVhRyC1cuJC+3boxPzAE79RTT+Wh\nhx7irrvu4sQYuSfXoUOHGDt2LIMHD2bNmjUAnHvuuQwbNow2bdqoKqGICNlPsnTzDBERKXgLF0Jy\nsv+9aVNfZv23345sj5EP9Nu2bePWW2+lWbNmzF+/niqVKjF8+HDWrl3LP0uX5sQPPoh2iNlWokQJ\nevTowffff897771H7dq1WbVqFW3btuXqq6/mv//9b7RDFBGJGUqyRESk4D31FDz33JHlf/0LatXK\n/+PmpLJgFg4fPswzzzzDGWecwXvvvUepUqXo378/6zZs4IEHHqBMaqq//1aTJhE5XqhjVRbMi7i4\nOP7617/y448/Mnz4cCpVqsSsWbNo0KAB/fv3Z9++ffl2bBGR44WGC4qISP5zDjZuhDp1/PK6db5g\nxEMPFWwcoffJyoWVK1dyxx13sGLFCgCuv/56nnvuOeqFFubYvPnITYyTkvzcrVde8SXh8yjtPlkF\nYefOnTz66KOMHDkSgDp16jBy5EhatWpVIMcXESlMNFxQREQKjx9+8MMC04YE1qtX8AlWHiUnJzNg\nwAAaN27MihUrqFWrFp9++imffPLJ0QkWHEmwwPegpaZGJMEqaFWqVOGNN95g0aJFnH/++WzYsIHW\nrVvTq1cv9uzZE+3wREQKJfVkiYhI/gkuYDF4MDRr5u97FS257Mlau3YtXbt2Zfny5QD06dOHwYMH\nU65cueztYMsWKFv2yE2TP/0ULroITj45x7FAwfZkBTt8+DDDhg0jPj6eQ4cOUbt2bcaMGcNll11W\n4LGIiESDqguKiEh0Pf887Nzp51sVFjlMspxzjB49mr///e/88ccfkUkqVq/2ieaiRXD66bnaRbSS\nrDTfffcdt912GytWrKBYsWIMGDCAxx9/XPfWEpHjnpIsERGJrl9/hebNYf58qFYt2tF4OUiydu/e\nTa9evRg3bhwAf/nLX3jttdeoWLFi3mLYvBm+/RbatfPL+/f7YYQ5SFCinWSBL/keHx/PkCFDcM7R\nvHlzxo4dy2nBwyRFRI4zmpMlIiIFb8wY2LrV/16tmu+1KSwJFviKf9mwcuVKGjVqxLhx4zjhhBMY\nNWoU48aNy3uCBX6uVlqC5Rz07Jmx0mI2DMzmeeSnEiVK8NRTTzFr1iyqV6/O/PnzueCCC0hISIh2\naCIiUaeeLBERiZwnn4SEBPjiCygWm9/jTZgwgdtvv539+/dzwQUXMG7cOM4444z8OdjWrf4eYR99\n5OdsxagdO3bQrVs3pk+fTlxcHMOGDeP+++/XDYxF5Lij4YIiIlIwkpOhZEn/e0oKTJ8ObdtGN6Zc\nSElJoX///gwdOhSAHj168Nprr1G6dOmCC+K772DBAvjb3wrumBGSkpLCgAEDGDJkCABdunThzTff\npGwMJ48iIqE0XFBERPKfc3DZZTBzpl+Oi4vJBGvXrl20a9eOoUOHEhcXx4gRIxg1alTBJljJydCp\nExTkMSMoLi6OwYMH88EHH3DCCScwbtw4LrnkEjZs2BDt0ERECpx6skREJG/mzvVzij76KNqR5MpP\nP/3Etddey9q1a6lSpQoTJ06kZcuW0Qlm5Upo2PDI8sGDUKpUdGLJg9WrV9OhQwfWrl1LtWrVmDp1\nKo0bN452WCIieabhgiIikj+cg48/hhtuODLvKvh+WDFk2bJltGvXju3bt9OgQQM++eQT6tSpE+2w\nvJEj4fPP4cMPox1Jrvz+++906tSJL774grJlyzJhwgSuu+66aIclIpInGi4oIiL54/Bhfw+sBx44\nsi5WEqz4+PRfP/30U1q0aMH27dtp3bo18+bNKzwJ1qFDMHYsPP102M3xQedRWFWsWJHPPvuMHj16\nsG/fPm644QZeffXVaIclIlIg1JMlIiI59/vvsHBh7M2/Ctwn64033qBXr16kpqbSo0cPRo4cSYkS\nJaIdXUbBvYP79/t7a118MVA47pOVXc45Bg0axKBBgwB45JFHGDJkCMVitPqkiBRt6skSEZHISUmB\nHj1gyxa/XLFi7CVYgMPfY+qee+4hNTWVAQMGMGrUqMKXYMGRBOvwYfjLX+C116IbTy6ZGfHx8bz9\n9tsUL16cYcOGceedd3L48OFohyYikm/UkyUiItkzdKi//9WMGdGOJFecczxQrBjPA8WKFePVV1+l\nZ8+e0Q7r2FJT4c03/f20AslgLPVkBZs+fTo33XQT+/bto1OnTrz//vuUTCv/LyISA1T4QkRE8u7Q\nofQP9jgHiYlQpUp0Y8qFlJQUevXqlT4scPz48dx0003RDit3vv2WPg0b8lKM/p+4YMEC2rZtS1JS\nEm3atOHDDz/UvbREJGZouKCIiOSNc3DllTBpkl82i8kE6/Dhw+nzrkoDn3zySewmWHv3Qrt2/Bbt\nOPKgWbNmJCQkcNJJJ/H5559z7bXXkpSUFO2wREQiSkmWiIiEZwYvvABvveWHrMWggwcP0rlzZ95/\n/31OOOEEpvXowbXXXhvtsHLvxBMhIYFzBg6MdiR5csEFFzB37lxq1KjB3LlzadWqFbt27Yp2WCIi\nEaPhgiIiktHPP0P16hAXF+1I8iQ5OZmOHTsydepUKlasyLRp02jatGm0w4qsF17whTGCy+nHkPXr\n13PVVVexfv16GjduzMyZM6lYsWK0wxIRyZTmZImISO507+57sUaNOnKz4Rhz6NAhOnfuzMcff0zl\nypWZNWsWjRo1inZYkfXTT9CmDcycCYXl/l65sHnzZlq0aMG6deto0qQJM2bMoEKFCtEOS0QkLM3J\nEhGR3HntNahWDQ4ciHYkuXL48GG6du3Kxx9/TMWKFY/PBAugfn1YtepIgpWc7OfRxZjTTjuNhIQE\n6tSpw9KlS2nTpo3maIlIzFNPloiI+CGCADVrRjeOPEpJSaFbt26MHz+e8uXL88UXX9C4ceNoh5X/\n9u2DG26Au+7y99SKQRs2bOCKK65g06ZNNGvWjGnTplGuXLlohyUikoF6skREJPumT4fLL4cNG6Id\nSa6lpKRw++23M378eMqVK8f06dOLRoIFsGQJ1K4NHTtGO5Jcq1OnDgkJCdSsWZMFCxbQrl079u3b\nF+2wRERyRUmWiIjAnXfCU09BjM6Fcc7Ru3dvxowZwwknnMBnn30WvshFfHyBx5Yf4kPPo2VLf8Pi\n4sX9cowOt6tXrx4JCQmceuqpzJs3j06dOpGcnBztsEREckzDBUVEiqrdu2HRIl88IcY99thjDBky\nhNKlSzNt2jRatGgRvqFZTM5bChUYrhJ+44oV0L49LFzoe7di0A8//MBll13Gzp07+ctf/sL7779P\nXIxXuxSR44OGC4qISNY2b4bbb4cPP4x2JHkyfPhwhgwZQlxcHP/5z38yT7CKinnz4KWXYjbBAjj7\n7LP5/PPPKVeuHBMmTKBPnz6ZJ5UiIoWQerJERIqyNWugZMmYLQE+atQo7rjjDgDGjBlDt27dsn5C\nUejJCvXbb3DyyfkbUD6ZPXs2bdq04eDBgzz66KMMHjw42iGJSBGnniwRETmaczBmjL+BLcAZZ8Rs\ngvXRRx9x1113ATBixIhjJ1hFjXMweDBcfTWkpkY7mlxp0aIFEydOJC4ujiFDhvDMM89EOyQRkWxR\nkiUiUpQcPAjvvw+33hrtSPJkzpw53HLLLaSmpjJw4EDuvffeaIdU+DgHe/fCZ5/F7E2lAdq3b887\n77wDwMMPP8zYsWOjG5CISDYUj3YAIiJSgEqXhsmTYeXKaEeSa99//z033ngjycnJ/P3vf2fgwIHZ\nf3JO2hZi2TrnYsV8T1aa/fv9o3Ll/Assn3Tr1o3ffvuNBx98kNtuu43q1avTsmXLaIclIpIpzckS\nESkKPv8czj47poshAGzbto2mTZuyadMmOnTokD6UTI4hMRGuvx6uuQYGDIh2NLninOP+++9nxIgR\nVKhQgfnz53PuuedGOywRKWI0J0tERI743//g0kth27ZoR5Jre/fupV27dmzatImmTZvy3nvvKcHK\nrgMHfKn+/v2jHUmumRnDhw/npptuYvfu3Vx77bVs2bIl2mGJiISlniwRkaJixQpo1MhX2Isxhw8f\n5vrrr2fatGn86U9/YuHChVStWjXaYcWuX3+FatWiHUWu7N+/n1atWrFw4UIaNGjAvHnzKF++fLTD\nEpEiQj1ZIiJFXWKin3+V5oILYjLBcs7Ru3dvpk2bxkknncS0adOUYOXFl19Cgwbwww/RjiRXypQp\nw+TJkznjjDP49ttv6dixI8nJydEOS0QkAyVZIiLHq19/hT59IFCZLVYNGTKEkSNHUrp0aSZPnsyf\n/vSnaIcU23bsgPHj/Ry9GFWlShWmTZvGySefzKxZs7j77rt1s2IRKVSUZImIHK/OPhsWLYJWraId\nSa69//779O/fHzNj7NixXHLJJXnbYXx8ROKKtvi8nEfnzhBcmS8xMc/xREO9evX49NNPKVu2LKNH\nj+bJJ5+MdkgiIuk0J0tE5HgzaRK0awelSkU7kjxZuHAhLVu2JDk5mREjRkTmXlhm/v5RMS4wJyBv\nO0lNhX79YPlyP4QwRk2dOpXrr78e5xwTJkygc+fO0Q5JRI5jmpMlIlIUpaTAe+/5JCs1NdrR5NrG\njRsz3AtLNxvOB4cO+ffLxInRjiRPrrvuOp555hkAevTowbJly6IckYiIerJERI4/KSmweDE0axbt\nSHJlz549NGvWjO+++47WrVvz2WefUbx48cjsXD1Zmdu3z/d+xmBZfOccd999N2+99RbVq1dn2bJl\nnHrqqdEOS0SOQ+rJEhEpSjZt8vfCAv8hOUYTrNTUVLp168Z3333HmWeeyYQJEyKXYEnmtm6Fyy7z\nBTFikJnxyiuvcMUVV7Bt2zauv/569u3bF+2wRKQIy/cky8zamNl/zWyNmfUNs/16M1tpZl+b2VIz\ni81PBiIi0bRkiU+sYnyo1GOPPcbkyZOpVKkSU6ZMoVKlStEOqWj46SdfEKNr12hHkmslS5bkww8/\npH79+qxYsYIePXqQGsNDZkUktuVrkmVmxYCXgGuAPwNdzOyskGaznHMNnXONgDuBN/MzJhGR49LN\nN8MHH0D9+tGOJNfeffddhg4dSlxcHB988AGnn3565A8ycGDk9xkFAyN9HpddBn37HrmP2uHDkd1/\nAalSpQpTpkyhfPnyfPDBB3mrwigikgf5OifLzJoCA51z1waW+wHOOTc0k/aXAG865/4cZpvmZImI\nhPruOzjvvGhHkWcLFizgyiuvJDk5mVdffZW//e1v0Q6p6Jo8GQYM8FUHS5SIdjS5Mn36dNq2bUtq\nairvv/8+XWO4h05ECpfCMifrVGBz0PLPgXUZmNmNZvYDMAW4I59jEhE5PuzdCx06wGOPRTuSPNm0\naRMdOnQgOTmZPn36KMGKJud8tcGRI2M2wQK45ppreP755wG48847WbFiRZQjEpGiplAUvnDOfeyc\nOxu4Efh3tOMREYkJJ57oqwhecEG0I8m1/fv306FDB7Zv307r1q157rnnoh1S0WYGY8ZAkyZH1sXo\nKJI+ffpw1113ceDAgfT3mIhIQcnvkk1bgFpByzUD68Jyzs03s3pmVtk5d9Qt6IPHVrdo0YIWLVpE\nLlIRkViRmAhly0Lp0nDSSdCpU7QjyhXnHD179mTFihXUq1eP8ePHq5JgYXLoENx3H5x/PvTsGe1o\ncszMeOmll1i1ahWLFy+mc+fOzJgxgxIx3EMnIgVv9uzZzJ49O8fPy+85WXHAj8BVwDZgKdDFOfdD\nUJv6zrmfAr9fAHzinDstzL40J0tEBOCpp+CTT+CjjyCG7wU0YsQI/vnPf1K2bFkWL17MecfB3LLj\nSkICPPusv7l1hQrRjibXtm7dyoUXXsgvv/zCvffey4gRI6IdkojEsEIxJ8s5lwL0AWYAq4Hxzrkf\nzAsU+IoAACAASURBVOweM0v7Wqyjma0ysxXAi0Dn/IxJRCTmPfYYdOt2pBJcDEpISODBBx8EYNSo\nUQWXYB0n1eYKpGpey5a+CEYMJ1gANWrUYNKkSZQoUYIXXniBd999N9ohiUgRkK89WZGkniwRKfL2\n74cyZaIdRZ5t2rSJCy+8kB07dtC3b1+efvrpgju4WczOMQoW+Ca14A64bh307w9vvx2z78GRI0fS\ns2dPSpUqxbx587jooouiHZKIxKBC0ZMlIiIRsns3nH2271mIYWmFLnbs2MHVV1/NU089Fe2Q5Fic\ngzvvhEsv9fMAY9Tdd9/NPffcw8GDB7npppv49ddfox2SiBzH1JMlIhIrFi/2SdbgwdGOJFecc/To\n0YMxY8ZQr149li1bRuXKlQs2CPVk5c6hQzFd0j1NcnIyV155JQsWLOCyyy5j1qxZlCxZMtphiUgM\nyW5PlpIsEZHCzLmYnnsVLLjQxaJFi2jQoEHBB6EkK+8mToQqVeDKK6Nz/Dz65ZdfuPDCC9m6dSt/\n//vfeemll6IdkojEEA0XFBE5HgwbBv/4h+9JiGGzZ8/OUOgiKgmW5N3nn8Mjj0DFitGOJNdOOeUU\nJk2aRMmSJXn55Zd5++23ox2SiByHlGSJiBRm99wDP/8M33wT7UhybfPmzdx8882kpKTwyCOP0Llz\nFIvIDhwYvWNH0MBonUfr1rBiRUzfABvg4osv5tVXXwWgd+/efPXVV1GOSESONxouKCIi+ebgwYNc\nfvnlLF26lNatWzNt2jTi4uKiHZZEwsGDMGEC3HprzA5p7dWrF6+99hp16tThq6++Kvg5giISczRc\nUEQkVu3dC506wfr10Y4kzx588P/Zu+/wKIuuj+PfIYQkQAhI6EUkdBGktwihKCgoUqS9qIFQFLCB\ngA2IPI8KSlEfigUMilJDkS419BaqSDH0EnoJLT3z/nETQhQlbMrsnZzPde2Vnd0l/NbgZs/OzJkB\nbNu2jZIlSzJt2jQpsDILraFFC6sRi42Xsn755ZfUqlWL48eP07VrVxISEkxHEkJkEikqspRSc5VS\nLZVSUpQJIUR6y5ULnnoK+vQxnSRVpk2bxvjx43F1dWX27Nl4e3ubjiTSilIwbpzVBMPG3fnc3NwI\nDg4mf/78LF26lP/+97+mIwkhMokULRdUSjUDugF1gdlAkNb6UDpn+2sGWS4ohMha4uPBpjM/f/zx\nB7Vr1+b27dtMmDCB119/3XQkkZ4OH4Y8eaBgQdNJHLJ8+XJatGgBwJIlS+5eF0KIv0rT5YJa65Va\n6/8DqgPHgZVKqU1KqW5KKfsfnCGEEM5gwwaYMydpbNMC68aNG7Rr147bt2/TtWtXXnvtNdORRHpa\ns8Y6qHjLFtNJHPbMM8/w8ccfo7Xm//7v/zhx4oTpSEIIm0vx8j+lVH7AH+gB7AK+wiq6VqRLMiGE\nyGo8PODdd2HhQtNJHKa1JiAggEOHDvH444/zzTffoJypKUJgoOkEaSLQmZ5H+fKwaBG88ILpJKny\n4Ycf8txzz3HlyhXat29PVFSU6UhCCBtL6XLBeUB5YCowRWt99p77QrXWNdMv4t2/R5YLCiEyv6tX\nIXducLXnIoEvv/ySd955B09PT7Zv30758uVNR0pODiNOf+fPQ6FCplM45MqVK9SoUYPjx4/Tq1cv\nvv32W9ORhBBOJqXLBVNaZD2ntV7yl9vctNbRqcj4UKTIEkJkWosWWecPubmZTpIqGzduxM/Pj7i4\nOGbPnk379u1NR/o7KbLST2ws9O8PW7daF2eawXwIO3fupH79+kRHRxMUFIS/v7/pSEIIJ5LWLdzv\n125n88NFEkII8TcJCRAUBI0bQ1yc6TQOu3DhAh06dCAuLo7+/fs7Z4El0peLCxQrBsuX27bAAqhe\nvTrjx48HrHO0dtv4IHAhhDn/OpOllCoMFAN+BroAia+aeYBvtNYV0j1hUhaZyRJCZE5aw7ZtUKeO\n6SQOiYuL45lnnmHNmjX4+vqyevVqXJ11uaPMZGWcuDjInt10CocFBATwww8/ULp0aXbs2EHevHlN\nRxJCOIG0mslqDowCigNjgNF3Lv2BD1IbUgghsqzoaDh+3LqulG0LLIChQ4eyZs0aChUqxMyZM523\nwBIZ5+hRqF0b1q41ncRh48aNo1q1ahw9epRXXnlFDioWQjyUfy2ytNY/aq0bA/5a68b3XF7QWs/N\noIxCCJH5bN5svQldtsx0klRZuHAhn332GdmyZWPGjBkULVrUdKR/N2yY6QRpYpizP4+1a8HfHxo2\nNJ3EYR4eHgQHB5M3b14WLlzIyJEjTUcSQtjIg5YLdtVa/6yUGgD87YFa6zHpGe4vWWS5oBAic9m6\n1VpOVaOG6SQOOXr0KNWrVyciIoIRI0YwePBg05GESHOLFy+mVatWZMuWjZUrV9K4cWPTkYQQBqXV\ncsFcd77mBjzvcxFCCPEwbt5Mul6njm0LrMjISNq3b09ERAStW7dm0KBBpiMJZxUcDH36mE7hsJYt\nW/LBBx+QkJBAp06dCA8PNx1JCGEDKWrh7gxkJksIkSm0agU+PvDFF5Ajh+k0DuvRoweTJ0/Gx8eH\n0NBQaQog7u/SJWjWDCZPtu0HCgDx8fE888wzrF692vmbuwgh0lWatnBXSn2ulMqjlHJVSq1SSl1U\nSnVNfUwhhMhipk61vsbEmM2RCj/88AOTJ0/G3d2dOXPmSIEl/pm3N+zcaesCC8DFxYXp06dTtGhR\nNmzYwPvvv286khDCyaX0nKxntNbXgVbAcaAMMDC9QgkhRKaTOBOfLx989RXkzm02j4N2795N3759\nAZg4cSJVq1Y1nEg4vWx33mpER8MHH8DFi2bzOKhgwYLMnDkTFxcXRo8ezdy50v9LCPHPUlpkJR50\n0RKYrbWOSKc8QgiR+fz5J/j6wrFjppOkSkREBO3btycqKooePXrg7+9vOtLDCww0nSBNBNrxebz9\nNhw6ZOtlsr6+vnz++ecAdOvWjbCwMMOJhBDOKkV7spRSI4AXgUigNpAXWKS1zrCDXWRPlhDCtrS2\nZq8uXoRPPjGdxiFaa9q1a8e8efN48skn2bx5M+7u7qZjPTw5jNic69fB09P6GdiY1pr27dszd+5c\nqlSpwubNm8mZM6fpWEKIDJLSPVkpbnyhlHoEiNBaxyulcgJ5tNbnUpkzxaTIEkIIc8aMGcOAAQPw\n8vJix44d+Pj4mI7kGCmynMPhw3D2LDz1lOkkDomIiKBmzZocPnyYbt268cMPP5iOJITIIGna+OKO\nCkBHpdQrQHvgGUfDCSFElvDll5AJ9m1s3Ljx7hlYQUFB9i2whHM4cADq1wcbL7Xz8vJizpw5eHh4\nEBQUxOTJk01HEkI4mZQuF5wK+AC7gfg7N2ut9ZvpmO2vGWQmSwhhL9u3Q6dOsGQJlC9vOo1DLl68\nSLVq1Thz5gwDBgxg1KhRpiOljsxkmZeQAAcPQqVKppOk2o8//oi/vz9ubm5s3ryZatWqmY4khEhn\nabpcUCl1AKhkssqRIksIYUvR0eDmZjqFQ+Lj43n22WdZsWIFDRo0YM2aNfY/G0iKLOezaxfYuDjp\n2bMnkyZNonTp0uzYsUOONBAik0vr5YL7gMKpiySEEFlAbCyMGWMVV2DbAgvgP//5DytWrKBAgQLM\nnDnT/gUWwLBhphOkiWGZ5Hnw7rvw0ksQYd+mxf/73/+oVq0aR48exd/fP/MUv0KIVEnpTNYa4Elg\nGxCdeLvW+oX0i/a3DDKTJYRwfjdvwssvWzMmNt6PtXz5clq0aHH3erNmzQwnEpnSkiXW/iybz/4c\nPXqU6tWrExERwciRIxk0aJDpSEKIdJLWywUb3e92rfVaB7I5RIosIYRtaA1nzkDx4qaTOOTUqVNU\nq1aNy5cvM3z4cIYMGWI6ksgKoqKs/Vo2bYe+YMECWrdujYuLC6tWraJRo/u+dRJC2FyaLhe8U0wd\nB1zvXN8O7ExVQiGEyEyOHLEuYM1i2bTAiomJoWPHjly+fJnmzZvz4Ycfmo4ksoKjR60ZrSlTTCdx\n2AsvvMDgwYOJj4+nU6dOnD171nQkIYRBKSqylFI9gWDg2zs3FQPmp1coIYSwndBQqFcPNm82nSRV\nBg8ezObNmylevDg///wz2bI9zEkfQjgoMhL8/eH1100nSZX//ve/NGrUiHPnztG5c2fi4uJMRxJC\nGJLS5YK7gdrAVq11tTu3/a61fiKd892bQZYLCiGc2/btUK4ceHmZTuKQOXPm0L59e7Jnz866deuo\nV6+e6Ugiq0pIAJsW+OfOnaNatWqcO3eOwYMHM2LECNORhBBpKK27C0ZrrWPu+ebZAal4hBDi5Mmk\n67Vq2bbACgsLo1u3bgCMGjUq8xZYgYGmE6SJwEzyPO4rOBjq1oX4+Ac/1gkVLlyYmTNn4uLiwsiR\nI1mwYIHpSEIIA1I6k/U5cA14BXgD6APs11pn2GJ9mckSQjiduDioWhWeftpq227TT94jIyOpW7cu\ne/fupX379syaNQulHvghnT3JOVnOLT4eOneGQYOgZk3TaVLliy++YNCgQXh5ebFz505Kly5tOpIQ\nIg2kdXfBbEAA8AyggN+ASRlZ9UiRJYRwSlevwsyZ8NprppM4LCAggB9++IGyZcsSGhpKnjx5TEdK\nP1JkiQyitaZNmzb8+uuvVKtWjU2bNuHu7m46lhAildK0yLrzDQsAaK0vpjKbQ6TIEkI4jYQE69Bh\nGx80nCgoKIju3bvj7u7O1q1bqVKliulI6UuKLPuIjoYBA6BDB2jY0HQah1y7do2aNWty5MgRevTo\nwffff286khAildJkT5ayBCqlLgGHgENKqYtKqaFpFVQIIWxn/nxo0ACOHzedJFX27NlDnz59AJg4\ncWLmL7CEvUyaBOHh1pJcm8qbNy/BwcG4ubkxadIkpti4Rb0Q4uH860yWUqo/8CzQS2t97M5tpYGJ\nwDKt9dgMSYnMZAkhnIjW8NVXUKYMtGplOo1Drl+/Ts2aNQkLC6N79+5MnjzZdKSMITNZ9hEfb+1z\nzAT7AydPnkyPHj2yzoyxEJlYWnUXfBnonFhgAWitjwJdsZpgCCFE1qMUvP22bQssrTUBAQGEhYVR\npUoVxo0bZzpSxhk2zHSCNDEskzyPf+XiklRgHT4MNv53GhAQQLdu3YiKiqJdu3ZERESYjiSESGcP\nKrJctdaX/nrjnX1ZrukTSQghnFS7djB3rukUqfb1118THByMp6cnwcHBeHh4mI6UcTJJ6/NM3cL9\nr65fh0aNbD+jNX78eKpUqcLhw4fp3r175p+JFCKLe1CRFePgfUIIkfm8957Vqv3WLdNJHLZ582be\nffddwGp6UbZsWcOJhHiAPHlg927o29d0klTx8PBgzpw55MmTh7lz5zJ2bIbtuBBCGPCgPVnxwP3e\nTSjAXWudYbNZsidLCOEUtLbtJ+rnz5+nevXqhIeH8/bbb8ubPGFPixdDkyZg0xnYefPm0bZtW1xc\nXAgJCcHX19d0JCHEQ0iTPVlaaxetdZ77XDwzssASQghjwsKsNtLR0dbYpgVWXFwcHTt2JDw8HF9f\nXz7//HPTkYR4eJ99Bm++aXUdtKk2bdrw7rvvEh8fT4cOHTh//rzpSEKIdPCg5YJCCJG1FSwIR4/C\nf/9rOkmqvP/++6xdu5bChQsza9YsXF3lczJhQ23bwo4d4ONjOkmqfPrpp/j6+nL27Fm6dOlCfHy8\n6UhCiDSW7kWWUqqFUuqgUupPpdTg+9zfRSm1585lg1LqifTOJIQQKeblZTW7+PBD00kcNnv2bEaN\nGkX27NmZPXs2RYoUMR3JnEzSMCJLNb64V/nykDevdT0qyrZn1bm6ujJz5kwKFSrE6tWrs0a3SCGy\nmH/dk5Xqb65UNuBPoCkQDmwHOmmtD97zmLrAAa11hFKqBRCota57n+8le7KEEBlnzhyoVg1Klzad\nJFUOHDhArVq1uHXrFl999RVvvvmm6UhmyTlZmUN4ODz/vLU364svTKdx2Jo1a2jWrBkJCQksWrSI\nli1bmo4khHiAtDonK7VqA2Fa6xNa61hgBtD63gdorbdorRMPjNgCFEvnTEII8WAXL0K9erbe+3H9\n+nXatGnDrVu36Ny5M2+88YbpSEKkjXz54K23wOZ7Cxs3bsx/7yxFfvnllzlu05k5IcTfpXeRVQw4\ndc/4NP9eRPUAlqZrIiGESInXXoOtW6FoUdNJHKK1pnv37hw6dIjKlSvz/fffo2zatEOIv/HwgFde\nSWpEc+2a2TypMHjwYFq1asXVq1dp37490YlNdoQQtuY0jS+UUo2BbsDf9m0JIUSGiIuD5cuTxqVK\nGYuSWqNHj757Js+cOXPIlSuX6UhCpI9586BCBTh3znQSh2TLlo2ffvqJUqVKsWPHDt5++23TkYQQ\naSB7On//M0DJe8bF79yWjFKqCvAd0EJrffWfvtm9G339/Pzw8/NLq5xCCGEtDXztNQgIsHWjizVr\n1jB4sPV51U8//US5cuUMJxIiHZ0+DQsXQuHCppM4LF++fAQHB1O/fn2++eYbGjRoQNeuXU3HEkIA\nISEhhISEPPSfS+/GFy7AIazGF2eBbUBnrfWBex5TElgFvKy13vIv30saXwgh0t+VK3DyJDz5pOkk\nDjl9+jTVq1fn4sWLvP/++3z66aemIzmXwMBM0WEwMDAw63YYfJC4OMie3p8hp4/vvvuO3r174+Hh\nwebNm6latarpSEKIv0hp44t0LbLuBGkBfIW1NHGy1nqEUqo3oLXW3ymlvgfaAicABcRqrWvf5/tI\nkSWESB/HjkGRIuDubjpJqkRHR9OoUSO2bt1Ks2bNWLZsGS4uLqZjCZExYmKsZhi5c9u242DiXsop\nU6ZQqlQpQkNDyZ8/v+lYQoh7OE2RlVakyBJCpJuBAyEkxPZLjvr27cuECRMoWbIkO3bswNvb23Qk\nITJOWJg1SzlhgnW+nU1FRUXx1FNPERoaSrNmzVi6dCnZbTozJ0RmJEWWEEKklNYwZQp06mR1LbOh\nH374gYCAAHLkyMGGDRuoVauW6UhCCAedOnWKmjVrcuHCBd59912+sOnMnBCZkbOckyWEEM7ryhXr\nq1LQrZttC6wtW7bw+uuvAzBx4kQpsIQ4cgSaNoVLl0wncUiJEiWYPXs22bNnZ9SoUUyfPt10JCHE\nQ5IiSwiRNZ0+DRUrwvz5ppOkSnh4OG3btiUmJoZ+/frRvXt305GEMC8wENq2BRvvZ2rYsCFjx44F\nICAggN27dxtOJIR4GFJkCSGypuLFrT1YFy6YTuKwqKgo2rZty9mzZ/Hz82PMmDGmIzm/TNKRTzoL\nPsBPP0HfvkmHFdtU37598ff3JzIykjZt2nD58mXTkYQQKSR7soQQWUt0NLi5mU6RalprAgICCAoK\n4tFHH2X79u0UKFDAdCznp5S1B8/m7uwJMB3DHmbMgBs3oGdP00kcEhUVRcOGDdm+fTtNmzZl2bJl\n0ghDCINkT5YQQtzPO+9Yn3DHxppOkirjxo0jKCgIDw8P5s+fLwWWEPeze7d1sHjtv50MYxvu7u7M\nnTuXggULsmrVKt577z3TkYQQKSAzWUKIrCUiAt54Az791FoyaENr1qzh6aefJj4+nhkzZtCxY0fT\nkexDZrKynshI2za1udf69etp0qQJcXFx/PLLL3Tp0sV0JCGyJJnJEkKIeyW+IfXysvZr2LTAOn78\nOC+99BLx8fEMHjxYCiwhHiSxwIqKgiFDrKWDNvTUU0/x5ZdfAlYjjNDQUMOJhBD/RoosIUTmd/gw\n1KoFx46ZTpIqt27d4sUXX+Ty5cs8++yzfPLJJ6YjCWEfPXvCn3+Ci4vpJA7r06cPAQEBREVF0bp1\na86cOWM6khDiH0iRJYTI/Hx84NVXYfJk00kcltjoYs+ePZQtW5Zp06bhYuM3i8YMG2Y6QZoYlkme\nR4YaM8ZqgpEzp+kkDlNKMWHCBBo2bEh4eDgvvvgit2/fNh1LCHEfsidLCCFs4D//+Q9Dhw7F09OT\nrVu3UrFiRdORhLCvAwesWa3WrU0nccilS5eoXbs2x44do0OHDsyYMQNl83b1QtiF7MkSQoh+/WDm\nTNMpUm3WrFkMHToUpRTTpk2TAkuI1DhxAho1sprg2JS3tzcLFy7E09OTWbNmMXz4cNORhBB/ITNZ\nQojMa/dueOUVWL0avL1Np3HI9u3badiwIVFRUYwePZr+/fubjiSEvWkNR45AmTKmk6Ta4sWLef75\n59FaM2vWLF566SXTkYTI9FI6kyVFlhAic0tIgGz2nLQ/ffo0tWvX5uzZs/To0YPvvvtOlgQJkdaC\ng6FlS9u2eR8zZgwDBgzAw8OD9evXU6NGDdORhMjUZLmgECJr2rsXevWC6GhrbNMC69atW7zwwguc\nPXsWPz8/xo8fLwWWEGnt00+tw4ovXDCdxGHvvPMO3bt3JzIykhdeeIHw8HDTkYQQSJElhMhsypSB\nK1dg7FjTSRyWkJDAyy+/zK5duyhTpgzBwcHkyJHDdKzMITDQdII0EZhJnodx7dvDli3w6KOmkzhM\nKcXEiRN56qmnCA8Pp3Xr1tJxUAgnIMsFhRCZT0ICxMeDq6vpJA754IMP+Oyzz/Dy8mLLli1UqFDB\ndKTMQ6mkg6lt7M5yFdMxMpebN2HbNmjSxHQSh1y8eJHatWtz/PhxOnbsyLRp08hm05l8IZyZLBcU\nQmQdWkPfvnDwoDXOls22BdaPP/7IZ599houLC8HBwVJgCZERbt2Chg2t/Vk2VaBAgbsdB2fOnMmQ\nIUNMRxIiS5MiSwhhf0pBzZrQrh3ExZlO47BVq1bRo0cPAP73v//RrFkzw4mEyCJy5YKRI2H8eNNJ\nUqVy5crMmjULFxcXPv30UyZNmmQ6khBZliwXFEJkHrduWW+WbGjfvn00aNCA69evM2DAAEaNGmU6\nUuYkywVFSuzcCSVKQIECppM45LvvvqN37964uLiwePFimjdvbjqSEJmGLBcUQmR+S5fCvZ/U2rTA\nCg8P57nnnuP69eu0b9+ezz//3HQkIbKuVaugeXPYt890Eof16tWL9957j/j4eF566SX27NljOpIQ\nWY4UWUII+ypbFkaMgBUrTCdx2I0bN2jZsiWnTp2ifv36TJ06VTarp6dhw0wnSBPDMsnzcEoVK8KS\nJdC4sekkqfLJJ5/QqVOnu68xp0+fNh1JiCxFlgsKIezt6lXIm9daBmYzsbGxvPDCCyxbtoyyZcuy\nadMmvL29TccSQiTSGtatg0aNTCdxSHR0NE8//TTr16+nSpUqrF+/njx58piOJYStyXJBIUTmdPky\n9Otn7b8CyJfPlgWW1po+ffqwbNkyvL29Wbp0qRRYQjibfv3gnXcgMtJ0Eoe4ubkxb948ypUrx969\ne+nQoQOxsbGmYwmRJUiRJYSwlzx5rPNs3nrLdJJU+eyzz5g0aRLu7u4sXLgQHx8f05GEEH/VqhWE\nhICHh+kkDsufPz9Lly6lQIEC/Pbbb/Tu3VuapgiRAWS5oBDCfrSG69fBy8t0Eof88MMPBAQEoJQi\nODiYtm3bmo4khHiQy5fh8GGoU8d0Eods3bqVJk2acPv2bd577z0+++wz05GEsCVZLiiEyFw++AB2\n7bKuK2XbAmvBggX07NkTgK+++koKLCHs4OJF8PW1OpraVJ06dQgODsbFxYURI0bw5Zdfmo4kRKYm\nRZYQwh5q1IA2bZL2YtnQunXr6NixIwkJCQwZMoQ33njDdKSsJzDQdII0EZhJnodtPPIIfP657f/9\nPPvsswQFBQHwzjvv8MsvvxhOJETmJcsFhRD2cf26tSfLhvbs2UOjRo2IiIigd+/eTJw4EWXDhh22\nJ4cRi7Swfj1UqGDbw4pHjx7Nu+++S/bs2Vm4cCEtWrQwHUkI25DlgkII+5szB0aOTBrbtMA6evQo\nLVq0ICIignbt2jF+/HgpsISwq6VLoV07OHLEdBKHDRgwgIEDBxIXF0e7du3YunWr6UhCZDoykyWE\ncF7h4fD00zBhgm3PqTl37hy+vr4cOXKEJk2asGTJEtzc3EzHyrpkJkuk1tmz1h6tKlVMJ0kVrTXd\nunXjxx9/JH/+/GzYsIEKFSqYjiWE00vpTJYUWUII53b7NuTMaTqFQyIiIvDz82P37t1Ur16dNWvW\nyEGgpkmRJdJSQgJMngz+/uDqajrNQ4uNjaVNmzYsXryYEiVKsH79eh599FHTsYRwarJcUAhhT4cP\nQ8uWEBFhjW1aYN28eZOWLVuye/duypQpw9KlS6XAEiKzeecd+OkniIoyncQhrq6uzJo1i/r163Pq\n1CmaNm1KeHi46VhCZApSZAkhnEvp0tZl9GjTSRwWGRlJ69at2bhxI8WLF2f58uUULFjQdCwBMGyY\n6QRpYlgmeR6217MnLFsGnp6mkzgsZ86cLFmyhBo1anDkyBGaNWvGxYsXTccSwvZkuaAQwjlobS3l\nSrweHw/Zs5vN5IDo6GjatGnD0qVLKVy4MOvWraNs2bKmYwkh0lt4OEyfDv37J72W2cjly5fx8/Nj\n3759VK1alTVr1pAvXz7TsYRwOrJcUAhhH3Fx0KABbNxojZWyZYEVGxtL586dWbp0Kd7e3qxcuVIK\nLCGygthYaNYMYmJsWWAB5M+fnxUrVlCuXDn27NlDixYtuH79uulYQtiWzGQJIZzD8uXw1VewaJEt\n36TEx8fz8ssvM336dPLmzcuaNWt48sknTccSQmSUo0etpc42d+rUKRo2bMjx48d56qmnWLZsGTlt\nujdWiPQg3QWFEM4vIsI6++reZYI2LLASEhLo0aMHQUFBeHp6snLlSmrXrm06lhDClLlz4dw56NPH\ndBKHHD16lIYNG3LmzBmefvppFixYgLu7u+lYQjgFWS4ohHB+3brBRx8ltdS2aYHVr18/goKC7m4g\nlwJLiCzs5Eno1w/q1TOdxGGlS5dm5cqVFChQgBUrVtCmTRuibNpBUQhTpMgSQpjz3Xdw6hRE08p7\n3gAAIABJREFURppO4pCEhARef/11Jk6ciJubGwsWLMDX19d0LPFvAgNNJ0gTgZnkeWRKJUvC/v1Q\nrZo1tukqnAoVKrBy5Uq8vb1ZtmwZrVu3JtKmr9VCmCDLBYUQGev8eciRA2zetSo+Pp6ePXsSFBSE\nu7s7v/76K88884zpWOJB5DBikZHi460Z+1atoEMH02kcsm/fPpo0acLFixdp2rQpCxYskD1aIkuT\n5YJCCOf000/w9NNw5YrpJA6Lj4+nW7dud5cILl68WAosIcTfrV9v7c1q1cp0EodVrlyZkJAQChUq\nxKpVq2jZsiW3bt0yHUsIpyczWUKIjKU1jBkDL78MNjygNy4ujpdffpkZM2aQK1culixZQsOGDU3H\nEiklM1kioyUkQLY7n2nfuGHbg4sPHjxIkyZNOHv2LA0bNmTx4sXkzp3bdCwhMpx0FxRCOI/Dh629\nV40bm06SKrGxsXTp0oXg4GA8PT1ZunQpDRo0MB1LPAwpsoQpJ05Yr4Fz5iTt17KZsLAwGjduzJkz\nZ2jQoAFLly7F06ZFoxCOkuWCQgjnce6ctR8hNNR0EofFxMTQoUMHgoOD8fLyYvny5VJgCSFSbssW\n6NvXtgUWQNmyZVm7di0lSpRg48aNPPPMM1yx8dJvIdJTuhdZSqkWSqmDSqk/lVKD73N/eaXUJqVU\nlFKqf3rnEUIY4OsLCxZAhQqmkzjk5s2btGrVivnz55MvXz5WrlxJ3bp1TccSjhg2zHSCNDEskzyP\nLKVjRxgwIGm8bp3VGMNmfHx8WLt2LY8++ihbtmyhUaNGhIeHm44lhNNJ1+WCSqlswJ9AUyAc2A50\n0lofvOcx3sCjwIvAVa31mH/4XrJcUAg72bkTgoPhk09sef5VokuXLtGyZUu2bdtGwYIF+e2333jy\nySdNxxJC2FlwMLz5JmzdCiVKmE7jkNOnT9O8eXP279/PY489xvLlyylTpozpWEKkO2dZLlgbCNNa\nn9BaxwIzgNb3PkBrfUlrvQOIS+csQoiMVLo0LFsGM2aYTuKwU6dO8dRTT7Ft2zZKlSrFhg0bpMAS\nQqRe4cKwdKltCyyA4sWLs27dOmrXrs2xY8fw9fVlz549pmMJ4TTSu8gqBpy6Z3z6zm1CiMwqOtr6\nmjcvrF4NL71kNo+DDh48SIMGDTh48CCVK1dm48aNlC1b1nQsIURm4OsLVata12NjYehQuH7dbCYH\n5M+fn5UrV9K0aVPOnz9Po0aN2LBhg+lYQjgFaXwhhEg7u3ZBjRpJZ2DlzQvZs5vN5IDt27fj6+vL\nqVOnqF+/PuvWraNo0aKmYwkhMqPBg2HHDnB3N53EIZ6enixevJh27doRERHBM888w5IlS0zHEsK4\n9H73cwYoec+4+J3bHBIYGHj3up+fH35+fo5+KyFEeqhWDVq2tJYJduliOo1DVq1axYsvvsjNmzd5\n9tlnmT17Nrly5TIdSwiRWfXvD488AjlyWOO4ONt9OOXm5sbMmTN57bXXmDRpEq1bt2bSpEm8+uqr\npqMJkWohISGEhIQ89J9L78YXLsAhrMYXZ4FtQGet9YH7PHYYcFNrPfofvpc0vhDCGcXEWK3Z69c3\nnSTVfvzxR3r06EFcXBxdunRhypQpuLq6mo4l0lJgoHWxucDAwGQfPIpM4sgReP552LTJWglgM1pr\n3n//fUaOHAlY/06HDh2KsnHzIyH+ymkOI1ZKtQC+wlqaOFlrPUIp1RvQWuvvlFKFgFDAE0gAbgKV\ntNY3//J9pMgSwhkdPmwVWDNmQJMmptM4RGtNYGAgw4cPB6B///588cUXZMsmK6ozHTmMWDiz/v2h\nXDl47TXTSVJlwoQJvPHGGyQkJODv78+3335LjsSZOiFszmmKrLQiRZYQTmz1avDysvZj2Ux0dDQ9\ne/Zk6tSpZMuWja+//pq+ffuajiXSixRZwplpnfzIi/XrrSYZNpwJWrhwIZ06deL27ds0bdqUOXPm\n4OXlZTqWEKkmRZYQIv388QeMHw/jxoGNZ3uuXr1KmzZtWLt2Lbly5WLGjBm0atXKdCyRnqTIEnbx\nyy/w0Uewe7f1IZYNhYaG0qpVK86fP0/lypVZuHAhpUqVMh1LiFRxlnOyhBCZkY8P7NkDU6eaTuKw\ngwcPUqdOHdauXUuRIkVYt26dFFhCCOeRKxcsXGjbAgugZs2abNmyhYoVK7Jv3z5q1arF+vXrTccS\nIkPITJYQImXi4yE8POnwzGvXIHdu23XBAliyZAmdO3fm+vXrVKlShYULF1KyZMkH/0FhfzKTJewo\nKgr8/eHLL62DjG3m2rVrdOrUid9++w1XV1cmTJhAjx49TMcSwiEykyWESFsbNlh7Ay5csMY2PANL\na80XX3xBq1atuH79Ou3atWPTpk1SYGUlw4aZTpAmhmWS5yFSaMQI62uhQmZzOChv3rwsWrSI/v37\nExsbS8+ePXnrrbeIi4szHU2IdCMzWUKIlBsxAho3hjp1TCd5aJGRkfTq1Yuff/4ZgI8//piPPvpI\nOggKIZxfZKT11cPD+rp/P1SoYMs9sUFBQfTu3ZvY2FiaNWvG9OnT8fb2Nh1LiBSTxhdCiNRbtQr+\n/BNef910klQ5evQo7du3Z9euXeTKlYupU6fSpk0b07GEEOLhHTwIDRtCSAhUqmQ6jUM2btxI27Zt\nuXDhAiVLliQ4OJhatWqZjiVEishyQSFE6vn4wMcfW00ubGrhwoXUqFGDXbt24ePjw6ZNm6TAEkLY\n14ULMGaMbQssgAYNGrBjxw7q1KnDyZMn8fX15bvvvpN9hiJTkZksIURyZ89CjhyQP781Pn4cHn3U\ndue0xMfHM3ToUD799FMAXnjhBX788Ufy5s1rOJkQQqShQYPguefAz890kocWHR1N//79mTBhAgD+\n/v5MmDABj8RlkUI4IZnJEkI45ptv4JVXICHBGpcqZbsC69y5czRv3pxPP/2UbNmyMWLECObNmycF\nlhAic1m/HubNg+rVTSdxiJubG+PHj2fq1Kl4eHgwZcoU6taty8GDB01HEyLVpMgSQiRvaf3RR9aG\n6ps3zeVJhd9++42qVauyatUqChYsyMqVKxk8eLA0uBCWwEDTCdJEYCZ5HiKVfH1hyxbIk8ca//kn\n/P672UwO6Nq1K1u2bKFMmTLs3buXGjVqEBQUJMsHha3JckEhBHTqBH37wlNPmU7isJiYGD744ANG\njx4NQOPGjZk6dSrFihUznEw4FTknS2RWkZFQt67VqOi110yncciNGzd4/fXX+eWXXwDo0qULEydO\nJE9iESmEE5DlgkKIlOvaFQYPtu2bz7CwMOrXr8/o0aNxcXHhk08+YcWKFVJgCSGyDq2hTx/o3Tvp\ntuvXzeVxgKenJ1OnTmXKlCnkzJmTadOmUb16dbZt22Y6mhAPTWayhMiKbt+GCROgf/+kc1Zu34ac\nOc3mekhaa77//nv69+/PrVu3KFWqFNOmTaNevXqmowlnJTNZIquYNg0mTYLVq00nccihQ4fo1KkT\nu3fvxsXFhY8++ogPP/wQV1dX09FEFiczWUKIf5Yjh7VZeuzYpNtsVmCdOXOG5557jt69e3Pr1i06\nduzIrl27pMASQgiA+fNh1CjTKRxWvnx5Nm/ezDvvvENCQgIff/wx9erVY//+/aajCZEiMpMlRFZx\n6xYcPgxVq1rj48et2SubnbWitWbatGn069ePa9eukS9fPiZMmECnTp1MRxN2IDNZIiuKjISOHeHH\nHyFfPtNpHlpISAj+/v6cOHECNzc3PvvsM9566y1paCSMkJksIURyO3dCy5Zw9ao1LlXKdgXW2bNn\nad++PV27duXatWs899xz7Nu3TwoskXLDhplOkCaGZZLnITLI2LHWagUbFlgAfn5+7N27l+7du989\nW6thw4bS6l04NZnJEiIzi4gAd3dwc7PGo0dD69ZQpozZXA8pISGByZMnM3DgQCIiIsidOzdjx44l\nICAAZbMzvIQQIsNFR1uzWYlnBf7yC5QuDTZcXr1w4UJ69erFuXPnyJEjB0OGDGHQoEHkyJHDdDSR\nRaR0JkuKLCEys+7d4bHHYMgQ00kcdujQIXr16sW6desAePbZZ5k4cSKPPvqo4WRCCGFDp05Zhxev\nX2+diWhDV69eZeDAgUyePBmAypUrM2nSJOrUqWM4mcgKZLmgEFlVdHTS9cBA2LYNEhKMxXFUVFQU\n//nPf6hatSrr1q2jQIECTJs2jcWLF0uBJYQQjipSBBYsSCqwrl6FoCCzmR5Svnz5mDRpEqtWrcLH\nx4d9+/ZRr149+vbty9XEJfFCGCYzWUJkJjduwJNPwqZNUKiQ6TQOW7RoEW+99RZHjx4FwN/fn1Gj\nRpE/f37DyYQQIpN5/XXr68SJZnM46Pbt2wQGBjJmzBji4+Px9vZm5MiR+Pv7S2MMkS5kJkuIrEJr\niI21rnt6Qps2MHu22UwOOnLkCK1ateL555/n6NGjPP7446xevZqgoCApsIQQIj00awaffpo0njcP\nrlwxl+ch5cyZk88//5zdu3fTsGFDLl26REBAAA0aNGDnzp2m44ksTIosIezu66/h3XeTxiNHQr9+\n5vI4ICIigvfff59KlSqxePFi8uTJw9ixY9m1axeNGzc2HU9kJoGBphOkicBM8jyEE2jXLqnr4OHD\n0LMnxMSYzeSAypUrExISwi+//ELhwoXZsmULNWvWpHv37oSHh5uOJ7IgWS4ohB3dvp10ePClS9Cg\nAYSGWjNZNhIbG8u3337Lxx9/zKVLlwB49dVXGTFiBIULFzacTmRKck6WEP/syBHruI+XXrLGJ0/C\n3r3QqpXZXA/p+vXrfPzxx3z99dfExcWRM2dOBg4cyMCBA8mVK5fpeMLmpLugEJlVTAyUKwerVoGP\nj3VbXBxkz24210PQWjN//nwGDx5MWFgYAL6+vowaNUq6Q4n0JUWWECnXpYt15Mfw4aaTOCQsLIz3\n3nuPuXPnAlCkSBGGDx+Ov78/2W30O1M4F9mTJURmEh0NFy9a13PkgB49YP78pPtt8stCa83y5cup\nV68ebdu2JSwsjHLlyjFv3jzWrVsnBZYQQjgLraFRIxg0KOm2MWPg9GlzmR5S2bJlmTNnDuvWraNW\nrVqcPXuWnj17UqlSJaZPn06CDTvvCvuQmSwh7GDsWNi+HaZNs8YJCWCzrkkhISEMGTKEDRs2AFCg\nQAGGDRtGr169cHV1NZxOZBkykyWEY/bsgebNISzMdkvTwTrUfubMmQwdOpTDhw8D1j6u4cOH8+KL\nL8rB9iLFZCZLCDuLiYGlS5PGPXrAhQsQFWWNbVJgaa0JCQmhadOmNG7cmA0bNvDII48wYsQIjh07\nRt++faXAEkIIOyhWDGbNSiqwQkPhjTfMZnoI2bJlo3Pnzuzfv59JkyZRsmRJ9u3bR9u2balRowaz\nZ88mPj7edEyRidjjnZoQWU1cHHTvbn1yCNYvtZUrwd3dbK4USkhIYMGCBdSvX5/GjRuzevVqvLy8\nGD58OMeOHWPw4MGy+ViYMWyY6QRpYlgmeR7CRry9oWHDpPHIkVC2bNL41q2Mz+QAV1dXAgIC+PPP\nPxk3bhyFCxdm165ddOjQgYoVKzJp0iSio6NNxxSZgCwXFMJZjB0LdetCvXrWePp0ePRRqF/fbK6H\nEBMTw6xZsxgxYgR//PEHAPnz5+fNN9/kjTfeIF9im2AhhBD2dvYseHkldbpt3hz69IHWrc3mekiR\nkZFMmTKFL774gmPHjgFQtGhRBgwYQK9evcidO7fhhMLZSHdBIewgKippdmriRFi2DH791WwmB5w/\nf55vv/2WiRMncu7cOQCKFy/OgAED6Nmzp8xaCSFEZnb+PDz9tLWEMEcOa9/jL79Ax45gkyXhcXFx\ndz8k/P333wHIly8fPXr0oE+fPpQqVcpsQOE0pMgSwtmtXWsdjLpmjTWOjIR9+6BWLaOxHkZoaChf\nf/01M2fOJObO4ZWVK1fmnXfeoWvXruTIkcNwQiGEEBni3oZM69ZBr16wf79t9hAn0lqzePFiPvvs\nMzZt2gRYb6qff/55+vXrR7NmzaRJRhYnRZYQziY6Gr7+Gt591+pwFhsLlStb510VL246XYrdvn2b\nuXPnMmHCBDZv3gxYLzitW7fmzTffxM/PT34BCSFEVrZpk3XsSOLSwV9/hV27rA8WbWTbtm3873//\nY9asWXc/SCxfvjx9+/bllVdewcvLy3BCYYIUWUI4g9hYa9lE4vKJKlXgq6+gSRPr/vh4cHExmzEF\ntNaEhoYyefJkpk+fzvXr1wHImzfv3aUUjz32mOGUQgghnNLTT1vNnDp3tsYbNkDJktbFBs6fP8+k\nSZOYOHEiZ86cAcDDw4O2bdvSrVs3GjduTDabzdgJx0mRJYQz6NQJWrWCrl2t8cqVULiwNYNlAxcv\nXuTnn3/mhx9+YN++fXdvr1OnDt27d+f//u//ZL+VsJfAQNt9mn4/gYGBBGaC5yGyiPPnrSYZ7u7W\nB45PPAHjxoGfn3W/TT5wjI2NZcGCBYwbN46QkJC7t5csWZJXX30Vf39/SpcubS6gyBBSZAlhwtKl\ncO4cdOtmjWfMsJYDfv+92VwP4dq1a8yfP58ZM2awcuXKu+eGFChQgFdeeYVu3brx+OOPG04phIPk\nMGIhzLp9G4YOhS++SFo6X7Ys7NgB+fObTpdiR48e5aeffmLKlCmcOHHi7u0NGzakU6dOtG3blkKF\nChlMKNKLFFlCZIRLl2D7dnj2WWu8fj289prVwEIpayOwUtbFid24cYMFCxYwc+ZMfvvtt7trz11c\nXGjRogUBAQG0bNlSGlkI+5MiSwjnsmmTtVf5TpMJLl+GIUNgwgSzuVIoISGBtWvXEhQURHBwMJGR\nkYB1+HGjRo146aWXpODKZKTIEiI9aA0nTkBiK9cTJ6BmTeu8kOzZraJq5Upr/bmTF1Znz55l0aJF\nLFy4kBUrVhAVFQVYvxj8/Pzo2LEjbdu2xdvb23BSIdKQFFlCOJ97jzP5/nvr9+jMmdY4LAyOHIEW\nLczlS6Hr16/z66+/Mnv27GQfWCYWXG3atKFVq1ayh9nmpMgSIq3cugUeHlYb2shIa0/V0aNJyxo+\n+gjefhucvBjRWrN7924WLlzIwoULCQ0NTXa/r68vnTp1ol27dhQuXNhQSiHSmRRZQji348et37UV\nK1rjoUOtIuzzz61xWJhVkJUoYSxiSly7do0FCxbcLbhiY2Pv3lepUiVatmxJq1atqF+/PtmzZzeY\nVDwsKbKEcJTW1oxU4ibcJ56An36CatWsce/e8Mor0KCBuYwpFB4ezqpVq1i5ciUrV64kPDz87n0e\nHh40a9aM559/npYtW1K0aFGDSYXIIFJkCWEv06ZBpUrw5JPW+NVXoXZt6NvXGh86BEWKQJ485jI+\nQGLBtWjRIn777be7HXrB6tLbvHlzmjVrRpMmTaRxhg1IkSVESmltbbxN3G/UtSu8+CK0b2+N337b\nKrQCAsxlTKErV66wYcOGu4XV/v37k91fpEgRWrVqxfPPP0/Tpk3JmTOnoaRCGCLdBYWwtz594L33\nktq/P/WUtaKkeXNr/Mcf4OOTtPzQycTExLBhwwYWL17MokWL+PPPP5PdX6pUKZo0aULTpk1p3Lgx\nRYoUMZRU/BMpsoT4JzExcPMmPPKINR482FrqN3CgNR492uoQ+MUX1vjeU+ydiNaaY8eOsWHDBjZu\n3MiGDRv+VlTlypWLRo0a0axZM5o1a0blypXloGAhhBCZQ0ICPPcczJ0LOXNaH5oWL241oUqcEVq1\nylp54qRFV1hYGMuXL2fVqlWsWbOGa9euJbu/bNmy1K9f/+6lUqVKciaXYVJkCZHo8mXrjI5Klazx\n11/D/v3wzTfWeM4cCA6G6dOtcUwMuLo6XeOKy5cvs2PHDkJDQwkNDWXz5s2cO3cu2WPc3NyoVasW\nTZo0oVmzZtSpU0c6AgohhMgaIiKgQwdYtsz6HX77NhQoYHUC9vCwirL//Q/eeMMpPzyNj49n9+7d\nrF69mtWrV7Nu3Tpu376d7DFeXl7Uq1ePunXrUr16dapXr07RokXlA9QMJEWWyLqOHIGNG619UwCL\nFsH48dYZVmC1XP/kE5g/3xrHx1svtk7yAqW15uTJk+zbt4/ff//9bmF1/Pjxvz3W29ubBg0a0KBB\nA3x9falevTpubm4ZH1oIIYRwNidPWqtTvvrKGoeFWd1/E3+fXr0KH36Y1C4+8X2mk7wfiI2NZe/e\nvWzcuJFNmzaxadMmTp069bfHFShQ4G7BVa1aNapXr07p0qWl8EonUmSJzCsuDs6cgUcftcaHDsGI\nERAUZI337oWOHeHAAWt85ox1BkfiTJWT0Fpz4cIF9u3bl+zyxx9/cOPGjb89PmfOnFSrVo2aNWtS\ns2ZNatWqRbly5eRFVAghhEiJI0dgxQrrPEuwWsUPHw7r1lnjHTugf39Yu9YaX70Kx45B9epm8t7H\nqVOn2LRpE6GhoezcuZOdO3f+bYkhgKenJxUrVqRixYpUqlTp7tdSpUrhktjYSzhEiixhb/HxSd39\nrl+3PmV67z1rfPIk1K0LiZ3yrl61NsBGRFgzUrGxMGYMDBpk/NMorTWXLl0iLCyMw4cPExYWdvdy\n+PDhZB2G7lWwYEEqV65M5cqVqV69OjVr1qRChQrywiiEEEKklTNnrFmtxG7BP/0Ev/0Gv/xijefP\nh0mTrBUxAFu3WgXYoEHW+NYt6/2Kwc6GWmtOnDhxt+BKvJw/f/6+j3d3d6d8+fJUqFABHx8ffHx8\nKF26ND4+PhQrVkz2e6WAFFnCud28CblzW9fj4mDUqKQiKjISChZMKpqio8HLyyq2cuSw1lRXrWot\n+0vcyLp9O9SokeFrrGNjYzlz5gynTp3i5MmTd78mXj9x4gQRERH/+Oe9vLx4/PHH7xZUlStX5vHH\nH6dgwYIZ+CyEyEKku6AQ4p9obe3jypXLGv/6K5w6Bf36WePx4+H335P2dAcFwerVMHWqNV63Dk6c\ngJdftsZXr1pf8+XLuOdwx4ULFzhw4AAHDhxg//79d7/ee5TLX+XIkYPHHnuM0qVL89hjj1GiRAmK\nFy9O8eLFKVasGMWKFZOuxDhRkaWUagF8CWQDJmutR97nMV8DzwK3AH+t9e77PEaKLDtZv96abXJ1\ntcY9elgvTm5u1otYrlxw4YJVaGltFVEnTiS9EBUpArt2WQf/AowbB/7+SYVZOtJac+PGDc6dO8f5\n8+eTXe697fTp04SHhz/wrJo8efJQtmxZypQpQ9myZZNd9/b2luV+QmQkOSdLCOGosDDrYOQnnrDG\nX35pNctKnNn65BO4ccPawgDWfrDTp2HsWGs8c6b1gXHPntb4jz+smbAqVaxxBnQzjoiI4MCBAxw6\ndIijR4/evRw5cuQfZ7/u9cgjj1CsWLG7xVeRIkUoWLAgBQsWpECBAnevP/LII5l2ViylRVa6HjGt\nlMoGjAOaAuHAdqXUr1rrg/c85lnAR2tdVilVB/gGqJueuUQKhIdbHXkSi6R586zNoolFzsCBhDRs\niN/zz1vjChVgzRqrOALo1MmaVi9e3BqvWAFnz0KpUtabnDJl4OJF6/spBR9/bL24JDp1Cu49AT3x\nU6QU0loTExPDjRs3uHHjBteuXePKlStcuXKFq1ev3r1+v/GlS5eIiopK0d+jlKJYsWKULFmSEiVK\n3PdrRhVSISEh+Pn5pfvfI1JOfibOJwTwM5xBJJH/R5yP/Ez+Rdmyycdvv5183Lx58vcusbHW+6NE\nO3dC3rxJ4+nTrQ+fE4usYcOs8UcfWeOffgI3N0IKFbJ+Jlu2WCt6EveInTtnjROPpEkBLy8v6tat\nS926f3+rfevWLY4dO8aRI0c4duwYZ86c4fTp05w+ffru9cT3Sr///vu//j3ZsmXD29s7WdGVN29e\n8uXL98CvmaUrcroWWUBtIExrfQJAKTUDaA0cvOcxrYGfALTWW5VSXkqpQlrrB5fTWclfO96cP2/N\n+iT+Q9y71ypcEqdxf/0V/PysGSKwluO98oq1DA+sTZ8ffZRUBDVtaq07fuwxa9yoESxeDOXKWeP3\n3oOKFZNeLBYtIuT27aQiK3t2q2hKLLKaN7deXBKNH3/3hUVrTfzOnURGRhJ18SKRkZFEPvccUadP\nExkWZt0eFZXs673Xb926dbd4unnz5t3rfx3HxcU5/J87Z86cFCpUiMKFC1OoUKG/XS9UqBDFixen\naNGiuCYWoobJL0bnIz8T5xOCFFnORP4fcT7yM0mFmjWTjxO3QSQKCEh63wbW+7Z7Dxu+dg3Kl08a\nb98OZcoQcuCA9TOZORNKlEgqskaOtMb9+yf9fcWLJ1/eWKgQtG9vjefPh/z5rQOcATZssN4n3pmZ\ny3X6NJXz5qVy69bW/ZcvW3k9PQFIiI3l0pUrnL6n+Dp37hwXL17kwoULdy8XL17k6tWrd8cPy83N\njdy5cye75MqV62+33Xtfzpw5cXd3/9eLm5tbsuvpPdOW3kVWMeDeXpOnsQqvf3vMmTu3/a3I2rp6\nNeTKZS2R2LUL7eMDnp7WODQUXbYs5MljjbdsQVesmDTeuBH9+OPg5WWN169HP/FE0jgkBF21KuTN\na41XrUJXqwb58lnj5cvRNWqg7yxn04sWQb16SePgYGjUCJ0/vzX++Wd45hm0t7c1njwZWrZE3yly\n9Pjx0KYN+s5yOD12LLz0ErpoUWs8fDh064YuVswaDxwIffuiS5ZEa40eNIiE118nvlgxEhISiB8y\nhIRu3UgoVoz4+HgSPvmE+P/7PxKKFLHGY8aQcOIE8YUKWY+fP5+E+HgSCha07t+3z/oeBQpY98fE\nkDBkCPF581pjd3fiPviAWDc3YmNjifX0ZP/SpWx8+mliYmKIzZWL2IAA6747l5jGjZON794eE+Po\nv6eH4urqiqenJ7lz5yZfvnzky5ePRx55hEceeeRfr3t7e5M7A5YlCiGEECILSfzgOpEXwMZkAAAL\nR0lEQVS/f/Lx118nX9XTq5dV4EyZYo1r1bIafSXKkwfuvE8ErKIo8RBmsD6Av7cz4rJl1p72xCLr\nl1+sAuve5Y9PPAF9+ljjIUPg8cehb18Asr35JgWfeIKCffpQvXp1q3NzpUpWh0awViWVLw+dOhET\nE8OlTz7hQt68XKxcmStXrnBtwQKuubtztUABrl27xtVdu7iWkMBVpazxuXNcu32b6OhooqOjuXz5\ncor/0zoih6sr7m5uuLq54erqiqvW5HB3x9XDwxrHxVnj3LmtcXQ0OTw8Uvz907vISlN1mzY1HSG5\n8eOTjxNbiCeaOTP5eMGC5OOVK5OPN2xIPk78ZCLR4MHJxx9+mHz83/8mH48alXw8blzy8aRJyceJ\n3XQSnTyZfLx3L391+Nixv92WEtmyZcPDwwN3d3c8PDySXf+329zd3cmVKxeenp53L7lz5042TrxN\nzosSQgghhG0oldRZGZKKn0RduiQff/xx8vFf3+e9807yzodt2iSfOatfP2kFE4CPj7WtI1Hu3NbM\nV6L4+KRtJGDNvMXHJ41PnYI7kwU5cuSg6JkzFC1e3NpuAtb73lq1rOIRrL1pfxnrmjWJeuUVbt26\nxc033uBmuXLcfPZZbt68yc3PP+dWiRLcrF3bGk+bxs38+bnp42OteFq/nihPT6IKFyYqKoqo/fuJ\ncnMjKlcua3zhAlFAVEIC0dHRxMTGEhMbazVjSwfp2vhCKVUXCNRat7gzfg/Q9za/UEp9A6zRWs+8\nMz4INPrrckGllOzwFUIIIYQQQhhlvPEFsB0oo5R6FDgLdAI6/+UxC4C+wMw7Rdm1++3HSsmTEUII\nIYQQQgjT0rXI0lrHK6X6ActJauF+QCnV27pbf6e1XqKUek4pdRirhXu39MwkhBBCCCGEEOnJNocR\nCyGEEEIIIYQd2PKUMKXUAKVUglIq5QcDiHShlBqulNqjlNqllFqmlCpsOlNWppT6XCl1QCm1Wyk1\nRymV58F/SqQnpVR7pdQ+pVS8Uqr6g/+ESA9KqRZKqYNKqT+VUoMf/CdEelJKTVZKnVdK/b2jkjBC\nKVVcKbVaKfWHUup3pdSbpjNlZUopN6XU1jvvr35XSg0znUlYlFLZlFI7lVIL/u1xtiuylFLFgaeB\nE6azCAA+11pX1VpXAxYD8iJg1nLgca31k0AY8L7hPAJ+B9oAa00HyaqUUtmAcUBz4HGgs1Kqwr//\nKZHOgrB+HsJ5xAH9tdaPA/WAvvL/iTla62ig8Z33V08Czyql/noMkjDjLWD/gx5kuyILGAsMNB1C\nWLTW9/a9zAUk/NNjRfrTWq/UWif+DLYAxU3mEaC1PqS1DgOkeY85tYEwrfUJrXUsMANobThTlqa1\n3gBcNZ1DJNFan9Na775z/SZwAOvcUmGI1vr2natuWH0UZI+PYXcme54DJj3osbYqspRSLwCntNa/\nm84ikiil/quUOgl0AYaaziPu6g4sNR1CCCfw10PvTyNvHoX4R0qpUlizJ1vNJsna7ixL2wWcA1Zo\nrbebziTuTvY8sOB1usOIlVIrgEL33oT1RD4CPsBaKnjvfSKd/cvP5EOt9UKt9UfAR3f2ObwBBGZ8\nyqzjQT+PO4/5EIjVWk8zEDHLScnPRAgh7EAplRsIBt76y2oVkcHurEypdmd/9XylVCWt9QOXqYn0\noZRqCZzXWu9WSvnxgDrE6YosrfXT97tdKVUZKAXsUUoprGVQO5RStbXWFzIwYpbzTz+T+5gGLEGK\nrHT1oJ+HUsofayq7SYYEEg/z/4gw4wxQ8p5x8Tu3CSHuoZTKjlVgTdVa/2o6j7Bora8rpdYALUjB\nXiCRbhoALyilngM84P/bu/9Qu+s6juPP16bToW1GVtrcVraNqBZOS5eVqUmIlA0imBmO0iJcMRLp\nj6AiKdJBVA6mRKxfpEuTWEk0tRmM5nRt7ldr+yfTJIYRTtDZr+3dH9/PtePp3nUvO+zcsecDLpzv\n53O+n8/7ey73x/u8P9/P4RVJflhV14325ONmuWBV7a6qs6rq3Kp6A91yj0UmWMOVZF7P4RK6Ndwa\nkiRX0pWxr243zWpysfo+HFuAeUnmJpkGLAWOuCuUjongz8RkswbYU1XfHnYgJ7okZyaZ2R5Pp1vJ\ntXe4UZ3YquoLVTWnqs6l+zuyYawEC46jJGsUhb+cJ4Nbk+xMsh24gm7HFQ3PKuB04MG2vejqYQd0\nokuyJMmfgcXA/Um8T+4Yq6pDwGfodt/8PbC2qnxDaIiS3AVsAhYkeSrJx4cd04kuybuAa4HL27bh\n29obdxqOs4GH2/9XjwLrq+qXQ45JE+CHEUuSJEnSAB3PlSxJkiRJmnRMsiRJkiRpgEyyJEmSJGmA\nTLIkSZIkaYBMsiRJkiRpgEyyJEmSJGmATLIkSROS5FD7DJ1dSdYlmTGgcecm2TWIsXrGvCTJpr62\nqUn2JzlrAuN8MMnn/89zvpzkplHaJ3RdSc5J8sckZ7TjV7bjOeMdQ5I0XCZZkqSJeqGqzq+qhcCz\nwPIBjj3oD2/cCMxKMrun7Qpgd1XtH88ASaZW1S+qauVRxDHu66qqp4HVwG2t6Vbgzqp66ijmlyQd\nQyZZkqSj8QgwCyDJaUkeSvK7JDuSXN3a5ybZk+Q7SXYn+VWSU1rfBUm2J3mcnmQtySlJ1iTZmWRr\nkktb+7IkP0vyQKvuLE/yuVZZ2zRS/RlRVQXcAyztaV4K3N3GuyHJY0keT3JvklNb+/eS3JHkEeC2\nNu+q1veBJJtbXA8keXXP2Oe1OPYluaH/xUoyJcnKJI+26/7kGK/rt4CLkqwALga+Ma7vhiRpUjDJ\nkiRNVKCr8ADvA37e2l8EllTV24HLeXliMA9YVVVvBZ4DPtza1wDLq2pR3xzLgcNV9Tbgo8APkkxr\nfW8BlgAXAl8Dnq+q84HNwHWjxLsWuKbFPA24Criv9d1XVRe2+fcC1/ecN6uq3llVN7fjkWrUxqpa\nXFUXAD8BepcRLgQupUuMvjTKksTrgQNVdVGL/1NJ5vYHXFX/buN+E1hRVYdGuS5J0iR10rADkCQd\nd6Yn2QacA+wBHmztU4CvJ7kEOAy8LslrWt8TVTVyX9JW4PVJZgIzq+q3rf1HwJXt8buB2wGqal+S\nPwELWt/DVXUQOJjkAHB/a99Fl+S8TFVtbVW2+cCbgc1VdaB1L0zyVeAM4DRgfc+p945x/bOT3AOc\nDZwMPNHTt66q/gn8LckGukRqR0//+9ucH2nHM4D5wJOjzHMV8Jd2TRvGiEWSNAlZyZIkTdTBVjma\nQ1fVGlnmdy1wJrCoVYaeAU5tff/oOf8Q/32TL+Ocs/d5vWNVz/Fhxn7z8G66atZLSwWb7wM3torZ\nLT3xArwwxlirgNvbOZ/uO6f33qvwv/diBfhsVS1qX2+sqof6J0hyHl2VcDFwU5LXjhGLJGkSMsmS\nJE1UAKrq78AK4OYkU4CZwDNVdTjJZcDc/nN6VdVzwLNJLm5NH+vp3kiXtJFkATAb2HcUMa9t418G\nrOtpPx3Yn+TkkfnGYQZdhQlgWV/fh5JMS/Iq4L3Alr7+9cCNSU4CSDI/yfRR5lhNt0zwaWAl3pMl\nSccVkyxJ0kS9VJ2pqu10y+GuAX4MvCPJDrqE5g+jndPnE8Dqtvyw9zmrgalJdtJVnpZV1b+OFMsR\nA67aCzwP/LqqXuzp+iLwGF1SN554Ab4C/DTJFuCvfX07gd8Am4BbRtnB8Lt0Syy3tW3d76Sv+tY2\nw3iyqkaWCN4BvCnJe454kZKkSSPdxkuSJEmSpEGwkiVJkiRJA2SSJUmSJEkDZJIlSZIkSQNkkiVJ\nkiRJA2SSJUmSJEkDZJIlSZIkSQNkkiVJkiRJA2SSJUmSJEkD9B9UDEYZBdmbmAAAAABJRU5ErkJg\ngg==\n", "text/plain": [ "<matplotlib.figure.Figure at 0x7f7b85c4ac50>" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "muH0, muHA = 0, 0.5\n", "sigma = 1\n", "\n", "fig, ax1 = plt.subplots(figsize=(12,5))\n", "x = np.linspace(-4, 4, 500)\n", "\n", "ax1.plot(x, stats.norm.pdf(x, loc=muH0, scale=sigma), color='red', \n", " linestyle='dotted', linewidth=2, label='Distn under $H_0$')\n", "ax1.plot(x, stats.norm.pdf(x, loc=muHA, scale=sigma), color='black', \n", " linewidth=2, label='True Distn, $H_A$')\n", "\n", "offset = 0.2\n", "ax1.text(muH0 - offset, 0.45, \"$\\mu_{H_0}$\", \n", " horizontalalignment='center', color='red', fontsize=18)\n", "ax1.text(muHA + offset, 0.45, \"$\\mu_{H_A}$\", \n", " horizontalalignment='center', color='black', fontsize=18)\n", "\n", "ax1.set_ylim(0, 0.5)\n", "ax1.vlines(muH0,0,0.5,color='red', linestyle='dashed')\n", "ax1.vlines(muHA,0,0.5,color='black', linestyle='dashed')\n", "ax1.legend(loc='best')\n", "ax1.set_xlabel(\"Random Variable X\")\n", "ax1.set_ylabel(\"Density\")\n", "ax1.set_title(\"Population Distributions\\nfor the Null and True Distributions\",fontsize=18)\n", "fig.tight_layout()\n", "#fig.savefig(\"fig-H0distn-vs-TrueDistn.pdf\")\n", "pass" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "#### Sampling distributions of the mean\n", "\n", "Now imagine taking samples of size n=10, n=25, and n=50. What will happen to the **sampling distributions of the mean**? We've encountered this repeatedly before -- the sampling distribution of the mean should be centered around the true population mean, and should have standard deviations given by $\\frac{\\sigma}{\\sqrt{n}}$ (remember that the standard deviation of a sampling distribution is called a \"standard error\").\n", "\n", "Here is what the expected sampling distributions of the mean look like for the null and true distributions with samples of size 10, 25, and 50." ] }, { "cell_type": "code", "execution_count": 5, "metadata": { "collapsed": false }, "outputs": [ { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAskAAANdCAYAAABmteEMAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzs3Xl4Tdf6wPHvGyGkMiCkgkpQaq5qa74EddFLa6jidqBt\ndKDVSbU1BK1eSemE9rbaqjFKqzW0xa8lxlJR9JZWippiJpIYItP6/bFPjpMjkYQkJ8P7eZ7zyN57\nnbXevW3He1bWXkuMMSillFJKKaWucHN1AEoppZRSShU2miQrpZRSSinlRJNkpZRSSimlnGiSrJRS\nSimllBNNkpVSSimllHKiSbJSSimllFJONElWShVJIhIqInNsP9cQkXgRERfFMlBEVuRhfb+LyD9s\nP9vPM4/qfk1EPsmr+m6UiFQRkXUiEicib+fwPX+LSMf8jk0pVbJpkqyUyhURaSsiG0XknIicFpH1\nItLcReEYAGPMYWOMt8mHid9FZKaIXLYlcXEi8puIvCUi3vYgjJlvjOmaw7omZFfOGNPIGLPOcdd1\nxt5eRA471f0fY8yQ66kvnwwBThpjfIwxI5wP5vSaXS8RSROR4yLi5rDPXUROikhqfrWrlCr8NElW\nSuWYiHgBy4D3gQpANWA8cNmVcRWAMGOMD1AZGAy0BDaKSLm8bERESuVlfYBwnQl2AaoJ7HZxDLFA\nN4ftbsBZF8WilCokNElWSuVGXcAYYxYay2VjzI/GmN8BRKSWiPxk62E+KSJzHXtcbb8mf1lEdopI\ngojMsP26/XvbcIlVIuJjK1vT1ssXIiIxttdLmQXlUNbNtr1GRCaIyAZbvStEpKJD+UdE5ICInBKR\n0Tn99b0xJskYsw3oCVTCSpgRkUdFZL1D/e+KyAlbz/NOEWkgIiHAv4FXbDEtcbgmr4jITuC8iJTK\nJJ5yIrLA9r4oEWni0FaaiNRy2J5pO3dP4HsgwHat40XkZufhGyLS0za846yIrBaR25z+vl6ynUOs\niESISBnbsUoissy2/4yIrM3quolIaxH5xVZ2i4i0So8VeBQYaYuvo9P7Mr1mNs0yi8v2vn+JyHbb\nsQ0i0jir2Gzm2OJI9wgwyykWbxH5VESOishhEXlDxBrek8P7PtPrqJQqvDRJVkrlRjSQKiJfiEhX\nEfF1Oi7AW8DNQH2gOjDOqUxvoBNWwt0TK5F7FfADSgHPOZXvANQG/omVTGWVzDr3mA7ASnwqAx7A\nywAi0gCYbjteFfABAq5xzlc3ZMx54P+Ads7ti0gXoC1Qx9b73A84Y4yZAcwDwm1DQ+5zeG9/rN5L\nX2NMZr/i7wl8idV7HwF8K1d6nTPtKTbGXLTVedQY42Vr87hTrHWB+VjXvDLwA7BMRNwdqnoA6AIE\nAU2BQbb9LwGHsb4sVAFezywOEakALAfes5V9F/hORCoYYwbbrkmYLb7VTudwrWuWaVwi0gz4DAgB\nKgIfA0tFpHRm8dmuxbfAP2yJsC/W398Sp3KzgCSgFtAMuAd4Iv00yf6+z+o6KqUKKU2SlVI5ZoxJ\nwEog0oBPgJMiskREKtuO7zPG/GSMSTHGnMFKiNo7VTPVGHPaGHMMWA9sMcb8ZoxJAr7BSkAcjTPG\nJNp6q2diJbc5MdMWz2VgIXC7bX8fYKkx5mdjTAowNjfXwMFRrCTMWTLgBTQQETHG7DHGnMimrveN\nMUdtsWZmmzHmG1sC/Q5QFmvIB1gJ2vXqByw3xqy21T0ZKAe0dorthDHmHNZQm/TrmIz1JSPIGJNq\njNmYRRv3AtG2cdtpxpgFwJ9AjxuI+1pxhQD/NcZE2X7bMQdrOFDLrCoCEoGlWF9WHrT9bP+7EBF/\nrC8cL9juxdNYSf8AyPF9n1W8SqlCSpNkpVSu2JK+x4wxtwCNsHph3wP7TAURInJERM4Bc7F6iB05\nJoyXMtku79gccMRh+yA57/U97vDzRYd6A7B6QNPP5xJwJod1OqpGJuNWjTFrgGlYvdUnROS/IlLe\nuZyTI9kcd4w3/Zrkqvc7CwFY19Sx7sNY55bO8e/H8Tq+DewDVonIXhEZmZM2bA46tXE9soqrJvCS\nbfjIWRGJxerZzep6pX/JmIM1zOJhYLZTmVuA0sAxhzr/i+3evo773jFepVQhpUmyUuq6GWOigS+w\nkmWA/2D1Mjc0xvgCD3FjPZ0C1HDYvgWrB/dGHMNKmqwGrIfvKuUqKCvp7Qysy+y4MWaaMeZOoAFQ\nD0iftSGrh+iye7jOfg1s42CrAzG2XRcBT4eyN+ei3qNYSaVzW9kl7RhjzhtjXjbG1MYaDvKiiARn\n0Uag075buBJ/tk3lsFy6w8BEY0xF26uCMaa8MebLazZizHqsnvEqmfSKH8bqba7kUKevMSZ9bPhb\n5O19r5QqBDRJVkrlmIjUE5EXRaSabbsG1q+cf7YVKQ+cBxJsZa6a0us6jBGRciLSEOtBuQVZhZfD\n+r4CeohIS9s41XE5DUREyog13d03WL3PX2RS5k4Ruds2rvcSVnKVZjt8AmtMa241F5H7beOQX7DV\nucV2bDswUETcRKQrGX/NfwKo5PgQmZOFwL0iEizWtGcv2+r+OYvydiJyr4jUtm0mAClcOU9H3wO3\nikh/sR5KfBBr3O7y7NpwOIfcXLMZwFMicrctzptEpLuI3JSD9/4LcBz3LAC2sdyrgHdFxEsstcQ2\nlzXW8Jq8vu+VUi6mSbJSKjcSgBbAFhFJADYBv2F7KA5rOrjmQPq4y6+d3u/cK5iTXsK1wF6sB+XC\njTE/ZVHOZPFzxkLG7AaexXoQ7igQD5zk2tPYvSIiccBprMR4K9DGNlTDmTdWonYW+Nv2nvRFMj4D\nGtp+Zb/4GrE671uCNVY2Fmu2h14OD/g9j9WTG4v1heUbh3Pdg/Wg335bm469zOm/CXgIa3jIKazx\nwz1sY7Wzii3drcCPtvtgIzDdGHPVDBfGmLNYyefLtmvxMnCvbX92bUDOr1l6e9uwxiVPE5GzWA+b\nPppVece6jDF/GGP+yOwY1lCMMljT1Z0FFnGl1z63971SqgiQfJh7XymlbpiI1AT2A6WNMZn1UOZV\nOzdhJTd1jDHOY2eVUkqVUNqTrJQqzPJlXKdtHt1ytgR5CvCbJshKKaUcaZKslCrM8utXXfdhDbU4\ngjUHc/98akcppVQRpcMtlFJKKaWUcqI9yUoppZRSSjnRJFkppVxARGaKyIQCbvNNETklIrmea1pE\nvheRh/MjLqWUKow0SVZKFToickBELopIvIgk2P68Oft35qju+0Rku4icE5GTIvKjbSaNYs02p/WL\nwG3GmExXnxOR10Vkv+16HxKRiPRjxpjutiWeixQRaSgiK2xfDlIzOV5BRL4RkfMi8reI5HTZc6VU\nMadJslKqMDJYc+l6G2O8bH8ez/ZdDmwLbzjvqw3MAl6wrYwWhLV89FXJUzFUEzhtjMl0CW4ReRRr\nDuaOxhhv4E4gqzmpi5JkrDmxH8vi+IdYC6hUxpoz+iMRqV9AsSmlCjFNkpVShVWm07+JSE8R+d22\nuMRqEbnN4djfIvKKiOwEzouI82fc7cB+Y0wkgDHmgjHmG2PMEdv77xKRTSISKyIxIjLVtnJeev1p\nIvK0iESLSJyITLCtvLbR1jO9IL28iLQXkcMi8pqtF3O/iAzM8mStaem229reICKNHY6NFJEjth7e\nPyTz5Z8REW8RmW3rIf9bREbZ9nfCWjEuwFbH55m8/U5gpTHmgO3anDTGfOpQ9xoRecz28w5bPek9\n/Wnpq8+JtZLhRtt5bBeR9pm0lV7n3yLykojstJWPEJEyWZW/HsaYaGPMTKxFQJzb9wR6A6ONMZds\ny1EvAXRYiVJKk2SlVNEhInWB+cBzWD1/PwDLHBNZrOncugG+mSxC8itwm4i8IyId5OqlilOxVrCr\nCLQCOgLPOJXpAjQDWgKvAB8DA4EaQGOsVe/S3WyrKwAYBHwiIrdmcl7NsFaWC7GV/xhYKiKlbec8\nFGhu6+H9J3Agi0s0DWuJ5ECgA/CIiAy2rVLYDThq65XPrFd1s638yyLSPJMvGHbGmNtt9XhjDeH4\nE/hVrCWZlwMTjDEVsFbX+1pEKmVVF/AA1jUNAppiXaeriEgbWyJ91van489nRaT1NdrISl0g2Riz\nz2HfTqDhddSllCpmNElWShVW39qSH8fliPsBy40xq23LMk8GygGOCdL7xpijxpirlpk2xvyNlTwG\nYP0K/pRYD9B52o7/aoz5xVgOAZ8Azj2hYbYe6D+A34FVxpiDxpgErKS9mWOTwBhjTLIxZh3wne0c\nnIUA/zXGRNnanoO1THZLrMS9DNBIRNyNMYds55GBLal9EHjVGHPRtjjKFHLYK2qMmYe1XHcXIBI4\nISKvXOs9ItIWeANrKevzWMM1vjPGrLTV+RMQBXS/RjXvG2NOGGPSl3S+PYv4NhpjKhhjKtr+dPy5\nojFmU07O00l5rGXJHcVjfdFQSpVwmiQrpQqr+2zJT0VjTG/bvgDAvjKesSZ6PwxUc3jfkWtVakuC\n+xtj/IF2wD+A9GEJt4rIMhE5JiLngImAn1MVJx1+vgSccNou77Ada4xJdNg+aDsHZzWBlxy+FMQC\n1YEAWy/n88A4rMR1vohUzaQOP8AdOOTUXrVMymbKGBNhjOkC+AJPAW+IyD2ZlRXrQcAvgUccemJr\nAv2czqMNkFm86Ryv30UyXr/8dh7wdtrnAyQUYAxKqUJKk2SlVGGV2Zjko1iJmKMaZEyMc7xCkjFm\nG7AYaGTb9RHwB1Db9mDfqCziyKkKIlLOYfsWrHNwdhiY6PCloIIxprwx5ktbnAuMMe24cu6TMqnj\nNNZDao7XpyYQk9ugjTGpxpivgd+4cm3sRKQs8A3wjjFmldN5zHY6Dy9jTHhuY8ikzbZyZaYTx1f6\nvjbXUW004C7WA53pmgK7bjRepVTRp0myUqooWQjcKyLBIuIuIi9jzUzwc07ebBvX+oSIVLZt3wb0\ndHi/FxBvjLloO/b0DcYrwHjb2OJ2wL22c3A2A3hKRO62xXWTiHS3/VnXdr5lgCSs3mrnsdbYxl8v\nBCaKSHmxprV7AcjRtG0i8qitzfJi6QY0wBqr7Gwm8IcxZorT/rlADxHpIiJuIlJWrAcYM51yLjeM\nMRscZjpxfKXv23iNc/MAPKwfxSP94UBjzEWsL0kTRMTTNnykBzm8Zkqp4k2TZKVUYZRpb7AxJhpr\nmq5pwCmspLOHMSblWu9zcA4rKf6fiMQD3wNfA2/bjr8M/Nt27GNgQTZxZdfeMSAWq/d4DvCkMeYv\n5/faerRDgGkicharh/NR22EPrJ7jU7Z6KgOvZdHec1hDFvYD64C5tpkdciIeeB1riEasrc2njDHp\nXyAcz/VBoJetF9fek2ubJeQ+Wz2nbHW9TNb/1+S41/962b4sXAL+Z2vvEtaDhumGAp5Yw2jmYp3z\nH/kdl1Kq8BNrSJ9SSqm8ZJv6bI4x5hZXx6KUUir3tCdZKaWUUkopJ5okK6WUUkop5USHWyillFJK\nKeVEe5KVUkoppZRy4p59kcJBRLTLWymllFJK5TljzFVz4hepnmRjTJF9hYaGujyGkvrSa6/XvaS9\n9NrrtS+JL732eu2v95WVIpUkK6WUUkopVRA0SVZKKaWUUsqJJskFpEOHDq4OocTSa+8aet1dR6+9\n6+i1dx299q5TXK99kZkCTkRMUYlVKaVcatw466UK3Lhx4xin116pIkVEMJk8uFfkk+TAwEAOHjzo\ngohUSVWzZk0OHDjg6jCUypoIFJHP9uLG9p+tq8NQSuVCVklykR9ucfDgQZc/FamvkvXSL2Uq1/r2\nhU8+ybive3f46ivXxKNcpm/fvnzidC90796dr/ReUKrQKfJJslJKFWoXL8LSpXD77Vf2nTkDK1dC\nYKDLwlIF7+LFiyxdupTbHe6FM2fOsHLlSgL1XlCq0NEkuYQYP348Dz/8MACHDx/G29sbY1zzK8H5\n8+fTtWtXl7StVIHbuBHKlYM777yyLzISvLygefMr+6KioE8f8PWFsWPh9Gn48Ufo3NlKpsePh6Sk\ngo5e5aGNGzdSrlw57nS4FyIjI/Hy8qK5w70QFRVFnz598PX1ZezYsZw+fZoff/yRzp07ExgYyPjx\n40nSe0GpfJevSbKIfCYiJ0Tkt2zK3SUiySLSOz/jcYUNGzbQpk0bfH198fPzo127dmzbts0lsYhY\nw21q1KhBfHy8fTsvDR48GA8PD3x8fPDx8aFJkya8/vrrxMfH28sMHDiQFStW5KiusWPH5nmMShWo\ndeugTRtwc/i4XbsW2ra1xg6nu/NOK2m+/36YMAH8/KwE+dZb4ZFHIDQUypQp+PhVnlm3bh1t2rTB\nzeFeWLt2LW3bts3weXznnXfSvHlz7r//fiZMmICfnx+dO3fm1ltv5ZFHHiE0NJQyei8ole/yuyd5\nJvDPaxUQETdgErAyn2MpcAkJCfTo0YPhw4cTGxtLTEwMoaGheHh4uDq0fDVy5Eji4uI4deoUM2fO\nZPPmzbRp04ZLly65OjSlCt7atdC+fcZ9kZGQ2ZRJ69dbCbWjTZvgH//IXZuhobkrr/JM6DWu/dq1\na2nvdC9ERkZmOn3W+vXraeN0L2zatIl/5PZeUEpdt3xNko0xG4DYbIo9C3wFnMzPWFwhOjoaEaFf\nv36ICB4eHnTu3JlGjRoBsH//fjp16oSfnx9VqlThoYceytDjGhQUxOTJk2natCleXl6EhIRw8uRJ\nunfvjre3N126dCEuLg6wHmB0c3NjxowZVKtWjWrVqjFlypRM40ovm5aWBkBwcDBjx46lbdu2eHt7\n07VrV86ePWsvP3v2bAIDA6lcuTJvvvkmQUFBrF69OtvzL1OmDM2bN2fp0qWcOXOGmTNnAjBr1iza\ntWtnL/fCCy/g7++Pj48PTZs2Zffu3cyYMYN58+YRHh6Ot7c39913n/2aTJkyhaZNm1KhQgUGDBig\nv3ZUhVdiIvzyC9Svf2XfqVOwa5eVJEdFWWOTAdLSrITYMTGKj4foaGjdOnft6hRkLpPV9G+JiYn8\n8ssv1He4F06dOsWuXbvo0KEDUVFRrLTdC2lpaWzatClDkhwfH090dDStc3svKKWum0vHJItIAHC/\nMeYjIO9/9+9idevWpVSpUgwaNIgVK1Zw7ty5DMeNMbz++uscP36cP/74gyNHjlz1Abt48WJ++ukn\noqOjWbp0Kd27d2fSpEmcPn2a1NRUPvjggwzlIyMj2bdvHytXriQsLCzLZNZ5qEVERASzZs3i1KlT\nXL58mcmTJwOwe/duhg4dSkREBMeOHSMuLo6jR4/m6jqUL1+ee+65h/Xr11/V/qpVq9iwYQN79+4l\nLi6OhQsXUqlSJUJCQvj3v//NK6+8Qnx8PEuWLLG/d9GiRaxatYq///6bnTt38sUXX+QqHqUKzObN\n1jjiy5ev7JswwfqzQQNYvfpKL/H27ZCaCsuWQViY9XrxRWjSBDw9Cz52lac2b95MUlISlx3uhQm2\ne6FBgwasXr3a3ku8fft2UlNTWbZsGWFhYYSFhfHiiy/SpEkTPPVeUKrAuLu4/feAkQ7bxSpR9vLy\nYsOGDYSFhTFkyBCOHz9Ot27d+PTTT6lcuTK1a9emdu3aAFSqVIkXXnjB/qGZ7tlnn8XPzw+Adu3a\n4e/vT5MmTQDo1avXVUnwuHHjKFu2LI0aNWLw4MFERETQsWPHbGMdPHiwPZZ+/fqxbNkyAL7++mt6\n9uxJq1atAOtD3Tkxz4mAgAB+/fXXq/aXLl2ahIQEdu/ezd133029evWyrWv48OH4+/sD0KNHD3bs\n2JHreJQqEGvXwm23wdy5sGePlTCPHAlxcTB6tJUolytnlV2/3hqDPNLhI3HUKOtBvnQJCfDBB9C0\nKZw/D/37F+z5qOu2du1abrvtNubOncuePXtISkqyD00bPXo0DRo0oJztXli/fj2dO3dmpMO9MGrU\nKHwd7wUnzzzzDG+88QaVKlXK93NRqqRwdZJ8J7BArG5FP6CbiCQbY5ZmVtixl7VDhw5FYhnEevXq\n8fnnnwPW8It///vfPP/888ybN4+TJ08yfPhw1q9fz/nz50lNTaVixYoZ3p+eDAKUK1fuqu3z58/b\nt0WE6tWr27dr1qzJ77//nqM4b775ZvvPnp6e9nqPHj1KjRo1MrR5PR/CMTExV50bWEM9hg0bxtCh\nQzl06BC9e/dm8uTJlC9fPsu6HK+Bp6cnx44dy3U8ShWItWth4EArIXY0e/bVZdetu3qccmRkxqT5\niy+gZUvo1MmaCUOT5CJj7dq1DBw4kNFO98LsTO6FdevWXfX/W2RkZIak2dGBAweIj48nJiZGk2Sl\nciAyMpLIyMhsyxXEcAshix5iY0wt2ysIa1zyM1klyHBluc9x48YViQTZWd26dRk0aJA9cX3ttddw\nc3Nj165dnDt3jrlz597QtGzGGA4fPmzfPnToEAEBATcUc9WqVTly5Ih9+9KlS5w5cyZXdZw/f54f\nf/wxywdOhg0bRlRUFLt372bPnj28/fbbwNVDQpQqUpKSrOEWzg/iZcYY2LAhY5J84QJs22bNgpHu\nr78g/UtrmTLWfMuq0EtKSrI/wJwdYwwbNmzI8H/chQsX2LZtG20d7wWb1NRUypYtS+PGjXM9FE6p\nkqpDhw4Zcsqs5PcUcPOBTUBdETkkIoNF5EkRGZJJ8WK3jueePXt45513iImJAaz5iSMiIuxDF86f\nP0/58uXx8vIiJibGnhzeiDfeeINLly6xa9cuZs6cSf8seppymoz37duXZcuWsXnzZpKTk695MzlL\nSkpi27Zt9OrVi0qVKjFo0KCrykRFRfHLL7+QkpJCuXLlKFu2rH16JH9/f/bv35/j9pQqVLZsscYY\nt2x57XKbNsEzz1gJ76JF1sN6P/wAQ4ZY08Z9+OGVJabT0sDd9gvAlJSM08o50gf3XCazz8gtW7aQ\nmppKy2zuhU2bNvHMM89w5swZFi1aRHx8PD/88ANDhgzBzc2NDz/88KrP7h07drBlyxZOnjypSbJS\neSy/Z7cYaIwJMMZ4GGNuMcbMNMZ8bIz5JJOyjxljFudnPAXNy8uLLVu20KJFC7y8vGjdujVNmjSx\nPxQXGhrKtm3b8PX1pUePHvTp0yfD+517UnPSs9q+fXvq1KnDPffcwyuvvEKnTp0yLedY17XqbdCg\nAVOnTuXBBx8kICAAb29vqlSpcs1p7MLDw/Hx8cHPz49BgwZx11132SfRdxYfH09ISAgVK1YkKCgI\nPz8/RowYAcDjjz/Orl27qFixIr17987xNVCqUDh8GLp2vTLmOCutW8NHH1kJ9cSJ4O0N3brBvHnW\nan2jR1+ZT7lhQ0gfXpSQABUqZF7n+PF5dx4qV8Zncu0PHz5M165dM/0MdNS6dWs++ugjUlNTmThx\nIt7e3nTr1o158+Zx8eJFRo8eneEz8MiRI9SpU4f77ruPf/7zn/YOGaVU3hBXrbqWWyJiMotVRFy2\nclxhcvDgQWrVqkVycnKGierz2oULF/D19WXv3r3UrFkz39opzPSeUy4TF2cl1A0awNmzkMlvZwAr\nqdZ71CUK6vNh48aNvPPOO8yYMYOKFSsyZswYtm7dysyZM6latWq+t69UcWL7d3tVL5wmycXEwYMH\nCQoKIiUlJc+T5OXLl9OpUyfS0tJ46aWX2Lp1q8tWDSwM9J5ThZ4myS6jnw9KFT1ZJckunSdZ5a38\nGoqwZMkSAgICqF69Ovv27WPBggX50o5SSimlVGGhPclK5ZLec6rQ055kl9HPB6WKHu1JVkqpkiI0\n1NURlFiheu2VKja0J1mpXNJ7TimllCo+tCdZKaWUUkqpHCoZSbLzA2253S5A0dHRNGvWDB8fH6ZN\nm+ayOFxp8ODBjB071tVhKKWUUqoEc3d1ACqj8PBwOnbsyPbt210dilJKKaVUiVUyepKdx4/mdrsA\nHTx4kIYNG7qs/aIsNTU1y2Nbtmyha9eutG3blvnz5wMwd+5c/Pz8eO6559i6dWtBhamUUkqpIqBk\nJMmFyJ9//klwcDAVKlSgcePGLFu2zH6sU6dOrFmzhqFDh+Lt7c3evXuven9QUBCTJ0+madOmeHl5\nERISwsmTJ+nevTve3t506dKFuLg4AI4dO0bfvn2pUqUKtWvXZurUqRnqCgsLo06dOnh7e9OoUSO+\n/fbbDO1MmTKFpk2bUqFCBQYMGEBSUlKW5+Xm5sb+/fvt245DJrKra/v27TRv3hwfHx/69+9PYmKi\n/Vh25xAUFER4eDhNmzalfPnypKWlZRpfixYt8PDwYMSIEQwcOBCA7t27k5iYyJQpU7jrrruyPDel\nipxx41wdQYk1Tq+9UsWHMaZIvKxQr5bV/sIoOTnZ1KlTx0yaNMkkJyeb1atXGy8vLxMdHW0v06FD\nB/PZZ59lWUdgYKBp1aqVOXXqlDl69KipUqWKad68udm5c6e5fPmy6dixo5kwYYJJS0szzZs3N2++\n+aZJSUkxf//9t6ldu7ZZtWqVva6vvvrKHD9+3BhjzMKFC81NN91k3w4MDDQtWrQwx48fN7GxsaZ+\n/frm448/zjIuNzc3s2/fPvv2oEGDzJgxY7KtKykpydSsWdO8//77JiUlxXz11VemdOnSZsyYMTk6\nh8DAQNOsWTMTExNjEhMTs4wvNTXVVK5c2SQkJNj3zZ8/3wQHB2f5nqwUpXtOlVB6j7qMfj4oVfTY\n/t1elXtqT3IB2rx5MxcuXGDkyJG4u7sTHBzMv/71LyIiInJVz7PPPoufnx9Vq1alXbt2tGjRgiZN\nmlCmTBl69erF9u3b2bp1K6dPn2bUqFGUKlWKwMBAnnjiiQyr5fXp0wd/f38AHnjgAW699VZ++eUX\n+/Hhw4fj7++Pr68vPXr0YMeOHVnGZLIZopJVXT///DMpKSk899xzlCpVij59+th7dbM6B+frNXz4\ncAICAvDw8Miy/V9//ZVKlSqxePFiZs+ezaxZs/jwww8JDg6+ZtxKKaWUKpn0wb0CdPToUWrUqJFh\nX82aNYmJiclVPemJLUC5cuWu2j5//jwHDx4kJiaGihUrAlYSm5aWxj/+8Q972dmzZ/Puu+9y4MAB\nAC5cuMDaeL6IAAAgAElEQVTp06czbcfT05Njx47lKs6sYnas69ixY1SrVi1D2Zo1awLk6BwAqlev\nnm37q1evpl+/fjzyyCP2faGhoQQHBxMbG8snn3yCv78/jRs3pnnz5td3kkoppZQqNjRJLkABAQEc\nPnw4w75Dhw5Rr169PG/rlltuoVatWuzZsyfT44cOHWLIkCGsWbOGVq1aAdCsWbPrXiTD09OTixcv\n2rePHz9+1ReCzFStWvWqLwmHDh2iTp061KhR45rnkE5yMGXfmjVreOGFF+zbMTExnD59mpYtWzJ1\n6lSCg4O54447ePTRR5k3b1629SmllFKqeNPhFgWoRYsWeHp6Eh4eTkpKCpGRkSxfvpz+/fvneVt3\n3303Xl5ehIeHk5iYSGpqKrt27SIqKgqweo3d3Nzw8/MjLS2NmTNn8vvvv193e82aNWP+/PmkpaWx\nYsUK1q5dm6P3tWrVCnd3d6ZOnUpKSgqLFy+2D/nI7hxyKjk5mU2bNtm/DACsW7eO1q1b4+7uzv79\n+6latSru7u7Exsbmqm6llFJKFU+aJBeg0qVLs2zZMr7//nv8/PwYNmwYc+bMoW7duvYy2fWKOh/P\nqryIsHz5cnbs2EFQUBBVqlQhJCSE+Ph4AOrXr89LL71Ey5Ytufnmm9m1axdt27bNcRzO3nvvPZYu\nXUqFChWIiIigV69eOaqrdOnSLF68mJkzZ1KpUiUWLVpEnz59AGvGjGudQ07i3L59O6+++ioiwuLF\niwH48ssvmT59OikpKWzatAljDKVKlcrV+SpVKJw9C45fSKOjoVEjCA21thMToVcvl05rWVwdOHCA\nGTNmMGTIENq0acMtt9yCt7c37u7uVK5cmYYNG9KjRw9CQ0P5v//7Py5fvuzqkJVSuSTX++v1giYi\nJrNYbettuyAiVVxMnTqVdu3aUb9+fQYNGpTtg5R6zymXMubKqqB79kD79nDsmLXvxAm4+244eNA6\n/ttv0L8/7N5tbcfGwtNPw7x5oF8Mcy0+Pp4FCxbw6aef5npu9Ztuuon777+fJ554gvbt2+e6I0Ip\nlX9s/69f9Y9Sk2RV4p05c4bPP/8cX19fGjVqlGFYRmb0nlMuc/Ei3HknbNkCXl7WvqefhrAw8PaG\ntDRISAAfH+vYuXPw55/QsqW1PWcOLF4M33xjbaekWMm1JszXdObMGSZOnMjHH39sf/bC29ubzp07\n065dO5o2bUpgYCAVK1bE3d2dCxcucPToUaKjo/nll1/48ccf2blzp72+Vq1aMWbMGLp27arJslKF\ngCbJSuURvedUgUpLg9RUKF3a2n7gAejRAxxmasmx48etRLtWLWt7yhQ4dAjefz/v4i1GLl26xNSp\nU3nrrbfsizS1b9+eJ554gj59+lCuXLkc17V//36++OILpk+fztmzZwHrOZX//ve/3H777fkSv1Iq\nZzRJViqP6D2nCtSrr0L58jB6tLWdkGBt32gPZGoq3HUXLFgADs9FKEtUVBQPPfSQfXadLl26EBYW\ndsMJ7fnz5/noo4+YPHkyJ0+epFSpUowYMYKxY8fmKulWSuUdTZKVyiN6z6kCdeAA3HcfREVd6U3O\nK6mpV4ZanD0LffvCt99aQzdKqJSUFCZNmsT48eNJSUmhfv36vPfee3Tp0iVP20lISGDUqFFMmzYN\nYwx169bl66+/plGjRnnajlIqe1klyfk6u4WIfCYiJ0TktyyODxSRnbbXBhFpnJ/xKKVUoZeWBs89\nB+kL+wQGwvbtuUuQx43LWTnHschhYdCkSYlOkM+ePUuXLl0YM2YMKSkpPP/882zbti1XCfK4HF57\nLy8vPvjgAzZu3EiDBg2Ijo6mRYsWLFy48DqjV0rltXztSRaRtsB5YLYxpkkmx1sCfxhj4kSkKzDO\nGNMyi7q0J1kVCnrPqXw3YoQ1VvjLL6/v/SK5n/bt8mXrfWXKWNs//2w9JJjXvdeFVHR0NP/617/4\n66+/uPnmm5kzZw6dO3fOdT3X8/lw8eJFnnzySebOnQvAyy+/zKRJk3RqSqUKiMuGW4hITWBZZkmy\nUzlf4H/GmEyXadMkWRUWes+pfHHpEqSPSU1OtpLk2rWvr67rSZIdrV5tTR23aRPUqXP99RQRkZGR\n9O7dm9jYWG6//XaWLVuWo+XuM3O9nw/GGKZNm8aLL75ISkoKAwYMYNasWZQuIV9SlHIllwy3yKUn\ngB9cHYRSShW4pCRo1uzKwiClS19/gpwXbroJFi0qEQnyypUr6datG7GxsfTs2ZP169dfd4J8I0SE\nZ599llWrVlG+fHn7okyXLl0q8FiUUhZ3VwcAICLBwGCg7bXKOY716tChAx06dMjXuJRSqkCUKQPT\np1uLfLRv7+pooEWLKz+npUF4OAwZAhUrui6mfPD999/Tu3dvLl++zJNPPsn06dNdPsQhODiYNWvW\n0LVrV7777jv7n+XLl3dpXEoVJ5GRkURGRmZbzuXDLUSkCfA10NUYs+8a9ehwixswfvx49u7dy5w5\nczh8+DANGzYkLi7OJRPZz58/n9mzZ7NixYoCbzsv6D2n8szhw1C9+o1P5+bsRodbOBo7Ftasge++\nK1YP9S1fvpw+ffqQlJTE0KFDmTp1ap58HubV58Pu3bvp0qULMTExdOrUieXLl1O2bNkbrlcpdTVX\nDrcQ2+vqAyK3YCXID18rQS7KNmzYQJs2bfD19cXPz4927dqxbds2l8SS/h9AjRo1iI+Pz5cEefDg\nwXh4eODj44OPjw9NmjTh9ddfJz4+3l5m4MCBOUqQBw8ezNixY/M8RqUKjcceg5deyruENl1oaN7V\n9dRT8MMPxSpBXr9+PX379iUpKYnhw4fnWYIMEJpH175BgwZERkbi7+/PTz/9xIABA0hJScmTupVS\nOZPfU8DNBzYBdUXkkIgMFpEnRWSIrcgYoCLwoYhsF5Ff8jOegpaQkECPHj0YPnw4sbGxxMTEEBoa\nioeHh6tDy1cjR44kLi6OU6dOMXPmTDZv3kybNm10bJ1SzhYuhLJlrfmK81JOp4DLiYAAa/ESgGPH\n4OWX8z7eArR792569uxpH2Lx7rvv5mmHQU6ngMuJOnXqsGrVKnx9ffn22295/PHHSUtLy7P6lVLX\nlq9JsjFmoDEmwBjjYYy5xRgz0xjzsTHmE9vxEGNMJWPMHcaYZsaYu/MznoIWHR2NiNCvXz9EBA8P\nDzp37myfLH7//v106tQJPz8/qlSpwkMPPZShxzUoKIjJkyfTtGlTvLy8CAkJ4eTJk3Tv3h1vb2+6\ndOliXyr14MGDuLm5MWPGDKpVq0a1atWYMmVKpnGll03/sA0ODmbs2LG0bdsWb29vunbtal82FWD2\n7NkEBgZSuXJl3nzzTYKCgli9enW251+mTBmaN2/O0qVLOXPmDDNnzgRg1qxZtGvXzl7uhRdewN/f\nHx8fH5o2bcru3buZMWMG8+bNIzw8HG9vb+677z77NZkyZQpNmzalQoUKDBgwgKSkpNz8tSjlWvHx\nYPt3S4UK8NZb4F4oHg+5NmOs5bArVAC3wvTMd87FxMTQtWtXzp07x3333cf06dNdMuQsN5o0acL3\n33+Pp6cns2fPztMkXCl1bUXzk66IqFu3LqVKlWLQoEGsWLGCc+fOZThujOH111/n+PHj/PHHHxw5\ncuSqD8DFixfz008/ER0dzdKlS+nevTuTJk3i9OnTpKam8sEHH2QoHxkZyb59+1i5ciVhYWFZJrPO\n/zFEREQwa9YsTp06xeXLl5k8eTJg9boMHTqUiIgIjh07RlxcHEePHs3VdShfvjz33HMP69evv6r9\nVatWsWHDBvbu3UtcXBwLFy6kUqVKhISE8O9//5tXXnmF+Ph4lixZYn/vokWLWLVqFX///Tc7d+7k\niy++yFU8SrnU3LnQtq01xVtRIgKrVsGoUXk/hroAXLhwgXvvvZfDhw/TunVrIiIiXP6QXk61atWK\nr7/+Gjc3N9544w0iIiJcHZJSJYImyfnIy8uLDRs24ObmxpAhQ6hSpQr33Xcfp06dAqB27dp06tQJ\nd3d3KlWqxAsvvMDa9CmgbJ599ln8/PyoWrUq7dq1o0WLFjRp0oQyZcrQq1cvtm/fnqH8uHHjKFu2\nLI0aNWLw4ME5/jAdPHgwtWvXxsPDg379+rFjxw4Avv76a3r27EmrVq1wd3dnwoQJ13UtAgICMvRO\npytdujQJCQns3r0bYwz16tXD39//mnUNHz4cf39/fH196dGjhz1WpYqEp5+GJ58smkMWHGe3WL4c\nli51XSy5YIxh8ODB7Ny5k7p167Js2TLKpc9JXUR07dqVd999F7A+r7ds2eLiiJQq/jRJzmf16tXj\n888/59ChQ/z+++8cPXqU559/HoCTJ08yYMAAqlevjq+vLw899BCn05eitXFMGMuVK3fV9vnz5+3b\nIpJhfs+aNWvmuNf35ptvtv/s6elpr/fo0aPUqHFlfZdy5cpRqVKlHNXpKCYmhoqZTB8VHBzMsGHD\nGDp0KP7+/jz11FMZzikzjtfAMValCrX0+1QEhg2DoCDXxnMjtm2zHuirUMHVkeRIWFgYixYtwsvL\niyVLlmT6WVQUPPvsszz55JNcvnyZ+++/n5iYGFeHpFSxpklyAapbty6DBg3i999/B+C1117Dzc2N\nXbt2ce7cOebOnXtDUwcZYzh8+LB9+9ChQwQEBNxQzFWrVuXIkSP27UuXLnHmzJlc1XH+/Hl+/PFH\n/vGPf2R6fNiwYURFRbF792727NnD22+/DVw9JESpIishARo0gIL6NXl+j1u94w7YsQMcni0orH74\n4Qdef/11AObOncttt92Wr+3l55hhEWHq1KkEBwdz/Phx+vfvT3Jycr61p1RJp0lyPtqzZw/vvPOO\n/dv+4cOHiYiIoFWrVoCVPJYvXx4vLy9iYmLsyeGNeOONN7h06RK7du1i5syZ9O/fP9NyOU3G+/bt\ny7Jly9i8eTPJycm5+g8gKSmJbdu20atXLypVqsSgQYOuKhMVFcUvv/xCSkoK5cqVo2zZsrjZHgry\n9/dn//79OW5PqULLy8samrBnT8G0N358/tYvAn5+1s8pKTB/ft5PY5cHDh48yMCBAzHGMH78eHr2\n7JnvbY7P52tfunRpvvzyS6pVq8aGDRsYNWpUvranVEmmSXI+8vLyYsuWLbRo0QIvLy9at25NkyZN\n7A/FhYaGsm3bNvvY2j59+mR4v3NPak56Vtu3b0+dOnW45557eOWVV+jUqVOm5Rzrula9DRo0YOrU\nqTz44IMEBATg7e1NlSpVrjmNXXh4OD4+Pvj5+TFo0CDuuusuNm7cmOkYwPj4eEJCQqhYsSJBQUH4\n+fkxYsQIAB5//HF27dpFxYoV6d27d46vgVKFhmPiePvt+d/D6wp9+sAXX0Ahm+IxOTmZAQMGcO7c\nOe69915Gjx7t6pDyTOXKlVmwYAGlSpXi7bffZmkRGRuuVFGT7yvu5RVdce/aDh48SK1atUhOTrb3\nxOaHCxcu4Ovry969e6lZs2a+tVOY6T2ncuzTT2HrVnjnHbjppoJrNy9X3MvOb79Bw4ZQyGaKGDVq\nFG+99RbVqlVjx44d+KX3fOezgvx8mDx5MiNGjMDX15ft27cTGBhYIO0qVdy4csU9VUDy64N5+fLl\nXLp0iQsXLvDSSy/RpEmTEpsgK5Ur/frBxYsQGenqSPJPkyZXEuQTJwpFj/KPP/7If/7zH9zc3Jg/\nf36BJcgF7aWXXqJnz56cO3eOhx9+mNSiOGOKUoWYJsnFSH4NRViyZAkBAQFUr16dffv2sWDBgnxp\nR6lix9sb5syBe+91dST5b/Vqa0hJDhYayk+nT5/m4YcfxhhDaGholg8MFwciwmeffcbNN9/Mhg0b\n8uS5FqXUFTrcQqlc0ntOZeudd6zEuF4917Q/blzBj3/evt2axcPFSemDDz7IwoULadeuHWvWrCnw\nBUPGjRtX4KvirVixgm7duuHu7s6WLVu44447CrR9pYq6rIZbaJKsVC7pPaeyNX06TJoEu3ZZvckl\nkTEFvjLfggULGDBgADfddBO//fYbtWrVKtD2XenZZ59l2rRp3HbbbWzbtg1PT09Xh6RUkaFJslJ5\nRO85lSPnz0P58q6OouBdvgxvvAFxcTB1aoE1e/ToURo1akRsbCwff/wxQ4YMKbC2C4OLFy/SvHlz\n/vzzT1588UWmTJni6pCUKjJK7IN7IpInr4ISHR1Ns2bN8PHxYdq0aQXWbmEyePBgxo4d6+owlMq9\nnTuv/FwSE2SAI0fgr7/AtoBHQTDGEBISQmxsLF27diUkJKTA2i4sPD09mTNnDm5ubrz33nts3rzZ\n1SEpVeQV+yS5qAkPD6djx47ExcUxbNgwV4ejlMqp8+fhgQfg8ccL5cIaBaZ2bfjyS6hatcCajIiI\n4Pvvv8fX15dPP/20xM6nfueddzJixAjS0tJ47LHHuHz5sqtDUqpIK/ZJsjEmT14F5eDBgzRs2LDA\n2itOrjX90ZYtW+jatStt27Zl/vz5gLVErZ+fH8899xxbt24tqDBVcVW+vLVUc//+BT4Wt9CKiYGP\nPsrXJs6cOcPzzz8PwJQpU6hWrVq+tlfYhYaGUq9ePf744w/eeOMNV4ejVJFW7JPkwubPP/8kODiY\nChUq0LhxY5YtW2Y/1qlTJ9asWcPQoUPx9vZm7969V70/KCiIyZMn07RpU7y8vAgJCeHkyZN0794d\nb29vunTpQlxcHADHjh2jb9++VKlShdq1azPVaXxgWFgYderUwdvbm0aNGvHtt99maGfKlCk0bdqU\nChUqMGDAAJKSkrI8Lzc3twxLSDsOmciuru3bt9O8eXN8fHzo378/iYmJ9mPZnUNQUBDh4eE0bdqU\n8uXLk5aWlml8LVq0wMPDgxEjRjBw4EAAunfvTmJiIlOmTOGuu+7K8tyUylb6F2lPT7jnHtfGAoVj\nZb+LF6FlSzh+PF971keMGMGpU6fo0KEDgwcPzrd2cqqgZ7ZwVq5cOT777DNEhEmTJrFjxw6XxqNU\nkZZXPa35/bJCvVpW+wuj5ORkU6dOHTNp0iSTnJxsVq9ebby8vEx0dLS9TIcOHcxnn32WZR2BgYGm\nVatW5tSpU+bo0aOmSpUqpnnz5mbnzp3m8uXLpmPHjmbChAkmLS3NNG/e3Lz55psmJSXF/P3336Z2\n7dpm1apV9rq++uorc/z4cWOMMQsXLjQ33XSTfTswMNC0aNHCHD9+3MTGxpr69eubjz/+OMu43Nzc\nzL59++zbgwYNMmPGjMm2rqSkJFOzZk3z/vvvm5SUFPPVV1+Z0qVLmzFjxuToHAIDA02zZs1MTEyM\nSUxMzDK+1NRUU7lyZZOQkGDfN3/+fBMcHJzle7JSlO45VQD27DHm7ruNiYpydSRXFJZ79Ny5fK1+\n9erVBjAeHh5mz549+dpWThWWz4fnnnvOAKZFixYmNTXV1eEoVajZ/t1elXtqT3IB2rx5MxcuXGDk\nyJG4u7sTHBzMv/71LyIiInJVz7PPPoufnx9Vq1alXbt2tGjRgiZNmlCmTBl69erF9u3b2bp1K6dP\nn2bUqFGUKlWKwMBAnnjiiQwLgfTp0wd/f38AHnjgAW699VZ++eUX+/Hhw4fj7++Pr68vPXr0uGaP\nhMmmpyirun7++WdSUlJ47rnnKFWqFH369LH36mZ1Ds7Xa/jw4QQEBODh4ZFl+7/++iuVKlVi8eLF\nzJ49m1mzZvHhhx8SHBx8zbiVytatt8LQobBkiasjKXx8fK78fOJEnladmJjIk08+CVhLUNetWzdP\n6y/q3nzzTQICAtiyZQszZsxwdThKFUnurg6gJDl69Cg1atTIsK9mzZrExMTkqp70xBasX605b58/\nf56DBw8SExNDxYoVASuJTUtLy7D61OzZs3n33Xc5cOAAABcuXOD06dOZtuPp6cmxY8dyFWdWMTvW\ndezYsavGEKYveZ2TcwCoXr16tu2vXr2afv368cgjj9j3hYaGXpUkG2N49NFHmT17di7OTpVoIuBw\nXyknaWnw3HPw3Xfw559wjS+zuTFx4kT++usvGjRowMiRI/OkzuLEy8uL9957j379+vHaa6/Rq1cv\nqlSp4uqwlCpStCe5AAUEBHD48OEM+w4dOpQvD5rccsst1KpVi7Nnz3L27FliY2OJi4uzj4E+dOgQ\nQ4YM4cMPPyQ2NpbY2FgaNmx43Q8penp6cvHiRfv28ePHc/S+qlWrXvUl4dChQwDUqFHjmueQLidP\nsq9Zs4Y2bdrYt2NiYjh9+jQtW7bMUG737t039GVAlSAnTsCCBSV7JouccHODu+6CX3/NswR5165d\nhIWFAfDJJ59QpkyZPKm3uOnbty///Oc/iY2N5ZVXXnF1OEoVOZokF6AWLVrg6elJeHg4KSkpREZG\nsnz5cvr375/nbd199914eXkRHh5OYmIiqamp7Nq1i6ioKMDqNXZzc8PPz4+0tDRmzpzJ77//ft3t\nNWvWjPnz55OWlsaKFStYu3Ztjt7XqlUr3N3dmTp1KikpKSxevNg+5CO7c8ip5ORkNm3aRKtWrez7\n1q1bR+vWrXF3v/LLlMTERAICAvDx8dGpk1T2zpyBt94qHA/JFXaPPgoVKuRJVcYYnnnmGZKTk3nq\nqacyfPlVGYkI06ZNw8PDg1mzZrFu3TpXh6RUkZKvSbKIfCYiJ0Tkt2uU+UBE/hKRHSJye37G42ql\nS5dm2bJlfP/99/j5+TFs2DDmzJmTYSxddr2izsezKi8iLF++nB07dhAUFESVKlUICQkhPj4egPr1\n6/PSSy/RsmVLbr75Znbt2kXbtm1zHIez9957j6VLl1KhQgUiIiLo1atXjuoqXbo0ixcvZubMmVSq\nVIlFixbRp08fwJox41rnkJM4t2/fzquvvoqIsHjxYgC+/PJLpk+fTkpKCps2bbKXjYqKYt26dSQm\nJnIij8dPqmKoQQPYts0aSlDYhIa6OoLMRUfDgw/CuXPXXcXChQtZt24dfn5+vPXWW3kYXN4ILWTX\nvk6dOrz22msAPP300yQnJ7s4IqWKjnxdllpE2gLngdnGmCaZHO8GDDPG3CsiLYD3jTEtncvZyprM\nYtUlglVe2L9/PwEBAZQtW5Zx48bRvXt37r777kzL6j1XwqWkWONs9Vf8uffAA9CqFQwbdl3X78KF\nC9x2220cOXKEGTNm8MQTT+RDkMVPYmIijRo1Yt++fYSFhenQC6WcuGRZamPMBiD2GkXuA2bbym4B\nfETE/xrllcpz69atY9SoURhjiIuLY9euXXzzzTeuDksVVsuWQePGsGaNqyMpehYuhBdfvO4vGP/5\nz384cuQIzZs3LxRzIhcVZcuWZfr06QCMHz8+1w+LK1VS5WtPMoCI1ASWZdGTvAz4jzFmk237R+AV\nY8yvmZTVnmRVKOg9p/juO+shtM6dXR1J0bVjBzRtmuPVCfft20eDBg1ISkq66hkDlTO9e/fmm2++\n4eGHH9YZfJRy4JKeZKWUKpbuvVcT5BsREgL33w8nT+b4LS+++CJJSUk88sgjmiBfp8mTJ1OmTBnm\nzJnDli1bXB2OUoWeq+dJjgEcJw6ubtuXKcflPjt06ECHDh3yKy6llMrot9/g55/hiSegVClXR1O0\nPfEEfPABlCuXo+IrVqxg6dKleHl5MWnSpHwOrviqVasWL7zwAmFhYTz//PNs2rQp1w9pK1UcREZG\nEhkZmW25ghhuEYg13KJxJse6A0NtD+61BN7TB/dUYaf3XAm1ezc8/TR06wavvurqaK5t3LhiMzVd\nUlISjRs3Jjo6mrfffpuXX37Z1SFd07hx4zJ06BQ2CQkJ3HrrrZw4cYJ58+YxcOBAV4eklMtlNdwi\nv2e3mA90ACoBJ4BQoAzWGtmf2MpMA7oCF4DBmY1HtpXTJFkVCnrPlWDGQFJSni2KkW9EisYiJ1u2\nwOjRMG8eZLEa3AcffMDw4cOpW7cu//vf/wr9wiFF4fPh888/5/HHH6d69er8+eef3HTTTa4OSSmX\nckmSnJc0SVaFhd5zJczly5CaCp6ero4k54pKkjxkCLRubS3r7Xb1IzLnzp2jdu3anD17liVLltCz\nZ08XBJk7ReHzIS0tjbvuuotff/2V0NDQQt3zrVRB0Af3lFLqevzwA9SrB0uXujqS4ueTT2DQoEwT\nZLCmfDt79izt27enR48eBRtbMebm5sZ7770HQHh4OIcPH3ZxREoVTpokK6XUtdx/PyxaBJUruzqS\n4ssY2Lgxw66DBw/y/vvvA9asDPqAWd5q164d/fr149KlS7z++uuuDkepQqnID7cIDAzk4MGDLohI\nlVQ1a9bkwIEDrg5DqawVleEW6e6/H/76C9avh4oVAXjooYfsD5bNmzfPxQHmXFEYbpHuwIED1KtX\nj+TkZH799Vduv/12V4eklEsU2+EWBw4cwBijL30V2EsT5BJi714IC4PERFdHknuhoa6OIHcmTICd\nO+0JclRUFPPmzaNMmTJMnDjRxcHlTmgRuvaBgYEMHToUYwwjR450dThKFTpFvidZKaXyxYED1hLK\ngYHwzjuujqbEMMbQsWNHIiMjGTFiBOHh4a4OqVg7c+YMtWvXJi4ujlWrVnHPPfe4OiSlClyxnd1C\nKaXyVUoKuLt63aUSwBj44QeWjRpFzx07qFixIvv27cPX19fVkRV7kyZN4rXXXqNZs2ZERUXhlsWD\nlEoVV8V2uIVSSuUpY+DcuSvbmiAXDGNI+eILXjl9GoCxY8dqglxAhg8fTrVq1di+fTsRERGuDkep\nQkOTZKWUcrRzJ9StCzNmuDqSksXNjU87duTPI0eoXbs2Tz/9tKsjKjHKlSvHhAkTABg9ejSXL192\ncURKFQ6aJCullKPbb4e1a6F6dVdHUqIkJCTYH3qb9NZblPntNxdHVLI8+uijNGzYkAMHDvDhhx+6\nOhylCgVNkpVSyln9+tCtm6ujuH5FcAW1d999l5MnT9Ly7rvpM3EivPyytdJhEVNUV68rVaoUYWFh\nAP4jOzQAACAASURBVLz55puccxxypFQJpQ/uKaUUWMtPv/MOPP00FPWxsEVsnuQzZ84QFBREQkIC\nkZGRtC9fHu64wzqPIqYozZPszBhDcHAwa9euZeTIkUyaNMnVISlVIPTBPaWUupaLF2HfPujVy9WR\nlDjh4eEkJCTQpUsX2rdvD82bF8kEuagTEfuUe++//74uV61KPO1JVkopR0lJUKaMq6O4MUWoJ/no\n0aPUqVOHS5cusXXrVu68807rQFoaRETA5s0wdaprg8yFotyTnK5fv34sWrSIxx57jM8++8zV4SiV\n77QnWSmlspKUdOXnop4gFzETJ07k0qVL9O7d+0qCDHD6NMycCX36uC64EmrixImUKlWKL774gj17\n9rg6HKVcRnuSlVIlW3IyNGgAffvCG28Uj3mRi0hP8v79+6lXrx6pqan8/vvvNGjQwNUh3bDi0JMM\nMGTIEGbMmEG/fv348ssvXR2OUvlKe5KVUiozpUvD6tVQsSKUKuXqaPKGbSq1wm78+PGkpKTw0EMP\nXTtBTkqylgkvAkKLyLXPzpgxY/Dw8GDhwoXs2LHD1eEo5RLak6yUUqrA7d69m0aNGlGqVCn27NlD\nrVq1Mi+4axf06AH332/NPqIKzIsvvsi7777Lvffey/Lly10djlL55oZ6kkVksYjcKyLa86yUKj6+\n/hqOHXN1FCXS2LFjMcYQEhKSdYIMUKsWzJqlCbILvPbaa5QvX57vvvuOjRs3ujocpQpcTpPeD4GB\nwF8iMklE6uVjTEopVTB+/RUaN4aTJ10dSYkSFRXF119/TdmyZRk9evS1C5crB+3aFUxgKoPKlSvz\n/PPPAzBq1KhiMdZaqdzI1XALEfEBBgCjgMPADGCuMSY5f8LL0LYOt1BK5b3YWKhQwdVRlChdu3Zl\n5cqVjBgxwj4vb7aSkuCTT6yx4wMH5m+Ayu7cuXPUqlWL2NhYVq1axT333OPqkJTKczf84J6IVAIG\nAU8A24H3gTuA/8ujGJVSqmA4fuHWBLlArV27lpUrV+Ll5cXIkSNz/sbvv4cVK6Bhw/wLTl3F19fX\n/vf0+uuva2+yKlFyOib5G2A94An0MMb0NMZ8+f/s3Xt8zvX/x/HHexuzMMeIkbOODjkkpFZKQqn8\nJKXQN1EU6SCEkRIJUd++kooUiZRzdFjlbDRizuRYRDHHzbb374/PtYMZhl3XZ9v1vN9u183e1/W5\nPp/nrta1197X+2CtfQ4ocIHnNjXGbDTGbDbGnPWOaIwJNcbMNMZEG2N+N8Z0uITvQ0Qk8zp3hi5d\nYP9+t5N4R0SE2wkyZK2lb9++ALz44osUK1Ys809u2RJmz4YaNbyULmtEZNPX/nJ069aNq666iqio\nKL755hu344j4TKaGWxhjmllr56a7L9haG3eB5wUAm4HGwD5gJfCItXZjmmN6A6HW2t7GmOLAJqCk\ntTYh3bk03EJEssahQzBsGHTrBmXLup0m62XTdZLnzp1L8+bNKVasGNu3byc0NPTSTnTsmPM95s+f\ntQGzQG5ZJzm9999/n27dunH99dezdu1aAnPLcokiXP5wi8EZ3Lc0E8+7Gdhird3pGbc8BWiZ7hgL\nFPR8XRA4lL5AFhHJUsWKwdChubNAzqaSkpJSJun17t370gvkr7+GKlWc4RfiM506daJcuXLExMTw\nxRdfuB1HxCfOWyQbY64yxtQGQowxNxljanlu4ThDLy4kDGeCX7I9nvvSeg+43hizD1gDdM90ehGR\ni7F+PWzZ4nYKvzR9+nR+++03SpcuzbPPPnvpJ6pUyRmb3Lp11oWTC8qbN2/KUJKIiAji027lLpJL\nXagn+R5gOFAGGAG847n1BPpkUYZ7gN+staWBm4D3jTHnHecsInJJ1qyB+vXh22/dTuJXEhIS6Nev\nH+CsjxwSEnLpJ6tRI9uPS86t2rVrx7XXXsv27dv5+OOP3Y4j4nWZHZPcylo7/aJPbswtQIS1tqmn\n/SpgrbVD0xwzGxhirV3saf8A9LLWRqU7l0273Wd4eDjh4eEXG0lE/N0//0BQEFzqx/05QTYbk/zJ\nJ5/w5JNPUrFiRTZu3EiePHku/6RHj8K770LHjhCW/gNK9+TWMcnJpk2bRuvWrSlVqhTbtm27vD94\nRFwSGRlJZGRkSnvgwIEZjkk+b5FsjGlnrZ1kjHkRZ+zwGay1590CyRgTiDMRrzHwJ7ACaGut3ZDm\nmPeBA9bagcaYkkAUUMNa+0+6c2ninohIZkREZJsVLuLi4qhatSq7du3is88+o127dllz4k6d4ORJ\neOstKFMma86ZBSIiInLlChfJkpKSqFu3LqtXr+btt9/mpZdecjuSyGU718S9CxXJna21Y40xAzJ6\n3Fo7MBMXboqzpnIAMN5a+5YxprPzdPuhMaYU8ClQyvOUIdbayRmcR0WyiFyamTPhiy9g0CCoWtXt\nNH5lzJgxPP/889xwww2sWbMm61ZFSEwErbDginnz5tGsWbPLX6VEJJu4pCI5O1GRLCKX7PhxGD0a\nrrrK+XhefOL48eNUqlSJ/fv3M2PGDB544AFvXShbLgeXW1lrue2221i0aBEDBgzI1T3n4h8uawk4\nY8wwz6YfeYwxPxhj/jbGZNFnZiIiXpY/P/TurQLZx8aMGcP+/fupW7cuLVumX/0ziwwZAhUqwF9/\neef8chZjDG+++SYAI0aM4ODBgy4nEvGOzK6T3MRaGwu0AP4AKgMveyuUiEiWiI+H6Gi3U/ilw4cP\nM3SoM0f7zTffxJizOmmyxtVXw7JlzqcE4jONGjWiadOmHD16NOW/s0huk9kiOcjzb3PgK2vtES/l\nERHJOps3Q7Nm0KuX20n8zvDhwzl8+DDh4eE0btzYexd67DGoWNF755dzGjzY2WfsvffeY9++fS6n\nEcl6mS2SZxtjNgK1gR+MMVcCp7wXS0QkC9x4o7N5SIcObifxLZfHiO7fv59Ro0YB8MYbb3ivFzmt\nv/+G99/3/nUuwJ/G59auXZtWrVpx6tSplIJZJDfJ9MQ9Y0xR4Ii1NtEYcwUQaq312SAwTdwTEckk\nl9dJ7tGjB++++y4tWrRg1qxZ3r9gQgJcdx3ccw+MGAF583r/mueQ29dJTi8mJoZq1aoREBDApk2b\nqKhefcmBLnt1C2NMA6A8qUMvsNZOzKqAmbi+imQRyZwjR5x1dHv1gtq13U7jey4Wybt27aJKlSrE\nx8cTHR1NDV/tjnfiBFxxhW+udR7+ViQDtG/fnokTJ/LEE08wYcIEt+OIXLTLXd3iM5ztqW8F6npu\ndbI0oYhIVgkJgTvugLffdjuJ33n99deJj4/nkUce8V2BDGcWyImJvruuEBERQZ48efjss89Yv369\n23FEskxmt6XeAFzvZleuepJFRDLJpZ7kzZs3c/311wPOx/BVfb1xy9Gj0L8/rF4NP//s22t7+GNP\nMkDXrl3573//y0MPPcT06dPdjiNyUS6rJxlYB2h9HRHJ/nbscDuB3+rfvz+JiYl06NDB9wUyOGOR\nCxSAqVN9f20/99prrxESEsLXX39NVFSU23FEskRmi+TiQIwx5jtjzMzkmzeDiYhctIQEuP9+ZwJX\nfLzbadwzYIDPLxkdHc2XX35J3rx5GeDC9QEIDobXX4eSJd25Prj3vbusVKlSdOvWDXAKZpHcILPD\nLW7P6H5rrc8+z9JwCxHJlNOn4ccfnUJZfKZ58+bMnTuXHj16MHLkSLfjwM6dsH27MzZdfOLQoUNU\nqFCBo0ePEhkZye23Z1g6iGQ7lzXcwlMM/wHk8Xy9ElidpQlFRLJCnjwqkH1s0aJFzJ07lwIFCtCn\nTx+348DatVCrlnZb9LFixYrx0ksvAdC3b1+/HJstuUtmV7foBEwDxnruCgO+8VYoEZGLNmiQ04Ms\nPmWtpXfv3gD07NmTK6+80uVEQLVqsHEjvPCC20n8To8ePShWrBiLFy9m/vz5bscRuSyZHZPcFWgI\nxAJYa7cAJbwVSkTkolWtCt27w4EDbifxK/Pnz2fRokUULVqUnj17uh3HYQykLdbVo+kzoaGhKX80\n9e3bl6SkJJcTiVy6zBbJcdbalFkwxpggQO86IpJ9PPKI8zF7Cf397itJSUkpwyt69+5NoUKFXE6U\nzq5dzpbkQ4a4ncSvPPvss5QuXZrffvtNy8FJjpbZIvlnY0wfIMQYczfwFeCDvUZFRC7g0KHUnkJz\n1rwL/xQR4ZPLTJs2jejoaMLCwujatatPrnlR9u6Fq68GH2aL8NFrn52FhITQv39/wFkWMCEhweVE\nIpcms6tbBAD/AZoABvgO+MiXy01odQsRyVCnTrBmDXz+OVSp4naa7MEHm4kkJCRwww03sHnzZsaO\nHcvTTz/t1evlFP66mUh6p0+f5tprr2X79u188skndOjQwe1IIud0rtUtMlUke05wJYC19u8szpbZ\n66tIFpGzJSXBV1/BvfdCaKjbabIHHxTJH330EZ06daJy5crExMSQJ08er17vsq1fD0WKQOnSXr2M\niuRUkyZN4vHHH6dcuXJs2rSJ4OBgtyOJZOiSloAzjghjzEFgE7DJGPO3Maa/t4KKiFyUgABo00YF\nsg+dOnWKgQMHAjBo0KDsXyB/8AHceSesW+d2Er/Stm1bbrjhBnbu3MlHH33kdhyRi3ahMckv4Kxq\nUddaW9RaWxSoBzQ0xmhtHRFxz9y5MH26Vi5wwQcffMCePXuoXr06bdq0cTvOhT34IGzZAk2auJ3E\nrwQGBvL6668D8Prrr3P8+HGXE4lcnAsVyY8Dba21O5LvsNZuB9oBT3gzmIjIeeXPD2+8AV9/7XYS\nv3L06FHefPNNAN544w0CAjI7/9tFV12lTxpc8sADD1CnTh3279/P6NGj3Y4jclEu9O6Wx1p7MP2d\nnnHJ2fzzNRHJ1W6/HaKi4IEH3E6S/QwY4LVTjxw5koMHD9KgQQOaN2/utet4xe+/Oz8va9Z47RID\nvPja50TGGN566y0Ahg4dyqFDh1xOJJJ55524Z4xZba2tdbGPpTuuKTAKpyAfb60dmsEx4cBInML7\nb2vtHRkco4l7IgJxcRAYCEFBbifxO3///TeVKlXi6NGj/Pzzz9x2221uR7o4r78OBQrAM89Avnxu\np/Er99xzDwsWLOCFF15gxIgRbscROcMlrW5hjEkEMhpEZIB81trz9iZ7lo7bDDQG9gErgUestRvT\nHFMIWAI0sdbuNcYUz6j3WkWyiADw2WfOMIv33oO77nI7jV/p3r07o0ePpmnTpsybN8/tOJKDREdH\nc9NNN5E3b142bdpE+fLl3Y4kkuKSVrew1gZaa0MzuBW8UIHscTOwxVq701p7GpgCtEx3zKPAdGvt\nXs81zyqQRURStGsH774LV1zhdhK/snXrVv773/9ijGHYsGFux7l8a9dq0qcP1axZk8cee4z4+Hj6\n9evndhyRTPH2jIswYHea9h7PfWlVBYoaY34yxqw0xjzu5UwikpMZA/fcAw0auJ3Er/Tt25eEhATa\nt29PtWrV3I5zeTp0gPvug/373U7iVwYPHkzevHn5/PPPiY6OdjuOyAVlh0F9QUAt4E4gP7DUGLPU\nWrs1/YFpt/sMDw8nPDzcRxFFxHU7dsDChfDkkxqP7GPLly9n6tSp5MuXj0GDBrkd5/J16wb/+5/G\nJftY+fLl6dq1KyNHjqRXr1589913bkcSPxUZGUlkZOQFj8v0jnuXwhhzCxBhrW3qab8K2LST94wx\nvXDGNw/0tD8C5llrp6c7l8Yki/izTZugSxe4+WYYetb8X0krIsK5ZQFrLeHh4fzyyy+8+uqrDBky\nJEvOm1tFRESc0aEjZzp06BAVK1YkNjaWhQsXcpfmFUg2cNnbUl/iRQNxduprDPwJrMBZd3lDmmOu\nBcYATYFgYDnQxlobk+5cKpJF/J21cOoUhIS4nSR7y8JtqWfPns19991HsWLF2LZtG4UKFcqS82YL\nS5fCqFEwYUKW9SprW+oLGzJkCH369KFWrVqsXLkyZ6y1LbnaJU3cu1zW2kSgG7AAWA9MsdZuMMZ0\nNsY87TlmI/AdsBZYBnyYvkAWET9mLZw86XxtjApkH0pISKBXr14A9OvXL3cVyElJMGgQNGsGefO6\nncavdO/enbCwMFavXs2XX37pdhyRc/JqT3JWUk+yiJ9K3jDk7behbVu30+QMWdST/NFHH9GpUycq\nVqzIhg0byKti8oLUk5w548eP56mnnqJChQps3LhRP1viKld6kkVELludOjB9OgQHu53Erxw/fpz+\n/fsDzvbTubqIsRbWrXM7hV9p37491113HTt27OCDDz5wO45IhtSTLCKS22RBT/LgwYPp168fderU\nYfny5bl33GhCAjRpAkeOwLJlkCczWwCcm3qSM2/WrFncf//9FClShC1btlCsWDG3I4mfUk+yiOQs\nx47BiBGp45El8wYMuKyn79+/n6GeFUSGDRuWewtkcJYTjIiAFSsuu0AGGHCZr70/adGiBXfddRf/\n/vsvAwcOdDuOyFnUkywi2dNff0HXrs7X06ef/1jJUk8//TTjxo2jefPmzJ492+04kov9/vvv1KxZ\nE2MMv//+O9ddd53bkcQPubIEXFZSkSzip06c0BbUPhQdHU2tWrUIDAxk3bp1XHPNNW5H8g1rYd48\nmDzZWRIuN/eeZzNdunRh7NixNGvWjDlz5rgdR/yQhluISM5x7Fjq1yqQfcZaywsvvIC1lm7duvlP\ngQzO+tvDh8PDDztjusVnBg0aRGhoKHPnzmX+/PluxxFJoSJZRLKX3buhYkV4/323k/idb775hsjI\nSIoWLZqysoXfCAmBH3+E++5TkexjJUqU4LXXXgOgZ8+eJCQkuJxIxKEiWUSyl7Jl4eefITTU7SR+\nJS4ujpdeeglwevaKFCniciIXJSbC6tVup/Arzz//fMp63GPHjnU7jgigIllEsqPrroPHH3c7Rc4V\nEXHRTxk9ejTbt2/n+uuvp3PnzlmfKac4dsxZm/u11y5pGb2IS3jtBYKDgxk+fDjgrBDy77//upxI\nRBP3RCS7OHYMhg6FF1+EwoXdTpOzXeQ6yfv376dKlSocPXqU+fPnc88993gxXA6waBE0bHhJwy60\nTvKls9Zyxx138PPPP/PCCy8wYsQItyOJn9DEPRHJ3k6fhv371YPsgn79+nH06FGaN2+uAhng1ls1\nLtkFxhhGjhyJMYYxY8awefNmtyOJn1NPsohkL/HxkJu3QPaFi+hJXrFiBbfccgtBQUGsXbuWa6+9\n1svhcghr4YsvnCXhZs3KdNGsnuTL99RTTzF+/Hjuvfde5syZg9EfLOJl6kkWkezrzz9Tv1aB7DOJ\niYl07do1Zek3FchpnDoF06ZBnz7qVfaxN954g9DQUObNm8fMmTPdjiN+TEWyiLjrjz+gWjUYNszt\nJH5n/PjxREVFERYWRr9+/dyOk72EhMCMGdCggdtJ/E7JkiUZPHgwAN27d+fEiRMuJxJ/pSJZRNxV\nvjz89htcf73bSXKPAQMueMihQ4fo3bs3ACNGjKBAgQLeTpVznToFmdzkYkAmXnu5sGeeeYYaNWqw\nc+dOhgwZ4nYc8VMakywi4oc6d+7Mhx9+SOPGjVm4cKHGfZ5LXBzUqAHVq8OUKdqu2ocWL17Mrbfe\nSt68eVm3bh1VqlRxO5LkUhqTLCLZy9at0L79meORxSdWrlzJuHHjCAoKYsyYMSqQzyc4GL79FqZO\nVYHsYw0bNqRDhw7Ex8fz3HPPaUKk+Jz+jxcRd5Qq5dzefNPtJH4lKSkpZbJez549ue6669yOlP1d\nc03q1/Hx7uXwQ0OHDqVQoUJ89913fPPNN27HET+j4RYi4i5rtXqAD33wwQc8++yzhIWFsXHjRo1F\nzixr4f33YeRI+P13uOIKtxP5jffff59u3bpx9dVXExMTQ/78+d2OJLmMhluISPZw7BhER6e2VSD7\nzN69e3n11VcBePfdd1UgXwxj4OBBZ81kFcg+1aVLF2666SZ27dpF//793Y4jfkRFsoj4VkwMNG0K\n777rdpLcKyIiw7ufe+45YmNjadmyJQ899JBvM+UGEREXXIUl4hyvvVy6wMBAxo0bR0BAAKNGjSIq\nKsrtSOInvD7cwhjTFBiFU5CPt9YOPcdxdYElQBtr7dcZPK7hFiK5xd9/w+HDoNnq3pHBjnszZszg\noYceokCBAmzYsIEyZcq4FC4XOHIERoyAXr3O6lXWjnve8+KLLzJixAhq1qzJihUryJMnj9uRJJdw\nZbiFMSYAeA+4B7gBaGuMOWtLJ89xbwHfeTOPiLgoMTG1cLvyShXIPhQbG0u3bt0AGDJkiArky/XI\nI86qLImJbifxK4MGDaJ8+fJER0czcuRIt+OIH/D2cIubgS3W2p3W2tPAFKBlBsc9B0wDDng5j4i4\nZexYuPdeZ4c98anevXuzb98+6tWrxzPPPON2nJxv2jT48EMoWNDtJH4lf/78jB07FnA2bdm6davL\niSS383aRHAbsTtPe47kvhTGmNPCAtfYDQDN4RHKrTp0gPFxFso8tWbKEDz74gKCgIMaNG0dgYKDb\nkXK+tKsrbN7sbDgiPtGkSRPatWvHqVOn6NKli4a2iFdlh4l7o4BeadoqlEVyozx54NVXnUJZfOLU\nqVN06tQJay2vvPIK1apVcztS7vLxx9CgwZmrtYjXjRw5kuLFi/PDDz8wYcIEt+NILhbk5fPvBa5O\n0y7juS+tOsAU42z5VBy41xhz2lo7M/3J0s4aDg8PJ1y/bEWyv88/dzYNufNOt5P4jwEDAOjfvz8x\nMTFUrVqV1157zeVQuVDNmhAVBeXLp9w1wPPai/cUL16ckSNH8vjjj9OjRw/uuusujbOXixIZGUlk\nZOQFj/Pq6hbGmEBgE9AY+BNYAbS11m44x/GfALO0uoVILrJgATz5JMycCbVquZ3GbyxZsoRbb70V\nYwxLliyhXr16bkfK/bQxjs9Ya2nZsiWzZs3innvuYd68edpeXS6ZK6tbWGsTgW7AAmA9MMVau8EY\n09kY83RGT/FmHhFxQZMmsGmTCmQfOn78OO3bt8daS69evVQge9vff0PbtvDee24n8RvGGD788EOK\nFi3Kd999x4cffuh2JMmFtC21iHjHsmVQty5oopjPPf/884wZM4Zq1aqxcuVKgoOD3Y6Uu33/Pcyf\nD4MGaTc+H5s6dSpt2rQhf/78rF27looVK7odSXKgc/Ukq0gWkayXlOQs93bihFNAqEjzmZ9++ok7\n77yToKAgVqxYwU033eR2JBGvatu2LVOmTKFRo0b89NNPWsFFLporwy1ExE8FBMC8eTBwoApkHzp6\n9CgdO3YEoF+/fiqQ3bBqFbz9ttsp/Mp7773HVVddxa+//sq72u5espB6kkUka506BfnyuZ3CL7Vv\n356JEydSu1Qplu7cqW17fe3gQWIrViT0ww+dXfnEZ+bMmUOLFi0IDg5m1apV3HDDDW5HkhxEPcki\n4n179kDVqjBrlttJ/M6kSZOYOHEiISEhfPbnnyqQ3VC8OFcdPaoC2QXNmzfnqaeeIi4ujjZt2nDy\n5Em3I0kuoCJZRLJOmTLw2Weg7WJ9auvWrSnbTY8ePZrrXM7jz1JKM2udyXz6BNRnRo0axTXXXMP6\n9et54YUX3I4juYCGW4iI5GDx8fE0bNiQqKgoHn74YaZMmYIJCFBx5hLPx7bw+OOwfj38+CMULux2\nLL8RHR3NLbfcQlxcHFOnTqV169ZuR5IcQMMtRMR73nsP+vaFhAS3k/idvn37EhUVRbly5Rg7dqw2\nVMguevRwlkFUgexTNWvW5J133gGgU6dO7Nixw+VEkpOpSBaRy9e6tTOrf9Eit5P4lfnz5zN8+HAC\nAwOZPHkyhVWQZR+1a0PevM7X//4LsbHu5vEjzz77LA888ABHjhyhbdu2nD592u1IkkOpSBaRy1ey\npLPkW3i420n8xp49e3jiiScAGDRoEPXr1099cMAAl1LJgPSv/Zo1TsE8Y4Y7gfyQMYbx48dTtmxZ\nli9fzmuvveZ2JMmhNCZZRC5NUpKzw1inThAW5nYavxIXF8dtt93GihUruOuuu5g/f742UMiutmxx\nCuX/+z+3k/idRYsWER4eTmJiItOnT+ehhx5yO5JkUxqTLCJZyxgICYHGjTUW2ceee+45VqxYQbly\n5Zg8ebIK5OysSpUzC+S4OPey+Jlbb72VoUOHAs4a4jExMS4nkpxGPckicnn+/ReKFHE7hd8YN24c\nTz/9NPny5WPx4sXUqlXL7UiSGdbCmDHwxRewdKnzR6Z4nbWWRx99lClTplClShVWrlxJoUKF3I4l\n2Yx6kkUka2zcCLNnp7ZVIPvM8uXL6datGwD/+9//VCDnJAkJ8NtvTpGsAtlnjDF89NFHVK9enS1b\nttCuXTuSkpLcjiU5hIpkEbk4x45Bly7w9dduJ/ErBw4coFWrVsTHx9O1a1fat2/vdiS5GHnywCef\nQMWKTjspSWtZ+0j+/PmZMWMGRYoUYfbs2QwaNMjtSJJDqEgWkYtTpw6sXAlNmridxG+cPHmSli1b\nsnfvXho2bMiIESPO/4SICJ/kkrNFZOa1j42Fli3hyy+9nkccFStWZPLkyRhjGDhwIDO02ohkgsYk\ni0jmfPklPPhg6tqv4hNJSUm0adOGadOmcfXVV7Ns2TJKlSp1/icZo15Kl6TsuHc+c+fCrFkwerTT\nwyw+M3ToUF599VXy5ctHZGQk9erVczuSZAPnGpOsIllELiwhAVq1gtOnYc4cjan0oV69ejFs2DBC\nQ0NZvHgxN95444WfpCLZNZkqktOzVv9P+Yi1lk6dOjF+/HiuvPJKli1bRsXkITDit1Qki8jlSUx0\nhlnccovbSfzGhx9+SOfOnQkKCmLevHncddddmXuiimTXXHSRHBUF3brBzz9DcLD3gkmK06dPc999\n9/Hdd99xzTXXsGTJEooWLep2LHGRimQRuXjLlzurV1St6nYSvzN//nxatGhBYmIi48eP58kn78sw\nrwAAIABJREFUn8z8k1Uku+aii+QHH4QOHZwxyuIzsbGxNGrUiLVr19KoUSMWLFhAvnz53I4lLtES\ncCJy8TZuhNtug82b3U7iV1auXEnr1q1JTEykT58+F1cgS87y9ddnFsiJie5l8SOhoaHMmTOHsLAw\nfv31Vzp06ECiXntJR0WyiJxb+/bwzTepy1aJ18XExNC0aVOOHTvGo48+yuuvv37xJxkwIOuDSaYM\nuNjXPnkssrUwZAh07Zr1oSRDZcqUYe7cuRQsWJAvv/ySLl26XPx4csnVvD7cwhjTFBiFU5CPt9YO\nTff4o0AvT/Mo8Iy19vcMzqPhFiK+cOAALFgA7dq5ncTv7Nixg1tvvZV9+/bRvHlzZsyYQR6tfuAf\n9u+Htm1h0iQoXdrtNH7ll19+oWnTppw8eZLnn3+eUaNGYTSR0q+4MibZGBMAbAYaA/uAlcAj1tqN\naY65BdhgrT3iKagjrLVnzQxSkSziIzt2QOPG0L+/M1ZSfGLPnj3cfvvtbN++ndtvv5158+YREhLi\ndixxy/HjEBICAfrA1xcWLFjAfffdR3x8PL169WLIkCEqlP2IW2OSbwa2WGt3WmtPA1OAM2YnWGuX\nWWuPeJrLgDAvZxKR86lQAX75Be691+0kfmP37t2Eh4ezfft26tSpw8yZM1Ug+7PYWLj7bm024kNN\nmjThq6++IigoiKFDhzJ48GC3I0k24O0iOQzYnaa9h/MXwU8B87yaSETOduSIswzViRNOu0wZKFnS\n3Ux+Yvfu3dxxxx1s27aNWrVqsWDBAkJDQ92OJW5avx7q1YNHHnE7iV+5//77mTRpEgEBAfTv358h\nQ4a4HUlclm0+xzHG3AF0JHV8soj4SsGCTu9Vjx5uJ/Erf/zxB+Hh4SkF8vfff0+RIkXcjiVuq18f\nRo5MndS3aRMkJbmbyU+0adOGjz/+GGMMffr0oV+/fprM58eCvHz+vcDVadplPPedwRhTHfgQaGqt\n/fdcJ4uIiEj5Ojw8nPDw8KzKKeKfkpKcMY8BAfDxx/DvOf/3kywWExPD3Xffzb59+6hduzYLFy7M\nugI5IsK5ic9FRESc8bvqsi1d6iwRt3Ah1KiRdeeVc2rfvj1BQUG0b9+ewYMHc/z4cd555x2NUc5F\nIiMjiYyMvOBx3p64Fwhswpm49yewAmhrrd2Q5pirgR+Ax621y85zLk3cE8lKp087PVbjxsFNN7md\nxq+sXLmSpk2b8s8//9CoUSNmzZpFoUKFsu4C2kzENZe0LfX5REbCqVPQtGnWnVMyZcaMGbRp04bT\np0/TsWNHxo4dq9VmcinXdtzzrFjxLqlLwL1ljOkMWGvth8aYccBDwE7AAKettTdncB4VySJZbfp0\nmDIFvvrK7SR+Y/78+bRu3Zpjx47RokULpk6dmvWT9FQkuybLi+S0rIUxY+Cxx6BYMe9cQ84wf/58\nWrVqxYkTJ7j33nuZOnUqBQoUcDuWZDFtSy0ijtWrnZ7j5I8Ok4dciNeNHTuWrl27kpiYyGOPPcYn\nn3zinZ4pFcmu8WqRPGaM88nPL79A4cLeuYacZcWKFTRv3pyDBw9Su3Zt5syZQ0lNbM5VtC21iEBC\nAjz5JIwalXqfCmSvS0xM5OWXX6ZLly4kJibSt29fJk6cqI9u5eI89BDMn59aICckuJvHT9x8880s\nXbqUSpUqsWrVKurWrUt0dLTbscQH9NtRxJ8EBcHMmc6/4hOHDx/m/vvvZ/jw4QQFBTF+/HgGDx5M\ngP44kYsVFpa6G9/hw1C7NmzceP7nSJaoXLkyS5YsoX79+uzevZuGDRsybdo0t2OJl+ldWiS3O3kS\nWrdOXbni6qvhuefczeQn1q9fT926dZk7dy5FixZl/vz5PPnkk96/8IAB3r+GZGiAr177adMgPByu\nvdY31xNKlCjBTz/9RPv27Tlx4gStW7emT58+JKhHP9fSmGQRf9C9O8THwwcfuJ3Eb3z++ed07tyZ\n48ePU7NmTb7++msqVKjgdizJTaxNnVvw1VdQsyZUqeJuJj9grWXkyJG8/PLLJCUl0ahRI7744gvK\nlCnjdjS5RJq4J+JP4uNhyRKnpym5feKEJvv4wPHjx+nWrRuffvopAI8++ijjxo3jiiuucDeY5F6/\n/Qb33AOLF6tI9qHIyEgeffRR/vzzT4oVK8bEiRNp1qyZ27HkEmjinog/2b8fHn4YoqKcdt68KpB9\nICoqijp16vDpp58SEhLCuHHjmDRpkgpk8a7KleGbb1IL5H/+cbaaF68KDw8nOjqae+65h0OHDtG8\neXNefvll4uLi3I4mWURFskhukZjoTOYBKFsWxo/XMmA+curUKXr37s0tt9zCxo0bueGGG1i5ciVP\nPfWUdukS7ytYEBo0cL62Fjp3PnMFG/GaEiVKMHfuXIYMGUJgYCDDhw+nVq1aLF++3O1okgVUJIvk\nFh99BI8/nloY33cf1K3rbiY/sHz5cmrVqsVbb71FUlISPXv2ZMWKFdxwww1uRxN/dOwYBAfDK6+k\n3qeJZV4VEBDAq6++yi+//ELVqlWJiYmhQYMGvPzyy5w8edLteHIZVCSL5GRJSalfd+zo/DL86y/3\n8viR2NhYXnrpJRo0aMCGDRuoWrUqixYt4p133nF/eEVEhLvX92MRbr/2BQvCpEmQvIvjypXO3AR9\nquR1DRo0IDo6mlc8f6AMHz6cGjVqEBkZ6W4wuWSauCeSkzVtCn37QqNGbifxG0lJSUyYMIHevXuz\nf/9+AgICePHFFxk4cGDWby99qbTjnmu8uuPepWjXzpnU9/jjTjsxEQID3c3kB1auXEnHjh1Zv349\nAK1ateLtt9/WCjfZlFa3EMkt4uOdiXgAU6fC55/Dt9+6m8lPLF26lOeff54oz4TI+vXrM3r0aOrU\nqeNysnRUJLsm2xXJiYnOrprJPxP33AP9+8Ott7qdLNeLi4tj2LBhvPXWW5w4cYLg4GB69uxJ7969\nKViwoNvxJA2tbiGSGyxe7Hx0mjzMonVrZ1MB8aq1a9fSqlUrGjRoQFRUFKVLl2bSpEksXrw4+xXI\nImkFBqaupfzbb3DwINxyi9O2Fo4edS9bLhccHEy/fv3YtGkTjz32GHFxcQwZMoSqVavy3nvvcerU\nKbcjygWoSBbJ7rZvTy2K69d3fuGtWeO0jYE8edzLlsutW7eO1q1bU6NGDb7++mvy5ctH3759U37p\naeUKyVFq1YKlS1O3pZ8925ngK15VpkwZJk2axNKlS7n55pv566+/eO6556hUqRJjxoxRsZyNabiF\nSHbXsCH06OH0GoPGFHqZtZZly5YxYsQIpk+fjrWW4OBgunTpQq9evShVqpTbES9Mwy1ck+2GW5xP\nly7OvIYHHnDaq1dDmTJQooS7uXKxpKQkZs6cSUREBGs8nR2lS5fmpZde4sknn6RQoUIuJ/RPGm4h\nklMsXw4zZ6a2X3sNNm9ObatA9or4+Hi++OIL6tWrR4MGDZg2bRp58uShW7dubNu2jVGjRuWMAhlg\nwAC3E/itATnptf/gA2jZ0vnaWnjiidRPqcQrAgICeOCBB1i9ejUzZsygZs2a7Nu3j549e1KmTBme\ne+45Nm3a5HZM8VBPskh2cOIEJC8b9vPPTg9PTEzqWELxmq1btzJhwgQ+/vhj9u3bB0CxYsXo3Lkz\nzz77LGFhYS4nFPGBI0egXz94913nfef0aefTq8mTU5eTkyxnrWX27NmMHDmSn376KeX+pk2b8tRT\nT9GiRQuCg4NdTOgftLqFSHa1fz/UqAG7djmrVlgLn37qLN2k8cZeERsby9SpU5kwYQKLFi1Kuf+G\nG26gR48ePPbYY9lnOTcRN3zzDYwYAb/84rQPH4aNG1Mn/UmW+/333xkzZgyfffZZyjjlIkWK8Mgj\nj9C+fXtuvvlmzYPwEhXJItnJM8/A4MFQrJjTbtwYhgyBm292N1cudvDgQWbNmsXXX3/NwoULiYuL\nAyB//vy0bt2a9u3bc/vtt+uXkAg4q1789RdUqeK0//tfWLLE2agk+fGQkNRJgJJlDh06xMSJE5kw\nYULKuGWAypUr8+CDD/Lggw9Sr149AgI0YjarqEgWcdPUqVCtGlx3ndNu08ZZyu2ZZ5x2UpKzlqlk\nGWst69atY+HChcyZM4eff/6ZxMREwHlDvP322+nQoQOtWrWiQIECLqcVyeY++AAqV4a773bavXo5\nQ8SSx2BrQrFXrFmzhokTJ/L555+zf//+lPuvuuoqWrZsyb333kt4eLgm/F0mFckivvTrr864vuQF\n+3v1coZSvP66096wwfkFU66cexlzGWst27dvZ9GiRXz//fd8//33/JVmi+6goCDuvPNOHnroIVq2\nbMlVV13lYlqRHK5pU+fTr5tuctqtWzu7+t1/v9NOu+mRXLaEhAQWL17MjBkz+Oabb9i5c2fKY4GB\ngdStW5e77rqLO++8k5tvvpn8+fO7mDbnUZEs4k3LlsG2bfDYY0577FhYtAg++8xpr18PO3ZAixbu\nZcxl/vnnH9asWcPKlStZsmQJS5cu5cCBA2ccU6pUKe6++26aNGlCs2bNKFKkiEtpfSwiwrmJz0VE\nRBDhD6998u9jY5xPwsLCnM1Kkv/4rFkTJkxw5lsAbNkCFSpoeEYWsNYSHR3NzJkz+f7771m2bBkJ\nCQkpjwcGBlK9enXq169PgwYNqF27NlWqVCFQPf3npCJZ5HIkJsKhQ6nrhy5ZAl98Ae+957QXLnTG\nGP/8s9Petcu57z//cSdvLnLq1Cm2b9/O+vXrWbNmDWvWrCE6Opo9e/acdeyVV15J/fr1ueOOO7j7\n7ru5/vrr/XOMsdZJdk2OWic5K506BfnyOV+fOAFXXw1//ulMPk5KgkKFnPfF5D9UP/wQ2rcHrdxw\n2Y4ePcovv/zCwoUL+eWXX1i7dm3K0LJk+fLl48Ybb6R69epUr16dGjVqcN1111GiRAn/fI9Mx7Ui\n2RjTFBiFsybzeGvt0AyOGQ3cCxwHOlhrozM4JkcXyZGRkYSHh7sdwy9l6rVPSnKWQEp+A9+3Dz7/\nHF5+2WmvXg1PPeX8C84s7+bNnd5jgNhYmDUrtSdZMv0zn5CQwP79+9m7dy979uxhx44dbNmyha1b\nt7JlyxZ2796dYdEREhJCtWrVuOmmm2jQoAENGjSgUqVKesMHIo0hPAe/X+Zkflskp5eQkNprvH8/\ntG0LP/7otA8ehEqV4N9/nbkYJ044czSWL3f+wIuPd1bVuOuui7qkfs86jh8/zsqVK1m6dCnLli0j\nOjqaXbt2ZXhsgQIFqFy58hm38uXLExYWRunSpQkNDc3UNXP6a3+uItmrn3sYYwKA94DGwD5gpTHm\nW2vtxjTH3AtUstZWMcbUA/4H5Lo1ZnL6D1COY63TsxES4rz29evD9987hS04vcJ9+8L//ue09+yB\nBg2cf8F5o3777dQiuVIlOH7cOa8xzozvb79NvV5oqApkD2stJ06c4Ntvv6VQoUIcOnTojNuBAwfY\nu3dvSlH8119/kZS87XYGAgMDKV++PNdeey01atRIuVWuXFkfH55DJBDucgbxc2mHVZQsmVogA8TF\nOe+/yZOVt2513l+T/8DdtQuefhq2b3fae/ZAhw7Oezg4799ffgnPPpt6vj//1O9Zj/z58xMeHn7G\na3H48GHWrl2bcluzZg2bNm3iyJEjREdHEx19Vt8k4BTRYWFhKbfSpUtTvHhxihUrdsZtzpw5NGrU\nKNe9J3t7cNDNwBZr7U4AY8wUoCWwMc0xLYGJANba5caYQsaYktba/WedTXIOa53F6JMnblgL//yT\nuuSZtbBzJ5Qv77STkmDlSqhXz2knJjrrdLZq5bQTEuD996F7d6cdFwcvvOAsSwRw8qTT67B4sdOO\njYWyZZ1/wcny8MPOGzE4k+Y+/dSZsW2MM44uISF1lYmrrnLexJPbhQpB2l2QAgPhxhuz+lW7bElJ\nSSQkJJCYmHjGLf19ye2EhATi4uKIi4vj1KlTnDp1KuXr9P8m344dO8bRo0fPe4uPjwdg1KhRF8xs\njKFkyZIpb8LlypWjSpUqVKlSJaVXI4/WixbJPcLC4JVXUttVq565y2hCQupW2eD8rjh2LLW9fTuM\nH59aJMfEOEPbkicNrlkDPXvCDz847a1bnd8fI0c67d27nU/+kp9/4IAzryT5+UeOOJ8S1qrltI8f\nd4aOVK7stOPinGOSh98lJjqZs/HQkcKFC3Pbbbdx2223pdxnreWff/5h69atKbfkT++SOzKOHTvG\npk2bMrUL4PDhwwkNDaVgwYIptwIFCpz1df78+cmXLx/BwcFn/Xuu+4KCgggMDEz5N+3X6e/Lyk8T\nvV0khwG707T34BTO5ztmr+e+s4rkavnypa7ZCM5EAE/bWntGO/3jAHbLltQfcnD+x0nXtpUqnfdx\nKldO/Sht2zanhzFZmra11vkfuWJFwFmjdcobb5xxvN22LeVx4IzjAez27c5Eh2Q7dpzVtslF5jke\np0KF1Lx//JFalKZr2+SiNe1qC+nadudOZ5zZOR4/K885rpeS5xzXS3l8164zr7drl7O4fXLe3bth\n9uzUx3fvPuN4e+wYlC3LkSNHGD9+vFOYly2benyBAti07aCgM68H8Pbbmfro9ELHZMU5ko85XwGc\nXQQHB5MnTx4qVqyY0tOQ3PtQvHjxM3omSpUqRV7NghfxX/nynfm79NprU97rAadY/fLL1Hbx4qkF\nLjjDM5KX1wRn45M0E9nYtw+iolLbO3c6c0qSz7FlCwwdmlokr1vnrEiUvNFQdLRT1Cd3wkRFndle\ntuzM9pIlTidL8g56S5Y4E2kXLHDaS5c6c1jmzHHay5fDm2+mfjq5YgUMGwbTpqVe7513nN0Pk9uj\nRqWuWb1qlfMHQNr2qFGpE8dXrXJ2Upw48Yy2mTjReX/+4w/qLVjgTLRMfnz0aOynn3L48GH2LljA\n3o8+Yt+jj7Jv3z4OxsRwaNkyDl17LYcOHeKfP/9k9969xCUlERsbS2xy55RLjDEEGUNg3rxO4WwM\ngadPYwoUwBhDQFIS5uRJAgoXdtrn+d3p1THJxphWwD3W2qc97XbAzdba59McMwsYYq1d4ml/D7xi\nrV2d7lwa5CUiIiIiWc7nY5JxeoXTds2V8dyX/piyFzgmw/AiIiIiIt7g7S2+VgKVjTHljDF5gUeA\nmemOmQk8AWCMuQU4rPHIIiIiIuImr/YkW2sTjTHdgAWkLgG3wRjT2XnYfmitnWuMaWaM2YqzBFxH\nb2YSEREREbmQHLOZiIiIiIiIr3h7uIWIiIiISI6jIllEJAPGmERjzGpjzO/GmG+NMZnbeurC5y1n\njPk9K86V5py3GWOWpLsv0BjzlzHmqos4z33GmFcucMwAY0zPDO6/qO/LGFPGGLPdGFPY0y7iaV99\noeeKiPiCimQRkYwdt9bWstZWA/4FumbhubN6nNuvQJgxJu1KQXcB66y1f2XmBMaYQGvtLGvtsMvI\nkenvy1q7B/gvMNRz11vA/6y1Ge+fKyLiYyqSRUQubCnOJkcYY/IbY743xkQZY9YYY+733F/OGBNj\njPnQGLPOGDPfGBPseay2MSbaGPMbaYptY0ywMeZjY8xaY8wqY0y45/72xpgZxpgFnt7VrsaYFzw9\n20uSe1+TWWdyyVScFYSSPQJM9pzvKWPMCmPMb8aYr4wx+Tz3f2KM+cAYsxQY6rnuGM9jLYwxyzy5\nFhhjrkxz7pqeHJuMMU+lf7GMMQHGmGHGmOWe77vTOV7XUUA9Y0x3oAHwTqb+a4iI+ICKZBGRjBlw\neliBxqQuX3kSeMBaWwe4kzMLu8rAGGvtjcARwLOvOh8DXa21N6W7RlcgyVpbHXgUmOBZLhPgBuAB\nnF1K3wCOWWtrAcvwLJuZzhSgrSdzXqAZMN3z2HRr7c2e628E/pPmeWHW2vrW2pc87eTe4F+ttbdY\na2sDXwJph2FUA8JxCtv+GQzp+A/Ocp71PPmfNsaUS3cM1toEz3lHAt2ttdln20gR8Xve3kxERCSn\nCjHGrMbZ4CgGWOi5PwAYYoy5DUgCShtjSnge22GtTR6Xuwoob4wpBBSy1nr2rOUzoKnn61uB0QDW\n2k3GmD+Aqp7HfrLWngBOGGMOA8l7sP+OU6SewVq7ytPLXQW4HlhmrT3sebiaMWYwUBjID3yX5qlf\nneP7L2uMmQqUAvIAO9I89q21Nh44ZIz5EacQXpPm8Saea7b2tEOBKsDODK7TDNjn+Z5+PEcWERGf\nU0+yiEjGTnh6bq/G6VVOHibxGFAcuMnTM3sAyOd5LC7N8xNJ7YjI7I6haY9Ley6bpp3EuTs4JuP0\nJqcMtfD4FHjW02M9KE1ecNanz8gYYLTnOV3SPSft2GPD2WORDfCctfYmz62Stfb79BcwxtTE6aW/\nBehpjCl5jiwiIj6nIllEJGMGwFp7CugOvGSMCQAKAQestUnGmDuAcumfk5a19gjwrzGmgeeudmke\n/hWn6MYYUxUoC2y6jMxTPOe/A/g2zf0FgL+MMXmSr5cJoTg9vADt0z3W0hiT1xhTDLgdZ3fVtL4D\nnjXGBAEYY6oYY0IyuMZ/cYZZ7AGGoTHJIpKNqEgWEclYSu+otTYaZzhBW+BzoK4xZg1OQboho+ek\n8yTwX8/wjbTH/BcINMasxen5bW+tPX2+LOcNbO1G4Bjwg7X2ZJqH+gErcIryzOQFGAhMM8asBP5O\n99haIBJYAgzKYAWNj3CGqKz2LAv3P9L1fnsm8+201iYPsfgAuNYY0+i836SIiI9oxz0RERERkXTU\nkywiIiIiko6KZBERERGRdFQki4iIiIikoyJZRERERCQdFckiIiIiIumoSBYRERERSUdFsoiIiIhI\nOiqSRURERETSUZEsIiIiIpKOimQRERERkXRUJIuIiIiIpKMiWUREREQkHRXJIiIiIiLpqEgWERER\nEUlHRbKIiIiISDoqkkVERERE0lGRLCIiIiKSjopkEREREZF0VCSLiIiIiKSjIllEREREJB0VySIi\nIiIi6ahIFhERERFJR0WyiIiIiEg6KpJFRERERNJRkSwiIiIiko6KZBERP2GMecIYE2WMOWKM2WWM\nGWqMCUjzeKQx5qQxJtYYc9QYs8HNvCIiblKRLCLiP0KA7kAxoB7QGHgpzeMWeNZaG2qtLWitvc6F\njCIi2YKKZBGRbMAYs8MY86IxZo0x5l9jzGRjTN6svIa1dqy1drG1NsFa+yfwOdAwfZSsvKaISE6l\nIllEJPtoDTQBKgA1gA4ZHWSMaegppP/x/Jv263+MMQ0yeb3bgPXp7htijDlgjPnVGHP7pX4jIiI5\nXZDbAUREJMW71tr9AMaYWUDNjA6y1i4GilzOhYwxTwK1gf+kufsVIAaIB9oCs4wxNay1Oy7nWiIi\nOZF6kkVEso/9ab4+ARTwxkWMMQ8AbwBNrbX/JN9vrV1prT1urT1trZ0ILAaaeSODiEh2pyJZRCSH\nMcbc6ll9IjbdLfm+9OOM0z63KTAWaGGtjbnApSwaoywifkrDLUREchhr7SKg4MU+zxhzJzAJeMBa\nuyrdY4VwVrz4GUgAHgEaAc9fdmARkRxIRbKISPZgfXCN14BQYK4xxniu+au1tjmQBxgMXAMkAhuB\nltbarT7IJSKS7RhrffG+LCIiIiKSc2hMsoiIiIhIOiqSRURERETSUZEsIiIiIpJOjpm4Z4zR4GkR\nERERyXLW2rOWu8xRPcnW2hx7GzBggOsZ/PWm116vu7/d9NrrtffHm157vfaXejuXHFUki4iIiIj4\ngopkEREREZF0VCT7SHh4uNsR/JZee3fodXePXnv36LV3j1579+TW1z7HbCZijLE5JauIiIiI5AzG\nGGxOn7iXkfLly2OM0U03n93Kly/v9o+9yPlFRLidwG9F6LUXyTVyfE+yMea8MxNFspp+5iTbMwb0\nM+oKvT+I5Dye/29zX0+yiIiIiEhWU5EsIiIiIpKOimQ/MXDgQB5//HEAdu/eTWhoqGsfCX7xxRc0\nbdrUlWuLiIiIZIaKZC9btGgRDRs2pHDhwhQvXpxGjRqxatUqV7IY4wy3KVu2LLGxsSntrNSxY0eC\ng4MpVKgQhQoVonr16vTp04fY2NiUYx599FHmz5+fqXP1798/yzOKiIiIXIiKZC86evQo9913H927\nd+fff/9l7969DBgwgODgYLejeVWvXr04cuQIf//9N5988gnLli2jYcOGnDx50u1oIv5hwAC3E/it\nAXrtRXINFcletHnzZowxPPzwwxhjCA4O5q677uLGG28EYPv27TRu3JjixYtTokQJ2rVrd0aPa4UK\nFRg+fDg1atSgYMGCdOrUiQMHDtCsWTNCQ0Np0qQJR44cAWDnzp0EBAQwbtw4wsLCCAsL45133skw\nV/KxSUlJANxxxx3079+fW2+9ldDQUJo2bco///yTcvzEiRMpX748V155JYMHD6ZChQr8+OOPF/z+\n8+bNS+3atZk5cyaHDh3ik08+AWDChAk0atQo5bgXXniBkiVLUqhQIWrUqEFMTAzjxo3j888/Z9iw\nYYSGhtKyZcuU1+Sdd96hRo0aFClShLZt2xIfH38x/1lEcj8tQ+YaLQEnknuoSPaiqlWrEhgYSIcO\nHZg/fz6HDx8+43FrLX369OGvv/5iw4YN7Nmz56w32K+//poffviBzZs3M3PmTJo1a8Zbb73FwYMH\nSUxMZPTo0WccHxkZybZt2/juu+8YOnToOYvZ9EMtJk+ezIQJE/j777+Ji4tj+PDhAMTExNC1a1cm\nT57Mn3/+yZEjR9i3b99FvQ4FChTg7rvv5tdffz3r+gsWLGDRokVs3bqVI0eOMHXqVIoVK0anTp14\n7LHHeOWVV4iNjeXbb79Nee5XX33FggUL2LFjB2vWrOHTTz+9qDwiIiIiF6Ii2YsKFizIokWLCAgI\n4Omnn6ZEiRK0bNmSv//+G4BKlSrRuHFjgoKCKFasGC+88AI///zzGed47rnnKF68OKVlc9Y1AAAg\nAElEQVRKlaJRo0bUq1eP6tWrkzdvXh588EF+++23M46PiIggX7583HjjjXTs2JHJkydnKmvHjh2p\nVKkSwcHBPPzww0RHRwMwffp07r//furXr09QUBCDBg26pNeidOnSZ/ROJ8uTJw9Hjx4lJiYGay3X\nXHMNJUuWPO+5unfvTsmSJSlcuDD33XdfSlYRERGRrKIi2cuuueYaPv74Y3bt2sW6devYt28fPXr0\nAODAgQO0bduWMmXKULhwYdq1a8fBgwfPeH7agjEkJOSs9rFjx1LaxhjKlCmT0i5Xrlyme32vuuqq\nlK+vuOKKlPPu27ePsmXLnnHNYsWKZeqcae3du5eiRYuedf8dd9xBt27d6Nq1KyVLlqRLly5nfE8Z\nSfsapM0qIiIiklVUJPtQ1apV6dChA+vWrQOgd+/eBAQEsH79eg4fPsykSZMua1k2ay27d+9Oae/a\ntYvSpUtfVuZSpUqxZ8+elPbJkyc5dOjQRZ3j2LFjfP/999x2220ZPt6tWzeioqKIiYlh06ZNvP32\n28DZQ0JEREREfEVFshdt2rSJESNGsHfvXsBZn3jy5MnUr18fcIrHAgUKULBgQfbu3ZtSHF6O119/\nnZMnT7J+/Xo++eQTHnnkkQyPy2wx/n//93/MmjWLZcuWcfr06YualBIfH8+qVat48MEHKVasGB06\ndDjrmKioKFasWEFCQgIhISHky5ePgADnx7JkyZJs374909cTEQ9NHnONJu6J5B4qkr2oYMGCLF++\nnHr16lGwYEEaNGhA9erVUybFDRgwgFWrVqWMrW3VqtUZz0/fk5qZntXbb7+dypUrc/fdd/PKK6/Q\nuHHjDI9Le67znff6669nzJgxtGnThtKlSxMaGkqJEiXOu4zdsGHDKFSoEMWLF6dDhw7UrVuXxYsX\nExISctaxsbGxdOrUiaJFi1KhQgWKFy/Oyy+/DMB//vMf1q9fT9GiRXnooYcy/RqI+L2BA91O4LcG\n6rUXyTWMW7uuXSxjjM0oqzHGtZ3jspOdO3dSsWJFTp8+ndIT6w3Hjx+ncOHCbN26lXLlynntOtmZ\nfuYk2zMG9DPqCr0/iOQ8nv9vz+qF82pPsjGmjDHmR2PMemPM78aY589x3GhjzBZjTLQxpqY3M+Vm\n3npjnj17NidPnuT48eO8+OKLVK9e3W8LZBEREfEP3h5ukQD0tNbeANQHuhpjrk17gDHmXqCStbYK\n0Bn4n5cz5VreGorw7bffUrp0acqUKcO2bduYMmWKV64jIiIikl34dLiFMeYbYIy19oc09/0P+Mla\n+6WnvQEIt9buT/dcDbeQbEE/c5LtabiFa/T+IJLzuDLcIl2A8kBNYHm6h8KA3Wnaez33iYjIpRgw\nwO0Efqt///5uRxCRLBLki4sYYwoA04Du1tpL3vkh7dI64eHhhIeHX3Y2EZFcY9Uq6NABfv899b6Z\nM6FZMwjyydu939mxYwfjx49n3rx5bNu2jaNHj/Lpp59Sp04d2rRpw4MPPkiePHncjikiaURGRhIZ\nGXnB47w+3MIYEwTMBuZZa9/N4PH0wy02Ardn6XCL9B89XmzbhzZv3kybNm3Yvn07b7zxBt26dXMl\nh5s6duxI2bJlL3kLbG/Tx6mSbZw6BbNnw//9n9OOjYWaNSF5ffGVK+Hhh2HrVggMdC9nLhQbG8sr\nr7zC+PHjSUhIOOdxVatWZcSIETRv3tyH6UTkYrg53OJjICajAtljJvAEgDHmFuBw+gLZnwwbNow7\n77yTI0eO+GWBLCIXISEBXnoJvv/eaYeGOr3JyU6ehMGDUwvkQ4ec++SyREVFUaNGDcaOHUtSUhLt\n2rVj3rx5HDp0iFOnTrFp0yZGjRpFlSpV2Lx5My1atKBHjx7Ex8e7HV1E/p+9O4+Lutr/OP46bCIK\nbrjhBmmauV019w0z01wzN9y1NP2V5rXFum1gdW9maotpi+Weu5ToNZfcd3O9iqa5KxKKIojKOuf3\nxwhhigw4M98Z5vN8POYRw3znfN8zEnw4fL7n5IKtl4BrBvQDnlRKHVBK7VdKtVdKDVdKvQigtV4F\nnFFKnQS+BV6yepC/z/rl9r4dnTt3jho1ahh2fmeWnp6e7WO7d++mffv2NG/enPnz5wMwb948/P39\neeWVV/jtt9/sFVMI6ylcGGbPNhfHGYoV++vjli2hXz/zx8nJ0LUrzJpl14j5zdq1awkODubs2bPU\nq1ePw4cPM3fuXNq3b0/x4sUpUKAAVatWZfTo0URGRvLpp5/i6enJF198wbPPPstt+SVFCOehtXaK\nmznqvbL7vKM6duyYDg4O1kWLFtU1a9bUERERmY89+eST2t3dXXt7e2tfX1/9xx9/3PP8wMBA/emn\nn+ratWvrwoUL66FDh+qYmBj9zDPPaF9fX922bVt9/fp1rbXWly5d0t27d9clS5bUjzzyiP7yyy/v\nGmv8+PG6cuXK2tfXV9eoUUP/9NNPd51n4sSJunbt2rpo0aI6JCREJycnZ/u6lFL61KlTmfcHDx6s\n33vvPYvG2r9/v65Xr5728/PTvXv31iEhIZnPzek1BAYG6k8++UTXrl1be3t76/T09GwzdunSRf/8\n88+Z969evaoLFSqkU1JSsn3O/Tjb15zIZ44f17pPH61v3crd806f1vqVV7R+wP8j4sF+/fVX7enp\nqQE9YMCAB35PzGrnzp3a399fA/qpp57SSUlJNk4qhMiNOz/X76097/dJR7zlhyI5NTVVV6lSRY8f\nP16npqbqDRs2aF9fX33ixInMY4KDg/UPP/yQ7RiBgYG6SZMm+sqVK/rSpUu6VKlSun79+vrQoUM6\nOTlZP/nkk/qDDz7QJpNJ169fX3/00Uc6LS1NnzlzRleuXFmvXbs2c6ylS5fqP//8U2ut9eLFi3Wh\nQoUy7wcGBupGjRrpP//8U8fFxenq1avrb7/9Nttcbm5uDyySsxsrJSVFV6pUSX/xxRc6LS1NL126\nVHt6eur33nvPotcQGBio69atq6Oioh74gyc9PV2XLFlS37hxI/Nz8+fP161bt872Odlxpq85kQ+l\npGgdEqL1Rx9lf0xoaM7jnD2rdWqq1WLldwcOHNC+vr4a0C+//HK2v5CHZvPeHzlyRJcuXTqzwDaZ\nTDZMK4TIjeyKZLstASdg165d3Lx5kzfffBMPDw9at25Np06dWLBgQa7GGTVqFP7+/pQtW5YWLVrQ\nqFEjateujZeXF926dePAgQP89ttvxMbG8s477+Du7k5gYCBDhw69ayOQ7t27U7p0aQB69uzJo48+\nyp49ezIfHz16NKVLl6Zo0aJ07tyZgwcPZptJ59Cikt1YO3fuJC0tjVdeeQV3d3e6d+9OgwYNALJ9\nDX9/v0aPHk1AQAAFChTI9vz79++nRIkShIeHM2fOHGbPns20adNo3br1A3ML4XA8PWHePHjjjeyP\nGTfuwWOsWwcNG0KW/99F9q5du8azzz7LjRs36N27N19++SVubvf/8Tkum/e+Ro0arFq1Ch8fH+bO\nncuECRNsGVkIYQWyJpAdXbp0iQoVKtz1uUqVKhEVFZWrcTIKW4CCBQvecz8xMZFz584RFRVF8eLF\nAXMRazKZaNmyZeaxc+bM4bPPPuPs2bMA3Lx5k9jY2Puex8fHh+jo6FzlzC5z1rGio6MpV+7uZbEz\ntry25DUAlC9fPsfzb9iwgV69ejFw4MDMz4WGhtK6dWvi4uL47rvvKF26NLVq1aJ+/fp5e5FC2NJ/\n/gNdukDNmuYL8R5mtQofH1i2DJo2tV6+fMpkMjFo0CDOnTtHgwYNmD17drYFck7q1avHggUL6Nq1\nK++88w4tWrSgqfwbCOGwZCbZjgICArhw4cJdnzt//vw9RaI1VKxYkUceeYRr165x7do14uLiiI+P\nZ8WKFZnnffHFF5k2bRpxcXHExcVRo0aNPC9t5uPjw61btzLv//nnnxY9r2zZsvf8knD+/HkAKlSo\n8MDXkMGS7bg3btxIs2bNMu9HRUURGxtL48aNmTVrFq1bt6Z///5MnjzZotxC2F3Zsub1jhMSHn6s\nZs2gefO/7j9gCTNX9+2337Jy5UqKFSvG4sWLH/gXK0t06dKF119/nfT0dPr06UOCNf49hRA2IUWy\nHTVq1AgfHx8mTJhAWloamzZtYuXKlYSEhFj9XA0bNsTX15cJEyaQlJREeno6kZGR7N27FzDPGru5\nueHv74/JZGLmzJkcOXIkz+erW7cu8+fPx2QysXr1ajZv3mzR85o0aYKHhwdTpkwhLS2N8PDwzJaP\nnF6DpVJTU9mxYwdNmjTJ/NyWLVto2rQpHh4enD59mrJly+Lh4UFcXFyuxhbCboYMgd9/v3sli4eV\nlASvvgrPP2+9MfORs2fP8sadtpZvv/2WwMBAq4z773//m/r163P+/Hneeustq4wphLA+KZLtyNPT\nkxUrVrBq1Sr8/f0ZOXIkc+fOpWrVqpnH5DQr+vfHszteKcXKlSs5ePAgQUFBlCpVimHDhmXOWlSv\nXp3XXnuNxo0bU6ZMGSIjI2meZWbJktnZrD7//HMiIiIoVqwYCxYsoFu3bhaN5enpSXh4ODNnzqRE\niRIsWbKE7t27A+Dm5vbA12BJzgMHDvDWW2+hlCI8PByARYsWMXXqVNLS0tixYwdaa9xlowXhqLJe\nC+DjY92xr12DW7dg0iTrjpsPaK0ZMWIEN2/epGfPnvTs2dNqY3t5eTFz5kw8PDz4+uuv2bp1q9XG\nFkJYj8133LOWh9pxT4gHmDJlCi1atKB69eoMHjw4xwsp5WtO2M3Nm1C/PtSpAwsXmncDtURYmPkm\n8uynn37iueeeo2jRohw/fpxSpUpZ9LywsDDCLHzv33//fT788ENq1arF/v378ZCtw4UwRHY77kmR\nLFze1atXmTFjBkWLFqVmzZp3tWXcj3zNCbtKToadOyE42LbnOXsW9u79a4trF3b79m2qV6/OuXPn\n+Oqrr3j55Zdtcp6kpCSqV6/O2bNnmTZtGv/3f/9nk/MIIR5MimQhrES+5kS+ExVlnq1+/XWQHlnG\njx/Pv/71L+rUqcPevXttOsMbHh5O9+7dKV68OKdOnaJo0aI2O5cQ4v6yK5KlJ1kIIRxNUpJ5C2kL\nL4B9aOXKwcmTUiBj/svS+PHjAZg4caLNWyC6detGcHAw165d49NPP7XpuYQQuSNFshBCOBoPD+jZ\nE6ZOBXv91SLrDKYL/6Vk/PjxxMfH07ZtW5566imbn08pxccffwyYL4C2dPlMIYTtSbuFELkkX3Mi\n37pwAd57D3x9YcoUo9PYXUxMDEFBQdy+fZu9e/fadWOhrl27EhERwSuvvMIXX3xht/MKIaTdQggh\nnMOlSw8/k5vXlS2Sk6FyZfjww4c7v5OaOHEit2/fpkuXLnkukC1d2eLvPrzznk+fPp0rV67kaQwh\nhHXJTLIQuSRfc8KmOnWCmBhYvhwCAvI2hlIu3TKRF1euXCEwMJBbt2491Czyw3x/6NixI6tWreL9\n999n3LhxeRpDCJF7MpMshBDOICICQkOhdGljcxw7BtHRxmawo2nTpnHr1i06dOhg1zaLrDJ235sy\nZQqJiYmGZBBC/EWKZCGEcCRububZZCN3gZwyxbwu8+HDxmWwo6SkJKZOnQqQuQ21EZo3b06TJk2I\ni4vj+++/NyyHEMJMimQXMW7cOAYMGADAhQsX8PPzM6xlYP78+bRv396QcwvhsLZtM7dYpKcbncS8\nssapU/D000YnsYv58+dz5coV6tatS6tWrQzLoZTKnE2eNGkSKSkphmURQkiRbHPbtm2jWbNmFC1a\nFH9/f1q0aMG+ffsMyaLubGlboUIFEhISMu9b05AhQyhQoABFihShSJEi1K5dm7fffpuEhITMY/r2\n7cvq1astGuv999+3ekYhHFJyMnz8MTjCDGKZMlC4sNEp7EJrzeTJkwEYM2aMTb4v5kanTp14/PHH\nuXjxIgsWLDA0ixCuTopkG7px4wadO3dm9OjRxMXFERUVRWhoKAUKFDA6mk29+eabxMfHc+XKFWbO\nnMmuXbto1qwZt2/fNjqaEI6rTRvYtQuGDXv4sUJDH34MgN27YfRox5jdtpFff/2VyMhIypYtS+/e\nvR96vNCHfO/d3NwYO3YsAJMnT5aLhIUwkBTJNnTixAmUUvTq1QulFAUKFOCpp56iZs2aAJw+fZo2\nbdrg7+9PqVKl6N+//10zrkFBQUycOJE6derg6+vLsGHDuHz5Mh06dMDPz4+nn36a+Ph4AM6dO4eb\nmxvTp0+nXLlylCtXjkmTJt03V8axJpMJgNatW/P+++/TvHlz/Pz8aN++PdeuXcs8fs6cOQQGBlKy\nZEk++ugjgoKC2LBhQ46v38vLi/r16xMREcHVq1eZOXMmALNnz6ZFixaZx40ZM4bSpUtTpEgR6tSp\nw9GjR5k+fTo//vgjEyZMwM/Pj65du2a+J5MmTaJOnToUK1aMPn36yJ8kRf7iZoVvy3ldAi4rkwne\neQcqVoS0tIcfz0FlzCKPHDkSLy+vhx4vr0vAZRUSEkLJkiX53//+x86dOx96PCFE3kiRbENVq1bF\n3d2dwYMHs3r1aq5fv37X41pr3n77bf7880+OHTvGxYsX7/kGGx4ezvr16zlx4gQRERF06NCB8ePH\nExsbS3p6Ol9++eVdx2/atIlTp06xZs0aPvnkk2yL2b//SXHBggXMnj2bK1eukJyczMSJEwE4evQo\nL7/8MgsWLCA6Opr4+HguXbqUq/ehcOHCtG3blq1bt95z/rVr17Jt2zZOnjxJfHw8ixcvpkSJEgwb\nNox+/foxduxYEhISWL58eeZzlyxZwtq1azlz5gyHDh1i1qxZucojhEOJi4NmzWDGDMdats3NDX79\nFV57DfLpX7+OHTvG6tWrKViwIMOHDzc6TqYCBQrwwgsvAPD1118bnEYI1yVFsg35+vqybds23Nzc\nePHFFylVqhRdu3bNXCi+cuXKtGnTBg8PD0qUKMGYMWPYvHnzXWOMGjUKf39/ypYtS4sWLWjUqBG1\na9fGy8uLbt26ceDAgbuODwsLw9vbm5o1azJkyBCLe9qGDBlC5cqVKVCgAL169eLgwYMALFu2jC5d\nutCkSRM8PDz44IMP8vReBAQE3DU7ncHT05MbN25w9OhRtNZUq1aN0jksfTV69GhKly5N0aJF6dy5\nc2ZWIZxSkSLw/vtw9qx5fWNHdecvT/nJN998A8CAAQMoUaKEwWnuNnz4cJRSLF68mNjYWKPjCOGS\npEi2sWrVqjFjxgzOnz/PkSNHuHTpEv/85z8BuHz5Mn369KF8+fIULVqU/v373/PNMGvBWLBgwXvu\nZ11LUylF+fLlM+9XqlTJ4lnfMmXKZH7s4+OTOe6lS5eoUKHCXefMyw+TqKgoihcvfs/nW7duzciR\nI3n55ZcpXbo0I0aMyHF90KzvQdasQjglNzdo1w7y+AuozR06BO3bg4FLo9lCUlISc+fOBWDEiBEG\np7lXYGAgzzzzDCkpKcyYMcPoOEK4JCmS7ahq1aoMHjyYI0eOAPCvf/0LNzc3IiMjuX79OvPmzXuo\nizS01ly4cCHz/vnz5wnI645dd5QtW5aLFy9m3r99+zZXr17N1RiJiYn8+uuvtGzZ8r6Pjxw5kr17\n93L06FGOHz/Op59+CtzbEiJEvnPtmuPP0Hp7Q58+8O9/G53EqpYtW0ZcXBz169enbt26Rse5r5de\negkwz3ibHP3rRIh8SIpkGzp+/DiTJ08mKioKMK9PvGDBApo0aQKYi8fChQvj6+tLVFRUZnH4MD78\n8ENu375NZGQkM2fOJCQk5L7HWVqM9+jRgxUrVrBr1y5SU1NzdVFKSkoK+/bto1u3bpQoUYLBgwff\nc8zevXvZs2cPaWlpFCxYEG9vb9zuXLhUunRpTp8+bfH5hHA648dDUBBs2WLdca1x4V6GatVg0CBz\nsZyPTJ8+HYBh1lhNJAtrXLiXoX379lSqVIkzZ86wZs0aq40rhLCMFMk25Ovry+7du2nUqBG+vr40\nbdqU2rVrZ14UFxoayr59+zJ7a7t3737X8/8+k2rJzGqrVq2oUqUKbdu2ZezYsbRp0+a+x2Ud60Hj\nPv7440yZMoXevXsTEBCAn58fpUqVeuAydhMmTKBIkSL4+/szePBgGjRowPbt2ylYsOA9xyYkJDBs\n2DCKFy9OUFAQ/v7+mTtevfDCC0RGRlK8eHGee+45i98DIZzGhAnmDUSqV7fuuOPGWXc8MF9UeOyY\n9cc1wPHjx9m8eTM+Pj706dPHqmOPs+J77+7unnlBYUb/tBDCfpSzrMGolNL3y6qUknUkMS/r9sgj\nj5Campo5E2sLN2/epGjRopw8eZJKlSrZ7DyOTL7mhMNTyrorZWgNLVrApUtw8CD4+VlvbAO88cYb\nTJw4keeff54ffvjBqmNb+/tDTEwM5cqVA8zXduR0YbMQIvfu/H97zyyczCTnI7Yq3FauXMnt27e5\nefMmr732GrVr13bZAlkIq9Aali2DmzeNTmIZpcw7AZ486fQFckpKCrNnzwbgxRdfNDhNzkqXLk2H\nDh1IT09n/vz5RscRwqVIkZyP2KoVYfny5QQEBFC+fHlOnTrFwoULbXIeIVxGYiLMmgX16jnW2sgP\n8thj1tnoxGARERFcuXKFWrVq0bBhQ6PjWGTQoEEAmcW9EMI+pN1CiFySrzlhNbdugY+P9ce1drtF\nhrQ0WL0aSpUCJykw/65Lly6sWLGCzz77LHM5TmuyxfeH5OTkzLXmDxw4wD/+8Q+rji+Eq5N2CyGE\ncDS2KJABQkNtM+5XX8F//gMJCbYZ38auXLnCL7/8gru7u9Uv2MsQaoP3vkCBAvTt2xdAdhgVwo5k\nJlmIXJKvOfFQ1q6FAwegXz/IsvmPUzCZnLrlYurUqYwcOZJnnnmGVatWGR0nV/bt28cTTzyBv78/\nUVFReHl5GR1JiHzDZWeSlVJWudnLiRMnqFu3LkWKFOGrr76y23kdyZAhQ3j//feNjiGEbZQpA6dP\nm4tlZ+PEBTKQucPegAEDDE6Se/Xq1aNGjRrExsbyyy+/GB1HCJfg3N/x8qEJEybw5JNPEh8fz8iR\nI42OI4Swttq14dtv4fnnjU6SNzdvmvO/8orRSXLlxIkT7N69G19fX7p27Wp0nFxTSmVuyCQtF0LY\nR74vkrXWVrnZy7lz56hRo4bdzpefpKenZ/vY7t27ad++Pc2bN89cRmnevHn4+/vzyiuv8Ntvv9kr\nphDOzWQy7xDYtq3RSXJl3rx5AHTv3h0fW/WC21i/fv1wc3Nj1apVXL9+3eg4QuR7+b5IdjS///47\nrVu3plixYtSqVYsVK1ZkPtamTRs2btzIyy+/jJ+fHydPnrzn+UFBQUycOJE6derg6+vLsGHDuHz5\nMh06dMDPz4+nn36a+Ph4AKKjo+nRowelSpWicuXKTJky5a6xPvnkE6pUqYKfnx81a9bk559/vus8\nkyZNok6dOhQrVow+ffqQkpKS7etyc3O7awvprC0TOY114MAB6tevT5EiRQgJCSEpKSnzsZxeQ1BQ\nEBMmTKBOnToULlwYk8l033yNGjWiQIECvPHGG5kXwHTo0IGkpCQmTZpEgwYNsn1tQlhN9+4wciRc\nvmx0krzz9YUff4TOnY1OYjGtdWaR3L9/f4PT5F3ZsmUJDg4mJSWF8PBwo+MIke9JkWxHaWlpdO7c\nmfbt23PlyhW+/PJL+vXrxx9//AHA+vXradGiBVOnTiUhIYEqVarcd5zw8HDWr1/PiRMniIiIoEOH\nDowfP57Y2FjS09P58ssv0VrTuXNn6tatS3R0NOvXr+eLL75g3bp1meNUqVKF7du3k5CQQGhoKP37\n9ycmJibz8SVLlrB27VrOnDnDoUOHHvgnvpz6trMbKzU1lW7dujFo0CCuXbtGz549WbZsGYBFrwFg\n4cKF/PLLL1y/fj3b3QZNJhM7d+68a5vuNWvW0LBhQzw9PR+YXQirmTDB3JN8ny3arSoszLbjZ3CS\nC1h37NjBmTNnKFeuHMHBwTY9V5iN3/uMVTkWLFhg0/MIIaRItqtdu3Zx8+ZN3nzzTTw8PGjdujWd\nOnXK9Te7UaNG4e/vT9myZWnRogWNGjWidu3aeHl50a1bNw4cOMBvv/1GbGws77zzDu7u7gQGBjJ0\n6NC7NgLp3r175hanPXv25NFHH2XPnj2Zj48ePZrSpUtTtGhROnfuzMGDB7PNlFNLSnZj7dy5k7S0\nNF555RXc3d3p3r175qxudq/h7+/X6NGjCQgIoECBAtmef//+/ZQoUYLw8HDmzJnD7NmzmTZtGq1b\nt35gbiGsqnJlePdd82ysLY0bZ9vxASZONL+eyEjbn+shZXzP6Nu3L+7u7jY91zgbv/fdu3fH09OT\nDRs28Oeff9r0XEK4OimS7ejSpUtUqFDhrs9VqlSJqKioXI2TUdgCFCxY8J77iYmJnDt3jqioKIoX\nL07x4sUpVqwYH3/8MZez/Jl3zpw51K1bl2LFilGsWDEiIyOJjY2973l8fHxITEzMVc7sMmcdKzo6\nmnLlyt11bMaW19m9hitXrtx1fHkLltHasGEDvXr1YuDAgQwcOJBBgwZx4cKFe4pkrTUDBw7M02sU\nIltaw502qHwjKMi8tfbjjxud5IHS09NZunQpACEhIQaneXjFihWjffv2mEwmlixZYnQcIfI1KZLt\nKCAggAsXLtz1ufPnz99TJFpDxYoVeeSRR7h27RrXrl0jLi6O+Pj4zB7o8+fP8+KLLzJt2jTi4uKI\ni4ujRo0aeb5I0cfHh1u3bmXet3SGo2zZsvf8knD+/HkAKlSo8MDXkMGSJfo2btxIs2bNMu9HRUUR\nGxtL48aN7zru6NGjREdHW5RdCItduAAVKsALLxidxHq6d4e6dc27+zmwrVu3EhMTQ+XKlalbt67R\ncaxCWi6EsA8pku2oUaNG+Pj4MGHCBNLS0ti0aRMrV660yexGw4YN8fX1ZcKECeItk/kAACAASURB\nVCQlJZGenk5kZCR79+4F4ObNm7i5ueHv74/JZGLmzJkcOXIkz+erW7cu8+fPx2QysXr1ajZv3mzR\n85o0aYKHhwdTpkwhLS2N8PDwzJaPnF6DpVJTU9mxYwdNmjTJ/NyWLVto2rQpHh4emZ9LSkoiICCA\nIkWKkJycnKtzCPFAFSvCxYvw4otGJ7G+pCS4ds3oFNlavHgxAL169bLrmve21KVLF3x8fNi5cydn\nz541Oo4Q+ZZNi2Sl1A9KqRil1P+yebyVUuq6Umr/ndu7tsxjNE9PT1asWMGqVavw9/dn5MiRzJ07\nl6pVq2Yek9M38b8/nt3xSilWrlzJwYMHCQoKolSpUgwbNoyEO9vJVq9enddee43GjRtTpkwZIiMj\nad68ucU5/u7zzz8nIiKCYsWKsWDBArp162bRWJ6enoSHhzNz5kxKlCjBkiVL6N69O2BeMeNBr8GS\nnAcOHOCtt95CKZV5NfiiRYuYOnUqaWlp7NixI/PYvXv3smXLFpKSku66gFEIq/Dzg0aNjE5hXXPn\nmi9EvLOsoqNJS0vLvBC4V69eBqexnkKFCtGlSxfA/P1MCGEbNt2WWinVHEgE5mita9/n8VbAa1rr\nLhaMJdtSC5s5ffo0AQEBeHt7ExYWRocOHWjYsOF9j5WvOZEr0dFw4wZk+WXY5sLC7LPCxaVL4O4O\nWa45cCQbNmygTZs2PProoxw/ftwuM8lhYWE2X+ECICIigq5du1KnTp0HXlQthMiZIdtSa623AXE5\nHJY//v4lnNaWLVt455130FoTHx9PZGQkP/30k9GxRH6xfz+0agWhofY7p72WgAsIcNgCGYxptbBH\ngQzQrl07/Pz8OHTo0H3X1BdCPDybziQDKKUqASseMJO8DLgIRAFvaK2PZjOOzCQLhyBfcyLX0tMh\nMRGKFDE6iW1ERcGZM5ClZctoaWlplC1bltjYWA4dOkTt2vf8CHJ6/fv358cff2T8+PG8+eabRscR\nwmkZMpNsgX1ARa31P4CvgJ9zOF4IIZyPu3v+LZAPHYJatWDlSqOT3GXTpk3ExsZSrVo1atWqZXQc\nm+jRowdA5hJ3Qgjr8sj5ENvRWidm+fgXpdQ0pVRxrfV9L5XO+mes4OBgm++cJIQQD2XlSvD2huBg\n8DD0263t1Kpl7rt+wGY+RsiPq1r8Xbt27ShUqBB79+7l3LlzmWvMCyEebNOmTWzatCnH4+zRbhGI\nud3inl/llVKltdYxdz5uCCzWWgdmM460WwiHIF9zwmKzZ8NXX8G//w1PP210GpeRmppK2bJluXr1\nKocPH6ZmzZpGR7KZ3r17s3jxYiZNmsSrr75qdBwhnJIh7RZKqfnADqCqUuq8UmqIUmq4UipjsdAe\nSqkjSqkDwOdAb1vmEUIIuxo0CH77zf4Fsr0u3MugNezeDR98YP7YYBs3buTq1atUr16dGjVq2PXc\n9rpwL4O0XAhhOzafSbYWmUkWjkK+5oTDU8q+xarJBE8+CS1awDvvmFtMDDR06FB++OEHQkND7V60\n2vv7Q2JiIiVLliQpKYmLFy/aZAdXIfI7R71wTwgh8qf/+z+YMcO8I11+5+YGmzbBhx8aXiCnpqZm\nbhzUs2dPQ7PYQ+HChXnmmWcAMl+3EMI6pEgWQghr09q8NvKGDeYCUtjN5s2biYuL47HHHrN7q4VR\npOVCCNuQ795CCGFtSkFICMybB15eRqexn1WroFcvMHAHuIyNgJ577jnDMthbp06d8PLyYuvWrcTE\nxBgdR4h8w+mL5EqVKqGUkpvc7HaTZZaEyMbZs9C2LQQGGnJ6k8nkkkWyn58fTz/9NFpr2S1UCCty\n+oU7z549a3QEIYT4y5kz0LUr9O8PY8cak8GeW2Bn9dJLxpz3jj179hAdHU3FihWpV6+eIRlCDXrv\ne/TowcqVK1m6dCkjRowwJIMQ+Y3TzyQLIYRDqVgRvvkGAgKMy2DvJeDux4AVYDJmUZ999lmUMmYD\nEXuvppGhS5cueHh4ZO40KIR4eFIkCyGENbm7Q9Om5plkV7RqFTRpAhMn2vW0WuvM1R1cqdUiQ7Fi\nxWjTpg3p6eksX77c6DhC5AtSJAshhLUkJ0NamtEpjFW2LIwbB6NH2/W0kZGRnDx5En9/f5o3b27X\nczuKjF8Ofv75Z4OTCJE/SJEshBDWsmoVlCkDkycbncQ4deuadxi086oeGa0WXbt2xd3d3a7ndhRd\nunRBKcW6detITEw0Oo4QTk+KZCGEsJZu3eDAAftvQ+2ITCa4etVup8totejWrZvdzuloypQpQ+PG\njUlOTmbNmjVGxxHC6UmRLIQQ1lShAtSsaWwGoy/c273b/D7YaXWPM2fOcPDgQQoXLkybNm3scs7s\nGHXhXoZnn30WkJYLIaxB2XOP+YehlNLOklUI4YLOnoXChcHf3+gk5s1MjPx+mZAA0dFQrZpdTvfZ\nZ5/x6quv0rt3bxYuXGiXc2ZHKYWRP6tOnDhBtWrVKFq0KJcvX8bT09OwLEI4izv/396zJI7MJAsh\nhDWsWAGVK5t32XN1fn52K5BBWi2yqlq1KtWrV+f69ets2bLF6DhCODUpkoUQwhpGjYKYGPNGIsLs\nxg3YscOmp4iJiWH79u14eXnRoUMHm57LWUjLhRDWIUWyEEJYi7c3+PoancIxXL0K5cvDZ5/ZtPVj\n+fLlaK1p27YtvvLeA3cXydKmKETeSZEshBAPa9UqOHjQ2D5gR1OiBERFwZIl5h5pG8mYLZVWi788\n8cQTBAQEcPHiRfbv3290HCGclhTJQgjxsA4fhu7dwVEKktBQoxOYFS5s0+ETEhJYv349Sik6d+5s\n03NZKtQB3ns3Nze63mn7kZYLIfLOotUtlFLhwA/AL1prk81T3T+DrG4hhHBcGd+fbDhr6pROnoSV\nK80921be5GPx4sX07t2b5s2bs3XrVquO7ezWrl1Lu3btqFmzJocPHzY6jhAO7WFXt5gG9AX+UEqN\nV0rZ77JlIYRwBkpJgfx3WsOQIXDsmPkiPivLmCXN6MEVfwkODsbPz48jR45w8uRJo+MI4ZQsKpK1\n1r9qrfsB9YCzwK9KqR1KqSFKKVmEUQjhut5+G5Yvh9RUo5M4HqVg61b49lsoWtSqQ6ekpPDf//4X\nILO1QPzFy8uLjh07AuaLG4UQuWdxT7JSqgQwGBgKHAC+wFw0r7NJMiGEcHQmE5QpA9Ony0V7drZp\n0yYSEhKoWbMmVapUMTqOQ5Kl4IR4OBYVyUqpn4CtgA/QWWvdRWu9SGs9CrDtlRlCCOGo3NzglVfM\nPbdeXkancVzbt5t7kiMjrTaktFrkrH379nh5ebF9+3YuX75sdBwhnI6lM8nTtdaPa60/1lpHAyil\nCgBorZ+wWTohhBC5FxZmdIK7bd8OZctC8eJWGc5kMmW2EDhakRzmQO+9n58fbdq0QWvNihUrjI4j\nhNOxdHWL/Vrrejl9zpZkdQshhEOJiYE+faB3bxg+3Og0d1MqX7d/7Nmzh0aNGlG+fHnOnz+PcqAL\nJu9cJW90jEzfffcdw4cPp1OnTlIoC5GNPK1uoZQqo5SqDxRUStVVStW7cwvG3HohhBCuqUgR+Oc/\n4fZto5O4nKytFo5UIDuiLl26oJRi3bp1JCYmGh1HCKeSU7tFO2AiUB6YDEy6c3sVeNu20YQQwoF5\ne0OXLuZCWeRs40bz+zVt2kMPJf3IlitTpgyNGzcmOTmZNWvWGB1HCKfywCJZaz1ba90aGKy1bp3l\n1kVrHW6njEII4VhMpnzdzmATXl4QEgJ9+z7UMMePH+fYsWMULVqUli1bWilc/iarXAiRNzm1W/S/\n82GgUurVv9/skE8IIRxPRARUqQJff210EufRrJm5QH7I9ZIzLtjr1KkTnp6yTL8lMorklStXkirr\neQthsZzaLQrd+W9hwPc+NyGEcD1du0J4ONSpY3SS+wsNNTrBgyUl5fmpjt5qEeqA733VqlWpXr06\n169fZ8uWLUbHEcJpWLS6hSOQ1S2EEMLJ7d0Lzz8PtWvDvHm5fnp0dDTlypXDy8uL2NhYCheWZfot\n9fbbb/Pxxx8zcuRIpkyZYnQcIRxKnla3yPLkCUopP6WUp1JqvVLqSpZWDCGEcB1XrsiKFnkVFGS+\ncG/27Dw9fcWKFWitadu2rRTIuZS1L1kmnISwjKWbiTyttU4AOgFngSrAG7YKJYQQDmvuXPNW1AsW\nGJ3E+ZQoAc2bg7t7np7u6K0WjuyJJ54gICCAixcvsm/fPqPjCOEULC2SPe78tyOwRGsdb6M8Qgjh\n2F59FU6dgqeeMjqJ80pLg2PHcvWUhIQE1q9fj1KKzp072yhY/uXm5pb5y8VPP/1kcBohnIOlRfJK\npdTvQH1gvVKqJJD3Ky+EEMKZ+ftDyZJGp3BOV66YZ+JfeSVXT1u9ejUpKSk0a9aMUqVK2Shc/tat\nWzdAimQhLGVRkay1fgtoCjyhtU4FbgJdbRlMCCEczo4dcOGC0SlyFhZmdILslSwJhw7BunW5epqz\ntFqEOfB736pVK4oVK8axY8c4fvy40XGEcHiWziQDPAb0VkoNBHoAT9smkhBCOKhffoG6deG334xO\n8mDjxhmd4MHKlcvV4SkpKaxatQqArl0de35mnAO/956ennTq1AmQ2WQhLGHp6hZzMW9P3RxocOf2\nhA1zCSGE4/nwQ4iOhnr1jE7i/GJj4ccfLdq5cPPmzcTHx1OzZk2qVKlih3D5l7RcCGE5j5wPAcwF\n8eOyULEQwuXJLm8PT2to1QqqV4eOHXPchc9ZWi2cwdNPP423tzd79uwhKiqKcrmc1RfClVjabnEE\nKGPLIEII4dAmTYLt28FkMjqJ81MKDh+GpUtzLJBNJlPmVtRSJD+8QoUK0a5dO+CvXz6EEPdnaZHs\nDxxVSq1RSkVk3GwZTAghHIbJBAkJ8PrrkJJidJr8wc2yHz/79u0jKiqK8uXLU0/aXKwio+VCimQh\nHszSdoswW4YQQgiH5uZmvhjOgS/KuktoqNEJLHPkCCxbBgMGwCOP3PeQrK0WSt2za6zDCXWC975z\n5864u7uzadMm4uLiKFasmNGRhHBIli4BtxnzTnuedz7+Ddhvw1xCCCHyyoGXIbvL3LkQH//AHfic\nrR/ZkZeAy1C8eHFatWpFWloaK1euNDqOEA7L0tUthgFLgW/vfKockOPfaZRSPyilYpRS/3vAMV8q\npf5QSh1USv3DkjxCCGE3ly9Dr16wZInRSfKfTz6ByZOhUqX7PnzixAmOHj1K0aJFadmypZ3D5W+y\nyoUQObO0J/lloBmQAKC1/gOwZMujmUC77B5USj0DVNZaPwoMB76xMI8QQthHwYLQrh0cPWp0EpeT\nccFep06d8JRVRawqY2Z+9erV3Lp1y+A0QjgmS4vkZK115tUqSikPIMfl4LTW24C4BxzSFZhz59jd\nQBGlVGkLMwkhhO35+sILLzhPn6+z2b0bnn8e5s+/56Hw8HDA8TcQcUbly5enQYMG3L59m7Vr1xod\nRwiHZGmRvFkp9TZQUCnVFlgCrLDC+csBWfd4jbrzOSGEEK7g2jWoUwf+1k5x8eJFdu3aRcGCBXnm\nmWcMCpe/ScuFEA9m6eoWbwEvAIcxt0WsAr63VajsZL0gIjg4mODgYHtHEEK4kiVL4NNPYcwY6NPH\n6DSWCwtznov3nnnGfPubjFnk9u3bU6hQIXunyrOwsDCnuHgPzEXy22+/zYoVK0hNTZWWFuEyNm3a\nxKZNm3I8Tlm6iZ5SqiSA1vpKboIopSoBK7TWte/z2DfARq31ojv3fwdaaa1j7nOsbPgnhLCv1FTY\nvNm8+UWbNkansZxSFm337HBMpsz1k1u1asWWLVuYN28e/fr1MziY5ZRSONPPqurVq/P777/z66+/\n0saZvsaFsKI7/9/es8bkA9stlFmYUioWOA4cV0pdUUq9n5tz37ndTwQw8M65GgPX71cgCyGEITw9\n4amnnKtAdkb/+5/5PR44EICYmBi2bt2Kl5cXnTp1Mjhc/iYbiwiRvZx6ksdgXtWigda6uNa6ONAI\naKaUGpPT4Eqp+cAOoKpS6rxSaohSarhS6kUArfUq4IxS6iTm5eVeepgXI4QQVhMfL1tQ20upUjBq\nFEyfDpgLNq01bdu2pUiRIgaHy9+y9iWb5OtdiLs8sN1CKXUAaKu1jv3b50sCa7XWdW2cL+s5pd1C\nCGE/774LM2bA999Dhw5Gp8kdZ223uOPpp59m3bp1zJgxgyFDhhgdJ1ecrd3CZDJRqVKlzAslGzVq\nZHQkIewuT+0WmHfYi/37J+/0JUuHvxAi//roI3M/cr16RidxHVpz9dAhNmzYgLu7O126dDE6Ub7n\n5uZG9+7dAVi8eLHBaYRwLDkVySl5fEwIIZzfo49CmTJGp8g9Z1zTOTERqlUjomNH0tPTad26NSVK\nlDA6Va6FOuF737NnTwCWLl3qVLPgQthaTu0W6cDN+z0EeGut7TabLO0WQgi72b0bqlcHPz+jk7iW\no0fpNHYs//3vf/n6668ZMWKE0YlcgslkomLFikRFRUnLhXBJeWq30Fq7a6397nPztWeBLIQQdvXt\nt1C+PJw9a3QSl5JQvjzr1q1DKZW5bbKwvawtF0uWLDE4jRCOw9Id94QQwnXMmAEXLkClSkYncSkr\nV64kJSWF5tWrU6ZoUaPjuBRpuRDiXlIkCyHE/RQpYl4lQtjNsmXLAOiRnAx//mlwGtfStGlTAgIC\nOHfuHL/99pvRcYRwCFIkCyFEhrQ08zbUf/xhdBKXc/PmTX755RcAntu0CQIDDc3jaqTlQoh7SZEs\nhBAZEhPh3DkYNsyp1xkmLMzoBLn23//+l9u3b9OoUSPKly9vdJw8C3PC9z5DRsvFkiVLpOVCCHJY\n3cKRyOoWQghhISfcTOS5557jp59+YvLkyYwJCYFly+CJJ6BxY6Oj5YqzbSaSlclkonz58kRHR7Nn\nzx4aNGhgdCQh7CKvm4kIIYQQNhUfH8+qVatQStGrVy9YuBD27AEvL6OjuRRpuRDiblIkCyEEwJYt\nMGIE7NpldBKXs3z5cpKTk2nZsiXlypWDMWNgzhzZ7dAA0nIhxF+kSBZCCIAqVSAoCI4cMTqJy1mw\nYAEAISEhBicRzZo1o0yZMpw9e5Z9+/YZHUcIQ0mRLIQQAAEB8OabMHSo0UlcSmxsLOvWrcPd3T3z\nT/0AXLoEY8eaZ5WF3WT9d5CWC+HqpEgWQoj89mfl0FCjE1hs2bJlpKen07ZtW0qWLPnXA2lp4OEB\nL7xgXLg8CHWi9z47vXv3Bswz/CaTyeA0QhhHVrcQQohRo+DUKfj3v6FuXaPTuJTg4GA2b97MrFmz\nGDRokNFxBOZVLgIDA7lw4QKbN2+mZcuWRkcSwqZkdQshhMjO+PHQv795lz1hN1FRUWzZsoUCBQrw\n7LPPZn9gSor9Qgnc3Nzo27cvAD/++KPBaYQwjhTJQghRqBD07QuPPGJ0EpeSsYJChw4dKHK/X1C0\nhoEDoVw580Yvwm769esHmP+NUuSXFOGipEgWQri2CxeMTuCyFi5cCDxgVQuloGdPOHoUChe2YzJR\nq1YtatWqRVxcXOZ24UK4GimShRCuKy0N2rSBOnUgOdnoNC7l9OnT7N69m0KFCtGxY8fsD+zcGbJe\n0Cfspn///oC0XAjXJUWyEMJ1eXjA77/D7NlQoIDRaawnLMzoBDlatGgRAF26dKFQoUI5P+HcObh6\n1capHl6YE7z3lurTpw9KKVasWEFCQoLRcYSwOymShRCuzc0N/vEPo1NY17hxRid4IK018+fPByzc\nQOS996B+fdi718bJHt44B3/vc6NChQq0bNmSpKQkwsPDjY4jhN1JkSyEcE0xMbBqFaSmGp3E5Rw8\neJAjR45QvHhx2rdvn/MTRo40by7Srp3tw4m7ZFzAJy0XwhVJkSyEcE2XLsGHH8oOewaYM2cOYP5z\nvpeXV85PKF0aLDlOWF2PHj3w8vJi/fr1XLp0yeg4QtiVFMlCCNdUty7s3AnTpxudxKWkpqZmtlrk\navMQrWHHDvj5ZxslE/dTrFgxOnTogNY6czUSIVyFFMlCCNcmM5R2tWbNGi5fvsxjjz3GE088YfkT\nd+2C55+Hy5dtF07cl7RcCFflYXQAIYSwu6++MhfHISHg52d0GusLDTU6QbYyWi0GDhyIUvfsApu9\nxo3h2DHz2skOLNSB3/u86tSpE35+fuzfv59jx45RvXp1oyMJYRcykyyEcD2PPQZr18LJk0YnsQ0H\nXYYsLi6OiIgIlFKZa/BaTCmHL5Ahfy0Bl8Hb25tevXoBMHPmTIPTCGE/UiQLIVzPU0/B0qVQr57R\nSVzK4sWLSU5O5sknn6RChQp5GyQ8HLp1g+vXrRtOPNDzzz8PmP8SkCorwggXIUWyEMK1aG10Apc1\ne/ZswNxqkWc7d5qL5Py0+YsTaNy4MY899hgxMTGyTbVwGVIkCyFcR2ysudXi3/82OonLOXr0KDt3\n7qRw4cI899xzeR/o009h4EAoWNB64USOlFKZs8kzZswwOI0Q9iFFshDCdZQoAQsXgr+/0Ulczvff\nfw9A3759KVy4sHUGlT/729WAAQNwd3dn5cqV/Pnnn0bHEcLmpEgWQrgOpczrIw8fbnQS23Kwi8eS\nk5MzV7UYao3NWzZsMPeTjx//8GNZWX68cC9DmTJl6NixI+np6cybN8/oOELYnNJO0p+nlNLOklUI\n4YCio83LvRUqZHQS21PKoXqvFy1aREhICHXq1OHAgQO5W/rtfo4dg4sXoU0bcHOsuR6lFPn5Z1VE\nRARdu3alevXqREZGPvy/pRAO4M7/t/d8MTvWdxchhLCVhQuhYkWIiDA6icuZfmdXw2HDhlmnqKpe\nHdq2dbgC2RU888wzlC5dmmPHjrFz506j4whhU/IdRgjhGsaMgYMHzZtSCLs5ffo069evx9vbm759\n+1p38LQ02LbNumOKB/L09GTw4MEAfPPNN8aGEcLGpEgWQriOChWgVCmjU7iUH374AYCePXtSrFgx\n6w2cng61asHYsXD7tvXGFTkaPnw4SikWLVpEbGys0XGEsBkpkoUQ+ZvWMHUqyNX4dpeSkpK5Q9uw\nYcOsO7i7O6xfDzt2yHJwdhYUFET79u3v+vcVIj+SIlkIkb/dumVus3jySTCZjE5jH6GhRicA4Kef\nfiI6OpoaNWrQvHlz658gIMD6Yz6kUAd5723t//7v/wD49ttvMbnK/1fC5cjqFkII15Cebp59FHbT\nokULtm3bxtdff82IESNsc5LERFiwwHxRZrt2tjmHuEd6ejqPPPII58+fZ/Xq1bST9144MVndQgjh\n2qRAtquDBw+ybds2/Pz86N+/v+1OtGgRrFgB1ux3Fjlyd3dn+J31xr/++muD0whhGzKTLITIvyZM\nMK+n++qrEBhodBqXMnToUH744QdGjx7N559/bnQcYQMxMTFUqFCB9PR0zp49S4UKFYyOJESeGDaT\nrJRqr5T6XSl1Qin15n0eb6WUuq6U2n/n9q6tMwkhXETfvlC4MFy6ZHQSl3Lt2jV+/PFHAF566SX7\nnVgmUuyqdOnSdO/eHZPJxNSpU42OI4TV2bRIVkq5AV8B7YAaQB+l1GP3OXSL1rrendtHtswkhHAh\n5cvDf/4DTZsancSlzJgxg6SkJNq1a0fVqlXtc9JPP4XKleHKFfucTwDwz3/+EzBfwJeYmGhwGiGs\ny9YzyQ2BP7TW57TWqcBCoOt9jpN9LYUQ1qM1xMQYncI4YWGGnTotLS1zVnHkyJH2O3GhQrBsGZQs\nab9z3keYge+9ERo1akTTpk25fv06s2bNMjqOEFZl055kpVR3oJ3W+sU79/sDDbXWr2Q5phWwDLgI\nRAFvaK2P3mcs6UkWQljm9GmoXx8GDoQvvjA6jf0pZVjrwaJFiwgJCaFKlSr8/vvvuLvYBZN3ehuN\njmFXy5Yto0ePHi77by6cnyOvbrEPqKi1/gfm1oyfDc4jhHB2jzwCZ85Ar15GJ3EpWms+/fRTAF57\n7TVjiqUbN+DIEfuf14U9++yzBAYGcvLkSVauXGl0HCGsxsPG40cBFbPcL3/nc5m01olZPv5FKTVN\nKVVca33t74Nl/TNWcHAwwcHB1s4rhMgvihaFZs2MTuFSNm7cyL59+yhZsiSDBg2yf4D//Q/atIEX\nXoDx4+1/fhfl7u7O6NGjGTNmDJMnT6Zr1/t1VQrhODZt2sSmTZtyPM7W7RbuwHGgDRAN7AH6aK2P\nZTmmtNY65s7HDYHFWuvA+4wl7RZCiJzNmgWNG8Nj97tG2EUY1G7xzDPPsHr1aj744APee+89u5+f\n1FQ4dw6qVLH/ue9wxXYLgISEBCpUqEBCQgJ79uyhQYMGRkcSwmKGtFtordOBkcBaIBJYqLU+ppQa\nrpR68c5hPZRSR5RSB4DPgd62zCSEyOdiYsxbULvyhXsG+N///sfq1avx8fGx77JvWXl6GloguzI/\nPz9efNH8Y/3jjz82OI0Q1iGbiQgh8p/UVHPB5KrCwuy+wsXAgQOZO3cuo0aN4ssvv7True9x9SpM\nmQKtW0OrVnY9dVhYmMutcJEhOjqaoKAgkpOTOXz4MDVr1jQ6khAWyW4mWYpkIUT+oLW5zUDY3enT\np6lWrRpaa/744w+CgoKMDTR5Mhw9Cm+/bb6IU9jNyJEjmTp1KiEhISxYsMDoOEJYRIpkIUT+9vHH\nsH8/fPABVK9udBqX8sILLzBjxgwGDRoka+W6uPPnz1OlShXS0tI4duwY1apVMzqSEDly5CXghBDi\n4Y0aZd5ZLz7e6CQu5dSpU8yePRt3d3feffddo+Pc6/p1oxO4lIoVKzJo0CC01oyXFUaEk5OZZCGE\nEHk2ZMgQZs2axeDBg5k5c6bRce720Ufw2Wdw4ABUrJjz8cIqTp06RdWqVVFKOUb7jRA5kJlkIUT+\ndOUK/Pab0Slc0smTJ5k7d67jziLXrg0HD0qBbGeVK1emX79+pKenM27c1a8NngAAIABJREFUOKPj\nCJFnUiQLIZzbH39At27mnmRhZqfVFT766CPS09MZNGgQlStXtss5c6VLF6hQwa6ndNWVLf4uNDQU\nDw8P5syZwxHZAVE4KWm3EEI4v9u3zb2nZcsancQx2GEzkcjISGrXro1SihMnTvCII68iER0Nc+fC\nG2/YfAUUV91M5H4yVrro3LkzERERRscRIlvSbiGEyL8KFpQC2c7Gjh2LyWRi+PDhjl0gp6f/tblM\nSorRaVzKe++9R6FChVixYgXbtm0zOo4QuSZFshDCOZ04AcHBsHev0Ulczq+//sqqVavw9fUlNDTU\n6DgP5u4Ohw7BpElQoIDRaVxK6dKlGTNmDABvvfWWzLALpyNFshDCOVWuDP37w88/G53EpaSnp/P6\n668D8Pbbb1OqVCmDE1nAy+uvj2/cMC6HC3rjjTcoUaIE27dvZ8WKFUbHESJXpCdZCCHyGxv2JM+a\nNYshQ4ZQoUIFjh8/TsGCBW1yHqtLSYExY2D9eoiMNM8w24D0JN/riy++4J///CeVK1fmyJEjeHt7\nGx1JiLtIT7IQIn9ISYHVq21+YZpTs1ELRGJiYuZSb//5z3+cp0AG8PSExx6D7dttViADjt9+YoCX\nXnqJGjVqcOrUKSZNmmR0HCEsJjPJQgjncuYMdOwILVvCN98YncalvP7660yaNIkGDRqwa9cu3Nxk\nnkVYZuPGjTz55JMULFiQ33//nYqydrVwINnNJEuRLIRwPqmpcOECOPKqCvnMoUOHqF+/Plpr9uzZ\nQ/369Y2OlHcnT8J338H48SCFvt2EhISwaNEievTowZIlS4yOI0QmabcQQji/1FTzfz09pUC2o4yl\n3tLT0xk5cqRzF8hpadC1K5QpIy07djZx4kR8fHxYunQp69atMzqOEDmSIlkI4Ry2b4datUDWW7W7\n7777jt27d1O2bFk+/PBDo+M8HA8POHAAXn3Vpr3J4l7ly5fnvffeA2DYsGHckJVGhIOTIlkI4Rya\nNYP//MfckyzsJioqirfeegswr1Lg5+dncCIryLok3IEDxuVwQa+99hp169bl3LlzmV9XQjgqKZKF\nEM7juedgwACjUzi+sDCrDGMymRgyZAjx8fF07NiRHj16WGVchzFyJHTrBleuWG3IMCu99/mVp6cn\ns2bNwsPDg2nTprFx40ajIwmRLblwTwjh2FasgHPn4OWXzev/ipxZaZ3kr776ilGjRlGiRAkOHz5M\n2fy29ffWrVC3LhQubLUhZZ1ky3zwwQeEhoYSGBjI4cOHKWzFfwMhcksu3BNCOKfHHoNZs2RnPTv7\n/fffeeONNwBzT3K+K5ABWrT4q0BOTgaTydg8LuRf//oX//jHPzh79iyjR482Oo4Q9yVFshDCsT36\nKOzYYV6RQNhFSkoKAwYMICkpiUGDBvHcc88ZHcm2fv8dGjeWX8TsyNPTkzlz5uDt7c2MGTOYO3eu\n0ZGEuIcUyUIIx7RiBcTHmz/28pL1bO3o1VdfZe/evVSqVIkvvvjC6Di2d/o0jBhh7k8WdlOrVi2+\n/PJLAEaMGMGxY8cMTiTE3aQnWQjhmMaOhaVL4dAh8PU1Oo1zeYie5Dlz5jBo0CC8vLzYtm0bDRo0\nsHI4J6B1nvvfpSc5d7TWDBgwgB9//JGaNWuye/dufHx8jI4lXIz0JAshnMuECbBsmRTIeREamqen\nHThwgOHDhwPmi/ZcskBesAB69szz00Pz+N67KqUU33zzDdWqVePIkSMMHTpUfskQDkNmkoUQjiMh\nAY4eNfeHCru6fPkyjRo14uzZswwdOpTp06cbHcn+EhOhfXuYOhXq1DE6jUs5fPgwTZs2JTExkdDQ\nUFlKT9hVdjPJUiQLIRzHnj3QqZO5SHmI2TyRO4mJibRu3Zq9e/fSoEEDtmzZgre3t9GxjJG11eIh\n2i5E7v33v/+lS5cumEwm5s2bR79+/YyOJFyEtFsIIRxfw4bmtWvr1TM6ictITU2lR48e7N27l6Cg\nICIiIly3QIa/iuKUFOjTB9atMzaPC+nYsSOff/45AM8//zybN282OJFwdVIkCyGMpbX5Ar2MNWqr\nVYPKlY3N5CJMJhPDhg1jzZo1+Pv7s2bNGsqUKWN0LMcQHm5eO7lFC6OTuJRRo0YxcuRIUlJS6NSp\nEzt37jQ6knBh0m4hhDBWUpK5DzQoCGbONDqNy0hPT2fEiBF8//33+Pj4sGnTJte8UC87Wpt/cXN3\nN99PSTEvRShsLj09nQEDBrBgwQL8/PxYv349TzzxhNGxRD4m7RZCCMfk7Q2//ALPP290kvwjh4ue\n0tLSGDJkCN9//z0FCxZk+fLlUiD/nVJ/Fch//AGPPw5XruT4NLng7OG5u7szZ84cevToQUJCAm3b\ntmX//v1GxxIuSGaShRD2pzW88w68+CIEBhqdJv95wDrJGbvpLV68mEKFCrFy5UqCg4Ptm8/ZvPuu\n+et06NAcD5V1kq0nNTWVnj17snz5cgoXLkx4eDht27Y1OpbIh2QmWQjhOJSCsmXNW01n9CILm4uN\njaVt27YsXrwYPz8/1q5dKwWyJT788O4Ced++PG/WIizn6enJ4sWL6dOnD4mJiXTo0IE5c+YYHUu4\nECmShRD2Exf318ejRsHKlbLdtJ0cPXqUhg0bsmXLFgICAtiwYQNNmzY1OpZzyLoM3MyZ0Ls33Lxp\nXB4X4uXlxbx58xg7dixpaWkMGjSI9957j/T0dKOjCRcgP52EEPahtfkCvfnz//pchQrG5XEhixYt\nokmTJpw5c4YnnniCPXv2UL9+faNjOSdvb/jpJyhc2HxfZpRtzs3NjU8++YQpU6aglOKjjz6iXbt2\nxMTEGB1N5HNSJAsh7EMpmD4d1q41OonLuHHjBkOGDCEkJISEhAR69erF5s2bKVeunNHRnFefPlCr\nlvnj27ehZUu4cMHYTC5i5MiRrFu3jlKlSrF+/Xrq1q3Lhg0bjI4l8jEpkoUQthMfD926wa1b5vu1\na8OsWYZGcgmhoWzcuJF69eoxa9YsChYsyNdff83ChQvx8fExOl3+MXeuube+fPnMT4WGhhoYKP9r\n06YNBw4coGXLlkRHR9OmTRuGDx9OfHy80dFEPiRFshDCdooUgYIFYdIko5O4jOjoaPr98QdPPvkk\nJ0+epE6dOuzdu5cRI0agZItl6xo2zPxLX8b7On06YQ0bGhrJFQQEBLB+/Xo++OADPD09+e6773j8\n8cdZsmSJrCwirEqWgBNCWNeqVXDmDLz8svl+fDx4eoLMYNrUjRs3+OKLL/j0009JSEjA29ubd999\nl9dff50CBQoYHS//u3bNvFvk1q3w2GNGp3EZkZGRDB06lF27dgHQuHFjJk6cSLNmzQxOJpxJdkvA\nSZEshHh4JtNfq1ScPAmNG8OxY1CypLG5XEBCQgLffvstn3zyCVevXgWgY8eOTJkyhaCgIIPTuRCt\n4fBhc0sRQGwsDBoEERF/bUoibCI9PZ3p06cTGhrK5cuXAejQoQNvvvkmLVq0kL+giBxJkSyEsI30\ndKhbF9av/6so/n/27jyuqjp//PjrDShosigkiSvuW6CZ4oaJlplpZatbpd+yaUbL8VvWTNMvtJr5\nlqNNaVaTM24tVhaVmpmlYmnuiiXmvqC4ogKCoiyf3x/nQoCgF+Hew/J+Ph730T33nPv5vM8JL28+\n93Penx07oE2bgqWzVJnas2cPb7/9NrNnz+bcuXMA9OjRg1deeYWoqCibo1O8/DIcOQLvv29tJyWB\ntzf4+tobVyV27tw5pkyZwpQpUzjvuA8iIiKCP//5z9xzzz34+PjYHKEqrzRJVkqVnSVLrBXI2ra1\ntkePhnbt4M9/tjWsyu7s2bMsWLCAjz76iB9//DHv9V69evHCCy/Qr18/HTUrL9LSICMDgoKs7XHj\nrDn6L79sb1xVwKlTp3j77beZMWNG3rcrtWvXZvjw4Tz88MN07txZ/52oAjRJVkpdu+PHrYVA2rSx\ntqOj4dw5eOMNa/v8eesGPf3FU+b279/PN998w+LFi1m5ciWZmZkA+Pj4MGzYMJ566ik6dOhQ8E0T\nJ1oP5XYTJ05kYlHX/p574K23oHFja/vxx60/LiMi3BpfVZKens7cuXP573//y5YtW/Jer1+/Pvfc\ncw+DBg2iZ8+eXHfddTZGqcoD25JkEekPvIlVSeO/xpjXizhmGnAHkA6MNMbEFXGMJslKucvJk7Br\nF0RGWtsffGAtoBATY23v3Qvr18Pw4fbFWAllZWXx66+/smbNGtasWcPPP/9MQkJC3n4PDw/69OnD\niBEjGDx4MH5+fkU3JKKLXNjE8cv2ygelpFgL6Rw+bI0uAwwZAu+9BwEBrg+yCoqLi2POnDl8/vnn\nJCYm5r1erVo1unXrRq9evejcuTOdOnUiJCRER5qrGFuSZBHxAHYDfYGjwEZgiDFmZ75j7gDGGmPu\nFJEI4C1jTNci2qrQSXJsbCy9e/e2O4wqSa99MbKywMvLep6YCHPnwgsvWNvr18Mf/gBxjr9XT5yA\n556zjnGSXvfipaenc+jQIfbt20d8fHze47fffiMjI6PAsQEBAdx+++3ceeed9O/fn+uduBkyVoTe\nFfjzsiJzKkk2xqoA07Sptb1/vzWifPKk9QfOhQvWPP/ffrO2s7JgzRq45RbXn0AF5sxnTk5ODps2\nbeKrr75i2bJlbNmy5bL/XzfccAOdOnWiTZs2tGzZkpYtW9KiRQvq1aunyXMxKvrnfXFJspeL++0C\n7DHGHHIE8QlwN7Az3zF3A/MAjDHrRcRfRIKNMZVqvcmK/gNUkVWJa2+MNf0hd2QxM9MqRdWnj7Wd\nng7/+Af8/e/W9tGj0LmzlRyDVaJtyhT461+tX8odOkB4uNWuCAQHlyhBhipy3YHMzEzS09M5d+4c\naWlpnDt3jtOnT5OUlMSpU6c4deoUSUlJnDx5ksOHD5OQkJA3T7IoTZs2pUePHnmPtm3b4uFRspL2\nsUDvUp2VcimR3xNksP59LV36+3SlrVut5a9zt/ftg8ces77BATh0CCZMgM8+s7aTkuD7763VAAEu\nXrReq2IrKzrzmePh4UGXLl3o0qUL//jHPzh79iyxsbGsX7+eTZs2sWnTJo4fP84333zDN998U+C9\nPj4+1KtXj3r16hESEpL3PDg4mICAgLyHv78/AQEB+Pn5Ua1aNReecflRWT/vXZ0k1wfyr9d5BCtx\nvtIxiY7XLkuS/9ajB+T/nxAbW+y2MeaK+91y/MqV4LjL/KeffuLCt98Wu7/wtjHmivuL2jYrVpTs\n+JUrnY7nmo4vJ/GsW7eO5ORkWLkSU4L2Lzv+Cv9/izy+JO0bAytWQN++v28vWQJ33vn7dkwM5t57\nre3sbJg/H0aM+H175kx48klrOysL/vMfzBNPWL9oc/efOfP7V/EnT1rHe3hY22Fh8Kc/kTemUrMm\n/OlPXE1xo2a5v2ycPb6k7Zfl8dnZ2WRmZnLp0iUyMzMLPIp6LSMjg7S0NNLS0rh48WKJ+gOoXr06\njRo1IjQ0lLZt29KuXTvatWtH27ZtCdCv26ue666DTp1+3+7WzUp6c50/b61cmevAAes+gVy7d8O0\nab8nyVu3wvjxsHattb1uHfzlL9ZnGMCWLTB9OsyebW3/+ivMmgX/+pe1vXMnfPLJ7/Pad++Gr7+2\nEnOAPXtg8WKrD7CS92+/haeesrb377eWn8/9PDpwwKp+8/jjzm+vWGH9YVCS7fzXJ//+gwet9ovY\nrl27NoM7dmTwmTPw2msYY9i3ahVbP/2U3Q0asHv3bvZs387u3bs5nZbGgQMHOHDgAM7y9PSkho8P\nPiL4BARQo0YNfDw8qHHpEj4NG+Lj44PnpUt4nj2LZ5MmeHp64nXxIp5JSXi2aIGnpyeeFy7gefw4\nnm3bWtvp6XgkJiLt2wMgqalw+DDiWC69yO2EBMRRnlBSU+HQISQ83NpOSbG2Hfc2SEoKHDyIdOxY\nYJsOHayR9ORk6xo79pOcTOy33zIx96SL2F/ut4tjjHHZA7gPeD/f9ghgWqFjFgHd823/ANxURFtG\nH/rQhz7K28PT09P4+/ub+vXrm1atWplOnTqZfv36mWHDhplx48aZV155xbz33nvm888/N+vWrTPH\njh0z2dnZxpWiwaXtq+LhjmufnGzMjh2/b//2mzFvv/379qpVxgwf/vv2998b06fP79srVhjTu3fB\n7VtuKX575UpjevUqu+3YWJdsR0dHu7T9c+fOmd27d5tVb71lPmnd2rzxxhtmwoQJ5tHbbzf3BAaa\n3r17mw4dOpjQevVMbS8v4+HhYfvnkz6cf5gi8lhXz0nuCkw0xvR3bP/FEcjr+Y55D1hpjPnUsb0T\nuMUUmm4hIq4LVCmllFJKVVnGhjnJG4HmItIYOAYMAYYWOmYhMAb41JFUJxdOkKHo4JVSSimllHIF\nlybJxphsERkLLOP3EnC/icgfrN3mfWPMEhEZICJ7sUrAjXJlTEoppZRSSl1NhVlMRCmllFJKKXcp\nWV0hpZRSSimlqgBNkpVSqggiki0iW0TkVxH5WkSKWd6uxO02FpFfy6KtfG32EpGfC73mKSLHReSG\nErQzSESeu8ox0SLyv0W8XqLzEpEGIrJfRAIc27Ud242cbUMppVxJk2SllCpaujHmJmPMjcBZrBuM\ny0pZz3P7CagvIg3zvXYrsN0Yc3mx6iKIiKcxZpExZnIp4nD6vIwxR4B3gNxqR68B7xljEop/l1JK\nuY8myUopdXVrsRY5QkSuE5EfRGSTiGwTkbscrzcWkR0i8r6IbBeRpSLi7djXSUTiRGQr+ZJtEfEW\nkVki8ouIbBaR3o7XHxWRL0VkmWN0dYyIjHeMbP+cO/qay1g3l3yGVUEo1xBgvqO9x0Vkg4hsFZEF\nIuLjeH22iLwrImuB1x39TnfsGygi6xxxLROR/Othd3DEsUtEHi98sUTEQ0Qmi8h6x3mPLua6vglE\niMg4oDsw1an/G0op5QaaJCulVNEErBFWoC9WuUqAC8A9xpibgT4UTOyaA9ONMe2BFKwFlQBmAWOM\nMR0L9TEGyDHGhAHDgLkiUt2xrx1wD9YqpX8H0owxNwHrgEeKiPcTHCU2HW0MAL5w7PvCGNPF0f9O\n4LF876tvjOlmjHnWsZ07GvyTMaarMaYT8CmQfxrGjVgrX3cHXipiSsdjWOU8IxzxP+EoBVqAMSbL\n0e6/gHHGmOwizksppWzh6jrJSilVUdUQkS1AA2AHkLtOsAfwfyLSC8gBQkSkrmPfAWNM7rzczUAT\nEfEH/I0xaxyvfwD0dzzvCUwDMMbsEpGDQEvHvpXGmPPAeRFJBhY7Xv8VK0ktwBiz2THK3QJoC6wz\nxuSut3qjiLwKBADXAd/le+uCYs6/oYh8BtQDqgEH8u372hhzCTgtIiuwEuFt+fb3c/T5gGPbD2gB\nHCqinwHAUcc5rShiv1JK2UJHkpVSqmjnHSO3jbBGlXOnSQwHgoCOjpHZk4CPY9/FfO/P5veBCGcX\nQ8p/XP62TL7tHIof4JiPNZqcN9XCYQ7wJ8eI9cv54gWrPn1RpgPTHO95stB78s89Fi6fiyzAU8aY\njo5HM2PMD4U7EJEOWKP0XYH/FZHgYmJRSim30yRZKaWKJgDGmAxgHPCsiHgA/sBJY0yOiEQBjQu/\nJz9jTApwVkS6O14akW/3T1hJNyLSEmgI7CpFzJ842o8Cvs73ei3guIhUy+3PCX5YI7wAjxbad7eI\nVBeRQOAWrNVV8/sO+JOIeAGISAsRqVFEH+9gTbM4AkxG5yQrpcoRTZKVUqpoeaOjxpg4rOkEQ4GP\ngM4isg0rIf2tqPcU8j/AO47pG/mPeQfwFJFfsEZ+HzXGZF4plisGbMxOIA1Yboy5kG/X/wM2YCXl\nzsQLMAn4XEQ2AqcK7fsFiAV+Bl4uooLGf7CmqGxxlIV7j0Kj346b+Q4ZY3KnWLwLtBaRyCuepFJK\nuYmuuKeUUkoppVQhOpKslFJKKaVUIZokK6WUUkopVYgmyUoppZRSShWiSbJSSimllFKFaJKslFJK\nKaVUIZokK6WUUkopVYgmyUoppZRSShWiSbJSSimllFKFaJKslFJKKaVUIZokK6WUUkopVYgmyUop\npZRSShWiSbJSSimllFKFaJKslFJKKaVUIZokK6WUUkopVYgmyUoppZRSShWiSbJSSimllFKFaJKs\nlFJKKaVUIZokK6WUUkopVYgmyUoppZRSShWiSbJSSimllFKFaJKslFJKKaVUIZokK6WUUkopVYgm\nyUoppZRSShWiSbJSSimllFKFaJKslFJKKaVUIZokK6VUFSEij4pIloikisg5x3975dtfW0S+FJE0\nETkgIkPtjFcppezkZXcASiml3OpnY0yvYva9A2QA1wM3Ad+ISJwx5je3RaeUUuWEjiQrpVQ54Bi5\nfUZEtonIWRGZLyLV3dh/TeBe4EVjzAVjzBrga+Bhd8WglFLliSbJSilVfjwA9ANCgXBgZFEHiUgP\nRyJ9xvHf/M/PiEj3K/TRUUROishOEXlRRHJ/D7QEMo0x+/Iduw1oV/rTUkqpikenWyilVPnxljHm\nBICILAI6FHWQY5S39jW0vwpob4w5JCLtgM+ATOB1oBaQWuj4VMD3GvpRSqkKT0eSlVKq/DiR7/l5\nrMS1zBhjDhpjDjmexwMvA/c7dqcBfoXe4g+cK8sYlFKqotAkWSmlKhgR6ZmvOkX+R+5rPUrSnOO/\nuwEvEWmWb184EF9mgSulVAWi0y2UUqqCMcas5hqmQYhIf2CLMeakiLQGXgQ+dbR5XkRigJdFZDRW\ndYtBwJXmNyulVKWlI8lKKVU+GDf00Rf4RUTOAYuBz4H/y7d/DFATOAl8CDyp5d+UUlWVGOO6z2UR\n8QZ+BKpjjVp/boyZVMRx04A7gHRgpDEmzmVBKaWUUkopdRUunW5hjLkoIlGOr/E8gTUi8q0xZkPu\nMSJyB9DMGNNCRCKA94CuroxLKaWUUkqpK3H5dAtjzHnHU2+spLzw0PXdwDzHsesBfxEJdnVcSiml\nlFJKFcflSbKIeIjIVuA48L0xZmOhQ+oDh/NtJzpeU0oppZRSyhYur25hjMnBWuHJD/hKRNoaY3aU\ntB0RccdNLUoppZRSqooxxkjh19xW3cIYkwqsBPoX2pUINMy33cDxWlFtVNhHdHS07TFU1Ydee73u\nVe2h116vfVV86LXXa3+tj+K4NEkWkSAR8Xc8rwHcBuwsdNhC4BHHMV2BZONYllUppZRSSik7uHq6\nRT1groh4YCXknxpjlojIHwBjjHnfsT1ARPZilYAb5eKYlFJKKaWUuiJXl4D7FWvVpsKv/7vQ9lhX\nxlEe9O7d2+4Qqiy99vbQ624fvfb20WtvH7329qms196li4mUJRExFSVWpZRSSilVMYgIxs4b95RS\nSrnJxIl2R1BlTdRrr1SlUeFHkps0acKhQ4dsiEhVVY0bN+bgwYN2h6FU8USggny2VzaOESm7w1BK\nlUBxI8kVPknWDyTlbvozp8o9TZJto58PSlU8Ot1CKaWUUkopJ2mSXEVMmjSJhx9+GIDDhw/j5+dn\n22jHxx9/TP/+hdeUUUoppZQqPzRJdrHVq1fTo0cPAgICCAoKIjIyks2bN9sSi4j1TULDhg1JTU3N\n2y5Lo0aNwtvbG39/f/z9/QkLC+OFF14gNTU175hhw4axdOlSp9p66aWXyjxGpZRSSqmr0STZhc6d\nO8egQYMYN24cZ8+eJTExkejoaLy9ve0OzaWef/55UlJSOHXqFLNnz2bdunX06NGDCxcu2B2aUlVD\ndLTdEVRZ0Xrtlao0NEl2od27dyMiPPjgg4gI3t7e3HrrrbRv3x6A/fv307dvX4KCgqhbty4jRowo\nMOIaGhrKlClTCA8Px9fXl9GjR3Py5EkGDBiAn58f/fr1IyUlBYBDhw7h4eHBzJkzqV+/PvXr12fq\n1KlFxpV7bE5ODgBRUVG89NJL9OzZEz8/P/r378+ZM2fyjp83bx5NmjTh+uuv59VXXyU0NJQVK1Zc\n9fyrV69Op06dWLhwIadPn2b27NkAzJ07l8jIyLzjxo8fT3BwMP7+/oSHh7Njxw5mzpzJRx99xOTJ\nk/Hz8+Puu+/OuyZTp04lPDyc2rVrM3ToUC5dulSS/y1KVW6bN8OuXXZHUaUkJyfz/PPPExERwX//\n+1/uv/9+vv76a7vDUkqVkibJLtSyZUs8PT0ZOXIkS5cuJTk5ucB+YwwvvPACx48f57fffuPIkSOX\n1diMiYlh+fLl7N69m4ULFzJgwABee+01kpKSyM7OZtq0aQWOj42NZd++fXz33Xe8/vrrxSazhada\nzJ8/n7lz53Lq1CkuXrzIlClTANixYwdjxoxh/vz5HDt2jJSUFI4ePVqi61CrVi1uu+02fvrpp8v6\nX7ZsGatXr2bv3r2kpKTw2WefERgYyOjRoxk+fDjPPfccqampBX7hLFiwgGXLlnHgwAG2bdvGnDlz\nShSPUpVOZubvzy9cgMOHf9++dAnS0twfUxWxYsUKWrduzeTJk9mwYQNHjhzhiy++4J577mHkyJGc\nP3/e7hCVUtdIk2QX8vX1ZfXq1Xh4ePDEE09Qt25d7r77bk6dOgVAs2bN6Nu3L15eXgQGBjJ+/HhW\nrVpVoI2nnnqKoKAg6tWrR2RkJBEREYSFhVG9enUGDx7M1q1bCxw/ceJEfHx8aN++PaNGjWL+/PlO\nxTpq1CiaNWuGt7c3Dz74IHFxcQB88cUX3HXXXXTr1g0vLy9efvnla7oWISEhBUanc1WrVo1z586x\nY8cOjDG0atWK4ODgK7Y1btw4goODCQgIYNCgQXmxKlUlHTsGrVrBr79a2zfdBB9/bD3PyYH/+R94\n9VX74qvE1qxZw8CBAzlx4gQ9e/bk+++/Z8eOHUyePJkaNWowd+5cHnroIbKzs+0OVSl1DTRJdrFW\nrVoxa9YsEhIS2L59O0ePHuXPf/4zACdPnmTo0KE0aNCAgIAARoyD96LqAAAgAElEQVQYQVJSUoH3\n508Ya9Socdl2Wr4RIhGhQYMGeduNGzd2etT3hhtuyHtes2bNvHaPHj1Kw4YNC/QZGBjoVJv5JSYm\nUqdOnctej4qKYuzYsYwZM4bg4GCefPLJAudUlPzXIH+sSlVJ9erBG2/ABx9Y2zVrQqNG1vOkJKte\nst4AW+YOHTrEnXfeyYULFxg1ahSrVq3i1ltvpU2bNkyYMIENGzZQp04dFi9ezDPPPGN3uEqpa6BJ\nshu1bNmSkSNHsn37dgD++te/4uHhQXx8PMnJyXz44YelKstmjOFwvq9ZExISCAkJKVXM9erV48iR\nI3nbFy5c4PTp0yVqIy0tjR9++IFevXoVuX/s2LFs2rSJHTt2sGvXLv75z38Cl08JUUoV4557YPLk\ny1+vWxc++shKnFWZMcbw+OOPk5KSwsCBA5k5cyYeHgV/nbZv356vvvqK6tWr89Zbbzl1H4dSqnzR\nJNmFdu3axRtvvEFiYiJg1SeeP38+3bp1A6zksVatWvj6+pKYmJiXHJbGK6+8woULF4iPj2f27NkM\nGTKkyOOcTcbvv/9+Fi1axLp168jMzLxszvSVXLp0ic2bNzN48GACAwMZOXLkZcds2rSJDRs2kJWV\nRY0aNfDx8cn7ZRMcHMz+/fud7k+pKmXFCnjvPcjKunxfUf9ON2yAgQOh0L0RquT++9//8sMPPxAY\nGMh//vMfPD098/bl/4yMjIzMq3bx5JNPkpGR4e5QlVKloEmyC/n6+rJ+/XoiIiLw9fWle/fuhIWF\n5d0UFx0dzebNm/Pm1t53330F3l94JNWZkdVbbrmF5s2bc9ttt/Hcc8/Rt2/fIo/L39aV2m3bti3T\np0/noYceIiQkBD8/P+rWrXvFMnaTJ0/G39+foKAgRo4cSefOnVmzZg01atS47NjU1FRGjx5NnTp1\nCA0NJSgoiAkTJgDw2GOPER8fT506dbj33nudvgZKVQl168Knn8KsWZfvmzTp8tfeegvuvx/8/Fwf\nWyWWnp7Oiy++CMD06dMvu4diUqFr/+yzz9K2bVv27NlTbMUhpVT5JBVljXkRMUXF6lhv24aIypdD\nhw7RtGlTMjMzL/varyylp6cTEBDA3r17ady4scv6Kc/0Z06VG8ZYN+flG8kEQMTap8rca6+9xl//\n+lc6d+7M+vXrixzMKPz5sGLFCvr27Uvt2rU5ePAgfvqHilLliuPf7WWjcDqSXIm4KnFbvHgxFy5c\nID09nWeeeYawsLAqmyArZbvsbKusG1jJcOEE+WqMAZ3GdE1SU1N5/fXXAfj73//u9DdbUVFRREZG\ncvbsWd5++21XhqiUKkOaJFcirpqK8PXXXxMSEkKDBg3Yt28fn3zyiUv6UUo54ccfoVkzmDu35O/N\nyIAePawb/bQsWYnNmjWL5ORkevbsya233ur0+0Qkb27y1KlTtXayUhWETrdQqoT0Z07ZbvNmOH0a\n+vUrev+Vplv89BN0717yEegqLjs7m5YtW7J//35iYmIYPHhwkccV9/lgjKFr165s2LCB//znPzz2\n2GOuDlkp5SSdbqGUUpVFp07FJ8gAjlHLIkVGaoJ8DZYsWcL+/ftp0qQJd911V7HHRRdz7UWEsWPH\nAjBjxgz9Q1upCkBHkpUqIf2ZU7ZZuxbCwuC660rXTnY2LFsGdepARETZxFbJ3XHHHSxdupQpU6Zc\n8+IgGRkZNGjQgNOnT7Nu3Toi9NorVS5U7ZHkwnN1S7rtRrt376Zjx474+/tX2Rs8Ro0axUu6QphS\nl5s+HRo2hJMnS9fOu+9ao81aM9kpR48eZdmyZVSrVq3Ieu/O8vHxyZtm8e9//7uMolNKuUrVSJIr\nkMmTJ9OnTx9SUlLyvppTSikAPv4YfvvNqpFcGn/8o7W4yO23l01cldxHH31ETk4OAwcOJDAwsFRt\njRo1CoAvvviCCxculEV4SikXqRpJcuGvxku67UaHDh2iXbt2tvVfkWVf4W799evX079/f3r27MnH\nH38MwIcffkhQUBBPP/00GzdudFeYSpVOocUrronOSXaaMYa5jkoijz76aKnba926NTfffDOpqaks\nXry41O0ppVynaiTJ5cjOnTuJioqidu3a3HjjjSxatChvX9++fVm5ciVjxozBz8+PvXv3Xvb+0NBQ\npkyZQnh4OL6+vowePZqTJ08yYMAA/Pz86NevHykpKQAcO3aM+++/n7p169KsWTOmT59eoK3XX3+d\n5s2b4+fnR/v27fnqq68K9DN16lTCw8OpXbs2Q4cO5VJubdYieHh4FFhCOv+Uiau1tXXrVjp16oS/\nvz9DhgwpsHTr1c4hNDSUyZMnEx4eTq1atcjJySkyvoiICLy9vZkwYQLDhg0DYMCAAWRkZDB16lQ6\nd+5c7LkpZbuTJ2HqVDh8uOzavHABZs6Ep54quzYrobi4OOLj4wkKCuKOO+4okzZHjBgBWH+oK6XK\nL02S3SgrK4tBgwbRv39/Tp06xbRp0xg+fDh79uwBYPny5URGRjJjxgxSU1Np3rx5ke3ExMSwfPly\ndu/ezcKFCxkwYACvvfYaSUlJZGdnM23aNIwxDBo0iI4dO3Ls2DGWL1/OW2+9xffff5/XTvPmzVmz\nZg2pqalER0czYsQITpw4kbd/wYIFLFu2jAMHDrBt2zbmzJlT7LldrUZzcW1lZmYyePBgHn30Uc6c\nOcMDDzzAF198AeDUOQB88sknfPvttyQnJxe72mBOTg5r164tsEz3d999R5cuXahWrdoVY1fKdhkZ\nsHMnOJZDvqqJE69+jDEQGwtRUbo63xV8/vnnADzwwANUr179qsdPdOLaDxkyBE9PT5YsWcKZM2dK\nG6JSykU0SXajdevWkZ6ezvPPP4+XlxdRUVEMHDiQ+fPnl6idp556iqCgIOrVq0dkZCQRERGEhYVR\nvXp1Bg8ezNatW9m4cSNJSUn87W9/w9PTkyZNmvD4448XWAjkvvvuI9jx1e0DDzxAixYt2LBhQ97+\ncePGERwcTEBAAIMGDSIuLq7YmK5W7aG4ttauXUtWVhZPP/00np6e3HfffXmjusWdQ+HrNW7cOEJC\nQvD29i62/y1bthAYGEhMTAzz5s1j7ty5vPPOO0RFRV0xbqXKhUaNrFFfZxcQmTTp6sfUrAkffQT3\n3mvrzcrlmTGGBQsWANZnpDMmOXHtg4ODiYqKIisrq8C3iUqp8sXL7gCqkqNHj9KwYcMCrzVu3JjE\nxMQStROcb05ijRo1LttOS0vj0KFDJCYmUqdOHcD6sM/JyaFXr155x86bN49//etfHDx4EID09HSS\nkpKK7KdmzZocO3asRHEWF3P+to4dO0b9+vULHJu75LUz5wDQoEGDq/a/YsUKHnzwQR555JG816Kj\no4mKiuLs2bO8//77BAcHc+ONN9KpU6drO0mlVKWyfft29uzZw/XXX09kZGSZtn3vvffyww8/8OWX\nX5bJXGelVNnTkWQ3CgkJ4XChOYUJCQmXJYlloVGjRjRt2pQzZ85w5swZzp49S0pKSt6oRUJCAk88\n8QTvvPMOZ8+e5ezZs7Rr1+6a6//WrFmzwFKrx48fd+p99erVu+yPhISEBAAaNmx4xXPI5cxy3CtX\nrqRHjx5524mJiSQlJdG1a1fmzJlDVFQUI0aM4I033nAqbqXcZsECGD8etm1zTfuvvgrt2pXtfOdK\nIncUefDgwXh5le2Y0t133w1Y077S0tLKtG2lVNlwaZIsIg1EZIWIxIvIryLydBHH3CIiySKyxfFw\nctJdxRMREUHNmjWZPHkyWVlZxMbGsnjxYoYMGVLmfXXp0gVfX18mT55MRkYG2dnZxMfHs2nTJsAa\nNfbw8CAoKIicnBxmz57N9u3br7m/jh078vHHH5OTk8PSpUtZtWqVU+/r1q0bXl5eTJ8+naysLGJi\nYvKmfFztHJyVmZnJzz//TLdu3fJe+/HHH+nevTteXl7s37+fevXq4eXlxdmzZ0vUtlIu16GDteiH\n44/HMtekCcyaBS74Y72iy72Z+b777ivztkNCQujWrRsZGRksXbq0zNtXSpWeq0eSs4D/Nca0A7oB\nY0SkdRHH/WiMucnxeNXFMdmmWrVqLFq0iCVLlhAUFMTYsWP54IMPaNmyZd4xVxsVLby/uONFhMWL\nFxMXF0doaCh169Zl9OjRpKamAtCmTRueeeYZunbtyg033EB8fDw9e/Z0Oo7C3nzzTRYuXEjt2rWZ\nP38+gwcPdqqtatWqERMTw+zZswkMDGTBggV5v5A8PDyueA7OxLl161b+8pe/ICLExMQA8OmnnzJj\nxgyysrL4+eefMcbgqSWxVHnVogX8v/8Hgwa5pv0RI6xV94q56bWqSkhI4Ndff6VWrVr07t3bJX3c\ne++9AAUqCymlyg+3LkstIl8B040xy/O9dgvwrDHmir8BdFlq5SrTp08nMjKSNm3aMHLkyKveSKk/\nc6rcmzjRuQoX+WVmWlUunKjgUBW8++67/OlPf+Lee+/Nq7jjjIkTJzpV4QJg165dtG7dmsDAQE6c\nOKF/rCtlE9uXpRaRJkAHYH0Ru7uJSJyIfCMibd0Vk1IAw4YN4/vvv2fevHk8/fRlM4KUss9TT8Hg\nwfDLLyV7X0kT5FdftVbxW7GiZO+rxHIX+hg4cGCJ3udsggzQsmVLmjZtyunTp3VBI6XKIbdUtxCR\nWsDnwDhjTOE7FDYDjYwx50XkDuAroGXhNqDgh0/v3r1d9hWYqloCAwOZMGGC3WEodbkXX4QffgBf\nX9f2c8898NhjUK+ea/upINLT01m+3PrCs6wWECmKiDBgwADefvttlixZQteuXV3Wl1Lqd7GxscTG\nxl71OJdPtxARL2Ax8K0x5i0njj8AdDLGnCn0uk63UOWC/swpVbl98803DBw4kJtvvtnlI7zffvst\nAwYMoFOnTiW+KVkpVTbsnG4xC9hRXIIsIsH5nnfBStx1CSKlVNWWleX+Pk+dAl0BjmXLlgHQv39/\nl/fVu3dvfHx82Lx5c4EVT5VS9nN1CbgewHCgj4hsdZR46y8ifxCRJxyH3S8i20VkK/Am8JArY1JK\nqQph+HDo2BHcNboYHW1V0nCyfGNl9v333wPQr18/l/dVo0aNvAWSVuiccKXKFZcmycaYNcYYT2NM\nB2NMR0eJt6XGmH8bY953HDPDGNPesb+7MaaoG/uUUqpq+egjmDEDQkNL/t6S3rgH1k2CJ09aNwpW\nYYcPH+a3336jVq1a1zRHuCQ37uXq27cvoEmyUuWNW0vAlYbOSVblhf7MqXJPxCrnpkps1qxZPPbY\nYwwaNIiFCxeW+P3X8vmwadMmOnfuTNOmTdm3b1+J+1RKlY7tJeCUUko56fhxyM52f7/Z2bBli+tW\n96sA3DnVIlfHjh3x9/dn//79HDx40G39KqWuTJNkpZQqb555xqpbvHmze/t9/nlrBb5ff3Vvv+WE\nMSZvykPuFAh38PT0zCtpunLlSrf1q5S6Mk2Sq4hJkybx8MMPA9acOz8/P9umDHz88cduuWtcqQrr\no4+sBUTaunltpddfhx074M473dtvObFr1y5OnjxJcHAwrVu3dmvfuUl5bn1mpZT9NEl2sdWrV9Oj\nRw8CAgIICgoiMjKSze4eHXIQsabbNGzYkNTU1LztsjRq1Ci8vb3x9/fH39+fsLAwXnjhBVJTU/OO\nGTZsGEuXLnWqrZdeeqnMY1SqQqhfH2rUcG+fVXxZ5FWOyh633HKLSz4fr6RPnz6AdfOe3vOgVPmg\nSbILnTt3jkGDBjFu3DjOnj1LYmIi0dHReHt72x2aSz3//POkpKRw6tQpZs+ezbp16+jRowcXLlyw\nOzSlyr9ffoHTp0vXRnT0tb83KQliYmDXrtLFUAHlT5KvVfQ1Xvu2bdtSt25djh07xq4qeO2VKo80\nSXah3bt3IyI8+OCDiAje3t7ceuuttG/fHoD9+/fTt29fgoKCqFu3LiNGjCgw4hoaGsqUKVMIDw/H\n19eX0aNHc/LkSQYMGICfnx/9+vUjJSUFgEOHDuHh4cHMmTOpX78+9evXZ+rUqUXGlXtsTk4OAFFR\nUbz00kv07NkTPz8/+vfvz5l8CwrMmzePJk2acP311/Pqq68SGhrqVKmi6tWr06lTJxYuXMjp06eZ\nPXs2AHPnziUyMjLvuPHjxxMcHIy/vz/h4eHs2LGDmTNn8tFHHzF58mT8/Py4++67867J1KlTCQ8P\np3bt2gwdOpRLly6V5H+LUuXbu+9aZd9KUx/5WkrA5XrzTfjPf6xkuQoxxpRJknwtJeDA+qYv/2iy\nUsp+miS7UMuWLfH09GTkyJEsXbqU5OTkAvuNMbzwwgscP36c3377jSNHjlz2ARsTE8Py5cvZvXs3\nCxcuZMCAAbz22mskJSWRnZ3NtGnTChwfGxvLvn37+O6773j99deL/bAt/FXi/PnzmTt3LqdOneLi\nxYtMmTIFgB07djBmzBjmz5/PsWPHSElJ4ejRoyW6DrVq1eK2227jp59+uqz/ZcuWsXr1avbu3UtK\nSgqfffYZgYGBjB49muHDh/Pcc8+RmprK119/nffeBQsWsGzZMg4cOMC2bduYM2dOieJRqlx7911r\n1buOHe3p/9VXYckS6NHDnv5tsm/fPo4ePUpQUBBt3T0X3EGTZKXKF02SXcjX15fVq1fj4eHBE088\nQd26dbn77rs5deoUAM2aNaNv3754eXkRGBjI+PHj80Yycj311FMEBQVRr149IiMjiYiIICwsjOrV\nqzN48GC2bt1a4PiJEyfi4+ND+/btGTVqFPPnz3cq1lGjRtGsWTO8vb158MEHiYuLA+CLL77grrvu\nolu3bnh5efHyyy9f07UICQkpMDqdq1q1apw7d44dO3ZgjKFVq1YEBwcX0cLvxo0bR3BwMAEBAQwa\nNCgvVqUqDS+vKj8/2N1iY2MB6NWrl9vnI+fKvXlv5cqVed/0KaXso0myi7Vq1YpZs2aRkJDA9u3b\nOXr0KH/+858BOHnyJEOHDqVBgwYEBAQwYsQIkgp9xZk/YaxRo8Zl22lpaXnbIkKDBg3yths3buz0\nqO8NN9yQ97xmzZp57R49epSGDRsW6DMwMNCpNvNLTEykTp06l70eFRXF2LFjGTNmDMHBwTz55JMF\nzqko+a9B/liVqvBWr7bqFNtRIzm/HTtg6lSoQn+A5g5Q5JZis0NoaCiNGzfmzJkz/PLLL7bFoZSy\naJLsRi1btmTkyJFs374dgL/+9a94eHgQHx9PcnIyH374YanuajbGcPjw4bzthIQEQkJCShVzvXr1\nOHLkSN72hQsXOF3Cm4rS0tL44Ycf6NWrV5H7x44dy6ZNm9ixYwe7du3in//8J3D5lBClKr21a606\nxXaXAfv2W9i/v8qMZpfVfOTSEpG8+zXWrFljWxxKKYsmyS60a9cu3njjDRITEwGrPvH8+fPp1q0b\nYCWPtWrVwtfXl8TExLzksDReeeUVLly4QHx8PLNnz2bIkCFFHudsMn7//fezaNEi1q1bR2ZmZolu\nSrl06RKbN29m8ODBBAYGMnLkyMuO2bRpExs2bCArK4saNWrg4+ODh4f1YxkcHMz+/fud7k+pCm/C\nBGsUt7SrvZXmxj2wFjOZMQNuvLF07VQQBw8e5PDhw9SpUyfvxuprda037uXq4ZgLvnr16lK1o5Qq\nPU2SXcjX15f169cTERGBr68v3bt3JywsLO+muOjoaDZv3pw3t/a+++4r8P7CI6nOjKzecsstNG/e\nnNtuu43nnnuu2FWj8rd1pXbbtm3L9OnTeeihhwgJCcHPz4+6detesYzd5MmT8ff3JygoiJEjR9K5\nc2fWrFlDjSJqvqampjJ69Gjq1KlDaGgoQUFBTJgwAYDHHnuM+Ph46tSpw7333uv0NVCqyps0ye4I\nKpTcUeTIyMi8P9Kv1aRSXvuePXsCOpKsVHkgFaVouYiYomIVES28jlXWrWnTpmRmZpb6Q/5K0tPT\nCQgIYO/evTRu3Nhl/ZRn+jOnXOK77yA9HXr3hiLm75eICJT2Z/S77+Cbb+CxxyA8vHRtlXOjRo1i\nzpw5vPHGG4wfP75UbZX28yEnJ4fAwECSk5NJSEgocE+IUso1HP9uLxuF05HkSsRVidvixYu5cOEC\n6enpPPPMM4SFhVXZBFkplzl71qpPvHat3ZFYDhyAhg1Ln7BXALnlKe2cj5zLw8Mjb0qejiYrZS9N\nkisRV01F+PrrrwkJCaFBgwbs27ePTz75xCX9KFWlDRli1Se+8067I7E8+aQ1R7qSj2SePHmSffv2\ncd111xEWFmZ3OMDvUy50XrJS9vKyOwBVNho3bky2i8pGzZw5k5kzZ7qkbaWUstNax8h9ly5d8PIq\nH78Sc2/e05FkpeylI8lKKWW3hQutusT79pVNe9HRZdPOu+/CXXdZ5eAqqZ9//hmA7t27l0l70WVw\n7Tt37oyXlxe//PILqampZRCVUupaaJKslFJ28/e35gDv2lU27ZW2BFyu6tXh4Yfh+uvLpr1yqKyT\n5NKWgANrkaSbbrqJnJwc1q1bV/qglFLXpHx8t6SUUlXZLbdYj/LmscfsjsClLl26xKZNmwDo2rWr\nzdEU1LNnTzZs2MCaNWvoV9q62Uqpa1LpR5JFpEwe7rJ79246duyIv78/b7/9ttv6LU9GjRrFSy+9\nZHcYSqlKLi4ujoyMDFq3bk2dclbFQ+clK2W/Sp8kVzSTJ0+mT58+pKSkMHbsWLvDUUq52vffw9NP\ng2NBi3Jn3DirTnJyst2RlLncm/ZyS66VJ7lJ8rp168jKyrI5GqWqpkqfJBtjyuThLocOHaJdu3Zu\n668yuVJ1j/Xr19O/f3969uzJxx9/DMCHH35IUFAQTz/9NBs3bnRXmEoV1KQJNGoESUl2R1K0rl2t\n+s21atkdSZkr6/nIZSk4OJhmzZqRnp7Otm3b7A5HqSqp0ifJ5c3OnTuJioqidu3a3HjjjSxatChv\nX9++fVm5ciVjxozBz8+PvXv3Xvb+0NBQpkyZQnh4OL6+vowePZqTJ08yYMAA/Pz86NevHykpKQAc\nO3aM+++/n7p169KsWTOmT59eoK3XX3+d5s2b4+fnR/v27fnqq68K9DN16lTCw8OpXbs2Q4cO5dKl\nS8Wel4eHB/vz3QGff8rE1draunUrnTp1wt/fnyFDhpCRkZG372rnEBoayuTJkwkPD6dWrVrk5OQU\nGV9ERATe3t5MmDCBYcOGATBgwAAyMjKYOnUqnTt3LvbclHKpFi3g2Weh0LL0pVJWN+4BDB0KnTtD\nOSmPVpZyR5LLMkkuixv3cuWOcK9fv77M2lRKOU+TZDfKyspi0KBB9O/fn1OnTjFt2jSGDx/Onj17\nAFi+fDmRkZHMmDGD1NRUmjdvXmQ7MTExLF++nN27d7Nw4UIGDBjAa6+9RlJSEtnZ2UybNg1jDIMG\nDaJjx44cO3aM5cuX89Zbb/H999/ntdO8eXPWrFlDamoq0dHRjBgxghMnTuTtX7BgAcuWLePAgQNs\n27aNOXPmFHtuV5u3XVxbmZmZDB48mEcffZQzZ87wwAMP8MUXXwA4dQ4An3zyCd9++y3JycnFLsmd\nk5PD2rVr6du3b95r3333HV26dKFatWpXjF2pCmfSpLJvs5ItxX7kyBEOHz5MQEAArVu3LrN2J5Xh\ntY+IiAA0SVbKLpoku9G6detIT0/n+eefx8vLi6ioKAYOHMj8+fNL1M5TTz1FUFAQ9erVIzIykoiI\nCMLCwqhevTqDBw9m69atbNy4kaSkJP72t7/h6elJkyZNePzxxwuslnffffcRHBwMwAMPPECLFi3Y\nsGFD3v5x48YRHBxMQEAAgwYNIi4urtiYrjYlpbi21q5dS1ZWFk8//TSenp7cd999eaO6xZ1D4es1\nbtw4QkJC8Pb2Lrb/LVu2EBgYSExMDPPmzWPu3Lm88847REVFXTFupVxq40arDvGsWXZHUryMDOjf\n35oS4qIFi+yQO4rctWvXYv+4tpsmyUrZq/J9f1aOHT16lIaFlnht3LgxiYmJJWonN7EFqFGjxmXb\naWlpHDp0iMTExLw7to0x5OTk0KtXr7xj582bx7/+9S8OHjwIQHp6Okn55kXmb7dmzZocO3asRHEW\nF3P+to4dO0b9+vULHNu4cWMAp84BoEGDBlftf8WKFTz44IM88sgjea9FR0dfliQbY3j00UeZN29e\nCc5OqWvUvLlVh7g8j9L6+MD48dChA3h62h1Nmcmdj1web9rLFR4eTvXq1dm1axfJyckEBATYHZJS\nVYomyW4UEhLC4cOHC7yWkJBAq1atyryvRo0a0bRpU3YVszhBQkICTzzxBCtXrsz7JdGxY8drvkmx\nZs2anD9/Pm/7+PHjl/1BUJR69epd9kdCQkICzZs3p2HDhlc8h1zOlOhbuXIl48ePz9tOTEwkKSnp\nstqoO3bsKNUfA0qVSO3a8MADdkdxdbffbncEZa4837SXq3r16nTs2JH169ezceNGbrvtNrtDUqpK\nKZ/fMVVSERER1KxZk8mTJ5OVlUVsbCyLFy9myJAhZd5Xly5d8PX1ZfLkyWRkZJCdnU18fHxe4fz0\n9HQ8PDwICgoiJyeH2bNns3379mvur2PHjnz88cfk5OSwdOlSVjlZzqpbt254eXkxffp0srKyiImJ\nyZvycbVzcFZmZiY///xzgRGjH3/8ke7du+OV72akjIwMQkJC8Pf35+LFiyXqQ6kqoZL8u7h48SJx\ncXGISLm/aVenXChlH5cmySLSQERWiEi8iPwqIk8Xc9w0EdkjInEi0sGVMdmpWrVqLFq0iCVLlhAU\nFMTYsWP54IMPaNmyZd4xVxsVLby/uONFhMWLFxMXF0doaCh169Zl9OjRpKamAtCmTRueeeYZunbt\nyg033EB8fDw9e/Z0Oo7C3nzzTRYuXEjt2rWZP38+gwcPdqqtatWqERMTw+zZswkMDGTBggXc57jL\n38PD44rn4EycW7du5S9/+QsiQkxMDACffvopM2bMICsrK/TyohcAACAASURBVG80CWDTpk38+OOP\nZGRkFLiBUSmXOHIEwsJgwoSybzs6umzb270bWrWCSjKH/5dffuHSpUu0bt0af3//Mm07uoyvvSbJ\nStlHXFkDWERuAG4wxsSJSC1gM3C3MWZnvmPuAMYaY+4UkQjgLWPMZeuDiogpKlYRcWsdY1U57d+/\nn5CQEHx8fJg4cSIDBgygS5cuRR6rP3OqTGRmQlwcJCbCPffYHc2VZWTAnj3Qpk2lKAX3zjvvMGbM\nGB555BHmzp1rdzhXtG/fPpo3b87111/PiRMn3LoCrFJVheP3+mX/uFw6kmyMOW6MiXM8TwN+A+oX\nOuxuYJ7jmPWAv4gEo5Sb/Pjjj/ztb3/DGENKSgrx8fF8+eWXdoelKrtq1az6w+U9QQbr5r0bb6wU\nCTJQYEpXede0aVOCgoI4depU3k3WSin3cNsnnog0AToAhb8zqg/kv5st0fGaft+t3KJXr155FTNq\n1KjBggULbI5IVQnGQEUbFczKgtRUcFScqagqUpIsInTp0oUlS5awYcMGQkND7Q5JqSrDLUmyY6rF\n58A4x4jyNcm/klHv3r3p3bt3qWNTSim3y8qylqNu2xYWL4bq1e2O6OoWLbJW33v8cXjzTbujuWap\nqans3LmTatWqERYWZnc4TomIiGDJkiWsX7+ehx56yO5wlKrwYmNjiY2NvepxLp2TDCAiXsBi4Ftj\nzFtF7H8PWGmM+dSxvRO4xRhzotBxOidZlQv6M6fKxIkT8MsvUFHKep07Zy0mUsFr9a5cuZI+ffrQ\nuXPnAosnlWdLly7ljjvuoHv37qxZs8bucJSqdGyZk+wwC9hRVILssBB4BEBEugLJhRNkpZSqdIKD\nXZcg5/vWrcz4+lb4BBlcP9VioguufW6sW7ZsITMzs8zbV0oVzdUl4HoAw4E+IrJVRLaISH8R+YOI\nPAFgjFkCHBCRvcC/gT+5MiallLLdpUuubX/SJNe1ffy4NQpeQW3cuBHAZfWRJ7ng2tepU4cWLVqQ\nkZHBL7/8UubtK6WK5urqFmuMMZ7GmA7GmI7GmJuMMUuNMf82xryf77ixxpjmxphwY8wWV8aklFK2\ni4qCli2t+sMVySuvWPOoly61O5JrVpFu2stP6yUr5X664p5SSrnbjz9CTAw0amR3JCXz7LNw+jQ8\n+qjdkVyT48ePc/jwYXx9fWnVqpXd4ZRIbpJcUeZRK1UZVI6il0opVZF4ekL79nZHUXI1atgdQank\nTrW4+eab8fCoWGNEOpKslPtV+CS5cePGugKRcqvGjRvbHYKqyM6cAT+/irswR0aGtVJgixYQGGh3\nNCVSUadaAISFhVG9enV27txJcnIyAZXgJkqlyruK9ad0EQ4ePIgxRh/6cNtDV71SpfL3v1tVIr76\nynV9REe7ru1HH4U//hH27nVdHy7ijiQ52kXX3tvbm44dOwK/j4grpVzL5XWSy0pxdZKVUqrCSUkB\nDw+rrFpFYyrgSoGAMYbAwEDOnj1LQkICDRs2tDukEhs3bhzTpk3jlVde4cUXX7Q7HKUqjeLqJFfQ\n7/uUUqoC8/e3O4JrVwETZIB9+/Zx9uxZbrjhBho0aGB3ONdE5yUr5V4VfrqFUkpVGCdPwrFjdkdR\negcOwKefwsWLdkfitPxTLSrqfSy5SfLGjRvRb1aVcj1NkpVSyl1++AHatYOK/lX544/DJ59AcrLd\nkTgtN0l21SIi7tC0aVPq1KnDiRMnOHz4sN3hKFXpaZKslFLuMmyYVWf4hRfsjqR0li+HL7+0ltau\nIHJvdquIlS1yiUhe/FovWSnX0yRZKaXcSQRq1nRtHxMnurb9CiYzM5MtW6zFXG+++WaX9jXRxdc+\ndyRck2SlXE+TZKWUcoeUFFi/3qoz7GqTJrm2/awsiI2F9993bT9lZPv27WRkZNC8eXPq1Knj0r4m\nufja60iyUu6jSbJSSrnDgQNWfeEHHrA7ktLLybFqMe/caT0v5yrDVItcuSPJmzZtIjs72+ZolKrc\ntAScUkq5Q4cOsGWLVWe4oqteHVatsjsKp1XklfYKCw4OpnHjxhw6dIidO3fSrl07u0NSqtLSkWSl\nlHKnClp+rCKrDJUt8tMpF0q5hybJSinlajk58NlnsH9/5RhJBjhzBubMKffzktPT04mPj8fT0zNv\nWeeKTpNkpdxDk2SllHK11FSYPx+GDHHPSHJ0tOv7OHMGli2DatVc31cpbNmyhZycHMLCwqhRo4bL\n+4t2w7XXJFkp95CKsmqPiJiKEqtSSqnyYerUqTz77LM88cQT/Pvf/7Y7nDKRlpaGv78/Hh4epKam\nuiX5V6oyExGMMZeNYDg1kiwiMSJyp4joyLNSSqkKozJVtshVq1Yt2rZtS1ZWFnFxcXaHo1Sl5WzS\n+w4wDNgjIq+JSCsXxqSUUpXLvHmwciVcumR3JGVr506rJvMHH9gdSbEqU2WL/HTKhVKu51SSbIz5\nwRgzHLgJOAj8ICI/i8goESnfE9KUUspuO3bAiy/C+fN2R1K2kpKsxVFCQ+2OpEinTp3iwIED1KxZ\nkzZt2tgdTpnKTZJzR8qVUmXP6TrJIhIIjAAeBrYCHwE9gUeB3q4ITimlKoXXXrM7Atfo2dN6lFOb\nNm0CoFOnTnh5Va5lAXQkWSnXc3ZO8pfAT0BNYJAx5i5jzKfGmKeAWq4MUCmlVAlNnGh3BOWCHVMt\nJrrp2rdv3x4fHx/27NnDmTNn3NKnUlWNs3OSZxpj2hpj/s8YcwxARLwBjDE3uyw6pZSq6D780Kon\nfOqU+/qcNMl9fS1dCqNGwZIl7uvTSXYsIjLJTde+WrVq3HTTTcDvI+ZKqbLlbJL8ahGvrS3LQJRS\nqlLy8LDqCR85YnckrpGVBV27QjlbHtkYUykrW+SXm/zrlAulXOOKk7RE5AagPlBDRDoCuTXk/LCm\nXiillLqSYcOsR2U1cKDdERTp0KFDnDp1iqCgIJo0aWJ3OC6h85KVcq2r3clwOzASaAC8ke/1c8AL\nLopJKaWUKpX8Uy3EHasc2iB/kmyMqbTnqZRdrjjdwhgz1xgTBYw0xkTle9xljIlxU4xKKVUxxcRY\nN9H9+qvdkbjWv/4FffrAtm12R5LHjvnI7tasWTNq167NiRMnOFJZp/MoZaMrJskiMsLxtImI/G/h\nhxviU0qpiqt+fWsBkaNH3dtvdLR7+2vSBJ57Dpo1c2+/V5CbJEdERLi132g3XnsR0SkXSrnQ1W7c\nu87x31qAbxGPKxKR/4rICRH5pZj9t4hIsohscTxeLEHsSilVvkVEwD/+Abff7t5+3V0CbvBg6N8f\napWPiqBZWVls3rwZcP9Ne+4qAZdLk2SlXOeKc5KNMf92/Pdaa9rMBqYD865wzI/GmLuusX2llFKq\ngPj4eM6fP0/Tpk0JCgqyOxyX0iRZKddxdjGRySLiJyLVRGS5iJzKNxWjWMaY1cDZqzXvTAxKKVWh\nrFpl1Q9etMjuSFzPGHj4YWjRAtLS7I7GlkVE7JI753rTpk1kZ2fbHI1SlYuzdZL7GWNSgYHAQaA5\nMKGMYugmInEi8o2ItC2jNpVSyl7Nmln1gy9etDsS1xOBBx6w/iCoaX910PXr1wPun49sh+DgYBo1\nakRaWho7d+60OxylKhVnF7PPPe5OYIExJqWMSs1sBhoZY86LyB3AV0DLsmhYKaVs1aAB/OEPdkfh\nPneVn1lzVWkkGazzTEhIYMOGDbQrZ4u6KFWROZskLxaRncAF4I8icj2QUdrOjTFp+Z5/KyLviEgd\nY0yRC9HnvyGid+/e9O7du7QhKKVU5TNxovtv3stljDWybJO0tDTi4+Px8vKiY8eObu9/4sSJtty8\n9/nnn7Nx40ZGjRrl1r6VqohiY2OJjY296nFijHGqQRGpA6QYY7JFpCbgZ4w57sT7mgCLjDE3FrEv\n2BhzwvG8C/CZMaZJMe0YZ2NVSilb7dsHjz9uVXx4/nn39y9iJavudOIE3HMPpKZCfLx7+85n1apV\n9O7dm5tuuimvwoU7iQju/l2Ve86dOnVi06ZNbu1bqcrA8e/2sr/unR1JBmiNVS85/3uuVLUCEfkY\n6A0EikgCEA1UB4wx5n3gfhH5I5CJNUr9UAniUUqp8qlePfjLX+Ds1e5brkSCguD//g86dbI1jKo2\n1QKgU6dOeHh4sG3bNjIyMvDx8bE7JKUqBaeSZBH5AGgGxAG5t88arpIkG2OGXWX/DGCGMzEopVSF\nUbOm+2sj283TE8rBFDi7FhGxU61atWjbti3bt28nLi6Orl272h2SUpWCsyPJNwNtdb6DUkqpKzIG\nzp+H6667+rEukFvZoiqNJIN1vtu3b2fDhg2aJCtVRpwtAbcduMGVgSilVKVw6RK0aQNDh0JVq1u7\nejWEhMD//I8t3R87dozDhw/j6+tLq1atbInBLrn1knVREaXKjrMjyUHADhHZAOQV/dSV8pRSqhAv\nL/jyS9ixw5qCYIfoaHv6DQ+HtWuhcWNbut+4cSNgJYyeNl37aJuuva68p1TZczZJnujKIJRSqtLw\n8IDWra2HXewq/+braz1sUh6mWri7/FuuG2+8EW9vb/bs2cPZs2epXbu2LXEoVZk4Nd3CGLMKa6W9\nao7nG4EtLoxLKaUqJr11A/5/e3ceJlV19Xv8u7ptJkFEGWRWAkQRRVA7gIKIEkFRMSoBNQlK0Bsh\nGjU3eNUwvK8JookSwSGKohA1gkQElcnI4AgyCcioMs/QAjZj073vH6eqKZoeqrur6tTw+zxPPfSu\nc+qc1ZtDsWrXOnsfOAB79sT8tKk4s0VQRkYGbdq0AdA0cCIRElaSbGb9gHeAfwaeqo+3Op6IiITK\nzIR27WDTJr8j8cfzz0OtWjC22MmPIi4vLy+/3CKVZrYIpZILkcgKt9yiP5AJzANwzq01s9pRi0pE\nJFHNmgWLFkHtFH2LvOMO6NsXKlaM6WnXrFnDvn37qF+/PvXq1YvpueOFkmSRyAo3ST7inDtqgaVG\nAwuK6DtFEZGCqlaFjh39jsI/p53my2lTudQiKPi7z5s3D+cc5uPy4CLJINwp4OaY2SNAZTPrAkwA\npkQvLBGRBHTgQHzUJPt1416Qc7B6NezeHbNTxssiIn7duAfwk5/8hBo1arBjxw42b97sWxwiySLc\nJPlhYBewDLgH+BB4LFpBiYgkpHvu8eYJnjvX3ziGDvX3/P36wc9/DosXx+yU8TCzBcBQH/vezDRf\nskgEhVVu4ZzLM7NJwCTn3K4oxyQikpjGjYMNGyDVp9967rmY1iQfPnyYr7/+GjPj4osvjtl541Fm\nZiYzZszgq6++4uabb/Y7HJGEVuxIsnmGmNluYDWw2sx2mdmg2IQnIpJAzODss6F6db8j8VeMb9pb\nuHAhOTk5tGzZktN8qomOF7p5TyRySiq3eAC4DLjUOXeGc+4M4GfAZWb2QNSjExFJFDt3ejXJ4tm3\nD2bM8P6Msi+++AKAdu3aRf1c8S6YJH/11Vfkptqy6CIRVlKS/Cugt3NuXfAJ59z3wB3Ar6MZmIhI\nQnntNW/at1de8TuS+NCrF/zlL7BtW9RP9fnnnwPQvn37qJ8r3tWpU4dzzjmH7Oxsli9f7nc4Igmt\npCQ5wzl30u3JgbrkjOiEJCKSgP70J8jKgp49/Y4EBg/2OwL48EOYMyfqy3M75+JqJHlwHPR98MNC\n8MODiJRNSUny0TJuExFJPRUrQrVqfkfh/xRw4NVnx8D69evZvn07Z555Js2aNYvJOYvj5xRwQUqS\nRSKjpCS5lZntL+TxI3BBLAIUEYl727Z58wLHwxzJ8WTZMnjpJYhibWzoKLIWz/AoSRaJjGKTZOdc\nunPutEIe1ZxzKrcQEQGYNw+uuQb+7//1O5L48uCD8NlnsH9/1E6heuSTtWzZkqpVq/L999+zfft2\nv8MRSVjhLiYiIiJF6dED1q+HYcP8jiS+zJwJr78e1Xmjg0lyPNQjx4tTTjklf+XB4Ei7iJSekmQR\nkUjJ0BdssZSdnc3SpUtJT0/PX2lOPMEPDSq5ECk7JckiIuWxcydMnw579/odyXFxcPMYADk5MGUK\nPPVUVA4fnAu4VatWnHrqqVE5R2nFw417oLpkkUhQkiwiUh5btsBf/wr33ut3JMcNHep3BMe9+KK3\nyEpeXsQPHSwliKd65KFx0vdt27YFYMGCBRw5csTnaEQS0yl+ByAiktBat/bmA5aTZWTABx9E7fCq\nRy5ajRo1aNGiBStWrGDx4sX5SbOIhE8jySIiknBCFxGJp5HkeKKSC5HyUZIsIlJWWVnwwguwYoXf\nkcSvH3+EUaPg0UcjethVq1aRlZVF3bp1ady4cUSPnSyUJIuUj5JkEZGyys6G+fNh+HC/I4lvS5ZA\nixYRPeQnn3wCQIcOHbSISBGCSfJnn32G00I3IqWmmmQRkbJq1AjGjPE7ipMNHux3BMdVqwajR0f8\nsHPnzgWgY8eOET92eQyOo75v3rw5NWvWZPv27Xz33Xc0bdrU75BEEopGkkVEkk2cTEMWTcEkuUOH\nDj5HcqJ4mQIOwMzyP0QE+0tEwqckWUSkLLKz4eGHYepUvyOJf1u3wkMPwX33ReRwGzZsYNOmTZx+\n+um0bNkyIsdMVsEkeY5mYBEptagmyWb2ipntMLOlxezzrJmtNbMlZnZRNOMREYmYnByoXNlbLEOK\nl5EBZ5wBvXpF5HCho8hpaRrrKY5GkkXKLto1yWOAkcDYwjaaWTfgJ865Zmb2M+BFQJM5ikj8q1Ej\nvmp/41mtWhGd3SL0pj0p3oUXXkj16tVZv349GzdupFGjRn6HJJIwovoR3Dn3KfBDMbvcSCCBds7N\nA6qbWZ1oxiQiIoktXm/ai0fp6elcfvnlwPEPFyISHr+/p6oPbAppbwk8JyISv3Jy4I47vPl/43Fq\nrTi6eSzfypVw883Qr1+5DrNz505Wr15NlSpVaNOmTYSCi5x4unEvSHXJImXjd5IsIpJ4cnOhSxfY\nsgXicY7eoUP9juBkp58Ov/gFDBpUrsMER0PbtWtHRkZGJCKLqKFx2PdXXHEFoLpkkdLye57kLUDD\nkHaDwHOFCv2E3qlTJzp16hStuEREilapEvzmN35HkVjq1oXbby/3YYJJskotwtemTRuqVKnC6tWr\n2bFjB3XqqKpRUtvs2bOZPXt2iftZtFfhMbOzgSnOuQsK2XYt0N85d52ZtQVGOOcKvXHPzJxWDBIR\nCYNZfJaBBOXmQnp6mV7apk0bFi9ezMcff8yVV14Z4cDKz8zicnW7Ll268NFHHzFhwgRuueUWv8MR\niSuBf7cnfS0Y7Sng3gQ+B5qb2UYzu9PM7jGzuwGccx8C68zsW+CfwL3RjEdEpNxycqBDB/jTn7xk\nT8I3fz5ccgn86ldlevm+fftYsmQJGRkZ/OxnP4twcMktWHKhumSR8EW13MI5d1sY+wyIZgwiIhGV\nlgbDhsGiRWUeDU1Z55wDI0ZAZmaZXj5nzhycc2RmZlKlSpUIB5fcNF+ySOn5XZMsIpJY0tPh8su9\nR7yK1/mba9XyHmX00UcfAXD11VdHKqKIGxynfZ+ZmUnFihVZunQpu3fvpmbNmn6HJBL3NLuFiEhp\nxGG96UnicBqyE+TlQVZWqV/23//+F4Crrroq0hFFTDxOAQdQqVKl/PmSZ82a5XM0IolBSbKISLgO\nH4aGDeGXv1Q9clnNnQu1a3s13aWwbds2VqxYwamnnqp65DIKjsDPnDnT50hEEoOSZBGRcFWqBF9+\nCbfdpnrksmrdGpYsgdGjS/Wy4Chyx44dqVChQjQiS3rBJDlYtiIixVNNsohIaTRo4D2kbKpV8x6l\nlAilFvGudevW1KhRg3Xr1vH999/TpEkTv0MSiWsaSRYRCVd2tt8RJI+9e2HNmrB2dc4lxE178S49\nPZ3OnTsDGk0WCYeSZBGRcBw+DI0aQbt28V+PHKc3j+X76COvL195Jazd165dy+bNm6lZsyYXXHDS\nulRxJV5v3AtSyYVI+KK+4l6kaMU9EfHdkSOwYoVXVxvP4n3FvaNHvT/DrC1+/vnn6d+/Pz179uTt\nt9+OYmDlF68r7gV99913NG3alDPOOIOdO3eSrtp6EX9W3BMRSSoVK8Z/gpwIKlQIO0GG4/XIKrUo\nvyZNmnD22WeTlZXFkiVL/A5HJK4pSRYRCcfSpd78vhIZznl9GkiAi5Kbm5s/r69u2is/M1PJhUiY\nlCSLiJRk717o2RNatozvMoZE8sUXcNNNMH9+sbstXLiQH374gbPPPluzMUSIkmSR8GgKOBGRkpx+\nOqxaBbt3e/W+Un7t2sG335bYnx988AEA3bp1i0VUKSE4w8Unn3zCwYMHqVKlis8RicQnjSSLiISr\nZk2/IwjP4MF+R1Ays7A+cAST5Ouuuy7aEUXE4ATo+1q1anHJJZdw5MgRLVEtUgwlySIixTl0CCZO\nhH37/I4kfHE+DVm+w4dh8mQYNarQzdu2bWPhwoVUrlw5f/Qz3sX7FHBB3bt3B+D999/3ORKR+KUk\nWUSkOLt2wcsvww03+B1J8tm7F/7xjyJHlKdOnQp45QGVK1eOZWRJLzRJjucp60T8pJpkEZHiNGoE\n06ZpZotoOOusYme3SLRSi0TSunVr6taty+bNm1m6dCmtWrXyOySRuKORZBGRcKTp7TKWjh49ysyZ\nMwElydGQlpaW369TpkzxORqR+KR3fRGRomzYAE8/DatX+x1J8jp0CJ59Fvr2PeHpTz75hB9//JGW\nLVvSqFEjn4JLbqpLFimekmQRkaIcO+YlyC++6HckpZMgN48BkJHhTa/XrdsJJS2JWmqRKDfugTdf\ncsWKFZk/fz47duzwOxyRuGOJUrBvZi5RYhUR8ZVZwi968tOf/pQ1a9Ywd+5cOnTo4Hc4YTOzhLoR\n7tprr2Xq1KmMGTOGPn36+B2OiC8C/25PuoNYI8kiIhIfAsnl2rVrWbNmDTVq1KBdu3Y+B5XcVHIh\nUjQlySIihXn7bejfHxYv9juS1DBkCDRrBlu28M477wDeKOcpp2gSpmgKlrNMnz6dI0eO+ByNSHxR\nkiwiUpjMTGjQADZv9juS1NC8OUyYAPXqMWHCBABuvfVWn4NKfo0bN6ZVq1ZkZ2fnzyYiIh7VJIuI\nJJsErkn+7rvvaNq0KdWqVWPnzp1UqlTJ75BKJdFqkgH++te/8uijj/KrX/2KsWPH+h2OSMypJllE\nJFwJluScZPBgvyMoswlvvgnA9ddfn3AJMsDgBOz7nj17AjBp0iQOHz7sczQi8UMjySIiBfXuDT/+\nCH/7G5x7rt/RpI4nn+SSRx5hYW4u7777Lj169PA7opRx8cUXs2jRIiZNmsSNN97odzgiMaWRZBGR\ncL34Itx2G9So4XckKeX7Nm1YmJtL1apVueaaa/wOJ6UER5PHjx/vcyQi8UNJsohIQdWre0lynTp+\nR5JS3lm0CPBKLSpXruxzNKkleJPk5MmTOXTokM/RiMQHJckiIqE2bvQ7gpSVP6vFlVfCkiU+R5Na\nmjRpwqWXXkp2djZTp071OxyRuBD1JNnMuprZKjNbY2YDC9l+hZntNbNFgcdj0Y5JRKRQR4/ClVd6\n07/l5PgdTUpZt24dCxYsoGrlynQdOBBmzfI7pJSjkguRE0U1STazNGAUcA1wPtDbzAq7C2auc65N\n4PF4NGMSESlShQqwZo1Xk5yR4Xc0ZTdkiN8RlFpw6rEbbriBylu3wgMP+BxR2QxJwL4PCpZcTJky\nhQMHDvgcjYj/oj2SnAmsdc5tcM7lAP8GCrtt9qQ7CkVEfJGeDm3a+B1F+Qwd6ncEpZKXl8eYMWMA\nuKtfP0jAqd+ChiZY34dq3Lgx7du35+DBg/mrHoqksmgnyfWBTSHtzYHnCmpnZkvM7AMzaxHlmERE\nTvb99zBtGuTm+h1Jypk1axYbNmygcePGXHnlld481V99BY88Anl5foeXUvr27QvA6NGjfY5ExH/x\ncOPeQqCRc+4ivNKMST7HIyKpaPt2GDQIBp5064RE2auvvgrAnXfeSVpampckDxwIlSt7deISMz17\n9qRq1ap8+umnrFq1yu9wRHx1SpSPvwVoFNJuEHgun3MuO+TnqWb2vJmd4ZzLKniw0FqvTp060alT\np0jHKyKpqn17mD9fN+zF2A8//MDEiRMxM/r06eM9mZYGH3/sa1ypqmrVqvTq1YvRo0fzyiuv8NRT\nT/kdkkjEzZ49m9mzZ5e4X1RX3DOzdGA1cBWwDZgP9HbOrQzZp45zbkfg50xgvHPu7EKOpRX3RETC\nYZYwS2u/8MIL3HvvvVx99dXMnDnT73DKLbByl99hlMu8efNo27YttWvXZtOmTVSoUMHvkESiypcV\n95xzucAAYAbwDfBv59xKM7vHzO4O7HaLmS03s8XACOCX0YxJROQkf/4zjBkDybKIwuDBfkcQtmCp\nxV133XXyxk8+gZtugnHjYhxV2Q1OoL4vSmZmJi1btmTnzp28//77focj4puojiRHkkaSRSRqpk2D\n556Df/4T6tXzO5qUsXTpUlq1akX16tXZtm3byavsffABbN0Kt98OVar4E2SKGjFiBA888ADdunXj\nww8/9DsckagqaiRZSbKIiPjinnvu4aWXXqJ///6MGjXK73AkxO7du6lfvz45OTmsW7eOxo0b+x2S\nSNT4Um4hIhLXjh3zHhJzWVlZjAuUUQwYMKDkF3z7bZQjklA1a9bklltuwTnHc88953c4Ir5Qkiwi\nqWv6dGjaFN56y+9IUs7o0aM5dOgQ11xzDeeeW9hCrAF5edC5M/z853DwYOwCFO6//34AXnrpJbKz\ns0vYWyT5KEkWkdR13XUwfjycdZbfkaSUo0ePMnLkSADuu+++4ndOS4Mnn/SWC1ddckxlZmbSvn17\n9u3bx2uvveZ3OCIxpyRZRFJbZiZceaXfUURWyJzy8eitt95i8+bNtGjRgq5du5b8gksugVOiPa1/\nZAyJ874vrQceeACAp59+mmMqTZIUoxv3RCQ1TZgAgSMymQAAFRtJREFU3bt7q7olmzieJzkvL4+W\nLVuycuVKXn/9dX7961+H90LnvPKY/fuhZ8/oBlkOyTBPcqjc3FzOO+881q5dy7hx47jjjjv8Dkkk\n4nTjnohI0OHDXh1ymzZezavEzHvvvcfKlStp2LAhvXv3Dv+Fc+bAH/8IlSpFLzg5SXp6Og8//DAA\nw4YNI0//XiSFaCRZRFLXnj1w5pl+RxF5cTqSnJeXx0UXXcSyZcsYOXJkeLNaBDnnPdLie2wn2UaS\nwashb9q0KZs2beLtt9+mZxyP5IuUhUaSRUQKSsYEOY698847LFu2jIYNG9KvX7/SvdjseIKclwdH\nj0Y+QClUhQoVeOSRRwAYNGiQapMlZShJFpHU0qMHDB+ePEtQJ4icnBwGDRoEwGOPPUbFihXLdqDP\nPvPKZMaOjWB0UpK77rqLJk2asHr16vz5rUWSnZJkEUktw4fDypXJvYjI4MF+R3CSl156idWrV9O0\naVP69OlT9gOlpXm/X9++EYstkgbHYd9HQoUKFfJn7hg0aBAHNWe1pADVJIuISFTt27ePpk2bsnv3\nbv7zn/9w0003+R2SlEFubi6XXnopixcvZsiQIUn7gUBSj2qSRSS1TZ8OWVl+R5GSBg0axO7du+nQ\noQM9evSIzEHz8uC112Dx4sgcT0qUnp7OiBEjABg+fDgbN270OSKR6FKSLCKp4eOP4bzzYMcOvyNJ\nKYsWLWLUqFGkpaXx7LPPYnbSYE3Z/OMf8MILkJ4emeNJWDp27Mitt97KoUOHGDBgQNLN5CESSuUW\nIpI61q2Dc87xO4qUcezYMdq1a8eCBQt44IEHePrppyN38MOHoUKFuJ8SLhlt3bqV8847j/379zNh\nwgRuueUWv0MSKReVW4hIavrxx+M/K0GOqeHDh7NgwQIaNmzI0KFDI3vwSpWOJ8jZ2bBtW2SPL0Wq\nV68eTzzxBAD9+/dn165dPkckEh1KkkUkeR07BpmZ8OijyT2bRUGBWQj8tGTJkvzE+NVXX6VatWrR\nOdGiRXDBBd4y43FgSBz0fSzcc889dOrUiZ07d3L33Xer7EKSksotRCS5bdvm3eD18MPeghSpwOcV\n9/bv388ll1zC2rVr6d+/P6NGjYreyfbsgS++gO7do3eOUkjGFfeKsmHDBi688EL279/Pc889x733\n3ut3SCJlUlS5hZJkEUlOubmpe1OXj0myc45evXoxfvx4WrVqxRdffEHlypVjF8D+/XDaabE7XwGp\nlCQDvPXWW9x2221kZGTw6aefkpmZ6XdIIqWmmmQRSR3TpsFVV4FqJWPu8ccfZ/z48VStWpXx48fH\nLkF2Dp59Fi69FHJyYnNOoXfv3gwYMICcnBxuuukmNm/e7HdIIhGjJFlEkk+XLnD55d7cyBIzb775\nJoMGDcLMeOutt2jevHlsA9i2DaZOhYyM2J43xf3973+nQ4cObN26le7du/Nj6M2yIglM5RYikjwO\nHYJYfrUfr3wot3j//ffp0aMHubm5/P3vf+fBBx+M6flPcviwdz3UqBHT06ZauUXQnj17aNeuHWvX\nrqVjx45MnTqVKlWq+B2WSFhUbiEiye3gQWjZEubM8TsS/8V4ueDJkydz8803k5uby8CBA+MjQb7p\nJvjb32J+6lRdqvnMM89k2rRp1KtXj7lz53LDDTeQnZ3td1gi5aKRZBFJHv/9L0yaBCNH+h1Jyhg7\ndix9+/bl2LFj/P73v+cf//hH5FbVK6vt270E+Ykn4JRT/I0lxaxevZorrriCHTt2kJmZyfvvv0+t\nWrX8DkukWJrdQkSSj3Pwn/94o4ZaeS2mcnNz+fOf/8ywYcMAGDhwIMOGDfM/QS7M7NmQlwedO/sd\nSUr49ttv6dKlC+vXr+fss8/mvffe48ILL/Q7LJEiqdxCRJLPsWPwzDPw+ON+R5JStmzZQpcuXRg2\nbBjp6ek8//zzPPHEE/GZIO/aBbff7iXJEhNNmzbl888/JzMzk/Xr15OZmckzzzxDnv4OJMEoSRaR\nxOIcfPut93NGhrfSWqtW/saUInJzcxk9ejTnn38+s2bNok6dOsyYMYPf/e53fodWtDPOgH/9C66+\n2msfPAiLF/sbUwqoW7cus2fPpm/fvhw5coQHH3yQzp07s27dOr9DEwmbyi1EJLGsWQMdOsDKlV4C\nJFHnnGP69OkMHDiQpUuXAtC9e3defvllzjrrLJ+jK6X//V9YtgzGj/c7kpQxZcoU+vXrx44dO6hY\nsSL9+/fn4YcfVq2yxA2VW4hI4vr4Y28OXIDmzeHuu2H1an9jimdDhkTkMMeOHWPSpEl07tyZbt26\nsXTpUho2bMgbb7zB5MmTEy9BBq9EZ/jw4+0JE2Dr1ogdfkiE+j6ZXH/99SxfvpzbbruNI0eO8PTT\nT9OkSRMeffRRNmzY4Hd4IkWK+kiymXUFRuAl5K8454YXss+zQDfgANDHObekkH00kiySSo4cgYoV\nvZ/vuw+qVYO//MXfmBJFOeZJds7xzTffMHHiREaPHp2/gtrpp5/Oo48+yoABA6hUqVIko/XPvn1w\nzjmwdCk0aOA9V85lrVN1nuRwLV68mEceeYRp06YBXn9169aNO++8k65du1K1alWfI5RU5MtIspml\nAaOAa4Dzgd5mdm6BfboBP3HONQPuAV6MZkx+mT17tt8hpCz1vT9K3e+hSwm/8Qb89rfH2/fdB/Xq\nRSSuVDC7lPtv376diRMn8oc//IFmzZpxwQUXMGTIEDZv3kyzZs145plnWLduHX/84x+TJ0EGbz7l\nJ588niBv2ADnnnv8Jr+cHDh61L/4klDr1q2ZOnUqn376Kb179yYjI4MPP/yQW2+9lTPPPJOuXbsy\nYsQI5s+fz9FS9r3e6/2TrH0f7QkkM4G1zrkNAGb2b+BGYFXIPjcCYwGcc/PMrLqZ1XHO7YhybDE1\ne/ZsOnXq5HcYKUl9749i+/3AAfjoI7jxRq+9fDncdRfMn++1O3eGxx7zkpW0NGja1HtIWGYDnQo8\nd+jQITZv3symTZvYuHEjq1at4ptvvmH58uWsX7/+hH1r1arF9ddfT69evbjqqqtIS9bp9erUOfHD\n2Pz5cMMNx6cTnD3bmz3lww+99nffwZYt0LFjzENNNpdddhmXXXYZu3btYuzYsUycOJEvv/yS6dOn\nMz2wnHylSpVo1aoVLVq0oEWLFjRv3pwGDRpQv359atWqddJ1qfd6/yRr30c7Sa4PbAppb8ZLnIvb\nZ0vguZOS5HmvvOKtqBW0fHmxbbdsWfH7L1sGF1xwQtuVsL2otnPO+8oudC7IkPamTZv4/MUXT9ju\nliw58a78r78Oq53/VV5J+y9ZAhdddDy+kHbB7UW1XRHHA7w7xFu3PqmdH18R2wtrO+dO3r5oEbRp\nU3R74UJccdsD7XXr1jFr1ixYuBAuvvh4fIF26PFOaC9YAJdckt90CxaUan8WLMAVt/2rr+DSSwtt\nO+dKtT+Amz+/2O2FtV3o8efPh8zMsNru2DFvZbvgvLO5uTBxIvTs6bWPHuXbceOY1rat1z50CHf/\n/fDPf3rtH3+EPn3gnXe80oAjR7x/n+++C8GRypEjYfr0Mn11Xdavu+P9XHl5eRw9epQjR47k/xl8\nHD16lAMHDrB3714+A77s2pV9+/axd+9edu3axZ49e4o8btWqVWnbti2XXXYZV111Fe3btyc9Pb1M\nv1dCu/VWuOWW4+1vvoHzzz/enj7de58NJsnjxnn7PPGE1545k5D/QWDePK98o0sXr71qlTd6HXwf\n/fZbb6S6RQuvvX69N3rdrJnX3rLFq6Fu3Ljodm4uNGrktbdu9bYX187NhYYNC29v2+btX1w7N/f4\nyPv27d72crRrHTvGQw89xEMPPcTO5cv5cMYM5ixbxpdffsmqVauYN28e8+bNO+mvKiMjg7q1a3Nm\njRpUr1mT6tWrs27tWrI2bqR6/fpUrlyZikePUiE9nQq1a1OxYkUqHDzotevWJS0tDdu7lzTnsEDC\nbT/84LVr1/baWVleu04d0tLSSPvhBywvD6tTxwtizx7v94lR27KyYno+9uzBcnOPt3fv9v7+C2lv\n3bqVBdOmFbm9NG0L3utQxteXuV2IhFqKqG3oJ/4E9Oqrr/odQsoaO3as3yEkp6eeOrE9ZswJzTe6\ndTtx+7XXnti+7roT27/4RYQCk28Co3FBGRkZ1K9fn4YNG9KgQQOaN2/O+eefz/nnn0/z5s05RSvT\neULnev7DH06s7W7Y8MT/UL/77sRFbBYu5IT/bufM8f4jDibJkyd7iUgwSZ440Ws/+aTXHj/e2z/Y\nfuMNb3vwRsN//QuysopujxtXvvbYsaVrv/56RNu1P/iAPllZ9Am8j2QNHszSNWtY2bEjK1as4LuZ\nM9mSlcWWvDz27NnDxi1b2LhlS2iPs3TFCsQfL7/8st8hRFxUb9wzs7bAEOdc10D7YcCF3rxnZi8C\ns5xzbwfaq4ArCpZbmJnuhBARERGRiCvsxr1oDx18BTQ1s8bANqAX0LvAPpOB/sDbgaR6b2H1yIUF\nLyIiIiISDVFNkp1zuWY2AJjB8SngVprZPd5m95Jz7kMzu9bMvsWbAu7OaMYkIiIiIlKShFlxT0RE\nREQkVpJ0Xh//mdktZrbczHLNrE0x+603s6/NbLGZzY9ljMmoFP3e1cxWmdkaMxsYyxiTlZnVMLMZ\nZrbazKabWfUi9tM1HyHhXMdm9qyZrTWzJWZ2UWH7SOmV1PdmdoWZ7TWzRYHHY37EmWzM7BUz22Fm\nS4vZR9d8FJTU98l4zStJjp5lwE3AnBL2ywM6OedaO+cKTo8npVdiv4ezyI2UycPAR865nwIfA/+v\niP10zUeAFmvyTyneQ+Y659oEHo/HNMjkNQav3wulaz6qiu37gKS65pUkR4lzbrVzbi1Q0g2Hhv4e\nIibMfs9f5MY5lwMEF7mR8rkReD3w8+tAjyL20zUfGeFcxycs1gRUN7OiJwWVcIX7HqIbziPMOfcp\n8EMxu+iaj5Iw+h6S7JrXf1T+c8BMM/vKzPr5HUyKKGyRm/o+xZJMagdnpnHObQdqF7GfrvnICOc6\nLmqxJimfcN9D2gW+8v/AzFrEJrSUp2veX0l1zWv2+HIws5lwwtzxhpcAPOqcmxLmYS5zzm0zs1p4\nicPKwKc1KUKE+l3KoJi+L6z2rKi7gnXNSypYCDRyzh0MlABMApr7HJNINCXdNa8kuRycc10icIxt\ngT93mdm7eF/jKWEoRgT6fQvQKKTdIPCclKC4vg/c0FHHObfDzM4CdhZxDF3zkRHOdbwFaFjCPlJ6\nJfa9cy475OepZva8mZ3hnMuKUYypSte8T5Lxmle5RWwUWqNjZlXMrGrg51OBnwPLYxlYkiuqNip/\nkRszq4C3yM3k2IWVtCYDfQI//wZ4r+AOuuYjKpzreDLwa8hfAbXQxZqk1Ers+9A6WDPLxJtyNWGT\nhThjFP3+rms+uors+2S85jWSHCVm1gMYCdQE3jezJc65bmZWF3jZOdcd72vrdwNLbp8CvOGcm+Ff\n1IkvnH4vapEbH8NOFsOB8WZ2F7AB6Amgaz46tFiTf8Lpe+AWM/sdkAMcAn7pX8TJw8zeBDoBZ5rZ\nRmAwUAFd81FXUt+ThNe8FhMRERERESlA5RYiIiIiIgUoSRYRERERKUBJsoiIiIhIAUqSRUREREQK\nUJIsIiIiIlKAkmQRERERkQKUJIuIFMLMcs1skZktM7P3zOy0CB23sZkti8SxQo7Z0cw+L/Bcuplt\nD6x+GO5xrjezP5Wwz2Aze7CQ50v1e5lZAzP73sxOD7RrBNqNSnqtiEgsKEkWESncAedcG+fcBcAP\nQP8IHjvSE9R/AtQ3s9DleK8GljvntodzADNLd85Ncc49WY44wv69nHObgefxFqEBeAJ40Tm3sRzn\nFxGJGCXJIiIl+wKoD95y2mb2kZktMLOvzeyGwPONzWyFmb1kZsvNbJqZVQxsu9jMlpjZYkKSbTOr\naGavmtlSM1toZp0Cz//GzN41sxmB0dX+ZvZAYGT78+Doa5DzVoUaj7c8clAv4K3A8X5rZvPNbLGZ\nTTCzSoHnx5jZC2b2BTA8cN6RgW3dzezLQFwzzKxWyLEvCsSx2sx+W7CzzCzNzJ40s3mB37tfEf06\nAviZmd0PtAf+HtbfhohIDChJFhEpnIE3wgpcBUwOPH8I6OGcuwTozImJXVNgpHOuJbAPuDnw/KtA\nf+dc6wLn6A/kOecuBG4DXjezCoFt5wM9gEzgL0C2c64N8CXw60Li/TfQOxBzBeBaYGJg20TnXGbg\n/KuAviGvq++ca+ec+2OgHRwN/sQ519Y5dzHwNhBahnEB3vK07YFBhZR09AX2Oud+Foj/bjNrXDBg\n59yxwHGfAe53zuUW8nuJiPjiFL8DEBGJU5XNbBHQAFgBzAw8nwYMM7OOQB5Qz8xqB7atc84F63IX\nAmebWXWgunPus8Dz44CugZ8vB54FcM6tNrP1QPPAtlnOuYPAQTPbC7wfeH4ZXpJ6AufcwsAodzOg\nBfClc25vYPMFZvY4cDpwKjA95KUTivj9G5rZeKAukAGsC9n2nnPuKLDHzD7GS4S/Dtn+88A5bw20\nTwOaARsKOc+1wNbA7/RxEbGIiMScRpJFRAp3MDBy2whvVDlYJnE7UBNoHRiZ3QlUCmw7EvL6XI4P\nRFiY5wzdL/RYLqSdR9EDHG/hjSbnl1oEvAbcGxix/p+QeAEOFHGskcCzgdf8nwKvCa09Nk6uRTbg\n98651oHHT5xzHxU8gZldhDdK3xZ40MzqFBGLiEjMKUkWESmcATjnDgP3A380szSgOrDTOZdnZlcC\njQu+JpRzbh/wg5m1Dzx1R8jmT/CSbsysOdAQWF2OmP8dOP6VwHshz1cFtptZRvB8YTgNb4QX4DcF\ntt1oZhXM7EzgCuCrAtunA/ea2SkAZtbMzCoXco7n8cosNgNPoppkEYkjSpJFRAqXPzrqnFuCV07Q\nG3gDuNTMvsZLSFcW9poC7gKeD5RvhO7zPJBuZkvxRn5/45zLKS6WYgN2bhWQDfzXOXcoZNOfgfl4\nSXk48QIMBd4xs6+AXQW2LQVmA58D/1PIDBqj8UpUFgWmhXuRAqPfgZv5NjjngiUWLwDnmlmHYn9J\nEZEYMe+maBERERERCdJIsoiIiIhIAUqSRUREREQKUJIsIiIiIlKAkmQRERERkQKUJIuIiIiIFKAk\nWURERESkACXJIiIiIiIFKEkWERERESng/wN7Feczme+MdgAAAABJRU5ErkJggg==\n", "text/plain": [ "<matplotlib.figure.Figure at 0x7f7b834ca550>" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "n1, n2, n3 = 10, 25, 50\n", "\n", "fig, (ax1,ax2,ax3) = plt.subplots(3, 1, figsize=(10,12), sharex=True)\n", "\n", "x = np.linspace(-2, 2, 500)\n", "ax1.plot(x, stats.norm.pdf(x, scale=1/np.sqrt(n1)), color='red', linestyle='dotted', linewidth=2,\n", " label='Sampling Distn\\n of mean under $H_0$')\n", "ax1.plot(x, stats.norm.pdf(x, loc=0.5, scale=1/np.sqrt(n1)), color='black', linewidth=2,\n", " label='Sampling Distn\\n of mean under $H_A$')\n", "\n", "offset = 0.1\n", "\n", "ax1.text(muH0 - offset, 1.4, \"$\\mu_{H_0}$\", \n", " horizontalalignment='center', color='red', fontsize=18)\n", "ax1.text(muHA + offset, 1.4, \"$\\mu_{H_A}$\", \n", " horizontalalignment='center', color='black', fontsize=18)\n", "ax1.set_ylim(0, 1.5)\n", "ax1.set_xlim(-1.75,1.75)\n", "ax1.vlines(0,0,1.5,color='red', linestyle='dashed')\n", "ax1.vlines(0.5,0,1.5,color='black', linestyle='dashed')\n", "ax1.legend(loc='upper left')\n", "ax1.set_xlabel(\"Random Variable X\")\n", "ax1.set_ylabel(\"Density\")\n", "ax1.set_title(\"\"\"Sampling Distributions of the Mean\n", "For Samples of Size n = {}\"\"\".format(n1))\n", "\n", "ax2.plot(x, stats.norm.pdf(x, scale=1/np.sqrt(n2)), color='red', linestyle='dotted', linewidth=2,\n", " label='Sampling Distn\\n of mean under $H_0$')\n", "ax2.plot(x, stats.norm.pdf(x, loc=0.5, scale=1/np.sqrt(n2)), color='black', linewidth=2,\n", " label='Sampling Distn\\n of mean under $H_A$')\n", "\n", "ax2.set_ylim(0, 2.25)\n", "ax2.vlines(0,0,2.25,color='red', linestyle='dashed')\n", "ax2.vlines(0.5,0,2.25,color='black', linestyle='dashed')\n", "ax2.legend(loc='upper left')\n", "ax2.set_xlabel(\"Random Variable X\")\n", "ax2.set_ylabel(\"Density\")\n", "ax2.set_title(\"\"\"n = {}\"\"\".format(n2))\n", "\n", "\n", "ax3.plot(x, stats.norm.pdf(x, scale=1/np.sqrt(n3)), color='red', linestyle='dotted', linewidth=2,\n", " label='Sampling Distn\\n of mean under $H_0$')\n", "ax3.plot(x, stats.norm.pdf(x, loc=0.5, scale=1/np.sqrt(n3)), color='black', linewidth=2,\n", " label='Sampling Distn\\n of mean under $H_A$')\n", "\n", "ax3.set_ylim(0, 3)\n", "ax3.vlines(0,0,3,color='red', linestyle='dashed')\n", "ax3.vlines(0.5,0,3,color='black', linestyle='dashed')\n", "ax3.legend(loc='upper left')\n", "ax3.set_xlabel(\"Random Variable X\")\n", "ax3.set_ylabel(\"Density\")\n", "ax3.set_title(\"\"\"n = {}\"\"\".format(n3))\n", "\n", "fig.tight_layout(h_pad=2.5)\n", "#fig.savefig(\"fig-H0sampling-vs-Truesampling.pdf\")\n", "pass" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "From the figures above we see that as sample size increases, the sampling distributions of the mean for the null and true distributions have less and less overlap, suggesting that as sample size increases the probability that we corrected reject the null hypothesis will increase as well." ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "### Exploring power with simulations: varying sample size\n", "\n", "In general one doesn't know either $\\mu_{H_A}$ or $\\sigma$ so these parameters need to be estimated from the data itself. Because of this, in the simulations below we use the t-distribution to model the sampling distribution of the mean under the null hypothesis.\n", "\n", "Each set of simulations below estimates the probability that you reject that null hypothesis, given the alternative hypothesis is true for a fixed effect size. The significance threshold, $\\alpha = 0.5$, for all the simulations." ] }, { "cell_type": "code", "execution_count": 6, "metadata": { "collapsed": false }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "For sample size n = 10\n", "the percent of simulations where we failed to reject H0 is: 71.3\n", "and hence, the percent of simulations where we correctly rejected H0 is: 28.700000000000003\n" ] }, { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAmcAAAEPCAYAAAAH/WO7AAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzs3Xt8zvX/x/HHezNsZrNTs43NmaXIMYWaygo5hDK+W33x\nTeVLRH4mzGRIId+ckhzmMKKEKHQwLYdIVCYmvm0YGpvMacf37w9c311sNtuufa5tr/vt9rlxfa7P\n9f48r8s+vLw+7+vzUVprhBBCCCGEdbAxOoAQQgghhPgfKc6EEEIIIayIFGdCCCGEEFZEijMhhBBC\nCCsixZkQQgghhBWR4kwIIYQQwopYtDhTSi1SSp1TSv2ax/NOSqmNSqmDSqnflFL/tGQeIYQQQghr\nZ+nO2RLg6bs8/28gVmv9ENABmKGUqmDhTEIIIYQQVsuixZnW+gcg5W6bAFVv/r4qcEFrnWnJTEII\nIYQQ1szoLtUcYKNSKhFwBPoYnEcIIYQQwlBGfyHgaeCA1tobaAbMVUo5GpxJCCGEEMIwRnfO+gNT\nAbTWx5VS/wUaAT/dvqFSSm4CKoQQQohSQ2utCvO6kuicqZtLbuKBpwCUUp5AA+BEXgNprWW5bZkw\nYYLhGaxxkc9FPhP5XORzkc9FPhMjl6KwaOdMKRUFBABuSqkEYAJQEdBa64+ACGBpjktt/J/WOtmS\nmYQQQgghrJlFizOtdb98nj/D3S+1IYQQQghRrhj9hQBRRAEBAUZHsEryudxJPpPcyeeSO/lccief\ny53kMyl+qqjnRUuKUkqXlqxCCCGEKN+UUuhCfiHA6G9rFlmtWrWIj483OoYoR/z8/Pjzzz+NjiGE\nEKKMKvWds5uVqQGJRHklP3NCCCHyU5TOmcw5E0IIIYSwIlKcCSGEEEJYESnOhBBCCCGsiBRn4p5E\nRkbSvn37Am9fu3ZtvvvuOwCmTp3KoEGDLBWtwObPn0/16tVxcnIiJSXF6DhCCCGEGSnOLKxWrVo4\nODjg5ORE1apVcXJy4vXXXzcsT4cOHVi8eHGRxlCqUPMbGTNmDB999FG+2xVHxrxkZmYycuRIvvnm\nGy5duoSLi4tF9iOEEEIUVqm/lIa1U0qxefNmOnToYHQUAZw9e5a0tDT8/f2NjiKEEELkSjpnJSCv\nyy4MHjyY3r17mx6PHj2ajh07ArBjxw5q1qzJ1KlT8fDwoE6dOkRFRZm2TU9P580338TPzw8vLy8G\nDx5MWlqa6fkNGzbQrFkznJ2dqV+/Ptu2bWPcuHHExMQwZMgQsw7ekSNHCAwMxM3NDX9/f9auXWsa\nJzk5mW7duuHs7EybNm04fvz4Xd/r8uXLqVWrFh4eHkyZMsXsuYkTJxISEgJAWloaISEhuLu74+Li\nwsMPP0xSUlKeGW1sbFiwYAENGjTA1dWVIUOG5JkhPT2d4cOH4+PjQ40aNXjjjTfIyMjg2LFjNGrU\nCAAXFxeeeuqpu74XIYQQwhBG37X9Hu7urnOT13prUatWLf3tt9/m+tzVq1d1w4YNdWRkpP7++++1\nh4eHTkxM1FprHR0drStUqKDffPNNnZ6ernfs2KGrVKmi4+LitNZaDx8+XHfv3l1fvHhRX758WXfr\n1k2/9dZbWmutf/zxR+3s7Gzab2Jioj569KjWWuuAgAC9aNEiU4YrV67omjVr6sjISJ2dna0PHjyo\n3d3d9e+//6611rpPnz66T58++tq1a/rQoUPax8dHt2/fPtf3Exsbqx0dHfUPP/yg09PT9YgRI7Sd\nnZ0pR3h4uA4JCdFaa71gwQLdrVs3ff36dZ2dna1//vlnnZqammtGrbVWSumuXbvqS5cu6YSEBO3h\n4aG3bt2aa47x48frRx55RJ8/f16fP39eP/roozosLExrrfWff/6pbWxsdHZ2dp5/Zvmx9p85IYQQ\nxrv5b0Whah7pnJWAHj164OrqiouLC66urixatAgAe3t7li9fzhtvvMGLL77InDlz8PLyMr1OKcWk\nSZOws7Pjscceo0uXLqxZswaAhQsX8v777+Ps7EyVKlUIDQ1l1apVACxevJiBAwfyxBNPAODl5UWD\nBg1yzbZp0yZq167Niy++iFKKpk2b0qtXL9auXUt2djbr1q1j0qRJVK5cmcaNG/PSSy/l+T4/++wz\nunbtStu2bbGzs2PSpEl5zk+zs7PjwoULxMXFoZSiWbNmODo63vVzHDNmDFWrVqVmzZp06NCBgwcP\n5rpdVFQUEyZMwM3NDTc3NyZMmMCyZcuA/3Uxb/0qhBBCWBuZc1YCNmzYkOecs1atWlGnTh2SkpJ4\n/vnnzZ5zcXGhcuXKpsd+fn4kJiaSlJTE1atXadGihem57OxsU8Fx8uRJunTpUqBs8fHx7NmzB1dX\nV+BG0ZKVlcWLL75IUlISmZmZ1KhRwyxDTExMrmMlJiZSs2ZN02MHBwfc3Nxy3TYkJIRTp04RFBTE\n33//zT/+8Q+mTJmCra1tnlk9PT3Nxr58+XKeOXx9fc0ynzlzBij8lxmEEEKIkiKdsxJwty7N3Llz\nSU9Px9vbm2nTppk9l5KSwrVr10yPExIS8Pb2xt3dHQcHB2JjY0lOTiY5OZmLFy/y999/A1CzZs08\n54bdXpzUrFmTgIAA0zgpKSlcunSJOXPm4OHhgZ2dHSdPnjTLkBcvLy+zba9evcqFCxdy3bZChQqM\nHz+e2NhYdu3axaZNm0zdraIWUD4+Pmb3W42Pj8fb27tIYwohhBAlRYozA8XFxTF+/HhWrlzJsmXL\nePfdd/n1119Nz2utmTBhAhkZGcTExLB582ZeeOEFlFK8/PLLDB8+nKSkJABOnz7Ntm3bABg4cCBL\nlixh+/btaK1JTEzk6NGjwI3u04kTJ0z7ePbZZ4mLi2PFihVkZmaSkZHBTz/9xNGjR7GxsaFnz56E\nh4dz7do1Dh8+TGRkZJ7vp3fv3mzatIldu3aRkZFBWFhYnoVpdHQ0hw4dIjs7G0dHR+zs7Exds9sz\n3qugoCAiIiI4f/4858+fZ9KkSaYvItz6XIUQQghrZdHiTCm1SCl1Tin16122CVBKHVBKHVJKbbdk\nHqN07doVJycn09KrVy+ysrIICQlhzJgxPPDAA9SrV48pU6YQEhJCRkYGcKMT5eLigre3NyEhISxY\nsID69esDMG3aNOrVq0ebNm2oVq0agYGBxMXFATdOlS5ZsoThw4fj7OxMQECAqeM1bNgw1q5di5ub\nG8OHD8fR0ZFt27axevVqvL298fb2JjQ01PTNz9mzZ5OamoqXlxcDBgxgwIABeb7P+++/n7lz59K3\nb1+8vb1xc3MzOyWa09mzZ+nduzfOzs40btyYDh06EBwcnGtGuLObdrfu2rhx42jZsiVNmjShadOm\ntGzZkrFjxxbotUIIIYTRlCW7CEqpdsBlYJnWukkuzzsDu4BArfVppZS71vp8HmPp3LLevOt7MSc3\n3o4dOwgJCbnraURhjLL6MyeEEKL43Py3olDdAIt2zrTWPwB3uz9OP+AzrfXpm9vnWpgJIYQQQpQX\nRs85awC4KqW2K6X2KaVC8n2FEEIIIUQZZvSlNCoAzYEngCrAbqXUbq31H7ltHB4ebvp9QEAAAQEB\nJRDRGI8//ric0hRCCCFKiejoaKKjo4tlLIvOOQNQSvkBX+Qx52w0UFlrPfHm44+Br7TWn+WybaHn\nnBXHBHCZYyRukTlnQggh8mO1c85uUjeX3GwA2imlbJVSDsDDwO/FHaCwt0/IuZRm/fv3JywszOgY\n4qacHWAhSpOEhAROnDhhtty6wHNxkeNDCAuf1lRKRQEBgJtSKgGYAFTkxv2mPtJaH1FKbQV+BbKA\nj7TWhy2ZSZQvHTp0ICQkxOwSIDt27CA4ONh0wdz09HReffVVPvvsM6pUqcKoUaN44403jIoshFVK\nTExk2gcLcHB2N1ufduk8094eh729vUHJhCh7LFqcaa37FWCb6cB0S+YQ4nY5T3VPmDCB48ePc/Lk\nSRITE+nQoQONGzcmMDDQIvuWzoAojTIzM6nk6EKTx8xvDbd384piPbsgx4cQxn9bs8ybNm0aNWrU\nwMnJCX9/f7Zvv3Gd3X379vHoo4/i4uKCj48PQ4cOJTMz0/Q6Gxsb5s+fT4MGDXB2diYsLIwTJ07Q\ntm1bqlWrRlBQkGn7HTt2ULNmTaZOnYqHhwd16tQhKioqz0ybNm2iWbNmuLi40K5dO3777bc8t72X\nHPmNfevCuU5OTjzwwAOsX7/e9FxkZCTt27dn1KhRuLq6UrduXbZs2WJ6funSpdStWxcnJyfq1q1r\nusl7cVi2bBlhYWE4OTnRqFEjBg0axNKlS4ttfCFKm7I4vUOI0sTob2uWaXFxccydO5f9+/fj6elJ\nQkICWVlZANja2jJr1ixatWrFyZMn6dSpE/PmzeP11183vX7btm0cOHCAhIQEmjVrxu7du4mKisLV\n1ZU2bdqwatUq022Jzp49S3JyMomJiezevZvOnTvTqlUr0x0Fbjlw4AADBw5k8+bNtGjRghUrVtCt\nWzfi4uKws7PL9X0UNEd+Y9erV4+dO3fi6enJ2rVrCQ4O5vjx46Ybmu/du5f+/ftz4cIFFixYwMCB\nAzl9+jRXr15l2LBh7N+/n3r16nHu3DmSk5ML/eeS8x+ZixcvcubMGZo0+d/3VZo2bWpWOBa38PBw\n6Q4Iq7bnx71Erv7sji9TVfWsZfF9y/EhhHTOLMrW1pb09HQOHTpEZmYmvr6+1K5dG4DmzZvTunVr\nlFL4+voyaNAgduzYYfb60aNHU6VKFfz9/XnggQcIDAzEz8+PqlWr0qlTJw4cOGDaVinFpEmTsLOz\n47HHHqNLly6sWbPmjkwLFy7k1VdfpWXLliilCAkJoVKlSuzZsyfP91HQHPmN3atXL1Mh9vzzz1O/\nfn327t1r2o+fnx8DBgxAKcVLL73EmTNn+Ouvv0yf5W+//cb169fx9PTE39+/wH8OQ4cOxdXV1bR0\n7drV9Nzly5dRSuHs7Gxa5+TkRGpqaoHHF6Ks+fviRTzqNePRHgPNlgcfedLoaEKUC1KcWVDdunWZ\nNWsW4eHheHp60q9fP9M3m44dO0bXrl3x8vKiWrVqjB07lvPnzW+QcN9995l+b29vbypsbj2+fPmy\n6bGLiwuVK1c2Pfbz8yMxMfGOTPHx8cyYMcNUqLi4uHDq1Klct73XHPmNvWzZMtMpTxcXF2JjY83e\nc/Xq1c3GhRvFk4ODA5988gnz58/Hy8uLrl27mm7kXhCzZ88mOTnZtGzatMn0nKOjIwCXLl0yrfv7\n77+pWrVqgce/V9IVECJvcnwIIcWZxQUFBRETE0N8fDwAoaGhALz22mv4+/tz/PhxLl68yOTJk4s0\npyMlJYVr166ZHickJODt7X3HdjVr1mTs2LGmQiUlJYXLly/Tp0+fQu+7IGMnJCQwaNAg5s2bR0pK\nCikpKTRu3LjA77ljx45s27aNs2fP0rBhQ15++eUi5wWoVq0aXl5e/PLLL6Z1v/zyC40bNy6W8YUQ\nQoh7JcWZBcXFxbF9+3bS09OpWLEi9vb22NraApCamoqTkxMODg4cOXKE+fPnF2lfWmsmTJhARkYG\nMTExbN68mRdeeOGO7V5++WU+/PBD0+nEK1eu8OWXX3LlypUi7T+/sa9cuYKNjQ3u7u5kZ2ezZMkS\nDh06VKBx//rrLzZu3MjVq1exs7PD0dHR9DnGx8djY2NTpLsphISEEBERwcWLF/n9999ZuHAh/fv3\nL/R4+ZHOgBB5k+NDCCnOLCotLY3Q0FA8PDzw9vYmKSmJKVOmADB9+nRWrlyJk5MTr7zyCkFBQWav\nvX0ibn53OfDy8sLFxQVvb29CQkJYsGCB6csAOV/bokULFi5cyJAhQ3B1daVBgwZERkbmOe695Ljb\n2P7+/owcOZI2bdpQvXp1YmNjadeu3V3f0619ZWdnM3PmTHx8fHB3d+f77783FbMJCQnUqlULHx+f\nAuXPzcSJE6lTpw5+fn488cQThIaG0rFjx3xfJ4QQQliCxW/fVFyKcvumsm7Hjh2EhISUy3txTp48\nmfvuu6/YTnMWhPzMibJuy5at7PwjmQYPtsh3272bVzAtPBQHB4cSSCZE6VGU2zfJpTREqTZ27Fij\nIwghhBDFSk5rClHCZE6NEHmT40MIKc7KhMcff7xcntIUQgghyiIpzoQoYdIZECJvcnwIIcWZEEII\nIYRVkeJMiBImnQEh8ibHhxBSnAkhhBBCWBUpzoQoYdIZECJvcnwIYeHiTCm1SCl1Tin1az7btVJK\nZSileloyj7WaOHEiISEhRse4J5GRkbRv377A29euXZvvvvsOgKlTpzJo0CBLRSuw+fPnU716dZyc\nnEhJSTE6jhBCCAFYvnO2BHj6bhsopWyAd4CtFs5imKVLl9KkSROqVKmCt7c3gwcP5u+//zbbpiC3\nGbI2hc08ZswYPvroo3y369ChA4sXLy7UPvKTmZnJyJEj+eabb7h06RIuLi4W2U9upDMgRN7k+BDC\nwsWZ1voHIL+WxFDgU+AvS2YxyowZMxgzZgwzZszg0qVL7Nmzh/j4eDp27EhmZmaJ5cjKyiqxfZUG\nZ8+eJS0tDX9/f6OjCCGEEGYMnXOmlPIGemit5wOlr3WUj9TUVMLDw5kzZw4dO3bE1tYWX19f1qxZ\nw59//smKFStM2167do2goCCcnJxo2bIlv/76vzPB06ZNo0aNGjg5OeHv78/27dsB0FrzzjvvUK9e\nPTw8PAgKCuLixYsAxMfHY2Njw+LFi/Hz8+PJJ5+kc+fOzJs3zyzjQw89xPr16wE4cuQIgYGBuLm5\n4e/vz9q1a03bJScn061bN5ydnWnTpg3Hjx+/63tfvnw5tWrVwsPDw3Sz91tynsZNS0sjJCQEd3d3\nXFxcePjhh0lKSmLcuHHExMQwZMgQnJyceP311wGwsbFhwYIFNGjQAFdXV4YMGZJnhvT0dIYPH46P\njw81atTgjTfeICMjg2PHjtGoUSMAXFxceOqpp+76XoqbdAaEyJscH0IYf2/NWcDoHI/vWqDlPGgD\nAgIICAiwSKjismvXLtLS0njuuefM1lepUoXOnTvz9ddf889//hOAjRs3snr1alauXMmsWbPo0aMH\nx44d4/jx48ydO5f9+/fj6elJQkKCqQv2wQcfsHHjRmJiYnB3d+f1119n8ODBREVFmfb1/fffc/To\nUZRSrFmzhgULFjB48GAADh8+TEJCAs8++yxXr14lMDCQiIgItm7dyq+//spTTz3Fgw8+SKNGjRg8\neDAODg6cO3eO48eP8/TTT1OnTp1c3/fhw4cZPHgwW7ZsoXXr1oSGhnL69GmzbW6dEo2MjOTSpUuc\nPn2aihUrcvDgQezt7YmIiGDnzp2EhIQwYMAAs9du3ryZ/fv3c/HiRVq0aEG3bt0IDAy8I0dERAR7\n9+41FbrdunUjIiKCiRMnEhsbS506dfj7779L5SllIYQQ1iU6Opro6OhiGcvob2u2BFYrpf4L9Abm\nKqW65bVxeHi4abH2wgzg/PnzuLu7Y2Nz58fs5eXF+fPnTY9btGjBc889h62tLSNGjOD69evs2bMH\nW1tb0tPTOXToEJmZmfj6+lK7dm0AFixYwOTJk/Hy8sLOzo6wsDA+/fRTsrOzgRsF0MSJE6lcuTKV\nKlXiueee45dffuHkyZMAREVF0bNnTypUqMCmTZuoXbs2L774IkopmjZtSq9evVi7di3Z2dmsW7eO\nSZMmUblyZRo3bsxLL72U5/v+7LPP6Nq1K23btsXOzo5JkyblWQDZ2dlx4cIF4uLiUErRrFkzHB0d\n7/q5jhkzhqpVq1KzZk06dOjAwYMHc90uKiqKCRMm4ObmhpubGxMmTGDZsmXAja5jzl9LknQGhMib\nHB+itAoICDCrU4qiJIozRR4dMa11nZtLbW7MOxustd5YAplKhLu7O+fPnzcVSzmdOXMGd3d30+Oa\nNWuafq+UokaNGiQmJlK3bl1mzZpFeHg4np6e9OvXj7NnzwI3Tl0+99xzuLq64urqyv3334+dnR3n\nzp0zjVWjRg3T7x0dHencuTOrV68GYNWqVQQHB5vG2rNnj2ksFxcXoqKiOHfuHElJSWRmZpqN5efn\nl+f7TkxMNHs/Dg4OuLm55bptSEgITz/9NEFBQdSoUYPRo0fnOz/O09PTbOzLly/nmcPX19cs85kz\nZ4DS+QUMIYQQ5YOlL6URBewCGiilEpRS/ZVSryilcruOQsm3MCzskUceoVKlSqxbt85s/eXLl/nq\nq6/M5jrd6mbBjW7OqVOn8Pb2BiAoKIiYmBji4+MBGD36xplgX19fvvrqK5KTk0lOTiYlJYUrV67g\n5eVlGuv2IqRv375ERUWxZ88e0tLSTB3ImjVrEhAQYDbWpUuXmDNnDh4eHtjZ2ZllvNuN1r28vMy2\nvXr1KhcuXMh12woVKjB+/HhiY2PZtWsXmzZtMnW3ilpA+fj4mD4zuFGA3vpMjSSdASHyJseHEJb/\ntmY/rbW31rqS1tpXa71Ea71Aa33HdRS01gO01utyG6e0cnJyIiwsjKFDh7J161YyMzP5888/6dOn\nD76+vqauFcD+/ftZv349WVlZvP/++1SuXJk2bdoQFxfH9u3bSU9Pp2LFitjb25tOk77yyiu89dZb\npkIpKSmJjRv/13jM7ZRd586diY+PJywsjD59+pjWP/vss8TFxbFixQoyMzPJyMjgp59+4ujRo9jY\n2NCzZ0/Cw8O5du0ahw8fJjIyMs/33bt3bzZt2sSuXbvIyMggLCwsz9OH0dHRHDp0iOzsbBwdHbGz\ns8PW1ha40SE7ceLEPXzi5oKCgoiIiOD8+fOcP3+eSZMmmV1PzohTmkIIIUR+jJ5zVuaNGjWKKVOm\n8Oabb+Ls7MwjjzyCn58f33zzDXZ2dqbtunfvzieffIKLiwsrV67k888/x9bWlrS0NEJDQ/Hw8MDb\n25ukpCSmTp0KwLBhw+jevTuBgYE4Ozvz6KOPsnfvXtOYuXWeKlasSM+ePfn222/p16+fab2joyPb\ntm1j9erVeHt74+3tTWhoKGlpaQDMnj2b1NRUvLy8GDBgwB2T9HO6//77mTt3Ln379sXb2xs3Nzez\nU6I5nT17lt69e+Ps7Ezjxo3p0KGDqWgdNmwYa9euxc3NjeHDh+f6nu7WXRs3bhwtW7akSZMmNG3a\nlJYtWzJ27NgCvdaSpDMgRN7k+BACVGnpHiildG5ZlVJ3dEDenvouiefO37FtcfH2dCdszP9ZbHxh\n3XL7mbsXxTFZVAhL2rJlKzv/SKbBgy3y3Xbv5hVMCw/FwcGhWPYtx4coK27+W1GoLoDRl9KwiMRz\n52n73L8sNv7Ozz+22Nii7JN/eITImxwfQshpTSGEEEIIqyLFmRAlTDoDQuRNjg8hpDgTQgghhLAq\nUpyVA/379ycsLMzoGOIm6QwIkTc5PoSQ4kyUcR06dGDx4sVm63bs2GF2B4Nb/vnPf95xhwUhhBCi\npElxJsql269xdvXqVdatW0e1atVYsWKFRfctnQFhTU6ePMm+ffvMljNnzxiWR44PIcpocebt6c7O\nzz+22OLt6Z5/iJumTZtGjRo1cHJywt/fn+3btwOwb98+Hn30UVxcXPDx8WHo0KFkZmaaXmdjY8P8\n+fNp0KABzs7OhIWFceLECdq2bUu1atUICgoybX+rEzR16lQ8PDyoU6cOUVFReWbatGkTzZo1w8XF\nhXbt2vHbb7/lue295Mhv7GnTplGvXj2cnJx44IEHWL9+vem5yMhI2rdvz6hRo3B1daVu3bps2bLF\n9PzSpUupW7cuTk5O1K1bl1WrVhX4z6AgPv30U1xcXAgLC2Pp0qXFOrYQ1mzJyk9Yve1HPos+aFqO\nJmXg5VvH6GhClFtl8jpn1nKB2Li4OObOncv+/fvx9PQkISHBdFNvW1tbZs2aRatWrTh58iSdOnVi\n3rx5vP7666bXb9u2jQMHDpCQkECzZs3YvXs3UVFRuLq60qZNG1atWmW6HdHZs2dJTk4mMTGR3bt3\n07lzZ1q1akX9+vXNMh04cICBAweyefNmWrRowYoVK+jWrRtxcXFmdyzIqaA58hu7Xr167Ny5E09P\nT9auXUtwcDDHjx833ch879699O/fnwsXLrBgwQIGDhzI6dOnuXr1KsOGDWP//v3Uq1ePc+fOkZyc\nXOg/l9wuILts2TL69etHnz59GDFiBAcOHKBZs2aF3sfdSGdAWBOtoe4DLalazdXoKIAcH0JAGe2c\nWQtbW1vS09M5dOgQmZmZ+Pr6Urt2bQCaN29O69atUUrh6+vLoEGD2LFjh9nrR48eTZUqVfD39+eB\nBx4gMDAQPz8/qlatSqdOnThw4IBpW6UUkyZNws7Ojscee4wuXbqwZs2aOzItXLiQV199lZYtW6KU\nIiQkhEqVKrFnz54830dBc+Q3dq9evUyF2PPPP0/9+vXNbjfl5+fHgAEDUErx0ksvcebMGf766y/T\nZ/nbb79x/fp1PD098ff3L/Cfw9ChQ3F1dTUtXbt2NXs+ISGB7du3069fP+677z6eeuop083XhbAm\nqamppnvF3louXrxodCwhRDGT4syC6taty6xZswgPD8fT05N+/fpx5syNuRzHjh2ja9eueHl5Ua1a\nNcaOHcv58+a3nLrvvvtMv7e3tzcVNrceX7582fTYxcWFypUrmx77+fmRmJh4R6b4+HhmzJhhKlRc\nXFw4depUrtvea478xl62bJnplKeLiwuxsbFm77l69epm4wJcvnwZBwcHPvnkE+bPn4+Xlxddu3bl\n6NGjeea93ezZs0lOTjYtmzZtMnt++fLl3H///Tz44IMA9O3bl6ioKFOXs7hJZ0AURlpaGuFT3iPi\n/Q/NlvGT3+Ps2bNGxys2cnwIIcWZxQUFBRETE0N8fDwAoaGhALz22mv4+/tz/PhxLl68yOTJk4t0\nv8aUlBSuXbtmepyQkIC3t/cd29WsWZOxY8eaCpWUlBQuX75Mnz59Cr3vgoydkJDAoEGDmDdvHikp\nKaSkpNC4ceMCv+eOHTuybds2zp49S8OGDXn55ZeLnPeW5cuXc+LECby8vPDy8mLkyJGcP3+eL7/8\nstj2IUQnauI9AAAgAElEQVRRZWVlkZapaRH4gtlS0dGF9PR0o+MJIYqRFGcWFBcXx/bt20lPT6di\nxYrY29tja2sL3Dg94eTkhIODA0eOHGH+/PlF2pfWmgkTJpCRkUFMTAybN2/mhRdeuGO7l19+mQ8/\n/NB0OvHKlSt8+eWXXLlypUj7z2/sK1euYGNjg7u7O9nZ2SxZsoRDhw4VaNy//vqLjRs3cvXqVezs\n7HB0dDR9jvHx8djY2JCQkFCozLt37+bEiRPs27ePX375hV9++YXY2Fj69u1LZGRkocbMj3QGhMib\nHB9CSHFmUWlpaYSGhuLh4YG3tzdJSUlMmTIFgOnTp7Ny5UqcnJx45ZVXCAoKMnvt7Zd6uP3x7by8\nvHBxccHb25uQkBAWLFhg+jJAzte2aNGChQsXMmTIEFxdXWnQoMFdi5B7yXG3sf39/Rk5ciRt2rSh\nevXqxMbG0q5du7u+p1v7ys7OZubMmfj4+ODu7s73339vKmYTEhKoVasWPj4+Bcp/u2XLltGjRw/u\nv/9+7rvvPtMybNgwNm/eLPN5hBBClDhVlFNp+Q6u1CLgWeCc1rpJLs/3A0bffJgKvKa1zvW6Dkop\nnVtWpVSRTgeWBTt27CAkJKTQ3aPSbPLkydx3333FepozP0X9mQsPD5fugEGysrLYvn0733//PT//\n/LNpDqi9vT1NmjShZcuWdO/eHTc3N4OT3unq1av834SpPPxsiNn6g9EbGdb/BXx9fQs17sSp0/G4\nv12hv625d/MKpoWH4uDgUKjX306OD1FW3Py34u4dgjxY+lIaS4DZQF5ffTsBPKa1/lsp9QywEGhj\n4UyiDBk7dqzREUQpkJqayqxZs/j444/x8PCgU6dODBgwAF9fX5RSpKam8ssvv7BlyxZGjBjBM888\nQ2hoKA899JDR0YUQ5ZBFizOt9Q9KKb+7PJ/z+g17gNzPTQlRhkhXoORorVm2bBlvvfUWTzzxBBs2\nbMiz4AoICGDYsGGkpKQQGRnJM888Q9euXU3dWWulNWz5+lscqziarW/ftk2utymzdnJ8CGFdc87+\nBXxldIjS6PHHHy+XpzSFuJvk5GS6d+/O7Nmz+fzzz1m+fHmBOmEuLi4MHz6cI0eO4OjoSLNmzUx3\n9rBGdR9qSxJu/PdKJdOy+2givx2KNTqaEKKQrOIOAUqpDkB/4K4zxHP+jyogIICAgACL5hLCEmRO\njeUdPHiQ5557jh49evDpp59SsWLFex6jWrVqvP/++3Tq1Il+/foxbNgwRo8ene+XTEqak4sbTi7m\nc+SuXyv6t6+NIseHKK2io6OJjo4ulrEML86UUk2Aj4BntNYpd9tWDlghRH5iYmLo1asXs2fPLpbr\n9wUGBvLTTz/RpUsXEhMTmTVrFjY21nTSQQhhDW5vGk2cOLHQY5XE3zDq5nLnE0r5Ap8BIVrr4yWQ\nRQjDyX8yLGfr1q306tWLlStXFkthdouPjw/R0dH8/PPP9O/f32J3jxByfAgBFu6cKaWigADATSmV\nAEwAKgJaa/0RMB5wBeapG+cKMrTWre9lH35+flZ3mkGUbX5+eX7HRRho586dBAcHs2HDBh599NFi\nH79atWps27aNZ599liFDhjBv3jz5u0cIYREW7Zxprftprb211pW01r5a6yVa6wU3CzO01i9rrd20\n1s211s3utTAD+PPPP9FayyJLiS1//vlnkY4L6QwUv0OHDtGzZ09WrlxpkcLsFgcHB9avX8/evXuL\ndMpC5E2ODyGs69uaQghxz86dO0fnzp15//33CQwMtPj+nJyc+PLLL1m5ciVLliyx+P6EEOWP4V8I\nEKK8kc5A8UlPT6d3797079+ffv36ldh+PT092bhxI48//jiNGzemdet7bvqLPMjxIYR0zoQQpdgb\nb7xBtWrVmDBhQonv29/fn48++ojevXtz7ty5Et+/EKLsks6ZECVMruNUPD755BO2bdvGTz/9ZNil\nLXr06MH+/fsJDg5m69atVn2JjWvXrjH3o0VcunzVbH3ShRSqV7AzKNWd5PgQQoozIUQpFB8fz5Ah\nQ/jqq69wdnY2NMuECRMICAhg5syZvPnmm4ZmuZsrV64QfyYZ/0efNltfo4Id9rfd+kkIYSwpzoQo\nYdIVKJrMzEyCg4MZNWoULVu2NDoOFSpUYMWKFbRq1YonnniC5s2bGx0pT7a2NlR1djE6xl3J8SGE\nzDkTQpQy06dPp2LFilbVpapVqxb/+c9/CA4O5vr160bHEUKUclKcCVHCpDNQeL///jszZsxg8eLF\nVje/q2/fvvj7+zNp0iSjo5RqcnwIIcWZEKKUyMrKYuDAgYSHh1vlXRqUUsydO5eFCxfy888/Gx1H\nCFGKyZwzIUqYdAYKZ86cOVSoUIHXXnvN6Ch5ql69OtOnT2fAgAHs27cPOzvjvgV5/sJ5YmNjTY9T\nU1MNywKQnZ3N0aNHyc7ONlvv5OREzZo1TY/l+BBCijMhRClw+vRpJk2axM6dO63udObtQkJCWLFi\nBbNnz2bEiBGGZPD08ePQkQPEnow2W+9as6EheQD++OMPZi9eRVVXT7P1V8+fYvaMqQalEsI6SXEm\nRAmT6zjdu5EjR/Laa6/RsKFxxUVBKaWYM2cOjz76KH369MHHx6fEMzi7uvPgox1LfL93k52dTZVq\n7jxwW66dn39s9liODyFkzpkQwsp9/fXX/Pjjj4wZM8boKAXWoEEDXnvtNcM6Z0KI0k2KMyFKmHQF\nCi4jI4MhQ4bwwQcf4ODgYHSce/LWW2+xb98+vv32W6OjlCpyfAghxZkQwop9+OGH1KpVi65duxod\n5Z7Z29vz7rvvMnLkSLKysoyOI4QoRSxanCmlFimlzimlfr3LNh8opY4ppQ4qpR6yZB4hrIF0Bgom\nJSWFSZMmMX36dKOjFFqvXr1wdHQkMjLS6CilhhwfQhSwOFNKdVVKFaaQWwI8ndeTSqlOQF2tdX3g\nFeDDQuxDCFEGTZ48me7du/Pggw8aHaXQlFLMmDGD8ePHc/nyZaPjCCFKiYIWXH2AY0qpd5VSjQo6\nuNb6ByDlLpt0B5bd3PZHwFkp5XmX7YUo9aQzkL8TJ06wZMmSMnG1/YcffpjHH3+8VHcAS5IcH0IU\nsDjTWgcDzYDjwFKl1G6l1CClVNUi7t8HOJnj8emb64QQ5VhoaCjDhw+nevXqRkcpFlOnTmX27Nkk\nJiYaHUUIUQoU+FSl1voS8CmwGvACngN+VkoNtVA2Icok6Qzc3a5du9i9ezcjR440Okqx8fPz4+WX\nX2bcuHFGR7F6cnwIUcCL0CqlugP/BOpx4zRka631X0opB+AwMLuQ+z8N1MzxuMbNdbnKedAGBAQQ\nEBBQyN0KIayR1poRI0YwefLkUnfpjPyMGTOGhg0bcvDgQR56SL77JERZEx0dTXR0dLGMVdA7BPQE\n3tdaf59zpdb6qlJqYD6vVTeX3GwE/g18opRqA1zUWp/LayD5H5UoC+TnOG+ffvop6enpBAcHGx2l\n2Dk7OxMWFsaoUaP4+uuvjY5jteT4EKXV7U2jiRMnFnqsghZnZ28vzJRS07TWo7XWeV5hUSkVBQQA\nbkqpBGACUBHQWuuPtNZfKqU6K6X+AK4A/Qv1LoQQpV5mZibjx4/nP//5j9XfP7OwXn75ZWbMmEF0\ndLTpL/HU1FTOnDlzx7Y+Pj5UqVKlhBMKIaxBQYuzjsDo29Z1ymWdGa11v/wG1loPKWAGIcoEuXdg\n7lauXImHhweBgYFGR7EYOzs7wsPDGTduHDExMSil+Gz9F+w/moC9/f9O4165nEqHVo3p3bOHgWmN\nIceHEPkUZ0qp14DBQN3bLiRbFdhpyWBCiPIjPT2diRMnsnTpUpTKaxZE2dCvXz+mTp3K1q1beeaZ\nZ8jMyqRGg6Z4+9U1bfPnscNkZGYamFIIYaT8OmdRwFfAVCA0x/pUrXWyxVIJUYZJV+BOS5YsoV69\nejz22GNGR7E4W1tb3n77bcaNG8fTT+d5jW6ys7PJyMgwPc75+7JMjg8h8i/OtNb6T6XUv29/Qinl\nKgWaEKKorl+/TkREBJ999pnRUUpMz549mTx5MuvXr8/1+SqOTsT8+DU79x00W29XxaUk4gkhDFaQ\nztmzwH5AY/6tSw3UsVAuIcosmVNj7sMPP6R58+a0bt3a6CglxsbGhkmTJhEaGsrrI96844qTHl41\n8OhRPr8fJceHEPlchFZr/ezNX2trrevc/PXWIoWZEKJILl++zDvvvMPbb79tdJQS16VLF6pWrcq+\nH380OooQwsoU9CK0bYGDWusrSqlgoDkwS2udYNF0QpRB0hX4n9mzZxMQEEDTpk2NjlLilFJERETQ\nr98/GNami9FxDJOtbXjvP3NNj6u4eDBrzoe89I8+uLjIaVxRPhX0UhrzgaZKqabASOBjYDnwuKWC\nCSHKttTUVGbOnElMTIzRUQzzxBNPUM3FhQO7vqNmnQZGxzFEs6d6kn79utm6E7/9yF9//SXFmSi3\nCnqlx0yttQa6A3O01nO5cTkNIcQ9ks7ZDXPnzqVjx440atTI6CiGUUrRtXsPor/4hKxyeukMR6dq\nuN5X3bREb15LpUqVjI4lhKEK2jlLVUqNAYKBx5RSNoCd5WIJIcqyK1eu8P777/Pdd98ZHaVE/bR/\nP8nJKWbrXN3ccXR24cftX/Jox24GJRNCWJOCds76AGnAQK31WW7coPw9i6USogyTzhksWLCAxx57\njMaNGxsdpUQtXrGGHYfPsuP3c6blqr0XvQYOY8Py+WRnZRkd0XA9+w81OoIQhitQ5+xmQTYzx+ME\nYJmlQgkhyq5r164xffp0vvrqK6OjGKJh01Z33AVBa82GZfPZu2MrbZ7obFAyIYS1KFDnTCnVUyl1\nTCn1t1LqklIqVSl1ydLhhCiLynvn7OOPP6Z169bl8huaeVFK0ePFwWxYNo/s7Gyj49yz+Ph4Tpw4\nYVr++9//Fvp9rFsyu5jTCVH6FHTO2btAV63175YMI4Qo29LS0pg2bRobNmwwOorVebB1e9Yt+YD9\nMV/T6vG8b+tkbZy8arForXkX9Mqli7z2Ym+aNGliUCohSreCFmfnpDAToniU587ZkiVLaNq0KS1a\ntDA6itVRStH9xX/z6aL3adG+IzY2BZ0SbKxGzdvdsS72x+1kFXL+XM/+Q/nthy1FjSVEqVbQo/8n\npdQnSqm+N09x9lRK9bRoMiFEmZKens7UqVMZP3680VGs1kOPBGBjY8uBneXrW6xCCHMF7Zw5AVeB\nwBzrNLCu2BMJUcaV13sHLl++nIYNG9KmTRujo1itG3PP/s36ZXNp3u7JO744UB6sWzIb/ybNeH/+\nojue693tGZ564gkDUglRsgr6bc1C34FXKfUMMIsbXbpFWutptz3vBKwAfAFbYIbWemlh9yeEsD6Z\nmZlMmTKFpUuXGh3F6jVr+wTrln7Awd3RNHu0g9FxDOHfoh20MD9d+mdcLBcupOTxCiHKloJ+W7OB\nUupbpdShm4+bKKXGFeB1NsAc4GmgMdBXKXX75cD/DcRqrR8COgAzlFIF7egJUeqUx65ZVFQUvr6+\ntG/f3ugoVs/GxobuIYPZsGwuN27MUr7Idc6EKPhpzYXAKGABgNb6V6VUFBCRz+taA8e01vEASqnV\n3LgF1JEc22j+dyuoqsAFrXX5vI+JEGVQVlYWkydPZv78+UZHKTEXL15k1Zp1ZGSZ/1WWkV2wYqvl\nY4F8vnQ2v+2NocnDj1kiohDCihX0CwEOWuu9t60rSAHlA5zM8fjUzXU5zQHuV0olAr8AwwqYSYhS\nqbx1ztasWYOHhwcdOpSfU3Tnzp3j95NJZLrUNVse6vBcgeaR3eqefR5Z/rpncp0zIQpenJ1XStXl\nRpcLpVRv4EwxZXgaOKC19gaaAXOVUo7FNLYQwkDZ2dlEREQwfvz4cje5vVJlezy8apotTi5uBX59\n64BnuJr6N7H7d1swpRDCGhX0tOa/gY+ARkqp08B/gX8U4HWnuTHR/5YaN9fl1B+YCqC1Pq6U+i/Q\nCPjp9sFydhwCAgIICAgoYHwhrEd56pytW7cOR0dHAgMD899YmLGxtaVbyGusj5xD4xaPlJvi9m5z\nzs6dO8f3339vts7DwwN/f/9C7Ss7O5t9+/aRlpZmtr5SpUq0atWq1FxrTliH6OhooqOji2WsuxZn\nSqkROR5+CWznRrftCtCLHPfbzMM+oJ5Syo8bnbYgoO9t28QDTwE7lVKeQAPgRG6Dlad/1IQo7bKz\ns5k0aRKTJ08uN4VFcWvzRBfWR87lyMG9+Dd72Og4hvKqWZvjv1/izM9/mtZlZWSg/97OexETCjXm\nhQsXWPLJRlx8G5qtv3jyKPXq1cPNreCdTiFubxpNnDix0GPl1zm7NVG/IdAK2AAoIAS4fQ7aHbTW\nWUqpIcA2/ncpjd+VUq/ceFp/xI0vFSxVSv1682X/p7VOvve3IkTpUF6uc/bFF19ga2tLly5djI5S\natlWqEC34FfZsHxeuSnO1i2ZnWv3rJK9A/c3f8RsXdq1qxyJOVWk/VW2d+D+ZubX3tuflFCkMYUo\nqrsWZ1rriQBKqe+B5lrr1JuPw4HNBdmB1noLN4q7nOsW5Pj9GW7MOxNClBFaayZNmlQu55oVt0c6\ndmX9srkc/fUnGjZpaXQcIUQJKOgJdU8gPcfj9JvrhBD3qDx0zb766ivS09Pp3r270VFKvQoV7Hj2\nH6+wYXn5uBSJXOdMiIIXZ8uAvUqp8Jtdsx+BpZYKJYQovbTWvP3224wbN04mVBeT9k/34EzCCf6I\nPWh0FCFECSjQ35xa68nc+FZlys2lv9Z6qiWDCVFWlfXO2TfffMOlS5fo1auX0VHKjAp2FXm238ts\nWD7P6CgWJ9c5E6LgnTO01j9rrf9zczlgyVBCiNLp1lyzsWPHYmtra3ScMuWxTr1J+OMIJ478ZnQU\nIYSFyTkHIUpYWe6cRUdHc/bsWfr06WN0lDLHrmJFupSD7pnMORNCijMhRDHRWhMeHk5YWBgVKhT0\n+tbiXgR0eZ7/HvmN+GO/Gx1FCGFBUpwJUcLKauds+/btnD17lqCgIKOjlFkVK1Wmc9C/2FiGv7kp\nc86EkOJMCFEMbnXNxo8fL10zC+vQtQ9xv+3n1Ik4o6MIISxEijMhSlhZ7Jxt376dc+fOSdesBFSq\nbM8zL/yzzF73TOacCSHFmRCiiKRrVvKe7N6Pwwf2cDr+uNFRhBAWIMWZECWsrHXOvvvuO+malbDK\nDlV4uvdLfFEGu2cy50wIKc6EEEUgXTPjdHwumN/2/cDZU38aHUUIUcykOBOihJWlztl3333HX3/9\nRd++fY2OUu7YV3GkY89gNi7/0OgoxUrmnAkhxZkQopByXtdM7gZgjI49X+SXPdGcOflfo6MIIYqR\nFGdClLCy0jm71TWTuWbGqVLVicBeL7I+co7RUYqNzDkTQoozIUQhaK2ZMGGCdM2sQGDvF4ndv1uu\neyZEGWLxGbxKqWeAWdwoBBdpraflsk0A8D5gByRprTtYOpcQRikLnbNvv/2WpKQk6ZpZAXsHRzr3\nGcjnS+cw9O0PjI4DQIWKlYlc/Rkr1m4wrcvOzqKym2++ry2OOWefrlvP7p8O3rH+H893p3mzZkUe\nXwhLs2hxppSyAeYATwKJwD6l1Aat9ZEc2zgDc4FArfVppZS7JTMJIYpGa01YWJh0zazIkz36sWXt\nEv6Mi6VWg8ZGx6F+04fJ8H/ojvV2dhVLZP/xpxKp3vhRXNw9TeuO//4Lf537q0T2L0RRWfq0Zmvg\nmNY6XmudAawGut+2TT/gM631aQCt9XkLZxLCUKW9c7Zp0yYuXbokXTMrUqmyPV3/8SqfLbaOzpmN\njQ2VKtvfsdgUoJgvrjlndhUrme3b1lYu9SJKD0v/tPoAJ3M8PsWNgi2nBoCdUmo74Ah8oLVebuFc\nQohCyMrK4q233mLKlCllumt2/fp11m34grS0dLP1zk5V6d61i1W+94BnX+DLTxZxLPYA9RvLqTsh\nSjNr+K9EBaA58ARQBditlNqttf7j9g1zdhwCAgIICAgooYhCFJ/S3DlbtWoVVatWpWvXrkZHsaik\npCR2HTiCT6PmZuv3xezi6Y5PUqVKFYOS5c2uYkW6hwzms0X/IXTmUqPjFJpc50yUVtHR0URHRxfL\nWJYuzk4DOWeA1ri5LqdTwHmt9XXgulLqe6ApcNfiTAhRstLT0wkLC2Px4sUopYyOY3EVK1emRu36\nZusSf//RoDQF0+6ZHmyK+ojDB/Zwf7M2RscRoly5vWk0ceLEQo9l6Tln+4B6Sik/pVRFIAjYeNs2\nG4B2SilbpZQD8DDwu4VzCWGY0vqfjI8//pj69etLx9qKVahgR6+Bw1izYDpaa6PjFIpc50wICxdn\nWussYAiwDYgFVmutf1dKvaKUGnRzmyPAVuBXYA/wkdb6sCVzCSHuzZUrV4iIiGDKlClGRxH5eLhD\nZ7Kzs9kb/ZXRUYQQhWTxOWda6y1Aw9vWLbjt8XRguqWzCGENSmPn7IMPPqBdu3a0aNHC6CgiHzY2\nNvR5ZRRLZoTRot1TVCihy1cUF5lzJoR1fCFACGHFUlJSmDlzJj/88IPRUaxCcnIy169fv+s2qamp\nJZQmd41bPEL1Gn5s/2INHXsGG5rF0nR2NhcuXDBbl5GRQVG/T5uSknLHOldX13Ix31IYT4ozIUpY\neHh4qeqeRURE8Nxzz9GwYcP8Ny7j7Kt5MuPDyAJtW82nroXT3N0Lr7zJe28OpN3TPbCv4mholnux\nbsnsAnfPbO3syKroyKSZ883WZ2HDg/5VC53Bvponc5asNluXdv0a/+rXU7rHokRIcSaEyNMff/xB\nZGQksbGxRkexCg8+2tHoCAXmW7cRD7Rux+bVH9N74HCj41hEhQp2tHji9uuaF939rR+/Y93h/TtJ\nS0sr9n0JkRu58bkQJaw0dc1CQ0MZMWIEnp6e+W8srE6vAcP4dsMqUs6fMzpKgcmcMyGkOBNC5CEm\nJoZ9+/bxxhtvGB1FFJK7pzePderJ50vnGB1FCHEPpDgTooSVhs5ZdnY2I0aMYOrUqdjb2xsdRxRB\nt+BX+XnntyT8ccToKAUi1zkTQoozIUQuoqKisLGxkZublwFVqjrz3D+HsHx2RKm9MK0Q5Y0UZ0KU\nMGvvnF29epW33nqLmTNnYmMjf0WUBR2e7cO1y6ml4sK0MudMCCnOhBC3mTlzJm3atKFt27ZGRxHF\nxMbWluDXx7H6w/dIu37N6DhCiHxIcSZECbPmzll8fDyzZs1i2rRpRkcRxaxR01bUvb8pm1d9bHSU\nu5I5Z0JIcSaEyGH48OEMGzaM2rVrGx1FWEDQq//H15+v4PzZ00ZHEULchRRnQpQwa+2cbd68mdjY\nWEaNGmV0FGEh7p7eBPYMYdV86+2MypwzIaQ4E0IA165dY+jQocyZM4fKlSsbHUdYUOeggfz3yCEO\n/7zb6ChCiDxIcSZECbPGztk777xDixYtCAwMNDqKsLBKle0Jfn0sS2aGk26FtyOSOWdCSHEmRLl3\n7Ngx5s6dy/vvv290FFFCmrd9Et86Ddm4fJ7RUYQQuZDiTIgSZk2dM601Q4cOJTQ0lBo1ahgdR5Sg\n4NfHsv2LTzh1Is7oKGZkzpkQJVCcKaWeUUodUUrFKaVG32W7VkqpDKVUT0tnEkLcsHr1ak6fPs2w\nYcOMjiJKmIu7J70GDGPR9PFkZ2cbHUcIkUMFSw6ulLIB5gBPAonAPqXUBq31kVy2ewfYask8QliD\n8PBwq+ienTt3juHDh7Np0ybs7OyMjiMMENC1Dzu/3sB3G1fxVI9/GB0HuDHnzBLdM7uKlfg2Zjd7\n9v9qWpeZlYm2teg/g0IUiqV/KlsDx7TW8QBKqdVAd+D2O/AOBT4FWlk4jxDipn//+98MGDCAVq3k\nsCuvbGxs6D9yElOHh9C87VO4engaHcliajd8gMted566r1TZwYA0QtydpU9r+gAnczw+dXOdiVLK\nG+ihtZ4PKAvnEcJw1tA1W7t2LYcPH2bChAlGRxEGq1G7Pk9078uyWROt4sbolppzppSiqrPLHUvF\nSpUssj8hisIa+rmzgJxz0fIs0HL+oxYQEEBAQIDFQglRViUlJTF06FDWr18v1zQTAHQLfo0Jr/Ti\nh63raf/Mc0bHEaJUio6OJjo6uljGsnRxdhrwzfG4xs11ObUEViulFOAOdFJKZWitN94+mDV0HIQo\nKqPnnA0ZMoSQkBDatGljWAZhXewqVuTVse8xbeQ/adS0FR65nP4rKZaacyaEpd3eNJo4cWKhx7L0\nac19QD2llJ9SqiIQBJgVXVrrOjeX2tyYdzY4t8JMCFF069at4+DBg7z99ttGRxFWxrdeIzr3/Rcf\nTR1NdlaW0XGEKNcs2jnTWmcppYYA27hRCC7SWv+ulHrlxtP6o9tfYsk8QlgDo7pmp06dYvDgwXz+\n+efY29sbkkFYt07P9+fg7mi+WrOYLn1fNiRDaeqaaa2Ji4sjMzPTbH2VKlWoVauWMaFEmWDxOWda\n6y1Aw9vWLchj2wGWziNEeZSVlUVwcDBDhw7lkUceMTqOsFI2trYMCn2H8Fd782Cr9vjWa2R0JKt2\n6tQpPvh4BVVczL/levVCItMnh8mcTlFococAIUqYEZ2zyZMnY2trS2hoaInvW5QuHl41CHptNB9O\nHmXIvTdL0701s7OzqezozINtA80WbGyt4puvovSS4kyIMu77779n/vz5LF++HFtbW6PjiFKg3dM9\n8PKtTdS8qUZHEaJckuJMiBJWkp2zCxcuEBwczKJFi/D29i6x/YrSTSnFwFGTif1pFzu3rS/RfZem\nOWdCWIoUZ0KUUVprBgwYwPPPP0/nzp2NjiNKGQfHqgx9+wOi5r7DyRNHjY4jRLkixZkQJaykOmfv\nvPMOZ86cYepUOTUlCse3biP6/TuUD8Je5+rl1BLZZ2macyaEpVjDHQKEEMXsiy++YM6cOezdu5eK\nFdW9ZwgAABi/SURBVCsaHUeUYm0De3Ds0AE+fvcthk78gBvXCy9/bCvY8eU30UTv2mdal5GejlZ2\nBXr9vp/283X0D3esb9+mJe3btS22nKJskOJMiBJm6c7Z4cOHGThwIBs3bsTHxyf/FwiRj38MGUvE\n0L58+ckiugT9y6L7stY5Z/UaNyf179p3rK/hWLVAr//jxH+5YudG9Zr/GyPp7CmO/nFcijNxBynO\nhChDkpOT6datG++9957cnkkUG7uKFRk68QPe/ncfvGrWpnnbJ42OVOJsK1SgmptHkcawr1LVbIwr\nly9BdlJRo4kySIozIUqYpe6tmZmZSZ8+fejWrRsvvfRSsY9vDY4cPcofx4/fsb5Fs2Z4eXkVasxz\n586xb/9+s3WXUy/L/Upu417dh2ER85gZOohq0+6jTqMHLbIfubemEFKcCVEmaK0ZPnw4Sineffdd\no+NYzJavt3Pysg1VnJxN686fPQ3As4Uszg7+8gubdx3Gw7um2XrfB1oXPmgZVde/CQPejOA/4wYz\nfs5q3KvLaXMhLEGKMyFKmCW6ZhEREcTExLBjxw4qVCjbh3WN2vXNi4JiuBK7m6c39Rs3K/I45UGL\n9k9x/txpZoQOYtzsVVSp6lSs40vXTAgpzoQo9ebPn09kZCQ//PAD1apVMzqO1UhISOD69etm6ypV\nqoSfn59BicqOp3u/RNKZk8yeMJQ3py2kgp18I1iI4iTXOROihBVn5+yTTz4hIiKCbdu2Ub169WIb\nt7RLSUnh3Q8+ZOGar8yW92Z/xIULF4yOVyb0GzwGewdH5k0aSWZmRrGNK9c5E0KKMyFKra1btzJ0\n6FC++uor6tSpY3Qcq5KdnY1tRXuatO9ktthVrkJ2drbR8coEG1tbBoe9T0Z6Gh9OHkVWZqbRkYQo\nM6Q4E6KEFUfnLDo6muDgYNatW0eTJk2KHqocyczMJCMjw7RIsVZ4Ny6xMZurl1P56J3RZGdlFXnM\nsjLnLOfP2N1+zrTWd2ybVQyfoyjdZM6ZEKXMli1bCAkJYc2aNbRr187oOKWKbWVH3n7vgzvW+zaR\nz7GwKlaqxPCIucwc8wofvzuWf42egs3/t3fn8VFVZwPHf0+SyQ5JWBIkIYDIoqyCIIsIFkFswZVa\nobWiYnGh1oqgvGhFsVVc3qp1bwF9tbRSFNAKqKgBKaKsKjsiEqSECIQIIcsk87x/zCQmkIQEMrkz\nmef7+dzP3Hvm5ObJmZOZZ86999yw0P7eHx7diHumVbxtmip0OH9ohbLYuHjWrFjOunv+UKG8RdNE\nHph6j9/jNIHL78mZiAwHnsI7SjdTVWcc9/wYoLQXHgFuVdWv/B2XMU45nXnO5s+fz/jx41m4cCH9\n+/ev28BCQPeBw50OoUGKjIrm9398gSfu/Q0zH5vKjXdPJ/wUrxpuCPOcnXfxFTWql9QshQuuuKFC\nmcfj4bO3Z/sjLBNE/Pr1RkTCgGeBS4DOwGgR6XRctW+AC1W1O/Aw8Fd/xmRMsJozZw633XYbS5Ys\nscTMBJyomFgmPvISOQezeeYPEygsyHc6JGOClr/HnvsAO1R1t6q6gX8Cl5evoKqrVDXXt7kKsFkN\nTYN2KqNmL774IpMmTWLp0qX07Nmz7oMypg5Ex8Zx159eIDa+MY/eNZYjhw/Veh/BPmpmTF3wd3KW\nCuwpt/0d1Sdf44DFfo3ImCBSXFzMnXfeyZ///GeWLVtG586dnQ7JmGpFuCL5zZQZdOrem4d/O4bv\n933ndEjGBJ2AuSBARC4CbgCqPDO3/IjD4MGDGTx4sN/jMqau1fScs9zcXEaPHo3b7WbVqlUkJSX5\nPzhj6oCI8Ivxd5PUPIWHfzuGO6Y/S7uza3ZVcUM458yEpoyMDDIyMupkX/5OzvYC6eW203xlFYhI\nN+BlYLiq5lS1M3/c9saYQPTNN98wcuRIBg0axNNPP43L5XI6pICWmbmHpR9+WLadn2/nOwWCYVdd\nR9PmZ/C/U8Yz6qY7GTziGkTE6bCM8YvjB40efPDBU96Xv5Oz1cBZItIa2AdcC4wuX0FE0oE3getU\ndaef4zHGcSf7krF48WJuuOEG7rvvPiZMmFA/QQWxtDM7sHvHFvZuyqpQnnqO3bg8EPQaeDEt27Tj\nmft/y9ebN3D9nQ8QGRVdZX0bNTPGz8mZqpaIyATgfX6cSmOLiIz3Pq0vA/cDTYDnxfuVyq2q9q5q\nQk5hYSFTpkxh3rx5vPHGGwwaNMjpkIJCTGw8nbr3djoMU40zWrXlgeffYNYT9zN9wmjueOgZmp/R\nyumwjAlYfp8pUFWXqGpHVW2vqo/6yl7yJWao6s2q2lRVe6rquZaYmYauspGz7du3079/f3bt2sX6\n9etDKjHzeDx8++237Nq1q8Ji98BsWKJj47j1/ie54JIrmHbLz1m2aB6qekI9u7emMQF0QYAxoUhV\nmTlzJlOmTOGhhx7illtuCblzcjZv3szzr84ltlFiWZnH4yGaQv40baqDkZm6JiJcMup6zj73fF5+\n5F7WLP+AmyZNJ7FpstOhGRNQLDkzpp6Vjpxt3bqV8ePHk5+fz0cffUTXrl2dDcwhxcXFNGrWki59\nf1JWVlRYwKaP33QwKuNP6e06Me2FuSx87QXuG3cFY26fQr8hIxARO+fMGOzG58bUu8LCQqZNm8bA\ngQMZNWoUn376acgmZiZ0RbgiufrG33HXIy/xzusv8fjkcezdbdeEGQM2cmZMvVFV3nnnHW688UYG\nDhzI+vXrSUtLczqsgBQWHs7RwhJuuXNyhfISFc5t1cOhqIw/nNmpK9P/Np8PF8zhT3f8kuSW6dz9\n2N+Ia9TY6dCMcYwlZ8bUg5UrVzJ58mRyc3MZNmwYc+bMcTqkgBYR4eKCy66r9LlQOycvFEREuLhk\n1PX0GzKCxyeP495fX8qVYydw4U+vJsIV6XR4xtQ7O6xpjB9t3LiRK6+8kmuvvZZx48axYcMGS8xq\nSEQqXUzD1TipKdP/Op+7Hn2JNSuWMvlXw/n433Mpdhc5HZox9cpGzozxgxUrVjBjxgxWr17NxIkT\nmTNnDjExMU6HVa/mznuLrO8PnLRe3tE8CIurh4hMsGjbsQuTH5/J9q/WsuDV53jn9Re57Fe3MmDY\n5bgibSTNNHw2cmZMHSkpKWHBggUMGDCAsWPH8rOf/Yxdu3YxadKkColZqNyGbNnKzylKOBN3Yrtq\nl8i0bnTo3tfpcE2AKD/PWYeuvZj8xCxumfo4q5ct4a5fXMSbs54m58B+ByM0xv9s5MyY05SZmcnM\nmTOZNWsWqampTJw4kauuuorw8HCnQ3Nc8zPSCAuz74Dm9HTo2otJj89k7+6dLJ3/OlPGjqBbn4EM\nuWIMHbr2ssPdpsGRymZoDkQiosESq2n48vLyePfdd3nllVf47LPPGDNmDDfffDPdunVzOrSAcftd\n99Jn5FhLzkydyzvyA58seYsM3/lo/YdexoChl5OS1trp0E6bx+Nh1cJZjLl6ZJ3u1+Vy0bt3b/vS\nWI9EBFU9pW8ONnJmTA3l5+ezaNEi5s6dy3vvvUffvn0ZM2YM8+bNIzY21unwjAkZcY0aM/znY7lk\n1PV8u30T/3l/AdN/O5rklun0vnAYPS+4mJTUdKfDPCUiwhlnn8+iNd/U6X5z9u4kLS3Npu8JEpac\nGVON3bt3s3jxYhYtWsSyZcvo06cP11xzDc899xzNmjU7pX1OmzYtZM47M6a23pr9lxrfJUBEaNux\nC207duHaW+9h05qVrF2xlIcnjKZRYhN6DvgJPfpdRNuOXQiPCI6POxGhbae6n5R6Q252ne/T+E9w\n9FZj6kl2djaffPIJy5cv54MPPuDAgQMMHz6c0aNHM3v2bJo2bep0iH6RlZVFcXFxhbLo6OgTEtCi\noiKys098k2/atGnIXY1qAktEhIvufQfRve8gPHc9yM4tX7BuxVJmP3k/B7Oz6NS9N+f06kfnnv1o\n2bqdnaeG9yKmffv2nVCekJBAo0aNHIjIlLJzzkzIKigoYOPGjaxdu5Y1a9awYsUKsrKyGDBgABde\neCEXXXQRvXr1avDnTO3fv5+HH3+GyPjECuXFxw7zyLSpFQ7Zvv3vd1myfDUxsT9OfVFYUMB5ndsx\n9roxFX7ezjkzgSL30AE2r1/F5rWfsmndp+Qfy6Pd2d04q3MP2nfuSduOXYiNb9jJyIaPF/L7caMr\nHNZctWoVr8xbRFy5v7242E2rZo25+84JToTZoNg5Z8ZUQ1U5cOAA27Zt44svvmDdunWsXbuW7du3\n0759e3r27EmvXr24/fbb6dq1a8idMOt2u3HFJdDjossrlH++6O94PJ4KZUVFblqc1Y22HbuUle3b\ns4uCgv/WS6zGnIqEJs3oN2QE/YaMAODwwWx2bNrA15vW89bsZ8j8eiuNEpNo1a4jrc7sSHq7jrRq\n14mUlumENeD3A7fbTVLLMzmnV/+ysh9yDnJw60oHozJQD8mZiAwHnsI7p9pMVZ1RSZ1ngEuBPGCs\nqm7wd1ymYVFVDh8+TGZmJjt37mTbtm0VFlWlQ4cOdOvWjd69ezN+/Hi6du3qyKE4O+fMmKrV5pyz\nU5XYNJneFw6j94XDAPCUlJC9bw97dm4jc+dWVn7wDnteeoLcnIO0SG1NSmprklNbkZzampTUdFJS\nW5PULMVGhY3f+DU5E5Ew4FlgCPBfYLWILFTVreXqXAq0U9X2InI+8CJgM1LWUEZGBoMHD3Y6DL/K\nz88nOzub7Oxs9u/fT3Z2NllZWWRmZpKZmcnu3bvJzMxERGjdujVt2rQhNjaWoUOHctNNN9GxY0ea\nN28e8ueYZGRk0DghgVf+Ma9CuXqU6KQzTnm/0TGxrF+zjTsmT61QXizBMTC/Zf1nnH3u+U6HEXBC\nqV3CwsNpkdaGFmlt6D3okrLy/Lyj7N+727dk8vWm9Sx96zWO5OaQd+QHkpolk9S8BU2ap9CkeQuS\nmqWQ1LwFSU2TaZTYhEYJScTExQfEe0+YK5oZTz2PhP0Yi6fEQ/P2vU5736HwOVTf/P3u2QfYoaq7\nAUTkn8DlwNZydS4H/g9AVT8TkQQRSVFVmwK6BoLhn0JVKSgoIC8vj7y8PHJzczl8+HCVS05OToVE\nrLCwkOTkZJKTk0lJSSE5OZkWLVrQrVs3RowYQXp6Ounp6SQm/njO1LRp0xg3bpyDf3XVnBo1y8jI\noP+AC4hr2ZEOXSu+IYeFnfqhm6RmKfQdeeJNysMkLChGFrZs+DxkkpDacKpd/D1qVhsxcfG06dCZ\nNh06l5WVjuwVFuSTc2A/h77PIuf7LA59n03Wnm/ZvG4Vhw9mcyQ3hyOHD1Fc7KZRQhLxCUk0SmhC\n48QmxCckEd84kZi4eGJi44mJiyMmrlG5be9jdExsnR1W7dJ/KB5PyQnl4eGnnwYEw+dQsPF3cpYK\n7Cm3/R3ehK26Ont9ZZacVcPj8eDxeCguLubYsWN4PB5KSkooKSmpsH78dunPFBUVUVRUhNvtLls/\nfjnZc/n5+Rw7doxjx46Rl5dX6WPpEhkZSVxcHLGxsSQmJla6pKam0rlzZxITEyskYwkJCQHxzbOh\nCAsLJyLCVaf7rOv9GRPooqJjykbbqlNUWMjR3Bx+yD3kfTzsfTz6w2EOZe8j/9hR8vOOkn8sj/y8\noxSUbR+lIP8YUVHRRMfGERkVjSsyCldkFJFR0d7tKN92ZDSRUVG4oqKJjIzCFeUti3C5CI+IIDzc\n9xgRQcRx297nI4iI8JblH8vjSHY2O3fuxOVy4XK5CA8PJywsrOyxdCndLv08CoYvY8EiOI47+AwZ\nMoTSKzZVtWypzfbp/Gxd7qu65ypLqI5fB8r+EZ588skK/zwnW4+IiCAyMrLKxeVyVftcXFwckZGR\nREVFERcXV5Z0lT6WX4+LiyMmJibkTrKvjpPnnIWHh3Pwu518eeTgSesWFxXwxBNPVCwr8fDN/h84\n8v13/gqx3u3P/JovVyxxOoyA41S7/OfDxQwYcmm9/96aOt12iY92ER+dDCnJJ62rHg9udxGFhQUU\nu93epbjiY0lxMW53EcXFbgqO5JBXXEyx2427uAhPSQmecp8dnpISSjzeMo+n9DlP2brHU0JJcTGC\nh3cX/Au3243b7S773ClNwo7fdrvdTJ8+HeCExK2m2yJS9iW8dD0Qt8sPFNRk/VT5dSoNEekLTFPV\n4b7tewEtf1GAiLwIfKyqb/i2twKDjj+sKSI2j4YxxhhjgkagTqWxGjhLRFoD+4BrgdHH1XkbuB14\nw5fMHa7sfLNT/QONMcYYY4KJX5MzVS0RkQnA+/w4lcYWERnvfVpfVtVFIvJTEfka71QaN/gzJmOM\nMcaYQBY0dwgwxhhjjAkFAXtphYg8JiJbRGSDiLwpIo2rqDdcRLaKyHYRuae+46xvIjJKRDaKSImI\n9Kym3rci8oWIrBeRz+szRifUol1Cpr+ISJKIvC8i20TkPRFJqKJeSPSVmrz2IvKMiOzwve/0qO8Y\nnXCydhGRQSJyWETW+Zb7nIizPonITBHZLyJfVlMnFPtKte0Son0lTUQ+EpFNIvKViNxRRb3a9Zfy\nVwwG0gJcDIT51h8FHqmkThjwNdAacAEbgE5Ox+7ndukItAc+AnpWU+8bIMnpeAOpXUKtvwAzgMm+\n9XuAR0O1r9Tktcd7l5J3fevnA6ucjjtA2mUQ8LbTsdZzu1wA9AC+rOL5kOsrNWyXUOwrLYAevvV4\nYFtdvLcE7MiZqi5V1dIb+60C0iqpVjbJraq6gdJJbhssVd2mqjuAk10gIQTwyGhdq2G7hFp/uRx4\n1bf+KnBFFfVCoa/U5LWvMCE2kCAiKfUbZr2r6f9ESF2QpaorgJxqqoRiX6lJu0Do9ZUs9d1yUlWP\nAlvwztVaXq37S7C8Id8ILK6kvLJJbo9vlFClwAcislpEbnY6mAARav0lWX1XPqtqFlDVxEqh0Fdq\n8tpXNSF2Q1bT/4l+vsMx74rIOfUTWkALxb5SUyHbV0SkDd6Rxc+Oe6rW/cXRSWhF5AOgfPYoeD8o\npqrqO746UwG3qs5xIERH1KRdamCAqu4TkeZ4P3i3+L71BK06apcGpZo2qexcj6qu/mlwfcXUqbVA\nuqoeE++9kBcAHRyOyQSmkO0rIhIPzAN+5xtBOy2OJmeqOrS650VkLPBT4CdVVNkLpJfbTvOVBbWT\ntUsN97HP9/i9iMzHe/giqD9w66BdGlx/qa5NfCfupqjqfhFpAWRXsY8G11cqUZPXfi/Q6iR1GpqT\ntkv5DxpVXSwiz4tIE1U9VE8xBqJQ7CsnFap9RUQi8CZmr6nqwkqq1Lq/BOxhTREZDkwCLlPVwiqq\nlU1yKyKReCe5fbu+YgwAlR7bF5FYXxaPiMQBw4CN9RmYw6o65yHU+svbwFjf+vXACW8aIdRXavLa\nvw38GsrublLphNgNzEnbpfy5MSLSB+8UTA36w9ZHqPq9JBT7Sqkq2yWE+8osYLOqPl3F87XuL4F8\nb82/AJF4D7OA9+qG20TkDOCvqjpCq5jk1rmQ/U9ErsDbNs2Af4vIBlW9tHy74D3MNV+8t7yKAP6u\nqu87F7X/1aRdQrC/zADmisiNwG7gGoBQ7CtVvfYS4hNi16RdgFEicivgBvKBXzgXcf0QkTnAYKCp\niGQCD+D9PArZvgInbxdCs68MAH4JfCUi6/GePvI/eK+APuX+YpPQGmOMMcYEkIA9rGmMMcYYE4os\nOTPGGGOMCSCWnBljjDHGBBBLzowxxhhjAoglZ8YYY4wxAcSSM2OMMcaYAGLJmTHG1JKILBSR68pt\nvywiE52MyRjTcNg8Z8YYU0si0hr4GO9NjrsAzwM9VdXjaGDGmAbBRs6MMUHHd7uhLSIyW0S2icjr\nIjJERFb4ts/z1YsVkZkiskpE1orIyHI/v1xE1viWvr7yQSLysYj8y7f/1yr7/aq6G3gJeBx4Drjd\nEjNjTF2xkTNjTNDxjVztAHqo6mYRWQNsUNVxInIZMFZVrxKRPwKbVHWOiCQAn+Md7VLAo6pFInIW\n8A9V7S0ig4AFwDlAFvAf4G5VXVlJDBHATmC5ql53/PPGGHOqAvnemsYYU51dqrrZt74J+NC3/hXQ\nxrc+DBgpIpN825FAOrAPeFZEegAlQPty+/1cVfcBiMgG375OSM6A7niPPnSqiz/GGGNK2WFNY0yw\nKiy37im37eHHL54CXK2q5/qWtqq6Dfg9kKWq3YDz8CZtle23hEq+xIqI4D2c+Utgh4jcVhd/kDHG\ngCVnxpjgJTWo8x5wR9kPeEfKABLwjp4B/BoIr+XvvgXYrqrLgYnAZBFpWst9GGNMpSw5M8YEK61i\nvbzpgEtEvhSRr4CHfOXPA2NFZD3QAcirwe8AQESaA5OAuwF8h0CfAh6r9V9gjDGVsAsCjDHGGGMC\niI2cGWOMMcYEEEvOjDHGGGMCiCVnxhhjjDEBxJIzY4wxxpgAYsmZMcYYY0wAseTMGGOMMSaAWHJm\njDHGGBNALDkzxhhjjAkg/w86R72lURjBYAAAAABJRU5ErkJggg==\n", "text/plain": [ "<matplotlib.figure.Figure at 0x7f7b83372668>" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "n = 10\n", "mu_null = 0\n", "mu_alt = 0.5\n", "sigma = 1\n", "SE = sigma/np.sqrt(n)\n", "samplingdist_null = stats.t(df=n-1,scale=SE)\n", "dist_alt = stats.norm(loc=mu_alt, scale=sigma)\n", "\n", "nsims = 1000\n", "alpha = 0.05\n", "null_left_cutoff = mu_null + samplingdist_null.ppf(alpha/2)\n", "null_right_cutoff = mu_null + samplingdist_null.ppf(1-(alpha/2))\n", "\n", "sample_means = []\n", "sample_zscores = []\n", "\n", "for i in range(nsims):\n", " sample = dist_alt.rvs(size=n)\n", " mean = np.mean(sample)\n", " sample_means.append(mean)\n", " zscore = mean/np.std(sample,ddof=1)\n", " sample_zscores.append(zscore)\n", " \n", "sample_means = np.asarray(sample_means)\n", "sample_zscores = np.asarray(sample_zscores)\n", "\n", "fig, ax = plt.subplots(figsize=(10,4))\n", "x = np.linspace(-2,2,250)\n", "ax.plot(x, samplingdist_null.pdf(x), color='black', label=\"Expected distn of\\nsample means, H0\")\n", "ax.hist(sample_means, bins=50, normed=True, label=\"Observed distn of\\nsample means, HA\",\n", " color='steelblue', histtype='stepfilled', alpha=0.5)\n", "ax.set_xlabel(\"mean X\")\n", "ax.set_ylabel(\"density\")\n", "\n", "min_y, max_y = ax.get_ylim()\n", "\n", "# draw left_cutoff\n", "ax.vlines(null_left_cutoff, 0, max_y, linestyle='dotted')\n", "# draw right cutoff\n", "ax.vlines(null_right_cutoff, 0, max_y, linestyle='dotted')\n", "\n", "ax.legend(loc='upper left')\n", "\n", "failed_to_reject_H0 = np.logical_and(sample_zscores > null_left_cutoff, \n", " sample_zscores < null_right_cutoff)\n", "\n", "How_often_failed_to_reject_H0 = np.count_nonzero(failed_to_reject_H0)/nsims\n", "print(\"For sample size n =\", n)\n", "print(\"the percent of simulations where we failed to reject H0 is:\", \n", " How_often_failed_to_reject_H0 * 100)\n", "print(\"and hence, the percent of simulations where we correctly rejected H0 is:\", \n", " (1.0 - How_often_failed_to_reject_H0) * 100)\n", "\n", "#fig.savefig(\"fig-powersim-n10.pdf\")\n", "\n", "pass" ] }, { "cell_type": "code", "execution_count": 7, "metadata": { "collapsed": false }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "For sample size n = 25\n", "the percent of simulations where we failed to reject H0 is: 29.9\n", "and hence, the percent of simulations where we correctly rejected H0 is: 70.10000000000001\n" ] }, { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAmcAAAEPCAYAAAAH/WO7AAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzs3XlcVNX7B/DPGUBWB4ZFZEdREzVLM3cTK6009w1NLK00\nzcq2r1sh5va1b4vllpkm7iuau7aIkua+Y4ppgoooCAgIssj5/SHOT4SREZm5M8Pn/Xrdl9y5Z859\nZi7FM885c4+QUoKIiIiITINK6QCIiIiI6P8xOSMiIiIyIUzOiIiIiEwIkzMiIiIiE8LkjIiIiMiE\nMDkjIiIiMiEGTc6EELZCiP1CiKNCiJNCiPE62n0vhDgnhDgmhHjakDERERERmTJrQ3YupcwVQrST\nUmYLIawA7BFCbJVSHrjXRgjxCoAgKWVtIUQzAD8AaG7IuIiIiIhMlcGHNaWU2UU/2uJuMvjgXW+7\nAlhU1HY/AGchhKeh4yIiIiIyRQZPzoQQKiHEUQBJAH6VUh58oIkPgEv37V8peoyIiIio0jFG5axQ\nStkIgC+AZkKIeoY+JxEREZG5Muics/tJKTOEEDsBvAzg9H2HrgDwu2/ft+ixYoQQXASUiIiIzIaU\nUpTneYb+tqa7EMK56Gd7AO0BnHmg2QYAA4vaNAeQLqW8Vlp/UkpuD2zjx49XPAZT3Pi+8D3h+8L3\nhe8L3xMlt8dh6GFNLwA7hRDHAOwHsF1KuUUIMVQIMQQApJRbAPwrhPgHwFwAww0cExHpKSIiQukQ\nqILwWhKZD0PfSuMkgMalPD73gf0RhoyDiIiIyFxwhQAzFxISonQIJonvS0nleU8qQ7WlsvyuPOq1\nrCzvy6Pi+1IS35OKJx53XNRYhBDSXGIlIiKiyk0IAWmKXwgwhsDAQAghuHEz2hYYGKj0r73RVIbK\nWWXBa0lkPox2Kw1DiY+Pf+xvRRA9CiHK9UGIiIhIL2Y/rCmEYHJGRsXfOSIiKkvR34rKOaxJRERE\nZEmYnBGRTpynZDl4LYnMB5MzeiSRkZFo06aN3u1r1KiBP/74AwAwdepUDBkyxFCh6W3OnDmoXr06\n1Go10tLSlA6HiIioGCZnBhYYGAgHBweo1WpUrVoVarUa77//vmLxtGvXDgsWLHisPso7IX7MmDH4\n8ccfy2xXETHqUlBQgI8//hi//fYbMjIyoNFoDHIeS8Fqi+XgtSQyH2b/bU1TJ4TA5s2b0a5dO6VD\nIQBJSUnIzc1FcHCw0qEQERGVipUzI9D1zb7hw4ejV69e2v1Ro0ahffv2AIBdu3bBz88PU6dOhYeH\nB2rWrIlly5Zp2+bl5eGTTz5BQEAAvLy8MHz4cOTm5mqP//LLL2jUqBGcnZ1Ru3Zt7NixA5999hli\nYmIwYsSIYhW8M2fOoEOHDnBzc0NwcDBWr16t7Sc1NRVdunSBs7MzmjdvjvPnzz/0tS5evBiBgYHw\n8PDAlClTih2bMGECwsLCAAC5ubkICwuDu7s7NBoNmjVrhuTkZJ0xqlQqzJ07F3Xq1IGrqytGjNC9\n4ldeXh5GjhwJHx8f+Pr64sMPP0R+fj7OnTuHunXrAgA0Gg1efPHFh74WYrXFkvBaEpkRpVdtf4TV\n3WVpdD1uKgIDA+Xvv/9e6rHs7Gz5xBNPyMjISLl7927p4eEhExMTpZRSRkdHS2tra/nJJ5/IvLw8\nuWvXLuno6Cjj4uKklFKOHDlSdu3aVaanp8usrCzZpUsXOXbsWCmllPv375fOzs7a8yYmJsqzZ89K\nKaUMCQmR8+fP18Zw69Yt6efnJyMjI2VhYaE8duyYdHd3l3///beUUsq+ffvKvn37ypycHHnq1Cnp\n4+Mj27RpU+rriY2NlU5OTvLPP/+UeXl58qOPPpI2NjbaOCIiImRYWJiUUsq5c+fKLl26yNu3b8vC\nwkJ55MgRmZmZWWqMUkophJCdO3eWGRkZMiEhQXp4eMjt27eXGsfnn38uW7RoIVNSUmRKSops2bKl\nDA8Pl1JKefHiRalSqWRhYaHOa1YWU/+dq0jjx49XOgSqILyWRMZV9LeifDlPeZ9o7M2ck7OqVatK\njUYjXVxcpEajkT/99JP2+IEDB6Srq6sMDAyUK1eu1D4eHR0tbWxsZE5OjvaxPn36yEmTJkkppXR0\ndJQXLlzQHtu7d6+sUaOGlFLKoUOHyo8++qjUeB5MfFauXCmfe+65Ym2GDh0qv/jiC3nnzh1pY2Oj\nTQillHLs2LE6k7MvvvhC9uvXT7t/69YtWaVKlVKTswULFshWrVrJEydOlBmjlHeTs7179xZ7L6ZN\nm1ZqHEFBQXLbtm3a/e3bt8vAwEAppZT//vuvVKlU8s6dO6U+Vx+m/jtHRETKe5zkjHPOjOCXX37R\nOefs2WefRc2aNZGcnIzevXsXO6bRaGBnZ6fdDwgIQGJiIpKTk5GdnY1nnnlGe6ywsFA7fHrp0iV0\n6tRJr9ji4+Oxb98+uLq6AribrN+5cwcDBw5EcnIyCgoK4OvrWyyGmJiYUvtKTEyEn5+fdt/BwQFu\nbm6ltg0LC8Ply5cRGhqKmzdv4rXXXsOUKVNgZWWlM1ZPT89ifWdlZemMw9/fv1jMV69eBcC7+xMR\nkenjnDMjuJc0lWbWrFnIy8uDt7c3pk2bVuxYWloacnJytPsJCQnw9vaGu7s7HBwcEBsbi9TUVKSm\npiI9PR03b94EAPj5+emcG/ZgcuLn54eQkBBtP2lpacjIyMDMmTPh4eEBGxsbXLp0qVgMunh5eRVr\nm52djRs3bpTa1traGp9//jliY2Oxd+9ebNq0CYsWLSo1xkfl4+OD+Ph47X58fDy8vb0fq8/KivOU\nLAevJZH5YHKmoLi4OHz++edYunQpFi1ahC+//BInTpzQHpdSYvz48cjPz0dMTAw2b96MPn36QAiB\nt99+GyNHjkRycjIA4MqVK9ixYwcA4M0338TPP/+MnTt3QkqJxMREnD17FsDd6tOFCxe053j11VcR\nFxeHJUuWoKCgAPn5+Th06BDOnj0LlUqFHj16ICIiAjk5OTh9+jQiIyN1vp5evXph06ZN2Lt3L/Lz\n8xEeHq4zMY2OjsapU6dQWFgIJycn2NjYaKtmD8b4qEJDQzFp0iSkpKQgJSUFEydO1H4R4d77SkRE\nZKqYnBlB586doVartVvPnj1x584dhIWFYcyYMWjQoAFq1aqFKVOmICwsDPn5+QDuVqI0Gg28vb0R\nFhaGuXPnonbt2gCAadOmoVatWmjevDlcXFzQoUMHxMXFAbg7VPrzzz9j5MiRcHZ2RkhIiLbi9cEH\nH2D16tVwc3PDyJEj4eTkhB07dmDFihXw9vaGt7c3Ro8erf3m54wZM5CZmQkvLy8MHjwYgwcP1vk6\n69Wrh1mzZqFfv37w9vaGm5tbsSHR+yUlJaFXr15wdnZG/fr10a5dOwwYMKDUGIGS1bSHVdc+++wz\nNGnSBA0bNsRTTz2FJk2aYNy4cXo9l4pjtcVy8FoSmQ8ufG6idu3ahbCwsIcOI5IyLPV3joiIKg4X\nPicig2C1xXLwWhKZD35bk4iISpWZmamdZvEgtVoNa2v+CSEyBA5rEj0i/s5RZZCTk4NxX0xFobAp\ncSw3LxevvtAanV55WYHIiMzD4wxrVoqPPRUxAZx/jImoMikoKEB+oUDTjn1LHLtw5iRycm4rEBVR\n5VAp5pyV9w6992/mbNCgQQgPD1c6DDJDnKdkOXgticxHpUjOqPJq164dFixYUOyxe4vK35OXl4fB\ngwfD2dkZ3t7e+Pbbb40dJhERkValGNYketD9Q93jx4/H+fPncenSJSQmJqJdu3aoX78+OnTooGCE\npoHVFsvBa0lkPlg5M7Bp06bB19cXarUawcHB2LlzJwDg4MGDaNmyJTQaDXx8fPDee++hoKBA+zyV\nSoU5c+agTp06cHZ2Rnh4OC5cuIBWrVrBxcUFoaGh2vb3KkFTp06Fh4cHatasiWXLlumMadOmTWjU\nqBE0Gg1at26NkydP6mz7KHGU1fe9G+eq1Wo0aNAA69ev1x6LjIxEmzZt8Omnn8LV1RVBQUHYtm2b\n9vjChQsRFBQEtVqNoKAgLF++/BGuwsMtWrQI4eHhUKvVqFu3LoYMGYKFCxdWWP9ERESPgsmZAcXF\nxWHWrFk4fPgwMjIysH37dgQGBgIArKysMH36dKSmpuKvv/7CH3/8gdmzZxd7/o4dO3D06FHs27cP\nX375JYYOHYply5bh0qVLOHnyZLEEJSkpCampqUhMTMTChQsxZMgQnDt3rkRMR48exZtvvol58+Yh\nNTUVQ4cORZcuXXR+Xf5R4iir71q1amHPnj3IyMjA+PHjMWDAAFy7dk17ngMHDiA4OBg3btzAp59+\nijfffBPA3TU6P/jgA2zfvh0ZGRnYu3cvnn766fJdFBT/ckd6ejquXr2Khg0bah976qmnEBsbW+7+\nLQmrLZaD15LIfDA5MyArKyvk5eXh1KlTKCgogL+/P2rUqAEAaNy4MZo2bQohBPz9/TFkyBDs2rWr\n2PNHjRoFR0dHBAcHo0GDBujQoQMCAgJQtWpVvPLKKzh69Ki2rRACEydOhI2NDZ577jl06tQJq1at\nKhHTvHnz8M4776BJkyYQQiAsLAy2trbYt2+fztehbxxl9d2zZ094enoCAHr37o3atWvjwIED2vME\nBARg8ODBEELg9ddfx9WrV3H9+nXte3ny5Encvn0bnp6eCA4O1vs6vPfee3B1ddVunTt31h7LysqC\nEALOzs7ax9RqNTIzM/Xun4iIqCIZNDkTQvgKIf4QQsQKIU4KId4vpU1bIUS6EOJI0faZIWMypqCg\nIEyfPh0RERHw9PRE//79cfXqVQDAuXPn0LlzZ3h5ecHFxQXjxo1DSkpKsedXq1ZN+7O9vb02sbm3\nn5WVpd3XaDSws7PT7gcEBCAxMbFETPHx8fj666+1iYpGo8Hly5dLbfuocZTV96JFi7RDnhqNBrGx\nscVec/Xq1Yv1C9xNnhwcHLBy5UrMmTMHXl5e6Ny5s3Yhd33MmDEDqamp2m3Tpk3aY05OTgCAjIwM\n7WM3b95E1apV9e7fkrHaYjl4LYnMh6ErZwUAPpJS1gfQAsC7Qoi6pbTbLaVsXLRNMnBMRhUaGoqY\nmBjEx8cDAEaPHg0AGDZsGIKDg3H+/Hmkp6dj8uTJj3XLjrS0NOTk5Gj3ExIS4O3tXaKdn58fxo0b\np01U0tLSkJWVhb59S97L6FE9rO+EhAQMGTIEs2fPRlpaGtLS0lC/fn29X3P79u2xY8cOJCUl4Ykn\nnsDbb7/92PECgIuLC7y8vHD8+HHtY8ePH0f9+vUrpH8iIqJHZdDkTEqZJKU8VvRzFoC/AfiU0vTx\n7xJrguLi4rBz507k5eWhSpUqsLe3h5WVFYC7y6Ko1Wo4ODjgzJkzmDNnzmOdS0qJ8ePHIz8/HzEx\nMdi8eTP69OlTot3bb7+NH374QTuceOvWLWzZsgW3bt16rPOX1fetW7egUqng7u6OwsJC/Pzzzzh1\n6pRe/V6/fh0bNmxAdnY2bGxs4OTkpH0f4+PjoVKpHmuB+LCwMEyaNAnp6en4+++/MW/ePAwaNKjc\n/VkSVlssB68lkfkw2pwzIUQggKcB7C/lcAshxDEhxGYhRD1jxWRoubm5GD16NDw8PODt7Y3k5GRM\nmTIFAPDVV19h6dKlUKvVGDp0KEJDQ4s998FVDcpa5cDLywsajQbe3t4ICwvD3LlzUbt27RLPfeaZ\nZzBv3jyMGDECrq6uqFOnDiIjI3X2+yhxPKzv4OBgfPzxx2jevDmqV6+O2NhYtG7d+qGv6d65CgsL\n8c0338DHxwfu7u7YvXu3NplNSEhAYGAgfHxKy/n1Wx1iwoQJqFmzJgICAvD8889j9OjRaN++fZnP\nIyIiMgSjrK0phHACEA1gopTyl1KOFUops4UQrwD4TkpZp5Q+uLamDrt27UJYWNhjVY/M1eTJk1Gt\nWrUKG+bUB3/nqDLIzMzE2ElfoWnH10ocu3DmJOp7WKFXj24KREZkHkx6bU0hhDWANQAWP5iYAdrh\nzns/bxVCzBZCuEopUx9se39ZPiQkBCEhIQaJmczHuHHjlA6BiIgI0dHRiI6OrpC+jLFCwAIAp6WU\n35V2UAjhKaW8VvRzU9yt5pVIzADOmSAytoiICP53ZyF4LYkM68Gi0YQJE8rdl0GTMyFEKwCvATgp\nhDgKQAIYCyAAgJRS/giglxBiGIB8ADkAHv9rg5VM27ZtK+WQJhERkSUyaHImpdwDwKqMNrMAzDJk\nHERUPqy0WA5eSyLzwRUCiIiIiEwIkzMi0onVFsvBa0lkPpicEREREZkQJmdEpBOrLZaD15LIfDA5\nMwETJkxAWFiY0mE8ksjISLRp00bv9jVq1MAff/wBAJg6dSqGDBliqND0NmfOHFSvXh1qtRppaWlK\nh0NERASAyZlRLFy4EA0bNoSjoyO8vb0xfPhw3Lx5s1gbfZYZMjXljXnMmDH48ccfy2zXrl07LFiw\noFznKEtBQQE+/vhj/Pbbb8jIyIBGozHIecwdqy2Wg9eSyHwwOTOwr7/+GmPGjMHXX3+NjIwM7Nu3\nD/Hx8Wjfvj0KCgqMFsedO3eMdi5zkJSUhNzcXAQHBysdChERUTFMzgwoMzMTERERmDlzJtq3bw8r\nKyv4+/tj1apVuHjxIpYsWaJtm5OTg9DQUKjVajRp0gQnTpzQHps2bRp8fX2hVqsRHByMnTt3AgCk\nlPjvf/+LWrVqwcPDA6GhoUhPTwcAxMfHQ6VSYcGCBQgICMALL7yAjh07Yvbs2cVifPrpp7F+/XoA\nwJkzZ9ChQwe4ubkhODgYq1ev1rZLTU1Fly5d4OzsjObNm+P8+fMPfe2LFy9GYGAgPDw8tIu933P/\nMG5ubi7CwsLg7u4OjUaDZs2aITk5GZ999hliYmIwYsQIqNVqvP/++wAAlUqFuXPnok6dOnB1dcWI\nESN0xpCXl4eRI0fCx8cHvr6++PDDD5Gfn49z586hbt26AACNRoMXX3zxoa+lMmO1xXLwWhKZDyZn\nBrR3717k5uaie/fuxR53dHREx44d8euvv2of27BhA/r27Yu0tDT069cP3bp1w507dxAXF4dZs2bh\n8OHDyMjIwPbt2xEYGAgA+P7777FhwwbExMQgMTERGo0Gw4cPL3au3bt34+zZs9i+fTv69euHZcuW\naY+dPn0aCQkJePXVV5GdnY0OHTpgwIABSElJwYoVKzB8+HCcOXMGADB8+HA4ODjg2rVrmD9//kOH\nG0+fPo3hw4dj6dKlSExMxI0bN3DlypVibe4NiUZGRiIjIwNXrlxBamoqfvjhB9jb22PSpElo06YN\nZs6ciYyMDHz//ffa527evBmHDx/G8ePHsWrVKuzYsaPUOCZNmoQDBw7gxIkTOH78OA4cOIBJkyah\ndu3aiI2NBQDcvHkTv/32m87XQkREZGxMzgwoJSUF7u7uUKlKvs1eXl5ISUnR7j/zzDPo3r07rKys\n8NFHH+H27dvYt28frKyskJeXh1OnTqGgoAD+/v6oUaMGAGDu3LmYPHkyvLy8YGNjg/DwcKxZswaF\nhYUA7iZAEyZMgJ2dHWxtbdG9e3ccP34cly5dAgAsW7YMPXr0gLW1NTZt2oQaNWpg4MCBEELgqaee\nQs+ePbF69WoUFhYiKioKEydOhJ2dHerXr4/XX39d5+teu3YtOnfujFatWsHGxgYTJ07UOT/NxsYG\nN27cQFxcHIQQaNSoEZycnB76vo4ZMwZVq1aFn58f2rVrh2PHjpXabtmyZRg/fjzc3Nzg5uaG8ePH\nY9GiRQDuVh3v/5dKx2qL5eC1JDIfTM4MyN3dHSkpKdpk6X5Xr16Fu7u7dt/Pz0/7sxACvr6+SExM\nRFBQEKZPn46IiAh4enqif//+SEpKAnB36LJ79+5wdXWFq6sr6tWrBxsbG1y7dk3bl6+vr/ZnJycn\ndOzYEStWrAAALF++HAMGDND2tW/fPm1fGo0Gy5Ytw7Vr15CcnIyCgoJifQUEBOh83YmJicVej4OD\nA9zc3EptGxYWhpdeegmhoaHw9fXFqFGjypwf5+npWazvrKwsnXH4+/sXi/nq1asAzPMLGEREVDkw\nOTOgFi1awNbWFlFRUcUez8rKwtatW4vNdbpXzQLuVnMuX74Mb29vAEBoaChiYmIQHx8PABg1ahQA\nwN/fH1u3bkVqaipSU1ORlpaGW7duwcvLS9vXg0nIvaHNffv2ITc3FyEhIQDuJochISHF+srIyMDM\nmTPh4eEBGxubYjE+bKF1Ly+vYm2zs7Nx48aNUttaW1vj888/R2xsLPbu3YtNmzZpq1uPm0D5+Pho\n3zPgbgJ67z0l/bDaYjl4LYnMB5MzA1Kr1QgPD8d7772H7du3o6CgABcvXkTfvn3h7++vrVoBwOHD\nh7F+/XrcuXMH3377Lezs7NC8eXPExcVh586dyMvLQ5UqVWBvb68dJh06dCjGjh2rTZSSk5OxYcMG\nbZ+lDdl17NgR8fHxCA8PR9++fbWPv/rqq4iLi8OSJUtQUFCA/Px8HDp0CGfPnoVKpUKPHj0QERGB\nnJwcnD59GpGRkTpfd69evbBp0ybs3bsX+fn5CA8P1zl8GB0djVOnTqGwsBBOTk6wsbGBlZUVgLsV\nsgsXLjzCO15caGgoJk2ahJSUFKSkpGDixInF7ifHIU0iIjJFTM4M7NNPP8WUKVPwySefwNnZGS1a\ntEBAQAB+++032NjYaNt17doVK1euhEajwdKlS7Fu3TpYWVkhNzcXo0ePhoeHB7y9vZGcnIypU6cC\nAD744AN07doVHTp0gLOzM1q2bIkDBw5o+yyt8lSlShX06NEDv//+O/r376993MnJCTt27MCKFSvg\n7e0Nb29vjB49Grm5uQCAGTNmIDMzE15eXhg8eDAGDx6s8zXXq1cPs2bNQr9+/eDt7Q03N7diQ6L3\nS0pKQq9eveDs7Iz69eujXbt22qT1gw8+wOrVq+Hm5oaRI0eW+poeVl377LPP0KRJEzRs2BBPPfUU\nmjRpgnHjxun1XLqL1RbLwWtJZD6EuVQPhBCytFiFECUqIF9M/RKJ11JKtK0o3p7uCB/zH4P1T6at\ntN85SxUREcE/6hbiUa9lZmYmxk76Ck07vlbi2IUzJ1Hfwwq9enSrwAiJLEvR34pyVQGsKzoYU5B4\nLQWtur9lsP73rPvJYH0TmRImZpaD15LIfHBYk4iIiMiEMDkjIp1YbbEcvJZE5oPJGREREZEJYXJW\nCQwaNAjh4eFKh0FmiNUWy8FrSWQ+mJyRRWvXrl2JdUB37dpVbAWDe954440SKywQEREZG5MzqpQe\nvMdZdnY2oqKi4OLigiVLligUlelhtcVy8FoSmQ+LTM68Pd2xZ91PBtu8Pd3LDqLItGnT4OvrC7Va\njeDgYOzcuRMAcPDgQbRs2RIajQY+Pj547733UFBQoH2eSqXCnDlzUKdOHTg7OyM8PBwXLlxAq1at\n4OLigtDQUG37e5WgqVOnwsPDAzVr1sSyZct0xrRp0yY0atQIGo0GrVu3xsmTJ3W2fZQ4yup72rRp\nqFWrFtRqNRo0aID169drj0VGRqJNmzb49NNP4erqiqCgIGzbtk17fOHChQgKCoJarUZQUBCWL1+u\n9zXQx5o1a6DRaBAeHo6FCxdWaN9ERESPREppFtvdUEvS9bgpOHv2rPTz85NJSUlSSinj4+PlhQsX\npJRSHj58WO7fv18WFhbK+Ph4Wa9ePfndd99pnyuEkN26dZNZWVny9OnT0tbWVr744ovy4sWLMiMj\nQ9arV08uWrRISilldHS0tLa2lp988onMy8uTu3btko6OjjIuLk5KKeUbb7whP//8cymllEeOHJHV\nqlWTBw8elIWFhXLRokUyMDBQ5uXllfoaHiWOsvpes2aN9r1YtWqVdHR01O4vXLhQVqlSRc6fP18W\nFhbKOXPmSG9vbymllLdu3ZJqtVqeO3dOSillUlKSPH36tF7XICQkRM6fP7/YYzt37pR+fn7FHnvh\nhRfk6NGj5bVr16S1tbU8cuSIzj5N+XeOqKJkZGTIEf8Jl4uiz5bYIn5YI1evXad0iEQmrehvRbly\nHousnJkKKysr5OXl4dSpUygoKIC/vz9q1KgBAGjcuDGaNm0KIQT8/f0xZMgQ7Nq1q9jzR40aBUdH\nRwQHB6NBgwbo0KEDAgICULVqVbzyyis4evSotq0QAhMnToSNjQ2ee+45dOrUCatWrSoR07x58/DO\nO++gSZMmEEIgLCwMtra22Ldvn87XoW8cZfXds2dPeHp6AgB69+6N2rVrF1tuKiAgAIMHD4YQAq+/\n/jquXr2K69eva9/LkydP4vbt2/D09ERwcLDe1+G9996Dq6urduvcuXOx4wkJCdi5cyf69++PatWq\n4cUXX9Quvk5ERGRsTM4MKCgoCNOnT0dERAQ8PT3Rv39/XL16FQBw7tw5dO7cGV5eXnBxccG4ceOQ\nklJ8yalq1appf7a3t9cmNvf2s7KytPsajQZ2dnba/YCAACQmJpaIKT4+Hl9//bU2UdFoNLh8+XKp\nbR81jrL6XrRokXbIU6PRIDY2tthrrl69erF+ASArKwsODg5YuXIl5syZAy8vL3Tu3Blnz57VGe+D\nZsyYgdTUVO22adOmYscXL16MevXq4cknnwQA9OvXD8uWLcOdO3f0Poel4jwly8FrSWQ+mJwZWGho\nKGJiYhAfHw8AGD16NABg2LBhCA4Oxvnz55Geno7Jkyc/1nqNaWlpyMnJ0e4nJCTA29u7RDs/Pz+M\nGzdOm6ikpaUhKysLffv2Lfe59ek7ISEBQ4YMwezZs5GWloa0tDTUr19f79fcvn177NixA0lJSXji\niSfw9ttvP3a89yxevBgXLlyAl5cXvLy88PHHHyMlJQVbtmypsHMQERHpi8mZAcXFxWHnzp3Iy8tD\nlSpVYG9vDysrKwB3FxVWq9VwcHDAmTNnMGfOnMc6l5QS48ePR35+PmJiYrB582b06dOnRLu3334b\nP/zwg3Y48datW9iyZQtu3br1WOcvq+9bt25BpVLB3d0dhYWF+Pnnn3Hq1Cm9+r1+/To2bNiA7Oxs\n2NjYwMkFz2IbAAAgAElEQVTJSfs+xsfHQ6VSISEhoVwx//XXX7hw4QIOHjyI48eP4/jx44iNjUW/\nfv0QGRlZrj4tCastloPXksh8MDkzoNzcXIwePRoeHh7w9vZGcnIypkyZAgD46quvsHTpUqjVagwd\nOhShoaHFnvvgrR4e3H+Ql5cXNBoNvL29ERYWhrlz56J27dolnvvMM89g3rx5GDFiBFxdXVGnTp2H\nJiGPEsfD+g4ODsbHH3+M5s2bo3r16oiNjUXr1q0f+prunauwsBDffPMNfHx84O7ujt27d2uT2YSE\nBAQGBsLHx0ev+B+0aNEidOvWDfXq1UO1atW02wcffIDNmzcjPT39oc8nIiKqaOJxhtLK7FwIXwCL\nAHgCKAQwT0r5fSntvgfwCoBbAN6QUh4rpY0sLVYhxGMNB1qCXbt2ISwsrNzVI3M2efJkVKtWrUKH\nOctSmX7nIiIiWHGxEPeuZUFBATZv2YZb2XenQdjaVsGrHV+Gra1tsfaZmZkYO+krNO34Wom+Lpw5\nifoeVujVo5tRYicyR0V/Kx5eIdDBuqKDeUABgI+klMeEEE4ADgshdkgpz9xrIIR4BUCQlLK2EKIZ\ngB8ANDdwXGQhxo0bp3QIRGYlIyMD23fvh0/wswCAxCNH0bxpE53VZyIyPoMOa0opk+5VwaSUWQD+\nBvDg/wG64m51DVLK/QCchRCeICLFsWpmOe6/llWqVIF/rbrwr1UXtvZ2up9ERIowdOVMSwgRCOBp\nAPsfOOQD4NJ9+1eKHuMCh3pq27ZtpRzSJKKKdfPmTezbf/d/0Xl5eagko/dEJscoyVnRkOYaAB8U\nVdDK5f5PfiEhIQgJCXns2IhIN845sxz6XMvTp08jaudheHgHAAD8n2xhhMiILEN0dDSio6MrpC+D\nJ2dCCGvcTcwWSyl/KaXJFQB+9+37Fj1WAv9IEFFFkFLizz//xMGDBwEAbm5u6NWrFxwdHRWOTHmu\n7tXxRMMmSodBZHYeLBpNmDCh3H0Z41YaCwCcllJ+p+P4BgADAUAI0RxAupSSQ5pEJsASPxBt3LgR\nTZo0wVtvvYWEhARcvnwZUVFRCAgIwOjRo4vdzNmcxcfHY//+/drt448/1tn21KlT2L9/v/Zm2USk\nLINWzoQQrQC8BuCkEOIoAAlgLIAA3F0Q9Ecp5RYhREchxD+4eyuNQY9yjoCAgDLvZUVUkQICApQO\ngcpBSolp06Zh9uzZmD17Njp27AiV6v8/n164cAGjR4/G888/j19++aXYsmXmaNGKtUgrsEUVW3uk\npSShd1YWXnzhhRLtPIMaYufJK7g3YOFTs46RIyWiBxk0OZNS7gFgpUe7EeU9x8WLF8v7VCIqg6XM\nOZNSYvjw4di3bx/++uuvUm8bUbNmTaxcuRLh4eFo0aIFfv/9dwQGBho/2AoipURQg2egdnHFmWMH\nsCgystTkzDsgCN4BQQpESES6GO3bmkRESvnmm29w8OBB7N69G1WrVtXZTgiBiRMnwsXFBd27d8ee\nPXvg4OBgxEiJiLh8ExE9hCVUzaKjo/Hll19i7dq1D03M7vfRRx8hODgYw4YNs5jVIAa+/rrSIRCR\nnpicEZHFun79Ovr374/Fixc/0lxBIQTmzZuHI0eO4KeffjJghEREJTE5IyKdzL1y9p///Af9+/dH\nhw4dHvm5jo6OWL58OcaOHYvr168bIDrjWhQZqXQIRKQnJmdEZJH+/PNP/Pbbbxg/fny5+2jQoAFe\nf/11jBo1qgIjIyJ6OCZnRKSTuVbOCgoK8O677+Lrr7/We56ZLuPHj8evv/6KPXv2VFB0yuCcMyLz\nweSMiCzOTz/9BDc3N/Tp0+ex+6patSr+97//4b333jPrLwfcvn0baWlpuHnzptKhEFEZmJwRkU7m\nWDnLzc3F5MmT8d///rfCblAdGhqKwsJCbNiwoUL6MzZnV3dMnPoVIr6cgek/Loadi3nfYJfI0vE+\nZ0RkURYsWIAnn3wSTZs2rbA+hRAYP348JkyYgC5dupjdqiRe/jXhXasBmrwcqnQoRKQHVs6ISCdz\nq5zl5uZi6tSpj/UlAF26du2KO3fuYOPGjRXetzH0GPSe0iEQkZ6YnBGRxVi4cCHq16+PZs2aVXjf\nKpVKWz0z57lnRGT6mJwRkU7mVDkrLCzE119/jbFjxxrsHN26dUNOTg6io6MNdg5Difp5htIhEJGe\nmJwRkUXYtm0bqlatitatWxvsHCqVCu+//z6+++47g52DiIjJGRHpZE6Vs++//x7vv/++wSfrh4WF\n4c8//8S///5r0PNUNM45IzIfTM6IyOydOXMGx44dQ9++fQ1+LkdHRwwaNAgzZ840+LmIqHJickZE\nOplL5WzGjBkYMmQI7OzsjHK+d999FwsXLkRWVpZRzlcROOeMyHzolZwJIToLIZjIEZHJycrKwrJl\ny/DOO+8Y7ZyBgYFo06YNli9fbrRzElHloW/C1RfAOSHEl0KIuoYMiIhMhzlUzlatWoU2bdrA29vb\nqOd96623MH/+fKOe83FwzhmR+dArOZNSDgDQCMB5AAuFEH8JIYYIIR5vRWEiosc0f/58vPXWW0Y/\n78svv4xLly4hNjbW6OcmIsum91CllDIDwBoAKwB4AegO4IgQgh/HiCyUqVfO/v77b/z777/o2LGj\n0c9tbW2NN954w2yqZ5xzRmQ+9J1z1lUIsQ5ANAAbAE2llK8AeArAx4YLj4hItwULFmDgwIGwtlZm\nmeDBgwdjyZIlyMvLU+T8RGSZ9K2c9QDwrZTySSnl/6SU1wFASpkN4E2DRUdEijLlyll+fj4WL16M\nwYMHKxZDUFAQ6tevjw0bNigWg74454zIfOj7cTNJSrn7/geEENOklKOklL8bIC4ioofatm0bgoKC\nUKdOHUXjGDRoECIjI9GrV68K6/NifDz+2n9Qu1+nVhCeadzooc/Jz8/H5i3bkJObCwBIv3kT7hUW\nkW6FhYXYtuNX3MzIBABYW1mh48sd4OjoaISzE1kmfStn7Ut57JWKDISITI8pV86WLl2KsLAwpcNA\n9+7dERMTg5SUlArr88SJk/jrzFWcz7DBiSu38EfM3jKfk5qaih17DuF8hg3OZ9igWnALODlrtMcN\nNecsPz8fG3dEa88bfeg0rly5YpBzEVUWD03OhBDDhBAnAdQVQpy4b/sXwAnjhEhEVFxGRga2bt2K\n3r17Kx0KqlatildeeQWrVq2q0H5dPaojoHYwPH0D9X6Ora0dAmoHI6B2MHwCggy+lNU9KpWV9rwO\njk5GOSeRJStrWHMZgK0ApgIYfd/jmVLKVINFRUQmwVQrZ+vWrUNISAjc3NyUDgUAMGDAAEyZMgXD\nhw9XOhSdlJ5zJqXEwUOHkJ5+EwAghEDrVi1hb2+vaFxEpqisYU0ppbwI4F0AmfdtEEK4GjY0IqLS\nLVmyBAMGDFA6DK0OHTrg3LlzuHDhgtKhmCwpJX5euga7z1zH7jPXsfbXvXy/iHQoKzlbVvTvYQCH\niv49fN8+EVkwU6ycJSYm4tChQ3j11VeVDkXLxsYGffr0wdKlS5UORSeTuM+ZEHiiYRM80bAJ1PfN\nhyOi4h6anEkpXy36t4aUsmbRv/e2mmV1LoSYL4S4JoQodX6aEKKtECJdCHGkaPusfC+DiCqLVatW\noWvXriY3HPbaa69xrU0iqhD63oS2lRDCsejnAUKIb4QQ/no89WcAL5XRZreUsnHRNkmfeIjIOEyx\ncrZy5UqEhoYqHUYJzZo1Q2Zmpsku56T0nDMi0p++t9KYAyBbCHFvRYDzABaX9SQp5Z8A0spoZpyv\nExGR2YuPj8e5c+fwwgsvKB1KCSqVCr169cLq1auVDoWIzJy+yVmBlFIC6ApgppRyFoCKWvS8hRDi\nmBBisxCiXgX1SUQVwNQqZ6tXr0b37t1hY2OjdCil6t27N9asWWO0892+fRunT5/G6dOncf78+Ye2\nNYk5Z0SkF31XCMgUQowBMADAc0IIFe6usfm4DgPwl1JmCyFeAbAegM7bfd//hyIkJAQhISEVEAIR\nmYtVq1Zh8uTJSoehU/PmzZGeno6///4bwcHBBj9fzJ97sHbHHqhd7n553s23tsHPSUSli46ORnR0\ndIX0pW9y1hdAfwBvSimTiuab/e9xTy6lzLrv561CiNlCCFdd91AztU/xRJbOlP6b+/fff3Hx4kW0\na9dO6VB0UqlU6NmzJ1avXo3w8HCDn6+w8A7c/WrhiYZNymzLOWdEhvVg0WjChAnl7kuvYU0pZZKU\n8hspZUzRfoKUcpGe5xDQMa9MCOF5389NAQje3JaISrNq1Sr06NED1tb6fqZURu/evSvFvLNbt27h\n0qVLpS7VlJKSgkuXLuHSpUu4ffu2AtERmTd9v63ZQwhxTghxUwiRIYTIFEJk6PG8ZQD2AqgjhEgQ\nQgwSQgwVQgwpatJLCHFKCHEUwHTcrdARkYkwpcrZ2rVrK3RxcUNp2bIlbty4gTNnzigdSjEVOefM\n1cMTx88n4tv5KzBz0VpUreanPebs4YM1O/bg2/kr8N+ZP2PTlm0Vdl6iykLfj6BfAugspfz7UTqX\nUvYv4/gsALMepU8iqnwuXbqECxcuoG3btkqHUqZ7Q5tr1qzBZ59Z5q0bXdyqoVG7rqUeC6jbEAF1\nGwIAEv45g9u5rJwRPSp9v6157VETMyIyf6ZSOVu/fj06d+5sst/SfJApDm1yzhmR+dA3OTskhFgp\nhOhXNMTZQwjRw6CREREViYqKQvfu3ZUOQ2+tWrXC9evXERcXp3QoRGSG9E3O1ACyAXQA0LloM52F\n7YjIIEyhcpacnIwjR46gffv2SoeiNysrK+23Nk0F73NGZD70mnMmpRxk6ECIiEqzYcMGvPTSSya3\nlmZZevXqhZEjR2LcuHFKh0JEZkbfb2vWEUL8LoQ4VbTfkIuUE1k+U6icrVu3Dj16mN8sijZt2iAp\nKQnnzp1TOhQAnHNGZE70HdacB2AMgHwAkFKeAGB6Kw8TkUXJyMjA7t270bFjR6VDeWRWVlbo3r07\n1q1bp3QoRGRm9E3OHKSUBx54rKCigyEi06J05WzLli1o06YN1Gq1onGUV/fu3REVFaV0GAA454zI\nnOh7n7MUIUQQAAkAQoheAK4aLCoiItz9lqY5DmneExISgri4OFy5cgU+Pj5Kh2M2vpv1Ay4lXgMA\nWFupMPyt1+Hv769wVETGo2/l7F0AcwHUFUJcATASwDsGi4qITIKSlbPbt29jx44d6NKli2IxPK4q\nVarg1Vdfxfr165UOxazmnJ27kIA6rTqj7nPdcMfeFampXNWPKpeHJmdCiI+EEB8B6AZgC4DJAH4A\nEAWgp+HDI6LK6tdff8XTTz8NDw8PpUN5LD169DCZoU1zUsXWDrZ29lBZmfZaqkSGUFblrGrR1gTA\nMAAaAC64WzVrbNjQiEhpSlbOzH1I854OHTrg0KFDSElJUTQOJeacWdvY4OjJWEz+8ltM+d903NF7\nsIaocnvoRxIp5QQAEELsBtBYSplZtB8BYLPBoyOiSqmgoAAbN27EF198oXQoj83BwQEvvvgiNm7c\niEGDKtctI738a8JJ7QIpJQCg2pN2CkdEZB70/RjjCSDvvv28oseIyIIpVTnbvXs3atasCT8/P0XO\nX9F69Oih+C01lJhzJoSAWuMGZ1d3OLu6w97RyegxEJkjfQfzFwE4IIS493+XbgAWGiQiIqr0LGVI\n855OnTph2LBhyMzMRNWqVZUOxyRIocKWHb9j1979AICmzzRCk8aNFI6KyDToVTmTUk4GMAhAWtE2\nSEo51ZCBEZHylKicFRYWYt26dWa10HlZXFxc0LJlS2zdulWxGEztPmd1nm4BUS0Y2Q5+uJRlheMn\nY5UOichk6P01GCnlEQBHDBgLEREOHDgAFxcXPPHEE0qHUqHuDW326dNH6VBMgp2DI+wcHAEABXcK\nAHlD4YiITAe/OkNEOilROTPXtTTL0rVrV2zduhW3b99W5PzmdJ8zosqOyRkRmQwppcXNN7vH09MT\nTz75JH7//XelQyEiE8fkjIh0Mnbl7NSpU8jPz8fTTz9t1PMai5I3pDW1OWdEpBuTMyIyGfeqZkII\npUMxiO7du2PDhg0oKChQOhQiMmFMzohIJ2NXzix1vtk9gYGB8Pf3x59//mn0c3POGZH5YHJGRCbh\n/PnzSEpKQosWLZQOxaC6d+/OtTaJ6KGYnBGRTsasnK1btw5du3aFlZWV0c6phHu31Li3pJE+sm/d\nwoEDB0psSVev6t0H55wRmQ+973NGRGRIUVFRGD9+vNJhGFxwcDAcHR1x6NAhPPvss2W2d9a44bqd\nB6J2nyj1uH9ty7ofHBExOSOihzBW5SwxMRFnzpxBu3btjHI+JQkhtN/a1Cc5s7apguBnWj32eTnn\njMh8cFiTiBT3yy+/oFOnTqhSpYrSoRjFvXlnjzK0SUSVB5MzItLJWJWzNWvWWPS3NB/UpEkTZGdn\n4++//zbaOTnnjMh8MDkjIkUlJyfj8OHDePnll5UOxWjuH9okInqQQZMzIcR8IcQ1IUTpM1nvtvle\nCHFOCHFMCGGZtwUnMlPGqJytW7cOL7/8Muzt7Q1+LlNi7OTMnOecpaam4vLly7h8+TKys7OVDofI\n4Az9hYCfAcwAsKi0g0KIVwAESSlrCyGaAfgBQHMDx0REJmTNmjUYMmSI0mEYXevWrXH58mVcvHgR\ngYGBSodjslw8vLBp1yFg1yHk5eaiUd1AvPlGmNJhERmUQStnUso/AaQ9pElXFCVuUsr9AJyFEJ6G\njImI9GfoytmNGzewf/9+dOzY0aDnMUVWVlbo0qUL1q1bZ5TzmeucM9+addHo+W5o9Hw3BD7ZHLdz\n85QOicjglJ5z5gPg0n37V4oeI6JKYP369ejQoQMcHByUDkURnHdGRKUxq/uc3f8pPiQkBCEhIYrF\nQlQZGLpytmbNGrzxxhsGPYcpe+GFF9C/f38kJSWhevXqBj2XOc85IzIH0dHRiI6OrpC+lE7OrgDw\nu2/ft+ixUhl7EWYiMpy0tDTs3bsXq1evVjoUxdja2qJTp06IiorC8OHDlQ6HiB7Dg0WjCRMmlLsv\nYwxriqKtNBsADAQAIURzAOlSymtGiImI9GDID0S//PILXnjhBTg5ORnsHOYgNDQUK1asMPh5TH3O\nmZQShYWFKCwsVDoUIsUZtHImhFgGIASAmxAiAcB4AFUASCnlj1LKLUKIjkKIfwDcAjDIkPEQkelY\ns2YNXnvtNaXDUFyHDh3w+uuv4/Lly/D19VU6HEXYOzjhwJ+7cPj4WACAtLaFUCk9JZpIOcJclg8R\nQkhziZWIHi49PR3+/v64fPky1Gq10uEobvDgwXjyySfx4YcfAgA2bNyEI5dzEFTvKYUjMy3XLsfD\nPisB7w59U+lQiMokhICUUtfI4UPxowkRGd3GjRvRrl07JmZF+vbti5UrVyodBhGZCCZnRKSToeac\nrVmzBr179zZI3+bo+eefx/nz5/Hvv/8a7BymPueMiP4fkzMiMqqbN28iOjoanTt3VjoUk2FjY4Oe\nPXti1apVSodCRCaAyRkR6WSIyllUVBSef/55ODs7V3jf5szQQ5u8zxmR+WByRkRGtWTJEgwYMEDp\nMEzOc889h6tXryIuLk7pUIhIYUzOiEiniq6cXblyBUePHkWnTp0qtF9LYGVlhd69exusesY5Z0Tm\ng8kZERnN8uXL0aNHD9jZ2Skdiknq27evUW5IS0SmTenlm4jIhFV05Wzp0qX45ptvKrRPc3IqNha7\n9+7X7jd6sj5aNG+m3W/RogUyMzMRHx8PWFWr0HNzzhmR+WDljIiMIjY2FikpKWjbtq3SoSgm9vQZ\n/JtWiFsOvki8bYfDx04WO65SqdCnTx/ExOxWKEIiMgVMzohIp4qsnC1duhT9+vWDqpIvy6PWuKG6\nbyA07p6lHu/fvz92RUdDVvAak5xzRmQ+Kvf/JYnIKAoLC7F06VJ+S1MPjRo1gq2tLRIunFU6FCJS\nCJMzItKpoipne/bsgVqtRsOGDSukP0smhEC755/Hif0VO7TJOWdE5oPJGREZ3JIlS/Daa68pHYbZ\naNs2BKeP7kNe7m2lQyEiBTA5IyKdKqJylpubi7Vr16J///6PH1Al4e7uDm//mji6948K65NzzojM\nB5MzIjKorVu3on79+vD391c6FLPSsFlb/Ll9vdJhEJECmJwRkU4VUTmLjIxEWFjY4wdTyQQ/3RTn\nTh1F+o3rFdIf55wRmQ8mZ0RkMElJSYiOjkbfvn2VDsXsVLG1Q9OQlxGzjdUzosqGyRkR6fS4lbPI\nyEj07NkTVatWrZiAKpm2nXpj1+bVkFI+dl+cc0ZkPpicEZFBSCnx008/4a233lI6FLNVs+6TqGJr\nhzPHDigdChEZEZMzItLpcSpnu3fvRpUqVdCsWbOyG1OphBBo26kXdm1e/dh9cc4ZkflgckZEBnGv\naiaEUDoUs9ayfRcc+ysatzJvKh0KERkJkzMi0qm8lbOUlBRs3LiR39KsAFWdNXiqRVvEbFv3WP1w\nzhmR+WByRkQVbv78+ejWrRvc3d2VDsWk3c69jStXruDKlSu4ceOGznYvdnsNv69fhsIKXgzd3N28\neVP7/l25coXvD1kMa6UDICLTVZ7K2Z07d/DDDz9g1apVFR+QBXFSu+DMmRx88+NSAMCdnAz894vP\nYGdnV6JtrfqNYGvvgFOH9qBh0zblOp8lzjn76vvZyMpXQSUEcm5l4u3XeqBRo0ZKh0X02JicEVGF\n2rp1Kzw8PPDss88qHYpJc3CqisbPd9Xu79+8GHfu3Cm1rRCiqHq2tNzJmSXKzslFg5AeqGJrh9iD\nu5Gfn690SEQVgsOaRKRTeSpns2bNwrvvvlvxwVQCmZmZyMjIQG5uXoljLV58FXGnjiL56uVy9c05\nZ0Tmg5UzIqowZ8+exeHDhxEVFaV0KGbHVu2BKdPnAgAKpUSNp4tXyGzt7NHm5e74bd1S9Bs+SokQ\nichImJwRkU6PWjn75ptvMGzYMNjb2xsmIAv2dJuXy2zToUcYPh/SA91efxf2jk6P1L8lzjkjslQG\nH9YUQrwshDgjhIgTQpT4uCeEaCuESBdCHCnaPjN0TERU8ZKTk7Fq1SoOaRqQe3UfNHimJaIr4Ka0\nlkhKWWwjMlcGTc6EECoAMwG8BKA+gH5CiLqlNN0tpWxctE0yZExEpL9HqZzNnj0bvXv3RrVq1QwX\nEOGVvoOxY+0iFBQ82uR3S59zZudQFQtXRGH4R6Mx7MNRWLKC3xYm82XoYc2mAM5JKeMBQAixAkBX\nAGceaMdbiBOZsZycHMyePRu7du1SOhSLV7Puk3Cv7oODu7ajxQuvKh2OyQiq3whB9e/eRiPlWiKS\nr/2tcERE5WfoYU0fAJfu279c9NiDWgghjgkhNgsh6hk4JiLSk76VswULFqBZs2aoW7e0wjhVtI59\n38TmZfMeaeiOc86IzIcpfCHgMAB/KWW2EOIVAOsB1FE4JiLSU25uLqZNm4a1a9cqHUql8XSLEKxd\n8B2O7v0DjVu9oHQ4RmNja4dTh//BqPCJAICsnDyoVLwjFFkeQydnVwD437fvW/SYlpQy676ftwoh\nZgshXKWUqQ92dv+n+JCQEISEhFR0vER0n4iIiDKrZ5GRkahXrx5vOmtEQgh0HTgcvyyajUYtn9dr\ncfmon2eYffXM1cMTz7wUClm0TJPKyhrWNlUUjororujoaERHR1dIX4ZOzg4CqCWECABwFUAogH73\nNxBCeEoprxX93BSAKC0xA8q/CDMRGUZ+fj6mTp2KpUuXKh1KpfNM6xex7ucZOHFgN55q1lbpcIzG\n1o63aSHT9GDRaMKECeXuy6D1YCnlHQAjAOwAEAtghZTybyHEUCHEkKJmvYQQp4QQRwFMB9DXkDER\nkf7K+kC0ePFi1KxZEy1btjROQKSlUqnQJWwY1kfO1mvumblXzYgqE4PPOZNSbgPwxAOPzb3v51kA\nZhk6DiKqWLdv30ZERASWL1+udCiVVtO2L2HjkjmVbu4ZkaXjTEoi0ulhlbNZs2ahcePGaNWqlfEC\nomJUVlboM+QTrJ73De4UFDy0raXf54zIkpjCtzWJyMykp6dj2rRpFTb51ZL9smkLriZdAwAkXk2C\nrXf9Cu2/YbPnsGn5PPy5Yz3aduxVoX2bK5VQISExCT/89DMAQO3khD69usPamn/yyDwIc1niQggh\nzSVWIks3ZswYXL9+HfPnz1c6FJP3/n/Gwbt+K6isrCCEQDUvP6isrCr0HP/EHsPMiA8wbfE2TpjH\n3WWcUpIuo6Comhh//E9M+ewTODs7KxwZVSZCCEgpy3WTfX6MIKJH8s8//2DevHk4duyY0qGYDU/f\nAFhb2xis/1r1n0atBo2wefk89Bj0vsHOYy6EEPDw8tPuXz71l4LRED06zjkjIp1Km3P24Ycf4tNP\nP4Wvr6/xAyKd+g0bhV/XLcX1xEulHq/Mc86kFNi4ZStWrY3C6rXrkJKSonRIRA/F5IyI9LZp0ybE\nxcVh5MiRSodCD3Cr5oWOfQdj6awpSodicmo+0xYXMqvgzA3gj6P/4OzZs0qHRPRQTM6ISKf7K2fZ\n2dkYOXIkvv/+e9ja2ioXFOn0cu9BSLx4Hkf37ixxrDLf58zd0xs1nmiAGk80gLPGXelwiMrE5IyI\n9PL555/j2WefxUsvvaR0KKSDTZUqGPTxBEROn4DsrEylwyGicmJyRkQ63auc/fXXX1i2bBlmzKi8\n85bMRb3GLfBUs+ewfM60Yo9X5jlnROaGyRkRPdTt27cxePBgfP/993B355CQOQh95z84dWgPTh3a\no3QoRFQOvM8ZET3UiBEjkJycjJUrVyodiqLy8/Nx4sQJ7TqWzs7OqF27dpnPe/8/49Dopf4GvZVG\naU4d2oufpo3BF/PWQe3iatRzm7LYQ3vQyNcBQUFBAAAvLy/4+PgoHBVZIt7njIgMYu3atdiyZQuO\nHIS51ykAABEpSURBVDmidCiKO3v2LH5auQnO1bwBABlX/sHsb6eV8SzlNGjSEi1e7Iwfp47CR1Pn\nQqXiQAkAeAfWwtF/z+DopaPIzclBdUdg1Ee8NxyZFiZnRFSqixcvYuDAgdi5cydcXFyUDkdxUkqo\nNe6o/2xbAMCey+cUjqhsPd/8AJPfH4CtqxYgNyenUn9j8x6Nuyc07p4AgPQb15H1Lz94kOlhckZE\nJWRlZaFbt25o3bo1mjZtqnQ4Ji8zMxOJiYmlHpOFyk3HsLa2wfDPv8YXw/uifpOWisVBRI+GyRkR\nFVNYWIiBAweicePGXDtTTxs2bcVfJ/+Bg6NTiWNO1WtCparYtTQfhYeXL94d/y1mThiJq5f+hZdf\nDcViISL9MDkjomI+++wzJCcnY/ny5RCiXHNZK507hYXwqd0QvjXrKB1Kqeo+3RS93vwQ3459B5/P\nWI6q/IIAkUnjDFEi0vrqq68QFRWFqKgo2Nralrq2Jpmn1OQkNGnTAf/7z1vIuZWldDhmJyUlBYmJ\niUhMTERycrLS4ZCFY+WMiAAAP/74I2bNmoWYmBh4eHgoHQ4ZQO+3P0L2rUx8M/YdfDJtHmzt7JUO\nySykp6fjiy+/hbW9GgCQn52B8P+M5H8nZDCsnBERZs6ciYkTJ+LXX3+Fr6+v9nFWzixHj0HvQQiB\ngR+Ew93TG1+NepsVND0VFBRAZWOPRs93R6Pnu8PGXo2CggKlwyILxuSMqBKTUmLSpEmYPn06du/e\njVq1aikdEhmYSqXC26P/C5/AWpj64UBkpKcqHZKiCu/cQWZmZqkbb3xOSuGwJlEllZubi3fffRcH\nDx5ETEwMvLy8SrSJiIhg9cxCRP08Q3ufM5VKhddHjsfa+dPxxfC+GDl5NnxrlL3agaWxtXdA4o1M\njJv8dYljeXl5GBzajbeSIUUwOSOqhK5evYpevXrB09MTe/bsgZNTyVtAkGUTQqDXWx/Cy78Gpo4M\nw6BPJqJJm/ZKh2VU9g5OaN4xtNRjfx/dj+zsbCNHRHQXhzWJKpkNGzagUaNGeOmll7BmzZqHJmaW\nWjWTUpbYympXnuOmRNfqAK06dMNH//0RS2dOQeT0Cci9nWPkyExXea6tPr9XRGVh5YyokkhNTcWo\nUaPw22+/Yc2aNWjdurXSISlm5ZooRO/Zr93v1eVlvPj88yXarduwCTt2xmj33QMb/P9BG3sM+3AU\nAKBQAsGtOhouYAMLCm6IST/9gsjpExA+pAcGfzIRTzRsonRYinJwUmPlL1ux8petd/ddq5f5nNu3\nb2PClC/xf+3deZRU5ZnH8e+vd7obWqSbTWQTNIKyOIjOQQcOOgiGQFTOmAzHJYkkMzLDLGrUkDkz\nJ545SmLOGMN4ohkSkYQMGRkjTCAqQUSSsKg0a8sirSTN1mwC3TTVyzN/1KUtoaqpxu6u7fmcc0/f\ne+u9t556662qp99773uPnQhfaFGYn8e3HvlHSktL2zVWl348OXMuzTU2NrJgwQIee+wxpk2bRnl5\nOSUlJXFtm67nnB06fITBN9xG996X8+HObRw9djxqucNHjjLwz8bTq+/A8x4bM3l6e4fZpiLPOYum\nqHMXHvyX77N+1XKe+84/c831Y7j76w/TpWu3DowyefQbfDX9Bl/dqm1CoRA1IWPMHQ8AUL5qCTU1\nNZ6cuVbzw5rOpSkzY+nSpYwcOZLnn3+epUuXMnfu3LgTM5eZRo+bxFPzl1FY3IVH77udxT/5AbWn\nTiY6LOcyivecOZdmQqEQixYt4umnn8bMeOKJJ5gyZcpF3YoplXvNPvjgA348/xcY4fN+Bg3oy4yv\n3Hdeubz8At7+w9u8u2kbAH0v68XMbzzQobF2hJZ6zc7VqaiY6TMfZ8Kd9/DKi3N56K9v5S8m3cmE\nu+6lW/fzr+rNZLt27WLegkUYwXlm2bmJDsmlAU/OnEsDZsbWrVuZP38+CxYs4Nprr2XOnDncdttt\nGXt/zOrqahqLyhg87HpCdXXsem9F1HK9+13BpWU9MYzGhgYq3n61gyNNXmW9+vD1x5/i8IEqXlv8\nEt/+2lQGDR3J2M9PY9jom8nLL0h0iAl36NAhGoq6c2Vwjl5ubl6CI3LpoN0Pa0qaKOl9STslPRqj\nzLOSdkkqlzSivWNyLh3U1dWxatUqZs+ezZAhQ5g8eTK5ubmsWbOGFStWMHHixM+cmKVyzxlAdnYO\nnQqLKehU2GK5gsKiuMqlsv/96Q8vetvSnpcxfebjPPPLVYweN5E3Fr/E3985hmdmP8jq5Ys5cexI\nG0aaenJyculUWEynwmJyPDlzbaBde84kZQFzgVuAfcAGSa+a2fsRZSYBV5jZYEk3AD8CbmzPuNLJ\nqlWrGDduXKLDSDrpWC9Hjhxh06ZNrFu3jpUrV7J27VqGDh3K+PHjefHFFxk9enSLyVg61klbqNi4\njqtH3gCAlMWZUCNPfv9ZAA5VH6bP8D4tbZ62IuvlrPxOhdw88Q5unngHJz8+xuZ1q9n4+5UsnPsk\nZb0vZ9DQEQwaMpwrhoygx2X90rLXtmLjOpqUxX/NX0hObi61NafILul7we2qqqr42aLFNAWja/Tv\n05sv3z2tnaPtGP7d0vba+7DmaGCXmX0EIOm/ganA+xFlpgIvAZjZOkklknqY2cF2ji0t+IciulSt\nl1AoxN69e6msrKSyspI9e/awZcsWNm3axMmTJxk2bBijRo1i1qxZvPzyy606uf9i6iTVe87iUVG+\nvjkJyc7JYeStdxE6UwfAwAFZlFyaHlfateacM/h0vUTTuaQrYyZMZcyEqdSHQny0azu7t5dT/oe3\nWDzvWU7XnqJ3v4H06juQXpcPoFffgZT16sOlZT0pLO6SsolbRfl6Pv+lr1FbE75IogjocsmFr2jd\nt28fB2pgwJCRNNSH2FC+2pMzF1N7J2eXAX+MWP4T4YStpTJVwTpPzlxKaWpqoqGhgZqampjTqVOn\nOHXqFIcPH6a6uppDhw5RXV3dPB0/fpzevXszYMCA5mnGjBkMHz6c/v37p+wPWiop6lxCUWe/orU1\ncvPywr1mQz85K+XEsSPs27uH/Xv3sP+PlVSUr+fIwX0crT5AY2MjXUt70LVbd4pLLgnqvAtFnS+h\nuEt4vlNRZ/LyC8jNyycvv4D8ggJy8wrIyy8gLz+f7JzchH0e8jsVkn8Rh8ALOhXStbQHoTN1/Kkd\n4nLpI6UuCJg8efJ561oaubs169tyXx3xHGcfq6ys5K233mrX50i2fcXzHFVVVSxbtuwz7aupqYn6\n+noaGhqap5aWm5qayMnJoaio6LypuLj4U/OlpaVcddVV3HTTTZSVlTVPpaWl5OYmz9VeqTzOWXZ2\nNscP7mXzmt8QqqtDdaebX0vtmQYObttN9159OLh3N5vX/CaxwXaA3/12OWNumRR3+baql25dS+jW\ndQTXDPskcQudqePkiY+pOfExp0/XUne6lpNHD1Fd9SF1tbXU1dUSqjtNQ309DQ314c9ZfT0N9SEa\nGsLzZkZ2Ti5ZWSIrKxtJKCuLrKwspPDfrKys5nWR6wmSOkGMeQUrgqWI+Y+PHeG9t1+LWB9so/O3\nqT9Tx9Kfv9D8umvONJBf8B9gRpY1sGPzO5+5fpPBzp072bBhQ9TH/B/Ki6P2vL2EpBuBfzOzicHy\nY4CZ2ZyIMj8C3jSzRcHy+8DYcw9rSvL7YDjnnHMuZZjZRWWn7d1ztgEYJKkfsB/4EvDlc8osAWYC\ni4Jk7ni0880u9gU655xzzqWSdk3OzKxR0t8BrxMetmOemVVI+kb4YXvBzJZJul3SbqAG+Ep7xuSc\nc845l8za9bCmc84555xrnaS9t6ak70qqCAamXSypS4xyFxzkNp1ImiZpq6RGSde1UO5DSZskbZS0\nviNjTIRW1EvGtBdJXSW9LmmHpNckRb0EMVPaig+IHd2F6kXSWEnHJb0XTN9ORJwdSdI8SQclbW6h\nTCa2lRbrJUPbSh9JKyVtk7RF0qwY5VrXXswsKSfgViArmH8KeDJKmSxgN9APyAXKgc8lOvZ2rper\ngMHASuC6FsrtAbomOt5kqpdMay/AHOCbwfyjwFOZ2lbiee+BScCvg/kbgLWJjjtJ6mUssCTRsXZw\nvdwEjAA2x3g849pKnPWSiW2lJzAimC8GdrTFd0vS9pyZ2QozawoW1wLRhuluHuTWzOqBs4Pcpi0z\n22Fmu4i4aDsGkcQ9o20tznrJtPYyFZgfzM8HvhijXCa0lXje+08NiA2USOrRsWF2uHg/Exl1QZaZ\nrQGOtVAkE9tKPPUCmddWDphZeTB/CqggPFZrpFa3l1T5Qv4qsDzK+miD3J5bKZnKgDckbZA0I9HB\nJIlMay/dLbjy2cwOAN1jlMuEthLPex9rQOx0Fu9n4s+DwzG/ljSkY0JLapnYVuKVsW1FUn/CPYvr\nznmo1e0loYPQSnoDiMweRfiHYraZLQ3KzAbqzWxhAkJMiHjqJQ5jzGy/pDLCP7wVwX89KauN6iWt\ntFAn0c71iHX1T9q1Fdem3gX6mlltcC/kXwFXJjgml5wytq1IKgZeBv4h6EH7TBKanJnZX7b0uKT7\ngduB8TGKVAGRd5ztE6xLaReqlzj3sT/4Wy3pFcKHL1L6B7cN6iXt2ktLdRKcuNvDzA5K6gkcirGP\ntGsrUcTz3lcBl1+gTLq5YL1E/tCY2XJJz0m61MyOdlCMySgT28oFZWpbkZRDODFbYGavRinS6vaS\ntIc1JU0EHgGmmNmZGMWaB7mVlEd4kNslHRVjEoh6bF9SYZDFI6kImABs7cjAEizWOQ+Z1l6WAPcH\n8/cB531pZFBbiee9XwLcC813N4k6IHaauWC9RJ4bI2k04SGY0vrHNiBif5dkYls5K2a9ZHBb+Qmw\n3cx+EOPxVreXZL635g+BPMKHWSB8dcODknoBPzazyRZjkNvEhdz+JH2RcN2UAv8nqdzMJkXWC+HD\nXK8ofMurHODnZvZ64qJuf/HUSwa2lznALyV9FfgI+CuATGwrsd57ZfiA2PHUCzBN0t8C9cBp4O7E\nRdwxJC0ExgHdJO0F/pXw71HGthW4cL2QmW1lDDAd2CJpI+HTR75F+Aroi24vPgitc84551wSSdrD\nms4555xzmciTM+ecc865JOLJmXPOOedcEvHkzDnnnHMuiXhy5pxzzjmXRDw5c84555xLIp6cOedc\nK0l6VdI9EcsvSHookTE559KHj3PmnHOtJKkf8CbhmxxfAzwHXGdmTQkNzDmXFrznzDmXcoLbDVVI\n+qmkHZJ+JukWSWuC5VFBuUJJ8yStlfSupC9EbL9a0jvBdGOwfqykNyX9T7D/BdGe38w+Ap4Hvgf8\nJzDTEzPnXFvxnjPnXMoJeq52ASPMbLukd4ByM3tA0hTgfjO7U9K/A9vMbKGkEmA94d4uA5rMLCRp\nEPALM7te0ljgV8AQ4ADwO+BhM/t9lBhygA+A1WZ2z7mPO+fcxUrme2s651xLKs1sezC/DfhtML8F\n6B/MTwC+IOmRYDkP6AvsB+ZKGgE0AoMj9rvezPYDSCoP9nVecgYMJ3z04XNt8WKcc+4sP6zpnEtV\nZyLmmyKWm/jkH08Bd5nZyGAaYGY7gH8CDpjZMGAU4aQt2n4bifJPrCQRPpw5Hdgl6cG2eEHOOQee\nnDnnUpfiKPMaMKt5g3BPGUAJ4d4zgHuB7FY+998AO81sNfAQ8E1J3Vq5D+eci8qTM+dcqrIY85Ge\nAHIlbZa0BfhOsP454H5JG4ErgZo4ngMASWXAI8DDAMEh0GeA77b6FTjnXBR+QYBzzjnnXBLxnjPn\nnHPOuSTiyZlzzjnnXBLx5Mw555xzLol4cuacc845l0Q8OXPOOeecSyKenDnnnHPOJRFPzpxzzjnn\nkognZ84555xzSeT/AemuHaroBI3lAAAAAElFTkSuQmCC\n", "text/plain": [ "<matplotlib.figure.Figure at 0x7f7b829edbe0>" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "n = 25\n", "mu_null = 0\n", "mu_alt = 0.5\n", "sigma = 1\n", "SE = sigma/np.sqrt(n)\n", "samplingdist_null = stats.t(df=n-1,scale=SE)\n", "dist_alt = stats.norm(loc=mu_alt, scale=sigma)\n", "\n", "nsims = 1000\n", "alpha = 0.05\n", "null_left_cutoff = mu_null + samplingdist_null.ppf(alpha/2)\n", "null_right_cutoff = mu_null + samplingdist_null.ppf(1-(alpha/2))\n", "\n", "sample_means = []\n", "sample_zscores = []\n", "\n", "for i in range(nsims):\n", " sample = dist_alt.rvs(size=n)\n", " mean = np.mean(sample)\n", " sample_means.append(mean)\n", " zscore = mean/np.std(sample,ddof=1)\n", " sample_zscores.append(zscore)\n", " \n", "sample_means = np.asarray(sample_means)\n", "sample_zscores = np.asarray(sample_zscores)\n", "\n", "fig, ax = plt.subplots(figsize=(10,4))\n", "x = np.linspace(-2,2,250)\n", "ax.plot(x, samplingdist_null.pdf(x), color='black', label=\"Expected distn of\\nsample means, H0\")\n", "ax.hist(sample_means, bins=50, normed=True, label=\"Observed distn of\\nsample means, HA\",\n", " color='steelblue', histtype='stepfilled', alpha=0.5)\n", "ax.set_xlabel(\"mean X\")\n", "ax.set_ylabel(\"density\")\n", "\n", "min_y, max_y = ax.get_ylim()\n", "\n", "# draw left_cutoff\n", "ax.vlines(null_left_cutoff, 0, max_y, linestyle='dotted')\n", "# draw right cutoff\n", "ax.vlines(null_right_cutoff, 0, max_y, linestyle='dotted')\n", "\n", "ax.legend(loc='upper left')\n", "\n", "failed_to_reject_H0 = np.logical_and(sample_zscores > null_left_cutoff, \n", " sample_zscores < null_right_cutoff)\n", "\n", "How_often_failed_to_reject_H0 = np.count_nonzero(failed_to_reject_H0)/nsims\n", "print(\"For sample size n =\", n)\n", "print(\"the percent of simulations where we failed to reject H0 is:\", \n", " How_often_failed_to_reject_H0 * 100)\n", "print(\"and hence, the percent of simulations where we correctly rejected H0 is:\", \n", " (1.0 - How_often_failed_to_reject_H0) * 100)\n", "\n", "pass" ] }, { "cell_type": "code", "execution_count": 8, "metadata": { "collapsed": false }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "For sample size n = 50\n", "the percent of simulations where we failed to reject H0 is: 5.7\n", "and hence, the percent of simulations where we correctly rejected H0 is: 94.3\n" ] }, { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAmcAAAEPCAYAAAAH/WO7AAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzs3XlcVXX++PHXB8QFEWRRZBFQBEHccE9TsUlLS0vb1MRG\nnbQcS5um0cZy+Wk2NtPkt1wyJ7fKSsvMUVOnEnXcF1RcEJfCBTEQEBFlPb8/lDug7Nxzz4X7fj4e\n9xH3LJ/zvifU931/PufzUZqmIYQQQgghrIOd0QEIIYQQQoj/keRMCCGEEMKKSHImhBBCCGFFJDkT\nQgghhLAikpwJIYQQQlgRSc6EEEIIIayIrsmZUqqOUmqfUipaKRWjlJpewnEfKqXOKKWOKKXa6xmT\nEEIIIYQ1q6Vn45qmZSml+mialqmUsgd2KaV+0DRtf8ExSqn+QKCmaUFKqa7Ax0A3PeMSQgghhLBW\nundrapqWeffHOtxJBu+d9fYJYOXdY/cBLkopT73jEkIIIYSwRronZ0opO6VUNJAI/EfTtAP3HOID\nXCz0/vLdbUIIIYQQNscSlbN8TdPCAV+gq1Kqld7XFEIIIYSornQdc1aYpmnpSqltwKPAyUK7LgNN\nC733vbutCKWULAIqhBBCiGpD0zRVmfP0flrTQynlcvfnekBfIPaew9YDI+8e0w1I0zTtanHtaZom\nr3te06dPNzwGa3zJfZF7IvdF7ovcF7knRr6qQu9uTS9gm1LqCLAP2KJp2ial1Dil1FgATdM2Ab8o\npc4Ci4HxOsckhLCwGTNmGB1CtSX3Tgjbo/dUGjFAh2K2L77n/QQ94xBCCCGEqC5khYBqLiIiwugQ\nrJLcl/sZeU+sufpj7b8rRt07a78vRpH7cj+5J+anqtovailKKa26xCqEEEII26aUQrPGBwIsISAg\nAKWUvORlsVdAQIDRv/bVjjVXzqyd3DshbI/FptLQS3x8fJWfihCiIpSq1BchIYQQolyqfbemUkqS\nM2FR8jsnapL4+Hhu3bqFnZ0dQUFB8uVDCDO5+29Fpf5AVfvKmRBCiMpJT0/n7x8txtHNi4zUJCa9\nOILg4GCjwxLC5lX7MWdCCOsn46YqT897p2kadg51aNPjEZxcG5Gfn6/btYQQ5SfJmaiQFStW0LNn\nz3If36xZM37++WcA3n33XcaOHatXaOW2aNEimjRpgrOzM6mpqUaHI4QQQhQhyZnOAgICcHR0xNnZ\nmQYNGuDs7Myrr75qWDx9+vRh6dKlVWqjsmNS3nzzTT755JMyjzNHjCXJzc3l9ddf58cffyQ9PR1X\nV1ddriOKkspZ5VnbvcvLyyM7O5vs7GzTttzcXLKzs8nJyTEwMiFqDhlzpjOlFBs3bqRPnz5GhyKA\nxMREsrKyCA0NNToUYbCcnBzi4uIAaNSoEY0bNzY4ourhnbnvk3gtDS0/n5dHDScoKIgZ77zHjVtZ\n2Cv4y8SXadq0qdFhClGtSeXMAkp6sm/8+PE8/fTTpveTJ0+mb9++AGzfvp2mTZvy7rvv0qhRI5o3\nb86qVatMx2ZnZ/PnP/8Zf39/vLy8GD9+PFlZWab933//PeHh4bi4uBAUFMTWrVt566232LlzJxMm\nTChSwYuNjaVfv364u7sTGhrKmjVrTO2kpKQwaNAgXFxc6NatG+fOnSv1s3722WcEBATQqFEj5syZ\nU2TfzJkziYyMBCArK4vIyEg8PDxwdXWla9euJCUllRijnZ0dixcvJjg4GDc3NyZMKHnFr+zsbCZN\nmoSPjw++vr689tpr5OTkcObMGUJCQgBwdXXl4YcfLvWzCPOxxurPkCFDeOyxx3j22WcJCwvj5MmT\nRodVLGu7d79dS6PLgBG4+Lbkxo0bZGdncytX44FBv6eumxcZGRlGhyhEtSeVMwO9//77hIeHs3Ll\nSpo1a8ayZcs4evSoaX9iYiIpKSkkJCSwZ88eBgwYQOfOnQkKCmLy5Mn88ssvHDt2jFq1ajF8+HD+\n3//7f7zzzjvs37+fF154gbVr1/LQQw9x5coVbty4Qb9+/di1axeRkZGMHj0agMzMTPr168fs2bPZ\nsmULx44d4+GHH6ZNmzaEhIQwfvx4HB0duXr1KufOneORRx6hefPmxX6ekydPMn78eDZv3kyXLl2Y\nMmUKly9fLnJMQZfoihUrSE9P5/Lly9SuXZsjR45Qr149Zs+efV+MBTZu3MihQ4dIS0ujY8eODBo0\niH79+t0Xx+zZs9m/fz/Hjh0DYNCgQcyePZuZM2dy4sQJmjdvzvXr12XKABs2depUMjIyOHPmDA4O\nDqxYsYJBgwaxf/9+3NzcjA5PCGHjpHJmAU8++SRubm64urri5ubGp59+CkC9evX47LPPeO211xg5\nciTz58/Hy8vLdJ5SilmzZuHg4ECvXr147LHHWL16NQBLlizhgw8+wMXFhfr16zNlyhS+/PJLAJYu\nXcqYMWN46KGHAPDy8irx8fgNGzbQrFkzRo4ciVKKdu3a8dRTT7FmzRry8/NZu3Yts2bNom7duoSF\nhfHCCy+U+Dm//fZbBg4cSI8ePXBwcGDWrFklJkAODg5cu3aNuLg4lFKEh4fj5ORU6n188803adCg\nAU2bNqVPnz4cOXKk2ONWrVrF9OnTcXd3x93dnenTp7Ny5Urgf1VMmafMsqyp+vPVV1+xevVq1qxZ\ng4ODAwAvvPACTz75JM8++6zVPbFoTfdOCGEZUjmzgO+//77EMWedO3emefPmJCUl8cwzzxTZ5+rq\nSt26dU3v/f39SUhIICkpiczMTDp27Gjal5+fb0o4Ll68yGOPPVau2OLj49m7d6+pWqBpGnl5eYwc\nOZKkpCRyc3Px9fUtEsPOnTuLbSshIaHIWBNHR0fc3d2LPTYyMpJLly4xdOhQrl+/zvPPP8+cOXOw\nt7cvMVZPT88ibZfUfZKQkICfn1+RmK9cuQLI7P62Li8vj8mTJ7N69Wo8PDyK7Js7dy6dOnVi8+bN\nDBgwwKAIjZeens7KVavJKjTgv7DsvDz5cySEzqRyZgGlVWkWLFhAdnY23t7ezJ07t8i+1NRUbt26\nZXp/4cIFvL298fDwwNHRkRMnTpCSkkJKSgppaWlcv34dgKZNm5Y4Nuzev1SbNm1KRESEqZ3U1FTS\n09OZP38+jRo1wsHBgYsXLxaJoSReXl5Fjs3MzOTatWvFHlurVi3efvttTpw4we7du9mwYYOpulXV\nv/h9fHyIj483vY+Pj8fb27tKbYqqsZbqz4YNG/Dx8aFr16737bO3t+fVV19lwYIFBkRWMkvfu2vX\nrhF3KQm7Jq2KfbV/aAh2pXyJEkJUnSRnBoqLi+Ptt9/miy++YOXKlbz33numcVJwJ6mbPn06OTk5\n7Ny5k40bN/Lss8+ilOLFF19k0qRJJCUlAXD58mW2bt0KwJgxY1i2bBnbtm1D0zQSEhI4ffo0cKf6\ndP78edM1Hn/8ceLi4vj888/Jzc0lJyeHgwcPcvr0aezs7BgyZAgzZszg1q1bnDx5khUrVpT4eZ5+\n+mk2bNjA7t27ycnJYdq0aSUmplFRURw/fpz8/HycnJxwcHAwVc3ujbGihg4dyuzZs0lOTiY5OZlZ\ns2aZHkQouK/CNs2fP58//vGPJe4fOnQo+/fvL/PBl5qudu06eHh6F/tq4CLTzwihN0nOLGDgwIE4\nOzubXk899RR5eXlERkby5ptv0rp1a1q0aMGcOXOIjIw0zRXk5eWFq6sr3t7eREZGsnjxYoKCgoA7\nXTAtWrSgW7duNGzYkH79+pmmBejcuTPLli1j0qRJuLi4EBERYap4TZw4kTVr1uDu7s6kSZNwcnJi\n69atfPXVV3h7e+Pt7c2UKVNMT35+9NFH3LhxAy8vL0aPHn3fIP3CWrVqxYIFCxg2bBje3t64u7sX\n6RItLDExkaeffhoXFxfCwsLo06cPI0aMKDZGuL+aVlp17a233qJTp060bduWdu3a0alTJ6ZOnVqu\nc4U+rKFyFhsbS0xMTJEnpO9Vr149Ro0axaJFiywYWems4d4JISxLFj63Utu3bycyMrLUbkRhjJr6\nO1fTvfrqqzg7OzN79uxSj/vll1/o0qUL8fHxODo6Wig6Y1y/fp23/zaPzo8OI2bXFroEe2Fvb8+u\nmF9o1/vxUs89cXAXA7sF07p1a95+9wM69x/OsV1bGD34YZlHUAiqtvC5VM6EELozuvqTk5PD559/\nXq7lw5o1a0bnzp35/vvvLRBZ2Sx177yD2nLoUib742/gHdzeItcUQhRPntYUQtR4e/bsoXnz5kWe\n4i3Nk08+yaZNmxg2bJjOkVkP98ZeuDf2KvtAIYTupHJmpXr37i1dmqLGMLpytnHjxgpNj9G/f382\nb95MXl6ejlGVj9H3TghheTaRnCmlqvwSQlRfmzZtqlBy1rRpU7y8vDhw4ICOUVlGfn4+Fy9e5OLF\niyVObSOEsC42kZxpmlblV3U2atQopk2bZnQYwoYZWf25cOECV65coXPnzhU6b8CAAWzatEmnqMqv\nqvfu2LFjzPm/T5j36dfMfu8Dq6gGCiFKZxPJmbBdffr0YenSpUW2FSwqXyA7O5vRo0fj4uKCt7c3\nH3zwgaXDFDr64YcfePTRR0tdfaI41pKcVVVubi4uTfxo32cQWTmSmAlRHcgDAcImFe6qnj59OufO\nnePixYskJCTQp08fwsLCil1UXVSOkZWzTZs28dxzz1X4vAceeIBz586RmJhIkyZNdIisfGTMmRC2\nRypnOps7dy6+vr44OzsTGhrKtm3bADhw4ADdu3fH1dUVHx8fXnnlFXJzc03n2dnZsWjRIoKDg3Fx\ncWHatGmcP3+eHj160LBhQ4YOHWo6vqAS9O6779KoUSOaN2/OqlWrSoxpw4YNhIeH4+rqyoMPPkhM\nTEyJx1YkjrLaLpg419nZmdatW7Nu3TrTvhUrVtCzZ0/eeOMN3NzcCAwMZPPmzab9y5cvJzAwEGdn\nZwIDA02LvJvDypUrmTZtGs7OzoSEhDB27FiWL19utvaFcbKysoiKiuKRRx6p8LkODg707du3yO+h\nEEJYgiRnOoqLi2PBggUcOnSI9PR0tmzZQkBAAHBnHb958+aRkpLCnj17+Pnnn1m4cGGR87du3Up0\ndDR79+7lvffeY9y4caxatYqLFy8SExNTJEFJTEwkJSWFhIQEli9fztixYzlz5sx9MUVHRzNmzBiW\nLFlCSkoK48aNY9CgQaZVCYpT3jjKartFixbs2rWL9PR0pk+fzogRI7h69arpOvv37yc0NJRr167x\nxhtvMGbMGODOGp0TJ05ky5YtpKens3v3btq3r/w8TIXHEKalpXHlyhXatm1r2tauXTtOnDhR6fbF\n/Yyq/uzbt4+WLVvi7u5eqfP79u3Ljz/+aOaoKkaPe7f/wEEmTn6Lt995D1WrrtnbF0JUjSRnOrK3\ntyc7O5vjx4+Tm5uLn58fzZo1A6BDhw506dIFpRR+fn6MHTuW7du3Fzl/8uTJ1K9fn9DQUFq3bk2/\nfv3w9/enQYMG9O/fn+joaNOxSilmzZqFg4MDvXr14rHHHmP16tX3xbRkyRJeeuklOnXqhFKKyMhI\n6tSpw969e0v8HOWNo6y2n3rqKTw9PQF45plnCAoKYv/+/abr+Pv7M3r0aJRSvPDCC1y5coXffvvN\ndC9jYmK4ffs2np6eFZqB/JVXXsHNzc30GjhwoGlfRkYGSilcXFxM25ydnblx40a52xfWa/fu3fTo\n0aPS5/fo0YM9e/aYMSLrkJycjJNPKOH9htGhzyCjwxFC3EPX5Ewp5auU+lkpdUIpFaOUerWYY3or\npdKUUofvvt7SMyZLCgwMZN68ecyYMQNPT0+GDx/OlStXADhz5gwDBw7Ey8uLhg0bMnXqVJKTk4uc\n37hxY9PP9erVMyU2Be8zMjJM711dXalb93/fgP39/UlISLgvpvj4eN5//31TouLq6sqlS5eKPbai\ncZTV9sqVK01dnq6urpw4caLIZy48rqdevXrAneTJ0dGRr7/+mkWLFuHl5cXAgQNNC7mXx0cffURK\nSorptWHDBtM+JycnANLT003brl+/ToMGDcrdviibUZWz3bt3071790qfHxISQmpqKomJiWaMqmL0\nunf29vbUcqiNXQUflBBC6E/vylku8CdN08KAB4A/KqVCijluh6ZpHe6+Sl/4rpoZOnQoO3fuJD4+\nHoApU6YA8PLLLxMaGsq5c+dIS0vjnXfeqdKUHampqdy6dcv0/sKFC3h7e993XNOmTZk6daopUUlN\nTSUjI6NSA6Yr0vaFCxcYO3YsCxcuJDU1ldTUVMLCwsr9mfv27cvWrVtJTEykZcuWvPjii1WOF6Bh\nw4Z4eXlx9OhR07ajR48SFhZmlvaFcTRNq3LlzM7OjgceeIDdu3ebMTIhhCidrsmZpmmJmqYduftz\nBnAK8Cnm0Bo5y2tcXBzbtm0jOzub2rVrU69ePdPj/Ddu3MDZ2RlHR0diY2NZtGhRla6laRrTp08n\nJyeHnTt3snHjRp599tn7jnvxxRf5+OOPTd2JN2/eZNOmTdy8ebNK1y+r7Zs3b2JnZ4eHhwf5+fks\nW7aM48ePl6vd3377jfXr15OZmYmDgwNOTk6m+xgfH4+dnV2VVlOIjIxk9uzZpKWlcerUKZYsWcKo\nUaMq3Z64nxGVs7i4OJycnIr9klIR3bt3NzQ5s9anNe3sFHv2H+KrNWvJr9zazkKIElhszJlSKgBo\nD+wrZvcDSqkjSqmNSqlWlopJb1lZWUyZMoVGjRrh7e1NUlISc+bMAeAf//gHX3zxBc7OzowbN46h\nQ4cWOffeVQnKWqXAy8sLV1dXvL29iYyMZPHixQQFBd13bseOHVmyZAkTJkzAzc2N4OBgVqxYUWK7\nFYmjtLZDQ0N5/fXX6datG02aNOHEiRM8+OCDpX6mgmvl5+fzz3/+Ex8fHzw8PNixY4cpmb1w4QIB\nAQH4+BSX85d93wBmzpxJ8+bN8ff356GHHmLKlCn07du3zPOEdatql2aBHj16SOWsGIFhHch1DyK1\ndhNCusmfFyHMSVli9nullBMQBczSNO37Yvbla5qWqZTqD/yfpmnBxbShFRerUqraz+BfVdu3bycy\nMtIm1+J85513aNy4sdm6OctDfueqhz/84Q+0b9+eCRMmVKmdmzdv0rhxY65du1ZkXGd1cfDgQb6J\niiasc2/2fL+Mj/4+my1b/8Pe82kEte5g1msd27WF0YMfrtADO0LUVHf/rahUWVn3SWiVUrWAb4DP\n7k3MwNTdWfDzD0qphUopN03TUu49tnB5PyIigoiICF1iFtXH1KlTjQ5BWKndu3fzxz/+scrtFDyp\nfOjQoSqNXxNC1GxRUVFERUWZpS1LrBCwFDipadr/FbdTKeWpadrVuz934U41777EDKx37IUQonQz\nZsyw6J/flJQULl68SJs2bczSXkHXphHJmbnv3cGDB0m8mghUvyqgENbs3qLRzJkzK92W3lNp9ACe\nBx5SSkXfnSrjUaXUOKXU2LuHPa2UOq6UigbmAVV/bNDG9O7d2ya7NIUoyd69e+nSpQu1apnn+2f3\n7t3ZtWuXWdoyUuMW7fluxzFOJ+XQpGkzo8MRQpRA18qZpmm7gFIn0dE0bQGwQM84hBDGsnTV+8CB\nA3Tp0sVs7XXt2pXXX3/dbO1VhDnvXWBYuNnaEkLoR1YIEELUOIcPH6ZDB/MNdvf39yczM9O0YoUQ\nQuhJkjMhhO4sXTmLjo42a3KmlCI8PLzIkmmWImNthbA9kpwJIWqU5ORkrl+/blrH1lzCw8M5fPiw\nWdsUQojiSHImhNCdJas/0dHRhIeHY2dn3r/eOnToIJUzIYRFSHJmBWbOnElkZKTRYVTIihUr6Nmz\nZ7mPb9asGT///DMA7777LmPHji3jDP0tWrSIJk2a4OzsTGpqqtHhCDM5fPgw4eHmH/gulTMhhKVI\ncmYBy5cvp23bttSvXx9vb2/Gjx/P9evXixxTnmWGrE1lY37zzTf55JNPyjyuT58+LF26tFLXKEtu\nbi6vv/46P/74I+np6bi6uupyHXGHJas/5n4YoEBwcDCJiYn3/dnVm1TOhLA9kpzp7P333+fNN9/k\n/fffJz09nb179xIfH0/fvn3Jzc21WBx5eXkWu1Z1kJiYSFZWliwzUwOZ+2GAAvb29rRr144jR46Y\nvW0hhChMkjMd3bhxgxkzZjB//nz69u2Lvb09fn5+rF69ml9//ZXPP//cdOytW7cYOnQozs7OdOrU\niWPHjpn2zZ07F19fX5ydnQkNDWXbtm0AaJrG3/72N1q0aEGjRo0YOnQoaWlpAMTHx2NnZ8fSpUvx\n9/fnd7/7HQMGDGDhwoVFYmzfvj3r1q0DIDY2ln79+uHu7k5oaChr1qwxHZeSksKgQYNwcXGhW7du\nnDt3rtTP/tlnnxEQEECjRo1Mi70XKNyNm5WVRWRkJB4eHri6utK1a1eSkpJ466232LlzJxMmTMDZ\n2ZlXX30VADs7OxYvXkxwcDBubm6lrpuYnZ3NpEmT8PHxwdfXl9dee42cnBzOnDlDSEgIAK6urjz8\n8MOlfhZRdZaq/qSnp3P58mVatmypS/tGdG1K5UwI2yPJmY52795NVlYWgwcPLrK9fv36DBgwgP/8\n5z+mbevXr+e5554jNTWVYcOG8eSTT5KXl0dcXBwLFizg0KFDpKens2XLFgICAgD48MMPWb9+PTt3\n7iQhIQFXV1fGjx9f5Fo7duzg9OnTbNmyhWHDhrFq1SrTvpMnT3LhwgUef/xxMjMz6devHyNGjCA5\nOZmvvvqK8ePHExsbC8D48eNxdHTk6tWrfPrpp6V2N548eZLx48fzxRdfkJCQwLVr17h8+XKRYwq6\nRFesWGH6BzUlJYWPP/6YevXqMXv2bHr27Mn8+fNJT0/nww8/NJ27ceNGDh06xNGjR1m9ejVbt24t\nNo7Zs2ezf/9+jh07xtGjR9m/fz+zZ88mKCiIEydOAHD9+nV+/PHHEj+LqF6OHj1KmzZtzLYywL2M\neihACGFbJDnTUXJyMh4eHsU+Nebl5UVycrLpfceOHRk8eDD29vb86U9/4vbt2+zduxd7e3uys7M5\nfvw4ubm5+Pn5maYIWLx4Me+88w5eXl44ODgwbdo0vvnmG/Lz84E7CdDMmTOpW7cuderUYfDgwRw9\nepSLFy8CsGrVKoYMGUKtWrXYsGEDzZo1Y+TIkSilaNeuHU899RRr1qwhPz+ftWvXMmvWLOrWrUtY\nWBgvvPBCiZ/722+/ZeDAgfTo0QMHBwdmzZpV4vg0BwcHrl27RlxcnGkuKScnp1Lv65tvvkmDBg1o\n2rQpffr0KbGbadWqVUyfPh13d3fc3d2ZPn06K1euBO5UHQv/V+jLUtUfvR4GKCCVMyGEJUhypiMP\nDw+Sk5NNyVJhV65cwcPDw/S+adOmpp+VUvj6+pKQkEBgYCDz5s1jxowZeHp6Mnz4cBITE4E7XZeD\nBw/Gzc0NNzc3WrVqhYODA1evXjW15evra/rZycmJAQMG8NVXXwHw5ZdfMmLECFNbe/fuNbXl6urK\nqlWruHr1KklJSeTm5hZpy9/fv8TPnZCQUOTzODo64u7uXuyxkZGRPPLIIwwdOhRfX18mT55c5vg4\nT0/PIm1nZGSUGIefn1+RmK9cuQJUzwcwRNmOHDmia3IWFhbG+fPnuXXrlm7XEEIISc509MADD1Cn\nTh3Wrl1bZHtGRgY//PBDkbFOBdUsuFPNuXTpEt7e3gAMHTqUnTt3Eh8fD8DkyZMB8PPz44cffiAl\nJYWUlBRSU1O5efMmXl5eprbuTUIKujb37t1LVlYWERERwJ3kMCIiokhb6enpzJ8/n0aNGuHg4FAk\nxtIWWvfy8ipybGZmJteuXSv22Fq1avH2229z4sQJdu/ezYYNG0zVraomUD4+PqZ7BncS0IJ7KizL\nUtWfY8eO0bZtW93ar127Ni1atODUqVO6XeNeUjkTwvZIcqYjZ2dnpk2bxiuvvMKWLVvIzc3l119/\n5bnnnsPPz89UtQI4dOgQ69atIy8vjw8++IC6devSrVs34uLi2LZtG9nZ2dSuXZt69eqZuknHjRvH\nX//6V1OilJSUxPr1601tFtdlN2DAAOLj45k2bRrPPfecafvjjz9OXFwcn3/+Obm5ueTk5HDw4EFO\nnz6NnZ0dQ4YMYcaMGdy6dYuTJ0+yYsWKEj/3008/zYYNG9i9ezc5OTlMmzatxO7DqKgojh8/Tn5+\nPk5OTjg4OGBvbw/cqZCdP3++Ane8qKFDhzJ79mySk5NJTk5m1qxZReaTky7NmiUvL49Tp04RFham\n63XatGnD8ePHdb2GEMK2SXKmszfeeIM5c+bw5z//GRcXFx544AH8/f358ccfcXBwMB33xBNP8PXX\nX+Pq6soXX3zBd999h729PVlZWUyZMoVGjRrh7e1NUlIS7777LgATJ07kiSeeoF+/fri4uNC9e3f2\n799varO4ylPt2rUZMmQIP/30E8OHDzdtd3JyYuvWrXz11Vd4e3vj7e3NlClTyMrKAuCjjz7ixo0b\neHl5MXr0aEaPHl3iZ27VqhULFixg2LBheHt74+7uXqRLtLDExESefvppXFxcCAsLo0+fPqakdeLE\niaxZswZ3d3cmTZpU7Gcqrbr21ltv0alTJ9q2bUu7du3o1KkTU6dOLde5wrwsUf05d+4cnp6eNGjQ\nQNfrtG7dmpiYGF2vUZhUzoSwPaq6VA+UUlpxsSql7quA/L933yPhavJ9x5qLt6cH0978i27tC+tW\n3O+cKN2MGTN0TzLWrl3L8uXLi1SP9bBhwwYWLFjADz/8oOt1ClT13h08eJBvoqIJ69zbfEGV4Niu\nLYwe/LDMHygEpn8rKlUF0Od5c4MlXE2mx+A/6Nb+ru/+pVvbQtRElqj+xMTE0Lp1a92vI5UzIYTe\npFtTCFEjHD9+nDZt2uh+HX9/f9LT02U9ViGEbiQ5E0LoriZVzpRShIWFWeyhAKmcCWF7JDkTQlR7\nt2/fJj4+Xrdlm+7VunVreWJTCKEbSc5swKhRo5g2bZrRYQgbpnf159SpUwQGBlK7dm1dr1OgTZs2\nFht3JpWUALPoAAAgAElEQVQzIWyPJGeiRuvTp89964Bu3769yAoGBX7/+9/ft8KCqB6OHz9ukS7N\nAlI5E0LoSZIzYZPuneMsMzOTtWvX0rBhQz7//HODoqq59K7+xMTEWORhgAIFlTNLTKkilTMhbE+N\nTM68PT3Y9d2/dHt5e3qUHcRdc+fOxdfXF2dnZ0JDQ9m2bRsABw4coHv37ri6uuLj48Mrr7xCbm6u\n6Tw7OzsWLVpEcHAwLi4uTJs2jfPnz9OjRw8aNmzI0KFDTccXVILeffddGjVqRPPmzVm1alWJMW3Y\nsIHw8HBcXV158MEHS+2eqUgcZbU9d+5cWrRogbOzM61bt2bdunWmfStWrKBnz5688cYbuLm5ERgY\nyObNm037ly9fTmBgIM7OzgQGBvLll1+W+/9BeXzzzTe4uroybdo0li9fbta2hf4sXTlr1KgRtWvX\nJiEhwWLXFELYjho5z5m1TBAbFxfHggULOHToEJ6enly4cMG0qLe9vT3z5s2jc+fOXLx4kf79+7Nw\n4UJeffVV0/lbt24lOjqaCxcuEB4ezp49e1i1ahVubm5069aNL7/80rQcUWJiIikpKSQkJLBnzx4G\nDBhA586dCQoKKhJTdHQ0Y8aMYePGjXTs2JHPP/+cQYMGERcXV2TFgsLKG0dZbbdo0YJdu3bh6enJ\nmjVrGDFihGlWd4D9+/czatQorl27xuLFixkzZgyXL18mMzOTiRMncujQIVq0aMHVq1dJSUmp9P+X\n4qodK1euZPjw4Tz33HP86U9/Ijo6WtcFtG2N3tUfSydn8L/qmY+Pj67XKc+9271nL3sOHAagU3hb\nevd8UNeYhBD6qpGVM2thb29PdnY2x48fJzc3Fz8/P5o1awZAhw4d6NKlC0op/Pz8GDt2LNu3by9y\n/uTJk6lfvz6hoaG0bt2afv364e/vT4MGDejfvz/R0dGmY5VSzJo1CwcHB3r16sVjjz3G6tWr74tp\nyZIlvPTSS3Tq1AmlFJGRkdSpU4e9e/eW+DnKG0dZbT/11FOmROyZZ54hKCioyHJT/v7+jB49GqUU\nL7zwAleuXOG3334z3cuYmBhu376Np6dnhWYgf+WVV3BzczO9Bg4cWGT/hQsX2LZtG8OHD6dx48Y8\n/PDDpsXXhfXLyMggOTmZgIAAi143NDTUogugl+b4qdOkqoak1/Ig5kSs0eEIIapIkjMdBQYGMm/e\nPGbMmIGnpyfDhw/nypUrAJw5c4aBAwfi5eVFw4YNmTp1KsnJRZecaty4sennevXqmRKbgvcZGRmm\n966urtStW9f03t/fv9gul/j4eN5//31TouLq6sqlS5dK7Z4pbxxltb1y5UpTl6erqysnTpwo8pmb\nNGlSpF248w+vo6MjX3/9NYsWLcLLy4uBAwdy+vTpEuO910cffURKSorptWHDhiL7P/vsM1q1amUa\nszRs2DBWrVplqnKKqtOzchYbG0tQUBD29va6XaM4lkrOynvvnBu64ezqrm8wQgiLkORMZ0OHDmXn\nzp3Ex8cDMGXKFABefvllQkNDOXfuHGlpabzzzjtVGlycmprKrVu3TO8vXLiAt7f3fcc1bdqUqVOn\nmhKV1NRUMjIyeO655yp97fK0feHCBcaOHcvChQtJTU0lNTWVsLCwcn/mvn37snXrVhITE2nZsiUv\nvvhileMt8Nlnn3H+/Hm8vLzw8vLi9ddfJzk5mU2bNpntGkI/sbGxhqzlaE2VMyFEzSLJmY7i4uLY\ntm0b2dnZ1K5dm3r16pm+3d+4cQNnZ2ccHR2JjY1l0aJFVbqWpmlMnz6dnJwcdu7cycaNG3n22Wfv\nO+7FF1/k448/NnUn3rx5k02bNnHz5s0qXb+stm/evImdnR0eHh7k5+ezbNmyck9F8Ntvv7F+/Xoy\nMzNxcHDAycnJdB/j4+Oxs7PjwoULlYp5z549nD9/ngMHDnD06FGOHj3KiRMnGDZsGCtWrKhUm+J+\nelbOTp06VaOTs+r4tGZOTg47duzg559/ZteuXVKFFqKCJDnTUVZWFlOmTKFRo0Z4e3uTlJTEnDlz\nAPjHP/7BF198gbOzM+PGjWPo0KFFzr13qod739/Ly8sLV1dXvL29iYyMZPHixaaHAQqf27FjR5Ys\nWcKECRNwc3MjODi41CSkInGU1nZoaCivv/463bp1o0mTJpw4cYIHHyx90HLBtfLz8/nnP/+Jj48P\nHh4e7Nixw5TMXrhwgYCAgBIHZZd131auXMmTTz5Jq1ataNy4sek1ceJENm7cSFpaWqnnC+OdOnWK\nkJAQi1/X09OTvLw8kpKSLH5ta3fp0iVW/fsnfjx2mc/Wbr5vyIYQonRKz3l6lFK+wErAE8gHlmia\n9mExx30I9AduAr/XNO1IMcdoxcWqlLLIXEPWbPv27URGRla6elSdvfPOOzRu3Nis3Zxlkd+5ipsx\nY4ZuFaDQ0FC+/vpr2rZtq0v7penevTt/+9vf6NWrl27XKM+9+2TpCtIcPLGv5UCd678w4aU/mPYd\nPHiQb6KiCevcW7cYCxzbtYXRgx+mbt26zP/sO9r3fpxDP37DmxPGFBmrKoQtuPtvRekVghLoPZVG\nLvAnTdOOKKWcgENKqa2appkeJ1JK9QcCNU0LUkp1BT4Guukcl6ghpk6danQIwkA5OTn88ssvBAcH\nG3L9gq5NPZMzIYTt0bVbU9O0xIIqmKZpGcAp4N7+pye4U11D07R9gItSSr5iCVGD6FU1O3fuHL6+\nvkWeVLYkS4w7q45jzoQQVWOxMWdKqQCgPbDvnl0+wMVC7y9zfwInStG7d2+b7NIUwqjxZgXkiU0h\nhB4sskLA3S7Nb4CJdytolVL4G2RERAQRERFVjk0IoT+9xpwZNY1GgZCQEItUzqR6JoT1i4qKIioq\nyixt6Z6cKaVqcScx+0zTtO+LOeQy0LTQe9+72+4jf0EJIQo7deqUoV/SAgICSE5OJiMjAycnJ8Pi\nEEIY796i0cyZMyvdliW6NZcCJzVN+78S9q8HRgIopboBaZqmXbVAXEIIC9Hri5XR3Zr29vYEBQUR\nG6vfkknypVQI26Nr5Uwp1QN4HohRSkUDGvBXwB/QNE37RNO0TUqpAUqps9yZSmNURa7h7+9f5lxW\nQpiTv7+/0SEI7ky8bHS3Jvxv3FmnTp0MjeNey1Z+QfTxk2j5Gq7+YUaHI4SoAF2TM03TdgFlLnin\nadqEyl7j119/reypQggL0WPc1OXLl6lfvz6urq5mbbei9H4ooLL37mJCIi26PkoDF1fsazmYPzAh\nhG5khQAhRLVk1LJN97LmJzbtazlQy6G29C4IUc1IciaE0J0e46aMHm9WwBKVMyGEbbHIVBpCCGFu\n1jDeDCA4OJhff/2V7OxsateubXQ4Vis5OZn1GzeTr+Xj5urK4EGPS0VPiBJI5UwIoTu9KmfWkJzV\nqVOHpk2bcu7cOV3arymVs/j4eKLPJZJs14j/RO0iNzfX6JCEsFqSnAkhqiVr6dYE6x53Zk0cnZzx\n8Q8EqZgJUSpJzoQQujN39Sc1NZWbN2/i6+tr1nYrS8/krKZUzoQQ5SfJmRCi2omNjSUkJMRqxixJ\n5UwIYU6SnAkhdGfu6o+1jDcrIJUzIYQ5SXImhKh2rGm8GdxZAP306dPk5+cbHYoQogaQ5EwIoTtz\nV3+sZRqNAi4uLri4uHDx4kWzty2VMyFsjyRnQohqx9q6NUHGnQkhzEeSMyGE7sxZ/bl9+zaXLl0i\nMDDQbG2ag17JmVTOhLA9kpwJIaqVM2fO0KxZMxwcrGsxb6mcCSHMRZIzIYTuzFn9scYuTZDKmRDC\nfCQ5E0JUK9b2pGYBqZwJIcxFkjMhhO7MWf2xtic1C3h6epKbm0tycrJZ25XKmRC2p1zJmVJqoFJK\nEjkhhOGstVtTKSXVMyGEWZQ34XoOOKOUek8pZX39CUIIq2au6k9eXh5xcXFW2a0J+nRtSuVMCNtT\nruRM07QRQDhwDliulNqjlBqrlGqga3RCCFFIfHw87u7uODk5GR1KsUJCQoiNjTU6DCFENVfurkpN\n09KBb4CvAC9gMHBYKfWKTrEJIWoIc1V/rHW8WQE9K2fborbzzdp1fLN2HdeuXTPrNYQQ1qW8Y86e\nUEp9B0QBDkAXTdP6A+2A1/ULTwgh/sdax5sVCA0N1a1y9s36HziRlMtPh89w+vRpXa4hhLAOtcp5\n3BDgA03TdhTeqGlaplJqjPnDEkLUJOaqnJ06dYqOHTuapS09BAQEkJiYSGZmJo6OjmZps/C9CwgK\n41bGDbO0K4SwXuXt1ky8NzFTSs0F0DTtJ7NHJYQQxbD2bs1atWrRokULqWwJIaqkvMlZ32K29Tdn\nIEKImssclTNN06y+WxPM37UpT2sKYXtK7dZUSr0MjAcClVLHCu1qAOzSMzAhhCgsKSkJTdNo3Lix\n0aGUKiQkROY6E0JUSVljzlYBPwDvAlMKbb+haVqKblEJIWoUc1R/CpZtUkpVPSAdhYaG8t1335mt\nPamcCWF7ykrONE3TflVK/fHeHUopN0nQhBCWYu3jzQpI5UwIUVVljTlbdfe/h4CDd/97qNB7IYQo\nk7kqZ9UhOWvZsiVnz54lNzfXLO3VhMpZTk6O2e6HELag1MqZpmmP3/1vs8o0rpT6FHgcuKppWtti\n9vcGvgfO3920VtO02ZW5lhCiZjt16hT9+vUzOowyOTo60qRJE3799VdatGhhdDiGc3B04d0PFgHQ\nuEU7g6MRonoo1zxnSqkewBFN024qpUYAHYB5mqZdKOPUZcBHwMpSjtmhadqgckUrhKiWzFH9OXny\nJK1atap6MBZQ0LVpjuSsulfO2nYv7mF/IURpyjuVxiIgUylVsCLAOeCzsk7SNO2/QGoZh1n36F4h\nhOHS09NJTU3Fz8/P6FDKRc+VAoQQNV95k7NcTdM04AlgvqZpC7gznYY5PKCUOqKU2qiUqh5fi4UQ\nFVLV6k/Bk5p2duVeDthQ5lxjs7pXzoQQFVfe5ZtuKKXeBEYAvZRSdtxZY7OqDgF+d5eB6g+sA4JL\nOrjwX1IRERFERESYIQQhhLWrTl2acKdbc+nSpUaHYXnKnm++33hnuhNlb3Q0QlhUVFQUUVFRZmmr\nvMnZc8BwYIymaYlKKT/g71W9uKZpGYV+/kEptbC0KTrkG6QQ1VNV/+xWt+SsoFtT07Qqz8tWnf7e\nC+n4IBnX0wBo4uxicDRCWNa9RaOZM2dWuq1y9RFompaoado/NU3beff9BU3TShvkX5iihHFlSinP\nQj93AZTMnSaEuFd1S848PDywt7fn6tWrRodiUbXr1MWtcRPcGjehTt16RocjRLVVruRMKTVEKXVG\nKXVdKZWulLqhlEovx3mrgN1AsFLqglJqlFJqnFJq7N1DnlZKHVdKRQPzuFOhE0LUMLZWOQPzPRRQ\nnSpnQgjzKG+35nvAQE3TKjTCVdO04WXsXwAsqEibQgjbcvPmTa5evUqzZpWabtEwBQ8F6DU2Nj8/\nn3379nHr1i1Srl3Droln2ScJIaqF8j76dLWiiZkQQhSoSvUnNjaWoKAg7O2r1wBzcy3jVNK9S09P\nZ8Waf/NTTAIZdZvQyMu3ytcSQliH8lbODiqlvubO05RZBRs1TVurS1RCCHFXdezShDuVs82bN+t6\njdq16xDSvouu1xBCWF55K2fOQCbQDxh49/W4XkEJIWqWqlTOqnNypmflTAhRc5WrcqZp2ii9AxFC\niOKcPHmSkSNHGh1Ghfn5+ZGSksKNGzdo0MBcc3bfkZqaSkJCglnbFEJYj/I+rRmslPpJKXX87vu2\nSqm39A1NCFFT2GLlzM7OjuDg4Co/sXnvvXP39Obng6f4dM0mGnhWj+WshBAVU94xZ0uAN4DFAJqm\nHbs7TcZsvQITQohbt25x8eJFsywgboRWrVpx8uRJOnfubLY2mzRtRpOm1evJVSFExZR3zJmjpmn7\n79mWa+5ghBA1U2UrZ3FxcQQGBuLgYI7V4iwvLCyMEydOVKkNGXMmhO0pb3KWrJQKBDQApdTTwBXd\nohJCCKpvl2YBcyRnQgjbU95uzT8CnwAhSqnLwC/A87pFJYSoUSpb/ZHkrGL3rk7dehzbe4ZX/zKV\n29n5NGlbu0rXFkIYo9TkTCn1p0JvNwHbuFNtuwk8BfxTv9CEELbu5MmTPPvss0aHUWnNmjXjt99+\nIyMjAycnJ92v5+LmQfdBL6ChoVDY1yrv928hhDUpq1uzwd1XJ+BlwBVoCLwEdNA3NCFETWGrlTN7\ne3tatmzJyZMnK91GRe+dfa1a1KrlIImZENVYqX96NU2bCaCU2gF00DTtxt33M4CNukcnhLBZ2dnZ\n/PrrrwQHBxsdSpUUdG126SIz+Qshyqe8DwR4AtmF3mff3SaEEGWqTOXs7Nmz+Pn5UadOHfMHZEFh\nYWEWrZwJIaq/8iZnK4H9SqkZd6tm+4DlegUlhBDVvUuzgDyxKYSoqHIlZ5qmvQOMAlLvvkZpmvau\nnoEJIWqOylR/JDm7QypnQtieco8Y1TTtMHBYx1iEEMLk5MmTDBw40OgwqiwgIICkpCRd1tgUQtRM\n5e3WFEKISrPlypm9vT0hISGVHncmlTMhbI8kZ0IIq5Obm8uZM2do2bKl0aGYhYw7E0JUhCRnQgjd\nVbT6c/bsWXx8fHB0dNQnIAtr3bo1x48fr9S5UjkTwvZIciaEsDrHjh2jbdu2RodhNm3btuXYsWNG\nhyGEqCZkCmkhhO4qWv2picnZ0aNH0TQNpVSFzrWVytmNGzfIzs7Gzs4OV1dXo8MRwlCSnAkhrM6x\nY8f4/e9/b3QYZuPt7U1+fj5Xr16lSZMmRodjdTIzM5n+znvk2dUmL/s2fxo/hubNmxsdlhCGkW5N\nIYTuKlM5a9OmjT7BGEApRZs2bYiJianwubZQOcvNzSVHs6fTI8/h6ObF7du3jQ5JCENJciaEsCrX\nr18nOTm5xlVOZNyZEKK8JDkTQuiuItWf48ePExYWhr29vX4BGaCyyZktVM6EEEVJciaEsCo17WGA\nAlI5E0KUlyRnQgjdVaT6U1OTs7CwME6fPk1ubm6FzpPKmRC2R5IzIYRVqWkPAxSoX78+Pj4+xMXF\nGR2KEMLK6ZqcKaU+VUpdVUqVWMtXSn2olDqjlDqilGqvZzxCCGOUt/qTn59PTExMjUzOoHJdm1I5\nE8L26F05WwY8UtJOpVR/IFDTtCBgHPCxzvEIIaxYfHw8zs7OuLu7Gx2KLiqanKWmpvLN2nV8s3Yd\nufn5OkZmWRrw3ff/5pu160hOTjY6HCGsjq7JmaZp/wVSSznkCWDl3WP3AS5KKU89YxJCWF55qz81\ntUuzQEWTs7NnzzL3g/mcTM6nReeHsashT7AGdX6Y2BT46fAZYmNjjQ5HCKtj9AoBPsDFQu8v3912\n1ZhwhBBGio6OpkOHDkaHoZvw8HCio6MrdE6duvVo1rK1ThEZo7F3U6AptzLSjQ5FCKtkdHJWIYW/\nfUdERBAREWFYLEKI8itv5ezw4cO88MIL+gZjIH9/f27dukViYmK5l3F6sN8gnaMSQphDVFQUUVFR\nZmnL6OTsMtC00Hvfu9uKJQNjhajZDh8+zLx584wOQzdKKTp06EB0dDT9+/c3OhwhhBndWzSaOXNm\npduyxFQa6u6rOOuBkQBKqW5AmqZp0qUpRA1Tni9Wv/32GxkZGTRr1kz/gAzUoUMHDh8+XO7j/7t1\nvY7RCCGska6VM6XUKiACcFdKXQCmA7UBTdO0TzRN26SUGqCUOgvcBEbpGY8QwnoVjDdTqqTvcjVD\neHg43377rdFhCCGsmK7JmaZpw8txzAQ9YxBCGK88lbPDhw/X6IcBCnTo0IGpU6eW+3gZcyaE7ZEV\nAoQQVsFWkrOgoCCSkpJITS1tliEhhC2T5EwIobvyVs7Cw8P1D8ZgdnZ2tG/fvtxTasiYMyFsjyRn\nQgjDpaWlcfXqVYKDg40OxSIq+lCAEMK2SHImhNBdWZWzI0eO0K5dO+xryAz4ZSmYTqM8ZMyZELZH\nkjMhhOFsZbxZAamcCSFKI8mZEEJ3ZVXODhw4QMeOHS0TjBUIDQ3l4sWLpKeXvXyRzY05s7Pnm+83\n8t4H8/kparvR0QhhCEnOhBCG27dvH127djU6DIupVasW4eHhHDhwwOhQrE7LDg/i0qIrtxybcPyk\nLIoubJMkZ0II3ZVWOUtKSiIlJYWWLVtaLiAr0LVrV/bt21fmcbY25qx2nTq4NW5CAxc3o0MRwjCS\nnAkhDLVv3z46d+6MnZ1t/XVU3uRMCGF7bOtvQyGEIUqrnNlal2aBguRM07T79p06dYoff/qJU7Gx\nNX7M2ZmzZ9n53/8aHYYQVkWSMyGEofbu3WuTyVnTpk1RShEfH3/fvtXrNrL50HlOpyic3T0NiM4y\n/IJacfZ6LXafScE3zPZ+B4Qoia5rawohBJRcOcvPz+fAgQM2mZwppejWrRv79u0jICDgvv3NWrbB\nuaEbIe27WD44C3FyblijP58QlSWVMyGEYU6fPo2bmxuNGzc2OhRDyLgzIURxJDkTQuiupMqZrY43\nK1Ce5Gztso8sFI0QwlpIciaEMIytJ2edOnXi6NGj5OTkGB2KEMKKSHImhNBdSZUzW30YoECDBg1o\n3rw5R44cKfGYIaNesWBEQghrIMmZEMIQaWlpnD171qaWbSpOz5492blzp9FhCCGsiCRnQgjdFVc5\n27VrF126dKF27dqWD8iK9OrVix07dpS4X8acCWF7ZCoNIYQhduzYQa9evYwOw3A9e/Zk/PjxXL16\nlb//30KysnPIytXwam/bSasQtkySMyGE7oqrnO3YsYM5c+ZYPhgr4+3tjZubG4cPH0ar60LH3z2K\nUgo7e3tAxpwJYYukW1MIYXE3b94kJibGph8GKKxXr17s378fpRT2tWqZEjMhhG2S5EwIobt7K2d7\n9uyhffv2ODo6GhOQlSlIzoojY86EsD3SrSmEsDgZb1ZUr169eOONNwjp+jujQ7Eays6OS5cT+WTp\niiLbH3ygK61CQwyKSgjLkMqZEEJ391bOJDkrKiAgAHt7e9JSku/bZ6tjztwbe+EZ1oM0B0/TKy4p\nm+MnTxodmhC6k8qZEMKibt++zcGDB+nevbvRoVgNpRRdunTh4q/njA7Faiil8PTxK7It6/YtQDMm\nICEsSCpnQgjdFa6c/fe//6VNmzY4OzsbF5AV6t69O/Hn4u7bLmPOhLA9kpwJISxqy5YtPProo0aH\nYShN0zh27Bj79+/n4MGD5Obm8uCDD3Lh3Gny8/KMDk8IYTDp1hRC6K5w5Wzz5s0sWbLEuGCsQFpa\nGouWf0VD70DSrl5kUoMGNGnSBKcGLpyPjaFFWHvTsbY65kwIW6Z75Uwp9ahSKlYpFaeUmlzM/t5K\nqTSl1OG7r7f0jkkIYYzLly+TkJBA586djQ7FcLXr1KVV5544NXQzbfNvEULMgf8aGJUQwhrompwp\npeyA+cAjQBgwTClV3DPQOzRN63D3NVvPmIQQlldQOdu6dSu/+93vsJdJVosV0KLlfcmZjDkTwvbo\nXTnrApzRNC1e07Qc4CvgiWKOUzrHIYSwAlu2bOGRRx4xOgyr5evfnEvnT3PzxnWjQxFCGEjv5MwH\nuFjo/aW72+71gFLqiFJqo1Kqlc4xCSEsbMaMGeTl5fHjjz9KclaKWg4OBLfpyIlDu03bZMyZELbH\nGp7WPAT4aZrWnjtdoOsMjkcIoYNDhw7h6emJr6+v0aFYtdadH+TY/p1GhyGEMJDeT2teBgrPIuh7\nd5uJpmkZhX7+QSm1UCnlpmlayr2NFX7iKyIigoiICHPHK4TQwYwZM8jOzmbQoEFGh2L1wrs/xL+/\nWEx+Xh529vasXfaRVM+EqAaioqKIiooyS1t6J2cHgBZKKX/gCjAUGFb4AKWUp6ZpV+/+3AVQxSVm\ncP8SMEKI6kHTNL799ls+//xzo0Oxep4+fri6NyYu5hAh7bsYHY4QopzuLRrNnDmz0m3pmpxpmpan\nlJoAbOVOF+qnmqadUkqNu7Nb+wR4Win1MpAD3AKe0zMmIYTlPfPMMyxfvpxOnToZHYrVsbN34NPP\nvkYphXK8M61Gp979OLBjKyHtu0jVrBCHOnXZtX8XR4/H0sjdjVfHj8XOzhpG5whhXrpPQqtp2mag\n5T3bFhf6eQGwQO84hBDGWbt2LUOGDEEpeTD7XiGde5F16xYAderVA6Bzr0d478+jeX7CXyX5KMTb\nrzmu7o3RNI2jP39LXl6e3B9RI8lvtRBCdwsXLuSpp54yOgyrVKuWA/UbOFO/gTO1ajkA4BPQgrqO\n9fklNkbmOStEKYWjUwPqN3CWRF/UaJKcCSF0dfbsWTIyMnjggQeMDqVa6dSrHwd3bjU6DCGEASQ5\nE0Lo6ttvvyUyMlJWBaigzr36cWD7Fgb/foLRoQghLEySMyGEbjRNY8WKFTz//PNGh1Lt+Ae1wr6W\nA3Exh4wORQhhYZKcCSF0s3//fnJzc/nPf/5jdCjVjlKKXv2H8NmHstywELZGkjMhhG6WLl3KqFGj\nZPB2JfXo9wRXLpznduZNo0MRQliQ7lNpCCFsU2ZmJmvWrCEmJgYfn+KW1BVlaejemLCO3TmwfQs9\n+w8xOhwhhIVI5UwIoYvvvvuOrl27SmJWRT37D2HH5rVGhyGEsCBJzoQQuvjXv/7FqFGjAFl6rSri\n406SEH+OKxfOGx2KEMJCJDkTQpjd4cOHOXv2LIMHDzY6lGrPzt6ePgOfY/Oa5UaHIoSwEEnOhBBm\n949//INJkybh4HBnxntbr5zl5ORw+/Zt0ysrK6vc5w4Z9Qp9B49g37YfSE+9pmOU1V92dnaF768Q\n1kgeCBBCmFV8fDxbtmzh448/NjoUqzHrb//g2vWMIk+t1nFpXO7zXdw86BLxKD+uWyULoZfg9u3b\nTJ89l5tZOZCfzxuvjsPf39/osISoFKmcCSHMat68eYwePRpnZ2fTNluvnCWnpNHlsUi6Pj7S9Grf\n85SwsGQAAA6ASURBVNFynVuwtmb/Z0fx0/eryLp9S89Qq62cnBxu5Wp0fXwk9T28uXlTph8R1Zck\nZ0IIs0lKSmLFihW8+uqrRodS43j5NScoLJyoDauNDkUIoTNJzoQQZjNz5kxGjBhB06ZNi2y39cpZ\nVRTuxhwy+lX+/cViMjNuGBiREEJvMuZMCGEWcXFxfPXVV8TGxhodSo3lFxhCu6692fjlEp558U9G\nh2OoPOz454eLUPZ2PPvk47i7uxsdkhBmI5UzIYRZvPnmm/z5z3/Gw8Pjvn1SOau8gjFnBZ4aPZGf\n//01Kb8lGhSRdQjv8yR1/cO5clNx6dIlo8MRwqwkORNCVFlUVBQHDhxg4sSJRodS47k1bsJDg4by\n9Sd/NzoUQ9Vv4IxbI0/qOdY3OhQhzE6SMyFElWRkZDB69GgWLlxIvXr1ij1GKmeVV9zUGYOeH8f5\nUzEc+u+PBkQkhNCbJGdCiCr5y1/+Qu/evXn88ceNDsVm1KnnyB8mz2HFBzO4kZZidDiG0jSIO3OG\nHTt3omlGRyOEeUhyJoSotK1bt7JhwwbmzZtX6nFSOau8e8ecFWjZthPdfvc4yz+YgWbDWYl/cBjn\nbtRm99lUfMO6Gh2OEGYhyZkQolLOnDnDyJEjWblyJS4uLkaHY5OeHjOJpCuX2PjlEqNDMUz9Bi6E\ntOtMSLvOePsHGh2OEGYhyZkQosJSU1MZOHAgM2fOJCIioszjpXJWeaUt11S7Tl0mzV7If9Z+zqGd\nMv5MiJpC5jkTQlRIRkYGgwcP5tFHH2XcuHFGh2Pz3Bo3YeLs+bw/eSxOLg1p2baT0SFZpfT0dFJS\n7ozPa9KkCXXr1jU4IiFKJpUzIUS5paWl0a9fP1q0aMH7779f7vOkclZ5JY05K6x5SFtefvuffDjt\nFWIO/NcCUVU//1rxOR98+iV//3glmzZvNTocIUolyZkQolx+/fVX+vTpQ+fOnfnkk0+wt7c3OiRR\nSOtO3Zk4az6L5/yFXVu/Nzocq3M7K4cW4b1o0qItOTk5RocjRKkkORNClGndunV06dKFkSNHMm/e\nPOzsKvZXh1TOKq+0MWf3Cm7TkcnvL+P7zxby6d/fIjvrto6RCSH0IsmZEKJEly9f5vnnn2fSpEms\nX7+e1157DaWU0WGJUjRt3pKZi78lO+sWU8c8wdG9240OSQhRQbo/EKCUehSYx51E8FNN0+YWc8yH\nQH/gJvB7TdOO6B2XEKJkiYmJfPTRRyxevJiXXnqJxYsX4+TkVOn2ZsyYUWOqZ5mZmcz5+wekpd+k\nTu1avDFxPHZ2dsz9YD5Z2bk4N3Dkr3+exJUrV/ho8TLyNcizq13ppHbtso8qVD0DqOfoxMtvvc/R\nfdv5Yv4ctn67koEjXqJl2042n1zXq1efn3f9h517D9HYvSFTJ79O9JEjLF/1bZHjajvY86cJ4/D1\n9TUoUmHLdK2cKaXsgPnAI0AYMEwpFXLPMf2BQE3TgoBxwMd6xlTTREVFGR2CVZL7cr+y7klOTg6b\nN29m5MiRhIaGkpqayoEDB5g9e3aVEjNrV9HflaysLG7czqPTgBGo+m6kp6dz48YNlKMrnQaMIDMH\nbt++TWpqKvU8m9FpwAi6P/68IUlRu669mbP033R88P+3d+8xUpV3GMe/z+wC4lop6wWNVCGKJdhU\nqmA1NqFRS5UUMVZbjZeiaVOrxqbx1lSTqk1TL39o1RJqQ41aaW01KFXxhiYEqDdkCwLCSoFWBbTL\nigq6uwy//jFHmO7O7M7C7s7ZPc8nmey5vHPOO+/5zZl3z3vO+57GrDtu5KbLzuGFOQ/zUXNTl+9d\ntfSVPshh3xsx8ghOmjqdCVMuZFPTh+TzeZqamhh2+DgmTLlw16tm/xFs3bq1w/t9bunIZdLzertZ\n8wSgMSI2REQb8BdgWrs004AHASLiFWCYpBG9nK8Bw1+K0lwuHbUvk9bWVhoaGpg5cybnnnsuhx56\nKDfffDPHH388jY2NzJgxg9GjR/fIvtN81WyPYkWipraWnHafQkVhGagoWZKum/foFevuVbP2agcN\n5pRp53Pbg/M4+5KreHvFUq678NvccsV5PDrrLpa9soAtH2zuMMrAqoZX92q/aVZTW0tNbS0qPla5\n3K7lhXWl+dzSkcuk5/V2s+ZhwH+K5t+hUGHrLM27ybLNvZs1s4Epn8+zbds2mpub2bJlC83NzTQ1\nNbF48WKuvPJK1q1bx/r161m3bh2jR49m4sSJTJ06lTvvvNNNOANYLpfj2BMnceyJk2ht+Yw1y99g\n5Rv/4OlHZvHOukZ2tLUxcvQYDht1FMMPGsH6NStYuvhFhtUfSN0XvsiQfYYyZOhQhgwZSs5P6pr1\nqn7VCW1XAytXMr5cT6VJy/7Wrl3LokWLUpWnNOxvw4YNzJ8/P1V56qn95fN5Wlpayr7y+Tx1dXXU\n19czfPhw6uvrqa8vNL+NGTOGyZMnM2rUKI488kjq6uoq2ufeGkj3nOVyOfKtn7Js4TM0vbeB2bNn\nA7Dlv5+wbOEzfPrJVu69914A3t30EfmW7Xu1v0Xz53HyqWfsdb5LGTvuGMaOOwaAbZ98TNP7m2j6\nYBPvrX2L99av4YkH7mHbxx/x6fbttLW10tbayo4dbdTW1DJo8GBqBw2mpqYG5XLkcjkkJX9zhWUS\nSuY/X19KyeUlk3ZcWOqtbZ99xpz77/6/Zfl80IYYNGjQ7mWtLbzw5KNEBNtadrDP0H13r2tr5bXn\nH+vQpL969WqWLFlS8nNklcuk56k3B8yVdCJwU0Scnsz/HIjihwIkzQReiohHkvm3gEkRsbndtrI7\nsq+ZmZn1OxGxRzeb9vaVs9eAoyQdAWwEzgPOb5dmLnAF8EhSmfuwfcUM9vwDmpmZmfUnvVo5i4i8\npCuB59jdlcYqST8urI77IuJpSVMkvU2hK41LejNPZmZmZmnWq82aZmZmZtY9qR0hQNLtklZJapD0\nmKT9y6Q7XdJbktZIur6v89nXJJ0j6U1JeUnHdZJuvaR/SloqaeA+E5/oRrlkJl4kDZf0nKTVkp6V\nNKxMukzESiXHXtLdkhqT8874vs5jNXRVLpImSfpQ0hvJ68Zq5LMvSZolabOkZZ2kyWKsdFouGY2V\nkZJelLRC0nJJV5VJ1714iYhUvoDTgFwyfSvwmxJpcsDbwBHAIKABGFvtvPdyuXwZGAO8CBzXSbp/\nAcOrnd80lUvW4gW4Dbgumb4euDWrsVLJsacwSslTyfTXgZerne+UlMskYG6189rH5fINYDywrMz6\nzMVKheWSxVg5BBifTO8HrO6Jc0tqr5xFxAsRsTOZfRko1QFTJZ3cDigRsToiGinzoHkRkeIroz2t\nwnLJWrxMAx5Iph8AziqTLgux4g6xS6v0O5GpB7IiYiHQ3EmSLMZKJeUC2YuVTZEMORkRnwCrKPTV\nWqzb8dJfTsiXAvNKLC/VyW37QsmqAJ6X9JqkH1U7MymRtXg5OJInnyNiE3BwmXRZiJVKjn25DrEH\nskq/EyclzTFPSRrXN1lLtSzGSqUyGyuSRlG4sth+7LNux0tVO6GV9DxQXHsUhR+KGyLi70maG4C2\niJhdhSxWRSXlUoGTI2KjpIMo/PCuSv7r6bd6qFwGlE7KpNS9HuWe/hlwsWI9aglweERsT8ZCfhw4\nusp5snTKbKxI2g94FPhpcgVtr1S1chYR3+psvaTpwBTglDJJ3gUOL5ofmSzr17oqlwq3sTH5+4Gk\nORSaL/r1D24PlMuAi5fOyiS5cXdERGyWdAjwfpltDLhYKaGSY/8u8KUu0gw0XZZL8Q9NRMyTNENS\nfURs6aM8plEWY6VLWY0VSbUUKmYPRcQTJZJ0O15S26wp6XTgWuDMiGgpk2xXJ7eSBlPo5HZuX+Ux\nBUoPcCLtm9TikVQHTAbe7MuMVVm5ex6yFi9zgenJ9A+ADieNDMVKJcd+LnAx7BrdpGSH2ANMl+VS\nfG+MpBModME0oH9sE6L8uSSLsfK5suWS4Vj5I7AyIn5bZn234yXNY2veAwym0MwChacbLpd0KPCH\niPhOlOnktnpZ7n2SzqJQNgcCT0pqiIgzisuFQjPXHBWGvKoFHo6I56qX695XSblkMF5uA/4q6VJg\nA/A9gCzGSrljr4x3iF1JuQDnSPoJ0AZ8Cny/ejnuG5JmA98EDpD0b+CXFH6PMhsr0HW5kM1YORm4\nAFguaSmF20d+QeEJ6D2OF3dCa2ZmZpYiqW3WNDMzM8siV87MzMzMUsSVMzMzM7MUceXMzMzMLEVc\nOTMzMzNLEVfOzMzMzFLElTMzs26S9ISki4rm75N0dTXzZGYDh/s5MzPrJklHAC9RGOT4K8AM4LiI\n2FnVjJnZgOArZ2bW7yTDDa2SdL+k1ZL+JOlUSQuT+QlJun0lzZL0sqQlkqYWvX+BpNeT14nJ8kmS\nXpL0t2T7D5Xaf0RsAH4P3AH8DrjCFTMz6ym+cmZm/U5y5aoRGB8RKyW9DjRExA8lnQlMj4izJf0a\nWBERsyUNA16lcLUrgJ0R0SrpKODPETFR0iTgcWAcsAlYBFwTEYtL5KEWWAssiIiL2q83M9tTaR5b\n08ysM+siYmUyvQKYn0wvB0Yl05OBqZKuTeYHA4cDG4F7JY0H8sCYou2+GhEbASQ1JNvqUDkDjqXQ\n+jC2Jz6Mmdnn3KxpZv1VS9H0zqL5nez+x1PAdyPia8lrdESsBn4GbIqIrwITKFTaSm03T4l/YiWJ\nQnPmBUCjpMt74gOZmYErZ2bWf6mCNM8CV+16Q+FKGcAwClfPAC4Garq578uANRGxALgauE7SAd3c\nhplZSa6cmVl/FWWmi/0KGCRpmaTlwC3J8hnAdElLgaOBbRXsAwBJBwHXAtcAJE2gdwG3d/sTmJmV\n4AcCzMzMzFLEV87MzMzMUsSVMzMzM7MUceXMzMzMLEVcOTMzMzNLEVfOzMzMzFLElTMzMzOzFHHl\nzMzMzCxFXDkzMzMzS5H/AUQZJ1HeBOZCAAAAAElFTkSuQmCC\n", "text/plain": [ "<matplotlib.figure.Figure at 0x7f7b829ed080>" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "n = 50\n", "mu_null = 0\n", "mu_alt = 0.5\n", "sigma = 1\n", "SE = sigma/np.sqrt(n)\n", "samplingdist_null = stats.t(df=n-1,scale=SE)\n", "dist_alt = stats.norm(loc=mu_alt, scale=sigma)\n", "\n", "nsims = 1000\n", "alpha = 0.05\n", "null_left_cutoff = mu_null + samplingdist_null.ppf(alpha/2)\n", "null_right_cutoff = mu_null + samplingdist_null.ppf(1-(alpha/2))\n", "\n", "sample_means = []\n", "sample_zscores = []\n", "\n", "for i in range(nsims):\n", " sample = dist_alt.rvs(size=n)\n", " mean = np.mean(sample)\n", " sample_means.append(mean)\n", " zscore = mean/np.std(sample,ddof=1)\n", " sample_zscores.append(zscore)\n", " \n", "sample_means = np.asarray(sample_means)\n", "sample_zscores = np.asarray(sample_zscores)\n", "\n", "fig, ax = plt.subplots(figsize=(10,4))\n", "x = np.linspace(-2,2,250)\n", "ax.plot(x, samplingdist_null.pdf(x), color='black', label=\"Expected distn of\\nsample means, H0\")\n", "ax.hist(sample_means, bins=50, normed=True, label=\"Observed distn of\\nsample means, HA\",\n", " color='steelblue', histtype='stepfilled', alpha=0.5)\n", "ax.set_xlabel(\"mean X\")\n", "ax.set_ylabel(\"density\")\n", "\n", "min_y, max_y = ax.get_ylim()\n", "\n", "# draw left_cutoff\n", "ax.vlines(null_left_cutoff, 0, max_y, linestyle='dotted')\n", "# draw right cutoff\n", "ax.vlines(null_right_cutoff, 0, max_y, linestyle='dotted')\n", "\n", "ax.legend(loc='upper left')\n", "\n", "failed_to_reject_H0 = np.logical_and(sample_zscores > null_left_cutoff, \n", " sample_zscores < null_right_cutoff)\n", "\n", "How_often_failed_to_reject_H0 = np.count_nonzero(failed_to_reject_H0)/nsims\n", "print(\"For sample size n =\", n)\n", "print(\"the percent of simulations where we failed to reject H0 is:\", \n", " How_often_failed_to_reject_H0 * 100)\n", "print(\"and hence, the percent of simulations where we correctly rejected H0 is:\", \n", " (1.0 - How_often_failed_to_reject_H0) * 100)\n", "\n", "pass" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "We can repeat this exercise for multiple sample sizes as shown below." ] }, { "cell_type": "code", "execution_count": 9, "metadata": { "collapsed": false }, "outputs": [ { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAYQAAAEKCAYAAAASByJ7AAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzt3Xt4VPW97/H3F1C8bFAUuQQvpNGqCKIIiqdoAzQVrRRF\ncdfCrtb6aK21nKenz0YfmyM9tFrbus+upbV2Fz1WaLW74K26q6iEQpWLgILcxBARkngpBYniRi7f\n88dawSFMklnJmlkzk8/reeaZWWtW1vr+mDDfrN/V3B0REZFOSQcgIiL5QQlBREQAJQQREQkpIYiI\nCKCEICIiISUEEREBoEvSAbSVmam/rIhIG7i7pdtf0HcI7l5UjzvuuCPxGFSmjlsulakwHu0tU0sK\nOiGIiEh8lBBERARQQsgr5eXlSYcQu2IsExRnuVSmwpDNMllrdUoH/YDZkcB/u/ve7ISUcRweNXYR\nkY7OzPC2NiqbWScz+6qZPW1m7wHrgHozW2NmPzWzk+MOWEREcq/VOwQzmw88DzwBvO7u+8L9xwAj\nga8Cj7n7zCzH2jQu3SGIiETU0h1CJgnhEHff3d5j4qaEICISXUsJIZOBabeYpf1ZANz933KdDERE\nJH6ZJIRu4fOpwDDgyXB7LLAkG0GJiEjuZdzLyMz+CnzJ3RvC7W7A0+5+YRbjaykeVRmJiETUrl5G\nKXoDn6RsfxLuExGRIhBlcrvfAUvM7LFw+zLgofhDEhGRJEQamGZmQ4ALws2/uvuKrESVWSyqMhIR\niSiWKiMLuhoNAI5y958DW83s3IiBzDCzd81sZQvH3GtmG8zsVTM7K8r5RUSk7aK0IfwKOB+4Otxu\nAH4Z8XoPAhc196aZXQyUufspwI3AryOeX0RE2ihKQjjP3W8G/hvA3bcBh0a5mLsvBLa1cMg4grYK\n3H0xcJSZqeG6ANXU1DBp0iRGjhzJpEmTqKmpSTqkWBRruST/5eJ3L0qj8m4z6ww4gJkdB+yLOZ5+\nwOaU7dpw37sxX0dS1NTUUFlZSW1tLf369WPatGmUlpa263wVFRVUV1fv37do0SLmzp3brvMmrVjL\nJfkvV797URLCvcBjQC8z+xFwJVAZWySSiPb+ork7O3fupKGhgR07dtDQ0MCUKVMOOB9AdXU1V111\nFV/72tdiXT2qMYZcPF588cW05aqoqCjKaZYlf1RVVaX93ausrGTmzPimkcs4Ibj7LDNbBowGDLjM\n3dfGFkmgFjghZfv4cF9aU6dO3f+6vLxc/ynboLKyMu0v2vjx47nkkktoaGg44Mu+6XNDQwNdu3al\ne/fudOvWjW7durFx48a016qrq2P9+vWYWeyPTp06ZeW8qY/58+enLVeXLl0YPnx47J+NSKOFCxem\n3V9XV9fqz1ZVVVFVVZXRdTJOCGZ2t7tPIZj+uum+KCx8pPMkcDPwqJkNB7a7e7PVRakJQaLZvHkz\n8+bN44UXXkj7/tatWzn88MPp1avXAV/2ja9T93XpcuCv0aRJk5g1a9ZB5xw5ciTTp0/PSnlyYcGC\nBbzxxhsH7R86dCjXX399AhFJR1FVVcX69esP2l9SUtLqzzb9Y/kHP/hB8wdHuDVfnmbfyoi3978H\n6oBdwNvA1wl6E92Qcsx04E3gNWBIC+dyyVxtba3PnDnTr7/+ei8rK/OePXv6lVde6UOHDnWCdqED\nHhMnTmzztTZu3OhlZWUHnK+srMw3btwYY4lyr1jLJfkvzt+98Lsz7fdqJtNf3wR8C/gMkFq30A34\nm7tPavEEWaKBaS1755139t8qzps3j7///e98/vOfZ+TIkZSXl3PGGWfQqVOntG0IZWVl7W6samyo\nrquro6SkpN0N1fmiWMsl+S+u3732rodwFNADuAu4NeWtBnf/R+RoYtJRE0JzPYLef//9/V/+VVVV\n1NfXc+GFF+5PAGeeeSadOqXvZawvOZGOo10JIV91xISQ7q/57t2707t3b9577z1GjBjByJEjGTly\nJIMHD6Zz584JRisi+ai9C+Q0nuQhYLK7bw+3ewD3uPt18YQprUnXI2jHjh2cf/75rFmz5qDGXRGR\nKKKMVD6zMRnA/pHKZ8cfkjRny5Ytafd/8sknSgYi0m5REkKn8K4AADM7hmgD26Qddu3axZtvvpn2\nvUy6nomItCbKF/o9wCIz+2O4PQH4UfwhSVMff/wxV1xxBYMGDaJr164HDPwqKytj2rRpCUYnIsUi\n6noIA4BR4eaL7r4mK1FlFkuHaFTeuXMn48aNo2fPnjz88MNs3rxZPYJEpM1i6WUUrocwEfiMu/8f\nMzsR6OPuS+ILNXMdISF8+OGHjB07lhNPPJEHHnhAvYZEpN3iWlM5jvUQJEM7duxgzJgxnHzyyTz4\n4INKBiKSdTldD0Eys23bNioqKhg8eDD3339/swPKRETiFOWbJhfrIXR4W7duZfTo0Xzuc59j+vTp\nSgYikjNRvm0a10PoHa6H8DeC6SwkJu+99x4jR47koosu4p577iFothERyY2ovYxOI1gPAeAFd1/X\n0vHZVGyNyvX19YwePZoJEyYwdepUJQMRyYp2TV1hZgvdfYSZNRBUFzWeyM3MgX8AP3X3X8UWcQez\nZcsWRo0axTXXXMPtt9+edDgi0kG1e3I7MzsWeMndT40npIyvWxR3CJs2bWLUqFHcdNNNfO9730s6\nHBEpclmf7dTM+rp7fbtPFO2aBZ8QqqurGT16NN/97nf5zne+k3Q4ItIBxDIOwQKTzOx/h9snmtm5\nALlOBsVg/fr1lJeXc9tttykZiEheiDJS+T6Cbqaj3P30cKK759x9WDYDbCGegr1DWLNmDRUVFfzw\nhz/k61//etLhiEgHEst6CAQD04aY2QoIBqaZmQamRbRy5UrGjBnDT37yEyZNSmT1URGRtKIkBA1M\na6fly5dzySWXcO+993LVVVclHY6IyAGiJITGgWm9woFpVwLfz0pURSJ1/eOuXbuydOlSZsyYwWWX\nXZZ0aCIiB8koIYQznf4VWEYwMM2Ay9x9bRZjK2jp1j/u06cPgwcPTjAqEZHmRWlUXuXug7IcT8by\nvVF50qRJzJo166D9EydOZObMmQlEJCIS3/TXy80skR5Fhai2tjbt/rq6uhxHIiKSmUi9jICJZrYJ\n+Iig2sjd/cysRFbg+vXrl3a/1j8WkXwVpcropHT73X1TrBFlKN+rjGpqahgyZAjbt2/fv6+srIy5\nc+dqyUsRSUzWp65IQr4nBHenf//+DBgwgF27dmn9YxHJC3ENTJMIVq1ahZnxzDPPaCprESkIWo4r\nS+bMmcP48eOVDESkYESZ3O6WcP4iycDs2bO54oorkg5DRCRjUe4QegNLzeyPZjbG9Kdvs9544w22\nbt3K+eefn3QoIiIZyzghuPv3gVOAGcC1wAYzu9PMyrIUW8GaPXs2l19+OZ06qUZORApHpG+ssFvP\nO+FjD9AD+JOZ/STTc4R3F+vM7A0zm5Lm/e5m9qSZvWpmq8zs2igx5gNVF4lIIYoyDmEy8DXg78Bv\ngcfdfbeZdQI2uHurdwrhsW8QzIdUBywFvuLu61KOuQ3o7u63mVlPYD3Q2933NDlXXnY73bRpE0OH\nDqW+vp4uXdSJS0TyS1zdTo8BxjcdiObu+8zs0gzPcS5B8tgUBvYIMA5Yl3KMA93C192ArU2TQT6b\nM2cOX/7yl5UMRKTgRGlDuKO5UckRZj3tB2xO2d4S7ks1HRhgZnXAa8DkTGPMB6ouEpFC1eqfsWbW\nQLgoTtO3CJoVuscc00XACncfFTZYzzWzM939w6YHTp06df/r8vJyysvLYw4lmvr6elavXs3o0aMT\njUNEpFFVVRVVVVUZHZvTqSvMbDgw1d3HhNu3EiSVu1OO+TNwl7v/Ldx+AZji7q80OVfetSHcd999\nLFy4MO201yIi+SCW6a/N7O5M9rViKXCymZ0Ursf8FeDJJsdsAr4Qnr838FlgY8TrJELVRSJSyKL0\nMlru7kOa7FsZdfprMxsD/JwgGc1w9x+b2Y0Edwq/MbO+wP8D+oY/cpe7/yHNefLqDmHr1q185jOf\nob6+niOOOCLpcERE0mpXLyMzuwn4FlBmZitT3uoGvBQ1GHf/C3Bqk333p7yuJ2hHKChPPPEEFRUV\nSgYiUrAy6Rv5e+C/gLuAW1P2N7j7P7ISVQGaPXs2EydOTDoMEZE2a7UNwd0/cPe3gE+AD9x9U9j9\n1M3sgWwHWAg++OADFixYwKWXZjocQ0Qk/0SZuuJMd9+//Je7bwPOjj+kwvP0009z4YUX0r173D1w\nRURyJ0pC6JQ6/bWZHYMW2AHUu0hEikOUXkZfA24H/hjumgD8yN0fzlJsrcWTF72MPvroI0pKSti4\ncSPHHnts0uGIiLQolrmM3P13ZvYKMCrcNd7d18QRYCF79tlnGTZsmJKBiBS8KAPTDBgCHOPu04EP\nzezcrEVWIFRdJCLFIkqV0X3APmCUu58etic85+7DshlgC/EkXmW0a9cu+vTpw9q1a+nTp0+isYiI\nZCKu6a/Pc/chZrYCgl5G4fQTHdbzzz/PwIEDlQxEpChE6WW028w6E858ambHEdwxdFizZ89m/Pjx\nSYchIhKLKFVGE4F/JmhHeAi4Evi+u/9n9sJrMZ5Eq4z27NlDnz59WLZsGSeddFJicYiIRNHuKqOw\nQfmvwDKC5S8NuCzCwjhFZ/78+ZSWlioZiEjRyCghuLub2TPuPogDl7vssNS7SESKTZRG5eVmNszd\nl2YtmgKxb98+HnvsMebPn590KCIisYnUywiYaGabgI/4dAnNSOshFIOXX36Znj178tnPfjbpUERE\nYhOlDeEGgtXMOjxVF4lIMYrSy2hV2IaQF5LqZeTulJaW8tRTTzFoUN78c4iIZCSWNZUJ2xBiiqlg\nLVu2jEMPPZSBAwcmHYqISKzUhhBR42C0oBZNRKR4REkIBbfOcdzcndmzZzNr1qykQxERiV2U6a87\nfIPy6tWr2bVrF0OHDk06FBGR2EVa8czMBgMXhJsL3P21+EPKX6ouEpFiFmU9hMnALKBX+JhpZrdk\nK7B8pMnsRKSYRel2uhI4390/CrePBF5OqlE5191ON2zYwAUXXEBtbS2dO3fO2XVFROIUV7dTA/am\nbO8N93UIc+bM4fLLL1cyEJGiFaUN4UFgsZk9Fm5fBjwQf0j5afbs2dx5551JhyEikjUZVxkBmNkQ\nYES4ucDdV2QlqsxiyVmV0dtvv82QIUOor6/nkEMOyck1RUSyIZYlNM3sIWCyuy8Pt3uY2QPufl1M\nceatOXPmMHbsWCUDESlqUdoQznT37Y0b7r4NODv+kPLPnDlzNJmdiBS9KAmhk5n1aNwws2OIOI6h\nEL3zzjusWrWKioqKpEMREcmqKF/o9wAvm1njGsoTgB/FH1J+efzxx7n44ovp2rVr0qGIiGRVxncI\n7v47YDzwbvgY7+4PZyuwfKHBaCLSUUTqZRTLBc3GAP9OkIxmuPvdaY4pB/4vcAjwvruPTHNM1nsZ\nbd26ldLSUurr6znyyCOzei0RkVyIpZdRTIF0AqYDo4E6YKmZPeHu61KOOQr4JfBFd681s565jDHV\nU089xRe+8AUlAxHpEKI0KsfhXGCDu29y993AI8C4Jsd8FZjt7rUA7v73HMe4n5bKFJGOpE0JwcxO\nMLOhZnZCxB/tB2xO2d4S7kv1WeAYM5tnZkvN7F/aEmN77dixg/nz53PppZcmcXkRkZyLXGVkZjcC\nXYEPgaPNbK+7/zzmmIYAo4AjCXo2vezubzY9cOrUqftfl5eXU15eHlsQTz/9NCNGjOCoo46K7Zwi\nIrlWVVVFVVVVRsdGblQ2sy+4+/Mp2yPdfV6GPzscmOruY8LtWwmW4bw75ZgpwGHu/oNw+7fAf7n7\n7Cbnymqj8oQJExgzZgzf+MY3snYNEZFca6lRuS0J4VzgKuBw4APgGXdfmOHPdgbWEzQq1wNLgKvd\nfW3KMacBvwDGENyJLAb+2d3XNDlX1hLCzp076du3L9XV1fTsmVibtohI7NrVy8jMLnP3xxu33X0J\nwRd5ZO6+18y+DTzHp91O14bVUO7uv3H3dWb2LLCSYIrt3zRNBtn27LPPMnToUCUDEelQWr1DMLO1\nwKMESWBJaq8fM+vu7juyG2KzcWXtDmHSpEmcf/753HzzzVk5v4hIUtpVZWRmPwHWEaylfBHwMbCU\nIEGc7O7fijfczGQrIezatYs+ffqwevVqSkpKYj+/iEiS2jswrdLddwEPmNk1wBMEs5wOIRhXUFRe\nfPFFBgwYoGQgIh1OJgnhKqBxziIPp8CeB8wzs9VZiywhGowmIh1VJlVGdcBTwEKgt7v/LOW9Enev\ny26IzcYVe5XRnj176Nu3L0uWLKG0tDTWc4uI5IP2VhndAywjqB4618xeBd4DVgAnAlfHFWhSampq\nqKysZPXq1ezduzfpcEREEtGm2U7NrDdwHnCzu18Ue1SZxRDLHUJNTQ0VFRVUV1fv31dWVsbcuXN1\nlyAiRaelO4Q2zWXk7u+6+5PAD9oVWR6orKw8IBkAVFdXU1lZmVBEIiLJaNdsp+7+UlyBJKW2tjbt\n/rq6RJpGREQSk+vpr/NOv35NJ1sNqNupiHQ0OV8xLS5qQxARiS6Wye3M7BZgprtvizO4toqz22lN\nTQ3nnHMOpaWlnH766UybNk3JQESKUlxLaPYmWPJyOfAA8GzWFzXOkV69erFr1y5eeuklunbtmnQ4\nIiKJyLgNwd2/D5wCzACuBTaY2Z1mVpal2HLmlVdeYdCgQUoGItKhRWpUDu8I3gkfe4AewJ/CCfAK\n1uLFixk+fHjSYYiIJCrjhGBmk81sGfAT4G/AIHe/CTgHKOjJfxYtWsR5552XdBgiIomKcodwDDDe\n3S9y9/90990A7r4PKNiV6N2dRYsW6Q5BRDq8KAnhMHfflLrDzO4GSF0Cs9Bs2bKFPXv20L9//6RD\nERFJVJSEUJFm38VxBZKUxvYDs7S9sEREOoxM1lS+CfgWUGZmK4HGb85uBG0JBU3tByIigUzuEGYB\nY4HHCdoKLgW+BJzt7hOzGFtOqIeRiEggkwVyFrr7CDP7ENiX+hZBT9Tu2QywhbjaPS5u9+7d9OjR\ng7q6Orp3T6QYIiI51a6Ryu4+Inz+p7gDS9qqVavo37+/koGICB18tlO1H4iIfCqTRuUGwPm0MZmU\n7cSqjOKwePFiRowYkXQYIiJ5odU7BHfv5u7dw+duTbYLNhmA7hBERFJ12PUQ/vGPf9C/f3+2bdtG\n586dY4xMRCR/tWtNZTNbGD43mNmO8LnxsSPuYHNlyZIlnHPOOUoGIiKhKL2MumU/nNzR/EUiIgeK\nMtvpYWb2XTObY2azzex/mtlh2QwumxYvXqz2AxGRFFGW0Pwj0ADMDHd9FTja3SdkKbbW4mlzG4K7\nc+yxx7J69Wr69u0bc2QiIvkrriU0B7r7gJTteWa2pn2hJWPDhg10795dyUBEJEWUgWnLzWx/pbuZ\nnQe8EvWCZjbGzNaZ2RtmNqWF44aZ2W4zGx/1Gq1Rd1MRkYNlMjBtFcFAtEOAl8zs7fCtE4F1US5m\nZp2A6cBooA5YamZPuPu6NMf9GHg2yvkzpQntREQOlkmVUZyroZ0LbGhcaMfMHgHGcXBiuQX4EzAs\nxmvvt2jRIiZOLPiJWkVEYpVJt9P9q6SZWQ/gFCC1d9Gmg36oef2AzSnbWwiSxH5mVgJc5u4jzeyA\n9+Kwc+dO1q1bx9lnnx33qUVEClrGjcpmdj0wGTgeeBUYDrwMjIo5pn8HUtsWYl3KbPny5QwYMIDD\nDz88ztOKiBS8KL2MJhNU4SwK/3o/Dbgz4vVqCdoeGh0f7ks1FHjEgjUtewIXm9lud3+y6cmmTp26\n/3V5eTnl5eWtBqD2AxHpSKqqqqiqqsro2CjjEJa6+zAzexU4z913mdlqdz8j08DMrDOwnqBRuR5Y\nAlzt7mubOf5B4Cl3n5PmvTaNQ5gwYQLjxo1j0qRJkX9WRKTQtWsuoxRbzOxogqU055rZE0RrP8Dd\n9wLfBp4DVgOPuPtaM7vRzG5I9yNRzp8JTVkhIpJem2Y7NbPPA0cBf3H3T2KPKrMYIt8h1NbWMnjw\nYN5//32CGikRkY4lrpHK+7n7/PaFlIzG+YuUDEREDhall9FhwLeAEQRVOQuB+9z9v7MUW+w0oZ2I\nSPOitCH8DjgD+AXBaOMBwMPZCCpb1H4gItK8KL2M1jSZ3C7tvlyJ2oawZ88eevTowebNmzn66KOz\nGJmISP6Kq5dRLJPbJeX111/n+OOPVzIQEWlGTie3S5LaD0REWpbrye0So/YDEZGWtVpl5O6bGh/A\n0cDY8HF06sR3+U5TVoiItCzKmsqTgVlAr/Ax08xuyVZgcdq+fTtvv/02AwcOTDoUEZG8FWVg2jcI\n5jD6CMDM7iaY7fQX2QgsTkuXLuWcc86hS5c2jcMTEekQovQyMmBvyvZeYp6aOlu0ZKaISOui/Mn8\nILDYzB4Lty8DZsQfUvwWL17Mddddl3QYIiJ5LaOBaeHaBMcDxxFMXQGwwN1XZDG21mLKaGCau3Pc\nccfx2muv0a9fvxxEJiKSv9o9MC385n3G3Ze7+73hI7FkkKmamhrGjRtHQ0MDU6ZMoaamJumQRETy\nVpSpKx4Cprv70uyGlJnW7hBqamqoqKigurp6/76ysjLmzp1LaWlpLkIUEck7cU1dcR6wyMyqzWyl\nma0ys5XxhBi/ysrKA5IBQHV1NZWVlQlFJCKS36I0Kl+UtSiyoLa26VLNgbq6uhxHIiJSGDKZy+gw\n4JvAycAqYIa778l2YO3VXANySUlJjiMRESkMrbYhmNmjwG5gAXAxsMndJ+cgthZl0oYwatQo3nrr\nrf371IYgIh1dS20ImSSEVe4+KHzdBVji7kPiDzOaTLqd/uEPf2Dy5MkMHDiQkpISpk2bpmQgIh1a\ne9dU3t34wt33FNJ6xNu2bePyyy/n/vvvTzoUEZG8l0lCGGxmO8LXBhwebhvBEIXuWYuundasWcOA\nAYks6CYiUnAymf66s7t3Dx/d3L1Lyuu8TQaghCAiEkWUcQgFRwlBRCRzRZsQtm7dyscff6xupiIi\nGSrahLB27VoGDBhAITWCi4gkqWgTgqqLRESiiZQQzGxU6nM+U0IQEYkm6h3Cz5o85y0lBBGRaNpa\nZZT3FfNKCCIi0RRlG8IHH3zA9u3bOeGEE5IORUSkYBRlQli7di2nn346nToVZfFERLIi59+YZjbG\nzNaZ2RtmNiXN+181s9fCx0IzGxT1GqtXr1Z1kYhIRFETwofhc0NbLmZmnYDpBIvtnAFcbWanNTls\nI3Chuw8Gfgj8R9TrqP1ARCS6SAnB3S9MfW6Dc4EN7r7J3XcDjwDjmlxjkbt/EG4uAtKvdNMCJQQR\nkehyXWXUD9icsr2Flr/wrwf+K+pFlBBERKKLsqZyTpnZSODrwIjmjpk6der+1+Xl5ZSXl9PQ0MD7\n779P//79sx6jiEi+q6qqoqqqKqNjW10xLU5mNhyY6u5jwu1bCdZUuLvJcWcCs4Ex7l7dzLnSrpi2\ndOlSbrjhBlasWBF7/CIiha6lFdNarTKyDGaHy+SY0FLgZDM7ycwOBb4CPNnkXCcSJIN/aS4ZtETV\nRSIibZNJG8I8M7sl/KLez8wONbNRZvYQcE0mF3P3vcC3geeA1cAj7r7WzG40sxvCwyqBY4BfmdkK\nM1uScWlQQhARaatWq4zM7DDgOmAiUApsBw4DOhN8sf/K3XNeP9NcldHYsWO57rrruPzyy3MdkohI\n3mupyihSG4KZHQL0BD529+0xxdcmzSWEsrIynnnmGU499dQEohIRyW+xJYR8ki4h7Ny5k2OPPZaG\nhga6dMnbDlQiIolpV6NyIVm/fj2nnHKKkoGISBtklBAskPdTh6pBWUSk7TJKCGHdzDNZjqVdampq\nuOuuu1i8eDGTJk2ipqYm6ZBERApKxm0IYffS6e6+NLshZSa1DaGmpoaKigqqqz8dtlBWVsbcuXMp\nLS1NKkQRkbwTVxvCecAiM6s2s5VmtsrMVsYTYvtUVlYekAwAqqurqaysTCgiEZHCE6X19aKsRdFO\ntbW1affX1dXlOBIRkcIV5Q7hbeAC4Bp33wQ40DsrUUXUr1/6CVNLSkpyHImISOGK0oZwH7APGOXu\np5tZD+A5dx+WzQBbiEdtCCIiEcUyMM3Mlrv7EDNb4e5nh/teC1c2y7mmA9NqamqorKykrq6OkpIS\npk2bpmQgItJEXAlhMfA/gKVhYjiO4A7h7PhCzVxzU1eIiEjz4upldC/wGNDLzH4ELATujCE+ERHJ\nA1EntzsNGA0Y8IK7r81WYBnEojsEEZGIWrpDyLjbqZnNBOYTJIJ1cQUnIiL5IUobwkiCbqcXAGXA\nCuCv7v7z7IXXYjy6QxARiSjO9RA6A8OAkcA3CdZFOC2WKCNSQhARiS6uKqMXgCOBl4EFwDB3fy+e\nEEVEJGlRehmtBD4BBgJnAgPN7PCsRCUiIjkXecU0M+sGXAt8D+jj7l2zEFcmcajKSEQkoriqjL5N\n0KB8DvAW8ABB1ZGIiBSBKLOdHgb8G7DM3fdkKR4REUlI1F5GgwnuEgAWuPtrWYkqs1hUZSQiElEs\nU1eY2XeAWUCv8DHTzG6JJ0QREUlalIFpK4Hz3f2jcPtI4GV3PzOL8bUUj+4QREQiimtyOwP2pmzv\nDfeJiEgRiNKo/CCw2MweC7cvA2bEH5KIiCQhaqPyEGBEuLnA3VdkJarMYlGVkYhIRO0ah2BmhxHM\nW3QysAr4lbqdiogUn0zaEB4ChhIkg4uBn2U1IhERSUSrVUZmtsrdB4WvuwBL3H1ILoJriaqMRESi\na28vo92NL+KoKjKzMWa2zszeMLMpzRxzr5ltMLNXzeys9l5TRERal0lCGGxmO8JHA3Bm42sz2xHl\nYmbWCZgOXAScAVwdLsuZeszFQJm7nwLcCPw6yjUKWVVVVdIhxK4YywTFWS6VqTBks0ytJgR37+zu\n3cNHN3fvkvK6e8TrnQtscPdN7r4beAQY1+SYccDvwmsvBo4ys94Rr1OQ9MtbOIqxXCpTYUg0IcSs\nH7A5ZXurw9m8AAAHDUlEQVRLuK+lY2rTHCMiIjHLdUIQEZE8FXmBnHZdzGw4MNXdx4TbtwLu7nen\nHPNrYJ67PxpurwM+7+7vNjmXuhiJiLRBuxfIiclS4GQzOwmoB74CXN3kmCeBm4FHwwSyvWkygOYL\nJCIibZPThODue8OV154jqK6a4e5rzezG4G3/jbs/Y2aXmNmbwEfA13MZo4hIR5XTKiMREclfBdmo\nnMngtkJgZm+Z2WtmtsLMloT7epjZc2a23syeNbOjko6zJWY2w8zeDdfLaNzXbBnM7LZw0OFaM/ti\nMlG3rJky3WFmW8xsefgYk/JeIZTpeDN70cxWm9mqcMGrgv6s0pTplnB/wX5WZtbVzBaH3wmrzOyO\ncH9uPid3L6gHQRJ7EzgJOAR4FTgt6bjaWJaNQI8m++4G/jV8PQX4cdJxtlKGEcBZwMrWygAMAFYQ\nVFX2Dz9HS7oMGZbpDuC7aY49vUDK1Ac4K3z9T8B64LRC/qxaKFOhf1ZHhM+dgUUE47dy8jkV4h1C\nJoPbCoVx8F3aOIIJBQmfL8tpRBG5+0JgW5PdzZXhy8Aj7r7H3d8CNhB8nnmlmTJB+gWhxlEYZXrH\n3V8NX38IrAWOp4A/q2bK1DhmqZA/q53hy64EX/ROjj6nQkwImQxuKxQOzDWzpWZ2fbivt4e9qtz9\nHYL1qwtNr2bKUOiDDr8dzq/125Rb9oIrk5n1J7gDWkTzv28FVa6UMi0OdxXsZ2VmncxsBfAOMNfd\nl5Kjz6kQE0Ix+ZwHM8deAtxsZhcQJIlUxdDqXwxl+BXwGXc/i+A/6j0Jx9MmZvZPwJ+AyeFf1QX/\n+5amTAX9Wbn7Pnc/m+AO7lwzO4McfU6FmBBqgRNTto8P9xUcd68Pn98HHie41Xu3ce4mM+sDvJdc\nhG3WXBlqgRNSjiuYz87d3/ew0hb4Dz69LS+YMlkwff2fgIfd/Ylwd0F/VunKVAyfFYC77wCqgDHk\n6HMqxISwf3CbmR1KMLjtyYRjiszMjgj/ssHMjgS+SLAI0ZPAteFh1wBPpD1BfjEOrLNtrgxPAl8x\ns0PNrJRgFb4luQoyogPKFP4nbDQeeD18XUhlegBY4+4/T9lX6J/VQWUq5M/KzHo2VnGZ2eFABUHb\nSG4+p6Rb1NvYCj+GoEfBBuDWpONpYxlKCXpIrSBIBLeG+48Bng/L9xxwdNKxtlKO3wN1wC7gbYKB\nhD2aKwNwG0FPiLXAF5OOP0KZfgesDD+zxwnqdAupTJ8D9qb8zi0P/x81+/uW7+VqoUwF+1kBg8Jy\nvBqW4fZwf04+Jw1MExERoDCrjEREJAuUEEREBFBCEBGRkBKCiIgASggiIhJSQhAREUAJQaRNzGye\nmQ1p5znGmtm/xhWTSHvleglNEQm5+1PAU0nHIdJIdwhSFMKpQP4cLiyy0swmhPsrwwVHVprZr1OO\nn2dm/xbONLvazIaa2exwAZJp4TEnhYuOzDSzNWb2RzM7LM21K8zsJTN7xcweNbMj0hzznfA6r5rZ\n78N915jZveHrFeFiLivMbKeZXRCWaYaZLTKzZWY2tpV/g5PCOH9jZq+b2V/MrGv7/mWlI1FCkGIx\nBqh197Pd/UzgL+H+X7j7eeG+I8zsSyk/s8vdhwH3E8wNcxPB1AHXmlmP8JhTgenuPgBoAL6VelEz\nOxb4PjDa3YcCy4D/lSa+KQSLuZwFfLPpm2HcQ4BKgvm6XgJuB15w9+HAKOBn4fw2LTk5LPNA4APg\nilaOF9lPCUGKxSqgwszuMrMR7t4Q7h8d/oW9EhgJnJHyM0+m/Ozr7v6eu38CVPPpDJJvu/ui8PVM\ngtXUUg0nWLXqb+Ec9l/jwNl4G70G/N7MJhLMv3MQMzsF+Ckwwd33Ekx4eGt43irg0GbOnarG3VeF\nr5cRrKIlkhG1IUhRcPcNYSPvJcAPzex5gi/XXwJD3L0uXJ82tcpnV/i8L+U1BHPNN/d/o+nkXwY8\n5+4TWwnxS8CFBCtc3W5mAw84STDz7aPAN9w9dcrzK9x9QyvnTpVajr0cWF6RFukOQYqCmfUFPnb3\n3xMkgiEEX4YObA2/cK9sw6lPNLPzwtdfBRY0eX8R8DkzKwvjOCL8Sz81NgNOdPf5wK1Ad4I1gFM9\nADzg7i+l7HsW+E7Kec4Kn0vChJdOuqUjRTKiOwQpFoOAn5rZPuAT4Jvu/oGZ/RZYDdRz4DzxLU3z\nm/reeoLV7B4Mz/Pr1GPc/e9mdi3wh7AB1wnaFFL/qu8MzDSz7gRf2D939x1BngAzO5Fg3v6Tzewb\n4TmuB34I/HtY3WVADcEdRl9gdwaxi0Si6a9FmmFmJwF/dvdBSceSysxuBja5+5+TjkWKi+4QRFqW\nd38xufsvk45BipPuEEREBFCjsoiIhJQQREQEUEIQEZGQEoKIiABKCCIiElJCEBERAP4/8OvGaSDY\nFCAAAAAASUVORK5CYII=\n", "text/plain": [ "<matplotlib.figure.Figure at 0x7f7b829edc18>" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "mu_null = 0\n", "mu_alt = 0.5\n", "sigma = 1\n", "\n", "nsims = 2000\n", "sizes = [5, 10, 20, 40, 60, 80, 100, 150, 300]\n", "\n", "alpha = 0.05\n", "SEs = [sigma/np.sqrt(i) for i in sizes]\n", "left_cutoffs = [mu_null + stats.t.ppf(alpha/2, df=i-1, loc=mu_null, scale=j)\n", " for (i,j) in zip(sizes, SEs)]\n", "right_cutoffs = [mu_null + stats.t.ppf((1-alpha/2), df=i-1, loc=mu_null, scale=j)\n", " for (i,j) in zip(sizes,SEs)]\n", "\n", "dist_alt = stats.norm(loc=mu_alt, scale=sigma)\n", "samples = [dist_alt.rvs(size=(i, nsims)) for i in sizes]\n", "sample_means = np.asarray([np.mean(i, axis=0) for i in samples])\n", "sample_stds = np.asarray([np.std(i, ddof=1, axis=0) for i in samples])\n", "sample_zs = (sample_means-mu_null)/sample_stds\n", "\n", "failed_to_reject_H0 = [np.logical_and(i > left, i < right) for (i, left, right) \n", " in zip(sample_zs, left_cutoffs, right_cutoffs)]\n", "\n", "frac_failed_to_reject_H0 = [np.count_nonzero(i)/nsims for i in failed_to_reject_H0]\n", "\n", "correctly_rejected_H0 = [(1-i) for i in frac_failed_to_reject_H0]\n", "\n", "fig, ax = plt.subplots(figsize=(6,4))\n", "ax.plot(sizes, correctly_rejected_H0, marker='o', color='black')\n", "ax.set_xlabel(\"sample size, n\")\n", "ax.set_ylabel(\"Power ( = Probability $H_0$ correctly rejected)\")\n", "ax.set_ylim(0,1.1)\n", "ax.set_xlim(0, max(sizes)*1.05)\n", "\n", "#fig.savefig('fig-powercurve-diff05.pdf')\n", "pass" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "### Varying both sample size and effect size\n", "\n", "In the simulations above we kept the effect size (the difference between the mean of the null and true distributions in our example) constant. Now let's explore how both sample size and effect size influence power. We'll consider three different scenarios -- $\\mu_{H_A} = 1$, $\\mu_{H_A} = 0.5$, and $\\mu_{H_A} = 0.25$ ($\\mu_{H_0} = 0$ in all three cases). As before, the significance threshold, $\\alpha = 0.5$, for all the simulations." ] }, { "cell_type": "code", "execution_count": 10, "metadata": { "collapsed": false }, "outputs": [ { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAskAAALLCAYAAAAL/R/mAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzs3Xl8leWZ+P/PlT0hIQlLSEgIa2SVnUQFEbFVO2611Vpr\n61TtMqN2+u10ln7nN53BaV+vsXXqt9NabbV2c622rq0KiqAiIIvsBDBhMQtJIBASQvZz//54zhMO\nMUBynufkec7J9X698srJWe5z5QSuXLnPdd+3GGNQSimllFJKnRbndQBKKaWUUkr5jRbJSimllFJK\n9aBFslJKKaWUUj1okayUUkoppVQPWiQrpZRSSinVgxbJSimllFJK9aBFsnJMRO4SkVXBy3Ei0iQi\nBcGvU0XkryLSICJPBa+7X0SOisjHvYx1mYjsGNjvQCmloofmXKUGhhbJUSiYEBuDH10icirkuls9\nCssAGGMCxpgMY0xl8PpbgCwg2xhzm4iMA74FFBljCj8xiDHvGGMuHKCYPSUit/f4WTYGvw6IyPe8\njs9NIjJTRJYHf1G3ex2PUv2hOTc2DKacCyAi/ywih0XkuIg8KiIJZ7lffPA1aAp5fR4e6Hj9SIvk\nKBRMiEONMUOBQ8A1Idc90/P+IhI/8FF2GwvsNadPrRkH1BpjjnsXkj8YY/4Q+rMM/jz/CagGHh+I\nGERkoHJAO/AM8LUBej6lXKM5NzYMppwrItcA3wEuA8YDU4D/OMdDDDAt5PW5ewDC9D0tkqOfBD9O\nXyHyAxF5VkSeFpETwG0i8oSI/EfIfa4QkQMhX+eLyAsiUici5SJy1v8gIjJCRP4iIidEZC3Wf0D7\nNvsv0kIR+SHwb8CXg3+Z3g68BhQGv360l7F7xlUhIt8Rke3Bv4afEpHEs8R1l4isFpH/Dd53n4gU\ni8idIvJx8C/q20LunywiD4bc9pCIJAVvGxZ8y7JOROpF5BURGR3y2PdEZJmIvB/8Xl4TkazgbanB\nOI8G41gvIsPO9nqGjDkf+B/gC8aYIyHf04Hgc5SJyBdC7v9NESkN3rZdRC4MXj89+DocF5FtIvI3\nIY95Ivh9vi4iTcCic70ObjHG7DHG/A4odXNcpTygOff0fTXn4s+cC9wOPGqM2WeMaQB+ANxxrpcD\nrQk/yRijH1H8ARwAlva47gdAK/A3wa9TgCeA/wi5zxXA/uBlAbYA/wrEAxOA/cDlZ3nOPwFPAcnA\nhVh/hb8dvC0e6AIKQ2L5TW/Pe5axz7gdqADWAiOBbGAvcOdZHnsX0AZ8Kfg9/TdwEPgpkAh8BmgA\nUoL3/znwZ2AokA78BbgveNsI4AYgKXjbn4DnQp7rvWAsE4Kv77vAfwVvuxt4IfhYAeYCaef5OQ4L\n/iz/T8h1GcF4JwS/HgVMCV6+FWtGa3bw60lAfvD73A98N/izuAJoChnjCaAeKA5+nXSu16GXOBcD\nx4Fjwc+hl4/Z457j+5wMtHv9/0Y/9CPcDzTnhj5Wc65Pcy6wE7gx5Ouc4L+TjF7uGw8EgMrgv63n\n7H9Pg/1D/2qIXWuMMa8BGGNaz3PfS7D+4/zIGNNljNkP/Ab4Ys87itXTdAPw78aYNmPMDqwkcMbd\nnId/hv9njDlirLcL/wLMPsd9y4wxTxvrf/4fgTHAMmNMhzHm9eB9JoiIYL31/3+MMY3GmJPA/ViJ\nEGPMUWPMy8aY9pDbLuvxXI8bY/YHX9/nQ+LqwEr4FxjLh8aYU+f5Hp8ANhljftrj+gBwoYgkG2Nq\njTF7gtffBdxvjNkajLfMGFMFLAQSjTE/Cf4sVwKvc+bP8kVjzIaQWM/6OvRkjHnXGJNtjBkW/Bx6\neVjIuEoNNppzNef6KeemAydCvm7E+neS0ctzdAGXYrXmTAWOAq8Ef2aDWq9N3ComVPTjvoXAWBE5\nFvzafttlVS/3HRW8rTLkukPAgnCC7KPakMunsP5678t9W4AuY73VFHpdOpCLNSuzLSQPxGElSERk\nCPC/wKeBTKzXJL3Hc9X0iMu+/XdAHvCciGRgJeN/N8YEegtYRP4dmAjMD73eGNMk1qKgfwJ+JyLv\nAf9ojCnD+kVU3stwo4GeK9gPceZrFvpv45yvg1KqzzTnas61+SHnnsSaqbZlYvUdN/V2Z2PM+8GL\nJ0TkH7CK6guwZu8HLZ1Jjl2mx9fNQFrI13khlyuAfcG/Su2/UDONMZ/tZdxarP/MY0Ku+8SK6ShQ\ni/U24eSQ7zvLGGP3sf0z1gKY+caYLGBpXwcOzqD8lzFmGrAI+BxwW2/3FZFPBZ/r88EZhZ5jLTfG\nfBorsZYDvwreVIGV5Huq5syfDVg/n6rQYUMun+916BnvZfLJ1eGNIdeV9PY4pQYBzbnnpjnXMlA5\ndxcwK+Tr2UCVMabXIvksBv1MshbJg8dW4BoRyRKRPKwtgWzrgHYR+cfggoJ4EZkhInN7DmKM6QRe\nAu4TkRQRmQF8ZUC+g/D0+p88OMPwa+B/RWQEgIgUiMing3fJwJqpOCEiw4H/7PMTilweXMghWH/N\nd9DLLIGI5GP1Gd5rjNnVy+25InKtiKQCnVi/dO1xfg38i4jMDt53UnC8tUBn8GeZICJLsfoCnw3z\ndeh5/3dMj9XhwQ/7ug/O8bokY82gSPDfWa+LgZSKEZpzQ2jO7fPr0PP+4ebcPwBfF5HJYi1i/P+A\n3/Z2x+C/vZli7bmdgdVTfgDYd5axBw0tkqNfz9mLs/kdsAfrbaDXsLbjsgaw+pH+BijGWnRRB/yS\nXnqXgu7GWvRQAzyG1UsXTkx94XSsno8P/fqfsF6PDSLSALyBtRgD4EGsvUbrgTXAX/sR12isRSQn\ngB3ACuDpXu73Daw+ul/0MjvwM6zFFP+MNVNxBLgYuAfAGPMs8CPgj2Ktpv8z1r6o7cB1wGex+sp+\nCtwa7Hk8W9zfPcfr4AoRmYj1tusWrLzTgjXToVS00Zzbv8drzv2kiOdcY8xfgf+HtcBxP9a/xR/Y\nt4u1b/0/Bb8chbVY7wTwEda7HteerV1lMBGr1z6CTyByNdY/mjispvsfneV+C7D+IrvFGPNCfx6r\nlFLq7DQPK6VU/0W0SBZr0+x9WFuiVAMbgS+GrBYNvd+bWLNLvzHGvNDXxyqllDo7zcNKKRWeSLdb\nFAMfGWMOGWM6sHp0bujlft/C2hOxLozHKqWUOjvNw0opFYZIF8n5nLn1SSU9tpIR60SdzxpjHuHM\nhv/zPlYppdR5aR5WSqkw+GGf5J9inToUNhGJbGO1Ukq5yBjjt62VNA8rpQaVvuThSM8kV3Hmfo4F\nnLl3IFibeT8r1tnxNwEPi8j1fXxsN+OD4wtDP/7zP//T8xiiJS6/xbRp0yaWLVvGZZddxrJly/jh\nD3/Ie++9RyAQGNA4GhsNX/mKwVocbX/8Z/fl+fMNe/Z4/3r58Wfo15iM8aSOHLR52K//DvwYkx/j\nevTRR7vz8LJly3jooYeorq7u02MPHTrElVdeedb/FNdff32fx4qG18qvMfk1rr6KdJG8EZgkImNF\nJAnrmMZXQu9gjJkQ/BiP1Q93tzHmlb48VqlImDZtGnfeeSfTp09nypQpdHZ2snLlStavXz9gMVRW\nQkkJPPEEJCfDt74Fb7wBX/0q/Pd/w+jRsGkTzJsHb789YGGp6KR5WEWlG2+8kTlz5nDVVVeRlZXF\n0aNH+e1vf0tT07nPw9iyZQvFxcWsWLGC7Oxsvv/97/P222+zcuVKvve975GRkcErr7xCSUkJu3bp\nTpTq7CLabmGM6RKRe7H2LLS3DyoVkW9aN5tHez7kfI+NZLxKAaSmpjJmzBhGjhzJLbfcwr59+9i9\nezfFxcUD8vy1tXDFFbBvH0yfDi+8ABdcYN22bh1873tw993w9a/Dc8/BNdfA8uWwePGAhKeijOZh\nFa1GjBhBZmYmF110EfPnz2f58uWMHz+ejIyzbScNpaWlLF26lIaGBpYuXcrTTz/NqFGjum9funQp\n3/rWt7j55ptZu3YtV1xxBWvXrmXChAkD8S2paOP1lLdL0+bGb1atWuV1CL3yY1xexbR3717z7rvv\nmkAg0OvtXsTV3m7M4sXGgDGzZhlTX3/2mLq6jPn61637jhhhzIEDAxrqGfTfVd8F85XnedPtDz/m\nYWP8+e/AjzEZ401cgUDA/PWvfzXV1dW93t6fmOrr6824ceMMYK6//nrT1tZ21vu2tLSYT33qUwYw\nkydPNo2Njf2K248/Qz/GZIw/4+prHo74YSIDQURMLHwfauA0NjbyyCOP0Nrays0338y0adO8DgmA\n//t/4f77IS8PPvwQcnPPff+uLrj2WqsV4+KL4d13IcEPy3HVWYkIxn8L9xzTPKzCsW7dOlasWEF6\nejrf/va3SQgzgRljuOmmm3jhhReYP38+77zzDmlpaed8TGNjIwsXLmTnzp18+ctf5oknngjruVX0\n6Wse1mOp1aBjjOHVV1+ltbWVoqIipk6d6nVIAGzYAD/+McTFWW0U5yuQAeLj4emnIT/fasV44IHI\nx6mUUm44evQobwcXVVxzzTVhF8gATz75JC+88AJDhw7lueeeO2+BDJxx3yeffJKXXnop7OdXsUmL\nZDXo7Nq1i7KyMlJSUrjuuusQ6f+kXktLC7t373Ytps5O+NrXIBCAf/xHWLSo74/Nzobf/Ma6/F//\nBQcPuhaWUkpFhDGG1157jc7OTmbNmsWUKVPCGqeyspK9e/fy3e9+F4Cf/vSnjB8/vs+Pnzp1Kvff\nfz8A995773kXBarBRYtkNah0dHTw5ptvAvCpT33qnAtAzqa9vZ2HH36YP/3pT9TW1roS169/DTt2\nwLhxVqHbX1deCV/6ErS2WkW2Ukr52Z49ezhw4ACpqalcddVVYY2xY8cOHn/8ce655x6OHDnCZZdd\nxle/+tV+j3P33XezYMECqqqq+NGPfhRWLCo2aZGsBpWTJ0+SmZlJbm4uc+bMCWuMpKQkpk6dijGG\nt956y3FMTU3w/e9blx94AFJTwxvnxz+GIUPgxRdh7VrHYSmlVMS0traSmprK5ZdfTmqYSa+oqIiW\nlhZWrVqFiPDzn/88rHcG4+Pj+dnPfgbAgw8+SFXVWbcCV4OMFslqUMnOzuaOO+7g9ttvJy4u/H/+\nS5YsISkpibKyMioqKs7/gHP4+c/h6FG45BL4/OfDHyc/H77zHevyv/+7o5CUUiqi5syZw7e//W3m\nzZsX9hgpKSls27aNQCBASUkJM2bMCHusiy66iJtuuomWlhZ+8IMfhD2Oii1aJKtBR0TCnrmwpaWl\nUVJSAsDq1avDHqexEX7yE+vyf/0XhDEJcobvfheysmDVKnjnHWdjKaVUJCUnJzuarCgrK2PFihXE\nxcVx0UUXOV4n8oMf/AAR4be//S2VlZWOxlKxQYtkpcJ08cUXk5SUxP79+zl69GhYY/zmN3DsmLVQ\nb+lS5zFlZcG3v21d1tY6pVQsu//++wkEAlxzzTVkZWWxceNGR+NNmTKFm2++mfb2dv7nf/7HpShV\nNNN9kpVyYNu2bQwfPpyCgoJ+P7aryzpJb/9+eOkluOEGd2I6ehQKC6GlBbZtg5kz3RlXuUP3SVbK\nubq6OsaMGUNHRwc7d+7k2LFjzJ07t09bv53Ltm3bmD17Nunp6VRVVTF06FCXIlZ+ovskKxVkjKG9\nvT0iY8+aNSusAhngtdesAnncOOtAELeMGAF33WVdfugh98ZVSikn2tvbcesPqccff5z29nauvfZa\npk2bxqJFixwXyGDl9EsvvZSTJ0/q4SJKi2QV+w4ePMiDDz7oqHc4EoKLqbn3XutQEDfdfbf1+emn\nrb5npZTy2iuvvMIvf/lLx/2+XV1d/OpXvwKs7dvcdu+99wLwi1/8wrWiXkUnLZJVzNu8eTNtbW1e\nh3GGXbvgrbcgLe30rK+bpk6FxYuhudkqlJVSykvNzc2UlpZy5MiRsPanD/X6669z6NAhJkyYwJVX\nXulShKfdeOON5OXlUVpa6rvJFTWwtEhWMc1OzCIS9r7IkfCLX1if//ZvrcV2kfDNb1qff/lL0MkQ\npZSX7K3aioqKyMzMdDTWww8/DMDf//3fO9od42wSExP5xje+AcBD2rM2qGmRrGKam4n5fI4fP872\n7dvPe7/WVnjmGevy3/995OL5/Oet/uRt22DDhsg9j1JKnYsxhs2bNwMwd+5cR2OVl5fzxhtvkJyc\nzB133PGJ2wOBAGVlZVRXVzt6nm984xskJCTw8ssvOx5LRS8tklXMcjMxn09raysPPfQQL730EidP\nnjznff/6V2hogDlz4MILIxdTcjLYJ7QG2/eUUmrAHTp0iGPHjpGRkUFRUZGjsf7whz9gjOELX/gC\nw4cP/8TtGzZs4KmnnmLNmjWOnmf06NFcd911dHV18Yw9q6EGHS2SVcxqbW1l5MiRZGdnO07M55OS\nkkJRURHGGHbu3HnO+/7hD9bnr3wloiEB8PWvW5+ffx5OnYr88ymlVE9tbW2MHDmSOXPmOGqPMMbw\n1FNPAXD77bf3ep/p06cjIuzbt4+Wlpawnwvgy1/+MkD3c6rBR/dJVjEvEAhEpG+tp927d/P888+T\nm5vLN+2G4B6OHoW8PKtHuLIScnMjHhbFxbBxIzz3HNx8c+SfT52b7pOsBiunuXjDhg2UlJSQm5tL\nZWUl8WfZFujJJ5+kvLyca665hvnz54f9fK2treTm5nLixAl27drFtGnTwh5L+Yvuk6xU0EAUyAAX\nXHABKSkp1NTUUFtb2+t9/vhH6OyEK68cmAIZ4NZbrc/PPjswz6eUUr1xmovtGd0vfvGLZy2QAWYG\nT1Datm2bo+dLSUnhpptuOuO51eCiRbJSLklISGDGjBnA2ZPzQLZa2L7wBRCxeqFPnBi451VKKbd0\ndnbyxz/+EYDbbrvtnPedMmUKSUlJVFZWUl9f7+h57ZaLp59+mkAg4GgsFX20SFbKRXPnzuXSSy9l\n9uzZn7itvNzaZSIjw70jqPsiP9/aM7mtDV5+eeCeVyml3PL2229TW1tLUVER8+bNO+d9k5KSuPzy\ny7n++usZMmSIo+ddvHgxBQUFHDx4kLVr1zoaS0UfLZKVclFeXh5Lly4lJyfnE7e9+KL1+brrrENE\nBtIXv2h91kXaSqlo9HTwVKTbbrsNkfO39F900UXMmTOHlJQUR88bFxfHrcGeNd3lYvDRhXsq5pSV\nlbFt2zbmzZvHuHHjvA6n2yWXwLp11k4TwTa3AXP06Oke6MOHYeTIgX1+dZou3FODxWuvvUZKSgol\nJSWOZnQ7OjrIycmhoaGBPXv2MHnyZBejPL9NmzaxYMEC8vPz+fjjjwdsnYuKHF24pwatHTt2sHPn\nTioqKrwOpVt1tVUgp6TA1VcP/POPGAGf+hR0dcGrrw788yulBpfW1lY2b97MmjVrcPrH03vvvUdD\nQwNTp04d8AIZYN68eeTn51NVVdW9974aHLRIVjElEAiwb98+AKZOnepxNKfZvcBXXQXp6d7E8NnP\nWp9fecWb51dKDR5lZWUEAgEKCwtJd5j0XnrpJQBuGMjFHCFEhM8GE6gdixoctEhWMeXjjz+mtbWV\n4cOHM2LECK/Doa2tDYAXXrC+/tznvIvluuuszytW6MEiSqnIsicrnM78GmO6C1O7UO2vrq4uOjo6\nHMVx4403AvCivbhEDQpaJKuYsnfvXsDas9hL9fX1PPzww/z2t7/l2DFYtQoSEuDaa72LKT8f5s+H\nlhZYudK7OJRSsa2rq4uPPvoIcJ6Lt27dSkVFBXl5eSxYsKDfj1+/fj0PPPAAW7dudRTH4sWLyc7O\nprS0tPv3jIp9WiSrmFJeXg44n71wKjMzkxMnTlBbW8uzzzbT1QVLlsCwYZ6GxfXXW591KzilVKRU\nVVXR2trKiBEjGD58uKOxQlstwlkwl5KSQltbm+PCNjExkWuDsxwvawIdNLRIVjHlrrvu4uabb2bM\nmDGexpGQkMDEiRMB+POfrZaLMN8pdJXd0vfqq6D74iulIqGwsJB77723u6h0wmk/clFREQAHDx6k\nvb3dUSzalzz4RLxIFpGrRWSPiOwTkX/t5fbrRWSbiGwRkQ0isjDktoOht0U6VhX9kpOTmTZtmi+2\n6CkqKqKrK471661FK3/zNx4HBFx4IYwdC3V11sEmanDQPKwG2vDhwxk7dqyjMQ4ePMj27dvJyMjg\n8ssvD2uMIUOGkJ+fT1dXFwcOHHAUz1VXXUVycjLr16+nrq7O0VgqOkS0khCROOAh4CpgOnCriEzp\ncbe3jDGzjDFzgLuAX4fcFgCWGGPmGGOKIxmrUm6bNGkSFRUFnDqVxJQphvHjvY7IOp7anpDRdwwH\nB83DKlq9/vrrAFx55ZUkJyeHPY49m2z3SYdryJAhXHbZZRhjePPNNx2NpaJDpKfbioGPjDGHjDEd\nwLPAGe+ZGGNC19mnYyVkmwxAjEpFREZGBocPW8dTL1nS6nE0p9m7XAR//6jYp3lYRaU33ngDgM98\n5jOOxikqKiI+Pp6uri7HMdmxvK4JdFCIdOLLB0JPdKgMXncGEfmsiJQCrwJ3htxkgDdFZKOIfD2i\nkSoVAdXVswD43OdSPY7ktEWLIDUVtm2Dmhqvo1EDQPOwijrt7e2sDG7Dc9VVVzkaKy8vj3/5l39x\nZZ/lq4OnQS1fvpyALuyIeQleBwBgjHkJeElEFgE/BD4dvGmhMeawiIzEStKlxpg1vY2xbNmy7stL\nlixhyZIlkQ1a+UptbS3Z2dkkJSV5HUq3qirYsSOOtDRYvNjraE5LSbF22nj9dWvP5Ntv9zqi2LZ6\n9WpWr17tdRjnpXlYOdXR0UF9fT2jRo1CxNnJ6++//z7Nzc3MmDGDgoICR2OJiGu/GyZPnsy4ceM4\nePAgmzdvDmtbOjXwws3DkS6Sq4DCkK8Lgtf1yhizRkQmiMgwY8wxY8zh4PVHRORFrLcNz5uc1eBi\njOGpp56iubmZe+65h2Fe77MWZL8bd8UV4KCdLiKuusqKb/lyLZIjrWexeN999w10CJqH1YA4cOAA\nzzzzDJMmTeK2225zNJbdamHP3PqFiHD11Vfzy1/+kjfeeEOL5CgRbh6OdLvFRmCSiIwVkSTgi8AZ\nh+KKyMSQy3OBJGPMMRFJE5H04PVDgCuBnRGOV0WhI0eO0NTURFpaGtnZ2V6H080ukv2wq0VP9ruX\nK1boVnCDgOZhNSDsfepHjx7teCy/FslwOibtS459EZ1JNsZ0ici9wAqsgvxxY0ypiHzTutk8Cnxe\nRG4H2oEW4AvBh48CXhQRE4zzKWPMikjGq6KTnZgnTpzo+C0+t3R2wltvWZcdrjmJiMmTobAQPv4Y\ntmyBefO8jkhFiuZhNVBCc7ET1dXVbN++nbS0NBYtWuRGaK5aunQpiYmJfPDBBxw7dsw3714q90W8\nJ9kY8wYwucd1vwq5/GPgx7087gAwO9LxqehnJ+YJEyZ4HMlpmzZBYyMUFVn7EldUVHDgwAEWLlxI\nfHy81+EhYs0mP/aY1XKhRXJs0zysIq2hoYH6+nqSk5Md9xAvX74csIpRJ1u/9dTW1kZ5eTnGGKZP\nnx72OBkZGSxatIhVq1bx5ptvcsstt7gWo/IX3dZHRbWOjg4OHToEOJ+9cJM9i/ypT1mfX3nlFVat\nWkVV1VlbQQec3XIR/H2klFJhsycrxo8f7/gwpxUrrDcr3G61qKmp4fnnn+edd95xPNaVV14J0L0D\nh4pNWiSrqNba2srkyZOZMGECQ4YM8TqcbnbevOIK6/P44Eki+/fv9yiiT7riCoiPh7VroanJ62iU\nUtEsNTWVMWPGdB/cES5jDG+//TYAn7JnGVxSUFBAYmJi9zoWJ64IJnc7VhWbtEhWUS0jI4ObbrqJ\nr3zlK16H0u3UKavwFAH7JFW7FcTpsahuysqCBQus/un33vM6GqVUNJs2bRp33nknc+fOdTTOrl27\nqKurY/To0VxwwQUuRWeJj49n3LhxgPMJi7lz55KZmUl5eXn3u5kq9miRrJTL1qyB9naYOxfs9Rzj\nxo1DRKisrKS9vd3bAEMsXWp9XrXK2ziUUgpOz8wuXbo0Igux7Xf1nE5YxMfHd28ppi0XsUuLZKVc\nZufL0HcKU1JSGD16NIFAwFezDvZMt75jqJTyA7tIttsZ3Ga/q7d//36MMY7G0paL2OeLE/eUiiX2\nor2eOX7BggVMnTqVkSNHDnxQZ3HJJZCUZG0Dd+zY6ZlvpZQaaJ2dnd2nol1u/wXvspycHBYsWMCY\nMWMwxjiarV4afCtu5cqVjsdS/iRO/5LyAxExsfB9qOhXXw8jR1qF5/HjkJrqdUTnd9ll8O678OKL\n8NnPeh1N7BMRjDEx99tU87ByauPGjRQXFzNx4kTKysq8Due8jDGMHj2ampoadu/ezdSpU70OSfVR\nX/OwtluoqLVixQo2bdpER0eH16F0e+cdMMaaoY2GAhlO9yXrO4ZKqf6qra3ljTfecGVRcqRbLdwm\nImfMJqvYo0WyikrNzc2sW7eO5cuX++otLnv7zZAj4n1P+5KVUuHat28fH3zwAbt27XI8ll1o2oVn\nNNAiObZpkayikr34bcyYMSQk+Ke1/t13rc+LF3sbR3+UlFiz3rt2QW2t19EopaLJwYMHAbq3VgtX\ne3s7a9asASLXjxwJdpH87rvvEggEPI5GuU2LZBWV7Lf2nCZmNzU0wLZtkJhoFZ7RIjkZFi60LutW\ncEqpvurs7OTjjz8GnOfizZs309LSwrRp08jJyXEhuoExbtw4CgoKOHbsGKWlpV6Ho1ymRbKKSvbs\nhb3npR+8/77Vj1xcfPZ+ZGMMf/nLX3jooYdobW0d2ADPwZ64sWfClVLqfKqrq+ns7GTkyJGkp6c7\nGuvdYPK59NJL3QjtvA4fPsxTTz3FX/7yF0fjiEh3zO9qAo05WiSrqNPc3MzRo0dJSEhg9OjRXofT\nrS+tFiJCbW0t9fX1VFRUDExgfWD/XtKT95RSfWW3vY0dO9bxWO8Fk89AFcnx8fGUlZXx0UcfOd4v\neXEw6b+nCTTm+KeZU6k+Sk5O5rbbbuPEiRPEx8d7HU63vvYjjx07lsrKSg4dOkRRUVHkA+uDBQus\nbet27tQA+6IaAAAgAElEQVT9kpVSfTNz5kzS09Md7/3e1dXV3Y+8eIAWdIwcOZLU1FQaGxtpaGgg\nOzs77LFCZ5J1v+TYojPJKuokJCQwadIk5s2b53Uo3ZqbYdMmiIuztn87F3vWxU8n76WkWG0iYLWN\nKKXU+WRmZjJnzhwKCgocjbNz505OnDjB2LFjGTNmjEvRnZuIUFhYCDjPxVOnTmX48OFUVVV1twKq\n2KBFslIuWL8eOjthzhwYOvTc9x0zZgwiQnV1ta/2eLbf5QxO6Cil1IAY6FYLm1sTFnFxcSxatAjQ\nvuRYo0WyUi7oz9ZvKSkp5ObmEggEOHz4cGQD64dgjte+ZKXUgPK6SK6urnY8lt0mokVybNGeZKVc\n0N/9kW+44QbS09MZMmRI5ILqp0suARGrbaSlJXpODFRKRS9jTHeRPFD9yLbc3FzuvPNOVxaA2wW+\nLt6LLeJ0VacfiIiJhe9DnZ8fF0W0tUFWFrS2wpEjMGKE1xGFb/Zsa6/nVaui69TAaCIiGGP89Y/Y\nBZqHBw/75+xGLi4rK6OoqIiRI0dSW1vru/zeV52dnWRlZdHc3Mzhw4fJzc31OiR1Dn3Nw9puoaLK\n008/zWOPPUatj46G27TJKpCnT4/uAhm0L1kpdX4NDQ088MADvPzyy47HsmdeFy1aFLUFMlgLyi8J\nrtrW2eTYoUWyihpdXV0cOnSI6upqX7UpRONR1Gej+yUrpc7n0KFDtLS00NLS4ngsr/qRI0EPFYk9\nWiSrqFFTU0NHRwfDhg1zfLqTm955x/ocC0WyvXhv7Vprtw6llOrJPora3kLNCbugHOh+5EjQQ0Vi\njxbJKmq4mZjd0tVlFZRweha2Pzo7Ozl69Ki7QTkwejRMmAAnT1q9yUop1ZNbufjw4cOUl5eTnp7O\nrFmz3AgtbCdPnuTkyZOOxiguLiYxMZHt27fT0NDgUmTKS1okq6jhxyJ51y5oaoJx4yA/v3+PPXny\nJPfffz+/+c1vHB+L6ibtS1ZKnU1zczP19fUkJCSQl5fnaCx7xvWSSy4hIcG7zbbWrFnDT37yE9av\nX+9onNTUVIqLizHGdJ8gqKKbFskqahw7dgzwV5FszyKf75S93gwZMoS0tDRaWlqor693NzAHtC9Z\nKXU2R44cIT4+noKCAuLj4x2N5Zd+5JycHAAqKiocj2V/L2vtXw4qquk+ySpq/N3f/R3Hjx8nOzvb\n61C6OSmSRYQxY8awe/duKioqGOGTrTFCi2RjrL2TlVIKYNy4cXzve9+jubnZ8Vh2Iblw4ULHYzlh\nH6tdXV1NV1eXo+L/4osvBrRIjhU6k6yihogwbNgwX20TZOfBYF7sNzs5uzGD4ZaiIsjJgbo6KCvz\nOhqllN8kJCSQmZnpaIzm5ma2bdtGfHw8xcXFLkUWnrS0NIYPH05nZyc1NTWOxrKL5I0bN9Kpq5+j\nnhbJSoWprg7KyyEtDWbODG+MMWPGAFBZWeliZM6InC76HbboKaVUrzZu3EhXVxczZ870xZaedi52\nOmExcuRIJk2axKlTp9i+fbsboSkPRbxIFpGrRWSPiOwTkX/t5fbrRWSbiGwRkQ0isrCvj1XKS+vW\nWZ9LSiDcNSd5eXlkZGSQnZ1NIBBwLziH7CLZ/h5VdNM8rPxmXTC5XBzu23AuGzNmDCNGjHBlAaG2\nXMSOiBbJIhIHPARcBUwHbhWRKT3u9pYxZpYxZg5wF/DrfjxWKc846Ue2xcfH853vfIdbb72VuDj/\nvLGjRXLs0Dys/Mguki9xkkBdNGfOHO655x7mz5/veCz7e1qnCTTqRfq3cjHwkTHmkDGmA3gWuCH0\nDsaYUyFfpgOBvj5WDQ4nTpygrq7OV9ukwekC0ulEiJ96rG3z51uz49u3W3smq6imeVi5oqqqilOn\nTp3/judhjPHdTLKbeVhnkmNHpIvkfCC0wacyeN0ZROSzIlIKvArc2Z/Hqtj34Ycf8sgjj7By5Uqv\nQ+nW3g4bN1qXL7rI21giIS0NZs2CQOD096miluZh5ZgxhmeeeYYHHniA48ePOxqrrKyMo0ePkpOT\nw/jx412K0D9mzJhBeno6Bw8edLwQUHnLF1vAGWNeAl4SkUXAD4FP93eMZcuWdV9esmQJS5YscSs8\n5TF7Udvo0aM9juS0rVuhtRWmTIHhw72OJjIuvhg2b7ZmzC+/3Otootfq1atZvXq112Gcl+ZhdS4N\nDQ00NzeTmppKVlaWo7FCWy38+E6aU/Hx8ZSUlLBy5UrWrVvHjTfe6HVIg164eTjSRXIVEHryQ0Hw\nul4ZY9aIyAQRGdbfx4YmZxU7jDFUVVk/dnv1sR+40Y/sdxdfDA89pH3JTvUsFu+7776BDkHzsHLM\nnqwoKChwXNj6rdUiEi655BJWrlzJ2rVrtUj2gXDzcKTbLTYCk0RkrIgkAV8EXgm9g4hMDLk8F0gy\nxhzry2NV7Dty5AhtbW1kZmaSkZHhdTjd3OpHtjU2NrJ161YOHjzozoAuCN0Gzmft4Kp/NA8rx+yt\n0ey93Z3wc5H88ccfs2bNGjo6OhyNY39vungvukV0JtkY0yUi9wIrsAryx40xpSLyTetm8yjweRG5\nHWgHWoAvnOuxkYxX+U/o7IWfuD2TvHfvXl577TUuvPBCxo0b586gDo0bB6NGQW2tdahIUZHXEalw\naB5WbnDrHb2mpiZ27NhBQkKCKztJuO3111+npqaGMWPGMHbs2LDHuSi4WGXTpk20t7eTlJTkVohq\nAEW8J9kY8wYwucd1vwq5/GPgx319rBpcUlJSKCws9E3hCFBRAZWVkJVl9SS7wa2N7N1kHyry0kvW\nzLkWydFL87BywhjDqFGjaG9vd7w2ZMOGDQQCAebNm0dqaqpLEbqnoKCAmpoaKioqHBXJ2dnZTJ06\nldLSUrZs2UJJSYmLUaqB4p+NWZXqxbRp07jjjjt8NeMQehS1W1sb5+TkkJSURENDA01NTe4M6gJ7\n5w59x1CpwUtEuP7667nnnntITk52NJafWy3A3QkLbbmIflokK9VPbvcjA8TFxZGfb+2sZb+t6Qd6\nqIhSyk1+L5Lt1r7KykrHe/Pbh4rofsnRS4tkpfppwwbrs9v7I9tFst2H7Qf2oSI7doCPJriVUlEo\nEAj4vkjOzs4mLS2NU6dOceLECUdj6Uxy9PPFPslKRYv2dvjwQ+vyggXujl1UVERnZyeTJk1yd2AH\n7ENFNm+2DhVZutTriJRS0Wrfvn0cP36c0aNHU1hYeP4HeEBEKCkpIS4ujoQEZyXSlClTyMrKorKy\nksrKSt8tQFfnpzPJSvXDjh3Q1gaTJ1sL99xUWFjIVVdd5atFinDmVnBKKRWuDz74ALB2fvDzISKL\nFy9m0aJFpKenOxonLi6OBcHZlA32W5AqqmiRrHzJGMPKlSspLS113BfmpmCOp7jY2zgGkvYlKzV4\nffzxx6xdu5a6ujrHY9mF4mDa6cH+Xu0/EFR00XYL5UtHjx5lzZo1DB06lKlTp3odTjd7MmAQ5fju\n3usNG6xDRXw8AaSUctmuXbvYsGEDnZ2d5OTkOBrLLhSLB9Esg/29apEcnXQmWfmSvcOD33q4BuNM\n8vjxMGIE1NXBoUNeR6OUGkjV1dWA81zc2trKtm3biIuL89WWnpFmzyRv2rSJrq4uj6NR/aVFsvIl\nu0h2unG9mxoaYM8eSEqyFrMNFiKn/yjQtjqlBo+uri4OHz4MOM/FW7ZsobOzk2nTpjnu9Y0mOTk5\njBs3jubmZnbv3u11OKqftEhWvuTHmeRNm6zPc+ZYhXKkrFq1it///ve0t7dH7kn6SYtkpQaf2tpa\nurq6GD58OCkpKY7GirZ+5Lq6Ol5++WXefvttx2NpX3L00iJZ+U5HRwe1tbWICHl5eV6H083Ob5HO\n8fv27ePgwYPdb3P6gV0ka45XavCwJyvsPdydiLZ+5M7OTrZu3erK7K/2JUcvLZKVL11zzTVceuml\nJEVyyraf7FnUSOd4P568Z3/PmzdDZ6e3sSilBsbYsWNZunQpM2bMcDxWtM0kjxo1ivj4eOrr62lp\naXE0lv096zZw0UeLZOU7iYmJzJ07l8svv9zrULoZM3AzyXaLiZ+K5OHDYeJEaGmBnTu9jkYpNRBy\ncnK49NJLKSoqcjTO0aNHKS8vJy0tjenTp7sUXWTFx8d3v5Pp9F29uXPnkpCQwM6dOzl58qQb4akB\nokWyUn1QUQG1tTBsmFUsRpIfj6cG7UtWSoVn48aNAMybN8/xKXYDya1cnJqaysyZMwkEAmzevNmN\n0NQA0SJZqT4I3fot0vsEjxgxguTkZJqammhsbIzsk/WDPYOuRbJSqj+irR/Z5ua7etqXHJ2i5086\npTw0UP3IACLC5z73OTIzM321VZIu3lNKhcPuxY22Inn8+PHccsstruyyVFJSwi9/+UstkqOMFslK\n9cFA9SPbLrjggoF5on6YPRsSEmDXLmhqgowMryNSSvmdMSbqFu3ZhgwZwpQpU1wZSxfvRSdtt1C+\nsn79ep599ln279/vdSjdOjutXR0AFizwNhYvpaZah6gYAx9+6HU0SqlIMcbwhz/8gVdeecXxfu37\n9++nvr6enJwcCgsLXYow+kyePJmhQ4dSWVnpq+091blpkax8pby8nL179zrecsdNu3bBqVMwYQKM\nHOl1NN7SlgulYl9TUxMHDhygtLSUxMRER2PZ7QUlJSVIpBd0+FhcXBwLgrMs2nIRPbRIVr5hjHF1\n83q3DGQ/st/pDhdKxT57N4f8/HzHhW209iNHgp68F320SFa+0dDQQEtLC0OGDCEzM9PrcLoNdD9y\nKGMMnT46vUN3uFAq9tmTFaNHj3Y8VuhMcjTr6uoiEAg4GkP7kqOPFsnKN9ycvXCTVzPJe/fu5cEH\nH+S1114b2Cc+h8mTrQV7FRVw+LDX0SilIsHumXX6jl57eztbtmwB6G41iEYvvPAC999/P4cdJj17\nNn3jxo10dXW5EZqKMC2SlW+4OXvhlpMnrZ7khASYM2dgnzstLY2TJ0/66uS9uLjTixd1MkSp2BMI\nBFwrkrdv305bWxuTJ08mKyvLjfA8ERcXR2dnp+NcnJubS2FhISdPnqS0tNSl6FQkaZGsfOOKK67g\njjvuYObMmV6H0m3TJggErF0dUlMH9rlzc3OJi4ujrq6Otra2gX3yc7DfNdW2OqViT1xcHPfccw+3\n3nqr433aY6Uf2f5jwY0JC+1Lji5aJCvfSExMpLCwkOzsbK9D6eblor3ExERGjRoF4PhtPjfp4j2l\nYtvQoUNd2as9VvqRI1Eka19ydNAiWalz8HLRHribnN1ivxYbN1qz7Eop1ZtYmUkeNWoU8fHx1NfX\nO96eVGeSo4sWyUqdg9fbv9mLGE+ePOlNAL3Iy4OCAmhshL17vY5GKeVHDQ0N7Nmzh6SkJGbNmuV1\nOI7Ex8eTl5dHSkoKx48fdzTW3LlziY+PZ+fOnTQ3N7sUoYoUPZZaqbOorobKShg61NrVwQvTp09n\n2rRpJCUleRPAWRQXW6/Nhg0wdarX0Sil/GbTpk0AzJkzx3f5Kxy33norqampjndeSktL48ILL2Tr\n1q1s2bKFRYsWuRShioSIzySLyNUiskdE9onIv/Zy+5dEZFvwY42IzAy57WDw+i0iog08McxPC9Ns\n9izyggXWrg5eSExM9OUvGN0vObpoHlZ90dHR4XgvYFus9CPb0tLSXNua1G4/0ZYL/4vor34RiQMe\nAq4CpgO3isiUHnfbDyw2xswCfgg8GnJbAFhijJljjInupiZ1Vm1tbfzoRz/ikUcewRjjdTjdvO5H\n9jM9njp6aB5WfbVp0yb++7//mzVr1jgeK1b6kSPBfk108Z7/RXp+rBj4yBhzyBjTATwL3BB6B2PM\nemPMieCX64HQjRllAGJUHquursYYQ0JCgh4iEiXmzQMR2LYNWlu9jkadh+Zh1SdVVVV0dnaSlpbm\naBxjTMzNJLtJi+ToEenElw9UhHxdyZnJt6evAa+HfG2AN0Vko4h8PQLxKR+wd25wunG9m7q6rN0b\nQIvk3mRkwPTp0NkJW7d6HY06D83Dqk/cysUVFRXU1tYybNgwJk6c6EZoMWXatGkMGTKEgwcPUldX\n53U46hx8s3BPRC4H7gBCu9gXGmMOi8hIrCRdaozp9X2gZcuWdV9esmQJS5YsiWC0yk1+LJL37oWm\nJhgzxtrNwWutra1UVVUxYcIE38y2FxfDzp1Wy8VFF3kdjX+tXr2a1atXex1Gn2geHryam5tpaGgg\nMTGRkSNHOhrLniFdsGCBb/KVG4wxHD9+nLa2NvIc/GKIj49n/vz5vPPOO2zYsIFrr73WxShVb8LN\nw5EukquAwpCvC4LXnSG4SORR4GpjTPf+KsaYw8HPR0TkRay3Dc+bnFV08WOR7Ld+5EceeYTGxkbu\nvvtux7/A3FJcDL/5jfYln0/PYvG+++4b6BA0D6vzsvPw6NGjiXO4UtkukmOt1aKsrIynn36awsJC\n7rjjDkdjFRcXa5E8gMLNw5Fut9gITBKRsSKSBHwReCX0DiJSCPwZ+Ioxpjzk+jQRSQ9eHgJcCeyM\ncLxqgLW2tpKQkEBKSgrDhw/3OpxufutH9vuhIsrXNA+r82pubiY5OZnRo0c7HitWF+3Zr83hw4cd\n7wKifcnRIaIzycaYLhG5F1iBVZA/bowpFZFvWjebR4HvA8OAh8V6X6YjuIJ6FPCiiJhgnE8ZY1ZE\nMl418FJSUviHf/gH2trafPW2nD076pccn5+fT2lpKVVVVcyePdvrcACrJzk1FcrKoL4efPQ3jgqh\neVj1xZw5c5g9ezYdHR2Oxunq6ureI3nBggVuhOYbQ4YMITs7m+PHj3PkyBFGjRoV9lihx1MbY3z1\n+0+dFvGeZGPMG8DkHtf9KuTy14FPLAYxxhwA/FENqIhLTk72OoRuLS2wfbu1N/K8eV5HY/HjTHJi\nIsydC++/b80mX3211xGps9E8rPpCRBzvy15aWkpzczPjxo0jJyfHpcj8Iz8/n+PHj1NZWemoSC4o\nKCA3N5eamhrKysooKipyMUrlFt3WR6ketmyxdreYPh3S072OxmIvEqmtraWzs9PjaE6zZ9r1HUOl\nFMRuq4XNbrlwOmEhItpyEQW0SFaqB7/1I4M1015UVMTUqVNp9dHGxHrynlIqVKwXyWPGjCE/P9+V\nNTRaJPufb7aAU8ov7Hzlt4XZX/rSl7wO4RNCT94zxjpgRCk1eMV6kVxQUMDXvvY1V8YK7UtW/iR+\nOgY4XCJiYuH7GGyOHDlCW1sbubm5JCT45++1SZOgvNw6JGPWLK+j8TdjICcHjh6F/fth/HivI/I/\nEcEYE3N/Tmgejl7l5eUMGzaMrKwsRwvIWlpayMjIwBhDY2MjQ4YMcTHK2NPQ0EB2djbJyck0NjY6\n7gdXfdfXPKztFsozGzZs4PHHH2f9+vVeh9Ktvt4qkFNTrZ5kdW4i2pesVDTr6uri2Wef5Wc/+5nj\nVq4tW7bQ1dXFjBkztEDug6ysLCZPnkxbWxvbt2/3OhzVCy2SlWeqq6sB6+0rv7D3/J03D3w0ue1r\n2pesVPSqq6ujs7OTYcOGkZqa6misWG+1iATtS/Y3LZKVJzo7O6mpqQFwdLyn2/y4aM/vQvuSlVLR\nxc0TT7VI7j/tS/Y3LZKVJ2pqaggEAowcOdJXeyT77RCRno4fP84HH3xAaWmp16F0s88L+PBDcHgO\ngVJqgGmRHJ7y8nLefvttmpubHY1jv1Yf6CyDL2mRrDzhZmJ2izH+n0muqqrijTfeYMuWLV6H0m34\ncJg40TqEZdcur6NRSvWHW7m4vr6e8vJyUlNTmT4IFnSsWbOG9957j8rKSkfjzJw5k6SkJPbs2cOJ\nEydcik65RYtk5YnMzEyKiooY76PtEA4etHZpGDECxo3zOpre2f3bVVVV+GknAe1LVir6GGMYP358\n9+lvTmwMLuiYN2+er3YrihS3TkFNTk5m9mzrUEv7OG/lH1okK09MmTKFL33pS8ycOdPrULqF7o/s\n1/1+MzMzSUtL49SpUzQ0NHgdTjftS1Yq+ogIn/nMZ7jrrrscF7aDqdUC3CuSQfuS/UyLZKWC/N5q\nAdYvNTeTs1t0GzilBrfBXCQ7fVdP+5L9S4tkpYKioUgGd2cw3DJ7trVl3q5d0NTkdTRKqYFkjBl0\nRfLQoUPJyMigra2N+vp6R2OFFsl+aqNTeiy1UgB0dsLmzdZle7cGvyoqKsIYw8SJE70OpVtqqnU6\n4ebN1seSJV5HpJQaKIcOHeLIkSOMGDGCcX5d0BEBCxcuJC4uzvH+0pMmTSIrK4uamhqqqqp8dXbA\nYKczyUphzYC2tFi7NAwf7nU05zZ69GiWLFnCmDFjvA7lDNpyodTgFDqL7ORY62hTUlLCggULHJ8u\nGBcXp4eK+JQWyWpAGWNYsWIFW7duJRAIeB1ON7/vjxwNtEhWKnpUVlayatUqx1uYweDrR44E7Uv2\npz4VySLygohcIyJaVCtHGhsbWbduHStWrPDVjEO09CP7mRbJkae5WLll7969vPvuu+zZs8fxWFok\nO6czyf7U10T7MPAl4CMRuV9EJkcwJhXDQjeu92ORbO/3q/pv8mTIyICKCjh82OtoYpbmYuWK6upq\nwPkhIp2dnWwOLuhY4PcFHT5mF8mbNm2iq6vL42iUrU9FsjHmLWPMbcBc4CDwloisFZE7RCQxkgGq\n2GIXyaNHj/Y4ktNOnrR6khMSrF0aVHji408vetTJkMjQXKzcYIxx7aS93bt3c+rUKSZMmMCIESPc\nCG9QGjVqFGPHjuXkyZOuzO4rd/T5LTsRGQ58FfgasAX4X6xE/WZEIlMxyY/HUX/4IQQCMHOmtUtD\ntHjjjTd47LHHaGtr8zqUbtpyEXmai5VT9fX1tLW1kZGRwdChQx2NNdhbLWpqanj++edZvny547G0\nL9l/+tqT/CLwHpAGXGeMud4Y80djzLeA9EgGqGJHIBBw7S0+N0VrP3JFRQXV1dXdr6kfaJEcWZqL\nlRvcnKwY7EWyMYbdu3ezb98+x2NpX7L/9HWf5MeMMa+FXiEiycaYNmPM/AjEpWKQMYYbbriBo0eP\nOt4yx03RWiTn5+dTXV1NVVUV48eP9zoc4MwiORCAOF1e5jbNxcqxwsJCPvOZz5CVleV4rMFeJOfk\n5JCQkMCxY8doaWlxtGeyFsn+09dfYT/s5bp1bgaiYl98fDzTp0/nsssu8zqUM0RzkQz+OnkvP9/6\naGwEFyZW1CdpLlaOZWdnU1xczAUXXOBonObmZnbu3El8fDxz5sxxKbroEh8fT15eHuA8F8+bN4+4\nuDi2b99OS0uLG+Eph85ZJItIrojMA1JFZI6IzA1+LMF6u0+pqFZbC4cOQXo6TJnidTT948ciGbTl\nIhI0Fys/2rJlC11dXVx44YWkpQ3ef4Zu5eIhQ4YwY8YMurq6+PDDD90ITTl0vpnkq4D/AQqAB4Gf\nBD/+Efi3yIamVOTZhdz8+dbuDNFk+PDhJCcn09TURGNjo9fhdNMiOSI0FyvfGeytFjY3Jyy05cJf\nztmTbIz5PfB7Efm8MebPAxSTUgMmmvdHFhFuueUWsrKyyMjI8DqcbvbvS12g7R7NxcqPtEi2TJgw\ngdtvv92VrU2Li4v59a9/rUWyT5yzSBaRLxtjngTGicg/9rzdGPNgxCJTagBEaz+yzS8L9kLNnw8i\nsG0btLZCSorXEUU/zcXKj7RItqSlpbmWi0uCMzZaJPvD+dot7C0I0oGMXj6U6pNNmzbx+9//ntLS\nUq9D6WZM9BfJfjR0KEydCh0dVqGsXKG5WLniiSee4E9/+hPNzc2Oxjly5AgHDhxgyJAhTJs2zaXo\n1LRp00hLS2P//v0cOXLE63AGvXMWycaYXwU/39fbR1+eQESuFpE9IrJPRP61l9u/JCLbgh9rRGRm\nXx+rosehQ4c4ePCgr1bslpVBQwPk5Vk7Mij3aF+yu5zmYs3DCqC1tZX9+/ezZ88eUhy+xbNx40bA\n2pEhPtoWdPhYQkIC8+bNA06/xso7fT1M5MciMlREEkVkpYgcEZEv9+FxccBDWItOpgO3ikjPPQT2\nA4uNMbOwtjd6tB+PVVHCjyfthc4ii3gbS6zRvuTICCcXax5WNvvgodzcXMeFrd0OsMA+i165Rlsu\n/KOv+yRfaYxpBK4FDgKTgH/uw+OKgY+MMYeMMR3As8ANoXcwxqw3xpwIfrkeyO/rY1V0OHXqFMeP\nHycxMZGRI0d6HU63WGq1CAQCvjqe2l4IqTnedeHkYs3DCnB3smL9+vUAXHTRRY7HiiVtbW0EAgFH\nY+gOF/7R1yLZXuB3DfB8SDI9n3ygIuTrSk4n3958DXg9zMcqn7ITc15eHnE+OoItVorknTt38qMf\n/Yg333zT61C6XXghJCfDRx/BsWNeRxNTwsnFmocV4F6RHAgEuovkiy++2HFcseKZZ57h/vvvp66u\nztE4oUWyMcaN0FSY+nos9V9EZA/QAvy9iIwEWt0MREQuB+4AFoXz+GXLlnVfXrJkCUuWLHElLuWc\nH1st2tthyxbr8vwoP8w3IyOD9vb27rdS/SAxEebOhXXrYNMmuPJKryPyzurVq1m9erVbw0U0F2se\njm1u5eK9e/dy4sQJCgoKfJXXvZacnAxYr3Nubm7Y4xQWFpKTk0NdXR379+9n4sSJboU4aIWbh/tU\nJBtjviciPwZOGGO6RKSZvr3lVgUUhnxdELzuDMFFIo8CVxtjjvfnsbbQ5Kz8ZfHixUydOpWkpCSv\nQ+m2dSu0tVm7MGRleR2NM3l5eYgItbW1dHR0kJiY6HVIgDVDv26d1Zc8mIvknsXifff1ac1zr8LM\nxZqHFQD33HMP1dXVDBs2zNE42mrRu/z8fHbs2EFlZWX34rtwiAglJSW8+uqrbNiwQYtkF4Sbh/vz\n3vcU4BYRuR24CejLr72NwCQRGSsiScAXgVdC7yAihcCfga8YY8r781gVHeLi4hg1ahTZ2dleh9Jt\n3dTPBfEAACAASURBVDrrcyzk+KSkJEaOHEkgEKCmpsbrcLppX3LE9DcXax5WAKSkpDBhwgTE4Upl\nLZJ7Z8+qu/GunvYl+0OfZpJF5AlgIrAV6ApebYA/nOtxwZmOe4EVWAX548aYUhH5pnWzeRT4PjAM\neFis/7kdxpjisz22/9+iUp9kF8mx0k6Xn59PXV0dVVVVjBkzxutwgDO3gTNGdxBxQzi5WPOwctu6\nYALVIvlMubm5xMXFUVdXR1tbW3f7RTjsIvkD3SLIU9KXpnARKQWmGZ92kIuIX0NTPjVuHBw6BDt2\nwIwZXkfj3ObNm1m+fDmXXHKJb/pAjYERI6yFewcOWK+5st5KNcaE9SeDn3Ox5uHBoampiczMTBIS\nEjhx4gSpqaleh+Qrjz32GCdPnuS2224jJycn7HGOHz/OsGHDSE5OpqmpyTdtdLGir3m4rwv3dgK5\nwGFHUSnlA4cPWwVyRobVkxwLZs2axZw5c3y1e4iI1XLx+uuwfr0WyS7RXKw8tXHjRowxzJ49Wwvk\nXvzt3/6tK+tvsrOzueCCC9i3bx87duxg7ty5LkSn+quvv1FHALtFZLmIvGJ/RDIwFRuampp8t4WN\n3WpRUgKxclBUQkKCrwpk2yWXWJ/XrvU2jhiiuVj1W2trK+3t7a6Mpf3I5+bmAnXtS/ZeX2eSl0Uy\nCBWbWltbefDBB8nKyuJb3/qWb4q4YI6PmX5kP7NfY/sPE+XYMq8DUNHnww8/5K233mLx4sWO27G0\nH3ngFBcX8+STT/LBBx/wd3/3d16HMyj1dQu4d0RkLFBkjHlLRNKAGJmDU5Fi78mZnp7umwIZYmtn\nC78rLoa4OGvLvZYW0HdnndFcrMJRWVmJMYbMzExH4xhjdCZ5ANnHU6/TWQbP9KlyEZGvA38CfhW8\nKh94KVJBqdhQWVkJQEFBgceRnNbRYR1uAae3KFORk5FhLYzs7Dz9uqvwaS5W/WWM6c7FTne+2b9/\nP0ePHiUnJ4fx48e7EZ46h9mzZ5OSksLevXupr6/3OpxBqa/Te/cAC4FGAGPMR0D4yzbVoODHInnb\nNmhthQsugOHDvY7GXcYYGhsbKS0t9VUfuPYlu0pzseqXxsZGmpqaSElJYbjDpBc6i+x0r+VY1tXV\nxeHDh7t/B4YrKSmJBQsWAKdfezWw+loktxljurv+RSQBa29OpXoVOnvhpyI51vZH7umxxx7jueee\n49ixY16H0k37kl2luVj1S2gedlrYaj9y35SVlfHoo4+ycuVKx2NdEpxlWKuzDJ7oa5H8joj8G5Aq\nIp8GngdejVxYKtqdOnWKrKwsMjMzGTp0qNfhdIvlRXsi0v0HSUVFhcfRnBZaJPtogjtaaS5W/dLe\n3k56erorkxXaj9w39mtdVVVFIBBwNJYWyd7q62EiccBdWMefCrAc+LVfdo7XTez9q6uri3gf7bM2\nYYJ1sMXWrTBrltfRuG/t2rW8+eabzJ07l+uuu87rcACrMM7JgaNHobzc+hkMZg4PE/FtLtY87F/G\nGAKBgKNcfOrUKTIzMwkEApw4cYL09HQXI4w9P//5zzl27Bjf+MY3yMvLC3ucuro6Ro0aRVpaGidO\nnCAhoa+bkqlz6Wse7tNMsjEmgLU45G5jzE3GmMc0G6q+8FOBXFtrFcjp6bFxyl5v7IU5Tnvh3CRy\nejZZJ0Oc0VyswiEijnPxhx9+SGdnJxdeeKEWyH1g52Kn7+rl5OQwadIkTp06xfbt290ITfXDOYtk\nsSwTkaPAXmCviBwRkf8YmPCUco/dalFcHDuHiPSUl5dHXFwcdXV1tLa2eh1ON+1LdkZzsfKa9iP3\nj5utb9py4Z3zzSR/B2sl9QJjzDBjzDCgBFgoIt+JeHRKuWgw7I+ckJDAjBkzmDt3Lh0dHV6H002L\nZMc0FytPaT9y/4wdO5YJEya40guuRbJ3ztmTLCJbgE8bY472uH4ksMIYMyfC8fWJ9sKpvrjsMnj3\nXXj1Vbj2Wq+jGVyam8E+x6ChwWp5GazC6UmOhlyseTh2GWPIz8/n8OHDlJaWMmXKFK9DGlR27NjB\nzJkzGTt2LAcPHvQ6nJjgVk9yYs+kDGCMOQIkhhucim2HDh2ivLyctrY2r0Pp1tkJGzdal/UQkYE3\nZIi1ULKr6/TPQfWL5mLVb1u3bqWmpsbxvumVlZUcPnyYrKwsLrjgApeiU301bdo0MjIyOHToENXV\n1V6HM6icr0huD/M2NYi9//77PPnkk3z00Udeh9Jt+3brWORJk2DkSK+jGZy05cIRzcWqXxobG3n5\n5Zf53e9+53gs+23+kpIS4uL6unOsckt8fHx3m4seUT2wzvevfZaINPby0QRcOBABquji10NEYnl/\n5Ghhn7ynOT4smotVv9h5OD8/3/EhIu+//z4ACxcudByXCo/2JXvjnBvuGWNidA8AFSnHjh2jpaWF\n9PR0Mu0mVB8YDIv2/K7noSJ6qm3faS5W/eXmZIVdJC9atMjxWCo8WiR7Q983Ua76+OOPAXeOQHWT\nnVcGy0zyiRMnePfdd3311ty4cTBqFNTXg486cZSKSfbWY/Z+veFqampi69atxMfHU1xc7EZog0pZ\nWRmvv/46NTU1jsYpKSlBRNi8ebOvtveMdVokK1fZRXJhYaHHkZx2+DDs3w8ZGXDhIHlj+tSpU6xa\ntYpNmzZ5HUq30ENFfFS7KxVzOjo6qK6uRkQcF8kffPABgUCAuXPnMmTIEJciHDz27NnDhg0bKC8v\ndzROZmYm06dPp6Ojg82bN7sUnTofLZKVqyZMmMD06dMZP36816F0W7PG+nzxxTBYTvQcNWoUiYmJ\nHDt2jObmZq/D6aZ9yUpFXmdnJwsXLmT27NkkJyc7GmtNMIFqP3J4/n/27jw+6up6/P/rZGNJIBBW\n2cK+E0BWAWMA2cviLlpbN2zFtdZP/fxqF237+bbaj59Wa11Q64oIlLKJICJEtrAvYScQ9iRsgZCE\n7HN/f7xnhoCASWYm73cm5/l45JGZyczNgSQnJ/d97r2edhd/nIKqLReVT4tk5Vc9evTgzjvvpGnT\npnaH4uUpkqtTO11ISAjNmzcH/HPik7/o8dRKBV6tWrUYNmwYEyZM8Hks7Uf2TenjqX3dis9TJDup\njS7YaZGsgl51LJLh8uTsFH36QHg47NwJWVl2R6OUup7i4mJvQaYzyRUTExND7dq1yc3N5dy5cz6N\nVXomWQ/uqRxaJKuglp0N27ZZbRbVbc2JE4vkWrWgb19rdwudTVbK2ZKTk8nNzaVdu3aOujpYlZTu\nC/c1F7dv356GDRty8uRJDh065I/w1A/QIlkFtXXrwOWCG2+0Tn2rTlq2bMmtt97KqFGj7A7lMjff\nbL1ftcreOJRS16f7I/tHv379uO2222jXrp1P44gIN7l71rQvuXJokayCWnVttQCoWbMmgwcP9vYm\nO4UWyUpVDbpozz/atWtHXFwcUVFRPo/labnwfG1UYGmRrPzi+PHjzJkzh927d9sdymWqc5HsVIMH\nW9vBbdgAut2nUv61YsUKlixZ4nP/qzHGW4jpoj3niI+PB2CVzjJUCi2SlV+kpqayc+dOjhw5Ynco\nXkVFl46j1hzvHPXrQ/fuUFgIGzfaHY1SwcMYw9atW1m/fj1FRUU+jXXkyBHS0tKoX78+nTt39lOE\nyld9+/alZs2a7N69mzNnztgdTtDTIln5hRMPEdm2DS5ehE6doFEju6NRpWnLhVL+l5WVRXZ2NjVr\n1qSRj0mvdD9ySIiWCk4RERHBwIEDAW25qAwB/84XkdEisldE9ovIC1f5eCcRWSsi+SLy3BUfOywi\n20Vkq4hsCHSsqmJcLpffjkD1J221uJyTtgzSIrlyaR6uHjyTFS1btkREfBpL+5EDwx952NNysXLl\nSp/HUtcX0PPHRCQEeBMYDqQBG0VkvjFmb6mnnQWeAiZdZQgXkGCM8a25SgXUqVOnKCwspF69etSt\nW9fucLw8BVh1L5K3bt3K6tWr6du3r3dltN08RfLatVBSAqGh9sYTzDQPVx/+vKKnh4j4lzGGmTNn\ncuTIEZ599lmfTkLUIrnyBHomuT+QYow5YowpAr4AJpZ+gjHmjDFmM1B8lddLJcSofOTEVgtjdCa5\ntMzMTO/XyQmaN4c2beDCBUhOtjuaoKd5uJrwXNHzNRdnZmayc+dOatSoQd++ff0RWrUnIuTk5JCf\nn+/zfskDBw4kLCyMrVu3kp2d7acI1dUEOvE1B0p/Nxx3P1ZWBvhGRDaKyBS/Rqb8pmfPntx///30\nd9BpHSkpcPo0NGkCPm5NWeXFxsYC1h8z2nJRLWkeribuueceJk6cSLNmzXwaZ9WqVRhjGDBgADVr\n1vRTdMrzx4uvC9wjIyPp06cPLpdL90sOsIC2W/jBYGNMuog0wkrSe4wxV+1Uf+mll7y3ExISSEhI\nqJwIFTVq1KB9+/Z2h3GZ0rPIPrbmVXn169cnKiqKnJwczpw54/OCHn+5+Wb45BOrSH76abujCZzE\nxEQSExPtDsMXmoeriJiYGGJiYnwex/P9ql8//4qNjSUpKckvV/Xi4+NZv349K1eudNyBUU5U0Twc\n6CL5BFD6uk8L92NlYoxJd78/LSJzsS4b/mByVsrzs+CZrazORITY2Fh27drF0aNHHVUkg1UkGxO8\nf8xcWSy+/PLLlR2C5mFVLt999x0At9xyi82RBBfPTPKJEycoLi4mLKziJVh8fDx//etftS+5jCqa\nhwPdbrERaC8isSISAdwLLLjO872/JkWktohEuW9HAiOBnYEMVgUHYy4VyUOH2hqKY3iS89mzZ22O\n5JKOHaFxYzh5Eg4csDuaoKZ5WJXZ+fPn2bZtG+Hh4d6txpR/1KpVi8aNGyMiPufiwYMHIyJs2LCB\nfD2VKWACOpNsjCkRkSeBpVgF+QfGmD0i8jPrw2aaiDQBNgF1AJeIPAN0BRoBc0XEuOOcboxZGsh4\nVXA4dAiOHYOYGOvQCgVxcXF069aNyMhIu0PxErHaYf7zH2s2uUMHuyMKTpqHVXl4+pH79+9P7dq1\n7Q4n6EyePJk6deoQ6uOWPvXr16dHjx4kJyezYcMG744Xyr8C3pNsjFkCdLrisXdL3T4JXG1z3Ryg\nV2CjU74wxlBYWOjTVjaB4JlFvuUW0D3wLU5dfHPzzVaR/N138PDDdkcTvDQPB7fCwkLCw8N93hsZ\nLrVaaD9yYNSrV89vY8XHx5OcnMzKlSu1SA4QLSFUhWVmZvLKK68wY8YMu0O5jLZaVB2e38OJiVab\njFKq/BITE3n11VdJ9sN+itqPXHV4CuNVukVQwGiRrCrs8OHDGGN8Wnzgb8bAihXWbZ0Icb64OKst\n5uhRSE21OxqlqqbDhw+Tn59PVFSUT+NkZWWxZcsWwsLCGDRokJ+iU4Fys3v185o1ayguvtoW58pX\nWiSrCjt8+DAArVu3tjWO0lJT4fhxaNAAunWzOxr1Q0JCLv0x4/njRilVdvn5+WRkZBASEkKLFi18\nGmvNmjW4XC769evnqPUL6uqaNm1Kx44dyc3NZfPmzXaHE5S0SFYVYoxxZJGs/cjXV1xczJEjR8jN\nzbU7FC9PW4wWyUqVn+eQoObNmxMREeHTWNpqUXlycnI4dOiQz+MMGzYMgOXLl/s8lvo+LSNUhWRm\nZpKTk0Pt2rVp2LCh3eF4eYpkbbW4urlz5/LRRx+xb98+u0Pxcud4li/XvmSlysufkxVaJFeOvLw8\nXnvtNT7//HOf2yQ8RfK3337rj9DUFbRIVhWSlZVFVFQUrVu39suKan8ovT+yFslX5zmi2vOL1Qm6\ndLGOD8/IAAfV7kpVCYWFhYSGhvpcJGdnZ7Np0yZCQ0MZPHiwf4JTV+XZL7m4uJjjx4/7NJZnF5I1\na9bofskBoEWyqpC2bdvy3HPPMWHCBLtD8Tp4UPuRf4jnF+mhQ4cwDpm2Fbn0R41eMVSqfH70ox/x\nwgsveP8Arqi1a9dSUlJCnz59qFOnjp+iU9fiycW+Tlg0atSIuLg48vPzWbdune+BqctokawqTEQc\ntUdy6Vlk7Ue+ukaNGhEZGUlOTo6jTt/ztFxoX7JS5RceHu7z4RSJ7gSqrRaVo02bNgB+6UsePnw4\noC0XgaClhAoa2mrxw0Tkstlkp/As3ktMBJfL1lCUqpaWLVsGXOpxVYHlmfk/fvw4RUVFPo2li/cC\nxzkb3CrlA+1HLruOHTtSVFREdHS03aF4tW8PzZvDiROwc6e1f7JSqnKcPXuWzZs3ExER4d17VwVW\nrVq16Nq1KzVr1qSgoIDw8PAKjxUfH09oaCgbNmwgOztb22X8SGeSVVDYv98qsBo2hK5d7Y7G2eLi\n4pg8eTIdO3a0OxQvEW25UMouK1aswBjDoEGDdH/kSnTXXXcxfvx4nw+BqVu3Lv369aO4uFhP3/Mz\nLZJVubhcLjZs2MDp06cds/AL4JtvrPe33qr9yFWV7pesVNmlpaWxZ88ev+xo4Gm1GDFihM9jKXto\ny0VgaDmhyiU9PZ3FixczY8YMx2z9BrB0qfV+5Eh741AVV7ovuaTE1lCUcrxNmzYxa9YsNm3a5PNY\n37hnGW699Vafx1L20P2SA0OLZFUuBw8eBKwt4JyiqOjS7KNOhFRdrVtDmzaQlQVbt9odjVLOZYwh\nNTUVgHbt2vk0VmpqKqmpqdSrV48+ffr4Izxlg0GDBlGjRg22bdvmqJ2LqjotklW5+Csx+9O6dZCT\nYx1K0aKF3dEoX3gmsjxXBpRS33f27FmysrKoXbs2TZs29Wms0rta+LqNnLJPrVq1GDRoEGD1mCv/\n0CJZlVlhYSHHjh1DRLx7PDqBp6DSWeTySUlJYe7cuZw4ccLuULxGjbLeL1libxxKOZlnsqJt27Y+\nt715imRttbBHYWEhq1evZt68eT6PpX3J/qdFsiqzw4cP43K5aNasGTVr1rQ7HC/Poj3tRy6fgwcP\nkpyczD4HnQU9fDiEhkJSEly4YHc0SjmTv9reSkpKvD2sumjPHqGhoaxatYrt27eTlZXl01ieQ0WW\n6qU4v9EiWZVZgwYNGDJkCL1797Y7FK9z52DjRggPBz0oqnzat28PwIEDB2yO5JJ69WDAACgu1iOq\nlbqWnj170rNnT5+L5G3btpGZmUlsbKyjWuiqk9DQUO/X0ddc3K9fP+rXr8/BgwcdlderMi2SVZk1\naNCA4cOHO2pxx/Ll1gltgwaBj1tNVjuxsbGEhoaSnp5Obm6u3eF4eVouvv7a3jiUcqquXbsyadIk\nnw8E8uxqMWLECEftVlTdeP5A8VwhqKiwsDDvFYEl2rPmF1okqypN+5ErLjw83HtEta/J2Z9KF8kO\n2opbqaCj/cjO4Lmql5qaisvl8mms0aNHA1ok+4sWyarKMkb3R/aVv2Yw/KlvX4iJgUOHQK8YKhUY\neXl5rF69GrjUy6rsUa9ePRo0aEBBQQHHjx/3aSxPkbx8+XK/HDRT3YXZHYBSFXXwIBw+DPXrw403\n2h1N1dS1a1fq1avnqN1KQkOtreBmzbJmkzt0sDsipYLPd999R0FBAb1796Zhw4Z2h1PtjR49mlq1\nanHDDTf4NM4NN9xAz5492b59O6tWrdIFmT7SmWRVZZU+ilq396yY6OhounTp4qjdSkD7kpUKtK++\n+gqAsWPH2hyJAqvlonnz5oSE+F6WacuF/2iRrH5QWloa77zzDklJSXaHchlPAaV/KAcfT5G8YgUU\nFtobi1JOsWTJEmbMmEFaWprPYy1evBjQIjkYaZHsP1okqx+UkpLCyZMnHXXUZUEBuNec4M4HKog0\nbw7du0NuLqxZY3c0StnPGMPu3bvZv3+/zztRpKSkcODAAWJiYhgwYICfIlROMWjQIOrUqcPu3bs5\nevSo3eFUaVokqx+UkpICQAcHNYd+951VQMXFQcuWdkejAkFbLpS65OTJk2RnZxMVFeXzUdSeVouR\nI0fqUdRBKCIiwrsYU2eTfaNFsrqu3NxcTpw4QWhoqKMWdy1aZL0fN87eOIJJYWGhI/dL1hyv1OWT\nFb7OJGurhbOdP38e4+P+l9py4R9aJKvr8iTmNm3aEBERYXM0FmMuFck/+pG9sQSL7du38+qrr7Lc\nQcfc3XwzREbC9u2gVwxVdeevK3oXL14kMTEREWGU5y9R5RiffPIJr7/+OhkZGT6N4ymSly1bRqEu\n7KiwgBfJIjJaRPaKyH4ReeEqH+8kImtFJF9EnivPa1XgeRaIeDY7d4L9+63t3xo0sI4wVr5r3Lgx\nJSUlpKSk+DyD4S81a17a//rLL+2NparTPFy1FRUVcfr0aUJCQnw+inrFihUUFBTQr18/Gjdu7KcI\nlb/ExMQAsG/fPp/GiY2NpUuXLmRnZ7N27Vp/hFYtBbRIFpEQ4E1gFNANmCwina942lngKeCvFXit\nCrCxY8fy5JNP0qNHD7tD8fLMIo8erVu/+UvTpk2pU6cO2dnZpKen2x2O1/jx1vuFC+2NoyrTPFz1\nhYeH8/zzz/Poo49So0YNn8Za5E6gY8aM8Udoys86duwIwP79+30ey/M1/lJnGSos0DPJ/YEUY8wR\nY0wR8AUwsfQTjDFnjDGbgeLyvlZVjgYNGlC7dm27w/Dy/LxrP7L/iIhfk7O/jBsHIrB8OeTk2B1N\nlaV5OAiEhob6fNCEMYYFCxYAMN7zF6hylDZt2hAeHk56ejoXLlzwaawJEyYAMH/+fMdcIaxqAl0k\nNweOlbp/3P1YoF+rglRWFqxaBSEhlxZ2Kf/o1KkT4PtlPn9q3NhqqSksvHR4jCo3zcMKgM2bN3Pi\nxAlatGjBjXpMqSOFh4d7W2p8nbAYPHgwMTExHDhwwFF5vSoJmmOpX3rpJe/thIQEEhISbItFBc7i\nxVBcDPHx4G7dUn7Spk0b6tSpQ8OGDSkpKXHM1lDjx8O6dVbLxW232R1N+SUmJpKYmGh3GJVC87Cz\nzZ8/H7BmGH3dIUMFTseOHTl79ixhYb6VaGFhYYwbN45PP/2U+fPn07lz9e2UqmgelkBOwYvIQOAl\nY8xo9/3/Bowx5pWrPPf3QLYx5v8q8FqjlxKqh3vugVmz4G9/g2eftTua4GOMcdwvzx07rP2wGzeG\n9HTrKkJVJiIYYyrtP1nzsPKIi4tjx44dLFmyRHe2cDB/5uE5c+Zw5513MmjQINboyUxeZc3Dgf51\nsxFoLyKxIhIB3AssuM7zSwdc3tcqPzp8+DDp6emO6mMqKAD3HvhM1K7IgHBagQzWyXuxsXDqFKxf\nb3c0VZLm4SrKGENycjIXL170eaxDhw6xY8cO6tSpozP8DufPPDxy5EgiIiJISkri5MmTfhu3ugho\nkWyMKQGeBJYCu4AvjDF7RORnIvIYgIg0EZFjwC+AF0XkqIhEXeu1gYxXXbJ06VKmTZvGgQMH7A7F\ny7N4q2dPcNC5JirARC79UTR3rr2xVEWah6uujIwM5s6dy7vvvuvzhIVnwd6YMWN83iFDVR116tRh\n+PDhGGO8O5uosgt4T7IxZgnQ6YrH3i11+yRw1YOFr/ZaFXhZWVmkp6cTHh5O69at7Q7Ha948631V\n7EtVvrnjDnjjDfjPf+CVV6zCWZWd5uGqae/evYB/Ttnz9CNP1Mtw1c6ECRNYvHgx8+fP5+GHH7Y7\nnCqlinf3qUDwrIJt37494eHhNkdjKSkBd45n0iR7Y1GVb/Bgqyf54EFITrY7GqUqh6dI7tKli0/j\nnDlzhpUrVxIWFqb7I1dDnoWaX3/9NdnZ2XaHU6Vokay+x5OYnbQSdv16OHkSWre2FnGpwDHGsH37\ndmbNmkVRUZHd4QDWoTGeP47+8x97Y1GqMmRmZnLq1Clq1Kjh8xW9efPmUVJSwvDhw6lfv75/AlQB\nd+HCBVasWMGqVat8GqdZs2YMHjyYgoICbbkoJy2S1WVyc3M5fPgwISEhdOjQwe5wvDyF0aRJeqk9\n0ESEDRs2sGfPHkf1pN9xh/V+zhx741CqMuzevRuwWi183Y7x3//+NwB33nmnz3GpypObm8vKlStZ\nv349LpfLp7E8X3vP94IqGy2S1WVCQkIYNmwY/fr1o1atWnaHA4Ax1rZvAHfdZW8s1YXn8u6ePc5Z\no5WQAPXqwa5doPviq2DXunVrbrzxRnr27OnTOJmZmXz77beEhoYySXvVqpSmTZtSr149cnNzOXbs\n2A+/4Dpuv/12AL766ityc3P9EV61oEWyukytWrUYMmQIo0ePtjsUr3Xr4NgxaNECBg60O5rqoWvX\nroB14lNx8ZUnFdsjIgLcp6xqy4UKei1atGD8+PG0b9/ep3HmzZtHcXExw4YNo2HDhn6KTlUGEfHm\nYs+VhYpq2bIlAwcOJC8vj8WLF/sjvGpBi2TleJ5Z5LvvrvoHSVQVMTExNGnShIKCAlJTU+0Ox8vT\ncuH5nlBKXZ+2WlRtpa/q+boN4F3uS7GzZ8/2Oa7qQksO5WguF3h+nu++295YqhvPDIZnIacTjBoF\n0dGwbRs4KCylHOncuXMsW7aM0NBQbtO9M6uk5s2bEx0dTXZ2NmlpaT6NdYd7luHLL7/0ywE11YEW\nycrR1q6FEyesE9f697c7muqlV69eTJ48mXHjxtkdileNGuBurWPGDHtjUcrp5s2bR1FREQkJCTRq\n1MjucFQFiAjjx49n6tSpNG/e3KexYmNj6d+/PxcvXtRdLspIi2QFQElJiaOOoPYo3Wqhu1pUrrp1\n69KxY0efV9b72+TJ1vsZM6xFnUoFk5KSEr+NNX36dADuuecev42pKl+7du389kfOZHcC9XxvqOsT\nJxZG5SUiJhj+HXZat24d69atY+jQoT6vpvaX4mJo2RIyMmDjRujb1+6IlBMUF0Pz5nDqFGzaBH36\n2B1R+YgIxpig+5NP87DvjDG888471K5dm0mTJhEdHV3hsdLS0mjRogXh4eFkZGTo/sgKsI46b968\nOaGhoWRkZBATE2N3SLYoax7WmWQFQHJyMllZWYSFBfyk8jJbtswqkDt2rHqFkAqcsLBL/enawmIk\ntgAAIABJREFUcqGCSUZGBqdOneLUqVNERUX5NNYXX3yBMYZx48Zpgay8mjZtyvDhwykqKtI9k8tA\ni2TF6dOnSU9Pp0aNGnTq1MnucLw+/dR6/8AD2mqhLudpufjiC2txp1LBYPv27QB0797d5zanzz77\nDIAf//jHPselgsv9998PaMtFWWiRrEhOTgas3QycMpN84QLMnWvd1hxvv7y8PJ/36fSnm26yjig/\ncQISE+2ORinfuVwudu7cCUBcXJxPY+3evZutW7cSHR3N2LFj/RGecgBjDOnp6T7vcnHbbbdRs2ZN\nVq5cydGjR/0UXXDSIrmaM8Z4i2Sn9CKDdfRwXh7Ex1vFkLJPcXExb7zxBrNnz+bcuXN2hwNYVxZ+\n+lPr9ocf2huLUv5w8OBBcnNzadCgAc2aNfNpLM8M4Z133knNmjX9EZ5ygB07djBt2jSWL1/u0zh1\n69Zlgvtkps8//9wfoQUtLZKrudzcXOrWrUu9evVo1aqV3eF4eVotfvITe+NQEBYWRocOHQDYtm2b\nzdFc4vnemDPHuvKgVFWWl5dHZGQkcXFxiA/9ZSUlJd5WC89ldRUcOnToQGhoKAcPHiQrK8unsR54\n4AEAPvroI0fubOUUuruFAqCgoIAaNWrYHQYAR49a+yLXrGkt3PNhgbfyk9TUVD799FOio6N55pln\nfPol7k8JCfDdd/Dee/Doo3ZHUza6u4W6FpfLRXFxMRERERUe4+uvv2b06NG0adOGAwcOEKLHlAaV\nf//73+zatYuhQ4cSHx9f4XGKi4tp1aoV6enprF69msGDB/sxSufT3S1UuTilQAb46CPr/cSJWiA7\nRZs2bYiOjiYrK4tDhw7ZHY7XQw9Z7z3fM0pVZSEhIT4VyAAffPABAA8//LAWyEGoV69egLXI05c/\nSsPCwvipu2fN8z2jvk9/gpSjlJTA++9bt6dMsTcWdYmIeHvWndRycccdEBkJa9bA/v12R6OUvU6f\nPs28efMICQnhwQcftDscFQBt27alTp06ZGZm+rzo7iH3LMOsWbPIzs72R3hBR4tk5Shffw3HjkG7\ndjB0qN3RqNJ69epFr1696OugU12ioi7tmayTIaq6++yzzygqKmL06NG0aNHC7nBUAISEhDBkyBCG\nDx9OgwYNfBqrY8eO3HzzzeTm5jJz5kw/RRhctEhWjvLee9b7KVNArxQ6S/369Zk4caKjFnjCpSsO\n//oXFBTYG4tSdjHGeC+bP/LIIzZHowKpf//+DBkyxOcDZ+DS94q2XFydLtyrppYtW0ZRURE33XQT\n9erVszscANLSoFUra3uv48ehSRO7I1JVgTHQuzds3w7Tp8N999kd0fXpwj3lUVhYyPTp0+nevTt9\n+/b1aUHs2rVrGTx4MI0bN+bYsWM+9zar6iE3N5dmzZpx4cIFtm3b5qitYANJF+6payosLGTjxo1s\n2LCBwsJCu8Px+vBDqyd54kQtkFXZicDjj1u333rL3liUKo+dO3dy9OhRduzY4fOOMW+++SZgLdjT\nAlmVVWRkpHcB3z//+U+bo3EeLZKroW3btlFYWEjLli1p3Lix3eEAUFwM775r3X7sMXtjUVXP/fdD\nnTrWAr4dO+yORqkfZoxhw4YNAPTp08ensdLT05k9ezYhISE87vmLUakymjp1KmD1tDvlwCin0CK5\nmimdmAcMGGBzNJfMnWst2OvUCW691e5oVFmcP3+eixcv2h0GYC3g8xwu8vbb9saiVFkcOXKEkydP\nEhkZSbdu3Xwaa9q0aRQXFztyzYAKLM9R1b7o3LkzI0aMIC8vjw/1CNPLaJFczRw8eJCzZ89St25d\nunTpYnc4Xn//u/X+6ad1wV5VsHr1al5//XXvH1xO4JlA++QT0MkQ5XTr168HoG/fvoSFhVV4nMLC\nQt555x0AnnrqKb/EpqqGkpIS3nrrLd577z2fT+B78sknAavlwuVy+SO8oKDlSDWTkZGBiNCvXz/H\nbDS/aROsXWsdHKLHUFcNnu2lNm7cSFFRkc3RWLp1s65C5ObCtGl2R6PUtRUXF3P27FlCQkJ83lJx\n7ty5ZGRk0LVrVxISEvwToKoSQkNDadq0KcYY7x9dFTVu3DhiY2NJTU1l8eLFfoqw6nNGlaQqzZAh\nQ3jmmWcctdft669b76dMsS6bK+eLjY3lhhtu4OLFiyQnJ9sdjtcvf2m9f+MNcNCaVKUuExYWxuOP\nP85jjz3m0zZexhhee+01wJoJdMpx8ary3HTTTQBs3ryZ/Pz8Co8TGhrKE088AcD//u//+iW2YKBF\ncjUUHR1NzZo17Q4DgBMnYOZMq8XCfbVHVQEiwqBBgwBISkry6XhUfxo1yppRTkuzvq+UcioRoYmP\n2/gkJiayceNGGjZs6N2hQFUvzZo1o3Xr1hQWFrJlyxafxnrssceoW7cuiYmJjmqls1PAi2QRGS0i\ne0Vkv4i8cI3nvCEiKSKyTUR6l3r8sIhsF5GtIqJfsSD02mtQVAS33w6xsXZHo8qja9euREdHc/bs\nWfY75ExoEXjuOev2a69ZeygrzcPB6pVXXgGsXuTatWvbHI2yi2c2ed26dZSUlFR4nOjoaH7+858D\n8Oqrr/oltqouoIeJiEgIsB8YDqQBG4F7jTF7Sz1nDPCkMWaciAwAXjfGDHR/LBXoY4y57jIc3cS+\najpzxiqML16ELVusAyFU1bJ582bOnDnDwIEDiY6OtjscwDp1LzYWTp60jjkfOdLuiC5X2YeJaB4O\nTtu2baN3797Url2bo0eP+nxEsaq6jDHMnj2bjh070qNHD0JDQys8VlpaGm3atKGoqIh9+/bRoUMH\nP0bqHE45TKQ/kGKMOWKMKQK+ACZe8ZyJwCcAxpj1QLSIeK5BSSXEGPSc+ovrjTesAnnMGC2Qq6o+\nffowatQoxxTIADVqwLPPWrf/8AedTUbzsGP4Mxd7ZvqmTJmiBXI1JyLcfffd9OrVy6cCGaz2jQce\neABjjPYmE/jE1xw4Vur+cfdj13vOiVLPMcA3IrJRRKYELMogt2rVKmbNmsXp06ftDsXrwgX4xz+s\n27/+tb2xqODzxBMQE2MdLrJ8ud3R2E7zsAOUlJTw/vvvs3LlSoqLi30aa//+/cycOZOwsDCe8/QX\nKeUnzz//PCLChx9+yNGjR+0Ox1YV35yxcgw2xqSLSCOsJL3HGLP6ak986aWXvLcTEhJ0Kxy3/Px8\nkpKSyM/Pp3///jRq1MjukAD45z/h/HmIj4chQ+yORgWbOnWs3uTf/AZefhmGDbP6le2QmJhIYmKi\nPZ/cPzQP+8H27dtJS0ujsLCQm2++2aexXn75ZVwuFw8//LAeHqL8rnPnztx7773MmDGDP/3pT0wL\ngj01K5qHA92TPBB4yRgz2n3/vwFjjHml1HPeAVYYY2a67+8FbjHGnLxirN8D2caY/7vK59FeuGtY\nvnw5q1atIjY2lp/+9KeO2CLo3Dlo29YqkpcuhREj7I5IBaMLF6B1a+v7bflyGDrU7ogsNvQkax62\nWXFxMf/4xz+4cOECt99+Oz169KjwWDt37iQuLo7w8HBSUlK0SFYBsW/fPrp27UpISAj79u2jbdu2\ndofkV07pSd4ItBeRWBGJAO4FFlzxnAXAT8CbzM8bY06KSG0RiXI/HgmMBHYGON6gkpuby7p16wAY\nPny4IwpkgL/+1SqQhw7VI6iDzdGjR0lLS7M7DADq1r2008Vvf1ute5M1D9ts06ZNXLhwgcaNG9O9\ne3efxnrppZcwxjBlyhQtkNVVFRUVsWXLFp9OzuvUqRMPPPAAxcXF/PGPf/RjdFVLQItkY0wJ8CSw\nFNgFfGGM2SMiPxORx9zP+Qo4JCIHgHeBqe6XNwFWi8hWYB2w0BizNJDxBptVq1ZRVFREx44dadmy\npd3hAJCRcenwkP/3/+y7BK78b/v27Xz44YcsWrTIMYtFn34aGja0epPnz7c7GntoHrZXQUEBq1at\nAmDYsGE+TVZs2bKFOXPmULNmTX6tiznUNXz22WcsXLiQrVu3+jTOb3/7W0JDQ/nkk0/Yu3fvD78g\nCAV8xbIxZokxppMxpoMx5i/ux941xkwr9ZwnjTHtjTE9jTFb3I8dMsb0Msb0Nsb08LxWlV3NmjWJ\niIhgqFOuMwN/+pO1o8XEiTBwoN3RKH/q0qULUVFRpKWlsXOnMyYb69aF3//euv3CC9ae3NWR5mH7\n5OXl0aRJE1q0aEHHjh0rPI4xhueffx6AqVOn0qxZM3+FqIJMv379AFixYgUFBQUVHqddu3Y88sgj\nuFwufvWrX/krvColoD3JlUV74a6toKCAGjVq2B0GAHv2QFwclJRAcjL4eNVROdDWrVtZsGAB0dHR\nPPnkk4SF2b82uKjIOoUvJQXeegsef9zeeCq7J7myaB6+Pl9z8fz585k0aRIxMTGkpKQQExPjx+hU\nMDHG8MEHH3DixAni4+N9mig7efIk7du3Jycnh2XLljF8+HA/Rmofp/QkK5s5pUA2xtq7trgYpkzR\nAjlY9ezZk8aNG5OVlcX69evtDgeA8HD485+t2y+9BFlZtoajqilfcnFBQQG//OUvAasnWQtkdT0i\nwkj3KUpJSUlkZ2dXeKwmTZp4W3uee+45n070q4q0SFaVYv58ayeLevWslgsVnEJCQhjh3q5k27Zt\nPi0c8afbb4fBg+HUKfjd7+yORqnyefPNNzl48CCdO3f2Hhus1PW0atWKLl26UFRU5HP72y9+8Qti\nY2NJTk7mgw8+8FOEVYO2W6iAy8uDrl3h8GHrAJEnn7Q7IhVoW7dupWvXro65kgGwfTvceKN1e9Mm\n+0551HYLVR7Hjx+na9euZGdns2jRIsaOHWt3SKqKOH/+PBkZGXTu3NnnsWbNmsU999xDTEwMe/bs\noXHjxn6I0D7ablENZWdns2vXLsfsLODxP/9jFcg9eoBOglQPvXv3dlSBDNCzp7Xbhctl9SU7ZJJb\nBaG9e/dy/vx5n8cxxvDEE0+QnZ3NpEmTtEBW5VKvXj2/FMgAd911FyNHjiQzM7NanfKoM8lBwhjD\nrFmz2Lt3L8OHD2eIQ46x27oV+vWzCpJVq6xL3krZ5cIF6NIF0tLsW8SnM8nB7dy5c7z99tsAPPHE\nE0RHR1d4rDlz5nDnnXdSp04d9uzZQ/PmV54mrlTlSU1NpXv37uTl5fH11197+56rIp1JrmZ2797N\n3r17iYiIIC4uzu5wAGtXgYcftnazeOopLZCV/erWvbRP93/9Fxw8aG88KrgYY/jyyy8pKiqiU6dO\nPhXI58+f56mnngLgL3/5ixbIynZt27bl9+49NX/+85+Tk5Njc0SBp0VyEMjNzWXx4sUAjBgxgrp1\n69ockeWVV2DbNuto4P/5H7ujUXYqKiri9OnTdocBwJ13wj33QG4uPPig9UecUv6wdetWUlNTqVWr\nFqNHj67wOMYYfv7zn5Oens5NN92ki/WU35w+fZri4uIKv/65556jV69eHDp0iGeffdaPkTmTFslV\nnDGGefPmkZubS+vWrenTp4/dIQGwbp213RbAe+9BVJSt4SgbXbhwgWnTpvHZZ5+Rn59vdzgA/POf\n0LQprF4Nf/ub3dGoYHD69GmWLFkCwJgxY4iMjKzwWJ999hkzZ84kMjKSjz/+mJAQ/VWtfLdt2zbe\nffddli9fXuExwsPD+eyzz6hRowYffPABc+fO9WOEzqM/eVXcxYsXycrKolatWtx2220+HXnqL+fP\nw+TJ1gzdc8/BrbfaHZGyU1RUFDVq1ODChQssXLjQEQtLGzQAz05GL74IGzfaG4+q+k6ePInL5SIu\nLo4ePXpUeJzU1FSeeOIJAN544w06dOjgrxBVNdeoUSNcLhdJSUkcOHCgwuN069aNV199FYApU6aQ\nlpbmrxAdRxfuBQHPpWwnHFNqjHUpe/Zs6NMH1q6FiAi7o1J2O3v2LNOmTaOwsJBRo0Yx0CFnkj/1\nFLz5JrRqBVu2WMVzoOnCveCVkZFB/fr1K7yzS15eHvHx8WzatIk77riD2bNnO2LiQwWP7777jsTE\nRGrVqsXPfvazCvfNu1wuxowZw9KlSxkyZAjffvstEVXol70u3KtGwsPDHVEgA7z2mlUg16kDX3yh\nBbKyNGjQgEmTJgHwzTffcPToUZsjsrz2GgwYAEePwgMP6LZwyjdNmzatcIFsjOHxxx9n06ZNtG7d\nmmnTpmmBrPwuPj6e9u3bk5eXx+zZsyvcnxwSEsInn3xC8+bNWb16tfdEyGCjRbLym0WL4Fe/sm5/\n9BG0b29rOMphunTpwk033YTL5fLpUp8/RUTArFnWDPLixeA+fVWpSvfmm2/y8ccfU6tWLebNm6dH\nT6uAEBFuu+02oqOjOXPmDJmZmRUeq0mTJsyZM4eIiAjv92+w0XaLKsYYgzHGcQs5du2Cm26C7Gz4\nwx/gt7+1OyLlRCUlJezevZvu3bs7apZs2TIYMwaKi+Hdd+GxxwL3ubTdIji4XC6/5eFFixYxceJE\nSkpKmDFjBvfee69fxlXqWtLT0wkNDfXLyXnvv/8+U6ZMITw8nCVLljBs2DA/RBhYZc3DWiRXMcuW\nLePs2bPccccdhIWF2R0OYJ2mN2QInDhh9SPPmAEOqn+UKpMPPoBHH4XQUFi40CqaA0GL5KovNzeX\nTz75hPj4eLp16+bTWElJSQwfPpy8vDxefPFF/vSnP/kpSqUqzy9+8Qv+/ve/U6dOHVauXEmvXr3s\nDum6tCc5CK1evZo1a9awf/9+x6wmTU+3dq84cQLi4+HDD7VAVlXTI49YO12UlMDtt4MPuySpIJaf\nn89nn33GqVOnWLNmDS4fGtl37drFj370I/Ly8nj44Yf54x//6MdIlao8r732Gvfccw/Z2dmMGTOG\nlJQUu0PyCy2Sq4ikpCS+/fZbACZNmkSrVq1sjsgqkEeMsE4t69PHmn2rVcvuqFRVlJ2dTYkDTvX4\n4x9hyhTIz4fx4+G77+yOSDlJfn4+06dPJyMjg5iYGO67774Kt1xs376dhIQEMjMzGT9+PO+++66j\nWpBU9XT+/PkKvS4kJISPP/6Y4cOHk5GRwS233MLevXv9HF3l0yLZ4YwxJCYmsnTpUgDGjRvn0x6c\n/nL4MNx8s9WL3LUrLFliHfmrVHmdO3eODz74gNmzZ1NUVGRrLCLwzjvw0ENw8SKMHWt9byuVm5vL\nRx99xPHjx4mOjuaBBx4gqoKnJG3atImhQ4dy5swZRo8ezcyZMx3TPqeqr40bN/Lmm2+yc+fOCr2+\nRo0azJ8/n6FDh5Kenk5CQkKFx3IKLZIdzuVycezYMUSEiRMn0rdvX7tDIjnZ6kH2zCAnJkLDhnZH\npaqqvLw8CgoK2LdvH59++ikXL160NZ6QEOuUyAcftArl8eOt3VpU9ZaVlcW5c+do0KABDz30EPXq\n1avQOIsWLWLo0KGcO3eOCRMmMG/ePGrpJTjlAOfPn6ekpIQ5c+aQlJRUoYOfIiMj+fLLLxkxYgQn\nT5707qFcVenCvSqgsLCQ48eP07ZtW7tD4T//gZ/8BHJzrR7khQt1Bln57tSpU0yfPp0LFy7QoEED\n7rnnHho1amRrTMZYW8L95S/W/RdfhJdfthb2+UIX7lVdx44do379+hWaQTbG8Oabb/Lss8/icrm4\n7777+PDDD6vUAQwquBljSEpK4ptvvgGgb9++jB49mtAKJL38/Hzuv/9+/vOf/xAWFsY777zDI488\n4u+QK0x3t1B+VVxsFQiehdcPPADTpkHNmvbGpYJHdnY206dP5+TJk0RERPD0008TGRlpd1i8+SY8\n84x10MjIkTB9um9XTrRIrn6ys7N5/PHHmT59OgAvvfQSv/vd77QHWTnSzp07mTdvHiUlJfTq1YuJ\nEydWaByXy8V///d/89e//hWARx55hDfeeIPatWv7M9wK0SK5CjLGkJeX54hvoNJSU+HHP4akJOtS\n9CuvwC9/qbtYKP8rLCxk4cKFxMTEMHToULvD8fr2W7j3XjhzBlq0sLaLGzmyYmNpkex8Fy9epFat\nWn4pYjdv3szkyZNJSUmhdu3avP/++0yePNkPUSoVOMePH2fBggXcfffdNPSxn/Jf//oXTzzxBPn5\n+XTv3p3PP//c9rVVWiRXMWfOnGHRokUUFBTwyCOPVOjyhr8VF8Nbb1mXmXNyoHlz+PRTcFDtooKQ\n52fZabNsx45Z+4AnJVn3f/Yz6w/G6OjyjaNFsnMZY9i2bRvffPMNCQkJ9O/fv8JjXbx4kZdffpnX\nXnuNkpISevTowaxZs+jcubMfI1YqcIwxfsvDycnJ3H333ezbt4+wsDB+/etf8+tf/7rCx7j7SvdJ\nriIKCgpYvnw5b7/9NocPHyYrK4szZ87YHRZr18KAAdZl5pwcuPNOa8GeFsgq0ETkmok5JyenkqO5\npGVLWLkS/vxnCA+3Tubr0MGaVfZhq1zlEOnp6Xz88ccsWLCAvLw8UlNTK7RwyRjDnDlz6NGjB6++\n+ioul4tnnnmG9evXa4GsqpRr5eGLFy+We8vOuLg4Nm3axNSpUykuLuYPf/gDPXv25Msvv6zQz1ll\n0ZlkG23fvp2lS5d6V/P37t2bESNG2LrSOTkZfvMba0EeQKtW8I9/wIQJtoWkFAApKSnMnDmTvn37\nMnjwYOrUqWNbLDt2wOOPw5o11v24OHjpJZg40WpJuh6dSXaWoqIiFixY4N2qKjIykpEjR9KjR49y\nzaIZY1ixYgW//e1vWbt2LQDdu3fn/fffZ8CAAQGJXSk7zJw5k1OnThEfH0+PHj3KvVf4ypUrmTJl\nCvv37wdg2LBhvPzyywwZMiQQ4V6VtltUAcnJycydO5eWLVsyYsQIWrZsaUscxljbuP31r7B4sfVY\nZCQ89xy88IJ1Wym7LV++nFWrVgEQGhpKr1696NevH02aNLElHmPgiy/gV7+C48etx+Li4OmnYfJk\nuNbSAi2SncUYw0cffcSJEyfo168f8fHx5ZqoKC4uZsGCBbz66qusX78egMaNG/Pyyy/z6KOP6v7H\nKqjk5+fz3nvvkZmZCUBMTAwDBgwgLi6OmuVYyV9YWMjbb7/Nyy+/zLlz5wC4+eabef755xk7dmzA\nf260SHaQa/X1GGNITU2lbdu2tvRfHj9u9Rh/9BG4/6CjVi149FGrD9mm2kOpa8rIyGDlypXs2bPH\n+9h9991Hhw4dbIspPx/ef99qw/CcFh8dbe2z/PDD0KPH5YtctUi2z7Vy8enTp4mIiCC6HA3m+/bt\nY8aMGbz33nukub/wDRo04Nlnn+Xpp5+mru6NqYJUSUkJO3bsYOXKld4CNzo6mmeeeabctcy5c+f4\n+9//zhtvvOE97a9Zs2Y89NBDPPLII7Rp08bv8YMWybYrKiri0KFD7N+/n0OHDvHYY4/Z1qBe2v79\nsGgRfPklrFhhzYYBNG1qXT6eOlUPBlHOd+rUKTZt2sSBAweYOnWqI2br8vNh9mxrseu6dZce79AB\n7rjDervxRggN1SK5Mp0/f579+/eTkpJCvXr1GDduXIXGMcawa9cu5s2bx6xZs9ixY4f3Yx07dmTq\n1Kk8+uijjti2UKnK4HK52LNnD5s2beKGG25gZEW3/AEuXLjAe++9x7Rp07xtGGDt1Txp0iQmTpxI\nt27d/Dah6JgiWURGA3/HWiT4gTHmlas85w1gDJALPGiM2VbW17qf55jkvGnTJvbu3cuKFSto1aqV\n9/Hbb7+90rc8MQYOHLAW4a1dC8uXw4EDiUACABERVg/lgw9a21nZVWckJiaSkJBgzye/DifG5cSY\nwL64XC7XVfvhcnJy+N3vfseoUaNo3bo1zZs3r/ARwhWxZYu1j/icOda2cR6NG8OpU5VfJFe3PJyb\nm0tiYiJHjhxhw4YN3tmomjVr8vzzz5dp96Di4mL27NnDunXrWL58OcuXL+fUqVPej0dHRzNx4kQe\nfPBBEhISyvXLW3+Oy86JMYEz47Izpmvl4qSkJBYtWsTYsWOJjY2lSZMm153UMMawatUq3nvvPebM\nmUNeXp73Yy1btiQ+Pp74+HhuvvlmOnXqVO5+aI+yFskBLYtEJAR4ExgOpAEbRWS+MWZvqeeMAdoZ\nYzqIyADgHWBgWV5rh7y8PM6fP0/t2rWvemnuxIkTHDx4kIMHDzJw4EA6duxIhw4duOGGGwIWU3Gx\n1Tpx+DDs2wc7d1pvycngbhvyqlkzkdtvT2DcOBg9GmJiAhZWmTkx2YAz43JiTGBfXNdKkIcPH2bL\nli1ER0ezzj2tGxUVRffu3Rk1alTA47rxRnjnHesgklWrrGJ5/vxLvcuVKRjzsMvlIjs7m/Pnz9Oq\nVavvFagRERFs3rwZYwzHjh1j3LhxdOjQgQ4dOnyvQC4sLOTQoUOkpKSQkpLC/v372bZtG9u3b7/s\nFzTgnS276667uPXWWyt8dVB/jsvOiTGBM+OyM6Zr5eKUlBRWr15NeHg4YBWnjRo1YsyYMbRu3fp7\nzxcRbyH87rvvsmzZMubPn8/ChQs5duwY06dP9x7KExUVRY8ePejZsyc9evSgXbt2tG3bltjYWL+d\nZBnoucP+QIox5giAiHwBTARKJ9iJwCcAxpj1IhItIk2ANmV4bYUZYygpKaGwsJDCwkLCw8Ovepls\n9+7dbN++naysLM6fP09BQQEAQ4cOJT4+/nvPv/HGG2nfvj0FBQVMmTKl3HG5XNaRzzk5l96ysuD0\naWtG6vTpS28ZGVZhfPw4XGs3liZNYPBgGDTIev/VV/CHP5Q7LKWqlE6dOtGzZ0/i4+M5cuQI6enp\n5OTkUFhYeNXn79u3jw0bNhAVFUVkZCRRUVHUrl2bJk2a+PQHbliYtW3i0KHWLjF790LXrhUerqIc\nm4fdn4+ioiJvLo6Ojr7qTO+XX37J2bNnycrKIisrC5d7373nn3/em7tdLhc5OTlcuHCBbt26ERIS\nQkpKCiLCunXrmDdvHhkZGaSnp5ORkUFGRgYnTpy45nZWbdq0oW/fviQkJDBs2DA6depFhXsWAAAg\nAElEQVTkuP27lXKyiRMnkpSURO/evTl27Bhnzpzh1KlT1yxiFy5cSE5ODlFRUURFRXHDDTfw7LPP\n8o9//IMDBw6watUqVq5cyZo1azhx4gRJSUkkeTavdwsJCaFFixa0atWKxo0b06RJExo3bux9K8/h\nKIEukpsDx0rdP46VsH/oOc3L+FqvsWP34XIZjDG4XIb69evTpIn1y82YS2+nT5/i2LETlJS4vP24\nxkDjxk1o0SLysucCnDzZkBMnung/j0go4eERJCU1YNq0y59r3W6JMbBzZwT790NRkfVWWHjp9tXu\n5+VZBbF7N7hyEbEO+mjdGtq1g+7dL721aHH5oqElS8o/vlJVTXh4OPXr1/ee2meMITMz85oFzpkz\nZ0hNTf3e4wMGDLhqkey5BB8WFkZYWBjh4eGEhYXRq1cvbrrppu89f+/evSQnJ9u1g02l5eHRo0fj\ncrkue4uNjSU8PNx738rRLg4cOMDFixe9j3ne2rZt632+57nFxcWkpqaSn59PcXExJSUl3o+98847\nFBYWUlBQQG5u7lXj8sw8XY2IEBsb673q16FDB7p3786NN95IjBMutSlVhUVHR9OkSRMmuPeRLSws\n5NSpUzRu3Piqzz906JB3MWBpU6dOJS4ujri4OJ544gnAytt//OMfOXDgAGfOnCEzM5PMzEzOnTvH\n0aNHOXr0qM/xB7QnWUTuAEYZYx5z3/8x0N8Y83Sp5ywE/myMWeu+vwz4FdYMxnVfW2oMZzTCKaVU\nGVRmT7LmYaWU+j7be5KBE0CrUvdbuB+78jktr/KciDK8FqjcXzhKKVXFaB5WSqkKCPSx1BuB9iIS\nKyIRwL3AgiueswD4CYCIDATOG2NOlvG1Simlrk/zsFJKVUBAZ5KNMSUi8iSwlEvbB+0RkZ9ZHzbT\njDFfichYETmAtfXQQ9d7bSDjVUqpYKN5WCmlKiYoDhNRSimllFLKnwLdblGpROSXIuISEUcsSRaR\nP4jIdhHZKiJLRKSpA2J6VUT2iMg2EZkjIo44O1VE7hSRnSJSIiI32hzLaBHZKyL7ReQFO2PxEJEP\nROSkiCTbHYuHiLQQkeUisktEdojI9xZz2UFEaojIevfP3Q4R+b3dMXmISIiIbBGRoG5ZcFIudmIe\nBmfmYiflYXc8movLwIm52Ml5GMqei4OmSBaRFsAI4IjdsZTyqjGmpzGmN7AIcMI3yVKgmzGmF5AC\n/H82x+OxA7gN+M7OIEodnjAK6AZMFpHOdsbk9iFWTE5SDDxnjOkG3AQ84YT/K2NMATDU/XPXCxgj\nItfctqySPQPstjuIQHJgLnZiHgZn5mJH5GHQXFxOjsvFDs/DUMZcHDRFMvA34L/sDqI0Y0xOqbuR\ngMuuWDyMMcuMMZ441mGtVredMWafMSYFsHuFvPfgBWNMEeA5PMFWxpjVwPc3j7SRMSbDc3Sx+3t9\nD9a+urYzxnh2HK+BtfbC9r4yd/E4Fnjf7lgCzFG52Il5GJyZix2Uh0FzcZk5NRc7MQ9D+XJxUBTJ\nIjIBOGaM2WF3LFcSkT+JyFHgPuB3dsdzhYeBxXYH4TDXOlRBXYeItMaaLVhvbyQW96W0rUAG8I0x\nZqPdMXGpeHTEL4pAcGoudngeBs3FV6O5uAKclIsdmoehHLk40Psk+42IfAM0Kf0Q1j/wN8CvsS7v\nlf6Y3XG9aIxZaIz5DfAbdz/VU8BLdsfkfs6LQJEx5vNAx1OeuFTVIyJRwL+BZ66YtbONe4aut7vP\nc56IdDXG2NbmICLjgJPGmG0ikoAzZuoqxIm52Il5uCxxuZ9TqblY83DwcloudloehvLn4ipTJBtj\nRlztcRHpDrQGtouIYF2y2iwi/Y0xp+yK6yo+B76iEpLzD8UkIg9iXWoYFuhYSivH/5WdynLwgnIT\nkTCspPypMWa+3fFcyRhzQURWAKOxtxd4MDBBRMYCtYA6IvKJMeYnNsZUIU7MxU7Mw+DMXFxF8jBo\nLi4XJ+diB+VhKGcurvLtFsaYncaYpsaYtsaYNliXZHpXRoH8Q0Skfam7k7D6hGwlIqOxLjNMcDfW\nO5Gds2xOPjxBcN4M5L+A3caY1+0OxENEGopItPt2LayZzb12xmSM+bUxppUxpi3W99TyqlggX49T\nc7ET8zBUiVxsd67RXFw+jsrFTszDUP5cXOWL5KswOOeb9y8ikiwi24BbsVZT2u0fQBTwjXv7k7fs\nDghARCaJyDFgIPCliNjSn2eMKQE8hyfsAr5wwuEJIvI5sBboKCJHReQhB8Q0GLgfGObe5meL+xe/\n3W4AVrh/7tYDXxtjvrI5purIKbnYiXkYHJiLnZKHQXNxOWNyYi4Oijysh4kopZRSSil1hWCcSVZK\nKaWUUsonWiQrpZRSSil1BS2SlVJKKaWUuoIWyUoppZRSSl1Bi2SllFJKKaWuoEWyUkoppZRSV9Ai\nWSk3EWkhIqkiUs99v777fqsfeq1SSin/0FysnEKLZKXcjDHHgbeAV9wP/QV4xxhz1L6olFKqetFc\nrJxCDxNRqhQRCQM2AR8CjwK93Cc/KaWUqiSai5UThNkdgFJOYowpFpFfAUuAWzUpK6VU5dNcrJxA\n2y2U+r6xQBrQw+5AlFKqGtNcrGylRbJSpYhIL2A4MBB4TkSa2BySUkpVO5qLlRNokazU5d4CnnEv\nHHkVeM3meJRSqjrSXKxsp0WyUm4iMgU4YoxZ7n7obaCziNxsY1hKKVWtaC5WTqG7WyillFJKKXUF\nnUlWSimllFLqClokK6WUUkopdQUtkpVSSimllLqCFslKKaWUUkpdQYtkpZRSSimlrqBFslJKKaWU\nUlfQIlkppZRSSqkraJGslFJKKaXUFbRIVkoppVSFicifROS0iKRVwuf6vYh86u/nKnU1WiQrpZRS\nDiUih0XkoohcEJF0EflQRGrbHZeHiLQEngM6G2OaVdKnLc9RwbYfKywir4jIGfcfEn+5zvNiRcTl\n/lpnu9+/WJmxqstpkayUUko5lwHGGWPqAjcCfYHf2BGIiIRe5eFY4Iwx5qyfxgsqIvIzYALQA4gD\nxovIY9d5iQGijTF1jDF1jTH/UxlxqqvTIlkppZRyNgEwxqQDi4HuACJyg4jMF5GzIrJfRB51P17D\nPfsc477/oogUiUiU+/4fROT/3LcjROR/ReSIe6b6LRGp4f7YLSJyTER+JSLpwL8uC0pkOLAUaOae\n9fyX+/EJIrJTRDJFZLmIdC71mkPu8bYDOSLyvTpERP4uIkdFJEtENorIkKv+p1yaeZ0iIifcb7+8\n4mk1RORjd3w7ROTGUq9/QUQOuD+2U0QmlfkrUnY/AV4zxqS7v37/Czx4necLWps5hn4hlFJKqSrA\n3dowFtjifmgmcBRoCtwF/D8RSTDGFAAbgFvcz4sHDgOD3fdvARLdt18B2mPNcrYHmgO/K/VpmwL1\ngFbAZTOgxphvgTFAmnvW82ER6Qh8DjwNNMIq6heKSFipl97rfl09Y4zrKv/UDe546rvHmi0iEdf5\nr0kA2gGjgBdEZFipj413jxENLAT+WepjB4DB7ln6l4HPRKTJ1T6BiEwWkXPuwv/cFbczRaTFNWLr\nBmwvdX+7+7FrMcBh9x8J/xKRBtd5rgowLZKVUkopZ5snIpnASmAF8Gd3UXYT8IIxpsgYsx14H2vm\nEvdzb3G3NMQBb7jv1wD6uT8OMAX4hTEmyxiTC/wFmFzqc5cAv3d/joIyxHo38KUxZrkxpgRr5rQW\nMKjUc143xqRdazxjzOfGmPPGGJcx5m9ADaDTdT7nS8aYfGPMTuDDK+JfbYz52hhjgE/d/xeezzPH\nGHPSfXs2kAL0v0ZMM4wx9Y0xMe73pW/HGGOOXyO2KCCr1P0L7seu5gzW1yYW6APUAaZf59+tAizs\nh5+ilFJKKRtNNMasKP2AiDQDMo0xF0s9fASruAL4Dvg/rD7mZOAbrHaJr4EUY8x5EWkE1AY2i4hn\njBDc7R1up40xReWItZk7DgCMMUZEjmHNUHtcq6D0/NueBx4GbnA/VAdoeI2nmyvGO4K7HcUto9Tt\ni0BNEQkxxrhE5CfAL4DW7o9HXufzVFQOULfU/Wj3Y9/j/iPFc5XgtIg8CaSLSKT7Y6qS6UyyUkop\n5WxylcfSgBgRiSz1WCvghPv2WqzZ19uA74wxe90fH4tVQIM1c3kR6OaeDY0xxtQzxkSXGrO8u0Ok\nYc2EltaSywvZa47p7j/+L+BOz4wt1uzr1f4PcD/estT9Vu4YrktEWgHTgKmlPs+ua30eEbmv1I4T\npd88j12r3WIX0LPU/V7ux8rKoLWabfQ/XimllKpi3Jf312K1XtQQkTjgEayWAowxecBm4AkuFcVr\ngZ977rtbEN4D/u6eVUZEmovISB9CmwWME5GhIhLmnhXOB5LK+Po6QBFw1r2o8Hfux67ntyJSS0S6\nAQ8BX1znuZ4iOBJwAWdEJEREHuLyGejLuFtAPDtOlH7zPHat2fFPgOdEpJmINMfaLu/DqwYm0l9E\nOoqlAfA6sMIYk33df70KGC2SlVJKKee63kzuZKAN1szpHOC3V7RlfAeEYi2E89yP4lI/MsALWAvY\n1onIeazdKjpWOFhj9gM/Bt4ETgPjgPHGmOIy/HvAagf5GtgPHMKa6T72A6/5/9m78/imqvTx45+n\nZd93hAKlVAEXVgUUXEBFEcdl3BVUXEbHhdGf4obfikxFRVFEdEZcRlCYQUXFXQS1AiKyCoJAoZQC\nLZtAWdpSaHN+f5wbCCVpCyS5Sfq8X6++ktx7cvMkbW+enDznnJ+wz2E68IIzoDBgiE6cK4CXgLnY\nkoxTgdllPM5RM8aMww4Y/B07aO9zY8xb3v3OrBreGuo2wLfYnvOl2A8XNwU7JlV+Yj9IKqWUUkpF\nDxFJBNYClQPMkqHUcdGeZKWUUkpFq0C1ykodN02SlVJKKRWt9OtwFTJabqGUUkoppVQJ2pOslFJK\nKaVUCZokq4BE5A4R+dG5HufMB9nCuV1dRL4SkVwRmeRse15E/hSR9X6OdZ6I/B7eZ6CUUtFHRHqK\nSLoz/+7lbsdTkvNe0Loc7RJFxCMifnMNERkmIu8HOz7n2O86y0XPdW7fIyKbnde0figes4x4WjqP\nrTXUUUST5AhSYqLyYhHJ99l2Y9lHCAnvdDkeZz5I71yQ1wP1gPrGmAHOCXMwcJIxptURBzHmJ2NM\nhzDF7CoRucXPpPN7nDeLx92OL9hE5BER2SQiO0XkTRHxu5KniLQXkc9FZKvzYeorETnRZ/8dIlJU\nYoL+XuF7JkpFjH8Crzrz737udjAlOe8F68rb/Dj3HzVnQZILgObGmDOdc9JLwIXOa7rzGI9batJf\nGmPMBuextcY1imiSHEF8JyrHLq15qc+2/5VsLyLx4Y/yoERglc8/fGtgy7GefGKJMea9kpPOA0Ow\nc5m+E44YjuUkfoyPcyl2WdfzsPO1tgeeCtC8LnYu17ZAU+ycoZ+WaDOzxAT9P4cmcqUiWiLwx7Hc\nMZTvCy6/5xyN1sA6Y8w+5/YJQFVgxXEeV7BJvfYGVxCaJEcuocQ/ooikishkEfmviOwCBojI+86K\nRN42F4hIps/tBBH5xOm9yxCRewM+oEgjEflSRHaJyBxs0uPdF+98gm4lIs8AQ4GBTm/fLcDXQCvn\n9pt+jl0yrg0i8v9EZKnTAzlJRCoHiOsOEUkTkTFO23SxKxPdLiLrnV7MAT7tq4rIyz77XhORKs6+\nBk4P5lYR2e70bDb3ue8sEXlaRH52nsvXIlLP2VfdifNPJ465ItIg0Ovpc8wzgFHAdcaYbT7PKdN5\njDUicp1P+7tFZIWzb6mIdHC2n+q8DjtFZImI9Pe5z/vO8/xGRPYAZ5f2OgTRLcCbxph0Y0wukIpd\n8eoIxphfjTETjDG5xphiYDRwioiUtZqWUhWGiKzBnnu/dM4BlUWkmYh85pyz0kXkTp/2w0TkI+cc\nkAvcWuJ43Z3/f/HZ9lcRWeJc7yYic5zzSraIjBWfb4Oc8/69IpKOXeDDu62Nc72/iCxy3jeyRGRY\nyacE3OEcO1tEHi7luZ/pnHt3ishiETmvlLbNRGSKHHpvG+xsvx27iuBZzus3CVjp3G2niMxw2rUX\nke+c13SFiFzrc+xqIvKSiKwTW1I4U0SqcWjlwlzn2D38xNVNROY7r8cmERnlbD/YC+08T99vGwtE\nZK3TTkTkced9YZvY93zve1BV5/fsfQ/6VZyVElWIGGP0JwJ/sCsNnV9iWyp2BZ7+zu1q2CVIn/Jp\ncwGw1rkuwGLsikrx2NV81gJ9AjzmFGAS9hN3B2zP5w/OvnigGGjlE8t//D1ugGMfth+7gtIcoDFQ\nH1gF3B7gvncAhdiVhwR4DlgHvAJUBi4BcoFqTvux2B7LOtjVpb4Ehjv7GgFXAFWcfVOAD30ea5YT\nSxvn9Z0J/NPZdy/wiXNfAboCNcr4PTZwfpcP+myr7cTbxrndFGjvXL8R+y1CZ+f2iUCC8zzXAg87\nv4sLgD0+x3gf2A50d25XKe118BPnucBOYIdz6Xt9h/e4fu63DPirz+0mzt9J7XL8jV8DZJX4Pe8B\ntmJ7fIbizMCjP/pTkX6cc0Yfn9sznf/nykAn53+kt7NvmHN+vMy5XdXP8VYDF/jc/hB4xLneFeju\nnNNaAcuBf/i09WBXwKvnPbbzP+4995wLnOpcPw3YBFzu3E507j/JOZ+e5sR+vk/s7znXE4A/gYud\n2xc4txv6eT4CLACedM6HrbEr7vV19t+K/VYKnziKvecToAawHvshX5zXdBuHzsOvAz9ge6AFONN5\n7Q87ToDf3RxggM/jdC8RQ1yJ9pWANOAZ5/YDzjGaOY/5b+C/zr67gM+w79ECdAFquf33Gss/rgeg\nPwF+MYGT5BkltpWWJPcC1pRo/3/AOD+PVwk4ACT5bBvJ4Umyh+Amydf63H4JW4Pn7753AMt9bnd2\nTjb1fLblAqc4J44CoKXPvrOB9ADHPgNbJuK9PQt41Of2YOwyogB/w75ZnXYUv8evgI9KbKuNTTyv\noMQbGjADuMfPcXoDG0ps+xAY6vN38LbPvqN6HY7j73Sd798p9o3Qg60FLO1+rYBs4CqfbUk+f1+n\nYRPlh4MZr/7oTzT8+J7/gRbOubmGz/5nvedfbKKZVsbxUoF3nOu1gb2+54YSbR8APva57QHOK9HG\ng5Mk+7n/aOAl57o3ST7JZ/9I4C2f2L1J8qPAhBLH+ha42c9jdMeWU/hue9znOQZKkuOc29cBP5W4\n/xtAinPuzPd3ni95nADPP815Xg3Lc19sEvy5z+0/OPwDUjNgP/ab/9uwS2d3cPtvtKL8+B1goyJa\nWWvY+2oFJIrIDue2YP/RfvTTtqmzb6PPtiyg27EEWU5bfK7nY3sSytO2ACg29ut93221OFR7tsTn\n28U47IkaEakJjAH6Ymtkxbmfr80l4vLuH489YX3olAi8D/yfCbAcqoj8H5CMTcQPMsbsETsQcwgw\nXkRmAQ8ZY9YALYEMP4drju358JXF4a+Z799Gqa9DEO3F9lR71cXW7O0JdAcRaYLtmRptjPnEu90Y\nk+lzfZnYsp77sR+glKqomgM7jDH5PtuygNN9bpf1vvBf4GcR+TtwFbDQGLMBQEROAl7GnqeqYztM\nFpa4/0YCcEoOnsN+sK3i/Hzk08Rw5PvKaX4OlQhcJyKXeQ/txPJDgLYJft7bZgaK08/9zyxx/3jg\nPey3jdWw39wdizuwH0pWOiUU/zTGfOWvoYjcje2J9y3bSAQ+FRHvuVqwH5KaYt9zWgCTRaQuMBF4\n0tjyNRUCWpMcfUyJ23nYr3S8mvlc34DtOWzg/NQ3xtQ1xlzp57hbsAlUS59tR8xSEQW2YL96bOfz\nvOsZY7y1w49gT0JnGGPqAeeX98DGmAPGmH8aY07B9speBQzw11ZELnQe62pjzF4/x5pmjOmLTWYz\ngHHOrg3YxLqkHA7/3cCh3tiDh/W5XtbrUDLe8+TIGTl8Z5k4ovbOsRz7VaVXZyDbGOM3SRaRhsB0\nbInLqADHPOwu5WijVCzLARo4H/C9SvvfP4IxZgU2Oe2PLen6r8/uf2O/tUl2zolPcuT/XWnHnwRM\nBRKc+4/zc/+S7ys5fo6zAdur7Pt+VdsY80KAtmv9vLdd5qetPxuwve++969jjLkfW+JRgP/zcKmv\nM4AxJsMYc5MxpjHwAjBFRKqXbCci5wDDsaUpvu8R64FLSsRW0xizyRhTZIxJNcacCvQELsOWjKgQ\n0SQ5+v0GXCoi9USkGbY8wOsXYL+IPOQU/MeLyGki0rXkQYwxRdgT3XBn0MJpwM1heQbHxm/y5PTq\nvg2MEZFGACLSQkT6Ok1qY3uHdzkJ27ByP6BIH7GD5wTbg3oAPz2zIpKAfeO43xiz3M/+E0TkL86J\nswj7Qcd7nLeBR0Wks9P2ROd4c4Ai53dZSUTOx9ZiTz7G16Fk+59MiRk5zOGzTPwa4GV5D/ibiLQT\nO4jxSeBdfw1FpA7wHfC9MeaI111E+nkHoYjIKdia5KkBHlepCsHYaTfnAM855/GO2N7Ko51f+L/Y\nUopzOLyntzaw2xiTLyLtgXuO8ri1gJ3GmAMi0h07dsSXACliBz6fii0Z8HfemghcJiIXOYPbqjkf\n3pv7aTsP2CMijzrt4p1z8xl+2vrG4fUl0FZEBjrn08oicoaItDPGGOw57GWxgwO9A+0qY+uWPfhP\noO2DiAzwnnOBXdjE2rdXGBFpCXwA3GKMKfnN4TjgWRFp5bRtLM5c2SLS23kPj6OU9yAVPJokR64y\nP7E6xmNH7mZhZ5g4OFWc8xVMf5z6LeyAiTewJ0V/7sUONNuMHR38n2OMqTyO91gl7+97ewj29Zgn\ndrT3t9gBcGC/VqyHHeQ2G1szXN64mmMH7u0CfscmfP/10+4u7Fd2r/vpkX0V+7XeI9jelG3AWcB9\nAMaYydiavQ/EzmDyMXYu6v3YXoMrsT0drwA3GmO8Xwn6i/vhUl6HoHC+RhyN/ZpzLfZvMdW7X0Sm\nicgQ5+Y12J7mO53Xw/uanODsvwhYJnZ2js+wf8v+epGUinUl/59vxNbs52DPCSnGGH9lc6WZjP1q\n/3tjzA6f7UOwMyXtxiZoJRNYf+cW3233AqnO+er/sMlfybY/YQfWTQdeMMZ8f8QB7YeBK7Afjrdh\nz11D8JOnOJ0Af8GeTzKx721vcXjpV8CYnZ7bi4AbsK9pDvA8tkQN53F/B+Zj3yuex9YSFwAjsKUr\nO5wPBSX1A5Y7r+do4HpjTGGJGM7HDnKe4vP+4F1sawz2/Ped85rOwb6Hg/3mcQr2PWg5tnQyJIux\nKMs70jN0DyDSD/uGHoctqh8ZoF037B/D9d46xfLeVymllFJKqWAKaZLsfCWQjp3ZIAf7qewGY8xK\nP+2mY+uA/mOM+aS891VKKaWUUirYQl1u0R1YbYzJMsYcwH6Nc4WfdoOxXyFsPYb7KqWUUkopFVSh\nTpITOHxqmo2UmObLKcq/0hjzbw4vrC/zvkoppZRSSoVCJMyT/Ap2RbhjJiKhLaxWSqkgMsbE3NR2\neh5WSkWT8pyHQ92TnM3hc+224PC5HcFOYD5ZRDKxo9//5Ux3Up77HhSMlVWC+TNs2DDXY4iWuCIt\nps2bN/PVV19xzTXXMGLECJ5++mmeHz6c3EsvxWCHJ5vkZMydd9qf5ORD2wcMwOTnV5jXKpLjisSY\njIntPNLt1zaa/g40rtiJTeOKvrjKK9Q9yfOBE0UkEbue+w3YqWwOMsa08V4XkXeBL4wxn4tIfFn3\nVSoUmjZtSv/+/Zk3bx4PPPAAM776io5PPUXdVaugdm0YMwZuvRXinM+YHg9MmACDB8OkSbBjB0yd\nClWquPtElFJKKXXMQtqTbOw8vfdj55NdDkw2xqwQkbtF5C5/dynrvqGMV1Use/bsYevWraW2qVmj\nBpd//TVJq1ZB48YwaxbcdtuhBBns9dtugzlzoFEj+OYbuPNOOIpPq0oppZSKLCGvSTbGfAu0K7Ft\nXIC2t5d132jRu3dvt0PwKxLjciMmj8fDhx9+yJYtW7jxxhtJSkryH9cbbyATJkCNGvDtt9Cp05EH\n8+rYEaZNg3POgfffh5494e9/D2rckfj7g8iMKxJjUuEXqX8HGtfRi9TYNK6jE6lx+RPyxUTCQURM\nLDwPFT6zZs3ihx9+oE6dOtx1113UrFnzyEbp6dC5MxQUwOTJcP315Tv4pEkwcCBUrw5Ll8KJQV3k\nTkU5EcHE6MA9PQ8rpaJBec/Duiy1qnC2bdtGWloaAFdccYX/BNkYuPtumyDffLPfBHnfvn3+H2DA\nAJskFxTA3/6mZRdKKaVUFNIkWVUoxhimTZuGx+OhS5cutGnTxn/DDz6AtDRo2BBeeeWwXfv372fq\n1Km8/vrrFBYW+r//6NG2hjktDT76KKjPQSmllFKhp0myqlC2bdvG2rVrqVq1KhdccIH/RoWF8Jgz\ndffzz0ODBoftrly5Mtu3b2fv3r3MmjXL/zEaNYIRI+z1xx6DQL3OSimllIpImiSrCqVJkybcf//9\nXH311f7LLADeeAPWr4cOHeD224/YLSL069cPgHnz5rF3717/x7n9dnuMdetgnN+xqkoppZSKUJok\nqwqnQYMGnHTSSf53FhTAs8/a6888c/hUbz4SEhJo164dBw4cYPbs2f6PFR8Pqan2+siR2puslFJK\nRRFNkpXyNWkSbN0KXbrAZZeV2tQ7jc2iRYsoKCjw3+jyy+0MGZs2wTvvBDlYpZRSSoWKJslKeRkD\nL79srz/8MEjps8OccMIJnHzyyXTp0gWPx+O/kQg8+aS9/uqrdnU+pZRSSkU8nSdZKa9vv4VLLoGE\nBFi7tlzLShtjkDKSaYqKoE0b2LDBrsbn1DOriknnSVZKKXfpPMlKOXJzc/n000/ZsGFD6Q29vciD\nB5crQQbKTpABKlWCe++118eOLddxlVJKKeUuTZJVzFu0aBFLly5lwYIFgRv9/hqquecAACAASURB\nVDtMn26Xn77rruAHceedUK0afP01rF4d/OMrpZRSKqg0SVYxrbi4mMWLFwPQtWvXwA3festeDhoE\n9esHP5BGjeCmm+z1118P/vGVUkopFVSaJKuYtnr1avbu3UujRo1o1aqV/0b798N//2uv33nncT1e\nfn5+4J2DB9vL8eN1OjillFIqwmmSrGLawoULAduLHLB++KuvYPt26NjRTtd2DPbt28fbb7/Na6+9\nRnFxsf9GnTvD6afDrl3wxRfH9DhKKaWUCg9NklXMys/PJzMzk/j4eDp16hS44fjx9nLQoDKnfQuk\natWqHDhwgIKCAlaXVnN88832cuLEY3ocpZRSSoWHTgGnYlpBQQGbNm2iTZs2/hts2WKnfBOB7Gxo\n0uSYH2vOnDlMnz6d9u3bc/3115f9eJs22VplVaHoFHBKKeUunQJOKaB69eqBE2SwtcjFxdC//3El\nyAAdOnRAREhPTw9cm9y0KVx0kZ07+YMPjuvxlFJKKRU6miSriu299+zlrbce96Fq165NcnIyHo+H\nZcuWBW6oJRcqQojIOyKyRUSWltLmVRFZLSK/icixFe0rpVQU0iRZVVwZGfDbb1C7Nlx6aVAO2bFj\nR+rXr09cXCn/WldcAbVqwdy5Omeyctu7wMWBdorIJUCyMeYk4G7gjXAFppRSbtMkWVVcH39sLy+7\nDKpWDcohTz31VAYPHswZZ5wRuFGNGnDVVfb6Rx8F5XGVOhbGmNnAzlKaXAG857T9FagrIk3DEVus\nyszMYuDA4fTpM4yBA4eTmZnldkhA5MYFkRvbzJmzSUq6iHr1Licp6SJmzpztdkgVRthee2NM1P/Y\np6GUtWPHDrNy5Upz4MCB0ht262YMGPPJJ+EJzNdnn9nHPuOM8D+2cpVzvnL9vOn9ARKBpQH2fQH0\n9Lk9A+gaoG3wX6zjsHbtOjNgwNOmd++nzIABT5u1a9e5HZJZu3adSU5+2MBeA8bAXpOc/LDrsUVq\nXJEc208/zTKVKl1zWFyVKl1jfvpplqtxVQTBeO3Lex7W2S1UzPn++++ZPXs23bt355JLLvHfKCsL\nWreGmjVh2zaoXj2sMVJQAI0bQ16ejSXQQicq5kTa7BYikgh8YYzp6GffF8Bzxpg5zu0ZwKPGmEV+\n2kbMeTgzM4u+fceSkTEcqAnkkZw8jOnTB5OUlHhMxzTG/tvm5R35k59fvu2//DKcTZuGODF55VGn\nzigSEoYF4Zkfm+zs4ezeHXlxgbuxGWPweIopLvYccbllyzN4PN6/r0NxxcUNo27dh0scByDw/0b5\n9h+8VUabsvb7b3O8+4N1jEPtAu8vLHwdSKXka9+69V/JzPwu4P18lfc8XKlcR1MqiqxcuRKAdu3a\nBW70ySf2sn//8CfIYB+zXz9b8jF1KvzjH+GPQamyZQMtfW63cLb59fTTTx+83rt3b3r37h2quEqV\nkjLeJ0EGqElGxnAGDBjFLbcMO+rkNi/PJshVq9rP1b4/NWocuc27vWnTw7etWeNh06aaJaKtSfv2\nHt59N8wvko9BgzzMnx95cQHcdFM+S5YcGVtSUv7BhVL98Xg85OXlsWfPHvbu3cuePXuc63vYvdtu\n271792H7vG292/fv30/t2rWpVasWtWvXPni9Tp06fP11Oh7PkXFVrryGe+/9EbCJmHcRK3+X/vYH\n2nfoOkCgfXJwf1nH8X/f0mMt7RjBeozyvB4DBqwnP//I1z43txqBpKWlkZaWFnB/IJokq5iyfft2\n/vzzT6pWrUpiYik9Rt565GuuCU9g/lx1lY3j0081SVZuErzvqkf6HLgP+EBEzgRyjTFbAh3IN0l2\nU3a2h8N7mQBqsnath8WLDyW2detC8+blS3hr1ID4+OOLa+rUOJYuzaNkD9hJJ8VxyinHd+zj0bZt\nHPPnR15cALt2LQaOjG3duh/417/uZ9euXezatYvc3NzDru/Zs4caNWpQr1496tate/DS9/oJJ9Sl\nXr0TqFu3nd/9NWvWDLhSa1LSRaxbd2RczZrl88wzN4XuBVE0abLb72tfr96+gPcp+aF9+PDh5Xos\nTZJVTElPTwfgpJNOIj7QO1pODvz8M1SrZnuSQyA/P58FCxawb98+LrroIv+NLr0UKleGmTNtyUfj\nxiGJRalAROS/QG+goYisB4YBVbD1em8aY74Wkf4isgabqdzmXrTll5AQh7/E6sIL4xg3zqWggNTU\nQcydO+yIMpDU1MHuBRVhceXn57N48WLmzZvH/PnzycmZCQwAJh2MDQZQu/YW2rZtGzAJrlOnTuD3\ngCCYMOEpLrhgEEVF4w/GVanSICZMeCpkj6mscL72miSrmLJq1SqgjFKLr76yl3372qnYQsDj8fDj\njz8SHx/PeeedR1V/s2fUrQvnnw/TpsEXX8Dtt4ckFqUCMcaU2eVljLk/HLEEU2rqIL7+ehg7d7qf\n9PlKSkpk+vTBpKSMIifHQ/PmcaSmHnuddLTHdeDAAZYvX34wIZ4/fz7p6emceuqpdOvWjb59+7J7\n926++uozoDNwArAZWMN55w3gHy5+A3fuuWfz/fdw661/JTe3GvXq7WPChKc499yzXYupogjna68D\n91RMWbp0KStXruTyyy+nWrUA9UlXXgmffQbjxsFdd4UslnfeeYeNGzdy/fXX0759e/+N3nwT7r4b\n/vIXmyirmBdpA/eCJZLOw1u2QNu2WfTuPZ49e7xJ3yDXk9GKzOPxsGbNmoPJ8Lx581i6dCmtWrWi\nW7dudO/enW7dutGpU6fDOhUyMzPp27cvGRkZB7clJyczffp0kpKS3HgqKgaU9zysSbKqWAoLoWFD\nOxJn/Xpo2bLs+xyjmTNn8uOPP9K1a1cuu+wy/41yciAhwQ7k27HDloComKZJcujdf7+tZBo92u1I\nKq7s7OyDyfD8+fNZsGABderUOZgMd+vWjdNPP506deqUeazMzExSUlLIycmhefPmpKamaoKsjkvE\nJMki0g94BbtwyTvGmJEl9l+OncvDAxwA/p8x5mdn3zpgl3efMaZ7gMeImJOzinDTp8NFF0HHjrBk\nSUgfatOmTbz55pvUqVOHBx98MOAAELp0sSv/TZtmY1MxTZPk0Fq9Gs46C1auhEaN3I6mYti5cycL\nFiw4mBDPmzePAwcOHEyGvYlxkyZN3A5VKSBCpoATkTjgNeACIAeYLyKfGWNW+jSbYYz53GnfAfgQ\nONnZ5wF6G2NKWxFKqfLz1iMHaRnq0pxwwgnUqlWL3bt3s3XrVpo2DbBQ2SWX2CT5m280SVbqOD35\nJDz0kCbIR8vbW5udnU1CQkLA3lrvwDrfsonNmzdz+umn061bN2666SZGjx5N69atA3cMKBUlQtqT\n7EwZNMwYc4lz+3HsqOmRAdqfBbxtjDnVuZ0JnGGM2V7G40RED4aKAiedBGvWwOzZ0KtXyB8uPT2d\nOnXq0LRp08BvGLNmwbnnQrt2tvtLxTTtSQ6defPszIrp6XbKNlU+gep+v/76a/Lz8w8rm1i9ejWn\nnHLKYT3E7du3D+lMEkoFW0SUW4jI1cDFxpi7nNsDge7GmH+UaHcl8BzQGLjUGPOrs30tkAsUA28a\nY94K8Diun5xVFFi9Gtq2hfr1YetWqBQhk7sUFdlur127ICMD2rRxOyIVQpokh4Yx0KcPDBwId97p\nWhhRaeDAgUyaNOmI7fHx8bRt2/awOuKSA+uUikYRUW5RXsaYqcBUETkbeAbo6+zqZYzZJCKNgeki\nssIYM9vfMSJlpSfljvfff59q1apx8cUXBx4I4i216NcvchJksLH07QtTptiSi/vuczsiFUTHutKT\nOjpff20/+w4a5HYk0Sc72/8iij179mTmzJlhjkapyBHqTCEbaOVzu9QlTY0xs0WkjYg0MMbsMMZs\ncrZvE5FPge5AmUmyqljy8vJYu3Yt8fHxXHnllYEbTptmL0O0gMhxueQSTZJj1LGu9KTKr7gYHn8c\nnn8+sj7/RoM5c+awbNkyv/tatWrld7tSFUVciI8/HzhRRBJFpApwA3aZ04NEJNnnelegijFmh4jU\nEJFazvaawEWA//9kVaGtXbsWgMTERCpXruy/UWEh/PSTvd63r/82burXz17+8APsC7y0plLqSO+9\nB/XqQaCZFtWR0tPTufrqq7nhhht47LHHaFOizCs5OZnU1FSXolMqMoQ0STbGFAP3A98By4HJxpgV\nInK3iHhXcbhaRJaJyCJgLHCds70pMFtEFgNzgS+MMd+FMl4VnbyDTZKTkwM3+uUXKCiADh0g0CwT\nIWSMYefOnQSs2WzeHDp1sjH+/HN4g1MqihUUwFNPwQsvgE6mULYtW7Zw33330atXL3r06MGqVasY\nMmQIM2bMYMCAAfTp04cBAwboYh1KEYaaZGPMt0C7EtvG+Vx/AXjBz/0ysetQKhWQMaZ8SfKMGfby\nwgvDENWR3n77bXJychg8eDANGjTw3+jCC+3czd9/DxdcEN4AlYpSY8dC9+52bmQVWF5eHi+//DJj\nxozhlltuYeXKlTRs2PDg/qSkJCZOnOhihEpFnlCXWygVUrm5uRQUFFCrVq3SJ6qfPt1eulRqUa9e\nPeBQaYhf3sT4++/DEJFS0W/HDnjxRXj2WbcjiVxFRUW89dZbtG3blhUrVjBv3jxefvnlwxJkpZR/\nuiy1inoHDhxgx44dgRfr2LnTTrEWH2/fVWvVCm+AwIIFC/jqq6845ZRTuPbaa/032rvXTk/n8cD2\n7bbIUsUcnQIueIYMsf82b7wR1oeNCsYYvvzySx577DGaNGnCiy++SLdu3dwOS6mIEFVTwCl1PCpX\nrhw4QQZIS7OJ59lnu5IgAwcHxWRmZmKM8b+wSK1acOaZdqGTtDQobaYOpSq4rCx4910IMDFDhTZv\n3jweffRRtm3bxosvvkj//v119TuljoGWW6jY5y21cKkeGaB+/frUq1ePgoICNm/eHLihN0YtuVCq\nVCkpdrbEZs3cjiRyZGRkcMMNN3DVVVdx8803s2TJEi699FJNkJU6Rpokq9jnHbTn4tRvIkKbNm04\n4YQT2FfaFG9al6xUmZYsge++g0cecTuSyPDnn3/y4IMP0qNHDzp06MCqVau44447qKSTRit1XLQm\nWcW2jRuhZUuoU8fW+br4puHxeIiLK+Nz6f790KAB5OVBdradGk7FFK1JPn79+sFf/gL33x+Wh4tY\nBQUFjBkzhlGjRnHDDTfw1FNPlT6AWSkFlP88rD3JKmqtX7+egoKC0ht5FxA5+2zXl+IqM0EGqFIF\nzj3XXv/hh9AGpFQU+v57WLMG7rqr7Laxqri4mPHjx9O2bVsWLFjAnDlzeO211zRBVirINElWUamo\nqIj333+fF198sfREeeZMe3neeeEJLBi8JReaJCt1GI8HHnvMTvlWpYrb0YSfMYZvv/2WLl268Pbb\nb/Phhx8yZcoU2rZt63ZoSsUkLVhSUSk7O5uioiIaN25M9erVAzf09iR7e2ejQe/e9nLWLFfDUCrS\nfPghxMVBoFkUY9nixYt55JFH2LBhAyNHjuSKK67QAXlKhZj2JKuolJmZCVD6sqmbN8OqVVCzJpx+\nepgiC4JOnaB2bfudck6O29EoFRH274cnn4SRIyvW8tNZWVncfPPN9O/fn6uvvpply5Zx5ZVXaoKs\nVBhokqyi0rp16wBo3bp14EbeUouePaFy5ZDHVB7GGNauXUtaWhoej8d/o0qVbMygvclKOd54A9q1\ngz593I4kPHbu3MkjjzxC165dadOmDenp6dxzzz1UjpBzmVIVgSbJKuoUFRWxceNGoJxJcgTVI4sI\nX375JT/99FPp8yV7y0O8z0GpCmz3bhgxAp5/3u1IQm/fvn289NJLtG3blt27d7Ns2TKGDx9O7dq1\n3Q5NqQpHa5JV1CksLOTUU08lPz8/KuuRExMT2blzJ1lZWTQPNMWbJslKHfTCC3DJJdCxo9uRhI7H\n4+F///sfTz75JJ06deKnn37ilFNOcTsspSo0nSdZxaY//4TGjaFaNcjNhapV3Y7ooN9++43PPvuM\ndu3accMNN/hvVFgIdevayz//hIYNwxukChmdJ/no5ORAhw6weDG0ahX0w4ddZmYmKSkpZGdnk5CQ\nQGpqKpmZmTzyyCNUqlSJF198kXMj7IO9UrGmvOdh7UlWsWn2bHt55pkRlSCD7UkGO8+zMcb/AJyq\nVW3sP/0EP/8Ml18e5iiVigzDh8Mdd8ROgty3b18yMjIObvvkk09o1KgRL730Etdcc40OyFMqgmhN\nsopNEVpqAVCvXj3q1KlDQUEBW7duDdxQSy5UBbdyJXz6KTzxhNuRBEdKSsphCTLYVfN69erFtdde\nqwmyUhFGe5JVbPImyRE0aM9LROjpzF5Rs2bNwA01SVYV3BNPwKOPQv36bkcSHNnZ2X63b9myJcyR\nKKXKQ5NkFXtyc+G33+y0b2ee6XY0fvXo0aPsRmedZaeDW7QI9uyxcycrVUH8/LP90//f/9yOJHgS\nEhL8bg84gFcp5Sott1BRZe7cucydO5e9e/cGbvTzz2AMdO8ONWqEL7hg8y6CUlwMv/zidjRKhVxm\nZhYDBw6nT59hXHnlcO6/P4tq1dyOKnhSU1Np0qTJYduSk5NJTU11KSKlolNWZibDBw5kWJ8+DB84\nkCxngbFg055kFTWMMcyZM4c9e/bQpk0batWq5b9hBNcjH7Vzz4Vff7UlFxdd5HY0SoVMZmYWffuO\nJSNjOFATyOONN4ZxzTWDSUpKdDu8oEhMTKR27dqcdtppGGNo3rw5qamppa8cqpQ6TFZmJmP79mV4\nRoZzpoBhc+cyePp0EoP8v6Q9ySpq7Nq1iz179lCtWjUaN24cuKF3ZotYSZJB65JVzEtJGe+TIAPU\nZO3a4aSkjHcxquCaOnUq9evXZ8aMGfzwww9MnDhRE2SljtL4lJSDCTLYM8bwjAzGp6QE/bE0SVZR\nY/369QC0atUq8Cjwfftg4UIQidh65KPSq5d9Lr/+ap+bUjEqO9vDoQTZqyY5OQGWb48yxhhGjBjB\nk08+qbNYKHUcPJmZfs4U4MnJCfpjaZKsokZWVhZgk+SAFi2C/fvh1FOhXr0wRXZs8vPz+fjjj3nv\nvfcCN6pf366ksH8/zJ8fvuCUCrOEhDjsF6e+8mjePDbepqZNm0ZhYSGX65znSh2bhQvh5puJmz/f\nz5kC4kIwADY2zj6qQtiwYQNQRpI8Z469dKZYi2RVq1Zl1apVZGZmkp+fH7ih97no4D0Vw1JTB5Gc\nPIxDiXIeycnDSE0d5FpMwTRixAiGDh1KXJy+7SpVbkVFMGUKnH02/PWv0LEjg+bNY1hyss+ZAoYl\nJzMoBANgdeCeihr9+/cnKyuLZs2aBW4URUlyfHw8CQkJrFu3jg0bNtCuXTv/DXv2hDfe0CRZxbSk\npESmTx9Mr16jaNTIQ8eOcaSmxsagvZkzZ7Jp0yauu+46t0NRKjrs2AFvvw2vv26X23zwQbjySqhU\niURg8PTpjEpJwZOTQ1zz5gxOTQ36oD0AMcYE/aDhJiImFp6HOk7GQLNmsGULpKfDSSe5HVGZvv/+\ne2bPnk2vXr248MIL/Tdas8Y+lyZNYPNmW6OsopaIYIyJuV9isM7DbdvC559D+/ZBCCpCXHzxxVx7\n7bXceeedboeiVGRbsQJefRUmT4bLLoMHHrBToQZZec/D+r2Pih1r19oEuVEjOPFEt6Mpl5YtWwKw\ncePGwI2Sk6FxY9i61T5HpWJUURGsXw+xNOHD/Pnz+eOPP7jlllvcDkWpyOTxwDffQL9+0KeP7RD6\n4w94772QJMhHQ8stVOzwLbWIkt7WFi1aAJCTk4PH4/Ffryhin9Nnn9mSi+TkMEepVHisXw8nnABV\nq7odSfA899xzPPLII1SpUsXtUJSKLHv32kT41VehenXbazx1KpG0glDIe5JFpJ+IrBSRdBF5zM/+\ny0VkiYgsFpF5ItKrvPdV6jBRVI/sVaNGDW699VYeeuih0gf0nHWWvfQ+R6Vi0Jo1UfMlULksX76c\nOXPmaJmFUr6ysuCRR6B1a5gxA958085MNWhQRCXIEOIkWUTigNeAi4FTgRtFpGSl2QxjTCdjTBfg\nDuDto7ivUod4E8hevUpvF2Fat25NtbJODN7EX5NkFcNiLUl+7rnneOCBB6hRo4bboSjlLmNg1iy4\n+mro2tXeXrAAPvnELpoVod/+hrrcojuw2hiTBSAik4ErgJXeBsYY37mvagGe8t5XVQzz589n4cKF\nnHXWWXTq1Ml/o9274fffoXJl12uYQuKMM6BSJfsc9+yB2rXdjkipoIulJDkjI4Nvv/2W119/3e1Q\nlHJPYSF88AG88ootr3jgAZgwAWrVcjuycgl1uUUCsMHn9kZn22FE5EoRWQF8Adx+NPdVsW/9+vVs\n2bKFAwcOBG7066/2k2nXrra2KdZUrw5dutgBDvPmuR2NUiERS0nyyJEjueeee6hbt67boSgVfps3\nw9NP25KKSZPgmWdg5Uq4776oSZAhQgbuGWOmAlNF5GzgGaDv0R7j6aefPni9d+/e9O7dO1jhKZd5\nZ37wzgTh188/28soqkc+aj172lX3fvkFLrjA7WhUOaWlpZGWluZ2GFEhVpLkjRs3MmXKFNLT090O\nRanwWrQIxoyx8zhefz18/z2ccorbUR2zUCfJ2YDv8mgtnG1+GWNmi0gbEWlwtPf1TZJV7Ni7dy+5\nublUqVKFxo0bB24YhYP2Stq/fz8HDhygZs2Sq9I7zjrLnny0LjmqlPzQPnz4cPeCiWDFxZCZCW3a\nuB3J8Rs1ahS33XYbjRo1cjsUpUKvqMjOvjRmDKxbZ3uLR4+GBg3cjuy4hTpJng+cKCKJwCbgBuBG\n3wYikmyMyXCudwWqGGN2iEiZ91Wxz9uLnJCQEHj2h+JimDvXXo/SJHnhwoV89dVXdOvWjUsuucR/\nI9/lqT0e0OVtVRCISD/gFWz53TvGmJEl9tcBJmI7LeKBl4wx44MdR3Y2NGwI0T7Gbdu2bbz33nss\nW7bM7VCUCq2dO+Gdd+C11yAhwdYb//WvdmxQjAhpkmyMKRaR+4HvOHQCXiEid9vd5k3gahG5BdgP\nFADXlXbfUMarIs+WLVuAQ/MJ+7V8uR3MlpgIzZuHKbLgql+/PsaY0hcVadnSnoiys2HVKjj55PAF\nqGKSzyxCFwA5wHwR+cwY4ztA+j5guTHmchFpBKwSkYnGmKJgxhIrpRavvPIK1113Hc2j9FykVJlW\nrbJzG//3v3DppfDRR9Ctm9tRhUTIa5KNMd8C7UpsG+dz/QXghfLeV1Us5513Hl26dEFKmx7m11/t\n5ZlnhieoEEhISEBE2Lx5MwcOHKByoE/iPXvaE9KcOZokq2AozyxCBvBOp1Ib2B7sBBliI0nOzc1l\n3LhxzJ8/3+1QlAouY+C77+wsFYsWwd1321XxmjVzO7KQ0u9rVcSrU6cOtUub8sybJPfoEZ6AQqBq\n1ao0adIEj8dDTk5O4Ia6qIgKrvLMIvQacIqI5ABLgAdCEUgsJMmvv/46/fv3JymW1tVWFVteHrzx\nhh1899hjcN11djGQf/4z5hNkiJDZLZQ6Lt4p0aI4SQbbm7xlyxays7NJTEz038i3Llmp8LgYWGyM\nOV9EkoHpItLRGLO3ZMPjmWVozRq46abjD9YteXl5vPrqqzqTiYoN69fD66/bmuNzzoF//xvOOy9i\nF/0oy7HOMqRJsopue/famuT4eDuPcBRr0aIF6enpGGMCN+rcGapUsfNN7toFOgerOj7lmUXoNuA5\nAGNMhohkAu2BBSUPdjyzDK1ZA8nJx3x317355pucc845nKxlUCpaGWOnUx0zBn74AW691XZCxcCU\nM8c6y5AmySq6LVxoZ3ro0iXqFxHp1KkTnTt3Lr3+umpVmyjPm2eX9NT5ktXxKc8sQlnAhcDPItIU\naAusDWYQxkBGRvQmyYWFhYwaNYovv/zS7VCUOnr799tV8caMsZ0v//gH/Oc/urIrWpOsItjWrVvx\neDylN4qRUguAuLi40hNkL+9z9dZiK3WMjDHFgHcWoeXAZO8MRCJyl9PsGaCniCwFpgOPGmN2BDOO\nTZvsIlx16gTzqOEzfvx4OnXqRJco/zZLVTBbt9ra4tat4b337Ap5q1bB4MGaIDu0J1lFpL179/Lv\nf/+bWrVq8dBDDwVOHr1Jcvfu4QvObT16wNixmiSroCjHDESbsHXJIRPNg/aKiooYOXIk77//vtuh\nKFU+v/1me42nToVrr7WzVpx2mttRRSRNklVEys62ZZGNGjUq3/RvFSlJ9j7XX3+131NH6UAKpbyi\nOUmePHkyLVu2pFevXm6HolRgxcV2qegxY+w/3P3328uGDd2OLKJpkqwikjdJTkgoORuVj02bYMMG\n+z1t+/ZhiiwCnHiiXe5zyxY7AjnQTBhKRYloTZI9Hg/PPfcco0ePdjsUpfzLzbX1xWPH2inbHngA\nrroqplbFCyWtSVYRqVxJsnfC/m7d7OwWMWLLli0sWrQocD22yOG9yUpFuWhNkqdOnUqNGjXo27ev\n26Eodbj0dFtb3KaNHeD+wQd2fv3rr9cE+ShokqwijjHm4IIapSbJMVqP/L///Y8vvviCP//8M3Aj\n7+A972ugVBSLxiTZGMOIESN48sknyzfgVqlQ866Kd+mlcPbZdorQ33+HSZNi7n0yXLTcQkWcffv2\n0axZM/bs2UOd0oa7x2g9ckJCArt27SI7O5smTZr4b6QzXKgYYUx0JsnTpk2jsLCQyy+/3O1QVEWX\nnw/vvw+vvmq/VX3gAZgyJeqnRY0EmiSriFO9enVuueWW0hfV8HgOlVvEwPRvvhISEvjjjz/YuHFj\n4CmlvB8MFi6EAwf06zMVtbZts3++9eu7HcnRGTFiBEOHDiUuTr+QVS7ZsOHQqng9e9q64z59dDB3\nEOl/t4pYpX6FuXq1nfS8eXMorSQjCrVo0QI4VJftV8OGtuutoACWLQtTR40w2QAAIABJREFUZEoF\nXzT2Is+aNYtNmzZx3XXXuR2KqmiMOVRb3Lkz7NsHc+fCZ5/B+edrghxkmiSr6BSjpRYAzZo1Q0TY\nunUr+/fvD9xQB++pGBCNSfKIESN4/PHHqVRJv4xVYbJ/v60t7tEDbrkFevWCzEx45ZXoXaoyCmiS\nrKJTDK20V1LlypXp0qULPXv2pKioKHBDrUtWMSDakuQFCxawfPlybr75ZrdDURXBtm3wzDN2Vbx3\n34WUFLsq3j/+Eb1LVEYR/RisolOMzmzhddlll5XdSJNkFQMyMqBfP7ejKL9nn32WIUOGULVqVbdD\nUbFsyRK78Menn8I118C0adChg9tRVTiaJKuIsn79enbv3k1iYiK1A60dv2+fXVZTBM44I7wBRpLO\nnaFKFVi50tZn163rdkRKHbVo6klevnw5c+bMYeLEiW6HomJRcTF8+aUtoVi9Gu691142auR2ZBWW\nlluoiLJw4UI+/vhjVq5cGbjRkiV2RoeTT67YXzdVrWoTZWNgwQK3o1HqmERTkvzcc8/xwAMPUKNG\nDbdDUbFk1y4YPRratoXnnoO77rL1xkOHaoLsMk2SVUQp10p7MV5qcVS05EJFsR07oKgoOvKAjIwM\nvv32W+699163Q1GxYvVqW1uclGTf1yZNsjNV3HijTusZITRJVhGjoKCA7du3Ex8fT9OmTQM31CT5\nEE2SVRTLyLC9yNEwa9XIkSO55557qKtlTep4GAMzZsBll9kZKmrXtqvi/e9/cOaZbkenStCaZBUx\nvEtRN2vWjPj4+MANY3j6N19btmzht99+o1GjRpx++un+G/lOA2dMdGQbSjmipdQiOzubKVOmkJ6e\n7nYoKloVFMDEiXYwHsCDD8KHH+qqeBFOe5JVxChXqcWOHfYrqqpVoWPHMEXmjtzcXObOncuy0hYL\nOfFEaNAAtmyB9evDF5xSQRAtSfKoUaMYNGgQjaKhLkRFlo0bbW1xYiJ8/rlNkn//He68UxPkKKBJ\nsooYLVu2pFu3bpx00kmBG3kHqHXtGvM1W74r73k8Hv+NRHRRERW1oiFJ3rZtGxMmTGDIkCFuh6Ki\nibe2uGNHyMuzq+R98QVccIF+4xdFNElWESMpKYn+/fuTXNrqQRWk1AKgZs2a1KtXjwMHDrBt27bA\nDbUuWUWpNWsif7GwV155heuuu47mzZu7HYqKMFmZmQwfOJBhffowfOBAstLTbW1xjx4wYIC9zMy0\nvceR/mlQ+aU1ySq6xPBKe/4kJCSQm5tLdnZ24MGM3tfC+9ooFSUivSc5NzeXcePGMX/+fLdDUREm\nKzOTsX37Mjwjg5pAHjBs8mQGd+tG4tCh8Je/QGlja1RU0J5kFT2MqXAzW3h7r7z12n5162YvFy60\n82kpFQV274a9e6FZM7cjCez111+nf//+JCUluR2KijDjU1IOJsgANYHhxcWMT06GK67QBDlGaE+y\nih5ZWbB1KzRsCG3auB1NWLRr144aNWrQqlWrwI0aNbKvx9q1sHw5dOoUvgCVOkYZGbbUIlLLM/Py\n8nj11VdJS0tzOxQVgTwrVhxMkL1qAh5nliYVG7QnWUUP317kSH1nDbKGDRvSuXNnGjRoUHpDLblQ\nUSbSSy3eeustzjnnHE4++WS3Q1GRpKgIhg0j7o8/yCuxKw+I09r1mBLyJFlE+onIShFJF5HH/Oy/\nSUSWOD+zRaSjz751zvbFIqLv/jHK4/EwefJk0tLSMMYEbljBSi2Oivc10SRZRYlITpILCwsZNWoU\nQ4cOdTsUFUnWrIGzz4a5cxn0448MS04+mCjnAcOSkxmUmupmhCrIQlpuISJxwGvABUAOMF9EPjPG\nrPRpthY41xizS0T6AW8C3mVnPEBvY8zOUMap3LV161ZWrVrF1q1b6d27d+CGmiQHptPAqSizZk3k\njr+dMGECHTp0oGvXrm6HoiKBMfCf/8Djj0NKCtx/P4lxcQyePp1RKSl4cnKIa96cwampJGr9ekwJ\ndU1yd2C1MSYLQEQmA1cAB5NkY8xcn/ZzAd+VJAQtCYl55VpEpKjIDkwDTZL96dLFDhRZvtyOhqpV\ny+2IlCrVmjV2lqxIU1RUxMiRI5kwYYLboahIsH073HWX/YP98Uc47bSDuxKTkhg2caKLwalQC3UC\nmgBs8Lm9kcOT4JLuBL7xuW2A6SIyX0T+FoL4VAQoV5K8fDnk59sBahV01atSS1GqV7eT1ns8sGhR\n+IJS6hhFarnF5MmTadGiBWeffbbboSi3TZ9uB0K3bm2/yfRJkFXFEDGzW4hIH+A2wPfM1MsYs0lE\nGmOT5RXGmNn+7v/0008fvN67d+/Sv7ZXESXHGQ1capJcwUstpkyZQmZmJvfeey81a5YcU+3o0QMW\nL7av1bnnhjdAFVBaWprOkFBCXp5dYd5ZVDJieDwennvuOUaPHu12KMpN+/bBE0/AlCkwYYJdJU9V\nSKFOkrMB37mrWjjbDuMM1nsT6Odbf2yM2eRcbhORT7HlG2UmySp67N+/n61btxIXF8cJJ5wQuGEF\nWmnPn71795Kfn092djZt27b136h7d3jjDR28F2FKfmgfPny4e8FEiLVrISkJ4iKsmG7q1KnUqFGD\nvn37uh2Kcsvvv8NNN0H79rBkCZQ1s5CKaaE+Rc0HThSRRBGpAtwAfO7bQERaAR8DNxtjMny21xCR\nWs71msBFwLIQx6vCrFKlStxxxx1ceeWVVK5cOXDDCrbSXkneXvZSFxXRwXsqSkRiqYUxhhEjRvDk\nk08iFWSKSeXD44HRo+H88+Hhh+HDDzVBVqHtSTbGFIvI/cB32IT8HWPMChG52+42bwIpQAPgX2LP\nTAeMMd2BpsCnImKcOCcZY74LZbwq/OLi4khISCi91GLvXluTHB9vB6hVQOVKktu3twP21q+HzZuh\ntJ55pVwUiUnyd999R2FhIZdffrnboahwy8mBQYPse83cuXaVG6UIQ02yMeZboF2JbeN8rv8NOGJQ\nnjEmE+gc6vhUFFi0yH7K79LFDlCrgHyTZGOM/56u+Hg44wxIS4P58+Gyy8IbpFLltGZN5C0MOWLE\nCJ544gniIq0GRIXWJ5/APffAfffB0KFQKWKGaqkIoGcDFfm85QMVtNQCoE6dOtSqVYv9+/eze/fu\nwA115T0VBSKtJ3nWrFlkZ2dz/fXXux2KCpc9e+COO+DRR+Gzz+CppzRBVkfQvwgV+Sr4zBYAIsKg\nQYOoW7culUo7kevKeyoKRFqSPGLECB5//PHS/7dU7Jg7FwYOhN697YxAtWu7HZGKUFLq3KtRQkRM\nLDyPiiZg2UBJiYm2znbZMjj11NAHFs02boSWLaFePTsJvn51HHFEBGNMzI0MK+95eN8+qFvXTgMX\nCTnpggUL+Otf/8qaNWuoWrWq2+GoUCoqghEj4N//hn/9C666yu2IlEvKex6OgFOUqqjS0tJYunQp\nffr0oWPHjv4bbd5sE+Tate3ANFW6hARo1gw2bbLddYGmi1PKJZmZ9nNvJCTIAM8++yxDhgzRBDnW\nZWTY3uPate04l+bN3Y5IRQHtZlKuyc7OJjc3t/SvOL1lA2ecYQemqdKJaMmFimiRVGqxfPly5syZ\nw9/+pgu6xixj4N134cwz4frr4dtvNUFW5aZJsnKFMaZ8y1FrPfLR08F7KoJFUpL8/PPP88ADD1Cj\nRg23Q1GhsH07XHutnf/4hx/gwQe1BE0dFf1rUa7YuXMn+/bto1atWtSpUydwwwq+0p4/+fn57Nq1\nK3AD7UlWESwjIzKS5LVr1/LNN99w7733uh2KCoUZM6BzZ2jVyp4LO3RwOyIVhTRJVq7w7UUOOHjP\n47Hz/UKFnv7N12+//caLL77IDz/8ELjRGWfYy8WLobAwPIEpVU5r1kTGWg0jR47k73//O3Xr1nU7\nFBVM+/bBQw/ZxUH+8x94+WWoVs3tqFSUipChE6qi2bFjBwDNS6sNW70adu2y9WOllWRUIE2aNAHK\nWHmvbl07yHHlSli6FLp1C1N0SpUtEsotsrOz+eijj0hPT3c3EBVcy5bBTTfBSSfBkiXQsKHbEako\np0mycsV5551Hjx49KHXKKK1HPkLTpk2Jj49n+/btFBQUUD3QCoQ9etgked48TZJVxDhwADZsgNat\n3Y1j1KhRDBo0iEaNGrkbiAoOjwfGjoVnnoGRI+G22+wgZqWOk5ZbKNdUq1YtcJIHutKeH/Hx8TRr\n1gyAnJycwA21LllFoKws+8WQm7Otbdu2jQkTJjBkyBD3glDBs2kTXHIJTJ5sFwm5/XZNkFXQaJKs\nIpf2JPvlnQ2k1JIL72vm/aChVASIhFKLV155heuuu670Ui8VHT79FLp0gbPOglmzIqPYXcUULbdQ\nkamwEH77zfYIeAeiKcAmyQ0bNqRKlSqBG3XsCFWqwKpVkJtrV+BTykWZmVmkpIwnJ8fDwIFxpKYO\nIikpMawx5ObmMm7cOOZ7BwSr6LR3r53O7ccfbaJ81lluR6RilCbJKjL99pstYDzlFChtirgK6LTT\nTqNDWdMZValie1h+/RUWLIALLwxPcEr5kZmZRd++Y8nIGA7UZNKkPObOHcb06YPDmij/61//on//\n/iQlJYXtMdXxy8rMZHxKCp7sbOKqVmXQihUkXnCBfZ+oXdvt8FQM03ILFXY5OTkcOHCg9EZaahFQ\nwCnzStJFRVQ5iEg/EVkpIuki8liANr1FZLGILBORH4/2MVJSxh9MkK2aZGQMJyVl/HFEfnTy8vIY\nM2YMTzzxRNgeUx2/rMxMxvbty5BJkxielsaQadMYW1hIVkqKJsgq5DRJVmFVWFjIW2+9xQsvvEBx\ncXHghpokHz8dvKfKICJxwGvAxcCpwI0i0r5Em7rA68BfjDGnAdce7eNkZ3s4lCB71SQnx3NMcR+L\nt956i7PPPpuTTz45bI+pjt/4lBSGZ2T4fLyC4Vu2MD4lxc2wVAVRriRZRD4RkUudE6pSx8w7I0OT\nJk2Ij48P3FBntjh+voP3SptqT1Vk3YHVxpgsY8wBYDJwRYk2NwEfG2OyAYwxfx7tgyQkxAF5Jbbm\n0bx5eN5SCgsLGTVqFEOHDg3L46ng8fzxh5+PV+ApbXYfpYKkvGeof2FPlKtF5HkRaRfCmFQM811p\nL6AdO+xCIlWr6lKix+PEE+2Avc2bYeNGt6NRkSkB2OBze6OzzVdboIGI/Cgi80Xk5qN9kNTUQSQn\nD+NQopxHcvIwUlMHHX3Ex2DChAl06NCB008/PSyPp4LAGBg7lrg//vDz8QridHYSFQblGrhnjJkB\nzHC+drvRub4BeAuY6PRAKFUmb09yqUnyggX2smtXqFw5DFFFp/Xr15OdnU2PHj2Ii/PzeVfE9iZ/\n950tuWjZMvxBqlhQCegKnI/txPtFRH4xxqwp2fDpp58+eL1379707t0bgKSkRKZPH0xKyihycjw0\nbx5HampoB+1lZmaSkpLCxo0bWbhwIe+8807IHksFWX4+/P3vsHQpg6ZNY9gddxwsucgDhiUnMzg1\n1e0oVRRJS0sjLS3tqO9X7tktRKQhMBC4GVgMTALOBm4Feh/1I6sKqVw9yd5SC61HLtWnn35Kbm4u\nbdq0oWnTpv4b9ehxKEm++urwBqjCwimDu8YY8+Ex3D0baOVzu4WzzddG4E9jzD5gn4jMBDoBpSbJ\nJSUlJTJx4rBjCPHoZWZm0rdvXzIyMg5uGzp0KN26ddOZLSJdZiZcdZWd2WjOHBJr1GDw9OmMSknB\nk5NDXPPmDE5NJVF/j+oo+H5oBxg+fHi57leuJFlEPgXaAe8DlxljNjm7PhCRBUcVqaqwioqKaNas\nGZUrV6Zhw4aBG86day/PPDM8gUWpFi1akJuby8aNGwMnyTp4L+YZYzwi8ihwLEnyfOBEEUkENgE3\nYL8t9PUZMFZE4oGqQA/g5eMIOeRSUlIOS5ABMjIySElJYeLEiS5Fpcr03Xdwyy0wdCgMHnxw5bzE\npCSG6e9NuaC8PclvGWO+9t0gIlWNMYXGGF3pQZVLpUqVuOGGG0pvZIwO2iun5s2bs2zZMrKzswPX\nWnbrZi8XLIDiYihtsKSKZjNEZAjwAT4j5IwxO0q7kzGmWETuB77DjlF5xxizQkTutrvNm8aYlSIy\nDVgKFANvGmP+CNkzCYJAq1GWupS7co8x8PzzMHYsfPghnHuu2xEpBZQ/SX4G+LrEtl+wdWpKBc/a\ntbB9OzRuDK1bux1NRPOWrJT6xt+0KSQmQlYWrFgBp50WpuhUmF3vXN7ns80Abcq6ozHmW+w3hb7b\nxpW4PQoYdZwxhk2gci5dijoC7dkDt94KOTn2G68WLdyOSKmDSp3dQkROEJHTgeoi0kVEujo/vYEa\nYYlQVSy+vcjlXTSjgmrWrBkiwtatW9m/f3/ghlpyEfOMMUl+fspMkGNVamrqEbXHycnJpOpgr8iy\ncqU9PzVuDD/9pAmyijhlTQF3Mbb3oAW2Bu0l5+chQCecVMGnpRblVrlyZbp3706fPn3weEpZlEFX\n3ot5IlJDRP5PRN50bp8kIn9xOy63JCUlcdddd9GyZUv69OnDgAEDmD59ug7aiyRTp9qyiocfhnHj\n7JSfSkWYUsstjDETgAkicrUx5uMwxaQqMk2Sj0q/fv3KbqQ9yRXBu8BCoKdzOxv4CPjStYhc9s03\n3zB27FiuuKLk2ijKVcXFMGwYvPcefPmlzmKkIpqYUlbiEpGBxpiJIvIwtr7tMMaYiBjhLCKmtOeh\n3Ldhwwa2bt1KUlISDRo08N+osBDq1IH9+2HnTrsQhjp+eXn2dRWB3buhhlZKuUlEMMYEtZZIRBYY\nY84QkcXGmC7OtiXGmE7BfJwyYoiY83BmZibdu3cnOzubKlWquB2O8tqxAwYMgH374IMPoEkTtyNS\nFVR5z8NllVt4V4OsBdT286NUufz+++98+eWX/PFHKYPilyyxCfLJJ2uCHEw1a9oBe8XFsPj/s3fn\n8U1V+eP/XydQttJCkaWlpQtlX8QFF0SgFVBERRFHZAoK89VhXMdxnM/4Gy0U0Y8iCg6D46AfFbAo\nijCyI2UpIMgiKig7XQJt2SmUtpQuOb8/blMKTUoKTW7Svp+PRx5Jbk5u3iS3l3dO3uecn82ORrhH\noVKqIaWdGUqpaOCCuSGZ5/PPP+exxx6TBNmb7NhhzLbTpQskJUmCLHzClcotZpReuzbrsgNKqUHA\n+1ycXmjSZY//Hvh76d1zwDNa652uPFf4jiotIiKlFtXv1lth506j5KJ3b7OjEdUvAVgBtFFKzQF6\nA6PNDMgsWmtmz57Nl19+aXYowu6LL+DPf4Zp02DE5dNwC+G9rtSTDIBS6h2lVKBSyk8ptVopdUIp\nNdKF51mA6RgDALsCI5RSnS5rlgr0Lf1Z8A3goyo8V/iA4uJijh49ClxhCib7IiKSJFc/GbxXo2mt\nVwIPYyTGXwI9tdbJZsZklh9++AE/Pz969pQp/E1XVAQvvgjjxsHq1ZIgC5/jUpIM3K21zgHuB9KB\ndsDfXHjercABrbVVa10EzAUuGUWhtd6stT5benczEOrqc4VvOHbsGDabjRYtWlC/shHM0pN8VTIz\nM1m8eDHbtm1z3kgG79VoSqlEjCQ5RWu9RGt90uyYzDJ79myeeOIJlEwhaa5jx2DAANi/H7Ztg+uv\nNzsiIarM1STZXpZxHzCvXFJ7JaHA4XL3M7iYBDvyJLD8Kp8rvFRGRgZwhVKLkychJQUaNoTu3T0U\nWc2Qk5PDTz/9xN69e5036tLFGLCXmgonTnguOOEpnwAhGMtHpyql5iul/mx2UJ5WUFDAvHnziIuL\nMzuU2m3LFujZE/r1M2awCAoyOyIhroqrK+4tUUrtBc4DTyulWgAF1RmIUioWGAPceTXPT0hIKLsd\nExNDTExMtcQlrl1YWBi9e/cmPDzceSN7D+fNN0NdVw9LARe/fGRmZqK1dtyDVreu8d5u2GD06gwe\n7OEoa6/k5GSSk5Pd+hpa67VKqfXALUAs8CeMMrV/uvWFvcySJUu48cYbadOmjdmh1F4ffQSvvQb/\n938wZIjZ0QhxTVzKRrTWryil3gHOaq1LlFJ5uFb6kAmUz4zCSrddQil1PUYt8iCtdXZVnmtXPkkW\n3iU0NLTyXmSQUotrEBgYSEBAAOfOnePUqVM0b97cccNbbzWS5K1bJUn2oMu/tE+YcNXjoJ1SSq3G\nmI3oB2ADcIvW+ni1v5CXmzVrFo8//rjZYdROFy7Ac8/Bxo3GeaZjxys/Rwgv52q5BUAnYLhS6nHg\nEeBuF56zDWinlIpQStUDHgMWlW+glAoH5gOjtNYpVXmuqEEkSb4m5XuTnZLBezXZTqAQ6AZcD3Qr\nnRKu1jh+/DgbNmzg4YcfNjuU2ufwYWP1vOxs41wuCbKoIVyd3eJzjOWp78T4Oe8W4IpDh7XWJcBz\nwEpgFzBXa71HKTVWKfXH0mbxQDPg30qpn5VSWyt7blX+ccJHaH0xcbv9dnNj8VEuJcnlB+95yaIP\nonporf+ite6LMXjvFMYKfGfMjcqzvvzyS4YMGULjxo3NDqV2SU42zi3DhsG8eRAgSyiImqPSFffK\nGim1B+jiNcspXcabVnoSV2H/fqPnISQEMjONleFElZw6dYrjx48TFhZGgLP/pLSG4GA4fhwOHoTo\naM8GKQC3rbj3HNAHuBljBqINwAat9ZrqfJ0rxGDqefjmm29m0qRJDBgwwLQYahWt4f33YdIk+Pxz\nGDjQ7IiEcJmr52FXR0j9BgQDR64pKiEcKV9qIQnyVbnuuuu47rrrKm+klNHjs2SJ8Z5LklyTNACm\nANu11sVmB+Npv/32G8ePHyc2NtbsUGqHvDx46inYu9eY3z4y0uyIhHALV2uSmwO7lVLfKaUW2S/u\nDEz4vpKSEmbNmsXKlSux2WzOG8oiIp5jf4/tX0xEjaC1fhdjxqE/KaWeU0r1MDsmT/r8888ZOXIk\nderUMTuUmi8lBXr1Aj8/Y5CeJMiiBnO1JznBnUGImun48eOkp6eTk5PD3XdXMs5TBu15zh13GNeb\nNpkbh6hWSqkXgD8CC0o3JSqlPtJa/8vEsDyipKSExMREkpKSzA6l5lu+HEaPNlbQe+YZ+eVP1Hiu\nTgG3TikVAbTXWq9SSjUC5Cu7qNThw8ZaMGFhYc4bFRTAjh3GyVaWkXW/W28FiwV++QXy840FRkRN\n8CRwm9Y6D0ApNQljOrganySvXr2a1q1b06VLF7NDqblsNnjzTfjPf2DBAujd2+yIhPAIV2e3eAr4\nBphRuikU+NZdQYmawT7TQqVJ8vbtUFwMXbvKqOhqUmlpS+PGxvKwxcXw44+eC0q4mwJKyt0vKd1W\n482ePVvmRnans2fh4YdhxQpjISJJkEUt4mpN8rNAbyAHQGt9AGjprqBEzeBST7L9Z397GYC4alpr\nEhMTefvtt8nPz3fesFcv41pKLmqSz4AtSqkEpVQCsBljqeoa7dy5cyxZsoTHHnvM7FBqpt27jV+f\nQkNh7Vpo3drsiITwKFdrki9orQvty90qpeoCMueacCovL4/s7Gz8/Pxo1aqV84Y//GBcS5J8zZRS\nFBUVUVRUREZGBh06dHDc8I474MMPL773wudpracopZIx5rIHGKO1/tnEkDxi/vz59OvXjxYtWpgd\nis+zpqUxMz4eW2YmltBQRvfqRURCAkyebNQhC1ELuZokr1NK/QNoqJQaCDwDLHZfWMLXNWrUiGef\nfZbTp09jsTj5wUJr6UmuZm3atOHQoUMcPny48iQZjPdeaxl848OUUg2APwHtgF+Bf9emKeBmz57N\nc889Z3YYPs+alsa/Bg5kQkoK/kAeMP6rr3h+/nwihgwxOzwhTONqucUrwAmMk/BYYBnwmruCEr5P\nKUXz5s2dJ2oA6elw7Bg0bw7t2nkstpqsTZs2AGRkZDhvFBUFLVvCyZPGdE7Cl83CWP30V+BejJVR\nawWr1crOnTu57777zA7F582Mjy9LkAH8gQnFxcz8+mszwxLCdK7ObmFTSn0LfKu1PuHmmERtYe9F\n7tVLejOrib3+OzMzk5KSEsfzxipl9CZ/+63xGcgXFF/WRWvdHUAp9Qmw1eR4PGbOnDk8+uij1K9f\n3+xQfJ4tM7MsQbbzB2xZWWaEI4TXqLQnWRkSlFIngX3APqXUCaXUOM+EJ2q08kmyqBb+/v40a9YM\ni8XCmTNnnDeUwXs1RZH9Rm0qs9Bay6wW1cjSogV5l23LAywyUE/UclfqSf4LxqwWt2it0wCUUm2B\nD5VSf9FaT3V3gKIGk0F7bjF69Gj8/f2d14LDxfdcBu/5uh5KqZzS2wpj3EhO6W2ttQ40LzT32bp1\nKzabjdtkAaJrd+YMo/ftY3xgIBNyci7WJEdH8/zEiWZHJ4SplNbOJ6lQSv0MDNRan7xsewtgpdb6\nRjfH5xKllK7s3yE8q7CwED8/P1RlJRS5udCkifHTf06OLGrhaefPG+9/cTGcOQOBNTKX8kpKKbTW\nNa6+yJPn4WeffZaQkBBee02GxlyTM2fg7rvh9tuxvvgiM8eNw5aVhaV1a0ZPnEhEVJTZEQrhFq6e\nh6/Uk+x3eYIMoLU+oZTyu+roRI22bNkyDhw4wJAhQ+jYsaPjRtu2Gas43XyzJMhmaNgQbrwRtm41\nlgUfONDsiIRwyYULF/jqq6/Yvn272aH4ttOnjQS5Tx+YMoUIpRifmGh2VEJ4lSvNblF4lY+JWiwj\nI4P8/HwCKltBT6Z+M5+UXAgftGzZMrp3705ERITZofiuU6dgwACIiYEpU2TgtBBOXClJ7qGUynFw\nOQd090SAwrfk5+dz6tQp6tatW/kiIjJoz3wyeE/4IBmwd41OnoT+/Y1fjyZPlgRZiEpUWm6htXYw\nf5QQztnn523durXj6cfAKLPYvNm4LT3JbqG15syZMxQUFBASEuK4kf2937zZ+EwqG+gnhBc4efIk\na9euZdasWWaH4ptOnDAS5PvvhzfflARZiCuQ/xVFtTp06BAA4eE1oEawAAAgAElEQVThzhvt32/U\nw7VuDZW1E1ctLS2NadOmsWzZMueNwsKgTRs4exb27PFccEJcpa+++or77ruPQBloWnXHj8Ndd8GD\nD0qCLISLJEkW1aqgoACLxVJ5kiyLiLhd69L5TbOysigurmT6XCm5ED5k1qxZUmpxNY4dg9hYGDYM\nXn9dzrtCuEiSZFGt7r//fl555RXatm3rvJHMj+x2DRo0oGXLlthsNrIqWzVLBu8JH7Fnzx4yMjIY\nMGCA2aH4liNHjAF6w4dDQoIkyEJUgSTJotr5+fk5r0cG+P5741oG7blVmzZtADh8+LDzRtKTLHzE\n559/zsiRIys/t4hLZWUZPcgjR8I4WShXiKqSJFl41okTsHevMU/vzTebHU2N5lKSfMMN0KAB7Ntn\nTAslhBey2Wx8/vnnUmpRFZmZRg/y6NHw6qtmRyOET5IkWXjWxo3G9W23Qb165sZSw4WHhxMcHFz5\nVHz16sEttxi3peRCeKnk5GRatGhBt27dzA7FN2RkGAnyU0/BK6+YHY0QPkuSZOFZGzYY1336mBtH\nLRAUFMTYsWOJjY2tvOGddxrX9s9GCC8jcyNXwaFDRoL8pz/B3/5mdjRC+DRJkkW1yMnJYd++feTn\n51feUJJk72P/LNavNzcOIRzIy8tj4cKFjBgxwuxQvJ/VaiTIzz4Lf/2r2dEI4fMkSRbVYv/+/cyd\nO5fly5c7b5SbCz/9BHXqyKA9b3LHHcZCIj/+CFf6kiOEhy1YsIDevXtXXjYkIC3NSJBffBH+8hez\noxGiRpAkWVQL++Aw+2AxhzZvhpISuPFGaNzYQ5GJK2rSBHr0gOJi2LLF7GiEuMTs2bN54oknzA7D\nu6WmGrNYvPwyvPCC2dEIUWNIkiyqhUsr7Umphffq29e4lpIL4UUyMjL46aefeOCBB8wOxXsdPGj0\nIL/yilFmIYSoNm5PkpVSg5RSe5VS+5VSf3fweEel1CalVIFS6qXLHktXSu1QSv2slNrq7ljF1cnJ\nyeHMmTPUr1+fli1bOm8oSbIpjhw5wtq1a0lNTXXeyP6ZyOA94UXmzJnDI488QoMGDcwOxTsdOGD0\nIL/2mjFQTwhRrdyaJCulLMB04B6gKzBCKdXpsmangOeByQ52YQNitNY3aq1vdWes4urZe5HbtGmD\nxeLkkCosNMotAHr39lBkAiA1NZX169eza9cu543sSfIPP0BRkWcCE6ISWmuZ1aIy+/YZCXJCAvzx\nj2ZHI0SN5O6e5FuBA1prq9a6CJgLPFi+gdb6pNZ6O1Ds4PnKAzGKaxQYGEiPHj3o2LGj80Y//wzn\nz0PHjlBZb7OodvYSGPuXGYdatjQ+m/x8Y3ClECb76aefKCgo4A5Zvr6ivXuhf3944w34f//P7GiE\nqLHcnYCGAuWX+8oo3eYqDSQppbYppZ6q1shEtQkPD+ehhx6iZ8+ezhtJqYVpWrduTd26dTl58iR5\neXnOG9rrkqXkola5UklcuXa3KKWKlFIPeyIuey+yUsoTL+c7du82EuT//V9jNT0hhNvUNTuAK+it\ntT6ilGqBkSzv0Vp/76hhQkJC2e2YmBhiYmI8E6FwjSTJpqlTpw5hYWGkp6dz6NAhOnfu7Lhhnz7w\n8cfG4L2XX/ZskDVYcnIyycnJZofhULmSuP5AFrBNKbVQa73XQbu3ge88EVdhYSFffvklm+0lWsLw\n229w990weTLExZkdjRA1nruT5Eyg/HQHYaXbXKK1PlJ6fUIp9V+M8o0rJsnCy9hs8H3pxyZJsinC\nw8OvnCTbe5K//974zJzVl4squfxL+4QJE8wLpqKykjgApZS9JG7vZe2eB74BbnFnMGlpacTHx7Nz\n505K43Hny/mWX381EuQpU0AWVhHCI9ydJG8D2imlIoAjwGNAZX/dZWdEpVQjwKK1zlVK+QN3A171\nv4tw0Z49cPo0hIZCZKTZ0dRKnTt3plGjRkRHRztvFBEBbdrA4cOwaxd07+65AIVZHJXEXTJIWinV\nGnhIax2rlHLbAOq0tDQGDhxISkpK2baBAweSlJREVFSUu17WN+zYAYMGwT//CY8+anY0QtQabk2S\ntdYlSqnngJUY9c+faK33KKXGGg/rj5RSrYAfgQDAppT6M9AFaAH8VymlS+Oco7Ve6c54hZvY597t\n0wekZ8gUwcHBBAcHX7lh374wZ45RHiNJsjC8D5SvVXb6R3wtZW/x8fGXJMgAKSkpxMfHk5iY6PJ+\napyff4Z774Xp0+GRR8yORgifdLVlb26vSdZarwA6XrZtRrnbxwBHy7TlAje4NzpxLc6fP8/ChQuJ\njo7mllsq+RV27VrjWurEvV+fPheT5GeeMTsa4X6ulMT1BOYqo/ahOXCvUqpIa73o8p1dS9lbZqbj\nSrysrKyr3qfP274dBg+GDz+Ehz0yXlKIGulqy968feCe8GJWq5V9+/ZRUFDgPEm22cD+7S021mOx\niatkr0tetw60lp7/mu+KJXFa67b220qpz4DFjhLkaxUa6njio9atW1f3S/mGbdvg/vthxgx46CGz\noxGiVpKROeKqpaenAxBZWZ3xrl1w4oRRj9y+vUfiEtegUydjzuQjR2D/frOjEW6mtS4B7CVxu4C5\n9pI4pZSjFSq0u2KZOHFihdrj6OhoJk6c6K6X9F5btsB998H//Z8kyEKYSJJkcdWsVitwhSTZXmoR\nGyu9kl5Ca43WTnIdpeCuu4zba9Z4LihhGq31Cq11R611e63126XbZmitP3LQ9g9a6wXuiCMqKopn\nnnmGsLAwYmNjiYuLq52D9jZvhgcegM8+M66FEKaRJFlclfPnz3P06FHq1Knj9GdS4NIkWZhu/fr1\nTJ06lQMHDjhvJEmyMMn69et5++23WbNmDYmJibUvQd60CYYMgVmzjJ5kIYSpJEkWV8XeixwWFoaf\nn5/jRjabUdsKkiR7ieLiYs6dO0daWprzRvYkee1a4zMUwgNycnJYt24d999/v9mhmOP7743Sis8/\nN2azEEKYTpJkcVXatWvHE088Qb9+/Zw32rEDsrON+XdrW4+Ql7L3zNnryR1q2xbCw+HUKWMBAyE8\nYOnSpfTp04cmTZqYHYrnrV9vzF7xxRdwzz1mRyOEKCVJsrgqdevWJTIysvKfQ+0/19t7JoXpwsLC\nqFOnDkePHiU/P99xI6lLFiaYP38+w4YNMzsMz0tONuY/njsXBgwwOxohRDmSJAv3kXpkr+Pn50eb\nNsa05JX2JkuSLDwoLy+PpKQkHnzwQbNDcTtrWhoTRo5kfGwsEwYMwPrww/D119KZIIQXknmShXsU\nF19caU+SZK8SGRmJ1Wrl9OnTzhvZP7N164zPsq6cKoT7LF++nNtuu41mzZqZHYpbWdPS+NfAgUxI\nScEfyAPGt27N8xERRJgdnBCiAulJFu7x009w7hy0awdhYWZHI8q59dZb+Z//+R/uvPNO543CwqBD\nB+Mz3L7dc8GJWmn+/Pk8UguWXJ4ZH1+WIAP4AxOyspgZH29mWEIIJyRJFlXmtJa1PPvP9NKL7HUa\nNmxIgwYNrtxQSi6EBxQUFLB8+XIeqgWLZtgyM8sSZDt/wFabl94WwotJkiyq5OzZs0yePJmZM2c6\nX5ACLtYjS52d77J/wZEkWbjRypUrufHGG2nZsqXZobidpaCAvMu25QGW2rr0thBeTpJkUSUpKSkA\nNGjQAOVsBb0LF4w5PwFiYjwTmKh+9s/u+++Nz1QIN/jmm29qx6wW//43o9PTGd+mTVminAeMj45m\ndG1celsIHyCjcUSVpKamAtC2bVvnjTZtgvx86NYNgoM9FJmodi1bQvfuxlzJmzdDZXNiC3EVCgsL\nWbJkCW+//bbZobjXpEnw0UdEbNrE88C78fHYsrKwtG7N8xMnEiHzyAvhlSRJFi7TWpclydHR0c4b\nfvedcS2T4nu1oqIirFYrrVq1IiAgwHGju+4ykuRVqyRJFtVu9erVdO7cmdY1tdxAa4iPhwULjNl+\nQkOJAMYnJpodmRDCBVJuIVx25MgRzp8/T5MmTSqfqkmSZJ+waNEi5syZw549e5w3uvtu49r+mQpR\njWr0rBZaw1/+AsuWGVMphoaaHZEQoookSRYuy8/Pp2nTprRt29Z5PfKxY/DLL9CwIfTp49kARZXY\nS2bsdeYO9esH9erBjz/CiRMeikzUBsXFxSxcuJCHH37Y7FCqX0kJPPUUbN1qDHxt0cLsiIQQV0GS\nZOGydu3a8cILLzB48GDnjVauNK779QNXphkTprGXzKSlpVFcXOy4kb8/9O1r9IolJXkwOlHTrVu3\njqioKCIiatgyGkVFEBcHaWnG+bBpU7MjEkJcJUmSRZUopahb2eprUmrhMwIDA2nZsiVFRUUcPnzY\necNBg4zrFSs8E5ioFWrkrBYFBTBsmDFweelSaNzY7IiEENdAkmRRfWy2iz3JkiT7BHtv8sGDB503\nsifJK1can7EQ16ikpIT//ve/NStJzs2F+++HRo1g/nz5JU2IGkCSZFF9duww6lbDwqBTJ7OjES7o\n2LEjnTt3pk2bNs4bdelifKbHjhmfsRDXaOPGjQQHB9OuXTuzQ6keZ84YHQMRETBnDvj5mR2REKIa\nSJIsqk/5UgtnA/uEV4mIiODRRx+lU2VfapSSkgtRrWpUqcWJE8ZUiT17wscfQ506ZkckhKgmkiSL\nKzp37hzff/89x48fr7yh1CPXXPbPVJJkcY1sNhsLFiyoGVO/ZWUZg5QHD4b33weL/JcqRE0if9Hi\nig4cOMDq1atZvXq180a5ubBxo/GfxIABngtOeMaAAUYP2aZNkJNjdjTCh23ZsoXAwEA6d+5sdijX\nJi3NmObyiSfgjTfk1zMhaiBJksUVHThwAID27ds7b7R2rTH10a23QlCQhyITHtO0Kdx+OxQXG/O+\nCnGVasQCInv3Gj3IL70Ef/+72dEIIdxEkmRRqeLi4rLFJipNku0/w0upRc0ldcniGqSlpREXF8f0\n6dP58ccfSUtLMzukq7Njh1GDPHEiPPus2dEIIdxIkmRRKavVSlFREa1ataJJkyaOG2kNS5YYtytb\naER4rcOHD/PNN9+wefNm543KJ8laeyYwUSOkpaUxcOBAvvjiCy5cuMDy5csZOHCg7yXKmzcbS7VP\nm2aUWQghajRJkkWl7KUWlU7V9OuvcOgQtGpljPAWPic/P59du3bx66+/Om90003QvDlYrbBnj+eC\nEz4vPj6+wvLnKSkpxMfHmxTRVVi7FoYMgc8+A18vFxFCuMTtSbJSapBSaq9Sar9SqkLxllKqo1Jq\nk1KqQCn1UlWeK9zvxhtvJCYmhq5duzpvZO9Fvu8+Gd3to9q2bUvdunXJysri3LlzjhtZLMZnDLB4\nseeCEz4vMzPT4fasrCwPR3KVli2D4cPh66/l1zIhahG3ZjRKKQswHbgH6AqMUEpdPiHrKeB5YPJV\nPFe4WatWrejXrx8hISHOG9kTpgce8ExQotr5+fnRtm1bAPbv3++8of0zXrTIA1GJmiI0NNTh9tat\nW3s4kqswbx6MGWOc52JizI5GCOFB7u72uxU4oLW2aq2LgLnAg+UbaK1Paq23A8VVfa7wAsePw5Yt\nUL++TP3m4zp06ABcIUm++26oVw9++MH47IVwwcSJE8uWQLeLjo5m4sSJJkXkopkz4c9/NpZkv+02\ns6MRQniYu5PkUOBwufsZpdvc/VzhKUuXGoO4YmOhcWOzoxHXwJ4kHzp0iJKSEseNAgKMkf1aG5+9\nEC6IiooiKSmJuLg4YmNjiYuLIykpiaioKLNDc+6DD2DcOKMWuUcPs6MRQpigrtkBVJeEhISy2zEx\nMcTIz2KeIaUWNUZAQACPP/44oaGh1Klsad0hQ4wZLhYvNn6GFpVKTk4mOTnZ7DBMFxUVRWJiotlh\nuObtt40lptetA29O5IUQbqW0G6dyUkrdDiRorQeV3n8F0FrrSQ7ajgfOaa2nXMVztTv/HbVRUVER\nfn5+lTcqKDBmO8jLM2Y8CA/3THDCXBkZ0KYNNGoEp05BgwZmR+RTlFJorWvc8mw14jysNbz2Gvz3\nv7BqFfhCzbQQospcPQ+7u9xiG9BOKRWhlKoHPAZUNuKnfMBVfa6oRvPnz2f69OlkZGQ4b7RqlZEg\n33ijJMi1SViYMR1cfr6svidqDpsNXnwRli83epAlQRai1nNrkqy1LgGeA1YCu4C5Wus9SqmxSqk/\nAiilWimlDgN/AV5VSh1SSjV29lx3xisMRUVFpKSkcOrUKecLiAAsWGBcDxvmmcCE9xgyxLj+9ltz\n4xCiOpSUwJNPwo8/Gl/8WrQwOyIhhBdwa7mFp9SIn/m8yN69e/nqq68IDQ3lySefdNyoqAiCg+H0\nadi9Gzp39myQwly//grXX28kE1lZULfGDG9wOym38DKFhTBqlFE69O23MgBZiFrAW8othA/au3cv\nAJ06VTIt9fr1RoLcqZMkyDXQhQsX2L17N06Tnm7doH17OHECNmzwbHBCVJeCAuOXsPPnjUWRJEEW\nQpQjSbK4RElJCfv27QOgY8eOzhvaSy0eftgDUQlP0lozY8YM5s2bx5EjRxw3Uuri0rzffOO54ISo\nLrm5xgqS/v4wf74MQBVCVCBJsrhETk4OTZo0oUWLFrRwVpdnsxmjv0HqkWsgpRTt2rUDYPfu3c4b\n2j/7BQuMY0IIX3HmjLEwTlQUzJkDV5rJR3i1yMhIlFJykUuFS2Rk5DUdW1KTLBwqKCiggbOelR9+\ngDvugIgISEszehVFjZKWlsbs2bNp1qwZzz33HMrRZ6w1tG0L6elGycWdd3o8Tl+klNQkm+rECSNB\n7tcPpkwBi/QV+brSvymzwxBeyNmx4ep5WM4OwiGnCTLA118b1w8/LAlyDRUREUGjRo04ffo0x50t\nP62k5EL4mMxM6NsX7r8fpk6VBFkIUSk5Q4iqKSmBr74ybj/2mLmxCLexWCxlAzd/++035w3tJRfz\n50vJhfBuaWlGgjx6NEycKF/whRBXJPM2iapZvx6OHIHoaLjlFrOjEW7Uo0cPioqKiI6Odt7o1luN\nhWQOHYKNG6FPH88FKEQlrGlpzIyPx5aZiaVxY0Zv20bEuHHwzDNmhyaE8BGSJIuqmTvXuH7sMemJ\nqeHCw8MJv9JKihYLjBgBkyYZA6AkSRZewJqWxr8GDmRCSgr+QB4wvmVLnr/3XiLMDk4I4TOk3EIA\nkJqayqpVqzhx4oTzRoWFF2tPpdRC2P3+98b1vHnGMSKEyWbGx5clyAD+wITjx5kZH29mWEKYwmKx\nkJqaCsDTTz/Nm2++WfbYhx9+SHBwMIGBgWRnZ7Nx40Y6dOhAYGAgixYtMitkryFJsgDgxx9/ZOPG\njezfv995o6QkYwGRbt2MixBgrLzXrZtxbKxcaXY0QmDLzCxLkO38AVtWlhnhiFosKiqKNWvWmBpD\n+dmJPvzwQ1599VUAiouL+etf/8qqVavIyckhKCiI8ePH88ILL5CTk8OQIUOqLQar1cpdd92Fv78/\nXbp0YfXq1U7bvvvuu3Tv3p3AwECio6N59913L3k8MjKSRo0aERgYSGBgIIMGDaq2OC8nSbLg/Pnz\nZclx9+7dnTe0l1qMGOGBqIRPsfcmf/GFuXEIUViIJSODvMs25wGW1q3NiEiYxJqWxoSRIxkfG8uE\nkSOxpqWZso/KlJSUVOv+HHE2Pd7Ro0e5cOECncutmmu1WunSpUu1xzBixAhuvvlmTp8+zRtvvMEj\njzzCqVOnnLb//PPPOXPmDMuXL2f69Ol8bZ9VCyPpX7p0KTk5OeTk5LBixYpqj7eM1trnL8Y/Q1yt\nH3/8USckJOhZs2Y5b3TunNb+/lqD1gcPei444TUKCwudP5iaahwbjRoZx4pwqvR8Zfp5034BBgF7\ngf3A3x08/ntgR+nle6C7k/245f2qkuPHte7XT6fHxuq/RkXpXGM2b50L+q/R0To9NdXsCIUbODr2\n0lNT9V+jo6/pGLjWfYwaNUpbLBbdqFEjHRAQoCdPnqzT09O1Ukp/8sknOjw8XPfr108nJyfrsLCw\nS54bGRmpV69erbXW2maz6bfeektHR0fr5s2b6+HDh+vs7Gynr/vOO+/okJAQHRoaqj/99FNtsVh0\nSkqK1lrr0aNH6/j4eL1//37t7++vLRaLDggI0P3799fR0dHaYrHohg0b6oCAgMrP+VWwf/9+3aBB\nA52bm1u2rW/fvnrGjBkuPf+FF17QL7zwQtn98u/NlTg7L7l6HpaeZMHOnTsBYzYDp775BvLyjIFZ\nlc12IGqc4uJi5s6dy5QpUyh0VnMcFWUsMJOff3E1RuH1lFIWYDpwD9AVGKGU6nRZs1Sgr9a6B/AG\n8LFno3TRzp3GbCt33EFEUhLPr17Nu3FxjI+N5d24OJ5PSiIiKsrsKIWHOKxLT0mpUl36te5j9uzZ\nhIeHs2TJEnJycnj55ZfLHlu/fj179+7lu+++A3C8YFOpadOmsWjRIjZs2EBWVhZBQUE842SWlhUr\nVjBlyhRWr17NgQMHWLVqlcN27du3Z9euXQCcPXuWVatWcfDgQcLDw8t6af0crET5wAMPEBQURLNm\nzSpcOyvP2LVrF23btsXf/2IRVI8ePcpe/0o2bNhA165dL9kWFxdHq1atGDRoUFkO4w4yu0Utd+7c\nOQ4dOoSfn98lP7lU8NlnxvXo0R6JS3iPunXrkpeXR0FBAbt37+aGG25w3PDxx2HTJpg5E0aN8miM\n4qrdChzQWlsBlFJzgQcxepYB0FpvLtd+MxDq0QhdsWABjB0L06aVlYNFREUxPjHR5MCEWZzWpc+Z\nY8zE48o+Sp9TYR9VrG3Xl5U7KKWYMGECDRs2dOn5M2bM4IMPPiAkJASAcePGERERQWJiIpbLFsSZ\nN28eY8aMKfv/PCEhgbn2UslK4iufpF8eb3mLFy92KebycnNzadKkySXbAgMDyXLhfRw/fjxaa8aM\nGVO27YsvvuCmm25Ca83777/PPffcw759+wgMDKxybFciPcm1XEBAAC+88AJDhw6lXr16jhulpBjz\nIzdqBL/7nWcDFF7Bnhj/8ssvzhs99hg0aABr1hgLNwhfEAocLnc/g8qT4CeB5W6NqCpsNnj9dXjx\nRVi+XMZLiDKW0FDHdelxcaXFE1e+WOLi3FbbHhYW5nJbq9XK0KFDadasGc2aNaNLly74+flx7Nix\nCm2zsrJo06ZN2f2IiIhKk15PaNy4MTk5OZdsO3v2LAEBAZU+b/r06SQmJrJs2bJLerV79epF/fr1\nadCgAa+88gpNmzZlw4YNboldepIFQUFBBAUFOW8we7ZxPWwYXOGgFjVTt27dWLFiBVarlezsbMfH\nS5MmxjLViYlGb/KECR6PU7iPUioWGAPc6axNQkJC2e2YmBhiYmLcF1BenvHLVkYGbNkCpb1sQgCM\nnjiR8Zs3XzpXdnQ0z0+c6NF9OCujKL/d39+f/Pz8svslJSWXTMcaHh7Op59+Sq9eva74eiEhIRw+\nfPF7r9VqrbSUo6oGDx7Mhg0bHO6zT58+LF26tML2rl27kpqaSl5eXlnJxY4dOxg5cqTT1/n00095\n55132LBhQ1kPujNKqSt+EUhOTiY5ObnSNg65Urjs7Re8YcBITVVSonVEhPG92sVCeVEzLViwQCck\nJOg1a9Y4b7RmjXGstGmjdXGx54LzIXjRwD3gdmBFufuv4Hjw3vXAASC6kn254d1yIj1d6x49tB49\nWuuCAs+9rvBKzo699NRUnRAXp8fFxuqEuLirGrh5rfvo1auX/vjjjy/ur3TgXklJSdm2s2fPan9/\nf71s2TJdVFSkExIStJ+fX9ngtKlTp+qYmBhttVq11lofP35cL1y40OHrLV++XIeEhOjdu3frvLw8\nPXLkSIcD95zFUpVBcVXRq1cv/be//U0XFBTo+fPn66CgIH3y5EmHbRMTE3VwcLDeu3dvhccOHTqk\nN27cqAsLC3VBQYF+5513dMuWLfXp06cd7svZseHqedj0k3R1XCRJdqNVq4zDJDzcSJhFrZWamqrf\neustvXbtWueNSkq0jooyjpmVKz0Wmy/xsiS5DnAQiADqAb8AnS9rE16aIN9+hX255f2qYP16rYOD\ntZ4yRWubzTOvKbyaN+cACxcu1OHh4TooKEi/9957Oj09XVsslksSU621njVrlg4JCdGtWrXS7733\nno6KirpkdoupU6fqjh076sDAQN2uXTv96quvOn3NSZMm6eDgYB0aGqo/++yzSpPky2Mp/7rVyWq1\n6piYGN2wYUPdqVOnSzpbNmzYoAMCAi6JoV69ejogIEA3btxYBwQE6KefflprrfWuXbv09ddfrxs3\nbqybN2+uBwwYoH/66Senr3utSbIy2vo2pZSuCf8Or/TIIzB/vvHT+bhxZkcjTKS1pri42OGI50tM\nnGgcK8OHX5xbW5Qp/WnQa9Z0V0oNAv6JMUblE63120qpsRj/iXyklPoYeBiwAgoo0lrf6mA/7j8P\nf/wxvPYafP453H23e19L+AxXfm4XtZOzY8PV87AkybXUwYMHqV+/PmFhYc7rlbKyIDzcuH3oEMhE\n/MIVhw9DZCTUqWPcbtXK7Ii8irclydXFrefhoiJ46SVj1c9Fi6BDB/e8jvBJkiQLZ641SZbZLWoh\nrTUrVqzg008/LVvP3aH/+z8oKYEHH5QEWbiuTRt44AEjsfnYO6fUFT7k1CkYNAhSU40BepIgCyE8\nRJLkWigtLY1Tp04REBBAlLPJ9YuLLyY4Tz/tueBEzfDss8b1jBnGsSSECyosAbxihbFASM+eRg/y\nZXOtCiGEO8kUcLXQli1bAOjZs2eFicjLLF1qTK3Uvj3cdZcHoxO+RGvtuFynf3+jx2//fli8GIYO\n9XxwwqtY09KYGR+PLTMTS2gooydOvGQFPGtaGv8aOPDS6ba+/JLnJ08m4qWXTItbCFF7SU9yLXP6\n9Gn2799PnTp1uPnmm503nD7duB47Fpwl0qLWOnjwIJ9++hnFj2gAACAASURBVCm//fab4wYWC9iX\nTf3gA88FJrySPQF+ec4cJiQn8/KcOfxr4ECs5RadcbgEsM3GzJ9+MiVmIYSQ7KeW2bZtGwDdu3e/\nZB31S+zYAatWgb8//OEPHoxO+IozZ85w+PBhNm/e7HzAzBNPGKs0rl4Nu3d7NkDhVRwmwCkpzBw6\nFJ57Dh58ENvChdWyBLAQQlQXSZJrmb59+zJw4EBuv/12542mTjWu//AHqGwlPlFr9ejRg0aNGpGV\nlcWhQ4ccN2ra1EiUAd57z3PBCa9jy8x0nACfPm2U5YwejaV3b7ctASyEEFdDkuRapmHDhtxxxx20\ncjYtV1YWfPGF8XP5iy96NjjhM/z8/LjlllsA2LRpk/OGL70EShlLVUuPYK1lCQ11nAD37QsvvABD\nhzL6ww8ZHx1d1s6+BPDoKiwBLIQQ1UmSZHGp6dONqbuGDoW2bc2ORnixW265hbp167J//35Onjzp\nuFG7dvDww1BYCNOmeTZA4TVGT5x4xQQ4IiqK55OSeDcujvGxsbwbF8fzSUmXDO4TQlSdxWIpm+71\n6aef5s033yx77MMPPyQ4OJjAwECys7PZuHEjHTp0IDAwkEWLFpkVstdw+2Iipas5vc/F1ZwmOWgz\nDbgX49w5Rmv9c+n2dOAsYMPJKk+l7WQxkeqQm2ssHpKdDZs2Qa9eZkckvNySJUs4cOAAQ4YMITo6\n2nGjLVvg9tuN6bsOH4aAAM8G6WVq62IiZbNbZGVhad26wuwWQlwtb15MJCoqik8++YS7TJwlqk6d\nOhw4cIC2l3V8FRcXExgYyNatW+nWrRsAAwYM4KGHHuK5556r1hisVitjxoxhy5YtRERE8K9//Yv+\n/fs7bDthwgTefPNNGjRoUDaD0s6dO4mMjKzy617rYiJunQJOKWUBpgP9gSxgm1JqodZ6b7k29wLR\nWuv2SqnbgA8Be8GsDYjRWme7M05R6oMPjAS5d29JkIVL+vfvz7333kudOnWcN7rtNujTBzZsgI8+\ngr/+1XMBCq8RERXF+MREs8MQtUhaWhrx8fFkZmYSGhrKxIkTna8N4MZ9VKakpKTy82c1cPYF4ujR\no1y4cIHOnTuXbbNarXTp0qXaYxgxYgS9e/dm+fLlLF26lEceeYSDBw9y3XXXOWz/2GOPMXv27GqP\no8q01m67YCS7y8vdfwX4+2Vt/gMML3d/D9Cq9HYacJ0Lr6OFcykpKXr37t3aZrM5b5Sbq3Xz5lqD\n1t9957ngRO2wZIlxbLVqpXVentnRmKr0fOXWc68ZFzkPC7M4OvZSU1N1dHS0Bsou0dHROjU11eX9\nXus+Ro0apS0Wi27UqJEOCAjQkydP1unp6VoppT/55BMdHh6u+/Xrp5OTk3VYWNglz42MjNSrV6/W\nWmtts9n0W2+9paOjo3Xz5s318OHDdXZ2ttPXfeedd3RISIgODQ3Vn376qbZYLDolJUVrrfXo0aN1\nfHy83r9/v/b399cWi0UHBATo/v376+joaG2xWHTDhg11QECALiwsdPm9qsz+/ft1gwYNdG5ubtm2\nvn376hkzZjhsn5CQoEeNGlUtr+3svOTqedjdNcmhwOFy9zNKt1XWJrNcGw0kKaW2KaWecluUNZjW\nmqSkJL7++mt27NjhvOGHH8LJk0av38CBngtQ1A6DB8Mtt8CxY8axJoQQbhQfH09KSsol21JSUoiP\nj/fYPmbPnk14eDhLliwhJyeHl19+ueyx9evXs3fvXr777jsAx4sylZo2bRqLFi1iw4YNZGVlERQU\nxDP2eegvs2LFCqZMmcLq1as5cOAAq1atctiuffv27Nq1C4CzZ8+yatUqDh48SHh4OEuXLiUnJwc/\nP78Kz3vggQcICgqiWbNmFa6HDBni8LV27dpF27ZtL5l2tkePHmWv78jixYtp3rw53bt35z//+Y/T\ndu7m7Svu9dZaH1FKtcBIlvdorb931DAhIaHsdkxMDDExMZ6J0Mvt2bOHo0eP0rhxY7p27eq4UX4+\nTJ5s3B4/3piNQIjqpBQkJMB998GkSfCnPxnzcNcCycnJJCcnmx2GELVKZmamw+1z5sxhzpw517Tv\nrCrO1KMvK3dQSjFhwgQaNmzo0vNnzJjBBx98QEhICADjxo0jIiKCxMTECqvmzps3jzFjxpSVUCQk\nJDB37twrxlc+Sb883vIWL17sUszl5ebm0uSyJeUDAwOdvo/Dhw9n7NixtGrVis2bNzNs2DCCgoIY\nPnx4lV/7Wrk7Sc4EwsvdDyvddnmbNo7aaK2PlF6fUEr9F7gVuGKSLAw2m421a9cCxvzIjr4VAkbP\n3vHj0LMnDBrkwQhFTVNSUkJxcTH169ev+OC99xq/VGzZAv/+N/ztb54P0ASXf2mfMGGCecEIUUuE\nhl7+o7UhLi6ORBdr40eOHOkwoW5dDXN3h4WFudzWarUydOjQsoRYa42fnx/Hjh0rS5ztsrKy6Nmz\nZ9n9iIgI0wc1Nm7cmJycnEu2nT17lgAng7g7depUdrtXr178+c9/5ptvvjElSXZ3ucU2oJ1SKkIp\nVQ94DLh8TpFFwOMASqnbgTNa62NKqUZKqcal2/2BuwEna+AKR3bu3MnJkydp2rQpN910k+NG2dlg\nnw7m9delF1lctbS0ND744IOynw8rUArsCeKkSXD2rOeCE0LUKhMnTqww4050dDQTqzDvdnXsw1kZ\nRfnt/v7+5Ofnl90vKSnhxIkTZffDw8NZvnw5p0+f5vTp02RnZ5OXl1chQQYICQnh8OGLFaxWq7XS\nUo6qGjx4MAEBAQQGBla43HfffQ6f07VrV1JTU8nLuzhb+o4dO5z/un0ZM2cvcWuSrLUuAZ4DVgK7\ngLla6z1KqbFKqT+WtlkGpCmlDgIzAHuhTSvge6XUz8BmYLHWeqU7461pdu7cCUBsbKzz0bNvvWUk\nynfdJb3I4poEBgZy9uxZfvnlF44fP+640d13GzNdnDplHHtCCOEGUVFRJCUlERcXR2xsLHFxcSQl\nJVVpZorq2EdwcHDZHMV2lyd8HTp0oKCggOXLl1NcXMwbb7xBYWFh2eNjx47lH//4R9nqpidOnHA6\nh/Gjjz7KzJkz2bNnD/n5+bz++uuVxlfV5HPZsmWcO3eOnJycCpelS5c6fE779u254YYbmDBhAhcu\nXGDBggX89ttvDBs2zGH7RYsWcebMGQC2bt3KP//5Tx566KEqxVltXBnd5+0XZFS1Q8XFxXrHjh26\npKTEcYP0dK3r1zdmHfjxR88GJ2qkpUuX6oSEBJ2YmOi80datxjFXv77WaWkei81bILNbCFGtvPnY\nW7hwoQ4PD9dBQUH6vffe0+np6dpisVT4f3nWrFk6JCREt2rVSr/33ns6Kirqktktpk6dqjt27KgD\nAwN1u3bt9Kuvvur0NSdNmqSDg4N1aGio/uyzzxzObqG1dhhL+detTlarVcfExOiGDRvqTp066TVr\n1pQ9tmHDBh0QEFB2f8SIEfq6667TAQEBunPnznr69OlX/brOjg1Xz8NuX0zEE2Qxkas0apSxXPDv\nfw/XOJBBCIC8vDymTZtGYWEho0aNqjB5fZm4OGP58xEjjOtapLYuJiKEu3jzYiLCXNe6mIgsS11b\nff+9kSDXqwdvvGF2NKKG8Pf358477wTgu+++w2azOW74v/8L9evDl1/C5s0ejFAIIYRwjSTJtVFx\nMdjnWPz730GWhhXV6PbbbycqKor+/ftXmJ6oTEQEvPSScfvpp41jUgghhPAiUm5Rg9hsNi5cuHDl\nuRenTjUSlKgo2LULXJyrUYhqlZcHXbuC1QrvvXcxaa7hpNxCiOol5RbCmWstt5AkuQbZuHEjP/zw\nA0OGDKFDhw6OG2VkQOfOkJsLS5YYizsIYZZly4xj0N8fdu+G8PArP8fHSZIsRPWSJFk4IzXJAoBT\np06RnJxMXl6e8zkRtYYnnzQS5IcekgRZmG/wYHjkEaNX+ZlnjGNUCCGE8AKSJNcAWmsWL15McXEx\n119/Pe3bt3fc8OOP4bvvoFkzY8UzITzIaU/PP/8JTZrA0qXwySeeDUoIIYRwQpLkGmDTpk1YrVb8\n/f255557HDdKTb1Y8/nvf4ODlXqEcIeSkhLWrFnDV1995ThRbt364pe2F1+ElBTPBiiEEEI4IEmy\nj8vNzSU5ORmAIUOG0KhRo4qNiopg5EjjJ+3f/Q5MWP9c1F75+fls27aNffv2sX37dseNRowwjsu8\nPGP+bpntQgghhMkkSfZxjRs3ZtSoUdx1113OB+v9/e/www8QGiplFsLjAgICuK+0/n3FihVkZWVV\nbKSUcWyGhhrH6j/+4eEohRCiZrJYLGVLYz/99NO8+eabZY99+OGHBAcHExgYSHZ2Nhs3bqRDhw4E\nBgY6Xfq6NpHZLWq6BQtg2DCoWxfWrYM77jA7IlFLLVmyhO3bt9O0aVP++Mc/Op6qcMMGiI2FkhL4\n5hvj2K1hZHYLIaqXN89uERUVxSeffMJdd91lWgx16tThwIEDFVZALS4uJjAwkK1bt9KtWzcABgwY\nwEMPPcRzzz1XrTGMGzeOb7/9lj179hAfH8+4ceOqdf/OyOwWwrndu2HMGOP2O+9IgixMNWjQIFq3\nbs2ZM2dYvXq140Z9+sC77xq3R4+GPXs8Fp8QomZJS7MycuQEYmPHM3LkBNLSrKbsozIlJSXVuj9H\nnH2BOHr0KBcuXKBz585l26xWK126dKn2GNq3b8/kyZO5//77q33fbqW19vmL8c8QlzhyROuICK1B\n69/9TmubzeyIhNDZ2dn6iy++0Hl5ec4b2WxaDx9uHLtRUVofPeq5AD2g9Hxl+nmzui9yHhZmcXTs\npaam6+jov2rI1cbckrk6OvqvOjU13eX9Xus+Ro0apS0Wi27UqJEOCAjQkydP1unp6VoppT/55BMd\nHh6u+/Xrp5OTk3VYWNglz42MjNSrV6/WWmtts9n0W2+9paOjo3Xz5s318OHDdXZ2ttPXfeedd3RI\nSIgODQ3Vn376qbZYLDolJUVrrfXo0aN1fHy83r9/v/b399cWi0UHBATo/v376+joaG2xWHTDhg11\nQECALiwsdPm9ctXIkSP1hAkTqn2/zjg7L7l6HpaeZB+Tnp7Or7/+Wnmj/HwYMsRYyey222DWLKPm\nUwiTNW3alBEjRjgeYGqnlDEVXM+ekJZmzOedm+u5IIUQPi8+fiYpKRMA/9It/qSkTCA+fqbH9jF7\n9mzCw8NZsmQJOTk5vPzyy2WPrV+/nr179/Ldd98BOF/fAJg2bRqLFi1iw4YNZGVlERQUxDPPPOOw\n7YoVK5gyZQqrV6/mwIEDrFq1ymG79u3bs2vXLgDOnj3LqlWrOHjwIOHh4SxdupScnBz8/PwqPO+B\nBx4gKCiIZs2aVbgeMmSIS++LL6lrdgDCdVlZWXz55ZcUFhYSEBBAZGRkxUYFBfDww7BtG0RGwsKF\nsuy08D3+/saKkHfcAdu3w6OPwrffQr16ZkcmhPABmZk2Lia3dv7MmWNjzhxX9+J4H1lZtirFoi8r\nd1BKMWHCBMfjMhyYMWMGH3zwASGlU7eOGzeOiIgIEhMTsVgu7eucN28eY8aMKSuhSEhIYO7cuVeM\nr3ySfnm85S1evNilmGsK6Un2EcePH2fOnDkUFhbStWtXwh0t31tYaKxe9t130KIFLF8OrVp5Plgh\nqkOrVsYxfN11xvUjj8CFC2ZHJYTwAaGhFiDvsq15xMVZ0KXFE1e6xMU53kfr1teeOoWFhbnc1mq1\nMnToUJo1a0azZs3o0qULfn5+HDt2rELbrKws2rRpU3Y/IiKi0qRXVE6SZB+QlZXFzJkzyc/Pp127\ndgwdOrTCt0fOnzfmQF661EgqVq+GTp3MCViIKrDZbHz77bfs2LGj4oMdOsCqVcYqkYsXG7NdSKIs\nhLiCiRNHEx09notJbh7R0eOZOHG0R/fhrIyi/HZ/f3/y8/PL7peUlHDixImy++Hh4SxfvpzTp09z\n+vRpsrOzycvLK+tZLi8kJITDhw+X3bdarZWWclTV4MGDCQgIIDAwsMLFPtVnTSJJspcrKSlh3rx5\nnD9/ng4dOjB8+HDq1KlzaaPTp2HgQFi0CIKCICkJunc3J2Ahqmjfvn3s2LGDb7/9lo0bN1bs9bjh\nBlizxvjyt3Qp3H23ccwLIYQTUVERJCU9T1zcu8TGjicu7l2Skp4nKirCo/sIDg4um6PY7vJzXIcO\nHSgoKGD58uUUFxfzxhtvUFhYWPb42LFj+cc//sGhQ4cAOHHihNM5jB999FFmzpzJnj17yM/P5/XX\nX680vqr2Mi9btoxz586Rk5NT4bJ06VKnzysuLqagoACbzUZRUREXLlzAZqta2YopXBnd5+0Xavio\n6szMTL1w4UJdXFxc8cGUFK27dDF+HQoL0/q33zwfoBDXaOPGjTohIUEnJCTopUuX6pKSkoqNdu7U\nunVr41jv1Enr1FTPB1oNkNkthKhW3nzsLVy4UIeHh+ugoCD93nvv6fT0dG2xWCqc42bNmqVDQkJ0\nq1at9HvvvaejoqIumd1i6tSpumPHjjowMFC3a9dOv/rqq05fc9KkSTo4OFiHhobqzz77zOHsFlpr\nh7GUf93qNHr0aK2U0haLpewya9asan+dyzk7Nlw9D8tiIr5s2TKIi4MzZ6BrV6Nus1wtkhC+5Lff\nfuPbb7+lpKSEyMhIHn300YoDWw4fNma7+PVXowQjMRHuvdecgK+SLCYiRPXy5sVEhLlkMZHaqLAQ\nXnsN7r/fSJAfeAC+/14SZOHTunXrxqhRo2jcuDE2m416jmayaNPGWJXv3nuNkovBg40lrIuKPB+w\nEEKIGk16kr2E1prt27dz9uxZ+vfv77zhr7/C44/DL78Y88lOnAj/3/8Hlw/kE8JHnTt3DoCAgADn\njWw2ePttiI83bt9wA3z2mXHt5aQnWYjqJT3Jwplr7UmWJNkLHDt2jCVLlpCRkQHAU089RevWrS9t\nlJMDr78O//wnFBdDVBTMnAl9+3o+YCG8xbp1xvLV6elQty689BK8+ioEBpodmVOSJAtRvSRJFs5I\nkozvnpzPnj1LcnIyO3bsQGtN48aNGTRoEF26dLk4ZUthIXz6KSQkwLFjRu/x00/DpEnQuLGp8Qvh\nSWfPnmXp0qX069eP0NDQiw/k5holF//6l3G/ZUvjC+WYMV65+IgkyUJUL0mShTOSJOO7J+eVK1fy\nww8/YLFY6NmzJ7GxsTRo0MB4MDcXZs82kuHSaV+44w4jEbjpJvOCFsIkixYt4ueffwagXbt23Hnn\nnYSHh1/8QrltG7z4ImzaZNwPD4dXXoEnnoDKlsH2MEmShahekiQLZyRJxndPzvn5+SQlJdGnTx+a\nNWtmbNyzB/79b5g1C0prM+na1ehJHjbM6EkWohY6f/48GzduZNu2bWVziLZs2ZIhQ4Zc7FnWGubN\nM/5e9uwxtjVtCqNGwdixxt+SySRJFqJ6SZIsnJEkGe89OdtsNg4fPkxqaioxMTHOV71JSYH58+Gb\nb4zeMLs774TnnzeW45WBeUIAxpfLLVu2sH37dvLz83nxxRcJvLwG2WaDBQtg8mTYuvXi9ttvN75s\nDh0K0dGeDbyUJMlCVK/IyEisVqvZYQgvFBERQXp6eoXtkiSbJDs7G6vVSkpKCgcPHqSgoACAxx9/\nnKioKKPR2bOwfj2sXWssH71z58Ud+Psbcx8/8wz06GHCv0AI31BSUkJGRgYRERVXvyoqKmLbtm1E\nRkYSfPQolo8/NuZUzs292Kh7dxg0yBj8euedRo+zB0iSLIQQ5vKaeZKVUoOUUnuVUvuVUn930maa\nUuqAUuoXpdQNVXmut1mxYgULFy5k8eLFFJw/T1j9+twbEEDLr74yBhL16GEsgjBkCEydaiTIAQHw\n+98bvcnHj8OMGW5LkJOTk92y32vhjTGBd8bljTGBOXHVqVPHYYIMkJGRwUcffcTHH3/MOytXMrtX\nL1YnJpL1/vswYoQx+8Wvvxo9zQ88YPxN3nAD/OEPMG2aMRdzLVn6+lrO0b5A/maqxlvjAu+NTeKq\nGm+Ny5G67ty5UsoCTAf6A1nANqXUQq313nJt7gWitdbtlVK3Af8BbnfluZ5w6tQpsrKyyMnJ4cyZ\nM2WXW2+5hVs6d4YTJ+DIEeNy9Cj9tm+n9759/Gf/fuILC7HY64rLq1vX+Nk3Nta49O4N9gF7bpac\nnExMTIxHXstV3hgTeGdc3hgTeF9cDRs25MKFCwQFBZGdnU1aWhppwOkuXfjdF18Ys8asWwfJybBu\nHXrrVtSOHbBjx6U7atoU2rY1SjOioyEszJg9o1Wri5cmTXx2rMC1nKNNCfgqeNuxaSdxVZ23xiZx\nVY23xuWIW5Nk4FbggNbaCqCUmgs8CJRPdB8EZgNorbcopZoopVoBUS48t0zaJ59gKypCl5Sgi4tp\nGhBAi2bNjNrEkpKyy4ljx8g6fBhbURElhYWUFBVhKyykdbNmRLRsCQUFcP582XXJ4cP4ZWQQUlhI\nVEEBDeyXCxeMfV/GPrtxPUq76QMDoX17o2f4ppuMS48eXjXaXoiaJjg4mI4dO/LCCy+Qk5PDkSNH\nOHr0KC1atDAa1KsHAwcaF2DbunX8NmsWwceOEXz0KMFHjnDdqVPUP3MGfvrJuDhh8/OjuHFjSho1\nwtKkCfWvu874dch+8fcn32Yjr6SEet43f/NVn6O11sc8Hq0QQniQu5PkUOBwufsZGCflK7UJdfG5\nZaKefNKlgFqUXlzVsvTiUMOG0KIFhIQYl+Bg4zoqyuihmjQJrrvOZ3uZhKgJAgMDCQwMpGPHjk7b\nNAsNpdmQIZzOzeVQbi7nzp3jfH4+MV270jc01Bhcm5pq/GJ07Bg5Bw5QlJVF49xc6hcWUi87G7Kz\nITPT4f4blV680NWcozNLt0mSLISo0dw6cE8pNQy4R2v9x9L7I4FbtdYvlGuzGHhLa72p9P4q4H8w\nepIrfW65fchoESGEz/CWgXvXco7WWv902b7kPCyE8BmunIfd3ZOcCYSXux9Wuu3yNm0ctKnnwnP5\n/9u79xi5yjqM499HEKSiXDQKpLagKHcpG7UootFaLCVUVLxBBMQYL6hEjVrFW5RERRFRQSRcgmIV\nBY0VAUsFiUoKWFpaStMUUSsiJd7wGoTy+Md5F2enM7u13Z33dHk+yWZnzzkz+8yZc/nNOe85L7Rn\nhxMRsZXZkm30CNkOR8RkM9F3t7gF2FvSdEnbAa8HFnZNsxA4AUDSocBfS1u3TXluRERsvi3ZRkdE\nTGoTeiTZ9gZJ7wQW0RTkF9peLemtzWifb/sqSXMl3Qn8E3jTaM+dyLwREY8mW7KNjoiY7CZFZyIR\nEREREeNpUvV1LOl9kh6WtGvtLACSPinpNknLJF0jabcWZDpD0urSKcAVklpxTypJx0q6XdIGSUOV\ns7SuExtJF0paL2nF2FMPhqSpkq6TtErSSkkbXVRbg6TtJd1U1ruVkj5eO9MwSY+RdKukSdV0rC3r\nTL9lUtIukhZJWiPpx5J2qpBtxGffhkwlx06Svlv2C6skzWxDNknvKfuEFZK+KWm7Grl6bXtHyyHp\nQ2o63lkt6YgB5+q7f6+Zq2PcRjXaoHJtrklTJEuaCswG2tSB+xm2D7Z9CPAjoA0760XAAbZnAGuB\nD1XOM2wl8Erghpoh9L/OFV4OHAC8QdK+NTMVF9NkapOHgPfaPgB4PnBKG+aV7QeAl5T1bgZwpKS+\nt48csFOBO2qHGE8tW2f6LZPzgcW29wGuo852r/uzb0MmgLOBq2zvBxxMc4/sqtkk7QG8Cxiy/Wya\npqFvqJSr17a3Zw5J+wOvBfYDjgTOlSbsHrC9cvXcv7cgV88aTdJ+A8y1WSZNkQycBby/dohOtv/R\n8efjgY17Hxkw24ttD+dYQnOlenW219heC9ReQR7pXMH2g8Bw5wpV2f458JfaOTrZvtf28vL4H8Bq\nmvvnVmf7X+Xh9jQ72OrtyspOYi5wQe0s46w160yfZXJqyXNJmewS4JhB5urz2VfNVHI9ETjc9sUA\nth+yfX8bsgHbAI+XtC2wA80dVQaeq8+2t1+OecC3y3z8DU2hOiFf0HvlGmX/XjVX0atGe8Wgcm2u\nSVEkS5oH/M72ytpZukk6XdI64DjgY7XzdDkZuLp2iJbp17lNjELSnjRHbW+qm6RRTm0vA+4FrrV9\nS+1M/G8nUb1gH2etXGc6lsklwCM9BNq+l1H6iJogvT772pmg6Y/gj5IuLk1Bzpc0pXY22/cAZwLr\naIrj+20vrp2rw1P65OjX8U4NJwNXlcdVc41So7VpfvW01RTJkq4tbZOGf1aW3/OADzOyKcPAjkaO\nkutoANsfsT0N+CbN6aPqmco0pwEP2l4wiEybmiu2PpJ2BC4HTu06e1KN7YdLc4upwMxyurEaSUcB\n68tRTlH/jMmk1mOZ7P5iMrAvKj0++35qfHnaFhgCzrE9RHP3kvk9sgw0m6SdaY4yTgf2oDmifHzt\nXKNoSw5gxP79Wy3IsgMb12hbjYnuTGTc2J7da7ikA4E9gdtKW5apwFJJz7N9X61cPSyg+Vb3iYlL\n0xgrk6STaE79vXSis3T6P+ZVTZvSuUIU5VTo5cA3bP+gdp5utv8m6XpgDnXbAh8GzJM0l+bU8RMk\nfd32CRUzjZdWrTN9lsn1kp5qe72aC6gnfN/Qoddn/w3g3oqZht1Nc4Tvl+XvK2iK5JrzC+BlwF22\n/wwg6fvAC1qQa1i/HJvU8c5E6rN/r5nrGWxco91arhNp1bajl63mSHI/tm+3vZvtp9vei2alP2QQ\nBfJYJO3d8ecxNO3jqpI0h+a037xygVMb1TzK1uZObNp4BPIi4A7bZ9cOMkzSk1WuNi9HMWbTXIxU\nje0P255m++k0y9R1k6RAhvatM72WyYXASeXxicDAvtD1+ezfCPywVqaObOuB30l6Vhk0C1hFxflV\nrAMOlfS4UljNovmSWytX97a3X46FwOvV3IljL2BvHfD7FgAABKBJREFU4OZB5Rpl/14t1xg12kLg\ndQPM9f+zPal+gLuAXWvnKFkuB1YAy2lWot1bkGktzdWlt5afc2tnKrmOoWmb9G/gD8DVFbPMAdaU\neTW/9rwpmRYA9wAP0OxA3tSCTIcBG8ryvawsT3NakOugkmV5Wf9Oq52pK9+LgYW1c4zze2rFOtNv\nmQR2BRaXjIuAnWt/9i3KdDDNF53lwPeAndqQjeb0/OqyDl8CPLZGrl7bXmCXfjlo7ihxZ8l+xIBz\n9d2/18zVNX5EjTaoXJv7k85EIiIiIiK6bPXNLSIiIiIixluK5IiIiIiILimSIyIiIiK6pEiOiIiI\niOiSIjkiIiIiokuK5IiIiIiILimSIwpJUyXdVbpERdIu5e9pYz03IiI2j6TrJQ1t4WscLekD45Up\nAlIkRzzC9t3AucBny6DPAOfZXlcvVUREjMX2D22fUTtHTC4pkiNG+iIwU9KpwAuAMyvniYgYKElT\nJF0paZmkFZJeU4Z/VNJNZdh5HdNfL+kLkm6RtErScyRdIWmNpE+VaaZLWi3pUkl3SPqOpMf1+N+z\nJd0o6ZeSLpM0pcc07y7/Z7mkBWXYiZK+VB4vk3Rr+f0vSYeX93ShpCWSlko6eox5ML3kPF/S7ZKu\nkbT9ls3Z2NqkSI7oYPsh4APAWcCptjdUjhQRMWhzgN/bPsT2s4FryvAv255Zhk2RdFTHcx6w/Vzg\na8APgLfTdBF/kqRdyjT7AF+xvT/wd+Adnf9U0pOAjwCzbD8HWAq8r0e+DwIzbM8A3tY9suQeAj5K\n0+X2jcBpwE9sHwq8FPi8pB3GmA97l/d8IHA/8Ooxpo9JJkVyxMbm0vQ9f1DtIBERFawEZkv6tKQX\n2v57GT6rHIldAbwEOKDjOQs7nnu77fts/wf4FfC0Mm6d7SXl8aXAC7v+76HA/sAvJC0DTgB6XRNy\nG7BA0vFAzwMZkp4JfA54TTnYcQQwv7zuT4Ht+rx2p1/bXlkeLwX2HGP6mGS2rR0gok0kzQBm0Wys\nfyHp27bXV44VETEwtteWC+nmAqdLWkxTcJ4DDNm+R9LHgc7mEg+U3w93PAYw/WsNd/0tYJHt48eI\neBTwImAecJqkA0e8iLQjcBnwZtv3dYx6te21Y7x2p873sYGR7zceBXIkOWKkc2maWdwNnEHaJEfE\no4yk3YF/215AUxwP0RSIBv5UitBjN+Olp0maWR4fB/ysa/wS4DBJzyg5ppQjwp3ZBEyzfQMwH3gi\nsGPX61wEXGT7xo5hPwbe3fE6M8rvPcqXgF60ye8sJqUUyRGFpLcAv7V9XRn0VWBfSYdXjBURMWgH\nATeXpgkfAz5l+37gAmAVcDVwc8f03UeE6TNuDXCKpDuAnYHzOqex/UfgJOBbkm6jaUu8T9frbQNc\nWsYvBc62/bfhkeWWna8CTu64gG8IOB14bLnocCXwyfKU3YEHNyF7PArJzjIQERERE0fSdOBK2626\n1kPSKTQHR66snSXaJ22SIyIiYhBad1TO9jm1M0R75UhyRERERESXtEmOiIiIiOiSIjkiIiIiokuK\n5IiIiIiILimSIyIiIiK6pEiOiIiIiOjyXyE3Du0u2lkGAAAAAElFTkSuQmCC\n", "text/plain": [ "<matplotlib.figure.Figure at 0x7f7b828e8278>" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "\n", "def power_sim(mu_null, mu_alt, sigma, alpha=0.05,\n", " ssizes = [5, 10, 20, 40, 60, 80, 100, 150],\n", " nsims = 2000):\n", "\n", " SEs = [sigma/np.sqrt(i) for i in ssizes]\n", " left_cutoffs = [mu_null + stats.norm.ppf(alpha/2, loc=mu_null, scale=i)\n", " for i in SEs]\n", " right_cutoffs = [mu_null + stats.norm.ppf((1-alpha/2), loc=mu_null, scale=i)\n", " for i in SEs]\n", "\n", " dist_alt = stats.norm(loc=mu_alt, scale=sigma)\n", " samples = [dist_alt.rvs(size=(i, nsims)) for i in ssizes]\n", " sample_means = np.asarray([np.mean(i, axis=0) for i in samples])\n", " sample_stds = np.asarray([np.std(i, ddof=1, axis=0) for i in samples])\n", " sample_zs = (sample_means-mu_null)/sample_stds\n", "\n", " failed_to_reject_H0 = [np.logical_and(i > left, i < right) for (i, left, right) \n", " in zip(sample_zs, left_cutoffs, right_cutoffs)]\n", "\n", " frac_failed_to_reject_H0 = [np.count_nonzero(i)/nsims for i in failed_to_reject_H0]\n", "\n", " correctly_rejected_H0 = [(1-i) for i in frac_failed_to_reject_H0]\n", " return ssizes, correctly_rejected_H0\n", "\n", "\n", "\n", "ssizes, power025 = power_sim(0, 0.25, 1)\n", "ssizes, power05 = power_sim(0, 0.5, 1)\n", "ssizes, power1 = power_sim(0, 1, 1)\n", "\n", "\n", "fig, ((ax1,ax2),(ax3,ax4)) = plt.subplots(2, 2, figsize=(10,10))\n", "\n", "x = np.linspace(-4,4,250)\n", "ax1.plot(x, stats.norm.pdf(x), linestyle='dashed', color='gray', linewidth=2)\n", "ax1.plot(x, stats.norm.pdf(x, loc=1), color='blue', linewidth=2)\n", "ax1.set_xlabel(\"X\")\n", "ax1.set_ylabel(\"Density\")\n", "ax1.set_title(\"True diff in means Zscore = 1\")\n", "\n", "ax2.plot(x, stats.norm.pdf(x), linestyle='dashed', color='gray', linewidth=2)\n", "ax2.plot(x, stats.norm.pdf(x, loc=0.5), color='black', linewidth=2)\n", "ax2.set_xlabel(\"X\")\n", "ax2.set_ylabel(\"Density\")\n", "ax2.set_title(\"True diff in means Zscore = 0.5\")\n", "\n", "ax3.plot(x, stats.norm.pdf(x), linestyle='dashed', color='gray', linewidth=2)\n", "ax3.plot(x, stats.norm.pdf(x, loc=0.25), color='red', linewidth=2)\n", "ax3.set_xlabel(\"X\")\n", "ax3.set_ylabel(\"Density\")\n", "ax3.set_title(\"True diff in means Zscore = 0.25\")\n", "\n", "ax4.plot(ssizes, power025, marker='o', color='red', label=\"true diff = 0.25\")\n", "ax4.plot(ssizes, power05, marker='o', color='black', label=\"true diff = 0.5\")\n", "ax4.plot(ssizes, power1, marker='o', color='blue', label=\"true diff = 1\")\n", "ax4.set_xlabel(\"sample size, n\")\n", "ax4.set_ylabel(\"Power\")\n", "ax4.set_ylim(0,1.1)\n", "ax4.set_xlim(0, max(ssizes)*1.05)\n", "ax4.legend(loc='best')\n", "ax4.set_title(\"Power for alpha = 0.5\\n for variable effect sizes\")\n", "\n", "fig.tight_layout()\n", "#fig.savefig('fig-powercurves-variable-diffs.pdf')\n", "\n", "pass" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "As intuition would suggest, we need to consider sample size and effect size when considering the power of a test. We can get away with fewer samples of the effect size is very large." ] } ], "metadata": { "anaconda-cloud": {}, "kernelspec": { "display_name": "Python [py35]", "language": "python", "name": "Python [py35]" }, "language_info": { "codemirror_mode": { "name": "ipython", "version": 3 }, "file_extension": ".py", "mimetype": "text/x-python", "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", "version": "3.5.2" } }, "nbformat": 4, "nbformat_minor": 0 }
cc0-1.0
jobovy/misc-notebooks
apogee/lsf-deconvolution-example.ipynb
1
1306585
null
bsd-3-clause
opesci/devito
examples/seismic/abc_methods/02_damping.ipynb
1
316378
{ "cells": [ { "cell_type": "markdown", "metadata": { "collapsed": true }, "source": [ "# 2 - Damping" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "# 2.1 - Introduction\n", "\n", "In this notebook we describe a simple method for reduction of reflections at the computational boundaries of the domain $\\Omega$ when we simulate the acoustic wave equation. This method, called *Damping*, has been proposed by Sochaki. It adds a damping term, modifying the original wave equation at a boundary layer. We saw in the notebook <a href=\"01_introduction.ipynb\">Introduction to Acoustic Problem</a> that the (artificial) wave reflections on the computational boundaries lead to a very noisy solution of the acoustic problem. \n", "\n", "We describe this method in the next Sections, omitting information already discussed in the notebook <a href=\"01_introduction.ipynb\">Introduction to Acoustic Problem</a>, highlighting only the new elements necessary to apply Damping." ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "# 2.2 - Acoustic Problem with Damping\n", "\n", "We define an extension of the spatial domain $\\Omega=\\left[x_{I}-L_{x},x_{F}+L_{x}\\right] \\times\\left[z_{I},z_{F}+L_{z}\\right]$, in which we added an *absorption region* to the previous spatial domain\n", "$\\Omega_{0}=\\left[x_{I},x_{F}\\right]\\times\\left[z_{I},z_{F}\\right]$. \n", "The *absorption region* is composed by two bands of length $L_{x}$ at the beginning and end of the domain in the direction $x$ and of a band of length $L_{z}$ at the end of the domain in the $z$ direction. Again, $\\partial\\Omega$ denotes the boundary of $\\Omega$. The figure below shows the extended domain $\\Omega$, with the absorption region highlighted in blue.\n", "\n", "<img src='domain2.png' width=500>\n", "\n", "The damping acoustic problem equation is given by:\n", "\n", "\\begin{equation}\n", "u_{tt}(x,z,t)+c^2(x,z)\\zeta(x,z)u_t(x,z,t)-c^2(x,z)\\Delta(u(x,z,t))=c^2(x,z)f(x,z,t),\n", "\\end{equation}\n", "\n", "where $u(x,z,t)$, $f(x,z,t)$ and $c(x,z)$ are as before. The wave equation has been modified by the introduction of the damping term $c^2(x,z)\\zeta(x,z)u_t(x,z,t)$, where $\\zeta$ is different from zero only in the absorption region, growing smoothly along the absorption bands from zero to its maximum at the outer boundary. The actual form of\n", "$\\zeta$ used in this notebook will be given ahead. We still use the same initial conditions\n", "\n", "\\begin{equation}\n", "u(x,z,0) = 0.0 \\hspace{.5cm} \\mbox{ and } \\hspace{.5cm} u_t(x,z,0)= 0.0.\n", "\\end{equation}\n", "\n", "and Dirichlet null boundary conditions at the (outer) bottom and lateral boundaries. At the surface we\n", "use a zero Neumman boundary condition.\n", "\n", "The source term and the velocity field are defined as before." ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "# 2.3 - Finite Difference Operators and Discretization of Spatial and Temporal Domains\n", "\n", "The only difference with respect to the discretization used in the notebook <a href=\"01_introduction.ipynb\">Introduction to Acoustic Problem</a> is the extra damping term. The temporal derivative of $u$ is approximated by a centered difference:\n", "$$ u_t(x_i,z_j,t_k) = \\frac{u_{i,j,k+1}-u_{i,j,k-1}}{2\\Delta t} $$. All the other terms are discretized as before.\n" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "# 2.4 - Standard Problem\n", "\n", "Redeeming the Standard Problem definitions discussed on the notebook <a href=\"01_introduction.ipynb\">Introduction to Acoustic Problem</a> we have that:\n", "\n", "- $x_{I}$ = 0.0 Km;\n", "- $x_{F}$ = 1.0 Km = 1000 m;\n", "- $z_{I}$ = 0.0 Km;\n", "- $z_{F}$ = 1.0 Km = 1000 m;\n", "- $L_x$ and $L_z$ will be defined ahead;\n", "\n", "The spatial discretization parameters are given by:\n", "- $\\Delta x$ = 0.01 km = 10m;\n", "- $\\Delta z$ = 0.01 km = 10m;\n", "\n", "Let's consider a $I$ the time domain with the following limitations:\n", "\n", "- $t_{I}$ = 0 s = 0 ms;\n", "- $t_{F}$ = 1 s = 1000 ms;\n", "\n", "The temporal discretization parameters are given by:\n", "\n", "- $\\Delta t$ $\\approx$ 0.0016 s = 1.6 ms;\n", "- $NT$ = 626.\n", "\n", "With respect to the $f(x,z,t)$ external force term, we will consider a Ricker source with the following properties:\n", "\n", "- Position at $x:$ $\\bar{x} = 500 m = 0.5 Km$;\n", "- Position at $z:$ $\\bar{z} = 10 m = 0.01 Km$;\n", "- Peak frequency: $f_{0} = 10 Hz = 0.01 Khz$;\n", "\n", "The graph of $f(\\bar{x},\\bar{z},t)$ will be generated when building the code. We will use a velocity profile $c(x, z)$ with the following properties:\n", "\n", "- Minimum propagation velocity: $v_{min} = 1500 m/s = 1,5 Km/s$;\n", "- Maximum propagation velocity: $v_{max} = 2500 m/s = 2,5 Km/s$;\n", "\n", "The figure of the velocity profile will be generated when building the code. We introduce receivers along the $x$ direction, that is, at all discrete points between $0.0$ Km and $1.0$ Km , at depth $z=0.01$ Km to generate the seismogram." ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "# 2.5 - Damping Functions\n", "\n", "Sochaki proposed various forms for the damping function $\\zeta$, including linear, cubic or exponential functions. In general, the damping functions have a similar characteristic: they are zero in the \"interior\" domain $\\Omega_{0}$ and increase toward the outer boundary $\\partial\\Omega$. \n", "\n", "Our particular damping function will be chosen as follows.\n", " We define the pair of functions $\\zeta_{1}(x,z)$ and $\\zeta_{2}(x,z)$ given, respectively, by:\n", "\n", "\\begin{equation}\n", "\\zeta_{1}(x,z)=\\left\\{ \\begin{array}{ll}\n", "0, & \\textrm{if $x\\in \\left(x_{I},x_{F}\\right)$,}\\\\ \\bar{\\zeta}_{1}(x,z)\\left(\\displaystyle\\frac{\\vert x-x_{I} \\vert}{L_{x}}-\\displaystyle\\frac{1}{2\\pi}\\sin\\left(\\displaystyle\\frac{2\\pi\\vert x-x_{I} \\vert}{L_{x}}\\right)\\right) , & \\textrm{if $x_{I}-L_{x}\\leq x \\leq x_{I}$,}\\\\ \\bar{\\zeta}_{1}(x,z)\\left(\\displaystyle\\frac{\\vert x-x_{F} \\vert}{L_{x}}-\\displaystyle\\frac{1}{2\\pi}\\sin\\left(\\displaystyle\\frac{2\\pi\\vert x-x_{F} \\vert}{L_{x}}\\right)\\right) , & \\textrm{if $x_{F}\\leq x \\leq x_{F}+L_{x}$.}\\end{array}\\right.\n", "\\end{equation} \n", "\n", "\\begin{equation}\n", "\\zeta_{2}(x,z)=\\left\\{ \\begin{array}{ll}\n", "0, & \\textrm{if $z\\in \\left(z_{I},z_{F}\\right)$,} \\\\ \\bar{\\zeta}_{2}(x,z)\\left(\\displaystyle\\frac{\\vert z-z_{F} \\vert}{L_{z}}-\\displaystyle\\frac{1}{2\\pi}\\sin\\left(\\displaystyle\\frac{2\\pi\\vert z-z_{F} \\vert}{L_{z}}\\right)\\right) , & \\textrm{if $z_{F}\\leq z \\leq z_{F}+L_{z}$.}\\end{array}\\right.\n", "\\end{equation} \n", "\n", "Thus, we define the function $\\zeta(x,z)$ as being the following function:\n", "\n", "\\begin{equation}\n", "\\zeta(x,z) = \\displaystyle\\frac{1}{v_{max}}\\left(\\displaystyle\\frac{\\zeta_{1}(x,z)}{\\Delta x}+\\displaystyle\\frac{\\zeta_{2}(x,z)}{\\Delta z} \\right) ,\n", "\\end{equation}\n", "\n", "where $v_{max}$denotes the maximum velocity of propagation of $c(x,z)$. Below we display the shape of the function $\\zeta_1(x,z)$ with $\\bar{\\zeta_{1}}(x,z)=0.26$ at the left band of the domain. It is similar at the other ones. The figures of the damping profiles will be generated when building the code." ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "# 2.6 - Numerical Simulations\n", "\n", "In the numerical simulations we import the following Python and Devito packages:" ] }, { "cell_type": "code", "execution_count": 1, "metadata": {}, "outputs": [], "source": [ "# NBVAL_IGNORE_OUTPUT\n", "\n", "import numpy as np\n", "import matplotlib.pyplot as plot\n", "import math as mt\n", "import matplotlib.ticker as mticker \n", "from mpl_toolkits.axes_grid1 import make_axes_locatable\n", "from matplotlib import cm" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "From Devito's library of examples we import the following structures:" ] }, { "cell_type": "code", "execution_count": 2, "metadata": {}, "outputs": [], "source": [ "# NBVAL_IGNORE_OUTPUT\n", "\n", "%matplotlib inline\n", "from examples.seismic import TimeAxis\n", "from examples.seismic import RickerSource\n", "from examples.seismic import Receiver\n", "from devito import SubDomain, Grid, NODE, TimeFunction, Function, Eq, solve, Operator" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "The mesh parameters define the domain $\\Omega_{0}$. The absorption region will be included bellow." ] }, { "cell_type": "code", "execution_count": 3, "metadata": {}, "outputs": [], "source": [ "nptx = 101\n", "nptz = 101\n", "x0 = 0.\n", "x1 = 1000. \n", "compx = x1-x0\n", "z0 = 0.\n", "z1 = 1000.\n", "compz = z1-z0;\n", "hxv = (x1-x0)/(nptx-1)\n", "hzv = (z1-z0)/(nptz-1)" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "**Observation:** In this code we need to work with symbolic values and the real values of $\\Delta x$ and $\\Delta z$, then the numerica values of $\\Delta x$ and $\\Delta z$ are represented by *hxv* and *hzv*, respectively. The symbolic values of $\\Delta x$ and $\\Delta z$ will be given after.\n", "\n", "In this case, we need to define the size of the bands $L_{x}$ and $L_{z}$ that extend the domain $\\Omega_{0}$ for $\\Omega$. The code that we will implement will build the values $L_{x}$ and $L_{z}$ from choosing a certain amount of points in each direction. Without loss of generality, we say that the size $L_{x}$ is such that:\n", "\n", "- $L_{x}$ = npmlx*$\\Delta x$;\n", "- *0<npmlx<nptx;*\n", "\n", "Similarly, we have $L_{z}$ such that:\n", "\n", "- $L_{z}$ = npmlz*$\\Delta z$;\n", "- *0<npmlz<nptz*; \n", "\n", "So, we can explicitly define the lengths $L_{x}$ and $L_{z}$ depending on the number of points *npmlx* and *npmlz*. Thus, we choose these values as being:" ] }, { "cell_type": "code", "execution_count": 4, "metadata": {}, "outputs": [], "source": [ "npmlx = 20\n", "npmlz = 20" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "And we define $L_{x}$ and $L_{z}$ as beeing:" ] }, { "cell_type": "code", "execution_count": 5, "metadata": {}, "outputs": [], "source": [ "lx = npmlx*hxv\n", "lz = npmlz*hzv" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "Thus, from the *nptx* points, the first and the last *npmlx* points are in the absorption region of the *x* direction. Similarly, from the *nptz* points, the last *npmlz* points are in the absorption region of the *z* direction. Considering the construction of *grid*, we also have the following elements:" ] }, { "cell_type": "code", "execution_count": 6, "metadata": {}, "outputs": [], "source": [ "nptx = nptx + 2*npmlx\n", "nptz = nptz + 1*npmlz\n", "x0 = x0 - hxv*npmlx\n", "x1 = x1 + hxv*npmlx\n", "compx = x1-x0\n", "z0 = z0\n", "z1 = z1 + hzv*npmlz\n", "compz = z1-z0\n", "origin = (x0,z0)\n", "extent = (compx,compz)\n", "shape = (nptx,nptz)\n", "spacing = (hxv,hzv)" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "The $\\zeta(x,z)$ function is non zero only in the blue region in the figure that represents the domain. In this way, the wave equation can be divided into 2 situations:\n", "\n", "- In the region in blue:\n", "\n", "\\begin{equation}\n", "u_{tt}(x,z,t)+c^2(x,z)\\zeta(x,z)u_t(x,z,t)-c^2(x,z)^\\Delta(u(x,z,t))=c^2(x,z)f(x,z,t),\n", "\\end{equation}\n", "\n", "- In the white region:\n", "\n", "\\begin{equation}\n", "u_{tt}(x,z,t)-c^2(x,z)^\\Delta(u(x,z,t))=c^2(x,z)f(x,z,t),\n", "\\end{equation}\n", "\n", "For this reason, we use the structure of the *subdomains* to represent the white region and the blue region.\n", "\n", "**Observation:** Note that we can describe the blue region in different ways, that is, the way we choose here is not the only possible discretization for that region.\n", "\n", "First, we define the white region, naming this region as *d0*, which is defined by the following pairs of points $(x,z)$:\n", "\n", "- $x\\in\\{npmlx,nptx-npmlx\\}$ and $z\\in\\{0,nptz-npmlz\\}$.\n", "\n", "In the language of *subdomains* *d0 it is written as:" ] }, { "cell_type": "code", "execution_count": 7, "metadata": {}, "outputs": [], "source": [ "class d0domain(SubDomain):\n", " name = 'd0'\n", " def define(self, dimensions):\n", " x, z = dimensions\n", " return {x: ('middle', npmlx, npmlx), z: ('middle', 0, npmlz)}\n", "d0_domain = d0domain()" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "The blue region will be the union of the following regions:\n", "\n", "- *d1* represents the left range in the direction *x*, where the pairs $(x,z)$ satisfy: $x\\in\\{0,npmlx\\}$ and $z\\in\\{0,nptz\\}$;\n", "- *d2* represents the rigth range in the direction *x*, where the pairs $(x,z)$ satisfy: $x\\in\\{nptx-npmlx,nptx\\}$ and $z\\in\\{0,nptz\\}$;\n", "- *d3* represents the left range in the direction *y*, where the pairs $(x,z)$ satisfy: $x\\in\\{npmlx,nptx-npmlx\\}$ and $z\\in\\{nptz-npmlz,nptz\\}$;\n", "\n", "Thus, the regions *d1*, *d2* and *d3* are described as follows in the language of *subdomains*:" ] }, { "cell_type": "code", "execution_count": 8, "metadata": {}, "outputs": [], "source": [ "class d1domain(SubDomain):\n", " name = 'd1'\n", " def define(self, dimensions):\n", " x, z = dimensions\n", " return {x: ('left',npmlx), z: z}\n", "d1_domain = d1domain()\n", "\n", "class d2domain(SubDomain):\n", " name = 'd2'\n", " def define(self, dimensions):\n", " x, z = dimensions\n", " return {x: ('right',npmlx), z: z}\n", "d2_domain = d2domain()\n", "\n", "class d3domain(SubDomain):\n", " name = 'd3'\n", " def define(self, dimensions):\n", " x, z = dimensions\n", " return {x: ('middle', npmlx, npmlx), z: ('right',npmlz)}\n", "d3_domain = d3domain()" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "The figure below represents the division of domains that we did previously:\n", "\n", "<img src='domain2.png' width=500>\n", "\n", "The advantage of dividing into regions is that the equations will be calculated where they actually operate and thus we gain computational efficiency, as we decrease the number of operations to be done. After defining the spatial parameters and constructing the *subdomains*, we set the *spatial grid* with the following command:" ] }, { "cell_type": "code", "execution_count": 9, "metadata": {}, "outputs": [], "source": [ "grid = Grid(origin=origin, extent=extent, shape=shape, subdomains=(d0_domain,d1_domain,d2_domain,d3_domain), dtype=np.float64)" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "Again, we use a velocity field given by a binary file. The reading and scaling of the velocity field for the Devito work units is done with the following commands:" ] }, { "cell_type": "code", "execution_count": 10, "metadata": {}, "outputs": [], "source": [ "v0 = np.zeros((nptx,nptz)) \n", "X0 = np.linspace(x0,x1,nptx)\n", "Z0 = np.linspace(z0,z1,nptz)\n", " \n", "x10 = x0+lx\n", "x11 = x1-lx\n", " \n", "z10 = z0\n", "z11 = z1 - lz\n", "\n", "xm = 0.5*(x10+x11)\n", "zm = 0.5*(z10+z11)\n", " \n", "pxm = 0\n", "pzm = 0\n", " \n", "for i in range(0,nptx):\n", " if(X0[i]==xm): pxm = i\n", " \n", "for j in range(0,nptz):\n", " if(Z0[j]==zm): pzm = j\n", " \n", "p0 = 0 \n", "p1 = pzm\n", "p2 = nptz\n", " \n", "v0[0:nptx,p0:p1] = 1.5\n", "v0[0:nptx,p1:p2] = 2.5" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "Previously we introduce the local variables *x10,x11,z10,z11,xm,zm,pxm* and *pzm* that help us to create a specific velocity field, where we consider the whole domain (including the absorpion region). Below we include a routine to plot the velocity field." ] }, { "cell_type": "code", "execution_count": 11, "metadata": {}, "outputs": [], "source": [ "def graph2dvel(vel):\n", " plot.figure()\n", " plot.figure(figsize=(16,8))\n", " fscale = 1/10**(3)\n", " scale = np.amax(vel[npmlx:-npmlx,0:-npmlz])\n", " extent = [fscale*(x0+lx),fscale*(x1-lx), fscale*(z1-lz), fscale*(z0)]\n", " fig = plot.imshow(np.transpose(vel[npmlx:-npmlx,0:-npmlz]), vmin=0.,vmax=scale, cmap=cm.seismic, extent=extent)\n", " plot.gca().xaxis.set_major_formatter(mticker.FormatStrFormatter('%.1f km'))\n", " plot.gca().yaxis.set_major_formatter(mticker.FormatStrFormatter('%.1f km'))\n", " plot.title('Velocity Profile')\n", " plot.grid()\n", " ax = plot.gca()\n", " divider = make_axes_locatable(ax)\n", " cax = divider.append_axes(\"right\", size=\"5%\", pad=0.05)\n", " cbar = plot.colorbar(fig, cax=cax, format='%.2e')\n", " cbar.set_label('Velocity [km/s]')\n", " plot.show()" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "Below we include the plot of velocity field." ] }, { "cell_type": "code", "execution_count": 12, "metadata": {}, "outputs": [ { "data": { "text/plain": [ "<Figure size 576x432 with 0 Axes>" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAoIAAAHsCAYAAABG5syiAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjMuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8vihELAAAACXBIWXMAAAsTAAALEwEAmpwYAABKoklEQVR4nO3de5hkVXnv8e+PUUESRRDwioJi0EGPHEMS4wXBGEFRDEbFGBWvoFEjQTyEaAwBDERBTdRE8YYKIkfRgJcjZAQGIxKDBlQUFMOICMpdBOT+nj/WLqmpqe6unu6emZ79/TxPPdW199p7r1qzod9+12WnqpAkSVL/bLC2KyBJkqS1w0BQkiSppwwEJUmSespAUJIkqacMBCVJknrKQFCSJKmnDASl9UCSFUlWrKFrHZykkuy8Jq63rkiye5L/THJ99/3f022vJGeMlD0jiWtzSVrnGQhKCyzJp7tg4TkzlNuhK3fWmqrbfEmyc1f3gxfwGlt31xh+3dIFwR9N8vAFvPbDgBOBrYCjgb8HvrJQ15OkNeVua7sCUg98FNgLeDlw0jTlXt69f2zBazQ37wM+DVyylq5/YXd9gHsDO9Pabs8kv19VP1qAa/4RsCGwf1V9emTfo4CbFuCakrTgDASlhbcM+CnwzCRbVNWVowWS3B14ES2gOGEN129Wquoq4Kq1WIULqurgwYckoQXPewNvAV62ANd8QPf+89EdVXXBAlxPktYIu4alBVZVdwIfB+4OvHiKYs8GNgdOrKrrAZLcO8lhSS5IcnOSq5P8W5LHTnrtrjv1mCSXJ7k1yU+S/HOSzaco/7gkJ3Tlb0lyaXfNJw+VWWmMYNcdfHq3+++Gu267/ad1195yimuemeS2JPeb9HsNq/aczH/pPu449L2r++6PSfLFJNcOj9tLskWS93Ztcmv3nY9JsvVI+xWtKxjg9KHvt3VXZpUxglNJsmGSNyc5L8lNSX6ZZFmSp6zOd5ekuTIjKK0Zx3BXturdY/a/rHv/GEAXqJ1J63Y8HfgScF/gT4E/TvK0qvrGdBdMsh3wH91x/0brUn0c8AZg9ySPH85OJtkL+CRwZ1f+YuD+wJO7635tikudAWxNy8gt7z4POxrYBXgJcNRIHR/Rnf/zVfWL6b7PDDLF9m2BrwPfAj4MPLi77hbA2cDDgH8HPgX8DvBSWts8sap+CFxHCwJ3Bp5CC+hXdOe+blYVTDYCTqV93/+itctvAc8BvprkBVX1udmcU5LmrKp8+fK1Bl60AKmAx41svx9wG/A/QLptx3dl/2yk7LbAL4HvjmxfAawY2XZ6d46XjGx/W7f9o0Pb7g/cCFwLPGqkfIAHDn0+uDt+56FtO3fbDh7zvTekdSV/f8y+w7vjdp+g/bbuyv7bmPod0+372EjZAv5mzLk+1u3725HtL+22nzayfZXvPLSvgDPG/VtP8V3/emT7Ft2/35XAPdf2ferLl69+vewaltacwSSQl41sfzEtO39MVVWXDXwB8KWqOn64YFVdBHwIeHSSR091oSQPoQVn/11VnxzZ/Q7gF8CfJblHt21vYGPgH6vqByPXrKq6bLKvuKqqugX4BPCoJI8fquMSWuB1GbObgfvIrnv64CTvAs7p6n8t8A8jZS8H3jm8ofvOL6SN93vHSF0/AZwL7JJkq1nUaVpJNgBeA5xfVUeMXPNK4Eja0IA/mq9rStIk7BqW1pzPAu8FXpTkgKq6tdv+Mlqm6Jju8+/Rxu/+9hTLsTyqe38k8L0prrVD937G6I6qujnJ2bQuye2A73bXhNZ1uRA+BPwV8EpalyzAM4AHAv9QVXfM4lzbAX/X/XwbLZD8KHBYVV08Uva8qrptZNsjgY2Ab3RB6qjltPbbgTbJZz5sB9wH+MkU/6aPGKrbF+fpmpI0IwNBaQ2pqhuT/F9aMPRs4MQkOwKPBpZV1WA5ls2696d0r6n81jT77t29TzXu7ucj5Tbp3lc78zedqvpBkq8DeyXZr6pupLVD0YK42Tipqv5kwrJXjNk227aZD4N/08d2r6lM928qSfPOrmFpzRrtHn7ZyHaA67v3t1dVpnl9fJrrDM4x1Uzc+42Uu657f+BMX2AOPgTcC3h+N4N4d9rYuh8v4DXHPd1jtm0zHwbnOm6Gf9O/n/YskjTPDASlNaiqvk6bvbtbkocCf0ab/DE8W/S/aAHM41c9w8TO7d53Gt2RZEPgD4Cbu7oMrgnw9NW83qBrd8k0Zf4vLeB8JW1s4N2Bj6zm9ebiQtp3f/zQGMlhgzY7bx6v+QPgV8DvdWMjJWmdYCAorXnH0IZlfIrWZXh8Vd082FlVP6eNJ/yjJK8dPTjJBjOtO9d1My8HfrdbFmbYAbQFkj89NE7xE7TFrA9M8qjhwmkewPSu6d4fNE2dfg0cBzwJ2J8WFJ44w3nnXTcu8ARaG/zV8L4kf05bYueMoa76+bjm7cAHaEvUHDYuGEzyB0k2nq9rStIkHCMorXkfBw4DntB9HjdG7rW0iQP/kuRVwDeBG4CHAH8IbEmb8DCd19LWEfxUkucDP6QFObvS1gg8cFCwqn6e5BXAscB/J/l8V2ZLWobsy8B+01zrQtoM3RcmuRH4WXfeI0bKfQh4HS0Ie/9wALyG/R/a+MsjkuwCfJsWpO0JXE1ru/n2NtqC139Nexze12gB9IO77b9DaxcfVydpjTEQlNawqro8ySnAM2nLifzXmDJXJ/lD4I3A87lrfbvLaQskf2aC6/wgye/R1sB7OrAHbSLE+4FDquqKkfInJPkfWqDyNNpkiStoQei016uq25M8D/hH2nN/B5MeRpdKOS/Jd4HHsHa6hQf1uCLJH9CCsz2Ap9KCsuOAvxsz+3g+rnlzkqcD+9IW196L1j1+OfAd4O2s3Uf3SeqhweK10xdq62m9G/hj2uKty4D9Juk66VbTP5S2Vtp9aGOXDqyqMyc4tmgD5t86YyUlrfOS3IsW+Pywqh63tusjaeF1fyT+GS3zvSVwCW1c9D9U1a9mOHaqIOV/V9W5Q+U2oPVy7EtbIP9C2h+8a3T4SZLtafHSE4BbgJOBN1XVNSPlVjuumm8zjhHsxqycRuum2pv2l+wjaM/cnGSpg48Ar6b95f0s2i+BU5LssJp1lrR47UPLFn5gbVdE0hpzAG1C2d8AuwH/Sht+8e9dADeTY2hDYoZfPxwpcyit9+N9tDVKzwY+k+SZc6/+ZJI8kLZ26z2B59GGwTwN+OLw95yHuGpeTdI1/Gra8zi3655qQJLvAD+iRd7vmurAJI8FXgS8oqoGz1BdDpwPHELrkpG0nkvy17RlWfYFfkKbnCKpH55dQ881B5YnuYY2XnpnWlA0nZ9V1dlT7eyWozoAOKKqjuw2n55kW9rwlC+vds3vusbBwMuqautpir2ZNtzj2VV1XXfcZbSJe3/CXatDrHZctRAmicT3AM4eVBagGz/zddqTCWY69jbaDL3BsbcDnwZ27ZaxmFiSjZN8IcnlXZBJkmOSXJpkxyRnJfl1kguT7N7t3z/JiiTXJzmpe9i8pDXrcOAvaEuy7LkWJ4lIWsNGgsCBwdjoKVcamIVdgXvQJrsNOxZ4TJJtBhuS3C3JQUkuSHJLksuSHNUNY5urPWiPBr1usKEbBncJK8dLc4mr5t0kgeD2jH+M1fnA0gmOvbiqRmfBnU/7R9t2gusDkGQzWh/6dsATqmp4ja970zIMH6bN+ruC9tSGo4BdaOnZ/bqf3z/pNSXNj26x5A2r6g+r6r/Xdn0krXWDJbB+MG2p5rVd0HZTktOSPHlk//a08XgXjWw/v3sfjlWOBd5KW75rd9ofqa+kTRRbbUnuCWzDZPHSXOKqeTdJ1/BmtIe5j7oG2HQOxw72zyjJQ4BTaMtnPHHMXxf3Al4zmIDSpWLPo41JXDp4jmmSRwNvSLJkls82lSRJ8yDJg2jDw5ZV1TkzFD+W9vzty4CH0rpfT0vyx1V1RldmM+C6WnX260qxRhdA7gXsXVWD4SnLum7qY5PsMJiA0q31maFzbdBtXylu6no5ocVDYeqYZ7uhz3OJq+bdpMvHjJu1kzHbxpVZ3WMHlgJnAd8HnltVN4wpc+PILOQLuvdlIwHfBbTv/ADg0lUqlexDG8zORhtt9LsPeeBCPm2rv+5M2GCC2eqaPdt24di2C8e2XTg//J//uaqqtgDYNlmle24+XN4yWcPDPY6uqqPHlU3y28BJwO20paamVVUvGfr4tSQn0bJph9EWp4fJY43dgFtpPYbD8c+p3ftO3PVUph/TAs9Rt610gWSbqloxdK1JY565xkbzZpJA8FrGZ+42ZXxEO+wa2gK4444d7J/JTsB9adOvxwWBcNdzUgGoqluTMKZ+g6cojB0L0N24RwNs9/CH14UHHjiumObojM02Y+drJvmn12zZtgvHtl04tu3Cyb77/mTw8020mQjz7WC4uap2nLEubRzeybSJEk+pqlUSMjOpql8l+RKtO3fgGmDTJBnJCo7GGlvShqVNFUvcd+jnZwPD8xj2ofUyjk5yvax7v5YW3E0VLw3f4HOJq+bdJIHg+bT+7FFLaVm6mY7dM8nGI+MEl9KCstH+/HE+CGxCS9vevqbXBJIkaX0Q1t5zZZPcnfZIyd8HnlZV353L6Vg5o3Y+LWh7OCvHFYPxdoNY5Wpa5nJ0jOHAIKhjtH5JngXcOlVXdlXdlGQFU8dLy0fqu7px1byb5J44mfZw9ocNNiTZGnhit2+mY+9OezLC4Ni70froT+2e+TmTqqrX0yZ5fLp7VJYkSVoEujX0jgP+CHjOdEvBTHCue9Mmefzn0Oav0JJLfz5S/MXA94aeFPQVWo/gJlV1zpjXZczNycDuSTYZqu+TaF3MJ4+UW924at5NkhH8EPB64KQkb6VF4YcCP6Vl6wBI8lBan/ohVXUIQFWdm+QE4D3dXwMX0xaR3IZV/8GmVVX7JbmD9tzUDarqhBkPkiRJv7GWMoLvpyWE3g7cmOTxQ/surapLx8UQSQ6gTbI4nbsmixxAe3LIb2KI7pGR7wYOSvIr2rPD96I9OvI5Q+XOSHI88Nkk76I9PvNOYGvaIz8PrKrRhapn45204PPkJIfTejPf0V3n80PlJoqr1pQZA8GqujHJU2mPQvkkLSX7VdqjUIb72QMsYdX77OW0f/zDaI+YOw/Yraq+PdvKVtWbktwOHNcFg8fP9hySJGmNekb3/pbuNezvaU8EGRdDXEhbEm5PWlB1PW2tvVdW1TdHzvMW2ti/N3LXI+ZeUFVfGCn3YuANwCu6Y24BVtBWJvnF6ny5gar6WZJdaAtCn0jLUp5Em+Nw51C5SeOqNWKiZw33kZNFFo4DwxeObbtwbNuFY9sunOy777cGEzkenNTrFuAafwO/uYYWn0mXj5EkSYvc2posonWX94QkSVJPmRGUJKknzP5olPeEJElST5kRlCSpB9bmgtJadxkISpLUEwaCGuU9IUmS1FNmBCVJ6gG7hjWO94QkSVJPmRGUJKknzP5olIGgJEk9kbVdAa1z/ONAkiSpp8wISpLUAwGWrO1KaJ1jRlCSJKmnzAhKktQTZn80yntCkiSpp8wISpLUAy4orXEMBCVJ6gkDQY3ynpAkSeopM4KSJPWE2R+N8p6QJEnqKTOCkiT1gJNFNI6BoCRJPWEgqFHeE5IkST1lRlCSpB5I95KGmRGUJEnqKTOCkiT1xJK1XQGtcwwEJUnqAWcNaxzvCUmSpJ4yIyhJUk+Y/dEo7wlJkqSeMiMoSVJPmP3RKANBSZJ6wMkiGsd7QpIkqafMCEqS1BNmfzTKe0KSJKmnzAhKktQDjhHUON4TkiRJPWVGUJKknsjaroDWOQaCkiT1xJK1XQGtc+waliRJ6ikzgpIk9YCTRTSO94QkSVJPmRGUJKknzP5olIGgJEk9YNewxvGekCRJ6ikzgpIk9YTZH43ynpAkSeopM4KSJPWE2R+NMhCUJKkHnCyicbwnJEmSesqMoCRJPZG1XQGtc8wISpIk9ZQZQUmSeiDAkrVdCa1zzAhKkiT1lBlBSZJ6wuyPRhkISpLUEwaCGuU9IUmS1FNmBCVJ6gEXlNY43hOSJEk9ZUZQkqSeMPujUQaCkiT1gF3DGsd7QpIkqafMCEqS1BNmfzTKe0KSJKmnzAhKktQTWdsV0DrHQFCSpB4IsGRtV0LrHLuGJUmSesqMoCRJPWH2R6O8JyRJknrKjKAkST3ggtIax3tCkiSpp8wISpLUE2Z/NMpAUJKknjAQ1KiJ7okkWyX5bJJfJrk+yeeSPGSC43ZMcnSSC5LclOSSJMcl2WbC61aSwyYpK0mS1j1JnpfkxCQ/SfLrJBcmOTzJvSY4dqMk70xyeXfsN5LsNKbcBkkOSrIiyc1Jzkvypwvzjaat7/ZJTk1yQ5Krk3wsyWZjyq1WXLUQZgwEk2wMnAY8EtgbeAnwCOD0JL81w+EvBLYH/hl4BvDXwOOAc5JsNYd6S5KkWRhMFpnv1wQOAO4A/gbYDfhX4LXAvyeZ6RQfAV4NvA14FnA5cEqSHUbKHQocDLyPFm+cDXwmyTMnq+LcJXkgcAZwT+B5wOuApwFfHP6ec4yr5t0kXcOvBh4GbFdVFwEk+Q7wI2Bf4F3THPuPVXXl8IYkXwcu5q5/WEmStP569kgssDzJNcDHgZ1pQdEqkjwWeBHwiqr6WLdtOXA+cAiwR7dtS1qweURVHdkdfnqSbYEjgC/P9QskORh4WVVtPU2xNwN3p33f67rjLgOWA38CfK4rN5e4at5NEszvAZw9qCxAVV0MfB14znQHjgaB3bafAFcCD5pdVVsUneQLXYr4sd22Y5Jc2nVDnzWUdt69279/lyq+PslJSbaY7XUlSVofrI2M4LhYAPiv7n26WGAP4DbghKFz3Q58Gtg1yYbd5l2BewDHjhx/LPCY4eFoSe7WdSFfkOSWJJclOSrJRhN8lZnsAXxpEAR29T0TuISV46XVjqsWwiT/htsD3xuz/Xxg6WwvmORRwJbAD2Z53GbAMmA74AlVdd7Q7nsDnwA+DOwJXAGcmOQoYBdaena/7uf3z7bOkiStD7IAr9X0lO59ulhge+DiqrppZPv5tMBv26FytwAXjSkHK8cqxwJvBT4F7A4cDrwSOG42lR+V5J7ANkwWL81rXDVXk3QNbwZcO2b7NcCms7lYkrsBH6BlBD8yi+MeApwC3AA8ccxfF/cCXtNF3oNU7Hm08QRLq+qObvujgTckWTLYJkmS1pwkD6J17S6rqnOmKTpd/DHYP3i/rqpqunJJngzsBexdVZ/o9i3ruqmPTbJDVZ3blV3CynHuBt32leKmLkMJLR7KNPXdbsLvNau4aj5MunzMaOPC6v0h8D7gCcDuVTWuEcZZCpwFfB94blXdMKbMjYMgsHNB975sJOC7gPadHwBcOnqSJPsA+wBsscUWnLHZKhN9NA9uWLLEtl0gtu3CsW0Xjm27ZgRYsjCn3jzJcEB3dFUdPbYOyW8DJwG3Ay+f4bxhsvhj0nK7AbfSegyH459Tu/edgHO7n38MPHTMOW9b6QLJNlW1Yuhak8ZL8xVXzdkkgeC13BV1D9uU8RHtWEkOpwVZe1fVqTOVH7ITcF/gTVMEgQDXDX+oqluTMKZ+t3bvY8cCdDfu0QDbPfzhtfM114wrpjk6Y7PNsG0Xhm27cGzbhWPbLnpXVdWOMxXqxuGdTJso8ZSqWiUhM+IaYNySKpsO7R+8b5okI1nB0XJb0rqUp4ol7jv087OBDYc+70PrZdxj5JjLuvdracHdVPHS8A0+L3HVfJkkEDyf1p89aiktSzejJG+hLR3zl1X1ycmrB8AHgU1oadvbq+rEWR4vSZJYewtKJ7k7cCLw+8DTquq7Exx2PrBnko1HxgkupSV2LhoqtyHwcFYeJzgYbzeIVa4GbgaePMX1BkEdo/VL8izg1qm6sqvqpiQrmDpeWj7yveYUV82nSe6Jk4HHJ3nYYEOSrYEndvumleQvgcOAt1TVe1ejjlVVr6dN8vh0kuevxjkkSeq1tbWOYLeG3nHAHwHPqaqzJ6zyybTlWH7ze7/r0t0LOLWqbuk2f4UWGP75yPEvBr7XzcgdlNsI2KSqzhnzuoy5ORnYPckmQ/V9Eq2L+eSRcqsdV823STKCHwJeD5yU5K201OehwE9p2ToAkjyU1qd+SFUd0m17IfAeWuOfluTxQ+e9vqomjnyrar8kdwCfSrJBVZ0w40GSJGltez8tmHs7cONILHBpVV06LoaoqnOTnAC8p8soXkxbiHobhoK+qroiybuBg5L8Cvg2LVh8KkPLsVTVGUmOBz6b5F3AN4E7ga2BZwIHVtUP5/A930kLPk/uhsNtAryju87nh8pNFFetKTMGglV1Y5KnAu8GPkn7o+KrwH4jY/YG41CH/0DYrdu+W/catpy2kOTEqupNSW4HjuuCweNnc7wkSX22lrqGn9G9v6V7Dft72hNBxsUQ0CaUvJ3Ws3gf2oogu1XVt0fKvYU29u+NwP2BC4EXVNUXRsq9GHgD8IrumFuAFbSVSX4x2y82rKp+lmQX2oLQJ9KylCfR5jjcOVRu0rhqjciqs60FbbLIhQceuLarsV5yYPjCsW0Xjm27cGzbhZN99/3WYCLHDkl9dQGusTn85hpafCZdPkaSJC1igzGC0jDvCUmSpJ4yIyhJUk+Y/dEoA0FJknrArmGN4z0hSZLUU2YEJUnqCbM/GuU9IUmS1FNmBCVJ6gmzPxplIChJUg84WUTjeE9IkiT1lBlBSZJ6wuyPRnlPSJIk9ZQZQUmSesAxghrHQFCSpJ4wENQo7wlJkqSeMiMoSVJPJJn/k1bN/zm1xpgRlCRJ6ikzgpIk9UECd1uAX/u33Tb/59QaY0ZQkiSpp8wISpLUF2YENcJAUJKkPliormEtanYNS5Ik9ZR/GkiS1AdmBDWGGUFJkqSe8k8DSZL6wIygxvCOkCSpDwwENYZdw5IkST3lnwaSJPWFGUGNMCMoSZLUU/5pIElSHzhGUGN4R0iS1AcGghrDrmFJkqSe8k8DSZL6wIygxjAjKEmS1FP+aSBJUh+YEdQYZgQlSZJ6yj8NJEnqCzOCGuEdIUlSH9g1rDHsGpYkSeop/zSQJKkPzAhqDDOCkiRJPeWfBpIk9YEZQY3hHSFJUh8YCGoMu4YlSZJ6yj8NJEnqCzOCGmFGUJIkqaf800CSpD5wjKDG8I6QJKkPDAQ1hl3DkiRJPeWfBpIk9YEZQY1hRlCSJKmn/NNAkqQ+MCOoMcwISpIk9ZR/GkiS1AdmBDWGd4QkSX1hIKgRdg1LkiT1lH8aSJLUB3YNawwzgpIkST3lnwaSJPWBGUGN4R0hSVIfGAhqDLuGJUmSeso/DSRJ6gMzghrDjKAkSVJP+aeBJEl9YUZQI7wjJEnqA7uGNYZdw5IkST3lnwaSJPWBGcFFK8mZq3noK6vqR9MVMCMoSZK0bnsS8FvAHRO+7gSeCNxrphP7p4EkSX1gRnCxe21VfXOSgknuBtw6SVnvCEmS+sBAcDH7CHDFLMrf0R1z5UwFvSMkSZLWYVX16lmWL2CiYwwEJUnqCzOC660k962qq2d7nJNFJEmSFokkr07y5qHPj0lyKXBFknOS3H825zMQlCSpDwZjBOf7pTXtDcCvhz6/C7gO2A/YBDhkNiebKBBMslWSzyb5ZZLrk3wuyUNmc6HuPAclqST/MWH5SnLYbK8jSZLWHUkenOS9Sb6R5Kbu9/vWEx5bU7x2GCm3QRdnrEhyc5LzkvzpQnyfGeq7fZJTk9yQ5OokH0uy2ZhyqxtbPQS4oDvHJsBTgP9TVe8F/g7YdTb1nTGUT7IxcBpwC7A3UMBhwOlJ/ldV3TjJhZI8DHgLs5v1IkmS5sPanTW8LfAC4FvA14Cnz/L4Y4APjmz74cjnQ4EDaLHGt4AXAp9J8qyq+vJsK7w6kjwQOIMWqD0PuA/wTuCLSZ5UVXd25eYSWy2hrRMIbX3B6q4J8FNgy9nUeZI74tXAw4Dtquqi7gt8B/gRsC8tJTmJfwWOA7ab8LqSJGm+rN1A8Myqul+rRl7F7APBn1XV2VPtTLIlLQg8oqqO7DafnmRb4AhgzoFgkoOBl1XV1tMUezNwd+DZVXVdd9xlwHLgT4DPdeXmElv9CNidFki+EDirqm7q9j0QuGY232uSruE9gLMHFQWoqouBrwPPmeQiSV4EPA44aDaVG3OejZN8IcnlSR7bbTsmyaVJdkxyVpJfJ7kwye7d/v27NPH1SU5KssVc6iBJkmZnkAlbQLsC9wCOHdl+LPCYJNsMNiS5W9eFfEGSW5JcluSoJBvNQz32AL40CAIBqupM4BJWjpnmElsdCeyX5CrgRcB7h/btAnxnNhWeJBDcHvjemO3nA0tnOjjJpsC7af3Xs4pSR86zGbCMllF8QlWdN7T73sAngA8De9K6n09MchStUV5HG0S5C/D+1a2DJEmL1uKeLPLaLmi7KclpSZ48sn97WjfrRSPbz+/eh+OVY4G3Ap+iZdYOB15J67VcbUnuCWzDZDHTasdWVfUp2rjAw4FdqupzQ7t/wcqB4Ywm+RfcDLh2zPZrgE0nOP6dtH78Yyav1sq6wZOnADcAT6yq0ZWy7wW8pou6B2nY84BnAUur6o5u+6OBNyRZMtgmSZLWaccCXwQuAx5K6349LckfV9UZXZnNgOu6hZSHXTO0ny6A3AvYu6o+0e1bluQa4NgkO1TVuV3ZJUCGzrVBt32l2Kmqbu9+3LQrP1XMtN3Q51nFVkkOAj5fVRd01/wPYJWJt1X1d2POOa1JQ/nRhoWVG2esrsFfCjxuzD/OpJYCZwHfB55bVTeMKXPjIAjsXNC9LxsJ+C6gfecHAJeOqe8+wD4AW2yxBWdstsokH82DG5YssW0XiG27cGzbhWPbrkELk8HbPMk5Q5+Prqqj5+vkVfWSoY9fS3ISLZt2GG2yBLSYZJJYZTfaM3hPHAnoTu3edwLO7X7+MS3wHHXbShdItqmqFUPXmjRmmk1s9VLgsCQXAf9GCwqnHDM5G5PcEdfSRdIjNmV8NDvsg7Rn3V2a5D5D11zSff51Vd0ywzl2Au4LvGmKIBDa+jm/UVW3JhnUfdjgAcxjxwF0N+7RANs9/OG18zWr3ZOtaZyx2WbYtgvDtl04tu3CsW3XkIWbLHJVVe24ECcep6p+leRLtO7cgWuATZNkJPG06dB+aDNq70HrYRznvkM/PxvYcOjzPrSexj1Gjrmse7+WFtxNFTMN3+Sziq2q6lFJHkkb/vYc4IAkVwAnA58HvlpVt40eN4lJ7ojzaX3Zo5bSsnTTeVT3es2YfdcCfwW8Z4ZzfJC2QOKxSW6vqhNnKC9JktZvoxnA82lB28NZeZzgYLzdIF65GrgZGB1jODAI6qiq7650weRZwK1Vdc4qR7XyNyVZwdQx0/KR+s4qtuq6hQ8HDu+eHjIICv8NuCXJV2hB4Zer6vpx5xhnkskiJwOP79YBBKBbBPKJ3b7p7DLmdR4tpbsL8NkJrl9V9XraJI9PJ3n+BMdIkqRhi3uyyNDXyL1pkzz+c2jzV2i9fn8+UvzFwPe6GbmDchsBm1TVOWNelzE3JwO7dws9D+r7JFoX88kj5VY3tqKqfl5V/1pVuwFb0BJuBXyA9qi5r0xa4Un+BT8EvB44KclbuwsdSlu08DeLOyZ5KK0//ZCqOqSr6BmjJ0tyHXC3cfumU1X7JbkD+FSSDarqhNkcL0mS1p4kz+t+/N3u/RlJrgSurKrl4+KIJAfQJlmczl2TRQ4A7s9Q0FdVVyR5N3BQkl8B36ZNCnkqQ8uxVNUZSY4HPpvkXcA3aYszbw08EziwqkYXqp6Nd9KCz5OTHE7r0XxHd53PD5WbKLaaRFX9CjgeOD7J3YGnsWr39ZRmDASr6sYkT6UtAfNJWjr2q8B+I2P2QlvtesGeX1xVb0pyO3BcFwwev1DXkiRpvbJ2F5QG+MzI53/p3pcDOzM+jriQ1gW6Jy2oup621t4rq+qbI+d7C23s3xtpgeKFwAuq6gsj5V5Me17vK7pjbgFW0FYn+cVqfbNOVf0syS60BaFPpGUpT6LNc7hzqNyksdVsr38b8P+610QmuiOq6hJg2uf1jcyYma7czpNcsyu7yvmq6kDgwKHPL5vFsccwh2VsJElatNZyIDju9/LI/hWMxBFdEDcayE11/B20mcSHzVDuTuCfutfEqupg4OAJyn0X+OMJys0YW42TZAPaxJXnA1ux6gTYqqpxs53H8lFvkiRJi8c7gP2B/wb+i7tWRFktBoKSJPXB2u8a1vx4MXDo6iwePc6CjeeTJEnSvLsbcOaMpWZxMkmS1AdmBNcHnwV2pU0umTPvCEmSpMVjf9rqKUfTZjqPexLJaZOezEBQkqQ+cIzg+uIBwMNo6yO+amh7cdcTV5ZMejLvCEmS+sBAcH3xMWBz2nqJF+CsYUmSpN7YEXhpVU3ymN4ZGQhKktQHZgTXF5cwxyzgMJePkSRJWjwOAw5M8tvzcTL/NJAkqQ/MCK4vdgUeDKxI8g1WnTVcVbX3pCfzjpAkqS8MBNcHTwLuBH4FPHrM/prNybwjJEmSFomq2mY+z2cgKElSH9g1vF5IsklV/XKa/Uur6vuTns/JIpIkSYvHF5NsOG5HkqXM8tFz/mkgSVIfmBFcX9wf+HSS51bVb8YDJnkkLQg8fzYn846QJKkPDATXF7sCXwc+COwDkGQ74DTgQuDZszmZd4QkSdIiUVX/k+SZwBlJrgCOoQWBPwZ2r6pfz+Z8BoKSJPWBGcH1RlX9d5LnAl8C/gL4AbBbVd0423N5R0iSJK3Dkjx1zOaiZQOfC7wT+IMkbUfVaZOe20BQkqS+MCO4WC2jBX4Z2jb8+cTuPd32JZOe2DtCkiRp3bbLQp3YQFCSpD5wjOCiVVXLF+rc3hGSJPWBgaDG8MkikiRJ67Akp3ULRk9afoPumEfMVNY/DSRJ6gMzgovZzsC9ZlE+kx7jHSFJkrTu+7ckt8yifM1cxEBQkqR+MCO4mH18NY+7aqYC3hGSJPWFgeCiVFUvX6hzO1lEkiSpp/zTQJKkPrBrWGOYEZQkSeop/zSQJKkPzAhqDO8ISZL6wEBQY3hHTOG2W2/l4H33XdvVWC9td+SRHHzAAWu7Gusl23bh2LYLx7aVJpfkd6rqh/N1PgNBSZL6wIzg+uKCJKcDHwA+X1W3z+VkThaRJElaPF4B3BM4Abg0yT8k2WZ1T2YgKElST9zJBvP+0ppVVcdU1ROAHYATgb8AfpTkK0mek2RW/yj+C0qSJC0yVfWdqnod8EBgX+B+wOeAS5IcnOR+k5zHQFCSpB6ogttvn/+X1rqtgf/Vvd8KfA/YH7goyZ4zHeyoUUmSemAQCGrxS3IP4Pm0TOATgZ8ARwAfqaqrkmwKHA28C/j8dOcyEJQkSVokkhwF7A3cBzgF2AP4clXVoExVXZvkn4AzZzqfgaAkST1gRnC98RLgI8C/VtWKacpdALx8ppMZCEqSJC0eD66qW2cqVFVXAR+fqZyBoCRJPWBGcL3x6yR/WFXfHN2R5HeBb1bVkklPZiAoSVJPGAiuFzLNviVATbN/FQaCkiRJ67huoehBELjBmIWj7wk8A7hqNuc1EJQkqQfsGl68kvwd8LbuYwFfn6b4v8zm3AaCkiRJ67YzuvfQAsKPAJeOlLkF+D7wxdmc2EBQkqQeMCO4eFXVcmA5QJICPlxVP5uPcxsISpLUAwaC64eq+vv5PJ+BoCRJ0josyUeBQ6vq4u7n6VRVvXLScxsISpLUA2YEF7VdgH/qfn4q0y8R4/IxkiRJ64uq2mbo563n89wGgpIk9YQZQY0aXYxQkiRJ66gkL09y8BT7Dk6y92zOZyAoSVIPDMYIzvdLa9wbgaun2HcFsN9sTmbXsCRJPeBkkfXGtsD5U+z7AfDw2ZzMjKAkSdLicTuw+RT7tpjtycwISpLUA2YE1xvfBF4D/N8x+14D/NdsTmYgKEmStHi8HViW5D+BDwM/Ax4EvAp4HPDHszmZgaAkST1gRnD9UFXLkzwPeA/wwaFdK4A/raozZnM+A0FJknrCQHD9UFUnAScl2Q64L3BVVf1wdc5lIChJkrQIVdWFcz2Hs4YlSeoB1xFcfyR5TJLPJrkyye1Jrkjyf5M8ZrbnMiMoSZK0SCT5PWA58GvgZODnwP2BZwO7J9mpqr416fkMBCVJ6gEni6w3Dge+B/xRVf1qsDHJvYBl3f6nT3oyA0FJknrAQHC98XjgJcNBIEBV/SrJPwIfn83JHCMoSZK0eNQc96/EjKAkST1gRnC98Z/A3yRZNtI1/FvAgcDZszmZgaAkSdLi8TfAGcBPknwRuJw2WWR34J7AzrM5mYGgJEk9YUZw8auqbyZ5PPA2YFdgM+Aa4DTg0Kr67mzOZyAoSZK0iFTVd4Dnzce5DAQlSeoBxwhqnIlmDSfZqlvB+pdJrk/yuSQPmfQiSR6V5DNJrkry6yQXJnnjBMdVksMmvY4kSRpvbT5ZJMmDk7w3yTeS3NT9ft96wmM3SvLOJJd3McQ3kuw0ptwGSQ5KsiLJzUnOS/Kns2qkeZBk+ySnJrkhydVJPpZkszHlJo6tknx0Fq+PzKa+M2YEk2xM63e+BdibNi35MOD0JP+rqm6c4fgdu+PPAF4F/BJ4BPDbs6moJElatLYFXgB8C/gas1jwGPgIbSLEm4H/AV4HnJLkD6vq3KFyhwIHAG/prvNC4DNJnlVVX57zN5hAkgfS4p0LaF239wHeCXwxyZOq6s6u3Gxjq6cy+bIw8758zKuBhwHbVdVFAEm+A/wI2Bd411QHJtmAtrDhV6tqz6Fdp8+mkpIkaW7WctfwmVV1P4Akr2LCQDDJY4EXAa+oqo9125YD5wOHAHt027akBYFHVNWR3eGnJ9kWOAKYcyCY5GDgZVW19TTF3gzcHXh2VV3XHXcZ7ZFwfwJ8ris3q9hqhmvOySRdw3sAZw8q2lXoYuDrwHNmOHZnYCnTBIuzkWTjJF/o0sOP7bYdk+TSJDsmOWuo63n3bv/+XZr4+iQnJdliPuoiSZImM8iErYY9gNuAE4bOdTvwaWDXJBt2m3cF7gEcO3L8scBjkmwz2JDkbl0X8gVJbklyWZKjkmy0mnUcre+XBkFgV98zgUtYOWaaS2w1ryYJBLenPdNu1Pm0IG86T+reN0pydpLbklyR5J+T3HM2Fe3615cB2wFPqKrzhnbfG/gE8GFgT+AK4MQkRwG70NLI+3U/v38215UkaX2wNscIzsH2wMVVddPI9vNpgd+2Q+VuAS4aUw5WjleOBd4KfIrW5Xw48ErguLlUtItrtmGymGkusRVJfivJX3ZjDE9P8ohu+wuTPHI29Z6ka3gz4Nox268BNp3h2Ad27ycA7wP+GtiRls7diha0zagbPHkKcAPwxKq6cqTIvYDXdFH3IA17HvAsYGlV3dFtfzTwhiRLBtskSeqDRTpreLoYZLB/8H5dVY2Oj1upXJInA3sBe1fVJ7p9y5JcAxybZIfBuMMkS4AMnWuDbvtKsVOXoYQWE2Wa+m434feaNrZKshVtHOKDaWMRH02Lg6AlvJ5Gm5MxkUmXjxk38DBjto0aZByPraq3dT+f0TXuEUmWVtX3ZzjHUuAs4PvAc6vqhjFlbhwEgZ0LuvdlIwHfBbTv/ADg0tGTJNkH2Adg8803Z7sjjxwtonmw4YMfbNsuENt24di2C8e2XUAHHLAmrrJ5knOGPh9dVUfP07nDZDHIpOV2A26l9RoOx0Cndu87Aed2P/8YeOiYc9620gWSbapqxdC1Jo2ZVje2OoqW/XwEcBnt+wwsBw6e4By/MUkgeC13RdzDNmV8NDvs6u7930e2n0obvLkDLcCbzk7AfYE3TREEAlw3/KGqbk3CmPoNGmvsOIDuxj0a4GFbbVUXrpn/gHpnuyOPxLZdGLbtwrFtF45tu+YsUEbwqqracUHO3DJk45ZU2XRo/+B90yQZyQqOltuS1qU8VTxx36Gfnw1sOPR5H1pP4x4jx1zWvV9LC+6mipmuGfo8l9jqj4F9quqSLrE27GfAg2Y4fiWTBILn0/qyRy1l5iBu0Dc/GvUOIt5JBo9+ENiElrK9vapOnOAYSZK0+J0P7Jlk45FxgktpyZ2LhsptCDyclccJDsbbDeKVq4GbgSdPcb1BUMfoo9qSPAu4tarOWeWoVv6mJCuYOmZaPvK9Vje2ugfwqyn2bcJIxnImk0wWORl4fJKHDTZ0i0A+sds3nf9HS1/uNrJ91+59bGOOqKp6PW2Sx6eTPH+CYyRJ0pBFOlnkZNpyLL/53d916e4FnFpVt3Sbv0ILDP985PgXA9/rZuQOym0EbFJV54x5XcbcnAzsnmSTofo+idbFfPJIudWNrb4DTLVQ9jNoayhObJKM4IeA1wMnJXkrLbt3KPBTWrYOgCQPpfWnH1JVhwBU1dVJDgf+Nsn1tMUTd6Q9KPnjw9OmZ1JV+yW5A/hUkg2q6oQZD5IkScDanyySZPBs3N/t3p+R5ErgyqpaPkUccW6SE4D3JLk7cDHwWtrs3N8EfVV1RZJ3Awcl+RXwbVqw+FSGlmOpqjOSHA98Nsm7gG/Seie3Bp4JHFhVP5zD13wnLfg8uYt/NgHe0V3n80PlJoqtprnGZ7shcJ/qti1N8hza7OfRrutpzRgIVtWNSZ4KvBv4JK1b96vAfiNj9gIsYdUs4yG0FOZf0BZ7vLz7EofOpqJdXd6U5HbguC4YPH6255AkSWvFZ0Y+/0v3vpy27vBUccTLgbfTnrxxH9qqILtV1bdHyr2FNvbvjcD9gQuBF1TVF0bKvRh4A/CK7phbgBW01Ul+MetvNaSqfpZkF9r6ySfSspQn0eY53DlUbtLYatw1PpfkL2hzLV7Rbf4ELdZ6fVV9ZTZ1nmjWcFVdwtRpyEGZFYyZ7dIN2nwXq7GodFWNO9+BwIFDn182i2OPAY6ZbT0kSVrs1nZGcNzv5ZH9KxgfR/wa2L97TXf8HbRg8bAZyt0J/FP3mlhVHcwEM3K7sYV/PEG5GWOrgSQfBY4ZrJBSVR9I8kngD2kTYK4GzqqqqcYOTmnS5WMkSZK0duwF7J3kElr27xNV9WPagzbmZJLJIpIkaZFbpJNF1NyPtkj0CtpTUX6Y5D+SvHp4YsrqMBCUJElah1XVDVX1sarahTax5W9p6xB+ELg8yfFJnpFk1nGdgaAkST1hRnDxq6qfVtU/VNVS4PHAR4E/Ar4I/CzJrB7TYyAoSVIP2DW8/qmqb3ZrLT+INgN5S+CvZnMOJ4tIkiQtQkm2BV5KWxLnobQlZEaX6ZmWgaAkST2wtpeP0fxIshltFvFLgd+nLUa9jLYm4uer6ubZnM9AUJIkaR3WPVXlWbTg7xm05w1/HzgIOHYuj8YzEJQkqQfMCC5qP6c9VeUa2uPpPl5V58zHiQ0EJUnqAQPBRe1rwMeBL1bVbfN5YgNBSZKkdVhV/clCndtAUJKknjAjqFGuIyhJktRTZgQlSeoBxwhqHANBSZJ6wEBQ49g1LEmS1FNmBCVJ6gEzghrHjKAkSVJPmRGUJKkHzAhqHDOCkiRJPWVGUJKknjAjqFEGgpIk9YBdwxrHrmFJkqSeMiMoSVIPmBHUOGYEJUmSesqMoCRJPWBGUOMYCEqS1AMGghrHrmFJkqSeMiMoSVIPmBHUOGYEJUmSesqMoCRJPWFGUKMMBCVJ6gG7hjWOXcOSJEk9ZUZQkqQeMCOoccwISpIk9ZQZQUmSesCMoMYxEJQkqQcMBDWOXcOSJEk9ZUZQkqSeMCOoUWYEJUmSesqMoCRJPeAYQY1jRlCSJKmnzAhKktQDZgQ1joGgJEk9YCCocewaliRJ6ikzgpIk9YAZQY1jRlCSJKmnzAhKktQTZgQ1ykBQkqQesGtY49g1LEmS1FNmBCVJ6gEzghrHjKAkSVJPmRGUJKkHzAhqHANBSZJ6wEBQ49g1LEmS1FNmBCVJ6gkzghplRlCSJKmnzAhKktQDjhHUOGYEJUmSesqMoCRJPVF159qugtYxBoKSJPVCAXes7UpoHWPXsCRJUk+ZEZQkqTfMCGplZgQlSZJ6yoygJEm94BhBrcpAUJKk3nDWsFZm17AkSVJPmRGUJKkX7BrWqswISpIk9ZQZQUmSesGMoFZlIChJUm8YCGpldg1LkiT1lBlBSZJ6wa5hrcqMoCRJUk9NFAgm2SrJZ5P8Msn1ST6X5CETHvuQJB9PckmSm5L8MMlhSX5rgmMryWGTXEeSJM3kzgV4TS/Jzt3v89HXdRMcu1GSdya5PMmvk3wjyU5jym2Q5KAkK5LcnOS8JH86c3vMTpJNk3w4yVVJbkyyLMljxpT7hySnJrm6+64vm++6zJcZA8EkGwOnAY8E9gZeAjwCOH2mYK7bvwzYCfhbYHfgw8CbgI/OqeaSJGkx+UvgD4deT5vgmI8ArwbeBjwLuBw4JckOI+UOBQ4G3gc8Azgb+EySZ85HxQGSBDgZ2A14A/CnwN1p8dCDR4q/Abgn8MX5uv5CmWSM4KuBhwHbVdVFAEm+A/wI2Bd41zTHPpEWNO5aVad2205PshlwQJKNq+qm1a69JEma0FofI/iDqjp70sJJHgu8CHhFVX2s27YcOB84BNij27YlcABwRFUd2R1+epJtgSOAL89T/fcAngQ8tapO7679DeBi4P/QAt2BTarqzq4OL52n6y+ISbqG9wDOHgSBAFV1MfB14DkzHHuP7v36ke3XddfOZNVskmyc5Atdivix3bZjklyaZMckZ3Wp4wuT7N7t379LFV+f5KQkW8zmmpIkrR8GgeB8vxbMHsBtwAm/+QZVtwOfBnZNsmG3eVdavHHsyPHHAo9Jss1gQ5K7dV3IFyS5JcllSY5KstGE9blsEAR29fkl8AVG4qGqWjQPdZ4kENwe+N6Y7ecDS2c4dhktc/iPSZYm+e0kTwXeCHygqm6ctKJdFnEZsB3whKo6b2j3vYFP0Lqd9wSuAE5MchSwC/A6YL/u5/dPek1JkjRvjktyRzdu7lMTzDXYHrh4TM/h+bTAb9uhcrcAF40pByvHKscCbwU+RRuudjjwSuC4Ceo/XTz0kCS/PcE51jmTdA1vBlw7Zvs1wKbTHVhVNyd5EnAid/2DQAvYXj9pJbub5RTgBuCJVXXlSJF7Aa+pqjO78pcB59HGEyytqju67Y8G3pBkyWCbJEn9sVZ+9f0SOApYTush/N/A3wDfSPK/q+qKKY6bLv4Y7B+8X1dVNV25JE8G9gL2rqpPdPuWJbkGODbJDlV17jTfYzNgxTT12ZQWpywqk64jONq4MEG3bpdqPQHYkjbJ5BLg92mDPm8HXjvBtZcCZwHfB55bVeMa+cZBENi5oHtfNhLwXUD7zg8ALh1T332AfQA233xztjvyyNEimgcbPvjBtu0CsW0Xjm27cGzbBXTAAWviKpsnOWfo89FVdfTgQ1X9N/DfQ/uXJzkT+CZtXN1bpzhvmCz+mLTcbsCttB7D4fhnMIdhJ+DcJEtGjr2jCzInvc6iMkkgeC13Rd3DNmV8pD7slcDOwLZV9eNu25lJfgkcneQDI1284+wE3Bd40xRBILQxh79RVbe2yT2r1O/W7n3sWIDuxj0a4GFbbVUXrpn/gHpnuyOPxLZdGLbtwrFtF45tu6Ys2GSRq6pqx1nVpOrbSX4I/N40xa4BxnUfbzq0f/C+aZKMZAVHy21J61KeKpa4b/f+Y+ChQ9tfDhzTnWeqeAhmjonWSZMEgufT+sVHLaVl6abzGODaoSBw4Jvd+6NoXbjT+SCwCS1te3tVnThDeUmSNNY6NYdhqgzbwPnAnmNWGFlKS+xcNFRuQ+DhrDxOcDA2cBCrXA3cDDx5iutd1r0/uzvfwMVD13n6mOOWApdMk6xap00yWeRk4PFJHjbYkGRr2tIwJ89w7M9pUfq2I9v/oHv/2QTXr6p6PW2Sx6eTPH+CYyRJ0joqyY7A7wD/OU2xk2nr9P3m937XpbsXcGpV3dJt/gotMPzzkeNfDHyvW+lkUG4j2tIu54x5XQZQVd8d2X71UH0elOQpQ/W5Ny1wnCkeWmdNkhH8EG1ix0lJ3kqL3g8FfkrL1gGQ5KG0dOohVXVIt/kYYH/gy0neThsjuCNtcelv0ZagmUhV7ZfkDuBTSTaoqhNmPEiSJHXWzjqCSY6jZdW+TRvK9b+Bg2jJoPd2ZVaJIarq3CQnAO9JcvfuHK8FtmEo6KuqK5K8Gzgoya+66+wFPJWhZV2q6owkxwOfTfIuWu/kncDWwDOBA6vqh9N8lZOBb9B6KN9M6wo+iJbZfMfId34KsAVw/27Tjklu6Orx2Ykabg2ZMRCsqhu7JV/eDXyS9oW/Cuw3kgYNsIShLGNVrUjyeNpq34cBm9MCyKOBt892nZ2qelOS22lT0DeoquNnc7wkSVrjvgf8Ge1pGxvTegs/B/xdVV3VlVklhui8HHg7LYa4D2042W5V9e2Rcm+hjf17Iy34uhB4QVV9YaTci7t6vKI75hbaTOBTgF9M9yW6BaKfBRwJ/Astu/gNYJeq+ulI8b8HnjL0+XXda/Bd1xkTzRquqktoj1KZrswKxny5qvo+8ILVqVxVjTvfgcCBQ59fNotjj6FlKSVJ6qE1nxGsqsNp6/VNV2YF42OIX9N6Fvef4fg7aMHiYTOUuxP4p+41a1V1DS2IfMUM5XZenfOvDZMuHyNJkha1tf6IOa2DJpksIkmSpPWQGUFJknrBjKBWZUZQkiSpp8wISpLUG+vUgtJaB5gRlCRJ6ikzgpIk9YJjBLUqA0FJknrDQFArs2tYkiSpp8wISpLUC3YNa1VmBCVJknrKjKAkSb1hRlArMxCUJKkXCtcR1Ci7hiVJknrKjKAkSb1h17BWZkZQkiSpp8wISpLUCy4fo1UZCEqS1AsGglqVXcOSJEk9ZUZQkqTecPkYrcyMoCRJUk+ZEZQkqRccI6hVmRGUJEnqKTOCkiT1hhlBrcxAUJKkXrBrWKuya1iSJKmnzAhKktQbZgS1MjOCkiRJPWVGUJKkXihcUFqjDAQlSeoFJ4toVXYNS5Ik9ZQZQUmSesOMoFZmRlCSJKmnzAhKktQLjhHUqgwEJUnqDQNBrcyuYUmSpJ4yIyhJUi+4jqBWZUZQkiSpp8wISpLUG44R1MrMCEqSJPWUGUFJknrB5WO0KgNBSZJ6wUBQq7JrWJIkqafMCEqS1BtmBLUyM4KSJEk9ZUZQkqRecIygVmUgKElSb/hkEa3MrmFJkqSeMiMoSVIv2DWsVZkRlCRJ6ikzgpIk9YYZQa3MQFCSpF6wa1irsmtYkiSpp8wISpLUGy4fo5WZEZQkSeopM4KSJPWCYwS1KjOCkiRJPWVGUJKkXjAjqFUZCEqS1BsGglqZXcOSJEk9ZUZQkqResGtYqzIjKEmS1FNmBCVJ6g0XlNbKDAQlSeoFu4a1KruGJUmSesqMoCRJvWFGUCszIyhJktRTZgQlSeoFxwhqVQaCkiT1goGgVmXXsCRJUk+ZEZQkqTfMCGplZgQlSZJ6yoygJEm9UPhkEY0yIyhJktRTMwaCSR6c5L1JvpHkpiSVZOtJL5BkoyTvTHJ5kl9359lpwmMryWGTXkuSJE3njgV4zSzJVkk+m+SXSa5P8rkkD5nw2IniiCQbJDkoyYokNyc5L8mfTlTBeZRk+ySnJrkhydVJPpZkszHlVrtN5tMkGcFtgRcA1wJfW41rfAR4NfA24FnA5cApSXZYjXNJkqTVMlg+Zs0Ggkk2Bk4DHgnsDbwEeARwepLfmqDik8YRhwIHA+8DngGcDXwmyTMnuMa8SPJA4AzgnsDzgNcBTwO+mGSDoXJzbZN5M8kYwTOr6n4ASV4FPH3Skyd5LPAi4BVV9bFu23LgfOAQYI9Z11iSJC0mrwYeBmxXVRcBJPkO8CNgX+BdUx04aRyRZEvgAOCIqjqyO/z0JNsCRwBfnuuXSHIw8LKq2nqaYm8G7g48u6qu6467DFgO/Anwua7carfJfJsxI1hVcxlZugdwG3DC0PluBz4N7Jpkw9mcLMnGSb7QpYcf2207JsmlSXZMclaXNr4wye7d/v27NPH1SU5KssUcvo8kSYvU2skI0mKBswcBD0BVXQx8HXjOBMdOEkfsCtwDOHbk+GOBxyTZZrAhyd26LuQLktyS5LIkRyXZaJIvM0F9vzQIArv6nglcwsrfdS5tMq8WerLI9sDFVXXTyPbzaf9g2056oq5/fRmwHfCEqjpvaPe9gU8AHwb2BK4ATkxyFLALLTW7X/fz+1frm0iSpNWxPfC9MdvPB5ZOcOwkccT2wC3ARWPKMXKdY4G3Ap8CdgcOB14JHDdDXaaV5J7ANkz2XefSJvNqoZeP2Yw2tnDUNUP7Z9QNnjwFuAF4YlVdOVLkXsBruqh7kIY9jzaWYGlV3dFtfzTwhiRLBtskSeqPtbJ8zHSxwKZzOHawf/B+XVXVdOWSPBnYC9i7qj7R7VuW5Brg2CQ7VNW5XdklQIbOtUG3faXYqctQ0n2XTFPf7Sb8XjO1ybxa6EAwtFz0uO2TWgqcBXwfeG5V3TCmzI2DILBzQfe+bCTgu4D2nR8AXLpKpZJ9gH26j7f8/fhoXXN1wAGbA1et7Wqsl2zbhWPbLhzbdiENBR+/PAW+sPkCXGOjJOcMfT66qo4eKbO6scCkccSk5XYDbqX1Gg7HQKd27zsB53Y//xh46Jhz3rbSBZJtqmrF0LUm/a5zjY/mxUIHgtcA46ZCbzq0fyY7AfcF3jRFEAhw3fCHqro1Cawabd/avY8dB9DduEcDJDmnqnacoH6aJdt24di2C8e2XTi27cIZDtCqare1VI1rGd8DuCnjs2LDJo0jrgE2TZKRrOBouS1pXcpTxRP3Hfr52cDwXIZ9aD2NoxNdL+ver6UFd1N91+GYZy5tMq8WOhA8H9gzycYj/ftLaUHZaF/+OB8ENqGlbG+vqhMXoJ6SJGlhnE8bEzdqKa23b6ZjJ4kjzqcFbQ9n5dhiMN5ucJ2rgZuBJ09xvUFQR1V9d3hHkmcBt1bVOasc1crflGQFU3/X5SPfa3XbZF4t9GSRk2nTqJ8/2NClYvcCTq2qWyY4R1XV62mTPD6d5PkzHSBJktYZJwOPT/KwwYbuwRRP7PbNdOwkccRXaIHhn48c/2Lge92M3EG5jYBNquqcMa/LmJuTgd2TbDJU3yfRuphPHim3um0yrybKCCZ5Xvfj73bvz0hyJXBlVS3vyjyU1p9+SFUdAlBV5yY5AXhPkrsDFwOvpc2qGf3HmlZV7ZfkDuBTSTaoqhNmPGhuRsc3aP7YtgvHtl04tu3CsW0XzrrQth8CXg+clOSttO7TQ4Gf0nr9gLnFEVV1RZJ3Awcl+RXwbVqw+FSGlmOpqjOSHA98Nsm7gG/SZtBsDTwTOLCqfjiH7/pOWvB5cpLDaT2a7+iu8/nZtsmaMGnX8GdGPv9L974c2Ln7OcASVs0yvhx4O3AYcB/abN7dqurbs6wrVfWmJLcDx3XB4PGzPccsrrUu/MezXrJtF45tu3Bs24Vj2y6cdaFtq+rGJE8F3g18khYvfBXYb2Ts/1zjiLfQxv69Ebg/cCHwgqr6wki5FwNvAF7RHXMLsIK2OskvVvd7AlTVz5LsQlsQ+kRalvIk2jyHO4fKTdomCy6rzrSWJElSHyz0GMF5N5eHNGfCB1dPcWwlOWxutV+3rW7bdk91Obpbpf2mJJckOW54JfcZjrdtJz/PQV17/ceE5W3bmY9/VJLPJLkqdz2Z6I0THGfbTn/sQ5J8vPv/wU1JfpjksEzwHNX1vW2TPDjJe7vfQTd133frWRzv7zLNm0UVCGbNPbi6d+bYti+kzX76Z9qDvv8aeBxwTpKtFqzSi8Q83LeD8zyM1o1xxULUczGaa9sm2RH4T9psw1fRxggdReue6rW5tG23fxlt+a+/pT294cPAm4CPLmC1F4ttgRfQlgn52moc7+8yzZ+qWjQvWr//HcC2Q9u2AW4H9p/h2MfSBmO+fGjb3WhjCE6e4NoFHLa222Adbdstxmx7KG0A7iG27eq37ch5TqENIj4D+I8Jj7Ftpz52A9oSDp9fzWvbtlMf+/SufZ4+sv2I7viNe962Gwz9/Kru+2494bH+LvM1r69FlRFkzTy4eiJJNk7yhS41/9hu2zFJLu26Ss8a6mbavdu/f5IVXRfLSUm2mM01F9hqt22t+sg/quonwJXAg2ZbEdt2VUleRMuyHjSXiti2K9mZtmbXu+ajIrbtSu7RvV8/sv06WgA+q6cnrG9tW0OTBlaDv8s0rxZbILgmHlw9oySb0bo9tgOeUFXnDe2+N/AJWjfInrRuvBOTHAXsArwO2K/7+f2TXnMNmNcHYCd5FG0F9x/M8jjbdkSSTWkzy/5PVU3yNJ6pzmPbruxJ3ftGSc5OcluSK5L8c9rD4ydm265iGfAj4B+TLE3y22kzJN8IfKCqbpy0Eutp286Fv8s0rxb6ySLzbU08uHpaaQOlT6FNUX/imGzYvYDXVPfs4ySX0aa6PwtYWt2zj5M8GnhDkiW18vOQ15Z5ewB22mKfH6BlBD8yi+Ns2/HeCfwQOGZ1K2DbjvXA7v0E4H20sa07AocAW9F++c3Itl1VVd2ctojuibQAZeDDtLXTJrIet+1c+LtM82qxZQRh4R9cPZ2lwFm0BR93GdclCtw4+A+nc0H3vmzkP5ILaIH4A2Zx/YU2Xw/Afh/wBODFVTXpMxNt23EFkicDLwVeW1Wru9aTbTve4P9/x1bV26rqjKo6Evh74E+STJIJt23HFUg2ogXYW9ImmTwFeDNtgd9Js0fre9uuLn+XaV4ttkBwrg+unurYwf6Z7EQb8/aRmnrBx+uGP1TVrd2Po/UbbN9oguuuCfPyAOy0ldT3AV5RVafO4vq27XgfpGVVL01ynyT3of1Pd0n3eZLxQLbteFd37/8+sn1w3+4wwfVt2/FeSRuD+cyqOraqzuyC7DcBrxmMRZvB+ty2c+HvMs2rxdY1vCYeXD2dD9IeF3Nsktur6sQJjlks5vwA7CRvoXWv/WVVfXKW17dtx3tU93rNmH3XAn8FvGeGc9i2Ux8Lq2ZXBpmVSQb027bjPQa4tqp+PLL9m937o2jdjNNZn9t2Lvxdpnm12DKCa+LB1dOpqno9rWvj00meP9MBi8icHoCd5C9pj/95S1W9dzWub9uOt8uY13m0Qfy7AJ+d4Pq27Xj/j/Zoqd1Gtu/avZ8zwfVt2/F+DmyaZHTiwh907z+b4Prrc9vOhb/LNK8WW0ZwwR9cPYmq2i/JHcCn0p55fMKMB637Vrttk7yQlpX6CnBakscPnff6qpooowi2Lavet2eMnizJdcDdxu2bjm27Stte3Q1l+Nsk19MWT96Rtkjvx4eXTZmJbbty29ImNu0PfDnJ24FLaG37t8C3aEvQTGQ9bVuSPK/78Xe792ckuRK4sqqWd2X8XaYFt6gCwVpzD66epC5vSnI7cFz3H9Dxsz3HumSObbtbt303Vs2uLKeNFZpNXWzbhauLbbuyQ4BfAX8BHEB7QsM7aQHPbOti29517IruD8KDaf+/3ZwWQB4NvL1muY7e+ta2nc+MfP6X7n34/5n+LtOCy+pPRJQkSdJittjGCEqSJGmeGAhKkiT1lIGgJElSTxkISpIk9ZSBoCRJUk8ZCEqSJPWUgaAkSVJPGQhKkiT1lIGgJElST/1/YhTDAMYEWKIAAAAASUVORK5CYII=\n", "text/plain": [ "<Figure size 1152x576 with 2 Axes>" ] }, "metadata": { "needs_background": "light" }, "output_type": "display_data" } ], "source": [ "# NBVAL_IGNORE_OUTPUT\n", "\n", "graph2dvel(v0)" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "Time parameters are defined and constructed by the following sequence of commands:" ] }, { "cell_type": "code", "execution_count": 13, "metadata": {}, "outputs": [], "source": [ "t0 = 0.\n", "tn = 1000. \n", "CFL = 0.4\n", "vmax = np.amax(v0) \n", "dtmax = np.float64((min(hxv,hzv)*CFL)/(vmax))\n", "ntmax = int((tn-t0)/dtmax)+1\n", "dt0 = np.float64((tn-t0)/ntmax)" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "With the temporal parameters, we generate the time informations with *TimeAxis* as follows:" ] }, { "cell_type": "code", "execution_count": 14, "metadata": {}, "outputs": [], "source": [ "time_range = TimeAxis(start=t0,stop=tn,num=ntmax+1)\n", "nt = time_range.num - 1" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "The symbolic values associated with the spatial and temporal grids that are used in the composition of the equations are given by:" ] }, { "cell_type": "code", "execution_count": 15, "metadata": {}, "outputs": [], "source": [ "(hx,hz) = grid.spacing_map \n", "(x, z) = grid.dimensions \n", "t = grid.stepping_dim\n", "dt = grid.stepping_dim.spacing" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "We chose a single Ricker source, whose frequency is $ 0.005Khz $. This source is positioned at $\\bar{x}$ = 35150m and $\\bar{z}$ = 32m. We then defined the following variables that represents our choice:" ] }, { "cell_type": "code", "execution_count": 16, "metadata": {}, "outputs": [], "source": [ "f0 = 0.01\n", "nsource = 1\n", "xposf = 0.5*(compx-2*npmlx*hxv)\n", "zposf = hzv" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "As we know, Ricker's source is generated by the *RickerSource* command. Using the parameters listed above, we generate and position the Ricker source with the following sequence of commands:" ] }, { "cell_type": "code", "execution_count": 17, "metadata": {}, "outputs": [], "source": [ "src = RickerSource(name='src',grid=grid,f0=f0,npoint=nsource,time_range=time_range,staggered=NODE,dtype=np.float64)\n", "src.coordinates.data[:, 0] = xposf\n", "src.coordinates.data[:, 1] = zposf" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "Below we include the plot of Ricker source." ] }, { "cell_type": "code", "execution_count": 18, "metadata": {}, "outputs": [ { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAg0AAAF9CAYAAACH0lvIAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjMuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8vihELAAAACXBIWXMAAAsTAAALEwEAmpwYAAA81ElEQVR4nO3deZxkdX3v/9enqnqdtWeYYZmFYQCBQcToqBhRkKjgBvGHS6JG0ShqNr0+zDVec40iGo0GvEajoIkaNe7mgolXUDajQsyggA47zMAMDDBLz9JLVVdXf35/nHN6amqqq091n6qu0+f9fDzq0d1n/faXoetTn+/n+z3m7oiIiIhMJzfXDRAREZF0UNAgIiIisShoEBERkVgUNIiIiEgsChpEREQkFgUNIiIiEkthrhvQ6Y444ghft27dXDdDRESkLW699dZd7r6i3j4FDdNYt24dmzZtmutmiIiItIWZPTTVPg1PiIiISCwKGkRERCQWBQ0iIiISi4IGERERiUVBg4iIiMSioEFERERiUdAgIiIisaQiaDCz1Wb2D2Z2s5mNmJmb2bqY5/aa2SfMbIeZjYbXeF6LmywiIjLvpCJoAE4AXg0MAv/Z5Ln/BLwV+ADwMmAHcI2ZPTXJBoqIiMx3aVkR8qfufiSAmb0FeFGck8zsdOC1wJvd/UvhtpuAzcAlwPmtaa6IiMj8k4pMg7tPzPDU84Ey8K2qa40D3wTONbOeBJonIiKSCakIGmbhVGCLu4/UbN8MdBMMe0iVx/cXeWxfca6bISIiHWi+Bw3LCOogau2p2n8YM7vYzDaZ2aadO3e2rHGdZvOj+3jWR6/jdV+8Za6bIiIiHWi+Bw0G+BTbp+TuV7r7RnffuGJF3aeDzks33hMESA/sHOaJA8o2iIjIoeZ70LCH+tmEgar9Errz0f2T39+6tV6CRkREsmy+Bw2bgePMrL9m+wZgDLi//U3qXJsf3cfvnbySnMHmqgBCREQE5n/QcDXQBbwq2mBmBeA1wLXuXpqrhnWa8coED+0Z4dRjFnPk4l52qBhSRERqpGWdBszsleG3Tw+/vtjMdgI73f0mMzsWeAC4xN0vAXD328zsW8CnzKwL2AK8AzgOeF17f4POtmtoDHc4ckkvRy3pZce+0blukoiIdJjUBA3Ad2p+/sfw603A2QTFjXkOz568CfgIcCmwFLgdOM/df9WqhqbR4/uDzMKRi3o5Zkkfd+3Q8ISIiBwqNUGDu08342ErdWZFuPso8O7wJVOYDBoW93L0kl6uu/tx3B2zht0uIiIZMt9rGiSmxw8E5R1HLu7h6KV9FMsT7B0pz3GrRESkkyhoEACe2F8knzOWL+xhxaJgde1dQ6oTFRGRgxQ0CABP7C+xfEE3+ZyxrL8bgEFlGkREpIqCBgFgcGSMZQuCYGFpf9fkNhERkYiCBgFg72iZJX1BsDAQBg97FTSIiEgVBQ0CwL6R8mSGYWAy06DhCREROUhBgwCwd3SMpX1BhqGvK093IcfgsDINIiJykIIGAWBvVabBzBjo71JNg4iIHEJBg1AsVyiNT7AkDBoABvq7NTwhIiKHUNAgk4s4RcMTEMygUCGkiIhUU9Ag7BsNg4aqTMPi3i4OFMfnqkkiItKBFDTIZEYhmnIJsEhBg4iI1FDQIJPBwaLeg88vW9RbYH9RNQ0iInKQggZheCwIGhb0HBo0DJXGcfe5apaIiHQYBQ3CcKkCwILuQ4MGdxgeq8xVs0REpMMoaBCGS1GmIT+5bWFPUN9wQEMUIiISUtAgDEVBQ02mAVAxpIiITFLQIAyXxunvzpPL2eQ2BQ0iIlJLQYMwPDZ+SBEkVAcNGp4QEZGAggZhuFRhQXf+kG2LeqOaBmUaREQkoKBBGC41yjQoaBARkYCCBmGoTtAQ/RzNrBAREVHQIAyPjbOwJmjo7wqGK0a0ToOIiIQUNAjDpQr9NTUNhXyO7nyOkbIyDSIiElDQIAyVDs80APT35BlVpkFEREIKGoSROjUNEAxRREtMi4iIKGjIuIkJZ3isUjdo6OvOM6rhCRERCSloyLiRcpBJWNiTP2xff3dBhZAiIjIpNUGDma0xs++a2T4z229m3zeztTHPXWtmXzGzh81sxMzuNbNLzWxBq9vd6aIplf3ddYYnuvMKGkREZNLh7xQdyMz6geuBEvBGwIFLgRvM7CnuPtzg3AXAT4Au4H8DDwPPAD4EnAi8prWt72zRw6rqFkJ259k5VGp3k0REpEOlImgA3gqsB05y9/sBzOwO4D7gbcBlDc59DkFwcK67Xxtuu8HMlgHvMbN+dx9pXdM720hY6Fi3ELK7wMhYZrtGRERqpGV44nzglihgAHD3LcDPgQumObc7/Lq/Zvtegt/fyLDJx2LXrWnQlEsRETkoLUHDqcBv62zfDGyY5tyfEGQkPm5mG8xsoZmdA7wT+HyjoY0sGJ5meEI1DSIiEklL0LAMGKyzfQ8w0OhEdy8CZxL8rpuBA8B1wL8Df1bvHDO72Mw2mdmmnTt3zqbdHW94bOpCyL7uAiNjmnIpIiKBtAQNEBQ/1pp2aMHMeoFvASuBPwLOAv6SoADys3Vv5H6lu290940rVqyYeYtTYLpCyHLFKVcm2t0sERHpQGkphBwkyDbUGqB+BqLaHwNnAye4+wPhtp+a2T7gSjP7vLvfnlhLU+ZgIWT9mgYIHlq1pC9N8aWIiLRCWt4JNhPUNdTaANw5zbmnAYNVAUPkl+HXU2bZtlQbarhOQ7BNxZAiIgLpCRquBs4ws/XRBjNbRzCd8uppzn0MGDCzE2q2Pyv8+khSjUyj4dI4fV158rnDR3qiTMOw6hpERIT0BA1fALYCV5nZBWZ2PnAVsA24IjrIzI41s3Ez+0DVuV8mKH78oZm90cyeb2Z/CXwSuJVg2mZmjZYPfyx2pC/crkyDiIhASoKGcFrkOcC9wFeBrwNbgHPcfajqUAPyVP1e7r4VOAO4jWAVyR8SLBZ1JfBCd890ld9ouUJvV/2gYUE4PKFplyIiAukphMTdHwYunOaYrdSZUeHudwKvbk3L0q1YrkxmFGr1TRZCanhCRERSkmmQ1hkdq9A3RaahevaEiIiIgoaMK5YnpgwaNDwhIiLVFDRk3Gi5Qk9X/X8GBwshNTwhIiIKGjKvWNbwhIiIxKOgIeNGGxVCdkXrNChoEBERBQ2Z16gQMpcz+rryGp4QERFAQUPmFRus0wB6PLaIiBykoCHjiuWJhkFDn4IGEREJKWjIsPHKBGOVqadcQpRp0PCEiIgoaMi04niwgnZf99T/DPq7C8o0iIgIoKAh06IHUTXKNPR25SiVM/14DhERCSloyLBiOQgaGtU09HblKY4r0yAiIgoaMi0KGqZapwGgt5DXo7FFRARQ0JBpo1GmodB4eEKZBhERAQUNmTZZ09Ag09DXnaeomgYREUFBQ6aNxqhp6CnkJ4cxREQk2xQ0ZNhkTcM0hZCaPSEiIqCgIdOiYYeGhZBdOcYqE1QmvF3NEhGRDqWgIcMODk9M/c8gGrrQEIWIiChoyLBYizsVgn8iChpERERBQ4bFKYSMhi6iJadFRCS7FDRkWLFcwQx6ChqeEBGR6SloyLBiuUJfVx4zm/KYnoKCBhERCShoyLDRcqXh0AQcLJJU0CAiIgoaMmx0bKJhESRUD0+opkFEJOsUNGRYsVxpON0SDs6sUKZBREQUNGTYaLnScGEnUKZBREQOUtCQYVEhZCOqaRARkUhqggYzW2Nm3zWzfWa238y+b2Zrmzj/FDP7jpntMrNRM7vHzN7ZyjZ3uniFkNE6DQoaRESyrjDXDYjDzPqB64ES8EbAgUuBG8zsKe4+PM35G8PzbwTeAuwDTgQWtrDZHW90rMIRC3saHtMbTrmMVo8UEZHsSkXQALwVWA+c5O73A5jZHcB9wNuAy6Y60cxywFeA69z9FVW7bmhdc9OhGCPT0BMOT5S0IqSISOalZXjifOCWKGAAcPctwM+BC6Y592xgAw0Ci6wqjU/QN83siZ5CDjPVNIiISHqChlOB39bZvpkgIGjkzPBrr5ndYmZlM3vCzD5tZn2JtjJliuXK5IqPUzEzegt5BQ0iIpKaoGEZMFhn+x5gYJpzjwm/fgu4Fngh8HcEtQ3/Wu8EM7vYzDaZ2aadO3fOrMUpUBqfaPjciUhvV05TLkVEJDU1DRAUP9aa+qEJB0Xvil9z9w+E399oZnngY2a2wd3vPORG7lcCVwJs3Lix3n1Tz91j1TRAMINiVJkGEZHMS0umYZAg21BrgPoZiGq7w68/rtl+bfj1qTNvVnqNTzgT3vgJl5HeLg1PiIhIeoKGzQR1DbU2AHfW2V57LhyeqYiyFJnMu0dBQNxMg4YnREQkLUHD1cAZZrY+2mBm64DnhPsa+X8E6zucV7P93PDrpoTamCrRFMqeaWZPQFDTUNLiTiIimZeWoOELwFbgKjO7wMzOB64CtgFXRAeZ2bFmNm5mUe0C7r4b+Fvg7Wb2UTN7gZn9FfAB4CvV0zizJAoaeqeZPREdo+EJERFJRSGkuw+b2TnA5cBXCYYWrgPe5e5DVYcakOfwYOgS4ADwJ8B7gB3AJ4APt7jpHSsKAuJmGnYNjbe6SSIi0uFSETQAuPvDwIXTHLOVOjMq3N0JFnfSAk+hUlijELcQUrMnREQkLcMTkrDoAVQ9sQshFTSIiGSdgoaMajbToNkTIiKioCGjokxDvCmXOUrKNIiIZJ6ChoxqOtOgKZciIpmnoCGjSs1kGgp5yhVnvKIhChGRLFPQkFHNZRqCY6K1HUREJJsUNGRUU5mG8BjNoBARyTYFDRlVbCLTEB2jTIOISLYpaMioKNPQE2cZaWUaREQEBQ2ZVSxPkDPoyh+2gOZhlGkQERFQ0JBZpfEKPYU8ZtMHDco0iIgIKGjIrNL4xOSsiOko0yAiIqCgIbOK5UqsegY4+HwKZRpERLJNQUNGNZNpiI7T8ydERLJNQUNGNZVpCI8raSlpEZFMU9CQUTPJNJSUaRARyTQFDRlVKk8o0yAiIk1R0JBRxfEKPappEBGRJihoyChlGkREpFkKGjKqmUxDV97ImTINIiJZp6Aho0rlCXpjZhrMjN6uvNZpEBHJuNhBgwXON7NPmtmXzOzYcPtZZnZM65oorVBqItMAwaqQWhFSRCTbCnEOMrMB4IfAs4D9wCLgH4CHgLcCe4C/aFEbpQWayTQAyjSIiEjsTMMngDXAc4AjgOqnHP0E+L2E2yUtVhqfUKZBRESaEivTAFwAvMfdbzaz2o+nDxMEFJISlQlnrDIx+SCqOJRpEBGRuO8aC4FHptjXy6GZB+lwY2HGIHrkdRw9XXllGkREMi5u0HAP8KIp9p0F/CaZ5kg7RBmDZjINPYWcMg0iIhkXd3jis8BnzWwf8K/htqVm9ibgz4CLW9E4aY3SDDINvV159o2WW9UkERFJgVgfNd39C8BlwIeA+8PNPwauBD7l7l9vTfMOMrM1ZvZdM9tnZvvN7PtmtnYG13mfmbmZ/awV7UyDmWYaSso0iIhkWtxMA+7+V2b2OeCFwEpgN/Bjd3+wVY2LmFk/cD1QAt4IOHApcIOZPcXdh2NeZz3wfuCJVrU1DWaaaVBNg4hItsUOGgDc/SHgiy1qSyNvBdYDJ7n7/QBmdgdwH/A2gixIHJ8Dvg6cRJO/+3wSPUNCmQYREWnGlG+czab+3f3h2TdnSucDt0QBQ3i/LWb2c4LpoNMGDWb2WuBpwB8C329VQ9MgeoZEc5mGHEVlGkREMq3Rp+2tBMMAccV/B2reqcBVdbZvBl413cnhipaXA//T3feYZXuG6EwyDb2FvDINIiIZ1yhoeDMHg4Ye4K8JlpD+NvA4cBTwaoIlpT/cwjYCLAMG62zfAwzEOP8TwL3Al+PczMwuJpwRsnZt07WWHS/KNMR9NDZAjzINIiKZN2XQ4O5fjr43s08BvwJe4e5etf0S4P8CG1rWwqom1dk2bcrAzJ4LvAF4WnXbG97I/UqCmSFs3LixmWxLKkSZht4mlpHuLeSpTDjjlQkKeT0cVUQki+L+9f9D4IraN93w588Dr026YTUGCbINtQaon4GodgXwT8B2M1tqZksJgqV8+HNPoi1NgZlmGgBlG0REMqyZZaRXTLFvJbAgmeZMaTNBXUOtDcCd05x7CvB2guAiej0HOCP8/h3JNTMdZpRpCIsmtSqkiEh2xZ12eCPwUTO7y93/O9poZs8EPhLub6WrgU+a2fpoXQgzW0fw5v9X05z7/DrbPkVQuPnnHFysKjNKM8k0hEWTWqtBRCS74gYNf0bwCOxbzGwbQSHkkQRPt9wS7m+lL4T3uMrM/pqgvuHDwDaC4QcAzOxY4AHgEne/BMDdb6y9mJntBQr19mVBMZo9oUyDiIg0Ie4y0luAkwnS/NcRrAZ5HcHCSqe4+9ZWNTC8/zBwDsEMiK8SLNC0BTjH3YeqDjWCDIIq9Ro4mGloZnGn/CHniohI9jSzjHSZ4BP/F1rXnIb3fxi4cJpjthJjRoW7n51Mq9KpOF6hu5CjmfUqDhZCKtMgIpJV+kSeQaXyBL1NZBkgmHIZnSsiItkUK9NgZltovDqku/vxyTRJWq00XqGniSWkQZkGERGJPzxxE4cHDcuB3wWGCJ5AKSlRKk80Nd0SqjMNChpERLIqVtDg7hfV2x4ulPQjgpkVkhKl8YmmplvCwUyDplyKiGTXrGoa3H0vwXMdPpBIa6QtiuVK85kGTbkUEcm8JAohi8DqBK4jbTKTTEOvFncSEcm82FMua5lZAXgy8EGCZZ4lJWaSaehRpkFEJPPizp6YYOrZE/uBlybWImm50vgEi/u6mjpnMtOgKZciIpkVN9NwCYcHDUXgIeD/ufu+RFslLVUsV5paDRKgkM+Rz5mmXIqIZFjc2RMfbHE7pI1K4xOThY3N6C3kJh+rLSIi2RPr46aZXW9mJ0+x70lmpnUaUqQ03nymAYK6hpIyDSIimRX3neNsYPEU+xYBZyXSGmmLYlmZBhERaV4zHzenKoQ8nmBVSEmJmWYaervymnIpIpJhU9Y0mNmbgDeFPzpwpZkdqDmsj2Da5XWtaZ4kzd0plieafvYEQHchpymXIiIZ1ujj5gRQCV9W83P02g18Dvjj1jZTkjJWCTIFyjSIiEizpsw0uPtXgK8AmNkNwDvc/e52NUxaI6pJmFEhpDINIiKZFnfK5fNb3RBpj2j2w4wKIbvy7B0ZS7pJIiKSEo1qGt4A/Ie77w6/b8jd/yXRlklLlGaRaejtyml4QkQkwxplGr4MnEFQt/Dlaa7jgIKGFJhNpqGnkNfwhIhIhjUKGo4DdlR9L/PAbGoalGkQEcm2RoWQD9X7XtJNmQYREZmp5j9uSqqppkFERGaqUSHkFqZeBbKWu/vxyTRJWil6059NpsHdMbOkmyYiIh2uUU3DTcQPGiQlouGFnq6ZZRomHMoVp7ugoEFEJGsa1TRc1MZ2SJtEmYaewszWaQiuUaF7BsMbIiKSbvrLnzFRpqF3BpmGqA5CT7oUEcmm2O8cZnaimX3FzO41s+Hw65fN7IRWNlCSNZtMQ09VpkFERLIn1jLSZnY28ENgFPgP4HHgSODlwGvM7Dx3v6lFbZQEKdMgIiIzFfed4++BXwPHuvsb3P0v3f0NwDrgtnB/S5nZGjP7rpntM7P9ZvZ9M1sb47yNZnalmd1tZiNm9rCZfd3MMrlg1cHFnWZX0yAiItkTN2jYAHzc3YeqN7r7AeDjwKlJN6yamfUD1wMnA28E/gg4EbjBzBZMc/ofhO37NPBi4K+ApwGbzGxNyxrdoYrjFbryRj7X/OwHZRpERLIt1vAEsB3onmJfN/BIMs2Z0luB9cBJ7n4/gJndAdwHvA24rMG5H3f3ndUbzOznwJbwuh9oSYs7VLFcoXcGWQZQpkFEJOviZho+DnzIzFZVbwx//hvgo0k3rMb5wC1RwADg7luAnwMXNDqxNmAItz0E7ARWHX7G/FYsT0wWNDZrMmhQpkFEJJPiZhrOAhYBD5jZLRwshDwj/P7ssFgSgtUh35hwO08FrqqzfTPwqmYvZmanACuBu2bZrtQpjVdmVAQJ1cMTyjSIiGRR3KDhTKBC8NTLY8MXHHwK5nOrjm3FKpLLgME62/cAA81cyMwKwOcJMg3/NMUxFwMXA6xdO22tZaqUyhMzWkIaqocnlGkQEcmiWEGDu3fCTIN6wchM1jL+DPC7wEvdvV4ggrtfCVwJsHHjxnm1lHaxrEyDiIjMTNxMw1wbJMg21BqgfgaiLjP7W4IMwhvd/dqE2pYqxfEkCiGVaRARyaKmgoZwiuIaoLd2n7tfn1Sj6thM/WmdG4A741zAzN5PMN3yL9z9qwm2LVWK5Qn6Zjg8oUyDiEi2xV0Rcj3wdeCZ0abwq4ffOzCzd6J4rgY+aWbr3f3BsE3rgOcQBAINmdlfAJcC73f3f2hhOztesVxhoL9rRucq0yAikm1xMw1fBNYC7wLuBsZa1aApfAH4M+AqM/trgiDlw8A24IroIDM7FngAuMTdLwm3/QHwKeBHwPVmdkbVdfe7e6xMxXxRLFdmPOUynzO68qZMg4hIRsUNGp4BXOTu32tlY6bi7sNmdg5wOfBVguzGdcC7alapNIKMR3Wl33nh9vPCV7WbgLNb1OyOVCxPTA4zzERPIa8VIUVEMqqZFSHbnV04hLs/DFw4zTFbqZlR4e4XARe1ql1pE6zTMPORpN6unFaEFBHJqLgfOT8KvDfGcx6kwxXLEzOePQHKNIiIZFncdRq+amYnA1vDFSFrpzm2YhVIaYHZrAgJ0KNMg4hIZsWdPXER8D6CVSGfxuFDFfNqAaT5qjLhlCs+q+EJZRpERLIrbk3Dh4B/A/7Y3fe2rjnSStGsh9lkGlTTICKSXXHfPZYD/6iAId0OBg2zKIQs5PWUSxGRjIobNPwMOKWVDZHWK4aLMs2qELIrR1GZBhGRTIo7PPFO4NtmNkiwSNJhz3twd3387HBRpqFnNsMTyjSIiGRW3KDhrvDrvzQ4ppXLSEsCkhieUKZBRCS74gYNl6AZEqkXzXqYzYqQyjSIiGRX3HUaPjjVPjM7G3hDMs2RViolUQipTIOISGbN6COnmZ1gZpeY2RaCZ0C8OtlmSStEb/azG55QpkFEJKtiBw1mtsTMLjaznwH3AO8nKIj8E+CYFrVPEhQNT8xqnYZCkGlw12iViEjWNHz3MLOcmb3EzL4J7AA+D6wDPhse8i53v8Ld97e2mZKEaFGm2U25zOMOYxVlG0REsmbKoMHMPgk8AvwAeDnBipDnAWuBD1DzNEnpfAczDbNZRjr4J1MaV9AgIpI1jQoh300wY+KHwEXuvjvaYWbKTadQEstI94QBR7FcYXFvVyLtEhGRdGj07vHPwAHgpcA9ZvYZM3tme5olrZBEpqE3yjSoGFJEJHOmDBrc/S3AUcDrgVuBtwM3m9ldwHvRug2pM7ki5GzWaQgDDj20SkQkexq+e7h70d3/1d3PBdYA/4vg8dh/RVDT8DEze72Z9ba+qTJbxfEKPYUcZjMvR4kCDj0eW0Qke2J/5HT3He7+cXd/MvAs4B+BEwmWlt7RovZJgkrliVllGUCZBhGRLJvRO4i7/7e7/xnB+gyvBG5KtFXSEsVyZVb1DFA1e0KZBhGRzIn77Im63L0MfD98SYdLImiIztdS0iIi2TO7XLWkSrE8MavplnDwsdqqaRARyR4FDRlSGk8g01BQTYOISFYpaMiQYnliVktIQ9XwhDINIiKZo6AhQ4rjlcnhhZk6WAipTIOISNYoaMiQoKYhqUJIZRpERLJGQUOGlDTlUkREZkFBQ4YUy5XJZ0fMVC5ndOdzmnIpIpJBqQkazGyNmX3XzPaZ2X4z+76ZrY15bq+ZfcLMdpjZqJndbGbPa3WbO01xfGLWNQ0QZBuKqmkQEcmcVAQNZtYPXA+cDLwR+COCJaxvMLMFMS7xT8BbgQ8ALyNY9voaM3tqSxrcoYJMw+yGJyB4PHZJNQ0iIpkzqxUh2+itwHrgJHe/H8DM7gDuA94GXDbViWZ2OvBa4M3u/qVw203AZuAS4PzWNr0zuHsiK0IC9HYp0yAikkWpyDQQvLHfEgUMAO6+Bfg5cEGMc8vAt6rOHQe+CZxrZj3JN7fzlCvOhDPrFSEhGJ5QpkFEJHvSkmk4FbiqzvbNwKtinLvF3UfqnNsNnBB+33I7D5QojVc4ekkf+dzMH089E9EKjslkGvJztk7DUGmcPUNjDI6MMVQaZ3zCqUxMMF5xKhPO+IQndq/kriQi0jqLewucfdLKttwrLUHDMmCwzvY9wMAszo32H8LMLgYuBli7NlatZSxfveUhPn3dfRRyxrojFvCMdct42VOO5tnrl5NrcRARreDYk0DQ0M5Mw1BpnB/c/ijX3fUEdz66j0f3FdtyXxGRtNhw9GIFDXXU++AX553Wmj3X3a8ErgTYuHFjYh84X3ra0Ry9pJeH94xw9479/OD2R/nGLx/mtFVLuOSCU/mdtdPFPzMX1SDMdsolBJmGVtc0uDtf+cVWPnXdfewdKbNmWR/PPG4ZJx65iCMX97K0r4uFvQW68jkKOSOfMwp5I2+GJRp/tTcjJCLSrJ4E/q7HlZagYZA6GQGCLEO9LEK1PUC9dMFA1f62OOmoRZx01KLJn4vlCj+4/VH+/tp7efUVN/PxC5/C//e01S25d5LDEz2FHAeK47O+zlRK4xX+4hu/5prNj/PcE4/gf7zwSfzOmqVYstGAiIg0KS1Bw2aC2oRaG4A7Y5z7CjPrr6lr2ACMAffXP631ervyvGrjGl506lG842u38u5v305/d4HznnxU4veKhicSq2lo0eJOExPOu799O9dsfpy/fukp/PGZxylYEBHpEGmZPXE1cIaZrY82mNk64DnhvunO7aKqYNLMCsBrgGvdvZR4a5u0pK+LL73pGZy+egnv+c7tbNk1nPg9JocnEpg9EQxPtKam4Uu/2Mp/3LGD9734ZN7y3PUKGEREOkhagoYvAFuBq8zsAjM7n2A2xTbgiuggMzvWzMbN7APRNne/jWC65afM7C1m9nsE0y2PA/6mfb9CYz2FPJ97/dMxg0t+kPxkjslCyCQWd2rRipDbB0f4+2vv4fknreDi562f/gQREWmrVAQN7j4MnAPcC3wV+DqwBTjH3YeqDjUgz+G/15uALwGXAv8BrAHOc/dftbjpTTlmaR9/fs4J3HDPTn52365Er518piH5oOHvr70Xd/jw7z9ZGQYRkQ6UlpoG3P1h4MJpjtlKnXJ3dx8F3h2+Otobnr2Or/ziIS7/yb2ceeIRiV23mGAhZH93ntGEg4ZH947yg9sf5Y2/u47VA/2JXltERJKRikxDlvR25bnod9dx60OD3PPYgcSuO1kImcDwRF9XnnLFKVeSq2v40s+34MCbnrMusWuKiEiyFDR0oAufvprufI5v/PLhxK6Z5PBEX3cQeCSVbRgbn+Dbm7Zz3pOPUpZBRKSDKWjoQMsWdPPi047ie7/antjUxtGx4DrRG/5sRNcojiXTtp8/sIt9o2Ve8dRViVxPRERaQ0FDhzr/9GM4UBznvx5MZu2pKCvQ3z37Mpb+MGgYSSho+OEdO1jUW+C5T0quhkNERJKnoKFDPeeEI+jtynH93U8kcr2RsQrdhVwiD8rq60pueGJsfIJrNj/GizYclch0UBERaR0FDR2qtyvPmSccwU/uehz32T/+YnRsfPLNfrb6wmxFEpmGWx8aZH9xnHNPPXLW1xIRkdZS0NDBzjn5SLYPjnLv40PTHzyNkbHK5LDCbEXBRxJrNdz84G5yBmccv3zW1xIRkdZS0NDBzjppBQC/eGD2Cz2NliuJFEFCsjUNNz+wi9NWLWFxb9esryUiIq2loKGDrVraxzFLetn00HQP8pze6FglseGJ3oRqGkbGxrlt216efbwKIEVE0kBBQ4d7+rpl3Lp1cNZ1DUkOT0TXGR2b3eOxN20dpFxxnq2hCRGRVFDQ0OE2HjvAY/uLPLJ3dFbXGSlXJgsYZ2ty9sQshyc2PTRIzoLfUUREOp+Chg63cV3whrpp6+yGKIpjFfoTmz0R1jTMcnjiN9v3cuLKRSzoSc0jUEREMk1BQ4c7+ajFLOwpcOss6xpGyuOJFUL2FHKYzW5FSHfnN4/s47TVSxJpk4iItJ6Chg6Xzxkbjl7MnTv2z+o6o2PJzZ4wM/q78rOaPfHY/iK7hsY4bZWCBhGRtFDQkAKnHL2Iu3bsZ2Ji5sWQowkOT0AwRDGb4Yk7tu8DUKZBRCRFFDSkwIZjFjMyVuHhPSMzOt/dw0LIZIOG2QxP/Gb7vsksioiIpIOChhQ4JXxjvWuGQxSl8Qnck3nCZaRvlsMTv310HyeuXDi55oOIiHQ+BQ0p8KQjF5EzZlzXEL25Jzs8UZjV4k73PnaAk49alFh7RESk9RQ0pEBvV571KxbOONMQvbknm2nIzXidhgPFMo/uK3LikQoaRETSREFDSpxy9GLu2nFgRudGKzcmtbgTQP8sMg0P7BwG4MSVCxNrj4iItJ6ChpR40sqFPLJ3lJEZLN3ckuGJrvyM2gJw7+NB8KNMg4hIuihoSIn1K4JP5Q+Gn9KbEQUNic+eKE/M6Nz7nxiiu5Bj7bL+xNojIiKtp6AhJY5fuQCAB3c1HzS0pqZh5pmG+x4/wPErFpLPWWLtERGR1lPQkBLrli/ADB7cOdT0uVHBYlJPuYyuNdOahvueGFI9g4hICiloSInerjyrB/omiwibcbCmIblCyGh4otlVKkfHKmwfHOUEBQ0iIqmjoCFF1h+xcIaZhmAYobc7uf/c0eOxi+PNZRse2RusannsctUziIikjYKGFDl+xUIe3Dnc/Kf7cjQ8keSUy/Dx2E2u1bBtzygAqwf6EmuLiIi0h4KGFFm/YgGj5QqP7S82dd7k7IkEp1xGyz83u8DT9sEg07BmQJkGEZG0SUXQYGY5M3ufmW01s6KZ3W5mF8Y4b7GZfcDMfmFmu81sb/j977eh2Ylbf0Qwg2JrkzMoRscqdBdyic5WiLIWzRZDbhscpbuQ44iFPYm1RURE2iMVQQPwYeCDwGeAFwO3AN8xs5dMc95a4E+Am4DXA68B7gX+zcz+tGWtbZE14boG2wabe9rlaLmS6MwJgL6wPqLZ4YntgyOsHugjp+mWIiKpk9wgd4uY2UrgPcDH3P2T4eYbzOwE4GPADxucvgVY7+7V77LXmNka4L3AZ1vR5lY5ekkv+ZxN1gXENTJWSXQ1SICFPV0ADJeaW6th++AoqzU0ISKSSmnINJwLdANfq9n+NeA0MztuqhPdfbgmYIhsAo5JrontUcjnOGZpLw/vaTLTMFahN+FMw4Ke4HoHis0FDdv2jKgIUkQkpdIQNJwKlID7a7ZvDr9umME1nwfcPZtGzZU1A/1ND08Mj42zIMGZEwCLZpBpGCqNMzhSVhGkiEhKpSFoWAbsdffaeYZ7qvbHZmYXA2cAf9voGDPbZGabdu7c2VRjW23tsv6mhyeGS+Ms7Ek2aIgyDUNNBA3RzAllGkRE0qntQYOZvcDMPMbrxugUoN7CBE1X0pnZ2cCnga+6+9enOs7dr3T3je6+ccWKFc3epqXWLOtn11Cpqec+HCiOs7A36aAhuF5TQYPWaBARSbW5KIT8BXBKjOOiHPweYMDMrCbbMFC1f1pm9gzgauB64I9jtrXjRG+42wdHeVLMR0sPlcZZlHCmoaeQoytvTQ1PTK7RoKdbioikUtuDhrAwsZl6gs1AD3A8h9Y1RLUMd053ATM7DbgGuA240N3LTdy/o0SPk962Z6SpoCHpTIOZsaCn0FSmYdvgKH1deZYv6E60LSIi0h5pqGn4ETAGvK5m++uB37r7lkYnm9mJwI+BB4GXuXtzBQEdJvqUHncGhbszVEy+pgFgYZNBQ7RGg5nWaBARSaOOX6fB3Z8ws8uB95nZAeBXBIs0nQNcUH2smV0HHOvuJ4Q/ryQIGLqBvwE21Lxh/drdS63/LZKzfEE3fV352MWQpfEJxic88UwDhEFDE1MugzUaVM8gIpJWHR80hN4PDAHvBI4C7gFe7e4/qDkuz6G/0wbg2PD7f69z3eOArYm2tMXMLJhBEXPaZZQJaFWmYbiJgsxte0Z42tqB6Q8UEZGOlIqgwd0rwKXhq9FxZ9f8fCMzmGXR6dYs62NbzOGJKBPQiqBhQU+BvSNjsY7dN1pmf3GcNcuUaRARSas01DRIjdUD/WzbM8LhS1ccrtWZhrg1DQfXaNDMCRGRtFLQkEJrl/UzPFZhz/D0n/KjZZ5bVdMwXIr3wKrtg1qjQUQk7RQ0pFD1Wg3TiTIB0bLPSWpmymXUVi0hLSKSXgoaUihK8T+yN07QECxJ0ZJMQ29QCDkxMf0wybY9IyzozrO0P/ngRURE2kNBQwqtCjMNj8TJNLSwEHJhTx53GClPP0SxfXCUNcv6tUaDiEiKKWhIoSV9XSzqKUwWFzYyFNYcLGpJTUP8J11GCzuJiEh6KWhIqVUDfbGHJwo5o6eQ/H/q6EmXB6ZZ4Mndw4WdVM8gIpJmChpSavVAX7xCyOI4C3oKLRkWiIY8pss07BstM1QaV6ZBRCTlFDSk1KqlfbFqGg6UWvPcCTgYNEw3g2Lb5COxlWkQEUkzBQ0ptXqgnwOlcfaNNn5g51BxvCX1DBBMuYTpg4aDj8RWpkFEJM0UNKRU3BkUQy3MNETByHTDE9u0GqSIyLygoCGlVi2NFnhqPINiuDTekjUaoJlMwyiLegss6dMaDSIiaaagIaWiosLpZlB0Qk3D9sFRrQQpIjIPKGhIqWULuuntyk0/PNHCmoaeQo6uvLF/dLpCSK3RICIyHyhoSCkzY9XS6addtrKmwcxY0tfdsBhTazSIiMwfChpSbPVAf8PhiXJlgpGxyuTKja2wpK/A/gZBw+7hMUbLFc2cEBGZBxQ0pNh0q0JGGYCBBa0MGrrYOzr1I7oPPhJbmQYRkbRT0JBiq5b2sWd4jJGx+jUFe0eCoKGVsxaW9jcentAaDSIi84eChhRbPc1aDfvCDMDS/u6WtWFJX9dkcFJPtBpkNEVURETSS0FDikVBw/YphiiiN/OlLcw0LOnrmjbTsLS/i0W9WqNBRCTtFDSk2KqlQZ3AVDMoJoOG/tYGDQeK41QmvO7+bVqjQURk3lDQkGIrF/XQlbcphyf2jkaZhtYOTwBTzqDYPqg1GkRE5gsFDSmWyxnHLJ16BsXekTFyRssWd4KDWYy9dYIGd+eRwVEFDSIi84SChpQLFniq//yJvSNllvR1kctZy+6/bEGQxdgzXDps384DJUrjE6xZpuEJEZH5QEFDyq0e6JtyeGJwZKylMycAli/oAWD30OFrNRx8uqUyDSIi84GChpRbtbSfJw6UKI1XDtu3a6jEEQtbHDSE1989fHjQ8NDuIGg4dvmClrZBRETaQ0FDyq0KP8Xv2Fs8bN+uoTGOWNjT0vtHwxO7hw4fnti6ewQzZRpEROYLBQ0pN7lWQ50hil1DpclMQKv0duVZ1FOom2l4ePcwxyzpo6eQb2kbRESkPVIRNJhZzszeZ2ZbzaxoZreb2YUzuM56MxsxMzezE1rR1naLgoZtNcWQ5coEe0fKLc80ACxb2F23pmHr7hHWHaEiSBGR+SIVQQPwYeCDwGeAFwO3AN8xs5c0eZ1/BPYl27S5dfSSPnoKOR7cOXTI9uhNvB1Bw/IF3eyuM3viod3DrF2megYRkfmi44MGM1sJvAf4mLt/0t1vcPe3ATcAH2viOq8Ffgf4eGtaOjfyOeO4Ixbw4M7hQ7bvCmsM2hE0HLGwh50HDg0a9o2WGRwps265Mg0iIvNFxwcNwLlAN/C1mu1fA04zs+Omu4CZDQCXEQQfe5Nu4Fw7fsVCHqjJNOwMg4YVi1pb0wBw9JLewwoxH9bMCRGReScNQcOpQAm4v2b75vDrhhjX+Dvgbnf/apIN6xTHr1jAtsHRQ6ZdPhquEnn0ktbPXDh6aR8HSuMcKB5cFXLr7iDzoZoGEZH5Iw1BwzJgr7vXPhFpT9X+KZnZmcAbgD+Je0Mzu9jMNpnZpp07dzbV2LmwfsVCKhM++ekegsdlF3LGkYt7W37/o5cE93hs38Fsw0Nh0LBWq0GKiMwbbQ8azOwF4eyF6V43RqcA9R6hOO3ayGbWDVwBXO7ud8Zto7tf6e4b3X3jihUr4p42Z45fsRDgkCGKR/aOctSSXvItXEI6cszSIJvxaFXQcO/jQ6xa2kd/d+ueeyEiIu01F3/RfwGcEuO46GPzHmDAzKwm2zBQtX8q7yLIRHzazJaG26KPvovMbJG7H4jV6g523IqgbuCBqmLIRwZHWbW0PYsqRZmGHVUPzrr38QOcdNSittxfRETao+1Bg7uPAHc3ccpmoAc4nkPrGqJahkYZhA3AUcAjdfb9CrgdeGoTbelIC3sKHLW4lweeODTT8Ozjl7fl/kct7qU7n2NrODxSrkzwwM4hzj5pZVvuLyIi7ZGG3PGPgDHgdcCHqra/Hvitu29pcO7HgC/XbDsPeG94/j3JNXNunXL0IjY/uh+AodI4O/YVOa5NMxcK+RzHHbGA+58Ikjb3PzFEueKcrEyDiMi80vFBg7s/YWaXA+8zswMEGYLXAOcAF1Qfa2bXAce6+wnhuXdTk9Uws3Xht//l7rUzMlLr9DVLufHe+xgqjXPPY8Gb98lHL27b/U84ciG/fSRYN+vXD+8F4Klrlrbt/iIi0nodHzSE3g8MAe8kGG64B3i1u/+g5rg86fmdEnX6mqW4wx3b97JlV1Db0M5P+ieuXMgPf7OD0bEKv3p4kGULujlWCzuJiMwrqXiDdfcKcGn4anTc2TGu9WUOH7JIvacfO0AhZ/z03l3sGS6xqLfQ1qdLnr46CFp+uXUPNz+wm6cfO4BZ62duiIhI+6QiaJDpLe7t4tnHL+ff73iU/aNlnn/Syra+aZ+xfjndhRyXXXsPj+wd5d0vfFLb7i0iIu2RhsWdJKbXPGMN2wdH2V8c5+WnH9PWe/d153nBKSu5ffs++rryvOjUI9t6fxERaT1lGuaRl552NFtfNMyS/m5ecEr7pzv+7SuewuLeLl79jDUs6u1q+/1FRKS17PDVmaXaxo0bfdOmTXPdDBERkbYws1vdfWO9fRqeEBERkVgUNIiIiEgsChpEREQkFgUNIiIiEouCBhEREYlFQYOIiIjEoqBBREREYlHQICIiIrEoaBAREZFYFDSIiIhILAoaREREJBYFDSIiIhKLggYRERGJRU+5nIaZ7QQeSvCSRwC7ErxeFqkPk6F+nD314eypD2cv6T481t1X1NuhoKHNzGzTVI8clXjUh8lQP86e+nD21Iez184+1PCEiIiIxKKgQURERGJR0NB+V851A+YB9WEy1I+zpz6cPfXh7LWtD1XTICIiIrEo0yAiIiKxKGhoAzNbY2bfNbN9ZrbfzL5vZmvnul1zzcxeaWbfM7OHzGzUzO4xs781s0U1xw2Y2RfNbJeZDZvZT8zstDrX6zWzT5jZjvB6N5vZ89r3G3UGM/uRmbmZXVqzXf04DTN7iZn91MyGwv9XN5nZOVX71YcNmNlzzOxaM3si7L9fmdmba45RH4bMbLWZ/UP4u42E/9+uq3Ncon1mZjkze5+ZbTWzopndbmYXxmq0u+vVwhfQD9wH/Bb4feAC4DfAA8CCuW7fHPfNLcC3gdcBZwHvAvaG23PhMQb8J7Ad+EPgPOAmgjnJq2uu9/Xw/LcCvwd8HxgFnjrXv2sb+/QPgR2AA5dWbVc/Tt93bwPKwOXAC4FzgfcCL1Mfxuq/p4S/4w3h37kXAleE/xbfoT6s22dnA48DPwSuCftqXc0xifcZ8BGgBLwHeH7432kCeMm0bZ7rTpvvL+CdQAU4oWrbccA48O65bt8c982KOtveEP6Pc0748wXhz8+vOmYJsAf4dNW208Pj3lS1rQDcA1w9179rm/pzKfBY+IelNmhQPzbuu3XhH9d3NThGfdi4Dz8KjAELa7bfAtysPqzbZ7mq799C/aAh0T4DVoYBw4dq7nMdcMd0bdbwROudD9zi7vdHG9x9C/Bzgn8MmeXuO+ts/u/w66rw6/nAo+5+Q9V5+4AfcGj/nU/wKfFbVceNA98EzjWzngSb3qn+Dtjs7t+os0/92NibCT5pfb7BMerDxroJfu/Rmu17OTgUrj6s4u4TMQ5Lus/OJfhv9bWa+3wNOM3MjmvUGAUNrXcqwdBErc3Ahja3JQ3OCr/eFX5t1H9rzWxh1XFb3H2kznHdwAlJN7STmNmZBFmaP5niEPVjY2cCdwN/YGYPmNm4md1vZn9adYz6sLEvh18/bWbHmNlSM4vS5JeH+9SHzUu6z04lyDTcX+c4mOZ9SUFD6y0DButs3wMMtLktHc3MVgGXAD9x903h5kb9Bwf7cLrjliXVzk5jZl0EY5KfdPd7pjhM/djYMcCJwCeAjwEvAn4MfMbM3hkeoz5swN1/SzBGfwHwCEEffBZ4u7t/MzxMfdi8pPtsGbDXwzGJBsfVVWjYVElKvcUwrO2t6GBhtHwVQa3Hm6p3Ea//4h43H70X6CMobpqK+rGxHLAIuMjdvx9uuz6sZH+fmX0a9WFDZnYi8D2CT6xvJximuAD4vJkV3f3rqA9nIuk+m1XfKmhovUHqR24D1I8KM8fMeoGrgfXAWe6+vWr3HqbuPzjYh3uAetNYB6r2zzsWTN19P0ERVU/NWG+PmS0FDqB+nM5ugkzDj2u2X0tQrX406sPpfJRgTP1l7l4Ot11nZsuB/2Nm30B9OBNJ99keYMDMrCbbEKtvNTzRepsJxpBqbQDubHNbOk6YWv8e8EyC6T6/qTmkUf897O5DVccdZ2b9dY4b4/Dxu/liPdBLUMQ0WPWCYDrVIHAa6sfpbJ5ie/TpawL14XROA26vChgivwSWE1Ttqw+bl3SfbQZ6gOPrHAfTvC8paGi9q4EzzGx9tCFMeT4n3JdZZpYjmFf8e8AF7n5LncOuBlaZ2VlV5y0GXs6h/Xc10AW8quq4AvAa4Fp3LyX/G3SE2wjmWde+IAgknk/wx0L92Ni/hV/Prdl+LrDd3R9DfTidx4Cnmll3zfZnAUWCT7Dqw+Yl3Wc/IggiXldzn9cDvw1n901truepzvcXsIDgj/ZvCMb3zgduBx6kZj5z1l7A5wjXEwDOqHmtDo/JAb8AtgF/QPBH/EaCP0Braq73TYJP1m8hCES+S/DH6mlz/bvOQd/WrtOgfmzcXwZcTzBM8XaCQsgrw368SH0Yqw9fGfbXNeHfuhcBnwm3XaY+bNhvr6z6e/iO8OezWtVnBMW+ReDdBMWrnyPIpr182vbOdYdl4UUwzvQ9YD/B+PL/pWYBjyy+gK3h/yT1Xh+sOm4Z8M/h/yQjBIuQnF7nen3AZQSfeIrAfwFnz/XvOUd9e0jQoH6M1WeLCar9Hyf4JHYH8Fr1YVN9+OLwDW1n+LfuNoJpwHn14ZR9NtXfwBtb1WdAHvhr4CGC6Zd3AK+M01495VJERERiUU2DiIiIxKKgQURERGJR0CAiIiKxKGgQERGRWBQ0iIiISCwKGkRERCQWBQ0iIiISi4IGkYwyM4/x2mpm68LvL5rrNkfMbJWZDZvZxjbdz8zs12b2l+24n0in0uJOIhllZmfUbPo3giXOP1i1rUTwAJvfAR5w953taV1jZvbPwEp3f1kb7/kKglX5jnf3LD1lUWSSggYRAcDMtgI/c/fXz3VbGjGzIwnW4X+Fu/9HG++bB7YDl7v737XrviKdRMMTItJQveEJM/uymW03s41m9gszGzWze8zspeH+d4dDG/vN7CozW1FzzYKZvc/M7jazkpk9amZ/b2a9MZp0EcFzDa6pueaNZvYzMzvPzG4L2/RrM3tWeL+PmtkOM9sTtn9BTXs+bGYPmFnRzHaF1zozOsbdK8B3CB4GJJJJhblugIik1mLgX4BPAo8C7we+Z2afBZ4E/ClwJPApggdBvbrq3K8RPNr34wRP8DsF+DCwDrhwmvueB9zs7uN19p0AfAL4CDAE/B3BI4OvJvh7d1F4r08ATwD/MzzvvcD/CH+H28LfbSPBg4Kq/RT4czNb7+4PTtNOkXlHQYOIzNQi4O3u/lMAM3uUoCbiZcCG8JM5ZvZkgjfavLtXzOy5wGuAN7r7v4TX+omZ7QG+ZmZPdffb6t3QzAx4FnD5FG1aDvxu9IZuZjngKuA4d39BeMw1ZvY84FUcDBqeDVzr7v+n6lo/qHP9X4dfzyB4vL1Ipmh4QkRmajgKGEJ3h19/EgUMVdsLwNHhz+cRPHr6e+GwQMHMCsC14f7nNbjnUoLH/05VkHlvTQYgatM1NcfdDawOgxCA/wZeYmYfMbMzzax7iutH9z2mQRtF5i0FDSIyU3urf3D3sfDbwZrjou1RvcJKoJtg+KBc9Xoi3L+8wT2ja5Sm2D/VvettLwD58OePAn8DnA/8J7DbzL5kZkfUnDcafu1r0EaReUvDEyLSbruBIvDcKfY/Os25AANJNsjdywT1FR83s6MIhlguA/oJhlIiUY3DriTvL5IWChpEpN1+RFB4uMTdr2vmRHcfM7MtwPqWtCy4x2PAF83sJcCTa3YfF369p1X3F+lkChpEpK3c/UYz+wbwXTO7DPglMEEwc+IlwHvd/d4Gl/gp8Mwk22RmVxEUcf6KYCjjdwhqL66oOfRZBEMptyR5f5G0UNAgInPh9cCfA28mmOZYArYSFCw+Ps253wLeYGbr3H1rQu35KcFsij8lGJJ4mGC65kdqjnsZcLW7jyR0X5FU0YqQIpIq4TTK+4AvufulbbzvMQTBxLnNDquIzBcKGkQkdczsdQSFise161O/mV0OnO7u57TjfiKdSMMTIpJG/wqsIqiDuLNN99wBXNmme4l0JGUaREREJBYt7iQiIiKxKGgQERGRWBQ0iIiISCwKGkRERCQWBQ0iIiISy/8P+pEnjYw0zhUAAAAASUVORK5CYII=\n", "text/plain": [ "<Figure size 576x432 with 1 Axes>" ] }, "metadata": { "needs_background": "light" }, "output_type": "display_data" } ], "source": [ "# NBVAL_IGNORE_OUTPUT\n", "\n", "src.show()" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "With respect to receivers, the number of receivers is the same number of discrete points in the $x$ direction. So, we position these receivers along the direction $x$, at height $\\bar{z}$ = 10m. In this way, our variables are chosen as:" ] }, { "cell_type": "code", "execution_count": 19, "metadata": {}, "outputs": [], "source": [ "nrec = nptx\n", "nxpos = np.linspace(x0,x1,nrec)\n", "nzpos = hzv" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "As we know, receivers are generated by the command *Receiver*. Thus, we use the parameters listed above and using the *Receiver* command, we create and position the receivers:" ] }, { "cell_type": "code", "execution_count": 20, "metadata": {}, "outputs": [], "source": [ "rec = Receiver(name='rec',grid=grid,npoint=nrec,time_range=time_range,staggered=NODE,dtype=np.float64)\n", "rec.coordinates.data[:, 0] = nxpos\n", "rec.coordinates.data[:, 1] = nzpos" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "The displacement field *u* is a second order field in time and space, which uses points of type *non-staggered*. In this way, we construct the displacement field *u* with the command *TimeFunction*:" ] }, { "cell_type": "code", "execution_count": 21, "metadata": {}, "outputs": [], "source": [ "u = TimeFunction(name=\"u\",grid=grid,time_order=2,space_order=2,staggered=NODE,dtype=np.float64)" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "The velocity field, the source term and receivers are defined as in the previous notebook: " ] }, { "cell_type": "code", "execution_count": 22, "metadata": {}, "outputs": [], "source": [ "vel0 = Function(name=\"vel0\",grid=grid,space_order=2,staggered=NODE,dtype=np.float64)\n", "vel0.data[:,:] = v0[:,:]" ] }, { "cell_type": "code", "execution_count": 23, "metadata": {}, "outputs": [], "source": [ "src_term = src.inject(field=u.forward,expr=src*dt**2*vel0**2)" ] }, { "cell_type": "code", "execution_count": 24, "metadata": {}, "outputs": [], "source": [ "rec_term = rec.interpolate(expr=u)" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "The next step is to create the sequence of structures that reproduce the function $\\zeta(x,z)$. Initially, we define the region $\\Omega_{0}$, since the damping function uses the limits of that region. We previously defined the limits of the $\\Omega$ region to be *x0*, *x1*, *z0* and *z1*. Now, we define the limits of the region $\\Omega_{0}$ as: *x0pml* and *x1pml* in the direction $x$ and *z0pml* and *z1pml* in the direction $z$. These points satisfy the following relationships with the lengths $L_{x}$ and $L_{z}$:\n", "\n", "- x0pml = x0 + $L_{x}$;\n", "- x1pml = x1 - $L_{x}$;\n", "- z0pml = z0;\n", "- z1pml = z1 - $L_{z}$;\n", "\n", "In terms of program variables, we have the following definitions:" ] }, { "cell_type": "code", "execution_count": 25, "metadata": {}, "outputs": [], "source": [ "x0pml = x0 + npmlx*hxv \n", "x1pml = x1 - npmlx*hxv \n", "z0pml = z0 \n", "z1pml = z1 - npmlz*hzv " ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "Having built the $\\Omega$ limits, we then create a function, which we will call *fdamp*, which computationally represents the $\\zeta(x,z)$ function. In the *fdamp* function, we highlight the following elements:\n", "\n", "- *quibar* represents a constant choice for $\\bar{\\zeta_{1}}(x,z)$ and $\\bar{\\zeta_{2}}(x,z)$, satisfying $\\bar{\\zeta_{1}}(x,z)=\\bar{\\zeta_{2}}(x,z)$;\n", "- *adamp* denotes the function $\\zeta_{1}(x,z)$;\n", "- *bdamp* denotes the function $\\zeta_{2}(x,z)$;\n", "- The terms *a* and *b* locate the $(x,z)$ points that are passed as an argument to the *fdamp* function.\n", "\n", "The *fdamp* function is defined using the following structure:" ] }, { "cell_type": "code", "execution_count": 26, "metadata": {}, "outputs": [], "source": [ "def fdamp(x,z):\n", "\n", " quibar = 1.5*np.log(1.0/0.001)/(40)\n", " cte = 1./vmax\n", " \n", " a = np.where(x<=x0pml,(np.abs(x-x0pml)/lx),np.where(x>=x1pml,(np.abs(x-x1pml)/lx),0.))\n", " b = np.where(z<=z0pml,(np.abs(z-z0pml)/lz),np.where(z>=z1pml,(np.abs(z-z1pml)/lz),0.))\n", " adamp = quibar*(a-(1./(2.*np.pi))*np.sin(2.*np.pi*a))/hxv\n", " bdamp = quibar*(b-(1./(2.*np.pi))*np.sin(2.*np.pi*b))/hzv\n", " fdamp = cte*(adamp+bdamp)\n", "\n", " return fdamp" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "Created the damping function, we define an array that loads the damping information in the entire domain $\\Omega$. The objective is to assign this array to a *Function* and use it in the composition of the equations. To generate this array, we will use the function *generatemdamp*. In summary, this function generates a *non-staggered* grid and evaluates that grid in the *fdamp* function. At the end, we generate an array that we call *D0* and which will be responsible for providing the damping value at each of the $\\Omega$ points. The *generatemdamp* function is expressed as follows:" ] }, { "cell_type": "code", "execution_count": 27, "metadata": {}, "outputs": [], "source": [ "def generatemdamp():\n", " \n", " X0 = np.linspace(x0,x1,nptx) \n", " Z0 = np.linspace(z0,z1,nptz) \n", " X0grid,Z0grid = np.meshgrid(X0,Z0) \n", " D0 = np.zeros((nptx,nptz)) \n", " D0 = np.transpose(fdamp(X0grid,Z0grid))\n", " \n", " return D0" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "Built the function *generatemdamp* we will execute it using the command:" ] }, { "cell_type": "code", "execution_count": 28, "metadata": {}, "outputs": [], "source": [ "D0 = generatemdamp();" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "Below we include a routine to plot the damping field." ] }, { "cell_type": "code", "execution_count": 29, "metadata": {}, "outputs": [], "source": [ "def graph2damp(D): \n", " plot.figure()\n", " plot.figure(figsize=(16,8))\n", " fscale = 1/10**(-3)\n", " fscale = 10**(-3)\n", " scale = np.amax(D)\n", " extent = [fscale*x0,fscale*x1, fscale*z1, fscale*z0]\n", " fig = plot.imshow(np.transpose(D), vmin=0.,vmax=scale, cmap=cm.seismic, extent=extent)\n", " plot.gca().xaxis.set_major_formatter(mticker.FormatStrFormatter('%.1f km'))\n", " plot.gca().yaxis.set_major_formatter(mticker.FormatStrFormatter('%.1f km'))\n", " plot.title('Absorbing Layer Function')\n", " plot.grid()\n", " ax = plot.gca()\n", " divider = make_axes_locatable(ax)\n", " cax = divider.append_axes(\"right\", size=\"5%\", pad=0.05)\n", " cbar = plot.colorbar(fig, cax=cax, format='%.2e')\n", " cbar.set_label('Damping')\n", " plot.show()" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "Below we include the plot of damping field." ] }, { "cell_type": "code", "execution_count": 30, "metadata": {}, "outputs": [ { "data": { "text/plain": [ "<Figure size 576x432 with 0 Axes>" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAs4AAAHsCAYAAADCYCuMAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjMuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8vihELAAAACXBIWXMAAAsTAAALEwEAmpwYAABvDUlEQVR4nO3de7wcRZ338c83CRAjAuGmLAgBWZGAa1R0XRUEdCXIzQsgKspNWH0UZAFFRF0M+OAlCl5wNcqKGFAE9CEoKxghwcWwiBiUcFEwEUIiEEK4BBJI8nv+qJqcns5Md59Lcg6H7/v1mtd0d1V111QmZ2pqfl2liMDMzMzMzKqNGOwKmJmZmZk9G7jjbGZmZmbWgDvOZmZmZmYNuONsZmZmZtaAO85mZmZmZg2442xmZmZm1oA7zmZrkaRxkkLSBYNdlyqSjsz1PLJh/j1z/jPWbs3suUDSDEmeG9XMhjx3nM36SNIvcufxtsGuy3OdpDPyv8XbB7su64Kkefn1dntMGOw6FvmLlpkNF6MGuwJmz0aStgL2AQLYRdJrIuJ3g1ytdekmYGdg0WBX5DlsOfCFLml/X5cVGQAfAMYMdiXMzOq442zWN0cAI4GvACcDRwPPmY5zRDwJ3DnY9XiOWxYRZwx2JQZCRNw72HUwM2vCoRpmfXMk8CjwaeDPwGGSRlcVkDRB0jWSHpO0RNJlksZ1yPcaSf9P0nxJyyUtlDRT0tEd8r5d0m8kPS5pqaTfSTqmQ77VMcyS3iHpxpx/Roe8h0i6RdJTkhZI+oqk55fydPzpPR+bIemFki6UtEjSk/nYq7q0y7sl/UHSMkn3SzpH0vNa56pq077Ir/8SSX/Nr/ERSdMlvaWUb49ch3O7nGfvnP610vGXSPp+/vd7Oj9/S9IWpXyr498lvVzSz3NdBiTWtyq+vltaDgGZJ+kFkr6e33vL8vvqLeXz5DJbSfqapLtz3ockXa8cL5/fI9fl7P9RDCkpnKNjjLOkLSR9Q9LfclsuzO01rkPeXtfdzKy3POJs1kuS3gDsBJwfEcskTQUmAe8ELu5SbAdgJjALOA/YBXgX8HqlMI/787lfCfwPsBS4AlgIbAlMAN4D/FehHicDk4GHgB8ATwPvAL4n6RURcUKHerwbeHM+9wxgRSn9kJx+CXAN8K/AScArJb0lIlbVtxCbADcADwMXAtuR2ubXknaOiNVhBJKOA76T854PLAPeDuzY4Dp9dTYpzGEmKaRhq3zNqyUdEhE/BYiI6yXdCRwu6RMR8XTpPK0vMue3Dkj6F+CXwGhgGjAXeBnwIWCf/G+9uHSeHUnt9Xvge8A2A/VC+2g90r/9RsBPgLGk995VknaLiD+2MkramdQpfiFwLXBZLvcq4GPABaT32TjSrzQz836t/EXjRtL/nV+R/m+9lBTWsZ+kN0TEn/tadzOzPokIP/zwoxcPUucmgDfl/e2BVcCvOuQdl/MG8NlS2kn5+IWFY1/Nx/6pw7k2K2y/BHgGuB94UeH4hsCt+Rx7FI4fmY+tAHbvcO4jC/V8U+H4COD/5eNHF47vmY+dUTpP6xxfA1Q4/h/5+GmFY2OBJ4DFwIsLx8cUXsOMhv8mZ+T8b2+Qd/sOx14IzAfuLh0/OZ/30NLxjYEngd8Vjq0P/C2/np1L+Q/J5/lml/fGp3r5HpxH+pJxRofHxNL5L6h4X17Q4bwBXA6sVzh+RD7+nVL+3+fj7+lwjW3q3i+F9BlAlI59P5f5TOn4B/Lxa/tTdz/88MOPvjwcqmHWCzlk4VDgXuB6gIiYC/wW2FvStl2KLiaNDhd9g9TxPUTS+qW0p8oniIiHC7vvI/1i9MUojOBGxBOkTiqkDkPZzyLiN13qCHB1RMwsnG8V8Km8e3hFuaKlpI5g8af3C/LzboVjBwHPB74dEfcVrvkk8PmG1+q1/O9VPvYA8FPgJaUwgNZIfjlM5r3A8yiMNgP7A9sC/zci7iid/1JSJ/OwDlVaCHy5d68CgA1I/9blx8Q+nKvs5Ih4prB/EelL1+p/P0n/TBpZvjoiflQ+QUTM7+vF8/+Hw0i/CHypdN4LgdnAXpJe3Je6m5n1lUM1zHrnYOAFpJHDYsfwh8AbSCO3kzqU+0PuEK4WEc9IuokUXrET8CfgUtJP3P8r6Uekn79/ExEPls43IT/P6HCt60p5im7u9KIK/qd8ICJul/QI8Iqasi1/iYilpWP35+dNCsda5/tth3PManitXpP0IuA0YF/gxaSwiqKtSKOXRMQiSf8POFjSttFzE9sxpC83xQ7jP+fnXcux39nzgM0kbR4RxdlIbi119Jp6NCI26UO5OksiYl7xQESskPQA7f9+r8nP16yFOryM9O8yKyKWd0ifSXp/TwDuKxxvWnczsz5xx9msd47Kz1NLx38CfB04UtKZpU41pDjkTh7IzxsBRMQsSW8GTgeOBf4PEJKuAz4WEbcV8xfKrxYRj0paXshTVO6Al1XVs2nc8aMd6rRCEqSZSFpeUHHNunr2iaRNSVPpbUP6kvDfpPquIoUTvIk0klv0XdKvDEcCkyT9E/BqUohN8bVump87jfQXPZ/2afzWymvthzX+/bIVtP/7bZyfF6yFOnR9f2d/L+VraVp3M7M+caiGWUOSXgLskXfnlGYHWEyKcd2e1AEr26LDMUixtQCPtQ5ExIyI+FdSDPBbgSmkDt3VkjYs5W+VL9ZzY1Ln77FyGinWs0pVPTudrz8er7jmlgN8rZZjSKPMp0fEHhHxsYj4bKRp3e7oUubXwF9JX4qUzwHtYRrQ0z7/GhGqePytVG5trZjXupGzU4ex05eq3lqSn/9hAM5V1vX9XTo+0O9JM7NK7jibNXckIFIoxPkdHlfkfEd1KPtKSW0LPEhaD3gt6Savu8oFImJpRPwqIj5EihH+B9JIJ6QYT+jpyBe9qZSnN95YPiBpPKkTf2sfzleldb7Xd0j7lwG+VstL8vOVxYO5Q9zxmvnXg/NJX4r2JcWX/yUiri9lvSk/v27Aats/S/Lz1h3SXjkA52/NW/7WBnlX5uemo753kf5fvK5D/D/0vO8H+j1pZlbJHWezBiSNIP0EvxJ4X0R8sPwg/Zz/MPAuSeURvU2BU0rHjid1ai6NPNWZpDdKegFrao3Atm4avDjX5ePF+YHzzYufy7sX9uGl7iOp1fFuve7WjXrl8JT+mkaameJDklZPwZa/YJw+wNdqacUov6F0/ESqY7j/i/Rz/3eBzShMC1jw/0jxtp+U9NpyotLc1P+8Rqm1JCIeA+4G3ihph0I9tmAA2jcibgJuIb1n3lNOl1TssLem4OvUie907uWkKRG3Av69dN73kW5KnBFeOMXM1jHHOJs18xbST/y/iIiFnTJExNOSLgJOIM2X/N1C8v8AJ+d5fv9Amsf5QNKMCqcV8p0CvFnStaTwgJWkTt7rSLN4/C5f625JnwK+CPxJ0qX0zOO8PfCt4uwYvXAVKSTkElLs6lvJnRR6ZsYYEBGxWNIpwLeA2ZJ+TBplfAcpbOKf6Ak3aOoESW/vkvZZ0k2cpwLflLQXaQq63Ujt+wtgvy51/bukn5Pme15Bmm2jnGe5pENIcdM3SroGuJ30d3Yc6ZeAWQzMrBdNnQt8E5iV3yMbAAeQ5o3+xwE4/+Gk98bFSgvv/I4Uuz6BFMvdGtm+i/ReP0zSUvLNohHRbclwgE+Q2uwL+d/qFtI8zu8gfUH98ADU38ysV9xxNmumFX5xQU2+75M6zkfT3nG+hzTC/CXgo/TMN/vxyIufZP9Jitv8Z9JCJCtJMzycCpxXvOkwIr4k6W7SfNBHkX5BugM4OyKK1+6NS0mv8VOkEfQlwDmkuXR724mtFRH/KWkJ8Engg6SRyUtI81nfS08cdFN7VaSdGxGzJe1J+nfYh9RmNwK7kzrNHTvO2Q9JHeerKr48/a+kCaRO3765Pk+SOugX0rdfAfosIs7LoQ4fBY4jtekXSGFF7xyA89+htCLkp0httwfpPXM76X3TyrdC0sGkL3pHkTrV5Lp0O/eDeYT+s6QvmXuT3h8XAf/RaVpBM7O1TWve/N8hU5or8xzSKmICpgMnNvmZTGkZ4jNJIxObkOIuT+0QH9ipbACfj4hP11bSzIaNPLPIdODLEfGJwa4PgKRJwGeAgyJi2mDXx8zM1r3aGOccb3gtaV7NI4D3k37iuy7HU9Y5nzSt1mdJCwQsJP0UPKGPdTazYULSppI2KB3bmJ646ivWLLXu5b91x5JGjn8xyNUxM7NB0iRU41hgB2CniLgbQNIfgb8A/0b6SbUjSa8grbB1dER8Px+bCcwhLRJxYL9qb2bPdnsD/5njge8DXkQKoXgRcFFE3DCYlZP0RtL0gm/LdfpwRKysLGRmZsNWk1k1DgRubHWaYfWStTeQlsytK/sMKWaxVXYF8GPSndjlhQYqSRoj6UpJC3OnHEkXSJovaTdJv5X0lKS7JO2X00+SNE/SY5KuKM5AYGaD7k+k6f3eRJrZ4lDS4hb/Tv1CIuvCW0ihZi8hxeN+Z3CrY2Zmg6nJiPMudP65dA5wSIOyc8tLDeey65NWIpvToA6tFb9+DmwOvL50Y8hGpJtuJpNmAjgduFzSeaS7sD9CmjD/XOA80oezmQ2yiLiLIfz/MS+McsYgV8PMzIaIJh3nTYFHOhxfTFoUoa9lW+m1JG0LXA08AbwhIspL9L4A+FDrhkNJC0gT4+8PjG/9tCppV+B4SSP9c6uZmZmZ9UbT6eg6Tb2hBuXUj7It44HfkqY3emdEPNEhz9LSLB135ufppQ7ynaTXvBXpJp/2SknHkaZsYvTo0a/edttte1HNpDxJSdV+OW3Vqs7bnfbbm7WcGF22O+03TWu33nojeeYZf/eo4jaq5vap5zaq5vap1/s2qvp4LqepIm1E17QRpSDR4n45Teq83WS/iYcffphFixatLrmjtMZP5ANtIVwdEetyPncbQE06zo/QeWR4LJ1Hk4sWA516n2ML6XX2IK3UdXKXTjP0LC0LrF6Igg71ezo/j+50koiYAkwB2GmnneKuO+5YnbaqIhx82bJCRZa0py1a1L4/b17P9t13t6fddlvP9uzZ7Wnl/ULIOWmdjKK/FbbL080+WNp/rLC9tJT2NN1MnnwQp5wyJCY8GLLcRtXcPvXcRtXcPvXq26i8onlxsqzyAqhblva3KmxvV0pbvVgl0o5tKRMm0HV/113b03YsFB03rj1t883b9zfZpGd7dMdP+WREYbBpt9e2L/L5JGnWg7XpjBRyas9STTrOc0ixymXjSaPAdWXfIWlMKc55PKlXdnfnYm2+A2wMTJW0IiIub1DGzMzMrFdEs1kT7LmryftjGvA6Sau/PkoaR1oGuG4RgGnAehRuIpQ0irQc8TURsbzB9SMiPkq6qe/HeUlbMzMzM7N1qsmI83dJy7VeIenTpEDYM0lzrq6emknSdqRlhSdFxCSAvLztJcC5ktYD5gIfBrYH3tebikbEiZJWAhdLGhERl9QWMjMzM+sFjzhbldqOc0QslbQ3acntH5J+yfg1acntYsyxgJGs+Z47irQK2FmkJbdvBSZGxC29rWxEnCxpBXBR7jz/qLfnMDMzMzPri0azakTEvcC7avLMo8PtuBHxFHBSfvRKRHQ636nAqYX9I3tR9gLggt7Ww8zMzIY/xzhbnabT0ZmZmZkNe+44WxW/P8zMzMzMGnDH2czMzCwbsZYfdSQdLOlySX+T9JSkuySdLekFDcqOlvRlSQtz2VmS9uiQb4Sk0yTNk7RM0q2SKkNy+0LSWEnfk7RI0lJJ0yW9vJRnN0lTJN0p6UlJ90q6SNL2A12fgeCOs5mZmdnQcQqwEvgUMBH4T9KMZL+SVNdvOx84FvgssD9pFbSrJU0o5TsTOAP4JrAvcCNwqaS3DcxLAKWV6KaRXsPxpHvl1gOuk7RNIethpPVCvp7r8kngVcDNkl48UPUZKI5xNjMzM2PI3Bx4QEQ8VNifKWkx8ANgT+DaToUkvQJ4L3B0RHw/H5tJWoxuEnBgPrYlqXP+hYiYnItfp7TE4xeAqwbodRwIvBHYOyKuy9eeRZqa+BPACTnfF0uvF0k35HytLwFDxhB4f5iZmZkNDYMdqlHuRGa/y89bVxQ9EHgGWL3ORUSsAH4M7CNpg3x4H9Ja61NL5acCLy+GSEgalUM67pS0XNICSV+RVLGoeVt9FrQ6zbk+jwJXAgcVjq3xeiPib8BDNa93ULjjbGZmZja0vSk/31GRZxdgbkQ8WTo+h9RR3rGQbzlwd4d8AOMLx6YCnwYuBvYDzgaOAS5qUOddgNs6HJ8DbCtpw24FJe0MbEn16x0UDtUwMzMzY8iEarSRtDUp1GJ6RNxckXVT4JEOxxcX0lvPSyIiqvJJ2h14N3BERFyY06bnsJGpkiZExOya+syrqM9Y4IlyoqRRwLdJI87nV5x/ULjjbGZmZrbubC6p2AGeEhFTOmXMo7JXACtIKzFXEVDuDLeO9yXfROBp4PLcmW25Jj/vAcyWNLJUdmXulDe9Ttk3gdcD+0VEpy8Cg8odZzMzM7NsHYw4L4qI3eoy5TjiacAOwJsiYn5NkcXAth2Ojy2kt57HSlJp1Lmcb0tSiMcao8LZZvn5HmC7wvGjSKs0L6ZnlLtTfdboFEs6GziONMp9TTl9KHDH2czMzCyrGw5dFyStB1wOvBZ4S0T8qUGxOcA7JI0pxTmPJ40c313ItwHwEtrjnFuxzbfn54eBZcDuXa63ID8fkM/XMrdwnbd2KDceuDci2jrkkk4nTUV3QkT8sMs1B91QC+UxMzMze87KczVfBLwZOCgibmxYdBppnuRDCucaRYpTviYilufDvyR1pN9XKn84cFtEzC3kGw1sHBE3d3gsAIiIP5WOP1yoz9aSWjc2ImkjUkd7Wuk1nwCcBZweEd9o+HoHhUeczczMzEijzSMHuxJwHqnz+3lgqaTXFdLmR8R8SduRQiQmRcQkgIiYLekS4Nw8Yj2XtHDK9hQ6yRHxoKRzgNMkPQ7cQupc7037NHEzJP0IuEzSV4GbgFXAOOBtwKkR8eeK1zENmEW6kfDjpNCM00jN/KVWJkmHAeeSOurXll7vYxFxO0OIO85mZmZmQ8e++fn0/Cj6HGnFv1Yfvxw5cBSpw30WsAlwKzAxIm4p5TudFLv8MeBFwF3AoRFxZSnf4aRV/47OZZaTZsq4Gnig6kVExCpJ+wOTgW+RRq9nAXtFxH2FrBPz65mYH0UzSYu+DBnuOJuZmZllgx3DGhHjGuSZR4dw7Ih4CjgpP6rKryR1rs+qybcK+Fp+9FpELCZ1uo+uyHMkcGRfzj8YBvv9YWZmZmb2rOARZzMzMzOG5gIoNrS442xmZmaWueNsVfz+MDMzMzNrwCPOZmZmZplHFK2K3x9mZmZmZg14xNnMzMwM3xxo9dxxNjMzM8vccbYqfn+YmZmZmTXgEWczMzMzUqjGGsvxmRV4xNnMzMzMrAGPOJuZmZllIwe7AjakueNsZmZmhmfVsHp+f5iZmZmZNeARZzMzM7PMI4pWxe8PMzMzM7MGPOJsZmZmlnlE0aq442xmZmaGbw60en5/mJmZmZk14BFnMzMzs8wjilbF7w8zMzMzswY84mxmZmaGY5ytnt8fZmZmZmYNeMTZzMzMLNNgV8CGNHeczczMzLKRg10BG9IcqmFmZmZm1oBHnM3MzMzwzYFWz+8PMzMzM7MGPOJsZmZmlnlE0aq442xmZmaGQzWsnt8fZmZmZmYNeMTZzMzMLPOIolXx+8PMzMzMrAGPOJuZmZllHlG0Ku44m5mZmeGbA62e3x9mZmZmZg14xNnMzMws02BXwIY0jzibmZmZmTXgEWczMzMz0mjzyMGuhA1pHnE2MzMzM2vAHWczMzOzbMRafjQhaRtJ35A0S9KTkkLSuAblzsh5Oz2WlfLO65Lv7Q2r2fS1jJX0PUmLJC2VNF3Sy0t5dpM0RdKd+fXeK+kiSdsPZF0GgkM1zMzMzLIhMqK4I3Ao8HvgN8BbG5b7HvDL0rHn52PTOuS/GjijdOyuxrWsIUn5utsDxwOPAKcB10maEBHzc9bDgF2ArwNzgK2BzwA353z3DVSd+ssdZzMzM7Oh5fqIeCGApA/SsOOcO6Lzi8ckvZ/U3/tBhyKLIuLGfta1yoHAG4G9I+K6XJ9ZwFzgE8AJOd8XI+KhYkFJN+R8xwKfXYt17JUh8sXKzMzMbHC1FkAZ7FCNiFg1IC8oOQJ4gDS63GuSRkk6LYdRLJe0QNJXJI1uUPxAYEGr0wwQEY8CVwIHFY49VC4YEX8DHiKNPg8Z7jibmZmZDUOStgH2Ai6KiBUdshyQY4qXS7qxS3zzVODTwMXAfsDZwDHARQ2qsAtwW4fjc4BtJW1YUfedgS2BOxpcZ51p1HGW9GJJl0l6VNJjkn4qadsG5foV7J2D1M9qktfMzMysv4bCiPMAen++bKcwjStJccf7AO8DlgE/k3R4K4Ok3YF3Ax+OiEkRMT0ivgF8BHinpAk119+UFNdctjg/j+1USNIo4NukEefza66xTtXGOEsaA1wLLCcN9wdwFimw+58iYmlF8WdNsLeZmZk9t7VCNdayzSXdXNifEhFT1tK1PgD8ISL+WE6IiOOL+5J+BtxIGlGemg9PBJ4GLs+d2ZZr8vMewGxJI2lfdHFlREQ+Fh3qVbdA4zeB1wP7RUSnjvegaXJz4LHADsBOEXE3gKQ/An8B/g34akXZZ02wt5mZmdk6sCgidlvbF5H0WuBlwIlN8kfESkmXAl+UtFVELCSFSqwPPNGl2Gb5+R5gu8Lxo4ALSCPLm3Yo1xppXqNTLOls4DjgiIi4ppw+2Jp8sToQuLHVaQaIiLnADRQCuzsZ6GBvSWMkXSlpoaRX5GMXSJqfw0J+K+kpSXdJ2i+nn5TnKnxM0hWStujtdc3MzOy5YRiFahwBrCDFJjfVGglujRI/TArheE2Xx3dyvgNKx6/Mx+eQIg/KxgP3RkRbh1zS6cAngY9FxA97Ue91psmI8y7AFR2OzwEO6e0F+xrsLWlT4OfA5sDrc+e9ZSPgQmAysAA4nfSzwnnAS0mxOC8EzgXOI82NaGZmZjbsSFqfFC57VadBzC5lRpH6dfdGxN/z4V8CpwIbR8Svu5WNiD91SZoGHCXpTRExM19nI1JHu61DL+kEUijw6TmOekhq0nGuCuzuGNTdTV+DvfONiFeTfip4Q4c3wQuAD0XE9Tn/AuBWYH9gfESszMd3BY6XNLJ1rHSd40g/D7DFFlsw4/rrG9VvVWHSmJWls64o3cMahUifrUtj7ptt1rP9mte0pz35ZPmqy7tsQ/s/S/mG1fJ9mSu7bEPnsKRkm202YfLkyh8cnvPcRtXcPvXcRtXcPvXq26gcajqyyzas2WVYr7C9rJR2T2G7bVphxoyh6/7o0gRnxc/M++9vT3vggfb9kYXqjujH0G5d8O26IungvPnq/LyvpIeAhyJipqTtSA09KSImlYrvT+q/dbopEEnvIUUNXAXcRxpc/Ei+1nta+SJihqQfAZdJ+ipwE7AKGAe8DTg1Iv5c8TKmAbOAqZI+Ts8CKAK+VKjPYaTBzV8C10p6XeEcj0XE7RXXWKeaLoDSl8DuTvoS7D0e+C1wO/DO8rB+trTVac7uzM/TSx3kO0mveSvK/5OBHJw/BWCnnXaKPffYY3XaqoofWJYV/l4sWdKetmhR+/68eT3b5T8CtxUmbJk9uz2tvF+InAH+WqpR8a/JwlLag6X9xwrb5fs8n6abyZMP4pRTOv0QYS1uo2pun3puo2pun3r1bbR+af/5he2NSmlblva3KmxvV0rbYfWWtGNbyoQJdN3fddf2tB0LRcuDTZtv3r6/ySY92+UOeNEIuk+RLNb8ujCILi3tfys/zwT2pKe6nTooR5AGOH/e5dxzSf+gXyZ1sJ8EfgdMjIjyfM+Hk2bfOJr0i/5yYB5pQLP09aVdRKyStD8pIuBbwGhSR3qv0gQRE/PrmZgfRa3XOyQ06Tg/QvfA7sZ3OvYj2HsPUvD5yV06zQBLijsR8XRa5XGN+rV6gk0m7TYzMzMbFBFROUAZEfPoMogZEXX3oN0I7N2wHquAr+VHr0XEYlKn++iKPEcCR/bl/Otak45zVWB3o6HzQrD3CX0I9v4OsDFpmH9FRFzey/JmZmZmjXhlOKvS5P0xDXidpNW/u0gaB7whp1UagGDviIiPkm7q+7GkXt+QaGZmZmbWX01GnL8LfBS4QtKnSfHOZ5KCyVvTkNApSH0gg70j4kRJK4GLJY2IiEualjUzMzOrs44WQLFnsdqOc0QslbQ3cA7wQ9L76tfAiaWY405B6gMa7B0RJ0taAVyUO88/6k15MzMzM7O+ajSrRkTcC7yrJs88SkHq/Q327hQYHxGnkuYULF6jadkLSCvZmJmZma3BI85Wpel0dGZmZmbDnjvOVsXvDzMzMzOzBjzibGZmZoZvDrR6fn+YmZmZmTXgEWczMzOzzCOKVsUdZzMzM7Oscp1re87zFyszMzMzswY84mxmZmZGz0puZt14xNnMzMzMrAGPOJuZmZllHlG0Ku44m5mZmeF5nK2e3x9mZmZmZg14xNnMzMws84iiVfH7w8zMzMysAY84m5mZmeEYZ6vn94eZmZmZWQMecTYzMzPLPKJoVdxxNjMzM8OhGlbP7w8zMzMzswY84mxmZmaWeUTRqvj9YWZmZmbWgEeczczMzDKPKFoVd5zNzMzM8M2BVs/vDzMzMzOzBjzibGZmZpZ5RNGq+P1hZmZmZtaAR5zNzMzMcIyz1XPH2czMzCxzx9mq+P1hZmZmZtaAR5zNzMzMMklr9wIRa/f8tlZ5xNnMzMzMrAGPOJuZmZkBSDBqLXeNnnlm7Z7f1iqPOJuZmZmZNeARZzMzM7MWjzhbBY84m5mZmUFPqMbafDSqhraR9A1JsyQ9KSkkjWtYNro8JpTyjZB0mqR5kpZJulXSu3rdZvX1GSvpe5IWSVoqabqkl5fy7CZpiqQ78+u9V9JFkrYf6Pr0lzvOZmZmZkPLjsChwCPAb/pQ/gLgX0qPP5fynAmcAXwT2Be4EbhU0tv6VOMOlKYomQZMBI4H3gWsB1wnaZtC1sOAXYCv57p8EngVcLOkFw9UfQaCQzXMzMzMYN3cHNjM9RHxQgBJHwTe2svy90fEjd0SJW0JnAJ8ISIm58PXSdoR+AJwVR/q3MmBwBuBvSPiunztWcBc4BPACTnfFyPioVIdb8j5jgU+O0D16TePOJuZmZkNIRGxai1fYh9gfWBq6fhU4OXFEAlJo3JIx52SlktaIOkrkkY3uM6BwIJWpxkgIh4FrgQOKhx7qFwwIv4GPARs3ZsXtra542xmZmYGQybGeQB8OHdyn5R0raTdS+m7AMuBu0vH5+Tn8YVjU4FPAxcD+wFnA8cAFzWoxy7AbR2OzwG2lbRht4KSdga2BO5ocJ11Zkj8HmFmZmY26IZOqEZ/TAV+DiwAtgM+Dlwr6V8jYkbOsymwJGKNZQwXF9LJHe53A0dExIU5bbqkxcBUSRMiYnZFXTYF5nU43rrOWOCJcqKkUcC3SSPO51ecf5171r87zMzMzJ5FNpd0c2F/SkRMGaiTR8T7C7u/kXQFadT3LFK8MYCATmt/l9cbnwg8DVyeO7Mt1+TnPYDZkkaWyq7MnfKm1yn7JvB6YL+IeKQm7zrljrOZmZlZy9ofcV4UEbut7Yu0RMTjkn5BCq9oWQyMlaTSqPPYQjqkUIn16TAqnG2Wn+8hjW63HEWa2WMxefS6pHWdNTrFks4GjiONcl9TTh9s7jibmZmZDW/lkd85wAbAS2iPc27FNt+enx8GlgHlGOmWBfn5gHy+lrmF63SaEWQ8cG9EtHXIJZ1OmoruhIj4YbcXM5jccTYzMzOD4RLj3EbSRqSb+v63cPiXpBCM9wGfKxw/HLgtIuYW8p0KbBwRv+52jYj4U5ekacBRkt4UETML9TmAdLNhsZ4nkMJJTo+IbzR8eevc8Hp3mJmZmfXVEOo4Szo4b746P+8r6SHgoYiYKWk7UojEpIiYlMucAuwEXEfPzYGnAC8idZIBiIgHJZ0DnCbpceAW0k2Ae9M+TdwMST8CLpP0VeAmYBUwDngbcGpElBdWKZoGzCLdSPhxUmjGaaQR8C8VXuthwLmkjvq1kl5XOMdjEXE7Q8TQeHeYmZmZWdGlpf1v5eeZwJ6kzudI2qcWvgt4R35sDDwG3AAcExE3lc53Oil2+WOkjvVdwKERcWUp3+GkVf+OzmWWk2bKuBp4oOoFRMQqSfsDk3P9R5M60ntFxH2FrBPz65mYH0Wt1zskuONsZmZmBkNqxDkiKmeeiIh5lGanyJ3ecse3W/mVpNCIs2ryrQK+lh+9FhGLSZ3uoyvyHAkc2Zfzr2teAMXMzMzMrIGh8bXKzMzMbLANoRFnG5o84mxmZmZm1oC/VpmZmZm1eMTZKvjdYWZmZgYO1bBaDtUwMzMzM2vAX6vMzMzMwCPOVssjzmZmZmZmDfhrlZmZmRl4xNlq+d1hZmZmBu44Wy2HapiZmZmZNeCvVWZmZmYtHnG2Co1GnCW9WNJlkh6V9Jikn0ratrcXk3SapJD0Pw3zh6SzensdMzMzM7OBVvu1StIY4FpgOXAEEMBZwHWS/ikilja5kKQdgNOBB/teXTMzM7O1xDHOVqPJu+NYYAdgp4i4G0DSH4G/AP8GfLXhtf4TuAjYqeF1zczMzNYdd5ytRpNQjQOBG1udZoCImAvcABzU5CKS3gu8CjitL5UsnGeMpCslLZT0inzsAknzJe0m6beSnpJ0l6T9cvpJkublEJMrJG3RnzqYmZmZ2XNTk69VuwBXdDg+BzikrrCkscA5wCciYrGk3tWw5zybAj8HNgdenzvvLRsBFwKTgQWkkJDLJZ0HvBT4CPBC4FzgPODQPlXCzMzMhi+POFuNJu+OTYFHOhxfDIxtUP7LwJ+BC5pXq12+EfFq4AngDRHxUCnLC4APRcT1Of8C4FZgf2B8RKzMx3cFjpc0snXMzMzMzKyJpl+rosOx2qFjSbsDHwBeFRGdztHEeOC3wO3AOyPiiQ55lrY6zdmd+Xl6qYN8J+k1bwXM71Df44DjALbYYgtmXH99OUtHq1b1bK8sdcdXrGjfL7bC1lu3p222Wc/2a17Tnvbkk+WrLu+yDe3fZzYspW1f2l/ZZRs6/7Mn22yzCZMnN4rUec5yG1Vz+9RzG1Vz+9Srb6PyR/nILtuwZpdhvcL2slLaPYXt9o/bMWPouj96dHta8TPz/vvb0x54oH1/ZKG6I/q6SoVHnK1Gk3fHI6RR57KxdB6JLvoOcD4wX9ImhWuOzPtPRUS511e2B7AZcHKXTjPAkuJORDydQ0LK9Xs6P5f+a64uNwWYArDTTjvFnnvssTptVUU4+LLC34slS9rTFi1q3583r2e7/Efgttt6tmfPbk8r7xdCzoG/lmpU/GuysJRWntTkscJ2eYKUp+lm8uSDOOWUThE81uI2qub2qec2qub2qVffRuuX9p9f2N6olLZlaX+rwvZ2pbQdVm9JO7alTJhA1/1dd21P27FQtDzYtPnm7fubbNKzXe6AF41gVfdEsxpNOs5zSHHOZeNJo8BVds6PD3VIewT4d1LccZXvABsDUyWtiIjLa/KbmZmZ9Z5HnK1Gk3fHNGCypB0i4q8AksYBbwA+WVN2rw7HziX9/nM8cHeH9LKIiI9KWgH8WNJ7I+LSBuXMzMzMescdZ6vQ5N3xXeCjwBWSPk0KfD0TuI80GgyApO1IQU2TImISQETMKJ9M0hJgVKe0KhFxoqSVwMWSRkTEJb0pb2ZmZmbWH7Ud54hYKmlv0pRyPyTdSfBr4MRSzLFII8l9DcmvFREn55Hni3Ln+Udr61pmZmb2HONQDavR6N0REfcC76rJM48GM21ExJ5NrpnzrnG+iDgVOLWwf2Qvyl5AP6bFMzMzM7PnLn+tMjMzMwOPOFstvzvMzMzMwB1nq7XW4pHNzMzMzIYTf60yMzMzA484Wy2POJuZmZmZNeCvVWZmZmYtHnG2Cn53mJmZmYFDNayWQzXMzMzMzBrw1yozMzMz8Iiz1fKIs5mZmZlZA/5aZWZmZgYecbZafneYmZmZgTvOVsuhGmZmZmZmDfhrlZmZmVmLR5ytgkeczczMzMwacMfZzMzMDHpinNfmo1E1tI2kb0iaJelJSSFpXINyu0maIunOXO5eSRdJ2r5D3nn5vOXH23vdbtV1Givpe5IWSVoqabqkl/e13oPNHWczMzOzoWVH4FDgEeA3vSh3GLAL8HVgX+CTwKuAmyW9uEP+q4F/KT1m9r3a7SQJmAZMBI4H3gWsB1wnaZt+1HvQOJDHzMzMDIbSrBrXR8QLASR9EHhrw3JfjIiHigck3QDMBY4FPlvKvygibuxvZSscCLwR2Dsirsv1mZXr8wnghD7We9B4xNnMzMwMhkyoRkSs6kv1y53PfOxvwEPA1n05p6RRkk7LYRTLJS2Q9BVJoxsUPxBY0Oo05/o8ClwJHLQ26722uONsZmZmNkxJ2hnYErijQ/IBOaZ4uaQbu8Q3TwU+DVwM7AecDRwDXNTg8rsAt3U4PgfYVtKGfaz3oBkSv0eYmZmZDbp1E6qxuaSbC/tTImLK2riQpFHAt0kjt+eXkq8EfkcKh3gh8FHgZ5LeHxFTc/ndgXcDR0TEhbncdEmLgamSJkTE7IoqbArM63B8cX4eCzzRy3oPKneczczMzNadRRGx2zq61jeB1wP7RcQjxYSIOL64L+lnwI2kEeWp+fBE4Gng8tyZbbkmP+8BzJY0ElAhfWVERD4WHeqlDsca1XuwOVTDzMzMrGUIxDgPBElnA8cBR0fENXX5I2IlcCmwjaSt8uEtgfVJo8LPFB4P5vTN8vM9pfQj8vHFpFHnsrH5eY1OcW/rva55xNnMzMwMhtKsGv0i6XTSlG4nRMQPe1M0P7dGiR8GlgG7d8m/ID8fAGxQOD43P8+h84wg44F7I6ItTKMf9V5nnv3vDjMzMzMDQNIJwFnA6RHxjV6UGwUcQurQ/j0f/iVwKrBxRPy6W9mI+FOXpGnAUZLeFBEz83U2InW0Lx6Ieq9r7jibmZmZwZAacZZ0cN58dX7eV9JDwEMRMVPSdqQQiUkRMSmXOQw4l9ThvVbS6wqnfCwibs/53kOaDu4q4D7SzYEfydd6T6tARMyQ9CPgMklfBW4CVgHjgLcBp0bEnytexjRgFulGwo+TQjNOI41sf6nwWhvVeygYGu8OMzMzMyu6tLT/rfw8E9iT1PkcSfv9ahPz8Yn5UdQqBymUYkvgy6QY5CdJM2xMjIirS+UOJ636dzRwOrCcNFPG1cADVS8gIlZJ2h+YnOs/mtSR3isi7utDvQedO85mZmZmMKRGnCOicuaJiJhHaXaKiDgSOLLBuW8E9m5Yj1XA1/Kj1yJiManTfXRFniNpUO+hYGi8O8zMzMwG2xDqONvQ5OnozMzMzMwa8NcqMzMzM/CIs9XyiLOZmZmZWQP+WmVmZmbW4hFnq+B3h5mZmZkNa5L+qyJ5FfAo8HvgpxGxrFtGd5zNzMzMwDHOw9tewMbAJsAKYBGwOakvvCTn+XfgHkl7RcT8TidxjLOZmZkZ9HSc1+bDBst7SaPK7wJGR8Q/kBZkOQR4DNgf+Od87OxuJ/G/oJmZmZkNd+cAX4yIn7UO5MVdLpe0JXBuRLxW0tnAZ7udxB1nMzMzM3CoxvD2CuCeLmn3ALvm7duBsd1O4lANMzMzMxvu/g4c3CXtEOCBvL0R8Ei3k/hrlZmZmRl4xHl4Oxc4R9I/AJcBDwJbkjrNbwNOzPl2B/7Q7SR+d5iZmZm1uOM8LEXE1yQtJcUv71dImg8cGxHn5/3zgKe6ncfvDjMzMzMb9iLie5LOB7YBtgIWAvMjIgp55lWdwx1nMzMzM3CoxnNA7iTflx+95neHmZmZmQ17kjYixTNvS5qvuSgi4sy6c7jjbGZmZgYecR7GJL0BuJK0cmAnAbjjbGZmZtaIO87D2bnAPOBY4E8R8XRfTuJ3h5mZmZkNdzsDh0bE7/tzEneczczMzMAjzsPbvcAG/T2JVw40MzMzs+Huc8An8w2CfeavVWZmZmYtHnEervYHXgjMlTQLWFxKj4g4ou4kfneYmZmZ2XD3RtLMGY8Bu3RIjw7H1uCOs5mZmRk4xnkYi4jtB+I8fneYmZmZgTvOVsvvDjMzMzMbdiRtCyyMiGfydqWIuLcujzvOZmZmZuAR5+FnLvAvwE2kxU/q4phH1p3Q7w4zMzMzG46OBu4pbDe6AbCKO85mZmZm4BHnYSYiflDYvmAgzul3h5mZmVmLO87DnqR/ALYG7o+IBb0p65UDzczMzGzYk/QBSXOB+4AbgfskzZV0eNNz+GuVmZmZGThUYxiT9FHg68B04EzgAdJKgu8BfiBp44g4r+48jUacJb1Y0mWSHpX0mKSfNpnWo1B+Z0mXSlok6SlJd0n6WINyIemsptcxMzMzM+vgZOCCiHhrRPxXRPwiP/8r8EPglCYnqf1aJWkMcC2wHDiCdEfiWcB1kv4pIpbWlN8tl58BfBB4FPhHYMMmFTQzMzNbJzziPJy9CPhxl7SLgUObnKTJu+NYYAdgp4i4G0DSH4G/AP8GfLVbQUkjgB8Av46IdxSSrmtSOTMzM7N1xh3n4exPwEu6pP0jcFuTkzQJ1TgQuLHVaQaIiLnADcBBNWX3BMZT0bnuDUljJF0paaGkV+RjF0iaL2k3Sb8thILsl9NPkjQvh5hcIWmLgaiLmZmZmT1rfAz4pKRDJI0EkDRS0qHAx4ETmpykydeqXYArOhyfAxxSU/aN+Xm0pBuBVwOPkIbKT42Ip5pUEkDSpsDPgc2B1+fOe8tGwIXAZGABcDpwuaTzgJcCHyEFgJ8LnEfD4XgzMzN7DvGI83D2E1J/8cfASkmPAGNJqwU+AfxEUitvRMR2nU7S5N2xKamzW7Y4X7DKP+TnS4BvAp8EdgMmAS8G3tGlXJt8I+LVpBf2hoh4qJTlBcCHIuL6nH8BcCuwPzA+Ilbm47sCx0sa2TpWus5xwHEAW2yxBTOuv75J9Vi1qmd7ZemsK1a070dhzZqtt25P22yznu3XvKY97ckny1dd3mUb2v9ZyqHk25f2V3bZhqoFdrbZZhMmT677weG5zW1Uze1Tz21Uze1Tr76NVNof2WUb1uwyrFfYXlZKu6ewPb8tZcwYuu6PHt2eVvzMvP/+9rQHHmjfH1mo7ghPtmtr+jXrcOXAThcq/2/rpPXWnRoRn83bM/IQ+RckjY+I22vOMR74LXA78M6IeKJDnqWtTnN2Z36eXuog30l6zVtR/p8MRMQUYArATjvtFHvuscfqtFUVUS3LCn8vlixpT1u0qH1/3rye7fIfgdsK0TWzZ7enlfcLkTPAX0s1Kv41WVhKe7C0/1hhu3yf59N0M3nyQZxySqcfIqzFbVTN7VPPbVTN7VOvvo3WL+0/v7C9USlty9L+VoXt8uDcDqu3pB3bUiZMoOv+rru2p+1YKFoebNp88/b9TTbp2S53wItGsKp7ItWf9/bsFRFHDsR5mrw7HiGNOpeNpfNIdNHD+flXpePX5OcJDa6/B2l1l/O7dJoBlhR3IqLV4yvXr3W84r+UmZmZ2eCRtI2kb0iaJenJPD3vuIZlR0v6cr4f7Kl8jj065Bsh6bR8H9gySbdKetdaeC1jJX0vT0m8VNJ0SS8v5dlN0hRJd+bXe6+kiySVfyYfdE1GnOeQ4pzLxpNGgevKwpoj1q3R6uqvfcl3gI2BqZJWRMTlDcqYmZmZ9UrEmiGWg2RH0v1Yvwd+A7y1F2XPB/Yj3fD2V9J9XldL+peImF3IdyZp7uLT83UOAy6VtH9EXNXvVwAoBQ1PI8WJHk8a0DyNNKXxhIho/fp/GKmv+XVS33Fr4DPAzTnffQNUn01JbfNi1hxEjYj4j7pzNOk4TwMmS9ohIv6aLzwOeAMpZrnKf5MCcCeSbuxr2Sc/39zg+hERH5W0AvixpPdGxKUNypmZmZk1NoQ6ztdHxAsBJH2Qhh3nPOPYe4GjI+L7+dhMUmd0EmmmNCRtSeo0fyEiJufi1ynF1XwBGJCOc77eG4G9I+K6fO1ZwFzgE/TMZPHF8v1rkm7I+Y4FPks/SXorcDnt8UhFAdR2nJuEanwXmAdcIekgSQeSZtm4jzQa3KrQdpJWSFr94iLiYeBs4EOS/q+kt0j6JKkBfhDtgbqVIuJE0jeRiyW9u2k5MzMzs2eTiGjyi3wnBwLPkCZlaJ1rBWkmiX0kbZAP70MKcJ9aKj8VeHkxRELSqBzScaek5ZIWSPqKpCZhrwcCC1qd5lyfR4ErKUxp3GHSByLib8BDpNHngfBV4A/AK4ANImJE6VG+G7aj2hHniFgqaW/gHNKShCLdmXhiKeZYpFtwy53xScDjwP8hfbtZCHyZ9BNBr0TEyXnk+SJJIyLiR709h5mZmVknQ2jEua92AeZGRHkurjmkjvKO9ITgLgfKA5itENvxpNFeSJ3pA4AvkiZr2JnUhxsH1MVE70LnhUXmAB+QtGG3+9ck7Uy6I/WOmms0NQ7494j4U39O0mhWjYi4l5rGiYh5dJhpIyKC1Mvv9SIoEdHpfKcCpxb2j+xF2QuAC3pbDzMzM7NngaophFvprecluY/WNZ+k3YF3A0dExIU5bbqkxaR7zyaU4qY71WdeRX3GkqYabiNpFPBt0ojz+RXn740/0DNNcp95lm8zMzMz1tmI8+aSivd4TcnT4Q4E0WwK4ab5JpJmJLs8d2ZbWrOj7QHMztMMF8uuzJ3yptcp+ybwemC/iKibwa2pk4ALJP05Imb19STuOJuZmZll66DjvCgidltL514MbNvh+NhCeut5rCSVRp3L+bYkhXh0mw64tXTbPbRP5n0U6Rf+xXSf0hg6jI5LOpu0GN0REXFNOb0ffk8KNf4fSUspTWVMxWqBRe44m5mZmQ0Pc4B3SBpTinMeTxo5vruQbwPgJbTHOY/Pz63phh8mLQu5e5frLcjPB+TztbTio+fQeUaQ8cC95fhmSaeTZmw7ISJ+2OWafTUZ+CgpZONOqlZ5q+COs5mZmRnD4ubAacDngEOAH8DqeOF3A9dExPKc75ekjuP7cv6Ww4HbImJuId+pwMYR8etuF6244W4acJSkN0XEzFyfjUgd7YuLGSWdAJwFnB4R32j2cnvlSODMJnM1V3HH2czMzGyIkXRw3nx1ft5X0kPAQxExU9J2pBCJSRExCSAiZku6BDhX0nqkkd8PkxYgeV/r3BHxoKRzgNMkPQ7cQupc7037NHEzJP0IuEzSV4GbSIvXjQPeBpwaEX+ueBnTgFmkGwk/Ts8CKAK+VHithwHnkjrq10p6XeEcj0VE3YJ7TQRwfX9P4o6zmZmZGUNuxLm82Nu38vNMYE+6TwN8FPB50ujtJsCtwMSIuKWU73RS7PLHgBcBdwGHRsSVpXyHk1b9OzqXWU6aKeNq4IGqFxARqyTtTwqT+BZptb5ZwF6l1QAn5tczMT+KWq+3vy4F9iXFOfeZO85mZmZmDK2Oc6dpdUvp8+g8DfBTpBkkTqopv5LUuT6rJt8q4Gv50WsRsZjU6T66Is+RpFCKtem/gXMkbUwa2V7jxsSIuLbuJO44m5mZmdlw97P8fEx+tBSnzatdPdAdZzMzMzOG1oizDbi9BuIk7jibmZmZ2bDWmtWjv9xxNjMzM8s84mxV3HE2MzMzs2FP0q6k+OadSDN8FEVEvLnuHO44m5mZmeEY5+FM0j+TprabB/wj8EfS0t/bAvNpX0GxK3eczczMzHDHeZj7v8BPgfcDzwDHRMQtkvYGfkjNtHwt5UmzzczMzMyGm38CppKmnYM89Vyeu/ks4OwmJ/GIs5mZmRkecR7m1gOW5tUMFwNbFdLuAnZtchKPOJuZmZnZcHcPsHXe/iNwtKQRkkaQlin/e5OTeMTZzMzMDI84D3NXAnsCF5PinX8BPAasBDYETmhyEneczczMzDJ3nIeniDijsD1d0uuAg4HnAb+MiGuanMcdZzMzMzMb1iSNBnYjxTYHsBA4MyKW9eY87jibmZmZ4VCN4UjSBsCXgGOBDQDlpACWSfpP4FMR8XST87njbGZmZmbDjiQBPwf2Bq4ArgLuJXWeXwzsD/w7MB54W5NzuuNsZmZmhkech6GDgb2AgyPiZx3SvyfpncBPJL0zIn5ad0J3nM3MzMxwx3kYeg/wky6dZgAi4qeSLgXeR1pZsJLncTYzMzOz4eiVpGnn6vwceFWTE3rE2czMzAyPOA9DW5BimuvcC2zZ5IQecTYzMzOz4WgMsLxBvqeB0U1O6BFnMzMzs8wjzsPO1pJ2qMmzTdOTueNsZmZmZsPVZQ3yiDSvcy13nM3MzMxwjPMwdNRAn9AdZzMzMzPccR5uIuIHA31O3xxoZmZmZtaAR5zNzMzM8Iiz1fOIs5mZmZlZAx5xNjMzM8MjzlbPHWczMzMz3HG2eg7VMDMzMzNrwCPOZmZmZplHnK2KR5zNzMzMzBrwiLOZmZkZjnG2eu44m5mZmeGOs9VzqIaZmZmZWQMecTYzMzPDI85WzyPOZmZmZmYNeMTZzMzMDI84Wz2POJuZmZmZNeARZzMzM7PMI85WxSPOZmZmZvSEaqzNRx1JMyRFl8cva8p2KzehlG+EpNMkzZO0TNKtkt7Vr8brXJ+xkr4naZGkpZKmS3p5Kc92kq6Q9DdJT+W8MyTtO9D1GQgecTYzMzMbOv4PsFHp2L8AXwWmNSh/AfCd0rE/l/bPBE4BTgd+DxwGXCpp/4i4qrcV7kSSSPXdHjgeeAQ4DbhO0oSImJ+zbggsAj4NzCe99mOBqyS9KyJ+OhD1GSjuOJuZmZkxNG4OjIjby8ckHQs8Dfy4wSnuj4gbuyVK2pLUaf5CREzOh6+TtCPwBWBAOs7AgcAbgb0j4rp87VnAXOATwAkAETEHOKZUx1/kfEcBQ6rj7FANMzMzsyFK0vOAQ4ArI2LxAJxyH2B9YGrp+FTg5ZK2L1x7VA7puFPSckkLJH1F0ugG1zkQWNDqNANExKPAlcBBVQUjYgXwKPBMs5e07rjjbGZmZsbQiHHu4J3AC4AfNMz/4dzJfVLStZJ2L6XvAiwH7i4dn5OfxxeOTSWFUFwM7AecTRodvqhBPXYBbutwfA6wraQNiwdz3PUoSS+S9BngpcB5Da6zTjlUw8zMzIx1FqqxuaSbC/tTImJKRf4PAA8C/93g3FOBnwMLgO2AjwPXSvrXiJiR82wKLImIKJVdXEgnd7jfDRwRERfmtOmSFgNTc5zy7Iq6bArM63C8dZ2xwBOF418CTs7bTwCHRcSvK84/KNxxNjMzM1t3FkXEbk0ySvoH4C3A13L4QqWIeH9h9zeSriCN+p5FijcGEFDuNLeOF00kxVVfLqnYX7wmP+8BzJY0slR2Ze6UN71Oy7mkGO4Xkb4sXCzp4Ij4eZf8g8IdZzMzM7NssG8OLDmcFFbbNEyjTUQ8nm+0K958txgYK0mlUeexhXSALUmx0MVR4aLN8vM9pNHtlqNIM3ssJo9el7Su80iprvNJs2oA/FzSDGAyaQR9yHDH2czMzGxo+gBwa0Tc2o9zlEd+5wAbAC+hPc65FdvcmtXjYWAZUI6RblmQnw/I52uZW7jOWzuUGw/cGxHdOuQtNwMn1uRZ59xxNjMzM2NoTEfXImk30g12J/XjHBuRbur738LhX5JCMN4HfK5w/HDgtoiYW8h3KrBxVaxxRPypS9I04ChJb4qImYX6HEC62bCq3iNIoSX3VOUbDO44m5mZmTG0Os6k0eYVdOhkStqO1KmcFBGT8rFTgJ2A6+i5OfAUUszw+1plI+JBSecAp0l6HLiFdBPg3hSmiYuIGZJ+BFwm6avATcAqYBzwNuDUiCgvrFI0DZhFupHw4/QsgCLSjYCt13IGKaTjBuDvub7HAK8F3lvfTOuWO85mZmZmQ4ik9YD3AL+MiAc6ZQFG0j6t8F3AO/JjY+AxUmf0mIi4qVT+dFLs8sdIHdW7gEMj4spSvsNJq/4dncssJ82UcTXQqV6rRcQqSfuT4pS/BYwmdaT3ioj7CllvIYVkHJbr/XfgVmD3iLih6hqDoVHHWdKLgXOAfyX9Y00HToyIexuU3Za0tONewOakwO+fAGdHxNKasgF8PiI+3aSeZmZmZn01VEacI+IZYIuK9HmUZqfInd5yx7db+ZWkmTbOqsm3CvhafvRaXrDl6PzolmcazZYSHxJqO86SxgDXkr5lHEEKMD+LtDzjP1V1fiU9n9TJXg/4DHAv8BpSTM0/kn4aMDMzMzMb8pqMOB8L7ADsFBF3A0j6I/AX4N+Ar1aUfQOpg7xPRLTm/btO0qbAKZLGRMSTfa69mZmZ2QAZKiPONnQ1WXL7QODGVqcZIN9xeQM1a42T5v+DFGdTtCRfu9sk2B1JGiPpSkkLJb0iH7tA0nxJu0n6raSnJN0lab+cfpKkeZIek3SFpK4/fZiZmZmZddOk41y11vj4DseLppNGpr8oabykDSXtTQpG/3ZdjHNRHqWeTrpj9PWlOQ03Ai4EvkcKin+QtNLNV0ix1R8hBZ7vxRBc99zMzMyGhhUr1u7Dnt2ahGpsSml1l2wxPau/dBQRyyS9Ebic1NFu+R7w0aaVzDcYXk26A/QNEfFQKcsLgA9FxPU5/wLSHZn7A+NzEDySdgWOlzSydczMzMwMHKph9ZpOR9ebtcZ7MkijgUtIyza+n3Rz4GuBz5LmJvxwg2uPB35LWsnmnV1Wmlna6jRnd+bn6aUO8p2k17wVPcs6Fut7HHAcwBZbbMGM668vZ+lo1aqe7ZWl7nj5P2Bxccutt25P22yznu3XvKY97ck1IsGXd9mG9u8zG5bSti/tr+yyDZ3/2ZNtttmEyZPrInWe29xG1dw+9dxG1dw+9erbqPxRPrLLNqzZZVivsL2slFZct6L943bMGLrujx7dnlb8zLz//va0B0qToY0sVHdEk9/TzfqgScf5EbqvNd5pJLroGGBPYMeIaP0vul7So8AUSd9usIzkHqT10E+uWJ5xSXEnIp6W1Kp70dP5ufRfc3W5KcAUgJ122in23GOP1WmrKqJalhX+XixZ0p62aFH7/rx5PdvlPwK3FQJiZs9uTyvvF0LOgb+WalT8a7KwlPZgab8Yfl6OnHmabiZPPohTTrmia7q5jeq4feq5jaq5ferVt9H6pf3nF7Y3KqVtWdrfqrC9XSlth9Vb0o5tKRMm0HV/113b03YsFC0PNm2+efv+Jpv0bJc74EUjWNU1zSPOVqdJx3kOKc65bDw965l383LgkUKnuaU1EffOpJCKKt8hTYg9VdKKiLi8Jr+ZmZmZ2YBr0nGeBkyWtENE/BVA0jjSVHOfrCn7d2CspB2jfYj0n/Pz/R3KlEVEfFTSCuDHkt4bEZc2KGdmZmbWmEecrU6TjvN3STfyXSHp06TA1zOB+0ijwUDnddOBC4CTgKskfZ4U47wbaTGU35OmtGskIk6UtBK4WNKIiLikaVkzMzOzOu44W53ajnNELM1TyJ0D/JB0J8GvSUtuF2OO11g3PSLmSXodcAZptcHNSR3uKaSltLsHGnWuy8l55Pmi3Hn+UW/Km5mZmZn1VaNZNSLiXuBdNXnm0WGmjYi4HTi0L5WLiE7nOxU4tbB/ZC/KXkAaBTczMzNr4xFnq+MJW8zMzMzMGmg6j7OZmZnZsOcRZ6vijrOZmZkZDtWweg7VMDMzMzNrwCPOZmZmZnjE2ep5xNnMzMzMrAGPOJuZmZnhEWer546zmZmZGe44Wz2HapiZmZmZNeARZzMzM7PMI85WxSPOZmZmZmYNeMTZzMzMDMc4Wz2POJuZmZmZNeARZzMzMzM84mz13HE2MzMzwx1nq+dQDTMzMzOzBjzibGZmZoZHnK2eR5zNzMzMzBrwiLOZmZlZ5hFnq+KOs5mZmRkO1bB6DtUwMzMzM2vAI85mZmZmeMTZ6nnE2czMzMysAY84m5mZmeERZ6vnjrOZmZkZ7jhbPYdqmJmZmZk14BFnMzMzs8wjzlbFI85mZmZmQ4SkPSVFh8eSBmVHS/qypIWSnpI0S9IeHfKNkHSapHmSlkm6VdK71sJrGSvpe5IWSVoqabqkl5fybCfpCkl/y3VeJGmGpH0Huj4DwSPOZmZmZgy5GOcTgN8V9pvU7HxgP+DjwF+BjwBXS/qXiJhdyHcmcApwOvB74DDgUkn7R8RVA1B3JAmYBmwPHA88ApwGXCdpQkTMz1k3BBYBnwbmAxsBxwJXSXpXRPx0IOozUNxxNjMzMxt67oiIG5tmlvQK4L3A0RHx/XxsJjAHmAQcmI9tSeo0fyEiJufi10naEfgCMCAd53y9NwJ7R8R1+dqzgLnAJ0hfDIiIOcAxpdfyi5zvKGBIdZwdqmFmZmaWRaxaq4+16EDgGeCSntcSK4AfA/tI2iAf3gdYH5haKj8VeLmk7VsHJI3KIR13SlouaYGkr0ga3bA+C1qd5lyfR4ErgYOqCuZ6P5pfz5DijrOZmZkZAAGsXMuPxi6StFLSw5IulrRtTf5dgLkR8WTp+BxSR3nHQr7lwN0d8gGMLxybSgqhuJgUAnI2aXT4ogb13wW4rcPxOcC2kjYsHsxx16MkvUjSZ4CXAuc1uM465VANMzMzs6HjUeArwEzgMeCVwKeAWZJeGREPdim3KSmOuGxxIb31vCQioiqfpN2BdwNHRMSFOW26pMXA1BynPLvidWwKzKuoz1jgicLxLwEn5+0ngMMi4tcV5x8U7jibmZmZrdarUeG+2FzSzYX9KRExpbUTEX8A/lBInynpeuAmUlzwp7ucV6Qh807H+5JvIvA0cLmkYn/xmvy8BzBb0shS2ZW5U970Oi3nksJKXgR8ALhY0sER8fMu+QeFO85mZmZm686iiNitNwUi4hZJfwZeU5FtMdApnGNsIb31PFaSSqPO5XxbkkI8iqPCRZvl53uA7QrHjwIuyOfZlDW1rtM2Op5n2WjNtPFzSTOAyYA7zmZmZmZDTyvGeUjqNoLbMgd4h6QxpTjn8aSR47sL+TYAXkJ7nHMrtvn2/PwwsAzYvcv1FuTnA/L5WuYWrvPWDuXGA/dGRLcOecvNwIk1edY53xxoZmZmttqqtfzoPUm7kW6W+9+KbNOA9YBDCuVGkeKUr4mI5fnwL0kd6feVyh8O3BYRcwv5RgMbR8TNHR4LACLiT6XjDxfqs7WkNxXqsxGpoz2t5vWOIE1ld09VvsHgEWczMzOzIULSRaRR21uAJaSbA08D7ge+kfNsR+pUToqISQARMVvSJcC5ktbL5/gwaQGS1Z3kiHhQ0jnAaZIez9d5N7A3hWniImKGpB8Bl0n6KinGehUwDngbcGpE/LnipUwDZpFuJPw4PQugiHQjYOv1nkEK6bgB+DspxvkY4LWkeamHFHeczczMzIAhEqpxG/Ae0mp7Y0idyZ8C/xERi3IeASNZM3LgKODzwFnAJsCtwMSIuKWU73RS7PLHSB3Vu4BDI+LKUr7Dcz2OzmWWk2bKuBp4oOpFRMQqSfuT4pS/RRq9ngXsFRH3FbLeQgrJOAzYOL/eW4HdI+KGqmsMBneczczMzIaIiDibNF9yVZ55dJidIiKeAk7Kj6ryK0md67Nq8q0CvpYfvRYRi0md7qMr8kyjJnRjKHHH2czMzAwYIiPONoS542xmZma2mjvO1p1n1TAzMzMza8AjzmZmZmaAQzWsjkeczczMzMwa8IizmZmZ2Wp9W6TEnhs84mxmZmZm1oBHnM3MzMwAxzhbHXeczczMzAB3nK2OQzXMzMzMzBrwiLOZmZnZah5xtu484mxmZmZm1oBHnM3MzMwAxzhbHXeczczMzFbzPM7WnUM1zMzMzMwa8IizmZmZGeBQDavjEWczMzMzswY84mxmZma2mkecrTt3nM3MzMwAh2pYHYdqmJmZmZk1UNtxlrSNpG9ImiXpSUkhaVzTC0gaLenLkhZKeiqfZ4+GZUPSWU2vZWZmZtZ3rRHntfmwZ7MmI847AocCjwC/6cM1zgeOBT4L7A8sBK6WNKEP5zIzMzMzGxRNYpyvj4gXAkj6IPDWpieX9ArgvcDREfH9fGwmMAeYBBzY6xqbmZmZrTVeAMW6qx1xjoj+vIMOBJ4BLimcbwXwY2AfSRv05mSSxki6Mod9vCIfu0DSfEm7SfptDge5S9J+Of0kSfMkPSbpCklb9OP1mJmZmdlz1Nq+OXAXYG5EPFk6PgdYnxQG0oikTYHpwE7A6yPi1kLyRsCFwPeAdwAPApdL+gqwF/AR4MS8fV6fXomZmZkNc45xtmprezq6TUmx0WWLC+m1JG0LXA08AbwhIh4qZXkB8KGIuD7nXwDcSoqpHh8RK/PxXYHjJY1sHStd5zjgOIAtttiCGddf36R6rCqMya8snXXFivb9iJ7trbduT9tss57t17ymPe3J8lcPlnfZBhhb2N6wlLZ9aX9ll21If0A622abTZg8+aCu6eY2quP2qec2qub2qVffRirtj+yyDWt2GdYrbC8rpd1T2J7fljJmDF33R49uTyt+Zt5/f3vaAw+0748sVHdEv4YF3bm17tZ2x1l07n2V/6dWGQ/8FrgdeGdEPNEhz9JWpzm7Mz9PL3WQ7yS95q0o/08GImIKMAVgp512ij336Dz5x6rSQP2ywt+LJUva8y5a1L4/v3DVe+5pT7vttp7t2bPb08r7EXcX9v5aqmHxr8nCUtqDpf3HCttLS2lP083kyQdxyilXdE03t1Edt089t1E1t0+9+jZav7T//ML2RqW0LUv7WxW2tyul7bB6S2r/cXnCBLru77pre9rLXtazXR5s2nzz9v1NNunZLnfARzhu2QbI2u44Lwa27XB8bCG9zh7AZsDJXTrNAEuKOxHxtCRYc7S71RMs/ZcyMzMz8wIoVm1td5znAO+QNKYU5zye1Im9u3OxNt8BNgamSloREZevhXqamZmZmVVa2zcHTiMFQR3SOiBpFPBu4JqIKAfndhIR8VHSTX0/lnRIXQEzMzOzvvHNgdZdoxFnSQfnzVfn530lPQQ8FBEzc57tSHcDTIqISQARMVvSJcC5ktYD5gIfJt2h9r7eVDQiTpS0ErhY0oiIuKS20FpSjpUaNarn+8fI0r0UoypauJxW3K8ql6/UZbvTflVacb/8PaqY5v/sZmbDQ9O/+1WfJXV5u5ft62dfOa3q87bvMc2B53G2Kk1DNS4t7X8rP88E9szbIv1PKf8vPAr4PHAWsAlptouJEXFLL+tKRJwsaQVwUe48/6i35zAzMzMz64tGHeeIqJ0FIyLm0WG2jIh4CjgpP3ql03Uj4lTg1ML+kb0oewFwQW/rYWZmZs8V/oXVulvbNwc+uy0rz0uZlX4vWr+w/7zntQ+4l6fEKe73Jm2D0hqLy5YV588s/yS2fpdtaJ93E9p/ICjnLSpfQzX5zW1Ux+1Tz21Uze1Tr1MbVf3dL6aVPy/KeYv75c+InrLlz6+B+lx83vNKtRlVCLEoL6JQ3m9Z5bAM6x13nM3MzMwAT0dnddxxNjMzMwPccbY6a3s6OjMzMzOzYcEjzt1ErLl+dkt5TpxC4NVGG27YlvTUU+3fTYpLgpaytu0///ntaWPHtu8vXFgM7iplblsYsZxWXlb7Gborxq+Vv4GP7HBua+c2qub2qec2qub2qdepjaqmoyt+MJWCiHv1WdNTtvz5Vf58K372lT8Xi5+Z5XIbbViKT36isLhw+R6lbjHOKzuNLjvu2brziLOZmZmZWQMecTYzMzMDHONsddxx7iYCFi3qnFYRqlH+eeiFW2zetr98ec8g/4te1H6a4uW22qo97f772/cXLtyosLdRe2Lbfjk042m6K089VAzj6BSqUb6utXMbVXP71HMbVXP71OvURsVQjfLf/WJ4xialtKrPmu5pm7d/DK7x+Vb8LCx/LhbLvnCLUghF+TO6L6Ea3Y4Porxa83uA3YAtgXuBnwL/NyIerykbXZJeGRGzC/lGkNbE+DfgRcBdpJWfL+/3C2ivz1jgy8DbSW+uWcC/R8SfCnm2A74OTCC93qXAbcAXI+K/B7I+A8GhGmZmZmarrVzLj1qn5IyfAiYC/wl8GPhV7vDWuQD4l9Ljz6U8ZwJnAN8E9gVuBC6V9LYmFWxCkoBppNdwPPAu0je16yRtU8i6IbAI+DTwNuAY4AngKknvHKj6DBSPOJuZmZkBQyRU44CIeKiwP1PSYuAHwJ7AtTXl74+IG7slStqS1Dn/QkRMzoevk7Qj8AXgqj7XvN2BwBuBvSPiunztWcBc4BPACQARMYfUWS7W8Rc531Gk0fYhwyPOZmZmZkNEqdPc8rv8vPUAXGIf0rRZU0vHpwIvl7R964CkUZJOk3SnpOWSFkj6iqTSOo4dHQgsaHWaASLiUeBK4KCqghGxAniU6qm/BoVHnLuJgHnzevZHlpcTLSiu+1mcOwfWiLPadpttCknt31uKs9+VQ7fW3O+JS1u4cMtShYrXrPvmXJxyrjfx0KNIoUjWnduomtunntuomtunXl0blZfRLs75Vo5bLp/nhV3Tttqq5zNq3Lj2Utts032/nLbtNoW45vnz2xPLH4zFD9GnnqKr4hR0y5d3ytC97OB5U36+o0HeD0v6OOmF3Aj8R0T8ppC+C7AcuLtUbk5+Hk8a7YXUmT4A+CLwW2BnUpjHOFLoRZVdSLHKZXOAD0jaMCJWB6bnMJQRwObAscBLgY/VXGOdc8fZzMzMbN3ZXNLNhf0pETGlW2ZJWwOTgOkRcXO3fNlU4OfAAmA74OPAtZL+NSJm5DybAksionwj4eJCOpJ2B94NHBERF+a06TlsZKqkCcUbDjvYFJjX4XjrOmNJscwtXwJOzttPAIdFxK8rzj8o3HE2MzMzA1KM81pfAGVRROzWJKOkDYErgBWkeN9KEfH+wu5vJF1BGvU9ixRvDCDSC13jcqX9iaSfni+XVOwvXpOf9wBmSxpZKrsyd8qbXqflXODHpFk+PgBcLOngiPh5l/yDwjHOZmZmZkDPzYGDOqsGADmOeBqwA7BPRMyvKbLmq0nT1/0CeE3h8GJgbJ71omhsIR1S/M36pNHfZwqPB3P6Zvn5nlL6EYXzbNqhWq3rPFKq6/yIuDkifh4Rh5LCTCavUXqQecS5mwi4uxz+k1XN41xeE7Q8YWUh5vmlO+7YlrRixYhO2YD26SmhPZTriSfa1zN9/PGqWPpyrHaxvqWLtsU4l/+zrweUXpuVuI2quX3quY2quX3qdWqj4udAOca5eM9XOcb5haX9nvO+4AXtn0PFj7fSRx0ve1n3/ZfuWBrtLX4Ol2OcFy5s319auE+n6TzOHWOcB5+k9YDLgdcCbynOe9yX09E+8jsH2AB4Ce1xzuPz8+35+WFSx2D3LuddkJ8PyOdracVHzwHe2qHceODeYnxzFzcDJ9bkWefccTYzMzNbbXBvDsw3yV0EvBnYr2pquQbn2gjYD/jfwuFfkkbG3gd8rnD8cOC2iJhbyHcqsHFVrHFFp34acJSkN0XEzEJ9DgAurqn3CFJoyT1V+QaDO85mZmZmQ8d5wCHA54Glkl5XSJsfEfPzanv3kFb7mwQg6RRgJ+A6em4OPIUUM/y+1gki4kFJ5wCnSXocuIV0E+DeFKaJi4gZkn4EXCbpq8BNpADwcaSFSk6NiPLCKkXTSCsFTs2zfDwCnEYaAf9SK5OkM0ghHTcAf8/1PYY02v7eZk227rjj3M2qVXBbp1lUqA7V2HDD9rSHH27fL8ZYlH46Gl/4vao8VV35V6fiTDvlX6Buu61nWqDHHy8vp1qeevGxwnZ5OrqVXbYh/XqzHVbFbVTN7VPPbVTN7VOvUxuN7LINvZmOrhieseuu7Tl32YWuaeVQjfEvK4Rn3Hlne2Jxvxyq8fe/t+/3ZcntNaatGxILoOybn0/Pj6LPkVb8E+kfr9hZuAt4R35sTPqAvwE4JiJuKp3ndFLs8sfoWXL70Ii4spTvcNKqf0fnMstJM2VcDTxQ9SIiYpWk/Ulxyt8idUBmAXtFxH2FrLeQQjIOy/X+O3ArsHtE3FB1jcHgjrOZmZnZaoPbcY6IcQ3yzKM0O0Xu9JY7vt3KryTNtHFWTb5VwNfyo9ciYjGp0310RZ5ppNHpZwXPqmFmZmZm1oBHnM3MzMyAdTSPsz2LuePczapV8Ic/dE5brxQ3XBXj/KIXte8Xlwgtx1YVYrJeNWFC6aLtPw50C9eC9hDsu+9unyJo4cJS/dpinMuxXsVp7co/Xd1DmlrSunMbVXP71HMbVXP71OvURsW45vJ9MM8rbLfHOBeX0Yb2aeaKMc0Ar3xlz3b54+xVE0od09mze7bvKK0ofdddPdv9iXF+pss0rU8+2fm4WRfuOJuZmZmtNug3B9oQ5hhnMzMzM7MGPOLczapVrCr8fFT5DaMYqrHJJu1pW2zRvl8M1SgvB1ixglFV6EZ5drznFX5pK1dn3rz2n9oWLdps9fYjj7TnrV5QaT7SjlUZzG1Uw+1Tz21Uze1Tr7qNNtigfX9sIbpv883b08aNa98vhmqUp5wrfmRVhmaU98vTwBZXDpw3rz3toYfa94vTvZZDNQqqI5iHxHR0NoS542xmZmYGuONsdRyqYWZmZmbWgEeczczMzFbziLN1545zF0Fa87GT8jD9qEIs1fql6XHGlPZHFWOyivFY0B6TVTXfHOWY5/YaVc2OV45ZW7iwZ3tpacXtquqMGbPmFEPWzm1Uze1Tz21Uze1Tr1MbFe+LKX5eADy/sOL2Vlu1p22zTft+cens8jLabXHN5Zjmm29u36+Kcf7LX1Zvrih9npYnknu6sF3+BO0W19xlkjqzrtxxNjMzMwMc42x13HE2MzMzW80rB1p3vjnQzMzMzKwBjzh30ZsY5+J+KVyMMaX9TQoxWhuWg4q7LQkKa07WXFCe43n06BGF7fa85Rjn4org5WmlHePcP26jam6fem6jam6fer2NcS7eF1P8fIDqGOfxL6uYq7lq3maAP/yhZ3vOnLakJx5/fPX2kvZSa8Q4F2duLo8ZN49xdqiGVfOIs5mZmZlZAx5xNjMzM1vNI87WnTvOXQTwYJe0NaajK2yvX0orh2q0TZdT+AkKYJPiT1TrtS+NvcbvacV1Uktp4wu/n40a1V7b8hLcxdCN3oRqjB695hKr1s5tVM3tU89tVM3tU69TGw1UqMZLdywEQNx5Z3viHXf0bJenmCvvFz77lpQ+FxcXtpe0lxqQ6ejWnPjVoRpWzaEaZmZmZmYNeMTZzMzMbDVPR2fdecTZzMzMzKwBjzhXWFyfBWhvxPJ0dMtK+1XfY0cVYrs2LCwzCqwZnFwMRHve80on6qnRS3fcsS2pOFVd+bRVK4CXPfMMlE5tJRFuoypun3puo2pun3oRay6HXVSOcS5+JpSnL912m9In2N1392yXY5zvuqtzPmhbRhvap5wrf+72Jsa5+JG1ZuxyZ45xtt7yiLOZmZmZWQMecTYzMzMDPOJsddxx7iJY82ehlqrp6MrRDVU/F5XPU5zKbvTf29ctHDVvXnvm4m9o5d/Tir+1lX6H27Y0n9AGG/TUohwNUjUd3f33w9ZbYxXcRtXcPvXcRtXcPvU6tVHVdHTPf37P9gu3KIVmzJ/ffb8qrfT5taL0+baky3Z5/7FSWmkG1T5NR9e5i+yOs3XnUA0zMzMzswY84mxmZmYGOFTD6njE2czMzMysAY84VyhPddNS/rZR3C9PR1dWNXXdk122ATZ66KH2A8UYsVK8GJtt1rNdDlwuBbS9cIue+OjHntf+yp56qmd7ZekL+AMPrBlabe3cRtXcPvXcRtXcPvU6tdHIkT3b5dlMN9qwEA28aFF7Ynl/4cKe7fLnUHG/9PlV/nyr+uwr7pdjmqumoyvHNHeLce583AugWHfuOJuZmZkBDtWwOg7VMDMzMzNrwCPOZmZmZqt5xNm6c8e5i2DNOZlbquZxLiunFc/5dC/S1lgP+4knOm8DLF3avVxFzPNGxWW8aV+euzyP88iRa57K2rmNqrl96rmNqrl96nVqo+I8zuuPKsXzVn22lD9Pip815bzF/VK53nz2NU0rpzedx9nRzNZb7jibmZmZAY5xtjruOJuZmZkB7jhbHXecK3RbLrvqjspyg5bPsaIibVVFWtv61+X9qrTinHJ1eUtT1a1f+D1v1Kj2Vz1ixJpLtVo7t1E1t089t1E1t0+9Tm00ovhpU47Dq/psqfo86cVnVG8++5p+ZvY2b0t0OW7WjTvOZmZmZqt5xNm683R0ZmZmZmYNeMTZzMzMDEjBG55rw7pzx7kPqpbybLrMZ2/Ps4ZnnunZLseolfer0or75bRCjPMI/yExM3tWqvz73ZvPhKqy5bzFz6iSvn721X2+9uoz1KyPakM1JG0j6RuSZkl6UlJIGtfk5JJ2kzRF0p257L2SLpK0fcPyIemsJnnNzMzM+m/lWn7Uk/RiSZdJelTSY5J+KmnbhmVHS/qypIWSnsr9tz065Bsh6TRJ8yQtk3SrpHc1quAAkrSLpGskPSHpYUnfl7Rph3x9bpOB1CTGeUfgUOAR4De9PP9hwC7A14F9gU8CrwJulvTiXp7LzMzMbC1qTUc3eB1nSWOAa4GXAUcA7wf+EbhO0vMbvIjzgWOBzwL7AwuBqyVNKOU7EzgD+Capj3YjcKmktzW4xoCQ9A/ADOB5wMHAR4C3AD+XNKKQr79tMmCahGpcHxEvBJD0QeCtvTj/FyPioeIBSTcAc+n5R7UGyj87Nb6rc+XauzvY4Rv13EbV3D713EbV3D7rUB8/T/wv1GvHAjsAO0XE3QCS/gj8Bfg34KvdCkp6BfBe4OiI+H4+NhOYA0wCDszHtgROAb4QEZNz8esk7Qh8Abiqvy9C0hnAkRExriLbx4H1gAMiYkkutwCYCbwd+GnO1+c2GWi1/a+I6PN7vtxpzsf+BjwEbN3b80kaI+nK/PPDK/KxCyTNz2Ehv80/S9wlab+cflL+GeIxSVdI2qKvr8fMzMyGs8EfcSZ1bm9sdRABImIucANwUIOyzwCXFMquAH4M7CNpg3x4H2B9YGqp/FTg5cWQWkmjckjHnZKWS1og6SuSBmIW9QOBX7Q6zbm+1wP30v5a+9MmA2qdT0cnaWdgS+COXpbbFJgO7AS8PiJuLSRvBFwIfA94B/AgcLmkrwB7kYb+T8zb5/XzJZiZmZmtLbsAt3U4PgcY36Ds3Ih4skPZ9Unht618y4G7O+SjdJ2pwKeBi4H9gLOBY4CLaupSSdLzgO1p9lr70yYDap3OqiFpFPBt0ojz+b0oty1wNfAE8IYOI9kvAD6Uv6W0hvlvJcX2jI+Ilfn4rsDxkka2jpmZmZn1GPTgkk1J95WVLQbG9qNsK731vCQiyosntuWTtDvwbuCIiLgwp02XtBiYKmlCRMzOeUcCKpxrRD7e1tfMI+Dk16KK+u7U8HXVtcmAWtfT0X0TeD2wX0R0aoBOxgO/BW4H3hkRT3TIs7TVac7uzM/TSx3kO0mveStgfvkkko4Djsu7yz/X+dvN0DB7duftdWdzYNFgXPhZxG1Uze1Tz21Uze1Tz21Ubaf23Uevhis3X8vXHC3p5sL+lIiYUsrTaTVwdTjWKU+Tsk3zTQSeJv2KX+wzXpOf9wBm5+17gO06nLNtbkJJ20fEvMK1mr7WvrbJgFpnHWdJZ5M6pUdExDV1+Qv2ADYDTu7SaQZYUtyJiKclwZrfTp7Ozx3jcvIbd0qu780RsVsv6vmc4vap5zaq5vap5zaq5vap5zaqVurAEhETB6suBY/QMzJcNJbOo65Fi4FOU7SNLaS3nsdKUmnUuZxvS1KIR7f+12aF7QOADQr7x5F++T+wVGZBfn6E1Bnu9loXF/b70yYDap10nCWdTpqK7oSI+GEvi38H2Jj0k8CKiLh8wCtoZmZmNjTMIcX0lo0n/fpeV/YdksaU4pzHkwYP7y7k2wB4Ce1xzq144dZ1HgaWAbt3uV6rE0xE/KmYIGl/4OmIuHmNUin/k5Lm0f21ziy9rr62yYBa6zcHSjoBOAs4PSK+0YdTRER8lHRT348lHTKgFTQzMzMbOqYBr5O0Q+tAXnjuDTmtrux6wOq+Ug6xeDdwTUQsz4d/SepIv69U/nDgtjxjRSvfaGDjiLi5w2MB/TMN2E/SxoX6vpEU8jGtlK+vbTKgGo04Szo4b746P+8r6SHgoYiYmfNsR4pvmRQRk/Kxw4BzSQ1/raTXFU77WEQ0/pYQESdKWglcLGlERFxSW6h/yvFG1s7tU89tVM3tU89tVM3tU89tVG0ots93gY8CV0j6NCmc4UzgPtKv8EDnfldEzJZ0CXCupPVI62Z8mDR7xepOckQ8KOkc4DRJjwO3kDrXe1OY3i0iZkj6EXCZpK8CN5HunhwHvA04NSL+3I/X+mVSZ31aDundGPhSvs7Petsm60LTUI1LS/vfys8zgT3ztoCRtI9iT8zHJ+ZHUbFsIxFxsqQVwEW58/yj3pTv5bWG4n+mIcPtU89tVM3tU89tVM3tU89tVG0otk9ELJW0N3AO8ENSP+rXwImle7069bsAjgI+T/q1fxPSLGMTI+KWUr7TSbHLHwNeBNwFHBoRV5byHQ4cDxydyywH5pFmO3ugr68TICLul7QXaQGTy0mj4FeQ7mtbVcjXtE3WOq05E4mZmZmZmZWt8wVQBpKkNxZWC/y7pK/mCbXryh0s6XJJfyusNHi2pBc0KLunpJD0loF5FQNL0oslXSbp0bxa4k/zPNhNyo6W9OW8MuNTkmZJ2qNh2ZB0Vv9qv270tY2UVqeckldPelLSvZIuKq6wVFP+WdFG/XkPlc5zWn7N/9Mw/7OifaD/bSRpZ0mXSlpU+Bv0sQblnhVt1M+/Q9tK+kH+//WkpD9LOkvS8xuUfba0zzaSvpH/xj6Z6z2uF+WH9d/q/rTPc+XvtA2eZ23HWdI/Ab8irRK4P2lVm6OACxoUP4W07uWnSCEk/0mKAfqVpGdzm4wBrgVeBhwBvB/4R9L687UfOqRFaY4FPktq04XA1ZImrJUKD4J+ttFhpLt6vw7sS5op5lXAzZJevNYqvQ4NwHuodZ4dSD/pPbg26jmY+ttGknYD/pd0R/sHSXGCXyH95Pqs15/2yenTSdOQfoa0Stn3gJOB/1qL1V7XdgQOJU2j9Zs+lB/uf6v70z7D/u+0DbKIeFY+SEHjfwHWKxz7AClg/FU1ZbfocKxVdu+asnvmfG8Z7DboULePkb4Q7Fg4tj2wAjippuwr8us6qnBsFCnmaVqDawdw1mC3wVpuo07vm+1IN0pMGg5t1J/2KZ3natINGzOA/2lYZsi3zwC8h0aQplX6WR+vPeTbqJ/t89b8Gt9aOv6FXH7Ms719Wu+DwvYHc73HNSw77P9W97N9hv3faT8G9/GsHF1VulN0IvCTiCiuSPMTUmD5QR0LZrHmkt0Av8vPW/ehPjtI+oukGySNzcfmSZoq6f35Z9inJP1G0j9Ker6k70h6WNIDkr6i0pKUfXQgcGNErJ6TMdKUMjdQ0ya57DPA6tlKIi2L+WNgH0kbdCvYiaQxkq7MPyW+Ih+7QNL8/FNaK8TmLkn75fSTcrs9JukKSVv05poN9bmNOr1vIuJvpCXk+/K+GYpt1J/3UOt1vZc0wnNafyoyRNsH+tdGe5LmHf3qQFRkiLZRf9pn/fz8WOn4EtKXjl6tEjZE24co3PTUB8P+b3V/2uc58nfaBtGzsuNMmrB7NKUlsSNiGWlqlvGdCtV4U36+ozeFJL2StCT4HaRR6OIKNnsA/wc4lfST5UtId41eBDxO+klpCnASPUt998cudF4mfA71bbILMDfaJ0xvlV2f9NNZI5I2Jf3cuhPw+oi4tZC8EXAh6efXd5B+yr9c0leAvYCPACfm7fOaXrMX+tNGa5C0M2llpd6+b4ZqG/WrfZS+OJ4DfCIiFtflrzjPUG0f6F8bvTE/j5Z0o6RnJD0o6etqcH9G0RBuo/60z3TSL4lflDRe0oZKd9J/DPh2RCxtWokh3D799Vz5Wz1ghuHfaRtE62zJ7QHWWnax0zKLi+m8LGNXkrYGJgHTo8sKN13KvZkUMnIpcFxErCxl2ZA0BcyjOf+LgK8BN0XEKTnPr/K31EPomeavrzale5uM7XC8adlWei2lG4CuJk1x84YO3/5fAHwoIq7P+ReQpsrZHxjfakNJuwLHSxrZoV37oz9t1EbpV4Jvk0Yyzu9FuaHcRv1tny8Df6bZvQYdDfH2gf610T/k50uAb5LiL3cj/f15MekDuNYQb6M+t09ELFNa/OByUkew5XukOVwbGeLt01/Plb/VA2KY/p22QTSkR5yVjCo+Wkn5udNcer39KW9D0pyBK0g3FzZ1CHAVcF5EHNPlP8SsVqc5uzM/X13KdyfpQ3Mg9LVN1I+yLeNJo+/3AXt1CYlZ2vpDk7XaZHqpDe8kfbHbqhfXb6rf75vsm8DrgcNLvzRUeTa0UZ/aR9LupHsFPhwRfZ3n8tnQPtD391Drb+7UiPhsRMyIiMnA54C3S2ryq8ezoY36+h4aTfpSsSXppsI3AR8nLczQdNTu2dA+/fFc+ls9EIbr32kbJEO640z6o/lM6QHV36zHFtIr5T/S04AdgH0iYn4v6vYu4Cng+xV5yv9Jn644ProX1666Xrc2qfuD0W2kfmwhvc4epBiy86P7hORLijsRUdUmMDDtUtSfNlpNaYWj44CjI+KaXlx/qLdRf9rnO6QRnfmSNpG0CekDY2TebxJ7OdTbp3WdvrbRw/n5V6XjrffQhAbXH+pt1J/2OYYUB/62iJgaEdfnLxYnAx9qxZjWGOrt01/Plb/V/TaM/07bIBrqoRq/B17T4fg9pJVrdikezB3hHVhzpcM1KN1geDnwWlJs8p96WbfjSNPazZC0d0TcWVdgHZhDqU2y8UDd8uZzgHdIGlOKnRtP+o9/d+dibb5DWi5zqqQVEXF5gzLrWn/aCABJp5N+Yj8hIn7Yy+sP9TbqT/vsnB8f6pD2CPDvwLk15xjq7QP9/38Ga44YtkYLm9wUNdTbqD/t83LgkYi4p3T8pvy8M+nn8CpDvX3667nyt7pfhvnfaRtEQ3rEOSIej4ibi498/Gngl8Chap+N4mDS3KjTqs6rNFfzRcCbgYMi4sY+VO8xYB/gr6T5SXfuwzkG2jTgdUpz6AKgNGn8G6hpk5y+HikEpVV2FOkn0msiYnmD60dEfJT0k+qPJR1SV2AQ9KeNkHQCaRnT0yPiG324/lBvo/60z14dHreSbhTbC7iswfWHevtA/9rov0lf+ieWju+Tn5vcYzHU26g/7fN3YKyk8g1u/5yf729w/aHePv31XPlb3WfPgb/TNoiG+ohzlTOAWcBPJJ0HjCPdmHRZRPy+lUnSB0gT5785Imbmw+eR/uh8Hlgq6XWF885vGrIREY9Lmgj8gtR5fnNEzKkrtxZ9l3QDzRWSPk0a1TqTFKf1nVYmSduRRu0nRcQkgIiYLekS4Nw8Gj+XtCjM9sD7elOJiDhR0krgYkkjIuKS2kLrTp/bSNJhpBHTXwLXlt43j0VEoxFrGNJt1J/30IzyySQtAUZ1SqsyhNsH+tdGD+efjz8j6THSQiG7kRay+EEUpnCrM4TbqM/tQ7qp9CTgKkmfB+4ltc9nSL9A3tC0EkO4fQCQdHDefHV+3lfSQ8BDrc+q5/Lf6r62z3Pk77QNomdtxzn/8dgH+CKp4/ooaWqYT5WyjiCtyFW8cWLf/Hx6fhR9jtQpb1qPJyS9DbiS9J/0zRHRaSqmtS4ilipN3XQO8EPSa/41cGIpTkukNin/4nAU6cvEWcAmpNHCiRFxSx/qcrKkFcBF+Q/Oj3p7jrWhn200MR+fyJojhjNJsZm9qcuQa6MBeA8NZF2GXPvAgLTRJNJ0lP+HFO61kPSl/8w+1GXItVF/2ici5uWOzhmkv0ObkzrcU4DPRy/n9x2K7VNQDilszapU/FvynP1bTd/bZ9j/nbbBpejzze9mZmZmZs8dQzrG2czMzMxsqHDH2czMzMysAXeczczMzMwacMfZzMzMzKwBd5zNzMzMzBpwx9nMzMzMrAF3nM3MzMzMGnDH2czMzMysAXeczczMzMwa+P9b/AMVr4+SWgAAAABJRU5ErkJggg==\n", "text/plain": [ "<Figure size 1152x576 with 2 Axes>" ] }, "metadata": { "needs_background": "light" }, "output_type": "display_data" } ], "source": [ "# NBVAL_IGNORE_OUTPUT\n", "\n", "graph2damp(D0)" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "Like the velocity function $c(x,z)$, the damping function $\\zeta(x,z)$ is constant in time. Therefore, the damping function will be a second-order *Function* in space, which uses points of the non-staggered type and which we will evaluate with the D0 array. The symbolic name *damp* will be assigned to this field." ] }, { "cell_type": "code", "execution_count": 31, "metadata": {}, "outputs": [], "source": [ "damp = Function(name=\"damp\",grid=grid,space_order=2,staggered=NODE,dtype=np.float64)\n", "damp.data[:,:] = D0" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "The expressions for the acoustic equation with damping can be separeted between the white and blue regions.\n", "\n", "Translating these expressions in terms of an *eq* that can be inserted in a Devito code, we have that in the white region the equation takes the form:\n", "\n", "- eq1 = u.dt2 - vel0 * vel0 * u.laplace,\n", "\n", "and in the blue region we have the following equation:\n", "\n", "- eq2 = u.dt2 + vel0 * vel0 * damp * u.dtc - vel0 * vel0 * u.laplace.\n", "\n", "Here *u.dtc* represents the centered derivative with respect to the variable $t$ for the field *u*. Then, we set the two pdes for the two regions\n" ] }, { "cell_type": "code", "execution_count": 32, "metadata": {}, "outputs": [], "source": [ "pde0 = Eq(u.dt2 - u.laplace*vel0**2)\n", "pde1 = Eq(u.dt2 - u.laplace*vel0**2 + vel0**2*damp*u.dtc)" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "As we did on the notebook <a href=\"introduction.ipynb\">Introduction to Acoustic Problem</a>, we define the *stencils* for each of the *pdes* that we created previously. In the case of *pde0* it is defined only in the white region, which is represented by *subdomain* *d0*. Then, we define the *stencil0* which resolves *pde0* in *d0* and it is defined as follows:" ] }, { "cell_type": "code", "execution_count": 33, "metadata": {}, "outputs": [], "source": [ "stencil0 = Eq(u.forward, solve(pde0,u.forward),subdomain = grid.subdomains['d0'])" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "The *pde1* will be applied in the blue region, the union of the subdomains *d1*, *d2* and *d3*. In this way, we create a vector called *subds* that comprises these three *subdomains*, and we are ready to set the corresponding stencil" ] }, { "cell_type": "code", "execution_count": 34, "metadata": {}, "outputs": [], "source": [ "subds = ['d1','d2','d3']" ] }, { "cell_type": "code", "execution_count": 35, "metadata": {}, "outputs": [], "source": [ "stencil1 = [Eq(u.forward, solve(pde1,u.forward),subdomain = grid.subdomains[subds[i]]) for i in range(0,len(subds))]" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "The boundary conditions of the problem are kept the same as the notebook <a href=\"1_introduction.ipynb\">Introduction to Acoustic Problem</a>. So these are placed in the term *bc* and have the following form:" ] }, { "cell_type": "code", "execution_count": 36, "metadata": {}, "outputs": [], "source": [ "bc = [Eq(u[t+1,0,z],0.),Eq(u[t+1,nptx-1,z],0.),Eq(u[t+1,x,nptz-1],0.),Eq(u[t+1,x,0],u[t+1,x,1])]" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "We then define the operator (*op*) that join the acoustic equation, source term, boundary conditions and receivers.\n", "\n", "- 1. The acoustic wave equation in the *d0* region: *[stencil0];*\n", "- 2. The acoustic wave equation in the *d1*, *d2* and *d3* region: *[stencil1];*\n", "- 3. Source term: *src_term;*\n", "- 4. Boundary conditions: *bc;*\n", "- 5. Receivers: *rec_term;*\n" ] }, { "cell_type": "code", "execution_count": 37, "metadata": {}, "outputs": [], "source": [ "# NBVAL_IGNORE_OUTPUT\n", "\n", "op = Operator([stencil0,stencil1] + src_term + bc + rec_term,subs=grid.spacing_map)" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "We reset the field *u*:" ] }, { "cell_type": "code", "execution_count": 38, "metadata": {}, "outputs": [], "source": [ "u.data[:] = 0." ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "We assign in *op* the number of time steps it must execute and the size of the time step in the local variables *time* and *dt*, respectively. " ] }, { "cell_type": "code", "execution_count": 39, "metadata": {}, "outputs": [ { "name": "stderr", "output_type": "stream", "text": [ "Operator `Kernel` run in 0.02 s\n" ] }, { "data": { "text/plain": [ "PerformanceSummary([(PerfKey(name='section0', rank=None),\n", " PerfEntry(time=0.013632000000000042, gflopss=0.0, gpointss=0.0, oi=0.0, ops=0, itershapes=[])),\n", " (PerfKey(name='section1', rank=None),\n", " PerfEntry(time=3.799999999999999e-05, gflopss=0.0, gpointss=0.0, oi=0.0, ops=0, itershapes=[])),\n", " (PerfKey(name='section2', rank=None),\n", " PerfEntry(time=3.3e-05, gflopss=0.0, gpointss=0.0, oi=0.0, ops=0, itershapes=[])),\n", " (PerfKey(name='section3', rank=None),\n", " PerfEntry(time=0.00027800000000000025, gflopss=0.0, gpointss=0.0, oi=0.0, ops=0, itershapes=[])),\n", " (PerfKey(name='section4', rank=None),\n", " PerfEntry(time=0.0010460000000000092, gflopss=0.0, gpointss=0.0, oi=0.0, ops=0, itershapes=[]))])" ] }, "execution_count": 39, "metadata": {}, "output_type": "execute_result" } ], "source": [ "# NBVAL_IGNORE_OUTPUT\n", "\n", "op(time=nt,dt=dt0)" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "To view the result of the displacement field at the end time, we use the *graph2d* routine given by:" ] }, { "cell_type": "code", "execution_count": 40, "metadata": {}, "outputs": [], "source": [ "def graph2d(U): \n", " plot.figure()\n", " plot.figure(figsize=(16,8))\n", " fscale = 1/10**(3)\n", " scale = np.amax(U[npmlx:-npmlx,0:-npmlz])/10.\n", " extent = [fscale*x0pml,fscale*x1pml,fscale*z1pml,fscale*z0pml]\n", " fig = plot.imshow(np.transpose(U[npmlx:-npmlx,0:-npmlz]),vmin=-scale, vmax=scale, cmap=cm.seismic, extent=extent)\n", " plot.gca().xaxis.set_major_formatter(mticker.FormatStrFormatter('%.1f km'))\n", " plot.gca().yaxis.set_major_formatter(mticker.FormatStrFormatter('%.1f km'))\n", " plot.axis('equal')\n", " plot.title('Map - Acoustic Problem with Devito')\n", " plot.grid()\n", " ax = plot.gca()\n", " divider = make_axes_locatable(ax)\n", " cax = divider.append_axes(\"right\", size=\"5%\", pad=0.05)\n", " cbar = plot.colorbar(fig, cax=cax, format='%.2e')\n", " cbar.set_label('Displacement [km]')\n", " plot.draw()\n", " plot.show()" ] }, { "cell_type": "code", "execution_count": 41, "metadata": {}, "outputs": [ { "data": { "text/plain": [ "<Figure size 576x432 with 0 Axes>" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAoIAAAHsCAYAAABG5syiAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjMuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8vihELAAAACXBIWXMAAAsTAAALEwEAmpwYAACgvklEQVR4nOydedxWRfn/3xebiIiAoKigaCiIa7lkrqillrvZYlkupdlXLUtLSysy+2aJ6TetXEqpNPOnZi6Vu6iVlEu4YCgmqCgqCKig7PP745wb7rnOPM99nn25P+/X63ndzzVnZs6cuefMmXvOZ66xEAJCCCGEEKL+6NHRBRBCCCGEEB2DBoJCCCGEEHWKBoJCCCGEEHWKBoJCCCGEEHWKBoJCCCGEEHWKBoJCCCGEEHWKBoJCdBPMbKSZBTOb2NFlaS3MbKaZzWxC/Elm1q19YpnZuPx7Ht+ENOPzNOParGAdiJkdm1/fsR1dFiG6GhoIdmOqBgbBzF4wM2sg3sFV8f7UzsVsE8xsmJktz6/pjI4uT2thZhPzaxrZjuesbkeVvyX5IO0qM3tfe5VFNEz+vUxq43Ok2sIiM3vFzO42s3PMbHhblqEs3fGHkRBtQa+OLoBoF5YDmwJ7AZMSx4/N43Sn9vB5oCcQgOOACR1bnHbhFWBL4K02yv9Z4A/5/wOAcWR1e7iZ7RxCmN5G5xUx/yL7nud2YBmq20JfYBjwIeAHwDlm9q0QwkXtWJ6bgcnA7HY8pxDdgu704BcN8yCwC9lDe1L1ATMbAhwE/BU4uN1L1nYcB8wne0Acb2YfDCH8s4PL1KaEEJYB09rwFNNCCOMrRj7DfDVwDHA22Q8K0caEEN6lbb/nMkRtoYKZHUjWJn5qZgtDCFe2R2FCCG/Rdj+AhOjW6NVwffAOcBPwcTPr7459FugDTEwlNLMtzOwCM5tiZvPNbLGZTc1fAfVOxJ+Z/61rZleb2Rtm9q6Z/d3M9m7tC2ugzB8CxgA3AL/Og49rJP4oM/u1mb2Uv/J8zczuNLNDXLz+ZnaemT2Xx5tjZjeZ2TaJPBvUtqWOmdkgM/tfM5uW19d8M3vazH5R+c7yNMfkSWZUvZqbmB9v8FVY2WtsCiHbn/IXubmjL4OZbWNmt+fXskq3Z2ZDzewSM3vRzJaa2ew8/siGztXS9mRma5jZN8zsiTz9W2Z2j5ntlYg7Kb+Gvmb2YzN7ueqcO+dxNjSza/M2sMjMbjazYSXL8oSZzXZh69hqKcNu7tif8+9szdyONIIVO4++l8Wvbcclzv/ZvAyLzWxW3qZ7lil7LUIIfwaOyM0fmdla7tylvgczuz+vj2SdmtldZrbC8tfQ5jSC+eeMPPoxrk5GVuUzMm97s/O2+KKZ/cyyH8hC1AUaCNYPVwNrAZ904ccBTwKPN5DuiDzOc2SDqiuBFWSvgG5oIE0f4G6ywcHVwHXA+4G7zGy/5l9CaY7PP38XQvgH8F/g05UHaTVmtifwb7LZrCnAT4HbgA2q8sHM+gL3kc18zcvj3UE2mzrZzHZvbmHNzIA7gbOAmcClwG/IHmTHAgPzqBcDT+T//x/w/fzvTzXyL3WNzS1+A+GjgL+Ttblfkb9GNLOhZK/wTiF7vXgh8A+yV/mPmNkWibxa1J7y7+5u4CfAEuAK4P8B2wL3mtkRDSS9HjicbFb5j8AH83OOzcu8MfBb4GHgsLxcZZgEDDOzMVVhe5BJGQBWDXDzAdruwL9CCO81kN9MsnYA8CKr28X382PVnAr8kuyevwxYStamf1iy7DUJIfwNeABYF9i3Et7E7+Easvr4lM/fzNYH9gEeCCHMaqAYU8juEcjumeo6WZDnMxp4hKztPUzWFqeR1dE/87YqRPcnhKC/bvoHjCTTyP2J7IH9AvBg1fH358e/Vh3X5bER0MeFGdmAMAC7u2Mz8/C7gF5V4TuR6RBnAD3a8Jr7kb0iegGwPGx8XqbPurh9yXR1y4A9E3ltVPX/9/I8fl3JNw/fC1gJTK++rrweZjZQxugY2YMwAD9NxB1QXf9kM7cBGNnI9z2xOddYph0l2kGlPFe7uAH4diKvq/Nj33Hhn8/D72tJeyIbZAWXx4/yPM5y4UPz/OcAa/o8yAYz1eGn5+HzgZ+4vG7Nj32gRH0ensc9qSpsArAQ+Cdwj7vOAPygKmxcHjbe5RuASQ2cc3x+fB4wqip8MPAm2VuDPiXKnmwLiXjfz+Od25zvAVgHWEw2APZ5fzXP5/iqsGPzsGMbux9cPvfnxz/nwr+bh19Vqz70p7/u8KcZwTohhBDIZpn2sNWrPI8jGyBc00i6V0IISxN5/TI3P9xA0u+GEJZXpXmEbFZlJNkMR1txJNng6dq8nLD6+vzr4UOBDYFfhxAe9BmFEF6pMo8hezB9uypfQggPkA0CRgG70TIKMz4hhLd9/TeRplxjLcZY5oZkvJn9FHiUrF7mA//r4s4GLqgOMLM+wKeB18hmharL8VuyWZy9zWxE4tzNak9m1gM4CZgaQjjfnXMO2QBsCFUzV1WcE+JZuOvzz15kA6tq/l/+uV1DZaniQbKBRvWr7XFkM6h3A7vmdUVVnEkl8i3Dz0IIz1eMEMI8svbbHxjdSueA1Ys2hkDTv4eQaf7+DOxkZpu7vD9Ldi/e1NzCmdnGZHX+7xDC79zhnwCvA0dVfQ9CdFu0WKS+mEg2s3Wsmf0A+Azw5xDCHK/lqZB34F8g+8W9Fdkgq/p14AaJZMvIVjZ6/gZ8guxhWRiUVJ1zHFknXc2kEMKkhtJUURnsrRrchhCeN7PJwD5mNjKEMDM/tFP+eVdjGZrZALJV1/8OIbyeiDKJbMC1PfBQiTJ6ngGeBr5lZtuTPQAfAp6uHnQ2k1LXWJLRZO0Hsu/4VeAq4LwQwgwX94mQLV6pZgzZDOXDIYQlifwfIKvD7YGXq8Jb0p5Gk71af9HSfvcqg4wxwO3+Gpz9Wv45PWQLNlLHNmygHKsIIbxpZk+TzSZX2tf2wDlkg+uzyV5DP0R2HywlexXdGvw7EVb5MTCwlc4BRclAc76Ha8ikKZ8hf/WdDwp3Am7MB4vNZfv8c5I/EEJYnPcXh+blfqoF5xGi06OBYB0RQnjRzO4nm8V5ikzDM7FGskuA/yHTHv2R7IG3lKxT/yqwRiLNmyGElYnwyiBqQI1zjmP1gKOaSY0lMrOKi5xHQgjPusO/I1s5fQyr9VTr5J+v1ihPpbypQSCsHgTUuq4kIYTlZrYPcC7Zg+9j+aGXzey8EMIVzck3p+w1luGWEMJhJeO+kQhrbj22pD0Nzj+3o/HZusIPoRDC285ensk5edvHJXtNDVBYQNUAk4BTzWxL4H1kerj7ybR7S4FxZvYPausDm0pq8FQpe6ssGMmp/ECck38253v4C5meb9VAkGw2EBp5i1GSNr2nhehK6NVw/XE1MIJswcAbZJ1tklyU/WWymZEtQwjHhxC+HTK3EY0J49fNZxI96+efqQfpKkII40MI5v7GN5Ym5ziymYid3CrBAPw8j3NsvjgDctE4tWdxKuVdv4HjqetaScMP1sLDJYQwJ4TwZbIH6HbAGfm1XG5mh9coX2MsyD9rzlS1MqmZzObUI7SsPVWOXZtoU9V/328kj7bggfxzb7IfPguBx/IB3yN5+I7A2rTea+H2ZK/889H8s8nfQz5rfCOwhZntmAd/hkzn+NcWlq+5bVGIbocGgvXHTWSd20ZknbJ/fVfNpmSDkXsSMxKN6eF6AzsnwitaLv/KrcXkg7tjyFY0/7qBv/+QacoquqtH8s9GV57mM0MzgC0bWElYeehNqQpbAKzv3XKY2SbAoEbOtTKE8GQI4ULgqDy42sXLivyz7OxNqWtsJ54l03bt0oD2as/807ePlrSn/5AthNiptVyktBIPkA2Wx+V/D1VpICeROWfev8ouQ2M/PtoNM9uD7LucS7bSHpr/PVybf37GMtc9mwM3lNTNNnavTMk/9/QHzGwNslfzi8narBDdGg0E64x8QPdRspWLP6kR/aX880NVs2jkLj6+VSPtuWa2SnpgZjuRvfacSabtam0+TObO484QwhdTf2QaLFjtMuVWslemX8gfXhFmVj2L9lsyfdu5Ls7uZK5D/ksm9q/wGNkA5qiquL1J7HBiZps6VyIVKrMS1YPwefnnRon4KZpyjW1KPsNzPdms59dcOT4LfIBMC/pSInmz2lM+uLoM2AJI+sszsw+aWb8mX1ALCCHMBaaSLY7Ynuy1cIVJZG3tFJqmD5xH+XbRJpjZx1i9iOPbIYRF0KLv4QEyveinyVaWQ/nXwvPzz0Kd5G3sAWAHM/Muas4ga6N/aOFCLSG6BNII1iEh861XJt6rZnYz2aDxkVxfuCHZDNWdwMcbSDqbbAXg42b21/z/o8hmQL7UgN6rpVQWiVzdSJzbyGYpjjCzdUIIb5nZUWSvx+83sz+TPZwHk80IvEg2yAP4MZnPwJPMbFuyxQkbkfk5W0zmyqL6un5OtsDmKjP7CNkM4b5ksyJ+G6ztgJtzgfpUslf2m+bnfpfsAVrhfrIH1WVmdmN+/KmQOfItkAvfy15je/BNshnU8y1zCP042eDgcDI3Jl9OpGlpe/ou2WvWs8i2w3uIbNA0PA/fguzB7xeAtDUPACfn/1cPBP9BNgAcCvytCfrA+4FPmNn1ZFrDFcDvGxhYt5QxVYs+1iDbYm5XsrpcAnw9FHcVafL3EEIIZnYdWbs5kWzg/3dKEEJYaGaPkDnZ/hXZj7UA/DJfaPJlsh8RvzezT5D5Sv0A2UzsDODMspUhRJcmtKOvGv217x8lfX41FpdMo3Qx2YBhMdkg4itkA5WCjy5yH3lkC1GuJhOLv0f2cNu7ja5zYH6ON6nhCy2/lsoAohI2mmzG71WyB/BsMg3SgYm6+F/g+Tzem2QLaLZr4Fz7kWmklpCJ0i/N85hJ7EdwOHA+mQ+5N/J6foHM3c+WiXy/RfZQW1b9HdCI37Sy19iK7ahQhqo46+V18VJeltfysm2aiNuk9kTCj2Ae3ots0DWZTBrxXl7HfyKbaepVK4/8WNJXHw349qtRV0fmad4Cerpjf8P5D6x1LrIfaTfm7XJlHmdcfmx8te3SNXiske+3+u9dspXHd5OteB7eSPrS30NVmm2rzvXDBvI9FudHMA8fQ/aj9a2qPEZWHd8sb3uVRXAv5W1zvbLfo/7019X/Kg53GyX363UR8BFyzRhwWijxSzP3Jv8D4GiyB/YU4MyQ8GmWSFu58c+pFVd0DizfOi2EMLJjSyKEEEKIWtTUCOaajfvIflkdA3yOTLB7f0O+5xy/Bk4gey1wENlMxJ25vzQhhBBCCNFBlNEInkA2fT465B7pzexJsi21vkTmhiSJmW1Httz/+BDC1XnYA2SvF88lXg0phBBCCCHakTKrhg8BJod4W6IZZILdQ0ukXcbqrZkI2eqxPwD758v0S2Nm/czsNjObnQ8yMbOJZjbLzHY0s3+Y2Xtm9qyZHZgf/7qZzTSzt83slgbcfwghhBBC1B1lBoJbkW1/5ZkKjC2RdkYobsc0FehDtj9rKcxsMJk2cTSwawih2nfYADLB76/IVh++AdxkZheS+Yw7GTgt///niDYjhDBS+kAhhBCia1Dm1fBgVvtjqmYejTjGLZG2crwm+Qbhd5J5398tZJuUV7M2cFJlAYqZvUrmZPYgYGwIYUUevjXZtk49K2FCCCGEEPVKWT+CqaXFflPxFNaCtBXGkrmKeAY4IoSwMBFnkVuFPC3/vMcN+KaRXfMGwKxCocxOJPNVxRprrLHD0KHDmlDM5tGrV/x2vA+x/9KVy5fjqeU0LTXN28Ncla+5ZmS+l/BUVvSlWnuFeRl69+7JsmWtPQ6Pt3jt0yeuhV4ri35hfd125l8G/jtd0sAGEq1ft32cFTeU1mkRzcN3IktZsxDSmjRUt2u4ltMWTjJbC99qevQqPgKW94i/86VL/RU1thlR82i9dhu3itQGNmv6ZuI6v5UJTxrN6nNd3S5199Ly5Utq5No6zJr14twQwlCAUWaF13OtwezMkf8BbZC1aAfKDATnk565G0R6tq+aeWS7PaTSVo7XYk8yH2KnNzAIhNX7qQIQQliab4Thy1d5MvRNZRJCuAK4AmDEiJFh1qxtShSvZZxwwm2RfUU2Dl3FP670PlkzB1zV+E5o28R59tl88zjgP/+JzPWGFbuyOXO+6kJeSOTcdCZMOJQzzrilVfJazXcj69e/3imyj//b8XgmXR37np7UyiVqTfz+agdyUDJe69ftRZH1Y+J21N4emKvxW1CcyXQX8jVak4bq9s/cHtn/atWzti7jvH3ccYU4V+1+VWR/4QuPuBjn0tq0XrvdLLKGDv2/QoyXZrph3Zh4U5/7pvt2lHnnrsYPDHdJlGTXE06I7BOzR8sqrrzy4ESqtuDFFyv/vUu2wrO1GZ85eRddlDIDwalkWj/PWLJZulppDzezfk4nOJZsUPZ8OlnE5cA6wDVmtjyEcFOtBEIIIYSIMbSvrChSpk3cSrZJ/KqfWmY2EtgtP1YrbW/gE1Vpe5Fty3VXyPYerUUIIZxCtsjjD/lWQEIIIYQQooWUmRG8kmzz81vM7BzybY/INgK/vBLJzDYh2/bq3BDCuQAhhCn5vpcXm1lvsv0bv0y2Pdlnm1LQEMJpZraCbF/IHiGE62smEkIIIcQqNCMoPDUHgiGERWa2D5lY6Hdks8v3km0xV63ZMzItsm9nxwE/BM4j22LuCeCAEMLjTS1sCOF0M1sOXJsPBq9rah5CCCGEECKj1KrhfE/hj9eIM5PEauAQwnvA1/O/JhFCSOV3JnBmlX1sE9JOBCY2tRxCCCFEV0caQZGirPsYIYQQQnRxNBAUHrUJIYQQQog6RTOCHcyVV74Z2ZetiH1N7fqI9+EFQ6ZMiey33fGU40Z23DEy310c/wZYd91ikjlzfE6t40ew5aRcVg2IrL7eU2TCca6PMsDZKaeVHeUsuH8HnRfWiqzFHVSKFMWyrJWI1fZ03HcTk/pV78tWcKCaui8Kkfydkbr/5jZSsvYk7rNS/Zrv+/q5vnHrhB9BXwPe3mL77QtpVl7m/Ab2fLMQpyPQ7I/wqE0IIYQQQtQpmhEUQggh6gAtFhEpNBAUQggh6gQNBIVHA8EOJ95buGfPX0b2b37z70KKz+/odva7Pd7rlGWJTeH32CMyn3eb+22wQTHJtGk7uBCvV1xUTNQubJcI2ySyBg50h4vCJ3yU4c5enjjLUmfPTMRpC4a103k8ZnHDWBk6qCAJvF7TlzW0U1k76rsZ6ew+iTi+gx/oI6Tui0KkTZyduv/uTYS1B14XGvdZqX7N933bnnRSZK+3VXFH1fV6944DDor3+v7to2MLaY7p+YYL+XKxMEJ0AjQQFEIIIeoAvRoWKdQmhBBCCCHqFM0ICiGEEHWCZn+ERwPBDserzr4QWcccM6iQ4hhOiOzNN/9mZB95ZPEsI6fF9kLnJK+oCwKzcZFd1Fw9WEyE30J6RSJOLbxabydn71ZIsdNOsdZpuM8ioYVaz9mjfJJEyXwn6r+9VxNpWoMt2ijfWhTcoxUlq50GX9Z/t1NZ2+u72dDZuzg75ePS+1r0bT51X/h7x99bjzzy0cSZvGc9ryeelUhTi57O/kAizp6R5fusVL92zz2xPbl/nMfMRbENcOONsT39zIdcjM8nyjY/EdbxFPZeFXWPfhwIIYQQQtQpmhEUQggh6gCjOM8qhGYEhRBCCCHqFM0ICiGEEHWCZn+ERwPBBujVaw2OO+62VfY11xTjLFt2uQu5vRipxaQExz+JrOnTY/tHPxqdSPO5yBoxInYKm9gzvbDoZO7ccZE9c2ZsA8yY4eXps539HvAS8OPcXrN4YmIvsCNGxGL1MWOKKfbdl8bjJETxg52SvP+CBZHdZ+TI4omGxe6D+06eHNkTiylahxPiBUJc6eu1bRg3zgV04sUivqzttVik+N1c2San2c/ZI3dxy0Vee62QZunMmZHdx6+eSNwX/t75+Mdje+DAYv8ybVoc9vLLn3ExUu31var/XwJ+5o7H/cCmmxbL6m/RIUNie7HvjoCLL47tl19+wsX4XTERzybCOoLYkXXv3l8qxDj66Ni++motDxGNox8HQgghRB1QcSjd2n81z2t2pJndZGYvmtl7Zvasmf3IzNYukbavmV1gZrPztA+bWWFpt5n1MLNvmdlMM1tsZk+Y2cdTebYEMxtkZr8ys7lmtsjM7jGzbRLx/tfM7jKzN80smNmxrV2W1kIDQSGEEKJO6IiBIHAGmS+xbwMHAL8k23PvbjOrlcWvgROA75JNic4G7jSz7V28HwDjgUuBjwKTgRvM7GPlilgbMzPgVrJrOBX4ONAbuN/MvNOyU8leebXFq8JWRa+GhRBCCNGWHBxCmFNlP2Bm84DfAOOA+1KJzGw74DPA8SGEq/OwB4CpwLnAIXnYemSDzfNDCBPy5Peb2SjgfOAvrXQdhwC7A/uEEO7Pz/0wMAP4JvCVqrjrhBBW5mVIOZrsNGgg2AB9whKumrValXPVRYcW4vxl05Mj+8ADt3Yxzm+LopUgpWc5J7K8hqdv36MKKU47LbYPOCC2C06bs5wia/78TSP7rbdgxow3ePbZbJP25cuLOfSq0SpTabz0qc/M52pnulPsqLpP//7xcbexPFAQUI10gqOBN9wQ2QuKOTSPs86K7Su/2lo5N4r/zv9xUbuctln4sl7UXmUtfDetoxEc6OyRn/hEHOBv0GnOazzQ53Y3GeE9ySfuC3/vfO5zscvsgw8uJElkE/cDy5dv6iNEaWbMeIPXXovjDCr60i8wy/mpvuOO2PZ6QICXX77Ohfy+9ok6jLht/fnPsTP9j834eTHJLbdE5tXucEe8BnSDwAoVr+MbNZL0EGAZcH1VXsvN7A/AWWa2RghhCbA/0Afwav5rgKvMbNMQwgwAM+sFfAM4BtgUeBO4Djg7hJBQlRbK82plEJiX5y0zuw04lKqBYAgh5eO9U6JXw0IIIYRob/bKP//TSJytgBkhhHdd+FSygd+oqnhLgOcT8QDGVoVdQzYz8nvgQOBHZFt6XVuizFsBTyfCpwIbm1n/xLFOj2YEhRBCiDqgslikozGzjche7d4TQni0kaiDSbvOmFd1vPK5IITCRqhRPDPbA/gUcEwI4bf5sXvy19TXmNn2IYQpNcozs5HyDAIWJo53ajQQFEIIIeqENhoIDjGz6gHdFSGEK1IR81mzW4DlwHE18jWgsMs9xS2Ty8Y7gGyL+JvyV8QV7so/9wSmmFlPl3ZFPsgse54uhQaCDbBixQruuvvuVfawqv8rfOzweyP75z//Y2SffPJmiZxfaJXytZxYFzN9enFD92HDYt9gmz36/+IIx15azNb51Vt32bLIXr93b149/3y2ODjXX6Z2hd/ISUa2cSvzd9yxmMY7FEs5EPN454m77x6ZL21/SCHJ3/4W25/5VawLPchpBBPuJ5vFL+5ItaW2Z79xSyP7Hx1SinL4srYXbfXdFBSqv/pVZP7+9gGRvfuHdy3ksbF3rOcbcIopUyJzw76x9nBD55sQgEfdpM5TT8X2K68U01T57Xz1/PNZ94C9o8O9eveO43u/icBmp5wS2cOGfTKyp09P6aU7qyaw2I5+/nOnCfzVEZH95M03F9IUvUm2C3NDCImOOcbM+pKtut0M2CuEMKtGknnAxonwQVXHK5+DzMzcrKCPtx7ZK+WGZu3WzT//C2xSFX4cmZvYeayehUyVJzV72enRQFAIIYSoA4yOm7oys97ATcDOwIdDCE/VSAKZ9u5wM+vndIJjyWb2nq+KtwbwPmKdYEUb+Ez++SawGNijgfO9mn8enOdXYUbVebxv98p5XgohdLnXwtA55AJCCCGE6KbkvgKvBfYFDg0hTK6RpMKtZH76Vi2Zz1/pfgq4K18xDHAH2cDwsy790cDTlRXDeby+ZK5dHk38vQoQQnjKhb9ZVZ6NzKyy0AUzG0A2cLy15DV1OjQjKIQQQtQJPTvmtD8nG8z9EFhkZtXv+WeFEGaZ2SZkr2TPDSGcCxBCmGJm1wMX5zOKM8gcUW9K1aAvhPCGmV0EfMvM3gEeJxss7kPm1qUSb5KZXQfcaGY/Bf4FrARGAh8DzgwhON9jEbcCD5MtLPkG2avgb5FNtEZ7veaDxaFAZV/SHc1sYV6OG0vUWbuhgWAjzKv6f0Hi+BCnz/ifU2KfmCfzg0Qq/4Ols1D0ffb00xMi+4i5sb7oyYceKqTxCqQ3fIRlyxgdAuNz7WCvOUX3UsNc2FinWfrA74p7gfbdO9YXFTZM9T4CE3FWHhRrAiecVkzypz/F9rRpsU7rXO9k7bbbaCoDE2Enn7yoyfm0Ct4PXWemg8rqv5uU+8IFzch3lGtL350Qt7WJE+P4hx1WzOPii+M23WPu3DhCwvcgkyY1Gmfx/ffjedzZzzg7pVurdgc6OgTOc8fXc/ri3RP9zbZO5/v0kE+6GG2z73PbUHxe/M+Y+Jny6snxMyfx7dGY87oOXDX80fzz7Pyvmu+T7QhiZONUX8TjyAaQ55F1j08AB4QQfLM7m0z791WywdezwCdDCL4TPpps14/j8zRLyFYC3wm83thF5A6iDwImAL8gm118GNg7hPBy4rr2qrJPzv+gky0u0UBQCCGEEG1GCGFkiTgzSQyQQgjvAV/P/xpLv4JssOh/U/h4K4H/y/+aTAhhHtkg8vga8cY1J/+OQANBIYQQok7QwgDhUZsQQgghhKhTNCMohBBC1Ama/REeDQQboAeZi/EK8xJx+vgAJ1Y///x9CmnOOmsTF/Ji0wvXJhQdr/7oR7H93e8Pj+yXErkUFofUYHkizHsY9XbKJfeeTsC+8X/c9pV7JNxGOcfU3tfuNQlv0PPn/z2yzz8/dvh67uTxkT08sViklgfVzyTCvsa5NVK1EXfc0THnbQ4dVtb4u0l9f7+okcPwVOD48ZF5vvOnvGxZ3BavuSZuiwBHHhnbe/pFUynn0G5RxkuvxUs9HiymKGzw2hr4viTV32w7PK65H33Px0g5lO4sxM+C888fUIzinin+mTOWIilvxxU6yxZzonOhNiGEEEIIUadoRlAIIYSoEzT7IzxqE0IIIYQQdYpmBBvA1liDDe+8c5W9oXNqDESbpgOw1VaRefD7i0nOOss7Df18s8rXHixefH5krzzjrMhe78wz27M4qyijR9rV6Zo2m5zY0eiAAyJz9uz48Pz5KTVf7MN02bLYT/9z/WMhV2oX9loawfXOS7jBOqfsjkytjHcu3JkplHV0O504dp+c/v7OaTSHVDt5rv8HInvZMt8G4rY4f77XH8Ps2U59uMhthZq4L15w984/3PG20AOWYb1E2MozvhnZi888PxGrsxI/C7wvegD+vUNkDvnWt2J74MBiGudkm/33X/WvNIIihdqEEEIIIUSdohlBIYQQok7oVHubiU6BBoJCCCFEndCzdhRRZ2gg2ABLlvdkvwn7rbKHD9+vEMdLMcYMje3FCTHN5z43KLJ/97vTXYwLm1DKtib2UzZuXHz0wc03L6T4y/TpbViehvFV7bylMfBlvx84DH7epdrOx5ifOJNX+A2JrMmTY43gEYkcPGOc/fhH/Z7swDkpAVHbs6CDvs/mUCxre2kEY1Lf3xinEZzmjo9K5PPHgnxvhrN9W0y1V6cRdG1+XuK+eNLZHaUJ9Oyc6G/2HOdD/l6I03mI+3r/LPDdEcCsoZ+N7GnD4uMp6fqse5pTNlHPaCAohBBC1AFaLCJSqE0IIYQQQtQpmhEUQggh6gTN/giPBoJCCCFEHaBXwyKFBoINsGLFCu6++8aqkGWJWH6r+HihwMEH9y6k2Hrr2D7qqHGRfd11m7oUpzRWzHbloYfcQpYVXvIO43rGa9ImtWF5GuNpZ2+YiLPz03GsoR/2MVYmUi1yduygd5bT7/cfObKQw9iZMyN7H3d8108nTttB1HJ+3ZnoLGX9dOL7806Z/cM41U58W/JtrdgWi+11qFvAhmvzqYUg/t7pKMb5gGnF/uahnp1pcZ3n0sg66qjY4fdw9/j41a+KOdx2m3/u+BVEqVZffO4I0RgaCAohhBB1gmYEhUdtQgghhBCiTtGMoBBCCFEnaPZHeDQQbJAVwL1V9txEnEHOfiGybrvtM4UU228f6zf8XvTjx8c6kksvva2QxyWX/NWF/CJRtrZgUmRZz5MKMcJ550X2k+4C57V6mdIsd7Z3kguw8x13RPb2E32M1Db3A5y9ZuMFGTGiELSF0wgO+cQnInv6Ddc0nmc78nZHF6AJdJayTp9e/P78d7zFDTfEERLtpIhva74tFturd3qPa/Op+8LfO+3FYGePc32J9XwvkWpSWxWnBv8TWaee+tFCjFOcvHu5q9g//CG2i3pAgN872zvMTjkRH5IIy9BiEZFCbUIIIYQQok7RjKAQQghRJ1hHF0B0OjQjKIQQQghRp2hGsEECtT2TeX2GVymtKKQYNSrWCI59/tY4wsUXR+bP3ivqYn52y7ci+/g/xTrCq69O+R58MRHWUooO07b4TVyW5477b2Sfd/XVwOqG1156pNQ3+a9lsSZn57/F38U22xxSSPPUUzu5kFGRVdBk3fBOIY+Cguckp7W84aJCmo4i5Umxs9J5ynp9Meikr0XmEK8RfKfYTgptie2cvVZkbbPNBoU8Brs27dt8R/pe9A+frxx3XGRv8ZuzXYyD27Q8q9mkEHLccbFPwKsOc/32jz5UzOYkp+k87bTIHDXK9y/F50XxmeKfOYsTaRr+Vg3o2eBRUa9oRlAIIYQQok7RjKAQQghRJ2j2R3g0EBRCCCHqBA0EhUdtQgghhBCiTtGMYIvwQt1YrL3TTn0LKY4+2gWMOSMyb58+PbIfTZy136GHRrbzSc1Vr7xSSGMb/deF/CSRc8uZPj0WdPd4Pl48svI7w5m0wQYc9Z3vAHDpD35QyCPlurstuMfZOzvn1+edV1wscuyxh0f2jjvGxz828pnIfnvKlEIeS33ALrs0UkrRLXDfsW8DqXbi29JHPrJNZD/6aGw7/8sZrk37Nt9epFwcn5L3AQCTNtiAHt84PToeQnstDvlmfN5X3leI8cJGsdOVn1wdH383kavrGjhoVryI4+hpcf9y6aXF58Ujj/gFQKnFIeWRQ2mRQm1CCCGEEKJO0YygEEIIUSdo9kd4NBAUQggh6gC9GhYpNBBsVWKnzQMHFmP0+NuDkf1CCU2gx+tRfusjbLRRIU046qjItut8qs+XOHPT8Tof+8FZTJiwgL1/sH92/J8HFdJM+uAHY7tNSlbUaT391FORfUjfuwpprrlmv8jefXcX4cPHRuaDFOnn7M36FrVBnYWU9qmz0qnL6r7jme7wMxQ56NhjI/vGe/4V2X/7Wxz/Y72K7dW36YI+tY0Y5+1//rMQxz642rn1hAkL2lETGPd94aiTI3v8Rte1yll8Xz7W9fWbuWfBwIF7JnJpi40AhIjRQFAIIYSoEzQjKDxqE0IIIYQQdYpmBIUQQog6wWpHEXWGBoKtyqTIuvvuHQoxnrt0XGQPb8PSVDP+ulj3EnrfGNm2zG9uDvCJNijJ+cChwGXZeT+4byHG1Kkhss/aKu66zm+DUgE85+ytL720EOdjp7lb5pw/Rea/HnkkslOaz419wPLlZYrXDqxVCOnUujtHsaz+eha1T0FSuO94pjv8UiLJeq4t7XzOVyL7Y4cdFie4uNhefZtuK85y9gvuHratLk6kurfq/0MTx1uDGwohofeAyB5/3bJCnLZgmLOfGxZrAu++e1IiVSqs+RjQs1VzFN0BvRoWQgghhKhTNCMohBBC1Ama/REetQkhhBBCiDpFM4JCCCFEHSCH0iKFBoJtyoWFkNGj40UZb74Zi6qPXDdeGBEv6Wg9xi+LBdIrWLMQpyevupAT26Ak9xZCttpqdmT/+tdxHY2/eNtCmkud49y5zShJYTv3hx4qRnJewhf/7neRnXIg7Znn7Ffn9imRqj0olqN/B5SiuRTL6q+n4xaL+O/Yt4EUvi1te8klkd13wYI4QqK9Ftp0Mxji7FO22aYQ56rTnozsL2x1pouRcpndFlwRWal+bXz7rA3hSGcvdn396HVvdTGubNPyCNEQGggKIYQQdYJmBIVHA0EhhBCiTtBAUHhKtQkzG2FmN5rZW2b2tpn90cwK7tAS6XY0syvMbJqZvWtmL5nZtWa2acnzBjM7r0xcIYQQQgjRNGrOCJpZP+A+YAlwDBCA84D7zWzbEEJjwptPA1sBPwOmAhsB3wEeNbPtQwgvt7D8XZBYB7LuurF91FGxjuT3Txf1cOOdHq41ODcRFg6PN2O3m493Ma5q9XJkxHqiL3whrqMdn4j1SADHbhdrKyc046zeIfFrXoMFDHSawPvc8YXNOM+UKSUStQvzCyFjnf239ilIs/BlTV1PR+G/4zKOun1b8m1tH9cWFyTyaA2H4Mc6+8lrivffF7bz+rb20gTGfZLvs8bf3D6lGJ/QTX5m67ierlv34PYpTCNosYhIUebV8AnAZsDoEMLzAGb2JDAd+BLw00bS/jiEMKc6wMz+DszI8/1ucwothBBCCCFaTpkfB4cAkyuDQIAQwgzg79TYF8gPAvOwF4E5ZLODTcLM+pnZbWY228y2y8Mmmtms/DX0P8zsPTN71swOzI9/3cxm5q+0bzGzoU09rxBCCNEd6NEGf6JrU+Y73Ap4OhE+ldTbmBqY2ZbAesB/mphuMHAPMBrYNYTwRNXhAcBvgV8BhwNvADeZ2YXA3sDJwGn5/z9vapmFEEKI7oC1wZ/o2pR5NTyYtNhmHjCoKSczs17AZWQzgr9uQrqNgTvJZDO7JWYa1wZOCiE8mMd/FXgCOAgYG0JYkYdvDZxqZj0rYZ2N666LdSTXsV8hzrXXxtqTD382vhV/0UplmXhzLLB58cU/RvYmm7SVRtAT+9saN+6EQox5X/taZA+/6KLInlXiLD7OPYk43i9bmXw9K53dqxOv3d9wp53igEce6ZiClKBY1o4pRwr/Hfs2UIZ/Odt7+eybSNOc9jnc2f3dvTVuXCqV94nXPrz44uGRPXGTI9rkPP/j7HuujbXc9tkziome6nhNoBBlsBBC4xHMlgIXhhC+5cJ/CJwZQij9GDOzy4AvAAeGEO4qET8ANwM7k6mPjwghLHRxJgJHhhD6V4X1IVvc8osQwslV4ScClwMjQgiFPjI/fiLAkCFDdjjrrB+VvbQ2pNi9b7pp3FUPmPFYZBfexzcT74537W12iOynnnqe5jB8+EBmzVrQvEIBPXuOKoRtPyT+Oue+/npkN8eH7BqJMP8Abw3ftGttHtfr9OnNq1doed16dlhreWTPXtRxTplrscFaa0X2Y4tad4TdkrrdfPO4zS6a/lgDMcvT29mp1ztLWiHfIeuvH9lT5vqhIqxY0fw2C82v2222iev1nafiel3akkJV4fVEb28a37MzZqSG3K3hzrvlnHHGCY+FEHYE2M4s3NEG59gQVp1DdD3K9JTzyWYFPYNowrI8M/sR2SDrmDKDwCr2BNYFTveDwCoWVBshhKVmRqJ8lX4h9eOZEMIV5K7pR4wYGc4445YmFLOtGF0IufbaoyN79zP2juzWmhEc6eydXox/NOy/f3HnlDJMmHAoLanbQYNuK4TNO/brkf2rZswIeorDzdaZEfTsemdcr2ec0bx6hZbXrSfsFA+ox3fiGcGj3Izg3o+s30DM5tGSur3zzrjNPu7u2ebgh2OpTq05wzOf75FuRvCIiUfjmT+/+W0Wml+3L74Y1+t9+8f1OrMlhapiX2f7GcEzzkjMCPJsK51diLalzEBwKplO0DOWkj4CzOxs4CzgKyGE39WK77gcWAe4xsyWhxBuamJ6IYQQQqDFHaJImYHgrcAEM9sshPACgJmNBHYjG9w1ipl9hczv4NkhhEtqxU8QQginmNly4A9m9pkQwg3NyKdJ9O27Bvfeu/rX5r77fjsRq/X9+RUp/qr87Ge99uQrkfWb3/xfIc3nvxTvuXnx4nhua0HizN5j+MaveZWS300T2m535NXMn1/8Lt49L/ZitEUrzAi27GVXefbrW2aH4g7C7a3cqenEZfXf8T9aIc/WmI1OsYWz/b01/6JUX9geFPsb3yf5PmtmIpeBzj6tbzyX+tvL3yukWf+Yr8YBhT64oyj6L7z33v+N7H33Xa0hlx9BkaJMm7iS7H66xcwONbNDgFuAl8lm6wAws03MbLmZfbcq7NPAxcAdwH1mtkvVX5NWHIcQTiNzTP17M/tUU9IKIYQQQogiNWcEQwiLzGwf4CLgd2Q/Ku4FTnOaPQN6Eg8uD8jDD8j/qnkAGNeUwoYQTs9nBq81sx4hhOuakl4IIYSoZzQjKDylltWFEF4CPl4jzkycS6EQwrEUdygqTQih4KIohHAmcKY7R9m0E4GJzS2PEEIIIUR3ohN7MBNCCCFEayGNoEihgWADrFj8Lg9WiWy/l4jT39ln/POfkW0fTFVvKqeW8kJkHXNMUch8DPFm7McdNyGyrzonzgOAuXMj83/v2dlFuLZ8EVuV4iKdtdaKw8KXvxzZ//jlLwtpOoeXL3h7r71cyEEdUg44vRDy2t0td3PSXrx2990u5H5nt8zFSUsofsedg5TLmT3dvWNr+futPRbJpXi8EPK/9xwT2d92ffA+Q4YU0hx/3maRbVc71y+J/rN9+H4hJPwz9uM54YMfjOyF3F5I8+C+ncH/rehKaCAohBBC1AmaERQeDQSFEEKIOkCvhkUKtQkhhBBCiDpFM4ItwO93N97pN1JqQO888cNvxlsVrbuu97ndlN34GiN2TH311Qc7e7dEmo86+xpnJ3SFHUbs5NZ+eVpkh+vHFVJM+lTsjnJSK5eoLP+vg87rufbacYWw3362/cvRXH7rbH89n/1sx2kEO8t3PM7b119fiGOfWteFdJQDaU+xvzn77Guc7R0sp2r+761XpEbZL7LefPPUyL5n3dixxTMJvd/4DxaCWoxmf4RHbUIIIYQQok7RjKAQQghRJ2j2R3g0EBRCCCHqAC0WESk0EGxnnvG204l4XeFZiTy+eWqsK7zkklNcjBebUbKUbmaFs+cm4nRWLo6s1O7UI0bE9fjSOVdE9i++9KVCmjdaXK4iw9sgz+bwmWH3FcLGt38xms27zvbX05FyR/8dz2qDc6yXCPufyy+P7I3POzGyX/5UR/nMay0ec7bv+ya30nk2iaxTT700sn9ySWEjK853mr+frfuVViqLEK2LBoJCCCFEnaAZQeFRmxBCCCGEqFM0IyiEEELUAdIIihQaCAohhBB1ggaCwqOBYCfn/ETY4EsaX2ByWiLNwKlTI/uuWbFr68WLi2nWXz+2XRZ84QtvJs50bCKsc/Lyy7FQ3tzakAsvjBeTAIw6Pa7751uhHAe88kocsFFxkUp78NKofQphWzv76fYpSrPwZS1ez0XtVZQC/juevNFGLc5zlLPfSLRX+5JfDHJbi8/bcUwshPz617Hz6622io+//noxl759Y3u/4fESvgU+E/zSM+CSn0dmqp8WoquggaAQQghRJ5gVVzi3mFD8ESK6DpolFkIIIYSoUzQjKIQQQtQDZtCrDR77y5a1fp6i3dBAsBtycSowoXtpKV6bCDDeCXBs8dsuxhGtXo624vTTi852//zn+BVIrwPj1yzLS+R7mrOtgzSBnk02ub4QFhYtiuwjd9ghshdPm1ZI07d37zjAt72hQ4snnzMntp0gdXHiQdN3zJg44LHYubCtVbyejsJ/x/Pd8YtL5OE768GuLX7uwK7uHPqPkRX6Dojs8YuHFFK89AVnN+Os/2hGGiG6ExoICiGEEPWCZgSFQwNBIYQQoh5oq1fDokujxSJCCCGEEHWKfhqIVmW8c0j4PfpE9tZAT8ZxQ74h+ye4M5HLJW1UupZz4IFPRXYYODCyxy9YENm7JvI46gDnauGOzqLtuqYQYmvd4UJ+WTubZXEdMWWKi5DyP/kBZx/v7G2KSbw8ca2TXcDcxHk6B74NfO2OoksPr107x7U1c22xc3NqIeQG9l/1f0/GFfqK8QnfpqKFaEZQJNCMoBBCCCHaFDMbbmaXmNnDZvaumQUzG1kybV8zu8DMZpvZe3keeybi9TCzb5nZTDNbbGZPmNnH2+BaBpnZr8xsrpktMrN7zKzwa9XM/tfM7jKzN/PrPba1y9IaaCAohBBC1AOVGcHW/ivHKOCTZIvmH2piyX8NnAB8FzgImA3caWbbu3g/AMYDlwIfBSYDN5jZx5p4vgaxzCP3rcABZFPdHwd6A/eb2XAX/VRgTchfgXVSNEcshBBC1AMd+2r4wRDC+lkx7IvAfmUSmdl2wGeA40MIV+dhDwBTgXOBQ/Kw9YAzgPNDCBPy5Peb2SiyXQD/0krXcQiwO7BPCOH+/NwPAzOAbwJfqYq7TghhZV6Gz7fS+VsdzQgKIYQQok0JIaxsZtJDgGXAKsegIYTlwB+A/c1sjTx4f6APRbHzNcA2ZrZpJcDMeuWvkKeZ2RIze9XMLjQztxN1g+V5tTIIzMvzFtlG3odWR2zBNbcrmhEU7crTwGjg2dz+XpVgvMKGzv4Sf3MhHbfF+5//HMtA/nDggkbjp35p3XGHd7LdmfELLi5so/O84ey7athdG98GTi+R5g9uIZJviwce2MJCtYizIutydo/sVxNvxp6u+n90WxRJpOl6i0W2AmaEEN514VPJBn6j8v+3ApYAzyfiAYwlm7WDbHB4MPBjsnVZW5K9Vh5J9qq3VnmeToRPBT5vZv1DCAtr5NGp6HItQgghhBB1w2CKm/EAzKs6XvlcEEIIjcUzsz2ATwHHhBB+mx+7x8zmAdeY2fYhhCk1yjOzkfIMAjQQFEIIIUQno+00gkPM7NEq+4oQwhWtlLcBfnBXCW9OvAOApcBNZlZdGZXXDnsCU8ysp0u7Ih9klj1Pl0EDQSGEEKIeaLuB4NwQwo5tkTHZTNvGifBBVccrn4PMzNysoI+3Htkr5YZm7dbNP/8LbFIVfhwwMc9nMEUq50nNXnZqNBAUnY5Xnf09pzdKMf6xxyLbdnjBxfhNiTOfEFnh0peL5zmwaT/6vLoRIHz/4si27zUpS9EN8G1gfIk24P1n49piuPTSQho7ZYQLubL2iTgmzvexzSJ7/A47JNLEGkB/DwvRAqYCh5tZP6cTHEs2s/d8Vbw1gPcR6wTH5p/P5J9vAouBPRo4X6X5HpznV6GiL5xKesXzWOClrqYPBK0aFkIIIeqDjvUj2FxuJfPT94nVl2G9yHR+d4UQluTBd5ANDD/r0h8NPB1CmFEVry+Za5dHE3+vAoQQnnLhlS2RbgU2MrO9qsozgGzgeGtrXnh7oRlBIYQQQrQ5ZnZk/m9lWvmjZjYHmBNCeMDMNiF7JXtuCOFcgBDCFDO7HrjYzHqTzcx9GdiUqkFfCOENM7sI+JaZvQM8TjZY3Icqty4hhElmdh1wo5n9FPgXsJJsxfDHgDNDCM81chm3Ag+TLSz5Btmr4G+RaQR/4q53L2AoMCwP2tHMFubluLFMnbUHGggKIYQQ9UDH7zV8g7N/kX8+AIwjG0z1pPi28jjgh8B5wEDgCeCAEMLjLt7ZZNq/r5INvp4FPhlCuM3FO5ps14/j8zRLyFYC3wm83tgF5A6iDwIm5OXvSzYw3DuE4PVE3wf2qrJPzv+gEy0useJKawEw+n3vC89+b7Vw5y/HHFOI86/2LFA3YvSECTx7xhkdXYxOw573xvfgvvse3Oy8Jkw4lDPOuKVU3DFj4r7xP9c/WYx0m+s/P/rRyPzZ3z5QSPLVr3qfgL9ztnfzBZkrsGo+F1n/93/rFVJ8ZXf3DPjrX2P74Lget/zUtoU8pk0rX9dNqVvPvffG9fjgvp3mGdApUJ/QPHZOhH3sN7Ee2o455rHKQo4d+/ULj47y91rLsaeeeqwNF4uINkYzgkIIIUS90PUcSos2Ri1CCCGEqAc6/tWw6IRo1bAQQgghRJ2inwZCCCFEPaAZQZFALaIB3l26AjumeoFTwZ0r994bb5W+z+nvj+xzp0wppFnZGoUT3Qq/cCA88UQhjm13rQt5xtk/zj9fWvV/OO/mKMb4c86Jk0yLzzt+uxKF9XkkqOUbubjsA/zyEogXDsz7ajHN+FoFcWX9VK34wPjzzotsO+fwKqtSt2e6VGMjKzzh3ZjB+O20OEQ0Tur13He33z6y77vw35G9777PFhMdo0U3omloICiEEELUA5oRFAnUIoQQQoh6QANBkUCLRYQQQggh6hT9NChNUXex774+5KTI+tCHvlRI84+J8c41c0fHOsPitvGi3hi/XVGsV0t3B7cDsCET+B6Z0+fxteV8HUJRD9h58DrK77Harq7bmNvjPLb7SSKOqHdOcfaQZ2N9367HblFI872HL48DWuBsfhWaERQOzQgKIYQQQtQp+mkghBBC1APSCIoEahFCCCFEPaCBoEigFtGqxFqhhx++vRDDRg9wIY9F1te+9oHI/ulB9xXymOfEiT9rQgmFEEK0jK84e/C99xbifP32fSJ76EWPxxFGf9+leLvlBROiGWggKIQQQtQDmhHsspjZb5uZ9DshhBcbi6AWIYQQQgjRuTkaeA1Y0oQ0GwMXAxoICiGEEHWPZgS7OoeFEP5VJqKZ9QKWlomrFtHueB1I7CHuootw9lqJPP4SWR/6UOzb7PaiNJHBR38ssu/7618j+8HEWYQQoruxp7P3+Wjcf8675i94Djootr//cNx/su8ViTNdlAgTotncC7zVhPgr8jQ1xacaCAohhBD1gGYEuywhhI80MX4ASqVRixBCCCHqBQ0EhUMtQgghhBCiC5FrAD8EjAD6+uMhhKvK5qWBoBBCCFEP6NVwt8DMPgDcDAwHLBElABoIdh8WJcJ+EVkPPxzb666bymeQs++MrE033a+Q4qyzYvvEg16NAz7+8UKaSydPjuy5qaKIRhmeCJvV7qUQzUXfX+swxNmn7LJLMdJNN0XmFbdvGNnnn19M8v0Zd8UBf/1NbK97cMkSCtFhXAYsBA4DplFydXBDaCAohBBC1AOaEewujAU+GUIoLnFvBmoRQgghRD2ggWB34Tkg5VuuWfRorYyEEEIIIUSb823gHDPbuDUy00+DusH7lLwksmbMuATPl77k7EIMr+IB+GZkfeQjP47sux4ZxKSePTlq4EAAxi9YkCpsu+DvoG2d/Y9Emnk18tze2Ye9/nohjq1/iwu5tUauAH+MrP/SJ7KbuwmlaDqfd/b7CvKcI0rkckhkhdcPLcT40/rrR/aUGjkOToTt6uwnnf1SjTzbkvF5HwAwqWdPrv5IiI7fffeZkX3q5GeKmWxU7JVEI2hGsFsQQrjDzMYB083sOWB+MUrYq2x+ahFCCCGEEF0EMzuLbNZlDtksz4qW5KeBoBBCCFEvaEawO3AacDlwSgihRYNA0EBQCCGEqA/0ari70A+4oTUGgaCBYCP0ALapsp/qqIJ0MWIdz913xz65jN2ZsKI/ey/YHYCddrqtkMNlj8T+Mcso6GoxftiwQtjXj5od2V+4aJKLMZkif2/aidf/QtPiN0isO3sfB0V2+MaWAEwaNoyjvvENAMZfcEErnbtlrOfs4jcBrzn7jTYqS1MZn9clrK5bu+A/LlYZTaAnbtW2fqqVH5QIa4zdEmGx772vfW1cZP/0ug0KKca/5r+NpnOIs0/aKRTifP+R1X3DhBX9C32FaC7bOPv2DimFaFP+SraryH2tkZkGgkIIIUQ9oBnB7sLFwEQzA7iD4mIRQggvlM1MLUIIIYQQoutQeTX1A+DcBuL0LJuZBoJCCCFEPaAZwe7C8WT7CbcKahFCCCFEPaCBYLcghDCxNfNTi2iUVlmQIxrhkUeKAvEd+Elkhzu3i+w79t+/kOZVZx/ft29kX/H92Xgu+tIpLuTFhgvayaksYJgwYQv2zv9/7LH4B2OfHeJFOH9yeaTcg3/G2QOefTaytzx0i0KaadPOdyFNXGAD+IUPY8acVYjxn1uei+y3R4+O7N+7+HMTZznM2UtdndkOVQsaquq2c5Kq5zjsootujOwxlxfvi/FfXTOyr1q8OLI3TJzlgDvvjGzb/4k4QuI+F22FnlvdHTM7KoRwXSPHLwkhnFo2Pw0EhRBCiHpBM4LdgYlmNieEcI8/YGb/B3wRKD0Q1F7DQgghhBBdh/OAP5rZDtWBZnYRcBLw6aZkpp8GQgghRD0gjWC3IITwAzPbAPiLme0WQnjezC4ETgY+HULwG9o3SqkWYWYjgIuAjwAG3AOcFkJo0p7lZvYt4H+Bv4cQdi8RPwA/DCGc05TztA4r8c6RRXvxYGTZ/tMj+/LLi4ulThzmHPKOGROZdxQlZsCi5hSuy7DDDl6X9WRkbbNN7Hj2qaeKGskv43SUo09vjaKVINa2TZtW1JjZaB/iHTBfGlnbbLNJIY/vPOUcxRfqrLsRt/k77ijGOPGJWN93/LRpkX3Fa95dNNj+J7qQovZQtBd6btUJJwPrA3eZ2V+BE4GjQgh/bGpGNQeCZtaPzHv1EuAYsiXL5wH3m9m2IYRST1Mz2ww4m86zaYAQQghRP2hGsNsQQghmdhRwF3ACcHQI4cYayZKUaREnAJsBo0MIzwOY2ZPAdOBLwE9LnuuXwLXA6JLnFUIIIURroYFgl8XMHmzg0NrAQuBkMzs5DwshhL3K5l1mscghwOTKIDA/wwyydzeHljmJmX0G+ADwrbIFayCffmZ2m5nNNrPt8rCJZjbLzHY0s3+Y2Xtm9qyZHZgf/7qZzTSzt83sFjMb2pIyCCGEEEK0MyvJfAP5vwXAEy5sZVMyLvPTYCsgJTycCnyiVmIzG0SmL/xmCGFevjdekzGzwWS7Zw8Bds0HoxUGAL8FJpC5lDsbuMnMfg5swep36RcDPwc+2axCiA4i1ht96UuXFGIsvDBeKf/1HWPPgtdcU8x15MirI3vOnO6uD/t2ZHl5XPcj1jd2/+utzdChcZtP3Rcs6B+ZP30+1gSefnrx/pMmsIugGcEuSwhhXFvlXaZFDCaxoTEwDxhUIv0FwHPAxPLFijGzjYE7yaY/dwshzHFR1gZOCiE8mMd/lWyEfBAwNoSwIg/fGjjVzHpWwoQQQggh6pWyPw1Se9rVnNozsz2AzwMfCCE0d1+8scA/yJZCHRFCWJiIs6gyCMypLHO7xw34ppFd8wbArER5TyRbecOQIUOYMKHUm2/RRIYPH9jCuh1QCNloo0mRPWnqsshe2TPehQLg7LNje/nyrv99t7xuRUN0h7rt1WtSZE+eXIzTY0V872y0UXzvTJiwfiLnltVLd6jbzsoZZ9weB2hGsEtiZnsCjzcwBmoszWO1FvWWaRHzyWYFPYNIzxRWcznwa2CWmQ2sOmfP3H4vhLCkRh57AusCpzdSAQuqjRDC0vwVtC/f0vyzLwlCCFcAVwCMGDEynHFGk1zxiJJMmHAoLavb/QohF14Yv+3/1B7xq+F3BxY3xvq0c7k5Z86FLShT56DldSsaojvU7dCht0X2zJnFOP0WxPfOT/8Q3ztnnJF6NXxXi8rVHeq2S6BXw12Z+4EPAf8qE9nMeuZpdgIebyxumRYxlUwn6BlLbYdFW+Z/JyWOzQe+Rqbba4zLgXWAa8xseQjhphrxhRBCCCG6EwZ8zMzG1IyZUXrnuDIDwVuBCWa2WQjhBQAzG0m2K3zSTW8VeyfCLgZ6ku2D93ziuCeEEE4xs+XAH8zsMyGEG0qkE92W4uzD5MluW8Xnz4vMBb/8ZSHNG9tvH9kb9/13ZL/8cndfPCK6OyNGxDOAL637/sh+da0phTT9vvzlyJ489xcuRstm/0QHohnBrs532yLTMi3iSrLld7eY2TlkesEfAC+TzdYBYGabAP8Fzg0hnAsQQpjkMzOzBUCv1LHGCCGcZmYrgN+bWY8QwvVNSS+EEEII0UXZtJnpXq0VoeZAMISwyMz2IXMB8zuy6cl7ybaYq9bsGdlMX+npyKYSQjg9nxm8Nh8MXtdW5xJCCCG6FZoR7LKEEIp7gLYSpVpEvqfwx2vEmUmJlcRN8YUTQijkF0I4Ezizyj62CWkn0gI3NkIIIUSXRQNBkUAtQnQLRo6M7SkXxJrAP6USTZkSmfe43zGjOailxRKiQ7nn5bhNj3+5dprDnJ525De8RlAI0Z3QQFAIIYSoBzQjKBK0mZ5PCCGEEEJ0bvTTQAghhKgXNCMoHGoRoltw2GGx/acLmp7H75392mu3FeIMG9aVfQuOcvZLzl5K96ZPImxjZ5dxbdo5SbXXXw6ruX6vwJ+c7e+tC5pxbwkhWo/cld6HQgiFXUbMbAfgXyGEnmXz00BQCCGEqAekEewuNPYLryeZv+fSqEUIIYQQ9YAGgl0aM+vB6kFgj9yuZk3go8DcpuSrFiGEEEII0Ykxs++xeou5APy9kehN8vmkgaDoFuw6PNa7tcZuqDcn9VVdybfg/0TWhz700ch++OEVLv6ZFHm2dYvUrox29o8LMT70oVhG8/DDf3Uxuo4PvXR7bTn+3hJdGM0IdmUm5Z9GNiD8NTDLxVkCPAPc3pSM1SKEEEIIIToxIYQHgAcAzCwAV4YQau4jXAYNBIUQQoh6QDOC3YIQwvdbMz+1CCGEEKJe0ECwW2BmewFHkfnA6usOhxDCvmXzUosQQgghhOgimNmXgF8CbwLTybSBUZSm5KeBYIMYsF4T03j/jSl/jt6prV/97Y+nnOD6NP48qTQ+TpndBZc52y8uSF3fIGf7HypvAGsDe+b2gyXK4dmlGPSnPzUjn8Z5rdVzbF9OOileHHLhhfHxyZPj7++AAyYU8li27NMuZFFrFK2NWCuyeveOr+eOO4opdnFN6fTT4zq77LKus1ikzdpr4d5K3H9MbkbGe1b9vzZwpDu+2NnzE3nU6pN6lyjHyhp5QtHZuo/j80il8bZPk3Lo7s+TKlsT0Kvh7sLpZHsgHB9CaPFOANprWAghhBCi67ARcHVrDAJBM4JCCCFEfaAZwe7CY8BmwL2tkZlahBBCCFEPaCDYXfgKcK2ZPRtCaI6+KkItokH6AJetsvr2LWpN1l47tgcOjO3+/Yu5+rC1YlkTa64Z2329xI7ifdwa9/ViL8cB5jtJzptvxvby5cU0Q4bE9rBhsf3aazBgwCQ+8pFPAXD33UcnSnOZsx939m7FJNP+XyKftuCbzv5JO523Ftvkn2uu+v+jsdyNfk/H+5PvM27HyD766KJS5OqrvW7rNy0oY1sTl/Vo17T2GZfQcT36aGR+9KM7R/Zll21TZVXq9qnmF7FV8W2xST5kyzNtmgv4ZCKS1wh+wNknFVJ85CMbrPp/wIBJfO5z46LjrznR49zEplm+71t33dge5CXLpPvUpuL7vlRf6PvU996L7UVObrtwYTEPH7ZgQWy/807qvF7bfVUxkujq3AYMAO43s3cpCmhDCGGTsplpICiEEELUA5oR7C7cS7bNXKugFiGEEEII0UUIIRzbmvlpICiEEELUC5oRFA61iAZYc0145ZXVukCvdQPoMfeNOMCLWLygA4rCOy8UWeb0HSsSfqO8IGWNNWLbCw2hKE70QhkvcAQYOTIy5y0fENlew5PK1msG586F55+Hy3IZ4GWXbYDnggs+50JcJoyqfeI2w2ufOgvP5J/vW/X/xIlxjJHjY/3bTCcpe/jhVL5vt0LZ2ou4rP56br29qIEcOTKuE19nq+sVquu2c9BObbFwbyXuP/ZzdixQ/cY3ivf5SVWyweefh099Kj7uu9OUjtn3y4N7ufY6c2Yxke+XfcYpsZ4X+C1x/ntTg6uezqdhb6cz9wLxlKDR98uuQ105pOjr9rXX4vNstFExW9H1MbP3A98hc8g5ENg5hPC4mf0v8GAIIeE5NY38CAohhBD1QEUj2Np/ol0xs92Bh4ExZI6lq8dyK0mtzmoEfYNCCCFEPaDFIt2F84E7gcPIttM5perY48Dnm5KZWoQQQgghRNfhA8ARIYRgZn718FxgaFMy00BQCCGEqAc0I9hdWAz0a+DYBsBbTclMLaIBbOkSNjy2SgCdEh271RLLnXfPdxP5er+jCT+kESkRpw/zraGvFyVDUVXt7eHDi2m23joyB2+/fWyPGZMonROWvxZf4YDhw3lp5ko2G5bVzvbbF9ty796xGH3ZMi9OdyJrgH33je2LLkqUrTVosRP3NqKyqCis+v/mmy+IYtx8s3cE7B3P3pXI96+tULb24ubImjYtXgRw6KF+QQOAv1e8Y/LqxVrB2R1NO7XFwr2VuP/cAhJ/D7uuA2BVHwDw0syVDHjtuej4gMKAJbFaZJJzdj1lSmw//XQxzaxZse1XvSVWwS12i/h8355wVZ4Mq8ZfXeph7HvHXm4Xgx6JVYwbukV+olvyN+A0M7ulKqwyM/gF4L6mZKaBoBBCCFEPaEawu/Ad4O/AE8CNZIPAY8zsp8AOwE5NyUwtQgghhKgXNBDs8oQQnjCzPYELgLMBI1sw8hCwVwjh2abkpxYhhBBCCNGFCCE8DuxrZn2BwcCCEEJKkVYTDQQbIKxYwTN3373KTrnV9TXuFSxLE2m8bsTr/fwX0ieRh9eNDHD2QO+UGhj88suR3d/vVu6dn0LBoXTBkXXKibPTrLzrSjttGry7uAePT8vCH320mMWyZc7JNr5sxW/jhS0PjOw93fHmqKn+JxH2fX7RjJw6Cn/VnVXf2FZ4fWNX0juWIW6LqfbanNbq7x1/b8GLiVTxPerv4UcfLeoKx4xZ3Te8u7gH7w7fIjrez/ewKQ/2vk/yzqBnzy6mmT49TuIcTM8rpmCBs30PlHr6+v7f68FrPQug2P/3df12P9+PAwPc9UXo1XC3I4SwGHi1JXnIobQQQggh2hQzG2FmN5rZW2b2tpn90cw2Lpm2r5ldYGazzew9M3s4fzXq4/Uws2+Z2UwzW2xmT5jZx1v/amqWdyszu8vMFprZm2Z2tZkNTsRrSZ1saWbfMbMrzOy37u83TSmvfhoIIYQQ9UAHzQiaWT+ylaxLgGPIFjecB9xvZtuGEPxrIM+vgQOBbwAvACcDd5rZh0IIU6ri/QA4g0w39xjwaeAGMzsohPCXVrykBjGzDYFJwDTgSLLt3y4Abjez3UMIK/N4za4TM/s8cFWe5g2KE9Det2CjaCAohBBC1AMd92r4BGAzYHQI4fmsKPYkMB34EvDThhKa2XbAZ4DjQwhX52EPAFOBc4FD8rD1yAaB54cQJuTJ7zezUWQ7cbR4IGhm44FjQwgjG4n2DTK/VAeHEBbk6V4FHiDbCeSPebxm1wnZquFbgC9UztESNBBsgED80j3hwaoQVstvFNTWBHrVXf9EHl4T6Oebi9uQQw/v8+/974/tHXcsJtpll0btx6cUlQVP/y22pzk3X//+NxxxBFxySWbfeWeisDzlbK/IWVBIccEFm0T2L3/968ge+YUvFNI85+wDRoyI7G0HvpQo2sHFMCE6AR/epjgJ8OSC+C3THU4rHKvyMjZz986XL/AxFiRS+Xs0vocvvtj1JcB//rP6/yOOgPPOi49XawgBtt56s0IeHzhyZBzg/aGm/KM6YXL/f/87svv5TouiVq+MD0CnVizoCMv4lPXTPD6PlDbRn7eTcAgwuTLgAQghzDCzvwOH0vig5xAyp6fXV6VdbmZ/AM4yszVCCEuA/cm+qmtc+muAq8xs0xDCDAAz60U2YDsG2BR4E7gOODvX3LWEQ4A/Vw/QQggPmtlLZNf6x6p4za2TYcBJrTEIBGkEhRBCiPqgMiPY2n+12QpIePdmKjC2RNoZiRWxU8kGfqOq4i0Bnk/Ew53nGuAc4Pdkr5x/ROaI+doaZWkUM1uTbGBZ5lpbUid/B7ZsThlTaEZQCCGEEC1hiJlVT7VeEUK4osoeDMxPpJsHDKqRd2NpK8crnwtCCH5qPIpnZnsAnwKOCSH8Nj92j5nNA64xs+0rukMz60nmo69Cjzw8GjuFECoTuoPy+A2Vd3TJ66pVJ6cAfzSzN8m2hCrkU9EilkEDQSGEEKJOWNk2LwLnhhAS+qKI1AIGS4Sl4pRJWzbeAWRv3W9yA7rKHpt7AlPy//8LxLqjjMhHW/7aeWbVucpea3PrZBbwb4qvwavzLT2+00BQCCGEEG3JfIpydshmvlKzYtXMA1IuVQZVHa98DjIzc7OCPt56ZK+UG5JTrlv1/8HAGlX2icBB5AtUqqgsKZhPNghr6Fqr3VS2pE6uJJvV/BPZ6uSU2+LSaCDYAIF4MUhKyOsrr9ZCECguBqnpHDqRxxBn9/GOn/1CEIAddojtndxWhH5hCPDkzLg0f7ssPj55cvE0fs/3p55a4WI8z4c/vIQ77qjsgPNMMZOCxMPfE28UUlx2Weyw9s03j4/sk+6NbYAe7ksdcGRsv/OyFoaIrsNTiYVMA9aOFzzd6BZnzUx0Ume5+/yGG/z9+PfE2Wc5e0ZkhVB07HzHHatlUB/+8BJ+9KO4r9hmm9hJ9fbbF8+6yy5xr7v77rtG9rZf3LqYaGsXttVWkdnjsccKSYa5BSWDZ86M7LnFszTZCXVqhUItJ9Sp51JjKx1CKPrgbiemkmniPGNJPwR82sPNrJ/TCY4lGwA9XxVvDeB9xA+RSkOrnOdNsmrao4HzrVonGkKIVj2Z2UHA0hBCYisECCG8a2YzafhaH3DX1dw6ORT4Rgjh/2rEK4UWiwghhBB1QGUg2Np/JbgV2MXMVi39NrORwG75sVppewOfqErbi2xG7K58xTDAHWQDw8+69EcDT1dWDOfx+gLrhBAeTfy1aJeOvLwHmtk6VeXdnewV860uXnPrZBG1B4ul0UBQCCGEEG3JlcBM4BYzO9TMDiHzg/cycHklkpltYmbLzey7lbB84cb1wMVm9kUz2xf4A9nq3O9VxXsDuAj4lpl93czGmdkvgX2Ab1fFm0TmKubGfGeO/c3sI2Z2gpndbGYpr0pN4QJgBXCrmR1gZp8iW438L+DmptZJA1xN5luxVdCrYSGEEKIO6KhXwyGERWa2D9lA7XdkCyLuBU4LIVRr9Yxs42o/SXUc8EOynTcGAk8AB4QQHnfxzibT/n2VzNfes8AnQwi3uXhHA6cCx+dplpANyu4EXm/udQKEEF4xs73J/ADeRDZLeQtwevVK3ibUSYoXgaPM7G6yGc7UquGrypZZA8EGMGL9XmrqtJYzaG9D0UH0QG/37h0HvO99xUy8BtCLZ1LOoV2Y1/9N/kMxyd+cc2ivCZw+3ateoKjve8HZM8h0v7c2cByKeiNPakY8zueGG7ZxdsrNti/rXYk4QnRd3nkn1g3uv/9+LsYoingNrnfw7u8byCZAGiN1n1fnszHxZAk89dRmzi6WdfJk14+5Pmr33b3qGnbZJa6DbU91+uhHE/IvF9bHiaE3dBpCgA3/+9/IXrBsWWy7+Kknv9f7eTs1pivtM6SdCSG8BDS6769beVsd/h7w9fyvsfQryAaL59WItxL4v/yvNCGE8cD4EvGeAj5SIl7NOmmAX+afmwD7prIm24KuFBoICiGEEHVABy4WEa3Lpq2ZmQaCQgghRJ2ggWDXJ4TwYmvmp4GgEEIIIUQXw8y2JXOAvS5weQjhNTMbBbweQninbD4aCDaAAdXblaf0frV8Avb3ej8A7/Nv1KjGbe/zCmpqAh+fUlQ0Puo0gF5L8/DDxdNMm7bIhdTS/6XCXnL2i2Q+NCu+yGppi1Kk0jxbwxZCFHWw7aWLTel+q30LDgaedMf9pEdxEmT69M2cHfefjzwS+xcF+NCHYnuXXWId4Y477lNI84EzxsUBXkfoHagCPB1vIzvw+ecbtXG+CQEWOl1hGd+DndSPoGhFzGwNsl1FjmD1jiq3Aa8BPwGeA84qm5/cxwghhBBCdB1+CHwY+BywPvECm78C+zclM80ICiGEEHWAZgS7DUcB54QQfm9mPd2xGcDIpmSmgaAQQghRB2gg2G1YF/hPA8d6EO+PXBO9GhZCCCGE6DrMAD7UwLGdaaJIXjOCDWDAFn2rloMMHVqMtNFGsT1iRGwPH04B7yB6881je8yYyHx74MaFLLwuecqljR9Phf37337BxQyK+IUfXqydEoD7MO+cFjJda3MWiQghug/VfUCg2N94F8spB/ZznR1vCjFt2mZ4pk2LXbBNmRK/WfNr8bKwHs7eObY/HdsAAxa4hXLTpsX29Omx7RxQA/SfFfen/V9+OY7wyivFws6ZE9uLVy8f0Yxgt+G3wLfNbCbwxzws5DuafI0STq+r0YygEEIIIUTX4SfAn8m2ppuXh/0NuAe4I4RwSVMy04ygEEIIUSdoRrDrk2+l92kz+znZCuH1gDfJBoEPNDU/DQSFEEIIIboYIYSHgIdamo8Ggg3RqxeccMJqO6X3q6UR9M6jgaXDYs2f9yk6zfkp9bKSVJi3n/J7xAOLF3utntfy1XL4Cl5/k/0A8Xgn1EII0Rx8X5Lqb7znjJXOTrlXjrWG//533Lf/5z/rFVI439AFf9JO2p2HbdyoPWrcfpHd5zXvfJ+ik+kyGkGnK+SS1W8JpRHsHpjZQcDIEMKliWMnAzNCCH8pm58GgkIIIUQdoIFgt+E7rF4k4lkzP156IKjFIkIIIYQQXYcxwOMNHJsCbNmUzDQjKIQQQtQBmhHsNvQA+jdwbG2gd1My00CwIXr1gi9+cbWd0Pu9TbxZuZdmzHS6EoBZd7g4Mxu3vYYwFWfOHK+D8Vo+KPrz8/63Uj66vK8/r8cZQBHf/nzZluZxKjocr+lJndezNBG2rEQcIUTT6ePs1DPGx/H4vgPiF1K9Aa/D7uvsNUvk6/uOVL/m+8c4zeLF7xVSPPLI+pE9c2ZctpSWe9So2PaPEG8PH170GTtyZBw2fPv4+IDU9fkHxCVN8iQiugZPAJ8Fbk4c+yzwZFMy00BQCCGEqAM0I9htuBC4ycxuAK4kW+25EXAicDjwiaZkpoGgEEIIUSdoINj1CSHcbGZfBX4IHJEHG9l2PF8JITS0kCSJBoJCCCGEEF2IEMIlZjYR2BVYl0zv9Y8Qgt+bsSYaCDbASnrwJNuusl+bXIzjNYGvvda4XSZOmTzeecfr7rxOxOvloKilaUhnWo3XAHr/WmX2C/bn7Un2w+Wg3E5pi/xi9pS+yOPrxGsgE2JLEg4XhagrtkmEOXEbQ5zttXspfN+Q0gJX63gN2LdGHil831BGz+j7Pp9Hqv+M+9jidr7FOlmwILb988Lrv4cNK57Vh3l7+PCiTnvYsG0LYRX0arh7EUJ4B7izpfloICiEEEII0cUws0HA5iR+nYUQHiybjwaCQgghRB2gGcHugZn1Ba4CPkk2nZ6izKs0QANBIYQQoi7QQLDb8B1gHHAM8DvgZDJ91LHABsBXm5KZdhYRQgghhOg6fBw4F/hDbv8zhHB1CGEvMh+DBzQlM80INsDKlTBp0mrbC38B5rr1CD5OKk2tOP7XWq/EN9S7dywHWLbMzwCvVUzEus724u2UMNvn6383pBZ6xGVbe+04j4EDoU+fSYwYMW6V7fFha7nL6Z3Qfy9066Rmz47tadNSm88/4uy/OluLSURXxy8G+aizdyqkGDMmvoc32CA+3j+xzmyZW1+xaFFs1+oL+/SZxNprj4uOv/OO75NS97B3HN9W/Voc1tt1Qql+2vflqTqoZnHi8nwav3jQL0CBdJ9aQTOC3YaNgakhhBVmtoz4oX8VcDVNmBXUjKAQQgghRNfhTVYvf38Z2K7q2BDS2/A0iGYEhRBCiDpBM4LdgsnA+8leY90E/MDM1gaWA6cDf2tKZhoICiGEEEJ0HX5M9noY4Dwy55/nkukeJgNfbkpmGgg2QAixHiOl3/C6GK8TSWk1+jpvP0Ocr1b/a82fA2CFk70sX+5FcyknqrHQzpfVlwuKWiBv+7KnwlIOURctgokTM3u432c+kcfggU73k/oy3AW8PidWPUydWrzA22/fI7InTozt+fO9ZhAy+UVUmEQcIdoD36aPL8QYNCjWBB57bHz8oIMosNVWsb3+0Kbff/MWxPef11NDrG9btAguuyw+/tprsZZv7tyi9tmHea2wt6FY/ObMkPn+s2fCUYfXMvs0ZfpgH8c/D1K6w9TXU0Eawe5BCOFR4NH8/3eAj5vZGsAaIQS/w0RNSmkEzWyEmd1oZm+Z2dtm9kcz27h2ylXptzSzG8xsrpm9Z2bP5vvk1UoXzOy8sucRQgghRJrKQLC1/0THE0JY0pxBIJSYETSzfsB9wBIynzWBbCryfjPbNoSwqEb6HfP0k4AvAm+RecIus8eZEEIIIURdY2afb0r8EMJvy8Yt82r4BGAzYHQI4fm8QE8C04EvAT9tKKGZ9QB+A9wbQji86tD9ZQsohBBCiJajV8NdmolNiBuAVh0IHgJMrgwCAUIIM8zs78ChNDIQJPN8PRY4qWyBGiOfnbwe2BE4IITwhJlNBD4MHAb8jGwlzUvA10MIfzazrwNfAQaTDUC/GEKYk8jenSvWqqX8RNXSfDQnjaeM9sRTRmtSS/8HRY2j1+71W56YhfaOrmbOdPYsJq2zDuPm5Fq7Se44FJ1jeYFRSvjjLnB9V9j1vfAJ2OfTH4nsk07aObInTPA+1+DKK3d2IV4zWHp7RyGayJ7OjjWBJ5zgfYXCGWfE9hYL/hUH3H138TS/mhrb/v5LjSRcBzLY3X+DE2LgLUaOXPX/pHXW4eAhd8URdhwZ215wDLzba0CjRU1p6GrpCFOX15juDsppuT3+PKnz1opTJo3oNmzaVhmXGQhuBdySCJ8KfKJG2t3zz75mNhnYAZhP5g37zBDCe2ULamaDgdvJfOTsGkKYUXV4ANnodwLwKnA2cJOZ/RzYgmz7lfWBi4Gfk+3PJ4QQQtQNmhHsuoQQXmyrvMsMBAeTDd4884BBNdJumH9eD1wKnEU2m3cuMAI4vIF0EfnClDuBhcBuiRm9tYGTQggP5vFfJdtm5SBgbAhhRR6+NXCqmfWshAkhhBD1gAaC3QszGwXsDGwEvAL8q/rtbVnKuo8JqTKUSFdZlXxNCOG7+f+TzKwncL6ZjQ0hPFMjj7HAP4BngCNCCIn3giyqDAJzpuWf97gB3zSya94AKGzOY2YnAicCDBkylI02mlR1rHhSH1bLTlErTpnzesq8LvCvMt56q5jGv+X1r5d7FLZzSmS8ZElsr7MOC3v2ZNI662T2mDHFPN73vsbzXJk4r68UX9g1E47W3XukJfMnRfZuuxWTjB7tfz/4xfOHFhO1I8OHD2TChI4tQ3el4+t2bWdPiawhQ4o6khkzYvvVFe/GAf5eA9hww9j2nUdIPA56OAcUXr+S0rOsscaqfxf27Mkk//7VFz6xn9pK5/jCFzX1etZ3H7Ve4ULx8jx9ErvSpaqpKcdTcWrZZfMVXRsz6wv8Avgc8Z6JK8zsN8DJIYQlycQJygwE55PNCnoGkZ4prObN/NMLUe4Czge2JxvgNcaeZBvlnt7AIBBgQbURQlhq2cDAl6+yMWVCRQchhCuAKwDe977R4ZVXxq061pU0gqlOqdNoBOfOzTSClZGnPw6tohEsFDahEeQjsUbwuYGx/u+mm4pJrrzyTRfSuTSCEyYcyhlnpJQcoqV0fN16jeCHI6tZGsF//7t4mqkt1wgW7r+Uw1CnERzXr1+DxwFpBJuZpqnHRZdgAvBZ4HtkUrvXyeRvRwHfBd4lWxtRijIDwalkOkHPWGoP4io9iv+NUpm+SUztFLgcWAe4xsyWhxASj+fWp0cP+HBVP5tyDu37Ph+nx2L36xuKvY7vYWrZULs3SKXxYXP9r+93imnedIMe38v6QR8UB3H+V/3MmfDDH8LZZwOwMFHWBc72wz6/zXwK90gh4fuagb/6VWRvcdRRkX3FeacV0uy443qRfdZZ34js+fP9DOE1jZRSiMY4OrIGDfpUZJ9/fhz7xMPeKGZx8cWxfd11kbkg8UPM+35O9GIF/G9P/7tyYCJN/+pVbT/8IVx5ZRxhU6eNTwwm+7nB4cZuALrxusXBMWu7mVW/uq5/Yp5giAsr84ve51vLTvwaX9k37sn8wDb1mzg1+BXdjk8D3w8h/G9V2AvAD/NJsK/RhIFgGYfStwK7mNlmlQAzGwnslh9rjL+S+R88wIXvn38+WuL8IYRwCtkijz+YWa0FKkIIIYRwyKF0t2EN4F8NHPsnxd9mjVJmRvBK4BTgFjM7h2x27wfAy2SzdQCY2SbAf4FzQwjnAoQQ3jSzHwHfMbO3yRxL70g2dfmbpogaQwinmdkK4Pdm1iOEcH3ZtEIIIUS9o8Ui3YZ7gP3yT89+ZGOt0tQcCIYQFpnZPsBFwO/IXuveC5zmNHtGJlr0s4znAu8A/wOcAcwGLiAbTDaJEMLpZrYcuDYfDF5XM5EQQgghRPfhp8DvzGwt4AZWawQ/CXwMOLr6LW4I4YXGMiu1ajiE8BLw8RpxZpJYSRxCCHmhG3M83VCeqfzOBM6sso9tQtqJlPTO3YOVbLvwH6sDphVXrBU0ct5O7bReS+ThNXPvlXC16FXJKeWyp4wWcZHbPXBO7LUnpR3yy0e8vQB4NwT+lZ9vQSIPH9YcjaBX+aRWO410+qixP/pRZPdKaCBPPOecOM6EzSL7rLNiHdecOakZ+hud3aztIUWXZoCzjyzEGDo09q7lNYHHj3N9+1nFbdmXX311ZHtR98xEyeY5u8Y6CaB5GsGBVX3OuyHw3LRp0fEB3k7k4bXADB0a22utVUxUS6uXwq/QS63i83hPBbU0gQkheg/vmNtpIr0NsHFqYU6OZgS7DQ/kn18m3rDD3PEKjTbYsu5jhBBCCCFEx3Nca2amgaAQQghRB2hGsHsQQvhNa+ZXZtWwEEIIIYTopJjZWDP7uJltWDt2jGYEG2LpUqjWg/3nP4Uoy52GbIE7ntLQ+TD/46zMjzU/eq9ll43j8U4evTYvpR3y1+f1fQvIdD3P5XZKHefDymiUapFQaxbK6q93++sSa5Gc/ubY8edGtpM1ccEF+yXO7P2cey9M2v2w++ElOvs6u9hOjj22cZvxE2M70V6fdrZrnsXtlSjes83Bq+5S+r7qsOo+oYLXGRb0gInz9HE65h5z/G6kRfx9n3JuWytOGYe4/mHr7dT1+bCBPo+ERpAtt2y0HJoR7PqY2aVArxDCSbl9BNlWvj2Bt83sIyGER8rmpxlBIYQQog6QH8Fuw0fJtt6t8H3gdmA7Mv+C32tKZhoICiGEEEJ0HYaRL/o3s+Fku7/9KITwFPAzYKemZKZXw0IIIUQdoMUi3Yb3WK2e2ItMUVXZqW0hsHYqUUNoICiEEEII0XV4HDjZzF4CTgbuDiFUpKqbkm3cURoNBBsgrFzJM/ffv8pObOdeWICwwNkp0bVfcFHrx1nqC/LOW72dco/qw7ydOk+txpEqu1/Y4e23yTZJXJDbqTpqjcUhntR5vONc/33OTTjZHjJlSmT3mPJ4ZO+yywcie8yYokPbadNGuxBve7e/ouvT+Heeaie77BLbvq3h2mKqvfo27dt8aywMSVHmHq5eYLEGxbL5xVypfq05fZQPq9VnpcJ8P55yct/Uvj3ler6WY+4hCaf36yXCKmhGsNtwNnAH8ATZ47TaqfRhNLwPcRINBIUQQog6QAPB7kEI4REz2xgYA0wPIVQ727gCmN6U/DQQFEIIIYToQoQQFgGPJcL/3NS8NBAUQggh6gTNCHZNzOzzwJ9DCG/m/zdKCOG3ZfPWQLABVpC9gK+QcnzcHqS0JylH1bWotSm8t6G2jrA5vof6kO2K3afK9vhrLuOstTn4fH3/mKp7vIPa2bEm1/t3HTGimMW0aUNciLdF96Px7zzVTgq+gl1b822xjE6tre4lj+8bUvd5dZiVyDN1fV67V0v/B0VdpLeT930b4M+T6tcXODvlANyTct4tugUTgV2AN/P/GyMAGggKIYQQYjXSCHZpqlcDb9qaGWsgKIQQQtQBGgh2XUIIL6b+bw00EBRCCCGE6CKYWV9gR2ADstfAs4HHQgjN8r6mgWADBDpOF9gW1NKjpDQ8hQ3dS6Tx+E3TF5Ptij24gXOkwnxZU1qaWtqnlAbSa2l8WZPXt+aasd27d6Pn7dkzGersxvMQ3QH/HcdtIN1OfBYuD9cWU+3Vt2nf5sto6DwpbbA/j7dT9191nOo+obHzeGr5ZS2jsW4vTWB70dhzSzOCXRszWwP4CXACmfvNirw2AIvN7JfAt0MITWrWGggKIYQQQnRizMyA24F9gFuAvwAvkQ0GRwAHAV8DxgIfa0reGggKIYQQdYBmBLs0RwJ7A0eGEG5OHP+VmR0B/D8zOyKE8MeyGTfHA4gQQgghhGg/jgL+XwODQADywd8NwGebkrFmBIUQQog6QTOCXZb3A+eUiHc7cF5TMtZAsE7xX7wXd0NRWF5rcUUqX89SYC6r3ek2x+FrarGIV8b6qe7UohQvTvf2wESagpffIbFj4IVz48OLFqUy8aVdlookuhX+O47bQKqdLPQN37U13xYHJs7q27TPMvVKyN+TfiFWmUUpTXVYPxfYMBGnmtT4xfcFvv9Jpam1GKY7o1fDXZqhZJrAWrwErNeUjPVqWAghhBCic9MPWFIi3lLScx8NohlBIYQQog7QjGCXZyMz26xGnOFNzVQDQSGEEEKIzs+NJeIYmV/B0mggWKd4vZ/XEkFRZDCwRh5Q1A957cFyMoenlZ80KY2g1/3U0gxCUXVXRtc00Nn+enuNGFFMNHJkbDud1mtPx4fnzEmcGC8Iey8VSXQr/Hcct4FUO3ntNRewtdOnuraYaq/rvfxyZPvJoJTOt5beNnUv1dIEps5T/e7qbWCkO+7v4ZSHXO88ucz7MN/n1JNmUDOCXZrj2ipjDQSFEEKIOkADwa5LCOE3bZW3FosIIYQQQtQpmhEUQggh6gDNCIoUGgjWCQOd7TySJZ0OOUVSIU2/vglFztChsd2zZ2yvWEGvPn0YUtEzLVhQyGL5O+9EdhmNoNf9+L4u1dC9xrFQB2PGFBONGhWZS4fE3s9mzYqjv/564sQFZVPS2aDoVvjvOG4DqXbi25Jva31cW0y1V68R9KT8+9W6d1I6vFoawV5rr11MNHDg6uN9+jDQ629XrIjthJBywOL4zi+jEfRaQ69JXlAiDyG6ExoICiGEEHWCZgSFRwNBIYQQog7Qq2GRQotFhBBCCCHqFM0IdkNSX6rXv3n9n7ehuPdnL6/h2XTTYiK/H6rXES5fDv37w+67Z3ZhQ1Xo5bRAA51DNW8DLHVaIa8DStVJ396944CttortrbcuJnI6rOefjw/PnBnb8+enPCXOr2GL7kfj33mqncycGd87vq2N9ZrAVHt199J6U6dG9oBlxX2u/YSR9xvYJ6UN9ntwe9trhyHrB6r/32OP+Li7p5nrNvIG+s2YEdkb+hswgb++Mn4Fu8skmmYERQrNCAohhBBC1CmaERRCCCHqAM0IihQaCAohhBB1gAaCIoVeDQshhBBC1CmaEeyGpBZ++MUitWyAXptvHgd4MbpfPAJFkXhqsUi/frDjjpn93nvFPN58M7b94pDEYpE+Tkjexzmlxi8MAVh33djecsvYLrNY5G/x4aJWPeVR+o0atuh+1PrOi+1k5sxNIruwWGT3EotFvMN2dz/29fcagF9A4p1B+wVhUHuxiL/XANZcc/X/1X1CBb9YJHHfVzulBujl7vP1pk8vJKnlUNrbALMSYV2VzjQjaGa7A18EdgTGALNCCCObkH4EcBHwEcCAe4DTQggvuXiDgAuAw4A1gYeBr4UQnmr5VUTn2Sovz67AEuBW4PQQwryqOMOBM8muebu8PJuGEGa2ZlmagmYEhRBCCNER7AvsAUwF/tOUhGbWD7iPbAB5DPA5YHPgfjNbqyqekQ3IDgBOBT4O9M7jDW+Fa6icZ0NgEtnA7kjgZODDwO1mVj3WGgV8ksx1wEOtdf6WoBlBIYQQog7ohBrBH4QQvg9gZtcAuzch7QnAZsDoEMLzeR5PAtOBLwE/zeMdkue7Twjh/jzew8AM4JvAV1rhOgC+QTbAPDiEsCA/z6vAA2QzkX/M4z0YQlg/P/5FYL9WOn+z0YygEEIIIdqdEMLKFiQ/BJhcGQTm+c0A/g4c6uK9WhkE5vHeAm5z8TCzIWb2SzN7xcyWmNk0MzuxCeX5c2UQmJ/nQeCl6vO08JrbBM0IdgMGOzuh4CmEebuv1/RAcRN7b/tN76GoH6p2Glth0SLYfvvs/4RD6YKuqYRGsOBs1uuLUjh9UeH6EpqrVxfHtf300/HxadN8ipS6aLazVzRQQNF98N+xbwPFdjJtWqwR9G1txx3jtrhhGY1gr16NH0/hdb7N0Qj6ew3ivmHRouL95vuG1HlTGuTqw14rDAxx/YfvgVIOpb1ucF4iTlegE84ItoStgFsS4VOBT7h4TzcQ7/Nm1j+EsNDMBpANItcExpPNGO4P/NLM1gghXNJQQcxsTWBT4FcNnGds7cvpODQQFEIIIeqAbjYQHEx6W6Z5wCAXb2YD8cjjLgS+CmwCbBNCqKwyusfMBgLfM7NfhhAaqr1BZItVGirP6IYvo+PRq2EhhBBCtIQhZvZo1V/0OtUyelX/tdJ5QyLMEnaZeAcA/wRmuHLeCaxLPqvXwHVU8ipznk6HZgSFEEKIOqANZwTnhhB2bOT4XsD9LqylA6T5FJVRkM3OVc/MzWskHlVx1yNb0VvcgDtjXTMbSfbKeBVmtimZP6jQyHk6tZpAA8EuiFfd1dL/pcIGer963mcgFDWAtWwoaoNSGsGpU1fr8VJaPq9b8nmW0Qim/BN6vG6plt9EYNpkZztN4Msv++tJaQRfrF020c3xbaDYTnxbmjatr7Pj+BvuUkIjuMYajR9PUe3vD8ppBH2clEawWt9X3SdU8BrB1H3v8f1J4voGOt+JQ5zfxDIaQe+LMJVGRDwG7NTKeU4l0/95xgLPuHiplbljgZdCCJWv702yAd1XGzjfs2S+Af11vBpCWGpmMxspzwMN5Nkp0EBQCCGEqBM6QiMYQngHeLSVs70VmGBmm4UQXgDIZ+x2A85y8Y4zs71CCA/k8QYABwO/r4p3B5mfwZdCCI15+W/oOm4FjjGzdfJVyRWH2ZvkxzotGggKIYQQdUBnWyxiZkPJXhsDbAz0M7Mjc/uZEMIzebzPA1cB+1YGc8CVwCnALWZ2Dtmr2R8ALwOXV53mVrKdRK4xs2+QvQr+Ftmr6Z9UxbsI+BTwkJldRDYDuBaZw+o9QgiRq5kEFwBHA7ea2Y+AdfL8/wXc7K67co075J8fNbM5wJyq62s3NBAUQgghREewFXCDC6vY3ydz4wLZwtaeVOkKQwiLzGwfsgHc7/Jj95JtMbewKt5KMzsImAD8AuhLNjDcO4TwclW8t8xsV+C7ZFvAbQQsIBsQ3lTrQkIIr5jZ3mSOrG8iUxDcQrbFnPcd6K/5F/nnA8C4WudqbTQQFEIIIeqAzjYjGEKYRIlFIyGEicDERPhLZFvG1Uo/Dzg+/2ss3nzga/lfk8n3Lv5IiXidaiWxBoKdnL6JsFoOpFPLlgb6gJEjG7fLxEmlcaLxd5f3iezly2Flz+d4u/+GAPRN6M77DHdSbL8QJOX82sdJOar2eEG7W/zywmv9CklqO5CuvQgg7WpK1Be+DdReVDRtWuyKzLfFkSOL7XWziuP2Cn7xlr9vUvg0qcUiPszZS4n7AYjXdazs+RzvDtwwOt5viOsHvPNoKI5q/H2fuj636GTg9OmRneo//WIRvyQsNbYq4dJeiE6BBoJCCCFEHdDZZgRF50ADQSGEEKIO0EBQpNDOIkIIIYQQdYpmBBvAyNyMV3g7EactNCBeBZPSq/iwATVsgP7egfTw4Y3bqTCnCVw5fONCkllO6uT9uS5fnmmDnn8+s3slWmD//rGeaKDTDg3eupU0gs7J7TxXs0X9H/znP9SIM9vZKe1XveH1Yanfn35RnXfZ291JtZO4LXmNoG+LKf/uA3dZL7IHj3E3XBmH0iU0gvMWxN/pAnc5qduxemaquk+oMHBg3G6GJ/qbHn56y19Pygm169f6z5wZ2QOWFTeW8H2q74NTk2x+K4n2eF5Auv+vRjOCwqMZQSGEEEKIOkUzgkIIIUQdII2gSKEZQSGEEEKIOkUzgg1gxL73UiNmL3vxqqbUDy+fj1dPOTVOWu9XI05SI7LRRrHt9X/+ONT0G+ikNUBRI+ile4sXZ+7AKtq6nj2Leay9dmz7/eqHDCl+G+usE2uh1h62XiGOx8uJ/PV4zRLAf/8b2++849Wjrzu7sS0ruwMJn3IFr5VrOtvpVQHwuqz3nL0gkaaED7wuQ6qdxG3Jt7X//je+01Pt1d87I0fG6raBw1Iq5Jh33onttxLn8fe5v7d8HgArVqz+v2/fYvm9FDE1k7WZ76P8iWd7zS41+74BiY7N96m+70/p/3xxfa/lnxdeJQvFB3St5wXU1ggWN7kQ9Y4GgkIIIURdEIAVNWOJ+kKvhoUQQggh6hTNCAohhBB1g2YERYxmBIUQQggh6hTNCDZC9RbuqYUfXnLrR9VlJLneIajfNj7lMNTH8XZKQMywYY3bI0YU0zhR9auvxVeYWiziw+bMie1Fi2DMmNWLRVIOpddYI7YHDYrt1J73XhTv7RTeya1f6JK6vqJ/2jedvcDZKVfkXRn3ZZBwRI5fqOPl617yDkXpvK+31GIKP7MxPxGnq5BqJwucHbe1116L6zXVXmstuPC+olP49RcpH9R+sch891UsWVJMU12WMWPg5ZcbP09qsUjfvnGftKFfCJLq1158MbZdX+gdTEPtPrdMP13reZHCx6n1vGgobDXSCIoiGggKIYQQdYNWDYsYvRoWQgghhKhTNCMohBBC1AV6NSyKaCDYCL0a+L+hMK98KuNQulYeKe2JD/N2D++RGWDo0NiupRkElg6MtV4zH42PpxzYenmN19QtXgybbro6bUr343VLZfR/Xgvl46QcV3vdkvc9m9qv3muhio6Pvd3d8Pq/jRNxvG7Q6wrLaAS93i91J/i67soawRSNty3fFlPt1evu/P3m9bgQO3qGolaveA/U1hF6PS7E+uBNN4Vnn42Pv/VWbKc1grE9ZMe4ffZJ9GuFvs71jan+s6/ziF2rD4ZiK6/V15dxKF3LbihMiMZQmxFCCCHqAs0IiiIaCAohhBB1gwaCIkaLRYQQQggh6hTNCDZCrVFya4yifR61bCihE1lrrWKiWsK7hJbGa4683ijlt8zrBn0eCxfCHnus9iNYRvfji5ryI+jDvJ3SQnlefz22vS80SGmduvuva69+Wt/ZKT+Cmznbf2G9E2mWOTshRCuwwNnOPxyLS+TRlYjbmm+Lqfbq23QZvHbWawJTGkEf5jWCixNfRbVGcI89in1HSlfoWWed2PZuBDdOaQR9h+L7xkT/2ctpBH2fm+qny/TlTaU5vgdj9GpYFNGMoBBCCCFEnVJqIGhmI8zsRjN7y8zeNrM/mllquWAq7cZm9hsze8nM3jWz58zsPDNLTFsV0gYzO6/MeYQQQghRi5Vt8Ce6MjVfDZtZP+A+YAlwDNnc8nnA/Wa2bQhhUSNp1wLuIXsX9B3gJWAn4PvA5sCnWnoBQgghhBCieZTRCJ5AJvoZHUJ4HsDMngSmA18CftpI2t3IBnz7hxDuysPuN7PBwBlm1i+E8G6zSy+EEEKIkkgjKIqUGQgeAkyuDAIBQggzzOzvwKE0PhCs+Mz0O6ovIHstbeWLump28npgR+CAEMITZjYR+DBwGPAz4P1kM49fDyH82cy+DnwFGAzcD3wxhDCnzPlWNvB/Q2G17FrnaG4ehff7vRNifL8Co9biEWCuE2974fmsWcXT+AUkPs78+fDee/Cf/2S2d16bKmqZxSLruzUMXqyeckLdy7V+n8aL5tN4T9VrOruM8+TOjK/sDZydWiyySWQNHRp/of77heJigjlzvHIkVWdvOtuXNdFAOy2pduLbUsIrehWp9urbtCe1WMunmeN6y9QClOYsFql28v7ee8XFIj5Nqt34tSC+HBuPGlhM5Ps+n3Gi/6yloWqN50NrPWMaf2ZoICiKlNEIbgU8nQifCoytkfYespnDH5vZWDPrb2b7AF8FLmvstbInn0W8BxgN7BpCeKLq8ADgt8CvgMOBN4CbzOxCYG/gZOC0/P+flz2nEEIIIUR3psyM4GDSezfNo7h3VEQIYbGZ7Q7cRDZwrPAr4JSyhcwXptwJLAR2S8zorQ2cFEJ4MI//KvAEcBAwNoSwIg/fGjjVzHpWwoQQQoj6QY8+EWMhhMYjmC0FLgwhfMuF/xA4M4TQ4GDSzPoCfwU2BH5A9sp2Z+C7wLUhhC/XOHcAbs7TPAMcEUJY6OJMBI4MIfSvCutDtrjlFyGEk6vCTwQuB0aEEArvjfLjJwIMHTJkhyvPOmvVsdStU2uaPlWz/l24t/3Ln1Tl+hcX/qVSzz6J10wDBjRue4dcwLuL4wlj79fr3YS607/OWere6C1fDhtttJBXXnGvZ6owVyn+Fa63U2H+7U5qr2F/Hv+aOvWqbZGbw1650r/z8s7P3IapQLpltA7Dhw9k1qwFrZijb0v+e/OvL8H7HuzVK67oHon3ECvdzbN8ua+jlE9Avxevr/vWfQXf+nVbTUol4+/JuO579IjrOeU+1PvP9PdBqvv398Ey5+Ix9TrZh3m7xmOGjTZayOuvx9fnu7HUq+F+/WLbv/Xt1zfxotRvYvz2243bwArXkfmW5b1gQnGvef8M8VVS5nlRxjeh7+oOO+OMx0IIOwKYbROyR2prs/mqc4iuR5kZwflks4KeQdTe5f0LwDhgVAjhv3nYg2b2FnCFmV3mXvGm2BNYFzjdDwKrWFBthBCWWvaU9+Wr3L+pPcIJIVwBXAEwasSIEM44Y9Wx1Il9mH9UJfrLwo3rC+KGZ8mK9y59vR+fISNGFBMdcEDj9u67F5Lc97e4J548mUZtgKediGD2bN9Fvs2ECVM444xtcjv1sPZdWfyE69u3+MTbwEnXvGPZlK7QP1j8w8s7w4bi9c2fP8PF8JXyz2ImzE6EtQ4TJhzKGWfc0oo5buPsPZy9cyHFiBHrRvaoUfFx/7CG4o8Mrxd7+WWvBwT4l7MfdfZTiTTNp/XrthqvvYRMyVLN6MgaNGjTyN5662IOXkPnfzCltHteZ+d1vrMTzXfxYq/y8Xbqp/Tq/iXrE3aLjm6wQfxrLnV9u+wS2+PGOXv3RP9y++2x/fe/x/YddxSSzHXe9F9yx18tnqXwfPDDS1/1KW2ff0D750Xq57R/hsRIIyiKlBkITiXTCXrGks3SNcY2wPyqQWCFSg++Jdkr3Ma4nOyn8TVmtjyEcFON+EIIIYRIIr9/IqbMYpFbgV3MbNW+UWY2ksw1zK010r4GDDIzNyfAB/PPV0qcP4QQTiFb5PEHM/tEiTRCCCGEEKIGZQaCVwIzgVvM7FAzOwS4BXiZbLYOADPbxMyWm9l3q9JOBN4B/mJmx5jZ3mb2DWAC8Bjg5uQbJoRwGpl7mN+bmRxRCyGEEE2i8mq4tf9EV6bmq+EQwqLc5ctFwO/I9Kv3Aqc5zZ6Ribt6VKWdaWa7AOPJdiMZQjaAvAL4YQihSXPUIYTTzWw5cK2Z9QghXNeU9E1leQP/V/DqE2+X0Qh6vDQ/paCrdV7cBulAWgxUTWIFhk/idVypzednz/adgnc6Np+sxBVVTapcXiMYK2MWLy4uVp8xYz0Xp6ezi2fxvgVTYnSP17fNn+8yYT1np/zstZ1GsPXxdR0rVHv3XheP1wSOjqVtrL128SypJlvNa68Vz7NsmVfLNurEoJOTaie+LQ2MrJTW0uPbvbdTfgaLmkB/T7+ROJOXY/sbLjVYqL7hluL7itmzY93ksGHFFV++Tyrc56mVZR6fKNEYa/W5qX7aF8XbPk0Zn4D++ZF6xqTChGiMMhpBQggvAR+vEWcmiaVvIYRngE82p3AhhFR+ZwJnVtnHNiHtRLJZSiGEEKIO0QyeiCk1EBRCCCFEV0erhkWRMhpBIYQQQgjRDdGMYCNU6zPKaDHKaD4aOwcUv5CEz+ZCWEH+5r0eQ1FM855zxpvwErt8eaxY9Fmk9zH13rK8/7fXydyvVnRyNbSLQNF7Vmpnwrj2Z8/2+rGiANBfstcMpuRFPs5rr8W6tGXLvNZrM4p4jWBn2RM35YHMa/Pi6x05spjCawQ33zy2y/gR9E6NU/taT5/uNYG+rP56io6CO44y7SSO07t3fL1l2mutezblK3P2bH9Pep1vczSCKarvyWUU+4rYX+iCBUUNqL++QjeW8n7t+z6fSaL/9Ffj++Dm9NNltHy1ng+pPLTXsGgqmhEUQgghhKhTNCMohBBC1A1yKC1iNCMohBBCCFGnaEZQCCGEqAukERRFNBBshFoOpX1YcybcfR5lRMh+M3NvL162rJCmr1eJe0F0wuNyr17xYhGvu/Ya6wwvyPdep98A+rFacJ4S8PuOyi/0SKVpfAv32bOLDnt79Yo3tfcOpVOLGrxA3y+WmD59E5ciVVYfVstuL4YkwhpfkDFsWDGFD9too9gu41DaN9fUeaZPb3whS/F6OnKxiF+4so2znddtAOK25NtacxaLeCfws2cX+4rai5n84hGovVik6Aw6rpN+FPuKgZG1cGFxsYjvkwp1kPIk7/s+19hS/WetPrfMYpHmOHr2z5TCWphEmtrn0UBQxOjVsBBCCCFEnaIZQSGEEKIu0KthUUQzgkIIIYQQdYpmBEuS0l2kNhpvKT7PlAyvll4llaavFwd5EVZC8NerV8rB8GpS8puis+eUZnBDVuuBvBNZKNZCH2entF5e1+N/4xQdSs+ZE29qP8RJytZZp3gWH8frCv15pk8fW8ykcH3+F/ojiTReg9UWeM0deN2dWdwmymgEhw6Nba9tg2I9+jxS5/FlCaGWg+kXipm0CUUtG+zk7O2cXWwnm28eV4rXCHoNq/eTDMV7dM4cH8Pr8gBedbbXCPrjAAucXese9nE2pHhfx31Jur+JKWgEU0Jm3/e5vrG1+tz2eD40R3eoGUHh0UBQCCGEqAsC8iMoPHo1LIQQQghRp2hGUAghhKgb9GpYxGgg2AgrG/i/sbDWprX0KkP87vK1NINA//4bNlq2hLstiv7DvO7nTWA9VmsDUz7JvM6wNTSCRaeAixfHGrOFC+NN7ocXXQ8WNILrr9/48f794zwB/v3vnV3Ims4u6hnhaWe3ht5tA2evn4gT6+z89aX0fj6sWCfFNF7b5fNIncfnO2eO1wT66/HXC0Wfec1hM2dvnYizg7NjP4Lvf39vPGPGxLbXrK5wz3N/i0NRIrd4sb+33qCI1wS+6OxUnfl70qvZivdBzHqAFznGfUm6v4kptK1Ev1bo+1zFtVaf2xb4Z05HPZdE90IDQSGEEKIukPsYUUQDQSGEEKIu0EBQFNFiESGEEEKIOkUzgkIIIUTdIBWhiNFAsJOTumW9MNnLtFNLKVY6T7I9vLI8uVgkttdYI5FxAS8S96WZT/ZqouIgOSVWr/XqIuVc2Z/Xi+9TzrHjxQV+sUgKv2hh3ZQP5ipSjpDXXz8u29///oHIfuedVFm9k2K/8KEi8F8D2CT/3y8M8ItQ/GqY9RLnjcvirz+18MOHeWfRayWqebnzjOvzSJ3Hl2XOHF9v/no2oUhPZ/vFTtWFrdStr7dRzt6+cJa1147j7LZbfHzLLYsl8wuRPG86X+xlFosU752Uc+jmLBapdc/6tgjxIrAV1F5wUsT3SaUWi7iK8n1jqv/0Yb5aNbQSXRkNBIUQQoi6QBpBUUQaQSGEEEKIOkUzgkIIIUTdoBlBEaOBYBekOc5NfdgA71TV20B/p29b0/s9TuK9vnrN1XyyrdIrWqXmdEqpNF7X5PVwzvvwqrJUWfMTHqQdXpc2cmRsD3JSPq99AxjlJGUjRsT2Qw95zRlMm+bFiF4j+FL+uQZQEaAVv9MYrztMaQTjOP76vf4Pis6hvZ2iVprUeYpOpmtdT0qnltJjVlPdbip1u7GLMzayxozx5YA99ojt7bePbd+OoFgH8528zzuUTuHTFDWCZRxKe7s5pApbXZblFPuK2h6kfZ9U0AjOTNwDrq9rTv/ZXg6kWx+9GhZF9GpYCCGEEKJO0YygEEIIUTdoRlDEaEZQCCGEEKJO0YxgI1RXTmcaMXufVc3SCM52vsASGsFaPuN6e1d9wGIv8ylsJL+I7ApSeq3WxOuaUk7ZYkdsixfHmqRly4oX6OvAa7u8ndJVbr11bI8Z03geAA89FOvOJk2KHdEtXlzRNz4L7JD/7+vAfzl9nF2sI7NYQ+e1emX0f14nmdK2pbSUtc7jy+LLGoK/npS3N6+1bMzXYla3ffvG/gjHjYtTeD0gwC67xLbXiRb1jvCeu3Vmzozt11+P7WUJSZ1v077Np30CtoYmsAzVfcBKin1FTKq/8fdjoR4T/Rqu72tO/9lZ/AamnkuN35KBzlN60VnQQFAIIYSoC7RYRBTpTBNdQgghhBCiHdGMoBBCCFE3aEZQxGhGUAghhBCiTtGMYCP0aOD/zsa7zi4jdi7sUJ8QVQ8eGIuK11orroWUk9933vEhXqy+gvbRqfiFESlRvL/muJZWrCg6BvbXvIFba7B+73lxwCxXzxRdGG+8fey5e9SowYU0fgFJ0Qn1Jnn5ZjBmTPb/tGkbulz89frvYK3Cecs4kPb4BUMLS3jf9XGKi46K+LL4ss6f751wpwrf09mx4/ExY1avUKjUrV8M4heL7L578Swb93ftwt9/iToaMCxuF0s2iNuFv/60g2mfsW8DqfuiROW3CtUFDtRyIJ1qe2u5Juv7rORiEVf3ZRaL+D62s5B6LjX+rJJGUBTRQFAIIYSoGzQQFDGdeaJLCCGEEEK0IZoRFEIIIeoC+REURTQQbIReDfxfwU+ndtTt5RU9KT1LIexN51g2paVZsCAy1167cY1Sms7yGuL1RJh3rvt2ZC1eXFsjOGSIi/D087E9bVrxtK5evbhtY+9tGPjMp2OPxMOGxa2vUo6BA+Hww7P/J0+OPfBOmxYLGv1X3tPL5YpFK8RJOYL2ej9/uSnHx4ucf3GfR+o8viy+rO+9F39/Kc2n//68c+9qR9CVuv3wh+M4+4xzd/7kycXCPu/aRY02kCrMkK13jmzfFtO6yred7dt86r7oKBrvK1L9zdpruwBfr6l+zfV9vm9M9Z/tpZqshX/mpJ5LeqiLpqI2I4QQQtQNneXHuegsSCMohBBCCFGnaEZQCCGEqAvkPkYU0UCwEfpU/V9Gi7G0DcvSGF6bmNKzeN3LYifU6ltCIzhwYBmNYGedZF6UCPPXHOupyvi/69fLfeszZ8b2lCnFRLNmxXYv15KGD6+ZZh8nVFtrrey7mTsXDj00C1tnnTgLL0PzRU1db//+sd07lh0m03iZ1hpr1E7z3nuN55FK48vir89Xq78WKPpn/OAHY7vaR2Clbj+4ufMJeOM9sf3oo8UT+e/cix5T37m7wfptv72L0Cey0u3VawR9m0/dF52F2n5LC9LKEhpB3/cV+sZESTrL8gr/zEk9l/okwlajgaAo0lmf2kIIIYQQoo3RjKAQQghRN2hGUMRoRlAIIYQQok7RQFAIIYSoCyoawdb+azpm1tPMzjCz+8zsdTN7x8weN7MvmFmpsYmZjTCzG83sLTN728z+aGYbJ+INMrNfmdlcM1tkZveY2TbNKnjj5dnKzO4ys4Vm9qaZXW1mg12c4WZ2iZk9bGbvmlkws5GtXZamoFfDjdCngf8bCuuoxSKelNi5ltPp5GIRFzZw4GaRnRLf15Iqdy7mO7v2YpGCY2PvxddtaF9wJAzw1FON5zF0aDGNz9cV7oMHHQTApHeW88FN3wCgd+/1ojh+cYX//vx6Bkg7cm6kGEBRn+/zSIn+fRWUWSzi8dfjFxKk1mP49RfVi0MAPjD8jVX/r6rbP90eR5o0KbZTC4TmzIntMt6g/UoWF2f58uYsFvFtvjMTX1+qvyksFvGNL9Gv1Voc0lmcR6fwvWuZ51KRzrL0hTWBc4DfAv8HLAQ+BlwJjAG+0VhiM+sH3AcsAY4hG+WeB9xvZtuGEBbl8Qy4FdgUOJXsJvhWHm/7EEKi52s6ZrYhMAmYBhwJDAQuAG43s91DCJWKHwV8EngMeAjYrzXO3xI0EBRCCCFEe/MesFkIoXoZ/r1mNgg41cy+G0J4r4G0ACcAmwGjQwjPA5jZk8B04EvAT/N4hwC7A/uEEO7P4z0MzAC+CXylla7nG0Bv4OAQwoL8PK8CDwCHAX/M4z0YQlg/P/5FOsFAUK+GhRBCiLqg87waDiGscIPACo8AawB+A0/PIcDkyiAwz3MG8HfgUBfv1cogMI/3FnCbi4eZDTGzX5rZK2a2xMymmdmJJS/pEODPlUFgfp4HgZeqz1M1M9hp0EBQCCGEEJ2FvYAFwOwa8bYCnk6ETwXGloy3sZn1BzCzAWSDyAOB8fnnbcAvzezUxgpiZmuSvXouU55Oh14NN4ARay1SvpM7qxoupVWsqYPxoqxEmNfjFPQ5QLGmeqcidRK8XmpBbC2gQE2NoE/kvTYDy12Yl3b18XpAoJ8P8+eteE9eay244w4APnDYYS7JgMh2fnWTeGmbT5PSpXmtoa+SMhpBn2/qPL4sa60V215qudVWxTx22SW2PzDKaer+dEd8gjvuWFW/q3AawXd9pVG8J73crdfaaxcL5yuuoBGMv89Ue/VtunNrBH1fETeUVH9T06F0olJq9YWdReudwj9zmvdc6rzuY8xsfzL93HdCCDUUygwm3aDnAYNcvJkNxCOPuxD4KrAJsE0IYXp+7B4zGwh8z8x+2UiZBpENGxoqz+iGL6Pj0YygEEIIURe02avhIWb2aNVf9DrVMnpV//mSmdlY4DqyBRc/bsIFFbJK2GXiHQD8E5jhynknsC75rF4D11HJq8x5Oh2aERRCCCFES5gbQtixkeN7Afe7sFUDJDPbDLibbAHHYSVmAyGbfRucCB9EPDM3r5F4VMVdj2xFb0PvStbN3bzMqA40s02BN8gGgQ2dJ6WF7DRoICiEEELUDR2yVuExYKfUATMbDtxL5uvogBCC93nUEFPJ9H+escAzLl5qZe5Y4KUQQkV48ibZgO6rDZzvWTJXNf46Xg0hLDWzmY2U54EG8uwUaCDYCNX6i5TuwuszfGWW+UnTFjRLI5jQNfmwgc4PW1ojuKazO6uSEor6qbj/eeedYoqUu7cIL2ZL6P38T0NfihQD3Xex3t13xxEqwrt99oH77ssTDYyi7HjAIZHtXay99VbxvF4TWcJNWylNYC18Paf8GfZyN9wQt8bQ+w3ccstiHjv6OYw7JsX2Pfes/r9St67u33AXHFtp/D26XqKd1HKe6Oso1V6LfgQXNF6wDsX3FXFfUkojOMP1Y4l+rStpBP0zxd9KZZ5LnYEQwjvAoz7czIYClZvsIyGExIOoQW4FJpjZZiGEF/L8RgK7AWe5eMeZ2V4hhAfyeAOAg4HfV8W7g8zP4EshhDdomMJ1VJ3nGDNbJ1+VjJntTqY7vLUJ19XuaCAohBBC1AUVjWDHk6+0vRMYCRwPDM9nBys8U5kdNLPPA1cB+1YGc2SOp08BbjGzc8gu7gfAy8DlVfncCjwMXGNm32C1Q2kDflIV7yLgU8BDZnYR2QzgWmTOrfcIIUSuZhJcABwN3GpmPwLWyfP/F3Czu/Yj8393yD8/amZzgDlV19duaCAohBBCiPZmfeD9+f/XJo7vTbZwBLKFrT2p0hWGEBaZ2T5kA7jf5cfuBU6ret1LCGGlmR0ETAB+QTZp+jCwdwjh5ap4b5nZrsB3gTOBjcim0J8Fbqp1MSGEV8xsbzJH1jeRTS7fApye8B14g7N/kX8+AIyrda7WRgNBIYQQoi7oPDOCIYSZlFxRG0KYCExMhL8EfLxE+nlks47H14g3H/ha/tdkQghPAR8pEa9TrSTWQLAR+jbwf0Nh3i6xPWqbkNImFtzf+Qgl/Aiuu258OK0RdM7cOqVipYJXA8V6qsUJQeDChe56vADOi9kSwi3fLrxmMPX9+f1R/Xez3kMPZf/stBNU/nciuT5u79oxY7aN7NRew14D6KVsqWbzXmObQgErEs+hnj0bT7Oml55SbH9+L1qvERwzpphHn2lPxgGTJ8d2pS5hVd16TeCrLs/Ufe87Wm+vlxL41dik2UsIU+21qBHsTAo4j+8r4r4k1d/4Pqk5fgT9/dZR2u4UtZ4xZZ5LRTrHQFB0HuRHUAghhBCiTtGMoBBCCFEXdJ5Xw6LzoBlBIYQQQog6RTOCQgghRN3QIQ6lRSdGA8EGMGLRbb9EHB/WWRaLpG5zLxEvSMZTqv8334zMoUPjw96Bb8aAGnZnxn9jiwoxFiyosVjEezlOrIzwYnUv509J/v1iET+V33/mTABWLl3Ku/n//R51fk/daoktjt46sqdNK74geP752K7lYBqKPnyXLIntEIp1YhavFlljjfi4b3tQXBxSa7HIFqMSd8Y1U2Lb1VmlLmF13XrXz97zbOr7831D4a5IraDxbcm1teItW2yvHdcLNYfG+45Uf1NoF67PSvVrtfrCzjRM8u3GP3NSz6XGF4vo1bAoolfDQgghhBB1imYEhRBCiLpBM4IiRjOCQgghhBB1imYEG6GWRrA5+o2CY+A2IKVx8U5SvS5mecIZbS8nAOuxIHZ9PGzY4EKavn1jJ7CLF3vdT1+y3x+V2kspqjoKr9bzNixYEHuwfXd5vO17P68ZTFDruyietYRGsCrvioZtsylT4kjbbx/bTgC4/vpbFM7rdXeelLR08eJa9VickQgh1gj6drNgQW2tqS/r+uu7CF7wCPD007Ht6qxaD1ipW68JLOMQ3H9fpZwWu7bk21qx7lMtJxXWWai+vh54B9K+Lxk2rJiD75O8aDXVrxX6Pmd3lEawOTp0aQRFa6CBoBBCCFEXaCAoiujVsBBCCCFEnaIZQSGEEKJu0IygiNFAsBGq9Rcp3YWXT3kdV0oP6BUrbaFHSU3z+vPU0qlBUSPIa7EHtZRGcIMNYnvGDO/8awhZs6uEz0qcuaPwftiKPth8lXh744ED44C1Yp0TQA8n7irzXfh242/cSjGWV/2/nnPo13/atDjR9OmROeL9RY2gL773I/jOO6mHivPlhnc2mLrCPs5e5s5TrMfly2NdoS/riBEuwb+nU8DVyUJXZ9Ulr9TtApeFbyWp+89/x4U4iXaCa0u12l7aZ2DKt2Bnobpv6OXsYl+S0gj6PslXSqql1dIEluk/WwN/npTezz9jvJ16LqXyEaIxNBAUQggh6oJA53KZLToD0ggKIYQQQtQpNQeCZjbczC4xs4fN7F0zC2Y2suwJzKyvmV1gZrPN7L08nz1Lpg1mdl7ZcwkhhBCiMVa0wZ/oypSZERwFfBKYDzzUjHP8GjgB+C5wEDAbuNPMtm9GXkIIIYRoFhX3MRoIitWU0Qg+GEJYH8DMvgjsVzZzM9sO+AxwfAjh6jzsAWAqcC5wSJNL3E4YtR1K13IgnfLF60X/HbUlvBdMp9w696uxWGT48LGFNCNHxvaMGeu5GOuRNbtKeGdaLOJroeiMt4Y2nY29F+OhQwt59HWLRfxNmFLweNG7bzeVkq6o+t87Ou7vFofw3/9G5rCPFs+79tqJwkSkFiP4VQyznV1msYhn3URY7GTal7WwuMBdL1BYMOPrrLoFVOrW172/mtSV+O+4IPJPtBPvEbvG7UjaeXRnctjuqe4bejm72JcMH57IosYNmbr6Us6824Eyz4taz5imO5QWokjNGcEQQkuUpYeQLf+7viq/5cAfgP3NbI2mZGZm/czstvw183Z52EQzm2VmO5rZP/LXz8+a2YH58a+b2Uwze9vMbjGzRI8rhBBCdHc0IyiKtPVika2AGSEE70llKtkP51FlMzKzwcA9wGhg1xDCE1WHBwC/BX4FHE62C9RNZnYhsDdwMnBa/v/Pm3UlQgghhBDdjLZ2HzOYTFvomVd1vCZmtjFwJ9lbmd1CCHNclLWBk0IID+bxXwWeINMkjg0hrMjDtwZONbOelTAhhBCifpD7GBFjIYTykTON4JXApiGEmSXi3w30DyF8yIV/BLgL2DOE0OACFDMLwM3AzsAzwBEhhIUuzkTgyBBC/6qwPsAS4BchhJOrwk8ELgdGhBAK4rT8+Im5uTXwtI8jWoUhFIVkonVQ3bYdqtu2Q3XbdowOIawNYGZ34D13tw5zQwgHtEG+oh1o6xnBecDGifBBVcdrsSeZUvx0PwisYkG1EUJYamZQnI2s6LqTetoQwhXAFQBm9mgIYccS5RNNRHXbdqhu2w7Vbduhum07zOzRyv8arIkUbT0QnAocbmb9nE5wLNmg7PkSeVwOrANcY2bLQwg3tUE5hRBCCCHqjrZeLHIr0Bv4RCXAzHoBnwLuCiEsKZFHCCGcQrbI4w9m9olaCYQQQgghRG1KzQia2ZH5vzvknx81sznAnBDCA3mcTYD/AueGEM4FCCFMMbPrgYvNrDcwA/gysCnw2aYUNIRwmpmtAH5vZj1CCNfXTNQyrmjj/OsZ1W3bobptO1S3bYfqtu1Q3YpGKftq+AZn/yL/fAAYl/9vQE+Ks4zHAT8EzgMGkq3mPSCE8HgTy0oI4XQzWw5cmw8Gr2tqHk04l26eNkJ123aobtsO1W3bobptO1S3ohZNWjUshBBCCCG6D22tEWx1zGyEmd1oZm/lu4X8MfczWCZtXzO7IN+Z5D0ze9jM9iyZNpjZeS0rfeemuXWb7+pyhZlNM7N3zewlM7vWzDYteV7Vbfl8vpXX199Kxlfd1k6/pZndYGZzq3Ym+mqJdKrbxtNubGa/yfuDd83sOTM7z8zWKpG2W9etmQ03s0vyZ9C7+fWObEJ6PctEq9GlBoJm1g+4DxgDHAN8DtgcuL9M5wL8GjgB+C6Zs+nZwJ1mtn2bFLgL0cK6/TTZLjI/Az4KnAV8AHjUzEa0WaG7CK3Qbiv5bAacTbZzjqDldWtmOwL/BNYAvgh8DLiQTOZS17SkbvPj95C5//oOcCDZzk+nA1e1YbG7CqOAT5K5OGvQl24j6FkmWo8QQpf5A75KtrHhqKqwTcn2Ef96jbTbkW20eFxVWC/gWeDWEucOwHkdXQedtG6HJsI2IXNhf67qtvl16/K5k8yd0iTgbyXTqG4bTtuDzMXVzc08t+q24bT75fWznws/P0/fr87rtkfV/1/Mr3dkybR6lumvVf+61IwgcAgwOYSwyv9gCGEG8Hfg0BJplwGrVhuHEJYDfwD2N7M1mlIQM+tnZrflU/Pb5WETzWxW/qr0H1WvmQ7Mj3/dzGbmr1huMbOhTTlnG9Psug3FLf8IIbwIzAE2ampBVLdFzOwzZLOs32pJQVS3EePIfJr+tDUKorqN6JN/vu3CF5ANwK0pBeludRtCaMk+b3qWiValqw0EtyK97dtUsg69VtoZIXZsXUnbh2yqvhRmNpjstcdoYNcQwhNVhwcAvyV7DXI42Wu8m8zsQmBv4GTgtPz/n5c9ZzvQkrotYGZbAusB/2liOtWtw8wGARcB3wwhlNmNp6F8VLcxu+effc1sspktM7M3zOxnZrZmUwqhui1wDzAd+LGZjTWz/ma2D9ks42UhhEVlC9FN67Yl6FkmWpW23lmktRlMcds4yLaqG5QIL5u2crwmlgml7wQWArslZsPWBk4KITyYx3+VzGXOQcDYEMKKPHxr4FQz61kJ62BaUrcRljkNv4xsRvDXTUinuk1zAfAcMLG5BVDdJtkw/7weuJRM27ojcC4wguzhVxPVbZEQwmIz2x24iWyAUuFXwCllC9CN67Yl6FkmWpWuNiMImb7BU+Y1g7UgbYWxwD+Al4G9U69EgUWVGydnWv55j7tJppENxDdowvnbmpbWT4VLgV2Bo0MIqQ4rheo2FcFsD+DzwJdDCM319aS6TVPp/64JIXw3hDAphDAB+D5wmJmVmQlX3aYimPUlG2CvR7bIZC/gG2S7SpWdPeruddtc9CwTrUpXGwjOJ/1rZxDpX0jVzGskbeV4LfYk07z9OoSwsIE4C6qNEMLS/F9fvkp43xLnbQ9aUrerMLMfAScCx4cQ7mrC+VW3aS4nm1WdZWYDzWwgWafbM7fL6IFUt2nezD/vduGVdrt9ifOrbtN8gUyD+bEQwjUhhAfzQfbpwEkVLVoNunPdtgQ9y0Sr0tVeDU8l00d4xgLPlEh7uJn1c9qKsWQN+fl0sojLgXWAa8xseQjhphJpugotqVsAzOxsstdrXwkh/K6J51fdptky/zspcWw+8DXg4hp5qG4bTgvF2ZXKzEoZQb/qNs02wPwQwn9d+L/yzy3JXjM2Rneu25agZ5loVbrajOCtwC6W+VMDwDInnLvlx2ql7Q18oiptL7JXFXeFEJaUOH8IIZxC9mrjD2b2iVoJuhAtqVvM7Ctk2wieHUK4pBnnV92m2Tvx9wSZiH9v4MYS51fdpvkrsAQ4wIXvn38+WuL8qts0rwGDzMwvXPhg/vlKifN357ptCXqWiValq80IXkkmNL7FzM4h+yX/AzKdw+WVSGa2CfBfMh925wKEEKaY2fXAxWbWG5gBfJnML9Znm1KIEMJpZrYC+L1lex5fXzNR56fZdWtmnyablboDuM/MdqnK9+0QQqkZRVDdUmy3k3xmZrYA6JU61hiq20LdvplLGb5jZm/z/9u7Y5QGgigO49+7gYU30UPE3gvYWonaCiJsZWFnYSciFvZ2FjlAPIPYphQ7YSzegMla6EYDJvP9mk1CEoYH2f1ndvZtNk/eJpv0Xs+2TfmOtZ2vLXlh0yHwEBEd8ELW9gSYkC1ofmRNa0tE7NaHW3W7ExFTYFpKGdf3eCzT0q1UECylvNUWBBfADXkK5xE46K1zCPLOAP0Zzz2gI2euNsiZlVEp5WmBsRxFxDtwW39Ad0O/4z/5ZW1H9fURX2dXxuRaoSFjsbbLG4u1nXcGvAL7wDF5h4ZzMvAMHYu1/fzsc/1DeErubzfJAHkFdGVgH711q21133t+Wbez+0yPZVq6WPxCREmSJK2yVVsjKEmSpD9iEJQkSWqUQVCSJKlRBkFJkqRGGQQlSZIaZRCUJElqlEFQkiSpUQZBSZKkRhkEJUmSGvUBXnCjfQzKrd0AAAAASUVORK5CYII=\n", "text/plain": [ "<Figure size 1152x576 with 2 Axes>" ] }, "metadata": { "needs_background": "light" }, "output_type": "display_data" } ], "source": [ "# NBVAL_IGNORE_OUTPUT\n", "\n", "graph2d(u.data[0,:,:])" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "Note that the solution obtained here has a reduction in noise when compared to the results displayed on the notebook <a href=\"01_introduction.ipynb\">Introduction to Acoustic Problem</a>. To plot the result of the Receivers we use the *graph2drec* routine." ] }, { "cell_type": "code", "execution_count": 42, "metadata": {}, "outputs": [], "source": [ "def graph2drec(rec): \n", " plot.figure()\n", " plot.figure(figsize=(16,8))\n", " fscaled = 1/10**(3)\n", " fscalet = 1/10**(3)\n", " scale = np.amax(rec[:,npmlx:-npmlx])/10.\n", " extent = [fscaled*x0pml,fscaled*x1pml, fscalet*tn, fscalet*t0]\n", " fig = plot.imshow(rec[:,npmlx:-npmlx], vmin=-scale, vmax=scale, cmap=cm.seismic, extent=extent)\n", " plot.gca().xaxis.set_major_formatter(mticker.FormatStrFormatter('%.1f km'))\n", " plot.gca().yaxis.set_major_formatter(mticker.FormatStrFormatter('%.1f s'))\n", " plot.axis('equal')\n", " plot.title('Receivers Signal Profile with Damping - Devito')\n", " ax = plot.gca()\n", " divider = make_axes_locatable(ax)\n", " cax = divider.append_axes(\"right\", size=\"5%\", pad=0.05)\n", " cbar = plot.colorbar(fig, cax=cax, format='%.2e')\n", " plot.show()" ] }, { "cell_type": "code", "execution_count": 43, "metadata": {}, "outputs": [ { "data": { "text/plain": [ "<Figure size 576x432 with 0 Axes>" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAmQAAAHsCAYAAAB8GrGUAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjMuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8vihELAAAACXBIWXMAAAsTAAALEwEAmpwYAAEAAElEQVR4nOyde3hdVZn/Pyu3njZpSNqQpiW0oRYotYVaC1QsWBGwaMWiKFWroIOKI87g/HBkRmamo8zIjMzADMyAt4GRjqCgoDIjCtpKUastUGiBQAsNJJDQpCQ0KT3tSbt/f7z7zV5nd9/OyUkv6f4+z3nOOXuvvfbat7W/6718l3EchxQpUqRIkSJFihQHD2UHuwEpUqRIkSJFihRHOlJCliJFihQpUqRIcZCRErIUKVKkSJEiRYqDjJSQpUiRIkWKFClSHGSkhCxFihQpUqRIkeIgIyVkKVKkSJEiRYoUBxkpITvIMMa0GWPaDnY7DhaMMS3GGMcYc/vBbksUDpfrZARXGWNajTFZ99wuNcYscn+v8JV3jDGrD05rw1HMfWGMudTd5tKRa9noweFyTx9uSO/DFMViVBAyq/O2P3uMMS8ZY+4wxpx0sNt4JMEYc7Qx5npjzDPGmF3GmJ1u5/9/xpgvG2OqD3YbRxJWh2x/3jDGPGWMudYYM34Ed/8x4BvAAPCvwN8DrSO4vwOKA0UiAq7fLmNMlzHmN8aYfzTGnDjSbUgRjZB+f6cx5mVjzIPGmGuMMc0Hu51w+Aw8UxxcVBzsBpQYzwJ3ub9rgTOA5cBSY8zpjuM8fdBaFo53HewGlBLGmGOB3wPHAI8B3wV2AccBbwXOB34EbHE3eRk4CXj9gDd25PELYK37uwlYAnwFeI8xZoHjOHtGYJ/nu99LHMfp0oXGmJeQ89wzAvscCRwK98WrwK3u7yrgaOBU4K+ALxtj/gX4snP4qmuPlr7H7vczyLP2NuBrwDXGmL9yHOeGA9iee5HnvvMA7jPFKMBoI2StjuOssBcYY/4D+FPgauATB6NRUXAc5/mD3YYS4+8RMnaN4zj/4F9pjFmARQocx8kxiiw4PjzgOM6N+scYUwP8AXgL8FHg9hHY52QAm4y5/9/gMDrPh8h90eXvTwCMMW8DVgJfAnIIyT7sMIr6nv36fQBjzHuB24B/NcYMOI7z7QPRGMdxXmd0DjBTjDBGhcsyBre732/1rzDGvMkYc5sxpsN1cXYYY/7TGHN0UEXGmLONMT8zxnQbY3YbY140xvyPMWaOr1yt65rSOJ7txpj7jDGnBNSZ54Jx2+MYY+aHtOFb7vq3+ZZ/0Biz2hjzuuteedwY85mA7Ve42y8yxlxmjHnSbePt7vqMMeYvjTEbjTH9xpgdxphn3XYdE9QmHxa43/8RtNJxnLWO4/RZ7Qk15RtjLnaPI+u6IW4wxow1AXFP7rE7xphKY8zfu9dmt+sm/EhA3ScYY75hjNlgjOl19/GU6+aoTHCcBcNxnAHgv92/8912DMWbGGMuNMasdd0uQ8dnjDnZGPMj6757zr2/qq0ylxpjHOCd7n914bS5/wNjyMJgjGkyxvy7MeYFd5+vGmNWGmOOS7j9T4wxOZeE6jLjHoNjjPmYr/x/uMvf5P7Puy/0PzANmGby3VSXBuz/3caY3xtxFW8z8lyPS9L2ODiO83vg3UAWuMqIVVj3e5Qx5mpjzBojLk4NnfimMaYpoJ23u8cw3Yg7/3n3+d1gjFnslql1z0+nu+7XJsBlqs+Fe65+5N7XA8aYX5gEfY+vPccZY/7Mvdd2u+3686DzYaQf/ZGRvmeHMeaXxphTrLpaCjzFJYHjOP8LfMD9+3XjC5UwxowxxnzJGPOEe5+8box5yBjzDl+5VcaYwaDr567/pTFmr3Hdo8YXQ+Z+b3WLX+K7d1uselrcc9bp3jcvus9gQwlOR4rDAKPNQhaFnP3HCKF5ADFx/xR5YGYClwPvNsac6jjOa1b5vwD+BdiBmKQ7gWOBs4F1wEa3XAPwMOJuWQX8LzAR+CBwrjHmHLdDD8NK4FIkFmi9r81VwEXAC3YdxphvAFcBLwI/AN4AzgW+aYw5yXGcLwbs58vAQvfYfw6oReUOdx+/Bb4FOIi78QOI+/HliLYD6Dmb4W9/ITBCJr8JbHf3mwWWuvVG4S5gHnLeK4CPAN83xvQ5jvNzq9wHgE8CvwYeAsYA70DcHPPdfY0ETMjyixEX0k+A1cAggDHmTMT1WQ78EOgAFiFWmXONMe9wHCcLbECsk5cipOXv3Xr7Cm6gMce7bWhC7o0fIff6h5FnY0EC68pq4ALkHnvAXfZmQF8u7wT+xyq/COiIqLcPOaYr3f83Wus2+Mq+H3Hd/gT4HXAe8DlgArAspt2J4DjOFmPMD4BLgAuBf3dXneS289fAPYi7/hTgM8B5xph5juP0BlR5AzJo/Bly334M+Kkx5u3Af7rL7gJakHvzfmPMTMdx9vrqqUf6nw7E3ToNuW5rjDELHcd5MuEhXo9cu/uBXwIfAm40xux2HEfduBqi8FugEelLngbmum3YkHBfIwbHcR4xxvwGebbfhbQRY0wGOa4zkf77W0A1cu/8yhjzYcdxfuxWsxK5Py8G/s2u3xgzCXkH/MZxnI6QZmxwt/tz4AngPmtdn1vPicAjyLviPsQNOw/4AvBe95nrLvwMpDis4DjOYf9BOikHuC9g3a3uuv+0llUh5OU14CRf+Q+55W+2ls0F9iKkbYqvfAUwyfp/p7v9R3zlZiBm7I2+5W1Am/W/DCE9nUCZr+z73bq/ai17tx47kLGWV7rLHOBUa/kKd9nrwExf/UcB+4AfB5zHDFCd4Fp80a1/G/B3SKc+LsG1u91aVo8Epb8GHGstH4d0aA6w2lfPanf574Aaa/k73OW/8JU/BqjyLTPAt93yC6OuU8w5uNSt40rf8hrkheUAl/jKDgJn+sqXIbF2+4B3+NZ9193ub4POQ0CbFrnlV/iWB53L3wO7gbN8y9+GDGzuT3AO3uLWfZ217Ap32a+BLdbyRnf5HVH3Rdx1sM7lHmCB7959xj2PxyS8hg6wIabMJ91y3/M9QxMCyi53y17jW367u/wZYKK1/IPu8l6kTym31t3krvtAQJsd4L98yz/gLn847lxa7dlMfr82w732z/rK/49b/vO+5ddY7WlJcs4L/RDR7/vK/T3795tfd5dd7St7tHteuoGx1jXNAn8MqPvP3Xo+FXAfXhp3P1vrV7nrP+5b/rdB1zT9jM7PQW9ASQ7Cu9lbEcKxArFm/cFd/jwWkbI6qKtC6lsP9Fj/b3HLL4tpRwNC3AJfWMio0wFmW8uCOsV/ccud41v+Q3f5idaynyIvmsaA/c12y19vLVvhLvtGQPlad93/DONalCGjwZzVIe9FRol/h+9lFdRRWR3aPwbU/2GiCdmigG22AtsTtn8ewcRlv+sUUYe2/wHrfrwFsVo4wKO4ZNAqe3dAPWe564II8iTkJfF80HkIKL8o5LjyzqV1/DeHHNs97vU8KsF90Av8wbfts8Bl7j6O9V3TP4m6L+Kug3Uubw9Y93fuuvclvIZJCNlit9z/JajPINYQ/317O8Ev4jKEFA+dJ2vdQnf53we0OQc0B+z/j+76qVHn0mrPpQF1KGkY7/4f496DLwEVvrJjEev2oUDILscalFv35qaQ8jpwWGIt+5G77PiA87rLfh4okJABU911jwWsyyDei134BpDpZ/R9RpvL8kSk47WxFXi7kx/kfLr7PdsEx9SMBSYaYxocx+lBMqtATNxROBV52GtC6lX5jZnApoh6VgJ/gbgtHgKJIwHeB6x3HOdZ37HsAP7UmP28YRoLNTNgH/u5Ex3H2WGMeQD4qOuKuA9Yg3QUftdIIBzH2Qf8uTHmH4H3IDFlpwMn47puXDfblohqTnG/fxewLsrdC/B4wLKXkU5vCMaYMuBPkM7zzQgZtU/g5Jj9JMG73Q9Ih/oC8F/APzv7Z1gGuXfnut+r/Sscx3nVGNMKnGKMGe84Tn8J2gves9Eccg9PRu7x44lwSTuOs88YswY434jMxwBCMH+MdzyLEBf5Ivf/akqDsHsAoK5E+4AQ97Mx5l2Ia/U0xAVVbq0Ou6+esP+4568bsS63+8pqXzYloJ4XnWDX2SNI/3QKQqDiEHcO+5F+ZQxiORr0tX+XMWYD4s6LhDGmDs8VrehzrISYYcJ/nU5EjuHFkHv8ePd7JuKyBemTP4Ak4/w9DLn2TwXucSSQv1jMdb9X+1c4jpM1xqxFvCMn4obGpBidGG2E7CeO4yyFId/+54G/AX5ojDnb6jQmuN+XxNRXjWQEHgXsdqyYshBove9wP1H1hsJxnMeNMc8AHzDGfM6RGKEPIKOllQH7rGB/Ihq3v20hZT+EuBs+iljqAHqMMTcg7qd9UW23juFVJMPpNgAjweC3Iy/lf0Xii8KgOl1BMRNh7db9BnWMg+yfwHITkn37IkISuhBXVx3ihhgTtZ+E+GIBL5Wg46p1v18N2aYLecHWIi/IUkDv4fe7nzAk0ZJbjQwiFgLtiDtolSPxVxoLp4QsKn6sUITdA5BPjoYLJVdD96kx5sNIrFc/YiFtQ8g4COkIu692BCwbjFgO3oDLRlickd5DtSHr/UhyDqOeU4h5Vi3UsX//9SL5cYLDgf866T1+Ct7gLwj2Pf5/iIVziJAhA2bYv08uFEmec7tcilGK0UbIhuASgr91M2M+jbxklWBoJ3eu4zgPJaiuD5hhjJkQQ8q03n9wHOeaIppt43+AaxHtqnuQh38vnt6Ovc9djuMUKoDoBC6UTMCrgauNMScggbBfAP4BebHcUOB+tN6tbrbRC7iZgBFQchGU7dpYzP5tuGT9c4hV4m2O4+yy1p2O3CsHGkHXQ++nSSHbTPKVKwW0rk87jvOdYdb1G/f7nXhWmdXWune61+Ikhv9SOxjQQZdtKfw75DmZZxNMI+brvzwAbQrMEGdk7pWo5xQSPquO47QRnuxSCvivk56D/3EcZ3mSChzH2W2MuQe4zBgz33Gc9Qg5ew1JfBkODsZznuIQxJEge/HXiLvkK67bD8TvD55EQxzWud/nJSjnFFBvFL7v1vVRY8xkxPT/kEs0bfwROMZYqfelguM4zzmOcwvecUdZtZJgwP2O63zVfXNGwLq3BSwrFMe5bXjIJmMu3l6C+kuFDe73Wf4VxphGxKXyQgndlVD4sxGFxxFLyyL384x1/65GrsMnrP9JsJfSWrmKgjFmBhL7tof8rLk3Icfpt/a9BQmFGGlMM8Hq9HpfPxGwrli0InFupxlj8gb3xpixRFufDgjcLOWzEE/Hr93FzyBk8lRjTCH3kmYFf9QYcxri2rw7IPwgCBryEbS/De530HM+BgkjyCLxlylGMUY9IXNjwP4DydxTy8d9iAvlavfByoMRravTrUXfQgLn/9ElR3bZCvfliBundg/wLmPM5wLqLfNr3ES0eysSQ/UeJCi1jGArwk3u93eNMUcF7PO4pDpARqY8CtI/0xGan7wE1fEXbmyFf7lBLG8g8SxR+Cki3XG5/XIxoiNVChFOtda8zViBd65F8K9KUH+p8AhiUbzQGOMnp9ciLuzvlXKHjuP8ASFlnzTGvM+/3ojO28KEde1DYhDnIQOKVdbq1e73l3z/4/Aa0OC+qA4KjIgb/wI5/9/wxXi9BByvfYJbvhafXMIIogLPpab7/wASz7bGcZwk8WOJ4DjObkQC6Fjgs77Vf4HEzx00GGPegwTjA/y14zg7AdzQlVuBE4Brg0iZMeZ0s79u3W+Q98YyvIFEUstur/u9n5aje01+A7zVGHOxb/VViMv1roTEL8VhjFHrsvThX5DMmS8aY/7NDV7/EGJqXmuM+SUiR1CBZMO8AwkeXwzgOM4GY8xfIlmSrcaYHyOyFFOAc9zlN7r7+hxiufhPY8xlyMttAAkqfxtixs8kbPf/ICPbv0IIyn3+Ao7j/J8x5utumS3GmF8g2XxHI66gBYhpvS3B/o4B1hljnkSsG52IFtWFyAgvyUvlE8C/uAG9f0RGphMQC8lM5IV6VVQFjuO8Zoy5CtFf2mCMuQsZIV6IjG5PRghyUXAc5xVjzL1ufeuMMauQa3kB8qL9YLF1lxJuYPenkPv018aYHyKB1e9A7qVHgX8egV1/FCFPP3UD8zcg8UPTEN2m1whOFAnCbxC3ez0WIbPiyJopLH5sFaIT9xNjzG+RrML/dRxnJIKdm6yg70q8qZPmIvffN5AYVRs3I8/JY8aYHyExY+cDr7ifkcaTiN7ZbxEtsGlIXOgA0geWGlcjYQ03GWPOQZ7PuUi/tQa5X4p+VhNipnWdxiB91hkI4doN/IWzv0r/3yL30dXIgGcNcl83u8tPQIjQG7qB4ziOMeZOxPX8GaRP/W2SBjqOM2CMWQe8wxjzHSTz3wFuceNeP4cMwL7vvpueQwYy70YS076c9GSkOIxxsNM8S/EhQfoz0nk6WDpACEm6GXk4diOjmI2I1enUgDrOQwJ1exGC0IYEJb/ZV64acZU+DuxEOsPNiJ6QXzuojfA0/omIS8QhRooC6fT/FyFAe5AX92+A/wc0WOVWEC4PUYfEwDyMkLHdyIj/R8DpCa/FPHcfDyOjyT3u8W9EiLFfx02v3e0BdX0EcbFkkZfZDcho3EESOOyyqwmQewhbhwQk34gED2eBp4A/Q9xo+7Un6joF7O9SAnTIYspeGlFmLpJ4sN09n1uAf8TSW4s7DxSgQ2bde19HBiq7kPiVZxD9s3cV8GzOd/exDzjat24lPv2xuPsCCWz+LhLovNc+d1HnMsl5Djgv9ifr7vM37rk/IWQ7gyQT6XlrRwja+KB7CE9moiWgrsB7LuLcOO71b3Hvl16k//klMDdJ/THtCVyHaJTd694jO9z9nYKI3DpAfdL7pZCPdR7szxtI3/cgYk3fTwLE2r7CvVZr3XZrJvR9yMCyImCbk619/UMhzzQyiPkF4sbXOlqs9dMRi7cmGL2EvJ/2kzRKP6PzY9wbIRJufNINiPq7QaQYrnQSmL+NKCJ/DRFGrENG2192HOfh2B2nSOGDKynwEOIqOhBB0ilSHBYwMrXUbxzHWXQItKUMITfjHMcZdiJOihRHAmJjyFw/+q8Rdn8J8HEkmHGV8c0NFoLvIlmOf4u4LjqBXxhj5hbZ5hRHAIwxE/xxQm6MnE5Y/pMD36oUKVL44Y+rdfGXiLs0fU5TpEiIJDFkn0ZMqSc6rpinG2O0GQnk/NewDY1MaPtRZFqJ29xlv0HcQ19l+Fl7KUYvzgZuceP72pG4kHe73//jOE6i2I0UKVKMOJ4xxvwRcdOWIQkEpyO6WisOYrtSpDiskCTL8gJgrWMpqzuSAfhbooUjddscMuG1bjuIaGm9Oy5Tyhjz58aYZ4wxu4wxvcaY9caYCxO0OcXhj41IAPc7EEHNDyOxFV8kXtA3RYoUBw7fRJJiPokEpx+DeEZOcxzn5agNU6RI4SGJhezNBJudn0Kyd+K23eo4zhu+5U8hE3zPcH/vB2PMx5Ag8K8i2TpjkYDKCUHlU4wuODI91IcPdjtSpDhc4DjOSIqrRu33y6RZgClSDBtJCNkEPA0VG68hqezFbqvrw/A24EnHcb5qLfu/mP2lSJEiRYoUKVIcdkiqQxaUiplkNGaGse06ZMLsmxAL3e8CLG1ehcZ8BtGGobq6+q0zZyaVSUqRIkWKFCkOPTz66KM9juMcDTDDmPAX4DDQCb9wHGfxCFSdokAkIWS9BFuy6gm2ftl4DdH6CtpW14fhe4iA6p8gk0DnjDH/h4j8tfkLO47zLURRn/nz5zvr//hH9lFGGfvY54bKlVn6hLouCknKFIpi2mKvD/odtH0pj6+Q/QQdX9x+w9pR6vMft58k5zbu+KLWJz3uJG0upGzcdfO3Wf+XAgfi+OK2SdKOJPssdv8jfXyFPGul2GfY9iO9r6R1jsR+7Hqj+sOkdSSFKS9/UX+/wf7TIZQCK6BhBKpNUQSS9LxPIbFgfsxCsmritj0uYAqKWXgCl4FwBN90HOc05Ia5BMne+UHYNn7ojV/GvtCXT9z2xbycorax2+JvZ9Q2Ub+Dti/l8RWyn6DjS7JNknLFwD6+uP0kObdxxxe1vtDrnrRMXNm462Y/G6UkY3adYfWW4vjithnOfRT27BWzfSnLJt0maDBRyPZx90Mh52ckSFKxfZ/CPr6kxxrVH8ZhOOfAIC/sUn9SHDpIcj1+CiwwxkzXBe7ciG9318VtW4kV/O9OQnsx8EtH5kKLheM4vY7j/AD4ITA7yTaw/wtGfydZph+btASV8S/31xtUZ1T7wrYLqzOofrt82HL99h9fVPmwYws7lrA2Rh1fWB1BbQw6dn/5oNFzkuOLa1eSZUmOP+4cxNUTVV/Q9Q46B8WQsMHBgjeJvL/CXoxhxxp3TwSVC6o/bHkh57WQtkbtJ8mza29TyDFHlQk7j0mf1STXIu7YkjyXccee5DkOKwf7D1DjjjXo2IL2E3e/R52jFEcWkrgsv43MgfYTY8w1SEzY1xBtqG9qIWPMNGQKoq9qIL4jc0D+ALjRGFOJzMn1OWR6mo9F7dQY8y2gH5lTchsyt9jHkWk5EsH/Mo4aTUWN9OLKFLKfYtsXV76QkWLYSC+ufCH7SnJe49YXU0dYmeFsX+z19S8fiTJRxwrBL4fhQImYTcgqhjEjbhxRSXLcw73euj9/nUHLouoppn8YzjElfV6T7qsUxzece1wRdO3j2hrX3rBtkxxjsf1PIW1Nsh9ZnmI0I7YrdRxnpzHmbGTqpDsQy+mvkKmTBqyiBihn/3vmk4i6+rXI1ElPAIsdx3ksZte/dbf9OHAUMpfhSmSuxRQpUjB8glUIBge9j/5XMjYcUhaFoOOLe6EXg0JIdoqRxWg/76P9+FIUj0TdqDtn5QdjyrQRkD3pOM4u4C/cT2I4jvPfwH8Xso0f/hFu2PKwcv71YaZt3Taonri6k7bbXuZ/Sdmj+ajRZVj9QccS1357f2Hfce1I0r64/YRtb++7mLaEEYEk+w86jkL2G3ZtDhZsa5hNyBQVFd6ykSJmNuLOSdLnM+6ZStKOqHswal9J782wvkC3Casr7Pj9/6Pu5UKfsWKPL2h9XB8V1vawa1pMX5DkmMLKRB1L1L6i2qcxZClGLw5A93lwEffA266csM7Zhr+z8+8njLwFkRW7Tn9b/Z1JFCG0267rkhCYoE4u7JiCEHQOw44j7LwlOf6o8xe3zl9/WCfuPw9BnW3S8xC0T/9+gs5B3Pk+GLCtYfrJZj3rWCYj/zMZr9yBIGVRiBpgBJUJKx/1QrfLhN3nQX1PWB8QNgCIa18SN1cSYhW2n7D2Rm0fdXxx/WfYNva2Yc9J2LEUuizsWdRzEdaOoHsnrm+LOt7gtqUYzRjVhCysE4rrxOK2S7JN0D6iti+0XVEjrqh9hy0L6rSTjCKLaUuxZZMcS5KXUtxxRu0nqq1J6z1c4HdPKhkbGMgnXkrKbCJ2sEmZIuy6J7kvi+kb4raLu0+H04ZCtyvkf6H3btI+odD6htPXFHs9h7t+JPrVFKMTh0i3WXoUYp6PslzFWZoKsX7FWUqC6ol6KKOOJeqcxNUbVD6sfYUsT3p+7H1HnZO4a1HM8YXVlfQ+KKTthyqCrGLgkbHeXti717OKgfwOso4dCsQszjJplyvkeUtiaQ3ax3DKJH3m456VoO2TWnXizlnYsxDV5qhn2X8ugs5JWLvj6gpDkvsgyTlJ0m9EHd/+7UoxmnEIdJcjg6gHxkbQCDrIFJ50RJSksyy0LVGkMkmHGDdyDDu+oA4k7nfYscadn7BOy39O1FWg2xRyLEH7jENY+6OuaRThP5SJGATHi+VyQsCUjL3+uuemzOU80lVe7m2ryw4FF2YU7Jd3HLlP2gdEkaFCygTVHfVcJL0n4whe1H7D1ifZr73/pH1iHLELWpb0PET1q1Eopq8Pu372/6BrmuLIwiHcVQ4fhTy8/ge+mE640I60kPYGkUv7oY3bf9j6OEtP3PmJG+kGIWpEH3bMhVovwo4nrO3+/fs7xELOYxiJPNQR5qLUmLGBAdi+Hbq6PEI2OAiVlVBXJ9tlMt5yG4cyKYNwa2nUvR1FhAohcmFlChlYRW0ftm2p6oxqZxRJCRtsJm1Lof1MGIGKI7ZJrIt2/XEkMo7shw0Y06D+0Y9DvJssHkEvwLhRR9AoMqxM0Pqk2wzn5Zx0v2HLgoiGf3kUEYpqeyHH599HMceSZFlQJxvXvrD1/uPzn0v/docDCYP9SZj+VhelErKeHujokM/AANTUyHJ1XdrZlvrfj0OdmNmIGySElUt6HyR9TvykPon1JKy9QYOSpHX6y9nEIayeuHrDSFmS40uyn7j+PoiIJxmcRZ23JPdAXF8Z/i5JMZpxGHWPhaEQK9RIlSnFNiOxj7gRfanqHQkUe95H6vjCiN7hQMaC3JO2i1IJmQbxd3VBWxu0tkJfn1jFBgeFmIGQrZqafBdmZaW3jwMtjzEcBJGxpPdeEutOoSi2zqjtSlVnKeqN2j5pO0rVJydZFtfekbgHUox+HOLdYmlRrDvtYNQbZu4eqXYM95iTuCr82xez36T1+zHSx3c4EDAbfsV9v6TF4KCQrp4eL4i/rQ0efxyeeEKWNzTkE7Lycqivl991dUK6/MH/cOiTMT+CrEpJ3VpJ3V1By8PuOb9VSZHU5RZWf1S7kpaNcz2OVP8atE3Q/pPuo5jrWcx+w+oMWpa6LEc/DrOuMTmCTOFB6/xI0unG1e2vy/87qq1JyifZPmx91MshaH1Q569m/Kj2xrV/uCPGoDaFIWknGXWe7Ovuf+kcbohzUdqErKtLyFc2C1u2wKOPQnf3i0AfnZ0TWb++mYYGqSOTgd27hXDpR8mYn5QpDidyFnUfJelP9L/t6ovaJm55VL+WpI8Luqf9+/G31V9v0PIk+46Cv01R5zBsf0na4q+zkOMNam+S4wu6h6LOd4ojC4dRd1gYgkaAYR2QH2Ednb8j8/8O+h/WifjrTUL2otoZ1TknIVlhxxJ2fHEkNOnoPsk1CCO5QW0Kuy5B7fDXEXY8QdfzcCRjcS5KdU+qlUxdlB0dsmzdOuju3orMavYqMIXOzgWsX38cg4NQXS3b+wmZbUE7XF2YNuKufdQzHrY+7HfQvZ+E7CTt24L6tLB9+Y/bP0CL6uuCjimKEAadY10eRtiiji9oXdx5steHXfO4a1lIW8PakL+/FKMZh1E3WBjCbvYkL96oDsWuI2ykGVZH2MNtv+TDCGQQkozcoo7ZX1fUaDHoBRE2miumzVEduP+8xdXv77T9xxd0jFFl4jrlwwFJXJQDA2IVUytZe7tYxdraZFlr607gj8AqYBswGahk48bJVFRkqKkRC1lNjRAxjSkDj6CFuTAPdXmMQhFGxJI8k37SHzewCasnaB9h/UQSAha03P9sBJGpsH7N/zwHPbNB9djb+vcd1Q8GnYe4wZ6/zVHvlDgCGtd/xBE0CJibMMWowijqAsMRR8yClsU9GKUkSXEdQRySHl/Q8jASkqTeJG2DZB1NIccZNsL3L4saLYeVtf8fzgRMETYPpV/SIpv1XJRqKXv+ebGKPfssOM5OYC3wANDj1tgJ/ByYxOOPz8OYavr6gq1j+t9W97dxuFrLbITda1H3YCHPrr1uOM+8jTAyFrdd1D7iBjZ2mbhnOWgfxZ6zJOuS7CNpfxZFggtpS4ojB4dp1xePOOvLcOv01xtWfxJSMFwcSsdnlw2zoBXTlmIQdTwjsb9DDWEuSsiXtNi1Syxb3d1iFXv9dVm3aRO0tmaBzcAOhJD1+PayDXFhluE4tWzcOJO6usohK1lDg7gqKypgzBgYO9ZrQ1iw/+FqLUtqbYnaPuylX8wzXsxAKGi/QeXiEGeJizu+sLYX4nZMgqTn9UD19VHtMUB54JoUowWHYbdXOIb7sh3OS/xAvOgP1eM71EhOIRa9wx1BLspdu8RlCB4h6+vz3JUvvyxWsZ4eWb52LcCjwCagFyFkQfit+10P7GTt2gVD1rFJk2RNZaX837nTy8BUlJcLUVOMBhdmlGsxDIVa0gqpr9htSvkMF3J8B2rgVKz1ajh1jXQdKQ5fHMZdXjKExYkFwe5Ak8QehdVR6H4LbV/S/0nqCTrmuG0VUXEjUecwSbuStjusfUlidZK263BCmItSrWB27Fhfn1jFdu+W35s3i8ZYR4eQMsfZCPwOiRvLxuz5t0AGGCCXq2X9+lnU1UFzs5AxJWhjxkhpm3RVVOQH+9vr9ffhiKDYobBnNup+LuYeDXKZxfUVSfuXuP6xkPYmaUcxx5d0X8W0pdD2Ba2La2/4/ZBiNOMw7eriEfSwFtLZ6HdSUmGvT9Lx2e2MIxf+Ov3b2scX5W4I2lfS/Ya1Jei8+cuEdWhJLAj+8xp0LEmucZm7Nu7YD1f4pyryuyhV6NWeBkklLdRS9uyzEjOWzfYCfcBjwMMFtCILrAYm0dtbTW9vLT099UPTKdXVBYvIamzZaHNhBsF/z/ldYWHrw55lf51JSFXQ9lHuwSh3YlCfGbafsOMPO0dxA7CwwVchfXbYfv3lgt4JUW0JWh/V5/m3L8SymmL0YJR0c/sj6qFKWibOjB5ljbH/R3Vq/n2FdXxx5MXuLKLaH9W5BnWiQfsLO0/+c5ukvWFt8Zf1lwnbZxwKHcEfTvBbx2wXpQbqawalBvBrBmVnJ6xfD9nss0AHEiu2usiWrEKsZfX0909j/foZQ/FkOt1SZaVHtJSkKfwuTMVoIWU2wgYNUc9FMf1YlJUnijzF7cu/vNA+NQ5h+44aaAX1hWHHF9X2JO2w64nad9B+ovq6IOKXCsOOfozCLk4Q9UBElUmyTutKQjjs/SbpAOM62iiEkY0oK1zQvsPOU1gnH3Y8Sdob9j9sFK7//ccc1B5/mdGIoFgx2N9FqVawvj7RHdu+XcjY5s0SxN/RAf39LwIbgK2Izpg/gD8ptiHxZg1AL729GTZtaqapCY46SkpkMtIOJWYKdWGCR8qSzJF5uCLIYhv2rEWRCXt5kLUmiiiEPcdhz59dNkn/GUdgwtrgb3shfVBQfxE24Iyy+IWdV7tM0nqD2hD2Hf5eSTGaMYq6tnyEkYSgMkHLklpbgsomsd5E7Xs4KPSYChkdxh1DIYQ3DkHnrtDRuS4bjWQsKoMylxMyFqa6PzgoBGzTJvlIvNg2xEW5BnixBC181v10AlVs3TqWtraJNDR4WmTZrPet8LsubUuarj/cY8uiEDbQSzrQSfKsF7qskD6xkDZGueeSWpeiBrSF1hW2LK5s3LaFWMuSvLdSjF6Mwi4tGlEjIEj2gIeNMovZdjh1DWc/YSPsQraP22/Y6LOQYwhrY9IR7GiE3xqmv1VxX4P2+/s9K1l3txCyri5Zp4Ssu3sbkkHZiRCyUpAxGy8AdUA9jtNId3c9mzY1DrkuKyqgqUnclLC/C3Pv3vx1NhkbTbFlCr/FbCRfyiNRd5L+bCT3X+r6o44n7F1Siv2nFrIjE6OsO9sfSUcxhTxQhVjPkran0DLD3U9cpxl3jMXst9DzWchxBx3PaEOUyKtaxXR5b6+nJ5bLwauviouyrc2bl7K7uxPYCGxHiNiGEWr5Y0AN0AxMpLNzLhs2NDIwIOQrm/WIVWWl/M/lZKJy24UJ+/8erdayw/X+LYaYlIqYjQTBS+JVOFDHl2L0Y5R1Y/kIi0Ow14WNdILiksK2iVvm/63/g9oaZeWJIh0jeXxl7AvdvtC2Jt0m6vwGHd9oR6Euytdf9zIos1khYq2tdhD/DoSMPYZYx0ptGfNjLTAVmASUs3XrArLZampqJN7NnoRcCVpl5f6EzI/RmIlpI8xyby+LilXyb6Pr4rYJev7ClsctS/LMHqjjC7Ju+dtU6r4+6fFF9Z+QBvUfCRiFXZgH/4MZZq2JWj8S24S1Neh/sVaiA3ksw2lrnHWsmHM52hA2D6XtohwYEBelylv09Hiq+2oR27RJiVgWcSU+hifqOtLYA2xxP+VANZ2d04FqBgaqh2LFNBtTkcl4LkvId2HaGK0uTIX9Ek/63IeVSbJN2PMZ9dyOdF8YtV2xfX0h7TuYfb1XNsVoxijtvjzE3eTFxGcdSMTFYMW1MenxFXKsScomrbvY4xvtcWIQPw+lLfLa3++Rr127JFbs5Ze9mDEhY9sQIrYTCbg/UGTMj7VArduOajo7j6e1dSIgBGxgQEqp/IUd5K+aZVGTlOvv0Yi42M+4bUeiPzvYfaSi0HYkPR8H6vgOhfdNioOLUdptBZvHo0iBIsiMHGROjjJZh5WLMlH79+9vn46Mg7bxP8hB/4Pq9/8OMqUHrY+DlrPLhxGvqHMYdi6Cfo8mxIm8qsCrkrJdu0TGoq9vfxelTha+dauSsKeBAWQ6pIOFPYj6/wBCzHJs3jwPqCaTEXKprkqdE1OhVjDbxWljtLswFWH3fthzHNR/RPVr9nZJ+riw/Yf1cVEu0aj6o+qytw/rD4MsjUnrL7S/iTvfdjvtPjNsX8b9pBi9GMVdVjDhCCMFSeuI+h23D7tjDKpHtwlre9A2YQTFT8rCLE9B5yGuA4/qSP0dXdQ2/naG1Tkcq8DhiiCRV/BckgMDnvDrwIC4KDs7Za7IgQHRFxOrWA7YhZCxR4EnkInC9xzoQ/JhGzIbQB3iQs2wefOJwFh6erx5lGpqoLo6f8aB8vL881NeLu7bI0VMNg76rAX1N7oekslNhD17SesIKhc1ALbb7z+euP2G1RnWD4a1I+wYovqfsPbEEcWg8kdif5dCMGq7q6iHPwpxHVDcfpI+RHGjtrD9BC2Pe9iDloeRsKg22u0rZPTnJ35BZfykLcwSOFrhJ2D+b40VUxelX3W/s1NclGole/ZZ6OxUOYudeAH8vQfwqOKwByFmjyGWsnIgQ2fnZDKZesaOFUJWVyel7TixvXvztcmCxGP9lsYjgZyFWaf8g6yw/iSsf1DE9W9R/VrYADWo/rj9hg1Yk1i9oo6l0P47jPTaZfztCjpG/zGEtT8gfDLFKMKo76LiCE6hHU4h+0kycozbZ5L2RO27UGIZtm2hx5ekjXHtjeqYRhPCyJjtorQzKNUi1tfnEbK2Nnj+efnd0wNbt+5A3JIdiGvwUCNjNnqAdQhBqwF62bp1DhUVtdTVCSFTVX/NwFSSpvNhKtmyXZj+QP/R7sZURD1L/kFV2LZh66PKx23v328h+4oikXHtGAkksZoVQvjiPBqQZlkeCRi13VOUiTvOsmMjyBLkryNueZSVzj8qirI0hbUzbttCYiSSHkcU4qyTSZYH/R+NCBJ5VR0uyJ8UXF2USrq6u+V/T4+QsdZWWZbNZvHixV5ALGQdB/KwioDKblQjBHIsmzfPIpPJcPTRXoC/qvvb5ErX2f/VhXkkiMn6EffcxPUHUWXCLNpB5QqJvUpiIYqrpxDrWJLto+oL8zqE9ZuFHN+RMhBNsT9GbdcURYTCHqYgxLnakiyPMmfHWaai6gkyf0eVCUOxFrE4FHKOjjSEZVBCvsgrePNQ2i7Kjg5xU+7eLd8SL9aLxGX1Ii7KPyIuwcMFSsp6gSqgnGy2lvb2OqCeyko5B5mMqPvbLsvdu/NrCpsP80jIxAzCcC1fYeuTWoj8fW5cPzWcPiJq2zh3bZD7Mem5CCtbjEUwvO9MMZoxaruksFikMItM1OjEb0GKInFBo8KwbcLiLZIEtAYda9hxhu3Lrj9sVBZmOQsb8QVZJKOO70hEEpFXW9ZCJwXXDMrubiFk7e0SxC/krBexivUiyvtPMLJkbA5C+kYCncisAVVI0H8D7e0nksnU0tcnQf7ZrBfcn8nkT7fkF5MNmg8TjgxrmSLq2U6yTOuI6iei9hXUH/j7lCTehbC+OKhMWHui+q2wbeLaHrb/qGNK+p5IceRg1HZHca7KqAc77OELetiDytn1JCUiQaMnGauFEyD/yMt/rElGr0HuSvuYws5DkuOLI7JHIjGLEnkFj4zplEe7d3sTg/f2iouyvV2EXrdskXK9vbakxTYkJuuFETqCf8S5/yX43Odg5UrMO6qAfxiB/WxBCFk90AjA5s1z6OnJUFMj56W83Mu6rK/3thwzRkhYHI4UF2YQovoyXR+1rFCPQqnriiJehVi4il1nty9uoB7WX/t/J3OVHjwYY94DXA3MA/YBzwF/6TjOryO2yQBfA5Yjo6sNwJcdx3nYV64M+DLwWaAJ6dC+6jjOj0p+IBEwxrwZuAE4A9gN/BT4f47jvOYrd6xb7lwkvO8h4ErHcV4azv5HfVcUdvMHkYu47cPKRbkO4/YfVEeSfSftMJO2o1hTe5Lj85O1I42IhemK6W/bGqZB+xqwn80KGevokGWqMSYTg+9AJCM6ETL2GPCqu2wkcDt7aWDFEvfvO96BM348pv8x4IsjsL+ngQwwBckvq6K3dzK9vRmy2VrGjPEEYnfvzg/st0lWFOkKys48EmBbpQohMEnWxyHp9oWSwiR9atL9JSGJSd4hce+XsP0H/T+YQf3GmM8CN7ufr7lNmQuMi9n0u8B7gS8ho8TPA78wxrzNcZwNVrmvAVcBX0H0eZYBdxtjljiO83+lO5JwGGOmAKuBVuAihEB+A7jfGLPQcZx9brlxwK8RwnYJ4ADXAquMMSc7jrOz2DaM6u6n0AeykDrCRjyHQtsOZaRkbH8XpU3KslnPRanB/ErINGZMJgbXCcF3Aq8g7sORmI+ykcrK77JkCfy44zRWrMtfu6K/H+fCv+T8XT/jgQf2Ap9AdM5KBZ3mqRIhZzuAarq7j+PZZ+vZvVssYqruD0LIgtT9w5CUvI1WDKcfCYr9KnW/VGx9hW5TSLztkQRjTAtwI/Alx3FutFb9Ima7U4CPAp9yHOc2d9lvgKeArwIXuMsaETJ2neM417ubrzLGzACuA4ZNyIwxK4BLHcdpiSj2JaSjeZ/jOH3udq8AvwGWAj92y30amA6c6DjOFrfck8BmxML3r8W2c1R3PaV4eAox6Q+n3gPR4RwMHGkEzEZQBmXUPJQgMWHd3aK8398vBMyvui+WsVbEracZlFtG4AhO5Ykn/paTF9bSem8/K0JKrbj3Xm7CMOPoo/n1Xdt417v+mtLHlz2LuDC3I5mYe9i6dRYDA7XU1Mh5U4wZA+PHy++KCk8ywy8uG4Qj1Y0ZFTMVhTgrVilwoPq5w6E/PUi96acQF+WtBW53AZADfqALHMcZNMbcBVxtjBnjOM5u4N3Iw73St/1K4L+MMcc5jrMVwBhTgRCnS4DjkA7hTuArjuMM1zVwAfC/Ssbc9j5sjHkJeD8eIbsAWKtkzC231RjzW7dcSsj8KDT4POw7qIxdv11X1HJ/24LqthEWmxC1zF9/GBmKOr64cv71Ycd3JCNO5DVoHsqdOz1ytn27R74GBjxC1tubRVT3tyIE5VnEYlRqSYtqYAF33XUlb5xiQomYjZUA3d184F2Gb37T4bOfvQ4JFynaeh+AjUjSQq37fyzd3VPp7h7LwEAmb7olm6CpVll1tfwPmw/zSM/EtBHXHyr8y6L627hkoqA+LKxNfoRtG2X1iuvPgo45qIz/PES9N6KOL6xdhwAWIiPAZcaYvwGmAW3ADY7j/EfEdm8GtjqO84Zv+VMIAZvh/n4z4v7zjyqfcr9nIZ0eSFfzPuCfgN8BJyHuzhbggwUe1xCMMWMRgvedgNVPuW1QvBn4SUi5DxXbBhjFhCxp7FZcPECSYEy7XKGxAsXGcBVyTGGErZA2RBEzG4dgZ3JAkUTkVT/gTQquAfsqaaExY319Ssa2IbFiu5B+6wlGJnD/u/z93zeybBkMnmj4YYFb/xj4xGcNjz7qcN998LWvvQhcUcL2Kfncg/TpuxBiNplNmyT4X9X9lVzZGZk2gubDPFLFZIMQRqAKie0qpJ8Kqy9J+SRtCSoXRd7CfkeFqxTar8a138ZBjCGb4n6+Afw18DxCPG42xlQ4jvNvIdtNIFiN+jVrvX73OY7jRJUzxpwJXAxc4jjO99x1DxljXgNWGmPmalyaMaac/Kk/y9zleU+z4zjaK9S75cPae2LC46oPWJ4YR2hXkxzDMd0fKii1ezRo+yOdiEG4izJsHkoQMqaq+xo/1tEhcWI9Peqi7EXCEzqQmKotjAwZux3n2e1wzny2/F17wWRM8T3gU281fPXYY/nqy2sxx3wL+EwJ2wlyDmoRYpYBdtHdXUlraz01NdDQIKVUEkNJlz9eTHGki8lGYbRKMUQRsCiMtvMANBhj1lv/v+U4zres/2XAeCQGS912v3Zjy/7KGPPvAWQKhOCELS+m3GLkgf+Rj1j90v0+CzHLg5DGaQF15vJ2IO7QNmtfSdpRSLmCMOq7mcMx8H2kkZ6T0iJK5HXXLk+0VF2S+gGxjHV1CfnKZuW7tVU+/f05RLVeJS1ewpsovFSYBpwKXITz6LP8+MS38mQJav0vgPZ2TjvmGJxnn8Wc+D0kg3wtpXOxPoG4RMe63+V0ds4AaujqEt0LnWZJ1f0hP5ZMoe7OXbv2n6Q8dWEOD8X0Nwdim8OxDxz2Gz8YPY7jzI9Yvx04HnjQt/yXCEmajGQW+fEaMDVgeb21Xr/rjTHGR+z85RoRs7iVwpOHidbv9wFjrP+fAZbgJhJY0Hb3IiRrAvuj3mqDlg0rN6z56UZt95JM06WwmAj/+qjYsUI1t4LqioqzCNtfUL3+baPixfz7jTu+Ix2FiryqpEV/vzftkWZR2oSsv78TebZ3Itagp5Ewir2UDudx5plfYPly+Mzil1g9rTRkzMYfgboTT8R59VW+dd8lfOc7l7Bu3TeAh+M2TYC9CDktR4hqlbu8mv7+BlpbG6moEGuZTcg0qN8vd1FR4VnS/DpmqQszubhsWJmosImg+LAwna+wfYTFxIb1rWHLomLd4uLiovYRFy+XpE89SJOLPwUsCFiu/DCM2T4FXGiMGeeLI5uFWLq2WOXGAG8iP45M47aedr+3Iy6CM0P2N0QKHcfJyyoyxiwB9jiOs36/raT8G8aYNiQ+zI9ZSKalfVxh5Z4OWJ4Yo7ZrCXPTBY2iComJiKs/6X8bUcGlYSSqlMdXbB1HOqJEXtX6EjYPpeqM9fRI0H5bm5A0ya7chvRLPQghe5rSZ1Eu4gtf+AL/fuJ/wPX/xvrPbmZ1ifeg+CUwbtIkPnP88Xzmqqv4xMwvcccde4HflmgPSszUtFUL9NLbC62tjUycKFmXdsC+f7olnQ8TvID/oEzM1IXpIUlMV5i7MyqerJAY10LbNZy+PEncWCH7TdLeQwT3An+CZEPeYy1/N9DhOE5XyHY/Bf4eiTf7bxiK4boY+KWbYQnwAELQPuaWVywHNmmGpVvuy8BRjuP8argHFdLeS4wxRzmO87rb3oWIG+GnvnLXG2OmO47zgluuBXg7IpxbNI64buVQvOlLGbtQiuMLqyO1isWLvNrzUNouSrWS9fSIntjrr3saY1u2wDPPQDa7F5mLcjOS1LQNIWSllJD4FDCNj398Hv/On/H9K27iuRLWHob7gPs2b2bWZz/L9/6mg+yHvsrdd69DtNP+u0R72YiQs2rEiwLd3eV0d9cxfnx5XpB/JuPF8YFH0HQKJv/0SzaOVDFZP5JkXR/M/vZAhGYUWv9wvAsHMaj//4BVwDeNMQ1IAOtFwHnAJwGMMdOQuK2vOo7zVQDHcTYYY34A3GiMqURM/J9Dshk/ppU7jrPNGHMDEo/WjyhcXwycjchIaLnVxpg7gXuMMf+KGOD3IRmW70FmABhOd/YNhAT+1BjzdeAo4J/d/dxrlfs2kqn0E2PMNYir82tAO/DNYez/yCNkxaDQB7vYjiCpWb/USFJvSsaSibyGuSg1lqynB15+2YsZ6+hQMtaJWON7EGvYswghK6XI6r/zN39zHPPnwwVd3+L7nz0wZMzG08CPv/Y1frjyRH687GOsX38qX//6HEQXcrjY6+5BLGSq7g8N9PdX88wzjXkWrqYmcU1WVOxvIYsiZFpGkVrM8jHcfiwsaagY8lNoHQeKxB2ovr0UcBzHMcYsBb6OWLDqkRHjxxzH+b5bzCAPnP9F8UlkbrVrEeX7J4DFjuM85iv3FSQ27M/xpk76sOM4P/OVWw58ARlZfgWRy2hDRGpfHcZh4jjOy8aYdyI6Yj9CrHY/QaZO2meV22mMORuZOukO5Nh/hUydFBbflggmODni8Mb8+fOdP/5xfeiDDcGxVUFlgv77yyYpVyjCNGwK7VTCNHDsdkaVSSEoROQ1m82fh1KzJXftgldfFYtYV5c3DVJ//4tIwP4AEiaxkWGGIvgwGfgKTz01jVnXfwoeeYT7N28mMJjiAOEM4LyZM+HMM/nDn3yLBQu2IP19KSdEn4VMgj4RqAGOY/z4ZlpaxELW1AQzZsCkSULGNDuzrs6bD1OzNJW0KYGzCZh/0vIUgqCYrrhYWbu8v5xdZ1S9YfUHtSmsnH9fQdsUS+6SHJ8uKy83j2rA/QnGRIp+FYvz4NGYoP4UBwijtgsJe1jiYsMKjZ8q5AEtBEnjFaK2DSqfxocVhkJEXgcHPXV9jR3ToH0lam1tsHmzWMmEuG1DyNhmxD25jdJlUZ6FJEFN40c/qmXWpafxw3XreIGRm+0yKX4HbGhtZXprKxdt2cL//M+v+djHrkfOxc8pTXzZs4gkhicm299fRWtrI5mM57oEj3gp7OmXbItZKiZbOJL0ZVF9VlxfnqQfD6ozSFctqeVuOOEjxcacHcy5LFMcGKRdhw/FkpMDQWpKQfpS12RyhMlZhIm8ZrOiEN/XJxaynTuFjLW3S8yYp7q/FyFeexAJiFY81f3tlCaT8gJOPfXTrFgBc+fClEvP47p16w46EbPxBrAJ6Fi1iitrLmDhiz9lw4Z6Vqw4hccf/0+EmA0He909TES8LHuAMnK5XeRyVWzaJHFmg4NCso46ytuyujp/uiW/iGwqJhuPg+mGO1DxtilSlBKjuttI6pKMWhdlFo8zSZc6TiDpcRRyfP7lKQRhLsqgDEp1Ueo8lBqwPzAgZKytTbIns1mRtBAr0CuIRmEH3jRIpcA0YA5vecun+eMDr8EVV8CV6/n+5s2HFBmz0Qf88Gc/48ObT2LqqadywSO3csLcP2XzZhDX7XAmTd+DzHCgrtCxyHmvxHH20Noq2pGZDEx0VYzKy+Xa2aRLCZqNVEw2HlEuQH+Z4RKkpK7OuO2jXKv+/RzouLS0lx7dGPVdhj9+wK9zE1bORhIdmrDsmaT6Xf7YgbBjCEKSGAp/3YVo3xwpiMqghPxYMXVXqsK+PQ+lBuz39goZe/ZZL47McTqQJCVV3X+R0pCxRuDTwFze9rYMv7tvG29MnMSPEernn0zuUMPTwPWtrTS3tvKBO+7gud27OW3hn7JuXRZ4FEleGo7mokpjVCGu4QyQJZcrp7W1eSimDIR4qbq/TcxVp6yuTpYlFZPV/0c6ovrKsL4oKK4rjBBFlQ2r2982e3lU3+13d8b1o2HHG9Zmf/tSHBkY1d1EUIxB0hiBoGVx9RUSGxBGopLGHUQhrg594FMy5qGYDMpduzxZi1xOLGNdXV7MWG8vPP88bN2aQ8jELsQ6tgUhYrsojWp9A/CXfOlLJ/LBD8Lpx22DSZP45xLUfCAxgDhv/xFYMWkSf3z+ef6weQI/+MHbueGGWuA6hpd1utfdwwBiKcsCVeRye8nlxtLfXw9UDhGymhqPiOVyHlGz9cl0MvNdu8LFZCG1mNkIs1wVE3MV1+f6yVoh/WuS/jwoDi0piokTTnvs0Y1R3UVE6eSEjU7CtovKvAzbT9Q2YSOhqE4jyT6DyqWjrmgkyaCE/UVeBwbyRV7ticF13ebNexHy1YMQgBcQUvAS4k4bDjSD8Dyuu+5Evnz8j+Efboef/YzrhlnzwcaNfX1cecwxnH7++Zz+J39CTc17+drX/h8ih7SN4rNQdS7QKrx5MPe63w1s3nwc5eXl1NfnEzJNANB4QRWOVctYTU20mCykpCwIUYPCOK9BUF1xoSJJ+/EwS1yYxa0QT0hU+EtU/58G9Y9+jNruIeghtNcpgqxGYQ+Gf3nYwx/nukxSh71Of0cRw7iHPKgdRzriMij9Iq+2ixKEcOlHRV+3bBE3pVjI9iJaiJuRYP1dCBkoher+RcBFTJ5czRVXwJfrv8ULH/ws64HngMGYrQ919AH/mM0y4957WXDvvXx15Ur4m49x663z6O7eAfyAfPHsQrEHz4W5B7GY7QDKaW2dSn19+X6ETKdhUtKlWZeKODFZSDMx4xDmRgwqU+yA2942LOzE35/6yVjct387fx1Bxxj1nkpxZGDUdgvFuhLDzMhJyxVjEi/GBJ+k3hThCCNjUS7Kvj4hWvY8lB0dHiHr6hIy1t6eRchXH2Id24poFqqFbLhYwuTJl3DDDTBnDsza+r+8tOSzfK8ENSfFWZRmNsoo7EHsYE8Df7p8OV/9xdEsW3YeGzbUcsUVn6a3N4tMzDQcbMazkAkhgzJ6e2vp7a0BKvMImRI0tYaNH+/VFCcmq2UgtZYlQVw/lqSvLbRMEMHyl4v6DhvIh7Un2j25/7oRmlw8xSGCtEuIQbExAqXMrBnOftNRVj6CiJj+ViuY/g8SeVVSphpjHR2eyGtHB7S370Tiwna4H1XdV0JWrKTFNOBUoIHJk9/L2rUw9da/hu+u55UHH+S/iqy1ULwHOG3nTv7xxnGsuPQVHj7mGH59APb7n8Dl7343s849l1kLFjB/7VdZsOAL9PZOR9zBaykuHi+Lp1emhAxEt6yW9vZmKiqqh7Iu7fsjaD5MWyrD78IMysTU3ykESdyOpd6X/3/coDyqnihXaiFtSXFk4ojrCsIewkKD7MPM1WHbxcUj+NdFtTsqHiwqfuFIR5iumP73i7yqdIXtrrRjxjo6xCLW0SHru7tziEXsRSSTrxexiA3XKjYNuISjjz6Vlha48UaYuuJTbLrtNjoQKnIgcDYw83UHU30P8N985SuX4+zdyxvl5QekDbcCCx58kJYHH2RmTw/33POfXHXVe2lrg97eE5E5MYshZXuR67UVcV1WooQMYOvW6QwMVA4RMluZXzMuQQibvS6JmCyk1jI//ElHQX2pIkk/G7QuaNtCCaBN4KL65zDXadTxBfXjOjdRitGLI64bCHsIox6+KDN0XCBm0H6j3J7FmOFTAhaPoBgx2z25d+/+Iq9qDdN5KDs7ZeojjSMTkVfo7d2JONi2IS/1F8i3kBWLWqAZWM6nPz2Hq66SqX7KrvhTVt92G6uHUXMh+AwwZfx46OrCVP8AWOmuuRVTDs6LL7L4xBPpyGb5zgi3Za37OeeWWzg7k2Ht2n9lyxa4/voF3HbbWGRquU6Ky8ZUaYy9eIRsL1BOd/dEYCwDA5khQpXJeBm2INMtjR0bLiZrW9D8Uy+lpCwaSfpIe13SRIAk+7MRZg1LOhi3/8dtn1rMjjykXUACFBvLkOLgIypWLErk1XZR6vJXX/VixpSQ9fb2IkQsi7glXySfkBWbSXkeMAOYxsc/PotvrXgFVqyA1lY2rFlzwMjYiqOPho4Ofre+irdX9+KRMcWtmGk/Zu3aXZx+0g5WNDSwQhnKCOIhYMINNzBrwwZmzZzJf11/LQMDp3D33WV4Yru/KqLmPcj1U0KmE5SLdllv72S2bKkdImQNDbKVznup2mW2VIYikwl3Y6YuzHBEWcTCMFJ9cjH1FhI3Fl9XitGM9NEfYYx0bEBqHQtGlMirP4MShGD194vavsaPaQalui7b2uSjIq+9vTvwVPezCDHbjFjJhjP90UXARznzzErmzoV/v2YbzF/A2vZ2euCATAreCPxpZSVPPrSNU8ZkgXXAV0NKf4AFC/4emMPzz+/hb99k+E8ksmsk8UNg/qpVNK5axWkPPcQP16/ncxPn8NRTc1iz5p0Iobq3iJqz7mc7QsgqEXKdAfbQ2TmdwcFqMhkh7ApbTFZFZCsqROXfRpqJWTwO5VirA9G2tLcf3Ri1j3ycFk2SOK2kMQRhWl9hUhR2mbB920jjwgpDMRmUu3Z5803a81Aq+VJCtmUL9PdrFmUnYhHrcP+ry7IYMtYA1AFzyWQu4ZvfhKVLobbrOTjnIn7Y3l608lYhWIBMR86CBez5ze85Zcx24M+IdwH+HVDPm950C87u3Vxx+umwYQM/BR4bwfYqOX1p82Yuesc7uOUnP+G1mqncc0+GK674FLncXiRPs4/CKaLKllQhx6/TLpXT3T0ZGEtfX2aIOKmYLHhEzA7yV6SZmMNDlDuyUC0xf78dVt6/r6D432ID96NkM1IcWRi1j3shqceFlAkqH/ZAFpIkEEcEo2IjUgjiMijtqY9skVcQMtbbK98qcdHZCS+/7BEyIWPb8URe/dMg9VAcGZsDnAlMorJyHt/9Lnw082O47C5Yu5b/O0Bk7DRg8cc/DjfeyEsDEzhnNsBfkTweqxf4a06e/2888MDjTKnYxgWXX86+e+9lwwi1WbEJqN2wgfPOOYcJc+fymUsuIfOd93LJJZ8CnkDI88MULiirLkzPQiYWs71AFf39DWzZIpNgKiFTj21dnee6tImVisna8hmKNBOzcCQN1A/rr4uJ5Somziuu74+rMxWGHf04Ih/zJNktfuualk+a7Ri3Li4ZIExcMEUw4kRewzIodXlvrzcP5eCgTBKuLsqdO4WgCRl7ASFemlG5FSFkxcaKzQE+wlveMocZM+CDH4SLd3+PHR+8hA2IM7S1yJqTYob7WfCRj/C7y7/H1Uth0ybo7f0mQmQKwQts3Pht5s79NDNnNnLjjT9mKR+g8d57eYHSSOKG4XdA3+bNNG3ezPy77+YTP/gB/PeHuf/+ebS2wsaNzcD3KZyU7XQ/Vch11+9KYCe9vdDaOpG6OiFhGjtma5dBvoaZIs3EHD7ihFcLzcTUusK2Cdp/sR6XqLanOPJwRD7iSUcqQeWDfheqmVPIyEtycVIyFoWoqY9AXpB+UjYw4AXs53JCxrq6hIjt3i3ErK1N5qLM5XLI/Icd7mcb+S7LQq1i1cDxSIzTIhYvnsOKFfCWt0DVAz9lz7JL+D7QVdzpKAifAqY2NcG55/LqN77HRW+Bzs5fIsd5f5G1/pTu7iq6u5u56KJ3sWHDjzkj81HOWLWKF7q6RlTAVoVknwM+dfHFfOIXdSxbeR7r18M115zCqlW7gHqEYLUils2k2IOcF51uqcrdvpz+/jL6+2vo7pYo/rFj5R4bMyafTGnwv0IJWSbjWdbsdX5rWUrKwhEnyhq0LGnAfRSxGo7HpXCvTIrRjFH7eMelPUfFbGnZsDJ+i1XQwxpFoqJGZCn5SoagoH37t843qf9tkde9ez1NMdUZU5HXzk6PkD37LDiOSijsRMjXFjyX5SsUTsbqgfOBeUA9ixc38oMfQO11fw1/s543HnyQ7zHyZGwccBkw4ZvfhIsu4rmeCSx/H3R2rkSI2M5h7uEeoJatW3tYsuRibr/9+0yv2cb0u+/m8iuu4HYKo0KFogP4L+AT7343VeeeyxkLF3LnnX/LRz6ygFWrpiHu1XWI0n8hEhl7kPsgixCzATx1qAzZbC2trZMBycAcM8YTj1WLmcaZQbCYrC4fO3Z/C5l9n6fkbH+E9Z9BXo0wC1ZYX1/GvtB+OsqLkfQdEucVSV2Wox+j9pEOIj1h68PMxVFl/A+Zf12cqTxoHymSISqDUv9rrFicyKsu6+pSpX1Pc0zImKruqwJ/ByJvkaNwN2U98C7gQt73vgzHHANf/CLUXvNnvHLTTXQg1p2RJGMtQBNCByf827/x8MzPcP91sH49rFu3Dvg5wydjih3AA6xZczyXXz6PuXMbWbr085xxbR+XXnMNjyHH+lKJ9uZHB3AXMPPBB5n64IM0DQxw883/zE03Tebllyfzs59NQwj1aoSgJYXeC5UIMatyl1cDteRysHnz5CEL2d69+YKxtqUrTEwW9r/PtYwitZjFwyY2UcKwhVrNkoS0RG0T1Db/8vTdcOThiHicCwnQL7RMKQL6Fal1LB5JMiiTiLz29AgJU7dlV5c3Mbjj5JAXtKru2xayYlyUcxGB14nA+/mXf6nk8sth3MA2uO46nrvpJu6h+Ci0pDgDOG/8eJg7Fy6+mIfnfJ7LLoPNm7chx3UvxQmqRqEH+AkPPggPPtjMz37WyO23f4XTx4/nPXfeCU89xf/19/PHEu9V8YL7yQAXfeMbzKqo4JZ/uIo3MhO48cZqvvKVjyJEqg85BxsT1rwHz1qmYmMZVEw2my1n69Z6jKkcspApgdJBAHiWMEWYmKwfaWxZMhSjYVYoCnU7hm2bbHmK0YxR+ygHBc77RzKKKPN1WL1B/5NaxVLiVTjCXJRJRV5VV0yXq0Wst1fWd3TA1q17kbiwHEIkOhD7zQ4kZqyDwsnYqYhV7HiMaWTFCviLJc/BFddBWxsdq1bxQyDAGFJSnAacd/zxcPPNMHMmj/VM5ZorYfPmdYhdrpPkZKRQPIZIRkymtXUOf/M387j++j/j5KVLYeNG3vO5z7GvvX1E9dWyiG7ZpV//OlPWr2dcSwt/fc01DAxM5etfvwjRHHsWIVePFVDzXrzpmsYi0iWemKzjZNi6tZGKinIGB8Vipq5L/dguzELFZCHNxEyCpCEshbwH/PUEJQSEhaQkcY+mOPIwah/hINdiVOyX/W0/mEnIWdh2UW1LSVlyDFfkVScC14D9gQFvHkolaR0dIC/WTuT17beQ7SJ51FO1+5kGLGHOnHmcc45Me/SnS16CJRfx9MaNvIZkBo4UGatBrGJ1wKyWFrjrLn7cNo/Nd8KvfgVr1jyLuOs2I4RkJPEo4rLdxoMP1vPlLx/HokVTOemkqVxw110sWbaM6e3tvAY8wsjEl+1BXJgLHnyQCcDMDRv4x/vuo6lpCm1tjfz85420tmrEvbqqk7REradj8SyM5dhSGVu2TCObFYK10/IIZzJyr9rTLRUjJguptawQBBGiJNmXum1YXx/lGYkLWUkST2wSHl+KwxOj9vGNspBBPnmKW2+vCzJP+x/KsH2mJKxwRGVQalZaMSKvSsi6utRF+Sr5qvu97v9OCnMmNiMuyjrgeN72tnlcdx2cNXeHTHy5/CpWb9w44lMf1QLLgClnngnNzXD55Xy/dR7XX696ah3Ab4ENlN5NGYQsHtlt5IEHKvntb5uZMQMGrzmDD9x+O7O+8x3YupWpa9dyF/DGCLRiBxLGD3DOunUsXL6cP7v+erh0BkuW1HLVVafy+OMgjs7tiNWwI6Q2G6ruvxNxLNmELIfjlNPePgljKhkY8LbKZPItZH4xWSVZNtHyW9EUaSZmcgQF5fvXBcUM28vD4omLbUdcPenk4qMfo/bR9T8sYSOXsIfO/z+pCTlJYkCKeBQr8qrxY729QsTUWtbVJR+1nLW1QWenirkqIdOg/T0IIXuFwsjYZOAsxC41hbe8pVLIWPv/wI0/gmeeYX1r64iSsQokaP88YMrnPgdXXAFNTfxy/QRuvBEef3wr3rE+zYEhYzZ63f1W09/fzOOPT+LGG4+jbsXZnH3zXOjoYOrNN3PRt7/NQ4jAyEhZEB8Cxq1axbxLL4UZMzh72TKuu+7DXHXVqWzcOBe5/rWIoGxSPbY9btlydP5L2Ie4QnM4TiWdnQ1UVIglrroaxo/3tlYrWpiYLOxPuMIyMVNilgyFJloVEvcV9w4pJtY4xejFqH1ko6Qs4pYFIcg1Wew+U4QjSQZlUpFXDdhXi1hHhxfcL2TsRfIJ2YvIy3QXyd1VGcQqNhYReb2Qj388w8yZsGgRnNH6Xwz+yZ/wpLun3w3j3MRhATATmYSp5nOfg5tv5nsry+jshF/8AtatexFYi5AiJWUHAy8iLt1tQD1r1lRy3XXNrHvXBCZPnsAnbr6Z6YODLLvtNnoQtbCRCvr/KfDaxo1M2LiReffey3k/gJtv/jCPPFLJpk3TuPPOBrfk0wjBUgtqFDQLU6dbUkKmUhlZ2tubGRzMUFMjYrJ6j+/cKYSsrs6zlKVisiOLuHiwqNhjLRsVVxyEuBiyMKRvktGNUfu4Ro0yipWeKHQ7FXVNSVnhCCJm6qKME3l9/fX8icH7+oSMbdkivx1H3WedeBIWr7r/k7xwFRngrYjOfS1wKl/4Qoarr4YpFdtg9Wr4/Of5KfDkcE5GAiwAFmcy8L73SbDalVfy7zeXcdddch42b+5FJhh6ASEKvZRO3qJQ7ETO9U63HXU8+GAt7e21HH00DAxU8afXXkttQwO1bW1Mv+8+9uVyIxb0/4j7/RKw9LOf5azvVnDWZQt5KdtITU013/72+UiG7E4k8P8x4i2nqu6vjEksZB4xK6ezsxljKmlwOV9FhRAxe4JydU9GicnaLsxUTHZ4iCNQSSxaQVaxsFjkOC9NiiMLo/5RjdKeKWb7YupJyVg0ojIoIZnIq1q+bJHXri6PkG3ZAr29O/AsXx3sbyFLSsbKEQvPXOBdGDOPhgZYtgz+/cZ9cPXVIuy1ahU/ZuTI2DjEGjYDOOvoo+GGG+Dcc3mjppHbb4dbboHWVo3begEJ3lcL4MEiY4pehNRkEbHdsbS2TqO1tZru7kYymSksv/afqerbBkuWsOSKK6jp7+cFxK42EkH/G4Cyvj4uWLYMFi5k6oIF3HzzPwITue++8+nu3ouQsXIktmwn8Vm3KiCsRKzS3a4c2IvjZOjurmVwsBbwCJlKtiihihKTtefEtOfJTMVkh4dSkqRCDARhSIVhRz9G7ePpD7z0Lw9aFpQ1GTTCiTNJpxax5EiSQalxYbrM76JUkde+Pm8eyvZ2ePVVIXPbtysZ60BehkEWsl6SveanIdaSWuDtHHfcPJYtg6YmWL4cuPJKXnNFXtsYOTLWAJztfjcefTRcey2vvPNjrH5Ijv1//1fJ2NPIcb2KBKlrtmgxk6CXEnvxzncPQo53IcQMVq5spK8Pmpoaede7P8Gka/tY9Hd/x6y+PrYh8V99I9Cqx4CyXI6pq1YxddUq6oCvfe0fmT0bOjrKueuuU2lv1wnGdyDn9MWYWrN4NFItZSomm0Hmwyynra2aiRM9UlVeLvezTdDAs47pb1tkdteu/QP+00zM4hAXcB8nfxT0PgkqH7XfFEcWRu2jGUWwouLI/OvCsiSj4snSByoZkmRQ2iKvus4Wed271xN5VU0xnYfy5ZfVkqZkzJYyUBV+tZAlCd6fhVjFpgK1HH/8HL72Nbj4/B2yw+tW8spNN3E/YhMZKTQBS4Dm888X9+Tpp/PKOz/GjTfC2rVCSFtbdyDutReR41PpDvB0ssRK4y3T5WUB5XDL2p9y3wfkPOp6kPgp/zL/NjvJJyywalU1PT3VNDTIROdXXfVnTJg4kcY//IHGTZuoWbWK+5GrV2qsdz/NwAVf/zqTgD9bvhyam5k7t5arr3477e21eGKyGeRcR6EXOf/lyPXQc69istDd3UxfX/UQsQLP8lVf79XkF5P1kzJIMzFLjSSxx3HyR6V4T6RvltGNUf1YJsmejBPii9MgS1E4wtT29TtI5LW/X/6rjpjtotQMSo0Z6+oSfpTNqtVrBx4BU0L2qvuJs4plkMDsRkTk9SwmT26kqUkSGC8+/jG44kZoa+O1NWtGlIxppNpcoPnCC8U1OmMGLw1M4PbvwD33wNatKr3wAnLMvQgBUDKmBEvJkP2dcddXWsvs/yAkwr7vVeJBoeR2r/V/l/uty+xv3XbA/V/ptvtZNm6cBlTT0SHB75de+jGmnH8+tLbSct11vOdnP2MTckW3xJy7YtCBzOr5ga9/nbpHHoEZM/jolVcycM3J3HrrHDo6oLt7Bh65si2QQbCX27Fl9eg1yeWqyeUytLXVM3asR6x2786fYsl2YY4Zk78XO97MRpAbMyVmhSHM4hVULq5McftPMZqR6HE0xhwL3ACci7iyHwKudBznpZjt5gOfQbQApiID2jXANY7jbB1Gu0uG4TwwqSWscCSZ+qgQkVebgNmELJvdjlAjdUeq6KsSsh7iyVgjMB2hQY3Au/jQh+o55xyR9npPy9PwJ5+nbe1aXkPckyNFxhYC892WlF14IVxzDb/LzqPtAZE3u+8+2Lp1G16M2DY8N6wSINvaVY6QAZugVSLks9K3TN1rNmwyZWMPHvnay/6EbK+vjLZFt92LXCOVHxnL5s3N3HPPRAYHYcaMCbzpTWdw+jXXMH1wkKk//zk7EIvWSGSwvoRkYs5es4YJa9bQsmULn7n9dpqaptPRAQ89NJl7730X8qrUc/6i+zsMahHciyr6C8qRK1xJNruPLVsmMjCwf0yZ34Vpz4dpI2xZmolZPII0ylKkKBViH0VjzDjg18Bu4BLAAa4FVhljTnYcJyo6eBnwZuDfgaeAY4C/AdYbY+Y6jtM+zPYXhLCHKOl0GXb5FIUhia4YxIu87t4tZOzVV704MiVknZ2y3nGUgGmQvmb1KSHbQ3xQeyNii5qDxIw185GP1LNiBZzAc7LDK67jsbVreZiRiWcCeUDPAM7OZODTn4ZJk+B97+PhvpNZuVLixdra1EWpYqZ78I7TJmCWn2uIfGXwyJdaA5MQsjCEEbKstSyLR9IUNjnT9ith2cPjj2cYHKzmmGOgpQX2fvw0zlixgoq3v50Jr77KebfeCrkca6Hkr8kX3E8dsGjNGuZecQUXXHUVnNPMokUnUFHRyN13n4Pcb9sQUvUE0Q7VXjxSq0H+miwi2mX9/WVks/WUl5MnJqvZmPrMjBkTLyZrIygTU3+nKAxJp8srBdKg/tGPJI/gpxEzwYmO42wBMMY8iaRsfRb414ht/8lxnG57gTHmt8BWt96/LabRxSKJWzINtCwt4jIo1epl/44Sec1mhYx1dXmErK1NJwXfjrzkepCXo2YY7kTckz1EE7EMEiZfhRh0F1BZeSpvehPMmQPXXAMnrP0e3HUXbN1Ka2srDzAyk4I3Ii7KOmQeSq65Bj7+cWhq4g+PV3HPPfDAA3Iecjmdumc7HpFRMlaJR6o0Psx++dsErMpdpi5K/zZxUHemTrwNQrp24lm/lKDt9JXZS/6ZVBdr1t3/i2zcKFmYzc2uFMSlpzHvi7PFNNrQwDl/93fUumegFXgtQYsLQR/wAFDz858zo6MDWlqYdfHFXH31x4CJbNw4keefh1yu2j2el9xjCrPGqiivJgnYhAygklwuRy5XSVtbfV6cmBI0lcSwg/z9GZf28jjdMl2eIh5h0+ullrMUxSLJo3cBsFbJGIDjOFtdYvV+IgiZn4y5y140xnQj1rJIGGP+HLgcaEF6tOeBf3Ac594E7c7DcEYtKRkrDnEZlBAu8qovnIEBT1dMJS/UIqZB/ELGOvDipXrwXJQ5JD5pO9FkrBYZd0xFSMqJHHvsqVx2GcyeDXPnwvSHvgVXXMGmXI4+xEU2EmSsGTgHaMlkxBz0yU/CVVfx4/vK6OuDDRvg/vuhvV0JmB7fgNUi/8tdrWHqolQLWbX7vyygTBn7x5xB/jjdfqZsl+Q+67daxHTZTvLdmGpBs9tu1+e5+HK5GrZureWBByYCsGHuOBoapnLB1VdTVl7Ogv/+b2hvZ0Y2yy+BrphzXSiyiAtzwcaN1G7cyOwHH2TeN/dy7bWfYNMmuTbf+c4COjsBJuGJxG4m/P7biTeXaA3eNStHEx0cJ0tb22QGBxkSk1XU1ORbujS+LEhMVmcC8CPNxCwOSVyYpbSYpW+i0Y0kj92bgZ8ELH8K+FChOzTGnIQYAJ6JKfcx4F+AryJxZ2OBk4EJSfcVJF9RCNI4geIRFStmZ1DaVjGIFnlV96Vfdd9xtiEvbM2Y7HH/20HWYVMEKQGZDpwCnAjUUF9/HJ//PHzxi1DV+iQ8sgGuuYaHcjk2INRnJDAVCbhsOfNMhoLVLrqI799VxkMPyTE/8wxs3aqq8TvxrFAKO1tSyY2SrQz51rAgkiYWssrK8kBLSz7KrWtd6Vo2q8nlwoL696Bq9Z7VTK2YSsjU0mZndKpbbycwwObNGTKZajo6hJzs2lXFxZ/7HBx9NHR1Mf3nP+ds153cEXvWC8MOZD7MWqAnm2XRNddwwrVwwty5LFlyMpkMXHfdAvr7J+HZ6/Yijs+wjN4d1vGNxSPBKiabI5crp62tMY+Q6UTktv6YJgL4B0RqSctmxYIWlImZxpYVjzgR8KiQGdjfspZOLn7kIckjNwExPfjxGpIelBjGmArgVqAb+G5M8bcBTzqO81Vr2f8Vsj+INh+H+f+j/qeIRlJdMdsiZhMyv8hrX1++ptjOnSLy2tmpUg46d6AtYdGLR9Ds2CUbGcSCUev+ngOcxZw5E2logHe/G7786dfg6mvhkUdgwwZ+ncsNqbqXGgsQZ2kz0PTOd4qLcuFCXhuo4sGfS9D+I4/IeenvV6tLH0J2bBkKm3D548PURRlsIctkyhk7Nt/9lcnIyxuCZRQUfpmSwUHZKJstZ2Ag4xK0KAuZ6sPZcWZK2DSLcQCPpHSwceM02toy1NXJPisrJ3DOss9Qm9kDb30rJ/zTPzFuzRq6kLuh1NMv7QBWA2Xt7Zz12c/C3LlUnXkmf71iBTCOhx46js5OaG2djHcNdHDgz/Ddi9y3Wk4hFjJV93ecvfT3V9HfX4sSZ50PU5+zurr9MzHBe+ZqaqIJV+rCLB5JyVg62E8RhKSPmhOwrBiyfjMSo/xeRyKvo7AO+FNjzE2Ihe53juO8EVbYGPMZJKOTqVOnAsnJmH/qipSEFYcwMmZnUNoir0rEgkRebdX9V18Vi5iq7gsZewV5sdnTHvXgZen1Em4VqwKmIFFajQgxOZVzz504JPL6nsX74MoVDNx0Ey8hrq+HS3Oa9sNC95NpaoK3vAUuv5yXZpzN7+8Vi+DatfLp7NQM0Z14umIaGK+xYpBvAVNLWRUe+RSSZkz1kLtLyVd1df40PP4MvqCXc9hcoyDXvKZGiNngYDmDg5UMDGSQXCDb+iXB+14MmpI2G/vwXKQiZdLfX01/f4ZHHqklk5H75aijqjjzzPcy5crdNGcyNG/cyBtdXVQwMpmYvwb2ZbM0rl1Ly9q1jAOuvu6fmTtX7tu77mpk1aoFeBmVryLXQDNJFbbLV+VG9LdKguj3AO3tzUA5dXUeyYJ8aQsl0/7gff0fJZGhSK1lxSNJgljQ/JlB2xqSRXKmOHyR5DHrJdhNWE+w5SwQxpivI4TpEsdxfplgk+8hb48/Af4UyBlj/g/4C8dx2vyFHcf5FvAtgPnz5ztRZuAggdiUhBWPpBmUQSKv6qK0RV5V1kL/t7V5hKy/X8mYX8JClehti4sNO2C9BhF5PQVR3q/l3HOrueYaOKv5BdnZVffx2k038UskNDt0JFAkxiH06ARgEVD2xS/CzJkwcyavzDiLO++AJ56Q87NpE7S3q5aaWo/UuqJuSTvuyw7Yz3dRVlZmhqbeqamRj/5Xl5ZfaNT/Mva/rG34kzQGB8V6Y091JTGC1UPlcrmxblttF6Za+GzLmq1vtgdPbLWK9vZyHnmkmp4eOaaXX4aPfewDTKqrgy1bGLdpE2ffdBNlwHOIra2U13Q1ck1bgPO+8Q3qgPcsWQKLW5gxYyrQzKpVtXgacZq5OkB+4oNiB3It1UKmSRr7sKdfam+fTF9f+dD8l+DFien5DQvy94vJhiHNxCweUe+VuHWpBe3IQ5LH6ykkjsyPWci8LLEwxnwFuBr4M8dx7kiyjeM4DvBN4JvGmHrgPCSm7AfA6XHbh4m/BmXFpCgOSTIo/S5KW2FfLWL+eShV5FWnPZIAfg0MD5Kw2O5+VErAfnGDvPwmIi7KamQsMY/x409l/nxv2qOzeBiuvhna2tixbh0PIdE/pcZURFCjBrHRlX3pS3D55exrmU5bG9x/D/zqV6Ivls1Cd3cWLylBrShq9QLPzWW7KKvxLGTlGJMZsqSAvIRravIJ2Jgx8tK2BUjt33EI0pVTIqbacuoyU6soQF9fxrWaqctS48zs482SP7MA5BO4cjZvbqavr5JMRhI+MhlYvPhsWhadTdmW56ioqGDRDTcwFblzHqO0unFvIB1iGfCeb3yDcatXw4wZnH3FFQxceQYNDbX09NTy+99PJptVW8cOPKuZapOBZznU4wbPUqaWNlkuVkIl3/LcjB0bPR9mRYU3NZP+T6pbpstTFA/bKhYUJhPmqUnNBqMbSR6rnwLXG2OmO47zAoAxpgV4O0KyImGM+TNEt+wrjuPcVEwjXffmD4wxpyNSGwUhTKk/dU8WjygyFiTyauuK2SKvfhdlV5cXM6b/e3s1y04JmQqgqsSDuif1BW5raIEQsGlI4H4d0MD48ady+eUSN9/QAPMG/whXXUPHmjW8hlhREo02CsQUxCI2/dhjhQkuWgSXX87vuqbTtlaO/Q9/kLnJhYSqJpedQQmeJIX+1hgxj5CpSxI8a5jtorQJGewvnwCe9cxGlIXMnmVBXWJB0ia6XMuI1Ux2PjBQjePo8QW5NRV20P8A8Crd3bVAFdlsZoiUNDXBm950AqdffjkVwAmrVkFXF7VdXfya0mdibkI61hnr1jFh3TqmdHVxwY030nz1yXR1wUMPwS23LHDPSS8SC6jWQHWz70MsZ0rI9KP3t03UxBra3d1IRUX10PndZXl8NcNSYV93vR+SkrIUxSNq1pi4sqkO2ehHkkfs28AVwE+MMdcg8WRfA9oRCxYAxphpiCzFVzUQ3xizDLgRke/5tTFmgVXvDsdxQt95xphvAf3A75E38AnAx5EEp4IRNyF4imQII2L6O0jkVV8EQSKvahHr75f/nZ1iEdMg/mw2izcJuMZPabyYEjKNN9KXtbollaA0IkH7c4BG6uuruewymXlowqaHYUsX3HorT69Zw++QbJVSuyhb8KY9mr5ggZjkjj4aFizgdx1Tue8+8ZT29IhlTCZD78WLqdpHtMq+bRGTAP36+nyLWF2dF6Qf5KLU5X6rWKExZP7vXM4jejYhU/JWUyPEXNs6MAC9vdVksxnr+NUqZMdZ2Wr/+/AyTsvo7m5g/fpqdu2SeSBbWoD3n8DpV1wBCxZAVxcnrFxJ2bp1bEDupMhpRwrEBoTUNwALV63ihKuvZt5ll0FTE2/98hkA3H77AmuwUe1uqVYyySb17uldePe7iudqP6bZsnvp7GxmYCBDRYU33djgoFg/x4/32ucXk1V3Zty0S/7f+j9FMgRbvVJvTQpB7KPkOM5OY8zZyNRJdyBE/VfI1El29r/GHNp33GJ3+WL3Y+M3iLEgDL8FPomQsKMQ78JK4O/i2hyElIwNH1EZlPrfDugOEnm1ZS1UZb+rS5blchL7I/NQakxNH17Qvrote8gP2tcXs1qMahH3ZD3yomoGTmXOnMnMnCnzcV9xBUy48z/gRz+Czk7aWltZTfSEN8XiDMQ1WQM0zpkDn/scXHQRbzCOjRtF4HXtWk/s1ssgVRce5Lso1T1py1XUkMlUDhEqdU9GuSj9FrEgK0mU4nsQgu6JwUF54fvvCzvT1rbgaBsHBiQRIJutJJfTIHe91novaFJDGV78YDnQS3t7FYODldTUCNnNZIB3T2fOkumMG9wBNTXM6O+ntrWVAYRArU1+qLF4AyF5q4FxP/85zVu3wrHHMmnZMq688lNUVMCWLdU888xxtLZqnFgtXlwk5Ou82feDfb9rtixApZuBWcXgYPWQdXPsWLFMh1lDNc7MD7+YrCIN+j84SN9eoxuJHiN3zsoPxpRpw5d56TjOpcClxTTMcZz/Bv67mG0htYiVGlG6YpCfQWm/eFXkVV+8GrRvi7yqptiuXULIZFLw7XiB2514Lsss+S5KW2dLxwOTEAo0DSEu0znzzMlceqkIvM6cCeNu+w+46ipas1l2IBaNUpOxCoSMnQVUnHmm+M6WLOGNiz7BAw/IMW/ZImRswwbo71clez8Z06B8/V2JLWFhTCV1dZ7cQXm5WEPUIgYeIbMtYf4AfttSpgiSuohyWYJnIYX8+EEtr2TQvmfsIHQlC/39NpGvpK+vHsexpTJsggb5Lky5Tzo7RR6iq6t8iPQ99RQ0NNSyePmnqAIa77+fxp4emtesoQIhZQGHVTReQVwEc1tbqWltZea6dUz9p0GuueYzbNki7unbb2/m979fgMy4oDMv6P3s12RTqAszg9wLaj0T925//0Ta2urJ5YSQqXaZxvGNGeNdF70XbDFZiA/8T3XLho8wq1n63jryMGofofSGLg2Gk0GpMWIa2L1zZ77I686dnsirLstmd5Av8roDIWc9eNpU6prSt0c1nsK5Tns0ByFltZx6ajmXXQafWLpD2M9tm+Gf/onfZbM8iTiGbFPvcNGAOEkbEX2xik9/Gt7xDnFRnnMOP7sbfvtbOTcdHeKiFG0xJWEa/GMHc9tzSkq8WCZTPkSs1CKmL1bVprIJWZBFTP/bWmNxLso4QuZfn8vJy19f9ury8lvMbEI2Zkx+/Jkel1jLKslmdaohDYxSF2bQ9Evl9PdnaG2tpqKCITHZwUH4wPLlIr7b3U3VjBksuO02KpA7UO/CUqADsfXWAH19fSz4+tepBebNmMG85QuoqBjHwEAzGzdORu75Wjw3tc52MEB+nKRmEtuac1V4mZl76e8vp62tlrFjJVZSr42Kye7d690vQWKy9rX0W9DSOTFHFmkM2ZGHUfvoxKkmp4hHktigMJFXW9LCFnlVF6Vaz7x5KFVTrAcvRkwJmboo/XMeauB3PWIVq0OnPcpkTuX882Uu7jPPhI8ufAmuvk7UVTdvZq07tU6p0YLMPdkETKishEsvhSuuYEfLyfT1wfr7JINy/Xovi7S72xa5VSjh2H9Ko8rKyiECpqSqpgaOOsojVLaLEjxCYxOyoJixKIkL/7Iwq4j/vrElGVQbS+8be7/aNnVhqptTY9DUiib3Vjk9PbU4jlqGlLSoRUmfeyVle+nsFBfmxIlCVmUwUcWCBedRVwfjTjqJGmDRbbfxGhLs/ztKp/SvxP8hoKytjdOuukqC2xYt4lPXXAM0snZtOV1d9TzwwAK3fdXuMfQhrnuNqcP6Vvet3i878ayH5WSze8lmy+nrqwU8C5mtXeYXk7UtmYpCMjFTUjY8pEoARyZG9WOTkrHi4Sdg+jsqgzJI5FU/fkKmrsyODp36yJawsDXFVATVC9jOd+FlgMnA8ajIqzGn8PGPw0UXiZfw5ObXYMX1vHHLLbQhQfsjIRDajLgoT2hpkdnIW1pg2TKey5zM+vs9TbENG8RVKZZDnWvT74rKl7QwpnooEFvJ1/jx+eTLzqBUCYsg1X1b+DVI2iIJKQtb7n8ZBxF525qSy3ltsAlaeXl+JqZaAvXeGjNG48zEYrZ7dwbHsTMR/S6+PcAA3d01Q9IYSvpUu2zBgnlMv/RSqKlhQlsbEzZsgPZ2HqG08hiDwCPAYH8/dRs3Mn3jRjIVFXxqxQrmz6+lo0OsWbfddipCxnchgxSNk1OroBJR1SbTmMKsdR48cVnHydHWJnOA2oTMJlRKmPU6+IP3/STNXue3lqWkbHg4lGUvjDEPAO9G5pa+JqZsBkkEXI6MmjcAX3Yc52FfuTLgy4iSQhPwLJIk+KNStz+mvW9GYubPAHYjShP/z3Gc13zljnXLnYsYMB9CYuuLzg9KH5kUQygkg9Keh1LX+UVelYBpwP727Z6LUglZLqcErA95gfTguSj15ePX37JdlBlgJnAKlZXN1NXBkiVw5ZUwK/sYbGmD76xm4Kab+DXQ5u6plGPPk93WTAdmzJwpQfszZ0JzMy9kZvHA/ULCslmxBm7ZAv396n7VuDHwMibzpz0KsojV1XluJrVs2P/tDErwhEGDrGFBRCwowBuCY8rsmDF7O3WHBelY2ZIXttUM9reG+UmbWsyUnHr3XrUb/G/HkdnTLwn5zeXKyeWqaG0VZtHVJfX09MDSpWcx9fIGuUk3bWLWrbdSsXkzbciwYFPwaSkYO5Deuw65b86+4QbGAScvXMjJLS00XTGPwcFyHnjgFPf50Zgy8AYnKoeiz4XGVO6yytrzYe4il4O2ton7EbJdu+R8DkdM1m8hSzMxS4tDxWVpjPkIoqqdFN8F3gt8CVFF/jzwC2PM2xzH2WCV+xpwFfAV4FFgGXC3MWaJ4zgFT5tYDIwxU5A8nFbgIuQR/QZwvzFmoeM4+9xy45BJOnYDlyDqE9cCq4wxJzsyFUnBSB+TFEDhGZT6EowSeVVCpkH8qrrf2akvyyz5qvt7EbrUY/3XgGYlK2PxorRqkFibU5gzp5kFC8Sy8P73w6yt/wvf/Ca0tfHGxo2sRoRAS42FCCGrBTJKxpYv59XcBF59FR55QLykW7Z4Lsre3qDJwPXNJy5KYzIFWcTUPWm7KO0XapQ1rJAg/iCExZRpXTZh81tjdBv7/65d+W2VeSrzY8/0f7jFDNdipi5MhU6/tJfe3kq2bCmnt1fO08CAnLeFC2cx8ZRZTJo/H4ATvv1tmt1MzFpKZ13dh1hrX0M64kU33EDmoYdgxgzmXXEFn//82TQ3y3OzZs00WltB7hUlYp1uTZ5bVu4rtSIHa5flctDbm6G3V0i/nDcv0cK+RnFispBmYh5JMMbUIVahLwLfT1D+FOCjwKccx7nNXfYbRHD+q8AF7rJGhIxd5zjO9e7mq4wxM4DrKGIe64C2rAAudRynJaLYl5DRy/scx+lzt3sFUYVYCvzYLfdpZCx1ouM4W9xyTwKbEQvfvxbTxvQRSREbKwbSUSspA0/OIkrktbvbI2SaYSlkbBte3Mt296METN2TGuCuFiN9ydQi2ZPHIbFj9cycKRmU55wjMWOTnn0Y/umfeMUVeX0JWF/C81WGUMHZSNB+zbnnim90/nxYvpyHN02grU2Od8MGCdrv6NCkBTtoX49P48UAqoYsYmrhqqnxLGLgZcwpYbMtYmPGSBk7ixL2J2Swv+hrXAB/EvgtI/5llZVe7KFtUbEHAEq0bNeZ30Km/1X8VC1mdiJAX1+GXE6D4sGzRqobM0tPT/VQzJpa7AYGhNi3tEzgrOXLARi3YQPjuro448EHGUREgwcKOzWRWOt+T924kQkbN9LU18fp12Y49ooz6OmBN70JvvvdaWzerIRsO55b2z940WmWdpBPyHLkZyVnaG9vBMppaMjPdFUCFScmq8uDSLf9364zRfE4BCxk/ww85TjOncaYWEKGEK4cMsMOAI7jDBpj7gKuNsaMcRxnN+L+rEKkrWysBP7LGHOc4zhbAYwxFQhxugR5EWwH7kTE57MMDxcA/6tkzG3vw8aYl4D34xGyC4C1SsbccluNMb91y6WELEVhKCSD0g7a13Uq8qrLbJHXvXs9SQsN4u/t3cv+EhY95FvEbDcTCFmpRShQGWIdmwXMYfLkSpqbYdky+Isr98H998PaLrjrLrasWcNaPAtEqTAVyd0c57ZinAarNTTA7Nk8vKGWhx7ypDw0aUHm4LRjmsrwSOZYjKncL0BfXYxKyOzAfL+mmC63//stYlEELOx3MQiymAXFGClsq4xuE2QNs1/s/pgyPVdKyNTKNjAgGZmDg7iSGeC91vbiODvp7xdL0uBg5ZC1qKZGki8rKho547LLJPivq4uahgbOuvNOGhFCtoXSBf2vxROTPWPVKlpWrGDKsmVMaWhg9pcuAOAHP2imqws6O7PoVEny/OxDniF9jpSYqZ6fLSarUhli/mpvb2RgoDxw/sv6eq999vmF/TNydZtcLj9OMchlnRKzww/GmIXAJyjMXflmYKvjOH6t7acQAjYDb3rG3cgj5S8H0t1udX+vBN4H/BNisD4JcXe2ECPPFQVjzFiE4H0nYPVTbhsUbwZ+ElLuQ8W2IX0sjlD4rRj+ZXYGJeQH7Nv/bZFXlbTQIH4lZJJFqFMA2RIWmj1mT3ukhEVH/zVIBuVEZFTfCJzC+95XrmFaXHYZcOONcPfd0NXFK21t/A4JViglpiAZlDOATGWlBKstX86eRefR0wNbNoh7csMGj4QKQdWXo+169SximUzlkDuyooIhTTHb7ei3iNkZlFomSOTV744MIl5Jg/iHiyDrmQ1/MLnfambHmfndbP4pn/xuTrHoVrr3r53Nqv/L6e8vo6OjfMhS1tOj9dbS0nIGDfOhaswYagYGmP/AA2RzOSYgQfpdwz89QP4AIvPggzS1tUFTE2Xt7Xzuc59n7Fh5pjZuzPDAA3ORe6oeeZZUSW+HVaPOYGFLqIA8S+o2L6e3txablIKcu927vZr8sil+N6WSNXv7sDiy1FpWHA6WhcwYU4nMzHO94zjPFrDpBCRF3o/XrPX63efOYR1azhhzJnAxcInjON9z1z1kjHkNWGmMmatxacaYcvK1Ucvc5Xl3nuM4epfWu+XD2ntiwuOqD1ieCOkjcQQiSQalLfIalEGpBKy315siyRZ51f/d3TvxJCt24E2ivMtaplMfgRdPZYu8Hoe4KauBZj7ykXKWL4e3vhUm1e+BW2+FFSt4rr+fAcSdVEoyNsH9zAdmtrTAueeKRWzRIl6bfx4P3ivWwo4Oz0Vpi9/mu8nERSl9hRcLZktW2CKvSr78EhaaRQn7W8hg/2zKoG//76hlpUJQDFmQ9UutZrrM3hbk+GyXmrodbZel380pFt1KBgbkxDiO7cKU3z095UPb9vV5+2hulmt07rnvlTfD7Nlkeno4+YEHKGtvZwOltcY+537P3LyZms2bOWHjRmqBP7v807zaW8Wjj8L48ZXcffepiI1OxWQhX0x2D/kE1M6+tCL2XamM7u4GIDOk/TZg+WX1vtNroPfb4KAnOgveddBEgSD4LWcp4jGCQf0Nxhg7quNbjuN8y1fmy8gN8w8F1m2QgPeg5cWUW4zc0D/yEStVMToLyeIEmcpxWkCdOfuP6w5ts/aVpB2FlEuM9HE4QpA0g1ItEEEirwMD+erpvb3enJO7dwshaW+XF5+sV12x7Xjuk+0IQdMYMR3Bq3bUWNwQeWQ03wzMYvz4aTQ0iNL+8uXwntkvwW/Wij/wlltY39/PJsSN1FPC8zYPV1MMmHH00fDJT8qE4HV1vDHjZB78mUwGrvFzbW2erIe88DWgXC0TlWQy5UNkSt2Rfk0xW3V/7NhwTTGbZNnxY7osziJ2oAmZfz9R8WYKtZwFDST8x6RWNJuQ6X3sd33u2lWeFyMF4tZUwqaWMvDEZMUw+l6qjj1WLnpTE7Nvuomqvj76EEtZqZJHnkMIXg3wRl8fc//t32D3biY1N/OeBQsYXD6VbLacTZum0dMD/f1jkXeNTsKexUsAUP0ye+CTxbPW7kInc+/unsLgYOXQbAl6/u35MCsqvJhGte4qwbJjy/xTMvnjydJMzEMCPY7jzA9baYyZimQ+XgaMMcaMsVaPcQP9+x3p8Px4DYn08KPeWq/f9cYY47OS+cs1IjeqNVTIw0Tr9/sAu62fAZbgJhJYUFWbXoRkTWB/1JM/3uqNKBdkOUuE9BE4AhBGxuxv1RXT/9msR75sSQsN2O/vFzKm5CObFTIm81Aq2eohX3VfrWU6NRDs78arQ5yDdQg5O47jj5/G4sVwzDHwlrfAec1Pw7U3wurV0N7OhmyWh8l31AwXZUjA/nxgwvjxoil20UVw6aW8xFQGBmDjz0Rxf9Mmj6y++qqSMXsQJi94Y8qHrF2aveYnZHbMmG358lvE/NMexYm8FuOeDJO+SALbtRiFMItZVNyR/eL3W8zCLGT2NkqyRHqlnIGBcrx3yb6hazcwUElXlzwb48fnZxzOnHkydTNgSnMzACfcfTe8/DI9/f1UUbo5MXvcTx9QtnkzJ3/lK3DssbBoERdcfTUVl09n40aZcuz++49j61aQAY2GA7xCfihADm+QoK5MW0xWnsfe3nqgnIEBOVk6Cfzrr+eHMVRUeNfanppLEeamDrKQpRazeBwkl+V0ZIS8MmDdVe7nLXiWKRtPARcaY8b54shmITfgFqvcGOBN5MeRadzW0+73duTlcWZIW4ckAx3H2WivMMYsAfY4jrN+v62k/BvGmDYkPsyPWUimpX1cYeWeDlieCOntP8oRF7gPwSKv/f2eK1L/R4m89vfrPJQaWJxDyJdayGxNMQ3cVxKWwcumnIJEaU0GxnLssRNZtky4UHMzTOh7Aa6/mTe+/e0hbajHKB0Zq0MsElNxydi558Ls2bLzJUt4sm8q69fLedmyRdyTQkI9K6I9UDSmcr/YL53WSMlBECGz//s1xXRZkMir/ra/w5Yp4ohXmNspCJoIElannV2ZFH7yFebOtGPGbMIaRMgGB/0xa+Xuc1A+RMgcZy99fRJT9vrr+XWqdtn8+dOZtWyZXMSODho2bGD+qlXsQ94M+jQMF31I9HI2m6V282ZaNm8mk8nwnquuYsGCqbS1SXtWrjyO9nYlZB3u1mod87towdMuU2sZ2Npl/f21vPyyKPz7Senu3d75tc+lZrzq/7Dr7SfhkJKyQxQbgHcGLF+FkLTvsn8wvuKnwN8jge7/DUMxXBcDv3QzLEGme90DfMwtr1gObNIMS7fcl4GjHMf5VZHHE4WfApcYY45yHOd1t70LEdfnT33lrjfGTHcc5wW3XAvwduDqYnee3vqjFEmtYmEZlDt35uuMqUuup8eLx7FFXsWipvNQquq+BvH34r0MdpEfT1WNWHkr3d/TgbnMnFlJfb14By+/HKa0/hrWboH163nj29/mESRObIDSyQ8044m8NgO1558vUx/NnAlNTTzd08jq1WIR0xg5lbewz6Ux5ThOvkXMb/2y3T1BZWwS57eIBVnD9DvMHWn/LkT0tVCE1RFG1KIIWlgMmd/q4g/+tzOE/YQM9pfKUKuvWoIHBipxnL0YUz60TOOh9Px3dck1HBiAinNmccLyBlm4cSMNFRWc8eCDQ4TsSUqj9N8FPIzYvzqAs266iarBQSbMn8+ElhbqLjubwUFYvXoi/f3Q2tqAR7I0q9mfQLPLWm8TMlH3hyz9/eW8/HL10OBBz7WeE/3vF5PVbEvbKul3YUK8RTSF4GAJw7oSEKv9y40xAC86jrPa/T8Nidv6quM4X3W33WCM+QFwo5sYsBX4HBIY/DFrH9uMMTcAf2WM6UfG2RcDZyMyElputTHmTuAeY8y/An9ERhwtwHuQGQA0BLMYfAMhgT81xnwdOAqR+vgjcK9V7tvAFcBPjDHXIK7OrwHtSPJDUUhv+VGIIDLmf4HZIq9KxjQWLMhF2dcHnZ0ibKqaY0rIZPof1RR7Fen07TR8+wWgAcUaVNyIBO7XIoRsDosXV3LmmdL5L14MU9b+WAL3N2/mDTeDstRTHzUjLsrZlZWiKabBahddxHNbyujdCo8+KnNQqkWsv9/TWPNnA4rCvke+bAkLm4D5RV4hX9ICvN+FTnsURcKigq1LDY3f8iOXS+4WDSJj+pK3dclsHS0lWxAeU6b1qFSG1zZpmD1Xqw5M2trkOchkPCtR7ymN1Nc3csJHZgNQV1FB3aZN0N7OOOR+7Up6wiKgA5Au5OV8xi23kGlpgZNOYvrlA1x22QW0tEg7V6/O8OCDc/AmIt+BRw096Y/8TEz96DRlmoE6kf7+sfT1VQ5dBz2nSn51ue2Or6jwYhttwqVislFxZKm1bH8cAjpkUTB4PnAbn0SSAa5FnBBPAIsdx/GHW34Fub3/HG/qpA87jvMzX7nlwBeAT7nb7EYmYfkF8gIqGo7jvGyMeSeiI/Yj5AH4CTJ10j6r3E5jzNmISO4dyLH/Cpk6qWgbQXq7jzIkzaBUUgb5GZT2PJS2yGtfnxczpv+FjG3HG3334slYqGq4ZlDqfHtj0ZgqIWHNiFVsIlDLueeW8/GPw7veBUcfDWUP/RJuvJEuV+T1FWSoUiq0IJpiJwCz6+rgIx8RQjZzJixdyi8fKqOtTRIYnn9e3JR6DpTE2mTMdi9WVHjuSFvk1T/Nkf4HT18rziKWJEYsCQkr5IUXVTYoTihsOy1rt6cYcmZbvmyrmL89uZyn5A/5ivQVFd49bks62MksdnJLf7+U2bnTq2/MGE+7rKOjjLMvvFAOzlUEPvmuuxjs72cL8Aby5hgu9uE9B01tbTS0tdGYzXLC1RlmXH4eXV3iZR8czLBq1RzkPbcdLwOzEi8TUzOebYV/je3ch2c5qySXq6ajo37ovCmZVUuZTYrtc6mwE1NU/DfNxDw84TiO8f1vIyDL0HGcXcBfuJ+o+vYipO3amHL7gH9zP4W0dwWwIkG5jcj8lHHlXmIYumdBSG/1UYBC3JP633bTKCHzi7yqrMXevfLbFnmV+fXUIqYxYaoxphYxO+W+DHGB1LqfSsRVOYvJk5uZMUOUJC66CD66+DURee3qggceoG3NGv6IpLhso3TzUC7A1RQDmuvq4NOfHpqRfF/zVB56SHTFOjrkmPX4e3ry67GzG5Vw2dmRqikG+RYy8AL27ew1v0UsjIAFEbKoaZDiXmzDefHFbRuVTRdmQStkvzbJs8lWkAVGCYM/61ItPvZsAmphs8mekjSbBGuMWUcHwDgWXfRhytpekBumro55t95KY38/byA24VIMKrLIJOWNiJjsglWraK6ooGzTJqY0NPCJpUuBWurqKunpqae1tZ7ubj3RGuepgyd9TmUSds9ithdPTLYKqCaX20db28Sh+9oe2MWJydoEK6kbM83E9OC6CUuL/aS/UhwsHOG39+hDXKxY2Mg/SOTVzqC0CZkEPQ8g5KuX/MmO1SoG+VMfgbgk1UWZARqYPLmZJUskbn7SJLj4wj1w43fgnnugq4uu9nbWM4y0lQBUILFi84DGY48VxrRoEVx0Ea9OO00mQX9I3JOtrZ5FTC2G9svZH+flD9gPI2S2pcAftG/Hj0EyQqYvtKQkrFSWMT/CLGVBdYTFChVL0Gxh0jCLWdR5VfJluzVtyQ39aL1K/Do7PYI2MOBZO5uaptM0czoTlkrlzY88At3d1HZ1sQeJLRvu4GIf4r5UF2bVgw/S2NoqVt6eHpZf+ReMGSPW7U2b4L77ptHdvQ9PnPlVvCnLwHNX2i1TS1klGnOWy5XR3V2DhAV551ylLmzSFSRYbF97//X3k7EjnYSlOHKQ3uqHKcKsYvrbfnEUK/KqMWNKRjo7NXNSNcV6EKuYWsSUjOlouwrpxKuQTn0i4p48Dqjh2GMruegiuPhiOP3UfbLTG1fCtdcOiby+AGwq0Tlrcj+1yDyUje98p/hG6+rgbW/jpYZ5PPIrzzrY2iouSs0sVbKqUHV8/5RGtsirn5ApadOYMr9FTOuNig8rxhoW9VIr5QtvuJYye3mQa9O/L399QZYYXWefb39mIOyfmWlbwVQSxo631P+vv+65MAcG5HvnTrH4in7wGUy5tALe/Gbo66PpF7/gjDVrqEGGNa/gaewPB0+639Pb26lpb2fG5s2UARcvX86+hkbWrZNjvOee4+jsbEZImMseXQ0yeXZ1Zg3w3Jg6uLIeAHbiOFW0t08EPEHdia4SlBK0MDFZ/zm3YwL9Uy/5f+v/IwrGjMxB2yOXFAcVR9otPSpQqItSXyL+mDG/yOv27Z7cRWenyFio1UzcdCpjoUH8fXgir+BlbIEnZ6HB+lWIlMUs5szJ0NQkEyZffDGcPvZJuGWNDONvv50n+/t5Eom3KUV2GggRm4eIatQCtaeeKpNguiKvrzqNPPIrsYqptVBnHVD3LuQTJTsgX/8fdZRYyPwxY/qyUfekTRDiLGLFWsNKYR1Lul1UDFlUHUkDuou1mmnGnz1AsWPP7P3a30rI9Fzrs2Mr1yt0nW7f1ibb64wL5eVw7rmnMaG5WSqoq6Oxv5/5GzYwgGRMPkbpSFkPkimc7etj9q23wsAAZU1NnL5wIbsvmkUuB88/X0lX10Q2bszgZVTqQEsHXSCWMfu5tnUDs2g8aEdH45C6v32tysv3d8frMvv62gOWIARZy1LrWYrRhvR2PswQlUFpB+5rtiR4GYE6yg8TeVWX3K5dQsY6OnRC8H1IJ/0qQsJUBVzdlXaHXYanK1aPkLAGpOOezjvfmeHd7xZty5kzYR6PwfU3ishrVxebcrmSZaRpa6YgZGxeZaVkTzY1yTyUy5bxdEct/VslYH/9enjmGbFuaJycWhJtkqQvAXVP+jMm/RYyO4Bfy/nnoYxzT4ZZw0pFwob7YkuyfRBp879gw5YHkTM7EcCe51K39wf++4mXEqmxY/PL2C7PigrZl1qT9VrYVjzb8gzetFlqDVW0tExh/HiY9ZEGAOp+8QvqurpoXreOCoSUdTF8N6YOYgYQMdlZX/+63PPvfCdnXXklYy49meefF+JYV1fNmjVzkGmXdGYNvdn2Wt8DvmXgzaaxF8eB7u56oIyBAdk+l5Nzu3Ond22ViNlislrWRlKL7hFHylIL2ajGkXQrH9bwuyT9v20LgC3oCkK4lGSAJ/CqrriBgXyRV3VZ9vZmydcU68MbPavyvmZQgtdBq5tyMuKibKayspL582HpUombn9KwR4Jabr6Z7B13DGmKbaJ0ZGwWYg1rAuaCaIqdcoqkby5axB+eqeWJJ7zj37JFxW29F6w/CNkWZA2SsLBjyCoqPPekfx7KIPmKQixicUTsQLkoC0HQfotxYQbVE5Wlabu6lHzZ62wLlz9mzC5j3wv+wH97nf3fFkl9+WW5V7LzJzDvwgvFfLZ9O8yezbzbbqMMsZL1Aa3Bh1IQXgHWA29ks4xra2PGbbdRlclw+uWXc/pFM3mpq0rak61mw4ZZrnxNB/kSNeq+VCu4Tr9kT7cEtluzt7eWiorMECnVeS4rKoLFZPV82wi6xmEuy6j7YlRhpFyWKQ4ZpFf3MEAYAVOoeKsuDxN5VXeLX+R1504vZmz/eSg1G2sAIWMq8mpnZoEn7FqPELOxwDSOPvo45s6VTnnBAuFEtQ/9eEjmfs9tt7EWT+S1VJMzz0PixOqACZmMyFksWybZA3V1PLapij/8QSxiu3d7SQtKUhV2QLJawNQdGWYh0yzLKAmLoEBnRZhF7ECRsFL2+XGuzDALWdC64VhG/BYzhVrBbAuZTbbCLGRq9bHJnF2vHR7Q5Y4wenqEjGezULFoCid/6ENyw82cSdngIPPuuoueXI4dyBO0IfnhheIF5AkehzzNZ9xyCxXZLMycydSZM7n00gvYtQtXu6yS9euPo7cXPHFY1S+zVf6VnKnrEsQWLer+sIfu7knY82EqdICi58o/7RLku+/Bs6ipNTmpJTVFisMN6e17iCOKjNmxYn7XiV99PEzkVf/rxODZrHa8PUjAvlrI1FqmAfwKHSFnENfkZJSUHX20ZFC6YVosWgS1930PvvMdaG3lje5u1iMSAPYkZ8WiCnnxTAdOA5pmzvR8o0uXsmP+2UMuydZW2LDBi/exZT8UfiJlq+rD/hYyO2bMJlq2VS3MGua3iCW1hhXrokxaZrgI20ec+9JfJuzFOxzriB1gbk/HpOv8xDyItGkd9ryvNlEDeb70285C7Omporq6kTkLz2McQE0NDa2tNHR0ULV5MyCEKkv+0KdQ9FjfZcD8224jc/TRMHs2tf39XHrpxzjpJCGMzc1w333H0dtbiReW0Ek+EcP6XYX0CxpTVoX0HzofZuWQC9M9xEAZDP1vPzsK+789Y0KYtWzUkrLUQjbqkV7dQxBhQfv623ZP+jMobXKh/4NEXrdv9zTF+vv1t50lqdYwHR1n8aY90sBedVHqFEjNwAwymVrq6+Gcc8Q9uXgxlPW9Bg+thu98h21r1rANsYY9RmnIWCNCxJSQNc2Z402AOWMGexacxSMPiWFu1y4hYh0d+dMeaayYulriRF5tCxl4E4Db2wQF7NsSF7osziKWxBoW11cfSn15FPkKKpPk5esnanGzEYRZuGxrGsi10ZhM+zr6iZefjNnffX35RLu8XJ67sWPlWVy8+DzKKiqGbszmO+9kX2srE5DnYwsesSoWbyDP2z5gQnc3TatW0QBMGj+eCxYuZE/NBJqapL2rVzfT2wvZbC+eO9LWF8xavzUTM1i7rL+/mpdflmC6+vr8c+0nZHpugwiZPjuQZmKmGJ1Ib9dDDGFkLMgqBuEZlFEir2oRU0ImGZc676Sqdishs6c90lgxO4OyHk/w9UROPbV6SOR18WJ4z+yX4Ob7pAEPPkjH2rWsx4uVKRUZOw0ReR0HVM2dCx//uASsNTXxWnYcax+CtWs9kVfVWVPrhcImTHaGZJSFLEhTLErCIqlFbLgkrJiX0Ui8wOLclkH7jXNfBi0r1krmJwe7dgmRVkuWWsQgfyom/a/E2552TNunddvETaFisj09UnbBgrOpXfCG3KSZDFNXrqRx40aywAQYem6Gg9eAtYgrvwmYv2oVUwDWr6dq0iTec+GFwBSOOkra19paz+OPqxVcreW97n89KM3EtAmZrV22k/7+Rl5+uXromO3zYovLQj7xgv0zMI/YTMzUQjbqkV7dQwhRZEx/+zMo/TFjSrBskVe1kGl8lJKRzk6py3E01d0mYOqetIP2QYgYSGL9JMRFmQHqectbqlm8WBIZGxrgrNmvwc23D4m8buvu5jFKExsD8lKpQYL3TwaqzjxTdvzWt8KSJbzAdLo3eqKY9rRHNmGFfNciCJFSi5jtjlRNMS2vcWN2HbYFzP9ysV2gCn/MjJYL+h21LGr5cMsOB0H7KUVsWVyAd7EvY1sqw64/Kshft7OX2cTOP3eszoGqdSlJmThxHJMnn8DUJUsglyPT0kKmr4+T16xhDxLsP4AMZorFG+6nC1dMdtUqGjZtgmOOgb4+3vOFL5DJ1NLXJ5nHg4PVbNw4A69/qCK/T9iHDOJ0+iXwdM3Uel5Gfz8MDFTnzW2p56uubn/rtMJvmVTyFkTMRjUpSwnZqEd6dQ8BFOKiVDIWZBHTsmoN08BjJWCajt/TI54Rx+nF0xTbTj4hUxelpkTrPJQZPEmL46isnEZDg3gGly6VuPnpNdtkJzffAzfcwJa+PgaAlxCXSSlwMiJnUYPMQ1n18Y+Lj7SuDmbP5rnB6Tyy2ssmbWuTjyrta7yP9m92wL7+t12UGlBcV+dNleQXho0K2C/UIlZqEnao9eOFkLQ416W9POw4o17KNpmzP7pcJTXsGDIl1La+nO32ttf5XZg6INB4KK03m5X7q6EBFi6cxfSPZOCkk6Cvj0xTE6fdfTe1CJnqYPiCyfsQqxtAc3c3Nd3dzHj5ZQDO/tCHYHYds2c3uvd4LR0dta6LX7U8NMHH7iuUhKk1zXZlyuAvm62ko6N+6JzYJEvPRXV1PoHVAZF9XiH8OfHfD8OJNUyR4kAhvT0PMoLImJ+Q+QP3bRelkrEwkde9e4WMaQahjs6FjPWRH7C/Ay82RAP31ZQzFiFhOg/lJMaPn8bb3w6TJ0uW1kUXwfSu38kEkF1dcM89PN3XNyTy2lGiczYbkbGYAmQyGTj/fGGDixZBTQ0vdFSxdq1YxfSYVdLDFva0iZLfPWnPQ2lbyGyLmV8GI4iAJbGIxbkmC3VVFlKmUARJS9j6X8NBlFUsrkyY1azYF7FtrdHfduC/LvPHMdlkQbOf/XFN2s7BQU8bsKPD217vORZMZ/qSZrmJa2qoymY5+YEHyOZyNCCEqhRTim1AXKE1wGB3NzO/8x3xVzY0cMKiRVx00WkMDkobOzpgzZppZLM5ZHCmU6aBZzXT2DIlZ/oNGvify0FnZ32eddAmwHZsn2259l9He/AThlFlLTusG58iDunVPYjwE6+gbztgX/+ryKuSM1vAdNcuL2BfR+H6X0a36o5Ui5hqiqmL0s7nsjWGJiIUqBGoYvz4iSxeLHFiLS3ymd7xMNx6K6xaBV1dtCIZlG0lOFc6JXkDQsZaWlrg1FN1bhpYupQ/rCtj5055aWzYIC5KtRzaLkqbUNm//e5Im6TZy2zSZdcB+7sroTiLWDEkrNi+Oky/ayS2T0re/MeSNOg/6uXrD/qPspjZwea2MLA/jMDvIvUTicFBT/bBP32Z/VvDCZT4a31tzVXU1TUyb+lSqaS5mUxPDzPWraOsrY0qJNi/D0+6tVAMItZrELpU1tbGCTfeKHMgbdrErMsv59JLz6CtTZ6pujr42c9mkM3W41nXFbaYrP1bbxLVKNxLNltOZ2c1lZXl+1nIdu70alRLdJiYrE3o9u7NJ2lhpD3lNSkORaS35QFGIe5JtYrZnfeuXZ7IqxINdcup5SxI5LWzU4mYCrrammLqttRRLXjuSRV6nQIcx+TJtdTUiJyXirxWdb0kPfXtt5O9805eQCxiz1EaMtaAxInVub+ntrRI0L4lcPbwI2Vs2CDn59VXxT2pSQvgnVObSNkuSlvCwraQ2Sr7ahFTl6W6J/3WMJuIabmk5KtQIlboi2W45Gu4KNbCFmc9i7OQ+f8Xct78k5aD3E8ayG/XPWaMdw/YFrLKyv0TAuxA9l278gddbW3yu7NTkkmy2SrOWLJEBiB9fTBjBtNvu42Krq4hQraJ4ev4vYArZJHLMa6rixl33EFVRQXTLx1k+owWFiyYOhSE39o6kb4+6O6uxcustIVkdQaPPdZvJWSgUhm5XCWdnbVUVJQPWQmVdIH33A0Oyv3jvxb+QZZOeTXqMjHTGLJRj/TqHkBEBe3rt51B6Q/Y94u8KiHTgH0la0rIdNQtwpSqKabp67ZFbB/5LkoNxG1wvyuBacyZU8v8+cKB5s6Fjy7bB3feCU89BW1tDN55J+thiJB1leCcTUAsYrMRQsbxxwsLXLoU5s7ljawQsfXrYfNmeUFqEoO6bEE66PLy/QmYnVEZpLIfNO+kBn2HuSj9yvpBhKsYN2Uh6xUHm4Algb+NcQQtiHz51+n6JP+TkDS7nF+2xIbdpqBJzIOsMzpYsAcPWlbFZKWeccxZcDbjMvvEJD04yNT77mPq5s30IZ35BoZPylphSJy2D1hw222UDQ5CSwvjZs9m+fIPA/LM9fXBunW1tLYeh/QTam23BaTL8WJR/er+e4bWd3Q05gX5K/xismpBtEmbPegJy8KE4Gtw2FjMUkI26pFe3QOEIPek/rZH3RoHpuuSiLyqrIWWtWPGHGcv3pRHNiHbiSc5aceJlSEdZiNiFasDxjJzZoYlS2DhQvFknHoqIvB6223w1FO80d/PBiRIuK8E52sq8kKYiqjujzv3XHkJTZsG55/PK03zaF0tx9vWJkKvKvKq58EOxLatWTbZsjXE6uvzA4f9OmT27yAyBvnuyVK6JkcTAYtDUoIW59aMclkFbR8Hrc/+jB2bL1SqdfvV/cEjaGrBsbfJZr37FfKfb00YAAk/yGTKePOb5zHpokG5YTs6qNuyhXmrVlGGuB+HG7Op82H2IT3CyXfcwbjx42HuXMoGBlh+6ac48URpT1MTQD2trWMRwtWH16fYAz4N+t+HN/DzpDIcp5zOzjqMKc+L9bTFZP3uZPvaBD1nUZmYdrnDhpSlGNVIb8ERRqEuyjCRV3seSr/Iq8aHKRGRScF1uiN7xOrPoLQDbzMIIdNsymYqK6fR0iKj1YUL4f3vh9NP2iE7XLkWbruNbWvXDmmKbaI0ZGwWoimmhGzcueeKVeyYY+DYY3mt+WTWrvYsYp2dMsuAWgT1nKpVTMmYjqxVUywsZgy8Ebh/3skgF2WhFrGRcEuWkoiFCaoWg1LMW6zHlsRyFkTKFEEvYf//MCtW1P40MB2CA//1vy1No7BJmG4PngtT49cqK+U8DAzIvgYGYNGi06jNZOTmb2ujBjh51aohMdkahj8n5mvAkwiFqu3vp2nNGhqAsjFjOP1tb4OTGqirqyWbhbFjMwwMZGhrq7euu2Zf7iJeTFaJWSW9vTVUVMiNaIcWVFTkCzjbCJKXsa+NjSAiVixRP2BILWSjHunVHUEEkTE/IQvLoLQnLu7t9YL4bUKmwcDqolRCJpOCKwGz56Pzi7zqKDWDZFDqPJTVQxmUc+Z40x6dPv5puOleGRb//ve8snYtjyEZWjr1+HBQgUhYzANmVFbKjufPFy2NJUvYUzOBri5Yv1qC9lXk1c4qVfhdGEFTHNmETJfZhEzdk/YL1p/VFRSwX4hFLKx/jet3h0vASkm6it1PoWQtieUsiID518URsyTwk62gOvSZDrKQ2XVomb6+/PpyufzYR/DEZFXQeO7ck2maeTJVfdtg7FhqMxlmrV8P3d3i4kdU/gO8u4nxCkLwahEx2Xlr1tCUy8Gjj0JTE2csXQrLTqChQfqfjRth9erjyGbL8CzxGrOqUDFZnajcn5GZpbu7gcHByv2mW9L/frFd24UZJkEThsPShZli1CG97UYIQS5K/7df5FXJmB38OzDgxY3ZhEytQX5ClssFWcS0U9QerMz9VOLFizUiQq+1ZDIZ3v52UZPQmLFZNS/BrSuHRF57+vt5ErGK+frFglGLOEfHIYRsRl0dvO99XrDa4sU83SVkrLsbnn1WcghUV82WAYH93ZP+jElbdd+e2sgeiWtgf5CmWBIJi2IsYiNJwg4UASsE/jYNh6AVQs7iSFRSN5bqkylZ8Jf33wtKsmwyb4cowP5Z1XZ8mQ7ElMhlMmJJO/poaGpqZNbixbJixgzo6WHGz3/Onr4+MngxnTsoDn3upwd5aVSsXUvDU0+J1XpggDMuv5y6i6YMzYe5dy+sXj2NXC6LN9elfZHsgaGSsJ3Wb7Gc9fbWMzBQmfccqiyILSbrt5jZWZn6P+h6Rrm1DzlSllrIRj3Sq1tCxLknQTpQxe7d0fNQ7tolI+IgkVfNquzr00nB1Rpmj0bVRaCZT7j/1S1ZjXR+tcB0jj22mqYmiQlZskS8hBN6npOd3vUA3HLLkMjrK4grY7hkbAIi8tqMELIpRx8Ny5fDu94lQV0zZ/JkxwTWrvVeSDrtk3/aI33BKwFTshUlYeEnbrZL0i9poWSs1BaxkSBihyIBi8NwCFqcW9NPwqKWDTfGzK8yb/8eHNw/888vJqsDNRv+gYcShoEBuY8bGoCFU5i1dKmkQPf2QkMDs+64g9q+vqGYsicZvsr/BoRGNfX3U9vayvRbb4WKCiGETXWcePEJQ8fS1ZWhqytDe7uelLHkZ2HqRVZLvl9Mdi+5XIZcrmpIkFbdthqLp+fC7lv9YrKKsOfPT+qGcx+kSFEs0ltthOC3hoGXBm+vszMod+/2RF7VcuYXeQ0iZELGbNV9dU8qXdK3lFrGxiK6YrVIAP9Ejj++moULZXTb1CTxYhPW/xJWr5adPvAArX19bEIi07ZRGjI2GyFkE44+Woa855wjbHDRInYMlNHWJtlcra35wra20jnkEyNbwsLvovRbzWyl9SAXh/1ytQVgFXHWsaD/YctsFErCDkcCFodiCFoxVrMod1XQizoKdtxSUF12HWEETgdmQWROMTAgsZO6r54et575jTTPbqS2Zp+YeLNZmlevhu5uJvT1sY/hx3q+gRC7LqQHGezu5oTbbpOOqa6OSYsWsXTpeVRUyKK2NnjkkVq2bp2KZHvb82HaF8mW3fGLyVa6Ej7V+53fvXvzxWTBCzlQqASGf4ClFs6oa3xIWcsOmYakGAmkV7cECLKE6W/b9WDHiikZ27Vrf5FXdUf6RV5tC1l3t9SXy9maYmoJszMoQTq2Kve7DIkVmwxMwpgMM2aIQer888Xb0dwMtWt/KVmUDz7Ivr4+tiDTHj1XgvM1HcndrEMI2YQzz/R8owsX8saCs1n/iOeO3bLFm/bIJrGKoGzIujrJpIR8TTGVrFBC5lfZ9xOysID9pOSrUDJWCBEbjSQsCvbxFkLOoqxmQXFmQRazoGtmL6+s3F+oNKgef9A/eJYdtfLY7bUt6Hr/ax2vvy59hx1/NjgoA6qamjIWLDybqsFBeaD7+mj4/e+Zu3YtVQghe43idQLfsLbdg4jJzrjlFnnwtmxh6uUVLFt29tDzm8nAQw/V09ZWj+NkgVd9NaoL0xam1odBtRChv7+cbDaTR8D0OthWRY39tCWEbJJm9xdhgf+KQ8ZalrosRz3SqzsMxLkotfOEaJFXjRkLEnnt6RHy9frrHiHr6ADHsSUsVNJC08qVjOkoswoJ1s+gkhaVldOYPVv6zxkz4MIL4byFb4gpanUH3HUX2bvvHtIUe4HSkLET8DTF6oDaBQvENzp/PtTUsGfmyTyyWqY90vPR0eFlkdrn2SZXNtnya4qpmKutKeYncf4PJHdPHigSdiAI2Ej09/7npBQoxHoWZTUbjsXMv9zfJtsCZseY+d1idj22dpm6JMEjbRpDBvkDEzvzsKNDnoHBQVh0znmUNTXJhs3NNOzdy9x164YIWRXDf65bkRdJHzCur48Zd99NVSbDhIt3MWHyZGYtnk1FhWiPtbbCwECGTZumkctpYpH2WerG3GstA7WQCcqHXJhdXdV559B2WerzrbBnP1DYfYG6P23YLm2/ezvlRSlGAultVSTCyJj9bVvFwCNZ2nHEibyqpMOrr+aLvMo8lDvwMpVUV0zfSkrEbJHXiUgifCWVlc0sXCgcaOJEyaQ8b8EOWHmXMKGODgbvvZcNeCKvHcM4V2UIFWxG3JOzQTTFjjtO3JNLlrCjYToDA9D6iDShtTWflOo58pOmigqPfCnBsjXFgmQvYP94MbveOIX9MJdl0P+wZXBwidiBfKGE7auURE3PUZzlLMpqVozFrFB3VtA+9L9a2VTdP2h/dnnb2g7ynOi3WocrKuDEE09m/AwY19AAg4PUZjLUtrfT3NZGGdKLaCZlsdiEJya7Azjtjjsoy2bFXDd3Lu9ZtozBwXG86U1i9a+rk0xMx1Ex2QHEnemfcklJmSYglaN6ibncXjo7a4fOj+2ytAWc9Vxp6IINe1AXdi3DrsEBJ2WphWzUI726BSKJVQzyRV51mUpV2BODq0UM9hd51WmAVOR1cFAtY314Iq+2i1I7MjXxq3WsEZhMZWU9NTWSuLhkCUMTg0+t2wG33w4rV8KGDQzkcjyNBO92DfN81SEuynFIJuWsTAY+9CExyzU1wTnn8ALT2bRajvfll4WMtbfnWxVtaMdqk60wTTF7FGxnVOoy+8VXSMB+FCkLW6ZIQsRKRcIO5f57JIhaUrdmGDErxGKW5KWsJMsmYn4LmS1t4Xd1BmmXQX5CkNapgxe9l/XYdPqlmTNPYPrSpfKwdHVR1trKyffcQ1kuRyOeJbzYTEydD3MH8mKZdffdjKuslA5n1y4u+OQnmT17HN3dMhAcHIRNm5oZGIBczpbEUOv+PvKTkfJjyvT8dHTU5lkTwcuQts9PEBkOuv6FiMna/1OkGC7SW6kAFOqitKc9Ak/Gwp6H0rb+6H9bZ0zixdQ1qfNR7kBGlNph2cGwqium7skMMJljj61nxgwhKQsWCCE7IfOS7OCBDbByJdvWraPLrbmV4ZOxGjyR13FAU2WlkLGlS8VC1tDAKxVTWbcGnn9ejre7W5qkLlqFbcEKCti3NcSCRF5tTbEo9+RwLWIH2xo2Gl4O/mMolqAlsZolcWcGWcj86wu1mIVJZQRZ6MAjG7r/sWO9ZTbpsMupmGxfn+yvvx8yZ57AlMVuFsDMmQDMvvNOGhBClkEC9odjLetCLGZ7gJpcjinr1tGQycDYsUyfPZvpk5sY/76p7N4t3HBgALZsqae9XWvQkAsdZPrjy3KI3R2gHMfZSy5XTnd3NRUVckHt+TDVeuYnxWEWUd3ej7BrfMCsZamFbNQjvboJEUTG/IQsaMQaJfJqEzJ72qPOTi/jUshYHx4BG3A/StBwl+v8cJV4Iq/VQIbjjqtl0SLJhq+pEZHXE/r+CPffL+a3TZvoWrduyCI2gOgNFYs6pGOfgbgoG1taRCxJZyRfvJhXeqro6xMRySeekGboOdEYOggmUHGaYva0RzbRilPZ9xOwMLJVardkSsKiEUVYkqAQq1lUZmaUxSzMWhL3sra3tV2Wuk77D/t+9WuX2a5L+6OWdxWTzWZlHzNnTqWuaSpTZs8eqriptRW6uqhpb6cML1ShWGtZm7v9OKRPmbtmDY3ZrPQBzc3MWrqUiy6aR1OT9InNzbB6dT3t7SIKK/1bD55sD+QPQO0HSwlajq6uiYBnEddze9RRcux+QmZnYgZZyMHLxPTjgJOylJCNeqRXNwZ+0mX/tv/ncvt3iP55KFVPzBZ5VVkLJSMaM7ZrF2SzahHrRWLFNGYsixfAX05+fIXGi01h/PhKGhpk2qNzzpGYsaOOgknbnxaB17vvhpdfpieXYxPwNMV3wIoWPJHX6UDjzJki8nrUUXDSSXDOOfzh8aqhuLi2NiFjmjXqP69B7kZbZR/21xirqJAYGts9absiCnFPjpRFLCVhxWGkyVmxFrMwkhZ0nXSeS3+ZIKuN/vffL35CprI5/kGhDvZsva5sVp6X5uYq5p1zjhR+5hnYvp3Gn/+cWa2tZJBepgPPFVkotrnffciL5uR162jYsEHEZLNZZl1Ww8T3n8Drr0voxOCgyGP09dXS368kS+PI1Epmz4eZRfq8fW7ZfThOGV1d9XkxZLaFTK+5HVMWJJ3j/x8XmxhFylOkSIr01glBoe5J20KmnziR195eIV+qOK//ZR5KFU1UF6USMn9qeCVCwmqQTqmWysppzJ0ro866Onj3u8VTWLb+j7C5G37zG/j2t9nS18cOZBy6ieGTsel4Iq8ZoGbOHLj4Yjj3XGlISwt/eLyKRx/1ZhbQWQbs+A/wyFPUtEc20bIJmarsB1nXig3YT2oVGymLWNrJ74/hujZtqYogRMWZ+UmTvf8womVDBWCD1P61vK6zt9e67cGF3d/4ERR/qcKqHR0AtcxbskQsVz09UFdH8513UtfaShZk3kqKl8cAIWQ6H+aEXI66tjamf/vbUFHBpEWLmFRXR8uy04bOi2RWV7J+/TQcB7wEJr9nQC1lSt72AeA4+8hmK8lmdW5eSfIJcllqglUulz9Nmp4rm5Sp3pn/fNr16W97XUmRdgSjGunVDUAYGbO/4zIo1eWowfj+ORf37s2fGNyzmOUQi9gePEKmVjHID24tQ8iYuiirMGYi8+eLVaylRYJn3/c+KLvvxyLy2tcHDz7Ic319Qxax1yiejFXhylcg8WKzgYq5c6UHXLgQzj+fHTPm0dcHnY+Le1JFXpWE2qN6P4GyCZkSrSSaYnEq+2HuyUPJIpb2vYWhGOtZEndmEDEL2lcUAUsaZ2YTLC0bpl2mZWw3p78Ou66dO72EIZuY5XJVHHvsCdQ1n8A415xUs3YtNb291G7YwD7kRaF9RRGGSfqQQd8EpK/Y19fHjJUrhRXW1VHV1cXSpRcwZoz0kW1t0sbf/77Z3XoPQq50UAr5iv4KjS2rBLL09tZTUVE5pNem5z5ITFbLKNSdeVhlYqY4rJHeLhaSWMUgOINSydjOnd7/IJHXoInBe3qkzmxWyZhtEVMyFiXy2sz48bXU1AgJO+cc+Zx4ooRuld3/U8mifPBBBrNZ2pARayvFda6KGmAmnqbYCUDFhRdK1oA7MfhrLfNY+4iQ0O3bRSSyoyN/vk6/tcFPto46Kl9DzJa50DK27pDfRQn7B+3HWcSS/Nd6o3C4E7Fi2lKMK7HUCHIvxiEuCaAQi1mQBS0p1MWmBMCeSDvo/tW+Sdtnkza1xoM36NO6lJhls0KA6uthwYLTqF2KuBV37qTq2GM5+Wc/owqPkLVSXNB/H577ch9Q1t7O1DvuoGL8eOjooLa8nA996L1D89XKsZXT0THRncFEH2i1hqm3wC8mqy5M6US6u+vp768ciiGzz2+QmKwi7N7x9y328iBybv8fFtIYslGP9Oq6KMQqBvtnUNoir2oRCxJ57eyUcrpepj/RGImdeC5KzZzUmAnwNHgkWF/+N3LssbW8+c3Soc6YAe99L5x+3DYR9OrshJ/8hOzPfsYWhNq9hMSL7RvG+RqHWMRmIW6NmspKWLwYPvhBOPVUqKnhtcwU1q6VwP2dO/MnRvdPc6L9TJCmmAbta0doa4rZ0hdR7kn/fvS//3cpLGKHCwkbqX0mqfdAkbaRsJolsZgF/Q9zadr7DVL7t12U6sbUbTUezT62KEuO7dq029XVJc/e4CAsXHgatc3NUrCpiarBQU7++c+Hkn3KkP6j2EzMQXf7MoTgjevvZ8a991KVyVDW18ekyZOZNHs2FRWNgJDF3l544ol6OjshX0x2J+LKhPx4M3VlSvlsNkM2K6KyNiFTvTY9bzbRspOAbChB1gnMg9yYI2ItSwnZqEd6dQkmY37rmH/qI38GpTevpNfp+UVee3rESqRWM3EfKAmzOxh70t0wkdd6oJzJk6tZsECMUg0NQshOP/YVuOse2LABuroY/PnPeRLJnMoiIpDFkrEGXAkLxD05talJgvVdTTHOPZdXBhsZGIC2TULGVNLCf478liw7Y9KWsKirG56mWCndk6W2iB2o/vVQ68fDyMKB2GehVrNSWczCjjnu2gSROVu7TAmCTdIgP6bMHkjafVhvr0f4bAtzS8sUampgyuK6oSyAmp4eajZtkgwcJGj/DYrLyB5ELG19yNDyDWDenXdSNjAgHdncuZyxbBmDixtpa5Nx5dix8Mgj9XR3VyEDVg208IvJQn7SUznSp5aTzdbT1ZUZOu91dd758ovJ+tX9lXwNDso6+5wroqyjqQszRRyO2Nsjzj1pf2sGkz1iVYJhE7C+vnwLmV/kdft2cdf19uo8lFk8i5hawwbIH+XZIq9iETOmmeZmGd3NmSOGqUWLhBON63lJFPdXrmTfxo0MIFOjbKL4bClFC57IaxPQ3NLiiby66ZxPdjXyzDPeLAPPP+8F8NtE1yZStmq+TcBg/6B+8DpOv4vSbxVL4p5MahH7/+y9fZgdR3kn+qszPUdHo6PxkTwWQshGCNkIYxzhFaCAAUHkRd4Y8D6BJHfznd2Q3dxkk83N54bNB+SLkA27z95dLiTZhMC9hGDChx0w2EQQTOysDVGwDQIJe9YSZrDH0tgz1hzNHE3dP6rf02+/p6q6us85M2d6+vc888zp7uqq6q+qX/3et94C3GRslEjYem7wXXUfNFHLq5qFKGZZAWZdilnW8+J5u2KX0THuBsDrQGVxUyXh6afT+dM7PjNjvrMXvnAHrr7pJvN9z84CJ05gzy23oHb6dJeQnUKxtqWNZLLAeRjF7Kpbb8UEgNqBA0Cng1d+//fj4MFdOHPGWAAA4Ktf3YKnn96CM2e2QWv6KMl8SUSM/uj4ePf3/Py2nvUwyamfK2REuGgCEd137irB2x4OSczkvkLfaaWQlR4b8ulmmSfpt00V479lkFdOyHiQVyJuib+YNFHSzCGazk2gIK9bwIO8HjiAbpDXgwcNIds1+2XgrhljprzlFjx2//2YQX8NJsdupIO8Ni6/3MwWOHrUVKbVwtdnJnH8uDEx0OibVELeifBGzBXkVS4MnhVTjBQzgss86TJZ2raBwSliFQkrjiJmx2Hl7VLMssJl+BSzLIImy+T58ZUAbHUBkjaJZjBSmdz/lba/Ha/5TbHLLl4EGod2Ye+RI+bkPXuAdhtXfOQj2DEzgwWYlqkDo7wXxSMwrdsS4lU9jh83wWSjCBP79+Oq3bvROHo12m0eTBb4x398JpLBLKlm1L4CiaWBO/+PYXnZBJOdmUkYmFxOjQ8C+bZ8lrw94iZMn5l6oL5lFUqDDfc6hPiKAfYgrzQ7ksv9PMgr9xmjIK/cid+QMU7AuImSEzEZ5NWsQzk+Po4DB5AK8nroELDr1N8BH/2okd9OnMBj99+PLyNZn26m4L0iJawBo45dC6Bx6JAJGrRvH3DTTVg69Erj4/FVo4adOJEEeeVx2AicPBEBIyd+TshkTDEeU0gSMleU/VDy5WoUB6GIDaPB3ciNuLz2QRK0UJNmP4qZ7KD5sSJ1dKllnU7aZN/ppBcopwEntV9A8r0ChpBFUaIgze2fRLM5iT2Hr0A9/lAbJ06g8fjjmLjnHgBm9uQSTLvDRLhgfB3GPtCAMYceuOceTLXbwJVXAnv24Iqbb8bNN78M5N52/DgAjOH48WdDa5qRPgYzMUoGjk1H9yeCtry8BTMzk937xNe6pFmo8l7zYLJAup2ge82DyXIy1pdvWaWQlR4b5ulmmSi5eVKuodjpGDLGzZbnzplGi4jb3JxxraB9pJCRuc74m0lFjEZ1ifOpLcjrtm3b8IxnGP+qQ4cMIftn/8xI+PXj/6sb5HVlZgazMA6zJ9BftP06zKzJ3TAN5BUAGq9+tVHEpqbMSPn663HPXcmsyTNn0kFegd4AmOSkz8nWtm32IK+Af8kjaZ50kaw85slRVcSqdtiOYahnocQMyK+YSVWMYHP8z4J0/KfQLzRzkPIgksXNcTY/WU7AFhaSa+BO7LOzwMsOHzYH9u8HvvUtTIyPY//nP48JGCLWhGmDijwOUtlIebv6+HFsP34ctcsvBzodXPGDDey86TqcO2eUssVFU++5uXHMzl6Kc+dcwWRJIRtDOpYZKWVbUrNZgaQdyhtMlt8zl8M/T1upZRUIG+IVCFHF+AxK7iMGJDMouSO/K8irVMjM0kdcTueSOl8WBEgHeTW/n/nMbfiO7zD8h0J7/YvD54G77jKF3XUX8L73dYO8noUZafZDxpowZOwaGEJWHx83BX/P93SDvC61duCeu7rzBroO+48/noT+ANIN1NiYuQYeM0wqYqExxXjnIo/JsuVv2zYwWopY1Tjnx6DVs2ErZiFmTPmbl8l9xTjBcpk4KQ86zkM+8PrYgsnSepizswBQw8HrX4P6NY+ZHVu3mtA399yDpeVlbIfRor6O4jMxH4Pxe+0gDqtz+jT2/tmfAQDqh07hGa0WXn/0MIA6tm419Tt9GvjiF7fFcw6eRuKTS8oZYNrcRaQnAZAJs475+XF0OiYttUtSIePBZGmGN4FPCqD9A5uJWSlkpUfpn66PjNlUMe4jtriY7Keo+6SI2YK8zs4m6hApZGkC9nT8e5HVqIZESt8MY6KcAjCOyy4bw8GDwMtfblT7Vgt4zeEV4P23JEFe77oLp+Igr3NxaUXJ2E6Yxo8I2d5WC3jFKxJntRtvxKONvZibBWYeMObJU6cSH7GFhbQJhM+GpG2XzxgnZL6YYnnNk1mmyUEoYoNsI6v2dnDIo3SF5BOSVx7FzNUZZ5ExAqk3FAZDxi6TJktZHo+7xZ3b+TbNDufBZCm/qakduPTSHXjG0XjH7t2oz81h3113oTM/jwiGDp1FsoxSHtA5TZiAspibw94PfMA4qU5NAXNzuOmN34tm07S73/iGSf8P/7AN585NwhCyWSRR/glEygg0qcr47M7ObuveT5pVCfQGk6X7zAmsJF+2eGWEQqSsaiBKjVI+Xa3DTJR86SMZ5JWTL+4jRgoZD/La6STmSYq6v7AAaE1BXmnmTxtGKSN/sXEksygBYBuU2t112N+925gnjxwxPmO1haeAW24H/vIvgTvvxNLyMs7AjCRPoJjfBmEXTJDXKZgG8IqtW80MSgryes01eLSxF/fck9yL6WlzzURKCVytoplLXP2iWUsU5oITMO5YK82TWWaCQSliwOqaJqs2drgYpFlTKls2hASY9SlmeYkZkUBX7DI565IvyUSgtq7dTsc5o2NETrgLQqtF8Z+vwq6jRwEWu2z/Bz6ARruN8zDEqoZivqyPxX8ziMO9zsxg10c+YlT7mRnUogivOXIES41JnDiRfNPf/vYY5ubG8PDDz4xzokGvdBNJO/sDS9B6DDMzk92BI90PegY8or9UyKhtsj3fvMFkK2w8bIiuwOYv4Qryyp3ReSNlC/LKZxCeO0fkhMjXIhJ/MTkVGzANRB3GFXYLTGNwKQ4cMORrasq0b0ePAldHXwc++oAp8Pbbcf6Tn0zFFPs6ipOxOgwJoyCv28fHk5hib3hDN8jro3MTuOceM4mTT1LgQV4lgeLLHFHDJRUyCs4YElNMEq9Bq2IVCSs/BkHOQvPwmTJ9wWVdjv+hBM11rpz9x4/TQFOSNiqLq0R0PoWoAYCDB6/Grpv2mMZhagrodLDnjjvMguXLy107wCzScfVDcR5m0El5NJaXcdWtt5oJBrOzqE9N4doDB4Ab9wJI1ghuNsdw//3PhGnp+Mx2mtFO4TJIITM+vFoD8/NJyCFORnkYDFcwWWnmpPvqU8yAymS50VHKpysVMukzxv0nuL8Yj9PDFwYnQjY7mw7yOjOTELK5OSJj9LEvwdAkUsUININyDIaMXQqltmHTJuMndvCgEaV27jTbVzceAj7wIbMI5OwsOseO4StIgrxSLKC8qMM46k8A2IGYjB04YIK8Tk0Zae7Vr8bXz0xg4Ux3AmfXgZ8mOkg/GK5uZcUUiyK30z6fyeRz2h+UeXK1yFjVno4OBqFIhChmQLYpM8vx3/bbRcqyYpdJQsb3STMntX+8DaVgslFk2j26ht27J9BsTuCqI0fQjU8xO4upBx7A1fffD8CQqfMw8cfy3vbzMIPPszDtVgfAtR/5iAkm22oBp07h2u//fuDGK3DmjGmfjVl3DNPTO3DhAlktCNyPLO1TZmCWqDPmT7Me5qZN6fsvg8lS+ydDZkgVTb4zoe9RhXKj9N2D9BUDDKHifgBcEQPsMcWIkNG+mZmEkCXrUPIgr9xEKYO80lqUO3DZZZPYs8d8sPv3J0FetzfOG5vgBz4CvP/9WDpxAudhiNhXYBq0otH26zDmyX0wDdsUgNaLX2wUMSJkBw/iH+6fwNe+lqhhZKK0Of1ykySfMdlqJQ79ZL70Oe3bzJO+//K3bRuwk7GKhFUA+lfN8ipmRRz/fcqYjWzx+GTcjEn1kAuSb9qU+L4CvUFm+bWRzyxPd/FiQoAWrpnAdTQbe24OeMELMDU2hmuPH8csjDfXBIrNxKQWtobEKrD3jjvQAFA/cQIAcO3NN+Paw7txtj3RjWd42WWI1+wkp38gHUx2iW1TY9EGuZOcO9fC4uIYNm9OD+aJfBGkQkbHJPnNUjetqBSy0qOUT5crZNI8yUd83D9MEjIiYXScHPZptiVtGyJGJsoFJDN4SA4HkunWDRhVbDOAcWzbNokDBwwRazaNqfLIEWDygb83UtTJk8DHPobHTpzoxvaZhiFlRUChZXcjIWT1rVuB5z4XuOkm4MYbgX37sNKcxAMPAA8+aJz2SQHkhFQqWa4ZkzzGGDVekoAVjSmWRcT6VcQqIrbx0K9qFnK+i5j5HP9dxCzUKdxmRrP51UqzJs+L+9xygkczHGkmpjHlTeLqw4dNg7F7N3Dhgpkt+Y1vYCl2+Ocxy/KaMVdg2sF6fH4DwO7778fULbeYBHv2YPvu3bjhhpfhwgUzMJyfN+3P8ePbcO4crXVJriWcDdNgusZqVkO7vRnt9hgWF8dTJstFNj+AK2Ou9om3e7Rtm4nZg4qQlR6lfLqckIXOoJyfT8I18HUoZZR9Im6GjLWRxLRZRDKLkhMxUsMoyOsObN061iVghw8DBw6YD/nAAWDy838D/M3fGDnq4Ycxe+IEHkDScBWNhr0TxnGfCNnV4+OGhJFt9MgRnN1zHaZPJVGwT5ww183vGQepXpxskSJGZI0vFE6NUNZC4DYC5iNfecyTwyZi6629XIv6rgfTzKBUs0EpZjZiluVHZoN0/CdIsyalkwpZp2PaAU7uyHWBgslSPrOzNTSbk9i3/yWYBEyD8M1von7mDK659VYAZvZkG8AZ5J+JuQLjV/YUTLs2B+Cae+81wWR37wb27cP2m9u4+ebXYM8e054/85mmbg88MBm3+9xESYNrICFiMsDsGNrtLZiZaXRntTabybOyBZMFzDPudBLCRrM3ZUifUYRS6o0A/g8AB2E8XB4B8NcAfldrPZ9xbgPA2wD8IMwk/uMAfllr/XciXQ3ALwP4SZju6msA3qq1/vAgryULSqkXAHgngJcBuADg4wD+L631WZHu8jjdDQAUgDsB/JzWuq9FcUb4NSgOrXtHc9xESX5gpJTNz/uDvC4upoO8Li5yEyVF2ZfrqEnzZAPADlx55Rh27jTK0YtfbAjZoUPxDMrjxw0Zu+UWLD3+OOZgfCa+juLR9gFjkuRBXncDhowdPWoI2e7dOL//Otx3lxHm2m10fTBI3pedAydbZJKkhcEp1AU1VlkLgdtmKYX4hlVELByjVD9XXUaVqPXj3zMIxSzEv4wf85UjY5fx39ypXy7JRARRuitQ/RYW0gO2KErIyewscPjwS4wDPjUsUYT9H/kIJmEIGfmEne3N3osVGDIHGB+zOgDcfz8m778f9Z07AQCTUYRXHjyIpWgCrVYyY/Tpp4GZmTGcPLkD6WCyZL7kyy+149JM4Nn5+TEsL49j8+bknnC3DBlM1uZrS78pXZbD/xoqZL8AQ8L+I8ztfhGA3wTwaqXUy7TWPu+ZPwXw3QB+EUbU/D8BfEop9Z1a6+Ms3dvicn4NwBcBfD+ADymlbtJaf2Kwl2OHUmoXgM/C8Pw3whDIdwC4TSl1PV2nUmoCwN/CELYfAaAB/DaAY0qpa7XWT/fmHoYRaqYHC1uQV2p0nn46vXyILcgrhbUgBS1Zh5JI19NIlj3iDqFAoohNggd53b9/DC9+sRGktmwxIb5etu8x4KN3GRZ4333A+9+Ph+bncRaG7j2E4mRsOwwB2wcT5HUHzVN/8YsNITtyBNi5E2fnajh+j5lByYO8zs2lg0du2pQOT2GLKUYKGaWxOe27Yor5/MOKmieH7Sc2SkQHGL365MEoE7VBKGZZ5+UlZj4zpqwzQcYuo/Ok2ka/pULGB1N8ogKPPzg3Z3gXmTDn5sw5Bw5ch+3XXGMa0kYDEYAr7rsPmJvD5LwRWh6CIVZzvhvlwKNIjIxNANtnZrD3fe8zFTt1CvVWC688fBjAdlxyiWnvp6eBsbExnDjxTCQz4p+Kc6SLJ5JG/mUrIKWs3R7DwkLSyPD1LsfHk/tKvmx039rtxL+Mt4GZpGxt8Dqt9eNs+3NKqbMA3gvgMAw56YFS6jsA/CsAP661/rN43+cAPAjgrQBeH+/bAUPGfl9r/Yfx6ceUUvsA/D6AvgmZUuo3Afyo1nqPJ9kvwnTWr9Naz8XnPQrgcwBuhlEFAeAnAOwF8Dyt9ak43ZcBnIRR+P6oaD3XcfPtxspKr9M+mSj5DMqsIK98YXBDxrhJcjH+I4JGfmL0cTYBbEOjMYmtW4FLLzU86PrrE5+x6/Y9BfzlR02Q19lZ4PhxnJqfxwmYBmkBxchYDYaETcGMPPcC2HHllabwVsvYRo8cwUPtXXj8XnPtp06ZxolIKJ91CpgGgxMrGVOMCBl36h9GTLFQVWyYitiokJ5RqcewYbvOtSRpRclZ6Hm+GZl5zJg+kyaPXSaXN5N58f+8TZCxy6ge1F5SEFnKv90GLr20jssuixcr73RAtsSdx46hMz2NOgwhm4UhZ3knLp2BUdqaYMFkb7nFNHDxJINXfv/3o9mcwNxc4iN78eIY5uYmMT8PtNuy8VhB4hNMNaIlmsawvNzAzIxhXKQK0j2UwWVpvwyVIdfDdGINPnpBxgj3xv+f5Tn19TAd5AdZXh2l1F8C+BWl1Cat9QUAr4URN98vzn8/gP+plHqO1vphAFBKRTDE6UcAPAfAEwA+AODXtNYW/TYXXg/gb4iMxfX9O6XUIwDegISQvR7APUTG4nQPK6W+EKerCBmH1mlCJmOKySCvTz6ZdlifmwO+9S1DVOj8ZB1KCuzKTZRAEleMvrRJbNs2if37gUsuMbN8KMjrFa2nTCEf/axZh/KOO7qLgJ+AMVHSGC0vajDmyatgjP0TALbv2QPcfLMhZM0msH8/Hmrvwr33Jurgt7+dBHkFep2KiVzxGZKtVjqGGJExGyGjvGyq2CAVMaD8ZGwU6rDWCDEFrlY9hqGYFXX8L/JukM8TrxMPAdRqJW3jpk1JGXJmpiRrNrNds2naQ7x4F/YePdolZGi1sPuWWzBx+nQqmOzX819OdxDbiv/XHn8cO+64AxOAKWvTJlz3ilcA+1rYsydZWPzxx2lwOolz5y4iCSbbRloto31kwlzC8jIwM7Olq5DRtdOAlRNpGUyW7o9tBYcURsup/1Xx/6960rwAwMNaaxmZ6UGYznJf/PsFMOa/U5Z0gInK9HD8+/0AXgfg7QD+HsDzYcydewB8T96LICilNsMQvD+xHH4wrgPhBQA+5kj3pqJ1AEpKyLhCxhUxkurJHMcJGA/yurCQmCy1pinRZKIkZ09ungTMzMkkyOu2bQ0cOGDEqKkp46p19Ciwa+ZLwJ3HTWF33onzd9zRlekfQ3EyNomYfMGQsasB1PfsSZjgTTcBhw5hCXVMTwP/+I9mFiX5fjz5ZLKAOtDr59BomIZ061azj2ZQkh8Z7eMmTPrzxRTLUsRs20XNk+uVhK11+aMMeW/WgqANUzHL6/gvlZhQxUwu9yPPJdgUMjkzk9pZ7u4wM2Pamc2bk2CyePEu7L5+F+qd892d248dw/a5OUxNT3eDyc7BWAsW7FV3Yg4JoXsMpn3c98lPohFFZgTaamHvwYM4evRaRFHiltJomJmY8/ObkbinnEM6/Db5mQFkwlxeBs6dq0Mp89DINElKGZDcUx4qY3ExmaUOjKzZsgul1LNgTI53aq3v8yTdDnPjJM6y4/R/TmutfemUUq8A8H0AfkRr/RfxsTtj8+n7lVIHyC9NKTUG42xPqMX7U2+01pq+mG1xeld9nxd4Xdss+4NRyqaeEzIiY74gr7R97lzaZKk1TYdeRkLGqGWsITFPjsEQsUtx2WVjaDTSQV6f9Swzu2fX7JeB224D7rkHOHcOnXvuwddhhgVtoOs3lhfbYcySRMj2A6jfcIOZxtlqAYcOYeX6V+L4cXMfvvUt4GtfSxz4udmBIM2NjUbitE9Kl9zmyyQBCRmzxRTLMkmGmiaB4Slia0WEKgJWHGtN0Ioqd/0qZr71MbNmZrrK5vuJ/PFzubLGI/jzmZdUNx4uh0yZgGmDms0JXHf4sGmQWy1gbg6N48dx1bFjWEFCyKaR3+l/DqZ9pWCyKwCuufVW1GJVDmfO4Io3Rjhy5Gp861vAN7+ZXMeZM414Rn0DvX7C1C8QSE0zSy/Nzk72mCwp302b0sRWtplODE8hm1JKcWL1Hq31e+xVUE0YdagD4Mcy8lUwDu+2/UXSHYXphD8siNWn4/+vhJnFCQDfAPBsS56pLyg2h06zskLqkSddLpSy6V9Z6SVgviCvMuq+WYeSlj3iJkoeq4bMkzSL8lLs3z+GPXsMUYkjSeDIEaA286hpeW67DfjLv0T75Emch5m2QkFeiywnAhg/sf0whGwSRqaPbrjBBHl94QuBVgsr11zbXfaI7seZM+QXl+Q1NpY08HKGpC3qPlfE+D7aznLa79c8OQxFrCJh5UJR9WpQ5a6WYuZz/Hf54PneOVf9ObmTa2SSmZIrY4Tl5d6FyzsdI1QZP7YaXnbjjWbkurAAPPe5mIgiXHvHHZhDEtriBPKTsrPxXx1JO3vF5z+PBoDGyZNm+6abcMXlO7H0ol1dherUKcMRv/ENmok5ht5VWIBkhiaZMOvQGj3rYdI1S4VMBpPlbegqYVZrfTArURzC4uMw3c2rtNZnMk45C7MgjMQ2dpz+b1NKKaGSyXQ7YB6jSyy9lP1+HQBmm8GbAdyEeCIBA0WSOgdDsrajF9uQfu3OedLZlLNglLIbuHjRqF1AooCRHxkP6kqzKslcOTcHaE0fF5ko5ciohnSQ1yaUGseePYb/7N9viMu+fTEZu/PTxlv+zBng1lsxe/IkziCJvTONYmRsR1yDnTCG+D1btxop7jnPMQXfcANW9l2FhQXgq/caMkYOrNyHjhoITp6owaA/oHebyBdvPOh3nphiG5mMVSRsdbEW5GyYitkgzJhUN9+7KP2dbHnzPMinjPZzM6ZxoE/S0kxMU04N+/Zdh2YTqE1NARcuIAIwdfq0MWG22+jA9KBLyB+3bAmmvaWJAw0Au0+cwNRtt5kEO3eivm8fjhx5DTodMxHr6afNALvTGcPDD18KQ7roAuWSS9SSG8d/rccwP9+AsZ6lTbs8RAj3u+X+Zz1YQx8yZeywHwbwEgBHtNb3B5z2IIB/qZSaEH5kV8PcrFMs3SYAz0Xaj4z8tr4S/38Cput8haO8bphOWT+l1E0AllwmVq31eaXUNIx/mMTVMDMt+XW50n3Fsj8YpewSLl5MyJZtYfDHHzcjM+5Ddu4cRW0mQtZGetkjCvIKGFPlFLZu3YKpqa6ffDfIa6tltmsf/Wujip06BczMYPbkyVSQ18dQjIxdhSTI6y4AV+zcCbzudd2YYjh8GI82r8Kpu8w1njljqnDmTNJA8gZBmhuJkMllj2ihcCBRzVwxxbLMkz5SRnWywUfEKhJWIRRFiVK/5eUpM+ucfsyY8retbArdQAFQZT1k+AyayS7L45OpCGTS5NH9gcSHa9++q7HrKEyjc+YMcOYM9tx2G/D4491gspPo9QLPQhuJn249/n/Nvfdi+9ycaT/370d9cRE33fTd2LfP1G9qypy7adMYLlwYw+zsNszP82CyQELOOEkbA5kwz50zvsUXLpj70/WjQ9KOZipka0TI4qCt/y+A7wLw3VrrewJP/TiA34JxdH9vnFcE4wf26XiGJQDcDtMV/kCcnvCDAB6gGZZxul8GcInW+jPFr8hb3x9RSl2itX4yru/1MKbPj4t0f6iU2qu1fihOtwfAywH8Sj8VKGX3QH5gFHNMBnklh/1kkeyLMKOeNhLfAJeJ0qhjW7duwTXXmG+Youxffz1w7Z54BuUn7zdk7CMfwfm5OSzANB6nYGYBFekHajBTSfbB6MANAK1Wy5AxCvK6cye+vWUv7vuHxEeMTLI0sYFAJkoexJUvjktO+0B6GSQgIV+hMcWyfMY4ioSxGGUyVpGw0cVa+JxlqV95z/ERs6z1MUMImi12GZ1P5fBtmqlN+XMTJa8jDQq56ZPCRiwsAI1DV2P7kYZpvM4Y69ieW25Ba36+u1xSB8b1I094jDaMUhbFv+sA9p48iebJk5iI18OsjY/j6v37gT1TaDYnsLiY1OvMGeDEicn4OqnPaMMM6IFELaOoaMbUee7cJDqdsZ5nSYNhugfc73ZE8N9hSNXvAHhaKXWIHTujtT6jlHo2jN/WW7XWbwUArfVxpdQHAfyXWGF7GMC/g5nN+AOUgdb6MaXUOwH8qlJqHsCXYEjba2DCSFC6zyqlPgDgFqXUHwH4XzCPfg+AfwGzAkCRibmEd8CQwI8rpX4PwCUA/iAu5yMs3R8D+GkAH1NKvQXG1Pk2AKcBvLuP8stJyMgMCSQzJrlClqxDSXFl+LJHHHIG5SSUGu8qYAcPGtNks2l+X9t6xISymJ01NsJbbsFD8/OYhZHIp5FElc6DVvw3AfPmXQ2guX+/YUsHDpgZlIcP43w0aYr+IvDVrxoVcHHRkFJpopTxwWgGJV/2aNu2pKGgAK/SRJkVUyyUiPUTxiIv4amIWAUXVks5K+pjlteMGRImgxM0go2c8dhlPB2vn/xPhIzqQYoZ7ScTJgXfJod/InXXXLMXUwf2YuKap7oZtx54AJibw0Ts/9VAsUlRROaImDUBbH/8cez90IdMgv37gakpXHv4MDo3XIFt20z9pqdNVczyS5PxTPxzSJstATOwN8stGYzFMzdrWFxMHgwf2AJp/7IerE2jcmP8/9fiP47fgonar2AutCaO/xgMkfttmG7snwAc1Vp/SaT7NRhV5GeRLJ30vVrrW0W6HwTwMwB+PD7nAkzX+ikA3857YRxa628qpV4NE0fswzAP82MwSyetsHRPK6VeA7N00vtgrv0zMEsnLfTmHI5SdhmSkFGQV1LMDDnhJsk20ssecRNlDYaQtXD55WPYssUQlYMHgZe/HHj+8438fEX0KHDLR4E77zRs78QJPBQHeT0LQ8iKrEPZQjrI6x4AzUOHTJj/Sy4xjmuHD+PL05NdX7jpafP3xBPJ/aCGmitbcs3JVishWDLIq1TEpN8Z7csyT9q2y6SIVSSsHFgtf7O8xCzUjAlkK2ZF/MkIfIYlL5svt0SKPCcbFNGfhyUCErWMCBmFgqA4aDt3TuLqI0dMouc+F3jySUx+9rPYf++9XUL2GIwFIu9M9YdgeoIGTDtbm5vDng99yBCyZz4TmJ/HdW96E1qtHcYn96vJvTUrvIzj9GnyJ6dVc7j5kjdwZrvd3ozZWfOwaLArY8CNCjKi21OaaVhmGWqtFwH8fPznO/8iDGn77Yx0KwD+a/wXDK31b8IQx6x098OsT5mV7hH0EffMhVJ2Hy5ClqxdycNYuGz/DRgiVgMwiec8ZwzPe54J69VqGTJ2ww3A9oVHTCF33QV89KNYOXasG2n66zAf+1nkjzhtSjVk7CqYIUMDQJ0UsVe8wjCmffvwlTOTOH48mbwwM5OsPMAhzZM8ZhjNoKTGUwZ55aqay2l/VM2TwyZJFQkrN1aDnA3ajAm4FbNBxi67eDHtX0aR/3menGAQ8eD+ZFRH7tfK/deaTdOmATEp27PHZNBsorW8jP3Hj6ONZNrbKRipJU+bewZJzLMaAMzNYeqeezABoLawAGzejL2HDgFTLey+YRcuXjT1o3WPo2gMDz+8Dca/mKwuZM6kP+6TfBHz800A4922le61k5CNVmDYCkNA0NMd1MrmSqlfBfC7AL6gtb4+Z12DwQkZXwZpeZlMlAtIlj0CEiJGTvsNANswPr4FY2NmkERBXnfuNE6ehw8D2x/4O3SZ0F134fyxYzgFo4adhSFjswXqvxtGPp+EIWP7Gg1T+LZtJrDZjTdi6ZrrjD/DtKnCiRPJTFL6Tw0vOeUTeeIhLLgTv23ZI5dvQz9O+2Vx2K/axo2HIsQpT96EYTr+SzNmltO/L3YZJ32yfFtbQOZKadakiUbUZpFrCU0ooPa805nE7j1mJmY9tu01nvlMNM6dQ+uLXwSWlxHBqGQLyOcisgLTXtfi39sRB5O94w4TTPbMGaDVwvaDB/Fd3/Wybr1mZsi3dhzf+tY2XLxIK7vICAjLcc7JCi+GlNUwPp48FO7wX2FjIbNLGdTK5kqpvTA237yzlXOj0zGjFsCYKA0Zs5koyd5Pa1DSRzGJrVu34FnPMh/a7t1JkNfduw0pmzzxv4Dbb0+CvB4/3nXaPw/TIBQhY3viv8n4b9/4uHHa/47vMF/qi16E8/uvw/H7EjVsejrxvwDSy5bwGZKckJHTPl/2iG9LE+UwY4qtN/NkRcQ2NtajYhbq+O/yKQPCY5fJvPg3z90nOOHjpktDaJJJV0A6mOzMDPntXoc62TTn54FnPhNXfcT4Xi/AtME1GD+xPKAOKhVM9pOfRG121pQ1M4NnvLGBw4evw+xsd75BN67t4iLwzW9uiSeLEfhkMQJJYWNYXq7j3LkGomg0w15UWB2EPN1BrWz+Lpips88LLLcwlpeNQztAfgxt2E2UQNo8OQ6gjq1bG7jmGuOwT1H3v+u7gJe+8LxhP/fNGF+xD3wAC9PTaMP4h52A8S6UC3dlIYLR5nYgVsRgfMfqrZaxi1KQ12YT53fu7QZ5JYd9CmrLJf/x8V6yRSqZTSEjPzJOrPiit3ljiq2FKlYpYhVWG8OcBNCPYuYjZqFhMlyzMemY63uQITL4LEpSw+i7J/OmNFcC6WCynU4Stodmf7fbwKFDL8PEzp2mob/8ciCKcNXtt2Npfh5zSDqaWZjWP/QxPRafMxGfUwOwK/ZXm4i9+rcfWcD2qSlcdf0+NBp1RJHpHhYWTP3MTEwKJruM3vhl6QkAtCoAN+emUBGy0iPk6fa9srlS6l8BuA7A/4FkxfRMKKV+FsC/hRGN2jDTan9Ha/0R33kU9sLUlcgYxRgDaO2xZFKIcdrfutVMSd6zx6w6dM01XTctQ8Zuv90E9JqdBW6/HbPT03gE5rOagRmJ5SVjTST+YUTIpvbsMQFed+40QV5f/Wo81dyFhQXg1H3GPDk9nfhi0HqUFy+m/cSIMFEDJoO8cp8wbtKkP9sMykGYJ9eTIla1fxVCMGzVLK9i5iNmLsd/HzEL8SnjIJ8o8ivj9eKEi7chcvklIK2cUZvOlXszYN6L5hQw2Wp1F4+sz8xgx8MPA9PTWIGxNrRh2mkX35Eg55ZpmI5yAXEw2ZMnMXXrraasqSlg/3687OhRtNt17Nxp6tlsmmuYnt7C/JYR5zLGSuBrI9fQbo/hwoXRinlRYfUQ0t30tbK5UmobjP/ZL2mtzyoVttyTUuoHAPxnmEVMPw/Dmq6FfckCgYvx0kfmd7IGJTlUmuUtDOoAWnjOc8YwNWU+8P37TUyxgweNkrSrdd7EFPvoR5Mgr6dP4ytIgrzOIv/it00YArYbCSGb2r/fmCjJNnr99fj6wi6cOm6+/5mZbhVSU8iBXqd9IlU0g5JH2eeEjNQwScRCzJJrScYqs2SFUcSwVLOiitkgHf+lWmbzB4siQ6DGxtL7ONmic3goHsBYHimiP4EvuTQ72zswnJmhdvsK7D16tGtWxPQ0dtx2G2onT2IKZrDcROL0H4oFGH9gCia7AODq48dNMNnLLjMdRruN19x0Ex7dP4HZ2SSYbLNJ7fY4Tp9uxTkusf8rMP3SCsiEqbXDnFApZKVHyNPtd2Xzd8BMOPzz8GoBAL4TwJcpyFyMT4SdqpFeZ4xLw6SINWA+r3FcfrmZQXn55eYDuuYa47R/RfSoaQHuOmEI2W234an5+W5MsYdgRlz0WYViIi75CqSDvEZXXmnIGM0karXwSHsHHnjAKGJ8YXQe5JWbJ8lEKYO8+pY94mbLYcYUc5GxShGrUEYM25y5VmZMl1rGt2k2Jc+bq2aybmSmkz5l8lrJtDk+TjMvk2j/7TbQOHQFdh1uJPF/AEzddhtaJ0+mgsmegWm3Qy0aNEmA1sOsA7hiehoT09OYPHmy20Du2rcPu6am0Lx+V3dCQrtNVRmLSRn5ko0hCZMBpH2aK2xEhHY/hVY2V0q9AsAPA7hOLBoagnsB/JRS6r/BKHR/L9bDkmW9GWYBUQDPQhI1mVBDooxtQaOxpWvGe97zgBe/OAnyeuAAcMXCV4Bjx0z8iBOGkPEgr2eQP0I0YNSw7TANwxUwC4PXXvGKZL2lo0fN0kczNczNGjXsxAnT+FAcNSJjZKKUClfWskdymSSXKpbXPAn0krH1EsKiImIVhoVhK2aDIGZ5nP4pj7xmTKmQUbtjK48TMh5Ilto9IJnUND+fhMiIImD//h1oNndg15F9SdmnTqH5+OPYf889WIEZFJNlIzQ+JGlY00A3mGwDwI65Oez5yEdMJfftA3buxN7Dh3H48FWYmjL1nJqitnoMCwtmjct2my9WTshYTK9qqEqNkKfbz8rm7wbwpwDOKKVarMyxeHuRrWcl8Rcw7/u/BvBTAJaVUp8A8PNxELoUtNbvAfAeAFDqhTqhSkTCyGfMLHsUC1BotZJlj8hnbHLm60YR40Fe2218HYlz6KMoRsb2IVkY/AoAtRtvNHIcrUh++DD+4d5ad63N06fNHw/yyk2URLYk+SJCBqSXPZImykHFFMtrnhwFIla1bRVWE8PyMxs2MZNqGeURYsaU4GZMmQ/flgtxyzUzqRwK8UN1HhvrhijDM55Rw0sPHzYnnjoFzM0h2roV+++4AxNIfH+BfEG7V2BIGRGyOQCYm8Oej37UBK195jOBhQVcdfPNmDq8t0vICBScfHp6i1h+iciZo2epTJalR8jT7Wdl8+fHf//WcuwcgP8A4L/YTowVtXcDeHfsh/bPYXzKPgjgpQH1jkFrUG4GMIatW8exb58Ro3buNMTl4EHDieqnvgJMzwH33Qfcdhs6n/88FpDEFHsI5uPLsyB4HWY01oSZqkpBXmuNBvCd32kUseuvNxXZswdfOl7Dgw8aHnjhgjFP8iCv1GDSmpJEtmiGZBSZbR5TjM+g5H/S2baIKrZe/cSqdq3CWiKPyTFPnsBg/MtCiJlPLfORMr5guS0uGZBumygdLUhO4PHL6NxvftO0m5s2mbZzfLyO6w4fNi4gc3NAFKHe6WDf3Xej025jEob+1GBMkucR1r4vwVhIaIHyGgDMz6N1/Diax48jareBTZuw/cUvxvZmEzuPXN29TlL2ogj46le3oN2uw5AxmniWd6hfoSwI6Zb6Wdn81ZZ9/wVGqvoZGP/KTGitzwH4oFLqpTChNjKgkMQVa0CpbV2H/ampJMjr7t2GB11/PVD/7KeBe+81q5Dfdx/Of/7z3ZhiczAjorwB1Jowqthk/HsfgF2XX24YIC2AefQozk5dZSI+3ws8+KAxUZJzKw/ySg0in2VEZMy37JH0F1urmGJrTcQqElZhlDAKillR/7Iisct4OvKt4mZMKo/nQ+XbzKa0NjGQtJW0f2zMNOVRBCwv1/DMZ+5Fcw+w/WjcKO7ejWhuDrvvvReYmek66z+FfLPlSWWjYLLdtv7YMTQA4H//b+CSS1D/zhkcPfoaNJuGF545k1zH7Ow42u1xzM42YBx7SDETqBSy0iPk6QatbO5Y7f2zMjOl1ByAyHZMpHsPgHkAd8NwoasA/BCAT2dXeQxA7DCFSezebchXs2lUMTJRktmydtffmZAWd98NzM1h6cSJriJGQV5nrOW4QSbJvUg+0l2XXWYUMQry+sIX4uzUVbjvPtOYkB8qOe3zRlLOoCQHfF/UfT7aLBpTrF+HfVseWajIWIWNhmEpZsM2YwLuaP9ZscsajcTM6Ps+5UQAuWYmB1+26cKFpB7f/Ca5p1yN7Uc6wDOeYRrcqSns/shHUJubwwJi8yOS9S1DQSbPZvwHAPuPHUM0O2tGzU8+iXqjgcOHX4a5OSBeFx2dTtLeNxrA6dOTOUqtUDZkdlM5VjZ3rfZeFF+AWSn+hwBcAvPOvx/Ab2SfOgaltiGKDAF7wQuAK680JGX3bmOevHrqMeDEKfM1fPazwC234KnTp7uxak4hCfKap53cDiNjT8EoYvsANLduBS691AR5vekmwwibTZzFdtxzT3rZI1ognM8m4uZF7h9G+7kiRn5kLqd9YDTNkxUJq7DRMQzFLG+eec2YQPai5Xlil/Fz+TncyZ9IFw+gys2f3MeM8qP2sdMBDh68Ftt3706CyQLYFU/gWpifRwTTiZ2F0armsqsOwHRQEQwhI6PjzvvvRx3AZDwltHbuHLZv24aX7t+PzZu3I4qMWkZ+b8AYZma2dZ9BaipcpZCVHkFPN2Rlc9dq75Z0hwPLfC+A94aklajXgWc9y7y7u3ebIPfXXNN108LVO88Cn7wD+NrXDAM6dgyPnT6NM0hm3jwCo4zlwU4Au2DUMSJkzRe/2BQaxxTD4cN4ZG4S7Vmjhp06lXyQ1Mh0Or0zKDkhkzMm5bJH3EQJ+GdQDsNpf60VsarNqrDekdcfLDTPPGZMV/mDjF0WUk/u5E9l2eopZ2J2OmZw2+kYiwKf1LR793Y0m9ux6/qm8Q+JF6ZsnjyJfcePYwVmtZTzMAP0UAtJB4bAPYLEL41CZEzdfrupYKsFPPwwrr3xRnQObceZM133tm4gXbr+hx9mmVeErPQo5dPdvNkQsCgyExd5kNeJhceA2243syjvvx+Ym8PszAy+jiQ2zVmEj4oIO5GOKTYFYOLQIaOI7dljAggePIivnJnEiROJGkbrUNIIkPtYELm65JL0MkhSIZPLHtE+YPDmyVF22K/aqv4xjHs4jDhcGwWDJmaDcvy3Rft3mTFDyJj0GZNtDyd3RFi44i9jl/FI/7xNJSTBZLfj6htuMI3q3BzwjW9gcnwc+++9F2dhCBmtZ5nHh/hs/H8Opj9oA6jdfz+2P/54Ekz24kVcd/Qo9u/fgdnZJE5kq+UgZBVKj1J2YRMTxioYRSbG2PXXA9tnvw6cmjEM6PbbgVtvxdl2G20YIjYNIznnWe+sgXjNSRhlbB/MGk/dmGI33mjMlLGz2ten6zh+PFn2SAZ5tYWeaDYN2SICtmmTP8grkPiX5XHaX8/myYqIhWGt7lNIuRVp82MtiVmWspalmIUQM64M2cqzhcYwDvt+QkbK2fJy4q8FJIrU8jLQePEO7H31q01D/JznAJ2O8QU7eRIrc3OowxCyBpIBe4h/2VkYhSyC6VMiAFfMzKAxM4NWvB4mAEzs2YMrdu7EppdfheXlNCG79VaWYaWQlR6lfLrNpiFhUWT8x7ZPf8n4ic0khOyhdhuPIYkpRmtShoKc9nfAELLdAPZs3Woc1KamTDyaG27A0oGXmAVnzxhHzlOngG99Kwl+yCPuA8kIkMgXzaCUPmNy2SMa/XHzZCgB47+HHWV/kO1J1TbZsR7vi6vOFVFLYxjEbJhmTCBNzFxmTMrX9h7YJg3wtHx2pUzDFbLl5STtwoKpHyltc3sm0GxOYM/BHWZRvSgCpqdRm53F3jvuwEq73Q0mOwkzgA8Nj0EhMmpgwWTn57HntttMBWKXlmccOYJXvOJaXHZZ9d5vVKzDpjsbk5Nm9aEaVoAHHkiCvMaEbHp5GadgfMXIZ6wIGdsHtjB4o2HMk0TIdu/G0oGX4J57jI8YrUNJ/gJ8BEdkhzvoE6GiGZQ2QgYk+4bhtF8pYqONjXAfKqJmxyCJWRbZsqUPNWMC+dUyW77Ly0mbJ0NsuMiddPyn/QsL5o+fT8svzcwA11//MtSiyDTWs7NAo4F9H/0omsvLqWCyjyBZoC8LbZaeYpdhfh57br3VTCzYvRtYXMSu1wG7Dl+DFdfcuI3w0W9glPPpzs+j9tm/NV/f8ePAJz+JpXvuwVMwH8J0/HcWRkoObdO2w8ygmYAxTe4DsL3VMjLWoUOGBcZR95ea23HffYYPzs4aQnbunPnweZBXTp7kjEnuMxZF6RmUnJDRfkKWOmbbzkPG1sJPrGqHqnvAIe/FRiVoa62YhcYvKxq7jKdfXEw7vMu8JSGTfrn0m0yY4+MmVhmQxERbWDCWiRe96CWo79uXrGbe6WDnffcB8/Nozs2hA6N4nQe6wcOzQEvuRfHvKC64efIkJk+eRL3TMQ35zIwhhBU2HMr51OfmgI9+1Hx5//iPOH/PPTgF8+EswIxU8iyVARjT5BUwPmNEyLa/8IXJbIEDB4AjR/BIZxfm4oHVqVPGQkqKGA9kCCSEixOyViu9zJFUzCjdWjjtrwURG3Re6wUb8Zr7ge1+bSSSNgzFrF9iJsNkFIldxkELlkvTKJ3HB6kU/oLyItMltcHLy+aP2mOKWUaK2oULQKu1HVNT27HrSJxxHO1/+3334ao4nAWFxYgQ5vRPAsAZGEK3BDPInwSw7/OfN8FkT52y34TKh6z0KOfTffJJ47i/vIyl6Wk8BKOILSCZxhyKCIaEUZDX7TCEbPLKK02Q14MHDYN6/vPxKHbh+PEkyOuZM0YCl7K5DE9BhIuWQdq2LSFVmzb1KmLktE/bgzBPUr2c92ENzJMbqe3ZSNe6WtiIKtpaErNQtQwYXOwyXr9227SfkqDRMWnC5OdxNY1UOFrrGAeuwK7Dh5Ngsq0WpubnEU1Po41EHevAWGBCbz2thzwBQ8hqMKSsfvq0vTGuCFnpUcqn27lwAY+dPNmdqvwQjCq2gHBfsQYSh/3tSIK81iiExeHDhpDFQV4fmanj+H3AV79qFo+lsBYLC2akxkkYfVNkjuSEjBQxHpnf5bQP2M2Tvt/DdNqvzJP5sFGuc1QwaPPeKGPQxGwQalk/Tv8+gib3y+WWaO1MWx5kwpTKG621uWUL4mCye7Hrht2mQb/sMgBA6667gMcfx47p6a7H1xyMakYTxnwgpayOJJjsCoApll+FjYVSdgkXYEjYCszo5QzCbPyECCaMxW4YYrYdRh2r3XCDCWw2NQW89KXA9dfj69N1LEwbJezUKbNEBwV35TN8gLQqNjZmXM+4SdLm1E/7Xcse+XzFsojYIJz2B00qyk5Syn596wEbSTkLJVMh+RCy8nOV6XP6B+yxy3yzMiWkydIWKoPyJoWO1DF+jNpvchmhNndmZx3N5nZcdf31CWObm0PtxAnsO3YMKzCE7DwMyZpG2DLhFEojglHJuouVS1QKWelRyqd7AWbpoxWYl3s28Lx6/LcDSZDXCRhChhtvNIrYc59rbIoHDuBLD9S7QV4ff9yQMXLgJ3BiJR32XetQymWPuKrG86Tf/L/8DQwvyn6liGWjzNdWFpSdoOUhU6H5hZAyX5mhsctC68PL4aoXgcc449vttrFCynx4KA3aT8FkFxYmcN2RI2Zgfu4csG8foijC/jvuwByMJaaBJJhsB2GWmcfic+bCL71CyVDK7mIJRhVbQbiJcjuSdSh3wihiO1sts+TRc55jZlAeOQLs2YOlaAInTpgZlNPTSTyxubneIK981EaEjEySmzcbQsYDufIgr7aYYpRXUfNk5Sc2fJTxmjYSBk1gRgmDVswGESbDpZbJc0NVMh4sliBNkjweGZAORUSKGQ8m2+mk18NsNCaw/9DLUGuf766HWQOw/fRpbJ+ZQX1urusfRgpYiJVmFpVCtpFRyqe7gvD4MIAhYntgljtqwBCynZdfbvzEdu7srkh+dufVmI4VMVqHcmbGHvOGmyCJWDWbZhmkrVtNGluQ12E57Y+SebKsbUpZr2sjo4x+Z4MknKH3J8vpHxhO7DJetjRhUjkE7ndGMzHpNw22edtrYpdNYN++azF5OK5QPJNr5x13YGVmpkvIyEdszl3lLrwiQtXIlBob9unWYEYvDRhfsb1Igrw2d+405kmSpXfvxlM7r8J9LMjr7KwhY3xkBaTNjNJESTMoucmSK2JSFeP5yfw5iqpilXmyf5TteirYUVbVbJCK2aDNmKGxy1zxzOR5lM7m5E9p2paRPB9s8zKIoM3NAQcPXodJiiz7rW8BjQZ23XorJmdm0IYhZICx3LRh/MxC/MsqbCxsyO4kgiFfk0hH3W9ceaVhTS96URLkdWoKZ+dqeOA4cOJE4iM2P28+SPqAuZLFCRk3SUqCxkmZz2k/Sx0DRt88WRbiUpbrqFAcZfM5G5QKOAwzZkjsshCMjfW2o3zigFwNgKehP5otv7BgONfCgklPfmbXXHM1tlMwWcAEfb3/fjTn5jAxPY0VJMsnPYUk7EUwKpNl6bHhnm4NRhHjQV6vANB4xSuSIK/79wNHjuDrs9tx7mET1kwGeZWjKfIR4/5gFMeGPnJOyIC0UkZ5uJz185gngf5VsYqIJSjDNVQYHsqinq02MfOlG1TsMmpTiXTRPj6QBuzrYZI/GoUxovMpzdNPm/P5uZdcUsdll+3C3htuMCfs2wfMzWHi7rtx1T33dIPJnoXpi86gUsoqJNgwXU0DxmF/EomJcjvtj6Ps45/9M+PgtX8/HprbjgceSHwHZmaSuGIcUhGzzaAkBcy27BGfQWkjZL7fQLiv2GoTsUHntRZY7/WvsPoog8/ZIM2YQHFiluVbRuf6nP7lNilaXAnj+fK0MmwRr6M0bZ45kzj+t1pAdHAHrrj+euODPD8PNJuYaLex7/jx7vrJQBIJYAkBfs+VQlZ6bIin20LiHzaJOKRFTLzQapl1KOMgr0uoY3razKA8cSIxSxIx4x8/Nz1u2pQ47QOGfPF1KEPNk/y/a98omyfXe3ux3utfYTSw3lWzQdY/lOD1a8a0xS6zgZQvnobO40RtcTGdPzdhcrJGA3Yies3YYaxzYBd2H9qFOpaM8zCA+mWXoT43h8n770et3e7GHaMVZJ7y3aCKkJUepX+6TRhFbBeMebIF4IpGwyhiRMgOHsTKwZfggQeSj+vkSeD0abOmmc08yRUxID2Dko7LZY+IjJXVaX+9txXrvf4VRhODUpzWCoOofx5SBhSPXeaKxm9rU6kMvmA5Lb/E91ObK82atG0LJks+azMzQLNZx7WHDpkTm00zut+9G3tuuw1YXu4Gk42QrChTYWOilF1QBGOOrMEEed0T/00AmNi61ZCxm24y9v1WC7jmGtx7L/C1r5lv5tw5E+T1ySezg7zSaIhmUMpljyjoK5CYLX0EzPV7GKrYRidh67nuFdYX1vtEgEEoZnnyCFXLAHekf1mmr07yP19+SR6zrYfpCiZLs+oXF2t46eHDpr9ZWDALlQPYc+edOD8/jwWYfmsFxpxp9SurFLLSo5RPtw5DwIiQ7QPQ2rPH2PMvvxx41auAw4exsmcvFhaAU8eBBx9MgrySiZJPjZYmSr4OJZAmaDz9pk3meFHzJJAvplhlngzDeq57hfWP9ayarZZilqWWAeGxy3wEbfPmJBAstbXcPCnLlMSSmzDpNwWTfeKJxEIyPl7Dvn3XodkEajt3diPYTpw+jYmZGUTxTMwmKkf/jYpSdkubEK89CUPIWldeaVQxCvJ66BC+vWUvpu81M2XOnDFkjAd5tZkot2xJK180g9Lm1E9+ZVnmSf5f/gZG02l/vZKZ9VrvCuXEevYzG8TkhX6d/oHw2GU2guYyY168mJgrZYxJ26QBHkCWmz7n5tJWFcCIY5s2AVdeeRW2vzqe+jkzA8zMYPsnP4l909OYhIeQVY1YqVHKp9sAcBUMIYuuvNKYJynq/s6dONu8Al9kQV7n5tJBXiWBkjMmuULGSRf3KbMte1SZJ1cf67HOFTYe1is5W21iNgin/yzw5Zd4/Wz7XcFkgbSFhfuhRZFxhzl48GpsP9JIooxHEaZuvx2tkycrhWyDopTdlWo2UX/Ri8ybv3+/IWPXX4+l5nacOwc8eDy97BEFeaURESdiQHoG5ebNZp8tphh32gd6R0dFFDGgUsWKYL3Vt0IFwiBIzmpjVMyYIQuWhy7BJIPF0ixK2R4vLvbWj1xfqJ5PPmn+EyGjGZ3Pe95ebNu9F/WFs90OKNq5M8nw859Pflc+ZKVHOZ/uJZcYVSyKjOP+4cP4ypnJbhyx6WmjjrGAyikfA1K7uD/YJZckDppALyHjPmY8H/pNGIQqVilidqy3+lao4MN6U80GUd/QPFzEbBALlnP/MZv/mU0543WWDv60/8knzax9Xu+FBdOP7Ny5HVcdPpz0WZSgImQbCuV8ulu3GlUsioA9e/DQ7GRq2SNbkFdOoKSD/qZNyQxKuQ5lv077lXlyMFhv9a1QIQ8GoUCtJlZTMet3NmYWQQPSscvkefx8CpNkAydqvKxGbLWMDmzH3kOHjGtNhQ2JUnZjK5u34Pw1LwFglDAZ5JX+8zg0RLQoNAUte8QVM75NRM3ltD9I82RlmrRjPdW1QoV+sV4Vs2H7l/Vrxgz1LZPkj6to/DjfR2WRrxkpZjQTk8ygZK3pXLMDu6/ZYa9ApZCVHqV8uufPA8ePm49gdtYEeZ2ZSQfy4x+Nb9kjIl5y2aM8McWyiNgohLFYT9/5eqprhQrDwHryMxsUMSvqX8bbV+n471qw3EXSfIPusbFehYz7lPG6yWj/3P0l9u+vsAFRyse+uGhUMXLY//a3k7hiQEK66Dc3UXKFTMYUo7AXdJ6NgMkPaZh+YnnSDTuP1cB6qWeFCquF9UbM1luYDBcodpksl/bT+Zs2mfxdwWQ5UTtzxtSN1LIeVApZ6VHKp7u0ZBz3AX+QV5oRaVv2SDr1c/OkzURJ27bfFRHrD+ulnhUqrBXWCzFbLTMmpes3TAYvz5U/9SXcZEmQyy9RuRcv9gaTnZszx2lGprPQCqVFKZ8umSr5SISbJ8kkSYRKLntE5knaBhLzZJZJsjJPDg7rpZ4VKowKNhox61ctA8Kj/cvftjqQIia3pZ8Zj11GSy11Okkw2QobE6V89CsrvbNZuImSHPZtC4MDCWmzhbEIUcSAKsJ+P1gv9axQYVSxUYhZ6EQHXzqXYuYjZhK8r+DKGhEvypPKonhknID5gswCqEyWGwC1ta7AMKB1Wjqm8BR8/Un63WolZIzHFuOEjC+HBLh/j40lf4Tx8YqMhcBGeCtUqNAf1st3tZptnCudbKtle57VB3B3GPqjPmXrVtPPUP8j/2/alCZm0vS51lBKXa6UukUp9aRS6iml1F8rpa4IPLehlHqHUupbSqlFpdTdSqlXWtLVlFK/qpSaVkq1lVL/pJT6nsFfTWZ9X6CU+rRSakEp9YRS6s+UUtst6QrfExdG/DMtBj6Q4B8GfSw2hYxIG/cTkybJShEbPNZDHStUKANGXTULVbsGkUcexQzINmXSfi4C0DbPRypkpKLZgsn2YI0UMqXUBIC/BXABwI8A0AB+G8AxpdS1WuunM7L4UwDfDeAXATwE4P8E8Cml1HdqrY+zdG8D8AsAfg3AFwF8P4APKaVu0lp/YoCX5IRSaheAzwI4AeCNAFoA3gHgNqXU9VrrlThdv/fEilJ2h0r1hrCQC4PLZY+4Az+QTciAwZOwvGlXI59hYdTrV6FCWTHqxAwI8w8LyQMI9zOTaWW4DJfzf1beUZSenS/LbLfta2T2YO1Mlj8BYC+A52mtT5mqqC8DOAngJwH8ketEpdR3APhXAH5ca/1n8b7PAXgQwFsBvD7etwOGjP2+1voP49OPKaX2Afh9AH0TMqXUbwL4Ua31Hk+yXwQwDuB1Wuu5+LxHAXwOwM0A/jpOV/ie+FBKk+XYWFoSbrWM0/7UVLLNQ11wM6U0Udo+oFCzZKipYJBmhVE3T4x6/SpU2CgY9W9x0G1inrZYwmXO5OfJsuSqLrLPob5oasr0T7xvot8jgtcDuIeIBwBorR8G8AUAbwg4dxnAB9m5HQB/CeC1Sql4rRu8FkAdwPvF+e8H8EKl1HNoh1Iqik2bJ5RSF5RSjyql/rNSqoH+8XoAf0NkLK7v3wF4BOlr7eeeODHCn2NxkOM+kLzcW7YkMyV5TDFp/6fz+X9CiCJWqWF2rIc6VqiwETHqitkgTJkyr35Vs6wAszZwMyb3S+t0kgXKuVLWg7VTyF4A4GOW/Q8CeFPAuQ9rrc9bzq0D2Bf/fgGM+e+UJR0AXA3g4fj3+wG8DsDbAfw9gOfDmDv3ACjsc6aU2gzgOQD+xHL4wbgOhH7uiROl7CZJIQPSjpNEuijyfpaJkvLiWOsFv4eZ3zCwHupYoUKF0SdmwODqKNulvEszFTVnEgGT5kkeBYBHCFglTCml7mPb79Fav4dtbwdwznLeWQDbMvL2nUvH6f+c1lr70imlXgHg+wD8iNb6L+JjdyqlzgJ4v1LqAPmlKaXGACiWVy3en3o6sWKH+FqUp77PC7yurHviRCm7SyJkpIbxKPykismQFvw/5cFRRA0bBhlZTwRnPdW1QoUKBoPw3xo2BqmayfxcefarmnEyRufTygE0YYD8nF3XtDIcL6NZrfXBjDSSKAFpsuOCCjw3NN1RAEsAPiyI1afj/68EcDz+/Q0Az7bkmVrdVCn1HK31NCsr9FqL3hMnStllcoVMrlPpM1H2S8KGRUDWE7FZT3WtUKGCHYMmPMPEMOqalaftuE81s4GIlyTAI9iGnkOiZHFsg10l4jgLwBYKYhs7Tv+3KaWUUMlkuh0wpk6Xjngp+/06AJvY9psB3IR4IgHDo/H/czAky3WtZ9l2P/fEidF79AMA9yHjTpU2x0tCFhmzfSQbXQGTWM91r1Chgh3rQTEj2NqgYZs3XSZNW9gMVz8il1uygeJrrgHIx0viagBfCTj3XyqlJoQf2dUwStcplm4TgOci7UdGfltUzhMA2gBe4SiPyBW01vfzA0qpmwAsaa3v6znLpD+vlJqG+1o/J66r6D1xopSzLJUyfmKbNmUHeeWzZWgmTcgC4v2QD5tSN+oznlxYz3WvUKFCGNbzdz7o9taVh9wn+xNbkFk5E5PiYdIfBw94Psi/AHwcwCGl1F7aoZTaA+Dl8bGsc8fBHN1jU+P3Afi01vpCvPt2GIL2A+L8HwTwQDyDkdI1AFyitb7P8vco+sPHAXy3UuoSVt/rYUyfHxfpit4TJ9bh55WNsbFkGaQQ8+Qw1LD12HDlxUa4xgoVKqSxnhSzLPjasNBrtClkch/3M3OZMvkszBHDHwP4aQAfU0q9Bcas9zYApwG8mxIppZ4N47f1Vq31WwFAa31cKfVBAP9FKTUOM1Py38HMZuySL631Y0qpdwL4VaXUPIAvwZC214CFkdBaf1Yp9QEAtyil/gjA/wKwAjPD8l8A+GWt9df7uNZ3wJDAjyulfg/AJQD+IC7nI3nvSV6UtksNMU9mEbG1mDk56tho11uhQoVerCcfs6JwtXWu67XdkyxiFhpgFlg7k6XW+mml1GsAvBPA+2Ac1z8D4Oe01tyXSwEYQ6/l7ccA/A5MJPsWgH8CcFRr/SWR7tdgfMN+FsBOAF8D8L1a61tFuh8E8DMAfjw+5wKAaQCfAvDtotcJAFrrbyqlXg0T2PXDMKrdxwD8XxSlP04Xek9yQfXOMl3/uPbag/q22xIzcRTl9xHzTVveiNio112hQoUwlJWYZcF13XK/3F5eTm9fvNib5tnPVl+kGZAvetFB/bnPWd2f+sIllyRlVFhblLKblfHzXGQsjyK2EQnJRrzmChUqFMNGUM1ssJks+X46Jrdtjv8+rKFTf4VVQum73H7MkxuRkGzEa65QocJgsRHJme+abaEtiJQRuBnThY1yLzcqStv95nHaL+I7ViRtPxjWh1gRsAoVKgwTWWEjhlXOsBBSf5tzvouUSWQpZRXKiw3XHctpyq5jIeevJiriVKFChTJgvbdloQQzxMmfkzJpwpSoTJblRynjkHHImGKEvGRsvcbgqVChQoUKw0NI3+Drb2TssgobF6WkGEqlX+yiJsqKgFWoUKFChRBk+c1lmSxtfmUclUJWfmw4yuFTyVzpKlSoUKFChVC4/MN8JsssVISs/Cg97ZAR+uV+3zlFUMOK89hK+S3EFSpUqLDusNrtNidinKSNaKT+CquEUhIyGYcsD/Kc5/uIi6SvCFuFChUqDB552+qsc0Paald8stDzJCqFrPzYEAxgGD5j/Xzgvjzpr0KFChUqFMcw29M8eYb2K5WbTIXqFYgR8jGsJlHiZVXKWYUKFSpkYz210UXMk5VCVm6UnpCVYdQhG5mKoFWoUKHC6hKwfhBKviofso2NEtCV1cEoffiVelahQoWNilFqiwk1rAy9La58yMqPDUfIyqCYcVDjVBGzChUqlBmjSMRWExUhKz9KRk8M+plluV5RqWYVKlQoG8pOwlxrXlbYmKgefQlRkbMKFSqsV5SdhBVFpZCVHxUhW23ItTKGjMqkWaFChfWAVSViq9wOh1SjQoUNR8goGvKqFpjn2JAqV6lmFSpUGDWsCgnLYj3rxGZYKWTlx2i+eX2CXtw1/66KfD2r0DhUqlmFChXWEkMlYv2yljXuPPKO4SuUB2tNWYaKkSBl/UIueDZAVMSsQoUKq4mRJmIVKqwx1jtdGRiyyNsKamvrbDpEn4eKmFWoUGGYGFrbOSIkLKvtHEQ1K5Nl+VERsvWIIZGzys+sQoUKg0LZSViFCoPGhiRkLjVsXZo4h2TSXI3I0xUqVCgnhkLG1ikRc1U77+VUCln5sd7oR27kJVm+9GtutvRhCMSsUswqVKgQitIoYjnbUF/bOMjFwytCVn5UvawFvpd+BbVwcrIWclunM5SvdmSJaIUKFdYUtbhVHDiG1JYNCll9wQhXvcKIovQKmQvr0jyZB5ViVqFChSGiNIrYGqDIJVYKWfmxoXvVfuK9jLRKxjFExaxSzSpU2HgotSIW2F73M6tyrS+xwuiizBpRFz41bFWUMtsKsquNITr/A5ViVqFC2VFqRWyVBs79ErVRuFUVhoeqF4V/FkyWP1kw1lopI1SKWYUKFXKg1IpYAWT5jQ1qVmWFjYcRYQmjjayZl0Dg6HEUlDLCkKTBKlxGhQrlQalVMcIqmCkHgcqHrPwI6jmVUpcrpW5RSj2plHpKKfXXSqkrQgtRSj1fKfUhpdSsUmpRKfU1pdTPFq92fuRdXzYv1iUJoeHcgL/yWnf+UaWYVaiw3jC073dI7c1qoN/2fRD9DxGyQf9VGB1kDg2UUhMA/hbABQA/AkAD+G0Ax5RS12qtn844/2B8/mcB/BsATwK4EkCzr5oXQD+i0MAEpVFSyTgqxaxChQ2PDaGIcQyozevn8kb11lRYfYS8jT8BYC+A52mtTwGAUurLAE4C+EkAf+Q6USlVA/BeAJ/RWv9LduhY4Rr3iSwHf6D4BIDgwLGUyah9iUN2/AfWqZJYoUKJsSEX/M7Rxg1zRmWe21OZLMuPkN7x9QDuITIGAFrrhwF8AcAbMs49DOBqeEibD0qpn1VKfTU2c55TSt2nlPqX2Wf2h6wPbF0Hjg3BELXsyoxZocLoYKiK2Kiyhxw+Y0Ud+Ol4hQp5EPJmvgDAxyz7HwTwpoxzr4//N5RS9wD4ZwDOAfhLAL+stV50naiU+gEA/xnAWwF8HsBmANcC2B5QZy8GYZ0bqFo2ql/uEM2YQKWWVaiwVtiQqhgwUg781VqWFSRC3s7tMCRK4iyAbRnn7or/fxDA/w3gVwAchCFZlwPwqV3fCeDLWuu3sn2fCKjvQDAILlIaUkaoYphVqLCuseF8xDgGRMZCMIzbURGy8iP0zdOWfSpH/u/XWv+61vqzWus/BPBbAG5WSl3tOfdeAAeUUv9NKXUknlzghFLqzbFJ874nnng8s2KDCMI30I8jikbXhEmozJgVKqxbbFgyNuC2dRD9wqjfsgprgxBCdg52M+E22JUzjifi/3eI/Z+O/x/wnPsXAP4dgJcC+BSAs3G4jT22xFrr92itD2qtD1566WUZ1QpHiJ/AwHzK1gOGHFi2ImcVKgwOQ/2uRtlPrAAG4TM27NtRhb0oN0KYwoMwfmQSVwP4SsC5QK/CRuqas5XQBu/WWr8EwBRMyI2XwJg/B4JBvpBZ+ax7R3+JIX7JFSmrUKF/bFg/MY6A9jRk0DzIfmK93LoKq48QlvBxAIeUUntpR6xSvTw+5sMnYeKXHRX7Xxv/vy+kklrrc1rrDwL4KwDXhJwzaAxChs5FytYDMRsyKauIWYUK+THUb2e9MIoBtqGjYoKsAsOWHyFv7B8D+GkAH1NKvQVG7XobgNMA3k2JlFLPBvANAG8lR3yt9RNKqd8D8J+UUk/BBIg9CODXAbyXh9KQUEq9B8A8gLsBPAbgKgA/hMTcOTCEOvCHpBvY7EtgtJ39CUN0+gcqx/8KFUJRKWIxVinGWJ40edK5UDn1lx+Zb67W+mml1GsAvBPA+2DMjZ8B8HNa6wWWVAEYQ6/q9lYYYvVTAH4BwLcAvAOG1PnwBQA/BkPCLgHwKID3A/iNrDoPEyGxU7PSrNv1L7MwpDAZQEXMKlRwYehK8nppf4BVDWuxnm5LhfWBoLdXa/0IgO/JSDMNy8xLrbWGCQybKzis1vq9MFH+RxJVWAwHhhTtn1AtxVShgkFFxARKTsYqhaz8qHq2GMN40UPyLJ1fGWHI0f4r/7IKGxlDN0+up54/R9u4VoO59XQ7K6wdSknIlEq+0WHymNCRVIizf+lmYRIqx/8KFQaGob/z6405DGgZJCCchw7rFsk+S17aKDn1K6XGlFK/oJT6W6XUt5VS80qpLyml/nW8hnVIHpcrpW5RSj2plHoqDmt1hSXdNqXUnyilZpVSTyul7lRKvbBYzYtDKXWzUuoflVJtpdT/Vkq9RSk1Zkl3vVLq7+MlH2eUUn+klNocUkYpCZkNwyJog/yIS03KqjAZFSr0hUoVExigKjaowXUerIZoMERsBvAWAA8AeDOAmwEcg5kE+Pask+NA738LYD9MSKsfAnAlgGNKqS0snYKJ5nAUwM/AuE6Nx+l2D+5yMuv7WgAfhglYfyOA/wpz/b8r0l0LE3f1MQA3xWl+DMCfh5Sz/l6DAWHQH8AgZmACOf3KKNP1glVw+gcqx/8K5cGqDDbWUxsCDHQWJbA6qtigmr0RelSLAPZqrc+yfZ9RSm0D8DNKp+DPOgAAh/NJREFUqV/3rVUN4CcA7AXwPIq2oJT6MoCTAH4Sic/562HWxH6N1vpYnO5uAA8D+CUA/77fC1FKfRbAtNb6Rz3Jfh/AXVrrN8fbx5RSTQBvUUq9U2s9E+//LQBnALxJa70c578E4L1Kqbdrrb/kq0vVcw0Qg1TKSq2WDRmVYlahDKjImAUDNFECo+vAb8MomSy11hcFGSPcC2ATTDB3H14P4B4e+kpr/TBMdIU3iHSPEhmL0z0J4FaRDkqpKaXUu5RS31RKXVBKnVBKvRl9Qil1OcyqQu8Xh94Ho9bdGKcbh1Hy/orIWIy/ArAk62tDKQmZ9CFbTQxS+i41KavMmBUqOLEq5slRYRqhGLCJchTJ2Do3YwLAqwDMwYS38uEFMOZOiQdhVgEKSXdFrFJBKTUJQ+a+G8Bvxv9vBfAupdTPhFffWVfIesQE8jyr73MBNCzp2jAxWn1rdwPYICbL1Y4aERr5YcObMIHKjFmhQoxKEXNgHZooiyDrMkc97EXsZ/W9AP6T1jqrptthXwv7LMw62TzdtCMd4rQLAH4WwLMBvFBrfTI+dqdSqgXgN5RS76I6KaXknVZmd2q/1lpfZHWAo758rW9furOwrwmeQil7Ka6QEdZi1LHqzv7A+hxWVWbMChscFRlzoORkzNYvrUFfNaWUuo/9pcx8yiDifzIDpdTVAD4A4LMIcOqPIde4BnpjmarAdEcB/AOAh0U9PwXgUsTqVLzs47L4eyWAHxb7vmEpK6seoemcWIe9dz7Y1LFRi7MaoqiVNro/YcgBZYEqqGyF0UQV4NWBVZ5FudqwXZ7vkoeokM1qrQ96jr8KZgYlR5dgxOtc3wHjaH9zgDoGpJUljm1IK0wuZYlUNEq7A8A+GDJlw6Xx/0cBvFgce3e8/7fYvguiDnDUo8WO+9JtgzGzelFaQsaX2rFZ81bLwmcr05d2oCbMUWyFsjBEEyZQmTErjAZWTbFdj20AsCYhLVYLWUTM9W6socnyi+glMQCAOPTEZwA8BeCo1vqpwDwfROKbxXE1gK+IdP/cke4RtnzjEzChJn7WUd7XAEBrvQTgPnEN8wCe0FrfZzsRCZF6Acza2nTeHgATrL7fgCFyqetSSjVgZpR+yJF/F6XvkfjLbZOBR815ckNH9yesR4fjChUCsWrmyfX4DQ046v4o3YKQ/mcUXSu01vNa6/v4HwAopS4DcGec7Aat9eM5sv04gEOxuoY4vz0AXh4f4+mepZR6FUs3CeB1It3tMDHNHpF1jf/mc9QthXjpyH8C8APi0A/CKHKfjNMtxfX4XmHWfSPMzNOPIwPrsLcOgBhK1OI3nj7gtTJjhoo/lQkzxpDNmNWC5RVWG5V50oM1ImKrccuCVbGMyozK440jz38KwB4APw5gtwjU+hVSy5RSPwzgfwL4Lq315+LjfwzgpwF8TCn1Fhi/q7cBOA1jQiR8HEaVer9S6hdhTJS/CmMy/QOW7p0Avg/A55VS74RRxLbAkLRXaK0zQ05k4D8CuE0p9W4YX7kXwQR9/a8sBhlgZnjeDeCvlFL/Heb+vAPALVrrL2YVUn5CRmQkioLNmHL/IJHHIleZMGOskhmzImYVhoXKaT8DJSRjrktyKmJUmfXxHJ8BQ0oA4P+1HH81jIM/YCxxY2B+Z1rrp5VSr4EhUu+Lj30GwM8xMyS01itKqZsA/CGA/wETVuJuAK/WWp9m6Z5USr0MwK8D+GUAz4IJv/E1mAj7fUFr/Qml1BsB/AaAHwXwbZgo/b8j0h2PZ5u+HcDfAHgSwF/AELpMKK1tEwLWNw5ed52+7667kh30BbAvQX7Ytm9g2N9FKMcISZerwV8fH7wdQzbBVqSswqBRqWIerMEsyjzpiiLEYT+EjKktW75IDvc7dhzUb3yjy82pON71LtUto8LaovwKGYErRLFaxj/wtTBj5jFhhihlQMlNmMDQ1bIKFdYV1ut3DAxUFQPWKRnjlcnw+xv1OGQV+kc5e7aQN5eZMIG1m405SL8yoDJh9ovKfFlhUKiUMQ8Cvt9BE7G8afMgt3mSKpODkFUoP8pJyIBeHzKCbRvpGFUutYxnO6yqhqQdeHR/Xon1glVw+K9IWYWiGPrSR+sRQ/hWR0EVy0XGJAHz/ReoFLLyo5w9jlyFFfD/j3/X4iVpAffs62FGkhhk47LSvZqSrodJqFqoChsJ6/V9z7ko+HrwFwvpI3ifEkzGZN9VYcNgnfbCGQg0WdpmYgK9ahmwev5lgzZhAhvAjFn5lVXYCFiP3yawpnHFVtNEmdtp3yUYVArZhkU5ezF6c22ky4WCTv/A4D+SQYfGAKpFyitUWNdYb98jMPAZlHkxjFsWYp4EAp32fdvr8XlX6Bvl7sFCXmqXj1mg0z+dElpcKAbtVwZsgJmYFSmrUEast+8QGPgMSmBtTZSFnfaz/ud06l+Pr0KFcJSz97IFhiX4VDOHwz+wdmbMvCZMqocPpTZhVqQsN1bzEVePJifW2/cHlM5Emds8SRXJq4ZVTv0bHuVtHrnJMo+50rYd78tjxqQqDAJ5OcZQZmJusJZglGZYlunWD/taRoXwBX9fZcIaBXktmt4H36UEmyez/rv8yuS+ChsGI9J8DQk22YizlSx1TKaN0ssvyWwlBikw5TFhUvoqmGx+rCYR2wC3c9URek9Xg7j1TcrW0wuyRkFe86YNQW4/MVmJEJNkTnUMqBSyjYByEzKOPC21zaTpmYkpk7qyGwTyOvxTHXzYEHHL1gjVbRpNZAnmg0JfpGzUB0E5b9Soq2JAn2QshHzl9BmrsLGwMQhZiBJmOyZRYCYm7ZfV6AdrasIkjHpnUQCDUMdG+ZaMct1GxdQI+N0QiqCU5suSkbGBmChDtvswT1YKWfkxQs3gKiGPbxmhwExMKsqXTT8YpgkTyGHG5JVZa/TRcxYlY8O89FG5rauB1VI6imAQBK0wKVvH39gwZlDmTRuCwk77Wf+zCBr/H4CKkJUf5SVkvoZMkrFAp34nicthxhy01W8YJkwgZwcyCqbMAr1kERI2qGdWYbgYpi9ZUYKWe8AjCynht7VWqlghRYxXIMtnLMRHzHUxoyQXV1hVlP/Ju4iZzTfMoYJl+pQVMGNmHcuDIiZMKt+HQh3IapKzVVLEilxGpZytDvrtuwbhSyabjRAUUsxG/NtaL9/UwGdQ0u8QlUyeF1oxVArZRkA5CVmtBjQa5neW42QI6XLBQdDWYiZmkU5haIqZqyKDuNARJGH9XNZqN7Cj2KD3Q6qKXE8RohV6bp7vsG/FzFZoUfTJbEddESMMxWk/aztEFeMVqRSyDYtyPnml/C+1TS3L46shiRjPo4BaNgpO/7weLvTVgYQUMAQMmoStRYcyiiRqkBjk9YW8YiF9Yp5zXenXhJytItaLIgYMUBWj33l9xmQetsKJjHkqW/a2YKOjvISMK2TtdnLM5QdmYyVFVTNWjk0ty1KsB9mJD4OYAQMgZ0PCWhCwtSBpy8v957HeMT7euy/vvbW963nNmDJ90TQE+Q6X+fsa5Hk29O0rRr9DCJnvv68C/H+j4ax0ZbIsP8pJyMhkSW9vo5EmZQTb2+0yYWY5/vt80IAUMcuyNqzlbMwi56xVB5LXKX8Q5GoYBG1Q5OrixcHkM4oYG+vdV+S+SRKXVy0LUciGTdCA0f3GCGutiAEFzZO8IoP676qEJGRExiqz5YZFOZ+69CFbWEgIGrEdadeTIyCbXJWHhDla3LU0Y8q885yT57xRWHZoVMhXHtLQL6GqRs9uEKELeR6ctBUhYDLNIPKQGIVvjGMU1DBC36qYzVSZZZK0mSh9hUviRepYpZBtaJSSkGkNLHXIRFhHjRQym+8XYCdRPuIl4ZsUIPMrYMYc9EdYlGjl7TRWC6H3px8C5juW1cnnJVqj1Lmtd9D7GfoMxsb8z3N8fDAqWREVzZVutdHPezbsdzSUjAUte8T32dSvrPNshbtIWUzIVqJ69R1vYIzA5z14XLxoRDGABh0TqHFlrN1OmzSB7N5YmCCtBCwLFjNmyEzMYaOfhj9vfbPyHcT196Ns9aN4+Tr9QZHGQZ+3XiAF7WGcF0XuZ+hT2FwkjedbREWTaXzpfFiNb241882LQqpY3m2Zh6sinJhxn7EowkpUR7tt964BKoVsI6CUhGxlJSFk1IA2GvWElAHut54g33ypovXjUybUspBgsqv9IYZ2EIPKdxjn96OIuYhXEdI1CNNnv+nXKu9BKjr9KrshxGSQ9SXTp4uMZZE417m2dD4Mu+0YFZJguxdOMuYjVHn/y9+2wjNMlCuood0G5ueBCxfs11cRsvKjtITMxreiqBabMOMdLnJmM2Hy/a40WSTMprIFmjDXUkHjWOvyOfpVnYqoXUXMmv0QwyLphp3HoMsrSoLkpxaSfhRMfj7kJWKj9D2uFUKc94NNlD6TpIuA+ciYTRGjbWai7HQMGXv66eqZbmSMePNUDFwh4y/3+Dh9B3XUG+JgHlIGhKtlIcdymDDzqGXD+LAH3aENWzEbpImxCOFaTdVsvYbCyOtob0OoepZF4lykzaeyDZLoLS9nX2u/ivmofcM25DEzZ+3ry0SZVxWjCtgIGSli8fYS6mgvmGyWlw0Z85ksfUVWKAdKTciiKGnsqdHsfqyNOuoNi4OG/OBcjh4utcznMCJbdYtqJk2YRbBezFmDyn81SFfe9EVIGiGUWK1GmIsiz2MYKpS8VlsYDA66hz5yM2zyFWoqzYMsfzWJ0MkCo4ai964vMuZTx2zn+QoG0mqYIGRLHWOiXFhIiiOT5cWL6+MZVRg8SkvIaJRB3wSBb3ciExOsTjv5TEz6QrqJPWTLdtylhPlMmvE+qZStliI2Co3AoMhIETPhMAlaUdIYUo9hnrva5fUzmcR2bhaR48/FFaPM5ljvc7YPTZ+l4mVdTxYpBcIUt9VAv2bpIuc7/cXyqmPyt4RUw4B0TDHabjSw1Kl1i1hYSCti5D9WOfVvXJSekHHI0SXxsEajhokUU+u4Z2K6FDOHf5gznW2b5ZGXlA3DBJaFQZrI8qg9Re/FIMiVL49BTgQIPd5v+lFDKNHynetL7yNCFy+6A9CGkjVXGXlJXFZdQ44T6P0LIXChyEvyst7LQUy4oOOZqljebVsesjLSTEmKGCNk59u1br9ERIwUsuVlQ8Zou8LGRCkJmdbA4mLv/gsXevlUsl0z4TGwknwRMnYZnUQI9TGzwWfC7NbIbr4chmpWlFytVjDTfohLXoKWR+UapPN/6PG86dY78pK0EKLjOu465lKmXKZRG2ELKbcIafMdDykjL7JitbmQZT4m9OM/lpm5TQGzqWTyPF/BRMAsihiiZAYl/dF4nxMyIDlm67uASiHbCCgtIaMGlF5u4jr8W6Lt9EteMyEy+EzMKHIvveSzO0jVzLXfQ8yIlNnENh+KKDkcoURrWApOv6SliEqWh3C58ipKxPLcx2E3yoPMfxj+ZEA4uQglNHmO2T77ooRN5h9KFoscz5uuX/jMwwTfeqRFiNlAZlPKc20F2ToSywxKroiRiZKKlNtExlxtTkXIyo/SEjL+4i4uJjMspZmfg0wTnQ7QbMakjGeUx6fMlcZ2jo2Y5WiVstR3ID/ZcOUzqmmyzh+UOXGQSlzeNEXSrjXWS12ziFm/PmM+368Q0uYqx3Us5PzQfIogivzfli3Qru363RYND1yKWNY+228bbCN7MYNyJapbzZHSZMkJ2fJy5dC/0VFKQsbBX27pC+L64DdtMtvNZh2I6m6fhDwfsa1QHzEr2DLK6+XIa14bltozCIJSdLmiYdR7Na7XhvUa5mIQ8AVdHQb6IWzyPNexPBMQgMGvuemrmy1NkSbKd602ctZHU+hWvoq020CvjxjfjgnZCozTfnvBCAEXLpgibASMtum6s8hYpZCVH6UnZARbBy15EV+PnKeJoloyE9M2uuKwjbwk0fLZQmg/S1uL/RB8kMXyxk1ee6jyMyiFKOvYIEyo/ZKitSaYEhuZbIWgSOyyEOGjaIeXRVJ8xCKrOeD148hL4IBw02lW3bKO2eAzDsiJB3zwHErKUv6/LgImK+/7LStpI2TMXMlnUC4uJnHFgLTJkoohMrYa4WsqrA+UkpApVWx0yE2WQDLranyczcSkg1kR/PLA1yJntES26+IjLle6vNt59vUT4mG1yE8eQTMUFekaLWQtEi7he36hPpwhxEvm6Svfp6yF1s01OYGQtU6nzDukmQohUTZvDk7MbKRM5mstI+9IUlbKtc+iiNE2zaAkgkUEjHyYKZwFJ2TSRCktoTZUClm5UVpCxkeLLmJCHzznVRcuJCZLQvLdmaWXAPQuvzQIE2ZB2MyUtmv2VS/v9ijNOBwmaRrUuYSKhI0GfL5LNoSoa6FpZTrf55/HhOhKk+e4S4XLmqjQbzMmyRYNhvuKo9YPMaNK0X+LiXIl7gu4OZL6EiJjtC4lN1f6TJS+0CSVybL8KC0h27zZ/Ha5ERB47CFpUQSSbTmKiSKx/BJp0PJEXmBIixWQNkuVkh96FiGzHZd5Ur5ZdXE1GP2QstA0wzx/UBiFIJ0VBo9BEP08zYMNISqezyzrOmZrE4HeiQqS5Nra0bykTeZrI77ePF0mSw6bG4nNaZ8do2WPqAgZ5JVMllQ8mTFd4kAUJdaYQU2sqLD+UMpHX6vZ/cE45H7bTExusiTQh7N5M9LLL/mUsiF8Ya7r4mTM9d+1L9TvrF8SNghVbCNgrRrmQZa7Vs9yPb5Dwxh0FJ1s4NtvSyebOVeQ3dDmkJcj88lDYIMhCZhUxxgho2WPiGBxQsZNllkzKHmRiWuM+7oqhaz8KC0hazbNb5ubl49s2CRy2ehwXwdafimKWJgMSc5ChrWu7Qzwj13uzyJkNgI2SLOmax/HKJnwiqpX/Zpq1uLc1ciPY9AdSR4T4iDrUvTctXrPsxz7QxQx2sfT27ZdxI3aS5vDvq9cmxLH9wfBVVFXJjbzZGTCWFCb6poxKYO8hsygpHtCZIy7plXYeCgtIaOXmo+u5Acvf9M2Jyf826SGRI7eaF9DKmb0pebxurVsyxmWLhOjiwfK/9LPLNSk6SuTUDQcxTAQulSMj4iFOCZnYTXT9JN+VFCE9OQxe/dD1nwmP9/59I6NwsLxRdb3zFLJbETNpZ7xckIHQVKxC3q3syrmKkCsQ7nUqaG9kB788qCuFGdMBnmlbVfVeN9BItyWLe57Uilk5cc6bbL9kAoZJx4+FYcfa7fToxc6lz4e/p1z0pZSzGz2giy1TPowxP995EqaKV2EzDZaCzVnyu1Qp/7VaECKEA/XCL3oviLpfflkkckiHVlR5MljEM87NA/+DsqJOECxNURDVF6XOY+O+fLgz62IajaM78l3fSFO/ZJ8UR6S+2SJVD6uxOso/dOSdLV0m+uqmK0AQcgonhj9kfrFt0Niisli6T+5vfD+o9Ew+1wKWUXIyo9SErKxsYSQye8zpCGWhMQmmdPIiCYPUESMTZv4qIetj+mrgOurjaJuwyCTuz58GyHjJk2ZznVvJIkjFI1p1i/yEgtJaFxm6JDtPGltZYeUX3R/1rE8aQZ1XtHnn0flCj2WJ/3yci+xy3rfbds2QTxLWaPyCWNj+VWyQX13st6ufTJEBYEIk23gSnnJ3y6fsyz08q+YlPEK+D5mUTlad5LaQ65+cYf9EEXMRnT5ID+K0v1Us2n+KpPlxkUpCZlS6ZeakxDXqDSroaXRDx8Vdjq96htX0YikRTbVzNbCid/cVGlTrWzKH6+Hi7TZzpF5u/zSfNuufXkQSgCySJCLAIUSLVt6WU5IGSHboWl8HVaWYpaHWA3S1JnnfchDWCSKzgD2pXH9lsqc6zuR52eJN1m4eNGvzrnQzzcZomTJ7bwO/a79Nkjy5mpGUx+jT3oDetQwTq64+mVb9ghIO/L7wCeIka8YH8CH+JBVClm5UUpCRgpZVsPBkeVPRSTrwgXzf3k5+VijyPzfsiU9IqSPixoPI1HTQuH1bjobXGSJiJaNCPLtkDQ836xgsiGdW9axIh29i6j4CJiPfLkImS1fOQU9hLDZ9ofUNXTbtS+1vJfEavTcLlBdizJtBttqFXlJltz2KcC2tsC1X/7malvWhBlfm5NHNcxL8Gx5SPhMsFltqy3IqxSu8rYJXFFzH691625+1HvSmB9JW0gBXOUMScAfwsLWphJ4WxBFieM+kPiLcbMlKWRF7kuFcqCUj50i9dOHb/to5AdNBIs3QL4RbqORDotB5xFhGxtLK2ZUJh8lhXx48kP3+YzRdkgaFxELUQh8+7KupYg65CJL/HgI+ZIkyUfiQvOw1cV2nvzdQ6CcN96yz7bt2hdyrEi6PBgAGUMU9dKxKEJdbANI9nUfhj1/Inh5iJJr4OI7z5VPnjyo+rbHw82bWURpUK9NKFkcJLLKDLlW2s/bP65u0SCbEy4Z1JXvd5UlydjYWFr9In8xTsDouOszqHzIyo9SEjJojVpnCQAQRfXuR7C8nCZpsiED/CNkG0Gjj4fMk6SYkZpGkjSlEfEFrZ06h40w2eolGxgbAZOkTeZru0aOoo1BFgnLImChxEnm6VK7bOfI/9LXg+crt52LzxPanhdJbud5AMMiZXnTupBnmJ9BxjL3+bYdv2vxdp3tr6dGXb3sWvp02ohU1rfl+oazgjvLc7giJmdxhvifyXz4vtBzCatB0Npt7gZi/tPAGMiO7O+a1CTNjy7/ME7a5HMnyLaF2iFy1ieLCQ9zwbfr0crwb2SFkUVpCRm91DWYcBRAmozxjxowH9v4eLKUkquvk9I7P0YNBpD+COnDpOOSyBF5I/gaSFtjIDsBFxmTeQ2bjLn6SFdfKQmYj2zZyJfvvJBzbOSsh2x1Oka1svWurm3+3/V7GEQs66GtZRC4Ik5veYlZ3hcwQBatRVFC2ojMNdJpOGnLGjQRbN8sPz/rHNrmJI3OA5Jvnbd5/LeN5OWBrT3keVFZUeT2ASPweskJA7y+1KbKcrLW8JXEyka+eFR9acKkc/lsU9eryRUxPiCXilg3rYvpxdDa45qwhlBKtQCcAPAMADdore8MOOdyAO8EcAMABeBOAD+ntX5EpNsG4B0AbgawGcDdAP6D1vr+AV5CJpRSNwP4DQDPB/BtAH8M4Pe01hdFuusB/AGAFwF4EsD/B+DXtNaLWWWUnpABphEl3y36kPgHuLycjuwvR2G0nxpFWxyfxUVDwOhjz1LIiBBwRY3O88E1sg6Z/UhwzboMOVfCVd+sPs9HvuR/SabkEiO2NDIOnVyFgX5bZ8ByRStU3pDHXMf5f/47xJnJtW07X+bhwlqMxkOUs6JTVW0MX57vI2FF/ot9nLR1yVsz8dTmTuRAuh0C0kSAIAdVtu/elobaMtoG0uVwosTT+BSv0Fcmi5QB/kXeJbkiuIifrx70n983TsBcChmdx33MXJCvBG/rbQRs06a0xaSGlQxCpgGsYiDHfHg7TAWDoJSaAPC3AC4A+JH43N8GcEwpda3W+uk4nQLwcQDPAfAzAM4B+NU43QGt9ZmBXoW7vq8F8GEAfwrg52HI1u8C2Argl1m6awHcAeBTAG6K6/0OAM8C8H1Z5ZSTkFnAP1qSh3kDxgmKJEm037VGJOUv13bjChnQa7Kk33xWTch6ZrxcH7ly8QQb5MjZdn22c3z7JPkCwkyHRFblOS4C5lK7eJqexq5t6b1821n7+A3LslllLZEgt0PIVr+9p6ucQSHPMgghLB8oHtvE5owoX8q8cq1vn9gmwtYla7HCxn3a5KsW6hdqM3vKNJKk2daKtJE0niakPfFtS2SVYSNnctBsy1OSViJa0mfM5UPG6+ZrD3kbJUmY7X8UpR36rTdhnUAp9XIAPwhDmP408LSfALAXwPO01qfifL4M4CSAnwTwR3G61wO4HsBrtNbH4nR3A3gYwC8B+PcDqP9nAUxrrX/Uk+z3AdyltX5zvH1MKdUE8Bal1Du11jPx/t8CcAbAm7TWy3H+SwDeq5R6u9b6S766lJOQkVc/odNBLW7wbB0+J2d02uJiNimSfbNsk0khA9I+A5SO1DMiZDYiAfjDHfhIog/kP2drgF0IIWW2fszWV/Hf8hx+P2ib5yH98OivR+1qd3p7I77tkiBc57gkiSznnzxrVIUuKOrbF3IsT5pBI+tFy0qT50UE3NNas0YMlMY3OqDzbaMBue0bUURRNyROl6wxU6gMzQD0vsJS1aF9QLZLA0G+7vKWURrbPo6sRyTbNNfjziJdWcKyvGcUvohcRDgho7wuXLDfF1lXG+nkbZp04pfWkZ4BY9bNMFfoObb6UEqNA3g3DGF5KMeprwdwD5ExANBaP6yU+gKANyBNyB4lMhane1IpdWucrkvIlFJTAN4WnzMFQ9r+SGv9niLXxvK9HMABAG8Wh94HQ8BuBPBn8b04GpfJ38y/gjFvvgFARci6I1OsdEmZbZYexRSi0Qv/uAW/637Ivv6MRkSyDLlcBjevSYLGz/XBR8pk3W1ihS0QZaggkUW4+LEsJYs3WJyg8eNWtUv2Ri5iZevNeGttI1O2GRWuRepCCBr/L38X2c7a32/aYSGEmPnShuzzbdt6VhcBsx23jTps9nTAP8oIIG21KEK90TBELUqOS381GRsr6zOwKW/yv+1VlUQo61HmDVNDZXEyRr99r7+NkPJP2LbotyRgedt1+s//uPrFyRcfoBO6ZCzP9zA6+CWYic1/AOA7c5z3AgAfs+x/EMCbRLoHHOl+WCnV1FovKKUmAXwBxsfsN2HI2GsBvEsptUlr/d9y1M1WV8h6xATyPICr413PBdCwpGsrpb7B0jmxLt+ATAhCZguwCvS2p3Lb53hK+31hI6Io8T3gwf/4h8sJGW1LZ1EbsQkBpeMjWtnA8TqHLCfk689kPX2+XnyfTyGsYSVuRUUPYZvyJHsm2avYyJVLOnD1VKE2Ytt/174i26HH+km7WuiXmLmOhW5nvdS+/67ZJLaRh8uhUS5qCPTO/rF9HI1Gj7/aRKvhNX26xi18ny8kR5HxBEfeR5SVr03d45+19AeThIw3Fa4xFn9MNnDCJQmYbNuAdJto2mbzvGpYyfgWRsuHTCm1D8BbALxea33BuHsFYzuMP5jEWQDbRLppRzrEaRcA/CyAZwN4odb6ZHzszniywW8opd6lte7E9ZY3WZndqf2aOetvj//b6nuOHfelO8uOO1FKQqa1WRDWBduHzT8YUsm4QkNrWxK5IT7gCr4q86b/Nid/18xMSuMiNjL/rG1JxLJgy8dGuORxWx+SDo6bPp5SvDqdXlMjb0HlPtqWpMtFrnyEyxdNN2sf3+b/Xb9DerEs8jSK5Gq1kPUS247nIWS+47Zt3z7bB+wibHwfl1NcIxn5McUkDWCmzyhK+anJT4k7rNsImnzFs2Ko0b48CG2TfJ9jVkwxwB5lnxQyV73l47VZBmjbxq3l+VSObJdhCXzci6HMspxSSt3Htt/DzXyxY32Kjsbk5l0APqa1vqNgubZJAJLVqcB0RwH8A4CHBbH6FIB/A6NOfVkptQdGPZN4JYAfZtv/G8AeUVZWPULTOVFKQray0ruMBX/5+QcsIUc4QJqgUaPFPzA52nKBiBzlTWEwuJ8Bzz+KzG8ZhNZ2Xa5tjtA10vIEYJUNj88k2UO8OggjWzbyJRUySaakV65tCJxFuELIV16yFdpz5XWwz7vw4XpE3sUOi6wgH0ra8pA033GXaiYVshAVzaaqCdJWi82e3dhrjQjNpgkLZFPMsiYT8H0EnxukCz4CJz8rWRcZrNXmsC+XPZLX6iuft5u214Mei3xE1I9IUOgkOXlsDcdXs1rrg57jrwJwjO9QSn0fgJcDOBirUADQjP9vUUpdorV+0pMnV5Y4tiGtMLmUJVLRKO0OAPsAuBrOS+P/jwJ4sTj27nj/b7F9LBBVV42z1aPFjvvSbYMxs3pRWkK2KCJ++AInuj4E3hby3y7YyJ6ceckHyjyYLIXA4Es+kWJGdYkik5/0X+C/bfX0jehc265+KCiMRF4y5fqTypb0urURLJmGYPMPc5Gv0P++31mrsrvShcDXyxVZoXnUUfR6XaMj14zP0DWufB+K77/8zfORM1dcCpn8AGUal6rm+avF/+sA6t3pgEldQ8J0ZI1LssYhtkGy7bHniSHW6QALC2k/Mhtpk4qfdBGUA3CCbfBuU8P4NfJBvgxkm90UrJnJ8ovoJTE3wfhr2UjGR2Hib7U8eT6IxDeL42oAXxHp/rkj3SNa64V4+wkAj8GYLm34GgBorZcAcDUQSql5AE9ore+znYjkGl8AEwONztsDYILV9xswRC51XUqpBsyM0g858u+ilIRM63SgVaB3G/D3xRy2iVXyI7QRMZknESpePlfD+EjJ1l6TWkYrDnD4BtJZ//l5tuvj2z0zGenieBiJvIRMppHToGzD9CwfshCyVYSAZRGtUCImkZeYuUhFHqVsLcnbIBS95eV8943uWVbZdF/oHZP3Oo+Heh6CZjtu25aKGB23STSDUNUiEaaDCFu8LQkbYFfNQlZBcZE+2ifbWt4UEBnj606224aUSdJmm2DNbz/B9Wj57aV9rphqvM48TiXts/VNowSt9Tx6ScwsgM+KpAdgAr3+Aoz50IePA/hDpdRerfVDcZ57YFS3XxHpfkwp9Sqt9efidJMAXgcTcJVwO0zYjUe01o+FXlsItNaPKKX+CcAPAPgTdugHYRS5T8bplpRStwP4XqXUb5LPGoA3AtgUX4sXpSRkKyvmIyTYRiyuxsMWZNWWj1SiaHt8vLcR8Y0U+bmuiVe0MgCdT4Ngfr5se11ttcyb59GjbqUUJg/pySJgklTZlCzOZPkc9BDHlqxt14OwPRjfED2EbI1KLK9QspUnz0FheTmsflnEidc95L6HPhuejvwUJHj9aZkP1/Gs6chyO0RV821ziYecUGnbp7zl8VVjaXoIW/e85BzXklOy3ZVNCREXvuwdh/zs5bJH0mRJ6pkUT2W+tgEvf6TULvsUsYsXk7bbNsjO6pd6MTpO/VrraQhne+bU/09a67vY/h8G8D8BfBeRKpgwED8N4GNKqbfAXNzbAJyGMSESPg6jSr1fKfWLSALDKpiZnYR3wgRe/bxS6p0witgWAPsBvEJr/Yb+rhj/EcBtSql3A/gATGDYtwD4rywGGWBmeN4N4K+UUv8dxg/tHQBu0Vp/MauQ0hIyny+XhG+9SA5qEDjpoXQ8pheXujnkNtWR2kJqgPiHzxsjnj9vEzdtArZuTerYaJh93NzZaAh1i89cpMr4WkzfNm9VuanQ5kxvU8NsLXEIuQpVwPj+USRcWaTIR1585xY9zwVXzwNk9SRp8MVlXaDezAbbeXStWSQu7/Nzpc8ibYMkbCEEzbbPNzKTafj5tskFIbFqPHUj3zVCvdHoUdn4Z09xIGkfnep6zagpkWNA28LgWWEtADs/lWF4bI+F14erd1nrbIZjNAhZTtRgJgV0GZvW+mml1GtgiNT74mOfgVk6aYGlW1FK3QTgDwH8D5iwEncDeLXW+jRL96RS6mUAfh0mcv6zAMzBELMP93sBWutPKKXeCLN00o/CLJ30uwB+R6Q7Hkf1fzuAv4Ex3f4FDKHLRGkJGVfI8sDVn/OPr9NJfAeIlMltIP9yRlRG3uU55JqZzWay3Q0bMefwZLX98RvgG8KGzFS0OddnqWwhBMz3n+orb2aR5YWKmMR8cJGkUL8mV1obWXIRKB+xCjmeB1k9n6+Hde3jXtZ5nqlNmQsxnWa9A/K4jaBJJyV+jiRs0okJsJMz+T+EoGWRJ3Jc5duuGaK2fb5yJfFj27UowkSjATRN2I5Gw7Th1N7yNpVbkl1ESDZNWY9QVlWSMVdoCxtkU8aVvVE3T/YDrfVnYZlNqLX+cwB/btn/CIDvCcj3LIAfj/986c4B+A/xXzC01ocD0/01gL8OSPd3yBeTrYvSEjLpI5AXkosA6Q+QB3C1ETD6EHnEf8kbZH4SLkWMR31uNAwB27IlqdNEYyXtOMF1e77P1npJJSuEkPEb5lKqXGqWi3zZbpiNcMkbX4R0+eCKottP+rxTZbO2i6Zx7XNhUAqZj2z59mVtFzknRBXNWiojL2zn0D5O1mw+bFkrEPhUNb4dorrRfzmLKISQ2VQ1l18Fb9RYbLVWa7Inir5sOvji4jxr2WZzVxJ5O+SlydBDW7ak9zUa9ti/8lXKY6WR9bFjdEyWFYaD0hOyImSMwxWRmtoXvhA5kES8t1nLKD9Xu2Zb78wVSJbaOyJjW7cys+TCAjA3l164jaYbAb2OFVzJ4i3esEyHWdvyxmeZFm1p8iCPatUPuQr57dvul7itJ0JWdDvPeSG/bdv9mLaz3tNQsgYM3neNb7vS+I7zNDZTKVfeZBBGGlk2m93tGoCJZhONRi3VdAGJeZJiRMpqbN6cNC2UhpQqWxvML4UPeKnazWaaV9oCvlK9uN9YEeT5JCuUC0GPPl7L6Z0AboCRJO+EsfU+EnDuFTDOeq+GWV/qDMzaTr9HK7oPGtJkGfJh2D4C6ZbC09AHK9eK4+tiLi72qmj8Q5UfM2+jeMNAJkhqCIiARZE5tnUrMBEtAQvthHxxQjY/b6YecdVrYcEeMTFL2QohXLb//CYNm2AB4SQrNNQB384iVnmOD+K8rGNAuOnTdX4R+D68kGceSqb4dhbJGsR5efIF8s/MtaXJs4+Q9czzqm3026XC+bZtEbA5y2k0gFYrsVOyhrRrztxax8WLifgPmCZry5bEh1cK/LLK8nHZqs25I1VFBvS28VIeysL2WIr2Q2kMJTBshRFB5uNXSk0A+FuY+Bo/AqOb/jbMaufX+kiVUmoLDHkbB/CfADwCE8/ktwBcCTMrYuAoYrL09W2uNFwZ63QSWZyEpmbT7sPOwdtBTsho5EYKGDUQrZYhYK2WSdMlY7Oziao1N5cmZAsLCSmjCpJixrV/Trp86hcQ5qM1aKf4IvGjQjsd274QshVKyELO47+z6i1/51XuXPuGEQojtHfKo0T5JGiZ3kemQslXnvPy5snXS6N6u4JT5YlnZ9tns6PlVYJta3nK/7Y/Kf03m0lDt2VLEohREDJqFCdaLXSa9a4Vgt+OTidZSQVI1iWWxgDbbbHNceDkjFxBfCIhwbWqmvztQqWObWyEPP6fgAlq9jxamV0p9WUAJwH8JJJV2W14OQzxeq3W+tPxvmNKqe0AfkEpNaG1Pl+49g5oXYyQcXLl6yPpP330BGkmzVojjedN+doc9FuthKRt3QpcemmikNURkzEiYO02cO6c2aYZj6SYcb+yhYVERiRCJsNNSPkvy1dLpuE3y4c8qpXN4dnlBJ1FgkJH/kXzzOq4QuvuS2f7zdMTQicC+PYXgevjs+3PIh9ZJMyWPiud7DltU65tZYdu+5TkkG05I9X2DeYhcCEkzRYl1Qb5DcrRpQy/wVkNmSd5Q0cxK6LINK7c6SsmaJNTU2g06l0CxrGwkBTFx5ncEACkb7Ns24mc2dbX9d0S2+vie7w2cIXPjsqHrOwIaXlfD+AeImNAd5XzLwB4A/yErB7/f0rsn4OZCutd30kp9bMA/i1MLI82TCTc39Faf8R3nta9H4OLP7hEF1v/5utXqRxbmb62XebHo/Nztwpqy7ZsAbZtA+qd8yZsBZEtUsgWF832E08kBOvJJxMCRq2UDGFtI2RSey8649Cl9thaNtmw+7ZtxMm1zzeKJ9jOkS2xrWx5fTLPrOPyXrh8f+Rv+QLm3XbtK5KGEDL6CVHHQrezTIkhiplME3qcl2GL+JzVO/tIW8hxUtaobJpF6pvhadvOM0HGBds3aiNkdGxhId2w0eh1cTE9YwroWQC3HofQiLZN0C4AJru5ucQyAdhdYznkp2T7xOVvng/PzzV+cHF+DvI7839qFSErO0Ja2hcA+Jhl/4MA3pRx7p0wStrblVL/DsZk+RKY5Q3+nwxz5w8A+M8A3grg8zDLNFyLgBXTOSGztTW87+NOmATbh8jbCKnEc/C8fQNxG7iaT9t8BiVt1+bOJurWwkKvQkYmSyJgUiFrt40Js91OiBf/zRt4XwPtUrb4tH9+Q2y/qeGmvGRjDqQDqvEbFbKdlUYOjW0ELIt8uUgbL8e3zf9n7bNth6brZ39R+F74UPUsi3T5jhUxP0pVzUa2fCQt6xw5o9lF4ELTuMoA0gTNp55lffNZSptr0MS/Z5qeSFI/MRBOyEghI+d+wLhacIIWH6u3WrjsssmuA//ysjkkfcyy1CmfcG27dNvjoXRS5coiY7bb2n+ssgrrFSGt73akF/sknEWywKcVWuu2Uup6mMBsD7JDfwITpdeH7wTwZa31W9m+T2RX1xAy3yQ9cr7kcPXl3IeAK+4UeDVLVLHB1Tjw8mi70YjNkvT1zyyk1S4iW3NzSYNGihn3IZubMySMq2G0zVWy+MatINt9tMZuco1+8Jlg4+O9I2XX6JnOlTE+ALsDh48d03Eb2XIRsKyp/LIs2pb/XWQqj9qVl5DBBNbkCBGhrMcDBK4isH4Tnsuz7avJN3JQhIz/dqV3yR22njk0RIyNoNE+cjfwkTTJNuj7l+mpbJpuyGcruSYUyAZ0eTl193vaBp5+eRm1djt5I+kbp1mhRBKJfXDnLyJp/H7S90/7yPG/3UatuYDJZtMEmW1GWNpWT/ntykchEdJW2x7D4mJ6dTfbbaC8bZcE2PmwnEjbi0ohKzNCh8Pass9rbgS6i2p+EGYl9h9CopD9OkzT/+88p98L4KeUUv8NRqH7e5+/mVLqzQDeDACt1hXOTF2WIRuxkj6oXKni4SeAhJwRT0hFxQ+FrbGfFbMfiYwRebpwwU7IuNM+d+oHnAoZJ2HyP6GWsQ0gPR2JEzA+UqZ0csoSv/FA74OgfPk2TYHykThuC+ZkK1R1y9qXZxtpAuXiFan9llF+nsmpIa9hnlc1L7I6Pt/x5JtN7pl5xerdbXO+3AYiJqzIcqzfaJZi5tp2ETVXGskUQsLO0PfO88xaF1ZO1iFixGOd0QiVXp6MwLtysGZrI1aQPK3a8rIZvDUavaNhPnDi356NkBHoeyezJwuVUY+iZIF0ILV8UzDENyq9OS5cSG4j59C86jw+mrwcSi9n8VeoEPKWnoPdTLgNduWM418DOAxgn9b6G/G+v1NKPQngPUqp/0dr/U+Oc/8CZpmEfw3gpwAsK6U+AeDn43W0UtBavwfAewBg9+6DKQLpc8+xCSykfknneu6DSssVdWN/dc2FrEG06eV5e0Y5MpbThjgBozSctFEa6S928WKPiTKkoeW/6S9FwFzOvEBCxri0yNktPRDbNl9/jxM9rnxJwsW3XSoa/Zbp+LYtDZIG2yWeAEBHzIsAwn3VXftcr1CQAlYARV2J8qAoYcsQDjO2a/GraogckbwUf7a8IuZMRubykrGQfZKg8W1O6CRTaIv2RxIyub24mLQH/Bz6htmxGpB6Gah9qKG33ZD7akCvJCSZCbEYuslMCeuyGiKVQO8o2TVgyoJtABXHQUNkQm5MNBpAq9Fd4ml+Pj15gPghbVMTJPkzHaN9+VD5kJUdIYTsQRg/MomrAXwl49wXAjjHyBjhf8X/nw/ASsi01hpmkdF3K6W2AfjnMD5lHwTwUl+hSrln/dv6Wlv/3mym1S+rL9fCU0bBAtIkiDd+NlNFHkifDq6MAYl2LiPz2zoKF2Kd3KZ+8UZXErIecyMRKUnQeAPKbb+cfPGHIQkZtw/zNNSQS4Jna5ylquYgXzaS1ekgpVC5JmvI8+S+0G1ehg1ZI+p+lK5hqGR5xIm854ZOAnTl59uWbQb/PTZWi8uog5O4KOolcTWshJE0m7lRkik5C1oGd+ZrydoCQPOBmmuAx7e5mTM2e9babdQsJkzeVnCk3Bl8kPclihJSRjdzeTkZaG3alBznZeQdFfD8ZRAyPhrnwWovm+g2uRRoNorMIwCS5ob7t/FHIy+T9mWjikNWZoQ0lR8H8IdKqb1a64cAQCm1Byakxa9knDsDYJtSah+fpYmEUH0zpJLxGlUfVEq9FCbUhhdKuftdIE3AaFv6h5H6Jb/JWif255pd6I2Gf+5cOtaXHKHmcWhwNV7SrGEb9dqIH3e05yYJmqk1Pm5MC1mBJrmzLnfSpby2bk0TJS4r0o2UhIyvhE6/ORuWJsk8Zk7ajslWT5/IFCzbBDvfNu2j8/kjsqXJ2pfn+KDOWS8oQuqKqG5yX+jkV5vIkmzXMDZWj8lbQtr4uVbSlmV+lPuo1ydWQL/54K3V6h002pZZozwkQWOqXLetCG03ZKPL98nZx/ya6YaSOvb00+mb52sreV420PmyfeGdBE1tpzal0UCt1er6rq1E9a5FhW7jwoJptujW824ivmWpyEJUxSJj9grlQUgz98cwDvgfU0q9BUY3fRuA0zAKFgBAKfVsmLAUb2WO+H8O4OcBfEIp9TswPmQHYYLEfhHAF1yFKqXeA2AeZmX3xwBcBeOH9mnXOcm5vRYvaUWT/TnxBiBRwrlfWK193pAwm6M8YBoJbjpcXk6i48sRKf2WkIqNbb+EbbQtz7cRMCJUvjAXHC5nfL5f2nltihhJj9QAEvuVsydsJkwXAYt/r0T1nlvCCZONy7oIV0jIKrnftS1RNbj5Max7lpe0ubZ9Ik0vQev91MfGaim1LYqAqDXZS9ZkWyLJmTRZ8vbo4kXTXpFUQwQuZN1bMpnKGdlAsbaDD+iAXgWbwD86ImVZbaHtXFd7y8um39IU2myatnzLFpNm61ZzD+JOo9ZoYLLZRHPnRPe2bdmSNP/0KFx8Woqe7ne9MlmWHZmETGv9tFLqNTBLJ70Pxpn/MzBLJy2wpArAGJhCrbWeVkodAvCbMNH9p2CI3Htg4on59NcvAPgxGBJ2CYBHAbwfwG9kXlQEXHKJ+W0jYDYLmHTYr2Mp/oo6xi9MmiTn5w0BI0d5W2gJahBlI+qzR7mc06XkR79dN4CGa3Kb/8kGlX5zSInA5R9GZdgUMU7A+DpQlIdcQiWAkC110mrX4nyvZVjyVHnJtN/2X/4O2Sbk8bnqB6s1PT6POrVaZHOt73EoUeO/5X/XhF85WDS+bnVs3lxH1Ehib9Wjld7e3eZDxpmALf4gJ21E0GwmTJmvrf2gbQ6prMuL7r1gNzmzfbA+VZF/9DbIMPzUHsmgtTSBADCdxfx8Ep07PqfWamEiPmdyWyM145OPz6lq3MJsI2gVNh6Cmtp4zcrvyUgzDcvMS631VwB8b96Kaa3fC+C9ec8DzDe/LQ7IYevPvQQMSBMwIGm0eGPGFTHAHw2fN27UELqiA9pmIdpGcLbWm29z+KQgHwPhcJVja8y4CUASMC49+kicIF/tNoAO0Gnb/TF4O1zE/Mh/Z8UKcsFnFcmLLHcbIB1dJBRF6pIHRfLPQ+LydFZFZq/JupDJKfS6fAsk+ERv2zYXtuWnZgaWRlWLonpXUeshabw94oSMthcXe90spKpmG1TaRjtZ7Yf8nXUTKG/+20bAbD5xchapr73lvrAhhIwrZnxQOTeXMmvWm00z49MSkoMTNBeftqNSyMqMITfPa4MoAqamkt+SEzSbIrYXETBu6OeLb3NCxhs2uV4k/XHzgGzsQqR96ShPDm1A8rVyBYm33iEKGiFU8nGpc7JcLj2SCZP7hxGZ5PZh6VMmCBh/BHyALtWurP6BkzVCiK+Xb7/vVvnOz3osLjLmI15ZeeYhSoMkbSH3jsrLStvpuO+Brb+1Ba0vUr8srsEh752L0IX4ptk+N5vrBR03n1cNUWRMn40GUG827YSMLoy2aR/JNnxWp22ygO2Do98hNyakbXLlz+shB7w8nA/ty2pzpT/bli1pNwoK/c/IVpegcdLWaqXbPt62SYLWamBpWy3VXXAubEdlsiw7SknIxseBnTvNb+r/UyPHuQU7AbMpYlLtsqlflIckYCLW1wqADtzzZGrLy4jabdRoVhM54o+P24MoytZYmv1cNpKiN1WWKWN5uWZDemZZrkQskKNDxqc+AUiTLx8BswVL5yhCvvohKq5zbY/ENUO4yL48x0PT5EUo6fGVbTvO8w0ldUD6veB55iHetvq58ogi937ATtpCYhJLkmabbLxpUw2bNye+aY2dk8nEJC7LuGZZckJG2zaHTKA/W5uUtOVIjNpcDqoLka52O5Gd4jquLC+HtblA0r5SO84J2sJCmpDRGk2ckNm2qe2Ta+DFBG17swk0k4Eo55cVNh5KT8hqnaXe2ZBEpqiXf/ppNyGjbdtsJCJclEY0BpifTzUGRMjot2t6eESBFCmIIjnhE3iLKyV2WpaEb3MHfH6TspDV69t6CYuzvfQHI/+vDnsknFRJBcwXtBzozwE/FC6yEEKMfGas0DxCBIYiJK0fjh4KmjBLKKJaheyTpM22DaTvP+cQNkUtiwgSXKTLlZ7vl2SS8uJ14coYpZGf3oUL6XB99OnRpMTk84zNnKSg2fzDpFkwRH4OuWgOfvP5RAMiZxTQ2kb++IMRqwRQG0ztrY2Q8fa3+ztudyOK0UhtJ90TPrC0TcPng01ql6nd5bGTgGSbkTQiaCutOuyoFLKyo5SEDEtLqJ15xPzmpkT64Mn/i8gUjYgkabPNNHKNJOk3U8OkIrbC/mSMLydoSrj0d6APnz7qVitxnm+1eqeJSkd53poXgc0sauklepzvH0+3r5KM8fZYpiHwdHyf7bdvn+uSQo+FmKFs6fJsZ6UNUdhs54UeGzTykhbqazmpyzI1+94Fue0jW3wcJFW1vMTel95FzDjnoN98iR0ZKYLXiz5DWqtbjuEozdhYDZs3TySfLPdDo4JdBKzo6MZlfuRkcHExIStyhQJ+LrWNlEfGQNO2AkkHbFUBoEvMUqoZWS2ARCHjBM0WSVwSNDKF0jnUTnN/21YLNe48WGFDobSEDNPT5ne7bQ9HQUsN2cyPtE/ORuIO+TJKdiyP28gXhy3aPSGK/2o28kUjLSJgpIC1WuZvair5+Gkfd0KlERtgTIVxxGkOn1klBGR2lLG9eN6uSVC2GZK2bZmvq955r2OQSldRwiVNViFlubbz7MtzvAiyno+PQPO+KYtcSfIWQth9efKJyq6yCLSwtCvfIiROghM0l8rYbidlETeQJI7SUL2kyTQJwWHUNAA9S1Bl1VNCvleNhiWcB7fXkY8uXQw3ofL/0keM1uwcG0Pt4kVE8YOiKllXEGCgQXS3bV5eNnnwJZ9sIX+kH5pt9rg0azoIGbyErAoMW2aUk5C128CpU+b34mISnsJFwGzmR6540T7+4VsiVfP/hJ7o9mKbk7IakEjh9GETuZJkixxIm03gGc8w2zRKm5pKEbKVxoQRBGfT7Z+N6HCEEA5fB+4aVEvHeps1Iqvz4ualUBLhS5elNIWQqNB0eWbiufIO2Xbts9XBhn7CavBnLE2WhDzrbmaRsU7HTd7kO+5S2/KQNjnHxlaOROi3EnKO7/nZ6svNoFLJpWav3++aw9eWJByl1jWfNhoTaO3ebuI9AonPVqORWCcIxJQ5y+WkjSpw8SJq7Tbq8/Pdjs41ULaB0nTi/Gps5mZtfj4dysO1aonLzGkjaFu2JO14hQ2JchKyCxcSQuZy0Lf5f3EFTEyXzvMhE/jNrYn/AHp9u8iBlI+2tm3rJWREuMhf7LLLEoUslsJXWtu7l7wwazgpnzjFbwfQ64clfVaAXp8VafXMUpRsHXAI+bLlLesmfYF8aX35FlG3Qk2XvnP6MVvKMm3lus7LczwP5CC/iEomSZ3r/XFth5I2G5noV2XLo+zxcn3IeqZFCJ/83uV+2/kuFZuQ1ZZwq54xmxoOYiYuGvNpc2oCNUpIZIsyoJeBf0yUhjLk7Xij0SVTNWnZgH0wHTLYpjxqy8tmOSkKEu5SzahtBxKCJicCPPGERyGrfMjKjnISMjJZUkvB2Ygtgj6LXcNHRaELbdN2j9ollwuREavpg+UjK+ksSkoX7bvkEkPAuEK2c2dC2hoNLDUmMTuTkK75eeDJJ9MRObhACKQbUR8Zk3/88lwkLQ8R4KYWvo/D1rmEul246hKqgBVRt/ohX1nzMPKoYr7nMAxTpYSPlLmeaYha5iNuIcqa3A5Rv0J92nzETe4v4jpURCX13VNJriT5kkv+8OMuUmYjZCQQ8cgSi4tJrNVmE5ia2o56FKXbasAcpAdFxIcIGWXMTQE0MQBIz8iMK0gTqLqLpzM/YMA+GLcNzLt9Ak0OiMtIrfsrZ5yTyVJOxnJ+kBUhKzPKSci4yZI+Zvoo6WNst3tmP7oWywXsjvcRO1YD8/0C0h9glq8BZzIyLpf0K2i1gEsvlS0XMDXVDSExNwvMziaEbG4uHcNWzlkAehtUqeRQI5r4maT9WIH0pfJ93Pcla0Tvaof69b/x5Q2EE62s7byK2zBmYLr2AbHfThYGcbMtFak76rSCmrW+/L1x7XOl4chS2vKQtjzqVxZx85VZBHlItc/sKAdqkoCRBZH7fcq2RJYh1XU+CRFIONSFC+Y4lddqTaIxFYfqoEyoYaP2lRzl5+dN+yhnw8vguNIfmBM+tgYxV9XIP1iStNQ9Zb9rcjv2RSMVreuewvsGGoxXTv0bFuUkZEtLwOnTVgLGZz8C/g+MYDM3RvFfdx/3GZAfmGudRte2XGqIz5gkgkYjqZiQPbVQ67Y1szEho0aSEzJuteUmTCBNyuQgjarEZ2jRuZSOd1YUNo27ekhSZlPihom8JrsiZCiLcAHDJV1ewhXS6w+SjFF+GTe+BljTEIFbYV8ef9fkaXKfK400dctnlEXwQhTbLOJmS78akGZRG4nqdNIhZ2RYMjmYI35DkwN4PkAvGaPBHFfDefmckAFJqI7Jqak0IeMzzDudZNUBuRSUL84a3+bsUwzga/EfIHzLYkizps2i0mG/ASCan09bVmjmJh/Yp1CZLMuOUhIy3emgMzMDIE3Asj4aDml+rCFNwCKgd1Fs7v9lc9qUw0La5sGDOPni8Wt4HsynjBz2adIon1Ta9SFbsLvRyZATPoWMrAFyuR5qQKn94Oe5TJ42Myc/V/5eLRQx6fUTdiKPaXFg5CtPz98PS/DZnG1pbWniPGzXGUXeYDHObEMIXV7CJs/Pe2xYsKlgdE8o1rQtvQw9wxUxLjpJ0uZS26lc/kfqGietvB3gi3nQOLXTrKM1tQM1ktPa7SSKPm3LyvKloaiyMrq/bYY9n2VPPsbxdu3iRdRjMgWkB/hg+7JcXpaQ7mMoKHj2m12hrCglIVsBcJ79tqlfMgaYnA0ZiWMRgIiPXLZuTTtpkv1fTmvmBIzi0JCdjyLbc0WMx65xbK80JpIQao+nB4V8DgNvpzjpWlxM9gPpUbHPEVeCT58ncEFkeTlt0qR8eTB/3kgTpIJWFHnWMgwtq8jyRUWInu8cKxEbhAQzSNbgYkK+tD5pShyje2BTz/jpoaZQOt9WbblPvgPU1/veIdekBBcG9e5LUiaVK2oLaNum/nU6vQSNK2I8fBjgdurneVJZPEwH/xsbS6tnPP9GYwKIYEyZnJBxUmbbpkrz5UBIDXv66eRiKOQGJ2jnzqVJXKOBiJz4Yz80Oejn20CvEJDlh2xHpZCVGaUkZBpAG9kKGP8t/yIwUsZnyHACxn27pCmRFLNWyx1nhitmnICJ4SQPrtpuA+25dOMlyZctpAX/PT6e+Gpk9cFkeuT58BGuNFly8ICUQMI/udmTeKlrNmc/WG1VIqTOec2mhCDfLxfWQp4pAp9503GM35cV0ZW53sscvK+7z3cLh6HmDur95/UmPkL7XddKK7bJvPh/G+GjMrLge8SU34ULph400OSkjTePjcaEIWhxvj2Lq8sRqYx3xk0KRNrm5oxfLp23sJD4pgEJgaOo++02onYbUazE8VhmUhCQAWldsJMyDX+vVmG9o5SEbAVGDib4yBeQkK+Ibdds/mAUaoKmBfFwFGRKbLVMJps2JdsBhGwFtfQI1LJ2I9A7WuRuEnTcFQOJ/tptUz3Z0AHZ4SFkY5q1zffJiOHcKisVM0IeIiI7ZMIgrHf9ILRz9aVbQc1/L3yswcVMQipQ5CYVYRNFmWoM17OnU0MJVdYtHBTymLCBYt+BJFH8G+PkxkbAbHVzWZXlYE/+lt88DcKo2eR5cSwv96pofIDIx69JOTWMjZm1O7tzpuIxcg0r4YRsbi5hr7SQOB/10jncpNlodNWyekzS6NZ02B8PThsye7PCxkEpCRngNklK9Yu260Da/4vMizQzkggZtShErmiURMe5QiZDVsQmzZWo3m0Q5+eBC7MmCzmYA/zrNNJvSdiApAqdTlqRov/UEHN/kSzlQM6ydJExIlqcXPFtScZ4vqno3a7KSMQn1yz7gPjZisrKmX2rbdHLyt/WOXPSYe2gfQ/QlWkRktYvBiElwk/CgNUVBovwyZ5nGPLO5/gO6vGHRv52dCqPscq/TwrtRd8mHed1l8cBe5gQ2zl0nmt+k2wfeJ588CjzJrgWZE/alxo2bZrA1q0TiFoxSesspR1sucmSK2Rzc6axBpKVXuQ5FNsyXse49vTTqMf23Xq7jSUkZky+ziYhxLe5MlmWG6UlZDYCBva7DqaScX8wMk+STxgPyMoJGW2TvY2fIwlZfM75dg3z53p9L2xTyDnykgVbyAbeyDUaSSBsTugWmSon8+WNKc+PN7Sy8SbYzuPhMbqjVyrQxjDz2IxsLbfYrolzbE7ieUxdPriUhTznyPSSjBQiaEUqEoJhKGQYPAHrh7ANnIC5yFiBgYksnN71KKp1B2L8FN+12AhYFCWzJAEzqONKmSRJQKKCc5IkQ+bIAZ+cOGQbp7luAa87z3PzZhOTkYjgpk11bN26HRM0U7PTMWSr1eolZOQ8R0673M9MzqyS57TbqM/Noc5m+y/Ff3zW5iqOISqMIEpJyGqIVREgZY5MOedLh3ybukUEjLZd4SeA3jUmGw0soZ4KxkrfKREfPjuJt78+PwyXk71vu9FIZklSGZyM8frxevhIAd0WPkGUN3yUJougdSELzkPIXOTLJvtJdFWFFasPUl6RIhR5+KUtfRZBAywEYB0pZFnkC1hbVdNGPgiZZMz2Ttt+5yFjIYjq3Z8uM6UkMNKVgRMzOiYD+EpeSG2FHIRJc6OcAMTz4OXJ7az2kl+TbLc2byZrozF1jo/X0ZyaQH1qKU3I6A9IyBYpZIuLJmA39zsjgsbz2LrVKGcAau02ork5ROhVzNxPuQp7UXaUlpBNxL+7ahj3B2u10jHCaHkiTq6IkNGwymZ+FD5kK42J7je7eC6ZYU38Qjrc07csFSmf6UquRSdHgXwfz1PGRLKpctIPjccok5Aql6yvbSYaHaNynTMW5U0IGRq7Ksl7Tk7QOGmLj9tIma1qw0aIkBWSppCKFlohFwoSuEHc99U0UfIysy45pf7yE+XvrHc+5AJdUpWopCQxtrUn6Zvlf/JzclXBFiDaFljaRt58l8tvi6uNku2nbXBK+0nskrG4N22qY/PmOhABTVpj0+ZDJrepYZXRuBcWTHBIim/WbgNbt6LO4p2tMLOmHRUhKztKS8iatEHqls0fTJojaRkLmh1J57gIWbPZnQFJsx/p++t0Yv+wC0kDweMPAr0O+3SeDSFmBfmbEzdJ+iiUD23zuIicMNrEqqxyOajDotG2k3BKomQr0AdbJ2QjYz5po08M0wSWpZDJNLbjQQStSOUKYBAKWJHXoyiGIRQGqWKufVmwfJhSEZffo609Eln0EDNXcfxPLkoi0xFs7VVo+8iPyfQ28ZybUrn1IIpMu00LoQDU7JvZnFEUz+TkKwJwEyURsvl5sy4lN3O2Wr0BI+fmkoXQ5+bQ4GssV9hwKCUhQ70O7NplfhMh27Yt0auJgHFyNTXVq5BxE2a8j2ZDttvAwow/BA7tA9yqU4j4wxsxKftz+R/oPS7zkGVKssi3Zf19dZXlcb8S3/VSGeTfUqMhrA2hMolLDXOl9aUJwCCUmRDCJdP70oTwzsIErQBCCBhhUGrYIBWzvnl8CKsIJWg2SIbDtvkM7k6nl4xJggakFTNqX1z3QBbNJ57z812Ti1yXT3WjNEScXOKhS7Xz7SOLA4+p2Ggkfr5R1KugNRo1NJtmSacoEhMDuInyssvS0bmlqkbr29E5584lZk7C9LSoeTUPs8woJyHbtAl4znPM70YjIVv0VV1ySVoB882QjL/C8+0a5h+3R6uWQROBdIMCuAM1Au5GXhIxwD7SlI0dbzx4PpSHrAuvu42g2QimvBbXdfBzOdeymRJMmlricO+zixTpbQMIWIjZst9q5Mm3X9KVh0hkhtYoiND7OYpEzJZ3HlLmvJ+hso8PcsRlIWUrqFlXCeLfs1yr0lWMa4BnmyE5jDaJroHO5/tplqjtmIRsBqh8qksySExfH/c74yRtbMwzMUD6nZGJcn7e9ENPPpkUSAqal5BVKDPKScgaDWD/fvO72UwIGF/SSCpk3IfM4pDPBzLSCZ6TGD6yzFrE2NXAcele+mjJxo/7YvAGhAdbleTHVqfFxbQZk88ABZIJCHykzO+Fre48ryhKtzM2RY3Wvmw26wkp4ywwT0srt23KGa8k25eHlGVVqUK50BcZ80k1LoJme2dlZeToLN5e6tTQXuhts7JUfRvR4QSKt0mcgHHCIgkZtVO8urZbwRU6uTYmlU/76bbIQSIt6p7V/vL9UZSkl3661O4tLJh0FHKM34snnwSaTcfEAMCukMmZmdzMSTh2jNW08iErO8pJyDZtAvbtM7+5gz61HtxkGaeRDvm0dBlXuniUa9l42eKFSchRIcEWpoL/liNLSbbk6JMi4svzXaP1FdR6QmDwhrbTSUaFtmu3rYvH7wnQ26fY1gfkDWGjUYv311FrIF0xX+cVAlcHx/YTKZMjaRsBk2kGgZBLGVQawrBMlqEEN+Q+DipNXmSp2PK3dVal3A6toCzc1TBEUTfGIZAMqDiB4bO8JUGjNPJblrOi5aCQtzf0R+64UjnztUG8TZGXzMkXn3Agx1ykxLuaCHltrvZa7pcBafnEALoHfNyYmhgAoLlzEjWpmPHQGbTmJpk5K2xIlJOQbd4MXHON+S3Nj7FCRutBdjrAYhyclRMw2ZDZzHU+NQywEy8X4eL75LZNMbMNirmjap5gq7UoQj2KUG9E3Y6TmzdomxoiPtqmbKhxzJq9JVUyfj5dS+++WDHjPQ3PxNfBucyULhWC9QicSNiysGXjqkYI8pCnQZKxYfqOyTJCiVnWPQxNQxjkM3HxI4J3VmWWIuaqqKuxYDIUmSf5IPLpp9MDKL6MI+AORM0hFTFSv3xBXvl2t/1puxkXtUFRVLOOl+RnLsP2ELJ8dF2330fUXOSM17HRMPea9s3Pp0mqURBNUFoAaEztMDM3pd+ZNFn2oFLIyoxyEjKukMWEbKUxkSJWC7NpskGTY1wKmO2j5XCpXjay5SJgrgW9fXkQEbMFbM0Mtkpg7KcWZzLRMI2jrBuQ9gXj2dE+FylbXk5mNcnr4kEgqcGlskzamlHLsGL37LW14i6CRoXbFDd+DOkAsqSYZZGwPMQqD9aLIhZSZhYxCyFTeQjXIJ6Jj5w5FTEfAQuR+eQ+qY5Faad9OYji23yZNV4FHrlfgoiH9Aej8S1AalBikmw0xJqSVJDtHliJWfKtUQBaqYrxLH231ubDayNs8l1yqf6E5eXkOK25yR9Nu50QNGqjKSgt3aNmcwKNJls1oH0+g5BVJsuyo7SEbGXPXgCJaf7CbFrpCiFgQNhiuT7yxffzj5POc6Xh+cjfPsUMMB+7lYz5RuK8VYozrDcaiJq1nkO2BoxIFG9LZGM4Nmbuu7xfXA2TICKcjDaJmFng6uBcZE0oYs598W+6pzyqv6NfKazIcAxaMSOsBRFz1WHQpkzCsO6/Uw2ThYaSMo6sCxSNCl+CTapf9Ec+5Lztk4qYzQfU5RIRRen5UVFkyBiFiegOBG0Rr23X5NhfwwoajVrKuZ6SU7vC/cR8t15WgedhWyuY/tsIv881gxM0qi/9jyI7QUvfxwlsbU2kYkZW2FgoJSG7cMFMTpGjRq7khKpf0sETCFO/JPmi8xyD3FR+8hwO2SHYCF0XWb2SlHX4DYnZVS2KUAcQNRLflE2b0g63NHLljSc/RrBJ/1Q073RpUWEgHdA2HeVbmDFt1yavicN3rg+MmJlN+5JLw1LJRFVyYRSImETeCRSE1VDEXPk4nfXzEDLbtizU1cBEdvMkqV80KCKCJmd+c0XM5mphM1FSW8ZNlOTETzG2a50lmFDznXSDa7te3wNiH5Ctvcsi37Y2x6Wq8fvHz7Gl4d+1i6Dx+2kLtivbfltoENfgNC7BdaBCCVBKQra8DJw5Y36HjApdGBuzq1lAGAHjjvWUhhMM3sjJfDmyOhfvqF0m9JEwVzqYYLuNRr17yLbOHMGmknHwe7+4mJgliNS5QOQ4SV8DopiYueJxuIiXlLay1AnHcbkmply0PCvrIlgNsreayBtqBAh7bEWQi4DZtkPUsDxSn2BGdJ84ueKheGwzo3nbJ1cGkZCDRj4RnVWDRwQyqlhnqVeFd11rYANXw0pqwEOfYRaXk6uS8CrIWJCSoNG+xcWEcIYStOXl3jAeHFlKJCe/FTYmSvnol5eBb33L/JYfnw229sHllyW3JWHzqV8yT57OVZfCqoZtNGrT4W2yg2yd4jT1RuJ0y0eVsnGS2dlG5Dw9mTGZMGeF616lYpfZKpClpPEM8/TwFoLLn5ecEODCaqk9ZURe8ht6LwstBM5/5yFhtspZGhAeU4xIAzdRylmV0jLAB6L8+5NLsXFSQORLmij5tjFRdnoHRT5FzPYxW9om+RzqGc+P/M845OMJIWkyvA9v72yrHNgeb9ayThz88qVFJoFGFRi23ChlU9/pJM6TtM0hLQLUOPEPwjVS5GlsoSWKEDDvFPlQuEadIcSM7/N1PO02ao0G6hG6xIyy5Q0TxS6iBosULQKPa0SqF1fS+Hpz8pL4PnpGJk5QoF/ZoCUVqhjPO962kTPf6cPGsAK/9ou86pgP/dxL671xvT+u76QIIXO96OyFX4nqThMlV8tsJkqbSi3bOtrHzWbSREn7uiZKul9yloCrMNtoyvbAXA8x8NuVb1Od5cfbLcpSNntZKhrda/7Z+5pNXxofZ+1F5dRfdpSSkK2spEO5ZH3zNOqzycdym7cjctunqtG+HvLVgfsLtsF1Ma4vm475vnbeKvmUJqDb2teiCM1mYsLkp3IfFtqWl2ObVs4jZfNqEaTZuNeEWe+9vzZFMI9aNgDVDOjt7AdJQvJgNZdLCq3DWiEoir7cDiVktnxs8I3U4j8+i9JmorQRNCreFx+REy4qknzD+IxJqZAl/mIOxiKvTV6n7b/tHMrbt+3ax/Nix8knlo6RouZT0WwETQ5CaQBJ++Q2tybIcgjeaBcjCqXUGICfAfBvAOwD8DSAfwTwQ1rrb2WcezmAdwK4AYACcCeAn9NaPyLSbQPwDgA3A9gM4G4A/0Frff9ALyYDSqmbAfwGgOcD+DaAPwbwe1rriyLd9QD+AMCLADwJ4P8D8Gtaa898ZoPSEjJ6uamTtylZtI/ImG2pDx7bS57Lj8sgiJSPVf3qR7URKkx3n2/bpuD4SFpgo0d+ZbJhcbW1PA0RV95huHxb6Dw5wUIGgDTPj83CtKmEtD/rnrtG+vy++QibQzUjhKpnw8aokKPVgpeAhqhhcjuLoPngGylG/iCv3F/MNlucV0MOeGSQVz6wpBmTtphi1Lal/MV8ypi4np5rdv0mZLWTRb5heSwyoX5cKhr/xOUkJH4LoijxOyMLgG0gmlXNbP/mkVPI3gfgtQB+F8B9AC4B8CoA3rmiSqkJAH8L4AKAH4GR/34bwDGl1LVa66fjdArAxwE8B4b4nQPwq3G6A1rrM8O4KEt9XwvgwwD+FMDPw5Ct3wWwFcAvs3TXArgDwKcA3BTX+x0AngXg+7LKKSUhc4ETJgpsCPQGUiXFjC/1IRUxl8kSsASGDNGz81wEP0eSg5BzZdlSDXIRGd4AxzekBqCOxL8M6CXBPIaQzA5IO8PKY0B6yaZsWZ/iIEXpk+RifTYiZWOVRdQxm0rmUjBRzKm9Qj4UUsP4dpYKlvVd+5Qg3sCwbVJegF5zJCdonLTZhCrfTG9bkFeKKwYkbWMSV8xTkO/6fP9DEHqf80J+r4KgUZtGbRCdIk2WUhEj6wBvbmQ8a9+6wOsBSqnvB/C9AF6qtf4iO/TxgNN/AsBeAM/TWp+K8/sygJMAfhLAH8XpXg/gegCv0Vofi9PdDeBhAL8E4N8P4Do+C2Baa/2jnmS/D+AurfWb4+1jSqkmgLcopd6ptZ6J9/8WgDMA3qS1Xo7zXwLwXqXU27XWX/LVpfSEzBXYUDqu2vwmZMNl87eg3wCLSE1wNVqDaEBs26EKGEdWXrbyCSJIUL3RQLNZ67lsPpocG7OPLmVxfG1LWSyl90r8jZppVCmxK5qtCz4l0nWffWTMp2BidBSzsmFNFLGsd8tGTESDs9SpWWdM8nGFL44ifT+2Gdz8Ty57ZJtBWY9Wem2hcnDmu05euO2YDVnKm0wXCpk+Qy0npZ2WcrM1kTzsD99PA1Gfcz8Pki3XQu7FyPmQ/RSAzwkyForXA7iHyBgAaK0fVkp9AcAbkCZkjxIZi9M9qZS6NU7XJWRKqSkAb4vPmYIhbX+ktX5Pgfp1EZtWDwB4szj0PhgCdiOAP1NKjQM4GpfJn+RfwZg33wBg4xGyWs1OwOS2bJjSca56CRnfpt+9PmF9NNRF4SJfvgbT1hBlKTuujoml40swRVFyT30kzcaTZPw1OQIFfLORYjTiEBTShMnhu17fcZcaJsuxkThbvgzDVsxGaTSeRyTJiyAnfbkvRP0KIWUcru9PNCYrUb2blc9ECaTXoZTFy3UXeZG8LSSVnxMwbqJMLXkkC5LX7iNbRZSwvMeKwvddMtAsbvI54+4SUWSei1z2jbdZ3NzZXzcxGoQsJh8vBfBupdQfAPhxGHPllwD8qtb6bzOyeAGAj1n2PwjgTSLdA450P6yUamqtF5RSkwC+AONj9pswZOy1AN6llNqktf5vwRdnrytkPWICeR7A1fGu58KYamW6tlLqGyydExuGkPkIFzc/SpIGBPiHZTXQg25IbARMEgX6LY9x2JQdSSZ85UtSxlbcrQGYaDRAyy+5GiVbO29rsGRxtlmYNiSEmi1SDtjltZDRuK/h9pFc37NwKGZFSNkoka0QhNS3CGnLNWNSbg9aEQPszIg1JjSLkrLzmSgpjatj94XrkYPRRiO9EHjXPCmnarq+F586ZiNprvS+e+prhwYFW9vnGDzJ+GhAMrGIu1/wFd745cvnBqSVsXXyDV8K463yowAegjFBXgDwiwBuV0q9TGt9n+f87TD+YBJnAWwT6aYd6RCnXQDwswCeDeCFWuuT8bE7lVItAL+hlHqX1roDAEop+RIqszu1XzNn/e3xf1t9z7HjvnRn2XEnSknIlEoTMinLU8PDw1vYfMh8Mya7cH09NmLkS58XLpLlaUgKle0iILZty42qNxpAI/HD8FXVJ17Y+KavPyBwhS6KWHR/mwnTRXJt+ySZ5b99KpqLmDlIGRBuwlwnDXluhDxnQpCvWEjnHzK4ClXFJBkRIz+KL2Zbc1L6kPHvxCXgOYpBFPmXPQIYGZOEbFDMOY8CthpEDHArmK6yxTFbUu6YL9ss7k+bZxw8xDhkU0opTp7ew818sWO9tEdQozQO4F9orR+N0/4dDEH7RWQ7sWvLPmXZDkl3FMA/AHhYEKtPwcwAvRrAl5VSe2DUM4lXAvhhtv2/AewRZWXVIzSdE6UkZKSQ2fzBpEIG2EeShMxv1dUZ0zFXaxmCkIZHlmc7z1avELhInNxvk7AYug6ycZgMgozYT0sy+cQrW5vtW/vtwoWkauaZ1xJiRhlIhc/G/lwVchEwSuPKz0Xo+LEYldN/GHKrYllEzLU/67u0NSCWGDq2RcEp63bbhO4h5YTIWEjsVV4kkS4gcdBvNntjjNU6SybRQtteEP0PUb1C2xffgCd0vwtFZFXXuY7rdDXvnY7dnUKSMCDNd6Mo7Xe2ipjVWh/0HH8VgGNi3wQM8fgKkTEAiM2Hd8PMQvSBK0sc25BWmFzKEqlolHYHTNgNlxfepfH/RwG8WBx7d7z/t9g+tjhgV42z1aPFjvvSbYMxs3pRWkIml/rghMvlD0bbcjkjCfp4UoE2XUOdENXFBRfB8lVMnsv3583PV5csUgakPVYB1BrGdEjJfdzVx5PkJfAZUL6q80tIRfeXSlae+xSa3kfMAt6bipT5MbSgrqGqjYQkLqLB4VH3iYxJQkZKGRXrC6NgG1SSIuZTyBoNoNY+n772rHUo5fXZtiWy7lsecuZDESIWopCxbb58lQu2/kNmyQNg023PXjppTXzIvghBYrTWi0qph+BWg7KkvAeR+GZxXA3gKyLdP3eke0RrvRBvPwHgMRjTpQ1fi+u9BBOeI6msUvMAnvCYWIlIvQAmBhqdtweGmFJ9vwFD5FLXpZRqwMwo/ZAj/y5KS8jkgDTLH0yCz/JzCV9EyrrlhjRKRQiaT6nxlRWSb2iaPKoRB3f26nRQazQwwdQBOiS4W7cYUrakz5isDidwPA1/zkCabPcsUO5atylPZ+IiW6EqmsyD3ZQsE2aR18R3KYNCP2KF7/y+/MT477ykzAfZuAA9Ej03UZIawglZp5OQMf5uy6rJYnjRRLa4E78M8mqWPBJMUBYWcr2231koSnRD65I3XQbBdC3H5PrvWx2Bo9FI+53lufWrBa31PASJifERAD+jlNpN8cCUUlsBfCeA2zOy/TiAP1RK7dVaPxSfuwfAywH8ikj3Y0qpV2mtPxenmwTwOpiAq4TbYeKUPaK1fiznJXqhtX5EKfVPAH4AwJ+wQz8Io8h9Mk63pJS6HcD3KqV+k3zWALwRwCYEhAMpPSEDcviDxZABSKV44h6lMnKGFTuZ4dt8n9yfF1nqjK1c2zm+G5Ol5oQ0svFQsBZFcaywWlfi5zI9dVakkMm15TgR45ciq8dnnNEl8HIaDbFAuYw2269iZrvPWfc+QzHzqWVFSdkwOwH5+ociN5HLS75oe1iKGP/NFgaXihipIzzsgYy6L6sjB5OchMmYYlGUTFxKxxTrpCthux9Z1yeP2ZBnABfSjhWB69wAJcxWrZBXy2d2zGpm7Ri5sBd/COCHAHxCKfVWAEsAfgFGNfp9SqSU+mEA/xPAdxGpggkD8dMAPqaUegvMxb0NwGkYEyLh4zCq1PuVUr+IJDCsgomGT3gnjM/a55VS74RRxLYA2A/gFVrrN/R5rf8RwG1KqXcD+ACMSfYtAP4ri0EGmBmedwP4K6XUf4fxQ3sHgFtCwoOUkpAByUvNHfezwBu7fm34RM5SxIwKcZEwV29aRO73HXeRBF9eNmVH5mXL18aaWINebzZTsctckfil2dJ3G+W2dLC1D5BrZgKCzY+MF+gryHcPXcdCVDTLBQ+KlK3maLwoMbPBu/g3386jfrl6VrnP1om7pCoAaDSw1Kml3mUXIcsSqjKK6RIw2pYTmupYMn5ivBBb7AxfoVm/CaEDtFDIbyIUGeqXSw0L5ek2VYwv4p63eu6+Z7QImdb620qpVwL4zwD+DMbR/24Ar9Jac3+pGsykAMXOfVop9RoYIvW++NhnYJZOWmDpVpRSN8GQv/8BE1bibgCv1lqfZumeVEq9DMCvw0TOfxaAORhi9uEBXOsnlFJvhFk66Udhlk76XQC/I9Idj6P6vx3A38AsnfQXMIQuE0prmwl4feP5zz+o//zP7wNgX9yb/w/9LaNdy+Ouc/k+5yLi/TRc/fSoWQ1VVlk2dSGrPrZepNHoxmBqt4H5+d74S7Q2qRzY+4rgv21hT6Q5JxV7ydVZZSkqVKhrO/QF9HV2jg5Eol8eP0xkvWqu48FEjP/OQ8BCvkWfGgZYTZQLC+nBhY2QSRLmC3xM7zAVwxUweqflMki1zlKxGZQuwum6JzYUVR5d9QndH/Itwq6GhbwWNhLmOjek+ZR5HjqkvkgO90rt1m4XqX7wS1/McOqvsEoopUKmVK+ZSqKI2BMK17lW1SyrIv0ga8TrU+dcjZtPWXOpQLbr4qpQu41aZLbJ6d+23FKnkzRWPMaPLNLX9ksTpkSPCdMmw4WoggTXPcu6j/J+FlTLyoSBkLHQntIFH5Hmf8JEybk9J2R80elQoYoPKmToHucMShvzs90Dn/qXhwjZLiTPQHMQMmrASDtLDXO9IrZF20NeR7lta0p87dMoKWQVBo/SEjJfGxHCR4rC1VfzPpYagS4xc53AK+kiO0Uqbmt8bZ2+TCPrEVp3WQbfz4LJAkCt0UCjMdFNJrOnBos6NMnxXJfK8wkxR3dNmLLe1KG5rtFWAdt9TQpyqzC2l8eRb15SNoh3vR/Iy8lCYRNlCEnz5WuD7NxlDB2PidK2TdXM4oGcG9kW/bYte1Rrn7cX5LsH/Bp9im0oEbPt62e0m7UvQBXLo4jxgSDBZpLMusSQ2zIIHlph/WJDPn5bZ5AlFvkEEcCMSn0za2zCRzdshovk2BCquMjCbfARKN8+XmaWiiPT+OoSq1I1mICy9Qipjs11OlcXXNnyPKKod/05CYpZVqOezUVi+b6s+0xpbffNR4ht5HeVkZenrBp8hCuUjBW5OClXsT+aRekjZMvL6fdZvp+ySMn7bISMZlDWo5V0wbIg24fkI1ycCbrux6BImO8l6oeMWVQxXiUfj89Sw4ry+/ycdLR8yCoMHhuSkAH+9sjVz/oEIZqZSR8vXxhblsPP88YycykxLlJmuzBXeg4XQw3ZJ8tw/bfVQ/ZClmuvRxGacUBZGqnKNpbW97N1cFlcyW8eiENjEGmmWZi2JQds12eD657YRgEyvYu4x/ulSuaqTmhHkLfDcHF3X/qQPjbI99JFrkJJmQ+SrEipitgS0CVji4tJBy4JmQxpwavh4kVRlDjo075mM+0b2WjETvttRrrkTAHbNduuz3bMhWGTsdD9rnpbyJiPgNHvLCf9vEQsPwGzYSiR+iuMCDYsIZNw9YV8n60PlenI+V/GMZPpeL5eEyadaGOHoZWXF2BDiALkughZhksp85XLz+O+W40G6g0gatatDafvMrOK5ETaB/L9687C5KZM2/JLoaTMdo6NmPlInMxvABhEx2F7dQaWKf/t25dFwEJJgk+qireXOklH324nscWAtL/YxYvJe+t7TyXvIzJmU8Ro2+u0X4R42n4Tsj6ukLSusvvZ5yBpUhXLeiUkGXMRrqzXaTAkrMJGQSkJmfQhKzLS94lDDoECQK9/ElfKfETOHI+JmY/Q5FXMeNqQmxJKzELgIgy+simtKKsWdVCPItQbEYBa14+MF8MnAkiuJC+Djofwp25VGrFfGW/RXfckhJTxyvjuVQ4Clnf9y7zVLpJfUVLmXJeSZy5/+6SKLKYuwd9DKVexv6VOLcWBXD5jvHhJCuQ9IqIlHfRlnLGJRjwrmFQxGyELvUbbdiiKsJFQwuU65toOUMTkb75PLl0UwucHQcayb3tlsiw7SknIJPohZy74iZX5nyeWGe9zM6P/uzptvm3LPGufrwzXPtuFyDr4JEJbWr7NWVf8N9FowKxJaQ6RwsUtiiHBZF1ViqI0mUspaI2aCWgrpTjKVLJE33XLivnItkt9lGks1+LKcq2R1b+m4CNTeZSxPCRBylT0mylkRMbIbO6Kuu/jRjbOx+OHAabILVsSk2XXV0zGy8gyUbpucl5yxOEjwS4UVcR82w41TP4OUcR859i2+0HRAUuF8qG0r4KrPxzky+/iJ7yf5CYxbsak41IA4yBy1hNc1lWJUHUrVDHLIlVZo1mXuhdapq2ucX71ZhNRs9ZTHS6wLS6mq+2KYiEvxxbdP4VGbMKUnXWn0+tj5nvArmv3KWQ+xYztW++hMKx+Y7InzauQZcGisPSQspiMkYmSyJhcc5KHtOBmSltxLFsA6ZhiVDQRNFqjt4YVE5xPEjDbouBZ12ohNZkN5TAVsax9rt8orogRQgK6hr5iRfqa7HMqhazMKCUh84W9AIqPblyiEWDnHZR+UFH/gUA/M1kxvi0r69vHEUrs7BfQm95GMGzlAWkmxcqi5ZeiZjp2mW2Ea1PMbJdoe8bOy7OZMIH8yy+FvFhZpMyXF3pv8VqrZMH32CdruNK4Liyk53QpYmybmyiJjNlMlr4iebG2YoJjitlsoSEF2q47BEWImCv/POqXZztvCAvArYiFnDtIBH8HACqTZflRekJm4yk+scmHLJLn4h38fKmY+cqyq2YeP7OQ7bxETSJLNeP7bbARCV8jb6uTMAvWGg00mxOZkyB964b7+CB1mNYQGY0aoogtUu6Lv8HqnEl+XeqXj8iKc9arStZVx3wPxUXC8vSgtt5QEjImU62g1n3EZKLka07SH5koXdWy8SIewgJIHPb5ShI9McXyBnnl1+jalshLbm3IQ7RypO1XDQPcilioCkZVKtp3hAqEFTYGSvnoOSELVQZ8RC0UeUQqgit+WRZSqpmNfLkuOouYhRAGWZZtv73SfnJoO1dejyyTSBmAibj34vcGSHMkutdEsHzVp2NkwrSRPUpnfNrqqDWQ7p1tyFLEZJpQhcxyDnfyD/kWBq2c5RFGci8tFkrGsggK/235W4nqqUfKTZRcpJImyqxiaGAmFwIHPDHFZICzEAJaRBHLGjCEYEAKmI2E8WrkUcOA8Oj6vn0SIX1HEZGwF1XYizKjlIQMyA5lwOHrH/PCxzFsPIQ3DkTObH5m/Lfc1xPLLOsCXaQor1rGz3eVLeEihy7VR5ZBsE2RjM+XscvGxnrb9sXF3uWXRDap/fScbKRs8+bkHBO3jF0nKRkSvh5bpnER7hDiLTBowtUvrGSMIJ9tlvxh2+aF2PZLksIdtwCsRPUU77GZKOUjdo0deJHkJ0b7gmOKhYb35y+8TxELHYXmfWlCVbAcahkplLZquUiZLairTGPbdu3LgyIELE+/VaF8KCUhk2tZ5kVe4ceVBxBOzAC/r1lWR2r1M6NCfOTLls61nQXXjeutbDYpk/natmUrzOw7WbHLSCHjvM71fAhcXeMgMzS9c9Zgsi4C4dpnS5N1r1zPGmknfxvJ53Bdfx74OFBWGif5ktsh6lBWBThBod8iyKuMISZ5ETdR8qrIQQD9lxH2iZD1xBSTK5K7mF/W9fm2QzAMRSzw2Gr5h7nShCLkfbdtSwLm77cqH7Kyo7SELLSt4fCRKN/+kDz5+T4hSqpmRZC5iLmtklkKWR7FLC8po22eR1bePA2RnoWFVL61BlAHrLHLqH8jDscXeZZFUvXouZCKKSNy8OfWE0zWBZcq6EuTRyFj2z5SZrv2ompaXmUg2GcsSyHLqqyNIUlCZgny6oosIdUXn1iVJuy9/mHOmGL8uqWJkl93UfKThUGQsQLqmM8/bFTUsCIkLIuAFem3KpQHpXz8kpAV7Vh8IlERFcEn/vhUM9eSTK5+mY4545nZOvisyrrIkOtCeUVckCqP6wbZ0klwqUumazRi/7JaT/YybJi8ly5h6+LFxHxJApi1r+EzMSkjH0FzXZ88nqWQye34t4uU2bZd+3wYCBkropCFVMhGyETUfVeQV07I+LJIturKIsk8yRUya0wxqYhlRZOlAiTBdB0LRdEHXoQUOtQwqkbWo+/XP8y334W87ziQ9hd0pct+RJVCVnZsCEJWBBcvZvd1QH7VLEsUshEzm2IWslYm35fbz8xWsSxJxYZQxcxVRkg5spWWBC9u2SeazR4/FHYYgOlsx8bsjtmyKnJWp3MkHM/EBMzkg56TfPWXGdsqFKqYMVIG5HP0dxWbBVdHlRlnTG7nIWGugiVhicnYSvxsiIC5grxSGvluuL5DegdcMcVoX09MMSnF+QoKvfZQ5CW5tn0uEuhhH6OuiPVDwoCEiIXyVzcqQlZmVIQsJ3ycxKV++fJyCUKu8qRixpGlZjj9zGyVtikwrkr1o5jZGIGtDJ6X7ULlNilmohOWscsWF00HSbPmeHau2a+8Cu122hxlI2e0bf7qCSmz1VsW4oJNWQxQyPg+Ustct9z/LrmP2Y5bVTFeSIhCFsKCXNv8XWCEwTeDkitkthmUdCtlsdw5H0hMkps2mW0K8GrWnuykC+KVsUlEtusLUchc94guJBQBSlfPtiPNsGdM5tkn4Xu/XZfqM0cW4KgVNiBK+wrwRn/FYqrKg+XlRDUJUc0IeQmaLV2WYmabmRkCZ7BZ142ydfpF1aw80oqNIOZpZW2kJIq6scvokDQl8OxsPkKyKkSUN2+2h9NI+w/VExMydcb8GrOuyXedAQqZi+xmceMQZCkJThOlraCi94IKtREWZqLkTvuA+Y5sQV55sGFXVXmnTGEsaJ83pphUwzgJk4TMd3OL9uzDUsQczKPIskaEfhSxLPQzwADsJskATtqz7V+/tTJZlh2lJWQc8iXnZCSUH2Qhi5yZct3p8+bLFTMJImc2cYTO5cepkcz0M8tSzHi6rIvywUYaXHKiL3+Zh1BIbLHLqOisrF37FhcTdSSKks5dPidai7NGJKGIX5lLReTHfSpap5N65jYTpi37LI5gOzczxlgo+QqV7aQaBiQmythszYUpyto2g9JlvuZFyZhi3ERJMcacMcUkKQu91ixFrF81zJZHQUXM5h8mq5OliGURMdc+iayxJ0/n2napYa7b7/rtJ2AVNhrKSci09vYa0ocGGCwxk0VmkbPQPPl5cl//MzMDFjWXlcpSzIoMVXmFeDm8XFsaW/04uAmTH4/zl7HLeEdAp5BvUVZRQKJa+vov88cCylJmRQltlhqWQbKlCdNVVN6OLMhEGbIvqzAXISN1RpgnXYSMP3+5DqVNdJMxxchp3xlTjBMyKliqY67r9KlRrpetCHISLttvFwnjv12ELFQNc+3LgusW2fbTPptPmEwTQsIADxHLvJiKwJUZ5SRkEo4hP/8oZHT3kCzpoySTpitdVgeXt1zAr7b5/MyywFUzq5+ZSzGTnT3PrF9iZiN/vD5Z5chWn0tXPHZZM+ouHO4K98RJWVbnwGdiymqTaYs6bONbtpKum6xzKNt3keUAgsYHK7IoV3Guzq2wKpZFxly9po2QsZhiknBxp30qjtLwqviumS8ETvtpBiXtMzMoWUFSHfMVZCuU/x80GfMxkizyyxDqH2YjYYRhmCZt8HFPwE3E8nBUICD4cSYqk2XZsTEImYSFoPnMmkWR1+csDyTv8Slm3M+M1yO7/Q+YBMAzdFUypLAQuMiYS5mzteAZRKUe25qiZnLttll1PG4ZnW67rzIsBncX4+uaklrWrUNWZ20jZ1n3xnXdch96fTAJWf29t9PJQ8BCyJhLEWPbMqYY+YnxfXR7s8yTlDU553NCTSZKImjNZnwvOh1DxiikBWd98rptgxkb+bJd7yAQIu94mEce/zC5PUz/MBv6JWGu8/n+/glYhY2GchIyOc0y6yOwNIQ2s2YWuGrGQY2M5AuDEJDofNvl0r4sc6ZDLEn9tvqZycKzMuGVywMboctLAF1siXds7EbUogjN5kT3VD565yHPqF+1XR5PI0mx7E+53xlQQ9330oUyat85tocuYSFnucqz/ebbIQTMBRdhYdtLncRXjJ7hhQu9vMhlnuTZ8m3XDEra32zGTvu8kKwZlFlkzHXMdk/ywsdOXHVg21lEjP92KWLDMk1KhBKxLCXM97vne8lT8cxnWClkZUY5CZlEns5LNIx5zJohxQxLNbO15y7VzBVo1gYnMfMpZr4K5iUSvCKUj1R2Qst3tfK8g2EmzBqAZnOieyonUzw7m4VRVlVWV/IHvvxSFCEduyyK+nP655X2EWMXmZZpQsqW+/MSNBt8RCGWqng8K2melIpYiComiw1a9ohmUOY1UXpIj1UR85GzUASqX/0qYkXUMNe+vAglYcAAnfP7aeMqbFiU9g1IOajLJYRCkZOc2TiCSzUD0uRskKqZzEvWLYuYhYknORUzuU9WNhRZ+fE8fQRD/pYzHePjNQD1KOouvwT09q1Ar/9LCMfgVae+VpoxAaDRqKHGzZj8WkKJru2Buu6PLZ28MF85ru0QUuaCj5zEvymMBWVHEfWlIkZFSfOlrcgoss+g5CEsujMoOx3juN9u51+HMqvXl9drSxuKASlieTm2SxFbCyKWxyQ5VBImMpUTIdKofMjKjlISMj7JklSdnij1oR2CIz0RkaIxzvhEAB8x81UtCz6SxxUzjqwVACQPylTMXARNZpwHNvIQUrbtOOVhC7svOkO+/JLsXyVHshXLj3NSzIvjxZJaZqpWM++c635lMWhZMVdFizwPWUbWvqJkTJITdrOIjHHlS5onOUnjxfq4EVctoyhNyGhfd9kjyoxH3ad9rnUoXQXbSKctTV64WIqHgK0nRcx2S2xEzGWSpG0fmXOuvUrI6ksc23IVkV5UhKzsKD0hoz7HGQiV4OvoeBqxnytERSYCZM3QdBSbC758aF+/MzOdPmYhlfORJl+h/HwXKXOVaasDnw4p84/LmGg2u47i8n7ybF0KgI03ydhl8pkkZpSY/FO0f9t1Zb0seclwEYIWQrjykBPalopYHMaCsuNBXDkH4iQta9kjXowM8kqEjEyUACNjMsirzWnfd502EuQgRn0Tsaw8RbmDnjE5aCIWSsKAcAd9uc85Y9i3z1dJB8kdhDJYYf2i9ITMhiiq2c2YWcTA1nqzfbYgm/J0H3fgKwK4qlOEu8jqu4hZnpmZ/Doy1UiZgS2johcnb2gWMfPJV5J8UOcqyEC92zunR7Q+Ny8fCSDQ/eahMvhz4bM166w+uRUnV7p+1TFf+UXztalicMcUs+3zOe3LoqIo20TZXQy800lMlHmc9vl1Wa4ttc+WNg98qozM31Leaq8xmQf9EjH+27bPS8JCK++5/1IRCyNklUJWZpSSkK2sJKqDCynFzEbMQj44j9pAedpUs376vUGoZq48+HZ/ilmOALO+iuVp9GwXlVWWjYBxONbDpO16o5EKJss7AEoug8lmteucjNuK7uYdO/07Y5e5CuD7bCOGQSDPt+PqVW0kwRFTDHBzIu5T5qoaL0IGeW020zMou0FeFxyKmIuQuQrk1+tRqZz3ygXXuQGEbJRjiOUhYYDfSd+lkDlNknkrbSnUp4jx7SLtboX1j1ISMsA0CNxB2gerYpaXFDjIhM2kmSXicGT5mlmKDIaP/wxcMXOxP5tsWIR1+til64b7nrNNPeNlxdv1BoCGmQ2ZFUyWX6qP+/PGuNPpnW9A74PhJ/ESTJTI9hB4hUKkun6RJ19+b30kIp5ByQkY9weTfvOSsNkuW/I+W5DXTZtEkFcs9RIwm4nSx/xshQeoVZnIYisuUuZRbQD75RRRxFz7QtCvGma7Dfz3QNQwXwHIVsQ6nfS6qb3QqCL1lxulJGTSh4wTM0koCP9/e+cf9FlV1/HXe/n68LBRsQzaVKJsQymrhRM75q9I+gMXcShn/DX+yEGJQTQlyNQhTNdlqiHTEWvcDUoTi1XRwBkKI2PB0AobaNpCyyAzbVxlEYUVeOTTH+feZ89zvufce+73+3y/D/vs5zXznfv9nnvPPed+nvvc876fc87nFD1mkwqzcNKs12xh1DebZpySMIuLnNRrltMrQzxmfR6/Xo9ZSaClhcTHd5EKvD5qhVk84D/at9A24EcvLB+ajlU6cGBld3SuCjHpy0Q63yAm6JVkJmZ64q4/0moLs+6boT89dQ+ORisG7UOwZztovy2yFWnQ3T2Z6qDWzq3wygZ5XXooHNTOoMwpvz6PWK7w3Pc+Ww3d3+V5a2zb0qfbSx6ceS34nabVhqyYuQgrFFLyiMXbtEvdOXzpbbEkPR54C7AVOBk4CthsZnfXFCBpEXgX8ErgGOB24C1mdvNENa6gawxZOlC6ZeWLejJAvSQS+uh4QLcPg2lXBFgtcdaXL/aYtQ/B1mOWa/M7PWZD3vpzF1ASdbljch642nJyQi3uxowjxI5GbBgtZYPJLi0d7AYrLb3UpZvaPG1VWsEQd8uPzcQsBUdLC+i7OWYh1vrcFe01RF2UpYj6uTAX7e+08cvpkriLsirIayrA4k98jblryl1j1zEpNf83E3jE0ir3ibIh4Su60lNqL3sSb1ic1ru26iQkBaV2LQmx1H791fAxZOuZmpbxROAlwBeAW4DTB5ZxJXAm8Gbgv4DXAzdIeqaZ3T7wXFWY5Z0Z6T92HIMr/zbWMXOwxh9fcjtlvGZxeZNQMxEgV8WUXOPVprdptXHMSkzkMeurfK7CufRS3r7WJCdkYoXUbEOE/4Wxh2usj2KB1R7X9b3NE4fBaPO3LxhHHdWWl3Rh5q6ndL21aX3UuDbitNgb1v5OuihjwZXTRbFIKwnduCgY76KMZ1C2x21Yirooobt7snTPpdeXVqQkxIa8uHSJ3FXwiMHsIusPFWKrOkC/VkX23dMZIZYWE7+kwUqPWO52GsfDXqx3av7jbzazHwGQdA4DBJmkk4GXA68xsz9t0vYAe4HtwFmDa1xB6iFLnSTttksvrdzXNHKlRr+lz/vQo1S6JgIMoeQ1a6tQql5MTsCmaXG3Wl+A2Tj/RB6ztPC+p3167JDGLc3X9TeN3TQNG44+mgVYEUw2PU1usH+N7o/H8cWzLlvacpa9ZV0ny6VPK8py93j6Ry/li1rUXJDXuIuy1UV9MyhLXjE42B0Zpy8uwsbFzAzKdAXykmelyytV4xGbVIT1ld3QF9Q1d1lDuydLabmq9qVPEkU/6w2b5h6vsHPX+LB2G3vEcvtLt5Rz+ND7329m04wiPAt4GNgdnW9J0tXAWyUdaWYPljJLehNwHnAC8D3gy8ClZvbJ2gqkbWpJIMRjpEqzM5c9ZrkgqDXuoUqBNg+vWZxeql6OVNxNuoj5yja6YNeSQi6pxRLpHzxXiRJ9ZaVdmPG5RyMWFzcuHxZXJT5VOhMwLbpkvzhsWkvrRVtaYnw9zJIyTq+rlD4J+TeccZdVJBweGS1kg7ymmqirgSs5qVrvF+RDWmxcfKQ8YD/95K41LiwtfFoh1uelyZ0747lpyf25cy8AUCfCuui7vJIQW7UB+pPe0z2F1XrEarxh/VVyD9l6ZwK3wSCeAtxlZg8k6XuBBUJ36N5cRkmvAN5N8KTdQhi79jPAsX2F9sUhi8kJtPGAnGmugscsd8K+wuMCOsTZLL1mLUOdSCWPWWnKdtw25/RrZxdxWmifukzz9B2TVrLrPLm0nNgbjdgALC5uHDtt+zv2+KQvDl1FHzhwsJsyFRrL9o9DY7SFdl1Lmj7NK3tJBKfHJJ/W09B6xWB8+SNY2X1ZqmLagKcR9tOo+wujRw4O2m9PuhozKLvSus7TR5dCKQixGg0+iUesVLUhx0wzQB8qvWHTCLEKj1jJGxYfk+aZpHrO+mTWguxYYH8m/Z5of4lnAv9iZtujtOsnqUSuIcwdU3qZb70+4y++iWen5H5bhQoO9ZotLdWtoZmrwjSkswMn9ZgVvZClJ32Nh6zvPDnFmOZJn6i5tCSY7AZgYXGRhdHKv136QI4DA+eqmBNl8aD+9hJSsTcaJcsu9b0wlBq0GhvnFHfu2FSgJGJsaWn4eLHc6XNBXmNBtrwOZWvEUvdkzbWn4qskwIZ6xkrHTiAa4m2aDv1ibBpyl1oaoN8e3yfIVtUb1lXQaHzsXSq0cuPDcl6xvup242Ev1jOzFmQi+Flz6X38E3C+pMuBa4FbM562gyeUzgXObX4+eMop+tehlXWqOA745lpXYp3itp0dbtvZ4badHU86+PXbN8CnjptBGf63e5Qwa0F2D/CETPqmaH+JPwMWgdcC5wMPS7oeuDAXcsPMdgG7ACTdZmZbp6i3U8BtOzvctrPDbTs73LazQ9Jt7Xcz27aWdXFmz3QDk/rZC2yWtDFJ3wI8BPxnKaMFdprZ0wlvYK8Gnk40QcBxHMdxHGc9MGtBdh3wGODFbYKkEfBS4NNdMyxjzGy/me0GPgo8dRYVdRzHcRzHWSuquiwlvaj5ekqzPUPSPmCfme1pjnkiISzF9nYgvpndLmk38F5JjwHuAl4HbAZe0VPmLuA7wOeAbwA/BbwK+HRFlXfVXJczEW7b2eG2nR1u29nhtp0dbtvDCJnlxtwnB0mlg/aY2XObY04gCK53mtk7orxHAZcSAsQeA9xBWDrppp4yXw2cTeje/GHga8BfAr9tZvf1VtpxHMdxHOcQoUqQOY7jOI7jOLNj1mPIViDpeEkfl/RtSfdJ+oSk3CzMXN5FSZdJ+rqkA5I+J+nUyrwmacd0tX90M6ltJW2VtEvSnZIekPQVSR+RtLmyXLdt/Xne1tjrs5XHu237858k6WOSvtk8F77YrPDRl89t2533CZI+1DwPHpD0JUk7JP1ARd51bVtJj5d0edMGPdBc7wkD8ntb5mSZmyBrZlp+BngyYcbkq4CfBP6u5p+csEj5rwJvB14AfJ2wSPnTZlLhQ4gpbfsywooK7wPOAN4K/Cxwm6TjZ1bpQ4RVuG/b8/wEcDFhPKTD9LaVtBX4B+BI4Bzg+YTVPY7oync4MI1tm/03AqcClwBnAlcAFwF/MsNqHyqcCLyEEPT8lgnye1vm5DGzuXyANxEW4joxStsMLBFii3XlPZkQYPbsKG0EfBG4rqJsA3bM61rn/ZnSto/NpD2REBJ6u9t2ctsm57kB2AncBHy2Mo/btpx3AyGszicnLNttW857emOf05P0323ybzzMbbsh+n5Oc70nVOb1tsw/xc88uyzPAj5vZsuxx8zsLuDvgV+qyDu2SDlwNfA8SUcOqYikjZI+1biMT27SPijpq00X3q1R98eZzf4LJd3duP6vlfTYIWXOmIlta2b7Mmn/DewDfnxoRdy240h6OcHr+LZpKuK2XcFzCRN+/mA1KuK2XcFCs00nT91LEMI1K60ss95sa2bTrF/kbZlTZJ6C7ClAbjmjvYQHa1/eu6x7kfIqJB1LcMc/CXiWmd0R7f4hwgoBVwAvJHQvXSPp3cBpwOuBC5rvf1hb5hyYxrZjSDoJeBzw7wPzuW0TJG0C3gP8ppl1rUzRdx637Uqe02wXJX1e0sOSviHpfQozu6tx245xI/AfwO9J2iLpaEm/SPC6fcDM7q+txDq17TR4W+YUmfXSSTFdC41vyqTX5m3396IwoPUG4LvAszPeoR8EzjOzm5vjv0YI0/ECYIuZfb9Jfyrwa5KOaNPWmGlsuwKFwL0fIHjIrhyQz22b5zLgS8AHJ62A2zbLjzXb3cD7CWMftwLbgeMJjVAvbttxzOx7kp4DXEMQCi1XAG+orcA6tu00eFvmFJnrLEsmX2h8mkXKW7YAtwL/A5yW66oD7m9v4IY7m+2Nyc16J0HM/uiA8mfNtPZpeT/wLOCVZpZ7cORw2+YOkH4e+BXgdWY2aXwZt22e9tl1lZm93cxuMrPfB94J/LKkGs+w2zZ3gLRIELqPI0wG+AXgzYQVVmq9KevdtpPibZlTZJ6CbD959b+J/BtDzD0dedv9fZxKGBN1pZl9t3DMvfEPM3uo+ZrWr01frCh3Hkxj22Uk/Q5wLvAaM6tZEaHFbZtnJ8HL+FVJx0g6hvDwO6L5XTNexG2b51vN9m+S9Pa+fVpF+W7bPK8ljNF7vpldZWY3N2L3IuC8dqxSD+vZttPgbZlTZJ5dlnsJ/ecpW4B/q8j7Qkkbk7733kXKI3YSIv5fJWnJzK6pyHOoMI1tAZB0MaHb541m9uGB5btt85zUfM7L7NsP/Drw3p5zuG3LeWHc29B6GmoGXrtt8/w0sN/Mvpyk/2OzPYnQ/dXFerbtNHhb5hSZp4fsOuAZCvGYgOXllp7d7OvLO+0i5WZmbyC43K+W9OK+DIcQ09gWSW8EdgAXm9nlE5Tvts1zWuZzB2Gw9WnAxyvKd9vm+SvgQWBbkv68ZntbRflu2zz/B2ySlA4w/7lm+78V5a9n206Dt2VOkXl6yP6YMCD0Wkm/RXizfRehH3xne5BWeZHyFDO7QNL3gT+XtMHMdvdmevQzsW0lvYzgpflr4DOSnhGd9z4zq/KwgduW8fv2pvRkku4FRrl9Xbhtx2z7raaL/RJJ9xGCoG4lBNv8UBzuoQ+37UrbEiagXAhcL+lS4CsE214CfIEQOqOKdWpbJL2o+XpKsz1D0j5gn5ntaY7xtswZxNwEmZnd30ydfg/wYULXwt8CFyT94CJE2k69d2cTFinfwcFFyreZ2T9PUJeLJC0BH2lu5L8Yeo5HE1PadluTvo1xb8MewliSIXVx286uLm7blWwHvgOcD/wGIeL5ZQThMbQubtuDee9uXszeQXjeHkcQcruAS21gHK71ZtuGjyW//6jZxs9Mb8ucQfji4o7jOI7jOGvMvMNeOI7jOI7jOAkuyBzHcRzHcdYYF2SO4ziO4zhrjAsyx3Ecx3GcNcYFmeM4juM4zhrjgsxxHMdxHGeNcUHmOI7jOI6zxrggcxzHcRzHWWNckDmO4ziO46wx/w/9coEc84BgegAAAABJRU5ErkJggg==\n", "text/plain": [ "<Figure size 1152x576 with 2 Axes>" ] }, "metadata": { "needs_background": "light" }, "output_type": "display_data" } ], "source": [ "# NBVAL_IGNORE_OUTPUT\n", "\n", "graph2drec(rec.data)" ] }, { "cell_type": "code", "execution_count": 44, "metadata": {}, "outputs": [], "source": [ "assert np.isclose(np.linalg.norm(rec.data), 990, rtol=1)" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "# 2.6 - Conclusions\n", "\n", "\n", "- The damping strategy is a simple way to reduce artificial wave reflections coming from the computational boundaries, leading to a solution with less noise at the end of the simulation, when compared to the results of the notebook <a href=\"01_introduction.ipynb\">Introduction to Acoustic Problem</a>. However, the level of artificial reflections on the boundaries is still high. In the following notebooks we present methods which are more effective." ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "# 2.7 - Reference\n", "\n", "- Sochaki, J., Kubichek, R., George, J., Fletcher, W.R. and Smithson, S. (1987). \"Absorbing boundary conditions and surface waves,\" Geophysics, 52(1), 60-71. DOI: 10.1190/1.1442241. <a href=\"https://library.seg.org/doi/abs/10.1190/1.1442241\">Reference Link.</a>" ] } ], "metadata": { "hide_input": false, "kernelspec": { "display_name": "Python 3", "language": "python", "name": "python3" }, "language_info": { "codemirror_mode": { "name": "ipython", "version": 3 }, "file_extension": ".py", "mimetype": "text/x-python", "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", "version": "3.8.5" }, "latex_envs": { "LaTeX_envs_menu_present": true, "autoclose": false, "autocomplete": true, "bibliofile": "biblio.bib", "cite_by": "apalike", "current_citInitial": 1, "eqLabelWithNumbers": true, "eqNumInitial": 1, "hotkeys": { "equation": "Ctrl-E", "itemize": "Ctrl-I" }, "labels_anchors": false, "latex_user_defs": false, "report_style_numbering": false, "user_envs_cfg": false }, "widgets": { "state": {}, "version": "1.1.2" } }, "nbformat": 4, "nbformat_minor": 1 }
mit
subhankarb/Machine-Learning-PlayGround
Machine-Learning-Specialization/case_study_approach/week2/predicting_house_prices.ipynb
1
95757
{ "cells": [ { "cell_type": "markdown", "metadata": {}, "source": [ "# Fireup Graph Lab Create" ] }, { "cell_type": "code", "execution_count": 1, "metadata": { "collapsed": false }, "outputs": [ { "name": "stderr", "output_type": "stream", "text": [ "A newer version of GraphLab Create (v2.0.1) is available! Your current version is v1.10.1.\n", "\n", "You can use pip to upgrade the graphlab-create package. For more information see https://dato.com/products/create/upgrade.\n" ] } ], "source": [ "%matplotlib inline\n", "import graphlab" ] }, { "cell_type": "code", "execution_count": 2, "metadata": { "collapsed": false }, "outputs": [ { "name": "stderr", "output_type": "stream", "text": [ "[INFO] graphlab.cython.cy_server: GraphLab Create v1.10.1 started. Logging: /tmp/graphlab_server_1468334178.log\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ "This non-commercial license of GraphLab Create is assigned to [email protected] and will expire on July 05, 2017. For commercial licensing options, visit https://turi.com/buy/.\n" ] } ], "source": [ "sales = graphlab.SFrame('home_data.gl/')" ] }, { "cell_type": "code", "execution_count": 3, "metadata": { "collapsed": false, "scrolled": true }, "outputs": [ { "data": { "text/html": [ "<div style=\"max-height:1000px;max-width:1500px;overflow:auto;\"><table frame=\"box\" rules=\"cols\">\n", " <tr>\n", " <th style=\"padding-left: 1em; padding-right: 1em; text-align: center\">id</th>\n", " <th style=\"padding-left: 1em; padding-right: 1em; text-align: center\">date</th>\n", " <th style=\"padding-left: 1em; padding-right: 1em; text-align: center\">price</th>\n", " <th style=\"padding-left: 1em; padding-right: 1em; text-align: center\">bedrooms</th>\n", " <th style=\"padding-left: 1em; padding-right: 1em; text-align: center\">bathrooms</th>\n", " <th style=\"padding-left: 1em; padding-right: 1em; text-align: center\">sqft_living</th>\n", " <th style=\"padding-left: 1em; padding-right: 1em; text-align: center\">sqft_lot</th>\n", " <th style=\"padding-left: 1em; padding-right: 1em; text-align: center\">floors</th>\n", " <th style=\"padding-left: 1em; padding-right: 1em; text-align: center\">waterfront</th>\n", " </tr>\n", " <tr>\n", " <td style=\"padding-left: 1em; padding-right: 1em; text-align: center; vertical-align: top\">7129300520</td>\n", " <td style=\"padding-left: 1em; padding-right: 1em; text-align: center; vertical-align: top\">2014-10-13 00:00:00+00:00</td>\n", " <td style=\"padding-left: 1em; padding-right: 1em; text-align: center; vertical-align: top\">221900</td>\n", " <td style=\"padding-left: 1em; padding-right: 1em; text-align: center; vertical-align: top\">3</td>\n", " <td style=\"padding-left: 1em; padding-right: 1em; text-align: center; vertical-align: top\">1</td>\n", " <td style=\"padding-left: 1em; padding-right: 1em; text-align: center; vertical-align: top\">1180</td>\n", " <td style=\"padding-left: 1em; padding-right: 1em; text-align: center; vertical-align: top\">5650</td>\n", " <td style=\"padding-left: 1em; padding-right: 1em; text-align: center; vertical-align: top\">1</td>\n", " <td style=\"padding-left: 1em; padding-right: 1em; text-align: center; vertical-align: top\">0</td>\n", " </tr>\n", " <tr>\n", " <td style=\"padding-left: 1em; padding-right: 1em; text-align: center; vertical-align: top\">6414100192</td>\n", " <td style=\"padding-left: 1em; padding-right: 1em; text-align: center; vertical-align: top\">2014-12-09 00:00:00+00:00</td>\n", " <td style=\"padding-left: 1em; padding-right: 1em; text-align: center; vertical-align: top\">538000</td>\n", " <td style=\"padding-left: 1em; padding-right: 1em; text-align: center; vertical-align: top\">3</td>\n", " <td style=\"padding-left: 1em; padding-right: 1em; text-align: center; vertical-align: top\">2.25</td>\n", " <td style=\"padding-left: 1em; padding-right: 1em; text-align: center; vertical-align: top\">2570</td>\n", " <td style=\"padding-left: 1em; padding-right: 1em; text-align: center; vertical-align: top\">7242</td>\n", " <td style=\"padding-left: 1em; padding-right: 1em; text-align: center; vertical-align: top\">2</td>\n", " <td style=\"padding-left: 1em; padding-right: 1em; text-align: center; vertical-align: top\">0</td>\n", " </tr>\n", " <tr>\n", " <td style=\"padding-left: 1em; padding-right: 1em; text-align: center; vertical-align: top\">5631500400</td>\n", " <td style=\"padding-left: 1em; padding-right: 1em; text-align: center; vertical-align: top\">2015-02-25 00:00:00+00:00</td>\n", " <td style=\"padding-left: 1em; padding-right: 1em; text-align: center; vertical-align: top\">180000</td>\n", " <td style=\"padding-left: 1em; padding-right: 1em; text-align: center; vertical-align: top\">2</td>\n", " <td style=\"padding-left: 1em; padding-right: 1em; text-align: center; vertical-align: top\">1</td>\n", " <td style=\"padding-left: 1em; padding-right: 1em; text-align: center; vertical-align: top\">770</td>\n", " <td style=\"padding-left: 1em; padding-right: 1em; text-align: center; vertical-align: top\">10000</td>\n", " <td style=\"padding-left: 1em; padding-right: 1em; text-align: center; vertical-align: top\">1</td>\n", " <td style=\"padding-left: 1em; padding-right: 1em; text-align: center; vertical-align: top\">0</td>\n", " </tr>\n", " <tr>\n", " <td style=\"padding-left: 1em; padding-right: 1em; text-align: center; vertical-align: top\">2487200875</td>\n", " <td style=\"padding-left: 1em; padding-right: 1em; text-align: center; vertical-align: top\">2014-12-09 00:00:00+00:00</td>\n", " <td style=\"padding-left: 1em; padding-right: 1em; text-align: center; vertical-align: top\">604000</td>\n", " <td style=\"padding-left: 1em; padding-right: 1em; text-align: center; vertical-align: top\">4</td>\n", " <td style=\"padding-left: 1em; padding-right: 1em; text-align: center; vertical-align: top\">3</td>\n", " <td style=\"padding-left: 1em; padding-right: 1em; text-align: center; vertical-align: top\">1960</td>\n", " <td style=\"padding-left: 1em; padding-right: 1em; text-align: center; vertical-align: top\">5000</td>\n", " <td style=\"padding-left: 1em; padding-right: 1em; text-align: center; vertical-align: top\">1</td>\n", " <td style=\"padding-left: 1em; padding-right: 1em; text-align: center; vertical-align: top\">0</td>\n", " </tr>\n", " <tr>\n", " <td style=\"padding-left: 1em; padding-right: 1em; text-align: center; vertical-align: top\">1954400510</td>\n", " <td style=\"padding-left: 1em; padding-right: 1em; text-align: center; vertical-align: top\">2015-02-18 00:00:00+00:00</td>\n", " <td style=\"padding-left: 1em; padding-right: 1em; text-align: center; vertical-align: top\">510000</td>\n", " <td style=\"padding-left: 1em; padding-right: 1em; text-align: center; vertical-align: top\">3</td>\n", " <td style=\"padding-left: 1em; padding-right: 1em; text-align: center; vertical-align: top\">2</td>\n", " <td style=\"padding-left: 1em; padding-right: 1em; text-align: center; vertical-align: top\">1680</td>\n", " <td style=\"padding-left: 1em; padding-right: 1em; text-align: center; vertical-align: top\">8080</td>\n", " <td style=\"padding-left: 1em; padding-right: 1em; text-align: center; vertical-align: top\">1</td>\n", " <td style=\"padding-left: 1em; padding-right: 1em; text-align: center; vertical-align: top\">0</td>\n", " </tr>\n", " <tr>\n", " <td style=\"padding-left: 1em; padding-right: 1em; text-align: center; vertical-align: top\">7237550310</td>\n", " <td style=\"padding-left: 1em; padding-right: 1em; text-align: center; vertical-align: top\">2014-05-12 00:00:00+00:00</td>\n", " <td style=\"padding-left: 1em; padding-right: 1em; text-align: center; vertical-align: top\">1225000</td>\n", " <td style=\"padding-left: 1em; padding-right: 1em; text-align: center; vertical-align: top\">4</td>\n", " <td style=\"padding-left: 1em; padding-right: 1em; text-align: center; vertical-align: top\">4.5</td>\n", " <td style=\"padding-left: 1em; padding-right: 1em; text-align: center; vertical-align: top\">5420</td>\n", " <td style=\"padding-left: 1em; padding-right: 1em; text-align: center; vertical-align: top\">101930</td>\n", " <td style=\"padding-left: 1em; padding-right: 1em; text-align: center; vertical-align: top\">1</td>\n", " <td style=\"padding-left: 1em; padding-right: 1em; text-align: center; vertical-align: top\">0</td>\n", " </tr>\n", " <tr>\n", " <td style=\"padding-left: 1em; padding-right: 1em; text-align: center; vertical-align: top\">1321400060</td>\n", " <td style=\"padding-left: 1em; padding-right: 1em; text-align: center; vertical-align: top\">2014-06-27 00:00:00+00:00</td>\n", " <td style=\"padding-left: 1em; padding-right: 1em; text-align: center; vertical-align: top\">257500</td>\n", " <td style=\"padding-left: 1em; padding-right: 1em; text-align: center; vertical-align: top\">3</td>\n", " <td style=\"padding-left: 1em; padding-right: 1em; text-align: center; vertical-align: top\">2.25</td>\n", " <td style=\"padding-left: 1em; padding-right: 1em; text-align: center; vertical-align: top\">1715</td>\n", " <td style=\"padding-left: 1em; padding-right: 1em; text-align: center; vertical-align: top\">6819</td>\n", " <td style=\"padding-left: 1em; padding-right: 1em; text-align: center; vertical-align: top\">2</td>\n", " <td style=\"padding-left: 1em; padding-right: 1em; text-align: center; vertical-align: top\">0</td>\n", " </tr>\n", " <tr>\n", " <td style=\"padding-left: 1em; padding-right: 1em; text-align: center; vertical-align: top\">2008000270</td>\n", " <td style=\"padding-left: 1em; padding-right: 1em; text-align: center; vertical-align: top\">2015-01-15 00:00:00+00:00</td>\n", " <td style=\"padding-left: 1em; padding-right: 1em; text-align: center; vertical-align: top\">291850</td>\n", " <td style=\"padding-left: 1em; padding-right: 1em; text-align: center; vertical-align: top\">3</td>\n", " <td style=\"padding-left: 1em; padding-right: 1em; text-align: center; vertical-align: top\">1.5</td>\n", " <td style=\"padding-left: 1em; padding-right: 1em; text-align: center; vertical-align: top\">1060</td>\n", " <td style=\"padding-left: 1em; padding-right: 1em; text-align: center; vertical-align: top\">9711</td>\n", " <td style=\"padding-left: 1em; padding-right: 1em; text-align: center; vertical-align: top\">1</td>\n", " <td style=\"padding-left: 1em; padding-right: 1em; text-align: center; vertical-align: top\">0</td>\n", " </tr>\n", " <tr>\n", " <td style=\"padding-left: 1em; padding-right: 1em; text-align: center; vertical-align: top\">2414600126</td>\n", " <td style=\"padding-left: 1em; padding-right: 1em; text-align: center; vertical-align: top\">2015-04-15 00:00:00+00:00</td>\n", " <td style=\"padding-left: 1em; padding-right: 1em; text-align: center; vertical-align: top\">229500</td>\n", " <td style=\"padding-left: 1em; padding-right: 1em; text-align: center; vertical-align: top\">3</td>\n", " <td style=\"padding-left: 1em; padding-right: 1em; text-align: center; vertical-align: top\">1</td>\n", " <td style=\"padding-left: 1em; padding-right: 1em; text-align: center; vertical-align: top\">1780</td>\n", " <td style=\"padding-left: 1em; padding-right: 1em; text-align: center; vertical-align: top\">7470</td>\n", " <td style=\"padding-left: 1em; padding-right: 1em; text-align: center; vertical-align: top\">1</td>\n", " <td style=\"padding-left: 1em; padding-right: 1em; text-align: center; vertical-align: top\">0</td>\n", " </tr>\n", " <tr>\n", " <td style=\"padding-left: 1em; padding-right: 1em; text-align: center; vertical-align: top\">3793500160</td>\n", " <td style=\"padding-left: 1em; padding-right: 1em; text-align: center; vertical-align: top\">2015-03-12 00:00:00+00:00</td>\n", " <td style=\"padding-left: 1em; padding-right: 1em; text-align: center; vertical-align: top\">323000</td>\n", " <td style=\"padding-left: 1em; padding-right: 1em; text-align: center; vertical-align: top\">3</td>\n", " <td style=\"padding-left: 1em; padding-right: 1em; text-align: center; vertical-align: top\">2.5</td>\n", " <td style=\"padding-left: 1em; padding-right: 1em; text-align: center; vertical-align: top\">1890</td>\n", " <td style=\"padding-left: 1em; padding-right: 1em; text-align: center; vertical-align: top\">6560</td>\n", " <td style=\"padding-left: 1em; padding-right: 1em; text-align: center; vertical-align: top\">2</td>\n", " <td style=\"padding-left: 1em; padding-right: 1em; text-align: center; vertical-align: top\">0</td>\n", " </tr>\n", "</table>\n", "<table frame=\"box\" rules=\"cols\">\n", " <tr>\n", " <th style=\"padding-left: 1em; padding-right: 1em; text-align: center\">view</th>\n", " <th style=\"padding-left: 1em; padding-right: 1em; text-align: center\">condition</th>\n", " <th style=\"padding-left: 1em; padding-right: 1em; text-align: center\">grade</th>\n", " <th style=\"padding-left: 1em; padding-right: 1em; text-align: center\">sqft_above</th>\n", " <th style=\"padding-left: 1em; padding-right: 1em; text-align: center\">sqft_basement</th>\n", " <th style=\"padding-left: 1em; padding-right: 1em; text-align: center\">yr_built</th>\n", " <th style=\"padding-left: 1em; padding-right: 1em; text-align: center\">yr_renovated</th>\n", " <th style=\"padding-left: 1em; padding-right: 1em; text-align: center\">zipcode</th>\n", " <th style=\"padding-left: 1em; padding-right: 1em; text-align: center\">lat</th>\n", " </tr>\n", " <tr>\n", " <td style=\"padding-left: 1em; padding-right: 1em; text-align: center; vertical-align: top\">0</td>\n", " <td style=\"padding-left: 1em; padding-right: 1em; text-align: center; vertical-align: top\">3</td>\n", " <td style=\"padding-left: 1em; padding-right: 1em; text-align: center; vertical-align: top\">7</td>\n", " <td style=\"padding-left: 1em; padding-right: 1em; text-align: center; vertical-align: top\">1180</td>\n", " <td style=\"padding-left: 1em; padding-right: 1em; text-align: center; vertical-align: top\">0</td>\n", " <td style=\"padding-left: 1em; padding-right: 1em; text-align: center; vertical-align: top\">1955</td>\n", " <td style=\"padding-left: 1em; padding-right: 1em; text-align: center; vertical-align: top\">0</td>\n", " <td style=\"padding-left: 1em; padding-right: 1em; text-align: center; vertical-align: top\">98178</td>\n", " <td style=\"padding-left: 1em; padding-right: 1em; text-align: center; vertical-align: top\">47.51123398</td>\n", " </tr>\n", " <tr>\n", " <td style=\"padding-left: 1em; padding-right: 1em; text-align: center; vertical-align: top\">0</td>\n", " <td style=\"padding-left: 1em; padding-right: 1em; text-align: center; vertical-align: top\">3</td>\n", " <td style=\"padding-left: 1em; padding-right: 1em; text-align: center; vertical-align: top\">7</td>\n", " <td style=\"padding-left: 1em; padding-right: 1em; text-align: center; vertical-align: top\">2170</td>\n", " <td style=\"padding-left: 1em; padding-right: 1em; text-align: center; vertical-align: top\">400</td>\n", " <td style=\"padding-left: 1em; padding-right: 1em; text-align: center; vertical-align: top\">1951</td>\n", " <td style=\"padding-left: 1em; padding-right: 1em; text-align: center; vertical-align: top\">1991</td>\n", " <td style=\"padding-left: 1em; padding-right: 1em; text-align: center; vertical-align: top\">98125</td>\n", " <td style=\"padding-left: 1em; padding-right: 1em; text-align: center; vertical-align: top\">47.72102274</td>\n", " </tr>\n", " <tr>\n", " <td style=\"padding-left: 1em; padding-right: 1em; text-align: center; vertical-align: top\">0</td>\n", " <td style=\"padding-left: 1em; padding-right: 1em; text-align: center; vertical-align: top\">3</td>\n", " <td style=\"padding-left: 1em; padding-right: 1em; text-align: center; vertical-align: top\">6</td>\n", " <td style=\"padding-left: 1em; padding-right: 1em; text-align: center; vertical-align: top\">770</td>\n", " <td style=\"padding-left: 1em; padding-right: 1em; text-align: center; vertical-align: top\">0</td>\n", " <td style=\"padding-left: 1em; padding-right: 1em; text-align: center; vertical-align: top\">1933</td>\n", " <td style=\"padding-left: 1em; padding-right: 1em; text-align: center; vertical-align: top\">0</td>\n", " <td style=\"padding-left: 1em; padding-right: 1em; text-align: center; vertical-align: top\">98028</td>\n", " <td style=\"padding-left: 1em; padding-right: 1em; text-align: center; vertical-align: top\">47.73792661</td>\n", " </tr>\n", " <tr>\n", " <td style=\"padding-left: 1em; padding-right: 1em; text-align: center; vertical-align: top\">0</td>\n", " <td style=\"padding-left: 1em; padding-right: 1em; text-align: center; vertical-align: top\">5</td>\n", " <td style=\"padding-left: 1em; padding-right: 1em; text-align: center; vertical-align: top\">7</td>\n", " <td style=\"padding-left: 1em; padding-right: 1em; text-align: center; vertical-align: top\">1050</td>\n", " <td style=\"padding-left: 1em; padding-right: 1em; text-align: center; vertical-align: top\">910</td>\n", " <td style=\"padding-left: 1em; padding-right: 1em; text-align: center; vertical-align: top\">1965</td>\n", " <td style=\"padding-left: 1em; padding-right: 1em; text-align: center; vertical-align: top\">0</td>\n", " <td style=\"padding-left: 1em; padding-right: 1em; text-align: center; vertical-align: top\">98136</td>\n", " <td style=\"padding-left: 1em; padding-right: 1em; text-align: center; vertical-align: top\">47.52082</td>\n", " </tr>\n", " <tr>\n", " <td style=\"padding-left: 1em; padding-right: 1em; text-align: center; vertical-align: top\">0</td>\n", " <td style=\"padding-left: 1em; padding-right: 1em; text-align: center; vertical-align: top\">3</td>\n", " <td style=\"padding-left: 1em; padding-right: 1em; text-align: center; vertical-align: top\">8</td>\n", " <td style=\"padding-left: 1em; padding-right: 1em; text-align: center; vertical-align: top\">1680</td>\n", " <td style=\"padding-left: 1em; padding-right: 1em; text-align: center; vertical-align: top\">0</td>\n", " <td style=\"padding-left: 1em; padding-right: 1em; text-align: center; vertical-align: top\">1987</td>\n", " <td style=\"padding-left: 1em; padding-right: 1em; text-align: center; vertical-align: top\">0</td>\n", " <td style=\"padding-left: 1em; padding-right: 1em; text-align: center; vertical-align: top\">98074</td>\n", " <td style=\"padding-left: 1em; padding-right: 1em; text-align: center; vertical-align: top\">47.61681228</td>\n", " </tr>\n", " <tr>\n", " <td style=\"padding-left: 1em; padding-right: 1em; text-align: center; vertical-align: top\">0</td>\n", " <td style=\"padding-left: 1em; padding-right: 1em; text-align: center; vertical-align: top\">3</td>\n", " <td style=\"padding-left: 1em; padding-right: 1em; text-align: center; vertical-align: top\">11</td>\n", " <td style=\"padding-left: 1em; padding-right: 1em; text-align: center; vertical-align: top\">3890</td>\n", " <td style=\"padding-left: 1em; padding-right: 1em; text-align: center; vertical-align: top\">1530</td>\n", " <td style=\"padding-left: 1em; padding-right: 1em; text-align: center; vertical-align: top\">2001</td>\n", " <td style=\"padding-left: 1em; padding-right: 1em; text-align: center; vertical-align: top\">0</td>\n", " <td style=\"padding-left: 1em; padding-right: 1em; text-align: center; vertical-align: top\">98053</td>\n", " <td style=\"padding-left: 1em; padding-right: 1em; text-align: center; vertical-align: top\">47.65611835</td>\n", " </tr>\n", " <tr>\n", " <td style=\"padding-left: 1em; padding-right: 1em; text-align: center; vertical-align: top\">0</td>\n", " <td style=\"padding-left: 1em; padding-right: 1em; text-align: center; vertical-align: top\">3</td>\n", " <td style=\"padding-left: 1em; padding-right: 1em; text-align: center; vertical-align: top\">7</td>\n", " <td style=\"padding-left: 1em; padding-right: 1em; text-align: center; vertical-align: top\">1715</td>\n", " <td style=\"padding-left: 1em; padding-right: 1em; text-align: center; vertical-align: top\">0</td>\n", " <td style=\"padding-left: 1em; padding-right: 1em; text-align: center; vertical-align: top\">1995</td>\n", " <td style=\"padding-left: 1em; padding-right: 1em; text-align: center; vertical-align: top\">0</td>\n", " <td style=\"padding-left: 1em; padding-right: 1em; text-align: center; vertical-align: top\">98003</td>\n", " <td style=\"padding-left: 1em; padding-right: 1em; text-align: center; vertical-align: top\">47.30972002</td>\n", " </tr>\n", " <tr>\n", " <td style=\"padding-left: 1em; padding-right: 1em; text-align: center; vertical-align: top\">0</td>\n", " <td style=\"padding-left: 1em; padding-right: 1em; text-align: center; vertical-align: top\">3</td>\n", " <td style=\"padding-left: 1em; padding-right: 1em; text-align: center; vertical-align: top\">7</td>\n", " <td style=\"padding-left: 1em; padding-right: 1em; text-align: center; vertical-align: top\">1060</td>\n", " <td style=\"padding-left: 1em; padding-right: 1em; text-align: center; vertical-align: top\">0</td>\n", " <td style=\"padding-left: 1em; padding-right: 1em; text-align: center; vertical-align: top\">1963</td>\n", " <td style=\"padding-left: 1em; padding-right: 1em; text-align: center; vertical-align: top\">0</td>\n", " <td style=\"padding-left: 1em; padding-right: 1em; text-align: center; vertical-align: top\">98198</td>\n", " <td style=\"padding-left: 1em; padding-right: 1em; text-align: center; vertical-align: top\">47.40949984</td>\n", " </tr>\n", " <tr>\n", " <td style=\"padding-left: 1em; padding-right: 1em; text-align: center; vertical-align: top\">0</td>\n", " <td style=\"padding-left: 1em; padding-right: 1em; text-align: center; vertical-align: top\">3</td>\n", " <td style=\"padding-left: 1em; padding-right: 1em; text-align: center; vertical-align: top\">7</td>\n", " <td style=\"padding-left: 1em; padding-right: 1em; text-align: center; vertical-align: top\">1050</td>\n", " <td style=\"padding-left: 1em; padding-right: 1em; text-align: center; vertical-align: top\">730</td>\n", " <td style=\"padding-left: 1em; padding-right: 1em; text-align: center; vertical-align: top\">1960</td>\n", " <td style=\"padding-left: 1em; padding-right: 1em; text-align: center; vertical-align: top\">0</td>\n", " <td style=\"padding-left: 1em; padding-right: 1em; text-align: center; vertical-align: top\">98146</td>\n", " <td style=\"padding-left: 1em; padding-right: 1em; text-align: center; vertical-align: top\">47.51229381</td>\n", " </tr>\n", " <tr>\n", " <td style=\"padding-left: 1em; padding-right: 1em; text-align: center; vertical-align: top\">0</td>\n", " <td style=\"padding-left: 1em; padding-right: 1em; text-align: center; vertical-align: top\">3</td>\n", " <td style=\"padding-left: 1em; padding-right: 1em; text-align: center; vertical-align: top\">7</td>\n", " <td style=\"padding-left: 1em; padding-right: 1em; text-align: center; vertical-align: top\">1890</td>\n", " <td style=\"padding-left: 1em; padding-right: 1em; text-align: center; vertical-align: top\">0</td>\n", " <td style=\"padding-left: 1em; padding-right: 1em; text-align: center; vertical-align: top\">2003</td>\n", " <td style=\"padding-left: 1em; padding-right: 1em; text-align: center; vertical-align: top\">0</td>\n", " <td style=\"padding-left: 1em; padding-right: 1em; text-align: center; vertical-align: top\">98038</td>\n", " <td style=\"padding-left: 1em; padding-right: 1em; text-align: center; vertical-align: top\">47.36840673</td>\n", " </tr>\n", "</table>\n", "<table frame=\"box\" rules=\"cols\">\n", " <tr>\n", " <th style=\"padding-left: 1em; padding-right: 1em; text-align: center\">long</th>\n", " <th style=\"padding-left: 1em; padding-right: 1em; text-align: center\">sqft_living15</th>\n", " <th style=\"padding-left: 1em; padding-right: 1em; text-align: center\">sqft_lot15</th>\n", " </tr>\n", " <tr>\n", " <td style=\"padding-left: 1em; padding-right: 1em; text-align: center; vertical-align: top\">-122.25677536</td>\n", " <td style=\"padding-left: 1em; padding-right: 1em; text-align: center; vertical-align: top\">1340.0</td>\n", " <td style=\"padding-left: 1em; padding-right: 1em; text-align: center; vertical-align: top\">5650.0</td>\n", " </tr>\n", " <tr>\n", " <td style=\"padding-left: 1em; padding-right: 1em; text-align: center; vertical-align: top\">-122.3188624</td>\n", " <td style=\"padding-left: 1em; padding-right: 1em; text-align: center; vertical-align: top\">1690.0</td>\n", " <td style=\"padding-left: 1em; padding-right: 1em; text-align: center; vertical-align: top\">7639.0</td>\n", " </tr>\n", " <tr>\n", " <td style=\"padding-left: 1em; padding-right: 1em; text-align: center; vertical-align: top\">-122.23319601</td>\n", " <td style=\"padding-left: 1em; padding-right: 1em; text-align: center; vertical-align: top\">2720.0</td>\n", " <td style=\"padding-left: 1em; padding-right: 1em; text-align: center; vertical-align: top\">8062.0</td>\n", " </tr>\n", " <tr>\n", " <td style=\"padding-left: 1em; padding-right: 1em; text-align: center; vertical-align: top\">-122.39318505</td>\n", " <td style=\"padding-left: 1em; padding-right: 1em; text-align: center; vertical-align: top\">1360.0</td>\n", " <td style=\"padding-left: 1em; padding-right: 1em; text-align: center; vertical-align: top\">5000.0</td>\n", " </tr>\n", " <tr>\n", " <td style=\"padding-left: 1em; padding-right: 1em; text-align: center; vertical-align: top\">-122.04490059</td>\n", " <td style=\"padding-left: 1em; padding-right: 1em; text-align: center; vertical-align: top\">1800.0</td>\n", " <td style=\"padding-left: 1em; padding-right: 1em; text-align: center; vertical-align: top\">7503.0</td>\n", " </tr>\n", " <tr>\n", " <td style=\"padding-left: 1em; padding-right: 1em; text-align: center; vertical-align: top\">-122.00528655</td>\n", " <td style=\"padding-left: 1em; padding-right: 1em; text-align: center; vertical-align: top\">4760.0</td>\n", " <td style=\"padding-left: 1em; padding-right: 1em; text-align: center; vertical-align: top\">101930.0</td>\n", " </tr>\n", " <tr>\n", " <td style=\"padding-left: 1em; padding-right: 1em; text-align: center; vertical-align: top\">-122.32704857</td>\n", " <td style=\"padding-left: 1em; padding-right: 1em; text-align: center; vertical-align: top\">2238.0</td>\n", " <td style=\"padding-left: 1em; padding-right: 1em; text-align: center; vertical-align: top\">6819.0</td>\n", " </tr>\n", " <tr>\n", " <td style=\"padding-left: 1em; padding-right: 1em; text-align: center; vertical-align: top\">-122.31457273</td>\n", " <td style=\"padding-left: 1em; padding-right: 1em; text-align: center; vertical-align: top\">1650.0</td>\n", " <td style=\"padding-left: 1em; padding-right: 1em; text-align: center; vertical-align: top\">9711.0</td>\n", " </tr>\n", " <tr>\n", " <td style=\"padding-left: 1em; padding-right: 1em; text-align: center; vertical-align: top\">-122.33659507</td>\n", " <td style=\"padding-left: 1em; padding-right: 1em; text-align: center; vertical-align: top\">1780.0</td>\n", " <td style=\"padding-left: 1em; padding-right: 1em; text-align: center; vertical-align: top\">8113.0</td>\n", " </tr>\n", " <tr>\n", " <td style=\"padding-left: 1em; padding-right: 1em; text-align: center; vertical-align: top\">-122.0308176</td>\n", " <td style=\"padding-left: 1em; padding-right: 1em; text-align: center; vertical-align: top\">2390.0</td>\n", " <td style=\"padding-left: 1em; padding-right: 1em; text-align: center; vertical-align: top\">7570.0</td>\n", " </tr>\n", "</table>\n", "[21613 rows x 21 columns]<br/>Note: Only the head of the SFrame is printed.<br/>You can use print_rows(num_rows=m, num_columns=n) to print more rows and columns.\n", "</div>" ], "text/plain": [ "Columns:\n", "\tid\tstr\n", "\tdate\tdatetime\n", "\tprice\tint\n", "\tbedrooms\tstr\n", "\tbathrooms\tstr\n", "\tsqft_living\tint\n", "\tsqft_lot\tint\n", "\tfloors\tstr\n", "\twaterfront\tint\n", "\tview\tint\n", "\tcondition\tint\n", "\tgrade\tint\n", "\tsqft_above\tint\n", "\tsqft_basement\tint\n", "\tyr_built\tint\n", "\tyr_renovated\tint\n", "\tzipcode\tstr\n", "\tlat\tfloat\n", "\tlong\tfloat\n", "\tsqft_living15\tfloat\n", "\tsqft_lot15\tfloat\n", "\n", "Rows: 21613\n", "\n", "Data:\n", "+------------+---------------------------+---------+----------+-----------+-------------+\n", "| id | date | price | bedrooms | bathrooms | sqft_living |\n", "+------------+---------------------------+---------+----------+-----------+-------------+\n", "| 7129300520 | 2014-10-13 00:00:00+00:00 | 221900 | 3 | 1 | 1180 |\n", "| 6414100192 | 2014-12-09 00:00:00+00:00 | 538000 | 3 | 2.25 | 2570 |\n", "| 5631500400 | 2015-02-25 00:00:00+00:00 | 180000 | 2 | 1 | 770 |\n", "| 2487200875 | 2014-12-09 00:00:00+00:00 | 604000 | 4 | 3 | 1960 |\n", "| 1954400510 | 2015-02-18 00:00:00+00:00 | 510000 | 3 | 2 | 1680 |\n", "| 7237550310 | 2014-05-12 00:00:00+00:00 | 1225000 | 4 | 4.5 | 5420 |\n", "| 1321400060 | 2014-06-27 00:00:00+00:00 | 257500 | 3 | 2.25 | 1715 |\n", "| 2008000270 | 2015-01-15 00:00:00+00:00 | 291850 | 3 | 1.5 | 1060 |\n", "| 2414600126 | 2015-04-15 00:00:00+00:00 | 229500 | 3 | 1 | 1780 |\n", "| 3793500160 | 2015-03-12 00:00:00+00:00 | 323000 | 3 | 2.5 | 1890 |\n", "+------------+---------------------------+---------+----------+-----------+-------------+\n", "+----------+--------+------------+------+-----------+-------+------------+---------------+\n", "| sqft_lot | floors | waterfront | view | condition | grade | sqft_above | sqft_basement |\n", "+----------+--------+------------+------+-----------+-------+------------+---------------+\n", "| 5650 | 1 | 0 | 0 | 3 | 7 | 1180 | 0 |\n", "| 7242 | 2 | 0 | 0 | 3 | 7 | 2170 | 400 |\n", "| 10000 | 1 | 0 | 0 | 3 | 6 | 770 | 0 |\n", "| 5000 | 1 | 0 | 0 | 5 | 7 | 1050 | 910 |\n", "| 8080 | 1 | 0 | 0 | 3 | 8 | 1680 | 0 |\n", "| 101930 | 1 | 0 | 0 | 3 | 11 | 3890 | 1530 |\n", "| 6819 | 2 | 0 | 0 | 3 | 7 | 1715 | 0 |\n", "| 9711 | 1 | 0 | 0 | 3 | 7 | 1060 | 0 |\n", "| 7470 | 1 | 0 | 0 | 3 | 7 | 1050 | 730 |\n", "| 6560 | 2 | 0 | 0 | 3 | 7 | 1890 | 0 |\n", "+----------+--------+------------+------+-----------+-------+------------+---------------+\n", "+----------+--------------+---------+-------------+---------------+---------------+-----+\n", "| yr_built | yr_renovated | zipcode | lat | long | sqft_living15 | ... |\n", "+----------+--------------+---------+-------------+---------------+---------------+-----+\n", "| 1955 | 0 | 98178 | 47.51123398 | -122.25677536 | 1340.0 | ... |\n", "| 1951 | 1991 | 98125 | 47.72102274 | -122.3188624 | 1690.0 | ... |\n", "| 1933 | 0 | 98028 | 47.73792661 | -122.23319601 | 2720.0 | ... |\n", "| 1965 | 0 | 98136 | 47.52082 | -122.39318505 | 1360.0 | ... |\n", "| 1987 | 0 | 98074 | 47.61681228 | -122.04490059 | 1800.0 | ... |\n", "| 2001 | 0 | 98053 | 47.65611835 | -122.00528655 | 4760.0 | ... |\n", "| 1995 | 0 | 98003 | 47.30972002 | -122.32704857 | 2238.0 | ... |\n", "| 1963 | 0 | 98198 | 47.40949984 | -122.31457273 | 1650.0 | ... |\n", "| 1960 | 0 | 98146 | 47.51229381 | -122.33659507 | 1780.0 | ... |\n", "| 2003 | 0 | 98038 | 47.36840673 | -122.0308176 | 2390.0 | ... |\n", "+----------+--------------+---------+-------------+---------------+---------------+-----+\n", "[21613 rows x 21 columns]\n", "Note: Only the head of the SFrame is printed.\n", "You can use print_rows(num_rows=m, num_columns=n) to print more rows and columns." ] }, "execution_count": 3, "metadata": {}, "output_type": "execute_result" } ], "source": [ "sales" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "# Exploring the data for house sales" ] }, { "cell_type": "code", "execution_count": 4, "metadata": { "collapsed": false }, "outputs": [ { "data": {}, "metadata": {}, "output_type": "display_data" } ], "source": [ "graphlab.canvas.set_target('ipynb')\n", "sales.show(view= 'Scatter Plot', x = 'sqft_living', y='price')" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "# Create a simple model of sqf of living and price" ] }, { "cell_type": "code", "execution_count": 5, "metadata": { "collapsed": true }, "outputs": [], "source": [ "train_data,test_data = sales.random_split(.8, seed=0)" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "# Build the regrassion Model" ] }, { "cell_type": "code", "execution_count": 6, "metadata": { "collapsed": false }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "PROGRESS: Creating a validation set from 5 percent of training data. This may take a while.\n", " You can set ``validation_set=None`` to disable validation tracking.\n", "\n" ] }, { "data": { "text/html": [ "<pre>Linear regression:</pre>" ], "text/plain": [ "Linear regression:" ] }, "metadata": {}, "output_type": "execute_result" }, { "data": { "text/html": [ "<pre>--------------------------------------------------------</pre>" ], "text/plain": [ "--------------------------------------------------------" ] }, "metadata": {}, "output_type": "execute_result" }, { "data": { "text/html": [ "<pre>Number of examples : 16438</pre>" ], "text/plain": [ "Number of examples : 16438" ] }, "metadata": {}, "output_type": "execute_result" }, { "data": { "text/html": [ "<pre>Number of features : 1</pre>" ], "text/plain": [ "Number of features : 1" ] }, "metadata": {}, "output_type": "execute_result" }, { "data": { "text/html": [ "<pre>Number of unpacked features : 1</pre>" ], "text/plain": [ "Number of unpacked features : 1" ] }, "metadata": {}, "output_type": "execute_result" }, { "data": { "text/html": [ "<pre>Number of coefficients : 2</pre>" ], "text/plain": [ "Number of coefficients : 2" ] }, "metadata": {}, "output_type": "execute_result" }, { "data": { "text/html": [ "<pre>Starting Newton Method</pre>" ], "text/plain": [ "Starting Newton Method" ] }, "metadata": {}, "output_type": "execute_result" }, { "data": { "text/html": [ "<pre>--------------------------------------------------------</pre>" ], "text/plain": [ "--------------------------------------------------------" ] }, "metadata": {}, "output_type": "execute_result" }, { "data": { "text/html": [ "<pre>+-----------+----------+--------------+--------------------+----------------------+---------------+-----------------+</pre>" ], "text/plain": [ "+-----------+----------+--------------+--------------------+----------------------+---------------+-----------------+" ] }, "metadata": {}, "output_type": "execute_result" }, { "data": { "text/html": [ "<pre>| Iteration | Passes | Elapsed Time | Training-max_error | Validation-max_error | Training-rmse | Validation-rmse |</pre>" ], "text/plain": [ "| Iteration | Passes | Elapsed Time | Training-max_error | Validation-max_error | Training-rmse | Validation-rmse |" ] }, "metadata": {}, "output_type": "execute_result" }, { "data": { "text/html": [ "<pre>+-----------+----------+--------------+--------------------+----------------------+---------------+-----------------+</pre>" ], "text/plain": [ "+-----------+----------+--------------+--------------------+----------------------+---------------+-----------------+" ] }, "metadata": {}, "output_type": "execute_result" }, { "data": { "text/html": [ "<pre>| 1 | 2 | 1.024188 | 4323580.713062 | 1192229.405122 | 265193.676923 | 220442.872231 |</pre>" ], "text/plain": [ "| 1 | 2 | 1.024188 | 4323580.713062 | 1192229.405122 | 265193.676923 | 220442.872231 |" ] }, "metadata": {}, "output_type": "execute_result" }, { "data": { "text/html": [ "<pre>+-----------+----------+--------------+--------------------+----------------------+---------------+-----------------+</pre>" ], "text/plain": [ "+-----------+----------+--------------+--------------------+----------------------+---------------+-----------------+" ] }, "metadata": {}, "output_type": "execute_result" }, { "data": { "text/html": [ "<pre>SUCCESS: Optimal solution found.</pre>" ], "text/plain": [ "SUCCESS: Optimal solution found." ] }, "metadata": {}, "output_type": "execute_result" }, { "data": { "text/html": [ "<pre></pre>" ], "text/plain": [] }, "metadata": {}, "output_type": "execute_result" } ], "source": [ "sqft_model = graphlab.linear_regression.create(train_data, target= 'price',features=['sqft_living'])" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "# Evaluate The Model" ] }, { "cell_type": "code", "execution_count": 7, "metadata": { "collapsed": false }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "{'max_error': 4123192.3891082285, 'rmse': 255257.47237577607}\n" ] } ], "source": [ "print sqft_model.evaluate(test_data)" ] }, { "cell_type": "code", "execution_count": 8, "metadata": { "collapsed": true }, "outputs": [], "source": [ "%matplotlib inline" ] }, { "cell_type": "code", "execution_count": 9, "metadata": { "collapsed": true }, "outputs": [], "source": [ "import matplotlib.pyplot as plt" ] }, { "cell_type": "code", "execution_count": 10, "metadata": { "collapsed": false }, "outputs": [ { "data": { "text/plain": [ "[<matplotlib.lines.Line2D at 0x117c86250>,\n", " <matplotlib.lines.Line2D at 0x10dfb7a50>]" ] }, "execution_count": 10, "metadata": {}, "output_type": "execute_result" }, { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAZ0AAAEACAYAAABoJ6s/AAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJztnXucVdV597/PXMDbiIABFJyBEcFBWhUj+hoxUxVR89ZL\nW5X0bcG85tMm2mhsikpsFaxphNQEbaPWxHp7E5BoDdSgXCITbQS8YZTbgBcQBkEjtzEmCMPz/rHW\n5qyz55wzZ86cy1ye7+dzPrPO2mutvfY+sH57PetZzxZVxTAMwzCKQVmpO2AYhmH0HEx0DMMwjKJh\nomMYhmEUDRMdwzAMo2iY6BiGYRhFw0THMAzDKBptio6IjBCRlSLyuv+7W0SuF5G+IrJIRBpFZKGI\n9AnqTBWRDSKyVkQuCPLHiMibIrJeRGYF+b1EZI6vs0xEqoNjk335RhGZFOQPFZHl/thsEanIzy0x\nDMMwCkWboqOq61X1VFUdA5wG/A54GrgFWKKqI4HngakAIjIKuBKoAy4C7hMR8c3dD1yjqiOAESIy\nwedfA+xQ1ROAWcBM31Zf4DbgdOAM4PZA3GYAd/u2dvk2DMMwjE5Me81r5wPvqOpm4FLgUZ//KHCZ\nT18CzFHV/aq6EdgAjBWRQUCVqr7iyz0W1AnbehI416cnAItUdbeq7gIWARf6Y+cCTwXnv7yd12IY\nhmEUmfaKzlXAT316oKpuB1DVbcAAnz8Y2BzUafJ5g4EtQf4Wn5dUR1VbgN0i0i9dWyLSH9ipqgeC\nto5t57UYhmEYRSZr0RGRStws5mc+Kx4/J5/xdKTtIlmVMQzDMDoR7Vl8vwh4TVV/679vF5GBqrrd\nm84+9PlNwHFBvSE+L11+WGeriJQDR6rqDhFpAupjdZaq6sci0kdEyvxsJ2wrCRGx4HKGYRg5oKp5\nf7hvj3nty8Ds4Pt84GqfngzMC/Ineo+0YcBw4GVvgtstImO9Y8GkWJ3JPn0FzjEBYCEw3gtMX2C8\nzwNY6svGz98KVbWPKrfffnvJ+9BZPnYv7F7YvUh89uxRXnrJ/Y3yCkVWoiMih+GcCP4ryJ6BE4RG\n4DzgLgBVXQPMBdYAC4BrNXEF1wEPAeuBDar6nM9/CDhaRDYA38R5xqGqO4F/Bl4FVgDT1TkU4Mv8\nvYisB/r5NgzDMIx20NwM48bBOee4v83NhT1fVuY1Vf0U+FwsbwdOiFKV/y7w3RT5rwF/lCJ/L87N\nOlVbjwCPpMh/D+dGbRiGYeTIqlWwejXs3w9r1rj0mWcW7nwWkaAHUV9fX+oudBrsXiSwe5GgJ96L\n0aPhpJOgshJGjXLpQiKFtN11BkREu/s1GoZhdITmZjfDOekkqKpyeSKCFsCRwETHMAzDaEWhRMfM\na4ZhGEbRMNExDMMwioaJjmEYhlE0THQMwzCMomGiYxiGYRQNEx3DMAyjaJjoGIZhGEXDRMcwDMMo\nGiY6hmEYRtEw0TEMwzCKhomOYRiGUTRMdAzDMIyiYaJjGIZhFA0THcMwDKNomOgYhmEYRcNExzAM\nwygaJjqGYRhG0TDRMQzDMIqGiY5hGIZRNEx0DMMwjKKRleiISB8R+ZmIrBWR1SJyhoj0FZFFItIo\nIgtFpE9QfqqIbPDlLwjyx4jImyKyXkRmBfm9RGSOr7NMRKqDY5N9+UYRmRTkDxWR5f7YbBGp6Pjt\nMAzDMApJtjOde4AFqloHnAysA24BlqjqSOB5YCqAiIwCrgTqgIuA+0REfDv3A9eo6ghghIhM8PnX\nADtU9QRgFjDTt9UXuA04HTgDuD0QtxnA3b6tXb4NwzAMoxPTpuiIyJHAOFV9GEBV96vqbuBS4FFf\n7FHgMp++BJjjy20ENgBjRWQQUKWqr/hyjwV1wraeBM716QnAIlXdraq7gEXAhf7YucBTwfkvz/qq\nDcMwjJKQzUxnGPBbEXlYRF4XkQdF5DBgoKpuB1DVbcAAX34wsDmo3+TzBgNbgvwtPi+pjqq2ALtF\npF+6tkSkP7BTVQ8EbR2bzQUbhmEYpSObdZAKYAxwnaq+KiI/wJnWNFYu/r0jSNtFsioDwLRp0w6m\n6+vrqa+vb3+PDMMwujENDQ00NDQU/DzZiM4WYLOqvuq/P4UTne0iMlBVt3vT2Yf+eBNwXFB/iM9L\nlx/W2Soi5cCRqrpDRJqA+lidpar6sXduKPOznbCtVoSiYxiGYbQm/kA+ffr0gpynTfOaN6FtFpER\nPus8YDUwH7ja500G5vn0fGCi90gbBgwHXvYmuN0iMtY7FkyK1Zns01fgHBMAFgLjvcD0Bcb7PICl\nvmz8/IZhGEYnRVTbtoqJyMnAj4FK4F3gK0A5MBc3Q9kEXOkX+xGRqThvsn3ADaq6yOefBjwCHILz\nhrvB5/cGHgdOBT4GJnonBETkauBWnPnuTlV9zOcPA+YAfYGVwF+p6r4UfddsrtEwDMNIICKoatbL\nGFm3290HZBMdwzCM9lMo0bGIBIZhGEbRMNExDMMwioaJjmEYhlE0THQMwzCMomGiYxiGYRQNEx3D\nMAyjaJjoGIZhGEXDRMcwDMMoGiY6hmEYRtEw0TEMwzCKhomOYRiGUTRMdAzDMIyiYaJjGIZhFA0T\nHcMwDKNomOgYhmEYRcNExzAMwygaJjqGYRhG0TDRMQzDMIqGiY5hGIZRNEx0DMMwjKJhomMYhmEU\nDRMdwzAMo2iY6BiGYRhFIyvREZGNIvIbEVkpIi/7vL4iskhEGkVkoYj0CcpPFZENIrJWRC4I8seI\nyJsisl5EZgX5vURkjq+zTESqg2OTfflGEZkU5A8VkeX+2GwRqejozTAMwzAKS7YznQNAvaqeqqpj\nfd4twBJVHQk8D0wFEJFRwJVAHXARcJ+IiK9zP3CNqo4ARojIBJ9/DbBDVU8AZgEzfVt9gduA04Ez\ngNsDcZsB3O3b2uXbMAzDMDox2YqOpCh7KfCoTz8KXObTlwBzVHW/qm4ENgBjRWQQUKWqr/hyjwV1\nwraeBM716QnAIlXdraq7gEXAhf7YucBTwfkvz/JaDMMwjBKRregosFhEXhGRr/q8gaq6HUBVtwED\nfP5gYHNQt8nnDQa2BPlbfF5SHVVtAXaLSL90bYlIf2Cnqh4I2jo2y2sxDMMwSkS26yBfUNUPRORz\nwCIRacQJUUj8e0eQtotkVQaAadOmHUzX19dTX1/f/h4ZhmF0YxoaGmhoaCj4ebISHVX9wP/9SER+\nDowFtovIQFXd7k1nH/riTcBxQfUhPi9dflhnq4iUA0eq6g4RaQLqY3WWqurHItJHRMr8bCdsqxWh\n6BiGYRitiT+QT58+vSDnadO8JiKHicgRPn04cAHwFjAfuNoXmwzM8+n5wETvkTYMGA687E1wu0Vk\nrHcsmBSrM9mnr8A5JgAsBMZ7gekLjPd5AEt92fj5DcMwjE6KqGa2innheBpnPqsAfqKqd/k1l7m4\nGcom4Eq/2I+ITMV5k+0DblDVRT7/NOAR4BBggare4PN7A48DpwIfAxO9EwIicjVwqz//nar6WNCv\nOUBfYCXwV6q6L0X/ta1rNAzDMJIREVQ162WMrNvt7gOyiY5hGEb7KZToWEQCwzAMo2iY6BiGYRhF\nw0THMAzDKBomOoZhGEbRMNExDMMwioaJjmEYhlE0THQMwzCMomGiYxiGYRQNEx3DMAyjaJjoGIZh\nGEXDRMcwDMMoGiY6hmEYRtEw0TEMwzCKhomOYRiGUTRMdAzDMIyiYaJjGIZhFA0THcMwDKNomOgY\nhmEYRcNExzAMwygaJjqGYRhG0TDRMQzDMIqGiY5hGIZRNEx0DMMwjKKRteiISJmIvC4i8/33viKy\nSEQaRWShiPQJyk4VkQ0islZELgjyx4jImyKyXkRmBfm9RGSOr7NMRKqDY5N9+UYRmRTkDxWR5f7Y\nbBGp6MiNMAzDMApPe2Y6NwBrgu+3AEtUdSTwPDAVQERGAVcCdcBFwH0iIr7O/cA1qjoCGCEiE3z+\nNcAOVT0BmAXM9G31BW4DTgfOAG4PxG0GcLdva5dvwzAMw+jEZCU6IjIEuBj4cZB9KfCoTz8KXObT\nlwBzVHW/qm4ENgBjRWQQUKWqr/hyjwV1wraeBM716QnAIlXdraq7gEXAhf7YucBTwfkvz+ZaDMMw\njNKR7UznB8AUQIO8gaq6HUBVtwEDfP5gYHNQrsnnDQa2BPlbfF5SHVVtAXaLSL90bYlIf2Cnqh4I\n2jo2y2sxDMMwSkSb6yAi8iVgu6q+ISL1GYpqhmPtRdouklUZAKZNm3YwXV9fT319fft7ZBiG0Y1p\naGigoaGh4OfJZvH9C8AlInIxcChQJSKPA9tEZKCqbvemsw99+SbguKD+EJ+XLj+ss1VEyoEjVXWH\niDQB9bE6S1X1YxHpIyJlfrYTttWKUHQMwzCM1sQfyKdPn16Q87RpXlPVb6tqtarWAhOB51X1r4H/\nBq72xSYD83x6PjDRe6QNA4YDL3sT3G4RGesdCybF6kz26StwjgkAC4HxXmD6AuN9HsBSXzZ+fsMw\nDKOT0hE347uAuSLyf4FNOI81VHWNiMzFebrtA65V1cj0dh3wCHAIsEBVn/P5DwGPi8gG4GOcuKGq\nO0Xkn4FXcea76d6hAJz33Bx/fKVvwzAMw+jESEIPuiciot39Gg3DMPKNiKCqWa+dZ4tFJDAMwzCK\nhomOYRiGUTRMdAzDMIyiYaJjGIZhFA0THcPogjQ3w7Jl7q9hdCVMdAyji9HcDOPGwTnnuL8mPEZX\nwkTHMLoYq1bB6tWwfz+sWePShtFVMNExjC7G6NFw0klQWQmjRrm0YXQVbHOoYXRBmpvdDOekk6Cq\nqtS9MbojhdocaqJjGIZhtMIiEhiGYRhdHhMdwzAMo2iY6BhGjM6wByZTHzpD/wwjV0x0DCMgH3tg\nOioKmfpge3SMro6JjmEEdHQPTD5EIVMfbI+O0dUx0TGMgI7ugcmHKGTqg+3RMbo65jJtGDE6sgcm\nmumsWeNE4cUXc9tHk6kPtkfHKAa2TydHTHSMYmOiYHQHTHRyxETHMAyj/djmUMMwDKPLY6JjGIZh\nFA0THcMwDKNomOgYhlFSLMJCz6JN0RGR3iKyQkRWishqEfkXn99XRBaJSKOILBSRPkGdqSKyQUTW\nisgFQf4YEXlTRNaLyKwgv5eIzPF1lolIdXBssi/fKCKTgvyhIrLcH5stIhX5uCGGYRQPi7DQ82hT\ndFR1L/Anqnoq8MfAuSLyBeAWYImqjgSeB6YCiMgo4EqgDrgIuE9EIg+I+4FrVHUEMEJEJvj8a4Ad\nqnoCMAuY6dvqC9wGnA6cAdweiNsM4G7f1i7fhmEYXQiLsNDzyMq8pqqf+mRvX2cncCnwqM9/FLjM\npy8B5qjqflXdCGwAxorIIKBKVV/x5R4L6oRtPQmc69MTgEWqultVdwGLgAv9sXOBp4LzX57NtRiG\n0XmwCAs9j6xMUiJSBrwGHA88oKprRGSgqm4HUNVtIjLAFx8MLAuqN/m8/cCWIH+Lz4/qbPZttYjI\nbhHpF+aHbYlIf2Cnqh4I2jo2m2sxDKPzUFXlojbYZtqeQ1ai4wf3U0XkSGChiNQD8R2X+dyBmc2G\npKw3LU2bNu1gur6+nvr6+vb3yDBwaw6rVrkndBsg80NVFZx5Zql7YTQ0NNDQ0FDw87Rr8V1V94jI\nAuDzwPZotuNNZx/6Yk3AcUG1IT4vXX5YZ6uIlANHquoOEWkC6mN1lqrqxyLSR0TKvCCGbbUiFB3D\nyJVo0Tt6Kn/xRZdvImR0B+IP5NOnTy/IebLxXjs6WrwXkUOB8cBKYD5wtS82GZjn0/OBid4jbRgw\nHHhZVbcBu0VkrHcsmBSrM9mnr8A5JgAsBMZ7genrz73QH1vqy8bPbxgFIb7o/fLL5nllGO0lm5nO\nMcCjXijKgMdV9ZcishKYKyL/F9iE81jDr/fMBdYA+4Brg+Bn1wGPAIcAC1T1OZ//EPC4iGwAPgYm\n+rZ2isg/A6/izHfTvUMBOO+5Of74St+GYRSMaNE7iiCt2trzysxEhpEZC/hpGO0gjCAN+XmNgWF0\nRizKdI6Y6BiFxF5jYHRXTHRyxETHMAyj/dirDQwjD1icL8NI8KuNv+KMH5+BTBfu+p+7inJOi1dm\n9BhSuTy3xyRme3SMrs6WPVu4beltPPzGw0n59UPruebU4kQSM9Exegyp4nxl623WUcEyjFLwh/1/\n4Icv/5Api6egwf79AYcPYOb5M/mrP/4rysvKi9onEx2jxxB3eW5PnK9sBKsUMyGbfRkhqsrCdxYy\nZfEUVn24KunYlLOmMPXsqfQ9tG+JeucwRwKj05PPgTVXb7NoppPOPboUMyGbfRkA7+x4h1ufv5Un\nVj+RlH/xCRfz3fO+yx8P/OOc2jXvtRwx0enadKaBNZNgLVvmIhPs3+8iJr/wQuE3ipbinEbp+eSz\nT/jBsh9wW8NtSfk1fWr43vjv8Rej/oLE22Ryx0QnR0x0ujbFHFg7MqNqayZUCEpxTqP4qCpPr3ua\nKYun8O7Od5OO3f7F2/nW//oWVb3z/8Ob6OSIiU7XplgDaz5mVKXYKGqbU7snaz5aw9RfTmV+4/yk\n/L8Y9Rd859zvMKL/iIL3wUQnR0x0uj7FGFjNVGWUkl1/2MWM/5nBXb9O3itTd3Qd3xv/PS4+4eK8\nmMzag4lOjpjoGNlgpiqjmBzQA8x+azZTFk/hg08+SDo24/wZfGPsNzi08tAS9c5hopMjJjrdn456\nt0X1a2rg/ffNVGUUhtc/eJ2bl9zMkneXJOVPOnkSd9TfQc1RNSXqWWoKJTq2T8fo0uQjykBn8Y4z\nuhcf/e4j7nzhTu59+d6k/NOOOY2Z42dy7rBzS9Sz0mKiY3RpOhJlINv6tgHTyIb9B/bz8MqHmbJ4\nCrv37j6Yf0jFIcw8fyZ/+/m/pVd5rxL2sHNgomN0aToSZSCb+jYTMjLx6/d/zU1LbuKlzS8l5X/t\ntK9x2xdv45iqY0rUs86LrekYXZ6Oerd1tk2fRudla/NWpjVM40ev/ygp/+zqs5lx/gzOOu6sEvUs\n/5gjQY6Y6HR9SmneytWrzUxy3YO9+/fywKsPMGXxFPYd2Hcwv9+h/Zh5/kwmnzKZirLuaTAy0ckR\nE52uTWcwb7V3JtUZ+mzkzpJ3lzBl8RTe2PZGUv6NZ97IreNupf9h/UvUs+JiopMjJjpdm1zNWx2Z\naWzdCs88A//7f8Oxx+bW53HjoKUFKiqc6JTaJGczr/Rs3LWRf3z+H/nJWz9Jyr/g+Au467y7OPWY\nU0vUs9JiLtNGtyLbQTBc6B85Ej75xNXNVKcjM42tW+H44+EPf4BDDoF33sleeKJr6t/fCWQkOtXV\n2dUvFDbzSubTfZ9yz/J7+Pbz307KH3LkEGaeP5OrRl9FmdhLlQuF3Vmj6ESD4DnnuL+ZXh1dVeUG\nyWefdd8vuqjtOnE36Dlzsn899TPPOMEB93fBgvZf05e+BPu8+b+lxW04zRe5vG47lVt4T0JVmd84\nn5H/PhKZLhz+L4cfFJxbx93Krpt3obcrm2/czJf/6MsmOIVGVbv1x12i0Zl46SXVigpVUK2sVF22\nLL919uxRPflkV+6QQ1TLy933PXvaPk9Tk6sD7m9TU27XNHy4+5vtebMhuq6Kiva1G96PfPanM7Pu\no3V6+ZzLlWkkfS6bc5mu+XBNqbvXJfBjZ/7H5DYLwBDgeWA18BZwvc/vCywCGoGFQJ+gzlRgA7AW\nuCDIHwO8CawHZgX5vYA5vs4yoDo4NtmXbwQmBflDgeX+2GygIk3/C/F7GB0gl0GwvXX27FG95x4n\nOO0RN1UnND/6kfu7Z48TlGzOF/avqcmdL58DfC5iHfYv3/3pTOz+w279x1/+YyuROeHeE/Tna3+u\nBw4cKHUXuxylFJ1BwCk+fYQf/E8EZgA3+fybgbt8ehSwErdeNBR4m4TDwgrgdJ9eAEzw6a8D9/n0\nVcAcTQjbO0Af4Kgo7Y89AVzh0/cDf5um/wX5QYyOkcsg2J46e/aojh7t/oWDS7d3wG3vzKLQA3tP\nnLGko+VAi85+a7YO+f6QVkLznRe+o5/s/aTUXezylEx0WlWAnwPnA+uAgZoQpnU+fQtwc1D+WeAM\nX2ZNkD8RuN+nnwPO8Oly4MN4GU2Iy1U+/RFQ5tNnAs+l6W9+fwkja7KdJRSCcFZQXq66ZEnH2mjv\nzKJQdLYZSzF/4zc+eEMv/H8XthKZv3zqL/WdHe8UvgM9jEKJTru810RkKHAKzqw1UFW3+1F9m4gM\n8MUG40xkEU0+bz+wJcjf4vOjOpt9Wy0isltE+oX5YVsi0h/YqaoHgrZycG41CkWpPabi4W3Gju14\nG/36wYMP5u5KnQ+qqkrvfh1R6N/47R1vc8K/ndAq/+SBJ/O98d9j/PHj83cyo2hkLToicgTwJHCD\nqn4iIvHNL/ncDJONb3jW/uPTpk07mK6vr6e+vr79PTLaRUcDcWZDJrfryOutI+Fxwjb69YOTT87N\nlbq7ku/f+LOWzzj/sfN58f0XWx27fuT3+acJ13J0394d6LGRiYaGBhoaGgp/omymQzhxeg4nOFHe\nWpLNa2s1tXntORLmtbVBfrbmtQeCOg+QMK99SLJ57dk0fc/ffNPImnTrD/kyx+TqyZUr//EfifUh\ncI4G+aKUZsiOkI81pnuW39PKXBZ9lm9eXvTf2UhAKdd0gMeA78fyZkTiQmpHgl7AMJIdCZYDY3Gz\nlAXAhT7/WhKOBBNJ7UgQpY/yx54IBOh+4Gtp+l6An8PIhvj6Q7YDSDaDcLHXWxobVXv10na7UrdF\nVx9U27vG9Jttv0krMnf+6s5W5TvjulpPoWSiA3wBaAHe8GLyOnAh0A9YgvNmWxSJga8z1YtN3GX6\nNJzb9QbgniC/NzDX5y8HhgbHrvb560l2mR6G84Zb7wWoMk3/C/KDGOlJJxrZDCDtEaa2nrLb4+6c\nqVzYpyFDnADli+4+qH6y9xOt+/e6lCJz6gOn6qeffZqxvnnslY6SznS68sdEp7jERaOpKTGgZzOA\nZPI6i4tDpqfsTP3IVK6tPuVbGLrjoHr70tvTzmZWbV/V7vY6m8deT6FQomMBP428EgboLC+HQYNg\n2za32P+iXx9Ot7jf3AwrVsD118PatS5v9Gh4yb8fqz2eUvFAoTU1sHFj67qZAoqGsdQK6UTQ0fcB\nlZp/felfmbJ4Sspj9118H18//etF7pGRDyzKdI6Y6BSX0I22rAw++8zlh9GWU3mdhfWqq2HTJhe3\nLBIC1fZFmw7fg1NTA++9lwjAed99MHGiO3e69+WE/Rk6FN59Fw4c6DxRo0vJezvfo/be2pTHzq89\nnwV/uYDK8soi98rINyY6OWKiU3yam12QzWuvdSIBMHw4vP66S48b50Rn2DD41a/crCGccVRUuIF+\n06aEEACcdRasWwcnnuhmP23NCqIZRHU1XHyxS1dUuHOEM55UM41UM6WwP11xRpIrqkrZHemDYC75\n6yWcV3teEXtkFINCiY6FUzXyTlWVm0mcdJIbsIcPd+ICMHu2E5yWFnj7bfjiF92gH23ErKx0f3/x\nC/jhD12U53CAb+/zg2piv833v++iP8ejLUcbLsPzhP0ZNcr1/4UXOq/g5BJ9OhM3PncjMl2Q6dJK\ncP50xJ+it+vBT2cUnHzfDyN/2EzHKBjhDAISM5zy8oTZLTSVpZqZRDOSFSvgwgtTm8jSnTsyj514\nInznO3DLLa3Xitp6L082ay2lfkFaPiID/GbbbzjlP05Je3zfP+3rMq9lLnU0jO6CmddyxESncxB3\nMBBx6d69Ye5c+JM/SW/aevZZ+OY33cAOrk5LS+YBJWwD3PrSAR80qbwcFi6E89rxgJ5OWOLi9oMf\nwBlnFH6QC/uzalX7367acqCFin9OLyKv/83rXfaNmbm+bdZIxsxrRpciNG80N8PvfucG5cpKt5YT\nCcDevfBnfwZjxri3dkJr05aqW8sBJxj797vPqlXw8supzx+1UeHH1eh8FRXuWHtisWV66dyKFa4f\nUX+yeclcR4n3p6Ymca01NenfVPrnc//8oMksLjiXDLqO0U8qFXcqJz+tDD8ie8HpbKas+L+faKZt\ndBIK4YfdmT7YPp12k2o/THyPS6YNlU1N7iVm5eXulQKjR7t9LqNHu303TU2qo0ZpUlgZcHVS7cEJ\n97KMHq1aV5eoM2qU6rx5qosXp96Dc889yee4997M+z1SXVe6fTrx1ydEn3zu5Qn7E6UXL27dn+ie\nh/uNlr63NO1+GaahBw4cOHhvo/cOtbf/nTWigu3t6TjY5lATnWKQalNlfFDJNNDs2eMGv2gAKy9v\n/SK1PXtUa2tbD9YVFekHu3AQCQfd8FNXl1p4Ro9OCGBbgpPqutJt4IxvZK2tze8mz7A/cfEePTr5\nXC+9pFre+/cZReY377+jL72U2Cjb1ORiyoWC017x6O4RFXoyJjomOu0ml0CS8UHkwQdbDyqZBprw\nGLiBOOUAGRvo2vNK6XAwjgtPqvfm7Nnj8lPNhjJde3hdqdooxNtCw98s7E90j6K+LVniznXyfaem\nFZlpS77bSrTKy13suIqKxKu8o+/RTLS9L9brbhEVDIeJjolOu8jV7JFqII0PKpkGmnBmUVubeOVz\nusCfw4e7WGa5vEU0bjqLi040cKearYXH25rRZLqf+TTjxGc28+YlBPugaIx+MuNsJuxLOtFKZQ78\n0Y9yvwYzZXVPCiU65r3WTVmyxC1qZ+PBE/fMirs6r1jhvM3Gjk2OIJDKnbi5ObtNnPkI/dLc7DzF\nIjfoUaNg+fLUEQU2bky+FyedlNqtNn7tq1a5xfknn4S///vkKAm5ekRF4X4g2dMt7nFXUQEn/NEu\n1l7aN21b2/9hOwMOH5DyWBhtYeRIl7dunWu3pSXhlGFuxUYqzGU6R3qi6EQDf+RiPHq0cxHetCmz\ny2988Mllv0Mqd+fDDkt93nzsbWluTniwhaIYd9GuqYHNm50wLVgAzzwD112XiIAQ3/ezdau79k2b\n3PG9exPnTLfHJ52YxMvEf5uoreh+/+aio+CQ3Smv9+FLH+bqU65u1/0JRTTaB/X++4m/XTXmm1FY\nCiU6JTdKm0JPAAAYIUlEQVR/FfpDDzSvxRe4589Pb2rLdn2mosKt76RaqE9nogrXEYYPT7yDJpUZ\nKb7ekm49KjSZpVuvipwN4l5ukedc3ONMpLWjRE1NalNUWVn6daOw3bjTQirPs+j3+YcnfpjWXFY5\npabNe24YhQBb0zHRyZb4wH/PPa09yFKVzbSOES02p/LqSrfOsXhx8jpC5BIddzaID9Sh+29trROl\ncC0pXPwOxSzep9ra1te9eHFqMcm2TG1t268/iMQkdK0ORfaE07ZkXJcZPaZZGxudyMevbfHihBeb\nLdwbhcREx0SnXUTeVtEAFReN+P6PaK9HlBe50772murNN7eeDe3Z446HM6H4Iv6cOan3f6TaGxLN\nIubPVx08uPVgH+3HSbUYPnRo+sXz4cOTnSJSOR/06pUsunHRqahIiFhjY/oZWDjTqatz7UT3MZPI\n/GL9L1rNOON7bjq6n6YY2Ayse2GiY6LTbuIDWeShlGqGEubV1an27q0HTU/RzCLu0VZenigXzlTi\nA3B8pqOaEMWRI5MH0YEDW9cLxSWcSYTH5s9PtJvKjTkyq5WVJV47HZ3ztddae9dFZSOhWbbM/Y02\nvaaaFS5e7Poxf77q5666Na3InPPQn7T6rcJ+R+cIhSU+k+psM51cvSWNzouJjolOu0llOovPUFIN\naqlmExUVCdEKy5aVOWEKZzupzGf9+qnecUeyuUi1tQkuPvNJ971v3+RjUaSBaL0nPnObNy+9mM2f\nnzriQlyIwk2v4RrXnj2qI89ek3E2U9F7b5JbcqpZQTjjzOSmnst+mkJjm0S7HyY6Jjo5EQ6e8TWR\ndINafKYTX+8Jy4YznWi209SUvIgffnr3ThaepibXTrzcgAGq992XLISh0FRUJGYsvXu7WUiqPS7R\n93CWFP/U1rb9hB4X0speLRlFpvac5QfNmunuX6Zzptr70t79MMU0d2VaGzS6JoUSHXOZ7iZk44K8\nbJlzyY32aFx/PdTXJyI8h+61H3wADz8MV1zhXkMQudU2N8PSpW6/hwhMneraiygvd5GWa2pcIM/w\nWMSPfgRf/WqiT2ed1brMwIHw0UeJQJ0hFRWuP3Pnuv0yY8bAE0/A3Xcnzifi5AGSI0xH9Y8/3r3P\nJ3o5W3z/Taq9SzXfnMzO6sdS3tuqd66m+fGHD7b/X//lXtP9xS/Cjh2ZXxCX6hXZ+XAlL3Z4/67+\n2m0jGXOZtplOWrK1pzc1uSfv+JN+KvfedF5pYaDOXr3cjCaVJ9qIEalnF716Jc90Ghtbl0lnbos+\nt9ySMJ01NiauSaS1SS6TSS1cp4nWsmbMUJ0926XLqpdlNplVthy8P6HHXRgnLdXvkW5WkM91ETN3\nGR0FM6+Z6KQjUxTk0LwSj3kWmqrS7c8J23vppcT6TbiW8uCDqduNly0rc0IU7te56abkMkceqfqf\n/5leLOKmtLin21VXZSc60ZpI1M7Qoaq9Dv80o8is/WjtwXuUyuMvdBVva8BPZSrLp1CYucvoKCY6\nJjppSecwkMpDLVwMjz5Dhyb2wkTtheshUX5jY/L6S2VlIrZaKm+1TGso0ZpLfGbywguuzSFDkvOr\nq1VnzkwM8qmcHkScJ1qqCNbRLCuMNv3SS5pRZLj8rw8KVKb7nm1U6lx+x47+u7CYaEaulEx0gIeA\n7cCbQV5fYBHQCCwE+gTHpgIbgLXABUH+GOBNYD0wK8jvBczxdZYB1cGxyb58IzApyB8KLPfHZgMV\nGfqf/1+jExIfYNI9NTc2JhbgKyuTB/e6OicG8+a5dDhA79nTejAfNCghOvPmucX/bIUnnRnsq19t\nLTjxKABx9+JM75apq3OCJeJMftf8+AeZhSYQqEh0m5rc7CUeNaGtqNS5DPjpHAhs/4tRbEopOmcD\np8REZwZwk0/fDNzl06OAlUCFF4a3ScR3WwGc7tMLgAk+/XXgPp++CpijCWF7B+gDHBWl/bEngCt8\n+n7gbzP0vwA/R+cn3VNztpGHw9nMsmXpXY5ra93AHjelZftJtR4U/wwZ0jrsTVvuxYsXO6F6/Knf\nZhQZ+dw6Pfro1vdh6FC37hMJcJQfzvyKYcKy/S9GqSipeQ2oiYnOOmCgTw8C1vn0LcDNQblngTN8\nmTVB/kTgfp9+DjjDp8uBD+NlNCEuV/n0R0CZT58JPJeh7/n9JYpMNIC29S6YdPXi+znCgbK21j39\npxvso02QjY2qxx6buky2C/fpzF333af6uc+lL1NW5kxuoTt0qjhtkQAtXqyZReayrxy8tkziV17u\nrjlVuXzMaLLFHAKMUlEo0Ul+UXr2DFDV7X5E3yYiUWz1wTgTWUSTz9sPbAnyt/j8qM5m31aLiOwW\nkX5hftiWiPQHdqrqgaCtY3O8jk5NpojEmdi61bnqbtyYcJcNXXEXLHDH33sP6upgzhy46SYXcThi\n5EgXhXnCBBg/3rUZ0b8/7NkD+/aldmnOls8+g7/7u/RtlJW5v5Mmub4dOOCuYfx41++77nIRrJ/6\n9AYeWHlv+hNN04PJXr2hpSLx+oCI/fudm/bHH7t0S0vyNUeceGIiYjO43yLXVxxkw+jR7nxr1rgI\n2eG5U5Evl2vDKBS5ik4cbbtI1mTjF94u3/Fp06YdTNfX11NfX9++HhWQTIPEqlVuP0zE2rVuH0Q4\nyKXaTzJuHLz7rju+Zo0L/f+tbyX2UPzrvzpBamlxxx94IFlw7rjD7YG58UY46ig3EIfEv3eEVIJT\nXu7C7r/3nvu+cWOswFHvsfaqWi5dmabR722D3w2kosLNT8KtQvv2uX1Jv/xl62q//W3qfUW1tTBr\nlhO48PUJxaCqyj00ZLP/pRR7c4zuQ0NDAw0NDYU/UTbTIVqb19aSbF5bq6nNa8+RMK+tDfKzNa89\nENR5gIR57UOSzWvPZuh7/uabeaYte/2ePenXE6Lj0asDomPxYJW1tckuvNGrDjJ5m115ZXZrNCKJ\nVx63tTbU4U8Gkxnj7tQ77uj4OSLngTAv9Ozr7Av6Zooz8gkFMq+VZalNQvLsYj5wtU9PBuYF+RNF\npJeIDAOGAy+r6jZgt4iMFREBJsXqTPbpK4DnfXohMF5E+ohIX2C8zwNY6svGz9+lWLXKPZXu35+Y\nkSxb5p5YI8rL3ae21r2ILXxyXbHCtdHS4v4uWAC/+EXyOWbNcmaZwd6Y2dICX/safOUr6fs1d64b\nctvi6KPh17+Gb3wj9QyhQ/yfi2GaJD5xpmni8+KtPPBAx0/52WcJs1t5OcycCUccAX/+587MedZZ\nLpLAWWe5N7OGv1NIc3Pr3zEftNVuZIqrrMzOFGcYJaEtVQJ+CmwF9gLvA1/BeZYtwbkyLwKOCspP\nxXmtxV2mTwPewrlG3xPk9wbm+vzlwNDg2NU+fz3JLtPDcN5w63GebJUZ+l+AZ4D8EA/iGN/FHvc0\niwemjHuUxZ/SBwxQffjh9HHQ2vpk4yQwfHjHnAkOfo59JfNspldzQWdS8WtINUOMvy8nU7SBfHub\nZduu7c0x8gUFmulY7LUikmr9JopX9ckncNFFyfG4qquT12cqKtwayMiR7kl7woSEk0HXQ2Fahon2\n04/CbyYV5MwDBsCHHya+V1a6mVpFhZvtgHNUWLIELr7YzUJHjnT3fs2a5Hph3DTIHFetIxSqXcNI\nR6Fir+XLkcDIQHOzM4XdeKNzDAgXeauq3PcVK5xnVGOjM41UV7sBL1pMh4TpZ+1aF1Rz9erSXE/O\npDKTJR3v+MPBkCFuwX/9+vRlzj4bnn7azVlEnHMBOMGJAoW+/TY89ZRzqjj8cOdAsGKFE/rI+aGm\nprUJq73eZpkIH1Ly2a5hlBKb6RSY0KMoEo14NOPo+IknujWYujp48kknUh1xSS45p/4nXHpN+uN3\n7IMD+X3u6d0b3nwTVq507ti//W3m8oMHQ1NT4ntFCnfqyFUdEr/V0KHwq1/BsYGzfiQS/fu7Y1/6\nUvLx9pDKEw3aH8XZXKiNXLGZThclXOwHt0A9fLgTnQ8/dE/lkSCtXQufftqFzWble+GfDkl/fM7T\nsO6ygnZh717ncPHgg7BzJxxzDGzfnl68f//75O+pHCLWrUt2Nxdp7TodicSqVe6hYv/+jrktx51M\nIlf59pjUzIXa6IzYTKeAxDd31tXB7bfD5MlucAQYMcIJ0dq17vvQobB5cwG8wQpFEUxm7aF3b3jk\nEfjylxN5gwa5d9uko1cvJ0ojRrgNqWvXJt//2lo3YF98cfoBPFxziejI2kskGJE5LRfBsHUgoyMU\naqaTrcu0kQMrViQ2d1ZUwLRp8N//nRAcgA0b3FNzxMaNbpDstJz37TZcmQ8kuzMXmSFDEqaoiOiF\nceloaYH774fly50ZbeFCN9BHruovvuhe9BafeYREay4VFXDIIR13W442hb7wQu4zFHOhNjojNtPJ\nM5ENvaYm2UxWXe2etiPvqIjKysRCdkR5eSea6Rz6Mdx8dPrjD/8KNp1TvP5kiYj7jBjh/kYzyV69\n3P0+/ng3u3n//dQzl/hbMLOZeUR1qqsT7ZbanGVv8zRypVAzHROdPBLa0AcNcgvU6U592GFu/SbO\nEUc49+mSkslktudY+H5T+uNFJHwldSrKytzMZ/PmhKeaiBObykp49lnnmZbtgLx1q9t82xEHAcPo\nKpjo5EgxRWfZMic6HZmllER0rroc6n6e/ngJzGRtMWQIfPBB++91r15OgOKzlcitHeCMM1LPYmxR\n3uhJmPdaJ6e5GT76qOOmsaIITr+34foT0h//t3Xw8cgidCR3tm7NzZ38s8/g3/7NOXOEgtNWNO90\n3mSGYbQPE50cCfc/gBu0Vq/OLmZZSchkMttwEfxkQfH60kHKytyepg0bXKSAb30L/uZvWq+NpaOu\nrrWgRGs+kHCRDkUlWpRfvdqt11VXZz6H7Y8xjNSY6ORA3NRyxx2dcF/NDbXQ9730xzuhySwV/fvD\nrl2J2WNZGbzyCpxwQvICeb9+8Gd/lnqWOWiQW7vZuNGJVOgtCE4Y6uoSv+Hw4W7G2dycEIyqqsR7\niDZudO7T6UxsZoozjPSYy3QWhNF9m5th9uyEqWX1ahdSpeQc91KyK3NccGZ+WFJX5ly56aZEWgR+\n/nMYM8Z9D2eVn/88DBvmHARGj4b5891nyRJ47TU49FBXrizFv/iqKhfyJnIOeO89Fwdv3LjkiM6b\nNjnBSec2HZHKFGcYhsNmOm0QD1MDbiCpqEh4Qj3ySCl61kbAzF//Ayz+XvG6UwBGjHD3vK4uEZOu\nvr71b/Kd78CttzqxGDbM7bMJvcuWLXMms5YW106qF+F96UuJN4VG+6jiazfZxj+zOGmGkR7zXmuD\ncFd3FOW5ZPHQOtnu/0IxeDDcfTfceacTiygmXRR6Jr77P3TeiHben3RS8ppbpj028fbSebhB9vte\nbH+M0dUx77Uiki6678iRztbf6vXJheKkuXDFVemP3/l72J8h1lkXpanJba5ct84JQRTVIRq8w0X9\n/fuT49pFEbrjayqZXvkc/sY1NW4vzo4dqctWVWXntZZtOcPoadhMJ0a66L4NDc58U1kJ115bmL5S\nth9uq0x//Jn74dWvFejknYs77nBms8jUVVfn9tFEIrB1a/K7hkaNgnvvdbOhVavaH3PMZiaGkYzN\ndIpA5CTw1lvOhLZ6dSKsyZVXwh/+UICT9hCTWXsoL3feafEYdeH6yqZNbjYUlb/3XjjvPPc9lzUV\nm5kYRnEw0fGEoemjNZuKCic4zzyTR8E541646Ib0x6e3gHZPp8IohhnAcce58DRxBgxws8tIUCKq\nq5PFIy4soRt0FCzTZi6G0fkw85onVQibigo3ePXr59ZzcqLyU7j18PTHH1sM756fY+Odh/JyJ9bp\nbnUUrTnahFlX1zog6r//u/NOi8TprLNc+ZoaVzce78xMYoZROCz2Wo5kKzrNzW7/x9tvJ/KGD4fX\nX2/9muI2yWQy23YyPPBGlg2VBhE349i+Pbvy110H3/62E4hvftO5JQ8e7I5t2ZL6LZvg7vnLL7t0\n/KVo0XETFcMoDSY6OdIeR4KtW92O802bEl5M778P11+fHCalFV+YCeNvTn+8i63LlJe7vS6ffupm\nGA89BLt3u/zIrTgS4N693WJ+JCihUICJhmF0VUx0ciQX77XIeSB6U2T4NkgADt0BN/dP38i9G2DH\n8Nw63AmIB7yMvyemutrt8t+0yYWesTD/htH9MNFJgYhcCMzChfN5SFVnpCiT0+bQVq8fvmEY9N2Y\nunDD7dAwrd3nKATl5W5dZehQ+NnP4Kqr3Exk0CCYMsWZD48/Hl591cUS270bjjnGvdF0507XRipT\nl2EYPQsTnRgiUgasB84DtgKvABNVdV2sXE6i88Lbr/HFn3w+fYECm8ziLyiLdt1XVrpQL++9BwMH\nureRRsI4dKgzi4UbG0Nz12uvNVBfX3+wzZ68ZtLQkHwvejJ2LxLYvUhg+3RaMxbYoKqbAERkDnAp\nsC5jrQz87rPfUTOrho9//3FS/qiq/0Xjt5fSsrd3Un5FRQrTWzuIZiWDB8MPfwinnZZYOzruOBd0\nctMm5+n11FNuk+PFFzuBiMSiudkdGzo04fkVEu4/if+H6sl7U2xwSWD3IoHdi8LTlUVnMBDu9NiC\nE6Kc2bN3D73Ke3F29dn8+E9/zMijnZ90czOMe8ztCRk4EH76U+ehdc45btPoW2+56MWRAFVWOjGp\nrnZxvN5+28UPe+opNxMZMACOPtqJyfvvJ880wvWRN95InomMGJE4FolFVRV84xsduWrDMIzi0ZVF\nJ+8cU3UMW7+1tVV+qs2G48a5Y1F+dXXyHpRITCC9cEDmRfiePBMxDKN70pXXdM4Epqnqhf77LYDG\nnQlEpGteoGEYRokxR4IAESkHGnGOBB8ALwNfVtVMO2oMwzCMEtJlzWuq2iIifwcsIuEybYJjGIbR\niemyMx3DMAyj69E9wxnjNo6KyDoRWS8iGWLUdF1EZIiIPC8iq0XkLRG53uf3FZFFItIoIgtFpE9Q\nZ6qIbBCRtSJyQZA/RkTe9PdrVimup6OISJmIvC4i8/33HnkfAESkj4j8zF/fahE5o6feD39tq/11\n/EREevWUeyEiD4nIdhF5M8jL27X7eznH11kmItVtdkpVu90HJ6ZvAzVAJfAGcGKp+1WA6xwEnOLT\nR+DWuE4EZgA3+fybgbt8ehSwEmdWHervUTTbXQGc7tMLgAmlvr4c7seNwP8D5vvvPfI++L4/AnzF\npyuAPj3xfvgx4F2gl//+BDC5p9wL4GzgFODNIC9v1w58HbjPp68C5rTVp+460zm4cVRV9wHRxtFu\nhapuU9U3fPoTYC0wBHetj/pijwKX+fQluH8U+1V1I7ABGCsig4AqVX3Fl3ssqNMlEJEhwMXAj4Ps\nHncfAETkSGCcqj4M4K9zNz3zfuwBPgMOF5EK4FCgiR5yL1T1f4Cdsex8XnvY1pM4x66MdFfRSbVx\ndHCJ+lIURGQo7olmOTBQVbeDEyZggC8Wvy9NPm8w7h5FdMX79QNgChAuUvbE+wAwDPitiDzszY0P\nishh9MD7oao7gbuB93HXtVtVl9AD70XAgDxe+8E6qtoC7BKRfplO3l1Fp0chIkfgnjJu8DOeuHdI\nt/YWEZEvAdv9rC/TvoJufR8CKoAxwA9VdQzwO+AWeti/CwARqcWZXWuAY3Eznv9DD7wXGcjntbe5\nr6e7ik4TEC5oDfF53Q5vMngSeFxV5/ns7SIy0B8fBHzo85uA44Lq0X1Jl99V+AJwiYi8C8wGzhWR\nx4FtPew+RGwBNqvqq/77UzgR6mn/LgA+D/xaVXf4J/GngbPomfciIp/XfvCY3zt5pKruyHTy7io6\nrwDDRaRGRHoBE4H5Je5TofhPYI2q3hPkzQeu9unJwLwgf6L3OBkGDAde9lPs3SIyVkQEmBTU6fSo\n6rdVtVpVa3G/9fOq+tfAf9OD7kOEN51sFpEo6NJ5wGp62L8LTyNwpogc4q/hPGANPeteCMkzkHxe\n+3zfBsAVwPNt9qbU3hUF9Nq4EPcPbgNwS6n7U6Br/ALQgvPOWwm87q+7H7DEX/8i4KigzlScV8pa\n4IIg/zTgLX+/7in1tXXgnnyRhPdaT74PJ+Mevt4A/gvnvdYj7wdurW818CZu0buyp9wL4Ke4V7/s\nxa1rfQXom69rB3oDc33+cmBoW32yzaGGYRhG0eiu5jXDMAyjE2KiYxiGYRQNEx3DMAyjaJjoGIZh\nGEXDRMcwDMMoGiY6hmEYRtEw0TEMwzCKhomOYRiGUTT+P5Ufvow+IbXTAAAAAElFTkSuQmCC\n", "text/plain": [ "<matplotlib.figure.Figure at 0x115029fd0>" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "plt.plot(test_data['sqft_living'],test_data['price'],'.', \n", " test_data['sqft_living'], sqft_model.predict(test_data), '-')" ] }, { "cell_type": "code", "execution_count": 11, "metadata": { "collapsed": false }, "outputs": [ { "data": { "text/html": [ "<div style=\"max-height:1000px;max-width:1500px;overflow:auto;\"><table frame=\"box\" rules=\"cols\">\n", " <tr>\n", " <th style=\"padding-left: 1em; padding-right: 1em; text-align: center\">name</th>\n", " <th style=\"padding-left: 1em; padding-right: 1em; text-align: center\">index</th>\n", " <th style=\"padding-left: 1em; padding-right: 1em; text-align: center\">value</th>\n", " <th style=\"padding-left: 1em; padding-right: 1em; text-align: center\">stderr</th>\n", " </tr>\n", " <tr>\n", " <td style=\"padding-left: 1em; padding-right: 1em; text-align: center; vertical-align: top\">(intercept)</td>\n", " <td style=\"padding-left: 1em; padding-right: 1em; text-align: center; vertical-align: top\">None</td>\n", " <td style=\"padding-left: 1em; padding-right: 1em; text-align: center; vertical-align: top\">-52317.1465609</td>\n", " <td style=\"padding-left: 1em; padding-right: 1em; text-align: center; vertical-align: top\">5097.79447557</td>\n", " </tr>\n", " <tr>\n", " <td style=\"padding-left: 1em; padding-right: 1em; text-align: center; vertical-align: top\">sqft_living</td>\n", " <td style=\"padding-left: 1em; padding-right: 1em; text-align: center; vertical-align: top\">None</td>\n", " <td style=\"padding-left: 1em; padding-right: 1em; text-align: center; vertical-align: top\">284.542442614</td>\n", " <td style=\"padding-left: 1em; padding-right: 1em; text-align: center; vertical-align: top\">2.23804843986</td>\n", " </tr>\n", "</table>\n", "[2 rows x 4 columns]<br/>\n", "</div>" ], "text/plain": [ "Columns:\n", "\tname\tstr\n", "\tindex\tstr\n", "\tvalue\tfloat\n", "\tstderr\tfloat\n", "\n", "Rows: 2\n", "\n", "Data:\n", "+-------------+-------+----------------+---------------+\n", "| name | index | value | stderr |\n", "+-------------+-------+----------------+---------------+\n", "| (intercept) | None | -52317.1465609 | 5097.79447557 |\n", "| sqft_living | None | 284.542442614 | 2.23804843986 |\n", "+-------------+-------+----------------+---------------+\n", "[2 rows x 4 columns]" ] }, "execution_count": 11, "metadata": {}, "output_type": "execute_result" } ], "source": [ "sqft_model.get('coefficients')" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "# Explore other features" ] }, { "cell_type": "code", "execution_count": 12, "metadata": { "collapsed": true }, "outputs": [], "source": [ "my_features = ['bedrooms', 'bathrooms', 'sqft_living', 'sqft_lot', 'floors', 'zipcode']" ] }, { "cell_type": "code", "execution_count": 13, "metadata": { "collapsed": false }, "outputs": [ { "data": {}, "metadata": {}, "output_type": "display_data" } ], "source": [ "sales[my_features].show()" ] }, { "cell_type": "code", "execution_count": 14, "metadata": { "collapsed": false }, "outputs": [ { "data": {}, "metadata": {}, "output_type": "display_data" } ], "source": [ "sales.show(view= 'BoxWhisker Plot', x='zipcode', y='price')" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "# Build a regression model with more freatures" ] }, { "cell_type": "code", "execution_count": 15, "metadata": { "collapsed": false }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "PROGRESS: Creating a validation set from 5 percent of training data. This may take a while.\n", " You can set ``validation_set=None`` to disable validation tracking.\n", "\n" ] }, { "data": { "text/html": [ "<pre>Linear regression:</pre>" ], "text/plain": [ "Linear regression:" ] }, "metadata": {}, "output_type": "execute_result" }, { "data": { "text/html": [ "<pre>--------------------------------------------------------</pre>" ], "text/plain": [ "--------------------------------------------------------" ] }, "metadata": {}, "output_type": "execute_result" }, { "data": { "text/html": [ "<pre>Number of examples : 16560</pre>" ], "text/plain": [ "Number of examples : 16560" ] }, "metadata": {}, "output_type": "execute_result" }, { "data": { "text/html": [ "<pre>Number of features : 6</pre>" ], "text/plain": [ "Number of features : 6" ] }, "metadata": {}, "output_type": "execute_result" }, { "data": { "text/html": [ "<pre>Number of unpacked features : 6</pre>" ], "text/plain": [ "Number of unpacked features : 6" ] }, "metadata": {}, "output_type": "execute_result" }, { "data": { "text/html": [ "<pre>Number of coefficients : 115</pre>" ], "text/plain": [ "Number of coefficients : 115" ] }, "metadata": {}, "output_type": "execute_result" }, { "data": { "text/html": [ "<pre>Starting Newton Method</pre>" ], "text/plain": [ "Starting Newton Method" ] }, "metadata": {}, "output_type": "execute_result" }, { "data": { "text/html": [ "<pre>--------------------------------------------------------</pre>" ], "text/plain": [ "--------------------------------------------------------" ] }, "metadata": {}, "output_type": "execute_result" }, { "data": { "text/html": [ "<pre>+-----------+----------+--------------+--------------------+----------------------+---------------+-----------------+</pre>" ], "text/plain": [ "+-----------+----------+--------------+--------------------+----------------------+---------------+-----------------+" ] }, "metadata": {}, "output_type": "execute_result" }, { "data": { "text/html": [ "<pre>| Iteration | Passes | Elapsed Time | Training-max_error | Validation-max_error | Training-rmse | Validation-rmse |</pre>" ], "text/plain": [ "| Iteration | Passes | Elapsed Time | Training-max_error | Validation-max_error | Training-rmse | Validation-rmse |" ] }, "metadata": {}, "output_type": "execute_result" }, { "data": { "text/html": [ "<pre>+-----------+----------+--------------+--------------------+----------------------+---------------+-----------------+</pre>" ], "text/plain": [ "+-----------+----------+--------------+--------------------+----------------------+---------------+-----------------+" ] }, "metadata": {}, "output_type": "execute_result" }, { "data": { "text/html": [ "<pre>| 1 | 2 | 0.036191 | 3753305.895604 | 1331207.860498 | 182452.613274 | 171672.186156 |</pre>" ], "text/plain": [ "| 1 | 2 | 0.036191 | 3753305.895604 | 1331207.860498 | 182452.613274 | 171672.186156 |" ] }, "metadata": {}, "output_type": "execute_result" }, { "data": { "text/html": [ "<pre>+-----------+----------+--------------+--------------------+----------------------+---------------+-----------------+</pre>" ], "text/plain": [ "+-----------+----------+--------------+--------------------+----------------------+---------------+-----------------+" ] }, "metadata": {}, "output_type": "execute_result" }, { "data": { "text/html": [ "<pre>SUCCESS: Optimal solution found.</pre>" ], "text/plain": [ "SUCCESS: Optimal solution found." ] }, "metadata": {}, "output_type": "execute_result" }, { "data": { "text/html": [ "<pre></pre>" ], "text/plain": [] }, "metadata": {}, "output_type": "execute_result" } ], "source": [ "my_features_model = graphlab.linear_regression.create(train_data, target='price',features=my_features)" ] }, { "cell_type": "code", "execution_count": 16, "metadata": { "collapsed": false }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "Class : LinearRegression\n", "\n", "Schema\n", "------\n", "Number of coefficients : 115\n", "Number of examples : 16560\n", "Number of feature columns : 6\n", "Number of unpacked features : 6\n", "\n", "Hyperparameters\n", "---------------\n", "L1 penalty : 0.0\n", "L2 penalty : 0.01\n", "\n", "Training Summary\n", "----------------\n", "Solver : newton\n", "Solver iterations : 1\n", "Solver status : SUCCESS: Optimal solution found.\n", "Training time (sec) : 0.0555\n", "\n", "Settings\n", "--------\n", "Residual sum of squares : 5.51265112856e+14\n", "Training RMSE : 182452.6133\n", "\n", "Highest Positive Coefficients\n", "-----------------------------\n", "bathrooms[8] : 1736324.4701\n", "zipcode[98039] : 1189313.641\n", "bathrooms[5.75] : 1132408.3907\n", "bathrooms[6] : 1038888.6791\n", "bathrooms[6.25] : 921271.8796\n", "\n", "Lowest Negative Coefficients\n", "----------------------------\n", "bedrooms[10] : -634621.7503\n", "bedrooms[9] : -433390.2447\n", "bedrooms[8] : -374095.1289\n", "bedrooms[7] : -370887.5765\n", "bathrooms[7.5] : -289789.3143\n", "\n" ] } ], "source": [ "print my_features_model" ] }, { "cell_type": "code", "execution_count": 17, "metadata": { "collapsed": false }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "{'max_error': 4123192.3891082285, 'rmse': 255257.47237577607}\n", "{'max_error': 3459083.769148753, 'rmse': 179550.7974297731}\n" ] } ], "source": [ "print sqft_model.evaluate(test_data)\n", "print my_features_model.evaluate(test_data)" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "# Apply learned model to predict 3 houses price" ] }, { "cell_type": "code", "execution_count": 18, "metadata": { "collapsed": true }, "outputs": [], "source": [ "house1 = sales[sales['id'] =='5309101200']" ] }, { "cell_type": "code", "execution_count": 19, "metadata": { "collapsed": false }, "outputs": [ { "data": { "text/html": [ "<div style=\"max-height:1000px;max-width:1500px;overflow:auto;\"><table frame=\"box\" rules=\"cols\">\n", " <tr>\n", " <th style=\"padding-left: 1em; padding-right: 1em; text-align: center\">id</th>\n", " <th style=\"padding-left: 1em; padding-right: 1em; text-align: center\">date</th>\n", " <th style=\"padding-left: 1em; padding-right: 1em; text-align: center\">price</th>\n", " <th style=\"padding-left: 1em; padding-right: 1em; text-align: center\">bedrooms</th>\n", " <th style=\"padding-left: 1em; padding-right: 1em; text-align: center\">bathrooms</th>\n", " <th style=\"padding-left: 1em; padding-right: 1em; text-align: center\">sqft_living</th>\n", " <th style=\"padding-left: 1em; padding-right: 1em; text-align: center\">sqft_lot</th>\n", " <th style=\"padding-left: 1em; padding-right: 1em; text-align: center\">floors</th>\n", " <th style=\"padding-left: 1em; padding-right: 1em; text-align: center\">waterfront</th>\n", " </tr>\n", " <tr>\n", " <td style=\"padding-left: 1em; padding-right: 1em; text-align: center; vertical-align: top\">5309101200</td>\n", " <td style=\"padding-left: 1em; padding-right: 1em; text-align: center; vertical-align: top\">2014-06-05 00:00:00+00:00</td>\n", " <td style=\"padding-left: 1em; padding-right: 1em; text-align: center; vertical-align: top\">620000</td>\n", " <td style=\"padding-left: 1em; padding-right: 1em; text-align: center; vertical-align: top\">4</td>\n", " <td style=\"padding-left: 1em; padding-right: 1em; text-align: center; vertical-align: top\">2.25</td>\n", " <td style=\"padding-left: 1em; padding-right: 1em; text-align: center; vertical-align: top\">2400</td>\n", " <td style=\"padding-left: 1em; padding-right: 1em; text-align: center; vertical-align: top\">5350</td>\n", " <td style=\"padding-left: 1em; padding-right: 1em; text-align: center; vertical-align: top\">1.5</td>\n", " <td style=\"padding-left: 1em; padding-right: 1em; text-align: center; vertical-align: top\">0</td>\n", " </tr>\n", "</table>\n", "<table frame=\"box\" rules=\"cols\">\n", " <tr>\n", " <th style=\"padding-left: 1em; padding-right: 1em; text-align: center\">view</th>\n", " <th style=\"padding-left: 1em; padding-right: 1em; text-align: center\">condition</th>\n", " <th style=\"padding-left: 1em; padding-right: 1em; text-align: center\">grade</th>\n", " <th style=\"padding-left: 1em; padding-right: 1em; text-align: center\">sqft_above</th>\n", " <th style=\"padding-left: 1em; padding-right: 1em; text-align: center\">sqft_basement</th>\n", " <th style=\"padding-left: 1em; padding-right: 1em; text-align: center\">yr_built</th>\n", " <th style=\"padding-left: 1em; padding-right: 1em; text-align: center\">yr_renovated</th>\n", " <th style=\"padding-left: 1em; padding-right: 1em; text-align: center\">zipcode</th>\n", " <th style=\"padding-left: 1em; padding-right: 1em; text-align: center\">lat</th>\n", " </tr>\n", " <tr>\n", " <td style=\"padding-left: 1em; padding-right: 1em; text-align: center; vertical-align: top\">0</td>\n", " <td style=\"padding-left: 1em; padding-right: 1em; text-align: center; vertical-align: top\">4</td>\n", " <td style=\"padding-left: 1em; padding-right: 1em; text-align: center; vertical-align: top\">7</td>\n", " <td style=\"padding-left: 1em; padding-right: 1em; text-align: center; vertical-align: top\">1460</td>\n", " <td style=\"padding-left: 1em; padding-right: 1em; text-align: center; vertical-align: top\">940</td>\n", " <td style=\"padding-left: 1em; padding-right: 1em; text-align: center; vertical-align: top\">1929</td>\n", " <td style=\"padding-left: 1em; padding-right: 1em; text-align: center; vertical-align: top\">0</td>\n", " <td style=\"padding-left: 1em; padding-right: 1em; text-align: center; vertical-align: top\">98117</td>\n", " <td style=\"padding-left: 1em; padding-right: 1em; text-align: center; vertical-align: top\">47.67632376</td>\n", " </tr>\n", "</table>\n", "<table frame=\"box\" rules=\"cols\">\n", " <tr>\n", " <th style=\"padding-left: 1em; padding-right: 1em; text-align: center\">long</th>\n", " <th style=\"padding-left: 1em; padding-right: 1em; text-align: center\">sqft_living15</th>\n", " <th style=\"padding-left: 1em; padding-right: 1em; text-align: center\">sqft_lot15</th>\n", " </tr>\n", " <tr>\n", " <td style=\"padding-left: 1em; padding-right: 1em; text-align: center; vertical-align: top\">-122.37010126</td>\n", " <td style=\"padding-left: 1em; padding-right: 1em; text-align: center; vertical-align: top\">1250.0</td>\n", " <td style=\"padding-left: 1em; padding-right: 1em; text-align: center; vertical-align: top\">4880.0</td>\n", " </tr>\n", "</table>\n", "[? rows x 21 columns]<br/>Note: Only the head of the SFrame is printed. This SFrame is lazily evaluated.<br/>You can use sf.materialize() to force materialization.\n", "</div>" ], "text/plain": [ "Columns:\n", "\tid\tstr\n", "\tdate\tdatetime\n", "\tprice\tint\n", "\tbedrooms\tstr\n", "\tbathrooms\tstr\n", "\tsqft_living\tint\n", "\tsqft_lot\tint\n", "\tfloors\tstr\n", "\twaterfront\tint\n", "\tview\tint\n", "\tcondition\tint\n", "\tgrade\tint\n", "\tsqft_above\tint\n", "\tsqft_basement\tint\n", "\tyr_built\tint\n", "\tyr_renovated\tint\n", "\tzipcode\tstr\n", "\tlat\tfloat\n", "\tlong\tfloat\n", "\tsqft_living15\tfloat\n", "\tsqft_lot15\tfloat\n", "\n", "Rows: Unknown\n", "\n", "Data:\n", "+------------+---------------------------+--------+----------+-----------+-------------+\n", "| id | date | price | bedrooms | bathrooms | sqft_living |\n", "+------------+---------------------------+--------+----------+-----------+-------------+\n", "| 5309101200 | 2014-06-05 00:00:00+00:00 | 620000 | 4 | 2.25 | 2400 |\n", "+------------+---------------------------+--------+----------+-----------+-------------+\n", "+----------+--------+------------+------+-----------+-------+------------+---------------+\n", "| sqft_lot | floors | waterfront | view | condition | grade | sqft_above | sqft_basement |\n", "+----------+--------+------------+------+-----------+-------+------------+---------------+\n", "| 5350 | 1.5 | 0 | 0 | 4 | 7 | 1460 | 940 |\n", "+----------+--------+------------+------+-----------+-------+------------+---------------+\n", "+----------+--------------+---------+-------------+---------------+---------------+-----+\n", "| yr_built | yr_renovated | zipcode | lat | long | sqft_living15 | ... |\n", "+----------+--------------+---------+-------------+---------------+---------------+-----+\n", "| 1929 | 0 | 98117 | 47.67632376 | -122.37010126 | 1250.0 | ... |\n", "+----------+--------------+---------+-------------+---------------+---------------+-----+\n", "[? rows x 21 columns]\n", "Note: Only the head of the SFrame is printed. This SFrame is lazily evaluated.\n", "You can use sf.materialize() to force materialization." ] }, "execution_count": 19, "metadata": {}, "output_type": "execute_result" } ], "source": [ "house1" ] }, { "cell_type": "code", "execution_count": 20, "metadata": { "collapsed": false }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "[620000, ... ]\n" ] } ], "source": [ "print house1['price']" ] }, { "cell_type": "code", "execution_count": 21, "metadata": { "collapsed": false }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "[630584.71571273]\n" ] } ], "source": [ "print sqft_model.predict(house1)" ] }, { "cell_type": "code", "execution_count": 22, "metadata": { "collapsed": false }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "[722162.9299354439]\n" ] } ], "source": [ "print my_features_model.predict(house1)" ] }, { "cell_type": "code", "execution_count": 23, "metadata": { "collapsed": true }, "outputs": [], "source": [ "house2 = sales[sales['id'] == '1925069082']" ] }, { "cell_type": "code", "execution_count": 24, "metadata": { "collapsed": false }, "outputs": [ { "data": { "text/html": [ "<div style=\"max-height:1000px;max-width:1500px;overflow:auto;\"><table frame=\"box\" rules=\"cols\">\n", " <tr>\n", " <th style=\"padding-left: 1em; padding-right: 1em; text-align: center\">id</th>\n", " <th style=\"padding-left: 1em; padding-right: 1em; text-align: center\">date</th>\n", " <th style=\"padding-left: 1em; padding-right: 1em; text-align: center\">price</th>\n", " <th style=\"padding-left: 1em; padding-right: 1em; text-align: center\">bedrooms</th>\n", " <th style=\"padding-left: 1em; padding-right: 1em; text-align: center\">bathrooms</th>\n", " <th style=\"padding-left: 1em; padding-right: 1em; text-align: center\">sqft_living</th>\n", " <th style=\"padding-left: 1em; padding-right: 1em; text-align: center\">sqft_lot</th>\n", " <th style=\"padding-left: 1em; padding-right: 1em; text-align: center\">floors</th>\n", " <th style=\"padding-left: 1em; padding-right: 1em; text-align: center\">waterfront</th>\n", " </tr>\n", " <tr>\n", " <td style=\"padding-left: 1em; padding-right: 1em; text-align: center; vertical-align: top\">1925069082</td>\n", " <td style=\"padding-left: 1em; padding-right: 1em; text-align: center; vertical-align: top\">2015-05-11 00:00:00+00:00</td>\n", " <td style=\"padding-left: 1em; padding-right: 1em; text-align: center; vertical-align: top\">2200000</td>\n", " <td style=\"padding-left: 1em; padding-right: 1em; text-align: center; vertical-align: top\">5</td>\n", " <td style=\"padding-left: 1em; padding-right: 1em; text-align: center; vertical-align: top\">4.25</td>\n", " <td style=\"padding-left: 1em; padding-right: 1em; text-align: center; vertical-align: top\">4640</td>\n", " <td style=\"padding-left: 1em; padding-right: 1em; text-align: center; vertical-align: top\">22703</td>\n", " <td style=\"padding-left: 1em; padding-right: 1em; text-align: center; vertical-align: top\">2</td>\n", " <td style=\"padding-left: 1em; padding-right: 1em; text-align: center; vertical-align: top\">1</td>\n", " </tr>\n", "</table>\n", "<table frame=\"box\" rules=\"cols\">\n", " <tr>\n", " <th style=\"padding-left: 1em; padding-right: 1em; text-align: center\">view</th>\n", " <th style=\"padding-left: 1em; padding-right: 1em; text-align: center\">condition</th>\n", " <th style=\"padding-left: 1em; padding-right: 1em; text-align: center\">grade</th>\n", " <th style=\"padding-left: 1em; padding-right: 1em; text-align: center\">sqft_above</th>\n", " <th style=\"padding-left: 1em; padding-right: 1em; text-align: center\">sqft_basement</th>\n", " <th style=\"padding-left: 1em; padding-right: 1em; text-align: center\">yr_built</th>\n", " <th style=\"padding-left: 1em; padding-right: 1em; text-align: center\">yr_renovated</th>\n", " <th style=\"padding-left: 1em; padding-right: 1em; text-align: center\">zipcode</th>\n", " <th style=\"padding-left: 1em; padding-right: 1em; text-align: center\">lat</th>\n", " </tr>\n", " <tr>\n", " <td style=\"padding-left: 1em; padding-right: 1em; text-align: center; vertical-align: top\">4</td>\n", " <td style=\"padding-left: 1em; padding-right: 1em; text-align: center; vertical-align: top\">5</td>\n", " <td style=\"padding-left: 1em; padding-right: 1em; text-align: center; vertical-align: top\">8</td>\n", " <td style=\"padding-left: 1em; padding-right: 1em; text-align: center; vertical-align: top\">2860</td>\n", " <td style=\"padding-left: 1em; padding-right: 1em; text-align: center; vertical-align: top\">1780</td>\n", " <td style=\"padding-left: 1em; padding-right: 1em; text-align: center; vertical-align: top\">1952</td>\n", " <td style=\"padding-left: 1em; padding-right: 1em; text-align: center; vertical-align: top\">0</td>\n", " <td style=\"padding-left: 1em; padding-right: 1em; text-align: center; vertical-align: top\">98052</td>\n", " <td style=\"padding-left: 1em; padding-right: 1em; text-align: center; vertical-align: top\">47.63925783</td>\n", " </tr>\n", "</table>\n", "<table frame=\"box\" rules=\"cols\">\n", " <tr>\n", " <th style=\"padding-left: 1em; padding-right: 1em; text-align: center\">long</th>\n", " <th style=\"padding-left: 1em; padding-right: 1em; text-align: center\">sqft_living15</th>\n", " <th style=\"padding-left: 1em; padding-right: 1em; text-align: center\">sqft_lot15</th>\n", " </tr>\n", " <tr>\n", " <td style=\"padding-left: 1em; padding-right: 1em; text-align: center; vertical-align: top\">-122.09722322</td>\n", " <td style=\"padding-left: 1em; padding-right: 1em; text-align: center; vertical-align: top\">3140.0</td>\n", " <td style=\"padding-left: 1em; padding-right: 1em; text-align: center; vertical-align: top\">14200.0</td>\n", " </tr>\n", "</table>\n", "[? rows x 21 columns]<br/>Note: Only the head of the SFrame is printed. This SFrame is lazily evaluated.<br/>You can use sf.materialize() to force materialization.\n", "</div>" ], "text/plain": [ "Columns:\n", "\tid\tstr\n", "\tdate\tdatetime\n", "\tprice\tint\n", "\tbedrooms\tstr\n", "\tbathrooms\tstr\n", "\tsqft_living\tint\n", "\tsqft_lot\tint\n", "\tfloors\tstr\n", "\twaterfront\tint\n", "\tview\tint\n", "\tcondition\tint\n", "\tgrade\tint\n", "\tsqft_above\tint\n", "\tsqft_basement\tint\n", "\tyr_built\tint\n", "\tyr_renovated\tint\n", "\tzipcode\tstr\n", "\tlat\tfloat\n", "\tlong\tfloat\n", "\tsqft_living15\tfloat\n", "\tsqft_lot15\tfloat\n", "\n", "Rows: Unknown\n", "\n", "Data:\n", "+------------+---------------------------+---------+----------+-----------+-------------+\n", "| id | date | price | bedrooms | bathrooms | sqft_living |\n", "+------------+---------------------------+---------+----------+-----------+-------------+\n", "| 1925069082 | 2015-05-11 00:00:00+00:00 | 2200000 | 5 | 4.25 | 4640 |\n", "+------------+---------------------------+---------+----------+-----------+-------------+\n", "+----------+--------+------------+------+-----------+-------+------------+---------------+\n", "| sqft_lot | floors | waterfront | view | condition | grade | sqft_above | sqft_basement |\n", "+----------+--------+------------+------+-----------+-------+------------+---------------+\n", "| 22703 | 2 | 1 | 4 | 5 | 8 | 2860 | 1780 |\n", "+----------+--------+------------+------+-----------+-------+------------+---------------+\n", "+----------+--------------+---------+-------------+---------------+---------------+-----+\n", "| yr_built | yr_renovated | zipcode | lat | long | sqft_living15 | ... |\n", "+----------+--------------+---------+-------------+---------------+---------------+-----+\n", "| 1952 | 0 | 98052 | 47.63925783 | -122.09722322 | 3140.0 | ... |\n", "+----------+--------------+---------+-------------+---------------+---------------+-----+\n", "[? rows x 21 columns]\n", "Note: Only the head of the SFrame is printed. This SFrame is lazily evaluated.\n", "You can use sf.materialize() to force materialization." ] }, "execution_count": 24, "metadata": {}, "output_type": "execute_result" } ], "source": [ "house2" ] }, { "cell_type": "code", "execution_count": 25, "metadata": { "collapsed": false }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "[1267959.7871681442]\n" ] } ], "source": [ "print sqft_model.predict(house2)" ] }, { "cell_type": "code", "execution_count": 26, "metadata": { "collapsed": false }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "[1450774.2551164567]\n" ] } ], "source": [ "print my_features_model.predict(house2)" ] }, { "cell_type": "code", "execution_count": 27, "metadata": { "collapsed": false }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "9221\n" ] } ], "source": [ "sqft_living = sales['sqft_living']\n", "count = len([i for i in sqft_living if i>=2000 and i<=4000])\n", "print count" ] }, { "cell_type": "code", "execution_count": 28, "metadata": { "collapsed": false }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "0.426641373248\n" ] } ], "source": [ "from __future__ import division\n", "print count/len(sqft_living)" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "collapsed": true }, "outputs": [], "source": [] }, { "cell_type": "code", "execution_count": null, "metadata": { "collapsed": true }, "outputs": [], "source": [] } ], "metadata": { "kernelspec": { "display_name": "Python 2", "language": "python", "name": "python2" }, "language_info": { "codemirror_mode": { "name": "ipython", "version": 2 }, "file_extension": ".py", "mimetype": "text/x-python", "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython2", "version": "2.7.9" } }, "nbformat": 4, "nbformat_minor": 0 }
apache-2.0
tien-le/uranus
linear_algebra.ipynb
1
18987
{ "cells": [ { "cell_type": "code", "execution_count": 10, "metadata": { "collapsed": true }, "outputs": [], "source": [ "import re, math, random # regexes, math functions, random numbers\n", "import matplotlib.pyplot as plt # pyplot\n", "from collections import defaultdict, Counter\n", "from functools import partial" ] }, { "cell_type": "code", "execution_count": 11, "metadata": { "collapsed": true }, "outputs": [], "source": [ "# \n", "# functions for working with vectors\n", "#\n", "\n", "def vector_add(v, w):\n", " \"\"\"adds two vectors componentwise\"\"\"\n", " return [v_i + w_i for v_i, w_i in zip(v,w)]\n", "#--------------------------------------------------------------------------------\n", "def vector_subtract(v, w):\n", " \"\"\"subtracts two vectors componentwise\"\"\"\n", " return [v_i - w_i for v_i, w_i in zip(v,w)]\n", "#--------------------------------------------------------------------------------\n", "def vector_sum(vectors):\n", " return reduce(vector_add, vectors)\n", "#--------------------------------------------------------------------------------\n", "def scalar_multiply(c, v):\n", " return [c * v_i for v_i in v]\n", "#--------------------------------------------------------------------------------\n", "# this isn't right if you don't from __future__ import division\n", "def vector_mean(vectors):\n", " \"\"\"compute the vector whose i-th element is the mean of the\n", " i-th elements of the input vectors\"\"\"\n", " n = len(vectors)\n", " return scalar_multiply(1/n, vector_sum(vectors))\n", "#--------------------------------------------------------------------------------\n", "def dot(v, w):\n", " \"\"\"v_1 * w_1 + ... + v_n * w_n\"\"\"\n", " return sum(v_i * w_i for v_i, w_i in zip(v, w))\n", "#--------------------------------------------------------------------------------\n", "def sum_of_squares(v):\n", " \"\"\"v_1 * v_1 + ... + v_n * v_n\"\"\"\n", " return dot(v, v)\n", "#--------------------------------------------------------------------------------\n", "def magnitude(v):\n", " return math.sqrt(sum_of_squares(v))\n", "#--------------------------------------------------------------------------------\n", "def squared_distance(v, w):\n", " return sum_of_squares(vector_subtract(v, w))\n", "#--------------------------------------------------------------------------------\n", "def distance(v, w):\n", " return math.sqrt(squared_distance(v, w))" ] }, { "cell_type": "code", "execution_count": 12, "metadata": { "collapsed": true }, "outputs": [], "source": [ "#\n", "# functions for working with matrices\n", "#\n", "\n", "def shape(A):\n", " num_rows = len(A)\n", " num_cols = len(A[0]) if A else 0\n", " return num_rows, num_cols\n", "#--------------------------------------------------------------------------------\n", "def get_row(A, i):\n", " return A[i]\n", "#--------------------------------------------------------------------------------\n", "def get_column(A, j):\n", " return [A_i[j] for A_i in A]\n", "#--------------------------------------------------------------------------------\n", "def make_matrix(num_rows, num_cols, entry_fn):\n", " \"\"\"returns a num_rows x num_cols matrix \n", " whose (i,j)-th entry is entry_fn(i, j)\"\"\"\n", " return [[entry_fn(i, j) for j in range(num_cols)]\n", " for i in range(num_rows)] \n", "#--------------------------------------------------------------------------------\n", "def is_diagonal(i, j):\n", " \"\"\"1's on the 'diagonal', 0's everywhere else\"\"\"\n", " return 1 if i == j else 0\n", "#--------------------------------------------------------------------------------\n", "identity_matrix = make_matrix(5, 5, is_diagonal)\n", "\n", "# user 0 1 2 3 4 5 6 7 8 9\n", "#\n", "friendships = [[0, 1, 1, 0, 0, 0, 0, 0, 0, 0], # user 0\n", " [1, 0, 1, 1, 0, 0, 0, 0, 0, 0], # user 1\n", " [1, 1, 0, 1, 0, 0, 0, 0, 0, 0], # user 2\n", " [0, 1, 1, 0, 1, 0, 0, 0, 0, 0], # user 3\n", " [0, 0, 0, 1, 0, 1, 0, 0, 0, 0], # user 4\n", " [0, 0, 0, 0, 1, 0, 1, 1, 0, 0], # user 5\n", " [0, 0, 0, 0, 0, 1, 0, 0, 1, 0], # user 6\n", " [0, 0, 0, 0, 0, 1, 0, 0, 1, 0], # user 7\n", " [0, 0, 0, 0, 0, 0, 1, 1, 0, 1], # user 8\n", " [0, 0, 0, 0, 0, 0, 0, 0, 1, 0]] # user 9\n", "#--------------------------------------------------------------------------------\n", "#####\n", "# DELETE DOWN\n", "#\n", "\n", "def matrix_add(A, B):\n", " if shape(A) != shape(B):\n", " raise ArithmeticError(\"cannot add matrices with different shapes\")\n", " \n", " num_rows, num_cols = shape(A)\n", " def entry_fn(i, j): return A[i][j] + B[i][j]\n", " \n", " return make_matrix(num_rows, num_cols, entry_fn)\n", "#--------------------------------------------------------------------------------\n", "def make_graph_dot_product_as_vector_projection(plt):\n", " v = [2, 1]\n", " w = [math.sqrt(.25), math.sqrt(.75)]\n", " c = dot(v, w)\n", " vonw = scalar_multiply(c, w)\n", " o = [0,0]\n", "\n", " plt.arrow(0, 0, v[0], v[1], \n", " width=0.002, head_width=.1, length_includes_head=True)\n", " plt.annotate(\"v\", v, xytext=[v[0] + 0.1, v[1]])\n", " plt.arrow(0 ,0, w[0], w[1], \n", " width=0.002, head_width=.1, length_includes_head=True)\n", " plt.annotate(\"w\", w, xytext=[w[0] - 0.1, w[1]])\n", " plt.arrow(0, 0, vonw[0], vonw[1], length_includes_head=True)\n", " plt.annotate(u\"(v•w)w\", vonw, xytext=[vonw[0] - 0.1, vonw[1] + 0.1])\n", " plt.arrow(v[0], v[1], vonw[0] - v[0], vonw[1] - v[1], \n", " linestyle='dotted', length_includes_head=True)\n", " plt.scatter(*zip(v,w,o),marker='.')\n", " plt.axis('equal')\n", " plt.show()" ] }, { "cell_type": "code", "execution_count": 13, "metadata": {}, "outputs": [ { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAZoAAAEWCAYAAABfdFHAAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzt3Xl8VdW5//HPk5CBWREBmUHwOtWCUAvKkFu9FXrrVLFK\n1TpV+7Naxxbr9f4UnKrUts6iiK3igCMqg4pWAxQtMyoyBgiDTAFBhkBIctb9I4eYQkKms886+5zv\n+/XKi5OcxeFZbMg3z9pr72POOURERIKS5rsAERFJbgoaEREJlIJGREQCpaAREZFAKWhERCRQChoR\nEQlUKILGzMaY2SYz+6KK5wea2XYzmxf9+N941ygiIpVr4LuAGvob8BjwwiHGTHPOnR2nekREpIZC\n0dE45/4JbKtmmMWjFhERqZ1QBE0N9TGz+WY2ycyO912MiIiUCcvSWXXmAp2cc4VmNhh4GzimsoFm\npnvuiIjUgXOuTitHSdHROOd2OecKo4/fAzLMrMUhxiftx1133eW9hlSd31FHtQUgEol4md+YMX+n\nWbPD2Lix1PvfRRiPn+Z26I/6CFPQGFWchzGz1hUenwKYc+6beBUm8sUXX7Bhw3rGjx+PmZ/ThVde\neRnbt39D48ZpfPXVboYO/SVFRUVeahGpKBRBY2YvA58Cx5jZGjO7wsx+bWbXRIcMMbOFZjYfeBi4\n0FuxkpK+//3vA3Duued6rcPMaNIE2rcvYcKE8bzwwhRKSryWJBKOczTOuV9U8/wTwBNxKieh5eTk\n+C4hUIk4v2effRaAlStX1vu1YjW/5s2bs3PnDpyDdevgzTf/TocOTRgyZEhMXr+uEvH4xUoyz62+\nrL5rb2FjZi7V5izBKS0tpUGDBpx8ci/mzp3ju5wq3X//SMaMeY5Zs5ZwxBG+q5EwMjNcHTcDKGhE\n6uH884fw1ltvsmfPHrKzs32Xc0jOOXbsMFas2MojjwzjueeeIT093XdZEhL1CZpQnKMRSURbtmzh\nrbfe5M4770r4kIGybxTNm0OHDhFeeOE5xo+fSSTiuypJBepoROooIyODkpISIpGIt51mdVX2f8BY\nvRpefPExTjnlP/jxj3/suyxJYOpoROJsxowZlJSU8PHHH4cuZKDsm4YZdO4MGzbkcdddf2RbdTd5\nEqkjdTQidbA/XJLl35Jzju3bja++WsOLLz7IU089HsoAleCooxGJo5EjRwKwfv16z5XEjplx+OHQ\nuXMaTz/9JB9+uIgkyVBJAOpoRGph3759ZGVlceaZg3j//fd8lxOIsluOlJ2/efrpezn33DPo06eP\n77LEM21vrgUFjdTHgAEDmT59GsXFxTRoEIrrnetlyJCLKCoyXnrpFZo1812N+KSgqQUFjdTVunXr\n6NChA4899hjXX3+973LixjnH1q3GvHmLmDLlef70pwd0/iYFKWhqQUEjdZVsGwBqKy8vj+7du/PZ\nZ2vo06eD73IkzrQZQCRg77//PgCzZs3yXIk/3bp1IxKJ0Lt3B1atgt/+9jYWLVrkuywJAXU0ItVw\nzpGWlkazZs349ttvfZeTEJxz5OScTteuJ/HYYw/TpInviiRo9elokv9spkg93XbbHwDIz8/3W0gC\nMTOmTv0Y5xwFBTBlykwWLvyQO+/8X9+lSQJSRyNyCIWFhTRu3JhLLrmUsWNf8F1Owpo/fwEnn9yT\nhQu/4YQTDvddjgRA52hEAtKrV28Ann/+734LSXA9e/YgEonQrdvhrFzpuOqq61izZo3vsiRBKGhE\nqrBs2TKWLFnM2LFjSUvTf5XqmBlZWdCxYymzZs3g0UfHUljouypJBFo6E6lCqm9nri/nHJs2GR99\n9A8KCr7k5ptv8l2S1IOWzkRibNy4cQDavlsPZkabNtCuXTq33HIzK1fu8V2SeKKORuQAkUiE9PR0\njj66G3l5y32XkxScc+zda6xbV8qIEVfzyCN/4gi9p3SoqKMRiaFf/epqAD7/fIHnSpKHmdGwIXTo\nUMz06Z/w1FOvU1TkuyqJF3U0IhV8++23HHbYYdx44008/PBffZeTtJxzrF9vTJ78DlDA1Vf/yndJ\nUg3d66wWFDRyKEceeSRbtmwJ5dszh9Frr73BpZdeQn7+bo46Kt13OXIIWjoTiYH58+ezZcsWJkyY\noJCJk5//fAh79+6hWbN0lizZy9Chv6RQe6KTjjoakShtZ/Zr586ddO7chbvvfoprrrmAjAzfFUlF\nuteZSD2NGjUK0P3MfGratClbt27BOcfatfD22y9z5JHG0KFDfZcm9aSlM0l5JSUlXHvttfzwh33o\n1KmT73JSnpnRsSPANm69dRgFBeoww05BIynvvPN+BsDUqbl+C5F/c8MN1/H112vIyjI+//xbLr74\nMkpKSnyXJXWgoJGUtnnzZiZOnMA999xLVlaW73LkAGZGs2bQvn0Jr7/+CuPGTaW01HdVUlvaDCAp\nbf8GAG1nTnxl/2+NNWtg3LinOf74tpx11lm+y0oZ2t4sUgfTpk0DYOrUqQqZEDAzzKBTJ9i2bS13\n3HE333zjuyqpCXU0kpL2vz3z/scSPs45tm83li3byDPP3MXo0U/p7RwCpI5GpJbuu+9+ADZt2uS5\nEqkrM+Pww6FjR8dzzz3DpEkL0M8MiUkdjaScoqIisrOzOeuss3n33Xd8lyMx4JzDubLzN3/720P8\n6Ec/YODAgb7LSirqaERqYeDAHADeeutNv4VIzJgZaWnQuTPk5y/m3nv/wrff+q5K9lPQSEpZvXo1\nM2f+i6eeeooGDXRjjGT0/PNjmDLlbUpK4JNP8rjhhpt1Hs4zLZ1JStH9zFJLfn4+Xbp0YerUPPr3\nPxptLqw7LZ2J1MDEiRMBmDdvnudKJF46d+5MJBLhtNOOJj8fbrnl/zN//nzfZaUcdTSSEvZvZ27Z\nsiUFBQW+yxEPnHMMHnwWhx12FKNHj6ZpU98VhYvu3ixSjVtuuRWAvLw8z5WIL2bG++9PxDnHli0w\ndep8PvvsLe677x7fpSU9dTSS9Hbv3k2TJk248sqrGDPmWd/lSIJYtGgRJ5xwAvPnb6JHj1a+y0l4\neivnWlDQpJ5u3bqzYkUepaWlunJc/o1zjuJiY906x4MP3sywYb/l6KOP9l1WQtJmAJEqLF68mBUr\n8njllVcUMnIQMyMzEzp1ijBv3r/485+fY/du31UlH3U0ktS0nVlqwznH5s1Gbu40Vq+eybBhv/dd\nUsJQRyNSiRdffBGApUuXeq5EwsLMaN0aOnbM5LbbhrF8+S7fJSUFdTSSlCKRCOnp6Rx33PEsWvSV\n73IkhJxzFBUZ69ZFuPvuXzNy5D20adPGd1neqKMROcBll10OwNy5c/wWIqFlZmRnQ8eOJXz22TSe\neGIce/fG7vVvv/12nnzyyfLPR4wYwV/+8pfY/QEJJDQdjZmNAX4KbHLOnVTFmEeBwcBu4HLn3IJK\nxqijSXLbtm2jRYsW/P73wxg58kHf5UiScM6xYYPxwQeTKSzM57rrflOv11uwYAE33XQTubm5AJxw\nwglMmTKFdu3axaDa2EuVjuZvwJlVPWlmg4GjnXPdgV8Do+JVmCSWzp07A/Dggw/4LUSSipnRti20\nbOm4/vrrWLu2uF6v16NHDwoKCti4cSNffPEFLVq0SNiQqa/QBI1z7p/AtkMMOQd4ITp2JtDczFrH\nozZJHLNnz2bHjh289957entmCcRZZ/03kUiEI47IYOnSfQwdehnbt29n06ZNtd7deMEFF/D666/z\n6quvcuGFFwZUsX+hWToDMLNOwITKls7MbALwR+fcp9HPPwKGOefmHTBOS2dJTNuZJZ527NhB167d\nyMhoz+bNefTr149PPplY42u2Fi1axNVXX83WrVuZOnUqrVsn7s/GutdZLQ0fPrz8cU5ODjk5Od5q\nkdh57LHHAFi7dq3nSiSZlJaWsnbtWpYvX05eXh5ffbWcL7/MY8WK5WzatIr09GYUFc0HbuPTTx+j\noKCgxoFx/PHHs3PnTtq3b59wIZObm1t+/qi+kqmjGQV84px7Nfr5EmCgc27TAePU0SShkpISMjIy\n6N9/ANOmTfVdjoRMdWGSmXkkGRnd2LevO3v2dAe6Ad2B9jRseCnZ2V+yY8dmTjsth9zcSUm5bJtK\nHY1FPyrzLnAd8KqZ9QG2Hxgykrx++tOzAPjoow89VyJh89JLr3D55VeSmdmSjIzu7NvXLRom/SkL\nk66UlDSq5HcW0bDhEHJyshg/finbt2+nVatWSRky9RWaoDGzl4Ec4AgzWwPcBWQCzjn3jHNuspn9\nxMzyKNvefIW/aiWeNm7cyAcfvM/IkSPJzMz0XY6ETNeuncnMbEVh4XLKvqXUxHch8847r5CRkZFw\nS1+JJFRLZ7GgpbPkow0AUl/9+g1ixozzKLsyojoHh0wqSJXraEQO8vHHHwMwY8YMz5VImP3pT3fR\nqNH9wL5qRqZmyNSXOhoJrf1vz9ygQQOKi+t38ZxI9V1NaoeMOhpJScOHjwBgw4YNniuRsFu4cCEz\nZnwA/D8q72pSO2TqS0EjobR3717uvnsE558/hJYtW/ouR0Jq4cKFmBnf+973ADj66OOBvx8wSiFT\nXwoaCaXTTusHwKuvjvNciYTRgQEzefJknHOMHfssjRrdx3ddjUImFhQ04t1DDz3E448/DsDNN9/M\n6aefDsAnn3zCJZdcctD4VatWMW/eXJ599lnS09PjWquEW1UBM3jwYAD69u1Lz57HUdbVKGRiRUEj\n3vXv35/p06cDMHfuXHbv3k1paSnTp09n4MCBB43v2rUrAFdddVVc65Twqi5gKirbgXafQiaGQnPB\npiSvXr16MXfuXHbu3ElWVha9evVi9uzZTJ8+vfz+ZfuNHz8egM8//9xHqRIyCxcuLA8XKAuYysKl\nor59+/Kf/3kqZo633hqrkIkBbW+WhHDGGWdwzjnnsHXrVk466SSWLl3K6NGjWblyZfmY0tJSGjRo\nwFFHtWX9+q89ViuJri4BI4em7c0Sev379+ehhx5iwIAB9OvXj1GjRtGzZ8/y5yORCEcd1RGALl1O\nIBKJ+CpVElhtlsgkfhQ0khD69+/Pxo0b6du3L61ataJhw4YMGDCg/Pmnn36GgoL1wEBmzZpBQUGB\nv2Il4ShgEpuWziThPfrok9x4441ACWlpWfTr96OkvRW71I6WyOInld4mQFJIJBLh1lv/h1GjxgEl\nNGiQRX7+Ctq2bauQSXEKmHBR0EhC2rdvH0OHXsX7769g797VABxzzMm0a9fOc2XikwImnBQ0knB2\n7NjBoEHns2BBE/bsuQz4DLiNfv0KfZcmnihgwk1BIwll/fr1DBgwmHXr+lFU9FcgC/g+TZqsol+/\nn/ouT+JMAZMctOtMEsaiRYvo0eNU8vOHUlT0OPDL6DOf4dwcevfu7bM8iSPtIksu2nUmCWH69On8\n5CdD2LXrIeBSYCvQErgDuIWsrM4UFm4nLU0/GyUzdTCJSxdsSqi99tobnHnm+eza9RJlIQPQPvrr\nPcAcjjvuZIVMElMHk9z0P1e8euihh7n88pvYs2cKcEb0q/8C9gIfAgbMoX9/LZslIwVMatBmAPEi\nEolw443DeO65yezZMwPoVOHZvtFfy4KnadM5nHbahfEuUQKkJbLUoo5GvLj//ocYNeoVCgun8e8h\n85for9/dNLO0dLY2AiQJdTCpSUEjXpx77k847rhONG48CJgR/WoxcCtlnUzb6Nc2ArvL34NGwkkB\nk9oUNOLFiSeeyOefz+Dpp2+hRYuLaNjwF0BO9NnJFUbO4cQTe+uWMyGlgBFQ0IhHZsbFF/+CNWuW\ncPbZ6cCnpKUNoqyz2T9mDgMGaNksbBQwUpGCRrxr3Lgxr776IgCDBjWlUaPjgFcBR9Omczj11B94\nrU9qTgEjlVHQiHf33nsvAKNGjWLSpNeYPPkFunX7I40bD6Co6DNtBAgBBYwciu4MIF6VlJSUvyd7\nxeNSWlrK6NFjyM2dySuvPKtzNAlK25RTR33uDKCgEa/69OnLzJn/YvHixRx77LG+y5EaUsCkHgVN\nLShoEsemTZto06YNHTp0ZM2a1b7LkRpQwKQuBU0tKGgSR3Z2I4qK9lBYWEjDhg19lyOHoIARvZWz\nhM57771HUdEerrjiCoVMAlPASCyooxEv9p/cj0QiOtGfgBQwciB1NBIqN954IwBvvPGGQibBKGAk\nCOpoJK6KiorIzs4mPb0BJSXF1f8GiQsFjFRHHY2Exkkn9QBg1aqVnisRUMBIfChoJG5WrVrFsmVL\nOPHE79GhQwff5aQ0BYzEk5bOJG7S0xsQiZSyb9++8rsBSHwpYKSutHQmCe+ll14iEill2LBhChkP\nFDDikzoaCZxzjrS0tPLHEj8KGIkVdTSS0C6++BIA/vGPf3iuJHUoYCSRqKORQO3evZsmTZrQqFFj\ndu/e5bucpKeAkaCoo5GE1a3bMQCsXp3vt5Akp4CRRKagkcB8+eWXbNy4ngEDBtKyZUvf5SQlBYyE\ngZbOJDD7by9TUlJCenq652qSiwJG4k1LZ5JwHn30UQBGjhypkIkhBYyEkToaiTltZ449BYz4Vp+O\nJi3WxQTFzAaZ2RIzW2Zmt1Xy/GVmttnM5kU/rvRRp8CZZ54JwJw5czxXEn4LFy7EzMpDZvLkyTjn\nFDISKqHoaMwsDVgGnA6sB2YDFznnllQYcxnQyzl3QzWvpY4mQNu2baNFixYcccSRbNmy2Xc5oaUO\nRhJNKnQ0pwDLnXOrnXPFwDjgnErG6c1NPOvUqQsAq1at8FxJOKmDkWQUlqBpB6yt8Pm66NcO9DMz\nW2Bmr5lZ+/iUJvtNnz6dnTu/5bzzfkbTpk19lxMqChhJZsm06+xd4GXnXLGZXQM8T9lS20GGDx9e\n/jgnJ4ecnJx41Jf0BgwYAMCbb77huZLw0BKZJKrc3Fxyc3Nj8lphOUfTBxjunBsU/fwPgHPOPVjF\n+DTgG+fcYZU8p3M0Abjzzju55557GDNmDFdeqX0Y1VHASNjU5xxNWIImHVhKWYeyAZgFDHXOLa4w\npo1zbmP08XnA751zp1byWgqaGCspKYne+t9wLuK7nISmgJGwSvoLNp1zpWZ2PTCFsvNKY5xzi81s\nBDDbOTcRuMHMzgaKgW+Ay70VnGL69OkLwLJlSz1XkrgUMJLKQtHRxJI6mthav3497dq1o0uXrqxc\nqZ1mB1LASLJI+qWzWFLQxFZmZjbFxUXs2bOH7Oxs3+UkDAWMJJukXzqTxDRhwgSKi4u45pprFDJR\nChiRg6mjkTrbf3dm/X0qYCT5qaORuLv22msBeOeddzxX4pcCRqR66mik1oqKisjOziYjI5N9+4p8\nl+OFAkZSjToaiasTTjgRgPz8VZ4riT8FjEjtKWikVvLy8lixIo+ePU+mbdu2vsuJGwWMSN1p6Uxq\nJS0tHeciFBcX06BB8v+cooARKaOlM4mL559/Huci3HHHHUkfMgoYkdhRRyM1kipvz6yAEamcOhoJ\n3AUX/ByAadOmea4kGAoYkeCoo5Fq7dq1i6ZNm9KkSTN27vzWdzkxpYARqRl1NBKorl27AbBmTb7f\nQmJIASMSPwoaOaT58+dTULCJH/3odA4//HDf5dSbAkYk/rR0Joe0/35mJSUlpKene66m7hQwIvWj\npTMJxJ///GcAHn744dCGjAJGxD91NFKp0tLS8mtlwvj3pYARiS11NBJzZ5zxXwAsWLDAcyW1o4AR\nSTzqaOQgW7dupWXLlrRufRQbN673XU6NKGBEgqW3cq4FBU31GjduSmHhLnbt2kXjxo19l3NIChiR\n+NDSmcRMbm4uhYW7uPDCixI6ZBQwIuGhjkb+zf7tzJFIpPxxIlHAiPihjkZi4vbbbwfgxRdfTLiQ\nUcCIhJc6GgGguLiYzMxMzNKIREp9l1NOASOSGNTRSL317v0DAFasyPNcSRkFjEjyUEcjrFu3jg4d\nOtC9+zEsW7bUay0KGJHEpO3NtaCgOVhGRiYlJcXs3buXrKwsLzUoYEQSm5bOpM7Gjx9PSUkx119/\nvZeQUcCIJD91NCnM59szK2BEwkUdjdTJ1VdfDcCkSZPi9mcqYERSjzqaFLV3714aNmxIZmY2RUV7\nAv/zFDAi4aaORmrt2GOPA2D16lWB/jkKGBFR0KSgpUuXsnp1Pj/4wQ9p06ZNIH+GAkZE9tPSWQoy\nSwMcxcXF5W9uFisKGJHkpKUzqbHRo0cDjhEjRsQ0ZBQwIlIVdTQpJIjtzAoYkdSgjkZq5LzzzgPg\n008/rfdrKWBEpKbU0aSInTt30qxZM5o3P4zt27fV+XUUMCKpSR2NVKtz564ArF6dX6ffr4ARkbpS\n0KSA2bNn8803Wxg8eDDNmzev1e9VwIhIfWnpLAXU5e2ZFTAiUpGWzqRKDzzwAABPPPFEjUJGASMi\nsaaOJomVlpaWXytT3ZwVMCJyKOpopFIDB+YAZSFSFQWMiARNHU2S2rx5M61bt6Zdu/asW7f2oOcV\nMCJSG3or51pIlaBp2LAxe/cWsnv3bho1alT+dQWMiNSFls7k33z00Ufs3VvIpZdeWh4yChgR8SU0\nHY2ZDQIeBtKAMc65Bw94PhN4AegFbAEudM6tqeR1kr6jqbid+auvvlLAiEi9JX1HY2X3tX8cOB1Y\nD8w2s3ecc0sqDLsK+MY5193MLgRGAhfFv1q/fve73wEwcuTI8htoggJGRPwJRUdjZn2Au5xzg6Of\n/wFwFbsaM3s/OmammaUDG51zR1byWknb0RQVFZGdnQ0YUDZHBYyIxEJ9Opq06ockhHZAxa1T66Jf\nq3SMc64U2G5mLeJTnn+RSIQuXbpHP3NMnDgR55xCRkS8C8XSWR1VmbzDhw8vf5yTk0NOTk4cyglW\nQUEBGzduBt6lQYOL6N27t++SRCTEcnNzyc3NjclrhWnpbLhzblD088qWzt6Ljtm/dLbBOdeqktdK\nyqUz5xw5Of/Np59O5dRTB5KbO6nG9zUTEalO0l9HEw2OpZRtBtgAzAKGOucWVxjzG+BE59xvzOwi\n4Fzn3EGbAZI1aKBs+aygoIBWrVopZEQkppI+aKB8e/MjfLe9+QEzGwHMds5NNLMsYCzQE9gKXOSc\ny6/kdZI2aEREgpISQRMrChoRkdpLhV1nIiISUgoaEREJlIJGREQCpaAREZFAKWhERCRQChoREQmU\ngkZERAKloBERkUApaEREJFAKGhERCZSCRkREAqWgERGRQCloREQkUAoaEREJlIJGREQCpaAREZFA\nKWhERCRQChoREQmUgkZERAKloBERkUApaEREJFAKGhERCZSCRkREAqWgERGRQCloREQkUAoaEREJ\nlIJGREQCpaAREZFAKWhERCRQChoREQmUgkZERAKloBERkUApaEREJFAKGhERCZSCRkREAqWgERGR\nQCloREQkUAoaEREJlIJGREQCpaAREZFAKWhERCRQChoREQmUgkZERAKloBERkUApaEREJFAKGhER\nCVTCB42ZHW5mU8xsqZl9YGbNqxhXambzzGy+mb0d7zpFRKRyCR80wB+Aj5xz/wF8DNxexbjdzrmT\nnXM9nXPnxq+8xJKbm+u7hEBpfuGWzPNL5rnVVxiC5hzg+ejj54GqQsTiU05iS/Z/7JpfuCXz/JJ5\nbvUVhqBp5ZzbBOCc2wi0qmJclpnNMrNPzeyc+JUnIiKH0sB3AQBm9iHQuuKXAAf8byXDXRUv08k5\nt8HMugAfm9kXzrlVMS5VRERqyZyr6vt2YjCzxUCOc26TmbUBPnHOHVfN7/kbMME591YlzyX2hEVE\nEpRzrk6nKBKio6nGu8DlwIPAZcA7Bw4ws8OAQufcPjNrCZwaHX+Quv5FiYhI3YSho2kBvAZ0AFYD\nP3fObTezXsCvnXPXmFlf4GmglLLzTn91zv3dV80iIvKdhA8aEREJtzDsOquXZL3g08wGmdkSM1tm\nZrdV8nymmY0zs+Vm9pmZdfRRZ13VYH6Xmdnm6DGbZ2ZX+qizLsxsjJltMrMvDjHm0eixW2BmPeJZ\nX31VNz8zG2hm2yscu8o2/SQkM2tvZh+b2Vdm9qWZ3VDFuFAev5rMr07HzzmX1B+UnasZFn18G/BA\nFeN2+K61FnNKA/KATkAGsAA49oAx1wJPRh9fCIzzXXeM53cZ8KjvWus4v35AD+CLKp4fDEyKPv4h\n8C/fNcd4fgOBd33XWce5tQF6RB83AZZW8m8ztMevhvOr9fFL+o6G5Lzg8xRguXNutXOuGBhH2Twr\nqjjvN4DT41hffdVkfhCuY1bOOfdPYNshhpwDvBAdOxNobmatDzE+odRgfhDeY7fRObcg+ngXsBho\nd8Cw0B6/Gs4Pann8UiFokvGCz3bA2gqfr+PgfwzlY5xzpcD26MaKMKjJ/AB+Fl2aeM3M2sentLg4\ncP5fU/n8w6xPdJl6kpkd77uYujCzzpR1bjMPeCopjt8h5ge1PH5h2N5cLV3wWSOh/AnyEN4FXnbO\nFZvZNZR1b2Hq2lLZXMr+vxWa2WDgbeAYzzXVipk1oWyl4MboT/5JpZr51fr4JUVH45z7L+fcSRU+\nvhf99V1g0/62NXrB5+YqXmND9NdVQC7QM07l18XXQMWT++2jX6toHWVbwjGzdKCZc+6b+JRXb9XO\nzzm3LbqsBvAs0CtOtcXD10SPXVRlxze0nHO7nHOF0cfvARkh6rYxswaUfRMe65w76Lo+Qn78qptf\nXY5fUgRNNfZf8AmHuODTzDKjj/df8LkoXgXWwWygm5l1itZ9EWXzrGgCZfMFuICyO1+HRbXzi/7Q\nsN85JPbxqoxRdZf5LvBLADPrA2zfv/wbIlXOr+L5CjM7hbLLLMLyQxDAc8Ai59wjVTwf9uN3yPnV\n5fglxdJZNR4EXotuf10N/Byg4gWfwHHA02a2/4LPPzrnlvgquDrOuVIzux6YQlm9Y5xzi81sBDDb\nOTcRGAOMNbPlwFbKvlmHQg3nd4OZnQ0UA9/w3Q8TCc/MXgZygCPMbA1wF5AJOOfcM865yWb2EzPL\nA3YDV/irtvaqmx8wxMyupezY7aFsV2QomNlpwMXAl2Y2n7Kl+P+hbIdk6I9fTeZHHY6fLtgUEZFA\npcLSmYiRaNBeAAAAr0lEQVSIeKSgERGRQCloREQkUAoaEREJlIJGREQCpaAREZFAKWhERCRQChoR\nEQmUgkZERAKloBERkUApaEREJFAKGhERCZSCRkREAqWgERGRQCloREQkUAoaEREJlIJGREQCpaAR\nEZFAKWhERCRQChoREQmUgkZERAKloBERkUApaEREJFAKGhERCZSCRkREAqWgERGRQCloREQkUAoa\nEREJlIJGREQCpaAREZFA/R/QDXzPy8cnPgAAAABJRU5ErkJggg==\n", "text/plain": [ "<matplotlib.figure.Figure at 0x7f3ed2cdeac8>" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "make_graph_dot_product_as_vector_projection(plt)" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "collapsed": true }, "outputs": [], "source": [] } ], "metadata": { "kernelspec": { "display_name": "Python 3", "language": "python", "name": "python3" }, "language_info": { "codemirror_mode": { "name": "ipython", "version": 3 }, "file_extension": ".py", "mimetype": "text/x-python", "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", "version": "3.5.2" } }, "nbformat": 4, "nbformat_minor": 1 }
mit
kazuhirokomoda/deep_learning
fast.ai/lesson1/dogscats_run.ipynb
1
20918
{ "cells": [ { "cell_type": "markdown", "metadata": {}, "source": [ "# lesson1: Convolutional Neural Networks with dogscats" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "Let's classify images using deep learning and submit the result to Kaggle!" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Prerequisite" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "This notebook assumes Keras with Theano backend.\n", "- TODO: make TensorFlow version as another notebook\n", "\n", "It also assumes that you will run it on either one of these two cases:\n", "- Floydhub (--env theano:py2 -> Theano rel-0.8.2 + Keras 1.2.2 on Python2)\n", "- local conda virtual environment (Theano 0.9.0 + Keras 2.0.4 on Python3)\n", "\n", "Refer to [this FloydHub document](http://docs.floydhub.com/home/environments/) for available FloydHub environments." ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Setup" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "Make sure to have these files in the parent directory of the directory where you execute this notebook.\n", "\n", "- available [in the official repo](https://github.com/fastai/courses/tree/master/deeplearning1/nbs) for Keras1 on Python2 (rename from original files)\n", " - utils_keras1.py\n", " - vgg16_keras1.py\n", " - vgg16bn_keras1.py\n", "- available [in the unofficial repo](https://github.com/roebius/deeplearning1_keras2/tree/master/nbs) for Keras2 on Python3\n", " - utils.py\n", " - vgg16.py\n", " - vgg16bn.py" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "The directory structure looks like this. Please modifiy the symlinks according to your environment.\n", "\n", "- (*) only for FloydHub\n", "- (**) only for local\n", "\n", "```\n", "floyd_requirements.txt (*)\n", "floydhub.data.unzip/ (*)\n", "floydhub.data.zipped/ (*)\n", " dogscats.zip\n", "lesson1/\n", " data/ (**)\n", " redux/\n", " train/\n", " cat.437.jpg\n", " dog.9924.jpg\n", " ...\n", " test/\n", " 231.jpg\n", " 325.jpg\n", " ...\n", " dogscats_run.ipynb\n", " floyd_requirements.txt -> ../floyd_requirements.txt (*)\n", " utils.py -> ../utils(_keras1).py\n", " vgg16.py -> ../vgg16(_keras1).py\n", " vgg16bn.py -> ../vgg16bn(_keras1).py\n", "utils.py\n", "utils_keras1.py\n", "vgg16.py\n", "vgg16_keras1.py\n", "vgg16bn.py\n", "vgg16bn_keras1.py\n", "```" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Prepare data" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "The details of data preparation largely depends on which dataset you use. In this section, we will use a pre-organized dataset from http://files.fast.ai/files/dogscats.zip\n", "\n", "For another example of data preparation, please refer to [this notebook](../lesson1_17flowers/17flowers_data.ipynb)" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "### How the dataset looks like" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "After extracting the dogscats.zip file, the directory structure look like this." ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "```\n", "dogscats/\n", " models/\n", " sample/\n", " train/\n", " cats/\n", " cat.394.jpg\n", " ... (8 items)\n", " dogs/\n", " dog.1402.jpg\n", " ... (8 items)\n", " valid/\n", " cats/\n", " cat.10435.jpg\n", " ... (4 items)\n", " dogs/\n", " dog.10459.jpg\n", " ... (4 items)\n", " features.npy\n", " labels.npy\n", " test1/\n", " 1.jpg\n", " 10.jpg\n", " 100.jpg\n", " ... (12500 items)\n", " train/\n", " cats/\n", " cat.0.jpg\n", " cat.1.jpg\n", " cat.3.jpg\n", " ... (11500 items)\n", " dogs/\n", " cat.0.jpg\n", " cat.1.jpg\n", " cat.2.jpg\n", " cat.4.jpg\n", " ... (11500 items)\n", " valid/\n", " cats/\n", " cat.2.jpg\n", " cat.5.jpg\n", " ... (1000 item. these are copied from train/cats/ directory)\n", " dogs/\n", " dog.3.jpg\n", " dog.9.jpg\n", " ... (1000 item. these are copied from train/dogs/ directory)\n", "```" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "### FloydHub" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "The cell below shows how to update data to FloydHub." ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "```\n", "# from the directory which this notebook is executed\n", "cd ../floydhub.data.zipped/; pwd\n", "\n", "# expected: empty\n", "ls -l\n", "\n", "wget http://files.fast.ai/files/dogscats.zip\n", "\n", "# upload the zipped dataset to floydnet, and create a floydnet dataset\n", "floyd data init dogscats.zipped\n", "floyd data upload\n", "```" ] }, { "cell_type": "markdown", "metadata": { "collapsed": true }, "source": [ "Using the data we have just uploaded to FloydHub, let's unzip it on FloydHub.\n" ] }, { "cell_type": "markdown", "metadata": { "collapsed": true }, "source": [ "```\n", "# from the directory which this notebook is executed\n", "cd ../floydhub.fast.ai.data.unzip/; pwd\n", "\n", "# expected: empty\n", "ls -l\n", "\n", "floyd init dogscats.unzip\n", "floyd run --gpu --data [data ID of the uploaded zip] \"unzip /input/dogscats.zip -d /output\"\n", "```" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "Please note:\n", "- the data ID should be the one you see from the above step\n", "- the mounted data is available in /input/ directory, and you need to direct the unzipped files to /output/ directory" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "### local" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "TODO" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Run the notebook" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "Now let's run the notebook in the environment of your choice." ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "```\n", "# from the directory which this notebook is executed\n", "cd ./; pwd\n", "\n", "# FloydHub\n", "floyd init dogscats\n", "floyd run --mode jupyter --data [data ID of unzipped data] --env theano:py2 --gpu\n", "\n", "# alternatively, for local\n", "#jupyter notebook\n", "```" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "and check ~/.keras/keras.json" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "```\n", "mkdir ~/.keras\n", "\n", "# FloydHub (Keras1)\n", "echo '{\n", " \"image_dim_ordering\": \"th\",\n", " \"epsilon\": 1e-07,\n", " \"floatx\": \"float32\",\n", " \"backend\": \"theano\"\n", "}' > ~/.keras/keras.json\n", "\n", "# alternatively, for local (Keras2)\n", "#echo '{\n", "# \"image_data_format\": \"channels_first\",\n", "# \"backend\": \"theano\",\n", "# \"floatx\": \"float32\",\n", "# \"epsilon\": 1e-07\n", "#}' > ~/.keras/keras.json\n", "```" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "Finally, let's start running the notebook." ] }, { "cell_type": "code", "execution_count": null, "metadata": { "collapsed": true }, "outputs": [], "source": [ "# make some Python3 functions available on Python2\n", "from __future__ import division, print_function\n", "\n", "import sys\n", "print(sys.version_info)\n", "\n", "import theano\n", "print(theano.__version__)\n", "\n", "import keras\n", "print(keras.__version__)" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "collapsed": true }, "outputs": [], "source": [ "# FloydHub: check data\n", "%ls /input/dogscats/" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "collapsed": true }, "outputs": [], "source": [ "# check current directory\n", "%pwd\n", "%ls\n", "\n", "# see some files are loaded fine\n", "%cat floyd_requirements.txt\n", "\n", "# check no Keras2 specific function is used (when Keras1 is used)\n", "%cat utils.py" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "collapsed": true }, "outputs": [], "source": [ "#Create references to important directories we will use over and over\n", "import os, sys\n", "current_dir = os.getcwd()\n", "\n", "LESSON_HOME_DIR = current_dir\n", "\n", "# FloydHub\n", "DATA_HOME_DIR = \"/input/dogscats/\"\n", "OUTPUT_HOME_DIR = \"/output/\"\n", "\n", "# alternatively, for local\n", "#DATA_HOME_DIR = current_dir+'/data/redux'" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "collapsed": true }, "outputs": [], "source": [ "#import modules\n", "from utils import *\n", "from vgg16 import Vgg16\n", "\n", "#Instantiate plotting tool\n", "#In Jupyter notebooks, you will need to run this command before doing any plotting\n", "%matplotlib inline" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Finetuning and Training" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "collapsed": true }, "outputs": [], "source": [ "%cd $DATA_HOME_DIR\n", "\n", "#Set path to sample/ path if desired\n", "path = DATA_HOME_DIR + '/' #'/sample/'\n", "test_path = DATA_HOME_DIR + '/test1/' #We use all the test data\n", "\n", "# FloydHub\n", "# data needs to be output under /output\n", "# if results_path cannot be created, execute mkdir directly in the terminal\n", "results_path = OUTPUT_HOME_DIR + '/results/'\n", "%mkdir results_path\n", "\n", "train_path = path + '/train/'\n", "valid_path = path + '/valid/'" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Use a pretrained VGG model with our Vgg16 class" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "collapsed": true }, "outputs": [], "source": [ "# As large as you can, but no larger than 64 is recommended.\n", "#batch_size = 8\n", "batch_size = 64\n", "\n", "no_of_epochs=3" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "The original pre-trained Vgg16 class classifies images into one of the 1000 categories. This number of categories depends on the dataset which Vgg16 was trained with. (http://image-net.org/challenges/LSVRC/2014/browse-synsets)\n", "\n", "In order to classify images into the categories which we prepare (2 categories of dogs/cats, in this notebook), *fine-tuning* technology is useful. It:\n", "- keeps the most weights from the pre-trained Vgg16 model, but modifies only a few parts of the weights\n", "- changes the dimension of the output layer (from 1000 to 2, in this notebook) " ] }, { "cell_type": "code", "execution_count": null, "metadata": { "collapsed": true }, "outputs": [], "source": [ "vgg = Vgg16()" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "collapsed": true }, "outputs": [], "source": [ "# Grab a few images at a time for training and validation.\n", "batches = vgg.get_batches(train_path, batch_size=batch_size)\n", "val_batches = vgg.get_batches(valid_path, batch_size=batch_size*2)\n", "\n", "# Finetune: note that the vgg model is compiled inside the finetune method.\n", "vgg.finetune(batches)" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "collapsed": true }, "outputs": [], "source": [ "# Fit: note that we are passing in the validation dataset to the fit() method\n", "# For each epoch we test our model against the validation set\n", "latest_weights_filename = None\n", "\n", "# FloydHub (Keras1)\n", "for epoch in range(no_of_epochs):\n", " print(\"Running epoch: %d\" % epoch)\n", " vgg.fit(batches, val_batches, nb_epoch=1)\n", " latest_weights_filename = 'ft%d.h5' % epoch\n", " vgg.model.save_weights(results_path+latest_weights_filename)\n", "print(\"Completed %s fit operations\" % no_of_epochs)\n", "\n", "# alternatively, for local (Keras2)\n", "\"\"\"\n", "for epoch in range(no_of_epochs):\n", " print(\"Running epoch: %d\" % epoch)\n", " vgg.fit(batches, val_batches, batch_size, nb_epoch=1)\n", " latest_weights_filename = 'ft%d.h5' % epoch\n", " vgg.model.save_weights(results_path+latest_weights_filename)\n", "print(\"Completed %s fit operations\" % no_of_epochs)\n", "\"\"\"" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Generate Predictions" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "collapsed": true }, "outputs": [], "source": [ "# OUTPUT_HOME_DIR, not DATA_HOME_DIR due to FloydHub restriction\n", "%cd $OUTPUT_HOME_DIR\n", "%mkdir -p test1/unknown\n", "\n", "%cd $OUTPUT_HOME_DIR/test1\n", "%cp $test_path/*.jpg unknown/\n", "\n", "# rewrite test_path\n", "test_path = OUTPUT_HOME_DIR + '/test1/' #We use all the test data" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "collapsed": true }, "outputs": [], "source": [ "batches, preds = vgg.test(test_path, batch_size = batch_size*2)" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "collapsed": true }, "outputs": [], "source": [ "print(preds[:5])\n", "\n", "filenames = batches.filenames\n", "print(filenames[:5])" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "collapsed": true }, "outputs": [], "source": [ "# You can verify the column ordering by viewing some images\n", "from PIL import Image\n", "Image.open(test_path + filenames[2])" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "collapsed": true }, "outputs": [], "source": [ "#Save our test results arrays so we can use them again later\n", "save_array(results_path + 'test_preds.dat', preds)\n", "save_array(results_path + 'filenames.dat', filenames)" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Validate Predictions" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "Calculate predictions on validation set, so we can find correct and incorrect examples:" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "collapsed": true }, "outputs": [], "source": [ "vgg.model.load_weights(results_path+latest_weights_filename)" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "collapsed": true }, "outputs": [], "source": [ "val_batches, probs = vgg.test(valid_path, batch_size = batch_size)" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "collapsed": true }, "outputs": [], "source": [ "filenames = val_batches.filenames\n", "expected_labels = val_batches.classes #0 or 1" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "collapsed": true }, "outputs": [], "source": [ "#Round our predictions to 0/1 to generate labels\n", "our_predictions = probs[:,0]\n", "our_labels = np.round(1-our_predictions)" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "(TODO) look at data to improve model" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "confusion matrix" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "collapsed": true }, "outputs": [], "source": [ "from sklearn.metrics import confusion_matrix\n", "cm = confusion_matrix(expected_labels, our_labels)" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "collapsed": true }, "outputs": [], "source": [ "plot_confusion_matrix(cm, val_batches.class_indices)" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Submit Predictions to Kaggle!" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "This section also depends on which dataset you use (and which Kaggle competition you are participating)" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "collapsed": true }, "outputs": [], "source": [ "#Load our test predictions from file\n", "preds = load_array(results_path + 'test_preds.dat')\n", "filenames = load_array(results_path + 'filenames.dat')" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "collapsed": true }, "outputs": [], "source": [ "#Grab the dog prediction column\n", "isdog = preds[:,1]\n", "print(\"Raw Predictions: \" + str(isdog[:5]))\n", "print(\"Mid Predictions: \" + str(isdog[(isdog < .6) & (isdog > .4)]))\n", "print(\"Edge Predictions: \" + str(isdog[(isdog == 1) | (isdog == 0)]))" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "collapsed": true }, "outputs": [], "source": [ "# sneaky trick to round down our edge predictions\n", "# Swap all ones with .95 and all zeros with .05\n", "isdog = isdog.clip(min=0.05, max=0.95)" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "collapsed": true }, "outputs": [], "source": [ "#Extract imageIds from the filenames in our test/unknown directory \n", "filenames = batches.filenames\n", "ids = np.array([int(f[8:f.find('.')]) for f in filenames])" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "collapsed": true }, "outputs": [], "source": [ "subm = np.stack([ids,isdog], axis=1)\n", "subm[:5]" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "collapsed": true }, "outputs": [], "source": [ "# FloydHub\n", "%cd $OUTPUT_HOME_DIR\n", "\n", "# alternatively, for local\n", "#%cd $DATA_HOME_DIR\n", "\n", "submission_file_name = 'submission1.csv'\n", "np.savetxt(submission_file_name, subm, fmt='%d,%.5f', header='id,label', comments='')" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "collapsed": true }, "outputs": [], "source": [ "from IPython.display import FileLink\n", "\n", "# FloydHub\n", "%cd $OUTPUT_HOME_DIR\n", "FileLink(submission_file_name)\n", "\n", "# alternatively, for local\n", "#%cd $LESSON_HOME_DIR\n", "#FileLink('data/redux/'+submission_file_name)" ] } ], "metadata": { "kernelspec": { "display_name": "Environment (conda_py3tf)", "language": "python", "name": "conda_py3tf" }, "language_info": { "codemirror_mode": { "name": "ipython", "version": 3 }, "file_extension": ".py", "mimetype": "text/x-python", "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", "version": "3.5.3" } }, "nbformat": 4, "nbformat_minor": 2 }
mit
GoogleCloudPlatform/tf-estimator-tutorials
01_Regression/04.0 - TF Regression Model - Dataset Input.ipynb
1
69002
{ "cells": [ { "cell_type": "code", "execution_count": 1, "metadata": {}, "outputs": [ { "name": "stderr", "output_type": "stream", "text": [ "/Users/khalidsalama/anaconda/lib/python3.6/importlib/_bootstrap.py:205: RuntimeWarning: compiletime version 3.5 of module 'tensorflow.python.framework.fast_tensor_util' does not match runtime version 3.6\n", " return f(*args, **kwds)\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ "1.4.0\n" ] } ], "source": [ "import tensorflow as tf\n", "from tensorflow import data\n", "import shutil\n", "import math\n", "from datetime import datetime\n", "from tensorflow.python.feature_column import feature_column\n", "\n", "from tensorflow.contrib.learn import learn_runner\n", "from tensorflow.contrib.learn import make_export_strategy\n", "\n", "print(tf.__version__)" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Steps to use the TF Experiment APIs\n", "1. Define dataset **metadata**\n", "2. Define **data input function** to read the data from csv files + **feature processing**\n", "3. Create TF **feature columns** based on metadata + **extended feature columns**\n", "4. Define an **estimator** (DNNRegressor) creation function with the required **feature columns & parameters**\n", "5. Define a **serving function** to export the model\n", "7. Run an **Experiment** with **learn_runner** to train, evaluate, and export the model\n", "8. **Evaluate** the model using test data\n", "9. Perform **predictions**" ] }, { "cell_type": "code", "execution_count": 2, "metadata": { "collapsed": true }, "outputs": [], "source": [ "MODEL_NAME = 'reg-model-03'\n", "\n", "TRAIN_DATA_FILES_PATTERN = 'data/train-*.csv'\n", "VALID_DATA_FILES_PATTERN = 'data/valid-*.csv'\n", "TEST_DATA_FILES_PATTERN = 'data/test-*.csv'\n", "\n", "RESUME_TRAINING = False\n", "PROCESS_FEATURES = True\n", "EXTEND_FEATURE_COLUMNS = True\n", "MULTI_THREADING = True" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## 1. Define Dataset Metadata\n", "* CSV file header and defaults\n", "* Numeric and categorical feature names\n", "* Target feature name\n", "* Unused columns" ] }, { "cell_type": "code", "execution_count": 3, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "Header: ['key', 'x', 'y', 'alpha', 'beta', 'target']\n", "Numeric Features: ['x', 'y']\n", "Categorical Features: ['alpha', 'beta']\n", "Target: target\n", "Unused Features: ['key']\n" ] } ], "source": [ "HEADER = ['key','x','y','alpha','beta','target']\n", "HEADER_DEFAULTS = [[0], [0.0], [0.0], ['NA'], ['NA'], [0.0]]\n", "\n", "NUMERIC_FEATURE_NAMES = ['x', 'y'] \n", "\n", "CATEGORICAL_FEATURE_NAMES_WITH_VOCABULARY = {'alpha':['ax01', 'ax02'], 'beta':['bx01', 'bx02']}\n", "CATEGORICAL_FEATURE_NAMES = list(CATEGORICAL_FEATURE_NAMES_WITH_VOCABULARY.keys())\n", "\n", "FEATURE_NAMES = NUMERIC_FEATURE_NAMES + CATEGORICAL_FEATURE_NAMES\n", "\n", "TARGET_NAME = 'target'\n", "\n", "UNUSED_FEATURE_NAMES = list(set(HEADER) - set(FEATURE_NAMES) - {TARGET_NAME})\n", "\n", "print(\"Header: {}\".format(HEADER))\n", "print(\"Numeric Features: {}\".format(NUMERIC_FEATURE_NAMES))\n", "print(\"Categorical Features: {}\".format(CATEGORICAL_FEATURE_NAMES))\n", "print(\"Target: {}\".format(TARGET_NAME))\n", "print(\"Unused Features: {}\".format(UNUSED_FEATURE_NAMES))" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## 2. Define Data Input Function\n", "* Input csv files name pattern\n", "* Use TF Dataset APIs to read and process the data\n", "* Parse CSV lines to feature tensors\n", "* Apply feature processing\n", "* Return (features, target) tensors" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "### a. parsing and preprocessing logic" ] }, { "cell_type": "code", "execution_count": 4, "metadata": { "collapsed": true }, "outputs": [], "source": [ "def parse_csv_row(csv_row):\n", " \n", " columns = tf.decode_csv(csv_row, record_defaults=HEADER_DEFAULTS)\n", " features = dict(zip(HEADER, columns))\n", " \n", " for column in UNUSED_FEATURE_NAMES:\n", " features.pop(column)\n", " \n", " target = features.pop(TARGET_NAME)\n", "\n", " return features, target\n", "\n", "def process_features(features):\n", "\n", " features[\"x_2\"] = tf.square(features['x'])\n", " features[\"y_2\"] = tf.square(features['y'])\n", " features[\"xy\"] = tf.multiply(features['x'], features['y']) # features['x'] * features['y']\n", " features['dist_xy'] = tf.sqrt(tf.squared_difference(features['x'],features['y']))\n", " \n", " return features" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "### b. data pipeline input function" ] }, { "cell_type": "code", "execution_count": 5, "metadata": { "collapsed": true }, "outputs": [], "source": [ "def csv_input_fn(files_name_pattern, mode=tf.estimator.ModeKeys.EVAL, \n", " skip_header_lines=0, \n", " num_epochs=None, \n", " batch_size=200):\n", " \n", " shuffle = True if mode == tf.estimator.ModeKeys.TRAIN else False\n", " \n", " print(\"\")\n", " print(\"* data input_fn:\")\n", " print(\"================\")\n", " print(\"Input file(s): {}\".format(files_name_pattern))\n", " print(\"Batch size: {}\".format(batch_size))\n", " print(\"Epoch Count: {}\".format(num_epochs))\n", " print(\"Mode: {}\".format(mode))\n", " print(\"Shuffle: {}\".format(shuffle))\n", " print(\"================\")\n", " print(\"\")\n", " \n", " file_names = tf.matching_files(files_name_pattern)\n", "\n", " dataset = data.TextLineDataset(filenames=file_names)\n", " dataset = dataset.skip(skip_header_lines)\n", " \n", " if shuffle:\n", " dataset = dataset.shuffle(buffer_size=2 * batch_size + 1)\n", "\n", " #useful for distributed training when training on 1 data file, so it can be shareded\n", " #dataset = dataset.shard(num_workers, worker_index)\n", " \n", " dataset = dataset.batch(batch_size)\n", " dataset = dataset.map(lambda csv_row: parse_csv_row(csv_row))\n", " \n", " if PROCESS_FEATURES:\n", " dataset = dataset.map(lambda features, target: (process_features(features), target))\n", " \n", " #dataset = dataset.batch(batch_size) #??? very long time\n", " dataset = dataset.repeat(num_epochs)\n", " iterator = dataset.make_one_shot_iterator()\n", " \n", " features, target = iterator.get_next()\n", " return features, target" ] }, { "cell_type": "code", "execution_count": 6, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "\n", "* data input_fn:\n", "================\n", "Input file(s): \n", "Batch size: 200\n", "Epoch Count: None\n", "Mode: eval\n", "Shuffle: False\n", "================\n", "\n", "Feature read from CSV: ['x', 'y', 'alpha', 'beta', 'x_2', 'y_2', 'xy', 'dist_xy']\n", "Target read from CSV: Tensor(\"IteratorGetNext:8\", shape=(?,), dtype=float32)\n" ] } ], "source": [ "features, target = csv_input_fn(files_name_pattern=\"\")\n", "print(\"Feature read from CSV: {}\".format(list(features.keys())))\n", "print(\"Target read from CSV: {}\".format(target))" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## 3. Define Feature Columns\n", "The input numeric columns are assumed to be normalized (or have the same scale). Otherise, a normlizer_fn, along with the normlisation params (mean, stdv) should be passed to tf.feature_column.numeric_column() constructor." ] }, { "cell_type": "code", "execution_count": 7, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "Feature Columns: {'x': _NumericColumn(key='x', shape=(1,), default_value=None, dtype=tf.float32, normalizer_fn=None), 'y': _NumericColumn(key='y', shape=(1,), default_value=None, dtype=tf.float32, normalizer_fn=None), 'x_2': _NumericColumn(key='x_2', shape=(1,), default_value=None, dtype=tf.float32, normalizer_fn=None), 'y_2': _NumericColumn(key='y_2', shape=(1,), default_value=None, dtype=tf.float32, normalizer_fn=None), 'xy': _NumericColumn(key='xy', shape=(1,), default_value=None, dtype=tf.float32, normalizer_fn=None), 'dist_xy': _NumericColumn(key='dist_xy', shape=(1,), default_value=None, dtype=tf.float32, normalizer_fn=None), 'alpha': _VocabularyListCategoricalColumn(key='alpha', vocabulary_list=('ax01', 'ax02'), dtype=tf.string, default_value=-1, num_oov_buckets=0), 'beta': _VocabularyListCategoricalColumn(key='beta', vocabulary_list=('bx01', 'bx02'), dtype=tf.string, default_value=-1, num_oov_buckets=0), 'alpha_X_beta': _CrossedColumn(keys=(_VocabularyListCategoricalColumn(key='alpha', vocabulary_list=('ax01', 'ax02'), dtype=tf.string, default_value=-1, num_oov_buckets=0), _VocabularyListCategoricalColumn(key='beta', vocabulary_list=('bx01', 'bx02'), dtype=tf.string, default_value=-1, num_oov_buckets=0)), hash_bucket_size=4, hash_key=None)}\n" ] } ], "source": [ "def extend_feature_columns(feature_columns):\n", " \n", " # crossing, bucketizing, and embedding can be applied here\n", " \n", " feature_columns['alpha_X_beta'] = tf.feature_column.crossed_column(\n", " [feature_columns['alpha'], feature_columns['beta']], 4)\n", " \n", " return feature_columns\n", "\n", "def get_feature_columns():\n", " \n", " CONSTRUCTED_NUMERIC_FEATURES_NAMES = ['x_2', 'y_2', 'xy', 'dist_xy']\n", " all_numeric_feature_names = NUMERIC_FEATURE_NAMES.copy() \n", " \n", " if PROCESS_FEATURES:\n", " all_numeric_feature_names += CONSTRUCTED_NUMERIC_FEATURES_NAMES\n", "\n", " numeric_columns = {feature_name: tf.feature_column.numeric_column(feature_name)\n", " for feature_name in all_numeric_feature_names}\n", "\n", " categorical_column_with_vocabulary = \\\n", " {item[0]: tf.feature_column.categorical_column_with_vocabulary_list(item[0], item[1])\n", " for item in CATEGORICAL_FEATURE_NAMES_WITH_VOCABULARY.items()}\n", " \n", " feature_columns = {}\n", "\n", " if numeric_columns is not None:\n", " feature_columns.update(numeric_columns)\n", "\n", " if categorical_column_with_vocabulary is not None:\n", " feature_columns.update(categorical_column_with_vocabulary)\n", " \n", " if EXTEND_FEATURE_COLUMNS:\n", " feature_columns = extend_feature_columns(feature_columns)\n", " \n", " return feature_columns\n", "\n", "feature_columns = get_feature_columns()\n", "print(\"Feature Columns: {}\".format(feature_columns))" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## 4. Define an Estimator Creation Function\n", "\n", "* Get dense (numeric) columns from the feature columns\n", "* Convert categorical columns to indicator columns\n", "* Create Instantiate a DNNRegressor estimator given **dense + indicator** feature columns + params" ] }, { "cell_type": "code", "execution_count": 8, "metadata": { "collapsed": true }, "outputs": [], "source": [ "def create_estimator(run_config, hparams):\n", " \n", " feature_columns = list(get_feature_columns().values())\n", " \n", " dense_columns = list(\n", " filter(lambda column: isinstance(column, feature_column._NumericColumn),\n", " feature_columns\n", " )\n", " )\n", "\n", " categorical_columns = list(\n", " filter(lambda column: isinstance(column, feature_column._VocabularyListCategoricalColumn) |\n", " isinstance(column, feature_column._BucketizedColumn),\n", " feature_columns)\n", " )\n", "\n", " indicator_columns = list(\n", " map(lambda column: tf.feature_column.indicator_column(column),\n", " categorical_columns)\n", " )\n", " \n", " \n", " estimator = tf.estimator.DNNRegressor(\n", " \n", " feature_columns= dense_columns + indicator_columns ,\n", " hidden_units= hparams.hidden_units,\n", " \n", " optimizer= tf.train.AdamOptimizer(),\n", " activation_fn= tf.nn.elu,\n", " dropout= hparams.dropout_prob,\n", " \n", " config= run_config\n", " )\n", "\n", " print(\"\")\n", " print(\"Estimator Type: {}\".format(type(estimator)))\n", " print(\"\")\n", " \n", " return estimator" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## 5. Define Serving Funcion" ] }, { "cell_type": "code", "execution_count": 9, "metadata": { "collapsed": true }, "outputs": [], "source": [ "def csv_serving_input_fn():\n", " \n", " SERVING_HEADER = ['x','y','alpha','beta']\n", " SERVING_HEADER_DEFAULTS = [[0.0], [0.0], ['NA'], ['NA']]\n", "\n", " rows_string_tensor = tf.placeholder(dtype=tf.string,\n", " shape=[None],\n", " name='csv_rows')\n", " \n", " receiver_tensor = {'csv_rows': rows_string_tensor}\n", "\n", " row_columns = tf.expand_dims(rows_string_tensor, -1)\n", " columns = tf.decode_csv(row_columns, record_defaults=SERVING_HEADER_DEFAULTS)\n", " features = dict(zip(SERVING_HEADER, columns))\n", "\n", " return tf.estimator.export.ServingInputReceiver(\n", " process_features(features), receiver_tensor)" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## 6. Run Experiment" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "### a. Define Experiment Function" ] }, { "cell_type": "code", "execution_count": 10, "metadata": { "collapsed": true }, "outputs": [], "source": [ "def generate_experiment_fn(**experiment_args):\n", "\n", " def _experiment_fn(run_config, hparams):\n", "\n", " train_input_fn = lambda: csv_input_fn(\n", " files_name_pattern=TRAIN_DATA_FILES_PATTERN,\n", " mode = tf.contrib.learn.ModeKeys.TRAIN,\n", " num_epochs=hparams.num_epochs,\n", " batch_size=hparams.batch_size\n", " )\n", "\n", " eval_input_fn = lambda: csv_input_fn(\n", " files_name_pattern=VALID_DATA_FILES_PATTERN,\n", " mode=tf.contrib.learn.ModeKeys.EVAL,\n", " num_epochs=1,\n", " batch_size=hparams.batch_size\n", " )\n", "\n", " estimator = create_estimator(run_config, hparams)\n", "\n", " return tf.contrib.learn.Experiment(\n", " estimator,\n", " train_input_fn=train_input_fn,\n", " eval_input_fn=eval_input_fn,\n", " eval_steps=None,\n", " **experiment_args\n", " )\n", "\n", " return _experiment_fn" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "### b. Set HParam and RunConfig" ] }, { "cell_type": "code", "execution_count": 15, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "[('batch_size', 500), ('dropout_prob', 0.0), ('hidden_units', [8, 4]), ('num_epochs', 1000)]\n", "Model Directory: trained_models/reg-model-04\n", "\n", "Dataset Size: 12000\n", "Batch Size: 500\n", "Steps per Epoch: 24.0\n", "Total Steps: 24000.0\n", "Required Evaluation Steps: 10\n", "That is 1 evaluation step after each 100.0 epochs\n", "Save Checkpoint After 2400 steps\n" ] } ], "source": [ "TRAIN_SIZE = 12000\n", "NUM_EPOCHS = 1000\n", "BATCH_SIZE = 500\n", "NUM_EVAL = 10\n", "CHECKPOINT_STEPS = int((TRAIN_SIZE/BATCH_SIZE) * (NUM_EPOCHS/NUM_EVAL))\n", "\n", "hparams = tf.contrib.training.HParams(\n", " num_epochs = NUM_EPOCHS,\n", " batch_size = BATCH_SIZE,\n", " hidden_units=[8, 4], \n", " dropout_prob = 0.0)\n", "\n", "model_dir = 'trained_models/{}'.format(MODEL_NAME)\n", "\n", "run_config = tf.contrib.learn.RunConfig(\n", " save_checkpoints_steps=CHECKPOINT_STEPS,\n", " tf_random_seed=19830610,\n", " model_dir=model_dir\n", ")\n", "\n", "print(hparams)\n", "print(\"Model Directory:\", run_config.model_dir)\n", "print(\"\")\n", "print(\"Dataset Size:\", TRAIN_SIZE)\n", "print(\"Batch Size:\", BATCH_SIZE)\n", "print(\"Steps per Epoch:\",TRAIN_SIZE/BATCH_SIZE)\n", "print(\"Total Steps:\", (TRAIN_SIZE/BATCH_SIZE)*NUM_EPOCHS)\n", "print(\"Required Evaluation Steps:\", NUM_EVAL) \n", "print(\"That is 1 evaluation step after each\",NUM_EPOCHS/NUM_EVAL,\" epochs\")\n", "print(\"Save Checkpoint After\",CHECKPOINT_STEPS,\"steps\")" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "### c. Run Experiment via learn_runner" ] }, { "cell_type": "code", "execution_count": 12, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "Removing previous artifacts...\n", "Experiment started at 14:31:43\n", ".......................................\n", "WARNING:tensorflow:RunConfig.uid (from tensorflow.contrib.learn.python.learn.estimators.run_config) is experimental and may change or be removed at any time, and without warning.\n", "INFO:tensorflow:Using config: {'_task_type': None, '_task_id': 0, '_cluster_spec': <tensorflow.python.training.server_lib.ClusterSpec object at 0x11e860a58>, '_master': '', '_num_ps_replicas': 0, '_num_worker_replicas': 0, '_environment': 'local', '_is_chief': True, '_evaluation_master': '', '_tf_config': gpu_options {\n", " per_process_gpu_memory_fraction: 1\n", "}\n", ", '_tf_random_seed': 19830610, '_save_summary_steps': 100, '_save_checkpoints_secs': None, '_log_step_count_steps': 100, '_session_config': None, '_save_checkpoints_steps': 2400, '_keep_checkpoint_max': 5, '_keep_checkpoint_every_n_hours': 10000, '_model_dir': 'trained_models/reg-model-04'}\n", "\n", "Estimator Type: <class 'tensorflow.python.estimator.canned.dnn.DNNRegressor'>\n", "\n", "WARNING:tensorflow:RunConfig.uid (from tensorflow.contrib.learn.python.learn.estimators.run_config) is experimental and may change or be removed at any time, and without warning.\n", "WARNING:tensorflow:From /Users/khalidsalama/anaconda/lib/python3.6/site-packages/tensorflow/contrib/learn/python/learn/monitors.py:267: BaseMonitor.__init__ (from tensorflow.contrib.learn.python.learn.monitors) is deprecated and will be removed after 2016-12-05.\n", "Instructions for updating:\n", "Monitors are deprecated. Please use tf.train.SessionRunHook.\n", "\n", "* data input_fn:\n", "================\n", "Input file(s): data/train-*.csv\n", "Batch size: 500\n", "Epoch Count: 1000\n", "Mode: train\n", "Shuffle: True\n", "================\n", "\n", "INFO:tensorflow:Create CheckpointSaverHook.\n", "INFO:tensorflow:Saving checkpoints for 1 into trained_models/reg-model-04/model.ckpt.\n", "\n", "* data input_fn:\n", "================\n", "Input file(s): data/valid-*.csv\n", "Batch size: 500\n", "Epoch Count: 1\n", "Mode: eval\n", "Shuffle: False\n", "================\n", "\n", "INFO:tensorflow:Starting evaluation at 2017-11-11-14:31:48\n", "INFO:tensorflow:Restoring parameters from trained_models/reg-model-04/model.ckpt-1\n", "INFO:tensorflow:Finished evaluation at 2017-11-11-14:31:49\n", "INFO:tensorflow:Saving dict for global step 1: average_loss = 328.465, global_step = 1, loss = 164232.0\n", "INFO:tensorflow:Validation (step 1): average_loss = 328.465, loss = 164232.0, global_step = 1\n", "INFO:tensorflow:loss = 155660.0, step = 1\n", "INFO:tensorflow:global_step/sec: 37.5745\n", "INFO:tensorflow:loss = 185020.0, step = 101 (0.809 sec)\n", "INFO:tensorflow:global_step/sec: 150.261\n", "INFO:tensorflow:loss = 137635.0, step = 201 (0.665 sec)\n", "INFO:tensorflow:global_step/sec: 142.137\n", "INFO:tensorflow:loss = 171515.0, step = 301 (0.705 sec)\n", "INFO:tensorflow:global_step/sec: 148.363\n", "INFO:tensorflow:loss = 140163.0, step = 401 (0.675 sec)\n", "INFO:tensorflow:global_step/sec: 131.501\n", "INFO:tensorflow:loss = 141613.0, step = 501 (0.763 sec)\n", "INFO:tensorflow:global_step/sec: 148.133\n", "INFO:tensorflow:loss = 136004.0, step = 601 (0.671 sec)\n", "INFO:tensorflow:global_step/sec: 164.039\n", "INFO:tensorflow:loss = 130641.0, step = 701 (0.609 sec)\n", "INFO:tensorflow:global_step/sec: 154.876\n", "INFO:tensorflow:loss = 111425.0, step = 801 (0.647 sec)\n", "INFO:tensorflow:global_step/sec: 161.257\n", "INFO:tensorflow:loss = 113015.0, step = 901 (0.619 sec)\n", "INFO:tensorflow:global_step/sec: 164.882\n", "INFO:tensorflow:loss = 93464.3, step = 1001 (0.607 sec)\n", "INFO:tensorflow:global_step/sec: 155.051\n", "INFO:tensorflow:loss = 87641.5, step = 1101 (0.645 sec)\n", "INFO:tensorflow:global_step/sec: 132.637\n", "INFO:tensorflow:loss = 88079.6, step = 1201 (0.760 sec)\n", "INFO:tensorflow:global_step/sec: 133.662\n", "INFO:tensorflow:loss = 85597.5, step = 1301 (0.742 sec)\n", "INFO:tensorflow:global_step/sec: 131.989\n", "INFO:tensorflow:loss = 63857.3, step = 1401 (0.762 sec)\n", "INFO:tensorflow:global_step/sec: 105.007\n", "INFO:tensorflow:loss = 70258.2, step = 1501 (0.949 sec)\n", "INFO:tensorflow:global_step/sec: 131.114\n", "INFO:tensorflow:loss = 55564.2, step = 1601 (0.765 sec)\n", "INFO:tensorflow:global_step/sec: 128.256\n", "INFO:tensorflow:loss = 63768.5, step = 1701 (0.777 sec)\n", "INFO:tensorflow:global_step/sec: 144.842\n", "INFO:tensorflow:loss = 54877.1, step = 1801 (0.691 sec)\n", "INFO:tensorflow:global_step/sec: 126.825\n", "INFO:tensorflow:loss = 60213.6, step = 1901 (0.792 sec)\n", "INFO:tensorflow:global_step/sec: 143.734\n", "INFO:tensorflow:loss = 54891.5, step = 2001 (0.692 sec)\n", "INFO:tensorflow:global_step/sec: 146.572\n", "INFO:tensorflow:loss = 47515.1, step = 2101 (0.685 sec)\n", "INFO:tensorflow:global_step/sec: 117.477\n", "INFO:tensorflow:loss = 51576.9, step = 2201 (0.849 sec)\n", "INFO:tensorflow:global_step/sec: 144.71\n", "INFO:tensorflow:loss = 50460.4, step = 2301 (0.693 sec)\n", "INFO:tensorflow:Saving checkpoints for 2401 into trained_models/reg-model-04/model.ckpt.\n", "INFO:tensorflow:global_step/sec: 93.9596\n", "\n", "* data input_fn:\n", "================\n", "Input file(s): data/valid-*.csv\n", "Batch size: 500\n", "Epoch Count: 1\n", "Mode: eval\n", "Shuffle: False\n", "================\n", "\n", "INFO:tensorflow:Starting evaluation at 2017-11-11-14:32:07\n", "INFO:tensorflow:Restoring parameters from trained_models/reg-model-04/model.ckpt-2401\n", "INFO:tensorflow:Finished evaluation at 2017-11-11-14:32:08\n", "INFO:tensorflow:Saving dict for global step 2401: average_loss = 104.677, global_step = 2401, loss = 52338.7\n", "INFO:tensorflow:Validation (step 2401): average_loss = 104.677, loss = 52338.7, global_step = 2401\n", "INFO:tensorflow:loss = 54241.1, step = 2401 (1.982 sec)\n", "INFO:tensorflow:global_step/sec: 64.2617\n", "INFO:tensorflow:loss = 42089.1, step = 2501 (0.636 sec)\n", "INFO:tensorflow:global_step/sec: 156.711\n", "INFO:tensorflow:loss = 43037.2, step = 2601 (0.639 sec)\n", "INFO:tensorflow:global_step/sec: 149.293\n", "INFO:tensorflow:loss = 46601.3, step = 2701 (0.670 sec)\n", "INFO:tensorflow:global_step/sec: 147.748\n", "INFO:tensorflow:loss = 42919.7, step = 2801 (0.676 sec)\n", "INFO:tensorflow:global_step/sec: 152.002\n", "INFO:tensorflow:loss = 44527.5, step = 2901 (0.659 sec)\n", "INFO:tensorflow:global_step/sec: 144.838\n", "INFO:tensorflow:loss = 47868.0, step = 3001 (0.689 sec)\n", "INFO:tensorflow:global_step/sec: 160.648\n", "INFO:tensorflow:loss = 47298.0, step = 3101 (0.622 sec)\n", "INFO:tensorflow:global_step/sec: 161.367\n", "INFO:tensorflow:loss = 49777.9, step = 3201 (0.620 sec)\n", "INFO:tensorflow:global_step/sec: 153.168\n", "INFO:tensorflow:loss = 44413.0, step = 3301 (0.653 sec)\n", "INFO:tensorflow:global_step/sec: 158.438\n", "INFO:tensorflow:loss = 47032.9, step = 3401 (0.631 sec)\n", "INFO:tensorflow:global_step/sec: 119.087\n", "INFO:tensorflow:loss = 36708.7, step = 3501 (0.845 sec)\n", "INFO:tensorflow:global_step/sec: 147.487\n", "INFO:tensorflow:loss = 48602.3, step = 3601 (0.673 sec)\n", "INFO:tensorflow:global_step/sec: 151.377\n", "INFO:tensorflow:loss = 46881.4, step = 3701 (0.662 sec)\n", "INFO:tensorflow:global_step/sec: 158.061\n", "INFO:tensorflow:loss = 44374.4, step = 3801 (0.632 sec)\n", "INFO:tensorflow:global_step/sec: 160.813\n", "INFO:tensorflow:loss = 45259.9, step = 3901 (0.622 sec)\n", "INFO:tensorflow:global_step/sec: 162.422\n", "INFO:tensorflow:loss = 50385.1, step = 4001 (0.615 sec)\n", "INFO:tensorflow:global_step/sec: 161.446\n", "INFO:tensorflow:loss = 46569.6, step = 4101 (0.620 sec)\n", "INFO:tensorflow:global_step/sec: 154.099\n", "INFO:tensorflow:loss = 47248.7, step = 4201 (0.649 sec)\n", "INFO:tensorflow:global_step/sec: 157.475\n", "INFO:tensorflow:loss = 40043.4, step = 4301 (0.635 sec)\n", "INFO:tensorflow:global_step/sec: 132.105\n", "INFO:tensorflow:loss = 45197.2, step = 4401 (0.757 sec)\n", "INFO:tensorflow:global_step/sec: 154.426\n", "INFO:tensorflow:loss = 47951.4, step = 4501 (0.647 sec)\n", "INFO:tensorflow:global_step/sec: 136.858\n", "INFO:tensorflow:loss = 44457.1, step = 4601 (0.734 sec)\n", "INFO:tensorflow:global_step/sec: 119.193\n", "INFO:tensorflow:loss = 37337.1, step = 4701 (0.839 sec)\n", "INFO:tensorflow:Saving checkpoints for 4801 into trained_models/reg-model-04/model.ckpt.\n", "INFO:tensorflow:global_step/sec: 72.1377\n", "\n", "* data input_fn:\n", "================\n", "Input file(s): data/valid-*.csv\n", "Batch size: 500\n", "Epoch Count: 1\n", "Mode: eval\n", "Shuffle: False\n", "================\n", "\n", "INFO:tensorflow:Starting evaluation at 2017-11-11-14:32:25\n", "INFO:tensorflow:Restoring parameters from trained_models/reg-model-04/model.ckpt-4801\n", "INFO:tensorflow:Finished evaluation at 2017-11-11-14:32:26\n", "INFO:tensorflow:Saving dict for global step 4801: average_loss = 96.7373, global_step = 4801, loss = 48368.7\n", "INFO:tensorflow:Validation (step 4801): average_loss = 96.7373, loss = 48368.7, global_step = 4801\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ "INFO:tensorflow:loss = 46016.4, step = 4801 (2.349 sec)\n", "INFO:tensorflow:global_step/sec: 60.8736\n", "INFO:tensorflow:loss = 46275.1, step = 4901 (0.679 sec)\n", "INFO:tensorflow:global_step/sec: 151.574\n", "INFO:tensorflow:loss = 33856.8, step = 5001 (0.658 sec)\n", "INFO:tensorflow:global_step/sec: 162.539\n", "INFO:tensorflow:loss = 58067.3, step = 5101 (0.616 sec)\n", "INFO:tensorflow:global_step/sec: 161.898\n", "INFO:tensorflow:loss = 36591.6, step = 5201 (0.617 sec)\n", "INFO:tensorflow:global_step/sec: 161.238\n", "INFO:tensorflow:loss = 49899.2, step = 5301 (0.621 sec)\n", "INFO:tensorflow:global_step/sec: 161.159\n", "INFO:tensorflow:loss = 59058.9, step = 5401 (0.620 sec)\n", "INFO:tensorflow:global_step/sec: 162.119\n", "INFO:tensorflow:loss = 39515.4, step = 5501 (0.617 sec)\n", "INFO:tensorflow:global_step/sec: 160.662\n", "INFO:tensorflow:loss = 37766.9, step = 5601 (0.622 sec)\n", "INFO:tensorflow:global_step/sec: 160.995\n", "INFO:tensorflow:loss = 45288.4, step = 5701 (0.621 sec)\n", "INFO:tensorflow:global_step/sec: 159.086\n", "INFO:tensorflow:loss = 41809.8, step = 5801 (0.629 sec)\n", "INFO:tensorflow:global_step/sec: 153.174\n", "INFO:tensorflow:loss = 42418.6, step = 5901 (0.652 sec)\n", "INFO:tensorflow:global_step/sec: 136.012\n", "INFO:tensorflow:loss = 49231.9, step = 6001 (0.736 sec)\n", "INFO:tensorflow:global_step/sec: 147.14\n", "INFO:tensorflow:loss = 37564.2, step = 6101 (0.679 sec)\n", "INFO:tensorflow:global_step/sec: 158.619\n", "INFO:tensorflow:loss = 42841.4, step = 6201 (0.630 sec)\n", "INFO:tensorflow:global_step/sec: 146.474\n", "INFO:tensorflow:loss = 47508.5, step = 6301 (0.683 sec)\n", "INFO:tensorflow:global_step/sec: 160.396\n", "INFO:tensorflow:loss = 44208.4, step = 6401 (0.624 sec)\n", "INFO:tensorflow:global_step/sec: 148.18\n", "INFO:tensorflow:loss = 40910.1, step = 6501 (0.675 sec)\n", "INFO:tensorflow:global_step/sec: 138.929\n", "INFO:tensorflow:loss = 50287.4, step = 6601 (0.720 sec)\n", "INFO:tensorflow:global_step/sec: 151.384\n", "INFO:tensorflow:loss = 39495.4, step = 6701 (0.660 sec)\n", "INFO:tensorflow:global_step/sec: 149.712\n", "INFO:tensorflow:loss = 43742.4, step = 6801 (0.668 sec)\n", "INFO:tensorflow:global_step/sec: 121.472\n", "INFO:tensorflow:loss = 44626.8, step = 6901 (0.827 sec)\n", "INFO:tensorflow:global_step/sec: 134.407\n", "INFO:tensorflow:loss = 40497.6, step = 7001 (0.742 sec)\n", "INFO:tensorflow:global_step/sec: 135.498\n", "INFO:tensorflow:loss = 37368.0, step = 7101 (0.740 sec)\n", "INFO:tensorflow:Saving checkpoints for 7201 into trained_models/reg-model-04/model.ckpt.\n", "INFO:tensorflow:global_step/sec: 76.9883\n", "\n", "* data input_fn:\n", "================\n", "Input file(s): data/valid-*.csv\n", "Batch size: 500\n", "Epoch Count: 1\n", "Mode: eval\n", "Shuffle: False\n", "================\n", "\n", "INFO:tensorflow:Starting evaluation at 2017-11-11-14:32:43\n", "INFO:tensorflow:Restoring parameters from trained_models/reg-model-04/model.ckpt-7201\n", "INFO:tensorflow:Finished evaluation at 2017-11-11-14:32:43\n", "INFO:tensorflow:Saving dict for global step 7201: average_loss = 95.7069, global_step = 7201, loss = 47853.4\n", "INFO:tensorflow:Validation (step 7201): average_loss = 95.7069, loss = 47853.4, global_step = 7201\n", "INFO:tensorflow:loss = 51782.6, step = 7201 (2.226 sec)\n", "INFO:tensorflow:global_step/sec: 60.5837\n", "INFO:tensorflow:loss = 42918.2, step = 7301 (0.720 sec)\n", "INFO:tensorflow:global_step/sec: 148.242\n", "INFO:tensorflow:loss = 40595.4, step = 7401 (0.675 sec)\n", "INFO:tensorflow:global_step/sec: 141.722\n", "INFO:tensorflow:loss = 29395.8, step = 7501 (0.706 sec)\n", "INFO:tensorflow:global_step/sec: 145.886\n", "INFO:tensorflow:loss = 51844.5, step = 7601 (0.687 sec)\n", "INFO:tensorflow:global_step/sec: 141.609\n", "INFO:tensorflow:loss = 43390.5, step = 7701 (0.704 sec)\n", "INFO:tensorflow:global_step/sec: 126.915\n", "INFO:tensorflow:loss = 47932.0, step = 7801 (0.787 sec)\n", "INFO:tensorflow:global_step/sec: 144.669\n", "INFO:tensorflow:loss = 50953.5, step = 7901 (0.692 sec)\n", "INFO:tensorflow:global_step/sec: 121.705\n", "INFO:tensorflow:loss = 45364.8, step = 8001 (0.821 sec)\n", "INFO:tensorflow:global_step/sec: 143.123\n", "INFO:tensorflow:loss = 37158.0, step = 8101 (0.700 sec)\n", "INFO:tensorflow:global_step/sec: 129.806\n", "INFO:tensorflow:loss = 51231.4, step = 8201 (0.772 sec)\n", "INFO:tensorflow:global_step/sec: 135.586\n", "INFO:tensorflow:loss = 45554.2, step = 8301 (0.737 sec)\n", "INFO:tensorflow:global_step/sec: 139.29\n", "INFO:tensorflow:loss = 38198.0, step = 8401 (0.715 sec)\n", "INFO:tensorflow:global_step/sec: 126.346\n", "INFO:tensorflow:loss = 37683.4, step = 8501 (0.793 sec)\n", "INFO:tensorflow:global_step/sec: 142.809\n", "INFO:tensorflow:loss = 48373.8, step = 8601 (0.701 sec)\n", "INFO:tensorflow:global_step/sec: 133.683\n", "INFO:tensorflow:loss = 39778.3, step = 8701 (0.748 sec)\n", "INFO:tensorflow:global_step/sec: 135.688\n", "INFO:tensorflow:loss = 46058.1, step = 8801 (0.737 sec)\n", "INFO:tensorflow:global_step/sec: 135.275\n", "INFO:tensorflow:loss = 46736.0, step = 8901 (0.738 sec)\n", "INFO:tensorflow:global_step/sec: 129.718\n", "INFO:tensorflow:loss = 40734.2, step = 9001 (0.771 sec)\n", "INFO:tensorflow:global_step/sec: 143.523\n", "INFO:tensorflow:loss = 43216.0, step = 9101 (0.698 sec)\n", "INFO:tensorflow:global_step/sec: 134.956\n", "INFO:tensorflow:loss = 51448.4, step = 9201 (0.740 sec)\n", "INFO:tensorflow:global_step/sec: 144.751\n", "INFO:tensorflow:loss = 46285.5, step = 9301 (0.690 sec)\n", "INFO:tensorflow:global_step/sec: 129.764\n", "INFO:tensorflow:loss = 45954.6, step = 9401 (0.771 sec)\n", "INFO:tensorflow:global_step/sec: 145.96\n", "INFO:tensorflow:loss = 48068.8, step = 9501 (0.685 sec)\n", "INFO:tensorflow:Saving checkpoints for 9601 into trained_models/reg-model-04/model.ckpt.\n", "INFO:tensorflow:global_step/sec: 75.1645\n", "\n", "* data input_fn:\n", "================\n", "Input file(s): data/valid-*.csv\n", "Batch size: 500\n", "Epoch Count: 1\n", "Mode: eval\n", "Shuffle: False\n", "================\n", "\n", "INFO:tensorflow:Starting evaluation at 2017-11-11-14:33:02\n", "INFO:tensorflow:Restoring parameters from trained_models/reg-model-04/model.ckpt-9601\n", "INFO:tensorflow:Finished evaluation at 2017-11-11-14:33:02\n", "INFO:tensorflow:Saving dict for global step 9601: average_loss = 95.0352, global_step = 9601, loss = 47517.6\n", "INFO:tensorflow:Validation (step 9601): average_loss = 95.0352, loss = 47517.6, global_step = 9601\n", "INFO:tensorflow:loss = 53438.2, step = 9601 (2.298 sec)\n", "INFO:tensorflow:global_step/sec: 59.2006\n", "INFO:tensorflow:loss = 53259.5, step = 9701 (0.721 sec)\n", "INFO:tensorflow:global_step/sec: 141.779\n", "INFO:tensorflow:loss = 34251.2, step = 9801 (0.706 sec)\n", "INFO:tensorflow:global_step/sec: 131.811\n", "INFO:tensorflow:loss = 42877.2, step = 9901 (0.763 sec)\n", "INFO:tensorflow:global_step/sec: 115.783\n", "INFO:tensorflow:loss = 49685.0, step = 10001 (0.862 sec)\n", "INFO:tensorflow:global_step/sec: 127.013\n", "INFO:tensorflow:loss = 47262.9, step = 10101 (0.784 sec)\n", "INFO:tensorflow:global_step/sec: 151.498\n", "INFO:tensorflow:loss = 49317.5, step = 10201 (0.661 sec)\n", "INFO:tensorflow:global_step/sec: 143.846\n", "INFO:tensorflow:loss = 41488.7, step = 10301 (0.694 sec)\n", "INFO:tensorflow:global_step/sec: 140.025\n", "INFO:tensorflow:loss = 40965.7, step = 10401 (0.714 sec)\n", "INFO:tensorflow:global_step/sec: 151.54\n", "INFO:tensorflow:loss = 34246.2, step = 10501 (0.660 sec)\n", "INFO:tensorflow:global_step/sec: 141.593\n", "INFO:tensorflow:loss = 41920.2, step = 10601 (0.707 sec)\n", "INFO:tensorflow:global_step/sec: 142.479\n", "INFO:tensorflow:loss = 40829.2, step = 10701 (0.702 sec)\n", "INFO:tensorflow:global_step/sec: 146.329\n", "INFO:tensorflow:loss = 53730.8, step = 10801 (0.683 sec)\n", "INFO:tensorflow:global_step/sec: 143.41\n", "INFO:tensorflow:loss = 39976.0, step = 10901 (0.698 sec)\n", "INFO:tensorflow:global_step/sec: 141.968\n", "INFO:tensorflow:loss = 42867.9, step = 11001 (0.704 sec)\n", "INFO:tensorflow:global_step/sec: 145.57\n", "INFO:tensorflow:loss = 44854.7, step = 11101 (0.687 sec)\n", "INFO:tensorflow:global_step/sec: 135.972\n", "INFO:tensorflow:loss = 43357.3, step = 11201 (0.735 sec)\n", "INFO:tensorflow:global_step/sec: 145.339\n", "INFO:tensorflow:loss = 44547.3, step = 11301 (0.688 sec)\n", "INFO:tensorflow:global_step/sec: 142.515\n", "INFO:tensorflow:loss = 41676.9, step = 11401 (0.703 sec)\n", "INFO:tensorflow:global_step/sec: 145.965\n", "INFO:tensorflow:loss = 30990.5, step = 11501 (0.685 sec)\n", "INFO:tensorflow:global_step/sec: 144.552\n", "INFO:tensorflow:loss = 50680.9, step = 11601 (0.691 sec)\n", "INFO:tensorflow:global_step/sec: 138.256\n", "INFO:tensorflow:loss = 41594.9, step = 11701 (0.726 sec)\n", "INFO:tensorflow:global_step/sec: 129.769\n", "INFO:tensorflow:loss = 42287.2, step = 11801 (0.769 sec)\n", "INFO:tensorflow:global_step/sec: 131.017\n", "INFO:tensorflow:loss = 49489.5, step = 11901 (0.763 sec)\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ "INFO:tensorflow:Saving checkpoints for 12001 into trained_models/reg-model-04/model.ckpt.\n", "INFO:tensorflow:global_step/sec: 74.3397\n", "\n", "* data input_fn:\n", "================\n", "Input file(s): data/valid-*.csv\n", "Batch size: 500\n", "Epoch Count: 1\n", "Mode: eval\n", "Shuffle: False\n", "================\n", "\n", "INFO:tensorflow:Starting evaluation at 2017-11-11-14:33:21\n", "INFO:tensorflow:Restoring parameters from trained_models/reg-model-04/model.ckpt-12001\n", "INFO:tensorflow:Finished evaluation at 2017-11-11-14:33:21\n", "INFO:tensorflow:Saving dict for global step 12001: average_loss = 94.4759, global_step = 12001, loss = 47237.9\n", "INFO:tensorflow:Validation (step 12001): average_loss = 94.4759, loss = 47237.9, global_step = 12001\n", "INFO:tensorflow:loss = 48240.1, step = 12001 (2.347 sec)\n", "INFO:tensorflow:global_step/sec: 54.1707\n", "INFO:tensorflow:loss = 33612.9, step = 12101 (0.847 sec)\n", "INFO:tensorflow:global_step/sec: 124.694\n", "INFO:tensorflow:loss = 38861.4, step = 12201 (0.802 sec)\n", "INFO:tensorflow:global_step/sec: 118.321\n", "INFO:tensorflow:loss = 42655.6, step = 12301 (0.845 sec)\n", "INFO:tensorflow:global_step/sec: 124.359\n", "INFO:tensorflow:loss = 35384.6, step = 12401 (0.803 sec)\n", "INFO:tensorflow:global_step/sec: 127.487\n", "INFO:tensorflow:loss = 43430.5, step = 12501 (0.785 sec)\n", "INFO:tensorflow:global_step/sec: 140.518\n", "INFO:tensorflow:loss = 48275.4, step = 12601 (0.710 sec)\n", "INFO:tensorflow:global_step/sec: 142.918\n", "INFO:tensorflow:loss = 37730.8, step = 12701 (0.700 sec)\n", "INFO:tensorflow:global_step/sec: 143.119\n", "INFO:tensorflow:loss = 48645.6, step = 12801 (0.701 sec)\n", "INFO:tensorflow:global_step/sec: 138.138\n", "INFO:tensorflow:loss = 30703.5, step = 12901 (0.722 sec)\n", "INFO:tensorflow:global_step/sec: 145.613\n", "INFO:tensorflow:loss = 43611.7, step = 13001 (0.687 sec)\n", "INFO:tensorflow:global_step/sec: 144.863\n", "INFO:tensorflow:loss = 38099.9, step = 13101 (0.691 sec)\n", "INFO:tensorflow:global_step/sec: 137.656\n", "INFO:tensorflow:loss = 45194.5, step = 13201 (0.728 sec)\n", "INFO:tensorflow:global_step/sec: 122.444\n", "INFO:tensorflow:loss = 38871.8, step = 13301 (0.815 sec)\n", "INFO:tensorflow:global_step/sec: 138.867\n", "INFO:tensorflow:loss = 36956.7, step = 13401 (0.720 sec)\n", "INFO:tensorflow:global_step/sec: 124.395\n", "INFO:tensorflow:loss = 39388.8, step = 13501 (0.803 sec)\n", "INFO:tensorflow:global_step/sec: 157.459\n", "INFO:tensorflow:loss = 46446.1, step = 13601 (0.635 sec)\n", "INFO:tensorflow:global_step/sec: 148.935\n", "INFO:tensorflow:loss = 44792.6, step = 13701 (0.672 sec)\n", "INFO:tensorflow:global_step/sec: 138.586\n", "INFO:tensorflow:loss = 55869.1, step = 13801 (0.721 sec)\n", "INFO:tensorflow:global_step/sec: 152.045\n", "INFO:tensorflow:loss = 42912.5, step = 13901 (0.658 sec)\n", "INFO:tensorflow:global_step/sec: 127.431\n", "INFO:tensorflow:loss = 44276.9, step = 14001 (0.786 sec)\n", "INFO:tensorflow:global_step/sec: 128.268\n", "INFO:tensorflow:loss = 32231.6, step = 14101 (0.780 sec)\n", "INFO:tensorflow:global_step/sec: 136.64\n", "INFO:tensorflow:loss = 33367.5, step = 14201 (0.730 sec)\n", "INFO:tensorflow:global_step/sec: 146.577\n", "INFO:tensorflow:loss = 43804.7, step = 14301 (0.682 sec)\n", "INFO:tensorflow:Saving checkpoints for 14401 into trained_models/reg-model-04/model.ckpt.\n", "INFO:tensorflow:global_step/sec: 77.9368\n", "\n", "* data input_fn:\n", "================\n", "Input file(s): data/valid-*.csv\n", "Batch size: 500\n", "Epoch Count: 1\n", "Mode: eval\n", "Shuffle: False\n", "================\n", "\n", "INFO:tensorflow:Starting evaluation at 2017-11-11-14:33:40\n", "INFO:tensorflow:Restoring parameters from trained_models/reg-model-04/model.ckpt-14401\n", "INFO:tensorflow:Finished evaluation at 2017-11-11-14:33:40\n", "INFO:tensorflow:Saving dict for global step 14401: average_loss = 93.9907, global_step = 14401, loss = 46995.4\n", "INFO:tensorflow:Validation (step 14401): average_loss = 93.9907, loss = 46995.4, global_step = 14401\n", "INFO:tensorflow:loss = 57803.0, step = 14401 (2.139 sec)\n", "INFO:tensorflow:global_step/sec: 61.7375\n", "INFO:tensorflow:loss = 46377.5, step = 14501 (0.764 sec)\n", "INFO:tensorflow:global_step/sec: 124.959\n", "INFO:tensorflow:loss = 34797.7, step = 14601 (0.801 sec)\n", "INFO:tensorflow:global_step/sec: 144.906\n", "INFO:tensorflow:loss = 44715.1, step = 14701 (0.690 sec)\n", "INFO:tensorflow:global_step/sec: 143.668\n", "INFO:tensorflow:loss = 39205.6, step = 14801 (0.695 sec)\n", "INFO:tensorflow:global_step/sec: 147.122\n", "INFO:tensorflow:loss = 40149.7, step = 14901 (0.679 sec)\n", "INFO:tensorflow:global_step/sec: 147.896\n", "INFO:tensorflow:loss = 43184.4, step = 15001 (0.677 sec)\n", "INFO:tensorflow:global_step/sec: 146.5\n", "INFO:tensorflow:loss = 38481.5, step = 15101 (0.682 sec)\n", "INFO:tensorflow:global_step/sec: 144.174\n", "INFO:tensorflow:loss = 40600.9, step = 15201 (0.694 sec)\n", "INFO:tensorflow:global_step/sec: 141.158\n", "INFO:tensorflow:loss = 49492.6, step = 15301 (0.709 sec)\n", "INFO:tensorflow:global_step/sec: 132.475\n", "INFO:tensorflow:loss = 29930.4, step = 15401 (0.754 sec)\n", "INFO:tensorflow:global_step/sec: 147.538\n", "INFO:tensorflow:loss = 46129.1, step = 15501 (0.678 sec)\n", "INFO:tensorflow:global_step/sec: 143.941\n", "INFO:tensorflow:loss = 47175.0, step = 15601 (0.696 sec)\n", "INFO:tensorflow:global_step/sec: 144.395\n", "INFO:tensorflow:loss = 39116.7, step = 15701 (0.692 sec)\n", "INFO:tensorflow:global_step/sec: 140.103\n", "INFO:tensorflow:loss = 35493.4, step = 15801 (0.713 sec)\n", "INFO:tensorflow:global_step/sec: 148.264\n", "INFO:tensorflow:loss = 41123.8, step = 15901 (0.674 sec)\n", "INFO:tensorflow:global_step/sec: 141.081\n", "INFO:tensorflow:loss = 28964.1, step = 16001 (0.709 sec)\n", "INFO:tensorflow:global_step/sec: 129.559\n", "INFO:tensorflow:loss = 42644.8, step = 16101 (0.773 sec)\n", "INFO:tensorflow:global_step/sec: 117.856\n", "INFO:tensorflow:loss = 41032.1, step = 16201 (0.849 sec)\n", "INFO:tensorflow:global_step/sec: 126.27\n", "INFO:tensorflow:loss = 38422.3, step = 16301 (0.793 sec)\n", "INFO:tensorflow:global_step/sec: 133.53\n", "INFO:tensorflow:loss = 40377.9, step = 16401 (0.746 sec)\n", "INFO:tensorflow:global_step/sec: 146.292\n", "INFO:tensorflow:loss = 45031.1, step = 16501 (0.685 sec)\n", "INFO:tensorflow:global_step/sec: 128.616\n", "INFO:tensorflow:loss = 44225.1, step = 16601 (0.776 sec)\n", "INFO:tensorflow:global_step/sec: 119.769\n", "INFO:tensorflow:loss = 44445.1, step = 16701 (0.836 sec)\n", "INFO:tensorflow:Saving checkpoints for 16801 into trained_models/reg-model-04/model.ckpt.\n", "INFO:tensorflow:global_step/sec: 76.8777\n", "\n", "* data input_fn:\n", "================\n", "Input file(s): data/valid-*.csv\n", "Batch size: 500\n", "Epoch Count: 1\n", "Mode: eval\n", "Shuffle: False\n", "================\n", "\n", "INFO:tensorflow:Starting evaluation at 2017-11-11-14:33:59\n", "INFO:tensorflow:Restoring parameters from trained_models/reg-model-04/model.ckpt-16801\n", "INFO:tensorflow:Finished evaluation at 2017-11-11-14:33:59\n", "INFO:tensorflow:Saving dict for global step 16801: average_loss = 93.6571, global_step = 16801, loss = 46828.6\n", "INFO:tensorflow:Validation (step 16801): average_loss = 93.6571, loss = 46828.6, global_step = 16801\n", "INFO:tensorflow:loss = 43306.4, step = 16801 (2.293 sec)\n", "INFO:tensorflow:global_step/sec: 55.6313\n", "INFO:tensorflow:loss = 54241.1, step = 16901 (0.808 sec)\n", "INFO:tensorflow:global_step/sec: 139.604\n", "INFO:tensorflow:loss = 34022.9, step = 17001 (0.715 sec)\n", "INFO:tensorflow:global_step/sec: 139.468\n", "INFO:tensorflow:loss = 45510.8, step = 17101 (0.716 sec)\n", "INFO:tensorflow:global_step/sec: 142.418\n", "INFO:tensorflow:loss = 43210.0, step = 17201 (0.702 sec)\n", "INFO:tensorflow:global_step/sec: 143.537\n", "INFO:tensorflow:loss = 50877.1, step = 17301 (0.697 sec)\n", "INFO:tensorflow:global_step/sec: 135.489\n", "INFO:tensorflow:loss = 38702.2, step = 17401 (0.739 sec)\n", "INFO:tensorflow:global_step/sec: 145.958\n", "INFO:tensorflow:loss = 34215.1, step = 17501 (0.684 sec)\n", "INFO:tensorflow:global_step/sec: 153.087\n", "INFO:tensorflow:loss = 39389.1, step = 17601 (0.654 sec)\n", "INFO:tensorflow:global_step/sec: 133.414\n", "INFO:tensorflow:loss = 43825.1, step = 17701 (0.750 sec)\n", "INFO:tensorflow:global_step/sec: 132.724\n", "INFO:tensorflow:loss = 43972.8, step = 17801 (0.754 sec)\n", "INFO:tensorflow:global_step/sec: 138.88\n", "INFO:tensorflow:loss = 48032.7, step = 17901 (0.721 sec)\n", "INFO:tensorflow:global_step/sec: 131.104\n", "INFO:tensorflow:loss = 43332.0, step = 18001 (0.761 sec)\n", "INFO:tensorflow:global_step/sec: 129.382\n", "INFO:tensorflow:loss = 39407.1, step = 18101 (0.772 sec)\n", "INFO:tensorflow:global_step/sec: 146.652\n", "INFO:tensorflow:loss = 46066.7, step = 18201 (0.681 sec)\n", "INFO:tensorflow:global_step/sec: 157.141\n", "INFO:tensorflow:loss = 43000.3, step = 18301 (0.637 sec)\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ "INFO:tensorflow:global_step/sec: 134.653\n", "INFO:tensorflow:loss = 43819.3, step = 18401 (0.743 sec)\n", "INFO:tensorflow:global_step/sec: 146.891\n", "INFO:tensorflow:loss = 43357.4, step = 18501 (0.680 sec)\n", "INFO:tensorflow:global_step/sec: 155.775\n", "INFO:tensorflow:loss = 50256.3, step = 18601 (0.642 sec)\n", "INFO:tensorflow:global_step/sec: 135.905\n", "INFO:tensorflow:loss = 42203.0, step = 18701 (0.736 sec)\n", "INFO:tensorflow:global_step/sec: 150.761\n", "INFO:tensorflow:loss = 39352.0, step = 18801 (0.663 sec)\n", "INFO:tensorflow:global_step/sec: 156.62\n", "INFO:tensorflow:loss = 44110.5, step = 18901 (0.638 sec)\n", "INFO:tensorflow:global_step/sec: 148.473\n", "INFO:tensorflow:loss = 52128.4, step = 19001 (0.674 sec)\n", "INFO:tensorflow:global_step/sec: 131.937\n", "INFO:tensorflow:loss = 44822.1, step = 19101 (0.758 sec)\n", "INFO:tensorflow:Saving checkpoints for 19201 into trained_models/reg-model-04/model.ckpt.\n", "INFO:tensorflow:global_step/sec: 75.6735\n", "\n", "* data input_fn:\n", "================\n", "Input file(s): data/valid-*.csv\n", "Batch size: 500\n", "Epoch Count: 1\n", "Mode: eval\n", "Shuffle: False\n", "================\n", "\n", "INFO:tensorflow:Starting evaluation at 2017-11-11-14:34:18\n", "INFO:tensorflow:Restoring parameters from trained_models/reg-model-04/model.ckpt-19201\n", "INFO:tensorflow:Finished evaluation at 2017-11-11-14:34:18\n", "INFO:tensorflow:Saving dict for global step 19201: average_loss = 93.4035, global_step = 19201, loss = 46701.7\n", "INFO:tensorflow:Validation (step 19201): average_loss = 93.4035, loss = 46701.7, global_step = 19201\n", "INFO:tensorflow:loss = 41447.1, step = 19201 (2.250 sec)\n", "INFO:tensorflow:global_step/sec: 60.5112\n", "INFO:tensorflow:loss = 39285.7, step = 19301 (0.724 sec)\n", "INFO:tensorflow:global_step/sec: 142.25\n", "INFO:tensorflow:loss = 47136.1, step = 19401 (0.704 sec)\n", "INFO:tensorflow:global_step/sec: 143.985\n", "INFO:tensorflow:loss = 48500.1, step = 19501 (0.693 sec)\n", "INFO:tensorflow:global_step/sec: 145.566\n", "INFO:tensorflow:loss = 41969.5, step = 19601 (0.689 sec)\n", "INFO:tensorflow:global_step/sec: 126.264\n", "INFO:tensorflow:loss = 45881.1, step = 19701 (0.789 sec)\n", "INFO:tensorflow:global_step/sec: 149.807\n", "INFO:tensorflow:loss = 38483.6, step = 19801 (0.668 sec)\n", "INFO:tensorflow:global_step/sec: 147.313\n", "INFO:tensorflow:loss = 38991.4, step = 19901 (0.679 sec)\n", "INFO:tensorflow:global_step/sec: 154.983\n", "INFO:tensorflow:loss = 33769.5, step = 20001 (0.645 sec)\n", "INFO:tensorflow:global_step/sec: 135.423\n", "INFO:tensorflow:loss = 37037.8, step = 20101 (0.738 sec)\n", "INFO:tensorflow:global_step/sec: 143.824\n", "INFO:tensorflow:loss = 44271.2, step = 20201 (0.698 sec)\n", "INFO:tensorflow:global_step/sec: 142.841\n", "INFO:tensorflow:loss = 47297.9, step = 20301 (0.699 sec)\n", "INFO:tensorflow:global_step/sec: 136.822\n", "INFO:tensorflow:loss = 49067.2, step = 20401 (0.730 sec)\n", "INFO:tensorflow:global_step/sec: 148.37\n", "INFO:tensorflow:loss = 29920.0, step = 20501 (0.673 sec)\n", "INFO:tensorflow:global_step/sec: 155.2\n", "INFO:tensorflow:loss = 41268.2, step = 20601 (0.645 sec)\n", "INFO:tensorflow:global_step/sec: 150.811\n", "INFO:tensorflow:loss = 48263.5, step = 20701 (0.664 sec)\n", "INFO:tensorflow:global_step/sec: 152.439\n", "INFO:tensorflow:loss = 43600.9, step = 20801 (0.655 sec)\n", "INFO:tensorflow:global_step/sec: 154.507\n", "INFO:tensorflow:loss = 53666.0, step = 20901 (0.647 sec)\n", "INFO:tensorflow:global_step/sec: 140.796\n", "INFO:tensorflow:loss = 43610.4, step = 21001 (0.711 sec)\n", "INFO:tensorflow:global_step/sec: 147.657\n", "INFO:tensorflow:loss = 39353.9, step = 21101 (0.677 sec)\n", "INFO:tensorflow:global_step/sec: 150.085\n", "INFO:tensorflow:loss = 41081.1, step = 21201 (0.667 sec)\n", "INFO:tensorflow:global_step/sec: 127.016\n", "INFO:tensorflow:loss = 43726.5, step = 21301 (0.787 sec)\n", "INFO:tensorflow:global_step/sec: 135.764\n", "INFO:tensorflow:loss = 46147.2, step = 21401 (0.737 sec)\n", "INFO:tensorflow:global_step/sec: 136.951\n", "INFO:tensorflow:loss = 42668.0, step = 21501 (0.731 sec)\n", "INFO:tensorflow:Saving checkpoints for 21601 into trained_models/reg-model-04/model.ckpt.\n", "INFO:tensorflow:global_step/sec: 73.8537\n", "\n", "* data input_fn:\n", "================\n", "Input file(s): data/valid-*.csv\n", "Batch size: 500\n", "Epoch Count: 1\n", "Mode: eval\n", "Shuffle: False\n", "================\n", "\n", "INFO:tensorflow:Starting evaluation at 2017-11-11-14:34:36\n", "INFO:tensorflow:Restoring parameters from trained_models/reg-model-04/model.ckpt-21601\n", "INFO:tensorflow:Finished evaluation at 2017-11-11-14:34:36\n", "INFO:tensorflow:Saving dict for global step 21601: average_loss = 93.2296, global_step = 21601, loss = 46614.8\n", "INFO:tensorflow:Validation (step 21601): average_loss = 93.2296, loss = 46614.8, global_step = 21601\n", "INFO:tensorflow:loss = 39012.0, step = 21601 (2.317 sec)\n", "INFO:tensorflow:global_step/sec: 57.3267\n", "INFO:tensorflow:loss = 42405.3, step = 21701 (0.783 sec)\n", "INFO:tensorflow:global_step/sec: 141.019\n", "INFO:tensorflow:loss = 47157.8, step = 21801 (0.707 sec)\n", "INFO:tensorflow:global_step/sec: 143.884\n", "INFO:tensorflow:loss = 40285.0, step = 21901 (0.695 sec)\n", "INFO:tensorflow:global_step/sec: 130.032\n", "INFO:tensorflow:loss = 51357.3, step = 22001 (0.769 sec)\n", "INFO:tensorflow:global_step/sec: 150.628\n", "INFO:tensorflow:loss = 43420.6, step = 22101 (0.663 sec)\n", "INFO:tensorflow:global_step/sec: 134.978\n", "INFO:tensorflow:loss = 50706.4, step = 22201 (0.741 sec)\n", "INFO:tensorflow:global_step/sec: 138.679\n", "INFO:tensorflow:loss = 47902.4, step = 22301 (0.721 sec)\n", "INFO:tensorflow:global_step/sec: 137.255\n", "INFO:tensorflow:loss = 34552.7, step = 22401 (0.730 sec)\n", "INFO:tensorflow:global_step/sec: 139.58\n", "INFO:tensorflow:loss = 40107.3, step = 22501 (0.715 sec)\n", "INFO:tensorflow:global_step/sec: 122.743\n", "INFO:tensorflow:loss = 43026.8, step = 22601 (0.817 sec)\n", "INFO:tensorflow:global_step/sec: 118.511\n", "INFO:tensorflow:loss = 38352.9, step = 22701 (0.846 sec)\n", "INFO:tensorflow:global_step/sec: 127.974\n", "INFO:tensorflow:loss = 47005.3, step = 22801 (0.781 sec)\n", "INFO:tensorflow:global_step/sec: 132.907\n", "INFO:tensorflow:loss = 34692.8, step = 22901 (0.751 sec)\n", "INFO:tensorflow:global_step/sec: 145.023\n", "INFO:tensorflow:loss = 45891.2, step = 23001 (0.689 sec)\n", "INFO:tensorflow:global_step/sec: 143.874\n", "INFO:tensorflow:loss = 44916.1, step = 23101 (0.695 sec)\n", "INFO:tensorflow:global_step/sec: 132.35\n", "INFO:tensorflow:loss = 42158.5, step = 23201 (0.755 sec)\n", "INFO:tensorflow:global_step/sec: 119.94\n", "INFO:tensorflow:loss = 34986.8, step = 23301 (0.838 sec)\n", "INFO:tensorflow:global_step/sec: 124.828\n", "INFO:tensorflow:loss = 49937.9, step = 23401 (0.798 sec)\n", "INFO:tensorflow:global_step/sec: 129.237\n", "INFO:tensorflow:loss = 51601.8, step = 23501 (0.773 sec)\n", "INFO:tensorflow:global_step/sec: 135.224\n", "INFO:tensorflow:loss = 44515.1, step = 23601 (0.740 sec)\n", "INFO:tensorflow:global_step/sec: 140.371\n", "INFO:tensorflow:loss = 43017.3, step = 23701 (0.713 sec)\n", "INFO:tensorflow:global_step/sec: 122.712\n", "INFO:tensorflow:loss = 34417.2, step = 23801 (0.817 sec)\n", "INFO:tensorflow:global_step/sec: 133.027\n", "INFO:tensorflow:loss = 45028.1, step = 23901 (0.750 sec)\n", "INFO:tensorflow:Saving checkpoints for 24000 into trained_models/reg-model-04/model.ckpt.\n", "INFO:tensorflow:Loss for final step: 41759.8.\n", "\n", "* data input_fn:\n", "================\n", "Input file(s): data/valid-*.csv\n", "Batch size: 500\n", "Epoch Count: 1\n", "Mode: eval\n", "Shuffle: False\n", "================\n", "\n", "INFO:tensorflow:Starting evaluation at 2017-11-11-14:34:56\n", "INFO:tensorflow:Restoring parameters from trained_models/reg-model-04/model.ckpt-24000\n", "INFO:tensorflow:Finished evaluation at 2017-11-11-14:34:56\n", "INFO:tensorflow:Saving dict for global step 24000: average_loss = 93.1534, global_step = 24000, loss = 46576.7\n", "INFO:tensorflow:Restoring parameters from trained_models/reg-model-04/model.ckpt-24000\n", "INFO:tensorflow:Assets added to graph.\n", "INFO:tensorflow:No assets to write.\n", "INFO:tensorflow:SavedModel written to: b\"trained_models/reg-model-04/export/Servo/temp-b'1510410896'/saved_model.pb\"\n", ".......................................\n", "Experiment finished at 14:34:57\n", "\n", "Experiment elapsed time: 193.639007 seconds\n" ] } ], "source": [ "if not RESUME_TRAINING:\n", " print(\"Removing previous artifacts...\")\n", " shutil.rmtree(model_dir, ignore_errors=True)\n", "else:\n", " print(\"Resuming training...\") \n", "\n", "\n", "tf.logging.set_verbosity(tf.logging.INFO)\n", "\n", "time_start = datetime.utcnow() \n", "print(\"Experiment started at {}\".format(time_start.strftime(\"%H:%M:%S\")))\n", "print(\".......................................\") \n", "\n", "\n", "learn_runner.run(\n", " experiment_fn=generate_experiment_fn(\n", "\n", " export_strategies=[make_export_strategy(\n", " csv_serving_input_fn,\n", " exports_to_keep=1\n", " )]\n", " ),\n", " run_config=run_config,\n", " schedule=\"train_and_evaluate\",\n", " hparams=hparams\n", ")\n", "\n", "time_end = datetime.utcnow() \n", "print(\".......................................\")\n", "print(\"Experiment finished at {}\".format(time_end.strftime(\"%H:%M:%S\")))\n", "print(\"\")\n", "time_elapsed = time_end - time_start\n", "print(\"Experiment elapsed time: {} seconds\".format(time_elapsed.total_seconds()))\n", " " ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## 7. Evaluate the Model" ] }, { "cell_type": "code", "execution_count": 13, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "INFO:tensorflow:Using config: {'_task_type': None, '_task_id': 0, '_cluster_spec': <tensorflow.python.training.server_lib.ClusterSpec object at 0x11e860a58>, '_master': '', '_num_ps_replicas': 0, '_num_worker_replicas': 0, '_environment': 'local', '_is_chief': True, '_evaluation_master': '', '_tf_config': gpu_options {\n", " per_process_gpu_memory_fraction: 1\n", "}\n", ", '_tf_random_seed': 19830610, '_save_summary_steps': 100, '_save_checkpoints_secs': None, '_log_step_count_steps': 100, '_session_config': None, '_save_checkpoints_steps': 2400, '_keep_checkpoint_max': 5, '_keep_checkpoint_every_n_hours': 10000, '_model_dir': 'trained_models/reg-model-04'}\n", "\n", "Estimator Type: <class 'tensorflow.python.estimator.canned.dnn.DNNRegressor'>\n", "\n", "\n", "* data input_fn:\n", "================\n", "Input file(s): data/train-*.csv\n", "Batch size: 12000\n", "Epoch Count: None\n", "Mode: eval\n", "Shuffle: False\n", "================\n", "\n", "INFO:tensorflow:Starting evaluation at 2017-11-11-14:34:58\n", "INFO:tensorflow:Restoring parameters from trained_models/reg-model-04/model.ckpt-24000\n", "INFO:tensorflow:Evaluation [1/1]\n", "INFO:tensorflow:Finished evaluation at 2017-11-11-14:34:58\n", "INFO:tensorflow:Saving dict for global step 24000: average_loss = 84.9214, global_step = 24000, loss = 1.01906e+06\n", "\n", "############################################################################################\n", "# Train RMSE: 9.21528 - {'average_loss': 84.921417, 'loss': 1019057.0, 'global_step': 24000}\n", "############################################################################################\n", "\n", "* data input_fn:\n", "================\n", "Input file(s): data/valid-*.csv\n", "Batch size: 3000\n", "Epoch Count: None\n", "Mode: eval\n", "Shuffle: False\n", "================\n", "\n", "INFO:tensorflow:Starting evaluation at 2017-11-11-14:34:59\n", "INFO:tensorflow:Restoring parameters from trained_models/reg-model-04/model.ckpt-24000\n", "INFO:tensorflow:Evaluation [1/1]\n", "INFO:tensorflow:Finished evaluation at 2017-11-11-14:34:59\n", "INFO:tensorflow:Saving dict for global step 24000: average_loss = 93.1534, global_step = 24000, loss = 279460.0\n", "\n", "############################################################################################\n", "# Valid RMSE: 9.6516 - {'average_loss': 93.153397, 'loss': 279460.19, 'global_step': 24000}\n", "############################################################################################\n", "\n", "* data input_fn:\n", "================\n", "Input file(s): data/test-*.csv\n", "Batch size: 5000\n", "Epoch Count: None\n", "Mode: eval\n", "Shuffle: False\n", "================\n", "\n", "INFO:tensorflow:Starting evaluation at 2017-11-11-14:34:59\n", "INFO:tensorflow:Restoring parameters from trained_models/reg-model-04/model.ckpt-24000\n", "INFO:tensorflow:Evaluation [1/1]\n", "INFO:tensorflow:Finished evaluation at 2017-11-11-14:35:00\n", "INFO:tensorflow:Saving dict for global step 24000: average_loss = 93.2213, global_step = 24000, loss = 466107.0\n", "\n", "############################################################################################\n", "# Test RMSE: 9.65512 - {'average_loss': 93.221344, 'loss': 466106.72, 'global_step': 24000}\n", "############################################################################################\n" ] } ], "source": [ "TRAIN_SIZE = 12000\n", "VALID_SIZE = 3000\n", "TEST_SIZE = 5000\n", "\n", "train_input_fn = lambda: csv_input_fn(files_name_pattern= TRAIN_DATA_FILES_PATTERN, \n", " mode= tf.estimator.ModeKeys.EVAL,\n", " batch_size= TRAIN_SIZE)\n", "\n", "valid_input_fn = lambda: csv_input_fn(files_name_pattern= VALID_DATA_FILES_PATTERN, \n", " mode= tf.estimator.ModeKeys.EVAL,\n", " batch_size= VALID_SIZE)\n", "\n", "test_input_fn = lambda: csv_input_fn(files_name_pattern= TEST_DATA_FILES_PATTERN, \n", " mode= tf.estimator.ModeKeys.EVAL,\n", " batch_size= TEST_SIZE)\n", "\n", "estimator = create_estimator(run_config, hparams)\n", "\n", "train_results = estimator.evaluate(input_fn=train_input_fn, steps=1)\n", "train_rmse = round(math.sqrt(train_results[\"average_loss\"]),5)\n", "print()\n", "print(\"############################################################################################\")\n", "print(\"# Train RMSE: {} - {}\".format(train_rmse, train_results))\n", "print(\"############################################################################################\")\n", "\n", "valid_results = estimator.evaluate(input_fn=valid_input_fn, steps=1)\n", "valid_rmse = round(math.sqrt(valid_results[\"average_loss\"]),5)\n", "print()\n", "print(\"############################################################################################\")\n", "print(\"# Valid RMSE: {} - {}\".format(valid_rmse,valid_results))\n", "print(\"############################################################################################\")\n", "\n", "test_results = estimator.evaluate(input_fn=test_input_fn, steps=1)\n", "test_rmse = round(math.sqrt(test_results[\"average_loss\"]),5)\n", "print()\n", "print(\"############################################################################################\")\n", "print(\"# Test RMSE: {} - {}\".format(test_rmse, test_results))\n", "print(\"############################################################################################\")" ] }, { "cell_type": "markdown", "metadata": { "collapsed": true }, "source": [ "## 8. Prediction" ] }, { "cell_type": "code", "execution_count": 14, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "\n", "* data input_fn:\n", "================\n", "Input file(s): data/test-*.csv\n", "Batch size: 5\n", "Epoch Count: None\n", "Mode: infer\n", "Shuffle: False\n", "================\n", "\n", "WARNING:tensorflow:Input graph does not contain a QueueRunner. That means predict yields forever. This is probably a mistake.\n", "INFO:tensorflow:Restoring parameters from trained_models/reg-model-04/model.ckpt-24000\n", "\n", "Predicted Values: [51.019321, -5.8079214, 19.57333, 2.9324729, 1.5238302]\n" ] } ], "source": [ "import itertools\n", "\n", "predict_input_fn = lambda: csv_input_fn(files_name_pattern=TEST_DATA_FILES_PATTERN, \n", " mode= tf.estimator.ModeKeys.PREDICT,\n", " batch_size= 5)\n", "\n", "predictions = estimator.predict(input_fn=predict_input_fn)\n", "values = list(map(lambda item: item[\"predictions\"][0],list(itertools.islice(predictions, 5))))\n", "print()\n", "print(\"Predicted Values: {}\".format(values))" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## What can we improve?\n", "\n", "* **Use .tfrecords files instead of CSV** - TFRecord files are optimised for tensorflow.\n", "\n", "\n", "* **Build a Custom Estimator** - Custom Estimator APIs give you the flexibility to build custom models in a simple and standard way\n", "\n" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "collapsed": true }, "outputs": [], "source": [] } ], "metadata": { "kernelspec": { "display_name": "Python 3", "language": "python", "name": "python3" }, "language_info": { "codemirror_mode": { "name": "ipython", "version": 3 }, "file_extension": ".py", "mimetype": "text/x-python", "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", "version": "3.6.1" } }, "nbformat": 4, "nbformat_minor": 2 }
apache-2.0
wenleicao/wenleicao.github.io
Files/regex_test.ipynb
1
11953
{ "cells": [ { "cell_type": "code", "execution_count": 1, "metadata": {}, "outputs": [], "source": [ "query = '''\n", "\"proc sql;\n", "\tcreate table Wenlei.DW_Example_latest AS\n", "\tSELECT DISTINCT \n", "\t\t\tT2.POLICY_ID,\n", "\t\t\tT2.POLICY,\n", "\t\t\tstrip(left(T2.ROLE)),\n", " strip(left(T2.type)),\t\t\t\n", "\t\t\tT2.SEQ_ID, \n", "\t\t\tINTCK('day', T1.LastPayDate, today()) as DayPaid,\n", "\t\t\t(today()-T1.date_created) as DaysBtw\t\t\t\n", "\tFROM \tWORK.DW_Table1 t1 \n", "\t\t\tINNER JOIN\n", "\t\t\tWORK.DW_Table2 t2 ON (t1.ID = t2.ID AND T1.POLICY_ID=T2.POLICY_ID \n", "\t\t\t\t\t\t\t\t\t\t AND t1.MAX_PROCESS_Time=t2.PROCESS_Time)\n", "\tWHERE t2.ID<>-1 \n", "\t;\n", "quit;\"\n", "'''" ] }, { "cell_type": "code", "execution_count": 2, "metadata": {}, "outputs": [ { "data": { "text/plain": [ "'strip(left(b.type_rw))'" ] }, "execution_count": 2, "metadata": {}, "output_type": "execute_result" } ], "source": [ "#goal strip(left(b.type_rw)) -> trim(b.type_rw) \n", "import re\n", "text = '''strip(left(b.type_rw)) abc'''\n", "pattern = re.compile(\"(strip\\(left\\().+\\)\\)\", re.IGNORECASE)\n", "match = pattern.search(text)\n", "match.group(0)\n", "# for match in pattern.finditer(text):\n", "# print (match.group(1), match.group(2))\n" ] }, { "cell_type": "code", "execution_count": 3, "metadata": {}, "outputs": [], "source": [ "#replace prefix\n", "def remove_prefix(text, prefix):\n", " return text[len(prefix):] if text.startswith(prefix) else text\n", "#remove appendix\n", "def remove_appendix(text, appendix):\n", " return text[:len(text)-len(appendix)] if text.endswith(appendix) else text" ] }, { "cell_type": "code", "execution_count": 4, "metadata": {}, "outputs": [ { "data": { "text/plain": [ "'trim(b.type_rw) abc'" ] }, "execution_count": 4, "metadata": {}, "output_type": "execute_result" } ], "source": [ "stringX = match.group(0)\n", "string_kept = remove_appendix (stringX, '))')\n", "#print(string_kept)\n", "string_kept = remove_prefix (string_kept, 'strip(left(')\n", "#print(string_kept)\n", "string_kept = 'trim(' + string_kept + ')'\n", "text1 = text.replace(stringX, string_kept )\n", "text1\n" ] }, { "cell_type": "code", "execution_count": 5, "metadata": {}, "outputs": [], "source": [ "'''\n", "https://stackoverflow.com/questions/6930982/how-to-use-a-variable-inside-a-regular-expression\n", "https://docs.python.org/3/howto/regex.html#the-backslash-plague\n", "'''\n", "#define function to replace both side of string\n", "def replace_both_sides (text, prefix, appendix, new_prefix, new_appendix):\n", " import re\n", " pattern = re.compile((re.escape(prefix)) + r'.+' + re.escape(appendix) , re.IGNORECASE) #left side, keep group, use escape to remove all \\\n", " if pattern.search(text) != None:\n", " match = pattern.search(text) #use search for any place in a row\n", " # return match.group(0)\n", " stringX = match.group(0) # get matched\n", " string_kept = remove_appendix (stringX, appendix) #remove appendix\n", " #print(string_kept) \n", " string_kept = remove_prefix (string_kept, prefix) #remove prefix\n", " #print(string_kept)\n", " string_kept = new_prefix + string_kept + new_appendix #form replacement str\n", " text1 = text.replace(stringX, string_kept ) #replace string\n", " return text1\n", " else:\n", " return text\n", "\n" ] }, { "cell_type": "code", "execution_count": 7, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "trim(b.type_rw) abc\n", "trim(c.type_rw) abc\n" ] } ], "source": [ "#test run\n", "print(replace_both_sides (r'strip(left(b.type_rw)) abc', r\"strip(left(\", r\"))\", r'trim(', r')'))\n", "print(replace_both_sides (r'strip(left(c.type_rw)) abc', r\"strip(left(\", r\"))\", r'trim(', r')'))\n" ] }, { "cell_type": "code", "execution_count": 11, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "\n", "\"proc sql;\n", "\tcreate table Wenlei.DW_Example_latest AS\n", "\tSELECT DISTINCT \n", "\t\t\tT2.POLICY_ID,\n", "\t\t\tT2.POLICY,\n", "\t\t\ttrim(T2.ROLE),\n", " strip(left(T2.type)),\t\t\t\n", "\t\t\tT2.SEQ_ID, \n", "\t\t\tINTCK('day', T1.LastPayDate, today()) as DayPaid,\n", "\t\t\t(today()-T1.date_created) as DaysBtw\t\t\t\n", "\tFROM \tWORK.DW_Table1 t1 \n", "\t\t\tINNER JOIN\n", "\t\t\tWORK.DW_Table2 t2 ON (t1.ID = t2.ID AND T1.POLICY_ID=T2.POLICY_ID \n", "\t\t\t\t\t\t\t\t\t\t AND t1.MAX_PROCESS_Time=t2.PROCESS_Time)\n", "\tWHERE t2.ID<>-1 \n", "\t;\n", "quit;\"\n", "\n" ] } ], "source": [ "query_m= replace_both_sides (query, r\"strip(left(\", r\"))\", r'trim(', r')')\n", "print(query_m)" ] }, { "cell_type": "code", "execution_count": 12, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "strip(left(T2.ROLE))\n", "strip(left(T2.type))\n" ] } ], "source": [ "#https://stackoverflow.com/questions/12870178/looping-through-python-regex-matches\n", "import re\n", "text = query\n", "prefix = r\"strip(left(\"\n", "appendix = r\"))\"\n", "new_prefix = r'trim('\n", "new_appendix =r')'\n", "pattern = re.compile((re.escape(prefix)) + r'.+' + re.escape(appendix) , re.IGNORECASE) #left side, keep group, use escape to remove all \\\n", "matches = re.findall(pattern, text) #use findall instead of search use loop to get the value\n", "for g1 in matches:\n", " print (g1)\n" ] }, { "cell_type": "code", "execution_count": 13, "metadata": {}, "outputs": [], "source": [ "def replace_both_sides_All (text, prefix, appendix, new_prefix, new_appendix):\n", " import re\n", " pattern = re.compile((re.escape(prefix)) + r'.+' + re.escape(appendix) , re.IGNORECASE) #left side, keep group, use escape to remove all \\\n", " if pattern.search(text) != None:\n", " matches = re.findall(pattern, text) #use search for any place in a row\n", " for match in matches: #loop through all match\n", " # return match.group(0)\n", " stringX = match # get matched\n", " string_kept = remove_appendix (stringX, appendix) #remove appendix\n", " #print(string_kept) \n", " string_kept = remove_prefix (string_kept, prefix) #remove prefix\n", " #print(string_kept)\n", " string_kept = new_prefix + string_kept + new_appendix #form replacement str\n", " text = text.replace(stringX, string_kept ) #replace string\n", " return text \n", " else:\n", " return text" ] }, { "cell_type": "code", "execution_count": 14, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "\n", "\"proc sql;\n", "\tcreate table Wenlei.DW_Example_latest AS\n", "\tSELECT DISTINCT \n", "\t\t\tT2.POLICY_ID,\n", "\t\t\tT2.POLICY,\n", "\t\t\ttrim(T2.ROLE),\n", " trim(T2.type),\t\t\t\n", "\t\t\tT2.SEQ_ID, \n", "\t\t\tINTCK('day', T1.LastPayDate, today()) as DayPaid,\n", "\t\t\t(today()-T1.date_created) as DaysBtw\t\t\t\n", "\tFROM \tWORK.DW_Table1 t1 \n", "\t\t\tINNER JOIN\n", "\t\t\tWORK.DW_Table2 t2 ON (t1.ID = t2.ID AND T1.POLICY_ID=T2.POLICY_ID \n", "\t\t\t\t\t\t\t\t\t\t AND t1.MAX_PROCESS_Time=t2.PROCESS_Time)\n", "\tWHERE t2.ID<>-1 \n", "\t;\n", "quit;\"\n", "\n" ] } ], "source": [ "print(replace_both_sides_All (query, r\"strip(left(\", r\"))\", r'trim(', r')'))" ] }, { "cell_type": "code", "execution_count": 24, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "\n", "\"proc sql;\n", "\tcreate table Wenlei.DW_Example_latest AS\n", "\tSELECT DISTINCT \n", "\t\t\tT2.POLICY_ID,\n", "\t\t\tT2.POLICY,\n", "\t\t\ttrim(T2.ROLE),\n", " trim(T2.type),\t\t\t\n", "\t\t\tT2.SEQ_ID, \n", "\t\t\tINTCK('day', T1.LastPayDate, today()) as DayPaid,\n", "\t\t\t(today()-T1.date_created) as DaysBtw\t\t\t\n", "\tFROM \tWORK.DW_Table1 t1 \n", "\t\t\tINNER JOIN\n", "\t\t\tWORK.DW_Table2 t2 ON (t1.ID = t2.ID AND T1.POLICY_ID=T2.POLICY_ID \n", "\t\t\t\t\t\t\t\t\t\t AND t1.MAX_PROCESS_Time=t2.PROCESS_Time)\n", "\tWHERE t2.ID<>-1 \n", "\t;\n", "quit;\"\n", "\n" ] } ], "source": [ "#use Re to solve this issue more elegantly\n", "prefix= r\"strip(left(\"\n", "appendix =r\"))\"\n", "pattern = re.compile((re.escape(prefix)) + r'(.+)' + re.escape(appendix) , re.IGNORECASE) \n", "print(re.sub(pattern, r'trim(\\1)', query))" ] }, { "cell_type": "code", "execution_count": 25, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "trim(T2.type)\n" ] } ], "source": [ "print(re.sub(pattern, r'trim(\\1)', 'strip(left(T2.type))'))" ] }, { "cell_type": "code", "execution_count": 22, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "\n", "\"proc sql;\n", "\tcreate table Wenlei.DW_Example_latest AS\n", "\tSELECT DISTINCT \n", "\t\t\tT2.POLICY_ID,\n", "\t\t\tT2.POLICY,\n", "\t\t\ttrim(T2.ROLE),\n", " trim(T2.type),\t\t\t\n", "\t\t\tT2.SEQ_ID, \n", "\t\t\tINTCK('day', T1.LastPayDate, today()) as DayPaid,\n", "\t\t\t(today()-T1.date_created) as DaysBtw\t\t\t\n", "\tFROM \tWORK.DW_Table1 t1 \n", "\t\t\tINNER JOIN\n", "\t\t\tWORK.DW_Table2 t2 ON (t1.ID = t2.ID AND T1.POLICY_ID=T2.POLICY_ID \n", "\t\t\t\t\t\t\t\t\t\t AND t1.MAX_PROCESS_Time=t2.PROCESS_Time)\n", "\tWHERE t2.ID<>-1 \n", "\t;\n", "quit;\"\n", "\n" ] } ], "source": [ "#trouble shooting in regex101\n", "# https://stackoverflow.com/questions/47966350/regex-to-include-all-characters-with-at-least-one-letter-and-at-least-6-characte\n", "# https://stackoverflow.com/questions/3028642/regular-expression-for-letters-numbers-and\n", "#test another pattern\n", "prefix= r\"strip(left(\"\n", "appendix =r\"))\"\n", "pattern = re.compile((re.escape(prefix)) + r'([a-zA-Z0-9_.-]*)' + re.escape(appendix) , re.IGNORECASE) \n", "print(re.sub(pattern, r'trim(\\1)', query))" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [] } ], "metadata": { "kernelspec": { "display_name": "Python 3", "language": "python", "name": "python3" }, "language_info": { "codemirror_mode": { "name": "ipython", "version": 3 }, "file_extension": ".py", "mimetype": "text/x-python", "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", "version": "3.7.3" } }, "nbformat": 4, "nbformat_minor": 4 }
mit
thundergolfer/Insults
insults/exploration/model/does_quoting_insults_lower_the_score.ipynb
1
1258
{ "cells": [ { "cell_type": "markdown", "metadata": {}, "source": [ "# Does quoting insulting content lower the model's output score?" ] }, { "cell_type": "code", "execution_count": 18, "metadata": { "collapsed": false }, "outputs": [], "source": [ "# Ugly Python PATH hack to import insults from notebook\n", "import os\n", "import sys\n", "nb_dir = os.path.split(os.getcwd())[0]\n", "if nb_dir not in sys.path:\n", " sys.path.append(nb_dir)" ] }, { "cell_type": "code", "execution_count": 19, "metadata": { "collapsed": false }, "outputs": [], "source": [ "import insults" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "collapsed": true }, "outputs": [], "source": [] } ], "metadata": { "kernelspec": { "display_name": "Python 2", "language": "python", "name": "python2" }, "language_info": { "codemirror_mode": { "name": "ipython", "version": 2 }, "file_extension": ".py", "mimetype": "text/x-python", "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython2", "version": "2.7.12" } }, "nbformat": 4, "nbformat_minor": 2 }
gpl-3.0
ctralie/TUMTopoTimeSeries2016
SlidingWindow1-Basics.ipynb
1
24504
{ "cells": [ { "cell_type": "markdown", "metadata": {}, "source": [ "# Geometry of Sliding Window Embeddings\n", "In this module, you will interactively explore how various parameters of sliding window embeddings of 1 dimensional periodic time series data affect the geometry of their embeddings. In each code box, press *ctrl-enter* (or *cmd-enter* on a Mac) to execute the code. Progress through the lab sequentially. As you examine the plots in each experiment, answer the questions that follow.\n", "\n", "This first box imports all of the necessary Python packages to run the code in this module. There will be a similar box at the beginning of every module in this series." ] }, { "cell_type": "code", "execution_count": null, "metadata": { "scrolled": false }, "outputs": [], "source": [ "#Do all of the imports and setup inline plotting\n", "import numpy as np\n", "from ripser import ripser\n", "\n", "%matplotlib notebook\n", "import matplotlib.pyplot as plt\n", "from matplotlib import gridspec\n", "from mpl_toolkits.mplot3d import Axes3D\n", "\n", "from sklearn.decomposition import PCA\n", "\n", "from scipy.interpolate import InterpolatedUnivariateSpline\n", "\n", "import ipywidgets as widgets\n", "from IPython.display import display\n", "\n", "import warnings\n", "warnings.filterwarnings('ignore')\n", "\n", "from IPython.display import clear_output" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Pure Sinusoid Sliding Window\n", "In this first experiment, you will alter the extent of the sliding window of a pure sinusoid and examine how the geometry of a 2-D embedding changes. \n", "\n", "First, setup and plot a pure sinusoid in NumPy:" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "scrolled": false }, "outputs": [], "source": [ "# Step 1: Setup the signal\n", "T = 40 # The period in number of samples\n", "NPeriods = 4 # How many periods to go through\n", "N = T*NPeriods #The total number of samples\n", "t = np.linspace(0, 2*np.pi*NPeriods, N+1)[:N] # Sampling indices in time\n", "x = np.cos(t) # The final signal\n", "plt.plot(x);" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Sliding Window Code\n", "The code below performs a sliding window embedding on a 1D signal. The parameters are as follows:\n", "\n", "| | |\n", "|:-:|---|\n", "|$x$ | The 1-D signal (numpy array) |\n", "|dim|The dimension of the embedding|\n", "|$\\tau$ | The skip between samples in a given window |\n", "|$dT$ | The distance to slide from one window to the next |\n", "\n", "That is, along the signal given by the array $x$, the first three windows will will be $$\\begin{bmatrix} x(\\tau)\\\\ x(2\\tau) \\\\ \\ldots \\\\ x((\\mbox{dim}-1)\\cdot\\tau)\\end{bmatrix}, \\begin{bmatrix} x(dT + \\tau)\\\\ x(dT +2\\tau) \\\\ \\ldots \\\\ x(dT +(\\mbox{dim}-1)\\cdot\\tau)\\end{bmatrix}, \\begin{bmatrix} x(2dT + \\tau)\\\\ x(2dT +2\\tau) \\\\ \\ldots \\\\ x(2dT +(\\mbox{dim}-1)\\cdot\\tau)\\end{bmatrix}$$\n", "\n", "Spline interpolation is used to fill in information between signal samples, which is necessary for certain combinations of parameters, such as a non-integer $\\tau$ or $dT$.\n", "\n", "The function *getSlidingWindow* below creates an array $X$ containing the windows as its columns." ] }, { "cell_type": "code", "execution_count": null, "metadata": { "scrolled": false }, "outputs": [], "source": [ "def getSlidingWindow(x, dim, Tau, dT):\n", " \"\"\"\n", " Return a sliding window of a time series,\n", " using arbitrary sampling. Use linear interpolation\n", " to fill in values in windows not on the original grid\n", " Parameters\n", " ----------\n", " x: ndarray(N)\n", " The original time series\n", " dim: int\n", " Dimension of sliding window (number of lags+1)\n", " Tau: float\n", " Length between lags, in units of time series\n", " dT: float\n", " Length between windows, in units of time series\n", " Returns\n", " -------\n", " X: ndarray(N, dim)\n", " All sliding windows stacked up\n", " \"\"\"\n", " N = len(x)\n", " NWindows = int(np.floor((N-dim*Tau)/dT))\n", " if NWindows <= 0:\n", " print(\"Error: Tau too large for signal extent\")\n", " return np.zeros((3, dim))\n", " X = np.zeros((NWindows, dim))\n", " spl = InterpolatedUnivariateSpline(np.arange(N), x)\n", " for i in range(NWindows):\n", " idxx = dT*i + Tau*np.arange(dim)\n", " start = int(np.floor(idxx[0]))\n", " end = int(np.ceil(idxx[-1]))+2\n", " # Only take windows that are within range\n", " if end >= len(x):\n", " X = X[0:i, :]\n", " break\n", " X[i, :] = spl(idxx)\n", " return X" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Sliding Window Result\n", "\n", "We will now perform a sliding window embedding with various choices of parameters. [Principal component analysis](https://en.wikipedia.org/wiki/Principal_component_analysis) will be performed to project the result down to 2D for visualization. \n", "\n", "The first two eigenvalues computed by PCA will be printed. The closer these eigenvalues are to each other, the rounder and more close to a circle the 2D projection of the embedding is. A red vertical line will be drawn to show the product of $\\tau$ and the dimension, or \"extent\" (window length).\n", "\n", "**An important note:** we choose to project the results to 2D (or later, to 3D). Nothing in particular tells us that this is the best choice of dimension. We merely make this choice to enable visualization. In general, when doing PCA, we want to choose enough eigenvalues to account for a significant portion of [explained variance](https://stats.stackexchange.com/questions/22569/pca-and-proportion-of-variance-explained).\n", "\n", "** Exercise: ** Execute the code. Using the sliders, play around with the parameters of the sliding window embedding and examine the results. Then answer the questions below." ] }, { "cell_type": "code", "execution_count": null, "metadata": { "scrolled": false }, "outputs": [], "source": [ "def on_value_change(change):\n", " execute_computation1()\n", " \n", "dimslider = widgets.IntSlider(min=1,max=40,value=20,description='Dimension:',continuous_update=False)\n", "dimslider.observe(on_value_change, names='value')\n", "\n", "Tauslider = widgets.FloatSlider(min=0.1,max=5,step=0.1,value=1,description=r'\\(\\tau :\\)' ,continuous_update=False)\n", "Tauslider.observe(on_value_change, names='value')\n", "\n", "dTslider = widgets.FloatSlider(min=0.1,max=5,step=0.1,value=0.5,description='dT: ',continuous_update=False)\n", "dTslider.observe(on_value_change, names='value')\n", "\n", "display(widgets.HBox(( dimslider,Tauslider,dTslider)))\n", "\n", "plt.figure(figsize=(9.5, 3))\n", "def execute_computation1(): \n", " plt.clf()\n", " # Step 1: Setup the signal again in case x was lost\n", " T = 40 # The period in number of samples\n", " NPeriods = 4 # How many periods to go through\n", " N = T*NPeriods # The total number of samples\n", " t = np.linspace(0, 2*np.pi*NPeriods, N+1)[0:N] # Sampling indices in time\n", " x = np.cos(t) # The final signal\n", " \n", " # Get slider values\n", " dim = dimslider.value\n", " Tau = Tauslider.value\n", " dT = dTslider.value\n", " \n", " #Step 2: Do a sliding window embedding\n", " X = getSlidingWindow(x, dim, Tau, dT)\n", " extent = Tau*dim\n", "\n", " #Step 3: Perform PCA down to 2D for visualization\n", " pca = PCA(n_components = 2)\n", " Y = pca.fit_transform(X)\n", " eigs = pca.explained_variance_\n", " print(\"lambda1 = %g, lambda2 = %g\"%(eigs[0], eigs[1]))\n", "\n", " #Step 4: Plot original signal and PCA of the embedding\n", " ax = plt.subplot(121)\n", " ax.plot(x)\n", " ax.set_ylim((-2*max(x), 2*max(x)))\n", " ax.set_title(\"Original Signal\")\n", " ax.set_xlabel(\"Sample Number\")\n", " yr = np.max(x)-np.min(x)\n", " yr = [np.min(x)-0.1*yr, np.max(x)+0.1*yr]\n", " ax.plot([extent, extent], yr, 'r')\n", " ax.plot([0, 0], yr, 'r') \n", " ax.plot([0, extent], [yr[0]]*2, 'r')\n", " ax.plot([0, extent], [yr[1]]*2, 'r')\n", " ax2 = plt.subplot(122)\n", " ax2.set_title(\"PCA of Sliding Window Embedding\")\n", " ax2.scatter(Y[:, 0], Y[:, 1])\n", " ax2.set_aspect('equal', 'datalim')\n", " plt.tight_layout()\n", " \n", "execute_computation1()" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "### Questions\n", "1. For fixed $\\tau$:\n", " 1. What does varying the dimension do to the *extent* (the length of the window)?\n", " 1. what dimensions give eigenvalues nearest each other? (Note: dimensions! Plural!) Explain why this is the case. Explain how you might use this information to deduce the period of a signal.\n", "<br><br>\n", "1. What does varying $dT$ do to the PCA embedding? Explain this in terms of the definition of sliding windows above.\n", "<br><br>\n", "1. The command \n", "```python\n", "np.random.randn(pts)\n", "```\n", "generates an array of length *pts* filled with random values drawn from a standard normal distribution ($\\mu=0$, $\\sigma=1$). Modify the code above to add random noise to signal. \n", " 1. Can you still detect the period visually by inspecting the plot of the signal?\n", " 1. Does your method of detecting the period from the first question still work?\n", " 1. How does adding noise change the geometry of the PCA embedding? \n", " 1. Modify the amplitude of the noise (for example, by multiplying the noise-generating command by a constant) and examine the 2D projection. What feature of the 2D projection appears to imply that the signal is periodic? At what noise amplitude does this feature appear to vanish?\n", "\n", "\n" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Non-Periodic Signal Sliding Window\n", "For a contrasting example, we will now examine the sliding window embedding of a non-periodic signal which is a linear function plus Gaussian noise. The code below sets up the signal and then does the sliding window embedding, as before. \n", "\n", "** Exercise: ** Execute the code. Using the sliders, play around with the parameters of the sliding window embedding and examine the results. Then answer the questions below." ] }, { "cell_type": "code", "execution_count": null, "metadata": { "scrolled": false }, "outputs": [], "source": [ "noise = 0.05*np.random.randn(400)\n", "\n", "def on_value_change(change):\n", " execute_computation2()\n", " \n", "dimslider = widgets.IntSlider(min=1,max=40,value=20,description='Dimension:',continuous_update=False)\n", "dimslider.observe(on_value_change, names='value')\n", "\n", "Tauslider = widgets.FloatSlider(min=0.1,max=5,step=0.1,value=1,description='Tau: ',continuous_update=False)\n", "Tauslider.observe(on_value_change, names='value')\n", "\n", "dTslider = widgets.FloatSlider(min=0.1,max=5,step=0.1,value=0.5,description='dT: ',continuous_update=False)\n", "dTslider.observe(on_value_change, names='value')\n", "\n", "display(widgets.HBox(( dimslider,Tauslider,dTslider)))\n", "\n", "plt.figure(figsize=(9.5, 3))\n", "\n", "def execute_computation2(): \n", " plt.clf()\n", " # Step 1: Set up the signal\n", " x = np.arange(400)\n", " x = x/float(len(x))\n", " x = x + noise # Add some noise\n", " \n", " # Get slider values\n", " dim = dimslider.value\n", " Tau = Tauslider.value\n", " dT = dTslider.value\n", " \n", " #Step 2: Do a sliding window embedding\n", " X = getSlidingWindow(x, dim, Tau, dT)\n", " extent = Tau*dim\n", "\n", " #Step 3: Perform PCA down to 2D for visualization\n", " pca = PCA(n_components = 2)\n", " Y = pca.fit_transform(X)\n", " eigs = pca.explained_variance_\n", " print(\"lambda1 = %g, lambda2 = %g\"%(eigs[0], eigs[1]))\n", "\n", " #Step 4: Plot original signal and PCA of the embedding\n", " gs = gridspec.GridSpec(1, 2)\n", " ax = plt.subplot(gs[0,0])\n", " ax.plot(x)\n", " ax.set_ylim((-2, 2))\n", " ax.set_title(\"Original Signal\")\n", " ax.set_xlabel(\"Sample Number\")\n", " yr = np.max(x)-np.min(x)\n", " yr = [np.min(x)-0.1*yr, np.max(x)+0.1*yr]\n", " ax.plot([extent, extent], yr, 'r')\n", " ax.plot([0, 0], yr, 'r') \n", " ax.plot([0, extent], [yr[0]]*2, 'r')\n", " ax.plot([0, extent], [yr[1]]*2, 'r') \n", " ax2 = plt.subplot(gs[0, 1])\n", " ax2.set_title(\"PCA of Sliding Window Embedding\")\n", " ax2.scatter(Y[:, 0], Y[:, 1])\n", " ax2.set_aspect('equal', 'datalim')\n", "\n", "execute_computation2()" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "### Questions\n", "\n", "1. Notice how changing the window extent doesn't have the same impact as it did in the periodic example above. Why might this be?\n", "<br><br>\n", "1. Why is the second eigenvalue always tiny?\n" ] }, { "cell_type": "markdown", "metadata": { "collapsed": true }, "source": [ "## Multiple Sines Sliding Window\n", "We will now go back to periodic signals, but this time we will increase the complexity by adding two sines together. If the ratio between the two sinusoids is a rational number, then they are called *harmonics* of each other. For example, $\\sin(t)$ and $\\sin(3t)$ are harmonics of each other. By contrast, if the ratio of the two frequencies is irrational, then the sinusoids are called *incommensurate*. For example, $\\sin(t)$ and $\\sin(\\pi t)$ are incommensurate.\n", "\n", "The plots below are initialized with \n", "\n", "$$f(t) = \\sin(\\omega t) + \\sin(3\\omega t),$$\n", "\n", "a sum of two harmonics. \n", "\n", "This time, the eigenvalues of PCA will be plotted (up to the first 10), in addition to the red line showing the extent of the window. Also, 3D PCA will be displayed instead of 2D PCA, and you can click and drag your mouse to view it from different angles. Colors will be drawn to indicate the position of the window in time, with cool colors (greens and yellows) indicating earlier windows and hot colors (oranges and reds) indicating later windows (using the \"jet\" colormap).\n", "\n", "** Exercise: ** Execute the code. Then play with the sliders, as well as the embedding dimension (note that for the 3-D projection, you can change the view by dragging around. Do!). Then, try changing the second sinusoid to be another multiple of the first. Try both harmonic and incommensurate values. Once you have gotten a feel for the geometries and the eigenvalues, answer the questions below." ] }, { "cell_type": "code", "execution_count": null, "metadata": { "scrolled": false }, "outputs": [], "source": [ "def on_value_change(change):\n", " execute_computation3()\n", "\n", "embeddingdimbox = widgets.Dropdown(options=[2, 3],value=3,description='Embedding Dimension:',disabled=False)\n", "embeddingdimbox.observe(on_value_change,names='value')\n", "\n", "secondfreq = widgets.Dropdown(options=[2, 3, np.pi],value=3,description='Second Frequency:',disabled=False)\n", "secondfreq.observe(on_value_change,names='value')\n", "\n", "noiseampslider = widgets.FloatSlider(min=0,max=6,step=0.5,value=0,description='Noise Amplitude',continuous_update=False)\n", "noiseampslider.observe(on_value_change, names='value')\n", "\n", "dimslider = widgets.IntSlider(min=1,max=100,value=30,description='Dimension:',continuous_update=False)\n", "dimslider.observe(on_value_change, names='value')\n", "\n", "Tauslider = widgets.FloatSlider(min=0.1,max=5,step=0.1,value=1,description='Tau: ',continuous_update=False)\n", "Tauslider.observe(on_value_change, names='value')\n", "\n", "dTslider = widgets.FloatSlider(min=0.1,max=5,step=0.1,value=0.5,description='dT: ',continuous_update=False)\n", "dTslider.observe(on_value_change, names='value')\n", "\n", "display(widgets.HBox(( secondfreq,embeddingdimbox,noiseampslider)))\n", "display(widgets.HBox((dimslider,Tauslider,dTslider)))\n", "\n", "noise = np.random.randn(10000)\n", "\n", "fig = plt.figure(figsize=(9.5, 4))\n", "def execute_computation3():\n", " plt.clf()\n", " \n", " # Step 1: Setup the signal\n", " T1 = 20 # The period of the first sine in number of samples\n", " T2 = T1*secondfreq.value # The period of the second sine in number of samples\n", " NPeriods = 10 # How many periods to go through, relative to the second sinusoid\n", " N = T2*NPeriods # The total number of samples\n", " t = np.arange(N) # Time indices\n", " x = np.cos(2*np.pi*(1.0/T1)*t) # The first sinusoid\n", " x += np.cos(2*np.pi*(1.0/T2)*t) # Add the second sinusoid\n", " x += noiseampslider.value*noise[:len(x)]\n", " \n", " # Get widget values\n", " dim = dimslider.value\n", " Tau = Tauslider.value\n", " dT = dTslider.value\n", " embeddingdim = embeddingdimbox.value\n", " \n", " # Step 2: Do a sliding window embedding\n", " X = getSlidingWindow(x, dim, Tau, dT)\n", " extent = Tau*dim\n", "\n", " # Step 3: Perform PCA down to dimension chosen for visualization\n", " pca = PCA(n_components = 10)\n", " Y = pca.fit_transform(X)\n", " eigs = pca.explained_variance_\n", "\n", " # Step 4: Plot original signal and PCA of the embedding \n", " gs = gridspec.GridSpec(2, 2,width_ratios=[1, 2])\n", " \n", " # Plot the signal\n", " ax = plt.subplot(gs[0,0])\n", " ax.plot(x)\n", " yr = np.max(x)-np.min(x)\n", " yr = [np.min(x)-0.1*yr, np.max(x)+0.1*yr]\n", " ax.plot([extent, extent], yr, 'r')\n", " ax.plot([0, 0], yr, 'r') \n", " ax.plot([0, extent], [yr[0]]*2, 'r')\n", " ax.plot([0, extent], [yr[1]]*2, 'r')\n", " ax.set_title(\"Original Signal\")\n", " ax.set_xlabel(\"Sample Number\")\n", "\n", " c = plt.get_cmap('jet')\n", " C = c(np.array(np.round(np.linspace(0, 255, Y.shape[0])), dtype=np.int32))\n", " C = C[:, 0:3]\n", "\n", " # Plot the PCA embedding\n", " if embeddingdim == 3:\n", " ax2 = plt.subplot(gs[:,1],projection='3d')\n", " ax2.scatter(Y[:, 0], Y[:, 1], Y[:, 2], c=C)\n", " ax2.set_aspect('equal', 'datalim')\n", " else:\n", " ax2 = plt.subplot(gs[:,1])\n", " ax2.scatter(Y[:, 0], Y[:, 1],c=C)\n", "\n", " ax2.set_title(\"PCA of Sliding Window Embedding\")\n", " ax2.set_aspect('equal', 'datalim')\n", "\n", " # Plot the eigenvalues as bars\n", " ax3 = plt.subplot(gs[1,0])\n", " eigs = eigs[0:min(len(eigs), 10)]\n", " ax3.bar(np.arange(len(eigs)), eigs)\n", " ax3.set_xlabel(\"Eigenvalue Number\")\n", " ax3.set_ylabel(\"Eigenvalue\")\n", " ax3.set_title(\"PCA Eigenvalues\")\n", "\n", " plt.tight_layout()\n", "\n", " plt.show();\n", "\n", "execute_computation3()" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Questions\n", "\n", "1. Comment on the relationship between the eigenvalues and the extent (width) of the window.\n", "<br><br>\n", "1. When are the eigenvalues near each other? When are they not?\n", "<br><br>\n", "1. Comment on the change in geometry when the second sinusoid is incommensurate to the first. Specifically, comment on the *intrinsic dimension* of the object in the projection. Can you name the shape in the 3-D projection in the incommensurate case?\n", "<br><br>\n", "1. Try adding noise in like you did in the single frequency case. \n", " 1. Can you distinguish in the projection between the incommensurate case and the noisy, but harmonic one with second frequency 3? Explain.\n", " 1. What can you say about the eigenvalues in the two cases? Explain your answer.\n", "\n", "It seems reasonable to ask what the ideal dimension to embed into is. While that question may be answerable, it would be better to bypass the question altogether. Similarly, it seems that beyond detecting the largest period, these tools are limited in detecting the secondary ones. Topological tools that we will see beginning in the next lab will allow us to make some progress toward that goal." ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Power Spectrum\n", "\n", "We saw above that for a rather subtle change in frequency changing the second sinusoid from harmonic to noncommensurate, there is a marked change in the geometry. By contrast, the power spectral density functions are very close between the two, as shown below. Hence, it appears that geometric tools are more appropriate for telling the difference between these two types of signals" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "scrolled": false }, "outputs": [], "source": [ "T = 20 #The period of the first sine in number of samples\n", "NPeriods = 10 #How many periods to go through, relative to the faster sinusoid\n", "N = T*NPeriods*3 #The total number of samples\n", "t = np.arange(N) #Time indices\n", "\n", "#Make the harmonic signal cos(t) + cos(3t)\n", "xH = np.cos(2*np.pi*(1.0/T)*t) + np.cos(2*np.pi*(1.0/(3*T)*t))\n", " \n", "#Make the incommensurate signal cos(t) + cos(pi*t)\n", "xNC = np.cos(2*np.pi*(1.0/T)*t) + np.cos(2*np.pi*(1.0/(np.pi*T)*t))\n", "\n", "plt.figure()\n", "P1 = np.abs(np.fft.fft(xH))**2\n", "P2 = np.abs(np.fft.fft(xNC))**2\n", "plt.plot(np.arange(len(P1)), P1)\n", "plt.plot(np.arange(len(P2)), P2)\n", "plt.xlabel(\"Frequency Index\")\n", "plt.legend({\"Harmonic\", \"Noncommensurate\"})\n", "plt.xlim([0, 50])\n", "plt.show();" ] }, { "cell_type": "markdown", "metadata": { "collapsed": true }, "source": [ "# Summary\n", "\n", "* Signals can be transformed into geometric objects via embeddings.\n", "<br><br>\n", "* Signal properties are captured by the geometry of the sliding window embedding. Periodicity corresponds to circularity, period length over window size corresponds to roundness, number of incommensurate frequencies corresponds to intrinsic dimension.\n", "<br><br>\n", "* The window extent is one of the most important parameters for determining roundness.\n", "<br><br>\n", "* Adding noise makes things a little trickier to see what's going on by inspection of projections." ] } ], "metadata": { "kernelspec": { "display_name": "Python 3", "language": "python", "name": "python3" }, "language_info": { "codemirror_mode": { "name": "ipython", "version": 3 }, "file_extension": ".py", "mimetype": "text/x-python", "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", "version": "3.7.6" } }, "nbformat": 4, "nbformat_minor": 1 }
apache-2.0
nickedes/Baby-science
Linear-Reg/Linear-reg-Overview.ipynb
1
74950
{ "cells": [ { "cell_type": "code", "execution_count": 1, "metadata": { "collapsed": false }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "Populating the interactive namespace from numpy and matplotlib\n" ] }, { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAXUAAAEACAYAAABMEua6AAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJztnXeUFEXXxp8i57xIlqyASFIwoSTJImBAFFFAxYjCiyIY\nEDGhIgomFEyogCAgiCiIoAiCZJAggpJz2iWnre+PZ+vrnpmemZ60u7Nzf+f06Vxd09t7+/atG5TW\nGoIgCELWIFtGd0AQBEGIHiLUBUEQshAi1AVBELIQItQFQRCyECLUBUEQshAi1AVBELIQAYW6Uqq8\nUmqeUmqdUuovpVSftO0vKKV2KqVWpk2t06e7giAIQiBUID91pVQpAKW01quUUgUALAfQEcDtAI5p\nrd9Kn24KgiAIbsgRaKfWei+AvWnLx5VSGwCUTdutYtw3QRAEIURc29SVUhUB1AOwOG3TY0qp1Uqp\nsUqpIjHomyAIghAiroR6mullMoDHtdbHAXwAoBKAugD2ABgesx4KgiAIrgloUwcApVROAN8DmKW1\nftthf0UAM7TWtb22S1IZQRCEMNBah23eDub9ogCMBbDeLtCVUqVth3UCsNZPx2TSGoMHDw75HEDj\n/vt9tx88yH0nTmT870qve5FVJ7kXci+cpkgJOFAK4FoA3QCsUUqtTNs2CEBXpVRdABrAfwB6R9wT\nwYc9e3y37d3L+dGjQL587tt66SWgYUOgZcvo9E0QhMxJMO+X3+Gszc+KTXcEOwsX+m4zgv7oUaBM\nGfdtPfcc0KiRCHVByOpIRGk60KRJk7DOO3bMd5tdqMcj4d6LrIjcCwu5F9FDhHo6EO4De/687za7\n+SUekX9eC7kXFnIvoocI9TgjkKZ+9CiwfHn69kcQhMyFCPU4Y88eoFAhZ6E+YwYwZEj690kQhMyD\nCPU4Y+9eICUFOHjQd9+OHenfH0EQMhci1OMMY35Zt853nwh1QRBEqMcZRqivXu27T4S6IAjBgo+E\nTMTJk8DZs1z++2/f/TNnpm9/BEHIfIimHkfs3QuUKuW8LwrRxelCvPRTEOIVEepxxJ49QO7czvs+\n/TR9+xIO+/YB9epldC8EIWsjQj2O2LPH2exy5gzQqxeXy5b13Z9ZOHkS2Lkzo3shCFkbEepxhIkm\n9ea996zlmjXTpy/h4pT6QBCE6CFCPZNz/Li17J21UWvg8GHgtdeApk25LU+e9OtbOJw9aw32CoIQ\nfUSoZ3I+/9xaXrHCc9/27cDLLwOdOwNbtqRvvyLhxImM7oEgZF1EqGdyHn2UNnMA+PFHz31TpwKf\nfQa88AIFfDCWLIl278JDTDCCEDvETz0OSEoCGjf23d63LzB0qOXmWLVq+vYrXOwmJUEQooto6nHA\n3LnAvfc677v3Xsv3u3379OpRZIhQF4TYIUI9DpgzB6hVi8t163ruq1nT0tRPngTOnUvfvoWDmF8E\nIXaIUI8DXnkFGD+ey6tWee47cABo04bLH33ka3f3xqnwxmWXOQ9erl4N3HJL6P0NhmjqghA7RKjH\nASdOAK++6rwvW7bQhKS3l8zRo8z4mMNhdGX5cv8ukufOOb8g3CCauiDEDhHqccKFC76mF4CFpL/9\n1n07GzZ4rv/7L5Arl3P6gb//9j/4OmwY8Pbb7q9rRzR1QYgdItTjiMqVfbfVrh1aG05CvVAh52M3\nbfIv1E+e9B/hGgwR6oIQO0SoxxFTpvhu69o1tDZmz/Zc37LFv1D/+2+gShX/bYVb/FrML4IQO0So\nxzkzZoR2/Pz5nuv+NPXz56nVP/OMczu//AJMnx7atQ2iqQtC7JDgozgnHMGqNaAUl/0J9a1bOfd+\nCRiWLgVSU0O/NiCauiDEEtHU4xxTq7RdO/fnrFxpLW/ZAhQu7HuMU4pfO/6KdbhBNHVBiB0i1LMI\nDz3k/thhwzg/d445Y5w09WBC/aKLOL9wwf11DSLUBSF2iFDPIpQr5/7Yb77hfPt2CuVwhLrxovn3\nX/fXNYj5RRBihwj1LEKoGRiTky2B/NdfvvuDCfXTpzlfvdp338GDgWuRiqYuCLFDhHoWYeHC0I6f\nOdOKLl2wgNGjdtauddfO4sW+25o3p4+7P0SoC0LsEKGeBcifP3ShPmWKp+kkOdlaTklhRSU3/Pab\n77aDB/1XN8qeXcwvghBLRKhnAU6cCL3y0bffOptdgMBaNuDpyrh0qe/+lBT/5xYoIJq6IMQSEeoJ\nzKxZztuD2dOND7vBrnlfuBBYaBcowOMD2dwFQQgfEeqCD8GEunf6X7v9PZgWnjMnJzPQKghCdBGh\nLgDwFLLBhLo9eAkA1qyxlo1t3km4HztGLb9gQd/98+ez5qogCJEhQl0A4GkHD1VTtwt1086BA77n\n/fcf58YEY+fzz639giCEjwh1AYBl405N9T+Aaggk1E3mxmLFfM87coRzp8HShQtZgUkQhMgQoS4A\nAHbutOaBQv8PHvTVstessV4Kxk3SKUrVCHxvTX3fPuCff0LPDS8Igi8i1AUAlhYdzPSyejVQp47n\nttOngW3bPM83WSDtGKGeI4enpr5oEVC8eGRJwgRBIJJ6VwBgCVw3g6T16nkGHZ07B4wYAXToALz/\nPrf9/DOwf7/nuZMnc/7778B331l1UV98ETh0iMebRGF2duwAypRh4JIgCIERoS4AoOAEggcerVoF\ntGjhu33kSNrizcuhXz+gWTPPY0yaYAD44APrBWJs9MOGAW+95dv2o48CXboAd94Z/HcIQqIj5hcB\ngJVmYNy4wMetWuVbAFsp4NZbgblzLe178GCu26ebbuK+Jk2AUaO4bcYM+q3XqOHfll+qFPDjj2H/\nNEFIKESoCwAsm3qguqOnTnEgtGZNz+1aWx4w589zbveIMZi2lbJs6kuX0nwTaJC0QgXWVg230pIg\nJBIi1BOQXLmct//zT+Dz1q0Dqld3Pn/HDuDkSWvdyYxjf2EY7xfzhVCrlv/rli9PDxmnNL+CIHgi\nQj0B8ZdBsXnzwOeZQVInqlTxtJk7vSDM10C2bJamvnAhNXGnknqGChU4/+mnwP0TBEGEesJSv77v\nNjNY6g8ne7qhUCFPk4vTi2PvXs6Voqaemkp3xssu43zGDOe2//yTc2+7utbA6NGB+ywIiYYI9UxI\neiS7atDA/75sfp6KQEI9T57g5hFjbzc29fXraZKpXZsl9vylCZg+nfM///RMZ5CaCjz8cPCXkSAk\nEgGFulKqvFJqnlJqnVLqL6VUn7TtxZRSc5RSm5RSs5VSRdKnu4nBL7/E/honTvjflz+/77bUVGri\n3oFHhjx56H9ux9+gqxHq5vhg6QFy5+a8YkVg3jxre/bsQIkSwK+/Bj5fEBKJYJr6OQB9tda1AFwF\n4BGlVA0ATwOYo7WuDmBu2roQJT77LPbX8M7fYsc+4GnYsoUCtIif1/eZM77ZG+12daOlA5b5xQyS\nVqnirs+XXuprgilZUoS6INgJKNS11nu11qvSlo8D2ACgLIAOAD5PO+xzAB1j2clEIjUVmDQp9tdZ\nv97/Pid/8UCDpICzYLULdbvWbjT1hQupbQf6arBz5gyFur3ARsmSTNsrCAJxbVNXSlUEUA/AEgAX\naa33pe3aB8AhuFsIBzMoGGsqVw7t+ED2dMBTEzds2GAtewv1v/+mDb169cBfDXaMT7v9ZVGyJLB5\nM7Brl7s2BCGr4ypNgFKqAIBvATyutT6mbNmatNZaKeVYnOyFF174/+UmTZqgSZMmkfQ1IRgxIn2u\n07y5Z+HpYKxaBTz4YGjXmDULGDqUy95C/dQpLl92GbBkSeB2zBjDgQNAz57U1qtX57aSJTn/9VdJ\nIyDEJ/Pnz8f8KH5uBhXqSqmcoEAfp7WelrZ5n1KqlNZ6r1KqNID9Tufahbrgjm++SZ/rBAr2cSKY\npu7E8uXWsvFRB6wMjtmy0fPl44/dt9msGfD110CfPlwvWZKpfEWoC/GKt8I7ZMiQiNoL5v2iAIwF\nsF5r/bZt13QA96Qt3wNgmve5QugES6YVTex1RYOxbx/dLMuXD/06xv7t5AlToABT7p44Qc8WNxQs\nCCxYYLl9lizJAVSxqwsCCWZTvxZANwBNlVIr06bWAF4DcKNSahOAZmnrQoQMHJh+1zKeJ25YtYqD\npE450oNhytrZNXWTkvf8eXraNGzI2qVuWLmSJhvjDlmyJNP1HjwI7NkTev8EIasRzPvld611Nq11\nXa11vbTpR631Ya11C611da11S611gDRQglumTEm/a23c6P7YcEwvBjOoac+tvnQp5ydPUug3auS+\nvZkzgdatLdfGkiUp0Bs3FtdGQQAkojTTYKIiixfP2H44EYlQN2YeJ9NSoUIU8IGiW71ZuhS4/npP\nob5/P3DDDSLUBQEQoZ5pePhhzg8dCpzcKiOIRKh//z3nTl8GFSoAy5bRTTEUTp9mHpmdOy2h3qSJ\n2NUFAQCU1o7eiJE3rJSOVdtZkXDs1f5wuu2RtJ83L5CczGIW4bSntfPxVapw+w03AGPHWsd6Yz+3\nfHl6uWzbxgpMPXsC+fJRsFeowJeHU0k8QYgXlFLQWof9HyuaeiZg0SLP9WefzZh++KNmTU+BHi32\n7aM93Qh0N1SsSL/1Vq1oglGK2vqhQ2JXFwRAhHqGsm4dcM89wLXXct3Ylh94IOP65ES4pheDv4pF\nx49bg6bBMPdm+3ZGqjZqxHJ458+LXV0Q7IhQzwAWLgQ6dGBU5yWXcFurVgzWyZkzPH/wWBKpUN+9\n2/8+t7752bNzvm0bcPXVPK9CBaZVSA+7+pEjwJw5sWlbEKKJCPV0IjWVg4bXXQd07w60acPcJ507\nc//jj3OeGaMiIxXqf/wReP///hdae82aWSaYn36yhHrduswBs98xvjkyPv4Y+Pzz4McJQkYjQj3G\nnDsHjBsHXH458NxzwKOPMpnVQw9xANJ4vZjAmRtuyLi++uPyyyM7P9gYQaFC7tq5+27OmzalUDf+\n6kaoZ8/Ol+Zvv0XWXyfGj+cXgiBkdkSox4gTJ4CRI4GqVYFPPwWGDwdWrADuuAPIkZZxR2sWfejQ\nwYrwzIxC3a3Q9UcgE0vbtu5qj2ptfc2ULEm//qpVaV/Pls3SzmNhV9+4kW6dItSFeECEepQ5dAgY\nMgSoVInCZdIky1Tg7dZnBPmQIcAXX3C5UqX07W9Gc9NNvt4/TixdalVd+vprCu+FC2lHX7PGEupN\nmkRfqE+YQLfJSL9YBCE9EKEeJbZvB554AqhWjVrkggXAt98yr4k/nk6rF1WuHL04unSh4E+kmpvt\n2rk/1nzhPPusZVdv3Zr5YIxQr1ePg6kTJwJPPhl5/7Sm6eXKK63rC0JmRoR6hBi3xLp16bmydi0w\nZozl1eKP06epaXbqZA0kNm3KbIavJVB6tHA9fZo1ozfKI49wPGJfWsmWHDnoIjp0KPDBB5H3b+VK\nmo/E9CLECxJRGiYLFwLDhtGlrk8fDnwWLep5jNaMxDxwgNP+/dbyBx8wzD17ds/ycQULsn5nJEQ7\nojTa7dnxdkMMdK0dO6yXQGoqbel2zLnDhllfQXv3RhZh+tRTwBtvAN99x7EPQYg1ElGajtjdEhs3\nBs6eBQYN4r4hQ4C77gJatqTWXrYskCcPfanbtKHb3iefAIsXU2jv3Mnzptky0Z88Sc0/kShTxv2x\nc+cC/ftzef9+IH9+z/0myMk+2BzMnTIQqam0pwOiqQvxg1gJQ2DKFKBXLyApiRGNuXJxkC4picL7\niiu4nJRED40SJSjYvTl4kCaWDh2AG2/kttat6eLYvHn6/qaMZts298fOnQv06AG8+Sa9hkqXZn1S\nw9GjQLFinlkf//gD6OhVFr1vXw7QNmsW+HqLFjFwqmpV/k0FIS7QWsdkYtOCE+++qzWg9aRJWi9a\nxOVRo7T+7Tcu33Yb5+FOTmSm9sx08cVaL1vm/lqlS2u9dSuXmzbVunFjz3OXLuXxycnWtsaNndur\nUCH43+mRR9jHu+8OfqwgRIs02Rm27BXzSwbw7ruct2pluTVWrco84QBNO4nAtm3AgAHuj8+VC0hJ\n4fK8ecCZM577J07kfMsWa5t3al9jotm+PfC1zp+nO+rFF4vpRYgvRKinM3//zWCWli05KDppErcP\nHgyUKkVPGrtJIaszd677Y5s39/RB/+svz/3G13/FCmvb2bM0kRn+/dfdtX75hQJ9/34R6kJ8IUI9\nnfnyS85vuYUGgj//5Hq5cswvftttwPr1Gde/zEzz5sDPP1vjFCdPeu43vur2VL4XLngOlq5aZS2b\n4tVOTJjAL6ldu1gTVRDiBRHq6UhqKj1gAA7U2TXyV16hMK9Th4JL8MVo6i1b+j9m82ZfjxdvoV6t\nGpc3bHBu48wZeiVVqCBBR0L8IUI9Hfn9d3pTNGpEz43hw7l9/Hhg8mSmd61YMUO7mKlJSeEXzdEA\nZc5N7VJ7Zkm7UF+92iqGbdfa7cyaxZQA27eL6UWIP0SopyPjxnF+880Mihk9muvbtjH0vVgxHhNK\nIeZEonp1pisOlCDMRJF26WJtO3zYiji1C3J/X0QTJgBdu/JlIEJdiDdEqKcTp05RG1eKmQlvu83a\nZwKQdu/mcblzZ0wf44ETJ/hC9IcZj7CnH8ifn0FfBw96RuvOnOl7/vHj1NQ7dmQSsauuik6/BSG9\nEKGeTsyYwbD2qlWBjz6yQtpXrAC6deOUOzcjSt1kLUxEZs6kW6Mb7CkEdu+m1r16tWemxeRk37QE\n06czd8y+ffRGKl488n4LQnoiQj2dGDeOecmPHOFn/0MPceCvXj26NRrN/a23MrafmZk2bZiOIRz+\n+IOmF283SO9Se3bTyzXXhHctQchIRKinA/v3MxXv1q00AUydSuFy7bU0JaxeTY8OY1YwvuuCJ3Pm\nhBasZGf5cppTjhzx3G73YT98mF9UJsd7RtnTFy0CfvghY64txD8i1NOBCROsTIGTJgE1a/If99pr\nmU+mXTv6Xt93H4/p1Cnj+pqZGTyYYxJduwY/dtcuzk2+9mLFrIhTO6tXW8tmkPXs2YwdJB01il9u\n/lwuBSEQItTTgU8+sTw2br2VQmP5cg7CGdPL9Om0GVevznS8gi+LF/O+lS4d/NgZMzgvVYpzf4VH\n7ELd1FLdtIk29Zo1w+9ruGhNX/zHHwduv50D54IQCiLUY8yGDZbgmDqV85UrOWB66hSXr76axR56\n9ADq18+4vsYDV1zhmdvFH7/9xpdjcnLg44z5xe5R88MPrFiVES/XzZs5yPvyyxzUfeKJ9O+DEN+I\nUI8xbdpYyyYScuFCy/TSti0H/1q3pokmI7TDeOO77wLvv+46zi9coIZer57/YzduZLqAb77herZs\nFOrRMr0sWmQlEXPD/PksHKIU8OGHTFxmcroLghtEqMeQFSsYWNSqFf2e8+XjdiPUJ09mkYhp04DX\nX6ePtQh1d9iDi7z56itrecmSwBGoqal0IzWCs359fllFy/Pl9tv5NeaWX3+1inwULMhxgD59EivJ\nmxAZItRjxMGDVmRo/vyMIgVoM124kPlHFi2iYB81iqXwjFCXhF7+ee45zp0GPQ1Finiu//df4Da/\n+472eoCpegGmcogGycmBI2DtGHu6vXJTvXocIO7SxTfVsCA4IUI9Bpw/b3lovPQS/dLbt+f6v//S\nVrtiBT/769cHOnfm8s6dNBcY80EiEizP+YIFwdv47TfP9WARukOHApUre27zrjcbDhcuMELVrVD/\n91+eYxKOGR5+mDmBnnoq8j4JWR8R6jHgmWc4CFqwIO3kdeuytB1gmV4GD+a6KZixaRMFe9euvgWV\nE4m33w68f/585jkPxMiRlkYPAAMHBr9uwYLBjwmV48c5//tvd8cbLd27qLdSTCc8fbpnTVtBcCKB\nxUds+OYbTl27crDtzz8t0wtAoV61Kl3m3n6bNnWt6eoIMN1rw4YZ0/fMwGefBbaBA3T3M66KTsyZ\n4+njHewlAPjP2BgJpkqTW03d2/Rip0gR2v179w6trquQeIhQjyJr19I1ccoU+px360btyluov/oq\nlx97jHbSbt2sdLBJSTw/UWnfnl4fgdixg/c5EJMnW8u//+7u2maQ2s1LwA0pKXz5bNrkm2PGCeP5\n4o9GjWiC6drVs0SfINgRoR4ljhxhJOiIEdS+//iD8xIlWNHIHLNuHZdffpnrN97oWYFn2rTAFXmy\nOv3703wSaFDwr7+osfqjVSvPdaeSeZ07+z/fRP/amTePidhCISWFL4g8eQJnlgSYQuLMGeCSSwIf\n17cv7f1285Ig2BGhHgUuXADuuos5Q7p1Y9GLDh1oBujY0TrOXqyhfXu6zTVqxBB2gN4ws2cndvm0\nyy9n9Se7W6I3c+ZY7qFOeA80bt3qe4yT9m68juzmH6057tGypRWl6paUFKBwYUYJB7Or//orC497\n29O9yZYN+Pxz3h9TEEQQ7IhQjwKDB7Ne5uuvc/2LL4Du3al1200vxmRQsiSFRN++PM9EnL76KhNW\nff11+vY/s/Hkk8CbbwYO2vnpJ/9mEjfl56691v++gwc5P3sWeOABFjN55hlfV8lgpKQwM2f16sHt\n6sFML3ZKlKBQ79HDN8ukIIhQj5CpU5lW95tvgJw5aV7Zv5+ml2PHLF/1gwctjXH/fuDTTxnNuGyZ\nlRrgssso4K+/PkN+SqahaVMgb97AmQqnTPHvS24KUAfCFK924vBhBgw1a8a/26JF/JoqXDh4u3aM\nUL/kEneaur9BUieuv55Kwp138ktREAwi1CNgwwbadidPpvYNUMDfdRc/1Tt0sNwTH33UOm/RIuCX\nX6jRX7hATfDii1l8Ok8eVt5JZJSitm6+fJyYMcPyLvHG35fO/fdby+PHOx9jtPT69flS/vZbujsm\nJ8dOU9++ndcKNZp44EB+lQwdGtp5QtZGhHqYJCfTXj5sGCvOAxTQX34J3H03oxSNPf37760IyGuu\noVnmzTdpu+3SBXj+eWpc+/bRsyGYZ0cicOut9HJZssR5f0pK6DblqlWDHzNnDue33EI/8969OT90\nKPSMiXZNPZBQ9+efHozs2fm8ffQRlQRBAESoh0VqKgV3ixa0axrmz6fGnpREM0yTJszrfdNN1jGL\nFlEDrV2b/+hPPslP8z/+4LYKFaScHUANtG9f4I03gh/rHQ3qD/M1FYiBAylcBw2i7/qFC9Ta33kn\n9KpURqhXqULfcn9uiKGaXuyUKmWN4bgxOwlZHxHqYfDSS7S7jhjhuX3cOAr7GTPoVrd3L1CuHPe1\nbet5/urV1Bw3baIW/9tv9HwZNoyTAPTsSYEXjFGj3LXn5mX50EMUsEeO0OzyySccJA2H5GQK9dy5\ngbJl/eegiUSoA1Qu7r2Xgj2UjJBC1kSEeoh8/z0/dydP9iyCfOIETS5du3JerhzzdQA0t5hBv+XL\nKSTOnaNwN4N9R44wncCqVeL9YihQILA/usFfAQxvPv7Yc/3FFz3XlQKefppC+PBha3u4HiZGUwf8\nuzXu2sVrRerG+sILfAbdfNlEyujRQL9+sb+OEB4i1EPgn3+oPU6a5BumPm0a0wIUKEDBbz7Vixa1\nbOtvvslP+UWLmH1v8WIOxFWsyH/+1FQmb3r55XT9WZmaxx4Lfky49mTvxF9acypWzBLqycm+X2Ru\nsQt1f3Z1458eab6fHDk4+DtiRGzNd2fPAg8+yORzQuZEhHoI7NxJwTtxoqcmB1imF5ON0fhK2wsd\n33EHhfatt9K3fcYMDsIZr4dPPqFQKV8+9r8lXnCK7vRm7ly6QAYiZ07fbT//7HysXaiPGGGZzmrX\nDt4XO2409UhNL3bKlePXSNeuvs9ntDB55gOlPhYylqBCXSn1iVJqn1JqrW3bC0qpnUqplWlT69h2\nM3PQtCndGM+do+Y1YgQ1lz17qB3NnWvZgM+fp2nl4out6keNGnH7unUsnqCUlUP94EHac0+fZsCL\n4J5Dh/h3CEQouVKKFePL+NAhRpM+/TS3B0ot4ERKCtMor13r360xlKAjN9x0E5WGHj3c5ZsJhW3b\naD4cMyZ0Tx0h/XCjqX8KwFtoawBvaa3rpU0JE7CclAS89x4/3efOBWrVoiZ37BjToxqqVaO99Isv\nLL/zr7+mPd6eq3v9eqBGDQ6anj9Pm7ob7VTwpEaN6LVVuDA13TfeoIA0KXRr1QqtHeNH/9przgFI\ne/YABw64/wI4epSxD3v2BD7u1Vd5zMiRofU3GGaMqFev6LYrRBmtddAJQEUAa23rgwH8L8g5OhH4\n/HNjifWcLrpI6z59tC5YkOsHDviee+GC73k9e2o9bZpzm24nJzJTe7G41urV0evDZ59pfc01Whcr\npvWOHVoPH87tCxaE9mwULszzChXi3zpfPq2Tk639EyZofdNN7to6ckTrK67Q+pZbtE5NDX78v/9q\nnZSk9dKlofXZH9On87esWhWd9gT/pMlOV7LZaYrEpv6YUmq1UmqsUirEWLuswdq1wD33cLlTJ899\nZ87wU3XxYkYMmiIZp09Tc+/d27Na/QMPUFMfO9YzX4zgjnffjV4itPPnaU67+27aqY3t3SRec4PW\n/HoDqLGfO8evN7sJxq3p5ehRZvM8cYLpJdyYPipVAt5/n8Ftycnu++2E1vxCSEpisjUhc6P4Yghy\nkFIVAczQWtdOWy8J4EDa7qEASmute3mdoweb8j4AmjRpgibRNB5mMD/9xH/63Lk5f/llTw+GpCQW\nCy5UiLbZmTOZW/3nn5lh0P4J3aIFfdTt/6xmuW3bwDlQnHD6k0ZiA412e7G6VuvWkWUuzJePCdYM\ne/bQyylXLgpls+6G48d57IkTXJ89m4OYHTsyehjgWMq4cVZ+ICeMQP/7bxZcGTGCLrEVKrjrxyOP\ncLxmwoTw/2b9+vG6R46EnipBCM78+fMxf/78/18fMmQItNbh/4e5UefhZX5xsw9Z2PwyejTNK/Pn\na126tNbr12tdp47nJ3ypUtZy/vxad+yo9ZgxWg8YoHXx4lq/8QY/aXPl0vrvv32vYc7Nly/jzSXR\nbi+zXMtNX06etNbPnHH/jOzaxWcD0Prii2mKe/ZZrQcP5v59+2ieOX/efxvG5AJoPWWK1nv2aK2U\n1jt3uu8rb6M5AAAgAElEQVTHqVN8Nj/80P05dlJSeP177gnvfCF0kBHmF6VUadtqJwBr/R2blUhN\nZWrcN99kAeQzZ5iNsVQpK32u8ZTYu9cKSy9Thr7Io0czl8nixSwGUaYMzQbVq/u/pl1zFNKXU6eA\nNWusdXuwWTDs7ozt29N91e7W+Ouv9Iyxm+DsGA192TI+U506Magtb14+N27Jk4cZRJ97zvO3uMXk\nNRozJvRzhYzBjUvjeACLAFyilNqhlOoJYJhSao1SajWAGwD0jXE/MwUTJwLDh9OjpVo1fjp37878\nLQC9I5Si0B42jF4u27fzH6tfP2DpUgpxk1iqQQPPzIGG8+fT7zcJvvRNe5qfe45/s3AwKQIAerec\nP0+lwNjUA/mn2wV6ixaMPAYYqFa1auhmlOrVGQzXpYvlyeOGdev4EvrsM3c56oVMQiRqfqAJWdD8\ncu4cPSGKF9d60CCaRiZM0Lp8eU+vBsONN/LT9frrtf7vP61HjKBHwkMP8fPbiVOnaKqxmwE6dRLz\nS3pOS5day/XrB+6bP2bP1rp5c543ejT/5oMGaV2gAL1XLrtM6yVLfM8zJpfy5Wm2MV5Thw5pnSOH\n1p07h9YPOz16hGZGCed3C5GDjDC/JCo5clDjXraMuc9PnmSU6PvvW1oZQG2oTx96x5QvT4+X4sWB\nJ55gYYzcuTlINmyYZz3SY8eAdu24307//unz+wRy8iRw6aXA448DK1aEXhwD8DS/ADTB/P47B2PX\nruUXnCmOYjAaevHiNP18+63lNTVjBrV971J9oTBqFAdbP/88+LHjxnG+cmX41xMyBhHqYVCxIj+L\nDT/9ZAWa/PQTXetSUlggeds25nm56SYKi2LFrPwcixczaGbCBHootGjBz2vv+pzGTi+kD4cO0XTW\nOi3kLhyXQG+h3rQpBWSJErRPX3ONp0nDCPQ6dVgh6/XXPb1ipkyhTT8SoZ4/P+3r/ftTufDHmTM0\nK1asyCRzQnwhQj0Mdu2ia2KhQkwbcOoUULo03b169+aA6GefUeNSipp8+fIsvHDmDNuoXp2l8D77\njNp/UhLtt2XLsn6pnQED0vsXxifRevkdPMiX77x5ngWu/RXJaNmSmr0db6GeNy990v/9l1HFl15K\nG/eRI5ZAv/ZaRrI2beqZp//YMfalalWO54Rr5weocLz6KtNU+Ps9Dz/M+Z9/hn8dIeMQoR4GX3zB\n+ciRDP9u2ZJaeHIy173DvrNlY9BI3rz0UT5/nsJ9wQJuNz7rWjPRlz2Qaf16mmSE4Lz2WnTaOXSI\nQn32bOYpN5hAM2+uvpoDitdey78h4CvUAZpgTp/m375ECb7UGzUCGjakJ0ypUkzz+/bbnufNmkXN\n/sABvhh69gye6yYQvXpRuPd1cG/YvZuJ5R54gIqGEIdEYpAPNCGLjrCkpnLwKFcu+gvffLPWNWpo\nvWgRBzmffVbrEiW0fv99hoYbTp/Wes4ca/ApXz6tixbl8k03aX30qNYnTmj94osMT/cepJKB0vSb\n+vfX+vHHuTxmjLW9ShXn/tlTFNx2G5+R/v21fv11/f8DpVrzeTHHjR2r9ZVXWuuTJtGvfccO3/Zv\nv51xDfnza332rNbVqmn90kvOfXFLcrLWVatyoN9OmTLsz6lTkbUvhA8iHCiNqiD3aDiLCvXJk3nX\nBgyg8H7+eQpsO2vXat2gAY/r0kXrZs3o9XDFFVo//DC3d+2q9YYNWpcsycASO7t3W//sPXvS60aE\nevpNPXpo/cILXLYLXn/9K1HC85j77+f04YfaQ6jbf8sdd1jLTZpwPn26b9unTjFIaeZMBhFpzRdA\n7txab9zo3B+3LF9Ob6zNm7n+22/sxyefRNauEBki1NMRo6Wbf/bVq619p0/zn+LFFynE7ZGg9et7\nujCmpGjdsKHW/frxH8tJsEdLMG7bpvV778WPoE3Pa/mbOnTQesgQLl97rbW9XDnn/p0549zOV19x\nrpTWBw8G/y1XX81nw85332l9ww1af/211rfeaj2HDRvSVdb+NRgOo0ZRAbFHzrpJGCbEjkiFutjU\nQ2DSJM4feIDJmJKTgaFDgebNaSPt14+21H79aJvUmoU1KlYEGje2cq0XLEg76c8/Mx/MrFmsJjN1\nqu81Dx7kIGwoLFkCPPssPSnq16eXjeCeAwc4tgHQm8nQtKnz8bly8Xnw5qmnONeaLqzeUZnewUd/\n/EFbt0kEBtDrpXNnVt0yni9K0R32t9880z2HwyOPMI+MGRBevFhypcc9kbwRAk3Igpr6uHHUZOzm\nlP79tf7+e9rEAzF1KjW9Xr0YSKK11nv3an3JJbSXemvsds312LHQNM2aNWkeWrDAyi0SL9pzel7L\nbX/M8ogR/v++qanUyP218847Vi4YM7Vrx7lJ7WufkpNpPy9WTOvt27Xu1s3XLNKmDU0zu3cHfvaC\nsWVL4PsvpC+IUFMP+8SgDWfBJ2TxYvdC3InkZK0feYT/3BMmUBDs2KF1pUocWLULdvs/2fvvZ6xg\njHZ7meVagabixTk/dcra5j2o6E3Pnvz7OrVXs6bz9ssvp839s8/40rdHDw8cSDOL1lpfdZVvPvfV\nq/kiueWWwP0Khv2a27ZF1pYQOSLU45BFixgm3rat1lu3UlMqV44FN4xgN/9kZmBVhHrGTHv2WMu/\n/hr47zp5statWvHl76+9F1/k39qsd+xIW7rWHFi9+GKtf//d85xjx/iS2bvX95rdu/OYqVMD980f\na9bw/AceoLfONdfwC0HIOESoxylnzmj98sv8Z33rLXrMlCpFwfDRR9Y/9MCB/gVEtmzpIxij3V5m\nuVawqWhRrVessNadUiRrTcG4fj2/3goU0Pr4cf9tzpplLc+fb3lJTZzItt5+m66TW7f6npuaynOO\nHbOuvXUr3WvLlAn969E+8J+SwkHXNm20fvrp0NoRoosI9Thn0yatmzalh0yXLplTMEa7vcxyLTfT\npEmegs+JESNYtvDnn+meOH261tmzB0/E9u23FKSFCnH9kUe0PnxY61df5XpSktYtW1rH58rF+ZAh\nntfv14/bH3rI3TNnGDuW51WqZG3bv59fEj/+GFpbQvQQoR7nnD1rDcAGmvLnzzjBGO32Msu13ExV\nqwbum9asBwpwULN2bWZCzJMneN9NxsWVK/lS6N2bxVc++cQ6Zt8+53OPHLGuf/Cg9WJwW0f1xAmr\nLWP+Mcyfz6/GXbvctSVEFxHqcczq1VpXqOBOuJhAFhHq6TM99ZTvtl69/P8t69fX+t13rWNLlnTX\nd+NnfvnlWv/yi9bLllkBT2XKsN1HH3U+d9Ei6/qvvMKvg0sv9Q2Gc8IM6L7xBl8Ixo/e8OKL/OoI\nVJlJiA2RCnXxU89Aypdn0YylS5kk7Nw5/rvOmuV53K23As8/nzF9TFQqVWJ2TTv+fMKXL+exGzfy\n7wgA+/e7K3byyy+c33MPU+I2aAA0a8Zt588z9e+771rb2rSxEpddcw3QrRuTgj3+OHDRRYydePXV\nwNf87z/gvfe43KsXYyi8a7sOGsScRaZARzQ4ciR6bQkBiOSNEGiCaOoRYdfI+valBmffZgpwPPhg\n7LXdaLeXWa4VaPr66/D6d+ECYw8Ayw892HTkCD1bihTxjEnYsYNeKWb9vfeYW6ZdO2uA1UxffknX\nyGrVOPj+11/+n6169XhOs2Za581Ls88dd/get3s33W/nzfPfllv+/JOpDby/CARfEKGmHvaJQRsW\noR4R9n/YevU4mGrfNmgQ507uc8Hay8yCNj2vFYv+FS1quaG6HfjOlo0Bae3a0a3VbB8wwLf933+n\nX3qJEhS4U6da++rXZ1s33UQ7uVMKgdmzrePLleNg7Pbt7LeTK+NPP2ldtiwHUMPl6FGtK1dm3/bs\nCb+dRCFSoS7ml0xKixZMfdq9O/Nat2/vud982vsrXCxkDEeOMH8+wDTMbkhNZe79du2s1AIAUwGY\ntMyDBnF+3XWsxHT55dx38CCv2b07TTWpqaySdPo08MEHntc5d87K1d+mDVNT3HILzYCVK7Nwizct\nW7Lt7t3ZdqhozbQarVpJKt90I5I3QqAJoqlHTMOGTApluO02S8uqXJlze2pY0dRjP0XSP5PW1nvy\nF20KUOsGqOGePWttL1zYWjZpcn/80TdVgUnlu3ev7++oW9cyrQwezGhpJ86dY2KzYcOc9wdi9GgO\nAp86Rc8e0dSDgwg19bBPDNqwCPWISE7WOmdOz89ek5/bPrVqFXvBGO32Msu1otk/e5RoONP27b7b\ncub0vO6JE54BZ7VqWcvGdJKc7PuSeP99T2G/ahUDqUqVsrxbli7lWIA/tm+nR8/ChXwmly3zf6xh\nzRqaiTZs4LoIdXdEKtTF/JJJWbiQn9j2T1b7cvbsLH1nzyIYCrVqRdY/wZPs2a3Mjv4wZeKcGDMG\nWLXKc5sx4xjWrmXmzSlTuH7xxZZXTK5crNhUqBCwbh2rbNmvSz2Lx9WpA0ycSK8qY76rX58ZRv/5\nx7l/5cuzj82b87mcPj3wbz1xguX63njDt9SfEFtEqGdS5s2jHdKOXagXKwbMnBl++97uekLk2IV2\nxYq++72FtJ0XX2R5OfvfxZRNBGjPXrmS+zt1Ah59FPjhB9YtLVaMx5QowZq3WjMltBPjxnH+zTcU\nuoZs2WjTN8/U+fPAY495pgG+8kra6vfuBZ580v9vAehi2aCB/xKAQgyJRM0PNEHMLxHx0UfWZ6vB\n7unSooXW113H5Weeia0JI9rtZZZrRbN/F19M00Sk7V92mfP2qVNZTendd3nNs2cZvQrQC6Z+fas8\nopnKlfPNHZQtG71sihTx9Y6ZNk3r5s25/OuvPP7RR7m+Zw8Dm0w777zjfC+0pjtotWq+aRXE/OIO\nRGh+CfvEoA2LUI869rzXJUsyn/sLL1j1NEWox24yAtNf/3LnpuvfgAGRX8uepdNMFSvy771woXXd\nbds87e72l3v27HR9tLeRN6+nTd67fN6xY0xIlpys9f/+p3WfPhzcnTyZAr1YMWYW3bKFrpBLl/re\ni3/+oR195UrffSLU3SFCPYFISfH8J/3zT63nzmW6VBHqsZ2uuCJ4/154wTPzYSwme4ZGrVnuLnt2\na//48fyKa9WKuWXs51arxufFrBcuzKRj27db7bVurfU33zDnzfLlVuqDu+9mUNOWLTzum2+YTdKe\nGfL0aX4xjBrlfJ9EqLsjUqEuNvU4okABa/n662njbNjQd4DNLRUr0k9ZCE7OnMGPGTQo+qXgrrwS\n6NnT//5y5YALF6z1KVOA776jT7oZUDXkyAG89RbTCRib+IYNtNOPGEE7evv2wPDhwKlTQKlSwKhR\nPG7cONrJK1fm+m23ATfeCPTuzVcEAAwYAJQsyW1CBhLJGyHQBNHUY4Lxdba7OtavH56227Spr/af\n0dpzel4rlOnqq931b98+prKN1nXLlvW9xo4dtKkPGUIzyNixTAKWOzf3jxpFLdtfm9dcwzYXL6b7\nY61anNetSw0coH989erM+W/y+y9Z4vm7T56kD/pHH/GLAaCJ54svnO+TaOruQISaetgnBm1YhHpM\nqFfPCh83PPZYaILRfJbffLM7c0Gw9kSox3b65x8Kb/s2pZhr3QQX/fsv7eFO59erR2Vg+nRr27hx\n/NufPs2UE0lJNNmUKmUd88or9I2vVIkpDxo0YCCSnQ0bPK9Vpw4DjpwQoe6OSIW6mF/ijKQk4Phx\nz23XXuv+/MKFgU8/5fI//0jleLf88UfGXbtFC5pO7GjN8Pty5bheqRLdGb1p355muz17gK5deVyu\nXMDdd9PHffNm4OWXmaVxzx5PF8ZKlYBXXqEJaPx4Pjtvv+3Zftmy1vLq1TQHChmLCPU4w59Qz53b\n3fkffmgJ8vXro9u3RGfJkuD+24BzTpj77/d//LZtVg4YO7feCrz2GgU8wPGR22/3PKZhQ/qzN2rE\ngKCCBRnEVKQIcMUVQJMm7HO1asC0aTzGcM89FPiPPMJn5uOPeb3Nm7n/v/8Y7GT6MmJE8N8eLRYu\n5Mtm48b0u2bcEImaH2iCmF9iwhNPOFePtxfbcMLsS0319ICw78sMJpH0vFa0+9enD80Zse5DnjxM\nw2vW772XNW+11vrZZ63ttWrRPXLaNLopmu3nztFW3ro1vVuaNfNs39tFtnhxrYcO5W97802Oxfzw\ng7V/717WZb30Utr1Y2l+OX2a5sdSpVjEY+jQyNrLjEDML4lFUpLnJ7Lhmmvcna8UsHgx0Lo11/ft\ns/aVLBl5/xKZL79ktKXdS8kfTZqE3n7HjpyfO8eMir//DuTLB3z1FT1RVq3yLGrRvTsjRO+/n2aT\nMmW4vWhRoH9/YNMmRqbecIPndW65xfqaK1KEZp7Fi4G6dTnNmwe0bcv9c+bQmyZ/fkapnjkTO+15\n9Wpq53//zeXnngueriAhieSNEGiCaOoxYfRoy3vBzqhR7rRJrenZYIpAfPBB5tKe0/Na0e5f69aW\nplytGhNaRfv61apxni2b1ps30yOlRAl6qjgdn5JiRbo2bqz1zJlcvv9+avjmuDfftDxYjBcNwGIb\nV15Jbf755z3bvvde//fi5EnffeFq6ufPsxh3iRJaf/YZvza1pgdQ0aJZr5YqItTUwz4xaMMi1GPC\nlCl0I/NmxQp3gic1lZ4OO3ZwvUaNzCVo0/Na0e7f1Kk0jQD0JIl137t04TWWLPHdN28e582bMx2A\n2f7771rfcIPz7+rdmzVLu3a1tjdvTnNNt27Ofdi5k7974EBPM86DD/rep3CE+j//UIlp2lTrrVt9\n9995J+v3ZiVEqCcYCxYwl7o35865Ezxbtli+zw0bRi7IRKhb++x/g4ceokCKdX/mzWMOIO/Uv6NH\na92jB5fvvZf29Z9+4gv9s8982/npJ7o9TpjA9eLFfY954gnnPpQvz9w3+fLxC+KNNxhtOnGi530K\nRainpvIrsnhxrd9+27mKk9bsb9u27tqMF0SoJxgbN1qV6r1xI3i++soaaHWbpyRQeyLUPffVqcPl\nl17yDQqL1TRwIIWyWe/cmeYYe5qA229n/+y+6gAFsVkuUcJa3rs3eDk+81vNtGIFzTqjRzPfelKS\nlVZAa/dCfdcumrIaNNB6/frAxx49qnXBgr7pE+KZSIW6DJTGGU4ujYYKFYKfv3gxcNVVXHZbbk1w\nj3EpfOst5jsPlZtuCrz/rbd8t736KtM0lyxJN8WlS4EePVjmzvDtt3RXvPxyz3O/+cZaPniQ87p1\nmSJg4kSu33235zmTJnGQdc0aa1unThxgnTWL6w0aAM8+y/S+Z89ym31Q3h8TJzJtQaNGjA2oUSPw\n8YUL89g5c4K3nTBE8kYINEE09Zhw4QK1ISe++oqfwk4YberKK2nC0dp9qthA7Ymmbu179FGt+/Wz\n1g8fDr19pwyN3pO/yFFA6/z5te7Zk8vDh3v+3Zs0YbbHQG1XqUI3wYIFmYbAJPYyUct33+05DtO4\nMectWliDsAC17dRURi337av1/Pnc/sMPzvfw0CGt77iD1Zf+/NP5GH+MHOk8aBuvIEJNPewTgzYs\nQj1TYf7Z8uVj6LfWWh88SCGQmQRtel4r2v17+mnfY2PVj2LF/O/zl5PdPpkBXX9tz5zJ/vfrx0yO\nJUr4mm7Mb37zTS7XrEmTU8mSPH7kSK0PHPDMItmjh+/9Mx5Yjz/u7DUTjK1beT1Tmi/eEaEuuML8\nUzVo4LwdcK53KkI9/P7Z7dXRnvr00XrGjPDOdRoEBaz8NoDlNmgE+Zdfaj1pkrX/k0+03r1b67vu\n4tdhvnxM5gVw0HTNGnrZeL9gChSw2j5+3LPOaiSuiXXqWF+g8U6kQl1s6gmGsacDDGIxZM/OcmgA\n06oKkXHXXe6CkMJl5Mjw0yYfOmQtf/+9tZw/P/DLL1zu3p3z8eM5nzgRePpppkLYsIH28p9+YsDV\nuHG0bZ86xWO3bQPuvRd45x3fVBSnTzNwaNEi3p9162jXf/hh4IMPwvs9ANChgwQi/T+RvBECTRBN\nPVNhtKEvv7S2/e9/1vbatWkTBrT+9NPwtVPR1ON3qlKFKZ379+d61aqe+5OT+XunTaNnTdmy1Ni1\nZiBQo0Y8rmBBz2A4Uw3J6ZqmZOPGjfSWCcf8ojWrMF1ySXjnZjbSZCfCncI+MWjD/v4DhAzB/BNt\n3sz1SZM4aGbcGu+4g8EngAj1eO6f09SundZjxrg7tk4dCnb7tpYtte7Ykb91yxba3CtUoCC2C3an\nNM72cnv2KV8+Do7aaduW/QyHCxfoZ79xY3jnZyYiFepifkkwKldm7oyHHwYmT7ZyxtSsCezYweUD\nBzKuf0L0mTkTuO8+//sbNbKWmzUD6tTx3F+7Ns0yx44Bd9xB00tyMlC8ODB3LnOwfPIJ88W0aeN5\n7rlzQDYHKXPyJPDRR5a7IwD07cscNVqH/huzZaM76IwZoZ+b1RChnmCcPElb7Msv05fY+KrXrAls\n387EUCLUE4slS6zlESOsNL81azL2YeJEICWFCkCpUsATT9CXfOVKPj9z5wLPP0/BnpRktdW+PQVt\naqrzdefNA+rXZ2IyAGjenAJ97tzwfsfNN4tdHQCUDue16KZhpXSs2hZCx2Td69qVudeNZnXuHIsm\nrFkDXHcdhf2vv1KLNzj9Ge3FNbZsAapUcd+Xhg2BP/903hfsWhlB7drMQQ4Ay5fzpXfgAIN1Dhxg\nIQk7BQr4DxCLd2rUoJD++2/mZh8xglkaU1I4OGynZk1g/34rqAlgdsr587n89NNULJ54gllDhw0D\npk5lXnf7AK5bTp9mX7ZssQb94xGlFLTWYT/1QTV1pdQnSql9Sqm1tm3FlFJzlFKblFKzlVJFwu2A\nkL6sXw+8954lKE1B5Vy5KFCbNKF3glsh/dRTVjFit7z4YmjHZzRr11rLvXoBb77JwhP//gvkyeN7\n/PHjztuzAhs2UKADNMf07cuoUW+BDvBZMwL9oos4nz/feuZMwY3165lCuFYtFr9esoQRq6GSJw+r\nRM2cGfq5WYpgRncAjQHUA7DWtu11AE+lLQ8A8JrDeTEeThBCoVcvrQsXtgZK7SQlaT1nDn2Gz56l\nv3GDBu4GB1NSPNfdTNOmxe9ApJv+3XgjB6DtxUjicSpZ0vI99568C2sEm8zx/lIEP/UUPVjMc9e8\neejPuNZMVta5c3jnZhbSZCfCnYJq6lrrBQCOeG3uAODztOXPAXSM/PUixJLWrWlS8aeBb99O+2nO\nnPxstvsyO/HQQ8CDD/IT3OBWO+2YxZ+WOnXo3924cUb3JDL277d8z+1UqkSt2tCnD01OuXL5b2vv\nXs43beLz5c3rr/OL6NdfgQEDaFd/7DHn6weibVvg559piklY3Eh+ABXhqakfsS0r+7pte6xfaEKU\nSErSevBgujRqTa3eHg3phmA5RaKpCWfk5KZ/V1zBPCtffpnx/Y3G9O67nut33mktP/CAtfzoo1ZZ\nxT59tC5d2tq3Zw9TUvTt65k2wGmyp66oUkXrVatCe56vu85/jpl4IE12Itwph7OoD+mloJVS2mnf\nCy+88P/LTZo0QZNwangJ6cL27UDVqlyuUwcYO5YatXepM39cdx2wdWvMuhdXLFtGe/Gzz2Z0T4Lj\nZlD30Uc917/+mp4m331Ht0RDxYp8jm65hdGklSrR5g4ApUtz/scfHI9o0QLo1w8oVgzIkQN45hlG\ntJ44Qbv6Lbcws+QDD1g2eLcYLxhv98rMyvz58zHfjB5HAzeSH76a+kYApdKWSwPY6HBOrF9oQpRI\nSqINc9w4rv/2G7UkpwLX/jBBTC1bempd9pzeiaKp58ql9X33ZXxfozFdeaXzdnuh8169rOWGDZlP\n/cwZ5/Ps+dQXLGCx6goVmJlx+3atb7vN8/hwgpH+/puBSP4Ka2R2EKGmHq6f+nQA96Qt3wNgWthv\nFSFTsG2blf/b5Nzevdv9+UXS/J86dfLc7h3IkghccgnwxRcZ3Qtn6tUL7filS523b99uLY8dy3m1\nanRVHTiQ3ixm34YN1rFHj1rL11zDItWnT7OgdPnyzAMzezZQvTqPue8+rodC9eoc61mxIrTzsgpu\nXBrHA1gE4BKl1A6lVA8ArwG4USm1CUCztHUhjtmxwyqyUbgwP5137XJ/vhHqmzdzbqrNDx4cvT7G\nC//95xkp6U3+/OnXFzvVqzNgyHDRRb59ueMO3/MaN6apJBj//MP54cM0m9x1F9CzJ3DppdZzYS96\nYdxqK1XybOfGGxk3MXQo11u1oiup/YUQjERO8OXG+6Wr1rqM1jqX1rq81vpTrfVhrXULrXV1rXVL\nrXUIt1vIjJw7B5QpY63XrcvIQn/RgN4UKULtaNUqrhctGv0+xgvBgqVimb0xEHbf71y5qEV7f41N\nmOB73o4dtInbPZ2C8cEHrL5ksHtdmepQxox88qTv+blzM1NktmxA3rwMlrvsMvc+6CLUhYSnTBnP\nAam6dSno7dGAgShShANlRqifOEHNsFy5qHc103PsWOD9bsq6xZqzZzkIbk+/7I15OW3dCjz5JHDm\njP9jtbaCkgzeboUXXUTTzKRJwPDhwBtvAKNHMyrXaPmG7duBpk153MmTTPObPz9TD3Tvzq+BQFx9\nNb80t20LfFxWRIS6AMC3vqmxhbu1qxctSj91k7xp717mCVm9Onp9FKJLwYKBw+m19lwPZFL64AO+\nxO2++T16+Nq1+/RhArH+/VnPtHt3oHNnCnqDEeiPPcYUAgDQsiVNMq+8wniLWrXofeOP7Nn5AkjE\nBF8i1AUAvkK9bl3O3drVixRh5j5znhHqxYrxszmRcGN/jmfWrKE55quvrG0vvQR8+qlnyojrrqMZ\nxD6oCngK2rFjWZTF5BpyEuiG3Lmp6W/cyEHWjh2Zy8jf12SHDoEFf1ZFhLoAwPJ8MVSoQEHtVlMv\nUoQDWUao79tn5fswWfgSBXsq26zI5ZfTFLNvH9Ctm7W9Tx/g87Q483XrgMWLKfzbtvUc5LSbfF55\nhS7qCVQAABT8SURBVC+J3buZtdGfQLdToQJ92GfNYkxAzZqemr7hxhuZRyY5ObLfG2+IUBcA+Grq\nSlFAu9XUCxfmP64x25w6RU3d7EskunTJ6B7EnsOH+UViAqxy5fIMYqpZk66IO3fSZn7LLZb5ZtQo\nBjS1acPprbf4gmjWLLhAt9O6NfDXX8DjjwP33EONf/9+a3+BAjQH/fhjdH5zvCBCXQDgK9QBCmi3\nmrqxp5v87IAl1AHg1lsj65+QeahYkaYQgAOSALXhQYOsY2bOpNlt9mza5n/5BThyhCl6P/6YkaYf\nfsg0u/bz3Ap0Q+7cjEbdsAG4cIEvk/HjrfGARPSCEaEuAHAW6qFo6gBNMMbkAngKdXsCKDsm0CmR\nuPlmwJZBI+7YutXyhDGpJY4c8fSOad+eibVq1+a8UCFuv+QSauSVK/OZ69UL6N2blbgA9+MRp0/T\ntm5cbi++GJgyhUWwn3uObQIs0jFrVmAvn6yGCHUBXbpY/5x2mjVjpJ9bihTx/AS3C3X7MmBVyDGR\nh4nEd9/Ft1C3s3SplR9/+HDOH3uM8xtvZNbFKlU8B8uNx8327YwgBRiU1KoVi26MGuV5jWPHOC4z\nciQ9aurU4bN2xx3U/O20aUOTjMlXU6YMn+2EGteJJMdAoAn+EmUIWZarrtJ60SIrb8euXda+qVO1\n7tAhOrlVMnvul6w05coV+jk1azLHS6B2xozRunJlrUeM0HrDBq2LF+e2bNm4v0wZrbt00bpaNa2V\nYoHrTp20fu01refNs/L4u2HoUK2feML98RkNMij3iyD4YDxgDPZ6laVK0c3RnhvmySfTr29CeATy\nTffH+vWMGu3c2bedAQM4v+8+mmAqV2YU66FD3GbMKbt384vmtdcY0bpzJ80rAwawOlco0a3GtVHr\n0H9LPBJx6l1BMBQpQtuqwR6haoS6/R/r0kvTr28ZSenSVjHnRGHBAs5HjqSro2HxYmv555851alD\ns8qnn3L7sGE0CTZsyFQCpUvTzLN/P71kzDwlhYOiwVJS1K7Nl8W6dYkRMyGFp4Wo8dBD/Ad65BGu\n2//8p05R6OfLFzgxk9Mjk9GFp+2E07/77+cAYf/+selTPNKoEX3IAdq/z5yhx4zxtsqXzzknjFLM\nNNm0KdC8Od0a3TwfffpQsbB72mRWYl54WhDcYje/2L1gACZlypvX2j9kSPr2LSP5+OOsMzAaLU6d\n4kAqALz7Lr2j3nsPaNCA2267jQOndr77jmaa5ctZ/LtNG/cv/ERybRShLkQNu1D39nYBPAV9hw7U\ntMLB+4WRPXt47aQnx49nXHbGzMiaNcCWLXR9BOifPnw4twOMTO3dmykAtm2j7X3z5vCzf95wAxOO\nmVqpWRkR6kLUCCbU7dsuvdR9GlVvvKsiXrgQXjuxxp7KGAheNi6r4C8mAWAuIMO//wLff2+t//67\n5wBoUhKjkStUYAqB995j9Gk45MxJU439elkVEepC1AhFqOfJw2jAcP5JjS3Wjn0wLrMwfnxG9yBj\nWLfO/z5/KXPN3+/wYQYPAQzxL1KE87ffBh58EPjf/yx/+FBJlARfItSFqOFWqNsLJpjCxG5p3Nj6\nRLfTvXvoBYpjjdui3YnEZZfRDOVtirJr0EOHMsMjwCLXgwdTa//jD27r35+29Oeeo53crWdR69YM\nhjpxIvLfkZkRoS5EDbdC3Z5zG2BdS7e89RZtsd7MmRM8FNwpalZIX/76i2Yob1PUv/8Czz9v5ZIx\nEaB33sl8Lg88AHz0EZODGbPdSy/xeahShUK/TRtL0O/ezUjUlBTmpUlO5ovg8svpRpmVET91IWrY\nhXq1ar77jVC//nrP7aGkIvB37MCBwc81dTKFzIlJN2DnxAmgbFn/5/z6K+enTjEboz0jY/78lneM\nUta0dWvUupwpEaEuRA0j1C+7zDlBmBkkM9qYnUhCGiZOZLGFUKvOC/HLRRcxl3u1agxOKlOG82LF\nOF6TmWIb0hsR6kLUMDnVS5Z03m/StUZiBqlTx7dE3rvvWhGM3pQtG1qmSSH9SUqiWSUU9u3jyzxf\nPsucc/w487obm719yp/febubKXfu+HpJSESpEFXy5qXWNG0ao0vtHD3KMmTr14fWpv0faskSDojW\nrx95X8Mhs0e8ZlZefJE282gzZgwF79mzjEpNSWGA0uHDvtOhQ8GLgjuRPTsjYBcujH7/nYg0olSE\nuhBVSpfmP9j8+b5CPVy8heagQSyDlhGIUM94GjcGcqTZGAoXpnbuNOXOHdr2QPsKFqTCkh6IUBcy\nFTVqAJs2AatWxU6oh0qBAtEL/BGhHnsGDKDQzp7defD0669ZcDqrIrlfhExFkSJW+tRoM326rz3d\nDZEI9Pnzwz83s2KqEGUW2rUDnnrKCkAaNoxeL2PGcL1RI08F4c47mU9HcEaEuhBVihSJXduNGlkB\nKED6pO69557YXyO98a4WFGtatmSIv6FECX7RGcqXB159FXjnHdrF77qLEaTJyUzJ27497dnt2lnn\nPPRQ+CkDsjoi1IWoEkuhni0bQ8VNQq+NGz33t2vHSMQNG1hcIRps2wZccYW7YyWC1JnZsznWYujT\nhy6vhQtz/cMPabc+fZoZGBcsACpV4oD4jBk0eRUsyBB/E4F84QIwejSjTcXK64kIdSGqxFKom0pK\nu3dbBRXsbNhAgX/VVYxc/PVXaqVOdlk7efIE3r9smbv+dejg7rhExF4F6fnngccfByZNoosqQCGd\nNy+9o0aNYoTp4sXM0vj88zTHZM9O7XzkSJ5TvLgl6GNl8otLIqmFF2iCv4KOQpbm6adZY3LNmui1\naa9tOWECt6Wm+tbGrF1b65EjtT582PP81FStu3Z1X2PzgQe0btXKeV+w/oVb1zNep+zZfbflzu3u\n3C++0Pr8ea3fecdz+913a33iBO9t377cVqsWa5kaXnqJ2//8U+urr9a6Rw+2lRVAhDVKwz4xaMMi\n1BOS117TMRPq1at7/uPaBcHw4RTeTjzzjNb162v99tue5zzyiLOwKVNG6zlznPcF6h+g9X//aV2+\nfMYL20imSF9KS5dqXbiw1u+/7/6cm2/WevBgz23Tp/Nv9+KLLEpdooTW48db9/2xx7Tu1k3rY8e0\nbt5c61tv1frMmWg9dRmHCHUhU/HhhzpmQv2TTzy3X3GF1kuWaH3RRVrv3Ol87uuva33ppVrv309h\nYxca11wTusAK1D8z9eyZ8YI5lGnsWK2HDIlee2XLWsslS7o7J2dOrdu25cu5QAHPfb168T6vXKl1\nlSp8GZ8+rfXx41pXqqT1rFlanzrFF0Pr1paWH6+IUBcyFRMm6JgJdW8trG1brSdO5Of+hQu+5330\nEbXun37SetIkrQcO9BQW5ctzv7eAefJJftKHK9Qz2/TaaxR42bL5P6ZUqdDbPXvWWav/9lsK2ho1\ntF6xQut+/SL/DS++SEF+5IjWHTtqfeWVWm/dyi+qChW0Tklhf7p107pxY62PHo3e85feRCrUJfhI\niCqzZ7O25Jo10Q0+uukm3xqTPXpwsOz77309YdasAerW5blVq9KFrkYNT68Y83iOG8d87IZZs5h7\n+9Qp5hax4/RIS/ARE2nZC2CUKcMB7apV6cK4eHFsrluzppV24qqrOGD655/Oz0u8IMFHQqYiFt4v\na9YAU6b4bk9KYi6YSpV899WqxX/2kydZm3LaNPpCd+rke2yTJhQ8v/zC9bp1Oc+b13oxBfJXN145\nbjA1OSPFXvYtFvToEdrxSUn0Srn9dq7v3s355s30RIo2t94KjBjBACVTYOOWW+jfvmgRPWgSFRHq\nQlSJhVCvXdvK9WGnZEn6NTsJ9ezZGZxkMkPa2wKAzz6ztpUvT5/pEiWsLH+Ghx7ifN06oGlT5/7d\neSdw443U4nfsAN54w/9vufhiFnOIlHASU4VCKC8qgC/OPn2Ab77x3ec2ordePc7HjaOW3a2b5/77\n7rOiTidPBnbuZAxBu3Z0jxw7lm1cfTXvc6IiQl2IKrH0U/emZEmaSJyEuj+MUPcufde0KVMCeG83\nAjiYr7oJvS9XjiYBf0Lxvfdo3snsvP56bNpduhRYuZIFU4YPp9lm2TKgWTOasR58EHj2WVYoGjeO\n/uvz5nF9zBjLRx3g+blyAT/8QC29Rg3g5Zdj0+94QoS6EFVMlGB6YPK2V67s/hx/dv4mTSg8vKlY\n0VpOTvbfbqFC1NTffJMa5dSp7vuUlbjvPgZzVajg+UVy/jwDw8qVo3nrhx+Y4yVbNpan+/ln4NFH\ngW+/BfbvZxDSrl3c36QJc/6cPg188YXvNdu143GDBjHK1KmGbUIRyShroAni/ZKw5M0bXe8Xfyxb\nRs+I5cvdn3P+vNZ58mj91Vee23ft0rpYMfb92DHPfU88Edj75fHHte7dW+vu3bWuW1frbdu4vUYN\nZ0+OK67IeI+YWE72+2Wm+++ne+OePdZ9W7zY2p+Swm179mh9223W9r17ne/5kSP+vWrq1dP63Dn3\nz0RmAxF6v0jlIyHqpJcJxmjqoZhfsmenecSbMmVoU9+0yXdfmzYcgPPH3r2swtOhAwsm58/P7ffe\nyzSygGd1H7dpB+IVp3tlsirac8DYKVQIaNuWYyc5clDbP32aZpr+/YHq1a19OXLQTNa4Mc1mO3YA\nDz9stbVyJdCgQXgZPbMCItSFqFOqVPoUFDB1KosWDe28u+5yLqnXpImzUPculO2NcdebPZvl88qU\n4bRli3XM0aO8phS/9s8PPzhvNyat8+eBc+c4N5NZb9aM8+XLmScmkU0w4qcuRJ0TJyxtNZ6YMIHF\nF44d8/SAAeiKePKk5fZo5/BhDtjlz0/hvXs3p5UrLU29c2dui5W/tqFzZ9qzixYFfvsNmDuXniG3\n3WYdYzx6pkxhfdekJL7QnMienVrx6dPAJZfQy8XQtCmFaPPm9AufMYNfLbNmeY6tPPAAPZH69qW9\nfN06Tn/9ZS3nysWC5bVqcbrsMn5RhfrCzgpI5SNBiBJ79lDDdhLq773HQTwnoe4PrTmAFwvy5uUA\nYa5c1FYnTbK258jB31GsGPPP163LSlRt2wJ33013zgUL6Pq3ejWDxd59F7j5Zr4I7PTvz/TDixfT\nzOHNsmVs+777uN6wIb+err+eA8vr1jE+YMcOmrdSUy2hbQR4rVqhu1BmZUSoC0IU+fZbarveUaJH\nj1KAtWgRWnu33kqTy+WXM83s5ZfT/r5gAU09pUtTGy1alBrxwoUU0uFiPEyKFKG2bIK2SpemR8me\nPfxi2LrV99yLL6YAB/gyMulsP/4Y6NULOHIEWLECeO650L447roL+Oorpka+5BKJwA2GCHVBiDN2\n7KD2vHu3FRy1ZQsLPsyZAzz9NE0kuXMzcOfoUWq9R496TuvWMeAmkpdAqNiFfSDKlqX2vWMHcOgQ\nt5UvD4wfz3D+7Nlj2894RoS6IMQh118PPPkkUL8+MHQoIyQffxx44onwUgDs3MmvjG++YR6cDh1o\nR7/ySnoJzZlDgbxhA6f16znt2xf93+aG667jeMONN/pG/SY6ItQFIQ55/31W8Tl8mPboAQOYnCwa\neAv41FTghRf40vBm9mzmw8mfnyabf/7x3N++PW30p08DP/4Ynf45MXgw+yhksFBXSm0FkALgAoBz\nWuuGtn0i1AXBD0eO0J+7d28OasYKI+Br1qRW7M3EidTYzcBltWq07c+ZA3TsSPOP3QauNfDII/Rc\n+e47y0Zvn3r3ZlsA3QwPHWKE7YwZNCtt2uT5tXD0KIuKx9ozKF7IaKH+H4AGWuvDDvtEqKcxf/58\nNPHnM5ZgyL2wkHthIffCIjOk3pWx7CDMnz8/o7uQaZB7YSH3wkLuRfSIVKhrAD8rpZYppe6PRocE\nQRCE8Ik0TcC1Wus9SqkkAHOUUhu11gui0TFBEAQhdKLm/aKUGgzguNZ6eNq6GNQFQRDCIBKbetia\nulIqH4DsWutjSqn8AFoCGBKNTgmCIAjhEYn55SIAUxX9nXIA+EprPTsqvRIEQRDCImbBR4IgCEL6\nE5H3i1KqiFJqslJqg1JqvVKqkVKqmFJqjlJqk1JqtlKqiO34gUqpf5RSG5VSLSPvfubB4V5cpZR6\nQSm1Uym1Mm1qYzs+S94LpdQltt+7UimVrJTqk4jPhZ978XiCPhcDlVLrlFJrlVJfK6VyJ+IzAfi9\nF9F7JiIpmwTgcwA905ZzACgM4HUAT6VtGwDgtbTlmgBWAcgJoCKAzQCyRXL9zDT5uReDAfRzODZL\n3wvb78wGYA+A8on6XPi5Fwn1XKT9ln8B5E5bnwjgnkR8JgLci6g9E2Fr6kqpwgAaa60/AQCt9Xmt\ndTKADqCAQ9q8Y9ryzQDGa63Paa23pnWuIbIAAe4F4ByclWXvhRctAGzWWu9AAj4XXtjvhUJiPRcp\nAM4ByKeUygEgH4DdSMxnwule7ErbF5VnIhLzSyUAB5RSnyqlViilPk7zgrlIa21yv+0DB1QBoAyA\nnbbzdwIoG8H1MxNO9yJf2r7HlFKrlVJjbZ+XWfle2LkDwPi05UR8LuzY74VGAj0XmmlEhgPYDgrz\no1rrOUjAZ8LPvfg5bXdUnolIhHoOAPUBvK+1rg/gBICnvX6ABh9gf2SVUVp/9+J9UODXBT+9hwdo\nI6vcCwCAUioXgJsATPLel0DPBQDHe/EBEui5UEpVAfAEaD4oA6CAUqqb/ZhEeSb83Iu7EMVnIhKh\nvhPATq310rT1yaBg26uUKpX2A0oD2J+2fxdoTzSUg/XZEe843gut9QGdBoAxsD6bsvK9MLQBsFxr\nfSBtfV8CPhcGj3uhtd6fYM/FFQAWaa0Paa3PA5gC4GokpqxwuhfXRPOZCFuoa633AtihlKqetqkF\ngHUAZoCGf6TNp6UtTwdwh1Iql1KqEoBqAP4M9/qZCX/3wjywaXQCsDZtOcveCxtdYZkbAP7mhHou\nbHjcizQBZkiE52IjgKuUUnmVUgr8/1iPBJQV8HMvoiorIhzJrQNgKYDV4BunMIBiAH4GsAnAbABF\nbMcPAg39GwG0yuiR6GhODveiCIAvAKxJ2zYNtCEmwr3ID+AggIK2bYn6XDjdi4R7LgA8BSp9a8FB\n0ZwJ/Ex434tc0XwmJPhIEAQhCxGNfOqCIAhCJkGEuiAIQhZChLogCEIWQoS6IAhCFkKEuiAIQhZC\nhLogCEIWQoS6IAhCFkKEuiAIQhbi/wDU7X2KDKyV2wAAAABJRU5ErkJggg==\n", "text/plain": [ "<matplotlib.figure.Figure at 0x7fd16c327f98>" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAYQAAAEPCAYAAABCyrPIAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzsnXt41NWd/19nZjKZ3AkhEEC5pVVXsBZculr7S9CWRKRY\ntXJTqyggLgZa3V39VaCMItvVPuvzE5DtbmldWyu2tnvpwq7Frkq6W62oVBRFW+63QAjkPpMwM+f3\nx5mQmfme800YkhjieT3PPCHn5JzvmSE5t8/n8/4IKSUWi8VisXg+6QFYLBaLpX9gFwSLxWKxAHZB\nsFgsFkscuyBYLBaLBbALgsVisVji2AXBYrFYLEAvLghCiAuFEK8KIXYKId4XQiyNlweFEIeEENvj\nr+t6awwWi8Vi6T6it+IQhBAlQImU8g9CiFzgbeBGYBbQJKV8slcebLFYLJa08PVWx1LKGqAm/u9m\nIcSHwMh4teit51osFoslPfrEhiCEGANMBN6IFy0RQrwrhPihEGJQX4zBYrFYLO70+oIQvy76BfBN\nKWUz8A/AWODzwFHg73t7DBaLxWLpml6zIQAIITKATcB/SSn/n6Z+DPAfUsrLUsqtwJLFYrGkgZQy\n7Sv53vQyEsAPgQ8SFwMhxPCEH7sJeE/XXkppX1KycuXKbv/shAnfBKTjlZ09R1teXu7e96ZNWykt\nfTipTWnpw2zatLXffxYD/WU/C/tZ6F7nSm9eGV0N3A5ck+BiOg14XAixQwjxLlAO3N+LY/hUcfTo\nUW15e3uztjwQiLr2t2bNFnbvXp1Utnv3ataufTm9AVosln5Nb3oZ/Q/6Bee/euuZn3ZKSgZRV7cM\nSJzEH2bkyHx8vmVJk3tp6cMsWeIeAtLWpv/1CIe9PTBai8XS3+i1BcHSM0yZMqXbPztyZDE7d1YA\nKwAvEAWu45JLXmbJkqmsXbuCcNhLIBBlyZLrmD69DIDNm6tZs2YLbW0+MjMjLF1awfTpZWRmRrTP\n6epk0VuczWcx0LGfRSf2s+g5etWonC5CCNkfx9Xf2by5mm9+89eOk8BTT3VO/t1rs4ynnqoEOOv+\nLBbLJ4cQAnkORmW7IAwwNm+uZu3alxNOAlOZPr3MeAqorFzOli2POfqprFzBSy+tMvZnsVj6H+e6\nINgrowHG9OlljglbdwrYvXsZ0LWdQNefxWIZmFi1008Bbt5C/c1OYLFYPjnsgvApwO0UsHRpBSUl\nDySVl5Tcz5IlU/tiaBaLpR9hr4wGGBMm3MTOnWEgF2hm/PgAI0eO1/5s5ymggWTPpMa+GGq3Mdk/\nLBZLz2IXhAGEWgyGAD84U7Zz50L27Pkv4FhSOSwgFIqyZs0Wamp+mNRPTQ2sXbuiX0y6bvaP/jA+\ni2UgYa+MBhDqZPCDlNIfEAoNBb6BOgUE41/v4He/O9Hvg89stLTF0nfYE8KAItelvCz+6kTK9f3e\nqNzfFyyLZSBhTwgDCr1mkalciBaWLq2gtHRZUrmStegfRuX+vmBZLAMJe0IYQGRlNRIKLSTVViDE\nMaR0ls+ceemZe3iTrMUnzdKlFezeffY6TBaL5eyxkcoDCBV1vBPo9DKCAJMmjWDXrj/S2poJ5AAt\nZGe38fOfL+9y4r/11od48cUPkDIHIVqYOfNSnn/+8V5/L4nYaGmLpXtY6QrLGXReRrCQ7OwPaW39\nH8fPd8hTmLj11ofYuPGko7+5cwf3+aJgsVi65lwXBGtDGEDs3NmGzsuotTVf+/NdGWZffPEDbX+q\n3GKxDDSsDWFAYfIyygYeAj6g48oILiUQ8AMQDK5n3bqtRCJZ+HwhqqrKCQYXI2WOtreOclPAmA0k\ns1jOT+yCMKAweRkdAgqB/0goW8ihQycIBtezevUOIpGfnalZvfpeYD1CtGh7E6LFGDC2bdv7PPfc\nYRtIZrGch1gbwgCivPwuqqsF8KOE0ruBI8BLmhbXU1SUR13dzxw1RUVzqKgYrbEhLGDu3CLq6jK0\nstlFRbO1/SXKadvTg8XSO1j5a8sZHnzwLt58cy3hcKcuUSDQRDhsvkqKRLK0NZFIgNtum86///tj\ntLbOINE76bbb7uB733vF0E7fXzjstTIUFks/xy4IA4g1a7YQDr+YVBYOA0wztGjB59Mbln2+MGvW\nbKG1dUtSeWurilnIzNSf4Hy+kLY8EIi6yFD0D90ki+XTjvUyGkCYZB6gFbg3pWwRHo8yIPt8yXU+\n3yKqqsq6lM3WRThXVZUbI5+tDIXF0r+xJ4QBhJJ5cHoT+Xz5RCKfA+YAAVTgWhmFhQ0Eg4t55pmp\nHDgwjY5gthEjIgSD/0hl5XJgPbAVyAJCQDmBQNQ1wvnjjx9i//4ZZ4LZvvAFFRG9Zs0WoBrYgvrV\niwAVVobCYukn2AVhALFr1++BMaR6E0Wje4HtwAsJ5QvIyamjvPwuDhwYQ6Lh+MCBhZSX38XIkUPj\n7X6W1N/gwYMBfXrNYHA9L77YQCTSOYYXX7yXiy5az1VXjeCVV54nEvn+mTqf716uvPJz5/CuLRZL\nT2G9jAYQQkwD/ktTMw34NvAynUlwpgJ/F6//T00bdw+kEyde0LSBIUP0XkZFRXO44orPaD2TuoqY\ntlgs3cN6GVkSODv5a1jn2pebB5IJtzbWhmCx9G/sgjCgODv5a3O5qvP59BsNny9sbGXyMvL5wnEb\nh7UhWCz9FetlNIAYNSoCLEwpXYDffxS4DpgNzIt/raSsbBhlZcNQwWuJ3E1Z2TCqqsrxehcl1Xi9\n91BVpU4aweB6hgyZzaBB8xgyZDbB4Pp4m4UpbeZTVVXGVVeNQIi1SXVCrOXKK4cDSgqjsnI5U6YE\nqaxczubN1Wl/FhaL5eyxJ4QBRFHRZzlwYA4qRWaHreAOcnJO0N4+BNiQ8NMLGDmyiIsuGk119csp\nbU5xzTVTmTx5Anl5v6G+vtM7KS+vncmTJxglL2bOLCAvL0x9fWd/HW2WLn0aKS8COu0IUi7jJz+p\nZvLkCTZozWL5hLFG5QFEYeGd1Nc/q6m5GfgXR6nPN4OCguy0jMBvvfWxtp3PNyPJwyixzX//9w4i\nkX/XtPka1157mTU4WyzniDUqW84gRJuh5rS2VMoco4G4KyOwyXhsUkgNh71ImWlok2kNzhZLP8Da\nEAYQfn8rsCyl9GGgSfvzQrR0wwjsJBCIGtuZFFIDgSjZ2e3auuzsdps72WLpB9gFYQDR0hIBalD2\ngGD8aw1ebxs6Y/PMmZdSUTFGW1dRMZqrrhqhlbW48srhRsmLmTMvNUpXPPBAhdbg/MADFUYpjCVL\npnb37VsslnPEXhkNILzeocCdqAC0DuaRm/sj/P5d1NZ2ylMUFzfz/PO/jctTRIDr6czDPIyTJ/28\n/vqRuOTFbDqkKyKRct544ygvvbSKjz9+iBdfnOHIt6wS7sw+k3Dn9tvLz0Q1v/rqXVRXdz7r6quH\nEQwuBmDbtve17dwks62ctsXSc9gFYQARi9WjC0BrbHwIKSeQKE9RW6vkKfbtawaKSI5WvpcPP9yF\nEH5AkixdsYxdu/axeXM1b77pSzIgv/nmMoLB9Tz33OEkg/Nzzy1j8uRqtm17n9/9LjPpWb/73b0E\ng+uZPHmCth2sNybcAaxnksXSg1gvowFEaels9uz5DJAoMf0w8A6mBDk+n1frFeTzzQAw1l177eVn\nnSDH5Jnk5tHk1p+U0nomWSwJWC8jyxkuvPDP2LPnWpJjCq4D/mhokYvXCxGNPdfrzcLr9Wrr/P5c\njhzRRzmHQhnacjfPJDePJreEOyasZ5LFkh7WqDyA6PTUkSlfzdIV0ajeWygaDZGVFdPWZWVJjh49\nqq1rb2/Qlrt5Jrl5NLkl3LGeSRZLz2JPCAOIq64awW9+s45Y7KIzZR7POi64IMKBAwtJzY1cVjaM\n/fvb2b9/GanXTCNH5jNv3tWsWjUr3p/SHvJ4PqKq6hp+8Yt3qaubDwynU5foCCNGBKirm0NLy2fO\nlOfk/IklSxazbdtwY3+TJ09gx4751NR09ldScoRFi8p57rllSXYC5X10HYC2zZIl8wBrcLZYzha7\nIAwgfvWrd4jFPkuiNEQstoyiomOMGRNJ8u4pKxvG1q3PMHz4LKCS1GumtrZ1TJ48gYKCDzh1qrO/\ngoIqJk+ewK9+9Q5QkPQseICGhn20tIxNKm9pmc9Pf7qZ226bbuwPIBxOjlMIh08zefIEJk+eoE3E\no7SOnGMAbP5miyUdpJT97qWGZTlbCgtnS5COV2HhHGMbj+caCQ+ntPm29HiukRUVy7T9VVYulxMn\n/qW2Dq7Tlvt8X+2iv/macTwsJ06cbxy7W39udRbLQCU+d6Y999oTwgDCJA0BfuP1iRBD0Z0QhNjj\nKieRnz/U8Kw8w9hyXPtT7q8bUmpWs2/fXMNzzDmkrcHZYkkPuyAMIMaOzWH7dmf54MFmf30pG9DF\nLkj5d65GW2l0C9YbsIVo6aI/82JmIp3xWYOzxWLGehkNIFatmkNJyQNJZSUl95Ofn5G0GADs3r2a\ntWtfprg4A53+0dChGSxdWqHtb8mSqUapCZVfQS+T4SZPMXasXhRv7FhTFjhc+7NSGBbL2WNPCAOI\n6dPLaG39G1QOZWU8bm09SX7+NHSZysJhL5dcMoljx4aSKE8B5Vx8sdqZnzz5FomyFidPNgM3MX16\nmVZqIhj8W0aPnsqBA51jGDUqwvPPq+ugJ554ht27O/sbOXLYGSPvN75RxalTnWk9Cwvv49FHZxuv\nu0xj6OgvHSkMi+XTjF0QBhBDh/4fGhs/R6J7aWPjQqqr/xUlgZ14SlhGY+MxGhqa4nXJ8hQHD+5m\n/vzXaW+/OKm/9vaFzJ+/mh/+EK3UxKuv3sWBA2OS2hw4sJBbb30IgOpqH4nSFdXVqu6226aTmRki\n0ZaRmRlm27b3XaUrTDIZpjo3KQy7KFg+7VjpigGEENOA/9LUTAO+TeoJYdKkn/HHPx6mqenfHC3y\n8m6kqamdZI2jDq6nomKSVjZCnSacbXpDCkO6SFeY6tz6s3IXlvMdK11hScB0354D/JrUE0JbWwSP\nZ5C2hSrX5zYAs8eQaQxS5hCL6Y3A0WhmXArDea3lJoVhwq0uHSkMi+XTQq8tCEKIC4EfA0NRGgr/\nJKVcI4QYjLqfGA3sA2ZJKet7axyfLkwSFS0kLwYAqzlw4Ov4/fpfAZ8vjNfbSlTjlOP1howePm5e\nRlLqPXykbGXfvo/RLVrh8BFtm648iUx1blIYFsunnd70MjoN3C+lHA9cCdwnhPgz4P8CL0uVbf2/\n499beoDi4mZ0Hj6mSToW8xsT3VRVlTFr1gRtf7NmjU/Ly6i4OBudR1NxcXbc7dS5aPn9OWl5Epnq\nqqrKrfeRxWKg104IUsoaVPoupJTNQogPgZHADUB5/MeeBV7DLgo9wvHjv0WICSR6GcFBCgsncOqU\n8+f9fggGFzuS1nzxi51Ja0CfBAf0XjzB4N9y6636NpWVy9mypYLUILhJk7z8/vcHtO8pK2swTz1V\nqZWu6MBUpx/fYiZPrnbtz2L51HIuYc7dfQFjgP2oMNZTCeUi8fuE8h4I4v70UVz8JQkLUuQaFkgh\nPqeVp5g4cb5cufJp6fMtSpGZWCRXrnza9VmbNm2VpaXJfZaWPiw3bdpqbKN/1j1y5cqnjVIYkyYt\nTuuzSGd8Fsv5DucoXdHrXkZCiFxgK7BKSvlvQohTUsrChPqTUsrBKW3kypUrz3w/ZcoUpkyZ0qvj\nHAi4eRmVlIygpmYEHTvzkpLDbNgwjzvvfNqYtObEiReMz1K7/bNLTtN5QniZzhPCVCorX2bJkqks\nWPBv1NQ8eebnS0ruZ8OGmwDOOm4gnfFZLOcbr732Gq+99tqZ7x955JH+62UkhMgAfgn8RErZ4dt4\nTAhRIqWsEUIMB47r2gaDwd4c2gDF5GWUS23tNtSNnboWqq09zPTpPyIS+ZG2RSQSAIjnR9565tql\nqkpdu7jpCJkCvzrbJOdrCIe9TJ9exkUXPUNNTefV1UUXDQNwLBQ7djzAhg24Bpmlo3NksZxvpG6W\nH3nkkXPqrze9jATwQ+ADKeX/S6j6FSoT/OPxr04neEuamLyMThKN/gWJwWLR6EIyMz9PZuY4bYtY\nrIlgcD2rV+8gEuk8QaxefS+wno8++kDbbseOP/DNb57WBn41Nh5C50nU2HiMW299SBu0tmPHd6mv\nTz711NQ8yXe+cx9g1mhqbNTuM2hqqtWWWyyWXgxME0J8CeVYvoPOLeG3gTeBnwOjMLid2sC09PD5\nJhGNXkFqIhz4E8p2n8o0xo3LZs+eYuD7CeWLGDfuBA0NPuN10qlTx4nFrsKZv/l14FVHm8rKFRw/\nXsf27esddZMm3ceOHQe0QWvwVWCTo7Sw8E4mT77QeC10/PhRtm8f5hjfxInHeeedVFVVi2Vg0G8D\n06SU/4PZrfUrvfXcTzNf/vL1bNmylWQvo2agxNAilwsvHM+ePUOBOUAACANlXHjhcerq9mlbRSIB\no2y2Wnz0ukkmyey8vGKkrDOM0aSC2h6/FjI96wLAmV86P/8VQ38Wi8VGKg8grrpqBK+8Mp5IpHO3\n7/PdSySyx9CiOR5gtjj+6iQQWOGaA1mIFnSy2bAS07VQcbF+YQoEovH+9GNUsQvJO/0xY3I4ePBD\ndBpNBw/u5jOf+Yx2fIHAy4bnWCwWuyAMIF5//UjSYgDEv/8iKlgs9SrpIEuXftuYl3jbtuE8+ugt\nSHnJmTohPqCq6it8/PF+Nm78GnAZnbvz9xg0KJ/6emeAmRD3sXRphfFZgwe3s3GjLu/zCD7+uIaa\nms6dfklJDatWzWPu3CfRBbPV1t7ImjUV7N5tzsVssVic2AVhAGHyrMnJGU1Ly5skXyUdYeLEK+M/\noc9LrBiUUrcAgMOHjwNFKXV3E4u1aseQl1fs+iwV7KYPaNu8uZq1a18mHIZAAJYsmcf06WV4PHoP\nKY9n0Bm3VBuAZrF0H7sgDCCUZ816VNhHZ24DNUmvJfmu/dsI8TPWrNmS5NIJyotn7doVvPXWx0iZ\nbFSWcgPr1s2hrq4RdTqYgRLPawEupbFxB7p7/UAg6vqsribqDieDRGcDtyst4EzOhE8Sm3vBcj5h\nF4QBxPbtv8WZ22AhodBeTGqn27fv1/b1zjv7aG7W+wQ0NwvgFHASSPQMWggcBX5C8tXPQj78cB81\nNfo4iVdffZ9bb32IjRuT+9u4cSGHD9/F4cMjtK6lVVXlrF59b4rNROkw9Qc2b642usXaRcHSLzmX\nMOfeemGlK9ICrtPKP5jKi4pmS5hmaDOti7qze5YqN9f5fF91eZazvLJyuZRSyWEUFc2WBQV3yqKi\n2V1KbvQlFRXLXMdusfQ0nKN0hT0hDChy0V3XmCKYhw8v4eTJJqScDwxPaHMEIQQZGe20t6caeufj\n95+mvb3AZQym8iZ0HkMgkTIHuAnl9tph5wgY++uIOA4GFycI8SXzSV/X2Ghpy/mGXRAGFLXoroZU\nuZNQ6BRStqIz9Eq5F6/Xh5qgE3352/F6wZw8xxQt3QzE0McuvE00+iHwBVKvmlQco5Ou8hf0h+sa\nU84Im3vB0l+xKTQHEEJ8GZViIpUvo1JSJO/Mc3PfpaXlNFJu0fRVQSCQSSj0N6SeOLKyvkcodAwV\nbH5JQt2HqODzSaS6j44fX8fOnSdQcQGpJ4Tfok4CzjSf8N24MF+yq+qGDfNcJ/Z0xe168lShW5RK\nSx/mqaest5Old+i3kcqWT4LBLuUfkOx2GsDrLca8o88nGg2h3EKLE9q9RDQ6DCGKkTLV7XQREEKI\nHUjZ+SwhTvL4499j1qx/oLXVeULIzt5La+sp9KebKHV1Muk5dXV3n/l3OuJ2Kl/DB1r31gULno0v\nPoodO549I6R3tljXV8v5hj0hDCCEuAadjhBcA3yG1OsYr/ddotEClBx1KlNR+Y2udLSDN4ALSRSi\n66QS+HNSJ/aJE4/x3nvHtHpFPt8MIpEIJuluXXlh4Y385CcPJEzgHaeHo2zYcCdr1mzRnhBKSr5G\nTc1Qx3uaO3cwu3bVafSP1Nit/pHlfOBcTwh2QegD+sq4KcQU4GqcVzK/Qy9udz3KRqATqXsDpSOk\nn6SLi4dQW/sTTd3NwL84SgsL55Kf72H//gCpBuzRo9s4cKAJKX+l6e9G9IK4NzNx4mDjBL5q1R3a\n65q9e7cTiznfk883g7y8HE6dcuaAKCycy8mTGzVjsFj6F/bKqJ/Tt8bNYvRG2z9i9j7KMrT5CKVN\nqG83ceJotjhND/h8USJaW6qfwYMz2L8/n1QD9uDBjTQ2RrVpPqHd8F5Ps29fM5C6c1/Nvn1zjdc1\nX/uaXtdJyhxUXmfd+/UD5twQFsuA4Vx8VnvrxQCKQ+hLX3SoNPjyV2pSaD4sYYqEqYY2FRLKDe3K\njekwBw3SxxqUlt4hS0pmautKSmbKYcOmSViUUnePhCs1Y/i2hCkyM/MWbX+ZmTONn5Ep3sHn+6oc\nN26W9v2OGzc77VSjFktfwjnGIZjkqbUIIT4jhLisV1amAUrf+qKfAu5NKVsUL3eKwHm9GRQXh4C7\nU+rupri4FXVCcLYDT1xI71bUySIIrCASuY22tijKGJzIw0jZxokT+mvAEyegtdUPJPcHtyGEB3Va\nSSz/iLKyMUQiet2kSMTkEgszZ16KsoMksoCZMy+loKBI+34HDSqKnwycwoHr1lUbn2WxnG90+8pI\nCLEMKAViQohMKeU3em9YA4e+9UW/EPgcqbkNlMSEk9zcERw//s9kZ19BKNTpFZSVdZzjx9/mssu+\nxfvvO69QJkz4XHyhc8pLt7cXolJ1ziZRT+nUqcOk5EE6g5RteDyF2v7y8z/L5ZcLqqvfPjO+srJh\nbN36DDk5N9La6gx0y8zMMH5Czz//OIcP30V1dWeqzrKyYTz//ONMmRLUtsnLKzYuMh2pRi2WgYBx\nQRBCfBNYJ6XsmLk+J6WcHa/b0ReDGwgsXdqXMszN6HIbqKylTkKh4wSD6wmFhgL5qAncQyik7str\na/egcwU9cWIvI0boD4pSNgGHSdZTWkZ7+wmysiTNzVXAuoS6+8jKirgK1W3d6jT0AmRlZWrdWLOy\nTPkflE3n8OERwDNnyg4fXsbmzdWui3dXQnoWy0DA7YRQB/xaCLFGKvePl4UQL6H+8n7dJ6MbAPSl\nL7oQjXH//47JPQQ0oP4rHwASlUbv5/TpMI8//iIqgtgHCKAVaOXxx39Be7sf3W7/+PG3Wbq0gurq\nBYTDnUbdQGA+QpwmFHK28Xh2MnFiIdXVNSRP4MeYNGko11wzmcceW0Q0+o9n+vN673EVqlPids8b\nxe10RuDXXz+StDgD7N69mrVrV7gu3tu2DeexxxYSjXa6q3q98/uNkJ7F0hMYFwQp5XNCiF8Cfy2E\nWIj6K34e8EvT2d+ipa9kmIUIIOWFwD8llN6DWhQaSJ6IG5HSRzh8Cvg8qX754fAfgGxUSuzE3f69\nxGIhnnjiGcLhpqQ+w+EGhAhr2wgRZvv2BnQuqdu3f50HH5xAXt5vqK/vvO7Ky2tn8uQJxverPHzW\ns27dHCKRAD5fmKqqsri+0XpWr95BJNI5jtWr72XECH2qznDY2+XinZf3OvX1ne+3q/FZLOcbXdkQ\nSoGfo3z7Ho2XrejVEVnSJhbLJHkxIP79NOCHmhbTgCEkLwbEv58W//f3U+q+D0yjuvoYusA0dUJx\ntmlsvB6vV3+339rqY82aLdTXJy8W9fVqcgaMcRyTJ0/giiuOnKnrmKDVySA5l0Mk8n2OHJmhHUOH\nTce0eKvxJcdddIzPRh5bBgpuNoRnUU7g2cARKeVCIcRE4AdCiG1SykdNbS29iznQLdvQIsdQnoE5\niX0u6ipJRzZql+xMxmN6lhC5SKk3zErZEjdS3wUco1MmYxiHDvmNcRwACxb8W1LSnR07HmDDBohE\nstDFFPj9BYweffY2nSNHmrX9HT7c5NrOYjmfcDshfF5KebkQQgDvAEgptwMzhBBf65PRWRy4BbqZ\nFUhN5afjLx3NeL0eohpnKK83TDR6Ct3VkElZ1esN4fO1EA7fS/IJYhF+fyt/+MOrwEUknzoWsmvX\nLqLRrUl9ddz5Hz9eR03N+qS6mpon+c537iMaPY7OIO7xnOKpp+45a5vOvn0fa/vbt++Pru0slvMJ\no3SFEOJxYCJqG/mfUsrv9dmgBph0RU/ipuK5ZcurSDmB1AkX3kUpnqbKU2xDxShMJFWdFP5AWdll\nVFf7SM2HUFYW43e/O0YkotMymgqMcfQ3d24RO3bUs3NnLSryt8Mttp3x44vZufMAepmMrwKbHKXl\n5UHefXcv9fXPOuoKC++ksFCyZ8+PHXWlpXfypz8523RFbu5NtLT8q6M8J+cmmpud5RbLJ0GvSVdI\nKR8SQhQAMal8CS39ALdAN693OJFIG0qjqPPaRdkJjjjKvd5sotFClBpqcm5kGEcgMBLYSapKalbW\nBHJyJA0NznEUFIzk8ssjWj//ysrl7Nx5OeqaCUACX+GCC46yc6dWtwJ1paXP0SxEm6FNOxdeeDF7\n9jjbXXDBWEMbdzIy8rXlfr8q/6ST8fSXMVjOb1yNylJKzZ+85ZPEzVc+EtkPXE7qtQvsRwnKJZdH\no/tQC8bjmh4r+O1vf4tSSU00SM+nuroa5drqJBQ6zuHDE9H5+V911QheeSXZ88fnu5crr/wcv/71\nNv0bph5djuZQKEJb2/74+0s+jbS17ePdd+tR12HJVzzvvvuO4TnuBAL6OITMzFC/SMbTH8ZgGQCc\ni+5Fb70YQFpGPc2mTVtlaWmy3k5p6bflpk1bXXSJ3PIcX23QCrraVefI69XpHH07rn/kbFNZudxV\n10lpFum0jMqM2kNq/FslLJewMv51q1R5mCuMY0+H3NxpEu5P6etbMjf3+n6RO7k/jMHyycM5ahlZ\ntdPzDHdf+TxDK7c8x9mY1U5N5BKN5hrafaxtcfhwE0VFg7R1Stfp7GQ3VA7mKDq5C1iLCrLTYcoF\n7Y7XOxQlxZ34fm/C6/1Rv8id3B/GYDn/6XJBEELkoMJcR0nlevpZ4GIppdPSZ+kTzIFuJhkFtzzH\nHvST6hPYdwcQAAAgAElEQVSoO34diXf3MuWr3qPp6NEaRozQL0wqBsAku+FMqAMgRAvKLqCjGfOC\nYPos3FHSFc7Pyedb3yt6VWdrD7D5my09QXfUTp9BxSN8Mf79EZySkJZ+gBAN6JRGlW//gpTy+Qhx\nEBXBrGtTT0ZGs7YuI6MJv78B+C4q18K++NfvAie0zyopKWDp0gpKSh5IqikpuZ8lS6YyfnwmOhXS\nrKzj2vIvfnEIBQWtwC3AcpQS6nLg6xQUtFJWNkzbTpWfPVVV5fh8yUqyHTIZbu8rHTrsAVu2PMbW\nrUG2bHmMb37z12zebFZWXbq0gtLS5P8rFV+R3hgsn066c2VUKqWcJYSYAyClbFGhCZb+Rn5+Jg0N\n75N8rbETITKQch/J1zEn+Pznr2TPnt00NHyU0uYjCgr8tLd7OX36QErdAXw+P35/jPb20SS7uN6L\nuuKpT2nTwKFDKj4hHK4lWe7iBAAjR45n584RpF4ZZWc3EQpNdJRnZR3lW9+azCOPvEFywp07+Na3\nvkwwuJjycqeq6datz5AObjIZaqJ2SoOky5o1W4x6S6ZTgs3fbOkRujIyoPIvZgHb49+XAm+ei+Gi\nG8/sWUvLpwSzkVVvVC4snBM3wOraXC+93pnaOq93pjHRjOpPXz5x4l9q6yZNWizLy1dq6woK7tSW\nl5evdO2vL+lpg67psygvX9mzA7cMOOgDo3IQeAm4QAjxPCpp77weX5ksPUAWenvAGsPP+1GxB3rD\nrPLzd9YJ8ffEYlmGPk3yGbns3au3L+zd28zkyYXaOpPsdCAQ5d13zf31JT1t0LX2AMsnRZc2BCnl\nFuDrKKGZ54E/l1K+2tsDs6SDKVBLP3GOHZuL16vPOub1tjJqVACdDWHUqKy4Ubf7z4Jm10Ay0z18\nVVW58W7crT9Q8tdDhsxm0KB5DBkym2BwveHnO9m8uZrKyuVMmRKksnK56719Bz09gVt7gOUTo6sj\nBPDf3SnryRf2yigthg2bIXWxAYMGfVnm5t6TVJ6bu1Bu2rRVzp37oIQFKW3my7lzH5SbNm2V2dkz\nJMyScKeEWTI7+6ty06atMj+/TML8lHZ3S5ig7W/8+BvluHE3S12swbhxN8efNVXCVyXMlvBVmZ09\nVW7atFWuXPm0LCqaJQsK7pRFRbPO5DFW/TmfNW7czWnlQNbHeDwsN23a6vq5u8WGpMumTVtlZeVy\nWV6+UlZWLj+nviyfHjjHKyM3LaMs1Pn/VWBKQlU+8JKU8pLeWqSsllF6BIPreeSRZ4EiOqUm6igr\nu5Tq6neAEQnlR1i5chHB4OJ4Cs2hJKbQbG19m82bq5kz56c0N3cmrcnNXcQLL9zGDTcEicU64hg6\njL2tKGPqLJTcRKcRuLT09+Tn57B9ex7wAYkyGZMmNVNfX8OePbWoOIGOugaGDcuirS2H+voMOlRV\nBw06zXPPfYulS59mz54T8TF0tGll3LhiGhokdXX3kSpdUVS0nmefXax16VQ6Uacd46us9PPSS6tc\nXUE3b65m7dqXEwy6U5k+vczKSVj6lHPVMnLbpX8L2Iu6h9ib8NoBVJ3LKtTVC3tCSAu//881O+YF\nEsYbyifIUaO+oq0bNeorcty4b2iNm6Wld0hz9PP12nIhbpSjRt2iOSEsipebxn65ts24cTdLn+9L\n2jqf70vS663UnJYelkKUGU8BxcWV2jEUF1emdXpI98RhsaQL53hC6M7kvPRcHpDWoOyCkBbuEhWm\ncnOdz3eLts7nmynhJkM7U/k0o2dSpwxF98fu3mbaWfen5DPMHlLpeBJZOQlLX3OuC0KXXkZSyjVC\niAkoCcxAQrlTW9jyCZOLPmlNLjrFULOkhepLynZtjZRtmKOEW1GG6FSp7Qh+/2AimmZ+f0FcpdX0\nnpxjj8U6JLR15GBO7qNP4BMOexEiD7UfSUaIvLQ8iaychOV8ozvSFUHUrDIe2IzSQv4fwC4I/Y5D\n6JPW7EOX3EUlszG5jzajoo6daqJwFCVLrZv4Q8BIYDaJi5LH8w5er94dVJWbFoQm7dhjsVN4PJnE\nNPO+x9MCSG2dyQsqEIji9bZqFyyvt5XGxuP60TXpEwKBdR+1nH8YjcpnfkCI91Gayu9IlUFtGPBT\nKeVXem1Q1qicFkJUoibPVK5DhZKkcg2jRvk4cCAPdQDs2IF/wKhRTRw6lEEsdjpe3mGMjuDx+IHW\neF1+Ql0DyuVzFPBnCf19SHFxG3l5OezZkwP8KGEMdzFuXIg9e3YDn8e5+LwHfA/n6ea7FBS009Dw\nWVITAg0atJvMzGyOHbuM1AVr0KA3KSr6C0cKzaeeuo6f/nQzGzeedIxh7twidu2qY/t2iZIR7xjH\nESZO9PDOOxs0n60yNKem+CwpuZ8NG26yhmVLr9BrCXISCEkpo0KISDxhznGUNKWl32FS8jRdDeVT\nX1+D+u9MlH+4m/r6w/EJ/wpScxHEYm+jfnUud9TBW8AlKf0to6HhdU6ePAaMJlnioYn9+/eTnT2S\n1tb9JCfqaUMpuOpON6cR4gJ0CqlChLnkkrEcO3YtqWqsl1/u52/+5lqtxIOapB/ixRdnIGUOQrQw\nc+alPP/840yYsCg+rsT39QDt7aa4iw56TtLCYultunNCWI/6C5wN/BXqL3W7lPKuXhuUPSGkhRDX\nk5wEp4Np6NNTXg9IQ920+Nd06kypMKPGNj6fj0hEp2xq6m8ahYUFnDr1gqOmsHAukyeXGlONvvTS\nKk1/7gwZMpu6up85youK5nDixAta99I1a7awZUsFqaebysqX0xqDxdIVvX5CkFJ26BF/Xwjxa9SW\n7b10H2jpPcaPz2TnTt2dfz36+/4opsxnXRmcz74uE3NgfC6FhQFqtdfxJhtHFmPG5HLqlPN9jRmT\nw9KlFezevcxxNbRkyXUuYzczfPhw6up05SXGbGWRyD50p5tDh06kNYbzHRuT0f/pjlG5GDgR92ra\nK4S4FSVhMaHXRzdA6Ks/BJNiKBxAn8zmbdxzJZg4+zqPJ0QsZjr1NRMOmwyt5vGtWvUtFix4lpqa\nzvdVUlLDqlXzelz9c8SIXN5/31k+cmSeUZ3U55uBUyl+NTU1c9Iaw/mMTfF5nmDyRwVuRrmZHEW5\nr9wAvAP8GzDpXHxdu3oxgOIQ+jI4yaSSKcRkCXellN8l8/O/IIWYJHXyD6pcF9A2P15+paFuolQS\nFsnPmjv3Qen16p/l9U6S2dk3SHMqT135l858vn0h8eAmT2H63LOz52jLJ0z4Zq+MsT9jYzL6Bnox\nDuER4Eop5Z+EEFcAvwduklLqU1hZtKSjbZ8uys3xIVKlFyoqKvn1r/8VdR/f4RF0kIaG9+NyDZtS\n6o5SUTGDK68cziOPrHe0W7lyMevWbaWubpujXVHRJZw+/T6NjZ3l+fknef7533PkSJCtW/83pU2E\nL31pBjt27KK1NUKyUflSYBg6N1avd+SZ9y3j9qaOrx2ofAjHOJt8CMHgetat20okkoXPF6Kqqpxg\ncLHriWPNmi3avrKyYrRqtANHjjSlOu16HOcrNibjPMG0UhDPf5Dw/fvnsvKczYsBdELoS217kwyF\nSboiK8t0Cuhok26ds3z8+BvloEHXaXb7D8tBg66Lnx6+LmGZVLkXlsW/v0rbBqbITZu2ypKS5MT3\nJSX3y02btsqysnnacZSVzTN+fukI4kkp4+O4O2nsJSV3yZUrn05L9C7dcXQ1xoqKZbK8fKWsqFjW\n5/IZ9oTQN3COJwS3SfkQKpfyX8Vfid8/0K3OlcP5MeC9hLJgvK/t8dd1mna9+qH1JV39IZj+UNP5\nA+5p6Yr060zlFYa6Cgnlhon/Wm0bj6fCNUGOmwyFiaKiWdo2RUWzXT93t4UpnSutdMfhNr5PWlOp\nNxRhLU7OdUFwuzLagPIoMn3fHZ4B1pIc1SyBJ6WUT+qbDCzcvF1MhrZt297nuecOp2GA61npip6t\ny8Wc+L4AJXnhNMAqU5aTWMw94Y77OPREInqPpkjEJJGhWLNmS1LwGUBNzZOsXatcXM/2ajDdcbiN\nr6+uLU3YFJ/nB8YFQUoZPNfOpZS/FUKM0VR9apIyu/0hVFYu1/6hrlvn9Hnv3h+wSbriEOlJV5jo\nqk63+DSj/ttNdabJTq+nBO1dJMgxeyeZvL5Udjbn+Hy+MGD2FlP348526d6Pm7LEdYzjbOnp8aVL\nZ/Cfpb/SnUjl3mCJEOIOVFjrX0kp6z+hcfQJpj8Ek6HNtEPs+AM2TUwezyBise+ntPo+yuVUt/u+\nBjiIXq/oYPzfbnULUAfHDubH635CagTzqFER8vJy2bnTWTd+fCYffNCEui1MpQldDEVWVpgxY4YZ\n4xAuuyxAdbVz7OPHZxrdHysqxrBxo3N8FRWjXd0mGxv1C25j4zHdG+qSqqpyVq++l0ik8//S51tE\nVVV6k2lPj88ycPkkFoR/AB6N/3sV8PeomSSJYDB45t9TpkxhypQpfTC0vsUkmBaL6eUNAoGo68SU\nlzeMhgZnOyEGaSfbCRMu5+OP/0R7+2BSvXv8/rG0t59EeRonegUdBwqYO/dLbNz4FskxD7UMGnQh\n9fU/SHnSDxgy5D6GDClk587U6OEfcMEFK4Dj7Nw5B/gMnbvYP1FcnMeJEx8hZWesgRC7ePDBmwB4\n993XiMU66zyeP3LDDdcQDC5m9OipHDjQOfZRoyKMHPkXjgjmjtOXlBkkLwZqfCdPrnC9dlG5qZ0L\nrhD3OT/0bqC8idazbt0cIpEAPl+Yqqqyc/Ay6tnxWfoPr732Gq+99lqP9dedwLRxUso9XZV1Fynl\nmVlQCLEB0LqxJi4I5zvmwLR2lJ0+8f75foqLBUOH6u0ObhOTaSHxeJqJauK+Ro7MY+fOTJS+0D7U\nxC6B0UQifwIGodxYU694nqCuLgP4b0efzc1fQ3c9sXdvM3l5xdrxhcNeQqF6oJhkraAq8vLgK18Z\nzYsv/oFEfaFgcDGVlcuJxaaQaDOJxa7hjTeOEgyu5+DBscA/nent4MF7gI+MYzDRVV1+/lBtnen9\ndodgcHGPuZn2xvgs/YPUzfIjjzxyTv1154TwS2BiStmLKNWzs0YIMVxKeTT+7U0McBkMtx19e7sX\nnfhZVtYQHn+8Umt3+N73XtE+Jxz2UlwsaGqaCVxM52T8EV5vLdHoLSjRuU4F0lAoHymPoLM7xGJH\nUDtrne2hje3b92vHEYm0atvU1++lsVGfi6CpqZZDhxpSxgCwjv37KxCiNEnn6M03l7F5czWHD9ei\njNGJ7R7g0KEWnnhiB1L+e1JvUv4Thw5drx1DIBDl+HGNNkV8fFJ/n9VlXX/AynBbuotxQRBC/Bkq\nMqhACHEzyiIoUeI33XJ3EEJsRLm5DBFCHARWAlOEEJ+P97UXWHRO76Cf47ajr6mpxzkJQk3NHKPd\nwe2POxLxoBzBkpVL1cIzilSlTpVnuYBk+Wji33cI2OlsD9OordVPnmphc7aRspKGhjp0J6L6+jra\n2/WLRTSaa/z8Dhw4hgqcT+RJDhy4kVDIr+0vFsuhpGQ+NTWdMtYlJUdYsmQeK1b8GJ29QiUEwljX\n0HAKZbxPluGur+8fmkU9retkGbi4nRAuQl0sF8S/dtCEsjR2iZRyrqb4R5qyAYtbhKabYJoJtz/u\nG2/8A+rwlsiPUKqmqV6+T6IUSE1eRrmYs6IFUC6tOsE8U3851NSE0Z2Ijh0LYc5wdlpbGg57icWy\ntXWq3OSn0IJT7vsBAPLzLwCGkhoVnZ/fsbg45bTz819h375m4NaUuts4deofDGPoW6zLp6W7uLmd\n/jvw70KIq6SUr/fhmAYUbjt6N8E0E25/3H7/P2kzfoF+4oQMlKH4LlT8YIfheBhq4oyhk8JQBmQJ\nHEEtNontTK6RIdrbfaibxuQ4iba2/yIrq41QyHl6EKIFKZ2xFYFAFL8/RosmFMHvl0SjIcLhRcA/\nJtTcAzRQU/MZEif9mppy1q59mcbGo8Bv45+XQF1H/ZLGxrEUF3cs0jLpayAQRcpMlIhg6gT7Q1dh\nw3TkKc5FKLHjast0xWWxdMeGcLMQYifqL/ElVFaU+6WUP+nVkQ0Qujqup3OUN10nZWWd1mrnuCua\nHgUuIDmPwkKUQiqo3fR/pNQdRE2YozTtTG6sdUQiGcBrqMNnhy3jNSKRkxQWegiFDpC8yz6I8kHY\nTvLV2kJef30HWVnD0J1SMjNbycvzceDAfpK9oOrjz3TaTN555xAtLfWoTG/JbqcfffQhl1xShM6d\ndvDgwYwdm8P27TgYPBij/WjbtvdZvXoHkUjnOFavvhdYb1wU0lUMtUqjlu7SnQQ570qVOvMm1B3D\nA8BvpZSf67VBDbAEOZs3V7N27csJO/qpZ/4Q3erc+tPtEoPB9Tz22LtEo527Yq/3HqLR7cBYkifi\nj1A7/HzST5DzbXSpLVX5y3RO7FPj5SHUAjM6oc1+1CKS5dKffgy5uYLm5gDqpNNxejhNbm4bzc0S\n+L9n0Z9bsqDrKSrKMybIefbZxdpUmcOHN7F9uzO9ZmXlCt5662Pq6u5zjK+oaD0nTjiT/qh2y9NK\nuKPa9VyyIEv/pS9SaHb8zFeBX0gpG4QQA2e27gPcIjTPNnrTbbc3efIEMjNforW1c1ecmdlKa2se\n6hSQem9eh1sCGjWZ6/Cj0ls+i8ox3MGzqElVd33yFOoKJtW4vQy1IMTQezSZbRKxWAQYAaxLKK8i\nFjsUf5auP/2vrhC5SGmyY2TT3KxP7tPcLJg+vYxFi95n3brZZ65/Fi0q55e//Fjb5vDhJpqamrXj\na2pqAvSL/kcf7dW22bVrn2HcCqs0auku3VkQ/kMIsQt15v5LIcRQzBfFll7GzWvp+PE6Wlv/msQd\nZGtrBfA4ZqOy23WSacJoR/0KlOCc3Hcb2rSibA06r6WO9Jp6jyY9LYTDkLwYqO/D4esxeTuZ+hOi\n2eVuvYW2Nv1i0dZ2ks2bq3nuucNJJ4jnnlvG8eP7tG2OHq2hvV1qx9fefr1x0T948CjwU0ebw4dn\n4IZ1O7V0F1NOwzNIKf8v8EXgCillO8qy+LXeHthAYvPmaiorlzNlSpDKyuVs3lyddl9uu72PPjqM\n2kE+hhKVfSz+vWnd96OuHZallD8cL48Z6mIow6tuws0BZgHL42NYDsxE/dpkuowjw1DXhtOpbQFQ\nS0aGPv2n35+H2TPah3IRTWQRQjQAJw3POhkfh+6zaDMu0rHYaW2bkpICMjP1InuZmbnG/tRn68Tv\ndxMbVHas0tLkcShb1VTXdpZPH92JVM4B7kOd9ReizugXA5t6d2gDg82bq+NpHjuvVnbseJYNG9Iz\n6Lnt9trbY+gnaZORugUVjexMQAOFqF29LvXmdsxXORko183kiGMlpGc6jbRg3ptkouIiU9OC1pCR\nEaWtTSdGF8V8iJXA5zT9nUJ5VOuedST+fnWfxUfGRTojY4i2zQUXvExNTT1tGm2+3FyPsT+PJ0BM\nc1DJynK/wbVup5bu0p0ro2dQyXe/GP/+CPAL7ILQLVas+DE1NclXKzU1y1ix4sdp/UG6eS39z//8\nyeB2GsHp+TOfzMxW2tpCwGGSvW46lFBP4vSs6RC3G2EYYZjOE0LHJD0L+BC//zjt7XeTHIpyN37/\nsbieki6u4TSwOP5K5DdEInWoK6OLEsrXEYmcxOttJxqdB/xzQt081KTv7E+IX6MWH92ztpCV1U4o\n5LSNZGV9L75IOxemceNyaWj4tfb/atu24UYBu9dfP4KO0aOz2b8/PdE7qzRq6Q7dWRBKpZSzhBBz\nAKSULUJ8atSrzxkVtJTqabKafft0MXtd47bbu+iiF7Tuj0J4kPIQqS6YQnRc0+hOFV9GXVHoxO1y\nUHELzsldTbhOw2dxcSFf+cqfs3Hj2ynjOMHXv17JL3/5Hu3tuh34W9rPQcUn+IDPkmrHkPIUmZlR\nWlubU/prjo9vPsoY3jF5H2HUqCz27NEoAwLQxoMPzuDRRxcgZef/pRDzefBBZZN45ZXnUybqe5kx\n43NMnjxB+3+l/h/1AnbB4HpeecU58d9++18A9KDoncWSTHfcTn+Hmh1+J6WcKIQoBTZKKb/Qa4Ma\nQG6nhYV3Ul//rLb85Eln+bmgrqec7o/Hjr2HlN8h1RXU6/17hPATiaRGN4PPN4tIpAmTK6gQXqQc\njzNobQc6102fTxk+I5G/cfTn832PSKQFuArnCeENoJTU082wYTXU1fmIRJL1itSzvkYk0q4dB1Qi\nxIUpE/sCvvOdSfzkJ1vZs6eYZEP1fYwbV8fu3S9w660P8eKLHySJ7D3//ONpu4Oa3IdVfyNIDcar\nrDyatpvouQS09UV/lp6hL9xOg6iAtAuEEM8DV6PO3pZuYApaGjvW3RCYDtOnl7FhQ+rp4SZuvPEQ\nkYjzukOIdQjRpO1LiGbUfbvedVNKL8p7KZWbDKMLEImc1PanBPEGob+j34XuXj8Wex0h9HYCIfwo\nQ7WO3KTFAEDKDbzxxgq+8Y1yHn301RSp7eN84xvXsHlzNW++6XMR2XO+r0OHzFpGbu7Dqj9J6jWe\nW39u9HRgmg10G8C45ddEWfpmA0NQvoFfBYrPJWdnd14MoJzK+ny73+q1XLIrVz4ti4pmyYKCO2VR\n0Sy5cuXTcty4b2hz9JaW3iHhixIWpdTdEy93y49ceZY5lael2Z8pD/M06fHo+/N43J41XVvekbta\nV1dZudy1Lp0cyG795eXdpK3Ly7s5rd+Jnk5w39P9WXoOejGnMlLKmBDiQSnlz7BG5LQw7dp747je\nGancubN87LFFXH21l71770bKzvt+Ie7m9tv/gkceOYFOmA2ewOz5k4GKRdAZgetRArbJGkJ+/2na\n202nogCZmadpa3NqGakTgfM5QggCAT+trd8gOfJ5H4GAHylPEQo5JTRUvIFmBIEo4fDZB3B1JVJo\n0itycx+OxfTuubGY6dTjTk8HptlAt4FLd66MXhZC/DXq/HpGSkxKebLXRjXA6EkPD7fj+pNP/oZo\n9F+Sfj4a/Uf+93+nI+UEErOiSXkpb7xxFHUN8z7wMZ331cOBTPLyJE1NTmG5vLwMmpra0V/xvAX8\ngWTRuzr8/iG0t5tcQdu49NIxbN++FacBeyjwZkp5BK83gMfTjoqHSDQqL8LjOUVmZgmh0ImUdgFy\ncnLIyKji1KlOO0Fh4X0sWTKbNWu2oBP6CwQu6Di5OggEorS26v8UDh36iEcfbUXtpxSPPnoPsD7u\nmWQS7ZMG0T73u3vT4tPTgWl9Hehm7RV9R3cWhDmoC83UfHtje344lq5wi1RuNrj5R6MdiXgSReru\n5cMP61AupE6xNzhIIJBJU5NTWC4QOE5T0yn0LqkngC+QnBvgXpqb30ZNejrhuwNs334AZVROFo+D\n17XlkcjrtLWNIPkkAvCPtLVVEI0eQhm5k9uFQm/T2ppD4kLW0FDLtm3vs2vX74ExpAr2ffjhG1x9\n9STt2AcPLuLo0Rp0p5j6+hiJGdtAJel54omvMW6cB7XwJH+2hw6dwO+PavuTsjYtsbyezodw1VUj\ntF5QV155eVr9uWHtFX1Ll15GnwQDycuop5kyJcjWrUFHeXl5kK1bf49ZjE7v+ROJnEZd9ehE4HDp\nD8widm7icaY2bs8ylQeAf9XU3YS6aup+f0VFc6irazC2KSrKj4vRJY+9qGg99fWSaNRZB2tQITup\n3Bwf339q6q4nNxeam4ejYj06+juMx3OUWMw5vk6xPL343okTL6Qlomii06sq+f125VWV/rOsMF93\n6XUvo3ik8gPAKCnlQiHEZ4GLpZTWpvAJ4H5cb0WXucsk6KauWxowi8CZ8jJ02AJ0InZrXJ4lDG3W\nGtokPktXrtX6RgWz6WUeVDtnEFko5HN9VijkQTf2UOgfEKJFW9e50KUSdhlfDl5vDnAnasLtYB5C\nrNf3FvYSiegjxyORTgmPjk3WuW62lA3B+X7DYX1613N/lhNrr+gdbKTyeYbb8f83v3mHaFRnINZP\nTCrOQGAWgXMTvjPhJk9xtm3c6prp1BdKNWy3YlZq1buIhsNHMGstNceT+zhpb29m1Cg/e/boFuIm\nw/giuL0vn0+/+OjdfFXuZp8vpK3z+cI9fu3SlzYEK8zXt3QnMO1tKeUVQojtUsqJ8bJ3pZQ9f2HY\n+Ux7ZeSC6fg/ZsxC9u//gabF/0Hdp6d6/uylvT0L+JWmzQ2MH+9l584ikiOt5zN+/El27vwjzrv9\nBajI5isM5VGUfSG1bhtqYfoMcAmdO/cPUXkbLoqPv6P8A5SqagHq2iiTzuC4NtQO/DRKoym1v1OA\ncycbCMzA46mjtXW8Y3zZ2R9SXDyG/fvHkDq5jx69n6efXsSMGX+DlIPpMEYLUcewYWOoqaki9Wql\ntPSH1NYeo7FxDKmLSH7+fu6//4a4PSD5jr6o6CDHjk10jGHixOPccMMkbZtlyy7n9deP9Oi1i26B\nKS19mKeectdHSsc4nO6zPq30RWBamxDizHk0HqmskeWy9BUmr6WLLx7G/v3On/d4conF9pLoZQRt\n+P1+2ttNO60Yt9xyHTt3bkxpV88tt8yluTmb/fu3kezFcwSPZxCx2IcpbU4xbtxYDhwIEYm8l9Lm\nFBkZIxk0KJvaWt0mwIcKWkuc0O6moGAQDQ3tKJ3FVEP0+xQUZNPQkJfS7i6gUftuvd48xowZwc6d\nH5LsIdXM2LET8Pu97N/vFAEsKmrgiSeeQeWL6hyHlAvx+/chxHNI2WlYFmIht9/+F/FJegSpAXdX\nXTU0LkXhlLV47bXhHDumz+tsahMMLmbKlKD2Pad77ZKOWF66pxQrzNe3dOeEUIE6916K2upcDcyT\nUr7aa4OyJ4S0MElXhEI7aGi4ktRrkpKS9zl2rAkpnZIRQrxBIOAjFJrsaJeV9RbZ2YO0Rlav9wmi\n0Qcd5ZMm/Yx3391HNPoQqff3Xu/jRKOtwDiSNYaOooT3dEbvv8Oc4WwaeXlZNDX9i7ZO1yYv70b8\n/iAC5q4AACAASURBVEyjYbag4HRc1iLZe2rcuFr27AmhNxBPQ2dEr6x8mSVLpp71zjddA2tfG2Z1\nJ4E1a7ZY43Af0OsnBCnlFiHEO8CV8aJvSilr032gpbdpIHkH2Ug0WojOTtDWNpdRo3LZv/9Dkne+\npxk1ajj79zeik8YOhXYwbtwg6uoSM6ZJ4J/xegXRqPP+u739X/B6IRp1ZllT5QJ9wp0/oTd6xzAb\ngXPweEx12YAzmG3w4Bzy8oqpq3ManIcPL2HfvkMkLwYA3+f48VswGapVud742tXOVxdTkK77aE+7\nnbphOglkZeltSNY43L/ojpfRf0spv0yCETmhzNKPWLNmCzU1P0wqq6kBn2+moYUfrzeM8r1PjBB+\nAK/3COp6RRej0IjfPwx1h5+clrO9fY/2Sfv37yMSCaGb9CORvagFx2TcPlujdws+n2miaUYtBsnj\nrqv7iMGDs9AtPhkZzYTD+k1XOOxBBdDpFi39vqnDIGq6+gsG12tjCpYtg6eeqjzr65O+vHYxxckU\nFc3W/rw1DvcvjBnThBBZQogioFgIMTjhNQa1bbT0M0wueiZPjbFjc6mtbUOXXrO2NozaTTt3xarc\nr22nDLzOLGGnT4fx+wvQTe6qPBO1y07MtFYdf5YTJd19Cl32MzhJVVU5Pl9ync+3iIyM09pxS9kh\niOccnxCZxs8wM/M0Xm+mtp3Hk5FWpjJ1Mkj+3COR77Nuncq0l4776PTpZbz00ipeey3ISy+t6rU7\neNPvYEnJIJu17TzA7YSwCPgmKjrm7YTyJpyJbC39ANOkddFFRfzxj4tobu70MsrNvYdHH72d2277\nkbaNxzOIzMw2bVavzMxB5OcPRSfzAPnAZpRXUUf5USKRi8jNzSIcdso1ZGXlE40e5PTpH6B27x38\nABX5rBtfjGh0BPrsZ8cJBhfzyCMTSDRgRyIHycm5jNOndT0G4u/JefWTl1fMsGEn2LPHedU0bFgm\nNTUBWjUhEYHAENcdvUlqwhRTEAr5HDaiHTseOJN9rz9IPJh+By+4YChLlkw1fhb9YewW3NVO4zuQ\npeeinpfOiwGkdtqXbNq0VZaWPpykQFla+m05d+6D0uOZKWG5hJUSlkuPZ6ZcufJpmZV1vVa5Mitr\nuoRrDYqh10q4XMKClPIFEiYYysdL+HPpVFZdFC+/WsLDKXUPx8tT+5sf7888Pq/3MsM4ygxtKuSw\nYTO0YygpuUGOG3ezdhzjxt0cV1d19unxTDP+X61c+bT0+ZI/C59vkVy58mmj2qnHo/+/mjRpseH/\n/uFeU9U1YfoddBtHfxn7QIBzVDvtlnSFEOKLqIvmMycKKeWPe2WFwnoZnQu6GIU773za6D3T2npS\n40n0MFlZbxMKtaGcylIDq36H2uGfrdSERKXW0NV5UCeLVL4KOL2WVLBdCJiEUyG1I+ezbhzXoeIk\nUt/TW3g8XmIxZ0Igj+fvKCjI59SpMlJPN4WFv+XUqVOGPt9BSt37hSFDZse9tJKfVVS0Pu7RNITU\nuBEVk7HV0Vdh4Z1Mnnxhv/HiOVuZDCtP0XP0hXTFcyh/wD+QHP7ZawuCJX10hspIRH8tFIkE8PtH\nEAo5VUv9/iOEQi3oFU3/6DICN6kJtzYm42ImZrkLiTLcJo7vBOr6SH/toup072kHsVgEnXE4FovR\n0nICeA0VJNcxgb9Ga+tJvN4colFnn17vTuO1kFpsnc8KhcKUlAxDBdElx0N4PAXEYrr31M5HHx3T\nvttdu2oMn0Pvcbbqvlaeov/QncC0K4BL7Zb9/MVN1kBNqs4J1+dbj5qIzkajB9KXuzAtCPqMbqpN\nDKW4mkolagevQzcRPxzvz+zpdPp0DF3+5vb21/H5aolGncqvsdhBbX4KWE9b22nts9ravsru3R+j\nwn6SYx5isXfRSWGMGZPDe+/VoLN/HD7c9wvC2WLltPsP3VkQ3kc5jh/p5bFYeomqqnJWr3bKFVdV\nqT8CU9369RuprV1AqnRFcXEztbWn0EtZHwRuwSkZcRC1e05tMx/1qxVFqYAmSlTsjNc5x5CVdZxQ\n6ELDO85CuczOJznQ7Uj8aw3Ju/kaVNIfk5ZRZryPSpT3U0d/lcAOhOiIbUjs8w6kPEw0mizPHY3+\nI08++XV8viyimvnO5wvQ3g467y4hpjFsWA01NZ3PKSmpYdWqedx88yrgeVIXEY/HlIPi3OjJSbU/\nxEmAldOG7i0IxcAHQog36ZSskFLKG3pvWJaexE3WQGGue+SRfyHZi+cEixfP5dFHf4GU7+BMaJOF\nkqxI3EnfSXb2IIQooKXlWEp/reTkXEBLy3GUh1Jiu3moie8jUuUzbrzxK2zc+J7hHZ9m3Lhi9uxx\nxkkoDaQ7SVUShe9hPlWEkDKG7opHyjCRSCFno+La2uojP19oPbiyszOorzcdxrPZsOHO+P08BAKw\nZMk8pk8vIxr1o1tEotHphr7Sp6cn1f4QJ7F27Qq7INC9BSHY24Ow9D7B4OKEBUCHTPmq/OHhN46f\nXLduDh6Pj2j0bUedWiCeTSl7ltbWafh8PuCvSL3WaGv7e1Ta7n9OaffP8f5GkCpp8bOfbUNdGenV\nTmtrM9DHSVSgTigd7q0SlcSmI5JWd6o4jSlGAa4jFju7azIhWhkzZhinTumvf7Zvr9e2kzIU/+qM\nQ/D5sg0nDpPMtiKdnX5Xk2q6pwfd++pprL3Cne5IV7zWB+OwfEKYomJhfRca+4MMPZqMuVmoE4Fz\nly3EaUwBaGrSd0Y3K7E+P6brH4/HNL6OoLrE/uajJu8CdNHXqm/T+LLJyKjj9Gmd/PURdNdqRUXt\nrFp1BwsWPKu9/vna1/6WaNS5WHg8EePOPDvbazhxmCe6dHf6bpNqOn325TWOldN2xy1SuVkI0WR4\n6SUjLecdblGxbsZoIUyCt27XLvrcC7GYwJzsxqNt0zlBD0E5wO2Kfy0GhHHs6tbzhyllP4z340N/\nqvDh9r4yM3NQ12VzUNdPc4BaPJ7hwMSU8kmMHPkZpk8vY8OGO6mshPJyqKyEDRvU9Y+Kwu7wWgrG\nv15HLOYz7MxfZsyYXHQR4mPGmE8I5p3+y4YWCrdJNZ0+0x1HOixdWmEjpl0wLghSylwpZZ7hld+X\ng7T0Hm6nAJP8Q1VVGaNGBdBNQJ1Ja5LL/X5JZqb+10aVd2R7S2QRajfvJCMjCyXkdxKVK/qF+NeT\nQD0VFWNQu/NEFqCugXRk4/HoTwEeTzZqD+TsT4hGRo/uMG4nX7sFAoXA4vjY/jn+dTF5ecWAWU5i\n5Mh81ElqFWpBWAW8hN+v3+2Hw15WrbqDkpKO01IQWBE/cdxheL/pX5+4Tarp9NmX1zjTp5fx1FOV\nVFauoLw8SGXlCptbIYHu2BAsAwDTva7bKcDNGD158gRuv/0H1Nd3XnkMGnSAaHQQTU1OhdS8vD1A\nTCvxkJUl44nvdTIUB7Tju+yyobzzTjPKuyfR8+cbwHepq8uIf5/oyz8sPlYdLeTkZNHU5HTdzMkB\nv/8C6uoGk2zcvpTBgy/E74+iFwjcg84VtON6wvR/cvHFY9m/f4TmM9xNXZ1z5IFANH7iQGtwBr1M\nRrrXJ9Onl7Ft2/usWzf7TH+3317O9OllrFmz5az77GocPe0merZxEp8qziXMubdeWOmKHsVNGqCs\nbJ5WkqGsbF6X/a5c+bQsKpolCwrulEVFs+JSGNdq5Smysq6Vfr9O7mK+9Psvl+PH3+giUeEsz8//\nQly6Qid3ca0cNeoWg3SFvj8hxkshJmrbCDHR9XOaOPEvtZIS2dnl2v7Kyua5/p+sXPm09HrvSarz\neu+Rc+c+KEtK7k8qLyn5VpcSDyaZDNXf3RKWSSVpskyWlNzVZX+bNm3VjON+uWnT1h6Urvi2S39W\n1sIEfSFd0ddY6YqexU0a4K23PtYmuikqWs+JEy8Y+9Qn43mAmpqdqOuOVKbFvzoTxsB3qai4gi1b\nfo/aSXfs6CPx7/VtFHqZDI8HYjGTdMXDhv7M0hp5eZk0NVWQKl2Rl7eFSZM+z9atQU27DtmN5BOC\nz/c9rr328njGtOT+KiuPcvx4Hdu3r3f0Vlp6J0ePHqW1tTNlaHZ2Gz//+XLXHa9JJiM393Fycy92\n/B9u2HCja3+TJi3Wjm/SpPt4++2nz1q6AsxyF26/u0uWTLUBZin0RQpNy3mO2x2tsiE4fehNchcd\nrFjxAjU1yZOCmlhuNLTIRAV/6f31t2//A1BKamCVUlPVtVmDcgfV4UfKDEOdPmlNpxSGjhyam1tQ\n2dsSNaGW0dzcRmPjcUM7vTxFJHKaXbs+QslsJOea+PDDOhob9baM3buPolRkOj+j1tZ7Wbr0KdeJ\n0CST0doKzc3JRvSamie79Mnfu1ef7GbvXuVmm86VjKmN6Xf38OEmG2DWCxiNypaBg9sdrbushRnT\npGBOt92Gm6xFbW0Mfe4F0zhagHZDXTtSmtqZvJma6YxFcLYxeUhJ6YmPQ2dg92nbgODIkTC693vk\nSIcHly43hFfb5sAB0+egUHmzdd5dAe3Pd2XMNXuYuY8jHUy/u0ePHu0zz6RPE/aE8CnATRpg27bh\nrrIWJsyTQhRdsJjHEyUWOwrcDSSePu4GDiHEn6G/JTyNXiKjHuV6qgtMaycz00Nb2wM4lVBrtf0J\ncQQpcwzPaiAzc8T/b+/c46ss7vz/npyTkwshF0IgEASUFpGwWnFR2O4maDUpRhRrqQRoRUXpywK9\n7K+gggtU3Nq6bRdvu25p/bmrsP1hXbfCroVWIft6FVe0WEwQrDfCLVxCArl6cpL5/THPSc45z8wT\nc5KQkMzn9corJzPnOzPPPJOZ5/lePl9DboghpKePAa7DTZh3QHdB+P1pBAJJhDR7XSCQQVZWEzU1\nbhoKE9+TlOqNYv78lWzZsh8phyBEA3PnTmbTph+Rl5fLoUNuueTkNpqbzUZvE8aPT6Omxh3A5+Xi\nCvEZh5cvL2LfvrupquroKzf3GNnZmVoDuw0w6x7sgTAI4EUNoOq8aC30UJuCbuNPoK3Nzfw5ZMh+\ngsFcPv30TEzdGZKScgmFGrSRtkrN5PbugXSESEBKd19C7CUzs40TJypj6ioRIoiU7xBNuXGayZMv\n4cCBSlpbDxPt6VSLz9dMXl4KH2myg44Zk+I8xZYD79NhDxiF39+i3fQzMnw0NupJ+6SsQwXHXU6s\nl5EQldpDMzU1xPz5K9m8OeyCq7B58z3ASoYNS9QeCBkZQVpaXojiW/L5ljB9+hXasYVx881T2bdv\nL62tHbp9n28xN9881SjTveAzd7BgIKAPhbIBZt1EdyzSvfWD9TLq91CeJnfJyKQ7ubl3ytTUL2q8\njO6VmZlfkkOH3qL1xhk69BaZmjq9S15GcKWE6dq+YLr0+7+s7QtuMJTPkmCS+bK85JKvaTyaHpCX\nXHK7LC1dofUmysn5a6NnUmLiDG1dYuJfyYSEAs11LZGmZEGlpSukz6dPnuPzlRjHHgjoE/tMnXqf\n570vKlqllSsuXt2jMl5yU6fe12VvpsEAuullZN8QLOJCSUkBS5aUR/m2L1lSyCOPVAPziX4yX0B9\n/U+YNGk85eXutsaNG8+BA610RPVGxiEcRcckqmghUtHHLlQTCpkMxEMN5WmYjcppnDmjz6NQU/ML\ntm//hGjjMMDPOXXqRu01VVSU0daWo72utraf0NYWRG9PmaVt78yZ47S26g3Rra0pxrEHg/q8FmHj\nsAnnM/jMJDd0aA4/+MF154UQbzDBHggWnjAleNm2rYxnnnmb6urPE9btPvPM27S1BdB58Uj5JKNH\np2kPhLy8obz3XioqqjdWVfW6tj3lZdQATEEdDmFd9hRgK2DyvAsbbKP15kp1ZDoQ6hHCZxjHPxmj\nvdUh476mUOhNhGjVtifEkyg1mQ5D0F1vc/NJzAbxBo+xP2qQ8TYOxxNIpmS6bq/w6ssGmPU87IFg\nYYQX8d1vfvNHqqqiSeeqqlah6KXdSE0N0tx8FJ3RtqmpldTUFuq0anVzgpxAoIZgMDYxzT0EAtUE\ng2FqjViDcy0qqU60zNixLVRWntSOD46RlZVKTY2bwC4rK8jx4ybPJf3Y29pqGT48QJUmd83w4VBV\nZd7cFZPsqIiy5zh48DSBwCmCQffYA4FTjB8/mpoat4E9EKgnGHTPUVaWdwyQMvR+LyZ+4bssW3ar\n0VZw9dUh/P5NMc4L32T69Ms77et85UqwsAeChQfUm0G0KkQR381zUjlujJF4hMTEWbS0uDemm266\nlC1b9qPUHtHG0j/84b9ZtWoW69YVAVkRdTXk5w+houI24DI6niz3U1p6BVu3/plgMLIfgJ+TlHQb\nWVn1nDjxRkxfp1EqE7dMQ8M8lBe2Tj11mIyMkain8+ixZ2ZWcOjQm5gOEt2hlJOTTEZGGlVVS4En\nI+q+xahR6UycOISyMl17J1E5pKOZX6uqPsDnG6Ede2vrj7n55qm8887rSNlRJ8QRsrJStIb3jAyv\ndKdhnI2RU0ZeRVQXnUjoww+Lqa19SruW3njjIc9evBwibOaznkevHghCiF8CJcBJKeVfOGXDUArX\nccAnwNeklHoCeIs+RVOTPkylqUkQCOhJ51pbh6DbmA4e/BWhUCu64K5QqJUXX9wBjCX6kFnMRx/t\nRdkJIjfBOzl69CR1dXp1Ql1dC3V1R1H5jztUWsqF9YhWpqamGWVf0Kunjhw5qR374cMnaG0djtn+\n4dbdX3TRa458rKvq7aSnv8bOnWspLLyTsrIOHqaCgpGUleWij2u4yYkpcI+9re1xfvObcqTcElUu\nJZw9ezNu8sAkgkFvvf7jj2+nqiqaMbaqSm3aR4+eQp8rWu+m/FncRHWqIZv5rHfQ228Iz6JCQP81\noux+YIeU8sdCiJXO3/f38jgs4kAwqDcuBoP1XHrpRezdq6v9FN3G9PHHv0Dp6PU5iysqmnG/cWyk\nqWkWahlF4llnszSpNlpQdNaXEfs0rdhQ3Whr+xRzUF0jp06Fxxo9dmU4HoLe/hHe+GXU7+TkVseb\nzj1PyckqsCovbwR+/2mkTEAIH3l5Iwg/hbuRhJR6NZOUDcYgwubmRFT2uDAhnQTucEWgx8LLQFxV\nVQs8E1PzCMHgbK1MvG6ipjeRJ57YYd8euoFePRCklP8jhBgfU3wzUOh8fg7YiT0Q+iXy8tI5dMit\n8sjLS+fhh+exeLFbj1xT06wN4AoGz+H3p2j98lW56UnRpL5IRkUd6+wE0pHTHT6zPWTqUAFgsYlu\nziLEKKTm/BEi1bgZQ51Rbz5t2hRtwNWyZYs8YgpOoDPM+v0NQAKhkNtOkJgoCIVM46tB9zSflub9\n1O5l6B01apQ2YCwvLxe/v+dsAaY3kSNHTtu3h26gL2wII6WUJ5zPJ1CcxBb9EIqGuYhYlcekSTsi\n6JYjdbu3Mm/eQT791L3hChEkIyNNu1lkZASorj5rGIXJBbIJ5UnkVsnAXsxL29eJTDjRTVj1EwQS\nEaLecCDUI6U++hkatMmH3njjIaZNm4I+OxuOreUVovFz1HPUC0Q/gS8hLS1ES0sSoZBbrx8IhJMP\n6Q7BRHSHZn39PPeFRsDL0Pv449u1nmSTJuWybNkNPeYmanoTqaqaZ/MmdwN9alSWUkohhPa9f+3a\nte2fZ86cycyZM8/TqCzCUP/4vzU+1el0u+PHv0R5uXvDHT++kdtum2ikyVi37t+AO4lWDy1CGYLd\nm1l6eiLnzh1HuZ9OcsolsMGRGWa4qiYglhZiCdDAyJGZnDiRhcrhHB77UXJzWzlzpo5gcB7wOTqe\nzj/A7w8SDGajbAjRBmfQnH4o1YrSw88hUuVRVTWHJ57YgaLQ0GEo7k3wGerrbyElReDOBAcJCXMY\nO3YkFRXuVKOBQDpBjYfpqFG5hv4VvAy9gNEDCQgHnrb/jhemN5FRo3IHVd7knTt3snPnzh5rry8O\nhBNCiFwpZZUQYhTqkcyFyAPBom/Q2T++DirWwK0bz8vb4Zlw54c/3EwweJzoTfUsyujpPmBmzPDx\n299WooLTIp+yv4GyIQj0T8WgC2bz+4+Rk3MJJ058BUWNHcYihg9/iVOn3kbZCqJzMbe2tjhj3E20\nAXu3M343kpNbOXLErPIQwqTi0RvypUxi3LjRlJe71Unjxo1n9Og0KircVNtDh+4yqHdMwXsd8IoB\naG4+ReT9am4+zZ495TzzzAdRB8W+fd9j40bi0vl7xbRIOXjyJsc+LK9bt657DXYnzPmz/KBSSb0b\n8fePgZXO5/uBRzUyPRXJbXGeEU+CFCmlhJkaeoUHJRQa2zPTUBQ5NBS7ZCS1hvr7y0b6h+zsr2nb\ny86+XXrRWsDfGMb+15rENPe2JxYy9WVKxiPEdVqZlJQSeeWVd2vHcOWVd3smyOlp+gdTsqCUlJuM\nFBTxJMHxWmf661XzPtBBf6auEEJsRr07DxdCHAb+DhUe+f+EEHfjuJ325hgszi/ieatQMBuBN2wo\nNrTnRUNxBr1qqJnS0mFs2TKbWFbQKVOWUF3tfqvIzc3gzJk2gw1hKIoCWzf2EkKhaBqPUGgBb7yx\nw1PlkZychoqejnbdTU5eT1OTe3yjRqWh3h7cYxDiW+zefUxryzhz5iE2bOg5vT6YadGbmvRvNx9/\nXB+Xzt9rnT3++HbjvFt4o7e9jEoNVdf3Zr8WfYv4KAX0GwYEPNoz5Tz4FL8/jVBIrxpasKCE6urE\ndvXEggVFAOTl5VBR4Taijxmzg4MHj2k9pHy+JkIhfV4B1a9bfdbc/JqnykPput1ygcBompq84hrc\nGDo0R+v1pcbh63H6BzMtujmHQrw6f++kOvp5t/CGjVS26BfIzfVpqRxyc31G/XJSUpM250FSUiN5\neVl89NE+IDIN6BKys4NGl0QvI/qwYUHH9TPak2ju3Mn8+tfvao2zQjRo3yrU06y3p47evbQJU+yC\nNBhpO2Ie9HXxwnRPTLkSUlI+1b7djB8/pFNupK6ip9sbTLAHgkW/wMaNS5k3bwn19R1eNGlp97Jk\nyUzjBn7//V9l3brfE0u9cP/9X2XatCksXPiP1NZ2vCFkZgYZPXoCe/fq1ROvvvow4JU3YqVW1bR2\n7dOsW3c30V4+dzFv3hW8+aZ+0/dSeezZU85rr7njF4qKxhvbUzJuD65wbgOvuq7Cy8/flCthzpyp\nvP56FVVVHfcqN7eKhx9e1C7fUzEKlv8oftgDwaJfoKSkgH//99gNcqGnflk9+f7a1dYbbzzE2rX3\n8fzzuBK3P/aYXm0QVk94qVA2bfoRmza5y6dNm0Jm5u9ch8+CBYtYsMDbnhJ+eo98ivfS+S9cOIon\nn7y9nX124cLCTvXmUsoe1al3dk9aW6O5olpbN3LmzENs3HiHcz8gORmWLVsUNRc9ZcuI345lYQ8E\ni34D3Wbc2QbuVadrT6lj3OiOOuHxx7dTW/tSVFltLe1vHbqNyOsp2yux/PPPt1Fd3cGn9Pzzq5g2\nrewz6M17Tqcej86/M3tFT9syLDV2fLAHgkXcMOmR4+WRMfPorwT2E5lCMzk50KluXJdjePnyErZv\n/xKK66iDBXXZsjUAjBjxN5w6lUaYVC4np56TJ/8HgHHjbqCy0t9eN3ZsiEOHdjgb5J2owPtwWs6R\nNDePM8qop+w8IuMuPvywkCee2EFSkv66jh8/HnUYQMeTuUmmMxtCPPdK3ZOniY1r6KwvU26NzhCv\nnAk9vW4HFLrjs9pbP9g4hH4Pk+/4mjVPddmn3Ku9QOAKjU/+YpmSMtXor19QsMiY1lKl5LzbJePz\n/YUh5aVKhTl27PXaurFjr5eBwNUefellUlKuk7o0mSkp1xn96FNS9Gkyc3IWevre6+dCzVM898o0\nt6WlK4zxAaWlK7SxEJ3FBphiKOKNKejpddvfQDfjEPp889cOyh4I/R6mXLemgKt4c+d6BYT5/TdJ\nXfCZ33+TU9e19nqnrusyai5MQXU6mVlGmeLi1c490c9TPPfKK6hOSrXpFhevloWFa2Rx8Wq5deuu\nTmXi7aur6Ol129/Q3QPBqows4oJJj2xKJxlv7lwz22kaUur99aX0om82t9d1mXjrvPI3DzHaA+CH\n6Og4hBCeNgR1Tz77PHV2r0z3OByPodPfh0K/9JSJt6+uoqfX7UCDPRAs4oLJ11v5yrsRb+5cM9tp\nPULol6+ZC8i7va7LxFvnJdPgMRd6dlef711P33t1T9xxDaZ56uxeme6x328KFOxcxqS/j6cvL5hy\nO8e7bgca9CmxLCw6wfLlRUyYsCqqbMKEB1m6tFBbvmzZDXG1l5ISznMcicWkp59h7tzJ2rq5cycb\n6+AwcFdM+V34fEfJyanX1uXkKGOwrj1VfkIrp/pyy3TW3vLlReTm3o1iQl0LrCY39y4KCkai8kE/\n7JQ/DPwrc+dOZsaM0fj934xqTcUajKKoaLwjt96RWw/8G5de6jfKeGHp0kKt3NKl6q1g27YyiotX\nM3PmWoqLV7NtW5mnTNjjavv29ezatZbt29fz7W//tl0uIeFrUXORkDC3va+uQs3Tpqi58Ps3UVQ0\nPq51O9Bg3xAs4oKXr/e0aWVd9gE3t/f3ZGRcw7lzswh76qSnn+Hs2f91JPXBYqa6iRPvY926V4l+\nyj7N6tXfZNq0Kcye/VOicw+f4dlnH6GkpMDxGOoYR9hjKCmphGCwLqbNOpQnkzu15kUXJTF8eBaV\nlRWoHNNhz6RkLrtsujN2d66EFSvmkJe3TXu9xcWrjbEGJ0/WocsjXVk5J674BC/WWpM77YYNxaxa\nhVamuHi1Ma5h2bIbyMjYT01Nx1xkZCx18kl0HeeT1+mCRHcMEL31gzUqW/QSvIyUJoNjZ4ZFmGUw\n9pZoy7OyviELC9c4ht5VjqFXGYULC9d4jmPr1l2yqGhV+/fCXjCqPbdMYeEamZn5DW2dzzfXKBMv\n4plDr7HHe0/i6WsgAGtUtrD47PAyUsZLspaUlGYgkEsySAQ5d+4IunwI586dID19jFbq6NE6QApg\negAAGyJJREFUYzCblw3BRDhnKu+O3jyeOfQae3Nzzya7sTxH3rA2BItBBS8jZbybRVqa0JYnJIRT\nV0ZCEbqZ6aqTjOM4fvy4QbWyw2iDWbbsBsaPT9OOY+zYlB7Xm8czh15j7+kN3KsvC2tDsBhkWLq0\n0JjGc9q0KXGRopnanDv3ciOhm4mSY+jQHJYvv047juTkTG0OhTAtBJj5exTRX0dUdGZmC48//h32\n7CnXciPFi3iI5cKEfqZxeKXk7Cosz5E37IFg0W8QH43CFwgGRxE2zAYCx/n003cASE29iqamEe11\nKSknaWx8mxdfvJWKig5j7qWXJrdTIdx0033AH9vrPvzwMCUlfw+AEFOAi+gwAh9GynLWrr2Pdeum\nEGkgDoUOs2lTOePG3QAcixhfqJ2MTuf+mJzcSklJAStX/iyqveTkZAKBUegoMurqUgFYufJnVFQ0\nt9cdOVLePn/19bUo6g8BNFJf38CePeU89tirNDZ2qNEee+xVpk2bQklJAVOm3BrVXn5+MuXl/wGY\n6SRKSgp44YVtHDrUYfi++urJnvdx27YyNmzYTW1tRwrSDRt2txuOz537gEiKj3PnmjzH0Bn27Cnn\nrbfeb5fbs2dUp9QVg4XWQig7RP+CEEL2x3FZ9B503ikTJijvFNM/njoMphHtQXMPgcAefD4fTU1T\nXXVC7EbKScAkOjbiA5SWTmDz5m3A1UBkENVdwJvO5xmu9mA3Pl8Cra3XaOtgOrAxonwx+fnqMb+i\nYrhLJj//NNnZmZSVCc049jjtRcukppZz8cW5VFRkuWTy82s4cqSWs2cvIZqe+25gHzAVeCaifAkj\nRx5h+PCAcXxf/eoNPPLIPhc996pVlwOwfv3eKMZTn+8eVq++kmnTpmg31QkTbuejjz5HrD3lkks+\nBKS2LjPzj5w7N5S2tomE72NCwvs89NBMz0Nh7dqntWOfOzeDN9/0a9cf0OW12VcQQiCl1OswPwu6\nY5HurR+sl9GgQzzeJPHTSbhzDyckXCs7z9Hc1b6KPWRMnkmznP662p5JpsijzkyF4XW9Xp5aQ4fe\noq1LSSmRubnfjSrLzf2u3Lp1l0xI0FNoJCTcJP3+mw3juFZ7H9PSbvRcZ6axe9F49LSnU28C62Vk\nMRDg5Z1iVg3ES0PhNua2tc3GnMYzDbP/hVdfeo8mFZOQ6NGeyWDqdb1tXZTxqktFqZb0MnV1+r7q\n6lppbQ2gU4U1NQVoapqDCjBT5VVVc/i7v/sVbW36eW9rCyCEyZsoBd19bGq6xfB9BZOXmZRDtOWf\nhWZ9IMEeCBb9AiZvksOH3+WRR3IIhTponx955Jso+uWepKEIoALH3JuZygds2qTD7bnpoM05n5s9\n+qrDfPg0eozBJPMpGHmTTHPR6CkTDOoPi2CwgYSEIDp3WmX3eJnodKff4+DBIwjxKVLTnRANpKYm\nU1en601/iAihXH1NDxHx0HhI3eDo3NPpQrQ7WBuCRb+A3obwICdPHqCu7iXX97Oz51FXd0BjQ1hM\nIPCWk+N4Km49/NvAEmI379zcnVRVfQx8wdUe/Mn5XqwNYTHwhvPZbZeAGpTOP5qMDt4kEGggGEwD\nhkWM4wyBQL0z9iuAyIjaJShjdzYqijksU0tKyjmEGEJjYxLqqT9cV8+QIUEaGuqBKZqx7wH+ktjU\nn1DO2LEZVFaOd8mMHXuII0d8tLVd5bquhIQ/kpSUSFPTK7jxZeBVV2lCwo0kJYVoappCbG7slJT9\nrFhxi8YmcTdDh56mtvY/Xe1NmHAHCxdew/r1f6K19ZkImSWsXn0F779/iM2bzxBrGykoCHH06GjX\n+tuwQXlH6dbmhg1m76R4bGI9ge7aEOwbgkW/gMkdcMGCY9rvq0CydxzDcoc3TtjLSOU5dlNU5OSk\nc+rUXiAy0cw9ZGe3UFWVjpviYSNwPZCF2uQjqSbqgdGop/BLiaaaWIU6LNxkdPAGwWAbMIHoTf+b\nBIN7SUzMoaVlfozcApQReCzwLxEy99LaepDcXEFl5ShiDdjZ2YdoaEhCqZQi25OogyUYU94CJDNp\n0jVUVhbF1H2Dyy7bQWXl29rramt7hwkTJlBejgZ69VRbWzIjRmRz6NCcmPZuZcSIeiNNBsAPfnAP\nUnbcLyEWs3DhNfz0p7+jtTX6IaK19Rl++tPbmDHjMnQ0HikpnVNXdMVV1SvNaH9+S7AHgkW/gY42\n2e9/SvvdMNtl2MU0Frt3HwN+4yo/dWoW8HUiddnwdSoqHkVtkDqkO79X41bx/CNKfVEc02Yx8Afc\n6pMHUZvzMGB+jMx8oBIp9XTVkEn0YQDwLwSDN1JZKYk+DAA2Ulk5i4SEZNrafoEbJSjSO3f5sWP1\n2jEcPfoSgYAgGHRfVyAgSEwMatoDlelOhyD19ee0fdXXK3rutWvvc3kOTZ16H1J+nchDRMpv8Mor\nv6K+Xv+A3NDgbavqyRSf8Ua99zXsgWDRr+EVSOYFc34FiV7HLVFPyzq0oDY0nVwt6t9IV5eE/g3h\nzyhbgU6mjaSkECGtSUVv+DSXA6SRkABtWjuwiVojiePHj2trjh+vYujQNKqr3dc1dOhHqDl052yA\nc9pyIZrJzc2jutpdl5trOqDh448b0B0iH3/8C6TUR6O3tTWdN+qKC5Uiw1JXWPRrrF17H6tWXU52\n9jwyMhaRnT2PVauu6DQAyTungNs7RaEeHcWDyr2QqJVT5aY2BWrDiqSrLnD6MctMnJgNfC+m7ruY\nnrJ9vkanzTIiaaLV3/WMHWvydjIZlRvIzc1ENxe5uRkOlfWmqOvy+19g6dICh4cpfFisdX5/mYSE\nkUBVTHkVQ4YkkZeXo5UZM2aEYXxmHiYIkpQktGNPShLnjbriQqXIsG8IFv0eOpVBZzBRKBw/PoRG\njbNOenoGSUmSU6cOEv3ke5CcnCQaGrK0cikpw2hsNKlDElABatGGWZ/vBG1tYwyeNYk8/PA3WLz4\nuRjKi7NkZydTURHb3t188YsjeO+9Dzh16t+INZbm5NRzzTWX89FHdxNrPPb5ztLa6m4vPV2Ql5dD\nRUWsDeHLjBmzw5P+urh4Nbon94sv/gUff1wX9aaSkFDH3/5tiUMZ4jbaetFdjB+fRk2N+61C8URl\nsXev+w0mP//seaOuuFApMuyBYDEgYeLH2b07ge3b3d+fMePzSCnZvr0FeAelhmkAJjN1aoC33nqf\nxka3u2JKiiQYlAYVj0R5BkUaok9y/fUlvPXW+1peomHDUikpKeDaa7exZcs7hOkfrr12MtXVo6mo\nGE1sfoWUlOO0tTWiM5a2tc1j+/ZPgG8RvUEuorX1UXT5GhITG5wD1bxJT5s2hauuOtbuUhmmmVi+\nvIg33/w6tbXj2ucpM/MTNmy417kfZRGHyLXtB31XOZX0h6biiQJYvPhlF//RD35we8edcU7j3vRm\n7KrdoV+gO1FtvfWDjVS26Ca2bt0lJ0yIjmSdMOFBOXbs9RIWx0Sd3i3z8+cYZB6QW7fukgUFizRy\ni2VBwSKZk3ObJmr2Aenz6fpSMqWlK7TjKC1dIdeseUr6/UtiImmXyJychdqI2SlTvi1TU+dp61JT\n58mkJH0d3Kodd37+ve1zWFy8WhYWrmnPxeA1t1u37pJr1jwlfb7o6/L5Fss1a57q8r0K9+clpxtf\nvGMfCKCbkcp9vvlrB2UPBItuwkQ3oCgZdklYLVVimtXO37OklOaNxIuuQdXp2tTTP/j9Nznjc8sU\nF6829mWiu8jOvt1IvaDKTTQZ+rnojJLBi8rBa57iaa+ncSHRUMSD7h4IVmVkMSBh9jJKQ+/S+SRg\nfs33SqwzZkwS1dU691I9pBzijM89jubm14x9qaAjvTdOS0sj586561JTBQ0NdRpbwWKEOMMll3RN\ndw/eLpVe82SCcnF14+hRbYhyt3ChuoOeL9gDwWJAwuxl5E13YaIb8Eqsk5c3hooKd35k5UnkprQQ\nosHTLVH1tRLYT6Qtw+dLIBR6M6afEGPGTOfgwWPoXFwbG99FiEyUraCDQhoK8flOkJd3jA8/vLG9\nvby8kZ1SPnc+dv08meDl4uoFL2qI+fNXsmXLfmJzT6ux62nHL0SqiZ6GPRAsBiSys1vQefjk5NRz\n6pS7vKBgpDFBPKh4iHXrFgH/N0JuEUuXFvDiizsAN1W0otp2R0VnZdVy4MD/asf33nuHyM1No7r6\nDPBKlFwo9DE6Cu6ysv+itdWPCjKLbq+19SSJiVnA0ZhxrCIUqqGsLBf4r/bSsrJ7mD9/JQsWlBjn\nYsaM0bz2mjs2ZPr0K2hqOkJZmfu68vNNrq+QkHBWOxcJCbWAfuMHN51EeHwvvLDNoafomL/Nm+8B\nVjJjxjhee22Ti/562LAMY3uD6VCwXEYWAxLDh99OdfW3gB10PDHfQHb20+Tnp1BW1pFkpqBgJLt2\nPUtx8Wq2b1/vaqu4+CGGDQuyefOHwGUR7b3n5FHYB/y3ZhSzDOU3ojyQHnCND36I3+8nFNLxAZna\nm4WKfl6lae8RlPvrZx+f3z+b6667wjgXUkq2by9y9VVcvMPxnipEPYV3eC5lZ5dx+vS/a8YAiYmz\nCYW+72rP73+Ml1/+vpYTKD39BHv3xkZmq/H9/vfvaOfP67qys2+nuvpXrvLi4od49dWHtePuj7Bc\nRhYWGihdtltHHwr9kl27ntXKeOmXt2zZT/QTu8KWLbPpOg13GupA0NkynkBKkz67M/prXXsbMDOX\n6iOcO2wcbnTo2r3sH/c5Px1Qqi49AoEMQiF3e4HAvxg5gbKySo3jM1FZe12XyfYx2GwL9kCwGJCI\nR5ftpRv32mTgrKFFL3uFaZOuRwjTv6VXe6aNK4iZulsfUNeZjcP09h6vDSElpcUQ9BcybuBS6umv\nk5NbjVTWXtdlGnd/p5roaVjqCosBCUWv8M2oss44kLzoBrw2mYyMRpQOPBKLEeKYtrygYCT5+cna\nuvz8ZObOnayt8/mOasvT088wcmQCeqqJBAoKRmrlcnLqteVz505m+fIisrKWRtVkZX2LZctu8Jyn\neObdS8a0gV9ySZpxDKb5C1+XTm7p0sILkmqip2FtCBYDFipJSpmLXqGzZOpPPLEjgm7gBkpKCpg/\nf6VjQ4jMefAepaWfY8GCEr7yldVOfoMwDXc9L7203pX4PjJR/bhxN1BZ6W+vGzs2xKFDO5y+dqPY\nV8NeRmcpLZ3h5H2+iA4vo8NIWc62bWXMnr0eKbMIexIJcYZXXlF0y6mpV9HUNKJdLiXlJI2NbxvH\noOjDn0UZy8N9nWbNmjtZu/Y+Cgvv1NphAGNfJs8fr7nYtq2MhQv/kdraxPbrysxs4fnnv8MLL2wz\ntjdlyq3GeTfdY69rulBgcypbDBhs3bpLFhWtkoWFa2RR0apeiR7tTlRsWtq9UXJpafdGRcDGBrR5\n9bV16y6Zm3uXhFVOUNgqmZt7l5Nj2JQ7eYrURT6npEx1IqnvjKm7UxYULJL5+XO0cunpV0u4I6b8\nDllaukL6fH+plfH5phmirBfL0tIVMifnryXcFnVdcJsMBK4wynhFgavI5+h59/nulQUFi7TR3GvW\nPGWM9PaKlva6pgsJ2Ehli4GA80UpEG+kajxyXjJXXnm31CWJV+VfMRwI5sT35mjkWR5ypoPnes++\nvKOiC7XXpcpNMqa+ZsUVtR1PtLTXNV1I6O6BYI3KFv0C5yvDVLyRqp3J6dRQXjKffFKPO6HNI3zy\nSSnmfMtpHuUmLUHYo8lUp8NQzEbqNExeUMrALtHTes/2kDEZbocYvX9MY/eKiPaq83YaGDywB4JF\nv8D5ohSIN3GJl5wpoE3Kw1qZurpTSGlKThNAiBqk3ERsek2VT8CUwN60uatoZj1M1BBenklmLyhl\neNd7/0Cih4w5qtzvN/m96D2ulDeT/gD08nTychoYTLBeRhb9Aucrw1S8iUu85ExvNydPnkbn+SPl\np1x8sf7J8+KL00hOziL6MMD5OwX903ey0ZNIlTdqx2Eur8fnq9G25/PVenrxqAxyOujbmzt3stFL\nKyOj0eiBVFAw0uiZFI+nk/c1DR7YNwSLfgFTQpvOiNa6ingTl3jJPfbYa1oZn28EOn6h9PTX+P73\nr2Px4u9pOfsXLPglTVq3eFNKyQx27XrW8ZLp4CUKe8kMGVJKY6MulWcFKp1nZPmfSUiAyy6bTnl5\nEkrV08GndNll1ziePCvZsmU2sR4++/YtoaLiDuC5iPHdQX7+RC6/PFMrs21bmeOl1TH2QKCeF15Y\n78y7PhmP8iJzlyt41bnhdU2DCfZAsOgXOJ8ZpuJNXGKS8w52ckfgJifvoKSkgI0bY6/3VodI7ynD\nCMwpLwGji2RKShuNjboo5kdRB1YkzcS1ZGWVMXp0GuXlboqHvLyHAFiwoITq6sR2m8mCBUVOfQ4V\nFS3EHiRjxgSYOHEUGRmfOJu0ZOLEcYCa1wcemMeTT+5yEuQIli69qX2uTcl4FGTMb4V4suxt2vQj\nNm3qksjAQ3cs0r31g/UysriAYEqss2bNU8aEO17Qu03e67h06pP7xNOe3nXzXg/XTVXn5RFmct/M\nz59jdAXtzD1XV1dauqLLrqWDAXTTy8gGpllY9ABMwU6m8s6gC6rbvfuYk+Izmha7uDjQKQGbKUjP\nVK6I/vQEdlJKI/GdIrdzk8QpQr//cpVmZ8/jqqs+1wmRnrvO75+tJbDLzp5nJNEbDLhgye2EEJ8A\n51ArrUVKeXVfjcXCorswqZPiVU/pVB4zZ64F3Jtjc/PauNrzKvdK4GOCV4IcLzfReDzMTO6gXq6l\nFp2jL72MJDBTSnmlPQzM2LlzZ18Pod9gsM9FtK1iZ/un3iBg8/L6iidBjpebaDx9RbuD7oxqzyJ+\n9LXbafycG4MEg30TjMRgn4to19edQO8RsHm52cZDbuflJhpPX3PnTo5ob2dUexbxoy+9jCTwOyFE\nK/CMlPLnnQlYWAxmRHpiHTjwP0ya9FCvemKF+zJ5fenq4ncT7XpfEyeq9urrD5CWdqBT11KLz4Du\nWKS78wOMcn7nAO8AfxNR10M29wsfa9as6esh9BvYueiAnYsO2LnoAAPBy0gIsQaol1L+xPm77wdl\nYWFhcQFCXmheRkKIVMAnpawTQgxBMXStC9d354IsLCwsLOJDX9kQRgL/IYQIj+EFKeX2PhqLhYWF\nhQX9NGOahYWFhcX5R5+5nQohMoUQLwoh3hNC7BdCXCOEGCaE2CGEeF8IsV0IkRnx/QeEEH8WQhwQ\nQhT11bh7A5q5mC6EWCuEOCKE2Ov8zIr4/oCcCyHEpRHXu1cIcVYIsXwwrgvDXHx7kK6LB4QQFUKI\nd4UQm4QQSYNxTYBxLnpuTXTHIt2dHxQd4l3OZz+KyvHHwAqnbCXwqPN5MsoTKREYD3wAJPTV2M/T\nXKwBvqf57oCei4jrTACOoxIID8p1YZiLQbUunGv5CEhy/v4VcMdgXBMec9Fja6JP3hCEEBkoN9Nf\nAkgpQ1LKs8DNdPDmPgfMcT7fAmyWUrZIKT9BXdiAiG72mAvQB+4N2LmIwfXAB1JlmRl06yIGkXMh\nGFzr4hzQAqQKlZknFTjG4FwTurk46tT1yJroK5XRxcApIcSzQog/CiF+7ngbjZRSnnC+cwJlfAYY\nDRyJkD8C5J2/4fYqdHOR6tQtE0L8SQjxi4hX4oE8F5GYB2x2Pg/GdRGJyLmQDKJ1IaU8A/wEqEQd\nBLVSyh0MwjVhmIvfOdU9sib66kDwA1OBp6WUU1G0jfdHfkGqdx4vi/dAsYab5uJp1GHxBZS64Cce\nbQyUuQBACBFAEepvia0bROsC0M7FPzGI1oUQYgLwHZTKYzSQJoRYGPmdwbImDHOxgB5cE311IBwB\njkgp9zh/v4jaFKuEELkAQohRwEmn/ihKfxrGGDpelS50aOdCSnlKOkBlYw+/6g3kuQhjFvC2lPKU\n8/eJQbguwoiaCynlyUG2Lv4S+IOUslpKGQJeAmYwOPcK3Vz8VU+uiT45EKSUVcBhIcREp+h6VD6/\nV1BGEpzfLzuffwPME0IEhBAXA58H3jyPQ+41mOYivNgd3Aq863wesHMRgVI6VCSgrnlQrYsIRM2F\ns/mFMRjWxQFguhAiRQghUP8f+xmEewWGuejRvaIPLeZXAHuAP6FOugxgGPA74H1gO5AZ8f0HUUaR\nA0BxX437PM1FJvCvwD6n7GWUznQwzMUQ4DQwNKJssK4L3VwMunUBrEA9ML6LMiAnDuI1ETsXgZ5c\nEzYwzcLCwsIC6Pt8CBYWFhYW/QT2QLCwsLCwAOyBYGFhYWHhwB4IFhYWFhaAPRAsLCwsLBzYA8HC\nwsLCArAHgsUAghCiNYYyepwQYqYQ4pWI78wSQuxxKIT/KIT4h4i6e4WiIH9PCPG/QogvGvqZLoR4\nw+ljv1ApYC0sLnj0VcY0C4veQKOU8srIAidCM/x5CvAEcKOU8n0hRAJwr1N3k/P5i1LKM0KIK4GX\nhRBXyw4StTCeA74qpXzXiRid1N2BCyESpJRt3W3HwqI7sG8IFoMJK4D1Usr3AaSUbVLKf3bqVgL/\nRypGSaSUe1Eb/7c07eQAVc73pJTyPQAhRJrDWrvPYZ681SkvdcreFUI8Gm5ECFEvhPgHIcQ7wAwh\nxELnzWSvEOKfnQPLwuK8wS44i4GElAh10a819fnA2wbZyZq6txyZWPwMOCiEeMlRMyU55Q8BNVLK\ny6WUVwCvCyFGA48C16LYKKcJIW5xvp8KvCGl/AJwBvgaiqzsSqANWPBZLtrCoqdgVUYWAwlNsSqj\nbkKXdAQp5cNCiBeAImA+ioDuWuBLwO0R36sVQhQCr0spqwEcuQLgP4FWIHxwfQm4CnhLaaFIwXkL\nsbA4X7AHgsVgQgWKQvhdTd1+p+71iLKrgHJdQ1LKj4B/FkL8HJXgaJhTFXuIyJgyQQcnfbOMJhN7\nTkr54Ge5EAuL3oBVGVkMJjwGPCiE+DwoQ64QYolT92PgR+GNXQjxBRSt8tOxjQghSiL+nAiEgFpg\nBxE2Bydz1ZtAoRAiWwjhQ2U/26UZ2++BrwohchzZYUKIsd25WAuLrsK+IVgMJOioe9uzaTleQd8B\nNjtpSiWKVx8p5StCiDzgD0IIicpfu0DjYQSwUAjxU6ARdRgskFK2CSHWA08JId5FqYPWSilfFkLc\nj3rzEMBWKWXYDbZ9vFLK94QQq4HtjjG5BbgPlS7RwuK8wNJfW1hYWFgAVmVkYWFhYeHAHggWFhYW\nFoA9ECwsLCwsHNgDwcLCwsICsAeChYWFhYUDeyBYWFhYWAD2QLCwsLCwcGAPBAsLCwsLAP4/nbhy\neSAeDmkAAAAASUVORK5CYII=\n", "text/plain": [ "<matplotlib.figure.Figure at 0x7fd14f9e3b70>" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "%pylab inline\n", "import pandas as pan\n", "import matplotlib.pyplot as pl\n", "df = pan.read_csv('../datasets/loanf.csv')\n", "intrate = df['Interest.Rate']\n", "fico = df['FICO.Score']\n", "p = pl.plot(fico,intrate)\n", "pl.show()\n", "p = plot(fico,intrate,'o')\n", "ax = gca()\n", "xt = ax.set_xlabel('FICO Score')\n", "yt = ax.set_ylabel('Interest Rate %')" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "collapsed": true }, "outputs": [], "source": [] } ], "metadata": { "kernelspec": { "display_name": "Python 3", "language": "python", "name": "python3" }, "language_info": { "codemirror_mode": { "name": "ipython", "version": 3 }, "file_extension": ".py", "mimetype": "text/x-python", "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", "version": "3.4.0" } }, "nbformat": 4, "nbformat_minor": 0 }
mit
pulinagrawal/nupic
src/nupic/frameworks/viz/examples/Demo.ipynb
1
7961
{ "cells": [ { "cell_type": "markdown", "metadata": { "deletable": true, "editable": true, "slideshow": { "slide_type": "slide" } }, "source": [ "## Visualizing Networks\n", "\n", "The following demonstrates basic use of `nupic.frameworks.viz.NetworkVisualizer` to visualize a network.\n", "\n", "Before you begin, you will need to install the otherwise optional dependencies. From the root of nupic repository:\n", "\n", "```\n", "pip install --user .[viz]\n", "```\n", "\n", "Setup a simple network so we have something to work with:" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "collapsed": true, "deletable": true, "editable": true }, "outputs": [], "source": [ "from nupic.engine import Network, Dimensions\n", "\n", "# Create Network instance\n", "network = Network()\n", "\n", "# Add three TestNode regions to network\n", "network.addRegion(\"region1\", \"TestNode\", \"\")\n", "network.addRegion(\"region2\", \"TestNode\", \"\")\n", "network.addRegion(\"region3\", \"TestNode\", \"\")\n", "\n", "# Set dimensions on first region\n", "region1 = network.getRegions().getByName(\"region1\")\n", "region1.setDimensions(Dimensions([1, 1]))\n", "\n", "# Link regions\n", "network.link(\"region1\", \"region2\", \"UniformLink\", \"\")\n", "network.link(\"region2\", \"region1\", \"UniformLink\", \"\")\n", "network.link(\"region1\", \"region3\", \"UniformLink\", \"\")\n", "network.link(\"region2\", \"region3\", \"UniformLink\", \"\")\n", "\n", "# Initialize network\n", "network.initialize()" ] }, { "cell_type": "markdown", "metadata": { "deletable": true, "editable": true }, "source": [ "Render with `nupic.frameworks.viz.NetworkVisualizer`, which takes as input any `nupic.engine.Network` instance:" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "collapsed": false, "deletable": true, "editable": true }, "outputs": [], "source": [ "from nupic.frameworks.viz import NetworkVisualizer\n", "\n", "# Initialize Network Visualizer\n", "viz = NetworkVisualizer(network)\n", "\n", "# Render to dot (stdout)\n", "viz.render()" ] }, { "cell_type": "markdown", "metadata": { "deletable": true, "editable": true }, "source": [ "That's interesting, but not necessarily useful if you don't understand [dot](http://www.graphviz.org/doc/info/lang.html). Let's capture that output and do something else:" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "collapsed": false, "deletable": true, "editable": true }, "outputs": [], "source": [ "from nupic.frameworks.viz import DotRenderer\n", "from io import StringIO\n", "\n", "outp = StringIO()\n", "viz.render(renderer=lambda: DotRenderer(outp))" ] }, { "cell_type": "markdown", "metadata": { "deletable": true, "editable": true }, "source": [ "`outp` now contains the rendered output, render to an image with `graphviz`:" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "collapsed": false, "deletable": true, "editable": true }, "outputs": [], "source": [ "# Render dot to image\n", "from graphviz import Source\n", "from IPython.display import Image\n", "\n", "Image(Source(outp.getvalue()).pipe(\"png\"))" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "In the example above, each three-columned rectangle is a discrete region, the user-defined name for which is in the middle column. The left-hand and right-hand columns are respective inputs and outputs, the names for which, e.g. \"bottumUpIn\" and \"bottomUpOut\", are specific to the region type. The arrows indicate links between outputs from one region to the input of another.\n", "\n", "I know what you're thinking. _That's a cool trick, but nobody cares about your contrived example. I want to see something real!_\n", "\n", "Continuing below, I'll instantiate a CLA model and visualize it. In this case, I'll use one of the \"hotgym\" examples." ] }, { "cell_type": "code", "execution_count": null, "metadata": { "collapsed": false }, "outputs": [], "source": [ "from nupic.frameworks.opf.modelfactory import ModelFactory\n", "\n", "# Note: parameters copied from examples/opf/clients/hotgym/simple/model_params.py\n", "model = ModelFactory.create({'aggregationInfo': {'hours': 1, 'microseconds': 0, 'seconds': 0, 'fields': [('consumption', 'sum')], 'weeks': 0, 'months': 0, 'minutes': 0, 'days': 0, 'milliseconds': 0, 'years': 0}, 'model': 'CLA', 'version': 1, 'predictAheadTime': None, 'modelParams': {'sensorParams': {'verbosity': 0, 'encoders': {'timestamp_timeOfDay': {'type': 'DateEncoder', 'timeOfDay': (21, 1), 'fieldname': u'timestamp', 'name': u'timestamp_timeOfDay'}, u'consumption': {'resolution': 0.88, 'seed': 1, 'fieldname': u'consumption', 'name': u'consumption', 'type': 'RandomDistributedScalarEncoder'}, 'timestamp_weekend': {'type': 'DateEncoder', 'fieldname': u'timestamp', 'name': u'timestamp_weekend', 'weekend': 21}}, 'sensorAutoReset': None}, 'spParams': {'columnCount': 2048, 'spVerbosity': 0, 'spatialImp': 'cpp', 'synPermConnected': 0.1, 'seed': 1956, 'numActiveColumnsPerInhArea': 40, 'globalInhibition': 1, 'inputWidth': 0, 'synPermInactiveDec': 0.005, 'synPermActiveInc': 0.04, 'potentialPct': 0.85, 'boostStrength': 3.0}, 'spEnable': True, 'clParams': {'implementation': 'cpp', 'alpha': 0.1, 'verbosity': 0, 'steps': '1,5', 'regionName': 'SDRClassifierRegion'}, 'inferenceType': 'TemporalMultiStep', 'tmEnable': True, 'tmParams': {'columnCount': 2048, 'activationThreshold': 16, 'pamLength': 1, 'cellsPerColumn': 32, 'permanenceInc': 0.1, 'minThreshold': 12, 'verbosity': 0, 'maxSynapsesPerSegment': 32, 'outputType': 'normal', 'initialPerm': 0.21, 'globalDecay': 0.0, 'maxAge': 0, 'permanenceDec': 0.1, 'seed': 1960, 'newSynapseCount': 20, 'maxSegmentsPerCell': 128, 'temporalImp': 'cpp', 'inputWidth': 2048}, 'trainSPNetOnlyIfRequested': False}})" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "Same deal as before, create a `NetworkVisualizer` instance, render to a buffer, then to an image, and finally display it inline." ] }, { "cell_type": "code", "execution_count": null, "metadata": { "collapsed": false }, "outputs": [], "source": [ "# New network, new NetworkVisualizer instance\n", "viz = NetworkVisualizer(model._netInfo.net)\n", "\n", "# Render to Dot output to buffer\n", "outp = StringIO()\n", "viz.render(renderer=lambda: DotRenderer(outp))\n", "\n", "# Render Dot to image, display inline\n", "Image(Source(outp.getvalue()).pipe(\"png\"))" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "In these examples, I'm using `graphviz` to render an image from the `dot` document in Python, but you may want to do something else. `dot` is a generic and flexible graph description language and there are many tools for working with `dot` files." ] }, { "cell_type": "code", "execution_count": null, "metadata": { "collapsed": true }, "outputs": [], "source": [] } ], "metadata": { "kernelspec": { "display_name": "Python 2", "language": "python", "name": "python2" }, "language_info": { "codemirror_mode": { "name": "ipython", "version": 2 }, "file_extension": ".py", "mimetype": "text/x-python", "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython2", "version": "2.7.10" } }, "nbformat": 4, "nbformat_minor": 2 }
agpl-3.0
RittmanResearch/maybrain
docs/01 - Simple Usage.ipynb
1
25285
{ "cells": [ { "cell_type": "markdown", "metadata": {}, "source": [ "# Simple Usage\n", "\n", "## Basic Principles\n", "The purpose of Maybrain is to allow easy visualisation of brain connectome and related data and perform various analyses.\n", "\n", "The code is built around the class **Brain**. It contains all the information about the brain and numerous functions to change, measure and highlight those. At its heart is a *Networkx* object, Brain.G, via which all *Networkx* functions are available.\n", "\n", "Besides this main class, you have four packages with other modules, **algorithms**, **plotting**, **utils** and **resources**, which will be explained throughout these notebooks.\n", "\n", "## Data Input\n", "Several types of data can be input. The basic connectome is made up of two files: a coordinate file and an adjacency matrix. In fact only the second of these is strictly required.\n", "\n", "The coordinate file defines the position of each node. It is a text file where each line has four entries: the node index, x, y and z coordinates. e.g.:\n", "\n", "```\n", "0 0.0 3.1 4.4\n", "1 5.3 7.6 8.4\n", "2 3.2 4.4 3.1\n", "```\n", "\n", "The adjacency matrix defines the strength of connection between each pair of nodes. For n nodes it is an n × n text matrix. Nodes in maybrain are labelled 0,1,... and the order of the rows and columns in the adjacency matrix is assumed to correspond to this. Entering an adjacency matrix with the wrong dimensions will lead to certain doom." ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Importing Maybrain\n", "\n", "The main class of maybrain is contained in the `brain` module and can easily be achieved with a normal import." ] }, { "cell_type": "code", "execution_count": 1, "metadata": {}, "outputs": [], "source": [ "from maybrain import brain as mbt" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## The `constants` module\n", "\n", "Before going further in explaining Maybrain's functionalities, it is important to briefly refer the `constants` module. This module has some constants which can be used elsewhere, rather than writing the values by hand everywhere being prone to typos. \n", "\n", "In further notebooks you will see this module being used in practice, but for now, also just a normal import is required:" ] }, { "cell_type": "code", "execution_count": 2, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "weight\n", "anatlabel\n" ] } ], "source": [ "from maybrain import constants as ct\n", "# Printing some of the constants\n", "print(ct.WEIGHT)\n", "print(ct.ANAT_LABEL)" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## The `resources` package\n", "\n", "Maybrain also have another package that can be useful for different things. In its essence, it is just a package with access to files like matrices, properties, etc. When importing this package, you will have access to different variables in the path for the file in your system.\n", "\n", "Farther in the documentation you will see this package being used in practice, but for now, also just a normal import is required:" ] }, { "cell_type": "code", "execution_count": 3, "metadata": {}, "outputs": [], "source": [ "from maybrain import resources as rr" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Importing an Adjacency Matrix\n", "Firstly, create a `Brain` object:" ] }, { "cell_type": "code", "execution_count": 4, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "Nodes: []\n", "Edges: []\n", "Adjacency matrix: None\n" ] } ], "source": [ "a = mbt.Brain()\n", "print(\"Nodes: \", a.G.nodes())\n", "print(\"Edges: \", a.G.edges())\n", "print(\"Adjacency matrix: \", a.adjMat)" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "This creates a brain object, where a graph (from the package NetworkX) is stored as `a.G`, initially empty. \n", "\n", "Then import the adjacency matrix. The *import_adj_file()* function imports the adjacency matrix to form the nodes of your graph, but does not create any edges (connections), as you can check from the following outputs.\n", "\n", "Note the use of the `resources` package. In maybrain you can access a dummy adjacency matrix (500x500) for various reasons; in this case, just for testing purposes." ] }, { "cell_type": "code", "execution_count": 5, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "Number of nodes:\n", " 500\n", "First 5 nodes (notice labelling starting with 0):\n", " [0, 1, 2, 3, 4]\n", "Edges:\n", " []\n", "Size of Adjacency matrix:\n", " (500, 500)\n" ] } ], "source": [ "a.import_adj_file(rr.DUMMY_ADJ_FILE_500)\n", "\n", "print(\"Number of nodes:\\n\", a.G.number_of_nodes())\n", "print(\"First 5 nodes (notice labelling starting with 0):\\n\", list(a.G.nodes())[0:5])\n", "print(\"Edges:\\n\", a.G.edges())\n", "print(\"Size of Adjacency matrix:\\n\", a.adjMat.shape)" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "If you wish to create a fully connected graph with all the available values in the adjacency matrix, it is necessary to threshold it, which is explained in the next section." ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Thresholding\n", "There are a few ways to apply a threshold, either using an absolute threshold across the whole graph to preserve a specified number of edges or percentage of total possible edges; or to apply a local thresholding that begins with the minimum spanning tree and adds successive n-nearest neighbour graphs. The advantage of local thresholding is that the graph will always be fully connected, which is necessary to collect some graph measures.\n", "\n", "For an absolute threshold you have several possibilities. Note that our adjacency matrix (`a.adjMat`) always stays the same so we can apply all the thresholds we want to create our graph (`a.G`) accordingly. Also notice that in this specific case of an undirected graph, are dealing with a symmetric adjacency matrix, so although `a.adjMat` will always have the size of 500x500, the `a.G` will not." ] }, { "cell_type": "code", "execution_count": 6, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "Number of edges (notice it corresponds to the upper half edges of adjacency matrix):\n", " 124750\n", "Size of Adjacency matrix after 1st threshold:\n", " (500, 500)\n", "\n", "Number of edges after 2nd threshold:\n", " 1000\n", "Size of Adjacency matrix after 2nd threshold:\n", " (500, 500)\n", "\n", "Number of edges after 3rd threshold:\n", " 6237\n", "Size of Adjacency matrix after 3rd threshold:\n", " (500, 500)\n", "\n", "Number of edges after 4th threshold:\n", " 34848\n", "Size of Adjacency matrix after 4th threshold:\n", " (500, 500)\n" ] } ], "source": [ "# Bring everything from the adjacency matrix to a.G\n", "a.apply_threshold()\n", "print(\"Number of edges (notice it corresponds to the upper half edges of adjacency matrix):\\n\", a.G.number_of_edges())\n", "print(\"Size of Adjacency matrix after 1st threshold:\\n\", a.adjMat.shape)\n", "\n", "# Retain the most strongly connected 1000 edges\n", "a.apply_threshold(threshold_type= \"totalEdges\", value = 1000) \n", "print(\"\\nNumber of edges after 2nd threshold:\\n\", a.G.number_of_edges())\n", "print(\"Size of Adjacency matrix after 2nd threshold:\\n\", a.adjMat.shape)\n", "\n", "# Retain the 5% most connected edges as a percentage of the total possible number of edges\n", "a.apply_threshold(threshold_type = \"edgePC\", value = 5) \n", "print(\"\\nNumber of edges after 3rd threshold:\\n\", a.G.number_of_edges())\n", "print(\"Size of Adjacency matrix after 3rd threshold:\\n\", a.adjMat.shape)\n", "\n", "# Retain edges with a weight greater than 0.3\n", "a.apply_threshold(threshold_type= \"tVal\", value = 0.3) \n", "print(\"\\nNumber of edges after 4th threshold:\\n\", a.G.number_of_edges())\n", "print(\"Size of Adjacency matrix after 4th threshold:\\n\", a.adjMat.shape)\n" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "The options for local thresholding are similar. Note that a local thresholding always yield a connected graph, and in the case where no arguments are passed, the graph will be the Minimum Spanning Tree. Local thresholding can be very slow for bigger matrices because in each step it is adding successive N-nearest neighbour degree graphs." ] }, { "cell_type": "code", "execution_count": 7, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "Is the graph connected? True\n", "Is the graph connected? True\n", "Is the graph connected? True\n" ] } ], "source": [ "a.local_thresholding()\n", "print(\"Is the graph connected? \", mbt.nx.is_connected(a.G))\n", "\n", "a.local_thresholding(threshold_type=\"edgePC\", value = 5)\n", "print(\"Is the graph connected? \", mbt.nx.is_connected(a.G))\n", "\n", "a.local_thresholding(threshold_type=\"totalEdges\", value = 10000)\n", "print(\"Is the graph connected? \", mbt.nx.is_connected(a.G))" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Absolute Thresholding\n", "\n", "In a real brain network, an edge with high negative value is as strong as an edge with a high positive value. So, if you want to threshold in order to get the most strongly connected edges (both negative and positive), you just have to pass an argument `use_absolute=True` to `apply_threshold()`.\n", "\n", "In the case of the brain that we are using in this notebook there are not many negative edges. Thus, we have to threshold the 80% most strongly connected edges in order to see a difference (notice the use of the module `constants` (`ct`) to access the weight property of each edge):" ] }, { "cell_type": "code", "execution_count": 8, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "Edges with negative weight which belong to the 70% strongest ones:\n", "(28, 64, {'weight': -0.17897503260377354})\n", "(64, 408, {'weight': -0.16721546026415093})\n", "(64, 454, {'weight': -0.17173085994339626})\n", "\n", "Edges with negative weight which belong to the 80% strongest ones:\n", "(28, 64, {'weight': -0.17897503260377354})\n", "(28, 217, {'weight': -0.11984709196226416})\n", "(64, 213, {'weight': -0.14727152767924526})\n", "(64, 408, {'weight': -0.16721546026415093})\n", "(64, 454, {'weight': -0.17173085994339626})\n", "(217, 479, {'weight': -0.11798177724339623})\n" ] } ], "source": [ "# Thresholding the 80% most strongly connected edges\n", "a.apply_threshold(threshold_type=\"edgePC\", value=80)\n", "for e in a.G.edges(data=True):\n", " # Printing the edges with negative weight\n", " if e[2][ct.WEIGHT] < 0:\n", " print(e) # This line is never executed because a negative weighted edge is not strong enough\n", "\n", "# Absolute thresholding of the 70% most strongly connected edges \n", "print(\"Edges with negative weight which belong to the 70% strongest ones:\")\n", "a.apply_threshold(threshold_type=\"edgePC\", value=70, use_absolute=True)\n", "for e in a.G.edges(data=True):\n", " if e[2][ct.WEIGHT] < 0:\n", " print(e)\n", " \n", "# Absolute thresholding of the 80% most strongly connected edges \n", "print(\"\\nEdges with negative weight which belong to the 80% strongest ones:\")\n", "a.apply_threshold(threshold_type=\"edgePC\", value=80, use_absolute=True)\n", "for e in a.G.edges(data=True):\n", " if e[2][ct.WEIGHT] < 0:\n", " print(e)" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Binary and Absolute Graphs\n", "\n", "If necessary the graph can be binarised so that weights are removed. You can see that essentially this means that each edge will have a weight of 1." ] }, { "cell_type": "code", "execution_count": 9, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "Do all the edges have weight of 1? True\n" ] } ], "source": [ "a.binarise()\n", "print(\"Do all the edges have weight of 1?\", all(e[2][ct.WEIGHT] == 1 for e in a.G.edges(data=True)))" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "Also, you can make all the weights to have an absolute value, instead of negative and positive values:" ] }, { "cell_type": "code", "execution_count": 10, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "Do all the edges have a positive weight before? False\n", "Do all the edges have a positive weight? True\n" ] } ], "source": [ "# Applying threshold again because of last changes\n", "a.apply_threshold()\n", "print(\"Do all the edges have a positive weight before?\", all(e[2][ct.WEIGHT] >= 0 for e in a.G.edges(data=True)))\n", "a.make_edges_absolute()\n", "print(\"Do all the edges have a positive weight?\", all(e[2][ct.WEIGHT] >= 0 for e in a.G.edges(data=True)))" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Importing 3D Spatial Information\n", "\n", "You can add spatial info to each node of your graph. You need this information if you want to use the visualisation tools of Maybrain.\n", "\n", "To do so, provide Maybrain with a file that has 4 columns: an anatomical label, and x, y and z coordinates. e.g.:\n", "```\n", "0 70.800000 30.600000 53.320000\n", "1 32.064909 62.154158 69.707911\n", "2 59.870968 92.230014 41.552595\n", "3 19.703504 66.398922 52.878706\n", "```\n", "\n", "Ideally these values would be in MNI space (this makes it easier to import background images for plotting and for some other functions), but this is not absolutely necessary.\n", "\n", "We are using the `resources` package again to get an already prepated text file with spatial information for a brain with 500 regions in the MNI template:" ] }, { "cell_type": "code", "execution_count": 11, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "Attributes: {} / {}\n", "Attributes of one node: 0 / (-53.6, -62.8, 36.64)\n" ] } ], "source": [ "# Initially, you don't have anatomical/spatial attributes in each node:\n", "print(\"Attributes: \", mbt.nx.get_node_attributes(a.G, ct.ANAT_LABEL), \"/\", mbt.nx.get_node_attributes(a.G, ct.XYZ))\n", "\n", "#After calling import_spatial_info(), you can see the node's attributes\n", "a.import_spatial_info(rr.MNI_SPACE_COORDINATES_500)\n", "print(\"Attributes of one node: \", \n", " mbt.nx.get_node_attributes(a.G, ct.ANAT_LABEL)[0], \n", " \"/\", \n", " mbt.nx.get_node_attributes(a.G, ct.XYZ)[0])" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Properties in Nodes and Edges\n", "\n", "We have seen already that nodes can have properties about spatial information after calling `import_spatial_info()`, and edges can have properties about weight after calling applying thresholds. \n", "\n", "You can add properties\n", "to nodes or edges from a text file. The format should be as follows:\n", "\n", "```\n", "property\n", "node1 value\n", "node2 value2\n", "(...)\n", "node1 node2 value1\n", "node3 node4 value2\n", "(...)\n", "```\n", "Let's give a specific example. Imagine that you want to add properties about colours. You can use [this file](https://github.com/RittmanResearch/maybrain/blob/master/docs/data/3d_grid_properties.txt), which is transcribed here:\n", "\n", "```\n", "colour\n", "1 red\n", "3 red\n", "6 green\n", "0 blue\n", "1 3 green\n", "1 2 green\n", "1 0 grey\n", "2 3 green\n", "2 0 red\n", "3 0 green\n", "```\n", "\n", "Note that the first line contains the property name. Subsequent lines refer to edges if they contain 3 terms and nodes if they contain 2. The above will give node 1 the property `'colour'` with value `'red'` and node 6 the property `'colour'` with value `'green'`. Nodes 0 and 3 will also have the property `'colour'` but with value `'blue'` and `'red'`, respectively.\n", "\n", "The edge connecting nodes 1 and 3 will have the same property with value `'green'`. All the other 5 edges will have the same property but with different values. These properties are stored in the `G` object from networkx.\n", "\n", "\n", "In order to be easier to see the properties features, we will be importing a shorter matrix with just 4 nodes ([link here](https://github.com/RittmanResearch/maybrain/blob/master/docs/data/3d_grid_adj.txt)).\n", "\n", "From the following code you can see that a warning is printed because we tried to add a property to a node `6`, which doesn't exist. However, the other properties are added. \n", "\n", "Note the fact that as the brain is not directed, adding the property to the edge `(1,0)` is considered as adding to the edge `(0,1)`. The same thing happens with edges `(2,0)` and `(3,0)`. No property was imported to node `2` because it is not specified in the properties file." ] }, { "cell_type": "code", "execution_count": 12, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "Edges and nodes information:\n", "(0, 1, {'weight': 0.60080034391699999})\n", "(0, 2, {'weight': 0.203602458588})\n", "(0, 3, {'weight': 0.16390494700200001})\n", "(1, 2, {'weight': 0.84379894778099995})\n", "(1, 3, {'weight': 0.242747996199})\n", "(2, 3, {'weight': 0.63727884848299998})\n", "(0, {})\n", "(1, {})\n", "(2, {})\n", "(3, {})\n", "\n", "Importing properties...\n", "Warning! Unable to process property ['colour', 6, 'green']\n", "\n", "Edges and nodes information after importing properties:\n", "(0, 1, {'weight': 0.60080034391699999, 'colour': 'grey'})\n", "(0, 2, {'weight': 0.203602458588, 'colour': 'red'})\n", "(0, 3, {'weight': 0.16390494700200001, 'colour': 'green'})\n", "(1, 2, {'weight': 0.84379894778099995, 'colour': 'green'})\n", "(1, 3, {'weight': 0.242747996199, 'colour': 'green'})\n", "(2, 3, {'weight': 0.63727884848299998, 'colour': 'green'})\n", "(0, {'colour': 'blue'})\n", "(1, {'colour': 'red'})\n", "(2, {})\n", "(3, {'colour': 'red'})\n" ] } ], "source": [ "# Creating a new Brain and importing the shorter adjacency matrix\n", "b = mbt.Brain()\n", "b.import_adj_file(\"data/3d_grid_adj.txt\")\n", "b.apply_threshold()\n", "\n", "print(\"Edges and nodes information:\")\n", "for e in b.G.edges(data=True):\n", " print(e)\n", "for n in b.G.nodes(data=True):\n", " print(n)\n", "\n", "# Importing properties and showing again edges and nodes\n", "print(\"\\nImporting properties...\")\n", "b.import_properties(\"data/3d_grid_properties.txt\")\n", "\n", "print(\"\\nEdges and nodes information after importing properties:\")\n", "for e in b.G.edges(data=True):\n", " print(e)\n", "for n in b.G.nodes(data=True):\n", " print(n)\n" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "You can notice that if we threshold our brain again, edges are created from scratch and thus properties are lost. The same doesn't happen with nodes as they are always present in our `G` object.\n", "\n", "By default, properties **of the edges** are not imported everytime you threshold the brain. However, you can change that behaviour by setting the field `update_props_after_threshold` to True." ] }, { "cell_type": "code", "execution_count": 13, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "Edges information:\n", "(0, 1, {'weight': 0.60080034391699999})\n", "(0, 2, {'weight': 0.203602458588})\n", "(0, 3, {'weight': 0.16390494700200001})\n", "(1, 2, {'weight': 0.84379894778099995})\n", "(1, 3, {'weight': 0.242747996199})\n", "(2, 3, {'weight': 0.63727884848299998})\n", "\n", "Setting b.update_properties_after_threshold and rethresholding again...\n", "Warning! Unable to process property ['colour', 6, 'green']\n", "\n", "Edges information again:\n", "(0, 1, {'weight': 0.60080034391699999, 'colour': 'grey'})\n", "(0, 2, {'weight': 0.203602458588, 'colour': 'red'})\n", "(0, 3, {'weight': 0.16390494700200001, 'colour': 'green'})\n", "(1, 2, {'weight': 0.84379894778099995, 'colour': 'green'})\n", "(1, 3, {'weight': 0.242747996199, 'colour': 'green'})\n", "(2, 3, {'weight': 0.63727884848299998, 'colour': 'green'})\n" ] } ], "source": [ "# Rethresholding the brain, thus loosing information\n", "b.apply_threshold(threshold_type=\"totalEdges\", value=0)\n", "b.apply_threshold()\n", "\n", "print(\"Edges information:\")\n", "for e in b.G.edges(data=True):\n", " print(e)\n", "\n", "# Setting field to allow automatic importing of properties after a threshold\n", "print(\"\\nSetting b.update_properties_after_threshold and rethresholding again...\")\n", "b.apply_threshold(threshold_type=\"totalEdges\", value=0)\n", "b.update_props_after_threshold = True\n", "b.apply_threshold() # Now, warning is thrown just like before\n", "\n", "print(\"\\nEdges information again:\")\n", "for e in b.G.edges(data=True):\n", " print(e)" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "\n", "You can also import the properties from a dictionary, both for nodes and edges. In the following example there are two dictionaries being created with the values of a certain property, named `own_property`, that will be added to brain:" ] }, { "cell_type": "code", "execution_count": 14, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "\n", "Edges information:\n", "(0, 1, {'own_property': 'edge_val1', 'weight': 0.60080034391699999, 'colour': 'grey'})\n", "(0, 2, {'weight': 0.203602458588, 'colour': 'red'})\n", "(0, 3, {'weight': 0.16390494700200001, 'colour': 'green'})\n", "(1, 2, {'weight': 0.84379894778099995, 'colour': 'green'})\n", "(1, 3, {'weight': 0.242747996199, 'colour': 'green'})\n", "(2, 3, {'own_property': 'edge_val2', 'weight': 0.63727884848299998, 'colour': 'green'})\n", "\n", "Nodes information:\n", "(0, {'own_property': 'val1', 'colour': 'blue'})\n", "(1, {'own_property': 'val2', 'colour': 'red'})\n", "(2, {})\n", "(3, {'colour': 'red'})\n" ] } ], "source": [ "nodes_props = {0: \"val1\", 1: \"val2\"}\n", "edges_props = {(0, 1): \"edge_val1\", (2,3): \"edge_val2\"}\n", "\n", "b.import_edge_props_from_dict(\"own_property\", edges_props)\n", "b.import_node_props_from_dict(\"own_property\", nodes_props)\n", "\n", "print(\"\\nEdges information:\")\n", "for e in b.G.edges(data=True):\n", " print(e)\n", " \n", "print(\"\\nNodes information:\")\n", "for n in b.G.nodes(data=True):\n", " print(n)" ] } ], "metadata": { "kernelspec": { "display_name": "Python 3", "language": "python", "name": "python3" }, "language_info": { "codemirror_mode": { "name": "ipython", "version": 3 }, "file_extension": ".py", "mimetype": "text/x-python", "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", "version": "3.5.4" } }, "nbformat": 4, "nbformat_minor": 2 }
apache-2.0
makeyourownneuralnetwork/complex_valued_neuralnetwork
single_neuron-periodic.ipynb
1
6935
{ "cells": [ { "cell_type": "code", "execution_count": 146, "metadata": { "collapsed": false }, "outputs": [], "source": [ "# simple neural network of one complex valued neuron\n", "# extended to use a periodic activation function\n", "import numpy" ] }, { "cell_type": "code", "execution_count": 147, "metadata": { "collapsed": false }, "outputs": [], "source": [ "class neuralNetwork:\n", " \n", " def __init__(self, inputs, cats, periods):\n", " # link weights matrix\n", " self.w = numpy.random.normal(0.0, pow(1.0, -0.5), (inputs + 1))\n", " self.w = numpy.array(self.w, ndmin=2, dtype='complex128')\n", " self.w += 1j * numpy.random.normal(0.0, pow(1.0, -0.5), (inputs + 1))\n", " \n", " # testing overrride\n", " #self.w = numpy.array([1.0 + 0.0j, 1.0 + 0.0j], ndmin=2, dtype='complex128')\n", " \n", " # number of output class categories\n", " self.categories = cats\n", " \n", " # todo periodicity\n", " self.periodicity = periods\n", " \n", " pass\n", " \n", " def z_to_class(self, z):\n", " # first work out the angle, but shift angle from [-pi/2, +pi.2] to [0,2pi]\n", " angle = numpy.mod(numpy.angle(z) + 2*numpy.pi, 2*numpy.pi)\n", " # from angle to category\n", " p = int(numpy.floor (self.categories * self.periodicity * angle / (2*numpy.pi)))\n", " p = numpy.mod(p, self.categories)\n", " return p\n", "\n", " def class_to_angles(self, c):\n", " # class to several angles due to periodicity, using bisector\n", " angles = (c + 0.5 + (self.categories * numpy.arange(self.periodicity))) / (self.categories * self.periodicity) * 2 * numpy.pi\n", " return angles\n", " \n", " def status(self):\n", " print (\"w = \", self.w)\n", " print (\"categories = \", self.categories)\n", " print (\"periodicity = \", self.periodicity)\n", " pass\n", "\n", " def query(self, inputs_list):\n", " # add bias input\n", " inputs_list.append(1.0)\n", " \n", " # convert input to complex\n", " inputs = numpy.array(inputs_list, ndmin=2, dtype='complex128').T\n", " print(\"inputs = \\n\", inputs)\n", " \n", " # combine inputs, weighted\n", " z = numpy.dot(self.w, inputs)\n", " print(\"z = \", z)\n", " \n", " # map to output classes\n", " o = self.z_to_class(z)\n", " print(\"output = \", o)\n", " print (\"\")\n", " return o\n", " \n", " def train(self, inputs_list, target):\n", " # add bias input\n", " inputs_list.append(1.0)\n", " \n", " # convert inputs and outputs list to 2d array\n", " inputs = numpy.array(inputs_list, ndmin=2, dtype='complex128').T\n", "\n", " # combine inputs, weighted\n", " z = numpy.dot(self.w, inputs)[0]\n", " \n", " # desired angle from trainging set\n", " # first get all possible angles\n", " desired_angles = self.class_to_angles(target)\n", " \n", " # potential errors errors\n", " errors = numpy.exp(1j*desired_angles) - z\n", " # select smallest error\n", " e = errors[numpy.argmin(numpy.abs(errors))]\n", " \n", " # dw = e * x.T / (x.x.T)\n", " dw = (e * numpy.conj(inputs.T)) / (3)\n", " #print(\"dw = \", dw)\n", " self.w += dw\n", " #print(\"new self.w = \", self.w )\n", " #print(\"test new self.w with query = \", self.query(inputs.T))\n", " #print(\"--\")\n", " pass" ] }, { "cell_type": "code", "execution_count": 148, "metadata": { "collapsed": false }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "w = [[-1.56572466+0.70528849j -2.71967065+0.00440014j 1.31235568-0.46018874j]]\n", "categories = 2\n", "periodicity = 2\n" ] } ], "source": [ "# create instance of neural network\n", "number_of_inputs = 2\n", "categories = 2\n", "periods = 2\n", "\n", "n = neuralNetwork(number_of_inputs, categories, periods)\n", "n.status()" ] }, { "cell_type": "code", "execution_count": 149, "metadata": { "collapsed": false }, "outputs": [], "source": [ "# train neural network - XOR\n", "for i in range(10):\n", " n.train([-1.0, -1.0], 0)\n", " n.train([-1.0, 1.0], 1)\n", " n.train([1.0, -1.0], 1)\n", " n.train([1.0, 1.0], 0)\n", " pass" ] }, { "cell_type": "code", "execution_count": 150, "metadata": { "collapsed": false }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "inputs = \n", " [[-1.+0.j]\n", " [-1.+0.j]\n", " [ 1.+0.j]]\n", "z = [[ 0.70710678+0.70710678j]]\n", "output = 0\n", "\n", "inputs = \n", " [[-1.+0.j]\n", " [ 1.+0.j]\n", " [ 1.+0.j]]\n", "z = [[-0.70710678+0.70710678j]]\n", "output = 1\n", "\n", "inputs = \n", " [[ 1.+0.j]\n", " [-1.+0.j]\n", " [ 1.+0.j]]\n", "z = [[ 0.70710678-0.70710678j]]\n", "output = 1\n", "\n", "inputs = \n", " [[ 1.+0.j]\n", " [ 1.+0.j]\n", " [ 1.+0.j]]\n", "z = [[-0.70710678-0.70710678j]]\n", "output = 0\n", "\n" ] }, { "data": { "text/plain": [ "0" ] }, "execution_count": 150, "metadata": {}, "output_type": "execute_result" } ], "source": [ "# query after training\n", "n.query( [-1.0, -1.0] )\n", "n.query( [-1.0, 1.0] )\n", "n.query( [1.0, -1.0] )\n", "n.query( [1.0, 1.0] )" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "collapsed": false }, "outputs": [], "source": [] }, { "cell_type": "code", "execution_count": null, "metadata": { "collapsed": true }, "outputs": [], "source": [] } ], "metadata": { "kernelspec": { "display_name": "Python 3", "language": "python", "name": "python3" }, "language_info": { "codemirror_mode": { "name": "ipython", "version": 3 }, "file_extension": ".py", "mimetype": "text/x-python", "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", "version": "3.5.1" } }, "nbformat": 4, "nbformat_minor": 0 }
gpl-2.0
luwei0917/awsemmd_script
notebook/Optimization/ER_rnative_visual.ipynb
1
1443349
null
mit
GoogleCloudPlatform/asl-ml-immersion
notebooks/launching_into_ml/labs/supplemental/python.BQ_explore_data.ipynb
1
377387
{ "cells": [ { "cell_type": "markdown", "metadata": { "colab_type": "text", "id": "DGPlYumZnO1t" }, "source": [ "# Exploratory Data Analysis Using Python and BigQuery\n", "\n", "\n", "\n", "## Learning Objectives\n", "\n", "1. Analyze a Pandas Dataframe\n", "2. Create Seaborn plots for Exploratory Data Analysis in Python \n", "3. Write a SQL query to pick up specific fields from a BigQuery dataset\n", "4. Exploratory Analysis in BigQuery\n", "\n", "\n", "## Introduction \n", "This lab is an introduction to linear regression using Python and Scikit-Learn. This lab serves as a foundation for more complex algorithms and machine learning models that you will encounter in the course. We will train a linear regression model to predict housing price.\n", "\n", "Each learning objective will correspond to a __#TODO__ in this student lab notebook -- try to complete this notebook first and then review the [solution notebook](../solutions/python.BQ_explore_data.ipynb). " ] }, { "cell_type": "markdown", "metadata": { "colab_type": "text", "id": "AsHg6SD2nO1v" }, "source": [ "### Import Libraries" ] }, { "cell_type": "code", "execution_count": 1, "metadata": { "colab": {}, "colab_type": "code", "id": "gEXV-RxPnO1w" }, "outputs": [], "source": [ "import os\n", "\n", "import matplotlib.pyplot as plt\n", "import numpy as np\n", "import pandas as pd\n", "\n", "# Seaborn is a Python data visualization library based on matplotlib.\n", "import seaborn as sns\n", "from google.cloud import bigquery\n", "\n", "%matplotlib inline" ] }, { "cell_type": "markdown", "metadata": { "colab_type": "text", "id": "dr2TkzKRnO1z" }, "source": [ "### Load the Dataset\n", "\n" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "Here, we create a directory called usahousing. This directory will hold the dataset that we copy from Google Cloud Storage." ] }, { "cell_type": "code", "execution_count": 2, "metadata": {}, "outputs": [], "source": [ "if not os.path.isdir(\"../data/explore\"):\n", " os.makedirs(\"../data/explore\")" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "Next, we copy the Usahousing dataset from Google Cloud Storage." ] }, { "cell_type": "code", "execution_count": 3, "metadata": { "tags": [ "flake8-noqa-cell" ] }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "Copying gs://cloud-training-demos/feat_eng/housing/housing_pre-proc.csv...\n", "/ [1 files][ 1.4 MiB/ 1.4 MiB] \n", "Operation completed over 1 objects/1.4 MiB. \n" ] } ], "source": [ "!gsutil cp gs://cloud-training-demos/feat_eng/housing/housing_pre-proc.csv ../data/explore" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "Then we use the \"ls\" command to list files in the directory. This ensures that the dataset was copied." ] }, { "cell_type": "code", "execution_count": 4, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "total 1404\n", "-rw-r--r-- 1 jupyter jupyter 1435069 Aug 28 03:31 housing_pre-proc.csv\n" ] } ], "source": [ "!ls -l ../data/explore" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "Next, we read the dataset into a Pandas dataframe." ] }, { "cell_type": "code", "execution_count": 5, "metadata": { "colab": {}, "colab_type": "code", "id": "CzrXJI8VnO10" }, "outputs": [], "source": [ "df_USAhousing = # TODO 1: Your code goes here" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "### Inspect the Data" ] }, { "cell_type": "code", "execution_count": 6, "metadata": { "colab": { "base_uri": "https://localhost:8080/", "height": 272 }, "colab_type": "code", "id": "Y6VJQ1tdnO12", "outputId": "7a1d4eed-3e83-44a8-f495-a9b74444d3ec" }, "outputs": [ { "data": { "text/html": [ "<div>\n", "<style scoped>\n", " .dataframe tbody tr th:only-of-type {\n", " vertical-align: middle;\n", " }\n", "\n", " .dataframe tbody tr th {\n", " vertical-align: top;\n", " }\n", "\n", " .dataframe thead th {\n", " text-align: right;\n", " }\n", "</style>\n", "<table border=\"1\" class=\"dataframe\">\n", " <thead>\n", " <tr style=\"text-align: right;\">\n", " <th></th>\n", " <th>longitude</th>\n", " <th>latitude</th>\n", " <th>housing_median_age</th>\n", " <th>total_rooms</th>\n", " <th>total_bedrooms</th>\n", " <th>population</th>\n", " <th>households</th>\n", " <th>median_income</th>\n", " <th>median_house_value</th>\n", " <th>ocean_proximity</th>\n", " </tr>\n", " </thead>\n", " <tbody>\n", " <tr>\n", " <th>0</th>\n", " <td>-122.23</td>\n", " <td>37.88</td>\n", " <td>41.0</td>\n", " <td>880.0</td>\n", " <td>129.0</td>\n", " <td>322.0</td>\n", " <td>126.0</td>\n", " <td>8.3252</td>\n", " <td>452600.0</td>\n", " <td>NEAR BAY</td>\n", " </tr>\n", " <tr>\n", " <th>1</th>\n", " <td>-122.22</td>\n", " <td>37.86</td>\n", " <td>21.0</td>\n", " <td>7099.0</td>\n", " <td>1106.0</td>\n", " <td>2401.0</td>\n", " <td>1138.0</td>\n", " <td>8.3014</td>\n", " <td>358500.0</td>\n", " <td>NEAR BAY</td>\n", " </tr>\n", " <tr>\n", " <th>2</th>\n", " <td>-122.24</td>\n", " <td>37.85</td>\n", " <td>52.0</td>\n", " <td>1467.0</td>\n", " <td>190.0</td>\n", " <td>496.0</td>\n", " <td>177.0</td>\n", " <td>7.2574</td>\n", " <td>352100.0</td>\n", " <td>NEAR BAY</td>\n", " </tr>\n", " <tr>\n", " <th>3</th>\n", " <td>-122.25</td>\n", " <td>37.85</td>\n", " <td>52.0</td>\n", " <td>1274.0</td>\n", " <td>235.0</td>\n", " <td>558.0</td>\n", " <td>219.0</td>\n", " <td>5.6431</td>\n", " <td>341300.0</td>\n", " <td>NEAR BAY</td>\n", " </tr>\n", " <tr>\n", " <th>4</th>\n", " <td>-122.25</td>\n", " <td>37.85</td>\n", " <td>52.0</td>\n", " <td>1627.0</td>\n", " <td>280.0</td>\n", " <td>565.0</td>\n", " <td>259.0</td>\n", " <td>3.8462</td>\n", " <td>342200.0</td>\n", " <td>NEAR BAY</td>\n", " </tr>\n", " </tbody>\n", "</table>\n", "</div>" ], "text/plain": [ " longitude latitude housing_median_age total_rooms total_bedrooms \\\n", "0 -122.23 37.88 41.0 880.0 129.0 \n", "1 -122.22 37.86 21.0 7099.0 1106.0 \n", "2 -122.24 37.85 52.0 1467.0 190.0 \n", "3 -122.25 37.85 52.0 1274.0 235.0 \n", "4 -122.25 37.85 52.0 1627.0 280.0 \n", "\n", " population households median_income median_house_value ocean_proximity \n", "0 322.0 126.0 8.3252 452600.0 NEAR BAY \n", "1 2401.0 1138.0 8.3014 358500.0 NEAR BAY \n", "2 496.0 177.0 7.2574 352100.0 NEAR BAY \n", "3 558.0 219.0 5.6431 341300.0 NEAR BAY \n", "4 565.0 259.0 3.8462 342200.0 NEAR BAY " ] }, "execution_count": 6, "metadata": {}, "output_type": "execute_result" } ], "source": [ "# Show the first five row.\n", "\n", "df_USAhousing.head()" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "Let's check for any null values." ] }, { "cell_type": "code", "execution_count": 7, "metadata": {}, "outputs": [ { "data": { "text/plain": [ "longitude 0\n", "latitude 0\n", "housing_median_age 0\n", "total_rooms 0\n", "total_bedrooms 0\n", "population 0\n", "households 0\n", "median_income 0\n", "median_house_value 0\n", "ocean_proximity 0\n", "dtype: int64" ] }, "execution_count": 7, "metadata": {}, "output_type": "execute_result" } ], "source": [ "df_USAhousing.isnull().sum()" ] }, { "cell_type": "code", "execution_count": 8, "metadata": { "colab": { "base_uri": "https://localhost:8080/", "height": 297 }, "colab_type": "code", "id": "nRTsvSzqnO17", "outputId": "f44ad14e-5fb4-4c70-e71c-9d149bca4869" }, "outputs": [ { "data": { "text/html": [ "<div>\n", "<style scoped>\n", " .dataframe tbody tr th:only-of-type {\n", " vertical-align: middle;\n", " }\n", "\n", " .dataframe tbody tr th {\n", " vertical-align: top;\n", " }\n", "\n", " .dataframe thead th {\n", " text-align: right;\n", " }\n", "</style>\n", "<table border=\"1\" class=\"dataframe\">\n", " <thead>\n", " <tr style=\"text-align: right;\">\n", " <th></th>\n", " <th>count</th>\n", " <th>mean</th>\n", " <th>std</th>\n", " <th>min</th>\n", " <th>25%</th>\n", " <th>50%</th>\n", " <th>75%</th>\n", " <th>max</th>\n", " </tr>\n", " </thead>\n", " <tbody>\n", " <tr>\n", " <th>longitude</th>\n", " <td>20433.0</td>\n", " <td>-119.570689</td>\n", " <td>2.003578</td>\n", " <td>-124.3500</td>\n", " <td>-121.8000</td>\n", " <td>-118.4900</td>\n", " <td>-118.010</td>\n", " <td>-114.3100</td>\n", " </tr>\n", " <tr>\n", " <th>latitude</th>\n", " <td>20433.0</td>\n", " <td>35.633221</td>\n", " <td>2.136348</td>\n", " <td>32.5400</td>\n", " <td>33.9300</td>\n", " <td>34.2600</td>\n", " <td>37.720</td>\n", " <td>41.9500</td>\n", " </tr>\n", " <tr>\n", " <th>housing_median_age</th>\n", " <td>20433.0</td>\n", " <td>28.633094</td>\n", " <td>12.591805</td>\n", " <td>1.0000</td>\n", " <td>18.0000</td>\n", " <td>29.0000</td>\n", " <td>37.000</td>\n", " <td>52.0000</td>\n", " </tr>\n", " <tr>\n", " <th>total_rooms</th>\n", " <td>20433.0</td>\n", " <td>2636.504233</td>\n", " <td>2185.269567</td>\n", " <td>2.0000</td>\n", " <td>1450.0000</td>\n", " <td>2127.0000</td>\n", " <td>3143.000</td>\n", " <td>39320.0000</td>\n", " </tr>\n", " <tr>\n", " <th>total_bedrooms</th>\n", " <td>20433.0</td>\n", " <td>537.870553</td>\n", " <td>421.385070</td>\n", " <td>1.0000</td>\n", " <td>296.0000</td>\n", " <td>435.0000</td>\n", " <td>647.000</td>\n", " <td>6445.0000</td>\n", " </tr>\n", " <tr>\n", " <th>population</th>\n", " <td>20433.0</td>\n", " <td>1424.946949</td>\n", " <td>1133.208490</td>\n", " <td>3.0000</td>\n", " <td>787.0000</td>\n", " <td>1166.0000</td>\n", " <td>1722.000</td>\n", " <td>35682.0000</td>\n", " </tr>\n", " <tr>\n", " <th>households</th>\n", " <td>20433.0</td>\n", " <td>499.433465</td>\n", " <td>382.299226</td>\n", " <td>1.0000</td>\n", " <td>280.0000</td>\n", " <td>409.0000</td>\n", " <td>604.000</td>\n", " <td>6082.0000</td>\n", " </tr>\n", " <tr>\n", " <th>median_income</th>\n", " <td>20433.0</td>\n", " <td>3.871162</td>\n", " <td>1.899291</td>\n", " <td>0.4999</td>\n", " <td>2.5637</td>\n", " <td>3.5365</td>\n", " <td>4.744</td>\n", " <td>15.0001</td>\n", " </tr>\n", " <tr>\n", " <th>median_house_value</th>\n", " <td>20433.0</td>\n", " <td>206864.413155</td>\n", " <td>115435.667099</td>\n", " <td>14999.0000</td>\n", " <td>119500.0000</td>\n", " <td>179700.0000</td>\n", " <td>264700.000</td>\n", " <td>500001.0000</td>\n", " </tr>\n", " </tbody>\n", "</table>\n", "</div>" ], "text/plain": [ " count mean std min \\\n", "longitude 20433.0 -119.570689 2.003578 -124.3500 \n", "latitude 20433.0 35.633221 2.136348 32.5400 \n", "housing_median_age 20433.0 28.633094 12.591805 1.0000 \n", "total_rooms 20433.0 2636.504233 2185.269567 2.0000 \n", "total_bedrooms 20433.0 537.870553 421.385070 1.0000 \n", "population 20433.0 1424.946949 1133.208490 3.0000 \n", "households 20433.0 499.433465 382.299226 1.0000 \n", "median_income 20433.0 3.871162 1.899291 0.4999 \n", "median_house_value 20433.0 206864.413155 115435.667099 14999.0000 \n", "\n", " 25% 50% 75% max \n", "longitude -121.8000 -118.4900 -118.010 -114.3100 \n", "latitude 33.9300 34.2600 37.720 41.9500 \n", "housing_median_age 18.0000 29.0000 37.000 52.0000 \n", "total_rooms 1450.0000 2127.0000 3143.000 39320.0000 \n", "total_bedrooms 296.0000 435.0000 647.000 6445.0000 \n", "population 787.0000 1166.0000 1722.000 35682.0000 \n", "households 280.0000 409.0000 604.000 6082.0000 \n", "median_income 2.5637 3.5365 4.744 15.0001 \n", "median_house_value 119500.0000 179700.0000 264700.000 500001.0000 " ] }, "execution_count": 8, "metadata": {}, "output_type": "execute_result" } ], "source": [ "df_stats = df_USAhousing.describe()\n", "df_stats = df_stats.transpose()\n", "df_stats" ] }, { "cell_type": "code", "execution_count": 9, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "<class 'pandas.core.frame.DataFrame'>\n", "RangeIndex: 20433 entries, 0 to 20432\n", "Data columns (total 10 columns):\n", " # Column Non-Null Count Dtype \n", "--- ------ -------------- ----- \n", " 0 longitude 20433 non-null float64\n", " 1 latitude 20433 non-null float64\n", " 2 housing_median_age 20433 non-null float64\n", " 3 total_rooms 20433 non-null float64\n", " 4 total_bedrooms 20433 non-null float64\n", " 5 population 20433 non-null float64\n", " 6 households 20433 non-null float64\n", " 7 median_income 20433 non-null float64\n", " 8 median_house_value 20433 non-null float64\n", " 9 ocean_proximity 20433 non-null object \n", "dtypes: float64(9), object(1)\n", "memory usage: 1.6+ MB\n" ] } ], "source": [ "df_USAhousing.info()" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "Let's take a peek at the first and last five rows of the data for all columns." ] }, { "cell_type": "code", "execution_count": 10, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "Rows : 20433\n", "Columns : 10\n", "\n", "Features : \n", " ['longitude', 'latitude', 'housing_median_age', 'total_rooms', 'total_bedrooms', 'population', 'households', 'median_income', 'median_house_value', 'ocean_proximity']\n", "\n", "Missing values : 0\n", "\n", "Unique values : \n", " longitude 844\n", "latitude 861\n", "housing_median_age 52\n", "total_rooms 5911\n", "total_bedrooms 1923\n", "population 3879\n", "households 1809\n", "median_income 12825\n", "median_house_value 3833\n", "ocean_proximity 5\n", "dtype: int64\n" ] } ], "source": [ "print(\"Rows : \", df_USAhousing.shape[0])\n", "print(\"Columns : \", df_USAhousing.shape[1])\n", "print(\"\\nFeatures : \\n\", df_USAhousing.columns.tolist())\n", "print(\"\\nMissing values : \", df_USAhousing.isnull().sum().values.sum())\n", "print(\"\\nUnique values : \\n\", df_USAhousing.nunique())" ] }, { "cell_type": "markdown", "metadata": { "colab_type": "text", "id": "QWVdsrmgnO1_" }, "source": [ "## Explore the Data\n", "\n", "Let's create some simple plots to check out the data! " ] }, { "cell_type": "code", "execution_count": 11, "metadata": {}, "outputs": [ { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAcwAAAFcCAYAAABFvY7FAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjQuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8rg+JYAAAACXBIWXMAAAsTAAALEwEAmpwYAABJS0lEQVR4nO3de7zlY93/8dfbGAYzSCSFBk3kMAZDRKJwl7uSoskpdJebDsodpfQrOiodqRxyOyYklCSHhMGYGIyZEcKY7kTkNEYOc9jv3x/Xtcx3lrX3Xnv297vW3mt9nh7rsdb6Htbn+u499mdd1/c6yDYhhBBC6Nsy7S5ACCGEMBxEwgwhhBCaEAkzhBBCaEIkzBBCCKEJkTBDCCGEJkTCDCGEEJoQCTOEEMKQJOkMSY9LmtXLfkk6UdIDkmZI2rKw712S7sv7ji6jPJEwQwghDFVnAe/qY/+7gXH5cQhwMoCkEcBP8/6NgX0kbTzYwkTCDCGEMCTZngw81cchewDnOJkKrCppLWAb4AHbs23PBy7Ixw5KJMwQQgjD1euBvxfeP5y39bZ9UJYd7AeEoW3BE7PbMvfhCq97W8tjXvDqnVoeE2D9ZZ9rS9xlR/S0Je7IkYvaEvfFl0a2PObcl5ZreUyA+YxoS9zdHrtAg/2MBY/f39TfnOXWfNN/k5pRa06zfdoAwzUqr/vYPiiRMEMIIZTHzX2Ry8lxoAmy3sPAOoX3awOPAMv1sn1Qokk2hBBCeXp6mnuU4zLgI7m37LbAXNuPArcB4yStJ2k54MP52EGJGmYIIYTSuMkaZjMknQ/sBKwu6WHgq8DIFMenAFcAuwMPAM8DB+d9CyV9CrgKGAGcYfvuwZYnEmYIIYTylFd7xPY+/ew38Mle9l1BSqiliYQZQgihPCXWMIeaSJghhBDKs2hBu0tQmUiYIYQQylNik+xQE71kCySVPqBO0vtq8xhKev/STM8k6XpJE8suWwghlM3uaeoxHEUNs2K2L2Nxd+b3A5cDf2lbgUIIoUpRw+wueUzPCZJmSZopaVLevlOu7f1a0r2SzpOkvG/3vO2mPHv+5Xn7QZJ+IumtwPuAEyRNl7RBseYoaXVJc/LrFSRdkGffvxBYoVC23STdIukOSRdJGt3an04IIfTBPc09hqGoYTb2AWACsDmwOnCbpMl53xbAJqRZI24Gtpc0DTgV2NH2Q3ns0BJsT5F0GXC57V8D5FzbyGHA87bHSxoP3JGPXx34MrCL7X9L+gLwP8DXSrjmEEIYvJ72TJ3YClHDbGwH4Hzbi2w/BtwAbJ333Wr7YadG+OnAWGAjYLbth/Ixr0iYA7Qj8AsA2zOAGXn7tqSlam6WNB04EHhD/cmSDpE0TdK0088ZbFFCCGEAFi1s7jEMRQ2zsb4mIH6p8HoR6We4tBMWL2Txl5ZRdfsaTRQs4JomBvO+PEdjuyZfDyF0qWHa3NqMqGE2NhmYJGmEpDVINb5b+zj+XmB9SWPz+0m9HDcPGFN4PwfYKr/eqy7+fgCSNgXG5+1TSU3Ab8z7VpT0pmYuKIQQWqK1c8m2VCTMxi4lNYPeBfwJ+Lztf/Z2sO0XgE8AV0q6CXgMmNvg0AuAoyTdKWkD4HvAYZKmkO6V1pwMjJY0A/g8OVnb/hdwEHB+3jeV1BwcQghDgr2oqcdwpDQVXxgsSaNtP5d7zf4UuN/2D9tdrlgPs3qxHmZrxHqY1StjPcwXp1/e1N+cURPeM+hYrRb3MMvzcUkHktZhu5PUazaEELrLMO3Q04xImCXJtcm21yhDCKGtOnhYSSTMEEII5engXrKRMEMIIZRnmPaAbUYkzBBCCOWJGmYIIYTQhKhhhhBCCP1zLCAdhqt2jIcEeOGRG1se87bNjmp5TICn59fPatgaLy31jIyD8/xL7RkjuEIbai49bRopOHeZ9vyMS1Hi70nSu4AfAyOA020fX7f/KPKsaKR89mZgDdtP5dWf5pGmMF1oe9BrCkfCDCGEUJ6S7mFKGkGaBGZX4GHSqlGX2X55PWHbJwAn5OPfCxxh+6nCx+xs+4lSCkRMjRdCCKFM5c0luw3wgO3ZtueTphbdo4/j92HwK0X1KRJmCCGE8pS3gPTrgb8X3j+ct72CpBWBdwEXF0sCXC3pdkmHLOXVLCGaZEMIIZSnyanxchIrJrLT8tKELx/S4LTe5ql9L3BzXXPs9rYfkfQa4BpJ99qe3FThehEJM4QQQnma7PRTXLe3Fw8D6xTerw080suxH6auOdb2I/n5cUmXkpp4B5Uwo0k2hBBCecq7h3kbME7SepKWIyXFy+oPkrQK8Hbgt4VtK0kaU3sN7AbMGuylRQ0zhBBCeUrqJWt7oaRPAVeRhpWcYftuSYfm/afkQ/cErrb978LpawKXptUWWRb4pe0rB1umSJgDIOk526P72L8qsK/tn+X3rwNOtL2XpAnA62xfMcCYxwLP2f7eUhc8hBBapcRxmPnv5RV1206pe38WcFbdttnA5qUVJIsm2XKtCnyi9sb2I7b3ym8nALu3oUwhhNA65fWSHXIiYS4FSaMlXSvpDkkzJdXGBh0PbCBpuqQTJI2VNCu3v38NmJT3TZJ0rKQjC585S9LY/PoYSfdJ+iOwYeGYDSRdmbtJ3yhpo9ZddQghNGHRwuYew1A0yS6dF4E9bT8raXVgqqTLgKOBTW1PAKglQNvzJX0FmGj7U3nfsY0+WNJWpJvbW5B+P3cAt+fdpwGH2r5f0luAnwHvqOQKQwhhacTk66GOgG9J2hHoIQ2mXbOkz34bcKnt5wFyIkbSaOCtwEX5RjbA8g0LVxjfpBGrsMwyK5VUtBBC6EckzFBnP2ANYCvbC/IkvwOdgXshSzaJF89vNDh3GeCZWu21L8XxTcsu9/reBvqGEEL53Ll/cuIe5tJZBXg8J8udgTfk7fOAMb2cU79vDrAlgKQtgfXy9snAnpJWyOOI3gtg+1ngIUl753MkqfReYCGEMCjljcMcciJhLp3zgImSppFqm/cC2H4SuDl34Dmh7pzrgI1rnX5Icx6uJmk6cBjw1/wZdwAXAtPzMcV1svYD/kvSXcDd9D0RcQghtF4HJ8xokh2A2hjMvFzMdr0cs2/dpk3z9qeArev27dbLZ3wT+GaD7Q+RJhgOIYShaZj2gG1GJMwQQgjl6eB7mJEwQwghlGeYNrc2IxJmCCGE8kTCDCGEEJowTKe9a0YkzBBCCKXxwkXtLkJlImGGEEIoT9QwQwghhCb0RC/ZMExd8Oqd2hL3ts2OannMrWfWzxXRGl+ceExb4o5C/R9UgeXa9Pewpw3zrGwyv+UhAZg4+qn2BC5DdPoJIYQQmhAJM4QQQmhCTFwQQgghNCF6yYYQQghN6OBesrFaSQghhPL0uLlHEyS9S9J9kh6QdHSD/TtJmptXgZou6SvNnrs0ooYZQgihNC6p04+kEcBPgV2Bh4HbJF1m+y91h95o+z1Lee6ARA0zhBBCecqrYW4DPGB7tu35wAU0vwbwYM7tVSTMEEII5XFPUw9Jh0iaVngcUvdJrwf+Xnj/cN5WbztJd0n6g6RNBnjugESTbAghhPI02UvW9mnAaX0c0mhmjvqq6R3AG2w/J2l34DfAuCbPHbB+a5iSxkqaNdhAfXz+lKo+e7CK1y5poqQT212mEEIY0sprkn0YWKfwfm3gkeIBtp+1/Vx+fQUwUtLqzZy7NNpew7T91naXoRm2pwHT2l2OEEIY0sobVnIbME7SesA/gA8D+xYPkPRa4DHblrQNqRL4JPBMf+cujWbvYY6Q9HNJd0u6WtIKkiZImipphqRLJb0qX8D1kibm16tLmpNfbyLp1tz1d4akcXn7c/l5p3zuryXdK+k8Scr7ds/bbpJ0oqTLeyuopGMlnZ3LOUfSByR9V9JMSVdKGpmP20rSDZJul3SVpLUK2++SdAvwycLn7lSLK2kbSVMk3ZmfN8zbD5J0SY5zv6Tv9vVDlXRybru/W9Jxhe0Nr1fSSpLOkHRbjt3wJnbx3sA1zz/QVxFCCKFcJdUwbS8EPgVcBdwD/Mr23ZIOlXRoPmwvYJaku4ATgQ87aXjuYC+t2YQ5Dvip7U1ImfuDwDnAF2yPB2YCX+3nMw4Ffmx7AjCRVGWutwXwWWBjYH1ge0mjgFOBd9veAVijifJuAPwnqVfUL4DrbG8GvAD8Z06aJwF72d4KOAP4Zj73TOBw29v18fn3Ajva3gL4CvCtwr4JwCRgM2CSpHVeefrLjrE9ERgPvF3S+H6u9xjgT7a3BnYGTpC0Uv2H2j7N9kTbE3dd8Y19hA8hhHK5p6epR1OfZV9h+022N7D9zbztFNun5Nc/sb2J7c1tb2t7Sl/nDlazTbIP2Z6eX99OSkir2r4hbzsbuKifz7gFOEbS2sAltu9vcMytth8GkDQdGAs8B8y2/VA+5nygvjdVvT/YXiBpJjACuDJvn5k/c0NgU+CaXIkdATwqaZW66zoXeHeDz18FODvXkg2MLOy71vbcfA1/Ad7Akr21ij6Ue4YtC6xF+qKwTB/XuxvwPklH5vejgHVJ36BCCKH9FnbuTD/NJsyXCq8XAav2cexCFtdcR9U22v6lpD+Tan5XSfqY7T/1E2dZGvd2aqq8tnskLbBfng24p/CZd9fXIiWtSnM9qb5OqrXuKWkscH0/1/AKuW39SGBr209LOov08+rregV80PZ9TZQxhBBaL6bGe4W5wNOS3pbfHwDUamVzgK3y671qJ0han1RzOhG4jNQM2Yx7gfVzYoLU3DlY9wFrSNoul22kpE1sPwPMlbRDPm6/Xs5fhXQjGeCgpSzDysC/c7w1WVyT7et6rwI+Xbi3u8VSxg4hhGqUODXeUDOYiQsOJN1Dm0G6b/e1vP17wGFKw0VWLxw/iXRzdjqwEekeaL9svwB8ArhS0k3AY6SEvdTyzA97Ad/JN4unA7XeugcDP82dfl7o5SO+C3xb0s2k5tylKcNdwJ3A3aR7qDfn7X1d79dJzb8zlIa7fH1pYocQQlXc46Yew5E8DNYukzQ6D0wVaX7A+23/sN3lqkqZ1/vrtfZryy/4dbzY8phbzzyh5TEBvjjxmLbEHbVUdysGbzm3J247Gvo2md+GoMBmY55uS9yN/nrFoH+58w5/T1N/c8aceHl7/iENwnCZGu/juWZ6N6k59NT2Fqdy3Xa9IYRO0dPT3GMYavvEBc3ItaslaliSDgY+U3fozbY/yRCTOzstX7f5ANszGx3f6HpDCGFYiF6yQ4/tM0ljJoc8229pdxlCCKEVhsNtvqU1bBNmCCGEIWiYduhpRiTMEEII5YmEGYar9Zd9ri1xn54/qv+DStau3qrfnlbKrFsD5mefaEvcnnntiavRq7U85hP7f6nlMQFemDuy/4OGqOE6ZKQZkTBDCCGUJxJmCCGE0D8vjIQZQggh9C9qmCGEEEITOncYZiTMEEII5YlOPyGEEEIzooYZQggh9C86/YQQQghN6OD1o4fNaiUhhBCGg54mH02Q9C5J90l6QNLRDfbvJ2lGfkyRtHlh3xxJMyVNlzRt0NdFhydMSatK+kQ/x4yVtG8TnzU2L9ocQgihF+5p7tEfSSNI6wG/G9gY2EfSxnWHPQS83fZ44OvAaXX7d7Y9wfbEQV8YHZ4wgVWBPhMmMBboN2EOhKRo6g4hdKfyapjbAA/Ynm17PnABsEfxANtTbNdW254KrF3CFfSq0xPm8cAGuUp+Qn7MytX0SYVj3paPOSLXJG+UdEd+vLWZQJIOknSRpN8BV0taTdJvclPBVEnj83G9bT9W0tmSrs5NCR+Q9N1c1isljczHHS/pL/n87/VSlkMkTZM07ZLn5gzyRxhCCM1rtoZZ/DuVH4fUfdTrgb8X3j+ct/Xmv4A/FItC+lt8e4PPXiqdXhM6GtjU9gRJHwQOBTYHVgdukzQ5H3Ok7fcASFoR2NX2i5LGAecDzVbntwPG235K0knAnbbfL+kdwDnABOC4XrYDbADsTGp+uAX4oO3PS7oU+M9c3j2BjWxb0qqNCmH7NHLTxB3r7NG5XdZCCENOz8Lmjiv+neqFGp3W8EBpZ1LC3KGweXvbj0h6DXCNpHttT26udI11eg2zaAfgfNuLbD8G3ABs3eC4kcDPJc0ELiIlr2ZdY/upQrxzAWz/CXi1pFX62A7wB9sLgJnACODKvH0mqen4WeBF4HRJHwCeH0DZQgihelZzj/49DKxTeL828Ej9QbmV7nRgD9tPvlwM+5H8/DhwKamJd1C6KWE29RsCjgAeI9VEJwLLDSDGv/uJ5z62A7wEYLsHWODFS5f3AMvaXkj6pV8MvJ/FCTWEEIaEsjr9ALcB4yStJ2k54MPAZcUDJK0LXAIcYPuvhe0rSRpTew3sBgy602anJ8x5wJj8ejIwSdIISWsAOwK31h0DsArwaE5aB5BqektjMrAfgKSdgCdsP9vH9n5JGg2sYvsK4LMsbsoNIYQhwT1q6tHv56QKwqeAq4B7gF/ZvlvSoZIOzYd9BXg18LO64SNrAjdJuov0d/73tgddwejoe5i2n5R0cx4O8gdgBnAXqUb3edv/lPQksDD/YM8CfgZcLGlv4DqWrDUOxLHAmZJmkJpOD+xnezPGAL+VNIpUUz1iKcsWQgiVKHPiglw5uKJu2ymF1x8DPtbgvNmkVsJSdXTCBLBdP2TkqLr9C4B31h0zvvD6i/m4OcCmfcQ5i5Rwa++foq4LdD/bj617P7qXfYNuhw8hhKr0LGr27tfw0/EJM4QQQus009w6XEXCHCBJ/wF8p27zQ7b3bEd5QghhKHEHD2SLhDlAtq8i3YQOIYRQJ2qYIYQQQhMiYYYQQghNiCbZMGwtO6I9i9O91PQ8EeUZ1YaYAH72ibbE1cqrtyfu83PbEneZ0a9qecwHH3p1y2MCjB45vy1xy9CzqHOH90fCDCGEUJpOXkA6EmYIIYTS9DQ3T+ywFAkzhBBCaRwJM4QQQuhf9JINIYQQmhC9ZEMIIYQmLIpesiGEEEL/4h5mCCGE0IRokg0hhBCa0MnDSoZcY7OkVSV9op9jxkqqX+eyt+Nm9bH/IEk/WZpylnF+CCF0GltNPYajIZcwgVWBPhMmMBboN2G2i6SouYcQutKiHjX1GI6GYsI8HthA0nRJJ+THLEkzJU0qHPO2fMwRuSZ5o6Q78uOtA4i3jqQrJd0n6au1jZL2l3RrjnGqpBF5+8GS/irpBmD7wvFnSfqBpOuA70iaIGmqpBmSLpX0qnxcb9uvl/RDSZMl3SNpa0mXSLpf0jfyMStJ+r2ku/LPZBINSDpE0jRJ0349728D+FGEEMLgRA2ztY4GHrQ9AZgKTAA2B3YBTpC0Vj7mRtsTbP8QeBzY1faWwCTgxAHE2wbYL8fZW9JESW/On7N9LsciYL8c+zhSotwV2Ljus94E7GL7c8A5wBdsjwdmArVk3Nt2gPm2dwROAX4LfBLYFDhI0quBdwGP2N7c9qbAlY0uyPZptifanrjXmDcM4EcRQgiD02M19WiGpHflyswDko5usF+STsz7Z0jastlzl8ZQbzrcATjf9iLgsVyr2xp4tu64kcBPJE0gJbc3DSDGNbafBJB0SY65ENgKuE0SwAqkpPwW4Hrb/8rHX1gX6yLbiyStAqxq+4a8/Wzgot62F86/LD/PBO62/WiOMxtYJ2//nqTvAJfbvnEA1xlCCJUrq5NsbtX7Kaly8jDp7/Fltv9SOOzdwLj8eAtwMvCWJs8dsKFYwyxqtt5+BPAYqSY6EVhuADHqf7/Occ/ONdgJtje0fWwvxxf9ewBxG3kpP/cUXtfeL2v7r6REPhP4tqSvDDJeCCGUqsQa5jbAA7Zn254PXADsUXfMHsA5TqYCq+aWwGbOHbChmDDnAWPy68nAJEkjJK0B7AjcWncMwCrAo7Z7gAOAEQOIt6uk1SStALwfuBm4FthL0msA8v43AH8GdpL0akkjgb0bfaDtucDTkt6WNx0A3NDb9mYLKul1wPO2fwF8D9iyn1NCCKGlSryH+Xrg74X3D+dtzRzTzLkDNuSaZG0/KenmPBzkD8AM4C5Sze7ztv8p6UlgoaS7gLOAnwEXS9obuI6B1fRuAs4F3gj80vY0AElfBq6WtAywAPik7amSjgVuAR4F7qD35HwgcIqkFYHZwMH9bG/GZqT7uD25TIcN4NwQQqjcoiYbBiUdAhxS2HSa7dOKhzQ4rb6Fr7djmjl3wIZcwgSwXT9k5Ki6/QuAd9YdM77w+ov5uDmkTjO9xTmLlHAb7bsQuLDB9jOBMxtsP6ju/XRg2wbH9bZ9p8Lr64HrG+0DrmpU3hBCGAp6mkxLOTme1schD5P6btSsDTzS5DHLNXHugA3FJtkQQgjDVA9q6tGE24BxktaTtBzwYRZ3jKy5DPhI7i27LTA3d5Zs5twBG5I1zLJJ+g/gO3WbH7K9ZzvKE0IIncpN99Xs53PshZI+RWpVGwGcYftuSYfm/acAVwC7Aw8Az5NvcfV27mDL1BUJ0/ZVRFNmCCFUrqfEz7J9BSkpFredUnht0nj1ps4drK5ImCGEEFqjrBrmUBQJM4QQQmkWtrsAFYqE2eFGjlzUlrjPvzSQobDlWK5N6/D1zHuiLXH1/Ny2xF3mtRu0JW7PU4Pu5DhgI0qbt2Zgnpm/fFviliFqmCGEEEIThulCJE2JhBlCCKE0TQ4ZGZYiYYYQQihNm+6MtEQkzBBCCKVZqKhhhhBCCP2KGmYIIYTQhDInLhhqImGGEEIoTfSSDSGEEJrQyb1kY7WSCkgam9fz7O+YfQvvJ0o6sfrShRBCddzkYziKGmb7jAX2BX4JkBeuntbOAoUQwmAt7NwKZnfWMHPt7l5JZ0uaIenXklaU9E5Jd0qaKekMScvn4+dI+o6kW/PjjXn7WZL2Knzuc73EulHSHfnx1rzreOBtkqZLOkLSTpIuz+esJuk3uWxTJY3P24/N5bpe0mxJh1f9swohhIHo5BpmVybMbEPgNNvjgWeB/wHOAibZ3oxU+z6scPyztrcBfgL8aABxHgd2tb0lMAmoNbseDdxoe4LtH9adcxxwZy7bl4BzCvs2Av4D2Ab4qqSR9QElHSJpmqRpv5r7fwMoagghDE6PmnsMR92cMP9u++b8+hfAO0mLSv81bzsb2LFw/PmF5+0GEGck8HNJM4GLgI2bOGcH4FwA238CXi1plbzv97Zfsv0EKRmvWX+y7dNsT7Q98UOrrDuAooYQwuD0NPkYjrr5HuZAWwXc4PVC8pcOSQKWa3DeEcBjwOb52BebiNXo+1ct5kuFbYvo7t9hCGGIGa7JsBndXMNcV1KtprgP8EdgbO3+JHAAcEPh+EmF51vy6znAVvn1HqTaZL1VgEdt9+TPrK17NQ8Y00vZJgP7AUjaCXjC9rPNXFQIIbST1dxjOOrm2sk9wIGSTgXuBz4DTAUukrQscBtwSuH45SX9mfQlY5+87efAbyXdClwL/LtBnJ8BF0vaG7iucMwMYKGku0j3Tu8snHMscKakGcDzwIGDu9QQQmiNWEC6M/XYPrRu27XAFr0c/1PbxxU32H4M2Law6Yt5+xxg0/z6fmB8g2MWkO6bFl2f9z1FqrEuwfaxde837aWsIYTQFq3qAStpNeBC0hC9OcCHbD9dd8w6pE6TryW1Fp9m+8d537HAx4F/5cO/ZPuKvmJ2c5NsCCGEkrWwl+zRwLW2x5EqO0c3OGYh8DnbbyZVbj4pqdjx8od5pMKE/pIldGnCtD1nILUz22Nzr9QQQgh9aGEv2T1IoxnIz++vP8D2o7bvyK/nkW7FvX5pA3ZlwgwhhFCNFibMNW0/CikxAq/p62BJY0m33P5c2PypPEHMGZJe1V/ASJghhBBKs0jNPYoTrOTHIfWfJemPkmY1eLyij0dfJI0GLgY+WxhxcDKwATABeBT4fn+f082dfkIIIZSs2dqj7dOA0/o5Zpfe9kl6TNJath+VtBZpIpdGx40kJcvzbF9S+OzHCsf8HLi8vzJHDTOEEEJpWjiX7GUsHnJ3IPDb+gPyhDL/C9xj+wd1+9YqvN0T6HOFKYiEGUIIoUQ9uKlHCY4HdpV0P7Brfo+k10mq9XjdnjRhzDvyQhfTJe2e9303L7QxA9iZNCtbn6JJtsO9+FKjyYeqt0JP6yfI6mnT9z+NXq0tcZcZ3W8fhUr0PPVIW+Ius9rrWh5Tas+6Gqst38wMmkNTq/7Pt/0krxzLju1HgN3z65toPNUotg8YaMxImCGEEEozXJfuakYkzBBCCKXp5AWkI2GGEEIoTUn3J4ekSJghhBBK07npMhJmCCGEEnXyepiRMEMIIZQmmmRDCCGEJixqdwEq1BUTF0gaK6nfWRwqiPvcAI8/VtKRDba3pfwhhDBQLZy4oOWihhlCCKE0wzMVNqcrapjZCEk/l3S3pKslrSBpgqSpeXmXS2vLu0i6XtLE/Hp1SXPy600k3ZqnV5ohaVzevn9h+6mSRtSCSvqmpLtynDXztjdIujZ/xrWS1q0vrKSt8nm3AJ8sbG9YhhBCGApauLxXy3VTwhwH/NT2JsAzwAeBc4Av2B4PzAS+2s9nHAr82PYEYCLwsKQ3A5OA7fP2RcB++fiVgKm2NwcmAx/P238CnJPjngec2CDWmcDhtrfrrwz9XnkIIbSIm/xvOOqmhPmQ7en59e2kddBWtX1D3nY2sGM/n3EL8CVJXwDeYPsF0lyGWwG3SZqe36+fj5/P4iVjbgfG5tfbAb/Mr88FdigGkbRKXdnO7acM1J3/8jpzFz83p59LCiGE8kQNszO8VHi9CFi1j2MXsvhnM6q20fYvgfcBLwBXSXoHaWLfs21PyI8NbR+bT1lgu/ZVahG93zOu/7qlBtv6KkP9MafZnmh74gdHj+3jMkMIoVyLcFOP4aibEma9ucDTkt6W3x8A1Gp0c0i1RoC9aidIWh+YbftE0lps44Frgb0kvSYfs5qkN/QTewrw4fx6P+Cm4k7bzwBzJe1QOKavMoQQwpAQvWQ714HAKZJWBGYDB+ft3wN+JekA4E+F4ycB+0taAPwT+JrtpyR9Gbha0jLAAlInnb/1Efdw4AxJRwH/KsQtOjgf8zxwVV9lGNAVhxBChYZrc2sztLjFMHSiO9fdoy2/4EdeWrHlMW8b1Z4Gky/+6dNtidu29TDn/qstcduxHuZtmx3V8pgAKy63oC1xJ/ztskGvNfKxsXs19Tfn9Dm/HnbrmnR7DTOEEEKJOrmGGQkzhBBCaYbrkJFmRMIMIYRQmoUdfJsvEmYIIYTSdG667O5hJSGEEErWqmEleQjfNZLuz88Ne8FJmiNpZp5OdNpAzy+KhBlCCKE0LZwa72jgWtvjSOPhj+7j2J3zxDITl/J8IBJmCCGEErVwarw9SFOakp/fX/X5cQ+zw819abm2xO1pwwirTea3PibAE/t/qS1xH3zo1W2JO6JNd6mk1sfdeuYJLY8JsHDyBW2JW4ZFTaZDSYcAhxQ2nWb7tAGEWtP2owC2H63NttaASRPLGDi1EKPZ818WCTOEEEJpmq095sTVZ4KU9EfgtQ12HTOAIm1v+5GcEK+RdK/tyQM4/2WRMEMIIZSmzNnjbO/S2z5Jj0laK9cO1wIe7+UzHsnPj0u6FNiGtNxiU+cXxT3MEEIIpWnh5OuXkeYDJz//tv4ASStJGlN7DewGzGr2/HqRMEMIIZSmhZ1+jgd2lXQ/sGt+j6TXSboiH7MmcJOku4Bbgd/bvrKv8/sSTbIhhBBK06qp8Ww/CbyzwfZHgN3z69nA5gM5vy+RMEMIIZRmkTt3+vVImCGEEErTuekyEmYIIYQSdfJqJR3b6UfS9ZIm5tdXSFq1xM8+VNJHyvq8EELoFC3sJdtyXVHDtL17yZ93SpmfF0IInaLMcZhDzZCqYUoaK+leSadLmiXpPEm7SLo5zyi/TR5Xc4ak2yTdKWmPfO4Kki6QNEPShcAKhc+dI2n1/Po3km6XdHeemql2zHOSvinpLklTJa3ZRzmPlXRkfn29pO9IulXSXyW9LW8fIel7eZb8GZI+nbe/M5d7Zr6O5Qtl/JakWyRNk7SlpKskPSjp0ELso/K1z5B0XKm/gBBCGKROrmEOqYSZvRH4MTAe2AjYF9gBOBL4EmlKpD/Z3hrYGTghD0g9DHje9njgm8BWvXz+R21vBUwEDpdUm5BzJWCq7c1Js0B8fABlXtb2NsBnga/mbYcA6wFb5DKdJ2kUcBYwyfZmpBr+YYXP+bvt7YAb83F7AdsCXwOQtBswjjRTxQRgK0k71hdG0iE56U773QuzB3AZIYQwOIvc09RjOBqKCfMh2zNt9wB3k5ZfMTATGEuaqeFoSdOB64FRwLrAjsAvAGzPAGb08vmH50GsU4F1SAkIYD5weX59e47VrEsanLcLcIrthblMTwEb5uv7az7m7Fzumsvy80zgz7bn2f4X8GK+B7tbftwJ3EH6QjGOOrZPsz3R9sT3rrD+AC4jhBAGx00+hqOheA/zpcLrnsL7HlJ5FwEftH1f8SRJ0M/vQdJOpES2ne3nJV1PSrgAC7y48X0RA/vZ1MpYPE8NytPfGh7Fa63/OSybz/+27VMHULYQQmiZ4drc2oyhWMPsz1XAp5UzpKQt8vbJwH5526akJt16qwBP52S5Eam5sypXA4dKWjaXaTXgXmCspDfmYw4AbhjAZ14FfFTS6PyZr29mSZoQQmiVuIc5tHwdGAnMkDQrvwc4GRgtaQbwedK8gfWuBJbNx3yd1CxbldOB/8vlvAvY1/aLwMHARZJmkmqOTfe4tX018Evglnz+r4ExpZc8hBCWku2mHsORhmvBQ3OuX3PvtvyC56n1rf0vqj3f/9469tG2xI0FpKvXbQtIr/CBLw166fetX7djU7+o2x6Z3IZl5gdnKN7DDCGEMEx1ciUsEmYfJB0D7F23+SLb32xHeUIIYagbrvcnmxEJsw85MUZyDCGEJkUNM4QQQmhC1DBDCCGEJnTyaiWRMEMIIZRmuE5714xImB1uPiPaEnfuMq2PO3H0Uy2PCfDC3JFtiTt65Py2xH1m/vJtibva8i+2PGa7hncsu+OH2xK3DD0dfA9zOE5cEEIIYYhyk/8NlqTVJF2TV7K6RtKrGhyzoaTphcezkj6b9x0r6R+Fff0uAxkJM4QQQml67KYeJTiatDjHOODa/H4Jtu+zPcH2BNIKVs8DlxYO+WFtv+0r+gsYCTOEEEJpWlXDBPYgrfhEfn5/P8e/E3jQ9t+WNmAkzBBCCKVptoZZXLc3Pw4ZYKg1bT8KkJ/7W4jiw8D5dds+JWmGpDMaNenWi04/IYQQStPjRU0dZ/s04LS+jpH0R+C1DXYdM5AySVoOeB/wxcLmk0mLcDg/fx/4aF+fEwkzhBBCacqcuMD2Lr3tk/SYpLVsPyppLeDxPj7q3cAdth8rfPbLryX9HLi8v/JEk2wIIYTStHB5r8uAA/PrA4Hf9nHsPtQ1x+YkW7MnMKu/gJEwQwghlKaFC0gfD+wq6X5g1/weSa+T9HKPV0kr5v2X1J3/XUkz8/rIOwNH9Bew5U2ykq4HjrQ9LV/UvrafKemzzwIut/3rMj6vlSQdBEy0/al2lyWEEJZWqyZft/0kqedr/fZHgN0L758HXrF4rO0DBhqzrfcwbfc7UDSEEMLw0clT4zXVJCtprKR7JZ0uaZak8yTtIunmPMvCNpJWyl1zb5N0p6Q98rkrSLogd929EFih8LlzJK2eX/9G0u2S7i52L5b0nKRvSrpL0lRJa/ZT3B0lTZE0W9Je+TMk6YRc9pmSJuXtO0l6+UavpJ/kmh6Sjpf0l1zu7+Vta0i6OF/jbZK27+XntUy+tlUL2x6QtKak90r6c/4Z/bHR9Ug6q1b22s+g8PqoHHuGpOP6+VmEEEJLtfAeZssN5B7mG4EfA+OBjYB9gR2AI4Evkbr5/sn21qT24BMkrQQcBjxvezxpbcmtevn8j9reCpgIHC6pVoVeCZhqe3NgMvDxfsq5Vi7Xe8ht2sAHgAnA5sAuuWxrNTybNOUS6SbwJrnc38i7fkyaGWJr4IPA6Y3Ot91DugG9Z/68twBzcq+sm4BtbW8BXAB8vp/rKZZrN2AcsE2+nq0k7djguJfHN13xwoPNfnwIIQxaC+9httxAmmQfsj0TQNLdpCmJLGkmMBZYG3ifpCPz8aOAdYEdgRMBbM/IN1gbOVzSnvn1OqTE8CQwn8XdfW8n3bzty29ywvpLofa2A3C+7UXAY5JuALYGnu3lM54FXgROl/T7QvxdgI0l1Y5bWdIY2/MafMaFwFeAM0kDZi/M29cGLswJezngoX6up2i3/Lgzvx9N+jlNLh5UHN909ZofHp7/MkMIw9JwrT02YyAJ86XC657C+578OYuAD9q+r3hSTi59/gQl7URKRtvZfj53DBqVdy/w4t/AoibKXCyn6p7rLWTJWvYoANsLJW1DuqH8YeBTwDvysdvZfqGfMgDcArxR0hqkKZtqtdSTgB/Yvixf97F9lUvpB7hc4Tq+bfvUJuKHEELLxWolzbkK+HT+A4+kLfL2ycB+edumpCbdeqsAT+dkuRGwbYnlqpVhkqQROYHtCNwK/I1UY1xe0irkHleSRgOr5Ml4P0tq/gS4mpQ8ycfVtr9CTvKXAj8A7sk9uiBd6z/y6wMbnQvMYXHT9R5Abf2oq4CP5vIh6fWS+psOKoQQWqaT72GW2Uv268CPgBk5ac4h3Uc8GTgzN8VOJyWqelcCh+Zj7gOmllguSIlrO+AuUm3387b/CSDpV8AM4H4WN3WOAX4raRSpVlcbn3M48NNczmVJifjQPuJeCNwGHFTYdixwkaR/kK5zvQbn/TzHv5U0C/+/AWxfLenNwC35e8lzwP70PcNFCCG0TCf3ktVwzfShOe26h/n4iNaPWGrXAtLLLtvc3Jlle3beqP4PqkDbFpAe1foFpDf8YdmNXc1p1wLSI1dfv7fbV00bveJ6Tf3Nee75hwYdq9ViLtkQQgilKWnpriFpWCZMSccAe9dtvsj2N9tQloOBz9Rtvtn2J1tdlhBCaLdO7vQzLBNmTowtT46N2D6TNHQkhBC6Xiff5huWCTOEEMLQFE2yIYQQQhN6ejq3l2wkzBBCCKXp3PplDCsJfZB0SJ5mr+PjdtO1dlvcbrrWdsbtBrGAdOjLIf0f0jFxu+lauy1uN11rO+N2vEiYIYQQQhMiYYYQQghNiIQZ+tKu+yDtiNtN19ptcbvpWtsZt+NFp58QQgihCVHDDCGEEJoQCTOEEEJoQiTMEEIIoQmRMEPXk7SCpA3bXY4QwtAWCTMsQdKKkv6fpJ/n9+MkvacFcd8k6VpJs/L78ZK+3IK47wWmA1fm9xMkXVZxzO9KWlnSyHzNT0jav8qYOe7eksbk11+WdImkLauOm+ONkPQ6SevWHhXH20DS8vn1TpIOl7RqlTELsXfIy/4haQ1J63Vy3G4SCTPUOxN4Cdguv38Y+EYL4v4c+CKwAMD2DKAVy84fC2wDPJPjTgfGVhxzN9vPAu8h/XzfBBxVcUyA/2d7nqQdgP8AzgZOrjqopE8DjwHXAL/Pj8srDnsxsEjSG4H/BdYDfllxTCR9FfgC6d8ywEjgF50at9tEwgz1NrD9XRYnrhcAtSDuirZvrdu2sAVxF9qe24I4RSPz8+7A+bafalHcRfn5P4GTbf8WWK4FcT8DbGh7E9ub5cf4imP22F4I7An8yPYRwFoVxyTHex/wbwDbjwBjOjhuV4mEGerNl7QCedEBSRuQapxVeyLHqsXdC3i0BXFnSdoXGJGbn08CplQc83eS7gUmAtdKWgN4seKYAP+QdCrwIeCK3GTZir8Bfwda/aVkgaR9gANZXJsd2cfxZZnvNLi99u94pRbEbGfcrhITF4QlSNoV+DKwMXA1sD1wkO3rK467PmmGkrcCTwMPAfvbnlNx3BWBY4DdSDXpq4Cv2640gUl6FfCs7UW5DCvb/mfFMVcE3gXMtH2/pLWAzWxfXXHc/wU2JDXFvvzly/YPKoy5MXAocIvt8/P9vEm2j68qZo57JDAO2BX4NvBR4Je2T+rEuN0mEmZ4BUmvBrYlJZCptp9oYeyVgGVsz2tVzFaTNILULDqWwpq0VSaQQuxXAevUxb2j4phfbbTd9nFVxm2X/KXz5S9gtq/p5LjdJBJmAKC/3pJV/VGV9D/9xK00iUj6Ha9c83YuMA04tYqapqQrSE2wM4GXl6evOoFI+jpwEPAgi6/Ztt9RZdxC/DE53nMVxphJH2sYt+Deaa0cK7Pkl5JW3acOFVq2/0NCl/h+fh5Furd2F+mb6njgz8AOFcWtdUzYENgaqA3peC8wuaKYRbOBNYDz8/tJpB6dbyL13D2ggphrt+oPd50PkTp1zW9lUEmbAucCq+X3TwAfsX13BeFqQ6A+mZ/Pzc/7Ac9XEG8Jkv4b+BrwAunLkEgJfP2K485j8ReF5Uj3a/9te+Uq43Yd2/GIx8sP4ALSfa3a+02Bs1oQ92pgTOH9GODKFsSd3Ns24O6KYn6HNLSk1b/bi4HXtCHuFGDnwvudgCkVx7y5mW0VxL0fWL3VP+MG5Xg/8K12l6PTHlHDDPU2sj2z9sb2LEkTWhB3XaBY85lP9eMhAdaQtK7t/wPIA+pXL5ShClOBSyUtQxq+I1JTZdW1gW8Dd+bJIYqdb95XcdyVbF9XiHd9C3pxriRpB9s3AUh6K9CKnqMP0oKabH9s/0bS0e0uR6eJhBnq3SPpdNKgZwP7A/e0IO65wK2SLs1x9wTOaUHczwE3SXqQlLjWAz6R/6CfXVHM75MmhpjpXB1okbNJtdsl7p22wGxJ/4/FzaP7k3pBV+m/gDMkrZLfP0PqOVq1LwJTJP2ZJb+UHF5lUEkfKLxdhnRbJTqolCw6/YQlSBoFHAbsmDdNJg1yr3ycYO549LZaXNt3Vh0zx10e2IiUMO+t+lolXQW823YrkxaSbrD99lbGzHFfBRxHug8u0r+pY20/3YLYK5P+zrVkHKikW4GbeGWHrqq+fNXinll4uxCYA/zc9uNVxu02kTDDkNDb3KK1ptKKY29KGnc6qhC3stqtpLNInUD+QIvGJea4P8jxLquLW+mwklYaAr2up9h+a5UxQvtEk2xYgqSHaNCUY7vSXn6kQe21uCuQmkbvAzapMmgeI7gTKWFeAbybVEOosjn4ofxYjtZMTVezRX7etrDNQCXDSiT9yPZnexm6U9W903ZPB3edpEOA37Hkl5JKhpXkman6GkZTaVNwt4kaZlhCnrSgZhSwN7Ca7a+0uBxbAv9t+78rjjMT2By40/bmktYETrf93irj5tiVj0tsJ0lb2b5dUsNmYNs3tLpMVctfOOu5qi+ckg7sa3/VTcHdJhJm6Jekm2xXNQ6zr7h32K50+SlJt9reRtLtwM7APGCW7cpqtvXjEoEqxyUW464CfJXF96dvAL5W9f09SZ+x/eP+tpUcc23gJNLUjia1GnzG9sNVxQydL5pkwxLqZvyp9barvJmr7t7TMsCWwL+qjgtMy+sk/hy4HXgOqF81pWynAf9TG2ohaaccv+p7X2cAs0gTGECalOFM4AO9nlGOA4H65HhQg21lOpO0nNfe+f3+eduuFcZE0kiW7DR3PWnGqAUVx12DtLxX/b34lszi1C2ihhmWIOm6wtuFpHtt37d9X8Vxi/ON1nr5XdyK3rmFMowlTYI+o7Btk7JrfpLusr15f9vKJmm67Qn9bSsx3j7AvqTesTcWdo0BFtnepYq4OXZLr7UQ43TSLDu1ptADSNf6sYrjXg1cCBxJmnT+QOBftr9QZdxuEzXMUO+/bM8ubmjRyu1/sX1RXdy9gYt6Ob50brwyyrmk2m6Z2jEuEeCFusH825OmcKvKFNISbauzeOpFSM3eMxqeUZ4nJO3P4ikP9wGerDgmwNZ1X3z+JOmuFsR9te3/zU3dNwA3SOq4e8TtFgkz1Ps1r0wQvwa2qjjuF3llcmy0rdWqWDz7o6RxiZeweFziwRXEqXcYcHa+lyngKVJNpBK2/wb8jTRJQ6t9FPgJ8EPSPcwptGbigkWSNrD9ILy8bN2ifs4pQ63J91FJ/wk8AqzdgrhdJRJmAEDSRqQhHKvUzRqyMoV7IhXEfTewO/B6SSfWxV1YVdwBKP2eRR6wf3geVN/Tql6ytqcDm+e42H62FXElbUvqgPNm0jCaEVQ8MXgev1v1lH+NHEUaWjKb9KXkDbTmy9A38hehz5F+1isDR7QgbleJhBlqNiSt9LAqaaWQmnnAxyuM+whpKa33kTrdFON25P/wkjYjjfMsrt5xoO1ZFcddopdsbrKrvJcsqab3YVJrwUTgI8AbqwyYO8F8nFeuOVppLdP2tZLGkf5/qs0c9VI/p5Xhz/n3OJfU2ztUIDr9hCVI2s72LW2Iu6ztoVCjXIKkqba37f/IAX3mFOCYul6y36p6hhhJF5N6yRY7pGxuu9JespKm2Z4oaYbzsmZVz4iTf8Y3kr6EvdwkavviqmLmuJ8EzrP9TH7/KmAf2z+rOO79pPvgFwKXtGLawW4UCTMAIOnztr/b28whVc0YIulXtj/U28K/bsG6kZJeT2o6K9ZEKluLs1t6yRZiTAZ2AU4H/knqCHRQldfbiutqNq6kO21v0cspZcbehlSTfz/wF+AC27+oOm43iSbZUFNbkWRai+N+Jj+/p8+jKiLpO6RFo//C4pqIqXbx6m7pJVtzAOm+5adIzezrAB+sOOblkna3fUXFceotI0m1VWgkjaBF0x/avpW04s+3gB+QWhIiYZYoaphhSJD0nfoxY422VRD3PmB8i+4z1WIWV++AlJyPq7oZTdLmpHuntSWvnibdO616iEfLSJpH+sIj0vqX8/OjJWuOSjqBdN/0lFyOQ4G/2/5cxXFXJi2J92FgA+BS4Fe2b+/zxDAgkTDDEnqZKHsuqeZ5alUTCTSaBq94z6sqkv4A7N2qnqq5xnFVlYP2+4h7vO2jWtVLtrdm9ppWNLe3mtKi4P8NvJOUpK8mzU1c6dCSPIftb0hJsuV9ELpFNMmGerOBNVg84HsS8BjwJtL0bQeUGUzSYcAngPUlFWs6Y4Cby4zVi+eB6ZKupQUL/tpeJOl5Sau0oHdqfdyt8uuWDCehTc3sAJIE7AesZ/vrktYB1srNlpVxWuP05PxopfXdR+1H0km2P93KAnWiqGGGJUiabHvHRtsk3V32pOR5qMOrgG8DRxd2zXNFSyLVxW84cN8VrvIg6VekJbauAf5diFnpUkySvg+MIw3vKMa9pMq47SDpZNICzu+w/ebcDH617a0rjrs9cCyLO5HVmoKrXh6vv3JVvpBBN4gaZqi3hqR188Dv2sLOq+d988sOVhg7tk+O9xrSRAmjJY12xQtIV5kY+/D7/Gi11UjTwxUn5DZpxqHKFO4rQuoAM5KKJy4A3mJ7S0l3QposQlIrOt/8L6lj0xLDWUJniIQZ6n0OuEnSg6Rvx+sBn5C0EovH75VO0ntJPfteBzxO+oZ+D9UvID2OVLutX+WhshpBf0la0sW2S+9FarsVM840irvEajeS3g9sU3HYBfm+ba236hqkGmfV5tr+QwvihDaIhBmWYPuKnEQ2YvFMJbWOPj+qMPQ3SM2Uf7S9haSdybXOip1Jmv3mh6QZUg6mmvljB6LUZN3b2NqaqpuCG8T7jaSj+z9yUE4k9RR9jaRvAnsBX644JqRp8U4g1dqL98TvaEHsvrT733RHiIQZGtmKxVOKjZeE7XMqjrnA9pOSlpG0jO3r8hjJqq2QpzNTniz8WEk3kpJou5TdsaA2tnZ7Uk36wvx+b5acjrASdXMT19ZYrbTzhO3zlBYFr/VWfb/te/o5rQxvyc8Ti8VhyWbwykhayfa/G+yqcu3RrhEJMyxB0rmkcVzTWXIgf9UJ8xlJo0ljEs+T9DitmXz9xTwU4H5JnwL+AbymBXFbptYELOkgYGfnxYwlnUIa9lC14tzEtbVO96gyoKQNgIds/zRPPbirpEdrU9ZVxXZb5nGV9FbSTEqjgXXzmNv/tv2JXK6z2lGuThO9ZMMSJN0DbNxXF/WK4q4EvEiqDexHGlx/nu1K1zCUtDXpXumqwNdz3O/anlpl3H7KVMlUanmShu1qvY9zz9GptjcsO1a7SZpOquWNBa4EfgdsaHv3iuLtb/sXkv6n0X7bP6gibiH+n0nNzpfV/u1ImmV70yrjdpuoYYZ6s4DXkub7bJm6ZqSW9Vy1fVt++RytWYapGVXNbnQ8cKek6/L7t5OGQFRKaU3IH5PuURu4BTjCdQuVl6zH9sLcHPxj2yfVesxWZKX8PKbPoypk++9p+OnLopduySJhhnqrA3+RdCtLdlqoZG3BuiEHS+yiwqnMJP3I9md7mdmokuvtY+ab2rWOz7EraSa1fWae2ah2n+1o2/+sIladXwI/JU3dBmn6tvML5ajCAkn7kJYSqzUJj6wqmO1T8/NxfR0n6Yu2v11BEf6em2Wdh88czuL5oUNJokk2LEHS2xttt31Dq8tSJUlb2b69ldcr6Q197c+djipTmP1mfdtfy2NsX1v17DeS/mz7LXXbSl82re7zNybN43qL7fMlrQdMsn18VTGbLFclEwhIWp1Ui9+FxVPyfabqWxrdJhJmeAVJawK1GVFutf14O8sTytHG2W+OB54BLiDVsCcBy5NqnbRiRqehoqr706E1ImGGJUj6EHACcD3pm+rbgKNs/7qd5SpbOycGl7QtcBLwZtLMNyOofuabl2s3xT/aas06nH0tXVbJtHE5ZqOm9o6cok7Sd0ljmV8gdXLaHPisYz3MUsU9zFDvGGDrWq0yz5DyR6CjEiaLJwb/ZH6urU25H2lC9ir9hHQf7yJST86PAG+sOCa0afYb2+tVHaOB4jjIUaQxp6u1oRz1qppAYDfbn5e0J/Aw6XqvI9bDLFUkzFBvmbom2CdJg807Su1+oaTtbW9f2HW0pJuBr1Uc/wFJI5yWfTpT0pQq42W12W/WbOXsN5JGAocBtUn9ryctFbegqpgN7t39SNJNwFeqitmkiyr63FqHpt2B820/VddjNpQgEmaod6Wkq1hyea9Wr1rfSitJ2sH2TfDyAPCV+jlnsJ7PPRmn56a0R1sQs372G2jd7Dcnk/6g/yy/PyBv+1hVASUVmz1rswtVPuQj19o/zuKZsgCw/dH8/K2KQv9O0r2kJtlP5HJUsnZtN4t7mOEVJH2QNI2agMm2L21zkSqjtEbkGaQJC0xaOeWjVc79mXvLPka6f3lEjv1T2w9WFbMQe0tgB9K13tyKOU4b3Set+t5pYawpLJ5d6Hu276sqZo47BbiRutVKbF9cZdwc+1XAs05rn64IrNyiYUNdIxJmCICklUn/P1S+qLOkz9j+cX/bKoj7FdK9rYvJ86sCF9n+RsVx7wD2rn0hyBMZ/LqKzi/tJmm67QltiPuRRttbMAd0V4mEGYD2TSDQbnkIzbeA19l+dx6/t53t/60w5it6SrZiuEGe9nAL59VnJK0A3GH7zRXHfSdpVZjazD5jgYNtX9frSYOPuQppAv3afdMbgK9V/YVI0jeAKbZbehtDaUWamlGkZvc7bO/VynJ0ukiYoavlmW/OBI6xvbmkZYE7bW9WQax9gH1JTaI3FnatDCy0vUvZMevi/wHYpzYBuaRVgV/Yfk9f55UQdxRpndXavdNrgB968bJxVcS8mDTNY22axQOAzW1/oPezSok7j3Q/+iVgAW36wpm/MJxb1Qxd3So6/YRut7rtX0n6IkCef7SqOTinkDr4rA58v7B9HjCjopjF9TBfAu6WdE1+vytwU1VxC84BniVNbg9pndNzSc3DVdnASy7CfVyekL1Srlssu42eB8a1uxCdJhJm6Hb/lvRqFo9N3JbU8ad0eSjL34Dt6mZTusd2lUuZ1dbDvJ00rKTm+gpjFm1Y18HnOkl3VRzzhbrez9uTepBWLne+GUdqGgXA9uSKYxbnRB5BmhTjV1XG7EaRMEO3+x/gMmCDPP5yDdL4xMpI2hv4HotnUzpJUmWzKTmvh9lEuS6uq5WV5U5J2zovmSbpLcDNFcQpOgw4OzdNAjwNHFhxTCR9DPgMsDZpTdltSauzVL2A9PcKrxcCf7P9cMUxu07cwwxdL9+33JCUvO6rckB9jncXsGv9bEpVT1HXRLkq6XiUOxttCPxf3rQuaSWNHgqrtJQcc3nSF58NSGudzs2xKp2QIk+5uDVpndEJkjYCjrM9qcq4OXbMAV2xqGGGrpanitudxQPNd5NU9YK/Q3U2paq+Pb+ros/ty29JE77fAfyjhXFftP2iJCQtb/teSZUv0N1gDuhKWy26VSTM0O1+R5oRZSYtmFc1+0M3zaZU9bJlvVjbdjsS9cO59/FvgGskPQ080oK43TIHdFtFwgzdbu0qVybphYFTScNLBJxGutfVbp00+egUSZvZntnKoLZri2Qfm2cbWoW0ekjVhmqrRUeJe5ihq0n6DnCt7atbGLPRxAUz2pC4lyBpt1b+HKpQWLZtWVJP1dmk4TS18ZCV/IwlrWz7WUkNV0RxxWt+SjoBGM+SrRYzbH+hyrjdJhJm6Gp5OaRfkL6NVzrQXNJhwCeA9YHivLFjSPO67l92zBy3t7U/K00i7ZDn6e1VVc3Dki63/Z7COpzF2nola342KEPXzAHdLpEwQ1eTNJs0p+pMV/w/Qx7i8Crg28DRhV3zqqyBtCuJhNBpImGGrpY737zbdqs6/IQOVLec2CtUvSqMpA8A3wFeQ6phdvQc0O0SCTN0NUlnkZpI/0C61wVQ9bCStsizGJ1EmgVmOdKMMP+OP6qDV1hObBRp7c27SElrPPBn2ztUHP8B4L0tWt+0a0UvqtDtHgKuJSWQMYVHJ/oJaR7X+4EVSAs4n9TnGaEptne2vTNp6sMtbU+0vRWwBfBAC4rwWCTL6kUNM4Q+SDrJ9qfbXY4ySJpme2KxR66kKbbf2u6ydYpG62FWuUZmbooFeDvwWtL4z2JLySVVxO1WMQ4zhL5t3+4ClOh5ScsB0yV9l7RyykptLlOnuUfS6aSe1wb2J00DWJX3Fl4/D+xWeG8gEmaJooYZQh8ajZkcrnJv2cdIzc9HkAbV/9T2g32eGJqW1/48jMULV08GTq5y7c9mSPqi7W+3swydIBJmCH3osIT5Gds/7m9bGBxJKwDr2r6v3WWp6aR/x+0UnX5C6FsnTRfXaHmrg1pdiE4m6X2kZb2uzO8nSLqsrYVKOunfcdvEPcwQ+jbsa1+S9gH2Bdar++O9MmnO0VCerwLbkBfntj1d0th2FiiLpsQSRMIMXa1upfqaucA04FTbZ7W8UOWbQurgszrw/cL2ecCMtpSocy20PVcachW6IVeg4SiaZEO3mw08B/w8P54ldYx5U34/7Nn+m+3rbW8H3MvisaYP217Y3tJ1nFmS9gVGSBon6STSF5Z2u6jdBegE0ekndDVJk23v2GibpLttb9KuspVN0t7A91i8yPDbgFhkuESSViStTVkb3nEV8HXbL/V+Vilx1wA+zuKF0AGw/dEq43abaJIN3W4NSeva/j8ASeuSmi4B5revWJX4MrHIcNU2zo9l82MP4H2kKfKq9FvgRtLvc1HFsbpWJMzQ7T4H3CTpQVKtaz3gE5JWAs5ua8nKF4sMV+884EhgFtDKCf1XjLUvqxdNsqHrSVoe2IiUMO9t9yDzquTZfTYnFhmujKSbqp5ovZe43wCm2L6i1bG7SSTM0PUkvZVX3vs5p20Fqoik7wB/BnYgLzIMbBsJszyS3kma4P5aWjinq6R5pGkOX6LihdC7WSTM0NUknQtsQBpsXrv3Y9uHt61QFWk020txIvYweJJ+QWqtuJvFTbKOzjedIe5hhm43EdjYHfzNUdJhwCeA9SUVx12OAW5uT6k61ua2N2tHYEmvAsaR1uQEwPbkdpSlU0XCDN1uFmlZpEfbXZAK/ZK0QPa3gaML2+fZfqo9RepYUyVtbPsvrQwq6WPAZ4C1Sa0l2wK3AO9oZTk6XTTJhq4m6TpgAnArS95zel+7yhSGL0n3kJr4HyL9e6rdS6y02VvSTGBrYKrtCZI2Ao6zPanKuN0mapih2x3b7gKEjvKuNsV90faLkpC0vO17JW3YprJ0rEiYoavZvqHdZQidw/bf2hT6YUmrAr8BrpH0NPBIm8rSsaJJNnSl2ni53B2/+D9BdMcPw5qkt5MWB7/SdqfNVtVWkTBDCGGYkrSy7WclrdZof3TqKlckzNDVJG1AWrXjJUk7keb8PMf2M+0sVwjNkHS57fdIeojUUlJcxsu2129T0TpSJMzQ1SRNJ43FHEtaWeIyYEPbu7exWCGEISg6/YRu12N7oaQ9gR/ZPknSne0uVAjNkLRlX/tt39GqsnSDSJih2y2QtA9wIPDevG1kG8sTwkB8Pz+PIrWU3EVqlh3P4nmDQ0liaZ/Q7Q4GtgO+afshSesBv2hzmUJoiu2dbe8M/A3Y0vZE21sBWwAPtLd0nSfuYYYQwjAnabrtCf1tC4MTTbKhqxV6Fy4heheGYeYeSaeTWkcM7A/c094idZ6oYYauJunVhbejgL2B1Wx/pU1FCmHAJI0CDgN2zJsmAyd36mLo7RIJM4Q6tVmA2l2OEAZC0grAurbva3dZOlU0yYauVtctfxlST8MxbSpOCEtF0vuAE4DlgPUkTQC+FqvulCsSZuh23y+8XgjMAT7UnqKEsNS+CmwDXA9ge7qkse0sUCeKhBm6Wu6SH8Jwt9D2XEn9HxmWWozDDF1N0iqSfiBpWn58X9Iq7S5XCAM0S9K+wAhJ4ySdBExpd6E6TSTM0O3OAOaRmmE/BDwLnNnWEoUwcJ8GNgFeAn4JzAU+09YSdaDoJRu6Wgz4Dp1A0kTgGNIiArVbbbY9vm2F6kBxDzN0uxck7WD7JgBJ2wMvtLlMIQzUecCRwCygp81l6ViRMEO3Oww4u3Df8mnSROwhDCf/sv27dhei00WTbOhqkpYH9gI2AFYl3fux7a+1s1whDISkdwL7ANeS7mMCYPuSthWqA0UNM3S73wLPAHcA/2hvUUJYagcDG5GWpqs1yRqIhFmiqGGGriZplu1N212OEAZD0kzbm7W7HJ0uhpWEbjdFUvyhCcPdVEkbt7sQnS5qmKErSZpJarJaFhgHzCbd+xHRHT8MM5LuId2Hf4j4d1yZSJihK0l6Q1/7bf+tVWUJYbB6+/cc/47LFQkzhBBCaELcwwwhhBCaEAkzhBBCaEIkzBBCCKEJkTBDCCGEJkTCDCGEEJrw/wG0cTsC8v+R9QAAAABJRU5ErkJggg==\n", "text/plain": [ "<Figure size 432x288 with 2 Axes>" ] }, "metadata": { "needs_background": "light" }, "output_type": "display_data" } ], "source": [ "_ = sns.heatmap(df_USAhousing.corr())" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "Create a distplot showing \"median_house_value\"." ] }, { "cell_type": "code", "execution_count": 12, "metadata": { "colab": { "base_uri": "https://localhost:8080/", "height": 296 }, "colab_type": "code", "id": "SOsTLClWnO2B", "outputId": "b8a78674-5ddb-4706-90b4-37d7d83e8092" }, "outputs": [ { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAWEAAAFgCAYAAABqo8hyAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjQuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8rg+JYAAAACXBIWXMAAAsTAAALEwEAmpwYAAAZr0lEQVR4nO3df7RdZX3n8feXID8EjKRcWJkEFnHMVIHlLyKiOC7aMCWTcRpsRcOUNiqUQlFAp1qoa9XOmskaprIcQIvIZFQcGCBWKaml/GgQmVp+CwZuQkgEhMgtSbQTdJxBwO/8sR9WDjfn3lySc85zzrnv11p3nX2es/c+3ycLPnffZ+/97MhMJEl17FG7AEmazgxhSarIEJakigxhSarIEJakivasXUC3LFq0KG+66abaZUiaXuKVbjC0R8Jbt26tXYIk7dTQhrAkDQJDWJIqMoQlqSJDWJIqMoQlqSJDWJIqMoQlqSJDWJIqMoQlqSJDWJIqMoQlqSJDWJIqMoQlqaKhncpS3XHq6WcytnXbDu2zD5rJVSsur1CRNNgMYb0iY1u3MbL4nB3bb7y0QjXS4HM4QpIqMoQlqSJDWJIqMoQlqSJDWJIqMoQlqSJDWJIqMoQlqSJDWJIqMoQlqSJDWJIqMoQlqSJDWJIqMoQlqSJDWJIqMoQlqSJDWJIqMoQlqSIfbyRp2mv37MRePTfREJY07bV7dmKvnpvocIQkVWQIS1JFXQvhiPhyRGyOiIdb2mZFxK0RsaG8Htjy2QURsTEi1kfEiS3tR0fEQ+WzSyMiulWzJPVaN4+EvwosGtd2PrA6M+cDq8t7IuIIYClwZNnmsoiYUbb5InAGML/8jN+nJA2sroVwZt4B/GRc8xLgyrJ8JXBSS/u1mflcZj4ObASOiYjZwGsy887MTOBrLdtI0sDr9ZjwIZk5BlBeDy7tc4CnWtbbVNrmlOXx7W1FxBkRcV9E3Ldly5aOFi5J3dAvJ+bajfPmJO1tZeYVmbkgMxeMjIx0rDhJ6pZeh/AzZYiB8rq5tG8CDm1Zby7wdGmf26ZdkoZCr0N4FbCsLC8DbmhpXxoRe0fEPJoTcPeUIYufRsSx5aqI32vZRpIGXtfumIuIa4DjgYMiYhPwGeBCYGVEnAY8CZwMkJmjEbESWAu8AJydmS+WXZ1Fc6XFvsDflh9JGgpdC+HMPGWCjxZOsP5yYHmb9vuAozpYmiT1jX45MSdJ05IhLEkVGcKSVJEhLEkVGcKSVJEhLEkVGcKSVJEhLEkV+Yy5AdHuQYTQu4cRSuoOQ3hAtHsQIfTuYYSSusPhCEmqyBCWpIoMYUmqyBCWpIoMYUmqyBCWpIoMYUmqyBCWpIoMYUmqyDvm5C3RUkWGsLwlWqrIEFbPeeQtbWcIq+c88pa288ScJFXkkfCQavcnv3/uS/3HEB5S7f7k9899qf8YwuqIdWtHWXjSKTu0e/QtTc4Q1oTaBesjj25gZPGO6z6fe3iyTdoFhrAm1C5Y14yeVakaaTh5dYQkVWQIS1JFhrAkVWQIS1JFhrAkVWQIS1JFXqKmrnol1xpL05EhrK7yWmNpcg5HSFJFhrAkVWQIS1JFhrAkVWQIS1JFhrAkVWQIS1JFVUI4Ij4eEaMR8XBEXBMR+0TErIi4NSI2lNcDW9a/ICI2RsT6iDixRs2S1A09D+GImAOcAyzIzKOAGcBS4HxgdWbOB1aX90TEEeXzI4FFwGURMaPXdUtSN9QajtgT2Dci9gReDTwNLAGuLJ9fCZxUlpcA12bmc5n5OLAROKa35UpSd/Q8hDPzR8BFwJPAGLAtM28BDsnMsbLOGHBw2WQO8FTLLjaVth1ExBkRcV9E3Ldly5ZudUGSOqbGcMSBNEe384B/BuwXEadOtkmbtmy3YmZekZkLMnPByMjI7hcrSV1WYzjiBODxzNySmc8D3wTeBTwTEbMByuvmsv4m4NCW7efSDF9I0sCrEcJPAsdGxKsjIoCFwDpgFbCsrLMMuKEsrwKWRsTeETEPmA/c0+OaJakrej6VZWbeHRF/CXwPeAF4ALgC2B9YGRGn0QT1yWX90YhYCawt65+dmS/2um5J6oYq8wln5meAz4xrfo7mqLjd+suB5d2uS5J6zTvmJKkin6zRh049/UzGtm57WZuPBJKGkyHch8a2bvORQNI04XCEJFXkkfCAa/c0Y3D4QhoUhvCAa/c0Y3D4QhoUhvA04lGz1H8M4WnEo2ap/3hiTpIqMoQlqSJDWJIqMoQlqSJDWJIq8uoIDaR282sAzD5oJletuLxCRdKuMYQ1kNrNrwEwduOlFaqRdp3DEZJUkSEsSRUZwpJUkSEsSRUZwpJUkSEsSRUZwpJUkSEsSRUZwpJUkSEsSRUZwpJUkSEsSRUZwpJUkSEsSRUZwpJUkSEsSRUZwpJUkU/WqGiiR/Q88ugGRhZXKEhSzxnCFU30iJ41o2dVqEZSDQ5HSFJFhrAkVWQIS1JFhrAkVWQIS1JFXh3RA16KJmkiUwrhiDguM7+7sza156VovbNu7SgLTzplh/bZB83kqhWXV6hImtxUj4Q/D7xtCm1SVc/nHm1/4Y3deGmFaqSdmzSEI+KdwLuAkYj4RMtHrwFmdLMwSZoOdnYkvBewf1nvgJb2Z4H3d6soSZouJg3hzPwO8J2I+Gpm/rBTXxoRrwVWAEcBCXwEWA9cBxwOPAF8IDP/qax/AXAa8CJwTmbe3KlaJKmmqV6itndEXBERt0TEbS/97Mb3XgLclJlvAN4MrAPOB1Zn5nxgdXlPRBwBLAWOBBYBl0WEQyGShsJUT8x9Hbic5uj1xd35woh4DfAe4EMAmfkL4BcRsQQ4vqx2JXA78MfAEuDazHwOeDwiNgLHAHfuTh3qP17ZoOloqiH8QmZ+sUPf+TpgC/CViHgzcD9wLnBIZo4BZOZYRBxc1p8D3NWy/abStoOIOAM4A+Cwww7rULnqlYmubLjtoj/YIZy9xlrDYqoh/NcR8YfA9cBzLzVm5k928TvfBnwsM++OiEsoQw8TiDZt2W7FzLwCuAJgwYIFbdfR4GkXzl5jrWEx1RBeVl4/2dKWNEe1r9QmYFNm3l3e/yVNCD8TEbPLUfBsYHPL+oe2bD8XeHoXvleS+s6UTsxl5rw2P7sSwGTmPwJPRcSvlqaFwFpgFdvDfhlwQ1leBSyNiL0jYh4wH7hnV75bkvrNVG9b/r127Zn5tV383o8BV0fEXsBjwIdpfiGsjIjTgCeBk8t3jEbESpqgfgE4OzN36+SgJPWLqQ5HvL1leR+ao9fvAbsUwpn5ILCgzUcLJ1h/ObB8V75LkvrZlEI4Mz/W+j4iZgL/oysVSdI0sqvzCf+cZmxWkrQbpjom/NdsvyxsBvBGYGW3ipKk6WKqY8IXtSy/APwwMzd1oR6pK9rdjeedeOoHUx0T/k5EHML2E3QbuleS1HntbvhwjmH1gymNCUfEB2iuzT0Z+ABwd0Q4laUk7aapDkd8Gnh7Zm4GiIgR4O9o7naTJO2iqV4dscdLAVz8+BVsK0mawFSPhG+KiJuBa8r7DwI3dqckSZo+dvaMudfTTDH5yYj4LeDdNLOa3Qlc3YP6JGmo7WxI4WLgpwCZ+c3M/ERmfpzmKPji7pYmScNvZyF8eGauGd+YmffRPAtOkrQbdhbC+0zy2b6dLESSpqOdhfC9EfH74xvLdJP3d6ckSZo+dnZ1xHnA9RHxO2wP3QXAXsD7uliXJE0Lk4ZwZj4DvCsifg04qjT/TWbuzuPuJUnFVOeO+Dbw7S7XIknTjne9SVJFhrAkVWQIS1JFhrAkVWQIS1JFhrAkVWQIS1JFhrAkVWQIS1JFhrAkVTTVxxtJ08app5/J2NZtO7Q/8YNHOfyf/4uXtc0+aCZXrbi8V6VpCBnC0jhjW7cxsvicHdrXfPasHdrHbry0V2VpSDkcIUkVeSSsaWvd2lEWnnTKDu2PPLqBkcUVCtK0ZAhr2no+92g/7DB6VoVqNF05HCFJFRnCklSRISxJFRnCklSRISxJFRnCklSRISxJFRnCklSRISxJFRnCklSRISxJFRnCklRRtRCOiBkR8UBEfKu8nxURt0bEhvJ6YMu6F0TExohYHxEn1qpZkjqt5pHwucC6lvfnA6szcz6wurwnIo4AlgJHAouAyyJiRo9rlaSuqDKVZUTMBf4NsBz4RGleAhxflq8Ebgf+uLRfm5nPAY9HxEbgGODOHpY8Ze0ejeP8tJImUms+4YuBTwEHtLQdkpljAJk5FhEHl/Y5wF0t620qbTuIiDOAMwAOO+ywDpc8Ne0ejeP8tJIm0vPhiIh4L7A5M++f6iZt2rLdipl5RWYuyMwFIyMju1yjJPVKjSPh44DfjIjFwD7AayLiKuCZiJhdjoJnA5vL+puAQ1u2nws83dOKJalLen4knJkXZObczDyc5oTbbZl5KrAKWFZWWwbcUJZXAUsjYu+ImAfMB+7pcdmS1BX99Iy5C4GVEXEa8CRwMkBmjkbESmAt8AJwdma+WK9MSeqcqiGcmbfTXAVBZv4YWDjBestprqSQpKHiHXOSVJEhLEkVGcKSVJEhLEkV9dPVEdLAWbd2lIUnnbJD++yDZnLVissrVKRBYwhLu+H53GOH29QBxm68tEI1GkQOR0hSRYawJFVkCEtSRYawJFVkCEtSRYawJFVkCEtSRYawJFVkCEtSRYawJFVkCEtSRYawJFVkCEtSRc6iJg2BU08/k7Gt23Zod0rN/mcIS0NgbOs2p9QcUA5HSFJFhrAkVWQIS1JFjglLXeCz5zRVhrDUBT57TlPlcIQkVeSRsDRg2l0T/MijGxhZXKkg7RZDWBow7a4JXjN6VqVqtLscjpCkijwSlvrURLciO/QwXAxhqU9NdCuyQw/DxeEISarIEJakigxhSarIMWGpMk/ATW+GsFSZJ+CmN0NY6qF2E/t4xDu9GcJSD7Wb2Mcj3unNE3OSVJEhLEkVORwhDTEnl+9/hrA0xJxcvv85HCFJFfU8hCPi0Ij4dkSsi4jRiDi3tM+KiFsjYkN5PbBlmwsiYmNErI+IE3tdsyR1S40j4ReAf5+ZbwSOBc6OiCOA84HVmTkfWF3eUz5bChwJLAIui4gZFeqWpI7reQhn5lhmfq8s/xRYB8wBlgBXltWuBE4qy0uAazPzucx8HNgIHNPToiWpS6qOCUfE4cBbgbuBQzJzDJqgBg4uq80BnmrZbFNpa7e/MyLivoi4b8uWLV2rW5I6pVoIR8T+wDeA8zLz2clWbdOW7VbMzCsyc0FmLhgZGelEmZLUVVVCOCJeRRPAV2fmN0vzMxExu3w+G9hc2jcBh7ZsPhd4ule1SlI31bg6IoD/DqzLzM+1fLQKWFaWlwE3tLQvjYi9I2IeMB+4p1f1SlI31bhZ4zjgd4GHIuLB0vYnwIXAyog4DXgSOBkgM0cjYiWwlubKirMz88WeVy1JXdDzEM7Mv6f9OC/Awgm2WQ4s71pRklSJd8xJUkXOHSFNQ+0m9nFSnzoMYWkaajexj5P61OFwhCRVZAhLUkUOR0gCnAC+FkNYEuAE8LU4HCFJFRnCklSRISxJFRnCklSRISxJFXl1hKRJeeladxnCkiY10aVrt130B84/0QGGsKRd4vwTneGYsCRVZAhLUkWGsCRV5JiwpI7xSopXzhCW1DGv5EoKeGXhfOrpZzK2ddtu7aMfGcKSuq4TM7SNbd02lLO8OSYsSRV5JCypGh84aghLqqjdMMVE48ePPLqBkcW9qqx3DOFdNNFJgmH9D0XqlYnGj9eMnlWhmu4zhHfRRCcJhvU/FEnd4Yk5SarIEJakigxhSarIEJakigxhSarIqyMkDZ1BmmfCEJY0dAZpnglDWNJAa3fr8yDdNGUISxpo7e6wm+imqYnmO64Z2oawpGmjH2+J9uoISarIEJakigxhSarIEJakigxhSarIEJakigxhSarI64R3wscYSeqmgQnhiFgEXALMAFZk5oWd/o52gfvIoxv4l+d9fod1fYyRpE4YiBCOiBnAXwD/CtgE3BsRqzJzbSe/p92kH4atpG4alDHhY4CNmflYZv4CuBZYUrkmSdptkZm1a9ipiHg/sCgzTy/vfxd4R2Z+dNx6ZwBnlLe/Cqwft6uDgK1dLrfXhrFPYL8GzTD2a1f6tDUzF72SDQZiOAKINm07/PbIzCuAKybcScR9mbmgk4XVNox9Avs1aIaxX73q06AMR2wCDm15Pxd4ulItktQxgxLC9wLzI2JeROwFLAVWVa5JknbbQAxHZOYLEfFR4GaaS9S+nJmju7CrCYcqBtgw9gns16AZxn71pE8DcWJOkobVoAxHSNJQMoQlqaJpEcIRsSgi1kfExog4v3Y9ABHx5YjYHBEPt7TNiohbI2JDeT2w5bMLSv3rI+LElvajI+Kh8tmlERGlfe+IuK603x0Rh7dss6x8x4aIWNbhfh0aEd+OiHURMRoR5w5D3yJin4i4JyK+X/r1H4ahX2XfMyLigYj41hD16YlSz4MRcV9f9yszh/qH5kTeD4DXAXsB3weO6IO63gO8DXi4pe3PgfPL8vnAfynLR5S69wbmlf7MKJ/dA7yT5lrqvwX+dWn/Q+DysrwUuK4szwIeK68HluUDO9iv2cDbyvIBwKOl/oHuW6lh/7L8KuBu4NhB71fZ/yeA/wl8a4j+O3wCOGhcW1/2q2oQ9eKn/APe3PL+AuCC2nWVWg7n5SG8HphdlmcD69vVTHOVyDvLOo+0tJ8CfKl1nbK8J82dP9G6TvnsS8ApXezjDTRzfgxN34BXA98D3jHo/aK55n418OtsD+GB7lPZ3xPsGMJ92a/pMBwxB3iq5f2m0taPDsnMMYDyenBpn6gPc8ry+PaXbZOZLwDbgF+ZZF8dV/5EeyvNUePA96382f4gsBm4NTOHoV8XA58CftnSNuh9guaO2lsi4v5opjOAPu3XQFwnvJumdMtzn5uoD5P1bVe26ZiI2B/4BnBeZj5bhtLarjpBPX3Xt8x8EXhLRLwWuD4ijppk9b7vV0S8F9icmfdHxPFT2WSCOvqmTy2Oy8ynI+Jg4NaIeGSSdav2azocCQ/SLc/PRMRsgPK6ubRP1IdNZXl8+8u2iYg9gZnATybZV8dExKtoAvjqzPxmaR6KvgFk5v8GbgcWMdj9Og74zYh4gmZmwl+PiKsGvE8AZObT5XUzcD3NTIz92a9Oj5f12w/N0f5jNAPuL52YO7J2XaW2w3n5mPBnefmJgz8vy0fy8hMHj7H9xMG9NCeIXjpxsLi0n83LTxysLMuzgMdpThocWJZndbBPAXwNuHhc+0D3DRgBXluW9wX+F/DeQe9XS/+OZ/uY8ED3CdgPOKBl+R9ofmH2Zb+qB1EvfoDFNGfpfwB8unY9paZrgDHgeZrfnqfRjCmtBjaU11kt63+61L+ecoa2tC8AHi6ffYHtd0HuA3wd2Ehzhvd1Ldt8pLRvBD7c4X69m+bPrzXAg+Vn8aD3DXgT8EDp18PAn5b2ge5Xy/6PZ3sID3SfaK6E+n75GaX8P9+v/fK2ZUmqaDqMCUtS3zKEJakiQ1iSKjKEJakiQ1iSKjKEJakiQ1h9JSJuj4gFZfnGcotwp/b91Yh4f6f210sR8aGI+ELtOtR502HuCA2ozFxcuwap2zwS1m6LiMMj4pGIWBERD0fE1RFxQkR8t0xsfUxE7BfNRPb3lgnEl5Rt942IayNiTURcR3NL8Ev7fSIiDirLf1VmxBptmRWLiPhZRCyPZrL1uyLikJ2U+56I+IeIeOylo+JofLbU/lBEfLC0Hx9lovPy/gsR8aGyfGFErC11X1TaRiLiG6WP90bEcRP8e+1R+vbalraNEXFIRPzbMkn4AxHxd+36M/6IPiJ+1rL8yfLda6JMPK/+ZgirU14PXEJze+8bgH9HcwvzHwF/QnNb6G2Z+Xbg14DPRsR+wFnAzzPzTcBy4OgJ9v+RzDya5jbScyLiV0r7fsBdmflm4A7g93dS5+xS13uBC0vbbwFvAd4MnFBqmz3RDiJiFvA+mjlI3gT8p/LRJcB/LX38bWBFu+0z85c08yy/r+zvHcATmfkM8PfAsZn5VppJdT61k/601vUbwHyayWreAhwdEe+Z6vaqw+EIdcrjmfkQQESMAqszMyPiIZqJiubSzNj1R2X9fYDDaJ4wcilAZq6JiDUT7P+ciHhfWT6UJmx+DPwCeOlo9X6aCeQn81clBNe2HGW+G7gmm6kqn4mI7wBvB56dYB/PAv8PWBERf9Py/ScAR7RM2/maiDggM3/aZh/XAX8KfIXyZIbSPhe4rvwS2ItmApip+o3y80B5vz/Nv9Mdr2Af6jFDWJ3yXMvyL1ve/5Lmv7MXgd/OzPWtG5XAmnQCkzLX7Qk0TzL4eUTcThPiAM/n9glQXmTn/0231hnjXsd7gZf/tbgPNJN4R8QxwEKaAP0ozZMp9ig1/t+d1ABwJ/D6iBgBTmL70fTngc9l5qrS7z+brK5o/gH3aunHf87ML03h+9UnHI5Qr9wMfKyEBhHx1tJ+B/A7pe0omuGM8WYC/1QC+A00Uwt20h3AB6N5csYIzdH5PcAPaY5s946ImTSh+9KE9TMz80bgPJo//QFuoQlkynovte+g/OK4HvgcsC4zf1w+mgn8qCwvm2DzJ9g+bLOE5pl30Pwbf6TUR0TMiWZSc/Uxj4TVK/+R5lE6a0oQP0EzLvtF4CtlGOJBmvAb7ybgzLLOeuCuDtd2Pc0zxb5Pc1T+qcz8R4CIWEkzfeUGtv+ZfwBwQ0TsQ3P0+fHSfg7wF6XOPWnC/cxJvvc6mvlqP9TS9mfA1yPiRzT9nNdmu/9Wvv8emikZ/w9AZt4SEW8E7iy/634GnMr2ycvVh5zKUpIqcjhCkipyOEJDJyI+DZw8rvnrmbm8Qi0fBs4d1/zdzDy717WoPzkcIUkVORwhSRUZwpJUkSEsSRUZwpJU0f8H+C9+PmwccuUAAAAASUVORK5CYII=\n", "text/plain": [ "<Figure size 360x360 with 1 Axes>" ] }, "metadata": { "needs_background": "light" }, "output_type": "display_data" } ], "source": [ "# TODO 2a: Your code goes here" ] }, { "cell_type": "code", "execution_count": 13, "metadata": {}, "outputs": [ { "data": { "text/plain": [ "Text(0.5, 0, 'median_house_value')" ] }, "execution_count": 13, "metadata": {}, "output_type": "execute_result" }, { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAYEAAAEHCAYAAABIsPrhAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjQuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8rg+JYAAAACXBIWXMAAAsTAAALEwEAmpwYAAAhH0lEQVR4nO3df3ST5f3/8WcItDrY0DLTMOy3Duxcp7ayydEKdjMlLW0ayGhx7g+2dW5sYQMBZYfK7ISDvzYPG/ulrZ1HnGebWrUcyXSVdByqMHQq65hxs+50lI2ms6VAcWkhXJ8/esxXbLG/0x/36/FXe/W6c9/vJM0r1/3jum3GGIOIiFjSpNHeABERGT0KARERC1MIiIhYmEJARMTCFAIiIhY2ebQ3oC8HDhwgMTGxR3tnZ2ev7ROdVesG1a7arWWodXd2dnLVVVf12W/Mh0BiYiLp6ek92kOhUK/tE51V6wbVrtqtZah1h0KhfvXT7iAREQtTCIiIWJhCQETEwhQCIiIWphAQEbEwhYCIiIUpBERELEwhICJiYQoBERELUwjIsIicig5rPxGJjzE/bYSMD+dNsXPJhkCf/Rrv9cRha0SkvzQSEBGxMIWAiIiFKQRERCxMISAiYmEKARERC1MIiIhYWJ8hUFpaSlZWFoWFhT3+9qtf/YrLLruMtra2WFt5eTlut5u8vDzq6upi7QcPHsTr9eJ2u9myZQvGmGEqQUREBqvPEFi6dCmVlZU92o8cOcLevXv5xCc+EWtraGggEAgQCASorKxk06ZNRKPdFwfdeeedbN68mZqaGhobG9mzZ88wliEjRRd3iUxsfV4sNm/ePA4fPtyj/Z577mH9+vWsXLky1hYMBvF4PCQkJJCSkkJqair19fXMmjWLjo4O5s6dC4DP5yMYDPL5z39+GEuRkaCLwEQmtkFdMRwMBnE4HHz6058+qz0cDpOZmRn7PTk5mXA4zOTJk3E6nbF2p9NJOBzu17o6Ozt7vWFyJBLp942UJ5J41z0SN/ge7PZb9TUH1W7F2uNV94BD4H//+x8PPvggDz/8cI+/9baf32aznbO9PxITE3v9IAqFQiPyATXWTYS6B7v9E6H2wVLt1qt9qHX3N0AGHAKHDh3i8OHDLFmyBIDm5maWLl3Kk08+idPppLm5OdY3HA7jcDh6tDc3N+NwOAa6ahERGWYDPkX0sssuY9++fdTW1lJbW4vT6eTpp5/moosuwuVyEQgE6OrqoqmpicbGRjIyMnA4HEydOpUDBw5gjKG6upqcnJyRqEdERAagz5HAunXrePnllzl69CjZ2dmsWrWKZcuW9do3LS2N/Px8CgoKsNvtlJWVYbfbge6zg0pLS4lEImRnZ5OdnT28lYiIyID1GQJbt2790L/X1tae9bvf78fv9/fod+WVV7Jz584Bbp6IiIwkXTEsImJhCgGL0kVgIgK6s5hl6SIwEQGNBEad1e7NO5A6JkrNImOZRgKjzGrfyPtbL0ycmkXGMo0EREQsTCEgImJhCgEREQtTCIiIWJhCQETEwhQCE4xOqxSRgdApohOM1U45FZGh0UhARMTCFAIiIhamEBARsTCFgIiIhSkEREQsTCEwTrx36md6evoob4mITCQ6RXSc0KmfIjIS+hwJlJaWkpWVRWFhYaztvvvuY9GiRXi9Xr7zne9w/Pjx2N/Ky8txu93k5eVRV1cXaz948CBerxe3282WLVswxgxzKSIiMlB9hsDSpUuprKw8q23+/Pns3LmTZ599lksuuYTy8nIAGhoaCAQCBAIBKisr2bRpE9Fo926MO++8k82bN1NTU0NjYyN79uwZgXJERGQg+gyBefPmMX369LPaFixYwOTJ3XuSrrrqKpqbmwEIBoN4PB4SEhJISUkhNTWV+vp6Wlpa6OjoYO7cudhsNnw+H8FgcATKERGRgRjyMYGnnnqK/Px8AMLhMJmZmbG/JScnEw6HmTx5Mk6nM9budDoJh8P9evzOzk5CoVCP9kgk0mv7eKMDvR/u/a/xRHnNB0O1W6/2eNU9pBB44IEHsNvtLF68GKDX/fw2m+2c7f2RmJjY6wdlKBTSB6gFvP81tvJrrtqtV/tQ6+5vgAw6BJ555hl2797NI488EvtAdzqdsV1D0D0ycDgcPdqbm5txOByDXbWIiAyTQV0nsGfPHh566CEeeOABzj///Fi7y+UiEAjQ1dVFU1MTjY2NZGRk4HA4mDp1KgcOHMAYQ3V1NTk5OcNWhIiIDE6fI4F169bx8ssvc/ToUbKzs1m1ahUVFRV0dXVRUlICQGZmJps3byYtLY38/HwKCgqw2+2UlZVht9uB7rODSktLiUQiZGdnk52dPbKViYhIn/oMga1bt/ZoW7Zs2Tn7+/1+/H5/j/Yrr7ySnTt3DnDzRERkJGnaCBERC1MIiIhYmEJARMTCFAIiIhamEBARsTCFgIiIhSkEREQsTCEgImJhCgEREQtTCIiIWJhCQETEwhQCMu5FTkWHtZ+IlQz5zmIio+28KXYu2RDos1/jvZ44bI3I+KKRgIiIhSkEREQsTCEgIhJH/T029f8umT3CW9JNxwREROJorB3D0khARMTCFAIiIhbWZwiUlpaSlZVFYWFhrK29vZ2SkhJyc3MpKSnh2LFjsb+Vl5fjdrvJy8ujrq4u1n7w4EG8Xi9ut5stW7ZgjBnmUkREZKD6DIGlS5dSWVl5VltFRQVZWVnU1NSQlZVFRUUFAA0NDQQCAQKBAJWVlWzatIlotPsgyJ133snmzZupqamhsbGRPXv2jEA5IiIyEH2GwLx585g+ffpZbcFgEJ/PB4DP52PXrl2xdo/HQ0JCAikpKaSmplJfX09LSwsdHR3MnTsXm82Gz+cjGAwOfzVjhK5MFZHxYlBnB7W2tuJwOABwOBy0tbUBEA6HyczMjPVLTk4mHA4zefJknE5nrN3pdBIOh/u1rs7OTkKhUI/2SCTSa/tYkJ6e3q+j/6CrWPvy/tf4XK95enr6oB5vPBnL7/eRNtFqH2vv12E9RbS3/fw2m+2c7f2RmJjY65MWCoUG9GTK+PT+13g4XvPx+p6x8vvdyrUPpe7+Bsigzg6aMWMGLS0tALS0tJCUlAR0f8Nvbm6O9QuHwzgcjh7tzc3NsZGEiIiMnkGFgMvlorq6GoDq6mpycnJi7YFAgK6uLpqammhsbCQjIwOHw8HUqVM5cOAAxpizlhERkdHT5+6gdevW8fLLL3P06FGys7NZtWoVK1asYM2aNVRVVTFz5ky2bdsGQFpaGvn5+RQUFGC32ykrK8NutwPdZweVlpYSiUTIzs4mOzt7ZCsTEZE+9RkCW7du7bV9+/btvbb7/X78fn+P9iuvvJKdO3cOcPNERGQk6YphERELUwiIZegOZCI9aRZRsYyxNnujyFigkYCIiIUpBERELEwhICJiYQoBERELUwjImPXBs3SsOn+MyEjS2UEyZulsHpGRp5GAiIiFKQRERCxMISAiYmEKARERC1MIiIhYmEJARMTCFAIiIhamEBARsTCFgIiIhSkEREQsbEgh8Mgjj+DxeCgsLGTdunV0dnbS3t5OSUkJubm5lJSUcOzYsVj/8vJy3G43eXl51NXVDXnjRURkaAYdAuFwmEcffZSnnnqKnTt3Eo1GCQQCVFRUkJWVRU1NDVlZWVRUVADQ0NBAIBAgEAhQWVnJpk2biEZ1Gz8RkdE0pJFANBolEolw+vRpIpEIDoeDYDCIz+cDwOfzsWvXLgCCwSAej4eEhARSUlJITU2lvr5+yAWIiMjgDXoW0eTkZL7+9a9zww03kJiYyPz581mwYAGtra04HA4AHA4HbW1tQPfIITMz86zlw+Fwn+vp7OwkFAr1aI9EIr22jwWa8nj8G2vvrbH8fh9pE632gXw+xKPuQYfAsWPHCAaDBINBPvrRj3LLLbewY8eOc/Y3xvRos9lsfa4nMTGx1yctFArpw1ZGzFh7b1n5/W7l2odSd38DZNC7g/bu3cvFF19MUlISU6ZMITc3l9dff50ZM2bQ0tICQEtLC0lJSQA4nU6am5tjy4fD4diIQURERsegQ+ATn/gEf/nLX/jf//6HMYZ9+/YxZ84cXC4X1dXVAFRXV5OTkwOAy+UiEAjQ1dVFU1MTjY2NZGRkDEsRIiIyOIPeHZSZmUleXh5f/OIXmTx5Munp6XzpS1/i5MmTrFmzhqqqKmbOnMm2bdsASEtLIz8/n4KCAux2O2VlZdjt9mErREREBm5It5dcvXo1q1evPqstISGB7du399rf7/fj9/uHskoRERlGumJYRMTCFAIiIhamEBiAyCld4WwF/X2d9X6QiWBIxwSs5rwpdi7ZEOizX+O9njhsjYwUvc5iJRoJiIhYmEJAZJC020gmAu0OEhkk7TaSiUAjARERC1MIiIhYmEJARMTCFAIiIhamEBARsTCFgIiIhSkEREQsTCEgImJhCgEREQtTCIiIWJhCQETEwhQCIiIWNqQQOH78OKtXr2bRokXk5+fz+uuv097eTklJCbm5uZSUlHDs2LFY//LyctxuN3l5edTV1Q1540VEZGiGFAJ33XUX119/Pc8//zw7duxgzpw5VFRUkJWVRU1NDVlZWVRUVADQ0NBAIBAgEAhQWVnJpk2biEY1xa6IyGgadAh0dHTwyiuvUFxcDEBCQgIf+9jHCAaD+Hw+AHw+H7t27QIgGAzi8XhISEggJSWF1NRU6uvrh16ByBin+w7IWDbo+wk0NTWRlJREaWkpb775JpdffjkbN26ktbUVh8MBgMPhoK2tDYBwOExmZmZs+eTkZMLhcJ/r6ezsJBQK9WiPRCK9to+k9PT0uK5PJoaB3HfgXO/p0Xi/jxUTrfaBfI7Eo+5Bh8Dp06d54403uOOOO8jMzGTLli2xXT+9Mcb0aLPZbH2uJzExsdcnLRQK6UNZJpxzvaet/H63cu1Dqbu/ATLo3UFOpxOn0xn7dr9o0SLeeOMNZsyYQUtLCwAtLS0kJSXF+jc3N8eWD4fDsRGDiIiMjkGHwEUXXYTT6eSf//wnAPv27WPOnDm4XC6qq6sBqK6uJicnBwCXy0UgEKCrq4umpiYaGxvJyMgYegUiIjJoQ7rH8B133MFtt93GqVOnSElJ4Z577uHMmTOsWbOGqqoqZs6cybZt2wBIS0sjPz+fgoIC7HY7ZWVl2O32YSlCREQGZ0ghkJ6eztNPP92jffv27b329/v9+P3+oaxSRESGka4YFhGxMIWAiIiFKQRERCxMISAiYmEKARERC1MIiIhYmEJARMTCFAIiIhamEBARsTCFgIiIhSkEREQsTCEgImJhCgEREQtTCIiIWJhCQETEwhQCIkLkVHRY+8n4MaSbyojIxHDeFDuXbAj02a/xXk8ctkbiSSMBERELUwiIiFjYkEMgGo3i8/n41re+BUB7ezslJSXk5uZSUlLCsWPHYn3Ly8txu93k5eVRV1c31FWLiMgQDTkEHn30UebMmRP7vaKigqysLGpqasjKyqKiogKAhoYGAoEAgUCAyspKNm3aRDSqg0wi7/mwg67p6en97juYfmJdQzow3NzczO7du/n2t7/NI488AkAwGOTXv/41AD6fj+XLl7N+/XqCwSAej4eEhARSUlJITU2lvr6euXPnDrkIkYmgvwdnof8HaHXAV/oypBC4++67Wb9+PSdPnoy1tba24nA4AHA4HLS1tQEQDofJzMyM9UtOTiYcDve5js7OTkKhUI/2SCTSa/tI+uC3MZHR1J/3/0i8Z+P9fzca/+sjaSCvSTzqHnQI/PGPfyQpKYkrrriC/fv399nfGNOjzWaz9blcYmJir09aKBTSh7JY2mi9/+O9Xiv/rw+l7v4GyKBD4LXXXqO2tpY9e/bQ2dlJR0cHt912GzNmzKClpQWHw0FLSwtJSUkAOJ1OmpubY8uHw+HYiEFEREbHoA8M33rrrezZs4fa2lq2bt3Ktddey/3334/L5aK6uhqA6upqcnJyAHC5XAQCAbq6umhqaqKxsZGMjIxhKUJERAZn2K8YXrFiBWvWrKGqqoqZM2eybds2ANLS0sjPz6egoAC73U5ZWRl2u324Vy8iIgMwLCFwzTXXcM011wBw4YUXsn379l77+f1+/H7/cKxSxNIip6KcN0VfomToNHeQyDikUz9luGjaCBERC1MIiIhYmEJARMTCFAIiIhamEBARsTCFgIiIhSkERKTfNIX1xKPrBESk33R9wsSjkYCIiIUpBERELEwhICJiYQoBERELUwiIiFiYQkBExMIUAiIiFqYQEBGxMIWAiIiFKQREZNhpeonxY9DTRhw5coTvfe97vPPOO0yaNIkbb7yRr371q7S3t7N27Vr+/e9/M2vWLH7yk58wffp0AMrLy6mqqmLSpEl8//vf5/rrrx+2QkRk7ND0EuPHoEcCdrudDRs28Nxzz/H444/zm9/8hoaGBioqKsjKyqKmpoasrCwqKioAaGhoIBAIEAgEqKysZNOmTUSj+hYgIjKaBh0CDoeDyy+/HIBp06Yxe/ZswuEwwWAQn88HgM/nY9euXQAEg0E8Hg8JCQmkpKSQmppKfX390CsQkXGrP7uD0tPTtdtoBA3LLKKHDx8mFAqRmZlJa2srDocD6A6KtrY2AMLhMJmZmbFlkpOTCYfDfT52Z2cnoVCoR3skEum1fSSlp6fHdX0iE91AdhvF+/99pAzkcyQeNQ85BE6ePMnq1au5/fbbmTZt2jn7GWN6tNlstj4fPzExsdcnLRQK6UNZxEKs+P8+lJr7GyBDOjvo1KlTrF69Gq/XS25uLgAzZsygpaUFgJaWFpKSkgBwOp00NzfHlg2Hw7ERg4iIjI5Bh4Axho0bNzJ79mxKSkpi7S6Xi+rqagCqq6vJycmJtQcCAbq6umhqaqKxsZGMjIyhbb2IiAzJoHcHvfrqq+zYsYNPfepTLFmyBIB169axYsUK1qxZQ1VVFTNnzmTbtm0ApKWlkZ+fT0FBAXa7nbKyMux2+/BUISITWuRUlPOm9O/zYiB9ZQghcPXVV/P3v/+9179t376913a/34/f7x/sKkXEovp7ABl07cFA6YphEbEkXdXcTTeaFxFL0lXN3TQSEJEJZaJ/cx9uGgmIyISib/gDo5GAiIiFKQRERCxMISAiYmEKAXQgSUSsSweG0YEkETm3/l6BPF6vVFYIiIh8iIn+JVG7g0REhsF43a2skYCIyDAYryMGjQRERCxMISAiYmEKARERC1MIiIhYmEJARMTCFAIiIhamEBARsbC4h8CePXvIy8vD7XZTUVER79WLiMj7xDUEotEomzdvprKykkAgwM6dO2loaBix9Y3XK/hEROIlrlcM19fXk5qaSkpKCgAej4dgMMill146Iusbr1fwiYjEi80YY+K1sueff566ujruuusuAKqrq6mvr6esrOycyxw4cIDExMR4baKIyITQ2dnJVVdd1We/uI4Eessbm832ocv0pwgRERmcuB4TcDqdNDc3x34Ph8M4HI54boKIiLxPXEPgyiuvpLGxkaamJrq6uggEArhcrnhugoiIvE9cdwdNnjyZsrIyvvGNbxCNRikqKiItLS2emyAiIu8T1wPDIiIytuiKYRERC1MIiIhY2LgLgfE67URpaSlZWVkUFhbG2trb2ykpKSE3N5eSkhKOHTsW+1t5eTlut5u8vDzq6upi7QcPHsTr9eJ2u9myZUvstNuuri7WrFmD2+1m2bJlHD58OLbMM888Q25uLrm5uTzzzDNxqPZsR44cYfny5eTn5+PxeNi+fTsw8evv7OykuLiYxYsX4/F4+OlPfwpM/LrfLxqN4vP5+Na3vgVYp3aXy4XX62XJkiUsXboUGMO1m3Hk9OnTJicnxxw6dMh0dnYar9dr3nrrrdHerH55+eWXzcGDB43H44m13Xfffaa8vNwYY0x5ebn54Q9/aIwx5q233jJer9d0dnaaQ4cOmZycHHP69GljjDFFRUXmtddeM2fOnDE333yz2b17tzHGmMcee8zccccdxhhjdu7caW655RZjjDFHjx41LpfLHD161LS3txuXy2Xa29vjVbYxxphwOGwOHjxojDHmxIkTJjc317z11lsTvv4zZ86Yjo4OY4wxXV1dpri42Lz++usTvu73e/jhh826devMihUrjDHWec/fcMMNprW19ay2sVr7uBoJvH/aiYSEhNi0E+PBvHnzmD59+lltwWAQn88HgM/nY9euXbF2j8dDQkICKSkppKamUl9fT0tLCx0dHcydOxebzYbP54vVX1tbyxe/+EUA8vLy2LdvH8YYXnzxRebPn88FF1zA9OnTmT9//lnfNOLB4XBw+eWXAzBt2jRmz55NOBye8PXbbDamTp0KwOnTpzl9+jQ2m23C1/2e5uZmdu/eTXFxcazNKrX3ZqzWPq5CIBwO43Q6Y78nJycTDodHcYuGprW1NXaxnMPhoK2tDTh3nR9sdzqdsfrD4TAzZ84Euk/F/ehHP8rRo0fH3HN2+PBhQqEQmZmZlqg/Go2yZMkSrrvuOq677jrL1A1w9913s379eiZN+v8fM1apHeDmm29m6dKlPP7448DYrT2u1wkMlRnEtBPj0bnq/LD6B7NMvJ08eZLVq1dz++23M23atHP2m0j12+12duzYwfHjx/nOd77DP/7xj3P2nUh1//GPfyQpKYkrrriC/fv399l/ItUO8Nvf/pbk5GRaW1spKSlh9uzZ5+w72rWPq5HARJt2YsaMGbS0tADQ0tJCUlIScO46P9je3Nwcq9/pdHLkyBGge9fDiRMnuOCCC8bMc3bq1ClWr16N1+slNzcXsFb9H/vYx7jmmmuoq6uzRN2vvfYatbW1uFwu1q1bx5/+9Cduu+02S9QO3d/Aofs97na7qa+vH7O1j6sQmGjTTrhcLqqrq4HuGVVzcnJi7YFAgK6uLpqammhsbCQjIwOHw8HUqVM5cOAAxpgey7x3JsAf/vAHrr32Wmw2GwsWLODFF1/k2LFjHDt2jBdffJEFCxbEtU5jDBs3bmT27NmUlJRYpv62tjaOHz8OQCQSYe/evcyePXvC1w1w6623smfPHmpra9m6dSvXXnst999/vyVqf/fdd+no6Ij9/NJLL5GWljZ2a+/34e4xYvfu3SY3N9fk5OSYX/7yl6O9Of22du1aM3/+fPOZz3zGXH/99eaJJ54wbW1t5itf+Ypxu93mK1/5ijl69Gis/y9/+UuTk5NjcnNzY2cEGGNMfX298Xg8Jicnx2zatMmcOXPGGGNMJBIxq1atMgsXLjRFRUXm0KFDsWWefPJJs3DhQrNw4UJTVVUVt5rf88orr5hPfepTprCw0CxevNgsXrzY7N69e8LXHwqFzJIlS0xhYaHxeDzmZz/7mTHGTPi6P+hPf/pT7OwgK9R+6NAh4/V6jdfrNQUFBbHPqbFau6aNEBGxsHG1O0hERIaXQkBExMIUAiIiFqYQEBGxMIWAiIiFKQRERCxMISDj0vLly/nrX/8KwDe/+c3YRVnDYcOGDTz//PPD9njx9PTTT7N58+bR3gwZR8bV3EEivXnooYdGexNExi2NBCRuDh8+zKJFi9i4cSOFhYXceuut7N27l5tuuonc3Fzq6+t59913KS0tpaio6KzpdiORCGvXrsXr9bJmzRoikUjscV0uV2xGxpUrV7J06VI8Hk9s9kaAuXPn8uMf/5jFixdz44038s4773zotv75z3/mpptuIicnJzYqMMZw3333UVhYiNfr5fe//z0A+/fvj900BWDz5s08/fTTANx///0UFBTg9Xq57777gO7pJFatWkVRURFFRUW8+uqrvW7DmTNncLlcZ41y3G4377zzDrW1tSxbtgyfz8fXvva1Xuv54Ihm7ty5sZ8rKyspKirC6/XGbnYj1qSRgMTVoUOH2LZtG2lpaRQXF/Pss8/y29/+lmAwyIMPPsill17Ktddeyz333MPx48dZtmwZ1113HY8//jjnnXcezz77LG+++Wbsbk0fdPfdd3PBBRcQiUQoLi4mNzeXCy+8kHfffZfMzEzWrl3LD3/4Q5544glWrlx5zu1saWnhN7/5Df/85z/x+/0sWrSImpoa3nzzTXbs2MHRo0cpLi7m6quvPudjtLe388ILL/D8889js9liH+Z33XUXX/3qV7n66qv5z3/+w80338xzzz3XY/lJkybhcrl44YUXKCoq4i9/+QuzZs3i4x//OJ/73Od44oknsNlsPPnkk1RWVrJhw4Z+vQYvvvgi//rXv6iqqsIYg9/v55VXXmHevHn9Wl4mFoWAxNXFF1/MZZddBsCll15KVlYWNpuNyy67jH//+980NzdTW1vLww8/DHTfovHIkSO88sorLF++HIBPf/rTscf4oF//+te88MILQPdtLf/1r39x4YUXMmXKFG644QYArrjiCl566aUP3c6FCxcyadIkLr300ti37FdffRWPx4PdbufjH/848+bN469//es5p8WeNm0aiYmJbNy4kS984Qt84QtfAGDv3r00NDTE+nV0dNDR0dHr4xQUFPCLX/yCoqIiAoEABQUFQPeMkmvXruW///0vXV1dXHzxxR9az/u99NJLvPTSS7EbnLz77rs0NjYqBCxKISBxlZCQEPt50qRJsd9tNhvRaBS73c5Pf/rTXudf72te9P3797N3714ef/xxzj//fJYvX05nZycAU6ZMiS0/adIkotFov7fzPeeaZstut3PmzJnY7++tc/LkyVRVVbFv3z4CgQCPPfYYjz76KGfOnImNbPoyd+5cDh06RFtbG7t27cLv9wOwZcsWvva1r5GTk8P+/fv5+c9//qHbZYzh1KlTsZ9XrFjBTTfd1Of6ZeLTMQEZUxYsWMBjjz0W+8B94403gO7bcz777LMA/OMf/+Dvf/97j2VPnDjB9OnTOf/883n77bc5cODAsG7bvHnzeO6554hGo7S1tfHnP/+ZjIwMZs2axdtvv01XVxcnTpxg3759QPdNdE6cOMHnP/95br/9dt58882zanxPKBQ65zptNhsLFy7knnvuYc6cOVx44YWxWt+bs/696Yk/aNasWfztb38Dum9h+F4ILFiwgKeeeoqTJ08C3XPOt7a2DuGZkfFMIwEZU1auXMndd9/N4sWLMcYwa9YsysvL+fKXv0xpaSler5f09HQyMjJ6LJudnc3vfvc7vF4vn/zkJ7nqqquGddvcbjevv/46S5YswWazsX79ei666CIAFi1ahNfr5ZJLLuEzn/kM0B0CK1eujI0MSktLAdi4cSObN2/G6/USjUa5+uqrP/S0zoKCAoqLi7n33ntjbd/97ne55ZZbSE5OJjMzk8OHD/dY7sYbb2TlypUUFxeTlZXFRz7yEaA7BN5+++3YSOAjH/kIP/rRj5gxY8YwPEsy3mgqaRERC9PuIBERC9PuILGsBx54oMeVwYsWLYodfI2np556ikcfffSsts9+9rP84Ac/iPu2iLVod5CIiIVpd5CIiIUpBERELEwhICJiYQoBEREL+z+6V8gnxMs5fwAAAABJRU5ErkJggg==\n", "text/plain": [ "<Figure size 432x288 with 1 Axes>" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "sns.set_style(\"whitegrid\")\n", "df_USAhousing[\"median_house_value\"].hist(bins=30)\n", "plt.xlabel(\"median_house_value\")" ] }, { "cell_type": "code", "execution_count": 14, "metadata": {}, "outputs": [ { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAYoAAAD4CAYAAADy46FuAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjQuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8rg+JYAAAACXBIWXMAAAsTAAALEwEAmpwYAABArElEQVR4nO2de3QT55n/v2NZNrIBC1OEjAokZKnjHwXjJm3stetsxLEdYiACzHLSJqfxbkub0LIOiXdNkhLDoQm7ZkPI4XeyeNmzS04uP8AEkURtDdhkwQSSLtjc6tBliRdQbJmCZcDItizP7w95hC4zoxndL8/nnJzgVzOjR9LM+7zvc2VYlmVBEARBEAKkRFsAgiAIIrYhRUEQBEGIQoqCIAiCEIUUBUEQBCEKKQqCIAhClNRoCxBqOjo6kJ6e7jE2NDTkMxaLkJyhheQMLSRnaIk1OYeGhjB//nze1xJOUaSnpyMvL89jrLOz02csFiE5QwvJGVpIztASa3J2dnYKvkamJ4IgCEIUUhQEQRCEKKQoCIIgCFFIURAEQRCikKIgCIIgRJEU9aTX65GZmYmUlBQoFAp89NFHsFqteOGFF2A2m6HT6fDWW28hKysLALBjxw40NTUhJSUFr776Kn74wx8CAM6fP49169ZhcHAQjz76KF555RUwDIPh4WH8/d//PS5cuAC1Wo2tW7fi29/+NgBg//79eOeddwAAzz33HJYuXRqO7wGvGs/hwy+uwsGyUDAMCmdNQtcNG76x2qDOUGLI7sBd+ygAQK1Son7JHBgKdHjVeA4ffHEFo26lFSdlKPHaYufrHMZ2MxqaL8JstSGFgcfxnlxG8QPZWPHwDGz45AL67trD8nmD53K0BZAIyRlaSE65MADSUlMwNDLq+psFoMlMxcuLJrrmCfc5yP24FAZIT03BoH0U09Qq1Fbkus5xn1e86dpcGbrPIKV6rF6vR1NTE7Kzs11j//RP/wS1Wo1Vq1ahsbER/f39qK2txaVLl7B27Vo0NTXBYrGguroazc3NUCgUqKqqwiuvvIL58+fjZz/7GZ555hk8+uijeP/993Hx4kVs3LgRJpMJhw4dwltvvQWr1Yrly5dj3759YBgGy5Ytw0cffeRSSHzwhZz5C0N71XgO7528IuX7cqFMYfCD+yfh+P/c5H9dwaChKh+GAh2M7Was++gcbHaHrPcgCCKxUSkVeGPZXPzX/96UPAdx5wDwO6/IURZi82TApqeWlhYYDAYAgMFgwOHDh13jlZWVSEtLw/Tp0zFz5kycPXsWvb29uHPnDgoKCsAwDAwGA1paWgAAra2trp1CRUUFTpw4AZZl0dbWhuLiYqjVamRlZaG4uBjHjh0LVGRBPvziquxz7KOsoJIAALuDRUPzRQBAQ/NFUhIEQfhgszvQ0HxR1hzEnRPJeUVywt3f/u3fgmEYrFy5EitXrsSNGzeg0WgAABqNBjdvOidNi8WC/Px813lTp06FxWJBamoqtFqta1yr1cJisbjOycnJcQqUmooJEyagr68PFovF4xzuWmIMDQ35JI4MDg6KJpM4wtSS4xurDZ2dnfiGZ1tIEAQBOOcJuTOQ1DlFbN6TgyRF8eGHH2Lq1Km4ceMGqqurMWvWLMFj+SxZDMMIjgd6jhCBZGYrmK/DoiymqVXIy8vDNHU3rw2RIAhimlqFnv5BWXPQNLUKAPzOK3Iyv4POzJ46dSoAYPLkySgrK8PZs2cxefJk9Pb2AgB6e3td/gutVouenh7XuRaLBRqNxme8p6fHtSPRarXo7u4GAIyMjOD27dtQq9WC1wo1Tz0yXfY5yhQGxQ9kC7+uYFBbkQsAqK3IhUqpCFg+giASE5VSgdqKXFlzEHdOJOcVv4ri7t27uHPnjuvfx48fx+zZs6HX62E0GgEARqMRCxYsAOB0fJtMJgwPD+Pq1avo6urCvHnzoNFokJmZiY6ODrAs63PO/v37AQDNzc0oLCwEwzAoKSlBW1sb+vv70d/fj7a2NpSUlIT8S9hkmIunC2dAMbZbUTBOJaBTq8DAGcWUobz3ValVSjSsyMf7PyvC04UzkOK1yZmUoXQ5sgHAUKDDG8vmQje2CvA+3pviB7Lx1sr5Hu9JEER8wsAZteT+N+CMenpj2VwYCnQ+c5D7cSkMoFKmgAGgU6tc53jPK95ENOrp6tWrWL16NQDA4XBg0aJFeO6559DX14eamhp0d3cjJycH27Ztg1qtBgC888472LdvHxQKBV5++WU8+uijAIBz5865wmNLS0vx61//GgzDYGhoCLW1tejs7ERWVha2bt2K6dOdGrapqQk7duwAAPziF7/A8uXLRT9QIFFPsYK3nMWbW3m3ljq1StCuyQD4enMl7q8zybZ7+kPBMBhlWUzJTEX53GnY/YersDukvQsXBSYUyscA+HHhDFnXjCe4hz7QT8ZFunBRdA3NF/GN1eYTLikHudfp7OzExcGJgue4h2oqGAYOloWO57rGdjPW7ukQDBHXqVU4XqeX/Xnc5Qz1884Xuej+mwRCrM1LYvJICo+NJxJJUQhN9gycNkohJXK8Ti+oZEIFF+MtFWUKg4YVziCHF3Z38J7LTS6JSrCfj5t0QzFhBTLx/V/Tl9h+8qbHOZyC32SYK+m6UkLF31o5P+DJFwjP8y62aAtUqcXavBSW8Fgi/EwT2FJyKzlv+yRnuwSC84uoJJi85E539lEWNbs70NB8UfBcKZOoH6tdTBOsEvzGauMNibTZHajZ3YHiza0wtpslXUvoOlxINx+7Tvf5nMMCeO/kFdxXZ0Lx5lbUf3xB9Lr+QjonZSiDUhLhQijKKFkiGhOuH0U8IHXLz7d6BICbA0PY8InzgfTe4gPO1Q+XUZ6emoJ+mx1ZKiUGhkckmXWGxjLQw4HZapO9G3Encfcb/pk2ZnIUwmy1Yd1H5wDA72QbyMTXOzAiek2xHSx3XbHrq5QKvLZ4juh7RAuhHbzQYi7RoB1FhOG23uYxHwP3cPOtBDln1aQMpce4zT7qKu3hYFmPnYT7tfvu2jE0MoqtK+ej47VyNFTlezjLhAhGTShTGB95vUnmyT5QGACPPTjF78Tkb1fAIbZbFZMhULjrqgXujRQGQdn7w42/HXyiQ4oiwsjd8hsKdMhIE9/4iWVqul/bUKDDP/91fthC6rhosHCuCtUqZVKGGnMmnr6BISj9hM1xq3ZjuxnFm1tx/5hZyH0xEsjEF4wjnruukPVt4rjYNDlxuEcYeUcfJQNkeoowgWz5pdhBpZ5vKNDJqisjFZVSgUX5OS6TWjDmJbH3qF/iVEL1H1+A1RbegomZaQqoM9ICypxVMAxSFYyrEFyouGsfhVLBQK1SCn7+aWqVj9PY2yzFTXDuhSfdQziDYVKGEhlpqbym1X4BmYXGY4VQRZrFK6QoIkwgtk6hc/jOF7q2+42eIsH8JBeb3YH3T14Jq1nJfQXX0Hwx7Iri7rADFzbqYWw348U9Z2Q5ox0sC8dIeL4Nu4NFZnoq6pfM4Y0wqq3I9bu75MJY3e8Eq80u6uOYkMbg9rD4Z+L8DEKTaDza+v0p3WSATE8RJpAtv78IJrFMTaWCwc2BIdTs7nD5LsIVgioUyhsq3B/KSESbuK/MYy1s1zwWAbX8IR2vOUTo++EmOW6y9v5UYmbQXzzyLV6zFzckxRwTj7b+QCLEEg1SFBEmEFun9zlqlRKTMpS8mZrLH9K5HNYpDOBwsLCFMYrJHyyApwtn4K2V84NWGpyN3dhuFtwVMQDSFMGrJ7GVeaxgttqw+8uruDvsG40ktkL393mElIx+1gQ0rMiHWuXpkOYS5waGxKOigPi09Sd7aCxApqeo4G4jdqf18m389EArrx1U6Bx3jO1m7Dtldq1+hZsjRZb3Tl7Bp2e6eXccyhQGdomCcis4sRX+OGVK0IoxM00BpSJFMDEwlrCPsi4fg7tJRCi0WgpiSsZQoBM0+7mbrgAI2vSl3MuxRDyay0INKYoYwdhuxtuf/xlDY3kOgdhBY3n1K+RPkKokAOd3IuQrSGGcDuRQ7J4Ghh0AIvc9KsY6HoZCKXEmES5bWK5vxd0M5O3A/dHc8cjLE19J2+wO1H98AUMjowlj0xfKho9lc1moIdNTjNDQfNGlJDjk2kGTYSssNOmNsvKUTrB4m1+CwREiJcHhfh/IyXZ3NwPx5fu8/fmf8arxnN9gCKvNnlA2/Xg0l4Ua2lHECKGwg0qJjiKCJ4UBOl4rD3s9rUDJSFPgVeM5vC8SAs0VeBQK9eTbnQ452KAi2+J5IRNv5rJQQ4pCIu6NzxUMg6ceme4qhCZ0/AdfXHH5CVTKFLyxbB7+639velyncNYkdN0QjtNnAdxXZ0KagkFGWir6bXbXww1EJp+A8IT7Te+bHJuKeWDYIZonI6WIoNCkHszOJ5ls+okGKQoJvGo85/HgOVjW9TefsvA+HnCW3ajZ3eEx5mDF+267M+xgMWy757Ss3eu0PceKwzrZuK/OFG0RAkaK2STUu9Nks+knGuSjkIBQ43O546HEPkpKgpCPTq2SZEKRU31YqH6YgmGS1qafaNCOQgJCDkG54wQRTRhA8qrePQOei3qaPzUVrZfv+kT/LH9Ih32nzLJ6WyR7SYx4gxSFBIQazoitpEhZENEkBZ5VgLkGQ3ImY28HbmdnJ8rm83e4e3hmtuSJn0pixB+kKCTw1CPTeZ2DQg3RhY4PJXIS1YjYRK1SIjM9NSwO8TdXzveYuB97cAqOfHUd99eZPIIh5K7qhaJ/5EQFiZXEIEURm5CikADnsJYa9cSNy4l6+sZqc/Wi5l4XgmtSRBFP8c2i/Bw8PDMbr3963m9TIDmoVUqPiZtvBV/bdAZwyz2J5KqeSmLEH6QoJLLJMFc0HFbq8YYCneB1uJ61YvHv3v2EAy3TQEQf09luH9t+KLDa7Cje3OraIfCt4Pk6HUZqVR8rJTHITyIdUhQxiNCDxK0UObh/084iPuFqNIUD9x2CHNOWv1W91MlV7LhYKIlBfhJ5kKKIQYQeJK5pjzuciYF7MGMxASwZCEejJiGk+qdsdgde3HMGKYz0ApFiq/rWy7ex/eT/ekyuL+zuwN7/uuIyn3L+EPedklDTpGiu5slPIg9SFGEimG2t+4NkttrGit15tjQVOsc7qY8IP5MylHht8ZyIfPe6sYlYarCEnOg7pYLBwNCIh8Pb/V7bdbrPZ3JlAY+kUbPVxlvmw3sSjnZJDPKTyIMS7sIAX0G1dR+d8+hZ7A9Dgc6V9MQ97GLX4d4z3shMU4S0uVE4UauUyEzzTUK7MziCDZ9cCPv7c+aZI19dD8n11Cqlq9DdpAwlwDr9G0L37HWJDnch1RRLk7DQzonKjPBDiiIMBNsRy9huRvHmVtTs7pB8nVguMS7G0u/pYr7nA0dmeupYCXJP3HtChBPutw+FeZEzZR6v0+PrzZXISEv1MWd532tTMoMzQMTSJByPnfaiCSmKMBDMtvZV4zm8MNa2VAiz1Ybiza24v86E4s2tMLabY2q1JgfT2W7oYmgCESMW/D/efa7lwFdOnEOsdSq3q/jJ9yZJfm/v46I9CXOLL+6ZAZD0pcPlQD6KMBBo+F/r5dt4/+R1vytsBvcmLc5EkKVSxmXkU99de0RW44lEoDswFk5zE9fUiINrLSvkz+BMmvpZE9BtV/ktNc6V9Tjy1fWYCD0VinB6Y9lcn++C4IcURRgQilp67MEpKN7M3+oUcDoLpUwCfI7CeDQ7EZHHarPD2G523Xdc3wqx+44zQe18MgebDHN9ynVwWd+xoBT4oAin4CFFEQb4wv/8hQwa280hzc4lCCG4CdLYbpbciMjdNOUdkv3+ySuYplZhq1cyaKxAEU7BQ4oiTHiH/xVvbhV1TMdjxBIRn3ATZEPzRclmLG+zaTwlrMVKJng8Q87sCCG2qonXiCUiPuEmSKnOeT5HdLCRfZGEIpyChxRFhBCL26YtMBEuxCZIoTL5zuPuTQ3jlL7TRDyZcwwFOopwChLJisLhcMBgMODnP/85AMBqtaK6uhrl5eWorq5Gf3+/69gdO3agrKwMFRUVOHbsmGv8/PnzWLx4McrKyrBp0yawY1EWw8PDqKmpQVlZGVasWIFr1665ztm/fz/Ky8tRXl6O/fv3B/2BQ4132J1QUp3Yqoa2wEQ4UKuUohOkeNb2PSXSd9eOdR+dQ+vl264xoXtWnaEMheghx1Cgc+WMHK/TJ5ySkDoPBYpkRfHuu+/igQcecP3d2NiIoqIiHDx4EEVFRWhsbAQAXLp0CSaTCSaTCTt37sSGDRvgcDi3qPX19di4cSMOHjyIrq4uHD16FACwd+9eTJw4EYcOHcKzzz6LLVu2AHAqo+3bt2PPnj3Yu3cvtm/f7qGQoo2cDGyxVY2ctpOA8xEufiBb1jlE8jEw7AyOEJoghfJXuJIx7tjsDuz48oZrMhoYGoEixXdHcmdwJOSTFCFOKCpB+EOSoujp6cFnn32Gqqoq11hLSwsMBgMAwGAw4PDhw67xyspKpKWlYfr06Zg5cybOnj2L3t5e3LlzBwUFBWAYBgaDAS0tLQCA1tZWLF26FABQUVGBEydOgGVZtLW1obi4GGq1GllZWSguLvbYoUQbuXZaoVUNp0TEcFcwW1fOx/s/K/JQPGpVbK7kiPCjU6uQwWMesjtYUZ+B0C5XaKdxa2jUNRlZbXY4eCoN2kfF35MIPZHwF0mKenr99ddRW1uLgYEB19iNGzeg0WgAABqNBjdvOguDWSwW5Ofnu46bOnUqLBYLUlNTodVqXeNarRYWi8V1Tk5OjlOg1FRMmDABfX19sFgsHudw1xJjaGgInZ2dHmODg4M+Y6FAzE4r9/1yx4m/vvPJHLe/bqGz8xZyx3mOL9x1WdZ7EvGPJjMVO5/MwRMCv73YvZg7DvhlYTZ2ne7D9YERTMlMxU++Nwm7TvcFFaodyP0vhdbLt31k1c+a4HNcuJ73UBMqOUM5DwnhV1EcOXIE2dnZ+O53v4svvvjC7wVZntUIwzCC44GeI0R6ejry8vI8xriGQKFmmrpbMOwukPebkPY1bg/7fma1SinpejoBeYjEpXdgBIve/VowzNXfvZiXB+im3at0/MG5OyifOy2ohkqB3v9iGNvNHiXOewdGsP3kTeim+VahDdfzHmpCJWeo5iExpeLX9HT69Gm0trZCr9dj7dq1OHnyJF566SVMnjwZvb29AIDe3l5kZ2cDcO4Uenp6XOdbLBZoNBqf8Z6eHteORKvVoru7GwAwMjKC27dvQ61WC14rVgh12N0vHvkWlF52X2UK49OHQshxJdfXQSQGQqYiKfcin3173ykzlj+k8zB3Cpk2I1XTKZ7CcSNNJMJ//SqKF198EUePHkVrayvefPNNFBYWYsuWLdDr9TAajQAAo9GIBQsWAAD0ej1MJhOGh4dx9epVdHV1Yd68edBoNMjMzERHRwdYlvU5h4toam5uRmFhIRiGQUlJCdra2tDf34/+/n60tbWhpKQkZB8+WEIddqefNQENK/I9rtewIt/jemKOK3d5iOSGi3jydy8KTcBHvrru4U+rXzIH6QpPtaBSKvDjwhkefrJxyhS8sLsj5JE38RSOG2kiEf4bcGb2qlWrUFNTg6amJuTk5GDbtm0AgNmzZ2PhwoV44oknoFAosH79eigUTm1XX1+PdevWYXBwEKWlpSgtLQUAVFVVoba2FmVlZcjKysLWrVsBAGq1Gs8//7zLib569Wqo1epgPm/ICXUDFn/XE3qw6z++4DrXUKBD8eZWMkMlMZnpqZLuS6kTsKFAh0Md/4Pf/+kOHCwLBcPgezOyXDWe1BlK3BkccZUq58vUDqaZF2VXixPuRlAMy+cIiGP47H6xbrOU8wDdX2cStEe/5VZrR0qxNyJxYQB8vbnS73FCCwqdWuVRWdXYbsY/NJ3BkEPeHcVdx7vkB+DckUhd+co5P9afd45Yk1NMHsrMjjJyY6DFVlCcvdbYbsa+U2ZSEkmM1JW2VPt2Q/NF2UoC8KwrFYyPgbKrowsVBRwjmG2xv+upM5RgWaDfZve5ttADVLO7Aw3NF33kEOuXbLbacF+dKWCZicSA61dSvLnV733MV+mY75xAzZicwgqFjyHafbaTGVIUCH0lTO/ruTfm8b622IPCV4p83ynKek12FGNNhhjwNzHixqTex1ImYIVIYyMh3Hcm5GOIb8j0hNCH3vmrBut+bX8PivuxVGWWAIBRloVOrZJkWgxVCKkUJaFUMFCrlLymIargGt/QjgKhD72Tch53TG1FLmqbzsAuYv/ljqVQQAKQX3GY63sdjNlGJ7AjUDAMRlnWr7lWqomLiE1IUSD022Kh6wle289iLYVhcH+dSbSvMZEcKBUMaity0dB8UZbfINimQrUVuT5RT3Kilrj3JsUQn5DpCaHfFvvLkHa/dkPzRVfsuRAOlgULadt/IrFZ+f3pMBTo8NiDU3hfF3qggzVBGQp0WPOX36KooySFdhQI/bbY+3piUU9iq8JAHIhEYvPeySswne3G8Mgo7+vK1BQMCbwWrOlSP2sCVlf+IKhrEPEJKYoxIp1hzSGmDEhJEHy4R9F5MzQyikkZSt5jKMKICBQyPUUZMWUg1qqSIIRgWfEWqAQhF1IUUUasgB/tKIhA6LfZKYuZCClkehqDL5PaarMLJjepVUpX+W/uvCyVEgwDWO/akaVSwu4YxcCwcN5DCoAfFc6gmkxESJmmVkk2fQZakSDUlQyI4Aj370GKAuKZ1Nyq3nsit9rsWLu7AwoF48qBsNrsHq/7YxRO5+TUCWmw3B4O7kMQBOSZmAKtSBDqSgZEcETi9yBFgcAznkcBjAZQKM0bUhJEKGAALH9IelCGWEWCQErdu1cQoJ1G5Aj0d5QDKQpQxjORGLAAjnx1XfLxgVYkEHqdW8nSTiOyRKKpEzmzQWGDROIgZ3IQuu/9PQ9CrysYhtqVRoFAf0c5kKJA4L2mU+AsqUAQsYI6g7+3NR+BViQQOk8oSo927OElJnpmJwPeTVEmZShdzeS5XAZvdaBWKfHmyvloqMr36Bk8KUPp+ndmmnzlw6FS0k9DyEdORHWgzYCEzhMK9aYde3iJ6Z7ZiUYwmdnePYGtd+3ITE/1ceTxtXPkgwHwxrJ5fgu/ubc+NbabsXZ3B/iLNxDJQr+EaDt3Ar3vhc7ja1dKiX7hJ9wFF0lRhAgpIWpSo6tYAC/s7vCbW8HZfg0FOjQ0XyQlQUR19U6lxBMXUhQhQkqImhxbrRQLgtlqwwu7O1Czu0OGpEQiI1RVNlJQKfHEhBRFiBALUeNMUuHIvqaMbsIdOeGxBCEVUhR+kJIab2w3CzYVUilTJJmRCMIfOrUKA0Mjoln/FGFEhAMKrRGB8zuYrTawuOd3MLabfY4RCg28ax8lJUEEDQPgeJ3eVV9MCIowIsIBKQoR/JUqEDqGIEINpwAMBTrB0GkGoAgjIiyQohBBSmo8bfWJcOMeYmpsN2NEoHXujwtnkCOZCAukKESQkhof7q1+BiXeJTWTMpR4Y9lcAEDx5lbU7O5wVSt2J4UB3j95BcWbWz1MowQRCmgWEkFKanyg5T+kkq5UhPX6RGyiYBi8tXI+2teXA4DLVybEKAtBP1osYmw3o3hzK+6vM5FyiwNIUYggJTXe/ZhwYL1rD+v1iegyKUOJVK+nUKlg8M9/nS87UZMj1gvxSQkSIWILCo/1g5QEIu71cITBsgBe3HMGTz0yHUe+ui66qiTij/+TMwEnL9/0HPS6iQLxg8Wy7ywS/ROI0EI7ihARroQ6wNll772TV5CRRj9XonHych+8XQ72UdZjRxCIHyyWw2Qj0T+BCC0084SISNzk/907EPb3ICKLUP6N2Wpz2e8fe3CKqJ/Ku7JxrBfii0T/BCK0+FUUQ0NDqKqqwpIlS1BZWYm3334bAGC1WlFdXY3y8nJUV1ejv7/fdc6OHTtQVlaGiooKHDt2zDV+/vx5LF68GGVlZdi0aRPYsYdkeHgYNTU1KCsrw4oVK3Dt2jXXOfv370d5eTnKy8uxf//+kH3wYHjVeA4PrPst7qsz4YF1v8WrxnOSbnLqXEHIgbPf7ztlxvKHhE0yLBDWEtOhJhL9E4jQ4ldRpKWlYdeuXfj4449hNBpx7NgxdHR0oLGxEUVFRTh48CCKiorQ2NgIALh06RJMJhNMJhN27tyJDRs2wOFw2iPr6+uxceNGHDx4EF1dXTh69CgAYO/evZg4cSIOHTqEZ599Flu2bAHgVEbbt2/Hnj17sHfvXmzfvt1DIUWDV43n8N7JK66VIGcWum+yym90EmVoE3z4631lsztw5KvrggENOrUKx+v0+HpzJY7X6WNaSQCR6Z9AhBa/ioJhGGRmZgIARkZGMDIyAoZh0NLSAoPBAAAwGAw4fPgwAKClpQWVlZVIS0vD9OnTMXPmTJw9exa9vb24c+cOCgoKwDAMDAYDWlpaAACtra1YunQpAKCiogInTpwAy7Joa2tDcXEx1Go1srKyUFxc7LFDiQYffnGVd/zk5T6Pm9+9iRHX/Igg+GAY5/0idpd8Y7UFvRKPpZBUQ4EurpRbsiMp6snhcGDZsmW4cuUKfvSjHyE/Px83btyARqMBAGg0Gty86YzcsFgsyM/Pd507depUWCwWpKamQqvVusa1Wi0sFovrnJycHKdAqamYMGEC+vr6YLFYPM7hriXG0NAQOjs7PcYGBwd9xgJFyKbsYFnkjruFnU/m+Lz2xK7LIXlvIjEZGQXSUlj89iez8JOmK+gdGPE5ZkpmKnLH3cIvC7Ox63Qfrg+MYEpmKn7yvUnIHXcLnZ23RN+j9fJtvP35nzE05jk3W234h6YzMH9jhn7WBElyhvI5CickZ+iRpCgUCgUOHDiAW7duYfXq1fjTn/4keCzLM5EyDCM4Hug5QqSnpyMvL89jrLOz02csUBTM17zKQsEwgu+RpboqWvGTIK4PjCAvLw8vL5rI2yXu5UXfRV6eDnl5wOpK+df/6YFWl5LgGHKw+ODcHayu/IGka4TyOQonJGdgiCktWVFPEydOxCOPPIJjx45h8uTJ6O3tBQD09vYiOzsbgHOn0NPT4zrHYrFAo9H4jPf09Lh2JFqtFt3d3QCc5q3bt29DrVYLXiuaPPXIdFnjxnYzBoZ9V4gE4U4Kw8DYbubt356e6ixVH4y5iEJSiWDwqyhu3ryJW7ec29rBwUF8/vnnmDVrFvR6PYxGIwDAaDRiwYIFAAC9Xg+TyYTh4WFcvXoVXV1dmDdvHjQaDTIzM9HR0QGWZX3O4SKampubUVhYCIZhUFJSgra2NvT396O/vx9tbW0oKSkJx/cgmU2GuXi6cIbL76BgGDxdOAObDHN5j29ovshbm4cPBeNZ24k8G8mDg2Vd2cmc/X7ryvkYtI/CarMHncFMIalEMPg1PfX29qKurg4OhwMsy+Lxxx/HY489hvnz56OmpgZNTU3IycnBtm3bAACzZ8/GwoUL8cQTT0ChUGD9+vVQKJwOuPr6eqxbtw6Dg4MoLS1FaWkpAKCqqgq1tbUoKytDVlYWtm7dCgBQq9V4/vnnUVVVBQBYvXo11Gp1OL4HWWwyzBVUDN5IWbFxUSur//0ofv+nOwCcSoKipJIL7+zkUGYw11bk8pq0KCSVkALD8jkC4hg+u180bYHFm1v9lt1g4CwR/d7JK5ERiohZGABfb3Y6Ie6vM/EuFtyPkYOUbo1ixJpNXQgpcgb7XYSCWPs+xeShWk9hprYi128NqGlqlWDYLZFceJew51tkZKmUAV1bSt2yZIArSsjtrjiTHgD6fgQgRTGG0ArjVeM5fPjFVThYFgwDqFJTYLOPuo4B4HHeYw9OkV2877EHp9BuggAAnxL2tXvPwO7VqGhgeMTlyyDkQ0UJ5UOKAsIrjL3/dQXH/+deZU+WdfbA5o6p3XsGYOByVputtoAm/N1f0m6C8MVQoMOGTy6g765naLXdwdKkFgQUASYfKgoI4RWGu5Lgwz7KSo5o8ncdggDg00fCepc//4YmtcChCDD5kKIAPXRE7OB9L9KkFnqoKKF8SFGAHjoidvC+F2lSCz1UlFA+5KOAcIz592ZkiZqflCmMh4+CIIKBTwG451REM5Qz0aAIMHmQooD4wxiJqCciuWEAUQVAkxoRbUhRjCH0MPJlYXOhtC/s7vB5wI3tZhz56rqz1HiG0idihSDcUTAM1pZ8S3JhPoKIBqQoZMIXSvvC7g7U7O6AWqXEwPCIyxRFSoLwh4Nl8fbnf4ZuGuVFELELObNlwhdKy3korDY7+SsI2QyN5UUQRKxCOwqZUCgtEQ6+sdpiov4QQfBBOwqZUCgtEQ6yVEqs++gczFZb0CXFCSLUkKKQCV9cO0EEQ7qCAcNAsP5QPBJL/bmJ4CFFIRMuWYcghOBLkBNjzV9+K6ZLdXCT/hO7Lkua9LmAD9odJQ6kKALAUKCDzo8JirrTJSdclq931u+kDP7S4JMylNDPmhCzpToCmfTFqrMS8QkpigCprciFUsGvDiZlKPEXmswIS0REGy6zmmtl+vXmShyv08NQoMOg18TJwbUNC2WpjlCafQKZ9Kk6a+JBiiJADAU6ZKbxB40N2h34796BCEtERBOdWoXlD+nQ0HzRZ4I2tpthGytP702/zWly4kyaaremROOU8h/PUJt9Apn0Y3V3RAQOKYogsNr47cpCkwKRmDBw7gj2nTLzTtBiq2/vyXNo5N6903fXLnuSD7XZJ5BJnwoZJh6kKALE2G4mPwQBwDlpik3QYqtv98kzFJN8qM0+gUz6VJ018aCEuwBpaL4o2PieYQDqRZQcpMA5mdbs7uB93Wy1Qa1S8u4+J2UoYSjQobPzFgD5kzxfgp5Qn+1AzT6BVq+lQoaJBSkKmXAPp1B1WBb3HJRE4qMYC2hQMAwcPD88A+DWoK+SUKYweG3xHI8xOZO8UPve5Q/psO+U2adkfjBmH27S7+zsRF5enuv9KYs8eSBFIQPvh5MguP7VfEoCEF44cBFzxZtbxybbbjz24BTBSd57Yh4YGuE1Ux356jreWDY3rJO4kJICQMoiQSFFIQM+GzJBfGO1QSewGxDirn3UZ7Ldd8qM5Q/pcOSr6x6TPACfY8VkCbfZR8yXQooiMSFFIQOKAyf44CZ0vi6JYgsLoR3B8Tq9x3jx5lbJC5RIhKBSnkTyQVFPMqA4cMIbBs4VfkPzRSx/SCc5I1sIvslW6gQcqRBUypNIPkhRyIAKAiYn3r854/Z/zv1gttrw/skrMHv5BV5bPMcng1+pYDwS69zhm2yFJuBJGUoPxSSU8BdqKE8i+SBFIQPv+HCGEimSAu+cgK0r50OnVvmER7srDS5RzlCgQ0NVvsf5DVX5qF8yR/JkKzQxv7Z4jqtUiFjCX6ihPInkg3wUMnF3FN5fZ4qyNES44dYC3n6DFwTyJjjcnbtizmUp0UlSchki7WCmPInkghRFEGQJJFIRiQML8IZ+CuU8uOPPt8CXn+DvWLnvRQ5mIhSQ6SlAjO1mDAyPRFsMIgLwldGQ4q+aplZFrIEPOZiJcOJXUXR3d+OZZ57BwoULUVlZiV27dgEArFYrqqurUV5ejurqavT397vO2bFjB8rKylBRUYFjx465xs+fP4/FixejrKwMmzZtAjuWiTQ8PIyamhqUlZVhxYoVuHbtmuuc/fv3o7y8HOXl5di/f3/IPniwNDRfhN1BKdjJgvfuwd1OD/j2H1EpFXjswSkRa+BDDmYinPhVFAqFAnV1dfjd736H3bt344MPPsClS5fQ2NiIoqIiHDx4EEVFRWhsbAQAXLp0CSaTCSaTCTt37sSGDRvgcDhtp/X19di4cSMOHjyIrq4uHD16FACwd+9eTJw4EYcOHcKzzz6LLVu2AHAqo+3bt2PPnj3Yu3cvtm/f7qGQwom/lSBt6ZMLBU/kAtd3omtzpcvB7e7cPfLV9Yg18CEHMxFO/CoKjUaDOXOcNWnGjx+PWbNmwWKxoKWlBQaDAQBgMBhw+PBhAEBLSwsqKyuRlpaG6dOnY+bMmTh79ix6e3tx584dFBQUgGEYGAwGtLS0AABaW1uxdOlSAEBFRQVOnDgBlmXR1taG4uJiqNVqZGVlobi42GOHEi6k1PSnLX1y4WBZ0Z0AX7OiSPsN+GQgiFAgy0dx7do1dHZ2Ij8/Hzdu3IBGowHgVCY3b94EAFgsFmi1Wtc5U6dOhcVi8RnXarWwWCyuc3JycgAAqampmDBhAvr6+gSvFW6klHumnIrkQ67ZSGwxIXadSPk1CEIqkqOeBgYGsGbNGrz88ssYP3684HEsXwVNhhEcD/QcIYaGhtDZ2ekxNjg46DMmhthKkLtO7jjgl4XZ2HW6D9cHRjAlMxXTJijQ0TMk+X2I+MJmd+D1T88jd9wtScf/aO54vNlmg7criwXw4p4OmL8xQz9rgsf92Xr5Nt7+/M8YGjvJbLXhH5rOuI6NJnKfo2hBcoYeSYrCbrdjzZo1WLx4McrLywEAkydPRm9vLzQaDXp7e5GdnQ3AuVPo6elxnWuxWKDRaHzGe3p6XDsSrVaL7u5uaLVajIyM4Pbt21Cr1dBqtfjyyy89rvWDH/xAVNb09HSfUEMp4YfuTFN3C5Z7dr9OXh6wuvLe6w+s+63k9yCih1LBYGSUDagc/PWBEcn3Ul4esPPUQfTd9Q2hdrDAB+fuYHXlDzzuz58eaHUpCY4hB+s6NprIfY6iBckZGGJKy6/piWVZvPLKK5g1axaqq6td43q9HkajEQBgNBqxYMEC17jJZMLw8DCuXr2Krq4uzJs3DxqNBpmZmejo6ADLsj7ncBFNzc3NKCwsBMMwKCkpQVtbG/r7+9Hf34+2tjaUlJQE/EVIpbYiF8oU353LN1Yb7qsz8f43f8NBwVLTRIzBAn85KzugU4XMSULmIj4lwSGnrpPZaiMTFBE1/O4oTp06hQMHDuA73/kOnnzySQDA2rVrsWrVKtTU1KCpqQk5OTnYtm0bAGD27NlYuHAhnnjiCSgUCqxfvx4KhdOWX19fj3Xr1mFwcBClpaUoLS0FAFRVVaG2thZlZWXIysrC1q1bAQBqtRrPP/88qqqqAACrV6+GWq0O+ZfAB1/XazE1QIl38YN9lEXXDRueLpyB905ekXyeULipWH8GoYZGgHBdJ6FEPur5QEQLhuVzBMQxfNs5uVu84s2tsnoLEPHJWyvnC7Yw5eAmeu7/Op7yGUL3i78eFW+tnM/bOU6sOZZOrfIpJxIq/HWtizVTiRAkZ2CIyUOZ2TxQjkRyUNt0xu8xDpaFSqlw7Qr4QqXFgh90AqYqtUopWNfpjWVzBeUJ170pJSScSF5IUfBAORLJgZTMegXD8IZKb/jkgssnkSIQicetyvkypuuXzOE9B3AqCyEFE657U0pIOJG8kKLgobYi16eHAJF8uO8kvOm7a3etvvmO4fwZhgIdlj+kc2V2KxgGyx/yX3k10iU5qKggIQYpCh64HgJyu5MRiQNXAkNoZS+GuzIwtpux75TZpUwcLIt9p8x+TTqRLslBRQUJMajMuADcA7l2TwdGE8rdT7iTwsDj91UpFVj+kA5HvrqOF3Z3IEulhFLByCoAySmDh2dmB9UnIpI9H4R6flNRQQIgRSEI59wjJZHYuP++kzKUqJyXg32nzK4J02qzQ5nCYFKGEta7dkxTqzAwNOI3HJpTBvFi0pHSHIlIXkhRCMC3EiQSm0H7KExnu31+d/soi1u2e71HFuXnSMq/4CZcoSz/WIO61hFCkKIYo+zNz/DfvQPRFoOIIja7Q3Bx4B4eu++UGQzEEzCBe1FPZNIh4h1SFCAlQcjDZncgQ5mCu3a+/H0n7lFPAJl0iPiGFAVASoKQjc0+iqcLZ+DDL67CwbJgAGSkKXB32OGjDMikQ8Q7pCgIYgwp5iSOaWoVNhnmuiKbvrHaoM5Iw2+W0m6BSDxIURDEGFKVBGdWEisGSMqCSCQo4Q7AbE1mtEUgooxOrRKty8SX+EZlL4hkgXYUAA6t/Ssfh3YK+EuNE4mHexQSX4RS/ZI5vDuEeMmRIIhgIUUxxqG1f+Xx9/11pugIQkQUvrLhUiOU4ilHgiCCgRSFAGINZIjERShCia9XA+VIEMkC+SgE4KveSSQeUvouCPVqABDRwn0EES1oRyHCOGUKlfFIAvwV6RNzWh+v0yelYvDXDY9ILEhR8GBsN6O26YysiqFEbOBdDVYqYg5oclp7QmHByQeZnnjY8MkFUhJxSqDVfsUc0NSrwRMKC04+SFHw0HdXvIQ0kXiIOaAj3W0u1qEdVuxhbDe7WvMWb24Nea9zUhREQqFWKXkn9bdWzodaxd+xcFKG0sdk4v7gNTRfxPKHdOS0HoN2WLGFULBFKJUF+Sh4UKuUfhvTELFJ/ZI5AIRzIfjCWV9bPMfjGnw2+H2nzLzKIRmduhQWHFsE00VRKrSj4KF+yRwoU5hoi0EEgNiDIbUPtVQbfCRWcrFIpPt5E+JEwhRIOwoe+HoI3B0eId9FjKNTq3h3AzW7O7Dhkwt4bfEcSSW/pT54kVjJxSpUOj12iESFAFIUAng/CMZ2M17cewYOaqIdkygVDGorcgVb2PbdtUsO4ZT64JFTl4gFImEKJNOTDEhJxCaTMpRoqMqHoUAnOknb7A68uOeMX9OQ1CgncuoSsUAkTIG0oxjjVeM5V7cyBcPgqUem4+GZ2djwyQUyOcUwDID29eWuv/3V6HKwrN+dhdT2pcns1I13J368y+9NuE2BpCjgVBLvnbzi+tvBsnjv5BWPMSI2mTbml6j/+ILkSDUpfgQpD16y9sOO98zseJc/GpCiAPDhF1ejLQIRAAyA+yarULv3DOwyzYKh8iMko1M33p348S5/NCBFAecOgog/WACf/89NyS1M3ckSSL4j/BPvTvx4lz8akDMbgIKhnIl4JVAVPzA8kvD5DuEi3p348S5/NPCrKNatW4eioiIsWrTINWa1WlFdXY3y8nJUV1ejv7/f9dqOHTtQVlaGiooKHDt2zDV+/vx5LF68GGVlZdi0aRPYsVX88PAwampqUFZWhhUrVuDatWuuc/bv34/y8nKUl5dj//79IfnAfDz1yPSwXZuITewOlorYBUi8176Kd/mjgV9FsWzZMuzcudNjrLGxEUVFRTh48CCKiorQ2NgIALh06RJMJhNMJhN27tyJDRs2wOFw2gLr6+uxceNGHDx4EF1dXTh69CgAYO/evZg4cSIOHTqEZ599Flu2bAHgVEbbt2/Hnj17sHfvXmzfvt1DIYWSh2dm09YqDgh1sjx1MAyMeM/Mjnf5o4Hf+fH73/8+srKyPMZaWlpgMBgAAAaDAYcPH3aNV1ZWIi0tDdOnT8fMmTNx9uxZ9Pb24s6dOygoKADDMDAYDGhpaQEAtLa2YunSpQCAiooKnDhxAizLoq2tDcXFxVCr1cjKykJxcbHHDiWUNDRfxGhYrkyEiqcLZ+DNv57PuxJ8unCGYME/MRiAzE8BYijQ4XidHl9vrozL5k3xLn+kCciZfePGDWg0GgCARqPBzZs3AQAWiwX5+fmu46ZOnQqLxYLU1FRotVrXuFarhcVicZ2Tk5PjFCY1FRMmTEBfXx8sFovHOdy1/DE0NITOzk6PscHBQZ8xd8iJFfscPPcNfpybil8WZmPX6T5cHxjBlMxU/OR7k6CflYof594zH678f124NeRf9bMAXv/0PHLH3Qqj5P7xd3/GCiRnaIkXOYEQRz2xPNFDDMMIjgd6jhjp6enIy8vzGOvs7PQZc2eaupvMEDHO9YER5OXlIS8PWF0pfuxGw0TJHQq560YTf/dnrEByhpZYk1NMaQVkmp88eTJ6e3sBAL29vcjOzgbg3Cn09PS4jrNYLNBoND7jPT09rh2JVqtFd3c3AGBkZAS3b9+GWq0WvFY4eOzBKWG5LhE6uIgUKQ1aDAU6NFTlQ5OZ6rJBC5mmKNKFIPwTkKLQ6/UwGo0AAKPRiAULFrjGTSYThoeHcfXqVXR1dWHevHnQaDTIzMxER0cHWJb1OYeLaGpubkZhYSEYhkFJSQna2trQ39+P/v5+tLW1oaSkJAQf2Zf9p8lOHcswcEaqyCnrbSjQYVfVDJcNun7JHIp0IYgA8Wt6Wrt2Lb788kv09fWhtLQUv/rVr7Bq1SrU1NSgqakJOTk52LZtGwBg9uzZWLhwIZ544gkoFAqsX78eCoXz4ayvr8e6deswODiI0tJSlJaWAgCqqqpQW1uLsrIyZGVlYevWrQAAtVqN559/HlVVVQCA1atXQ61Wh+M7wMCwb7VRIjZgAPy4cAYMBToUb24NOKM2WcttEEQoYFg+Z0Acw2f382cLvK/OFG6xCJkwgM9kfn+diTfBjgHw9WZfx0Ws2YCFIDlDC8kZGGLyUAkPIubQqVU4Xqf3GY9EgxaCIHyhPDMiplCkMIJ+g0AyaqU4vwmCEId2FHCuYCk8NrIoGManGGNmmgK/WSqcISvXz9B6+Ta2n/xfKidNEEFCigLO8FjqPRF+OMf0JsNcyefwNZjhM0vxset0H5WTJogQQIoCwJGvrkdbhISH6xooV0kE02Dm+sAI7zhl4hOEPMhHAZo4IoGDZbHvlFmWj0CowUzN7g5J/oYpmfzroEg4v8k3QiQSpCgAqDOoiU0k4Mw+UhFT4GLJdhw/+d6kqCTZyUkMJIh4gBQFgMTKJIlt5Oze/K38/Ske/awJUSknLdZqkyDiEfJRAOi32aMtQtIgx+xTW5Hr4aPgw5/iiUZPa2q1SSQatKMAJWzJ4enCGZiQFlgHIblmH/cGM0LE4m9HrTaJRIMUBah6rFR0ahU2GebiF498C0o/7eaUKQyeLpwRtNmHazDz1kr+pkWxWNSPWm0SiQaZngCYznZHW4SYx72C667TfbCPsmAYfv+OWqVE/ZI5ITX5xFNRv3iSlSCkQIoCQN9d8lGIwSXKAfDwGbAsoFQwyExLRb/NHvYJMRr+hkCJJ1kJwh+kKAi/bF05X7DMt93BIjM9FR2vlYf8ffmysmnyJYjIQ4oCTlOJlSKfeNGpVa7JOZLRPMFmZRMEETrImQ2gfskc8PlmJbToTmi8HbCRjOahXASCiB1IUYyh4NEKyZiIx30PCoZxTcxcRnEko3koF4EgYgdSFHCuXu2jyaUV+HZLKqUCTz0yHSqlwlUC3L38BJfXoMlMDXumM+UiEETsQD4KJOcqVZWagrv2UY8xm92BD7+46tMnwr00t6FAh9xxt8LewpEvK5tyEQgiOpCigHCLzUTGW0lweCsJDk6ZGtvNeP3TK7g+cDmskUiUi0AQsQMpCkirKZQs8HWeA5zKNNKRSJSLQBCxAfko4FlTiLO9c+UnAH5Hd6zDMPD4DN6oVUpexzTno/Aer63IpUgkgkhSaEcxhtjq1dhuRv3HF2TnWjxdOAMPz8xGze6OEEgoj2lZzrpM3rsAwDnx1y+ZA4DftPPwzGze8RcEPkcy+ngIIpkgReGHV43n8P7JKwgkJurIV9exyTAXDc0XJflAuH2Lv/dSKRV+zWTc5O3P1s+nHIWUppAvhyKRCCKxIdOTCMZ2c8BKArg3WfPlH/DxRO4ESe/1xrK5mOSnK5/75M1VYP16cyWO1+kDtvtTVVSCSE5IUYjQ0HwxYCUB3Jus+XwgxQ9keyS3PV04A78snCLae4E7FhBPBuQqvYaaSOZREAQRO5DpaQy+AnTB2N79rbRXPDwD7/+syGPs/5q+xMDQiOh1HSzrN0KLRfjqIbnnUXDf2Qu7Oyh8lSASGFIUEC5AlyWzWKCCYTDKsj6TppSwUmO7GW9//mcMOfzvYWx2h2AYKwC/u5JQQEX7CCJ5IEUB4QJ045QpPo5jBsBfPpCN01f6fSKJhMwwYmGl7s5mKUqCw8GyUKYwPqVHlAomIj4DKZ+JIIjEgHwUEA7vtN61+/gWtq6cj/d/VuQzLmarl1LgTq6ZS6dWoWFFPtSqe07tSRlKNFTlR2SipqJ9BJE80I4C4mGfQqGicrKGpYSVCh2jVikxNDLKW/MompnLFCpLEMkD7SgQ/rBPKdevrchFuoLxOaZ+yRxZu5dIQaGyBJE8xMWO4ujRo/jNb36D0dFRrFixAqtWrQrp9cNdgE7K9Q0FOpi/MeODc3ckJ8ZFEyraRxDJQ8wrCofDgY0bN+Lf//3fMXXqVFRVVUGv1+Mv/uIvQvo+4TbjSLm+ftYErK78QdhkCDVUtI8gkoOYNz2dPXsWM2fOxPTp05GWlobKykq0tLREWyyCIIikIeZ3FBaLBVqt1vX31KlTcfbsWcHjh4aG0NnZ6TE2ODjoMxaLkJyhheQMLSRnaIkXOYE4UBQsT1IZI1L2Oz093af7WmdnZ9g7soUCkjO0kJyhheQMLbEmp5jSinnTk1arRU9Pj+tvi8UCjUYTRYkIgiCSi5hXFHPnzkVXVxeuXr2K4eFhmEwm6PX6aItFEASRNDAsn20nxvjP//xPvP7663A4HFi+fDmee+45wWM7OjqQnp4eQekIgiDin6GhIcyfP5/3tbhQFARBEET0iHnTE0EQBBFdSFEQBEEQopCiIAiCIEQhRUEQBEGIQoqCIAiCEIUUBUEQBCFKwiuKo0ePoqKiAmVlZWhsbIy2OLx0d3fjmWeewcKFC1FZWYldu3ZFWyRBHA4HDAYDfv7zn0dbFFFu3bqFNWvW4PHHH8fChQvR3t4ebZF4+Y//+A9UVlZi0aJFWLt2LYaGhqItEgBg3bp1KCoqwqJFi1xjVqsV1dXVKC8vR3V1Nfr7+6MooRM+Of/xH/8Rjz/+OBYvXozVq1fj1q1bUZTQCZ+cHP/2b/+G3Nxc3Lx5MwqSSSOhFQVXonznzp0wmUz49NNPcenSpWiL5YNCoUBdXR1+97vfYffu3fjggw9iUk4AePfdd/HAAw9EWwy//OY3v8EPf/hD/P73v8eBAwdiUmaLxYJ3330X+/btw6effgqHwwGTyRRtsQAAy5Ytw86dOz3GGhsbUVRUhIMHD6KoqCgmFl58chYXF+PTTz/FJ598gvvuuw87duyIknT34JMTcC4SP//8c0ybNi0KUkknoRVFvJQo12g0mDNnDgBg/PjxmDVrFiwWS5Sl8qWnpwefffYZqqqqoi2KKHfu3MEf/vAHl5xpaWmYOHFilKXix+FwYHBwECMjIxgcHIyZOmbf//73kZWV5THW0tICg8EAADAYDDh8+HAUJPOET86SkhKkpjrrnc6fP9+jVly04JMTAN544w3U1taKFjqNBRJaUfCVKI/FCdida9euobOzE/n5+dEWxYfXX38dtbW1SEmJ7dvm6tWryM7Oxrp162AwGPDKK6/g7t270RbLh6lTp+Jv/uZv8Nhjj6GkpATjx49HSUlJtMUS5MaNGy5FptFoYtpUwrFv3z6UlpZGWwxeWlpaoNFo8OCDD0ZbFL/E9hMfJHJLlEebgYEBrFmzBi+//DLGjx8fbXE8OHLkCLKzs/Hd73432qL4ZWRkBH/84x/x1FNPwWg0QqVSxYSZxJv+/n60tLSgpaUFx44dg81mw4EDB6ItVsLwzjvvQKFQYMmSJdEWxQebzYZ/+Zd/wd/93d9FWxRJJLSiiKcS5Xa7HWvWrMHixYtRXl4ebXF8OH36NFpbW6HX67F27VqcPHkSL730UrTF4kWr1UKr1bp2ZY8//jj++Mc/RlkqXz7//HN8+9vfRnZ2NpRKJcrLy2PW6Q4AkydPRm9vLwCgt7cX2dnZUZZImP379+Ozzz7Dli1bYnJxeOXKFVy7dg1PPvkk9Ho9enp6sGzZMly/fj3aovGS0IoiXkqUsyyLV155BbNmzUJ1dXW0xeHlxRdfxNGjR9Ha2oo333wThYWF2LJlS7TF4mXKlCnQarW4fPkyAODEiRMx6cyeNm0azpw5A5vNBpZlY1ZODr1eD6PRCAAwGo1YsGBBdAUS4OjRo/jXf/1XvPPOO1CpVNEWh5fc3FycOHECra2taG1thVarxUcffYQpU6ZEWzReYr7DXTCkpqZi/fr1+OlPf+oqUT579uxoi+XDqVOncODAAXznO9/Bk08+CQBYu3YtHn300ShLFr/8+te/xksvvQS73Y7p06fjjTfeiLZIPuTn56OiogJLly5Famoq8vLysHLlymiLBcB5/3355Zfo6+tDaWkpfvWrX2HVqlWoqalBU1MTcnJysG3btmiLyStnY2MjhoeHXYuu/Px8bNy4MebkXLFiRVRlkgOVGScIgiBESWjTE0EQBBE8pCgIgiAIUUhREARBEKKQoiAIgiBEIUVBEARBiEKKgiAIghCFFAVBEAQhyv8HuMM5hAy0cq0AAAAASUVORK5CYII=\n", "text/plain": [ "<Figure size 432x288 with 1 Axes>" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "x = df_USAhousing[\"median_income\"]\n", "y = df_USAhousing[\"median_house_value\"]\n", "\n", "plt.scatter(x, y)\n", "plt.show()" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "Create a jointplot showing \"median_income\" versus \"median_house_value\"." ] }, { "cell_type": "code", "execution_count": 15, "metadata": {}, "outputs": [ { "data": { "text/plain": [ "<seaborn.axisgrid.JointGrid at 0x7f09c783ea50>" ] }, "execution_count": 15, "metadata": {}, "output_type": "execute_result" }, { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAb8AAAGoCAYAAADWwOtRAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjQuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8rg+JYAAAACXBIWXMAAAsTAAALEwEAmpwYAAEAAElEQVR4nOxde0BUZfp+5n5ngIEBBEGRQbkjolmpFZhZi/dLbru2ue76q820LLMsNc21LFfT7Ga5u9Vum5VpaWXlpVW3q5kihAoiIMh1gGHutzO/P4ZzmDPnDOKtUL/nH4eZc77znYvfe973fd7nFfh8Ph8ICAgICAiuIQh/7QkQEBAQEBD80iDGj4CAgIDgmgMxfgQEBAQE1xyI8SMgICAguOZAjB8BAQEBwTUHYvzOgaqqql97CrzorfMCyNwuFL11br11XgCZG8GFgxi/c8But//aU+BFb50XQOZ2oeitc+ut8wLI3AguHMT4ERAQEBBccxD/2hMg6D149rMyNHY4EBMmx2O3p/3a0yEgICC4bCDGj4BBY4cD9SbHrz0NAgICgssOEvYkICAgILjmQDy/awB0OBMACWkSEBAQgBi/awIknElAQEDABjF+BOcFQoohICC4GkCMH8F5gXiRBAQEVwMI4YWAgICA4JoD8fyucFxsGJLePy0u7JLNSSqVXrKxCAgICC4HiPG7wnGxYUh6/2iNjPlOILi4Ob19zAzToZ9IXpCAgKDXghi/qxQX49FFqWUX5VE2muxoc573YQkICAh+MRDjd5WCz6O7kP0v1gskICAg6I0gxu8qweUyUoFeYKAXSYwiAQHBlQxi/K4ShDJSwbgQo8XnRV5saJSAgIDg1wQxflcRehLq7KmRPJ/jERAQEFxpIHV+1yBoo9ViuTSsFBICJSAguNJAPL8rFL2pli7YmxRAAMD3a0+LgICAICSI8bsC8exnZahuasfgul97Jl24HPWCBAQEBJcLxPhdgWjscKCuzYa+0b27mI6QYggICHoriPEjuKwgpBgCAoLeCEJ4ISAgICC45kCMHwEBAQHBNQcS9uzFuJryZYT8QkBA0JtAjF8vxtWkrxlcDtFqdaGxw58LvBqMOwEBwZUFYvyuAFxKVZZfE4HlEM1mJ0OEuRqMOwEBwZUFYvyuEFxsl4beDFISQUBA8EuDGD+CXoFQJRHEKBIQEFwOEONH0KtB6gQJCAguB0ipA8EVAZIXJCAguJQgnh/BFQGSFyQgILiUIMaPoFehOw+PhEAJCAguFYjxI+hVuFrKOggICHo3iPHrZSAL/7nLOkj+j4CA4GJBjF8vw9Vcz3epEOgdxobJsYjk/wgICM4TxPgRXJEIfEkgRBgCAoLzBTF+BFc8riYNVAICgl8GxPgRXDUg5RAEBAQ9BTF+BFcVSDkEAQFBT0CMXy8AYXj+clCpVMQ7JCAgIMavN4AwPC89gvN/tMFL1smJd0hAQECMH8HVieBiedrgaaVd2xCCDAHBtQti/H4lkFDn5ce5PGpCkCEguHZBjN+vBBLq7B0gZRIEBNcmiPEjIADbCwSAtLgwtFpdREWGgOAqBTF+BASdCCTCRGtkaDY7iYoMAcFVCmL8CAh6ABIeJSC4ukCM3y8IQnK58kFIMgQEVweI8bvM4KPbE5LLlY1QXmCoThOBz0B3eUSpVAoCAoJfBsT4XWYQg3f1IlQtYWCOMPh7vjwibRSrm9oxuA6EaENA8AuAGL9LjGDGIMHVjVAvNz156Qk2inVtNvSNdvIaSIAwUK81kPD65QUxfpcAmw9WotXqQv8oFee3mDA5AL+XIOyMk12Kzw6H8rz3vRzz4Pvsdikgc1K9ak70Z51GDrm7++P+0nPq7p62Wl3gQ4RKynruTHZ3t58jVVLMHpHMO1Yg6DEDt1epVLzHAtCjY1/IPHqK3hwq7s1zIwAEPp/P92tPoregvLwcHo/n154GAQEBwSWBWCyGwWD4tafRK0GMHwEBAQHBNQfhrz0BAgICAgKCXxrE+BEQEBAQXHMgxo+AgICA4JoDMX4EBAQEBNcciPEjICAgILjmQIwfAQEBAcE1B2L8CAgICAiuORDjR0BAQEBwzYEYPwICAgKCaw7E+AWgvLyc811VVdUvP5EeoLfOCyBzu1D01rn11nkBZG6XEnzr39UMYvwCwKfrabfbf4WZnBu9dV4AmduForfOrbfOCyBzu5S41nSNifEjICAgILjmQIwfAQEBAcE1B2L8CAgICAiuORDjR0BAQEBwzYEYPwICAgKCaw7E+BEQEBAQXHMgxo+AgICA4JoDMX4EBAQEBNcciPEjICAgILjmcNmNX0FBAcaNG4cJEyZg8uTJAID29nbMmjULY8aMwaxZs2AymZjtX3vtNdx666247bbbcODAAeb7kpISjBs3DrfeeitWrlwJn88HAHC5XHjwwQdx6623Ytq0aaitrWX22bZtG8aMGYMxY8Zg27Ztl/tUCQgICAiuEIh/iYO8+eabiIyMZP7etGkTrr/+esyZMwebNm3Cpk2bsHDhQlRUVOCTTz7BJ598gsbGRsyaNQuff/45RCIRnnrqKaxYsQK5ubn485//jP379+Omm27C+++/j7CwMHz55Zf45JNPsGbNGrzwwgtob2/Hxo0bsXXrVggEAkyePBkFBQXQarWX7Lw8Hgql9SbUmxyI0yqQFqNBrcmOxg4H9Bo5hALgtNEKlVSMmDAZEiNVoCgfSutNMFqd0MgkaLe5oQ+TIyMuDGKx/12EonyoMlphtDohFQlhdXqhlolh93hgsXugUUjQRoXDctqIrDgtpFIRqo1WtNqccHt9aLG4EKWWQqsQw+r0wmh1QSUVQykVocniRIRSCrvLA41MAgi88PmEaLG4oJaJIREJIBEJYXN7IBWJ0GJxIlotg4ei4PRQUErFMNnd0Cok6LC7oZGL4QPQYfdAp5JAKBCg2RcB82kjREIfvF4BGs1OxITJoFWIYLJ74PL4IBD4IBWJYLS6oFVKYHN5oJZKoJIK4fD40GF3QS2XoN3uhk4lhdtLwezwIEIpgavzc7RaBreXQpvdjSiVFFaXByqpGC0WF5RSEdQyMSxONwQQQqsQw+vzwSbR4WhNG1wUBbvLC5vLi5gwGQQAWm0uKCRiWBwehCslcHk9EAvFMFqdiFLL4IMXFCWE2eFGlFoGl8cLk8ODKJUMEPhgd1GwujwIV0phdboRoZRCIhTC4vKgzeq/ViqpCGaXGxqpBDa3lzknkVAIIxUO82kj7C4P1DIJ7G7//LRKMbxeCgqJGFaXFz5QkInEaLY4oVNLIRYKIBUL4HD70NjhRJxWBqFAgMYOB6I1MngoH9ptboQrJZCKhKg3dX7v9UIgEEIpEcLl9cHscCNcKYXD7YXZ6YFSIkKsVgqLXI+dxWc7nwMv5GIxvD4vlFIJbC4vjBYXNHIx5BIhvJQPYQoxOuxeNHXedx8oCAUCwCdAq82NCKX/2VHLxXC4PVBIxBAKBGgyOxGtkUEkpEBRQrTb3AhTiCEQCGDv3K7J7IReI4NKJkKL2QmZNBr/PdEIhUSMdrsbcokQYXIxfD6g0eyEViGGVCSCye6GUiaCzeVBuEIKykfB5xOgzeZGpEoCnw9osbqglYsRpZGg3eY/ryi1FGanG1KRCBKRAAAgEgrg8nihkkr8z69CAolYgBazCyqZGCqZCHa3F2JJGCjKB6FQwFor+kYq4PH6mHUjXCnG2XYHYsLk6KdTQSgUMGuAXOJBbZsXjR3+a5kaq0K4Qn7J1rBrGb+I8QvGnj178PbbbwMAJk6ciJkzZ2LhwoXYs2cPfvOb30AqlaJv375ISkpCcXEx4uPjYbFYMHjwYGafPXv24KabbsLevXsxd+5cAMBtt92GFStWwOfz4eDBg7jxxhsRHh4OALjxxhtx4MABFBUVXZJz8HgobD9ahye3l8DhppCkU+D+WwxY+pH/b7lEiPmFBrz1TTXabC7MLzQgRa+Gw+3Fmi9O4M78RGzYW85su3JiJibmxEMoFGBXaQNW7yrjbBM43rwCA1YdKsP9NxuQEqNARaMVXp8Ay3eUMvN5oMDAzI9v/73HGzB9aBJnzjqVBAKBEEsCvl9waypkIiH+/vXpbue18LaBkIqE2F16Fvn9orD041JmuxXjM6GQCvDm11WYOiQRT+3o+o2ZT34ia5/Hxw5CVYsVa788yXu8Bbem4h//q0KbzYXl4zPw8lelqDbame1iw+T4rKQOhWlxeP9QDf54YzKazC40mBxYv6frHJYVpaHD4cW63ScDvsvAq/v94yXpFPjLzSlYFjA3eh5SsQD33pTCXHu5RIiHRqfix+pq3Jreh3Ud5xcakKRTorzRiuc/P4EIpRR3X5/EmstDo1OhkAix6rPjzHfPTMpCs8WML0rrMSUvEct3HmZ+Wz4+AwqpCI9+UBzy2eP7vHx8Bn6sasGQflFY9nEpIpRSzLqxH3Otx6RHYXRaHyz9uIR1TbYersFvr+sHicjFOWZSpBzVRh9rn+XjMyASAi/ureA8O4+PHQSnl2Ld3xXjM7C7rB7H6iy4+/ok7Clr4D1nl4fCGwcrOWMuG5eBV/9bAZfHxzof+jnbcqgGc28xYMsP1XB5fPjd8CTWffU/RxXMc0TvM2NoIlRSEYRCAVQyMR7/8Efe+ze/0AClRIS/f30ai8YKMXqgHh8fO4snt5fwbr9sXAb+8101TjZZsHZ6LsakxeCLskbEh4twqMrB+T80JjOaGMBLgF8k5zd79mxMnjwZW7ZsAQAYjUbo9XoAgF6vR2trKwCgsbERsbGxzH4xMTFobGzkfB8bG4vGxkZmn7i4OACAWCyGRqNBW1tbyLEuFUrrTYxhAYCi7HjGiACAw01h/Z5yTM5LYD4fqzOhvMmCoux45j8rve2T20tQWm9CldGKBe8d4d0mcLwNe8v9x/y4BG6PAEqphFl86fkEzo9v/7tvSOads1IqYRZs+vu1X56E0eY657ye//wEmi1OTMzrMmL0dks/LoFWIcXdNyQzho/+jZlP0D5Gm4tZvPiOt/bLk8znZR+Xoig7nrXdaaMV99w4AMs+LsXdNySD8gGnW6zM4kNvW9/hZAwf/d3ynV3jFWXHMwtk8DyKsuNZ197hprBu90n8bnh/znVcv6ccFAU8//kJONwUJuclcOaybvdJtFhdrO9OG/0vAHffkIzlO9nHWvZxKSqaLN0+e3yfl31ciol5icx5Tc5LYF3r3w3vzxixwGty9w3JeGLbMd5jquVSzj7LPi6FXCzmfXb47u/Sj0vxu+H9mWsT6pybLU7eMZfv8N+34PMJ/H+z5KMS3H1DMv40agDnvgY/R/Q+6/eUo8XqQpPZidMt1pD3b/2ecub/yoL3jqD4bNdawbf98h2l+NOoAXC4KSx47whK601Y8N4RON0i3v9DJxuswcsRwQXgsnt+//nPfxATEwOj0YhZs2YhOTk55LZ0Hi8QAoEg5PcXuk8oOJ1OlJWVsb5zOByc7wCg1hXGPJT+scH6G/D/TR/S4aZA+brftq7NBhm8zH7nGo/epsnsgM3pPe/52J0e3m2sIb6nfD0/zxazk3e7NpsbDpeX9ze7i3tcytez6xD8OXAuZ1ptzPmGGvNcx+nJeXPO1ermv74B5xlqXCro8aXnF+qeBW/fk2vkcFMwWpwh5xJq/vR94jtmd+fMd66hrnu7zc1s3905X8h9YcZ1eYBz3PfgfYLPubv7R/9Wb7Kf837bXR7mc23n89podvBu29jBvybxIS0trUfbAYDL7UFpTXOPt+9NUIoBh6mF831353/ZjV9MTAwAQKfT4dZbb0VxcTF0Oh2ampqg1+vR1NTE5ANjY2PR0NDA7NvY2Ai9Xs/5vqGhgfEcY2NjUV9fj9jYWHg8HpjNZoSHhyM2Nhbff/89a6xhw4Z1O1eZTMa5WGVlZbwX0HWmHXKJkPVw8v1N22C5RAhh538oyse/bXyEEhq5BHKJsEfj+TrH0WvkaBY4z3s+SpmYdxuVnP97oSD03IPPM1oj490uQimBSSDg/U0p5R5XJOjZdQj+HDgXelylTAyBgH/Mcx2nu+spCLFvpErCf32DzjPUtQ4EPb9Q9yx4+55cI7lECJ1aFnIuoeav6Jw/3zEjujlnvnMNdd3DlRLmc3fn3N3zGOq+0P9vFFIxBCGuf/B9p/cJPme+c6K381L+z320inPeb0XA9UmIVEEuESImTM67bUyYHGn947kTuUj4BAI8vaviko/7S+CZyVnnZeiByxz2tNlssFgszOf//e9/MBgMKCgowPbt2wEA27dvR2FhIQA/M/STTz6By+XCmTNnUFVVhezsbOj1eqhUKhw5cgQ+n4+zD83k/PzzzzF8+HAIBAKMGDECBw8ehMlkgslkwsGDBzFixIhLdm4ZcWFYOTGTMVQ7jtZhxYSuv+nY/4eHa5nPWfFaGPRq7Dhah3kFBta2KydmIiNOi346FdZOz+XdJnC8eQUG7Cyuw4rxmZCIfbA53Vg2LoM1n8D58e3/5teVvHO2Od1YGfT9gltToVNKzzmvhbcNRLRahm2Ha7BifAZruxXjM+HyUnjz60o8NY79GzOfoH0ilVIsuDU15PEW3JrKfF4+PgM7i+tY2+mUUry+/xQzvhBAvygV5heyzyE2TIaHRrOPs6yoa7wdR+uwPGhu9Dx2HK1jXXu5xJ+323m0FivGs6/jsnEZkEv910kuEWLrj7WcuTw0OhVRKinru346FRbcmoo3v67EsiL2sZaPz0CKXt3ts8f3efn4DGw/XMOc19Yfa1nX+l/fnubOvygDb31dib9OyuI9psXh4uyzfHwGHB4P77PDd39XjM/Av789zVybUOccrZbxjrlsnP++BZ9P4P+bpydk4q2vK/H6/lOc+xr8HNH7zC80IEolhV4jQ/8oVcj7Rz93O4vrsHZ6LrL6aJn/i3zbLxuXgTf2n4JcIsTa6bnIiAvD2um5kIm9vP+HUmNVILh4CHx88cFLhDNnzuD+++8HAHi9XhQVFeG+++5DW1sbHnzwQdTX1yMuLg7r169niCmvvPIKtm7dCpFIhMWLF+Omm24CABw7dgyPP/44HA4HRo0ahSVLlkAgEMDpdGLhwoUoKyuDVqvFunXr0LdvXwDABx98gNdeew0AcO+992LKlCndzpfPywvl+QFdbM8GkwOxWjnSYsJQa7KjyexAtNrP9qwyWqE8J9tThow4LYft2Wp1+pmXLi+UUhEcHi8sDg80cgnabC5EKqUstmeHwwWH24fmTtZcuFIEs8OLVqsbCqkIYiHw81kzYsLkkIgEiNLIAPhZbzTbUyERgvIBHU437E4Kte12JEUq/Yw1L4VojQztdje0nXNQy8Tw+XwwOTyIVEqgkIjQbHUhXCGBWOiDh2Z7avxMwce3laAoOx5xYVKkxoahzepCmEICu9sDVSi2p1IKN+VneIYrJPBQFMwOL3QqKTwUBZPNjQiVFHa3B0qJGEarC4pOtudD7x1BtdGOOK0ck/MSEBcmRVZ8OMP2tLu8iNb42Z5tdjbb0+HxQCISo9XqRKRK2nmthDA7PH4GKkWhw+aBTi1l2J42lxdahQQ2lxtqmQSPfHAURdnxEAgAnw/YWVyHZydnQS4WMWzPcKWfJVtvsiMuTAG7O4jtqZDAS3khl4hhC2J7RqqkkIi62J5NnaxAkVCAJrMDUSoZPL7zZ3taHF4opELEaqVot/mZm1GdbE+ZWAyqB2zP5k5mpk/QxfZss7sR3skUVsnFsLs8kEtEkAiFaOpkFouEPlCUgJft2Wz2b6OS+9meUrEILo8XComfhSyT8LM9O+xuKGQi2F1ehMklAChQQWxPo9V/HtFqCdrtXrRaXdCpumd7ttpcCJP72Z5GiwtKqZ/t6XB7IfQ4kJvch8X2bDA5kBChgIfy+deNMDnCVRLUm/wM8V+T7XnkWAme/cZ8Wca+3Hhmchb6R6nPa5/LavyuNJyv8fs1ETwvivJhV2kDFrx3BA43xbxFjs2IRZXRijs2HOCETz6dNxL9dCpmPz4m2rwCA97+thr1JgcAYONdgzH3nZ8485lXmIIJOfEYoFczc6MoH6qNVvxY046aVis27a/kzGH2iGRsPliJVZOy8PznJ5jj0Hh3znUYnhzV7XnSTNEZw5JY7NbFtw+Cy+vDmi9OMN8tKUqH1eFGWpwW1yfrUNNmw/Yjddiwxx/uidPKMXN4ErYcquGwCIOvxbzCFBQO0uPOTd/iTyOTsXEvO2Q0tyCF8x0A/OOefDy1o5Qz/pKidGzafwoLbh2Icdn+RbM34FL9H6AoH3aXNeJorYnJqW39sRb1JgfnPv/ScwucY5XRisYOdunBhaC3rh2hcK0Zv1+l1IHg0oNmidLGxeH2M8cGzRuJxg7+xHmT2b+I0/vxMdE27C3H7BHJeGlfBeQSIXSd4bhgI5YWG4bTRgv6R/lDMoFGKkIpxYOjDbxzyI4Pw6fzRkIoANpsLgBgvDSREFBIxKA6WQanW6yobLHgREMHIpRS1JsczBz/Nfs6/H7zd6y5b/7faSy+Ix0v/y4PrVYXtHIJVn76M0NhXz0lG7/JjMPQpEjmnOpNDrz9bTWm5ScgOyEMW+YMR6vFhZ9q21mGTy4R4vpkHZweCn8amYyBMRok6RSoNtqZ8wuVz1JKxag22vH2t9WYPSIZAgGgkooQH67AX25KQR+tnLmGl2oh7i2wu73YfLCS9UKx5VAN9Jpfn7rf3QvklX7dCbggxu8qQXcGLlTiXK+Rs/brjjlHL1R/++I4Vk/JxqKtxSyP5ZWvKmByuBGtlqHFrYKrzoTVu8oYg3Kmzc47B0OMBsnRalCUD2un53LqGzftr8Ta6bmQigWY+85PvF6Yw02hpbN4f3JeAgQCQC0TQQABVn36M4qy4yESAmlxYdDKJQD87LtFW4uR2UeL6/pF4plJWXh82zE/Y9HmwoBoNYb3j4JYLARF+WD3UIxxlkuEeOHOXLRa3Xj4/a6F0l8X2FUflhqjwXNTsvFowLVaOz0XMWF+kkm9yYGX9lUgTivH3dcn4d5//chst3pKNsKVYvzf24c5CzGAizaK52tYz7V9T34/VtfOPDf0s7Vhbzk2zcxHP92vn8fq7gUyOfr8vIorEUKBAMvGZUAkFDAh3isF/lD2+YEYv6sE3Rk4mkQT/EZLLzjnYqINjNFg9ohkxtg8drscb84ahgMVLfD5wIT2Zg5Pwp2bvuU1UFt/rMW8AgMrzLdqUpafsdepgjE2Ixbx4XJmDKBrAZozKrlbjzQhQsEK2c4rTMFHR+p4Q4vNeysYo1nW0IHadivabC6smZoDCPylEWu/PAEA6BMuh04lw+iBemyZM7xTlUMOlVSMoo0HWXNavrMUa6bmwOvz4Wy7HSs/KYNULMCmmfmQiASMUQDAuh/T8rke96KtxVg3PZfl4S547wjS54/Ez/Xmi/JOztfDEYpEjPAC/SIxNCkS1yfrmJeD7sajfz/e0MH7ciURCXqFZ9XdC+S1YPwonw/Ld5ReUAjxSgQxflcJujNwtGEZNG8kmszsxHrgfjQTLVitYtWnZaxwX6RKBgB440BXDu/+W1I4xcaBBqre5MCWQzV4YXou3BSF8iYLnv/8BNpsLtZCaQtRA8hXU5YYqcD8whSkxmggF4tYBoTygbcA+umdP7OMps3pBuXzod3uRqvNDZEAiFRK4fL4sGhrMWaPSMbO4jqOWs6aqTm88/QBWPvlCVb4c87bh7Br/khQPuC700bEhMkxJi0Gn3aGpC0h6tjKGjowOS8BL+2rYL5r7HBetHdyvh6OVajiVRxaPSUb47L7nHM8+vc/jUzmfbmKCfv1Q55A9y+QBFcfiPG7StCdgaN/T45Wcxa34P1iw+TIS4zAgYoWyMVCKCUiVrhv9ZRs9NP5WaubZubjUHWrv9ZKLORdwEWdxTRyiRAzhiZCrRDjT28eYm274L0j0M0ahmiNDHoN/wLEV1NW02rH5oOVeG5KNpot3KJ6kbD7MO7i2wchVqtA6dkOhoxDG/y7r0/C6l0nIBDwq+WUN5l55wmAZfgAIEIpxeGadizuDKsGekbJ0WpUNlt4x/JSYBVbyyVCVoE80JUfPdnoJyr0JAR6vh5Om83L+yKxaGsxsuK15xyP/p3P+w+MQPzaOFeEhODqAjF+VxFCGbjz3Y/ydXl1cVo5Zo9IhkgI3DggCkIhUNNq5YTeXvv9EN4FvHCgHoP7hjPlHnQILxAON4UDFS1440AlNt41mFmAIpRSTMtPQGKkEpFKKRbfPhAdTi/jnb3aabAe3VqMLXOuZx1/64+1WDouvdswbofDgw67h1ee6vmpOZBLuoqlg+f83qFarJyYhSe3dxm0eQUG1LfbOMeclp/AGD7AbwyPN3RAIREiTC6Bze1m5RwDiSATcuOZea+dnoukzgJo+t7MHJ7EMSbnCoGer4cTrZEgSyDB8nEZUMrEqGu34dPieoxM1eNkoxlxWgWH7BM4Hn08mkxEP0+Fg/TIig/vFSFP4NwvkARXF4jxuwLARyboyfZ0Vwh/5wL2f+TuCAqBb8D1Jgc2H6zE0xMy8ejWo6g22rH49oEAgOen5sDm9KDF6sSLe09iSVE6nt75M2shzkpgL26hFDnkYn/ZQ3GtCWPSY/DZvJH46QzbW5pfaMDWH2vRZnPhodGpzP4ONwW318t6a2+zuaCUCvHXSVl4ImCMZUUZeH3/KRTXdWBuQUpIKTe7y4MlRenYuLcCU4YkcOYsFQtg0KuwbnouvD4fzrTa8O4PNZh9Y388NDqVJZCdqtcw+2bHh+Hem1NwvKEDP9a0Y8dRf17yyBkjXrorD0dr2+GlgC2HavDobWnI6KPBDQN0zEIMdOULJ+clcLyxnoRAz8fDoSgfTre5sWhbl7jy4tsH4a7rkljC5CsnZuLFveUM2SdwPL7nae303F5l+Ghc6AskwZUHYvx6OUKRCQbIRN1uz5ejCWQLdkdQCHwDbuxwQCIS4uH3u4rFdRoZmjqcWPjBUWb/h0anwktRDHVfKADS4zScxa2fToVVk7JYRu2h0amQi4XYuO84w/DcNDOf5S3RHhmdr1u3+yQrdxepkiEvMZKZs1Iqgsfrw9I9pcycfD7g1f0VeGTMIJxoNEMhEaLN5uI1xhq5BGdarag3ORi1nMAOHg8UGFjknpUTs/C7YYl45b+VAMDybtQyCZJ0CswYmogotYx13R8fOwg2txeFg+JQ3mhGRh8tjtWZMCE3Hhl9NH5hBJ8/VElfP/renGw0XxBB43w8nCqjlTF89PgtVherZtPh9guzb5kzHHa3l3c8qViAOaP8wuJCgf9vgt4Fmu0pF/OvLVcbiPHr5QhFJnjnD9ndbj97RHJIrwDAOQkPQqEAiRFK1LbZUdNqwbiceGz9sRaT8xJQbbRxFr91u0/iuak5WPrRz8xcbhigQ78obo4xLzEcc0YlIz5cgbp2OyifD8/sOs4a71B1a8h8Hf2ZVhUJJPb006lwvMGMWf/8AX8amYxqo50hjNA40WjGGwcqsfj2QQhX+eW1AtvePDJmIDYfPIXHbk/Hq7/PY3o15iVGoMnsgEIi4jBSn9x+DLNHJDPEIPqYNwzQISNOiwcKDKhptbG6PEQopbC5vSyC0ZKidKbwe6QhihNeXjUpC3mJ4bxMXfpvvUZ+ztKDnno4fPm8UGLUdreXt1C9ymhlylQC5/npNVJCcKUgkO15LeAXaWlEcOEIRSZos3u73T5UzV6T2XHOonfA70F+UlKPOW8fwqKtx/DGgUrMHJ4EjVwUcvGraulqtZKkU0AhEeGbUy2obLYwheoAkBipwqDYMLz8VQXkYn/jT74FliaQ0KBzcPTn1Bg1Pn9wJCvHVdNqxfGGDlbhOd8YDjeFVZ8dh9HshFwsxKu/H4LnpmRh7i0p2FVyFjOGJeH3m7/Dvf86jDs3fYPdJ5rQT6fC8OSokIxUBc989Ro5atpseHJ7Cee68YkKPL3zZ0zO84dZXR6K85KyeNsxfPhTHXaVNiAxQom103NZ2o9rp+ciMUKJXaUNuGPDAfz29e9wx4YD2FXawLoHPQWdrwsEXbzPd6586MnzRkDwS4MYv14OvsVHLhEiQsEfmgjcPtQCFWrMwMWrymjlLUiOD1eGXPwkIgHuvyUFy4rSsGpSFg6Ut+B/p4yY9c/vsau0AVUtFnxzqgVVRivGpMXgH/cMw7D+Ebg5NZoz3o6jdVg9OZt1LsHC3Mt3lKLd5mblMQ/XtGPT/kps3FuBhR8cxb2jUhgDSO/34eFa5pyMNjeWfvwzln1cgoGxGuT3i8CSogwOu3PBe0dQZbR2e08y+oQhSadAnFaOeYUpWDM1x68xGbD4B+4X6gVFJATmFRhQWsdfFycWCrHgvSOoabNhbEYsPp03Eu/OuQ6fzvO/CNS02Xg9e3r+NCjKh8pmC+8LCo1+OhWenZTOug86lZQjmt4dK7InzxsBwS8NEvbs5QhFTlBR/Bp89Pard5V1SysPRXigw2Wh8kkujxcDYzScesC/TcuFSAg881kZ7hqWhNmd5Qx0Tm/1rjJMyI3Hhj0VHKp/VYuFM96MoYlIjlYxeaL8pAiU1XdgypAE+HxgiucbTA7k+HXMUWW0cvKEdOG5RCRAaX0HR6LM5/OXCxRlx6Pe5EBqjKZbT6WfTgWhALxMz6d2lOLFGYNR0Wxl5TT/ec9QzCtMgVIqYhFwQsmfpeg1eObTMiy+I433d4NezcrtBYcve1LK0NNCd6FQgDS1E588MBI1rV0i7QnhSiYMfC5W5JVSQnA1yskRhAYxfr0cocgJJ060d799rAatVie2zBnOy/bkGxPoIsKEKkiO1shxQ7IOte025CVGoMPhhlYhgVIqwv3vHMa0IX05HdHX7T6JubekwOHhzzHWmxx465tqFjHlrW+q0TdSifcP+fOMZocHDreXyYfR84kNKJAOtehDACilIsjF7JrFeQUG7Cqp55QLvD4zn//c1XKWXumcUclIjFCiocNP4QcAs9ODKqMVfxqZjK0/+j3M4joTkyNdVpTGnKdcIuIwQ+cVGPBMp6hAfbuN8/v8QgNsbg+SdIqQnlN3pQz0Al9ltHI0UkMxRSmvFwP0agzQs7/vKSvySighILqe1x6I8bsCcL70655sz6nt69RepP/z8xUkPzclG30jFPihuhVxWjmMVhenu0K0RsZrgPQaGYxWF+6/JYUhrbRanUiOViMmTI42m4tFTJFLhEgIV3C6TCy+fRA6HB64vBRyEsIRoe7S9Au16KfFhgEAnvyoBLNHJEMmFiJFr2bkuoKJQU9+dIyjX7p2ut+zpc+33uRgvNjZI5IBAPfdlIzvTvuL/kUC4N5RybC5vQyZBgCMNjcj7Az4vc45o5IRr1UgRivHso9LUG9yMB5gRZOZ8X7pl4I2mwv/uGcoiwEauECH8rToXGDwPQvUSD0XU/RCvaPeXkJwret6AoTtSXCNIHAR02vkOG20oLjWxPznDyxIzo4PQ4peg9NGC27vbI00rzCFw/jcsLccL9+Vx+91hMnRFrDw0+G7PMoXOrQrE2P9nnJGsFomFiI6TI7N/ytj6slWTcpCQrjfaxUKwCmjWDs9F/2j/OHcQImyJJ0Cy4oyeKXFqo126FQSfBrkqXx32hiSgTrrhiRYXV6OUkxytJq1T/BLRZvNBblYhJf/W4HnJmXi4TGDYHd5oJCK8fY3VfhNTh+ser+Yc/++qTQyxnfjXYPRX6dmRMwDyyECe0KW1ps4C3ywRmp3eTg+74hmnyZG9i5P7nxxret6Atce25MYv2sQfIvY/EIDZGIhy3DRBcmfPDASAgFYdHWxkF/OzOPz8eqDqmQirNt9ktV5obLZgppWK/pFqXnDYt+dNiJCKeWEJQO9lcXbjiEnIRwnGs2scGRqjAZpsWHoH+VflKuMVrzYudDTodXlO0vx5B38KjASkQjJ0Wr006lQZbTiu9NGKKVi3m1HpkTBQ1FMnpO+Fuv3cF8GaI3T12fm44fqVqagfdHYNChEXjzaWTtJ47pkXYi8nwZzC1Kw/0QTyhstrI4XdLiOLvug7/O8wpSQxrsneTg+72jxtmOYMyoZg2LDMCYtBjVttisyZ0Z0Pa89EON3hUIoEqGy2XJBC03wIhahlMLu9iIxUokX7szFM591eVbzCw0obzJDJRPi+ak5ON1ihctLYWCsJkReTAqFJAzPT82BSiqCx+eDrLOgmc+QJXUutvUm/3kM66djOgF4vD5My+eqmAR6Kw43hZpWK2848tPOmsbKZgtONpo5NX9xWjk6nG6OsV5420CoZP4yDY/Xhyc/OoZqox1JOgWr2J02GEP7RWLP8UZew2Jzezl5uxlDE0GBwoSceDRbHJiSF49+OhXKK8o5HnBKjBob7xqM4loTE07VqaRY9WkZ2mwupgEuX7gOYNdzhlLXGZkShcmD48/5DIXyjigfsHpXGdxeihMqvlJyZlcKKYfg0oEYvysQFOVDmVmGx94+cEELTeAiFqeV454b+rEW5yVF6TA73DA7vHjrm+pOdY4BLOmyZeMy8PjYQUxxOq1WcrLRgmUfd8lezS80wBCjRrRaxmvIaM9hw54KJOkUeHpCFrwU1RnyPIE7hyaF9FYA/+ItFQtZHiXgDy82djgYz4ePwDMtPwFPbCtBhFLKaiobEybH1Fe/YXmau0rqMWlwPHQqKdZNz0WURgq9Roa+EX6DoVVIeA2LAICHojC/0AC724ubDdEQiwSwurwQCMAYe8BPLAn2gBMjlPiirJEVTqWl3RxudpeKwOvTZHYw9Yw0QglLD+0X2W1vPqHInwMK5R35OjtoBJfGXEk5syuBlENwaUGM3xWIKqMVj23/+YIXmsBF7HfXJXLYmU/v/BnPT83Bic5OAUXZ8Yzho7dZvqMU8wsNrDCize3lKLWs31OOOaOSoZFJkBYbFtJziNPKcWd+Iua8fYhldDrs7pALLm0ITjdbOMSY+YUGaORizPrnDyEJPImRSsZbpI3H/bek4JH3j7LOYcuhGjw4OhUNJgfu+3dXc9mVEzMRr1VCKBRAr5FxlGLmFxqw8hO/hza/0IAhSeFoMDt5c2YJ4UrYJWFMyyPaKJ5qsnBCjYHSbg53V+eMwOtDh+v4Qq7dyZDxhcSfnZiOAR6KN6dKh6Cn5Sdc8Tmz3k7KIbi0IMbvCsTFJucDQzzRan52Ji0BNq/AAMrn490mUafEw+916Xs+PSEzpHE7UNESsq7N5wOvSPOGveWYX2jgGK0lRelQy0SYMyoZcrEQbq+PtzPDkKQIXgJPToIWLg8FsUjAmQ9fG6Si7HicbrHy6lka9Grk9I1AYqSKqUuM1ypQZ7LjrW+6agrX7ynHlj8Px/+9zZZFW7ztGDbMGIwfqtoY6TPaIxs9UI/SehPvNQ30fPOTIpnzCK7ZDGatLhqb1q2gNF9e77HtPyNSo8Sctw8xOdUB0Wqcbbfjs2P1mJafgLTYMMwvTMF7h9ilKCRnduWA6eQuEOB0iwVhcgl0atmvPa3LBmL8rkBcbHI+MMRT124PaZBoAxSq7k0jk+DzB0eiweREh90Nr8/Hu51QAHgp4L0QzXLf+qYaU4bwew52txfvH6pl1dRt2n8KM4YmwksBRpsL+UkRSNWrMTJVzwp7Wp0eznzUMr+cWmWzBfuONzHzodsnDUmMYO0Tp5UjLVYDq9PD1O7Ri7vDTTFF9kKhADcb9IhWy3CmzQ6qHZxzqed5aYlQSiGXCFFy1sYaf8F7R/DmrGEQCrgGOtDzXTs9Fzck6zjMVAD4oqwRa788wYhs5ydF4oZk3QXl9Wit1cCc6gf3Xo+YMDmn8wZdjkFyZlcWaLYnjWcmZxHjR3Bh8HgolNabUG9yIE6rQEZcGMRifkU5ivKh2mjFWZMdZocHfcIVGKTX4GyHHY0dTlhdHiRFqpAUqfQrjEzIwJMf+XNrSToFlo/PREWTBQ0ddsRp5BAIBQyJhPYCSs+aUNduR5RGBolQgHa7G9E84To6lAX4F76KJjNDrCjKjodICKTHhaHBZEO7zYWz7Xb44CdjBCqYJOkUeGxsGuxuL+pN/l5vb31TzYRU5WIhNHIxq/A8eJFP0WswLT8BqXoN/tpJ8vjrpEy0mF2ssoll4zLw6n8rWESdpEgl03BXKRVBKBCwznNJUTrEAh9evisPZqcHjSY7ypvMWDkxE2dabdh3vAm3Z8XhkYDuFYFMU7lEiFitnLnXn5TUs7ys4G2j1DKOYb37+iTMeftH3n3+d6oF7x/ivjAsKUqH1eHGppn5uCFZBwAwO9xot7mhkIjh8VAoa+xgPDg6pEuTgLqLDoR6sfKy7SEcbgpWp5e388abnY2JSc6MoDeDGL/LBI+HwvajdSxm4MqJmZiYE88xgBTlw94TjShvtLAWueemZqPZ7MTzn59gjfHi3nK4PD7MGZUMg14Nq9OLe//1I+vtWyUV4ZX/VqLN5sJrM/PQ1OFihdUC39Cfn5qN+YUGRKllONNm40iAxWkVAHwc0ot/jAomp/WPr/3kmFd+nwezwwOXx4eHggqqtxyqQbXRio17KxCnlePeUcmYMyoZSqmI0w8wUO3kxd8OxoOFBihl/nKDJ7axtTeX7yhl5cHW7ylHTl8tjtebYNBroJKK8Jd3DnNymy/cmYu/vHMYEUop7r4+CWu/6DKOr/wuj8nx0fvQTNPNByuxcmImMuK0oCgfvq408mqh0tuunZ4Li9PNCuFOy+cKWwfu46XAqN+smZqDk01meClg494KxqDunDsCR2rbWc/ZigmZsDrcFxQa52M9PjMpEy/sKWdtJ5dwu8rTx/DBR/JmBL0eRNj6MqG03sQRR35yewlK602cbauMVhTXmjgLYUWThTF8gWPQOpQb9lSgvMnCNBWlt1m/pxwtVhcm5/lDiWa7l9VKh96G/n3hB8UY2i8SWoUEUSp/+G9uQQrmF6Zg8e2DkBCpQKRaxiG9BI5Bf6422nHfvw4DEDDal/T2G/aW47GxaRB1egN3X58Eo80FygdYnF5s+b4Gc0Yl47kpWZg9IpnlNZU3mbHow2NY+MFR3sL0wDwY/XejyQm5RITyJjOazU78aWQy4rRy1jY/1/vFo/k6LPx0pp33OGlxGmz583CMz+qD2nYbDlW1hmzBRG+b0UeDn2rasfd4A56bmoPVk7NgCGhyG7gPLWxNC3DXmxw43mjGhj0VeGlfBSvsetpo5TxnSz8qQbJeDbnk/MWk6ZB4oFh2ptaFRWPTmPHocCvdVf58j0FA0BtAPL/LBFouKhCBOaJANHY4eNsEhWodFLjIh9qG8oHZLlS38sDeeO7OuJbdTXFo9Q63F16Kn/QSOEbgZ3uIY5Y3WeChKMRp5QhTSFieLh3ye3hMKiukueDWVOw8ehaLxg5EQoQSKqkoZB4s8G+VTNyZI6zkHIM2qnQ4j6/DQqi6OL/otxdWtxtHz3TA7vaG3Las3oxH3j+KVZOyUHymHVPyEplC9vmFKbz7DE2KxJMfHWOMHNDVRiiwpEMkAMLkYt7r3Gx2dits3h2CWY9lLWcwNiOZVwuW1MYRXKkgxu8yIU6r4F3YYrXct+KYMDkvE7I7duS5tqFJJgCgkvMrkwT2xosJk0MpcWPeu10qLg63n1a/Zc5wRCj569gCxwj8rNfKsPG3g2F1eqCUifH6/lM42Wn4UvUaLL4jjekETx9rw15/WYRaKsYrv8uD1emFWCjAy19VYEpeAmxuLxZ+cBQRSiknD0aHg+njr5yYCS/FZYEGhhWfnpCJjfvKWecTeH47jtZx2JK08fTra+ZDJAByE8LRanNxBAKWFKVj415/GHbxtmNYMzWHyR8CwHs8+byHRqfi7W8rsbQoA0dr20H5/POIVErxxB1psDg9rO2TdCok6RSoNtpZ5yEVixh2K91RvjuW57kQqgyA1MYRXKkgxu8yISMujKMGQueIgtFPp0JWgpazEA7Qq7HwtoG8OT+gq7faI2MGYs0XXdsE5vzkEiGUUj8hZPkOdvH5W99UQy7xtyPqp1Ph20p+7UqrwwOby8vJyS24NRX/+F8VZ7wV49PRaHIy4ViakCIS+CCXirH1xzP4TU4f3mOlRKsRo5Vh2UelGDVQDwC4eZAeRpsLm/ZXMp6PSibCpplDYHZ4oNfIIJMIseHOwag12XGiwQyLww0qhLc6KFbdWXTuwYyhiVi/pxxbeZmoqdAqxHj5rjwcPtPOaqUUp5Wj2eKC1wcmlyiXCLG0KB0WhxsJkSq8+hU7RBn4L9CVz3tz1jBQPh9EAuBkoxk3DYzF/e8E1hNm4d3vq3DzwBhs3FfB8v6qjVYsKUpnyZutnJiFt76uZOTp1k7PvSjD1x3OpzaOtAzq3aBLHWhc7QLXxPhdJojFQkzMiYdBr0aDyYFYrRwZcVpetqdQKEDBwBgMiFIjO0ELi8OLOK0Mg2LCcLbDjsw+WthcHiR2sj3zEiNwuqEV/WIiIRL6c4av350Pk90NpUSEhg47THYPnhqXDkOMBkarEy98WY7XZg7Bj9VtkHZWRU8ZkgChAMiM1/gbnQr4SxVclA/3vnWI1can2eJETl+tf7F3upCoU2FAtBoKqQhSkRB/+Mf3HELK6zPz8eRHx/DkHenwhCiLqGu3o67djqlDEmB2erDveCP+cosBZrsbc29JQUyYHEaLEz4KHJbklkM1mDE0Ee8f8ufKVk7M4D1GeZMFNxui4fRSMFpdWDMtB7VtNggBvDhjMGpabTDEaHC83oTKFivUUhHeOFDJGmdafgIqmiyc2r8VO3/GazOH4MU9JzEyVc8Y8B1H6wAeL73N5kK0RobkaDX2FNegvsPF6vrgz/P6vUar08MrEbdiQiYW3TYQRpsbPh+QpFPguam5vcobIy2Dej/4Sh2uZhDjdxkhFguR0zeCk+Pjg1AoQP9oNfoHvUH3i1KjXxS3j5qz5QwG6BMB+MObv3nxAGeRD6S1n2yy4IeqNmzcW8EaK07rXxwXbzvGG05cUpSOZR/7vdfgNj4Hyo1440AltswZjqz4cFQZrbhjwwEsH5fBn+/scKAoOx42lxeNHXaO5uVDo1NB+Xywu73oG6mEUirElLxELN9RijmjBmBjJ5OT9rBS9WoUd3Y7p8OZ6/f4//3wcC2MZidWTMjE0gCW69MTMuEDhapWG6s+7ekJmbC7PHhxbznuHMZWmnl87CCOB54YqUSV0cZ7nmX1ZkwZksjytJcVZWDroTOc67tqUhaTI4tUiniL7B1uCsc71Xb4JOKWflSCtdNzsenAabTZXJiSF39Ob+yX9sJIyyCC3gZi/K5wUJQPp43cTuiBxAOavn6ioYPjeUzLT2CMAB2Go1VKatrssDrcrHwS0MVITNFr8KeRyXC4/eLSRqsTf52UxekOAXT254tQ4EybDeXNFogEQLxWjnXTc1Fa3wG5WAi5WMjSCqVLDebeksJhmq7Y+TPWTs/F0zt/ZshFNGklMUKBBwsNqDPZ0Ucrwwt35uLn+g5/mcA+P+OULsGI08oxOS8BZ9psuCFZhwcKDDh21sRqRmu0uZAao2E8RLPDi8YOR8h8a0K4gpXbc7j9HeXnFxoAAK/+fgiazU60WJzIS+wKRyopK4YGqLUEjunzAR8ersWCW1N5jaPF4cYTv/EzMoMJJ8GGjtYL/SW9MNIyiKC3gRi/KxxVRivmvvMTS5xZKADS4zTMQkbT19PjNEjq9PLoRS81iG5Pe3dzC1Kw+WAl1t2Zy7sY5ySEY8XOUlQb7XjjQCXmFxrw2bF6TBwcj4QIBV7+XR6W7yhlyB/PTclCTauNCRPSBfDezlyXSCjg6IL+dKYdEUopYsLk/N5QQwcm5yUwveho1ZM6k53xUF+cMRgPBJB4AKCsoYMxfHQIMUIphUIi4pBPgg1yYAnCvaOSOS8dj4wZCK+P4sw3QilFmELCypmunJiJhHAlsw3l9eJ6g45DsqGFxqcMSeBoncZp5ZiWnwCFVIzaVhtSYoK6sPOEG1dPycbaL9klNJfbCyMtgwh6G4jxu8JBv1EHijMDwA0DdKxwqVAoQL8oNRIjVcjtG87kg3whKPoDYzSYPSIZr+yr4CjA/HVSFl75qpzxCB1uCnvKGnDPjf05ocQwhRgUBdS127Cms4CcFrEOLIBfUpSOCKWURe+nfH7PtLbNxjtHLwWmFx2d86OJN/S8jp1la2PGaeUw6DWYV5gCg16DNV/4DRtfnd+63ScxZ1QyL1v0pX0V+PvXp/HM5Cw8PzUHNqcHzRYnNh88jSlDEpCkU6AoOx4auQjx4Uo4PV6cabUx5+jP5ZUgLzGC6Rl41q2CrM2G32TGIStei8YOB9xeH5Z0tlSSS/yd7GkVHbowP9D4Lrg1FSnRVube84UbF20tDtkJ4nIZv1+zZRAh2hDwgRi/Kxzn+0YdyM6jKB9qWq28Sv2rOpVV4rRyyERCPHrbQESopDjdYkWz2YFD1V3F+nFaOf44YgBnkV3yUQnmjEpmjBT9G5+I9dM7f8aaqTk43mhm9C13HK3Dg6NT8dyuE7zi1pv2n8Ly8Zm4rn8+bC4vnpmUhYpmC6LVXWxIg17DlALQnt5CHrkyvjo/h9tfLxn8HW1w78xPRHGtCS/sLmft++2pZjwyZiDq2+1QySW8x6MNYGDbpeAQJADcseEA6zqt+uw4ds0fib//YSharS5OeHXtlyeRm9DVWT1UuLG7ThCXA79WyyBCtOk5CNuT4IrChb5RBy4KgUr9MpEQz+wqYzywyXkJ+PvXp7FobBpzjLkF7OLsyXkJON4ZSgwEbTwCOxAE5uaCtz0e0Eliy6Ea3JmfCI3Mr/1J16zRYV2rw42/3JyCNpsLj3/YZbjXTMvB3Tf048h9vbSvHEXZ8SEb4wbOjwZdLxkIuUSI9FgN1k7PxepdZXB5uJ3rF44dhMPV7bC7vVi7m/94dKhWKRUxbZfobVbvKkN8uDy0UEKHAxanG8cbzby/HzzVgharC2MzYqHX8L8cheoEcTE4l4f1a7QMIkSbnoOwPQmuKFzoG3XgohDI4nzjD0Pw2Ng0lDV0gPIBYTIRirLjcbyhg6kvU8tE+OukTFQbbaB8wKBYDaqN1m6L7T883NVPj/6Nj9RBG4h/zb4OD79/BL8dlsjsRxsMWtg5XClBZbMVfxrpN15bf6zFyUYzp/xg6Ucl2DhjMOwebi6O9oKCBaSTdAosLcqAxelhWvW02VxYNSkL6X3C0GJxYsOMwbC5vIjTyjEmPRbNFv/1rzfZsX5POUMGCj4e7TmunJjJaRdFh4Tv3PQtbwNe2kNTSMQQneUSmOhw8IL3jiB+znCEySW8nTSSdApOJ4junplzGbbe6mERog1BKBDjdxXgQt6o+RaFCKUUNUY7VgSRMmK1Apw1OZj8UoRSilk39mPJhi2+fRBvsX2sVo4Xdp9kGqmunZ6L+nY7r4h1YCcJt5fCorFpONHQge1H6vDc1BxUBAg7A+Dku+YVGCAMUSpwpM4EhYSfhZqi12DKkASopCK89cdhsDjdMNk8rELzFeMzEK6Uok+4HImRKk75CQAM0HeWlQR4ZHzHG9ovAiqpAS/uLcdLd+Vh8e0DEReuhM3pQZhSgmc/K4PDzd+AN7BXX0OHHeum5zIvKjuO1uHO/ES8/W21Pw97vAmpeg3e+qaa1XT4rW+qMTgxHMOTo3r0zAhFIuwqbcDqXWVMV4+hSZFI1Clwtt1vDH0+9EoPixBtCEKBGL9egkuRlO/pGBTlg1IqZkgZdFgyTCZiDB/QJaT9wvRc9ItU4cHOxW1yXgLWfnmSpTRitLoQrZZi7i0piNXKodfI4fJ4cbbdjsfGpqG61Yo+4UpUNFng8lLYf6QOr/5+CJo6HKhtt3M6ScSEyRGnlaPF7MADBQZUNPmFnWncf0sKr3TZmqk5Ib3Kz0saOEo3y4oy8Mb+U2i2uHD39Um4++/fM/JnLO/xY3/XiHnv/sTyaPiueZ9wv7Qdn/F6aHQqTtR3IFojw5N3pKOu3YG+OhWeDZBFe2h0Kv75dRWrAW92fBgMMRrWPfV4gYffZ5OGtnxfw9ItLW8yo83mYpFbghf/cz03VqEKq3eV4c78RE7edeNef1ePNVNzeqWH9WsSbQh6N4jx6wW4FCGjno5Bb/f3g6dw76gULN/Z1RNw2bgM/OXmFLi8FEM6cbj9DWVd3q6QoUAAXqWRlRMzkRulglwEUAIhfD4fNv/vNH47LBFKiQgVTWZQPr8e6R9u7AcPRSExUgG5VIRp+QnMb1kJWvTTqfDdaSMazS7s/N9pLBo7iGXUQuUN3V4KT43LYEmrrRifCZfHg/+7aQCe+/w4ywt6dX8F483QXu2gWA0rlBpcR0h7NP10Ks4133jXYKREq/H0hEws+agEb3/rr5tMjFSi3eaCRMgtnaDzm7tK6jEyVQ+ry4PFd6QxpKPNBys5ffiqjFbG8NHn/vTOnzF7RDJONllYnnQwoSlw8e/Jc9Nm8/LmS+njvbSvAuVN5l7pYf1aRBuC3g9i/HoBLkVSvqdj0NvNHpHMGD46z/SXfx9mLcq0gLNcIkJVUE6PT2nkye0leOMP+dh/qpUxZI/fngadWoJDVe2sMOn8QgOaOpx494ca3HdTCuu3tdNzAXQKfgsBl8eHFrOTMSgONxWywFwhEeGFPSdZBu6lr8oxITceDWYXqo12lhcEABl9NBAKBIxB52NnttlcjHC3w02h2mhFldGKE5250HqTAxFKKcobLZj7zk+4vn8kNv8hH7Vtdug1MizeVoLJeQkcj5ImwGw5VMPpl0gbxkVj0zieSqhcVlKkgtMOKi8xPGR+ryfPTXfKM3TU4L1Dtd0a2V8TvwbR5kpEMNtTJBDAaHFetd3cifHrBbiYpDwdsjrZaGZUSQLFlIPHoI91rtIDusNCkk6FM61WKKQiRo5s64+1eHgMv9JIg8nBMXJqmZYToly/pxzPT81BUXY8px9hoGd1Q7IOUSoprC4vNv/vNNOl4PoBOvSNVLJYnf7/uD5eA0cFdJwINpjHG8xIiwvjNej0dZB3dkmg9/npTDtDEqIN5OS8BLz7Qw1mj0hGYoQCbTY3Xv6qAo+MGYQ2myuktyoTC/HwmEFMq6PAY/9r9nWI1kjxY00rpCIhbC4vYsLkIVmcsVoFln7c5fWunpKNZosTOpUMw/rpOB5PT569cynPAH6N0u6MLEHvRzDbE/AzPonxI7hsuNCkPF/IKrCOLEmngEIiwjenWphcDn0s+hjBhpCGw00hNUaD5z8/zuSiHh87CI+MSUW4Ugq1jL9NUk2rjWPk1s/I5R3f5vSEPHZjh3/x1Wtk6HB4UHLWhHE58QD8zEyFRMQYGiaE+d8KrJiQGXKRPnCyiSGIyMRCSIQCRKhkaDI7sPnAKdx9fX/euQyKDcPqzvIPWpmmvMmCuQUp2PpjLeO9aeQiTl5sWVEGWswOzCswwOnxhiDcqEOWinxbacTAGA1MDjfOtNoY1unGuwbzdg0Z3i8Sn84byVsgzxcGD3z2aKk3kRBQSMSgKJ8/rxlCeSawk8fa6blMbSHxsAiuBBDj1wtwoUn50y3ckBW9EO8srsMDBQbcuelb1phj0mKYGrVzlR6cbDSzVFye2XUc66bn4qH3jiBVr+YwNleMz8C63eWsOTrcFMJC9BNstjhDHlsiEoKifChrMKPd7mZ5k0/ckYaESCVjDAO93aNnTJhfaMC7P9Qwuby0uDC8930NfpPdh6UqM7/QgLVfnvTXCo4dhDAFf89CjVyMpUXp0MglaDI7WWPQLxuJkQqEySXMb/S5L99ZitdmDsHSj0owY2gic80ilFJMy09A/ygVaozWkHqoydFqRp4t8Hhz3/kJG2YM9qvLuDwwO9xotThxsLIF/XQqxGnlGLueXSDPFwann71gQsum/ZWsYnuxWIhx2X2QFa9Fk9mBaLU/JD04MbxXeXlEzYWgpyDGrxfgQpLyQpEIZfX83kJ2fBjGpOsZw0d/v+C9I/h03kiMSYtBfLgcRqsTb9ydj5KzJkYxhTYYuQnheGH3SQBgPAKBAFDJREjVqzE2Mw6b9p9iwpC5CeFo7LBDKhbg/ltSmFzQjqN1KG+0cDo40L0ApWIBlhVlMPlHeoHvcLhwrK4dJ4Lq9iKUUtjdXtz3rx85BqHN5oLTQ2H3z02c/NlLd+UxpQv09Xj3hxo8fkcaTjaaoVPLsOzjEl4lmSe3H8Od+YlMy6RAiTI6LFrXbocqhr+rell9B9M3MEIpxYLRBkSoZEz+kvaqg6/RkqJ0rN5Vxvty89K+CpScNWHDngok6RQs8pJc4u8WkapXY2SqnrkXW3+s5Q2lD4zR4MnfpKOkzsQ6N9pYBj6nwbkzvpKPXwu9tdaQoHeCGL9eAr6Fpbu3WKtQFZJhF6v1q4Pw5QArmiw4VmdiwlfzC1Pw2v5KpOrVHINBdyEYmxnHMgi09+dwU0xuTS4R4pXf5+EvN6dg2celjGfz0OiBUMtEOGuyY+4tfiZpWmwYqoxWLB+fgQilBCcaOvDc1BxUtVjh9FDYcqgGz07Oxp7jTaB87LDo765LZHRG6XMKzstNzkvgdIE4WtvOGocm+dB5tnmFKag22llKMj4fYHa44fL44PB48ZebUnDWZMfd1ydh9a4TzNiJEUr87cuTmJ6fwLoftOh0vygVwhUSbJgxGGKhAD74cP87P7Hm98yu45hfaGBeJlL0Gpxtt/F21KCL5L2dp1OUHc8YPnqb9XtO8t7P2LCuULrHQ+GTknreTvW0AWwyO8Btv9w7QdRcCM4HxPj1UnT3FgsALQ4/wy7YU1kxIRPz3v2JyfMELmZyiRAOD8UsdoB/DH9Xcy/HYKzf46+bC9aPLAuRn7I4vFj2cSlS9Wrce3MKjjd0oKHDDp8PiNbIEBemwIt7y0H5gDcO+On7iRFKVLfaGCMkl/gFsf/2xXEMHxDNYXVGq2W8xzboNXh9/ylMzktAYoSCsw0VJOAdTPKhfw8UCJdLhFh020BOSceSonTEdb5gyCVCNHTQ9YkiJg/HJzpNszfn3mLgPQery4vNByuxovP8x+XE877cCAXAsnEZcLg8mFuQgoExGo4oeFF2PO/9HJMeyzxfX1caWc9CsGdJ552dTvZz2VvDikTN5eIQzPYErm59T2L8eilCvcWmzx+Jn+vNONFg4WheDorR4PkvjrPydPRitvmgXzPzbLuNVZwOAJ8dq8efRw3gXTj4CCnBhgTw/01RFObekoL4CAVONHTgq+NNuD0rjtMc1+pwY+Ndg+HzAT9UtyI+XI4NMwajzeaCSiqGRi7CoWoT6tqdeOS2VJY8l0rOLc7fcbQOYQoxcyw+WbAdR+tYOcpg6j5fQfr8QgMSdUocrTWx6v7o+rbNByuZwvKZw7vUb+aMSkZ+UgTTaT74XoTqUpGfFAGhIBn/+qYKE3LjkR4XhtWTs7HoQ3Z7I5fbC7fHi9Wfs9V03vqmSyggVGlCs8WBAXo1qoxWHKpuDXnPA/POJ1o673svDysSNZeLQyi259UKYvx6KUK9xTZ2OBkx6mDNy+emZvOGyVJj1Ezt1x9uSOJ4JPMLDRCLBCFZknyGJLim6/Gxg2BzeVnd1uk8YqABeHrnz/jPn6/D2XYn030+0EMFgKXj0hkvzOr0YEC0Gi/flQery4sIpQj33pTCVmkZlwG1rKsXH58hmzE0EVu+72KHZsZrMa8whSmB2PpjLbYcqsFzU3NwstEMn8//UqBTJbHINvQ8U/X+a2p1uDEyVc8ci9ZJnVeYwnnJ2PpjLQQCv7cdTBZ6ekImln1cwty/4jq/bucH916PT+eNRLXRCqvTi9p2G+LDlUwrJvq6rt/jD/3S5RdpcWHdGoLGDkfIl5iRKVGYPDie49X19rAiUXMhOB8Q49dLEeot1uryMItsoNc3MiWKeWPnhskETHG1x+tjDBTQRSBxeynOgjy/0IBN+09xiBgzhiYiXCnG/EIDEiKUKG8yw+z0YOOuCo6hmz0iGR8ermUZgWaLi6NOEthdYfOBU1g7PRe1rVbIxCLMC2A7bvztYMbw0fOvN9kRJhezcpz0tRkYq4ZUKEST2YGTTRY0W1yYdUMSTDY3px5RJRXhmU+7OlrMK0xhauYC5zlnVDLOtNmw+WAlnpuaA63Tw8knZvTRQnE9uznu4tsHIVojhzA/AVFqGVN24aUAqUjAtF2ir5VCIoTF6YHd7UWbzc1pOxUoCedwU4jXKjC3IAU+H/DKvopui85jwuTYcbSO85Kweko2hvaL5PXkentYkai5EJwPiPHrpQj1FpsUqWIMHJ2fkkuEmDw4HkIBOAr+S4vS8ebXlV2LXEBng8BO5g63X+Js3fRcUPBBp5LhoS1HUG9y4PasOMwZlQzK1yWM3GZzYdPMfByvN0EhEUEkAGOIga7yA61cxMmZ/XViFidHRYfb1DIRCgbFYsF7RzD3Fj95JtD4FNeZeOdPE2weHTsQik5Fmv98XwO1LBGRSile+a+/23yYQoLGDgfW7i7heE4vdoZeAf9LQ2KkkrPYRyilGNw3AqVnTXjprjz865sqZPcNZ9XKzRyehMpmC6uwP0LZWajfKQ5detaEnIRwHDvTjvT4cAiFQiy+fSB8ELBeNGjSEZ+OaWBDWrlEiJo2O+vv7orOEyOUeKDAL65Nk2wG9w3HjclRIY3FlRBWJGouBD0FMX69FKHeYgEwRpFe8FP1Gvh8QEKEEoYYNWOohAIgPsLfaHb1rjLMHpGMQbEaZgELJn1UG+146L0j+OSBkbA4PYwhsLq8TCeFQJidbtyaHouTTWaYHR7GoASSO9LitPjz24dYC/cT248xIToadIg1IVzJEGz4yC2BoTp6/nw6o/MLDXhwdCr+cfA0Rg3UQyoWID5CiUc/OBqy1VBZg5nJWTaYHNDK2XV/cVo57r4+Cff9u6vMYtWkLAxLDseQpEgcqm5lusOPy4lnjCFNwjHZXbhrWBLLuK2cmOnv7rDPjnmFKZx2TLQSDt986Ya0gePQf5+r6LymzYYX95YzuVMvBTy1oxRvzhoGygcWoYUGCSsSXE34RYyf1+vFlClTEBMTg9deew3t7e146KGHUFdXh/j4eLzwwgvQav2E6tdeew0ffPABhEIhnnzySYwc6a8zKikpweOPPw6Hw4GbbroJTzzxBAQCAVwuFx599FGUlpYiPDwc69atQ0JCAgBg27ZteOWVVwAA9913HyZNmvRLnG63OB+2XKi32LEZsYj/Yy5OtXk5Ya0xaTFIjlJzDOagWA2azA7EhsmZomY+VmSEUoqGDjvMDg9e+/0QnGjogFYhxcoJ6YhUyWB2eKCUifHm15Woa7UhIVwBtUyM+e9yw5gb78pDs8XJu3APiFYzhoX2BvvplGgyO/H81BzUtdsQrZHx5htXTszCk9uPMWQcPnk2Ogc2MlWP/SeacO+oFFQ0dd9qqH+UCtVGK9McNzs+jBUKnpafwCPTdhLzkIonAu7DQ6NT4YMPSToFq3Ccz7g9ub2E8eCCyzrobWwuD+98CwfqccMAHfQaORIjlMhPikBjhxNWlwdJkd0bpMYOB0cGLk4rx+Gads4zNUAmYp7HsRmxGPjASNS0WqGUihETdnVKX/UW/JLsWj6259Ws7/mLGL+33noLAwYMgMViAQBs2rQJ119/PebMmYNNmzZh06ZNWLhwISoqKvDJJ5/gk08+QWNjI2bNmoXPP/8cIpEITz31FFasWIHc3Fz8+c9/xv79+3HTTTfh/fffR1hYGL788kt88sknWLNmDV544QW0t7dj48aN2Lp1KwQCASZPnoyCggLGyP4auFRsObqVDr1IAV3kg08eGIkBeq7BDDSiCeFKON1ejlg17dnMfvMQy4PaVVKPMZlxWPB+VznC6ilZcLoppukq36L989kOuLwU78J9tt3fi87u9vr/Y2tl+N3m71ieY22bjdNg9rGxaXB5vXht5hA43P46RZFQyHv8+HAFlFIx1DIRlu8sZVigfISYeQUGrPniOB4o6CpDKK7rQPPeCsZjtrk8nOMUZcczho8+7rrdJ/HImFQsGpvGIoiEMm6CgFvPd62azU7e3FxGHy3EYr/7R1E+/Fxv7vGzxRfCnJafwPtMvfOHbNa+Jxp7fhyCC8cvza7lY3sCV6++p/ByH6ChoQFfffUVpk6dyny3Z88eTJw4EQAwceJE7N69m/n+N7/5DaRSKfr27YukpCQUFxejqakJFosFgwcPhkAgwMSJE7Fnzx4AwN69exmP7rbbbsM333wDn8+HgwcP4sYbb0R4eDi0Wi1uvPFGHDhw4HKfbrcIxZarMlrPe6xmu493Ia1pPfdYNW02PL7tGFMnKJcIEaeV44k70ngFqO8Z0Z9FMnG4KZxqtrLIIHIJ+1GSS4RIjlJBLfMLYtO/0yxQgQA43tCBFrMDg2I1jAGJ08oxe0QyHB4v4rQKJEerMGdUMh67fSDmjBqAh947gvnvHsX/vf0jTjVZsP1IHQwxat7j17TasfCDowhTSBChlDJGjy4RmTMqGS/+Nhdrp+XAQ/kwLicerRYnayy6pZDN6cGZNjvnOKFKCsLkElQ0WTi/8c0zNUaDuQUpUHSSYgKv1fxCA/79XQ22HKrBy3fl4ZExqZg9IhlrvzyBT0rq4fH4xz/fZ4sOYQYeK1Wv4T2XNjuFymYLvjnVgmN17ZfsGSboHpdyvSDg4rJ7fqtWrcLChQthtXbdMKPRCL1eDwDQ6/VobW0FADQ2NiInJ4fZLiYmBo2NjRCLxYiNjWW+j42NRWNjI7NPXFyc/2TEYmg0GrS1taGxsZG1Dz1Wd3A6nSgrK2N953A4ON9dKM66VbyLy+mGVjhbzpzXWCpJBK+XIBXinPOl50GzImkiyMmAsGDg/Nqtblb+SiAADPquwmo+T2ppUTokYiGEAAboVXj0toGIUssgEQnx7C5/49YknQJLijJgcXowLice+0804TfZfVg5seXjM5DZRwu5RBiybu7Zz8qYUGigJ0d3NH96589MjpFmgYqEwI0pOlQ221hlEw+NTsVzU7Lx6FZ2bZ1WKcHL/63gnOfgALJL4H3oE66AMkj8e+uPtRxC0sqJmWhot2Hrj37B6pUTM/Ha7/PQYPKHL1P0akzLT0CKXoPlO0tZpSyLthZDKxcjTmhCrUN+3s/WAJkI7/whG212LyIUIghDsIVFEgnu2HCACd1eqmf4UuBS/v+81LjYuV2K9SItLa3Hx/NRPthsNs73NpsdZWW//L29FOju/C+r8du3bx8iIyORmZmJ77777pzb++j+KAEQCAQhv7/QfUJBJpNxLlZZWdl5PUDdjt9s4c81xUYiOTrxvMYqPl3PWUjnFxoQH6lCv6iYHs+j3uSAxekNWRwulwgRrpJw8lfBhdW0JzUoVoPjDWa82Nnhe16BASt2/ox5hanQh0lxzz8OMYb0zvxEzH3nMEPcWTBmIO79F9vALfu4lJFFCxUyrDba0WpxYO4tKegbqcTJRgunDCAxQsnUDm4+WInFtw+C0exiDB9t2K0uD/RhMrw+cwja7R6EKyVYv/sExmbG4cHRqWg0ORhFnEGxYeiwO3nvg0IiwsIPivHImIFY84W/GL3N5oJSIsLcW1Lg8FAIk4mgkorR4HXguSnZONloxplWf64zPkIGuUSN/eXNoHwIKXV2+Ew7JubGoz9C5DHP49miKB/WThewwmyrp2Rj2Y4upZhQtYEX8gxfClzK/5+XGhc7t0u5XvQEAqEASqWS871SqUD/xN55jS8Gl9X4HT58GHv37sX+/fvhdDphsVjwyCOPQKfToampCXq9Hk1NTYiMjATg9+gaGhqY/RsbG6HX6znfNzQ0MJ5jbGws6uvrERsbC4/HA7PZjPDwcMTGxuL7779njTVs2LDLebrnxKVky8ncZhhiwljMTkOMGonnIDrwzYMO3YVSOfnnwdP+Lu//ZgtDBxZWt9lcSIxUYfWu46xFmvbOnth2DP+cNZQphxgY42dFBjI1Q+UOo9UynGm3d1uEb3J48dK+CswtSGE1jKW3a+hwYPaIZCRFKtBuc8HupnC80cwYvkC26Kb9lQxb9c8jkzFjaBKeDBChXlKUjtQYNf71TTVuHqiHSipi3Yf+OhWiw/wGXSoW4O/3DIWlsxawqsUKl5fC/hNNGJsZx+kQsf1IHWK1CmjlYvzpra7mwk9PyESSTsG6tnKJX9+zyezAsH66C3q2ggkVY9JiWOURRquTdUy+Z+RyMD57s4zaLwXCrr28uKzG7+GHH8bDDz8MAPjuu+/w97//HWvWrMHq1auxfft2zJkzB9u3b0dhYSEAoKCgAA8//DBmzZqFxsZGVFVVITs7GyKRCCqVCkeOHEFOTg62b9+OmTNnMvts27YNgwcPxueff47hw4dDIBBgxIgRWLt2LUwmEwDg4MGDWLBgweU83XPiUhbhUl4vCgZymZ09GYueR/yc4dhzvAkGvYbxigLDgkOTImFzezFAr4bLw+95GfQaPDImFUP6ReDYmfaQQswRSinOtNoZw0Qv9pTPx2Jq8hk4pUyM/SeaOEX4tIEKVIcJZcDf+qba30FiXAZ8PuCsyQ6lVIQknQIPjxmEiiZ2M2DaaDeZnRyGJh1GnTSkLx794ChLy9RLAc/sKsPcWwyIUknho4DHPyzG3FsMrC4OgYsaPS59zOU7SjFnVDLrtyUflbA6U9AhU6/HC7FQiO9O+/v+7Zo/Eg0dPXseuiNUBBKmAu9JvcmBLYdqsGXOcNjd3stSSN7bZdR+KZCi/cuLX6XOb86cOXjwwQfxwQcfIC4uDuvXrwcAGAwG3H777bjjjjsgEomwdOlSiER+mvVTTz3FlDqMGjUKo0aNAgBMnToVCxcuxK233gqtVot169YBAMLDw/GXv/yFIdrcf//9CA8P/+VPNgiXsgj3YsYSCgWwubzYsKcCcVo5Hh87CEabC5QPEAmASKUUj24tRpvNhddmDkHZ2Q5ewxSpkkAiUqPB5ECHk79Zq8/nZxLSiz/QtdgvH5fByonxGa4Ws4PVQkkhESInIRwnG814ZMwgrPniOBPipBfnNVNz4KEoRCglkIlFSI5WocPuYbxXucTfF/C+m1JYotqByikCQWiGpl8WzU86GpmqZxZqOnx6ps2G1BgNWi1OTBvSl3PuoZrX0uUbVFDU3uH2t0aaPSIZMrG/Ae7fD55CwaBYLAtgya6eko3fZMYxLNDu0BO5sn46FZ6dmI7Htne9dCwam4as+PDLtgj3dhm1XxK/ZNE+X6kDcPWKW/9ixu+6667DddddBwCIiIjAm2++ybvdfffdh/vuu4/zfVZWFnbu3Mn5XiaTYcOGDbxjTZ06lcUyvdZwrtBRYFd3h4diyX09NDoV8eEyPDM5CxaHB29+U82ROXt6QiYWbzuGoux4iIVg5LK2HApoJBsbhs0HT2HGsCTOYh+hlCIuXM5obG79sZbJHcZrFagz2aGSimB1eRmDSEul/dBZUP76/lNMr73AY77yVQVMDjdWTcpCTasNarmYY4CaLVyvLlAI3OcDxEJ+b3RQjAaRan8RPG2wgsOntPGO1XLJKKFyZ3QYN9iuyCVC2DvP//E70nC8oQN/uCEZC4M6bizaWowIpRQjUkIrtdDoiVyZUChAmsYZUinmcoQne7uM2tWK7kodrkZc9lIHgl8HdOjojg0H8NvXv8MdGw5gV2kDqACXgs4pTMtPYIwa0FWrdv8tqbj3Xz+irMGMNpsL//y6CrNHJGNuQQrmjEpGW2c+iBZrvjM/EXuPN2DOqAHYfLASG/ZU4KH3jmDKkEREq6Usmj9dU7jkoxJ4KX+ubGlROuLDZYgJk8Nkd+G6/pGI0SoQqZKyjMvO4jp4KaC8yYz7bk5BRWMH55jjc+Pxxxv6Y/G2Y6hu9Rft/2lkMuK0XVJcobw6kRCYV2DAzuI66FRSPDJmIKskYF6BAc9/cRy1rXasn5GLQTEazCtMweI70niL7fWdxfqB2HG0Dk9PyOSMu7O4DgtvGwidUsr6bUlROr6rbMbM4Ul49IOj2LCnAuUh2LmHqlt7RIcPfPmhIZdw5coorxfJ0WoMT45CcrSaZfjO9YxdCHo6LwKCiwGRN7tKQYeOAjsLnGjoQHqchum+TecUgj0QwL+I/nSmjUOECewgUWO0Mf3k6Nq5Jb9JY4rh6XGW7yjFy3flYcGtqUwj2mn5CXj3hxoOg/Svk7Kw80gd9p1swfo7c+H0eJn6usl5CdhyiLvP0xMysXEf2+is+eIEFow2cLYNDGsG9woE/H/fMCAKVqcby8dn4vEPjwEAXr5rMKwuCiqpCAIhMHN4EprMTkRrZFj1qb8EIVQZQHsn6zVwHnfmJ+Ltb6oYhmyEUooms8Pfy+/zE2i2uDD3lhTEauUIV0rx6lfl+OOIAZyieb750ySYc3lJPSVUCEUiVDZbON7d5QpPEqIHwS8BYvyuUjR2OHg1L5N0KkbzEfAbwH46VchFFACLCDMoVo0otRS1bXamO0SSToFl4zKwfEcpzA6uCorDTcHm8sJL+Vjd3L3Z4HhKT2w7huem5uCb06042WRhhVMdHi+KsuM5+yz5qIQl8kx/Hxeu5IQFA8OaA/RqLB+fwYhn08aRFvSeW5CCNpsLqXo1mi0upkM9X5Pat7+thlIq4rRJarO5EKmSQS4R49XfD8Gh6jb4fGAMcHFdB178bS4e+7AY04b0hcNN4aFbU9FgssPl8TGNcaflJ8BLsUlHoZRqthyqwZS8+HM+Iz0hVFCUD2VmGR57u6v91Ma7BqO/To3yIJIQfY0DDe+FhEUJ0YPglwAxflcY6MXkrFsFWbMl5KIQEybHtHyu5uXibceQ2zectTgJBeC0v6F78dGg6+Nmj0iGWibCuz/UBHVxqME/Zw2F080vZ+YDsHrXCea7t/44NKQ6isPlwbyCTlm1jFg8UGBAq8XJ1BCGClUGQi4R8sqROdwUEiMVmHtLChra7YjRyvH6zHy0WJw4bbQyRilOK0eYTIQV4zOglIoZse3JeVx9zw17yzG/0AABBJw2SUmRSngpCmqZCN7ODvbB10YiFOKeG/pj9a7jzL4Lbk2FUipihAQ27KnA/MIUXublm7OG4YeqVtjdFLYcqsGisWk99pLORaioMloZsgvgz9OWN1ow952fOMaf7mxPhycvhrVJujMQXG4Q43cF4XwWk346VUi5KvrNPHA8ugN5/ygVGkwObPmeG16kF7nHxg7k/a3D4UG71cnbF7C2rUs5Qi4Ror7Nhry+/Co1fSOV+OxYPcZmxrGO8dzUbOQk8CuqpMV2NW+ljUdMGFcYWy7xa2UKBQKs3c1WpIlSSdFmczH5yLW7/R0jFo0dxIzB19neb1CVeDgo3Lt+j98ort51wj//KZlYMT6DkYWTS4RYMT4TZoebMXz0vmu/PIn5hQbMHtEPbq8PCRFKOD1evPr7IUzTW5p5OSQxAtEaGZrMDkzJ4zahvRgEk09CGX/amw4MTxLW5pWFUGzPq1Xcmhi/XohQoaLzWUyEQgHTzTsw7ycSALFh/jfzwPFo70IuEWLTzHzY3V4IhcDi2wchUadCs9mJJrM/tBWukmLRh8c4C+Abd+fDJBBi0/6uHnFpsWEAfHh213EAYEoMItVymJ1OjizZsqIM/O2L45iU15fTBf7RD4rxnz9fx/FS/zopC0Ih8OhtAxGtkUMlFUElF2FX8Vne2kCBgNsfb8XOn/HWH4fhvf8bjhazC3/prKerNzkgErK73IdiafIZRavLy5Q/2N0+uD1erJ2WA7PTA4VUjDC5CGaHl3ffSKUUCqkIde12JnxLlzPEh8sRqZIxz8bl8pL0GrYAdijjnx0fhk/njWQZXsLavLIQiu0JXJ3i1sT4XSQuFdU7cByP14cnPzrGvN3T3l3wYkIvqicbzQDAOXZSpBL/uGcoKlusLAPQP0oNo8WFRrODydlEq6X406gBcHm8kIgE0MolcHsphKukjOQYbTyMFhfvotbhcGPjvq4ecZQPeHZXGR4fm4bVU3JQfKYNXh+glotR0WxBpFKKPhFS/HPWMNQYrZBLxXhj/ykU13Wg5KyZtwv8qSYzREK2oooQgM/rhUomZhmJZeMy8EVJPVMbZ9CrsfngKfzhhmT8aaS/azydr3K4KXgpH6xOLw6faWed3+v7T2FZUQaW7yzl1eekO1DwGcXseC3iwxWMjFqSToFFY9PQ2OGEy2uHXiNlNSgO3Fcl8//3DDbUi7YWM4Ym+NkDcElLD0RCdoPkUCQhQ4yGY9CuhOa3BNcuiPG7CFwqJQq+cQLzKLR3F7iY8NWUBR6bonz4oqwRxxs6OLVsj31YzMiS0Z6YRCTkFHtvOVSDGUMTmbwT7eFt/O1g3kVNI5fwhkOrWq144b0jWFaUAS/lRbPZyRF3fnSrn1UZp5Xj/ltSIBAA6XEaJEWkoN3uRly4EnaXB4k6FRZ+cJQj8/Xv2dfh5/JmllFbvqMUa6bmYO5/foJcIsTfpmVjxrB+LANJX+c2mwtKqQhqqZizwBfXdUB6uAb/uGcoWiwuxITJ8MiYVLTbPQx5BQDHy3x6QiY67E7Um/wvGWqZCAKwtTOfnpAJmQS8+qDhSglKzpp4XzQaOxw43sBtLSQVC1j5uItVRqk3OfDWN9VMflcuEXHqPUMxMQlrk6A3gxi/i8ClymnwjUPnUV7qZFQG6zfyNXANPDY9Zii9TJqR6HB3X+y9fk85i0npcFNQyUS8i7VcIuTMacPecjzX2Yl8+c5SbP5DPma/eYgVipVL/DJjLo+PY9CXj8+AXCJiGayHRqfin19XMQzDCKUUlS1WFtmEkTwTAPMKUzprCYV4cjv3Os8ZlQy5WIR57/6E56dlQ6eScs5ven4SHvuwGNVGOx4bOxAvBHhjQCc71kth7fRcRuZs475y/OXmFHx0pI4phQi+zks+KsErv8tDkk7J8mb7Rirh8HiRHhfGq+mplIow658/cO5/sCzaxebYYsLkaLO5WEzaJJ2iR/JmhLVJ0JtBjN9F4FLlNEKNQ4f66FBR4GJSFsIjoI8dOGaoHBWN7pqsBs4jTutnkDaZXSxvwOcD3vqmGtEaGe84VS1W5nOLxcVbgrF8fAZMNhdDQqG3X/YxV+dy3e6TLIMcSjptzqhkhCskUEhEWL+HLaUWOL9BsRq0mJ2YktcXDheFfcebMOO6JLz8uzw43RQ0cjGe2H6MMUBvflPNa/w7HB6s+uwI6xjLPi49Z6f2n860Iztei/ykCJgdHihlYjwVQGpZNi4Dr/63ghUGD9Xlgk8W7WJybBcrb0ZYmwS9FcT4XQQuVU4j1Di01FVgqIheTEwmU7fHVkr9veS2/ljLy75865tqZr9QeZxAqS2aAUm3Pgr2BuQSIWRiEe84Tk+XEaab5j4SVH+37ONSbOrszh7YN9B/LmxtQYe7q7RBLhEiOUrNawgSI5Vos7mQ3keD+YUGxIXzX+fjDWak6jVosriw5KMSPFBgQHWLBR1OL3YcrcPiO9Lw8JhBsDv9hun1/afw1jfV+Nu0HJxoNGNEShRONprRbnN3+xJDH4/jMVJAu92NKqMNcrGQqZ+k96fDt1KREAP0avSP8uf6+Mai7xUfwelCcC55M4KrB6HYnsDVyfgkxu8icKlyGnzj0Iy+YOo6TYwxu3xYPSUbiwKargYe2+X1MgXQW76vwYszBsPkcCMmTI4mswNtNhcA/4IZpZbh6QmZrK4DdM7vodGpoHw+LL4jjQk9hiqufn3/qZAdFfyszExUG20402bjNRINJgdv38AlRemI08qZMKdcIkR+UgTWz8iFXiPrDJ1yDUGDyYGN+yqY/OYtqVFYMT4TSz/uOs9lRRn4z/fVoDpr8OYVGPDiXj9pZ/PBSqwYl452m5tVCL98fAbcHi9kEiHeP1QLAOgboUBGn7CQLxGAPw+5tCgdK3g6Uywam4ZvTzXj/oJUXjLO8UYzhiSGY4C+S3B6412DUVxrYsTIsxK0kIgEjKdLH2NgbBhL2OB8QcubEe/t6kZ3bE/g6mN8EuN3EbhUOY2ejkMTY1bvKkNRdjwUEiH+cc9QiEUC6FQyJEYoGaafUirG3uMNeH5qDurbbbC5PahptaHKaINaKsLGuwbj57NmOD0U3jhYidk39seLMwbDQ/mglokhEPggECQyubW5BV3SXbTiy/NTc1DeZIaX6lIsMTnc2PyHfJgdHsglIsjEAsRHDEKEQoryJjOe+/xEyKa5TWYnFo1N4+Q/Azux0zm/RVuPYVp+AsKVElS3WDG/0IB3f+CKWweGAtPjw/HSV+WscO2r+yswITceXoqd66RDvkqZhNdLfX1mPiDwl1eIRULUt9uwcR+30/vKiVl4ce9JAECbzQWxAHjprjwcrW2HlwIj1/b3g6cwOa8v7gti1tJkHKHA7817PBTTscHl8bHynGun52JAlBr/9za77yKprSMg4IIYv4vEpcpp9GScKqMVq3eVcTyj1VOyMTghAl+UNbK8x5UTM7Hj6BnMHjkAh6vbOeojEpEAL3/l93Y++LEW99zYD1VGG+NJ6FRS1vEDDVa9yYE1XxzHnFEDWCHV2Tf2R02rnaH204v43w6dwAMFhpCeI53XmpLXl9crNOg1eG5KFuLCFXj0g2JIxQJc1z8S9SYHjFYXis+0c3rmPTQ6FUXZcdAqpZhbkIIIhQTVRjsrXAsAiZFK/O2Lk8yxREIw0m4OD38NXqvNxfK6lxalw+XxYVdJPZ6bmgO7ywOlVAypWIAJufGgfIBKKkKTxQWhSAiDXoO6dhuKsuPx9rfVmJyXwHiE9DHovKVCIoJaJsajW49iwa0DMS67T0iy1Zuzhl2SPDQBwdUOYvyuIDR2OHi1LRdtLUY/nZKzGL64txwPjR4Iq8PLqRVbv6ccr80cguen5uD1/acwaXA8GjucHAM564YkrPrsBL491cx4LJTPr7d5Z34ith0+g7XTc1HRZIHTQ6HD4cHGfcc5i/jsEck40+qvhQtumpuq10Au9RtOm4u/J+DxBjNe2leB9XfmYNYNSYhQyTD7zUPMXNdNz2W6otPHXbf7JOaMSsaqz44xLwN8zEmV1P/f4P5bUiASAtf1j8Qb+ysRp5UjTsufJ9QqJMy1a7a40NDhwMNjUqGSivHsrjJUG+1I0imwtCgDKdFqnG23QyER4ZkACbN5BQZ8eLi2s5C+qy1SYL4zo48WAPDUx6WoNzmwaGsxsuK1IUlSNqeH1NYREPQAxPhdQYgJk4fUw6RzQ4GYNqQv1u0+gUVj03j3+aGqDW8cqMSSonT0CVcwITf6d9pAbv7DEDSZXawu4n+dlAW1TIREXTJe/aoCxXUdAMDqbBC4kA+M8ffeo+W9aK3QeQUG/PXTMkzLT0CqXoNINbfmjQ7/JekUcFM+WFxerN3NZneWhWgOG1jS8eT2Erw4YzAeeJetS2m0OHjZp/ferMTznx9nCtwDXwoe//AY2mwuLBuXARF8WLqDncfbVeKXZwu8ZvMLDZyaSVoWLC02LGS+s8PuBgAsGjsQCRFKnGwyI1rNL90mFgtJbR0BQQ9AjN8VhH46Fa7rH8m76PXRsgvgJ+clwBCjwZ35iTjRwN+FnZbkenrnz1h3Zy6v8bA6PRBAwIQxAX9dXbXRinitAmdNdkwdkoBmSyXabC5Ge5OvnGF+oQHRYTLMGZWMxAglGjocTE7LSwEnm8z46Egdpg3pi1WTshCrlaHZ7ERtmx1SsQBLizJw/zuHeWsXu2sOG3g+FqeHlfPbcqgGKyZk4v/eZhv+l7+qwKpJWRg+IBo2lwfrZwz2dzho6MBb31Qz5BuaiRns6T43NYcRDaC/56uZTIxU4PmpOXjlq4qQ+c6lRWlYMT4DJocbFU1mvHeoFlKxgLcjxZPbj+HNWcMIO5PgvNEd2xPwMz5Pt1gQJpdcFcQXYvyuIAiFAvTRKnhrzDRyCdZOz2XlBF+bOQQb9vrFmfnYmW9/W80YSqWEv0xBIhTC5Oii8IfqVv7U+Aw0muxQy0VYOSETNW023saum/+Qj5yEcKzYWQqXx4dp+QnoG6FEk9kBjVzMqxDz3qEzeKAgFS0ddma84LnSzWEDc37BJR1yiRAxYXI8HqALOq/AgKNnTKyXBo1cBI1cwgqrziswID5cjg172PlCh5uC1eXhfGd38neUCC57qGv3h2CL6zpQ0WTh7BOhlEIsFHK81be/rcbLX1Xguak5ONloZrVJauhwMI1nCQh6inOxPWlcLaxPYvyuMDR0OHgLzAcnhmNMWgz0Ghn2d8p80RqcgTm2xEgF6trtjCQXbcg+PCxlNZulQ3/vfFeNP47ozxgbPmWZ9XvK8cKduQhXSvC/CiOUUhEGxvB3lKg3OfDi3nIsviMdLRYniyzz0l15TJiQ3p4ODT65/Rj+OWsYU7sYbMxnDE2E3dXl1V3XLxKVzRZIxQIml5cWGwbKR/k9ULUMNW02vP1tNabnJ7BCjrNHJOOF3Vylmn/cM5T3BYHOGQZ+p5SJQ9bh0Z/nFxqglonh8/kglwgRJuf2A5yWn8B0gQicC230hAKw+umR/B4BQc9AjN8VBj65KblEiNgwOYft+eKMLg3OepMDL+2rQH6SFvfebAAAGPQarPniOPP7zqNnsWZqDiAAotUyONxu3DJIj5KzHVg1KQtKqQgqqQiJERlosTrxr29rmPyVUCBAXbsDm/ZXIkIpxdJx6SGIFzKMy4kHRfkYwwf4F/Wjte0hvSWHm0JxbTtDuvHBhwWjDYhUydBscUIpEeGV/1YyPeVGpOiwo7iOw0ZdNSkLKpkIb31ThftuTsFDow3QKqXITghnDG+ozgXH6kyclkTLx2fA4ekimdB5OqlYwDT4DdzWR1HYeNdgwAecabPhjYOV+OMN/bH49kFQySV4dtcJlueaEKHgnUtFkxkb91awPNw2m4vk9wgIeghi/K4whCqs91Lg5ItWfvoznhqXgacCOgpMyUvE3AASBqOBCWBsZhxT0yaXCPHM5Cy4KR8nxEovtLTGZpvNBa1CzGw3OS8Bz35WxlvztuQjv2zXI2NSzytvJ5cIkRChZAxUkk6Bp8ZlwOL0YHBiOMrOdmDKkATsOFqHv9ycgmazHX8aOQAPbmFfk8XbjmHd9Fz8/rpE1LXbseYLv7EJng/fPEx2D74orcebs4ahyeyATi1Du9UBrVLG6HL6fMDGvRVos7kwv9DA1EIOig3D+z/UYOYN/eDx+uDyULC7/Z3pX91ficl5Cdj8GZslu35POdZOzwmpChO43ZuzhiFaIyP5PQKCHoIYv4tEYCsivUYOsQhoMDlhc3kQrZHB5vLCZHdDq5BAr5EhMbKr7YzR6oRUJISts+ebx+tDTasNcqkQKokYAgFgcnhgcXig18iQERsGuVyM0QP1eGvWUDRZXIgLkyM6TIozrVZ/fZnTg3CVFE0mB+RSEfpH+dsaNVuciFBI8ee3D/GGFQFwwpkNJgenROLdH2rw+B1pONlohs3lwawbkhClkcMa0DVdIPAXYAsEwPNTc2BzedBsdkIuFiBZp8JjY9OgkIoYYszvrktEtFqGCLUUKydm4sntXKWZJUXpWL2rjMnN3ZmfiPv+zTbiO476Pb33D9Xg5oEx6BvCaypr6EBabBhe+m8ZEyZN0qmY+aikIo4kXKCY9v9OtTAF9/MLDUgSCDm5QACwu71MiYZcIvQLaEuEsHi9ON7o99xohPI2K5utvD0J6RcWejuby4N+usjz7iZyvu2PLlULL4KegVzvywdi/C4Cwa2IknQK3HtTCpbvKEWEUspoYdKL1oJbUzEwVg2rk2IRUyKUUsy6sR8r3/bM5Cw0m52s756ekInfZMTg058bWQZixQR/54NHPyhmHTf488M83pbD7S/q5hNdjlRKWd/RRiew9dGK8RmgKC98vq4cl1om4pz7/EIDIlUSjM2Kw0OdneMX3z4IDg/FOsfFtw/CizMG41SLFWlxGpyo70BRdjzMDjdTn8eXd6SN+NM7f8bsEcnoG6lElFoa0msSCMC6/ndfn4Tnp2ZDLBLi2c/K4PL4/KzUSCWazU5EKMT43XWJcHn9Bfe03Nr6PeVYM5XfOxsUG4ZXv6pgShREQgFsTi8gCK2nGvx3crQar35VwcxFr5FhyUclAMC0fhIJgPJGM+xuqsftiy6kHdelauFF0DP80tf7XGxPGjTrk8aVyv4kxu8iEKyyUZQdz+R4JuclcLymtV+exJqpOXjkg6OYPSKZWcAn5yUwBoDe9nRAix76uyUflSBJp2QMH/390o+6Oh9MzkvAuz/UYPaIZAyK1TB6nJPzEpgi8+AFNkWvgaDzc2CroWgNu5aMz+gs/bgUL92VhxU7S/HEHWlotjjRN0KJh9/n0vxfn5nPUPPrTY7Ogni2iPOqz45jzqhkeClgaafI9NrdJSxJtFBeEv29SAgIBAKU1pk4nuSSonRs2n8Kw/tHMoZv5vAk3rpC2rube0sKjDY3M1d6HLPDjU+L6yEQ+BlwVS1WvHeoFm02F56ekAmL04U/3NgPTR1OVkum5eMzMCBKyajaFGXHI0wm4nS1X1KUztRQNltcmFuQgiUfleCPN/SHze1lzfmh0alYvasMg2K5TWV78uw63OeWQQu1z8AHRkIgAPFOLjEuVcu0nqKnbM9gXKnsT2L8LgLBKhuBi3KoBZoOD55r21Dtbxo7nLzf0wxBjVzEeDSB9XACAfDeIW6Hh3kFBjzzaRkA4PGxg1iL6uLbB7K7eIcosD9a2w6Xxwenh8Km/ZUhewi2Wtkd4B2e0G15REJgxtBE6NRSrL9zMATCrmaxQOjcYJJOgev6R6K0rgNx4UqYbE5s/kM+jtV1wOzwQCMT4fHb09Bu88/ld9clhvQi6V6K0WoZlu1gMy6f3vkz5hca8NvrkhhDL5cI8dzUbMSGyXGkph19dUq/Gr7Aieen5uB0ixUur7+G8LGxadh3rIYlyZakU2DjXXlot7lQ02rDxr0VDItz1g1JaOxwYFxOPPRhcl41m9kjknssY3Yh7bhC7VPW0IFHAq4B8QYvDS5VyzQCfhDjdxEI1YqI/jsULV4uEZ5z21BhsZgwfmUPep2JD1cyXkbwuG02F8wON9ZMzcHJJjPD9qQXWLOT7YntLK7HAwUGLB+fAbVMjAilBJt4ji0VCTE5L4Ehj4Q6d33A3OO0cgyM0YQ8l1S9BkaLE099XIpnJ2fC5QUUnXkzJU9Obl6BAXuPN+D+Wwys+ryHRqeitM6EmDA54POhrt0fqnzprjwk6RSICZOH9CLp+ShlYpZHDPjLCyKVUpZRTNWrYXZ48OgH37NC3TKxiNM9XiwSYNaNA1gNaauNdsx95zDm3pICuVjEdN5I0ikQG65ARZM/1GQOqLsMnLNIiB6XOVxIO65Q+5xsNP9i3sm1hEvVMo2AH8JfewJXMmjmJW3Mdhytw7JxGUwtGt3dHACzEGoUIqydnosdR+swr8DAbLvg1lTWtv2iVJzvnp6QicxYDVZOzGR9v2JCBgZE+wkbdW1dheB0PVzgfP7zfQ2MFicUEhHe/LoSi8amYV5hCuYWpADo8uzitHKMzYzDA+/+hEVbj+Hh94+ixerCwtsGMsdO0imwbnouYrVypESreI9Lz3FJUTrOtFmxfHwGknQKzByehDVfHMdDo9nnOL/QgCSdEmfabNh6uBazb+yPunYX/u/tH/H8537x6ZgwOeLCZHj7j8Pw4m9zsWZqDoRC4J4bkrE0qKntut0nYXF58dCWo3hhTzm0CgkeHG1AfbsNqyZlMcSbQAQyTJcUpcPpduPu65Ow+WAlNu6twBsHKnH39UkIV0lZ1+vem1M45RtrvzwJo83F+m7D3nLIxCJ8U2nkNWIOD8XUZc4rTMG66bmoa7Nj037/8eva7bxzzk+K7HGZQ/CzS3ts3e3Pt8+qSVlMW6fAc2gyO3o0D4LQuJB7RNBzEM/vIhDciiha7Wd7vjlrmJ/tqZZhSFIETHY3whUSRAewPQfFatBqdWLLnOEM27NgoB5n2myQioVQS8VIjlLhjbv97YGiNTJkxGhQb3FiQLQKb88aCqPNjbgwOcJVElidHrzxh3w4O70LOq/29rfVmDMqGZl9tIjRyJDbNxxOjxcamRh6jZyVTH/190OYffnye49+UIz5hQbMHpHMqKDQ4bf5hSm8x82I04Ly+Rix5/wkLZ6fmoO7/+73jv75dRXm3pICvUaGKLUMErEAfz9wGscbLZg5PAmRKhlTflFvcjB5uNkjkpEWq8HCD4qZOQa2XaIRGBJ2uCms6AxXmp1ezH7zECKUUo5izsqJmWi1ODF7RDI27T+FBwr87ZKCc5jrOhcm+nodP4e+aOB3xxs6QpZ2CAVgtE8fHzsINhdbmPy9Q7WcOT8zKQvD+/Wc7Xkh7bj49hEKwHiogedAvJOLx6VqmUbAj/MyfocOHUJ1dTWmTJmC1tZWWK1W9O3b93LN7YoAXyuiJN25wz2h2helxGhYf9NUZ6PViS9ONHGa12YlhEMoFKCy2YLvTzfi64pmrJ2eyyyuO47WYUC0GqPTYlgNcb+rMuKJTnIF4F+Ql31cwhBEQuUsvZQPL+2rwP23pLBUUIIX5DabC3KxCCIRMP+dI0yo8+aBMag3OfCnkcmMMsmaznZCcwtS8MaBSqybnosqoxXr95Rj+biMkCE+K4+EWKhcYOC+CRFdoeF6k18xZ86oZMRrFVDIxPjbF8dZnR+e3F7C0uSkxznVbGEK2QWC0HWKwWuVXCJEkk6F8kYznp6Qido2G0OUWTkxEzanB3MLUqCSiuD0UjjbbmeNSc/59bvz8UNVK7wU8MKek5BJROeVa7uQdlzB+1CUjwhpX0ZcqpZpBFz02Pht3LgRJSUlOH36NKZMmQK3242FCxfi3XffvZzzu6YRSHWm1f9D5Vb8DWxFKBgUy1qIlhSlIylSwVkQWy0ujuGoNtoRrpRgw52DIZMIeRfy9Dh/94Fg40gvyM9PzcGJTq1JWjSaNnzBmqA0q5JWZaGFtssaOnB9ciSen5oDsVCA+YUpeO9Ql4RXkk6B4ck6tFldrN/o0C5fUX7gOdiCjCbtUdKh30DDR19rUVCCQC4RYkC0Gs1mB/42LQdhcgme/OgYb59Cl7urTZNcIsRzU7LRbnNx2KOpMWqU1JoQG67ABz/W4uZBemzaX4kHClI496LN5kJJnYlVX/hr5NqId3L1oKelDjREQgEkIgHC5JLLOKvLhx4bvy+//BLbt2/HpEmTAAAxMTGwWq2XbWIEbKpzKE+MZn7FhMmREK7kdB1/eufP2DJnOLMPRfmw90QjwpUSXuNW2WSBy+tDkk6JVZOysDhIBHr5zlJ/XlMsxBsHuAtyeYDs1sqJWZB3GtHuavPo1kZvf1sNuUSIKJUUVheF8iYz473efX0SPjtWj6LsOESoZPhjJ1Ek0MC12VxQy8SYe4tfH9OgV8Pm9rCII4vGpjFamnweooZHXzOwW0Ugq1MuFaLF6kKTxYVvTzXj/lsMeGlfOdOnMC02DEaLA+FKCZ6bmoOqFis8FAWpSIhHtxZz7tP8QgNW7zrB5Hfpe/6vb2vw0OhUrNvdVQ+5alIWnv/8RMjn4ZcE8U6uDpxvqcMzk7PQP+rKvec9Nn4SiQQCgQCCTrqbzWa7bJO6VnAu9YZAqrNaxl6U959ows2D9LC5vDjVZIFYBPjAbyBtLi/zd5XRiuJaE76uaOb0qVt8+yC4vD5s3O1nbSbpFKxGtbSXdrimHTuO1nFa6iy4NRVeyod5hSkY3DcCcgmw+cAprJyYiZpWG+/cUmPUWDDaAJfX3+Ehq48WFpeHI8G2p6wB99zYH1VGK6eX3/o95YyMmN3lYcKogN/grZ2WA7FYiA67Bws6C+yDPcRlRRnYergGt6bHcRr6xofL0WK2M4LYkSoJGs0uPPpBMWuO7/1QjYfHDMLJRjO8FLBi58+oNzkwrzCFyVXOKzDgJE/3BoebgrXzPjnc/prO5zuL5+tNDvzz6yrGqBYO1EMkEjCi3TQDdcfROpJrIyDoIXps/G6//XYsXboUHR0deO+997B161ZMnz79cs7tqkZP1BtoqnOEUgoBBKxFmS6QphfVxbcPQpxWwSolmJyXAJEQUErFoCgfhEIBGjscoHzAoWoTXJ5qvySayy+fVnq2g1XqUG20MyFXOt9Fe0jVRjte/qoCm2bmo7i2Hal6DU61WBCllqHKaMNTO0owITceNw2MhUYuxpCkCF5vy2hxIlItZxV38zV9fW3mEPzf2z+GrCE80SkXtmZqNstDu2tYElosTrRYXcz1C8zzDYrVoNpog9vrxbzCVMx5m9vQd930XPztvydx17AkvLivHCsmZLL6GwZ6sbTgdOA5puo1mFuQwrQdmp6fwHst5OKu2Kq/lZGAlRPcfLASa6fnotnqxKtfVeDeUSmsl5eVEzORGKG8lI8pAcFVix6XOsyePRu33XYbxowZg9OnT2PevHmYOXPm5ZzbVY1Q6g1Vxq5QMk11vvv6JCbkRW+7fEcpirLjAfgXSqvLi5Wf/ox5BQamlGDzwUps2FOBOzd9g12lDahqscDu9iI7QYt5hSkYNVCPk41m/PvbaohFQkRrZCHJJUAX9V8jF2FuQQpcHh8OVbfC7qZQfNaE9XvKUWW04aV9Fag22kH5gE37T6HD7sHSj0o45Q8rxmcgK0HLGD76eOv3lGNyXgJrDg0Bneq7K01otjixbnouFtyaiuem5qBflAqrPjvOEQ2g83xCARCmkGDVZ8fxfVUb7/mXNXTgzvxEvPN9NYqy40MKDYiEYMKj9LyWj8+ARiGGUOAXGpCKBYhUSvHImIGs7eYXGqCRiRGnlSNOK8fd1yfhofeOYOEHxXhtfyUW3jYQu+aPRHqcBnPf+QnXJUczho8+/pPbS1DTRiIyBAQ9wXmxPW+88UbceOONl2su1xRCqTe0Wp3M7zFhcoweqMcXxxtZ29JeXWKEgmEF0iG8t7+txuN3pHG6iC947wjmF/pbGYUrpYwXROuR/vmtQywJMRq05/L6zCHwUF0lC0k6BZYWpcPq8kAuEeFsmw1LitIZrydJp0BqjAZLi9JxtNaEcTnxEAqBR8akIkwuQaxWjqoWK9qs/AXbwU1flZ3iAHy9/Gjx6/mFBqikIkjFArz8ld+DnVeYwjKaweemVUjx4BZ+UQD6by8FxrMTCf0haL7tchLC0Wrxq7loZCJIJUJUNluZLvG0x/6f76pxe1YcqxMEnbOkjxEsjbd42zF8Om8k89ycKwdMQEDQPXps/AYPHszk+9xuNzweDxQKBQ4fPnzZJncl41z5vDitHIvGDkSkUgqlTIy6dht2/9yAunYHfr+5SyHkH/cMhUgoYIUzg1mTS4rSmTBhvcnBUtygQVP8wxV+ViI91sNjBqGiyYw/jUzG/hNNHGLF/EIDnF4vtEox/vzWj8x+d+YnMjV+dMgNPn9IMUmnwL2jUvDW15W4+/r+zBzsLi/66VR4Yc9JVBv9hdov3JnLa0gCm77OKzDgwx/PMCUcdC+/WK0C+jAZrE4PHhubhiqjFa/8txJP3JGGN2cNg9HiRJRGho+O1GH/iSZOjnNZZ0sk+thbf+SXf9tVUs80Au6jVaDN5uBcp5UTM9Fmc2LJx+zxXz/AZugu31GK+YUGWF1eVniUxqBYNZwhZN+azA4mFE5fm+DrRnJ+BBeK82V7ysWiyziby48eG7+ffvqJ9ffu3btRXFx8ySd0NeBc+TyK8qH0rJlDyb/nxmQ8/zm7p5vR4sLzXxxnvB0+1uTTO3/GnFHJLNo738J4vMGMzQcrsaQoHbtLGzC0v47VoWFegQGfFJ/F3FtSkNRZp2WyOaHXyGFzeRl9yv5RKqYJLj2HJ7eX4JXfD8G//zQMTjeFv7xzGOtnDEZls4VDILnn+n5osbohEAA1RiuHVfrQ6FT0i1JhXmEKvBSwq6QeYzPjWNdz5cQs7CyuxRc/t7DKJqRiAUwON6sv4bKiDJgdLry6v4JpYeTzAa/+twIrJ2SxivO9FIXXZg7Bj9VtzLF/k92HZeiWjctAaqwa/5w1FMW1JpjsHrRanFgb1P19+Y5S3vrAvpFKJkwbfI/Kmyww6Pll3+gyglWTsrB+z0mOB7xqUhapryO4YFwI2/NKxgXLm40ePRrffvvtpZzLVYNz5fOqjFY8/D779/V7ynGy0czk8WhYnR5UG+2M3FViiB51A6LVjEew42gdlhVlsDyEeQUGfHi4ljGWfwzoKkGPsWFvOUam6rFxXwXCFWJEqSWQS8V4cvsxnGqyYOEHR7H2y5NY+MFR3JmfiDitnDWHn2ra8N3pVhw+0w6Hm4JEKOCE79bvKUe/KBUjFbZ2dznEIgHm3pKCBbem4sUZg6GQCGF2uJGbEI6dxXUYmarnzPXJ7cdgiAlnzX3WDUl4ekIWR2Js+c5SZMRrMS4nHgKB38Oj85IVTf5C8ySdAo+MSYVGLkHZ2Q7olFJsPliJMRmxvPnW0roO3POPH+Dx+vDh4Vp0OL3d5ktpyCVCqGVirPniOJYUpXPu0fuHalHXbuPkR+nCcaFQgLzEcEzI9YeRn5uagwW3pmLOqGTkJYaT+joCgh6ix57fF198wXymKAolJSVMGJSAjXOpsYf6ne5mEIg2m4uhu7+0z1+IzecVyERCllfzn++r8bdpOfBQPpxstDBlCvSxGkLMQSER4qW7BuNMmx0NHQ5s2l/Jar9EbxfY+YCeA90nT9FZ22dz8xuEZrOTNdajHxRjzqhkvH+oFrNH9GcEsumQbphcfM68YKpejUi1HMfrTcx1AMCoyPxU0w5f5/VdWpSOV76qwMkmC/rqVCiuMWJeYSqeCPI+5xcakBCh5Bw7QilFRp8wLB+XAZVcjKfGZ6Cxw85bH5gWG8Ziny4pSofXR2H15Gz44GPyfnKxEAIBMC0/AfHhSry+/1RXacMgPbLiuwxbQrgS+UmROFTdipONZuw4WodFY9MY6TwCAoJzo8fGb9++fcxnkUiE+Ph4vPzyy5dlUlc6zqXGHup3oQCcxVIpFeGRMQMZg0CLZ9NUezrclRCpwIMB3iYASMRCqEQCljIMfazYEHPIStDCbPegocOBeK2iW3JFIAuUJp0UZcdDKBBg8e2DIBXxq8Q0mZ0MaYc2UulxYZiWz+4MQXupa6Z1NYsNLOGgm8oCwH03p+DZXWWYM2oAE34MnFdytJqjfKORi7Fh90mMTNUzho8+Lt0iiJ4z/RvNxAzsIr/g1lREa2RY9elxVng3IUIBsUjA1AfWtPnbFLXZXP57FqHA0KRIrN9zAgWDYjk9BbccqsGisWksw0dRPnxR1sg6l9VTsjEmQL6OgIDg3Oix8XvmmWcu5zyuKtAlCqH0Dvl+n19oQHofDSQiIdNCSKsQY+EHxwAAs0ckQyYWIkWvxt8PnmLEoGO1cvSNUKJvhJI1ZpJOgXC5BLXtdqy7MxfPflbGkEweGp2K9XtO4K+TsljezrJxGahusWLVZ/5FnBarBvjzU0OTIpm83JZDNZgxNBFvfVONKUMSIBEJ8NfO0ovgvJTN6cbcghQWseSvE7MwIKAzBA2Hm0Jtmw0rxmfgpa8qmF6FgUZCLATKGvwd34NDnhv2lmPjXXl4eie3H9+Lvx2Mk00WjBqoD+lZ1rfbWAXx0/L5mxTTzYTp79bvKccjY1JBUT5kJ4Rj9ps/sI6xeNsxRt3mmUlZeGHPSc68t8wZzjJ8AH9IfdHWYmTFawnLk4DgPHBO4/f00093G9588sknL+mErgacS++Q/n3gAyNR02qFUipGrFaG0rNmLHivy6NYWpQOqViAaqOdCS8m6RRYNy0XlUYrq0P52um5GJMWg0/njUSr1Ym6dgfu/kcXa5TuPG5zeUH5fDhUbcJvslxMHrHOZEekSor57/7ELKy0WPW7P9RwjNiSonRUGy1Iiw1Dh92NxbenI1wlhpfywRCjgcvj9XuBQuD5qTmoa7cjMVKJ1bvKUJQdz9EpfWL7MUbRJNjI+nyAVinFigmZTNkAvd+GveV4+a48HD7THrLZrsnm4tXrNNndeHzsILR2hpb5PPFojQwCgYAJT8aH8+dc48MVjBdKe7QDotV4akcpxuXwh39pj/rxTkMYTIyxu70sw0cziLsLqRMQXCjOh+0pEl65mp40zmn8MjMzf4l5XHU4l96hUCjAAL0aA/T+3yubLZw3+hU7f+Z4iIvGpkGrlOLF94+wclurd5VhUKyGOR5dLkGP9fTOn5kFls4btljdzN8b91Zg9eQs1sJKK6E8cUcaJGIBNs0cgsYOfy/AVqsTESopalpteOf7ar9HtqWrA7xaLmEMHG2cz6lT2uHAS3fl4WhtO6Pp+bvrkhCtlmH+uz8x6i7BIVMKPuw4WofHxqaFDDfzfV/TaoNUJIRKKsKK8RlYGlCmsKQoHV4vhYYOJwZEq5Gq16CyxcrUGwaPVddux72jkuHwUCxm6LwCA4TC7rtNhCLGBJYt0AziEw0dvGMpJCJ8c6qFt6yGgKAnOB+25zOTs6BTyy7zjC4vzmn8aCFrgssD+m0+VG1eTasN66bnwkP5EK6UIEErR4vNyRv+a7U6uyXUCARdHs3KiZl4cW8583uSTgGNQsyQNmiiSJvNBb1WhmO1Jjz/eRcR5alxGdBrZFjzxQnMGJoIu9uLP43058j6RqqYGkD62MG97vgW8H5RKtwfoOn510lZSIpUsAx5kk7BOfe/TsrCn0cmY/PBU5w6vYdGp+JMmxXPTM5CVYuVaR1El0Y8NNqAcKUU7TZ/cToAlDeZseX7Gvwmuw/e/cGfxxQJ/XnJLd/XYMGtqVj7JdvAvf1tNablJzBlHfR5b9hbjrXTc/D42EF4Ztdxzj70uecnRbJyvcFtgehwZ4RSyvHCV07MxLx3f2LC2sEyeb0B56p7JSD4pdHjnF9raytef/11VFRUwOl0Mt+/9dZbl2Vi1wIC6wEfHG3gZQsmRSpZxeTzCw0YnBjOy76kuzeEItQMitFg1aRMaBUS/Osbv7e25VANdEoJ7r/FgAXvsWv+thyqwd3X94MQwPOfn0CEUsp4XPUmO1weL/54Q39IxEJ2Y9UgDxJg97rjU2n566QsrAjKyz2x7RjWTM1hvqOL0IM95Ce2HcMjY1Lxf6NSYHd78NrMIWi1uPyeqdGKFTvLWKFkk93NKKpUt9qx9OPSTmNUgSlDErBxbwUeGZPa5dEGGRqdWopXfz8Eh6rbGL3OepODI6FGz+94gxlxWgU2zBgMCAClRIQjZ9oxZUgCw9S8IVmHd/6QDZdQxtsWiH6hoRsF017/9cmRWLztGBPWdbipX6W1UXfoiY4tAcEvjR4bv0ceeQS33347vvrqKyxfvhzbtm1DZGTk5ZzbVY/TLV1v88HC1fMLDdCHyfDsrjIOkWLVJK5xcbi7ujf006mweko2q/HtvAIDnv/iOB4oMGD97nIU13XAaHVh7i0GnGmzYfXnJzjG9PWZ+Xh0azGjIBOsLLNifAbabS7Go6H3rWqxcozvjqN1TKPcepMDWw7V4JXf5cHpoRChlKDd7ubNy3kpHx4bOxA+AFaXFzYXt4Gtw01BI5Pggc58ZZxWjt9dl4hItZQh79DbregM/wZ6f/T5zi80oG+EEvMKU5DZJwwiYSKH3PLk9hJGoeWNA2wWrUgQWh6NVnYBwHpRWD3Zz9QUi4VQUVaEa7Vo7HAw9zFY5Jw2gC/t8wuaj0yJ4r1uvSkHGKrutTcZaIJrDz0ucm9vb8e0adMgFosxbNgwPPPMMzh69OjlnNtVj+pWP3lhcl4Cp5B6/Z5yxIbJeRe2iM5efIHwhzP9Hd0BoE+4HK/NHIJ5hSmYPSIZb39bjWqjHU9uL8HcAgNe/O1gzLy+H2rbbFBKRbwG5acz7Z098kSYls9Vlln6cSlS9BrOvu8dqsXTEzJZTNHfXZcEm9PjZ07OyMWE3Hgs3laCB7ccQXmTBeEKKe85nWyy4IU9/vDs1h9rcabVxrudUiZmDN89N/TD+z+eQVMIAerUGDVmj0jGrpJ6TM5LwNyCFDw42oBojQyPfHAUG/ZU4N5/H0aYQoIIpZSzf6RSynivgeeYqFNyzjtQXCAhQskxpos+LEZNmw0U5UOZWYY7NhzAb1//DndsOIBdpQ2gOkMBNEM4cOzVU7IRq5XxXo/eJHPWXd0rAcGvhR57fmKxf1O9Xo+vvvoKer0eDQ0Nl21i1wJUneSJUAQQm8vL60mUN5o5YcP5hQY8uOUI2mwurJ2ei/Q4DXYW17MkzwB/gXazxcnKiy0pSkeSTsEY2jitHLNuSMLAuDCsm54LyudDPx1/GUKbzcUbru0TLmcYkkIBEC4Xo8niQp9wBURCAZRSEaYMSUBpbTt0KhmOnmnj1dV8+9tqRCilsLu9eLDQgDa7i5NzWzkxk+k8T79IzB6RjNo2WwgWpwA7i+vwxxv6w2hzgfIhZCNgPtm46DAZpgxJYGl+1rXbYbF7sPVwLdZMzcHJJn9Pv8BO9cEd5Onj0J7eY9vZZRqB3pFQKMCYtBhsmpmPQ9Wt8FLA2i9PYNHYNGy8azDmvvNTyHzhr41z1b0S9A6cD9vzStf1BM7D+N133334f/bOPKCqOn3jn7tyF3aQJRAUARFQXMiylEYws8IlQ21srGkqp8W0nGxXU1vGMk2zMqtpyt9M2TJaWpmFlTmtaLnigigIsig793L3+/vjcg73cA9GjZbWff7Sc+8553sOcN7zvu/zPk9LSwv33nsvixYtwmQycf/995/Jtf3mER0cwKy8FCx2+SDXO8Iolgq9A5UgiOw9pvDaVx0KLrPf/IENM4YzID4EnUYp6dWlRQfJPuQFNmaYQcutlyRhsjklbgTPXztYdo0GrdrX/DVMT3mdiWFJEeyuaMTphoY2h+gVKAS2DTsrua19OF1wilg6eSClJ1pJiDDy+AfFAGK5NcygZVJ2PMlRgbzy5/OparIQEajFandRWmti2ZSBHGsfBVAoPBlo55eEheMyqG22sHjiAHZVNolr93Z/EGCxu+gdaZQQUWblpfDguj1i2XRtUTkPj82gsrGNVVtLPYo8WiVpMcGSHtfM3BROmqyy99DudFNnks9SvcuX5Q1mpq8pknxv9ps/8P4dI/igi7GaswE/Nvfqx9mBn8r2PNehcLsFwvWpUV9f/5vv8RUXF9OvX78f3Xa64HK52XKghtLaVow6jSTrEQgBLpebfVVNVDVZCdSpCNFrKFj1lfgAFMYUOuPF64ZQ1ejJ5Ew2p1huE1zFO2P2pak4XC4G9Qzl+2ONEtYieFiWnSXA5uans3rrYUlpVggQizcdEAfnG802SblP+J4w5N1ZJk2Q9VpRWMLtI5N5eVupbM9x9qWpBKiUEhblEwUDaDTZiA8zUG+2EaxT02ZzolQqqWr0eN099uEBZuYls3prqfhikBCm53hTG28WVYgvETqNUmTagocF+pbM5y1tNhrb7PQMN+J0uQkxaAgOUKNQQKvFgdXp5uENe7A53Fw3LFHS87trlIdYs+KaQUxZ/bV4j2JDdEzKjmdgz1B6RRjpFWHkmyN1/PHFb3x+dm9Mv4ALkyK7+2v3k3E6/gYEtufpDtBn8u/zf8XZvDY5/LB7D3//qqVb3318Yn96R57b/dpuZ37XXHMN8fHxXH755YwePZqQkJAf3cdqtXLttddis9lwOp1cdtllzJw5k8bGRu666y4qKyuJi4vj6aefFo/3wgsv8Pbbb6NUKnnooYcYMWIEAHv27OH+++/HYrFwySWX8OCDD6JQKLDZbNxzzz3s3buX0NBQli1bRny8xwh13bp1PP/884Anc/01xzYcDhd7q5qoarIQG6InIzYYtVpJbt9okiIDqTdZWTv9Qsw2J1FBOlRK+OZIHdHBOjLjQsmMg7I6E9XNFp64egDHG9swaFWi+4H3eIJOo0SnUVHbakOnVkrc2V1duAn0jjRS0WDGbHMSF6LnphFJ4vHA49xe12JhzV+GUlZvRqdWcbzRLNuTNLUTbyx2jwj0kklZslmNUO711lCw2D0zbwPbTWGF78i5WQjKKkIAC9KpcDg957/Na2RCyNBuuSSZ178pE++DXECdlZciMkHn5qdTVm/i1S/LRBZo52twud08+/lhpg5N9GHlGrUqwoxaXv3yiGgdBTBjZDIWhwulwvO2XVbXhtnm5O8T0rlv/T7CDFqfICmUss/V8uGPzb364ccvjZ8kbL1r1y7ef/99Vq1aRXJyMldccQXjx4/vch+tVsurr76K0WjEbrczdepUcnJy2Lx5M8OGDWP69OmsXr2a1atXM2fOHEpKSnj//fd5//33qamp4YYbbuCjjz5CpVLx8MMPs3DhQgYOHMjNN9/M1q1bueSSS3jrrbcIDg7m448/5v3332fJkiU8/fTTNDY2snLlSt555x0UCgUTJ04kNze3W0H7dMPhcLF+Z6WkfPnIhEwmZMWhVislDwU5WvjKqYNwu6GktlV8IAomtNO9SpPCQ/6a8xMIM2hQKcDmlHrDyY0ZLBqfyatflpKbFsPf3pKOO3j3rJosTr4/1kiPoACON5rp04X1jnctwcPElB8MF2x9vL+v0yjpFxNMRYOZJQVZRARq2bCzssu+qFqpFAPYjcOTMNvMsrN2Nw5PEi2GdlU2A8iSeJYXHmLVn4awo7xB1OGcm59OZGBAl/3D/AFxsoSl6TlJnDTZuCCpBwdrWmQzdEFwIDpYR7izng9mjuBEi5XrX5GKFAjlTX/50A8/Tg9+kqXRgAEDuP/++3nrrbcICQnhvvvuO+X3FQoFRqPnD9PhcOBwOFAoFBQWFjJhwgQAJkyYwCeffAJAYWEhV155JVqtlp49e5KYmMiuXbuora2ltbVVNNSdMGEChYWFAGzZskXM6C677DK++uor3G4327Zt4+KLLyY0NJSQkBAuvvhivvjii590c04X9lY1iYEPOijze6uafL4rRwvfVdHE7somSekwf0CcKG4tfG/FlkMsGp9JQrgBvVrF4MRQstozKAHCmMETBVnMyE1mek4STqeT6y6Sd26YODheLM9t3FVJU5uDmmYLqTFB6LVKH3bjrDwPu1GATqPkWL2JBeOkFktz89MJ0al47trBfFN6Qtz+yIRMWq12HvtwPzNe/54b/vkdt+QkE6hVybIakyKN4roVCrqcteucZb6zvYLekfIknh3lDawoLKGqySL2RA/VtDArL8XnWs12B/pOQVE4jiCHlhYTJDpddF5/WnQQSwqyxBeApB6BuNxu2eOdaLUwJiOGD2aO4I3pF/DBzBH+WTk//PiZ6Hbm19raKmZXx44dY9SoUbz11ls/up/T6WTixImUl5czdepUsrKyqKurIyoqCvCwR+vr6wGoqakhKytL3Dc6OpqamhrUajUxMTHi9piYGGpqasR9YmNjPRejVhMUFERDQwM1NTWSfYRjnQpWq5Xi4mLJNovF4rPtp6LCFiz7MKtsMKNtlTJmj9t9H8guLxksAV1lQkVlngd3YoSeBeMyADePTOjPQ+s7enVTshN4/INisaS5eGJ/H4UZQUKsb7tpa9mJVu4b04+Xtx1m9ui+VDVZeXDdbsIMWu65rC8RgQGeUqxGRYPZJvasekcaCVAr+Ud7by9IpyY5KpBFG/eKiiRz89MZNzCexAgDSuDmTvqdCzbuZfk1g1g0PpO573Zkz3eNSsWNNFB0NWsnZJlp0R4niAazjXCjtsu5vM731eLwDOdPz0mib3QQ+6paeO0rj3nu3ycOkC09KxVQXt/Gy9tKuX9Mmo/7+8LxGTy5eb94Hx4f3w8OHkSnNMquS+uycuDAfgBCAKsVDpzs/Nt2+nE6/gbOFPxrOzV+Ss9RAcy9Mq1b33W7XOwtP4FBDZamX+CX8GfiVNff7eA3btw4Ro0axe23386gQYO6fXKVSsW7775Lc3Mzt99+OwcPHuzyu3LcG4VC0eX2n7tPVwgICDgjhBfbsUbZh1lcmIF+PaXmtQEnWn2+q1J07NP5GJ3/r9eouHt0KrEher4vb+TNogq0agVPTxnY7u3XIvH202mUGAPUkuPFhuh8emEzc1N4bmspt16STElNK+/trGT5NYPQKBVYHS6qmz29vzaHk+XXDKKu1cpCmbGFay9IYEZ7Pw462KbPTh3MX9dsF/U7vWGxu9h7vIkQnUbiWfjPL4/ypwsTxHW/s72CW3KSJC4M3uVgYdD/rktTMVnslJ00+Xx3Xn46L2w9LDm/EDyrmiysKCxh+TUDSQgN4KEr++F2w85jjbzVfp8XTcjAZnfhwqPk8nR7sHt8035mj0ppZ82qMGhVoiSZcI33v1vMBzNHkBVhZOlkpU95c2BSDEql9Pelu/hf5MXOZuKGf22nD25g0fv7f9I+j0/sf05doze6HfwKCwtPGTwWLVrE3Llzu/w8ODiYCy64gC+++IKIiAhqa2uJioqitrZWZJHGxMRIZgdramqIiory2V5dXS1mjjExMVRVVRETE4PD4aClpYXQ0FBiYmL49ttvJccaOnRody/3tCIjNthnZOGRCZlkxPr2H+Vo4f3jQ3C7kTyo5Xz97h+ThsXhYvmnUveFFoudxz8sZl5+OpFGz7iAy+0JqhFGLTqtkg07K8VeoBy5ZMUWj0XP8aY2+seFcP1FvSk90SoJHLMvTeWV/x7tUuNyVl4KkYEBssFtZ0WjuF0uqPeLCUavVfHk/22XfPZm0TEeHpvBwxv2UtVk4R9fHmHh+EyempRFm91JVFAA+6s8dkdC0J/37h5eveF8lEoFVU0WcR7RqFXRK0LPjJEpkgxzZm4Km/ZUcfvIZFRK0GtVmG1OSX/07tF9CQ5QcahG2pe9b0w/DtW2YnO6iA7W8fCGvbzy56HUNFtOqcxyKleQnwq/vJgffvii28Hvx7KmHTt2+Gyrr69HrVYTHByMxWLhyy+/5OabbyY3N5f169czffp01q9fT15eHgC5ubn87W9/44YbbqCmpoajR48yYMAAVCoVRqORH374gaysLNavX8+0adPEfdatW8egQYP46KOPuPDCC1EoFAwfPpylS5fS1OTpq23bto3Zs2d3+8acTqjVSiZkxZESFUh1k4WYEB0ZsSGo1b4t167skACSewQyID6EVouTSKOKiCA9r94wFLPNQbhBy/byBh/ihTCoPSU7gQC1Ar1WzeoPO0YDFo3PxGyzs3B8Jgeqmnlh2hAaTXbZANUjSMemPUdwujyO6J0D3NKPPcPlXfXdeoYZOFTbIl/SUymJDdERYdDIOiyoVQoOVjf7ZGrXnJ/AeaEBvDBtMGarC41ayYGqZtHQVm4UxGL3uDXc+84ucXYwIzYYs83JX17dTphBy/ScJBLCDUQGBvDvb44wJjNWNOu1tbNYva99yeYDLCnIYt6GfWL2PCU7QcIAXTgugz8OTaDeZP3Rwe/TyY70y4v54Ycvuh38fg5qa2u57777cDqduN1uxowZw8iRIxk4cCB33nknb7/9NrGxsSxfvhyAlJQULr/8cq644gpUKhXz5s1DpfIoCTz88MPiqENOTg45OTkAFBQUMGfOHC699FJCQkJYtmwZAKGhodx2220UFBQAcPvttxMaGnomL/eUUKuVZPUMI6tn9/dxu6HV6uD78gaaLHYSw40MS4pEqVRQXFxMr9796NU+a+NwuDhabxYfvN6WPwatiqc/OcSrNwxl7rsdJccwg5ZjDWZSooJosTh45UvPGMDjE/vLPpgPn2jlL8P7UF5votUq71GXEK4nKjiAlX8chMnqwBCg5sWthzlY24papeDNogqf3tesvBSCdGpu+0MfHv2g2Cf4rNxykAv79AA8PTXv0udrX5Vxz2V9CdFruKt9SP+6YYmiWoywdrlgK7hQvFVUIclWhfKmTqNkek4Sf7qwN3Pf3SOKXHdVmjV56Y7KZc/z3tvL9JwkjtW3oVIqfPRX/z4h/YwwN08lL+YPfn78XnFGg19aWhrr16/32R4WFsarr74qu8+tt97Krbfe6rO9f//+bNy40Wd7QEAAK1askD1WQUGBGPzOFciVqLxnz4RyVWeUN5gpPdEqa/kzNz+d1KhAiYqIXF9vzmV9sTlc2JwuFo7PZF6n0p9g25MSFURJFxlcfJieykaLZN/5YzNQ4aaqqY0Gsw2X2y2WGoUA1mC2iW7onYPPBUmewKdSQIPZJjF91WmURAYG8F1Zvbjv4k0HiA3RcePwJFKijDxZMICKhjbCDVqMOjXBOjUrCg9SVNYkXpvDJc+wdLmhuc1B/oA48V4FBqhkJd2MXl5/XRGSXG5E89qNuypZPS0bjcoj99bUYuJonUlS4jwdVkB+eTE//PDFaQt+3RSK8eNHIFeiWl54SFRBEcpVnVHTbOHNInnLn9VbDzM9pw8HqltIjNCTPyCOtJgg5nSSOXvyowNMz0li+mvbeeDyvpIAteZrT4BKiQpCqYC4EJ1PCXL2pamYLE4x8AnHXbBhL0snZbGssIRF4zM51mCWVZlxdfoVEoKFQkGXZJaF4zMprmryEEg6BaSXt5XywOVpBOo0kn1m5aUwdkAclY1WT6Ddcoglk+Rd5JUKCNarCdGpxKxazoEjPkwPCre4PmF/OdapEBzL6tqYvqaI1dOyRXUX734ccFp6dX55MT+6g5+i7SlApVBw5KRHTD9YpzmnDG5/cvAzm80YDAaf7dddd91pWdDvHacyohX+XdtiIUKrZeexBlExJiowgAazjZLaVp/98wfEsWjjPlKjArklJ5kFG/d2WboTgscrX5ZxR26yhLE5Ky+Fxz4opsHsEZcenBjKi9OGYLI5OXLSxMadx7mxi+O2WB00mG30jjSQGGHwkU8TAo03hG1Ol4dpuWprKTdclMhzUwdzstXKeWF6Hly3mz8OTUCp8A1IPcP1qBRKH2NdYQD9umGJtFqdKBQQqtfw94n9ue8/uyXHMGhUzH13D3fkpoovDnID7U9PHsiCjfu44aJEnr92MC1Wh6wu69pvyyWD/Ra7i6L2rFX4v/cLzuno1XXVR/aTXfzwxk/R9pTDuebu3u3gt2PHDh566CHMZjOfffYZ+/fv54033uDhhx8GYOLEiWdqjb8rCCUqbzFqz+yap/ep0yiJDtJRVGZm7rtfi6zCheMzeeLqASiVCt9RCaXnwTkiNYoFXoaxcplJ3+ggZuQms/VALWabg6cmZaHXqCipbeGVLztGJJZ+fJCnJw/E4XajVSlptTq59oJEwgwaiUOEcFyjVs2svBR2lDVg0Kp8mKqzL01Fr1GJaxKYknani+ONbeJsXpjRoy7TKzKQBpOdu0enodcqRVcDQHSBUCmUXZYz1UolwfqOjPCl9jW88KfBtFid4IZjDWZWbS2lqsnCQ+t3s3LqYHZ5sVK9j+d0u5mXn05xdTMPrPN4Fj5RkMlzUwfzQ0UjThes3nqYa85PYFKAmreKjons0ZQoz+yhcG+FFxx3F8Shn9Or+73Ki/kd5P3oCt0Ofo8//jgvv/yy2I9LS0ujqKjojC3s94peEUZWTh0kocwLA92JEXruHdOPFoudue96AseAuGCmDE0QHRiE4fb5XmzJwQlh6DRS6yQ5mbNZeSm8uPUw+QNi+dOFvZj3nrTnB0jINFq1kpc+O8QfL+jFy9s6sq4F4zJ47rMScXh74bhMAnUq+sYE8vTHh7g5pw9LNu+XuFK88t+jgEf3MiFcj92FhCk5f2wGfaIMtFqcmK0qXG43bXY7da12YkJ03JGbzP99XQ4g6WXOykuWDfJJkUYfdwtBKzQ9Nphb/k/KXrbYXbS02UmNlpd002tUrPnqKCPTosRRkthgAw+9u5v8AXEoFDA2K443vitn7pXpjMmM9Zmj9JaSE/px/l7dz4d/xMOPU+EnlT0FJRUBSuVPUkfzoxtQKhX0jgiUZDIWu4tlnxxk7c0X0j8+lM37qsX+0y1/SJaUxsrq2njusxJevj6bb47Uo1UpqW1u87FOqmqysObrMvFh73C6qTdbuXLAebTaHCz9RNq3E+b03G4kD23vXpLw3fnv7eWFaUOobrJg1KppNFv58yu7xABrd7ooq2vj2U9LfEYRlmw+KDo5eB/zne3lTD4/UUKkWTAugze+KxeD7MzcFBQKJDJwbxZV+Pj/zcpLQa1SdFn2NWhVskGnsrGNlOggH9/BufnplNS28Nc/9KGpzS66x6dck+VDPpqZm4JSiewcpeBy4d2P8/fqfj78Ix5+nArdDn6xsbHs2LFDdFJYs2YNffr0OZNr+92itkW+79fmcKJUKogN0aPTeIxb91c3SxicQlbWYLbzVlEFEwfHM++9DqcA7xm6BrON2GA9j3/o8dMTbH666gf2DPM1fPU+v/d3vzvawEtflDI3P51Wm1Ms6y0vPMSL04ZIgotcmdbbqSEu1ECIXi2KeAvnmP/eXpEIJASQJwukDhJVTRZe+e9R0ZooMKAjsHVFcNl73HeeULAe+vOwXlgcLp4syEKpgACNkkUb94kBeP7YDFKjAtlV2UyoQcu97+z2CXL/+PP5svcsMVzP2ukX0j8uVMxMhF5dvcmKRqXEbHP6MEL9kId/xMOPU6Hbwe/hhx/m0UcfpaamhksuuYSLL76YefPmncm1nROQ6ym4XG7Rvui8UD1BAWqqvT4HxH1iQ3Q4XZ6AZ9CqabbY0KnlMw8FCkpPtNK3RyDPXTuYEy1WwgxaEiP02Bxun9GFu0alkhiuF+fiTDYnxgAns/JSSI4KxOlyE6BW8sAV6Ty75ZBkOF3u/HLZUlcWSecnhqFUJLFySwlataI9O/IonZhsDrHk+s72Cp9Ak50Yhl6jorC4mr8M78P+6mZSooJOSQQS/q+W6Xk2mG0UVzeTHBXEA+1GtC9dN8SHkCL4A67aWgrA9Jwk4kL01JttJEcZueeyNNrsThavl45xPHBFOo0mGydNVlZ9XsLfRqcx8/XvKT7eIrvmqsY2yRoFHVS3GywO6feVSgW9Iozsr27xl+9+IvwjHn6cCt0OfuHh4Tz11FNnci3nHLqyH2o02yUPVe85vZVTB2FzuEXXdDlz0zCD2icgzMpL4c61P6BVK7gjN0VyfDnDWIvdxb+/LWPGyBRJP+7RqzJxueCO17+XHPuGi3vTYrWj0yhl+4F3jUqVDSwbdlbKlgEPVDezorBEVDrxvkePXtWfLfurxaAMHum2HkEBaNUqFMAb35UzPaePuF9XvbvOdkhH60w+ZBqBtekt5l1vsqFVK8VxDqUCIgK1vPrfo+J3VhSWMPfKfiRGGNlZ0URKVJCPO8eCDZ7BdWEucX5+OoEBHrWaVptDds1VTRbx/nbl3ecd2Pzlu58H/4jHT8PPGXXwhvfYg4Czefyh28HviSee4LbbbiMgIICbbrqJ/fv388ADD5zSz++3jq7shzrLfnnP6Xl/PnFwvE/AWvaJh3TxVlGFhBDy2lceMsTtI5NlH8Cdy33gGXGY22nmrqzO1+9OoP5nxAaLgUzoByaEGahutuByu1n1eYmPs8KU7ATWflsuUV1psdhptXoMbWV1QgsP8thV/fnmSD0utyfQzb40lZpmK0s/PshNI5LE8Qzv3l3nFwKBWAOI/bQPd1dxef9Ylk0eiE6jRKNSYLa5KD3Zyp8u9IxEtNmdhBq0kjKqcIwnC7I4UNPCO9s9QtXBeo34M56Zl9xln1D8WWzcx3PXDuaWnCQ27PLVX52bn87qrYexOdzcODxJdt6yc2Dzl+9+HvwjHj8N/+uogxzO5vGHbge///73v9xzzz18/PHHxMTEsHz5cq677rrfdfCTeyidyk+u8+ddqYDEhei5eojHjb6hzSYZCA9Qy3vHgdSVYeLgeBLC9d1en6u95LZ662Fm5aXQNzqIE61Walos/Oubcq6/KJHctBhWfuoJ5ColDIgP5c3vjjIiNYoAtccNvqrRzHlhBo43mGWvUcgEb3y1yNPnitDz8NgMmtrsmKwOwgxaoGM8Q0BVk4XXvirj+WsHY7I5iTBqARcLxmVSVNaA2w2b9lQxJjNWEiDnj81g1ece5qm30HR1k3xAOVDTwktflDIrL4WUaCnxqKsSb2fz3h+ONZIaFcTtI5Nps7k85dNQPeX1baz9tlwkwTz7aUmXAdU7sPnLdz8fv9cRDz9+HN2mazocDgA+//xzrrzyyl9VJ/NsgfBQ8obgJ+cN7wdk58/lvlvZ1MbKLSW89EUpQTrP3Bx4AkdKVKDsPidbLMzNTycxQs+0CxN5eVspxxraur0+pcJTtgjRaQjWa7jt3zu4953dPLOlhGkXJpIUGciKLYdEluaKwhIWbdzL6IzzPAzFjw8y5+2dOFzw5Ef7CTUGiOv2Pp93JigEwlv/tYM71+7kha2lTLswka0HaukXE+yzzgazDbVKyerPD3PDP7/j6EkLFfVmXvqilGc/LWFEapRPlrlgw14mDekpEZp+/dtyDO3u8nI/JyEbttldkoAjlIOF/YSSamfzXqcLDta2cKLFxuKP9rOisIRjDR5fv12Vzaz5uowbhycxMy+ZEcmRsuvwDmxC+c77vP7ynR9+/G/odvAbOXIkY8aMYc+ePQwbNoz6+noCAs7OdPaXgtxDqX98CI9MkHc3Fz4X9hHIHp2/+1aR52FqsXtcGeaPzRDZnX/fVOzzAJ6bn45SoeDzA9U8dlV/MQDIPax7BAXw6FX9fc7Zp4eRd7Yf45Y/JEvKjQJDUSNDdskfEOdTgl2x5RD5A+KY9+4eHp3Qn0E9QyRu794ZnRAIwwxabh+ZzE0jkrA6nFzeP5bnPythbn66z3Uu/+QAU4YmkBoVyKqtJfQIDhDvT+esWND3TIww8NTkAawtKifMoGXahYk8+dF+n3szM7cjkFnsLpxuaeCuarKwtqicF6dls+pPg3nmmkFEB3uUdbyPsXFXJclRQVQ0tnH36DRiQ3SSn0VVk4WXt5WiU6tYvKnY5/elc2ATynd+B3c//Dh96HbZ8+677+bmm28mMDAQlUqFXq/nueeeO5NrO+vRVU/B5XKL9kWxITqCdBoGJYRK7ImEfWKCdYxOj6G2xdNXu/utXe2SZTovhRcF917WF4NWTVldm5g5ePfYnv7kEE8UZLG7omP0QJjlu3F4EqlRgRxvasPthte/OcpzUwdjdbgIUCtxud3otEpuGN6borIG2TLcyVab7EhCVyVeoXzZYLYTpFPzwOVpGALUxIXqWL1VKfneLTlJ1JltYu8sKjiAJosdjQKenTqYnV4KKVOyE1i99TD3julHWZ2Jvceb+bLkBE8UZKFRKpiVl8ybRRX0CNRyyx+S2V/dzIGaVjZsrmTq0ERcbrdYFhXujUoJqVFBPOpFiNFplOjUSp8e5/ScPrRY7SzetB+bw82tlySJyi9OF6wtKueWnGSe8nJoFwbY13xdxpKCLA7WtuB0IQ61n2g9xNrpF3KysYXeMeGyfSl/+c4PP04vuh385NwZACZMmHCalnJuQu6hpFQqfOyLend6aHXep09UIKUnWtGqFdw7pi9RwQGU1ZlxuWFHeQN9ogLRqpRi5iA4GwiZ243Dk2izOYgL00vkxYQs47mpg3E2uHmr6BgjUqP4oaKR7MQw5r67h79c1Buz3Umb3dllXytUr2HOZX158qMDYiBIjw2W/W7/uBCCdWpueq1IwvBU46LZ4hBJIAA3XJSI2e700eVcMimLuhYbt3u5vgPiMPj+6mZSo4KoaDSTmxbDPW93GMs+cHkaapXUCX1mbgr//raMu0enSV4OhPu4/JqBkgxu4bgMHvlgHzaHW7RX6hEUgMvtptlsF+/vvPf2iS8qieF60Q3D26Hde4Dd6Xb7iHqX1bXRZndyntpEUo+Ebv/u+eHH6cT/yvaUg06tOq3HO53odvDbvXu3+G+r1cpXX31FRkbG7z74nU4khBm4fWQKjSYrtc1Wn4BwXrDWR7pMcG/vLC/2VlE5FyT1QKWEQT1DOdZgZvPeaomsVmKEnnn5GeysaGT11lLuyE3mzaJjPmMOc/PTeWFrCddf1FsyGtBstvl4883MTZE4vIMnADy4bjcvXZ9Ns9nOqs9LuHF4EoEBKlJjgrnl/6TD68sLD7F62hBKTviKdFvsLlRKj9i1Ugnxob6D9ydNNlkn+RuHe/z75AJ2XatVzKZTo4PEzA2Q2CuBL/FFeMG4cXgSbpB1aE9on7fsPOMnnD8qSIfVelp+jfzw42fhTLE9z1Z0O/jNnTtX8v+WlhbmzJlz2hf0e0Z5g5l57+7hyYIsH/r78sJDvHx9Ng+s282MkcnEBOuoN1mJCdExa6103OK5z0qYMTJFUq6bfWkqN+UkUd3Yxk0jknhnewU2hxur3UlciJ47cpPpYdRyzfkJvPFduVgO7BcTzPOfecgkc97e5fPQnpWXwgvThrC9rEEs5V09JF42aH3bPtpgc3jqm61WJ61Wh+x3q5ss9O1CR7NfTDB/31RMQngfAgM03Wa0qpRQ0WD2Ce4PXJ5GbIieVmsLNqeL441m2QDmbZfUebZxZm4Ka4vKWdje3+y8ZoNWjUIBH+yu8imlCj2+Aye7/avihx9+/I/42X5+Op2OsrKy07mW3yxOpSzv/ZlSoSDMoMXsFRC8e38Opxubw82SzQcZEBfMHy9IZG+Vr7yY3HyfINrsdMHL20pZODYdhxtmv9VRLpyV55mTE4SYwTPLuKuymfwBsZKh9He2V1DVZMFkc7K7osmnlCcXAIJ1auJCDfQancqxejNvFlVw/bBE2e82W+zYHE6fIPPoVZloVApmX9oXo1ZFSW2rby9SIX/+9Nhgnvu0hNEZMSwYm0FYoBajVkVVk4U9x5t4s8hjSrtofCbZiSEUlTVJ9ve2V1r7bTlLJw9kf3Wz2Oubkp3AUx8dkBUMF6ygZuWlYLU7WDv9Qsw2JwatCpvTxdE6E0rV2Vsi8sOP3xq6HfxuueUW8d8ul4vDhw9z+eWXn5FF/ZZwKmV58DUrnZWXQpvdowwiMBM7P0hf+6qMEalRrPq8hLtHp3WbiCIYw4YZtIQZA7jjDal4tvcwvoAZuckkRugJDwwQxa69Mx2lwtOv9F6DnGTZgnEZBKiVEqeGmbkpfFNa5zMIPn9sBkq3CwcKVm897DVXGMLRk2YeXNexjvvHpPmUXiOMWp/s6tGr+rO5fQ6wK2UVgZgy9909PDd1MAs27hVJK7PyUgjSqXn208MA7KpsZvGmYhaOz2R7WQMLx2dyqKaFnL5RKBWw/JpBNJpsEoEC8IhuzxiZjN3posFs54Z/fiee/+8T0klxuf0sTj/8+AXQ7eD3l7/8Rfy3SqUiLi6OmJiYM7Ko3xLkVGAWbyomIVyP2eqUdW2flZfCXaNSMdkcPnNrywsPsaQgC6fLxV8u6k1Fg5lF4zOpaDCLmUu/LogoQuZy3bBEmix22eyyb3SHt5xOo2RorzAyYoN9DGFXbDnEyqmDKa1twelySZwTGsw2jFoVM0YmY3G4cLuhyWxj6Se+TgZPFGTxVLu9kcBeXfV5CfPzM7itnewiBGNBeNv7GI9v2s/yawbxZEEWZpuDYJ2GhRv3ERcawPN/GsL35Z5y7IrCg8zLT+dgTSsLxmYQG6rzyY6FvuCzn5bwQ0Ujj4zvT22LhR5BOgxaJXsrmyWkmCnZCRRXNfPZ/lqig3Us2dwRgO8alYoCX3KLxe7C5nSh8SLkCNvvW7+PAQkRfkanH378Auh28Bs6dCgnT54UiS+9evU6U2v6TaGzCkxsiI6/XNSbLw6dpM3ulM3QekcasTmcqFUG2c8P1raQcV4I5naXBG9iSp8eRsrrTD6Z1+xLU4kI1HKixUrPMAMHa1q6zC5n5qawZX81t/whhV0VTWScF0yYQStmL8I6rHYnmfEhuN1uDFoVSwqyKD1pIinSKBkbAE8GKXctbTaHODjvDZPN99549/K8A7ZGqaDGbMVkdaJTq5g/Np2qxjZu9SLSxIboqG2xyWZ63iayCkXHoPr3xxpZ+vFBZuYlc36vcP7x5RFJkF5bVM415yf42EpZ7B6ZutWd3CvAc+zsxHDMMtdnsfsly/z49eBne3aBDz74gCeffJKhQ4fidrtZtGgR99xzD2PGjDmT6zvn0Vma6rphiUQEBlBX20JKlDyhw+F0c7DWhF6jlP3c6QKH0+XDqFy0cR8v/GkIiRGBJEa6efG6bJrb7ATrNRQfb2LJRwdpMNtYMimLN4s8Q9cWh1PWW27l1MHMaM+8vMutQqBIjNATpNOwo6yRfrHBmCx2nvrkEH/N6UOU1+C3EKTSYuSv1ahVd8F+1HbZy5ML2PPHZvDGd0c6DHTHZ0oC9sTB8WJp1fs6vcu8QnYslHTzB8SJ93vv8WauOT/BJ3g6Xe4ubZ1+ONbk0/97siCL80J0lDeYxZlE79nCmGAdpSda/c7jfvzi+L2xPbut8LJq1SrefvttFi9ezBNPPMHbb7/9ux9y7w68VWBiQ3QE6zXc/fZOVhSWsGTzfubnZ/iorTz6QTEvfVFKD6NntEFOhaTVIs+S/K6sgetf+ZZj9W0oFC7CDFq+O1pPc7vQtMXuoqLeTIPZxpqvy4gL8dX/tNhd7Kpo9Cm3Tsr26I0mRui59ZJkpq8p8pjP/nsHNhdcc34CCzfuo9FsZ/7YDInU2qPvF/uo2czLTydYr2LOZX0l2+ePzWDVZ4d9vp8WE8TC8ZlMyvYVy16wYS/5A+LE/897dw8PXtGPGbnJxIboutRRVbX/BQh9yUijViSvbNzlcaz4pvQECeEGPtxdxfScJJZOzmLp5IGsLSrH4nCJow/e0Gk8otrCIP2M3GRmj0rB7XaTv3Ibf/lnES9sLeW6YYnEhnhekJYVZLKvqoUrVnzBH1/8hitWfMGmvdW4XG788MOP04tuZ35ut5uIiAjx/6Ghobjd/j/KH4O3CsyJFivXv/Kt+BAuq2tj1dYSnijIoqS2xUdlpKLJQqBWxfScJAxaNf3jgnlg3W6qmiy0WuXtcgRtyofW7+G5awdz27++k2Qqa74u49WvykQvu2NdzJ05XdLSIkCfSCMzcpNle4APrd/DsskDPYGzsokNOyt5dEJ/cdBdEKaenpNESlQQUUEBKBRurvvHd6RGBUqYk6s+L2FKdgLfltaxpCALh8uNVq3AoFXx8rZSrr9I3my3s7ff/naR6pm5KSgVnqDtzWTdsNMjQzYjNxm3G577rIR7Lktjfn4GJbUt3DumH//YdphJ2Qn8Y9thj3ZoYQmLJ/bnyY8OMCk7ngt6hfPA+t2ys5FJkUaWF3oErHUaJaunZTN9TZHPS8WrNwylR1AATc3N/PGffusiP/z4JdDt4Dd8+HBuvPFGrrzySsBTBs3JyTljC/stQVCBkXOBKKtro6S2hV4Rvn0ylxuarU5xruyBdbs9FkJF5aiVCh+WpBDcoMNdoHOZb8bIZGxOF6EGDUsKsqg323j0qv48uG63eJxHJvTnjW+P+pQW5+ans/VALX2j5Y1lHS63GIBtDjeNZjs3jfAMhgujESsKS5iRm8yct3eyaHwmqVGB3JTjMax1ueE/OypEDc3pOX3EAXZhzOHS9FhKalu6DPyd/y9c92s3nk+oQcvD3qzS/Axe2nqYXZXN4n5tdifl9WYWbzqATqPkxuFJomO80A80BKhpMNvoFWHk/MRwZoxMkbhdpMUEs+qzEu6/oh8feEnfdWVN5MZNUo9ACqvqz+k+4KlGevzw42xDt4Pfvffey0cffcSOHTtwu91MmTKFSy+99Eyu7TeHrqxp8vpGEWLQiH0yAar258YNFyXSYrGLup4Pj8tg7/EmEsINLJnkYX4ePmGSkDeE7M0bFruLmBCdxAh3Zm4KPcP1onKLTq0kSKvgtpEp3PavHZLguWjjPpZNHigGAd/+nWeMo6qxjRm5yZLAJQTmBrNNDEprvytj2rBeEmky4Xud/fws9g4vwjCD1ifTEqyLhLV0fhGobbKJgU/YtmDjXpZNHsjeqmbe2e5hypbXm9G210KFbNJid6HXKLE5XczKSxFNcAcnhKLVqshODGP8wDhcbg+bdtHGfTSYbUQH63xk7OTuW49Aj4NDuEHVpfrL2Y5TjfT4A6AfZyN+0pD7ZZddxmWXXXam1vKbh5yz9OKrB5BxXghKpcLns/7xIWhUCmqbbVQ0mMW+0slWqfTZ7EtTiTBoJTT8RyZk8syWQ5Lz6zRKTrRYsdg7PP8sDicBapXoJDF9RG+0GjXNFoeoBOPNhjxWbyIiKEAy2iD0KlttTp7afID8AXG8vPmAT9Y5PScJnVrFmq/LPKzX4X1ER3uhvGp1OLluWKIsE1ZgewqC3bPyUkgIN6BSKgjRq1k2eSBVzRYOVLf4vAiYulCSMVkdbNhZyXXDEjFoVKzaWip6KQrZo06jZFBCKHsrm4gICuCxD/Zx75h+JIR7RMoTI4ykxQT/qGO43M9/Vl4KR+pa6R1pxOAynVXO40Imd9xuJOBE6ykzOb/b/LmPM8H2PJvd3bsd/DZv3sySJUuoq6vD7XbjdrtRKBTs2LHjTK7vNwWlUsHoftGsnpZNUVk9Thcs/fgAGpWSMRkxsg4RR06a+OuaHWK2Y3E4fTKipR8f5OnJA3nlz+fzVWkdQxLDeKbwoGia6l22dDhcDIgLlmh8rt5aypzL+pIcZaSiwcKt/+pgeXqPA+g0SmJCDdzz9k5m5aWI2aLbDa995cnqhPKg3EjCwPhQnv7koOhIv7+6WZa5+dhVmUQH65iZl4zL3VEy7azcolQo+JuXQs3c/HTiQnUkRxqYlB2Py+3JnsMNWk6arLJZVXmDmbtHp7Fk834mDekpZqbeg/wzc1Mw25yknxeCXqPk1RuGEh9q4MhJE2X1JoxaNRnnBfH+HSM40dq1Y7hSqSA9Nkj2vn0wcwQup/OscR7/qZmc323+3MeZYHvK4Wxxd+928HvyySdZtWoVffr0OZPr+c2jvMEsIT0AkjfkzmWy2haLJNu5My9F9iFjdbrYecwjMzb70lSKypqobLR2aX10Tyft0Cc/OsCSgixZLz/BkWBufjrldSZPxmRzsnKLdDYPEMkkp1KoAegXE4TJ6uDBK/vx5Ef7xXOGGbTUNFt5YJ2vmkyEUSv2JycOjhdVXYS1Ltq4r92Bwci7P1RK3NsdjW0sHJfBvPd8e6STsuOZkp2AWgmPXdWfJrONJwqyON5oJn9AnDj28PK2UmZfmkq/2EB2Hmvi3v/sklxXSnQguX2jTxmshL5nZ9S2WAjh9FgXnY7e20/N5Pxu836ca+h28IuIiPAHvtOArt6Qm9ts7CxvoLKpjcjAAIJ0KlqtTgxec3BVTZYu2ZkRgVpUSgW69t6UTuNrfTRjZDI3Dk/C5XJLSp9CwLI6XLJr6xsTyPScJNZ+W86tI5Ml4wdypJN9lY2snDqYulYrxxvbxHk7i93FG9+VM2Nkimw/sKrJwsTB8ZL5xTCDFovDyd2j0yivN6FUwJKCrC7LmC43PLR+NzcOT+I/OypE93aL3cUDl/eVZF1rvi5Dq1aQHBVESW0Lw5IisDmcVDdZZPuQQpb94rRsMfAJ511e6CnrJkUG0ivC2GXwiQ3pyGgBsdd4ulwdTlfv7admcnIlXb/bvB9nM340+G3evBmAzMxM7rzzTkaNGoVWqxU/Hz169Jlb3W8Qcm/I2YkhHKo1SbQo54/NQIWbT/ZXs3BcJvPe83z29eETPDKhPw+t3y15OJeeaBVLo2uLyn0EoR+8oh8xwTp2H29CpVSQnRhCblqMJCt7/trBsgFNq1QyLCmChHADdS0WHh6bwfOfl0iGwQXrpP8eqmF0Riwz/u0p1U7Kjmf2panUtlj4v6/LZUW31xaVc/8V/ThY00Lf6CAxWMaG6GQZp27cHG+SfwkwalXcODyJhDA9D1zRjyWbO7LKV74sk+h5JkbouSUnWQx0q7eWsnBcBj8cq2P1tCHUm+yolAr+s/2Y5CWhwWztMvDWm6zsr27pUst1X1WLj1VVSnSgxNXhf8ncTlfv7admcl0ZO/vJLn6crfjR4Pfpp5+K/9br9fz3v/+VfO4Pft2Hy+XG7fZkLodqW0Qtzr+NThMFjqFjaHtJQRb5WT15avN+nijIotlsJSbUQGltC08WZFFWZyIjLtjzsDxpJiJQy6tfHiF/QBwJYXruuawvUcE6tColzRaHKGTtTYjxPufDG/bKWvUcrTdhrnbyVlEF1w1LJCnSU0qMDtYSFayTBOKF4zN587syScnTOwh2HjaPDdExJTtBkmkJajITB/sOsy/auI/lUwai06gkox6JEXrm5qdT22ztUsJMmDUULJiSo4J8yr/z3tvLs1MHM33N9o4XkfwMVm0tEdVjFo3PlBgGQ4c6jJxmpxB8AFkt1/fvGCFx+fhfMrfT1Xv7OZmc323ej3MJPxr8Hn/88W4d6IUXXuCvf/3r/7yg3yrkHmqPXdWfwQmh7K9ukWci2hyAZxbwRLMFnVYlkRy7a1Qqx+rMPPbhfnGbYGQ7JDGUiMAADtW0EKRTi6LLwrEfWr/Hx8GhrK4Nk8Xuo1+ZPyCOIJ2K2/+QRGyogZ0VjR6HCILFwCccd967e3iiIIsD1S1i4PPO3mblJUsyCrkAJ5QQu/Llszhc7dZLsbz2l6GcbLXSYLazq6KpSxNb4TobzDb2HW9Gp1ZRUit/33d2UrdZsHGveAyL3cXcd/f4BIa5+elEBwecUrPT3cX1nGi10CfKEzD+18ztdPXevDO5I9X19I4J92dyv3GcCbanHAQG6K/N+vzZfn6dsWnTJn/wOwXkHmoPrNvNBzNHEBui76KEp8bd/u/k6ED+ukbqeL7sE49Hn/e25z4r4Y7cjhk9nUbJ4xP7yz50VZ3E7XQaJRlxITywbreY5czMTWHTniomn98ThULB7f/+8eNabA4xw+sc3N4sktoddWW/1DPMQGSgr76nTqPEoFHxxwsSWbBhLzeNSEKnVrLy0xJuGiGv/OItYTY/P4PNe6sY0iucgfGhssdPaVd9EVimFruvekzpiVZxqH1QQhhJkQZ6hnl6facKPj8WmP7XzO109t6ETM568hhJPRJ+8v5+nFv4pdieAn5t1udpC35+qbNT41QPteyEcFFuzLvnZ7baeXP7MRaOzxTn8zrv31n2MX9AnHgc4Ts17WMKnR+6QxLDxO1CoHtg3W7+mtOHIJ2aqsY2lEoFN+f0Qa1S8PcPiyXHPdFskSVvxIXpqWwn5nQucwqlxyUFWVjsTmJC5DMVo1aFzen2cacQ9D69Raptzg6ijtyxBAkzo1aF3enk8v6xzHtvL2EGrc/x5+anU9loZsPOSqZdmCgZzPc+ZkKEkeONZuJDDeB2i4ICCWEGn5/lIxMyiQ/Rc6yxzafk3Tkw/ZTMraveoL/35ocfP47TFvwUCv8f16lwqoeaWq1kQlYcKT0CPWxPYwAhBhXNbU5uG5lCzzADzW122f07P9PkMik3yAYRvUbJS9dl8+1Rz8yhoIhS3WwhUBdIeGCAjxqM0D8bEBdMz3AjxdUeaTBhUDwmWMc7RccY0/88HpmQyckW3/m6BrONo3UmPjtQw6y8VJ8+412jUnG63Zgtdl77qkxShn3tqzIeuKKfeLytB2qZNSoVnUbJO9srfJRfZuam8PgHxQBMuzCRkyYb7/5QKR7T5XYze1QK8eEG9le3sHJLCQ1mm0jmmZQdz3khep7vpB7z0tbDjMmMlbBWl04eSHpsEM+0l1qFNb/xbRkalZJ73+kYjRBK3gnh0sDU3cztx3qD/t6bH36cGv7M7wxDeDuvM1lZfPUAyQPwkQn9aWqz8d2ROmparEQFBZDVM5iGVgd7j7fygJfe5lOTsnh0Qn8e9CKXCI4PgmCzSgkX9fGIj6uVSnpHGqlsNJPUI5DyOhMLxmZgCFBT0WDmw91VJIYbsDndoqYmeALE2qJy/jY6zSeDFPpn/9lRwZShCT6u7G98V85fc5KIDTOyq7KJEckRRAb6Zlez8lIwalVcNbgnN6/ZTphB65nPCzNwotWKAjeHaltJiwmiwWwT+3WxITomZcejVilEO6ARqVE8/9kh5uans3rrYQIDVKyeNoTmNgfRwQEs3lQsDtWv2HKIO0el+Az/z8xNoaLeLJm/E641LkTPv74pEwWx02OCKKs3c3NOH+Z0IsvMfvMHXr1hqI8/4e0jk7n3nV0SJZuyOhODE0JlB+G7k7n9Wooqfv1OP34rOG3Bz+/r54vOb+eJEXqeuWYQzRYHZfUmXvvyCJf3j5UEBoFJuLxQSlD521s7WTl1EPdc1pdwYwBVTW2EGrS8uLWE6Tl9WLRxH2EGLSF6jYRKf9eoVKob23xcxguGxDO7kzpKZGAAL24t4d4x/WjxcnoXIPTPJg6Olx2GnzEyGTcKXt7mOf9LX3hGBz7cXSWbvQnBQxj81mmUvDBtCBa7k4ff28eCcRk8dlV/Hli3mzCDVjKmoNN4hK4jjAEkhOmxO13Muawvx+rbJEzNheMzOdF6SCy/xoUafIKW4Cjf+VpDdCr0AWpy+kYBnux2SEIGywsPddlfNNt83TZUSmQH/hMjjMSHGihvMFPTbEGn8TB3u8rcvAOPUqGQNRg+k4oqfv1OP35L6Hbwq6+v580336SyshKHwyFuF9igt9xyy+lf3TmOzm/nZXVt7D7ewUi8fWSyjyHt3Hf3MD0niSnZCT4u47sqmiT0/NmXpnJBUg8xEE0cHM+TH0k1NeVIMd7bhEH3mmYLCWEG/nhBIrPf/MFDJJEpsw5LiuBkq3z/MSooQFRQEbbNe28v03OSJFmVTqPEbJMfUt9e1kBcqJ640AD2HG8iJSqIl67LRq1S8OXhOtEl4ni9CZcLbvm/jkC3bPJAn/s57909rJ42BIfT4zhx5KRJ9rzldSbJtsQIPeGBOskIxqLxmTz7acfx5e5PQrhv2fL8xHAAH1brA+t2ExkYICr+eIKJUjaYyAWezgbDZ1pRxa/f6cdvCd0OfrfddhtDhgxh2LBhqFRnrzX92QQ5kos3fb8rg1WXG1mXcacL2tqVTQbEBTOoZyjHm9pEAepTHU9uW1dD5PeN6YtSoZCd+bvvP7uYPzZDvn8ZrJM9f0KYQUKsmZufToheI3sMpwvmv7eX1dOyufedXTSYbczKSyG4U0b7yIT+PLNFmh0Xd+GoXt1kod5sY9H4TFEgvPN502ODJWtcMC5TDKzCcea+6xkPKSprku0vLp08kN6RRnpHGiVly4QwA01t8pl0UVl9t4KJXOARRkKErPlMK6r49Tt/2/ilRh0E/Nqi190Ofm1tbcyZM+dMruU3BzmSS2dxZrkHsTAP5k3RFwgYd49OIzFCz5ShCdzslTHMzE3BjbtbpBhh28TB8awtKhdLkgCrtx5m/MA49BoV35bWsqQgC6fbjUalYNVnhymra2OBzDD8IxMyqWmSDyzVzRZuHJ5Ev9ggwgwaDla3EBUYwKLxmRJVG28ZsRMtVrE/ln5esM+YhyBh5t0PTIkKkj1/RWMbKwpLSIzQMy8/nXn56SyUrL0/Oq2ClVMHs6uiEacL9lQ2yT7oQ/SePxlBa3V6ThKDeoaSGGGU9L86ly37eQVX77XJ2U7JBZOuAs+gnqG8Mf2CX4TV6dfv/G3jlx51kMMvOf6g/PGvePCHP/yBzz///Eyu5TcHgbmn03RoYUYYtdw9uq/IThSo+8LnM3NT+M+OCnQaJdmJ4czM8+hxri0qZ0p2Aq9+Wcq8/AzZnptSoWD2pamS4901KpVIo1aybf7YDCKNWkJ0KqZkJ/DytlJWbinhpS9KmZKdgEGrYnnhISadn8Ddb+9k1hs/MPvNnYzJjCU2REdZXRstFjvTc5J47tpBvHx9Nm98W4YCT7bY+Xr+9U05L28rRaVQsPjD/Zw02Tl0otWTzU0bIl6jxD0iJEBc1/ayhi77j9CRwS7ZvJ+ZudL7OfvSVNGuqayujdv//T2t7YP8M/OSeXbqYCIC1Xxd2sCMf+9gRWGJZ5jd4RKPI0CnUZLVPhsIHtZqWkwwl6RGiXqeXx0+SemJVlyd0u3ekb6/C4uvHsDGXZU+55ALJkLg6fzdxAgjFyZFktQj8Iz33eR+n/36nX6cq+h25vfaa6/xwgsvoNVqUavVfkujbqAzc69HoI42u4MvS06yetoQvj3agE6t5JlrBtFqc3DkpEmcK5uZm8KSj/bzh7QoekcamDM6Db1WyaCENBq7KKFFBgYQHazlhWlDONliJTIogCazjchALcunDKSxzY5Rq6beZOX5z0tZfHV/kRwiHEMgf1jsLvZ7lRGFzwSHhxaLk2c/LWHJpAEEBaiZPbovxVUtvPbVUXH4u/95IVQ0mJmUHU/meSE0mq1MGZogBu7ECD0PXN6P2BC9xJF+wbgMln3c0bt0ueUz5LQYTzblPUi/5usy8fzDkiKY/eZOH1JIbKiB1toWBvUMpdls5d51e30ILF2NTZhsdok7u/Dg/zEiiByLMyHMIJFDO1UwORuEo/0zhH78ltDt4Pf999+fyXX8ZtGZuffV4ZM89uEBXpg2BKUC6sx26sxN7K1o5OohPXngin4oFLD688McrG1lTGYsT232eOA9PWUgCzfuY+H4TNlgEBOsw2R1cKdXbyg2RCeyJAWNzYRwA3+6MIF9x+XlvY63D6gLJTlv94f02CBemDaEnceamJWXTM8wPcca2ogO1olkm2c/LSE2RId+mErCzlwwLoPVW0skBKDHPixm8cT+rJ42hKY2B6F6DQ63i8rGDosDuUC0YFwG/9h22CNiHa4Xj+ntZJEaHSQa/Hrfp7I6Uyd2qW8JuqrJwtqicp4oyOJgTYso9bbimkE+Jc3SE63dIoLIsTi9g4nWZWVgkjxzsjuB55cYQ/DPEPrxW8FPGnVoamqirKwMq5f3yvnnn3/aF/VbhkGrJjFCT337sHX+gDhCdCquzIqTDEzPzU+nuc0usvl0GiUBag91X6tS+MzOzcxN4aF3d3PnqFRJQBMsguSo9sumDJQNoonhBh67KpPlhYdkSTGz8lJ4/dtyGsw2jAFqXvnvUeaPTZcc59oLEnyYl/Pf2yurJ9pkcVJ6otVnFlC4drlApFK4+fNFSZhsji5VYo6eNHHXqFTR908oA//zy6PimprbHF0OyN9ySTJPbd4vSr09MiGTjNgQn5+pdz/O+0XhRKv1RwOQdzApLi5GqYzr1nc7wz+G4IcfPw3dDn5vvfUWr732GtXV1aSlpbFz504GDhzIa6+9dibX95uDzenk3jH9WLypWBy2vnF4Eks/kQpEC8asQuCbn5/B3zcV88ehCcSFGnjtqzKeKMiipLZFVGeparJw9KRUW7IrjU2L3cXfPywW5+i8g+jfNxUz98p0puf0oabZIis8LQSxpR8fZMbIZAxalXje2BAd0V0wP+X0RF0uN298JyXevPGdR11FyNBuyZEGor9PHMCM1z3ViNgQnU/gumtUKi63GwVuXr1hqEfQuqqZf355VDIaoFTAwvGZzHt3j0hg6R1ppK7Vyjvby5kzOg2VUsF5IToyzgtBrfZtkwv9uM4vGC99UfqLBSD/GIIf/yt+SbanSqlAo/L9mwjWaX6R88NP7Pm9/fbbTJ48mTVr1nD48GGeeeaZM7m23yQijAF8X9ZI/oA48SHZ1YhCfKieGbnJpEYH8dTm/dgcboJ0GhQKD9niYE2Lj5v6m0UVEv8/gV0qd46yujbR/04YQBeCqMnmZPXWw9x2SbLs2oQgFWbQMiA+BI1XNjpxcHyXIwUX9PaQeAxaFW439AgKQKVU8JeLevP4pv2SIBwXqmPx1f0pr2/jnR2eQOR0uwkKUIuGvYJqilKhYPW0IbTZXbhcblrabMzb0MHofPSqTAID1GIZVMguKxvM9I0JYlZeCokRHomzJzYdEEcsDAFKEsKMnGi1Ut5gls3khH7c/upmnxeFXyoA+ccQ/Phf8UuyPR+f2J/ekb/u72W3g59WqyUgwENBtdls9OnThyNHjpyxhf0W4XK5cbnc9I0JYnt5g09g6Pz/8MAAnv2shLtHpzE2K46+0UG8+mUp47LiWDAuQ+zNee/XYLZhstp5evJAXLipqDdz16hUWeURnUZJsF4jKrJ4b48KCuCa8xMwBKhl93O7O/qJ09slym69JIlZeSnEhuhZvGm/Tza2cHwmD6zbjc3h9lFrmZWXInF8X7HlEEsKsiivN/HytlIWjc8kPFDDrmPNqML11LdauX9MGma706f8u7aonGvOT5Ac78F1e3h26iDRKkmpAKNWhVGn5pkth7h6SAJvfXeMoUkRzMtPJ9yoJSYkgL3HW8hfue2UpUShH9f5PsEvF4D8Ywh++PHT0O1Rh5iYGJqbmxk1ahQ33HADt956K1FRUWdybb8pCD2Z/JXbuO8/u8W5L+ggdHhTyBeNz0SjhNmX9qWktoWtB2o5VNvCny7sjdnmZNPuKv7QN5JHr+ov2W9ufjp2pwtDgIr91S089uEB/vnlUXQalc8YwgOXp9Fmc/LohP7Myksmtr13JgyzA/xn+zHm52f4jEp8cbCWSdnxYuCparLw9vYKgvUajpxspcFsE5mXM3KTmZ6TRKPJSlldG9dekCCWOWfkJnPTiCTe+K6ciYPjiQ3RcfvIZO4clUJEoJaM84J4/trBRAVpWbr5AC1WBwdrWogK1qFUKHz6iiu2HCJ/QBzLCw9x7QUdNjwWu4u9x1vQqpT0jQ6ib3QQKdGBaFVK5lzWj9e/KWN/TSutVifF1c3oNCocTli8qViyzsWbijnaSQ0GPAGwV4RRdhwhKkiHy+Wm9ERrl6MQ/yv8Ywh++PHT0O3M79lnnwXgjjvu4IILLqClpYURI0acsYX91uDdk6lqsvD8pyXioLhA6Fg6eSAlta1oVAp0GiV//b8O77zObuL3j0nj8Amz6CCgUkJaTDD/2HaYa85PpKnNLo4IVDVZWLzpALEhOqbnJJEaHcSJZgttdhe3efnzdSbZLC88xLLJA/l7ewAQSqOrPvdko2arVKJsRGqUqDEqZH3PfloiHnvlFg8LNCHCICsuHahTicLaU7ITRHd7YV7v2gt6cb9Xf3Lx1QO6LMla7C5ignXEhujEvqlSASs/LRHHNZYUZFHfamPJ5gPcNDwJs80pkmNWby1lxTWDZNdZb7LKZnJdjSMkhBnOOBnFP4bghx8/DT8a/FpbWwkMDKSxsVHclpqaCoDZbEar1Z6xxf2W0Lkns6uymRNbSnjmj4Mw25wcPtHKoo37aDDbeG7qYDEogbybeJ3ZJvbIvCXQnijIorrRTM9wIxt2VopBSBhz6NMjkJomC212Jys/7Rg7CDNoqWm2EBei5+oh8aKRq93p8nEpADhU2+IzfycEHUH9RAiYQxJCqW1uY1J2PHEhekL1Gp4qOuCTsa2eNoTpa7Zz4/Akn97Z0o99NUpLT7R2WZLVaZSUN5iZODiel7eVik4S949J4x9fHuGJq/ujUiposjgYmxVHm83Bsk+k57Q5XD7rWLHlEGunXyj7M+4qAP1SZBT/GIIffnQfPxr8/va3v/HCCy8wceJEFAqFxLpIoVBQWFjY5b5VVVXcc889nDx5EqVSyeTJk7n++utpbGzkrrvuorKykri4OJ5++mlCQjwU8hdeeIG3334bpVLJQw89JGaXe/bs4f7778disXDJJZfw4IMPolAosNls3HPPPezdu5fQ0FCWLVtGfHw8AOvWreP5558H4NZbb+Wqq676+XeqGzjVnJVcT6bBbMNqd7H04wPkD4jj6iHxuN2wr0peo9LbMtFbI9T7OyW1LZyfGM6GnceYmZfKisKDojamkJUJQdCbnt95nEHonSmVii4HzBdvKpb09byl24R5O51GSfCoFMIDAyTanN7egMLam9scpyQAda4UvllUIas/uraoXDz+fZenMWNkMq995REPWD5lENcOTcBkc7FgQ0cWOTc/ndSoQEakRon3uSsSidnm7PJ3QC4A+ckofpwL+CXZnjr1r68P/aPB74UXXgBgy5YtP/ngKpWK++67j4yMDFpbW7n66qu5+OKL+c9//sOwYcOYPn06q1evZvXq1cyZM4eSkhLef/993n//fWpqarjhhhv46KOPUKlUPPzwwyxcuJCBAwdy8803s3XrVi655BLeeustgoOD+fjjj3n//fdZsmQJTz/9NI2NjaxcuZJ33nkHhULBxIkTyc3NFYPs6caPzVnJlcQeu6o/oQa1T2Y1Ize5y4xGvLcKX5JMYoSei5IiMNscjEqPRadRsXjiAJotDma+8b2Eiu/t2iA3BrFiyyGev3Ywyz4+KKt08o9th7l3TD9qmtp48bpsmtrsaFVKHxfzmbkp2JzuLr0BvbPWYL1a0rPqfP2dK3gNZhtOp4slBVmggGCdmqN1JvIHxIlKOcfqzSzZfBDwBHmdVknfmGD+2km0evXWw9xySbJEaWb+2AwSI/SU1bVJ1hEd/NNIJH4yih/nAn5ptuevjR8Nfnv3nvpmZGR0/aYQFRUlkmICAwNJSkqipqaGwsJC1qxZA8CECROYNm0ac+bMobCwkCuvvBKtVkvPnj1JTExk165dxMXF0drayqBBg8R9CgsLueSSS9iyZQszZswA4LLLLmPhwoW43W62bdvGxRdfTGhoKAAXX3wxX3zxBfn5+T9+V34Gfqy01VVJ7PvyBp8H44adlTx6VX8eXCc1rn3us45AkRBhYF5+P5raHIQbtATp1YQbNOytahaVVgQWZVyojtSoQG7K6UNJbQs3jUhi64FaMah1lWnVm2wcrG3lRHsJM0CtJCnSiNPlEq2UwBOsV289TP6AOPQaJS9Oy6aiwUSIXovZ7iRArTrlzF9ihJ75+RkcPWli2ZSBvPzFYZ+AO/vSVKKDA8R7JYwv2BxuH3GAIJ2K64cl0u+8YHYea2JGbjJ7KxoZlRHDX9dsl/Xiyx8QJwY+YX0LNuzlxeuyufm1DgHxxVcPoM7kEXnobk/tbJAm88MPP6T40eD397//HfCMN+zZs4e+ffsCcODAAQYMGMDrr7/erRNVVFRQXFxMVlYWdXV1YlCMioqivr4egJqaGrKyOkxFo6OjqampQa1WExMTI26PiYmhpqZG3Cc2NtZzMWo1QUFBNDQ0UFNTI9lHONapYLVaKS4ulmyzWCw+2+Rw3G6UfcAfqa7HevKYZHsIYLXCgZNQ7wr1edD/5aLeRAVpeWRCJhFGLWqVggCNksUT+3Oy1Y7J6sBkcaDXqlleWCzut2zyQB8/v+WFh5g9KoUpQxMk3nRz89P5ZG81Nw5PYmivMMnMnELhySyb2+zcPyaNOrMNlxu0KgV6rZJDNW2kxQRx/UWJxIcZ+Od/SyXEkMQIPbf9IVk0y52VJ5/JJkcFcd/lfQnSaSTEm0ev6k9ggIqlk7IoPWmif3wIpbWtWO1Onp48kFabg3CjFpvdxYPrpC8cizbuEwkt3ko0j0zI5Bmv7LbzelRK+ReAmmYLq64djMthQ6nWMn/D3o5B+wnp9Auy4nJ2XQYV0CdAxb+vH0BDm4tgYwBtFhs7S49jcJnE/bv7u/ZL42xdF/jX9mPo169ft7/rdrkxm81ncDUdMJvbKC4+9uNf/B9xquv/0eAnZGh33XUXCxcuFIPfwYMH+cc//tGtBZhMJmbOnMkDDzxAYGDXPQ7vfqKAzn1G7+0/d5+uEBAQ4HOziouLu/ULFNAF+aJ3TDhJPRK63M92rJFHPuhgUxq1KqxOFze/1mHSOjM3hS37q7n2wl4cOWnC5Ya0mCCe/Gi/5MF/+ESr7AM8Vsa9fNHGfSydPJDFm4oJ0anELNJ7Zu7u0X1RqxSSXp0gOyaIbz/50X7uHdNPkvXmD4hjvpep7ZtFFbJybI9/UMzEwfE83Ylo8uC63UzPSUKnVvGvb8q52hGPUgH//OooU4cmiozMBy7vK1GFEUg6QibrrUTz0Po94r/lpMwGJ4TJz1oatHx/rJFL06MpWPWVZJ33rd/HBz+BtOJwuPiytI4vDtfjcnsy/HvH9BNL496/a7+ETmd30d2/gV8D/rWdPiiUCgwGwy9yLoNBT++EX/fedHvUobS0VAx84GF8duetxm63M3PmTMaOHcvo0aMBiIiIoLa2lqioKGprawkP9zhdx8TEUF1dLe5bU1NDVFSUz/bq6moxc4yJiaGqqoqYmBgcDgctLS2EhoYSExPDt99+KznW0KFDu3u5Pxk/t7SVGmnk9j+kiIosM/OSxWADHf2x5dcMovREa5ekkdgQHX16BJIYoSd/QJwYEDbsrOzSNX1/dTNz8zOYu34P116QIGF/Wuwulmw+4OP43mZ38sAV/Xjsg2Kxb7e/k4ls5zJqVZOF174q48mCLBRAsF7N3Hf3SAJV57UJhr7Tc5IYGB9Ki8XO30anUV5n4smCLBrMVvQaNUs/kfYX1xaVi71Rb5KQd5nV24svMzaE5OhAVEp8AvSsvBQO1LTwwtZSeoYbxKF573V2l7Ticrl5f08V976zS7LexZuKSYsJkhzDr9Pphx9nHt0Ofn369OHBBx9k3LhxKBQK3nvvPfr06XPKfdxuNw8++CBJSUnccMMN4vbc3FzWr1/P9OnTWb9+PXl5eeL2v/3tb9xwww3U1NRw9OhRBgwYgEqlwmg08sMPP5CVlcX69euZNm2auM+6desYNGgQH330ERdeeCEKhYLhw4ezdOlSmpqaANi2bRuzZ8/+yTeou/i5c1Z7a1r4pPg4L0wbQqPZToBaXiVEo5Qf6BayGQ+l/zC35CSzYKPUHsi7VyZAp/G4NpTUepyUewQGdBmEumKDrvm6jAC1UpQa63z8zszWigYzPYICePLd/fzlot7UmW1dGtAKhr4JYQaON5pRKJUs2rhbEgw691hXbDnE0skDxV6kN0lIYKgK52ow20iMMNI3NpDEiEBcLjcp0YESBZio4ABOtFgJM2h5aP0e0TXde53dJa0crTOJga/zz69zAPXrdPrxa+AX1faUcXHvDk6n03u3g9/jjz/O66+/LgpZn3/++fzxj3885T7bt2/n3XffJTU1lfHjxwMwe/Zspk+fzp133snbb79NbGwsy5cvByAlJYXLL7+cK664ApVKxbx581CpPJTYhx9+WBx1yMnJIScnB4CCggLmzJnDpZdeSkhICMuWLQMgNDSU2267jYKCAgBuv/12kfxypuF2Q4vFwX8PnyBArUKjVFDVXr5SALUtVmJD9GTEBtNqtXNJ3xjRqbyr/pjJ5jwlaUSlhAuSeoiBT/h8/nt7een6IcwfmyFhMgpZ0n1j+nFLThLHm3yl0gSGpRwbdG1ROQ9e4SlbnGi18GRBllha3bCz0ud8c/PT6dPDyJ9f+Y4wgxaLwzNIHmbQypZE13xdhk6jpNlip398CA0mO89NHUydyUZti4WKerPs/Sg90SoOtQslWkEkQLBAEgQBAnVKHE5PpqVUKsjtG02vcCN7q5o5fKKVJR8dFMu7a74uIzW6I1B3ldl3Va7satxBpcQngHb13Zpm/2iEH2cOZ4OT+4/hdDq9dzv4BQQEcM0115CTk0NSUlK39snOzubAgQOyn7366quy22+99VZuvfVWn+39+/dn48aNsutasWKF7LEKCgrE4HemIVeq8taZ/HB3FZf3j5U85B+ZkElsiE7iyn6szsTCcRnMe8+Lcp+fQXObTTY4pUYFMSM3mZSoIA7VyvvzfXukgTC9hmenDmZnRSNOF6KKyt83FXPN+Ql8ur+Wu0f3ZcnmDqbo7EtTiQnRUVIr7SXGhuiYkp0gYVk+elV/VlwziAazjVCDlrpWC0sKslCrFBw5aWLllhImZcdjsXtGK4S+nQDhu8cb23jxiyM0mG0sGp9JzzAd5fVmaputknv37NTBsvcjKz6UJ67uT2yongC1kja7E6cLXv+2jBGpUaiUkBwVxOJNxUwa0pPpr+2QlBSVSoUkQ4OO8mtadJCPkW1nP72uypVRQfLjDtmJ4T4BtKvRCLvTLQZqP/zw439Dt7U9CwsLGT9+PDfddBPgaebecsstZ2xh5xrkSlXeOpM35fTxKVs+tH4PVruLMIOW20cmMyM3mYLzE3j2sxJRT/LG4Ums2lpCWkwwj0zIlMzBLRqfyaMfFLNySwmPfVBMVnyorLak0wUmm5PAABXZiWEkhuuZNKQna74uo6yujeWFhxiRGkVKlJHpOR3nfeW/R3lq8wGGJ0dKjiuXCT64bjd7jjfx9CeHKD3RysKNxcx4/XvuXPuDWHoUFGGEPp9QTl1eeEj8rjFAzfz8fh5HBa2KL0vrJYFPON/CjXt9tEoXjc9ErYJGs42yOhM7yhtYUVjCs5+WsKuymWc/LWFFYQkltS1MHZrIv74pF0uKgl5nV1lXQriBo/UmekUYuTApUhxf+bHfAeHYQk/Re71z89NJjNDLukQsvnqA5Lszc1OY++5uWV1RP/zw46fjJ2l7vv3222KvrV+/flRWVp6xhZ1r6OqhKTzo26zypJOmNrvE4UCpQBx6F0gmY7PiMNkc9AzTsXRSFgqFgmC9GgWIFj1VTRb+76ujngys8CD5A+JQKaFfTDAvbzvMbSNTuP6VDq3MmbkpknUE6dS02V2SnpaAFotdUprsaizA5YbrhiXSZndy0whPdeCd7RVib2vrgVqWTh6Iy+1Gp1HKBtH57+1l9bQhpMUEceu/dngEro2+/ciyujZaLHaJ5midycrcd/cwKy8Fl8tN78jALkcsHv+gWKIuU9tioVeEEYNW3sWiusnCQ+v38MHMEaJkWXdLm7UtFtxueO2rMsl6V24poU8PI4kR0lKmUqngvFCdrNXUmVKFOZvYpX748Uug28FPpVIRFBR0JtdyTqOrUpWgM9mVNVBsiI6nCztKgEJ2JOe87j1mIBBZvIPSV0fquWZoPHfkpvLQ+g5yyMLxmTz3addkGZ1GSUpUIOoupMxUSiUf7q7ihWlDONFsRedlXOv9PZ3aY5Ek178LUCsZkxnL7Dd/EPt8bXb5PmazxYHT6cJidxEXaqCktkX2fC0Wp0Qh5sbhHmbq8kJPmTI2VM+yyQMprm4WRwvuHJVKZYOZq4fEo9coUSoUtNmdGLRqthyoYdHGfbKKNmu+LsNid1FvsrK/ukW2tPljSi4NZptEyedUhJkIY0AXVlOnXxXGzy714/eIbge/lJQUNmzYgNPp5OjRo6xZs0ZUXPFDftRB6PnNykvhxa2HZYkd9/5nF1OyE8Q3e2EGzeJwntJBff57e3nmmkH0iw1m9qgUmq1OlAoI0GiYtVYq3TXvXc+MW1GZh/kqZJSJEQZm5SWTEh3Ewo17eeyqTJ9gcc35CejUSv6QFsWOsgbW/+DZ1llTc1aeJ5P07l8KQXZ6ThK9Io3ikL0w+rD46v6ywSJUr6GxzY5Oo+TISRNvFvnO5XVWvBEClHBetVJJg8kujpAIijB2p8tnnOGtogpWb/UMxdscblGUW+gPClmiTqNEo1J2ycT8sXGXnzIK80uqwvjZpX7AL8v2/KkQnN9Pp9N7t4Pf3LlzWbVqFVqtlr/97W8MHz6c22+//bQt5FyH96hDWZ0Ji92FzeHkgcvTCdKriAnWkRhu4LUbhrLt8Emcro5S1ooth3iiIIuDNS0AbNlfzfQceQf1ALVS/He9ycb8DXtZND6T6BAFKoWSFov9lKxQubGFReMzCdFpqGywSIk2YzMI0atRKCEh3MBTmw+KPbowg5bpOUn0jjQSYdTSYnFwoEaecNM70ojb7ZJ8VtVkYclHB1gwLkMciBey1Je/KOVPwxKZfWkqJqtD4g2oUHjGEKKDA3h4bAY2h4vSkybRhgk8wTAp0igScoR1lNWZfWYolxce4smCLB77oFjyciFkaDPzksXAt3TyQMxdsG6FcuSpxl1+yijML2lR5Bfe9gPObrbnmXB+73bwKykpoaSkBKfTidPpZMuWLWzZsoUNGzac1gWdyxAU/WuaLdzwzyJxuxBw7l+3m9v+kOzTV7PYPW4MK7eUiFmNXiNfWuwVaRT/bQhQY7G7mPvuHpGNqNPIl1eFGTehz+YtZVbRYOa+y9P4y6tFksCwYMNeFoxLp/SECYUCnyAEYNSq2V/VjNNNlzN74QYtOpnrOdguWfZEQRZtNo9cm1YJnx48SZ3Jxt8u68uBqmYxyxRKtELAFGTG5o/NQKtWiOebm5+OMUDpo/7SlRPGodoWpl2YyJqvyyTOGTqNkry0KC7qEyGxJ5K7Rr1GxVeHT4r9Mrmg8VMth34piyK/8LYfv0d0O/jdfffd3HvvvaSkpKBUdpsk+rtEdLBOorTSNzqIJZv3E2bQ0jvS2OXAOXSQPp67dpBs7+l4o1ks11U0mMV9UqKC0GtVPLxhr89+i8ZnijNuCWF62X5ikpfFkQCL3YUxQIPZ6mTd95UsnTyQ/V4l0SnZCcx/by8Pj0vHZHVittqYl5/Owk4WQ/f9ZzcLxmVw16hUccRBuIbnPy+VZGx3j/Z4Re6qbGZ3RRNLNh8kNqSD/JEeE8Tij/aLTgtCkF46KYt91S243RAXquNkq13smQnrUCvl3SKcro5xBu/tSycPpH9cqCTbkitHPjIhk5lvfC8G43OtX+YX3vbj94huB7/w8HByc3PP5Fp+M0gIM3BHborE2uf+MWlYHC6WbN7fJaFCQJhBi1alYm1RuYTxJwylT89JwqBRsWprKeB5UAvmsmV1bZLszO32yInl9YvxjFyMSGJSti/LsvREq6w0Gm5IjDCIZBXvgLrmq6M0mG24XPDP/x7h8v6xvPFdudgvGxAfyr/avxOiV6PXKEUFFaNWRUyITmSr6jRK5uWn43K7iW3f3i/Wk60K3oAASydnSSyGhPWb7U7e2V7BpOx4WixOjtWbRDkyoff43NTB4qyjdwAXyCypUUFkxgVLMr3OAaxzOVKvUTHzje+xOdzcPjLZk0nXm9hT2YjJ5pQwJ89WRqXfBd6P3yO6HfxmzpzJgw8+yLBhwyTu7YJepx8dKG8w+/jX1ZltYr/Jm1AxLCmC+/6zS6IZOSk7nn3Hm7jm/AQfckaoQU1WfCgLN+71UTK5eki8T7DQaZTce1lfBieE8sK0IdgdLlmW5af7a7ntD8mS/tv8sRnUm6wE6YySYBlm0HKswczNOX0I1WvYsPMY913Rj7/80zNK4X3uZZMHcmlGNCark8c+3C85b2KEnqWTsig5YRKtkkpPmniyoD/fHm2gstEscZUI1Ko8nnwy2Vt0kE4yMuL9UiEEwGaLg/v+06GtOTc/nbXflov3MSFcT6/IQHpFSnU25QKWUI786vBJbA63mEmHGbRcNyyRyau/lmRRo/tFs7m45qxlVPpd4P34vaHbwe+dd96htLQUh8MhKXv6g58UwsOyc3CR6ze53KBRKXyyxKTIQEpOtPLO9gpJBvfaV2XEBPdFpVIwfmCcx90hOohH29mIcm4Fj1/VH4vdwY7yRjEwPP8nX3WUP6RFSZwYhHLirLwUCclDjjCzYFwGpV2oyxRXNzMoIZS9lb7u9GV1bZScMKFRKSRqMXFhmYTpNfSOMFJc3SIR8146OUs2c7a7nKfUPtVplJSebJV8LtgfHaxtZWZuCs0Wu0RBpTsjAFFBOkkmPXFwvM86Zr/5A2unX+hnVPrhx1mEbge/AwcO+MktPwLhYXmgutknuAjO62EGLbfkJFFntqFWKjnRamPz3uNiP02rUhIYoEKlkJ8Liw7R8Zd/ficSVtxIB90Ft4K4ED3lDW1UN1toszslLMeyOpNPAEmKlO/5nReqp7q5Q/ezq8H0F6YN6bKf9n15Y5dkmKyeIeIohlBuffbTQ0wa0hOFQsHSjw9KzlVRb0ahgAVjMzAEqKloMPPGd+Xce1ma7PoVig71l6UfH/T5PDU6kBuHJ7G2qByLI446k53zQnVEGANwu/nRgKVqZ8IK3+nKpULIPjtv9zMq/ThbcFaPOigU1LVaT5uuJ/yE4JeVlUVJSQnJycmn7eS/NQjzUmEGrWQOLjFCT//4EOblp9NqsWNuD0ZhBi2TsuO5vH8c5XUm3iqq4LphiRyqbSU5KtCHPLJgXAZ7KholhJXUqEAWjc9k7ruezFGrVpAWE0xJbSsKhedh3DnrbLU62bCzkhkjk+kRGEBMqI7i474BW6dREhmo5e8fdvQpu3q41zZbZTOytUXlTBrSk6pOJUyVAhIiDJTVmSRGuMJ+qTGBVDa2SVipgQEqAnVqqputHGtsQ6WACKOWO0elUt5glme5Rgfx4nXZKBUdLwnenysUCjbu8vjqldS2UnqileONHsm3JQVZstda5lUGrTNZqWm2SM7dlZiBn1Hpx9mMs3nUAU6vqDX8hOC3fft21q9fT1xcnKTn588GOyDMS1U1WWix2D3EFK2KIJ2GGf/+njCDlkcnZHLbv3fIMi7vH5OGRq0UA15ihJ7npg6mze6kR2AAc97ZyR+HJvDgFf04WNvCfWP6EhdqoMli58mCLDQqqDPZJWW6efnpGDQqZuYl42rX2Nx6oJYbL+6NyeZk/oa93DQiSbZkOjc/HZPNKRlx6Bstn8EFaFSSXuaQxDCeKTzI/Zf3w2xzEhsSwOETJkkJ8+7RfYkL1fPYB76aqEsKsmgw2yR9vAcu70tTm8PHXFetUvDql2WywffRD4qZlB3Puz9UisFYkH4b1DOMFquV6Tl9JPdsbn46YQYth7pQlvn+WCMrCj2l1MVXD+DT/TXiud/Z7mvcu3TyQDJiQ/yMSj/8OIvQ7eD30ksvncl1nJNwOFzsq26iqtGCQasiWK9hdHokKdGh2BxusuJDUNBuDDspixCdBnO77qVOrfQpH3qTYsDTE7vt3ztEhqTN4caoVXOwtgW1Ukl0iJ5HPtgnUuyfnTqYRRulg90vbD3MzLxUkWwiBIxekUamr9lOmEFL3+ggJmXH48bNrLwUTDaPWkxMcAB1rVYxs3z20xISI/Q+rhMLx2Xw2peekYWXt5WyYFwGTW1WppyfyJ1rf5Cc15uBuWTzAR69qr9sdlXTbCEhzMDstzquJy7MwN/ekl7f8sJDLJ2UxcTB8SiV8GRBFlVNbfSNCaK4qpmrh8Rj0Kooq2tj054qpuf0kSjTLBqfyeqth2V7gW8WVfDYVf15YN1uyTW89lWHksy97+xi9bRs5r67Wwz8A3uGsnHGcE6arBLmpJ9R6YcfZw+6Hfzi4uLO5DrOOTgcLt7ddZwHOz0Y8wfE89pXR6hstHLrJUmYbE4fBqKn5JgieejHhuhIiQqSCEILQSI1OoiTLRZu/0MSKpVSkvncNSqVf355lKomCzsrGn0CSf6AOHGN0BEwHpmQKWafc7zIJsL6puf04f++KmNkWhQWuyezbLM5iA7REaCC1dOGUNNsJUCj4rPiambmpVLVZEGvVbNu+zEmnZ/APe/+4HNegYAibOsRqJXNrlKigygqq5cQbdxdDKmjQJzpS4zQc9sfkkV/RCH7TYzQMyI1ykd+bW57v9G7tyr0ChvMNoYkhrJ2+oVUNVkI0qm5+61dPm7uGpWCV/481CeoJSPVwvUzKv3w4+xBt4OfH1LsrWqSDSrTc5K47qIkDlS3cNJk85HTEhiIFV49KoFB2TkIrfnaI2J9sKaFHoEB9IwwiA914XjLPjnIsskDWbhxnyiKLSHadOHAEKBWyc77rdhyiJevz2ZvZRN/Gd6bPcebfcYtUqIDWbRxH9ecnyAKbV+ZFSeyRW8fmcz+al92pxBUBOg0SqwOl2y58nBti4QkM3FwvOSeeR+jrM4s9gbTYoLE+yicc+HGfTw9ZSD7quTXpOqk2aDTKDFqVaycOoi9xztErGflJcv2DaODdf6g5ocf5xj8we9noiv2nssNbTaHLNFE+I5CAW8WVYjlRDkGpdD3arM7qW2x0Gp1UN3FOVssdqZdmMiW/dU+gtP92mXNOgeMigYzPcMMssc72WLjsQ8P8Opfzveh7QtEEMGn8IVpQ2huc9Bgsog9tbSYIPE8nc9r1KrEf8/KS0GpQHaY/6Er0ik50cqi8ZlUNJhRKZW8+lWZj0rMIxMyabXYuSUnicc37eemEUmy13SwplUcmvchxXjdI2FdI1Ii0WvUXPnMF+L33yyS7+f5+3Z+/BZwNrM9wcP4PHKy9Ue/F6zTdIsY4w9+PxOxIXrZB6lSAXqt57YK4w2dv+N2e0pqwXqNOJYg+8CubRGJFYvGZyKnj6nTKNFr1azYspelkweyqt0INzFcT1l9G89/VuKTWQl9qz9dmCDPQAwOYHR6JAqQLcO6gYQwPTeNSKKkppUnNx/gkQmZ/HCsjuk5fZjz9k7Rtqhz1hgVHMADl/clJtTA4x8Uo1UrfCyYHr2qP81Wu49ze4PZxj+/PCoRuD7R4jG6FfqJeo1SklFPHByPSgkp0YG0dvIlFMrGwj0TiDr3vbObQQmhtFikHoyCG8WrNwzFjdunb3e2Krj44Ud3cLazPbuL7rJC/cHvZyIjNphHr+rv0/OLC9Xz2pelYs+v88N2bn46JoudB6/ox7NbDjEmM5YGs63LGTlon29rMGPUqmQDSkWDGYvdI1G2q7KZg7WtPH/tYJGUcqLVJj7cL+4TSU2LBa1agVKh8MkUH5mQyeHaVq4Z2ou57+4RyTTeZdiKBjOLNx2QMCMfWr+Hl6/P5sZ2cWwhUHjPHAol0mWTB/L8ZyXiCEOITs0rf86mqskzNtAjUMv0TuXdhRv38sj4TB5qJ94Ia3rtqzIxI31qUhZBOhVPTxlIeZ0Jo07jY7v04e4qSfB0ud3sqmxmV2UzALMvTaXBbBNHEDr/XBrMNnoEBfiUOP2eeH74cW7BH/x+JtRqJeMHnEdKlJHqRis6rce9ICnCQLBew57KJs4L09NktvHiddnUm2wcPtHKyi0lNJht3DUqlROtnhGCh8dlyHr9eet9vllUwcNj01EqFCwYl4FBq6aq0Yxeq+a5zw6j0ygZEB/K3aNTGZIYSrPFIR5TYGHeNSqVfcebSI8LZmZeCmV1noHxJQVZ2F0uwo1a5skEPMF2aXpOEoEBal7571FAyox89tMSGsx2n0xpRWEJM3KTJYSSRrOVKUMTJIFp4bgMzDYHvSOMFJU1+GTCZXVtBBvaM+VQPeX1beLahLUcazDjdiMSa5Z+4luyfbIgiwM1LWImOyO3Y25Vp1HicLl+lgef3xPPDz/OLfiD3/8AtVrJgPgwBsR3bCs90cot/7edWXkplNa2YtR5AqHggSdkO2abg+uGJbJ40wH2Hm/irSKPlFlCuB6DVs2SzfslrEKtWoHJ5pTQ7uePzeD1bzzZ1MzcFOa+u5v8AXEecsYbnmF77yxHgZuTJgcHqlow2Zw+83Inmi0StwRveTCL3UVaTDCLNu7zYTsqFB6dzsAu3OrdbiT/T4gwihmicIx57+1l7pX9sDhcssQdnUaJEhicEIZSgUSKTfj8vFCDaJjb1TD+gZoWXvqiVOxPCkmZTqPksav6MzghlITwn+7B5/fE88OPcwv+4HeaUdNsIcygJVivoabZwtJPDnFnXqrsULtAwR/UM5TVW0t59lNPlrRhZyV/uai3RA1lYEIot/7fDknAWLBhL08WZLG/ukXMgvQaJbUtVrH06J1xLSkYwCtfHuSBK/rx2Ie+83LPTR1MbIhOkk0pvIKDXqvkumGJmGxOwNMHbDDbSIsOYvDYDOa/t8envzh/bAarPu8Qup4/NoPvy31HMix2F4E6DaF6NYFaFfePSePxTR2ziY9O6M+i9z0zjdmJIT4muAvGZeBwunwColwgFgL7c1MHo1DCE1f3Jy0miMxO9kXQ/fEEvyeeH36cW/AHv9OM6GCP0PGijftE5mHGecGyYwULN+5jSUEWCgWilNk72yu49ZIkLA6XJDN7dIL8MPiBmhb+s6NCJHYMTgilrAvD1epmC1VNFtpsDtljnWy1iqaugtOBuz0Lu2tUKsfqgr8trgAASntJREFUzD79xsAANf/8spSZeamMzYojwqjmxWnZNJhthBo0rN9RIdokKRUQbtRS2dgmu77DJ1pJjgri6cJDzL40lVl5KbTZnQxKCOPZLQfFrPSCpB48105SERiiz31Wwt2j08TjdqVYs3JLx4zhvqpmbE4XvSKMBOs1/9PP3e+J58e5jrOe7alUoFH9eP88WNe9v2V/8DvN6BVhJDUqSHywJ0boabHauxwrQOH5pWttl0NzuaFnhMEnyyuvlw9oRq1KklGubi/fPVEwgHve3iXqhyaEG6hptpAYoScyMED2WLUtVlZ+6gkqL28rZdH4TNrsDp4oyMLmcHKs3ixRaFleeIh/33gBBm0vUS3mumGJzN9Q1JH55WeweW8V6XGhuACNUsHXh0/4qMQI/cXZl6ZisbtY+vFBlhRkYdCqUOKmstEqrlWh8PQAn/20RGR0js2KQ6tWiqMQVU0W1haVs3TyQEpqW7E6PCMh3sa5bXYXieF6nvzoAA1m2/9EUPEruPhxruNsZ3s+PrE/vSNPXwvBH/xOM5RKhThP9s72Cubmp3Oguhl9F2MKB2taeKuoggeu6ItBq6G4qhmTxddv782iChaOz2Teux3WR4vGZxKs1zDrje8lgfKBdbuZMTKZ2aNSCDMGiKLXnr5WJtXNbT4Em7tH9+XlbUfaM9Ug7r2sL1a7g1aLk8c+8B2+FwLg8SYLD7aPKcjZ+SzYuJeVUwcz4987JCXKyCCtGOzdbkQmaXSwTiy97m/vz03PSeK6YYm89lWZJHh1pY+6bPJAiqubcboQe5Q6jVJ0aheuY21ROX8bncYfhybQO9JIRb2J3ZVN9I8L+dkB0D/s7ocf5wb8we8MoHdkRwmspLaVN4squCXHd+xhzmV9eemLI/QI1GJzwpz2ADErL1mWYt9oskpKfQ0mK8faxxy8YbG7sDhcgFIMfML2o3Vm0VHCmwzTM9zA1UPi2bCzkv3VLUQH60juYeT6V76T7N/ZI89k7SihdkUy2eUlu2axeyyQnp06iPhQA/Pe2yMJiht3HuP+K/pR0q7wEmbQ4mpncE7PSWJFYQkbdlYyPz+DquY2n1Ly45v2MysvhcRwoxiUhRGO+FA9WpUn41tbVM4tOck8tXm/hN06840d3Dum3ykzQP88nx9+nPvwB78zAO8S2IlWK899VsKqraVcNyxR1MiMC9Nz91u7ALgjN4U7vLI3OSURwY/Om2kZG6LjkQmZshll32iPykrnYCSoznQmw8zITealL0p5/Kr+ok1PUqRRLHMKEEgwQrA4abJKzn+qeUXvY+ysaCI+TMfqadlUN7Wh06rZdrCayzLj2FnRiMsNSzbv57phieI+8aF6ZuQm43bD69+Wce2FibLB9rxQPT2CNLx/xwhOtHpKkPEhevYcbyI9NhiTzcmwPp4ZTTl266lGFPzzfH748duAP/idIQglsF4RRhZfPYB739nF4k0HSIzQc++YflQ1WZicHU+EUUuLVV5J5KlJWRRXt6BUQLBe46Mr2WC2Udlg9hlUXzQ+k8pGM+kycl6nUp0JM2ipbraIQXf11lJRDca73JgWHcSNw5PEOUQhUMvZ+TwyIZNnthySrFuQXXO63Exf4+kPxobomJGbzO1e5dGZuSm88Z3HD1CnURIZGCDpE4boNbLXYtCo+Lq0gbw0LUN7RQD4BKx5+enYHG7Juix2FwFq5SlHFPzzfH748duAP/idRniXw4wBatwuNxank3CDluf/NBijRk1Vs4UD1c28WeQZE3jsqv4YtL79wAazDaVCwUtflDI/P4N3tpeJbu8uN2zYWcnMvFRWFB7E5nBz4/AkAtRKUqICeXnbYS5I6kF5ndlHhaZPVGCXZBO5np13uVEIZiplh4uCTqMkwqBh6aQsWiwOQgwaXv3L+dQ22zBqVdQ0t/G3S/tyzzu7xO8vHJdBc5sVrVotnmvi4HgfxwUhE7M5XaLG56y8FMINWgwBampbLMy5rC9PfnRAcmzB5mn11lKWTh5I3+ggn4C1cOM+8boE6DRKkqMCSYzQdzmi8Huf5/OXfH+7OOvZnqfZzd0f/E4T5MphC8ZlYLU7eW9nJVcPTmDBxh0+AeeBdbtZfs0gkaXozc40aFU8cHkam/dWMSojRnLsx67qj1rpFv3pnv20hJl5yfx9U7HEGT0xQs+yyQOx2J0cqTPx+Af70aoVPDd1MPVmG+X1ZpHA0lXPLjU6iJl5yThd8MyWQ8zKS+WfN5xPTbOV441tNLQ5mLdB6jj/3GclYi9t/tgM0SfQ7YY3i8r580Ue8smsvGTeLKro8twqJSRHBVHXYsHqdOF2w/wNHYH7/jFprPzjIOpabRgD1OgDlIToNECbmJU9d+1g2WMn9wiUCFrPzE1h8aZiFo3v3+WIwu95ns9f8v1t42xne8LpdXP3B7/ThCMnfcth89/bK1oc3dPJZsebONJisaPAzexRKT56lHPz0xnWJ8InK1peeJD7xvSjrrWVJZOy0GuUaFRKUqKklj5ldW3c9eYPPlnObf/eway8FKKDdWI5tauS6MGaFsm+D6zbzZKCLAID1LTZnT62TfPf28uNw5PE+cOqpjZSooJ47INiAKZdmMjdXvZN8/LTabM5Zc+dFhPM4k3FPDKhPy0WBweqmyXjFv/48ggzRqZIAuLc/HRObCkRv2PsQnkmJkQnIRAJLwEalaLLh/nveZ7PX/L147cEf/A7TSirN8lmFy43tFnlh8oF4khk+5vMkZNmHz3KRRv38cK0IZL9Y0N0TMlO4O+biskfEMfRkyb6xQYz9909jM2K63IdnbfZnW5sdifPXTuYVosdg1btM07hPRjuvS8KCNQpSYwwyp4vQK30GUO4a1QqLrfbp7S6sP0aO5do5+an849th7nm/ASOnGjl+c9LRSk3IVDlD4jzYbR6643qNEqigwJkA1ZUUIBYvhWg03j8+brC73me7/de8v014C8znzn4g99pglErn10oFWDoIvNQKmBmbgrz39vDE1cPoLxefmyhun1Ozbs/traoXFLeFMp2btxdnguQ2PwM6hnKQ+/uJkSnYcrQBO55ZzdhBs/8XUK4geomCyaLXdbAFTeUnmgjIUze2qlXpNEn2132yUGWTsqSvcbtZQ1EGrUsnTyQ8noz8aF6XG4X112UxOMfFNNgtjErL4VWqxOLw+mRaPuguEuz3oRwPYkRemblpZIQbiQh3EjazBEcqa6nd0z4Txau9sbvdZ7v91zy/TXgLzOfWSh//Ct+dAfRwQHMykvxBAYQe1/xoTpMFlu7H1/HZ3Pz09FrVKz5uoyyujYaTDaRnekNnUZJi8XOwnEd+6uUkD8gTtYAV6lQMDNXuo67RqUSadSSGKFn2oWJvLytlBWFJdy8pohbLklmZl6KWFYVnBgeWr+HxAgjTjfcNSpVcrxF4zNpszmoa7Xixs3sS6Wfzx+bQXWjfCBXKhUkRuh9rtHpgtpWG7Pf/AGzzUF5vZnHPzzAwZoWqpo69FKFtc95eyfXDUuk/3khsvessrGNmXmpZPfy6HUKAes8tYmkHoHitjEZMXwwcwRvTL+AD2aO8D9YTgGh5Ov9s/69lHx/DXRVZj5aZ/qVV/bbgD/zO01ICDeSEh0oqpYoFRATHECdyc4D73VkVL0jjVQ3WVjZ3pOC9kxKoSBQp5T1CNQolUQHdyiipEQFcai2RTa4mGxOth6oZdnkgRw+0UpSpBGX283xxjbuvSyNxR/tF/tcAKs+L+G2PyTLHutQrUd95toLElgwNgOjTk2EUcOxejPz3vOyIxqbztJJWZjtTqKCAnC53fSONMhmCfuqmrn9Dyk8+9khyXD52qJy0ZEiLkTP04WHaDDbREcIQS+1MxP1gcvTfEY9vL0H1958IQnhXf/cupvF+ctPv++S76+BX7rMfLawPU+l4dld3c7uwB/8ThOUSgW5faNJigwUHwxuN/z1/76QZFTC27JQShQe1o9/WMz8sRmcFxIgofNXNpr5x5dHeOCKdIJ1GpZsPkCYQdvlcLvbDX9Ii+Ku9jfG20cmi32t+y7vK1sqDTVoZY+VnRiGXqOSzO3NvjSVcKOGGSOTsThcBAaoaLQ4ePbzw0zJTuCh9XtElun8sRks2OA7UtFgtrF6WjZFZfU4XYhqK69/W4ZOo6S8oU0sc772lWdb7/aBe8ESCjyuEkF6Da9sO8JzUwez41ijhLgCUN1sIet//Nl2t/z0ewiQv9eS76+BX7rMfLawPU+3hmdX8Ae/04jOD4avDp+UfXMrqW1lek4SPcMMBGhUHG80MzYrjuMNZnr3CCRYr5GwF2fmpmBzOFnz9VFmjEymR2AAwXqVT8YzNz+dFoudMINWPK/3CEFcqEHCBBVKpU9PHijJvlRKyIoP5XiD2YecsvTjgzxzzSAeWu9Z38y8ZFZvLeXG4UmSMmxZXRurPi9h9bQhfHu0wSco/XCsEYDeEQYmDenJqq0ljB8Yx7RhvWgwWZkx0mMye/WQeJQKSAw3cN2wRB9XiWCdmoO1rQRolLz0hS95JSbE86AQAtNxu5GAE60/KTB1h+Xo78/4cbrxe2YW/xLwB78ziK7e3BwuF4EBatwuFyW1ZlxuCA5QodWo+eZIvTg6IJBTLA4nPYJ03P6HPmK5cXR6JPlZ8SwpyGJ/TQtuN2IpdUauVBtU+PeRk/KM1Da7ky37q8WZQe8RBDl5syaLndSoQEakRhEXouemEUkEBqh8jl1W10aLxSEblFKiAtlzvJmnvCTb+sYE0Wy20TPCyN8/LJbMCVodTt74rlxSsn3ju3LuH9OPheMyqTdZeGRCfx7qpOeZERvyPwem7pSf/GMAfpxu+MvMZxb+4HcG0SvCyGNX9Ze4r8/NT8dmd5IUZWTf8RYx0M3MS2bpJ3tED8DYEJ3UqmhrKY9e1Z+HrkgjOSoIlxv2VDaSFhvMhp2V5A+I4/qLEokLNVDV2MaqPw3mYHULLreCZ6cOZuHGvdicLtlgHB6o5cbhfcRSKZxaBeVEi5UpQxN8ss7ECL2olSl8V6VQ+EiezcpL4Vi9SaItqtMoOVDdgtMFCzYWMy8/nVaLnfNCDdS1WjlUY5It2TpcLkIMGv66Zjtrbszm/268gJOtVmJDdGTEhqBWKyk90SoGJuGFYn91M3Gh+m45OHSn/OQfA/DjTMBfZj5z8LM9zyCUSgWp7SSYGbnJPDd1MCu3lLBgYzGtFifLCw8RZtBy+8hkMYPSa5ToNEpxnOHG4Z59bxqRxIrCg/TqYcRkc1BvshGi11LbbOFvo/uycVclLhfMeXsnj324n1v+bwdON7z61VFu//cOZoxMISFcx9z8dB/WqcvtYm9Vs+zDu0+7Corw/fn5GRi1Kh/yyaKN+7h3TD90GiWxITpm5iXzyIRMjDo1H+6uEq/jxuFJvPZVGeeFGUTWp7COt7yUXhZu3EdsqIGKRjOPb9pPr0iDLLs1MiiApjYrs/KS2VPZwp9e/gaXG/rHhaJWe9YtBCbhhUJgjE5Z/RWb9lbj6jwE2QndYTkKAdIb/jEAP/w4e+HP/M4gXC43FruT3pFGjp40YXe5RaJLq8XRpR/dXaNSUeD2yXTuGpWKyeKg9KSvo/qkIT19gsPywkM8WZDFgZoWVn56iHvH9GNVuwN6QrieEy1WTBY7FpuWzPN8RbB1GiXHG9skKiirtpYwZ3SaLPkE3Lzwp8E0Wxwcqm3laJ2ZY/VmCobE8/znpRJ268GaFm65JJmmNhtmmxOb3YlWrSA1OogZuZ5+X1WjmSCdhjCDlqY2eaGALw/XoVOrWP9DJVOHJhJm0PqUG4XANHFwvHiPfkoG2J3yk78/44cf5xb8we8MQa7P9GTBAJ65ZhC7jzcRrFdLCBzQ4Uf3wOVppEQHccM/pV56yz7xuJvLiU8/WSA/PH6g3RB2Zm4KFfUmRqRG8fK2Uu69rC9hRi2LNu4jzKDlrlHJPD1lIPuqOoSzb7kkmRWFhyQ9PwCtRilLPjnZYiUw0khFQ5tYzhU+u+GiRF75soxJ2fH0DDNQ22Jh1ecl3DemHydaPEP8t16SzD1v7xT1TXsE66hpsnDDRYkE6+WFApwuRKm4ZZ8cFJVdvMuNQmDaX93cZUn5x3qAP1Z+8vdn/DjXcdaMOigUHDnZ6rM9WKc5bbqe4A9+/xNcLjfl9SZqmq2YbA4Sw40khhsoqzdTerKVA9XNIjEkQK1ErVLywtYSLkjqweETJpKjAmUDVmKkkf1VzRJyx9YDtYxIjcLhcsvuI0ilyY0+CCXCJwqyaK1tYeH4DKKDdfx1zXYsdhfXDUuksc0hmd1bND6ThAi9rLqLUauSDcAzRibT3OaQ/ezF67KZkZvsM493rN6EGwVKhWfI/c5RKQR10jddOC6TmuY2ZuamSAS77x3Tj5LaVgnhRrgP3uVGITDFhepZvbVUkgEKazwd5JTfQ3/mXBvnONfW+2vibBl16AqnU9Qa/MHvZ8PlcrPlQA2HalrFh31ihJ7bR6ZItDHn52ewaqvH4SAxQs8tOcks2OgZE5BzbPdkMy50GhUvbzvgc5yxWXGy+xyrN/sQS4S5OvA84MvrTKRGBaFQwO6KJvEY8WG+IxBz393DjJHJkmMmRujbxbRtsgHY5Ubi7O79mcnqkLUseqIgi6c272fGyBRWb/UM4D/dSd903nt7+MefzydAZeHFaUMormrGqNNIsmqBcKNUIFtuVCoV9I8L4e8T0imt95NTfg7OtXGOc229fvyy8BNefiaO1pnYVdEkyXLyB8SJgQ88D9QFG/eSPyAOgElDeoqBDzoc272JFI9e1R+tSsWCToFCOM472yt85Mtm5qbw4e4qnC43TxZk8Y/rs5k9KkUyV6fTKEnqEcijHxTzt7d2khhhFI9h7iJgWRwuXvuqjOk5SSyfksX0HA8j9GBtqyy5IzkqEIfLJfuZMUBNmEHrc46jJ00ScequrI2+Lq1j1tqdPPTuHpKjgmQJN49dNYBBPUPpGx3keeM/2co3pXVs2V/D4dpWXC43vcO1DE+O9JNTfgbONbmtc229fvyy8Gd+PxM1zRZcbumDuqsHt0LhEZSODtZJPhcc24VZPaUCNCoFtS3WLo9T1WRhzddlLL9mEHaHC4vDSYhOQ/TFvXhwnTTj1Ko9b7dCZrTqM88cYGyIDo1SIRrEtlodXZZMBWWaF6YN4fBJk1hiFPwHvbPMf2w7zM05fXyUXRaNz+TIiVZuvSTJh/hidbh8xKm76u2BZ3ZwXxfM1G+O1ElMd81WB499uF8y9/fMlkPYHG6fLNlPTvlxnGvjHOfaev34ZeEPfj8T0cG6Lv3v5ILIxMHxVDSYfT5vMNsorm4Rve9Kalu5MCm8y+MIKKszsfTjjuAzKy9F4nO3YONelhRk4QYO1baIA/CxITquG5bInV6loEevyuTxq/pzv9c8onfJNDFCT5PZJiGx3D8mjRkjk4kKCkCnVfP4B8VcNyyR0hMm3viunBkjk4kJ0VFeb2bpxwdFubIbLkrksQ8PSDQ95+VniNcrZLad5/mEtQBYHPLzikKAtNhdPLR+D9NzkiRv/Q+t3yM6QyhQsHraEGxOFz0CdWTEBvtLYT+Cc83V4Vxbrx+/LPzB72eiV4SR/vEhkgxiw85K5udniKVND1kjg2c/8/Tq3iySf7Bv2lMlYR+++4OeRyZkijqZ3j0/8Ig8C4EPOkglAtNR2OYGgnUq+sUEMyk7HpcbWbLKg+v28OK0Ibw4LRuzzYFapWThxr1UtVspzcvP4PZ/7/BhpU7PSSKwnZxS1WShZ5hBNKltaw823g+e5YWHeG7qYJ6dOgi3GyoazVxzfgJWh1O8j1VNFtYWlfP8tYNpNNvRqJQ8uXm/hHG6YWdll2LWAoQepDdSowKJDAxgeeEeyX6Lijwziv5e0Klxro1znGvr/bVxtrA9QV7c+nSKWoM/+P1sCELWyT0CyU4Mo7rZwqHaVl7/1tMjS4oMpKqpjQ93V3HfmH4YA1S89EUpa74uY1ZeCvFhBgAqG8yMzojx0cUMN2pEFwe3G17/tozxA+OIC9ETpFN3WRYVoNMoCTNoOFDTwpMfdRBnFl89QHbfnRVNLNl8EJ1GyeMT+3PN+QmYbE7SooM4VNMqu0+fHoH8Y9thMUjiVfbtqgRstjtZ/flhRqRGoVBA3+ggVn12mDvyUniyIAuz1UG92cahmhZe+bKMW3KSfGTXpmQnsPbbclZPG4JGpcSgVTHzje8lAVKn6fAwBE/Z+Y7cFO5443sf0s2Nw5P8UmTdwLk2znGurffXxtnE9vwlxK3PaPC7//77+eyzz4iIiGDjxo0ANDY2ctddd1FZWUlcXBxPP/00ISEhALzwwgu8/fbbKJVKHnroIUaMGAHAnj17uP/++7FYLFxyySU8+OCDKBQKbDYb99xzD3v37iU0NJRly5YRHx8PwLp163j++ecBuPXWW7nqqqtO+/UplQp6RQbSKzIQl8vN7spGAJKjgnhq837K6tqIDdFx5KSJtUXlYpnP7UZkVwq9qM6BoqK+jdgQvaR3NiYzln99U8asdn+9zuUc4W9ayGjqTVYx8IHnYV96olV236QegcSG6KhqsnD/f3bzREEWB2taQAFtdvmeYFSQlouSe3Bhnx4oFRCkk87iye1T3dTGrspmdlU2o9MouXF4EgdrW9ld2ST26xaNz2Rpu+bnqq2lPDwug9mjUogNNWC2OjhpstJksRMXaqBPlOfe3zumn+QNX+j5CWu44aJEmiz2Ll8a/L2g7uFcG+c419brxy+HM8r2nDhxIi+99JJk2+rVqxk2bBibN29m2LBhrF69GoCSkhLef/993n//fV566SUWLFiA0+kE4OGHH2bhwoVs3ryZo0ePsnXrVgDeeustgoOD+fjjj/nzn//MkiVLAE+AXblyJW+++SZvvfUWK1eupKmp6bRfn8vlpvREK18dPsnROhM2p4sVhSUcrGkRA9/9V/RjxRaPd92ar8tYOD7TZ8bsWL1Zwj6MDdERbgzA7nTywrQhLL9mIDcOT2LN12WMSI1i4ca9soa1gVoVSwoGMGNkMmuLygk1aLlphEdWLDZE5yG6qDzZ36w8zzYhUC7eVMzEwfHimtpsDt7ZXsGj7xfTp4fRh5W6cHwmSoWCS1IjGJYUTt/oIFQKmJ/fj5l5yWhVSpZNGShKmCVG6Hlu6mAsdhczcpPJTgxh6eSB6DVKnp4ykCGJodw9OpUXpg2hzeYQ5wurmiw8u+UQQXotc97eyb3/2c0zW0q4IzeFxHBP9ixnSjshK46c1B68esNQXvlzNhlxIT73WbgWt9vfC/LDj98bzmjmd/7551NRUSHZVlhYyJo1awCYMGEC06ZNY86cORQWFnLllVei1Wrp2bMniYmJ7Nq1i7i4OFpbWxk0aJC4T2FhIZdccglbtmxhxowZAFx22WUsXLgQt9vNtm3buPjiiwkNDQXg4osv5osvviA/P/+0XZvcDNHiqwdIHvZThyZS4mU6W9VkobrRl4H2ZlGF2MMKM2i5blgid3spnQzqGSp68kUHBZA/IA6lEp4syKKysY2EMD1KpYJ9Vc288qWHXDJ/bAYrCg9yQVIPVEpYOC6D6mYLj35QLJmNa26z89pXnpEIhVfmWNnYxrQLE9myvxq9Rs15ITpevC6bBpONkhOtLGsnsQg9TWGO8dZLkiXEmEcmZBIUoKLV6uK29r6hMA/pfe/uGpXKv74p54/uBF7/tpzZl6byr2/KmDSkJ+mxweK+0EFeGdQzjD5Rnjd6uTd8ISsH2LK/psue69qichZfPYCE9lK0H3748dvHL97zq6urIyoqCoCoqCjq6+sBqKmpISurw3Y0Ojqampoa1Go1MTEx4vaYmBhqamrEfWJjYwFQq9UEBQXR0NBATU2NZB/hWKcTcjNE976zi9XTspn77m4euiKdO974nptGJImlt9gQHcEGjSzjs7nNzo3Dk0iLCWLO2ztJjQpk5qgULDYXdSYbT08ZyH92lGMIUPPyh8WSh/fij/Zz7dAEzk8MR61U0ivSyGtflpKbFiN50HdmhC7auI+7R6eKPTshAxLII1q1QtInE47xVlGF2F+b995eUT/UqFXx8Ia9PkFqSUEWD7ZbDYH8POSyTw4yPScJq8Nj/Ltx53HuzEvl/nW7RacLb1jsLoqrm+kd2b0eTmK4kQazjTVfl3Hj8CQC1EqSIo24cZM/II6lHx9Ao1L6SS9++PE7wVlDeHG7fZX1FQpFl9t/7j6ngtVqpbi4WLLNYrH4bAM4bjfKPpCb22yMHxiH1eGSUPe37K/mL8P7cKzOxMJxmcx7b4+Y2fXpEUhVYxv/2VHB1UPiCTNouf7iXhL1GJ1GyfPXDubWf0kzoLVF5Swa358fjjXSbLHz+rflXD0knguSesgKXXdmhEYG6shODOGa8xM5abKK5dWqJgu3j0yWMDa7OoagH7pwXIas/19n1ZeuyDACSWhGbjJp0UEicxTk+4cHa1o4z+BGb2/+0Z+tUqXi71elc9+6fTz7qae3OPvSVF7571FxvbPf/IGY6wd063hnAl39rv3aOFvXBf61/Rj69evX7e8qgLlXpp25xfwEuF0u9paf6PJzgxosTSd/9Dinuv5fPPhFRERQW1tLVFQUtbW1hIeHA56Mrrq6WvxeTU0NUVFRPturq6vFzDEmJoaqqipiYmJwOBy0tLQQGhpKTEwM3377reRYQ4cO/dG1BQQE+Nys4uJi2RsY0AVx5GBtKysKS3jmj4PQaZRUNVnYtKeK6y7qJWaKj4xP57mpg6g32yXjDLPyUjAGqHjwCs/5Opu3HqppkZwvNkTHlOwEpq8pkmSCSiWYbU7ZABOgVkrWW3qylTvyUimuaub1bz1O7lcP8fT+dGql7DGEof2Jg+NRKSElKogwg5Z57+2V9f8zBMiLUnf+f7hRw7JPDlBW18bMvGTx81PN/l3UJ4vB3fwDT3G5SQhWY1MGoEDBnWt/8AnUNmVAt493utHV79qvjbN1XeBf2+mEG1j0/v5fexndwuMT+//P9/YXlzfLzc1l/fr1AKxfv568vDxx+/vvv4/NZuPYsWMcPXqUAQMGEBUVhdFo5IcffsDtdvvss27dOgA++ugjLrzwQhQKBcOHD2fbtm00NTXR1NTEtm3bGD58+Gm9jl4RRlZOHcS9Y/qyeGJ/Vk4dxMvXZ/PZ/loAzFYbyyYP5O7Rqdx7eRrPtFPq77u8L+GBAWjVKsrrzdw0IonYEI/yyxvflWPUanhy8340aiXTc/rw8rZSVm4p4aUvSjHqNGJPEZAVaF6x5RAOp5t+scGy5I6UqEAJ0eWtogqqmyx8sq+a20emSM6X3sUxggNUEl+8OW/vZNqFHjuhhHCDhBgzKy+FF7celhB0hHlI7+/dPbovKwoPcu9laSye2J/sxDDxc0HVZnpOEosn9hez0waz7SeRVJRKBXp7MxcmRdIjKEBWtNtPevHDj98HzmjmN3v2bL799lsaGhrIycnhjjvuYPr06dx55528/fbbxMbGsnz5cgBSUlK4/PLLueKKK1CpVMybNw+VSgV42J7CqENOTg45OTkAFBQUMGfOHC699FJCQkJYtmwZAKGhodx2220UFBQAcPvtt4vkl9MJq93tY+tz/cW9MFkdqFQq7nrzB8IMWjLjQpgxMoWKBjMGjYoGs53Zb+70yWLyB8SxYstBpmQnsPd4k0gcgQ79yuevHcKt//K4MXSWBQMIM2jpHx+Cyerg+WuH8PCGPZTVtf1/e2ceH/Od//HX3JNjcsolEYzcpxItFVpxb5O4j3Z/0aquXjbK0qKripYqy7K2VOkuutW04qgoq3UsShWtM4mIkEgkIfcx93fm98eYb2Yy3yCRmCHv51/Jd2Y+855JHvOaz/vzfr/e7PN8sj8L8/4QjuySWuy/VIxxcQFwkYowc0go5u64aPF8CzMuWzWTzxwcgk7ujlZT39ccuoqp/eUoqVbhs5d6oFatw80K4+vNuV0HXCrGirGx0MMAIZ+H707fxJR4OQR8IMRbhju1KiSE+WLmd+fZohhzm7RKhQZ+rg747H+57OtZNiaGbVhurns/NUATRPuGZ+A6IGuncKUpmkpd5N2pwx/WHLMQn86eDpg9JAyuDkJkFdfA393R6GRSqcDmk8YCko9HReP9nReRGOPPpjN/uXYHk56VQ6nRwc1RjMu3quHv6oD3dly0et7VE2IhEQqMfpxiAWZ913AuZrIuMxfk+YkRqFVpUatisOM3Y6FK6sAgfHemkL2v6ezRNGfvq18K2HTg/BfCodQy8Hd3QEm1Co4iAcoVGovUpokVY2Pwzel8vNpXDsYA5N6uxeHs2xge7QcXBxE2HL2GxBh/CPhAuK8LNh2/hoQwX2z9JR/vDAzGArNiGdP7+dGIaCi0DJzEAtwoq0OVUgcNo0dcZw88K/eEUMhvlnu/+d/TJJj20gBtr2kye40LoNhak3MXL+GTk7W2DuOBaI0meLspeHncaGyaazp/W34gG9MHBoMxAH/5rmF3N2tIKER8HjKLqi0mtJvGHJmGuE5LMLYKmFeJmpCK+LhZqURsgBveuburND8LGxcXYGVdtjgj06JARSri45muHgjxlrHtFI2nyZt2opUKDbxcpLhSUsvuCv1cpZj3h3DO2NwcRZj4dGd292baKTJ6AzYcvWY1mX7xiChsPXkDlQoNnCTWrjX55UqculGBjcfysGRUNPoGeaGUQ6iacu+/n2MLNUATRPuFxK+FNDbNNZ2/TYmXo7RGbSVCKw5cwdT+cgR7yyxm5yXG+LNeoKN7BLApxsZFHp09HfBhUhQqFRroDQa2qtJUus/jGQtPuApUBHeP7UyCM2/nRSTF+rPPyXVuOLW/HFKhADUKNcJ8ZXitnxyAsfhkyQ9ZmDssDOUKDfQGQMADPJ3EuHq7zup1r/wxBxtSet5N6VreNn+30Xw6pU8XOEr4TZp5q7R6zNt5EWlTe6O3vIPV34Lc+wni4bF3b09zWsPnk8SvhXTxdMLysTG4ersOegMQ5museJRJBfB0knB+GOsNwPWy+ibL/s1/Nhe2aH8XKDQMe9ZnNJuOwDe/FuBCUQ1bur98bCyngAR5y5A6MAjhvi64VaVEfrmSva2ptoNAD0d882s+Xnqmi4UVm8mIW83oLZrZZwwKaXKtejXDeT6p0urh7+qAtYev4tVnu1qNQmo8jLekWoXYTtZ/C3LvJ4iHp715e9Iw24eA0QMbjhqrI2d9dx6T+nRG1w7O7Ogic6QiPsJ8ZOjawYnzNq6fi6tV2HQ8D3q9AfN2WhajLMrIxJvPW1qUbT6Rh49GRltUUX40Mhr1Kg2iO7qiVqWBz937m3aWprFMjePxlknwanw35JfXs0NoG3aF3aymSqz6KQf+bo6ca7k6CNEj0J3ztoJKoxgv3Z8NDyexsaJzTDSm9pdbDeP1deUWM1PxivnrpuIVgiDuBYlfC7lRXo85Oy5YNYCLBTzWRqtxyf/HP2RhxYFsizL/PeeL8NHIKFaQPkiMsHjc/MQIFFYquXdUGh1Wjo/BwqRI8HnApGe74te826wf6OcpPXHgchEKq9T4/GguhAIBlv83G/MTI1i3k8iOrpjf6DlTE4KRXVyDxRmZMACYOTgEs4eGsC0ZBnDv4q6X1WPGXdNt89ddXq/F16euW722GYNCsOO3QvbxV0tr0cXTCZ8dyYVUKGBbEUw2aZF+rpx/Cy5vT3JqIQjiXlDas4U0dc50p1ZtYaPVxdMRNysVrH8mAKw/mosvUuKQU1oLuZcT9l0swj9f6oHzhVXwdBJi08txKKxUwlEsxOYTeXjr+WDOtF5BhQJ3atXYctJYnLJ8bAxG9eiEoioVJEIBbpbXY1xP4zSDvkHGVob8ciXSfi3AqvHdkVVSA7VOjw1Hr7HnhgYDkHamABN7BXIWwqSdKYCAz92krtbpIRXyLEYxmWKbNiAIWp2evY3PMzbRmz8+JsANz8o90b2TG8rr1fhqyjOoqNfAx0WCSD9XCIVNf1ej4hWCIJoDiV8Laeqc6Xatmi1U+efhXCwbE822BZhcUYwtDgYEejiiQqHFqB6B+NuBbAwM90WdxoDpaZaOLZ8duWo13Na8InNKvBw7fitEYaUSs7dfaKgifS7IwpfT9JgLRTVYlJGJPz4TCAcxH9MGBGP+bsu1Gb0Baw/nWhXCrBzfHeuP5FoM8TXtzCrq1HB1EGPJPusWDS9niVUrg2mk0abjeVg2JoZtXWhLEeMLBMi7U/fA/YAEQTyZkPi1EK4mafMCjVXju6NerYOHkxhSEd+ipcDdUQwnsQDfnDbaieWX12NKfDcUVSnwfqOzPVMFqUwiwOcpPXH6RiUMBlich/F4xmpT80rLxBh/tnik8Vr/PJyL4moV1h7OxdT+chzJvo1Px8ZCrWUQ4O6Avx3IRu9uXpw724IKBXJu1+GPjiJ2KK+TWAAe3wCZRAStXs/5pcCRo5VBpdUjxt8FP6T2eyQipNcbkFUrwZytx+7bD0gQ7Q1bVXs+iqntXJD4PQRisxRfmI8Myw9ks4Kk0xvw192X8M6gYEwfGAyllkHamQJ2csOKA9lWfW9LR0c32aogFgog4vOw8VielbAYDNZm0U1VXpq3PXyYFAmNjsGEp407z8QYf9ysVODN54NRdLdop/FzBXs7469/CIOnswQioQAOIj5kDkLklNRi8d4stvcw7UwB29D+VCc38HjGpnVTpSm7no+sRbu85jq6AHfPaXdlNrsfkCDaA7aq9nwUlZ1ckPi1kBvl9Zj29e8W7iqT+3bBf04ZbcrUOqOx9OYT+Xijvxwd3aSs2L3WT87Z91al0HAKTq8uHrhVUQ+FVm9l8Dx9YDC2nMzH+LiABzKPDvORYVpCEJzEAjhKBLhVrcTuc0VWQvy3cbH4PKUnzuZXQm8wFuZMiAvEuiNXMapHJ0zb1pBOXTIqGl4yYzGMycj7zeeC2PFGpjhnDg7Byh9zWHuyllZkNsfRxRzqByQIwgRVe7YQrg9SN6mQNaMuq1MjdWAQxvQMQJ1GBw8nCSsuzhIBAj0cLIRzUXIEPJzEVhPTZwwKwV93XYRCZ0BXLyd29zgtIQjvDQ1FV08nvDcsDJH+rliYbFlFuiDJ0jx6fmIEdAYDHO5ee3f7BegNsBJid0cxCioUeH3rWaw5aDS5/nNCCHJLa/CM3IttxAcaGtAZvYF9riGRvlZz/VYfvIprd+oxe0gYpiUEYWp/Ofg84GxBBfLu1EGvf3CXvaYcXW6U19/zcaZzWnOoH5Ag2ie082shXA4vhdUqbDiaB3dHMXjgWTSBLx8bYzy7kwrg6iDGrSqlxVmgh5OEtRszVV7yecZURH65Esv2Z+PdoaF46enOWPVTDjvx/R2z3c/7fwjHvOFhCPR0Qp1KBy+ZGO8ODUWdmkGojwxL9mWyu64PkyLZ/r3GDeiNzw9VWj3+uusiuxPk2j3VqXXsrtTLuekm/+zSWqw91GC1Zip4ac7ZW1M7uPzy+numP7t4OuGTkRFs6vNR9AO2JD1LEETbQ+LXQgLdHS0qMAV8QH/Ximt0jwCs+inHYidVq9Jh0/E8TImX4+8/XWbPxlQ6BmsOXcXCpEg2bWjy4QSAaQlBAIzryqQiKDU6rBrfHYzeYDHsVaXVY/e5Qrz0TBe88VWDE8z8xAgE+zjjT1uM10wVp7eqlfggKQLrDufizeeDLIS8qfPCKoWWHZVkVdAiFrDtHX5u3JWwfJ7RGMB8TdNzNefsralK299vVkGp1Tcponw+D+EyNX5I7fdIzKxbmp4lCKLtobRnCymoVLAz+qYlBCHYW8a6pTQWj9E9ArDobqrQdJvJvszf1Zj+NA18NUcq4rO9cFIRHz4uEnjJpJjx7Tlkmw229XOVYtaQELw1INjKCWZxRibrj+nnKrWYwzcj7RyGR/vh29MFFo3uTbm+eMkkWHc416opfn5iBDydxPByFmPT8Tw4igWYOdi62b2zpyPb1G66bpopYjp7exC4HF1Mswnvl/7UMwzkXs7oLe8AuZdzm4pQS9OzBEG0PbTzayGlNSrklyvZXZqfqxSzhoZg+sBgqLSMxc5EIuQuRCmuVuHm3fTnF0ev4cOkSKsiEUeRAEMiOiCltxwVCg28ZRL06eqBUB+ZVQvFa/3knDu2aqUOUhGf08R69cGrWD42FsVVCqz/v564VFQNJ7EAC5MjseD7hlgWJkfii/9dQ87tOtQotRZN8Z5OYry34wKm9u8GF6kQAhggFRrj93AUw0kihKOEj7IatYVry/zECIsU6IOevZkcXTwnP41juWVWrR/2UsBCBTbE44QtWh0EfN4jaWvggsSvhTROvRVXq7DtVD5mDA6FUsNg8YgotnFc7uXE3rfxtIZfrt3BZy/1wLnCKng6iTFzUDBq1AzrjuLvJsH4uM7409YzFkK05/xNi7SpKQ6udKCQz2PbLbg+jK/cPYeTivj4IiUOxdVKdPVyxKaX41BRr4Grgwj/On4dJ69XsNWl5p6bGyfFIb9cicUZmciYFg+Fog4A0MndETm3ayEW8CGTCPHlievsANvYADesO3IVxdWqFp298fk8eMkknK0f9lLAQobbxOOELVodlo6Ohqez5JE+pwkSvxbC1eT+anw39Ar0wL7MEqw9fBWzhoTASyaFWMBnBa+4WoW0MwVYOb47GL0eNSod3vr6N3aNGYNC4CQWoF7DYEzPAET4ytj5eIBRrBZ8fxmfjo3F0h+y8M7AYPa2xsIqFfHx8aho7Py9AH27eaOThyPnh7F56vHUjQpWCFeN744VB64gMcYf0Z3c8ErfLqhSai12bwuTI7HpWB77+LJ6Ndx1tejo7oLyOg2nu02ItwxCAbBsTHfcqWv52Zu9T2O39/gIoj1D4tdC+HwehoT7IG1qbxRXq+Dn6oBIPxfkVyjwXrrRYuyjvdkYENIBbzzfjW1RMKUKl+3Pwl+GhFm1Daz6KQdT+8tZAVo2JoZzt6bRMRjdI4A9KzQ/RzTNDcwvr8eagzl447kgpJ8twMBwX8xPjGCfs7ErTWMh5POABYmR0DJ6OEuFEAv5EAl5+NcrvVBWp4GrgxD/On4dh3PK2Md7y6RQlzFICPXBxaJqi9hMo5fSpvZGtL8b+Hweunm3PP1nSn+GPaICluZi7/ERRHuGxK+F6PUGHMgqtfpWL5MK4O4oxugeAZBJBQj0cESlQsue55laDVITglFQXs8pbHozARLweVa7tc6eDvBzlaKgQoGiKgVmDw3F8v9egUqrR6VCA6lQwDrIaHTGVManY2ORe7sWkR1dsHlyL9SqdBDwefhwz2U29Tg/MQJpvxYAMAqZi6MIWbdq0CPQHRpGDx54MOh5eHXLaYR4O2PC04E4eb2Cvb9pV3OlzPjBH+3vyrnzMQlfa2Dvhtb2Hh9BtFdI/FrI9TLuSr5trz2DSX0645vTBZgQF4iZ3zYMgl08IgqujiI4iASoV2mhM1ie0fm5SjEuLgD+rg6YlhCE9LOF2PC/axbFJ509HfD2gGBM2XzGLLUZhb+P747Mkhow+obiD3MvT7WWQbC3DO+lX0SlQoNZQ0Lw89UyfJAYifOFVXdnE17DhLhAVKu0mNgrELdrVPB2kWJ62u+sA4y7o5g1tV57yOgNGuIjQ7ivC7p2sNzV0M6HIAh7hcSvheRXcO/a6jUMVh80ik7jysr5uy+xTd2LR0RBIgQ7vdzUtG4+KcHkkanWMtiQ0hMl1Sr4uErx+tazFuu+v/MSlo+NZc/XzOPh3W1buFmpAKMHW6hSpdQhwt8Nb989bzSx5tBV9jyxUqHB1P6WVmzF1SpsOWlMrfq7OqCoWomoji7octebT683QClywclrZWxTN+18CML+aa1qTy6j6qawVaUnQOLXYpzEQs7ikTq1zqKfzxzz62sPX8XiEVH4249GQewZ6MYWvpjuu+bQVax9qQcWZ1zGtAHBeDf9IqYlBHGuq9TommwsX5AUCY2Wwfqjeex1g8Ha2cW0Vk5pLSuSeg7T7OJqFdYczMW0hCCsPZSLZ7t5oksHZ7Om7gvU1E0QjxmtVe1pK6Pq5kJN7i3Ex0Vi5cM5fWAwvGUSi2vmmETHz9Vocn0mvxIanfGAr17D3YbAMHq89XwQnCUCdPZ0aHJdbxepVTwfJEbAWSxAJ3cp9lwoYs/2PhoZDVepAMHesiZjNP1s0qym7mdeuk9N3QRBPC6Q+LWQQA8nBPs4Y2p/OWvUHOzjDB4PmJ8YgT3ni5CaYClGqQnB2PFbIdts3sFZjA8SI4yT0YV8ToHJK6vHe+kXMePb83ijfxB+uXbHat35iRHY/PN1uDoIsf7/euLTMdGYNiAInx+9Bg9nCf7+Uw5e7StH6sAgfJ7SE3vPFyHAwwnFVQpOtxaZVIDpA4PwQWI4PB3FTb6WjAtFFqX792rqbk30egPy7tTh5LWyZptiEwRBAJT2bDF8Pg8JoT6Qd3C2KOa4UV6PepUWiTH+CPBwwOoJT0Fv0EMkFGBxhrGyUsA3+n0K+XzMuLtTmjc81Go6+vSBwezzqbR6LMy4jM9TeiK3tA4rxsZCKOAhs7iGdUnp1dUTnx+9xM7RW5AYif2XivCM3AuZJcZG9pmDQ3A4pwzZpXUY3SMAnTs44V+v9EKlQgNHsRALvr/EVqTOGBSCvRduITHGHxIhH1smP41qpRbuTmIYYMCwKF+LApZH0dRNfpkEQbQGJH4PAZ/Ps9j18HnGD+dOnk6oL65BVb0G9RoG35wuwCt9uuDDpEjcqVXDWSrEuLgGv08AqFEzSD9baNELuOVkPsb0DGCfT6XV4/SNSmw8loePRkbhwPlbGBTREZUKjUWBjclyTSrisy0OjN74u1rX4Eiz6Xgepg0IwtrDuVg1vjtriG16rlU/5bDVolIRHz+k9sPTcs8m349H0dTdVGqVBtISBNEcSPweAvNdCFe15geJEdh3sRCJMf5wlAhxtbQWkf4uEPD56OblbJUirFRoLCY6mJ+/mX4P85Fh3R97oEahxit9u+FmWR2+fDkOZfUazpSjSqNDmK8Llu3PwsLkSHx2JJdtqQj0cISrVIQQb2dkldQ0WaDzoCJmam3wfTkGGr6kTVobyC+TINqGxtWezanaNMeWFZzNgcTvITDfhXDNwFuUkYmp/eVYc9AoOG/0l+PGXQ/MPydYjhFKP1tolfZckBSJ9f9r2MUtSIrErSoFpCIBRAIBXv33afa+X77SizPl6O/uiHq1FktGRaO4SoE/Ph0IJ6nIwuVlfmIEalVazsc/F9wBg8O9odAwuHF3Xp7ptXPNqOPzeXDQ1qBHeHibvOfkl0kQbUPjas/HpWqzpZD4PQTmu5CmWhsC3Y1+msXVKii0DFbvz4ZKq8dXvxRYmF9XKjRwFAnYSQh36tTQ6hgsTI5CabUKd+rUWHPQ6A36jxefwuxGs/xWHsjGouQofPD9JVbUFo2IwuYT13Ags4xtstcwBqxsZKm2OCMT0wcGY+moaMy9OxLJtNurVmkx7evf2WtrX3oKGp3BZmdu5JdJEERrQOL3EDTehXDtSGpUWnw6NhZKtQ6OEqHFFIgfLtzCuj/2wO83jQ4rX564jglxgfj7wYZpByvGxuK9HRct1uTBWmjP5FdjZHcdNr0chyqFFj4uUnyyLxNn8qsBNDTZL0yO5BTpjm4O2HqyYepCXGcPdHJ3wPA1xyyE8kJhNTuh3nTtUZ65kWsMQRCtAbU6PATmQ1VNaUvzdoCFyZHo4CzGu9vP4+8Hr7LnZyYO55Rh26830L2TG1wdhPggMRJpZwpY4VuQFAmFWmux5oKkSPi5SjnbIoprNJiy+QzEAj5u16pY4TOh0uot+hDNH3urSokz+dX45+FcrDmYi6lbz+A6h/eoaVp943Vbu53hXpj8Mh/FQFqCIJ5MaOf3EDTehfi6SDEkwhd36lTwcpZCqdVh7PqT7MDZ5f/Ntho5NDiiI/g84+w7HcPg0zGxqFFpIZMKceFmNbR6PWYOCoaXixSV9RpotAzK6tWYMSgEq37KsZrOoNLqcfFWNfQG7p2ot0yCZWNi2MkTUhEfS0ZFY/l/r1i8NpVWDyeJtYuNacp7U2duXPZmJE4EQdgbJH4PCZdrv2lMz8lrZWwxjEnwtv6Sz6YWQ7xlUGi0uFRUAw2jx9NdPaDS6XC9rB4rf2wQtsUjolCr0qK8XouMC0UY0d0fXs4SrBrfHVmNzKylIj4YPbDjN+vZfivHd0e4nyvC/VwR7e/Kpg35PLAz+kxIRXz4yCRW52vRAdyTGrp4OpG9GUE8xgh4PCwdHc3+/rhUbbYUEr82xHQmaF4MY5prBwDTEoKw8Vgetr76NDydJeji6YTrZfV4faulx6e5IbZph1ep0GBDSk/4uzmwEx/Md4Cm2X5T4uWI9neBn6sUGkbPVmyaC7Zeb+AUtEAPJwR6OFmdrwHgPHPLu1NHPXgE8ZgiFPCf6OrOxpD4tSGmM8ErJTWcqcIQHxle6yeHUssg0N0RfD4Pt2u5+9gCPRwwJV7OChsAZJfUQm8wYGp/OfQGINRHhhUHstnbTY3sG1LiMGHDL3B3FGNcXABCvGUI92sYQXS/IhKuqQxc16gHjyCIxwUSvzbEJCoRfjJ09nTCPLM2ggWJkfjbgWzWSmzZmBgkxXRsso+tqEpp1QAf5uuCNQevYFSPTlickcnZaL9sTAzm777Injs2ToOaUpKtMXSVevAIgnhcIPFrI/R6g0UjeHJMR8QGuOHyrWrweTwsvyt8gHF39F76BUT7u3L2sS1MjoRay7DCIhXx8cmoCPTu4oHKPl2x8scr7DlisI8z3h0aCm8XKcJ9XVChUCO/XIm3BwRZzRds7ZQk9eARBPG4QOLXBuh0epzIK8eZ/AroDcCe80V4b1g4hoT7oF6tRV6ZAkmx/kg/W8imKM3Tg+YpSC9nKYQCoKxWg00vx0Gj0yPQwwm6qlsorFayVZvmfp5T4uX49L9X8ENqP3g6GVsbJEJ+m6ckH4W9GUEQRGtA4tfK6PUG7L1UbNFKkJoQjC+PX4OW0VtdN6/SNKUHuVKQnRv5SWeVM02esZkKbG7XqhAX6IHlY2MgFPAfSUqyre3NCIIgWgNqcm9lbpTXswIHNExkn/SsnPP66B4BLU4Pms7YzGk8ZLagUoHCSiU+2ZdlNZNv2ZgYSkkSBNEuoZ1fK9PUbkyl0XFej/F3wQ+p/VqUHuQ6Y5s7LAwKLYMVY2NhMAAVCjXqNQzyy5Vs64NpZJK/m5RSkgRBtEtI/FqZpioeO3k4cl4P9pG1+MzNvEWhtEYFmVSInNI6LL1rnm3a3TmLBay5tvnZ4Jge/g/3YgmCIB5TKO35kOj1BuTdqcPJa2XIu1OHQHdH1u8TaEgv9uzkbnX9XqnOxuvq9QaL2/kCAfLu1OHU9XIAwDNdPeEoFrLtFEBDFWlsJzcr39FHUYV5v9dAEARhK2jn9xCYD7M1L+0fEu6DHzgaxh90GkFT65p68vR6A7JqJZiz9ZjF7e6OIs7UKgAMj/JFj0B3KDQ6BHo4sQ3uj/q9IaszgiDsAdr5PQTmw2yBht65gkoF59SBB51G0NS6N8rr2dvn7Mq0ut1RLOQsgPFxkaJLB2c8I/fEgDAfdPNu+0kI93sNBEEQtoTE7yG4l51XW67b1O1ahmlWarUtaav3hiAIojWgtOdD0FZ2Xvdbt6nbPZwk6BHoYReDXsnqjCAIe4Z2fg+B+TBboPV2Wvdbt4unEz4ZGcF5u70Mem2r94YgCKI1oJ3fQ9CcIpbWXJfP5yFcpuYsqrEX2uq9IQiCaA1I/B6S1piG0JJ19QzTJs/bmrTVe0MQBPGwPPFpz6NHj2Lo0KEYPHgwNmzYYOtwCIIgCDvgiRY/hmGwaNEibNy4EXv37kVGRgZyc3Pv/0CCIAjiieaJFr8LFy6gc+fO6NSpE8RiMV544QUcPHjQ1mERBEEQNuaJPvMrLS2Fr68v+7uPjw8uXLjQ5P3VajWysrIsrqlUKqtr9oC9xgVQbC3FXmOz17gAiu1+hDdjtBjX59/jzr1e/xMtfgaDtZckj9d0taFEIrF6s7Kyspr1D/SosNe4AIqtpdhrbPYaF0CxtSZcn39PMk902tPX1xclJSXs76WlpfD29rZhRARBEIQ98ESLX3R0NG7cuIGbN29Co9Fg7969SEhIsHVYBEEQhI15otOeQqEQH3zwAV577TUwDIMxY8YgODjY1mERBEEQNuaJFj8AeO655/Dcc8/ZOgyCIAjCjuAZuKpC2innzp2DRCKxdRgEQRCtglAofOBs19WrV9tVZozEjyAIgmh3PNEFLwRBEATBBYkfQRAE0e4g8SMIgiDaHSR+BEEQRLuDxI8gCIJod5D4EQRBEO0OEr8msNchuMXFxUhJScHw4cPxwgsvYPPmzbYOyQKGYTBy5Ei8/vrrtg7FgpqaGqSmpmLYsGEYPnw4fv/9d1uHxPLvf/8bL7zwAhITEzFz5kyo1WqbxTJ37lz06dMHiYmJ7LWqqipMnjwZQ4YMweTJk1FdXW03sS1btgzDhg1DUlIS3n77bdTU1NhFXCY2bdqE0NBQVFRUPPK4iHtD4seBPQ/BFQgEmDNnDvbt24e0tDR8/fXXdhMbAGzZsgXdunWzdRhWfPzxx+jXrx/279+P3bt3202MpaWl2LJlC9LT05GRkQGGYbB3716bxTN69Ghs3LjR4tqGDRvQp08fHDhwAH369LHZl0Gu2Pr27YuMjAzs2bMHXbp0weeff24XcQHGL6onTpxAx44dH3lMxP0h8ePAnofgent7IzIyEgDg7OwMuVyO0tJSG0dlpKSkBEeOHMHYsWNtHYoFdXV1OH36NBuXWCyGi4uLjaNqgGEYqFQq6HQ6qFQqm04e6dWrF1xdXS2uHTx4ECNHjgQAjBw5Ej/99JMNIuOOLT4+HkKh0aWxe/fuFlNcbBkXACxduhSzZ8++5xg1wnaQ+HHANQTXXgTGnMLCQmRlZSE2NtbWoQAAlixZgtmzZ4PPt69/q5s3b8LDwwNz587FyJEj8f7770OhUNg6LADG/61XX30VAwYMQHx8PJydnREfH2/rsCwoLy9nBdnb29tuU3jp6eno37+/rcMAYPzC4O3tjbCwMFuHQjSBfX1K2QnNHYJrC+rr65Gamop58+bB2dnZ1uHg8OHD8PDwQFRUlK1DsUKn0yEzMxMvvvgidu3aBQcHB7s5x62ursbBgwdx8OBBHDt2DEqlErt377Z1WI8d69atg0AgQHJysq1DgVKpxPr16zF9+nRbh0LcAxI/Dux9CK5Wq0VqaiqSkpIwZMgQW4cDAPjtt99w6NAhJCQkYObMmfjll18wa9YsW4cFwPj39PX1ZXfIw4YNQ2Zmpo2jMnLixAkEBATAw8MDIpEIQ4YMsatiHADw9PTE7du3AQC3b9+Gh4eHjSOyZOfOnThy5AhWrFhhF19SCwoKUFhYiBEjRiAhIQElJSUYPXo07ty5Y+vQCDNI/Diw5yG4BoMB77//PuRyOSZPnmzrcFj+8pe/4OjRozh06BBWrlyJ3r17Y8WKFbYOCwDg5eUFX19f5OXlAQBOnjxpNwUvHTt2xPnz56FUKmEwGOwqNhMJCQnYtWsXAGDXrl0YOHCgbQMy4+jRo/jiiy+wbt06ODg42DocAEBoaChOnjyJQ4cO4dChQ/D19cWOHTvg5eVl69AIM574eX4twZ6H4J49exa7d+9GSEgIRowYAQCYOXMmzSy8D/Pnz8esWbOg1WrRqVMnLF261NYhAQBiY2MxdOhQjBo1CkKhEOHh4ZgwYYLN4pk5cyZ+/fVXVFZWon///vjzn/+MqVOn4p133sH27dvh5+eH1atX201sGzZsgEajYb8IxsbGYtGiRTaPa9y4cY80BqL50EgjgiAIot1BaU+CIAii3UHiRxAEQbQ7SPwIgiCIdgeJH0EQBNHuIPEjCIIg2h0kfgRBEES7g8SPIB6AlJQUXLx4EQDwpz/9qVVH52zbto1tIicI4tFATe4E0Uy++OKLVl3vxRdfbNX1CIK4PyR+xBNLYWEhXnvtNfTs2RPnz59HaGgoxowZgzVr1qCiogIrVqxAUFAQFi9ejJycHDAMg2nTpmHQoEFQqVSYO3cucnNz0a1bN6hUKnbdhIQEbN++HR4eHnjrrbdQUlICtVqNSZMmse4sTz31FCZNmoTDhw9DKpXis88+Q4cOHTjj/Mc//gFHR0dMmTIFKSkpiImJwalTp1BbW4uPP/4YcXFxYBgGK1aswPHjxwEA48ePR0pKCk6ePIlly5aBYRhERUVh4cKFEIvFSEhIQGJiIk6dOgWtVovFixdj5cqVyM/Px5QpU1jB3bhxI/bt2weNRoPBgwcjNTW1jf8qBGEfUNqTeKIpKCjApEmT8P333+P69evYs2cPtm3bhnfffRfr16/H+vXr0bt3b6Snp2PLli1Yvnw5FAoFtm3bBqlUij179uCNN97A5cuXOddfsmQJduzYgfT0dGzduhWVlZUAAIVCgdjYWHz//feIi4vDt99++8AxMwyD7du3Y968eVi7di0AIC0tDYWFhdi5cyf27NmDpKQkqNVqzJkzB6tWrcKePXvAMAy+/vprdh1fX1+kpaUhLi4Oc+bMwerVq/Htt99izZo1AIDjx48jPz8f27dvx+7du3H58mWcPn26pW81QTxW0M6PeKIJCAhAaGgoACAoKAh9+vQBj8dDaGgoioqKUFJSgkOHDuHLL78EAKjVahQXF+P06dNISUkBAISFhbFrNGbr1q348ccfARgnd+fn58Pd3R0ikQgDBgwAAERFReHnn39+4JgHDx4MAIiMjERRUREAoxn3xIkT2cGtbm5uyM7ORkBAALp27QoAGDVqFP7zn//glVdeAQDWgDokJAQKhYIdfSWRSFBTU4Off/4ZP//8MzuoVqFQ4MaNG+jVq9cDx0oQjyskfsQTjVgsZn/m8/ns7zweDwzDQCAQYM2aNZDL5VaPvd94nFOnTuHEiRNIS0uDg4MDUlJSoFarAQAikYh9PJ/PB8MwzY7Z/HEGg8EqnvvZ8opEInadxu+DTqeDwWDA1KlTMXHixAeOjSCeFCjtSbRr4uPj8dVXX7FCYprz16tXL+zZswcAkJOTgytXrlg9tra2Fq6urnBwcMC1a9dw7ty5Nouzb9+++Oabb6DT6QAAVVVVkMvlKCoqQn5+PgBg9+7dzdq1xcfHIz09HfX19QCMcyvLy8tbP3iCsENI/Ih2zVtvvQWdTofk5GQkJiay43pefPFFKBQKJCUlYePGjYiJibF6bP/+/aHT6ZCUlITVq1eje/fubRbnuHHj4Ofnh+TkZCQnJyMjIwMSiQRLly7F9OnTkZSUBB6P16zK0fj4eCQmJmLixIlISkpCamoqK4QE8aRDI40IgiCIdgft/AiCIIh2BxW8EMQjYt26ddi/f7/FtWHDhuHNN9+0UUQE0X6htCdBEATR7qC0J0EQBNHuIPEjCIIg2h0kfgRBEES7g8SPIAiCaHf8PyqyZ9nxFmJJAAAAAElFTkSuQmCC\n", "text/plain": [ "<Figure size 432x432 with 3 Axes>" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "# TODO 2b: Your code goes here" ] }, { "cell_type": "code", "execution_count": 16, "metadata": {}, "outputs": [ { "data": { "text/plain": [ "<AxesSubplot:xlabel='ocean_proximity', ylabel='count'>" ] }, "execution_count": 16, "metadata": {}, "output_type": "execute_result" }, { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAYsAAAEHCAYAAABfkmooAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjQuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8rg+JYAAAACXBIWXMAAAsTAAALEwEAmpwYAAAiy0lEQVR4nO3de1hUdf4H8PcAQiqa4jYMKbqBhKhIpJWkYo7cEZy8rJmxiOWFMjPTn6KJwqLBrl3MS8pqXsraetAFZRQJtDBva16WTDQpKdSYcUFR7jCc3x88nEQu39EYQXi/nsfnke+cc+Zzzpkz7/meq0KSJAlERERNMGvpAoiIqPVjWBARkRDDgoiIhBgWREQkxLAgIiIhi5YuwFTOnDkDKyurli6DiOiBUl5ejieeeKJee5sNCysrK7i4uLR0GURED5SsrKwG27kbioiIhBgWREQkxLAgIiIhhgUREQkxLIiISIhhQUREQgwLIiISYlgQEZEQw4KIiIQYFu2YVFXe0iWYRFudL6KW1GZv90FiCgsr/Brt2tJlNLvekd+3dAlEbQ57FkREJMSwICIiIYYFEREJMSyIiEiIYUFEREIMCyIiEmJYEBGREMOCiIiEGBZERCTEsCAiIiGGBRERCTEsiIhIiGFBRERCDAsiIhJiWBARkRDDgoiIhBgWREQkxLAgIiIhk4bF1q1bERgYiDFjxmDevHkoLy/HjRs3EBYWBh8fH4SFhaGwsFAefuPGjfD29oavry8OHTokt589exZBQUHw9vZGTEwMJEkyZdlERHQHk4WFTqfD9u3bsXPnTiQnJ8NgMECr1SI+Ph4eHh5ITU2Fh4cH4uPjAQDZ2dnQarXQarXYtGkToqKiYDAYAADLly9HdHQ0UlNTkZOTg4yMDFOVTUREDTBpz8JgMKCsrAxVVVUoKyuDUqlEeno6NBoNAECj0SAtLQ0AkJ6ejsDAQFhaWsLe3h59+vRBZmYm9Ho9ioqK4O7uDoVCAY1Gg/T0dFOWTUREd7Aw1YRtbW0xbdo0jBo1ClZWVhg2bBiGDx+O/Px8KJVKAIBSqURBQQGAmp6Im5tbnfF1Oh0sLCygUqnkdpVKBZ1OZ6qyiYioASYLi8LCQqSnpyM9PR1dunTBG2+8gaSkpEaHb+g4hEKhaLRdpLy8HFlZWXdXdDvj4uLS0iWYDNc9UfMyWVgcOXIEvXr1go2NDQDAx8cHp0+fRo8ePaDX66FUKqHX6+XXVSoV8vLy5PF1Oh2USmW99ry8PLln0hQrK6s2/WVITeO6J7o3jf3QMtkxi0cffRT//e9/UVpaCkmScPToUTg6OkKtViMxMREAkJiYiNGjRwMA1Go1tFotKioqkJubi5ycHAwaNAhKpRKdO3fGmTNnIElSnXGIiOj+MFnPws3NDb6+vnj++edhYWEBFxcXTJo0CcXFxZg7dy4SEhJgZ2eH1atXAwCcnJzg7++PgIAAmJubIzIyEubm5gBqzoaKiIhAWVkZPD094enpaaqyiYioAQqpjV60kJWVxV0RRvg12rWlS2h2vSO/b+kSiB5YjX138gpuIiISYlgQEZEQw4KIiIQYFkREJMSwICIiIYYFEREJMSyIiEiIYUFEREIMCyIiEmJYEBGREMOCiIiEGBZERCTEsCAiIiGGBRERCTEsiIhIiGFBRERCDAsiIhJiWBARkRDDgoiIhBgWREQkxLAgIiIhhgUREQkxLIiISIhhQUREQgwLIiISYlgQEZEQw4KIiIQYFkREJMSwICIiIYYFEYDyqvKWLsEk2up80f1n0dIFELUGVhZWGLZmWEuX0ewOv364pUugNoI9CyIiEmJYEBGREMOCiIiEGBZERCTEsCAiIiGGBRERCZk0LG7evIk5c+bAz88P/v7+OH36NG7cuIGwsDD4+PggLCwMhYWF8vAbN26Et7c3fH19cejQIbn97NmzCAoKgre3N2JiYiBJkinLJiKiO5g0LFasWIERI0YgJSUFSUlJcHR0RHx8PDw8PJCamgoPDw/Ex8cDALKzs6HVaqHVarFp0yZERUXBYDAAAJYvX47o6GikpqYiJycHGRkZpiybiIjuYLKwKCoqwokTJzBhwgQAgKWlJbp27Yr09HRoNBoAgEajQVpaGgAgPT0dgYGBsLS0hL29Pfr06YPMzEzo9XoUFRXB3d0dCoUCGo0G6enppiqbiIgaYLIruHNzc2FjY4OIiAicP38eAwYMwJIlS5Cfnw+lUgkAUCqVKCgoAADodDq4ubnJ49va2kKn08HCwgIqlUpuV6lU0Ol0wvcvLy9HVlZWM89V2+Li4tLSJZjM3a57LguippksLKqqqnDu3DksXboUbm5uiImJkXc5NaSh4xAKhaLRdhErK6s2/QVATeO6/x2XBd2Nxn5cmGw3lEqlgkqlknsLfn5+OHfuHHr06AG9Xg8A0Ov1sLGxkYfPy8uTx9fpdFAqlfXa8/Ly5J4JERHdHyYLi0ceeQQqlQo///wzAODo0aNwdHSEWq1GYmIiACAxMRGjR48GAKjVami1WlRUVCA3Nxc5OTkYNGgQlEolOnfujDNnzkCSpDrjEBHR/WHSu84uXboU8+fPR2VlJezt7fHOO++guroac+fORUJCAuzs7LB69WoAgJOTE/z9/REQEABzc3NERkbC3NwcQM3ZUBERESgrK4Onpyc8PT1NWTYREd1BIbXRixaysrK4r9YIv0a7tnQJza535Pf3NB5vUU7U+Hcnr+AmIiIhhgUREQkxLIiISIhhQUREQgwLIiISYlgQEZEQw4KIiIQYFkREJMSwICIiIYYFEREJMSyIiEiIYUFEREJGhUVoaKhRbURE1DY1eYvy8vJylJaW4vr16ygsLJSfWldUVCQ/wIiIiNq+JsPiX//6F7Zt2wa9Xo9x48bJYWFtbY0pU6bclwKJiKjlNRkWoaGhCA0NxSeffIKQkJD7VRMREbUyRj0pLyQkBKdOncKVK1dgMBjkdo1GY6q6iIioFTEqLBYsWIDc3Fz069dPftSpQqFgWBARtRNGhcXZs2exd+9eKBQKU9dDREStkFGnzjo5OeHatWumroWIiFopo3oW169fR2BgIAYNGoQOHTrI7Rs2bDBZYURE1HoYFRavv/66qesgIqJWzKiwePrpp01dBxERtWJGhYW7u7t8cLuyshJVVVXo2LEjTp06ZdLiiIiodTAqLE6fPl3n77S0NGRmZpqkICIian3u6a6zXl5eOHbsWHPXQkRErZRRPYvU1FT5/9XV1Th79iyvuSAiakeMCouDBw/K/zc3N0fPnj2xfv16kxVFRESti1Fh8c4775i6DiIiasWMOmaRl5eH1157DR4eHnj22Wfx+uuvIy8vz9S1ERFRK2FUWERERECtVuPQoUPIyMjAqFGjEBERYeraiIiolTAqLAoKCjB+/HhYWFjAwsIC48aNQ0FBgalrIyKiVsKosOjevTuSkpJgMBhgMBiQlJSEbt26mbg0IiJqLYwKi5UrV2Lfvn0YNmwYhg8fjv379/OgNxFRO2LU2VCrV69GXFwcHn74YQDAjRs3EBcXx8AgImonjOpZXLhwQQ4KAOjWrRuysrJMVhQREbUuRoVFdXU1CgsL5b9v3LhR51ncRETUthm1G2ratGl44YUX4OvrC4VCgX379mHWrFlGvYHBYMD48eNha2uLjRs34saNG3jzzTdx5coV9OzZEx988IHca9m4cSMSEhJgZmaGt99+GyNGjABQ81jXiIgIlJWVYeTIkViyZAlvN0JEdB8Z1bPQaDRYs2YN/vSnP8HGxgZr166FRqMx6g22b98OR0dH+e/4+Hh4eHggNTUVHh4eiI+PBwBkZ2dDq9VCq9Vi06ZNiIqKknsvy5cvR3R0NFJTU5GTk4OMjIy7nE0iIvojjL7rbN++ffHSSy8hJCQEffv2NWqcvLw8fP3115gwYYLclp6eLgeNRqNBWlqa3B4YGAhLS0vY29ujT58+yMzMhF6vR1FRkfxMDY1Gg/T09LuYRSIi+qOM2g11r1auXIkFCxaguLhYbsvPz4dSqQQAKJVK+eI+nU4HNzc3eThbW1vodDpYWFhApVLJ7SqVCjqdTvje5eXlPAgv4OLi0tIlmMzdrnsuC6KmmSwsDh48CBsbGwwcOBDHjx8XDi9JUr02hULRaLuIlZVVm/4CoKZx3f+Oy4LuRmM/LkwWFqdOncKBAweQkZGB8vJyFBUVYf78+ejRowf0ej2USiX0ej1sbGwA1PQYbr85oU6ng1KprNeel5cn90yIiOj+uKcn5RnjrbfeQkZGBg4cOID33nsPQ4cOxapVq6BWq5GYmAgASExMxOjRowEAarUaWq0WFRUVyM3NRU5ODgYNGgSlUonOnTvjzJkzkCSpzjhERHR/mPSYRUNmzJiBuXPnIiEhAXZ2dli9ejUAwMnJCf7+/ggICIC5uTkiIyNhbm4OoOZsqNpTZz09PeHp6Xm/yyYiatcUUkMHBdqArKws7qs1wq/Rri1dQrPrHfn9PY03bM2wZq6k5R1+/XBLl0APmMa+O022G4qIiNoOhgUREQkxLIiISIhhQUREQgwLIiISYlgQEZEQw4KIiIQYFkREJMSwICIiIYYFEREJMSyIiEiIYUFEREIMCyIiEmJYEBGREMOCiIiEGBZERCTEsCAiIiGGBRERCTEsiIhIiGFBRERCDAsiIhJiWBARkRDDgoiIhBgWREQkxLAgIiIhhgUREQkxLIiojury8pYuwSTa6nzdLxYtXQARtS5mVlb4xnNkS5fR7EZmfNPSJTzQ2LMgIiIhhgUREQkxLIiISIhhQUREQgwLIiISYlgQEZFQuwuL8kpDS5dgEm11voiodWh311lYdTDH4AXbW7qMZnfyH39t6RKIqA1rdz0LIiK6eyYLi99++w0hISHw9/dHYGAgtm3bBgC4ceMGwsLC4OPjg7CwMBQWFsrjbNy4Ed7e3vD19cWhQ4fk9rNnzyIoKAje3t6IiYmBJEmmKpuIiBpgsrAwNzfHokWLsG/fPnzxxRf47LPPkJ2djfj4eHh4eCA1NRUeHh6Ij48HAGRnZ0Or1UKr1WLTpk2IioqCwVCzH3758uWIjo5GamoqcnJykJGRYaqyiYioASYLC6VSiQEDBgAArK2t4eDgAJ1Oh/T0dGg0GgCARqNBWloaACA9PR2BgYGwtLSEvb09+vTpg8zMTOj1ehQVFcHd3R0KhQIajQbp6emmKpuIiBpwXw5wX758GVlZWXBzc0N+fj6USiWAmkApKCgAAOh0Ori5ucnj2NraQqfTwcLCAiqVSm5XqVTQ6XTC9ywvL0dWVla9dhcXlz86O61WQ/PbFC6L33FZ/I7Lghpi8rAoLi7GnDlzsHjxYlhbWzc6XEPHIRQKRaPtIlZWVm36Q9+Q9ja/TeGy+B2Xxe+4LMQaC1STng1VWVmJOXPmICgoCD4+PgCAHj16QK/XAwD0ej1sbGwA1PQY8vLy5HF1Oh2USmW99ry8PLlnQkRE94fJwkKSJCxZsgQODg4ICwuT29VqNRITEwEAiYmJGD16tNyu1WpRUVGB3Nxc5OTkYNCgQVAqlejcuTPOnDkDSZLqjENERPeHyXZDnTx5EklJSXj88ccxduxYAMC8efMwY8YMzJ07FwkJCbCzs8Pq1asBAE5OTvD390dAQADMzc0RGRkJc3NzADVnQ0VERKCsrAyenp7w9PQ0VdlERNQAk4XFkCFDcOHChQZfq73m4k7h4eEIDw+v1+7q6ork5ORmrY+IiIzHK7iJiEiIYUFEREIMCyIiEmJYEBGREMOCiIiEGBZERCTEsCAiIiGGBRERCTEsiIhIiGFBRERCDAsiIhJiWBARkRDDgoiIhBgWREQkxLAgIiIhhgUREQkxLIiISIhhQUREQgwLIiISYlgQEZEQw4KIiIQYFkREJMSwICIiIYYFEREJMSyIiEiIYUFEREIMCyIiEmJYEBGREMOCiIiEGBZERCTEsCAiIiGGBRERCTEsiIhIiGFBRERCDAsiIhJiWBARkRDDgoiIhB6YsMjIyICvry+8vb0RHx/f0uUQEbUrD0RYGAwGREdHY9OmTdBqtUhOTkZ2dnZLl0VE1G48EGGRmZmJPn36wN7eHpaWlggMDER6enpLl0VE1G4oJEmSWroIkZSUFBw6dAgrVqwAACQmJiIzMxORkZGNjnPmzBlYWVndrxKJiNqE8vJyPPHEE/XaLe5/KXevoTxTKBRNjtPQzBIR0b15IHZDqVQq5OXlyX/rdDoolcoWrIiIqH15IMLC1dUVOTk5yM3NRUVFBbRaLdRqdUuXRUTUbjwQu6EsLCwQGRmJV155BQaDAePHj4eTk1NLl0VE1G48EAe4iYioZT0Qu6GIiKhlMSyIiEioXYeFs7MzYmNj5b83b96MNWvWAADWrFmDESNGYOzYsfK/mzdvysPGxMRgxIgRqK6ultt27dqFoUOHYuzYsfDz88PWrVsbfN/bhwsMDMScOXNQWlpaZ5jg4GDMmzcPAHDx4kX4+vqirKxMfn3GjBnQarV/eBk05NNPP4W3tzecnZ1RUFBQp+7o6Og6w4aEhOD777+vN42KigqsWLECXl5e8PHxQXh4eJ0z2q5du4Y333wTXl5eCAgIwPTp03Hp0iVcvnwZgwYNqrPcExMT5fHOnTsHZ2dnHDp0qM77NbUum4u7uzsA4PLly3B2dsYnn3wivxYdHY1du3YBABYtWoSUlJQGp3Ev9d/+WfTx8cHs2bOb7Q4GLbUNAEBaWhqCgoLg5+eHoKAgpKWl1Xl98+bN8PPzw5gxYxAcHCx/DkJCQuDr6yvXNGfOnDrj3b7t1Fq0aBFGjBiBiooKAEBBQUGzniRT+9morq5GTEwMxowZg6CgIIwfPx65ubkAALVaXWd7ut3WrVvh6uqKW7duyW3Hjx+Hs7MzDhw4ILfNnDkTx48fB/D7cqhdhtHR0XXWT3Nr12FhaWmJ1NTURlfg1KlTkZSUJP/r2rUrgJoPRFpaGuzs7HDixIk64wQEBCApKQmff/45PvroI/z2228NTrt2OK1Wiw4dOmDv3r3yaz/99BMkScKJEydQUlICJycneHt746OPPgJQs5FVVVUhMDCwORYDgJov95KSEgDAk08+iS1btqBnz573PL33338fxcXF2L9/P1JTU+Hl5YXZs2dDkiRIkoTZs2fj6aefRlpaGvbu3Yt58+YhPz8fANC7d+86y12j0cjTTU5OxuDBg+sFpWhdNrcePXpg+/bt8pePse61/trPYmpqKgICAhAaGtos89pS28D58+cRFxeH9evXIyUlBevXr0dcXBzOnz8PAPj8889x5MgRJCQkIDk5GTt27KhzvdWqVavkmj788EO5/c5t53bm5uZISEi4twVlpL1790Kv12P37t3Ys2cP1q1bJy+zpiQnJ8PV1RVfffVVnXaVSoUNGzY0Ot6qVauwZ88e7N69G5aWlnj11Vf/8Dw0pl2HhYWFBSZNmoRt27bd1XjHjx+Hk5MTJk+e3Oiv++7du6NPnz64du1ak9OqqqpCSUkJHn74Ybltz549CA4OxvDhw+VfFa+99hpSUlKQlZWFVatWNXn1+t346aefEBsbCz8/P+Tk5AAA+vfvj169et3zNEtLS7Fr1y4sXrwY5ubmAIDx48fD0tISx44dw7Fjx2BhYYHJkyfL47i4uGDIkCFNTleSJOzfvx+xsbH49ttvUV5eLr92r+vyXtnY2MDDw6NOr0ekueoPCAjAsGHDsGfPnnspvY6W2gY2b96MmTNnwt7eHgBgb2+PGTNmYPPmzQCAjRs3YtmyZbC2tgYAdOnSBc8//7ywroa2nVqhoaHYtm0bqqqq7mpe78a1a9fwyCOPwMys5qtVpVLV2bYb8uuvv6KkpARz586ttyz79euHLl264PDhw01Ow9LSEgsWLMDVq1flwG1u7TosAGDKlCnYs2dPne5fra1bt8pd3ZCQELk9OTkZgYGB8Pb2xsGDB1FZWVlv3KtXr6K8vBzOzs4Nvu/evXsxduxYeHp6orCwEKNGjZJf27dvHwICAhAYGIjk5GQAQMeOHbFw4UJMmTIFgYGB+POf/3zP81xSUoKdO3di8uTJWLJkCRwdHbF79270799fOG5t3bX/zp49W2+YX375BXZ2dvKGXmvgwIG4ePEiLl68iAEDBjT6Hr/++mud9/juu+8AACdPnkSvXr3Qu3dvPPPMM/jmm2/qjNfUujSF6dOn4+OPP4bBYDBq+Oasv3///vj555/vqe47tcQ2kJ2djYEDB9Zpc3V1RXZ2NoqKilBcXIzevXs3WvP8+fPluuLi4uT2hradWnZ2dnjyySeRlJTU+ML4g/z9/XHw4EGMHTsWsbGxOHfunHCc2mU5ZMgQXLp0Se5h1woPD5f3KjTF3Nwc/fr1a7bPxZ0eiOssTMna2hpjx47F9u3b8dBDD9V5berUqXj55ZfrtFVUVOCbb75BREQErK2t4ebmhsOHD+O5554DUPNlevz4cVy6dAl/+9vfGr0/VUBAACIjIyFJEqKiorB582bMmDEDmZmZ6N69O3r27AmVSoXFixejsLAQDz/8MNRqNbp27YoXX3zxD83z8OHD4ezsjJiYGDg6Ot7VuLV117r9C+R2Dd2ORZIkKBSKBm/fcrva3VB30mq18q632l0dPj4+8utNrUtTsLe3x6BBg4z+hd/a6jfmfU21DTT0Gaj9fADi2/msWrUKrq6uddqa2nZqzZo1C+Hh4XKtzU2lUiElJQVHjx7FsWPHMHXqVKxevRoeHh6NjrN3716sXbsWZmZm8Pb2RkpKCqZMmSK/Xtvjrv3R1BRTXgnR7nsWQE33dOfOnfUOMjfk0KFDKCoqQnBwMNRqNU6ePFnnF0xAQAC0Wi127NiBuLg44W4ohUKBUaNGyft9tVotLl26BLVaDW9vbxQVFSE1NVUe3szMTLghiXz44YewtbXF7NmzsXbtWly5cuUPTe9OvXv3xtWrV1FUVFSn/dy5c+jbty+cnJzwww8/3NU0DQYDUlNTsW7dOqjVasTExMjr4nZ3sy6bw8yZM7Fp06Y6B3kb0tz1nzt37q6Dvin3exvo27dvvV7pDz/8AEdHR1hbW6Njx47ygWFjibYdAOjTpw9cXFywb9++u5r23bC0tMTIkSOxcOFCzJw5s96B+9udP38eOTk5mDZtGtRqtfwIhjvNmjVL2LswGAz48ccf4eDg8IfnoSEMCwDdunWDn5+fUQe/tFotYmJicODAARw4cADp6ek4fPhwvY3M3d0dwcHB2L59u3Cap06dQu/evVFdXY2UlBTs3r1bnv769esb/PD8EcOHD8cHH3yAzz77DF26dMGrr76KqVOn4vLly80y/U6dOkGj0SA2NlbeRZOYmIjS0lIMHToUQ4cORUVFBb788kt5nMzMTPznP/9pdJpHjhxBv3798M033+DAgQM4ePAgfHx86m2Id7Mum4OjoyMcHR3x9ddfNzlcc9a/f/9+HD58GGPGjGmOWTD6fWs1xzbw8ssvIz4+Xv7MXb58GRs3bsS0adMA1JztFxUVJYdpUVERvvjii0ZrupttZ9asWfj444+F83kvfvjhB+h0OrmmCxcu4NFHH210eK1Wi9dff12u+dtvv4VOp6v3A2748OG4efNmo8cjKisr8e6778LOzg79+vVrvhm6TbvfDVVr2rRp2LFjR522rVu3Yvfu3fLf7777Lr799ts6p4926tQJgwcPxsGDB+tNc/r06Rg3bhxmzpxZb//93r17cfLkSVRXV0OlUiE2NhYnTpyAra0tbG1t5eGeeuopzJ8/H3q9vtlvnti9e3eEhoYiNDQUmZmZ8sHo7du3Y9OmTfjf//6H4OBgjBw5Ur49vLHeeustxMXFwdfXF2ZmZnBwcMC6devkXtHatWuxcuVKxMfHw8rKCj179sTixYsB/H7Motb48eNx7tw5eHl51XkPHx8ffP7553XOlgIaXpemFB4eXq+GZcuWYeXKlQBq9pU/9thjf6j+2s9iaWkpnJycsG3bNtjY2DTrfNzPbcDFxQXz589HeHg4Kisr0aFDByxYsAAuLi4AgBdffBElJSUYP348OnToAAsLC4SFhcnjz58/X95l1r17d4SHhze57dzOyckJ/fv3N+p4wt3Kz8/H0qVL5bPkXF1d8dJLL8mvBwcHywe//f398dVXX+Gf//xnnWl4e3tDq9XCzc2tTvusWbPqne00f/58WFpaoqKiAs8++yzWr1/f7PNUi7f7ICIiIe6GIiIiIYYFEREJMSyIiEiIYUFEREIMCyIiEmJYEBGREMOC6AGj0+nq3ZZbZPXq1Thy5AiAmmsn7tcV7tR28DoLohZWVVUFC4v7d32sWq1GQkJCs1/UR20br+CmNmnLli3YuXMnAGDChAmYOnUqEhMTsXnzZigUCjg7O+Mf//gHCgoKsGzZMly9ehUAsHjxYgwePBiZmZlYuXIlysrK8NBDD2HlypVwcHDArl27cODAAZSWliI3NxdeXl74v//7v0brcHd3x6RJk3D8+HF07doV77//PmxsbBASEgJ3d3ecOnUKarUaLi4uiIuLg8FgwMCBAxEVFYXz589jyZIlSEhIgMFgwMSJE/H++++jU6dOmDVrFpKTk7Fr1y6kpaWhuroaP/74I6ZNm4bKykokJSXB0tIS8fHx6NatGxYtWoTnnnsOer0eer0eoaGh6NatG4KDg3Hx4kX56vkvv/wSP/30EyIiIky/kujBIhG1Md9//700ZswYqbi4WCoqKpICAgKk7777TvLx8ZHy8/MlSZKk69evS5IkSfPmzZNOnDghSZIkXblyRfLz85MkSZJu3bolVVZWSpIkSYcPH5Zmz54tSZIk7dy5U1Kr1dLNmzelsrIy6bnnnpOuXr3aaC2PP/64lJSUJEmSJK1Zs0aKioqSJEmSXnrpJWnZsmWSJElSWVmZ5OnpKf3888+SJEnSggULpC1btkiSJEnvvfeeFBsbKy1fvlzasGGDJEmSlJubKwUGBsr1eHl5Sbdu3ZLy8/OlJ598Uvrss88kSZKkFStWyNNZuHChtG/fPkmSJGnUqFHyciguLpZGjx4tVVRUSJIkSZMmTZLOnz9/18uc2j72LKjNOXnyJLy8vNCpUycANffaOXv2LPz8/ORdL926dQNQc4O/2x9RWlRUhKKiIty6dQsLFy7EL7/8AoVCUed5DR4eHujSpQuAmhsJXrlyBXZ2dg3WYmZmhoCAAADA2LFjMXv2bPm12vZLly6hV69eeOyxxwAAzz//PHbs2IGpU6fitddew4QJE2BlZYW33367wfd45pln6jwkqPZxoY8//jguXLjQ5LLq1KkThg4diq+//hoODg6orKxs9Bks1L4xLKjNkRo4DNfYbd2rq6vxxRdf1HuOQ0xMDJ555hmsW7cOly9fxl//+lf5NUtLS/n/5ubmRj/86M46Onbs2Gi9tQoLC1FSUoKqqiqUl5fLAXi72+sxMzNDhw4d5P8bU9vEiROxYcMGODg4YNy4cUbPC7UvPBuK2pynnnoKaWlpKC0tRUlJCdLS0jBgwACkpKTg+vXrAIAbN24AqLn186effiqPm5WVBQC4deuWfAfTf//73/dcS3V1Nfbv3w+g5pGfgwcPrjeMg4MDrly5gl9++QUAkJSUhKeeegoAsHTpUrzxxhsICgrCqlWr7rmO23Xu3BnFxcXy325ubsjLy0NycnKz3vac2hb2LKjNGTBgAMaNG4eJEycCqDnAPXjwYMyaNQshISEwMzND//79ERsbiyVLliA6OhpBQUEwGAwYMmQIoqOj8corr2DRokXYsmULhg4des+1dOrUCRcvXsS4ceNgbW2NDz74oN4wVlZWeOedd/DGG2/IB7gnT56MxMREWFhYyLW98MILOHr0qPzc6nv1l7/8BdOnT8cjjzyCTz75BEDN7bKzsrKEz4um9ounzhKZkLu7O06fPt3SZQjNnDkTU6dObfLxn9S+cTcUUTt28+ZN+Pr6wsrKikFBTWLPgqgZTJw4UX46Wq2///3vPLOI2gyGBRERCXE3FBERCTEsiIhIiGFBRERCDAsiIhL6f1GhbKIJtdTfAAAAAElFTkSuQmCC\n", "text/plain": [ "<Figure size 432x288 with 1 Axes>" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "sns.countplot(x=\"ocean_proximity\", data=df_USAhousing)" ] }, { "cell_type": "code", "execution_count": 17, "metadata": {}, "outputs": [ { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAABC8AAADQCAYAAAAnOkviAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjQuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8rg+JYAAAACXBIWXMAAAsTAAALEwEAmpwYAAAsXklEQVR4nO3de1xVdb7/8TeCeCNP0Qm3D0MLx/JOTJZyTloDgiICW6WaclBRuzj1MEtrvBSlg5ZlWafLJCdLO5XVGIG6x8tDzPSU4zHTw/iQClMMddjM0UFFuQnr94c/VhKXDYiw9t6v51+y9lprfz9rr7dr8WGttX0MwzAEAAAAAABgUe3aegAAAAAAAAANoXkBAAAAAAAsjeYFAAAAAACwNJoXAAAAAADA0mheAAAAAAAAS6N5AQAAAAAALI3mBQAAAAAAsDSaF17A6XRq5syZTVrmtdde09dffy1JWrVqlUpKSq7E0CRJ6enp6tu3r7777jtz2tixY3Xs2DFJUkREhOLi4pSQkKCEhASlpqaa8124cEFDhw7Vyy+/XGOdSUlJGjVqlOLj4zVhwgTl5OTU+d7V8yUkJCgmJkaffPJJjdcPHjyom2++WTt37pQkvfLKK3rppZfM148fP67IyEidOXPm8jYC2pzVc9IY06ZN05AhQ/TQQw/VmJ6UlKS//e1v5s/Hjh3T2LFj61xHbm6uJk2apFGjRik6OlpvvvmmDMMwX//yyy81fvx4xcTEaPTo0Vq6dKkk6fXXX9fw4cPNnCYkJNTIRWpqqoYPH66qqipzmqvsw/NYPWfp6elatGiRpIv7dGhoqE6ePGm+HhYWVue/f6k5+3v1sS4uLk5jxozR8uXLVV5e3mK1wTrcIQdtdV5WXl6uxYsXa+TIkYqOjtaMGTNUUFBgvv6Pf/xDjz/+uEaOHKkxY8bogQce0JEjR3Ts2DENHjy4xjEoIyPDXO6X53PVbr75Zr3wwgvmzytXrtTrr7/e9I0GS3OHzFUfew4fPqykpCTzd5NnnnlGkrR79+5a53eXio+P1xNPPFFj2ty5czV8+HDzWHLq1ClFRERIkpkZu92umJgYJSYm6vPPP78S5bUomhdu6MKFC02av1u3bvqP//iPJi3z2GOP6d/+7d8kSe+///4V/6XMZrPp7bffrvf11atXKzMzU5mZmXr66afN6V999ZVuvPFGbdy4scYvWJK0bNkyrVu3Tvfff79efPHFete9bNkyZWZmas2aNVq2bFmNk8UNGzbo1ltvlcPhkCT9/ve/V1ZWln788UdJ0uLFi/XYY4+pa9euzaobV44n5qQuRUVF5r+nT5/e4L7uSmlpqWbMmKEHH3xQmzdvVmZmpvbt26ePPvpIkvTDDz/oj3/8o1566SVt3LhRGzZs0PXXX28uP2XKFDOnmZmZZi6qqqq0detWde/eXXv27Knxnq6yD2vz9Jxdc801evfdd5u0zOXs76tXr9b69ev15z//WceOHTNPWmFtnpiDtjovW758uc6dO6fNmzdry5YtGjlypB599FEZhiHDMPToo4/q9ttv19atW/WXv/xFTzzxhNlg7NmzZ41jkN1uN9f7y/O5av7+/tqyZYtOnTrV1E2ENuSJmau2ePFiTZ48WZmZmdq4caN+97vfuVzmxx9/lGEY2rNnj86fP1/jNV9fX61du7bO5Xr27KmMjAxt3LhRy5cv16pVq/TZZ5+1SB1Xil9bD8AK3nvvPfODSkxM1JQpUyRJGRkZWrlypXx8fHTzzTfrpZde0qlTp/Tss8/qxIkTkqT58+fr1ltvVXZ2tpYsWaLS0lJ17NhRS5YsUUhIiNLT07Vt2zaVlJQoPz9fI0eO1FNPPVXvWMLCwnTvvfdq9+7d6tq1q5YvX67AwEAlJSUpLCxM3377rSIiItSvXz8tXbpUlZWVGjhwoBYuXKjvvvtOCxYs0Nq1a1VZWam7775by5cvV+fOnfXwww9rw4YNSk9P19atW1VVVaUffvhBU6dOVUVFhTIzM+Xv76+0tDRdffXVmjt3ru666y4VFhaqsLBQkydP1tVXX634+Hjl5uZq/vz5kqRPP/1UP/74o+bNm3dZn8Fdd92lb775RocPH1ZISEijl9uwYYMmTZqkNWvWaP/+/XX+JeyWW27RypUrXa7r/Pnz6tSpk3x9fSVJhmFo8+bNeu+993T//ferrKxMHTt21Lx58/Tcc89p+vTpOnfunOLj4xtfqBsjJ22fk2oXLlzQl19+qT//+c8qLi7WBx98IEkKDw/X7t27m73e9evX69e//rXuuOMOSVKnTp2UkpKipKQkTZw4Ue+8844efvhh9e7dW5Lk5+eniRMnulzv7t271adPH40ZM0YOh0NDhw41X2tu9j0VObNOziRpwoQJ+vzzz/XAAw/o6quvbtQyLbG/d+nSRQsXLtSdd96poqKiRr+3pyAHbZ+DtjgvKykpUXp6urKyssxzsQkTJuizzz7TX//6V0kXjzv33XefuUy/fv0kqcEr9uo6n+vQoYO5vnvvvVerV6/W448/3ug6PQ2Za/vMVSssLJTNZjN/vvnmm10us379esXHx+vw4cPatm1bjatrJ0+erNWrV+uee+5pcB3BwcGaO3euli5dqgkTJjS/gCvM65sXBw4cUHp6uj799FMZhqF77rlHt99+u9q3b68//elPWrNmjQIDA82/blZ3w4YMGaITJ05o2rRp2rhxo0JCQvTBBx/Iz89PX3/9tZYvX25edpaTk6OMjAz5+/tr9OjRSkpKUvfu3escz/nz59W/f3/NnTtXb7zxht544w2lpKRIks6cOaMPPvhAZWVlio6O1qpVq3TjjTfqqaee0kcffaQpU6YoIiJCr776qkpLSxUfH6+bbrqp1n/oubm5+vzzz1VeXq6oqCjNmTNHGRkZWrJkiTIyMsz/sCRp0qRJWrVqlVavXq3AwECdP39e8fHxevLJJ9W+fXulp6dr4cKFteqYNWuWjhw5Umt6cnJyjU54tXbt2mn69OlasWKFeRn6pSZPnqx27S5eKDRu3DhNmTJFpaWl2rVrlxYtWqSzZ8/K4XDUeZDcuXOnRo4cWef2lqQ5c+bI399fR48e1fz5880D5t69e3X99derZ8+eGjp0qL788ktFR0frzjvv1Nq1a/WHP/zB/Iu0pyMn1sjJ0aNHtXbtWm3evFlhYWGaOnWqbr/99sZ8hJozZ446duwoSaqoqDDzdKlDhw5pwIABNab17NlT58+fV3FxsXJzczV16tR632PVqlVat26dJKlr1676r//6L0kXT2ZjY2M1cuRIvfLKK6qoqFD79u0luc6+NyFn1sjZpTp37qzx48fr/fffb/Qlxy21vwcEBOj666/X0aNHvap5QQ6skYO2OC87evSounfvroCAgBrTBw4cqNzcXEmqdYy61E8//aSEhATz52eeeUZDhgyp93yu2sSJExUfH6/p06fXu25PRuaskblqU6ZM0eTJkxUWFqY77rhD48ePd3mF98aNG/Xuu+/qyJEj+uCDD2o0L7p3765f//rXyszM1G9+85sG1zNgwAAdPny4wXnamtc3L/bu3auRI0eqc+fOkqSoqCh988038vHx0ejRoxUYGChJ5onD119/rUOHDpnLFxcXq7i4WGfPntUf/vAHHT16VD4+PqqoqDDnCQ8P11VXXSVJ6t27t44fP15vYNu1a6cxY8ZIkhISEvToo4+ar1VPP3LkiK6//nrdeOONki4eND788ENNmTJFjzzyiBITE9WhQ4cal/FdaujQoeaB4aqrrjLvfbrpppv0/fffN7i9OnfurGHDhmn79u0KCQlRRUVFnR3BV199tcH11GXs2LH605/+pPz8/FqvVf+HcakvvvhCQ4cOVadOnRQdHa233npL8+bNM5sPc+bMUUlJiaqqqpSenl7v+y5btkyDBg3SqVOn9Nvf/lbDhw9Xjx495HA4FBsbK+nits/MzDQPdvfff79KS0u95i/F5KTtc7J582Y9/vjjevjhh5Wenl7r5M6V6v1cuvgXqocffrjWPIZhyMfHp0nrvdSUKVM0bdq0GtPKy8v15Zdfat68eQoICFBoaKi++uor3XXXXeY8DWXfm5Czts9ZXSZNmiS73d5g465aS+/vv7zs3huQA+vkoC3Oy+o6BlUfm1zlofq2kV9q6HxOutgoTEhI0Pvvv282+b0JmbNO5qSLVxvdcccd2rlzp7KysvTxxx+bfxiqS3Z2tq655hr16NFDNptN8+fP1+nTp/Uv//Iv5jwPP/ywZsyYUeNYVBd3OOZ4ffOivg+pvulVVVX65JNPav3nlpqaqqFDh+rNN9/UsWPHNGnSJPM1f39/89++vr6qrKxs9Pgu/U+8U6dODY5Nkk6fPq3z58/rwoULKisrM/8jutSl42nXrl2Nvwg1Zmx333233n77bYWEhGj8+PF1ztOcbqOfn5+mTp2q//zP/3Q5Buniwaj60jHp4r3/u3fvNu9PW7Zsmfr27auXX35ZixYt0htvvNHg+gIDA9W/f3/97//+r2w2m7Zs2aJt27bp7bfflmEYKioqUnFxsQICAtSuXbs6/3LtqchJ2+fk3//937VgwQJ99tln2r9/v8aPH6+oqCjz0teW0KdPn1r36Ofn56tz584KCAjQr371Kx04cEB9+/Zt9Dp37typ4uJi8/aqkpISdezYscYBtKnZ91TkrO1zVpeuXbtq7NixjbrSriX39+LiYh0/flw33HCDy/f1JOTAOjlo7fOynj176sSJE+a5VrWDBw+a69y8eXOjxlKtsrKywfO5apMnT9b48ePr3X6ejMxZJ3PVunXrpsTERCUmJmrs2LH64Ycf6p3X4XDoyJEjZkaKi4u1ZcsW3X333eY8vXr1Ur9+/bRx48YG3/fgwYPmrcFW5T2/fdXjtttu09atW1VSUqLz589r69atGjJkiMLDw7Vp0yb985//lPTzQ/HuuOMO8/5ySebTks+ePatu3bpJ0mU9qbWqqsr8j3n9+vW69dZba80TEhKi48eP6+jRo5KkzMxM3XbbbZIuXiL32GOPKS4uTsuWLWv2OC7VpUsXnTt3zvw5NDRUBQUF2rBhQ73fWPDqq6/WeGhSXQ9Pqsu4ceO0a9culw9OKi4u1t69e7V9+3Zt27ZN27ZtU0pKijZs2FBjvvbt22vWrFnav3+/+ZDN+pSUlCgnJ0c9e/bU119/rb59++rLL7/Utm3b9MUXXyg6Olpbt25tcB2eipy4dqVzEhAQoIkTJyo9PV1z5szR3r17FRMTc1kP6PyluLg47d2713y6dmlpqVJTU81LaadNm6YVK1aYB+Oqqiq99957Da7T4XAoNTXVzGlWVpa++uqrWg++amz2PRk5c601j0eXmjJlij7++GOXD4lrqf393LlzWrhwoUaOHFnjr2fegBy45qnnZZ07d5bdbtcLL7xg/gKZkZGhkpISDRs2TMOGDVN5ebk+/fRTc5ns7Gz9z//8T73jauz53NVXX63Ro0fX+2BDT0bmXGvNzO3YscO8auUf//iHioqKzO36S1VVVdq0aZPWrVtn5u6tt96qlTvp4tUXDT2A+tixY3rxxRcb9YDQtuT1V14MGDBA48ePN7tTiYmJ6t+/v6SLH3JSUpLatWun/v3764UXXtCCBQu0aNEixcXFqbKyUkOGDNGiRYs0ffp0zZ07V++9956GDRvW7PF07txZubm5Gj9+vAICAuq85KhDhw56/vnn9dhjj5kPqbnvvvuUkZEhPz8/c2y//e1vtWvXLgUHBzd7PJJ0zz336IEHHtB1111n3sMeExOjnJycFj+p8vf3V1JSkhYvXlxj+qX3Vt58883mQezSzmlkZKReeumlWl8t17FjR02dOlUrV67UkiVLar1n9bMAysvLNW7cOA0cOFBz586tdT9mdHS01qxZ06QTXk9BTlxrzZz0799fzz77rMrKysyHmEkXb2c6fPiwzp8/rxEjRmjx4sUaPnx4o9fbsWNHvfXWW0pNTdXChQtVVVWlhIQE80DWt29fzZ8/X7Nnz1ZJSYl8fHx05513mstf+swLSXr55Zf13//93+bXf0kXP7tbb71VX3zxRY33ri/73oScudaaObtUYGCgoqKitGrVKnNaSUmJRowYYf58//33X/b+PnnyZBmGoaqqKkVFRen3v//9lSnIwsiBa558XjZ79mwtXbpUo0aNUrt27RQSEqI333zT/Ov7G2+8oSVLligtLU0dOnRQjx49zAcn/vKZFxMmTNDBgwcbfT43depUffjhh83YSu6NzLnWmpn76quvtHjxYvPK2ieffFLXXXedDh8+rF27dtU47kycOFHdunWr0dy47bbbNGfOHBUWFtZYb58+fdS/f38dPHjQnPbTTz/JbrerrKxMXbp00e9+9ztLP6xTknwMd7i5xYuEhYVp3759bT0Mlx566CFNmTJF4eHhbT0UeCFyAlx55AwgB0BrI3NoiNffNoKmOXPmjEaNGqUOHToQVqAe5AS48sgZQA6A1kbm2hZXXrSRu+++u9ZldC+++GKjvssX8BbkBLjyyBlADoDWRubQHDQvAAAAAACApVn+tpHc3NwGX8/Ly2udgViAt9RKnS3DVXZaYwxWQZ2ehey0Hur0LK1RJ/n5GXV6Fo49rYc6PUtL1mn55oWrryX75dePeTJvqZU6W4ar7LTGGKyCOj0L2Wk91OlZWqNO8vMz6vQsHHtaD3V6lpas0/LNCwAAAAAA4N1oXgAAAAAAAEujeQEAAAAAACyN5gUAAAAAALA0mhcAAAAAAMDSaF4AAAAAAABLo3kBeLGeN4S0yHpKKypbZD0AAAAAUBe/th4AgLbTpVMH3TDXcdnryXshtgVGAwAAAAB148oLAAAAAABgaTQvAAAAAACApdG8AAAAAAAAlkbzAgAAAAAAWBrNCwAAAAAAYGk0LwAAAAAAgKXRvAAAAAAAAJZG8wIAAAAAAFgazQsAAAAAAGBpNC8AAAAAAIClNap5cebMGc2cOVOjR49WTEyM9u3bp6KiIiUnJys6OlrJyck6ffq0Of+KFSsUFRWlUaNGaefOneb0AwcOKC4uTlFRUUpNTZVhGC1fEQAAAAAA8CiNal4sXrxYw4cP16ZNm5SZmanevXsrLS1N4eHh2rJli8LDw5WWliZJOnTokBwOhxwOh9555x0tXLhQlZWVkqTnnntOixYt0pYtW5SXl6cdO3ZcucoAAAAAAIBHcNm8KC4u1p49e5SYmChJ8vf3V9euXZWVlSW73S5Jstvt2rp1qyQpKytLsbGx8vf3V3BwsHr16qXs7GwVFhaquLhYYWFh8vHxkd1uV1ZW1pWrDAAAAAAAeAQ/VzPk5+crMDBQ8+bN03fffacBAwZowYIFOnnypIKCgiRJQUFBOnXqlCTJ6XQqNDTUXL5bt25yOp3y8/OTzWYzp9tsNjmdTpcDLCsrU05OTr2vl5aWNvi6J/GWWqmztn79+jV5/a6y09z11sfKnxn7lGexQnbY1p6FOmtr7vGB/PyMOj0Lx57WQ52epSWz47J5ceHCBR08eFDPPPOMQkNDlZqaat4iUpe6nmPh4+NT73RXOnTo0GAROTk5LfoLmJV5S63U2TJcZaelWfkzY5/yLFbIDtvas1BnyyE/P6NOz8Kxp/VQp2dpyTpd3jZis9lks9nMqylGjx6tgwcP6tprr1VhYaEkqbCwUIGBgeb8BQUF5vJOp1NBQUG1phcUFJhXbgAAAAAAANTHZfPiuuuuk81m0+HDhyVJu3btUu/evRUREaGMjAxJUkZGhiIjIyVJERERcjgcKi8vV35+vvLy8jR48GAFBQWpS5cu2r9/vwzDqLEMAAAAAABAfVzeNiJJzzzzjObMmaOKigoFBwfr+eefV1VVlWbNmqW1a9eqe/fueu211yRJffr0UUxMjMaMGSNfX1+lpKTI19dX0sVvG5k3b55KS0s1YsQIjRgx4spVBgAAAAAAPEKjmhf9+vVTenp6remrV6+uc/4ZM2ZoxowZtaYPGjRIGzZsaOIQAQAAAACAN3N52wgAAAAAAEBbonkBAAAAAAAsjeYFAAAAAACwNJoXAAAAAADA0mheAAAAAAAAS6N5AQAAAAAALI3mBQAAAAAAsDSaFwAAAAAAwNJoXgAAAAAAAEujeQEAAAAAACyN5gUAAAAAALA0mhcAAAAAAMDSaF4AAAAAAABLo3kBAAAAAAAsjeYFAAAAAACwNJoXAAAAAADA0mheAAAAAAAAS6N5AQAAAAAALI3mBQAAAAAAsDSaFwAAAAAAwNJoXgAAAAAAAEujeQEAAAAAACyN5gUAAAAAALA0mhcAADRRzxtCLmv50orKFhoJAACAd/Br6wEAAOBuunTqoBvmOpq9fN4LsS04GgAAAM/HlRcAAAAAAMDSaF4AAAAAAABLo3kBAAAAAAAsjeYFAAAAAACwNJoXAAAAAADA0mheAAAAAAAAS6N5AQAAAAAALI3mBQAAAAAAsLRGNy8qKytlt9v10EMPSZKKioqUnJys6OhoJScn6/Tp0+a8K1asUFRUlEaNGqWdO3ea0w8cOKC4uDhFRUUpNTVVhmG0YCkAAAAAAMATNbp58f7776t3797mz2lpaQoPD9eWLVsUHh6utLQ0SdKhQ4fkcDjkcDj0zjvvaOHChaqsrJQkPffcc1q0aJG2bNmivLw87dixo4XLAQAAAAAAnqZRzYuCggJt375diYmJ5rSsrCzZ7XZJkt1u19atW83psbGx8vf3V3BwsHr16qXs7GwVFhaquLhYYWFh8vHxkd1uV1ZWVstXBAAAAAAAPIpfY2ZasmSJnnzySZ07d86cdvLkSQUFBUmSgoKCdOrUKUmS0+lUaGioOV+3bt3kdDrl5+cnm81mTrfZbHI6nS7fu6ysTDk5OfW+Xlpa2uDrnsRbaqXO2vr169fk9bvKTnPXWx8rf2bsU57FU7LjDp8V+5RnudLZkRqXH7a3Z6HO2q7UsYdt7VmoszZX2XHZvPjiiy8UGBiogQMHavfu3S7fsK7nWPj4+NQ73ZUOHTo0WEROTk6L/gJmZd5SK3W2DFfZaWlW/szYpzyLp2THHT4r9inP0hp1NiY/bG/PQp0tg+z8jDo9S0vW6bJ58e2332rbtm3asWOHysrKVFxcrDlz5ujaa69VYWGhgoKCVFhYqMDAQEkXr6goKCgwl3c6nQoKCqo1vaCgwLxyAwAAAAAAoD4un3kxe/Zs7dixQ9u2bdMrr7yiYcOGadmyZYqIiFBGRoYkKSMjQ5GRkZKkiIgIORwOlZeXKz8/X3l5eRo8eLCCgoLUpUsX7d+/X4Zh1FgGAAAAAACgPo165kVdHnzwQc2aNUtr165V9+7d9dprr0mS+vTpo5iYGI0ZM0a+vr5KSUmRr6+vpIvfNjJv3jyVlpZqxIgRGjFiRMtUAQAAAAAAPFaTmhdDhw7V0KFDJUnXXHONVq9eXed8M2bM0IwZM2pNHzRokDZs2NCMYQIAAAAAAG/VqK9KBQAAAAAAaCs0LwAAAAAAgKXRvAAAAAAAAJZG8wIAAAAAAFgazQsAAAAAAGBpNC8AAAAAAICl0bwAAAAAAACWRvMCAAAAAABYGs0LAAAAAABgaTQvAAAAAACApdG8AAAAAAAAlkbzAgAAAAAAWBrNCwAAAAAAYGk0LwAAAAAAgKXRvAAAAAAAAJZG8wIAAAAAAFgazQsAAAAAAGBpNC8AAAAAAICl0bwAAAAAAACWRvMCAAAAAABYGs0LAAAAAABgaTQvAAAAAACApdG8AAAAAAAAlkbzAgAAAAAAWBrNCwAAAAAAYGk0LwAAAAAAgKXRvAAAAAAAAJZG8wIAAAAAAFgazQsAAAAAAGBpNC8AAAAAAICl0bwAAAAAAACWRvMCAAAAAABYGs0LAAAAAABgaS6bF3//+9+VlJSkmJgYxcbGavXq1ZKkoqIiJScnKzo6WsnJyTp9+rS5zIoVKxQVFaVRo0Zp586d5vQDBw4oLi5OUVFRSk1NlWEYV6AkAAAAAADgSVw2L3x9fTV37lxt3LhRn3zyiT766CMdOnRIaWlpCg8P15YtWxQeHq60tDRJ0qFDh+RwOORwOPTOO+9o4cKFqqyslCQ999xzWrRokbZs2aK8vDzt2LHjylYHAAAAAADcnsvmRVBQkAYMGCBJCggIUEhIiJxOp7KysmS32yVJdrtdW7dulSRlZWUpNjZW/v7+Cg4OVq9evZSdna3CwkIVFxcrLCxMPj4+stvtysrKunKVAQAAAAAAj9CkZ14cO3ZMOTk5Cg0N1cmTJxUUFCTpYoPj1KlTkiSn0ymbzWYu061bNzmdzlrTbTabnE5nS9QAAAAAAAA8mF9jZzx37pxmzpyp+fPnKyAgoN756nqOhY+PT73TXSkrK1NOTk69r5eWljb4uifxllqps7Z+/fo1ef2ustPc9dbHyp8Z+5Rn8ZTsuMNnxT7lWa50dqTG5Yft7Vmos7YrdexhW3sW6qzNVXYa1byoqKjQzJkzFRcXp+joaEnStddeq8LCQgUFBamwsFCBgYGSLl5RUVBQYC7rdDoVFBRUa3pBQYF55UZDOnTo0GAROTk5LfoLmJV5S63U2TJcZaelWfkzY5/yLJ6SHXf4rNinPEtr1NmY/LC9PQt1tgyy8zPq9CwtWafL20YMw9CCBQsUEhKi5ORkc3pERIQyMjIkSRkZGYqMjDSnOxwOlZeXKz8/X3l5eRo8eLCCgoLUpUsX7d+/X4Zh1FgGgHsrrai0xDoAAAAAeCaXV17s3btXmZmZuummm5SQkCBJeuKJJ/Tggw9q1qxZWrt2rbp3767XXntNktSnTx/FxMRozJgx8vX1VUpKinx9fSVd/LaRefPmqbS0VCNGjNCIESOuYGkAWkvH9r66Ya7jstaR90JsC40GAAAAgKdx2bwYMmSIvv/++zpfW716dZ3TZ8yYoRkzZtSaPmjQIG3YsKGJQwQAAAAAAN6sSd82AgAAAAAA0NpoXgAAAAAAAEujeQEAAAAAACyN5gUAAAAAALA0mhcAAAAAAMDSaF4AAAAAAABLo3kBAEArK62obJNlAQAA3JVfWw8AAABv07G9r26Y62jWsnkvxLbwaAAAAKyPKy8AAAAAAICl0bwAAAAAAACWRvMCAAAArabnDSFNmp/nvAAAJJ55AQAAgFbUpVOHJj3zhee8AAAkrrwAAAAAAAAWR/MCAAAAAABYGs0LAAAAWFZTn3nBMzIAwDN5xTMvSisq1bG972XPAwAAgNbVsb0vz8gAAHhH86IxBz0OdAAAAAAAWBO3jQAAAAAAAEujeQEAAAAAACyN5gUAAAAAALA0mhcAAAAAAMDSaF4AAAAAAABL84jmBd/nDQAAAACA5/KIr0p19VWofA0qAAAAAADuyyOuvAAAAAAAAJ6L5gUAAAAAALA0mhcAAAAAAMDSaF4AAAAAAABLo3kBAAAAAAAsjeYFAAAAAACwNJoX/19pRWWLzAMAAAAAAFqWX1sPwCo6tvfVDXMdDc6T90JsK40G8D6lFZXq2N7XMusBrOpy93EyAgAA3BHNCwCW0JgGYmPQZISnu9yskBF4uqY26GjoAYB7oHkBAAAAj9HUBh8NPQBwD63+zIsdO3Zo1KhRioqKUlpaWmu//WXhuRgAAAAAALS+Vr3yorKyUosWLdJ7772nbt26KTExUREREfrVr37VmsNoNp6LAVhfXZf/9uvX77LXAXiKpuzfv8wO2QAAAG2lVZsX2dnZ6tWrl4KDgyVJsbGxysrKcpvmRWM05sSupeYBUFtLPDvjuz+ObpGxkGNY0eVk5HKzQSZgRTwjAwDcg49hGEZrvdmmTZu0c+dOLV68WJKUkZGh7OxspaSk1LvM/v371aFDh9YaImBJfn5+6tOnT5OWITsA2QGaqznZkcgPIHHsAZrLVXZa9cqLuvokPj4+DS5zyy23XKHRAJ6N7ADNQ3aA5iM/QPOQHcC1Vn1gp81mU0FBgfmz0+lUUFBQaw4BAAAAAAC4mVZtXgwaNEh5eXnKz89XeXm5HA6HIiIiWnMIAAAAAADAzbTqbSN+fn5KSUnR9OnTVVlZqQkTJjTrfkoAAAAAAOA9WvWBnQAAAAAAAE3VqreNAAAAAAAANBXNCwAAAAAAYGlu3bzYsWOHRo0apaioKKWlpbX1cJrs73//u5KSkhQTE6PY2FitXr1aklRUVKTk5GRFR0crOTlZp0+fNpdZsWKFoqKiNGrUKO3cudOcfuDAAcXFxSkqKkqpqal1fi1tW6qsrJTdbtdDDz0kyTNrlKQzZ85o5syZGj16tGJiYrRv3z5L1kp23Gu/8ob8uEt2JPfOD9nxvDrJTuvxpvx4Q3Yk98kP2XGv/cob8tNm2THc1IULF4zIyEjjp59+MsrKyoy4uDgjNze3rYfVJE6n0zhw4IBhGIZx9uxZIzo62sjNzTWWLl1qrFixwjAMw1ixYoXx4osvGoZhGLm5uUZcXJxRVlZm/PTTT0ZkZKRx4cIFwzAMY8KECca3335rVFVVGdOmTTO2b9/eNkXV49133zWeeOIJ48EHHzQMw/DIGg3DMJ566inj008/NQzDMMrKyozTp09brlay4377lTfkxx2yYxjunx+y43l1kp3W40358YbsGIZ75IfsuN9+5Q35aavsuO2VF9nZ2erVq5eCg4Pl7++v2NhYZWVltfWwmiQoKEgDBgyQJAUEBCgkJEROp1NZWVmy2+2SJLvdrq1bt0qSsrKyFBsbK39/fwUHB6tXr17Kzs5WYWGhiouLFRYWJh8fH9ntdktti4KCAm3fvl2JiYnmNE+rUZKKi4u1Z88es05/f3917drVcrWSHffar7whP+6SHcn980N2PKtOstO6vCU/3pAdyX3yQ3bca7/yhvy0ZXbctnnhdDpls9nMn7t16yan09mGI7o8x44dU05OjkJDQ3Xy5EkFBQVJuhj2U6dOSaq/5l9Ot9lsltoWS5Ys0ZNPPql27X7e3TytRknKz89XYGCg5s2bJ7vdrgULFuj8+fOWq5XsuNd+5Q35cZfsNPTe7ojsuH+dZKfteHJ+vCE7kvvkh+y4137lDflpy+y4bfPCqON+GB8fnzYYyeU7d+6cZs6cqfnz5ysgIKDe+eqr2crb4osvvlBgYKAGDhzYqPndscZqFy5c0MGDB3XfffcpIyNDnTp1avC+xLaq1R22ZWN5cnYk78mPu2Snofd2N2SnJnetk+y0DU/Oj7dkR3Kf/LjDtmwsT86O5D35acvs+DV9uNZgs9lUUFBg/ux0Os1OjzupqKjQzJkzFRcXp+joaEnStddeq8LCQgUFBamwsFCBgYGS6q/5l9MLCgossy2+/fZbbdu2TTt27FBZWZmKi4s1Z84cj6qxms1mk81mU2hoqCRp9OjRSktLs1ytZMd99itvyY+7ZKeh93YnZMdz6iQ7rc/T8+Mt2ZHcJz9kx332K2/JT1tmx22vvBg0aJDy8vKUn5+v8vJyORwORUREtPWwmsQwDC1YsEAhISFKTk42p0dERCgjI0OSlJGRocjISHO6w+FQeXm58vPzlZeXp8GDBysoKEhdunTR/v37ZRhGjWXa2uzZs7Vjxw5t27ZNr7zyioYNG6Zly5Z5VI3VrrvuOtlsNh0+fFiStGvXLvXu3dtytZId99mvvCU/7pIdyf3zQ3Y8q06y07q8IT/ekh3JffJDdtxnv/KW/LRpdhrzNFGr2r59uxEdHW1ERkYab731VlsPp8n27Nlj3HTTTcbYsWON+Ph4Iz4+3ti+fbtx6tQpY9KkSUZUVJQxadIk45///Ke5zFtvvWVERkYa0dHRNZ7Gmp2dbcTGxhqRkZHGwoULjaqqqjaoqGF//etfzafuemqNBw8eNMaNG2eMHTvWmDFjhlFUVGTJWsmOe+1XhuH5+XGX7BiGe+eH7HhenWSn9Xhbfjw9O4bhPvkhO+61XxmG5+enrbLjYxgW+9JYAAAAAACAS7jtbSMAAAAAAMA70LwAAAAAAACWRvMCAAAAAABYGs0LAAAAAABgaTQvAAAAAACApdG8cEPHjh3T2LFjW/19w8LCmjT/66+/rpUrV9aa3lbjB8gO0HzkB2gesgM0D9nBL9G8AAAAAAAAlkbzwk1VVlbq6aefVmxsrKZOnarS0lLl5OTonnvuUVxcnB555BGdPn1akpSUlKS//e1vkqRTp04pIiJCkpSbm6vExEQlJCQoLi5OeXl5kqTMzExzekpKiiorK833Xb58ueLj43XPPffo//7v/yRJx48f1+TJkxUXF6fJkyfrxIkTtcZ74MABxcfH695779WHH35oTq9vDMCVQnaA5iM/QPOQHaB5yA4uRfPCTR09elQTJ06Uw+HQVVddpc2bN+upp57SnDlztH79et1000164403GlzHxx9/rEmTJikzM1OfffaZbDabfvzxR23cuFFr1qxRZmam2rVrp/Xr10uSzp8/r9DQUK1bt05DhgzRp59+Kkn64x//KLvdrvXr1ysuLk6pqam13mvevHl6+umn9cknn7gcA3AlkR2g+cgP0DxkB2gesoNL0bxwU9dff7369esnSRowYIDy8/N19uxZ3X777ZKkcePG6ZtvvmlwHbfccotWrFihtLQ0nThxQh07dtSuXbt04MABszO4a9cu5efnS5Lat2+v3/zmN5KkgQMH6vjx45Kkffv2mfdzJSQkaO/evTXe5+zZszXGlpCQ0OAYgCuJ7ADNR36A5iE7QPOQHVzKr60HgObx9/c3/+3r66szZ87UO6+vr68Mw5AklZeXm9Pj4uIUGhqq7du3a9q0aUpNTZVhGBo3bpxmz55daz3t27eXj4+PJKldu3Y1Lq26VPU81QzDqDWtoTGEh4fXWwtwucgO0HzkB2gesgM0D9nBpbjywkNcddVV6tq1q9l5zMzM1G233SZJ6tGjhw4cOCBJ2rRpk7lMfn6+goODNWnSJEVEROj7779XeHi4Nm/erJMnT0qSioqKzG5jfcLCwuRwOCRJ69ev16233lrj9a5duyogIMAcW/UlWfWNAWhNZAdoPvIDNA/ZAZqH7Hg3rrzwIEuXLtWzzz6rkpISBQcH6/nnn5ckTZ06VbNmzdK6des0dOhQc/6//OUvWrdunfz8/PSv//qveuSRR3T11Vdr1qxZmjp1qqqqqtS+fXulpKSoR48e9b7v008/rfnz52vlypUKDAw03/dSzz//vObPn69OnTrpjjvuaHAMQGsjO0DzkR+gecgO0Dxkx3v5GNXX1gAAAAAAAFgQt40AAAAAAABLo3kBAAAAAAAsjeYFAAAAAACwNJoXAAAAAADA0mheAAAAAAAAS6N5AQAAAAAALI3mBQAAAAAAsLT/B8QmuoitnpEUAAAAAElFTkSuQmCC\n", "text/plain": [ "<Figure size 1080x216 with 5 Axes>" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "# takes numeric only?\n", "# plt.figure(figsize=(20,20))\n", "g = sns.FacetGrid(df_USAhousing, col=\"ocean_proximity\")\n", "_ = g.map(plt.hist, \"households\")" ] }, { "cell_type": "code", "execution_count": 18, "metadata": {}, "outputs": [ { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAABDAAAADQCAYAAADxn5GHAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjQuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8rg+JYAAAACXBIWXMAAAsTAAALEwEAmpwYAAA0y0lEQVR4nO3dfVzV9f3/8efhIJC6LG0HvJm6WKSUF7l0xqa0UFAEhLxoXQwv0lxUM3O1gW1OSUvLLuxq09kFW87VzA7F+ZoOLGXWV1ubI29haYZDF4fdNDVEQOHz+8Mvn58GCB4O8OF8Hve/4MP5vM/7BefJ+/Dic+EwDMMQAAAAAACAhQV19AQAAAAAAACaQwMDAAAAAABYHg0MAAAAAABgeTQwAAAAAACA5dHAAAAAAAAAlkcDAwAAAAAAWB4NDAAAAAAAYHk0MGzC6/Vq7ty5F7TPypUr9f7770uSXnnlFZ08ebItpiZJ2rBhgwYOHKg9e/aY25KTk3Xw4EFJUlxcnFJSUpSamqrU1FQtWbLEfNzp06c1cuRIPfHEE+eMmZ6ernHjxmnixImaPHmyiouLG33u+selpqYqMTFRr7322jlf/+STTzRgwAAVFhZKkp588kk9/vjj5tcPHTqkMWPG6Pjx4637JqDDWT0nLTFr1iwNHz5cP/3pT8/Znp6ero8//tj8/ODBg0pOTm50jL1792ratGkaN26cEhIS9Pzzz8swDPPrW7du1aRJk5SYmKjx48dr+fLlkqRnn31Wo0ePNnOampp6Ti6WLFmi0aNHq66uztzWXPYReKyesw0bNig7O1vSmdf00KFDdfjwYfPrw4YNa/Tjb/Ll9V6/1qWkpGjChAl66qmnVFNT47faYB2dIQcd9b6spqZGS5cu1dixY5WQkKCMjAyVlZWZX//vf/+r+++/X2PHjtWECRN055136osvvtDBgwc1ZMiQc9Ygt9tt7vfN93P1BgwYoGXLlpmfv/jii3r22Wcv/JsGy+sMuatff/bv36/09HTz75Nf//rXkqQdO3Y0eI93tokTJ2r+/PnnbMvMzNTo0aPN9eTIkSOKi4uTJDM3aWlpSkxM1JQpU/Tmm2+2RXl+QwOjkzp9+vQFPT48PFzPPPPMBe1z33336Qc/+IEk6Q9/+EOb/2EWERGh3/3ud01+PScnR7m5ucrNzdWvfvUrc/v27dt1xRVXaOPGjef8kSVJK1as0FtvvaXbbrtNjz32WJNjr1ixQrm5uVq3bp1WrFhxzhvGvLw8XXfddfJ4PJKku+++WwUFBfr8888lSUuXLtV9992niy++2Ke60XYCMSeNOXr0qPnx7Nmzz/tab05VVZUyMjI0Z84cbdq0Sbm5ufrnP/+pP/3pT5Kkzz77TA8//LAef/xxbdy4UXl5ebr88svN/WfMmGHmNDc318xFXV2d8vPz1bt3b3344YfnPGdz2Ye1BXrOLr30Ur300ksXtE9rXu85OTl6++239Ze//EUHDx4037TC2gIxBx31vuypp57SiRMntGnTJm3evFljx47VvffeK8MwZBiG7r33Xn3/+99Xfn6+/ud//kfz5883m4z9+vU7Zw1KS0szx/3m+7l6ISEh2rx5s44cOXKh3yJ0sEDMXb2lS5dq+vTpys3N1caNG/WTn/yk2X0+//xzGYahDz/8UJWVled8zel0av369Y3u169fP7ndbm3cuFFPPfWUXnnlFb3xxht+qaMtBHf0BKzi5ZdfNn9QU6ZM0YwZMyRJbrdbL774ohwOhwYMGKDHH39cR44c0W9+8xv95z//kSQtWLBA1113nYqKivTII4+oqqpKYWFheuSRRxQZGakNGzZoy5YtOnnypEpLSzV27Fj94he/aHIuw4YN049//GPt2LFDF198sZ566in17NlT6enpGjZsmP7xj38oLi5O0dHRWr58uWprazVo0CAtXrxYe/bs0UMPPaT169ertrZWU6dO1VNPPaWuXbvqrrvuUl5enjZs2KD8/HzV1dXps88+0x133KFTp04pNzdXISEhWr16tS655BJlZmbqRz/6kcrLy1VeXq7p06frkksu0cSJE7V3714tWLBAkvT666/r888/V1ZWVqt+Bj/60Y/097//Xfv371dkZGSL98vLy9O0adO0bt067dq1q9H/iF177bV68cUXmx2rsrJSF110kZxOpyTJMAxt2rRJL7/8sm677TZVV1crLCxMWVlZWrRokWbPnq0TJ05o4sSJLS+0EyMnHZ+TeqdPn9bWrVv1l7/8RRUVFXr11VclSTExMdqxY4fP47799tv63ve+p1GjRkmSLrroIi1cuFDp6em6/fbbtWbNGt1111367ne/K0kKDg7W7bff3uy4O3bsUFRUlCZMmCCPx6ORI0eaX/M1+4GKnFknZ5I0efJkvfnmm7rzzjt1ySWXtGgff7zeu3XrpsWLF+uGG27Q0aNHW/zcgYIcdHwOOuJ92cmTJ7VhwwYVFBSY78UmT56sN954Q//7v/8r6cy6c+utt5r7REdHS9J5j9xr7P1caGioOd6Pf/xj5eTk6P77729xnYGI3HV87uqVl5crIiLC/HzAgAHN7vP2229r4sSJ2r9/v7Zs2XLOkbbTp09XTk6Obr755vOO0bdvX2VmZmr58uWaPHmy7wW0IRoYknbv3q0NGzbo9ddfl2EYuvnmm/X9739fXbp00W9/+1utW7dOPXv2NP/LWd8RGz58uP7zn/9o1qxZ2rhxoyIjI/Xqq68qODhY77//vp566inzELTi4mK53W6FhIRo/PjxSk9PV+/evRudT2Vlpa6++mplZmbqueee03PPPaeFCxdKko4fP65XX31V1dXVSkhI0CuvvKIrrrhCv/jFL/SnP/1JM2bMUFxcnJ5++mlVVVVp4sSJuuqqqxr8Ut+7d6/efPNN1dTUKD4+Xg888IDcbrceeeQRud1u8xeWJE2bNk2vvPKKcnJy1LNnT1VWVmrixIl68MEH1aVLF23YsEGLFy9uUMe8efP0xRdfNNg+c+bMczri9YKCgjR79mytWrXKPCT9bNOnT1dQ0JmDhm666SbNmDFDVVVV+uCDD5Sdna2vv/5aHo+n0YWysLBQY8eObfT7LUkPPPCAQkJCdODAAS1YsMBcND/66CNdfvnl6tevn0aOHKmtW7cqISFBN9xwg9avX69f/vKX5n+mAx05sUZODhw4oPXr12vTpk0aNmyY7rjjDn3/+99vyY9QDzzwgMLCwiRJp06dMvN0tn379umaa645Z1u/fv1UWVmpiooK7d27V3fccUeTz/HKK6/orbfekiRdfPHF+uMf/yjpzBvapKQkjR07Vk8++aROnTqlLl26SGo++3ZCzqyRs7N17dpVkyZN0h/+8IcWH3rsr9d79+7ddfnll+vAgQO2amCQA2vkoCPelx04cEC9e/dW9+7dz9k+aNAg7d27V5IarFFn+/e//63U1FTz81//+tcaPnx4k+/n6t1+++2aOHGiZs+e3eTYgY7cWSN39WbMmKHp06dr2LBhGjVqlCZNmtTs0d4bN27USy+9pC+++EKvvvrqOQ2M3r1763vf+55yc3N14403nneca665Rvv37z/vYzoSDQyd+SN17Nix6tq1qyQpPj5ef//73+VwODR+/Hj17NlTksw3D++//7727dtn7l9RUaGKigp9/fXX+uUvf6kDBw7I4XDo1KlT5mNiYmL0rW99S5L03e9+V4cOHWoysEFBQZowYYIkKTU1Vffee6/5tfrtX3zxhS6//HJdccUVks4sHGvXrtWMGTN0zz33aMqUKQoNDT3nkL6zjRw50lwcvvWtb5nnQV111VX69NNPz/v96tq1q66//nq99957ioyM1KlTpxrtCj799NPnHacxycnJ+u1vf6vS0tIGX6v/hXG2d999VyNHjtRFF12khIQEvfDCC8rKyjIbEA888IBOnjypuro6bdiwocnnXbFihQYPHqwjR47olltu0ejRo9WnTx95PB4lJSVJOvO9z83NNRe82267TVVVVbb5jzE56ficbNq0Sffff7/uuusubdiwocEbvObUv86lM/+puuuuuxo8xjAMORyOCxr3bDNmzNCsWbPO2VZTU6OtW7cqKytL3bt319ChQ7V9+3b96Ec/Mh9zvuzbCTnr+Jw1Ztq0aUpLSztv866ev1/v3zwE3w7IgXVy0BHvyxpbg+rXpubyUH8KyTed7/2cdKZZmJqaqj/84Q9mo99uyJ11ciedOfJo1KhRKiwsVEFBgf785z+b/yBqTFFRkS699FL16dNHERERWrBggY4dO6YePXqYj7nrrruUkZFxznrUGKuvOzQw1PQPqantdXV1eu211xr8gluyZIlGjhyp559/XgcPHtS0adPMr4WEhJgfO51O1dbWtnh+Z/8iv+iii847N0k6duyYKisrdfr0aVVXV5u/iM529nyCgoLO+c9QS+Y2depU/e53v1NkZKQmTZrU6GN86TgGBwfrjjvu0O9///tm5yCdWZDqDyGTzlwLYMeOHea5aitWrNDAgQP1xBNPKDs7W88999x5x+vZs6euvvpq/etf/1JERIQ2b96sLVu26He/+50Mw9DRo0dVUVGh7t27KygoqNH/YAcqctLxOfnhD3+ohx56SG+88YZ27dqlSZMmKT4+3jwM1h+ioqIanLNfWlqqrl27qnv37rryyiu1e/duDRw4sMVjFhYWqqKiwjzV6uTJkwoLCztnAb3Q7AcqctbxOWvMxRdfrOTk5BYdcefP13tFRYUOHTqk73znO80+byAhB9bJQXu/L+vXr5/+85//mO+16n3yySfmmJs2bWrRXOrV1tae9/1cvenTp2vSpElNfv8CHbmzTu7qhYeHa8qUKZoyZYqSk5P12WefNflYj8ejL774wsxJRUWFNm/erKlTp5qP6d+/v6Kjo7Vx48bzPu8nn3xinipsRfb56+s8RowYofz8fJ08eVKVlZXKz8/X8OHDFRMTo3feeUdfffWVpP9/obxRo0aZ55tLMq+i/PXXXys8PFySWnX11rq6OvOX89tvv63rrruuwWMiIyN16NAhHThwQJKUm5urESNGSDpzuNx9992nlJQUrVixwud5nK1bt246ceKE+fnQoUNVVlamvLy8Ju9k8PTTT59zIaXGLqjUmJtuukkffPBBsxdTqqio0EcffaT33ntPW7Zs0ZYtW7Rw4ULl5eWd87guXbpo3rx52rVrl3nhzaacPHlSxcXF6tevn95//30NHDhQW7du1ZYtW/Tuu+8qISFB+fn55x0jUJGT5rV1Trp3767bb79dGzZs0AMPPKCPPvpIiYmJrbpo5zelpKToo48+Mq+4XVVVpSVLlpiH1c6aNUurVq0yF+O6ujq9/PLL5x3T4/FoyZIlZk4LCgq0ffv2BhfCamn2Axk5a157rkdnmzFjhv785z83e9E4f73eT5w4ocWLF2vs2LHn/AfNDshB8wL1fVnXrl2VlpamZcuWmX9Aut1unTx5Utdff72uv/561dTU6PXXXzf3KSoq0s6dO5ucV0vfz11yySUaP358kxc6DHTkrnntmbtt27aZR6/897//1dGjR83v6zfV1dXpnXfe0VtvvWVm74UXXmiQPenMURjnuzD1wYMH9dhjj7XooqEdhSMwdOY8n0mTJpkdqilTpujqq6+WdOaHnJ6erqCgIF199dVatmyZHnroIWVnZyslJUW1tbUaPny4srOzNXv2bGVmZurll1/W9ddf7/N8unbtqr1792rSpEnq3r17o4cehYaG6tFHH9V9991nXrTm1ltvldvtVnBwsDm3W265RR988IH69u3r83wk6eabb9add96pb3/72+Y57YmJiSouLvb7G6uQkBClp6dr6dKl52w/+1zLAQMGmAvZ2d3TMWPG6PHHH29w27mwsDDdcccdevHFF/XII480eM76awPU1NTopptu0qBBg5SZmdng/MyEhAStW7fugt70Bgpy0rz2zMnVV1+t3/zmN6qurjYvbCadObVp//79qqysVGxsrJYuXarRo0e3eNywsDC98MILWrJkiRYvXqy6ujqlpqaaC9nAgQO1YMEC/fznP9fJkyflcDh0ww03mPuffQ0MSXriiSf0t7/9zbwtmHTmZ3fdddfp3XffPee5m8q+nZCz5rVnzs7Ws2dPxcfH65VXXjG3nTx5UrGxsebnt912W6tf79OnT5dhGKqrq1N8fLzuvvvutinIwshB8wL5fdnPf/5zLV++XOPGjVNQUJAiIyP1/PPPm/+Bf+655/TII49o9erVCg0NVZ8+fcwLKX7zGhiTJ0/WJ5980uL3c3fccYfWrl3rw3ep8yN3zWvP3G3fvl1Lly41j7J98MEH9e1vf1v79+/XBx98cM7ac/vttys8PPycBseIESP0wAMPqLy8/Jxxo6KidPXVV+uTTz4xt/373/9WWlqaqqur1a1bN/3kJz+x7AU8JclhWP0kFxsaNmyY/vnPf3b0NJr105/+VDNmzFBMTExHTwU2RE6AtkfOAHIAdARyh6ZwCgku2PHjxzVu3DiFhoYSVqAJ5ARoe+QMIAdARyB3HYcjMDrQ1KlTGxxS99hjj7XoPr+AXZAToO2RM4AcAB2B3OFC0cAAAAAAAACW1+wpJNXV1ZoyZYomTpyopKQkPfPMM5LOXIF25syZSkhI0MyZM3Xs2DFzn1WrVik+Pl7jxo1TYWGhuX337t1KSUlRfHy8lixZ0qJ7zO7du1eSVFJScqG1BQQ71m3HmiX/112fnbYYuzOwY82SPetui5pZe0o6egrtzo41S6w9/mbHmiV71s3a4392rNuONUutq7vZBkZISIhycnL01ltvye12q7CwULt27dLq1asVExOjzZs3KyYmRqtXr5Yk7du3Tx6PRx6PR2vWrNHixYvN2yAtWrRI2dnZ2rx5s0pKSrRt27ZmJ1h/u7Jv3n7MLuxYtx1rlvxf99m3+rPj99SONUv2rLstambtsV/ddqxZYu3xNzvWLNmzbtYe/7Nj3XasWWpd3c02MBwOh7p16ybpTKhOnz4th8OhgoIC89ZDaWlp5r2UCwoKlJSUpJCQEPXt21f9+/dXUVGRysvLVVFRoWHDhsnhcCgtLU0FBQU+TxwAAAAAANhHi+5CUltbq9TUVP3gBz/QD37wAw0dOlSHDx+Wy+WSJLlcLh05ckSS5PV6FRERYe4bHh4ur9fbYHtERIS8Xq8/awEAAAAAAAEquCUPcjqdys3N1fHjx3XPPffos88+a/KxjV3XwuFwNLm9OdXV1SouLlZVVZWKi4tbMt2AYse67Viz1LK6o6OjWzxefXZaOnagsWPNkj3r9nd2JNYeO9Ztx5ol1h5/s2PNkj3rZu3xPzvWbceapdblp0UNjHoXX3yxRo4cqcLCQvXq1Uvl5eVyuVwqLy9Xz549JZ05sqKsrMzcx+v1yuVyNdheVlZmHsFxPqGhoYqOjlZxcfEF/xIIBHas2441S/6vuz47bTF2Z2DHmiV71t0WNbP22K9uO9Yssfb4mx1rluxZN2uP/9mxbjvWLLWu7mZPITly5IiOHz8u6Uyn5P3331dkZKTi4uLkdrslSW63W2PGjJEkxcXFyePxqKamRqWlpSopKdGQIUPkcrnUrVs37dq1S4ZhnLMPAAAAAADA+TR7BEZ5ebkyMzNVW1srwzA0fvx43Xjjjbr22ms1b948rV+/Xr1799bKlSslSVFRUUpMTNSECRPkdDq1cOFCOZ1OSWfuQpKVlaWqqirFxsYqNja2basDAMDCqk7VKqyL0zLjAAAAWFmzDYyBAweaR1qc7dJLL1VOTk6j+2RkZCgjI6PB9sGDBysvL+/CZwkAQAAK6+LUdzI9rR6nZFmSH2YDAABgbS26CwkAAAAAAEBHooEBAAAAAAAsjwYGgFarOlVrqXEAAAAABJ4Luo0qADSG8/gBAAAAtDWOwABgGRzJAQAAAKApHIEBwDI4kgMAAABAUzgCAwAAAAAAWB4NDAAAAAAAYHk0MAAAAAAAgOXRwAAAAAAAAJZHAwMAAAAAAFgeDQwAAAAAAGB5NDAAAAAAAIDl0cAAAAAAAACWRwMDAAAAAABYHg0MAAAAAABgec02ML788kulp6crMTFRSUlJysnJkSQ9++yzGj16tFJTU5WamqqtW7ea+6xatUrx8fEaN26cCgsLze27d+9WSkqK4uPjtWTJEhmG0QYlAQAAAACAQBPc3AOcTqcyMzN1zTXXqKKiQpMnT9YPf/hDSdKMGTM0a9ascx6/b98+eTweeTweeb1ezZw5U5s2bZLT6dSiRYuUnZ2ta6+9Vnfeeae2bdumG264oW0qAwAAAAAAAaPZIzBcLpeuueYaSVL37t0VGRkpr9fb5OMLCgqUlJSkkJAQ9e3bV/3791dRUZHKy8tVUVGhYcOGyeFwKC0tTQUFBf6rBAAAAAAABKxmj8A428GDB1VcXKyhQ4fqH//4h9auXSu3261BgwYpMzNTPXr0kNfr1dChQ819wsPD5fV6FRwcrIiICHN7RETEeRsh9aqrq1VcXKyqqioVFxdfyHQDgh3rtmPNUsvqjo6ObvF49dlp6ditcSHzai+8juzD39mR2m/t8Wd2/DlPXkf20ZnXHiuyY82SPevuzGuPVdmxbjvWLLUuPy1uYJw4cUJz587VggUL1L17d9166626++675XA4tHLlSi1btkyPPvpoo9e1cDgcTW5vTmhoqKKjo1VcXGzJP5Lamh3rtmPNkv/rrs9OW4zdGYSFhdmuZsmeP+u2qLkzrj3+boZ0lrr9xY41S6w9/mbHmiV71s3a4392rNuONUutq7tFdyE5deqU5s6dq5SUFCUkJEiSLrvsMjmdTgUFBWnq1Kn6+OOPJZ05sqKsrMzc1+v1yuVyNdheVlYml8vl06QBAAAAAIC9NNvAMAxDDz30kCIjIzVz5kxze3l5uflxfn6+oqKiJElxcXHyeDyqqalRaWmpSkpKNGTIELlcLnXr1k27du2SYRhyu90aM2ZMG5QEAAAAAAACTbOnkHz00UfKzc3VVVddpdTUVEnS/PnzlZeXpz179kiS+vTpo+zsbElSVFSUEhMTNWHCBDmdTi1cuFBOp1OStGjRImVlZamqqkqxsbGKjY1tq7oAAAAAAEAAabaBMXz4cH366acNtp/v9qcZGRnKyMhosH3w4MHKy8u7wCkCAAAAAAC7a9E1MAAAAAAAADoSDQwAAAAAAGB5NDAAAAAAAIDl0cAAAAAAAACWRwMDAAAAAABYHg0MAAAAAABgeTQwAAAAAACA5dHAAAAAAAAAlkcDAwAAAAAAWB4NDAAAAAAAYHk0MAAAAAAAgOXRwAAAAAAAAJZHAwMAAAAAAFgeDQwAAAAAAGB5NDAAAAAAAIDlNdvA+PLLL5Wenq7ExEQlJSUpJydHknT06FHNnDlTCQkJmjlzpo4dO2bus2rVKsXHx2vcuHEqLCw0t+/evVspKSmKj4/XkiVLZBhGG5QEAAAAAAACTbMNDKfTqczMTG3cuFGvvfaa/vSnP2nfvn1avXq1YmJitHnzZsXExGj16tWSpH379snj8cjj8WjNmjVavHixamtrJUmLFi1Sdna2Nm/erJKSEm3btq1tqwMAAAAAAAGh2QaGy+XSNddcI0nq3r27IiMj5fV6VVBQoLS0NElSWlqa8vPzJUkFBQVKSkpSSEiI+vbtq/79+6uoqEjl5eWqqKjQsGHD5HA4lJaWpoKCgrarDAAAAAAABIzgC3nwwYMHVVxcrKFDh+rw4cNyuVySzjQ5jhw5Iknyer0aOnSouU94eLi8Xq+Cg4MVERFhbo+IiJDX6232Oaurq1VcXKyqqioVFxdfyHQDgh3rtmPNUsvqjo6ObvF49dlp6ditcSHzai+8juzD39mR2m/t8Wd2/DlPXkf20ZnXHiuyY82SPevuzGuPVdmxbjvWLLUuPy1uYJw4cUJz587VggUL1L179yYf19h1LRwOR5PbmxMaGqro6GgVFxdb8o+ktmbHuu1Ys+T/uuuz0xZjdwZhYWG2q1my58+6LWrujGuPv5shnaVuf7FjzRJrj7/ZsWbJnnWz9vifHeu2Y81S6+pu0V1ITp06pblz5yolJUUJCQmSpF69eqm8vFySVF5erp49e0o6c2RFWVmZua/X65XL5WqwvayszDyCAwAAAAAA4HyabWAYhqGHHnpIkZGRmjlzprk9Li5ObrdbkuR2uzVmzBhzu8fjUU1NjUpLS1VSUqIhQ4bI5XKpW7du2rVrlwzDOGcfAAAAAACA82n2FJKPPvpIubm5uuqqq5SamipJmj9/vubMmaN58+Zp/fr16t27t1auXClJioqKUmJioiZMmCCn06mFCxfK6XRKOnMXkqysLFVVVSk2NlaxsbFtWBoAAAAAAAgUzTYwhg8frk8//bTRr+Xk5DS6PSMjQxkZGQ22Dx48WHl5eRc4RQAAAAAAYHctugYGAAAAAABAR6KBAQAAAAAALI8GBgAAAAAAsDwaGAAAAAAAwPJoYAAAAAAAAMujgQEAAAAAACyPBgYAAAAAALA8GhgAAAAAAMDyaGAAAAAAAADLo4EBAAAAAAAsjwYGAACdXNWpWkuNAwAA0BaCO3oCAOBvVadqFR0d3eoxwro4/TQjoG2FdXHqO5meVo9TsizJD7MBAABoGzQwAAQcf/wxxx9yAAAAgLVwCgkAAAAAALA8GhgAAAAAAMDymm1gZGVlKSYmRsnJyea2Z599VqNHj1ZqaqpSU1O1detW82urVq1SfHy8xo0bp8LCQnP77t27lZKSovj4eC1ZskSGYfi5FAAAAAAAEKiabWBMmjRJa9asabB9xowZys3NVW5urm644QZJ0r59++TxeOTxeLRmzRotXrxYtbVnrmi+aNEiZWdna/PmzSopKdG2bdv8XAoAAAAAAAhUzTYwRowYoR49erRosIKCAiUlJSkkJER9+/ZV//79VVRUpPLyclVUVGjYsGFyOBxKS0tTQUFBqycPAAAAAADswee7kKxdu1Zut1uDBg1SZmamevToIa/Xq6FDh5qPCQ8Pl9frVXBwsCIiIsztERER8nq9LXqe6upqFRcXq6qqSsXFxb5Ot9OyY912rFlqWd0XcmvQ+uy0dOzWaO0tS62qM74O7Zgff2dHar+1x4rZseuaa8eapc699liRHWuW7Fl3Z157rMqOdduxZql1+fGpgXHrrbfq7rvvlsPh0MqVK7Vs2TI9+uijjV7XwuFwNLm9JUJDQxUdHa3i4mJLvtFra3as2441S/6vuz47bTG2XXTG75kdf9ZtUbOd1x671m3HmiXWHn+zY82SPetm7fE/O9Ztx5ql1tXt011ILrvsMjmdTgUFBWnq1Kn6+OOPJZ05sqKsrMx8nNfrlcvlarC9rKxMLpfLpwkDAAAAAAD78amBUV5ebn6cn5+vqKgoSVJcXJw8Ho9qampUWlqqkpISDRkyRC6XS926ddOuXbtkGIbcbrfGjBnjnwoAAAAAAEDAa/YUkvnz52vnzp366quvFBsbq5/97GfauXOn9uzZI0nq06ePsrOzJUlRUVFKTEzUhAkT5HQ6tXDhQjmdTkln7kKSlZWlqqoqxcbGKjY2tg3LAgAAAAAAgaTZBsaTTz7ZYNvUqVObfHxGRoYyMjIabB88eLDy8vIucHoAAAAAAAA+nkICAAAAAADQnmhgAAAAAAAAy6OBAQAAAAAALI8GBgAAAAAAsDwaGAAAAAAAwPJoYAAAAAAAAMujgQEAAAAAACyPBgYAAAAAALA8GhgAAAAAAMDyaGAAAAAAAADLo4EBAAAAAAAsjwYGAAAAAACwPBoYAAD4oOpUbUdPAQAAwFaCO3oCAAB0RmFdnPpOpqdVY5QsS/LTbAAAAAIfR2AAAAAAAADLa7aBkZWVpZiYGCUnJ5vbjh49qpkzZyohIUEzZ87UsWPHzK+tWrVK8fHxGjdunAoLC83tu3fvVkpKiuLj47VkyRIZhuHnUgAAAAAAQKBqtoExadIkrVmz5pxtq1evVkxMjDZv3qyYmBitXr1akrRv3z55PB55PB6tWbNGixcvVm3tmXOEFy1apOzsbG3evFklJSXatm1bG5QDAAAAAAACUbMNjBEjRqhHjx7nbCsoKFBaWpokKS0tTfn5+eb2pKQkhYSEqG/fvurfv7+KiopUXl6uiooKDRs2TA6HQ2lpaSooKPB/NQAAAAAAICD5dBHPw4cPy+VySZJcLpeOHDkiSfJ6vRo6dKj5uPDwcHm9XgUHBysiIsLcHhERIa/X26Lnqq6uVnFxsaqqqlRcXOzLdDs1O9Ztx5qlltUdHR3d4vHqs9PSsVvjQubVmXTG16Ed8+Pv7EgtW3sC+XXP68g+OvPaY0V2rFmyZ90dtfYEMjvWbceapdblx693IWnsuhYOh6PJ7S0RGhqq6OhoFRcXB+ybxfOxY912rFnyf9312WmLse2iM37P7Pizboua7bz22LVuO9Yssfb4mx1rluxZN2uP/9mxbjvWLLWubp/uQtKrVy+Vl5dLksrLy9WzZ09JZ46sKCsrMx/n9XrlcrkabC8rKzOP4AAAAAAAAGiOTw2MuLg4ud1uSZLb7daYMWPM7R6PRzU1NSotLVVJSYmGDBkil8ulbt26adeuXTIM45x9AAAAAAAAmtPsKSTz58/Xzp079dVXXyk2NlY/+9nPNGfOHM2bN0/r169X7969tXLlSklSVFSUEhMTNWHCBDmdTi1cuFBOp1PSmbuQZGVlqaqqSrGxsYqNjW3bygAAAAAAQMBotoHx5JNPNro9Jyen0e0ZGRnKyMhosH3w4MHKy8u7wOkBAAAADVWdqlVYF6dlxgEAtD2/XsQTAAAAaA9hXZz6Tqan1eOULEvyw2wAAO3Bp2tgAAAAAAAAtCcaGAAAAAAAwPJoYAAAAMC2qk7VWmocAEDTuAYGAAAAbItraQBA58ERGAAAAAAAwPJoYAAAAAAAAMujgeFnnEcJAAAAAID/cQ0MP+M8SgAAAAAA/I8jMP4PRzwAAAAAAGBdHIHxfzhyAgAAAAAA6+IIDAAAAAAAYHk0MAAb49QpAAAAAJ0Fp5AANsapU02rOlWrsC5Oy4wDAAAA2B0NDABoBM0dAAAAwFpa1cCIi4tTt27dFBQUJKfTqQ0bNujo0aO6//77dejQIfXp00dPP/20evToIUlatWqV1q9fr6CgIP3qV7/S6NGj/VIEAABovfojhqKjo/0yDgAAgD+1+giMnJwc9ezZ0/x89erViomJ0Zw5c7R69WqtXr1aDz74oPbt2yePxyOPxyOv16uZM2dq06ZNcjp5gwMAgBVw5BEAALAyv1/Es6CgQGlpaZKktLQ05efnm9uTkpIUEhKivn37qn///ioqKvL30wMAAAAAgADU6gbGrFmzNGnSJL322muSpMOHD8vlckmSXC6Xjhw5Iknyer2KiIgw9wsPD5fX623t0wMAAAAAABto1Skk69atU3h4uA4fPqyZM2cqMjKyyccahtFgm8PhaPY5qqurVVxcrKqqKhUXF7dmuufV2vN920J71G1FdqxZalndF/I6rc/O+ca24us+ELXn69mO+fF3dqSWrT3k5/w62+vQjtmROmbt8RcrZpDXkX101NoTyOxYtx1rllqXn1Y1MMLDwyVJvXr1Unx8vIqKitSrVy+Vl5fL5XKpvLzcvD5GRESEysrKzH29Xq95pMb5hIaGKjo6WsXFxZZcqNqSXeu2Y82S/+uuz05bjI0L057fezv+rNuiZjuvPf7S2b5vdv1Zs/b4V1hYmO1qluz5s2bt8T871m3HmqXW1e3zKSSVlZWqqKgwP96+fbuioqIUFxcnt9stSXK73RozZoykM3cs8Xg8qqmpUWlpqUpKSjRkyBBfnx4AAAAAANiIz0dgHD58WPfcc48kqba2VsnJyYqNjdXgwYM1b948rV+/Xr1799bKlSslSVFRUUpMTNSECRPkdDq1cOFC7kACAAAAAABaxOcGRt++ffXWW2812H7ppZcqJyen0X0yMjKUkZHh61MCAAAAAACb8vttVAEAAAAAAPyNBoZFVZ2qldT6i6DVjwMAAIC2U3Wq1i8X4+O9GwA0rVV3IUHbCevi1HcyPa0ep2RZkh9mAwAAgPPhvRsAtD2OwAAAAAAAAJZHAwMAAAAAAFgeDQwAAAAAAGB5NDAAoA3562JsXNQNQKDg9xkAwFdcxBMA2hAXdQOAc/F7EQDgK47AAAAAAAAAlhcQDQwORQQAAAAAILAFxCkk/jgUkcMQAQAAAACwroA4AgMAAAAAAAQ2GhgBjjsgAADaG2sP4Dt/vO7JDoBAFRCnkKBpXOkbANDeWHsA33FqNAA0jSMwAKATaOl/06Kjo/0yDgAAAGA1HIEBAJ0A/9EGAACA3bX7ERjbtm3TuHHjFB8fr9WrV7f308NHnM8MBAayDACBj9/1AAJVux6BUVtbq+zsbL388ssKDw/XlClTFBcXpyuvvLI9pwEf8N9fIDBYKctVp2oV1sXZ6nH6fSey1WPAmvzxGvHX6wzoTPz1u37Pw+Nb9LiWnL5IDgH4Q7s2MIqKitS/f3/17dtXkpSUlKSCggIaGDbSkgWsvRZBq40DdCb+eN1bqZkCa/LHa4Q/wADftXcjpDlWamrSPAc6hsMwDKO9nuydd95RYWGhli5dKklyu90qKirSwoULm9xn165dCg0Nba8pApYWHBysqKioFj2W7AD/34VkRyI/wNlYewDfsPYAvmsqP+16BEZjvRKHw3Hefa699to2mg0Q2MgO4DvyA/iG7AC+Iz9A89r1Ip4REREqKyszP/d6vXK5XO05BQAAAAAA0Am1awNj8ODBKikpUWlpqWpqauTxeBQXF9eeUwAAAAAAAJ1Qu55CEhwcrIULF2r27Nmqra3V5MmTL+i8MAAAAAAAYE/tehFPAAAAAAAAX7TrKSQAAAAAAAC+oIEBAAAAAAAsr12vgeGrbdu2aenSpaqrq9PUqVM1Z86cjp5Su4iLi1O3bt0UFBQkp9OpDRs2dPSU/C4rK0vvvfeeevXqpby8PEnS0aNHdf/99+vQoUPq06ePnn76afXo0aODZ+pfjdX97LPP6vXXX1fPnj0lSfPnz9cNN9zQquchO4GbHcme+Wmv7Ej2zA/ZITtkx3fkh/yQH9+QHbJzQdkxLO706dPGmDFjjH//+99GdXW1kZKSYuzdu7ejp9UubrzxRuPw4cMdPY02tXPnTmP37t1GUlKSuW358uXGqlWrDMMwjFWrVhmPPfZYR02vzTRW9zPPPGOsWbPGb89BdgI7O4Zhz/y0R3YMw775ITtkp7Xsmh3DID/kp/Xsmh+yQ3YuhOVPISkqKlL//v3Vt29fhYSEKCkpSQUFBR09LfjJiBEjGnQZCwoKlJaWJklKS0tTfn5+B8ysbTVWt7+RncBnx/y0R3Yk8hPoyE7bITuBj/y0HfIT2MiOf1i+geH1ehUREWF+Hh4eLq/X24Ezal+zZs3SpEmT9Nprr3X0VNrN4cOH5XK5JEkul0tHjhzp4Bm1n7Vr1yolJUVZWVk6duxYq8YiO/bLjmTf/PgzO5K980N2yE5r2Dk7EvmRyE9r2Dk/ZIfstJTlGxhGI3d5dTgcHTCT9rdu3Tq9+eab+v3vf6+1a9fqww8/7OgpoQ3deuut+utf/6rc3Fy5XC4tW7asVeORHbJjF/7OjmTf/JAdeyE7/kV+7IX8+A/ZsZfWZsfyDYyIiAiVlZWZn3u9XrNLFejCw8MlSb169VJ8fLyKioo6eEbto1evXiovL5cklZeXmxd4CXSXXXaZnE6ngoKCNHXqVH388cetGo/s2C87kj3z4+/sSPbND9khO61l1+xI5If8kB9fkR2ycyEs38AYPHiwSkpKVFpaqpqaGnk8HsXFxXX0tNpcZWWlKioqzI+3b9+uqKioDp5V+4iLi5Pb7ZYkud1ujRkzpmMn1E7qf3lJUn5+fqt/3mTHftmR7Jkff2dHsmd+yA7ZITu+Iz/kh/z4huyQnQv9eTuMxo5VspitW7fqkUceUW1trSZPnqyMjIyOnlKbKy0t1T333CNJqq2tVXJyckDWPX/+fO3cuVNfffWVevXqpZ/97GcaO3as5s2bpy+//FK9e/fWypUrdckll3T0VP2qsbp37typPXv2SJL69Omj7OzsVnfdyU7gZkeyZ37aKzuS/fJDdsgO2fEd+SE/5Mc3ZIfsXGh2OkUDAwAAAAAA2JvlTyEBAAAAAACggQEAAAAAACyPBgYAAAAAALA8GhgAAAAAAMDyaGAAAAAAAADLo4EBAAAAAAAsjwZGgEpPT9fHH38sSbrzzjt1/Phxv429bt06ud1uv40HWA35AXxDdgDfkB3Ad+THXoI7egJoe7///e/9Ot6tt97q1/EAKyM/gG/IDuAbsgP4jvwEPhoYFnLw4EHNnj1b1113nf71r39pwIABmjx5sp555hkdOXJEK1as0JVXXqmHH35Yn332mWpra3Xvvfdq7NixqqqqUlZWlvbt26fvfve7qqqqMseNi4vT+vXr1bNnT919990qKytTdXW1pk2bph//+MeSpGHDhmnatGl69913FRYWphdeeEGXXXZZo/N89tln1bVrV82aNUvp6ekaMmSIduzYoa+//lpLly7V8OHDVVtbqxUrVuhvf/ubJOnmm29Wenq6PvjgAy1fvly1tbUaNGiQFi9erJCQEMXFxSk5OVk7duzQqVOn9PDDD+vJJ5/UgQMHNGvWLPOXx5o1a7Rx40bV1NQoPj5ec+fObeOfCjoL8kN+4BuyQ3bgG7JDduA78kN+fGbAMkpLS43o6Ghjz549Rm1trXHTTTcZmZmZRl1dnfHXv/7VyMjIMJ544gnD7XYbhmEYx44dMxISEowTJ04YL730kpGZmWkYhmEUFxcb0dHRRlFRkWEYhnHjjTcahw8fNgzDML766ivDMAzj5MmTRlJSknHkyBHDMAzjqquuMgoKCgzDMIzly5cbzz//fJPzfOaZZ4w1a9YYhmEYP/nJT4xHH33UMAzDeO+994zp06cbhmEYa9euNe69917j1KlT5vNWVVUZsbGxxv79+w3DMIwHH3zQePnll805rl271jAMw1i6dKmRnJxsfP3118bhw4eN66+/3jAMwygsLDR+9atfGXV1dUZtba0xZ84cY+fOna34jiOQkB/yA9+QHbID35AdsgPfkR/y4yuOwLCYyy+/XAMGDJAkXXnllYqJiZHD4dCAAQN06NAhlZWVacuWLXrppZckSdXV1fryyy/14YcfKj09XZI0cOBAc4xv+uMf/6i//vWvkqQvv/xSBw4c0KWXXqouXbroxhtvlCQNGjRI27dvb/Gc4+PjJUnXXHONDh06JEn64IMPdMsttyg4+MxL7JJLLtGePXt0+eWX64orrpAk3XTTTVq7dq1mzJghSRozZowk6aqrrlJlZaW6d+8uSQoNDdXx48e1fft2bd++XWlpaZKkyspKlZSUaMSIES2eKwIb+SE/8A3ZITvwDdkhO/Ad+SE/vqCBYTEhISHmx0FBQebnDodDtbW1cjqdeuaZZxQZGdlgX4fDcd6xd+zYoffff1+vvfaaLrroIqWnp6u6ulqS1KVLF3P/oKAg1dbWXvCcz97PMIwG8zEM47zjdOnSxRznm9+H06dPyzAMzZkzR7fcckuL5wZ7IT/kB74hO2QHviE7ZAe+Iz/kxxfchaSTGTVqlF599VUzFJ988okkacSIEXr77bclSZ999pk+/fTTBvt+/fXX6tGjhy666CJ9/vnn2rVrV5vN84c//KH+/Oc/6/Tp05Kko0ePKjIyUocOHdKBAwckSbm5uRfURRw1apTeeOMNnThxQpLk9Xp1+PBh/08eAYv8kB/4huyQHfiG7JAd+I78kJ/G0MDoZO6++26dPn1aEydOVHJyslauXCnpzBVyKysrlZKSojVr1mjIkCEN9o2NjdXp06eVkpKilStX6tprr22zeU6dOlW9e/fWxIkTNXHiROXl5Sk0NFSPPvqo7rvvPqWkpMjhcFzQlX1HjRql5ORk3XLLLUpJSdHcuXPNUAMtQX7ID3xDdsgOfEN2yA58R37IT2McRnPHtwAAAAAAAHQwjsAAAAAAAACWx0U80aTf/va3euedd87ZNn78eGVkZHTQjIDOg/wAviE7gG/IDuA78tN5cAoJAAAAAACwPE4hAQAAAAAAlkcDAwAAAAAAWB4NDAAAAAAAYHk0MAAAAAAAgOX9P73VAuwnCMLoAAAAAElFTkSuQmCC\n", "text/plain": [ "<Figure size 1080x216 with 5 Axes>" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "# takes numeric only?\n", "# plt.figure(figsize=(20,20))\n", "g = sns.FacetGrid(df_USAhousing, col=\"ocean_proximity\")\n", "_ = g.map(plt.hist, \"median_income\")" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "You can see below that this is the state of California!" ] }, { "cell_type": "code", "execution_count": 19, "metadata": {}, "outputs": [ { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAX8AAAD5CAYAAADP2jUWAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjQuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8rg+JYAAAACXBIWXMAAAsTAAALEwEAmpwYAABBGklEQVR4nO2dfXQU5b3Hv7ObyWYT0IReqGULKigh0pREtKK0WHKJ4I3AFrEcEI+ot2DVcw20ocFaBUEJYhWFau29Ih5BD4I1XqAU0aD1oOhFE0RO4FJQIstFwGQJSTbJ7mbuH8kss7vzzMvOzL7+Pv9AZndmnpnd/T7P/F45QRAEEARBEBmFLdEDIAiCIOIPiT9BEEQGQuJPEASRgZD4EwRBZCAk/gRBEBkIiT9BEEQGkmVk5x07dmDt2rU4evQoNm/ejOLiYgBAS0sL/uM//gNffvklfvGLX+CRRx6J2vfee+/FiRMnsG3bNk3namhogMPhMDLclKSrqysjr1sK3QO6B5l+/UDs96CrqwslJSVR2w2J/4gRI7BmzRo8+uijYdsdDgcefPBBHDlyBEeOHIna75133kFeXp6uczkcDhQVFRkZbkrS2NiYkdcthe4B3YNMv34g9nvQ2Ngou92Q2Wf48OEYNmxY1Pbc3Fxcc801srNUe3s7Xn75Zfz61782cmqCIAjCAHG3+T/77LO4++67kZOTE+9TEwRBEH2omn3mzp2Ls2fPRm2vrKzExIkTdZ2ssbERTU1NeOihh3DixAld+3Z1dTEfX9KZzs7OjLxuKXQP6B5k+vUD5t8DVfFfv369aSerr6/Hl19+ibKyMgQCATQ3N+OOO+7Aq6++qrov2fwzF7oHdA8y/foB823+hhy+epk9ezZmz54NADhx4gTuvfdeTcJPEARBmIsh8d+1axeWLVuG5uZmzJ8/H0VFRXjppZcAAGVlZWhra4Pf78e7776LdevW4YorrjBl0JlMbb0Hq3YexkmvD4PznaiaVAh3qSvRwyIIIsUwJP7l5eUoLy+Xfa2urk5x3x/+8IeaY/yJXmrrPVj81wPw+YMAAI/Xh8V/PQAANAEQBKELyvBNIVbtPBwSfhGfP4hVOw8naEQEQaQqcbX5E8Y46fUpbieTEEEQWiHxT0KkIj4wLwsP3XIR3KUuDM53wiMzAQzOd5JJiCAIXWS0+Fu9Uq6t92Dp1oNo6fADADgAAgA7xyEoCHDJnDNSxE+3B0IiXjWpMOw1AHDydlRNKlQ0CZH4EwQRScaKv9Ur5dp6D6q27Ic/eKFFsvi/YF/bZLlzKon4nuqy0HsiJ6wFmxpkx8EyFUm5/T8/xp6jzaG/xw0fgI2/ul7TdRIEkZpkpPjX1nuw4I0GRLauN3OlvGrn4TDhZxF5TjmzDnBBxN2lLtnxKZmElIgUfgDYc7QZVz60HatuK6GnBoJIUzIu2kdckUcKvwhLfPWi5zhShy3HeI+aiFdNKoSTt4dtE01CSkQKv4i/B1j81wOorfco7k8QRGqSceKvtiK3cyz51UZtvQclS9/RtY8o7Kt2HobcyDhAVcTdpS6smF4MV74THABXvhMrphcbWrlTGClBpC8ZZ/ZRs4EHWY8EGoj0I2hBujpnjU2ANj8EyyRkBC0+A4IgUo+MW/mrmU9cKq8rIeesVUO6OmeNzciY1HBkKX8F1O4XQRCpScaJf9WkQvB2edMOb+NUzStK6Fkl59g5fF1TEbZSl7PbO+zGxqTGylt/DBvD0qXFZ0AQRGqScWYfUWyl8fcAkO/ksWTqqCiziZ5cAFbEDXAhxj8ytj/y+LeOcWH3oTOhv2cX9zNkylEbvzTE1OP1KeYgEASRPmSc+APabeN6cwHkkrAAoCCXx6NT5CeWyOO/+ZknzBRkpHmD1vFb4SsgCCK5yTizjx70FlKTi7hZPbME9Y/cJCuuVhdqo0JwBEGwyMiVv1bUCqnJoWcVHcvx9WD18QmCSF1o5a8AK9LFrAiYVD8+QRCpC4m/ArFmzYrU1nswrqYOl1dvx7iauqhsWaPHV8Pq4xMEkbqQ2UcBaSSM3sqfWpytRo5v9fgJgkhvMl78tYRCxiKWWkssWx1pQ5E8BEHIkdHiX1vvQaWkFLLH6wv9bVQwydlKEEQyk3HiL670lapuVm5qMGwqibXEMkEQRDzIKPG/7vFd+PZ8t6b3isIdaavXmvGr1HWLIAgi0WSM+Jc//b5m4Y/E5w/id29+EWYiAi6YiZZuPRiVwWuls9XK9pPUBJ4gMoOMEf8jp9sN7d8V6GG+1tLhN1w2QavoWtl+kprAE0TmQHH+JmGkbIIouh6vDwIuiK5cFy0rSzZQOQiCyBxI/E0k1kgePaJrZRQRRSgRROZA4m8iAoDhi/+Gh2sP6NpPj+haWbKBykEQROaQMeJ/5aC8uJwnKAjYsLdJ1wSgR3StLNmg59hqpSsIgkhuMkb8dy38Ob7fPztu59u4t0mzOOoRXSsates9th4fBUEQyUnGRPsAwCe/L4/K6rUKURQB9agZpbDQxsZWy8caORa1iURr6QqCIJKXjBJ/EbFVYTxRE0eruotZgR4fBeUNEERyYsjss2PHDlRUVGDkyJE4cOCCjbulpQV33HEHSktL8dhjj4Xt093djT/84Q+YNGkSJk+ejJ07dxoZgi5E4dQr/Iz+5roxI2omGcIxtfooyDxEEMmLIfEfMWIE1qxZg2uvvTZsu8PhwIMPPohFixZF7fPnP/8ZAwYMwM6dO/G3v/0tal8rkRNOkXwnz9xPbLzO9b3PFuNsYCRqRnSwsmoSxTMcU6uPIhkmKoIg5DFk9hk+fLjs9tzcXFxzzTVoamqKeu3NN9/Ejh07AAA2mw0DBgwwMgRdKAnkkqmjmAXfXPlO7KkuC61ke2K0GE0YOZD5mpJ5pLbeg6ot++EPsk8cz3BMraUrKG+AIJKXuNr8W1t7nZfPPvssPv30UwwZMgSPPPII/uVf/iUu52dV2gR6hUytGJvSk4MWNuxtwoa9FyZEV59oAmDa8QtzgKVbDyoKPxA+scTDzq7FR0GVTQkieVEV/7lz5+Ls2bNR2ysrKzFx4kRdJwsEAjh16hSuvvpqLF68GC+//DJWrlyJVatWqe7b1dWFxsZGXeeTUnfsPM77upivn/T6UJjTigfGDsArn7fgTHsAA/OycOfVBSjMaUVjY6vpK1axMNxFDht8/vDaQT5/EE9s+xIv3jIILR1+1WP9d/0J3F6Yhbpj5/HcR2fR1TdZeLw+/G7LfnhOelA2rL+p41djdnE/PPdRZ2gsAOCwc5hd3E/XZ9nZ2Wnos08HMv0eZPr1A+bfA1XxX79+vWknKygogNPpRHl5OQBg8uTJ2LJli6Z9HQ4HioqKYjpvbb0Ha/cejxJYKYPznSgqKkJREXB/Bes9/6fYByBWWrvkx3WmPYCcnBzNxygqKsK/v10XJrYA0BUU8NqBNtxf8RPDY9VDURHgGhz7UwhFCl2gsbEx5u9/OpDp1w/Efg9YE0ZczT4cx2HChAn45JNPcP311+Pjjz9m+g3MRM1cw9s4dHQHcHn1dll7uyhA+bk8eBsHf6xGf52I5pF8Jw+vT331DySfnT3WNpLJENJKEOmMoWifXbt2Yfz48aivr8f8+fNxzz33hF4rKytDTU0N3nrrLYwfPx7//Oc/AQC//e1vsXbtWkyZMgVvv/02qqurjV2BBpSEj+N6SzK0dPijwhEjQxVbOvwA1yvGHIBc3roEaamvYdRgdXONGICULvV5KFKIIKzF0Mq/vLw8ZMKJpK6uTna7y+XCxo0bjZxWN0qOXkHoDeWUIhWZSAHyBwWc7wxAAJhmpN4wSEHRzKTGrWN6V8x/2u7BnqPNqu8XryFdOogl2xMMQaQbGZHhWzWpUDVUMhIlkRGTxFhH8/mDyMu2M17Vxoa9Tdi2///Q1qnN3FOQ25unYGUHsXhCkUIEYS0ZIf4A2ErNQBSZWB287d2xh4SKaLXzA71PMCKx2tmTiXR5giGIZCUjxH/VzsO6nbTtXQHcMvoHePMzj6HY/nhxTjJRxBIlk2yRNenyBEMQyUpGiL+anZi3c70RPxIbvdfnx6b/+SZ8SZ3EiE8qsUTJmBlZY+YkIj7BUJgfQZhPRtTzV7ITcwB+clkBugLRIu8PClDz2YpRNnau93+ufCecFkYBscYgZvjGEiVjVmQNFXIjiNQhI1b+cvZjEQHAR0eb9boEAPQ6WR+dMipqZVv62DuGIn30IgB48zMPrrl0QExRMmZF1lCdf4JIHTJC/EXhYTVxidWw0+nvwb7jzVFmDi3lGMzG5w/iN2/sx8WMhDAbx6G23iMrwqzImvxcdqVTOSg8kyBSh4ww+4h2aLPx+YPYuLcpzMxRtWW/6efRSlAQ0N4dAC9TczooCEwTTNWkQvD26H3aOgO6TDbpkmBGEJlA2ou/1A5tBZFPDXpyCazAHxTQLycr5IOQwrLju0tdyMuOfgj09wio3NSguUG7lc3lCYIwl7Q3+xgtw5yKtHT4md3HPF4fxtXURUXjnFPIKdAa/UPhmQSROqS9+GesvZkD05kR2Vh+3/Fm2FT6Gmt13KZDghlBZAJpb/bR67RMF7SmJ4h+Cy19jTN2IiWINCStV/7lT7+fkMibVEOrlyIVHLfJlqlMEMlK2or/7f/5MY6cbk/0MNKKZHfcUg8AgtBO2pp9tJRBJrSTl21PegGlHgAEoZ20FX/CXHh78n9VKMmMILST/L9oIinQU146UVCSGUFoJ21t/o4sG7oC8auvk+7Y+8pDJHOpaOoBQBDaSduV/8pbf5zoIaQVYnkIPRU7413l013qworpxXDlO8Ght8LqiunFSe+rIIhEkLYrf3epi1nIjdCPneN0V+xMRJVPSjIjCG2k7cofAL6uqWCWOSDCUeo57OTtzCSweJSKJgjCfNJa/AHgq5oKfF1TgdUzSxDnHispQ0Euj8gul+KkKZpOXDE4U8kBSxDJS8bIobvUhSNPVGDc8AGJHkpSwds5CAKizDMCeoV/T3UZ3KWumCp2UpVPgkheMkb8RTb+6nrMGTs00cNIGvKys5gVPaXmmVicqeSAJYjkhROE1OhQHu8m3rX1Hiz574MpEd9uBA7sTl52jkOPIJgSonn7f34clXVtA/D0zBLV41IDd7oHmX79QOz3gLVf2kb7GCUyakSMV48USRsHXD9sQMqWkxCFXa7Hsejk9Xh9qNzUgH3Hm7HcXazr+LX1HvzuzS9kcy56cKG1ppaJhYq2EYR5kPhrRCmEcFxNXZxHYx7tXQEAwIrpxSFh5ThEOYABYMPeJlxz6QC4S12ahFiM81dLttMyAVDRNoIwl4yz+VtBKocuen3+kIjuqS7DVzUVssIvsmrnYTxcewALNjWoJm/p6aKmlvxFRdsIwlxI/E0g1UMX9Yiox+vDxr1NUT0AfP4gfvPGflxevT3U81fPpKg2BsoZIAhzIfE3gapJhSl/I6Uimu9U7n7GejAICkLYk0COzsQKOaezSLxzBmrrPRhXUxc2mRFEOmFIs3bs2IGKigqMHDkSBw4cCG1vaWnBHXfcgdLSUjz22GNh+2zbtg1TpkzBlClTcM8996C5OTUdpVLcpS48nQRJZHYu9nxmqYgumTrK8Fh8/qDuwnpK449nzkC8axIRRCIwJFcjRozAmjVrcO2114ZtdzgcePDBB7Fo0aKw7YFAAI8//jheeeUVbN26FYWFhdi4caORISQNyZBE1iMIzExcNSaMHBj6v7vUpbr61zYefe9X6iMcz5wB8i8QmYChaJ/hw4fLbs/NzcU111yDpqamsO2CIEAQBPh8PgiCgLa2Nlx66aVGhpB0bPzV9bIx7fFAjLqJpaDd7kNnwv5eMnUUqrbshz8YexqIneM0NYYXUZu4zCjapiVKifwLRCYQV0MFz/NYsmQJpkyZgp/97Gc4evQoZsyYEc8hxIWNv7oeq2eWxPWcvI0zZAKJtLe7S13Iy9a2NsjLtsuaZGZdNyRqO4t4lH3Qas6hmkREJqD66547dy7Onj0btb2yshITJ07UdTK/34/XX38dtbW1GDJkCJYtW4YXX3wR9913n+q+XV1daGxs1HW+RFKYA1QU9sf2w+fjcj5/j4BdDUfx7j/bYj7GZdXbQ/8vucTBLPsQSUd3EL/92UC88nkLzrQHMDAvC3deXYCyYVn4AT8gtJ2VP2DjgAfGDkBhTisaG1ujXu/s7DTls//DW1/B5w8fgM8fxBPbvkRhzoXzzi7uh+c+6kSX5KnHYecwu7gfcxx1x87LXH9/w2MWMesepCqZfv2A+fdAVfzXr19v2snEgQ8d2ltb5+abb8Zf/vIXTfs6HI6US+/+U1ERvHE0Af39f9t0mVmUaDjVpfm9g/OduL/iJ7i/4sK22noP/v3tC+aVZ2b+CAsY5ihBAO6v+Anz+Gak9tfWe3C+W/7enGkPhB2/qAhwDdaeTVxb78HavcdDfoLT7QGs3dsM12DzegtkenmDTL9+wFh5BznimuH7/e9/H0ePHkVzczMGDBiAPXv2MP0G6cLGX12P8qffx5HT7Zafyyzh1wNvjzY3sbJxL3bysrWS4mFOUXLWyp1fj38hEU1rCMIohsR/165dWLZsGZqbmzF//nwUFRXhpZdeAgCUlZWhra0Nfr8f7777LtatW4crrrgC999/P26//XZkZWXB5XJhxYoVplxIoqit92DRlv3olpgIxg0fgI2/uj70966FP8d1j+/Ct+e7EzFEyyjI5fHolFFRAscSQw4COETnCbR3BVBb77FUKJWctXKTl9KqP/J1Vn4COYiJZMaQ+JeXl6O8vFz2tbo6+Xo3s2bNwqxZs4ycNmmorfdgwaaGKDHbc7QZt//nx2ETwOJ/uyqt2kp+XVMREsEFmxrCRJIleh1++bh/aYkJqwq8sUS6IJePEnalGkJyr8tNaOI5CSJZSfXE1ISyaudhZrZrpJ0/3WLEH649wIyciUX0tMbRx5qAxUoSe3RKeEKbWoy/3Ous74DH66PEMCJpIfE3gNpjvbQsQLqZADbsbWKKpJzQakGpvINIrAlYWpPE1GL89X6OlZsaZCcAKh9BJBoq6WwAJXsvEG4yUHtvssLbOAR6BObqNpKTXl9IUOX6H6ihZvs3koClxYnL+pzEp5lYPsdIxy+VpyaSAVr5G6BqUiHUqulIV8O8PfbaO4nAznFYddtozcIPXBBJd6kLe6rLdJebUFrB19Z7YGPU/zHLvq5WQyiWp5rIiYnKRxDJAK38DSCu0iKjfSKRroYXvtGgu+ZNIuBtHPrlZDFj8+WQiiSr85karBW8uFqWC2c1MztY+tQi51AW/9XjvI+cmKh8BJEMkPgbRGpKGFdTp2gySOYJwMYBF+XwOOfz42Inj/buAFo6tPcvdklEMtKsoQfWCp7VGMbOcaoF3vRGB6mZh9ylLl0Tm7RoHqBuWiKIeEBmHxPRUnbYXerC078sQbJZgHoEIM+Rha9qKpDnyNJV0I0DwgRVTwevSDq6AyHnp+gU/bdXjjGFNigIWLXzMNNhalV5Zj3mn92HzoQ5eDu6A+Bt4V+AeNQ2IggpJP4mojWixF3qwtEVFZgzdqiqzyCexBrRIiDcVm/EfNHS0RvzHxlKqoSSoFtlX5f7rNXGJ15LS4cf4Hqb5lhdnpogWJDZx2T0lAVY7i7Gcndx1PZ4lYOIxEhEixjT7i51Mfd35Tuxp7oMpY+9o2hS8vmDeP2Tb3SVq2CVU7DSvh75WbPMfnaOi5qA/EEBeY4sNDx6k+FxEEQs0Mo/Cdm18OfIy9YfJ68V3s4pmh1ijdOv3NSAy6q3o7m9KyqySTy+VnNLLHWKTvZNQNL4+YsZTWmssK+zzH6sayEHL5FISPyTlJIhF1tyXDvHYdWM0Vh12+iQySIv245OfxCVmxowfPHfsO94c5hJoyCX19XZy+fvCfMZcBxw65jeFfLivx7Q5UjWgwBgwaaGMPt+u4p9XU+yldp7WWY/lkmIHLxEIuEEIQGlIGMg00q6Dl/8N9OrdDp5e5RtmdV1bM7YoWEmKSMRPMCF0FE54WfVxjETsatYQS4PQQDO+fzIz+XR1hmAXxJ6JXePAPnrZ703EqV7l8UB/1xRIbPXhX311jFKRzLt9y+HkZLOcvvRyj9JMVv45ZyKtfUeZq+BjZ+Et+A0EsED9DabYa34BcCUnsFKBAUBvJ1DW2cAXp8/5Hj1R8TcspzBRhzH4hOBHAEBuGLxdtnXqJE8YSUk/kmKnZHJGgtiDP6qnYfDTBZKwhU591hpn3blO5HnsD72wB8UosReDrlrNeo4VlqtB4TeLmqXVW9HydJ3QuJOmcCElZD4Jymzrhti2rG8Hd2o2rw/agWpJ6LHDPt0vpOXdSR7vL6kqnskd63x6uvr9flRtXk/aus9lAlMWAqJf5Ky3F2MOWOHmnKs9u6grHlD7elC+pQQawSQlFGD+8ORldxfOVaylZYEPrPw9/QmrlEjecJKkvuXmOEsdxdjUJ515pCgIMCmoP/SpwQAipErWthztFm2jWMykcPL/yTkInluHeOKMqWZxUmvL64TDpF5kPgnOXdeXWDZsV35TmYcvBRpAtWe6jLLxpMMiBnGakLe0R3Apk+/0eWMXT2zRPM4Buc7NWWMU18AIlYowzfJKRvWH6s+PGP6cTloa54iIrUzu1K0N4FWfH05D2IpbgBYuvVgWLSSXOSSWtP2yIqh+bm9hfQifdC8jQudV8wilgvXo74AhBFI/DOIfCcPr88fU1y9gN7yBVWTClE1qdBQzH+q4PH6ULV5P8BBc6E7NWdsZEmI2npP2MSS7+SxZOooTeKtFA1E4k+oQeKfAoiibZSGR29i1p/RgsfrS6sm9FrQEhoqRa8zVk8tqEi0RgNRohghB9n8U4AlU0epv0kjSitT0a48Z+xQQ47dTEVqrokHWqKBKFGMYEEr/xRAXKX9dvN+BGLsAnPloDwA7IqdYsVNKZdXb7e87EI64e8RULmpAb95Yz9mXTdEtmKrFKMrcjnzW2Q00NKtB8k0RMhCK/8UwV3qwj+f+DesnlmCglz9pRDun3AlAH3x6hRPHhtBQcCGvU0Y9cjfY24yExnFU3fsfNQx1KKBaus9zJIalChG0Mo/xZDaiGvrPZpt8OJKT61HrZSqSYVYsKnBktX/RQ47vlg6GUD6PmG0dwfDom+kK31bX6E5KdLSDZFRPM991AnXYI9sYyDWCl6pDARN7ASJfwrjLnVhyX8f1OQMlpp6tDoZ3aUu7DvejI17mwyJs1hRM9/Jg+MAb4cf/Z3Zqs1f0gGWoCvV+JeL4ukKCrpNNUqre0oUI8jsk+IYcQZrSRBa7i7GMzNLwEh8VYS3cVg9swRHV/Saq7oCPWjp8EeZOeRMUbyds7zSZ7zweH2ytnc5Buc7Tavpw1rd5zt5svcTJP6pzr7j8iWZ5ZCKu54oEHepC0eeqMC44QOiXnPytqgoIfHvVbeNVmzq7vMHseS/D8rarlfNGI0lU0eZWt00kWhpYCP6Xsyq6cPy7yyZOooygwky+6Q6r3/yjeb3Lt16UFWMlUwLG391fczjZK1avT5/yPwTmfy0+K8HTO9rkKy4InwvkVE8Drv+MFKWfyfy+JQZnJmQ+Kc4esRRuvqMd7lgJbu+3IRjtHlMKiGu+MV7ICfas4v7xSTMcv6dcTV1FP5JGBP/HTt2YO3atTh69Cg2b96M4uLeuOY9e/bgj3/8I/x+P3ieR1VVFa6/vnfV+OWXX2Lx4sXo7OzEjTfeiN///vfg0uTRPhHYZaJGtMASYy2mhVji06smFTIjk/Q0T0lHpE5h1n1tbGw07Xyse+vx+hQzwFfPLKHJIY0wZPMfMWIE1qxZg2uvvTZse0FBAV544QVs3boVNTU1WLRoUei1JUuW4LHHHsM777yDr7/+Gv/4xz+MDCHj0dv0RbTtxlouONaMUXepi5mfEJmROq6mLi1DP5WQNtgxMxNXzravNMErRV1VbmqIGg/5DlIXQyv/4cOHy26/6qqrQv+/8sor0d3dje7ubni9XrS1taG0tBQA4Ha78d577+HGG280MoyMZrm7GBv2Nqm/sY/Ffz2AfcebsfvQmVBDl6AgRNmcWRgpJvbolFGKGalGm8SnMjYOuu6rlqcvVtXPW8e4Yg7fXbCpAZWbGmSfOMXaT/uON6tmNxOJx3Kb/86dO1FUVITs7Gx8++23uOSSS0KvXXLJJfj222+tHkLao8f04/MHwyaLoCBE2ZyVMOIrUEswyyQ7fySsqh1y91VrKWfWRL370JmYn6zE/ZS+bxv2NoW+Y5FVSrWaDCPfN7u4HyIqWqcViSi+pyr+c+fOxdmzZ6O2V1ZWYuLEiYr7HjlyBE899RTWrVsHABBkvjBa7f1dXV2m2j1Thc7OTtXrnjyiH7Yfjk7/14rPH8QT275EYU6r6nsH5mXhdHtAdruWz6cwB/ivaT+QbGlFY2PveVMp0YvngB4AGis9xwzHAX/a/iluGMzjT9s/xSuft8jef7nPUGmiHsT4HM3G6/PjN280wHOy1xz03Edn0dV30zxeH363ZX/otVc+b8GZ9gD6O2xo7+4J3Vsxwxn4FGXD+ls+ZqPUHTsfupaBeVm48+oCxXHXHTvPvC/S/bRogR5UxX/9+vUxHfjUqVN44IEHsHLlSgwd2tuL9pJLLsGpU6fC3jNo0CBNx3M4HFHNLDIBuSYekfypqAgFtQd0mX8iOd0e0HR/H7rlIlnTzUO3/AhFRbGvVGrrPTH1GUgUfqE3Ea1/dpalrSl7BOCpD7Wt1M/0fYbiKpK1j7iyjFd57qAAvHagDQBCAifSFRTwX5950envCX2nWrt6oo7RFRTw2oE23F/xk6jXkqlkdW29B2v3Hg9dy+n2ANbubYZrMDur/t/frpO9L5HXq0UL5GBNGJYkebW2tmLevHlYuHAhxowZE9o+aNAg5OXloaGhAYIgoLa2Fv/6r/9qxRAyjuXuYnxdUxFT0Tegt5yzFmedltaCsaAkVsmKPyjEpSex1vsyON8Z5pCXgwMwYeRARQe8FXi8PuaYWjr8msx9SiawZClZreQTYxHvsGsRQ+K/a9cujB8/HvX19Zg/fz7uueceAMCGDRvQ1NSE559/HtOmTcO0adPw3XffAeiN9nn44YdRXl6OoUOHYvz48cavggjx6JRRUVE8WhCgXAhMGtUhtjf8qqYCe6rLVIVfS0RIJoV2WoXocFUSUgHAm595UFvvwaNTRiFeQdZmnEcuSikWsbWSWITcrIxuvRhy+JaXl6O8vDxq+3333Yf77rtPdp/i4mJs27bNyGkJBSKdqnpW0x6vD5dXb496dDbSK1brvmYXd0slE1K8Ectq5Dmy4naPjJ6HleGsJLYsc5CVZqJY8me09GWwAk6Q88ImIbHau1IdI9ddW+/B7986gPZuayJo5BrARMJKGorc18wwz1gT38wmWcahBXGyTJYx220c+juycM7nD0X7SO3fooCzFgwFuXyYHwHoFdRbx7jw5meeqO0s06XeiULue6x0fD3nMWLzl9uPyjukKfGImff0ra6UvtRaH4PlwkBzs204crpd97h6+vIWEh09FBQE8DZOdx/gRCCgd0K2wvwWy4QS7BFwy+gfhPIFpE5Lte82b+fg7aseK8XnD+L1T75h9lHQmicBsJ949fTLiNwv3k5qquqZpsQrZl50rrHs+syywrl81Pvdpa5QVcuTXh86unuwemYJdtw5TNeYxB9cLL4P00mhyiUnvT7kM5zArnwnvq6pwJyxQ3Ufd+ywgphuw4a9TbL+IbXvtj8oMM1MSn0UtJxHzZ9gxKQU72xpWvmnKfFyoPr8QSzY1IAsOwe/JE65asv+UKOZSPs7b+fQ1hkIFZoTV1T7jjeHPZKL2x8YG11KmkVkwprWZjdW4bc6EcBEOA44J1N6mpfY25e7i7HcXazalSy0rw34vOlczDZ/uRW5ke826ylEbpGi13mr5UlByQ8R70qrtPJPU+LZpk9AtMhJwyAjf2qBHiHKFCI+ksuttF75vEVTM5nIsFN3qQt5DlrfaKVH6E1ciyQvO0u2feSe6jJ8VVPBrC9lA9Avhzf0BContLF+t3k7h1nXDTHcw5q1Xe1JQSksNRFRSyT+aUrSmD1kYJl/WavHM+0BrLqtRPGYogPZzFUi0cs5hSen2noP3vws2jzh5G14emYJvBqa2CghJ7SxfrfzsrOw3F2sOU9Fb/FDtScFJYFPRKw/LYvSFCMhn4mC4+QnhoF5F1aev3mjIaqkgtIPkhV6R6Gg2rFxXMgnE2m26OgOyK7sB+Q54C51KUbkqMHLhHdKV8l6Hcnik6ieHtaAduetWpinksAbKbEeKyT+aYz0S3559fakFzsOQFZEdIyTt+POqwsAXLgePU41uRjqZBZ+DsANwwdgz1Ht7TmtJigITJ8MC7E3wISRA6NCK7Xi72taD/TWhIq0i4tFCQEBPr+cwUoePd8fPVE4avH6SgKfiFh/ivNPcsy8bqUJwNW3itPSa9ZKCnJ55GZnhf0wPSc9eO1AW8xJOZE/9kSHgKqRLLH2ZiDG1u8+dAYery+midfJ2/HA2AF47UCb7GdXkMujrTOgKaR29cySmOLwtaI0sajlAKhNSmbH+ZP4JzlmX7fSFxCI7h0bbzgAX9VUhP6urffgd1v2hxW+MvpjVepWRZiP6I8xct8H5WXhTHtAduLgADwzs0S1UJ2d43DJxTmakg7NRpqUpreHhojZ4k8O3wxDqTCb+Fo8C35FEmnjXLXzcFTFQ6NREMnsDE9HxFILRibc0wzhB3q/M+5SF1wq9vFZ1w1JiGM1stie3h4aVkE2/wxEyY7JsqsHgkF8e77b0nHJOfhi/bEqPUJHOvIudvJo7w6kVEx+KuHkbaGYdSs43epDydJ3ZHNKROaMHYrl7uKQ+SkSrY7VWJK4jHS/sxISf0IWuQniYYM9A1Tp+9VqSSASyxfHmjATeX3SY13s5NEdCKJDhxORYOML9DDDe3k7B97GGbrX/h6E5ZSIE4BoVgF6Bfjy6u3Iz+WjSm5odazGmoiVqJLNapD4E5pZ7i7GNZcOiMkvYOc4/PGXo7FgUwPz8d3fI2Dp1oNhBbnkhN/J2zFh5EDmD1HLSktu4thTXSb5gZPwm4WiV1GA6ZOs9HSREUotHX7wdg75Tj5UNC7SKaunzaiWFXwiwji1QOJP6EL6Q9Bjww0KgqbOUaxoIzvHoUcQQj/IpVsPxpwwo7SCy+Q+wvHGzllb9M7j9ck2qvcHBeQ5stDw6E1h29VW9qzvu9oKPlElm9Ug8Sd0IzWZWG4K6qNHEEJRQA/XHmBOEloSZmLJtCTMxcnb4zLJsqaWWAq5sfwJait4LcliSdnAnSCUEE1BS7ceNJwj4OTtcGTZZAuxiTZ+tfMIANq7AuAlhebEY4srrVgyLQnzsHNcWOx/ItBbyI3VZpQDQt8rtSADlpgnoqgbQKGehAm4S12of+QmfF1TgdUzS5Dv1B4qGhlyumRqdBtKh50L2fi1TDBenx/+oICCXF62fotSwS65MFDeztEPxUSCgoCNe5tCSV9WE3mOWAq5sSYGAQgLMoill3CiWlHSd5owFXepCw2P3qQacw1cSKyR9gJ2l7pw6xgX7FzvT9bOcZh4RT/sPnRGt5lAnCjEhuUirDj/9q4A9h1vRo6khGi+k8eqGaPx9MyS0DWlUIn+pEWQ/Gvl/XTydtw+dqjhQm6sicGlwZSoRqKigcjsQ1hC1aRCxcgeuZh+4EKVSDHKJygIePefbVGJXloRgJBPQuwKJf7wI1tcen3+KP+FOCHsPnQGJ70+uPKdmDByYOhvIx3HiF7EsExAuV5QLOjJBFezzSs5bY0IeKKigWjlT1iCu9SF28cOlV3V5WXbsWrGaNkfpdwKqisohJ4EYmXD3iZcFtEhqUNDb2N/j4ANfSYK8XH+zc88qJpUGHpi6eimsFCjeLw+TBg5MGrlzfrU8528picGIzWgIm32SqWg9db+l6K3dLRZkPgTlrHcXYxn+swl4g9m9cwSHHxsMvNHyVopif1wjSLaYpduPRhzZc/Ix3mKEDKHNz/z4NYxrrDvy+1jh8oK45Kpo/DMzBLF4+nxPanZ7KW1eWwcB0+fE1h83YiAq00sVkFmH8JS9DamZj0Cm1l11OcPGg4zlAo+RQiZg9jNTcznEM1rPn8QNq6301hkMbR9x5tlQ41tHLBk6ijN51az2UeWkgbko3JiDdekBu5ExiO3gnL0+QeMdoUyE2mjcyoUZx5BQQitvEVzG9Ar/FzfdumKe7m7OCrCrCCXx9O/LAlF4Whpiq4W5slaLEgnCGlrS7mucskGrfyJpEJuBTW7uB/cpS5mM3arnIVKtHT4cVn1dhTk8nh0yijcOsYlm01akMsnvEdCuiDe28gVN2vVrCd+nvX0Jk5ESphh9qMkL4JA9CNwY2Mjaus9aO8ORL2Xt12IGqrasj/ulTlbOvyo2rIfedlZsj6E3Ows5GZnkVnIZLTU1GGZcn7zxn4s2NQQJrJyJRi0YjQqh5K8CEKBVTsPywp7v5wL/X0T1ZvRHxRkn0iA3lVh1aRCyg2wALUVt1LwQKRTV8wv0YsZUTmU5EUQCrB+yKIfYNXOw5YWCYsVsdFI8o0s9REby7PQsiKXiuzuQ2c0nVcMO9YalaPmd6AkL4JQgGWTtXFcUjen9/R1sXJRRJDpiI3lgQslFqR2c63N48Vm82qfTyytHrWYdCjJiyAUYEXUiI/wyUzlpgYSfgPkO3lU/WygbKKfuHKXi9OPzBtQShTU8vm0dwU01eqRosWkQ0leBKFAZCKM0YxfInU45/OjbFh/9DC6wrDCMX3+IHYfOhOqzRMUBEO+F6/Pr7lYm3Rsatul322g97stndSswpD479ixAxUVFRg5ciQOHLjQo3PPnj2YPn06pkyZgunTp+Pjjz8GAPh8PsybNw+TJ09GRUUFnnrqKWOjJzIKaRw1SwiI9EM0f8RSdVM0s4gre6OF5PQ6YrWWfRAjjpy8PSqJzKoJwJD4jxgxAmvWrMG1114btr2goAAvvPACtm7dipqaGixatCj02t13342///3veOutt/D555/jgw8+MDIEIkNJdAs8In50dAdQd+x8TFU3xVW0FAHqT44c2JOEHkesHpNOvKN+DDl8hw8fLrv9qquuCv3/yiuvRHd3N7q7u+F0OjF27FgAQHZ2Nq666ip8++23RoZAZChG4rKJ1KKlw49VH54BcAZSzRYT7JSqbrK+H3K9oaUMVignwppo1Pr/qiVwxTvqx/Jon507d6KoqAjZ2dlh21tbW7F7927ceeedVg+BSEPkflTtXQFmvD2RHkg1u6XDj6VbDwJg19bR22sa6J00JowciE2ffhP1mlIpcqWoHi3JWvGO+uEEQXkKnDt3Ls6ePRu1vbKyEhMnTgQA3HHHHVi0aBGKi4vD3nPkyBH8+te/xrp16zB06NDQ9kAggHvvvRc//elPMXfuXE0DbWhogMPh0PTedKKzsxM5OTmJHkZC0XoP6o6dx3MfndVd+7/qZwP7VpZEqsIB+LfC/nhg7MCw7XXHzmv6bG1c78QyMC8Ld15dgFc+b8Hp9uiM8v7ZHN6YdXnU9ju3NMm+f1BeFl6ZMTRquxxy31+HncN/3PAvKBvW35AWFBUVRW1TXfmvX78+ppOdOnUKDzzwAFauXBkm/ADwhz/8AZdddplm4QcAh8MhewHpTmNjY0ZetxSt96CoCHANjo71Vmowv3pmbwGwVR9uN3PIRJwRAGw/fB7bD58H0GvTDwra+0AIAvBVTUXo76cY34e2bkH2u3im/Zjs+8+0BzT/fuW+v1ITUaxa0NjYKLvdErNPa2sr5s2bh4ULF2LMmDFhrz3zzDNoa2vD448/bsWpiQxH7hF7ubsYD9cewGufNEFMAnbyNqyY/uPQeykJK72QdoLTQm52uFNWiwmmtt6DpVsPKhbuE7OQI7+TLP9APEs7q5p9lNi1axeWLVuG5uZmXHTRRSgqKsJLL72E559/Hn/5y19w6aWXht67bt06+P1+3HjjjRg2bFjIBzBnzhzcdtttqufK1BVwpl63lHjcg0ibLZF55GXb8fgvek3XchVkOVxoOTlh5EC8/uk3CGooKeLk7WFlIOS+a+J7ALZz2MjKX24/Q+IfTzJVBDP1uqXE6x5IuzURmYmNA+w2zvTqsFk2Dt+/KAcn+zqByT2RFOTy6PT3yE4K7lKX6eJPtX0Iog/pI7f0sTwlVkcWIq549bxHKcwymekRgB4LyoIHeoTQooJlipIzH2kpXR0rVN6BIGSQZhO7MjihzM5xuH3sUMWsWCdvx+1jh0b1oJ0zVluUC6GMVXH+JP4EoUImt2kMCoJshzIRO8dhxfRiXHPpgKjXlruLMW549HY1xInGlkHlm5y8HU5eXo6tivMn8ScIFSILb2UaSkaQWdcNAYCoipqL/3oAD9cewOdN58Le7+TtYf12I3HlO0NPEUJfw/bVM0swKC+xFmo+YibibZzhyUkahWrjgK5Aj+x5raruSQ7fJCdTr1tKMt0DuUgN3s4BApKymYzVKPVPtsfg2ATkyzSUDctF3bGOhPkRVs8siYrCAWB5gICYfCb2sr6/4ie6j0EOX4IwAVYZAXGbx+vT5CBNF8TrlYPl2PR2+PGMjJi6S10YV1MnW9zsf074sGJ6cVQC37b9/2d5SQ9XXzc2uWCAwflO5Dt5y8Ygric8Xh+e+6gTrsHROQOxQuJPEDphJeJIxaFyU0OcR5UYOAAXM8SPtfIXW1sCFyZRsXIly7l5pj0gK8DnfH64Iibgk14f8nN5nPP5YfRhLLICp1wNH97Ogbdxlj/5dQUFUyN/yOZPECbjLnVh9cySRA8jLgjotV3LlS2edd0QZjljuc5bi/96APm58v6AgRKbP2tfANhTXYZnZpYgNzsrZuG3c1xY1JJUbOXKLvuDAvrlZIVFO82RRD+Z2XjIzMgfWvkThAWIgiGXKZpuKJlxrrl0gC7zjiPLFpUj4OTtuPPqgtDfanXvjWZqz7puSGjcCzY1YNXOw6Fxs8TX2+FH/SM3yb5mZva4mZE/JP4EYRF66rSksqlIAMIEUjTJLNjUwKxfzxLRcz75iaQwp1V1X1Y7RxYss9Rbn3vCGr9Lnyz0lF2W+gbyc3k4smzw+vyafUKRk6CDUU46Vkj8CSIJcJe6sPCNBsM26kQhCuS+481M4ZROAEoiKjdpNja2hr2Hta9Ws4iNYzuk27ujJw/xyUKuiZBcZ67I1X5LR6/ozxk7NPRUoRQlJPoxpJPg7OJ+pmb6ks2fIJKE2deldkaszx/E6598o6kVoZ72hpHE0s4xklgm2ZNeX1jOB8svAMibpgQAG/vKiyslDorXIs0y31NdhrJh/fUPWgFa+RNEkrDc3Rvn/von32guRZxssMYduSLX094wErV9rarOKk4sWsx5rCcQ0UQGQHaMYsZ0PMo6k/gTRBKx3F0cmgQur96ecvkCLHu23IrcSO16pXDbfcebQxOonePgyOLQ4Y/OntWD0lOJXG1+lmkKUI7Y6RGEuNXzJ7MPQSQpVtV0sRI54VcqUVBb78G4mjpcXr0d42rqUFvvMXT+2vpeZ620mYu/R4hJ6MQQTZZpRzyfXNjphJEDmclvg/OdzM82np85iT9BJClydmFRUFz5ThQwYuKTjX45WbqEM5YJQJxEKjc1yMbhx7LuDwpCmP1dDlbY6e5DZ2SroYrHM+LzMAsy+xBEkqJm206V7mNeRptDlnAu6At5ZQlupJllwsiBYRFGZqJWT18p7HS5u5iZ5yAiVyZkXE2dbj9ILJD4E0QSI9q25YpzSSeHZO4+xjJlKDlFqzbvBxA9AciVV1AqOa0VVsy/0jgB9bh/Jb9G5Gty1yYXJmsWZPYhiBRGDAf8uqYCc1SariQKj9cna9NXsm/7e4So8FCAHUJpBA7Kjd5tHMf0SZhpvlHLXDYbEn+CSBOWu4vxzMySUJnlWGrKiHVpzG5eI2fTVxNI6Yq77th5jKups+QJR23yCAoC0yehNe5fhOXgrq33xBQdZAQy+xBEGhFpStAjmK58J/ZUlwEArrl0gCUZx1IburvUhaVbD8r2rgUuPBnU1nvw3Edn0WVBb10l5ExBcj4ArSGrLLOOmBXNgjp5EQShGzmzBG+P7kLFR9SNcZe6LCs1cdLrC62AWcJvw4Ung1U7D8dd+AtyefTE4ANQgmXWkcuKFrEyAojEnyDSGDmzxMxrh0SbhCJ0zmi8vRL5uXwoxJOF3X5hfFaZPZRo6fAzzUGsstNqsK5Dyd9gZbYvmX0IIs2RMwVFNh7x9wio7CtfLIZOWgEHoMsfhE8l49YvaVyilC2rFSdvD1XVjBpTX6tErbR1BlBbr7+jFus6WJFGYgcxq6CVP0FkGEoraTF0MpaY+YJcXlVQbhg+QHOpBXGcVZMK4bCHP6nocWWLTtglU0fJRuboLaMkTpSRDlu1TGVWZJBS0xsroZU/QWQYaivpWK3rudlZaOnww8bJV82cM3Yodh86o/l4No4LrbA9Jz147UCb7sQuqRNbJDKxKtY8Cb1lrJWS9tSSwayAE4TUKB/I6kCf7mTqdUuhe2DuPYg1M1gMIZUTSi0NSlx99fb1CI6Tt2PF9GIU5rSiqKgoLLvXydsUnyKcvB23jnFh96EzUaIqPc7FTh7t3QH4Y3QqK5ltIiceI8T6HWDtRyt/gsgwYskM5tBrtth3vBkb+mrSS9Eimx6vD/mMZu+5vA1dAYEZWjm7uB9mb34nLDpISfhdMk8HrJW61+cHb+NQkMuHmq7omQZiyQxOBsjmTxAZiJgZvHpmiaaELqFvHz1mGzlEoZXi5O14YvqPmSLq8frw3EdnmWGhcuypLsPuQ2c0h1b6ewTkZmfh65qKUKKcGB3l5JVlkpVMF2tUkNmVTlnQyp8gMphIO7RNwYQBmLOa7ZeThdzsrKiCZqwVt53jdMX5c+gVUL2hleL7I++J2plnXTcEm/7nmyizkTQqSK7mv/Qc0m2s+j6FOaqXrgtD4r9jxw6sXbsWR48exebNm1Fc3NuEYs+ePfjjH/8Iv98PnudRVVWF66+/Pmzfe++9FydOnMC2bduMDIEgCINIQ0Hl/AHSyBMzwi69HX7UP3JT2LZxNXWyIqtWd0cOsVuW3rFKM4q1+kTynTyWu4uxbf//RZmzpPWJIgW9ast+QEAo5FYU+Rzexqzv81/TfqD5WrRgyOwzYsQIrFmzBtdee23Y9oKCArzwwgvYunUrampqsGjRorDX33nnHeTl5Rk5NUEQFqBWq0apx4BW5MoVKFX4dMVQ3uCk16fYJ1eO5vYuXF69HQtkegLIwds5LJk6CgBwTsaPIY5DLrPXHxSici18/iDTtGWF/8DQyn/48OGy26+66qrQ/6+88kp0d3eju7sb2dnZaG9vx8svv4xly5ahsrLSyOkJgrAAtTLEAKLq6cuZPVjIxa+zVumuPnPI77bs12X6EScYuZU0C7XEMyk27kIimng+VmlnM4Tbivo+ljt8d+7ciaKiImRnZwMAnn32Wdx9993IyTHZgEUQRFwQncVf1VRgT3UZlruLsWrGaORlq6+y54wdKjuxKJVGdpe6MPGKfpqrlDp5Oy77nhOVmxp0OYn1IC7apW0b5Z6IJowcqEu485183BK+VFf+c+fOxdmzZ6O2V1ZWYuLEiYr7HjlyBE899RTWrVsHoDfetKmpCQ899BBOnDiha6BdXV1obGzUtU860NnZmZHXLYXuQfLfg8IcYMusS1F37Dxe/PQ7tHaFr6IH5WXhzqsLUDYsS/Y6CnOAB8YOwCuft+BMewAD+95fmNOKP2334N1/tmm2/ZcNy8X2w82mXJcWfP4g3jlwsu+850PbBQCb/+cbTLyiH86eD3daZ9l6S0pEPsyIfgOp89vnD+IPb+3HPVdfDMC874Cq+K9fvz6mA586dQoPPPAAVq5ciaFDhwIA6uvr8eWXX6KsrAyBQADNzc2444478Oqrr6oez+FwZGSiDyU40T0AUuceFBUB91eYu++/v12n2eTjynei4dtAbAMwwJn2gOx5u4ICGr4NYOWM0VGRPaycCSA66ul8t4A1n3hx2aWX6c78ZS0aLAn1bG1txbx587Bw4UKMGTMmtH327NmYPXs2AODEiRO49957NQk/QRCZix6beXtXQDaJzGqUbPsnvT5ZP8rSrQd1nSMoQLGfsF4M2fx37dqF8ePHo76+HvPnz8c999wDANiwYQOamprw/PPPY9q0aZg2bRq+++47UwZMEERmwbKZ5zt5FEQkUnl9/ri3shRt8qxxsrbH4o8wM+rH0Mq/vLwc5eXlUdvvu+8+3HfffYr7/vCHP6QYf4IgVJGL9nHydiyZOgqrdh6OEtF4Fitz5YcXYVPKkTADM6N+KMOXIIikRq6qpyi4CzY1MPdj1REyAxuAp2eWaK7aacb47Jx632M9kPgTBJH0lA3rj/srfhK1XSk/QKyoOXzx33RnCYuIFTulZarznTyWTB0lK+pa+/kCwJKpo1CpMHlJyXfy+NU1+aaWeSbxJwgiZamaVKhqaolF+O02Dn+8bbSlNfXdpS7FiB8RcSIzO9SXqnoSBJGyqJWjANjlIfKy7aH9CnJ55Dv50DGsFn6R5e5izBk7lOmktrKjF638CYJIadRMLayng8d/YV1zdD0sdxeHOnl5vL6QqSnSmWw2JP4EQaQ1eh2xiUCPr8AsSPwJgkh7EiGuyQ7Z/AmCIDIQEn+CIIgMhMSfIAgiAyHxJwiCyEBI/AmCIDIQThBizHuOMw0NDXA4HIkeBkEQRErR1dWFkpKSqO0pI/4EQRCEeZDZhyAIIgMh8ScIgshASPwJgiAyEBJ/giCIDITEnyAIIgMh8U8iurq6MGPGDEydOhUVFRV47rnnwl5/6aWXUFhYiObm5gSN0FqUrv/VV1/FpEmTUFFRgSeffDKBo7QW1j1obGzEL3/5S0ybNg3Tp0/HF198keCRWkswGITb7cb8+fMBAF6vF3fddRduuukm3HXXXTh37lyCR2g9kfdg5cqVmDx5MqZMmYL7778fra2txk4gEElDT0+P0NbWJgiCIHR3dwszZswQ6uvrBUEQhJMnTwp333238POf/1z47rvvEjhK62Bd/8cffyzceeedQldXlyAIgnD27NlEDtNSWPfgrrvuEt5//31BEATh/fffF+bMmZPIYVrOunXrhIULFwrz5s0TBEEQVq5cKbz44ouCIAjCiy++KDz55JOJHF5ciLwHH374oeD3+wVBEIQnn3zS8D2glX8SwXEc8vLyAACBQACBQAAc19vjZ8WKFaiqqgr9nY6wrv/111/HvHnzkJ2dDQD43ve+l8hhWgrrHnAch/b2dgDA+fPnMWjQoEQO01JOnTqF999/HzNmzAhte++99+B2uwEAbrcb7777boJGFx/k7sFPf/pTZGX1VuEvKSnBqVOnDJ2DxD/JCAaDmDZtGm644QbccMMNGD16NN577z0MGjQII0eOTPTwLEfu+r/++mvs27cPt912G+bMmZMRJo/Ie/DQQw/hySefxI033oiVK1di4cKFiR6mZTzxxBOoqqqCzXZBnr777rvQhDdo0KC0NX2KyN0DKW+++SbGjx9v6Bwk/kmG3W7H22+/jQ8++ABffPEFDh06hD//+c948MEHEz20uBB5/f/7v/+LYDCI1tZWvPHGG1i0aBEqKyshpHFiutw9eP3117F48WJ88MEHWLx4MX7/+98nepiWsHv3bgwYMAA/+tGPEj2UhKF2D1544QXY7XZMnTrV0Hmok1eSctFFF+G6667De++9hxMnTmDatGkAeh8Hp0+fjs2bN2PgwIEJHqV1iNf/4Ycf4vvf/z7Ky8vBcRx+/OMfw2azoaWlBQMGDEj0MC1Feg/eeuutkODffPPNePjhhxM8Omv4/PPPUVdXh3/84x/o6upCW1sbfvvb3+J73/seTp8+jUGDBuH06dNp/dmz7sFTTz2Ft956C++//z7Wr19v3ARs1ClBmMd3330nnDt3ThAEQfD5fMKsWbOEurq6sPdMmDAhbR2+rOt/7bXXhNWrVwuCIAjHjh0Txo8fL/T09CRyqJbBugeTJ08W9u7dKwiCIHz00UfCL37xi0QOMy7s3bs35OysqakJc/iuXLkykUOLG9J78MEHHwg333yzab9/WvknEadPn0Z1dTWCwSAEQcDkyZMxYcKERA8rbrCuv7u7Gw899BBuueUW8DyPmpqatHV8s+5B//798cQTTyAQCMDhcOCxxx5L9FDjyrx581BZWYktW7bgBz/4AZ599tlEDynuLFu2DN3d3bjrrrsAAKNHjzb0PaCqngRBEBkIOXwJgiAyEBJ/giCIDITEnyAIIgMh8ScIgshASPwJgiAyEBJ/giCIDITEnyAIIgMh8ScIgshA/h8xM2svC5EoGQAAAABJRU5ErkJggg==\n", "text/plain": [ "<Figure size 432x288 with 1 Axes>" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "x = df_USAhousing[\"latitude\"]\n", "y = df_USAhousing[\"longitude\"]\n", "\n", "plt.scatter(x, y)\n", "plt.show()" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "# Explore and create ML datasets\n", "\n", "In this notebook, we will explore data corresponding to taxi rides in New York City to build a Machine Learning model in support of a fare-estimation tool. The idea is to suggest a likely fare to taxi riders so that they are not surprised, and so that they can protest if the charge is much higher than expected.\n", "\n", "## Learning Objectives\n", "* Access and explore a public BigQuery dataset on NYC Taxi Cab rides\n", "* Visualize your dataset using the Seaborn library" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "<h3> Extract sample data from BigQuery </h3>\n", "\n", "The dataset that we will use is <a href=\"https://bigquery.cloud.google.com/table/nyc-tlc:yellow.trips\">a BigQuery public dataset</a>. Click on the link, and look at the column names. Switch to the Details tab to verify that the number of records is one billion, and then switch to the Preview tab to look at a few rows.\n", "\n", "Let's write a SQL query to pick up interesting fields from the dataset. It's a good idea to get the timestamp in a predictable format." ] }, { "cell_type": "code", "execution_count": 20, "metadata": { "tags": [ "flake8-noqa-cell" ] }, "outputs": [ { "name": "stderr", "output_type": "stream", "text": [ "Query complete after 0.00s: 100%|██████████| 1/1 [00:00<00:00, 845.28query/s] \n", "Downloading: 100%|██████████| 10/10 [00:01<00:00, 7.92rows/s]\n" ] }, { "data": { "text/html": [ "<div>\n", "<style scoped>\n", " .dataframe tbody tr th:only-of-type {\n", " vertical-align: middle;\n", " }\n", "\n", " .dataframe tbody tr th {\n", " vertical-align: top;\n", " }\n", "\n", " .dataframe thead th {\n", " text-align: right;\n", " }\n", "</style>\n", "<table border=\"1\" class=\"dataframe\">\n", " <thead>\n", " <tr style=\"text-align: right;\">\n", " <th></th>\n", " <th>pickup_datetime</th>\n", " <th>pickup_longitude</th>\n", " <th>pickup_latitude</th>\n", " <th>dropoff_longitude</th>\n", " <th>dropoff_latitude</th>\n", " <th>passenger_count</th>\n", " <th>trip_distance</th>\n", " <th>tolls_amount</th>\n", " <th>fare_amount</th>\n", " <th>total_amount</th>\n", " </tr>\n", " </thead>\n", " <tbody>\n", " <tr>\n", " <th>0</th>\n", " <td>2010-02-08 09:17:00 UTC</td>\n", " <td>0.000000</td>\n", " <td>0.000000</td>\n", " <td>0.000000</td>\n", " <td>0.000000</td>\n", " <td>1</td>\n", " <td>0.0</td>\n", " <td>0.0</td>\n", " <td>0.0</td>\n", " <td>0.0</td>\n", " </tr>\n", " <tr>\n", " <th>1</th>\n", " <td>2010-02-23 13:00:19 UTC</td>\n", " <td>-73.974440</td>\n", " <td>40.754140</td>\n", " <td>-73.782493</td>\n", " <td>40.648832</td>\n", " <td>1</td>\n", " <td>17.6</td>\n", " <td>0.0</td>\n", " <td>0.0</td>\n", " <td>0.0</td>\n", " </tr>\n", " <tr>\n", " <th>2</th>\n", " <td>2010-03-28 11:40:29 UTC</td>\n", " <td>0.000000</td>\n", " <td>0.000000</td>\n", " <td>0.000000</td>\n", " <td>0.000000</td>\n", " <td>1</td>\n", " <td>0.0</td>\n", " <td>0.0</td>\n", " <td>0.0</td>\n", " <td>0.0</td>\n", " </tr>\n", " <tr>\n", " <th>3</th>\n", " <td>2010-02-16 13:17:44 UTC</td>\n", " <td>-73.995773</td>\n", " <td>40.761368</td>\n", " <td>-73.995773</td>\n", " <td>40.761368</td>\n", " <td>1</td>\n", " <td>0.0</td>\n", " <td>0.0</td>\n", " <td>0.0</td>\n", " <td>0.0</td>\n", " </tr>\n", " <tr>\n", " <th>4</th>\n", " <td>2010-03-16 01:04:50 UTC</td>\n", " <td>-74.008316</td>\n", " <td>40.736286</td>\n", " <td>-74.008352</td>\n", " <td>40.736250</td>\n", " <td>1</td>\n", " <td>0.0</td>\n", " <td>0.0</td>\n", " <td>0.0</td>\n", " <td>0.0</td>\n", " </tr>\n", " <tr>\n", " <th>5</th>\n", " <td>2015-02-25 03:38:41 UTC</td>\n", " <td>-73.937500</td>\n", " <td>40.758198</td>\n", " <td>-73.937523</td>\n", " <td>40.758190</td>\n", " <td>1</td>\n", " <td>0.0</td>\n", " <td>0.0</td>\n", " <td>0.0</td>\n", " <td>0.0</td>\n", " </tr>\n", " <tr>\n", " <th>6</th>\n", " <td>2015-04-17 16:43:09 UTC</td>\n", " <td>-73.795265</td>\n", " <td>40.666615</td>\n", " <td>0.000000</td>\n", " <td>0.000000</td>\n", " <td>4</td>\n", " <td>0.0</td>\n", " <td>0.0</td>\n", " <td>0.0</td>\n", " <td>0.0</td>\n", " </tr>\n", " <tr>\n", " <th>7</th>\n", " <td>2015-03-19 08:57:55 UTC</td>\n", " <td>-73.902100</td>\n", " <td>40.764107</td>\n", " <td>-73.902206</td>\n", " <td>40.764126</td>\n", " <td>6</td>\n", " <td>0.0</td>\n", " <td>0.0</td>\n", " <td>0.0</td>\n", " <td>0.0</td>\n", " </tr>\n", " <tr>\n", " <th>8</th>\n", " <td>2010-02-12 16:11:52 UTC</td>\n", " <td>-73.955030</td>\n", " <td>40.783350</td>\n", " <td>-73.956183</td>\n", " <td>40.782330</td>\n", " <td>4</td>\n", " <td>0.1</td>\n", " <td>0.0</td>\n", " <td>0.0</td>\n", " <td>0.0</td>\n", " </tr>\n", " <tr>\n", " <th>9</th>\n", " <td>2015-05-08 07:59:51 UTC</td>\n", " <td>-73.848007</td>\n", " <td>40.723724</td>\n", " <td>0.000000</td>\n", " <td>0.000000</td>\n", " <td>1</td>\n", " <td>0.0</td>\n", " <td>0.0</td>\n", " <td>0.0</td>\n", " <td>0.0</td>\n", " </tr>\n", " </tbody>\n", "</table>\n", "</div>" ], "text/plain": [ " pickup_datetime pickup_longitude pickup_latitude \\\n", "0 2010-02-08 09:17:00 UTC 0.000000 0.000000 \n", "1 2010-02-23 13:00:19 UTC -73.974440 40.754140 \n", "2 2010-03-28 11:40:29 UTC 0.000000 0.000000 \n", "3 2010-02-16 13:17:44 UTC -73.995773 40.761368 \n", "4 2010-03-16 01:04:50 UTC -74.008316 40.736286 \n", "5 2015-02-25 03:38:41 UTC -73.937500 40.758198 \n", "6 2015-04-17 16:43:09 UTC -73.795265 40.666615 \n", "7 2015-03-19 08:57:55 UTC -73.902100 40.764107 \n", "8 2010-02-12 16:11:52 UTC -73.955030 40.783350 \n", "9 2015-05-08 07:59:51 UTC -73.848007 40.723724 \n", "\n", " dropoff_longitude dropoff_latitude passenger_count trip_distance \\\n", "0 0.000000 0.000000 1 0.0 \n", "1 -73.782493 40.648832 1 17.6 \n", "2 0.000000 0.000000 1 0.0 \n", "3 -73.995773 40.761368 1 0.0 \n", "4 -74.008352 40.736250 1 0.0 \n", "5 -73.937523 40.758190 1 0.0 \n", "6 0.000000 0.000000 4 0.0 \n", "7 -73.902206 40.764126 6 0.0 \n", "8 -73.956183 40.782330 4 0.1 \n", "9 0.000000 0.000000 1 0.0 \n", "\n", " tolls_amount fare_amount total_amount \n", "0 0.0 0.0 0.0 \n", "1 0.0 0.0 0.0 \n", "2 0.0 0.0 0.0 \n", "3 0.0 0.0 0.0 \n", "4 0.0 0.0 0.0 \n", "5 0.0 0.0 0.0 \n", "6 0.0 0.0 0.0 \n", "7 0.0 0.0 0.0 \n", "8 0.0 0.0 0.0 \n", "9 0.0 0.0 0.0 " ] }, "execution_count": 20, "metadata": {}, "output_type": "execute_result" } ], "source": [ "%%bigquery\n", "SELECT\n", " FORMAT_TIMESTAMP(\n", " \"%Y-%m-%d %H:%M:%S %Z\", pickup_datetime) AS pickup_datetime,\n", " pickup_longitude, pickup_latitude, dropoff_longitude,\n", " dropoff_latitude, passenger_count, trip_distance, tolls_amount, \n", " fare_amount, total_amount \n", "# TODO 3: Set correct BigQuery public dataset for nyc-tlc yellow taxi cab trips\n", "# Tip: For projects with hyphens '-' be sure to escape with backticks ``\n", "FROM \n", "LIMIT 10" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "Let's increase the number of records so that we can do some neat graphs. There is no guarantee about the order in which records are returned, and so no guarantee about which records get returned if we simply increase the LIMIT. To properly sample the dataset, let's use the HASH of the pickup time and return 1 in 100,000 records -- because there are 1 billion records in the data, we should get back approximately 10,000 records if we do this.\n", "\n", "We will also store the BigQuery result in a Pandas dataframe named \"trips\"" ] }, { "cell_type": "code", "execution_count": 21, "metadata": { "tags": [ "flake8-noqa-cell" ] }, "outputs": [ { "name": "stderr", "output_type": "stream", "text": [ "Query complete after 0.00s: 100%|██████████| 1/1 [00:00<00:00, 613.92query/s] \n", "Downloading: 100%|██████████| 10789/10789 [00:01<00:00, 10616.51rows/s]\n" ] } ], "source": [ "%%bigquery trips\n", "SELECT\n", " FORMAT_TIMESTAMP(\n", " \"%Y-%m-%d %H:%M:%S %Z\", pickup_datetime) AS pickup_datetime,\n", " pickup_longitude, pickup_latitude, \n", " dropoff_longitude, dropoff_latitude,\n", " passenger_count,\n", " trip_distance,\n", " tolls_amount,\n", " fare_amount,\n", " total_amount\n", "FROM\n", " `nyc-tlc.yellow.trips`\n", "WHERE\n", " ABS(MOD(FARM_FINGERPRINT(CAST(pickup_datetime AS STRING)), 100000)) = 1" ] }, { "cell_type": "code", "execution_count": 22, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "10789\n" ] } ], "source": [ "print(len(trips))" ] }, { "cell_type": "code", "execution_count": 23, "metadata": {}, "outputs": [ { "data": { "text/html": [ "<div>\n", "<style scoped>\n", " .dataframe tbody tr th:only-of-type {\n", " vertical-align: middle;\n", " }\n", "\n", " .dataframe tbody tr th {\n", " vertical-align: top;\n", " }\n", "\n", " .dataframe thead th {\n", " text-align: right;\n", " }\n", "</style>\n", "<table border=\"1\" class=\"dataframe\">\n", " <thead>\n", " <tr style=\"text-align: right;\">\n", " <th></th>\n", " <th>pickup_datetime</th>\n", " <th>pickup_longitude</th>\n", " <th>pickup_latitude</th>\n", " <th>dropoff_longitude</th>\n", " <th>dropoff_latitude</th>\n", " <th>passenger_count</th>\n", " <th>trip_distance</th>\n", " <th>tolls_amount</th>\n", " <th>fare_amount</th>\n", " <th>total_amount</th>\n", " </tr>\n", " </thead>\n", " <tbody>\n", " <tr>\n", " <th>0</th>\n", " <td>2014-12-08 21:50:00 UTC</td>\n", " <td>-73.994802</td>\n", " <td>40.720612</td>\n", " <td>-73.949125</td>\n", " <td>40.668893</td>\n", " <td>1</td>\n", " <td>5.33</td>\n", " <td>0.00</td>\n", " <td>22.0</td>\n", " <td>27.00</td>\n", " </tr>\n", " <tr>\n", " <th>1</th>\n", " <td>2012-03-04 00:57:00 UTC</td>\n", " <td>-74.005625</td>\n", " <td>40.734517</td>\n", " <td>-73.952492</td>\n", " <td>40.725197</td>\n", " <td>1</td>\n", " <td>7.33</td>\n", " <td>0.00</td>\n", " <td>20.5</td>\n", " <td>23.50</td>\n", " </tr>\n", " <tr>\n", " <th>2</th>\n", " <td>2013-12-09 15:03:00 UTC</td>\n", " <td>-73.990950</td>\n", " <td>40.749772</td>\n", " <td>-73.870807</td>\n", " <td>40.774070</td>\n", " <td>1</td>\n", " <td>9.44</td>\n", " <td>5.33</td>\n", " <td>29.0</td>\n", " <td>34.83</td>\n", " </tr>\n", " <tr>\n", " <th>3</th>\n", " <td>2011-12-03 10:28:00 UTC</td>\n", " <td>-73.998822</td>\n", " <td>40.680933</td>\n", " <td>-73.968960</td>\n", " <td>40.757878</td>\n", " <td>1</td>\n", " <td>8.28</td>\n", " <td>0.00</td>\n", " <td>20.9</td>\n", " <td>25.58</td>\n", " </tr>\n", " <tr>\n", " <th>4</th>\n", " <td>2009-03-28 20:30:35 UTC</td>\n", " <td>-73.973926</td>\n", " <td>40.757725</td>\n", " <td>-73.981695</td>\n", " <td>40.761591</td>\n", " <td>1</td>\n", " <td>0.50</td>\n", " <td>0.00</td>\n", " <td>4.6</td>\n", " <td>4.60</td>\n", " </tr>\n", " <tr>\n", " <th>5</th>\n", " <td>2009-08-23 23:59:22 UTC</td>\n", " <td>-73.783319</td>\n", " <td>40.648480</td>\n", " <td>-73.893649</td>\n", " <td>40.646566</td>\n", " <td>1</td>\n", " <td>8.30</td>\n", " <td>0.00</td>\n", " <td>18.9</td>\n", " <td>18.90</td>\n", " </tr>\n", " <tr>\n", " <th>6</th>\n", " <td>2014-05-17 15:15:00 UTC</td>\n", " <td>-73.999550</td>\n", " <td>40.760600</td>\n", " <td>-73.999650</td>\n", " <td>40.725220</td>\n", " <td>1</td>\n", " <td>5.57</td>\n", " <td>0.00</td>\n", " <td>31.0</td>\n", " <td>33.50</td>\n", " </tr>\n", " <tr>\n", " <th>7</th>\n", " <td>2014-04-30 16:45:10 UTC</td>\n", " <td>-73.989434</td>\n", " <td>40.756601</td>\n", " <td>-73.949989</td>\n", " <td>40.826892</td>\n", " <td>1</td>\n", " <td>6.20</td>\n", " <td>0.00</td>\n", " <td>24.5</td>\n", " <td>31.20</td>\n", " </tr>\n", " <tr>\n", " <th>8</th>\n", " <td>2013-04-09 09:39:13 UTC</td>\n", " <td>-73.981443</td>\n", " <td>40.763466</td>\n", " <td>-74.010072</td>\n", " <td>40.704927</td>\n", " <td>1</td>\n", " <td>6.50</td>\n", " <td>0.00</td>\n", " <td>24.5</td>\n", " <td>30.00</td>\n", " </tr>\n", " <tr>\n", " <th>9</th>\n", " <td>2014-04-19 14:08:46 UTC</td>\n", " <td>-73.964716</td>\n", " <td>40.773071</td>\n", " <td>-73.997511</td>\n", " <td>40.697289</td>\n", " <td>1</td>\n", " <td>8.70</td>\n", " <td>0.00</td>\n", " <td>26.5</td>\n", " <td>33.75</td>\n", " </tr>\n", " </tbody>\n", "</table>\n", "</div>" ], "text/plain": [ " pickup_datetime pickup_longitude pickup_latitude \\\n", "0 2014-12-08 21:50:00 UTC -73.994802 40.720612 \n", "1 2012-03-04 00:57:00 UTC -74.005625 40.734517 \n", "2 2013-12-09 15:03:00 UTC -73.990950 40.749772 \n", "3 2011-12-03 10:28:00 UTC -73.998822 40.680933 \n", "4 2009-03-28 20:30:35 UTC -73.973926 40.757725 \n", "5 2009-08-23 23:59:22 UTC -73.783319 40.648480 \n", "6 2014-05-17 15:15:00 UTC -73.999550 40.760600 \n", "7 2014-04-30 16:45:10 UTC -73.989434 40.756601 \n", "8 2013-04-09 09:39:13 UTC -73.981443 40.763466 \n", "9 2014-04-19 14:08:46 UTC -73.964716 40.773071 \n", "\n", " dropoff_longitude dropoff_latitude passenger_count trip_distance \\\n", "0 -73.949125 40.668893 1 5.33 \n", "1 -73.952492 40.725197 1 7.33 \n", "2 -73.870807 40.774070 1 9.44 \n", "3 -73.968960 40.757878 1 8.28 \n", "4 -73.981695 40.761591 1 0.50 \n", "5 -73.893649 40.646566 1 8.30 \n", "6 -73.999650 40.725220 1 5.57 \n", "7 -73.949989 40.826892 1 6.20 \n", "8 -74.010072 40.704927 1 6.50 \n", "9 -73.997511 40.697289 1 8.70 \n", "\n", " tolls_amount fare_amount total_amount \n", "0 0.00 22.0 27.00 \n", "1 0.00 20.5 23.50 \n", "2 5.33 29.0 34.83 \n", "3 0.00 20.9 25.58 \n", "4 0.00 4.6 4.60 \n", "5 0.00 18.9 18.90 \n", "6 0.00 31.0 33.50 \n", "7 0.00 24.5 31.20 \n", "8 0.00 24.5 30.00 \n", "9 0.00 26.5 33.75 " ] }, "execution_count": 23, "metadata": {}, "output_type": "execute_result" } ], "source": [ "# We can slice Pandas dataframes as if they were arrays\n", "trips[:10]" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "<h3> Exploring data </h3>\n", "\n", "Let's explore this dataset and clean it up as necessary. We'll use the Python Seaborn package to visualize graphs and Pandas to do the slicing and filtering." ] }, { "cell_type": "code", "execution_count": 24, "metadata": {}, "outputs": [ { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAmUAAAHhCAYAAAAvRsl0AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjQuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8rg+JYAAAACXBIWXMAAAsTAAALEwEAmpwYAABhHklEQVR4nO3de3xU9Z0//tfnnLlnJncmUQhIamwoCtrVVloaWbwiitRLq9/1xlcforWySvWrVMuu6W7V2rpFu23hy+6j2na1XdYFKsW6gGnstyIqKj95JBUaqAmXDLnPZO7nnN8fJzPM5DKT22ROZl7Px6ONnMyc+cycGebF5/L+CE3TNBARERFRVknZbgARERERMZQRERERGQJDGREREZEBMJQRERERGQBDGREREZEBMJQRERERGYAp2w2YqA8//BBWqzXjjxMKhabkcWhq8brmLl7b3MTrmrvy5dqGQiGcf/75w/5u2ocyq9WKefPmZfxxmpqapuRxaGrxuuYuXtvcxOuau/Ll2jY1NY34Ow5fEhERERkAQxkRERGRATCUERERERlARkPZiRMncNttt2HZsmVYvnw5XnzxRQBAT08PVq1ahSuuuAKrVq1Cb29v/D4bN27E5ZdfjiuvvBJvvfVWJptHREREZBgZDWWyLOOxxx7Dzp078etf/xr/8R//gcOHD2PTpk1YtGgR3njjDSxatAibNm0CABw+fBg7duzAjh07sHnzZjz55JNQFCWTTSQiIiIyhIyGMrfbjfnz5wMAnE4nqqur0d7ejt27d2PlypUAgJUrV2LXrl0AgN27d2P58uWwWCyoqqrCnDlzcODAgUw2kYiIiMgQpmxOWVtbG5qamrBw4UJ0dnbC7XYD0INbV1cXAKC9vR2VlZXx+1RUVKC9vX2qmkhERESUNVNSp6y/vx9r1qzBt7/9bTidzhFvp2nakGNCiJTnDoVCKWt+TJZgMDglj0NTi9c1d/Ha5iZe19zFazsFoSwSiWDNmjW49tprccUVVwAAysrK4PF44Ha74fF4UFpaCgCorKzEyZMn4/dtb2+P96iNhMVjaSJ4XXMXr21u4nXNXflybbNWPFbTNDz++OOorq7GqlWr4seXLl2KrVu3AgC2bt2KSy+9NH58x44dCIfDaG1txdGjR7FgwYJMNpGIiIjIEDLaU/b+++9j27ZtOOecc3DdddcBANauXYt77rkHDz74ILZs2YIzzjgDGzZsAADU1NRg2bJluPrqqyHLMtavXw9ZljPZRCIiIiJDyGgou/DCC/HnP/952N/FapYNdt999+G+++7LZLOIiIiIDIcV/YmIiIgMgKGMiIiIyAAYyoiIiIgMYErqlE1nDc0ebGxsQYunF9XuXqyuq8aS2tRlOoiIiIjGij1lKTQ0e7B++0F4vEG4LAIebxDrtx9EQ7Mn200jIiKiHMNQlsLGxhaYZQGHxQQh9J9mWWBjY0u2m0ZEREQ5hqEshdZuP+zm5DppdrOMtm5/llpEREREuYqhLIWqEgcCESXpWCCiYFaJI0stIiIiolzFUJbC6rpqRBQN/nAUmqb/jCgaVtdVZ7tpRERElGMYylJYUutG/Yr5cLts8IY1uF021K+Yz9WXRERENOlYEiONJbVuLKl1583u9URERJQd7CkjIiIiMgCGMiIiIiIDYCgjIiIiMgCGMiIiIiIDYCgjIiIiMgCGMiIiIiIDYCgjIiIiMgCGMiIiIiIDYCgjIiIiMgCGMiIiIiIDYCgjIiIiMgCGMiIiIiIDYCgjIiIiMgCGMiIiIiIDYCgjIiIiMgCGMiIiIiIDYCgjIiIiMgCGMiIiIiIDYCgjIiIiMgCGMiIiIiIDYCgjIiIiMgCGMiIiIiIDYCgjIiIiMgCGMiIiIiIDMGW7AdNBQ7MHz/3+OLq2n0BViQOr66qxpNad7WYRERFRDmFPWRoNzR6s334Q3YEoiu1meLxBrN9+EA3Nnmw3jYiIiHIIQ1kaGxtbYJYFbCYJQgg4LCaYZYGNjS3ZbhoRERHlEIayNFq7/bCb5aRjdrOMtm5/llpEREREuYihLI2qEgcCESXpWCCiYFaJI0stIiIiolzEUJbG6rpqRBQNwagKTdPgD0cRUTSsrqvOdtOIiIgohzCUpbGk1o36FfNRYjehNxCB22VD/Yr5XH1JREREk4olMUZhSa0bFdqZmDdvXrabQkRERDkqo6Fs3bp1aGhoQFlZGV577TUAwIMPPogjR44AALxeL1wuF7Zt24a2tjZcffXVmDt3LgBg4cKFqK+vz2TziIiIiAwjo6Hs+uuvx6233opHH300fuxHP/pR/L+ffvppOJ3O+J9nz56Nbdu2ZbJJRERERIaU0TllF110EYqKiob9naZp2LlzJ6655ppMNoGIiIhoWsjanLL33nsPZWVlOOuss+LH2trasHLlSjidTjz44IO48MIL054nFAqhqakpgy3VBYPBKXkcmlq8rrmL1zY38brmLl7bLIay1157LamXzO12480330RJSQk+/vhj3H///dixY0fS8OZwrFbrlEzAb2pq4kT/HMTrmrt4bXMTr2vuypdrmyp4ZqUkRjQaxf/8z//g6quvjh+zWCwoKSkBAJx77rmYPXt2fEEAERERUa7LSij705/+hOrqalRWVsaPdXV1QVH0yvmtra04evQoqqqqstE8IiIioimX0eHLtWvXYt++feju7kZdXR0eeOAB3HTTTfjd736H5cuXJ9323XffxfPPPw9ZliHLMp588kkUFxdnsnlEREREhpHRUPbcc88Ne/zpp58ecuzKK6/ElVdemcnmEBERERkWt1kiIiIiMgCGMiIiIiIDYCgjIiIiMgCGMiIiIiIDYCgjIiIiMgCGMiIiIiIDYCgjIiIiMgCGMiIiIiIDYCgjIiIiMgCGMiIiIiIDYCgjIiIiMgCGMiIiIiIDYCgjIiIiMgCGMiIiIiIDYCgjIiIiMgCGMiIiIiIDYCgjIiIiMgCGMiIiIiIDYCgjIiIiMgCGMiIiIiIDYCgjIiIiMgCGMiIiIiIDYCgjIiIiMgCGMiIiIiIDYCgjIiIiMgCGMiIiIiIDYCgjIiIiMgCGMiIiIiIDYCgjIiIiMgCGMiIiIiIDYCgjIiIiMgCGMiIiIiIDYCgjIiIiMgCGMiIiIiIDYCgjIiIiMgCGMiIiIiIDYCgjIiIiMgCGMiIiIiIDYCgjIiIiMgCGMiIiIiIDYCgjIiIiMgCGMiIiIiIDyGgoW7duHRYtWoRrrrkmfuyFF17AV77yFVx33XW47rrr8Ic//CH+u40bN+Lyyy/HlVdeibfeeiuTTSMiIiIyFFMmT3799dfj1ltvxaOPPpp0/M4778Rdd92VdOzw4cPYsWMHduzYgfb2dqxatQq///3vIctyJptIREREZAgZ7Sm76KKLUFRUNKrb7t69G8uXL4fFYkFVVRXmzJmDAwcOZLJ5RERERIaRlTllv/rVr3Dttddi3bp16O3tBQC0t7ejsrIyfpuKigq0t7dno3lEREREUy6jw5fDueWWW/CNb3wDQghs2LABTz/9NJ566ilomjbktkKItOcLhUJoamrKRFOTBIPBKXkcmlq8rrmL1zY38brmLl7bLISy8vLy+H/fdNNNuPfeewEAlZWVOHnyZPx37e3tcLvdac9ntVoxb968yW/oIE1NTVPyODS1eF1zF69tbuJ1zV35cm1TBc8pH770eDzx/961axdqamoAAEuXLsWOHTsQDofR2tqKo0ePYsGCBVPdPCIiIqKsyGhP2dq1a7Fv3z50d3ejrq4ODzzwAPbt24fm5mYAwMyZM1FfXw8AqKmpwbJly3D11VdDlmWsX7+eKy+JiIgob2Q0lD333HNDjt10000j3v6+++7Dfffdl8kmERERERkSK/oTERERGQBDGREREZEBMJQRERERGQBDGREREZEBMJQRERERGQBDGREREZEBMJQRERERGQBDGREREZEBMJQRERERGQBDGREREZEBMJQRERERGQBDGREREZEBZHRDciIam4ZmDzY2tqC124+qEgdW11VjSa07280iIqIpwJ4yIoNoaPZg/faD8HiDKLab4fEGsX77QTQ0e7LdNCIimgIMZUQGsbGxBWZZwGExQQj9p1kW2NjYku2mERHRFGAoIzKI1m4/7GY56ZjdLKOt25+lFhER0VRiKCMyiKoSBwIRJelYIKJgVokjSy0iIqKpxFBGZBCr66oRUTT4w1Fomv4zomhYXVed7aYREdEUYCgjMogltW7Ur5gPt8uG3kAEbpcN9Svmc/UlEVGeYEkMIgNZUutmCCMiylPsKSMiIiIyAIYyIiIiIgNgKCMiIiIyAIYyIiIiIgNgKCMiIiIyAIYyIiIiIgNgKCMiIiIyAIYyIiIiIgNgKCMiIiIyAIYyIiIiIgNgKCMiIiIyAIYyIiIiIgNgKCMiIiIyAFO2G0BE2dPQ7MHGxha0dvtRVeLA6rpqLKl1Z7tZRER5iT1lRHmqodmD9dsPwuMNothuhscbxPrtB9HQ7Ml204iI8hJDGVGe2tjYArMs4LCYIIT+0ywLbGxsyXbTiIjyEkMZUZ5q7fbDbpaTjtnNMtq6/VlqERFRfmMoI8pTVSUOBCJK0rFARMGsEkeWWkRElN8Yyojy1Oq6akQUDf5wFJqm/4woGlbXVWe7aUREeYmhjChPLal1o37FfLhdNvQGInC7bKhfMZ+rL4mIsoQlMYjy2JJaN0MYEZFBsKeMiIiIyAAy2lO2bt06NDQ0oKysDK+99hoA4JlnnsGbb74Js9mM2bNn46mnnkJhYSHa2tpw9dVXY+7cuQCAhQsXor6+PpPNIyIiIjKMjPaUXX/99di8eXPSsS9/+ct47bXX8Nvf/hZnnXUWNm7cGP/d7NmzsW3bNmzbto2BjIiIiPJKRkPZRRddhKKioqRjixcvhsmkd9Cdf/75OHnyZCabQERERDQtZHVO2X/913+hrq4u/ue2tjasXLkSt956K957770stoyIiIhoamVt9eVPf/pTyLKMFStWAADcbjfefPNNlJSU4OOPP8b999+PHTt2wOl0pjxPKBRCU1NTxtsbDAan5HFoavG65i5e29zE65q7eG2zFMr++7//Gw0NDfj5z38OIQQAwGKxwGKxAADOPfdczJ49G0eOHMF5552X8lxWqxXz5s3LeJubmpqm5HFoavG65i5e29zE65q78uXapgqeUz582djYiP/7f/8vfvrTn8Jut8ePd3V1QVH0LV9aW1tx9OhRVFVVTXXziIiIiLIioz1la9euxb59+9Dd3Y26ujo88MAD2LRpE8LhMFatWgXgdOmLd999F88//zxkWYYsy3jyySdRXFycyeYRERERGUZGQ9lzzz035NhNN9007G2vvPJKXHnllZlsDhEREZFhsaI/ERERkQEwlBEREREZADckJ6Jxa2j2YGNjC1q7/agqcWB1XTU3OCciGif2lBHRuDQ0e7B++0F4vEEU283weINYv/0gGpo92W4aEdG0xFBGROOysbEFZlnAYTFBCP2nWRbY2NiS7aYREU1LDGVENC6t3X7YzXLSMbtZRlu3P0stIiKa3hjKiGhcqkocCESUpGOBiIJZJY4stYiIaHpjKCOicVldV42IosEfjkLT9J8RRcPquupsN42IaFpiKCOicVlS60b9ivlwu2zoDUTgdtlQv2I+V18SEY0TS2IQ0bgtqXUzhBERTRL2lBEREREZAEMZERERkQEwlBEREREZAEMZERERkQEwlBEREREZAEMZERERkQEwlBEREREZAEMZERERkQEwlBEREREZAEMZERERkQGMKpTdcccdozpGREREROOTcu/LUCiEQCCA7u5u9Pb2QtM0AIDP54PH45mSBhIRERHlg5Sh7JVXXsGLL74Ij8eD66+/Ph7KnE4n/u7v/m5KGkhERESUD1KGsjvuuAN33HEHfvGLX+C2226bqjYRERER5Z2UoSzmtttuw/79+3Hs2DEoihI/vnLlyky1i4iIiCivjCqUPfLII2htbUVtbS1kWQYACCEYyoiIiIgmyahC2ccff4zf/e53EEJkuj1EREREeWlUJTFqampw6tSpTLeFiIiIKG+Nqqesu7sby5cvx4IFC2A2m+PHf/azn2WsYURERET5ZFSh7IEHHsh0O4iIiIjy2qhC2Re+8IVMt4OIiIgor40qlF1wwQXxSf6RSATRaBR2ux379+/PaOOIiIiI8sWoQtkHH3yQ9Oddu3bhwIEDGWkQERERUT4a1erLwS677DLs3bt3sttCRERElLdG1VP2xhtvxP9bVVV8/PHHrFlGRERENIlGFcrefPPN+H/LsoyZM2fiJz/5ScYaRURERJRvRhXKnnrqqUy3g4iIiCivjWpO2cmTJ3H//fdj0aJF+NKXvoQHHngAJ0+ezHTbiIiIiPLGqELZunXrsHTpUrz11ltobGzE3/7t32LdunWZbhsRERFR3hhVKOvq6sINN9wAk8kEk8mE66+/Hl1dXZluGxEREVHeGFUoKykpwbZt26AoChRFwbZt21BcXJzhphERERHlj1GFsu9973vYuXMnvvzlL2Px4sX4/e9/j+9973uZbhsRERFR3hjV6sszzzwTP/vZzzLdFiIiIqK8NapQ1trail/+8pc4duwYotFo/Hi6oLZu3To0NDSgrKwMr732GgCgp6cHDz30EI4dO4aZM2fiRz/6EYqKigAAGzduxJYtWyBJEp544gl85StfGe/zIiIiIppWRjV8ef/992PmzJm49dZb8b//9/+O/y+d66+/Hps3b046tmnTJixatAhvvPEGFi1ahE2bNgEADh8+jB07dmDHjh3YvHkznnzySSiKMo6nRERERDT9jKqnzGq14vbbbx/zyS+66CK0tbUlHdu9ezd+8YtfAABWrlyJ2267DY888gh2796N5cuXw2KxoKqqCnPmzMGBAwdwwQUXjPlxiYiIiKabUYWy22+/HT/+8Y/x5S9/GRaLJX58/vz5Y37Azs5OuN1uAIDb7Y6X1mhvb8fChQvjt6uoqEB7e/uYz09EREQ0HY0qlH3yySfYtm0b9u7dG9+IXAiBl156adIaomnakGOj2fQ8FAqhqalp0toxkmAwOCWPQ1OL1zV38drmJl7X3MVrO8pQ9j//8z/YtWtXUi/ZeJWVlcHj8cDtdsPj8aC0tBQAUFlZmbR1U3t7e7xHLRWr1Yp58+ZNuF3pNDU1Tcnj0NTidc1dvLa5idc1d+XLtU0VPEc10b+2thZer3dSGrN06VJs3boVALB161Zceuml8eM7duxAOBxGa2srjh49igULFkzKYxIREREZ3ah6yjo7O7Fs2TKcd955MJvN8ePpSmKsXbsW+/btQ3d3N+rq6vDAAw/gnnvuwYMPPogtW7bgjDPOwIYNGwAANTU1WLZsGa6++mrIsoz169dDluUJPDUiIiKi6WNUoeyBBx4Y18mfe+65YY+/+OKLwx6/7777cN99943rsYiIiIims1GFsi984QuZbgcRERFRXhtVKPvwww/x3e9+Fy0tLYhEIlAUBXa7Hfv37890+4iIiIjywqgm+tfX1+O5557DnDlz8NFHH+Gf/umfcOutt2a6bURERER5Y1ShDADmzJkDRVEgyzJuuOEG7Nu3L5PtIiIiIsoroxq+tNvtCIfDmDdvHr7//e/D7XbD7/dnum1ElKcamj3Y2NiC1m4/qkocWF1XjSW16esWEhFNZ6MKZd///vehaRrWr1+Pn//85zhx4gReeOGFTLeNiPJQQ7MH67cfhFkWKLab4fEGsX77QdQDDGYDci205trzIRqvUQ1fzpw5E1arFU6nE9/85jexbt06zJkzJ/778ZbMICIabGNjC8yygMNighD6T7MssLGxJdtNM4RYaPV4g0mhtaHZk+2mjUuuPR+iiRj1nLJUWltbJ+M0RERo7fbDbk4uHG03y2jr5pQJIPdCa649H6KJmJRQNpqNw4mIRqOqxIFAREk6FogomFXiyFKLjCXXQmuuPR+iiZiUUEZENFlW11Ujomjwh6PQNP1nRNGwuq46200zhFwLrbn2fIgmYlJCmaZpk3EaIiIsqXWjfsV8uF029AYicLtsqF8xnxO/B+RaaM2150M0EaNafQkAwWAQx48fR3X10A/Kww8/PKmNIqL8tqTWzRA2giW1btRDn4vV1u3HrGm+WjHXng/RRIwqlO3ZswfPPPMMIpEI9uzZg6amJmzYsAE/+9nPAACLFy/OaCOJiOi0XAutufZ8iMZrVMOXP/7xj7FlyxYUFhYCAObNm4djx45ltGFERERE+WRUPWWyLMPlcmW6LTRNsfAjERHRxI0qlNXU1OC3v/0tFEXB0aNH8Ytf/AIXXHBBpttG0wCrrxMREU2OUQ1ffuc738Hhw4dhsVjwrW99C06nE48//nim20bTAAs/EhERTY60PWWKouC+++7Dz3/+czz00ENT0SaaRlq7/Si2m5OOsfAjERHR2KXtKZNlGTabDV6vdyraQ9MMCz8SERFNjlHNKbNarbj22mvxpS99CQ7H6S/bJ554ImMNo+lhdV011m8/CH84CrtZRiCisPAjERHROIwqlC1ZsgRLlizJcFNoOmLhRyIioskxqlD21a9+NdPtoGmMhR+JiIgmblSh7OjRo3juuedw+PBhhEKh+PHdu3dnrGFERERE+WRUJTHWrVuHW265BbIs46WXXsLKlStx3XXXZbptRERERHljVKEsFAph0aJFAICZM2figQcewN69ezPaMCIiIqJ8MqrhS4vFAlVVMWfOHPzyl79ERUUFOjs7M902IqJxe7etH/Vv7eX2X0Q0baTsKXvkkUcAAJdeeikCgQCeeOIJHDx4ENu2bcMzzzwzJQ0kIhqrhmYPfvJOJzzeYNL2Xw3Nnmw3jYhoRCl7yg4ePIhjx47ht7/9Lb72ta/BZrPh0Ucfnaq2ERGNi779F+Cw6H/FOSwm+MNRbGxsYW8ZERlWylB288034+6770Zrayuuv/56aJoGIUT8J1dfEpERtXb7YZNF0jFu/0VERpcylN1+++24/fbb8Q//8A948sknp6pNREQTUlXiQFtnL+wJx7j9FxEZ3ahWXzKQEdF0srquGhEF8Iej0DQN/nCU238RkeGNKpQREU0nS2rd+MYXy+B22dAbiMDtsqF+xXzOJyMiQxtVSQwiounmolkFuP3yedluBhHRqDGUpdHQ7MHGxha0eHpR7e5lrSMiIpqQ2PcKa+jRYAxlKTQ0e7B++0GYZQGXRcRrHdUD/AARTTP8IiQjSPxeSayhx+8VAjinLCW91pGAw2KCEPpPsyywsbEl200jojGIfRGymCxlG79XKBWGshRau/2wm+WkY6x1RDT98IuQjILfK5QKhy9TqCpxwOMNxquCA6x1RDQR2RpCbO32o9huTjrGL0LKBn6vUCrsKUtBr3WksdYR0STI5hBiVYkDgYiSdIxfhJQN/F6hVBjKUlhS60b9ivlwu2zwhjXWOiKagGwOIfKLkIwi8XuFNfRoMA5fprGk1o0ltW40NTVh3jzWPCIar2wOIS6pdaMeejBs6/ZjFldfUhbFvleIBmMoI6Ipke25NPwiJCKjy0ooa2lpwUMPPRT/c2trK9asWQOv14vf/OY3KC0tBQCsXbsWl1xySTaaSESTbHVdNdZvPwh/OAq7WUYgonAIkYgoQVZCWXV1NbZt2wYAUBQFdXV1uPzyy/Hqq6/izjvvxF133ZWNZhFRBnEIkYgotawPX7799tuoqqrCzJkzs90UIsowDiESEY0s66svd+zYgWuuuSb+51/96le49tprsW7dOvT29maxZURERERTR2iapmXrwcPhML7yla9gx44dKC8vR0dHB0pKSiCEwIYNG+DxePDUU0+lPMeHH34Iq9Wa8bYGg0HYbLaMPw5NLV7X3MVrm5t4XXNXPl3bkao5ZHX4srGxEfPnz0d5eTkAxH8CwE033YR777037TmsVuuUlKpgSYzcxOuau3htcxOva+7Kl2vb1NQ04u+yOny5Y8cOLF++PP5nj+d0Ze9du3ahpqYmG80iIiIimnJZ6ykLBAL405/+hPr6+vixZ599Fs3NzQCAmTNnJv2OiIgyK1t7kxKRLmuhzG6345133kk69uyzz2apNUSUCxJDRalVw1pRxlAxSrG9Sc2ySNqbtB7ga0g0RbK++pKIaDIM3vC8OxCdsg3PR6uh2YNbNu3F4mf24JZNew3VtmzuTUpEOoYyIsoJg0OFzSQZKlQMDo2xniijBLPWbj/sZjnp2FTtTUpEuqwXjyWi7JnOc4gGt/2Qx4vKwuTl9EYKFYmhEQAcFhP84Sg2NrYY4jXP9t6kRMSeMqK8lc2em4kO4w3Xdm8wis7+UNLtjBQqjN4TtbquGhFFgz8chabpP7k3KdHUYigjylPZmkM0GWFwuLaXOMzo6o/EQ0UwqhoqVFSVOBCIKEnHjBQal9S6Ub9iPtwuG3oDEbhdNtSvmG+IXjyifMHhS6I81drtR7HdnHRsKnpuJmMYb7i2lzutiCoq3C4b2rr9KLGbsPYq44SK1XXVWL/9IPzhKOxmGYGIYqjQCHBvUqJsYyijvDHc/KmKbDcqi7I1h6i12w9ZAC2nfAgrKiyyhHKnZUxhcKS211QU4uV7LgYwUB3cQAFjSa0b9dBDaVu3H7Om2Rw+Iso8hjLKCyPVYLr7AhfyYFePYWWr58ZlNeGQxwdZEpAlgaiq4VhPEDVu56jPMR16nYbDnigiSoVzyigvjDR/asvB3mw3LWuyNYdI07SB/0j4X+LxUeD8JyLKRewpo7ww0vyp9r7QCPfID9noufGFFcwstqHDF44PX1Y6regPK+nvnIC9TkSUa9hTRnlhpJVvFU7+u2SqVZU4EIqqScdCUdUwqxCJiLKF30iUF0aag3TjgqJsN21aGGuR2VS3X1Rdin1HuyAJQBJAWFFxyhfG//pC6VQ9HSIiQ2JPGeWFkeYgXTSrINtNM7yx1hVLd/u3W7rgdllgkSWoGmCRJbhdFrzd0jWVT4uIyHDYU5ZG7F/8LZ5eVLt7uYR9GhtuDlJTU2eWWjN9DFdXrMMXxJpXPkCh3RzvCYvddv+n3RAAKots8UUVp7ynb3/KG0JloRXVM06vttQ0zTCV7YmIsoWhLIXEMgoui4j/i78eYDCjvDF4kYQ3GEGHNwwNwOxSvV7Yw1s+ggBQaDdD1TQIAMd7gjizGNA0oLM/DFXTMLvUgQ5fCMd6ghBCwGXTz2ukyvZERNnC4csUsrUNDZGRDF4kccobAgRgNUnxz4UvFIU3GIXDYoJFliAgIIR+2w6fvsLVZpIhhECFS980/GRvcEr2WJzoPptERFOFoSwFo28gTDQVBm9UHYzqAa3caY3fRlE1RFU1flyFBk3TEIoq+kpLDZjh0m9faDdjZrENGpDxGmPZ3HSdiGisOHyZQra2oSEyksHbAxVYTHBYZBQmDGnKkgA0AQDx4+3eIIQmYDVJKLDK8aFKADDJEj4/uyS+JVKmTMY+m0REU4WhLIXEMgpiCoZZiIwqcZFErPcpsbyI02qCAOLHTLKI94AByNqWSNnadJ2IaDwYylJI7CFo8YRQ7bZx9SXlveE21v7O8s8BGHmz7WxtxM3ebiKaThjK0oj1EDQ1NWFevu5cTTTISFscjRS0srUlUrqNy8daFJeIKJM40Z+Iclaqjcu5CICIjIY9ZUQ0rcV6uw55vAhHVZhlgXMqCrFsrgnz5o3cS8dFAERkNAxlaTy/6xNs/uMR+EJROK2f4u7Fc7HmsnOy3SwiwulFBxFFQa8/AgggEAGOdPjwE4+C2VWeEQMWFwEQkdFw+DKF53d9gg17DiMQUWAS+gThDXsO4/ldn2S7aUSE071dfYEoJEnAJEmQIOANRmGWkbLQ8+CiuAAXARBRdjGUpbD5j0cgCcAk6ZXLTZIESejHiSj7YgWew4oKoZdJgxBAWFFhlUXKXq/BRXFZ8oaIso3Dlyn0hxWYBsVWSejHiSj7YiUvLLKEqKpBCH2vTYssIaRomFU2cq/XcKU98nn1JVeiEmUfQ1kKBRYZ/aEoNChQNUBSFQgABVa+bERGECt5UWg3ocMbhio0AIDLZkZEUdL2emWrVIfRxObmmWWRtBK1HiOXOSGiycfhyxQurZ0BRQNU/e95qBqgaPpxIsq+WMmLs8qcKHKYYTfLKLKZMLfciW98sYyBYpQSV6LGNpk3yyLlnDwimnzs8knhZF8YJQ4TegNRvadMAEV2E072hbPdNCIaEOvtShx+o7HhSlQiY2AoS6G124+ZxQ7MKhEIBgOw2ezQNI1/UREZzHDDbz95J5SyJAadxu2oiIyBw5cpcMk80fQw/PBb6pIYdBpXohIZA0NZCvyLimh6iJXGSJSuJAadlmo7KiKaOhy+TCFxyXyLJ4Rqt43LxIkMaLjht3QlMSgZV6ISZR9DWRqxv6iampowb968bDeHiIYRK43hD0dhN8sIRBREFLBXm4imFYYyIpoSDc0ePL2zCUc69SHF6vICPHpV7aT0zgxXCHbZAueQVZksikpERsZQRkQZ19DswcNbPkKPPwJpYDukQx4fHtnyEZ69ceGkBbPE8zQ1NbEoKhFNK5zoT0QZt7GxBb5QFLIQkCVp4H/6xuGZXCHJoqhENJ2wp4yIJtVww4Wt3X4oqgY5tms49I3Do4qa0RWSLIpKRNMJQ1kaD72yH9sPnNS/UKQjWLGgEv9y8+dT3mc6zWFJbKvTIkMIAW8oavh2U3rDvQ8BpH1vNjR78MR/H8CxvtDA5t4ChXYzvMEooqoGJbbv2Ci0dQfwdktn/M8RDL1va3cAZz22Y8RzCAFAAyAAoQHqoN+7rBKKHNYhz7HF0wtvSEN7bwCKFjuXgFkWKHeYccumvUNem2deb0ZLRz8iiorEp1nutOD2i+fg7ZauafG5JqLpSWiaNvq/YQ0ok6siH3plP/77wxNDjn/1/DNGDGaJc1hOrwLTDFnzJ7GtUUXFsZ4gAGBmsQ0mWTJsuydTrq6qHe592BuIQAAotJtHfG82NHvwwMv74Q0pqR/AYBwmgTNKHOgL6LGvyG6GPxCEp1+JB7IYAT3ouV1WlDut8dcmoqjoDylQVG2Y6KirLDx9n3z4fBhRrn5mKX+ubarnyTllKWw/cBKA/hd47C/yxOPDmU5zWBLb2uELD8z3EejwhQ3dbkpvuPehLxSFNxhN+d7c2NiC/rAeyBJGGg3PH9XgsJjgDUbhC+nPsSeowiRLiD0NgdOf49h8tsTXpi8QhSyJEQMZgKT78PNBRJONoSyFkYZpUg3fDFdZ3KhzWBLbGlZUPXwK/b8B47ab0hvufaioGqJq8uDf4Gvc2u3HGEYnDSeqqvHPZ0TVIATiIctmlmE1S1A1QEp4nwNARNF7x0LRwYOjyRLvw88HEU22rM0pW7p0KQoKCiBJEmRZxquvvoqenh489NBDOHbsGGbOnIkf/ehHKCoqylYTIUtCH8qI/a2unT4+kum0sW9iWy2yhOjAOI9F1rO6UdtN6SVeW28wglPeECKKBgHAG4zAZdMnvw++xlUlDhzvCUzbYGaSJMS6xsySgKrF/wgA0AYCmaqdfp97gxGoA084Nn1tJLH7APx8ENHky2pP2Ysvvoht27bh1VdfBQBs2rQJixYtwhtvvIFFixZh06ZN2WwevjCneEzHgem1X2ZiW8udFiiaPom73GkxdLspvdi17fAFcaw7gLCiQhJ6IGnrDqAvEB72Gi+qLo2nkuk029RhEvCHo3DZTHBaTfCHoyi2SVBUPYhKkt6Lpqoaiu1mqBrgspmgaRpO9gb124jUgQw4fR9+PogoEww1fLl7926sXLkSALBy5Urs2rUruw0SEhzm5JfIYZYAMfLLNp029k1sq6oBZ88oQI3bCVWDodtN6cWubX9IgQa9h6eqxIFZJQ6YZIGTfaEh17ih2YMt+4/BXWiFKaF7ySTpqw+tJillL3G2uKwSylw2uF02PHvjQvzgxoX6exoCNW4nzqlwomRgcUORw4zPVhbi75eejbnlTvQOLAyoKrWjqsQBq0nCcM+w3GnB2stq4vcZ7rW7ZdNeLH5mD27ZtBcNzZ4pfQ2IKDdkbfXl0qVLUVRUBCEEvv71r+PrX/86LrzwQrz33nvx21x00UV49913U57nww8/hNVqzUgb7/yvT+GyCAghoKoaJElA0zR4wxp+fsPsjDwmTa1gMAibzTau+77b1o8tB3vR7ouiwmnCjfOLcNGsgklu4fjE2vZxexAWCSh1mFBg0f8xMdJ7+NHfH0d3IAqb6fQ/OoJRFSV2E5658swRH2Oyn3/i5w4A/tIVjg+nWmX9WFTTYDNJ2HLLWSOeZ7TXdqzPe7B32/rxk3c6YZb19oUUDREF+MYXywzzfsglE/nMkrHl07UdafVl1uaUvfzyy6ioqEBnZydWrVqF6urxDQNYrdaMLaGtdvfC4w3CbjEhGAzAZrPDH46i2m3Li2W7+WC8S7Abmj3Y/MFJmGUZMwot6I8o2PyBF7OrZme9dzGxbXazjLCiosOvwmKxwGUzj/ge7tp+AsUFjngYAgCrpqE7EBly20w+/8TPHQDMcAq0e0N6D9bAfDBAYHXdZzBv3jkjnme013atKMP67QehSqfLhwhZw9qr5mPeKJ5L/Vt7UWC3xueR2gH4w1HsPBLF7Zfz74nJli9lE/JRvlzbpqamEX+XteHLiooKAEBZWRkuv/xyHDhwAGVlZfB49G5/j8eD0tLSbDUPgD4v51RfEAeP9+JQZxgHj/fiVF+Q80jI0KVPEttW7tR7kTVo8PQFU86FqipxIBBJrk820mT2TD7/wfMynTYTiuwm2MwSoqq+6vHvl56NNZeNHMjGIjbUa5YEDnl8aOsOoMAip7/jgOm04pqIjC0roczv98Pn88X/+//9v/+HmpoaLF26FFu3bgUAbN26FZdeemk2mhd3oK0HvrASHzpRNcAXVnCgrSer7aLsM/IXcWLbCu1mnFlkh0WWEFK0lHMFx7JIJdPP32GW0NYdwCGPDxZZwoavX4Cm7y7DX753NQ7845WTFsgS+SMqZpXYUeN2IqyoWL/94Kjmho0lzBIRpZKV4cvOzk7cf//9AABFUXDNNdegrq4O5513Hh588EFs2bIFZ5xxBjZs2JCN5sVt/uMRyJKAVZKgqiokSUJUVbH5j0cy8qVA00e2Sp8M3jppUXXpkK1/Bret0G6GSRZwu2x4+Z6LRzz3klo36qH3grV1+zErxVZCmXr+iTsR1LidCESUeDHbTErs+QMAh0VfwbmxsSXtcOzqumqs334Q/nA0aacE9qgT0VhlJZRVVVVh+/btQ46XlJTgxRdfzEKLhtcfVmAa1JcoCUzJlwQZWza+iBMDS7HdjKOdPuw72oUZTgvKnVZ4vEGs334QN35+JrbsPzahtqVb/ZOp5z9cODrlDWLNKx+g0G7O2J6TE9m4fCxhlogoFW5InkKBRf+ySawCoGoY03wTyk3Z+CIeHFj6AlFIQt/6Z4bLFu/debulC/Ur5sfbVmCRYZElPLHtY1Q1jtzOwaEvFvLqB57vZD7/4TZLX1LrHhKO+gIRdPaHoWoaZpc6UrZpIo870Z6/JbVuhjAimjCGshTuXjwXG/YcRlRVITR9ixpV048TTfUX8eDAEisIO9zWP7G2Dde7dvdL7wLQ9zmtLi/Ao1fVYkmte8xDeLFjsZATm+Sf7jVJFf4Gh6MOXwgAYDPJ8QUFox1WTHy8jY0tOOTxwhuMosRhTupZrAeHIInIGLJWp2yyZHoJ7VX/0oDm9v74n2cVWVFV5sQn7X2IKBosJgk1bte4e0lG+pf7aH8/kfM3NHvwzOvNaOnQn9/cMgceWzYv5fkn2h6jmeol2LHX/LDHh6imQRZAjdsVD0ap3LJpb1Jg+eRkH0LK6e2BLLJASYEFc8ud8bljifdp7w3A4wvHzycLQAiBEocZz964EN/6zw8RjKh62AMAIaBqGiQh8PmqIuz7a098X0mHRYbDLKGzP5J2qHO8TAKIpjm5LAlYTXrl/sR9K2cV23DP3xRhdtVsPLzlI/hCUQQjp38vBOCyyAgPbKP2+dklqCy0YHfzKXiDUUiSQIFFxvwzi4Z9j6f7XOXSZ8Ro8qVsQj7Kl2ub6nkylKXw0Cv78d8fnhhy3CoDaqzutwaUuywwy/KYK+An9hgk/us8dp50v5/I+QHgkS0fodsfiQ/PqhpQ7DDjBzcuTDu8NZ72GNFU/iXQ0OzBI1s+Qld/GErCp04CUOa04NlhXvfEL3iX1YRTvhBMkkB3fzgeyAZzWWWcO7MYq+uq8cS2j1FsN8MbjOLTLv+QAGWS9P0izypz4EinH6qmAZqGWH6R4nXBpp8Cs0CJw4KT3jBUVcNwW41L0LdgmuGywuMNw2WVT88ZHeGzne5zlWufEaPJly/ufJQv1zbV8+TwZQrbPhoayAAgpOiVuyVJ70noC0RRWWQa05AKkH7F10RWhKU7P6DPRZIlAWmgWKhQNfhCI59/ou3JdxsbW+ANRqEC8UKomgZoA/PCnnm9ecjKyi37j8WH+QIRBeGIgt6oisgIgQzQQ9TRTh9W//J9KKqKDl9If5wRbhtVVRzp9KO0wIxOXwSRhH+nTddABgD+iAZ/XwhmSSA6wm1UAHaTHJ+f1xeMwixJKT/b6T5X/IwQ0XgxlKWQ6gspVvRcDMzpGU+NpnQrviayIizd/TXoX8Ym+fTyUiEARdVGPP9E25OLxjJU1drtR1RVh6QjTQMiiopPPD6cVeaIz7P614a/oLTAjCK7vu2Iw2JCWNUgCwHIQETR4vs0Jp6yP5xcRkLTVAzOcGLgPqqm/09RVVhkCWcW23C0Mzeupxb/v9RmuKw41hOAJICIlv6zne5zxc8IEY0XQ9k4aQN/eWuavtnzeGo0pVvxNdEVYenu3+ENxZ9H7DnJkhjx/NmqzWUkiSHMaZHR2R9God2cdrUioL9+Hd4QFFVNCgwCejCympJ7WBRVQ68/gnLn6b3gFFWDpmmwmmREFGVU87mG61RLPCQL/bof6wmirMASD2zTnQBgt8gIR4cbuNRJAnDZzLDIofjCiXSf7XSfg3z/jBDR+GVtm6XpoMwxcmZVMbAaU9VQaDeNa6VWugrqY6mwPtbzr66rhsumf/Erqqr/T9PgtJpGPP9E2zPdxeYSebxBfSVjlx/d/ggUVRvVVkOr66phNUtDAk/szxUua/yYNxiBqmnwR1S0nPLBG4wA0MOTSZLGVZYlthhgsHKnFWcU2QEAHm8oqQTMdOYwC9xbV40Sh3nIX3Sx51hkN0HT9M+wqgGFNlPaz3a6z1U+f0aIaGIYylL44dcugM2U/A1lloB5lS4U2Uywm2UUOcw4q8w5rom8sT333C4begORIVvgpPv9RM6/pNaNZ29ciBq3E0IICCFw9oyCESf5T0Z7prvB+z0qqgZJAKe8ofhtUg1VLal144xC25BgZJEFbGYpPpTsDUZwvCcIQA9SYUXFse4AOnxBOK0muGwm9AWj+urJMbR/uN4vsyzQ7Y9ACGBmsQ0aAEkSsMoC5oF2DvcYAvoigUzlN5dVwqwiK6yDqzcPIksCDos85Hazim14tM6NNZedg2dvXIgvVpfBZZUG5lACTqsJXz3/DNRWFqE3EMFZZU78/dKzMe+MorSf7XSfq3z+jBDRxHD1ZRrP7/oEm/94BL5QFE6rCXcvnsstlnLIWN4/i5/Zg2K7GWJgvLfllA8RRR+KrK0shDcYwcneIDToJRaGm182+BwAoGkaTvYG4LCaYZYFTvQEEBmY0FhsN8MfVhCKqnBYZDx/8wUAgNW/fF9fKQmknPQ/WIFFRlTREBmouScJwCxLMEkClUU2nPKGMMNlTShQG0G7NxgvGxHr8RlcNBYY+6rDxHIdfYEIOnwhBCMKIASK7SacU1GI1XXV2NjYgiMdPniDUYQVfe6by2ZKKv0xnHxZyZVveF1zV75cW66+HKeGZg+27D+GGS4r3A4BTbZgy/5jWDCrOOv/8mUtpKk3eC5RuVOfIG6SBPoCYRwb6N2aWWxLml8GnC6w2heIIKqomOE6PU8sEFFQkxBAjnb6YTNJKHdaUTgwaVzTNPQGIvFrPLfMgZaOfoTHEMhivW6yEJAHapCpA5PbggMrOu9ePDdpi6bYnpnD9RbF3oNPbPsYVSUO3Pj5mXi7pStthf/Y/fYd7YLNJMFhkdETiEDTBua/aRr6glEc6fBh/faD+JvZRdh3NAxJIF4s95QvjP/1hdJRP3cioumAoSyFxOGqYDACu0GWt49lO5zpxEhBc7i2DK76bpIFih1mzHBa0dLRD5MsUOGyxYOUPxzF0zub4I+o8WulqCo83jCCAz1JoagKWRK4buGZ8eGvwUVigeTJ4g3NHnT2h4cNZBIwpB5XbOK+WRYwyxKiigaTLEGDMrDyEiiwmOLBa8Gs4rTbJw33Htyy/1jaobrE+1llgbCiwu/TtzJLfDqappcJqSwyYXfzKbhdFvQFTveUFdpNeLulC2vGclGJiAyOoSyF1m4/ZKEPU4WiCqwmBeVOS9aXt0+kXpiRgs/gdhklaI7YlhXzk/aUnFXiwHeWfw5Lat1Y/MweyELfFuh4bwAWWRp4r4Qwq8Se0LtmQzCioMcfhSQBVllCkcOc1AObbsufjY0tKLSb0eELD5knZjFLSZXrAT2QCQBWk4QCq0nfS1LVICBQUTi0OOpoto8a6T349M6mlO+vxPu5C2043hOEBm3ICtGoqkGL6uUo+sMKZpc6klahatrIpVuIiKYrhrIUXFYTDnl8kCV9uCeqajjWE0SN25nVdo23XpiRgs9gGxtbEFEUdPqSe0My1SvZ0OzB0zub8JeOfkji6Ih7QMbmOoWiKta88gGev/mCYecxuawm/PmkF9pAKYWoqqC1KwBZ0udYJfKH9FIW0sACC4us97rFnmu6zb5j/1gYTjiqQgig2G5COKolzcEqcVhQ7LAgqvQhPLBF2FllznEF8+Heg1FFxdHOAM5StRHfX5+098W3crLIEortpqStn4DT5Sg0TUMgoqDAogdTlpkgolzH1ZcpxNdADHxBxLolsr02oqrEgUBESTo2mi+pwasH05VwmEqHPF50eMOIqhpkSQ/AHd4wDnm8k/5YDc0ePLzlIxw+1Q9oet2vQx4fHtnyERqaPWjt9sNultEXiOB4bwBRRYMsAf3hKNZvP4iGZs+Qc3oDYajQwwQGfup/1pKuVV8gEt8eSS+doKCt24/Wzn7sO9qFWzbtRUOzJ95jNqvEEd/sO/a4VSUOtHtDkCUxZPWjBj0gzix2oHqGE7WVhaie4US50wpfKIqX77kY733nCjx/8wWocbuGnHu0hnsPtntDMEv6PpRHOvrxaZcfnr4gnnm9Of66+0JKfF5bVNHQHdBLfeirOUX8tYs9mdg8N5aZIKJ8wJ6yFHxhBTOLbejwhRGK6lsrVTqtSdXSsyHd8NZIjFyRPxxVAYHTWz4JQBVaysKficYyLLuxsQW+UFSvjA9AkiQITYM3qA8Bxyb0d/hCkBDbTkvfINvjDWL1L98fsrryVH9k2KKrUU0f0ix36q/1id5A/Hdi4A7KwP8KLFK8d+nGtp6kLZYSe51W11XjrpfegywASRaIKBo06O9Pl92MGrcr7Zy0kXpMY69PutdxpPdgmcOM4z1BiIGCtKqq4ROPL74Ru6ZpiCgaokKDWTp9rYtsej0wLapC0/RNwp22sc1zIyKa7hjKUoh9OVfPcCIYDMBms8MfjsKdsHIuG9INb43EyBX5zbJAIAJ9rpM43VsyXLHTwcY6LNva7YcysF2RomqIRJX4llqHPF784MaFWL/9IAIRRR9GG8jgsr67EVRNG/IYqqqNWAW/PxTFmUV29AYiiChavGo8Bu1HWe60xudm/ewPLVA1DVFVg6rpxWnNksAzrzdj54N1OMftxJGOfiiaBodFxgyXFbKkr5QcLjD1BiKwyBIWP7MHfYEIHBY5afumwYsSZAF80NqNu156D+e4nfGh3ZjE9+Chdn04VBLAKV8YJllAFnonvABgloGndzbh0Kl+yEK/phFFQ1jR9CBpNaHQbklZTmM089yIiKY7Dl+mYOTq3Etq3Xj5novx1qNL8fI9F4/qC8sIz6eh2YNbNu3F4mf2xIfqAOCcikKUFVhgkgUUTYNJFigrsKCmojDtOcc6LFtV4oAsCYSjKiJq8h6n3qC+dfWNn5+JgdwUHyJUBobTTJI05DHMKYqcqhpQ7LDgu9edC4iR91SNrdqMKir8EQVRVR3YVkkPq7H9MRuaPXj0qlq4C22YXerA3PICyJKIX8vBBUzNA8OcYUVFsd2M/nAUnf1h9A0MHQJ6L96RTj/Msj6seLw3CE3Vg+iRjv74sG3i9dvY2IJF1aVwWM2Y4bLizCK9+GxE0RBV9Ir4KjRUuKzxcwsIyJIEm1kv+CqEwPwzi1hwlYgI7ClLKbE3oMUTQrXbNq2HTcbbwzZZUvVoxXp3KotMox6SHVzvKrGuV6ph2dV11Xjg5f0IDvM7u1mKB60KlxUdPn2eW4y+kbsGbzACTdOw/9NuLH5mD8LRkYe0VQ14u6UTb7d0Jp0nkTWhR7B9YKsjJTZyOzDMGdsfc2NjC16+5+KU1zKxZ+mWTXsRUbV4D6nNJCOsqOjwheKvV2x+mN0s40hvf3zYVoO+36ZZ1nvp+sNK/Pod6fBh75FOfY9Js4xyp3WgzIXew+ewSCh32mAaeG4VLiuO9wYBNTaZX0NUOx0kp+vniohosjCUpRH7ssiVSsPZ/PJLVcojXcgYbLh6V8cH5msV2s3DDssmzjsbXIJBQJ8DFYioeO9oV7yi/nBkSeBkb1Av26BpON4TGLH3azQEgJICS3xRQETRUFZgxinfQE9WwrnDURX7P+2OLwYYzbUcPJdwhsuKY90BhAbmb8Ues7q8AIHI6Yn4wOlNue1mGYc8vnh5j75ABJ394fgws967FkCx3YyegL5v59yB88XOHVZUnFlkR4dP3/xblgSqSwsYxoiIBjCU0ZRJt9BgLIHx6Z1N8HiD8blhqqpBkgQ6fCGYZDGkl21wL92J3gAE9B4bq0kvWRFVVIRGtbBAQzCqDTuxfzwKLBJKHBb0BiKYVeJAKKKgoz887G1NA0ORYyllMnguoctmRrlLQX9IiT9m4lZJsQn6Anoom+GyJvWkATi9CELouwJIkgBUwB9WUFZggT88/LnNskgKa48tm/7/0CEimiwMZTRlJmuhQUOzB4dO+eLbBWka9E3VNX27ILfLhkXVpUlbAPX4wwhHT9dBSypdoemLC2K9Y1KKeV9iYFgxcTHCRPWHVZzyhfCDGxcCAB7Z8pFedV8CEjOiPm1N36NSlk7XNUu38nS4if9mWcbzNy8YEurqEZuU74NZCFQWWePz1eaWOeL1wuLbNUkCmqIvRoDQEIpqKDPJePr64c/NFZRERCNjKKMpM55SHsMFjo2NLTBLkj4JXwi9tIQKCEngb6pK4o8TW0X4/l+7krYkMksCkhCIDqQqWQChgQlc6dZ6Cg04s8QOh1lCc7tvgq+ITgPgC0Xjc9kK7WYUWE045Q0BUTU+p81q0ldZumzmeEX7xB5AWQAffNqNu156FzUznPFeqI2NLfCHowhHVVhkgXKnFRZZwhPbPobrdRM0TYMvrMRf39cfugTP7/oEm/94BG09QRRYZNy9eC4WzCqOXz+LLCGsqBAQcLss8IWiCEbVpO2aBuO8MSKi1ISW7UqoE5TpuV6xUNDi6UW1u4j/up+g2Os52nljj2z5CN5gFFFVhUnSK9NrAAosMk70hiDEQE0zVd+q599uvxAbG1vg8QYRVTS09QSgDNPtZZElKJreY2aW9ZWT+uR6Le0m37UVTsw7w4X//vDEhF+PGLMsUFmor14stpshxOl4+BePF2FFw7wzTq9ETSzN4vEG4Q1EcGpg2yW9ECtQ5LBAQA95UUVFe5++M4FJFih3WmCRpfgm6iUOE7whPSSfUWhFKKqi0G4eUqICOF0GwxtSUFpgRlmBddgyFtmWK/NAKRmva+7Kl2ub6nmypyyFxF4Il0UYalui6WosvSXPvN6Mbn8EsiT0DbQ1oNsfgcUkochuxpnFNpzy6kFDUbX4VkX/37FuaJqAP6yMOOcrrJweF4wVNB3tv06a232j6iVLNQyaKLbIIDaMO3iIt8hhRld/ZNgexie2fQxZIGmrIg1ARAV6/WHIkgRJCHi8ofjziygaOn2RgT0n9ZIbp3wRmCS9t+14bxCSECiwni4xkrggI3b9xhKwiYgoPYayFBJXCwaDEdjHsPE3TVxLRz+kQVX+NaEhHNVDiXmgx+dYTxCyJHBmkQ1HO33whVS9QOsoHyddz9hY6SELMEkSgqNYOKABcFpNSRPiB8//un/JbLzd0jUkAFU1OvD+X7uGPa9eg02FxxuKtyv2TBNDaYyiapDkgd0LJOCUNwSXbeQSIxyOJCKaXAxlKRh5W6KYsWwvlAuPCwCyJKF+xXxsbGzB/k+7YZIFKgaG8tr79AAykRIVEyEAVBRaYTVJaO0KpL2tBsBhlvGDGxfGX7+RJsSvGeYcq+uqcefPO4f5jW6seTOi6pX5geTgZpSdH4iIchlDWQpG3pYIGPv2Qpl83Ie3fIQZTiu8oeikhbS5ZQ4cPtUPkbD1kqoBZ5c74r00i5/Zo7ehLxifU5VNJkmfkF9oN8NsCo1YYkMWwFnlBUPmYaULuw3NHjy9swlHOvV/GFSXF0xq+zUNmOG0oMuvD2cm1jEzwk4WRES5jNsspWCEbYlSGev2Qpl63KiioccfwZGO/qRwGNtCabweWzYPxQ4zhAQomgYhAcUOc1Jtq6oSBzr7Q4YIZIC+GvR4bwB9AwVUR6IMFGUdHMjWbz8Ijzc47OvY0OzBw1s+wuFT/QObdms45JnYCtDE1aaJm5oXO8yYW17AbY+IiKYQe8pSMPo2S9kaXh38uB2+gW2BBjbOdkzS3LsltW784MaFKSeTr66rxupfvm+IQAZgIIgJtHb7R6xjFpvYX+ywJD2XVDseLKl1Y2NjC3yhKGShb4EEAGJg0/LxMA9sf2SWBArtZnT7I3DZTHC7bPjO8s8Z5n1ORJQvGMrSMPI2S9kaXh38uHq9Kr3nJ2aywmG6yeRLat1wWmVEFFWvLD/MikdZjH1u1XgIxIq9nq5/NtzjxvaTTNwuqaHZg/2fdkPVNFjk0/t4Jr6OhzxehCIqNACSqi8kkMbR1y0J/fq4bCZ0+yNwWE2YW+7E0wb6BwcRUT5iKJvGxlOMdbwS5zo5LTL6Avq+jHazDFnShzBnuKzx20/l3LsZTit6A1GomjYkkAkAEAKWgfAy2SstE9kGrkHscW1mGSYB9IaGblauQS/F8ciWj2CVBU54Q1BVfdVmbB9JADDJeqmMhmYPvMHo6ftrQERRYYKIB1EpYZeB4Z6lSdJXsgohYDdLDGJERAbDUDaNxYZXn97ZFJ9bNNqJ32NZPTl4Yn8gotf/ssgSegMRnFXqQGd/WN9yZwITw8ezorOh2YMTfcERh/BivVIKAGuG3+2xQAYAs0sdKBwY4j3Z6z+9uXiCsKLh1EB9sdhKzKgKaJIGWQDt3iDcLlt8F4MSh1mvN6YhqeaYJACrSQJie1BCD2zxnQBkob8Omr4x+GPL5jGIEREZEENZDvBHVMwqscd7y9KtwBzrqs3h5joBQLHDgp0P1gFAfFue/rAS35ZnNF/8sfvFeoFKHGacWWwf1UrShmYP1rzyAfoSepBSCY3uZpPi5EBPV6HdjEK7Bb6QguDA0ONwYpX4YyESQl80EJtg/8S2j1HutMJqknGyNxDv8TNJAme7nej2h9HZH9a3mxrY5cAsC3ymvAD9YYXFXYmIpgGGsmku3eTwybhPugUFDc0ebNl/DDNcVsweCIZb9h8DALzd0jViz9fzuz7Bhj2H9bpYA0NvXf4IzLIEd6EtqU2DQ9+ltTPwx8Odow5kUy2kaPhrlx8WWUAZGFq0yALhgZ0DhtvQPDGYmWUJF8wuib9esXl8esjTr0Vsq6XYMHZZgQXeYBShqApZErh/yWew5rJzpvJpExHRBDCUTXPjWYE51vukW1AwXMg75Q3iXxv+gtICM3r9EZzoDeC9v3ahwmUFhEBViQMftfZAEvqE9ahyeuiv3RtCbyACTdNwtNOPxU/twvG+kL7dkqQ/9mTuO5lJYUWD22lB30BYiuWwkVZmxoclVTVp+DfV/MHEVcLc8oiIaPpiKJvmBgemvkAE7d4gNA24ZdPeYb+cx7pqM92CguFCXrc/glBUjW8aLguBiKLhWE8Qs0v14Ul/RIFZ0ofrBmeU2PZEVpOE430hfesfCEhCn9geUYZOns+WxO2LhpO4L+Voz1czw5l03dIFL255REQ0/TGUTXOJgSmqqDjWEwQAzCy2jTgva6yrNtMFgsEhr703kFTJXtOA6EDXkAagwxdG9QynHq5UAEixP2TCisqoqkKW5PG8TBk1Wes59X0+AQ0iqUBuDIMXEVFuYyib5hID0/5Pu2GSBCqLbPGNpIebKzae4a5UgWBwMEzXM+QPK2g+2ZdUTX44ZkmPa7GSD5qm96pFhtlMe7orsMgIKypkITC3vIDhi4goDzGU5YDB+0AKcTru2M0yDnm8uGXT3iET7ifzi7/AIqOloz9pE+tUZCEQSbENERDrRTt9Gw0Y9fmnm7nlBfEey0evqs12c4iIKAsYynLIcHPFOvtD8AajQ/ZTjA1pjqc2WExsc+xDp3wwSxIqC6041hOMD1WOxCwLRNXcDFfjIUsCvYEIJ+gTEeU5hrIcMtxcsa7+CEoc5mHLXwAYU72yRImbZwsAIUXFX7sC8XlRqbZj1JD69/lEEsDfLz2bpSuIiCg7oezEiRP4P//n/6CjowOSJOFrX/sa7rjjDrzwwgv4zW9+g9LSUgDA2rVrcckll2SjiaM2kZ6myTbcXLEefxjlTmvS7WLlL0ZTr2yk5xe7b0TRoKj6ikGB0YWtyFRsRDkNOCwy7q2rZiAjIiIAWQplsizjsccew/z58+Hz+XDDDTfgy1/+MgDgzjvvxF133ZWNZqU1OKAsqi7Flv3HxtXTlCmD54rdsmnviOUvBpey8AYj8PQFcaSjHwv+8ffQNA1hRYPDIiEc1XCyN4j9n3bj/iWfwSGPF/5QVK8+j+QViOl6yvJdkd2EDV+/gMOURESURMrGg7rdbsyfPx8A4HQ6UV1djfb29mw0ZdTebeuPD9fFAti/NvwF4agCh8UEIfQeJ7Ms4kODRrC6rhoRRYM/HIWm6T9j5S+qShzx/Rq9wQiO9wT1AqeaHty8IQWhqIpufxT9YQVRVUMoqmLDnkPo8YeTyl4kYiBLVmgzodBmQnmBGYuqyxjIiIhoWFmfU9bW1oampiYsXLgQ+/fvx69+9Sts3boV5557Lh577DEUFRVlu4kAgC0He2GW5aShvqiqwhuMYobr9O1SVcbPxlBnuvIXsTlonr4gNOg1weQ01VBzdAHkpIn1FEoC+GyFK74/KBERUSpC09Islcug/v5+3Hbbbbj33ntxxRVXoKOjAyUlJRBCYMOGDfB4PHjqqadSnuPDDz+E1WpNeZvJcMeWv6LQKiWVm2jtCSOsAlZZIKJqMEsCBRaBMwsteObKM5Pu/25bP37yTifMsn77kKIhogDf+GIZLppVMO52vdvWjy0He9Hui6LCacKN84vGdL7Y/T9uD+rtimqQBBBlb9e4yAkLHVwWCWsXz5jQ9aXxCwaDsNls2W4GTTJe19yVT9d23ryhBcKBLPaURSIRrFmzBtdeey2uuOIKAEB5eXn89zfddBPuvffetOexWq0jPrnJEOvd6g4o6AtrqHDZ4htCO6wagv4Ioppe1iCqAd1BDbd/qQrz5iVP3q5/ay8K7NZ4T5sdemHXnUeiuP3y8bW/odmDF95pgzcYRVRV0RtU8cI73bhNFOLtli580t6HiKLBYpJQ43YN2zM3bx5w++Wn554d6w7Etzii0bGaJMwoMENIEjzeEADgM2UOPLZsHocps6ipqSmjfzdQdvC65q58ubZNTU0j/i4roUzTNDz++OOorq7GqlWr4sc9Hg/cbv1LbNeuXaipqclG8+JiZR/MskC5Q8Ypv4pjPQEAGkyyhP6wghKHCeGohrCiwiJLKLSb8HZLF9YMOle6TcDHOrTZ0OzBN/5jP/xhBUIAZklAA9DVH8YLbx5GWYEF3f4INE0fiezu78R7f+1Ckd2MGrcLi6pL8XZLV9KihV/s/SsDWRpWkwSXVUZNRSFrihER0aTKSih7//33sW3bNpxzzjm47rrrAOjlL1577TU0NzcDAGbOnIn6+vpsNC9uY2MLIoqCTl8UoagCkyRB1TSc7Avh87NL0OMP44wie9KQpqZpw84pS7UJeGL4G02B19iqT394YFNuTS8zIUuAogGKorcxUex4hy+MDl8n3m7pBKAPtZ3sDeKdI52T/wLmmKoSO7573bkMYkRElBFZCWUXXngh/vznPw85brSaZIc8XvT6I5AkAVnoPVGaBhTaTXj5novjQ35RRUOHL6TvXSgJnFXqGHKuVJuAp6oXBgwt8PrCm4f1hgyI/Vd0HMseVQ1QszetcFpwmGXcewnriRERUWZlffWlkYWjKlRoUBRtYDWdBiH044AetB7e8hF6/BFIQi+eGlU0dPaH0dDsGfUm4E9s+3jEoc3vbPsYbd0BaNB7tQptZhZfnSKL5pbg5dVfynYziIgoTzCUpaBpWlL5B1UDoOnHAT1o2Uz6kGZU1UNTeYEFLrs53ss1eJ7Yy/dcPORxRhra1FQVbb2nhyFVDegJRDLzZCmu0GbC3YvnsmeMiIimFENZCkIIDC7ZJQaOA/pk+xN9QZgkAUkIaBrQHYjAbpFxyONNu69kbK7YIY8X3mAUJQ4zyp3W+NCmxxee6qecl2ShX9MShxnP3riQc8aIiCgrslLRf7rQNG1IDVUNp3vKnnm9GaoKhBV99aUGQIJAuzeEcFSNzxMbrtp/4obelYU2lBaY0eEL4c8nvWjrDqDAIiPMYcqMEThdU8wkS6hxOxnIiIgoq9hTloIQAtLAwspYhfbY8YZmDz7x+OKFQjUNiCgqZAnQFL2IrN0sJ50vqqjY/2k3Fj+zB32BCBwWGUV2vVCeRZYBCMiSQEWhFUc6+6fwmeY+m0mCyybDG9J7Ic9xO/HoVbWo0Drzoi4OEREZH0NZCmZZD0kSBDRNhRASVGiwDPR4mWUBTdVXZUZVFaqmb0FUW+lEscOSNE+sLxDBsR59qLPYbsaJ3gACEQVWk4xCu95LJgkgrKg43huEBJG6cZRSoc2E52++IKmkSFu3H2e7k+uLNTWxFAgRERkDQ1kK51QU4kiHD95gFKGovj2Sy2bG3HInWrv9qHBZ4wHKIusT/hVNw6NX1eJAWw/+teEvUFQNVpOEyMCKgcoiG4QQsJlkhBUVJ/uC6PCF0B+rOQZAVTSIVJtP0ohkAZQUWPCDhKHIJbVuDksSEZHhcU5ZCqvrqmExyagssuGsYjMqi2ywmGSsrqtGVYkDJlnCmUV2mGQBRdMgSQI1M5wAgC37j6G0wAyLLBCMKggrGkodZrhseumLGS4rVFVDKKomBbIYRrKxkwVQ43YmBTIiIqLpgj1lKSTWFmvxhFDttiUNfcVWV84tL0AgoqA3EIEQAqt/+T6EACpcNnzGrc8ZO+Txoi8YRUWRfm5N06vs08TNKrLin766gEGMiIimNYayNGJDX4M3Sh1cDLbAIkNAnxOmqCokIXC8NwAAKLSbUeGyoq0nAH84ilN9AfSFuMfkaEkC8T08YwSA2koXHr2qlmGMiIhyAkPZOA3ej7LHH0ah3QyHxQSTJCGkqNA0fSPyKuhDnTUznDjlDTKQjYIkgDOLbPjjY5eiodmDZ15vRkuHviJ1bpkDjy2bxzBGREQ5haFsHGI1xsJRBd5gFCd7g4iqGtxOCxRVQ1TV4ltTqhrw166hG5TT8AQAq1mC22VD/Yr5ADhRn4iI8gNDWRqxHrEWTy+q3b3xDcTDUQWd/WFIEDBJAoqqV+C3BaMQrGYxZgKASQJUAGeVsieMiIjyD0NZCrEeMbMs4LKI+FZJ/aEIghEVEgSkgYqyJgmIqEAwqrLC2BgIACZZoMhmQk1Fcg0xIiKifMJQlkKsQKzDYkIwGNH3o/QGEYroc8JMEiBBr9ovSRIsUBEZqO4/eM9MOk0GYDZLSZX1GcSIiCjfMZSl0NrthyyAllM+BMIKNISTwlZEBSKqooczIaHMZUWRzYy/dPQjwnoXQwgAZQVm2C0mzCpxsFeMiIgoAUNZCi6rCYc8PsiSXl8/9r/BoipQ4tB7fvrDCgNZAptZgtNqYkFXIiKiNBjKUtBiSyi19EORoYgGs0lFjz+S8XYZ3VfPPwMn+8Jo6/azR4yIiGiUGMpS8IUVzCy2ocMXRmjoTkhxkgAiiopARMv7eWRfPf8M/MvNn892M4iIiKYdhrIUqkoc8HiDKHdaEejyY6SSr6oGqFp+xzGHRca9ddVYc9k52W4KERHRmAwuCJ+tER6GshRW11Xj4S0foas/PGIgyxflTgvee+LyIccT38hvt3RhQbOHQ5VERDRtJJa/Krab4+Wv6oEp/z6TpvTRpiEBvScsn5U6zKhxu4Ycj72RPd5g0hu5odmThVYSERGNXWL5KyH0n2ZZYGNjy5S3haEshY2NLSi0myHlcTVYWQKcNjNW11UP+Z2R3shERETj0drth90sJx2zm2W0dU/9FokMZSkMd6HyQaFVgs0sQZYEznG7UL9i/rBduEZ6IxMREY1HVYkDgUjyar5ARMGsEseUt4VzylKoKnHgaKcvb4YvzRLwmRlO9IeVUZWyiC2EcFhOv42y9UYmIiIaj9V11Vi//SD84SjsZhmBiF5vdLgRokxjKEthUXUp3jnSme1mZFxthXNcG4Ab6Y1MREQ0Hktq3aiHPiUn2/U1GcpS2PnxSeRypYsyhwk//NoF437jGemNTERENF5Lat2G+O5iKEuhpaM/p4rBCgC1la5J3QDcKG9kIiKi6Y6hLIVcKQgrCeAc99AhSqMUyyMiIiKGstSmcSirKrHju9edO2LIMlKxPCIiImJJjJSm26pLWQBzSu34zIwCCJG6uBprjBERERkLQ1kK0yGUCQAWSaCy0IrPnVmEQrtlVAGLNcaIiIiMhcOXKRg5k629rCa++ffiZ/ag2G5O+n26gMUaY0RERMbCnrJpZtHcEhx9enk8kAHjq0a8uq4aEUWDPxyFpuk/WWOMiIgoe9hTNg0k9ooNZzxFXFljjIiIyFgYygxKlgRWLKjEv9z8+bS3HW/AYo0xIiIi42AoM5jKQivmljvx8j0Xj+l+DFhERETTG0OZQZgloPaMImiaxhWQ48RiuERENJ0xlBmELEnwBiOQJQGn1YRbNu3NeLgYS4iZzMAz3nOluh+L4RIR0XTH1ZdTzCIPX9Q1GFXR1h1Ahy+EU74QPN5gUrhoaPZMajtiIWY0jzOW207m447lfiyGS0RE0x1D2RQoc5iwqLoMn5lRgIiiYaRa+yZZIBxVUWQ3ZzxcjCXETGbgGe+50t2PxXCJiGi6YyjLoM/MKMCi6jK8v/7KYUNDIgHg7BlOhBVtSsLFWELMZAae8Z4r3f3GU6uNiIjISAwXyhobG3HllVfi8ssvx6ZNm7LdnHGZ4TTHe8VitcJiocFqkobdKcBqkhCIKCiwyFMSLsYSYiYz8Iz3XOnux2K4REQ03RkqlCmKgvr6emzevBk7duzAa6+9hsOHD2e7WSnJAqitcKKqxI7aCifmVbpgM5vgdtlQv2J+fJJ5LDSUFJgxeFqZLAHFDjMiioa7F8+dknAxlhAzmYFnvOdKd78ltW7Ur5gPt8uG3kBkyOtPRERkdIZafXngwAHMmTMHVVVVAIDly5dj9+7dOPvss7PSnqNPL8dZj+0YctxllVHssIypCn5igdeIoiEcVaFpGoQQsMgCc8ud8XMtmFWc8Ur7Yyk4O5nV/ydS6Dbd/VirjYiIpjNDhbL29nZUVlbG/1xRUYEDBw5ksUV6MAOApqYmzJs3b0LnGm1omKpwMZbHmcw2jfdcDF1ERJTLDBXKNG3obCshRlqrqAuFQmhqaspUk+KCweCUPA5NLV7X3MVrm5t4XXMXr63BQlllZSVOnjwZ/3N7ezvc7tQ9I1ardcI9WKMxGT1lZDy8rrmL1zY38brmrny5tqmCp6Em+p933nk4evQoWltbEQ6HsWPHDixdujTbzSIiIiLKOEP1lJlMJqxfvx533303FEXBDTfcgJqammw3i4iIiCjjDBXKAOCSSy7BJZdcku1mEBEREU0pQw1fEhEREeUrhjIiIiIiA2AoIyIiIjIAhjIiIiIiA2AoIyIiIjIAhjIiIiIiA2AoIyIiIjIAhjIiIiIiA2AoIyIiIjIAhjIiIiIiAxCapmnZbsREfPjhh7BardluBhEREVFaoVAI559//rC/m/ahjIiIiCgXcPiSiIiIyAAYyoiIiIgMgKGMiIiIyAAYyoiIiIgMgKGMiIiIyAAYytJobGzElVdeicsvvxybNm3KdnNoAtatW4dFixbhmmuuiR/r6enBqlWrcMUVV2DVqlXo7e3NYgtpPE6cOIHbbrsNy5Ytw/Lly/Hiiy8C4LXNBaFQCDfeeCNWrFiB5cuX4/nnnwfAa5srFEXBypUrsXr1agC8rgBDWUqKoqC+vh6bN2/Gjh078Nprr+Hw4cPZbhaN0/XXX4/NmzcnHdu0aRMWLVqEN954A4sWLWLwnoZkWcZjjz2GnTt34te//jX+4z/+A4cPH+a1zQEWiwUvvvgitm/fjq1bt+Ktt97Chx9+yGubI1566SV85jOfif+Z15WhLKUDBw5gzpw5qKqqgsViwfLly7F79+5sN4vG6aKLLkJRUVHSsd27d2PlypUAgJUrV2LXrl1ZaBlNhNvtxvz58wEATqcT1dXVaG9v57XNAUIIFBQUAACi0Sii0SiEELy2OeDkyZNoaGjAjTfeGD/G68pQllJ7ezsqKyvjf66oqEB7e3sWW0STrbOzE263G4D+5d7V1ZXlFtFEtLW1oampCQsXLuS1zRGKouC6667Dl770JXzpS1/itc0R3/ve9/DII49Akk7HEF5XhrKUhtvsQAiRhZYQUTr9/f1Ys2YNvv3tb8PpdGa7OTRJZFnGtm3b8Ic//AEHDhzAJ598ku0m0QS9+eabKC0txbnnnpvtphiOKdsNMLLKykqcPHky/uf29vZ4iqfcUFZWBo/HA7fbDY/Hg9LS0mw3icYhEolgzZo1uPbaa3HFFVcA4LXNNYWFhfjiF7+It956i9d2mtu/fz/27NmDxsZGhEIh+Hw+PPzww7yuYE9ZSueddx6OHj2K1tZWhMNh7NixA0uXLs12s2gSLV26FFu3bgUAbN26FZdeeml2G0RjpmkaHn/8cVRXV2PVqlXx47y2019XVxf6+voAAMFgEH/6059QXV3NazvNfetb30JjYyP27NmD5557DhdffDF+8IMf8LqCG5Kn9Yc//AHf+973oCgKbrjhBtx3333ZbhKN09q1a7Fv3z50d3ejrKwMDzzwAC677DI8+OCDOHHiBM444wxs2LABxcXF2W4qjcF7772Hv/u7v8M555wTn5+ydu1aLFiwgNd2mmtubsZjjz0GRVGgaRquuuoqfPOb30R3dzevbY5455138O///u/YuHEjrysYyoiIiIgMgcOXRERERAbAUEZERERkAAxlRERERAbAUEZERERkAAxlRERERAbAUEZERERkAAxlRGRIfX19+NWvfjXi72+++eYJP8arr76K+vp6AMDLL78cL1w5nHfeeQf79++f8GMSEY2EoYyIDKmvrw8vv/zykOOKogAAXnnllUl9vFtuuQUrV64c8ff79u3DBx98MKmPSUSUiHtfEpEh/fCHP8Snn36K6667DiaTCQ6HA263G01NTfjd736HCy64AB988AHeeecdPP/88yguLsaRI0dw4YUX4h//8R/j1f0H+6//+i9s2rQJM2bMwFlnnQWLxQIAeOGFF+BwOHDXXXfhpZdewiuvvAJZlnH22WfjW9/6Fl555RVIkoTt27fjO9/5Dvr6+vDTn/4UkUgExcXF+MEPfoDy8nK88MILOH78ONra2nD8+HHccccduP322wHoW8f827/9G4QQ+OxnP4tnn30WXV1d+Id/+AccP34cAPDtb38bf/M3fzM1LzIRGQpDGREZ0re+9S0cOnQI27ZtwzvvvIPVq1fjt7/9Laqqqobc9sCBA/jd736HM888E3fffTfeeOMNXHXVVUNu5/F48MILL+DVV1+F0+nE7bffjs997nNDbrdp0ybs2bMHFosFfX19KCwsxM033xwPbQDQ29uL3/zmNxBC4D//8z+xefNmPPbYYwCAI0eO4KWXXoLP58OyZctwyy234OjRo/jpT3+Kl19+GaWlpejp6QEA/PM//zPuuOMOXHjhhTh+/Djuuusu7Ny5cxJfSSKaLhjKiGhaOO+884YNZACwYMGC+O+WL1+O999/f9hQduDAAXzhC19AaWkpAODqq6/G0aNHh9zus5/9LB5++GFceumluOyyy4Z9zJMnT+Khhx7CqVOnEA6HMWvWrPjvLrnkElgsFpSWlqK0tBSdnZ3Yu3cvrrrqqvhjx/b0+9Of/oTDhw/H7+vz+eDz+eB0OtO/KESUUxjKiGhacDgcI/5OCJHyz6P9XcymTZvw7rvvYs+ePfjJT36CHTt2DLnNP/3TP+HOO+/EpZdeinfeeQc//vGP47+LDYkCgCzLiEajGGmbYVVV8etf/xo2my1tu4got3GiPxEZUkFBAfr7+0d12wMHDqC1tRWqqmLnzp0jzslasGAB9u3bh+7ubkQiEbz++utDbqOqKk6cOIGLL74YjzzyCLxeL/x+/5D2eL1eVFRUAEDKVZsxixYtwuuvv47u7m4AiA9fLl68GL/85S/jt2tqahrVcyai3MOeMiIypJKSEnz+85/HNddcA6vVivLy8hFve/755+OHP/whPvnkE1x44YW4/PLLh72d2+3GN7/5Tdx8882YMWMGPve5z0FV1aTbKIqCRx55BD6fD5qm4c4770RhYSH+9m//FmvWrMHu3bvxne98B9/85jfx93//96ioqMDChQvR1taW8vnU1NTg3nvvxW233QZJkvC5z30OTz/9NB5//HHU19fj2muvhaIouPDCC+NlOogovwhtpD51IqJp4J133sG///u/Y+PGjdluChHRhHD4koiIiMgA2FNGRDnppptuQjgcTjr2/e9/H5/97Gez1CIiotQYyoiIiIgMgMOXRERERAbAUEZERERkAAxlRERERAbAUEZERERkAAxlRERERAbw/wNdle/A8xPRYAAAAABJRU5ErkJggg==\n", "text/plain": [ "<Figure size 720x576 with 1 Axes>" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "# TODO 4: Visualize your dataset using the Seaborn library.\n", "# Plot the distance of the trip as X and the fare amount as Y.\n", "ax = sns.regplot(\n", " x=\"\",\n", " y=\"\",\n", " fit_reg=False,\n", " ci=None,\n", " truncate=True,\n", " data=trips,\n", ")\n", "ax.figure.set_size_inches(10, 8)" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "Hmm ... do you see something wrong with the data that needs addressing?\n", "\n", "It appears that we have a lot of invalid data that is being coded as zero distance and some fare amounts that are definitely illegitimate. Let's remove them from our analysis. We can do this by modifying the BigQuery query to keep only trips longer than zero miles and fare amounts that are at least the minimum cab fare ($2.50).\n", "\n", "Note the extra WHERE clauses." ] }, { "cell_type": "code", "execution_count": 25, "metadata": {}, "outputs": [ { "name": "stderr", "output_type": "stream", "text": [ "Query complete after 0.00s: 100%|██████████| 1/1 [00:00<00:00, 825.49query/s] \n", "Downloading: 100%|██████████| 10716/10716 [00:01<00:00, 8829.94rows/s]\n" ] } ], "source": [ "%%bigquery trips\n", "SELECT\n", " FORMAT_TIMESTAMP(\n", " \"%Y-%m-%d %H:%M:%S %Z\", pickup_datetime) AS pickup_datetime,\n", " pickup_longitude, pickup_latitude, \n", " dropoff_longitude, dropoff_latitude,\n", " passenger_count,\n", " trip_distance,\n", " tolls_amount,\n", " fare_amount,\n", " total_amount\n", "FROM\n", " `nyc-tlc.yellow.trips`\n", "WHERE\n", " ABS(MOD(FARM_FINGERPRINT(CAST(pickup_datetime AS STRING)), 100000)) = 1\n", " # TODO 4a: Filter the data to only include non-zero distance trips and fares above $2.50\n", " AND " ] }, { "cell_type": "code", "execution_count": 26, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "10716\n" ] } ], "source": [ "print(len(trips))" ] }, { "cell_type": "code", "execution_count": 27, "metadata": {}, "outputs": [ { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAmUAAAHhCAYAAAAvRsl0AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjQuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8rg+JYAAAACXBIWXMAAAsTAAALEwEAmpwYAABdL0lEQVR4nO3df3xU9Z0v/tfnnPmdmfxmwEJAoyiIglptpWsjRa0/UKSKW7nrz68+itZCW1qvsrXsNu2tWl23arcuud691WtXt5d1hUrtD9Q07q2ALVqvfJNVGtgmIBlIhmQm8/P8uH+czMlMMplMQiZzZvJ6Ph42cObH+cycCfPq58f7I3Rd10FERERERSUVuwFERERExFBGREREZAkMZUREREQWwFBGREREZAEMZUREREQWwFBGREREZAG2YjfgZL333ntwOp0FPUc8Hi/4Oag4eG3LF69teeJ1LV8z5drG43Gcd955WW8r+VDmdDqxePHigp6jvb294Oeg4uC1LV+8tuWJ17V8zZRr297ePuZtHL4kIiIisgCGMiIiIiILYCgjIiIisgCGMiIiIiILYCgjIiIisgCGMiIiIiILYCgjIiIisgCGMiIiIiILYCgjIiIisgCGMiIiIiILYCgjIiIisgCGMiIiIiILYCgjIiIisgCGMiIiIiILYCgjIiIisgBbsRtQCt7pHkTzW7vRFYygocaD9U2NWLHIX+xmERERURlhT9k4WjsC+PGeXgRCMVS77QiEYtiyYz9aOwLFbhoRERGVEYaycWxt64RdBjwOG4QQ8DhssMsCW9s6i900IiIiKiMMZePoCkbglEXGMbddRncwUqQWERERUTliKBtHQ40HcVXPOBZNqphX4ylSi4iIiKgcMZSNY31TI5IqEEko0HUdkYSCpKpjfVNjsZtGREREZYShbBwrFvnx5U/Xwe9zoT+ahN/nQvPqJVx9SURERFOKJTHycNG8Ctx2xeJiN4OIiIjKWEFD2ebNm9Ha2oq6ujq8+uqrAICvfe1rOHjwIAAgFArB5/Nh+/bt6O7uxjXXXIPTTjsNALBs2TI0NzcXsnlEREREllHQUHbDDTfglltuwQMPPGAe++EPf2j++ZFHHoHX6zX/Pn/+fGzfvr2QTSIiIiKypILOKbvoootQVVWV9TZd1/Haa6/h2muvLWQTiIiIiEpC0Sb6//73v0ddXR1OPfVU81h3dzfWrFmDW265Bb///e+L1TQiIiKiaVe0if6vvvpqRi+Z3+/Hm2++iZqaGnzwwQe47777sHPnzozhzWzi8Tja29sL2tZYLFbwc1Bx8NqWL17b8sTrWr54bYsUyhRFwW9+8xu8/PLL5jGHwwGHwwEAOOecczB//nwcPHgQ5557bs7ncjqdWLy4sCsj29vbC34OKg5e2/LFa1ueeF3L10y5trmCZ1GGL3/3u9+hsbERc+bMMY/19fVBVVUAQFdXFw4dOoSGhoZiNI+IiIho2hW0p2zTpk3Yu3cvgsEgmpqasGHDBtx00034xS9+gVWrVmXc95133sFTTz0FWZYhyzK+853voLq6upDNIyIiIrKMgoayJ554IuvxRx55ZNSxK6+8EldeeWUhm0NERERkWdxmiYiIiMgCGMqIiIiILIChjIiIiMgCGMqIiIiILIChjIiIiMgCGMqIiIiILIChjIiIiMgCGMqIiIiILIChjIiIiMgCGMqIiIiILIChjIiIiMgCGMqIiIiILIChjIiIiMgCGMqIiIiILIChjIiIiMgCGMqIiIiILIChjIiIiMgCGMqIiIiILIChjIiIiMgCGMqIiIiILIChjIiIiMgCGMqIiIiILIChjIiIiMgCGMqIiIiILIChjIiIiMgCGMqIiIiILIChjIiIiMgCGMqIiIiILIChjIiIiMgCGMqIiIiILIChjIiIiMgCGMqIiIiILIChjIiIiMgCGMqIiIiILIChjIiIiMgCGMqIiIiILIChjIiIiMgCGMqIiIiILIChjIiIiMgCGMqIiIiILIChjIiIiMgCGMqIiIiILIChjIiIiMgCGMqIiIiILIChjIiIiMgCGMqIiIiILIChjIiIiMgCChrKNm/ejOXLl+Paa681jz399NP47Gc/i+uvvx7XX389fvvb35q3bd26FVdccQWuvPJKvPXWW4VsGhEREZGl2Ar55DfccANuueUWPPDAAxnH77jjDtx1110Zxw4cOICdO3di586d6OnpwZ133olf/epXkGW5kE0kIiIisoSC9pRddNFFqKqqyuu+r7/+OlatWgWHw4GGhgYsWLAA77//fiGbR0RERGQZRZlT9tOf/hTXXXcdNm/ejP7+fgBAT08P5syZY95n9uzZ6OnpKUbziIiIiKZdQYcvs1m3bh2+/OUvQwiBJ598Eo888ggefvhh6Lo+6r5CiHGfLx6Po729vRBNNcVisYKfg4qD17Z88dqWJ17X8sVrW4RQVl9fb/75pptuwj333AMAmDNnDo4ePWre1tPTA7/fP+7zOZ1OLF68eOobmqa9vb3g56Di4LUtX7y25YnXtXzNlGubK3hO+/BlIBAw/7xr1y4sXLgQALBy5Urs3LkTiUQCXV1dOHToEJYuXTrdzSMiIiIqioL2lG3atAl79+5FMBhEU1MTNmzYgL1796KjowMAMHfuXDQ3NwMAFi5ciKuvvhrXXHMNZFnGli1buPKSiIiIZoyChrInnnhi1LGbbrppzPvfe++9uPfeewvZJCIiIiJLYkV/IiIiIgtgKCMiIiKyAIYyIiIiIgtgKCMiIiKyAIYyIiIiIgtgKCMiIiKyAIYyIiIiIgtgKCMiIiKyAIYyIiIiIgtgKCMiIiKyAIYyIiIiIgtgKCMiIiKyAIYyIiIiIgtgKCMiIiKyAFuxG0BEw1o7Atja1omuYAQNNR6sb2rEikX+YjeLiIimAXvKiCyitSOALTv2IxCKodptRyAUw5Yd+9HaESh204iIaBowlBFZxNa2TthlAY/DBiGMn3ZZYGtbZ7GbRkRE04ChjMgiuoIRuO1yxjG3XUZ3MFKkFhER0XRiKCOyiIYaD6JJNeNYNKliXo2nSC0iIqLpxFBGZBHrmxqRVHVEEgp03fiZVHWsb2osdtOIiGgaMJQRWcSKRX40r14Cv8+F/mgSfp8LzauXcPUlEdEMwZIYRBayYpGfIYyIaIZiTxkRERGRBTCUEREREVkAQxkRERGRBTCUEREREVkAQxkRERGRBTCUEREREVkAQxkRERGRBTCUEREREVkAQxkRERGRBTCUEREREVkAQxkRERGRBTCUEREREVkAQxkRERGRBTCUEREREVkAQxkRERGRBdiK3QAiKo7WjgC2tnWiKxhBQ40H65sasWKRv9jNIiKasdhTRjQDtXYEsGXHfgRCMVS77QiEYtiyYz9aOwLFbhoR0YzFUEY0A21t64RdFvA4bBDC+GmXBba2dRa7aUREMxZDGdEM1BWMwG2XM4657TK6g5EitYiIiBjKiGaghhoPokk141g0qWJejadILSIiIoYyohlofVMjkqqOSEKBrhs/k6qO9U2NxW4aEdGMxVBGNAOtWORH8+ol8Ptc6I8m4fe50Lx6CVdfEhEVEUtiEM1QKxb5GcKIiCyEPWVEREREFsBQRkRERGQBBR2+3Lx5M1pbW1FXV4dXX30VAPDoo4/izTffhN1ux/z58/Hwww+jsrIS3d3duOaaa3DaaacBAJYtW4bm5uZCNo+IiIjIMgraU3bDDTfg2WefzTj2F3/xF3j11Vfx85//HKeeeiq2bt1q3jZ//nxs374d27dvZyAjIiKiGaWgoeyiiy5CVVVVxrFLLrkENpvRQXfeeefh6NGjhWwCERERUUko6pyyf/3Xf0VTU5P59+7ubqxZswa33HILfv/73xexZURERETTq2glMZ555hnIsozVq1cDAPx+P958803U1NTggw8+wH333YedO3fC6/XmfJ54PI729vaCtjUWixX8HFQcvLbli9e2PPG6li9e2yKFsn/7t39Da2srfvKTn0AIAQBwOBxwOBwAgHPOOQfz58/HwYMHce655+Z8LqfTicWLFxe0ve3t7QU/BxUHr2354rUtT7yu5WumXNtcwXPahy/b2trw3//7f8czzzwDt9ttHu/r64OqGnvxdXV14dChQ2hoaJju5hEREREVRUF7yjZt2oS9e/ciGAyiqakJGzZsQEtLCxKJBO68804Aw6Uv3nnnHTz11FOQZRmyLOM73/kOqqurC9k8IiIiIssoaCh74oknRh276aabst73yiuvxJVXXlnI5hARERFZFiv6ExEREVkAQxkRERGRBTCUEREREVlA0eqUEVHpa+0IYGtbJ7qCETTUeLC+qRErFvmL3SwiopLEnjIimpTWjgC27NiPQCiGarcdgVAMW3bsR2tHoNhNIyIqSQxlRDQpW9s6YZcFPA4bhDB+2mWBrW2dxW4aEVFJYigjoknpCkbgtssZx9x2Gd3BSJFaRERU2hjKiGhSGmo8iCbVjGPRpIp5NZ4itYiIqLQxlBHRpKxvakRS1RFJKNB142dS1bG+qbHYTSMiKkkMZUQ0KSsW+dG8egn8Phf6o0n4fS40r17C1ZdERJPEkhhENGkrFvkZwoiIpgh7yoiIiIgsgKGMiIiIyAIYyoiIiIgsgKGMiIiIyAIYyoiIiIgsgKGMiIiIyAIYyoiIiIgsgKGMiIiIyAIYyoiIiIgsgKGMiIiIyAIYyoiIiIgsgKGMiIiIyAIYyoiIiIgsgKGMiIiIyAIYyoiIiIgsgKGMiIiIyAIYyoiIiIgsgKGMiIiIyAIYyoiIiIgsgKGMiIiIyAIYyoiIiIgsgKGMiIiIyAIYyoiIiIgsgKGMiIiIyAIYyoiIiIgsgKGMiIiIyAIYyoiIiIgsgKGMiIiIyAIYyoiIiIgsgKGMiIiIyAIYyoiIiIgsIK9Qdvvtt+d1jIiIiIgmx5brxng8jmg0imAwiP7+fui6DgAIh8MIBALT0kAiIiKimSBnKHvppZfw3HPPIRAI4IYbbjBDmdfrxV/91V9NSwOJiIiIZoKcoez222/H7bffjv/1v/4Xbr311ulqExEREdGMkzOUpdx6663Yt28fDh8+DFVVzeNr1qwpVLuIiIiIZpS8Qtn999+Prq4uLFq0CLIsAwCEEOOGss2bN6O1tRV1dXV49dVXAQAnTpzA17/+dRw+fBhz587FD3/4Q1RVVQEAtm7dim3btkGSJDz00EP47Gc/exIvjYiIiKh05BXKPvjgA/ziF7+AEGJCT37DDTfglltuwQMPPGAea2lpwfLly/GlL30JLS0taGlpwf33348DBw5g586d2LlzJ3p6enDnnXfiV7/6lRkCiYiIiMpZXiUxFi5ciGPHjk34yS+66CKzFyzl9ddfN3vY1qxZg127dpnHV61aBYfDgYaGBixYsADvv//+hM9JREREVIry6ikLBoNYtWoVli5dCrvdbh7/x3/8xwmfsLe3F36/HwDg9/vR19cHAOjp6cGyZcvM+82ePRs9PT0Tfn4iIiKiUpRXKNuwYUOh22GW20iXz3BpPB5He3t7IZpkisViBT8HFQevbfnitS1PvK7li9c2z1D2qU99aspOWFdXh0AgAL/fj0AggNraWgDAnDlzcPToUfN+PT09Zo9aLk6nE4sXL56y9mXT3t5e8HNQcfDali9e2/LE61q+Zsq1zRU885pTdv755+OCCy7ABRdcgHPPPReLFy/GBRdcMKnGrFy5Eq+88goA4JVXXsFll11mHt+5cycSiQS6urpw6NAhLF26dFLnICIiIio1efWUvfvuuxl/37VrV16T8Ddt2oS9e/ciGAyiqakJGzZswJe+9CV87Wtfw7Zt23DKKafgySefBGAsJrj66qtxzTXXQJZlbNmyhSsviYiIaMbIK5SNdPnll6OlpWXc+z3xxBNZjz/33HNZj99777249957J9MkIiIiopKWVyj79a9/bf5Z0zR88MEHE65ZRkRERERjyyuUvfnmm+afZVnG3Llz8eMf/7hgjSIiIiKaafIKZQ8//HCh20FEREQ0o+W1+vLo0aO47777sHz5cnzmM5/Bhg0bMspXEBEREdHJySuUbd68GStXrsRbb72FtrY2fO5zn8PmzZsL3TYiIiKiGSOvUNbX14cbb7wRNpsNNpsNN9xwg7k9EhERERGdvLzmlNXU1GD79u249tprAQCvvvoqqqurC9kuIprBWjsC2NrWia5gBA01HqxvasSKRePv8EFEVMryCmXf//730dzcjIcffhhCCJx//vn4/ve/X+i2EdEM1NoRwJYd+2GXBarddgRCMWzZsR/NAIMZyjOwluNrIpqMvELZJz7xCfzjP/5jodtCRIStbZ2wywIeh/HPk8dhQyShYGtb54z/oi7HwFqOr4losvIKZV1dXXjhhRdw+PBhKIpiHmdQI6Kp1hWMoNptzzjmtsvoDkaK1CLrKMfAWo6viWiy8gpl9913H9auXYvPfe5zkKS81gYQEU1KQ40HgVDM/JIGgGhSxbwaTxFbZQ3lGFjL8TURTVZeoczpdOK2224rdFuIiLC+qRFbduxHJKHAbZcRTapIqjrWNzUWu2lFV46BtRxfE9Fk5dXtddttt+FHP/oR3n33Xezfv9/8j4hoqq1Y5Efz6iXw+1zojybh97nQvHoJh7JgBNakqiOSUKDrxs9SD6zl+JqIJiuvnrIPP/wQ27dvx+7du82NyIUQeP755wvaOCKamVYs8jOEZbFikR/NMOZhdQcjmFcGKxXL8TURTVZeoew3v/kNdu3aBYfDUej2EBFRDuUYWMvxNRFNRl7Dl4sWLUIoFCp0W4iIiIhmrLx6ynp7e3H11Vfj3HPPhd0+vEqGJTEIYOFHIiKiqZBXKNuwYUOh20ElioUfiYiIpkZeoexTn/pUodtBJYqFH4mIiKZGXqHsvffew3e/+110dnYimUxCVVW43W7s27ev0O0ji2PhRyIioqmR10T/5uZmPPHEE1iwYAH++Mc/4nvf+x5uueWWQreNSkBDjQfRpJpxjIUfiYiIJi7vPZMWLFgAVVUhyzJuvPFG7N27t5DtohLBwo9ERERTI6/hS7fbjUQigcWLF+MHP/gB/H4/IhEOTxELPxIREU2VvELZD37wA+i6ji1btuAnP/kJPv74Yzz99NOFbhuVCBZ+JCIiOnl5hbK5c+cCMDYm/8pXvjLq9g0bNjCkEREREZ2EvOeU5dLV1TUVT0NEREQ0Y01JKEttUk5EREREkzMloYyIiIiITk5ec8rGo+v6VDwNEdGUead7EM1v7eaerERUMvLuKYvFYujs7Mx62ze/+c0paxAR0clq7Qjgx3t6EQjFMvZkbe0IFLtpRERjyiuUvfHGG7j++utx9913AwDa29txzz33mLdfcsklhWkdEdEkGHuyGnuxCmHszWqXBba2Zf8/lkREVpBXKPvRj36Ebdu2obKyEgCwePFiHD58uKANIyKarK5gBE45cwES92QlIqvLK5TJsgyfz1fothARTYmGGg/iauZcV+7JSkRWl1coW7hwIX7+859DVVUcOnQI3/3ud3H++ecXum1ERJNi7MkK7slKRCUlr1D27W9/GwcOHIDD4cA3vvENeL1efOtb3yp024iIJmXFIj++/Ok6+H0u9EeT8PtcaF69hKsvicjSxi2Joaoq7r33XvzkJz/B17/+9eloExHRSbtoXgVuu2JxsZtBRJS3cXvKZFmGy+VCKBSajvYQERERzUh5FY91Op247rrr8JnPfAYez/BE2YceeqhgDSMiIipHrR0BbG3rZGFjGiWvULZixQqsWLGiwE0hIiocfhGSFbR2BLBlx37YZZFR2LgZ4OeR8gtlX/jCFwrdDiKiguEXIVmFUdjYKGgMGAWOIwkFW9s6+Vmk/ELZoUOH8MQTT+DAgQOIx+Pm8ddff71gDSMimir8IiSr6ApGUO22ZxxjYWNKyaskxubNm7Fu3TrIsoznn38ea9aswfXXX1/othFRmWntCGBdy25c8ugbWNeye9r2ouwKRuC2yxnH+EVIxdBQ40E0qWYcY2FjSskrlMXjcSxfvhwAMHfuXGzYsAG7d+8uaMOIqLykhhCLsUk4vwjJKozCxjoLG1NWeYUyh8MBTdOwYMECvPDCC/jNb36D3t7eQreNiMpI+hDidG8Szi9CsooVi/xoXr2EhY0pq5xzyu6//3489thjuOyyyxCNRvHQQw/hySefxO7du/Hoo49OVxuJqAwUcy7NikV+NMMIht3BCOZx9SUV0YpFfn72KKucoWz//v04fPgwfv7zn+Mv//Iv4XK58MADD0xX24iojDTUeBAIxczJ9sD0DiHyi5CIrC5nKLv55ptx9913o6urCzfccAN0XYcQwvzJ1ZdElK/1TY3YsmM/IgkFbruMaFLlECIRUZqcoey2227Dbbfdhr/5m7/Bd77znSk7aWdnZ8Y+ml1dXdi4cSNCoRB+9rOfoba2FgCwadMmXHrppVN2XiIqHg4hEhHllledsqkMZADQ2NiI7du3AzA2PG9qasIVV1yBl19+GXfccQfuuuuuKT0fEVkDhxCJiMaW1+rLQnr77bfR0NCAuXPnFrspREREREVT9FC2c+dOXHvttebff/rTn+K6667D5s2b0d/fX8SWEREREU0foeu6XqyTJxIJfPazn8XOnTtRX1+P48ePo6amBkIIPPnkkwgEAnj44YdzPsd7770Hp9NZ0HbGYjG4XK6CnoOKg9e2fPHalide1/I1k67t4sWLsx7Pa05ZobS1tWHJkiWor68HAPMnANx000245557xn0Op9M55oubKu3t7QU/BxUHr2354rUtT7yu5WumXNv29vYxbyvq8OXOnTuxatUq8++BwPB2K7t27cLChQuL0SwiIiKiaVe0nrJoNIrf/e53aG5uNo899thj6OjoAGDssZl+GxERFVZrRwBb2zrRFYyggSVLiKZd0UKZ2+3Gnj17Mo499thjRWoNEdHMltow3i6LjA3jmwEGM6JpUtQ5ZUREUym9p6fWqWOTqLNUoLByT1T6hvEA4HHYEEko2NrWaZk2EpW7opfEICKaCqmenkAohmq3HcGogi079qO1IzD+g6fByPaleqKs0r6uYARuu5xxbLo2jCciA0MZEZWF9J4eIQRcNgl2WWBrW2exmwZgdPs8Dpul2tdQ40E0qWYcm84N44mIw5dEM5qVh9PGM7LtHwVCmFOZWePISj09XcEIqt32jGNWah83jCcqPoYyohmqmBO7TzYMZmt7KKbALsdR7x0OZlbq6Wmo8SAQiplztgBrtY8bxhMVH0MZ0QxVrIndUxEGs7W9xmNH32ASHocNbruMmKJByNbp6SmFnihuGE9UXJxTRjRDFWti91TMrcrW9nqvEz6nDL/Phf5oEjVuG5pXL7FMyFixyI/m1UvM9vl9Lku1j4iKjz1lNCOU8typQinWcFpXMAJZAJ3HwkioGhyyhHqvY0JhcKy2L5xdiRe/dDGAoS1bLHaN2RNFRLmwp4zKntVLERTL+qZGJFUdkYQCXTd+Tsdwms9pw+ETMSiaDlkSUDQdh0/E4HXm//8Ri9V2IqJCYiijsmf1UgTFUqzhNF3Xh/6Q9l/68TxwKJCIyhGHL6ns5S5FUFWcRllEMYbTwgkVc6tdOB5OmMOXc7xODCbU8R+chkOBRFRu2FNGZY9FMa2locaDuKJlHIsrGq8HEc147CmjspezFIHeW+zmlYSJLpTIdf/ljbXYe6gPkgAkASRUDcfCCfyXT9VO18shIrIk9pRR2eP8o5Mz0YUS493/7c4++H0OOGQJmg44ZAl+nwNvd/ZN58siIrIc9pTRjMD5R5OXrVDr8XAMG196F5VuOxpqPFjeWIu3O/vQFYxgIJpEhVNGldtl3v9YaPj+x0JxzKl0onGW1zyHruuW2W6IiKhYGMqIKKeRCyVCsSSOhxLQAcyv9eDg8TD2HjJ6v+oqnDjaH0M0ocJpk+Fz2TEQTaJ3MAFN1zG/1oPjoTgOn4gBEKgcel7O8SMi4vAlEY1j5EKJY6E4IACnTYIQAqGYAkkAA1EFQgg4bRIghu4H4HjY+OmyyRBCYE6V0YPWE4qxxhgRURqGMiLKaWSh1phiBLR6rxOAMVE/NWE//XhMUaHrurHSUgdm+YzjPpcdc6td0HVMyxy/1o4A1rXsxiWPvoF1LbtnfNFgIrIuDl8SUU4rFvnRDGNuWXcwggqHDR6HbA49OmTJrDcGAJVuO+KKikhCRX80CY9DRoXTGMpMsckSLphfY26JVChTsfk5EdF0YSgjonGlL5RIBZ1UiRGfy4Zj4QQq3Tbouo5oUoXDJuORG5ZixSL/qPtnlCQpsGyLFCIJBVvbOhnKiMhyOHxJRBMyssTIafVefHXlGTi1zpt1OLKYJUm6ghG47XLGseHdHIiIrIU9ZUQ0YdlKjGyc4P2nQ0ONB4FQzOwpA7jSk4isiz1lRFS2Ri5SGLnSk4sAiMhKGMqIqGzlGjqd6E4FRESFxuFLIip52fbanD1021hDp1wEQERWw1BGRCXtqV0f4h9a/wRV0+G0SVBUDVt27Mfd5/uwePHYjxu5UwHARQBEVFwcviSiktXaEcA/tP4Jmq7DJgkoqo7ewQQSiopt+/tzPnbkTgUAFwEQUXExlBFRydra1glF0yBLAkIISJKABGPrp56wkvOx4y0CICKabgxlRFSyuoIROGUJuj58TAggrmiY7c09O6OY9dOIiLLhnDIiKlkNNR6omobecBIadAgBqLoOWRJYu6Rq3McXq36aFWVbLMH3hmh6saeMiErW+qZG2GUZdV47ZAEkVQ2SELhvxem4aF5FsZtXMlgehMgaGMqIqGSlhiBPrfOizuvEp06tw9ZbPomNl59Z7KaVlPTyIEIYP+2ywNa2zmI3jWhG4fAlEZW01BBkavjtoe0foKHNg6tPs+UsiUHDWB6EyBrYU0ZEJS/b8NuP9/Ry+C1PLA9CZA0MZURU8rIPv4HDb3lieRAia2AoI6KS1xWMwG2XM445ZcHhtzyxPAiRNXBOGRGVvIYaDwKhmLmPJQDEVR3z6jj8li+WByEqPvaUEVHJyz78Bg6/EVFJYU8ZERVcamXkhz0DSKo6HDYJC/2+KStQumKRH80w5pB1ByOYV+PB1Uu97PkhopLCUEZEBZVaGZlQVAzEjP0oowkVh3rD2LJjP5qBKQtm6c/T3t5unp+V6omoFHD4kogKKrUyMhRTIEHAJkmQJIGBqFLwAqWsVE9EpYShjIgKKrUyMqFqEMI4JgSQULWCFyhlpXoiKiUcviSiKTVyuNDrkBFNqnDIEhTV2DRc1wGHLBW8QCkr1RNRKWEoK4BSmsOS3lavQ4YQAqG4Yvl20/iyfQ4BjPvZbO0I4KF/ex+HB+JD4Umg0m1HfyQJRdOhT6AN3cHo6INDhePjAP50bBB/OjaIUx/cOeZzCAFAByAAoQPaiNt9TglVHueo19gZ6EcorqOnPwpVTz2XgF0WqPfYsa5l96j35tFfdqDz+CDiSuZZ6r0O3HbxArzd2VcSv9dEVJqErusT+TfWctrb27G4wBvcTeQcqTksdlnAbTd6CJKqbslCjOltVVQNh0/EAABzq12wyZJl2z2VpuPzUwzZPof90SQEgEq3fczPZmtHABte3IdQXM19Aovx2AROqfFkvMZINIbAoGoGshQBI+j5fU7Ue53me5NUNQzGVSja2P8kzqkcfsxM+P2wonL9naWZc21zvU7OKZtipTSHJb2tx8MJyEJAlgSOhxOWbjeNL9vnMBxXEIopOT+bW9s6MZgwAllq/lcpiCj6qNd4IqbBJktIvQyB4UAmS8bCg/T3ZiCqQJZyv+j0x/D3g4imGkPZFMu23YtV57CktzU1CTs1ARuwbrtpfNk+h6qmQ9Eyh+VGXuOuYAQ5OoosL/01JrWh+WtDt7nsMpx2CZoOSGmf89TjdIwfRNMfw98PIppqRZtTtnLlSlRUVECSJMiyjJdffhknTpzA17/+dRw+fBhz587FD3/4Q1RVVRWriZOSbbuXQk9mnqz0tqYmYQPGBGzAuu2m8WX7HMqSAPTM1DHyGjfUeHDkRLRkg1n6a7RLApoOpL9ifSiQafrw5xwYvk8sOXLGWqb0x/D3g4imWlF7yp577jls374dL7/8MgCgpaUFy5cvx69//WssX74cLS0txWzepGTf7kW35HYv6W2t9zqg6jpUTUe912HpdtP40q/tQDSBj3pCiCc1qLqO4+FY1s9ma0cAwcG4GchKabapxyYQSSjwOm3wuWyIJBRUuySomg4BQJIARdOgaTqq3XZoOuBz2aAPvR9JVc/rH8PUY/j7QUSFYKnhy9dffx1r1qwBAKxZswa7du0qboMmYcUiP5pXL4Hf50J/NAm/z2XZycDpbdV04IxZFVjo90LTYel20/hS19YhS+g+EQMEML/WjboKB/oGkzg6EMu4xqmFAUlNx4Jad8Y/DA5ZoN7rgF0SsOI0M59TQp3PBb/PhcfXLsNja5cZn2kILPR7ceZsL2qGFjdUeew4a04lvrryDJxW70V/NInBuIrZlU401HrgtElZX2O914FNly80HzPy96O1I4B1LbtxyaNvYF3LbhanJaJJKWpJjLvuugtCCHzxi1/EF7/4RfT29sLvN/6R8/v96OvrK2bzJm3kdi9WVkpttRorlz5Jta3z+CDsksCcShd8LqNeV4XTBr/PhRe/dLF5//SFAQCwZK7RWzryftnOMdWvf13L7oyh1/97uB+AMezotBnz5DRdg6IBf/r+NVmfY8Ui/7gruTYO/bzk0TdQ7bZDCKP0BwDouo7+aBJvPbAy62PSpa90Td81YKq2jyKimaNooezFF1/E7Nmz0dvbizvvvBONjZMbBojH4+Yed4USi8UKfg4qjsle23e6B/HjPb2wy4BLFuju7ceD297Flz9dh4vmVRSgpZNrmzo06b07GIG/woYKhwSh6+gMZP7edAb64XMIxGJJ81i2+2U7x1S//pFtSc0B03RAG3o9iq7DZZNyXrt8r22tU0dwMAKXbbh/MKZoqHHb8nr8E786Al1VIAkJ8XgSEgBd1fDEL/8vZuufGPfxNDH897h88doWMZTNnj0bAFBXV4crrrgC77//Purq6hAIBOD3+xEIBFBbWzvu8zidTkvVKaPSMtlr2/zWblS4nWZvjhtAJKHgtYMKbruiuJ+V9Lb1RcPGAg4B9Md11FW6EUkoaPS7Ml53o78fgVAM7rSFAdnul+0cwNS+/pFtmeUV6AnFjWHFoYAGCKxvOh2LF5855vPke203iTps2bEfmjRc003IOjZdtQSL8+jp6tvxMaorPBBpSzeduo5gNMl/NwqA/x6Xr5lybXMFz6LMKYtEIgiHw+af/8//+T9YuHAhVq5ciVdeeQUA8Morr+Cyyy4rRvOIxmXl0ifpbav3OqFBh67riCvqmBPUJ7pApZCvf2RbvC4bqtw2uOwSFM04z1dXnoGNl48dyCYiNf/OLgl8FAijOxhFhUMe/4FDGmo8iCYzi+1yZSYRTUZResp6e3tx3333AQBUVcW1116LpqYmnHvuufja176Gbdu24ZRTTsGTTz5ZjOYRjatYpU9GzuNa3lg7auuf9Lal5kj1hGIQuoDf58o692vFIj+aYcwt6w5GMG+cOWKFfv0eu4SDvUbAa6yvwJNfPL/g87MiSQ3zatxmb1m+88LWNzViy479iCSUjJ0SuDKTiCaqKKGsoaEBO3bsGHW8pqYGzz33XBFaRDQxxfgiHjmh/ODxMPYe6oPf50BdhdOcYL72grnYtu+w2TabLPJaTTuRRR+Fev3pr3Gh34toUjV3GCikkQsdPA6jrMbWts5x35OJBloiorFwQ3KiSSjGF/HI4BCKKZAEMBBVUO91mUHi7c4+NK9eMuG2TWQ1ZaFef7ZwdCwUw8aX3kWl216wVa5dwQiqh3oVUyYyHMtVzEQ0FRjKiCZpur+IRwaHhKqN2i4oFSTS25YKWw9t/2DMUDOZsg4n8/rHCoAjX+NANInewQQ0Xcf8Ws9Jl5sY67yltBMHEZUvhjKiEjEyODhkCQlVy7n1z8iwdag3jLuffweAsfl8Y30FHrhq0aSG7yZbpyxXABz5Go+H4wAAl002NwLPd1hxZDs/CoQQiimo8dhR73VmnJfzwojIChjKJqi1I4BHf9mBzuODAIDT6jx48OrFU95jMN5tU/X8j7zWnjGh+oGrFuU8h5ULppaC1Ofno0AIqg7YhMAZfu+47zswOjjYZYHBhI6kquKDw/2wSUCVx4FvrzrbfEwqbCmqjgPBMGJKqldNhySAjwJh3L/tj9B0HV6nDZ3HwkYPHAAIgUO9Eaxr2Q3oGvb+5wmoQ3swOW0SFFXD0Hap6A5G8XZn70m9N3f85J2Mv9skINXcpKqaRWQB4E/HBnHqgzshSwI2SSCpaub2ULIAFvq9+C/nVKBHDAfAYDgBFcDRgTh6QnH4HDISmo71L/wBF8yvwSfnV+H1jmPGsLAkUOGQsbWtE8DoXrlC/94S0cwkdL2UdrgbbTrqmqTO0doRwP3b/ohgJAlpqCSRpgPVHjseX7tsUoEp9YWR/v/Om1cvAYAxb5tID0Gu5//mtj/ixIjXUuOx47ExXkuu5yvVL53prIuT+vz0hhNI3/ZaFkBthSPr+55tteUv/u/HOHAsbAaWdJIwruGZsyuxvqkRD23/ALIAjvTHoKg60n/Z7ZKANLR1khBAUtUhCwFN15Dal9smDRduLSWSACodEuZUe3AimsTxUBxKltcgwdgXc5bPiUAoAZ9THl5YoAP1PgfssjxqS6VC/t5SbjOlltVMNFOuba7XyZ6yCdja1olQTIEsCUhDhSKFpiMcn9hwSvrzjTVkBGDSq8Hyff5wXIEsjC9mwKjgHoqNfY6TWaFGw58fXQDQjSAEHdBgTNp/9JcdowLYtn2HM4b5nt/9nxAAbLJkVusHAFkSUDQdug7EkhoOHg9j/Qt/gKbpUHXd/LymU3UjhCmqNlz4VABpU9SgakCJ5TEARoiMKjoOHBuEEMgayADjvXfbZAxEhxZNxBTYJQmSJKDpOgaiCuZU2TI+44X+vSWimYuhbAK6ghEomgZb2hweIQBV0ydVNDPXii8dOKnVYPk8v6oZX8rpr0VRtTHPcbIr1MrRRIaqUp+fUX3TOpBUNXwYCOPUOo8ZwP6h9U+o8dhR5XYBML7gD5+IAroRqHTA3DxbGerK0gEMJkaXkdB0fdRG25oOxBWjPQI6ZnkdGEyoiCsZTStZqq5D1QCbnHsb9Vk+Jw6fiEISQDIVlmH8TKjaqM94oX9viWjmYiibgIYaD46H4saX2NA/3Lpu9FJMZpXWeCu+TnY12HjPfzwch65lvhabJI15Dq5QywxhXoeM3sEEKt32vFYspj4/qqZBB8xwJmAEJKcts4dF0TSEYgpm+YafQ9WM6vxOm4ykqp50aNJ1Y/hUlgT6IknUVTgQSZz881qBLASEjJzJUhKAz2WHQ46bq1lTv9+6biymGPkZL/TvLRHNXEXZZqlUrW9qhM9lg6rpUDXN+G9ogvRkVmnl2tpmotveTOb5vU7bUG/C0GvRdPhcY7+WqWhTKUvNJQqEYsZKxr4IgpEkVE03VwbaZWEOY420vqkRTrs0KiOk/j7b58w47pQlxEdMHDMmtksT2gYoRRLAglo3HGk9Ry6bhIZaD06pcgMAAqG4OcewlEkCcNsETq+vQL3PAdsYr6nKbYOu66h026DpQKXLBg06FE2DphnHR37GC/17S0QzF0PZBKxY5Mdja5dhod8LIQSEEDhjVsWkJvmnnq959RL4fS70R5MZVddz3TZVz//42mU4Y1aF+VoW+r1jTvIf7/lmgvS5REIIqJqxgvFYKG7eJ9dQ1YpFfpxS6coIRQDgkAVcdiljWDwUS0LRdCiajo96QhiIJhBJKPA6bfC5bBiIKZAFRg1J5qLDWHmYvkpRHkpglW475la7oAOQJAGnLGAfame2cwjAvL0QfE4Z86pdcNpy/xMlSwJOm5QRJGUBnOn3YtMls/Dg1Ythl2UsqK/ALK/dvJ/HIeML552CRXOq0B9N4tQ6L7668gwsPqUKVS4b3HYZVR47Tq3zjvqMF/r3lohmLg5fTtBUFwzN9XxTca6pfv6ZXLl85FwihywhqWoZxVvHG6oKJ1ScOds3PLEegK7rONofNXtYFFXD4RMxAMAsrx2huIruEzGc6ffi8bXLAADrX/gDJEnAJUvwOGREsswjG0kfWl3bO5iAAKDqxpypIydi+ES1sXig0mXDLJ/THH4biCbRE4pB14EL5teYPT4jK/lvbescNWwXSSjw+1x48UsXZ21P+ipGRdXQE4ojqeo4c0SJkEsefQPVbvuo96w/msRbD6wc8/W2t7djcdrOAwlFw6dPq8w5729jzndwWKF/b4loZmIoI8rTyLlE9V5jgrhNEtB1Hb2DcfQNJnEiksC6lt1Zv/zHmo+0cKiExda2Tuz7cxA2WWC2z4VKtx1zYAScao/DfL4L5tcgEIohFE3iWDiR1xwwIYa2ZoKATQKSmg5F1WGXgaP9MfgrXbj7ktPy2jczW+iYaPHV9BpqR/pjkCAgoKPjaAh3Pf8OFs7y4sGrF6OhxoODx8MIxRSzWK7PZcNp9d48XjVDEhGVDoayEsTilMUxsnirTRao9tgxy+vE0YHYmNXiAZjXy+e0oT+aBIBR4SUVHrL1DKUPi7Z2BHAiksDB44PmUORQdQ1IAEaWL7MNlcsAjJ4xWRjz0gAVylDJCx0wg9fSedV57Wk58nO49oK5eLuzL+/H7T3UB5dNgqLpkCCGVgQbbZGFwKG+CLbs2I9Pzq/C3kMJSALmtlLHwgn8l0/VTu5CEhFZFENZiZnMHoWlwkphc6y2jNyE+9urzsaKRX6sa9md0QOWqk/1yGvtiCQ183pFkyoEgHhCQXcwCsDYSSFdrtV96dffLgnE1eFSGA5ZGioCq5krCI3CrzpkAdht0lBdMh1CAJIkwWMTmFPlgt/nMt/rfHqWsn0Ot+07PO78qfTHOWWBhKoNFa2FuTsAYAy1qpoOuyzwescx+H0ODESHe8oq3Ta83dmX93AjEVEpYCgrMSdbwNVKwWdku6wSNsdrS7b2dAUjkAXMbYocsoR6rwPdwTjm1bgzrtdgXMGxwSTm1bjN3rL058+1D2P69U+OKLOv6/pQ0VPj7zZJwD4UzFRNh10SqHDajA2+NR3QgcoK+6RWB471OXzktfacn6/0x/krXThyIgZAzwhkgDG06rRJcNuNCvvzaz2o97oyXitrfxFRueHqyxLTFYzAbc8sh5BvccqRJR1SYaO1I1Co5uZta1snkqqKo/0x/EdPCEf7Y0iq6pjlJU5Wa0cAV/39b7H6hYM466HXcPUP28z3IT04hGIKjvbHcOREFBtfenfM98rntKGrL4rIUICKJFV09UWhafqo6xWMJBFXNPy5L4KDxwfNHqH0fRbHWsGXuv4D0eSoIrRJTUdC0SAEUOOxwSFL0IZqbfl9Tsyr8eC0eu+4qwvzke1zqKgaPjoWzvn5+igQwscnoug4OoBjoThqPPaRTz1M1xFNqqhwGME0HWt/EVE5Yk9ZiTmZAq5W3ibpo0AI/ZEkJEmYWwYdDyWQVENTfq7WjoC576eAURk/tTH3Y2uXmassB6JJHOmPQoKALAGDCWXM3rtQdGg/y6GgpBsdURCaESzSVzOmao8lVR2KqqKrLwKbNLz5d3rvUqrXKRXYUtf/eDgOWTLKcqRnMx1GQJxb7cm6WvG1rzVNyXuY7XPYE4rDLkljfr5aOwIIxRRjOHXoGqf2kbVLRlmW2FCoTA1nJlV91OKDfBYREBGVIoayEpNraGs8Vt4mKaFogMDwnqIC0ITR85OPiQzLbm3rNPf9BIy5Ven7fqYHHwnCHBK0CaNa+/oX/mCWh0id49hg0pxsn04FcGwghlmVLrjtMj7uj5q3pfa+VHVAVXVUOGSzd2lt94lR+15u2bEfay+Yi237DiOuaJAlQAzNEZMlAYcs4HHasNDvGze4j/V+5fs+jvU5nFftQiiWxLGQUSHfLgn0R5No7Qhg40vvmvPddE2HTZagwdivs6bCgVm+4cfGFKOHbKKLD4iIShlDWYnJNtk83y8oK2+TZJcFoklA03RzixsAowqtZjPR+WhdwYi576e51VHavp/fvf4cbNmx3ww+mg5z025J06Hp+qhzaCN6rNJFFWOOWX80iaSqmyskRw4/1nudZu/Ss/9+MKNeWOr42519aF69BBtfeheDCQUum4y51U74XHazLli2wDQQTcIuCVzy6BvwOW04Fo6jasT2UOlBUBbAu11B3PX870fVDQMyP4cf9QwgoRqFdD/uj0Eb2npMlgSSmtFDd/+2P2IwocAuC6iaMcdNG9pX0mUDHDbZLI4rSwJJVc8YVmVZCyKaCRjKStBkv6BOppet0M6cXZmlFpU9r1pUEx2WbajxmPt+arqOpKJC042yEl6nzQwc9/70D4gmNaSPSQoATps06hx2m4TkGMVbdR2o9jjw2teacNZDr0HXjd4hVdeRPle/cqgX022XEY4bRWTjqrHXpSSMnrD+aBIrFvnx1M3nm0HUbZcztvMZGdy9Tht0GHPOqt12HAiEoWg6Khw2CIcYFQTT64bJAjh4fDBreY+GGg+WN9bi8IkoqoYKwP5nn9ETKDDc64mhXkiXTYYyNH9OFjps8vDKz9QiBvaEEdFMxlA2g5xML9tUGWt4LBUY51TZCj4su76pEd/c9kf0DSYyQpEAcCwcNyeme502JJREZqkGAIqmIxRLwuu0medw2yVExghlsiTwUSCEdS27oWoaFM1YGekY2ttSB+BM6xE8Ho5DBxBXNLN9qq4jDh1qTEFrR2Dca5ke3Ne17EZC1czQqupGr9bxcDwjCA4mVMy3yzjYP2gO2xq1w4wg9egvOzCYUM0eyYPHw9h9sBcSAJddRr3XaW7orWg6PA4J9V4XjvRHoWga5lR5cOREDBp0QOiIK/qoGm1ERDMZQ9kMU8wvv/GGGScaGFMB71gojuOhOOZUueBzGSEj17DsikV+3HbxAjyx6yPzmBj6H5s0vAqy0m03JqYPzYNK3U+WBI6F4ogrKgbjKi559A1EE1rWOWWAEa7i4QSOh3vNY8rQcKddNobqaioc0IdWGwYjSVS7bTgRUTKeT9OAGq/d7J3L91rmuz1UapVjqsAsYAQsh2yUpvgoEDbLewxEk+gdTEDXjaFYo3ctCvtQkNMBNM4yejl7QjFAF/C57PhENYbmjGmocNi4LyQRURqGMpo24w0zTiQwpge8OZVOHD4RQ3cwirnVxgTybL1s6b10A9HhVX+SZFSG0TQdwcEEesN9o2qApQJXqlRrLKkZZRp0YCCmTOr9UDUdZ87x4epz5mRUwu+PJjGn0oX+6IBx3tToKYDewQSCkaDZW5aPkXMJZ/mc6A5GYZOFGQTTVznKkjDm9g2de5bPaZakSJXBMBdBCGMIVpKEkc6E8T6mtp6KJlV4nTYIIOecMSIiYiijaTSVqz8fea0dgVAMqqbDIUuo8dgRiis4OhAftTISGN1Ld3RoQrqq62axPk3XkBxjsWd6REttBaRl6xaboPajIYSiCXzvC0vN9l7197/FgWPhjN65obxj/jeRwroj5xLKkkCNx466Cgf6o8mMXsml86rxyGvt+OhYGHYhMKfKaYao0+o8ZnmPVG+aJIzwpenGkKSqwdx6KvXc3151NoDiDpsTEZUChjKaNlO1+rO1I4CPjoUhC2FuG3QimsQnqlzQdODFL12M1o4A1rXsNueunYgkkFBU9IaNhQTa0KR9VQNkyVjxmaq+kar/lY1DFphT5caRE5EpCWUA0N0fxze3/RGPr10GwOgNU4ZWM6r6cCC0yUYkm1Plgjw0zJpPGYtc20ONlOqtTD1ndzBiTsQHhjcdd8gSEqoGSQjU+RwIxxVzSPLxtcvGfG4iIhobQxlNm8ms/swWOLa2dcIuSUZxViGMel+aUbz0/IaajF6xeFLBnoO9ZoCSADhsEnQBKENdUbIA4qox4d4Yshs7bem6sXH3+hf+AEXLr4ZaPsJxJWMuW4XTNjRvTTM3E3fIEmb5jPIXqW2G8i0Hkj40nHpPH9r+AXxOG3RdRzihZg106e9EerjrjySgaDpqK+yoq3DC67JxSJKI6CQxlNG0mehk/taOAO7f9keEYgoUTcPxUBz3b/sjdACzK534uD8ODUN1zaBDUZGxP2QomsSxcDLjOTUYG3Y7bDJ0XTVWF+qATZLglAXiijpqH8Z0iq7jkdfaRxcZO0mqZoQsHUC12w4hhLloofNYGDFFNSfOA8M9jKnXqqg6DgTD5mrOe3/6BzzzV58EMFRLLBBCQtGMIVoVqK2wwyFL+CgQBmBsy5SqS3ZKpRNxRUPliDpmI/f+TO9N45AkEdHJYyijaTWRyfyP/rIDwUgSsiRgkyXourFvpMMmocptxyeqXWbleFkInD6rAisW+fHQ9g+GSjYMAkBGMVrACGHa0AFdh7kxeHcwgkgyW0uG6Tpw4Nhgzt60lNSE+fHumVrRmRrGHTnE63PZoET0rD2MD23/ALIAuoLRjOHUaFLDhhf3wWWXoWo6+tJemADQG05Chw51qGbasXASNsmoS3akPwZJGJuXCyHGrPvGMhZERFOLG5KTZXUeH4Q0tPWSgDGpXBJAQjFCiSwJnFZfgXqvAzqMMLOuZTeg6zgQCA+HlCypKK5oUIcKxnYHo9h/ZAAnovmtolQ0PWdvmtsuYdFsL06tG54rl7YN5Sg6jJpo65sasb6p0djQPKFA142fDpuM+1acnnWD8oYaj1lFf6RwXEV/NIlgJGkuEEidL6FqSKZPWAPMeXSaDkjCKF0x/JqssR0XEVE5Y08ZlRxZktC8eok5LBeKKajx2FHvdeJQbxg9A/GMsJGrp0oDzA3C00li4qsrHbKApuvwOIyyEQPRpHnubB1rqTIbHrucMTl+rCHejVnOub6pEXf8pDfLLanwNbEXkdSMBQYARtUxs8J2XERE5YyhrMRNZCPuUjvnaXUeHDg2CJG2H6amA2fUe8yhs3Utu83hvlAsiZ6B+JSsikxtuzSRp9J0HfVeJ+q9Rl2vWDJ7hX8AsEnAgrqKUZPjx3tvs90+0XamG/k4XQdmeR3oiyQzao1ZZTsuIqJyxlBWwia6EXchz7m2+wTe7uyb0qD24NWL8c1tf0Q4rhgbiEsC1U47Hrx6sXmfVO2zwEAMgVB80uEkm4k+l6oBoZgCp01GpduOZKoAa7bn1mGWmkgPZLmu51gLH04mlAkYq0+VoZFMpyzgc9uhARm1xjiJn4io8BjKSthEN+Iu1DmPhWL4h9Y/YV6Ne0rD4YpFfjy+dlnOFX4NNR4c6g0jkDb/qVh0DG83BBhztHQYoWfUKKIQo17LeNdzrIUPdpuEpKJhogU6bJKATRI4w+/F8XAcwUgSPpcNfp9rzDpmRERUOAxlJWwqK+SfzDlTPTeFCIfjrfBb39SI9S/8YUp7yE6GphtBrCsYMeeRpRYUpHdp2WUx6v0Z73qmL3wAhlaVCh2qpsHlkMfcEH0kWQB2WYLXZTN7w06r9+IR9oYRERUVQ1kJm6oK+fnItfl3XNHglDMX8k7Xar0Vi/zwOmUk0jYNH0kCJtyLNFnpe2am3hFzz8y09iWSGvb9eXgPy9aOAAaiSRztj8Fpk1DvdaLSbTevZ2tHwHyNkqbCJkmQpeElnQlFNTNf+nBm+p/NHjthrFp94KpFDGFERBbCUFbCUhXyj4ViCMUUxBUNsiRw/bJPjPvYiUzWH2/zb1kSqPJk9vBMdvukySwgcNuknLVcpyuQpZMEML/WA10H/rNvdDjVACQUDRtf3IdKlw0fh+KQh/aRTKgajvRHEVdUOGwyljfWYsuO/bAJIDm02CGharDpRihzyDLiqgqnXYIYKnyR2kBcB+CyGfEwqWmodNrw1M3nM4wREVkQ65SVsBWL/Fh7wVwEI0nEFBUOWaC2wo5t+w6jtSMw5uNSISsQimXMARvrMelznSrdDsytdsMmCxwdiMPvc+G+FafDLssZtbUmulpvom1Kf1xPOJH3eaZLXYUDPpcdlW47FtS6IWWpU6YDGIir6O6PQ9OM8hWpjjZN1xFJqGhevQRvd/bBLgvMrfFAFsM1zzRdR7XHDo9ThlPODKb2oRO67BLO8Hsxt8aNudUeBjIiIgtjKCtxb3f2YV6NG2efUoXT/T7Ue13mfKWxpIesVMX2XI/pCkbgtsvm3yvddpwxywu/z4kXv3QxNl5+JtZeMBfHQnG0Hw3hWCiOtRfMzevL/6ldH2Lp3/4Kd/zkHXQHIwhFk3m1CTAC2caX3jWKoFpM72ACA1Gjir5NluC0Zf6qjcxoetoxRdUxr9qNKrcdKxb5zfff57KjodYDj12GTTLmhT2+dhkW+n2o8tiHSobo0GFMYrPLAqfWekYVnCUiImvi8GWJm8xk/4k+Zry5a60dAWzbdxizfE7MH9oGaNu+wwCQs0zGU7s+xJNvHDB7kTQdCAz1es2ucme06aldH+LZfz+IwYSKCoeMyxbNwr8f6MVALL8q/IU2siyFNjRsKQ1NqnfIYnjOV3pp/TSp23Qd6BmI4/z5NQAy33+fyw6fy45IQoHf5zLfzy079qPOC/RHkoirGmyShPtWnI6Nl59Z2BdORERThqGsxE1msv9EH5Oau5Zt70Ugd5mM2go7+iNJHDkRxe7OXnidMs6ZW431TY149t8PQhLGZuCKqpoZJRBOQAiB/qGK+Jc8vAtHBuJGKQjJaOu/vffxyb1xU2ysvjpNByocMkJxJWd1f6TdJmDM/0q9v+O9/xkbvUvcHJyIqFQxlJW4kV/YqXpT/dEk1rXszvrlPN6X/EgZX/pZ6oVl63kLRpKIKxo+7o9n9CKF4yoO9YaxZcd+hOMK7LJAUtVGhZqeUByyMDYLT222bUvb/zKp5lf+wQr6xtvlHJk9bXZZoLG+wnx/x3v/U/dhCCMiKm0MZSUu/Qv7o54BhOIqaivsqKtwjlnENZ8v+WznGev2kT1vgYFYxn6S6YFLBzAQVTCnypjPlkyb3D6STRKodDug9RnFWBVNgyzJ2e9cJLahaviTlT6SKWCs2pxT5c7YtQBg6CIimgkYyspAtn0ggdxFXKfySz69501RNfTkqK4vAEQSKv7cF4E2VPF+rPulYl1qc3CzGOtUbG45RU4mkAFGGKt225FUNcQUFRUOGyfkExHNUAxlZWSsCfwfBUJY17K7oBuIe+wSDvZGkFByVwVL9QiNt1+jDiCp6vjgcH/GsWiOTb5LVX80icZZozcnJyKimYWhrIxkm8DfOxhHKKaMqv+Vvsn1ZAq2Asaqy0d/2YEPA2GzsGz3iSjUcaq12mSRd2+XdfrECiMVTkduTk5ERDMP65SVkfVNjUiqekYR177BJGo89qw1ySZbsBUYLvZ68PggBHTEkxr+s2/8QCYAOGQJdlkaVatrphEwAmqly4YXv3QxAxkR0QzHUFZGVizyo3n1Evh9LrNgqNcpo97rzLhfqv7XRIvIpks9VtH0jCA2XtCSBNA4ywtV12HLVuZ+BpEkY67c3ZecVuymEBGRBRRl+PLjjz/Gf/2v/xXHjx+HJEn4y7/8S9x+++14+umn8bOf/Qy1tbUAgE2bNuHSSy8tRhOzGjnUt7yxNmdx1GIYOYF/5OR/YLgmWT5FZMca3kw9VkvNvk+bJCZLGLPHTNWBDw73l/2wZD4qHDbcfclpLPBKREQAihTKZFnGgw8+iCVLliAcDuPGG2/EX/zFXwAA7rjjDtx1113FaFZO6ZtyV7vtONQbxt5DfZjldaDeO3b5iWLLVZNsa1tnRmALxYwir0lNx1kPvYZZFXbEVR2yJBCKKTjaH8O+Pwdx34rT4XPacCAQHi5noQ//kISAmiN2zeRAJgBUum148ovcg5KIiDIVJZT5/X74/cYXktfrRWNjI3p6eorRlLyNrFo/EFUgCSAUUzDL58pZfqKYxqtJll7KojsYhaoDsoDx9/7RpS0UTceTb3wEj10ec6WlFfeiLJZ5VU587wtLJ1QTjoiIZqair77s7u5Ge3s7li1bhn379uGnP/0pXnnlFZxzzjl48MEHUVVVVewmAhhdbiKhapCE8TNlvD0nT2al48kYqyZZemDb9+cgdAA2CRAQSOZYHalqQChefqUppoJNMnoKNR2o9tjxvS8sZeFXIiLKi9D1XDvxFdbg4CBuvfVW3HPPPfj85z+P48ePo6amBkIIPPnkkwgEAnj44YdzPsd7770Hp9OZ8z4nKxaL4W9+24dgVIHLZqyN6O5PIqHpkAUgCyPEyELgFJ8Nz1zfMOo53ukexI/39MIuA05ZIK7qSKrAlz9dh4vmVUy6be90D2Lb/n70hBXM9tqwdknVpJ7vjn/9M44PKrBJAgl17KKuNJoAMMsjQUgCfREVEAJzfTb8f5+sPalrSycnFovB5XIVuxk0xXhdy9dMuraLFy/OerxoPWXJZBIbN27Eddddh89//vMAgPr6evP2m266Cffcc8+4z+N0Osd8cVOlvb0dm646F1t27IcmCbjtMqorBHoG4lA0APLQPCodGFQEekTdqJ6R5rd2o8LtNIc/3QAiCQWvHVRw2xWTa39rRwBP7+lGKKZA0TT0xzQ8vSeIW0Ul3u7sw4c9A0iqOhw2CQv9vpw9c43+fvT/OQglR5V9Gq3e68Dja5exJ8yC2tvbC/5vA00/XtfyNVOubXt7+5i3FSWU6bqOb33rW2hsbMSdd95pHg8EAuZcs127dmHhwoXFaF5WI+dmnVrnhSwEjocTUHUdDlnCLJ8TsiSyzisbb6XjRIc2WzsC+PI/70MkoUIIwC4J6AD6BhN4+s0DqKtw4EQ0aa6CDA724vf/2Ycqtx0L/b5RK0eXN9bi//+4H7GoMpVvW9lx2iT4nDIWzq7k3DAiIppSRQllf/jDH7B9+3aceeaZuP766wEY5S9effVVdHR0AADmzp2L5ubmYjRvTCPnBl3y6Bs4w++FEMP1tnRdzzqvLFu1/VRpipErO8erur+8sRbb9h1GJDE0r0s3JtfLklFyQlV1HB3InKSfOn48nMDxcC/e7uwFYNQNOxKMYndnL3vIxtFQ48Z3rz+HQYyIiAqiKKHswgsvxH/8x3+MOm6lmmT5SAUtRdVxPBxHQtUgSwKn1npG3Xe80hTpKzvTV3ICGBXY/qH1T6jx2IdLgwljs25lEht1W2hvb8ty2yXce+nprCdGREQFxYr+J2F9UyP6o0kcPhFFUtUgACiqjt7BxKitirJV209tPt0VjMBtlzPun6vqvqJqCITiZs9W8ZZqlC8B4AvnnYJDj6xC+3evZiAjIqKCK3pJjFK2YpEfs7xOhGNKXvPKxiqNMNbQpq5p5rCiJIBZXifcDhksA1ZYi2Z78eDVizlMSURE04qh7CQdC8chCWQEpVQvV76T97MNbQYGYgjHh+viazrQExpdzJWmjtsm8MwtFzKMERFRUTCUnYTWjgBCMQWabmxFpGg6jpyIoc5rR7XbkXPyfurxqdDmc9qg6zr6o0nMq/GgOxjlxPsCkiXgFJ8TPeEEJCHQWF+BB65axEBGRERFw1B2Eh79ZQc0TUNSM+aS2SQBCKBvMIkql33MyfupFZXpoS2aVNEfTWKW14muYATxMbYwosmxS4AkSVA1I0Dft8KYuD9T6uIQEZH1MZRNUmtHAB8GwpCFgF3SoehAUtPNOlbhhDqqLpmiatj35yAuefQNDEST8DhkVLldQ7fpOBFJIhxTMLuysDsUzAQCQEOtB82rlwAYe+9PIiIiq2Aom6TUqkhdA2RZgg2ApusQABbOrgSAjMn7A9EkDp+IwSYZPWMf90cRTapw2mRUuu04PjQ3LaFqONIfK94LKxM+l81c3QqAIYyIiCyPoWySuoIRzPY5jQClAUIYhWMV3ag99n73CfxD65+gDvWeJYdK68+pckEIAZdNRkLVcHQghuPhOAYTwxt8a1xeOWmyAGoquPURERGVHtYpm6SGGg9ssoRPVLlhkwVUXYckCSyc5QUAbNt3GLUVdjhkgZiiIqHqqPXY4XMZQ5qzfE5omo64oiGWVHOdivJklwQW+r0MZEREVJLYUzZJqTIWdlngtPoKs0L/g1cvNoc2q9wu1HuNOWMfBUIYiCmYXWU83ueyQ5YENFVn3bGT9IXzTsHf33xBsZtBRER0UhjKJmnkBuXzhvak3NrWib2H+uCySaj3OlE5NNl/ts+J7hNRsxaZsS0T01g+6ivs6IskzS2hBIzh4rNm+1jGgoiIygZD2UlIr9CfXuLCKYuhCftRAECl2w6bLGHhLC9qKpx498+9iCnFbLn1CQDzatx464GVAIZrunEFJRERlSuGskkaWa3/RCRh1iXzuezm3pRdwQj8ihMOm4xvrzob29/rZiDLQQBw2iT4K11mOQtg7C2qiIiIygVD2SSkesUSiopQTMHR/hgUTYff64Cq6QhGkpAkAVXToenA0QFje6Q7fvJOkVtuXQKATQI0GHP0OCxJREQzDUPZJGxt60RCUdE7mIAEAdtQAAuEE3DFFOjQoWmcLzYeARi13gBUuWxYOLuSw5JERDRjMZRNQlcwglBMgQQBSRIAjF6epAbEFA0C4L6VOQgAjqGdDxjEiIiIDAxlE5CaR3YsFEdC0WCTAAkyAGNfRQc0JHVA18FgNgYB4KzZXjx49WIGMSIiojQMZXlKn0em6Tp0GD1jSU01wpmQUOGyYTCmIjF0Ow0TAC5urGOvGBER0RgYyvKUmkd2LJyAOmK+mKIBFQ6gP6pAFKl9ViQAOO0SvE4bq+wTERGNg6EsT6l5ZCMDWUpM0WGTBIQQUBVtmltnHU4ZuO9zC/F2Zx9rihEREU0AQ1mefE4buoPRrLdJQ5uRJzRgps4kq3TZcPclp2Hj5WcCADYWuT1ERESlhqEsD+90D+JYOD7m7bo+c6KYACBJRhmQ0+o8nLBPREQlb2RB+GKN8DCU5WHb/n7YpLFni82EQPaTOy7K+gFt7QhgXcvuon+QiYiIJiN9m8Rqtx2BUAxbduxHMzDt32fStJ6tRP1nMIFAaOyesnLXUOMeM5Bt2bEfgVAs44Pc2hEoQiuJiIgmbmtbp7lNohDGT7sssLWtc9rbwlCWB0UHZmqBflkA373+nKy3WemDTERENBldwQjcdjnjmNsuozsYmfa2MJTlQ59ZicwuG3PGnDYJX71s4Zjdt1b6IBMREU1GQ40H0aSacSyaVDGvxjPtbWEoG0drRwDJGVThYl6VE3MqXbjo1FpsveWT5mrKbKz0QSYiIpqM9U2NSKo6IgkFum78TKo61jc1TntbONF/HFvbOuGUgYQ6/n1LmV0W2PC5M3KGsJHWNzViy479iCQUuO0yokm1aB9kIiKiyVixyI9mGN/3xa6vyVA2jq5gBDGlPIcvHZJApds26U3BrfRBJiIimqwVi/yW+O5iKBuHz2lDdxkNXy6e48MDVy2asg+fVT7IREREpY6hbBx6mUzyn1flxPe+sJQBioiIyKIYysbRfaK0VxLOq3bhe2vOHbPOmBUqGBMRERFD2bgiidIcu2yoceO7158zZsiyUgVjIiIiYkmMcZVS0ViXXcKCWjdOn1UBIcbeFgpg4VciIiKrYSjLoRS2CxIA6jw2nD6rAgv9PlS6HXkFLBZ+JSIishaGshweea292E3ISgDYdPlCHHpkFQ4+sgpup33CAYuFX4mIiKyFc8pyONhrrV6jOo8df/eX542a89VQ40EgFIPHMXw5xwtYLPxKRERkLQxlOWgWmVC26fKFOSvtTyZgsfArERGRtTCU5WC3SUgWaX8lWRJYvXQO/v7mC8a972QDFgu/EhERWQdDWQ7FKBxb73Xg8bXLJrXlEQMWERFR6eJE/xyiyemrUea2CZw7twpVbjvLUhAREc1A7CmzAL/XgdlVbgAsS3EyuEMBERGVMoayIrBJgCQEEqoxPBoIJzAQUzCnygVZEvA6bVjXsrvg4WIiIWYqA89knyvX47hDARERlToOX04jGYBDAhQNZiBLiSkauoNRHA/HcSwcRyAUywgXU13INhVi8jnPRO47leedyOO4QwEREZU6hrJpIAE4fVYFzp5bhVzT1GyyQELRUOW2FzxcTCTETGXgmexzjfc47lBARESljqGsgE6fVYHljXX4RI17VGBISW1RKQCcMcuLhKpPS7iYSIiZysAz2eca73HcoYCIiEodQ9kUs0nC3BQ8VcA1PTA4bSPe8qFRTKdNQjSposIhT0u4mEiImcrAM9nnGu9x65sakVR1RBIKdN34yR0KiIiolFgulLW1teHKK6/EFVdcgZaWlqK2xSbyuI8ELJ7jQ0ONG4vn+HDGrApoOuD3udC8eglWLPJnBIbZlU7Iac+rA5AloNpjR1LVcfclp01LuJhIiJnKwDPZ5xrvcSsW+dG8egn8Phf6o8mM95+IiKgUWGr1paqqaG5uxv/8n/8Ts2fPxtq1a7Fy5UqcccYZRWnPgYdX4YzNO6GMqCHrc8qo9jgmVDk/veL+Qr8XQggcC8eRUDQ4ZIHT6r3mcy2dV13w7Y8msgvAVG7JdDK7D4z3OBbQJSKiUmapUPb+++9jwYIFaGhoAACsWrUKr7/+etFCGWAEs/b2dixevPiknmcigWG6wkWx2jTZ52LoIiKicmap4cuenh7MmTPH/Pvs2bPR09NTxBYRERERTQ9L9ZRl22tSiNwTu+LxONrb2wvVJABALBYr+DmoOHhtyxevbXnidS1fvLYWC2Vz5szB0aNHzb/39PTA7889XOV0Ok96aHE8UzF8SdbEa1u+eG3LE69r+Zop1zZX8LTU8OW5556LQ4cOoaurC4lEAjt37sTKlSuL3SwiIiKigrNUT5nNZsOWLVtw9913Q1VV3HjjjVi4cGGxm0VERERUcJYKZQBw6aWX4tJLLy12M4iIiIimlaWGL4mIiIhmKoYyIiIiIgtgKCMiIiKyAIYyIiIiIgtgKCMiIiKyAIYyIiIiIgtgKCMiIiKyAIYyIiIiIgtgKCMiIiKyAKHrul7sRpyM9957D06ns9jNICIiIhpXPB7Heeedl/W2kg9lREREROWAw5dEREREFsBQRkRERGQBDGVEREREFsBQRkRERGQBDGVEREREFsBQNo62tjZceeWVuOKKK9DS0lLs5tBJ2Lx5M5YvX45rr73WPHbixAnceeed+PznP48777wT/f39RWwhTcbHH3+MW2+9FVdffTVWrVqF5557DgCvbamLx+NYu3YtVq9ejVWrVuGpp54CwOtaTlRVxZo1a7B+/XoAvLYAQ1lOqqqiubkZzz77LHbu3IlXX30VBw4cKHazaJJuuOEGPPvssxnHWlpasHz5cvz617/G8uXLGbxLkCzLePDBB/Haa6/hX/7lX/DP//zPOHDgAK9tiXM4HHjuueewY8cOvPLKK3jrrbfw3nvv8bqWkeeffx6nn366+XdeW4aynN5//30sWLAADQ0NcDgcWLVqFV5//fViN4sm6aKLLkJVVVXGsddffx1r1qwBAKxZswa7du0qQsvoZPj9fixZsgQA4PV60djYiJ6eHl7bEieEQEVFBQBAURQoigIhBK9rmTh69ChaW1uxdu1a8xivLUNZTj09PZgzZ47599mzZ6Onp6eILaKp1tvbC7/fD8D4cu/r6ytyi+hkdHd3o729HcuWLeO1LQOqquL666/HZz7zGXzmM5/hdS0j3//+93H//fdDkoZjCK8tQ1lO2TY7EEIUoSVENJ7BwUFs3LgRf/3Xfw2v11vs5tAUkGUZ27dvx29/+1u8//77+PDDD4vdJJoCb775Jmpra3HOOecUuymWYyt2A6xszpw5OHr0qPn3np4eM8VTeairq0MgEIDf70cgEEBtbW2xm0STkEwmsXHjRlx33XX4/Oc/D4DXtpxUVlbi05/+NN566y1e1zKwb98+vPHGG2hra0M8Hkc4HMY3v/lNXluwpyync889F4cOHUJXVxcSiQR27tyJlStXFrtZNIVWrlyJV155BQDwyiuv4LLLLitug2jCdF3Ht771LTQ2NuLOO+80j/Palra+vj4MDAwAAGKxGH73u9+hsbGR17UMfOMb30BbWxveeOMNPPHEE7j44ovx+OOP89qCG5KP67e//S2+//3vQ1VV3Hjjjbj33nuL3SSapE2bNmHv3r0IBoOoq6vDhg0bcPnll+NrX/saPv74Y5xyyil48sknUV1dXeym0gT8/ve/x1/91V/hzDPPNOenbNq0CUuXLuW1LWEdHR148MEHoaoqdF3HVVddha985SsIBoO8rmVkz549+Kd/+ids3bqV1xYMZURERESWwOFLIiIiIgtgKCMiIiKyAIYyIiIiIgtgKCMiIiKyAIYyIiIiIgtgKCMiIiKyAIYyIrKkgYEB/PSnPx3z9ptvvvmkz/Hyyy+jubkZAPDiiy+ahSuz2bNnD/bt23fS5yQiGgtDGRFZ0sDAAF588cVRx1VVBQC89NJLU3q+devWYc2aNWPevnfvXrz77rtTek4ionTc+5KILOnv/u7v8Oc//xnXX389bDYbPB4P/H4/2tvb8Ytf/ALnn38+3n33XezZswdPPfUUqqurcfDgQVx44YX427/9W7O6/0j/+q//ipaWFsyaNQunnnoqHA4HAODpp5+Gx+PBXXfdheeffx4vvfQSZFnGGWecgW984xt46aWXIEkSduzYgW9/+9sYGBjAM888g2Qyierqajz++OOor6/H008/jSNHjqC7uxtHjhzB7bffjttuuw2AsXXM//gf/wNCCJx11ll47LHH0NfXh7/5m7/BkSNHAAB//dd/jU9+8pPT8yYTkaUwlBGRJX3jG9/ARx99hO3bt2PPnj1Yv349fv7zn6OhoWHUfd9//3384he/wCc+8Qncfffd+PWvf42rrrpq1P0CgQCefvppvPzyy/B6vbjttttw9tlnj7pfS0sL3njjDTgcDgwMDKCyshI333yzGdoAoL+/Hz/72c8ghMD//t//G88++ywefPBBAMDBgwfx/PPPIxwO4+qrr8a6detw6NAhPPPMM3jxxRdRW1uLEydOAAD+23/7b7j99ttx4YUX4siRI7jrrrvw2muvTeE7SUSlgqGMiErCueeemzWQAcDSpUvN21atWoU//OEPWUPZ+++/j0996lOora0FAFxzzTU4dOjQqPudddZZ+OY3v4nLLrsMl19+edZzHj16FF//+tdx7NgxJBIJzJs3z7zt0ksvhcPhQG1tLWpra9Hb24vdu3fjqquuMs+d2tPvd7/7HQ4cOGA+NhwOIxwOw+v1jv+mEFFZYSgjopLg8XjGvE0IkfPv+d6W0tLSgnfeeQdvvPEGfvzjH2Pnzp2j7vO9730Pd9xxBy677DLs2bMHP/rRj8zbUkOiACDLMhRFwVjbDGuahn/5l3+By+Uat11EVN440Z+ILKmiogKDg4N53ff9999HV1cXNE3Da6+9NuacrKVLl2Lv3r0IBoNIJpP45S9/Oeo+mqbh448/xsUXX4z7778foVAIkUhkVHtCoRBmz54NADlXbaYsX74cv/zlLxEMBgHAHL685JJL8MILL5j3a29vz+s1E1H5YU8ZEVlSTU0NLrjgAlx77bVwOp2or68f877nnXce/u7v/g4ffvghLrzwQlxxxRVZ7+f3+/GVr3wFN998M2bNmoWzzz4bmqZl3EdVVdx///0Ih8PQdR133HEHKisr8bnPfQ4bN27E66+/jm9/+9v4yle+gq9+9auYPXs2li1bhu7u7pyvZ+HChbjnnntw6623QpIknH322XjkkUfwrW99C83NzbjuuuugqiouvPBCs0wHEc0sQh+rT52IqATs2bMH//RP/4StW7cWuylERCeFw5dEREREFsCeMiIqSzfddBMSiUTGsR/84Ac466yzitQiIqLcGMqIiIiILIDDl0REREQWwFBGREREZAEMZUREREQWwFBGREREZAEMZUREREQW8P8AjYBjG3Tf9noAAAAASUVORK5CYII=\n", "text/plain": [ "<Figure size 720x576 with 1 Axes>" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "ax = sns.regplot(\n", " x=\"trip_distance\",\n", " y=\"fare_amount\",\n", " fit_reg=False,\n", " ci=None,\n", " truncate=True,\n", " data=trips,\n", ")\n", "ax.figure.set_size_inches(10, 8)" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "What's up with the streaks around 45 dollars and 50 dollars? Those are fixed-amount rides from JFK and La Guardia airports into anywhere in Manhattan, i.e. to be expected. Let's list the data to make sure the values look reasonable.\n", "\n", "Let's also examine whether the toll amount is captured in the total amount." ] }, { "cell_type": "code", "execution_count": 28, "metadata": {}, "outputs": [ { "data": { "text/html": [ "<div>\n", "<style scoped>\n", " .dataframe tbody tr th:only-of-type {\n", " vertical-align: middle;\n", " }\n", "\n", " .dataframe tbody tr th {\n", " vertical-align: top;\n", " }\n", "\n", " .dataframe thead th {\n", " text-align: right;\n", " }\n", "</style>\n", "<table border=\"1\" class=\"dataframe\">\n", " <thead>\n", " <tr style=\"text-align: right;\">\n", " <th></th>\n", " <th>pickup_datetime</th>\n", " <th>pickup_longitude</th>\n", " <th>pickup_latitude</th>\n", " <th>dropoff_longitude</th>\n", " <th>dropoff_latitude</th>\n", " <th>passenger_count</th>\n", " <th>trip_distance</th>\n", " <th>tolls_amount</th>\n", " <th>fare_amount</th>\n", " <th>total_amount</th>\n", " </tr>\n", " </thead>\n", " <tbody>\n", " <tr>\n", " <th>31</th>\n", " <td>2012-02-27 09:19:10 UTC</td>\n", " <td>-73.874431</td>\n", " <td>40.774011</td>\n", " <td>-73.983967</td>\n", " <td>40.744082</td>\n", " <td>1</td>\n", " <td>11.6</td>\n", " <td>4.8</td>\n", " <td>27.7</td>\n", " <td>38.0</td>\n", " </tr>\n", " </tbody>\n", "</table>\n", "</div>" ], "text/plain": [ " pickup_datetime pickup_longitude pickup_latitude \\\n", "31 2012-02-27 09:19:10 UTC -73.874431 40.774011 \n", "\n", " dropoff_longitude dropoff_latitude passenger_count trip_distance \\\n", "31 -73.983967 40.744082 1 11.6 \n", "\n", " tolls_amount fare_amount total_amount \n", "31 4.8 27.7 38.0 " ] }, "execution_count": 28, "metadata": {}, "output_type": "execute_result" } ], "source": [ "tollrides = trips[trips[\"tolls_amount\"] > 0]\n", "tollrides[tollrides[\"pickup_datetime\"] == \"2012-02-27 09:19:10 UTC\"]" ] }, { "cell_type": "code", "execution_count": 29, "metadata": {}, "outputs": [ { "data": { "text/html": [ "<div>\n", "<style scoped>\n", " .dataframe tbody tr th:only-of-type {\n", " vertical-align: middle;\n", " }\n", "\n", " .dataframe tbody tr th {\n", " vertical-align: top;\n", " }\n", "\n", " .dataframe thead th {\n", " text-align: right;\n", " }\n", "</style>\n", "<table border=\"1\" class=\"dataframe\">\n", " <thead>\n", " <tr style=\"text-align: right;\">\n", " <th></th>\n", " <th>pickup_datetime</th>\n", " <th>pickup_longitude</th>\n", " <th>pickup_latitude</th>\n", " <th>dropoff_longitude</th>\n", " <th>dropoff_latitude</th>\n", " <th>passenger_count</th>\n", " <th>trip_distance</th>\n", " <th>tolls_amount</th>\n", " <th>fare_amount</th>\n", " <th>total_amount</th>\n", " </tr>\n", " </thead>\n", " <tbody>\n", " <tr>\n", " <th>45</th>\n", " <td>2012-02-27 09:19:10 UTC</td>\n", " <td>-73.972311</td>\n", " <td>40.753067</td>\n", " <td>-73.957389</td>\n", " <td>40.817824</td>\n", " <td>1</td>\n", " <td>5.6</td>\n", " <td>0.0</td>\n", " <td>16.9</td>\n", " <td>22.62</td>\n", " </tr>\n", " <tr>\n", " <th>7795</th>\n", " <td>2012-02-27 09:19:10 UTC</td>\n", " <td>-73.987582</td>\n", " <td>40.725468</td>\n", " <td>-74.016628</td>\n", " <td>40.715534</td>\n", " <td>1</td>\n", " <td>2.8</td>\n", " <td>0.0</td>\n", " <td>12.1</td>\n", " <td>15.75</td>\n", " </tr>\n", " <tr>\n", " <th>10537</th>\n", " <td>2012-02-27 09:19:10 UTC</td>\n", " <td>-74.015483</td>\n", " <td>40.715279</td>\n", " <td>-73.998045</td>\n", " <td>40.756273</td>\n", " <td>1</td>\n", " <td>3.3</td>\n", " <td>0.0</td>\n", " <td>10.9</td>\n", " <td>13.40</td>\n", " </tr>\n", " </tbody>\n", "</table>\n", "</div>" ], "text/plain": [ " pickup_datetime pickup_longitude pickup_latitude \\\n", "45 2012-02-27 09:19:10 UTC -73.972311 40.753067 \n", "7795 2012-02-27 09:19:10 UTC -73.987582 40.725468 \n", "10537 2012-02-27 09:19:10 UTC -74.015483 40.715279 \n", "\n", " dropoff_longitude dropoff_latitude passenger_count trip_distance \\\n", "45 -73.957389 40.817824 1 5.6 \n", "7795 -74.016628 40.715534 1 2.8 \n", "10537 -73.998045 40.756273 1 3.3 \n", "\n", " tolls_amount fare_amount total_amount \n", "45 0.0 16.9 22.62 \n", "7795 0.0 12.1 15.75 \n", "10537 0.0 10.9 13.40 " ] }, "execution_count": 29, "metadata": {}, "output_type": "execute_result" } ], "source": [ "notollrides = trips[trips[\"tolls_amount\"] == 0]\n", "notollrides[notollrides[\"pickup_datetime\"] == \"2012-02-27 09:19:10 UTC\"]" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "Looking at a few samples above, it should be clear that the total amount reflects fare amount, toll and tip somewhat arbitrarily -- this is because when customers pay cash, the tip is not known. So, we'll use the sum of fare_amount + tolls_amount as what needs to be predicted. Tips are discretionary and do not have to be included in our fare estimation tool.\n", "\n", "Let's also look at the distribution of values within the columns." ] }, { "cell_type": "code", "execution_count": 30, "metadata": {}, "outputs": [ { "data": { "text/html": [ "<div>\n", "<style scoped>\n", " .dataframe tbody tr th:only-of-type {\n", " vertical-align: middle;\n", " }\n", "\n", " .dataframe tbody tr th {\n", " vertical-align: top;\n", " }\n", "\n", " .dataframe thead th {\n", " text-align: right;\n", " }\n", "</style>\n", "<table border=\"1\" class=\"dataframe\">\n", " <thead>\n", " <tr style=\"text-align: right;\">\n", " <th></th>\n", " <th>pickup_longitude</th>\n", " <th>pickup_latitude</th>\n", " <th>dropoff_longitude</th>\n", " <th>dropoff_latitude</th>\n", " <th>passenger_count</th>\n", " <th>trip_distance</th>\n", " <th>tolls_amount</th>\n", " <th>fare_amount</th>\n", " <th>total_amount</th>\n", " </tr>\n", " </thead>\n", " <tbody>\n", " <tr>\n", " <th>count</th>\n", " <td>10716.000000</td>\n", " <td>10716.000000</td>\n", " <td>10716.000000</td>\n", " <td>10716.000000</td>\n", " <td>10716.000000</td>\n", " <td>10716.000000</td>\n", " <td>10716.000000</td>\n", " <td>10716.000000</td>\n", " <td>10716.000000</td>\n", " </tr>\n", " <tr>\n", " <th>mean</th>\n", " <td>-72.602192</td>\n", " <td>40.002372</td>\n", " <td>-72.594838</td>\n", " <td>40.002052</td>\n", " <td>1.650056</td>\n", " <td>2.856395</td>\n", " <td>0.226428</td>\n", " <td>11.109446</td>\n", " <td>13.217078</td>\n", " </tr>\n", " <tr>\n", " <th>std</th>\n", " <td>9.982373</td>\n", " <td>5.474670</td>\n", " <td>10.004324</td>\n", " <td>5.474648</td>\n", " <td>1.283577</td>\n", " <td>3.322024</td>\n", " <td>1.135934</td>\n", " <td>9.137710</td>\n", " <td>10.953156</td>\n", " </tr>\n", " <tr>\n", " <th>min</th>\n", " <td>-74.258183</td>\n", " <td>0.000000</td>\n", " <td>-74.260472</td>\n", " <td>0.000000</td>\n", " <td>0.000000</td>\n", " <td>0.010000</td>\n", " <td>0.000000</td>\n", " <td>2.500000</td>\n", " <td>2.500000</td>\n", " </tr>\n", " <tr>\n", " <th>25%</th>\n", " <td>-73.992153</td>\n", " <td>40.735936</td>\n", " <td>-73.991566</td>\n", " <td>40.734310</td>\n", " <td>1.000000</td>\n", " <td>1.040000</td>\n", " <td>0.000000</td>\n", " <td>6.000000</td>\n", " <td>7.300000</td>\n", " </tr>\n", " <tr>\n", " <th>50%</th>\n", " <td>-73.981851</td>\n", " <td>40.753264</td>\n", " <td>-73.980373</td>\n", " <td>40.752956</td>\n", " <td>1.000000</td>\n", " <td>1.770000</td>\n", " <td>0.000000</td>\n", " <td>8.500000</td>\n", " <td>10.000000</td>\n", " </tr>\n", " <tr>\n", " <th>75%</th>\n", " <td>-73.967400</td>\n", " <td>40.767340</td>\n", " <td>-73.964142</td>\n", " <td>40.767510</td>\n", " <td>2.000000</td>\n", " <td>3.160000</td>\n", " <td>0.000000</td>\n", " <td>12.500000</td>\n", " <td>14.600000</td>\n", " </tr>\n", " <tr>\n", " <th>max</th>\n", " <td>0.000000</td>\n", " <td>41.366138</td>\n", " <td>0.000000</td>\n", " <td>41.366138</td>\n", " <td>6.000000</td>\n", " <td>42.800000</td>\n", " <td>16.000000</td>\n", " <td>179.000000</td>\n", " <td>179.000000</td>\n", " </tr>\n", " </tbody>\n", "</table>\n", "</div>" ], "text/plain": [ " pickup_longitude pickup_latitude dropoff_longitude dropoff_latitude \\\n", "count 10716.000000 10716.000000 10716.000000 10716.000000 \n", "mean -72.602192 40.002372 -72.594838 40.002052 \n", "std 9.982373 5.474670 10.004324 5.474648 \n", "min -74.258183 0.000000 -74.260472 0.000000 \n", "25% -73.992153 40.735936 -73.991566 40.734310 \n", "50% -73.981851 40.753264 -73.980373 40.752956 \n", "75% -73.967400 40.767340 -73.964142 40.767510 \n", "max 0.000000 41.366138 0.000000 41.366138 \n", "\n", " passenger_count trip_distance tolls_amount fare_amount \\\n", "count 10716.000000 10716.000000 10716.000000 10716.000000 \n", "mean 1.650056 2.856395 0.226428 11.109446 \n", "std 1.283577 3.322024 1.135934 9.137710 \n", "min 0.000000 0.010000 0.000000 2.500000 \n", "25% 1.000000 1.040000 0.000000 6.000000 \n", "50% 1.000000 1.770000 0.000000 8.500000 \n", "75% 2.000000 3.160000 0.000000 12.500000 \n", "max 6.000000 42.800000 16.000000 179.000000 \n", "\n", " total_amount \n", "count 10716.000000 \n", "mean 13.217078 \n", "std 10.953156 \n", "min 2.500000 \n", "25% 7.300000 \n", "50% 10.000000 \n", "75% 14.600000 \n", "max 179.000000 " ] }, "execution_count": 30, "metadata": {}, "output_type": "execute_result" } ], "source": [ "trips.describe()" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "Copyright 2020 Google Inc. Licensed under the Apache License, Version 2.0 (the \"License\"); you may not use this file except in compliance with the License. You may obtain a copy of the License at\n", "http://www.apache.org/licenses/LICENSE-2.0\n", "Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an \"AS IS\" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License." ] } ], "metadata": { "colab": { "name": "Conchita_Linear_Regression_with_Python.ipynb", "provenance": [], "toc_visible": true }, "environment": { "name": "tf2-gpu.2-5.m76", "type": "gcloud", "uri": "gcr.io/deeplearning-platform-release/tf2-gpu.2-5:m76" }, "kernelspec": { "display_name": "Python 3", "language": "python", "name": "python3" }, "language_info": { "codemirror_mode": { "name": "ipython", "version": 3 }, "file_extension": ".py", "mimetype": "text/x-python", "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", "version": "3.7.10" } }, "nbformat": 4, "nbformat_minor": 4 }
apache-2.0
rsterbentz/phys202-2015-work
assignments/assignment02/ProjectEuler2.ipynb
1
2945
{ "cells": [ { "cell_type": "markdown", "metadata": { "nbgrader": {} }, "source": [ "# Project Euler: Problem 2" ] }, { "cell_type": "markdown", "metadata": { "nbgrader": {} }, "source": [ "Each new term in the Fibonacci sequence is generated by adding the previous two terms. By starting with 0 and 1, the first 12 terms will be:\n", "\n", "0, 1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, ...\n", "\n", "By considering the terms in the Fibonacci sequence whose values do not exceed four million, find the sum of the even-valued terms." ] }, { "cell_type": "code", "execution_count": 5, "metadata": { "collapsed": false, "deletable": false, "nbgrader": { "checksum": "6cff4e8e53b15273846c3aecaea84a3d", "solution": true } }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "[0, 1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, 144, 233, 377, 610, 987, 1597, 2584, 4181, 6765, 10946, 17711, 28657, 46368, 75025, 121393, 196418, 317811, 514229, 832040, 1346269, 2178309, 3524578]\n" ] } ], "source": [ "a = 0\n", "b = 1\n", "fib_max = 0\n", "fib_list = [a, b]\n", "while fib_max <= 4000000:\n", " fib_max = a + b\n", " if fib_max < 4000000:\n", " fib_list.append(fib_max)\n", " a = b\n", " b = fib_max\n", "print(fib_list)" ] }, { "cell_type": "code", "execution_count": 6, "metadata": { "collapsed": false }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "[0, 2, 8, 34, 144, 610, 2584, 10946, 46368, 196418, 832040, 3524578]\n" ] } ], "source": [ "even_fib = [x for x in fib_list if x % 2 == 0]\n", "print(even_fib)" ] }, { "cell_type": "code", "execution_count": 7, "metadata": { "collapsed": false }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "4613732\n" ] } ], "source": [ "print(sum(even_fib))" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "collapsed": true, "deletable": false, "nbgrader": { "checksum": "e8afe8a5735f0fff949b706895f8583d", "grade": true, "grade_id": "projecteuler2", "points": 10 } }, "outputs": [], "source": [ "# This cell will be used for grading, leave it at the end of the notebook." ] } ], "metadata": { "kernelspec": { "display_name": "Python 3", "language": "python", "name": "python3" }, "language_info": { "codemirror_mode": { "name": "ipython", "version": 3 }, "file_extension": ".py", "mimetype": "text/x-python", "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", "version": "3.4.0" } }, "nbformat": 4, "nbformat_minor": 0 }
mit
bbfamily/abu
abupy_ui/数据下载界面操作.ipynb
1
1740
{ "cells": [ { "cell_type": "markdown", "metadata": {}, "source": [ "### 点击上方的运行按钮,启动回测操作界面,如下图所示:\n", "\n", "![](./run_cell.png)" ] }, { "cell_type": "code", "execution_count": 4, "metadata": {}, "outputs": [ { "data": { "application/vnd.jupyter.widget-view+json": { "model_id": "54b6210ad8eb4103acf7880e2bb687f0" } }, "metadata": {}, "output_type": "display_data" } ], "source": [ "import widget_update_ui\n", "widget_update_ui.show_ui()" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "[abu量化系统github地址](https://github.com/bbfamily/abu) (您的star是我的动力!)\n", "\n", "[更多阿布量化量化技术文章](http://www.abuquant.com/article)\n", "\n", "更多关于量化交易相关请阅读[《量化交易之路》](http://www.abuquant.com/books/quantify-trading-road.html)\n", "\n", "更多关于量化交易与机器学习相关请阅读[《机器学习之路》](http://www.abuquant.com/books/machine-learning-road.html)\n", "\n", "更多关于abu量化系统请关注微信公众号: abu_quant\n", "\n", "![](../abupy_lecture/image/qrcode.jpg)" ] } ], "metadata": { "kernelspec": { "display_name": "Python 3", "language": "python", "name": "python3" }, "language_info": { "codemirror_mode": { "name": "ipython", "version": 3 }, "file_extension": ".py", "mimetype": "text/x-python", "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", "version": "3.6.1" } }, "nbformat": 4, "nbformat_minor": 2 }
gpl-3.0
namco1992/algorithms_in_python
algorithms/tree.ipynb
1
9949
{ "cells": [ { "cell_type": "markdown", "metadata": {}, "source": [ "## Tree\n", "### 定义\n", "一棵二叉树的定义如下。`key`可以存储任意的对象,亦即每棵树也可以是其他树的子树。" ] }, { "cell_type": "code", "execution_count": 3, "metadata": { "collapsed": false }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "a\n", "None\n", "b\n" ] } ], "source": [ "class BinaryTree():\n", " def __init__(self, root_obj):\n", " self.key = root_obj\n", " self.left_child = None\n", " self.right_child = None\n", " \n", " def insert_left(self, new_node):\n", " # if the tree do not have a left child\n", " # then create a node: one tree without children\n", " if self.left_child is None:\n", " self.left_child = BinaryTree(new_node)\n", " # if there is a child, then concat the child\n", " # under the node we inserted\n", " else:\n", " t = BinaryTree(new_node)\n", " t.left_child = self.left_child\n", " self.left_child = t\n", "\n", " def insert_right(self, new_node):\n", " # if the tree do not have a right child\n", " # then create a node: one tree without children\n", " if self.right_child is None:\n", " self.right_child = BinaryTree(new_node)\n", " # if there is a child, then concat the child\n", " # under the node we inserted\n", " else:\n", " t = BinaryTree(new_node)\n", " t.right_child = self.right_child\n", " self.right_child = t\n", " \n", " def get_right_child(self):\n", " return self.right_child\n", " \n", " def get_left_child(self):\n", " return self.left_child\n", " \n", " def set_root(self, obj):\n", " self.key = obj\n", " \n", " def get_root(self):\n", " return self.key\n", "\n", "r = BinaryTree('a')\n", "print r.get_root()\n", "print r.get_left_child()\n", "r.insert_left('b')\n", "print r.get_left_child().get_root()\n", "\n", "\n" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "### 遍历\n", "1. 前序\n", "2. 中序\n", "3. 后序" ] }, { "cell_type": "code", "execution_count": 9, "metadata": { "collapsed": false }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "root\n", "l2\n", "l1\n", "r3\n", "r2\n", "r1\n" ] } ], "source": [ "def preorder(tree):\n", " if tree:\n", " print tree.get_root()\n", " preorder(tree.get_left_child())\n", " preorder(tree.get_right_child())\n", "\n", "def postorder(tree):\n", " if tree:\n", " postorder(tree.get_left_child())\n", " postorder(tree.get_right_child())\n", " print tree.get_root()\n", "\n", "def inorder(tree):\n", " if tree:\n", " inorder(tree.get_left_child())\n", " print tree.get_root()\n", " inorder(tree.get_right_child())\n", "\n", "r = BinaryTree('root')\n", "r.insert_left('l1')\n", "r.insert_left('l2')\n", "r.insert_right('r1')\n", "r.insert_right('r2')\n", "r.get_left_child().insert_right('r3')\n", "\n", "\n", "preorder(r)\n", "\n", "\n", "\n" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## 二叉堆实现优先队列\n", "\n", "二叉堆是队列的一种实现方式。\n", "\n", "二叉堆可以用完全二叉树来实现。所谓完全二叉树(complete binary tree),有定义如下:\n", "> A complete binary tree is a binary tree in which every level, except possibly the last, is completely filled, and all nodes are as far left as possible.\n", "除叶节点外,所有层都是填满的,叶节点则按照从左至右的顺序填满。\n", "\n", "完全二叉树的一个重要性质:\n", "\n", "当以列表表示完全二叉树时,位置 p 的父节点,其 left child 位于 2p 位置,其 right child 位于 2p+1 的位置。\n", "\n", "为了满足使用列表表示的性质,列表中第一个位置`list[0]`由 0 填充,树从`list[1]`开始。\n", "\n", "\n", "\n", "![1](http://interactivepython.org/courselib/static/pythonds/_images/heapOrder.png)\n", "\n", "\n", "### Operations\n", "- BinaryHeap() creates a new, empty, binary heap.\n", "- insert(k) adds a new item to the heap.\n", "- findMin() returns the item with the minimum key value, leaving item in the heap.\n", "- delMin() returns the item with the minimum key value, removing the item from the heap.\n", "- isEmpty() returns true if the heap is empty, false otherwise.\n", "- size() returns the number of items in the heap.\n", "- buildHeap(list) builds a new heap from a list of keys.\n" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "collapsed": true }, "outputs": [], "source": [ "class BinHeap(object):\n", " def __init__(self):\n", " self.heap_list = [0]\n", " self.current_size = 0" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## 二叉搜索树 Binary Search Trees\n", "\n", "其性质与字典非常相近。\n", "\n", "### Operations\n", "- Map() Create a new, empty map.\n", "- put(key,val) Add a new key-value pair to the map. If the key is already in the map then replace the old value with the new value.\n", "- get(key) Given a key, return the value stored in the map or None otherwise.\n", "- del Delete the key-value pair from the map using a statement of the form del map[key].\n", "- len() Return the number of key-value pairs stored in the map.\n", "- in Return True for a statement of the form key in map, if the given key is in the map." ] }, { "cell_type": "code", "execution_count": null, "metadata": { "collapsed": true }, "outputs": [], "source": [ "class BinarySearchTree(object):\n", " def __init__(self):\n", " self.root = None\n", " self.size = 0\n", " \n", " def length(self):\n", " return self.size\n", " \n", " def __len__(self):\n", " return self.size\n", " \n", " def __iter__(self):\n", " return self.root.__iter__()\n", " \n", " def put(self, key, val):\n", " if self.root:\n", " self._put(key, val, self.root)\n", " else:\n", " self.root = TreeNode(key, val)\n", " self.size += 1\n", " \n", " def _put(key, val, current_node):\n", " if key < current_node:\n", " if current_node.has_left_child():\n", " _put(key, val, current_node.left_child)\n", " else:\n", " current_node.left_child = TreeNode(key, val, parent=current_node)\n", " else:\n", " if current_node.has_right_child():\n", " _put(key, val, current_node.right_child)\n", " else:\n", " current_node.right_child = TreeNode(key, val, parent=current_node)\n", " \n", " def __setitem__(self, k, v):\n", " self.put(k, v)\n", "\n", "class TreeNode(object):\n", " def __init__(self, key, val, left=None, right=None, parent=None):\n", " self.key = key\n", " self.payload = val\n", " self.left_child = left\n", " self.right_child = right\n", " self.parent = parent\n", " \n", " def has_left_child(self):\n", " return self.left_child\n", " \n", " def has_right_child(self):\n", " return self.right_child\n", " \n", " def is_root(self):\n", " return not self.parent\n", " \n", " def is_leaf(self):\n", " return not (self.right_child or self.left_child)\n", " \n", " def has_any_children(self):\n", " return self.right_child or self.left_child\n", " \n", " def has_both_children(self):\n", " return self.right_child and self.right_child\n", " \n", " def replace_node_data(self, key, value, lc, rc):\n", " self.key = key\n", " self.payload = value\n", " self.left_child = lc\n", " self.right_child = rc\n", " if self.has_left_child():\n", " self.left_child.parent = self\n", " if self.has_right_child():\n", " self.right_child.parent = self\n", " \n", " " ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "### 平衡二叉搜索树 Balanced Binary Search Tree\n", "\n", "又名 AVL 树。避免出现最坏情况下 O(n) 的复杂度。AVL 的搜索复杂度稳定在 O(logN)。\n", "```\n", "balanceFactor=height(leftSubTree)−height(rightSubTree)\n", "```\n" ] } ], "metadata": { "kernelspec": { "display_name": "Python 2", "language": "python", "name": "python2" }, "language_info": { "codemirror_mode": { "name": "ipython", "version": 2 }, "file_extension": ".py", "mimetype": "text/x-python", "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython2", "version": "2.7.11" } }, "nbformat": 4, "nbformat_minor": 0 }
mit
opalytics/opalytics-ticdat
examples/amplpy/netflow/netflow_other_data_sources.ipynb
1
21190
{ "cells": [ { "cell_type": "markdown", "metadata": {}, "source": [ "## Using ticdat to build modular engines\n", "\n", "The goal of the `ticdat` package is to facilitate solve engines that are modular and robust. For example, the multicommodity `netflow.py` engine can read and write from a variety of file types when run from the the command line. It can also be run from a Python script that contains embedded static data, or from a script that reads and writes from a system-of-record data source such as an ERP system. \n", "\n", "With regards to the latter, we should note that Python is one of the most popular \"glue\" [languages](https://en.wikipedia.org/wiki/Scripting_language#Glue_languages). The market has recognized that Python scripts are easy to write, manage data with intuitive programming syntax, and can be connected to nearly any data source.\n", "\n", "The `ticdat` package can easily be used in any Python glue script. One way to do this is to exploit `ticdat`'s ability to recognize data tables as list-of-lists. The inner lists contain data values in the field order defined by by the `PanDatFactory` (i.e. `netflow.input_schema`).\n", "\n", "For example, suppose the `netflow` engine needs to connect to an Oracle database for a daily automated solve. The integration engineer can use the `cx_Oracle` [package](https://oracle.github.io/python-cx_Oracle/) (or something equivalent) to turn system data into a list-of-lists for each input table. These data structures can then be used to create a `PanDat` object that can be passed as input data to `netflow.solve`. The solution `PanDat` object returned by `netflow.solve` can then be converted back into a list-of-lists representation of each solution report table. (The list-of-lists strategy is just one approach. It might make sense to convert system-of-record data into `pandas.DataFrame` objects, and then use these `DataFrame`s to build the `PanDat` object.)\n", "\n", "We demonstrate this approach without explicit references to `cx_Oracle`. By demonstrating that `ticdat` is compatible with list-of-list/`DataFrame` table representations we thus show that `ticdat` is compatible with any data source that can be connected to Python, and also with human readable static data." ] }, { "cell_type": "code", "execution_count": 1, "metadata": {}, "outputs": [], "source": [ "commodities = [['Pencils', 0.5], ['Pens', 0.2125]]\n", "\n", "# a one column table can just be a simple list \n", "nodes = ['Boston', 'Denver', 'Detroit', 'New York', 'Seattle']\n", "\n", "cost = [['Pencils', 'Denver', 'Boston', 10.0],\n", " ['Pencils', 'Denver', 'New York', 10.0],\n", " ['Pencils', 'Denver', 'Seattle', 7.5],\n", " ['Pencils', 'Detroit', 'Boston', 2.5],\n", " ['Pencils', 'Detroit', 'New York', 5.0],\n", " ['Pencils', 'Detroit', 'Seattle', 15.0],\n", " ['Pens', 'Denver', 'Boston', 15.0],\n", " ['Pens', 'Denver', 'New York', 17.5],\n", " ['Pens', 'Denver', 'Seattle', 7.5],\n", " ['Pens', 'Detroit', 'Boston', 5.0],\n", " ['Pens', 'Detroit', 'New York', 5.0],\n", " ['Pens', 'Detroit', 'Seattle', 20.0]]\n", "\n", "inflow = [['Pencils', 'Boston', -200],\n", " ['Pencils', 'Denver', 240],\n", " ['Pencils', 'Detroit', 200],\n", " ['Pencils', 'New York', -200],\n", " ['Pencils', 'Seattle', -40],\n", " ['Pens', 'Boston', -160],\n", " ['Pens', 'Denver', 160],\n", " ['Pens', 'Detroit', 240],\n", " ['Pens', 'New York', -120],\n", " ['Pens', 'Seattle', -120]]" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "An integration engineer might prefer to copy system-of-records data into `pandas.DataFrame` objects. Note that `pandas` is itself [capable](https://stackoverflow.com/questions/35781580/cx-oracle-import-data-from-oracle-to-pandas-dataframe) of reading directly from various SQL databases, although it usually needs a supporting package like `cx_Oracle`." ] }, { "cell_type": "code", "execution_count": 2, "metadata": {}, "outputs": [ { "data": { "text/html": [ "<div>\n", "<style scoped>\n", " .dataframe tbody tr th:only-of-type {\n", " vertical-align: middle;\n", " }\n", "\n", " .dataframe tbody tr th {\n", " vertical-align: top;\n", " }\n", "\n", " .dataframe thead th {\n", " text-align: right;\n", " }\n", "</style>\n", "<table border=\"1\" class=\"dataframe\">\n", " <thead>\n", " <tr style=\"text-align: right;\">\n", " <th></th>\n", " <th>Destination</th>\n", " <th>Source</th>\n", " <th>Capacity</th>\n", " </tr>\n", " </thead>\n", " <tbody>\n", " <tr>\n", " <th>0</th>\n", " <td>Boston</td>\n", " <td>Denver</td>\n", " <td>120</td>\n", " </tr>\n", " <tr>\n", " <th>1</th>\n", " <td>New York</td>\n", " <td>Denver</td>\n", " <td>120</td>\n", " </tr>\n", " <tr>\n", " <th>2</th>\n", " <td>Seattle</td>\n", " <td>Denver</td>\n", " <td>120</td>\n", " </tr>\n", " <tr>\n", " <th>3</th>\n", " <td>Boston</td>\n", " <td>Detroit</td>\n", " <td>100</td>\n", " </tr>\n", " <tr>\n", " <th>4</th>\n", " <td>New York</td>\n", " <td>Detroit</td>\n", " <td>80</td>\n", " </tr>\n", " <tr>\n", " <th>5</th>\n", " <td>Seattle</td>\n", " <td>Detroit</td>\n", " <td>120</td>\n", " </tr>\n", " </tbody>\n", "</table>\n", "</div>" ], "text/plain": [ " Destination Source Capacity\n", "0 Boston Denver 120\n", "1 New York Denver 120\n", "2 Seattle Denver 120\n", "3 Boston Detroit 100\n", "4 New York Detroit 80\n", "5 Seattle Detroit 120" ] }, "execution_count": 2, "metadata": {}, "output_type": "execute_result" } ], "source": [ "from pandas import DataFrame\n", "arcs = DataFrame({\"Source\": [\"Denver\", \"Denver\", \"Denver\", \"Detroit\", \"Detroit\", \"Detroit\",], \n", " \"Destination\": [\"Boston\", \"New York\", \"Seattle\", \"Boston\", \"New York\", \n", " \"Seattle\"], \n", " \"Capacity\": [120, 120, 120, 100, 80, 120]})\n", "# PanDatFactory doesn't require the fields to be in order so long as the field names are supplied\n", "arcs = arcs[[\"Destination\", \"Source\", \"Capacity\"]]\n", "arcs" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "Next we create a `PanDat` input data object from the list-of-lists/`DataFrame` representations." ] }, { "cell_type": "code", "execution_count": 3, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "env: PATH=PATH:/Users/petercacioppi/ampl/ampl\n" ] } ], "source": [ "%env PATH = PATH:/Users/petercacioppi/ampl/ampl\n", "from netflow import input_schema, solve, solution_schema\n", "dat = input_schema.PanDat(commodities=commodities, nodes=nodes, cost=cost, arcs=arcs, \n", " inflow=inflow)" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "We now create a `PanDat` solution data object by calling `solve`." ] }, { "cell_type": "code", "execution_count": 4, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "Gurobi 8.0.0: optimal solution; objective 5627.5\n", "3 simplex iterations\n" ] } ], "source": [ "sln = solve(dat)" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "We now create a list-of-lists representation of the solution data object." ] }, { "cell_type": "code", "execution_count": 5, "metadata": {}, "outputs": [], "source": [ "sln_lists = {t: list(map(list, getattr(sln, t).itertuples(index=False))) \n", " for t in solution_schema.all_tables}" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "Here we demonstrate that `sln_lists` is a dictionary mapping table name to list-of-lists of solution report data." ] }, { "cell_type": "code", "execution_count": 6, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "\n", "\n", "**\n", "Solution Table flow\n", "**\n", "[['Pencils', 'Denver', 'Boston', 51.0],\n", " ['Pencils', 'Denver', 'New York', 149.0],\n", " ['Pencils', 'Denver', 'Seattle', 40.0],\n", " ['Pencils', 'Detroit', 'Boston', 149.0],\n", " ['Pencils', 'Detroit', 'New York', 51.0],\n", " ['Pens', 'Denver', 'Boston', 40.0],\n", " ['Pens', 'Denver', 'Seattle', 120.0],\n", " ['Pens', 'Detroit', 'Boston', 120.0],\n", " ['Pens', 'Detroit', 'New York', 120.0]]\n", "\n", "\n", "**\n", "Solution Table parameters\n", "**\n", "[['Total Cost', 5627.5]]\n" ] } ], "source": [ "import pprint\n", "for sln_table_name, sln_table_data in sln_lists.items():\n", " print \"\\n\\n**\\nSolution Table %s\\n**\"%sln_table_name\n", " pprint.pprint(sln_table_data)" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "Of course the solution data object itself contains `DataFrames`, if that representation is preferred." ] }, { "cell_type": "code", "execution_count": 7, "metadata": {}, "outputs": [ { "data": { "text/html": [ "<div>\n", "<style scoped>\n", " .dataframe tbody tr th:only-of-type {\n", " vertical-align: middle;\n", " }\n", "\n", " .dataframe tbody tr th {\n", " vertical-align: top;\n", " }\n", "\n", " .dataframe thead th {\n", " text-align: right;\n", " }\n", "</style>\n", "<table border=\"1\" class=\"dataframe\">\n", " <thead>\n", " <tr style=\"text-align: right;\">\n", " <th></th>\n", " <th>Commodity</th>\n", " <th>Source</th>\n", " <th>Destination</th>\n", " <th>Quantity</th>\n", " </tr>\n", " </thead>\n", " <tbody>\n", " <tr>\n", " <th>0</th>\n", " <td>Pencils</td>\n", " <td>Denver</td>\n", " <td>Boston</td>\n", " <td>51.0</td>\n", " </tr>\n", " <tr>\n", " <th>1</th>\n", " <td>Pencils</td>\n", " <td>Denver</td>\n", " <td>New York</td>\n", " <td>149.0</td>\n", " </tr>\n", " <tr>\n", " <th>2</th>\n", " <td>Pencils</td>\n", " <td>Denver</td>\n", " <td>Seattle</td>\n", " <td>40.0</td>\n", " </tr>\n", " <tr>\n", " <th>3</th>\n", " <td>Pencils</td>\n", " <td>Detroit</td>\n", " <td>Boston</td>\n", " <td>149.0</td>\n", " </tr>\n", " <tr>\n", " <th>4</th>\n", " <td>Pencils</td>\n", " <td>Detroit</td>\n", " <td>New York</td>\n", " <td>51.0</td>\n", " </tr>\n", " <tr>\n", " <th>5</th>\n", " <td>Pens</td>\n", " <td>Denver</td>\n", " <td>Boston</td>\n", " <td>40.0</td>\n", " </tr>\n", " <tr>\n", " <th>6</th>\n", " <td>Pens</td>\n", " <td>Denver</td>\n", " <td>Seattle</td>\n", " <td>120.0</td>\n", " </tr>\n", " <tr>\n", " <th>7</th>\n", " <td>Pens</td>\n", " <td>Detroit</td>\n", " <td>Boston</td>\n", " <td>120.0</td>\n", " </tr>\n", " <tr>\n", " <th>8</th>\n", " <td>Pens</td>\n", " <td>Detroit</td>\n", " <td>New York</td>\n", " <td>120.0</td>\n", " </tr>\n", " </tbody>\n", "</table>\n", "</div>" ], "text/plain": [ " Commodity Source Destination Quantity\n", "0 Pencils Denver Boston 51.0\n", "1 Pencils Denver New York 149.0\n", "2 Pencils Denver Seattle 40.0\n", "3 Pencils Detroit Boston 149.0\n", "4 Pencils Detroit New York 51.0\n", "5 Pens Denver Boston 40.0\n", "6 Pens Denver Seattle 120.0\n", "7 Pens Detroit Boston 120.0\n", "8 Pens Detroit New York 120.0" ] }, "execution_count": 7, "metadata": {}, "output_type": "execute_result" } ], "source": [ "sln.flow" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Using ticdat to build robust engines\n", "\n", "The preceding section demonstrated how we can use `ticdat` to build modular engines. We now demonstrate how we can use `ticdat` to build engines that check `solve` pre-conditions, and are thus robust with respect to data integrity problems.\n", "\n", "First, lets violate our (somewhat artificial) rule that the commodity volume must be positive." ] }, { "cell_type": "code", "execution_count": 8, "metadata": {}, "outputs": [ { "data": { "text/html": [ "<div>\n", "<style scoped>\n", " .dataframe tbody tr th:only-of-type {\n", " vertical-align: middle;\n", " }\n", "\n", " .dataframe tbody tr th {\n", " vertical-align: top;\n", " }\n", "\n", " .dataframe thead th {\n", " text-align: right;\n", " }\n", "</style>\n", "<table border=\"1\" class=\"dataframe\">\n", " <thead>\n", " <tr style=\"text-align: right;\">\n", " <th></th>\n", " <th>Name</th>\n", " <th>Volume</th>\n", " </tr>\n", " </thead>\n", " <tbody>\n", " <tr>\n", " <th>0</th>\n", " <td>Pencils</td>\n", " <td>0.0000</td>\n", " </tr>\n", " <tr>\n", " <th>1</th>\n", " <td>Pens</td>\n", " <td>0.2125</td>\n", " </tr>\n", " </tbody>\n", "</table>\n", "</div>" ], "text/plain": [ " Name Volume\n", "0 Pencils 0.0000\n", "1 Pens 0.2125" ] }, "execution_count": 8, "metadata": {}, "output_type": "execute_result" } ], "source": [ "dat.commodities.loc[dat.commodities[\"Name\"] == \"Pencils\", \"Volume\"] = 0\n", "dat.commodities" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "The `input_schema` can not only flag this problem, but give us a useful data structure to examine." ] }, { "cell_type": "code", "execution_count": 9, "metadata": {}, "outputs": [ { "data": { "text/plain": [ "{TableField(table='commodities', field='Volume'): Name Volume\n", " 0 Pencils 0.0}" ] }, "execution_count": 9, "metadata": {}, "output_type": "execute_result" } ], "source": [ "data_type_failures = input_schema.find_data_type_failures(dat)\n", "data_type_failures" ] }, { "cell_type": "code", "execution_count": 10, "metadata": {}, "outputs": [ { "data": { "text/html": [ "<div>\n", "<style scoped>\n", " .dataframe tbody tr th:only-of-type {\n", " vertical-align: middle;\n", " }\n", "\n", " .dataframe tbody tr th {\n", " vertical-align: top;\n", " }\n", "\n", " .dataframe thead th {\n", " text-align: right;\n", " }\n", "</style>\n", "<table border=\"1\" class=\"dataframe\">\n", " <thead>\n", " <tr style=\"text-align: right;\">\n", " <th></th>\n", " <th>Name</th>\n", " <th>Volume</th>\n", " </tr>\n", " </thead>\n", " <tbody>\n", " <tr>\n", " <th>0</th>\n", " <td>Pencils</td>\n", " <td>0.0</td>\n", " </tr>\n", " </tbody>\n", "</table>\n", "</div>" ], "text/plain": [ " Name Volume\n", "0 Pencils 0.0" ] }, "execution_count": 10, "metadata": {}, "output_type": "execute_result" } ], "source": [ "data_type_failures['commodities', 'Volume']" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "Next, lets add a Cost record for a non-existent commodity and see how `input_schema` flags this problem." ] }, { "cell_type": "code", "execution_count": 11, "metadata": {}, "outputs": [ { "data": { "text/plain": [ "{('cost',\n", " 'commodities',\n", " ('Commodity', 'Name')): Commodity Source Destination Cost\n", " 12 Crayons Detroit Seattle 10.0}" ] }, "execution_count": 11, "metadata": {}, "output_type": "execute_result" } ], "source": [ "dat.cost = dat.cost.append({'Commodity':'Crayons', 'Source': 'Detroit', \n", " 'Destination': 'Seattle', 'Cost': 10}, \n", " ignore_index=True)\n", "fk_failures = input_schema.find_foreign_key_failures(dat, verbosity=\"Low\")\n", "fk_failures" ] }, { "cell_type": "code", "execution_count": 12, "metadata": {}, "outputs": [ { "data": { "text/html": [ "<div>\n", "<style scoped>\n", " .dataframe tbody tr th:only-of-type {\n", " vertical-align: middle;\n", " }\n", "\n", " .dataframe tbody tr th {\n", " vertical-align: top;\n", " }\n", "\n", " .dataframe thead th {\n", " text-align: right;\n", " }\n", "</style>\n", "<table border=\"1\" class=\"dataframe\">\n", " <thead>\n", " <tr style=\"text-align: right;\">\n", " <th></th>\n", " <th>Commodity</th>\n", " <th>Source</th>\n", " <th>Destination</th>\n", " <th>Cost</th>\n", " </tr>\n", " </thead>\n", " <tbody>\n", " <tr>\n", " <th>12</th>\n", " <td>Crayons</td>\n", " <td>Detroit</td>\n", " <td>Seattle</td>\n", " <td>10.0</td>\n", " </tr>\n", " </tbody>\n", "</table>\n", "</div>" ], "text/plain": [ " Commodity Source Destination Cost\n", "12 Crayons Detroit Seattle 10.0" ] }, "execution_count": 12, "metadata": {}, "output_type": "execute_result" } ], "source": [ "fk_failures['cost', 'commodities', ('Commodity', 'Name')]" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "In real life, data integrity failures can typically be grouped into a small number of categories. However, the number of failures in each category might be quite large. `ticdat` creates data structures for each of these categories that can themselves be examined programmatically. As a result, an analyst can leverage the power of Python and `pandas` to detect patterns in the data integrity problems." ] } ], "metadata": { "kernelspec": { "display_name": "Python 2", "language": "python", "name": "python2" }, "language_info": { "codemirror_mode": { "name": "ipython", "version": 2 }, "file_extension": ".py", "mimetype": "text/x-python", "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython2", "version": "2.7.11" } }, "nbformat": 4, "nbformat_minor": 1 }
bsd-2-clause
keras-team/keras-io
examples/generative/ipynb/vae.ipynb
1
9879
{ "cells": [ { "cell_type": "markdown", "metadata": { "colab_type": "text" }, "source": [ "# Variational AutoEncoder\n", "\n", "**Author:** [fchollet](https://twitter.com/fchollet)<br>\n", "**Date created:** 2020/05/03<br>\n", "**Last modified:** 2020/05/03<br>\n", "**Description:** Convolutional Variational AutoEncoder (VAE) trained on MNIST digits." ] }, { "cell_type": "markdown", "metadata": { "colab_type": "text" }, "source": [ "## Setup" ] }, { "cell_type": "code", "execution_count": 0, "metadata": { "colab_type": "code" }, "outputs": [], "source": [ "import numpy as np\n", "import tensorflow as tf\n", "from tensorflow import keras\n", "from tensorflow.keras import layers" ] }, { "cell_type": "markdown", "metadata": { "colab_type": "text" }, "source": [ "## Create a sampling layer" ] }, { "cell_type": "code", "execution_count": 0, "metadata": { "colab_type": "code" }, "outputs": [], "source": [ "\n", "class Sampling(layers.Layer):\n", " \"\"\"Uses (z_mean, z_log_var) to sample z, the vector encoding a digit.\"\"\"\n", "\n", " def call(self, inputs):\n", " z_mean, z_log_var = inputs\n", " batch = tf.shape(z_mean)[0]\n", " dim = tf.shape(z_mean)[1]\n", " epsilon = tf.keras.backend.random_normal(shape=(batch, dim))\n", " return z_mean + tf.exp(0.5 * z_log_var) * epsilon\n", "" ] }, { "cell_type": "markdown", "metadata": { "colab_type": "text" }, "source": [ "## Build the encoder" ] }, { "cell_type": "code", "execution_count": 0, "metadata": { "colab_type": "code" }, "outputs": [], "source": [ "latent_dim = 2\n", "\n", "encoder_inputs = keras.Input(shape=(28, 28, 1))\n", "x = layers.Conv2D(32, 3, activation=\"relu\", strides=2, padding=\"same\")(encoder_inputs)\n", "x = layers.Conv2D(64, 3, activation=\"relu\", strides=2, padding=\"same\")(x)\n", "x = layers.Flatten()(x)\n", "x = layers.Dense(16, activation=\"relu\")(x)\n", "z_mean = layers.Dense(latent_dim, name=\"z_mean\")(x)\n", "z_log_var = layers.Dense(latent_dim, name=\"z_log_var\")(x)\n", "z = Sampling()([z_mean, z_log_var])\n", "encoder = keras.Model(encoder_inputs, [z_mean, z_log_var, z], name=\"encoder\")\n", "encoder.summary()" ] }, { "cell_type": "markdown", "metadata": { "colab_type": "text" }, "source": [ "## Build the decoder" ] }, { "cell_type": "code", "execution_count": 0, "metadata": { "colab_type": "code" }, "outputs": [], "source": [ "latent_inputs = keras.Input(shape=(latent_dim,))\n", "x = layers.Dense(7 * 7 * 64, activation=\"relu\")(latent_inputs)\n", "x = layers.Reshape((7, 7, 64))(x)\n", "x = layers.Conv2DTranspose(64, 3, activation=\"relu\", strides=2, padding=\"same\")(x)\n", "x = layers.Conv2DTranspose(32, 3, activation=\"relu\", strides=2, padding=\"same\")(x)\n", "decoder_outputs = layers.Conv2DTranspose(1, 3, activation=\"sigmoid\", padding=\"same\")(x)\n", "decoder = keras.Model(latent_inputs, decoder_outputs, name=\"decoder\")\n", "decoder.summary()" ] }, { "cell_type": "markdown", "metadata": { "colab_type": "text" }, "source": [ "## Define the VAE as a `Model` with a custom `train_step`" ] }, { "cell_type": "code", "execution_count": 0, "metadata": { "colab_type": "code" }, "outputs": [], "source": [ "\n", "class VAE(keras.Model):\n", " def __init__(self, encoder, decoder, **kwargs):\n", " super(VAE, self).__init__(**kwargs)\n", " self.encoder = encoder\n", " self.decoder = decoder\n", " self.total_loss_tracker = keras.metrics.Mean(name=\"total_loss\")\n", " self.reconstruction_loss_tracker = keras.metrics.Mean(\n", " name=\"reconstruction_loss\"\n", " )\n", " self.kl_loss_tracker = keras.metrics.Mean(name=\"kl_loss\")\n", "\n", " @property\n", " def metrics(self):\n", " return [\n", " self.total_loss_tracker,\n", " self.reconstruction_loss_tracker,\n", " self.kl_loss_tracker,\n", " ]\n", "\n", " def train_step(self, data):\n", " with tf.GradientTape() as tape:\n", " z_mean, z_log_var, z = self.encoder(data)\n", " reconstruction = self.decoder(z)\n", " reconstruction_loss = tf.reduce_mean(\n", " tf.reduce_sum(\n", " keras.losses.binary_crossentropy(data, reconstruction), axis=(1, 2)\n", " )\n", " )\n", " kl_loss = -0.5 * (1 + z_log_var - tf.square(z_mean) - tf.exp(z_log_var))\n", " kl_loss = tf.reduce_mean(tf.reduce_sum(kl_loss, axis=1))\n", " total_loss = reconstruction_loss + kl_loss\n", " grads = tape.gradient(total_loss, self.trainable_weights)\n", " self.optimizer.apply_gradients(zip(grads, self.trainable_weights))\n", " self.total_loss_tracker.update_state(total_loss)\n", " self.reconstruction_loss_tracker.update_state(reconstruction_loss)\n", " self.kl_loss_tracker.update_state(kl_loss)\n", " return {\n", " \"loss\": self.total_loss_tracker.result(),\n", " \"reconstruction_loss\": self.reconstruction_loss_tracker.result(),\n", " \"kl_loss\": self.kl_loss_tracker.result(),\n", " }\n", "" ] }, { "cell_type": "markdown", "metadata": { "colab_type": "text" }, "source": [ "## Train the VAE" ] }, { "cell_type": "code", "execution_count": 0, "metadata": { "colab_type": "code" }, "outputs": [], "source": [ "(x_train, _), (x_test, _) = keras.datasets.mnist.load_data()\n", "mnist_digits = np.concatenate([x_train, x_test], axis=0)\n", "mnist_digits = np.expand_dims(mnist_digits, -1).astype(\"float32\") / 255\n", "\n", "vae = VAE(encoder, decoder)\n", "vae.compile(optimizer=keras.optimizers.Adam())\n", "vae.fit(mnist_digits, epochs=30, batch_size=128)" ] }, { "cell_type": "markdown", "metadata": { "colab_type": "text" }, "source": [ "## Display a grid of sampled digits" ] }, { "cell_type": "code", "execution_count": 0, "metadata": { "colab_type": "code" }, "outputs": [], "source": [ "import matplotlib.pyplot as plt\n", "\n", "\n", "def plot_latent_space(vae, n=30, figsize=15):\n", " # display a n*n 2D manifold of digits\n", " digit_size = 28\n", " scale = 1.0\n", " figure = np.zeros((digit_size * n, digit_size * n))\n", " # linearly spaced coordinates corresponding to the 2D plot\n", " # of digit classes in the latent space\n", " grid_x = np.linspace(-scale, scale, n)\n", " grid_y = np.linspace(-scale, scale, n)[::-1]\n", "\n", " for i, yi in enumerate(grid_y):\n", " for j, xi in enumerate(grid_x):\n", " z_sample = np.array([[xi, yi]])\n", " x_decoded = vae.decoder.predict(z_sample)\n", " digit = x_decoded[0].reshape(digit_size, digit_size)\n", " figure[\n", " i * digit_size : (i + 1) * digit_size,\n", " j * digit_size : (j + 1) * digit_size,\n", " ] = digit\n", "\n", " plt.figure(figsize=(figsize, figsize))\n", " start_range = digit_size // 2\n", " end_range = n * digit_size + start_range\n", " pixel_range = np.arange(start_range, end_range, digit_size)\n", " sample_range_x = np.round(grid_x, 1)\n", " sample_range_y = np.round(grid_y, 1)\n", " plt.xticks(pixel_range, sample_range_x)\n", " plt.yticks(pixel_range, sample_range_y)\n", " plt.xlabel(\"z[0]\")\n", " plt.ylabel(\"z[1]\")\n", " plt.imshow(figure, cmap=\"Greys_r\")\n", " plt.show()\n", "\n", "\n", "plot_latent_space(vae)" ] }, { "cell_type": "markdown", "metadata": { "colab_type": "text" }, "source": [ "## Display how the latent space clusters different digit classes" ] }, { "cell_type": "code", "execution_count": 0, "metadata": { "colab_type": "code" }, "outputs": [], "source": [ "\n", "def plot_label_clusters(vae, data, labels):\n", " # display a 2D plot of the digit classes in the latent space\n", " z_mean, _, _ = vae.encoder.predict(data)\n", " plt.figure(figsize=(12, 10))\n", " plt.scatter(z_mean[:, 0], z_mean[:, 1], c=labels)\n", " plt.colorbar()\n", " plt.xlabel(\"z[0]\")\n", " plt.ylabel(\"z[1]\")\n", " plt.show()\n", "\n", "\n", "(x_train, y_train), _ = keras.datasets.mnist.load_data()\n", "x_train = np.expand_dims(x_train, -1).astype(\"float32\") / 255\n", "\n", "plot_label_clusters(vae, x_train, y_train)" ] } ], "metadata": { "colab": { "collapsed_sections": [], "name": "vae", "private_outputs": false, "provenance": [], "toc_visible": true }, "kernelspec": { "display_name": "Python 3", "language": "python", "name": "python3" }, "language_info": { "codemirror_mode": { "name": "ipython", "version": 3 }, "file_extension": ".py", "mimetype": "text/x-python", "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", "version": "3.7.0" } }, "nbformat": 4, "nbformat_minor": 0 }
apache-2.0
MathiasRiechert/BigDataPapers
1-number of papers over time/Creating overview bar-plots.ipynb
2
38677
{ "cells": [ { "cell_type": "markdown", "metadata": {}, "source": [ "# Number of papers over time" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## data source\n", "We load the data from the Competence Centre for Bibliometrics: http://www.bibliometrie.info/.\n", "They licence access to the Web of Science and Scopus bibliometric databases, spanning a high proportion of all peer-reviewed research literature. The Competence Centre for Bibliometrics further processes both databases' data, so that it can be queried with SQL." ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## load libraries:" ] }, { "cell_type": "code", "execution_count": 1, "metadata": { "collapsed": true }, "outputs": [], "source": [ "import cx_Oracle #ensure that OS, InstantClient (Basic, ODBC, SDK) and cx_Oracle are all 64 bit. Install with \"pip install cx_Oracle\". Add link to InstantClient in Path variable!\n", "import pandas as pd\n", "import re\n", "import plotly.plotly as py\n", "import plotly.graph_objs as go" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## set parameter" ] }, { "cell_type": "code", "execution_count": 2, "metadata": { "collapsed": true }, "outputs": [], "source": [ "#parameter:\n", "searchterm=\"big data\" #lowecase!\n", "colorlist=[\"#01be70\",\"#586bd0\",\"#c0aa12\",\"#0183e6\",\"#f69234\",\"#0095e9\",\"#bd8600\",\"#007bbe\",\"#bb7300\",\"#63bcfc\",\"#a84a00\",\"#01bedb\",\"#82170e\",\"#00c586\",\"#a22f1f\",\"#3fbe57\",\"#3e4681\",\"#9bc246\",\"#9a9eec\",\"#778f00\",\"#00aad9\",\"#fc9e5e\",\"#01aec1\",\"#832c1e\",\"#55c99a\",\"#dd715b\",\"#017c1c\",\"#ff9b74\",\"#009556\",\"#83392a\",\"#00b39b\",\"#8e5500\",\"#50a7c6\",\"#f4a268\",\"#02aca7\",\"#532b00\",\"#67c4bd\",\"#5e5500\",\"#f0a18f\",\"#007229\",\"#d2b073\",\"#005d3f\",\"#a5be6b\",\"#2a4100\",\"#8cb88c\",\"#2f5c00\",\"#007463\",\"#5b7200\",\"#787c48\",\"#3b7600\"]" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## load data from SQL database:" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "collapsed": true }, "outputs": [], "source": [ "dsn_tns=cx_Oracle.makedsn('127.0.0.1','6025',service_name='bibliodb01.fiz.karlsruhe') #due to licence requirements,\n", "# access is only allowed for members of the competence center of bibliometric and cooperation partners. You can still \n", "# continue with the resulting csv below.\n", " #open connection:\n", "db=cx_Oracle.connect(<username>, <password>, dsn_tns)\n", "print(db.version)" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "collapsed": true }, "outputs": [], "source": [ "#%% define sql-query function:\n", "def read_query(connection, query):\n", " cursor = connection.cursor()\n", " try:\n", " cursor.execute( query )\n", " names = [ x[0] for x in cursor.description]\n", " rows = cursor.fetchall()\n", " return pd.DataFrame( rows, columns=names)\n", " finally:\n", " if cursor is not None:\n", " cursor.close()" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "collapsed": true }, "outputs": [], "source": [ "#%% load paper titles from WOSdb:\n", "database=\"wos_B_2016\" \n", " \n", "command=\"\"\"SELECT DISTINCT(ARTICLE_TITLE), PUBYEAR \n", " FROM \"\"\"+database+\"\"\".KEYWORDS, \"\"\"+database+\"\"\".ITEMS_KEYWORDS, \"\"\"+database+\"\"\".ITEMS \n", " WHERE\n", " \"\"\"+database+\"\"\".ITEMS_KEYWORDS.FK_KEYWORDS=\"\"\"+database+\"\"\".KEYWORDS.PK_KEYWORDS\n", " AND \"\"\"+database+\"\"\".ITEMS.PK_ITEMS=\"\"\"+database+\"\"\".ITEMS_KEYWORDS.FK_ITEMS \n", " AND (lower(\"\"\"+database+\"\"\".KEYWORDS.KEYWORD) LIKE '%\"\"\"+searchterm+\"\"\"%' OR lower(ARTICLE_TITLE) LIKE '%\"\"\"+searchterm+\"\"\"%')\n", "\"\"\"\n", "\n", "dfWOS=read_query(db,command)\n", "dfWOS['wos']=True #to make the source identifyable\n", "dfWOS.to_csv(\"all_big_data_titles_year_wos.csv\", sep=';')\n", "\n", "\n", "#%% load paper titles from SCOPUSdb:\n", "database=\"SCOPUS_B_2016\" \n", " \n", "command=\"\"\"SELECT DISTINCT(ARTICLE_TITLE), PUBYEAR \n", " FROM \"\"\"+database+\"\"\".KEYWORDS, \"\"\"+database+\"\"\".ITEMS_KEYWORDS, \"\"\"+database+\"\"\".ITEMS \n", " WHERE\n", " \"\"\"+database+\"\"\".ITEMS_KEYWORDS.FK_KEYWORDS=\"\"\"+database+\"\"\".KEYWORDS.PK_KEYWORDS\n", " AND \"\"\"+database+\"\"\".ITEMS.PK_ITEMS=\"\"\"+database+\"\"\".ITEMS_KEYWORDS.FK_ITEMS \n", " AND (lower(\"\"\"+database+\"\"\".KEYWORDS.KEYWORD) LIKE '%\"\"\"+searchterm+\"\"\"%' OR lower(ARTICLE_TITLE) LIKE '%\"\"\"+searchterm+\"\"\"%')\n", "\"\"\"\n", "\n", "dfSCOPUS=read_query(db,command)\n", "dfSCOPUS['scopus']=True #to make the source identifyable\n", "dfSCOPUS.to_csv(\"all_big_data_titles_year_scopus.csv\", sep=';')\n", "\n", "#this takes some time, we will work with the exported CSV from here on" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## merging data" ] }, { "cell_type": "code", "execution_count": 14, "metadata": { "collapsed": false }, "outputs": [ { "data": { "text/html": [ "<div>\n", "<table border=\"1\" class=\"dataframe\">\n", " <thead>\n", " <tr style=\"text-align: right;\">\n", " <th></th>\n", " <th>ARTICLE_TITLE</th>\n", " <th>PUBYEAR_y</th>\n", " <th>wos</th>\n", " <th>scopus</th>\n", " </tr>\n", " </thead>\n", " <tbody>\n", " <tr>\n", " <th>0</th>\n", " <td>Big Data with Cloud Computing: an insight on t...</td>\n", " <td>2014.0</td>\n", " <td>True</td>\n", " <td>NaN</td>\n", " </tr>\n", " <tr>\n", " <th>1</th>\n", " <td>Understanding Democracy and Development Traps ...</td>\n", " <td>2015.0</td>\n", " <td>True</td>\n", " <td>NaN</td>\n", " </tr>\n", " <tr>\n", " <th>2</th>\n", " <td>Psycho-Informatics: Big Data shaping modern ps...</td>\n", " <td>2014.0</td>\n", " <td>True</td>\n", " <td>NaN</td>\n", " </tr>\n", " <tr>\n", " <th>3</th>\n", " <td>Keywords co-occurrence mapping knowledge domai...</td>\n", " <td>2015.0</td>\n", " <td>True</td>\n", " <td>NaN</td>\n", " </tr>\n", " <tr>\n", " <th>4</th>\n", " <td>Introducing TPCx-HS: The First Industry Standa...</td>\n", " <td>2015.0</td>\n", " <td>True</td>\n", " <td>NaN</td>\n", " </tr>\n", " <tr>\n", " <th>5</th>\n", " <td>Application and Exploration of Big Data Mining...</td>\n", " <td>2016.0</td>\n", " <td>True</td>\n", " <td>NaN</td>\n", " </tr>\n", " <tr>\n", " <th>6</th>\n", " <td>Performance Evaluation of a Natural Language P...</td>\n", " <td>2014.0</td>\n", " <td>True</td>\n", " <td>NaN</td>\n", " </tr>\n", " <tr>\n", " <th>7</th>\n", " <td>Context-aware Task Allocation for Fast Paralle...</td>\n", " <td>2014.0</td>\n", " <td>True</td>\n", " <td>NaN</td>\n", " </tr>\n", " <tr>\n", " <th>8</th>\n", " <td>Improving China's Corporate Governance Within ...</td>\n", " <td>2015.0</td>\n", " <td>True</td>\n", " <td>NaN</td>\n", " </tr>\n", " <tr>\n", " <th>9</th>\n", " <td>Big Data and Predictive Analytics in ERP Syste...</td>\n", " <td>2014.0</td>\n", " <td>True</td>\n", " <td>NaN</td>\n", " </tr>\n", " <tr>\n", " <th>10</th>\n", " <td>Re-Stream: Real-time and energy-efficient reso...</td>\n", " <td>2015.0</td>\n", " <td>True</td>\n", " <td>True</td>\n", " </tr>\n", " <tr>\n", " <th>11</th>\n", " <td>BIG DATA IN SURVEY RESEARCH</td>\n", " <td>2015.0</td>\n", " <td>True</td>\n", " <td>NaN</td>\n", " </tr>\n", " <tr>\n", " <th>12</th>\n", " <td>Models and Data Sources Used in Systems Medici...</td>\n", " <td>2016.0</td>\n", " <td>True</td>\n", " <td>NaN</td>\n", " </tr>\n", " <tr>\n", " <th>13</th>\n", " <td>Big data and precision</td>\n", " <td>2015.0</td>\n", " <td>True</td>\n", " <td>True</td>\n", " </tr>\n", " <tr>\n", " <th>14</th>\n", " <td>IoT-Security approach analysis for the novel n...</td>\n", " <td>2014.0</td>\n", " <td>True</td>\n", " <td>NaN</td>\n", " </tr>\n", " <tr>\n", " <th>15</th>\n", " <td>A meeting report from the 2013 GARNet workshop...</td>\n", " <td>2015.0</td>\n", " <td>True</td>\n", " <td>NaN</td>\n", " </tr>\n", " <tr>\n", " <th>16</th>\n", " <td>Learning methodologies for wireless big data n...</td>\n", " <td>2016.0</td>\n", " <td>True</td>\n", " <td>True</td>\n", " </tr>\n", " <tr>\n", " <th>17</th>\n", " <td>Reducing Data Dimensions for Systems Engineeri...</td>\n", " <td>2014.0</td>\n", " <td>True</td>\n", " <td>NaN</td>\n", " </tr>\n", " <tr>\n", " <th>18</th>\n", " <td>Twitter Streams Fuel Big Data Approaches to He...</td>\n", " <td>2015.0</td>\n", " <td>True</td>\n", " <td>NaN</td>\n", " </tr>\n", " <tr>\n", " <th>19</th>\n", " <td>THE LATENT STATE HAZARD MODEL, WITH APPLICATIO...</td>\n", " <td>2015.0</td>\n", " <td>True</td>\n", " <td>NaN</td>\n", " </tr>\n", " <tr>\n", " <th>20</th>\n", " <td>Deploying and Managing a Network of Autonomous...</td>\n", " <td>2015.0</td>\n", " <td>True</td>\n", " <td>NaN</td>\n", " </tr>\n", " <tr>\n", " <th>21</th>\n", " <td>The Person-Event Data Environment: leveraging ...</td>\n", " <td>2013.0</td>\n", " <td>True</td>\n", " <td>NaN</td>\n", " </tr>\n", " <tr>\n", " <th>22</th>\n", " <td>A secure and scalable storage system for aggre...</td>\n", " <td>2015.0</td>\n", " <td>True</td>\n", " <td>True</td>\n", " </tr>\n", " <tr>\n", " <th>23</th>\n", " <td>MaRDiGraS: Simplified Building of Reachability...</td>\n", " <td>2013.0</td>\n", " <td>True</td>\n", " <td>NaN</td>\n", " </tr>\n", " <tr>\n", " <th>24</th>\n", " <td>Power System Disaster-Mitigating Dispatch Plat...</td>\n", " <td>2014.0</td>\n", " <td>True</td>\n", " <td>NaN</td>\n", " </tr>\n", " <tr>\n", " <th>25</th>\n", " <td>A k-anonymity Method based on SEM (Search Engi...</td>\n", " <td>2013.0</td>\n", " <td>True</td>\n", " <td>NaN</td>\n", " </tr>\n", " <tr>\n", " <th>26</th>\n", " <td>Philosophical Reflections on Data</td>\n", " <td>2014.0</td>\n", " <td>True</td>\n", " <td>NaN</td>\n", " </tr>\n", " <tr>\n", " <th>27</th>\n", " <td>A Risk and Benefits Behavioral Model to Assess...</td>\n", " <td>2013.0</td>\n", " <td>True</td>\n", " <td>NaN</td>\n", " </tr>\n", " <tr>\n", " <th>28</th>\n", " <td>Complications of Laryngeal Masks in Children B...</td>\n", " <td>2013.0</td>\n", " <td>True</td>\n", " <td>NaN</td>\n", " </tr>\n", " <tr>\n", " <th>29</th>\n", " <td>From social data mining to forecasting socio-e...</td>\n", " <td>2011.0</td>\n", " <td>True</td>\n", " <td>NaN</td>\n", " </tr>\n", " <tr>\n", " <th>...</th>\n", " <td>...</td>\n", " <td>...</td>\n", " <td>...</td>\n", " <td>...</td>\n", " </tr>\n", " <tr>\n", " <th>9449</th>\n", " <td>Big data analysis and data velocity</td>\n", " <td>2015.0</td>\n", " <td>NaN</td>\n", " <td>True</td>\n", " </tr>\n", " <tr>\n", " <th>9450</th>\n", " <td>I/O characteristics and implications of big da...</td>\n", " <td>2015.0</td>\n", " <td>NaN</td>\n", " <td>True</td>\n", " </tr>\n", " <tr>\n", " <th>9451</th>\n", " <td>Secure distribution of big data based on bitto...</td>\n", " <td>2013.0</td>\n", " <td>NaN</td>\n", " <td>True</td>\n", " </tr>\n", " <tr>\n", " <th>9452</th>\n", " <td>Modern aspects in development of branch applic...</td>\n", " <td>2015.0</td>\n", " <td>NaN</td>\n", " <td>True</td>\n", " </tr>\n", " <tr>\n", " <th>9453</th>\n", " <td>Multi-strategy based sina microblog data acqui...</td>\n", " <td>2014.0</td>\n", " <td>NaN</td>\n", " <td>True</td>\n", " </tr>\n", " <tr>\n", " <th>9454</th>\n", " <td>A novel Cp-Tree-based co-located classifier fo...</td>\n", " <td>2015.0</td>\n", " <td>NaN</td>\n", " <td>True</td>\n", " </tr>\n", " <tr>\n", " <th>9455</th>\n", " <td>Application of big data technology in support ...</td>\n", " <td>2015.0</td>\n", " <td>NaN</td>\n", " <td>True</td>\n", " </tr>\n", " <tr>\n", " <th>9456</th>\n", " <td>Real-time effective framework for unstructured...</td>\n", " <td>2013.0</td>\n", " <td>NaN</td>\n", " <td>True</td>\n", " </tr>\n", " <tr>\n", " <th>9457</th>\n", " <td>Big Data-Security and Privacy</td>\n", " <td>2015.0</td>\n", " <td>NaN</td>\n", " <td>True</td>\n", " </tr>\n", " <tr>\n", " <th>9458</th>\n", " <td>Research on public opinion based on Big Data</td>\n", " <td>2015.0</td>\n", " <td>NaN</td>\n", " <td>True</td>\n", " </tr>\n", " <tr>\n", " <th>9459</th>\n", " <td>Locally refined splines representation for geo...</td>\n", " <td>2015.0</td>\n", " <td>NaN</td>\n", " <td>True</td>\n", " </tr>\n", " <tr>\n", " <th>9460</th>\n", " <td>Big data study for coping with stress</td>\n", " <td>2015.0</td>\n", " <td>NaN</td>\n", " <td>True</td>\n", " </tr>\n", " <tr>\n", " <th>9461</th>\n", " <td>Digital Data Grows into Big Data</td>\n", " <td>2015.0</td>\n", " <td>NaN</td>\n", " <td>True</td>\n", " </tr>\n", " <tr>\n", " <th>9462</th>\n", " <td>SAW classification algorithm for Chinese text ...</td>\n", " <td>2015.0</td>\n", " <td>NaN</td>\n", " <td>True</td>\n", " </tr>\n", " <tr>\n", " <th>9463</th>\n", " <td>Interactive e-science cyberinfrastructure for ...</td>\n", " <td>2015.0</td>\n", " <td>NaN</td>\n", " <td>True</td>\n", " </tr>\n", " <tr>\n", " <th>9464</th>\n", " <td>Public policy considerations for data-driven i...</td>\n", " <td>2013.0</td>\n", " <td>NaN</td>\n", " <td>True</td>\n", " </tr>\n", " <tr>\n", " <th>9465</th>\n", " <td>The performance of MapReduce over the varying ...</td>\n", " <td>2013.0</td>\n", " <td>NaN</td>\n", " <td>True</td>\n", " </tr>\n", " <tr>\n", " <th>9466</th>\n", " <td>Understanding library user engagement strategi...</td>\n", " <td>2015.0</td>\n", " <td>NaN</td>\n", " <td>True</td>\n", " </tr>\n", " <tr>\n", " <th>9467</th>\n", " <td>Twitter Mining for Discovery, Prediction and C...</td>\n", " <td>2015.0</td>\n", " <td>NaN</td>\n", " <td>True</td>\n", " </tr>\n", " <tr>\n", " <th>9468</th>\n", " <td>Process optimization and monitoring along big ...</td>\n", " <td>2015.0</td>\n", " <td>NaN</td>\n", " <td>True</td>\n", " </tr>\n", " <tr>\n", " <th>9469</th>\n", " <td>RSenter: Terms mining tool from unstructured d...</td>\n", " <td>2013.0</td>\n", " <td>NaN</td>\n", " <td>True</td>\n", " </tr>\n", " <tr>\n", " <th>9470</th>\n", " <td>Resource management in cloud federation using ...</td>\n", " <td>2014.0</td>\n", " <td>NaN</td>\n", " <td>True</td>\n", " </tr>\n", " <tr>\n", " <th>9471</th>\n", " <td>Design and implementation of a dynamic educati...</td>\n", " <td>2014.0</td>\n", " <td>NaN</td>\n", " <td>True</td>\n", " </tr>\n", " <tr>\n", " <th>9472</th>\n", " <td>Big data for cyber physical systems an analysi...</td>\n", " <td>2014.0</td>\n", " <td>NaN</td>\n", " <td>True</td>\n", " </tr>\n", " <tr>\n", " <th>9473</th>\n", " <td>Designing a big data processing platform for a...</td>\n", " <td>2013.0</td>\n", " <td>NaN</td>\n", " <td>True</td>\n", " </tr>\n", " <tr>\n", " <th>9474</th>\n", " <td>Potential and Pitfalls for Big Data in Health ...</td>\n", " <td>2015.0</td>\n", " <td>NaN</td>\n", " <td>True</td>\n", " </tr>\n", " <tr>\n", " <th>9475</th>\n", " <td>GridKa school - Teaching information technolog...</td>\n", " <td>2015.0</td>\n", " <td>NaN</td>\n", " <td>True</td>\n", " </tr>\n", " <tr>\n", " <th>9476</th>\n", " <td>A survey on PCM-based big data storage and man...</td>\n", " <td>2015.0</td>\n", " <td>NaN</td>\n", " <td>True</td>\n", " </tr>\n", " <tr>\n", " <th>9477</th>\n", " <td>A distributed file system over heterogeneous s...</td>\n", " <td>2015.0</td>\n", " <td>NaN</td>\n", " <td>True</td>\n", " </tr>\n", " <tr>\n", " <th>9478</th>\n", " <td>Adaptive collaborative filtering based on scal...</td>\n", " <td>2016.0</td>\n", " <td>NaN</td>\n", " <td>True</td>\n", " </tr>\n", " </tbody>\n", "</table>\n", "<p>9479 rows × 4 columns</p>\n", "</div>" ], "text/plain": [ " ARTICLE_TITLE PUBYEAR_y wos \\\n", "0 Big Data with Cloud Computing: an insight on t... 2014.0 True \n", "1 Understanding Democracy and Development Traps ... 2015.0 True \n", "2 Psycho-Informatics: Big Data shaping modern ps... 2014.0 True \n", "3 Keywords co-occurrence mapping knowledge domai... 2015.0 True \n", "4 Introducing TPCx-HS: The First Industry Standa... 2015.0 True \n", "5 Application and Exploration of Big Data Mining... 2016.0 True \n", "6 Performance Evaluation of a Natural Language P... 2014.0 True \n", "7 Context-aware Task Allocation for Fast Paralle... 2014.0 True \n", "8 Improving China's Corporate Governance Within ... 2015.0 True \n", "9 Big Data and Predictive Analytics in ERP Syste... 2014.0 True \n", "10 Re-Stream: Real-time and energy-efficient reso... 2015.0 True \n", "11 BIG DATA IN SURVEY RESEARCH 2015.0 True \n", "12 Models and Data Sources Used in Systems Medici... 2016.0 True \n", "13 Big data and precision 2015.0 True \n", "14 IoT-Security approach analysis for the novel n... 2014.0 True \n", "15 A meeting report from the 2013 GARNet workshop... 2015.0 True \n", "16 Learning methodologies for wireless big data n... 2016.0 True \n", "17 Reducing Data Dimensions for Systems Engineeri... 2014.0 True \n", "18 Twitter Streams Fuel Big Data Approaches to He... 2015.0 True \n", "19 THE LATENT STATE HAZARD MODEL, WITH APPLICATIO... 2015.0 True \n", "20 Deploying and Managing a Network of Autonomous... 2015.0 True \n", "21 The Person-Event Data Environment: leveraging ... 2013.0 True \n", "22 A secure and scalable storage system for aggre... 2015.0 True \n", "23 MaRDiGraS: Simplified Building of Reachability... 2013.0 True \n", "24 Power System Disaster-Mitigating Dispatch Plat... 2014.0 True \n", "25 A k-anonymity Method based on SEM (Search Engi... 2013.0 True \n", "26 Philosophical Reflections on Data 2014.0 True \n", "27 A Risk and Benefits Behavioral Model to Assess... 2013.0 True \n", "28 Complications of Laryngeal Masks in Children B... 2013.0 True \n", "29 From social data mining to forecasting socio-e... 2011.0 True \n", "... ... ... ... \n", "9449 Big data analysis and data velocity 2015.0 NaN \n", "9450 I/O characteristics and implications of big da... 2015.0 NaN \n", "9451 Secure distribution of big data based on bitto... 2013.0 NaN \n", "9452 Modern aspects in development of branch applic... 2015.0 NaN \n", "9453 Multi-strategy based sina microblog data acqui... 2014.0 NaN \n", "9454 A novel Cp-Tree-based co-located classifier fo... 2015.0 NaN \n", "9455 Application of big data technology in support ... 2015.0 NaN \n", "9456 Real-time effective framework for unstructured... 2013.0 NaN \n", "9457 Big Data-Security and Privacy 2015.0 NaN \n", "9458 Research on public opinion based on Big Data 2015.0 NaN \n", "9459 Locally refined splines representation for geo... 2015.0 NaN \n", "9460 Big data study for coping with stress 2015.0 NaN \n", "9461 Digital Data Grows into Big Data 2015.0 NaN \n", "9462 SAW classification algorithm for Chinese text ... 2015.0 NaN \n", "9463 Interactive e-science cyberinfrastructure for ... 2015.0 NaN \n", "9464 Public policy considerations for data-driven i... 2013.0 NaN \n", "9465 The performance of MapReduce over the varying ... 2013.0 NaN \n", "9466 Understanding library user engagement strategi... 2015.0 NaN \n", "9467 Twitter Mining for Discovery, Prediction and C... 2015.0 NaN \n", "9468 Process optimization and monitoring along big ... 2015.0 NaN \n", "9469 RSenter: Terms mining tool from unstructured d... 2013.0 NaN \n", "9470 Resource management in cloud federation using ... 2014.0 NaN \n", "9471 Design and implementation of a dynamic educati... 2014.0 NaN \n", "9472 Big data for cyber physical systems an analysi... 2014.0 NaN \n", "9473 Designing a big data processing platform for a... 2013.0 NaN \n", "9474 Potential and Pitfalls for Big Data in Health ... 2015.0 NaN \n", "9475 GridKa school - Teaching information technolog... 2015.0 NaN \n", "9476 A survey on PCM-based big data storage and man... 2015.0 NaN \n", "9477 A distributed file system over heterogeneous s... 2015.0 NaN \n", "9478 Adaptive collaborative filtering based on scal... 2016.0 NaN \n", "\n", " scopus \n", "0 NaN \n", "1 NaN \n", "2 NaN \n", "3 NaN \n", "4 NaN \n", "5 NaN \n", "6 NaN \n", "7 NaN \n", "8 NaN \n", "9 NaN \n", "10 True \n", "11 NaN \n", "12 NaN \n", "13 True \n", "14 NaN \n", "15 NaN \n", "16 True \n", "17 NaN \n", "18 NaN \n", "19 NaN \n", "20 NaN \n", "21 NaN \n", "22 True \n", "23 NaN \n", "24 NaN \n", "25 NaN \n", "26 NaN \n", "27 NaN \n", "28 NaN \n", "29 NaN \n", "... ... \n", "9449 True \n", "9450 True \n", "9451 True \n", "9452 True \n", "9453 True \n", "9454 True \n", "9455 True \n", "9456 True \n", "9457 True \n", "9458 True \n", "9459 True \n", "9460 True \n", "9461 True \n", "9462 True \n", "9463 True \n", "9464 True \n", "9465 True \n", "9466 True \n", "9467 True \n", "9468 True \n", "9469 True \n", "9470 True \n", "9471 True \n", "9472 True \n", "9473 True \n", "9474 True \n", "9475 True \n", "9476 True \n", "9477 True \n", "9478 True \n", "\n", "[9479 rows x 4 columns]" ] }, "execution_count": 14, "metadata": {}, "output_type": "execute_result" } ], "source": [ "dfWOS=pd.read_csv(\"all_big_data_titles_year_wos.csv\",sep=\";\")\n", "dfSCOPUS=pd.read_csv(\"all_big_data_titles_year_scopus.csv\",sep=\";\")\n", "\n", "df=pd.merge(dfWOS,dfSCOPUS,on='ARTICLE_TITLE',how='outer')\n", "#get PUBYEAR in one column:\n", "df.loc[df['wos'] == 1, 'PUBYEAR_y'] = df['PUBYEAR_x']\n", "#save resulting csv again:\n", "df=df[['ARTICLE_TITLE','PUBYEAR_y','wos','scopus']]\n", "df.to_csv(\"all_big_data_titles_with_year.csv\", sep=';')\n", "df\n" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## grouping data" ] }, { "cell_type": "code", "execution_count": 17, "metadata": { "collapsed": false }, "outputs": [ { "data": { "text/html": [ "<div>\n", "<table border=\"1\" class=\"dataframe\">\n", " <thead>\n", " <tr style=\"text-align: right;\">\n", " <th></th>\n", " <th>PUBYEAR_y</th>\n", " <th>ARTICLE_TITLE</th>\n", " <th>wos</th>\n", " <th>scopus</th>\n", " </tr>\n", " </thead>\n", " <tbody>\n", " <tr>\n", " <th>0</th>\n", " <td>1995.0</td>\n", " <td>1</td>\n", " <td>1</td>\n", " <td>0</td>\n", " </tr>\n", " <tr>\n", " <th>1</th>\n", " <td>2003.0</td>\n", " <td>1</td>\n", " <td>0</td>\n", " <td>1</td>\n", " </tr>\n", " <tr>\n", " <th>2</th>\n", " <td>2004.0</td>\n", " <td>1</td>\n", " <td>1</td>\n", " <td>0</td>\n", " </tr>\n", " <tr>\n", " <th>3</th>\n", " <td>2005.0</td>\n", " <td>1</td>\n", " <td>0</td>\n", " <td>1</td>\n", " </tr>\n", " <tr>\n", " <th>4</th>\n", " <td>2006.0</td>\n", " <td>2</td>\n", " <td>0</td>\n", " <td>2</td>\n", " </tr>\n", " <tr>\n", " <th>5</th>\n", " <td>2007.0</td>\n", " <td>1</td>\n", " <td>1</td>\n", " <td>0</td>\n", " </tr>\n", " <tr>\n", " <th>6</th>\n", " <td>2008.0</td>\n", " <td>4</td>\n", " <td>3</td>\n", " <td>1</td>\n", " </tr>\n", " <tr>\n", " <th>7</th>\n", " <td>2009.0</td>\n", " <td>4</td>\n", " <td>4</td>\n", " <td>1</td>\n", " </tr>\n", " <tr>\n", " <th>8</th>\n", " <td>2010.0</td>\n", " <td>7</td>\n", " <td>4</td>\n", " <td>3</td>\n", " </tr>\n", " <tr>\n", " <th>9</th>\n", " <td>2011.0</td>\n", " <td>31</td>\n", " <td>10</td>\n", " <td>22</td>\n", " </tr>\n", " <tr>\n", " <th>10</th>\n", " <td>2012.0</td>\n", " <td>323</td>\n", " <td>106</td>\n", " <td>228</td>\n", " </tr>\n", " <tr>\n", " <th>11</th>\n", " <td>2013.0</td>\n", " <td>1421</td>\n", " <td>570</td>\n", " <td>904</td>\n", " </tr>\n", " <tr>\n", " <th>12</th>\n", " <td>2014.0</td>\n", " <td>2652</td>\n", " <td>1048</td>\n", " <td>1789</td>\n", " </tr>\n", " <tr>\n", " <th>13</th>\n", " <td>2015.0</td>\n", " <td>4111</td>\n", " <td>1452</td>\n", " <td>3127</td>\n", " </tr>\n", " <tr>\n", " <th>14</th>\n", " <td>2016.0</td>\n", " <td>919</td>\n", " <td>322</td>\n", " <td>750</td>\n", " </tr>\n", " </tbody>\n", "</table>\n", "</div>" ], "text/plain": [ " PUBYEAR_y ARTICLE_TITLE wos scopus\n", "0 1995.0 1 1 0\n", "1 2003.0 1 0 1\n", "2 2004.0 1 1 0\n", "3 2005.0 1 0 1\n", "4 2006.0 2 0 2\n", "5 2007.0 1 1 0\n", "6 2008.0 4 3 1\n", "7 2009.0 4 4 1\n", "8 2010.0 7 4 3\n", "9 2011.0 31 10 22\n", "10 2012.0 323 106 228\n", "11 2013.0 1421 570 904\n", "12 2014.0 2652 1048 1789\n", "13 2015.0 4111 1452 3127\n", "14 2016.0 919 322 750" ] }, "execution_count": 17, "metadata": {}, "output_type": "execute_result" } ], "source": [ "grouped=df.groupby(['PUBYEAR_y']) \n", "df2=grouped.agg('count').reset_index()\n", "df2" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## visualize with plotly:\n", "\n", "we make three diagrams:\n", "1) a horizontal bar plot comparing the overall papers per db\n", "2) a vertical bar plot differentiating time and db\n", "3) a vertical bar plot differentiating tima and db with a logarithmic y-scale (allows for better\n", "inspection of smaller numbers)" ] }, { "cell_type": "code", "execution_count": 46, "metadata": { "collapsed": false }, "outputs": [ { "data": { "text/plain": [ "'https://plot.ly/~mathias.riechert/131'" ] }, "execution_count": 46, "metadata": {}, "output_type": "execute_result" } ], "source": [ "#set data for horizontal bar plot:\n", "data = [go.Bar(\n", " x=[pd.DataFrame.sum(df2)['wos'],pd.DataFrame.sum(df2)['scopus'],pd.DataFrame.sum(df2)['ARTICLE_TITLE']],\n", " y=['Web of Science', 'Scopus', 'Total'],\n", " orientation = 'h',\n", " marker=dict(\n", " color=colorlist\n", " )\n", ")]\n", "#py.plot(data, filename='big_data_papers_horizontal') #for uploading to plotly\n", "py.iplot(data, filename='horizontal-bar')" ] }, { "cell_type": "code", "execution_count": 47, "metadata": { "collapsed": true }, "outputs": [], "source": [ "#set data for stacked bar plot:\n", "trace1 = go.Bar(\n", " x=df2['PUBYEAR_y'],\n", " y=df2['wos'],\n", " name='Web of Science',\n", " marker=dict(\n", " color=colorlist[0]\n", " )\n", ")\n", "trace2 = go.Bar(\n", " x=df2['PUBYEAR_y'],\n", " y=df2['scopus'],\n", " name='Scopus',\n", " marker=dict(\n", " color=colorlist[1]\n", " )\n", "\n", ")\n", "trace3 = go.Bar(\n", " x=df2['PUBYEAR_y'],\n", " y=df2['ARTICLE_TITLE'],\n", " name='All Papers',\n", " marker=dict(\n", " color=colorlist[2]\n", " )\n", ")\n", "data = [trace1, trace2,trace3]" ] }, { "cell_type": "code", "execution_count": 54, "metadata": { "collapsed": false }, "outputs": [], "source": [ "#set layout for stacked bar chart with logarithmic y scale:\n", "\n", "#set layout for stacked bar chart with normal y scale:\n", "layout_no_log = go.Layout(\n", " title='Big data papers over time',\n", " barmode='group',\n", " xaxis=dict(\n", " title='year',\n", " titlefont=dict(\n", " family='Arial, sans-serif',\n", " size=14,\n", " color='lightgrey'\n", " ),\n", " tickfont=dict(\n", " family='Arial, sans-serif',\n", " size=10,\n", " color='black'\n", " ),\n", " showticklabels=True,\n", " dtick=1,\n", " tickangle=45,\n", " )\n", ")\n", "#plot:\n", "fig1 = go.Figure(data=data, layout=layout_no_log)\n", "py.iplot(fig1, filename='big_data_papers_no_log')\n" ] }, { "cell_type": "code", "execution_count": 44, "metadata": { "collapsed": false }, "outputs": [ { "data": { "text/html": [ "<iframe id=\"igraph\" scrolling=\"no\" style=\"border:none;\" seamless=\"seamless\" src=\"https://plot.ly/~mathias.riechert/125.embed\" height=\"525px\" width=\"100%\"></iframe>" ], "text/plain": [ "<plotly.tools.PlotlyDisplay object>" ] }, "execution_count": 44, "metadata": {}, "output_type": "execute_result" } ], "source": [ "layout_log = go.Layout(\n", " title='Big data papers over time (log y-scale)',\n", " barmode='group',\n", " xaxis=dict(\n", " title='year',\n", " titlefont=dict(\n", " family='Arial, sans-serif',\n", " size=14,\n", " color='lightgrey'\n", " ),\n", " tickfont=dict(\n", " family='Arial, sans-serif',\n", " size=10,\n", " color='black'\n", " ),\n", " showticklabels=True,\n", " dtick=1,\n", " tickangle=45,\n", " ),\n", " yaxis=dict(\n", " type='log'\n", " )\n", " )\n", "fig2 = go.Figure(data=data, layout=layout_log)\n", "py.iplot(fig2, filename='big_data_papers_log')" ] } ], "metadata": { "anaconda-cloud": {}, "kernelspec": { "display_name": "Python [Root]", "language": "python", "name": "Python [Root]" }, "language_info": { "codemirror_mode": { "name": "ipython", "version": 3 }, "file_extension": ".py", "mimetype": "text/x-python", "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", "version": "3.5.2" } }, "nbformat": 4, "nbformat_minor": 0 }
gpl-3.0
automayt/pharmakarma
.ipynb_checkpoints/PharmaKarma2-checkpoint.ipynb
1
544465
{ "cells": [ { "cell_type": "code", "execution_count": 1, "metadata": {}, "outputs": [ { "data": { "text/html": [ "<div>\n", "<style scoped>\n", " .dataframe tbody tr th:only-of-type {\n", " vertical-align: middle;\n", " }\n", "\n", " .dataframe tbody tr th {\n", " vertical-align: top;\n", " }\n", "\n", " .dataframe thead th {\n", " text-align: right;\n", " }\n", "</style>\n", "<table border=\"1\" class=\"dataframe\">\n", " <thead>\n", " <tr style=\"text-align: right;\">\n", " <th></th>\n", " <th>Drug</th>\n", " <th>Stage</th>\n", " <th>Catalyst</th>\n", " <th>Date</th>\n", " </tr>\n", " </thead>\n", " <tbody>\n", " <tr>\n", " <th>OCUL</th>\n", " <td>DEXTENZA Allergic conjunctivitis</td>\n", " <td>Phase 3</td>\n", " <td>Phase 3 trial did not meet primary endpoint ...</td>\n", " <td>06/06/2016</td>\n", " </tr>\n", " <tr>\n", " <th>OCUL</th>\n", " <td>DEXTENZA Ocular inflammation and pain followi...</td>\n", " <td>Approved</td>\n", " <td>CRL July 25 2016 - due to manufacturing defi...</td>\n", " <td>07/25/2016</td>\n", " </tr>\n", " <tr>\n", " <th>OCUL</th>\n", " <td>DEXTENZA Ocular inflammation and pain followi...</td>\n", " <td>Approved</td>\n", " <td>CRL July 25 2016 - due to manufacturing defi...</td>\n", " <td>07/11/2017</td>\n", " </tr>\n", " <tr>\n", " <th>OCUL</th>\n", " <td>DEXTENZA Ocular inflammation and pain followi...</td>\n", " <td>Approved</td>\n", " <td>FDA approval announced December 3, 2018.</td>\n", " <td>12/03/2018</td>\n", " </tr>\n", " </tbody>\n", "</table>\n", "</div>" ], "text/plain": [ " Drug Stage \\\n", "OCUL DEXTENZA Allergic conjunctivitis Phase 3 \n", "OCUL DEXTENZA Ocular inflammation and pain followi... Approved \n", "OCUL DEXTENZA Ocular inflammation and pain followi... Approved \n", "OCUL DEXTENZA Ocular inflammation and pain followi... Approved \n", "\n", " Catalyst Date \n", "OCUL Phase 3 trial did not meet primary endpoint ... 06/06/2016 \n", "OCUL CRL July 25 2016 - due to manufacturing defi... 07/25/2016 \n", "OCUL CRL July 25 2016 - due to manufacturing defi... 07/11/2017 \n", "OCUL FDA approval announced December 3, 2018. 12/03/2018 " ] }, "execution_count": 1, "metadata": {}, "output_type": "execute_result" } ], "source": [ "# You may need to install htmllib5,lxml, and BeautifulSoup4. In your terminal/command prompt run:\n", "\n", "# conda install lxml\n", "# conda install html5lib\n", "# conda install BeautifulSoup4\n", "# Then restart Jupyter Notebook. (or use pip install if you aren't using the Anaconda Distribution)\n", "\n", "import numpy as np\n", "import pandas as pd\n", "import os.path\n", "from datetime import datetime, timedelta\n", "\n", "one_hour_ago = datetime.now() - timedelta(hours=1)\n", "if os.path.exists(\"history.csv\"):\n", " filetime = datetime.fromtimestamp(os.path.getctime(\"history.csv\"))\n", " if filetime < one_hour_ago:\n", " histdata = pd.read_html(\"https://www.biopharmcatalyst.com/calendars/historical-catalyst-calendar\")\n", " histdata[0].to_csv('history.csv',index=False)\n", "else:\n", " histdata = pd.read_html(\"https://www.biopharmcatalyst.com/calendars/historical-catalyst-calendar\")\n", " histdata[0].to_csv('history.csv',index=False)\n", "\n", "df = pd.read_csv('history.csv').set_index('Ticker')\n", "df.index.name=None\n", "\n", "df[[\"Date\",\"Catalyst\"]] = df.Catalyst.str.extract('(?P<Date>[0-9]{2}\\/[0-9]{2}\\/[0-9]{4})(?P<Catalyst>.*)', expand=True)\n", "\n", "df.loc[\"OCUL\"]\n" ] }, { "cell_type": "code", "execution_count": 469, "metadata": { "scrolled": false }, "outputs": [ { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAA6wAAAPnCAYAAAArpMHrAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMi4zLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvIxREBQAAIABJREFUeJzs3Xl4VOX9NvD7ObPPJIRF2YSaoLKYZBJCWMImgggqRREpIC6ISFERpT9RrNpaqy0WKi60UhTEIkUUhbpSQEFB2RIMgfBSFYiyFQUkZPblnPePmTnMJJNkApNMyNyf61ImZ86c88yWzD3fZxGKooCIiIiIiIiosZES3QAiIiIiIiKiaBhYiYiIiIiIqFFiYCUiIiIiIqJGiYGViIiIiIiIGiUGViIiIiIiImqUGFiJiIiIiIioUWJgJSIiIiIiokaJgZWIiIiIiIgaJQZWIiIiIiIiapS0iW5ANK1atVI6dOiQ6GYQERERERFRnJWUlJxQFOXiWPZtlIG1Q4cOWLt2baKbQURERERERHHWtm3b72Pdl12CiYiIiIiIqFFqlBXWcEePHsWkSZNQUlICWZYT3RwiIkpSkiTBarVi8eLFaN++faKbQ0RElBQafWCdNGkSxowZg23btkGv1ye6OURElKQ8Hg/mzJmDSZMmYc2aNYluDhERUVIQiqIkug1V5OTkKKExrO3bt4fT6WRYJSKihPN4PDCZTDh69Giim0JERHTBatu2bZGiKPmx7Nvox7DKssywSkREjYJer+fwFCIiogYUt8AqhFgshPhRCLEnbNscIcQ+IUSJEGKVEKJ5vM5HRERERERETVs8K6xLAAyvtG0dgCxFUawAvgHwWBzPR0RERERERE1Y3AKroihfADhVadtaRVF8wR+3AugQr/MRERERERFR09aQY1gnAfikuiuFEFOEEIVCiMJTp05Vt1utXnjhBTgcjnO+fV2sXr0aQgjs27evQc53vlJSUuJ2rP/9738YN24cLrvsMvTo0QPXX389vvnmG5SVlcFkMiE3NxdXXnkl7rjjDni9XgDAxo0bMWLEiBqP+7vf/Q7r16+PWztjUVu7HnroIVxyySUNOm7t9OnT+Pvf/17t9ZMmTULr1q2RlZUV0/GWLVsGq9WK7Oxs9O3bF7t27VKvW7NmDbp06YLLL78cs2fPVrfPnz8fl19+OYQQOHHiREzHIiIiIiKKpwYJrEKIxwH4ACyrbh9FURYqipKvKEp+y5Ytz/lcDRlYly9fjv79+2P58uVxO6bP56t9pwRTFAWjRo3CoEGDsH//fhQVFeHPf/4zjh8/DgC47LLLUFxcjN27d+Pw4cN4++23Yz72008/jWuuuaa+ml5nsixj1apV6NixIz7//PMGO29tgXXixIl1WlYjIyMDn3/+OXbv3o0nn3wSU6ZMAQD4/X7cf//9+OSTT7B3714sX74ce/fuBQD069cP69evx6WXXhrTsYiIiIiI4q3eA6sQYiKAEQAmKHFcQ8dut+OGG25ATk4OsrKysGLFCrz00ks4evQorr76alx99dUAgHvvvRf5+fnIzMzE73//e/X2H3/8Mbp27YoePXpg+vTpaoXNbrdj0qRJ6NWrF7p3745///vfUc9vs9mwefNmLFq0CG+99Za6fePGjRg4cCBuuOEGdOnSBVOnTlUrcykpKZgxYwYyMzMxZMgQ/PTTTwCAQYMG4aGHHkJ+fj5efPFFlJWVYfDgwbBarRgyZAh++OEHlJeX49JLL1WPZbfb0bFjR3i9Xuzfvx/Dhw9Hjx49MGDAALXie/DgQRQUFCA7OxtPPPFEvB56bNiwATqdDlOnTlW35eTkYMCAARH7aTQa9OrVC0eOHIn52BMnTsTKlSsBALNmzcKVV14Jq9WKhx9+GADwzjvvICsrCzk5ORg4cCAAYMmSJZg2bZp6jBEjRmDjxo0AgLVr16KgoAB5eXkYM2YMbDYbgEBVsWvXrsjLy8N7771XbXs2btyIzMxM3HvvvRFfTDz11FOYO3eu+nNWVhbKysoAAH/84x/RpUsX9O/fH+PHj1f3GzRoEAoLCwEAJ06cQHp6OgCgtLQUvXr1Qm5uLqxWK7799lvMmjUL+/fvR25uLmbOnFmlXQMHDkRdvtjp27cvWrRoAQDo06cPDh8+DADYvn07Lr/8cnTq1Al6vR7jxo1TX/Pdu3dX2xjLsYiIiIiI4q1eA6sQYjiARwCMVBQlrmXPNWvWoH379ti1axf27NmD4cOHY/r06Wjfvj02bNiADRs2AACeffZZFBYWoqSkBJ9//jlKSkrgcrnw61//Gp988gmKiorU4Bjaf/Dgwdi+fTs2bNiAmTNnwm634+jRo7j++uvV/f79739j+PDh6Ny5M1q1aoWioiL1uu3bt+Pll1/G3r17sX//fjUQ2e125Ofno7S0FFdddRX+8Ic/qLfxeDwoLCzE//3f/+GBBx7AnXfeiZKSEkyYMAHTp09HWloacnNz1Srfhx9+iGHDhkGn02HKlCl4+eWXUVRUhLlz5+K+++4DADz44IO49957sXv3brRr1y5uj/2ePXvQo0ePWvdzuVzYtm0bhg+vPBdX7U6ePIlVq1ahtLQUJSUlauB++umn8Z///Ae7du3C+++/X+MxTpw4gWeeeQbr16/Hzp07kZ+fj+effx4ulwv33HMPPvjgAxQVFeF///tftcdYvnw5xo8fj1GjRuGjjz5SuzdXZ8eOHXj33Xexa9cufPLJJ2pArcmCBQvw4IMPori4GIWFhejQoQNmz56tVqrnzJlT6zHqYtGiRbjuuusAAEeOHEHHjh3V6zp06FCnLxjCj0VEREREFG/xXNZmOYAtALoIIQ4LIe4GMB9AKoB1QohiIcSCeJ0vOzsb69atw6OPPopNmzYhLS0t6n5vv/028vLy0L17d5SWlmLv3r3Yt28fOnXqhIyMDADA+PHj1f3Xrl2L2bNnIzc3F4MGDYLL5cIPP/yA9u3b4+OPP1b3W758OcaNGwcAGDduXET1rVevXujUqRM0Gg3Gjx+PzZs3AwAkScLYsWMBALfddpu6HYC6HQC2bNmCW2+9FQBw++23q/uNHTsWK1asAAC89dZbGDt2LGw2G7766iuMGTMGubm5+PWvf41jx44BAL788kv1vt1+++11fozPVagy2KZNG7Rr1w5Wq7XOx0hLS4PRaMTdd9+N9957D2azGUCgm+rEiRPx6quvwu/313iMrVu3Yu/evejXrx9yc3Pxxhtv4Pvvv8e+ffuQkZGBK664AkII3HbbbVFv7/F48PHHH+Omm25Cs2bN0Lt3b/znP/+p8ZxffvklbrzxRhiNRqSmpuKXv/xlrfe1oKAAf/rTn/Dcc8/h+++/h8lkqvU252rDhg1YtGgRnnvuuUZ1LCIiIiKiaLTxOpCiKOOjbF4Ur+NX1rlzZ+zcuRMff/wxnnjiCQwZMgS/+93vIvY5ePAg5s6dix07dqBFixaYOHEiXC5XjcdVFAXvvvsuunTpUu0+p06dwmeffYbdu3dDCAG/3w8hhFoJE0JE7F/552jbLRZLje0CgJEjR+K3v/0tTp06haKiIgwePBh2ux3NmzdHcXFxreeozapVq9Sq72uvvYb8/Pyo+2VmZqrddqMJVQZPnDiBfv364f3338fIkSNjbgcAaLVabN++HZ9++ilWrlyJ+fPn47PPPsOCBQuwbds2fPTRR+jRoweKioqg1WojJkQKPceKomDo0KFVxhhX91hV9p///AenT59GdnY2AMDhcMBkMmHEiBHVnrO2+xS6Tfj+t956K3r37o2PPvoI119/Pf7xj3+gU6dOMbWxLkpKSjB58mR88sknaNWqFQDgkksuwaFDh9R9Dh8+jEsuueScjkVEREREFG8NOUtwXB09ehRmsxm33XYbZs6ciZ07dwIAUlNTUVFRAQA4c+YMLBYL0tLScPz4cXzySWCS4i5duuDAgQPqmMNQ1RIAhg0bhpdffhmh4bZff/11lXOvXLkSt99+O77//nuUlZXh0KFDyMjIwKZNmwAEugQfPHgQsixjxYoV6N+/P4DABD6hoPevf/1L3V5Z37591XGxy5YtU8eGpqSkoGfPnnjwwQcxYsQIaDQaNGvWDBkZGXjnnXcABEJaaNbWfv36RRynNqNGjUJxcTGKi4urDasAMHjwYLjdbixcuFDdVlJSot7/kIsuugizZ8/Gn//851rPXZnNZkN5eTmuv/56zJs3T71P+/fvR+/evfH000/j4osvxqFDh5Ceno7i4mLIsoxDhw5h+/btAALjK7/88kt89913AAJdsr/55ht07doVZWVl2L9/PwBUO2nW8uXL8dprr6GsrAxlZWU4ePAg1q1bB4fDgfT0dPU1t3PnThw8eBBA4DH/4IMP4HK5YLPZ8OGHH6rHS09PV7uOhwf+AwcOoFOnTpg+fTpuvPFGlJSURLyO62L+/PmYP39+le0//PADbr75ZixduhSdO3dWt/fs2RPffvstDh48CI/Hg7feeqvWLxeqOxYRERERUbxdsIF19+7d6kQ1f/jDH9QxjlOmTMHw4cNx9dVXIycnB927d0fXrl1x6623ol+/fgAAk8mEv//97+pERampqWqX4ieffBJerxdWqxWZmZl48sknASBiDOvy5csxatSoiPaMHj1aDT49e/bEtGnT0K1bN2RkZKj7WiwWbN++HVlZWfjss8+qVIRDXn75Zbz++uuwWq1YunQpXnzxRfW6sWPH4s0334zoQrxs2TIsWrQIOTk5yMzMVCfNefHFF/G3v/0N2dnZdRqXWBshBFatWoX169fjsssuQ2ZmJh577DG0bdu2yr433XQTHA6HGmY//fRTdOjQQf1vy5YtUc9RUVGBESNGwGq1on///nj++ecBADNnzkR2djaysrLQt29f5OTkoF+/fsjIyMCVV16J6dOnIy8vDwBw8cUXY8mSJRg/fjysVisKCgqwb98+GI1GLFy4EDfccAPy8vLQunXrKud3OBxYs2YNbrjhBnWbxWJB//798cEHH2D06NE4deoUMjMzMX/+fDW49ezZEyNHjoTVasV1112H7Oxs9bX18MMP45VXXkH37t0jlol5++23kZWVhdzcXOzZswd33HEHWrVqhX79+iErKyvqpEvjx49HQUEB/vvf/6JDhw5YtCjQmWHfvn1RK55PP/00Tp48ifvuuw+5ubnqFxJarRbz58/HsGHD0K1bN/zqV79CZmYmAOCll15Chw4dcPjwYVitVkyePLnGYwHA9ddfj6NHj0Z9TomIiIiI6krEceLeuMnJyVHWrl0LAGjbti3qo402mw0pKSlQFAX3338/rrjiCsyYMeO8j7tx40bMnTs3orIWkpKSos5SS01X6LXlcDgwcOBALFy4UA3R9W3EiBF47733oNfrG+R8RMlICFHjZG1ERERUs7Zt2xYpilJ9l84wF2yF9Xy9+uqryM3NRWZmJsrLy/HrX/860U2iJmLKlCnIzc1FXl4eRo8e3WBhFQjMHs2wSkRERERNRdJWWImIiM4FK6xERETnJ2kqrCkpKRE/L1myBNOmTcO6detQUFCgBl2/34/u3bvjq6++AgAsXLgQXbt2RdeuXZGfn4+NGzcCAP7whz/gscceizhmcXExunXrBiAwaU742MPVq1dDCIF9+/bF1N7FixcjOzsbVqsVWVlZ6ljT6oTuz/kqKyvDv/71r/M+TkP505/+FNfjLVmypEHGVdZ0nn379iE3Nxfdu3dXJ3uqbxs3blRf80Bgvdd//vOf53Ss+ngNTZ48GXv37gUQ+ZyXlZUhKysrbuc5evQobrnllrgdr67ef/99zJ49O2HnPxeVf7dG89JLL6Fbt26YMGFCTPexb9++8WpenRw7dgwjRowAEHhPhNa07tatmzor+saNG9V9Pvzww2rnFyAiIqKGd0EH1uoMHToUl156qToRzcsvv4z8/Hz07dsXH374If7xj39g8+bN2LdvHxYuXIjbbrsNR44cwfjx4yNmDAYC652Gr9Mabvny5ejfv3+1s8yGO3z4MJ599lls3rwZJSUl2Lp16zmtT3oumkpgVRQlYimZWDWGwLp69Wrccsst+Prrr3HZZZfVeqxzva/hKgfWqVOn4o477jinY9XHa+i1117DlVdeCSD+X1KE+Hw+tG/fvsZlmM7n2LEYOXIkZs2aFffzJ9rf//53rFu3DsuWLYvpPoa/FhvS888/j3vuuUf9ecCAASguLkZhYSHefPNNdbbvkBtuuAEffPABHA5HQzeViIiIomiSgRUA5s2bhz//+c8oLS3F/Pnz8dxzzwEAnnvuOcyZMwcXXXQRACAvLw933XUX/va3v6Fz585o0aIFtm3bph7n7bffjhpYbTYbNm/ejEWLFqlLx9Tkxx9/RGpqqlq5SElJQUZGBgBg0KBBKCwsBACcOHEC6enp6u0OHTqEQYMG4YorrlCrAQDwz3/+E1arFTk5Obj99tsBABMnToz4YB4616xZs7Bp0ybk5uZi3rx5KCsrw4ABA5CXl4e8vDz1g+TGjRsxaNAg3HLLLejatSsmTJigVqmLiopw1VVXoUePHhg2bBiOHTsGIFCB7tOnD6xWK0aNGoWff/65xvtUWlqqzu5stVrx7bffRjxOs2bNgtPpRG5uLiZMmICysjJ06dIFd9xxB7KysnDo0CGsXbsWBQUFyMvLw5gxY9SJrJ5++mn07NkTWVlZmDJlChRFwcqVK1FYWIgJEyYgNzcXTqcT6enpeOyxx9QZbnfu3Ilhw4bhsssuw4IFC9S2zJkzBz179oTVasXvf/97AIHg1q1bN9xzzz3IzMzEtddeC6fTGfU8IR9//DFeeOEFvPLKK7j66qsBBD5EZ2VlISsrCy+88IJ67Mr3NVx6ejoeeeQRZGdno1evXupyPR988AF69+6N7t2745prrsHx48dRVlaGBQsWYN68ecjNzcWmTZvw1FNPYe7cuQACywOFZskeMGCA2ktg4sSJmD59Ovr27YtOnTqpr6fKr6Hansd33nkHv/nNbwAEZqsOrSt74MABdbbu0Guk8nMOBHpFVH6MK5s4cSKmTp2K/Px8dO7cWZ3obMmSJRg5ciQGDx6MIUOGRFRslyxZgptuuglDhw5Feno65s+fj+effx7du3dHnz59cOrUKQCBMe49e/ZETk4ORo8erYaX0Dl79+6NRx55BFdccQV++uknAIFlqy6//HL155DwnhITJ07Evffeiz59+qBTp07YuHEjJk2ahG7dumHixInqbVJSUjBz5kxkZmbimmuuwfbt2zFo0CB06tQJ77//fpXjAoEJt0K9RVJSUvD4448jJycHffr0wfHjx9XX2ODBg2G1WjFkyBD88MMPAAJrVhcUFCA7O1udcT0k2vtg6tSpOHDgAK677jrMmzcvoi3Hjx/HqFGjkJOTg5ycHPX3S3jVti7vLQD47rvvcM011yAnJwd5eXnYv38/7rjjDqxevVo95oQJE6L2Wnn33XcxfPjwKtstFgt69Oihvo9ChBAYNGhQ1InziIiIqOFd0IE19CE39F94N6527drhoYceQkFBAZ544gm0bNkSQCAw9ejRI+I4+fn5atfE8ePHqwF069ataNmyJa644ooq5/73v/+N4cOHo3PnzmjVqpW6vmZ1cnJy0KZNG2RkZOCuu+7CBx98ENN93L59O959912UlJTgnXfeQWFhIUpLS/HMM8/gs88+w65duyKWvYlm9uzZalVhxowZaN26NdatW4edO3dixYoVmD59urrv119/jRdeeAF79+7FgQMH8OWXX8Lr9eKBBx7AypUrUVRUhEmTJuHxxx8HANxxxx147rnnUFJSguzs7IhQHc2CBQvw4IMPqhWODh06VGmryWRCcXGxunbst99+i/vuuw+lpaWwWCx45plnsH79euzcuRP5+fnqkjfTpk3Djh07sGfPHjidTnz44Ye45ZZbkJ+fj2XLlqG4uBgmkwkA8Itf/ALFxcUYMGCAGvS3bt2qfnheu3Ytvv32W2zfvh3FxcUoKirCF198obbn/vvvR2lpKZo3b45333232vMAgaVepk6dihkzZmDDhg0oKirC66+/jm3btmHr1q149dVX1fV+w+/rpZdeWuXxS0tLw+7duzFt2jQ89NBDAID+/ftj69at+PrrrzFu3Dj85S9/QXp6unrO0P0MN2XKFLz88ssoKirC3Llzcd9996nXHTt2DJs3b8aHH36oVs0qv4Zqex4HDBigLmW0adMmtGrVCkeOHMGmTZswcODAmJ7zyo9xNGVlZdi+fTs++ugjTJ06FS6XC0BgbdyVK1fi888/r3KbPXv24L333sOOHTvw+OOPw2w24+uvv0ZBQYHaZfrmm2/Gjh07sGvXLnTr1k3trQEEekt89dVXeP7553HbbbepbV6/fj1ycnJw8cUXR21ryM8//4wtW7Zg3rx5GDlyJGbMmIHS0lLs3r0bxcXFAAJrBg8ePBilpaVITU3FE088gXXr1mHVqlUxdVe12+3o06cPdu3ahYEDB+LVV18FADzwwAO48847UVJSggkTJqjv/QcffBD33nsvdu/ejXbt2qnHqe59sGDBArRv3x4bNmyoMrv69OnTcdVVV2HXrl3YuXOnukxSbccEqn/eJ0yYgPvvvx+7du3CV199hXbt2uHuu+/GkiVLAADl5eX46quvIpahAgJBvEWLFjAYDFUeo5MnT2Lr1q1V2gcE/iZUXleaiIiIEkOb6Aacj9CH3JAlS5aoVT0AuP/++zFr1qyIykVtxo4di759++Kvf/1rrd2BH3zwQQDAuHHjsHz58ipBOJxGo8GaNWuwY8cOfPrpp5gxYwaKiorw1FNP1dieoUOHqutq3nzzzdi8eTM0Gg3GjBmjVolDYTxWXq8X06ZNQ3FxMTQaDb755hv1ul69eqnhIzc3F2VlZWjevDn27NmDoUOHAghUv9q1a4fy8nKcPn0aV111FQDgzjvvxJgxY2o8d0FBAZ599lkcPnwYN998c9QvAyq79NJL0adPHwCBLxH27t2rVuk8Hg8KCgoAABs2bMBf/vIXOBwOdY3UX/7yl1GPOXLkSABAdnY2bDYbUlNTkZqaCoPBgNOnT2Pt2rVYu3YtunfvDiBQUf/222/xi1/8AhkZGcjNzQUA9OjRA2VlZbXeh3CbN2/GqFGjYLFYAASe102bNmHkyJER9zWa0Otx/PjxalA4fPgwxo4di2PHjsHj8aiV++rYbDZ89dVXEc+V2+1WL990002QJAlXXnmlWpmrrLbnsW3btrDZbKioqMChQ4dw66234osvvsCmTZtw880319g+ADE/xr/61a8gSRKuuOIKdOrUSa0UDx06tNr3xdVXX60+32lpaeprJDs7GyUlJQACofaJJ57A6dOnYbPZMGzYMPX2Y8aMgUajAQBMmjQJN954Ix566CEsXrwYd911V6337Ze//CWEEMjOzkabNm2QnZ0NAMjMzERZWRlyc3Oh1+vVqmB2djYMBgN0Oh2ys7Njer3p9Xp1TGaPHj2wbt06AMCWLVvw3nvvAQBuv/12PPLIIwCAL7/8Ug2Ht99+Ox599FEAqPZ9UPlLh3CfffaZGvw1Go26DnFIXd9bFRUVOHLkiLqetdFoBABcddVVuO+++/DTTz/h3XffxejRo6HVRv5JO3bsWJUvEDZt2oTu3btDkiTMmjULmZmZamU6pHXr1lxPmIiIqJG4oANrbSRJghAiYtuVV16JoqIiDB48WN1WVFSE/PzAJFUdO3ZERkYGPv/8c7z77rvYsmVLleOeOnUKn332GXbv3g0hBPx+P4QQmDNnTpXzhRNCoFevXujVqxeGDh2Ku+66C0899RS0Wq06XjFUIQq/TU0/hws/jizL8Hg8UfebN28e2rRpg127dkGWZfUDIICISoRGo4HP54OiKMjMzKzyWJSXl8fUlvD7dOutt6J379746KOPcP311+Mf//hHxHMRTSjYAYGxnUOHDq0ybtjlcuG+++5DYWEhOnbsiKeeeqrKYxkudD8lSYq4z5Ikqff5scceq7LcUVlZWZXHKFp31XMVfl+jCX/+Q5cfeOAB/OY3v8HIkSOxcePGWr8EkWUZzZs3j/iyJ1z4/atuhu5Ynse+ffvi9ddfR5cuXTBgwAAsXrwYW7ZswV//+tca21e5DTU9xtW9P2p6HCs/3+GvhdC41IkTJ2L16tXIycnBkiVLIgJN+LE7duyINm3a4LPPPsP27dvVamss96261x4A6HQ69b5U18bw9xgQ+T4Lv33ofVybaL9bqnsfnI94vrfuuOMOvPnmm3jrrbfw+uuvV7neZDJV+T0wYMCAWrv7ulyuiF4SRERElDgXdJfgc/HII4/g0UcfxcmTJwEExmCuWrUq4sNTqHrVqVOnKl0dAWDlypW4/fbb8f3336OsrAyHDh1CRkZGjV3Ijh49GjG5R3FxsdrlMz09Xe1SXHlymHXr1uHUqVNwOp1YvXo1+vXrh8GDB+Odd95R70No3F34cd5//314vV4AQGpqKioqKtRjlpeXo127dpAkCUuXLoXf76/xMevSpQt++uknNbB6vV6UlpYiLS0NLVq0UO/30qVL1WprdffpwIED6NSpE6ZPn44bb7xRrWiF0+l0atsr69OnD7788kt13Jndbsc333yjfii96KKLYLPZIs5Z+f7HYtiwYVi8eLE6PvbIkSP48ccfa7xNrOcZMGAAVq9eDYfDAbvdjlWrVlXpslud0KRgK1asUCvL5eXluOSSSwAAb7zxRq3tadasGTIyMvDOO+8ACASIXbt21em+xfI8DhgwAHPnzsXAgQPRvXt3bNiwAQaDoUrFDaj5Oa/JO++8A1mWsX//fhw4cABdunSp8zGiqaioQLt27eD1emsNoZMnT8Ztt90WUXltCOnp6SguLoYsyzh06BC2b99e62369u2rDnlYtmyZ+rrr169fxPaQc3kfDBkyBK+88gqAQG+Myl9s1fWYqamp6NChgzpe1e12R4wpDo0BD03gFa5z58517gEBAN98801cZ6omIiKic5d0gXXkyJG4++670a9fP1x++eXo378/Vq9eHdFtbMyYMSgtLa2xO3Coe1rI6NGja5wt2Ov14uGHH0bXrl2Rm5uLFSuoFcvtAAAgAElEQVRWqGNPH374Ybzyyivo3r17xLI5QKCL7ujRo2G1WjF69Gjk5+cjMzMTjz/+OK666irk5OSok9vcc889+Pzzz5GTk4MtW7aolSCr1QqNRoOcnBzMmzcP9913H9544w3k5ORg3759tVb19Ho9Vq5ciUcffRQ5OTnIzc1VJ1J54403MHPmTFitVhQXF6vj66q7T2+//TaysrKQm5uLPXv2RJ21dsqUKbBareoEPOEuvvhiLFmyBOPHj4fVakVBQQH27duH5s2b45577kFWVhaGDRuGnj17qrcJTZRTeTKkmlx77bW49dZb1YlobrnlllrDaKznycvLw8SJE9GrVy/07t0bkydPVrtH1ubnn3+G1WrFiy++iHnz5gEAnnrqKYwZMwY9evRQu4kDga6nq1atUiddCrds2TIsWrQIOTk5yMzMrHWJpcqvoViexwEDBuDQoUMYOHAgNBoNOnbsiP79+0c9fk3PeU1+8YtfoFevXrjuuuuwYMGCiN4C5+OPf/wjevfujX79+qFr16417jty5EjYbLaYugPHU79+/ZCRkYErr7wS06dPR15eXq23efnll/H666/DarVi6dKl6u+gF198EX/729+QnZ2NI0eOqPufy/vgxRdfxIYNG5CdnY0ePXqo8wOczzGXLl2Kl156CVarFX379lXXQG3Tpg26detW7WNvsVhw2WWXVZlYqTYbNmyoMh6WiIiIEkNU1+UvkXJycpS1a9cCCIyFq682+nw+3HXXXZBlGW+++WaN3W2JEi09PR2FhYURoTSZTZw4ESNGjEjoGqsAUFhYiBkzZnCSngRwOBzIzs7Gzp07o1buAWDVqlUoKirCM888E9Mxjx8/jltvvRWffvpptfsIIdTQTERERHXXtm3bIkVR8mPZt0mPYa2NVqvF0qVLE90MIrpAzZ49G6+88kpMY1cpvtavX4+7774bM2bMqDasAsCoUaPU4ROx+OGHH2IaZ01EREQNI6krrERERHXFCisREdH5qUuFNenGsBIREREREdGFgYGViIiIiIiIGqVGH1glSap2PVEiIqKG5PF4IEmN/k8nERFRk9Ho/+parVbMmTOHoZWIiBLK4/Fgzpw5sFqtiW4KERFR0mj0swQvXrwYkyZNwu9+9zvIspzo5hARUZKSJAlWqxWLFy9OdFOIiIiSRqMPrO3bt8eaNWsS3QwiIiIiIiJqYI2+SzARERERERElJwZWIiIiIiIiapQYWImIiIiIiKhRYmAlIiIiIiKiRomBlYiIiIiIiBolBlYiIiIiIiJqlBhYiYiIiIiIqFFiYCUiIiIiIqJGKW6BVQixWAjxoxBiT9i2lkKIdUKIb4P/tojX+YiIiIiIiKhpi2eFdQmA4ZW2zQLwqaIoVwD4NPgzERERERERUa3iFlgVRfkCwKlKm28E8Ebw8hsAborX+YiIiIiIiKhpq+8xrG0URTkWvPw/AG2q21EIMUUIUSiEKDx1qnLuJSIiIiIiomTTYJMuKYqiAFBquH6hoij5iqLkt2zZsqGaRURERERERI1UfQfW40KIdgAQ/PfHej4fERERERERNRHaej7++wDuBDA7+O+/Y7nR8ePH0bZt2/psFxERETUCZosFUBQ4HI5EN4WIiBqhuAVWIcRyAIMAXCSEOAzg9wgE1beFEHcD+B7Ar2I5Vps2bbBr1654NY2IiIgaCUVR4HK74XS74HC54PF6AQACgKTRQCNJ0EgaaDQSpNBlSYJGE7gsBS9LQoIQIrF3hoiIzkldipNxC6yKooyv5qoh8ToHERERXVgURYHP54PD7YLT5YLT7UZgWouzhBBQFAV+vx9+vx+AN6Zja6RgqA0LulJYuA0FXSl4mQGXwt19990AgEWLFiW4JURUk/ruEkxERERJRpZltYLqdLng8/sjrtdpdTAbDTAZTTAa9JCEBFmW4ZflwL9+P/yyDL8c+Ff2n73s98uQZT9kRQnuI8Pr88XULklIkZVbjVRt0JU0GkgMuE0aV6UgujAwsBIREdF5URQFbo9HDalujyfiekmSYDIYgyHVCK2m6scPKVgtrcs5/WHhVpb98PtlNejKwXCrhl5ZhqzIkH1yzOcQQpwNtGHhNhR0JbWKe7aCyyouEVF8MbASERFRnUV083W5ISuRQdCoD4RTk9EAg04f9yAnhIBWo4FWo4lpf0VR1CquPxhuZblq5TY8BCuKAp/fH6gQx9BLOXIcbnjQrdo9OdSdmQGXiKhmDKxERERUK1mW4XK71ZBauRuuVqOF2WgMhFSDoU7V0oYghAhUQjUaALpa91cUBbKiVK3cRumeHOqaHDkONzYch0tEVDMGViIiIqpCURR4vF44wyZLCieECHbzDYRUnbZpfaQQQkAT7BKsi/GuVTcOt3L35MC43PiOw5UqzaYcGIcbmE2ZohswYECim0BEMWhaf12IiIjonPn9/sBEScGQ6pcju/kadPpgN18jjPr4d/O90J3PONzK3ZUbahyuRtLAoNcHK8/J5Te/+U2im0BEMWBgJSIACH4wVbi2IVESCU2WZHc54QxbEzVEI2lgMgarqAZDUoaa+lS/43AD22Mdh6vVaGA0GGDQ62HUG6DX6fi3gIgaBQZWoiSkKAq8Ph9cbjdcHjfcHk9EdzQpbEKQs/9qqmznuCqiC5OsyLA5HDhjs0WEVAEBo8GghlSdVsv3diNyLuNwA1XcaONwA5d9Pj/cXg98fj9sDgdsDod6rkB41cOgN8DYBKuw48ePBwAsX748wS0hopowsBIlAVmW4fZ64HJ7AgHV7akyo2foQ2noG3xZjr3LWej2NYZcTeR2LgFB1PB8fj/O2Gw4Y7ep73GNJCHFbI5YE5WahtDvWKmWcbih8cqhLzBdbjd8fn/gS023G0AFAECr1cIYrMAa9PoLvgrrcrkS3QQiigEDK1ETpH7QCIZTt9dTZR+NRqN+8DAaznb/Co2pOjt5SHDslF+Ovj1sdkyf3w/UYXZMABEhVqvVQKfVQqfVBf/VNrqZRokuRC63G+U2G+xOh7pNr9MhLSUVKWbzBR066PyFqqkGvV7d5vf74fJ4Iv6O+Hw+2Hy+KFVYQ7AS2/SqsESUeEkdWEPfKLq9Hng8Hrg9Xvj8Phj0epiNJphNppjHlRAlSsQ348EKqi9KaNTrdMFwGujepdVoon5IDY2pQh1e+2e7nYVNFBJjyFVnyIQPqJqrodFo1PCq0+qgD17WsqsiUY0URYHd6UB5hS3iSyuLyYS0lFQYOGkS1UCj0cBiMsFiMgGo/m/N2SpsgE6rVUNsU6jCElHiJU1gVcOpJ/AtodvjqTK5RIjD5YLD5QJO/wy9TgezMfALm790qTGQZRkujwdujztYRfVAUZSIfYQQEeHUqNfXa6UyottZHX6tnK3mBsZXef0+eL0+eH0+eH1eeH0+dU1DV6UlNQCEBdmwqqxOC40UPYwTJQO/348zdjvO2Gzwy4EvryQhIdViQVpKCrRNbPkZahgRVdiUwDaf3x/8WxT4m+T2eIO/vyOrsOHjYA0GAzTsOUNEddAk/2rJigKP1wOPx1trONVptdDr9DDodTDo9NBqNHC63XC4nHC63fB4vfB4vThdcQYaSQpWXo0wGYzsqkj1LtTNNvSBwOVxR30th2Z3vNC+0Y6o5uoAU6XrQ/ff6/NWCbKB7b6oaxcKIaIGWZ1Wxw9K1GS5PR6csdlgc9gR+gpLp9Wq3X75N4viTavRQGsyw2IyAwjOOu31BCuwgRDr8/vhdLsj1vENVGEDAdZoMCRscq+hQ4c2+DmJqO5E5cpMY5CTk6OsXbs2pn1lRQ4Lpt5AUK0hnAY+zJ8NqDX9AZcVGS5XILzaXS74K3WzNBmMMJuMMBtNTW7BdEoMtctVcPypy+Op8roDAmshqtVTgyEpu67LigyfzwdPpSDr9flqnDAqMPlIWPdiXaiLsQ7SBRDyicIpigKHy4lymy2iF4LZaESzlFSYDIYL4ssrarqqfOnq8aDyJ0+NRgOzunwSCwJEyaBt27ZFiqLkx7LvBZWyZFlWx5yGqqa1hVODTg+9Xg+DTlfnX4CSkGA2BcaytgoGiUB3YSfcHk9gYXW3CydxGjqtDpZgeOW4IKqNrCjwhUJWMHB5fIHXc+UvkSQhhYVTfa1ftCQLSUjQ6wJfQFXml/1hFdmqYdbtCfwOiXbMwFI9wWV7JE3Yz5qw2Y45yzElll+WUWG344ytQh2zLoQIdPu1pECnq33JE6KGELUKG/wd7AoObfH7/aiw21FhtwMAjAaDGmB12gujxxAR1Z9GG1gDy3B4A5MhBQNqtK5/QGAyGb1OdzagnkM4rU342I0WzZrB7/er4dXhcsHr8+J0hRenKyogSVLwF60JJqORXRCT1NnurL4qXVqjTYoUonaVMgQmreA6iHWnkTTQGALdpMMpigJ/WFfi8CDr9fkgKzJkX+zL+QgIdbmeaIG2StjlerV0njxeL87YbKhw2NUvt7QaDdJSUpFqsfDLLGr0hAis9Ws0GJCGVLVnUXhBIDSR06ny8kD11WBU1waO52t81KhRAIBVq1bF7ZhEFH+NMrB6fV6UHT0S9bpAOD3bpbc+wmksNBoNUi0WpFosUBQFLrcbdpcTDqcLPr8vYvHtwDeFJpiNRuj5rXeTElqzNFQh9fpCkwZ54fP5qnR7CqcNmzBIHxxnqdfpuCRAPRJCQBucYTjaeNnQ7MXhE0FFzHzsD1wOzYCsQFEnhQKi9/aoLLx6W2PYlSRIGg27KRMURYHT7UK5zQZn2LqRRoMBaSmpMBuN/CKELlhVCgKyDGcwvDqDw7EqHHZUOILVV32g+moKfqbia5+o6WuUgTXUIzKiaqoPBNXG+OFNCAFT8JenkqbA6/OpldfQt4SBbwoD1bNQ9dXIsUUXjFAojajKBYOpXMM4cI2kUcdIVl5flM994yKEgEajifkLg/ClfAJh1l9r2JWVwL5yaBmfWNtVJeCG/3y2eqsJBly+tpoGWZZhczhQbqtQexgJCKRYzEhLSYnaHZ7oQqeRJKSYzUgxmyOqr06XU10X1uVxA2fKoZE0aniNd/WViBqPRhlYdVotMi7pcEF+6BJCqF2Um6dGflPocLrg9flQbrOh3GaDEEINr2ajkZW1ehJtYjEFCiqXPxUgrLtoZCj11zCJjxAiUCHVVQ2l/OPZdIUv5ROrysv4RKveqlXe4M+hruU+vz/WIm4wwAbG36rhNthFuXLA1bCbcqPj9fkC3X7tNvULMY1Gg2aWFDSzWPi3gpJG9dXXQID1y1Wrr6HwyuorUdPRKANrU5rIpPI3hW6PJ9h12Amvzwe70wm70wkAMOj1MBlCXbsCH1Iis5Zy9v9KlG2VLlS+aaU9o26r87FrOF+Vber9idyqRP6v0mGjbYt+bChRtsWRGkZ1kd14OS6RYlV5GZ/ahFdxQxVcOdgluWrADWxX95dleGMr4kISIiLgSmFjcKsLuHzNx5eiKHB53Ci32eAI/k0AAn8X0lJSYTGZ+JhT0qu++upSK68ujxs/nymHRpJgChYEOJ8I0YWtUQbWpip8ooFWac3Pdh12BmYbrm7mUoo/AQGIyttCS56Er9sZCKlajYYfFqnBhVdxY106KxBYz1Zw5WAV1+8PC7vBgBsKu7KiQPb74Kt+LrAqQuE11mou3z8BshIY/xz+JYPf74fN6YiY9T7FbEazlBQY9YYajkaUvKqrvoYqsH7ZD5vDDptafdWrATZUfR05cmSC7wURxYKBNYFCC7qnpaRCluVgaPUiUEI8++Hu7Oc8Efb/yAtVt0VsVbeLSiktcOxo2yK3R26K1o7KRw5sj36+6s4Z7XzVtyGW8wUOwQ/KlDwCVVwttDH2GlUUBbISHGMrn51UKiLgVgq7odmWo60RXB1JDbdnlwuKqOZKEoQkIAlJDemh8biN+T0cCPt+tXt3+MRc6uMWtq2mtc8lSQp0+01JScq1lYnOR7Tqayi8htY1d3k8YdVXI8aMHQuT0ZjophNRLRhYGwlJkmAxmWGpPHUpEVE9EkJAIzTQSLEHJFmt3IZXb6sJu/LZiabkGsaC19hGiGCYFRBCglTpshDhQTfyshBSsMvz2ctCEoFjRgnCahiPCKBVg2d4F+y6Cq9OazSBirRBp4fFbG6UEwsSXWjCq6/NmzVTiwKOUPXV71dXc5CEQIe27fglEVEjxsBKRER1IgUrpbH+AYlcMqi6gCtDUQLdk0P7hy4rUKDICgJxtw79lmsRCrqSJKAoUCe5qitN5S7RldbiPXtZ0+grxkRN0dmiQKD66vUFxr7u++YbtG7TBhV2O1o0a5boZhJRNRhYiYioXkUuGVS3tahDE08Fui4rwWCrBMOsDFlW1G7NgcvhoffszxG3k2UowWP7FT/8lQq/oXAZOT43MoByGSGiC1NgNQc99Do93l+1CpOnToXNYUfz1FS+l4kaKQZWIiJqtMIrkvHssHc2BAeCLgAGUKIk89//tw/l5eVIS0uD2+OB0cBJzogaI87xTURESSc0sZNWo1XXzuaatETJRZZlFG3fAQCosNsT3Boiqg4DKxERERElpR3btgIAbE7HOU8MR0T1i12CiYiIiCjpjB07FgBg0Ovh9nhgdzqRarEkuFVEVBkDKxERERElnXHjxgEAzthscHs8qHDYGViJGiF2CSYiIiKipHPy5EmcPHkSKWYzhBBwud3w+nyJbhYRVdIggVUIMUMIUSqE2COEWC6EMDbEeYmIiIiIopk8eTImT54cXKfVBICTLxE1RvUeWIUQlwCYDiBfUZQsBFYmGFff5yUiIiIiikWqOdAV2OawQ1GUBLeGiMI1VJdgLQCTEEILwAzgaAOdl4iIiIioRkaDAVqNBj6/Hy63O9HNIaIw9R5YFUU5AmAugB8AHANQrijK2sr7CSGmCCEKhRCFp06dqu9mEREREREBCKzNnBKsslY42C2YqDFpiC7BLQDcCCADQHsAFiHEbZX3UxRloaIo+Yqi5Lds2bK+m0VEREREpArNEGx3OLkmK1Ej0hDL2lwD4KCiKD8BgBDiPQB9AbzZAOcmIiIiIqrizjvvjPhZp9XCaDDA5XbD5nCgWUpKglpGROEaIrD+AKCPEMIMwAlgCIDCBjgvEREREVFUN910U5VtqWYLXG43Khx2BlaiRqIhxrBuA7ASwE4Au4PnXFjf5yUiIiIiqs6RI0dw5MiRiG0WkwlCCLg9Hni83gS1jIjCNUSFFYqi/B7A7xviXEREREREtZk2bRoAYNWqVeo2SZKQYjKjwmFHhd2OVs2bJ6p5RBTUUMvaEBERERE1eqHJl7gmK1HjwMBKRERERBRk0Ouh02rhl2U4Xa5EN4co6TGwEhEREREFcU1WosaFgZWIiIiIKEyqxQwAsDud8Pv9CW4NUXJrkEmXiIiIiIgak3vvvbfa67QaLUwGI5xuF2wOB9JSUxuwZUQUjoGViIiIiJLOtddeW+P1qRYLnG4XKhx2BlaiBGKXYCIiIiJKOt999x2+++67aq83m0yQhASP1wu3x9OALSOicKywEhEREVHSmTlzJoDIdVjDSUIgxWzGGbsNFQ47DHp9QzaPiIJYYSUiIiIiiuLsmqwOrslKlCAMrEREREREUeh1Ouh1OsiyDLvTmejmECUlBlYiIiIioijC12S1cU1WooRgYCUiIiIiqkaqObAmq8Plgo9rshI1OE66RERERERJZ8aMGTHtp9FoYDaa4HA5YXPY0Ty1WT23jIjCMbASERERUdIZOHBgzPumWixwuJyosNuRlpIKIUQ9toyIwrFLMBERERElnT179mDPnj0x7Ws2GqGRJHh9Pq7JStTAWGElIiIioqTz5JNPAqh+HdZwocmXym0VqHDYYTQY6rt5RBTECisRERERUS3C12SVZTnBrSFKHgysRERERES10Ot0MOj0UBQFdhfXZCVqKAysREREREQxUKusdq7JStRQGFiJiIiIiGJgMZshADjdbnh9vkQ3hygpcNIlIiIiIko6v/3tb+t8G40kwWwyw+50wOawo0WztHpoGRGFY2AlIiIioqTTs2fPc7pdqsUCu9OBCrsdzVObcU1WonrGLsFERERElHR27NiBHTt21Pl2JoMBGo0GPr8fLre7HlpGROFYYSUiIiKipPOnP/0JQGzrsIYTQiDVbMHpijOocNhhMhrro3lEFMQKKxERERFRHaRazAAAu9PJNVmJ6hkDKxERERFRHei0Ohj1BiiKApvTkejmEDVpDKxERERERHUUqrJWcE1WonrFwEpEREREVEcWkxlCCLg9Hni83kQ3h6jJ4qRLRERERJR0/vjHP57X7SVJgsVkgs0RWJO1ZVrzOLWMiMIxsBIRERFR0snKyjrvY6RaLLA5HKhwONCiWRrXZCWqBw3SJVgI0VwIsVIIsU8I8f+EEAUNcV4iIiIiomi++OILfPHFF+d1DKPeAK1GC7/fD6fbFaeWEVG4hqqwvghgjaIotwgh9ADMDXReIiIiIqIq5s2bBwAYOHDgOR9DCIFUixk/nzmDCrsdZqMpXs0jqjcutxvltgoAgdewJEmQhIAQEiRJQBJSxHZJCl4X3NbQPQnqPbAKIdIADAQwEQAURfEA8NT3eYmIiIiI6luq2YKfz5yB3emEX/ZDI2kS3SSiqBRFQbmtAqfKy8/7WGdDbjWBN/ivJETE5XMJvA1RYc0A8BOA14UQOQCKADyoKErEHOBCiCkApgBAhw4dGqBZRERERETnR6vVwmQwwOl2w+ZwIC0lNdFNIqpClmX8eOoUHC4nACAtJQUGvQGyIkORFciKDFlRzl6WFSjBbbIsQ1EUyMHrQseTG6jtDRFYtQDyADygKMo2IcSLAGYBeDJ8J0VRFgJYCAA5OTlKA7SLiIiIiOi8pVoscLrdqLDbGVip0XF7PDh+8iR8fh8kIXBxy1awmM6t+7qiBGKaLAcDbjDcng25lQJv8LrwwCvLdYt6DRFYDwM4rCjKtuDPKxEIrEREREREFzyzyQRJCHi8Xni8Huh1+kQ3iQgAUGG34cTPp6FAgV6nQ5tWF0GnPfcIGOrOq9Fo0FCd3+s9sCqK8j8hxCEhRBdFUf4LYAiAvfV9XiIiIiKi6syZMydux5KEBIvZjAq7HRV2O1o1Z2ClxJIVGSd/Po0KR2AUZqrZglYtmkMSDbJITFw11CzBDwBYFpwh+ACAuxrovEREREREVVx++eVxPV6qxRIIrA4HWqY155qslDBenw/HT56Ax+uFgMBFLZoj1ZKS6GadswYJrIqiFAPIb4hzERERERHVZu3atQCAa6+9Ni7HM+j00Gm18Pp8cLicsJi4iiM1PLvTgZ9OnYKsKNBqtWjTshUM+gu74t9QFVYiIiIiokbjlVdeARC/wBpYk9WCU+XlqLDbGVipQSmKglPl5er6qmajCa1btoQkXXhdgCu78O8BEREREVEjkGK2AAAcLhd8fn+CW0PJwuf349hPP6lhtWVaGtq0atUkwirAwEpEREREFBdajQZmoxEAYAtOdkNUn5wuF44c/x9cHjc0koT2F7dG89RmTWoMNQMrEREREVGcpFoCVdYKu11ds5Io3hRFwekzZ3DsxE/wyzKMBgMuadMWRoMh0U2LO45hJSIiIiKKE7PRBEmS4PX54PZ6YNQ3vQBBieWXZfx06iQcLhcAoHlqKlo0S2tSVdVwDKxERERElHTmz59fL8cVQiDFbMYZmw02u52BleLK7fHg+MkT8Pn9kITAxS1bwWIyJbpZ9YqBlYiIiIiSziWXXFJvx041WwKB1eFAy+YtIDXRyhc1HEVRUGG34+Tpn6EA0Ot0aNPqIui0TT/ONf17SERERERUyerVqwEAN910U9yPbdDrodfp4PF64XA6kWLmEjd07mRZxonTP8PmcAAIjJNulURfhDCwEhEREVHSeeONNwDUT2AFAqHi5OnTqLDbGVjpnHm8Xvx46iQ8Xi+EELioeQt1Yq9kwVmCiYiIiIjiLBRSnW4XfD5fgltDFyKbw4EjPx6Hx+uFTqvFJa1bJ11YBRhYiYiIiIjiTiNp1MlwKoJdOYlioSgKTp7+GT+eOglFUWAxmXBJ6zbQ6/SJblpCMLASEREREdWDVHNwTVYH12Sl2Pj8Phz96UeU22wAgFZpzdG6ZStIUvLGNo5hJSIiIiKqByajERpJA5/PB5fHA5OBS9xQ9ZwuF348dRJ+WYZGo0Gblq1g5GuGgZWIiIiIks9rr71W7+cQQiDVYsbpigpU2O0MrBSVoig4XVGBn8+UAwBMBgNat2wFjUaT4JY1DgysRERERJR0WrVq1SDnSTFbcLqiAnanA7LcPKm7dlJVftmPH0+dgtPlAgA0T22GFs2aQSTJkjWxYGAlIiIioqTz1ltvAQDGjRtXr+fR63Qw6PVwezywO51JOcsrRef2eHD85An4/H5IkoTWLVvCbDQlulmNDgMrERERESWdFStWAKj/wAoE1mR1ezyosNsZWJOQoihQFAVy6F9ZhsvjxsnTpwEABp0erVu1gk7LaBYNHxUiIiIionqUYjLj5OnTcHnc8Pp8DCaNULRQefZnOfCvfPZn9TpZgVzTz8H/qtPMkoJWzZuzC3AN+G4hIiIiIqpHkiTBYjLB5nCgwm5Hy7S0RDfpghQZKmXIslJjqKxLyFRQv8sOCSEghIAU+leSkJaSihSzuV7P2xQwsBIRERER1bNUsyUQWB32Jj2pTq2hMsaQqV5u4FAZCpRCSJCk8JAZ5WchIKRKPwsR3E8KO5Zoss93Q2BgJSIiIiKqZ0aDAVqNBj6/H063G2ajMaHtURQFflmGIlcKhjWGzEpVyWCoVLu+ynI9R0pUqVLWGjLVUClVui1D5YWCgZWIiIiIks6yZcsa9HyBNVkt+PnMGVTY7Q0aWGVZhtvrgcfjDfzr9cLj9dbb+aoPlWcDZGBb2HWVQ2WUkMlQmZwYWImIiIgo6ZgTMHYwxRwIrA6nEyL7jJwAACAASURBVH5ZhqYe1mT1+f3weD1we7yBf71e+Hy+qPtqJKlOXV9jCZkCDJUUXwysRERERJR0Xn/9dQDAXXfd1WDn1Gm1MBoMcLndsDscaJaScs7HUhSlajj1eOGX/VH3D60Hq9fpYNAF/pXqITATxRsDKxERERElnffffx9AwwZWIDD5ksvtRoXdHnNgVRQFXp8Pbo9HrZp6PB7IUZZLEUIEAqn+bDDV63SsetIFi4GViIiIiKiBWEwmnDgt1LGkep0u4npZUeAJH2/qCYw3jTZDrkaSoNfpYdDr1H+1Gi3DKTUpDKxERERERA1EkiSkmM2osNtxxmaDxWxSw6nb44XXF30yJK1Go4bSQAVVHxyDynBKTRsDKxERERFRA0o1WwKB1W7DGbutyvU6rTY43lQPg06nhlOiZMTASkRERETUgAx6PYwGA9xud2CMqV4fMd6UkyERnSWUKIO1E+2iiy5S0tPTE90MIiIiIiIiirOioiJFUZSYvplplBXW9PR0FBYWJroZREREREREFGdCiJ2x7sv+BkRERERERNQoNcoKa7jDhw9j1KhR2LlzJ2RZTnRziIgoSUmShLy8PKxatQodOnRIdHOIiIiSQqMPrKNGjcLNN9+ML7/8Enq9PtHNISKiJOXxeDB37lyMGjUKO3bsSHRziIiIkkKjnHQpPz9fCY1h1Wg0cDqdDKtERJRwHo8HJpMJfr8/0U0hIiK6YAkhihRFyY9l30Y/hlWWZYZVIiJqFPR6PYenEBERNaBGH1iJiIiIiIgoOTGwEhERERERUaPEwEpERERERESNUpMLrC+88AIcDkeDnGv16tUQQmDfvn0Ncr7zlZKSEtfjNZX7/+yzzyIzMxNWqxW5ubnYtm3bOR1/48aN+Oqrr86niRHS09Nx4sSJuB1v+PDhaN68OUaMGBGxfcKECejSpQuysrIwadIkeL3eGo9TXFyMgoIC9TFbsWKFet3BgwfRu3dvXH755Rg7diw8Hg8A4IsvvkBeXh60Wi1WrlxZ5ZhnzpxBhw4dMG3atDjcUyIiIiJqKhhYz8Py5cvRv39/LF++PG7H9Pl8cTtWfWsK93/Lli348MMPsXPnTpSUlGD9+vXo2LHjOR0r3oH1fER7HGfOnImlS5dW2T5hwgTs27cPu3fvhtPpxGuvvVbjsc1mM/75z3+itLQUa9aswUMPPYTTp08DAB599FHMmDED/5+9+46rsm4fOP65D8MBztyKAqagTAVRNBRXztw7Z6mZ9bSebPurnup5etIn08psuFJTc2Zlqam4cqGiuQeSM8UtQ1nX748Dd4AIKMgRvN6vFy/Oucf3vu4z4Fzne93f79GjRylXrhxTp04FoGbNmsyYMYMBAwZk2ebYsWNp3rz5nZ6mUkoppZQq4gptwhobG0unTp3w8/PD29ub+fPnM2nSJM6cOUPLli1p2bIlAE8//TSBgYF4eXnx9ttvm/svX74cT09PAgICeO6558xep9jYWJ544gmCgoJo0KABP/zwQ5bHj4mJYePGjUydOpV58+aZy8PCwmjevDmdOnXCw8ODUaNGmSNKOjs78+KLL+Ll5UXr1q2Jjo4GIDQ0lBdeeIHAwEAmTpxIVFQUrVq1wtfXl9atW3PixAmuXr1KrVq1zLZiY2NxcXEhMTGRY8eO0b59ewICAggJCTF7PI8fP05wcDA+Pj689dZb+fr4F5XzP3v2LBUqVKBYsWIAVKhQgWrVqgGwY8cOWrRoQUBAAO3atePs2bNmvM8//zz+/v54e3uzbds2oqKimDJlChMmTMDf358NGzYQHR1Nz549adSoEY0aNWLTpk0AvPPOOwwZMoSQkBBq1arF4sWLeeWVV/Dx8aF9+/YZejg/+ugjfHx8CAoK4ujRowDZtjto0CCaNWvGoEGDbjnX1q1bU6pUqVuWd+zYEcMwMAyDoKAgTp06le1zX7duXerUqQNAtWrVqFSpEtHR0YgIa9asoVevXgAMGTKEpUuXAtbeYl9fXyyWW//k7Nixg3PnzvHoo49me1yllFJKKfUAEpFsf4BpwHlgb7pl5YFVwJHU3+Wy2M8f2AzsA/YAfXM6VtpPQECApLGGeKuFCxfK8OHDzftXrlwREZFatWpJdHS0ufzixYsiIpKUlCQtWrSQ3bt3S3x8vNSoUUMiIyNFRKRfv37SqVMnERF5/fXXZdasWSIicvnyZalTp47ExMTI6dOnpUOHDma7s2fPlieeeEJERIKDgyU8PFxERNauXSvFihWTY8eOSVJSkrRp00YWLFhgnsvs2bNFROTdd9+VZ555RkREWrRoIU8//bTZdufOnWXGjBkiIjJ16lTp2rWriIh06dJF1qxZIyIi8+bNkyeffFJERFq1aiWHDx8WEZEtW7ZIy5YtRUTksccek5kzZ4qIyGeffSZOTk5ZPpZ3o6ic//Xr18XPz0/q1KkjTz/9tISFhYmISEJCggQHB8v58+fN4w0bNsyMN+21t27dOvHy8hIRkbffflvGjRtntt2/f3/ZsGGDiIj8+eef4unpaW7XrFkzSUhIkIiICClRooQsX75cRES6desmS5YsERHra/n9998XEZGZM2ear9Hs2m3YsKHExcXd9nlbu3at2U5mCQkJ0qBBA1m/fv1t989s69at4unpKcnJyRIdHS21a9c21504ccJ8bNIMGTLEfD2IiCQnJ0uLFi3k5MmTMn36dPM1odT97Hb/l5RSSimVO0C45DI3zE0P6wygfaZlrwGrRaQOsDr1fmZxwGAR8Urd/xPDMMrmLo3OmY+PD6tWreLVV19lw4YNlClTJsvtvv/+exo2bEiDBg3Yt28f+/fv5+DBg7i7u+Pm5gZA//79ze1XrlzJhx9+iL+/P6Ghody4cYMTJ05QrVo1li9fbm43d+5c+vXrB0C/fv0ylMUGBQXh7u6OnZ0d/fv3Z+PGjQBYLBb69u0LwMCBA83lgLkcrGWqaaWTgwYNMrfr27eveb3gvHnz6Nu3LzExMfz+++/07t0bf39/nnrqKbMncNOmTea5ZdXjlhdF5fydnZ3ZsWMHX331FRUrVqRv377MmDGDQ4cOsXfvXtq2bYu/vz/vv/9+hp7HtHabN2/OtWvXzJLY9H777TeeffZZ/P396dKlC9euXSMmJgaADh064ODggI+PD8nJybRvb32L+fj4EBUVdctx+vfvz+bNm3Nst0uXLpQoUSLLc83J6NGjad68OSEhIbna/uzZswwaNIjp06dn2XOaG5MnT6Zjx47UqFHjrvZXSimllFJFm31OG4jIesMwXDMt7gqEpt6eCYQBr2ba73C622cMwzgPVARu/WR/F+rWrcvOnTtZvnw5b731Fq1bt+b//u//Mmxz/Phxxo8fz/bt2ylXrhxDhw7lxo0b2bYrIixatAgPD4/bbnPp0iXWrFnDH3/8gWEYJCcnYxgG48aNA8AwjAzbZ76f1XInJ6ds4wJrMvLGG29w6dIlduzYQatWrYiNjaVs2bJERETkeIycLFmyhHfffReAb775hsDAwCy3K2rnb2dnR2hoKKGhofj4+DBz5kwCAgLw8vIyk8Sc2s3qOCkpKWzZsoXixYvfsi6tBNliseDg4GDub7FYMlx/mr7dtNvZtZubxzEr7777LtHR0Xz55Ze52v7atWt06tSJDz74gCZNmgDw0EMPceXKFZKSkrC3t+fUqVNUr14923Y2b97Mhg0bmDx5MjExMSQkJODs7MyHH354V+ehlFJKKaWKlru9hrWyiJxNvf0XUDm7jQ3DCAIcgWPZbDPSMIxwwzDC065tzM6ZM2coWbIkAwcOZMyYMezcuROAUqVKcf36dcD6odrJyYkyZcpw7tw5fvnlFwA8PDyIjIw0e7LSj3Larl07Pv3007SyZnbt2nXLsRcuXMigQYP4888/iYqK4uTJk7i5ubFhwwYAtm3bxvHjx0lJSWH+/Pk88sgjgDXRSBsh9bvvvjOXZ9a0aVPzutA5c+aYPV7Ozs40atSI559/ns6dO2NnZ0fp0qVxc3NjwYIFgDXh3r17NwDNmjXL0E5OunfvTkREBBEREbdNVova+R86dIgjR46Y9yMiIqhVqxYeHh5ER0ebCWtiYiL79u0zt0t7zWzcuJEyZcpQpkyZDK89gEcffZRPP/00Q9t3Ku048+fPJzg4ON/aTe+bb75hxYoVzJ07N0NP6bZt2xg8ePAt2yckJNC9e3cGDx5sXq8K1oS6ZcuW5nM8c+ZMunbtmu2x58yZw4kTJ4iKimL8+PEMHjxYk1WllFJKKWXK86BLqTXIcrv1hmFUBWYBw0QkJZt2vhKRQBEJrFixYo7H/eOPPwgKCsLf3593333XHFRn5MiRtG/fnpYtW+Ln50eDBg3w9PRkwIABNGvWDIASJUowefJkc6CeUqVKmSXFY8eOJTExEV9fX7y8vBg7dixgTZA7duwIWMthu3fvniGenj17mmWxjRo14tlnn6VevXq4ubmZ2zo5ObFt2za8vb1Zs2bNLT3CaT799FOmT5+Or68vs2bNYuLEiea6vn37Mnv27AwltHPmzGHq1Kn4+fnh5eVlDhQ1ceJEPv/8c3x8fDh9+nSOj2luFaXzj4mJYciQIdSvXx9fX1/279/PO++8g6OjIwsXLuTVV1/Fz88Pf3//DCMAFy9enAYNGjBq1ChzJNzHHnuMJUuWmIMuTZo0ifDwcHx9falfvz5Tpky504eay5cv4+vry8SJE5kwYQLAXbcbEhJC7969Wb16NTVq1GDFihUAjBo1inPnzhEcHIy/vz//+te/ADhx4kSW5cXff/8969evZ8aMGfj7++Pv728mzf/973/5+OOPefjhh7l48SJPPvkkANu3b6dGjRosWLCAp556Ci8vrxzjHT58OOHh4bk6N6WUUkopVTQZaT2J2W5kLQn+SUS8U+8fAkJF5GxqQhomIrfU0BqGURprufC/ReTWyRdvIzAwUNI+qBqGQW5ivFMxMTE4OzsjIjzzzDPUqVOHF198Mc/thoWFMX78eH766adb1jk7O5vXGhZVD8L5h4aGMn78+Gx7oYuCMWPGMGjQIHx9fW0dilL3lXv1f0kppZR6UBiGsUNEcvVh+m57WJcBQ1JvDwFumfvFMAxHYAnw7Z0kqwXl66+/xt/fHy8vL65evcpTTz1l65CUuq+MGzdOk1WllFJKKWVTOfawGoYxF+sASxWAc8DbwFLge6Am8CfQR0QuGYYRCIwSkeGGYQwEpmOd1ibNUBHJ8YK7guhhVUoppe6G/l9SSiml8iZfe1hFpL+IVBURBxGpISJTReSiiLQWkToi0kZELqVuGy4iw1Nvz07dxz/dT95Gh8nE2dk5w/0ZM2bw7LPPsmrVKoKDg80PFMnJyTRo0MC8BvGrr77C09MTT09PAgMDCQsLA6wjpb7++usZ2oyIiKBevXoAuLq6cuHCBXPd0qVLMQyDgwcP5ireadOm4ePjg6+vL97e3ua1lreTdj55FRUVxXfffZfndgrKv//973xtb8aMGZw5cyZf27zT4xw8eBB/f38aNGjAsWO3HXssX4WFhWW47nbKlCl8++23d9XWvXgNDR8+nP379wMZn/OoqCi8vb3z7ThnzpzJMDhUQVu2bFmhG0gq89/WrEyaNIl69erx+OOP5+ocmzZtml/h3ZGzZ8/SuXNnwPqeKFOmDP7+/tSrV88cFT0sLMzc5qeffrrt9fVKKaWUKnh5HnTpftS2bVtq1aplDobz6aefEhgYSNOmTfnpp5/48ssv2bhxIwcPHuSrr75i4MCBnD59mv79+2cYMRis832mn6c1vblz5/LII49kmIP0dk6dOsUHH3zAxo0b2bNnD1u2bCmwcsuikrCKCCkptx2367buh4R16dKl9OrVi127dlG7du0c27rbc00vc8I6atSoLEf9zY178Rr65ptvqF+/PpD/X1KkSUpKolq1aubIxfnddm506dKF117Laqrqwm3y5MmsWrWKOXPm5Ooc078WC9LHH3/MiBEjzPshISFEREQQHh7O7NmzzRHm03Tq1Ikff/yRuLi4gg5VKaWUUlkokgkrwIQJE/jPf/7Dvn37+Oyzz/jvf/8LWEcxHTduHBUqVACgYcOGDBs2jM8//5y6detSrlw5tm7darbz/fffZ5mwxsTEsHHjRqZOnWpOnZKd8+fPU6pUKbPnwtnZGTc3N8A6iE9aCfSFCxdwdXU19zt58iShoaHUqVPH7A0A+Pbbb/H19cXPz49BgwYBMHTo0AwfzNOO9dprr7Fhwwb8/f2ZMGECUVFRhISE0LBhQxo2bGh+kAwLCyM0NJRevXrh6enJ448/bvZS79ixgxYtWhAQEEC7du04e9Y6q1FERARNmjTB19eX7t27c/ny5WzPad++febozr6+vhmmlEmLNT4+Hn9/fx5//HGioqLw8PBg8ODBeHt7c/LkSVauXElwcDANGzakd+/e5kBO//rXv2jUqBHe3t6MHDkSEWHhwoWEh4fz+OOP4+/vT3x8PK6urrz++uv4+/sTGBjIzp07adeuHbVr184w4u64ceNo1KgRvr6+vP3224A1catXrx4jRozAy8uLRx99lPj4+CyPk2b58uV88sknfPHFF7Rs2RKwfoj29vbG29ubTz75xGw787mm5+rqyiuvvIKPjw9BQUEcPXoUgB9//JHGjRvToEED2rRpw7lz54iKimLKlClMmDDBHLX4nXfeYfz48QAcO3bMHCU7JCTErBIYOnQozz33HE2bNsXd3d18PWV+DeX0PC5YsICXXnoJsI7W7O7uDkBkZKQ5WnfaayTzcw7WqojMj3FmQ4cOZdSoUQQGBlK3bl1zoK8ZM2bQpUsXWrVqRevWrTP02M6YMYNu3brRtm1bXF1d+eyzz/j4449p0KABTZo04dKlS4D1GvdGjRrh5+dHz549zeQl7ZiNGzfmlVdeoU6dOqRNw5WSksLDDz9M5mm50ldKDB06lKeffpomTZrg7u5OWFgYTzzxBPXq1WPo0KHmPs7OzowZMwYvLy/atGnDtm3bCA0Nxd3dnWXLlt3SLkDnzp3NahFnZ2fefPNN/Pz8aNKkCefOnTNfY61atcLX15fWrVtz4sQJwDpndXBwMD4+PuaI62myeh+MGjWKyMhIOnTowIQJEzLEcu7cObp3746fnx9+fn7m35f0vbZ38t4COHr0KG3atMHPz4+GDRty7NgxBg8ezNKlS802H3/88SyrVhYtWkT79u1vWe7k5ERAQID5PkpjGAahoaFZDhynlFJKKRsQkfvuJyAgQNJYQ8yaxWIRPz8/88fFxUWeeeYZc/2kSZOkVKlSMn36dHNZuXLl5MqVKxnaWbp0qXTt2lVERMaNGycvvPCCiIhs3rxZ0sdSq1YtiY6OFhGR2bNnyxNPPCEiIsHBwRIeHn7bOEVEkpKS5NFHHxUXFxcZOnSoLFu2zFzXokUL2b59u4iIREdHS61atUREZPr06VKlShW5cOGCxMXFiZeXl2zfvl327t0rderUMWO5ePGiiIgMGTJEFixYYLbr5OQkIiJr166VTp06mctjY2MlPj5eREQOHz5snuPatWuldOnScvLkSUlOTpYmTZrIhg0bJCEhQYKDg+X8+fMiIjJv3jwZNmyYiIj4+PhIWFiYiIiMHTtWnn/++WzP6dlnn5XZs2eLiMjNmzclLi7ulscqLW4RkePHj4thGLJ582azrZCQEImJiRERkQ8//FDefffdDI+DiMjAgQPNxzh9LCLW53Hy5MkiIvLCCy+Ij4+PXLt2Tc6fPy+VKlUSEZEVK1bIiBEjJCUlRZKTk6VTp06ybt06OX78uNjZ2cmuXbtERKR3794ya9asLI+T3ttvvy3jxo0TEZHw8HDx9vaWmJgYuX79utSvX1927tx5y7lmVqtWLXn//fdFRGTmzJnmc3rp0iVJSUkREZGvv/5aXnrppVuOmfl+q1at5PDhwyIismXLFmnZsqWIWF9DvXr1kuTkZNm3b5/Url1bRG59DeX0PJ49e1YCAwNFRKRnz54SGBgop06dkhkzZshrr712y+OV+Tm/3WOc3pAhQ6Rdu3aSnJwshw8flurVq0t8fLxMnz5dqlevbr4ejh8/Ll5eXiJifU/Vrl3bfL5Lly4tX3zxhYhYXwsTJkwQEZELFy6Yx3nzzTdl0qRJ5jE7deokSUlJIiLyzjvvmPusWLFCevTocUuc06dPN/8uDRkyRPr27SspKSmydOlSKVWqlOzZs0eSk5OlYcOG5jkDsnz5chER6datm7Rt21YSEhIkIiJC/Pz8bmlXRKRTp06ydu1ac/+01/+YMWPkvffeExGRzp07y4wZM0REZOrUqebfvccee0xmzpwpIiKfffaZ+Xzc7n0gkvHvYfpY+vTpYz4mSUlJ5t/bnNrM7nkPCgqSxYsXi4hIfHy8xMbGSlhYmBn/lStXxNXVVRITEzM89pGRkdKwYUPzfvrX8YULF6RWrVqyd+/eW17fs2fPlmefffaW5zJNdv+XlFJKKZUzIFxymRva2zRbzqMSJUqY8z+Ctcch/byNzzzzDK+99lqGnouc9O3bl6ZNm/K///0vx3Lg559/HoB+/foxd+5cAgICbtuunZ0dv/76K9u3b2f16tW8+OKL7Nixg3feeSfbeNq2bctDDz0EQI8ePdi4cSN2dnb07t3b7CUuX758rs8PIDExkWeffZaIiAjs7Ow4fPiwuS4oKIgaNWoA4O/vT1RUFGXLlmXv3r20bdsWsPZ+Va1alatXr3LlyhVatGgBwJAhQ+jdu3e2xw4ODuaDDz7g1KlT9OjRgzp16uQYb61atWjSpAkAW7ZsYf/+/WYvXUJCAsHBwQCsXbuWjz76iLi4OC5duoSXlxePPfZYlm126dIFAB8fH2JiYihVqhSlSpWiWLFiXLlyhZUrV7Jy5UoaNGgAWHvUjxw5Qs2aNXFzc8Pf3x+AgIAAoqKicjyH9DZu3Ej37t1xcnICrM/rhg0b6NKlS4ZzzUra67F///7mNEynTp2ib9++nD17loSEBLPn/nZiYmL4/fffMzxXN2/eNG9369YNi8VC/fr1zZ65zHJ6HqtUqUJMTAzXr1/n5MmTDBgwgPXr17NhwwZ69OiRbXxArh/jPn36YLFYqFOnDu7u7mZPcdu2bW/7vmjZsqX5fJcpU8Z8jfj4+LBnzx4A9u7dy1tvvcWVK1eIiYmhXbt25v69e/fGzs4OgCeeeIKuXbvywgsvMG3aNIYNG5bjuT322GMYhoGPjw+VK1fGx8cHAC8vL6KiovD398fR0dHsFfTx8aFYsWI4ODjg4+OTq9ebo6OjeU1mQEAAq1atAmDz5s0sXrwYgEGDBvHKK68AsGnTJhYtWmQuf/XVVwFu+z5o3rz5bY+9Zs0a81ppOzs7c47rNHf63rp+/TqnT58253MuXrw4AC1atGD06NFER0ezaNEievbsib19xn9pZ8+eJfO83hs2bKBBgwZYLBZee+01vLy8zJ7pNJUqVSqQywiUUkoplbNCnbDmxGKxYBhGhmX169dnx44dtGrVyly2Y8cOc05NFxcX3NzcWLduHYsWLWLz5s23tHvp0iXWrFnDH3/8gWEYJCcnYxgG48aNu+V46RmGQVBQEEFBQbRt25Zhw4bxzjvvYG9vb16veOPGjVv2ye5+eunbSUlJISEhIcvtJkyYQOXKldm9ezcpKSnmB0CAYsWKmbft7OxISkpCRPDy8rrlsbh69WquYkl/TgMGDKBx48b8/PPPdOzYkS+//DLDc5GVtMQOrBUBbdu2veW64Rs3bjB69GjCw8NxcXHhnXfeueWxTC/tPC0WS4Zztlgs5jm//vrrt0x3FBUVdctjlFW56t1Kf65ZSf/8p93+xz/+wUsvvUSXLl0ICwvL8UuQlJQUypYtm+HLnvTSn5/cZiTU3DyPTZs2Zfr06Xh4eBASEsK0adPYvHkz//vf/7KNL3MM2T3Gt3t/ZPc4Zn6+078W0q5LHTp0KEuXLsXPz48ZM2ZkSGjSt+3i4kLlypVZs2YN27ZtY86cObk+t9u99gAcHBzMc7ldjOnfY5DxfZZ+/7T3cU6y+ttyu/dBXuTne2vw4MHMnj2befPmMX369FvWlyhR4pa/AyEhITmW+964cYMSJUrkdCpKKaWUKgBF9hrW23nllVd49dVXuXjxImC9BnPJkiUZPjyl9V65u7ubvY3pLVy4kEGDBvHnn38SFRXFyZMncXNzY8OGDbc97pkzZzIM7hEREUGtWrUA67WJO3bsMNtOb9WqVVy6dIn4+HiWLl1Ks2bNaNWqFQsWLDDPIe26u/TtLFu2jMTERABKlSrF9evXzTavXr1K1apVsVgszJo1i+Tk5GwfMw8PD6Kjo82ENTExkX379lGmTBnKlStnnvesWbPM3tbbnVNkZCTu7u4899xzdO3a1ezRSs/BwcGMPbMmTZqwadMm87qz2NhYDh8+bH4orVChAjExMRmOmfn8c6Ndu3ZMmzbNvD729OnTnD9/Ptt9cnuckJAQli5dSlxcHLGxsSxZsoSQkJBcxZU2KNj8+fPNnuWrV69SvXp1AGbOnJljPKVLl8bNzY0FCxYA1gRi9+7dd3RuuXkeQ0JCGD9+PM2bN6dBgwasXbuWYsWK3dLjBtk/59lZsGABKSkpHDt2jMjISDw8PO64jaxcv36dqlWrkpiYmGMSOnz4cAYOHJih57UguLq6EhERQUpKCidPnmTbtm057tO0aVPzmvs5c+aYr7tmzZplWJ7mbt4HrVu35osvvgCs1RiZv9i60zZLlSpFjRo1zOtVb968meGa4rRrwNMG8Eqvbt26d1wBAXD48OF8HalaKaWUUnfvgUtYu3TpwpNPPkmzZs14+OGHeeSRR1i6dGmGsrHevXuzb9++bMuB08rT0vTs2TPb0YITExN5+eWX8fT0xN/fn/nz5zNx4kQAXn75Zb744gsaNGiQYdocsJbo9uzZyGU4VwAAIABJREFUE19fX3r27ElgYCBeXl68+eabtGjRAj8/P3NwmxEjRrBu3Tr8/PzYvHmz2RPk6+uLnZ0dfn5+TJgwgdGjRzNz5kz8/Pw4ePBgjr16jo6OLFy4kFdffRU/Pz/8/f3NgVRmzpzJmDFj8PX1JSIiwpwO4nbn9P333+Pt7Y2/vz979+7NctTakSNH4uvraw7Ak17FihWZMWMG/fv3x9fXl+DgYA4ePEjZsmUZMWIE3t7etGvXjkaNGpn7pA2Uk3kwpOw8+uijDBgwwByIplevXjkmo7k9TsOGDRk6dChBQUE0btyY4cOHm+WRObl8+TK+vr5MnDiRCRMmAPDOO+/Qu3dvAgICzDJxsJaeLlmyxBx0Kb05c+YwdepU/Pz88PLyynGKpcyvodw8jyEhIZw8eZLmzZtjZ2eHi4sLjzzySJbtZ/ecZ6dmzZoEBQXRoUMHpkyZkqFaIC/ee+89GjduTLNmzfD09Mx22y5duhATE5OrcuD81KxZM9zc3Khfvz7PPfccDRs2zHGfTz/9lOnTp+Pr68usWbPMv0ETJ07k888/x8fHh9OnT5vb3837YOLEiaxduxYfHx8CAgLMqYvy0uasWbOYNGkSvr6+NG3alL/++guAypUrU69evds+9k5OTtSuXfuWgZVysnbtWjp16nRH+yillFLq3jBuV/JnS4GBgZJ2Leq9nKA9KSmJYcOGkZKSwuzZs7Mtt1XK1lxdXQkPD8+QlD7Ihg4dSufOnW06xypAeHg4L774YrYVFureiIuLw8fHh507d2bZcw+wZMkSduzYwfvvv5+rNs+dO8eAAQNYvXr1bbe5l/+XlFJKqQeBYRg7RCQwN9sW6WtYc2Jvb8+sWbNsHYZSqpD68MMP+eKLL3J17arKX7/99htPPvkkL7744m2TVYDu3bubl0/kxokTJ3J1nbVSSimlCsYD3cOqlFJK3Sn9v6SUUkrlzZ30sD5w17AqpZRSSimllCocNGFVSimllFJKKXVf0oRVKaWUUkoppdR9KVcJq2EY0wzDOG8Yxt50y8obhrHKMIwjqb/L3WbfIanbHDEMY8gdB2ixkJCQcKe7KaWUUvkuISEBi0W/61VKKaUKSm7/684A2mda9hqwWkTqAKtT72dgGEZ54G2gMRAEvH27xPZ2GjZsyPjx4zVpVUopZVMJCQmMHz8+V3PeKqWUUip/5GpaGxFZbxiGa6bFXYHQ1NszgTDg1UzbtANWicglAMMwVmFNfOfmNsAlS5bQvXt3xo4dS0pKSm53U0oppfKVxWKhYcOGLFmyxNahKKWUUg+MvMzDWllEzqbe/guonMU21YGT6e6fSl12C8MwRgIjAWrWrGkur1GjBtu3b89DmEoppZRSSimlCqN8uRBHrBPS5WlSOhH5SkQCRSSwYsWK+RGWUkoppZRSSqlCLC89rOcMw6gqImcNw6gKnM9im9P8XTYMUANr6XC2zpw5g2EYeQhNKaWUUkoppVRhl5eEdRkwBPgw9fcPWWyzAvh3uoGWHgVez6nhatWqcebMmTyEppRSSiml1O2FhoYCEBYWZtM4lHoQ3UnnZG6ntZkLbAY8DMM4ZRjGk1gT1baGYRwB2qTexzCMQMMwvgFIHWzpPWB76s+/0gZgUkoppZRSSimlspPbUYL732ZV6yy2DQeGp7s/DZh2V9EppZRSSil1D/j7+9s6BKVULuSlJFgppZRSSqlC6ZNPPrF1CEqpXMiXUYKVUkoppZRSSqn8pgmrUkoppZR64AwcOJCBAwfaOgylVA60JFgppZRSSj1wTp06ZesQlFK5oD2sSimllFJKKaXuS5qwqvtGcmIyN6/fsHUYSimllFJKqfuElgSr+8LRlftY8fIC4i7GEjiyOU2eb02JsiVtHZZSSimllFLKhjRhVTYVG32dVW8s5sDiXeayLZNWEzHzd5o835rAEc1xKOlowwiVUkopVRQFBwfbOgT1gDqz40/m9fzCppWFFnsL1Ru54t66Hu6t61HZpzqGYdgsnuwYImLrGG4RGBgo4eHhtg5D3UMiwh/ztrN67FJuXI7DoaQjzV/vQPVGbqz74Gf+3HAEAOfKpXnklXb4Pt4EOwc7G0etlFJKKaVU3vz07Hf8MXebrcPIwKlyadxbeVK7TT1cQz3ueaWjYRg7RCQwV9tqwqoK2uXjF/j1n98Tte4wAG4tPWj/vz6UrfWQuc3xtYcIe+9H/tptHcGvXO2KtHijI55d/DAseum1UkoppZQqfJITkpjo8RY3r91gxO+vUcGjik3iuHE1jqh1R4hcfYBjvx0g5q+r5jrDYlAt0JXarevh3qYeVXyr5/vnb01Y1X0pJSmZ7VPWsf7DX0iKT6R4uZK0+aA73n0CsyxBkJQUDv64h3Uf/MzlY9EAVPFzIXRsZ9xaehR0+EoppZQqQnr27AnAokWLbByJepAcXbmPBf2/pmL9qgzf8KqtwwGslY/R+89ak9fVBzi1JZKUpBRzfcmKzri39MS9TT3cWnpSsrxTno+pCau67/y1+yS/vDjf7DH16hVAmw+6U7KCc477Jicms+e7rWz876/EnLsGgGvzurQY25lqDWve07iVUkopVTSFhoYCEBYWZtM41IPlp2fm8Me87TR/vSPNXn7U1uFk6ea1G0StP0zkmgNE/naAa6evmOsMi0HVhjVxb12P2q3rUbWBy131vmrCqu4biXEJbPjoV7ZNDkOSUyhdoxzt/9eb2m3q31Vb4V+vZ8vE1dy4Gg+Ax2N+tHizIw/VqZzfoSullFKqCNOEVRW0pJtJTPK0lgOP3PJ6ofj8KiJcOPQXkb8dIHL1QU5sPkZKYrK5vsRDTtbe19b1cG/lmavOKNCEVd0notYd5peX5nMl6iIYBo2eak7z1zvi6FwsT+3GX4ljy8TVhH+1nqQbiRh2FnwHBPHImPaUrl42n6JXSimlVFGmCasqaEdW7GPhgK+p5FWNJ9e/Yutw7kpCzE3+3HCEY6sPELn6AFdPXPp7pWFQ1d8F9zb1cG/tSbWGtbDYZd37WmAJq2EYzwMjAAP4WkQ+ybS+DDAbqIl1Cp3xIjI9p3Y1YS3c4i/Hsub/fmDPd9bRzyrWr0qHCX2pHuiar8e5fuYKG8evYPfsrUhyCvbFHQgYEULw860pUS7vtfVKKaWUKro0YVUF7cenZ7P3+3Cav9GRZv+8P8uB74SIcOnIeTN5PfH7MZJvJpnri5criVtLD+vgTa3q4VSplLmuQBJWwzC8gXlAEJAA/AqMEpGj6bZ5AygjIq8ahlEROARUEZGE7NrWhLVwEhEOLN3FqtcXExcdg10xex55uR2N/9Hqnk5Jc/HoeTb8ZzkHlkYAUKx0cZo815rAkc1xdMpbb65SSimliqb33nsPgLFjx9o4EvUgSLqZxCSPt7h5/QYjt77BQw9XsnVI+S4h9iYnNh3l2G/WBPZK1MUM66v41bBe+9qmHi5NahdIwtobaC8iT6beHwvcFJGP0m3zOuACPAO4AquAuiKScmuLf9OEtfC5euoyK8Ys4NjK/QC4NK1Nh4/7FGht/tldJwh7/2eiwg4B1vmkHhnTDr+BOoerUkoppZSynSO/7mXh499Q2ac6T4SNsXU4BeLSsWiO/bbf2vu66RhJNxLNdW9cmpjrhNU+DzHsBT4wDOMhIB7oCGTOMj8DlgFngFJA39slq4ZhjARGAtSsqSO/FhYpySnsnLaJde/9RELsTYqVLk6rd7viN7Bxgc+XWrVBTfovepqodYdZ+68f+SviJCteXsDWz9fS4o2O1Ovmr3O4KqWUUkqpApdWCejZ1d/GkRSc8rUrUr52Cxo91YLE+ARO/H6MyN+sU+dwKef90+T1GtYngdFALLAPaw/rC+nW9wKaAS8BtbH2sPqJyLXs2tUe1sIh+uBZfnlhPqe3RwHWEXsf/bAHzlXK2DYwrOXJh37czbr3f+ZS6hyulX1rEDq2E24tPbOc91UppZRSD44OHToA8Msvv9g4ElXUJd1IZKLHWyTE3OSp7W9S3r2irUOyuTu5hjUvPayIyFRgaupB/w2cyrTJMOBDsWbFRw3DOA54AtvyclxlW0k3k/h9wio2f/IbKYnJOFcuzaMf9cKjs6+tQzMZhoFnF3/qdvRhz9xtbPzvr5zbc4r5vb+k5iMPEzq2c74PAqWUUkqpwiM+Pt7WIagHROSagyTE3KSybw1NVu9CnhJWwzAqich5wzBqAj2AJpk2OQG0BjYYhlEZ8AAi83JMZVuntkay/Pl5XDxyHoAGQ5sS+n+dKV6mpI0jy5rF3g7/QcF49Qpgxzcb2fzJb5zYeJRv231C3U6+tHizIxU8qtg6TKUeaNfPXOHKnxdxCa5t61CUUkqpfHfgB2s5cL0HqBw4P+UpYQUWpV7Dmgg8IyJXDMMYBSAiU4D3gBmGYfyBdeqbV0XkQh6PqWzgxrV4wv71E7umbwKg/MOV6PhJ30LzAdOhhCNN/tEK/8FN2DJpDdu/XMfhn/dw5Jc/8OkfRMir7SldvZytw1TqgXPxyDlmdZpE/MVYes56krodfWwdklJKKZVvEuMTOPrLXuDBun41P+W1JDgki2VT0t0+AxT+SYYecIeX/8HKVxZy/exVLPYWmjzfhmYvtcW+uIOtQ7tjxcuUJHRsZwJHhLBx3AoiZm1hz5yt7Fu4g4DhIQS/0IaS5XUOV6UKwvWzV5nfewrxF2MBWP3WUtxbeRbKvy1KKaVUVo6vOUhC7E2q+LlQzq2CrcMplPLaw6qKsJhz11j12iIOLtsNQLWAWnT4pC+V6lezcWR551ylDO3/14eg0S1Z/+FyDizexbbP17Jv4Q4GLB5NBU8tE1bqXrpxNY75vadw9eRlqgXWIiHmJhcO/sXWz9bS7GX9nlMpde917tzZ1iGoB0BaObBnVz8bR1J45WmU4HtFRwm2LRFh9+wtrH17GTeuxuPg5EiLNzsRMDwEi13RnBbmr90nWfnaYk5vO07Jis48vvRZTVqVukcS4xOY12sKp7ZE8lDdygz8+TnO7z3N3O6TsS/hwFNb39ASfaWUUoVeYnwCEz3eIjE2gVE73qKcq/awprmTUYKLZvah7tqlY9F81+1zfnlhPjeuxlO7bX1G/P46jZ5qUWSTVYAqfi70X/w0ri3qEhcdw5xunxF98Kytw1KqyElJSuaH4d9yakskpaqVpd/CUZQs74Rr87p4dvEjKT6RNW8vs3WYSimlVJ5F/naAxNgEqvi7aLKaB0U3A1G5duNaPId+2sOv//yeb0L+y4mNRylZwZkuXw2i99wRlKnxYPR0OJRwpNec4biGehAXHcN3XT8n+oAmrUrlFxHh138u4MiveyletiT9FozK0JPa6l9dsS/hwIEluzix6agNI1VKPQhCQ0MJDQ21dRiqCDuwLHV04G4NbBxJ4abXsD6AUpKSObPzBMfXHuR42GHO7PgTSU4x1/v0a0Sr97o9kIMPOZRwpNfsJ1k0eBrH1xzku26fM2DpM1SsV9XWoSlV6K3/93J2z96CfQkHes8bcUvZfRmX8gQ/35oNH/7KqtcXM2zNP7HY29koWqWUUuruJcYlcHTFPkCvX80rTVgfEJePXzAT1D/XH+bm9RvmOou9hepN3HFr6cHDj3pRxbeGDSO1PYcSjvSa9SSLBk8lcvVB5nT9jAFLnykSg00pZSvhX63n949XYdhZ6D5tKDUauWW5XeNnW7FnzlbO7zvDrpmbCXjykQKOVCmllMq7Y6nlwFUb1KRszYdsHU6hpglrEXXjahx/rj/C8bBDHA87xJWoixnWl6tdEbdQD9xbelKz2cMUK13cRpHen+yLO9Dz2ydZNGQakb8d4Luu1p7WSl6atCp1p/Yv3smqN5YA0HFiPx5+1Ou22zqUcKT1e91YPHQ66/+9nHrd/Cn5kHNBhaqUUkrli4M/7AKgXjedezWvNGEtIpITkzm7808i1x4iKuyQtcw35e8RoIuXLYlr8zq4tfTENbSuftOTC/bFHeg58wkWD53OsVX7+a7b5/RfMprK3tVtHZpShcbxtYf4cfQcEKHl24/h2z8ox33qdvbFtXldotYfZv2/l9P+f30KIFKllFIqfyTE3uToyv0AeHbVhDWvNGEtpEQktcz3EMfXHuTExqO3lPnWaOyGW6gnbi09qOLvUqRH+b1X7Is70GPmEyweOo1jK61J64Alo6ns82CXTSuVG2d3nWDxkGmkJCYTNDqUxv9olav9DMOgzX+6M7X5OHbN3Iz/kKYP/KUKSqn816ePfhmm7o1jvx0gMS6BagG1KONS3tbhFHqasBYi8VfSynwPcnztIa6euJRhffmHK+EW6oFbSw9rmW8pLfPND/bF7Okx4wmWDJvO0RX7+K77ZPovHq0foJXKxqVj0Xzf7ysSYm/i1TuQVu92wTCMXO9f0bMqAcMfIfzL9ax6fTEDf/rHHe2vlFI5GT16tK1DUEXUwR/SRgfW3tX8oAnrfSw5MZkzO/60Dpa09hBnd53IWOZbriRuLeriGuqBW6iHfoNzD9kXs6f79GEseWI6R3/dx9zuk+m/+Gmq+LnYOjSl7jsxf11lXq8viLsQg3trTzp92h/DcucVHiGvtmf/op2c2hLJ/sU78eoZcA+iVUo9qOLi4gAoWbKkjSNRRYm1HNg6OrBHF01Y84MmrPcREeFy5AUzQf1z4xESYm6a6y32FlyC3XEL9cQ11IMqfjW0zLcA2Rezp/u0YSx9YgZHft3L3B5faNKqVCY3rsYxv8+XXD1xiaoNa9J92jDsHO5uapriZUoSOrYzy5+fx9q3l1GnnTeOzsXyOWKl1IOqY8eOAISFhdk2EFWkHFu1n6T4RKoF1qJMjXI576BypAmrjcVfjuXPDUfMa1GvnrycYf1DdSqlDpTkQc2mtbXM18asPa1DWfLEDI78spe53SfTb/Foqvpr0qpU0o1EFg6cyvl9Zyj/cCX6zBuZ5wTTd0AQO6dv4q+Ik2z+5DdavNUpn6JVSiml8t+BpWnlwA1sHEnRoQlrAUtOTOZMeBSRqQnqXxEnby3zTS3xdQ310G9m7kN2jvZ0nzaUpU/O5PDyP5jXYzL9Fj1N1QY1bR2aUjaTkpzCDyNncfL3Y5SqWoZ+C0fly3Q0hsVC2w97MKv9RLZ+vgafAUGUd6+YDxErpZRS+Ssh5ibHVqWODtzFz8bRFB15SlgNw3geGAEYwNci8kkW24QCnwAOwAURaZGXYxY2IsKlY9HWHtSwg5zYcJSE2HRlvg52uDR1M5PUyr5a5lsY2Dna0y0taf15D3N7TKbfotFUa6hJq3rwiAgrxizg8M97KF6mBH0XjMrXa+prNHLDu28j9s7fzuqxS+k9Z0S+ta2UUkrll6Or9pF0I5HqQW6Urq6dTvnlrhNWwzC8sSarQUAC8KthGD+JyNF025QFJgPtReSEYRiV8hpwYRB/OZao9UfMa1GvncpU5lu3Mm4trQlqzaYP6zVZhZSdgx3dpg7hh+EzOfTTHub1nEy/hU9TLaCWrUNTqkBt+PAXImZuxr64A72+G0HFelXz/Rgt/68zh3/ew9Ff93Hst/3UblM/34+hlFJK5cXB1HJgz67au5qf8tLDWg/YKiJxAIZhrAN6AB+l22YAsFhETgCIyPk8HO++lZyQxOntURwPO2QdzTfiJMjfZb4lyjvhGloX99TBkkpXL2vDaFV+snOwo+s3Q/hhxLcc+nE383p+Qd+Fo6ge6Grr0JQqEDu+2cCm8Ssx7Cx0mzoElybu9+Q4zlXK8MiYdqx5exm/vbEE1+Z1sXPUq1qUUndv6NChtg5BFSE3r9/g2G8HAPB8TEcHzk95+W+/F/jAMIyHgHigIxCeaZu6gINhGGFAKWCiiHybVWOGYYwERgLUrHl/l1WKCJeOnCdy7UGi1h3mz41HSIxNMNfbOdpRI8gdt5bW61Cr+Fa/qykdVOFg52BH168Hs+ypWRz8IYL5vabQd8EoqjdytXVoSt1TB5buYuVriwHoMKEPddp739PjBY5sTsS3m7l0LJrwr9bT+NlW9/R4SqmiTRNWlZ+OrrSWA9do7KadU/nsrhNWETlgGMZ/gZVALBABJGfRfgDQGigBbDYMY4uIHM6iva+ArwACAwMl83pbi7sYQ9T6w0SFHeb42oNcO30lw/oKHlWsZb4tPXAJro2jk5b5PkjsHOzo8uUgDMM6Oty8Xtae1hqN3GwdmlL3RNS6wywbNRtECB3bGb/Hm9zzY9o52tPmPz34vs+XbPxoBV69AnCuUuaeH1cpVTRduHABgAoVKtg4ElUU/F0OrL2r+S1P9VQiMhWYCmAYxr+BU5k2OQVcFJFYINYwjPWAH3BLwnq/SU5I4tS246mDJR3ir92nMpT5lqzgjGuLuuZgSaWq6TcpD7q0pBXD4MCSXWZPa40gTVpV0fLX7pMsGjSVlMRkAp9qTpPnWxfYsWu3rsfD7b04+us+wt77ic6fP15gx1ZKFS29evUCdB5WlXc3r9/g2OoDYBh4PqbXr+a3vI4SXElEzhuGURPr9auZv2L/AfjMMAx7wBFoDEzIyzHvFRHh4uFz1utQww5xYtPRW8t8G7un9qJ6Utm7mpb5qltY7O3oMmUgGHBgcVrS+hQ1Gt+b6/qUKmiXIqOZ3/dLEmJvUr9nQ9q83w3DMAo0htbvdeP4moP8MW87/kObaiWDUkopmzq6Yh/JN5Oo0cRdO7HugbyOWLEo9RrWROAZEbliGMYoABGZklo2/CuwB0gBvhGRvXk8Zr6JuxhD1Dprie/xsMNcP5OpzNezipmg1gyujUNJRxtFqgoTi70dXb4YiGEY7F+0k/m9v6TP90/ds8FolCooMeeuMb/3FOKiY3AN9aDzZwNs8sVdefeKBI1uyeZPfmPVq4sZ+tuL+gWiUkopmzmwdBcA9bQc+J7Ia0lwSBbLpmS6Pw4Yl5fj5Jekm0mc3nbcTFD/2pNFmW9qia9bi7r6DYm6axZ7Ox6b/DgYBvsX7mB+nyn0nf8ULsG1bR2aUnflxrV45veZwpWoi1Txd6HHjGE2HaW36Ytt2Tt/O3/tPsme77bhN/DeX0OrlFJKZXbz2g0iU8uBPbQc+J4o0nMCiAgXD50jMuwgUWGHrWW+cenKfIvZ42KW+XpQyUvLfFX+SUtaDcNg34Jw5vf9kj7znqJmU01aVeGSdCORRYOmcn7vGcrVrkjf+U9RrFRxm8bk6FyMlu92YdnIWYS99xMej/lSvExJm8aklFLqwXPk170kJyTj0rQ2parqQID3QpFLWOMuxHB8nXU+1KiwQ1w/ezXD+or1q1p7UFt64NJEy3zVvWWxs9D58wEYBuz9Ppzv+2nSqgqXlOQUlo2azYmNR3GuXJp+C0dRsoKzrcMCoH6PhuyctolTWyLZ+NEK2nzQ3dYhKaUKkaefftrWIagi4OAP1tGBtRz43jFE7rsZZAgMDJTw8MxTumYt6WYSp7ZGmqP5ntuTcaDikhWdcQv1xC20Lq4tPPSbD2UTKckp/PyPueydvx2Hko70mTeSms0etnVYSmVLRFjx8gJ2zfidYqWLM/Cn56jkVc3WYWVw7o9TTG/1PzAMhq9/hQqeVWwdklJKqQfEjWvxTPJ4i+TEFP6x712cK5e2dUiFhmEYO0QkMDfbFroeVhHhwqG/rAnq2oOc+P0YSfGJ5nq7Yva4BNfGvaUHrqEeVKpfVct8lc1Z7Cx0+rQ/hgF/zNvO9/2+ovfcEdR6pI6tQ1PqtjaOW8GuGb9jV8yeXnNG3HfJKkBlnxr4Dw5m14zfWfX6YvotfrrARy1WShVOJ0+eBMDFxcXGkajC6sgv1nLgms1qa7J6DxWKhDU2+nqG0Xxj/spY5lvJqxpuqQmqSxN3HEpoma+6/1jsLHSc1B/DYrDnu23WpPW7Ebg2r1tgMYgIcRdiuHz8Apcjo7kUeYHLx6O5HHmBK1EXQQSHko44OBXD0cnx79slM912zmJZyWI4ODviWLIYDiUdcXSy/nYo6aBfGhVCO6dvYuN/f8WwGHT7evB9Xcbe/I2OHFgaQdT6wxz+aY8OeqGUypVBgwYBOg+runtp5cCeXRvYOJKi7b5MWEUkXYJ6iHN/nM6w3qlSKdxCrQmqW4u6OFfRMl9VOFjsLHSc2A8Mgz1ztrJgwNf0njMC1xb5l7SKCHHRMVw+Hs2lY9HW5DQ1Qb0ceYGb129ku/+Nq/H5Fksah9Tk9u8kNt1tp/S3/06EHZ2K4eCUxX7OfyfEthyltig7uGw3K8YsBKD9x32o28nXxhFlr+RDzjR/vQMrX13E6rFLcW9TT7+4VEopdU/duBpH5JqDGBYDj8739//Jwu6+/LR37o/TzO0x2bxvX9wBl2B33Fp64hbqQcX6VbXkSxVahsVCx0/6YhgGu2dvsSat391Z0ioixJ6/biahl49f4FJktJmYJsTcvO2+xUoXp5x7Rcq5V6CcW0XKu1ew3netgMXRjsTYmyTGJpAQe5PEuAQS4hL+XpZ621yWtj4m7bZ1u8S4v/dP/xN3ISY/HkKTxd6SKflN1zNcMu126m+njMtulxRbfz+4vcJ/bjzCsqe+BRGav9ER/0HBtg4pVxoMbUrEt5s5v+8MWz9bwyNj2ts6JKWUUkXYkV/2kpKYTK1H6mg58D12XyaspAiVvKtZE9QWHtRo4qbflqsixbBY6DChDxiwe5Y1ae01ZzhuoR7mNiJCzF/XUntIo7mc2lualpgmxibctv3iZUr8nZS6V6ScWwXKuVegvHtFSpR3yvYLnxJl83dqEElJITEuMUNCaya2t0l+E9KS3MzrY9PfvklKUgo3r93g5rXse43vhn0Jhxx7hG9Zf0uPcFqy/HeibOdod99+4Xbuj1MsGjiV5IRkAoaH0PSltrYOKdcs9na0/U8P5nT5jM2frManXxBlXMrbOiyllFJF1AGzHFgvQ7nX7suEtZJXNZ5c94qtw1DqnjIsFjp83AfDMIj4djMLH/9updDNAAAgAElEQVQG/8HBXD9zxSzjTT9vcGbFy5WknJs1CU3rLU1LUEuWdyrAM8meYbHg6FwMR+diOFEqX9tOTki6fQ9whuT3pjXZjcu4nZk8xyVkTKTjEkiKT8wwoFt+Mewsf/fyOmVdJn3bcujU5Y6pvcmZ11vs7r5X+HLUBeb3+ZKb129Qr5s/bf/T/b5NrG+nZrOHqde9AQeW7GLN28voPm2orUNSSilVBMVfieP42kOp5cCasN5r92XCanGws3UIShUIw2Kh/f96Y1gMds34nfCv1mdYX6K8U2rvaEWzhzStt7REufsnKbUVO0d7Sjja35te4fjEDAltQmwW5c5mD3DGEugM62Mz9hanJCbf015hh5KZEtrUwbAyJMQlMybE9iUcWP+fX4g9fx3X5nXpPHlgoS2JbvVuF478upeDP0Tw54Yj1ArRkbiVul/FXYrlwoGzlHOrgHPVMgX+Jdk///nPAj2eKjqOLP/DWg4cUgenSvn7Zby61X2ZsCr1IDEsFtqN60W1QFeunbqUWsJrTVDzOxFTuWNYLDg6FcPR6V72Cqfv+c0qyb2ZYXnmcuhbk+O/e4XjL8beVWxV/Fzo8e0T2BcrvP8aSlcvR9MX2rL+P8tZ9fpingh7GYu9fgmq1P0k7kIMWz9fy46pG8zLW4qXK0ml+lWpWL8alepXo2L9qlT0rIqjc7F7Fsdjjz12z9pWRVtaOXC9bv42juTBUHg/lShVhBgWC779g2wdhioA97xXOFMSm1Vym1VvcYlyJQl5rQPFShXP17hsofGzLdnz3VaiD5xl57RNBI5sbuuQlFJYpync+vladk7baCaqFetX5fqZq9y4HMeJTcc4selYhn3KulWgUr2qVPSqZia05dwq5OkSiDSHDh0CwMPDI4ctlfpb/JU4osK0HLggacKqlFJFQIZe4YoPdnmSfXEHWr/XlUWDp7Hhw1+o36MhJSs42zospR5YsdHX2frZGnZO22SOzVD70fo88nI7qgXUQkS4fuYq0QfOcH7fGaL3n+X8/jNcPHKeK8cvcOX4BQ4v/8Nsz76EAxU8qtzSI3unf/ueeuopQOdhVXfmyM9/kJKUgmvzuvq/pYDkKWE1DON5YARgAF+LyCe32a4RsBnoJyIL83JMpZRSKid1Ovrg1tKD42sPse7fP9Ph4762DkmpB07s+ets+WwNO6dtNAexe7idF81ebke1hjXN7QzDoHT1spSuXpbabeqby5MTkrh49DzR+88Svf8M51N/Xzt9hb8iTvJXxMkMx3OqVIqK9apSyaua+buCRxXsizsUzAmrB8KBH3YB4KnlwAXmrhNWwzC8sSarQUAC8KthGD+JyNFM29kB/wVW5iVQpZRSKrcMw6DNB92Z2vwjIr7dQoMhTani52LrsJR6IMScu8aWT1eza8bvZqJap703zca0o6p/7t+Hdo72VErtQYUAc3n8lTguHDhr7Y1N+73/LLHnrxN7/jpR6w6b2xoWg/K1K2boia3kVY0yLuXy7XzVgyPuUixR6w5j2Fnw6ORr63AeGHnpYa0HbBWROADDMNYBPYCPMm33D2AR0CgPx1JKKaXuSAWPKgSObM62yWGsfG0xg5Y/V+im6lGqMIn56ypbPl1jTVRvpCaqHbx5ZEy7fP3CqETZkrgE18YluLa5TFJSuHrysrWceN8Zs7z40rFoLh45z8Uj5zmYOlAOgKNTMYKkDldLxHLlz4uUrfVQvsWniq4jy1PLgUM9tBy4AOUlYd0LfGAYxkNAPNARCE+/gWEY1YHuQEtySFgNwxgJjASoWbNmdpsqpZRSudJsTDv2Lgjn9Lbj7Fu4A+/egbYOSaki5/rZq2yZtJqIbzebiWrdjj40G9OOKr41CiQGw2KhbK2HKFvrIep08DaXJ8YncPHwOWs5cbpe2dhz1yiHE+XinJjS6AO8ewcQ/EIbHqpTuUDiVYWTjg5sG4aI3P3OhvEk/D979x1f493/cfx1Ze+YEbM2EVnEKNXadKBWtUWNDrq02lt7j9Khfnfvu5vepZTqUKW0paUaOrUUQUQQVTtiRGRH1jnX749wmtjjJCfj/Xw8PCTX9T3f7+dK4iGf8/kOHgGygB1ArmmaTxa5/znwummavxuGMR/45krWsEZGRprR0dGXayYiInJZsQs2sGLCQnxq+fHQhn9WiJ2QRcqCjMRU1p9JVC25BQC0uCOUzn/rTa2Q0klUr1X2yUxWffwNJ38+zKl1RzEtVjAMggaG02lirzPTkEX+kn0qi+ktJwMwYddLeFVXhfV6GIax2TTNK3oX+boS1nMG/T8gwTTNd4tc20/hhkwANYBs4CHTNL+6VF9KWEVExF5Mq5UP+7zF0S2H6DihB92e19mLItcj/Ugq699ew7ZPfv8rUe0Xxk2T+hAQXP4SvZT9J1n/9hq2f7YJa74FKKwQd3q691WtuZWKLebj9Xz75CIadWvB3UsednQ45V6pJayGYQSYpnnCMIwGFG6q1NE0zdSLtJ2PKqwiIuIAiZsP8mHvN3FydebB3/5OtSY1HR2SSLmTfiSF9W99z7ZP1mPJK0zsWg4Ip/PfepfLimRMTOH0zvDwwumdaQkpbJjxAzEf/1UxbtwziM5P96Ze+0YOi1PKhoWDZ3Lgp93c9vbdhI3o6Ohwyr3STFjXAtWBfOAp0zS/NwxjPIBpmrPOaTsfJawiIuIgKx7/lNhPN9KkdyvuWviQo8MRKTfSj6Sw7s01xC74vTBRNQyCBoTR+W99qBlU29HhXbOuXbsC55/DmnksjQ3v/sTWD/46N/aGm5rR+W+9aXBTU23eVglln8xkeqspGAY8vmsqXtW8HR1SuXc1Cet1ncNqmmaXC1ybdZG2o69nLBERkevRdXI/dn8dy96onfwZtYOmvYMdHZJImZaWkML6N1ezbcGGwqmyhkHQwAg6/603NVuW30T1cnwC/enx0gBufKIHm2b9zOY5azn46x4O/rqHuu0b0fnpXjTuEaTEtRLZvSIW02KlUY+WSlYd4LoSVhERkfLCO8CXm57pw/eTl7Hmua9oeEsLXNz136DIudIOn2Ldm6uJ/XSjLVFtNbgNnZ/qTY2WgY4Or9R4Vffhln/dTofHuhE9Zy2bZv3MkY37WTxsNoFh9en8dC+a3doaw8nJ0aFKCTt7JFLLAdod2BH0P7WIiFQabR/oQsxH60nec4JNs37ixid6OjokkTIj9VAy699cQ+ynG7AWWDGcDFoNaUvnp3pRo0XlSVTP5eHvxU1/60O7cbewdf46NvzvB45tO8zS++ZRM6g2nZ7qRcsB4Tg5K3GtiLJPZnJw7R6cXJxofluIo8OplPQvS0REKg1nNxd6/nsQAL+9HkXG0TQHRyTieCkHTrLyic94r900Yj5aj2k1CR4ayYPr/s6A90ZW6mS1KHdfDzo+3p1Htkyh5/8NxLe2P0m7jrLswY+Yc+O/iV24EcuZXYal4tj9zTZMq0nDri3wrKrpwI5gt2Nt7EmbLomISElaOnIuf6zcTvDQSPrPGuHocEQcIvN4Oj9PW8H2zzZhWgorqsFD2tLp6d5Ubxrg6PBK3Lp16wDo1KnTNb2+ILeA7Z9tZP1ba0g7dAoA/wbVuPGJHoTc00FLDiqIT+/8HwfX7uH2GfcQem8HR4dTYTjkHFZ7UsIqIiIlKeXASeZ0egVLbgEjV06gXofGjg5JSpFpmuSkZpOekEJO6mnqRN6Aq6ebo8MqVaf2JvHZkJmkHTpVmKgOjaTz07115NM1sORb2LFkM+vfXM2pvUkA+Nb2p8Pj3QkfeSOuXpXrZ6siyUrKYEarKRjOTkyIn4pnFS9Hh1RhKGEVERG5jJ//byXrXo8iMKweo1Y/pfVnFYgl30LmsTTSE1JIO5xCekIK6UdSSDt8ivSEVNITUsjLyrW1r9mqNnd9Ng6/ulUcGHXpORabwKK7ZpGdlEntNg3oP2tkpUxUr7fCei6rxUr8shjWvbGapF1HAfCq6UOHR7sTMboT7r4edhlHSs+WD37ju799TpNerbjrMx2HZk9KWEVERC4jLyuX2R3/TUZiKre+OYzw+250dEhyhXLTc0hLOFWYiJ5NSo/89XHmsTRM66V/v3HzdsevflVy03PISEzFt04Vhn0+rkIf1wJwaN1eltw7h9yMHBp2bcHgD8fi5uPu6LAc4mLnsF4v02plz7dx/Pb6ao5tOwyAR1Uv2o2/hcgHu+DhrypdefHpgP9x8Nc93P7OvYTe097R4VQoSlhFRESuwM4vt7DsgY9w8XClUbcWNO4RRJOeQfjXr+bo0Cotq8VK5rH0IhXRlMKqaJHPc9NzLt2JYeBTyw//+lXxq3fmT92qxT738PfEMAxOp2SxZPj7JGzYj4e/J4M/vp8GnZuWzsOWsj2r4vjq/g8pyMmn5YBw+s0cUanXWZZUwnqWaZrs+34Xv70WxZFNB4DCjZvaPtiFduNvwau6T4mMK/aReTydd1o/j+HsxBO7p+qNBjtTwioiInIFTNPk6/GfsGPJ5mLXqzevRZOeQTTuEUT9G5tU6l/q7S0vM7ewEnqmInpuhTQjMRVrgfWSfbh4uuJf76/k079eNfzqVSn8uH41fGv74+x25d+z/NN5LB/3CX+siMXZzZl+M0cQdGfE9T5qmbJ90SZWPL4Q02IlYnQnev93SKWfBl/SCetZpmly6Nc/+e21KA7+ugcAVy83IsZ0psOj3fCp5Vei48u12Tz3V6KeWULTPsEM/fRBR4dT4ShhFRERuQrpR1LY90M8+9bsYv9Pu8nL/Gt9o6uXGzd0aUbjHkE07tGSqg1rODDSss20Wsk6kUFaQgrpR1JJP3yq8OOziWlCCjkp2ZftxzvA97yKaNHPPat5YxiGXWO3Wqys+eeXbH5/LQA9Xr6T9g93tesYjrLpvZ9Z888vAeg0sRc3/+s2u3/9yqPSSliLStiwj9/eWM2+NbsAcHZ3IXzkjXSc0B2/ulVLLQ65vAX9Z3Dot73c8e5wQoa1c3Q4FY4SVhERkWtkybdwZON+9q7Zxb4fdnEiLrHY/WpNatK4Z+HU4fo3NqlUu8vmn847k4ie2cQoIYX0MxsZpR1JIeNICpa8S59D6ezmfH5VtF61IolpFVw8XEvpiYozTZMNM37gxxe/BqD9I13p/mJ/DKfyWYk0TZNf/v0t616PAqDH1AG0f6Sbg6MqOxyRsJ51NOYw616P4o+V2wFwcnUm5O523PhkT70pVgZkHk9nRvDzOLs6MWH3y3j4eTo6pApHCauIiIidZBxNY98Pu2zV16LrJ108XWnQuSlNegTRuGcQ1RqX351WTdMk+2TmX9XQIymFiemZymh6QgrZJzMv249nde/C6bp1q+JXv+pfU3frFk7X9arhXeYTwLjPo1nx+EKs+RaCBkZwx/+Gl7tp4VaLlahnl7L1g98wnJ247e27tWnMOWJiYgAIDw93WAwndiay7s3V7PoyBkwTw9mJ4MFt6DSxF9Wb13JYXJXd5vfXEvXsUpr2DWboAk0HLglKWEVEREqAtcDCkeiD7Fuzi73f7+J4bEKx+1Ua1bAlrzd0blqmzl8syC0gIzH1zJrRU2fWjKb+tbHRkVQKcvIv2YeTi1NhIlqvCn5nqqL+9c4kpnWr4lu3Cm7eFWPH2QM//8HS++aSl5lLg85NGPzx/eVm0xVLXgFfP7KAXV9uxdndhYFzR9Ps1taODksuIXnPcda//T1xi6MxLVYwDIIGhNHpqd4EBNdxdHiVzif9ZnB43V76zRxB67uuKKeSq6SEVUREpBRkHk8vXPv6/S72/7ibnNS/1mc6u7vQoFOTwunDPYKo1jSgxNYNmqZJTmr2X2eOFqmKnv2TeTz9sv14+HviV794RdQ2bbduVbxr+VWqjXqOxx1h8V3vkXk8nRotAxm2eFyZX2eYl5XLF6M/YP8P8bj5uDP00wcr7K7H12vNmjUA9OzZ08GR/CX1YDK/T/+ebQs2YM0vnF7frG9rOj3dmzptGjg4usoh42ga74S8gLObM0/Ev4y7n87PLQmllrAahvEE8CBgAHNM03zrnPvDgWfP3M8AHjZNc9vl+lXCKiIi5Y21wELi1kOF1dc1uzgWc7jY/So3VKdR95Y06RnEDV2aXVUl0pJvIeNo6jkV0eI77OZn5V2yD8PZCd/a/kV21i2yy279qvjVqapfzC4gLSGFRUNnkfzHcXxr+3PX4nEEtCqbFa/TKVksvns2idEH8arhw7DF4wgMq+/osMosR65hvZz0I6lseOcHYj5ab5v50Kh7Szo/3Zv6HRs7OLqKLXr2L6z+xxc0u7U1Qz55wNHhVFilkrAahtEa+AxoD+QBq4Dxpmn+WaRNJ2CXaZophmHcCrxgmmaHy/WthFVERMq7rKQM9v+4m73f72L/D/GcPpVlu+fs5kz9jn9VX33q+P+VfNoqpIWbGaUnpJB5LA3Teun/r9283Qun5tavhl/dv454OZuU+gb64eTiXNKPXSGdTsli6ci5HF6/D3c/DwZ/dD83dGnm6LCKyTiaxqKhs0jadRS/elW5e+nDVG8a4OiwyrSynLCelXUig43v/sjmeb/a3pRq0LkJnZ/uww03N9NuzyXgkzumc3j9PvrNGkHroZoOXFJKK2EdCvQ1TfP+M59PBnJN0/zvRdpXBeJM06x7ub6VsIqISEVitVg5uvWQ7eicxC2H4Gr+/zUMfAP9/tpJ9wIVUnc/T/3yWoIKcvL5+uFPiF++DWc3Z+7433BaDWrj6LAAOLUvic8GzyTt0CmqN6/F3Usexq9uFUeHVeaVh4T1rOxTWUS/9zPRs3+xbfxWJ/IGOj/dmya9Wunfvp1kJKbyTuiLmg5cCkorYQ0ClgE3AqeB74Fo0zQfv0j7vwEtTdO8YG3dMIyHgIcAGjRo0PbgwYPXFJeIiEhZl52cyf4fd7Pv+13s+zGevMxcWwJaWCEt3NjobIXUt7Y/zm7la5faishqsfL9c18RPfsXoGwcE3M87giLhs4i60QGtds04K5F4/Cq5u3QmMqL8pSwnpWTfpot7//Kxpk/2WZt1AqtR+enetH89pAyvwN3WXf2zOLmt4Uw+OP7HR1OhVaaa1jvBx4BsoAdFFZYn7xAu27Au8BNpmkmX65fVVhFRKQyMU1TFZJywjRNNv7vR354fjkA7cbfQo+pAxySKBxev5fP751DbnoODW9pzuCP7sfNp2Ls0lwaymPCelZeZi5bP1zHhnd+IOtEBgA1WgTS6aleBN0Zrun/1+jj294mYcN++s8eSfDgto4Op0JzyC7BhmH8H5Bgmua751wPBb4EbjVN848r6UsJq4iIiJRlO5Zu5ptHP8Wab6HlgHD6vTscFw/XUht/z3c7+GrsfApy8mnZP4x+s0aWu7NiHW337t0AtGjRwsGRXLv803ls+2QDv0//nozEVACqNq5Bpyd7EXxXJM6uSlyvVPqRVP4X+gIuHq5MiJ+Ku6+mA5ek0qywBpimecIwjAZAFNDRNM3UIvcbAD8A95mmue5K+1XCKiIiImXdgV/+4Iv75pGbkUP9ToVntXpWKfmzWuMWR/PNY59iWqyE33cjfV4bWqmOG5LzWfIK2L5oE+vfWkPqgcLJjP71q9JxQg9C7+1Qqm+mlFe26cC3hzL4o7GODqfCK82EdS1QHcgHnjJN83vDMMYDmKY5yzCM94HBwNkFqQVXEpgSVhERESkPTuxIZPGw98g4mkaNFoEM+7xkz2o9+0s1wI1P9uSW527XdPJr9PXXXwPQr18/B0diP9YCCzu/2Mq6N6JI3nMCAJ9Afzo83o2I+zrh6uXm4AjLro9ufZsjG/czYM59ZWZDtYrMIVOC7UkJq4iIiJQX6UdSWHTXe5yMP4ZPoD/DFo8jINi+Z7WapsnaV77lt9eiAOj+0gA6POrYDZ/Ku/K8hvVyrBYru7+JZd3rUZzYkQiAVw0f2j/clTZjb9Lut+dIP5LC/0JfxMXDlSd2v6y14KXgahJWzR8RERERuQ5+dasyYsUE6ndqQuaxND65fToHfrmibTuuiGm1EvXMUn57LQrDyeD26fcoWZVLcnJ2ImhAOGN/+htDPnmA2hENyD6ZyU9Tv+HdiJdY+99VnE7NdnSYZUb88m0ANOnVSslqGaSEVUREROQ6eVbx4u7PxxN0Zzi5GTksuus9dizdfN39WvIKWDbuY7bM+xVndxcGzR9D6PAOdohYKgPDyYlmt7Zm1OqJDFsynnodG5OTms2v/1nFu2Ev8tPUb8g+menoMB1u11dbAQi6M9zBkciFKGEVERERsQMXD1cGzLmPdg/fgjXfwvKHPub3GT9wrcuv8rJyWTLifXZ9sRU3H3eGLRpH89tD7Ry1VAaGYdC4W0tGrpjA8OWP0fCW5uRl5rL+rTW8G/ESa577koyjaY4O0yHSElJIjD6Ii6crTXq1cnQ4cgFKWEVERETsxHByoufLA+kxdQAAP76wnNX/+AKrxXpV/ZxOyeKzwTPZ9308ntW9uXfZY9zQpVlJhCyVTIPOTbnni0e4b9WTNO0TTH52Hptm/szMtlP5btIS0g6fcnSIpWr38hgAmvZqhZu3pgOXRdp0SURERKQE7PxiC988ugBLnoUW/cLoP2vEFR0vknE0jUVDZ5G06yh+9apy95LxVG9WqxQirlwOHz4MQP369R0ciWMdi01g3Rur2f114TpOJxcnWg9rx41P9qRa45oOjq7kfdj7TRI3H+TOeaMJGqApwaVFuwSLiIiIlAEHf93D0pFzyU3PoV7Hxgz55H48q3pftP2pfUksGjKL1IPJVG8WwN1LHy7RY3JEzkqKP8r6N9ew84stmFYTw8mg1aA2dJrYixotAx0dXolIPZTMzIipuHq5MSF+qiqspUi7BIuIiIiUATfc1IyRK5/At7Y/Cb/v4+Pbpl90yuXxuCN8cvt0Ug8mUzuiASNWTFCyWoIWLVrEokWLHB1GmVGzZW36vzeSh37/J6HDO2A4GexYspk5N/2HL0Z/wPHtCY4O0e52n9kduGlvTQcuy1RhFRERESlh6UdSWTzsPZJ2HcWnlh93LR5HrdZ1bfcP/76Pz++ZTW56Dg1vbs6gj8bi7quzMktSRT6H1R7SDp9i/dvfE7vgdyx5FgCa9gmm01O9qBvZ0LHB2cn8Xm9wdMshBn4wmpb9NR24NKnCKiIiIlKG+NWtwogVj9PgpqZkHk8vPKv158KzWv+M2sFnQ2aSm55DiztCGfrZQ0pWxeH861ej72tDeXjLFNo9fAsunq78+d0OPurzFgsHz+TQur2ODvG6pB5K5uiWQ7h6udGkp3YHLsuUsIqIiIiUAg9/L4YtHk/QwAjyMnNZNOw9op5dytKRcyk4nU/YyI7cOW80Lu4ujg5VxMa3tj89Xx7II1uncOMTPXDzdufAT7tZ0G8Gn9wxnX0/xl/z0U2OFL/szHTgPsG4erk5OBq5FCWsIiIiIqXExd2FAbNH0v7RbljzLWx+fy3WAisdJ/Tg1jeH4eSsX82kbPKu6UvXKf14ZNsUbnq2Lx7+nhxev49FQ2bxYe832bMqrlwlrru+2gqgnYHLAb2FJyIiIlKKDCcnerw0AL+6VVj/1ho6PNadDo92c3RYIlfEs6o3XZ7pS/vxXdky71c2vPsjR7ccYsnw9wloXYfOT/emxR2hGE5l580X02ol9eApknYmcmJnIid2HOVYzGFcvd1o3DPI0eHJZWjTJREREREHMU0TwzAcHUaldPLkSQBq1Kjh4EjKt7ysXGI+Xs+G6T+QeTwdgOrNa9FpYi9aDYrAycW5VOM5nZJF0s6jnNiRSNKuM3/HHyU/K++8thGjO9H39btKNT4ppHNYRURERESk1BTk5BP76QbWv/096QkpAFRpVINOT/ak9V2ROLvZd2KnJa+A5D0nChPSM5XTpJ1HyTiadsH2PrX8qNmqNjVb1SHgzN+1WtcpU5XgyqTUElbDMJ4AHgQMYI5pmm+dc98A3gZuA7KB0aZpbrlcv0pYRURERKQkzZ8/H4DRo0c7NI6KxpJXQNzn0ax/aw0p+wqr2H51q9BxQg/CRnTExcP1qvozTZP0I6kknUlIzyamyXuOYy2wntfe1cuNGi0CCQiuQ81WtQloVfi3V3Ufuzyf2EepJKyGYbQGPgPaA3nAKmC8aZp/FmlzG/A4hQlrB+Bt0zQ7XK5vJawiIiIiUpJ0DmvJshZY2PVVDOveWM3J3ccA8K7lR8fHuhE+qhNu3u7nvSY3PYek+DPTeG3JaSK56TnnD2AYVG1cg4Cg2tQMrlP4d6s6VGlYXZuXlQNXk7BeT20+CNhgmmb2mUF/BgYB/y3SZgDwkVmYFf9uGEYVwzBqm6Z59DrGFRERERGRMszJxZngIW1pNSiC3d9sZ90bURzffoTvJy9j3VtraD++K1UaVS9WNU07dOqCfXlW97ZVSgv/rkONFrUumPRKxXM9CWscMM0wjOrAaQqrqOeWResCh4t8nnDm2nkJq2EYDwEPATRo0OA6whIRERERkbLAcHKiZf8wWvQLZe/qnfz2WhSJmw/y87QV57V1dnehRotAagbVLjal1zvAV5uTVWLXnLCaprnLMIz/AFFAFhADWK6jv9nAbCicEnyt/YiIiIiISNliGAZNewfTpFcrDvz8B5vfX4tpmgS0qlOYnAbVplqTmqW+q7CUfde1XZdpmnOBuQCGYfwfhRXUoo4A9Yt8Xu/MNRERERERqWQMw6BR1xY06trC0aFIOXFdCathGAGmaZ4wDKMBhetXO57TZDnwmGEYn1G46VKa1q+KiIiIiKOtXLnS0SGIyBW43gORlp5Zw5oPPGqaZqphGOMBTNOcBaykcG3rnxQeazPmOscTEREREbluXl5ejg5BRK7A9U4J7nKBa7OKfGwCj17PGCIiIiIi9vbuu+8C8Mgjjzg4EhG5FB1SJCIiIiKVzuLFi1m8eLGjwxCRy1DCKiIiIiIiImWSElYREREREREpk5sz3yUAACAASURBVJSwioiIiIiISJmkhFVERERERETKJKNwI9+ypXr16ma9evUcHYaIiIiIiIjYWWxsrGma5hUVT6/3HNYSUa9ePaKiohwdhoiIiIiIiNhZYGDglittqynBIiIiIiIiUiaVyQprUYmJiYwdO5bY2FisVqujwxEpt5ycnAgNDWXevHnUqVPH0eGIiIiIiFxWmU9Yx44dy9ChQ9mwYQNubm6ODkek3MrLy+PVV19l7NixrFq1ytHhiIiIiIhcVpncdCksLMw8u4a1Tp06nD59WsmqiB3k5eXh6elJYmKio0MRERERkUoqMDBws2makVfStsyvYbVarUpWRezEzc1NU+tFREREpNywW8JqGMY8wzBOGIYRd871xw3DiDcMY4dhGP+113giIiIiIiJSsdmzwjof6Fv0gmEY3YABQJhpmsHAa3YcT0RERERERCowuyWspmn+Apw65/LDwCumaeaeaXPCXuOJiIiIiIhIxVbSa1ibA10Mw9hgGMbPhmG0u1hDwzAeMgwj2jCM6FOnzs17r9xbb71Fdnb2Nb/+Sjk7OxMeHk7r1q0ZOnQo2dnZHDhwgNatW5f42AA5OTm0b9+esLAwgoODef755+3W9+jRo2nUqBHh4eG0adOG9evXX7DdrFmz+Oijj+w2bmnr2rUr0dHR1/TaKVOmsGbNmku2+emnn1i3bt019X858+fP18ZJIiIiIlLhlXTC6gJUAzoCk4DFhmEYF2pomuZs0zQjTdOMrFat2jUPWFoJq6enJzExMcTFxeHm5sasWbNKfMyi3N3d+eGHH9i2bRsxMTGsWrWK33//3W79v/rqq8TExPDKK68wbty48+4XFBQwfvx47rvvPruNeZbFYrF7n/b20ksv0bNnz0u2UcIqIiIiInJ9SjphTQC+MAttBKxADXt0nJWVxe23305YWBitW7dm0aJFTJ8+ncTERLp160a3bt0AePjhh4mMjDyvCrly5UpatmxJ27ZtmTBhAnfccYet37Fjx9K+fXsiIiJYtmzZZWPp0qULf/75J1CYbD344IMEBwfTu3dvTp8+DcCcOXNo164dYWFhDB482JZUf/7557Ru3ZqwsDBuvvlmWx+TJk2iXbt2hIaG8t577503pmEY+Pj4AJCfn09+fj4XeS/gutx88822Z+vatStPPvkkkZGRvP3227zwwgu89tprtnsTJ04kMjKSoKAgNm3axKBBg2jWrBnPPfecrb8777yTtm3bEhwczOzZs23XfXx8ePrppwkLC2PatGnceeedtnurV69m4MCB58W2efNmbrnlFtq2bUufPn04evSoLZZnn32W9u3b07x5c9auXQvA6dOnufvuuwkKCmLgwIG2783Z8SdOnEhwcDA9evQgKSkJgJiYGDp27EhoaCgDBw4kJSUFKKxCL1myBICGDRvy/PPP06ZNG0JCQoiPj+fAgQPMmjWLN998k/DwcFsMZ73wwguMGjWKLl26cMMNN/DFF1/wzDPPEBISQt++fcnPz7/oMy5ZsoTo6GiGDx9OeHh4secQEREREalISjph/QroBmAYRnPADThpj45XrVpFnTp12LZtG3FxcfTt25cJEyZQp04dfvzxR3788UcApk2bRnR0NLGxsfz888/ExsaSk5PDuHHj+Pbbb9m8ebMtOTnbvnv37mzcuJEff/yRSZMmkZWVRWJiIrfddtt5cRQUFPDtt98SEhICwJ49e3j00UfZsWMHVapUYenSpQAMGjSITZs2sW3bNoKCgpg7dy5QWKn77rvv2LZtG8uXLwdg7ty5+Pv7s2nTJjZt2sScOXPYv3//eWNbLBbCw8MJCAigV69edOjQwR5f2mK+/vpr27NB4Tme0dHRPP300+e1dXNzIzo6mvHjxzNgwAD+97//ERcXx/z580lOTgZg3rx5bN68mejoaKZPn267npWVRYcOHdi2bRuTJ08mPj7e9n354IMPGDt2bLGx8vPzefzxx1myZAmbN29m7Nix/Otf/7LdLygoYOPGjbz11lu8+OKLAMycORMvLy927drFiy++yObNm23ts7KyiIyMZMeOHdxyyy2219x333385z//ITY2lpCQENv1c9WoUYMtW7bw8MMP89prr9GwYUPGjx/PxIkTiYmJoUuXLue9Zu/evfzwww8sX76cESNG0K1bN7Zv346npycrVqy46DMOGTKEyMhIFixYQExMDJ6enpf/RoqIiIiIlEP2PNZmIbAeaGEYRoJhGPcD84DGZ466+QwYZZqmaY/xQkJCWL16Nc8++yxr167F39//gu0WL15MmzZtiIiIYMeOHezcuZP4+HgaN25Mo0aNALjnnnts7aOionjllVcIDw+na9eu5OTkcOjQIerUqcPKlStt7U6fPk14eDiRkZE0aNCA+++/H8C29hOgbdu2HDhwAIC4uDi6dOlCSEgICxYsYMeOHQB07tyZ0aNHM2fOHNtU2KioKD766CPCw8Pp0KEDycnJ7Nmz57xnc3Z2JiYmhoSEBDZu3EhcXNx5ba7VpEmTCA8PZ/bs2bbkGmDYsGEXfU3//v2Bwu9NcHAwtWvXxt3dncaNG3P48GEApk+fTlhYGB07duTw4cO253J2dmbw4MFAYfV45MiRfPLJJ6SmprJ+/XpuvfXWYmPt3r2buLg4evXqRXh4OC+//DIJCQm2+4MGDQKKfw9++eUXRowYAUBoaCihoaG29k5OTrZnGzFiBL/++itpaWmkpqZyyy23ADBq1Ch++eWXCz77hca7nFtvvRVXV1dCQkKwWCz07dvX9vU7cODAZZ9RRERERKSic7FXR6Zp3nORWyPsNUZRzZs3Z8uWLaxcuZLnnnuOHj16MGXKlGJt9u/fz2uvvcamTZuoWrUqo0ePJicn55L9mqbJ0qVLadGixSXbnV3Dei53d3fbx87OzrbpmqNHj+arr74iLCyM+fPn89NPPwGFGxdt2LCBFStW0LZtWzZv3oxpmsyYMYM+ffpcyZeCKlWq0K1bN1atWnXRTZ8sFgtt27YFChPLl1566ZJ9vvrqqwwZMuS8697e3hd9zdlnd3JyKvZ1cHJyoqCggJ9++ok1a9awfv16vLy8bG8IAHh4eODs7Gx7zZgxY+jXrx8eHh4MHToUF5fiP6qmaRIcHHzRDaHOju/s7ExBQcEln/VCrnZ69bWMV/Tr5erqahvz7Nfrcs8oIiIiIlLRlfSU4BKTmJiIl5cXI0aMYNKkSWzZsgUAX19fMjIyAEhPT8fb2xt/f3+OHz/Ot99+C0CLFi3Yt2+frRK2aNEiW799+vRhxowZnC0Eb9261S7xZmRkULt2bfLz81mwYIHt+t69e+nQoQMvvfQSNWvW5PDhw/Tp04eZM2fa1jH+8ccfZGVlFesvKSmJ1NRUoLDau3r1alq2bHnR8c9WY2NiYi6brJaUtLQ0qlatipeXF/Hx8ZfcJKpOnTrUqVOHl19+mTFjxpx3v0WLFiQlJdmSufz8fFvV+mJuvvlmPv30U6Cw4h0bG2u7Z7VabWtSP/30U2666Sb8/f2pWrWqbf3pxx9/bKu2XomiP4vX4lLPeL19i4iIiIiUB3arsJa27du3M2nSJFt1aubMmQA89NBD9O3b17aWNSIigpYtW1K/fn06d+4MFFZH3333Xfr27Yu3tzft2v112s7kyZN58sknCQ0NxWq10qhRI7755hsSExN54IEHik0LvhpTp06lQ4cO1KxZkw4dOtiSjUmTJrFnzx5M06RHjx6EhYURGhrKgQMHaNOmDaZpUrNmTb766qti/R09epRRo0ZhsViwWq3cddddto2jyqq+ffsya9YsgoKCaNGiBR07drxk++HDh5OUlERQUNB599zc3FiyZAkTJkwgLS2NgoICnnzySYKDgy/a38MPP8yYMWMICgoiKCjIVnGGwsrxxo0befnllwkICLC9ifHhhx8yfvx4srOzady4MR988MEVP2+/fv0YMmQIy5YtY8aMGRdcx3opl3rG0aNHM378eDw9PVm/fj3//ve/iYyMtE3LFhERERGpCAw7LSm1q7CwMDMqKgqAwMBASiLGzMxMfHx8ME2TRx99lGbNmjFx4kS7jyPX7rHHHiMiIsK2Prgk+fj4kJmZWeLjlAWGYXDs2DFHhyEiIiIilVRgYOBm0zQjr6RtuZ0SfL3mzJlDeHg4wcHBpKWlXfCsUXGctm3bEhsba9skSUREREREKp9KW2EVqaxUYRURERERR6o0FVZnZ2fCw8Np3bo1Q4cOJTs7u9j1s39eeeUVoPBszn/+8580a9bMdm/atGmX7c/Hx6fYuPPnz+exxx4D4I033qBVq1aEhobSo0cPDh48aGv34Ycf0qxZM5o1a8aHH3541c93qXHPCg8P5+677y52bfTo0bYNhIrasWMH3bt3p0WLFjRr1oypU6de9M2A+++/37aedsiQIbbpsrm5uQwbNoymTZvSoUMH28ZVycnJdOvWDR8fn/NivJjRo0fbjgFq06ZNmdsNNyYmptia5eXLl9t+lkREREREpOSV64T17NEycXFxuLm5MWvWrGLXz/75+9//DsBzzz1HYmIi27dvJyYmhrVr19p24r1Uf5cSERFBdHQ0sbGxDBkyhGeeeQaAU6dO8eKLL7JhwwY2btzIiy++SEpKil2ff9euXVgsFtauXXveLsLnOn36NP379+fvf/87u3fvZtu2baxbt4533333gu3ffPNNtm3bRmxsLA0aNOCdd94BYO7cuVStWpU///yTiRMn8uyzzwKFx9JMnTqV11577aqe4dVXXyUmJoZXXnmlRKdlX8vRNucmrGe/fuXFtTyziIiIiEhZUq4T1qK6dOnCn3/+edH72dnZzJkzhxkzZuDh4QEUHg3ywgsvXFN/Z3Xr1g0vLy8AOnbsSEJCAgDfffcdvXr1olq1alStWpVevXqxatWqq3yqS1u4cCEjR46kd+/eLFu27JJtP/30Uzp37kzv3r0B8PLy4p133rloxdDPzw8oPO/09OnTtjNCly1bxqhRowAYMmQI33//PaZp4u3tzU033WT72l6tm2++2fb1njNnDu3atSMsLIzBgwfbKt2jR49mwoQJdOrUicaNGxerIv/nP/8hJCSEsLAwW1LZtWtXnnzySSIjI3n77bdJSkpi8ODBtGvXjnbt2vHbb78BsHHjRm688UYiIiLo1KkTu3fvJi8vjylTprBo0SLCw8NZtGhRsQr38ePHGThwIGFhYYSFhbFu3brznmnVqlW0adOGsLAwevTocdGxoLB6PmjQIPr27UuzZs1sb3xcrJ+srCzGjh1L+/btiYiIsH3/58+fT//+/enevbutrYiIiIhIeVVuj7UpqqCggG+//Za+ffsChdXE8PBw2/1//OMfBAUF0aBBA3x9fa+7v1OnTl3w+JC5c+dy6623AnDkyBHq169vu1evXj2OHDlyVc91uXEXLVrE6tWriY+PZ8aMGdx7770X7WvHjh3FjnEBaNKkCZmZmaSnp9sS1KLGjBnDypUradWqFa+//vp5z+Xi4oK/vz/JycnUqFHjqp7tXF9//TUhISEADBo0iAcffBAorIrPnTuXxx9/HCg8zufXX38lPj6e/v37M2TIEL799luWLVvGhg0b8PLy4tSpU7Z+8/LyiI6OBuDee+9l4sSJ3HTTTRw6dIg+ffqwa9cuWrZsydq1a3FxcWHNmjX885//ZOnSpbz00ktER0fbqsvz58+39TthwgRuueUWvvzySywWy3k7DCclJfHggw/yyy+/0KhRI1tMFxsLCiu6W7duxd3dnRYtWvD444/j4eFxwX6mTZtG9+7dmTdvHqmpqbRv356ePXsCsGXLFmJjY6lWrdp1fU9ERERERBytXCesRRO6Ll262I4/OTu1t6jY2Nhin3/wwQe8/fbbJCcns27dOurXr3/F/c2fP9+WBJ31ySefEB0dzc8//2y357vUuNHR0dSoUYMGDRpQt25dxo4dy6lTp+yapHzwwQdYLBYef/xxFi1axJgxY+zW91mTJk3i5ZdfpmbNmsydOxeAuLg4nnvuOVJTU8nMzKRPnz629nfeeSdOTk60atWK48ePA7BmzRrGjBljq3QX/RoMGzbM9vGaNWvYuXOn7fP09HQyMzNJS0tj1KhR7NmzB8Mwik0Tv5gffviBjz76CChc++zv71/s/u+//87NN99Mo0aNisV0qbF69Ohh66dVq1YcPHiQlJSUC/YTFRXF8uXLbVOwc3JyOHToEICtsi8iIiIiUt6V6ynBRdeqzpgxAzc3t4u2bdq0KYcOHSIjIwMorB7GxMTg7++PxWK56v6KWrNmDdOmTWP58uW4u7sDULduXQ4fPmxrk5CQQN26dYu9bsOGDbbNn5YvX35Vz75w4ULi4+Np2LAhTZo0IT093Vapu5BWrVqxefPmYtf27duHj48Pfn5+9OnTh/DwcB544IFibZydnbn77rttfRd9roKCAtLS0qhevfpVxV7U2TWsq1evpnXr1kDh1N933nmH7du38/zzz5OTk2Nrf/brC1zR7tHe3t62j61WK7///rvte3zkyBF8fHyYPHky3bp1Iy4ujq+//rrYePZ2qbGKPpuzs/Ml16CapsnSpUttz3Lo0CGCgoKA4s8sIiIiIlKeleuE9Wp4eXlx//3389hjj9mSBIvFQl5e3nX1u3XrVsaNG8fy5csJCAiwXe/Tpw9RUVGkpKSQkpJCVFRUsUohQIcOHWwJx4WmGF+M1Wpl8eLFbN++nQMHDnDgwAGWLVvGwoULL/qa4cOH8+uvv7JmzRqgsDo9YcIE21rJ7777jpiYGN5//31M07StJzVNk+XLl9OyZUugcOOhszseL1myhO7du9vWt9pLRkYGtWvXJj8/nwULFly2fa9evfjggw9sa12LTgkuqnfv3syYMcP2+dnqdVpamu3NhKLTfn19fW1vcJyrR48ezJw5Eyj8OUpLSyt2v2PHjvzyyy/s37+/WEwXG+tiLtZPnz59mDFjhi1p37p162X7EhEREREpbypkwnp2au/ZP2c34Zk2bRq1a9emdevWRERE0KVLF0aNGkWdOnWueaxJkyaRmZnJ0KFDCQ8PtyWe1apVY/LkybYNfqZMmWK3aZpr166lbt26xeK++eab2blzJ0ePHgVg3Lhx1KtXj3r16nHjjTfi6enJsmXLePnll2nRogUhISG0a9fugkfQmKbJqFGjCAkJISQkhKNHjzJlyhSg8Lib5ORkmjZtyhtvvFFs06aGDRvy1FNPMX/+fOrVq1ds+u3VmDp1Kh06dKBz5862RPlS+vbtS//+/YmMjCQ8PPyiOxVPnz6d6OhoQkNDadWqlW0X6GeeeYZ//OMfREREFKtqduvWjZ07d9o2XSrq7bff5scffyQkJIS2bdue96w1a9Zk9uzZDBo0iLCwMNvU5IuNdTEX62fy5Mnk5+cTGhpKcHAwkydPvmxfIiIiIiLljXEl0ypLW1hYmBkVFQVAYGDgFU39FJErYxgGx44dc3QYIiIiIlJJBQYGbjZNM/JK2lbICquIiIiIiIiUf0pYRUREREREpEyyW8JqGMY8wzBOGIYRV+TaC4ZhHDEMI+bMn9vsNZ6IiIiIiIhUbPassM4H+l7g+pumaYaf+bPSjuOJiIiIiIhIBWa3hNU0zV+AC58nIiIiIiIiInKVSmMN62OGYcSemTJc9WKNDMN4yDCMaMMwooueo+nk5HTdZ6WKSKG8vDycnLR0XURERETKh5L+zXUm0AQIB44Cr1+soWmas03TjDRNM7LoeaWhoaG8+uqrSlpFrlNeXh6vvvoqoaGhjg5FREREROSKuJRk56ZpHj/7sWEYc4BvrraPefPmMXbsWKZMmYLVarVrfCKViZOTE6GhocybN8/RoYiIiIiIXJESTVgNw6htmubRM58OBOIu1f5C6tSpw6pVq+wbmIiIiIiIiJR5dktYDcNYCHQFahiGkQA8D3Q1DCMcMIEDwDh7jSciIiIiIiIVm90SVtM077nA5bn26l9EREREREQqF20XKiIiIiIiImWSElYREREREREpk5SwioiIiIiISJmkhFVERERERETKJCWsIiIiIiIiUiYpYRUREREREZEySQmriIiIiIiIlElKWEVERERERKRMUsIqIiIiIiIiZZKLowO4kOPHjxMYGOjoMERERERERMSBymTCWqtWLbZt2+boMERERESkgpo2bRoA//rXvxwciUjlczXFyTKZsIqIiIiIlCQlqpVTboGVuJMZ7ErOonO9qjTy93R0SHIZSlhFRERERKTCMU2TxMxcthxPZ+uJdGKOZ7AzOZN8qwlANQ9XFvYLo2lVLwdHKpeihFVEREREKp37778fgLlz5zo4ErGX0wUW4pIy2XI8nZgT6Ww9nkHS6bxibQygeVUvXJwMdiZnMXJFLAv7hdFQldYySwmriIiIiFQ6p06dcnQIch1M0+RQRg4xxwsT060n0olPzqLANIu1q+LuQniAHxG1fIkI8CM0wBdfNxdyCizcvyqO3xPTGLkilkX9w6jj4+Ggp5FLsVvCahjGPOAO4IRpmq3Pufc08BpQ0zTNk/YaU0REREREKr6sfAuxSRlnEtR0tp7I4FROfrE2TgYEVfcmIsCP8Fq+tAnwo6G/J4ZhnNefh4szs/u0ZtTK7Ww9ns7wb2L5rF8YtbzdS+uR5ArZs8I6H3gH+KjoRcMw6gO9gUN2HEtERERERCog0zQ5kHaarScyziSn6ew+lYW1ePGUah6uRAT4ElHLj/BafoTW9MXb1fmKx/F2deaDW1sz4ptY4k5mMnJFLJ/2C6OGp5udn0iuh90SVtM0fzEMo+EFbr0JPAMss9dYIiIiIiJSMWTkFRB7onBa79bjGcScSCc1t6BYG2cDWtfwIeLM9N7wWn408PW4YPX0avi6uTD/thDu/Xobf6RkM3rldj65PZQqHq7X1a/YT4muYTUMYwBwxDTNbZf7YTIM4yHgIYB69eqVZFgiIiIiUsl16dLF0SFUSlbTZF/qaVvldOvxdPakZHNO8ZSanm6FiWmAH21q+dG6pg+eLldePb0aVT1c+fj2UO75ehu7krMY820cH90egq+btvspCwzTPPfH4zo6K6ywfmOaZmvDMLyAH4HepmmmGYZxAIi8kjWsYWFhZlRUlN3iEhERERGR0peeW0DMiXRiTmSw5Xg6205kkJ5XvHrq6mTQqroP4Wc2Roqo5UddH/frrp5erWNZudyzfBuHMnKIDPTjg1tD8LqKKcZy5QIDAzebphl5JW1L8m2DJkAj4Gx1tR6wxTCM9qZpHivBcUVEREREpJRZrCZ/pmaztcixMn+mZp/XLtDb7czGSH5EBPgSXMMHjxKqnl6NQG93Pr4jlGHLY4g+ls64qB3M6RNcJmKrzEosYTVNczsQcPbzq6mwioiIiIiUpHvuuQeAhQsXOjiS8islJ5+YMxsjxZworJ5m5luKtXFzMgiu6UubAN8zCaoftX3K7k689Xw9+OSOMO5Zvo11R1J5dPUuZvZuhZuzk6NDq7TseazNQqArUMMwjATgedM0dRKziIiIiJQ5OTk5jg6hXCmwmuxJybIdKbP1eDr7006f166Oj7ttY6SIWn4EVffBvZwle438Pfno9sKNmH46fIonv49nes8gXJxKd4qyFLLnLsH3XOZ+Q3uNJSIiIiIiJSf5dJ6terr1RDqxJzLILrAWa+Pu7ERITR/butPwAN8Kc45p82refHh7KMO/2cZ3B04y6ad4XuvaEmclraVOW1+JiIiIiFRi+VYr8clZxRLUQ+nnV6Dr+3oUVk7PrD8Nqu6Nq1P5qp5ejeAaPnxwawijVm5n+Z9JeLg4M61LM5xKeTOoyk4Jq4iIiIhIJZKUnccW28ZI6WxPyiTHUrx66uniRGhNX1vlNCLAjxpebg6K2HEiavnxft9gxqyMY3H8MTycnZjSqUmp72BcmSlhFREREZFKp1evXo4OoVTkWazsSs60rTuNOZFOQkbuee0a+nsSHuBLm1p+hAf40aKat9ZsntG+dhXe6xPMg6vi+GhHIh4uTjzTvpGS1lKihFVEREREKp1HHnnE0SGUiGNZucU2Roo7mUGexSzWxtvVmbAAX1uCGhbgRzUPVwdFXD7cVK8q7/RqxSNRO5m9LQFPF2cmtL3B0WFVCkpYRURERETKodwCKzuSM22V0y3H0zmWlXdeuyZVPAk/szFSm1p+NK3ipc2DrkGPG6rzZo+WPPH9Lt7efBB3ZyfGhdd3dFgVnhJWEREREal0Bg4cCMCXX37p4EiujGmaHM3KLVx7ejyDrSfS2Xkykzxr8eqpr5sz4QFn1p3W8iOspi9VVD21m9sa1yS3wMqkn3bz34378XRx4r7WdR0dVoWmhFVEREREpIzJKbAQdzKzWIJ6Irt49dQAmlX1IqKWHxFnEtQmVby0i20JG9i8FjkWK8+t3cOL6/bi4eLEXS1rOzqsCksJq4iIiIiIA5mmyeGMHGJOZNh27911MosCs3j11N/dxVY5jQjwIyzAF183/TrvCPcE1SanwMLL6/fxz1/24O7sxIBmtRwdVoWkn3ARERERkVL2x6ksfjiUzNYz1dPk0/nF7jsZ0LKat+1YmTa1/Gjo76nqaRkyJqQeOQVWXtt0gEk/7cbd2Ym+jWs6OqwKRwmriIiIiEgpSc3J583oA3y66yhFl59W83C1VU/DA3wJremLj6qnZd7DEQ04XWDlf1sP8eQP8cx0caJbg+qODqtC0b8CEREREal0+vfvX6rjWawmi3cf4/WN+0nJLcDZgCHNa3Fj3SqEB/hxg5+HzvUspyZG3kCOxcrc2AQeWb2T9/u2pnPdqo4Oq8JQwioiIiIilc6YMWNKbaytx9N54bc/iTuZCUDHOv4836kpzat5l1oMUnIMw+AfHRqRU2Bhwc6jjPtuB/NvCyEy0N/RoVUISlhFREREpNLJzs4GwMvLq8TGOHk6j1c3NUyUKQAAIABJREFU7GfJH8cBCPR2458dm3Bb4xqqplYwhmHwQuem5BRYWfrHce7/No6Pbw8lNMDX0aGVe0pYRURERKTSGT58OFAy57AWWE0+2ZnIW9EHyMiz4OZkcH9oPR6OaIC3q7Pdx5Oywckw+PfNzckpsLJiXxKjv93OgjtCCaru4+jQyjUlrCIiIiIidvJ7Yiov/vYnf6QUVnBvqV+VyZ2a0sjf08GRSWlwdjJ4vXsLci1W1hxM5r4V2/m0XyjNqmr697VycnQAIiIiIiLl3dHMXJ74fhfDv4nlj5Rs6vt6MLtPMHP7tlayWsm4OjkxvWcQXepV5VROPvet2M6BtNOODqvcslvCahjGPMMwThiGEVfk2lTDMGINw4gxDCPKMIw69hpPRERERMTRci1W3os5TO/Fm/hmbxLuzk48GXkD3w2NpMcN1bVWtZJyd3ZiZu9WdKjtz4nsPEauiOVIRo6jwyqX7FlhnQ/0Pefaq6ZphpqmGQ58A0yx43giIiIiIg7zy+FT3L5kM//duJ/sAit9GtYg6q5IHm9zA+4umshY2Xm6ODOnb2siavmRmJnLiBWxHM/KdXRY5Y7d1rCapvmLYRgNz7mWXuRTb8BERERERMTBhg0bds2vPZx+mmm/72P1gWQAGvt78nznptxUT2dvSnHers58cGtrRnwTS9zJTEauiOXTfmHU8HRzdGjlhmGa9sshzySs35im2brItWnAfUAa0M00zaSLvPYh4CGAevXqtY2OjrZbXCIiIiIi1yunwMJ7MYd5b1sCuRYr3q7OPN6mAaNa18XNWRVVubiUnHzu/Xobf6Rk07KaNwvuCKWKh6ujw3KYwMDAzaZpRl5J2xL/l2Wa5r9M06wPLAAeu0S72aZpRpqmGVmtWrWSDktEREREKrHk5GSSk5OvqK1pmkQdOEmfz6OZvuUQuRYrA5oGsPquSB4Mq69kVS6rqocrH98eSiN/T+JPZTH62+1k5BU4OqxyoTT/dS0ABpfieCIiIiIiF/TAAw/wwAMPXLbdvtRsxnwbx8NRO0nIyKVlNW8+6xfGG91bUsvbvRQilYqihpcbH98eSn1fD7YnZTL4q63sPpXl6LDKvBJNWA3DaFbk0wFAfEmOJyIiIiJiD1n5Fv6zYR+3LdnM2oQU/NxceL5TE5YNakO72v6ODk/Kqdo+7nxyRyjNqnqxN/U0g77cypLdxxwdVplmt02XDMNYCHQFahiGkQA8D9xmGEYLwAocBMbbazwREREREXszTZOv9ybxyu/7OJ6dhwHc1TKQv7VrSHVtlCN2UM/Xgy/ujOD53/7kiz+O8+zPf7DxaBov3tQUTxdnR4dX5thzl+B7LnB5rr36FxEREREpSfHJmby4bi8bj6YBEFrTlxc6NyEswM/BkUlF4+XqzKtdW9Chtj9Tfv2TpX8cZ3tSBu/0akWTKl6ODq9MsVvCKiIiIiJSHqXnFvDW5gN8siMRiwnVPFyZ1L4hQ1oE4mQYjg5PKrAhLQIJqenLY6t38kdKNnd+sYWXuzRjQLNajg6tzFDCKiIiIiKVzqhRo7Ca8Hn8Mf67cT+ncvJxMmBkcB0mRt6Av3vlPXJESleLat58OTCCyb/uYfmfSTz14242Hk1jcqcmeGiKsBJWEREREal8gm7uxT9+/oNtv/wBQLtAP57v3JSg6j4OjkwqIx83F97o1pJ2gf5MXb+Xz+KPsS0pgxk9W9HI39PR4TmUDo0SERERkUrlVE4+w5fHsC0pgwAvN97s3pKF/cKUrIpDGYbBva3qsGRABDf4ebArOYs7v9jCir1Jjg7NoZSwioiIiEil8vyve0jJs+B9KoHVd0XSv2kAhtaqShkRXMOHZYPacGujGmTmW5jw/S5e+PVPci1WR4fmEEpYRURERKTS+GbvCVbuO4lTQR71Y7/Dx00r5KTs8XVzYUbPIJ7v1ARXJ4OPdyZy17IYDqWfdnRopU4Jq4iIiIhUCknZefw/e3ceV3WVP378de5lERABcUNRwJV9F1NzX7J0LHVsKitts/zVONNMLk2WTdlMTU35tWVaptTKmtKyZbTGLM3ULNBc0NwQVMAUEJCdu5zfH8AnEFBQ8CK+n4/Hfdx7P5/zOZ/353MX7ptzPucs3HwYAL/9m3ApOePgiISon1KK28O78eH10fh7upKcXcjEj3fwv9RsR4d2SUnCKoQQQgghWj2tNQu+O0RemZUh/j60P77H0SEJ0SCRHT35bHIsowN8KSi38f++2seirSmUXyFdhCVhFUIIIYQQrd7qQ6dYfzSHts5m/ja0D3LFqriceLk68+rYUB65qidOSrE0OYObPttFRkGpo0NrdtJpXwghhBBCtGonCst4YmtFV+BHB/Wia9s2zJo1y8FRCdE4SinujPQnpnM7Zn/9M7uyCvjNxzt4dng/RgX4Ojq8ZiMtrEIIIYQQotXSWvPwpoMUlNsY2aM9U/p2BmDs2LGMHTvWwdEJ0Xgxndvx+eRYRvZoT36ZlZn/28vT245gsbfOLsKSsAohhBBCiFbrg/2/8F16Ll6uTjw1tI8xfc3hw4c5fPiwg6MT4sJ4t3HmtWvCmJsQhFnBG7vTueXz3ZwoLHN0aE1OElYhhBBCCNEqpReU8rdtRwB4fHBvOrm7GuvmzJnDnDlzHBWaEBfNpBT3Rnfnvd9E0cXDhR0nz/Cbj7bz7fHTjg6tSUnCKoQQQgghWh271sz79gBFFhvjgjrwm14dHR2SEM0ivosXn02OZYi/D7llVu78IpnnfkzFateODq1JSMIqhBBCCCFanXf3ZrItM5/2bZx54ureRldgIVojXzcX3ro2nD/FB2JS8K+dx7l9zW5OFl3+XYSbLGFVSr2llDqllEqutuxZpdR+pdRupdRqpZR3U+1PCCGEEEKIuqTml/CPH1MBWDSkD75uLg6OSIjmZ1KK+2N78M74SDq6ufDDiXx+8/EOtmTkOjq0i9KULazLgHFnLfsKCNdaRwIHgYebcH9CCCGEEELUYLNr5m48QInVzvW9O3FNUAdHhyTEJXVVV2/+OyWWgV29ySmxMH3NHv4vKQ3bZdpFuMkSVq31JuD0WcvWaa2tlU+3Af5NtT8hhBBCCCHO9taedHacPEMndxcWDu5Vb7kHH3yQBx988BJGJsSl08HdheXXRTA7tgcAS3YcY8YXe8guLndwZI13Ka9hvRP44hLuTwghhBBCXEEO5RbxfFIaAH8b2hcvV+d6yw4dOpShQ4deosiEuPTMJsUf4gNZdl0E7ds4szUjjwkf7eCHzDxHh9YolyRhVUo9AliBFecoM1MplaSUSjp9unUNxSyEEEIIIZqX1a6Zu/Eg5TbN1H6dGdGj/TnLJycnk5ycfM4yQrQGV/v78N8psST4eZFVUs6ta3bz4o6jJGcXkJJXTGZhKTkl5RRbbNh1y+s2rHQTBqWUCgT+q7UOr7ZsBnAvMEprXdyQeqKiovS6deuaLC4hhBBCCNG6vbzjGM8npeHn4coXU+PwdHE6Z/lJkyYBsHr16ksRnhAOZ7VrFiel8a+dx89ZztVsws3JRBsnE25OZto4mWjjZMbNyYSbudpjJzOuTibjcRunqu3MtbZ3M5ZV3Af5d9uutY5vSNzn/iRfJKXUOGAuMKyhyaoQQgghhBCN8XNOIS/uOArAM8P6njdZFeJK5GRSPJQQRH8/L97Ylc6ZMislVhslVjulVhulNjslVjtltoobLWRGnCb7NCul3geGAx2UUunAQipGBXYFvqqc+2qb1vq+ptqnEEIIIYS4spXb7MzZeACLXTMt1I/B/j6ODkmIFm1Y9/YM6153l3mtNWWViWuJ1Uap1f5rQms9e7nNSHCrJ74V97+Wq162an1RI+JtsoRVa31zHYvfbKr6hRBCCCGEONvLPx3j55wieni2Yd6Ano4OR4jLmlKKNk5m2jiZ8aH+QcsuVpdHGl72Uo4SLIQQQgghRJPZnVXAv346hgKeGd4XD2ezo0MSQjQx6eB/lvwyC+7OZpxNkssLIYQQQrRUZVY7czcewKbhjvBuJPh5N2r7v/zlL80UmRCiKV3xCatda/ZkFbAuLYd1qdkcyS8BoJ2LE+3dnGnfpvLm5oxv5WNfN+fKdS7GOlezJLhCCCGEEJfK4u1pHMotJsjLjYcSAhu9ff/+/Zs+KCFEk7siE1aL3c6PJ/L5KjWHr45m80tRubHO1WzCYrdzptzKmXIraZUJ7Pm0dTYbyWv1JPfXe5eKhLdymbt0WRFCCCGEuCA7Tp7h37vTMSl4dng/2jg1/ndVYmIiIImrEC3dFZOwllhtbDqey7q0bDYcO01+mdVY18XDhTEBHRgT5EuCnxcmFHllFk6XWjhdUnlf+TinjmW5pRYKLTYKLTaOFZQ2KJ42ZtNZCa1zjYTW182lxrq2zmYqR1oWQgghhLhilVhtzNl4ALuG+6K7E9O53QXV87e//Q2QeViFaOladcKaV2rhm2OnWZeWzXfHcym12Y11vbzdGBvYgbGBHYjo2LZWMujr5oKvmws0YGR0rTVnyq2/JrTVk9paCW85p0stlNrsZBaWkVnYsAmOXEyqjtbbmkmtb7X17VydMEmCK4QQQohW5tkfU0nLL6Gvjzuz4wIcHY4Qopm1uoT1RGEZ64/msC4tmx8y87DpX9dFdvRkbKAvY4M60Mvbvcn2qZTCy9UZL1dnghpQXmtNkcXG6VILOWclthUtuOU1ktzTpRZKrHZ+KSqv0X35XMwKfNrU3yX57CTX29UZs0kSXCGEEEK0XNsy81ienImTUjw7op+MISLEFaBVJKwpecWsS81mXVoOu7MKjOVmBYO6eTM2sAOjA3zxa+vqwCh/pZSirYsTbV2c6NHOrUHblFht9XZJPl1aflbCW9FFObvEQnaJBXIbEBNnJ7h1P65Ken3aOMtIykIIIYS4ZArLrcz79gAA/y+mO+EdPB0ckRDiUrgsE1atNXuyClmXls26tGxS8n4dGKmN2cSQ7j6MDezAyB7t8W7TfBPeXkpuTma6eZrp5tmmQeXLbHZyq3dDrkpoayW7Fbf8MqvxmLyGxXSukZRrX5/rgquTJLhCCCGEuDBP/5BKekEZYb5t+X+xPRwdjhDiErlsEtZzjezr5erEyB7tGRvUgSH+PrhdwEhxrY2r2UQXD1e6eDSsVdlit5NXaq1MasvrvP626nFOiYW8MkuzjKTczsWMs9mEi0nhbDbhbFI4m0w4mxUulffOJhNmhQxCJYQQQlwhvks/zfs/n8DZVNEVuCl6eT355JNNEJkQorm16IS1xGrju/Rc1qVm8815RvaV7qkXx9lkoqO7Cx3dXQCP85a32TX5lQNNVXVJzjFadJtmJOXzqSupdTYpXKotczIpI8mtUb7yvioJdqosH+TlxrieHeSfHkIIIUQLcabMyvxvDwLwh7gA+rU//++UhggPD2+SeoQQzatFJqx5ZVZmrdvLpnpG9h0T6EtER08ZBdeBzCZltJLC+QewauhIygXlVix2jcVmr7i327HY9FmP7dg0lNs15XZbkx/bE1tTmNK3MzeH+jXp4FxCCCGEaLxF36fwS1E5UR09uSeqe5PVu2nTJgCGDh3aZHUKIZpei0xY0wtKyUnLAZpvZF9xaTV2JOXzsdk1Vrum3G4/K8GtneyWV0t0LVXb2c7ezk6p1c6m47nsyipgaXIGS5MzuKqrF7eEdGVMoC8uMhKhEEIIcUl9czSHjw6exNVs4tkR/XBqwhkNXnjhBUASViFauhaZsHo4m3l0UC/GBHZoMSP7ipbFbFKYTQpXmjaJ/GN8IHuyCnjv5xN8fvgU2zLz2ZaZTwc3Z6b268LNIX4NHvhKCCGEEBcut9TCXzYdAuDP/QOl4UKIK1SLTFiDvNy4Pbybo8MQV6iIjp78vaMnf7mqJ6sPnuS9n09wKLeYf+08zqs7jzO8R3umhfox1L+9zF0rhBBCNJO/bjlMVkk58V3aMUN+FwpxxWqRCasQLYGnixO3h3fjtrCuJP1yhvd+zuTLI9lsOHaaDcdO062tKzeF+DG1X5fKwaqEEEII0RS+PJLF5ylZuDmZ+MfwfvIPYiGuYE3Wn1Ip9ZZS6pRSKrnasqlKqb1KKbtSKr6p9iXEpaSUor+fFy+MDGHztAHMTQiih2cbMgrL+GdiGlev+IHfr/+ZbZl5aK0dHa4QQghxWcsuKefRzYcBmDegJwHt3BwckRDCkVRT/cBWSg0FCoG3tdbhlctCADvwGvCQ1jqpIXVFRUXpdevWNUlcQjQHu9ZsTs9lxb4TfHMsB3vlx6iXtxs3h3Rlct9OeLk6OzZIIYQQ4jKjteb/fbWPdWk5DOzqzdvjI5ptVojDhyuS4t69ezdL/UKI+nXp0mW71rpBDZpN1iVYa71JKRV41rKfoaKFSojWxKQUQ7u3Z2j39pwoLOOD/Sf4YP8vpOSVsOj7FJ77MZUJvTpyS6gfkR095TMghBBCNMBnh0+xLi2Hts5mnhnWt1mnMJREVYjLQ4u5hlUpNROYCeDv7+/gaIRoOL+2rvwxPpD7Y3vwzdHTvLcvk80Zeaw6eJJVB08S1qEtt4T4MbF3J9ydzY4OVwghhGiRThaV8fiWFAAeGdiz2Uflr+rNN3bs2GbdjxDi4jRZl2CAyhbW/1Z1Ca62fCPSJVhcQVLzS/jPzydYdeAX8sqsALR1NjOpT2duCfWjb3sPB0cohBBCtBxaa+7+ci8bj59mePf2/HtcWLP3Tpo0aRIAq1evbtb9CCFqa0yX4KadxFIIAVRMzfTwVT3ZOu0q/jmiH7Gd21FosfHOvkyuXbWdmz7byWeHT1Fmszs6VCGEEMLhVh04ycbjp2nn4sTfhvaRS2mEEIYW0yVYiNbI1cnEDX06c0OfzuzPKeS9n0/wyaFTJP5yhsRfztC+jTO/7deZm0P86CGjIAohhLgCZRaWsuj7iq7ACwf3orOHq4MjEkK0JE05rc37wPdAP6VUulLqLqXUJKVUOjAQWKOU+l9T7U+Iy02wb1ueuLoPW6cN4MmrexPi68HpUguv70pnxH8SmbF2D+vTcrDZZWocIYQQVwatNfO/PUihxcaYQF+u793J0SEJIVqYphwl+OZ6VsmFAUJU09bFiVtCu3JziB87TxWwYl8ma45k8V16Lt+l59LDsw23hXVlanAXPF2kE4QQQojW672fT7AlIw8fVycWXS1dgYUQtTXpoEtNRQZdEleavFILqw6e5N29mRwvKAXA3cnElL5duD28Kz293R0coRBCCNG0jp0pYfyq7RRb7bw4OoTrena8pPvPyMgAoFu3bpd0v0KIxg26JAmrEC2Iza7ZcOw0y5Iz+D4zz1g+tLsP08O6MbS7T7POSSeEEEI0tzKbnff2ZfLyjmPkllkZ37MjS0aHODosIcQl1JiEVfobCtGCmE2K0YG+jA705cDpIpYnZ/DJoVNsOp7LpuO5BHm5cXtYVyb37Uxb6S4shBDiMmLXms8On+L5xDQyCssAGODnxV+v7u2QeD755BMAbrjhBofsXwjRMNLCKkQLl1tq4cP9v/DO3kxOFFX8gW/rbGZqvy7cFt6VgFYyunCJ1YYCXM0muYZJCCFaEa01m9JzefbHVH7OKQKgj487cxOCGNGjvcO+82UeViEcR1pYhWhFfNo4c290d+6K9OertGyWJ2eQ+MsZliZnsCw5g5E92jM9vBuDunlfVolescVG4i/5bM3I4/uMPPblFKIBswJ3ZzMezmbcncx4uFTeVy1zPsfjesq7mGXKaSGEcITdpwp45scjbMvMB6CLhwsPxgcyqU9nzKbL52+WEMJxJGEV4jLhZFJc27Mj1/bsyN7sQpYnZ/D54VN8few0Xx87TR8fd24P68qkvp1xczI7OtxaLHY7u04VsDUjj60Zuew8VYCl2hQ+TkphMkG5TVNQbqOg3NZk+3Y2qToTXHcnM22rHjvXfHyuRNjd2YyT/NASQoh6peaX8HxiKmuPZAPg5erErOju3BbWlTYt8G+UEKLlkoRViMtQWIe2/GN4P+YOCOI/P59gxb4THMot5tHNh3kuMY0b+3XhtrCudPNs47AY7VqzP6eIrZkVCWriiXyKrXZjvUlBZEdPBnXzZlBXb+K6tKONkxmL3U6JxU6hxUqxxU6xxfbrY6uNwnIrxdaq5TaKK29Flbcaj602isptWOyavDIreWXWJjs+V7OpZvJblfA6mXF3NtHW2alyuQkPZyc8nE2ViXAdj50qtpcBtYQQl7us4nJe3HGUD37+BavWuJpNzAjvxr3R/ni5Ojs6PCHEZUgSViEuYx3cXHggNoCZUd35MjWbt5Mz+OlUAW/sTufNPemMCejAjIiu9O/i1ezdhbXWHCsorWxBzWNbZh6nSy01yvT2dmdgN28GdfPmKj9v2rnW/gpyNplwdjXVue5C4yq36/qT2joS3CLrr8vrKltstVFms1Nms9c6xovh7mSqv8tzA7tHV1/WRq4HFkJcIgXlVv69O503d6dTYrVjUnBjvy7MjgvAr62ro8MTQlzGZNAlIVqZXafOsDw5k7VHsowutyG+HswI78ZvenXC1anprufMKi7n+8oW1K0Zecaoj1W6eLgwqJsPg7t5M7CrN509WsePFq01pTb7ORPguhLhYmv9SXP11uemYlLU6MZcZ3LbyOuEXUxKkmAhhKHcZuf9n0/w0o5jxj/wRgf48lBCIH18PBwc3bnl5OQA4Ovr6+BIhLjyyDysQghOFZfx3r4TvPfzCXJKKn5EtG/jzE0hXZgW2pUuF5A8FpRb+SEzn62ZFQnqodziGuu9XZ24qqu30c030MtNkpsGsmtdmbjaKLLYKbJYK5Pauh7X0VW6ju7RZbamT4KdlDpvglvjemAnE21dnIyu0h6VXaGrP5brgYW4/Ni15r8pWTyfmMbxglIAYju3Y96AIOK7eDk4OiFESycJqxDCUGazsyYli2XJGezNLgQqko5xPTswPbwbMZ08600qy6x2tp+sHMk3M489WQXYqn1luDmZiO/iVZGgdvMm1LetXIfZglirdYWuq7tzQ7pHV28VLiq3YW2GvxkuZkVnd1eGdfdhdKAvA/y8ZWRnIVqwzem5/OOHVPbmVPxN6e3tzkMJgYwO8L2s/kn5n//8B4CbbrrJwZEIceWRhFUIUYvWmu0nK7oL/y81y0g8Izq2ZUZ4N67t2REnpdibXcjWzFy2ZOSx/ZczNVrpnJQiqpOnkaBGdWqHqyQWV5Tyyq7QtRLdBnR7rtkF+tfn9rP+DLV1NjOse3tGB/oyvHv7JrueWQhxcfZkFfDsj6lsycgDKi77+ENcAJP7drkse0rIPKxCOI7MwyqEqEUpRXwXL+K7eJFZGMR7+07wn59PsCerkD9vOMBT3x/BatecKa85km5wew8jQe3fxYu2LvK1cSVzMZtwMZvwadM0o31qrSmz2Tl4upivjmazPi2Hg7nFrDmSxZojWTgpxYCuXowO8GV0oC9d2zpu5GshrlRHz5TwfGIa/03JAsDTxcys6B7cHt61RU6jJoRoXaSFVYgrWKnVxmeHT7EsOZMDp4sA6OHZ5teRfLt608HNxcFRiivNsTMlrE/LYf3RHBJ/ya/RAhvq61GZvHYg1Nfjsup+KMTlJruknJd2HOP9fSewao2LWXF7WDdmRXfHu4n+aeVI0sIqhONIl2AhRKNordl/uoi2zma6t3NzdDhCGHJLLWw8dpr1R3PYdPx0jdGUu7Z1ZVSAL2MCfEno6oWzSbqnC9EUCsutvLUng3/vTqfIYkMBk/t25o/xAa2ql4MkrEI4jnQJFkI0ilKKEN+2jg5DiFp82jgzqW9nJvXtTJnVztbMPNanZfP10dNkFpbxzt5M3tmbiaeLmeGV170O694eT+m6LkSjldvsfLD/F17ccdQYXX5kj/Y8lBBEv/Yte4oaIUTr1WQtrEqpt4AJwCmtdXjlsvbAB0AgkAbcqLXOPV9d0sIqhBDiXOxaszurwOg6XH2KJWeT4qqu3owK8GVUQPtW1SIkRHOwa83aI1n8MzGNY2cqpqiJ6eTJ3AFBJPh5Ozi65lNcXPG94e7u7uBIhLjyOKRLsFJqKFAIvF0tYf0HcFpr/bRSaj7go7Wed766JGEVQgjRGGn5JXx9tCJ5TTrrutewDm0ZUzloU3B7ue5VCJtdY7VrLHY7u04V8GxiKnuyKqao6enlxkMJQYwNvLymqBFCXF4cdg2rUioQ+G+1hPUAMFxrfUIp5Qds1Fr3O189krAKIYS4UKdLLWw4lsP6tBy+S8+lpNp1r/6eFde9jg7wpb+fXPcqLozWGpsGq92Oxa6x2HXFY5uufG6vTAg1Flu1x9XWWe2a8mrrrHY75TZduc5eq/zZdVntmvJqdVlsdcdirVZHVfmzp5IC6OReMUXNb/tdnlPUXIilS5cCcMcddzg4EiGuPC0pYc3TWntXPlZAbtXzOradCcwE8Pf3j0tKSmqyuIQQQlyZSq02tmbk8dXRHL45mkN25XV5AO1cnBjRoz2jAnyJ6uSJTevKH/kVP/bLq5KGaklCuZEU2I2y5VXb2GtubyyrljyUV19XrYxJKdydzXg4mXB3Nlc8djbj5lRx7+5sxt3JVO2xuUa5qvWuZtNl0yqmtcaqq5KtX89F7eTMXjvxstV8XjsxbEBdtsok0d7wuqonhi1vyMqGU4CzWeFsMuHpYmZaaFfuiOh2xU1RI4MuCeE4LXLQJa21VkrV+/2utX4deB0qWlgvVVxCCCFarzZOZkYG+DIywBe71uw6VcD6oxWtr4fzivn08Ck+PXzK0WE2GZMC9+pJbmUiayS2TjWT4YrHJhSqVmJoMZK6sxO9qta6X1sCjTJ1lT9Hknk5MylwNplwNimcTQonkwlns8Kp8rmzyVTx2Fy9jDK2qVpXq3zVra515prbO5lMuJxVl0vlcieTwsX86z4r1lXcm6+QFlQhROvQ3AnrSaWUX7Uuwa3nV4EQQojMs++iAAAgAElEQVTLikkpYjq3I6ZzO+YkBJGaX1I54nAOxwtKcTGbjB/01RMDFyPhMFUur56EVN6bK5KB6ttVT1Scz6qjelknk8KuNUUWG8UWGyVWu/G4yGKj2FrxuNh4/Ov66uuKrDbKbZpCi41Ci83Rp7tBzJVJn1Plea5K0JyqnavqSZ5zA5KxuhK7qvNfs/yvdRmv61mxVE8Yz67LdJm0ZAshxOWuuRPWz4DpwNOV95828/6EEEKIBgnycuOeqO7cE9Xd0aE0GYvdTonFbiSy1RPbIouNEoudoupJbuU9UGdiV5WMO5lqtxI2Nsk8uy4nSfqEEEI0QJMlrEqp94HhQAelVDqwkIpE9UOl1F3AUeDGptqfEEIIIWpyNplwdjXRzlXmoRVCCNE6NOmgS02lQ4cOOjAw0NFhCCGEEEIIIYRoYtu3b9da6wYN1d8i/wUbGBiIjBIshBBCCCGEEK2PUmpHQ8vKBHRCCCGEEEIIIVqkFtnCWl16ejqTJk1ix44d2O32828ghBDCIUwmE7GxsaxevRp/f39HhyOEEEKIVqDFJ6yTJk1i8uTJbNmyBRcXF0eHI4QQoh7l5eU899xzTJo0icTEREeHI4QQQohWoEUOuhQfH6+rrmE1m82UlJRIsiqEEJeB8vJy3NzcsNkuj3lAhRBCCHHpKaW2a63jG1K2xV/DarfbJVkVQojLhIuLi1y+IYQQQogm0+ITViGEEEIIIYQQVyZJWIUQQgghhBBCtEjnTViVUm8ppU4ppZKrLXtcKZWhlNpZebuunm3TlFJ7KsvIxKpCCCGEEEIIIRqsIS2sy4BxdSx/QWsdXXlbe47tR1SWadBFtRdr8eLFFBcXN/t+zGYz0dHRhIeHM3XqVIqLi0lLSyM8PLzZ913lzjvvpFOnTnXuc9u2bdxzzz189dVXxMXFERERQVxcHN98802T7X/48OH069ePqKgoBg8ezIEDBwAIDAwkOzu7yfZzLi+99BK9e/dGKVVrnxaLhdjYWI4fP86IESMIDQ0lLCyM//u//7sksVVX/Zy0bdu2WfeVl5fHK6+80qhtHn/8cZ577rlmiqjivVI1kFp9Nm7cyIQJE5pkfxfyPdCQGOuybNkyHnjggUZvB1BWVsbo0aOJjo7mgw8+aNA2WVlZDBgwgJiYGL777jtWrlxJSEgII0aMICkpidmzZ19QLEIIIYQQLdF5E1at9Sbg9CWIpUlcqoTVzc2NnTt3kpycjIuLC6+++mqz7/NsM2bM4Msvv6xz3RdffMG4cePo0KEDn3/+OXv27GH58uXcdtttTRrDihUr2LVrF9OnT2fOnDlNWndDDB48mPXr1xMQEFBr3ebNmxk8eDBOTk7885//ZN++fWzbto2XX36Zffv2NWkcWusWM9DMhSSsrc2l+h64WD/99BMAO3fu5He/+12Dtvn666+JiIjgp59+YsiQIbz55pu88cYbbNiwgfj4eJYsWdKcIQshhBBCXFIXcw3rA0qp3ZVdhn3qKaOBdUqp7UqpmeeqTCk1UymVpJRKysrKOu/Oi4qKGD9+PFFRUYSHh/PBBx+wZMkSMjMzGTFiBCNGjABg1qxZxMfHExYWxsKFC43t165dS3BwMHFxccyePdto2SkqKuLOO+8kISGBmJgYPv300/PGMmTIEA4fPgyAzWbjnnvuISwsjLFjx1JSUgLAG2+8Qf/+/YmKimLKlCnGj+mVK1cSHh5OVFQUQ4cONeqYM2cO/fv3JzIyktdee63O/Q4dOpT27dvXue7rr79m9OjRxMTE0LVrVwDCwsIoKSmhrKzsvMfUWEOHDjXOAcCLL75IbGwsERER7N+/H4Aff/yRgQMHEhMTw6BBg4wW2b1795KQkEB0dDSRkZEcOnQIgHfffddYfu+999Y5TUZMTAyBgYF1xvTll19y7bXX4ufnR2xsLACenp6EhISQkZFRq3xWVhZTpkyhf//+9O/fny1btgAVrY933nknw4cPp2fPnkZCkJaWRr9+/bj99tsJDw/n+PHjvP/++0RERBAeHs68efPOec42btzIsGHDuP766+nZsyfz589nxYoVJCQkEBERQUpKygXFNX/+fFJSUoiOjq7znwhvv/02kZGRREVF1fkPjJ07d3LVVVcRGRnJpEmTyM3NBWDJkiWEhoYSGRnJTTfdBNT/eSkpKeGmm24iJCSESZMmGZ+Dul6j4OBgYmNj+fjjj43lZ7f4hoeHk5aWBpz/fVHX90BjXheo/3sjMTGRQYMGERUVRUJCAgUFBTW2W7NmDQMHDqzV2n/69GluuOEGIiMjueqqq9i9ezenTp3i1ltvJTExkejoaOP1rpKSksK4ceOIi4tjyJAh7N+/n507dzJ37lw+/fRToqOj+etf/8rmzZu56667mDNnTo1W6sLCQu644w4iIiKIjIzko48+avSxDR06lJ07dxplrr76anbt2nXe8yeEEEII0WS01ue9AYFAcrXnnQEzFQnvU8Bb9WzXrfK+E7ALGNqQ/cXFxekqFSHWtmrVKn333Xcbz/Py8rTWWgcEBOisrCxjeU5OjtZaa6vVqocNG6Z37dqlS0pKtL+/vz5y5IjWWuubbrpJjx8/Xmut9cMPP6zfeecdrbXWubm5uk+fPrqwsFBnZGToa6+91qjXw8NDa621xWLREydO1K+88opOTU3VZrNZ//TTT1prradOnWrUlZ2dbWz7yCOP6CVLlmittQ4PD9fp6enG/rTW+rXXXtNPPvmk1lrr0tJSHRcXZ8R6ttTUVB0WFlZjWVZWlh4+fHitsitXrtSjRo2qs54LMWzYMJ2YmKi11vof//iHvvHGG7XWFa9B1fG9/PLL+q677tJaa52fn68tFovWWuuvvvpKT548WWut9QMPPKDfffddrbXWZWVluri4WO/bt09PmDBBl5eXa621njVrll6+fHm9sZz9umutdf/+/XVRUVGNZampqbp79+46Pz+/Vh0333yz/u6777TWWh89elQHBwdrrbVeuHChHjhwoC4tLdVZWVm6ffv2ury8XKempmqllP7++++11lpnZGTo7t2761OnTmmLxaJHjBihV69eXSu+qvfOhg0btJeXl87MzNSlpaW6a9eu+rHHHtNaa7148WL9hz/84YLjOvs9USU5OVn36dPHiKXq87Fw4UL97LPPaq21joiI0Bs3btRaa/3oo48acfj5+enS0lKt9a/v1fo+L//85z/1HXfcobXWeteuXdpsNhvvlSpVn8ODBw9qu92up06danwOq8ejtdZhYWE6NTW1we+L6uf7XK9LddXfz3V9b5SVlemgoCD9448/aq1/fT8vXbpU33///frjjz/WV199tT59+nStuh944AH9+OOPa621/vrrr3VUVJTWuuI9UHXMZxs5cqQ+ePCg1lrrbdu26REjRmittbG/uuKuXt/cuXON105rbcTVmGNbtmyZUceBAwd09e/mc6nve1sIIYQQQmutgSTdgLxQa43TBSa5J6seK6XeAP5bT7mMyvtTSqnVQAKw6UL2ebaIiAj+/Oc/M2/ePCZMmMCQIUPqLPfhhx/y+uuvY7VaOXHiBPv27cNut9OzZ0+CgoIAuPnmm3n99dcBWLduHZ999pnRulNaWsqxY8cICQlh7dpfL9UtKSkhOjoaqGhhveuuu8jMzCQoKMhYHhcXZ7QKJScns2DBAvLy8igsLOSaa64BKrq0zpgxgxtvvJHJkycbMezevZtVq1YBkJ+fz6FDh4x4z2fdunWMHTu2xrK9e/cyb9481q1b16A6GmratGm4ubkRGBjIiy++aCyvOpa4uDij5Sw/P5/p06dz6NAhlFJYLBYABg4cyFNPPUV6ejqTJ0+mT58+fP3112zfvp3+/fsDFee7U6dODY4rIyOD9u3b4+7ubiwrLCxkypQpLF68mHbt2tXaZv369TW6Cp85c4bCwkIAxo8fj6urK66urnTq1ImTJys+AgEBAVx11VVARQvV8OHD6dixo3FuNm3axA033FBvnP3798fPzw+AXr16Ga9bREQEGzZsuOC46vPNN98wdepUOnToAFCrhT4/P5+8vDyGDRsGwPTp05k6dSoAkZGRTJs2jRtuuME4pvo+L5s2bTKupYyMjCQyMrJWLPv37ycoKIg+ffoAcOuttxqfw/pcyPviQl6Xur43lFL4+fkZ+67+Hvrmm29ISkpi3bp1db63Nm/ebLRwjhw5kpycHM6cOVPv/gsLC9m6datx7oFG94xYv349//nPf4znPj4+jT62qVOn8uSTT/Lss8/y1ltvMWPGjEbFIIQQQghxsS4oYVVK+WmtT1Q+nQQk11HGAzBprQsqH48FnrjgSM/St29fduzYwdq1a1mwYAGjRo3iscceq1EmNTWV5557jsTERHx8fJgxYwalpaXnrFdrzUcffUS/fv3OWa7qGtazubq6Go/NZrPRFXLGjBl88sknREVFsWzZMjZu3AjAq6++yg8//MCaNWuIi4tj+/btaK158cUXjaS2sb744gv+9Kc/Gc/T09OZNGkSb7/9Nr169TrntsePH+c3v/kNAPfddx/33XffOcuvWLGC+Pja42lVnQez2YzVagXg0UcfZcSIEaxevZq0tDSGDx8OwC233MKAAQNYs2YN1113Ha+99hpaa6ZPn87f//73Bh93dV9++WWN82exWJgyZQrTpk0zkumz2e12tm3bRps2beo9nrOPycPD44Liq6tek8lkPDeZTMY+LiSu5rBmzRo2bdrE559/zlNPPcWePXsa/HlpLCcnpxrXBFd9bi/2fdEQF/K90atXL44cOcLBgwfr/Dw0lt1ux9vbu87vmIvR2GNzd3dnzJgxfPrpp3z44Yds3769SeMRQgghhDifhkxr8z7wPdBPKZWulLoL+EfldDW7gRHAg5VluyqlqpohOwOblVK7gB+BNVrrukcIugCZmZm4u7tz6623MmfOHHbs2AFUXKNYdV3ZmTNn8PDwwMvLi5MnT/LFF18A0K9fP44cOWK0flYfnfOaa67hxRdfrOrSbAyKcrEKCgrw8/PDYrGwYsUKY3lKSgoDBgzgiSeeoGPHjhw/fpxrrrmGf/3rX0YL5MGDBykqKmrQfrTW7N6922jlzcvLY/z48Tz99NMMHjz4vNt3796dnTt3snPnzvMmq42Vn59Pt27dgIqRVascOXKEnj17Mnv2bK6//np2797NqFGjWLVqFadOnQIqrgE8evRog/dVdf0qVJyTu+66i5CQkBqJ/NnGjh1bo5W4sclCQkIC3377LdnZ2dhsNt5//32jpfJiNDau6p+Bs40cOZKVK1eSk5MDVJzX6ry8vPDx8eG7774D4J133mHYsGHY7XZjtOVnnnmG/Px8o6dAXZ+XoUOH8t577wEVvQt2795dK5bg4GDS0tKMazfff/99Y11gYKDxmd6xYwepqakADX5fVD8HjX1dzvW9ceLECRITE4GKz3TVPwgCAgL46KOPuP3229m7d2+tOocMGWJ87jdu3EiHDh3qbImt0q5dO4KCgli5ciVQ8R5u7LWjY8aM4eWXXzae5+bmXtCx3X333cyePZv+/fsbrbRCCCGEEJdKQ0YJvllr7ae1dtZa+2ut39Ra36a1jtBaR2qtJ1a1tmqtM7XW11U+PqK1jqq8hWmtn2rKwPfs2WMMvPLXv/6VBQsWADBz5kzGjRvHiBEjiIqKIiYmhuDgYG655RYjYXNzc+OVV14xBjTx9PTEy8sLqGgFtFgsREZGEhYWxqOPPgpUJMjXXVfndLMN8uSTTzJgwAAGDx5McHCwsXzOnDnGYDBVA57cfffdhIaGEhsbS3h4OPfee2+dLWc333wzAwcO5MCBA/j7+/Pmm2+yfft2YmJiUEoBFdO+HD58mCeeeILo6Giio6ONH/uX2ty5c3n44YeJiYmpcTwffvgh4eHhREdHk5yczO23305oaCiLFi1i7NixREZGMmbMGE6cOFGrziVLluDv7096ejqRkZHcfffd2Gw2Dh8+bJznLVu28M477/DNN98Y56B69+7qdSUlJREZGUloaGijR3728/Pj6aefNt57cXFxXH/99Y08S7U1Ni5fX18GDx5MeHh4rUGXwsLCeOSRRxg2bBhRUVF1JvDLly9nzpw5REZGsnPnTh577DFsNhu33norERERxMTEMHv2bLy9vev9vMyaNYvCwkJCQkJ47LHHiIuLq7WfNm3a8PrrrzN+/HhiY2NrdO2dMmUKp0+fJiwsjJdeeom+ffsCNPh9Uf17oLGvS33fGy4uLnzwwQf8/ve/JyoqijFjxtRonQwODmbFihVMnTq11gBKjz/+ONu3bycyMpL58+ezfPnyevdfZcWKFbz55ptERUURFhbWoAHgqluwYAG5ubnGoG4bNmy4oGOLi4ujXbt23HHHHUbdP/zwQ5P/Q0sIIYQQoi6qqmWkJYmPj9dV8yEqpWiOGAsLC2nbti1aa+6//3769OnDgw8+2OT7udQWLVpE7969jVFcr0SbN2/m3XffdchUQ0K0NpmZmQwfPpz9+/djMjVsYPnm+t4WQgghROuglNqutW7QdVQXdA1ra/DGG2+wfPlyysvLiYmJ4d5773V0SE2iqqX5Snb11Vdz9dVXOzoMIS57b7/9No888gjPP/98g5NVIYQQQoimdMW2sAohhGge8r0thBBCiHNpTAur/MtcCCGEEEIIIUSLdFknrGaz2RhEJzo62hj1d/PmzSQkJBAcHExwcHCNuR0ff/xxY87I89W1ceNGJkyYAFSMatuxY0eio6MJDg7mhRdeqLPOGTNm0K1bN2POxOzsbAIDA42ye/fuZeTIkfTr148+ffrw5JNPGi0Rzz//PHfeeadRdsWKFYwfP75pTlY1y5Yt44EHHqhzedUxhoaG8sYbb9RaXnWrmhf00KFDTJgwgV69ehEXF8eIESPYtGnTees7e//Dhw8nKSmJ4uJixo8fT3BwMGFhYcyfP98oU1ZWxu9+9zt69+7NgAEDjNe7urS0NNzc3Ix93nfffTWmR2kJFi9eTHFxsfH8uuuuIy8v75Lsu77Xvinrz8zMrHf9Y489xvr165tt/0IIIYQQonW5rBPWqrlQq26BgYH88ssv3HLLLbz66qvs37+fzZs389prr7FmzZpG13W23/3ud+zcuZMtW7bw1FNPcfz48TrrMpvNvPXWW7WWl5SUMHHiRObPn8+BAwfYtWsXW7du5ZVXXgFg9uzZ7Nixgy1btpCXl8eCBQtqTGdyKVQd48aNG/nLX/7CyZMnayyvuoWGhlJaWsr48eOZOXMmKSkpbN++nRdffJEjR46ct75zeeihh9i/fz8//fQTW7ZsMabeePPNN/Hx8eHw4cM8+OCDzJs3r87te/Xqxc6dO9m9ezf79u3jk08+aYIzU9uFznl6dsK6du1avL29myoshzpXwmqz2XjiiScYPXr0JY7qwjXnvLZCCCGEEOL8LuuEtS4vv/wyM2bMIDY2FoAOHTrwj3/8g6effrrJ9uHr60vv3r3rnE4D4I9//CMvvPBCrR+77733HoMHD2bs2LEAuLu789JLLxmxOTk58corr3D//fczd+5c7rzzTnr27Fmr/h9//JGBAwcSExPDoEGDOHDgAFCRLEyePJlx48bRp08f5s6da2yzdOlS+vbtS0JCAlu2bDnvMXbq1IlevXqdc+7TFStWMHDgQCZOnGgsCw8PZ8aMGRdUH1SckxEjRgAVU23ExsaSnp4OwKeffsr06dMB+O1vf8vXX399zuvknJycGDRoEIcPH6awsJBRo0YRGxtLRESEMUVIWloaISEh3HPPPYSFhTF27FhKSkoAOHz4MKNHjyYqKorY2FhSUlLYuHEjQ4YMYeLEiYSGhgLw7rvvGlMs3XvvvdhsNqBiapf4+HjCwsJYuHAhUDFFTWZmJiNGjDCOMzAwkOzsbKBikJvIyEiioqK47bbbah1Tc732WVlZjBkzhrCwMO6++24CAgKMmG644Qbi4uIICwszeivYbDZmzJhBeHg4ERERvPDCC6xatYqkpCSmTZtGdHQ0JSUlBAYGMm/ePGJjY1m5ciUzZsxg1apVACQmJhpTOSUkJNQ5d+wzzzxDREQEUVFRRmv7G2+8Qf/+/YmKimLKlClG8j9jxgxmz57NoEGD6Nmzp7Gf+upJSUkxprYaMmQI+/fvN+q57777GDBgAHPnzuXbb781ehbExMTUO8etEEIIIYRoBlrrFneLi4vTVSpCrJvJZNJRUVE6KipK33DDDVprrSdNmqQ/+eSTGuXy8vK0j4+P1lrrhQsX6meffbZBdW3YsEGPHz9ea6310qVL9f3336+11vro0aM6KipKl5SU1Kpz+vTpeuXKlfqOO+7Qb731ls7KytIBAQFaa60ffPBBvXjx4lr79vb21vn5+cbzm266SQcFBenS0tI6jzs/P19bLBattdZfffWVnjx5shFjUFCQzsvL0yUlJbpHjx762LFjOjMzU3fv3l2fOnVKl5WV6UGDBhnHUl31Y0xJSdEdO3bUOTk5eunSpbpDhw7G+YmKitLFxcX1Hs+F1Ofh4aETExNrbJ+bm6uDgoJ0SkqK1lrrsLAwffz4cWN9z549dVZWVo1tUlNTdVhYmNZa66KiIh0fH6/Xrl2rLRaLcY6zsrJ0r169tN1u16mpqdpsNuuffvpJa6311KlT9TvvvKO11johIUF//PHHWmutS0pKdFFRkd6wYYN2d3fXR44c0VprvW/fPj1hwgRdXl6utdZ61qxZevny5VprrXNycrTWWlutVj1s2DC9a9curbXWAQEBNeKuep6cnKz79OljrKvavrrmeu3vv/9+/be//U1rrfUXX3yhgVpxFBcX67CwMJ2dna2TkpL06NGja7xWWms9bNiwGq9jQECAfuaZZ4znVZ+PsrIyHRQUpH/88cdax1Vl7dq1euDAgbqoqKhGHNnZ2UaZRx55RC9ZssSo+7e//a222Wx67969ulevXuesZ+TIkfrgwYNaa623bdumR4wYYdQzfvx4bbVatdZaT5gwQW/evFlrrXVBQUGtOEVt5/reFkIIIYQAknQDc8PLelqbqm68l6quDz74gE2bNrF//35eeukl2rRpU2/Zhx9+mOuvv77R16AWFhaSlJSExWIhKysLf3//WmXy8/OZPn06hw4dQimFxWIx1o0aNQovLy8AQkNDOXr0KNnZ2QwfPpyOHTsCFd10Dx48WO8xbt68GVdXV1577TXat29vbPPSSy+dM/ZJkyZx6NAh+vbty8cff9yo+oYPH16jLqvVys0338zs2bPrbGU+l5SUFKKjo1FKcf3113PttddisVj4y1/+wqZNmzCZTGRkZBjdk4OCgoiOjgYgLi6OtLQ0CgoKyMjIYNKkSQA1XuuEhASCgoIA+Prrr9m+fTv9+/cHKrp9d+rUCYAPP/yQ119/HavVyokTJ9i3bx+RkZH1xv3NN98wdepUOnToAGCcq+qa67XfvHkzq1evBmDcuHH4+PgY65YsWWKsO378OIcOHaJfv34cOXKE3//+94wfP97oNVCX3/3ud7WWHThwAD8/P+O8tWvXrlaZ9evXc8cdd+Du7l7jfCQnJ7NgwQLy8vIoLCzkmmuuMba54YYbMJlMhIaGGq9vXfUUFhaydetWpk6damxbdd05wNSpUzGbzQAMHjyYP/3pT0ybNo3JkyfX+ZkUQgghhBDN47JOWOsSGhrK9u3buf76641l27dvJyws7KLrrkqykpKSGDt2LBMnTqRLly51lu3Tpw/R0dF8+OGHNWKrGpCoypEjR2jbtq3xg33hwoXceuutdO7cmQcffJCVK1fWqvvRRx9lxIgRrF69mrS0tBrJnqurq/HYbDY3+hq8hiSmVcLCwmocz+rVq0lKSuKhhx66oPqqmzlzJn369OGPf/yjsaxbt24cP34cf39/rFYr+fn5+Pr61tq26hrW6lasWEFWVhbbt2/H2dmZwMBASktLgdrnrKpLcH08PDyMx1prpk+fzt///vcaZVJTU3nuuedITEzEx8eHGTNmGPu7GM352tdl48aNrF+/nu+//x53d3eGDx9OaWkpPj4+7Nq1i//973+8+uqrfPjhh3Vetw01z1dTmDFjBp988glRUVEsW7aMjRs3GuuqnwN9ju7idrsdb2/vev9JVT3m+fPnM378eNauXcvgwYP53//+R3Bw8MUfiBBCCCGEOK9Wdw3r/fffz7Jly4wfojk5OcybN6/GNX0XKz4+nttuu43/+7//O2e5Rx55pMaIxNOmTWPz5s3GKKklJSXMnj3biG3Pnj2sWbOGefPmMXPmTNLS0vjqq69q1Zufn0+3bt2AimsXz2fAgAF8++235OTkYLFY6kyCL8Qtt9zCli1b+Oyzz4xl1QcTulALFiwgPz+fxYsX11g+ceJEli9fDsCqVasYOXIkSqkG1Zmfn0+nTp1wdnZmw4YN572W1tPTE39/f2PAprKysjqPbdSoUaxatYpTp04BcPr0aY4ePcqZM2fw8PDAy8uLkydPGgNHVdVd13WQI0eOZOXKleTk5Bh11XUczfHaDx482Pjnyrp168jNzTX25+Pjg7u7O/v372fbtm1AxejXdrudKVOmsGjRInbs2HHOYztbv379OHHiBImJiQAUFBTUSrDHjBnD0qVLjfNedT4KCgrw8/PDYrGwYsWK8+6rrnratWtHUFCQcT601uzatavO7VNSUoiIiGDevHn079/fuNZVCCGEEEI0v1aXsPr5+fHuu+9yzz33EBwczKBBg7jzzjv5zW9+Y5RZtGgR/v7+xu1CzJs3j6VLl57zx3lYWJgx+BNUdDv+9NNPWbRoEf369SMiIoL+/fvzwAMPoLVm1qxZvPDCC7Rp0waTycS//vUv/vCHP1BeXl6j3rlz5/Lwww8TExPToFY0Pz8/Hn/8cQYOHMjgwYMJCQlp9PF+8MEHNaa12bp1K25ubvz3v//l1VdfpR4fa3kAACAASURBVGfPngwcOJBFixaxYMGCRtdfJT09naeeeop9+/YRGxtLdHQ0//73vwG46667yMnJoXfv3jz//PONGkhr2rRpJCUlERERwdtvv92gFrJ33nmHJUuWEBkZyaBBg/jll19qlQkNDWXRokWMHTuWyMhIxowZw4kTJ4iKiiImJobg4GBuueUWBg8ebGwzc+ZMxo0bZwy6VCUsLIxHHnmEYcOGERUVxZ/+9Kda+2uu137hwoWsW7eO8PBwVq5cSZcuXfD09GTcuHFYrVZCQkKYP38+V111FQAZGRkMHz6c6Ohobr31VqOFuWrAoqpBl+rj4uLCBx98wO9//3uioqIYM2ZMrRbocePGMXHiROLj44mOjjb++fPkk08yYMAABg8e3KDXsb56VqxYwZtvvklUVBRhYWHGQFxnW7x4MeHh4URGRuLs7My111573n0KIYQQQoimoc7Vbc5R4uPjdVJSEgBKqXN27RNCXLyysjLMZjNOTk58//33zJo1q8muDxdXHvneFkIIIcS5KKW2a63jG1K21V3DKoRovGPHjnHjjTdit9txcXHhjTfecHRIQgghhBBCSMIqhKgYJOynn35ydBhCCCGEEELU0OquYRVCCCGEEEII0TqcN2FVSr2llDqllEqutuxxpVSGUmpn5e26erYdp5Q6oJQ6rJSa35SBCyGEEEIIIYRo3RrSwroMGFfH8he01tGVt7Vnr1RKmYGXgWuBUOBmpVRoowM0mWqNkiuEEKJlKi8vx2SSzjtCCCGEaBrn/VWhtd4E1J4Q8vwSgMNa6yNa63LgP8D1ja0kNjaW5557TpJWIYRo4crLy3nuuedqTOclhBBCCHExLmbQpQeUUrcDScCftda5Z63vBhyv9jwdGFBfZUqpmcBMgB49ehjLV69ezaRJk3j00Uex2+0XEa4QQojmZDKZiI2NZfXq1Y4ORQghhBCtxIUmrP8CngR05f0/gTsvJhCt9evA61AxD2vVcn9/fxITEy+maiGEEEIIIYQQl6ELutBIa31Sa23TWtuBN6jo/nu2DKB7tef+lcuEEEIIIYQQQojzuqCEVSnlV+3pJCC5jmKJQB+lVJBSygW4CfjsQvYnhBBCCCGEEOLKc94uwUqp94HhQAelVDqwEBiulIqmoktwGnBvZdmuwL+11tdpra1KqQeA/wFm4C2t9d5mOQohhBBCCCGEEK2O0lqfv9QlFh8fr5OSkhwdhhBCCCGEEEKIJqaU2q61jm9IWZksTwghhBBCCCFEiyQJqxBCCCGEEEKIFuli5mFtNpmZmSilHB2GEEIIIYQQQggHapEJa9euXcnMzHR0GEIIIYQQopW69dZbAXj33XcdHIkQV57GNE62yIRVCCGEEEKI5pSenu7oEIQQDSDXsAohhBBCCCGEaJEkYRVCCCGEEEII0SJJwiqEEEIIIYQQokWSa1iFENjLyzn57tsosxmP0DDcgkNw8vR0dFhCCCFEsxk4cKCjQxBCNIAkrEIIMhY/T87nn9VY5hoQgHtIKB6hobiHhtGmZy9Mzs4OilAIIYRoWn//+98dHYIQogEkYRXiCpf92SfkfP4ZysWF9teNp+TQQUoOHaLs6FHKjh4l98svAFAuLrj17YtHSBjuoSG4h4bh4tdV5kwWQgghhBDNRhJWIa5gRXv2kPHC8wB0nzOP9uOuBcBusVCacpiiffso3reX4p/3UXbsGMXJyRQnJxvbm7288QipSF7dQ0NxDw3FybOdQ45FCCGEaIwpU6YA8NFHHzk4EiHEuUjCKsQVypKdReqCv6CtVjr8dqqRrAKYnJ1xDw7BPTgEJlf8QbcWnKH4558p/nkfxZWJrDUvjzPbvufMtu+NbV39u1cmr2G4h4Ti1rs3JheXS358QgghxLnk5OQ4OgQhRANIwirEFcheXk7qo49gPZ2DR3QM3e7//Xm3cfJsR7uEAbRLGACA1pryEycqE9i9FUnswQOUpR+nLP04uev+B4BydsatT1/cK1tiPULDcOnWTboSCyGEEEKI85KEVYgrUMaSxRQnJ+PcqROBTzyJcmr8V4FSCteuXXHt2hWfUaMB0FYrJSkpFO/bW9Gd+Oe9lB09WpnQ7oWPVgFgbtcO95CKLsQeIaG4h4Ti5O3dpMcohBBCCCEuf+f9laqUeguYAJzSWoefte7PwHNAR611dh3b2oA9lU+Paa0nXnzIQoiLkfPZp+R8+gnKxYWgp/6Os0/7JqtbOTnh3q8f7v360WHSZABshYUU7/+ZosprYYv37cN6+jQFP2yj4IdtxrYuXbvi3KkzTp6emGvc2lUsa9u2xjKzp6eMWiyEEEII0co1pFllGfAS8Hb1hUqp7sBY4Ng5ti3RWkdfcHRCiCZVlLyH9Bf+CYD/n+dUXKPazMxt2+IZ3x/P+P5ARVdiy8lfKltgK6+HPbCf8sxMyjMzG1W3qU2bs5JbT8xt29WR9HpibutZY7np/7N33+FRVOsDx7+zJb33BtJ7CRCaFMFCFcSCWBERsVzl2jtWLFe9ilz1WhG9P0UQCyoBEREpiiGBgIAgIC2F9F63nN8fmywJ6SFhU97P8+TZ3Zkzc97dbJl3Thln5+Z4ukIIIVqJiy66yNEhCCHqQVNK1V1I0zoB31dsYdU0bRXwHLAaiKqhhTVfKeXR0KCioqJUbGxsQzcTQtTClJ7OwXlzMWekE3DFVUTce5+jQ7JTZjPFJ45jzsrCkpdn/zPb7+fabvMrLMvPB4ul0XVqTk6nW2+r+TNUaMnV21t4beU1Z2cZgyuEEEII0UiapsUppaLqU7ZRY1g1TbsMSFRK7a7joM1F07RYwAy8pJT6ppZ9zgfmA3Ts2LExYQkhamA1mTi28HHMGem4DxxI+N0LHB1SJZrBgGuXrg3aRimFtbDQlszm51dIbiskuJWS3tPrzHl5qNJSzBnpmDOqnGurO16jsXJy61G5q3LlpLfCcg8PdK6ukuwKIYQQQtRTgxNWTdPcgMewdQeuy3lKqURN07oAGzVN+0MpdaS6gkqp94D3wNbC2tC4hBA1S3xjMQV7/yibZOn5Rk2y1NJomobe3R29u3uDt1VKYS0qsrfUlie41SW3lrw8zPmVlyuTCXNmJubMzIbHbTDYW2urT24rJ76VujG7ukmyK4QQTWTyZNvl3NauXevgSIQQtWnMUWtXoDNQ3roaAezUNG2YUupUxYJKqcSy2781TdsEDAKqTViFEM0j47tvyVj9tW2SpUUvYPRrukmWWitN09C7uaF3c4Pg4AZtq5RClZTYktv86ltvLdX8mcvWq9JSzNnZmLOzGx64Xm+ffMpQNi63YoJbffdmWzdmnZsbmk7X8DqFEKKNKioqcnQIQoh6aHDCqpT6Awgqf6xp2jGqGcOqaZovUKiUKtE0LQAYBbx8duEKIRqiYN/e05Ms3fcAbr37ODii1k/TNDQXF5xcXCAwsMHbW0tKTiey+fmYK3RfrpTc5lddbi0uxpKTgyUnh9KGVqzT2Vqka0hwnUJC8b90WptofRdCCCFE21Gfy9osB8YBAZqmJQBPKaU+rKFsFHC7Umoe0Bt4V9M0K6DDNoZ1f5NFLoSolSkjg2NPPIYymQi44kr8p17q6JAEoHN2RufsjDEgoMHbWk2m012V8/OrtN5WP2FVWbJbVGi/D9XPxmwpKCD4+hvO8hkKIYQQQjSdOhNWpdS1dazvVOF+LDCv7P6vQP+zjE8I0QjlkyyZ0tNxHzCQsLta1iRLonF0RiM6P79GdetWZnOF1tv8SgluSVISaZ9/RsrHy/CbOKlRybQQQgghRHOQvl9CtEFJ/3mDgj/2YAwMpNNzz6MzGh0dknAwzWDA4OuLwde32vUlCSfI3bqVpHff4bzHnzjH0QkhxLl36aXS80iI1kASViHamIw135P+9VdoRiOdnpNJlkT9hN+1gLzffydrXTQBM2bg3rdf3RsJIUQr9sADDzg6BCFEPciUkUK0IQX795Pw71cAiLj/Qdz79nVwRKK1cA6PIOga2wiQhMWvoaxWB0ckhBBCCCEtrEK0GbZJlh5FmUz4z7hcJlkSDRZ0w2wy10ZTdOAAmWuj5T0khGhSloICSk+dovRUctntKTSdRsjceeicnc95POPGjQNg06ZN57xuIUT9ScIqRBtgNZk49uQTmNLScO8/gPAF9zg6JNEK6d3cCLvzLo4/+zTJ7/4XnwvGoffwcHRYQrRJ1pIScrZsJm9HDDoXVwz+fhh9/TCUTaxm8PPD4OuHzsnJ0aHWi1LKdsmtlFOUJpclpCmn7Imp6dQpLPl51W6rc3cnZPaccxuwEKLVkIRViDYg6c3/ULBnN8aAAJlkSZwVn4svIf3rryj4Yw+nli0lXGaYFqLJKKUo3L+fzLXRZP30I9b8/Dq30Xt4YvC3Ja/liazRz78sofXF6O+Pwdd2vzm/+5XVijkz44wW0hR7gmpKOYW1uLjWfWhOTjiFhOAUEopTSAg6FxfSVq4gdflnBFx+BQZPr2aLXwjReknCKkQrlxG9hvSvVtkmWVr0AkZ/f0eHJFoxTdMIv+de/po3l7RVX+B/6XRcOnVydFhCtGqm9HQyf1hH5tpoSo4fsy937dUL34suBp0ec2Ym5swMTFlZle5b8vOw5OdRcvx4nfXovbzKklnfsgS37L6ff4Vk1w+Djy+aofIhoDKbKU1Lw1QxIbW3kCZjSk1FmUy11q9zd7cno07BIWXJqe3PGBJiq1fTKm1TdOQI+XGxpH72GWG33V7/F1UI0W5IwipEK1b4Z4VJlu69X2Z2FU3CrUdP/KdNJ+Pb1SQuWUyXf79e5SBTCFE7a2kpudu2khm9htyY36FsIjODry++EyfhN3kKrl261roPZbViyc3FlJWJOSMTc1YmpowM221mJubM07fm7CwsublYcnPh2NHag9M09F7eGP180bm5YUpLx5SeZo+xJnpvn0pJaMXWUmNwCAZPzwa9RgCht97GobhY0letJHDm1TKzvRCiCklYhWilTJmZHH3iMVRpKf6XXY7/tOmODkm0IaHz5pO9cSN5O2LI3bYV79FjHB2SEC2eUoqig7ZJy7J+XI8lzzZmUzMY8BozFr/JU/EaPrxK62ZNNJ0Og48PBh8f6Nyl9rotFsy5OWcktlllCW1Zklu2zpydjSXH9ne6Mg1jQADG8iQ0uHJSagwORu/q2ujXpibuffviNWo0udu2kvJ/nxBxDudguPrqq89ZXUKIxtOUUo6OoYqoqCgVGxvr6DCEaLGU2czhexZQsDse93796brkTRm3Kppc2qovSHzjdZzCwuj1yacOmcVTiNbAlJlJ1npbl9/iv/+2L3ft3gO/KVPwvXiCLelsIZTZjDknB1NmBtaCAoyBgRgDgxw2wVPR4UMcvPkmNKOR3stX4hQc7JA4hBDnjqZpcUqpqPqUlRZWIVqhxDeXULA7HoO/TLIkmk/AjMvJ+PYbio8eJW3F5wTPvsnRIQnRYlhNJnJ/3Ubm2mhyt/8GFgtg6zbrN2EiflOm4Nqtu4OjrJ5mMGD0928xcx64duuOz4UXkb3xJ1I+/ogODz1yTuotLCwEwM3N7ZzUJ4RoHElYhWhlMtdGk/7lKjSDgc6LnscYEODokEQbpRkMhP/zXo7cs4CU/32M76TJOAUFOTosIRyq8NBfZEavsXX5zcmxLdTr8Ro9Br/JU/Aaeb6cRGyEkFvmkb3pZzKi1xB03Q04R0Q0e51TpkwB5DqsQrR0krAK0YoUHviTk6++DJRNstSvv4MjEm2d55AovC8YR84vm0h+523Oe/JpR4ckxDlnzsoi88f1ti6/hw/Zl7t06YrflKn4TpiA0VcmCzobLh3Pw2/SZDKj13Bq6QfyXSOEsJOEVYhWwpSVydHHyyZZmn4Z/tMvc3RIop0I+8fd5P72K1k/rsd/xuV4DBjo6JCEaHbKbCZ3+29kRq8h59dtp7v8ennhe8kE/CZPxbVHD5lBuwmF3DyXrPU/kLXhR4JuuLHOWZSFEO2DJKxCtALKbObYkwsxpabg1q8f4f+819EhiXbEOTSUoOtuIGXZUhIXv0aP95ei6fWODkuIZlF05AiZa9eQtf4HzFlZtoV6PV4jz8dvylS8zh/lsMmJ2jqnkFD8p88g/atVnPrwAzo//6KjQxJCtAD1Slg1TVsKXAqkKqX6nbHufuBVIFAplV7NtjcBT5Q9XKSU+vjsQhai/Ul8+00K4ndh8POn83PPy8GSOOeCr7+BzOg1FB06RMaa7wiYPsPRIQnRZMw5OWRt+NH2Hv/roH25S6fOti6/l0yQ+QLOkeDZN5Gx5jtyNv9C4Z/7cevdx9EhCSEcrL4trMuAN4FPKi7UNK0DMAE4Ud1Gmqb5AU8BUYAC4jRN+1YpldXYgIVobzLXrSX9i5Vlkyy9gDEg0NEhiXZI5+JC+F13c+zJJ0h+7118xl+IwdPL0WEJ0WjKbCY35ncyo9eQu20rymwGQO/hic/FF+M/ZSquvXpLl99zzOjvT+CVV5H62ackv/8eXV9b3Gx1zZkzp9n2LYRoOvVKWJVSmzVN61TNqteBh4DVNWw6EfhRKZUJoGnaj8AkYHmDIxWiHSo8eICTr/wLgPB77sO9v0yyJBzHe9x4PAYNJn/XTk59+AER99zn6JCEaLDio0fJXBtN5g/rMGdm2BbqdHgOH4HflKl4jxot1xx2sKDrbiB99Tfk7YghP34XHpGDmqUeSViFaB0aPYZV07TLgESl1O5azj6GAycrPE4oW1bd/uYD8wE6duzY2LCEaDPMWVkcffxR2yRL06YTcJl0wRSOpWka4Qvu4eAtc0j/5mv8p18mk6KIVsGcl0v2hg1krl1D4Z9/2pc7d+xYNsvvJJwCpfdKS2Hw9iZo1jWcWvohye+/R7c3326Wlu70dNtItgDp7i1Ei9aohFXTNDfgMWzdgZuEUuo94D2AqKgo1VT7FaI1UmYzx55aiCklBbe+fQmXlizRQrh260bAjMtJ/+pLEt9YTNfFS6TLpGiRlMVCXuwO2yy/W7egSksB0Lm743vRxfhNmYpbn77y/m2hAq++hrQvV1GwZzd5Mb/jNXxEk9dx1VVXAXIdViFausa2sHYFOgPlrasRwE5N04YppU5VKJcIjKvwOALY1Mg6hWg3kt5+i/xdO22TLC16QSZZEi1KyC23krXhR/J3xpHzyyZ8xo13dEhC2BUfP0bm2rVk/bAWU1kLGpqG59Ch+E2eivfYC6TLbyugd3cn+LobSPrvWyS//x6ew4bLyQUh2qlGJaxKqT+AoPLHmqYdA6KqmSX4B+AFTdN8yx5PAB5tTJ1CtBeZP6wj7YsVaAYDnZ57XiZZEi2OwcuL0FtvI+Hfr5D45hK8RoxE5+Li6LBEO2bJzydr4wYyo9dQuG+ffblTRAR+k6fgN3EyTsHBDoxQNEbAFVeSuuJzig4eIGfzL/hcMM7RIQkhHKC+l7VZjq2lNEDTtATgKaXUhzWUjQJuV0rNU0plapr2HLCjbPWz5RMwCSGqKjx4kJMvvwRA+D/vxWPAAAdHJET1/KdNJ331NxQfPkTq8k8JufkWR4ck2hllsZC/M47MtdFk/7LpdJdfVzd8LrwIvylTcO8/QFrlWjGdiwvBN80h8fV/c+qD9/EePUauAS1EO1TfWYKvrWN9pwr3Y4F5FR4vBZY2Mj4h2g1zdjZHH38EVVqK39Rp+MskS6IF0/R6Iv55D4fv/gcp//c//CZPwSkk1NFhiXag5ORJMtdFk7luHabUFPtyj8FD8Js8Be8LxqF3dXVghKIp+U+bTtrnn1F87ChZG37Eb+IkR4ckhDjHGj1LsBCi6ViKijj25BO2SZb69CXivvulVUC0eB6Rg/C56GKyf9pA0ttv0enZRY4OSbRRloICsn/eSObaaAr27LYvdwoNw2/yFHwnTcY5VE6YtEU6o5HgOXM5+eLznFr6Ab4XXYxmaJrD1zvuuKNJ9iOEaF6SsArhYKVpaRx95CGK/jqIwc+PTjLJkmhFwu74Bzlbt5D980bydsbhOXiIo0MSbYSyWsnftZPMtdHk/LIJa3ExADpXV3zGjcdv8lTcBw5E0+kcHKlobn4TJpL66f8oOXGCjDXfN9ll3mbNmtUk+xFCNC9JWIVwoMIDf/L3Iw9jzkjHKTycLv96Ra4FKFoVp+Bggm+czakP3ifxjdfp+eGyJmv9EO1TSVIimWvXkrkuGtOp0xcecI8chN/kKfiMG4/ezc2BEYpzTTMYCLnlVo4/tZCUjz/Cb9LkJpnp+eTJkwB06NDhrPclhGg+clQhhINk/7yR488/hyopwT1yEJ0XvYDB29vRYQnRYEHXXEfmmjUU//036d+uJvCKKx0dkmhlLIWFZG/62dblN36XfbkxJAS/SVPwmzQJ5/AIB0YoHM1n3HhSunWn+PAh0r/5mqBZ15z1Pm+88UZArsMqREsnCWsZZTZTkpBAaXISBn9/nMPC0Xt4ODos0QYppUj5ZBmnPngfAL+p04i4/wF0RqODIxOicXTOzoTddTfHHn+UUx+8h++FF2Hw8XF0WKKFU1YrBbt3k7l2DdmbfsZaVASA5uxc1uV3Ch6DBkuXXwGAptMROm8+Rx95kNT/+wT/adOlpV2IdqJdJqzmvDyKDx+m6Mghig4fpujwYYqP/m2fEr+c3ssLp7AwnMPCcQoNwyks1HY/LAynoGDp9iYazFpSwsl/vUjWj+tB0wi78x8EzrpWJlgSrZ73mLF4RA0lP3YHyR+8T4cHHnR0SKKFKj2VbO/yW5qUZF/u3n8AflOm4jP+QvTu7g6MULRUXuefj1vfvhTu20faqpWEzJ7j6JCEEOdAm864lNVKSUICxUcOU3TkcFlyeghTSkq15Y0hITiHR2DOzKAkKQlLbi5FubkUHThQtbBej1NQcFlCG2ZLYkPL74ej9/KSJERUYsrM5OhjD1O4bx86VzfOe+ppvEeNdnRYQjQJTdOIWHAPB26eTcZ3q/G/7DLcuvdwdFiihbAWF9u7/ObvjLMvNwYF4TdxEn6Tp+Is4whFHTRNI/TW2zhyzwJSl39GwOVXYPD0cnRYQohm1mYSVkthAUWHj1BcsdX07yP2WQUr0pyccO3aFZcu3XDtZvtz6doNg6envYxSCnNmJqVJSZQkJVKanExpUiIlSUmUJidhSkujNNl2Pz+uShXo3N3tyevpRNaW1DqFhMgssO1M0ZEj/P3wA5hSUjAGB9PlpVdw7dbN0WEJ0aRcOncm8IqrSPtiBYlvvE63/7wtJ+7aMaUUBX/8QWb0GrJ//glrYSFg+w32HnsB/lOm4jF4CJpe7+BIRWviOSQKj8FDyN8ZR9ryzwidf7ujQxJCNDNNKeXoGKqIiopSsbGx1a5TSlGanGRLSCu0mlbsVlSRMTAQ167dcOnW3Z6cOkd0OOsfSGtJCaUppygtS2BLkpLKktskShMTsRYV1ryxpmEMDKqxddbg6ysHeW1IzrZtHH/mKaxFhbj17Uvn51/C6O/v6LCEaBbmvDwOXDcLc3Y25z31DL4XX+LokMQ5VpqSQuYPa8lcG01pQoJ9uVvfvmVdfi+qdIJYiIYq2LeXQ7fPR+fqSu8VX2D09WvUfr777jsApk2b1pThCSHqQdO0OKVUVL3KtuSE1VJURPHff1N05JBtzOlhW9fe8rO0FWlGIy6dOttaS8uT067dHDLrqlIKS05OWRJra50tSUq0J7elKSlgtda4vc7FxZbEhoXhHBp+RkIb1iRTuYvmp5QibcXnJL39JiiFz8WX0PGRx+T/J9q8jO++5eTLL2EMDKTXp5+jd3V1dEiimVlLSsjZ/AuZa9eQFxsLZccWBv8A/CZNwm/yFFzO6+TYIEWb8vcjD5G7bSuBM2cRvuCfjg5HCNFArT5hHRAWqlaMu4CShJP2H72KDH7+uHbtimu37riUd+nteF6rmQRJmc321tmSZFvLrL11NikRS15erdsb/ANOt8zaJ4UKxSksHKO/v8yo2AJYTSYSXnuVzO9tZ29DbrmV4JvmSMu5aBeUxcJft91K0cEDBN80h9B58x0dkmgGSikK9+8jM3oNWT9twFpQANhOIHuPGYvf5Cl4Rg1tNb/NonUpOnyIgzffhGY00nv5SpyCgxu8j4MHDwLQs2fPpg5PCFGHVp+w9vH0UJ9FDgC9HpfzOpV15e1e1nrardFdP1oLc14upUnJFVpnbYlsSXISpcnJYLHUuK3m5IRTaCjOoWXjZ8PCbI/DwnEKC0XvJjMvNjdzTg7HFj5O/q6daE5OdHx8Ib4XXuTosIQ4pwr++INDd96G5uREr/99inNYuKNDEk2kNC2NrLIuvyUnTtiXu/Xujd/kKfhcdAkGL5kIRzS/Y08tJHvjT/hPm06Hhx5p8Pbjxo0D5DqsQjhCq09YI7t3V79Gr8HlvE4yOdEZlMWCKS3VPmbWlsgm2++bs7Nr3d7g42NPZO2TQoWF4RwaijEwSCa/OEvFx4/x9yMPUZqQgME/gC4vvoRb7z6ODksIhzj+3DNkrf8B7zFj6fzCS44OR5wFa0kJOVu3kLk2mrwdMfZhLQY/P3wnTMJv8mRcu3R1cJSivSk+cZwDN14Pmkbv/1uOc0REg7aXhFUIx2lIwtoi++kYvL3lcgg10PR6nEJCcQoJhcFDqqy3FBZQmlRxzGxypdZZc3Y25uxsCvfvq7pvg8F2aZ+y1tlKMxuHhckkGXXIi93B0YWPY83Px7V7Dzq/9DJOQUGODksIhwm7405ytmwmZ8tm8nbE4Dl0mKNDEg2glKLowJ9kRK8he8MGLPm24SqawYDXmLH4TZ6K1/Dh0uVXOIxLx/PwmzSZzOg1nFr6Aec9+bSjQxJCNAP5lWlj9G7u9tmQz6SsVkwZGbauxuVjZpNPj581Z6RTmpBQaVbHSvv29KycyFYcPxsc0q4PWtK//oqEN14HiwXvMWPpuPApmWhGtHvGgECCb5pD8jv/JeGNxfRaC4doTQAAIABJREFU9km7/p5oLUwZGWSt/4HMtWsoPnrUvty1R0/8Jk/B95IJDpnQUIjqBM+ZS9b6H8ja8CNBN9woLf1CtEFy5NCOaDodToGBOAUGwsDIKuutxcWnx8wmJ1ZKaEuTkrDk5VF08ABFBw9U3blOh1NwsL011rlit+PQMPTe3m1ywiFlNpP45hLSv1wFQND1NxI6/zaZ+EqIMoEzZ5Hx/XeUHD9G2ldfEnT1LEeHJKphLS0l99dtZEavITfmd/tcCQYfH3wnTMRv8lS5drRokZxDQ/GffhnpX33JqQ8/oPPzLzo6JCFEE6tzDKumaUuBS4FUpVS/smXPAZcBViAVmKOUqnIhVE3TLMAfZQ9PKKWm1yeo2q7DKhxDKYU5K8vWvbh8/GyF68+a0lKrndG5nM7NrVLrrH38bKite3NrHKtsyc/n2FMLyYv5Hc1goMNDj+A3eYqjwxKixcnZto2jjzyIzt2d3stXtPmJ81oqpRSW3FxMaWmY0tMwpaZSmp5GafIpcn/diiU311ZQr8dr5Pn4T5mK54iR6IxGxwYuRB1M6ensv2YmqqSEHu9/iFuv3vXabsOGDQBcfPHFzRmeEKIaTTrpkqZpY4F84JMKCauXUiq37P4CoI9S6vZqts1XSnk09AlIwtr6WEtLKT11qqxFtrx1tmz8bGJitdfOtdM0jIGBOIWG4dqlC17nj8Jj0OAWfb3SkqREjj78EMXHjqL39qHzCy/iMWCgo8MSokVSSvH3Qw+Qt/03/C6dRseHH3V0SG2OMpsxZWZiSkutkJDabkvT0uzLVWlpjftw6doNvylT8b3kEjmpIFqdpLffInX5p3gOG07Xf7/u6HCEEHVo8lmCNU3rBHxfnrCese5RoKNS6o5q1knCKuxn9WtqnS1NTalyqR6dqyuew4bjPWo0XiPPx+Dj46Doq8rfHc/Rxx/DkpONS6fOdP7Xy3LJDiHqUHziOAdvuhFlsdDjvQ/q3QLSnJTZTP4fe8jduoXSlBR0rq7oXV3Rubqic3VD5+KCzs0Vffl9VzfbOjdXdC6ny2pOTs065MFSVFSpVdSUnoYpLd2WhKanUZqahjkr0z5zb2107u4YAwJtJwkDbbfGgEDc+vbFtXuPNjl0Q7QP5pwc9l99JdbCQrq9+TYe1Qx9OlN8fDwAkZF1lxVCNK1zkrBqmvY8MBvIAcYrpdKq2c4MxANm4CWl1De11DEfmA/QsWPHIcePH69P/KINUGYzpakplCYmlh08bqXo0F+nC+h0uPfrb0teR4/BpWNHh8WauTaaky+/hDKb8Rw+gk5PP4veo8HnZIRolxLfepO0zz/DrV8/ur/1jkPGelsKCsj9fTu5W7eQu/03LHl5Z79TvR6di0tZAns60dW5utmW1ZLslv9Zi4srtYpWTEzLZ+etlaZh8PWzJaCBATgFBtkTU2NgEMbAAIyBgXItbtGmnfroQ04t/RD3AQPp9ubbdZ6AkcvaCOE4jmhhdVFKPVXNunClVKKmaV2AjcBFSqkjddUnLayiNOUUOdu2kbt1C/m7dqLMZvs6544d8R41Bq/Ro3Hv2++cXDtWWa0kv/cOqZ/+HwABV80k/B93y4ynQjSApaCAP6+bhTkzk46PL8Rv0uRzUm+d3yejx+DavQfWkhKsxcVYiwqxFhVhLSrGYr9fhLXYdmspPH3fWlSEMpmaNX7NaLQln0GBlZJQp7LWUWNQIEb/APk+Eu2epaCA/bOuwpKTQ5dXX8Nr+Ihay0vCKoTjnOuEtSMQXd26M8otK9vHqrrqk4RVVGQpKCAv5ndytm4h97dfK7WI6L198Bp5Pt5jxuAZNRS9m1vT119YyIlFz5KzZTPo9UTccx8BMy5v8nqEaA8y10Zz4oVFGPwD6P3Z8mZp8VNKUfTXQXK2biV32xaKDh06vVKnw71/f9tJr1GjcOl43tnXZzZjKU9qiwptSW9hkS3ZLS4+vbzIlgyfLluWABcVoTMaMQYFVUlMnQKD2uws60I0h9TPPiXpv2/h2rMXPd7/sNbPjiSsQjhOQxLWRp2O1TStu1Kq/AjgMqDKdU40TfMFCpVSJZqmBQCjgJcbU59o3/Tu7viMvxCf8RdWGnOWs3ULpUlJZK2LJmtdNJqTE56Dh+A1egzeo0ZhDAg867pLU1I4+uhDFB06hN7Dk07PLcIzamgTPCsh2iffiZNI/+ZrCvfvI+WTjwm7/c4m2a+1tJT8XTttJ7a2bcWUdnqUin1M/OgxeI0Y2eRj4jWDAYOnJ3h6Nul+hRANF3DFlaSu+JyigwfI2fwLPheMc3RIQoizVJ9ZgpcD44AAIAV4CpgC9MR2WZvjwO1lXX+jyu7P0zTtfODdsjI6YLFS6sP6BCUtrKI+lFKUHDtGzrYt5GzbSuG+fZUurePaqxfeo8bgPXoMLl27NriFomD/fo4++jDmzAycIiLo8q9XmqQ1Roj2rmD/fg7dNg/NYKDXJ5/i3KFDo/Zjzs4md/tv5GzdQl5MDNai07ORGwMC8Bo1Bu/Ro1v8rONCiKaV9tWXJL7+b1w6dabnsk9qHDokLaxCOE6Tdwk+1yRhFY1hysgg97dfydm2hbwdO1AlJfZ1xpAQvEeNxnv0GNwHRtZ5XcGsnzZw4oVFqNJSPAYNptNzz2Pw9m7upyBEu3HixefJjF6D18jz6fLyq/XeruTkSdtJqq1bKfhjT6WZcV27d7cnqa49eko3WiHaKavJxJ/XzcJ06hQdn3gSv4mTqi3366+/AnD++eefy/CEEEjCKgTW4mLy4mJt3QN/3YY5M9O+TufujtfwEXiPHoPniBEYPL3s65RSpCxbyqmlts4AfpdOI+K+B+pMcIUQDWPKzOTP62ZhLSigy8uv4jWy+gNGZbFQsG8fuWU9KUoqzCCvGQx4DBpkS1JHjcIpJPRchS+EaOEy1nzPyZdewCksjN6ffi6TkgnRwkjCKkQFymql8M/99glYio8ePb1Sr8djYCTeo0fjOXQ4pz7+iOwNP4KmEfaPuwm8epa00gjRTFI/X07SW//BOaIDPT/5P/uJIUtREXk7YsjdttV2wik7276N3sMTr5Ej8Ro9Bq9hw+WyUkKIaimzmQM33UDJiRNEPPgQAdNnVCkjLaxCOI4krELUoiQx4fQlLvbsBoul0nqdqxvnPfUM3qNGOShCIdoHq8nEwTk3UnLiBMGzb8IYHEzu1q3kxcWiSkvt5ZxCw2wTJo0ejceAgdJSIoSol6yfNnD86ScxBgXR+7MVVcayyxhWIRxHElYh6smcm0vu9t9sLTnbf8Pg7UPnF17CtVs3R4cmRLuQ+/t2/n7gvirL3fr2tV9v2aVTZ+npIIRoMGW1cvCWmyk+fIiwu/9J0NWzKq2XhFUIx2n2y9oI0VYYvLzwmzARvwkTUWYzgLTeCHEOeQ0fge+kyWT/vBHPqKF4jxqN1/mjMPr7Ozo0IUQrp+l0hM67laOPPETq/z7G/9JpzXK9diFE85IjcyHKSKIqhGOc9/hCOj72hLSiCiGanNf5o3Dr25fCfftIW7WSkNlzHB2SEKKBdI4OQAghhJBkVQjRHDRNI/TW2wBIXf4Z5rxcB0ckhGgoaVISQgghhBBtlueQKDwGDyF/Zxxpyz8jdP7tACxevNjBkQkh6kNaWIUQQgghRJsWOt/Wypq26gtMWbZrs0dGRhIZGenIsIQQ9SAJqxBCCCGEaNPc+/bD6/xRWIuKSP3f/wDYsGEDGzZscHBkQoi6SMIqhBBCCCHavJB5twKQvvprSlNTWbRoEYsWLXJwVEKIukjCKoQQQggh2jy37j3wufAiVGkpKR9/5OhwhBD1JAmrEEIIIYRoF0Lm3gI6HRlrvsdfKUeHI4SoB5klWAghhBBCtAsu53XCb+IkMtdGM0lTfKrJobBofpbCQkqTkihJSqQ0IYGSpERMaWm4dOmK57BhuPfrj85odHSYLZZ8SoUQQgghRLsRfPMtZP24niFmMz8pq6PDEW2AUgpLdjYlSYmUJCZSmphISWKC7TYpEXNmZrXb5f66jdT/+wSdqysegwbjOXQYnsOG49yhg1yfvIJ6Jayapi0FLgVSlVL9ypY9B1wGWIFUYI5SKqmabW8Cnih7uEgp9XFTBC6EEEIIIURDOYeG4j/9MtK/+pLH+vah+OhRjIGB6NzdJUkQNVIWC6b0NEoSTieiFZNTa2FhjdtqRiNOoaE4h4XjFBGBc3g4Bl8/CvfvI29HDMVHj5L76zZyf90GgDEkBK+y5NVjyBAMnl7n6mm2SJqqR/99TdPGAvnAJxUSVi+lVG7Z/QVAH6XU7Wds5wfEAlGAAuKAIUqprNrqi4qKUrGxsY14OkIIIYQQQtTOlJ7O/mtmokpK7Mt0rm4YAwMwBgRiDAqy3QYG4hRouzUGBmHw9UXTyRQwbZW1tJTS5KSyRDThdEKalEhpcjLKZKpxW527uy0hDQ/HOTwc5/AI+31jQCCaXl/jtqVpaeTF/E7ejhjyYndgycmpsGMdbr174zlsOF5Dh+PWuzeaofV3ktU0LU4pFVWfsvV6tkqpzZqmdTpjWW6Fh+7YEtIzTQR+VEpllgX2IzAJWF6feoUQQgghhGhqxoAA0i+ZiPue3XgrhSktFWtRISUnTlBy4kTNG+r1GP0DMAYFVkhogyonuv4B6Jydz92TacOUUmC1oiwWlMUCZbf2x9ay++Zq1lksKIu5rJy1yjqryYQpNaVCK2kiprRUqKUxz+Dnj3N4WVJqT05tLaZ6b+9Gt9A7BQbiP/VS/KdeirJaKfrrIHkxMeTuiKHgjz0U7ttH4b59pHy0FJ2HB55Domzdh4cOwzksrLEvb6tRrxZWgLKE9fvyFtayZc8Ds4EcYLxSKu2MbR4AXJRSi8oeLwSKlFKvVrP/+cB8gI4dOw45fvx4Y56PEEIIIYQQdRo3bhwAmzZtso1BzM/HlJ6GKTUVU3o6prQ0TGmpttv0NEpT07DkZNdr33pvb4yBQTgFBFRqra34p/fwrDXBUVZrhUSrLPEyV5OUWc9M0qp5bLbto9bkr6wO2/2qCZ6qtL5i0lixrLn6GC0WVFm5ivVUH4f19PO1WJriX11/ej1OwcG2pDQsonJyGhaG3s3t3MYDWAoLyN+1i7yYGPJ2xFBysvIJFeeIDngOsyWvHoMHo3dzP+cxNkZDWljPKmGtsO5RbInpU2csr3fCWpF0CRZCCCGEEM2pYsJaX9aSEkwZ5clshb/0NErtyW16vRItnYsLOnePGhO42lr62hW9Hk2ns3Wp1evRKvydfmw4/VinQzNUV9ZQZVujf1mLaVhZF96QkBbf3bYkKYm82BhbAhsXizU///RKvR73fv3xHDYMr2HDce3Rs8V2YW/yLsH18CkQDTx1xvJEYFyFxxHApiaqUwghhBBCiHNG5+yMc5itxa0mymrFnJVVobXW1jprSk+r0GqbjrWoEGtxce0VVpeQ6fVohjMTNj3oakrmGvu4LMHT6Wqo11B124pl64pZV8+YZCKsSpzDwnCePoOA6TNQZjOFB/4kb0cMuTG/U7h/PwW74ynYHc+p999D7+2NZ9RQe/dhp6AgR4ffKI1OWDVN666UOlT28DLgQDXFfgBe0DTNt+zxBODRxtYphBBCCCFES6bpdBj9/TH6+0PPXjWWs+TnYykqKkvkakj+hKiFZjDg3q8/7v36E3LzLZjz8sjfGUdezO/kxvyO6dQpsn/aQPZPGwBw6dzZfukcj4GR6FxcHPwM6qe+l7VZjq2lNEDTtARsLalTNE3rie2yNseB28vKRgG3K6XmKaUyyy5/s6NsV8+WT8AkhBBCCCFEe6X38EDv4eHoMEQbYvD0xOeCcfhcMA6lFKUJCeSWzT6cv3MnxUePUnz0KGkrV6A5ORFw+RUE33QzBk9PR4deq3qPYT2XZAyrEEIIIYRoTidPngSgQ4cODo5EiOZnNZko3LuXvB2/k7sjhqIDts6xem9vQubOI2D6Zed0/G6zTLp0LknCKoQQQgghhBDNo/DgQRLfXEJB/C4AnM/rRPg/7sJzxMhzMm5YElYhhBBCCCFqsWLFCgBmzZrl4EiEcAylFDlbNpP037coTUgAwHPoUMLuWoBrl67NWrckrEIIIYQQQtSiMZe1EaItsppMpH/1JSnLPsKSnwc6Hf7TphNyyzyMvn7NUmdDElaZfkwIIYQQQggh2imd0UjQrGvovXwFAVdcBZpGxupv+POaq0n59H9YS0ocG59DaxdCCCGEEEII4XAGHx8i7r2PXh//D6+R52MtLCT5nf9y4MbryNr4E47qmSsJqxBCCCGEEEIIAFzO60SXl1+l62uLcenSldLkZI4/tZDDd95Owf795zweSViFEEIIIYQQQlTiOXQYPZcuI+LBhzD4+lKw9w8O3TaP488+TWlKyjmLQyZdEkIIIYQQ7U56ejoAAQEBDo5EiJbPUlBAyv8+Ie2LFajSUjQnJ4KuvY6g625A7+bW4P3JLMFCCCGEEEIIIZpUSXIyye+8TfbGnwAw+PkTOv82/CZNRtPr670fSViFEEIIIYSoxbJlywCYM2eOQ+MQojUq+OMPEv/zBoV/2sa0unbvTthdC/AcPKRe20vCKoQQQgghRC3kOqxCnB1ltZL90waS3vkvplTbmFav0WMIv/MunDt0qHVbuQ6rEEIIIYQQQohmo+l0+F4ygd6ffU7IrfPRubqSu3ULf954HYlL3sCcl9sk9UjCKoQQQgghhBCiUXTOzoTMnkPvz1bgN3UaWK2kfbGCP6+5mrRVK1Fm89ntv4niFEIIIYQQQgjRThkDAuj4yKP0+PAjPAYPxpKbS+Ibizkw+wZytm2lsUNRJWEVQgghhBBCCNEk3Lr3oOvi/9D5xX/hHNGBkpMnOPrIQxy5958UHT7c4P3VOemSpmlLgUuBVKVUv7JlrwDTgFLgCHCzUiq7mm2PAXmABTDXd2CtTLokhBBCCCGaU2FhIQBujbiGpBCifqwmExnffMWpj5ZiycsDnQ6/KVM575HHmnTSpWXApDOW/Qj0U0oNAP4CHq1l+/FKqcj6BiSEEEIIIURzc3Nzk2RViGamMxoJnDmL3p9/QcBVM0HTyPz+u4bto64CSqnNQOYZy9YrpcpHz24HIhpUqxBCCCGEEA709ttv8/bbbzs6DCHaBYOXFxH/vJden/wfXqNGN2jbphjDOhdYW8M6BazXNC1O07T5TVCXEEIIIYQQZ23lypWsXLnS0WEI0a64dDyPLi+93KBtDGdToaZpjwNm4NMaioxWSiVqmhYE/Khp2oGyFtvq9jUfmA/QsWPHswlLCCGEEEIIIUQb0OgWVk3T5mCbjOl6VcPMTUqpxLLbVOBrYFhN+1NKvaeUilJKRQUGBjY2LCGEEEIIIYQQbUSjElZN0yYBDwHTlVKFNZRx1zTNs/w+MAHY29hAhRBCCCGEEEK0L3UmrJqmLQd+A3pqmpagadotwJuAJ7ZuvvGapr1TVjZM07Tosk2Dga2apu0GYoA1Sql1zfIshBBCCCGEEEK0OXVeh9UR/P39VUSETDwshBBCCCGEEG3Nnj17lFKqXr19z2rSpeYSERHB+vXrHR2GEEIIIYQQQogmFhISsrO+ZZvisjZCCCGEEEIIIUSTa5EtrBUlJSUxd+5c9uzZg9VqdXQ4QgghhBBCoNPpGDBgAEuXLiUsLMzR4QjRZrX4hHXu3LnMnDmT33//HScnJ0eHI4QQQgghBKWlpbzyyivMnTuXdetkXlEhmkuLnHRp4MCBqnwMa1hYGEVFRZKsCiGEEEKIFqW0tBRXV1eSkpIcHYoQrUpISEicUiqqPmVb/BhWq9UqyaoQQgghhGhxnJycZMiaEM2sxSesQgghhBBCCCHaJ0lYhRBCCCGEEEK0SJKwCiGEEEIIIYRokdpcwrp48WIKCwubvR69Xk9kZCT9+vVj5syZFBYWcuzYMfr169fsdQMUFxczbNgwBg4cSN++fXnqqaeabN9z5syhc+fOREZGMnjwYH777TcAxo0bR2xsbJPVU5sHH3yQXr16MWDAAC6//HKys7Pr3GbOnDmsWrWq1jLLli1rtokRNm3axKWXXtos+25MvY6KpyGOHTuGq6srkZGRREZGcvvtt9e5TW3vjRdffJFu3brRs2dPfvjhB/vyuXPnEhQUVOXzOWvWLHvdnTp1IjIyss76c3JymD17Nt26daNr167Mnj2bnJycBjxrm06dOpGent7g7c6V+n5Wziw3b9489u/f32xxlZSUcPHFFxMZGcmKFSsqrZPvrvrZtGkTv/76a61lZsyYwYgRIyotO3jwIOPGjSMyMpLevXszf/58+7qYmBjGjh1Lz549GTRoEPPmzbP/Fn/zzTcMGDCA3r17079/f7755ptq63z66ad59dVXz/LZ1c+///1vNE2r8zMYHx/PyJEj6du3LwMGDKj0njt69CjDhw+nW7duzJo1i9LSUgA2b97M4MGDMRgMlf6vP//8s/37JjIyEhcXlxpfizOdy9emotp+R7Zu3cqwYcPo1asXvXr14r333rOve/rppwkPDycyMpI+ffqwfPly+7qKn9OBAwfy008/NSimAwcOEBkZyaBBgzhy5Ei1ZaZPn17p+75iPJGRkURHRwOwbds2BgwYQFRUFIcOHQIgOzubCRMmyLhUIVoQSVgbydXVlfj4ePbu3YuTkxPvvPNOs9dZkbOzMxs3bmT37t3Ex8ezbt06tm/f3mT7f+WVV4iPj+ell17itttua7L91tcll1zC3r172bNnDz169ODFF19skv2e7UGf2Wxukjjauoa8Tl27diU+Pp74+Ph6fY5qem/s37+fzz//nH379rFu3TruvPNOLBYLYDtAqu6SAytWrLDXfeWVV3LFFVfUWf8tt9xCly5dOHz4MEeOHKFz587MmzevSrnmfK+ci/dhYxPWDz74gD59+jRbXLt27QJsicSsWbOqrJfvrrrVlbBmZ2cTFxdHTk4Of//9t335ggULuPfee4mPj+fPP//k7rvvBiAlJYWZM2fyr3/9i4MHD7Jr1y4mTZpEXl4eu3fv5oEHHmD16tX8+eeffPvttzzwwAPs2bOnSZ5LY5w8eZL169fTsWPHOsu6ubnxySef2L9X7rnnHvtJiIcffph7772Xw4cP4+vry4cffghAx44dWbZsGdddd12lfY0fP97+fbNx40bc3NyYMGFC0z/Bc+DUqVNcd911vPPOOxw4cICtW7fy7rvvsmbNGnuZ8vfK6tWrue222zCZTPZ15Z/TxYsX1+tEZUXffPMNV111Fbt27aJr165V1n/11Vd4eHhUWV4eT3x8PFOmTAFsJy6io6NZvHix/fdn0aJFPPbYY+h0be4QWYhWq9V+GgsKCpg6dSoDBw6kX79+rFixgiVLlpCUlMT48eMZP348AHfccQdRUVFVWiGjo6Pp1asXQ4YMYcGCBfYziAUFBcydO5dhw4YxaNAgVq9eXWcsY8aM4fDhwwBYLBZuvfVW+vbty4QJEygqKgLg/fffZ+jQoQwcOJArr7zSnlR/8cUX9OvXj4EDBzJ27Fj7Ph588EGGDh3KgAEDePfdd6vUqWma/QvZZDJhMpnQNK2xL2eNxo4da39u5fEOGzaMHj16sGXLFsDWSjZmzBgGDx7M4MGD7QdCycnJjB071t4SXV5+/fr1jBw5ksGDBzNz5kzy8/Or1DthwgQMBttlgkeMGEFCQkKVMkop7rrrLnr27MnFF19Mamqqfd2zzz7L0KFD6devH/Pnz0cpxapVq4iNjeX6668nMjKSoqKiasudac6cOdx+++0MHz6chx56qF7vkZrKNNVrtW7dOnr16sXgwYP56quv6vo3EhMTw8iRIxk0aBDnn38+Bw8eBGwHwVdccQWTJk2ie/fuPPTQQ/ZtKv7gr1q1ijlz5gDw3XffMXz4cAYNGsTFF19MSkoKYDuDfeONNzJq1ChuvPFGxo4dS3x8vH0fo0ePZvfu3XXGWpea3hurV6/mmmuuwdnZmc6dO9OtWzdiYmIA2/vYz8+vxn0qpVi5ciXXXnttrXUfPnyYuLg4Fi5caF/25JNPEhsby5EjR9i0aRNjxoxh+vTp9qRtxowZDBkyhL59+1ZqgaiJh4cH9957L3379uWiiy4iLS0NsLUS3nPPPURFRfHGG2+QlpbGlVdeydChQxk6dCjbtm0D4JdffrG3IgwaNIi8vDzAdoBY/p1S/l147NgxevfuXeU7q76flerKVWzNXL58Of3796dfv348/PDDlZ7j448/zsCBAxkxYoT9PVRRZmYmM2bMYMCAAYwYMYI9e/aQmprKDTfcwI4dO4iMjKyxdQXkuwuq/6weO3aMd955h9dff53IyEj7c6voq6++Ytq0aVxzzTV8/vnn9uXJyclERETYH/fv3x+At956i5tuuomRI0fa11111VUEBwfz6quv8thjj9G5c2cAOnfuzKOPPsorr7xSpd6KKr6P0tPT6dSpE1D7d1Z9/j9gS1xefvnlev1m9ujRg+7duwO2y+wFBQWRlpaGUoqNGzdy1VVXAXDTTTfZW0s7derEgAEDak14Vq1axeTJk3Fzc6uybsmSJfTp04cBAwZwzTXX2Jfv37+fcePG0aVLF5YsWWJf/tprr9GvXz/69evH4sWLAdvnvbzMvffey4UXXgjAxo0buf7662t9verz+/LWW28xZ84cBg8eDEBAQAAvv/wyL730UpWy3bt3x83NjaysrCrrRo4cSWJiYrV1xMfHM2LECHtvhaysLHty+d///td+nFdRfn4+r732Gk888US1+zyT0WiksLCQwsJCjEYjR44c4eTJk4wbN65e2wshzo1Wm7CuW7eOsLAwdu/ezd69e5k0aRILFiwgLCyMn3/+mZ9//hmA559/ntjYWPbs2cMvv/zCnj17KC4u5rbbbmPt2rXExcXZDwjLy1944YXExMTw888/8+CDD1JQUEBSUpL9jFxFZrNmIlEeAAAgAElEQVSZtWvX2n+4Dx06xD/+8Q/27duHj48PX375JQBXXHEFO3bsYPfu3fTu3dt+JvbZZ5/lhx9+YPfu3Xz77bcAfPjhh3h7e7Njxw527NjB+++/z9GjR6vUbbFYiIyMJCgoiEsuuYThw4c37YuM7YCn/LmVP9+YmBgWL17MM888A0BQUBA//vgjO3fuZMWKFSxYsACAzz77jIkTJxIfH8/u3buJjIwkPT2dRYsWsWHDBnbu3ElUVBSvvfZarTEsXbqUyZMnV1n+9ddfc/DgQfbv388nn3xSqcXgrrvuYseOHezdu5eioiK+//57rrrqKqKiovj000+Jj4/H1dW12nLVSUhI4Ndff+W1116r8T1SUU1lmuK1Ki4u5tZbb+W7774jLi6OU6dO1fl/7NWrF1u2bGHXrl08++yzPPbYY/Z18fHxrFixgj/++IMVK1Zw8uTJWvc1evRotm/fzq5du7jmmmt4+eWX7ev279/Phg0bWL58ObfccgvLli0D4K+//qK4uJiBAwdW2d/Ro0cZNGgQF1xwQbUHz7Wp+N5ITEykQ4cO9nURERE1HgidacuWLQQHB9sPTGuyf/9+IiMj0ev19mXlwwP27dsHwM6dO3njjTf466+/7DHGxcURGxvLkiVLyMjIqLWOgoICoqKi2LdvHxdccIH9cwa26/3FxsZy//33889//pN7772XHTt28OWXX9pbeV999VXeeust4uPj2bJlC66urqxfv55Dhw4RExNDfHw8cXFxbN68Gaj+O6u+n5XqypVLSkri4YcfZuPGjcTHx7Njxw77AX1BQQEjRoxg9+7djB07lvfff7/K6/DUU08xaNAg9uzZwwsvvMDs2bMJCgrigw8+YMyYMcTHx1fbulJOvruq/6x26tSJ22+/3d7aNGbMmCrbLV++nGuvvZZrr722UlfO8sRn8uTJvP766/aWxr179zJkyJBqX4N9+/ZVWVf+/m6s6r6z6vv/Wb16NeHh4dV+F9UlJiaG0tJSunbtSkZGBj4+PvaTEw35vgH4/PPPazxB9tJLL7Fr1y727NlTqdfJgQMH+OGHH4iJieGZZ57BZDIRFxfHRx99xO+//8727dt5//332bVrF2PGjLF/n8bGxpKfn4/JZGLLli2MHTv2rH9fGvJ/3blzJ927dycoKKjKunXr1jFjxoxq65g9ezb/+te/2LNnD/379+eZZ55hypQp9vdv+XFeRQsXLuT++++v9kTAm2++yYABA5g7d649eX700UeZPXs2L774InfddRePP/44ixYtqjYeIYTjGBwdQGP179+f+++/n4cffphLL7202h9dgJUrV/Lee+9hNptJTk5m//79WK1WunTpYj/je+2119pbPtavX8+3335rHytSXFzMiRMn6N27t33MA0BRUZF9vNuYMWO45ZZbSEpKso/LABgyZAjHjh0DbD/oTzzxBNnZ2eTn5zNx4kQARo0axZw5c7j66qvt3RHXr1/Pnj177GNfcnJyOHTokD3ecnq9nvj4eLKzs7n88svZu3dvk42hffDBB1m0aBGBgYH25Bqwx1jxuZlMJu666y7i4+PR6/X2A/WhQ4cyd+5cTCYTM2bMIDIykl9++YX9+/czatQowHYAXvGs/Jmef/55DAaD/YxwRZs3b+baa69Fr9cTFhZmP4MMtrFCL7/8MoWFhWRmZtK3b1+mTZtWZR/1LTdz5kx7klLTe6SimsqEhYWd9Wt14MABOnfubE+ubrjhhjpb7nJycrjppps4dOgQmqZV6pp10UUX4e3tDUCfPn04fvx4pcTvTAkJCcyaNYvk5GRKS0srvS+nT59uT1pmzpzJc889xyuvvMLSpUvtLbQVhYaGcuLECfz9/YmLi2PGjBns27cPLy+vWp8P1P7eaKjyA/SmMGzYsEqvyZIlS/j6668BW1fEQ4cO4e/vX+P2Op3O3tX1hhtuqNRNuWIX2A0bNlQaK5qbm0t+fj6jRo3ivvvu4/rrr+eKK64gIiKC9evXs379egYNGgTYWiEOHTpEx44da/zOOlN9PyvlduzYwbhx4wgMDATg+uuvZ/PmzcyYMQMnJyd7r5YhQ4bw448/Vtl+69at9hN+F154IRkZGeTm5tZYXzn57jqtts9qTVJSUjh06BCjR49G0zSMRqP9t+Xmm29m4sSJrFu3jtWrV/Puu+82Sa+JhqruOys7O7vO/09hYSEvvPAC69evb3CdycnJ3HjjjXz88cdn3VU0OTmZP/74w34ccKYBAwZw/fXXM2PGjErJ3NSpU3F2dsbZ2ZmgoCBSUlLYunUrl19+Oe7u7oDtfb5lyxbuuOMO4uLiyM3NxdnZmcGDBxMbG8uWLVtYsmQJ27dvb7Lfl5q8/vrrfPTRR/z111989913ldY9+OCDPPbYYyQkJNjHmleUk5NDdnY2F1xwAWBrwZ45c2at9cXHx3PkyBFef/31Kt9jd9xxBwsXLkTTNHtSu3TpUiIjI+3DqTZv3kxoaChKKWbNmoXRaOTf//43wcHBjXr+Qoim02oT1h49erBz506io6N54oknuOiii3jyyScrlTl69CivvvoqO3bswNfXlzlz5lBcXFzrfpVSfPnll/Ts2bPWcuVjWM/k7Oxsv6/X6+1dgufMmcM333zDwIEDWbZsGZs2bQLgnXfe4ffff2fNmjUMGTKEuLg4lFL85z//qfHH7Ew+Pj6MHz+edevW1ZiwWiwW+9nQ6dOn8+yzz9a6z1deecXe1am656fX6+3j6F5//XWCg4PZvXs3VqsVFxcXwNYlb/PmzaxZs4Y5c+Zw33334evryyWXXFLprH1Nli1bxvfff89PP/3UoO7OxcXF3HnnncTGxtKhQweefvrpav/v9S0H2A8GoOb3SMVujTWVefrpp8/6tarufVeXhQsXMn78eL7++muOHTtWqbvTme/Z8v9rxde84uty9913c9999zF9+nQ2bdrE008/bV9X8XVyc3PjkksuYfXq1axcuZK4uLgqcZUffIEtkejatSt//fUXUVFRtT6f6t4b4eHhlVqHExISCA8Pr3U/YGt5++qrr6qN70x9+vQhPj4eq9VqP2i1Wq3Ex8fTp08fEhISKr0GmzZtYsOGDfz222+4ubkxbty4Or+DzlTx/1Bx31arle3bt9vfQ+UeeeQRpk6dSnR0NKNGjeKHH35AKcWjjz5aZUznsWPHavzOqqghn5X6MBqN9udV8T3XFOS767TaPqs1WblyJVlZWfbkNjc3l+XLl/P888/z/+zdeXxU9d3+/9eZ7BtZSCAhISwSlkA2ZFeQpQItLRXFClZFUVyRW1vR1lttvZXvreLd3op39adF0apAW4tg64JWEAFlD6tIWLISAknIvmfO749JDgkkIUiSyXI9H8ZMzpw5530mkyFXPhs4usXOnz+f+fPnM2zYMA4cOMDQoUPZtWsXP//5zy84XnR0NLt27arXorlr1y6GDh3aZB2urq7WpDfnX1tD71mmaV70+3Ps2DFOnDhh1ZKens7w4cPZvn07oaGhjT6uoKCAGTNmsGTJEmsiqu7du5OXl0dVVRWurq7Nfr8Bx3M8a9Ys3NzcGrz/X//6F5s2beKjjz5iyZIl7N+/v9Hrboybmxv9+vVjxYoVjBs3jtjYWDZs2MDRo0cZMmQIx44du6x/X2q/r3W/5+d/Xx9++GEeeeQR1q1bx5133smxY8esn7Han9Nly5Yxf/78Zr3/Xsw333zDzp076du3L1VVVZw+fZqJEyeycePGeqFzwYIFF0wkZZomzz77LKtWreLBBx/khRdeIDk5mZdfftl67YuI83TYLsEnT57E29ubW265hcWLF7N7924A/Pz8rDFbBQUF+Pj44O/vT1ZWFp988gkAgwYN4vjx49Zf4OrO+jdt2jSWLVtmjQeqneDjchUWFhIWFkZlZSXvvfeetf3YsWOMHj2a//qv/yIkJIS0tDSmTZvGq6++arWCHTly5IIup2fOnLG6Y5WWlvL5558zePDgRs9f2xqbmJh40bB6qfLz8wkLC8Nms/GXv/zFmugmJSWFnj17smDBAu666y52797NmDFj2LJlizW2rLi42GrVqOvTTz/lhRdeYN26dQ127QHHL5WrV6+murqazMxMq3tQ7S83wcHBFBUV1Zulse7ro6n9mtKc10hj+7TEczV48GCSk5Ot8XvN+QU6Pz/f+mWqtpvuxfTs2ZPvvvsOu91utRCef6y33367yWPcddddLFq0iJEjRxIYGHjB/WfOnLGeg+PHj5OUlET//v0BR3ew2jGodTX22pg5cyarVq2ivLycEydOkJSUxKhRoy56nV988QWDBw+uNzavMQMGDCAhIaFel7Fnn32W4cOHM2DAgAv2z8/PJzAwEG9vbw4fPtysidHsdrv1Wnz//fe5+uqrG9xv6tSpLFu2zPq69hfNY8eOERMTw2OPPcbIkSM5fPgw06ZN480337TGqGVkZNQbN9mQ5v6s1N2vrlGjRvHVV1+RnZ1NdXU1K1eutFpLmmP8+PHWe+XGjRsJDg5uVsv7pejs712N/aw29j0Dx/vJp59+SnJyMsnJyezatcsax/rpp59a/y6dOnWKnJwcwsPDWbhwIW+//Tbbtm2zjvOPf/yDrKwsHnnkEf77v//b+vc2OTmZ//f//h+//vWvGzx/rb59+1ohpjnvzc35/sTExHD69Gnr2iIiIti9ezehoaFs376d22677YLjVlRUMGvWLG677bZ6fwgxDINJkyZZtb399tsNBvaGNNWjw263k5aWxqRJk3j++efJz89vdCwuOH5OPvzwQ0pKSiguLmbNmjVWj7Px48fz4osvMmHCBMaPH89rr71GQkIChmFc9r8vDzzwACtWrLDed3JycnjsscfqjSmuNXPmTEaMGNHgvxcLFy7EbrfXm9UdwN/fn8DAQKtb81/+8peLvn/cd999nDx5kuTkZDZv3szAgQOtxoHMzExrvzVr1lzwx/133nmHn/zkJwQFBVFSUoLNZsNms7XJJJ4icnEdtoV1//79LF68GJvNhpubG6+++ioAd999N9OnT7fGsiYkJDB48GB69+5tdX3x8vLiT3/6E9OnT8fHx4eRI0dax33yySd56KGHiI2NxW63069fP/75z39y8uRJ7rrrrnrdgi/FM888w+jRowkJCWH06NHWLwuLFy8mKSkJ0zSZMmUKcXFxxMbGkpyczPDhwzFNk5CQkAumvs/MzGTevHlUV1djt9v5xS9+4bQlTO6//35uuOEG3nnnHes5BccvmUuXLsXNzQ1fX1/eeecdQkJCWLFiBXPnzqW8vBxw/MI/cODAesdcuHAh5eXlXHvttYDjl5HzZ5CdNWsWX375JdHR0URGRlrdvwICAliwYAHDhg0jNDS03ve3dgIlLy8vvvnmm0b3a0pjr5Hm7NNSz9Xrr7/OjBkz8Pb2Zvz48Q3+8llVVWX9Rf7RRx9l3rx5PPvss8yYMaNZ1/ncc8/x05/+lJCQEEaMGGH90vT73/+eG2+8kcDAQCZPntzg+OpaV155Jd26deOOO+5o8P5Nmzbx1FNP4ebmhs1m47XXXrMmR9q3bx+9evW64DGNvTaGDh3KL37xC6Kjo3F1deX//u//rG7cc+fOZePGjWRnZxMREcHTTz/NnXfeCTQ8lqypn/fly5fz4IMPWuMnx44dW6/raV3Tp0/ntddeY8iQIQwaNOiCZUIa4uPjw/bt23n22Wfp0aPHBUu31Hr55Zd54IEHiI2NpaqqigkTJvDaa6/xv//7v2zYsAGbzcbQoUP58Y9/jIeHB9999531M+Lr68u7775bbyzu+Zr7s3L+frXCwsJ47rnnmDRpEqZpMmPGjGb/Qg+O19n8+fOJjY3F29v7on8c+SE6+3tXYz+rP/vZz5g9ezZr165l2bJlVsBJTk4mJSWl3uu0X79++Pv7s23bNtavX89//Md/1Gslq22ZXLVqFY888ginT5/GZrMxYcIEpk+fTs+ePXn++ef52c9+RmVlJW5ubrzwwgsNLiFV9z3rkUce4Re/+IX1Xncxzf3+NCY1NbXeGOxaf/3rX9m0aRM5OTnWH/tWrFhBfHw8zz//PHPmzOGJJ54gISHBek/ZsWOHNUnQRx99xO9+9ztrbGdycjJpaWmNhq/q6mpuueUW8vPzMU2TRYsWERAQ0Gjdw4cP5/bbb7f+OHfXXXdZXf/Hjx/PkiVLGDt2LD4+Pnh6elrf68v99yUsLIx3332XBQsWUFhYiGmaPPTQQ40OE3jqqae4+eabWbBgQb3thmHwxBNP8MILL1zQq+ztt9/m3nvvpaSkhP79+/PWW281+jxczKOPPkpiYiKGYdC3b996k1mWlJSwYsUKq6v4r371K37yk5/g7u7O+++/Dzie13vvvfeivX9EpHUYDc0s6GxxcXFm7RtHaGhog7MfXq6ioiJ8fX0xTZMHHniAqKgoHn744RY/j4izvPTSS2RkZNSbFKmtnTx5kokTJ3L48OFLGvdVUFDAnXfeyd/+9rdWrK598vX1bbJFRaSzmjVrFgsWLGhwgsPWtnjxYm699VZiY2Pb/NzS8RmG0awJEEXknNDQ0F2maTbrr0Adtkvw5XrjjTeIj49n6NCh5OfnO2W9PpHWcuedd/L+++/zwAMPOK2Gd955h9GjR7NkyZJLnqSkW7duXTKsinRVMTEx2Gw2p61LunTpUoVVEZF2qsu2sIqIiIiIXC61sIpcOrWwioiIiIiISIfXoQOri4sL8fHxDBs2jBtvvNGaza12e+3Hc889BzgmdHj88ceJioqy7qs7XXljx/P19a133hUrVrBw4UIA/vCHPxAdHU1sbCxTpkwhJSXF2u/tt98mKiqKqKioHzRhSFPnrRUfH8+cOXPqbbv99tsbnFXx4MGDTJ48mUGDBhEVFcUzzzzTaOv1nXfeaU0ANXv2bGtMXXl5OTfddBMDBgxg9OjR1syPOTk5TJo0CV9f3wtqbMztt99urQE5fPjwBtdic6bExMR6k+6sW7fOei2JiIiIiEjr69CBtXYt1AMHDuDu7m7NxFi7vfbjN7/5DQBPPPEEJ0+eZP/+/SQmJvL1119bU/Q3dbymJCQksHPnTvbt28fs2bOtKd1zc3N5+umn2bZtG9u3b+fpp5/m7NmzLXr93333HdXV1Xz99dcXLHtzvtLSUmbOnMlvfvMbvv/+e/bu3cvWrVv505/+1OD+f/zjH9m7dy/79u0jMjKSV155BXDMkBoYGMjRo0d5+OGHeeyxxwDw9PTkmWee4cUXX7yka1i6dCmJiYk899xzrTqO+Ies83h+YK19/jqKllzbUkRERETEGTp0YK1r/Pjx1npiDSkpKeGNN95g2bJl1pT8fn5+jS6kfrHj1Zo0aZK11t6YMWNIT08H4LPPPuPaa68lKCjIWnD+008/vcSratrKlSu59dZbmTp1KmvXrm1y3/fff5+rrrrKmtDC29ubV155pdEWw9r1Dk3TpLS0FMMwAFi7di3z5s0DYPbs2fz73//GNE18fHy4+uqrref2Uk2YMMF6vt944w1GjhxJXFwcN9xwg9XSffvtt7No0SLGjRtH//7967UiP//888TExBAXF2eFyokTJ/LQQw8xYsQIXnrpJc6cOcMNN9zAyJEjGTlyJFu2bAFg+/btjB07loSEBMaNG8f3339PRUUFTz31FKtXryY+Pp7Vq1fXa+HOyspi1qxZxMXFERcXx9atWy+4pk8//ZThw4cTFxfHlClTGj0XOFrPr7/+eqZPn05UVFS9tewaOk5xcTHz589n1KhRJCQkWN//FStWMHPmTCZPnmztKyIiIiLSUXXYdVjrqqqq4pNPPmH69OmAozWx7hpvv/3tbxkyZAiRkZH4+fld9vFyc3OZOXPmBY9bvnw5P/7xjwHIyMigd+/e1n0RERFkZGRc0nVd7LyrV6/m888/5/Dhwyxbtoybb7650WMdPHiQK6+8st62K664gqKiIgoKCqyAWtcdd9zBxx9/THR0NP/zP/9zwXW5urri7+9PTk4OwcHBl3Rt5/voo4+IiYkB4Prrr7fWanviiSesdS/Bsf7s5s2bOXz4MDNnzmT27Nl88sknrF27lm3btuHt7U1ubq513IqKCnbu3AnAzTffzMMPP8zVV19Namoq06ZN47vvvmPw4MF8/fXXuLq68sUXX/D444/zwQcf8F//9V/s3LnTal2uXYMPYNGiRVxzzTWsWbOG6urqC5YhOXPmDAsWLGDTpk3069fPqqmxc4GjRXfPnj14eHgwaNAgHnzwQTw9PRs8zpIlS5g8eTJvvvkmeXl5jBo1ih/96EcA7N69m3379lnrmYqIiIiIdFQdOrDWDXTjx4+3Fu2u7dpb1759++p9/dZbb/HSSy+Rk5PD1q1b6d27d7OPt2LFCisE1Xr33XfZuXMnX331VYtdX1Pn3blzJ8HBwURGRhIeHs78+fPJzc1t0ZDy1ltvUV1dzYMPPsjq1au54447WuzYtRYvXsyzzz5LSEgIy5cvB+DAgQM88cQT5OXlUVRUVG8x8euuuw6bzUZ0dDRZWVkAfPHFF9xxxx1WS3fd5+Cmm26ybn/xxRccOnTI+rqgoICioiLy8/OZN28eSUlJGIZRr5t4Y7788kveeecdwDH22d/fv9793377LRMmTKBfv371amrqXFOmTLGOEx0dTUpKCmfPnm3wOOvXr2fdunVWF+yysjJSU1MBrJZ9EREREZGOrkN3Ca47VnXZsmW4u7s3uu+AAQNITU2lsLAQcLQeJiYm4u/vT3V19SUfr64vvviCJUuWsG7dOjw8PAAIDw8nLS3N2ic9PZ3w8PB6j9u2bZs1+dO6desu6dpXrlzJ4cOH6du3L1dccQUFBQVWS11DoqOj2bVrV71tx48fx9fXl27dujFt2jTi4+O566676u3j4uLCnDlzrGPXva6qqiry8/Pp3r37JdVeV+0Y1s8//5xhw4YBjq6/r7zyCvv37+d3v/sdZWVl1v61zy/QrOWOfHx8rNt2u51vv/3W+h5nZGTg6+vLk08+yaRJkzhw4AAfffRRvfO1tKbOVffaXFxcmhyDapomH3zwgXUtqampDBkyBKh/zSIiIiIiHVmHDqyXwtvbmzvvvJOFCxdaIaG6upqKiorLOu6ePXu45557WLduHT169LC2T5s2jfXr13P27FnOnj3L+vXr67UUAowePdoKHA11MW6M3W7nr3/9K/v37yc5OZnk5GTWrl3LypUrG33ML3/5SzZv3swXX3wBOFqnFy1aZI2V/Oyzz0hMTOTPf/4zpmla40lN02TdunUMHjwYcEw8VDvj8d///ncmT55sjW9tKYWFhYSFhVFZWcl777130f2vvfZa3nrrLWusa90uwXVNnTqVZcuWWV/Xtl7n5+dbf0yo2+3Xz8/P+gPH+aZMmcKrr74KOF5H+fn59e4fM2YMmzZt4sSJE/VqauxcjWnsONOmTWPZsmVWaN+zZ89FjyUiIiIi0tF0ysBa27W39qN2Ep4lS5YQFhbGsGHDSEhIYPz48cybN49evXr94HMtXryYoqIibrzxRuLj463gGRQUxJNPPmlN8PPUU0+1WDfNr7/+mvDw8Hp1T5gwgUOHDpGZmQnAPffcQ0REBBEREYwdOxYvLy/Wrl3Ls88+y6BBg4iJiWHkyJENLkFjmibz5s0jJiaGmJgYMjMzeeqppwDHcjc5OTkMGDCAP/zhD/Umberbty+/+tWvWLFiBREREfW6316KZ555htGjR3PVVVdZQbkp06dPZ+bMmYwYMYL4+PhGZyp++eWX2blzJ7GxsURHR1uzQD/66KP89re/JSEhoV6r5qRJkzh06JA16VJdL730Ehs2bCAmJoYrr7zygmsNCQnh9ddf5/rrrycuLs7qmtzYuRrT2HGefPJJKisriY2NZejQoTz55JMXPZaIiIiISEdjNKdbZVuLi4sz169fD0BoaGizun6KiIiIiLQ1wzA4deqUs8sQ6VBCQ0N3maY5ojn7dsoWVhEREREREen4FFhFRERERESkXVJgFRERERERkXapxQKrYRhvGoZx2jCMA3W2/d4wjAzDMBJrPn7SUucTERERERGRzq0lW1hXANMb2P5H0zTjaz4+vtSD2my2y156RkRERESkpVVUVGCzqcOiSGtqsZ8w0zQ3AQ0vgHkZYmNjWbp0qUKriIiIiLQbFRUVLF26lNjYWGeXItKpubbBORYahnEbsBP4tWmaZxvayTCMu4G7ASIiIqztb775JvPnz+epp57Cbre3QbkiIiIiIk2z2WzExsby5ptvOrsUkU6tRddhNQyjL/BP0zSH1XzdE8gGTOAZIMw0zfkXO07ddVhFRERERESk82g367Cappllmma1aZp24A1gVGueT0RERERERDqPVg2shmGE1flyFnCgsX1FRERERERE6mqxMayGYawEJgLBhmGkA78DJhqGEY+jS3AycE9LnU9EREREREQ6txYLrKZpzm1g8/KWOr6IiIiIiIh0LVo4SkRERERERNolBVYRERERERFplxRYRUREREREpF1SYBUREREREZF2qcUmXWpJWVlZhIaGOrsMERERERERcaJ2GVh79uzJ3r17nV2GiIiIiEi7MWvWLADWrFnj5EpELs+lNE6qS7CIiIiIiIi0SwqsIiIiIiIi0i61yy7BIiIiIiJS34gRI5xdgkibU2A9j2maFKfnk733FDl7MynPL2PQbcPpPqyns0sTERERkS7sP//zP51dgkibU2AF7NV28pNyyNmbSfbeTMpzS+vdf+BP3zJwbhxh4/s6p0AREREREZEuqMsG1qrSSnIPniZnbya5B7OoKqm07nPr5kFwbCjd48IoOJZL6qdHOPJeImU5JfT9+RAMw3Bi5SIiIiLSFd15550ALF++3MmViLSdLhVYy/NKydl3iuy9meR9n41ZZbfu8w71pXtcGMFxYfj1DcSwORPKavEAACAASURBVEJp95hQPLt7c2TlXlI/PUJZTgmDbkvA5ubirMsQERERkS4oNzfX2SWItLlOHVhN06TkZCHZezPJ2ZtJYUreuTsN6HZFEMFxYXSPC8O7p2+jxwkb3xf3QC++e2MHp3ekU55XytB7R+Pm494GVyEiIiIiItI1dbrAalbbyT+Wa4XUsuwS6z6bmwuBQ0LoHhdG95hQ3Lt5NPu43Yf1JO7XV3Pg/74lPymHxKVfE7NwDJ7BPq1xGSIiIiIiIl1epwis1eVV5B5yjEfN2Z9FVXGFdZ+brzvdY0PpHhtGYHQILu4//JL9IgNIeGwC+1/5hpKThex+YRMxD4zFr09AS1yGiIiIiIiI1NFhA2tFQZk1HvXsd2fqjUf16uFjjUft1j/IGo/aEjyDvEl4ZDwH/7/t5H2fTeL/fE30gpF0jwltsXOIiIiIiJxv/Pjxzi5BpM0Zpmk6u4YLxMXFmevXr79ge8mp2vGopyg4kQt1SvfrF3huPGqob6vP5GuvsnPk3T1kfZsGBkTNjaPXhH6tek4REREREZGOLjQ0dJdpmiOas2+7bmE17SYFx2vGo+47RWlWkXWf4WojcHDNeNTYUDz8Pdu0NpurjUHzhuPZ3ZuUf31P0vt7Kcsuod910S3aoisiIiIiItJVtcvAWlVayffv7CZn/ykqC8+NR3X1caP7sFC6x4USFN0TF0/nlm8YBn1/NgSPIG+S3kskbX0SZbklDJ43XMveiIiIiEiLmjt3LgArV650ciUibaddBtayM8Wc2poKgGewN91jwwiOC8V/QHcMF5uTq7tQ2FV98Aj04tDr2zmzM4PyvDKG3adlb0RERESk5ZSVlTm7BJE21y4Dq83dlb4zh9A9LhSfXt1afTxqSwiK7kH8I+PZ/8o3FBzNYc8Lm4hZOBavEC17IyIiIiIi8kO0v+ZKwDvUlz4/GYRvuH+HCKu1fCP8Gf7YNfiEd6M0q4g9L2yiIPmss8sSERERERHpkNplYO3IPAK9iH9kPIFDQqgsLGfv/2wme2+ms8sSERERERHpcBRYW4GrlxvDFo4ldFwk9spqDr62jYyNx51dloiIiIh0YNdeey3XXnuts8sQaVPtcgxrZ2BzsTHw1gQ8u3uT/NFhjq7aR1l2Cf2vH9rhl70pziggY+NxTu9MJ3RcHwbcGOPskkREREQ6vfvvv9/ZJYi0OQXWVmQYBn1mDMYjyJsjf9lD+hdHHcve3H4lLu4da9kbs9pOzr5TpG84Tv6RbGt7xr+P4RcZQM/RvZ1YnYiIiIiIdEYKrG0gdGwkHoFeHHxtG9m7T7Ivr4xh94/GzdfD2aVdVGVROZmbUzi56QTluaUAuHi40nNMb9y7eZD80WGOvJ+IX58AvEP9nFytiIiISOc1a9YsANasWePkSkTajgJrGwkcHEL84vEceOVbCo7nOpa9eXBcu132pjA1j5Mbj3N6Rzr2SjsAXj186DWxP6FjI3H1csM0TUpOFXF6RzqHXt9Bwm8m4OKul5SIiIiIiLSMFksXhmG8CfwUOG2a5rDz7vs18CIQYppmdkOP7wp8w/1JeGwCB/7vW4rS8tnz/FcMu38M3foHObs0AOzVdrL3nCRjw3EKjuVa24OG9SR8Un8Ch/SoN/7WMAyifhlHYWoexScLOLp6P4NuTXBG6SIiIiIi0gm15CzBK4Dp5280DKM3MBVIbcFzdVgeAV7E/fpqAof2oLKogr1/3Ez2npNOramioIyUfx1m2+Pr+e7POyk4louLpyvhk/sz8ukfEbNwLEFDezY4WZSrpxvRC0Zic7NxaksKWd/q2ywiIiIiIi2jxVpYTdPcZBhG3wbu+iPwKLC2pc7V0bl6ujHs/jEkvb+XU1tSOPj6dq6YHUPElCvatI6C5LOc3HCc07syMKsc3X69Q/3oNbEfoWMicfFs3svDN8KfATfFcuTdRI68vxffPoH4hGk8q4iIiIiIXJ5WHXBoGMbPgQzTNPcaRtNLuRiGcTdwN0BERERrltUu2FxsDLwlHs9gb5LXfsexv+2nLKeYK2bHtOqyN/YqO2d2ZZCx8TiFJ846NhrQPTaU8En9CRgcwsW+Vw0JvaoPeUeyOb09ne/e0HhWERERkZY2c+ZMZ5cg0uYM0zRb7mCOFtZ/mqY5zDAMb2ADMNU0zXzDMJKBEc0ZwxoXF2euX7++xepq77K2pfH9O7sxq02C48MYPP/KFg975XmlZH6dzMmvk6ksKAfA1duN0Kv60OuafngFX/7kT9VlVez6742UZhUROi6SQbcNv+xjioiIiIhI5xIaGrrLNM0Rzdm3NZvArgD6AbWtqxHAbsMwRpmmeaoVz9vh9BzdG48ATw7+f9vJTsxk7x+3MOz+Mbj7Xd6yN6ZpUnA8l4wNx8nefRLT7vjjhE94N8In9qfH6IgWDcYunq5E3z2SPc99xamtqfgPDCZ0TGSLHV9ERESkKyspKQHA29vbyZWItJ1WC6ymae4HetR+fSktrF1RwKAQ4h8Zz/5XvqHwxFnHsjcLx+Ld0/eSj2WvrOb0jnQyNh6nKDXfsdFmEJzQi/BJ/fGP6v6Duv02h2+4PwPmxHLkL4kkvb8Xv8gAfHp1a5VziYiIiHQlv/zlLwGtwypdS4vNEmwYxkrgG2CQYRjphmHc2VLH7ip8enVj+GPX4BvpT9mZYva8sIn8YznNfnxZbgnHPzzEt7/9jO/f2UNRaj6uPu70nj6Q0c9ey9B7RhEwMLjVwmqt0HF96DE6AntFNYfe2EF1eVWrnk9ERERERDqnlpwleO5F7u/bUufqzNz9PYn/1XgOLd9B7v4s9v5xC0PuuJKQK8Mb3N80TfKTchzdfvdmQk23X99If0e335ER2Nxc2vISMAyDgXPjKUrJoySzkKOr92k8q4iIiIiIXDJN49oOuXi6Muze0SSt3kfmpmQO/XkH/c+WEjHlCqt1tLqiitPbHN1+izMKADBsBsEjwgmf1J9u/YNavSX1YtcQvWAUu2vHs0YFEzpW41lFRERERKT5FFjbKcPFRtTcODy7+3BizUGO//0AZdnFREwZwMlNJzi1JYWqkkoA3Pw86DWhL2Hj++IR4OXkys/xCe9WM551D0kr9+LXR+NZRURERESk+RRY2zHDMIicFoVnkBeH397NyY0nOLnxhHW/X99Awif1J2R4rzbv9ttcoeMiyT+STda2NA69sYPhv7kGFw+97EREREQu1U033eTsEkTanJJDB9BjZATuAZ4cfHUb1eVVhIwIJ3ziFXTrF+js0i7KMAyibo6jsGY8a9KqfQyep/GsIiIiIpdqzpw5zi5BpM0psHYQAVHBjH72WkwT3HzcnV3OJXHxcCV6wUh2P/cVWd+kEhDVndBxfZxdloiIiEiHkpPjWD2ie/fuTq5EpO202LI20vpcvd07XFit5RPejai5sQAkrdxH8ckCJ1ckIiIi0rHcdddd3HXXXc4uQ6RNKbBKmwkd14eeY3pjr6zm0Otan1VERERERJqmwCptKmpuHN6hfpScKiRp5V5nlyMiIiIiIu2YAqu0KRcPV6LvHonN3YWsb9M4tTXF2SWJiIiIiEg7pcAqbc6nVzei5sYBNeNZMzSeVURERERELqTAKk4ROjaSnmMjHeNZ39hOdZnGs4qIiIg0Zd68ecybN8/ZZYi0KS1rI04TNSeWwuSzjvVZV+5l0O3DMQzD2WWJiIiItEvXXXeds0sQaXNqYRWnqV2f1ebuQta2NE5tTXV2SSIiIiLtVkZGBhkZGc4uQ6RNKbCKU/n06kbUzY7xrEdX7aUoI9/JFYmIiIi0TwsXLmThwoXOLkOkTSmwitOFjokkdFwk9ko7372xQ+NZRUREREQEUGCVdmLAnFi8e/lRcqqIIysTMU3T2SWJiIiIiIiTKbBKu+Di7kr0glHY3F04vS1d67OKiIiIiIgCq7QfPmF+dcaz7tN4VhERERGRLk7L2ki7Ejomkvwj2Zzamsqh13cw/LfX4Orp5uyyRERERJzuvvvuc3YJIm1OgVXanQFzYilMzqP4ZAFJ7+1l8PwrtT6riIiIdHlTp051dgkibU5dgqXdcXF3Jfrukdg8XDi9I51TWzSeVUREROTo0aMcPXrU2WWItCkFVmmXvEP9GHhzPABHV++jKF3jWUVERKRrW7x4MYsXL3Z2GSJtSoFV2q2eo3sTelUf7JV2Dr2xg6qySmeXJCIiIiIibUiBVdq1ATfF4hPejdKsIpLe26v1WUVEREREuhAFVmnXXNxdiF5QZzzrZo1nFRERERHpKhRYpd2rO541SeNZRURERES6DC1rIx1Cz9G9yU/KJnNzCode387wxydqfVYRERHpUh5++GFnlyDS5tTCKh3GFb+oGc96uljjWUVERKTLmTBhAhMmTHB2GSJtSoFVOoza8awuHq6c3pFOpsazioiISBdy4MABDhw44OwyRNpUiwVWwzDeNAzjtGEYB+pse8YwjH2GYSQahrHeMIxeLXU+6Zq8Q/0YeEud9VnT8pxckYiIiEjbePLJJ3nyySedXYZIm2rJFtYVwPTzti01TTPWNM144J/AUy14PumieoyMIGx8X8yqmvVZS7U+q4iIiIhIZ9RigdU0zU1A7nnbCup86QNo0KG0iCtujMEnwjGe9ch7iRrPKiIiIiLSCbX6GFbDMJYYhpEG/JImWlgNw7jbMIydhmHszM3NbWw3EaB2POsoXDxcObMzg8yvk51dkoiIiIiItLBWD6ymaf6naZq9gfeAhU3s97ppmiNM0xwRFBTU2mVJJ+Dd0/fceNa/7qcwVeNZRUREREQ6k7Zch/U94GPgd214TunkeoyMIO9INplfJ3PojR2EX9MPm4crLu4uuHi4YHN3xcXDBZeabTb3c7cNF02SLSIiIh3H448/7uwSRC6LaZpUl1dd0mNaNbAahhFlmmZSzZc/Bw635vmkaxrwixgKTuRSnF7Asb83f6p3w9VWE2xda4KsCy7urtg8XBzbrduu9cNv3ce4u9QJyOf2s7nZMAyjFa9aREREupqRI0c6uwQR7JXVVJVUUlVaSWVJJVUllVSXVlJZXEFVqePr2vvr366gqqTykmc1arHAahjGSmAiEGwYRjqOltSfGIYxCLADKcC9LXU+kVo2NxdiF11F5tcnqCyuoLq8GntFNdXlVVTXfLbX/Vxz26yyU1Vld/zgtDSD+uG3TsA9F5Bdzwu8NSG5sdbhOsHYsCkMi4iIdDU7duwAFFzl8ph288Iw2cywWVVaib3Sflnnt3m4XNL+RnucXTUuLs5cv369s8uQTsw0TcwqO9Xl1VRXVNWEXMfn84Nt3fBrr7N/dUXtfXUeW/PZrLq8H+SLabp12PWC1uIGW4c9zm85dmxX63DrslfZqSwspzy/jIr8MioKyms+n/va1cuNgIHBBAwKwS/SX93XRUQEgFmzZgGwZs0aJ1ci7ZVpNynPK6X0dDFlZ4oprfkoyy52tICWVFJddmldcs9nuBi4ervj6u2Gq5eb4/P5t73dG73P5mIjNDR0l2maI5pzvrYcwyrSbhiGgeHmgs3NBTfcW/z4ZrXdEXgrqrHXtvTW3q4Nu/XC77n9GmsdrhuYndI6XKeF98Lu0A10oa69rwu0DpumSXVZlSNw1guhdcNoORUFZVQWVTTrmGcPnQbAxdMV/6juBAwKIXBQMD7h/p3yORQREZHmsVfZKcspofR0EWXZxZSeLqa05nNZTsnFG04MHAGysbDp5dZ4IPVxw+bm0qaNGwqsIq3AcLHh6mXD1cutxY9tmib2SntNK3AjrcNW4K25r6HW4Xqty/Vbh6vLq6gur6IV4rCjdbiBscE294ZbhxvsQn1By7Hjs+Hasq3Dpt2korC8ThCtCZ4NhFF7ZXUznwBw7+aJezcP3P3rfvbE3d8D926elJ8tJe9INnmHz1B6ppjc/Vnk7s8CwNXHjYAoR+trwKBgvMP81CIuIiJdjmk3qcgvoyy3hPLcUspyS6kurcTVxw03H3dcfd1x86n58HXH1du9Q/3Bt7qsyhFCz9RvKS09XUT52dImx4G6d/PAM8QHr9qPHr54Bnvj5ueBm7cbLp5uHeq5UGAV6WAMw7BaLtusdbi8qonwW3+/ei3CTbUOF7dS63ADY34vHD9cv0UYAyoKyqksKKM8v4zKAkeX3crC8mZPDGBzd3EEz5oQ6uHviZv12ROPmjDq5ufRrH8keoyMAKAst8QRXr/PJu/7M5TnlpKdmEl2YiYAbt08rO7DAQOD8erhowArIiIdXlVpZU0QLaH8rCOQllvhtITyvDKwX8LQxppWxfPDrHW75rPrebdd3C9tvGVzmaZJVXFlTRAtqh9KzxRTWVDe5LV4dveuH0pDfBxfB/vg4tm5Il7nuhoRuWxt0zp8rkW48e7Q9ccGXxCS67YO1zzGrLJTXVZVMzajiTf6S+Dm517T+tlAa2id266eLf98AXgGeRM6JpLQMZGYpklZdgl5R86QdzibvCPZVOSXcWZnBmd2ZgDgHuBJYE3ra8CgEDy7e7dKXSIiIj+UWW2nPL/sXPjMLXXcPnsukFaXXnycpXs3DzyCvPEI8sIzyAsXLzeqih0TCFXWfFQVVVhjN2s/OFPc7Fptbi6OFtqallsr5NYNveeFXFcvRwtmbSuw1V33vDGlTQ3tMlxteAXXD6WewTWtpd29sbl2nfktNOmSiHQaVutw+XldpRsaS1ynRdi0m+eFUUc4devmga0dT3hkmialWUVW62vekewLxsh6Bntbra8Bg4LxCPByUrUiInK5DhxwLN83bNgwJ1fSONM0qS6trGkRPddCWi+c5jXdpRUcPZc8g7wcgTTQ69ztIC88g7zxCPDE5tb81k/TblJVUkFlTYCtLKpwBNvaQFtcd3ulFXh/0ESaBrj5uDt+F2liyJCLhytePWqDqKN11DPEcdsjwKtDddu9VJcy6ZICq4hIJ2HaTYozC2paX8+Qn5RzwV9vvXr6EjAomMBBIfgPDMbdz8NJ1YqI1FddUcWpLSnk7M/CrOnqaRi1/wOsT4bjdu3X9e43ah5Te1Sj9j/HcRp6zPnHrdnXqHO7zqd69dR/zPm11Dm/ce62df66WcQwasuvfx116jbq7Nvw+eo+poHjNlLLBfU0Vct59Zh202oprdtCetFZaGvmc7DCZ00LqUfguUDq6uPm9CEupmliL6+msqicypoQe0HIbeB23et383VvuOtuiC9ufu5Ov0Zn0SzBIiJdkGEz8A33xzfcn4gpV2DaTYrS8h2tr99nk380h9KsIkqzisjclAyAT3g3q/XVPyoYN5+WHxctItKUyuIKTm48TsaG482eSV3aN5uHS50gemELqUeAV4fo0moYBi6errh4uuIZ3PzH2avsVBVXYHN3aZUhVl2NAquISCdl2Az8+gTg1yeA3lOjsFfbKUzJswJswbEcijMKKM4oIGPDcTDAt7e/1YXYP6p7q43NFREpP1tK+r+PcvLrZOzljm6Tfn0DCZ/UH7fa3h91egKaZp2vTTAd/6vpWmpaXUzN2p3Nuoeo+7VZvzuqaVqHqD1+vcecf9zau8x6d5wrtc5jL1bLBfU0Wotj49/++ncM4IbZs5uopU49TV279ZDzzl/ndr3zN/DcG4aBu7+jpbRuOHX1dn7rqDPZXG24+3s6u4xOQ12CRUS6KHtlNQXJZ8k77Bj/WnA8F7O6zr8JNYHX/4ogfCMD8OsTiFeIT6ceUyMira/kVCFp65PI2pZmvecERveg97QoAgYGd+mgczGzZs0CYM2aNU6uROTyqEuwiIhclM3NxbGma5Sjn1N1RRUFx3LJ+z6bs9+foTAlj8ITZyk8cdZ6jIunK359AmoCrCPEegZ76xdMEbmoguSzpH12xLEslwkYEHJlOL2nReEXGeDs8kSknVJgFRERAFzcXQkc0oPAIT3oB1SVVVJwLJfC5LOO8JqaR0VeWc2sxNnW41y93c4F2JrPHt0VYkXE0QX17HdnSPvsiPW+YbjaCB0bScSPBuDd09fJFYpIe6fAKiIiDXL1dCNoaE+Chva0tpXnl1GUkkdhylkKU/MoTMmjsqDc0a348Jlzj/Vxt8bP+kUG4NsnAI9AL4VYkS7CtJtk7zlJ6mdHKErNBxw9NHpd04/wyVfgofF9ItJMCqwiItJsHv6eeMSG0j02FHC0nlTkldW0wDpaYotS8qgsquDsodOcPXTaeqybn8d53YkDtC6sSCdjr6wm69s00tYnUXqmGHD87EdMuYJeE/ri6q2ZyC/H0qVLnV2CSJtTYBURkR/MMAw8Ar3wCPQiOD4McITY8rOljhCbkkdRiiPIVhaWk3sgi9wDWdbj3f09HSG2Tndi925qeRHpaKpKK8n8Opn0fx+jIr8MAM9gb3pPjaLnmEhc3F2cXGHnMGDAAGeXINLmFFhFRKRFGYaBZ5A3nkHehCT0AhwhtiynpKY78bkuxRX5ZeTsO0XOvlPW4z0Cveq1wvpGBuBeu8SFiLQrFQVlpH95nJNfHae6tAoAn4huRE4bSMjwXhgu7X+tzY6kdhWNqVOnOrkSkbajwCoiIq3OMAy8gn3wCvYh5MpwwDHGrSy72GqJLUw5S1FaPuVnSyk/W0rO3kzr8R5BXvj1CcS3tz9uvu64ervj5uOGq7c7rt5ujg8vNy25I9JGSs8Uk/75UTK3pmBW2QHwj+pO5PSBBEb30Hj1VvLqq68CCqzStSiwioiIUxg2A68evnj18KXHyAjAEWJLTxedC7GpeRSl5VGeW0p5binZe042cUBw9XI7F2Brwqyb93nBtnZ73cCrsCvSLEXp+aR9lsTpnemOpWmA7nGh9J42EP/+Qc4tTkQ6JQVWERFpNwybgXeoH96hfvQc3RtwhNiSU4UUpuZRnFFAVUklVSUVNZ8rqSx23K4uq7K2XfqJHTOYup0XbC9oxVXYlS7INE3yj+aQ9lmSNQbdsBn0GB1B76lR+PTq5uQKRaQzU2AVEZF2zbAZ+PTqdtFfis1qO1WlVVSVVFBZE1wbCrYXbC+poLq0yvog59JrdPG6MOzW3nbzaSDw1rmtsCvtlWk3ydl/irTPkig4nguAzd2FsKv7EPGjAXgGeTu5QhHpChRYRUSkUzBcbLj5uuPm686lLpZj2k0ryCrsSldnr7Zzekc6aZ8lUZJZCICrjxvhE/sTPqk/br6aBE1E2o4Cq4iIdHmGzbi8sFt6LsxWFl8YbC8IwsUtFHY9XRsNto5wW3PbR2FXLq66vIrMLSmkf3GU8txSwDFrd8SPriDsqr64eOrXRmd75ZVXnF2CSJvTO4+IiMhlMGwGbj7uuPm4Az6X9NgfFHZrb5c6xu1Wl1VZ4eJSNDvsnj9218tNS5V0MpXFFWRsPE7Gl8epKq4AwDvUl95To+gxqjc2V32/24vw8HBnlyDS5hRYRUREnKTlwu65MFt5frAtrrhwWwuFXWtyqjqtuAq7HUf52VLSvjhK5uZk7OXVAPj1DSRyehTdY8PUCt8OffjhhwBcd911Tq5EpO0osIqIiHRA9cPupbn0sFtne2uE3WaO3VXYbRklpwpJW59E1rY0zGrH2jSB0T2InBaF/8BgraHajr399tuAAqt0LQqsIiIiXczlht3qsso6QdYRbC8IvO0o7Lp6u2FT2KXgRC5pnyWRvTfTsYaqASEjwuk9NQq/yABnlyci0iAFVhEREWk2w2bUBMFWDLuNtPpeTth17+ZByIgIwq7qg09411k31DRNzn53hrTPjpD3fTYAhquN0HGR9L42Cq+QS+uKLiLS1hRYRUREpE1cdtgtr7qw5ba4eWG3oqCcjC+PkfHlMfz6BBB6VR96jAj/QbV0BKbd5Mzuk6R9doSitHzA0ULd65p+REy+And/TydXKCLSPAqsIiIi0u4ZNgNXL8fETZcatUy7SWFqHllbU8nakUZhSh6FKXkc+9t+ghN6EXpVHwKigjvFJEP2ympOfZNK2udHKTtTDIBbNw8iplxBrwn9cPVyc3KFIiKXxjBN09k1XCAuLs5cv369s8sQERGRTqa6oprsxJOc2ppK3uEz1nbPYG9Cx0bSc2wknkHeTqzwh6kqreTkphOk//sYlQXlgOOaek+NInRsJDY3FydXKC0hJ8exYHP37t2dXInI5QkNDd1lmuaI5uzbYoHVMIw3gZ8Cp03THFazbSnwM6ACOAbcYZpm3sWOpcAqIiIira00u5isb1I5tTWV8rM142INCBzSg9BxkQTHhbX7oFeRX0b6l8c4+dUJqsuqAPDt7U/vaVGEJPTSzMoi0i45K7BOAIqAd+oE1qnAl6ZpVhmG8TyAaZqPXexYCqwiIiLSVky7ydnDZzi1NYXsxEzMKjsArt5u9BjlmKjJt3f7mkW39EwxaZ8ncWprqlWv/8BgIqdFERjdQ0vTdFKrVq0CYM6cOU6uROTyXEpgbbExrKZpbjIMo+952+qmzm+B2S11PhEREZGWYNgMgqJ7EBTdg8riCk5vT+fU1hSK0vI5ufEEJzeewLe3P6Hj+tBjVMQPWg6opRSl5ZH6WRJndmU4lqYBguPD6D0tim79gpxWl7SN1atXAwqs0rW05aRL84HVjd1pGMbdwN0AERERbVWTiIiIiMXNx53wSf0Jn9TfMVHTN6lkbUujKC2fo6v3ceyDAwTHhxE6rg+Bg0PaZKIm0zTJT8oh9bMjnD14GnCE7J5jexNxbRQ+YX6tXoOIiLO0SWA1DOM/gSrgvcb2MU3zdeB1cHQJbou6RERERBrjFxmAX2QA/a8fSvbeU5zamsLZ705zZmcGZ3Zm4BHkZU3U5BXc8uuZmnaTnH2ZpH6WROGJswDYPFwIu7ovEVOu6JCTQ4mIXKpWD6yGYdyOYzKmKWZ7nJJYREREpAk2Nxd6jAinx4hwynJLHBM1fZNKWXYJKf/6npR/fU/AoGBCx/UhOKEXLu6XN1GTvcrO6e1ppK1PouRUEQCuPu6ET+5P+DX9m7Kv0gAAIABJREFUcfPtnGvHiog0pFUDq2EY04FHgWtM0yxpzXOJiIiItDbPIG/6zBhM5I8HkZeU7ZioafdJ8r7PJu/7bFxW7aXHyAhCx/XBr0/AJU1+VF1WReaWZNK/OGbNWuwR6EXEtQMIu6oPLh5tOZJLRKR9aMlZglcCE4FgIAv4HfBbwAPIqdntW9M0773YsTRLsIiIiHQUVSUVnN6ZwaktKRSmnFu9zye8G6HjIukxqjfufh6NPr6yqJyMDcfJ2HicquJKALzD/Og9LYoeIyOwaWkaqVFS4mj/8fZWd3Dp2JyyrE1LUmAVERGRjqgoI59TW1M5vS2NyqIKAAwXg+6xYYSOiyQouoe1NmpZbgnpXxwlc3MK9opqALr1D6L3tCi6x4S2yYROIiLOoMAqIiIi4kT2Kjs5+x0TNeUeyLKWoHH396TnmN5U5Jdxens6pt1xR9CwnvSeFoX/gO5aQ1Ua9dZbbwFwxx13OLkSkcvjlHVYRURERMTB5mojJKEXIQm9KD9bSta2NE5tSaH0TDFpnyU5djKgx8gIek+LwjfC37kFS4ewbt06QIFVuhYFVhEREZFW5BHoReT0gfSeFkX+0RxO70jH5uZC+MT+eIW0/HI4IiKdiQKriIiISBswDIOAqGACooKdXYqISIehaedERERERESkXVJgFRERERERkXapXc4SHBwcbPbt29fZZYiIiIiIiEgL27Vrl2maZrMaT9vlGNa+ffuyc+dOZ5chIiIiIiIiLcwwjN3N3VddgkVERERERKRdapctrHWlp6cza9Ysdu/ejd1ud3Y5ItJJ2Ww2hg8fzpo1a4iIiHB2OSIiIiJCBwiss2bN4vrrr2fLli24u7s7uxwR6aQqKip48cUXmTVrFjt27HB2OSIiIiJCO510acSIEWbtGFYXFxdKS0sVVkWk1VVUVODl5UV1dbWzSxERERHptAzD2GWa5ojm7NtiY1gNw3jTMIzThmEcOG/7g4ZhHDYM46BhGC9c6nHtdrvCqoi0CXd3dw09EBEREWlHWnLSpRXA9LobDMOYBPwciDNNcyjwYgueT0RERERERDqxFguspmluAnLP23wf8JxpmuU1+5xuqfOJiIiIiIhI59bay9oMBMYbhrHNMIyvDMMY2diOhmHcbRjGTsMwdp45c6aVyxIREREREZH2rrUDqysQBIwBFgN/NQzDaGhH0zRfN01zhGmaI0JCQn7wCf/3f/+XkpKSH/z4S/Hhhx9iGAaHDx9uk/NdLl9f3xY9Xnu//t///ve8+GLX6IU+ceJEaicqa872llJSUsKMGTMYPHgwQ4cO5Te/+Y113x/+8Aeio6OJjY1lypQppKSk/OBjlZeXc9NNNzFgwABGjx5NcnIyADk5OUyaNAlfX18WLlxo7V9YWEh8fLz1ERwczEMPPdSyFy8iIiIira61A2s68A/TYTtgB4Jb84RtGVhXrlzJ1VdfzcqVK1vsmFVVVS12rNbW1a9fHB555BEOHz7Mnj172LJlC5988gkACQkJ7Ny5k3379jF79mweffTRH3ys5cuXExgYyNGjR3n44Yd57LHHAPD09OSZZ5654A8Tfn5+JCYmWh99+vTh+uuvb+ErFxEREZHW1tqB9UNgEoBhGAMBdyC7JQ5cXFzMjBkziIuLY9iwYaxevZqXX36ZkydPMmnSJCZNmgTAfffdx4gRIxg6dCi/+93vrMd//PHHDB48mCuvvJJFixbx05/+1Dru/PnzGTVqFAkJCaxdu7bB8xcVFbF582aWL1/OqlWrrO0bN25kwoQJzJgxg0GDBnHvvfdas476+vry8MMPM3ToUKZMmUJt1+eJEyfy0EMPMWLECF566SWSk5OZPHmy1TKVmppKfn4+ffr0sY5VXFxM7969qays5NixY0yfPp0rr7yS8ePHWy2eJ06cYOzYscTExPDEE0+0xNPeLq//jTfeYOTIkcTFxXHDDTdc9A8WH330EaNHjyYhIYEf/ehHZGVlAY4W2fnz5zNx4kT69+/Pyy+/DEBycjJDhgxhwYIFDB06lKlTp1JaWgpAYmIiY8aMITY2llmzZnH27FnrmmpbNrOzs+nbty8AK1as4Prrr2f69OlERUXVC3Gffvopw4cPJy4ujilTpljX2dDrsbS0lDlz5jBkyBBmzZpl1dOUui3sf//737n99tsBuP3221m0aBHjxo2jf//+/P3vf7f2W7p0KSNHjiQ2Nrbez08tb29v62fN3d2d4cOHk56eDsCkSZPw9vYGYMyYMdb2xjR1rLVr1zJv3jwAZs+ezb///W9M08THx4err74aT0/PRo975MgRTp8+zfjx45s8v4iIiIi0Py25rM1K4BtgkGEY6YZh3Am8CfSvWepmFTDPbKGFXz/99FN69erF3r17OXDgANOnT2fRokX06tWLDRs2sGHDBgCWLFlitfJ89dVX7Nu3j7KyMu655x4++eQTdu3aRd0xs0uWLGHy5Mls376dDRs2sHjxYoqLizl58iQ/+clPrP3Wrl3L9OnTGThwIN27d2fXrl3Wfdu3b2fZsmUcOnSIY8eO8Y9//ANwhI8RI0Zw8OBBrrnmGp5++mnrMRUVFezcuZNf//rXPPjgg8ybN499+/bxy1/+kkWLFuHv7098fDxfffUVAP/85z+ZNm0abm5u3H333Sxbtoxdu3bx4osvcv/99wPwH//xH9x3333s37+fsLCwlnja2+X1X3/99ezYsYO9e/cyZMgQli9f3mTtV199Nd9++y179uxhzpw5vPDCudWWDh8+zGeffcb27dt5+umnqaysBCApKYkHHniAgwcPEhAQwAcffADAbbfdxvPPP8++ffuIiYmpd02NSUxMZPXq1ezfv5/Vq1eTlpbGmTNnWLBgAR988AF79+7lb3/7G9D46/HVV1/F29ub7777jqeffrre8/9DZGZmsnnzZv75z39aXXHXr19PUlIS27dvJzExkV27drFp06ZGj5GXl8dHH31khe26li9fzo9//ONm13P+sTIyMujduzcArq6u+Pv7k5OT06xjrVq1iptuuolGRiOIiIiISDvWkrMEzzVNM8w0TTfTNCNM01xummaFaZq3mKY5zDTN4aZpftlS54uJieHzzz/nscce4+uvv8bf37/B/f76178yfPhwEhISOHjwIIcOHeLw4cP079+ffv36ATB37lxr//Xr1/Pcc88RHx/PxIkTKSsrIzU1lV69evHxxx9b+61cuZI5c+YAMGfOnHrdYkeNGkX//v1xcXFh7ty5bN68GQCbzcZNN90EwC233GJtB6ztAN988w0333wzALfeequ130033cTq1auBc7+EFxUVsXXrVm688Ubi4+O55557yMzMBGDLli3Wtd16662X/Bw3pb1cP8CBAwcYP348MTExvPfeexw8eLDJ2tPT05k2bRoxMTEsXbq03v4zZszAw8OD4OBgevToYbW+9uvXj/j4eACuvPJKkpOTyc/PJy8vj2uuuQaAefPmNRnoak2ZMgV/f388PT2Jjo4mJSWFb7/9lgkTJlivyaCgIKDx1+OmTZu45ZZbAIiNjSU2Nvai523Kddddh81mIzo62rrm9evXs379ehISEhg+fDiHDx8mKSmpwcdXVVUxd+5cFi1aRP/+/evd9+6777Jz504WL17crFqaOtYPsWrVqno/4yIiIiLScbg6u4AfauDAgezevZuPP/6YJ554gilTpvDUU0/V2+fEiRO8+OKL7Nixg8DAQG6//XbKysqaPK5pmnzwwQcMGjSo0X1yc3P58ssv2b9/P4ZhUF1djWEYLF26FOCClpzGWnbqbvfx8WmyLoCZM2fy+OOPk5uby65du5g8eTLFxcUEBASQmJh40XNczJo1a6wWwj//+c+MGDGiwf3a0/WDo0vrhx9+SFxcHCtWrGDjxo1NHufBBx/kV7/6FTNnzmTjxo38/ve/t+7z8PCwbru4uFhjas/ffrEuuK6urlb35fNfc42doyHNeT3+/+3deXxU9b3/8deZmeyTPWEJYQkSFiEhYROISlBAWxF3rVvVWm0R69Jbt3tdr/VWf2prbdVbN/DaSl16teK19wIq4IKyKFAFWYQgEITs+zLL9/dHkkNCFoIkzCR5Px+PdJjzPfM9nzkZ07xzvuf77azm57ujmpoGQRhjuOuuu/jZz352xL6vv/560tPTW01stHz5ch566CFWrlzZ4hhH29egQYPYs2cPqampeL1eysrKSExMPGJfGzduxOv1MnHixE4dW0RERESCS3ffw9pt8vPziYyM5IorruC2227j888/BxomW6moqACgvLycqKgoYmNjOXDggD2By6hRo9i5c6c902jTVTuAM844gz/84Q/2L+1ffPFFq2O/8cYbXHnllezevZu8vDz27NlDWloaH374IdAwJHbXrl34/X5effVVTj75ZAD8fr99f+Arr7xibz/c9OnT7ftC//KXv9j33rndbiZPnszNN9/M3LlzcTqdxMTEkJaWZg8hNcawceNGAHJyclr0cyTnnXeePUlNe2E12N4/NMwIO3DgQDweT6feZ1lZGYMGDQLgpZdeOuL+7YmNjSU+Pt5+3y+//LJ9tXXYsGH2MN3m94S2Z+rUqaxatYpdu3YBDX8UgPY/j6eeeiqvvPIK0HCFedOmTUc8Rv/+/dmyZQt+v58333zziPufccYZvPjii1RWVgINw3IPHmy9lPLdd99NWVkZTzzxRIvtX3zxBT/72c94++236devX4u20aNHt3nM9vqaN2+e/b164403OO200zr1x5jFixfr6qqIiIhID9ZjA+s///lPpkyZQlZWFg888IA9qdD111/PmWeeycyZMxk/fjzZ2dmMHj2ayy67jJycHAAiIiJ4+umn7YmKoqOj7SHF99xzDx6Ph8zMTMaOHcs999wD0OIe1sWLF3Peeee1qOeCCy6wh8VOnjyZG2+8kTFjxpCWlmbvGxUVxZo1axg3bhzvv/9+qyvCTf7whz+wcOFCMjMzefnll/n9739vt11yySX8+c9/bjGE9i9/+QsvvPAC48ePZ+zYsfbEPL///e956qmnyMjIYN++fcd2wpsJtvf/4IMPctJJJ5GTk9NuEGru/vvv56KLLmLixIkkJR3bpNUvvfQSt912G5mZmWzYsMF+T7/61a945plnyM7OprDwyPOMJScn8+yzz3L++eczfvx4+/2193mcP38+lZWVjBkzhnvvvbfdK4her9e+svnwww8zd+5cpk+f3ql7mufMmcNll11mT9x14YUX2n8MarJ3714eeughNm/ezIQJE8jKyuL5558H4LbbbqOystIerj5v3jygYRKqtm5l76iva6+9lqKiIkaMGMFvf/tbHn74Yft1w4YN45e//CWLFi0iNTWVzZs3222vvfZaq8D69ttvt/vZExEREZHgYnXRHEhdatKkSaZphlXLstr85fZYVVZW4na7McawYMEC0tPTufXWW4+53xUrVvDYY4/xzjvvtGpzu9321areqq+//2BSV1fHiBEj+PLLL9u9xzsQ3nnnHXbu3MlNN90U6FLa1F0/c0RERESkgWVZ640x7Q/pbKbH3sN6rJ577jleeukl6uvryc7O7tR9eiI9xbp167jyyiu54YYbgiqsAvYSUiIiIiIiR9Jnr7CKiLRFP3NEREREutfRXGHtsfewioiIiIiISO/WowPrQw89xNixY8nMzCQrK4vPPvusw/3vv/9+HnvssWM+7oYNG1qsydrT/PCHP6S0tJTS0lKefvrpLunrWC1atIgbb7yx0/s/8MAD3HXXXS22bdiwgTFjxhzVce+9916WL19+VK/prLy8PMaNG9dmW25uLk2jCI7F0Z43EREREZGepMcG1tWrV/POO+/w+eefs2nTJpYvX87gwYOPy7F7amA1xuD3+3n33XeJi4vrksDa1Nfxdumll7ZYjgjgr3/961EtYeLz+fj3f/93Zs2a1dXlCQ3nV0RERETkWPTYwLp//36SkpLsJTuSkpJISUkBGpa5aFpKZN26deTm5tqv27hxI9OmTSM9PZ3nnnvO3v7II4+QkZHB+PHjufPOO4GWV8EKCwsZNmwY9fX13Hvvvbz66qtkZWXx6quvsmbNGqZNm0Z2djbTp09n69atQMPVr/PPP58zzzyT9PR0br/9dvt4S5cuZdq0aUyYMIGLLrrInj33vffeIzs7m4yMDH7yk59QV1fX4XtauXIlWVlZZGVlkZ2d3WrZkby8PEaNGsWPf/xjxo0bx549e+y+7rzzTr755huysrK47bbbWLFiRYsJcW688UYWLVpEWVkZo0aNst/XpZdeap+7pr7y8vIYPXo0V199NSNHjuTyyy9n+fLl5OTkkJ6ezpo1awDaPVcAe/bsITc3l/T0dB544IEOv/8jR44kPj6+xVX15kuYzJ8/n0mTJjF27Fjuu+8+e59hw4Zxxx13MGHCBF5//XWuvvpqe53Urj730LCszOWXX86YMWO48MILqa6ubrXP4sWLycjIYNy4cdxxxx1H3L5w4UJGjhzJlClT+Pjjj9s8P5WVlVxzzTVkZGSQmZnJ3/72tyOel/vuu48JEyaQkZHB119/3WE/7X1+Dz+/Tz75JCeeeCKZmZn86Ec/arNWEREREZF2GWOC7mvixImmSUOJrVVUVJjx48eb9PR0M3/+fLNixQq7bejQoaagoMAYY8zatWvNjBkzjDHG3HfffSYzM9NUV1ebgoICk5qaavbt22feffddM23aNFNVVWWMMaaoqMgYY8yMGTPM2rVrjTHGFBQUmKFDhxpjjFm4cKFZsGCBfbyysjLj8XiMMcYsW7bMnH/++fZ+aWlpprS01NTU1JghQ4aYb7/91hQUFJhTTjnFVFZWGmOMefjhh80DDzxgampqTGpqqtm6dasxxpgrr7zS/O53v+vwPc2dO9d89NFH9jlpqqPJrl27jGVZZvXq1a3Oz65du8zYsWPt7R988IE566yz7OcLFiwwCxcuNMYYs3TpUjN16lSzePFic8YZZ7TZl9PpNJs2bTI+n89MmDDBXHPNNcbv95u33nrLnHPOOUc8VwMGDDCFhYWmurrajB071j737Xn00UfNLbfcYowxZvXq1ab556bpe+j1es2MGTPMxo0b7XofeeQRe7+rrrrKvP7669127gF7n2uuucY8+uijxphDn619+/aZwYMHm4MHDxqPx2Nmzpxp3nzzzXa35+fn29vr6urM9OnTW3wWm9x+++3m5ptvtp8XFxcf8bw8+eSTxhhjnnrqKXPttde22097n9+2zu/AgQNNbW2tMcaYkpKSVnUGo/Z+5oiIiIhI1wDWmU5mwx57hdXtdrN+/XqeffZZkpOTueSSS1i0aNERX3fOOecQERFBUlISM2fOZM2aNSxfvpxrrrmGyMhIABISEo6qlrKyMi666CLGjRvHrbfeyldffWW3nX766cTGxhIeHs6JJ57I7t27+fTTT9m8eTM5OTlkZWXx0ksvsXv3brZu3UpaWhojR44E4KqrrmLVqlUdHjsnJ4df/vKXPPnkk5SWluJytV6paOjQoUydOvWo3tPhZs+eTUZGBgsWLOD5559vc5+0tDQyMjJwOByMHTuW008/HcuyyMjIIC8vD+j4XM2ePZvExEQiIiI4//zz+eijjzqs6ZJLLuGNN97A7/e3Gg782muvMWHCBLKzs/nqq6/YvHlzi9cdrrvO/eDBg8nJyQHgiiuuaPWe1q5dS25uLsnJybhcLi6//HJWrVrV7vbPPvvM3h4aGtrmewFYvnw5CxYssJ/Hx8cf8bycf/75AEycONH+frXVT3uf3ybNa8rMzOTyyy/nz3/+c5vnR0RERESkIz02sAI4nU5yc3N54IEH+OMf/2gPV3S5XPj9fgBqa2tbvMayrA6fN9dRP83dc889zJw5ky+//JIlS5a02LdpyHJTvV6vF2MMs2fPZsOGDWzYsIHNmzfzwgsvdPhe26vlzjvv5Pnnn6empoacnBx7KGdzUVFRHfbd1jEOP47f72fLli1ERkZSUlLS5uubv1eHw2E/dzgceL1eoONzdTTfG2gIg2lpaaxcuZK//e1vdlDatWsXjz32GO+99x6bNm3irLPOanGczp6PJsdy7o/2PXWnI52Xpu9X0+e0PUf6/DY/v//zP//DggUL+Pzzz5k8eXKH/YqIiIiIHK7HBtatW7eyfft2+/mGDRsYOnQo0HAf3fr16wHsENvk73//O7W1tRQVFbFixQomT57M7NmzWbhwoX1/YXFxcat+mu5zBIiOjm5xv2JZWRmDBg0C6NRV3qlTp/Lxxx+zY8cOAKqqqti2bRujRo0iLy/P3v7yyy8zY8aMDt/TN998Q0ZGBnfccQeTJ09uMzS15/D3MXToUDZv3kxdXR2lpaW89957dtvvfvc7xowZwyuvvMI111yDx+Pp9HGa6+hcLVu2jOLiYmpqanjrrbfsK5MdufTSS7n11lsZPnw4qampAJSXlxMVFUVsbCwHDhzgH//4xxH76a5z/+2337J69WoAXnnlFU4++eQW7VOmTGHlypUUFhbi8/lYvHgxM2bMaHf7SSedxMqVKykqKsLj8fD666+3+X5mz57NU089ZT8vKSn5XuelrX7a+/wezu/3s2fPHmbOnMkjjzxCWVmZfa+riIiIiEhn9NjAWllZyVVXXWVP6LJ582buv/9+AO677z5uvvlmJk2ahNPpbPG6zMxMZs6cydSpU7nnnntISUnhzDPPZN68eUyaNImsrCx76Ztf/epXPPPMM2RnZ9uT7gDMnDmTzZs325Mu3X777dx1111kZ2d36gpScnIyixYt4tJLLyUzM5Np06bx9ddfEx4ezsKFC7nooovsobU///nPO3xPTzzxBOPGjSMzM5OQkBB+8IMfdPocJiYmkpOTw7hx47jtttsYPHgwF198MePGjePiiy8mOzsbaPjjwPPPP8/jjz/OKaecwqmnnsqvf/3rTh+nuY7O1ZQpU7jgggvIzMzkggsuYNKkI68lfNFFF/HVV1+1GA48fvx4srOzGT16NJdddlmngm93nftRo0bx1FNPMWbMGEpKSpg/f36L9oEDB/Lwww8zc+ZMxo8fz8SJEznnnHM63H7//fczbdo0cnJy2l3G5+6776akpIRx48Yxfvx4Pvjgg+91Xtrqp73P7+F8Ph9XXHEFGRkZZGdnc9NNNwVkRmkRERER6bmshnteg8ukSZNM0+y8lmURjDWKSO+knzkiIiIi3cuyrPXGmCNfnaIHX2EVERERERGR3k2BVURERERERIKSAquIiIiIiIgEJQVWERERERERCUpBH1gdDgf19fWBLkNE+oD6+nocjqD/sSgiIiLSZwT9b2YTJkzgscceU2gVkW5VX1/PY489xoQJEwJdioiIiIg0cgW6gCN58803Oe+887jnnnvw+/2BLkdEeimHw8GECRN48803A12KiIiIiDQK+sCamprK2rVrA12GiIiIiIiIHGdBPyRYRERERERE+iYFVhEREREREQlKCqwiIiIiIiISlBRYRUREREREJCgpsIqIiIiIiEhQUmAVERERERGRoNRlgdWyrBctyzpoWdaXzbbdb1nWPsuyNjR+/bCrjiciIiIiIiK9W1deYV0EnNnG9t8ZY7Iav97twuOJiIiIiIhIL+bqqo6MMassyxrWFX3l5+djWVZXdCUiIiIiIiI9VJcF1g7caFnWj4F1wL8YY0qO9IKUlBTy8/O7vzIRERER6ZNyc3MBWLFiRUDrEOmLjubiZHdPuvQMcAKQBewHHm9vR8uyrrcsa51lWesKCgq6uSwREREREREJdt0aWI0xB4wxPmOMH3gOmNLBvs8aYyYZYyYlJyd3Z1kiIiIiIiLSA3TrkGDLsgYaY/Y3Pj0P+LKj/UVEREREjodp06YF9Ph+4wXAYR2PO/REeq4u+y/EsqzFQC6QZFnWXuA+INeyrCzAAHnAz7rqeCIiIiIi39dvfvObLuvL46+hxldCja+Eal+x/e9DX6231frLsHASE5JCbMhgYl2pxIakEhcyuOF5yGBiQgYq0Eqf15WzBF/axuYXuqp/EREREZHuZIyhzl/eKly2DKHFrbZ5Te33OJqFwUeZZw9lnj3t7OEkxjXQDrAKtNIX6RMuIiIiIn2GMX6+q/0nD714HREDq8iYmH7oqqevFD/eo+7TaYUS4Yxv+HI0ProSiGz+3Hloe4QznnBHLH7jpdybb4fWUs9e+99lnr1UeL+jzLuXMu9eqFnd6rjtBdqYxsfokIE4rZCuOG0iAWMZYwJdQyuTJk0y69atC3QZIiIiItILePzV7Kr6kB2Vy9lRtZxK74F29w11uFsGzMbQGdkYNA99JdjbQ6zIo1qmo7O8/rojBtqGO+/aZuEgujHQxjUG2qZwq0ArgWRZ1npjzKTO7KsrrCIiIiLS65R78hsCauVy8qo/ajFsN9o1kM3vVVO8LZL/9+AfiXDGN1wNdcbjtEIDWHVLLkcYCaFpJISmtdl+eKAt8+xrDLYNzyu831Hu3Ue5dx97aj5t9XoFWukJFFhFREREpMczxs/+2k1sr1zKjsrlHKhruThFSng2I9yzSHfPpl/YWGb+dCYAQyMDO1vwsThSoPWZeso9+XaALWu8Qnv0gTa1nXtoUxRopdspsIqIiIhIj1TvryavahXbK5exo/I9qnwH7bYQK4K0qBmMcM9ihHsWble/AFYaGE4rlPjQYcSHDmuz/egC7WetXt8QaAd0MCmUAq0cOwVWEREREekxyj372F65nB2Vy8ir/hifqbPbYlwpjHDPJt09m6GR03E5wtvt5/TTTz8e5Qa1zgXa/c3uoT0Uass8eyj37qfcm0+5N7/Tgbbpam2cHWiDZwi2BCdNuiQiIiIiQathqO9GtlcuY3vlUg7WbW7WapESnk26ezYj3LPoF3Zit0x+JG07UqCt8H6Hwd9BD5YdaONahFoF2t5Oky643R+nAAAgAElEQVSJiIiISI9V769iV9UqdthDfQvsthArkrSoGaS7Z3GCexZuV3IAK+3bGq7QDiU+dGib7e0H2r2NgXa//bW3Zk0bPSjQigKriIiIiASBMs9edlQuZ3vlMnZXf3LYUN9BjVdRZzM0clqHQ3076wc/+AEA//jHP465L2nbkQOthwrP/mb30DYE2kP30HY20Daf3fjQv2NcKbgcYd37JqXbKbCKiIiIyHFnjJ/82g2NEyYtazXUd1D4xMb7UWeRHDamy4f61tTUdGl/cvScVghxoUOICx3SZvvRBdq1bfTQcaCNDxmmIeQ9gAKriIiIiBwXxvjZV/s5W8rfZkvFO1R6v7PbQh1RpEXOIN09mxPcpxPlSgpgpRIMjj7Q7j1sUqj8DgPtkIhpnJPyFNEhA7r7rcgxUGAVERERkW5jjCG/9gu2lC/h64ollHvz7baGob5zSHfPZkjkNA3flKPSuUD7XZuTQh2s28y3Nat5IW828wb+geHu3ONbvHSaAquIiIiIdCljDN/VbmJLxdtsKV9CmXev3RbtGsiY6HmMiTmblPBsDcmUbtMQaAcTFzq4VVuVt5C3829kV/Uq/rr3MqYn3sSpSb/CYSkeBRt9R0RERETkmBljOFD3JVvKl7ClYgmlnt12m9s1gDHRcxkTfTaDIiZiWY4AVtpg7ty5gS5BAijKlcSPBr/CJ0V/YFXho3xS9CR7qj/j3JSniQ4ZGOjypBmtwyoiIiIi34sxhoK6LWyuWMLX5Uso9uy026Kc/RgdfRZjYuYxOGJyUIRUkbbsrl7N3/NvoNJ7gAhnAvMG/oET3DMDXVavdjTrsCqwioiIiMhRKajb2jhx0hKK6nfY2yOdiYyOntsYUqfgsJwBrFKk86q8hby9/xfsqloJwPTEX3Bq0m0aItxNFFhFREREpEsV1m1nS8UStpS/TWH9Nnt7hDOeUdFncWL0PIZETu0xv+Dn5uYCsGLFioDWIcHDGD+fFP2RVYX/D4Of1IgpnJvyNDEhKYEurdc5msDaM36iiIiIiMhxV1y/ky3lS9hc8TYFdVvs7RGOeEZF/4AxMWczNDKnx4RUkY5YloOcpJsYHDmFt/JvYG/NGnsW4RPcpwW6vD5LP11ERERExFZSn2dfST1Q95W9PdwRy8joMxkTPY9hUSfjtEICWKVI9xkSOZVrhy1jyf5fsLNqBa/uvYJpCTcyI/l2/XEmAHTGRURERPq40vo9DUvQVCzhu9pN9vYwRzQj3WcyJuZs0qJOxWmFBrBKkeMnypXIJal/ZnXxU6wseITVxX9kT81njUOEBwW6vD5FgVVERESkj/H4ayio28qe6k/ZUrGE/Nov7LZQRxTp7jMYE302w6Nm4HKEB7BSkcCxLAfTE39BasQU/p5/A3tr1vJC3hzOHvgkI9ynB7q8PkOBVURERKQXq/IWcqDuSw7UfsWBuq84UPsVxfXfYPDb+4RYkaS7ZzMmZh7Do3IJcUQEsOLj4+KLLw50CdJDDIk8iZ8MW8qS/Texs+oDXtt7JVMTbmBG8h0aGn8caJZgERERkV7AGD/Fnl0cqP2Kg43B9EDdV1R6D7Ta18JJYugIBoRnkO6ewwj3aYQ4IgNQtUjPYYyfT4ufZkXBIxh8pEZM4tyUZzRE+HvQLMEiIiIivZjHX83Buq8bw+lmDtR9ycHaLXhMdat9Qx1u+oWdSP+wsfQPH0v/8HEkh47s80N9q6sbzlVkpIK6dI5lOZiWeCOpEZMbZxFexwu75nB2yu8Z4Z4V6PJ6LV1hFREREQlild4CDtZ+1WJYb3H9zhZDeptEuwY2BtNxdkCNCxmCZTkCUHlw0zqsciyqvUUs2X8z31S9D8DUhPnMSL5TQ4Q7SVdYRURERHoYv/FRUr/Lvs+06bHKd7DVvhZOksNGN4TSsLH0Cx9L/7ATiXQlBqBykb4n0pXIxan/ZQ8R/rT4GfbUrOHclGeIDUkNdHm9igKriIiISACU1n/LzqqVjcN5N3OwbjMeU9Nqv1CH+9Bw3sbHJA3pFQm4Q0OEp/BW/nz21aznxV1nMDflCdLdswNdXq+hwCoiIiJyHBjjJ792A9srl7K9chkFdVta7RPjSqF/+Fj6NRvWGxcyWEN6RYLY4MgpXDtsKUv238I3Ve/x+t6rOCnh5+Qm36Uhwl1AgVVERESkm3j81eyq+pDtlUvZUbmcKl+B3RbqcDM8KpdBERMbh/WeSKQzIYDVisj31TBE+CU+LX6GFQUP81nxf7K3ei3nDtIQ4WOlwCoiIiLShSq9B9heuZwdlUvZVfUhXlNrt8W4BpHunsPI6DkMiZyG0woNYKV929VXXx3oEqSXaRgivKBxFuH57Ktd3zCL8MAnSI+eE+jyeizNEiwiIiJyDIwxFNRtYXvlMrZXLiW/9osW7QPDsxpCqnsOyWFjsCwrQJWKyPFS7Svmnfxb2FG1HIAp8T9jZr+79EeqRgGZJdiyrBeBucBBY8y4w9r+BXgMSDbGFHbVMUVEREQCwWfq+bb604b7USuWUubda7e5rHCGRZ5MevQZjIg6neiQAQGsVNpTWNjwK2lSUlKAK5HeKNKZwEWpi/is+E98UPAfrCn5E3tr1nLeoP/UEOGj1JVDghcBfwT+q/lGy7IGA3OAb7vwWCIiIiLHVY2vhG8qP2B75f+xs2oFdf4Kuy3SmUS6ezbp7tkMizqVUEdkACuVzrjwwgsBrcMq3ceyHExNnE9qxCTeyp9Pfu3nvLBrDnMH/o6R0WcEurweo8sCqzFmlWVZw9po+h1wO/D3rjqWiIiIyPFQXL/LntV3T/VnGHx2W3LY6MaQOoeU8GzN5CsibUqNnMxP0pbaQ4Tf2HcNU+KvZ2a/f9UQ4U7o1kmXLMs6B9hnjNl4pPs1LMu6HrgeYMiQId1ZloiIiEib/MbHvpr17KhcxrbKpRTVb7fbHLgYEnky6e45pLtnEx86NICVikhP0nyI8IqC37Cm5Fm2Vy5jZvK/Mir6h7q3vQPdFlgty4oE/pWG4cBHZIx5FngWGiZd6q66RERERJqr91exq2oV2yv/j+2Vy6nxFdttYY4YTnCfRrp7DidEzSTcGRvASkWkJ7OHCEdO5p39t1Jc/w3/nX8dgyImcnryvaRGTg50iUGpO6+wngCkAU1XV1OBzy3LmmKM+a4bjysiIiLSoQrPfntW37zqj/GZOrstLmQI6e4zSHfPZnDkSTitkABWKiK9TWrEJK5Le58Npa/wYeHj7KtZz399ew6j3D8kt99dJIaeEOgSg0q3BVZjzD+Bfk3PLcvKAyZplmARERE53owxHKj70r4f9bvaTc1aLQZFTGwc6juHpNCRGp7XB8yfPz/QJUgf5rRCmBh/FeNiLuDT4qdZU/wntla+y/bKpWTHXcHJSb8kyqUZrKEL12G1LGsxkAskAQeA+4wxLzRrz6OTgVXrsIqIiMix8vrr2F39SWNIXUqFd7/dFmJFkBY1g3T3bE5wz8LtSg5gpSLS11V4vuPDwsfYWPZXDH5CHW6mJSxgSsJ1hPTCWcePZh3WLgusXUmBVURERL6Pam8R31S9z7bKpeyqWkG9v8puc7v6M8I9m5HuOQyNzCHEERHASiXQ9uzZA8DgwYMDXInIIQfrvuaDgw/xTdV7ALhdA5iRdBsZsRfjsJwBrq7rKLCKiIhIn1FUt4PtlUvZVrmUfTXrMPjttn5hJ5LunsNI9xkMCM/Q0jNiy83NBbQOqwSnvKqPeP/gg3xX908AksPGcFry3QyPyu0VtywcTWDt1mVtRERERLqa33jZW7OuYVbfimUUe3babQ5CGBZ1ir30TGxIagArFRH5foZFncw1w/7B5vK3WFHwMAV1W3h17+UMizyZ0/rdw4DwjECXeNwosIqIiEjQq/NVsLNqBdsrl/JN5fvU+EvstghHPCe4TyfdPYfhUTMIc0YHsFIRka5hWQ7Gxp7PqOgfsq5kIZ8UPUle9Ue8mHcm42IuYEby7X3ij3IKrCIiIhKUyjx77Vl9d1d9gh+P3ZYQMpz06Nmku88gNWISDku/0ohI7+RyhDM1cT7j437Ex4VPsr50IV+Wv8GWiiVMjr+W6Ym/6NVrROunu4iIiAQFY/zsr91kz+p7sG6z3WbhIDViCiMbl55JDBsRwEpFRI6/CGc8s/rfx6T4a1hR+DCby9/i0+Kn2Vi6mJykW5gQ92NcjrBAl9nlNOmSiIiIBIzHX8Pu6o/ZVrmUHZXLqPQesNtCHVGkReUy0j2HE6JOI9KVGMBKpbdZsmQJAGeffXaAKxH5fvbXbOS9ggf5tvoTAOJChpCbfBdjoucF/cRMmiVYREREglalt4BvKpezvXIpu6pW4TE1dlu0a6A9q++QyGm98mqBiEhXMcawo2o57x/8NUX12wEYGJ7F6f3uZUjk1ABX1z4FVhEREQkaxhgK67c1DPWtWMq+2s+BQ79/DAjPtGf17R82LuivDEjvsHXrVgBGjRoV4EpEjp3feNlY9iqrCh6lyncQgHT3HGYm/xtJYekBrq41BVYREREJKJ/xsKf6M7ZXLmN75VJKPbvtNqcVxrDIkxtD6iyiQwYGsFLpq7QOq/RG9f4qPiv+E58WPY3HVGPhJCvuMk5J+hfcrn6BLs+mdVhFRETkuKv1lfFN1Qf20jN1/nK7LdKZyAj36aS7zyAt6lRCHVEBrFREpHcKdURxStIvyY67gg8Lf8uG0r/wRenLfFn2N6YmzuekhJ/3uJ+/CqwiIiLyvZXU77avou6p/hQ/XrstMTTdntU3JWICDssZwEpFRPoOt6sfPxjwMJPjr2VFwX+wrfL/+LDwcT4veZlTk29jfOwlPWY5sJ5RpYiIiAQFY/zk137B9sqlbKtYSmH9VrvNwsmQyOmMdM9hhHs2CaFpAaxURESSwtK5MHUh31Z/yvsHHyS/9gv+8d1trC1+jh8MeITBkScFusQjUmAVERGRDtX7q8mrWtW4Pupyqn2FdluYI5rhUTMZ6Z7DcPdMIpzxAaxURETaMiRyKlcNfYctFUtYUfAbCuu38edvLyAn8RZOTrolqK+2Bm9lIiIiEjAVnu/YUbWc7RVLyav+CK+ptdtiQwbbs/oOiZyK0woNYKUi38/dd98d6BJEjivLsjgxZh4j3WfwYeHjrC5+io+Kfkte9SrmDXyKuNDBgS6xTZolWERERDDGUFC3hW2VS9leuZT9tRtatKeETyDdPZt09xySw0Zr6RkRkR4ur+pjluy/iQrvfsIc0Zw54GHGxpx3XI6tZW1ERETkiIwxfFvzKV+Xv8P2yqWUe/fZbS4rnLSoU0h3z2GEexZuV/8AVirS9TZsaPijTFZWVoArEQmcal8x7+6/jW2V/wAgI+Yi5vR/iDCnu1uPq8AqIiIi7TLGsKNyGR8X/Z782i/s7VHOZPsq6rCokwlxRAawSpHupXVYRRoYY9hQ9heWHbgXr6klLmQo56Y8TUpEdrcdU+uwioiISCvG+Nla8Q8+LnqCA3VfARDhTCA77nLS3WeQEp6FZTkCXKWIiBxPlmWRHXcFgyNO4u/5N3Cg7iv+a/c5nJL0K6YlLgj4kmQKrCIiIr2c3/jYUv53Pi56ksL6bQC4Xf2ZmjCfrLgrCNWVVBGRPi8pLJ2rhr7DioKHWVPyJ1YWPsyuqpXMS3mSmJBBAatLgVVERKSX8hkPX5b9jdVFf6TYsxOAGFcK0xJvZHzsj3A5wgNcoYiIBBOXI4xZ/e9jeNQMluy/mW9rVvP8rtn8cMCjjI45KzA1BeSoIiIi0m28/jo2lb3G6uI/UubZA0BcyFCmJ/6CjNgLtQyNiIh0aLg7l5+mvcf/7P8lO6qW89/515FVdRmz+v/7cR+Vo0mXREREegmPv5oNpa/wafEzVHj3A5AQegI5iTczNubcoF4YXuR4++STTwCYPn16gCsRCV7GGNaXLuS9gw/iM3UkhA7n3JSnGRCeeUz9apZgERGRPqTeX8XnJS/xafF/Uu0rBCA5bAw5iTczOvqsgE+YISIiPdvB2i28lX8DhfVbcRBCbvKdnJTws+89UZ8Cq4iISB9Q6ytnXcmLrC1+jhp/CQADwjM5OfEW0t1zNOOvSAd0hVXk6Hj8Nbx/8NesL10IQFrkqZyd8vvvtU63AquIiPQ5xhgMfvzGi8GH3/gbHvHhNz6M8bXcbrz48WOMjzBnNDGuQViWFei30SnVvmLWFj/PupIXqfOXA5AaMYmcxFsZHpXbY96HSCBpHVaR72d75TLe2X8rNb5iIpwJzB3wW9Kj5xxVH1qHVUREeoTi+l2sL1nIvpr1jQHSdyh0Gn/Dc9MsdOI7tL1xm70d/zHVEuFMYEB4BgPDxzMgPJOB4ZlBF2KrvIV8VvyffF76EvX+KgCGRuaQk3gzQyNzgqpWERHpndLds7ku7T2W5N/MrupVvL7vaibGXc1p/e4hxBHR5cdTYBURkePKGMPu6k9YW/Ic2yuXAV050sfCgRPLcuLAicNyYuHEshyNz11YOFptr/IWUOMrZlfVSnZVrbR7i3DG2+F1QPj4gIXYCs9+Pi1+hi9K/4zX1AIwPCqXnMRbGBw55bjWIiIi4nb150eDX2FNyXN8cPA/WF+6iN3Vqzk35Sn6hZ/YpcdSYBURkePC66/lq/I3WVvyAgfrNgPgtEIZG3Me42IuIMwRbQdIy3I2BktX43NHiyDa8tHRGESd3ztIGmMo8+zlu9pNfFe3if21m/iudhM1vpKOQ2xYJgPCM4kNSe2WEFvm2csnRX9kU9lf8Zl6ANLdc8hJvIWUiKwuP56IiEhnWZaDkxJ+xtDI6faETAt3n8VpyXczKf4nXfb/i7qHVUREulWl9wDrS17ii9KXqfYVARDlTGZC/FVkx12J25Uc4ArbZoyh3LuP/TUbW4XYw3V1iC2u38UnRU/yZdnf8OMFLEZHzyUn8Sb6h489xncmIqB7WEW6Ur2/muUH72dD6Z8BOCHqdOYO/B1RrqQ299ekSyIiEnD7azextvh5Npf/HT8eAPqHjWNKwnWMiZ6HyxEW4AqPnh1iazfxXe3GI4fYsAwGRozvdIgtqNvGJ0VPsrn8LQx+LByMjTmPaYm/IDlsZHe+NZE+Z8OGDQBkZWm0gkhX+briXd7d/ytq/aVEOZOZO/AJTnDPbLWfAquIiASE33jZVvF/rCl5jr01a4CGu0pHus9kcsJ1DI6Y0usmBmoZYhu+9tduosZX3GrfphDbcDV2vB1iD9Zt5uOi3/N1xf8ABgcuMmIvZFriL0gITTv+b0pEROR7Kvfk8/b+m/i2umHpqCnx15ObfFeLP1QHJLBalvUiMBc4aIwZ17jtQeAcwA8cBK42xuQfqS8FVhGRnqXWV8bG0sWsK3mRMu9eAMIc0YyPvYxJ8dcQFzokwBUeX0cTYsMdsdT6y4CGe3rHx17KtMQFxIakHu+yRfqU5cuXAzBr1qwAVyLS+/iNj0+Ln2ZVwaP48dIv7ETOTXmGpLB0IHCB9VSgEvivZoE1xhhT3vjvm4ATjTE/P1JfCqwiIj1DUf03rCt+gU1lr+Ex1QDEh6QxOeFaMmIuJszpDnCFwaMpxH5X+0/2125sEWJdVjjZcVcyNeHnRIcMDHSpIn2C7mEV6X75NV/w9/wFlHjycFnhzOr3ANlxV+BwOI7/OqzGmFWWZQ07bFt5s6dRdO3aBSIiEgDGGPKqP2Rt8fPsqFpubx8WeTKTE65jRNTpWJYjgBUGJ8uyiA1JJTYklVHRPwAazmWFdz+hDjfhzpgAVygiItK1UiKy+cmwpSw9cDf/LH+N/z1wBzurPjiqPrp9WRvLsh4CfgyUAa3vuD203/XA9QBDhvStoWMiIj2Bx1/Dl+X/zdri5yms3wqA0wpjXMz5TI7/Kf3CxwS4wp7HsixiQlICXYaIiEi3CXO6OTvlCYa7c/nf7+5gW+X/HtXruz2wGmP+Dfg3y7LuAm4E7mtnv2eBZ6FhSHB31yUiIp1T4dnP+tKGZWmaZsN1u/ozMe5qsuKuIMqVGOAKRUREJNiNjTmXQeETeXv/jcDbnX5dtwfWZv4CvEs7gVVERIJLfs0XrCl5jq/L32lcCxQGho9ncvx1jImZi9MKDXCFIiIi0pPEhQ7miiF/4ypCOv2abg2slmWlG2O2Nz49B/i6O48nIsHFb7zU+Eqp8ZVQ4ytufGz4qj7sedMsqQ5cOK0QHJYLpxXa8EgIDisEp+VqfGx8zqF9mrY7rZBmfTS8xt6HZvsc1n/T/g3bD/XTvF8LZ69bkuVwfuPl64p3WVvyHPtq1gMNy9KMjj6bKfE/ZVDEpF5/DkSkb/jTn/4U6BJE+iSHdXQRtMsCq2VZi4FcIMmyrL00XEn9oWVZo2hY1mY3cMQZgkUkOHn8NXbwrG4WNA99Fbfa1hRCexOnFXpYID4UchsCcRshmmb72ME7FCeHBfCm19rbXS3CucMKPabQ3lHgrvGVsKH0L6wvWUS5t2H1sXBHLFlxlzEx/hotsSIivc6oUaMCXYKIdEJXzhJ8aRubX+iq/kWk6xljqPIdpKBuG0X1O6jyFhwWSg+FUK+p/R5HsIhwxhHhjG/4csQT4Uwg0tXweGhbPBHOOMDCjwef8eAzXvym4d9+48GHF5+px99su8948Dfbbu9rvHY/Tc/t1x5F/37jxUfjo6nH4Mdn6vFRj6eH3mnf3lXmKm+B/T1OCD2ByfE/JSP2IkIdkQGuWESkeyxZsgSAs88+O8CViEhHjuc9rCISIMb4KfPso7B+G0V12yms30Zh/XYK67ZT5y8/cgc0XFm0g2dT2HTGE9kUOl0JzdobvsIdsTgsZze/u+PHGH+zoNwUeutbhl+aAnJDEG4Kuz4OC8hNIZrDAnjTa9vqnzaO1xiqWx2vRWhv6NPgw0/Dfm0F7rSoGUyJv47hUblalkZEer3HH38cUGAVCXYKrCKNfMaDMX5cjrBAl/K9+Y2Xkvo8O4wW1W+nsPHqqcfUtPmacEcsSWHpJIamExOScljoTCCyMZyGWJF9/t5Fy3LgssJw0TM/I02Bu+mqdPPgG+KIwO3qF+gSRURERFpQYJU+pd5fRUl9HiWe3ZTU76LEs5vSxuflnn0Y/IQ5YohyJhHpSmrxGOVKItKZRJQrmShnIpGuJMIdsQEJcV5/LcX1OxuD6TYK63dQWLeN4vqd+PG0+ZooZz+SwtJJCk0nMSydpNCRJIWlE+VM7vNBtK9oCtwQBkQFuhwRERGRI1JglV7FGEO1r4gSTx6l9bsprt9FqWc3JZ48Sup3U+0rbPe1Fg4cuKjzl1PnL6fYs/OIx3MQ0hhkExuDbPNgm0SUM5lIV6IdfJ1W56fwhoaAXVS3o2EIb92hYbylnt0Y/G2+JsY1iKSwkSSFpjcG1JEkhqU33iMqIiIiItJzKLBKj+M3Pso9+Y0hNI/SxjBa4smj1LOben9Vu691WmHEhQwhPmQo8aHDiGt8jA8ZSmzIYJxWKLX+Uqq8hVT7iqjyFlDlK6TKW9D4vJBqXwFV3iKqfYXU+Suo8O6nwrsf6o5ce7gjrjHAJrcKupHORGr8pYfuMa3bTrl3X5v9WDhICBluD+VtCqiJYSMIdejKmYiIiIj0Dgqsh6n1leEzHsDCArCsxn9ZWDgO/duyDu2D1cZ2q43t0lkefw2lnj2Nw3Xz7GG8pfW7KfXsaXfYK0CYI8YOoXYoDRlGfOhQol0DjziZTNP9m5DeqToPBdlCqryFVPkKqPYWUeUraBF8q31F1PpLqa0vpZhvOnUeHISQGHZCQyhtdsU0ITQNlyO8U32IiIhIay+//HKgSxCRTlBgbVRQt40PDv6aHVXLu/Eo7QVZq0X0PXy7hePQPtbR9uNovW8n+2m5fxv7NvbT9LxFvS3258j9AJZlUeuroNSzu+GKZQfcrv7EhQwlIXQYcY1hND5kGHGhQ4lwxB+3PxCEOCKIdaR2ao1KY/zU+Eoar9g2BdwCqnxFVDdeyQ11uEkOG0Vi6AiSwkYSHzL0qBdXFhERkSMbPHhwoEsQkU7o878JV3oPsKrgMTaWLcbgx2mFNgypNGAwNPzvYY+m+XMw+A/bduixpeavsTe1rYeu8dhVHLiIDUklLrTp6mjDFdO40GHEhwwhpAeuDWlZDiJdiUS6EkkO02LlIiIigfTqq68CcMkllwS4EhHpSJ8NrHW+Sj4rfobPiv8Tj6nBwsmEuKs4OemXuF3JXXqs9sJs8+1th+HDHs2huHsoEDd/jf9QID5iP4d6arndf9j+NNu/vX5a1mWMv3WNDX8BOGI/IY4I4kKGERsySFcWRUREpNs888wzgAKrSLDrc4nAb7xsKH2FDwsfp8pXAMBI95nMTP5XEsNGdMsxW97v2ryhWw4nIiIiIiLSK/SZwGqMYXvl//F+wUMU1zdMeDMofCKn9bubwZEnBbg6EREREREROVyfCKz7aj7n/YMPsqfmMwDiQ4aRm/yvjI4+S7P3ioiIiIiIBKleHVhL6vNYUfAbtlQsARqWKzk58VYmxP8YpxUa4OpERERERESkI70ysFb7ivm48AnWl7yEHw8uK5zJ8T9lWuKNhDtjAl2eiIiIiATYG2+8EegSRKQTelVg9fhrWFfyIp8U/YE6fzlgkRFzMTOSbyMmZFCgyxMRERGRIJGUlBToEkSkE3pFYDXGz5fl/83Kgocp9+YDkBY1g9OS76Z/+NgAVyciIiIiwWbRokUAXH311QGtQ0Q61uMD666qVbx/8EEO1H0FQL+wEzmt390Mj8oNbGEiIiIiErQUWEV6hh4bWA/Wbub9gofYWfUBANGugcxIvoNxMRfgsJwBrk5ERERERESOVY8LrOWefFYVPsqmstcAQ5gjmmmJNzI5/qeEOCICXZ6IiIiIiIh0kR4TWOt8Fawufoo1xc/iNbU4cDEh/ipyEm8hypUY6PJERERERESkiwV9YPUZD1+UvsyHhb+lxlcMwOjoueQm30VCaFqAqxMREREREfyYQn0AAAFuSURBVJHuErSB1RjD1op3WVHwG4o9OwFIjZjM6f3uZVDExABXJyIiIiI92bvvvhvoEkSkE4IysNb7q3j523PYW7MOgITQ4cxM/jdGus/EsqwAVyciIiIiPV1kZGSgSxCRTgjKwFpU/w17a8qIdCZxStK/kBV3GU4rJNBliYiIiEgv8fTTTwNwww03BLgSEelIUAZWC4ucxFuYmnADYU53oMsRERERkV7mtddeAxRYRYJdUAbWfmGjmZF8e6DLEBERERERkQByBLqAtjg0/FdERERERKTPC8rAKiIiIiIiIqLAKiIiIiIiIkHJMsYEuoZWLMsqAHYHug4RERERERHpckONMcmd2TEoA6uIiIiIiIiIhgSLiIiIiIhIUFJgFRERERERkaCkwCoiIiIiIiJBSYFVREREREREgpICq4iIiIiIiAQlBVYREREREREJSgqsIiIiIiIiEpQUWEVERERERCQoKbCKiIiIiIhIUPr/QTTt8IBEYEIAAAAASUVORK5CYII=\n", "text/plain": [ "<Figure size 1152x1296 with 6 Axes>" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "# You may need to install htmllib5,lxml, and BeautifulSoup4. In your terminal/command prompt run:\n", "\n", "# conda install lxml\n", "# conda install html5lib\n", "# conda install BeautifulSoup4\n", "# Then restart Jupyter Notebook. (or use pip install if you aren't using the Anaconda Distribution)\n", "import numpy as np\n", "import pandas as pd\n", "import os.path\n", "import matplotlib.pyplot as plt\n", "from datetime import datetime, timedelta\n", "from dateutil.parser import parse\n", "from dateutil.relativedelta import relativedelta\n", "from pandas.tseries.offsets import *\n", "from pylab import text\n", "from mpl_toolkits.axes_grid.anchored_artists import AnchoredText\n", "import quandl\n", "\n", "\n", "# Quandl API key\n", "quandl.ApiConfig.api_key = \"UsYsv7dKGxHHQ5oURP4B\"\n", "\n", "# Some formatting\n", "pd.set_option('display.max_colwidth', -1)\n", "pd.set_option('display.max_seq_items', 2)\n", "\n", "# Only pull fresh PDUFA data\n", "three_weeks_ago = relativedelta(weeks=3)\n", "one_week_ahead = relativedelta(weeks=1)\n", "one_hour_ago = datetime.now() - timedelta(hours=1)\n", "if os.path.exists(\"history.csv\"):\n", " filetime = datetime.fromtimestamp(os.path.getctime(\"history.csv\"))\n", " if filetime < one_hour_ago:\n", " histdata = pd.read_html(\"https://www.biopharmcatalyst.com/calendars/historical-catalyst-calendar\")\n", " histdata[0].to_csv('history.csv',index=False)\n", "else:\n", " histdata = pd.read_html(\"https://www.biopharmcatalyst.com/calendars/historical-catalyst-calendar\")\n", " histdata[0].to_csv('history.csv',index=False)\n", "\n", "# Create dataframe\n", "df = pd.read_csv('history.csv').set_index('Ticker')\n", "df.index.name=None\n", "df[[\"Date\",\"Catalyst\"]] = df.Catalyst.str.extract('(?P<Date>[0-9]{2}\\/[0-9]{2}\\/[0-9]{4})(?P<Catalyst>.*)', expand=True)\n", "df['Date'] = pd.to_datetime(df['Date'])\n", "df[\"Past\"] = df[\"Date\"] - DateOffset(weeks=3)\n", "df[\"Future\"] = df[\"Date\"] + DateOffset(weeks=1)\n", "\n", "df\n", "# Set stock ticker\n", "stockpick=\"HALO\"\n", "dataset=str(f\"WIKI/{stockpick}\")\n", "# Set variables for plot creation\n", "length = len(df.loc[stockpick].index)\n", "count = 0\n", "fig, axes = plt.subplots(nrows=length, ncols=1,figsize=(16,length * 3))\n", "fig.subplots_adjust(hspace=0, wspace=0)\n", "allplots=[]\n", "\n", "# Combine all data together into list of dataframes, iterate through each part of the list, plot each frame.\n", "while (count < length):\n", " pasttime= df.loc[stockpick].iloc[count][\"Past\"]\n", " futuretime= df.loc[stockpick].iloc[count][\"Future\"]\n", " pdufa=df.loc[stockpick].iloc[count][\"Date\"]\n", " annotate = df.loc[stockpick].iloc[count][\"Date\"] + timedelta(days=1)\n", " stage = df.loc[stockpick].iloc[count][\"Stage\"]\n", " catalyst = df.loc[stockpick].iloc[count][\"Catalyst\"]\n", " drug = df.loc[stockpick].iloc[count][\"Drug\"]\n", " \n", " #Annotation\n", " tooltip = f\"stage:{stage} -{catalyst}\\n{drug}\"\n", " at = AnchoredText(tooltip,\n", " prop=dict(size=10), frameon=True,\n", " loc=2, \n", " )\n", " at.patch.set_boxstyle(\"round,pad=0.2,rounding_size=0.2\")\n", " axes[count].add_artist(at)\n", " axes[count].margins(0.0, 0.5)\n", " #Get quandl data\n", " mydata = quandl.get(dataset,start_date=pasttime,end_date=futuretime)\n", " allplots.append(mydata)\n", "# axes[count].annotate('local max', xy=(pdufa, allplots[count][\"Close\"].max()), xytext=(annotate, (allplots[count][\"Close\"].max() - allplots[count][\"Close\"].min()) * 0.9 + allplots[count][\"Close\"].min()),\n", "# arrowprops=dict(facecolor='black', shrink=0.05, width=1, headwidth=5),)\n", " # Set y limit for notes\n", " axes[count].set_ylim(allplots[count][\"Close\"].min() * .99 , (allplots[count][\"Close\"].max()-allplots[count][\"Close\"].min()) * 0.5 + allplots[count][\"Close\"].max())\n", " axes[count].hlines(allplots[count][\"Close\"].max() * 1.01, allplots[count].head(1).index, allplots[count].tail(1).index, linestyle=\"-\", lw=1, color='black')\n", " if count % 2 == 0:\n", " axes[count].set_facecolor((0.91, 0.91, 0.91)) \n", "\n", " axes[count].vlines(pdufa, allplots[count][\"Close\"].min() * .99, allplots[count][\"Close\"].max() * 1.01, linestyle=\"--\", color='black')\n", " axes[count].plot(allplots[count].index,allplots[count][\"Close\"],c=np.random.rand(3,), lw=2, label=pdufa) \n", " axes[count].axes.get_xaxis().set_visible(False) # remove x axis\n", " count = count + 1\n", "plt.show()" ] }, { "cell_type": "code", "execution_count": 54, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "13.65\n", "1 - 0 = 0.11999999999999922\n", "2 - 0 = -0.14000000000000057\n", "3 - 0 = -0.33999999999999986\n", "4 - 0 = 0.20999999999999908\n", "5 - 0 = 1.0299999999999994\n", "6 - 0 = 0.8899999999999988\n", "7 - 0 = 0.7599999999999998\n", "8 - 0 = -0.3600000000000012\n", "9 - 0 = -0.16000000000000014\n", "10 - 0 = -0.1899999999999995\n", "11 - 0 = -0.120000000000001\n", "12 - 0 = 0.6199999999999992\n", "13 - 0 = 0.5600000000000005\n", "14 - 0 = 0.6399999999999988\n", "15 - 0 = -0.620000000000001\n", "16 - 0 = -0.6899999999999995\n", "17 - 0 = -0.6600000000000001\n", "18 - 0 = -0.5700000000000003\n", "19 - 0 = -0.75\n", "13.77\n", "2 - 1 = -0.2599999999999998\n", "3 - 1 = -0.4599999999999991\n", "4 - 1 = 0.08999999999999986\n", "5 - 1 = 0.9100000000000001\n", "6 - 1 = 0.7699999999999996\n", "7 - 1 = 0.6400000000000006\n", "8 - 1 = -0.4800000000000004\n", "9 - 1 = -0.27999999999999936\n", "10 - 1 = -0.3099999999999987\n", "11 - 1 = -0.2400000000000002\n", "12 - 1 = 0.5\n", "13 - 1 = 0.4400000000000013\n", "14 - 1 = 0.5199999999999996\n", "15 - 1 = -0.7400000000000002\n", "16 - 1 = -0.8099999999999987\n", "17 - 1 = -0.7799999999999994\n", "18 - 1 = -0.6899999999999995\n", "19 - 1 = -0.8699999999999992\n", "13.51\n", "3 - 2 = -0.1999999999999993\n", "4 - 2 = 0.34999999999999964\n", "5 - 2 = 1.17\n", "6 - 2 = 1.0299999999999994\n", "7 - 2 = 0.9000000000000004\n", "8 - 2 = -0.22000000000000064\n", "9 - 2 = -0.019999999999999574\n", "10 - 2 = -0.049999999999998934\n", "11 - 2 = 0.019999999999999574\n", "12 - 2 = 0.7599999999999998\n", "13 - 2 = 0.7000000000000011\n", "14 - 2 = 0.7799999999999994\n", "15 - 2 = -0.4800000000000004\n", "16 - 2 = -0.5499999999999989\n", "17 - 2 = -0.5199999999999996\n", "18 - 2 = -0.4299999999999997\n", "19 - 2 = -0.6099999999999994\n", "13.31\n", "4 - 3 = 0.5499999999999989\n", "5 - 3 = 1.3699999999999992\n", "6 - 3 = 1.2299999999999986\n", "7 - 3 = 1.0999999999999996\n", "8 - 3 = -0.02000000000000135\n", "9 - 3 = 0.17999999999999972\n", "10 - 3 = 0.15000000000000036\n", "11 - 3 = 0.21999999999999886\n", "12 - 3 = 0.9599999999999991\n", "13 - 3 = 0.9000000000000004\n", "14 - 3 = 0.9799999999999986\n", "15 - 3 = -0.28000000000000114\n", "16 - 3 = -0.34999999999999964\n", "17 - 3 = -0.3200000000000003\n", "18 - 3 = -0.23000000000000043\n", "19 - 3 = -0.41000000000000014\n", "13.86\n", "5 - 4 = 0.8200000000000003\n", "6 - 4 = 0.6799999999999997\n", "7 - 4 = 0.5500000000000007\n", "8 - 4 = -0.5700000000000003\n", "9 - 4 = -0.3699999999999992\n", "10 - 4 = -0.3999999999999986\n", "11 - 4 = -0.33000000000000007\n", "12 - 4 = 0.41000000000000014\n", "13 - 4 = 0.3500000000000014\n", "14 - 4 = 0.4299999999999997\n", "15 - 4 = -0.8300000000000001\n", "16 - 4 = -0.8999999999999986\n", "17 - 4 = -0.8699999999999992\n", "18 - 4 = -0.7799999999999994\n", "19 - 4 = -0.9599999999999991\n", "14.68\n", "6 - 5 = -0.14000000000000057\n", "7 - 5 = -0.2699999999999996\n", "8 - 5 = -1.3900000000000006\n", "9 - 5 = -1.1899999999999995\n", "10 - 5 = -1.2199999999999989\n", "11 - 5 = -1.1500000000000004\n", "12 - 5 = -0.41000000000000014\n", "13 - 5 = -0.46999999999999886\n", "14 - 5 = -0.39000000000000057\n", "15 - 5 = -1.6500000000000004\n", "16 - 5 = -1.7199999999999989\n", "17 - 5 = -1.6899999999999995\n", "18 - 5 = -1.5999999999999996\n", "19 - 5 = -1.7799999999999994\n", "14.54\n", "7 - 6 = -0.129999999999999\n", "8 - 6 = -1.25\n", "9 - 6 = -1.049999999999999\n", "10 - 6 = -1.0799999999999983\n", "11 - 6 = -1.0099999999999998\n", "12 - 6 = -0.2699999999999996\n", "13 - 6 = -0.3299999999999983\n", "14 - 6 = -0.25\n", "15 - 6 = -1.5099999999999998\n", "16 - 6 = -1.5799999999999983\n", "17 - 6 = -1.549999999999999\n", "18 - 6 = -1.459999999999999\n", "19 - 6 = -1.6399999999999988\n", "14.41\n", "8 - 7 = -1.120000000000001\n", "9 - 7 = -0.9199999999999999\n", "10 - 7 = -0.9499999999999993\n", "11 - 7 = -0.8800000000000008\n", "12 - 7 = -0.14000000000000057\n", "13 - 7 = -0.1999999999999993\n", "14 - 7 = -0.120000000000001\n", "15 - 7 = -1.3800000000000008\n", "16 - 7 = -1.4499999999999993\n", "17 - 7 = -1.42\n", "18 - 7 = -1.33\n", "19 - 7 = -1.5099999999999998\n", "13.29\n", "9 - 8 = 0.20000000000000107\n", "10 - 8 = 0.1700000000000017\n", "11 - 8 = 0.2400000000000002\n", "12 - 8 = 0.9800000000000004\n", "13 - 8 = 0.9200000000000017\n", "14 - 8 = 1.0\n", "15 - 8 = -0.2599999999999998\n", "16 - 8 = -0.3299999999999983\n", "17 - 8 = -0.29999999999999893\n", "18 - 8 = -0.20999999999999908\n", "19 - 8 = -0.3899999999999988\n", "13.49\n", "10 - 9 = -0.02999999999999936\n", "11 - 9 = 0.03999999999999915\n", "12 - 9 = 0.7799999999999994\n", "13 - 9 = 0.7200000000000006\n", "14 - 9 = 0.7999999999999989\n", "15 - 9 = -0.46000000000000085\n", "16 - 9 = -0.5299999999999994\n", "17 - 9 = -0.5\n", "18 - 9 = -0.41000000000000014\n", "19 - 9 = -0.5899999999999999\n", "13.46\n", "11 - 10 = 0.06999999999999851\n", "12 - 10 = 0.8099999999999987\n", "13 - 10 = 0.75\n", "14 - 10 = 0.8299999999999983\n", "15 - 10 = -0.4300000000000015\n", "16 - 10 = -0.5\n", "17 - 10 = -0.47000000000000064\n", "18 - 10 = -0.3800000000000008\n", "19 - 10 = -0.5600000000000005\n", "13.53\n", "12 - 11 = 0.7400000000000002\n", "13 - 11 = 0.6800000000000015\n", "14 - 11 = 0.7599999999999998\n", "15 - 11 = -0.5\n", "16 - 11 = -0.5699999999999985\n", "17 - 11 = -0.5399999999999991\n", "18 - 11 = -0.4499999999999993\n", "19 - 11 = -0.629999999999999\n", "14.27\n", "13 - 12 = -0.05999999999999872\n", "14 - 12 = 0.019999999999999574\n", "15 - 12 = -1.2400000000000002\n", "16 - 12 = -1.3099999999999987\n", "17 - 12 = -1.2799999999999994\n", "18 - 12 = -1.1899999999999995\n", "19 - 12 = -1.3699999999999992\n", "14.21\n", "14 - 13 = 0.0799999999999983\n", "15 - 13 = -1.1800000000000015\n", "16 - 13 = -1.25\n", "17 - 13 = -1.2200000000000006\n", "18 - 13 = -1.1300000000000008\n", "19 - 13 = -1.3100000000000005\n", "14.29\n", "15 - 14 = -1.2599999999999998\n", "16 - 14 = -1.3299999999999983\n", "17 - 14 = -1.299999999999999\n", "18 - 14 = -1.209999999999999\n", "19 - 14 = -1.3899999999999988\n", "13.03\n", "16 - 15 = -0.06999999999999851\n", "17 - 15 = -0.03999999999999915\n", "18 - 15 = 0.05000000000000071\n", "19 - 15 = -0.129999999999999\n", "12.96\n", "17 - 16 = 0.02999999999999936\n", "18 - 16 = 0.11999999999999922\n", "19 - 16 = -0.0600000000000005\n", "12.99\n", "18 - 17 = 0.08999999999999986\n", "19 - 17 = -0.08999999999999986\n", "13.08\n", "19 - 18 = -0.17999999999999972\n", "12.9\n" ] } ], "source": [ "# You may need to install htmllib5,lxml, and BeautifulSoup4. In your terminal/command prompt run:\n", "\n", "# conda install lxml\n", "# conda install html5lib\n", "# conda install BeautifulSoup4\n", "# Then restart Jupyter Notebook. (or use pip install if you aren't using the Anaconda Distribution)\n", "import numpy as np\n", "import pandas as pd\n", "import os.path\n", "import matplotlib.pyplot as plt\n", "from datetime import datetime, timedelta\n", "from dateutil.parser import parse\n", "from dateutil.relativedelta import relativedelta\n", "from pandas.tseries.offsets import *\n", "from pylab import text\n", "from mpl_toolkits.axes_grid.anchored_artists import AnchoredText\n", "import quandl\n", "\n", "\n", "# Quandl API key\n", "quandl.ApiConfig.api_key = \"UsYsv7dKGxHHQ5oURP4B\"\n", "\n", "# Some formatting\n", "pd.set_option('display.max_colwidth', -1)\n", "pd.set_option('display.max_seq_items', 2)\n", "\n", "# Only pull fresh PDUFA data\n", "three_weeks_ago = relativedelta(weeks=3)\n", "one_week_ahead = relativedelta(weeks=1)\n", "one_hour_ago = datetime.now() - timedelta(hours=1)\n", "if os.path.exists(\"history.csv\"):\n", " filetime = datetime.fromtimestamp(os.path.getctime(\"history.csv\"))\n", " if filetime < one_hour_ago:\n", " histdata = pd.read_html(\"https://www.biopharmcatalyst.com/calendars/historical-catalyst-calendar\")\n", " histdata[0].to_csv('history.csv',index=False)\n", "else:\n", " histdata = pd.read_html(\"https://www.biopharmcatalyst.com/calendars/historical-catalyst-calendar\")\n", " histdata[0].to_csv('history.csv',index=False)\n", "\n", "# Create dataframe\n", "df = pd.read_csv('history.csv').set_index('Ticker')\n", "df.index.name=None\n", "df[[\"Date\",\"Catalyst\"]] = df.Catalyst.str.extract('(?P<Date>[0-9]{2}\\/[0-9]{2}\\/[0-9]{4})(?P<Catalyst>.*)', expand=True)\n", "df['Date'] = pd.to_datetime(df['Date'])\n", "df[\"Past\"] = df[\"Date\"] - DateOffset(weeks=3)\n", "df[\"Future\"] = df[\"Date\"] + DateOffset(weeks=1)\n", "\n", "df\n", "# Set stock ticker\n", "stockpick=\"HALO\"\n", "dataset=str(f\"WIKI/{stockpick}\")\n", "# Set variables for plot creation\n", "length = len(df.loc[stockpick].index)\n", "count = 0\n", "allplots=[]\n", "\n", "# Combine all data together into list of dataframes, iterate through each part of the list, plot each frame.\n", "while (count < length):\n", " pasttime= df.loc[stockpick].iloc[count][\"Past\"]\n", " futuretime= df.loc[stockpick].iloc[count][\"Future\"]\n", " pdufa=df.loc[stockpick].iloc[count][\"Date\"]\n", " annotate = df.loc[stockpick].iloc[count][\"Date\"] + timedelta(days=1)\n", " stage = df.loc[stockpick].iloc[count][\"Stage\"]\n", " catalyst = df.loc[stockpick].iloc[count][\"Catalyst\"]\n", " drug = df.loc[stockpick].iloc[count][\"Drug\"]\n", " \n", " #Annotation\n", " #Get quandl data\n", " mydata = quandl.get(dataset,start_date=pasttime,end_date=futuretime)\n", " allplots.append(mydata)\n", " count = count + 1\n", "# len(allplots[3].index) # 21\n", "i=0\n", "total = len(allplots[3].index) - 1\n", "\n", "while (i < total):\n", " print(allplots[3].iloc[i][\"Close\"])\n", " n = i + 1\n", " while (n < total): # see 14 - 8 = 1.0 !!!\n", " rangevalue=(allplots[3].iloc[n][\"Close\"] - allplots[3].iloc[i][\"Close\"])\n", "\n", " print(f\"{n} - {i} = {rangevalue}\")\n", " n=n + 1\n", "\n", "\n", "# print(allplots[3].iloc[i + 1][\"Close\"] - allplots[3].iloc[i][\"Close\"] )\n", " i = i + 1\n" ] }, { "cell_type": "code", "execution_count": 8, "metadata": {}, "outputs": [ { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAA7IAAAPnCAYAAAASw3CwAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMi4yLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvhp/UCwAAIABJREFUeJzs3Xd802XiB/DPk6RJd8sos6WDTVdayihQhoigDGWpqGjlFOdPPQ9PvDtPzlMPlTvE49RTETzkcALnQEWUIiCrQIUWKwgttKwuOtI0zXp+f6T50nSDbdPSz/v16ivJN9/xfDOafPIsIaUEERERERERUXuhcncBiIiIiIiIiC4HgywRERERERG1KwyyRERERERE1K4wyBIREREREVG7wiBLRERERERE7QqDLBEREREREbUrDLJERERERETUrjDIEhERERERUbvCIEtERERERETtisbdBbgcXbt2lWFhYe4uBhEREREREbWAAwcOFEgpgxpbr10F2bCwMKSmprq7GERERERERNQChBCnmrIemxYTERERERFRu9KuamSry83NxcyZM3Hw4EHY7XZ3F4eIiDoolUqF+Ph4bNy4EcHBwe4uDhERUYfQboPszJkzMWvWLOzatQtardbdxSEiog7KbDZj2bJlmDlzJvbv3+/u4hAREXUIQkrp7jI0WUJCgnT2kVWr1aioqGCIJSIitzObzfDy8oLNZnN3UYiIiNo1IcQBKWVCY+u12z6ydrudIZaIiNoErVbLbi5EREStqMWDrBDiHSFEnhAivdqyl4UQmUKIw0KIjUKIwJYuBxEREREREV0dWqNGdg2AKTWWfQMgSkoZA+AYgKdaoRxERERERER0FWjxICul/B5AUY1lW6SU1qqbewBwmEciIiIiIiJqkrbQR3YBgC/ru1MIsVAIkSqESM3Pz7/ig7zyyiswGo1XvP3l2LhxI4QQyMzMbJXj/Vq+vr7Ntq/z58/j1ltvRd++fTFkyBDccMMNOHbsGLKzs+Hl5QW9Xo8hQ4bgzjvvhMViAQCkpKRg2rRpDe73z3/+M7Zu3dps5WyKxsr16KOPonfv3q3aL664uBivvfZavfcvWLAA3bp1Q1RUVJP2t27dOsTExCAmJgajRo3Cjz/+qNz31VdfYeDAgejXrx+WLl2qLF+5ciX69esHIQQKCgqatC8iIiIioubk1iArhPgjACuAdfWtI6V8U0qZIKVMCAoKuuJjtWaQXb9+PcaMGYP333+/2fZptVobX8nNpJSYOXMmxo8fjxMnTuDo0aN44YUXcOHCBQBA3759kZaWhiNHjiA3Nxcffvhhk/f97LPP4tprr22pol82u92OjRs3IiQkBN9//32rHbexIJucnIyvvvqqyfsLDw/H9u3bcfjwYTz99NNYuHAhAMBms+Ghhx7Cl19+iaNHj2L9+vU4evQoAGD06NHYunUrQkNDm7QvIiIiIqLm5rYgK4S4C8A0ALfLZpwDqLy8HFOnTkVsbCyioqLwwQcf4NVXX8XZs2cxYcIETJgwAQDwwAMPICEhAZGRkXjmmWeU7Tdv3oxBgwZhzJgxeOSRR5QaufLycixYsADDhg1DXFwc/ve//9V5fIPBgF27dmHVqlUuQTYlJQVjx47FzJkzMWTIENx///1KTZ6vry9+97vfIT4+HhMnToSz5nn8+PH4wx/+gHHjxmHFihU4deoUJk6ciJiYGEycOBGnT59GSUkJwsLClH0ZjUaEhITAYrHgxIkTmDJlCoYOHYqkpCSlhjgrKwuJiYkYNmwYnn766eZ66LFt2zZ4eHjg/vvvV5bp9XokJSW5rKdWqzF8+HCcOXOmyftOTk7Gxx9/DABYvHgxhgwZgpiYGCxatAgA8NFHHyEqKgqxsbEYO3YsAGDNmjV4+OGHlX1MmzYNKSkpAIAtW7YgMTER8fHxmDt3LgwGAwBHLaTz+d+wYUOD5xoVFYUHHngA69evV5YvWbIEy5YtU25HRUUhOzsbAPDXv/4VgwYNwqRJkzBv3jxlvfHjx8M5rVRBQQHCwsIAABkZGRg+fDj0ej1iYmJw/PhxLF68GCdOnIBer8cTTzxRq1xjx45F586dm/y4jho1Cp06dQIAjBw5Erm5uQCAffv2oV+/foiIiIBWq8Wtt96qvObj4uKUMjZlX0REREREzc0tQVYIMQXAkwBmSCmbtZr0q6++Qq9evfDjjz8iPT0dU6ZMwSOPPIJevXph27Zt2LZtGwDg+eefR2pqKg4fPqzUIplMJtx333348ssvsXPnTlRvyvz888/jmmuuwf79+7Ft2zY88cQTKC8vx9mzZ3HDDTco623atAlTpkzBgAED0LlzZxw8eFC5b9++ffj73/+OI0eO4MSJE0pQKi8vR3x8PA4ePIhx48bhL3/5i7JNcXExtm/fjt/97nd4+OGHceedd+Lw4cO4/fbb8cgjjyAgIACxsbHYvn07AOCzzz7D5MmT4eHhgYULF+Kf//wnDhw4gGXLluHBBx8E4GgS+8ADD2D//v3o0aNHsz326enpGDp0aKPrmUwm7N27F1Om1BwDrHFFRUXYuHEjMjIycPjwYfzpT38C4Kix/frrr/Hjjz/i008/bXAfBQUFeO6557B161YcPHgQCQkJ+Mc//gGTyYR7770Xn332GXbs2IHz58/Xu4/169dj3rx5mDlzJj7//HOlmXR9UlNT8cknn+DQoUPYsGGDElwb8sYbb+DRRx9FWloaUlNTERwcjKVLlyo12y+//HKj+7gcq1atwvXXXw8AOHPmDEJCQpT7goODL+uHh+r7IiIiIiJqbq0x/c56ALsBDBRC5AohfgNgJQA/AN8IIdKEEG801/Gio6OxdetWPPnkk9ixYwcCAgLqXO/DDz9EfHw84uLikJGRgaNHjyIzMxMREREIDw8HAMybN09Zf8uWLVi6dCn0ej3Gjx8Pk8mE06dPo1evXti8ebOy3vr163HrrbcCAG699VaX2rrhw4cjIiICarUa8+bNw86dOwEAKpUKt9xyCwDgjjvuUJYDUJYDwO7du3HbbbcBAObPn6+sd8stt+CDDz4AALz//vu45ZZbYDAY8MMPP2Du3LnQ6/W47777cO7cOQDArl27lHObP3/+ZT/GV8pZk9ilSxf06dMHMTExl70Pf39/eHp64p577sGGDRvg7e0NwNHcNTk5GW+99RZsNluD+9izZw+OHj2K0aNHQ6/X491338WpU6eQmZmJ8PBw9O/fH0II3HHHHXVubzabsXnzZtx0003w9/fHiBEjsGXLlgaPuXPnTtx4443w8vKCn58fpk+f3ui5JiYm4oUXXsCLL76IU6dOwcvLq9FtrtS2bduwatUqvPjiiwAczcRrEkJc0b6IiIiIiJqbpqUPIKWcV8fiVS11vAEDBuDAgQPYvHkznnrqKVx33XX485//7LJOVlYWli1bhv3796NTp05ITk6GyWSq88u7k5QSn3zyCQYOHFjvOoWFhfjuu++Qnp4OIQRsNhuEEHjppZcA1A4C9QWD6st9fHzqPZ5zvRkzZuCpp55CUVERDhw4gGuuuQbl5eUIDAxEWlpao8dozMaNG5Va4rfffhsJCQl1rhcZGak0/62Lsybx3LlzGD9+PD799FPMmDGjyeUAAI1Gg3379uHbb7/F+++/j5UrV+K7777DG2+8gb179+KLL76AXq9HWloaNBqNy0BMJpMJgOO5nDRpksuPDACQlpbWpMflq6++QklJCaKjowE4mnN7e3tj6tSpDR6zoXNybuNcHwBuu+02jBgxAl988QUmT56Mt99+GxEREY2W73IdPnwY99xzD7788kt06dIFgKMGNicnR1knNzcXvXr1uqJ9ERERERE1t7YwanGzOnv2LLy9vXHHHXdg0aJFStNePz8/lJWVAQBKS0vh4+ODgIAAXLhwAV9+6Rg0edCgQTh58qTSp9FZywkAkydPxj//+U8lkBw6dKjWsT/++GPceeedOHXqFLKzs5GTk4Pw8HCl5nTfvn3IysqC3W7HBx98gDFjxgBwDBzkDID//e9/leU1jRo1Sul3u27dOmU9X19fDB8+HI8++iimTZsGtVoNf39/hIeH46OPPgLgCFLOUWRHjx7tsp/GzJw5E2lpaUhLS6s3xALANddcg8rKSrz11lvKsv379yvNnp169uyJpUuX4m9/+1ujx67JYDCgpKQEN9xwA1555RUlqJ84cQIjRozAs88+i65duyInJwdhYWFIS0uD3W5HTk4O9u3bB8DRf3PXrl345ZdfADiC6LFjxzBo0CBkZWXhxIkTAFAr6DqtX78eb7/9NrKzs5GdnY2srCxs2bIFRqMRYWFhymvu4MGDyMrKAgCMGTMGn332GUwmEwwGA7744gtlf2FhYThw4AAAuPwQcPLkSUREROCRRx7BjBkzcPjwYZfX8eVYuXIlVq5cWWv56dOnMWvWLKxduxYDBgxQlg8bNgzHjx9HVlYWzGYz3n///UZ/dKhvX0REREREze2qC7JHjhxRBsh5/vnnlT6UCxcuxPXXX48JEyYgNjYWcXFxiIyMxIIFCzB69GgAgJeXF1577TVMmTIFY8aMQffu3ZWmyU8//TQsFgtiYmIQFRWlDJJUvY/s+vXrMXPmTJfyzJ49G//9738BOJqKLl68GFFRUQgPD1fW9fHxQUZGBoYOHYrvvvuuVg2y06uvvorVq1cjJiYGa9euxYoVK5T7brnlFrz33nsuTZHXrVuHVatWITY2FpGRkcpgPStWrMC//vUvDBs2DCUlJb/uAa9GCIGNGzfim2++Qd++fREZGYklS5bUWZN30003wWg0YseOHQCAb7/9FsHBwcrf7t276zxGWVkZpk2bhpiYGIwbNw7Lly8HADzxxBOIjo5GVFQUxo4di9jYWIwePRrh4eGIjo7GokWLEB8fDwAICgrCmjVrMG/ePMTExGDkyJHIzMyEp6cn3nzzTUydOhVjxoypNSov4Ai9X3/9NaZOnaos8/HxUYLq7NmzUVRUBL1ej9dff10JdMOGDcOMGTMQGxuLWbNmISEhQXltLVq0CK+//jpGjRrlMp3NBx98gKioKOj1emRmZuLOO+9Ely5dMHr0aERFRdU52NO8efOQmJiIn3/+GcHBwVi1ytH4ITMzs84a0meffRaFhYV48MEHodfrlR8qNBoNVq5cicmTJ2Pw4MG4+eabERkZCcDxOgwODkZubi5iYmJwzz33NLgvALjhhhtw9uzZOp9TIiIiIqLLJZpxwOAWl5CQIJ2D5AghGmyueaUMBgN8fX0hpcRDDz2E/v3747e//e2v3m9KSgqWLVuGzz//vNZ9vr6+yqi5dPVyvraMRiPGjh2LN998UwnXLW3atGnYsGEDtFptqxyPqCNqqc8lIiKijkQIcUBKWX8z0CpXXY3sr/XWW29Br9cjMjISJSUluO+++9xdJLpKLFy4EHq9HvHx8Zg9e3arhVgA+PzzzxliiYiIiOiqwRpZIiKiZsDPJSIiol+vQ9fI+vr6utxes2YNHn74YWzZsgWJiYnKFw2bzQa9Xo8ffvgBAPDmm29i0KBBGDRoEBISEpCSkgIAWLJkCZ566imXfaalpWHw4MEAHIP1VO/buHHjRgghkJmZ2aTyvvPOO4iOjlb63zr7stbHeT6/VnZ2ttJ/tz144YUXmnV/a9asaZV+mw0dJzMzE3q9HnFxccogUy0tJSVFec0Djvlq//Of/1zRvlriNXTPPffg6NGjAFyf8+zsbERFRTXbcc6ePYs5c+Y02/4u16effoqlS5e67fhXoub/1rq8+uqrGDx4MG6//fYmneOoUaOaq3iX5dy5c5g2bRoAx3siICAAcXFxGDx4sDJKe0pKirLO559/jmeeecYtZSUiIqLarsogW5/rrrsOoaGhygA4//znPzFs2DCMGjUKn3/+Of79739j586dyMzMxJtvvok77rgDZ86cwbx581xGMAYc87U653Staf369RgzZowyMnBDcnNz8fzzz2Pnzp04fPgw9uzZc0Xzq16JqyXISildprxpqrYQZDdt2oQbb7wRhw4dQt++fRvd15Wea3U1g+z999+PO++884r21RKvobfffhtDhgwB0Pw/XjhZrVb06tWrwemifs2+m2LGjBlYvHhxsx/f3V577TVs3rwZ69ata9I5Vn8ttqZ//OMfuPfee5XbSUlJOHToEFJTU/Hee+8pI4k7TZ06FZ9++imMRmNrF5WIiIjq0KGCLAAsX74cf/vb35CRkYGVK1fixRdfBAC8+OKLePnll9G1a1cAQHx8PO6++27861//wsCBAxEYGIi9e/cq+/nwww9x66231tq/wWDArl27sGrVqiYF2by8PPj5+Sk1Hb6+vggPDwcAjB8/Hs6m1AUFBQgLC1O2y8nJwZQpUzBw4ECl9gAA/vOf/yAmJgaxsbGYP38+ACA5OdnlC7vzWIsXL8aOHTug1+uxfPlyZGdnIykpCfHx8YiPj1e+YKakpGD8+PGYM2cOBg0ahNtvv12p1T5w4ADGjRuHoUOHYvLkyTh37hwAR431yJEjERMTg5kzZ+LixYsNnlNGRoYy2nRMTAyOHz/u8jgtXrwYFRUV0Ov1uP3225GdnY3BgwfjwQcfRHx8PHJycpQa9/j4eMydO1cZQOvZZ5/FsGHDEBUVhYULF0JKiY8//hipqam4/fbbodfrUVFRgbCwMPzhD39AYmIiEhIScPDgQUyePBl9+/bFG2+8oZTl5ZdfxrBhwxATE6PU0DjLc++99yIyMhLXXXcdKioq6jyO0+bNm/HKK6/g7bffxoQJEwA4vlxHRUUhKioKr7zyisu+q59rdWFhYXjyyScxfPhwDB8+XJlW6LPPPsOIESMQFxeHa6+9FhcuXEB2djbeeOMNLF++HHq9Hjt27MCSJUuwbNkyAI5pjKZMmYKhQ4ciKSlJaVWQnJyMRx55BKNGjUJERITyeqr5Gmrsefzwww/x+OOPA3CMnu2cF/fEiRPKdFLO10jN5xxwtKKo+RjXlJycjPvvvx9JSUkYMGCAMsDamjVrMHfuXEyfPh3XXXedSw3vmjVrcNNNN2H69OkIDw/HypUr8Y9//ANxcXEYOXIkioqKADj60A8bNgyxsbGYPXu2EmqSk5Px+OOPY8KECXjiiSfQv39/5OfnA3BMr9WvXz+XVhvOYzpbViQnJ+OBBx7AhAkTEBERge3bt2PBggUYPHgwkpOTlW18fX3x5JNPYujQobj22muxb98+jB8/HhEREfj0009r7RdwDPTlbF3i6+uLP/7xj4iNjcXIkSNx4cIFAMCpU6cwceJExMTEYOLEiTh9+jQAx5zbiYmJGDZsmDJSu1Nd74P7778fJ0+exIwZM7B8+XKXsly4cAEzZ85EbGwsYmNjlf8v1Wt5L+e9BQC//PILrr32WsTGxiI+Ph4nTpzA/PnzXVq1OGuGa/rkk08wZcqUWst9fHwwdOjQWi0khBAYP358nQP2ERERkRtIKdvN39ChQ6WTo+h1U6lUMjY2VvkLCQmRDz30kHL/q6++Kv38/OTq1auVZZ06dZLFxcUu+9m0aZO88cYbpZRSvvTSS/Kxxx6TUkq5e/dumZCQoKwXGhoq8/PzpZRSrl27Vi5YsEBKKWViYqI8cOBAveWUUkqr1Sqvu+46GRISIpOTk+Wnn36q3Ddu3Di5f/9+KaWU+fn5MjQ0VEop5erVq2WPHj1kQUGBNBqNMjIyUu7fv1+mp6fLAQMGKGUpLCyUUkp51113yY8++kjZr4+Pj5RSym3btsmpU6cqy8vLy2VFRYWUUspjx45J5+O9bds26e/vL3NycqTNZpMjR46UO3bskGazWSYmJsq8vDwppZTvv/++vPvuu6WUUkZHR8uUlBQppZRPP/20fPTRRxs8p4cffli+9957UkopKysrpdForPVYOcstpZRZWVlSCCF3796t7CspKUkaDAYppZRLly6Vf/nLX1weBymlvOOOO5THuHpZpHQ8j6+99pqUUsrHHntMRkdHy9LSUpmXlyeDgoKklFJ+/fXX8t5775V2u13abDY5depUuX37dpmVlSXVarU8dOiQlFLKuXPnyrVr19Z5nOqeeeYZ+fLLL0sppUxNTZVRUVHSYDDIsrIyOWTIEHnw4MFa51pTaGiofO6556SUUr777rvKc1pUVCTtdruUUsq33npLPv7447WOWfP2NddcI48dOyallHLPnj1ywoQJUkrHa2jOnDnSZrPJjIwM2bdvXyll7ddQY8/juXPnlPfO7NmzZUJCgszNzZVr1qyRixcvrvV41XzO63uMq7vrrrvk5MmTpc1mk8eOHZO9e/eWFRUVcvXq1bJ3797K6yErK0tGRkZKKR3vqb59+yrPt7+/v3z99dellI7XwvLly6WUUhYUFCjH+eMf/yhfffVV5ZhTp06VVqtVSinlkiVLlG2+/vprOWvWrFrlXL16tfJ/6a677pK33HKLtNvtctOmTdLPz08ePnxY2mw2GR8fr5wzALl582YppZQ33XSTnDRpkjSbzTItLU3GxsbW2q+UUk6dOlVu27ZN2d75+n/iiSfkX//6VymllNOmTZNr1qyRUkq5atUq5f/e9OnT5bvvviullHLlypXK81Hf+0BK1/+H1cty8803K4+J1WpV/t82ts+Gnvfhw4fLDRs2SCmlrKiokOXl5TIlJUUpf3FxsQwLC5MWi8XlsT958qSMj49Xbld/HRcUFMjQ0FCZnp5e6/X93nvvyYcffrjWc+nU0OcSERERNQ2AVNmEbKhxa4puIV5eXkhLS1Nur1mzRqkFBICHHnoIixcvdqnpqIusNmjHrbfeilGjRuHvf/873n//fcybN6/ObdavX4/HHntM2Wb9+vUNjk6rVqvx1VdfYf/+/fj222/x29/+FgcOHMCSJUsaLNukSZOUeUFnzZqFnTt3Qq1WY86cOUqtcufOnRvcR00WiwUPP/ww0tLSoFarcezYMeW+4cOHIzg4GACg1+uRnZ2NwMBApKenY9KkSQActWU9e/ZESUkJiouLMW7cOADAXXfdhblz5zZ47MTERDz//PPIzc3FrFmz0L9//0bLGxoaipEjRwIA9uzZg6NHjypzApvNZiQmJgIAtm3bhpdeeglGoxFFRUWIjIzE9OnT69znjBkzAADR0dEwGAzw8/ODn58fPD09UVxcjC1btmDLli2Ii4sD4KiBP378OPr06YPw8HDo9XoAwNChQ5Gdnd3oOVS3c+dOzJw5Ez4+PgAcz+uOHTswY8YMl3Oti/P1OG/ePGW6qNzcXNxyyy04d+4czGazUtNfH4PBgB9++MHluaqsrFSu33TTTVCpVBgyZIhSk1dTY89jjx49YDAYUFZWhpycHNx22234/vvvsWPHDsyaNavB8gFo8mN88803Q6VSoX///oiIiFBqlidNmlTv+2LChAnK8x0QEKC8RqKjo3H48GEAQHp6Ov70pz+huLgYBoMBkydPVrafO3cu1Go1AGDBggW48cYb8dhjj+Gdd97B3Xff3ei5TZ8+HUIIREdHo3v37oiOjgYAREZGIjs7G3q9HlqtVqlFjI6Ohk6ng4eHB6Kjo5v0etNqtUqfz6FDh+Kbb74BAOzevRsbNmwAAMyfPx+///3vAQC7du3CJ598oix/8sknAaDe98HYsWPrPfZ3332n9MVWq9XKPMpOl/veKisrw5kzZ5T5uD09PQEA48aNw0MPPYS8vDxs2LABs2fPhkbj+lF37tw5BAUFuSzbsWMH4uLioFKpsHjxYkRGRio12U7dunXjfMhERERtxFUZZBujUqkghHBZNmTIEBw4cADXXHONsuzgwYNISHAMmBUSEoKwsDBs374dn3zyCXbv3l1rv4WFhfjuu++Qnp4OIQRsNhuEEHjppZdqHa86IYTSLHTSpEm4++67sWTJEmg0GqU/pMlkqrVNzdtSyjqPU30/UkqYzeY6y7F8+XJ0794dP/74I+x2u/LFEAB0Op1yXa1Ww2q1QkqJyMjIWo9FSUlJveda3znddtttGDFiBL744gtMnjwZb7/9tstzURdn4HOe16RJk7B+/XqXdUwmEx588EGkpqYiJCQES5YsqfVYVuc8T5VK5XLOKpVKOeennnqq1rRM2dnZtR6jupq9NqT6Dyc1VT/XulR/3p3X/+///g+PP/44ZsyYgZSUlEZ/HLHb7QgMDHT5Eai66udXX1mb8jwmJiZi9erVGDhwIJKSkvDOO+9g9+7d+Pvf/95g+WqWoaHHuK73B9Dw41jz+a7+WnD2e01OTsamTZsQGxuLNWvWuASd6vsOCQlB9+7d8d1332Hv3r1Yt25dk8+tvtceAHh4eCjnUl8Zq7/HANf3WfXtne/jutT1eqquvvfBr3G5762G3i/z58/HunXr8P777+Odd96pdb+Xl1et/wNJSUmNNhs2mUzw8vJqyukQERFRC+twfWTr8/vf/x5PPvkkCgsLATj6eG7cuNHlS5Wztqtv375K7WR1H3/8Me68806cOnUK2dnZyMnJQXh4OHbu3Fnvcc+ePYuDBw8qt9PS0hAaGgrA0ffROeBIzUFpvvnmGxQVFaGiogKbNm3C6NGjMXHiRHz44YfKOTj79VXfz//+9z9YLBYAgJ+fH8rKypR9lpSUoGfPnlCpVFi7di1sNluDj9nAgQORn5+vBFmLxYKMjAwEBASgU6dO2LFjBwBg7dq1Su1sfed08uRJRERE4JFHHsGMGTOUGrDqPDw8lLLXNHLkSOzatUvpH2o0GnHs2DHly2rXrl1hMBhcjlnz/Jti8uTJeOedd5T+t2fOnEFeXl6D2zT1OGPHjsWmTZtgNBpRXl6OjRs3IikpqUnlcg5G9sEHHyg10SUlJejduzcA4N133220PP7+/ggPD8dHH30EwBEsfvzxx8s6t6Y8j2PHjsWyZcswduxYxMXFYdu2bdDpdLVq6ICGn/OGfPTRR7Db7Thx4gROnjyJgQMHXvY+6lJWVoaePXvCYrE0Gk7vuece3HHHHbj55puVmtrWEBYWhrS0NNjtduTk5GDfvn2NbjNq1CilT/+6deuU/sqjR492We50Je+DiRMn4vXXXwfgaL1RWlrqcv/l7tPf3x/BwcHYtGkTAEfrgep9lp19zCMOLRHkAAAgAElEQVQjI2ttO2DAgMtuMQEAx44da9aRs4mIiOjKMchWmTFjBn7zm99g9OjR6NevH8aMGYNNmza5ND+bO3cuMjIy6hzkCXA0K3Y2c3OaPXt2g6O6WiwWLFq0CIMGDYJer8cHH3yAFStWAAAWLVqE119/HaNGjao1UMyYMWMwf/586PV6zJ49GwkJCYiMjMQf//hHjBs3DrGxscqgOvfeey+2b9+O4cOHY+/evUrNUUxMDDQaDWJjY7F8+XI8+OCDePfddzFy5EgcO3as0VpArVaLjz/+GE8++SRiY2NdpjJ699138cQTTyAmJgZpaWn485//3OA5ffDBB4iKioJer0dmZmado+guXLgQMTExysA/1QUFBWHNmjWYN28eYmJiMHLkSGRmZiIwMBD33nsvoqOjcdNNN2HYsGHKNs5BgWoOwtSQ6667DrfddhsSExMRHR2NOXPmNBpSm3qc+Ph4JCcnY/jw4RgxYgTuuecepZllYyorKzFixAisWLECy5cvB+CYNmru3LlISkpSmpsDjiasGzduVAZ7qm7dunVYtWoVYmNjERkZ2ehUUDVfQ015HpOSkpCTk4OxY8dCrVYjJCRECU41NfScN2TgwIEYN24crr/+erzxxhsurQt+jb/+9a8YMWIEJk2ahEGDBjW47owZM2AwGJrUrLg5jR49GuHh4YiOjsaiRYsa7Nrg9Oqrr2L16tWIiYnB2rVrlf9BK1aswL/+9S8MGzbMpaXFlbwPVqxYgW3btiE6OhpDhw5FRkaGy/1Xss+1a9fi1VdfRUxMDEaNGoXz588DALp3747BgwfX+9j7+Pigb9++yg9fTbVt2zZMnTr1srYhIiKiliEaap7V1iQkJEhnX9eWnHjearXi7rvvht1ux3vvvddgs2AidwsLC0NqaqpLWO3IkpOTMW3aNLfOEQsAqamp+O1vf1vrxwJqeUajEdHR0Th48GCdNf2AY77vAwcO4LnnnmvSPi9cuIDbbrsN3377bb3rtOTnEhERUUchhDggpUxobL0O2Ue2MRqNBmvXrnV3MYionVq6dClef/31JvWNpea1detWLFiwAI8//ni9IRYAZs6cqXTDaIrTp083qR83ERERtQ7WyBIRETUDfi4RERH9ek2tkWUfWSIiIiIiImpXGGSJiIiIiIioXWm3QValUtU7HyoREVFrMpvNUKna7UcqERFRu9NuP3Xj4+OxbNkyhlkiInIrs9mMZcuWNWmqIyIiImoe7XbU4o0bN2LmzJl4+umnYbfb3V0cIiLqoFQqFeLj47Fx40Z3F4WIiKjDaLdBNjg4GPv373d3MYiIiIiIiKiVtdumxURERERERNQxMcgSERERERFRu8IgS0RERERERO0KgywRERERERG1KwyyRERERERE1K4wyBIREREREVG7wiBLRERERERE7QqDLBEREREREbUrLR5khRDvCCHyhBDp1ZZ1FkJ8I4Q4XnXZqaXLQURERERERFeH1qiRXQNgSo1liwF8K6XsD+DbqttEREREREREjWrxICul/B5AUY3FNwJ4t+r6uwBuaulyEBERERER0dXBXX1ku0spzwFA1WW3+lYUQiwUQqQKIVLz8/NbrYBERERERETUNrX5wZ6klG9KKROklAlBQUHuLg4RERERERG5mbuC7AUhRE8AqLrMc1M5iIiIiIiIqJ3RuOm4nwK4C8DSqsv/NWWjs2fPQgjRkuUiIiIiqpOXnw4mgxlSSncXhYiow2vxICuEWA9gPICuQohcAM/AEWA/FEL8BsBpAHObsq9evXrh7NmzLVVUagFSSv74QERE7ZaUEmcrT+Bw6Q7km3OgFhr4aTrDX90ZfhrHn3/Vpbfaj595RES/UlP/j7Z4kJVSzqvnroktfWxqXTZpQ5H5HPLNucgz5yC/MgcVdgM0wgMaoYWHSue4FFp4qLTKdY2q6rJqnerLLl2v2lalhQpqflEgIqIWJaVEjulnHCndgULLOQCAgAo2aUWxJQ/Fltq9otRCAz/1pWDLkHvlZs+eDQD45JNP3FwSImqr3NW0mK4CJlu5S2gtNJ+DDdZa61mlBVZpgcle3izHFVC5BFwP4QFNVQCuHZAvBWCPqqDcRdsLGuHRLGUhIqKri13akV2RgfTSnSi2OmZL8FT5YIhfIgb6DIWERJm1CKXWIpfLMmsRTHYjiq15KLY2FnI7wU/ThSG3AYWFhe4uAhG1cQyy1CRSSpRY85FXmYt8cw7yzbkotdb+kAnQdEWQNgRBumB004bAT9MZNmmBRZphtZthkWZYZKVy3SrNsNidl5WwSAusshKWeu83Q8IOszTBbDNd0bl4CC36eA1BhHcUuuvCoBJtfvBuIiJqYTZpw0njj0gv3YUy20UAgLfaH1F+o9DPJ87lB9Au2l7oou1Vax9mu6kZQ67jkiGXiKhuDLJUJ4vdjELzGUdtqzkX+ZW5MEvX4KgWGnTV9kY3bQiCtMHoqg2Gp9q71r5UQgcP6AB185TNJq2Xwq00w1oVcKuHZcdlJazSogRgqzTDaCvDRcsFnDCm4YQxDV4qP4R7RyHCOxqdPLrzywIRUQdjlRb8Un4I6WU/wGgrBQD4qTshyn8MIrxjoBZN//DSqjybEHIvosxaiDLrRZRaCxlyiYiuEIMsAQCMtjLkV+Ygz5yDvMrTKLKch4TrqIzean8ltAbpQtDZoztUl/EB31zUQgO1WgOgdmhuihJLAbKMR3DSeAQGWzGOGnbjqGE3AjVBCPeORrh3FHw1gc1baCIialMs9kr8XH4AR8t2K11fAjVBiPIfgzCvyGZvrXNlIfciTPbyRkOun6ZTVdBlyCWijoNBtgOSUqLUWog882nkVTqCq7MZlZOAQBePngjShSBIG4Ju2mD4aALcVOLmFeDRFfqACYj1H48Ccy5OGo8guyIDxdZ8HCr9DodKv0N3bR+Ee0cj1HsIdCovdxeZiIiaSaW9ApmGffipbK/S0qiLR09E+ychxHOgW8Jf4yH3oksz5SsLuZ2VsNseQu7EiRwTlIgaJtrTXGgJCQkyNTXV3cVod5yjCTtrW/PMOai0G13W0QgtgrTB6KYLQTdtH3TV9oaHSuumErc+u7ThrOkEThqPIKfiZ2XQKhXU6O3ZDxHeMQj26g+14G8/RETtUYWtHEcNu3HMkAqLNAMAgrQhiPFPQi9d3zYf7OpSd8h19smtf4DFukJuZ21PdPHo2S4fByK6ugghDkgpExpdj0H26mO2V6LAnIu8ytO4YD6NAvMZ2KTraMJeKl8ltHbT9UEnj+4c9KiK2V6JnIpMnDQewfnKLKWJtYfQIdRrCCK8o9FdF8oPe6IWJqVEpb0CWpUn/z/RFTPaypBetgvHyw8qn4U9dRGI9h+D7tqr93+52V5ZK9w2FnIDNUHo5xOHCO+YOse8ICJqDQyyHYjRVqbUtOZVnsZFy4Va/VsDNF0RpAtBd20fdNOFwFfd6ar98G5ORlsZso0ZOGk8gqKqeQQBR3/hzh49lCl9Ls2V6zr9T91z5XIuXKKGmO0mnDQewfHyg7houQAVVPBRB8BXEwhfTSf4qh2XfppA+Ko7Qafy4vuJ6nTG9At2Fm1SWiEFew5AjH8Sump7u7lk7lUz5JZaC3HWdEIJuCqo0cdrEPr5xKGnLtwt76/rr78eAPDll1+2+rGJyL2aGmTZTrKdcUyDU+Do21rVx9VQq3+rCl21vdBNG4Juuj7opg2Bp9rHTSVu37zVfhjiNxJD/Eai2JKPLOMRZBnTYbAVK6NbXgkBUTv41hF4Lycga4QHv8xTuyWlRKHlLI4ZDiK7Ih1WaQEAqKGBDVaU2S46+vJXZtXaViO08FMCblXIdV5Xd4JGxXmjOxq7tOPH0u04UrYDANBTF46hAZPQWdvDzSVrG7QqHbpoe6KLtqeyzC5tyDUdx/HygzhrOoHsigxkV2TAVx2Ifj569PXWw0fj32plrKioaLVjEVH7xBrZNu5S/9bTuFB5GvnmHFTaXf+5ewitY0Cmav1b+cWt5Ti/cBttBlirz49rr3TcrjFvrrXGdYvdDDtsLVK2S8FXVxV2XYNw/aHYQwnFHkIHb7U/X0PUKsz2SmQZj+BY+UFctJxXlvfQhaG/Tzz6eA2ChITBWuz4sxXDYL0Ig7UYZVXXLbKywWN4qnzgp+mELtpe6KkLR3ddKLQqz5Y+NXKTCpsBO4o24HxlNgQEYv3HIdoviT/0XYZyawlOGH/E8fJDKLeVAHD8ANvLsx/6+8Qh2LN/i89aMH78eABASkpKix6HiNoe1si2U2a7CflV/VvzKnMc/VtRV//WPkptK/u3ti4hxK9ulmaXtqo5bqvPh1vtelXgvXSfxWW9ugKyVVqUv4YG+Wgqncrb0ZxTHQAfTQB81FV/Vdc9Vd7t4othubXUUbNgzIAdNgzxHYlw72i+Z9yswHwWx8oPINt4qfZVp/JCX+9YDPAZCn+PLi7rB3oEIdAjqNZ+pJQwS1O1cHtRCb1ltosot5bAZC+HyVyOfHMuMg37lFHZe3iGo6cuHEG6EGgEf7i5Gpw3ZWNH0QZU2A3wVPkgqfMs9PQMd3ex2h0fTQBi/Mci2i8J5ypP4nj5IeRUZOKM6TjOmI7DU+WDvt6x6O8TV+u9SkTUWlgj62ZGWykuVF4aTbi4nv6tztDaTdcHvurAdhEgqHVJKauCbI0aYrsZFmmpOzDXCsUWmO0mGG2ljdYaq6FxCbi+NcKut9ofajfMMwwAJls5TlX8hGxjOi6YT9e6P0DTFbH+4xHqNZjvpVZksVciy5iOY+UHXfqcd9eGYoDvUPTxGtTsI4NLKWG0laHUWogLladwvjIL+eYzkLAr66igRjddCHrowtBTF44u2t78oaOdkVIivWwn0kpTICHRXRuKpC6z4K32c3fRrhommxEnjYdxvPwQSqz5yvLu2j7o5xOPUK/BzdqShzWyRB0XB3tqgy71bz1drX9rscs6KqjQpVr/1iBtCEcOpFYnpYTJXg6DtRjlthKU20pgsJYo18utJcr8iw0J9OiG7tpQdNP1QXddnxb9UukcbTrLmI5zlSeVH4RUUCPYawDCvaJglWb8WLpded919ugBvf8E9Pbsx0DbggrNZ3Gs/CCyjOmwVk17olV5oZ93LPr7xCPAo2urlsdiNyPPfBrnTFk4X5mFompNmgFHd41uulD01DlqbAM9uvH10YaZbEbsurgJZ0y/AACi/cYg1n88f4xoIVJKFJhzcbz8ELIrMpQWFR5Ch3DvaPT3iXPpe3ulli1bBgBYtGjRr94XEbUvDLJtgE1aUVjVv9UxOFMOzLX6t+qq5m91jCbcVdubTdyoXTDbK2GsEXCrX6+wldVqXeCr7oTuVc3iu2v7wE/T+VcFBKu04EzFcWRVpCO34rhSi+zoy9UXYV5RCPEaCK1Kp2xjkzb8Un4Ih0t3oMJeBgAI0gYjzv8a9PAMu+KykCtn7evx8oModKl97YP+vkMR6jW4zczLbLIZcaHyFM5VOoJtqbXQ5X5PlTe6V9XW9vAMhx9HfW8z8itzsb3oYxhtpdCqvJDU6Sb09urv7mJ1GGZ7JbKNGfil/CAKLGeV5b10fRHrPxZBuhA3lo6I2qurMsgOjusv9+zb3eq/3jeV2W5CflVgzas8jQLz2Vr9W73Vfsrcrd20IQj06MZfjemqZJUWFJrP4kLlaeRVDVRmqaqNc/JU+SihtqnzGdulDedMJ5FVkYGcikyXfXbXhiLMOxKhXkMabclglRb8bEhFetlOZQC1nrpwxAVc0+Gn5rhSZdaLOF+ZhXOmLOSajl+qfRWe6OvjqH2tq59rW1NuLcX5yiycr8zGucqsWiOUa4Un/DSd4afpDH/lshP8NJ2hayd9x9s7KSV+MuzFgZKtkLCjq7Y3xnaeA19NgLuL1mFdtFzA8fJD+KU8TXnvM9AS0ZW4KoNseExv+ZfN9yHEcyCG+CWimzbErV8Yyq2lVbWtjv6tFy0Xaq0TqAly6d/qow7glxzqkOzSjouWC8irPI0L5tPIqzwFU9Xcjk7OFgrOWtuu2t5QCw2klLhgPoVsYwZOVRx1Gbm7i0cvhHtHItQr8oqmhrDYK/GTYS8yynYro9+GeA6EPmA8Onl0/3UnfZWrsBkctZgmR+ir2VWimzYEA3yGItR7SJupfb1cUkqUWYuU2trzldm1Ro6vzkPoqkJuJyXk+lWFXC+VL///NwOz3YQfLn6K0xWZAIDBviMQH3Ct2/rkkyuTzYifDHvwk2GfEmh76iIQ6z8O3S4j0LKPLFHHdVUG2cFx/eUfP0tWmg921fZGpN8ohHgObLVazXJrCbIq0pFlTK8VXC/1b3X0BwzShUCn8mqVchG1N1JKlFoLlaml8ipP19FnXI0u2l4otxXDaCtTlgdoghDuHYkwr8hmGzGz0l6B9LJdyDTsg006WlKEeUVB7z+Oo3JWMdtNOF81YNI5U5bLgC+Ao6ayh2cYeujC0UsXcVU+bs7+46XWIpQpfxdRZi1CqbWowamANMJDqclVgq7acdtb7ceQ2wSF5nPYXvgxDLaL8BA6jO58I/p4DXJ3sagOzkCbadintJy5nEDLIEvUcV2VQTYhIUHu2JuCTMN+/FyeqvQ39dN0xhDfkejrHdsic1+a7SacqvgJJ42HcaHylLLcQ+iUuVu76ULQRduL/VuJfgXHKN6nlVrbYkuecp+vOhBh3pEI94pq0cF3KmwGHCnbiWOGA7DDBgGBvj56xPiN7XDNFq12C/LMpx1NbE1ZKLKcc+n3rBEe6Kbto0xj09GnApNSotJeoQTcUmsRymyXQm7NMRKqU0Oj1NxeunQ0XfZW+3foxxVwPLbHyw9iX/FXsMOGzh49MK7LHPhpOru7aNSISnsFjpbtQaZhb41AOxbddH3q3Y5BlqjjumqDrHOwJ4vdjBPGNBwt26PU4uhU3hjok4BBvsPgqfb5VceySSvOmH7BSeMR5FYcU2qBVVAjxGsgwr2j0duzH5syEbWgSnsFCsxnoBWe6Krt3ao1VgZrCQ6Xfo8TxjRISKigxgDfoYj2GwMvtW+rlaOlSCkhYYeEdLlebMl31LhWZiG/MtdlGiYVVOiqDUZPz3D00IWhqzaY/wMvw6WQeyncOm83NPezCuqqcNupVo2ujzrwqg+5FrsZey5+jqyKdADAAJ+hGBY4ud02V++oKu0V+KlsD35yCbThiPEfh+51BFoGWaKO66oPsk52acfpikxklP2AwqoR89TQoK9PLIb4jryspm1SSuSZT+Ok8QhOGY+6TC/SQxeGCO8Y9PEaBK3Ks3lOiIjavFJLIdJKtyO76ku0Rnign08cPFXesMuqIFhHIHRcr7pdfTkkpKzrur2ObRra92Xuo8Y2TdXZoyd66sLQwzMc3bR94KHSttRD3aGZ7ZUuIbd60K2wG+rdTkAFX00g/NSdqg0+1Qn+mi7w0QS2+x8aii152F74MUqsBdAID4zsNA0R3tHuLhb9CpcC7T6lKX4PXThiawRaBlmijqvDBFknZwjNKPsBuabjyvI+XoMQ6ZvY4Ih5xZY8nDQeQZYxHeW2EmV5J4/uiPCORphX1BUNIkNEV4+L5gs4VLoNuaZj7i5KsxFQQUBACKFc91b7oUdVcO2hC2M//zbAYjfDYL2IUlvtPrk1R1SuTkDARx1QrZmya41uW6zRtEs7ym0lKLUWosh8DofLdsAmrQjUBGFslzntYtRrahpHoN1bVUNbPdCORXddKF577TUAwIMPPujOYhKRG3S4IFtdsSUfR8v24KTxsNIsLkgbrAwMJYSA0VaKLGM6ThrTcdFyXtnWW+2PCO9ohHtHo5NHtxY7FyJqn/Irc6t+LJOO8FctBLper7qEqLaecNlGBQFUuy5q3q6+D+V6I8eqvl6tY7puT+2fVVpgsBZXq8W9VKNbbitpsPbdW+1fx8jKPvBU+UCn9oZWeLbI60RKCaOtDGXWQpRai1Badekstx12l/UjvGMwIvAGtga4StUdaMOqamhD3Vw6InKHDh1knYy2Mvxs2I+fDalKM2E/TWf4qP1xvjJbWU8rPBHqPQQR3tHopu3DL3hERNTu2aS1Wsi9eCks2i7CYL3YaBNzARU8Vd7Qqbzhqa66VPlUu+7406l9lPWc/XUdozsb6wyrpdZCZWTwunir/eCv6QI/TWf00vVFH69B/FzuAOoKtCN8pmFgp3g3l4yIWhuDbDUWuxm/lB/CUcMepemwCmoEe/VHhHdM1aBNba+JFRERUUuwS1tVE97q/XIdg06ZbEZU2suVAXkuh1Z4Qqf2hslW3uBURJ4q76rmzl3gX3XpbPbMmteOzWw34WDJtzhWfgCnDuTj6Rv/6e4iEVEra2qQ7RDpzUOlxWC/ERjoOwy5pmOw2M0I9urPvl9ERNQhqYRaCY71sUkrKu1GmGxGR8C1G1FpMzou7cZqoffSMrM0wWx1tIDyEDoloPprOsPf41Jo5aCJVB+tyhND/BJxrPwAgvr6Q0rJGnkiqlOHCLJOKqHixOlERERNoBYaeKv94a1u2mCHdmmH2V4Bk92oND1mAKEr4afuBFOZGd6BOpTbSuCrCXR3kYioDbq6J58jIiKiVqESKniqfRDoEQQvtQ9DLF0xIQTyTzhG5M43n3FzaYiorWKQJSIiIqI2Je8XR5AtMOe6uSRE1FYxyBIRERFRmxIXMQIAUMAaWSKqB4MsEREREbUpt027GwBQaD4Hm7S5uTRE1BYxyBIRERFRm1JaZICPCIQdNly0nHd3cYioDXJrkBVC/FYIkSGESBdCrBdCcDx+IiIiog5uzpw5SNv+EwA2LyaiurktyAohegN4BECClDIKgBrAre4qDxERERG1HXm/lADgyMVEVDd3Ny3WAPASQmgAeAM46+byEBEREVEb4JyChzWyRFQXtwVZKeUZAMsAnAZwDkCJlHJLzfWEEAuFEKlCiNT8/PzWLiYRERERucHFnHKohQZl1iKYbEZ3F4eI2hh3Ni3uBOBGAOEAegHwEULcUXM9KeWbUsoEKWVCUFBQaxeTiIiIiNxA2iW6ePQCwFpZIqpN48ZjXwsgS0qZDwBCiA0ARgF4z41lIiIiIiI3e+CBBwAAXbWdkWc+jQLzGQR79XdzqYioLXFnkD0NYKQQwhtABYCJAFLdWB4iIiIiagNuueUWAMApo2Pk4nxzrjuLQ0RtkNuCrJRyrxDiYwAHAVgBHALwprvKQ0RERERtQ05ODgCga8/eAIBC81lIKSGEcGexiKgNcWeNLKSUzwB4xp1lICIiIqK2Zf78+QCAlJQUeKv9YLSVodRaiACPrm4uGRG1Fe6efoeIiIiIqF5dtY5aWQ74RETVMcgSERERUZvlDLLsJ0tE1THIEhEREVGbFaQNBsAaWSJyxSBLRERERG1WZ4+eEBC4aLkAq93i7uIQURvh1sGeiIiIiIhq+t3vfqdc91BpEejRHRct51FoOYvuulA3loyI2goGWSIiIiJqU6ZPn+5yO0jbGxct51FgPsMgS0QA2LSYiIiIiNqYn3/+GT///LNy+9KAT+wnS0QOrJElIiIiojblvvvuA+CYRxbgFDxEVBtrZImIiIioTQvQdIWH0MFoK4XRVuru4hBRG8AgS0RERERtmhCCzYuJyAWDLBERERG1eUrz4koGWSJikCUiIiKidiBI6Seb6+aSEFFbwMGeiIiIiKhN+dOf/lRrmbNGttByDnZph0qwPoaoI2OQJSIiIqI25dprr621zFPtAz91J5TZLqLYkofO2h5uKBkRtRX8KYuIiIiI2pS0tDSkpaXVWs5peIjIiUGWiIiIiNqUxx57DI899lit5ZdGLmY/WaKOjkGWiIiIiNqFIF0wANbIEhGDLBERERG1E508ukMFNUqsBTDbTe4uDhG5EYMsEREREbULaqFRBnlirSxRx8YgS0RERETtRpCWzYuJiNPvEBEREVEb88ILL9R736UBnxhkiToyBlkiIiIialNGjRpV733Vp+CRUkII0VrFIqI2hE2LiYiIiKhN+eGHH/DDDz/UeZ+vOhCeKm9U2o0w2C62csmIqK1gjSwRERERtSl/+MMfAAApKSm17hNCoKs2GLmmY8g3n4GfpnMrl46I2gLWyBIRERFRu1K9eTERdUwMskRERETUrgQ5g2xlrptLQkTuwiBLRERERO1Kl6ogW2S5AJu0urk0ROQODLJERERE1K5oVToEaIJghw1F5vPuLg4RuQEHeyIiIiKiNuWVV15pdJ0gbW+UWPNRYD6DIF1wK5SKiNoS1sgSERERUZui1+uh1+sbXMc54FO+mf1kiToitwZZIUSgEOJjIUSmEOInIUSiO8tDRERERO63detWbN26tcF1grSOWliOXEzUMbm7afEKAF9JKecIIbQAvN1cHiIiIiJys+eeew4AcO2119a7ToBHEDTCAwZbMSps5fBS+7RW8agGm7QhtXgLTHYDPFU+8FT7uFx6VV33EDoIIdxdXLpKuC3ICiH8AYwFkAwAUkozALO7ykNERERE7YdKqNBF2wsXKk+hwJyLEK+B7i5Sh3Wo5Fv8XL6/0fVUUF8KuSpveKovhVyX4Kv2gafKFyrBXpAdiU1acdJ4pMnru7NGNgJAPoDVQohYAAcAPCqlLK++khBiIYCFANCnT59WLyQRERERtU1dtb2rguwZBlk3ya04hqOGPRAQGBY4GVJKmOzlMNmNMNnKYbKXo6Lq0irNMNpKYbSVNmnfjlDrCy+VL7zUfvBW+1bd9nNcqn3hrfaDWri7kSn9GhZ7JY6VH8DRsr2osJc1eTt3PusaAPEA/k9KuVcIsQLAYgBPV19JSvkmgDcBICEhQbZ6KYmIiIioTXL2k81nP1m3KLeWYOfF/wEA4gKuwSDf4Q2ub7VbqkJuOUy2clRUXdYOvoZL69nLcREXGtyvVngqwdZL7QcvlS+81b7w03RGb8/+rNltoypsBmQa9uFnQyrM0gKuZ3kAACAASURBVAQACNR0a/L27gyyuQBypZR7q25/DEeQJSIiIiJqlHPk4kLzGdilnYGlFdmlDd8XbYDZXoHenv0Q6Tuq0W00Kg/4qgLhi8Am7N8Ok90Ao82AClsZKmwGVNgNqLAZYKxx2yxNMFtNKLEW1NqPv6YL4vyvQR+vQeyf20aUWS8io2w3TpSnwQYrAKCbtg+i/Eajt2c/AA80aT9uC7JSyvNCiBwhxEAp5c8AJgI46q7yEBEREVHb8O9//7tJ63mr/eCt9ofRVopSawECPZpem0O/TlppCvLNOfBS+WF0pxubPSSqhArean94q/0bXE9KiUp7BSrsVeHWGXTtBuRWHEeptRDbiz5CF49eiA+4Bj09I5q1nNR0RebzSC/bhVMVRyHhaGgb7DkAUX6j0U0Xctn7c3eD8v8DsK5qxOKTAO52c3mIiIiIyM0GDmx6f9cgbTBOVRxFvvkMg2wrOWP6BelluyAgMLbLLHi6ccRoIQQ81d7wVHujk0d3l/uGBkzCL+WHcLj0exRazuKbgvfQUxeOuIBrlNp8allSSlyozMaRsl04V3kSACCgQl/vGET6jUKgR9AV79utQVZKmQYgwZ1lICIiIqK25bPPPgMATJ8+vdF1u2p74//Zu/O4qOr1geOfM+ybirnkCrihsgqI4oa7loqamrnl0qbWLetW2q1+Wdlt817TLKvrgpmZZrncrrcyl0RzRdHU6y4KSgjiwj4w8/39MXACZRPRAXzerxevYc7yPc85cwbmme92LvMoycYLtHRpd6dDu+dlmFLZkbIWgIAa4dR38LByRMWz0Wzwdg2hmbM/x9L2cDh1BwnZZ0m4tAgPpzYE1uhBTbs61g6zWjIrM3FZxzl8fQeXcy4CYKvZ0dIliLauHXGxrXnbx7B2jawQQgghhBCF/OMf/wDKlsjWzatZS5YBn+44szITlfI9WeYMGjh44evWxdohlYmdwR6/Gl1o5RrM4es7OJa2h3OZ/+N85jGauwQS4BaOi23JTZirE7Myk23OIMucgVnlYm9wwtHgjK1mf9tNxC1T6BziSOpOrudeBsDB4Ewb11C8XdvjYHCqiFMAJJEVQgghhBBVWG37BmgYuJpziRyzETuDvbVDqrYOXd9GYvY5HA0udKk9tMoNruVgcCK4Vm/auIVy6HoUJ9P3cyr9AGfSD9HaNRRft8442jhbO8xb9mdimk6WyZKgZpnTyTbljQadNyJ0/jbZ5swiyzFgwMHgbPmxccr73ZLkOhj+fG5Zb/ndXnNE0zSMeVPo/C91F5nmNABcbWrR1q0jLZzbYWuwq/DzlkRWCCGEEEJUWbaaHe529UnJSeCy8SL3O3paO6RqKSHrLIdStwHQtfZQnGxcrRxR+Tnb1KCj+wDaunYk5vpWYjOPcDRtJyfT9+Pj1ok2rh2s+oVI4cT0z2T0z8Q0P2G1PDcWk5iWxJKgumDQbDGaM8k2Z5CrciwjQZvTyBtMuFQaGg4GJ3JVLrnKCEAtu3r4unXG08nnjn7ZIYmsEEIIIYSo0uraNyIlJ4Fk4wVJZO+ATFMa21PWAODv1rXajPxbw+4+ut03DB9jJw5c28zF7NPEXN/CsbQ9+NfoRkuXIGw0m9s+jlmZ8hLRjBvmzM2wJKwF59Itd2LqjKPBGUeDC442zjgYXCzPbfIeDc442LjgaHDBweBUZIKZq3LINlmS2mxz0Y9ZpsLLclQ2WeYMAOrbe+Dr1omGji3uylRHksgKIYQQQogqrY59I46n7yPJGG/tUKodpRTbU9aSaU6jvn1T/GuEWzukCneffQN61x3DH1ln2X99M8nGC+y5+l+Opu4ksGYPvJx8CyVm+YlpcclotimDTHO6vtyosm4pnvxazhuTUQf99/zllsTVvpjE9FbZanbY2trhQtn7C5uUCaM5E7My3/V+xpLICiGEEEKISmXZsmW3tH1d+8aAZcAnpdRdqQ26VxxO3U5C9hkcDM50ve+hKtcv9lbc7+jFAw6TiMs6zoFrm7mWm8z2lDX8bhuFvcHpNhPT/FrRvFpTveb0z1rU/AS1ohLTu8FGs7FaM3NJZIUQQgghRKXSpEmTW9rezbY29pojmeY00k3Xca2AqT0EJGafI+b6VgC6uA/G2ab6j+yraRpNnVrT2LEVZzIOEXN9K9dykwtvoyemxSejBRNWe4NjlUlMqxJJZIUQQgghRKWycuVKAEaOHFmm7TVNo459Iy5mnybZeEES2QqQZcogKuV7FAof1040cmpp7ZDuKoNmoIVLIF7OviRmn8NGs9UTVgeDk9T6VwKSyAohhBBCiEplwYIFQNkTWaBAIhuPp3PbOxXaPUEpxY4r68gwpVLXvjHtavawdkhWY6PZ0tCxubXDEEWQOm4hhBBCCFHl1bVvBECS8YKVI6n6jqbt4kLWSew1R7rWHoahAkbuFaKiSSIrhBBCCCGqvPvyEtkUYwJmZbJyNFVXUnY8+69tAqBz7cHSTFtUWpLICiGEEEKIKs/Rxhk329qYyOVKTqK1w6mSss2ZbEv5DoWZNq4daOLkbe2QhCiWJLJCCCGEEKJayJ+GR5oX3zqlFL+lrCfddI377BoSVLO3tUMSokQy2JMQQgghhKhUVq9eXa796tg34kzGIZKNF4D2FRtUNXcsfS9xWcex0xzodt8wbKRfrKjkJJEVQgghhBCVSp06dcq3X14/2WSpkb0ll40Xib66EYBO7oNws3W3ckRClE6aFgshhBBCiEolMjKSyMjIW97P3a4+NthyPfcy2ebMig+sGjKas/j18neYMeHtEoKHTF0kqghJZIUQQgghRKVS3kTWRrOhtv39gNTKlkQpRbY5k+u5Key88gNppiu4291PSK2+1g5NiDKTpsVCCCGEEKLaqGvfmCRjPMnGCzRybGHtcO44szJjNGeRbc7I+8kkK+8x25T3WGBd/qNC6WXYavaE1x6GjSapgag65G4VQgghhBDVRn4/2aTseCtHcuvMylQo2cwyZ5BtKjoRzU9WjeVsQm2n2eNgcMbRxoWAGuHUsLuvgs9GiDtLElkhhBBCCFFt1MmbgifZeAGlFJqmWSUOk8q1JJ2mAjWkRSWkBWpNc1R2uY5lrzniYOOMg8EJB4Pl0dFQ8Hne7wW2kVGJRVUniawQQgghhKg2XGxq4GRwJdOcRmpuSoXUNJqViQxTWqmJaMFkNVfl3PJxNDTs85JQ+0LJaH4SWiApLbCdQZNhb8S9RxJZIYQQQghRqWzYsKHc+2qaRh37RsRlHSfJeKHciaxJ5ZKQdYbYzKPEZR6/5dpSDUPhWlEbpwJJqPMNNaaWRNVec7RaDbIQVY0kskIIIYQQolJxdna+rf3zE9lk4wWau/iXeT+TMpGQdYZzmUc5n3msUPLqZHDD0aZwc13HGxLRguvsNHtJSoW4gySRFUIIIYQQlcqnn34KwNSpU8u1f928AZ+SjaUP+GRWJhKyzxKbcZS4zGMYVZa+zt2uPp5ObfFwaiuDIQlRyUgiK4QQQgghKpVVq1YB5U9k77NviIZGSk4iuSoHW82u0HqzMvFHdiyxGUc5n3Ws0Mi/tezq6clrTbs65T8JIcQdJYmsEEIIIYSoVuwMDtS0q8vVnEukGBOo59AUszLzR3ZsXrPh/5FdIHmtaVsXT2dL8lrLrq4VIxdClJUkskIIIYQQotqpa9+YqzmXOJV+kDMZv3Mu839kmzP09TVt6+Dh1BZP57bUsqtnxUiFEOUhiawQQgghhKh26tg34mT6fk5lHNCXudnWxtPJx5K82taTwZiEqMIkkRVCCCGEENVOI8cWOBlcsdXs8HT2wcOpLe529SV5FaKa0JRS1o6hzOrUqaM8PT2tHYYQQgghhBBCiDsgOjpaKaUMpW1XpWpkPT092bdvn7XDEEIIIYQQQghxB2iatr8s25Wa6QohhBBCCCGEEJVJlaqRLSg+Pp6hQ4eyf/9+zGaztcMRQghxjzIYDAQFBbFmzRoaN25s7XCEEEKIe0KVTWSHDh3KQw89xI4dO7C3t7d2OEIIIe5RRqOR2bNnM3ToUPbu3WvtcIQQQoh7QpUa7CkkJETl95G1sbEhMzNTklghhBBWZzQacXJywmQyWTsUIYQQokrTNC1aKRVS2nZVto+s2WyWJFYIIUSlYG9vL91chBBCiLuoyiayQgghhBBCCCHuTZLICiGEEEIIIYSoUkpNZDVNW6xp2iVN0w4XWFZb07SNmqadzHt0L2Zfk6ZpMXk/6wss99I0bXfe/is1TZM2wkIIIYQQQgghyqQsNbKRQP8bls0ANimlWgKb8p4XJVMpFZj3E1Fg+fvAnLz9rwCP3VrYt+6jjz4iIyPjTh8GgDVr1qBpGseOHbsrx7tdrq6uFVpedTn/d955Bx8fH/z9/QkMDGT37t3lKn/r1q389ttvtxNiIZ6eniQnJ1dYef3796dWrVoMHDiw0PIxY8bg7e2Nr68vkyZNIicnp8RyYmJiCAsL06/ZypUr9XVnz56lQ4cOtGzZkpEjR2I0GgHYtm0bQUFB2Nrasnr16pvKvH79Oo0aNeKZZ56pgDMVQgghhBDVRamJrFJqG5Byw+LBwNK835cCQ8p6QE3TNKAnkP+p9Zb2L6+7mciuWLGCLl268M0331RYmbm5uRVW1p1WHc5/586d/PDDD+zfv59Dhw7xyy+/0KRJk3KVVdGJ7O0o6jq+9NJLLFu27KblY8aM4dixY/z+++9kZmaycOHCEst2dnbmyy+/5MiRI/z4449MmzaNq1evAjB9+nSef/55Tp48ibu7O4sWLQKgadOmREZGMnr06CLLfP311wkPD7/V0xRCCCGEENVcefvI1ldKJQDkPdYrZjtHTdP2aZq2S9O0/GT1PuCqUir/E3U80Ki4A2ma9mReGfuSkpJKDSw9PZ0BAwYQEBCAr68vK1euZN68eVy8eJEePXrQo0cPAKZMmUJISAg+Pj688cYb+v4bNmygdevWdOnShWeffVavpUpPT2fSpEm0b9+edu3asW7duiKPn5aWxo4dO1i0aFGhRG7r1q1069aNoUOH0rZtWyZPnqyPcOnq6spf//pXgoKC6NWrF/nn2b17d/72t78RHh7O3LlzOXfuHL169cLf359evXpx/vx5rl27hqenp15WRkYGTZo0IScnh9OnT9O/f3+Cg4Pp2rWrXkN69uxZwsLCaN++Pa+//nqp1/RWVJfzT0hIoE6dOjg4OABQp04dGjZsCEB0dDTh4eEEBwfTr18/EhIS9HinTZtGp06d8PX1Zc+ePcTGxvLZZ58xZ84cAgMDiYqKIikpiWHDhtG+fXvat2/Pjh07AJg5cybjx4+nb9++eHp68v333/Pyyy/j5+dH//79C9WIfvjhh4SGhhIaGsqpU6cASiz3ySefpG/fvjz66KM3nWuvXr1wc3O7afmDDz6IpmlomkZoaCjx8fElvvatWrWiZcuWADRs2JB69eqRlJSEUorNmzczfPhwAMaPH8/atWsBS+2yv78/BsPNf4qio6NJTEykb9++JR5XCCGEEELcg5RSpf4AnsDhAs+v3rD+SjH7Ncx7bAbEAs2BusCpAts0AX4vSxzBwcEqnyX0m61evVo9/vjj+vOrV68qpZTy8PBQSUlJ+vLLly8rpZTKzc1V4eHh6uDBgyozM1M1btxYnTlzRiml1COPPKIGDBiglFLqlVdeUcuWLVNKKXXlyhXVsmVLlZaWpi5cuKAeeOABvdxly5apSZMmKaWUCgsLU9HR0UoppbZs2aIcHBzU6dOnVW5ururdu7f69ttv9XP56quvlFJKvfnmm+rpp59WSikVHh6upkyZopc9cOBAFRkZqZRSatGiRWrw4MFKKaUiIiLU5s2blVJKffPNN+qxxx5TSinVs2dPdeLECaWUUrt27VI9evRQSik1aNAgtXTpUqWUUvPnz1cuLi5FXsvyqC7nn5qaqgICAlTLli3VlClT1NatW5VSShmNRhUWFqYuXbqkH2/ixIl6vPn33q+//qp8fHyUUkq98cYb6sMPP9TLHjVqlIqKilJKKXXu3DnVunVrfbvOnTsro9GoYmJilJOTk9qwYYNSSqkhQ4aoNWvWKKUs9/KsWbOUUkotXbpUv0dLKjcoKEhlZGQU+7pt2bJFL+dGRqNRtWvXTm3btq3Y/W+0e/du1bp1a2UymVRSUpJq3ry5vu78+fP6tck3fvx4/X5QSimTyaTCw8PV+fPn1ZIlS/R7QojKrLj/S0IIIYQoO2CfKkNuWN4a2URN0xoA5D1eKiZJvpj3eAbYCrQDkoFamqbZ5m3WGLhYzjhu4ufnxy+//ML06dOJioqiZs2aRW63atUqgoKCaNeuHUeOHOHo0aMcO3aMZs2a4eXlBcCoUaP07X/++Wfee+89AgMD6d69O1lZWZw/f56GDRuyYcMGfbsVK1bwyCOPAPDII4+wYsUKfV1oaCjNmjXDxsaGUaNGsX37dgAMBgMjR44EYOzYsfpyQF8Oluau+U0wx40bp283cuRIvT/iN998w8iRI0lLS+O3335jxIgRBAYG8tRTT+k1hzt27NDPbdy4cbd8jUtSXc7f1dWV6OhovvjiC+rWrcvIkSOJjIzk+PHjHD58mD59+hAYGMisWbMK1VTml9utWzeuX7+uN60t6JdffuGZZ54hMDCQiIgIrl+/TmpqKgAPPPAAdnZ2+Pn5YTKZ6N/f0j3dz8+P2NjYm44zatQodu7cWWq5ERERODk5FXmupZk6dSrdunWja9euZdo+ISGBcePGsWTJEgwGQ/4XVoVYehgU79NPP+XBBx8sd3NuIYQQQghRvdmWvkmR1gPjgffyHm9qZ5s3knGGUipb07Q6QGfgA6WU0jRtCzAc+Ka4/curVatWREdHs2HDBl555RX69u3L//3f/xXa5uzZs8yePZu9e/fi7u7OhAkTyMrKKvIDdz6lFN999x3e3t7FbnP58mU2b97M4cOH0TQNk8mEpml88MEHwM0f3ov7MF9wuYuLS7HHy98uIiKCV155hZSUFKKjo+nZsyfp6enUqlWLmJiYUo9RmjVr1vDmm28CsHDhQkJCQorcrrqdv42NDd27d6d79+74+fmxdOlSgoOD8fHx0ZPH0sot6jhms5mdO3cWmVjmN2U2GAzY2dnp+xsMhkL9WwuWm/97SeWWdB1L8uabb5KUlMTnn39epu2vX7/OgAEDmDVrFh07dgQszbKvXr1Kbm4utra2xMfH6820i7Nz506ioqL49NNPSUtLw2g04urqynvvvVeu8xBCCCGEENVLWabfWQHsBLw1TYvXNO0xLAlsH03TTgJ98p6jaVqIpmn5I8K0AfZpmnYQ2AK8p5Q6mrduOvCCpmmnsPSZXVRRJ3Tx4kWcnZ0ZO3YsL774Ivv37wfAzc1Nr526fv06Li4u1KxZk8TERP773/8C0Lp1a86cOaPXfBUcdbVfv358/PHHerJ74MCBm469evVqHn30Uc6dO0dsbCxxcXF4eXnpNYd79uzh7NmzmM1mVq5cSZcuXQBLApI/YuvXX3+tL79Rp06d9H6ny5cv17dzdXUlNDSU5557joEDB2JjY0ONGjXw8vLi22+/BSyJ+MGDBwHo3LlzoXJKM3ToUGJiYoiJiSk2ia1u53/8+HFOnjypP4+JicHDwwNvb2+SkpL0RDYnJ4cjR47o2+XfM9u3b6dmzZrUrFmz0L0H0LdvX+bPn1+o7FuVf5yVK1cSFhZWYeUWtHDhQn766SdWrFhRqA/rnj17iuxrazQaGTp0KI8++igjRozQl2uaRo8ePfTXeOnSpQwePLjEYy9fvpzz588TGxvL7NmzefTRRyWJFUIIIYQQurKMWjxKKdVAKWWnlGqslFqklLqslOqllGqZ95iSt+0+pdTjeb//ppTyU0oF5D0uKlDmGaVUqFKqhVJqhFIqu6JO6Pfffyc0NJTAwEDeeecdXnvtNQCefPJJHnjgAXr06EFAQADt2rXDx8eHSZMm0blzZwCcnJz49NNP6d+/P126dKF+/fp60+TXX3+dnJwc/P398fX11QcJunjxIg8++CBgaVY7dOjQQvEMGzaMr7/+GoCwsDBmzJiBr68vXl5e+rYuLi4cOXKE4OBgNm/efFMNcr558+axZMkS/P39WbZsGXPnztXXjRw5kq+++qpQU9zly5ezaNEiAgIC8PHx0Qeomjt3Lp988gnt27fn2rVrt3fBC6hO55+Wlsb48eNp27Yt/v7+HD16lJkzZ2Jvb8/q1auZPn06AQEBBAYGFhqR2N3dnU6dOjF58mR9ZN5BgwaxZs0afbCnefPmsW/fPvz9/Wnbti2fffbZrV5qsrOz6dChA3PnzmXOnDn69SlPuV27dmXEiBFs2rSJxo0b89NPPwEwefJkEhMTCQsLIzAwkLfeeguA8+fPF1nru2rVKrZt20ZkZCSBgYEEBgbqyfT777/PP//5T1q0aMHly5d57DHLjFt79+6lcePGfPvttzz11FP4+PiUGu/jjz/Ovn37ynRuQgghhBCietJKak5b2YSEhKj8D7CappXYFLi80tLScHV1RSnF008/TcuWLXn++edvu9ytW7cye/Zsfvjhh5vWubq6kpaWdtvHqMzuhfPv3r07s2fPLrHWujp46aWXGDduHP7+/tYORYhK5U79XxJCCCHuJZqmRSulSv1AXd4+stXWv/71L5YuXYrRaKRdu3Y89dRT1g5JiErlww8/tHYIQgghhBDiHic1skIIIUQFkP9LQgghxO0ra41seaffqdRcXV0LPY+MjOSZZ57h559/JiwsTP+gYTKZCvVx/OKLL2jdujWtW7cmJCSErVu3AjBz5kxeeeWVQmXGxMTQpk0bADw9PUlOTtbXrVmzBk3TOHbsWJniXbx4MX5+fnr/2/y+nMXJP5/bFRsbq/dfrQr+/ve/V2h5kZGRXLxYYTM/les4x44dIzAwkHbt2nH69Ok7HgtYmnkX7Nf72Wef8eWXX5arrDtxDz3++OMcPWoZF67gax4bG4uvr2+FHefixYsMHz68wsq7VevXr69yA1jd+Le1KPPmzaNNmzaMGTOmTOfYqVOnigrvliQkJDBw4EDA8p6oWbMm7dq1o02bNvoo7Vu3btW3+eGHH3jjjTesEqsQQgghblYtE9ni9O3bFw8PD30Qno8//pj27dvTqVMnfvjhBz7//HO2b9/OsWPH+OKLLxg7diwXLlxg1KhRhUYwBst8pflzmt5oxYoVdOnSRR8ZtyTx8fG88847bN++nUOHDrFr16671vewuiSySinMZvMtl1cZEtm1a9cyePBgDhw4QPPmzUstq7znWtCNiezkyZOLHIW4LO7EPbRw4ULatm0LVPyXF/lyc3Np2LChPpJyRZddFhEREcyYMaPCj29tn376KRs2bGD58uVlOseC9+Ld9M9//pMnnnhCf961a1cOHDjAvn37+Oqrr4iOji60/YABA1i/fj0ZGRl3O1QhhBBCFOGeSmQB5syZw7vvvsuRI0eYP38+77//PmAZVfXDDz+kTp06AAQFBTFx4kQ++eQTvL29qVWrFrt379bLWbVqFY888shN5aelpbFjxw4WLVpUpkT20qVLuLm56TUdrq6ueHl5AZbBg/KbUicnJ+Pp6anvFxcXR//+/fH29tZrDwC+/PJL/P39CQgIYNy4cQBMmDCh0Af2/GPNmDGDqKgoAgMDmTNnDrGxsXTt2pWgoCCCgoL0D5hbt26le/fuDB8+nNatWzNmzBi9Vjs6Oprw8HCCg4Pp168fCQkJgKXGumPHjvj7+zN06FCuXLlS4jkdOXJEH23a39+/0NQ3+bFmZmYSGBjImDFjiI2NpU2bNkydOpWgoCDi4uL0GvegoCBGjBihDyD11ltv0b59e3x9fXnyySdRSrF69Wr27dvHmDFjCAwMJDMzE09PT/72t78RFhZGSEgI+/fvp1+/fjRv3rzQCMAffvgh7du3x9/fX6+hyY/niSeewMfHh759+5KZmVnkcfJt2LCBjz76iIULF9KjRw/A8uHa19cXX19fPvroo0JlFzzXgjw9PZk+fTqhoaGEhoZy6tQpAP7973/ToUMH2rVrR+/evUlMTCQ2NpbPPvuMOXPm6KMoz5w5k9mzZwNw+vRp+vfvT3BwMF27dtVbFUyYMIFnn32WTp060axZM/1+uvEeKu11XLVqFS+88AJgGT26WbNm+nHzp1PKv0dufM3B0orixmt8owkTJjB58mS6du1Kq1at9AHGIiMjGTFiBIMGDaJv376FangjIyMZMmQIgwYNwsvLi/nz5/PPf/6Tdu3a0bFjR1JSUgBLH/r27dsTEBDAsGHD9KRmwoQJvPDCC/To0YOXXnqJli1bkpSUBFiml2rRokWhVhv5x8xvWTFhwgSmTJlCjx49aNasGb/++iuTJk2iTZs2TJgwQd/H1dWV6dOnExwcTO/evdmzZw/du3enWbNmrF+//qZyAQYOHKi3LnF1deXVV18lICCAjh07kpiYCMC5c+fo1asX/v7+9OrVi/PnzwOWObfDwsJo3769PlJ7vqLeB5MnT+bMmTNEREQwZ86cQrEkJiYydOhQAgICCAgI0P++FKzlvZX3FsCpU6fo3bs3AQEBBAUFcfr0acaNG1eoVUt+zfCNvvvuO/r373/TchcXF4KDg29qIaFpGt27dy9ywDohhBBCWIFSqsr8BAcHq3yW0ItmMBhUQECA/tOkSRP19NNP6+vnzZun3Nzc1JIlS/Rl7u7u6urVq4XKWbt2rRo8eLBSSqkPPvhATZs2TSml1M6dO1VISIi+nYeHh0pKSlJKKbVs2TI1adIkpZRSYWFhKjo6utg4lVIqNzdX9e3bVzVp0kRNmDBBrV+/Xl8XHh6u9u7dq5RSKikpSXl4eCillFqyZIm6//77VXJyssrIyFA+Pj5q79696vDhw6pVq1Z6LJcvX1ZKKTV+/Hj17bff6uW6uLgopZTasmWLTcELzAAAIABJREFUGjBggL48PT1dZWZmKqWUOnHihMq/3lu2bFE1atRQcXFxymQyqY4dO6qoqChlNBpVWFiYunTpklJKqW+++UZNnDhRKaWUn5+f2rp1q1JKqddff10999xzJZ7TM888o7766iullFLZ2dkqIyPjpmuVH7dSSp09e1ZpmqZ27typl9W1a1eVlpamlFLqvffeU2+++Wah66CUUmPHjtWvccFYlLK8jp9++qlSSqlp06YpPz8/df36dXXp0iVVt25dpZRSP/30k3riiSeU2WxWJpNJDRgwQP3666/q7NmzysbGRh04cEAppdSIESPUsmXLijxOQW+88Yb68MMPlVJK7du3T/n6+qq0tDSVmpqq2rZtq/bv33/Tud7Iw8NDzZo1Syml1NKlS/XXNCUlRZnNZqWUUv/617/UCy+8cNMxb3zes2dPdeLECaWUUrt27VI9evRQSlnuoeHDhyuTyaSOHDmimjdvrpS6+R4q7XVMSEjQ3zvDhg1TISEhKj4+XkVGRqoZM2bcdL1ufM2Lu8YFjR8/XvXr10+ZTCZ14sQJ1ahRI5WZmamWLFmiGjVqpN8PZ8+eVT4+Pkopy3uqefPm+utdo0YNtWDBAqWU5V6YM2eOUkqp5ORk/Tivvvqqmjdvnn7MAQMGqNzcXKWUUjNnztT3+emnn9RDDz10U5xLlizR/y6NHz9ejRw5UpnNZrV27Vrl5uamDh06pEwmkwoKCtLPGVAbNmxQSik1ZMgQ1adPH2U0GlVMTIwKCAi4qVyllBowYIDasmWLvn/+/f/SSy+pt99+Wyml1MCBA1VkZKRSSqlFixbpf/cGDRqkli5dqpRSav78+frrUdz7QKnCfw8LxvLwww/r1yQ3N1f/e1tamSW97qGhoer7779XSimVmZmp0tPT1datW/X4r169qjw9PVVOTk6ha3/mzBkVFBSkPy94HycnJysPDw91+PDhm+7vr776Sj3zzDM3vZb5Svq/JIQQQoiyAfapMuSG1XLUYicnJ33+SrDUUBScd/Lpp59mxowZhWo6iqIKDNrxyCOP0KlTJ/7xj3/wzTffMGrUqCL3WbFiBdOmTdP3WbFiBUFBQcUew8bGhh9//JG9e/eyadMmnn/+eaKjo5k5c2aJsfXp04f77rsPgIceeojt27djY2PD8OHD9Vrl2rVrl1jGjXJycnjmmWeIiYnBxsaGEydO6OtCQ0Np3LgxAIGBgcTGxlKrVi0OHz5Mnz59AEttWYMGDbh27RpXr14lPDwcgPHjxzNixIgSjx0WFsY777xDfHw8Dz30EC1btiw1Xg8PDzp27AjArl27OHr0qD4nsNFoJCwsDIAtW7bwwQcfkJGRQUpKCj4+PgwaNKjIMiMiIgDw8/MjLS0NNzc33NzccHR05OrVq/z888/8/PPPtGvXDrDUwJ88eZKmTZvi5eVFYGAgAMHBwcTGxpZ6DgVt376doUOH4uLiAlhe16ioKCIiIgqda1Hy78dRo0bp00XFx8czcuRIEhISMBqNek1/cdLS0vjtt98KvVbZ2X9O8TxkyBAMBgNt27bVa/JuVNrreP/995OWlkZqaipxcXGMHj2abdu2ERUVxUMPPVRifECZr/HDDz+MwWCgZcuWNGvWTK9Z7tOnT7Hvix49euivd82aNfV7xM/Pj0OHDgFw+PBhXnvtNa5evUpaWhr9+vXT9x8xYgQ2NjYATJo0icGDBzNt2jQWL17MxIkTSz23QYMGoWkafn5+1K9fHz8/PwB8fHyIjY0lMDAQe3t7vRbRz88PBwcH7Ozs8PPzK9P9Zm9vr/f5DA4OZuPGjQDs3LmT77//HoBx48bx8ssvA7Bjxw6+++47ffn06dMBin0fdOvWrdhjb968We+LbWNjo8/Rne9W31upqalcuHBBn4/a0dERgPDwcJ5++mkuXbrE999/z7Bhw7C1LfyvLiEhgbp16xZaFhUVRbt27TAYDMyYMQMfHx+9JjtfvXr17kp3BCGEEEKUrlomsqUxGAxomlZoWdu2bYmOjqZnz576sv379+tzgjZp0gRPT09+/fVXvvvuO3bu3HlTuZcvX2bz5s0cPnwYTdMwmUxomsYHH3xw0/EK0jRNbxbap08fJk6cyMyZM7G1tdX7Q2ZlZd20z43PlVJFHqdgOUopjEZjkXHMmTOH+vXrc/DgQcxms/7BEMDBwUH/3cbGhtzcXJRS+Pj43HQtrl27Vuy5FndOo0ePpkOHDvznP/+hX79+LFy4sNBrUZT8hC//vPr06cOKFSsKbZOVlcXUqVPZt28fTZo0YebMmTddy4Lyz9NgMBQ6Z4PBoJ/zK6+8ctO0TLGxsTddo6KavZak4BcnNyp4rkUp+Lrn//6Xv/yFF154gYiICLZu3VrqlyNms5latWoV+hKooILnV1ysZXkdw8LCWLJkCd7e3nTt2pXFixezc+dO/vGPf5QY340xlHSNi3p/QMnX8cbXu+C9kN/vdcKECaxdu5aAgAAiIyMLJToFy27SpAn169dn8+bN7N69m+XLl5f53Iq79wDs7Oz0cykuxoLvMSj8Piu4f/77uChF3U8FFfc+uB23+t4q6f0ybtw4li9fzjfffMPixYtvWu/k5HTT34GuXbuW2mw4KysLJyenspyOEEIIIe6we66PbHFefvllpk+fzuXLlwFLH881a9YU+lCVX9vVvHlzvXayoNWrV/Poo49y7tw5YmNjiYuLw8vLi+3btxd73IsXL7J//379eUxMDB4eHoCl72P+gCM3DkqzceNGUlJSyMzMZO3atXTu3JlevXqxatUq/Rzy+/UVLGfdunXk5OQA4ObmRmpqql7mtWvXaNCgAQaDgWXLlmEymUq8Zt7e3iQlJemJbE5ODkeOHKFmzZq4u7sTFRUFwLJly/Ta2eLO6cyZMzRr1oxnn32WiIgIvQasIDs7Oz32G3Xs2JEdO3bo/UMzMjI4ceKE/mG1Tp06pKWlFTrmjedfFv369WPx4sV6/9sLFy5w6dKlEvcp63G6devG2rVrycjIID09nTVr1tC1a9cyxZU/GNnKlSv1muhr167RqFEjAJYuXVpqPDVq1MDLy4tvv/0WsCQWBw8evKVzK8vr2K1bN2bPnk23bt1o164dW7ZswcHB4aYaOij5NS/Jt99+i9ls5vTp05w5cwZvb+9bLqMoqampNGjQgJycnFKT08cff5yxY8fy8MMP6zW1d4OnpycxMTGYzWbi4uLYs2dPqft06tRJ79O/fPlyvb9y586dCy3PV573Qa9evViwYAFgab1x/fr1QutvtcwaNWrQuHFj1q5dC1haDxTss5zfx9zHx+emfVu1anXLLSYATpw4UaEjZwshhBCi/CSRzRMREcFjjz1G586dadGiBV26dGHt2rWFmp+NGDGCI0eOFDnIE1iaFec3c8s3bNiwEkd1zcnJ4cUXX6R169YEBgaycuVK5s6dC8CLL77IggUL6NSp000DxXTp0oVx48YRGBjIsGHDCAkJwcfHh1dffZXw8HACAgL0QXWeeOIJfv31V0JDQ9m9e7dec+Tv74+trS0BAQHMmTOHqVOnsnTpUjp27MiJEydKrQW0t7dn9erVTJ8+nYCAgEJTGS1dupSXXnoJf39/YmJi+L//+78Sz2nlypX4+voSGBjIsWPHihxF98knn8Tf318f+KegunXrEhkZyahRo/D396djx44cO3aMWrVq8cQTT+Dn58eQIUNo3769vk/+oEA3DsJUkr59+zJ69GjCwsLw8/Nj+PDhpSapZT1OUFAQEyZMIDQ0lA4dOvD444/rzSxLk52dTYcOHZg7dy5z5swBLNNGjRgxgq5du+rNzcHShHXNmjX6YE8FLV++nEWLFhEQEICPj0+pU0HdeA+V5XXs2rUrcXFxdOvWDRsbG5o0aaInTjcq6TUvibe3N+Hh4TzwwAN89tlnhVoX3I63336bDh060KdPH1q3bl3ithEREaSlpZWpWXFF6ty5M15eXvj5+fHiiy+W2LUh37x581iyZAn+/v4sW7ZM/xs0d+5cPvnkE9q3b1+opUV53gdz585ly5Yt+Pn5ERwczJEjRwqtL0+Zy5YtY968efj7+9OpUyf++OMPAOrXr0+bNm2KvfYuLi40b95c/+KrrLZs2cKAAQNuaR8hhBBC3BlaSc2zKpuQkBCV39f1Tk48n5uby8SJEzGbzXz11VclNgsWwto8PT3Zt29foWT1XjZhwgQGDhxo1TliAfbt28fzzz9/05cF4s7LyMjAz8+P/fv3F1nTD5b5vqOjo5k1a1aZykxMTGT06NFs2rSp2G3u5P8lIYQQ4l6haVq0UiqktO3uyT6ypbG1tWXZsmXWDkMIUUW99957LFiwoEx9Y0XF+uWXX5g0aRIvvPBCsUkswNChQ/VuGGVx/vz5MvXjFkIIIcTdITWyQgghRAWQ/0tCCCHE7StrjWypfWQ1TVusadolTdMOF1hWW9O0jZqmncx7dC9iv0BN03ZqmnZE07RDmqaNLLAuUtO0s5qmxeT9BN7KyQkhhBBCCCGEuHeVZbCnSKD/DctmAJuUUi2BTXnPb5QBPKqU8snb/yNN02oVWP+SUiow76fo+T6EEEIIIYQQQogblJrIKqW2ASk3LB4M5M/nsRQYUsR+J5RSJ/N+vwhcAureuJ0QQgghhBBCCHEryjv9Tn2lVAJA3mO9kjbWNC0UsAdOF1j8Tl6T4zmapjkUsyuapj2pado+TdP2JSUl/Rm4wYDRaCxn+EIIIUTFMRqNGAwyo50QQghxt9zx/7qapjUAlgETlVLmvMWvAK2B9kBtYHpx+yulvlBKhSilQgrO6RoUFMTs2bMlmRVCCGFVRqOR2bNnl2nOXiGEEEJUjPJOv5OoaVoDpVRCXqJ6qaiNNE2rAfwHeE0ptSt/eX5tLpCtadoS4MVbDWDNmjUMHTqU119/HbPZXPoOQgghxB1gMBgICgpizZo11g5FCCGEuGeUN5FdD4wH3st7XHfjBpqm2QNrgC+VUt/esC4/Cdaw9K89fOP+pWncuDF79+4tT+xCCCGEEEIIIaqwsky/swLYCXhrmhavadpjWBLYPpqmnQT65D1H07QQTdMW5u36MNANmFDENDvLNU37HfgdqAPMqtCzEkIIIYQQQghRbWlVafL2kJAQtW/fPmuHIYQQQgghhBDiDtA0LVopFVLadjLEohBCCCGEEEKIKqW8fWSt4uLFi1i61QohhBBCCCGEuFdVqUS2YcOGXLx40dphCCGEEEKIO2jatGkAfPTRR1aORAhxt5W14rJKJbJCCCGEEKL6kwRWCFEa6SMrhBBCCCGEEKJKkURWCCGEEEJUKmPHjmXs2LHWDkMIUYlJ02IhhBBCCFGpxMfHWzsEIUQlJzWyQgghhBBCCCGqFElkhRBCCCGEEEJUKdK0WAgruZx9iV//+BGjOYeOdcPxcGku8yQLIYQQQghRBpLICnEXZeZmsP3SL2xMWMf+yzsxYwbgi5Mf0tjZg051e9GlXm/a1ArARrOxcrRCCCGEdYSFhVk7BCFEJacppawdQ5mFhISoffv2WTuMCrU3eTu/Jv7I0KZjae7W2trhiDvApEwcSNnFxovribq0kSxTBgC2mh0d63bHxdaVnUlbuJ5zVd/H3f4+wur2oHO9XgTVDsPBxtFa4QshhBBCCHHXaJoWrZQKKXU7SWSt43z6GT47/j67kn8FwNHgxAy/9+lWv6+VIxMV5XTqcTZeXMemP37gcvYlfblPrXb0aTCY7vf3p4ZdLQBM5lwOXz3Ab0mb2H5pEwmZcfr2jjbOtL+vM53r9aZj3XB9HyGEEEIIIaobSWQrqes5V/ny9Kesi/sak8rF2caF1jX92Z+yE4BJLaYxxusp6StZRSVnJbLpjx/YeHE9Z9KO68sbOjWlT8MIejeIoJFz0xLLUEpxNu0EOy5tYkfSJk5cP6KvM2g2BLi3p3PdnnSq14v7nRrdsXMRQgghrGXYsGEAfPfdd1aORAhxt0kiW8mYzLn8O34lkafncT3nGhoaDzYazsQWz+Fufx/fxC5k4cl/olD0vH8AL/m8I81Jq4jM3HSi8vq9Hri8S+/3WsOuJt3rP0ifhhG0rRlY7i8nEjMv8lvSZn67tJmYK3swqVx9XQu3tnSu15Mu9XrTzNVbvgARQghRLXTv3h2ArVu3WjUOIcTdV6GJrKZpi4GBwCWllG/estrASsATiAUeVkpdKWLf8cBreU9nKaWW5i0PBiIBJ2AD8JwqJZiqmsjuTY7i0+Pvcy79FACB7qFM9X6FFjXaFNpux6XN/P33F8k0ZeBdw4+3A+dTx7G+NUIWpTApE/sv72Rjwnq2J24ky5wJWPq9htXtTp+Gg+lQpxt2BvsKPW5qzjV2J29jx6VN7EneRmZef1sAT5eWvBf8BfUcG1ToMYUQQoi7TRJZIe5dFZ3IdgPSgC8LJLIfAClKqfc0TZsBuCulpt+wX21gHxACKCAaCFZKXdE0bQ/wHLALSyI7Tyn135LiqGqJ7Pn0Myw4/j678/rBNnRqymTvl+lct1exNWdnUo/z2oGp/JF1gToO9ZnV7hNa1fC9m2GLEpxOPcbPF9ex+Y8fuJydpC/3rRVEnwYRhBfo93qnGU3Z7E/ZxW9Jm9hxaRNXjJfxdw/hHyFLZcRjIYQQVZokskLcuyq8abGmaZ7ADwUS2eNAd6VUgqZpDYCtSinvG/YZlbfNU3nPPwe25v1sUUq1Lmq74lSVRNbSD/YT1sWtwKRycbF1ZWyzKQxtOg77MtTQXTWm8EbMX/j9ajQOBkem+75L9/sfuAuRi6IkZSWyKeEHfklYx5m0E/ryRs4e9Glg6ffa0LmJFSO03DOP/zaYFGMSj7WYxphmk60ajxBCCHE7JJEV4t5V1kT2duaRra+USgDIS2brFbFNIyCuwPP4vGWN8n6/cflNNE17EngSoGnTkgfJsbZccw7r479h6an5pOZew4CBgY0fZmLz53B3uK/M5dSyr83skCV89L83+e+F73jr0PPEpp3i0eZPY9AMd/AMRD5Lv9eNbLy4nv0pO1FYvvCpYVeTHvcPoE+DCNrUDKg0fVJr2ddmuu+7TN//OJGn5xN0Xyfa1PS3dlhCCCFEufTq1cvaIQhxTzCajWWqaKuMbieRLYuiPuWrEpbfvFCpL4AvwFIjW3GhVaw9yVEsOP4e59JPAxDo3oGnW79S7rlh7Qz2vNh2Fp4uLfj8xId8eeYTzqWfZrrvuzjaOFVk6HdMtinLMjKzrau1QykTkzmX/Sn5/V5/0fu92ml2hNXtQe+GEXek32tFaV+nC8M9xrP63FL+/vtLfNHxe5xsXawdlhBCCHHLXn/9dWuHIES1lpmbzqsHpnIu/TTzQr8udVaNyuh2EtlETdMaFGhafKmIbeKB7gWeN8bSrDg+7/eCyy/eRixWcy7tNAtOvM+e5G2ApR/sFO/pdKrb87Zr6zRNY4TnRJq4NOOd3//Kr4k/cjHjPLPafUpdx/srIvw7IjbtFOvjVvDzxbVkmbN4oOFDjGs+tVIOQqSU4lTq/9iYsI7NCRtIMf7Z79WvVjB9GkYQXr8/bnY1rRhl2T3e8q8cSNnN6dRjfHzsHV72/bu1QxJCCCGEEJVIjtnIGwefJebKbgAWnvwnbwR8ZOWobt3t9JH9ELhcYLCn2kqpl2/YpzaWAZ6C8hbtxzLYU4qmaXuBvwC7sQz29LFSakNJMVSmPrLXjFf48oylH6xZmXCxdWVcs6kMaTr2jlTPx6ad4tUDU0jIjKO2fV3eDpxPm1oBFX6c8so157Dj0ibWxX1NzJU9+nINDYXCTrNjUJNHGO31FLUd6lgxUoukrD/4JeHfbLy4ntj0k/ryRs4e9G0wmF4NBlm932t5xaadYvKuYRjN2fyf/0d0v7+/tUMSQgghbskDD1jGBvnvf0scB1QIcYvMysw7v7/Ilj82UMuuNpmmDLLNWcwP/Ya2tQKtHR5Q8aMWr8BSs1oHSATeANYCq4CmwHlgRF6CGgJMVko9nrfvJOBveUW9o5Rakrc8hD+n3/kv8JeqMP1OrjmH9XErWHr6E70f7IDGI5jQ/Nlb6gdbHteMV3jz4HPEXNmDncGel33eoVeDQXf0mKVJykrkP/Gr+M+FVfoovo42zvRpEEFEk1HYGexYeno+W/6wfEfhaHBiqMdYRno+dtdG982XkZtGVOJGfk5YR0zK7gL9XmvR4/4HK12/19uxLm4Fc//3Jq62NVjYaV2lrA0XQgghiiODPQlR8ZRSzDv2NuvivsbZxoU57ZexLfEnlp/9HN9aQcxtv7xSfA6u8FGLKwNrJ7K7k7ax4MR7nE8/A0BQ7TCmeM+guZt3KXtWnByzkY+PzeKH+FUAjPGazMQWz97VQaCUUsRc2c2681+zPWkTZmUCwMOlORFNRtGnwWBc7dwK7XM69RiLT81lZ9IWAFxsXXnYYxLDPB69o31oTeZc9l3+jV8S1rP90i9km7OAvH6v9XrSp8FgQut0qbT9XstLKcVrMVPZmbSFAPf2zA6JlCl5hBBCVBmSyApR8Zaens/S0/OxM9jzftC/CKzdgfTcNMZF9eVqTgpvBnxM1/p9rB2mJLIVKTbtFJ8df589l6MAS/PTya2m06luD6t8a6GUYk3cV3x67F3MmOlSrw+v+L53xwf2SctJ5eeEtayPW6En8wbNhi71ejOkyWgC3ENLvR7/u3qQxafmEp3yGwA17dwZ5fUEg5uMxsHGsULiVEpxMvUoGy+uZ/Mf/+GKMVlfZ+n3Opju9fvjalejQo5XWRWckufxFs8zulmJs1sJIYQQlYYkskJUrHXnv2busbcwYGBm4Dy61Outr1t7fjnzjr1NY2cPFnf6AVuDnRUjlUS2QlwzXmHp6fmsj/8mrx+sG482m8qQpmMqRQ3e3uTtvHXoedJzU2nu1ppZgZ9S36lhhR/ndOpx1sd9zcaEf5NlygDgPod6DGz8MAMajaCOY/1bLjMmZTeLTn3EkasH8sqry1ivKTzYeHi5r+2lrAS93+u59FP68sbOHvRpMJjeDSJo4Ny4hBKqn73JUUzf/wQ2mi0fh66gdU0/a4ckhBBClEoSWSEqzuaE//DO7y+iULzYdhYPNh5eaH2uOYdJvw0iPiOWZ1u/zpCmY6wUqYUksrch15zDurgVLD09n7Tc63n9YB9mYotnqWVf+44f/1acTz/DawemEJ9xDnf7+3iw0XCcbV1xtnHBydYFF1tXnGxccLbN+8n73dHGucTmyEazkajEn1kX9zWHr+7Xlwe6d2BI09F0qtvztr+tUUqxO3kbi0/N5VTqUQDud2zEo82fpk+DCGwMpQ+qnZ6bxrbEn9h4cT0Hr+zR+73WtHO39HttOJjWNfwqRXt/a/nk2Lt8d34pjZ09+Fym5BFCCFEFzJ49G4AXX3zRypEIUbXtTd7OqwemkKtyeKLlXxnl9USR20UlbuSNg3+hll1tlnX9GRcrTp8piWw5WBKrX1lw/H3iMs4CEFy7E1O8p9PsLvaDvVWpOdd46+DzenPdsnKycdaTXmdbF5xsLImvvY0DMSm7uWK8DFj6s/ZtOISIxqPwcG1e4fGblZmoxJ+JPP2xPg9vE2cvJrZ4lm71+92UcJvMuey9vIONCev47dLmP/u9GuzpVLcnfRpEEFqnq9WbRVQWRlM2U3c/zJm04zzQaBgv+bxj7ZBEBTKasll1bgkt3FrTsW53a4cjhBBCiErif1cP8td9E8gyZzLCYyKTW71cbOWOUorn9o7h8NX9jPF6isdaPn+Xo/2TJLK36GzaSRYcf499l3cAluaok1tNJ8xK/WBvVa45h81/bCAx8wIZpnQyctPIyE0v9HumKZ2M3AwyctPIMmeWWmYzV28GNxlF7waD7kotnkmZ2JTwA0tPzychMw6A5m6tmdTiOTrW6c7J1CP8fHE9W/74j55kA/i7h9CnwWDC6/er9v1ey+ts2kmm7BqO0ZzNG/4fES5T8lQLGblpvHZgqj7l1QiPCTzR8q/yJY4QQogySctJ5V8nZ3M951qFlNfCrTUPNBpeKaZavNfFpp1i2t4xXM+5Rr+GQ3jJ5++lDg579GoMz+x5BHuDA8u6/ERdx/vvUrSFSSJbRteMV4g8/TH/jl/5Zz/Y5k8zpMnoStEP9k4xKROZuRlkmtJJz00jMy/pzf+9sYsnbWsGWiWJzzXn8N8L37HszAKSsxMBS1PhazlX9G2aOHvRp+FgejcYyP1O91a/1/LK78gvU/JUD9eMV5ix/wmOXz9MTTt30nJTMalc/GqF8EbAHGo71LV2iEIIUW7SR/buWHP+Kz4+NqtCy7TV7Ohavw+Dm4zGr1ZwlagQqm4SMy/y7J7RJGX/Qcc63Xkr8OMyf8n95sFp/Jr4I/0aDmW677t3ONKiSSJbihyzkXVxK/jy9Cd6P9hBTR5hQvO/UNPevUKOIW6P0ZTN+vhv+PrM51zNSaGmnTs9GwygT4PBeNfwlT+Mt0gpxasHprAreSuB7qF8GLJEpuSpopKyEnk5+jHOpZ+igVNjPgxeQkp2Em8eeo7L2UnUtq/LGwEf4ecebO1QhRCiXCSRvTvePvQCW/7YwOAmowlwb39bZeWYc9h26Wd2XtqMGTMAzVxbEdFkNL0bDLyj0y2KP101pvDcnjHEZZzFr1YwHwQvuqWZQS5knGfijgGYVC5fhK2huVvrOxht0SSRLYZSil3JW1lw/H3iM2IBCL6vE1NbzcDLrVUFRCkqWmZuOvEZ5/BybSlNJm/TlezLPL5zMFeMyTze8gVGez1p7ZDELbqQcZ6X9k3kj6wLeLq05IPghfrI4SnZSbx96AUOXtmLjWbLU61eYljTR+VLHyFElSOJ7N3xyLYeXMpKYFGnf+Pl2rJCyryUlcAP8av4T/y3+hSIzjYulvFWmozC07VFhRxH3CwjN42/7pvA8euHaebqzUftl5Wr2938Y3/n+/NfEnJUkl14AAAgAElEQVRfZz4IXnQHIi2ZJLJFOJt6gk9PvEf0ZcugSI2dPZniPZ2OdbrLBz1xz9iTHMWMvCl55oeuwFum5KkyzqQe5+Xox0kxJtG6hj/vBn1+UwsSkzmXf538J6vOLQagx/0P8mLbt2W0aiFElSKJ7J13KSuBR7b1wNW2Bmt77Cq1/+StyjEbiUrcyLq4Ffx+9c/P74HuoUQ0GU2Xer2kgqICGc1G/rb/Kfan7KSBUxPmhS7nPod65SrrmvEKY7f3JT03lfeDFtK+TpcKjrZkZU1kK/aOraSuGa/w0dE3eWLnEKIv/4arbQ2mer/Cok7rq8xgTkJUlNA6XXmo6aOYVC7v/P4imbnp1g5JlMHRqzE8v/dRUoxJtKvdkdkhi4vsBmFjsGWy98u84f8RTjbObPljA1N3P8z59DNWiFoIIURldfiKZXrFtrUCKzyJBctsEj0bDGBu6FcsDFvHoMaP4GjjTMyVPbx1aBqjonoSeepjkrISK/zY9xqTMvH3319if8pO3O3r8EHwonInsQA17d0Z4/UUAJ+f+BCTMlVUqBWqWieyOWYj356LZOz2vqyPXwGaxuAmo1nW5SeGe4yv1oM5CVGSJ1v+lWau3sRnnOOT49bpyC/KLvryb7wYPYnU3Gt0rtuLd9t9Xmpfo/D7+7Og42o8XJpzLv00U3YN59c/frxLEQshxO15+OGHefjhh60dRrV25NoBAHxrBd3xYzVz8+b5tjP5Nnwbz7Z+HQ+X5lzOTuLLM58wKqonMw8+x4GUXVSllqKVhVKKef97i22JP+Fi68r7Qf+ikXPT2y73oabjqOfYkDNpx9l4cV0FRFrxqmXTYqUUO5O28NmJ94nPOGfZ977OTPGeUWHt/4Wo6gpOyTMzYC7d6vezdkiiCFGJG5l16AVyVA59GwzmJZ93sDHYlnn/zNx0Zh99nS1/bABghMdEnmz511sqQwghRPXz1M6HOJl6lH+ERNKudse7emylFAev7GFd3Aq2X/oFk8oFwMOlOYOaPELfBkNwtXO7qzFVVYtPzeWrMwuwNzjwftBCAmrf3qBdBW28uJ53D79MHYf6fNnlRxxtnCqs7JLcs31kz6QeZ8Hx94lO+bMf7FTvGXSoEy5NiIW4Qf6w+262NVnYaZ3V5gsTRfvxwvfMPvIaZswMbTqWp73/Vq7mX0opvj+/jM9OfIBJ5eLvHsL/+csUPUKIyisjIwMAZ2dnK0dSPWXmpv8/e/cdV3X1P3D8dbjsKShOQFERlamiYpZalqM0d+Y3S/uWq73MrLRSM00r03I2NKufK9Mc2VYrxVyooCBucSJ7r3t+f4D3q7mBywV8Px8PHnE/n/P5nPcHMHjfc8770POPNgCsuXs7DtaW+zpfyDnHulPLWRu/jMTc8wDYKBuCPVoTXqMT4Z4dqedY32LxVWQrj3/FJ7GTsVIG3gmZRfua95Tp/Y3ayKiI/sSl7+eJxi/wSMORZXr/a7ntEtmUvCS+PDSTdfHLMGLE2dqVIY2eoZf3IFlILsQ1FG3JM5KIC5sIdW/LtLAvZEueCuK741/xaexkAB5r+BRDGj1b6jfj9iXvZMLeF0jMTaC6nSfjg2WLHiFExSTFnsxrV2IEr+wcir9rIHPCV1g6HAAKjPlsSfid1Sf/j8ikbWj+l6N4O/oS7tmRtjU6EeTeUpYHAr+eWcPkfaMBeDVgMt3q9TVLPxd/VhwNTiy+82fc7aqbpZ9L3TbFnvKNeSw79gWP/tWVNfFLQCl6ez/C4jt/ol/9xySJFeI6lFKMDpiMu211IpO3sezYF5YO6bantWbhoVmmJPYp/7EMbfxcmcwoCXJvxbzwlQS7h5GYm8BLO4bw3fGvZE2SEELcZqJTigo9BZTD+tibZW1lQ4daXfkgbCErO21hbOD73F37fpytXTmZdZTlxxfyys6h9N14B2/veZ4Np1aSlHvB0mFbxLaEzUyNGgvAiCajzZbEArSsHk6bGh3IKszkqyOfmq2fkijViKxS6nlgGKCABVrrGf86Pxp4pPilNdAM8NRaJymljgHpQCFQcDNZ96UjslprthSvgz1VvA62dfU7GeX/muxPJcQt2pawmbG7h8uWPBZm1EZmx77HyhOLscKKlwMm0r1evzLvp8CYz4K4D1h+fCEgW/SIot+p0Sm78XcLlJEOUSHIiKx5jdn5JNsT/2J88Ed0qt3d0uFcV6GxgKiU3Wy7sImIhE0cy4wznVMo/F2DCPfsSLhnRxq7NDdLBeaKwqiNfHfiKxYc/IACnc/DDZ5keJNXzN7v0fSDDNvaG6Ws+OKONXg7+Zq1P7NPLVZKBQJLgDZAHrABGKW1jrtG+57Ai1rre4pfHwPCtNY3/VbKxUT2cHosc2KnsCtpKwA+Tg0Z1eQ12np2KNGzCCHgk5h3WXliMV6O9ZkX/r1F18vcjgqNBUzf/yY/nV6FjbLhjeAP6FCri1n73Hh2A9OiXye7MIv6To15J3QmPk4NzdqnqJgWHprJV0dmM7DBE4xoMtrS4QghiawZFepCev/RlsyCDJZ22ISnfS1Lh3RLzmbHE5GwiYgLm9idFEG+Mc90zsPWs3gKckdaVW93wwr/lUlybiJTo8fyz4XNAPSvP4RRTV4rtxpA06PfZP2pFdxZ8z4mhM4ya1/lkcgOALpqrZ8sfj0OyNVav3+N9t8Cf2itFxS/PsYtJrItWoXqxxb3Yl38cowYcbF2Y0ijp3lQ1sEKUWp5hbmM2tafoxlx9PMZwtNNx1o6pNtGXmEuE/e9zN/nf8Xe4MjE0E9oVf2Ocun7eMZh3t7zHMczD+NocGJM4BTuqnVfufQtKobjGYcZtrU3BTofF2s3lnXchJ3B3tJhiducJLLmcyQ9lie39qKWfV3+r8Pvlg6nVLILstidFGEarU3IPWs6V5UKRu1I/Jv39o0hOe8CrjZujA6YTPuancs1hgs553jsr27kGLP5uPU3Zq2xUR6JbDNgNdAOyAZ+A3ZorZ+9SltHIB5orLVOKj52FEgGNDBPaz3/Gv0MB4YDuPo5tGr1iQ9WykAv70E81vBp3GzdSxS/EOJKcWn7GRXRH5RiXvhKGrn4WzqkKi+7IJNxkc+wK2krztauTGk5n+bVQss1hqyCDKZFv8mmcxswKGs+bbuEJq6B5RqDsAytNS/ueJS9yf8rpPha4FS61O1lwaiEgIULFwIwdOhQi8ZRFf1wcgkzDrxN59o9eCN4uqXDKTNaa45kHCQi4Q8iLmziQMoejBhN570cG9DOs1OlKhiVb8zjy0MzWXLsMwBC3FvzetA0i+0y8eWhmSw+MpvmbiHMarPEbKPB5VK1WCn1BPA0kAHsB7K11i9epd1AYLDWuuclx+pqrU8rpWoCvwDPaq03X68/1yb2+qkljzGqyRjqOzcqcdxCiGubFTOJ7098TVC1Vsxo/bVsW2VGafkpjN01ggOpe/Cw9eT9Vp/R0EJvHmitmRkzkdUnv6W+UyPmhn8no3K3gR9Pfce06DeoZuPBQw3+y/y46QRWa8nMNt9aOjQhhJlM3vcqv575geeajqO3zyM3vqCSSs1LZnviX2xN+IPtF/4ioyDNdM7R4ERY9faEe3aiTY0OeNjVsGCkV3cq6wST9r5MbNo+rJSBIY2e4T++wy26u0RWQQaP/tWV5LxExgfPoFPtbmbpp9y331FKTQbitdazr3Lue2C51vqqvxmVUm8DGVrr674t1Cy0qT4QGVMW4QohriEjP40hf3cnOS9RRmbMRGvN3uQdzIyZwNGMOGrb12Na2BcWn/aUW5jDiIi+nMg8woD6Qxnl/5pF4xHmlZqXzJC/uxe9oRL4PnfW7MyATUWVKT+/Yw2+zn6WDlHcxi5cKFp5VqNGxUswKrtH/ryXM9nxzA//nsauzSwdTrkoNBYQnRpJRMLGKwpGAfi7BtHOs1OFKRj165k1zNj/NlmFmdS0r8ubQdMJdK8YFaYvjujXdfDhy/ZrzTKyXV4jsjW11ueVUj7Az0A7rXXyv9q4AUcBb611ZvExJ8BKa51e/PkvwASt9Ybr9Xe9fWSFEGXn59OrmBL1Gu621VnU/kecbVwtHVKVkJqXzM+nV7E2fhkns44CUN+pEe+3+qLCFNuISd3HM/88jNZGPghbSKhHW0uHJMxkatRYfjr9PS092jGt1Rcopfho/9usiV9CX59HeabpG5YOUdzGZI2seSTmnmfApg44GpxYfc8/t+3e8Wez49mWsJmtFzYSmbSNPGOu6ZyHrSdtPTsQXqNTuReMyirIYOaBifx8ZjUAHWt14+XmEyrU32GFxgKe2PogJzKP8LT/6/Sr/1iZ91Fe+8h+p5TaD6wBntZaJyulRiqlRl7Spg/w88Uktlgt4C+l1B7gH2DdjZJYIUT5ua9OL4KqtSI5L5GFh81bma6q01qzOymCiXtf4qFNHZhzcCons45S3a4mgxuOYmabbytMEgvQ1C2Iwb4j0WimRI0lsyDD0iEJM9iT9A8/nf4eG2XD883Gm5YQ9PQaCMDPp1eTW5hjyRCFEGYQnbIbgGbVQm7bJBagtoMXvXz+w5SW81l1dwTvtphDT6+HqWlfh6S8BH489R1v7XmW3n+0Y/SO/7Li+CLTdp/mcjAtihER/fj5zGrsrOx5uflExgd/VKGSWACDlTXD/Iq2/Fl85FMy8tNucIX5WJfmYq31XVc5NvdfrxcCC/917AgQUpq+hRDmo5TiuWbjGRHRl1UnvqFb3b63zfSjspKcm8hPp1ex/tQy4ot/+VlhRXiNjjzgNZDwGh0wWJXqf8FmM7jhSLZd2ERsWhSfxkzm1cDJlg5JlKE8Yx4fHXgbgP80HHHZfoCNXZvh7xpEbNo+Np79ka71+lgoSiGEOUSl7AIgwK2FhSOpOOwNDrTzvJt2nnebCkZtS9hIxIVN7E+JZGfSFnYmbWF27Ht4OTYo2rO2xt1lVjDKqI2sOL6Qz+I+okDn09DZn3HBH1boekB3eN5NsHsYe5N38O3RBQxv8rJF4qiYf0UJISyukYs/vb0fYeWJr/g4ZgIft/7G4mtGKjqjNrI7KYK18cv4+/xvFOh8ADztatO9Xj+61+tHLYe6Fo7yxqytbHgtcCojIvqy4fRK2tfsXO5l/oX5LD36GScyj+Dl2IBBvsOvON/TayCx+/exJn6pJLJCVDFRyUUjshVlvWVFo5SikYs/jVz8+U/DEaaCUREJG9l+4S/is46x4vgxVhxfZCoY1bZ439qSFIxKyr3A1KjX2J74FwB9fAYzwm80tga7sn60MqWUYmSTMTy1bQDfnVhEL+9BFvn7psyKPZUHWSMrRPnKyE9n6N/3k5SXwKsBk+lWr6+lQ6qQknIT2HD6e9bFL+dM9kmgePTVsxM9vB6idY27KuUUru+Of8WnsZOpZuPB53eswd2uuqVDEqUUn3mMJ7Y+SL4xjw/CFtLCI/yKNtkFWTy0uQOZBRl81m61xSppi9ubrJEte7mFOfT4PQytjay+5x+cynHtZ1Xwv4JRm9h2YSNHM64sGFU0WtsRP9eAG775v/3Cn0yJeo3kvERcbarxasBk7qh5jzkfocxN3PsSf5xdz311ejE2aGqZ3bfcqxaXB0lkhSh/v55Zw+R9o6lm48GiO3/ExcbN0iFVCEZtZGfi36yLX87fCb9TqAsAqGlflwfq9adbvb4W2+etrBi1kVd2PE5k8jba17yXCSGzZDumSkxrzas7n2Bn0ha61OnFa9f5o+PjAxNYffJbens/wnPNxpVjlEIUWbp0KQADBw60cCRVx56k7by441EauTRlQbtVlg6n0jubfYptCZuIuLCJ3UkRVy0Y1bZGR8Kq33FZwah8Yx6fx81g2fEvAAh1b8vYoPcrVL2Mm3UmK56hf3enQBcwN/w7/Fybl8l9JZEVQpQJrTUv7niUvck76OX9H55vNt7SIVnUhZxzbDj9Pevjl3M25xQAVsrAHZ730MPrIVpVv6NSjr5ey7ns0zy59UEyCzIYE/CeTDWtxH47s4Z3943G1caNhe1/pJqtxzXbHk6PYdjW3jhZu7C842bsDQ7lGKkQwhy+PTKPzw59JL/LzSCnMJvIpG1sTdjItgubOJ9zxnTOWtkQ4t6atp4d8XNpxtyD7xObFoWVMvB4o2d52HdYpf67YU7sFJYfX0hLj3ZMbjmvTO5pZ7C7qURW1sgKIa5LKcXzTcczLKIPa04uoXu9fjRxDbB0WOWqUBey48LfrD21jK0Jf2DUhQDUtq/HA14D6FavL9Xtalo4SvOo5VCXZ/zfYGr0WD6JfZcQjzbUdqhn6bDELUrPT2V27BQAhvuNvm4SC9DIpSnN3EI4kLqHP86up3u9fuURphAmJ08WLdPw9va2cCRVx8VCT4HVpNBTWbM3OBDu2Ylwz05orTmacbBoz9p/FYy6qJZ9Xd4M/oCAKvC9eKThSH48tZJdSVvp9mtwufYtiawQ4oZ8XZrQz+dRlh9fyMcHJjCrzf/dFoWfEnLO8uOp71h/6jvO55wGwKCs6VCzCw8Uj77eDl+HLnV783fC7/x1/hfej3qd6WFf3hbPXZV8FvchyXmJBFVrddNr3Xt4PcSB1D2sjV8miawod48++igga2TLilEb2Z8aCUBANSn0ZE5KKRq6+NPwkoJROxL/YmvCRqJTdhPi3ppnmr5R4bbVKSlXm2qM8h/DrJh3KTTml2vfksgKIW7KY42e4fez6ziQuocNp1Zyv1d/S4dkFoXGAv5J/JO18cvYlrAJI0YA6jr48IDXALrW7VOiyoSVmVKKl5q/Q3TKLiKTt/H9ia/NsgG6MI+olF2siV+KQVnzQvO3b/pNiLtr38/s2CkcSN3D4fQYGrk0NXOkQghzOZl5lLT8VKrb1aSWfcWvnl+VuNm607lOTzrX6WnpUMzm4s4MZUVxc/U45C11IcRNcbJ2ZmSTMQDMj5tOWn6KhSMqW+eyT7Pw0Cz+8+e9vLF7FFsT/sBKGehUqzvTW33JV3duYJDvsNsuib2omq0HLzWfAMCCuA84nnHYwhGJm1FgzOej/W8B8HCDJ/B19rvpa+0NDtxX50EA1sYvM0t8Qojy8b9pxS2laJ+oMiSRFULctHtqP0Coe1vS8lP4PG6GpcMptUJjAX+f/42xu0bwyJ/38tWRT0nIPYuXY31GNBnN0g4bGR/yES2rt5OptED7mp3pVrcvecZc3ot6lYJynkIkbt2K44s4mhFHHQdvBjccdcvX9/B6CIBfz/xAdkFWWYcnhCgnlyayQlQV8peZEOKmKaV4rtk4DMqatfFLiU3dZ+mQSuRsdjxfHPqYh/+8h3GRT7PtwiYMysA9tR/gw7BFLGq/gYENnpB9U6/i6aavU8u+LgfTovn6yFxLhyOu42x2PIsOfwLAC83GY2ewv+V7NHTxp7lbKJkFGfxxdn1ZhyiEKCfRKbsBKfQkqhZZIyuEuCUNnBvTv/4Qlh77nBkHJvBJ2yWVomx8gTGfLQl/sC5+GTsS/0ZTtPWYt6MvPbweokvd3rjZuls4yorPydqZMYHv8fKOoXx9dC7hnp1o6hZk6bDEv2itmXlgIrnGHO6ufT+ta9xV4nv19BrI/tRI1sYvq7Jr40XF8/LLL1s6hCojJS+J+Kxj2Fs5yFp3UaVIIiuEuGWPNhzFb2fWEpu2jx9PraCHV8XdsP501knWn1rOj6dWkpx3AQAbK1s61urGA/UGEOweJuuFblGoR1v61x/C8uMLeW/fq8xv932JRvuE+fx5/mciLmzCydqZp/xfK9W9OtXuzqex7xGTtpdDaQdo7NqsjKIU4tp69qy6hXHK28XR2KZuQVhb2Vg4GiHKjkwtFkLcMsdL/jj+LO5DUvOSLRzR5fKNeWw8u4HRO//L4L/u49uj80nOu0B9p8Y87f86yztu5vWg9wnxaC1JbAk90fhF6js15mTWURbEfWDpcMQlMgsymBXzLgBPNn6p1Hsc2xns6VK3FwBr4peWOj4hbkZsbCyxsbGWDqNKuJjIyrY7oqqRRFYIUSIda3WjlccdpOWn8lnch5YOB4D4zGPMPzidgZs6MWHvC+xM3IKtlR1d6vRiZutv+eKONfSr/xiuNtUsHWqlZ2uwY2zQFAzKmpUnFrMrcaulQxLFvjg0g8Tc8zRzC6GHd9nMlniguOjTb2fWkF2QWSb3FOJ6RowYwYgRIywdRpUghZ5EVVWqRFYp9bxSKkopFa2UeuEq5zsppVKVUpHFH+MvOddNKRWrlDqklCrdvCchRLlTSvFsszexVjasP7WCAyl7LBJHnjGPP86u5+UdQ3ns724sOfYZKflJ+Dr78WzTN1necTOvBU0l0F22HChrTVwDeazhUwBMjRpLRn6ahSMSsan7WHXiG6yUgZeav1Nm69d9nf0IrNaSrMJMfju7rkzuKYQwvzxjHrFpUQA0rxZi4WiEKFslTmSVUoHAMKANEAL0UEpdbYO6P7XWocUfE4qvNQCfAt2B5sAgpVTzksYihLAMH6eGDGgwFI3m45gJFOrCcuv7ROYR5sROZeCmjkzc+xK7kyKws7KnW92+fNJmCZ+1+4E+PoNxsXErt5huR//xHU5T12AScs/ySfF0VmEZhcYCPtz/FhpNP5/Hyryoy8W18OtkT1khKo2DaVHkG/No4OQnvw9FlVOaYk/NgAitdRaAUmoT0Ad4/yaubQMc0lofKb52CdAL2F+KeIQQFjDYt6jw08G0aNbGL6OX9yCz9ZVXmMuf539mbfwy9iRvNx1v5NKUHl4D6Vy7B842LmbrX1zJYGXNa0FTGLG1Lz+fWc0dNTvToVaXEt/PqI2cyjpObFoUMan7iM88ip3BHhcbN5ytXXG2ccWl+L/O1q642Fz+uY2VbRk+XeWy6uS3xKXvp6Z9HYY2eqbM79+xVlc+jZlMbFoUB9OiaeIaUOZ9CCHKlmnbHXfZdkdUPaVJZKOAd5VS1YFs4H5gx1XatVNK7QFOA69oraOBesDJS9rEA22v1olSajgwHMDHx6cU4QohzMHB2pGn/F/j7T3P83ncR3Ss1ZVqth5l2sexjEOsi1/OL2dWkZafCoC9wZF7aj9AD6+H8HcNlGnDFuTj1JDhTV5hVswkPtr/FoHVWuJhV+OG12mtScg9S0zqPmLT9hGbGkVsWhSZBekljsXOyv7yJPdi8nvp59dIiB0MTpX25ygh5yxfHJoBwLNNx+Fg7VTmfdgZ7Lmvbi9WnviKtfFLean5hDLvQwhRtqJM+8fK+lhR9ZQ4kdVaH1BKTQV+ATKAPUDBv5rtAuprrTOUUvcDqwA/4Gp/Kehr9DMfmA8QFhZ21TZCCMu6q2YXwqq3Z0fi3yyI+4DRAaWbYppXmEt06m52JUawM3ELMWl7Tef8XJrTw+sh7qnTAydr59KGLspIL+//sOX87+xM2sIH+8cxKXT2FUlhal4ysWlRxKbuI6Y4cU3KS7jiXtXtPGnqGoy/WxC+zk3IN+aRUZBKRn466cX/zShIIz3/4ueppOenkVGQTq4xh9zcHBJzz9/yM1gpA87WLlcd6b3aaPDF1y42bjhZO1t0W4tPYt4luzCL9jXvpX3Ne8zWT0+vgaw88RW/nVnLyCav4ij/BoWZvPnmm5YOodLTWhOdXFToKaCajMiKqqdU+8hqrT8HPgdQSk2maGT10vNpl3y+Xik1WylVo7id9yVNvSgasRVCVEJKKZ5t+iZPbHmQH099x/31+t/SL81CYwGxaVHsTopgV1IEUSm7yDfmmc47GBy5t05PHvAaQBPXQHM8giglK2XF6MB3eWLLg2xN+IPVJ7/F19nPlLDGpu3jTHb8Fdc5W7vi7xZIU9cg/N2C8HcNwtO+Voli0FqTU5hFRkE66fn/S24z8lNNxzIK0sjITyO9IO2KJDinMIu0/BTS8lOK5hndIgeD41WTYKfi/14tCXa2ccPZ2gV7g0OJR4O3nP+dP8//goPBkWebvlGie9ys+s6NCKoWxr6UHfx+dl2F3kNaVG733nuvpUOo9E5lHSclPwl32+rUdZBZjaLqKVUiq5SqqbU+r5TyAfoC7f51vjZwTmutlVJtKCoulQikAH5KKV/gFPAw8J/SxCKEsCxvJ18GNvgv3xydx8cHJjAnfMU1K6YatZGjGXHsStrK7sQI9iZvJ6vw8i09Grs0o4VHW1p4tCPEPcwsUyVF2appX4fnmo7jvahXmRkz8Yrzdlb2+Lk2x981iKZuRR91HXzKbDqvUgoHayccrJ3wtK99y9fnG/PILMgoHulNKx71/V8ynH5JEpxZPDqcnp9GZnFSnF2YRXZhFgm5Z2+5b2tlUzQabONavB7Y5V8jwm4427j8b1p08TFbK1tmxkwC4PHGz1PTvs4t932renoPZF/KDtacXCqJrDCbyMhIAEJDQy0cSeV16f6xlXXZhBDXU6pEFviueI1sPvC01jpZKTUSQGs9F+gPjFJKFVD0/vbDWmsNFCilngF+AgzAF8VrZ4UQldgjDUfyy5k1HEo/wJqTS+jt8whQNFJ2Kus4u5Mi2J20jd1JEaTmJ192rZdjA1p6tKOFR1tCPdriZutuiUcQpXRvnZ7sStrCb2fW4evsR9PiUVZ/tyAaODXCYFXaXzvmY2NlSzVbjxKt8TZqI9mFWVdJgi8dAb7y+MXXecZcUvKTSMlPKlHsjV2a08f7kRJde6s61OzCJzaTiEvfT2zqPvzdgsqlX1GxZeSnMTNmEv9c2EQjl2a09AinhUc4/q6BJfp3/8ILRbs6bty4sYwjvX1c3D82oJq8GSCqptJOLb7rKsfmXvL5J8An17h2PbC+NP0LISoWe4MDzzR9nfGRz/D5oRnYWtmxL2UHu5O2cT7nzGVtPe1q07J60R86LTzCSzSCJioepRRjAqcwOmAyVqpUW5VXKlbKCidr56J12w71bvn6vMLcy5Lc6ybB/zpnrax5JWBiub1JYGuwo0vd3qw4vog18cskkRVEp+zm3b2vcDbnFE9SGuYAACAASURBVEDxm5YRADganAh2b02L6uG09GiHr7PfbfX/BkuSQk+iqqu4b40LISql9p6daVOjA/9c2Mz0/f8r1uFm406oR1vTu/T1HOvLVKcqTP5QvTW2Bjs8DJ542HlaOpSb0sNrICuOL+L3s+sY5T9GCq/dpgp1IUuOLuDLw7Mw6kL8XJrzYvN3OJt9qjiZ3Up81nEiLmwk4sJGQH4XlJe0/BSOZx7CxsoWP9kqS1RRksgKIcqUUornm45n0r6XcbOpRovq7WjpEY6vcxNJboSoInycGhLi3po9ydv57cxaHvR+2NIhiXKWkHOO9/a9SmTyNgAG1H+cJ/1exMbKlqZuQXSq3Q2A8zlniEzaxq7ErexKiuBC7jk2ndvApnMbgKK19RfrIRTNzilZsTdxuf0pewBo6hqE7W28v7ao2iSRFUKUuTqOXnzadqmlwxBCmFEPr4HsSd7O2vil9PQaKKNqt5Et53/n/ejXSctPwd22Oq8FTqF1jStWmwFFiWqXur3pUrc3Wmvis46ZaiXsTorgfM4Zfjq9ip9OrwL+Vy8B/xyIsyvPx6pSolNk2x1R9UkiK4QQQohbdletLrjGVONQ+gFi0vbRzC3Y0iEJM8srzGVe3DS+P/E1AK2r38mYwCl42NW4qeuVUng7+eLt5MuD3g8XV7A/yK7ErexOimBP8nbis44Rn3UMq35Qx8qH4xmHqe/cyJyPVSX9r9CTrI8VVZckskIIIYS4ZbZWtnSt24flx79kbfxSSWSruOMZh5m49yWOZMRirWx40u9F+tcfWqolI1bKikYuTWnk0pQBDR6nwJhfvKf4NtbHL+dMzglGRvRjpP8YHvR6WEb9b1KBMZ+Y1H0ABMqIrKjCZMGaEEIIIUqkh9dDAPxxZj0Z+ekWjkaYg9aadfHLGRnRjyMZsdRzrM+sNt/yUIP/lnndA2srGwKqtWBww5E8aXidUOs7yDXm8PGBd3hj9yiScxPLtL+q6lB6DLnGHLwdfWUrO1GlSSIrhBBCiBLxdvIl1L0tOcZsfjuzxtLhiDKWkZ/GhL0v8sH+ceQac+hSpxfzwr8rly2XJrwxkV0TjjAu+EOcrV2JuLCRJ7c+yLaEzWbvu7KLkvWx4jYhiawQQgghSqyn90AA1sQvRWtt4WhEWYlK2cWwrb3ZdG4DDgZHxga+z2tBU3Es562W7q59P5/dsZoQ99Yk5yUydvdwZh6YSG5hTrnGUZlcTGRl/1hR1UkiK4QQQogSa1/zXtxs3DmSEcuB1D2WDkeUUqEuZPGRObyw/VHO5ZzG3zWI+e1WcV/dBy0WU037OkwPW8gwv5cxKGtWnfyGkRH9OZweY7GYKiqtNdEpuwEIdJdEVlRtksgKIYQQosRsrWzpVq8vAGvjl1k4GlEaCTlneWXHUL489DFGXcjDDZ5kZptvqOfoY+nQMCgDg3yH8WnbJXg7+nI88xBPRQxg+bEvMWqjpcOrMM7lnCIx9zyuNm54O/paOhwhzEoSWSGEEEKUiqno09n1ZOSnWTgaURJ/n/+NYVt7sSd5O+62NZja8jOGN3kFGytbS4d2mSaugcwN/46eXg+Tr/OZc3AqY3Y+SULOOUuHViFEFY/GNndrIVWeRZUniawQQgghSqWeY31aerQj15jDL2d+sHQ44hYtiPuAcZFPk5afSpvqd/FZu9W0rnGnRWOaMWMGM2bMuOo5B2tHXmz+NhNDZ+Nm487OpC0M2/ogm8/9XM5RVjxRycXrY2VasbgNyD6yQgghhCi1Hl4D2ZW0lbXxS+nt/YiMBhUzaiPnc05zNCOOo+kHOZoRx+nsk/T1eZTOdXpYOjx+PbOG/zu6AGtlw7AmL9PP57Ey31anJEJDQ2/Ypn3Ne2jm9gNTo8ayPfEv3t7zHPfX68/T/mNxsHYqhygrnujU4vWxUuhJ3AYkkRVCCCFEqbWveQ/uttU5mhFHdOru2/IP6aTcCxzLiCtKWjPiOJpxkGMZcWQXZl3R9v2o/Xg51i+XrWyuJT7zGB/tfwuA55qNM00Rrwh+/fVXAO69997rtvOw8+S9lvNZdeJr5sVNZ/2pFexJ3s7rQdNo5hZcHqFWGJkFGRxNP4i1ssHfNdDS4QhhdpLICiGEEKLUbKxs6Vq3L0uOLWDmgUkMafQM4Z4dMSiDpUMrc5kFGZckrAc5mh7HsYw4UvKTrtrew9YTX2c/fF388HVuwt7kHfx0+nve3vM889qtxNWmWjk/AeQV5jJh74tkF2Zxd+37eaDegHKP4XomTZoE3DiRBbBSVvSt/xgtPMJ5d98rHMk4yLP/DGJoo2cZ5DusSv4MXs3+lEiMGPF3DcLOYG/pcIQwu1Ilskqp54FhgAIWaK1n/Ov8I8CY4pcZwCit9Z7ic8eAdKAQKNBah5UmFiGEEEJYVi/vQfx4agWH0vczLvIpatrXpafXQ3Sv1x8PuxqWDu+W5RXmciLziGmE9VjGQY5kxHE+5/RV2ztZO+Pr3ARfZz8aOPsVJa/OTXCzdb+sXec6PTmecZiYtL1M3vcqk1vMLffpvHMPvs+h9APUdfDhpeYTqsRUcF+XJsxuu5zPDn3IiuOL+OLQDLZf+JOxQVOp7eBl6fDMLtq0f2wLC0ciRPkocSKrlAqkKIltA+QBG5RS67TWcZc0Owp01FonK6W6A/OBtpecv1trfaGkMQghhBCi4qjlUJdFd/7IT6dX8cPJ/+NU1nE+PzSDRYc/pWOtrvTy/g8B1SpeNdVCXcjprBP/G2HNKBphjc86jlEXXtHexsqW+k6NixPVomTV18UPT7vaN/Vstla2vBUygxERffnnwma+OTqPRxuOMsejXdXmcz+z6uQ3WCsbxod8iJO1c7n1bW62Bjue8h9L6+p38X70WPal7GTY1t483+wt7q3T09LhmVV0SiQAAbfhtH5xe1Ja65JdqNQAoKvW+sni1+OAXK31+9do7w5Eaa3rFb8+BoTdSiIbFhamd+zYUaJ4hRBCCFF+jNrIzsQt/HDy/9ia8AdGivb6bOjsTy/vQdxbp2e5F+TRWnMh9xxH0g+aRliPZsRxPPMwecbcK9pbYUU9x/rF04L/N9Jaz8EHg1XpV2dtv/Anr+0aDsDUVp8RVr19qe95I2ez4xm2tQ+ZBek84/86fes/ZvY+S6JTp04AbNy4scT3SM1LZvr+cfx9vmi9befaPXi+2XicbVzLIMKKpdBYwIN/tCG7MIsVHf/Ew87T0iEJUWJKqZ03M1u3NIlsM2A10A7IBn4Ddmitn71G+1eAppckvkeBZEAD87TW869x3XBgOICPj0+r48ePlyheIYQQQljG2exTrItfxrr45aZ1pE7WznSp25sHvQZR37lRmfeZmpd8+TrW4s8zC9Kv2r6mfR0aOPvR0LmJaVpwfadG2Brsyjy2Sy08NIuvjnyKm40789qtpKZ9HbP1VWDM5/ntgzmQuof2np2ZEPpJhRsdv6gsElkoevNi/akVfBozmRxjNjXt6/J60PsEu1etFW1xafsZEdGXOg7efHPXL5YOR4hSMXsiW9zJE8DTFK1/3Q9ka61fvEq7u4HZwJ1a68TiY3W11qeVUjWBX4Bntdabr9efjMgKIYQQlVeeMY8/z/3E6pP/R1Txej6AUPe29PIeRPuanbG2srmle2YXZHEs81Bx0lqcsKbHkZSXcNX2rjbVLktWfV2a0MDJD2cbl1I9W0kV6kJe3zWC7Yl/0dwthI9aL8bGytYsfc07OI2lxz6npn0d5rf73iJFpm5WbGwsAP7+/mVyv5OZR5m8bzSxaVFYYcUg32EMafTMLf+8VVTfn/iaWTGTuK9OL8YGTbV0OEKUSrkksv/qcDIQr7We/a/jwcD3QHet9cFrXPs2kKG1nn69PiSRFUIIIaqGw+kxrD75Lb+eXkOOMRuA6nY16eH1EA/UG0AN+1qXtc835hGfeeyyrW2OZsRxJvvkVe9vb3CkgVNjfF38TCOtvs5+uNvWqHCjkKl5yYyI6Mv5nDP08RnMs03fLPM+IhI28fruEVgpAzNaL74tt0cqMOaz6PAnfHt0PhqNv2sQbwRNw8upgaVDK7VJe1/m97PreLHZ2/T0ftjS4QhRKuU1IltTa31eKeUD/Ay001onX3LeB/gdeExrveWS406AldY6vfjzX4AJWusN1+tPElkhhBCiasnIT+fnM0XFoU5kHgHAShm4s+a9NHJpyrHiwksnM49RoPOvuN6grPFx8r1kWnBRwlrboV65VwIujQOpe3n+n0co0Pm8GfQB99R5oMzunZBzjmFbe5GWn8Iwv5cZ5DuszO5tLmvWrAGgZ8+yL9C0J2k770WN4XzOaeytHHi66evcX69/hXuD41Y8vPkezuec5rN2q2noUjaj2EJYSnklsn8C1YF84CWt9W9KqZEAWuu5SqnPgH7AxYWtBVrrMKVUQ4pGaaGocvK3Wut3b9SfJLJCCCFE1aS1ZnfSNn44+S1/Jfx21WrBdRy8r5gW7OVY32xTccvb6hPf8nHMBOwNjsxpu7xM1g4XGgt4eedQ9ibvoHX1O3mv5fxKkeCX1RrZa8nIT2PGgXf4/ew6AO6seR8vN59wxVZJlUFCzlkGbu6Ek7ULq+/eVim+v0Jcz80msqUquae1vusqx+Ze8vmTwJNXaXMECClN30IIIYSoOpRStKweTsvq4STknOOn09+Tlp9cvC9rE+o7NSz3Ksfl7UHvQUSl7OK3s2t5e89zzG67rNTPvPjIbPYm78DD1pPXAqdKklPM2caVN4M/INyzEx8feIe/zv/CgdRIxgROKZfq0WXp4nrzALdQ+f6K24r8tAshhBCiQvG0r8XghiN5yn8s3ev1o6lbUJVPYqEomX+p+QTqOzXmeOZhpu8fR2lmzu1KjGDxkTkoFG8ET8PdrnoZRls13FunJwvarSKwWksScxN4decTzI59j7zCK7djqqiiU3YDEOB++617Frc3SWSFEEIIISoIB2tH3gmdiYPBkT/OrmfVyW9KdJ+k3AtM3jcajebRhk/RwiO8jCOtOmo7ePFR2Fc83vh5rJSBFccX8dS2hziaEWfp0G7K/0ZkW1g4EiHKlySyQgghhBAViI9TQ0YHFJUOmRM7lf0pkbd0vVEbmRI1hqS8BELd2/Boo6fMEWaVYrCy5tGGo5jV+lvqOvhwJCOWkRH9WHlicalGxc0tuyCTQ+kxWCkDzdyCLR2OEOVKElkhhBBCiAqmU+3u9PV5jAKdzzt7XiAlL+mmr11y7DN2JP6Nm407rwdNw6AMZozUPBYvXszixYvLvd9m1UJY0O577q/Xn3xjHp/EvMvYXcNJyr36vsSWdiB1H0ZdSGOXpjhYO1o6HCHKlSSyQgghhBAV0Igmr9DcLZSE3LO8u/cVCq9SyfnfopJ38cWhjwF4LXDqFfvxVhbe3t54e3tbpG8HaydeCZjE2yEf42Ltxj+Jf/LElgfZcv53i8RzPdGpRetjb8d9gYWQRFYIIYQQogKysbLlrZAZVLPxYGfSFr46/Ol126fmJTNp38sYdSEPN3iStp4dyinSsrd06VKWLl1q0Rg61OrKZ3f8QEuPdqTmJ/Nm5FN8tP9tcgqzLRrXpaKTi9fHVpP1seL2I4msEEIIIUQF5WlfmzeDP8AKKxYfmU1EwqarttNaMy36Dc7nnKG5Wwj/bfx8OUdatubMmcOcOXMsHQae9rV4v9XnjGzyKjbKhjXxSxixtS8H06ItHRpGbSQ6tWj9tIzIituRJLJCCCGEEBVYy+rtGNr4OQDe2/cqZ7Pjr2iz8sRitiT8jrO1K28Gf4i1lU15h1llWSkrHmrwXz5tu4z6To04mXWUZ7Y9zJKjn93UdG9zOZ5xiMyCdGra18XTvrbF4hDCUiSRFUIIIYSo4P7jO5zwGh1JL0jlnT0vkGfMM52LTd3HvIPTABgd8C61HepZKswqrbFrM+aGf0dv70co0PnMj5vO6B2Pcz7njEXiMW27Uy3UIv0LYWmSyAohhBBCVHBWyoqxQe9T274esWlRfBozGYCM/HQm7H2JAp1PH5/B3FXrPgtHWrXZGex5rtk4JreYh7ttdSKT/+HJLb3YePbHco8lKkUKPYnbmySyQgghhBCVgIuNG2+Hfmxaq/nz6VV8uH88Z7JP4ufSnBFNXrV0iLeNcM+OfNbuB8JrdCSjII0Je19katRrZBZklFsMF0dkJZEVtytVkTd5/rewsDC9Y8cOS4chhBBCCGExa+OX8eH+8VgpA0ZdiIPBkXnhK/FyamDp0MrMhQsXAKhRo4aFI7k+rTU/xC9hTuwU8oy51HHw4vWgaWavIpyUm0D/TXfhYHDkh7v/wWBlbdb+hChPSqmdWuuwG7WTEVkhhBBCiErkgXoD6Fq3N8biQkMvNZ9QpZJYKEpgK3oSC6CUopf3IOaFr6SxSzPOZMfz/PbBLDw0i0Jjgdn63Ze8E4BmbiGSxIrblvzkCyGEEEJUIkopnm/2FlbKgI9TQzrX6WHpkMrcwoULARg6dKhF47hZ9Z0b8UnbpXx56GOWHfuCr458yo7Ev3k9aBp1Hb1Lff+cwmyiU3azK2kruxO3cTAtCoBA2T9W3MZKNbVYKfU8MAxQwAKt9Yx/nVfAx8D9QBYwVGu9q/jcEODN4qaTtNaLbtSfTC0WQgghhKj6OnXqBMDGjRstGkdJ7EqMYErUGC7knsPB4MhzTcfRpW5viv4svjkFxnxiUvexOymC3UkRRKfsJl/nm84blDWB1VowJvA9ajt4meMxhLCYm51aXOIRWaVUIEVJbBsgD9iglFqntY67pFl3wK/4oy0wB2irlPIA3gLCAA3sVEr9oLVOLmk8QgghhBBCWFrL6uF8dsdqPtz/FpvP/cTU6LFEXNjES83fwcXG7arXGLWRw+kx7E6KYFdSBHuTd5BTmGU6r1A0dmlOS49wWniEE+zeCgdrp/J6JCEqpNJMLW4GRGitswCUUpuAPsD7l7TpBXyli4Z9I5RS1ZRSdYBOwC9a66Tia38BugH/V4p4hBBCCCGEsDhXm2q8FTyDn05/z6yYSWw6t4H9KZG8FjSFFh7haK05mXWU3YlFI66RydtIy0+97B4+Tg1pUZy4hri3xs3W3UJPI0TFVJpENgp4VylVHcimaPrwv+f91gNOXvI6vvjYtY4LIYQQQghR6Sml6FavL0HuYUzeN5oDqXt4ZcfjtK5xF4fTY0jMPX9Z+5r2dWjhEU5Lj3aEerTF076WhSIXonIocSKrtT6glJoK/AJkAHuAf5dnu9piAH2d41dQSg0HhgP4+PiUNFwhhBBCCCHKXT1HHz5u/TVfH5nD10fm8s+FzQBUs/GgRfVwWni0pYVHO+o6eN/SOlohbnelqlqstf4c+BxAKTWZopHVS8UDl5Zq8wJOFx/v9K/jG6/Rx3xgPhQVeypNvEIIIYQQouJbv369pUMoU9ZWNgxt/Bzta97LwbRomrkF08DZDyslO2EKUVKlSmSVUjW11ueVUj5AX6Ddv5r8ADyjlFpCUbGnVK31GaXUT8BkpdTFyf5dgLGliUUIIYQQQlQNjo6Olg7BLPxcm+Pn2tzSYQhRJZR2H9nvitfI5gNPa62TlVIjAbTWc4H1FK2dPUTR9juPF59LUkpNBLYX32fCxcJPQgghhBDi9jZ79mwAnnrqKQtHIoSoqEq1j2x5k31khRBCCCGqvsq8j6wQonRudh9ZmZgvhBBCCCGEEKJSkURWCCGEEEIIIUSlIomsEEIIIYQQQohKRRJZIYQQQgghhBCVSqUq9lSjRg3doEEDS4chhBBCCCGEEMIMdu7cqbXWNxxwLe32O+WqQYMGSNViIYQQQgghhKialFK7bqadTC0WQgghhBBCCFGpVKoR2UvFx8fTp08fdu3ahdFotHQ4QlRqVlZWtGzZku+//x4vLy9LhyOEEEIIIcR1VdpEtk+fPvTt25e///4bW1tbS4cjRKWWl5fH9OnT6dOnD9u3b7d0OEIIIYQQQlxXpSr2FBYWpi+ukTUYDGRnZ0sSK0QZycvLw8HBgcLCQkuHIoQQQgghblNKqZ1a67Abtau0a2SNRqMksUKUIVtbW5mmL4QQQgghKgWzJ7JKqS+UUueVUlH/Ov6sUipWKRWtlHrf3HEIIYQQQgghhKgaymNEdiHQ7dIDSqm7gV5AsNY6AJheDnEIIYQQQgghhKgCzJ7Iaq03A0n/OjwKmKK1zi1uc97ccQghhBBCCCGEqBostUa2CXCXUmqbUmqTUqr1tRoqpYYrpXYopXYkJCSUuMMZM2aQlZVV4utvlsFgIDQ0lMDAQAYMGEBWVhbHjh0jMDDQ7H0D5OTk0KZNG0JCQggICOCtt94qs3sPHToUX19fQkNDadmyJVu3br1qu7lz5/LVV1+VWb/lrVOnTlwsKnarxo8fz6+//nrdNhs3bmTLli0luv+NLFy4kNOnT5vl3kIIIYQQQlQUlkpkrQF3IBwYDSxTSqmrNdRaz9dah2mtwzw9PUvcYXklsg4ODkRGRhIVFYWtrS1z5841e5+XsrOz4/fff2fPnj1ERkayYcMGIiIiyuz+06ZNIzIykilTpjBixIgrzhcUFDBy5Egee+yxMuvzospQTXfChAnce++9120jiawQQgghhBClY6lENh5YqYv8AxiBGmVx48zMTB544AFCQkIIDAxk6dKlzJw5k9OnT3P33Xdz9913AzBq1CjCwsKuGLVcv349TZs25c477+S5556jR48epvv+97//pXXr1rRo0YLVq1ffMJa77rqLQ4cOAUVJ2LBhwwgICKBLly5kZ2cDsGDBAlq3bk1ISAj9+vUzJdvLly8nMDCQkJAQOnToYLrH6NGjad26NcHBwcybN++KPpVSODs7A5Cfn09+fj7XeI+gVDp06GB6tk6dOvH666/TsWNHPv74Y95++22mT59uOvfiiy/SoUMHmjVrxvbt2+nbty9+fn68+eabpvv17t2bVq1aERAQwPz5803HnZ2dGT9+PG3btmXSpEn06dPHdO6XX36hb9++V8S2c+dOOnbsSKtWrejatStnzpwxxTJmzBjatGlDkyZN+PPPPwHIzs7m4YcfJjg4mIEDB5q+Nxf7f/nll2nZsiWdO3fm4qyAyMhIwsPDCQ4Opk+fPiQnJwNFo9YrVqwAoEGDBrz11lu0bNmSoKAgYmJiOHbsGHPnzuWjjz4iNDTUFMNFb7/9NkOGDKFLly40aNCAlStX8uqrrxIUFES3bt3Iz8+/5jOuWLGCHTt28MgjjxAaGnrZcwghhBBCCFGlaK3N/gE0AKIueT0SmFD8eRPgJMV72l7vo1WrVvqiotCvtGLFCv3kk0+aXqekpGitta5fv75OSEgwHU9MTNRaa11QUKA7duyo9+zZo7Ozs7WXl5c+cuSI1lrrhx9+WD/wwANaa63Hjh2rFy9erLXWOjk5Wfv5+emMjAx96tQp3b17d9N9nZyctNZa5+fn6wcffFDPnj1bHz16VBsMBr17926ttdYDBgww3evChQuma9944w09c+ZMrbXWgYGBOj4+3tSf1lrPmzdPT5w4UWutdU5Ojm7VqpUp1ksVFBTokJAQ7eTkpF999dWrfp1KYsiQIXr58uVaa62XLVum27Rpo7XWumPHjnrUqFGmdm+99ZaeNm2a6dzFGGbMmKHr1KmjT58+rXNycnS9evVMz3/x+5GVlaUDAgJMxwG9dOlSrbXWRqNR+/v76/Pnz2uttR40aJD+4YcfLosxLy9Pt2vXztRmyZIl+vHHHzfF8tJLL2mttV63bp3u3Lmz1lrrDz74wNRmz5492mAw6O3bt5v6//rrr7XWWr/zzjv66aef1lprHRQUpDdu3Ki11nrcuHH6+eefv+JrVL9+fdP389NPP9VPPPHEFV+ff3vrrbd0+/btdV5eno6MjNQODg56/fr1Wmute/furb///vsbPuPF2EviWv+uhBBCCCGEKA/ADn0TOWZ5bL/zf8BWwF8pFa+UegL4AmhYvCXPEmBIcdClFhQUxK+//sqYMWP4888/cXNzu2q7ZcuW0bJlS1q0aEF0dDT79+8nJiaGhg0b4uvrC8CgQYNM7X/++WemTJlCaGgonTp1IicnhxMnTlC3bl3Wr19vapednU1oaChhYWH4+PjwxBNPAJjWlgK0atWKY8eOARAVFcVdd91FUFAQ33zzDdHR0QC0b9+eoUOHsmDBAtOU2p9//pmvvvqK0NBQ2rZtS2JiInFxcVc8m8FgIDIykvj4eP755x+ioqKuaFNSo0ePJjQ0lPnz5/P555+bjg8cOPCa1zz44INA0fcmICCAOnXqYGdnR8OGDTl58iQAM2fOJCQkhPDwcE6ePGl6LoPBQL9+/YCi0eZHH32Ur7/+mpSUFLZu3Ur37t0v6ys2NpaoqCjuu+8+QkNDmTRpEvHx8abzF0dwL/0ebN68mcGDBwMQHBxMcHCwqb2VlZXp2QYPHsxff/1FamoqKSkpdOzYEYAhQ4awefPmqz771fq7ke7du2NjY0NQUBCFhYV069bN9PU7duzYDZ9RCCGEEEKIqs7a3B1orQdd49Rgc/TXpEkTdu7cyfr16xk7dixdunRh/Pjxl7U5evQo06dPZ/v27bi7uzN06FBycnK4Xi6ttea7777D39//uv1fXCP7b3Z2dqbPDQaDadrn0KFDWbVqFSEhISxcuJCNGzcCRQWTtm3bxrp16wgNDSUyMhKtNbNmzaJr16439bWoVq0anTp1YsOGDdcsNlVYWEirVq2AooRzwoQJ173ntGnT6N+//xXHnZycrnnNxWe3srK67OtgZWVFQUEBGzdu5Ndff2Xr1q04Ojqa3igAsLe3x2AwmK55/PHH6dmzJ/b29gwYMABr68t/hLXWBAQEXLMQ1cX+DQYDBQUFpuM3O/36VqdpX6u/m7nGysoKGxsbU58Xv143ekYhhBBCCCGqOkutkTWb06dP4+joyODBg3nllVfYtWsXAC4uLqSnV0bkzAAAIABJREFUpwOQlpaGk5MTbm5unDt3jh9//BGApk2bcuTIEdPI2dKlS0337dq1K7NmzTIlu7t37y6TeNPT06lTpw75+fl88803puOHDx+mbdu2TJgwgRo1anDy5Em6du3KnDlzTOskDx48SGZm5mX3S0hIICUlBSgaHf71119p2rTpNfu/OHobGRl5wyTWXFJTU3F3d8fR0ZGYmJjrFqeqW7cudevWZdKkSQwdOvSK8/7+/iQkJJiSvPz8fNMo97V06NDB9LWPiopi7969pnNGo9G05vXbb7/lzjvvxM3NDXd3d9P61sWLF5tGZ2/GpT+LJXG9ZyztvYUQQgghhKgMzD4iW9727dvH6NGjTaNZc+bMAWD48OF0796dOnXq8Mcff9CiRQsCAgJo2LAh7du3B4pGU2fPnk23bt2oUaMGbdq0Md133LhxvPDCCwQHB6O1pkGDBqxdu5bTp0/z5JNPXja9+FZMnDiRtm3bUr9+fYKCgkxJyOjRo4mLi0NrTefOnQkJCSE4OJhjx47RsmVLtNZ4enqyatWqy+535swZhgwZQmFhIUajkYceeshUsKqi6tatG3PnziU4OBh/f3/Cw8Ov2/6RRx4hISGB5s2bX3HO1taWFStW8Nxzz5GamkpBQQEvvPACAQEB17zfqFGjePzxxwkODiY0NPSy77uTkxPR0dG0atUKNzc305sbixYtYuTIkWRlZdGwYUO+/PLLm37enj170r9/f1avXs2sWbO46667bvraGz3j0KFDGTlyJA4ODmzdupX33nuPsLAw0/RuIYQQQgghqgJVRktTy0VYWJi+uL+nUuq6U4FLKiMjA2dnZ7TWPP300/j5+fHiiy+WeT+i5J555hlatGhhWn9sTs7OzmRkZJi9n4rCXP+uhBBCCCGEuBlKqZ1a67AbtatyU4tLa8GCBYSGhhIQEEBqaupV90oVltOqVSv27t1rKs4khBBCCCGEuP3IiKwQwkT+XQkhhBBCCEu6rUdkDQYDoaGhBAYGMmDAALKysi47fvFjypQpABQUFPD666/j5+dnOvfuu+/e8H7Ozs6X9btw4UKeeeYZAD788EOaN29OcHAwnTt35vjx46Z2ixYtws/PDz8/PxYtWnTLz3e9fi8KCQm5bPsgKKqQfLFw0aWio6O55557aNKkCX5+fkycOPGaycwTTzxhWq/bv39/07Tb3Nz/Z+/O47Iq8/+Pvw77jiDgigLuCoKKeyqmqa1Tqe2lOVPNtDi/ZqZ9n9bvt/qWZU0zpanVmO1mi5UVWW5JifuuCLgBsu9w3+f3xw23oOAKHMD38/HgwX1f59znfA6i3u/7us51lXH11VfTvXt3hg4d6pww68iRI4wdOxY/P7/jaqzP9OnTncsVDRw4sNnNzpucnFzrnujPP//c+bskIiIiIiKNr1UG2eolcDZt2oSHhwdvvPFGrfbqr/vvvx+Ahx9+mAMHDrBx40aSk5P5+eefnTMDn+h4JzJgwACSkpLYsGEDU6ZM4d577wUgOzubJ554gjVr1vDrr7/yxBNPkJOT06DXv3XrVux2O8uXLz9uVuNjlZSUcNlll3H//fezY8cO1q9fz8qVK3n99dfr3P+ll15i/fr1bNiwgS5dujB79mwA5syZQ1BQELt27eLuu+/mvvvuAxzL5zz55JO88MILp3UNzz//PMnJyTz33HONOrz7VJfEqenYIFv982spzuSaRURERESak1YZZGsaNWoUu3btqnd7cXExb775Jq+++ipeXl6AYwmTxx9//IyOV23s2LH4+PgAMGzYMNLT0wH45ptvuOCCCwgODiYoKIgLLriApUuXnuZVndh///tfbrzxRiZMmMDnn39+0n1HjhzJhAkTAPDx8WH27Nn19jAGBAQAjvVaS0pKnGucLl68mGnTpgEwZcoUvv/+e0zTxNfXl/POO8/5sz1do0ePdv6833zzTQYPHkxsbCyTJ0929oxPnz6dmTNnMmLECKKiomr1Ov/v//4vMTExxMbGOsNmQkICDz74IGPGjGHWrFlkZmYyefJkBg8ezODBg1mxYgUAv/76KyNGjGDAgAGMGDGC7du3U15ezqOPPsqiRYuIi4tj0aJFtXrEDx8+zBVXXEFsbCyxsbGsXLnyuGtaunQpAwcOJDY2lnHjxtV7LnD0tl955ZVMmjSJHj16OD8Qqe84RUVFzJgxg8GDBzNgwAAWL17sPM7UqVO59NJLnX/WIiIiIiItVatbfqemyspKvv76ayZNmgQ4eh/j4uKc2x944AH69OlDly5d8Pf3P+vjZWdn17nMyZw5c7jwwgsB2L9/P+Hh4c5tnTt3Zv/+/ad1XSc776JFi/juu+/Yvn07s2fPPm6IcU3VS8vU1K1bNwoLC8nPz3cG15puvvlmvvrqK/r27cuLL7543HW5ubkRGBjIkSNHCAkJOa1rO9aSJUuIiYkB4Morr+SWW24BHL3oc+bM4a677gIcyw798ssvbNu2jcsuu4wpU6bw9ddf89lnn7FmzRp8fHzIzs52Hjc3N5effvoJgOuuu467776b8847j9TUVCZOnMjWrVvp3bs3y5cvx83NjWXLlvHggw/y8ccf889//pOkpCRnb/S8efOcx505cyZjxozh008/xWazHTfjcWZmJrfccgvLly8nMjLSWVN95wJHD/C6devw9PSkV69e3HXXXXh5edV5nKeffprzzz+fuXPnkpuby5AhQxg/fjwAq1atYsOGDQQHB5/Vn4mIiIiIiNVaZZCtGfRGjRrlXKaleohwTRs2bKj1/O2332bWrFkcOXKElStXEh4efsrHmzdvHtWTUVV79913SUpKcoamuu49re7VPFUnOu/atWsJDQ2la9eudO7cmRkzZpCTk0NQUFCdxzJNs97z19f+9ttvY7PZuOuuu1i0aBE333xzg1xXTffccw9PPfUUoaGhzJkzB4BNmzbx8MMPk5ubS2FhIRMnTnTuf/nll+Pi4kLfvn05fPgwAMuWLePmm2929ozXDHBXX3218/GyZcvYsmWL83l+fj4FBQXk5eUxbdo0du7ciWEYtYab1+eHH35gwYIFgOPe6sDAwFrbV69ezejRo4mMjKxV04nONW7cOOdx+vbty759+8jJyanzON9++y2ff/65cyh3aWkpqampAM6RACIiIiIiLV2rHFpc817YV199FQ8Pj3r37d69O6mpqRQUFACO3sbk5GQCAwOx2Wynfbyali1bxtNPP83nn3+Op6cn4OiBTUtLc+6Tnp5Ox44da71uzZo1zkmnTjY0+FgLFy5k27ZtRERE0K1bN/Lz8509e3Xp16/fceF7z549+Pn54e/vz8SJE4mLi+NPf/pTrX1cXV25+uqrnceueV2VlZXk5eWdVWiqvkf2u+++Izo6GnAMIZ49ezYbN27kscceo7S01Ll/9c8Xjn5YcKKQ7uvr63xst9tZtWqV8894//79+Pv788gjjzB27Fg2bdrEkiVLap3vTNVX04nOVfPaXF1dqaysrPc4pmny8ccfO68lNTWVPn36HHfNIiIiIiItWasMsqfDx8eHP/7xj9x5553O8GCz2SgvLz+r465bt47bbruNzz//nLCwMGf7xIkT+fbbb8nJySEnJ4dvv/22Vs8iwNChQ51BpK6hyvWx2+18+OGHbNiwgZSUFFJSUli8eDELFy6s9zXXX389v/zyC8uWLQMcvdkzZ8503ov5zTffkJyczFtvvYVpms77VU3TZMmSJfTu3RtwTHhUPQPzRx99xPnnn39WPbJ1KSgooEOHDlRUVPDee++ddP8JEyYwd+5c5720NYcWH7tf9TBhwNnbnZeXR6dOnYDaw4f9/f2dH3wca9y4cfzrX/8CHL9H+fn5tbYPHz6cn376ib1799aqqb5z1ae+40ycOJFXX33VGebXrVt30mOJiIiIiLQ051SQrR4iXP1VPfnP008/TYcOHYiOjmbAgAGMGjWKadOmHddTejruueceCgsLmTp1KnFxcc5AGhwczCOPPOKcWOjRRx9tsOGey5cvp1OnTs5ABI7JkrZs2cLBgwcBuO222+jcuTOdO3dm+PDheHt7s3jxYp566il69epFTEwMgwcPrnOpHNM0mTZtGjExMcTExHDw4EEeffRRwLEsz5EjR+jevTv/93//V2uyqIiICP72t78xb948OnfuXGsY7+l48sknGTp0KBdccIEzQJ/IpEmTuOyyy4iPjycuLq7emZNfeeUVkpKS6N+/P3379nXOSn3vvffywAMPMHLkSGfvPDgm8tqyZYtzsqeaZs2axY8//khMTAyDBg1i8+bNtbaHhobyn//8hyuvvJLY2FjnEOf6zlWf+o7zyCOPUFFRQf/+/YmOjuaRRx456bFERERERFoao771Qpuj+Ph4s3oYrGEY9a51KiJnRn+vRERERMRKhmH8Zppm/Mn2O6d6ZEVERERERKTlU5AVERERERGRFqXRg6xhGHMNw8gwDGNTjbbHDcPYbxhGctXXRY1dh4iIiIiIiLQOTdEjOw+YVEf7S6ZpxlV9fdUEdYiIiIiIiEgr0OhB1jTN5UDd656IiIiIiIiInCYr75G90zCMDVVDj4Pq28kwjFsNw0gyDCMpMzPT2e7i4nLWa72KyFHl5eW4uOi2eRERERFp/qx61/ovoBsQBxwEXqxvR9M0/2OaZrxpmvGhoaHO9oEDB/LCCy8ozIo0gPLycl544QUGDhxodSkiIiIiIiflZsVJTdM8XP3YMIw3gS9O9xiffvopV1xxBY888gh2u71B6xM517i4uDBw4EA+/fRTq0sRERERETkpS4KsYRgdTNM8WPX0CmDTifavS+fOnVm7dm3DFiYiIiIiIiLNXqMHWcMwFgIJQIhhGOnAY0CCYRhxgAmkALc1dh0iIiIiIiLSOjR6kDVN89o6muc09nlFRERERESkddIUpSIiIiIiItKiKMiKiIiIiIhIi6IgKyIiIiIiIi2KgqyIiIiIiIi0KAqyIiIiIiIi0qIoyIqIiIiIiEiLoiArIiIiIiIiLYqCrIiIiIiIiLQoCrIiIiIiIiLSorhZXcDpOHDgAIZhWF2GiIiIiIiIWKhFBdmOHTty4MABq8sQERERkUb0wAMPAPDss89aXImINLVT7bhsUUFWRERERFo/BdgTy0lJJidlPV1HXoOru6fV5YhYQkFWRERERKSZKy/MYd/KRexJnE9uynoA8vdvJ+76ZyyuTMQaCrIiIiIi0qxMnjwZgI8//tjiSqxl2u1kbF3Onh/ns3/tYmwVpQB4+AZRXpTDzm9ep8eE2/AN7WpxpSJNT0FWRERERJqVI0eOWF2CpYqPpLN3+bvsTVxAUWaKs71d9PlEJUyjU/ylrH3zdvateJ+NHzzBsDvmWlesiEUaPcgahjEXuATIME0z+pht/wCeB0JN08xq7FpERERERJojW2U5B377kr2J8zm0YRmmaQfAp21nIsfcSOSYm2r1vMZc9Rhpaz5h34r36XnhnQRHDbSqdBFLNEWP7DxgNrCgZqNhGOHABUBqE9QgIiIiItLs5KVvYc+P89n3y0LKChz9Oi5uHnSOv5SohGmERY/FxcX1uNf5hnalx8Tb2f7ly6z/70MkPPSVlqmUc0qjB1nTNJcbhhFRx6aXgHuBxY1dg4iIiIhIc1FRUkDqqg/Zkzif7F1rne2B4dFEJUyj68ir8QwIOelx+v7hHvYmzidjy08cTP6GjgMmNWbZIs2KJffIGoZxGbDfNM31J/vkyDCMW4FbAbp06dIE1YmIiIiIlcaNG2d1CQ3ONE2ytq9iT+I80tZ8gq2sGAB37wC6jJhKZMI0gqMGnVavqodfEH0vv4/k9+5n/cKHad9/PC6umgJHzg2GaZqNfxJHj+wXpmlGG4bhA/wITDBNM88wjBQg/lTukY2PjzeTkpIatVYRERERkYZSknuIlJ//y97EBRQc3OFsD+19HpEJ0wgfegVunj5nfHxbRRlf/2MARZkpxN/yGt3G3twQZYtYxjCM30zTjD/ZflZ8ZNMNiASqe2M7A78bhjHENM1DFtQjIiIiItJg7LZKDiZ/w97E+RxY9zWm3QaAV5v2RI6+gcgxN+HfoXuDnMvV3ZP+Vz/BqtnT2PThk3QdfhVuXr4NcmyR5qzJg6xpmhuBsOrnp9MjKyIiIiKt34UXXgjA119/bXElp6fg4C72JM4n5ed3Kc09DIDh4kqnQZcQmTCNDnETG2Xob/iwyWz7ahY5e35n+1ev0O/KBxr8HCLNTVMsv7MQSABCDMNIBx4zTXNOY59XRERERFqmkpISq0s4ZZWlRaT9+il7E+eTuW2Fs92/Qw8iE6YRMeo6vNu0b9QaDBcX4q5/lh+fnMi2L16i27gZeAW2a9RzilitKWYtvvYk2yMauwYRERERkYZimibZu5PYkzif1FUfUllSAICrpw9dhk0mMmE6IT2HNelyOGF9RtFx4EUc+P0rNn38DPEzZjXZuUWsoGnNREREREROQVl+Fikr3mdv4nzy0jY729t2H0Lk2Gl0GTYFd29/y+rrf82THFy3lD0/zKXnxNsJ6NTLslpEGpuCrIiIiIhIPex2G4c3/sDexPns/+0L7JXlAHj6h9B11HVEJdxEYOe+FlfpENi5D5Fjp7Pnh7lseP8Rzvv7B1aXJNJoFGRFREREpFm55JJLrC6Bosx97P1pAXt/eofiI+kAGIYLHWInEDl2Oh0HXoSrm4fFVR4vesrDpK5YxP7fviBz2wpCe4+0uiSRRtEk68g2FK0jKyIiIiKNxVZeyv6kJexJnM/hzT9C1ftk39AIIhNuInL0Dfi07WxxlSe36aOn2PzJMwR3H8z4JxKb9F5dkbPVnNeRFRERERFpNnJS1rP3pwXs++V9yotyAHBx96Tz4MuJGjuNsD6jMVxcLK7y1PW65P+x+4c5ZO9aS9qaT+gybLLVJYk0OAVZEREREWlWEhISAEhMTGy0c5QX5bJv5SL2/jifnJRkZ3tQRByRY6fRdfhVePgFNdr5G5O7lx/Rkx8mac5dbHj/UTrFX9osh0GLnA0FWRERERE5J5h2Oxlbf2Zv4nzSf/0MW0UpAO4+beh63jVEJUwjKCLW4iobRmTCNHYsfY38/dvY/d2b9LzwDqtLEmlQCrIiIiIi0qoVZ+8nZfm77ElcQFHGXmd7u35jiRw7jc7xl+Hq4WVhhQ3PxdWN/tc8yS8vTmXzp88SMfp6PHzbWF2WSINRkBURERGRVunA71+xa9mbHFr/HaZpB8A7uBORY24kcsxN+IVFWFtgI+s48CJC+4wic+vPbP38BWKvfcrqkkQajIKsiIiIiLQ6mz99jk0f/hMAF1d3Og36A1Fjp9EuZhwuLq4WV9c0DMMg9rqnWfbIaHYsfY3uF9yGb0i41WWJNAgFWRERERFpVq666qqzev22L2c5QqxhEDP1MaLOvxmvgNAGqq5ladstni7Dp5K66kM2fvAEw25/y+qSRBqE1pEVERERkVZj53f/5ve37wZg8K1vEJVwk8UVWa8wI4Wv/x6L3V7JhKdXEBQRZ3VJIvU61XVkW86CWCIiIiJyTiguLqa4uPi0X7cncYEzxA68+SWF2Cp+YRF0n/BnME3Wv/cQLakjS6Q+CrIiIiIi0qxcdNFFXHTRRaf1mn0rP2Dtm38BIO765+hxwW2NUVqL1feK+3D3acPhzT9yaMN3VpcjctYUZEVERESkRUtfu5g1r/8RTJOYqx6j18UzrS6p2fH0C6bv5fcCsP6/D2G32yyuSOTsKMiKiIiISIt1YN1SVr1yE6bdRp8/3EPfy++zuqRmq8eEP+MT0oW8tM2kLH/P6nJEzkqjB1nDMOYahpFhGMamGm1PGoaxwTCMZMMwvjUMo2Nj1yEiIiIircvhTT+y4uVrsdsq6HnhXcRc9bjVJTVrrh5ezp/Rpg+foLLs9O9DFmkumqJHdh4w6Zi2503T7G+aZhzwBfBoE9QhIiIiIq1E5raV/PziVOwVZXQb9yfibngOwzCsLqvZ6zriKoIi4ijJOciOr1+1uhyRM9boQdY0zeVA9jFt+TWe+gKaOk1EREREAJg+fTrTp0+vd/uRXWtZ/vwV2MqKiRh9A4Nuflkh9hQZLi7EXv8MAFuX/B+leRkWVyRyZiy7R9YwjKcNw0gDrucEPbKGYdxqGEaSYRhJmZmZTVegiIiIiFjiREE2J2U9Pz33BypLCggfNoXBt/4Lw0XTvpyOdv0S6BA3kcqSAjZ/8qzV5YicEcv+1pum+ZBpmuHAe8CdJ9jvP6ZpxpumGR8aGtp0BYqIiIiIJbKyssjKyjquPS99Kz89eykVxbl0ir+UYbfPwcXF1YIKW77+1z6FYbiw+4c5FBzcaXU5IqetOXx89V9gstVFiIiIiEjzMGXKFKZMmVKrreDgLhKfuYiygizax17A8LsW4OLmblGFLV+b8H5EjLkR01ZJ0pyZWo5HWhxLgqxhGD1qPL0M2GZFHSIiIiLS/BVl7iPxmYsozT1MWN8xjLz7fVzdPa0uq8Xrf/XjeAWGkbHlJ7Z88ozV5YiclqZYfmchsAroZRhGumEYfwSeMwxjk2EYG4AJwF8buw4RERERaXmKs/fz49MXUXwknZCewznvHx/i5uFtdVmtgldgO4bd8TYYBps/fY5DG5ZZXZLIKWuKWYuvNU2zg2ma7qZpdjZNc45pmpNN04yuWoLnUtM09zd2HSIiIiLSspTmHSbx6YspythLUNRARt37Ce5eflaX1aq0ix5L9OSHwDRZ/doMirP1tlxahuZwj6yIiIiISC2eRgWJz1xKwcEdBHaJYcz9n+PhE2h1Wa1Sn8vvo13MOMoKslj16jTstkqrSxI5KQVZEREREWlW/vKnaczonUNe2ib8O/Yi4YElePoFW11Wq+Xi4sqw2+fgHdSBrO0r2fjBE1aXJHJSCrIiIiIi0mxUlBbSducCyEvBr10UYx/6Eq/AMKvLavW8AsMYftcCDBdXti15kQO/f2V1SSInpCArIiIiIs3G9i9e4sjONXi06UjCg1/hHdTR6pLOGaG9RxJz1eMArPnXLRRlplpbkMgJKMiKiIiISLNgt9vYk7gAgI92BeAb2sXiis49vS+5mw4DJlFelMPKV27AVlludUkidVKQFREREZFm4fDG7ynJ3k9epSf7y/2tLuecZLi4MPTPb+ITEk727iQ2LHzY6pJE6qQgKyIiIiLNwp4f5wOwrTgUMKwt5hzm6d+W4Xe9g+Hqxo6vZ5P+62dWlyRyHAVZEREREbFcaX4mB377AsNwYXtxiNXlnPNCegwh9rpnAPj133+m8PAeiysSqU1BVkREREQst++X97HbKmgfewFFdg+ryxGg56Q76DT4MipK8lk56wZs5aVWlyTi5GZ1ASIiIiJybjNNkz2JjmHFUQnT+HsfV4srEgDDMBhy6xt8u28jOSnJrHv3PuJnzLK6LBFAQVZERERELJa9ey356VvwDAilw8CL6OymHtnmwsO3DSP++i7fPzaW3cveJLT3SLqOuMrqskQ0tFhERERErFU9yVPEqOtwdfNg+/btbN++3eKqpFpw5AAG3Pi/ACS9dSf5B3ZYXJGIgqyIiIiIWKiytIjU1R8BjmHFALfddhu33XablWXJMbqNv4Uuw6dSWVrIylk3UFlWbHVJco5TkBURERERy6T9+imVJQW07TGUgE69rS5H6mEYBvF/mo1/hx7kpW3i9/l/s7okOccpyIqIiIiIZfbWmORJmjd3b39G/PVdXN292Ju4gL3L37W6JDmHNXqQNQxjrmEYGYZhbKrR9rxhGNsMw9hgGManhmG0aew6RERERKR5KTi4k8xtK3Dz9CV82GSry5FT0KZLDANvfgmA3+b+ldy0zRZXJOeqpuiRnQdMOqbtOyDaNM3+wA7ggSaoQ0RERESakT2JCwAIH3Yl7t7+FlcjpypyzE1EjL4BW3kJK2fdQEVpodUlyTmo0ZffMU1zuWEYEce0fVvj6WpgSmPXISIiIiLNh91WScrPjqGpkQnTa217+OGHLahITpVhGAya/hLZu38jf/9Wkt66i2F3zMUwDKtLk3NIc7hHdgbwtdVFiIiIiEjTOZi8lNLcw/h36ElIz2G1to0fP57x48dbVJmcCjcvX0b+v/dw9fQhdeUi9vww1+qS5BxjaZA1DOMhoBJ47wT73GoYRpJhGEmZmZlNV5yIiIiINJo9NSZ5OrYnLzk5meTkZCvKktMQ0Kk38X98FYDfF/yDg8nfUJiRQnlxHqbdbnF10toZpmk2/kkcQ4u/ME0zukbbNODPwDjTNE9pIar4+HgzKSmpUWo8F5mmSUVxHmX5WZQVVH3lZ1FWmE1w1CDa9RtjdYkiIiLSCpXkHGTJXT3BMLhs9k68AtvV2p6QkABAYmJi0xcnp23tW3ce1yNrGC64+7bBw7cN7r5t8PQNdj738G2Dh1+w87G7b1CtNjcvPw1TPocZhvGbaZrxJ9uv0e+RrYthGJOA+4Axpxpi5eTstsqjYbTgSNXjTMfj/KxjtjnaTVtlvcfredFMYq95Ehc39ya8ChEREWntUn5ZiGm30Sn+0uNCrLQ8A296AYDs3WspL8qlvDCHytJCyguzKS/MPu3j+YZFMnDaC3QccGFDlyqtSKMHWcMwFgIJQIhhGOnAYzhmKfYEvqv6tGW1aZp/buxaWhNbZTl5aZvJ2fM72Xt+J2fvOvLSNmO3VZzWcdy8/fH0D8EzIARP/7Z4+ofg4urO3uXvsOOrV8jencSImQvwDurYSFciIiIi5xLTNLV2bCvj6uHF4D/NrtVmr6ygvDiXiqJcygpzqCjKcYTcohzKC48+rqhuq7GtKGMvPz8/mfBhkxlw0/N4t2lv0ZVJc9YUsxZfW0fznMY+b2tir6wgb/9WZ2jN3vs7eambsFeW197RMPAMCHUG0prh1DMg9JjnIXj6tcXVw6vOc0aOuZGVr9xA1vaVfPPACIZeFHMcAAAgAElEQVTfNV9DjUVEROSsZW1fRcHBnXi1aU/72AlWlyONxMXNHa+AULwCQjmdhZXstkp2Ln2djR/9k7TVH3Now/fEXvcUUQnTMVyawzy10lxYMrRY6me3VZJ/YHut0Jq7bwP2irLj9vXv0IOgyIEERzm+2nTt32BrsIX0HMaEp1eyevbNHN78Iz89czHRUx+lz2X/0D8iIiIicsb2JM4DIHL0Dbi46q2o1Obi6kavi2fSecgfSJo7k0PrvyPprTvZ98v7xP/xVQI69bK6RGkmmmSyp4bS2iZ7stttFB7c6Qis1aE1ZT228pLj9vVr142gyAFHQ2tELB4+gU1S4+aPnmLLZ/8DQMcBFzL0L2/h4RfU6OcWaUimaWIrK8bNy9fqUkREzlkVxfksviMKW1kxF724Af8O3evcb+XKlQCMGDGiKcuTZsY0TdJWfcTvC+6hLD8DFzcP+l5+L70v/Tuu7p5WlyeN5FQne1KQbSKm3U7BoV3k7F1XdU/r7+TsTaayrOi4fX1DIwiOGugMrkERcZYHx4PJ37D69T9SXpiNb2hXRvz1PYKjBjbJuUtyDnJk1694B3XANywST/8QzWQnp8w0TdLWfMKG9x+lKGMvngFh+Lfvhl/7bvi3745/++74tY/Cr3133L38rC5XRKRV2/3DXJLeupPQ3udx/qPfWl2OtBBlhdms/++D7E1cAFQv+zOb0N76oKM1UpC1kGmaFB7eUyu0Zu9dR2VJwXH7+oSEExxZI7RGDsDTv60FVZ9cUWYqK2ZdR86e33Fx82DgtBeJOn9Go4XKI7vWsvObf5G2+uNak1i5efvjFxaBX1gUfu2i8A2LwK9dFH5hkfi0Ddcsy+KUuW0lyf99gOxdawHHUgCmWf+6dl5t2lUF2274tevmfOzfrpt6ckVEGsB3j44he9dahvz5TSJHX1/vfuqRlboc3vwTSXPuovDQLgC6jfsT/a/5Jx6+bSyuTBqSgmwTMU2Tosx9jnta965zfq8ozj1uX+/gjo7QGjWQ4MgBBEUOwCswzIKqz5ytoozkd+9j13f/AaDredcRP2NWg73Jt1WWk/7rZ+xc+jpHdv0KOMJHaJ/zKC/Oo+jwXipK8ut9veHiik/b8OMCrl+7SHzDIptkOLZYr+DgTta//wj7134OgFdgGNFTHyVy9I2U5h2m4NAuCg7tovDQ7qrveyjM2FPnvejVvIM64NeuZk9uN/zad8evXRRunj5NdWkiIi1WXvoWlt4bj7t3AJe9vueE/3ZqHVmpj628lC2f/Q9bl7yIaavEq017Bk7/PzoP/oNG7LUSCrKNwDRNio+kk7Pnt6rQuo7svb/XuT6WV5t2R0NrVU9ra5o6fN+KRax96w5sZcUEhvdjxF/fI6BjzzM+XmleBrt/mMuu7/5Dae4hADx8g4g6/2a6j78V39AugOPPoLwwm8LDeyjKSKEwYw+FGXspPLyXooy9FGfvhxP8Tnv4tcU3JBzf0K74hHTBN6QLPiHh+IZ2wSekCx6+QfpHsAUrzc9k8yfPsvv7tzBtlbh6+tD74r/S65K7Tzps2G63UXJkf1Ww3UXBod0UHt5NwaHdFB3ec8KlrbyDOzp6b529uFFHQ66Hd0NfpohIi7TunfvY8fWrdBv3R+L/+OoJ91WQlZPJTdtM0pt3ODs+Og66mEHTX8KnbWeLK5OzpSB7lkzTpCTnwHE9rWX5mcft6xkQ6uhhrRlagzq2+kCUl76FFS9dR8HBHbh5+zPk1jcIH3rFaR0jJyWZHUtfJ3XVh87esIDOfek58S90HXnNaff02spLKcpKrQq6e6tC7h4KM1Ioythb50RaNbl5+VUF3HBn0HWE3S74hobjFdheszY3Q5XlJexc+hpbF79ARUk+huFCxJgbiZn6SIOsgWy32yjOSnME3MO7a/Tk7qYwYy+mrbLuFxoGPsGd8KvuwW3X7WhPblhkvctfiYi0NrbKcpbc0Z2ygizGP7mctt1O/B5VQVZOhWm3s2vZf9iw6DEqSwpw8/Kj/9VP0O2CW3FxcbW6PDlDCrKnqST3kHPJm5y9jp7W0tzDx+3n4de2KrRWzyA8CO/gTq0+tNanoqSAtW/eQdrqjwDoeeGdxF779AnvU7XbKtmftISd37xO5rYVjkbDoOOAC+k56Q7C+iU0ys/TNE1Kcw9RlJVGcVYqRVmpju+Z+5xtlaWFJzyGi5sHPm3DHeE2NPxoyK367hPcSffoNiHTbmffivfZ+MHjFB9JB6B97AXEXvs0bbpEN0kNdlslxVlptXtyq74XZaZg2m11v9Aw8Gkbjn+N4crV333DIjQbo4i0Kmm/fsbKl68jMDyaic+tOen/8wqycjqKj6Tz+7y/sf+3LwAI7j6YwX96rcneC0jDUpA9gdK8jBoTMTlCa0n2geP2c/dpU2v24OCogfiEdDlnQ2t9TNNk57dvsP7d+7HbKmjbcxgj7lpw3NCOsoIj7PlxHru++7czdLh7BxCZMI0eE27Dr12UFeU7maZJeVFOVbhNpTgr7WjYzXI8LyvIOuExDMMFr6AONQJuOD6htXt2dT9lwzi8OZH17z1ITkoyAG26xhB73TO0jxlncWVH2SsrHCMEqoJtwaFdFFb16BZl7qs35BqGCz4h4Ud7ctt3x7+dY7iyb1gErm4eTXwlIiJnZ/n/XM7B9d8y4Mbn6XnhHSfdX0FWzkT62sX89vbdlOYewnB1o8fE22kfM47Azn3O6Y6nlkZBlqMTMeWmJJOzbwO5+zaQk7Kekuz9x+3r7h1AUNUETNWh1TcsUr/wpyFr56+snHU9Jdn78QwIZdgdb9M+5nxyUzex85t/sW/F+86hvf4detBj4l+IGHU97t7+Fld+6ipLiyg+4gi4RVmpFGemHn2clUpJzsET3qMLjqHoPiG1e3NrDmV2922j37sTyEvfyvqFD3Fw3VLAcX9qzFWP0/W8a1vUMCJbZTnFmfuqJp5yhNvqIcvFWan1zq5suLjiE9KlxlBlR0+uZ0AIbp4+uHn64urhjaunD24ePhoKLyKWKz6Szhcze2O4unHZa7tPaXWG5GTHh5RxcXGNXZ60MuXFeWx4/1F2L3uzVru7TyABnfsQ2KkPgZ37Oh537oNXm/Z639XMnHNB1lZZTn76VkdY3beB3JT15KZupKI477h93bz8CIqIc84eHBw1EL923fSGrwGU5mey+rUZHN74PRgGwZEDyd7zm3N7h9gJ9Jh0O+1jxrfKn7etspySI/uP6clNdQ5dLs5KO+GkQeBYXsg5CVXNsFs1IZVXQFir/NmdTEnuITZ99BR7f5yHadpx8/Kjz2X/oOeFd7a6Xm5bRZljMrOqyaZqzrBcfCTtpB+W1OTq7oWrpy9unt64evjg5unjCLnV3z2OPnfz9CEociCd4i/Vf+oi0mA2f/ocmz78J+HDJjNi5jtWlyPniKwda0j5+T3y928lL31rnZOzgmNyUUeo7Utg5z4EVH1vaSuLtCatOsiWF+eRu29jVQ9rMrn7NpCfvrXOgOAVGEabiFiCusbSpmt/giJi8W0X1aJ6bloau93Glk+eZfOnz4Jp4ubpS8SYG+kx4c9nNbNxa2Da7ZTmHaIo8+h9ukWZ+2qF3cqyohMew8Xd8+h9ujXCbkDHHgRHxbe6kFtZWsT2r2axbclLVJYVYbi4EnX+DKInP4hXYDury2tyjpC7t0ZPrmP5oPLiXCrLirGVF2MrK6GyrOikk5vVJ3zolcT/8VU8/IIauHoROdeYdjtf3h1NUWYKo+9bTIfYC07pdcuWLQNg/PjxjVmenCNM06Q07zD56Y5Qm5e+hbz0LeSnb62z0wvA0z/E2Wvr6MF1BNxTGVFwrslN3cjhjT8S2CWakJ7DzrqDoVUG2d7hweYLkztQlLH3+I2GgV+7bgRFHA2sbbr2b1VL3rQ0mdtWkL9/G+HDp2j91lNUvbzQsT25R4cxp1FeeKTe13u1aU/40CsJHzaZkB5DW2yoNU2T7N1JpPyykNSVHzqvueOgi4m95ikCOvWyuMKWwbTbsVWUOkJtWQm28mIqy4qodD4uxlZWTGV5MbbSYsoKstj57RtUlhbi07YzQ2+fQ1ifUVZfhoi0YIc3J5L49EX4tO3MxbO2nnJHgu6RlaZQvUpJzYCbn76VvP1bqSwpqPM1XoFhzlDrCLr9COzcBw/fNk1cvfXy0rey+eOnSVvzibPNxc2Dtt2HENZvDGF9x9C2++DTnsCyVQbZbm1dzGcmeuHi7klgeD+CuvavCq1xBIb3a1H3WoqcqYrSQoqrA26NGZezdq6hOCvVuZ93cCdnqG3bfXCLGCpalLmPlF8Wsu+XhRQc3OlsD44aROz1zyhUNYHCw3tY9drNZO9aC4ZBn8v+QfTkhzUbt4ickVWzbyZ15SL6XfkA0VMeOeXXKciKlUzTpPhIOvnpW2oF3Pz92+odOecd1KF2wO3keOzuE9DE1Te+goO72PzJM+xbuQhMExd3TzrHX0bBwZ3k7Ftf6xYoVw9vQnoOdwbb4KiBuLi6nfD4rTLI9u8dZS7/bgkBHXrqTZXIMap7MdPWfELa6o+dM0MD+ISEEz50MuHDriQ4alCzCrXlxXmkrfmEfT8vJHPbL852r8Awuoy4mohR19Kma2yzqrm1s1dWsPmTZ9i6+HlM005wt3iG3fE2/u27WV2aiLQg5YU5LL4jCntlOZe8vAXf0K6n/FoFWWmOTLudoqzUGgF3K/npW8g/sL3e23l82nZ23oMb0KmPM+i6e/k1cfVnryhzH5s/eYaUn/+Labfh4upO5Njp9P3DPc7VSsoKs8nc+gsZW34iY8ty8tI21zqGm7c/ob1HEtZ3DO36jaFNl/7HjSBslUG2MdeRFWlNTLudI7vWkrbmY9LWfFJreSnf0AjChzlCbVBEnCUB0V5ZwaEN35Hyy0L2//YF9ooywPGpXaf4S4kYdR3tos8/6Sd20rgyt61g9eszKM5Kw83Lj4HTXiRi9A36UEFETsnO7/7N72/fTbvo80l48IvTeq2CrLQkdruN4sx95KVtPhpw928h/8AO53ucY/mGdj0+4Hbq3SwnsCw+ks6Wz/6XvYnzsdsqMFxciRh9A/2uuP+kH1CV5h0mY8vPZGz5icObf6Lw0K5a2z18gwjtO8oZbAM69cHFxaV5BFnDMOYClwAZpmlGV7VNBR4H+gBDTNM8pXSqICty+ky7nawdq52htjT3sHObX7tuhA9zDD9u0yWmUQOKaZpk7/mNfb8sJHXVR5TlZzo2GAZhfccQcd61dB78h1Y5BKclKy/KJWnOTNJWfwRA+LDJxM94RRNBichJffvgCHJSkhl+53y6jJh6Wq9VkJXWwG6rpChjb9XkUlvJS9tC/v6tFBzYUfcqFoaBX1ikc5kg51Dljr1w9fBq8vpLcg+xdfEL7P5hjiOQGwZdR15LvysfOONRWsVH0snYsrwq2CZSnJVWa7tnQBhX/Htfswmyo4FCYEGNINsHsAP/Bv6hICvSNOx2G1nbV5G2+iPS1nxGWX6Gc5t/h56ED7uSzoMvwzuoY4OtQ1qUmcq+FQtJ+XkhBQd3ONsDOvUhYtS1dB15jXM4ijRPpmmS8vN7/D7vbzUmgppLWJ/zrC5NRJqpnJT1fPvgcDx8g7jstd2n/SZ8+/btAPTqpcn9pPWxV1ZQeHh37Qmm0rdQcGgXpq3yuP0NwwW/9t2OWwfXv2NPXN08Gry+0vxMti15iV3f/ds5ZDp82GSiJz9EQKfeDXYe0zQpykhx9tZmbPmJ0txDXLOwpHkEWQDDMCKAL6qDbI32RBRkRSxht9vI3PoLaas/Iv3XxZQVZNW5n2Md0qp1Rz2OWX/Uq+q7hzduXr6O754+uHr6gmmy/7cvyNz6s/NYngFhdB15FV3Pu9ayYc1y5goO7Wb1azeTvTtJE0GJyAn9Nu9v7Pr2DXpM/AsDp71odTkiLYKtspyCgzudwbZ6NuXCQ7swTftx+xsurvi17+5cA9cZcNt3P6P/m8sLc9j+1Sx2LH2dytJCADrFX0r0lIdp0yXmrK/vZEzTpODADgI7924dQdYwjFuBWwG6dOkyaN++fY1XqMg5ym6rJGPLctJWf8zhzYlUlhQ4lmQpKz7rY7u6ex297zVmnO57beEcE0E9zZbFz4NpEtwtnuF3zsOvXZTVpYlIM2ErL+XzO7pRXpTDhGdXE9S1/2kfY8mSJQBceumlDV2eSItjKy8l/+CO4wNuxp5aMwRXc3F1x69DD2e4dUww1Re/dlF1vg+rKM5nx9LZbP/qVee6uh3iJhI95RGCowY2+vUdq1lN9qQeWZGWyTRNbOUlVWuNlmArK3KsPVpeUrU2qaO99jqlji97RSnB3QYTPuRy3ffaCmVs/YU1r8+g+Ei6JoISkVr2rfyA1bOnExQ5gAlPrzijY+geWZGTqywvoeDAdvLStjhnUM5L30pRZkqd+7u4eeDfsVdVwO1DQKc+FBzcwbYvXqa8MBuAdv3GEj31UUJ6Dm3CK6ntVIOsukZEpF6GYeBWNaz49JayltYurM95THx2DUlzZ5K2+mN+/fdtHFz/rSaCEhH2/jgfgMiEmyyuRKR1c/PwJigijqCIuFrtlaVF5B/YdnSCqfQt5O3fSnFWGnmpG8lL3XjcsUJ7jyR66qOE9RnVVOWfNQVZERE5Ix5+QQy/awEdYifw+7y/kbb6Y47sXKOJoETOYYUZKRze/COu7l50HXG11eWInJPcvHwJjhpEcNSgWu0VJQXk7996dImgtC0YLi70vOgu2kWf3+JGVTV6kDUMYyGQAIQYhpEOPAZkA68CocCXhmEkm6Y5sbFrERGRhmUYBpFjbiSk1whWz55O9p7fSHxqEn3+8A/6TX5Y90SLnGP2/rQAgM5DLsfDt43F1YhITe7e/rTtPoS23YdYXUqDOLt1NU6BaZrXmqbZwTRNd9M0O5umOcc0zU+rHnuaptlOIVZEpGXzb9+NcY//QN/L78XEZMtn/0vi0xdSnL3f6tJEpInY7TZSlr8LQGTCNIurEZHWrtGDrIiInBtc3NyJuepxxj68FK827cnctoJvHxzBoQ3LrC5NRJrA4Y0/UHwkHd+wyLO+z+6dd97hnXfeaaDKRKQ1UpAVEZEGFdZnFBOfXU276PMpy8/kp//5Axs//Cd2u83q0kSkkZTmZbB+4cMARCXchOFydm8xw8PDCQ8Pb4jSRKSVUpAVEZEG5xUYxuj7FxM9xfHGdsunz/HTM5dQknvI4spEpKEVH0nnh39OIC91I/4detBt3J/O+piLFi1i0aJFDVCdiLRWTbKObEPROrIiIi3P4U0/smr2zZTlZ+AVGMawO+fTrt+YJq3BVlGG4eKqyadEGljBod0kPnMxxVmptOkaw5j7P8crsN1ZH1fryIqcu7SOrIiINAvtoscy8dlVrH7tZjK2LOenZy6m3+SH6Hv5fWc9/PBkclM3su2Ll0ld9SGm3YaHbzCeASF4BYTiGRBa43EIXgFheAaE4BkQildAKB5+wY1en0hLlpu2mZ+evYTS3MO07T6E0fd+qnWkRaTJKMiKiEij8w7qwJgHv2Tzx0+z5bP/YdNHT5K1fRVD75iDV0Bog57LNE0yNiey7YuXjk40VbU2XnnhEcoLj1BwYPtJj2MYLnj4h9QKu9Uht3YYdjz38A1qcWvwiZypI7uTWP4/l1NemE1YvwTO+/sHuHv5WV2WiJxDFGRFRKRJuLi4EjP1UUJ7jWD1azM4tHEZ3z4wjOF3LSC098izPr7dVkn6mk/Z9sVL5KQkA+Dq6UNUwnR6XXQX3sGdKC/MpjQ/k7L8LMryM6seV39l1dpWXpRDWX4GZfkZ5J/C+Q1XNzz9a4ddx+OabUeDr7t3gIKvtEgZW3/m5xemUFlSQMeBFzFi5ru4enhZXZaInGMUZEVEpEm17z+eCc+uYtWr08javpIfn5pEzFWP0/uSu89oKG9laRF7Euez4+tXKcrcB4BnQBg9Jv6Z7uNvwdO/rXNfr8AwvALDTum49soKygpqh1tH2M2oM/hWlORTmnuI0txD5J3C8V3cPI7p5Q2tFXw9/UPwCgzFs2rIs5unr4KvWO7AuqWsfPk6bBWldBlxNUP//B9c3NytLktEzkGa7ElERCxht1Wy8YMn2LbkRQA6xE1k6F/eqhU8T6Q0L4Od3/yLXcvepLwwGwC/9t3pdfFMIkZdj5uHd6PVXhdbRVmNXt6s2mG3IJOyvNrbKsuKTuv4rh7eR4OvfwiegWGOsBsQimdgjeDr73je1NcvrV/a6k9Y9dp0TFslUefPYNCMWbi4uDbKubKysgAICQlplOOLSPN1qpM9KciKiIilDqz7mjX/uoXywmx82nZm+F3vENJzaL37FxzcxfavZrF3+bvYK8oAaNt9CL0vvZuOgy5ptDfWDa2yrNgRagsyKc07ZnhzQRZleRmUFlQF4rxMbBWlp3V8N09fR89uYHXwdYTcWsOeqwKwZ0Aoru6ejXSl0hrsSZxP0pt3YJp2el38/4i97mmNEBCRRqEgKyIiLUZRVhqrXr2JIzvXYLi6EXvNU/S86K5ab5Szdv7K9i9eIj3pc6j6v6vjoIvpffHdhPQa3qrfVJumSWVZEWV5mUeDb1XIdT7Oy6S04GggtleWn9Y5PPyCiRh1HX3/cC+eAeoFk6N2fP0a6965B4DoqY86Zhxv5L9v8+bNA2D69OmNeh4RaX4UZEVEpEWxV1awYdGjbP9yFgCdBl3C4NveIGv7KrZ98RJZ21cCjntLu553Lb0v/isBnXpbWXKzZZomFSX5VcE3i9K8jKPBN/9oL6+jxzeDsvwsTLsNAHfvAHpf+jd6TroDNy9fi69ErGSaJls+fY5NHz0JwICbXqDnpNub5NxaR1bk3KUgKyIiLdL+pCWseeM2KopzcXHzcPYsuvsE0n38LfSY+Be8gzpYXGXrYtrt5Oxbz8YPHufQ+u8A8GrTnujJDxGZMA0XV80Nea4xTZP1/32I7V++jGG4EH/L60Ql3NRk51eQFTl3KciKiEiLVZiRwqpXbiR7z2/4tO1MzwvvImrsdNy9/a0urdU7vDmR9QsfJmfP7wD4d+hB/6ufoNPgP7Tq4dtylN1u47e5f2XPD3NxcXVn2B1vEz7syiatQUFW5NylICsiIi2arbKc3JRkgiIGaHmPJmaaJmlrPmHjoscoPLwHgODug4m99mnC+pxncXXSmOyVFax54xZSV36Aq7sXI+9eSIe4iU1eh4KsyLnrVIPs6S/YJyIi0gRc3Txo232IQqwFDMOgy7DJXPj8Ogbe/BKeAWFk71rLj09OYPnzV5KbusnqEqUR2MpLWfHytaSu/AA3b39G3/+5JSFWRORUNHqPrGEYc4FLgAzTNKOr2oKBRUAEkAJcZZpmzsmOpR5ZERGRpldRWsiOr15h2xcvU1laCIZBxKjriZ7yCL4h4VaXJw2gorSQX168iozNiXj4BTPm/sUERw2yrJ7i4mIAfHx8LKtBRKzRnHpk5wGTjmm7H/jeNM0ewPdVz0VERKQZcvfyo9+VD3LxS5voMfEvuLi4kbL8Xb76e3+S33uAsoIjVpcoZ8huq6Qk9xA/PXMJGZsT8WrTjrGPfGNpiAVHgFWIFZETaZJ7ZA3DiAC+qNEjux1IME3zoGEYHYBE0zR7new46pEVERGxXuHhPWz88J+krvwAcMwo3eeyv9Nj4u24eSp8nC273YatrBhbeYnzq7KsGFt5KbZyR3tl9baq9sryY7aXlWCrqGN7WXFVu+P1dluF87y+oV1JePBL/NpFWXj1Dq+//joAt9/eNMv9iEjz0awme6ojyOaaptmmxvYc0zSD6nntrcCtAF26dBm0b9++Rq9XRERETi577zo2vP8ohzd+D4B3UAf6TXmYdn3HUFlWXBW+irFVPa5+XllW7AxqlWVFVe2Ox7ayqu/lJRiubnj5h+Lh3xbPgBC8AkLw8G+Ll38IngGhePqH4OnfFg+/YAyXxh1kZrfbagVHW3mxI0zWGRiPtleWVYfROrbXDKQ1gmbNcNnYDMMFVw9v2kTEMvzOefi07dxk5z4RTfYkcu461SDb7BeGM03zP8B/wNEja3E5IiIiUiU4cgAJDyzh0Mbv2bDwEXJSkkl6844mr8MwXBxh17+tI9wGhNR4HIqbl29VWCw9GiiP7fGs1WN5/Pbq9Yyb6IJw8/DB1cMbV09vXN2rvnt4V7V74Vr13c2zaj+PY7ZXtbvV2Obq4V21f/XrvXFx89CySiLSIjV6kK2a7OkywK9G82HDMB4CqlfWVkAVERFpodrHjKNdv7Gkrf6YrV/8HxVFebh5+R4NTp4+joDl6VMVpHxqtHvj6unrDGSO1/ng5umNvbKcsoIjlOVnOb4Kqr7ysygtyKK8alt5UQ5l+ZmU5Wc23kXWFS6rAqNbjaBZKzC61xEoq9qPDZRuzsDqo3ApInIKmqJHdh7wcdVXtXXAdCAauBtoHuNYRERE5IwYLi50GTGVLiOmNvm57ZUVlBdlU1pH4C3Lz6KyrEjhUkSklWmKIPsXYBzgaRhGOvAY4AUUAJuAVKDp/9cTERGRVsHFzR2vwHZ4BbazuhQREWkiVk32lAwsxrEsTynwD9M019bzWudkTz4+PoO6d+/e6PWKiIiIiIhI09uwYYNpmuZJZ/CzarInNyAIGAYMBj4wDCPKrCNV15zsKTY21vz222+btFARERERERFpGu3bt//9VPZr3Lnq65cOfGI6/ArYgRCLahEREREREZEWxKoe2c+A84FEwzB6Ah5A1ukc4MCBA8yYMYMNGzZgt9sbo0YREWkgLi4u9O/fn7lz59KxY0eryxEREZEWrimW31kIJAAhNSZ7mgvMNQxjE1AOTKtrWPGJzJgxg6lTp7JmzRo8PDwaumwREWlA5eXlPP/888yYMYOlS5daXY6IiIi0cE0y2VNDqXmPbMeOHSkpKVGIFRFpIcrLy9wzQ0kAACAASURBVPH29ubAgQNWlyIiIiLNVPv27X8zTTP+ZPtZdY/sWbPb7QqxIiItiIeHh24FERERkQbRYoOsiIiIiIiInJsUZEVERERERKRFUZAVERERERGRFuWcCbIvv/wyxcXFjX4eV1dX4uLiiI6OZurUqRQXF5OSkkJ0dHSjn7vajBkzCAsLq/Ocq1at4pZbbuG7775j0KBBxMTEMGjQIH744YcGO39CQgK9evUiNjaWkSNHsn37dgAiIiLIyjqtVZbO2OzZs+nevTuGYRx3zoqKCgYNGkRaWhpjx46lT58+9OvXj1mzZjVJbTXV/Jn4+fk16rlyc3N5/fXXT+s1jz/+OC+88EIjVeT4XUlKSjrhPomJiVxyySUNcr4z+XfgVGqsy7x587jzzjtP+3UAZWVljB8/nri4OBYtWnRKr8nMzGTo0KEMGDCAn3/+mQ8//JA+ffowduxYkpKSmDlz5hnVIiIiItIcKcg2MG9vb5KTk9m0aRMeHh688cYbjX7OY02fPr3e5S2WLl3KpEmTCAkJYcmSJWzcuJH58+dz4403NmgN7733HuvXr2fatGncc889DXrsUzFy5EiWLVtG165dj9v2yy+/MGLECNzc3HjxxRfZunUrq1ev5rXXXmPLli0NWodpms1mcpszCbKtTVP9O3C21q1bR0VFBcnJyVx99dWn9Jrvv/+e3r17s27dOkaNGsWcOXN4/fXX+fHHH4mPj+eVV15p5KpFREREmk6rC7JFRUVcfPHFxMbGEh0dzaJFi3jllVc4cOAAY8eOZezYsQD85S9/IT4+nn79+vHYY485X//VV1/Ru3dvzjvvPGbOnOnsCSoqKmLGjBkMHjyYAQMGsHjx4pPWMmrUKHbt2gWAzWbjlltuoV+/fkyYMIGSkhIA3nzzTQYPHkxsbCyTJ092vsn+8MMPiY6OJjY2ltGjRzuPcc899zB48GD69+/Pv//97zrPO3r0aIKDg+vc9v333zN+/HgGDBhAx44dAejXrx+lpaWUlZWd9JpO1+jRo50/A4BXX32VgQMHEhMTw7Zt2wD49ddfGTFiBAMGDGDEiBHOHtzNmzczZMgQ4uLi6N+/Pzt37gTg3Xffdbbfdttt2Gy24847YMAAIiIi6qxp6dKlXHjhhXTo0IGBAwcC4O/vT58+fdi/f/9x+2dmZjJ58mQGDx7M4MGDWbFiBeDorZwxYwYJCQlERUU5g0JKSgp9+vTh9ttvZ+DAgaSlpbFw4UJiYmKIjo7mvvvuO+HPLDExkTFjxnDVVVfRs2dP7r//ft577z2GDBlCTEwMu3fvPqO67r//fnbv3k1cXFydHy4sWLCA/v37ExsbW+cHG8nJyQwbNoz+/ftzxRVXkJOTA8Arr7xC37596d+/P9dccw1Q/9+XkpISrrnmGvr378/VV1/t/HtQ159R9d/DTz75xNl+bA9xdHQ0KSkpwMl/L+r6d+B0/lyg/n831q5dy4gRI4iNjWXIkCEUFBTUet2XX37J8OHDjxsdkJ2dzeWXX07//v0ZNmwYGzZsICMjgxtuuIHk5GTi4uKcf97Vdu/ezaRJkxg0aBCjRo1i27ZtJCcnc+//Z+/Ow6oo+z+Ov+ecw1lANvddQXEBBdxzKbdwybTcMtOUcre0tMW9RfNXT9mqlWWaaT6laZrmkpmauVSKIokbijtqirJz4Czz+wOdRwR34AB+X9fFJcyZueczcwD5zj33Pa++ypo1awgNDeXNN99k69atDB8+nFdeeSVbr3ZKSgrPPPMM9evXJzg4mGXLlt3xsT344INERkZq67Rs2ZKoqKhbnj8hhBBCiLxS7ArZdevWUbFiRfbu3cu+ffvo1KkTo0ePpmLFimzatIlNmzYBMH36dHbt2kVUVBS///47UVFRWK1Whg0bxtq1a9m6dSsXLlzQ2p0+fTrt2rVj586dbNq0iVdeeYXU1FTi4uJ45JFHcuSw2+2sXbuW+vXrAxATE8Nzzz1HdHQ0Pj4+2h+PPXr0YOfOnezdu5e6desyd+5cAKZOncovv/zC3r17WblyJQBz587F29ubnTt3snPnTubMmcOxY8du+9xcvHgRNzc3vL29sy1ftmwZDRo0wGQy3cGZvj2rVq3SzgFA6dKl2b17NyNGjNAKkjp16rBlyxb27NnD1KlTmThxIgCzZ8/mhRdeIDIykl27dlG5cmUOHDjA4sWL2bZtG5GRkej1ehYtWnRHmTZt2kSbNm2yLTt+/Dh79uyhWbNmOdZ/4YUXGDNmDDt37mTZsmUMHjxYe+3gwYP88ssv/P3337z55pvYbDYADh06xIABA9izZw9ubm6MGzeOjRs3EhkZyc6dO1mxYsVNM+7du5ePP/6Yf/75h4ULF3L48GH+/vtvBg8ezMyZM+8q1zvvvEONGjWIjIzkvffey7a/6Ohopk+fzsaNG7V9X2/AgAH85z//ISoqivr16/Pmm28C8M4777Bnzx6ioqK0OxBu9PPy+eef4+7uTlRUFJMmTSIiIiLHfqxWK0OGDGHVqlX88ccfnDt37qbnCrit74vrfw/ExcXd8fuS2++NzMxM+vTpw8cff8zevXvZsGEDFotF22b58uW88847rFmzhtKlS2dr7/XXX6dBgwZERUXxf//3fwwYMICyZcvy1VdfacVijRo1sm0zdOhQZs6cSUREBDNmzGDkyJGEhoYydepU+vTpQ2RkJK+//jqNGzdm0aJFOd7radOm4e3tzT///ENUVBTt2rW742MbPHgw8+fPB+Dw4cNkZGQQHBx8y/dJCCGEECKvGFwdIK/Vr1+fl19+mXHjxvHoo4/y4IMP5rrekiVL+PLLL7Hb7Zw9e5b9+/fjdDrx9/fHz88PgL59+/Lll18CsH79elauXKkVX1arlZMnT1K3bl3WrFmjtZuenk5oaCiQ1SM7aNAg4uLi8PPz05Y3atRI60Xat28fkydPJiEhgZSUFDp27Ahk9XCEh4fzxBNP0KNHDy1DVFQUS5cuBSAxMZGYmBgt762sX7+eDh06ZFsWHR3NuHHjWL9+/W21cbv69euHxWKhevXqWuEFaMfSqFEjractMTGRgQMHEhMTg6IoWjHYvHlzpk+fzunTp+nRowcBAQH89ttvRERE0KRJEyDrfJctW/a2c8XFxVGyZEnc3d21ZSkpKfTs2ZOPPvoILy+vHNts2LAh2y3HSUlJWo9bly5dMJlMmEwmypYty/nz5wGoVq0aDzzwAJDVo9WmTRvKlCmjnZstW7bw+OOP3zBnkyZNqFChAgA1atTQ3rf69etrF2PuJteNbNy4kV69emmF1vU9+omJiSQkJNC6dWsABg4cSO/evQEIDg6mX79+PP7449ox3ejnZcuWLdpYzeDg4FyLn4MHD+Ln50dAQAAA/fv3134Ob+Ruvi/u5n3J7feGoihUqFBB2/e130ObNm1i165drF+/Ptfvra1bt2oXtdq1a0d8fDyJiYk33H9KSgrbt2/Xzj1wx3dSbNiwge+//1772tfX946PrXfv3kybNo333nuPefPmER4efkcZhBBCCCHuVbErZGvVqkVERARr1qxhwoQJdOjQgddeey3bOseOHWPGjBns3LkTX19fwsPDsVqtqKp6w3ZVVWXZsmXUrl37pvu/Okb2etf2dur1eu2WyvDwcFasWEFISAjz589n8+bNQFZv5F9//cXq1asJDQ0lMjISVVWZOXOmVuzeqbVr1zJ27Fjt69OnT9O9e3cWLFiQo9fneqdOnaJr164ADB8+nOHDh990/UWLFtG4ceMcy6+eB71ej91uB2DKlCm0bduW5cuXc/z4ca239KmnnqJZs2asXr2ajh078tVXX6GqKgMHDuTtt9++7eO+1tq1a7OdP5vNRs+ePenXr59WZF/P6XSyY8eObL1s1x/P9cfk4eGhLb/Z99WNXNuuTqfTvtbpdNo+7ibXjaiqiqIod5wTsm6b3bJlCytXrmTatGlER0ff9OfldvZzo3UMBkO2McdWq1XLf6ffF3f6vtzs98aN8vr7+xMbG8vhw4dz/XnILcPNzo/T6cTHxyfX3zG3K7e8d3ps7u7uhIWF8dNPP7FkyZK7mgxLCCGEEOJeFLtbi+Pi4nB3d6d///68/PLL7N69G8gaA3m1tyopKQkPDw+8vb05f/48a9euBbJucY2NjdV6S6+dLbRjx47MnDlT+8Nzz549eZI3OTmZChUqYLPZst0KefToUZo1a8bUqVMpXbo0p06domPHjnz++edaj+Xhw4dJTU29rf2oqkpUVJTWK5yQkECXLl14++23admy5S23r1KlCpGRkURGRt6yiL1TiYmJVKpUCUC7XREgNjYWf39/Ro8eTbdu3YiKiqJ9+/YsXbqUf//9F8gaY3jixInb3tfV8bGQdU4GDRpE3bp1sxX41+vQoQOzZs3Svr7TIqJZs2b8/vvvXLx4EYfDwXfffaf1bN6LO8117c/A9dq3b8+SJUuIj48Hss7rtby9vfH19eWPP/4AYOHChbRu3Rqn06nN/vzuu+9mu7Mgt5+Xhx56SPs+37dvX67jKuvUqcOxY8e0saHfffed9lr16tW1n+ndu3drt9bf7vfFtefgTt+Xm/3eiIuLY+fOnUDWz/TVCwfVqlXjxx9/ZMCAAURHR+do89rzsXnzZkqXLp1rz+1VXl5e+Pn58cMPPwBZ38N79+694fq5uf775vLly3d1bIMHD2b06NE0adLkhmPyhRBCCCHyS7ErZP/55x9twpfp06czefJkIGtcWefOnWnbti0hISE0aNCAoKAgnn32Wa2Qs1gsfPbZZ3Tq1IlWrVpRrlw5bTzplClTsNlsBAcHU69ePaZMmQJwwzGyt2vatGk0a9aMsLAw6tSpoy1/5ZVXtEloHnroIUJCQhg8eDCBgYE0bNiQevXqMWzYsFx72vr27Uvz5s05dOgQlStXZu7cuURERNCgQQOtd2XWrFkcOXKEadOmERoaSmhoqFYEFLRXX32VCRMm0LJly2wT9CxevJh69eoRGhrKwYMHGTBgAIGBgbz11lt06NCB4OBgwsLCOHv2bI42P/nkEypXrszp06cJDg5m8ODBOBwOYmJitPO8bds2Fi5cyMaNG7VzcO1t4te2tWvXLoKDgwkMDLzjmagrVKjA22+/rX3vNWzYkMcee+wOz1JOd5qrVKlStGzZknr16uWY7CkoKIhJkybRunVrQkJCci3sv/nmG1555RWCg4OJjIzktddew+Fw0L9/f+rXr0+DBg0YM2YMPj4+N/x5GTFiBCkpKQQHB/Puu+/StGnTHPsxm818+eWXdOnShVatWmWbebpnz55cunSJ0NBQPv/8c2rVqgVw298X1/4euNP35Ua/N4xGI4sXL2bUqFGEhIQQFham9RQD1K5dm0WLFtG7d+8cEze98cYb2ns4fvx4vvnmmxvu/6pFixYxd+5cQkJCCAoKuq2J5641efJkLl++rE0mt2nTprs6tkaNGuHl5cUzzzyjtf3XX3/l+YUuIYQQQojcKHdz26OrhISEqFfHcpYvX/6ubtm8lZSUFEqUKIGqqjz33HMEBAQwZsyYPN9PQXvrrbeoWbOmNqvs/Wjr1q18++23LnkkkhDFTVxcHG3atOHgwYPodLd/TVRRlNuawEsIIYQQ96fy5ctHqKqac0zWdYrdGNl7NWfOHL755hsyMzNp0KABw4YNc3WkPHG1Z/p+1qpVK1q1auXqGEIUeQsWLGDSpEl88MEHd1TECiGEEELkFemRFUIIUWCkR1YIIYQQN3O7PbJyKV0IIYQQQgghRJFSLAtZvV6vTd4TGhqqzUK8detWmjZtSp06dahTp062Z1O+8cYb2jMvb9XW5s2befTRR4GsWXbLlClDaGgoderU4cMPP8y1zfDwcCpVqqQ98/HixYtUr15dWzc6Opp27dpRq1YtAgICmDZtmtbj/MEHHzBo0CBt3UWLFtGlS5e8OVnXmD9/Ps8//3yuy68eY2BgIHPmzMmx/OrH1eeaxsTE8Oijj1KjRg0aNWpE27Zt2bJlyy3bu37/bdq0YdeuXaSlpdGlSxfq1KlDUFAQ48eP19bJyMigT58+1KxZk2bNmmnv97WOHz+OxWLR9jl8+PBsj3EpDD766CPS0tK0rx955BESEhIKZN83eu/zsv24uLgbvv7aa6+xYcOGfNu/EEIIIYQoXoplIXv1Wa5XP6pXr865c+d46qmnmD17NgcPHmTr1q188cUXrF69+o7bul6fPn2IjIxk27ZtTJ8+nVOnTuXall6vZ968eTmWp6en061bN8aPH8/hw4fZu3cv27dv57PPPgNg9OjRREREsG3bNhISEpg8eTIzZ8688xNzD64e4+bNm5k4cSLnz5/PtvzqR2BgIFarlS5dujB06FCOHj1KREQEM2fOJDY29pbt3czLL7/MwYMH2bNnD9u2bdMeETJ37lx8fX05cuQIY8aMYdy4cbluX6NGDSIjI4mKimL//v2sWLEiD85MTtfOvHwnri9k16xZg4+PT17FcqmbFbIOh4OpU6fy8MMPF3Cqu3er5/IKIYQQQoj8VSwL2dx8+umnhIeH07BhQwBKly7Nu+++yzvvvJNn+yhVqhQ1a9bM9bEfAC+++CIffvhhjj+C//vf/9KyZUs6dOgAgLu7O7NmzdKyGQwGPvvsM5577jleffVVnn32Wfz9/XO0//fff9OiRQsaNGhAixYtOHToEJBVRPTo0YNOnToREBDAq6++qm3z9ddfU6tWLVq3bs22bdtueYxly5alRo0aN31266JFi2jevDndunXTltWrV4/w8PC7ag+yzknbtm2BrEeCNGzYkNOnTwPw008/MXDgQAB69erFb7/9dtPx0waDgRYtWnDkyBFSUlJo3749DRs2pH79+tqjTI4fP07dunUZMmQIQUFBdOjQgfT0dACOHDnCww8/rD2y5ejRo2zevJm2bdvy1FNPUb9+fQC+/fZb7VFQw4YN0wrcESNG0LhxY4KCgnj99deBrEfpxMXF0bZtW+04q1evzsWLF4GsyXWCg4MJCQnh6aefznFM+fXeX7hwgbCwMBo2bMiwYcOoVq2alunxxx+nUaNGBAUFaXc3OBwOwsPDqVevHvXr1+fDDz9k6dKl7Nq1i379+hEaGkp6ejrVq1dn6tSptGrVih9++IHw8HCWLl0KwM6dO2nRogUhISE0bdo012ffvvvuu9SvX5+QkBCtd37OnDk0adKEkJAQevbsqV0UCA8PZ/To0bRo0QJ/f39tPzdq5+jRo3Tq1IlGjRrx4IMPcvDgQa2dsWPH0rZtW8aNG8fvv/+u3YnQoEGDGz6jVwghhBBC5L1iOWtxeno6oaGhAPj5+bF8+XKio6O1Yueqxo0bEx0dfcdt3cjJkyexWq0EBwfn+nrVqlVp1aoVCxcupGvXrtry6OhoGjVqlG3dGjVqkJKSQlJSEl5eXrRo0YK6deuyYcMGDhw4kGv7derUYcuWLRgMBjZs2MDEiRNZtmwZAJGRkezZsweTyUTt2rUZNWoUBoOB119/nYiICLy9vWnbti0NGjS46fmIjY0lNjaWmjVrsn//fhYvXszWrVu113fs2EF0dLR2weBWbtXekSNHcmyTkJDAqlWreOGFFwA4c+YMVapUAbKKVG9vb+Lj4yldunSu+0xLS+O3335j6tSpmM1mli9fjpeXFxcvXuSBBx7QCvCYmBi+++475syZwxNPPMGyZcvo378//fr1Y/z48XTv3h2r1YrT6eTUqVP8/fff7Nu3Dz8/Pw4cOMDixYvZtm0bbm5ujBw5kkWLFjFgwACmT59OyZIlcTgctG/fnqioKEaPHs0HH3zApk2bcuSOjo5m+vTpbNu2jdKlS3Pp0qUcx5Rf7/2bb75Ju3btmDBhAuvWrct2O/68efMoWbIk6enpNGnShJ49e3L8+HHOnDnDvn37tPfKx8eHWbNmMWPGDBo3/t+4fbPZrL3X69atAyAzM5M+ffqwePFimjRpQlJSEhaLJVumtWvXsmLFCv766y/c3d2189GjRw+GDBkCZM3SPXfuXEaNGgXA2bNn2bp1KwcPHqRbt2706tXrhu0MHTqU2bNnExAQwF9//cXIkSPZuHEjAIcPH2bDhg3o9Xq6du3Kp59+SsuWLUlJScFsNuf6/SaEEEIIIfJesSxkr94OfC1VVVEUJce6uS27VVvXW7x4MZs2beLQoUPMmTPnpn/QTpw4kW7dumUb43qjbNfmS0lJYdeuXdhsNi5cuEDlypVzrJuYmMjAgQOJiYlBURRsNpv2Wvv27fH29gYgMDCQEydOcPHiRdq0aUOZMmWArNt9Dx8+fMNj3Lp1KyaTiS+++IKSJUtq28yaNetmp4fu3bsTExNDrVq1+PHHH++ovTZt2mRry26307dvX0aPHq31SufW+5rb+Tx69CihoaEoisJjjz1G586dsdlsTJw4kS1btqDT6Thz5ox2m7Ofn592EaNRo0YcP36c5ORkzpw5Q/fu3QGyvddNmzbFz88PgN9++42IiAiaNGkCZF0QKVu2LABLlizhyy+/xG63c/bsWfbv33/Dix8AGzdupFevXlqBe/VcXSu/3vutW7dqF286deqEr6+v9tonn3yivXbq1CliYmKoXbs2sbGxjBo1ii5dumh3GeSmT58+OZYdOnSIChUqaOfNy8srxzobNmzgmWeewd3dPdv52LdvH5MnTyYhIYGUlBQ6duyobfP444+j0+kIDAzU3t/c2klJSWH79u307t1b2/bquHaA3r17o9frAWjZsiVjx46lX79+9OjRI9efSSGEEEIIkT+KZSGbm6CgIHbt2pXtdteIiAgCAwPvue2rxdeOHTvo0qULnTt3pnz58rmuW7NmTUJDQ1myZEm2bFcnQroqNjaWEiVK4OnpCcDrr79O//79KVeuHGPGjOGHH37I0faUKVNo27Yty5cv5/jx49mKQJPJpH2u1+u125tvVchff4y34/rjWb58Obt27eLll1++q/auNXToUAICAnjxxRe1ZZUrV+bUqVNUrlwZu91OYmJirsXe1TGy11q0aBEXLlwgIiICNzc3qlevjtVqBXKes/T09Jvesuzh4aF9rqoqAwcO5O233862zrFjx5gxYwY7d+7E19eX8PBwbX83crMLHVfl13t/o+PdvHkzGzZsYMeOHbi7u9OmTRusViu+vr7s3buXX375hU8//ZQlS5bkOi4csp+va/d3q1w3Wic8PJwVK1YQEhLC/Pnz2bx5s/batefg6jHl1o7T6cTHx+eGF6+uzTx+/Hi6dOnCmjVreOCBB9iwYQN16tS5aXYhhBBCCJE37psxss899xzz58/X/kCNj49n3Lhx2cYM3qvmzZvz9NNP8/HHH990vUmTJmWbIblfv35s3bpVm7U1PT2d0aNHa9n++ecfVq9ezbhx4xg6dCgnTpzg119/zdFuYmIilSpVArLGRt5Ks2bN2Lx5M/Hx8dhstlyL47vx1FNPsW3bNlauXKktu3YSo7s1efJkEhMT+eijj7It79atG9988w0AS5cupV27drddoCcmJlK2bFnc3NzYtGnTLcfqenl5UblyZW2iqIyMjFyPrX379ixdupR///0XgEuXLnHixAmSkpLw8PDA29ub8+fPaxNWAXh6euY6zrJ9+/YsWbKE+Ph4ra3cjiM/3vtWrVppF13Wr1/P5cuXtf35+vri7u7OwYMH+fPPP4Gs2bidTic9e/Zk2rRp7N69+6bHdr06deoQFxfHzp07AUhOTs4xprxDhw7MmzdPO+9Xz0dycjIVKlTAZrOxaNGiW+4rt3a8vLzw8/PTzoeqquzduzfX7Y8ePUr9+vUZN24cjRs31sbSCiGEEEKI/HffFLIVKlTg22+/ZciQIdSpU4cWLVrw7LPPZhur+tZbb1G5cmXt426MGzeOr7/++qZ/tAcFBWUbQ2qxWPjpp5946623qF27NvXr16dJkyY8//zzqKrKiBEj+PDDDzGbzeh0Oj777DNeeOEFMjMzs7X76quvMmHCBFq2bHlbM+dWqFCBN954g+bNm/Pwww/f9rjWay1evDjb43e2b9+OxWLh559/Zvbs2fj7+9O8eXPeeustJk+efMftX3X69GmmT5/O/v37adiwIaGhoXz11VcADBo0iPj4eGrWrMkHH3xwRxN49evXj127dtG4cWMWLVp0Wz1qCxcu5JNPPiE4OJgWLVpw7ty5HOsEBgby1ltv0aFDB4KDgwkLC+Ps2bOEhITQoEEDgoKCePbZZ2nZsqW2zdChQ+ncubM22dNVQUFBTJo0idatWxMSEsLYsWNz7C+/3vvXX3+d9evX07BhQ9auXUuFChXw9PSkU6dO2O12goODmTJlCg888ACQNV65TZs2hIaGEh4ervVIh4eHM3z4cG2ypxsxGo0sXryYUaNGERISQlhYWI4e606dOtGtWzcaN25MaGiodlFo2rRpNGvWjLCwsNt6H2/UzqJFi5g7dy4hISEEBQVpE4Bd76OPPqJevXqEhIRgsVjo3LnzLfcphBBCCCHyhnKzWyULm5CQEHX9+vUAlC9f/qa3eQoh7l1GRgZ6vR6DwcCOHTsYMWLELceMC3EziqLkevFHCCGEEAKgfPnyEaqqNr7VevfNGFkhxJ07efIkTzzxBE6nE6PRyJw5c1wdSQghhBBCCClkhRA3FhAQwJ49e1wdQwghhBBCiGzumzGyQgghhBBCCCGKBylkhRBCCCGEEEIUKUW2kNXpdDlm7RVCCFF4ZWZmotMV2f92hBBCCFGIFNm/KIKDg3nvvfekmBVCiCIgMzOT9957j+DgYFdHEUIIIUQxkO+TPSmKMg94FPhXVdV6V5a9AQwBLlxZbaKqqmvupN158+bx7LPP8tprr+F0OvMyshBCiDym0+kIDg5m3rx5ro4ihBBCiGKgIGYtng/MAhZct/xDVVVn3G2jFStWZN26dfeSSwghhBBCCCFEEZTveNf0eQAAIABJREFUtxarqroFuJTf+xFCCCGEEEIIcX9w5RjZ5xVFiVIUZZ6iKL43WklRlKGKouxSFGXXpUtSDwshhBBCCCHE/c5VheznQA0gFDgLvH+jFVVV/VJV1caqqjYuWbJkQeUTQgghhBBCCFFIuaSQVVX1vKqqDlVVncAcoKkrcgghhBBCCCGEKHpcUsgqilLhmi+7A/tckUMIIYQQQgghRNFTEI/f+Q5oA5RWFOU08DrQRlGUUEAFjgPD8juHEEIIIYQQQojiId8LWVVV++ayeG5+71cIIYQQQgghRPHkylmLhRBCCCGEEEKIO5bvPbJ56fz585QvX97VMYQQQgghhBBCuFCRKmTLlSvH3r17XR1DCCGEEELko+7duwOwfPlyFycRQhS02+24lFuLhRBCCCGEEEIUKVLICiGEEEIIIYQoUorUrcVCCCHuH6qq8q/zLGV05dEpct1ViPtJ48aNXR1BCFHISSErhBCiUFqYNpuv02bhq5SihakNLY3taGh8AJNidnU0IUQ+mzRpkqsjCCEKOSlkhRBCFDr/Os6yKG0OAJfVeFZbl7HaugwzFhobW9DS1JYHjK3x0ZV0cVIhhBBCuIIUskIIIQqduamfkEkGbUyd6O8+lG0ZG9mWuYnD9mi2Zv7G1szf0KEjyBBKS1M7WhjbUsVQ3dWxhRB5ZNCgQQDMnTvXxUmEEIWVFLJCCCEKlcO2/azPWIkbbgz1GEMFfWVqGGozwGMEFxzn2J65mW0ZG9lj+4t/7Lv5x76b2akzqKr3p6WxLS1MbalrCEav6F19KEKIu3Tp0iVXRxBCFHJSyAohhCg0VFXl89R3Aehu6UcFfeVsr5fRl+cxy5M8ZnmSVGcKO23b2JaxkT8zt3DSEcvJ9Fi+S5+Lr1KKB0ytaWlsSyNjc8yKxRWHI4QQQoh8IoWsEEKIQuPPzN+JtO3ES/Gmv/vQm67roStBG1NH2pg6Yldt/GPbzbbMjWzL2MQ55xnWWn9krfVHTJhpZGyOvyGAkrrSVz7KaJ9bFPcCOjohhBBC5BUpZIUQQhQKdtXG7NT3AXjafQSeOu/b3taguNHA2IwGxmY85zGeY44YtmdsYlvmRg7a97E9cxPbMzfluq274pFrgVtKW5a13FvxlduVhRBCiEJCClkhhBCFwmrrMk46Yqmoq8Jjlj533Y6iKPgbauFvqEV/j2FccJwnwrad846zXHJe1D7inRe45LxImppKmiOV044TN21Xhw4fXUlKacXujYte6eUV4t48+OCDro4ghCjkpJAVQgjhcqnOFOanfgrA0BJjcVOMedZ2GX05Oum75/qaqqqkqslaUXttgXvJGc+la5Ynqpe1z2/ForhfKXDL4KsVu1cKX6U0pfRZy7yVktLLK0Quxo4d6+oIQohCTgpZIYQQLvfftK9IUC9Rz9CAh4xhBbZfRVEooXhRQudFNWrcdF2bmkmC89J1xW7W55ed8drn8c4LpKtpnHGc5Izj5E3bvNrLe7XALakvk/WvrjSlsn1eGovikZeHLoQQQhRpUsgKIYRwqfOOOJamLwBgRIlXURTFxYly56YYKaMvTxl9+Zuul9XLm5KtN/dq4RvvvMjla5bl6OW13bhdM5bsPbtXbmOupK9Ka1MHdIouD49WCNfq27cvAN99952LkwghCispZIUQQrjU3NSZZJJBW1NnAt2CXR3nnmX18npSQudJVfxvuq5dtXHZeSnXovf68bxW0olzniLOeSpHOxN4mw7mbvl1SEIUOKvV6uoIQohCTgpZIYQQLnPIFs2vGStxw40hHi+6Ok6BMyhulNGXo4y+3E3X+18v79XiNqvYPWCPYmPGWn5K/14KWSGEEPcVKWSFEEK4hKqqzE59D4Aelv5U0Fd2caLCK3svr5+2PF1N46/Mrey37+WI/QA1DXVdmFIIIYQoODKgRgghhEvsyNxMpG0nXoo3/dyHuDpOkWRR3LWe2FXpP7g4jRBCCFFwpJAVQghR4Oyqjdmp7wMwwH0knjpvFycqurqanwDg14xVpDlTXZxG3G9UVeWcI44dGZtZlDaH+amfkqlm3nO7YWFhhIUV3AzmQoiiR24tFkIIUeB+ti7llOMYlfRV6WZ5wtVxijQ/Q02C3RoRZYtgQ8bPdLP0cXUkUQAO2aL5Lu0rUtUUKugrU0FfiQr6KlTQVaaivnK+XBxKdiYSa48h1nGYY/YYYu2HOe44Qqqakm09H11JHrf0vad9jRw58p62F0IUf1LICiGEKFApzmTmp34KwFCPsbgpRhcnKvq6mfsQZYtgZfpiupqfKLSPMBL3Ls5xirmpn7AxY83/Fuby2CYPxZOK+spU0FW+Uuhe+dBVppy+Isab/NxlqhmcsMdmK1iPOWK46Pw31/V9lVL4GQKwKO5sy9zIr9ZV91zICiHErUghK4QQokB9l/YViepl6hsa8qDxYVfHKRYeNIXhneLLUcchDtijCHQLcXUkkccSnJdYmPYFK9O/x44dN4z0sPQjxK0J55yniXOc5pzjDHGOU5x1niZVTSbGfoAYDuRoS0GhjK7clR7cStpEa7GOGI7ZYzjtOIETR47tzFiobqiBn6EW/vqArH8NAfjqSgFgVdPpEf8Q++17OW0/QWVDtbs+3u7duwOwfPnyu25DCFG8SSErhBCiwJx3xPFD+gIAhpd4RXoO84hRMdLZ3J3v0+exMn2xFLLFSLqaxg9p37A4/WvS1FQUFDqZHifc4znK6Svmuo2qqiSpCVlFreM0Z51nOOs4pRW7551n+dd5jn+d59jLzhzb69BRRe93pVgNwP9KwVpBVwWdcuPpVcyKhYeMYfyS8RMbMn4m3PBcnp0HIYS4nhSyQgghCszc1E+wkUk7U2cC3YJdHadYedTSm+/T57EpYx0jna/ipfNxdSRxD+yqjTXWH/km7TMuOS8C0Mz4EEM9xuBvqHXTbRVFwVvxxVvnS91cfs7sqo1/neeyitwrHw4cVDfUxF9fi2oGf0yK+a5yh5m78kvGT/xqXcVA95FysUoIkW+kkBVCCFEgDtn28WvGKtxwY4jHGFfHKXYq6avS2K0Fu2zb+cX6E73dB7o6krgLqqqyJfNX5qZ+zCnHcQDqGOozzGMsocamebIPg+JGRX0VKuqr5El71wp1a0ppXVninKfYb99LkFtonu9DCCFAHr8jhBCiAKiqyuepMwDoYelPeX0lFycqnh6zPAnAKusSVFV1cRpxp6IyI3g+oR9vJI3hlOM4lfXVeMPrAz7z+S7Pitj8plf0tDd1AWC9daWL0wghijPpkRVCCJHvtmduYq9tJ16KD/3dh7o6TrHV3Nia0rqynHIcJ9L2Nw2MzVwdSdyGY/YjzEn9gB2ZvwNZswAP9BhJF3NPDIqbi9PduTBzVxanf83mjHU8X2L8Xc1M3q1bt3xIJoQoTqSQFUIIka/sqo0vUt8HYKDHSErovFycqPjSKwa6mHvxTdpnrLQukUK2kLvgOMe8tFmst/6EEycWxZ0+lmd4wn0gFsXD1fHuWg1Dbfz1tYh1HOavzK20MrW74zaeeeaZfEgmhChO8v3WYkVR5imK8q+iKPtyee1lRVFURVFK53cOIYQQrrHK+oN2m2RXc29Xxyn2uph7okPHHxkbtEmCROGS7Ezki5T36X/pEdZZl6Ogo7v5KRaVXMdAj5FFuoi9KszcFYBf7/L24rS0NNLS0vIykhCimCmIMbLzgU7XL1QUpQoQBpwsgAxCCCFcIMWZzDepnwEw1GPsXd1iKO5MGX15mhvb4MDOmvQfXR1HXCNTzWBx2tf0u9SJ79PnkUkGbU2d+abkSkZ7TtKex1octDd1QUFhR+Zmkp2Jd7x9v3796NevXz4kE0IUF/leyKqqugW4lMtLHwKvAjIbhRBCFFP/TZtDonqZYLdGtDK2d3Wc+0Y3Sx8Afrb+gEN1uDiNcKgO1llX8PSlR5idOoNkNYkGbk353Od7XvOaQSV9NVdHzHNl9OVo4NYMGzZ+z1jv6jhCiGLIJbMWK4rSDTijqure21h3qKIouxRF2XXpUm71sBBCiMLonCOOpekLARju8bI8T7IANXZrQQVdZc4749iZuc3Vce5bqqryZ8YWhl7uxX+SJ/Gv8xz++lr8x3s273vPo45bfVdHzFfa7cUZq1ycRAhRHBV4IasoijswCXjtdtZXVfVLVVUbq6rauGTJkvkbTgghRJ6Zm/oxNjJpZ3qEum7Bro5zX9EpOrpassYjr7IudnGa+9MBWxRjE59hQtIIYh2HKaerwATPt5nju4ymxgfviws7DxnDMGEmyhbBOccZV8cRQhQzruiRrQH4AXsVRTkOVAZ2K4pS3gVZhBBC5IODtn/YkPEzbhgZ4vGiq+PclzqZu2PAwJ+ZWzjviHN1nPvGafsJ3kgay8iEvkTaduKleDPC4xUWlFxNB3M3dIpLboZzCXedBy2vzFi8wfqzi9MIIYqbAv9tqqrqP6qqllVVtbqqqtWB00BDVVXPFXQWIYQQeU9VVT5PnQFAT0t/yusruTjR/clXV4qHTGE4cbLautTVcYq9S86LfJQ8jfDL3fg94xeMmHjKMphFJdfxhHs4RsXk6ogu0cGU9TzY9RmrUNXbnxalT58+9OnTJ79iCSGKgXx/jqyiKN8BbYDSiqKcBl5XVXVufu9XCCGEa2zL3ESUbRdeig/93Ie4Os59rZv5STZmrGW1dRkD3EdgUNxcHanYSXOmsiR9PovTvsZKOjp0PGLuSbj7c5TRl3N1PJdrbGyOr1KKU45jHLZHU9ut3m1t9+STT+ZzMiFEUZfvhayqqn1v8Xr1/M4ghBCiYFxwnOfjlGkAhHuMpITOy8WJ7m/Bbo2opvfnhCOWbZmbaG3q4OpIxYZNzeRn61IWps7mshoPQAtjW4Z4vEh1Q00Xpys89IqBdubOLEv/lvUZq267kI2PzzqnpUoVn0cSCSHy1v0zUEMIIUS+ylCtTEkaxUXnvwS7Naar+QlXR7rvKYpCV3PW7Zmr0pe4OE3xoKoqm6zrCL/UjU9SpnNZjSfIEMonPguY7j1LithchF25vXijdQ121XZb2wwePJjBgwfnZywhRBEnhawQQoh7pqoq7yZP5pA9mvK6Skz1+khuYy0kOpq7YcJMhG0Hp+0nXB2nSNuT+RcjEvowNfkl4pynqKL3Y5rXJ8z0+Zb6bo1cHa/QqmUIpKrenwT1Ersyd7g6jhCimMj3W4uFEMJVVFXlpCOW3bY/2Z35F0lqIjX0tahhqEOAoS7VDTUxKkZXxywWFqV9ycaMtVgUd/7P+1O8db6ujiSuKKHzop35EdZaf2SVdQkjSrzi6khFzlH7Ib5M+YC/bVsBKKUrw0D3kTxi7oFekT+lbkVRFMJMXZmb9jG/ZqzkAdNDro4khCgG5LevEKJYueA4R8SVwnWP7U8uOv/N9nqUbZf2uR4D1fT+BBjqUtNQl5qGOtQ01KGEzrOgYxdpWzJ+ZW7aJygoTPZ8Fz9DgKsjiet0Mz/BWuuPrLMuZ5DH6Pt2Bt07dc4Rx7zUmWzIWIWKiodSgictg+jp3h+L4u7qeEXKw+ZHmZv2MVszNpLqTMFDV8LVkYQQRZwUskKIIi3ZmUikbSe7M/8kwvYnpxzHsr3uq5SigbEZDd0eoIy+LEfthzhiP0iM/SCnHceJdRwm1nGYXzJ+0rapqKtCDUPtbAVuaV1ZFEUp6MMr9I7YD/B20gQAhniMoYWprYsTidzUNtQjwBBIjH0/v2esJ8zc1dWRCrVEZwL/TZvD8vRF2LBhwMDjlr70dx8mdxvcpfL6igS7NSbKtos/Mn+lk7m7qyMJIYo4KWSFEEVKhmplny2S3Zk72G37k8P2/Thxaq9bFHdC3JrQyO0BGhofwE8fkK0AbWp8UPs8XU0l1h5DjP0AR+wHOGI/SKw9hjjnKeIyT/FH5gZtXR+lpNZje7XAraSvil7RF8yBF0KXnBeZlPg8VtLpYOrGk5ZnXR1J3ICiKHQzP8H7KW+wMn2xFLI3kKFa+TH9WxalfUWqmgzAw6ZHedZjFBX0lV2crujrYOpKlG0X662rblnIDhw4sIBSCSGKKuVOHk7taiEhIer69etdHUMIUYAcqoPD9mh22/4iInMH+2x7sJGpvW7AQKBbKA3dmtHI2Jw6hnr3NMmQXbVx0nHsSq/t1QL3EClqUo51zVioYaidrcD1MwTcF7dtZqqZjE14hmh7JEGGUD7wmXdfHHdRlq6m0iu+LWlqKnN9l+NvqOXqSIWGQ7WzzvoT89M+5aLzPACN3Vow1GMsAW51XZyu+EhxJtEjvjV2bCwuuYEy+vKujiSEKITKly8foapq41utJz2yQohC65T9OOMThxPnPJVteU1DHRq5NaehsRn13Rrl6Vg1g+KGv6EW/oZadCDrkRGqqnLeGXelsD3IEfsBYuwHueA8R7Q9kmh7pLa9Dj3V9P7UNNQl4EqBW9NQB0+dd55ldDVVVXk/+XWi7ZGU1ZVnqvdHUsQWARbFgw6mbqywfsfK9MW86DnF1ZFcTlVVtmduYk7qR5xwHAUgwFCXYR4v0cjY3MXpip8SOi9aGNvwe+Z6NmSspq/7oBuue+bMGQAqVapUUPGEEEWM9MgKIQqlY/YYXkoYxGU1nrK68jQ1PkgjY3MauDUtNGPUEp2Xr+m5zSpwTzmOZ7vV+aryukrX3ZpchzK68kVy3O33afP4IvV9zFiY6buQmgbpsSoqYu2HGXS5O+6KB0tLbcKieLg6kstE2yL5IuV9/rHvBqCCrjKDPEbT1tQZnSJPJ8wv2zI2MjlpFH76AOb6Lr/h78Du3bNuPV6+fHlBxhNCFALSIyvEdQ7ZolmfsRI33CipK619lNKVoaSuNCUUryJZVBRHMbYDvJw4mCQ1gYZuD/CW98xCOUOot86XRsbm2XpurGo6sfaYK722V8fdHuac8wznMs+wNfM3bV0vxUcraq8WuJX11Qv1uNsdGZv5MvUDACZ4vS1FbBHjb6hFPUMD9tn38Jt1DY9aers6UoE7aT/GV6kfaWPgvRVfnnYfTlfLE/I4rgLQ1NgKL8WHY44YjjoOUdNQx9WRhBBFlBSyotiLsR1gftqnbM/cdNP13DDmWuD66kpT6prlJXWlcZM/dvLNflsU4xKHkaIm0cz4EG96fYhJMbs61m0zKxYC3YIJdAvWljlUOycdx6+5LTlr7G2SmkCEbQcRth3auibM+BtqEWCoe+V5t3XwN9QqFOfgmD2GacmvoKLyrPsoHjKFuTqSuAvdLH3Yl7yHldbFdDH3um8u4MU7LjA/7VPWWH/EiQMzFnq7D6CP5Vl5FEwBclOMtDV14ifr9/xqXUXNElLICiHujhSyotg6Yj/IN6mfaT1gJsx0tfTGV1eKeOdFLmkfF7jkvEiamsp5ZxznnXG3bNtL8b5S4JbJVvj6ap9n/eupeN83fyTmhX9sEYxPHEGamkorY3umeM0oFj0kesWAn6EmfoaahPEokDU271/nWWLsBzl6zcRS551nOWCP4oA9Stteh44qej8CDHWzFbheOp8CO4ZE52UmJT5PuppGO1Nn+rsPK7B9i7zV2tSBWSnvEGM/wCH7Puq41Xd1pHzjVJ2cd8axxrqMpWkLsZKODj1dzU8w0H0kpfRlXB3xvtTB3I2frN/zW8ZqhnqMLdR3oQghCi8pZEWxE2s/zDepn7El81cAjJh4zPIkT7o/S0ld6Rtul66mXVPc/q/AveSM55LzIvHOC1y+8nWSmkiSI1GbHORGrt7G7HtdL2/WR5lsvbzFoWC7FxGZfzL5yqNc2pk6M8Hz7XuafbiwUxSFcvqKlNNXpJWpnbY80ZnAUfvBK723WQXuSUcsJxxHOeE4yoaMn7V1y+kqXClq6/KA8aF8K0hsaiavJ43hrPM0tQ1BvOr5llygKcKMionO5u4sTv+aldYlxaKQTXWmcMpxjFOO45xyHOOkPevz044TZJKhrfeg8WEGe7xIVYOfC9OKuoZgKumrcsZxkj22v2hsbOHqSEKIIkgmexLFxjH7Eb5J+4zfM34Bsm4V7mZ5gr6WwXl61d2pOklUL2sF7/8K3Is5enpT1ZTbbtdT8cpR4OZW+HoVw17ePzO28FrSC9jIpJPpcV72nCpX6K+RoVo5pj3vNqvAPWo/RAbWbOsFGULp5T6AB43t0St5c51SVVXeT3mD1dallNKV4XOfxZTRl8uTtoXrnLaf4OnLj2DCzA+lNubZrNrH7UdYZ12BVU3HU+eFp+JNCcULT50XJRTPK/9646l44a543NHvMofq4LwzjlP241rRetIRyynHceKdF264XSldGWoZAunnPpQgt9C8OEyRB75J/Yz5aZ8SZurGRK+3c7x+9e+9Dh06FHQ0IYSL3e5kT1LIiiLvhP0oC9I+Z1PGOlRU3DDyqKU3T1kGU1pf1qXZrGo6l53xxGu9u9f29P6v8L3sjMeB/bbaNGDI1pN7tcANMATS0ti2yBW5f2RsYGrSS9ix083chxdKTJYZQ2+DQ3Vw+sq422j7XtZbV5KqJgNZPbXdLf3oYu5JCZ3XPe1nWdq3zEp9GyMmPvb5plj03oksLycMJsK2g+c9JtDTvf9dt+NUneyybWNp2kJ22rbd9nY69JRQPLUC11PxpoTOC08l66OEzpM0NTVb7+q1z5C+lhETlfXVqGLwo6q+OlX0flTV+1FZX13GvxZSZxwn6H/pEcxY+LH0lkI5oZ8QwjWkkBXF3kn7MRakfc7GjDVXClg3uph78ZT7kCLXY+RUnSSpCdl6eXO7xTneeUErVnLznMd4erk/XYDJ781G6xqmJ4/HiYNelqcZ6TGuyBXihUW6mso660/8mP4tpx0nADBjobO5Oz0s/alsqHbHbe7M3Mb4xOE4cTLF8z3amR/J69jChX7PWM8bSWOopvfna9+Vd/yzZ1XTWW9dxbL0hZx0xAJZcxF0ND9GNUMNkp2JpKhJJDuTSFaTSFGTSbnyebIzESvpd5y5tK4sVa4UqlX0flQ1VKeq3p+yugpyAawIev5yP6LtkUz0/A9h5kezvXbkyBEAatas6YpoQggXkkJWFFun7SdYkPY5v2WsxokTAwYeMfekn/sQyuoruDpevstQrTl6eU85jrEs/VsMGJjl819quwW5OuYtrbOu4L3kKThx8pRlCIM9XpAiNg84VSd/Zf7B0vQF7Lb9CYCCwgPGh+hlGUADt2a3dZ5P2o8xMqEvqWoyT7sP41mP0fkdXRQwu2rjyUthxDsv8JH3N4QYb/k3AwAXHOdZkf5ffrb+QJKaCEAZXXm6W/rSxdzrtichs6mZpKjJJDuvFLlq4v+K3iv/mhSz1rtaRV8dd939+9zb4uin9O/5KGUaTdxa8q7Pl9lek+fICnH/kufIimLnjOMEC1JnsyHjZ5w40WPgUXNP+rkPpby+oqvjFRiTYqa8vhLl9ZWyLXeoDlZYv2Na8st86bO0UP/BtzJ9MR+mTAXgGffnedp9uBSxeUSn6Ghuak1zU2ti7YdZlv4tv1pXsSPzd3Zk/o6/vha93AfQ3vQIRsWUaxvJzkQmJT1HqprMg8aHCXd/voCPQhQEg+LGI+aeLEybzUrr4lsWsgdsUSxNX8jvGeu1oRB1DPXpbRnAQ6awO56czU0x4quUwldX6q6PQRRtbUydmJXyNhG2HVxyXqCkTmaRFkLcPumRFYVevOMCX6V9zHrrSpw40GOgk/kx+rsPy1HM3c8y1QxGXu7LUcchHjY9ykTPdwplcbg0bQGfpv4HgOEeL9PH/RkXJyr+LjvjWZW+hBXp33FZjQfARylJN0sfHrP0yfbHo121MT5xBBG2HdTQ12am77cydq0YO++I46lLHdGhY0mpjTmKSodq54/M31iatoBoeySQNba1takDvSxPE+gW4orYohiZnDiKbZkbGenxKr3dB2rLpUdWiPvX7fbIyoASUaj96zjL6ISnWWfN+o+ss7kHC0r+zMueU6WIvY5RMfGa1/uYsbAh42d+yVjh6kg5LEqboxWxo0tMlCK2gPjqSjHAYwTfl9rABM+3CTDUJUG9xIK0z3kyPox3kiZyxH4AgM9S3iXCtgNfpRTTvWdJEVvMldNX5AHjQ9ixa79nAVKcSSxO+5p+lzrxZtJYou2RlFC8eNLyLP8tuY7XvGZIESvyxNWxsb9mrHJxEiFEUSO3FotC64LjHGMSniHOeYpahiBe83qPSvo7n7DmflLV4McLnpP5T/IkPk6eTqAhhKoGf1fHQlVV5qd9yoK0z1FQeKnEG3Sx9HJ1rPuOUTHSwdyNMFNXomwRLEtfyNbM3/gl4yd+yfiJGvraHHUcwg03pnp/TLn76Jb9+1lXcx+2Z25mVfoPtDS2Z3n6oqxH6FyZjKmKvjo9LP3paH5MLmyIPNfc2AYPxZMY+wGO2Y/gZ5DJnYQQt0cKWVEoXXCcZ0xiVhEbYAhkhvecPHvOYXHX0fQYuzP/5NeMVbyZ9BKf+35/w7GQBUFVVb5IfZ/F6V+jQ8d4z/8jzNzVZXkEKIpCiLExIcbGxDlOsTx9EWusP3LUcQiAlzzfpJ5bAxenFAWlibEl5XWVOOs8zcDL/5s5trFbC3panqapsZXMCCzyjVEx0cbUkdXWpWywrmJIiTEAjBkzxsXJhBCFnYyRFYXORce/jE18hlOO4wQY6jLD+6vbngVTZElzpjIsoTenHSd43NyXFzwnuySHU3UyK+Vtllv/ix4DU7zepbWpo0uyiJtLdaawIeNnPJQSPHzdYzBE8bc47Wtmp87ADSMdzF3paXkaP0OAq2OJ+8TezF28mDiQsrryfFfyV7lwIsR9TmYtFkVSvOMCYxOf5ZTjODX0tXlPiti74q7zYIrnDJ5PeIoV1u9oYGzGQ6awAs3gUB18mPImq63LcMONN7w+pIWpbYFmELfPQ1eCxyxPujqGcJHeloH4GQKoZQjER1fS1XHEfaa+W0PK6Spy3hlHlG2r+NCuAAAgAElEQVQXocam7Nu3D4B69eq5OJ0QorCSS16i0LjkvFrEHsNfX4v3febiLUXsXavlFsgwj5cBeC/5Nc454gps33bVxn+SJ7HaugwjJt7yniVFrBCFmE7R0dTYSopY4RI6RadN+rT+yqRPU6ZMYcqUKa6MJYQo5KSQFYXCJedFxiYM4qQjFn99LT7wmYe3ztfVsYq8HpZ+tDC2IUVN4q2kV7CrtnzfZ6LzMq8mDuXXjFWYsfAf79k0NbbK9/0KIYQousJMWXMnbMlYT4ZqdXEaIURRIIWscLnLznheShjECcdRqutrXumJlSI2LyiKwque0ymjK0+0PZL5aZ/l6/6O2A8y/HIf9tj+xlcpxfs+8wg1Ns3XfQohhCj6qhr8qW0IIlVNYXvGZlfHEUIUAVLICpdKcF7ipYRBHHccoZq+Bh/4zJNb2/KYt86HyZ7vokPHf9PmEJG5I1/2sznjF0Zd7s855xlqG4L4wncJgW7B+bIvIYQQxc/DV3plf81Y6eIkQoiiQApZ4TKJzsu8lDCIY44Yqun9+cBnHr66Uq6OVSwFGxsx0H0kKirTk8ZxyXkxz9p2qk7mpX7Cm0ljsZJOmKkbH/ssoIy+fJ7tQwghRPHX3vwIOvT8nbkNZwm7q+MIIQo5KWSFSyQ6E3gpYRCxjsNU0fvxgc88SupKuzpWsdbPfSihbk24rMbzdtIEnKrznttMdaYwJWkUC9O+QIeOkR6vMsHz/zAp5jxILIQQ4n7iqytFE2NLHNhpO6kFEydOdHWkYi9dTeWI/QBWNd3VUYS4Y/L4HVHgkpwJvJw4iKOOQ1TRV+dD768pqSvj6ljFnl7RM8nzXQZf7sEu23YWp39NX/dBd93eafsJJic9zwlHLJ6KF695vU9jY4s8TCyEEOJ+E2Z6lL8yt3Co3F5erDPB1XGKlVRnCjH2A8TY93PYvp8Y+35OOo6houKhePKwqQuPWnpR01DX1VGFuC2Kqqr5uwNFmQc8Cvyrqmq9K8umAY8BTuBfIFxV1Vs+GyQkJERdv359fsYV+SzZmchLiYOJse+nsr4aH3rPp7S+rKtj3Vf+zNjChKQR6DHwic8CAt1C7riNvzO3Mi3pFVLUJKrpazDdeyaV9NXyIa0QQoj7iVVNp0f8Q6SraYyKe43uwU+gKIqrYxU5Kc6kK8XqAQ7bo4mxH+CU43iO9fQYKKMrxznnGW1ZbUMQXcy9aG/qgrvOowBTC5GlfPnyEaqqNr7VegVRyD4EpAALrilkvVRVTbry+WggUFXV4bdqSwrZoi3FmcRLiYM5bI+mkr4qH3rPp4y+nKtj3Zc+T3mPJenzKa+rxBzfpZTQed3Wdqqqsjj9a+akfogTJy2N7Zjo+Y78RyeEECLPvJM0kV8yfgLAorhTRe9HFX11quirU1XvTxVDdSrrq2FWLC5OWjgkOhOu9LJGc9h+gBjbfuKcp3Ks54YbfoZa1DIEEmAIpLYhED9DAEbFxFH7IVanL+XXjJ9JyfoTHTMW2psfoYu5F3UM9eWCgigwhaaQBVAUpTrw89VC9rrXJgBVVVUdcat2pJAtulKcSbySOISD9n1U1FXhI5/5MhmQC9nUTEYl9OeQPZqHjGG84fXhLf+DylCtvJf8Gr9lrAZggPsIBrqPRKfIUHshhBB556Q9lkF/PoGjUgZqiRvP51BOVzGrwDX4UVXvRxW9H1X11SmtK1fgRZdTdWLHhl21Y8OGAxs21ZZ92ZV/7aoNO/Zsr9u5fln212xXtrGrNq2tFDWZGPsBzjtz3tRoxEQNQ20CDHWpZQiiliGQ6oYauCnGmx5Hhvr/7N13eBTVGsDh32xJo0lvARIglPQEQlFaRJogEoqIIoSqXhFFQQRpClwVUBAs2BDUK6AgRUFEFIgoAgkEpNdQQgsljSRky7l/hIwJqUjCUr73eXjIzpw9883s7Ox+e86ck8bGq2tZlbaEXZYofXltYz26uPbkIeculDKUKfLjJ0RWt30iq2naVKAfkACEKqXi8njuUGAogLu7e6PIyMhij1cUrWR70rUk9m+qGtyZed8XVDZWc3RY97xY2wmGXu5JirrCiJIT6er6WJ5lz9vOMD7xBQ5a9+CCK2NKv0kr53a3MFohhBD3krCwMADmL/2Ck7ZjnLAe46TtGCdtMZy0xRBrO4GN3Ec2dsGVGibPay24njhrLnoCqCeG2RJLa7bkMf8E05prgmnHdisPT479rWOqTz2zD/WuJa41jZ6YNPNN1XvCepRVaUv5OW0FCeoykJEgt3buQBeXnviZg6WVVhSL2z6RzbJuDOCilJpYUD3SInvnuWJP5pWEoey17qSKoToz75tPFUlibxu/pa1mctIonHDmo7KLqG2ql6PM35YoJiaM4LK6SFWDO1PKzMm1nBBCCFFUMhPZZcuW5breqiycscVmJLmZCa414+/MpOtWM2PGpJkxY8aICbNmxnRtmQmTvi7r42zLc1ummTBhxqz9U6fx2mNnXKht8qKG0ROjZiy2/UpX6fxx9TdWpS0hyvLPXPQ1jbXp7NKDDi6PUsZQtti2L+49d1IiWwtYldu660kie2dJsV/hlYSh7LFGU9lQlVn3LaCKsbqjwxLXmZE0gVVpS6llrM1HZRfjqrnp635I/ZbZyVOxYiXY3IwJpd+hjOE+B0YrhBDiXlBQIpufRHv8tZbbY5y0HseGNUeCmT3RNOWaYOrrs6zL+pzMBNOECQPGe6J18rTtJKvTvuentO/1OelNmGjh/BBdXHoSZG4qtxyJm3ZbJ7KapnkppQ5d+/t5oLVSqmdB9Ugie/tKtMdz1HqIY7aDGf9bD3HMdogUdYVKhirMum8BVY3ujg5T5CJNpfLM5cc4bjvKwy49GFXqDSwqnfeT32Jl2mIAero+xTMlRmLUZMYuIYQQxW/37t0A+PoW2M4hHMCqLPyVHsGPaUvYlr4JOxn3MnubAphUeqYM5iluym2TyGqathBoA1QAzgETgYeB+mRMv3MceEYpFZtXHZkkkc1dqkphbdpK1qatxICBisYqVDRUzvhnrExFQ8bjcoYKN52IpKurxFiPcNR2MCNZvZawXrCfz7W8h7EuU8u8TzVjjZvariheR60Hefby46RzleElx7Lh6lp2WSIxY+alUhPp6BLm6BCFEEIIcRs6bzvDT2nLWJm2mEv2C5QzVOCN0u/hYw50dGjiDnXbJLJFSRLZ7M7bzrAs9Rt+TFuiD5WeHwNGyhsq5khyK2T7uyImzYxd2TljP8lR6yGOWjOS1qO2Q8Tajuu/umXlgisepjp4mupR2+iV8b/Ji7KG8sWx66IYrEz9lpnJr+uPyxsq8kbp2Xib/R0YlRBCiHtRREQEAK1atXJwJKKw4u2XmJT4Ejst2zBjZkSpiXSSH8LFv1DYRFb6Cd6B9lp2siT1KzZeXauPkudtCqCHa1/KGSoSZz9HnP0McbZz1/4+R5ztLJfVReLsZ4mzn82zbg2NsobypNivkEZqjvUGDNQ01sbT5EVtoxe1TfXwNHlR1eAu90Tc4R5x6cV2y19svPozDU3+vFH6PSoYKzk6LCGEEPegmTNnApLI3knuM5RjRplP+TB5GsvSvmFa0jgOW/fzbImRNz2Csrg3pKlUPr0yq9DlJZG9Q1iVhYir61iS+iX7rLuAjBbWB5070cP1KbzNAQXWYVHpXLTHZSSzepKb/e+L9jj95v0Khkp4ZklWaxvrUctUGyfNuVj3VTiGpmmMK/U2j7r0xscchFMBc80JIYQQQmRl0swML/UadUz1mZU8me9Tv+aY9SATS78rIxuLfB2w7GZq0quctB0r9HMkkb3NJdrjWZW2hGWpC/WW1FJaabq49KKbax8qGasWui6z5kQVY/WMkYPz+GHMqixcsl/AWXOV0WnvQSbNTJBTU0eHIYQQQog7WGfXntQy1WFCwgvssGzlmcu9mVJmDnVM9R0dmrjN2JSNhSmfMT/lQ2xYqWWswz4uFuq5ksjepk5Yj7I09WvWpq3Uu/jWMHrS0/Up2rk8km2KlKJk0sw3lBwLIYQQQghxPV9zEB+X/ZbxicM5YN3DsMtP8mrpqbR27uDo0MRt4oztFP9NfJXd1h0A9HDty5ASI6iFR6GeL4nsbUQpRZRlM0tSv2RL+u/68sbm++np2o8QpwfkPlQhhBBCCHFHqGiswnv3fck7Sa/zy9WVTEp8iafcnibcbZh8p72HKaX4+eoK5iT/lxR1hQqGSowuNZXGTvffUD2SyN4Grqo0fkn7gaWpXxNjOwyAE860c3mEHq5P4Wmq6+AIhRBCCCFunenTpzs6BFFEnDUXxpT6L16mBsy9MoOvUj7miPUgY0u9RQlDSUeHJ26xBHs87yZNIiL9FwBaO7VnRKmJ/+qWRklkHeiC7Twr0hayMvVbElU8kDHlSTeXJ3jEtZfcFC+EEEKIe1LduvIj/t1E0zR6ufXH0+TFG4kv82f6ep6L78OU0u/jbqrl6PDyZFM2bFixKAtWLFiVFQsWbFhyLLMqC1as+v9Z11uvlbeRtWyWZVmea8GC7fo6c9lOCa0kNY2e1DB6UsPkQU1jbaoba97Wg3VuS/+Dt5Ne46I9DjetBMNLvkZ7565omvav6pN5ZB3ggGUPS1O/Yv3Vn7BiBaCeyYeerv1o49we8218AgohhBBCFLfM73vt27d3cCSiqMXajvNawvMctx2hpFaa8aWn08SpRZHVf1Wlsc+yi52WSI7bjmJR6VkSTEuOBDNrAnl90mnHXmRx3QoGDFQxVKeGyZMaRg9qGD2pafSkpsmDslqFf50w3qyrKo1Prszk+9SvAfA1BTG29FtUNbrnWr6w88hKInuL2JSNP9J/Y0nKl/xt3Q5knGwtnNrS0+0pfE3BDju5hBBCCCFuJ2FhYQAsW7bMwZGI4pBiv8KbSWPYlP4rBgwMLfESj7mG/6vvwsn2JPZYotlliWSXJYr91r/1hqKbpaFhwoxJM2HGjEkzY8J0bVnG32bNnO2xSTNjxowx8zm5LdMy6jBrZozX6jBee2zin3qN2eo36XWYMJFgj+eE7SgnbTGctMVwwnqUs/bYPJPvElrJa8ltbWoaPbK04tYq1lbcw9Z9TEkczXHbEYyYCHd7jj5ugzBqxjyfU9hEVroWF7NkexKr05ayLPUbztpjgYwT6WGXHnR3fTJjKhwhhBBCCCHuEW6GErxeehZfpnzEgpQPmXtlBoet+xlZ6nWcNZd8nxtvv8QuSxR/W6LYaYniiHV/tuRNQ6OuqQH+5sbUN/ngorlel0RmTRTNuSz7J3nML9m6HQSQPddLV+mctp3ghO1YRoJrPab/nawS2W/dzX7r7mzPMWGigckPf3Mj/M2N8TEHUtJQ6qZjsykb36bOZ96V2VixUsPoyWul3qa+2eem684kiWwxibWd4PvU//FT2vekqhQAqhlq0MPtKTo6d8PNUMLBEQohhBBCCOEYBs1AeInnqG2qx5uJY1h39UdO2I4xufR72aaCPG87wy5L1LV/Gd2FszJiwsfkrydivuZAShpK3+rduS04aU54mOricd1AsUop4tUlTlpjsrTiZiS5p20n2W3dwW7rDr5J/QwDBuqYGhBw7Xj6mYO5z1DuhuI4ZzvNm0lj2WnZBsCjLo/zTMmRuGiuRbavIIlskVJKsdOyjSWpX/Fn+noUGd22g8xN6OH6FM2cWt/2v+wIIYQQQghxq7Rybod72VqMS3ieg9Y9PHO5N4+7DeSI9QC7LFF6j8ZMzrjgbQ4gwNwYf3MjGpr9izxButtomkZZrTxlncrjT6Ns65Ltifxt2cEuSyR/W7az37qbQ9a9HLLuZUnqVwDUMtbG/9rx9jc3yvZDw/XWpf3IrOQpXFFJlNXK80qpKTRzblU8+yX3yN68dJXOb1dXsSTlK47YDgBgxkxb5870cHuKuqYGDo5QCCGEEOLOIffI3nsS7PG8kfgy2y1/ZVteQiuFnzlYT6LqmbxlYNRilKpS2GfZpbeA77Xs4ipp2cpUMVTXW8D9zY1wN9YiWSUyK3kyv139CYAHnB5kZKnXb7g1F2Swp1vikv0CP6R+y4rURVxWFwEoq5XnUdfHecT1McoZKjg4QiGEEEKIO09sbEYrXPXqMpbIvcSmrCxO/YIj1oP4mAPxNwfjaawnPRodyKLSOWjdyy5LJDstUey27OCKSspWpqxWHk3TuGS/gAuuDCs5hodduv/rgWwlkS1Gh637WZr6Nb+m/YgFCwC1jfXo5daPB50739bzNwkhhBBCCCHEv2FTNo7ZDrIzPUrvjpzZoNfQ5M9rpd+iuvHm5gaWUYuLmF3Z+St9I0tSv2SHZSuQMSra/U6h9HLtR4A5RKbPEUIIIYQoAsuXLwegW7duDo5ECJGVUTNS19SQuqaG9KAvSilO2mK4ZI/DzxyMUbt16aUksgVIVVf4KW0536d+TaztBACumhudXLrT3fWJm/7FQQghhBBCZLdgwQJAElkhbneaplHT5ElNPG/5tiWRzcNZWyzLUr9hVdpSvR94ZUM1urs+ycMuPYpkfiUhhBBCCCGEEDdOEtkslFLstu5gScqXbEr/VZ9c2c8UTE+3fjzgFHpLm8uFEEIIIYQQQuQkWRkZo3FtvLqWJalfcsC6B8iYXLmdc2d6uPalvtnXwREKIYQQQgghhMh0TyeyCfb4jOlz0hZywX4egNLafXR1fYxHXfpQwVjJwREKIYQQQgghhLjePZnIxlgPszT1a9amrSSdqwB4GOvS0/UpHnLpgrPm4uAIhRBCCCHuXZ999pmjQxBC3ObuqUR2n2UXC1I+ZEv67/qypk6t6On6FI3MzWX6HCGEEEKI20D58uUdHYIQ4jZ3TySyByy7+SLlA7akRwDggivtXbrSw7UvNU21HRydEEIIIYTIatGiRQA8/vjjDo5ECHG7uqsT2YOWvSxI+YA/0zcAGQlsd9cnecwtnDKGso4NTgghhBBC5Grx4sWAJLJCiLzdlYnsYes+5l/5kD/SfwMyEthHXR/ncbeB3Gco5+DohBBCCCGEEELcjLsqkT1iPcCCKx/ye/o6AJxx0RPYsga510IIIYQQQggh7gZ3RSJ7zHqIBVc+ZGP6WgCccKara2/6uA2knKGig6MTQgghhBBCCFGU7uhENsZ6mAUpH7Hx6s8oFGaceMT1MZ5wHUx5oySwQgghhBBCCHE3uiMT2RPWoyxI+Yj1V3+6lsCa6eLSiz5ug6lorOzo8IQQQgghxE343//+5+gQhBC3uTsqkbWQztTE0fx2dTV27Jgw0dmlJ0+6DaGisYqjwxNCCCGEEEXAzc3N0SEIIW5zxZ7Iapo2D+gCnFdK+V5bNh14BEgHjgADlFLxBdV1zHqYdVfjsiWwlY3VijN8IYQQQghxi33xxRcADBgwwMGRCCFuV4ZbsI35QMfrlv0C+Cql/IGDwJjCVtbZpSdflfuJl0pNlCRWCCGEEOIutHLlSlauXOnoMIQQt7FiT2SVUhHApeuWrVVKWa89/AtwL0xdniYvRpZ6nSqSwAohhBBCCCHEPetWtMgWZCDwU14rNU0bqmlapKZpkUmXkm5hWEIIIYQQQgghbkcOTWQ1TXsNsAJ5Dk2nlPpEKdVYKdW4XLlyty44IYQQQgghhBC3JYeNWqxpWn8yBoFqq5RSjopDCCGEEEIIIcSdRbsVOaSmaR7Aj1lGLe4IvAu0VkrFFbaeChUqKA8Pj+IIUQghhBBCCCGEg0VFRSmlVIE9h2/F9DsLgTZABU3TTgETyRil2Bn4RdM0gL+UUs8UVJeHhweRkZHFGK0QQgghhBBCCEfRNG17YcoVeyKrlOqTy+LPi3u7QgghhBBCCCHuTg67R/ZmnTp1irCwMLZv347dbnd0OEIIIYQQQmAwGAgODmbZsmW4uxdqhkkhxL9wxyayYWFhdO/enT/++AMnJydHhyOEEEIIIQTp6enMmDGDsLAwtm3b5uhwhLhr3ZLBnopK48aNVeY9skajkdTUVElihRBCCCHEbSU9PR1XV1dsNpujQxHijqNpWpRSqnFB5Rw6j+zNsNvtksQKIYQQQojbjpOTk9z6JkQxu2MTWSGEEEIIIYQQ9yZJZIUQQgghhBBC3FEkkRVCCCGEEEIIcUe5ZxLZWbNmkZKSUuzbMRqNBAYG4uvrS69evUhJSSEmJgZfX99i3zZAWloaTZo0ISAgAB8fHyZOnFhkdYeHh+Pp6UlgYCDBwcFs3rwZgDZt2pA5CFdxGzVqFA0aNMDf35+wsDDi4+MLfE54eDhLlizJt8z8+fM5ffp0UYWZzYYNG+jSpUux1P1vtuuoeG5ETEwMrq6uBAYGEhgYyDPPPFPgc/I7N958803q1q1L/fr1+fnnn/XlAwcOpFKlSjnen71799a37eHhQWBgYIHbT0hIoF+/ftSpU4c6derQr18/EhISbmCvM3h4eHDhwoUbft6tUtj3yvXlBg8ezN69e4strqtXr/LQQw8RGBjI4sWLs62Ta1fhbNiwgT///DPfMo8++ijNmzfPtuzAgQO0adOGwMBAGjZsyNChQ/V1W7dupVWrVtSvX58GDRowePBg/bN4+fLl+Pv706BBA/z8/Fi+fHmu25w0aRIzZsy4yb0rnBkzZqBpWoHvwejoaJo3b46Pjw/+/v7Zzrljx47RtGlTvLy86N27N+np6QBEREQQHByMyWTK9rquX79ev94EBgbi4uKS57G43q08Nlnl9zmyadMmmjRpQoMGDWjQoAGffPKJvm7SpElUr16dwMBAvL29Wbhwob4u6/s0ICCAX3/99YZi2r9/P4GBgQQFBXHkyJFcy3Tt2jXb9T5rPIGBgaxevRqAP/74A39/f0JCQjh8+DAA8fHxdOjQgTtpkFQh7naSyBYxV1dXoqOj2b17N05OTsydO7fYt5mVs7Mzv/32Gzt37iQ6Opo1a9bw119/FVn906dPJzo6mrfeeounn366yOotrHbt2rF792527dpFvXr1ePPNN4uk3pv9Mmi1WoskjrvdjRynOnXqEB0dTXR0dKHeR3mdG3v37mXRokXs2bOHNWvW8J///EcfRTI8PJw1a9bkqGvx4sX6tnv06EH37t0L3P6gQYOoXbs2R44c4ciRI3h6ejJ48OAc5YpzBMtbcR7+20T2s88+w9vbu9ji2rFjBxaLhejoaHr37p1jvVy7ClZQIhsfH8/27duJj4/n2LFj+vLhw4czYsQIoqOj2bdvH88//zwA586do1evXrz99tscOHCAffv20bFjR5KSkti5cycjR45kxYoV7N+/n5UrVzJy5Eh27dpVJPvyb5w8eZJffvmFmjVrFljWzc2NL7/8Ur+uvPjii/qPE6NHj2bEiBEcOnSIsmXL8vnnnwNQs2ZN5s+fzxNPPJGtrtDQUP1689tvv+Hm5kb79u2LfgdvgbNnz/LEE08wd+5c9u/fz6ZNm/j4449ZtWqVXibzXFmxYgVPP/00FotFX5f5Pp01a1ahfsDMavny5Tz66KPs2LGDOnXq5Fj//fffU7JkyRzLM+OJjo7m4YcfBuCdd95h6dKl/Pe//+Wjjz4CYPLkyYwdOxZN024oLiFE8bnrEtkrV67QuXNnAgIC8PX1ZfHixcyePZvTp08TGhpKaGgoAM8++yyNGzfO0Wq5evVqGjRoQIsWLRg+fLj+i+OVK1cYOHAgISEhBAUFsWLFigJjadmypf5Lns1mY8iQIfj4+NC+fXtSU1MB+PTTTwkJCSEgIIAePXroyfZ3332Hr68vAQEBtGrVSq9j1KhRhISE4O/vz8cff5xjm5qm6Rdqi8WCxWIplotuq1at9H3LjLdJkybUq1eP33//HchoVWvZsiXBwcEEBwfrX5DOnDlDq1at9JbrzPJr166lefPmBAcH06tXL5KTk3Nst3379phMGdMfN2vWjFOnTuUoo5Ri2LBheHt707lzZ86fP6+ve+ONNwgJCcHX15ehQ4eilGLJkiVERkby5JNPEhgYSGpqaq7lrhceHs5LL71EaGgoo0ePLtQ5kleZojpWa9as0c/f77//vqCXka1bt3L//fcTFBTE/fffz4EDB4CML8fdu3enY8eOeHl58corr+jPyfpFYMmSJYSHhwPwww8/0LRpU4KCgnjooYc4d+4ckPGL99ChQ2nfvj39+vWjZcuWREdH63U88MADRfLlNa9zY8WKFTz++OM4Ozvj6elJ3bp12bp1K5BxHpcrVy7POpVSfPvtt/Tp0yffbR8+fJioqCjGjx+vL5swYQKRkZEcOXKEDRs2EBoayhNPPIGfnx8A3bp1o1GjRvj4+GRrschLyZIlefnllwkODqZt27bExcUBGa2KY8eOpXXr1rz33nvExcXRo0cPQkJCCAkJ4Y8//gBg48aNeqtDUFAQSUlJQMYXx8xrSua1MCYmhoYNG+a4ZhX2vZJbuaytnwsXLsTPzw9fX19Gjx6dbR9fe+01AgICaNasmX4OZXXp0iW6deuGv78/zZo1Y9euXZw/f56+ffsSHR1NYGBgnq0xINcuyP29GhMTw9y5c5k5cyaBgYH6vmW1dOlSHnnkER5//HEWLVqkLz9z5gzu7u7648xz/IMPPqB///56C66mafTs2ZPKlSszY8YMxo4di6enJwCenp6MGTOG6dOn5/q6Zcp6Hl24cAEPDw8g/2tWYV4fyEhopk2bVqjPzHr16uHl5QVAtWrVqFSpEnFxcSil+O233+jZsycA/fv311tXPTw88Pf3x2DI+6vXkiVL6NSpE25ubjnWzZ49G29vb/z9/Xn88cf15Xv37qVNmzbUrl2b2bNn68vfffddfH198fX1ZdasWQBMmzZNLzNixAgefPBBAH799Vf69u2b7/EqzOfLBx98QHh4OMHBwQBUqFCBadOm8dZbb+Uo6+XlhZubG5cvX86xrnnz5sTGxua6jejoaJo1a6b3brh8+TKrV69m1qxZfPbZZ/r3vKySk5N59913GTduXAUoE+sAACAASURBVK51Xs9sNpOamkpKSgpms5kjR44QGxtL69atC/V8IcQtopS6Y/41atRIZcoIPaclS5aowYMH64/j4+OVUkrVqlVLxcXF6csvXryolFLKarWq1q1bq507d6rU1FTl7u6ujh49qpRS6vHHH1edO3dWSik1ZswY9dVXXymllLp8+bLy8vJSycnJKjY2VnXq1Emvt0SJEkoppSwWi+ratav68MMP1bFjx5TRaFQ7duxQSinVq1cvva4LFy7oz33ttdfU7NmzlVJK+fr6qlOnTunbU0qpjz/+WE2ePFkppVRaWppq1KiRHmtWVqtVBQQEqBIlSqhXXnkl1+P0b/Tv31999913Simlvv32W9WkSROllFKtW7dWL730klJKqVWrVqm2bdsqpZS6cuWKSk1NVUopdfDgQZX5+s2YMUNNmTJFjzUxMVHFxcWpli1bquTkZKWUUm+99ZZ6/fXX842nS5cu+nHMaunSpeqhhx5SVqtVxcbGqjJlyuhxZ77uSinVt29ftXLlSn0ftm3bpq/Lq9z1x6Nz587KarUqpfI+R9avX1/geVQUxyrz/D148KCy2+2qV69e+nazyhpPQkKCslgsSimlfvnlF9W9e3ellFJffPGF8vT0VPHx8So1NVXVrFlTnThxQin1zzmulFLfffed6t+/v1JKqUuXLim73a6UUurTTz/Vz4mJEyeq4OBglZKSopRSav78+eqFF15QSil14MABlfV9nenYsWPKzc1NBQYGqlatWqmIiIgcZfKT9dx47rnnsp0nAwcO1M+HzG35+PjkWs/GjRtzje96K1asUN26dcuxvFu3bmrFihVq/fr1ys3NLdv7NfMcS0lJUT4+Pvq14PprVSZAff3110oppV5//XX13HPPKaUyzt1nn31WL9enTx/1+++/K6WUOn78uGrQoIFSKuOYbNq0SSmlVFJSkrJYLOrnn39WQ4YMUXa7XdlsNtW5c2e1cePGfK9ZhX2vXF8u83FsbKyqUaOGOn/+vLJYLCo0NFQtW7ZM38fM548aNUq/3mU1bNgwNWnSJKWUUr/++qsKCAhQSmU/r68n167s8nuvTp8+Pc+427ZtqyIiItSBAweUn5+fvnzevHmqdOnSqmPHjurdd9/VP7PCwsLU8uXLc60rKChIRUdHZ1sWHR2tgoKCcpTNGlfW/Y2Li1O1atVSSuV9zSrs67NixQo1fPhwpVTe78G8bNmyRTVo0EDZbDYVFxen6tSpo687ceJEjutL1vPxeqGhoeqHH37IdV3VqlVVWlqaUuqf7wUTJ05UzZs3V2lpaSouLk6VK1dOpaenq8jISOXr66uSk5NVUlKS8vb2Vtu3b1ebN29WPXv2VEop1aJFCxUSEqLS09PVpEmT1Ny5c2/68yW31zw+Pl6VLVtWjzfztYyKilItWrTI9bgsW7ZM9enTJ9fj4OfnpzZs2KCUUmr8+PH650l+5++LL76ovv/++xzX+4kTJ6patWopPz8/NWDAAHXp0iWllFI7duxQTZs2VW3atFEnT55UvXv3VgcPHsy17vzk9V1VCJE/IFIVIjc0OTSLLgZ+fn6MHDmS0aNH06VLF1q2bJlruW+//ZZPPvkEq9XKmTNn2Lt3L3a7ndq1a+u/EPfp00dvKVm7di0rV67U70VJS0vjxIkTNGzYUL+nAiA1NVW/n65ly5YMGjSI06dP6/d9ADRq1IiYmBgAdu/ezbhx44iPjyc5OZkOHToAGa1U4eHhPPbYY3q3xrVr17Jr1y793pqEhAQOHTqkx5vJaDQSHR1NfHw8YWFh7N69u8ju0R01ahRTpkyhYsWKencpQI8x675ZLBaGDRtGdHQ0RqORgwcPAhASEsLAgQOxWCx069aNwMBANm7cyN69e3nggQeAjInEr78PK6upU6diMpl48sknc6yLiIigT58+GI1GqlWrpv/iDBn3Ik2bNo2UlBQuXbqEj48PjzzySI46CluuV69eGI1GIO9zJKu8ylSrVu2mj9X+/fvx9PTUWwn69u1bYEtfQkIC/fv359ChQ2ialq2LV9u2bSlTpgwA3t7eHD9+nBo1auRZ16lTp+jduzdnzpwhPT0923nZtWtXXF1d9WM2efJkpk+fzrx58/QW3ayqVq3KiRMnKF++PFFRUXTr1o09e/ZQunTpfPcHcp4bKpcWqcL2Uli4cGGBrbGZ28itzqzLmzRpku2YzJ49m2XLlgEZXRoPHTpE+fLl89yGwWDQu8z27ds3W3fnrF1p161bl+1e1MTERJKSknjggQd46aWXePLJJ+nevTvu7u6sXbuWtWvXEhQUBGS0Whw6dIiaNWvmec26XmHfK5m2bdtGmzZtqFixIgBPPvkkERERdOvWDScnJ70XTKNGjfjll19yPH/Tpk0sXboUgAcffJCLFy8W6l5kuXb9I7/3al7OnTvH4cOHadGiBZqmYTKZ9M+WAQMG0KFDB9asWcOKFSv4+OOP2blzZ7715faeyet9VFi5XbPi4+MLfH1SUlKYOnUqa9euveFtnjlzhqeeeooFCxZgMBhu6npz5swZ/v77b/17wPX8/f158skn6datG926ddOXd+7cGWdnZ5ydnalUqRLnzp1j06ZNhIWFUaJECSDjPP/999959tlniYqKIikpCWdnZ4KDg4mMjOT3339n9uzZ/PXXXzf1+ZLXa5h12cyZM/n00085evRojls7Ro0axSuvvML58+dzvS0qISGB+Ph4vWW0f//+9OrVK9/jGh0dzeHDh5k5c2aO69izzz7L+PHj0TSN8ePH8/LLLzNv3jwCAwP17UdERFCtWjWUUvTu3Ruz2cw777xD5cqV892uEKL43XWJbL169YiKimL16tWMGTOG9u3bM2HChGxljh07xowZM9i2bRtly5YlPDyctLS0fG/gV0qxdOlS6tevn+/2M++RvZ6zs7P+t9Fo1LsWh4eHs3z5cgICApg/fz4bNmwAYO7cuWzZsoVVq1YRGBhIdHQ0SinmzJmT54fc9e677z7atGnDmjVr8kxkbTYbjRo1AjKSjTfeeCPfOqdPn653mcpt/4xGo36f3syZM6lcuTI7d+7Ebrfj4uICZHTti4iIYNWqVTz11FOMGjWKsmXL0q5du2wDP+RlwYIF/Pjjj/z66695fkHIbXlaWhr/+c9/iIyMpEaNGkyaNIm0tLR/XQ7QvyRA3udI1u6ReZWZNGnSTR+r6OjoG/4SOH78eEJDQ1m2bBkxMTG0adNGX3f9OZv5umbdRtbj8vzzz/PSSy/RtWtXNmzYwKRJk/R1WY+Tm5sb7dq1Y8WKFXz77be5DraT+aUMMhKMOnXqcPDgQRo3bpzv/uR2bri7u3Py5Em9zKlTp6hWrVq+9UDG/abff/89UVFRBZb18fFhx44d2O12vdug3W5n586dNGzYkFOnTmU7Bhs2bGDdunVs3rwZNzc32rRpk+c5lpesr0PWuu12O5s3b9Z/OMj06quv0rlzZ1avXk2zZs1Yt24dSinGjBmT457RmJiYPK9ZWd3IeyVTftdZs9ms71fWc66g5xfmvJdr1z/ye6/mZfHixVy+fFlPehMTE1m0aBFTpkwBMrrXDhw4kIEDB+Lr68vu3bvx8fEhKiqKRx99NEd9Pj4+REZG4u/vry/bvn17gfdRm0wm7Ha7vr9Z5XbNUkoV+PocOXKEY8eOERAQAGRcI4KDg9m6dStVqlTJ83mJiYl07tyZKVOm0KxZMyCjK218fDxWqxWTyVTo6w1k/MAeFhaG2WzOdf2qVauIiIhg5cqVTJ48mT179uS737kxm814eHjwxRdfcP/99+Pv78/69es5cuQIDRs25MiRIzf1+ZL5unbt2lVfFhUVle11HTFiBCNHjuT777+nX79+HDlyRH+PTZ8+ne7duzN79mz69+9fqOtvQTZv3kxUVBQeHh5YrVbOnz9PmzZt2LBhQ7ZkdMiQITkGsFJKMWXKFBYvXsywYcN4/fXXiYmJYfbs2UydOvWmYxNC3Jy77h7Z06dP4+bmRt++fRk5ciTbt28HoFSpUvo9YYmJiZQoUYIyZcpw7tw5fvrpJwAaNGjA0aNH9V/sso5C2KFDB+bMmaN/OOzYsaNI4k1KSqJq1apYLBb+97//6cuPHDlC06ZNeeONN6hQoQInT56kQ4cOfPTRR3qr2cGDB7ly5Uq2+uLi4vQBJ1JTU1m3bh0NGjTIc/uZrbfR0dEFJrE3KiEhgapVq2IwGPjqq6/0QW6OHz9OpUqVGDJkCIMGDWL79u00a9aMP/74Q793LSUlRW8FyWrNmjW8/fbbrFy5Mtd7iCDjy+aiRYuw2WycOXOG9evXA/986alQoQLJycnZRo3Men7kVy4/hTlH8ipTFMeqQYMGHDt2TL8/sDBfrBMSEqhevTqQcY9ZYVSuXJl9+/Zht9v1FsXr61qwYEG+dQwePJjhw4cTEhKS6z2qcXFx+jE4evQohw4donbt2gD069dPv8c1q7zOja5du7Jo0SKuXr3KsWPHOHToEE2aNClwPzPfO1nv/ctL3bp1CQoK0r/UA0yZMoXg4GDq1q2bo3xCQgJly5bFzc2N/fv3F2pANrvdrp+L33zzDS1atMi1XPv27Xn//ff1x5k/rB05cgQ/Pz9Gjx5N48aN2b9/Px06dGDevHn6PXCxsbHZ7svMTWHfK1nLZdW0aVM2btzIhQsXsNlsLFy48IbuO2vVqpV+rdywYQMVKlQoVEv9jbjbr115vVfzes0g43qyZs0aYmJiiImJISoqSr9Pds2aNfrn0tmzZ7l48SLVq1dn2LBhLFiwgC1btuj1fP3115w9e5aRI0fy5ptv6p+3MTEx/Pe//+Xll1/OdfuZPDw89OSmMNfmwrw+fn5+nD9/Xt83d3d3tm/fTpUqVdi6dSv9+vXLUW96ejphYWH069cvW4ugpmmEhobqsS1YsCDXRD43+fUAsdvtnDx5ktDQUKZNm6b34spLq1atWL58OSkpKVy5coVly5bpPdRatWrFjBkzaNWqFS1btmTu3LkEBgaiadpNf74899xzzJ8/X7/uXLx4kdGjR2e7ZzlT9+7dady4cY7PC4PBwAsvvIDdbs82yjxAmTJlKFu2rH4P91dffVXg9ePZZ5/l9OnTxMTEsGnTJurVq6c3Gpw5c0Yvt2zZshw/+i9YsIDOnTtTtmxZUlJSMBgMGAyGWzJ4qBCiYHddi+zff//NqFGjMBgMmM1mfbS5oUOH0qlTJ6pWrcr69esJCgrCx8eH2rVr611oXF1d+fDDD+nYsSMVKlTI9mV3/PjxvPjii/j7+6OUwsPDgx9//JHTp08zePDgbN2Lb8TkyZNp2rQptWrVws/PT/8SMWrUKA4dOoRSirZt2xIQEIC/vz8xMTEEBwejlKJixYo5hug/c+YM/fv3x2azYbfbeeyxxxw21cp//vMfevTowXfffUdoaKjearRhwwamT5+O2WymZMmSfPnll1SsWJH58+fTp08frl69CmQkAvXq1ctW57Bhw7h69Srt2rUDMr6kXD+ibVhYGL/99ht+fn7Uq1dP/5C77777GDJkCH5+fnh4eBASEqI/Jzw8nGeeeQZXV1c2b96cZ7n85HWOFKZMUR2rTz75hM6dO1OhQgVatGjB7t27c8RptVr1X/BfeeUV+vfvz7vvvputG2N+3nrrLbp06UKNGjXw9fXVv0xNmjSJXr16Ub16dZo1a5ZtVNPrNWrUiNKlSzNgwIBc10dERDBhwgRMJhNGo5G5c+fqCe+uXbuoWrVqjufkdW74+Pjw2GOP4e3tjclk4oMPPtC7g/fp04cNGzZw4cIF3N3def311xk0aBAAixYtyvGlMr/3++eff87zzz9P3bp1UUrRvHnzbF1Ys+rYsSNz587F39+f+vXr6605+SlRogR79uyhUaNGlClTJscUM5lmz57Nc889h7+/P1arlVatWjF37lxmzZrF+vXrMRqNeHt706lTJ5ydndm3b5/e1bJkyZJ8/fXX+vHJTWHfK9eXy1S1alXefPNNQkNDUUrx8MMPF/qLPmScZwMGDMDf3x83N7cCfzT5N+72a1de79VHHnmEnj17smLFCubMmaMnPjExMZw4cSLbeerp6Unp0qXZsmULa9eu5YUXXsjWqpbZkrlo0SJGjhzJ+fPnMRgMtGrViu7du1OlShXefvttHnnkESwWC2azmWnTpuU61VXWa9bIkSN57LHH+Oqrrwp1zSrs65OXEydO5OjdABmtpxEREVy8eFH/EXD+/PkEBgby9ttv8/jjjzNu3DiCgoL0a8q2bdv0wYl++OEHJk6cqLeqxsTEcPLkyTyTMpvNRt++fUlISEApxYgRI7jvvvvyjDs4OJjw8HD9e8zgwYP1WwhatmzJ1KlTad68OSVKlMDFxUV/rW/286Vq1ap8/fXXDBkyhKSkJJRSvPjii3nebjBhwgSeeOIJhgwZkm25pmmMGzeOadOm5eiFtmDBAp555hlSUlKoXbs2X3zxRZ7HoSCvvPKK3trs4eGRbRDNlJQUFixYoHc5f+mll+jRowdOTk56Ij948GCeeeaZAnsLCSGKh5ZfN6/bTePGjVVmN0RN04plLq/k5GRKliyJUornnnsOLy8vRowYUeTbEcJR3nvvPWJjY5k2bZrDYjh9+jRt2rRh//79+Y7geb3ExEQGDRrEd999V4zR3Z5KliyZbwuMEHersLAwhgwZok+NciuNGjWKp556KlsXaCEKq7i+qwpxt9M0LUopVeAvRHdd1+Kb9emnnxIYGIiPjw8JCQkOmW9QiOIyaNAgvvnmG5577jmHxfDll1/StGlTpk6dekNJLEDp0qXvySRWiHuVn58fBoPBYfOqTp8+XZJYIYS4TUmLrBBCCCGEEEVMvqsK8e9Ii6wQQgghhBBCiLvSXZnIGo1GAgMD8fX1pVevXvrocpnLM/+99dZbQMZAEmPHjsXLy0tfl3VY9bzqK1myZLbtzp8/n2HDhgHw7rvv4u3tjb+/P23btuX48eN6uQULFuDl5YWXl9e/Gqgkv+1mCggIyDFQTXh4eK6jPO7Zs4cHH3yQevXq4eXlxeTJk/P8BXHQoEH6wFM9e/bU79m7evUqvXv3pm7dujRt2lQfifLixYuEhoZSsmTJHDHmJTw8XJ/DMjg4ONtAMbeD6OjobIP9rFy5Uj+XhBBCCCGEEMXvrkxkM+dy3b17N05OTvrIkJnLM/+9+uqrAIwbN47Tp0/z999/Ex0dze+//65PJZBfffkJCgoiMjKSXbt20bNnT33o+UuXLvH666+zZcsWtm7dyuuvv87ly5eLdP8zp0aJiIjIMT3P9VJTU+natSuvvvoqBw8eZOfOnfz55598+OGHuZafOXMmO3fuZNeuXdSsWVOf5uPzzz+nbNmyHD58mBEjRjB69GgAXFxcmDx5MjNmzLihfZg+fTrR0dG89dZbxXqfcm7zVBbk+kQ28/jdKf7NPgshhBBCCHE7uSsT2axatmypz4eWm5SUFD799FPmzJmjTx1QqlSpPCeIL6i+TKGhofpcgc2aNePUqVMA/Pzzz7Rr145y5cpRtmxZ2rVrx5o1a25wr/L3zTff8NRTT9G+fXtWrlxZYNkHHnhAH0jDzc2N999/P88Wxsz5GpVSpKam6hOkr1ixgv79+wPQs2dPfv31V5RSlChRghYtWujH9ka1atVKP96ffvopISEhBAQE0KNHD71lPDw8nOHDh3P//fdTu3btbK3O06ZNw8/Pj4CAAD3ZbNOmDWPHjqV169a89957xMXF0aNHD0JCQggJCeGPP/4AYOvWrdx///0EBQVx//33c+DAAdLT05kwYQKLFy8mMDCQxYsXZ2sRP3fuHGFhYQQEBBAQEMCff/6ZY5/WrFlDcHAwAQEBtG3bNs9tQUZre/fu3enYsSNeXl7Z5uLLrZ4rV64wcOBAQkJCCAoKYsWKFXo9vXr14pFHHnHYoClCCCGEEEIUlbtuHtmsrFYrP/30Ex07dgQyWh+zzlE3ZswYGjZsSM2aNSlVqtRN13fp0iW6du2a43mff/45nTp1AiA2NpYaNWro69zd3YmNjb2h/Spou4sXL+aXX37hwIEDvP/++3lOsA7o81JmVadOHZKTk0lMTNQT16wGDBjA6tWr8fb25p133smxXyaTiTJlynDx4kUqVKhwQ/t2vR9++AE/Pz8gY/L0zLnmxo0bp8/bCRnz527atIn9+/fTtWtXevbsyU8//cTy5cvZsmULbm5uXLp0Sa83Pj6ejRs3AvDEE08wYsQIWrRowYkTJ+jQoQP79u2jQYMGREREYDKZWLduHWPHjmXp0qW88cYbREZG6q3RmXMIAgwfPpzWrVuzbNkybDZbjulS4uLiGDJkCBEREXh6euox5bUtyGgB3rFjB87OztSvX5/nn38eFxeXXOuZOnUqDz74IPPmzSM+Pp4mTZrw0EMPAbB582Z27dqlz8cqhBBCCCHEnequTGSzJnotW7bUJyPP7CKc1a5du7I9/uKLL3jvvfe4ePEif/75JzVq1Ch0ffPnzydzVOVMX3/9NZGRkXrSlNu9p5mtmoWV33a3bdtGxYoVqVWrFu7u7gwcOJDLly9TtmzZXOtSSuW5/byWf/HFF9hsNp5//nkWL17MgAEDimS/sho1ahRTpkyhYsWKfP755wDs3r2bcePGER8fT3JycrZJ0rt164bBYMDb25tz584BsG7dOgYMGKC3jGdN4Hr37q3/vW7dOvbu3as/TkxMJCkpiYSEBPr378+hQ4fQNC1bd/O8/Pbbb3z55ZdAxr3VZcqUybb+r7/+olWrVnh6emaLKb9ttW3bVq/H29ub48ePc/ny5VzrWbt2LStXrtS7cqelpXHixAkAvSeAEEIIIYQQd7q7smtx1nth58yZg5OTU55l69aty4kTJ0hKSgIyWhujo6MpU6YMNpvthuvLat26dUydOpWVK1fi7OwMZLTAnjx5Ui9z6tQpqlWrlu15W7Zs0QedKqhr8PUWLlzI/v378fDwoE6dOiQmJuote7nx8fHJkXwfPXqUkiVLUqpUKTp06EBgYCCDBw/OVsZoNNK7d2+97qz7ZbVaSUhIuKmkKfMe2V9++QVfX18gowvx+++/z99//83EiRNJS0vTy2ceX/jnx4L8kvQSJUrof9vtdjZv3qy/xrGxsZQqVYrx48cTGhrK7t27+eGHH7Jt79/KK6b8tpV134xGI1arNc96lFIsXbpU35cTJ07QsGHDHPsshBBCCCHEneyuTGRvhJubG4MGDWLYsGF68mCz2UhPT7+penfs2MHTTz/NypUrqVSpkr68Q4cOrF27lsuXL3P58mXWrl2brWURoGnTpnoikltX5bzY7Xa+++47du3aRUxMDDExMaxYsYKFCxfm+Zwnn3ySTZs2sW7dOiCjNXv48OH6vZg///wz0dHRfPbZZyil9PtVlVL88MMPNGjQAMgY8ChzBOYlS5bw4IMP3lSLbG6SkpKoWrUqFouF//3vfwWWb9++PfPmzdPvpc3atfj6cpndhAG9tTshIYHq1asD2bsPlypVSv/h43pt27blo48+AjLOo8TExGzrmzdvzsaNGzl27Fi2mPLaVl7yqqdDhw7MmTNHT+Z37NhRYF1CCCGEEELcae6pRDazi3Dmv8zBf6ZOnUrVqlXx9fUlKCiIli1b0r9//xwtpTdi1KhRJCcn06tXLwIDA/WEtFy5cowfP14fWGjChAlF1t0zIiKC6tWr6wkRZAyWtHfvXs6cOQPA008/jbu7O+7u7jRv3hxXV1dWrFjBlClTqF+/Pn5+foSEhOQ6VY5Siv79++Pn54efnx9nzpxhwoQJQMa0PBcvXqRu3bq8++672QaL8vDw4KWXXmL+/Pm4u7tn68Z7IyZPnkzTpk1p166dnkDnp2PHjnTt2pXGjRsTGBiY58jJs2fPJjIyEn9/f7y9vfVRqV955RXGjBnDAw88oLfOQ8ZAXnv37tUHe8rqvffeY/369fj5+dGoUSP27NmTbX3FihX55JNP6N69OwEBAXoX57y2lZe86hk/fjwWiwV/f398fX0ZP358gXUJIYQQQghxp9Hymi/0dtS4cWOV2Q1W07Q85zoVQgghhBDCkeS7qhD/jqZpUUqpxgWVu6daZIUQQgghhBBC3PkkkRVCCCGEEEIIcUeRRFYIIYQQQgghxB2l2BNZTdPmaZp2XtO03VmWTdI0LVbTtOhr/x4u7jiEEEIIIYQQQtwdbkWL7HygYy7LZyqlAq/9W32jlRoMhpueIkcIIYQQQoiilp6ejsEgHR+FKE7F/g5TSkUAuU/geROCg4OZMWOGJLNCCCGEEOK2kZ6ezowZMwgODnZ0KELc1UwO3PYwTdP6AZHAy0qpy7kV0jRtKDAUoGbNmvryZcuWERYWxvjx47Hb7bciXiGEEEIIIfJlMBgIDg5m2bJljg5FiLvaLZlHVtM0D+BHpZTvtceVgQuAAiYDVZVSAwuqJ+s8skIIIYQQQggh7i639TyySqlzSimbUsoOfAo0cUQcQgghhBBCCCHuPA5JZDVNq5rlYRiwO6+yQgghhBBCCCFEVsV+j6ymaQuBNkAFTdNOAROBNpqmBZLRtTgGeLq44xBCCCGEEEIIcXco9kRWKdUnl8WfF/d2hRBCCCGEEELcnWSCKyGEEEIIIYQQdxRJZIUQQgghhBBC3FEkkRVCCCGEEEIIcUeRRFYIIYQQQgghxB2l2Ad7KkqnT59G0zRHhyGEEEIIIYQQwoHuqES2WrVqnD592tFhCCGEEEKIO1CbNm0A2LBhg0PjEELkrbANl9K1WAghhBBCCCHEHUUSWSGEEEIIIYQQd5Q7qmuxEEIIIYQQ/1bz5s0dHYIQoohIIiuEEIWglOLs6h84OONNXKpVJ2TBIgwmuYQKIcSd5M0333R0CEKIIiJdi4UQogAJu3ayuUcXoob0J+nAfuLW/0rMvE8cHZYQQggh6jPFNQAAIABJREFUxD1LElkhhMhD2tkzRL/4HL93CuXSX39iLluOWuGDATgw7b+kxp5ycIRCCCFuRI8ePejRo4ejwxBCFAHpFyeEENexpaZy9OMPOPz+LGwpV9DMZjwHPo3XiyMxlynD1bjznF21kt3jRhPyxf8cHa4QQohCunjxoqNDEEIUEWmRFUKIa5RSxC5fyoZWTTgwbSq2lCtU7tiZNhv+wnviZMxlygDg88abmEqW4tzPqzm7ZrWDoxZCCCGEuPdIIiuEEMDl7ZH82bUDO/4zmNTYU5T29qXZdysJmfc1JTxrZyvrWrUa9V95DYDdr43CmpzkiJCFEEIIIe5ZksgKIe5pqbGn2DFsKH90acflqG04V6yE/4zZtPx5AxUeaJnn8zwGDKaMfyBpZ05zYMZbtzBiIYQQQggh98gKIe5J1pQrHPlgNkc+moM9LRWDszO1h/6Hus+PwFSyVIHP14xG/KfN4veHH+TYZ3Nx79GbMn7+tyByIYQQ/1bbtm0dHYIQoohoSilHx1BojRs3VpGRkY4OQwhxB1N2O7FLv2Xfm29w9ewZAKo+EkbDcZNwq1HzhuvbM2EMxz6bS5nAYFr8sBbNaCzqkIUQQggh7hmapkUppRoXVE66Fgsh7hmXtv7Fps4PEf3Cs1w9e4YyAUHcv2w1jT6e96+SWID6r4zFpWo1EqK3E7Pg8yKOWAghhBBC5EYSWSHEXS/l5Aminh7In906kbBzB85VqhL43ke0WLWOck2b31TdppKl8JnyNgAH3ppC2rVWXiGEELefTp060alTJ0eHIYQoAnKPrBD3qMuRW4ldtgS7JR1URpdb7HaUUqDsGY+VyrKcPJZnLZ+lHlTG/7mWv+6x3Y5SmeVUAXFkeX6ecWSvx341DZTC4OJKnWefp85zwzG5lSiyY1mlY2cqt+vIuV/WsGfiWBp9/EWR1S2EEKLopKamOjoEIUQRkURWiHuMsts5POddDkx/E+x2R4dzaxgMVA/rSYMxE3Ct7l7k1Wuahu/UaVz443fO/LCcc4/1oXLb9kW+HSGEEEIIkeGeS2StyUkkHzlcpN3/NE3DuUpVStTyxFymTJHVK0RRuxp3nh3PP8OFiPUAeAwcSqn6DUDT0DQDGAxompbxv0HLY7khy3Itj+XXlydjuaZlPDb88/c/y7Vcl2erO7PeXJdnLa9lW66ZTBicnIr12Lq616DeyFfZ98Z4do8dRYX1LTC6uRXrNoUQQggh7lV3ZSKrlCLt7BmSDx0k+fBBkg8f4srhQyQfOUTamdPFum1z2bK41fKkRC0P3Dw8KVHLEzfPjP+dK1fJ+BIuhANc2BTBjmFDuXr+HE7lKxA4Zy6V2sg0BEXJc/AzxC5ZTOLe3RycOY2Gr01ydEhCCCGEEHelOzqRtaencyXmaLaENfOf7Upyrs8xODtTonYdXKu7Z7TgFAFlt5F6OpaUmBgsly+TcPkyCdHbc27bxZUStWrhVsvzWpJ7Ldn1qI2rew0MZnORxCNEVspm4+C70zg0azooRfn7WxD0/ie4VKnq6NDuOgaTCb9pM/njkfYc/fgDqnfvRemGPo4OSwghxDVdunRxdAhCiCJyR80j61+7tlo0oK/euppyPAZls+Va1qlceUrW9aJE3XqUrOuV8c+rPm7uNYptnkelFFfPnyMl5hhXjsdc+/8YKdf+Tr90Mc/nakYjrtXdcavlSWlvXyp37ES5xk1lTkpxU9LOnmHHsKFc/HMTaBpeL46i3kuvyHlVzP4eM5LjCz6nbKMQ7l+xJqMLdDE7+/Nq9ox/lWrdetBw7MRi354QQgghRHEo7Dyyd1Qi6+VkUjMrlPpngcGAW81aGUlqnXqU9LqWtNbxwql8eccFmgdLYgIpMTEZyW1msnvt79TTsXDda+FUvgKV23WkSqfOVGjRGqOrq4MiF3ei8xt+Jfr5Z0i/eAHnSpUJev8TKrRo5eiw7gmWxAQ2tGrK1fPn8Js2k1p9w4ttW8pm48CMNzn83jsAaCYTD0XtwblipWLbphBCCCFEcbkrE1nvShXVirGjKXGthbWER22MLi6ODqtI2K5eJfXkCa7EHOXin5s4u2YVKTHH9PVGtxJUDG1LlY4PU6ltB5zuu8+B0Yrbmd1q5eD0/3J4zkwAKrRsQ9D7H0tic4udXrmM7c8MxFymDG0ithbL8U+/dIkdzw0hbuNvGT/sudcg5cRx6r86Dq/hLxf59oQQ4k7Xpk0bADZs2ODQOIQQebsrE9nGjRuryMhIR4dxSyilSDqwj3NrVnP2px9J+Hunvk4zmSjfvAVVOj5M5Q4P41qtugMjFbeT1NhTbP/PYC5v2wIGA/VHjaHusBHSldgBlFJs7duLuPW/Ui2sJ8EffFqk9cfviiZqcD9ST53EqVx5gufOw25JZ+uTvXB1r8GDm3fI6y6EENeRRFaI299tk8hqmjYP6AKcV0r5XrduJDAdqKiUulBQXfdSInu91FMnOfvzT5z9eRWXNv+R7d7gMoHBVOn4MFU6daFk3XoyMvI96ty6n4l+4Vksly/jXKUqwR9+SvlmD/yfvfsOi+rK/zj+vkMHFVGwgqKJXRAQjb1EoyYmZnVj1FhjdmOM6d1fiqZtmrspm7ZJrEmWaIrp1WzUaIqKYkNNURCsgILSy5zfH+BElGYEhvJ5PQ/PzJx77jnfexlxvnPOPdfZYdVrGfFxrBnaF3t2NhdFfUDA4KGV0u7+qLfY8X93Yc/JoXF4T3q+tgSv1oEYu53v+kWQuT+eXsveofnwkZXSn4hIXaFEVqTmq2giW/UrkMASYNSZhZZlBQGXAPurIYZazyswiHbXXU/fFR9xydZfCHv+FVpcejk2Ty/SYjaz58nHWDO4D6sH9mbXY/M4Hr0RY7c7O2ypBvbcXGIffpCN0yaSd/w4ARcPZ9A3a5XE1gA+bYPpePs9AGyfeycFWVnn1V5BTg7b7rmNbXfejD0nhzZTZ9D3g8/wah0IgGWz0aboetz4ZYvPqy8RERGRmqxaphZblhUMfHr6iKxlWe8BjwIfAZEakf1zCjIzSVq7msNffsaRb74g7/hxxzaPZs1pNmwEPsHt8AhohkezZnj4Fz66N/XX7X7qgMyE/WyefR2pmzdhubjQee5DtL/hpmpZJVcqxp6Xx/cjBnFyz2463HYXne65/0+1k3UgkejrZ5C6JRqbhwchT/yToImTz6qXk5LMqoiumPx8Lv45Bu/ANud7CCIidYZGZEVqvoqOyDrlPrKWZY0BDhhjtpY3DdayrOuB6wHatNEHsjO5eHsXTisedRn2/HyObfiJI19+xuEvPiXrQCIJUW+Wuq97k6Z4BATgHtCsMNEt9hOAR0Dzwu1N/bG51upbDtdJh7/4jK13zCEvLQ3PVq3p+eoi/CJ7OzssOYPNzY2Qp57lh79cym8vPU+rsVfRsEOnc2ojed1aNt8wk9xjKXgFBtHzjWU0Dg0rsa5HU39ajh7DwQ/fZ//by+h87wOVcRgiInXC1Vdf7ewQRKSSVPuIrGVZ3sB3wAhjTJplWXFoRLbSGWM4sWM7KT+uI/vIYXKSjpKblER20hFyk5LISUmGik49tixH0nsquXU8nhrlDQjAo1lz3Js01QIzVawgJ4ddj80jbuF/AGg+4lJ6PPsS7n5+To5MyrLt7tvY//ZSmvTpR9/3P63QtezGGH5/+QV2P/EI2O0EDL6Y8Jdex71JkzL3S/n5B34cOxqPgGYM27gdm7t7ZR2GiIiISJWqMYs9FQUTzB+JbAjwLZBZtDkQOAj0NsYcLqsdJbKVxxQUkHsshZyko+QcPUpO8lFykpL+eH7aY+6xlLPucVsqmw2Ppv64BwQ4pjF7+BcmucUT4WaFSa+mwJ6TjLh9bL5hJmnbYrDc3OjywMO0+9sNWuCrFsg9fpzVg3qTm5JMj3+9WOK04NPlnTzB1ttv4vDnnwDQ4ba76HjnfRX6osgYw9qL+3Fyz24i/rOYVlf8pVKOQUSktsvMLPz46e3t7eRIRKQ0NTaRLWFbHBqRrdHs+fmFSe/pSW7SUXKTk8g+WjTCm3SEnKSkwqS3giwXF9yb+p8xnbn4FGf3gAA8A5rj5udXr5PevLQ0fn/lBfa9/ioFWZl4t2lLxKuLaBwW4ezQ5Bwkvr+cmJtvwM2vCUPXbsC9adMS6538dQ/R100j/bdfcG3YkLAXXqXFyMvOqa99i15j5wP30rT/QPq++3FlhC8iUuvpGlmRmq/GXCNrWVYUMATwtywrEZhnjFlY1f1K5bG5uuLZrDmezZqXW9eel0duSnLh6G5Rcptz9Ag5yUmFo79JRx3b8o4fL9x29Ei57Vqurrj7BxSO7hab2ty8qKwZLl5eWG5u2Fxdix7dsNxcix7Pfl0bRjELMjPZt+g1fn/5efJSUwFodeU4Qp78F26+vk6OTs5V63FXk7g8iuR1a4h99EHCnnv5rDoHP/mQrXfcTEFGOg07d6HnG2/SoP0F59xX4FUT2P34w6Ss/570X3+hQYeOlXEIIiIiIjVClSeyxphJ5WwPruoYpPrY3NzwbNESzxYty61rz80lJyX5jwT36FFyHVOci5LfolHgvNRUcg4fIufwoUqL1XJxOTvBdXXF5uaGV2AQQZOm0HL0lbh4elZanxVlz8sjIepNfnn2GXKOFM64b9pvAJ3nPoRfz17VHo9UDsuy6P7kP1k7rD+JK6IIvPoa/PsNAApnPuz+x8PsffVFAFr95a+ELngeV2+fP9WXWyNfWo29ioT/LiP+rSV0e/gflXYcIiIiIs5WLVOLK4umFtdfBTk55CYnFSW3R4qP+CYlkZN8FHtODiYvD3t+HiYvH3teLva8PEx+ftFjHva8fEx+YVlFuDdpStDEybSZei0+bYOr9iABY7dz8KMP2PPMP8iM2weAb2gYne97EP/BQ2vFKLKU75d/Pc0vC57A54IODFr1PfknT7D5hpmk/LAOy9WVLg89SrvrZp337zt1WwzrRg3FzdeX4Zt34eLlVUlHICJSO2lqsUjNV6Ouka0sSmSlshhjMPn5xRPf/LzC13l5JP/wPfFLFnJi5/bCHSyLgKHDCJ42k2bDRlT6yszGGI7+7xv2PPEoJ2J3AODT/kI63fcALUePUQJbxxTk5LB2+EAyfv+VwPETSV63luxDB/Fo1pyI/yyi6UX9Kq2v7y8bRlrMZno8+xJBE66ptHZFRGojJbIiNZ8SWZHzZIwhdfMm4pYu5NAnH2LPyQHAq3UgbabOoM2kqXgENDvvfo79/CO7n3iEYxt+AsCzZSs63nkfgVdP0v1767DkH9bx01VXOF779bqInq8twbN5i0rtZ3/UW2y782YaR0Qy4NNvKrVtEZHaZsmSJQDMmDHDqXGISOmUyIpUotyUFBJW/Jf4ZYvIjI8DwHJzo+Wll9N2xnU0uajfOY+anti5nd1PPcbRVV8D4ObXhAtvvp3g6ddpCmg9sf2+O4hftpjg62bR9aFHsbm5VXofBZmZfBPRhfwTJxj41Rp8Q0IrvQ8RERGRyqJEVqQKGLudpLXfEb90EUe++RLsdgAadupM22kzaX3VBNwaNiqzjYy4fex55h8c/PB9MAYXbx/az5pD+xvmlLuv1C3GGHJTkvHwD6jSfnY8eB9xC/9DmynTCX36uSrtS0SkJktOLrzbo7+/v5MjEZHSKJEVqWJZiQns/+8y9r+9jJykowC4ePvQetxVtJ12Hb7dQ4rVzz5ymF+fe4b9by/D5Odjc3en7bSZXHjLHVWeyEj9dvLXPawZ3AcXbx+Gb4nVFyYiUm/pGlmRmq+iiaytOoIRqYu8AoPodM/9DNu4nYhXF9G03wAKMjPY/9ZSvh8xiPVXjCDxvXfIPnqEXf94mP/1jSB+6SKM3U7g1dcwZN1Guj3yhJJYqXINO3SiSd/+FGRmcOD9Fc4OR0REROS8aSUZkfNkc3en1ZixtBozlpO/7CZ+2WIS343iePRGjkdvLFa3xaWX0+ne+2nYsbOTopX6KnjaTI79uJ74ZYtoO/06rYQtIiIitZpGZEUqUcOOnen+2FMM37KL0Geep1H3woV1mvYfSP9PvyFy4ZtKYsUpWlx6Oe7+AZzcvYvjG392djgiIiIi50UjsiJVwNXbhzaTpxF0zVTsWVnYvLw0AiZOZXN3p82kKfz272eJX7aIJr37ODskERERkT9NI7IiVciyLFy8vZXESo3QZsoMsCwOffoRuSkpzg5HRKTazZ49m9mzZzs7DBGpBEpkRUTqCe+gNjS7eDj23FwSlr/t7HBERKrdhAkTmDBhgrPDEJFKoERWRKQeaTv1WgDi31qCKboPsohIfZGQkEBCQoKzwxCRSqBEVkSkHmk2bASerVqTGbeP5LWrnR2OiEi1mjp1KlOnTnV2GCJSCmNMhesqkRURqUcsFxfaTpkBQPybi50bjIiIiEiRzMT9/HDlqArXVyIrIlLPBE2aguXqypGvvyDr0EFnhyMiIiL13NH/fcP3I4dwfNOGCu+jRFZEpJ7xbN6CFqNGYwoK2P/2MmeHIyIiIvWUKShg91OPsWHK1eQdP07AxcMrvK8SWRGReqjttJkA7P/vMuz5+U6ORkREROqbnKSj/DRpHL89/0+w2eh03wP0Xra8wvu7VmFsIiJSQzXtPxCf9heSsfc3jnzzJS0vvdzZIYmIVLk777zT2SGICJDy03o2z/4bOUcO4+4fQMQrC/HvP/Cc2tCIrIhIPWRZFm2nFd6KZ/8yLfokIvXDFVdcwRVXXOHsMETqLWMMv730PD+Nv5KcI4dpclFfBn295pyTWFAiKyJSbwWOn4TN05OkNf8jY99eZ4cjIlLl9uzZw549e5wdhki9lJuayqZrJ7P78fmYggIumHMrfd79GM8WLf9Ue0pkRUTqKXc/P1qNGQtA/FtLnBuMiEg1mDVrFrNmzXJ2GCL1Tuq2GNaNGsKRr7/AzdeXyMVv0+X++dhc//yVrkpkRUTqsbZTC6cXJ7zzNgXZ2U6ORkREROoSYwzxby7mhzEjydwfj29IDwZ+tYYWIy8777a12JOISD3WOCKSRt1COLFzO4c+/5jAcVc7OyQRERE5Tfre3zm48j3yMzMw+fnY8/Iw+XmYvHzs+XmYvDzs+flFj6WV52Py84r2zadBh060GHUZzUdehlfLVlUSd35mBtvvvYMD768AoO20a+k6/x+4eHpWSvtKZEVE6rFTiz5tv/cO4pcuUiIrIiJSQxi7nbjFb7Dr8fnYs7Mqte3sQwdJXvsdO/7vbhqH96TFqMtoMepyGnToWCntn/x1D9F/n0H6L7tx8fIm5JlnK/0zhhJZEZF6rvXYq9j16DyOb/yZE7t20qhLN2eHJCIiUq9lHUhk6+03kbxuDQCtxoylUfdQbG5uWK5u2Nxcix7dsFxdsdzcsLm6Ybm5Fj26YSulHODYzz9y+MvPSFr9P1K3RJO6JZrdTzyKzwUdipLa0TQO74llO/crUQ+sfI9td99GQWYGDS7sSM83ltKwY+dKPT8AljGm0hutKpGRkWbTpk3ODkNEpM7ZPvdO4pcuou306wh5YoGzwxERqRKrVq0CYPjw4U6ORKRkxhgS332HnQ/eS/7Jk7g39Sfk6Wer7H7vBZmZJK35jsNffcaRb74k7/hxxzaP5i1oMfJSmo8ajX+/gdjc3ctuKyeH2Pn3E790IQCt/vJXQp95DlefBucUk2VZ0caYyHLrKZEVEZETsTtYO3wgrg0aMnxL7Dn/pyMiIiLnJyc5iW333M6RLz8DoPnIywh95jk8/AOqpX97fr5jpPbIl5+RdSDRsc21YUOaDRtBi1GjCRg6DLeGjYrtm5mwn+jrZ5C2dQs2d3e6PvwP2k6biWVZ5xyHElkRETkn68eM5PimDYQ8/Sxtp8xwdjgiIpUuJiYGgLCwMCdHIlLc4S8+Y9s9t5Gbkoxrw4Z0e/QpAsdP/FOJYGUwxnBi+zYOf/kZh7/6jJO7Yh3bbO7uNB0wiBajRtN8xKWkbd1CzK2zyUtNxSswiJ6vL6Vxj/A/3XeNSWQty1oEXA4cNcZ0Lyp7FLgSsANHgRnGmIPltaVEVkSk6iS+v5yYm2+gUfdQBn612mn/eYqIVJUhQ4YAsHr1aqfGIXJK3ok0dj40l8QVUQA0HTCIsH+9iFdgkJMjKy4jbp9jpPbYxp/hVA5pWY7nzYaPIOz5V3H38zuvviqayFbHfWSXAKPOKHvGGBNqjAkDPgUeqoY4RESkDC1HX4mbXxNO7NhG6pZoZ4cjIiJSpyWvW8uai/uTuCIKm6cn3R55kj7vrKxxSSyAT3A7LrjhJvp9+AWXxOwm9JnnaTZ8BDY3N7DZ6Dz3IXotiTrvJPZcVPmqxcaYtZZlBZ9RduK0lz5A7ZnfLCJSR7l4ehI04Rr2vvoi8csW4xdR7pehIiIico4KMjPZ9cQjxC38DwC+YRGEP/9Kpd36pqp5BDSjzeRptJk8jfz0k+Snp+PZomW1x1EdI7IlsizrccuyEoDJlDEia1nW9ZZlbbIsa1NSUlL1BSgiUg+1Kbo29uDHH5B72sqFIiIicv6Ob4lm7YjBxC38D5arKx3v/j/6f/xVrUliz+TaoKFTklhwYiJrjLnfGBMEvA3cVEa914wxkcaYyICA6lmxS0SkvmrQ/gL8Bw3Fnp1N4nvvODscERGROsGem8uep//BD2NGkrH3Nxp07MyAT1fR8fa7sblW+STZOqkmnLX/Ap8B85wdiIiIQNvpM0le+x1xi17D1acB7k2a4t6kSdFjU9waN/5TN0gXEXG2f/zjH84OoV4zxpB37BgGg4unJzYPz3qRxJ3YHUvMLbM5sWMbWBbtZ91Ep3vvx8XT09mh1WpOeedYltXBGPNr0csxwG5nxCEiImdrfskoPFu2IjM+jm133XJ2BZsNd78mZyW4xZLdM8pdGzTUKsgi4nT9+vVzdgh1WkF2NtmHDpJ1IPGPn8SEP54fTMSenV1sH8vFBZunFy4eHtg8PHDx8sLm4YHNwxMXT09cPDyxeXoWbvf0/CMB9vDAxbOwrouHJzavojoef9Rx8Tx9X68ztntU+ZeypqCAva+9zJ6nHsOem4t3m7b0eO4lmvbpX6X91hdVnshalhUFDAH8LctKpHDk9TLLsjpRePudeOCGqo5DREQqxubqSuTCNzn40Upyj6eQeyyF3GPHih5TyD9xgtyUZHJTkiveprs7bqcnu36lJ8Gnnrt4eVXhUYpIffTDDz8ASmj/DGMMucdSiiWp2UWPmYkJZB9IJCfpaLntuDZqhM3VjYLsbAqyszAFBRRkpFOQkV4NR1Gczd29KNH1/OPRw8ORAJ+VLDvqehRPlj2KkmWvP5JlgF8WPMGxn38EoM3k6XSd9yiuDRpW+3HWVVV+H9nKpPvIiog4nz03l9zU48US3Lwzkt3clJQ/nh87RkFW5jn34+LtU2ay63ZmuV+TwtsA1FIFOTlk/PYLJ3bHcnJXLCd2x2LyC2gzeRotL7sCy8XF2SGK1Hq6j2zFZe6PJ3n996T88D2pMVvIOpCIPTurzH0sFxc8W7bCKzAIr9aBZ/14tmqNW8NGxfax5+Vhz8mmICcHe1ZW4WNONgXZ2dhzcijIycaelV34mF30mJNDQXYW9uyc08pP3y+7cFt2VlHd7D/6yC7q44yR4ari0aw5oQuep/nwkdXSX11Q0fvI1v1J6SIiUqls7u54NmuOZ7PmFd6nIDOT3OPHiie7Zz4/ffQ3JZmCzAyyMjPISkyocD9uvr5/JLglTn92/vW+xhiyEhM4uWvnH0nrrlgy9v6Gyc8/q37y2u/waX8BF8y+hdZXTcDFw6Na4xWR+iHr4AFSfvie5HWFyWtJf3vdfH3xal2YpHqWlKg2b3HOX7rZ3NywublV+0ilMQZ7Ts4fyfKpJLlYApx1djJ9WmJ8ZkLtSJizC9tr1LU7nec+hHuTJtV6bPWFRmRFRKTGMcaQn36yWLKbV1YSfCyF3OPHwG4/t46q+Hrf3NRUTu7eyYnYnZwsSlpP7tlNfvrJsytbFj7t2tOwc1cadelGwy5dyTlymN9ffZGshP0AeLRoSfvrb6TtlOmanibyJ9S0EdlTX2ylbt7EyT27cff3xye4Hd5t2+Ed1Aabu3uV9Z199Agp678n5Yd1JP/wPZn79hbb7ta4MU369Me/30CaXNQX7+Dgs0ZTRapCRUdklciKiEidYOx28tLSSpneXDzhPTUdOi8t7Zz7sdzcSk58/Zri5udH9uFDhUnr7l1kHzpYYhseAc1o2LkrDbt0pVHRY8MOnXDx9j6rrj0/n4Mff8DvLz7Hyd27gMIPmMEz/k7wddfj0dT/nI9BpL5ydiKbdyKN1JgtpG7ZROrmaI5viSY3OankyjYbXq0D8WnbDu/gYLzbtnMkuT7Bwef8ZVZuSgrJP65zJK/pv+4ptt21QUOa9OlL034D8e8/iEZdu+mSBnEKJbIiIiLlsOflkXv8GHlnTXsuYdQ3Jbnwet/MjAq37+LlTYNOnR3J6qlHD/9zvy+6MYajq77it38/y/FNGwCweXrRZvI0Lpg1B6/AoHNuU6S+qc5E1p6fT/qeXRzf/EfSmv7rHjjjs7ebXxP8InrSqGt3co8dIyN+H5n79pJ18MBZdU/n7h+AT9tgvE9Lbk8lu+7+AeSfOEHKj+sLpwv/8D0nY3cW29/Fy5smvfvQtP9AmvYfiG9Ij3pxKxyp+ZTIioiIVIGCrKwSrvf9I/H1aOpfmLR26YZ3m7ZVMqJx7Ocf+e2l5zi66msALFdXWo+9igvm3ErDjp0rvT+RuiImJgaAsLCwSm876+ABUrdEFyauW6JJ2xpz1kJ3lpsbvt1DaRzek8YRPfGL6IV32+ASL1coyMkhK2F/YWIbF0dm/D4y4vaRGR9H5v447Dk5pcbi4u1T2Pdpn/NtHh74RfbGv/8gmvYbQOOwiCqduizyZymRFRERqeNOxO7gt5ee5+BHHziuD26yDlz/AAAgAElEQVQ+8jIuvPl2/CLK/QwgUunyM9LZ/cSjpP+yB2y2wsXULIoebYUJm6PcOq2cUsqtEts5Vad4fauU8jPrl94ONhuW9Ueds8uLt5N95AipW6JJ3RJd4qUE3m2DaRxemLA2juhJo24hlbJgm7HbyT58qDCxjdtXlOQWJruZ8fvIS0vDcnPDL7wnTfsPomn/gfhFROLi6XnefYtUNSWyIiIi9URGfBx7X/03Ce+87RiladpvABfcdBsBgy+u8OJUIucj+/AhNkybyIkd25wdilO4NmqEX3ikY7S1cXhPp13Dnpuaiou7e4nX3YvUdEpkRURE6pnso0fY98arxC9dSP7JwpWRG3UP5cKbbqPl6DFauEWqzImd29kwbSLZhw7i3a493eY9hs3dA4MBux1jt4MxhY92U0q5HWNOvS7abswZ5fbTyk0p5aW3s2zZUixg8jXXlN2O3Q6cFq8xJZTbcW3YqHDENbwnPhdcWO238xKpi5TIioiI1FN5J9KIX7qIva+/4lgR1btde4KnX0frsVfhEdDMyRFKXXL0u1VEX38tBRnp+PW6iF6L3sa9aVNnh1UiZ69aLCLlq2giq6+NRERE6hi3Rr5cePPtDPt5K92fWIB3m7Zk7ttL7Pz7WRXRlQ3TJnLos48pKGOxGJGKiH9zMRunTaQgI51WV46jz/IPa2wSKyJ1ixJZERGROsrFy4vg6dcxZN0mer6+lOaXjALg6KqviP77dFZFdGH73LtIjdlMbZqhJc5n7HZiH32I7ffegSko4MJb7iD8pde1mJCIVBtNLRYREalHcpKOcmDleySuiOJE7A5HeYMOnQgcP5HWf70ar5atnBih1HQFWVlsueUGDn/2MZarKyFPPUubSVOcHVaFaGqxSM2na2RFRESkTGk7tpP4bhQHPniX3JTkwkKbjYBBQwm8ehItRl6Gi5eXc4OUGiUnOYmNM64hdfMmXBs2pOfrywgYNMTZYVXYnj17AOjUqZOTIxGR0iiRFRERkQqx5+WR9N0qElZEceSbLzF5eUDh7URaXTGWwPET8et1kW7jU8+d/HUPG6dOIHN/PF6BQfR+czkNO3VxdlgiUscokRUREZFzlnvsGAc/ep+EFVGkbd3iKPdpfwGBV00k8KoJeAUGOTFCcYbk9d8T/bep5KWl4RsWQa8l/8WzWXNnh3XOPvnkEwCuuOIKJ0ciIqVRIisiIiLn5eQvu0lcEUXi+yvIOXK4sNCyaNp/IC1GXIZ3mzZ4BbXBKzAIt4aNnBusVJmEFVFsu/tWTF4ezUeNJuLF13Dx9nZ2WH+KrpEVqfmUyIqIiEilsOfnk/z9ahJXRHH4q8+xZ2efVcetcWO8WgfhFRiEd1Fy6xUYhHdgUaLr56epybWMMYZfFjzJr88+DUD7WXPo8sDDWC4uTo7sz1MiK1LzVTSRda2OYERERKT2srm60mzocJoNHU5eWhqHPv2I1K2byUpMJDNhP1kHEshLTSUvNZUTO7eX2IaLtw/eQUGOBNcrsA3ep54HtcEjoJkS3RqkICeHbXfezIEP3gWbje6PPUXwjL85OywREQclsiIiIlJhbr6+tJk8jTaTpznKjDHkpiQXJrWJCWQlJpz2fD9ZiYnkp5/k5J7dnNyzu8R2bR4eeLUOxKtoBNc7MAivoD9GdT1btKzVI4G1Se7x42y6bgrHfvoBF28fIl5dSPPhI50dlohIMUpkRURE5LxYloWHfwAe/gH4hfc8a7sxhry0NLKKktvMAwmO51mJCWQm7ifv+HEy9v5Oxt7fS+7D1RXPlq3+mLbcuvgUZq9WrbG5u1f1odZ5Gfv2smHqBDL2/oZHi5b0XrYc3+4hzg5LROQsukZWREREnC4//SRZBxLPGNVNIOtA4fOco0fKbsCy8GzRsnBUN6j4tGXvomt3dU/csh3b+DObrp1M7rEUGnXtTq9l7+DVqrWzw6pUCQkJAAQFaeVtkZpKiz2JiIhInVGQnU3WgUSyEvYXjugm/jGqm5mYQPbhQ2C3l9mGu3/AH9OWA89emKo+r7x88KMPiLntRuw5OQRcPJyery7CtUFDZ4clIvWQFnsSERGROsPF05MGF1xIgwsuLHG7PS+P7EMHyUw8e9pyVmICWQcPkJucRG5yEmkxm0tsoz6uvGyM4fcXn2P3E48A0Hb6TLo9+hQ217r5EXH58uUATJgwwcmRiMj50oisiIiI1HmmoIDsI4fPTnATCkd0sw4klHhbodPVtZWX7Xl5bL/vThKi3gTLosuDj9B+1pxadQznSrffEan5NCIrIiIiUsRyccGrVevCaz579zlruzGG3OSkwqS2aFTX8bwOrrycdyKN6OuvJXntd9g8vQh/8T+0vOwKZ4clIlJhSmRFRESk3rMsC4+AZngENDvnlZcd99Itb+VlNzeCJlxD13mP4erToKoPqVRZiQlsmDaBk7t34e4fQK+lUSUes4hITaZEVkRERKQclmXh3rgx7o0b4xsSWmKd/PSTp43inrqXbmLhyssJ+8lJOsr+t5aSvP57wl98zSnJY+q2GDZOm0jO0SM06NCJ3m8ux7tN22qPQ0TkfCmRFREREakErg0a0qhzVxp17lri9hO7drLlpus5uSuWH8aMpMMd93LhzbdX28JKh7/8nC1z/k5BViZN+w+k5+vLcG/cuFr6FhGpbFrsSURERKSaFGRns/vJR9n32ssA+EX2Juzf/8GnbXCV9rv3jVeJnfd/YAyBV19D6NPPYnN3r9I+a6Lk5GQA/P39nRyJiJSmoos92aohkEWWZR21LGvHaWXPWJa127KsbZZlrbQsS18HioiISJ3n4ulJt/mPc9E7K/Fo0ZLjmzbw/SWDSFgRRVUMLpiCAnY8cC+xD80FY+h0z/30ePbFepnEQmECqyRWpG6o8kQWWAKMOqPsG6C7MSYU+AWYWw1xiIiIiNQIAYOGMHjVOlqMHkN++km23nYjm2ddS+7x45XWR35GOhuvnUzcotewubsT/uJrdLjtrjp9e53yLFmyhCVLljg7DBGpBFWeyBpj1gLHzij72hiTX/TyJyCwquMQERERqUncmzSh52tL6PHsS7j4NODQpx+xZlh/ktauPu+2sw8f4oexozm66ivc/Py4aPlKWo8bf/5B13JKZEXqjuoYkS3PTOCL0jZalnW9ZVmbLMvalJSUVI1hiYiIiFQty7IImnANg75Zi1/PXuQcPsTPE8cS+/ADFGRn/6k2T8TuYN3o4ZzYsQ3vdu3p//HXNL2oXyVHLiLiXE5NZC3Luh/IB94urY4x5jVjTKQxJjIgIKD6ghMRERGpJj7B7ei78nM63jUXy8WFvf95iXWjh3Fid+w5tXN09bf88JfLyD50EL9eFzHg469pcMGFVRS1iIjzOC2RtSxrOnA5MNnUpqWTRURERKqAzdWVjnfcQ78Pv8A7uB0nd8Wy7tKL2fvGqxi7vdz9499czMapE8hPP0mrK8fRZ/mHuDdtWg2Ri4hUP6ckspZljQLuBcYYYzKdEYOIiIhITeTXsxeDvllL0KSp2HNyiH1oLhsmjyf78KES6xu7ndhHH2L7vXdgCgq48JY7CH/pdVw8Pas5chGR6lPl95G1LCsKGAL4A0eAeRSuUuwBpBRV+8kYc0N5bek+siIiIlKfHPriU7bddSt5x4/h5teE0AXP0/LSyx3bC7Ky2HLLDRz+7GMsV1dCnnqWNpOmODHimi0zs3D8xNvb28mRiEhpKnof2SpPZCuTElkRERGpb7IPH2Lr7TeRtOZ/AARNnEK3R5+gICuLjddOJjV6I64NG9Lz9WUEDBri3GBFRM6TElkRERGROsLY7cQtep1dj8/DnpODd3A7sNvJ3B+PV2AQvd9cTsNOXZwdZo338ssvA3DjjTc6ORIRKU1FE9macPsdERERESmDZbPR7m+zGPjldzTs2o3MuH1k7o/HNyyC/p9+oyS2glasWMGKFSucHYaIVAJXZwcgIiIiIhXTsFMXBnz2Lb+/+Bx5aal0vu9BXHS9p4jUQ0pkRURERGoRFw8POt55r7PDEBFxKk0tFhERERERkVpFiayIiIiIiIjUKrVq1WJ/f38THBzs7DBERERERESkCkRHRxtjTLkDrrXqGtng4GB0+x0REREREZG6ybKszRWpp6nFIiIiIiIiUqvUqhHZ0yUmJjJ27Fg2b96M3W53djgiUofZbDYiIiJYuXIlgYGBzg5HREREpN6rtYns2LFjGTduHOvXr8fd3d3Z4YhIHZabm8uCBQsYO3YsGzdudHY4IiIiIvVerVrsKTIy0py6RtbFxYWsrCwlsSJSLXJzc/Hy8qKgoMDZoYiIiIjUWZZlRRtjIsurV2uvkbXb7UpiRaTauLu76zIGERERkRqi1iayIiIiIiIiUj8pkRUREREREZFaRYmsiIiIiIiI1Cr1JpF97rnnyMzMrJa+Vq5ciWVZ7N69u1r6O18NGjSo1PZq+vHPnz+fBQsWODuMajFkyBBOLZBWkfLKkpmZyejRo+ncuTPdunXjvvvuc2z717/+RdeuXQkNDWXYsGHEx8f/6bZycnKYMGECF154IRdddBFxcXEApKSkMHToUBo0aMBNN93kqH/y5EnCwsIcP/7+/tx2222Ve/AiIiIiUuWUyFaBqKgoBgwYwDvvvFNpbebn51daW1Wtvh+/FLrrrrvYvXs3W7ZsYf369XzxxRcAhIeHs2nTJrZt28ZVV13FPffc86fbWrhwIX5+fvz222/cfvvt3HvvvQB4enry6KOPnvWFRcOGDYmJiXH8tG3blnHjxlXykYuIiIhIVavyRNayrEWWZR21LGvHGeU3W5a1x7KsnZZlPV1Z/WVkZDB69Gh69OhB9+7dWb58OS+88AIHDx5k6NChDB06FIDZs2cTGRlJt27dmDdvnmP/zz//nM6dOzNgwABuueUWLr/8cke7M2fOpFevXoSHh/PRRx+V2H96ejrr169n4cKFxRK51atXM2jQIMaOHUvXrl254YYbHCugNmjQgDvvvJOIiAiGDRtGUlISUDhq9n//938MHjyY559/nvj4eIYNG+YYydq/fz9paWkEBwc72srMzCQoKIi8vDx+//13Ro0aRc+ePRk4cKBjhHTfvn307duXXr168eCDD1bWqa9xx//666/Tq1cvevTowV//+tdyv8j45JNPuOiiiwgPD2f48OEcOXIEKBzBnTlzJkOGDKF9+/a88MILAMTFxdGlSxf+/ve/061bN0aMGEFWVhYAMTEx9OnTh9DQUMaOHcvx48cdx3RqJDQ5OZng4GAAlixZwrhx4xg1ahQdOnQoltx9+eWXRERE0KNHD4YNGwaU/n7Myspi4sSJhIaGMmHCBEc8ZTl9RP69995jxowZAMyYMYNbbrmFfv360b59e9577z1HvWeeeYZevXoRGhpa7N/PKd7e3o5/a+7u7kRERJCYmAjA0KFD8fb2BqBPnz6O8tKU1dZHH33E9OnTAbjqqqv49ttvMcbg4+PDgAED8PT0LLXdX3/9laNHjzJw4MAy+xcRERGRmqc6RmSXAKNOL7AsayhwJRBqjOkGVNo8zy+//JJWrVqxdetWduzYwahRo7jlllto1aoV3333Hd999x0Ajz/+uGNUaM2aNWzbto3s7GxmzZrFF198wbp16xwJ1an6F198MRs3buS7777j7rvvJiMjg4MHD3LZZZc56n344YeMGjWKjh070qRJEzZv3uzYtmHDBv75z3+yfft2fv/9dz744AOgMCmJiIhg8+bNDB48mIcfftixT2pqKmvWrOHOO+/kpptuYtq0aWzbto3Jkydzyy234OvrS48ePVizZg1QmIyNHDkSNzc3rr/+ev79738THR3NggULuPHGGwG49dZbmT17Nhs3bqRFixaVdepr3PGPGzeOjRs3snXrVrp06cLChQvLjH3AgAH89NNPbNmyhYkTJ/L00398v7J7926++uorNmzYwMMPP0xeXh5QmAzNmTOHnTt30rhxY95//30Apk2bxlNPPcW2bdsICQkpdkyliYmJYfny5Wzfvp3ly5eTkJBAUlISf//733n//ffZunUr7777LlD6+/GVV17B29ubbdu2cf/99xMdHV2RX1upDh06xLp16/j0008dU3q//vprfv31VzZs2EBMTAzR0dGsXbu21DZSU1P55JNPHEn46RYuXMill15a4XjObOvAgQMEBQUB4Orqiq+vLykpKRVqKyoqigkTJmBZVoX7FxEREZGaocoTWWPMWuDYGcWzgSeNMTlFdY5WVn8hISGsWrWKe++9l++//x5fX98S661YsYKIiAjCw8PZuXMnsbGx7N69m/bt29OuXTsAJk2a5Kj/9ddf8+STTxIWFsaQIUPIzs5m//79tGrVis8//9xRLyoqiokTJwIwceJEoqKiHNt69+5N+/btcXFxYdKkSaxbtw4Am83GhAkTAJgyZYqjHHCUA/z4449cc801AEydOtVRb8KECSxfvhyAd955hwkTJpCens4PP/zA+PHjCQsLY9asWRw6dAiA9evXO45t6tSp53yOy1JTjh9gx44dDBw4kJCQEN5++2127txZZuyJiYmMHDmSkJAQnnnmmWL1R48ejYeHB/7+/jRr1swxWtuuXTvCwsIA6NmzJ3FxcaSlpZGamsrgwYMBmD59epmJ3inDhg3D19cXT09PunbtSnx8PD/99BODBg1yvCebNGkClP5+XLt2LVOmTAEgNDSU0NDQcvsty1/+8hdsNhtdu3Z1HPPXX3/N119/TXh4OBEREezevZtff/21xP3z8/OZNGkSt9xyC+3bty+27a233mLTpk3cfffdFYqlpLaMMWfVq2hi+s477xT7Ny4iIiIitYerk/rtCAy0LOtxIBu4yxizsaSKlmVdD1wP0KZNm/Ib7tiR6OhoPv/8c+bOncuIESN46KGHitXZt28fCxYsYOPGjfj5+TFjxgyys7NL/FB8ijGG999/n06dOpVaJyUlhf/973/s2LEDy7IoKCjAsizHyN6ZH7BL+8B9ermPj0+p/Z2qN2bMGObOncuxY8eIjo7m4osvJiMjg8aNGxMTE1NuH+VZuXKlY0TxjTfeIDIyssR6Nen4oXBq7IcffkiPHj1YsmQJq1evLvM4b775Zu644w7GjBnD6tWrmT9/vmObh4eH47mLi4vjmt0zy8ubyuvq6uqYBp2dnV1sW0l9GGNKPE9lvR/PdYTx9PplxXTq34cxhrlz5zJr1qxy277++uvp0KHDWQsqrVq1iscff5w1a9YU6+Nc2woMDCQhIYHAwEDy8/NJS0tzJPtl2bp1K/n5+fTs2bNCfYuIiIhIzeKsxZ5cAT+gD3A3sMIq5dO3MeY1Y0ykMSYyICCg3IYPHjyIt7c3U6ZM4a677nJMbW3YsCEnT54E4MSJE/j4+ODr68uRI0ccC8d07tyZvXv3OlY+PTXKBzBy5Ej+/e9/Oz7Mb9my5ay+33vvPaZNm0Z8fDxxcXEkJCTQrl07x8jhhg0b2LdvH3a7neXLlzNgwAAA7Ha74/rD//73v47yM/Xr189x3enbb7/tqNegQQN69+7NrbfeyuWXX46LiwuNGjWiXbt2jqmoxhi2bt0KQP/+/Yu1U56xY8c6FscpLYmtaccPhSvUtmzZkry8vAodZ1paGq1btwZg6dKl5dYvja+vL35+fnz//fcAvPnmm47R2eDgYMd039OvOS1N3759WbNmDfv27QPg2LHCyQ2lvR8HDRrkONYdO3awbdu2cvto3rw5u3btwm63s3LlynLrjxw5kkWLFpGeng4UTu89evTsSRUPPPAAaWlpPPfcc8XKt2zZwqxZs/j4449p1qxZsW2dO3cusc/S2hozZozjd/Xee+9x8cUXVyiRj4qK0misiIiISC3mrEQ2EfjAFNoA2AH/ymh4+/bt9O7dm7CwMB5//HEeeOABoHA059JLL2Xo0KH06NGD8PBwunXrxsyZM+nfvz8AXl5evPzyy4waNYoBAwbQvHlzx9TkBx98kLy8PEJDQ+nevbtjkaTTr5GNiopi7NixxeL561//yn//+1+gMCm577776N69O+3atXPU9fHxYefOnfTs2ZP//e9/Z40gn/LCCy+wePFiQkNDefPNN3n++ecd2yZMmMBbb71VbCru22+/zcKFC+nRowfdunVzLAj0/PPP89JLL9GrVy/S0tLO74SfpqYd/6OPPspFF13EJZdcUmqCdLr58+czfvx4Bg4ciL//+b0dly5dyt13301oaCgxMTGOY7rrrrt45ZVX6NevH8nJyeW2ExAQwGuvvca4cePo0aOH4/hKez/Onj2b9PR0QkNDefrpp+ndu3eJ7ebn5ztGQp988kkuv/xyLr74Ylq2bFluTCNGjOCaa66hb9++hISEcNVVVzm+JDolMTGRxx9/nNjYWCIiIggLC+ONN94A4O677yY9Pd0x7X3MmDFA4eJXJc2KKKut6667jpSUFC688EL+9a9/8eSTTzr2Cw4O5o477mDJkiUEBgYSGxvr2LZixYqzEtmPP/641PeeiIiIiNQsVlnTaSutE8sKBj41xnQven0D0MoY85BlWR2Bb4E2ppxgIiMjzakVXy3LKnMq8J+Vnp5OgwYNMMYwZ84cOnTowO23337e7a5evZoFCxbw6aefnrWtQYMGjtGtuqq+H39NkpOTw4UXXsiOHTtKvYbcGT799FP27t3LLbfc4uxQSlVVf3dEREREpJBlWdHGmNKngRap8mtkLcuKAoYA/pZlJQLzgEXAoqJb8uQC08tLYqvL66+/ztKlS8nNzSU8PLxC1wGK1BabNm1i6tSp3HjjjTUqiQUct7oSERERESlPtYzIVpbqGJEVESmN/u6IiIiIVK2Kjsg66xpZERERERERkT+lTiayjz/+ON26dSM0NJSwsDB+/vnnMuvPnz+fBQsWnHe/MTExxe4pW9tcdtllpKamkpqayssvv1wpbZ2vJUuWcNNNN1W4/vz585k7d26xspiYGLp06XJO/T700EOsWrXqnPapqLi4OLp3717itiFDhnBq1sH5ONfzJiIiIiJSm9S5RPbHH3/k008/ZfPmzWzbto1Vq1YRFBRULX3X1kTWGIPdbufzzz+ncePGlZLInmqruk2aNKnYbZMA3nnnHa655poKt1FQUMAjjzzC8OHDKzs8ofD8ioiIiIicjzqXyB46dAh/f3/HrUX8/f1p1aoVUHg7jlO3PNm0aRNDhgxx7Ld161YuvvhiOnTowOuvv+4of/rppwkJCaFHjx7cd999QPFRs+TkZIKDg8nNzeWhhx5i+fLlhIWFsXz5cjZs2EC/fv0IDw+nX79+7NmzBygcLRs3bhyjRo2iQ4cO3HPPPY7+vv76a/r27UtERATjx493rOb77bffEh4eTkhICDNnziQnJ6fMY1qzZg1hYWGEhYURHh5+1u1R4uLi6NKlCzfeeCMREREkJCQ42rrvvvv4/fffCQsL4+6772b16tXFFuK56aabWLJkCWlpaXTq1MlxXJMmTXKcu1NtxcXF0blzZ/72t7/RvXt3Jk+ezKpVq+jfvz8dOnRgw4YNAKWeK4CEhARGjRpFp06dePjhh8v8/Xfq1InGjRsXG4VfsWIFEydOBApvTxMZGUm3bt2YN2+eo05wcDCPPPIIAwYM4N1332XGjBmO+7xW9rmHwtvfTJ8+ndDQUK666ioyMzPPqhMVFUVISAjdu3fn3nvvLbd88eLFdOzYkcGDB7N+/foSz096ejrXXnstISEhhIaG8v7775d7XubNm0dERAQhISHs3r27zHZKe/+eeX5feOEFunbtSmhoqON3IyIiIiJSYcaYWvPTs2dPc0ph6Gc7efKk6dGjh+nQoYOZPXu2Wb16tWNb27ZtTVJSkjHGmI0bN5rBgwcbY4yZN2+eCQ0NNZmZmSYpKckEBgaaAwcOmM8//9z07dvXZGRkGGOMSUlJMcYYM3jwYLNx40ZjjDFJSUmmbdu2xhhjFi9ebObMmePoLy0tzeTl5RljjPnmm2/MuHHjHPXatWtnUlNTTVZWlmnTpo3Zv3+/SUpKMgMHDjTp6enGGGOefPJJ8/DDD5usrCwTGBho9uzZY4wxZurUqebZZ58t85guv/xys27dOsc5ORXHKfv27TOWZZkff/zxrPOzb98+061bN0f5d999Z0aPHu14PWfOHLN48WJjjDFff/216dOnj4mKijIjR44ssS0XFxezbds2U1BQYCIiIsy1115r7Ha7+fDDD82VV15Z7rlq0aKFSU5ONpmZmaZbt26Oc1+ap59+2tx2223GGGN+/PFHExkZ6dh26neYn59vBg8ebLZu3eqI96mnnnLUmz59unn33Xer7NwDjjrXXnuteeaZZ4wxf7y3Dhw4YIKCgszRo0dNXl6eGTp0qFm5cmWp5QcPHnSU5+TkmH79+hV7L55yzz33mFtvvdXx+tixY+WelxdeeMEYY8xLL71krrvuulLbKe39W9L5bdmypcnOzjbGGHP8+PGz4qypSvu7IyIiIiKVA9hkKpAb1rkR2QYNGhAdHc1rr71GQEAAEyZMYMmSJeXud+WVV+Ll5YW/vz9Dhw5lw4YNrFq1imuvvRZvb28AmjRpck6xpKWlMX78eLp3787tt9/Ozp07HduGDRuGr68vnp6edO3alfj4eH766SdiY2Pp378/YWFhLF26lPj4ePbs2UO7du3o2LEjANOnT2ft2rVl9t2/f3/uuOMOXnjhBVJTU3F1PftOS23btqVPnz7ndExnuuSSSwgJCWHOnDm88cYbJdZp164dISEh2Gw2unXrxrBhw7Asi5CQEOLi4oCyz9Ull1xC06ZN8fLyYty4caxbt67MmCZOnMh7772H3W7nnXfeYdKkSY5tK1asICIigvDwcHbu3ElsbKxj24QJE85qq6rOfVBQEP379wdgypQpZx3Txo0bGTJkCAEBAbi6ujJ58mTWrl1bakXaZvUAACAASURBVPnPP//sKHd3dy/xWABWrVrFnDlzHK/9/PzKPS/jxo0DoGfPno7fV0ntlPb+PeX0mEJDQ5k8eTJvvfVWiedHRERERKQsdS6RBXBxcWHIkCE8/PDDvPjii45pj66urtjtdgCys7OL7WNZ1lmvjTFnlZfXzukefPBBhg4dyo4dO/jkk0+K1T019flUvPn5+RhjuOSSS4iJiSEmJobY2FgWLlxY5u0+Sovlvvvu44033iArK4s+ffo4poSezsfHp9R2S+vjzH7sdju7du3Cy8uLY8eOlbj/6cdqs9kcr202G/n5+UDZ56qk301ZgoKCCA4OZs2aNbz//vtcffXVAOzbt48FCxbw7bffsm3bNkaPHl2sn5LOR1Wd+/KOqbR+y4qnvPNyav8z65V3Xk79vk69T0trp7T37ymnn9/PPvuMOXPmEB0dTc+ePR3tioiIiIhURJ1LZPfs2cOvv/7qeB0TE0Pbtm2Bwuv0oqOjARzJ7SkfffQR2dnZpKSksHr1anr16sWIESNYtGiR4/rFU4na6e2cuo4SoGHDhsWuh0xLS6N169YAFRoV7tOnD+vXr+e3334DIDMzk19++YXOnTsTFxfnKH/zzTcZPHhwmcf0+++/ExISwr333ktkZGSJyVRpzjyOtm3bEhsbS05ODmlpaXz77beObc8++yxdunQhKiqKmTNnkpeXV+F+TlfWufrmm284duwYWVlZfPjhh46RzLJMmjSJ22+/nQsuuIDAwEAATpw4gY+PD76+vhw5coQvvvii3Haq6tzv37+fH3/8ESi85nXAgAHFtl900UWsWbOG5ORkCgoKiIqKYvDgwWWWr169mpSUFPLy8nj33XdLPJ4RI0bw4osvOl4fP378T52Xktop7f17JrvdTkJCAkOHDuXpp58mNTXVcS2tiIiIiEhF1LlENj09nenTpzsWkomNjWX+/PkAzJs3j1tvvZWBAwfi4uJSbL/evXszevRo+vTpw4MPPkirVq0YNWoUY8aMITIykrCwMMcteu666y5eeeUV+vXr51jsB2Do0KHExsY6Fnu65557mDt3Lv3796/QSq0BAQEsWbKESZMmERoa6hjN8/T0ZPHixYwfP94xRfeGG24o85iee+45unfvTo8ePfDy8uLSSy+t8Dls2rQp/fv3p3v37tx9990EBQVx9dVXO6aDhoeHA/DLL7/wxhtv8M9//pOBAwcyaNAgHnvssQr3c7qyztWAAQOYOnUqYWFh/PWvfyUystz7IzN+/Hh27txZbCGhHj16EB4eTrdu3Zg5c2aFEuKqOvddunRh6dKlhIaGcuzYMWbPnl1se8uWLXniiScYOnQoPXr0ICIigiuvvLLM8vnz59O3b1+GDx9OREREicfzwAMPcPz4cUd833333Z86LyW1U9r790wFBQVMmTKFkJAQwsPDuf32252ywrWIiIiI1F5WWVMVa5rIyEhzarXgU1N/RUSqi/7uiIiIiFQty7KijTHljlzVuRFZERERERERqduUyIqIiIiIiEitokRWREREREREahUlsiIiIiIiIlKr1NpE1mazkZub6+wwRKSeyM3NxWartX8yRUREROqUWvupLCIiggULFiiZFZEql5uby4IFC0q9rZGIiIiIVC9XZwfwZ61cuZKxY8fy4IMPYrfbnR2OiNRhNpuNiIgIVq5c6exQRERERIRanMgGBgayceNGZ4chIiIiIiIi1azWTi0WERERERGR+kmJrIiIiIiIiNQqSmRFRERERESkVlEiKyIiIiIiIrWKElkRERERERGpVZTIioiIiIiISK2iRFZERERERERqlSpPZC3LWmRZ1lHLsnacVjbfsqwDlmXFFP1cVtVxiIiIiIiISN1QHSOyS4BRJZQ/a4wJK/r5vBriEBERERERkTrAtao7MMastSwruDLaOnjwIJZlVUZTIiIiIiIiUktVeSJbhpssy5oGbALuNMYcL6mSZVnXA9cDtGnTBmNMNYYoIiIiItVtyJAhAKxevdqpcYhI9avowKWzFnt6BbgACAMOAf8sraIx5jVjTKQxJjIgIKC64hMREREREZEayikjssaYI6eeW5b1OvCpM+IQERERkZqnb9++zg5BRGo4pySylmW1NMYcKno5FthRVn0RERERqT+eeOKJCtc1xpBnzycrP5esghyy8nPIzs8tfCzIxcPFjUbuPvi6++Dr4YOHi3sVRi4i1aXKE1nLsqKAIYC/ZVmJwDxgiGVZYYAB4oBZVR2HiIiIiNQ+p5LU7PzCJLUwWf0jUc3Kz6HA2Mts40BGsuO5h4sbvu4NHIltI3cffFw9taCoSC1THasWTyqheGFV9ysiIiIitYvdGA5lJPPhmi9o0MSXgJbNyTcF5e7narng5eqOp6sHXi4eeLm64+XqgaeLO1kFuZzIzSAtJ5203AxyCvI4mnWco1l/rDPqYtmKjdr6uvvQ0M0HF5uzlpMRkfI4c9ViERERERHy7fnEnzzK3hMHycrPIajrBYXlpgAXy4anq3tRglqYpHqe9tzL1QM3W8U+0hpjyMjPLkpsMwofczPILsjleM5JjuechJOFdS2ggZs3vu4+NCpKbn3dfXB3cauisyAi50KJrIiIiIg4RVZ+DvtOHCLu5GHy7YUjrz6unny8aAUHf9vP20uW4WZzrbRpv5Zl0cDNiwZuXrTy8XeU5xTkkpabyYmiUdu03AzS87I4mZfJybxMyEhy1PV0cXeM2jYqmqLs7eqhqcki1UyJrIiIiIhUq7TcDH5PO8CB9OT/b+9eY+NK8zu/f59T93sV71dJFNW6dbe6Z0bdc/G23Y57F2tjZveNYSMvnBgJMI7nRWDAQYLFGtgXi7wKjLxZ2LGBGIM1EsOAgSDwxgZiBzue+/Sop6WWWt26UKIkXou3ut/rPHlRVImkqBYlkSxW8fdBE8U659Spv9As8vzOc8NiAegLxDmTGGM43Me//89/CHBorZ8Bj5+hkJ+hULK9reE2yddL21puc5utt5VSjeXSk67JXuNpj7d93HIb9YfxGHVNFjkoCrIiIiIicuCstayUM8xkF1ipZNrbxyL9TCfGSQViHazuaV7HQyoQ21aXtZZivdxutc1udlGuuXXWKjnWKrn2sQZDzL/ZNXlLwPV5dPktsh/0SRIRERGRA+Nal7nCKjPZ+VY3XVqTK52IDXM6PkbEF3zqNb/2a7922GXuiTGGqD9M1B9mnMH29kqj1m61zdZa3ZOL9dZY3FytuO0cYW+gHWwfP4bUNVnkhRlrbadr2LPLly/bK1eudLoMEREREXmOWrPBg/wS93OLVJo1oLX0zen4GCdjI/h7vGWy4Ta3dUnOVovk6iXcXZYK8jne7S23gQhRXwhHXZPlGDLGfGStvfy843r7N4iIiIiIHKpSvcK93AIP8svt9V1jvjDTiXHGowPHZtyo1/HQF4zTF4y3t7nbuiYX2uNva26D1UqW1Uq2fayzs2tyIErcH97zDM0ivU6fBBERERF5ZdlqgTvZORaKa+1tA8EEZxLjDIaSL9R19td//dcB+Pu///t9r7OTHNMKpzF/mInNrsnWWirttW6fjL0tNSrt77cKe4Mk/BFSwRinYiN4HU8n/ikiHacgKyIiIiIvLVcrcmvjEYulVoA1GMajA0zHx0kEIi91znK5vJ8lHmnGmM01cQMMh/va2+tug1ytRLZaaHdRztdKlBoVSo0Ki6U1VsoZvjp8QV2Q5VhSkBURERGRF5avlbiVedhugXWMw6nYCNOJMULeQIer634+x0t/ME7/tq7JLoV6mUy1yM31WVbKGa6tzvD2wBlNFiXHjoKsiIiIiOxZoVbiVuYR88VVoDWW82R8hNcSEwS9/g5X19sc4xDfHDMb84f48eINHhXShLwBzqdOdLo8kUOlICsiIiIiz1Wsl7mdmeNRIQ20uhCfjA3zWnJCLbAdkArE+MrQOT5c/ozbmUeEPH5Oxkc6XZbIoVGQFREREZFnKtUr3M484lEhjaUVYE/EhngtMUF4lzVg98M3v/nNAzlvrxkJ93Gpf5pP1mb4ZG2GoNe/bZytSC/TOrIiIiIi8pRyo8rtzBwP88tYLAaYiA5xNjlJ5IACrLyczzcecDszh8c4fGP0DVKBWKdLEnlpWkdWRERERF5YpVHlTnaeB7klXFoNHhORQc6mJon6Qh2uTnZzLnmCcqPGo0Kany19xntjbxLR/yvpcQqyIiIiIkKlUeNudo7Z/DKudQEYjwxwNjlJzB8+1Fref/99AL73ve8d6vt2K2MMbw1MU2nUWKlk+OnSTf7Z2CUCHl+nSxM5MAqyIiIiIsdYpVFjJjfPbG6J5maAHQ33cy41Sdz/cuvAyuFzjMM7w+f44eINcrUiHy7f5Osjb+B1PJ0uTeRAKMiKiIiIHCOuddmo5kmXMqTLG2Rrxfa+kXAf55InSAQUYLuR1/HyteGL/GDhEzaqBX6xcpt3hs5rjVnpSQqyIiIiIj2u3KiSLm+QLmVYqWRouM32Psc4DIWSnE1OkgxEO1il7Ieg18/XRi7yw8XrLJXWub52jzf7TyvMSs9RkBURERHpMU3rsl7JtcNrvl7atj/qCzEUSjIUStEfjONR99OeEvOHeXf4Aj9ZusFsfomQN8BryYlOlyWyrxRkRURERHpAsV5pBdfyBqvlbHu8K4DHOAyGkgyFkgyGUkd++Zzf+q3f6nQJXa8/GOfLg2e5kr7FZxsPCHr8TMaGOl2WyL5RkBURERHpQk23yVolx/JmeC3WK9v2x/1hhkIphkJJ+oJxHON0qNIX953vfKfTJfSEscgAb/TVuLF+n6urdwl6/QyGkp0uS2RfdFWQLTeqnS5BREREpKPKjSr3cos8yC3RsE/GunodT7u78GAoScgb6GCVr6ZUanWFDocPd9mfXnQ6MUa5UWUmt8DPlz/nl0bf1GRe0hO6KsjW3AZ1t4HP6aqyRURERF5ZrlZkJrvAXGEFiwUg4Y8wHE4xGEqRCsRwemRCn9/4jd8AtI7sfrnYd4pys8ZCcZWfLbfWmA138Y0OEeiyIGut5VE+zenEWKdLERERETlw1lrWKjnuZudJlzfa28ci/UwnxkkFYh2sTrqFMYYvDb5GtVljrZLjZ0uf8kujl/B7uioKiGzTdT+993OLTMVHNYW4iIiI9CxrLYulNe5m5snUCkBrwqbJ6BDTiTEivlCHK5Ru4zEO7wxd4EeL18nXS/w8/RlfG34dj9M9Y6dFtjrwn1xjzF8YY9LGmBu77PsfjDHWGDOwl3M5xlBsVFgpZ/a/UBEREZEOa7hN7ucW+f/mfsGV9C0ytQJ+x8u55CQfTF7m0sC0Qqy8NL/Hy1dHLhL0+Fmr5Ph49TbW2k6XJfJSDqNF9rvAfwD+49aNxphJ4J8DD/d6ooDHB8C93CJD4dT+VSgiIiLSQdVmnfu5RWZzi9TcBgBhb5DpxBiT0SG8WudV9knYG+Crwxf50eJ1FoprBD2zvNE/1emyRF7YgQdZa+33jTGndtn1vwL/I/B/7/Vcfo8PxxjS5Q0K9TJR3ZEUERGRLlasl5nJLvCokG6v+5r0RzmTHGc03H9sh1L97u/+bqdL6GmJQIR3hs/z06Wb3Mst4HM8nE1OHtufN+lOHRkja4z5V8C8tfba8z4wxphvA98GOHHiBOORQR4V0szmlnT3SERERLrSRjXP3cw8i6W19rbhUIrpxDj9wfixDxQKsgdvMJTk7cEzfLxyh1uZRxTqZd4eOINHrf/SJQ49yBpjwsC/Bf7FXo631v458OcAly9ftlPxUR4V0jwsLHM+dUJdbURERKQrWGtJlze4m51nrZIDwGCYiA4ynRgn7teaqY+trq4CMDCwp2lU5CVNRofwOV4+St9ivrhKsV7h3eHzBLU0j3SBTrTITgNTwOPW2AngF8aYd621S897cTIQJRWIsVHNM1dIcyo+esDlioiIiLw817rMFVaYyS6Qr5cA8BoPp+IjTMVHCSk0POU3f/M3Aa0jexhGwn28N3aJD5c/I1Mr8P2FT3h3+DxJLe0kR9yhB1lr7XVg6PFzY8wscNlau7rXc0zFR9lYyXM/t8TJ2Mix734jIiIiR0/dbTCbW+J+bpFKswZA0OPndGKMk7FhfE7XrYIoPSruj/De2FtcSX/OWiXHDxdv8KWBM4xHBztdmsgzHfhvUGPMXwHvAwPGmDng31lr//dXOedYpJ9P133k6yXWKlkGQsn9KFVERETklZUbVe7lFniQW6ZhmwDEfGGmE+NMRAdwjNbtlKMn4PHx9ZHX+WT1Hg8Ly3y0cpt8vcS55Ak1GsmRdBizFv+Xz9l/6kXP6RiHU7ERbmUecS+3qCArIiIiHZerFZnJLjBXWMHSWpuzPxjnTGKCoVBSYUCOPMc4vDUwTdwf5sb6fW5n5sjXynxp8DXNSyNHTtf2aTkZG+F2Zo6l0jqleoWwL9jpkkREROSYsdayVslyN7tAurzR3j4W6edMYlzjDKXrGGM4nRgj6gtxZeUWi6U1iosV3h2+QFjjueUI6dogG/T6GYv0M19cZTa/xMW+U50uSURERI4J11oWi2vMZOfJ1AoAeIzDZHSI6cQ4Ed1gfyW///u/3+kSjr2hcIr3RluTQOVqRX6wcI13hs7TF4x3ujQRAIy1ttM17Nnly5ftlStX2s/XKzl+uHgdv+Pln09e1rpXIiIicqAabpNHhTQz2QVKjQoAfsfLVHyUU/FRAh5fhysU2V+1Zp0r6VusVrI4GN4aOMNkbOj5LxR5ScaYj6y1l593XNe2yAKkAjES/gjZWpH54ionYsOdLklERER6ULVZ535ukdncIjW3AUDYG2Q6McZkdEjjB/fZo0ePAJicnOxwJeL3+PjayEVurN1nNr/Ex6t3yNdLXEid1Lhv6aiuDrLGGKbio1xdvcv93CKT0SF9oERERGTfFOpl7mUXeFhI41oXaK1pfyYxzmi4X9cdB+R3fud3AK0je1Q4xuHSwDQxf5gba/e4m50nXy/xlcGzeLWMlHRI1//kjUcGubk+S7ZWZKOaV799EREReWUb1Tx3M/Msltba24ZDKc4kxukLxhVg5Viaio+2JoFK32K5tMEPFq7z7vAFjQmXjuj6IOtxHE7GRriTneN+blFBVkRERF6KtZbl8gYz2XnWKjkADIaJ6CDTiXHi/nCHKxTpvMFQkvfGWpNA5eul9iRQ/aFEp0uTY6brgyzAqXgryC4U13i9USWoqcFFRERkj5rWZb6wwkx2nny9DIDXeDgVH2EqPkpI1xUi20R9Id4bu8RH6dukyxv8eOlTLg2c5mRspNOlyTHSE0E25A0wGu5nsbTGbH6Z86kTnS5JREREjri622A2t8S93ALVZh2AoMfP6cQYJ2PD+DT2T+SZfI6Xrw5f4Ob6LDO5Ba6tzlCoV7ioSaDkkPTMb+ip+CiLpTUe5Jc4m5zAMU6nSxIREZEjqNyoci+7wIP8Mg3bBCDmC3MmMc54dEDXEEfAH/7hH3a6BNkDYwyv908R84e5tjrDTHYer3E4p0YlOQQ9E2T7g3FivjD5eomF4hoT0cFOlyQiIiJHSK5W5G52nvnCKhYLwEAwwXRinKFQUq1IR8i3vvWtTpcgL+BEbBiv4+VK+nNuZR7h9/iYio92uizpcT0TZB8vxfPJ2gz3c4sKsiIiIoK1lrVKlrvZBdLljfb2sUg/ZxLjJAOxDlYnz3Lr1i0Azp071+FKZK/GIv28NXCGa6t3ub52D5/j1fW4HKieCbIAE9FBPtuYZaOaJ1PN64+TiIjIMVZp1Ph49Q4r5QwAHuNwIjbM6fiYlgs54n7v934P0Dqy3eZkbJhas85nGw/4eOUOPsfDcLiv02VJj+qpQSBex8NkdBiA+7mlDlcjIiIinZIubfC9+auslDP4HC/nkpN8MHmZN/tPK8SKHKDXkhOcSYxjsVxJ32ovZSWy33oqyALt/vjzxZX2DIQiIiJyPLjW5eb6LD9dvknNrTMQTPCr429zLnWCgMfX6fJEjoULqZOciA7RtC4fLt8kWyt2uiTpQT0XZCO+IMOhFK61PMirVVZEROS4KNYr/GjxOnez8xjgfOoEXx95XevLixwyYwyXBs4wEu6j7jb56dKnFDfXaBbZLz0XZOFJq+xsbgnX2g5XIyIiIgdtobjKPy1cZaNaIOTx843RNzmbnNRMxCId4hjDVwbPMRBMUG3W+cnSTSqNWqfLkh7SU5M9PTYYShLxBSnWKyyV1hiLDHS6JBERETkATbfJjfX7PMgvAzAS7uPtgTP41Y24q/3RH/1Rp0uQfeBxHN4dPs+PFz8lUyvwk6VP+aXRN/F7ejKCyCHryRZZYwxTsVar7P3cYoerERERkYOQq5X4/sInPMgv42B4s/807wydV4jtAR988AEffPBBp8uQfeB1vHx15CJRX4h8vcTPlm/ScJudLkt6QE8GWYDJ2BAe47BWyWmAuYiIyD6y1uJaS9Nt0nAb1Jp1Ks0a5UaVUr2Ca90Df/8H+SV+sHCNfL1E1BfivbFLTMVH1ZW4R1y9epWrV692ugzZJwGPj6+PvE7I42ejmudK+taB/56Q3tez7fo+x8tkdIjZ/BKzuUXeGjjT6ZJERESOpOXSOnez89TdJtZaLK2gaq2Li20F18ePm/u/iNfxMBRKMRJOMRRK7WsLad1tcG11hoXiKgCT0SHe7D+N1/Hs23tI5/3BH/wBoHVke0nIG+BrI6/zo8XrpMsbfLxyhy8PntXNJ3lpPRtkoTXp02x+ibnCChdSp9QfX0REZItas86N9fvMFVZe6vUOBmMMjjEYHBxjsFiqzToLxVUWiqsYoC8YZzjcx0i4j6gv9NL1blTzfJS+RalRxWMcLg1MMxkdeunzicjhivnDfG3kIj9avMF8cRW/x8cbfVMKs13IWkuxXmajWmCjmqfarHMyNsxQOHVoNfR0sov5wwwGk6xUMjwsLHMmMd7pkkRERI6ExeIan6zNUG3WcYzD+eQkA6FkK5g+Dqi7BNWt25+lWC+zVNpgubTOWiXX/rq5PkvEF2Qk1MdwuI++YBxnDxew1lpmcgt8tv4AiyXhj/CVoXOvFIpFpDOSgRjvDl/gZ0s3uZ9bxOd4OZ860emy5DlqzXo7tG5U82SqBepuY9sxi6U1RsJ9vN53isgh/H7u6SALMJUYZaWSYTa3yHR8THd8RETkWKs269xYu8f8ZtfcvkCctwfP7GsojPhCTCdCTCfGqDcbpMsbLJU2SJc3KNYrzNQXmMkt4HO8DIWSjIT7GAqn8DlPX5ZUmzU+XrlDupwB4HR8lAt9p/CYnp3mQ6TnDYaSfGXoHD9Pf87tzCP8jpfTibFOlyWbXOuSqxVbwbXSCq7FRuWp4wIeH6lAjFQghrWWO9k5lkrrpEsbTCfGeS05caDDPno+yA6HUoS9AUqNKsvlDUbCfZ0uSURE5NBZa1kornF97R41t47HOFxInTzwCZJ8Hi/j0UHGo4O41rJeybFcWmepvE6xXmG+uMp8cRWDob/dBTlFxBdipZzhFyu3qTbr+B0vbw++pr/jIj1iNNLP2wNnuLp6lxvr9/F7vExoqMChs9ZSblS3tbZma8WnJuPyGIeEP0oqECUVbIXXoMe/7e/HidgwNzdmmSuscCc7x6NCmot9JxmPDB7I3xlj7RdP2PDKb2DMXwDfBNLW2jc2t/174F8DLpAGftdau/C8c12+fNleuXLlhWu4m53n5vosg6EkXx95/YVfLyIi0s0qzRrXV++xWFoDYCCY4K2BM0R8wY7WVaiXWSqts1xaZ72S2zaFVMQbbLcA9AfjfHnwLCFvoDOFyqH78Y9/DMA3vvGNDlciB+3xdbrB8O7weYZ1s+pANdwGmWphW3CtNutPHRf1hUgGou0W17g/jLPHnjDrlTw31u6RqRUASAVivNl/mmQguqfXG2M+stZefu5xhxBkfxkoAP9xS5CNW2tzm9//98BFa+1/97xzvWyQrTXr/MOjKzSty38x/iWi/vALn0NERKTbWGuZK65wY+0+dbeB13i42HeKk7HhIzfUptasb+uC/HidyXPJSc4mJ49cvSKyf26uz3I3O49jHL4+8jr9wXinS+oJ1lry9dK2LsL5eump43yOdzOwtoJrMhB75UlyrbU8KqS5uf6AmtsKyieiw1zoO0HA4//C1+41yB5412Jr7feNMad2bMtteRqB58zj/4r8Hh8T0UEe5Je5n1/izf7TB/l2IiIiHVduVPlkdYbl8gbQGpP21sAZwke0VbP1t3qIiegQrnXZqOYJePya0OmYUovs8XIhdZJas8HDwjI/W77JL428SSIQ6XRZXafSrJGp5NutrZlqgYZtbjvGYEj4I63W1s0uwhFvcN9vFhpjOBEbZjTSz+2NR9zLLfKwsMxCaZVzyRNMxUf23ML7zPc46BZZgM0g+58et8hubvufgf8KyAK/aq3dde5/Y8y3gW8DnDhx4isPHjx4qRqytSL/NH8Vj3H4Fyfe2XVCCRERkW73+C74jfX7NNwmXsfDG31TTEaH1KopXeP9998HtI7scWKt5Ur6FoulNTzGYSCUYDjUx3A4pWEFu2i6LtlaYUtozVNqVJ86LuQNtFtaU4EYCX8ETwfW3c7XSny6fr89cV/UF+KN/tMMhZJPHXtkuhZvFnOKHUF2y75/AwSttf/ueed52a7Fj/1o8TprlRxv9p9mKj760ucRERE5ikqNKtdW77KyeaEwHEpxaWBaF4HSdRRkj6emdflF+nZ7PP9jMV+Y4XCK4XAfqUBsT8t2dRtrLTW3Qa1Zbz/WdzxvPTaouXWK9Qp2R6dWj3E2uwY/Ca5B7xd34z1M1lqWyxvcWLtPaXMOhNZyPVPb5mw4Ml2L9+D/BP4f4LlB9lVNxUdZq+T4fOMhi8U1/B4ffse75dGL3/Hh93jxOT4CHi8e49EdbBGRLtN0XcrNKpVGlXKjRqVZA8AxDh5jNh+dipiu3gAAELJJREFUbY9fvO+L103tNGstD/LL3FyfpWGb+Bwvb/RPMXFAM0WKiBwEj3F4Z/g85UaVdHmD5dIGK+UM+XqJfLbE3ex8e9muoXCKoVCKgMfX6bKf0rQu9WadqtugviOAbn2st583nlqTdS9ivvC2WYRjvvCR/p1vjGEk3MdgKMm97AK3M49eabmejgRZY8xr1to7m0//FfD5YbzvSLi/PQviaiW7p9cYzLaAu/XR5/HuCMKtR5/jPdI/RCIi3cy1LpVGjXKzFVLLjSrlRpVK88n3tZe4IHie3YLuk+/NCwbjXfY5zo5jn+w3PDtIF+sVrq3ebf9dGw3382b/6SN1F15E5EWEvAFOxkY4GRuhad32sl3LpQ2KjSfLdkFrRtzhUIrhcIq4P7Kv1+DWWprW3aVVtN4On7XmlnC6+by5Y+mavfI5T2cLn+MlsPm4NYuEvIGuHSrpMQ6vJSeYjA5yc+PBjuV6Tu35PAf+rzfG/BXwPjBgjJmj1fL6G8aYc7SW33kAPHfG4v3gGMOvjL9NoV7acVfk2c34TetSbdZb01I/PTP1M/kd72bQ3RKAt4bdXVqDX3XA81HhWpdCvUy+VmrfeemVf5uIHI7WZD8FMtX8Zjh9HFyruy4TsJPBEPT6CXkChLx+gl4/BkPTurjWbT+6mxcpW7c1rYvr2i3HuLjYze8Bms97+wOxtXV4azAu1Ms0rYvf8fJm/zRjkX7dTBWRnuExDoOhJIOhJG/0t5btSpdarbVrlWx7CZnPMw8JeHybobaPwVAC75agZ61tXePvaB2t72gl3fpYbzZwX2JO2p0NYa2AupkJdmaALbnguP3uDnoDfHnwLKdiI1xfu0e2VuQXK7f3/PpDGSO7X151jOzLaLru9h9ot0G12frBfnLnZfuHoe6+3EWO13h2tPY+DsG7/NBv3pl5keb3/eZaS6leJlcvka+VWt0+aiUKO/rsBz1+puKjnIyNvPJU3iLSm5puk41qnrVKjrVKjvVq/qnF2LcKevyEvJsh1RNof/84uAZ2LNL+qqy1myHX7gjCWwOwfToQ77L/i0Lz9vM+Od/OcVA7jUcGeKP/9JHsYifyMq5evQrA22+/3eFK5ChruE1Wypl2N+THw0igFSbj/vC2FtWX4THOjkaoL+qp2Xru1dDEF7Z1uZ5fP/XVozPZ037pRJB9Ga61u9zd2dINYZe+8nW3/lJrEDmbH65njfNt79sSiF/0w2WtpdSokNsSVvP1EoVa+Zl3qcLeIHF/mGK90l6vymMcTsaGOR0fI7xlQLeIdF61WSNTLeBaS9gbIOwLHmiXpYbbZH0ztK5VcmSq+ad+n8R8IfqCcSLeICFvgKC3FViDHt+x6+VhrX1myPUaR+uji8ixZ60lVyuyvBlqN6r5p47xOp4tvSR3XDM/oxGpEzP8Hmd1t4Hf4+uayZ56jmMMAY//uYv9btXq7tBsd2PYrXtDK/Bu3+Zal0qztu0O1PMYzFP97He29lab9S0trOVn9vUPeQLE/OHWly9M3B8m6gu1W4qttayUM8xkF1ipZLiXW+RebpGxSD/TiXFSgdie6xaR/VF3G2SqhW1f5ebTU/b7HS9hb5CwL9B69AaJ+FqPIa//hcJkvdlgvZpjtZJjrZIlWy08dRss7o8wEIzTF0zQH4yrdXELYwxe4wF0QSXHwz/+4z8C8MEHH3S4EukWxhgSgSiJQJSzyUlqzTr5ennLcL/eGcbXy17kJrpaZLtYewD6rq29Tz8+7hb9MgPQgx5/O6zG/GHivjAxf2jb2IPnyVaLzOTmmS+strvJ9QfjTMfHGA73qQuGyAFouk2yteKT0ForUKiXnzrOYxySgShe46HUqFBqVL/wd4WhNRnH44Ab9gWIeIOEN4MusNnimmWtkiNbKz71+oQ/Sn8oTn8wQV8grqEHItKm5XdEjq9uWn5HXtLjO/Rex0P4BdYIbE0J/sWtvl7H0w6tMV94Xy4wE4EIXx48y4XUSe7nFpnNLbW7FUZ8Qabj40xGB9WFQ+QludYlXyu1A+tGtUC+VnpqfKWDIe6PkAxEN79ixHyhbTeTrLVUm3VKjQrFRoVSvboZcCuU6hXKzRqlRnVz8fXnzwJvMCQDUQY2W1v7grEXuhEmIiIispWuIo4hj3HweP0E6czSDCFvgIt9p3gtOcHD/DL3sosU6xU+WZvh842HTMVHOBUfVbdC2Td1t8G11bukyxmgFaqeRDbD4/z2eKvBsPnfk61mx37YfN2Tc+36ul3O33rtzqPYFiSf/x5PXmdpzeKYrRV3nSAp5gu3Q2sqECXmj+B5TvcqY1qz/ga9fvqIP7W/aV3KjSql+mbQ3Qy7xc2g6+KSCsTo3wyuqUCso5PTiYiISG9RkJWO8TlephPjTMXHWCyucjc7T7ZW5FbmEXey80xGB5lOjBP1hTpdqnSxQr3Mh8uf7dqdtheFvUFS7ZbWKAl/9EACpMc4RH2hXT+fj4esaLiAiIiIHBQFWek4xxjGo4OMRQZYq+SYyc6zXN7gQX6ZB/llRsJ9TCfG6AvEdWEsL2S1nOHn6VvU3QYxX5jLQ+cIevzYLZ1tLbbVpLl1m92xv7Vx27bNl2w54sm2J1u2vm77+dv72697+j3tzvPbHfu3vC7sDZAMRPEfgZ4M+pyKiIjIQVOQlSPDGMNAKMFAKEG+VmImu8BcMc1SaZ2l0joRb5Dx6CAT0UG10spzzeYWub52H4tlOJTiy0NnD3Q5GRER2T9/9md/1ukSROSI06zFcqRVmjVmc4s8yC9Tbdbb21OBKOORQcajAy+0zJH0Pte63Fi7z2x+CYAziXEupE6qlVBERESkC2jWYukJQY+f86mTnEueYKWSZa6QZrG4xka1NSPrp+v3GQylmIgOMhLu02Qyx1ytWedK+harlSwOhrcGzjAZG+p0WSIi8oL+9m//FoBvfetbHa5ERI4qBVnpCsYYhkJJhkJJGv1NlkvrzBVWSJczpMsbpMsbeIzDaLifieggA6EkjlrgjpV8rcSHy59RbFQIeHy8M3SevuDTs+2KiMjR98d//MeAgqyIPJuCrHQdr+NhPDrIeHSQarPOQnGVucIKG9U8c8UV5oor+B0fE9EBxqODJP1RdSvtcenSBldWbtFwm8T9Ed4dvvBCayuLiIiISHdRkJWuFvD4mIqPMhUfpVgvM1dYZa6YplivcC+3yL3cIhFfkIlIa5KoiCaJ6inWWu7lFvl0/T4Ao+F+vjT4mrqYi4iIiPQ4BVnpGRFfiHOpSc4mJ8jWCswVVpgvrlKsV7iVecStzCNSm+tqhryB9lfYGyDo8avVtsu41uWT1Xs8LCwDcDY5wbnkCf1/FBERETkGFGSl5xhjSAZiJAMxLvZNsVrOMFdYYbH0ZJKop14DBL0BQp4n4Tbk9RPyBjef+/Fq6ZYjo9qs8/Plz1mv5nCMw5cGzjAeHex0WSIiIiJySHRlLj3NMYahcIqhcIqG22S1nKHYqFLe+tWsUm3W28+p7n4un+NpteJ6trfmPv5erbqHI1cr8uHyZ5QaVYIeP+8OnycZiHW6LBER2Ud/+Zd/2ekSROSIU5CVY8PreBiJ9O+6r+m6lJs7Am6jSmkz6JYbNepuk3qtRI7SrucwGIJePyHP9oD7JPSqVfdVLRXX+GjlNk3rkvRHeXf4PEFN6iQi0nMmJyc7XYKIHHG6qhYBPI5D1AkRfcZkUNZaam7jSbh9Tqvu+vNadZ/qxqxW3S9ireVudp7PNh4AMB4Z4O2BM3g0qZOISE/667/+awB++7d/u8OViMhRpSArsgfGGAIeHwGPj2QguusxL9SqW3t2q25rbO72LszHuVW36bpcW73LXHEFgPOpE7yWmFDgFxHpYX/6p38KKMiKyLMdrytikQO0X626pc39z+JzvJvB1t/zrbqVRo2fpz9no5rHYxy+PHiW0Wd0DxcRERGR40NBVuSQ7F+rboN6rUGuVtz9fZ7Rqrs17HbDOquZaoEPlz+j0qwR8vh5d/giiUCk02WJiIiIyBGgICtyhOy9VbdCqVE7kFbdsC9I0OM/qH/iniwUV/l45Q5N65IKxHhn+HzHaxIRERGRo0NBVqSLbG/V3f2Y/WjVPREd4vX+KXyHPB7XWsvtzCNuZR4BMBkd4tLANB7jHGodIiIiInK0KciK9Ji9terWN8Pt0626uVqRh4U0K+Usbw+eYTCUPJS6G26Tq6t3WCiuAXCx7xTT8bGeGe8rIiJ79zd/8zedLkFEjjgFWZFjptWq6yfg8e/aqpuvlfh45Q6ZWoGfLH3KqdgIF/tOHei42nKjyofLn5GtFfEaD18ZOstwuO/A3k9ERI62gYGBTpcgIkfcgffXM8b8hTEmbYy5sWXb/2KM+dwY84kx5v8yxhxOk4+IPFfMH+afjV3ifPIEBsNsfonvzV9lrZI7kPfbqOT5/sI1srUiYW+Q98YuKcSKiBxz3/3ud/nud7/b6TJE5Ag7jIFn3wX+5Y5t/wC8Ya29BNwG/s0h1CEie+QYw9nUJL88dom4P0ypUeFHi9f5dP0+Tdfdt/eZK6T50dJ1qs06/cE4vzx2iZg/vG/nFxGR7qQgKyLPc+BB1lr7fWB9x7b/11rb2Hz6U2DioOsQkReXCER5b+wtXku0PqIz2QX+aeEqG9X8K53XWstn6w/4xcodXGs5GRvm6yOv4/f49qNsEREREelxR2Eq0P8G+Ptn7TTGfNsYc8UYc2VlZeUQyxIRAI9xuNB3kvdGLxH1hSjUy/xw4RM+33iAa1+8dbbhNvh5+nPuZOcwwJv9p7nUP42jmYlFREREZI86euVojPm3QAP4P551jLX2z621l621lwcHBw+vOBHZJhWM8Stjb3E6PoYFbmfm+P7CJ2SfsYTPbkr1Cj9YuM5SaR2f4+FrI68zFR/VzMQiIiIi8kI6NmuxMea/Br4J/Jq11naqDhHZO4/j4Y3+KUYjfXy8cpdcrcj3569xLjXJmcQEzhcE0rVKjp8vf07NrRP1hXh3+MIzlwgSEREREfkiHQmyxph/CfxPwK9Ya0udqEFEXl5/MMH7429zc32W2fwSn288ZKm0zpcGXtt1sqaH+WWurc5gsQyGklwePIfPo9W/RERkd3/3d3/X6RJE5Ig7jOV3/gr4CXDOGDNnjPlvgf8AxIB/MMZcNcb8bwddh4jsL6/j4dLANF8beZ2gx0+mWuCfFq4xk53ncScLay031u5zdfUuFsvp+ChfHb6oECsiIl8oHA4TDmsWexF5NtNNvXovX75sr1y50ukyRGSHutvgxtp9HhXSAPQH47zRN8VnGw9JlzcwGC71n+ZkfKTDlYqISDf4kz/5EwC+853vdLgSETlsxpiPrLWXn3ucgqyI7Jel0jrXVu9Sbdbb2/yOl8tD5xkIJTpYmYiIdJP3338fgO9973sdrUNEDt9eg6zWuxCRfTMS7uNXx7/EeGQAgJgvzHtjbynEioiIiMi+0kA1EdlXfo+Prwyd42xtkrAviEfrw4qIiIjIPlOQFZEDsdvsxSIiIiIi+0FNJSIiIiIiItJVumqyJ2PMCvCg03WIiIiIiIjIgThprR183kFdFWRFRERERERE1LVYREREREREuoqCrIiIiIiIiHQVBVkRERERERHpKgqyIiIiIiIi0lUUZEVERERERKSrKMiKiIiIiIhIV1GQFRERERERka6iICsiIiIiIiJdRUFWREREREREusr/D2+wMyBZCFlGAAAAAElFTkSuQmCC\n", "text/plain": [ "<Figure size 1152x1296 with 6 Axes>" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "# You may need to install htmllib5,lxml, and BeautifulSoup4. In your terminal/command prompt run:\n", "\n", "# conda install lxml\n", "# conda install html5lib\n", "# conda install BeautifulSoup4\n", "# Then restart Jupyter Notebook. (or use pip install if you aren't using the Anaconda Distribution)\n", "import numpy as np\n", "import pandas as pd\n", "import os.path\n", "import matplotlib.pyplot as plt\n", "from datetime import datetime, timedelta\n", "from dateutil.parser import parse\n", "from dateutil.relativedelta import relativedelta\n", "from pandas.tseries.offsets import *\n", "from pylab import text\n", "from mpl_toolkits.axes_grid.anchored_artists import AnchoredText\n", "import quandl\n", "\n", "\n", "# Quandl API key\n", "quandl.ApiConfig.api_key = \"UsYsv7dKGxHHQ5oURP4B\"\n", "\n", "# Some formatting\n", "pd.set_option('display.max_colwidth', -1)\n", "pd.set_option('display.max_seq_items', 2)\n", "\n", "# Only pull fresh PDUFA data\n", "three_weeks_ago = relativedelta(weeks=3)\n", "one_week_ahead = relativedelta(weeks=1)\n", "one_hour_ago = datetime.now() - timedelta(hours=1)\n", "if os.path.exists(\"history.csv\"):\n", " filetime = datetime.fromtimestamp(os.path.getctime(\"history.csv\"))\n", " if filetime < one_hour_ago:\n", " histdata = pd.read_html(\"https://www.biopharmcatalyst.com/calendars/historical-catalyst-calendar\")\n", " histdata[0].to_csv('history.csv',index=False)\n", "else:\n", " histdata = pd.read_html(\"https://www.biopharmcatalyst.com/calendars/historical-catalyst-calendar\")\n", " histdata[0].to_csv('history.csv',index=False)\n", "\n", "# Create dataframe\n", "df = pd.read_csv('history.csv').set_index('Ticker')\n", "df.index.name=None\n", "df[[\"Date\",\"Catalyst\"]] = df.Catalyst.str.extract('(?P<Date>[0-9]{2}\\/[0-9]{2}\\/[0-9]{4})(?P<Catalyst>.*)', expand=True)\n", "df['Date'] = pd.to_datetime(df['Date'])\n", "df[\"Past\"] = df[\"Date\"] - DateOffset(weeks=5)\n", "df[\"Future\"] = df[\"Date\"] + DateOffset(weeks=2)\n", "\n", "df\n", "# Set stock ticker\n", "stockpick=\"HALO\"\n", "dataset=str(f\"WIKI/{stockpick}\")\n", "# Set variables for plot creation\n", "length = len(df.loc[stockpick].index)\n", "count = 0\n", "fig, axes = plt.subplots(nrows=length, ncols=1,figsize=(16,length * 3))\n", "fig.subplots_adjust(hspace=0, wspace=0)\n", "allplots=[]\n", "\n", "# Combine all data together into list of dataframes, iterate through each part of the list, plot each frame.\n", "while (count < length):\n", " pasttime= df.loc[stockpick].iloc[count][\"Past\"]\n", " futuretime= df.loc[stockpick].iloc[count][\"Future\"]\n", " pdufa=df.loc[stockpick].iloc[count][\"Date\"]\n", " annotate = df.loc[stockpick].iloc[count][\"Date\"] + timedelta(days=1)\n", " stage = df.loc[stockpick].iloc[count][\"Stage\"]\n", " catalyst = df.loc[stockpick].iloc[count][\"Catalyst\"]\n", " drug = df.loc[stockpick].iloc[count][\"Drug\"]\n", " \n", " #Annotation\n", " tooltip = f\"stage:{stage} -{catalyst}\\n{drug}\"\n", " at = AnchoredText(tooltip,\n", " prop=dict(size=10), frameon=True,\n", " loc=2, \n", " )\n", " at.patch.set_boxstyle(\"round,pad=0.2,rounding_size=0.2\")\n", " axes[count].add_artist(at)\n", " axes[count].margins(0.0, 0.5)\n", " #Get quandl data\n", " mydata = quandl.get(dataset,start_date=pasttime,end_date=futuretime)\n", " allplots.append(mydata)\n", "# axes[count].annotate('local max', xy=(pdufa, allplots[count][\"Close\"].max()), xytext=(annotate, (allplots[count][\"Close\"].max() - allplots[count][\"Close\"].min()) * 0.9 + allplots[count][\"Close\"].min()),\n", "# arrowprops=dict(facecolor='black', shrink=0.05, width=1, headwidth=5),)\n", " # Set y limit for notes\n", " axes[count].set_ylim(allplots[count][\"Close\"].min() * .99 , (allplots[count][\"Close\"].max()-allplots[count][\"Close\"].min()) * 0.5 + allplots[count][\"Close\"].max())\n", " axes[count].hlines(allplots[count][\"Close\"].max() * 1.01, allplots[count].head(1).index, allplots[count].tail(1).index, linestyle=\"-\", lw=1, color='black')\n", " if count == 3:\n", " axes[count].set_facecolor((0.91, 0.91, 0.91)) \n", "\n", " axes[count].vlines(pdufa, allplots[count][\"Close\"].min() * .99, allplots[count][\"Close\"].max() * 1.01, linestyle=\"--\", color='black')\n", " axes[count].plot(allplots[count].index,allplots[count][\"Close\"],c=np.random.rand(3,), lw=2, label=pdufa) \n", " axes[count].axes.get_xaxis().set_visible(False) # remove x axis\n", " count = count + 1\n", "plt.show()" ] }, { "cell_type": "code", "execution_count": 3, "metadata": {}, "outputs": [ { "data": { "text/html": [ "<div>\n", "<style scoped>\n", " .dataframe tbody tr th:only-of-type {\n", " vertical-align: middle;\n", " }\n", "\n", " .dataframe tbody tr th {\n", " vertical-align: top;\n", " }\n", "\n", " .dataframe thead th {\n", " text-align: right;\n", " }\n", "</style>\n", "<table border=\"1\" class=\"dataframe\">\n", " <thead>\n", " <tr style=\"text-align: right;\">\n", " <th></th>\n", " <th>0</th>\n", " <th>1</th>\n", " <th>2</th>\n", " <th>3</th>\n", " <th>4</th>\n", " <th>5</th>\n", " <th>6</th>\n", " <th>7</th>\n", " </tr>\n", " </thead>\n", " <tbody>\n", " <tr>\n", " <th>0</th>\n", " <td>-0.420</td>\n", " <td>0.33</td>\n", " <td>0.14</td>\n", " <td>-0.11</td>\n", " <td>0.23</td>\n", " <td>0.08</td>\n", " <td>0.08</td>\n", " <td>-1.250</td>\n", " </tr>\n", " <tr>\n", " <th>1</th>\n", " <td>-0.090</td>\n", " <td>0.17</td>\n", " <td>0.59</td>\n", " <td>-0.39</td>\n", " <td>0.83</td>\n", " <td>0.08</td>\n", " <td>0.08</td>\n", " <td>-1.370</td>\n", " </tr>\n", " <tr>\n", " <th>2</th>\n", " <td>0.560</td>\n", " <td>0.16</td>\n", " <td>0.65</td>\n", " <td>-0.07</td>\n", " <td>0.78</td>\n", " <td>0.01</td>\n", " <td>0.01</td>\n", " <td>-1.410</td>\n", " </tr>\n", " <tr>\n", " <th>3</th>\n", " <td>0.770</td>\n", " <td>0.24</td>\n", " <td>0.08</td>\n", " <td>0.37</td>\n", " <td>0.86</td>\n", " <td>-0.15</td>\n", " <td>-0.15</td>\n", " <td>-1.320</td>\n", " </tr>\n", " <tr>\n", " <th>4</th>\n", " <td>0.680</td>\n", " <td>0.14</td>\n", " <td>0.40</td>\n", " <td>0.36</td>\n", " <td>1.32</td>\n", " <td>-0.29</td>\n", " <td>-0.29</td>\n", " <td>-1.560</td>\n", " </tr>\n", " <tr>\n", " <th>5</th>\n", " <td>0.350</td>\n", " <td>0.35</td>\n", " <td>0.30</td>\n", " <td>0.64</td>\n", " <td>1.55</td>\n", " <td>-0.30</td>\n", " <td>-0.30</td>\n", " <td>-1.750</td>\n", " </tr>\n", " <tr>\n", " <th>6</th>\n", " <td>0.220</td>\n", " <td>0.29</td>\n", " <td>0.03</td>\n", " <td>0.67</td>\n", " <td>1.42</td>\n", " <td>-0.51</td>\n", " <td>-0.51</td>\n", " <td>-2.000</td>\n", " </tr>\n", " <tr>\n", " <th>7</th>\n", " <td>0.110</td>\n", " <td>0.02</td>\n", " <td>-0.22</td>\n", " <td>0.61</td>\n", " <td>0.80</td>\n", " <td>-0.24</td>\n", " <td>-0.24</td>\n", " <td>-2.360</td>\n", " </tr>\n", " <tr>\n", " <th>8</th>\n", " <td>-0.110</td>\n", " <td>-0.30</td>\n", " <td>-0.25</td>\n", " <td>0.48</td>\n", " <td>1.17</td>\n", " <td>0.14</td>\n", " <td>0.14</td>\n", " <td>-1.920</td>\n", " </tr>\n", " <tr>\n", " <th>9</th>\n", " <td>0.210</td>\n", " <td>-0.25</td>\n", " <td>0.02</td>\n", " <td>1.15</td>\n", " <td>1.61</td>\n", " <td>0.15</td>\n", " <td>0.15</td>\n", " <td>-1.480</td>\n", " </tr>\n", " <tr>\n", " <th>10</th>\n", " <td>-0.270</td>\n", " <td>-0.02</td>\n", " <td>0.43</td>\n", " <td>0.85</td>\n", " <td>1.73</td>\n", " <td>0.44</td>\n", " <td>0.44</td>\n", " <td>-1.490</td>\n", " </tr>\n", " <tr>\n", " <th>11</th>\n", " <td>-0.240</td>\n", " <td>0.16</td>\n", " <td>0.11</td>\n", " <td>0.69</td>\n", " <td>1.47</td>\n", " <td>-0.38</td>\n", " <td>-0.38</td>\n", " <td>-1.380</td>\n", " </tr>\n", " <tr>\n", " <th>12</th>\n", " <td>0.000</td>\n", " <td>0.01</td>\n", " <td>0.08</td>\n", " <td>0.98</td>\n", " <td>1.27</td>\n", " <td>0.02</td>\n", " <td>0.02</td>\n", " <td>-1.450</td>\n", " </tr>\n", " <tr>\n", " <th>13</th>\n", " <td>0.370</td>\n", " <td>-0.27</td>\n", " <td>-0.45</td>\n", " <td>1.04</td>\n", " <td>1.82</td>\n", " <td>-1.23</td>\n", " <td>-1.23</td>\n", " <td>-1.320</td>\n", " </tr>\n", " <tr>\n", " <th>14</th>\n", " <td>0.250</td>\n", " <td>-0.23</td>\n", " <td>-1.01</td>\n", " <td>0.94</td>\n", " <td>2.64</td>\n", " <td>-1.35</td>\n", " <td>-1.35</td>\n", " <td>-1.260</td>\n", " </tr>\n", " <tr>\n", " <th>15</th>\n", " <td>0.010</td>\n", " <td>-0.28</td>\n", " <td>-0.67</td>\n", " <td>0.99</td>\n", " <td>2.50</td>\n", " <td>-1.39</td>\n", " <td>-1.39</td>\n", " <td>-1.310</td>\n", " </tr>\n", " <tr>\n", " <th>16</th>\n", " <td>-0.380</td>\n", " <td>0.03</td>\n", " <td>-0.92</td>\n", " <td>0.89</td>\n", " <td>2.37</td>\n", " <td>-1.30</td>\n", " <td>-1.30</td>\n", " <td>-0.960</td>\n", " </tr>\n", " <tr>\n", " <th>17</th>\n", " <td>-0.455</td>\n", " <td>-0.45</td>\n", " <td>-1.32</td>\n", " <td>0.45</td>\n", " <td>1.25</td>\n", " <td>-1.54</td>\n", " <td>-1.54</td>\n", " <td>-0.950</td>\n", " </tr>\n", " <tr>\n", " <th>18</th>\n", " <td>-0.320</td>\n", " <td>-0.53</td>\n", " <td>-1.29</td>\n", " <td>0.42</td>\n", " <td>1.45</td>\n", " <td>-1.73</td>\n", " <td>-1.73</td>\n", " <td>-1.110</td>\n", " </tr>\n", " <tr>\n", " <th>19</th>\n", " <td>0.380</td>\n", " <td>-0.43</td>\n", " <td>-1.35</td>\n", " <td>0.65</td>\n", " <td>1.42</td>\n", " <td>-1.98</td>\n", " <td>-1.98</td>\n", " <td>-0.720</td>\n", " </tr>\n", " <tr>\n", " <th>20</th>\n", " <td>0.825</td>\n", " <td>-0.68</td>\n", " <td>-1.24</td>\n", " <td>1.25</td>\n", " <td>1.49</td>\n", " <td>-2.34</td>\n", " <td>-2.34</td>\n", " <td>0.010</td>\n", " </tr>\n", " <tr>\n", " <th>21</th>\n", " <td>0.430</td>\n", " <td>-0.42</td>\n", " <td>-0.54</td>\n", " <td>1.20</td>\n", " <td>2.23</td>\n", " <td>-1.90</td>\n", " <td>-1.90</td>\n", " <td>0.160</td>\n", " </tr>\n", " <tr>\n", " <th>22</th>\n", " <td>0.070</td>\n", " <td>-0.28</td>\n", " <td>1.38</td>\n", " <td>1.28</td>\n", " <td>2.17</td>\n", " <td>-1.46</td>\n", " <td>-1.46</td>\n", " <td>0.430</td>\n", " </tr>\n", " <tr>\n", " <th>23</th>\n", " <td>-0.390</td>\n", " <td>-0.33</td>\n", " <td>2.15</td>\n", " <td>1.74</td>\n", " <td>2.25</td>\n", " <td>-1.47</td>\n", " <td>-1.47</td>\n", " <td>0.670</td>\n", " </tr>\n", " <tr>\n", " <th>24</th>\n", " <td>-4.650</td>\n", " <td>-0.74</td>\n", " <td>3.01</td>\n", " <td>1.97</td>\n", " <td>0.99</td>\n", " <td>-1.36</td>\n", " <td>-1.36</td>\n", " <td>0.730</td>\n", " </tr>\n", " <tr>\n", " <th>25</th>\n", " <td>-4.340</td>\n", " <td>-0.69</td>\n", " <td>1.66</td>\n", " <td>1.84</td>\n", " <td>0.92</td>\n", " <td>-1.43</td>\n", " <td>-1.43</td>\n", " <td>0.430</td>\n", " </tr>\n", " <tr>\n", " <th>26</th>\n", " <td>-4.130</td>\n", " <td>0.15</td>\n", " <td>0.68</td>\n", " <td>1.22</td>\n", " <td>0.95</td>\n", " <td>-1.30</td>\n", " <td>-1.30</td>\n", " <td>-0.170</td>\n", " </tr>\n", " <tr>\n", " <th>27</th>\n", " <td>-2.890</td>\n", " <td>0.15</td>\n", " <td>0.63</td>\n", " <td>1.59</td>\n", " <td>1.04</td>\n", " <td>-1.24</td>\n", " <td>-1.24</td>\n", " <td>-0.610</td>\n", " </tr>\n", " <tr>\n", " <th>28</th>\n", " <td>-2.970</td>\n", " <td>0.07</td>\n", " <td>0.16</td>\n", " <td>2.03</td>\n", " <td>0.86</td>\n", " <td>-1.29</td>\n", " <td>-1.29</td>\n", " <td>-1.185</td>\n", " </tr>\n", " <tr>\n", " <th>29</th>\n", " <td>-3.060</td>\n", " <td>-0.10</td>\n", " <td>-0.34</td>\n", " <td>2.15</td>\n", " <td>0.49</td>\n", " <td>-0.94</td>\n", " <td>-0.94</td>\n", " <td>-1.340</td>\n", " </tr>\n", " <tr>\n", " <th>...</th>\n", " <td>...</td>\n", " <td>...</td>\n", " <td>...</td>\n", " <td>...</td>\n", " <td>...</td>\n", " <td>...</td>\n", " <td>...</td>\n", " <td>...</td>\n", " </tr>\n", " <tr>\n", " <th>565</th>\n", " <td>NaN</td>\n", " <td>NaN</td>\n", " <td>NaN</td>\n", " <td>NaN</td>\n", " <td>-0.36</td>\n", " <td>NaN</td>\n", " <td>NaN</td>\n", " <td>NaN</td>\n", " </tr>\n", " <tr>\n", " <th>566</th>\n", " <td>NaN</td>\n", " <td>NaN</td>\n", " <td>NaN</td>\n", " <td>NaN</td>\n", " <td>-0.47</td>\n", " <td>NaN</td>\n", " <td>NaN</td>\n", " <td>NaN</td>\n", " </tr>\n", " <tr>\n", " <th>567</th>\n", " <td>NaN</td>\n", " <td>NaN</td>\n", " <td>NaN</td>\n", " <td>NaN</td>\n", " <td>0.09</td>\n", " <td>NaN</td>\n", " <td>NaN</td>\n", " <td>NaN</td>\n", " </tr>\n", " <tr>\n", " <th>568</th>\n", " <td>NaN</td>\n", " <td>NaN</td>\n", " <td>NaN</td>\n", " <td>NaN</td>\n", " <td>-0.09</td>\n", " <td>NaN</td>\n", " <td>NaN</td>\n", " <td>NaN</td>\n", " </tr>\n", " <tr>\n", " <th>569</th>\n", " <td>NaN</td>\n", " <td>NaN</td>\n", " <td>NaN</td>\n", " <td>NaN</td>\n", " <td>-0.46</td>\n", " <td>NaN</td>\n", " <td>NaN</td>\n", " <td>NaN</td>\n", " </tr>\n", " <tr>\n", " <th>570</th>\n", " <td>NaN</td>\n", " <td>NaN</td>\n", " <td>NaN</td>\n", " <td>NaN</td>\n", " <td>-0.35</td>\n", " <td>NaN</td>\n", " <td>NaN</td>\n", " <td>NaN</td>\n", " </tr>\n", " <tr>\n", " <th>571</th>\n", " <td>NaN</td>\n", " <td>NaN</td>\n", " <td>NaN</td>\n", " <td>NaN</td>\n", " <td>-0.32</td>\n", " <td>NaN</td>\n", " <td>NaN</td>\n", " <td>NaN</td>\n", " </tr>\n", " <tr>\n", " <th>572</th>\n", " <td>NaN</td>\n", " <td>NaN</td>\n", " <td>NaN</td>\n", " <td>NaN</td>\n", " <td>-0.39</td>\n", " <td>NaN</td>\n", " <td>NaN</td>\n", " <td>NaN</td>\n", " </tr>\n", " <tr>\n", " <th>573</th>\n", " <td>NaN</td>\n", " <td>NaN</td>\n", " <td>NaN</td>\n", " <td>NaN</td>\n", " <td>-0.50</td>\n", " <td>NaN</td>\n", " <td>NaN</td>\n", " <td>NaN</td>\n", " </tr>\n", " <tr>\n", " <th>574</th>\n", " <td>NaN</td>\n", " <td>NaN</td>\n", " <td>NaN</td>\n", " <td>NaN</td>\n", " <td>-0.18</td>\n", " <td>NaN</td>\n", " <td>NaN</td>\n", " <td>NaN</td>\n", " </tr>\n", " <tr>\n", " <th>575</th>\n", " <td>NaN</td>\n", " <td>NaN</td>\n", " <td>NaN</td>\n", " <td>NaN</td>\n", " <td>-0.55</td>\n", " <td>NaN</td>\n", " <td>NaN</td>\n", " <td>NaN</td>\n", " </tr>\n", " <tr>\n", " <th>576</th>\n", " <td>NaN</td>\n", " <td>NaN</td>\n", " <td>NaN</td>\n", " <td>NaN</td>\n", " <td>-0.44</td>\n", " <td>NaN</td>\n", " <td>NaN</td>\n", " <td>NaN</td>\n", " </tr>\n", " <tr>\n", " <th>577</th>\n", " <td>NaN</td>\n", " <td>NaN</td>\n", " <td>NaN</td>\n", " <td>NaN</td>\n", " <td>-0.41</td>\n", " <td>NaN</td>\n", " <td>NaN</td>\n", " <td>NaN</td>\n", " </tr>\n", " <tr>\n", " <th>578</th>\n", " <td>NaN</td>\n", " <td>NaN</td>\n", " <td>NaN</td>\n", " <td>NaN</td>\n", " <td>-0.48</td>\n", " <td>NaN</td>\n", " <td>NaN</td>\n", " <td>NaN</td>\n", " </tr>\n", " <tr>\n", " <th>579</th>\n", " <td>NaN</td>\n", " <td>NaN</td>\n", " <td>NaN</td>\n", " <td>NaN</td>\n", " <td>-0.59</td>\n", " <td>NaN</td>\n", " <td>NaN</td>\n", " <td>NaN</td>\n", " </tr>\n", " <tr>\n", " <th>580</th>\n", " <td>NaN</td>\n", " <td>NaN</td>\n", " <td>NaN</td>\n", " <td>NaN</td>\n", " <td>-0.37</td>\n", " <td>NaN</td>\n", " <td>NaN</td>\n", " <td>NaN</td>\n", " </tr>\n", " <tr>\n", " <th>581</th>\n", " <td>NaN</td>\n", " <td>NaN</td>\n", " <td>NaN</td>\n", " <td>NaN</td>\n", " <td>-0.26</td>\n", " <td>NaN</td>\n", " <td>NaN</td>\n", " <td>NaN</td>\n", " </tr>\n", " <tr>\n", " <th>582</th>\n", " <td>NaN</td>\n", " <td>NaN</td>\n", " <td>NaN</td>\n", " <td>NaN</td>\n", " <td>-0.23</td>\n", " <td>NaN</td>\n", " <td>NaN</td>\n", " <td>NaN</td>\n", " </tr>\n", " <tr>\n", " <th>583</th>\n", " <td>NaN</td>\n", " <td>NaN</td>\n", " <td>NaN</td>\n", " <td>NaN</td>\n", " <td>-0.30</td>\n", " <td>NaN</td>\n", " <td>NaN</td>\n", " <td>NaN</td>\n", " </tr>\n", " <tr>\n", " <th>584</th>\n", " <td>NaN</td>\n", " <td>NaN</td>\n", " <td>NaN</td>\n", " <td>NaN</td>\n", " <td>-0.41</td>\n", " <td>NaN</td>\n", " <td>NaN</td>\n", " <td>NaN</td>\n", " </tr>\n", " <tr>\n", " <th>585</th>\n", " <td>NaN</td>\n", " <td>NaN</td>\n", " <td>NaN</td>\n", " <td>NaN</td>\n", " <td>0.11</td>\n", " <td>NaN</td>\n", " <td>NaN</td>\n", " <td>NaN</td>\n", " </tr>\n", " <tr>\n", " <th>586</th>\n", " <td>NaN</td>\n", " <td>NaN</td>\n", " <td>NaN</td>\n", " <td>NaN</td>\n", " <td>0.14</td>\n", " <td>NaN</td>\n", " <td>NaN</td>\n", " <td>NaN</td>\n", " </tr>\n", " <tr>\n", " <th>587</th>\n", " <td>NaN</td>\n", " <td>NaN</td>\n", " <td>NaN</td>\n", " <td>NaN</td>\n", " <td>0.07</td>\n", " <td>NaN</td>\n", " <td>NaN</td>\n", " <td>NaN</td>\n", " </tr>\n", " <tr>\n", " <th>588</th>\n", " <td>NaN</td>\n", " <td>NaN</td>\n", " <td>NaN</td>\n", " <td>NaN</td>\n", " <td>-0.04</td>\n", " <td>NaN</td>\n", " <td>NaN</td>\n", " <td>NaN</td>\n", " </tr>\n", " <tr>\n", " <th>589</th>\n", " <td>NaN</td>\n", " <td>NaN</td>\n", " <td>NaN</td>\n", " <td>NaN</td>\n", " <td>0.03</td>\n", " <td>NaN</td>\n", " <td>NaN</td>\n", " <td>NaN</td>\n", " </tr>\n", " <tr>\n", " <th>590</th>\n", " <td>NaN</td>\n", " <td>NaN</td>\n", " <td>NaN</td>\n", " <td>NaN</td>\n", " <td>-0.04</td>\n", " <td>NaN</td>\n", " <td>NaN</td>\n", " <td>NaN</td>\n", " </tr>\n", " <tr>\n", " <th>591</th>\n", " <td>NaN</td>\n", " <td>NaN</td>\n", " <td>NaN</td>\n", " <td>NaN</td>\n", " <td>-0.15</td>\n", " <td>NaN</td>\n", " <td>NaN</td>\n", " <td>NaN</td>\n", " </tr>\n", " <tr>\n", " <th>592</th>\n", " <td>NaN</td>\n", " <td>NaN</td>\n", " <td>NaN</td>\n", " <td>NaN</td>\n", " <td>-0.07</td>\n", " <td>NaN</td>\n", " <td>NaN</td>\n", " <td>NaN</td>\n", " </tr>\n", " <tr>\n", " <th>593</th>\n", " <td>NaN</td>\n", " <td>NaN</td>\n", " <td>NaN</td>\n", " <td>NaN</td>\n", " <td>-0.18</td>\n", " <td>NaN</td>\n", " <td>NaN</td>\n", " <td>NaN</td>\n", " </tr>\n", " <tr>\n", " <th>594</th>\n", " <td>NaN</td>\n", " <td>NaN</td>\n", " <td>NaN</td>\n", " <td>NaN</td>\n", " <td>-0.11</td>\n", " <td>NaN</td>\n", " <td>NaN</td>\n", " <td>NaN</td>\n", " </tr>\n", " </tbody>\n", "</table>\n", "<p>595 rows × 8 columns</p>\n", "</div>" ], "text/plain": [ " 0 1 2 3 4 5 6 7\n", "0 -0.420 0.33 0.14 -0.11 0.23 0.08 0.08 -1.250\n", "1 -0.090 0.17 0.59 -0.39 0.83 0.08 0.08 -1.370\n", "2 0.560 0.16 0.65 -0.07 0.78 0.01 0.01 -1.410\n", "3 0.770 0.24 0.08 0.37 0.86 -0.15 -0.15 -1.320\n", "4 0.680 0.14 0.40 0.36 1.32 -0.29 -0.29 -1.560\n", "5 0.350 0.35 0.30 0.64 1.55 -0.30 -0.30 -1.750\n", "6 0.220 0.29 0.03 0.67 1.42 -0.51 -0.51 -2.000\n", "7 0.110 0.02 -0.22 0.61 0.80 -0.24 -0.24 -2.360\n", "8 -0.110 -0.30 -0.25 0.48 1.17 0.14 0.14 -1.920\n", "9 0.210 -0.25 0.02 1.15 1.61 0.15 0.15 -1.480\n", "10 -0.270 -0.02 0.43 0.85 1.73 0.44 0.44 -1.490\n", "11 -0.240 0.16 0.11 0.69 1.47 -0.38 -0.38 -1.380\n", "12 0.000 0.01 0.08 0.98 1.27 0.02 0.02 -1.450\n", "13 0.370 -0.27 -0.45 1.04 1.82 -1.23 -1.23 -1.320\n", "14 0.250 -0.23 -1.01 0.94 2.64 -1.35 -1.35 -1.260\n", "15 0.010 -0.28 -0.67 0.99 2.50 -1.39 -1.39 -1.310\n", "16 -0.380 0.03 -0.92 0.89 2.37 -1.30 -1.30 -0.960\n", "17 -0.455 -0.45 -1.32 0.45 1.25 -1.54 -1.54 -0.950\n", "18 -0.320 -0.53 -1.29 0.42 1.45 -1.73 -1.73 -1.110\n", "19 0.380 -0.43 -1.35 0.65 1.42 -1.98 -1.98 -0.720\n", "20 0.825 -0.68 -1.24 1.25 1.49 -2.34 -2.34 0.010\n", "21 0.430 -0.42 -0.54 1.20 2.23 -1.90 -1.90 0.160\n", "22 0.070 -0.28 1.38 1.28 2.17 -1.46 -1.46 0.430\n", "23 -0.390 -0.33 2.15 1.74 2.25 -1.47 -1.47 0.670\n", "24 -4.650 -0.74 3.01 1.97 0.99 -1.36 -1.36 0.730\n", "25 -4.340 -0.69 1.66 1.84 0.92 -1.43 -1.43 0.430\n", "26 -4.130 0.15 0.68 1.22 0.95 -1.30 -1.30 -0.170\n", "27 -2.890 0.15 0.63 1.59 1.04 -1.24 -1.24 -0.610\n", "28 -2.970 0.07 0.16 2.03 0.86 -1.29 -1.29 -1.185\n", "29 -3.060 -0.10 -0.34 2.15 0.49 -0.94 -0.94 -1.340\n", ".. ... ... ... ... ... ... ... ...\n", "565 NaN NaN NaN NaN -0.36 NaN NaN NaN \n", "566 NaN NaN NaN NaN -0.47 NaN NaN NaN \n", "567 NaN NaN NaN NaN 0.09 NaN NaN NaN \n", "568 NaN NaN NaN NaN -0.09 NaN NaN NaN \n", "569 NaN NaN NaN NaN -0.46 NaN NaN NaN \n", "570 NaN NaN NaN NaN -0.35 NaN NaN NaN \n", "571 NaN NaN NaN NaN -0.32 NaN NaN NaN \n", "572 NaN NaN NaN NaN -0.39 NaN NaN NaN \n", "573 NaN NaN NaN NaN -0.50 NaN NaN NaN \n", "574 NaN NaN NaN NaN -0.18 NaN NaN NaN \n", "575 NaN NaN NaN NaN -0.55 NaN NaN NaN \n", "576 NaN NaN NaN NaN -0.44 NaN NaN NaN \n", "577 NaN NaN NaN NaN -0.41 NaN NaN NaN \n", "578 NaN NaN NaN NaN -0.48 NaN NaN NaN \n", "579 NaN NaN NaN NaN -0.59 NaN NaN NaN \n", "580 NaN NaN NaN NaN -0.37 NaN NaN NaN \n", "581 NaN NaN NaN NaN -0.26 NaN NaN NaN \n", "582 NaN NaN NaN NaN -0.23 NaN NaN NaN \n", "583 NaN NaN NaN NaN -0.30 NaN NaN NaN \n", "584 NaN NaN NaN NaN -0.41 NaN NaN NaN \n", "585 NaN NaN NaN NaN 0.11 NaN NaN NaN \n", "586 NaN NaN NaN NaN 0.14 NaN NaN NaN \n", "587 NaN NaN NaN NaN 0.07 NaN NaN NaN \n", "588 NaN NaN NaN NaN -0.04 NaN NaN NaN \n", "589 NaN NaN NaN NaN 0.03 NaN NaN NaN \n", "590 NaN NaN NaN NaN -0.04 NaN NaN NaN \n", "591 NaN NaN NaN NaN -0.15 NaN NaN NaN \n", "592 NaN NaN NaN NaN -0.07 NaN NaN NaN \n", "593 NaN NaN NaN NaN -0.18 NaN NaN NaN \n", "594 NaN NaN NaN NaN -0.11 NaN NaN NaN \n", "\n", "[595 rows x 8 columns]" ] }, "execution_count": 3, "metadata": {}, "output_type": "execute_result" } ], "source": [ "# You may need to install htmllib5,lxml, and BeautifulSoup4. In your terminal/command prompt run:\n", "\n", "# conda install lxml\n", "# conda install html5lib\n", "# conda install BeautifulSoup4\n", "# Then restart Jupyter Notebook. (or use pip install if you aren't using the Anaconda Distribution)\n", "import numpy as np\n", "import pandas as pd\n", "import os.path\n", "import matplotlib.pyplot as plt\n", "from datetime import datetime, timedelta\n", "from dateutil.parser import parse\n", "from dateutil.relativedelta import relativedelta\n", "from pandas.tseries.offsets import *\n", "from pylab import text\n", "from mpl_toolkits.axes_grid.anchored_artists import AnchoredText\n", "import quandl\n", "\n", "\n", "# Quandl API key\n", "quandl.ApiConfig.api_key = \"UsYsv7dKGxHHQ5oURP4B\"\n", "\n", "# Some formatting\n", "pd.set_option('display.max_colwidth', -1)\n", "pd.set_option('display.max_seq_items', 2)\n", "\n", "# Only pull fresh PDUFA data\n", "three_weeks_ago = relativedelta(weeks=3)\n", "one_week_ahead = relativedelta(weeks=1)\n", "one_hour_ago = datetime.now() - timedelta(hours=1)\n", "if os.path.exists(\"history.csv\"):\n", " filetime = datetime.fromtimestamp(os.path.getctime(\"history.csv\"))\n", " if filetime < one_hour_ago:\n", " histdata = pd.read_html(\"https://www.biopharmcatalyst.com/calendars/historical-catalyst-calendar\")\n", " histdata[0].to_csv('history.csv',index=False)\n", "else:\n", " histdata = pd.read_html(\"https://www.biopharmcatalyst.com/calendars/historical-catalyst-calendar\")\n", " histdata[0].to_csv('history.csv',index=False)\n", "\n", "# Create dataframe\n", "df = pd.read_csv('history.csv').set_index('Ticker')\n", "df.index.name=None\n", "df[[\"Date\",\"Catalyst\"]] = df.Catalyst.str.extract('(?P<Date>[0-9]{2}\\/[0-9]{2}\\/[0-9]{4})(?P<Catalyst>.*)', expand=True)\n", "df['Date'] = pd.to_datetime(df['Date'])\n", "df[\"Past\"] = df[\"Date\"] - DateOffset(weeks=5)\n", "df[\"Future\"] = df[\"Date\"] + DateOffset(weeks=2)\n", "\n", "df\n", "# Set stock ticker\n", "stockpick=\"HALO\"\n", "dataset=str(f\"WIKI/{stockpick}\")\n", "# Set variables for plot creation\n", "length = len(df.loc[stockpick].index)\n", "count = 0\n", "allplots=[]\n", "e = []\n", "# Combine all data together into list of dataframes, iterate through each part of the list, plot each frame.\n", "while (count < length):\n", " pasttime= df.loc[stockpick].iloc[count][\"Past\"]\n", " futuretime= df.loc[stockpick].iloc[count][\"Future\"]\n", " pdufa=df.loc[stockpick].iloc[count][\"Date\"]\n", " annotate = df.loc[stockpick].iloc[count][\"Date\"] + timedelta(days=1)\n", " stage = df.loc[stockpick].iloc[count][\"Stage\"]\n", " catalyst = df.loc[stockpick].iloc[count][\"Catalyst\"]\n", " drug = df.loc[stockpick].iloc[count][\"Drug\"]\n", " d = []\n", " #Annotation\n", " #Get quandl data\n", " mydata = quandl.get(dataset,start_date=pasttime,end_date=futuretime)\n", " allplots.append(mydata)\n", " i=0\n", "# print(len(allplots[count].index))\n", " total = len(allplots[count].index) - 1\n", " while (i < total):\n", " n = i + 1\n", " while (n < total): # see 14 - 8 = 1.0 !!!\n", " rangevalue=(allplots[count].iloc[n][\"Close\"] - allplots[count].iloc[i][\"Close\"])\n", " d.append(rangevalue)\n", " range = f\"{n} - {i}\"\n", " n=n + 1\n", " i = i + 1\n", " e.append(d)\n", " count = count + 1\n", "#need to add row names to see what the ranges are specifically.\n", "finaldf=pd.DataFrame(e).transpose()\n", "finaldf\n" ] }, { "cell_type": "code", "execution_count": 45, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "<class 'pandas._libs.tslibs.timestamps.Timestamp'>\n", "<class 'pandas._libs.tslibs.timestamps.Timestamp'>\n", "<class 'pandas._libs.tslibs.timestamps.Timestamp'>\n", "<class 'pandas._libs.tslibs.timestamps.Timestamp'>\n", "<class 'pandas._libs.tslibs.timestamps.Timestamp'>\n", "<class 'pandas._libs.tslibs.timestamps.Timestamp'>\n", "<class 'pandas._libs.tslibs.timestamps.Timestamp'>\n" ] }, { "data": { "text/html": [ "<div>\n", "<style scoped>\n", " .dataframe tbody tr th:only-of-type {\n", " vertical-align: middle;\n", " }\n", "\n", " .dataframe tbody tr th {\n", " vertical-align: top;\n", " }\n", "\n", " .dataframe thead th {\n", " text-align: right;\n", " }\n", "</style>\n", "<table border=\"1\" class=\"dataframe\">\n", " <thead>\n", " <tr style=\"text-align: right;\">\n", " <th></th>\n", " <th>Date</th>\n", " <th>Open</th>\n", " <th>High</th>\n", " <th>Low</th>\n", " <th>Close</th>\n", " <th>Volume</th>\n", " <th>Ex-Dividend</th>\n", " <th>Split Ratio</th>\n", " <th>Adj. Open</th>\n", " <th>Adj. High</th>\n", " <th>Adj. Low</th>\n", " <th>Adj. Close</th>\n", " <th>Adj. Volume</th>\n", " <th>PDUFA</th>\n", " </tr>\n", " </thead>\n", " <tbody>\n", " <tr>\n", " <th>0</th>\n", " <td>2012-07-11</td>\n", " <td>9.06</td>\n", " <td>9.0600</td>\n", " <td>8.7600</td>\n", " <td>8.840</td>\n", " <td>697000.0</td>\n", " <td>0.0</td>\n", " <td>1.0</td>\n", " <td>9.06</td>\n", " <td>9.0600</td>\n", " <td>8.7600</td>\n", " <td>8.840</td>\n", " <td>697000.0</td>\n", " <td>False</td>\n", " </tr>\n", " <tr>\n", " <th>1</th>\n", " <td>2012-07-12</td>\n", " <td>8.80</td>\n", " <td>9.1600</td>\n", " <td>8.5600</td>\n", " <td>9.160</td>\n", " <td>867200.0</td>\n", " <td>0.0</td>\n", " <td>1.0</td>\n", " <td>8.80</td>\n", " <td>9.1600</td>\n", " <td>8.5600</td>\n", " <td>9.160</td>\n", " <td>867200.0</td>\n", " <td>False</td>\n", " </tr>\n", " <tr>\n", " <th>2</th>\n", " <td>2012-07-13</td>\n", " <td>8.86</td>\n", " <td>9.0200</td>\n", " <td>8.6300</td>\n", " <td>8.680</td>\n", " <td>858800.0</td>\n", " <td>0.0</td>\n", " <td>1.0</td>\n", " <td>8.86</td>\n", " <td>9.0200</td>\n", " <td>8.6300</td>\n", " <td>8.680</td>\n", " <td>858800.0</td>\n", " <td>False</td>\n", " </tr>\n", " <tr>\n", " <th>3</th>\n", " <td>2012-07-16</td>\n", " <td>8.69</td>\n", " <td>8.8100</td>\n", " <td>8.4200</td>\n", " <td>8.710</td>\n", " <td>459200.0</td>\n", " <td>0.0</td>\n", " <td>1.0</td>\n", " <td>8.69</td>\n", " <td>8.8100</td>\n", " <td>8.4200</td>\n", " <td>8.710</td>\n", " <td>459200.0</td>\n", " <td>False</td>\n", " </tr>\n", " <tr>\n", " <th>4</th>\n", " <td>2012-07-17</td>\n", " <td>8.79</td>\n", " <td>9.0100</td>\n", " <td>8.6800</td>\n", " <td>8.950</td>\n", " <td>859100.0</td>\n", " <td>0.0</td>\n", " <td>1.0</td>\n", " <td>8.79</td>\n", " <td>9.0100</td>\n", " <td>8.6800</td>\n", " <td>8.950</td>\n", " <td>859100.0</td>\n", " <td>False</td>\n", " </tr>\n", " <tr>\n", " <th>5</th>\n", " <td>2012-07-18</td>\n", " <td>8.92</td>\n", " <td>9.3450</td>\n", " <td>8.9200</td>\n", " <td>9.320</td>\n", " <td>634700.0</td>\n", " <td>0.0</td>\n", " <td>1.0</td>\n", " <td>8.92</td>\n", " <td>9.3450</td>\n", " <td>8.9200</td>\n", " <td>9.320</td>\n", " <td>634700.0</td>\n", " <td>False</td>\n", " </tr>\n", " <tr>\n", " <th>6</th>\n", " <td>2012-07-19</td>\n", " <td>9.40</td>\n", " <td>9.5400</td>\n", " <td>9.1800</td>\n", " <td>9.200</td>\n", " <td>441500.0</td>\n", " <td>0.0</td>\n", " <td>1.0</td>\n", " <td>9.40</td>\n", " <td>9.5400</td>\n", " <td>9.1800</td>\n", " <td>9.200</td>\n", " <td>441500.0</td>\n", " <td>False</td>\n", " </tr>\n", " <tr>\n", " <th>7</th>\n", " <td>2012-07-20</td>\n", " <td>9.15</td>\n", " <td>9.1801</td>\n", " <td>8.8901</td>\n", " <td>8.960</td>\n", " <td>627600.0</td>\n", " <td>0.0</td>\n", " <td>1.0</td>\n", " <td>9.15</td>\n", " <td>9.1801</td>\n", " <td>8.8901</td>\n", " <td>8.960</td>\n", " <td>627600.0</td>\n", " <td>False</td>\n", " </tr>\n", " <tr>\n", " <th>8</th>\n", " <td>2012-07-23</td>\n", " <td>8.72</td>\n", " <td>8.7300</td>\n", " <td>8.4000</td>\n", " <td>8.570</td>\n", " <td>692000.0</td>\n", " <td>0.0</td>\n", " <td>1.0</td>\n", " <td>8.72</td>\n", " <td>8.7300</td>\n", " <td>8.4000</td>\n", " <td>8.570</td>\n", " <td>692000.0</td>\n", " <td>False</td>\n", " </tr>\n", " <tr>\n", " <th>9</th>\n", " <td>2012-07-24</td>\n", " <td>8.64</td>\n", " <td>8.6400</td>\n", " <td>8.4000</td>\n", " <td>8.495</td>\n", " <td>553600.0</td>\n", " <td>0.0</td>\n", " <td>1.0</td>\n", " <td>8.64</td>\n", " <td>8.6400</td>\n", " <td>8.4000</td>\n", " <td>8.495</td>\n", " <td>553600.0</td>\n", " <td>False</td>\n", " </tr>\n", " <tr>\n", " <th>10</th>\n", " <td>2012-07-25</td>\n", " <td>8.60</td>\n", " <td>8.8600</td>\n", " <td>8.5206</td>\n", " <td>8.630</td>\n", " <td>302700.0</td>\n", " <td>0.0</td>\n", " <td>1.0</td>\n", " <td>8.60</td>\n", " <td>8.8600</td>\n", " <td>8.5206</td>\n", " <td>8.630</td>\n", " <td>302700.0</td>\n", " <td>False</td>\n", " </tr>\n", " <tr>\n", " <th>11</th>\n", " <td>2012-07-26</td>\n", " <td>8.80</td>\n", " <td>9.3800</td>\n", " <td>8.8000</td>\n", " <td>9.330</td>\n", " <td>743000.0</td>\n", " <td>0.0</td>\n", " <td>1.0</td>\n", " <td>8.80</td>\n", " <td>9.3800</td>\n", " <td>8.8000</td>\n", " <td>9.330</td>\n", " <td>743000.0</td>\n", " <td>False</td>\n", " </tr>\n", " <tr>\n", " <th>12</th>\n", " <td>2012-07-27</td>\n", " <td>9.35</td>\n", " <td>9.9200</td>\n", " <td>9.2750</td>\n", " <td>9.775</td>\n", " <td>737400.0</td>\n", " <td>0.0</td>\n", " <td>1.0</td>\n", " <td>9.35</td>\n", " <td>9.9200</td>\n", " <td>9.2750</td>\n", " <td>9.775</td>\n", " <td>737400.0</td>\n", " <td>False</td>\n", " </tr>\n", " <tr>\n", " <th>13</th>\n", " <td>2012-07-30</td>\n", " <td>9.77</td>\n", " <td>9.7900</td>\n", " <td>9.2400</td>\n", " <td>9.380</td>\n", " <td>397700.0</td>\n", " <td>0.0</td>\n", " <td>1.0</td>\n", " <td>9.77</td>\n", " <td>9.7900</td>\n", " <td>9.2400</td>\n", " <td>9.380</td>\n", " <td>397700.0</td>\n", " <td>False</td>\n", " </tr>\n", " <tr>\n", " <th>14</th>\n", " <td>2012-07-31</td>\n", " <td>9.32</td>\n", " <td>9.4500</td>\n", " <td>8.9900</td>\n", " <td>9.020</td>\n", " <td>451100.0</td>\n", " <td>0.0</td>\n", " <td>1.0</td>\n", " <td>9.32</td>\n", " <td>9.4500</td>\n", " <td>8.9900</td>\n", " <td>9.020</td>\n", " <td>451100.0</td>\n", " <td>False</td>\n", " </tr>\n", " <tr>\n", " <th>15</th>\n", " <td>2012-08-01</td>\n", " <td>9.10</td>\n", " <td>9.1000</td>\n", " <td>8.5500</td>\n", " <td>8.560</td>\n", " <td>1390500.0</td>\n", " <td>0.0</td>\n", " <td>1.0</td>\n", " <td>9.10</td>\n", " <td>9.1000</td>\n", " <td>8.5500</td>\n", " <td>8.560</td>\n", " <td>1390500.0</td>\n", " <td>True</td>\n", " </tr>\n", " <tr>\n", " <th>16</th>\n", " <td>2012-08-02</td>\n", " <td>3.91</td>\n", " <td>4.7900</td>\n", " <td>3.8600</td>\n", " <td>4.300</td>\n", " <td>10958600.0</td>\n", " <td>0.0</td>\n", " <td>1.0</td>\n", " <td>3.91</td>\n", " <td>4.7900</td>\n", " <td>3.8600</td>\n", " <td>4.300</td>\n", " <td>10958600.0</td>\n", " <td>False</td>\n", " </tr>\n", " <tr>\n", " <th>17</th>\n", " <td>2012-08-03</td>\n", " <td>4.57</td>\n", " <td>5.0500</td>\n", " <td>4.5000</td>\n", " <td>4.610</td>\n", " <td>3767900.0</td>\n", " <td>0.0</td>\n", " <td>1.0</td>\n", " <td>4.57</td>\n", " <td>5.0500</td>\n", " <td>4.5000</td>\n", " <td>4.610</td>\n", " <td>3767900.0</td>\n", " <td>False</td>\n", " </tr>\n", " <tr>\n", " <th>18</th>\n", " <td>2012-08-06</td>\n", " <td>4.69</td>\n", " <td>5.0100</td>\n", " <td>4.6500</td>\n", " <td>4.820</td>\n", " <td>2346800.0</td>\n", " <td>0.0</td>\n", " <td>1.0</td>\n", " <td>4.69</td>\n", " <td>5.0100</td>\n", " <td>4.6500</td>\n", " <td>4.820</td>\n", " <td>2346800.0</td>\n", " <td>False</td>\n", " </tr>\n", " <tr>\n", " <th>19</th>\n", " <td>2012-08-07</td>\n", " <td>5.02</td>\n", " <td>6.1280</td>\n", " <td>4.8500</td>\n", " <td>6.060</td>\n", " <td>4417200.0</td>\n", " <td>0.0</td>\n", " <td>1.0</td>\n", " <td>5.02</td>\n", " <td>6.1280</td>\n", " <td>4.8500</td>\n", " <td>6.060</td>\n", " <td>4417200.0</td>\n", " <td>False</td>\n", " </tr>\n", " <tr>\n", " <th>20</th>\n", " <td>2012-08-08</td>\n", " <td>5.98</td>\n", " <td>6.0500</td>\n", " <td>5.7900</td>\n", " <td>5.980</td>\n", " <td>2933200.0</td>\n", " <td>0.0</td>\n", " <td>1.0</td>\n", " <td>5.98</td>\n", " <td>6.0500</td>\n", " <td>5.7900</td>\n", " <td>5.980</td>\n", " <td>2933200.0</td>\n", " <td>False</td>\n", " </tr>\n", " </tbody>\n", "</table>\n", "</div>" ], "text/plain": [ " Date Open High Low Close Volume Ex-Dividend \\\n", "0 2012-07-11 9.06 9.0600 8.7600 8.840 697000.0 0.0 \n", "1 2012-07-12 8.80 9.1600 8.5600 9.160 867200.0 0.0 \n", "2 2012-07-13 8.86 9.0200 8.6300 8.680 858800.0 0.0 \n", "3 2012-07-16 8.69 8.8100 8.4200 8.710 459200.0 0.0 \n", "4 2012-07-17 8.79 9.0100 8.6800 8.950 859100.0 0.0 \n", "5 2012-07-18 8.92 9.3450 8.9200 9.320 634700.0 0.0 \n", "6 2012-07-19 9.40 9.5400 9.1800 9.200 441500.0 0.0 \n", "7 2012-07-20 9.15 9.1801 8.8901 8.960 627600.0 0.0 \n", "8 2012-07-23 8.72 8.7300 8.4000 8.570 692000.0 0.0 \n", "9 2012-07-24 8.64 8.6400 8.4000 8.495 553600.0 0.0 \n", "10 2012-07-25 8.60 8.8600 8.5206 8.630 302700.0 0.0 \n", "11 2012-07-26 8.80 9.3800 8.8000 9.330 743000.0 0.0 \n", "12 2012-07-27 9.35 9.9200 9.2750 9.775 737400.0 0.0 \n", "13 2012-07-30 9.77 9.7900 9.2400 9.380 397700.0 0.0 \n", "14 2012-07-31 9.32 9.4500 8.9900 9.020 451100.0 0.0 \n", "15 2012-08-01 9.10 9.1000 8.5500 8.560 1390500.0 0.0 \n", "16 2012-08-02 3.91 4.7900 3.8600 4.300 10958600.0 0.0 \n", "17 2012-08-03 4.57 5.0500 4.5000 4.610 3767900.0 0.0 \n", "18 2012-08-06 4.69 5.0100 4.6500 4.820 2346800.0 0.0 \n", "19 2012-08-07 5.02 6.1280 4.8500 6.060 4417200.0 0.0 \n", "20 2012-08-08 5.98 6.0500 5.7900 5.980 2933200.0 0.0 \n", "\n", " Split Ratio Adj. Open Adj. High Adj. Low Adj. Close Adj. Volume \\\n", "0 1.0 9.06 9.0600 8.7600 8.840 697000.0 \n", "1 1.0 8.80 9.1600 8.5600 9.160 867200.0 \n", "2 1.0 8.86 9.0200 8.6300 8.680 858800.0 \n", "3 1.0 8.69 8.8100 8.4200 8.710 459200.0 \n", "4 1.0 8.79 9.0100 8.6800 8.950 859100.0 \n", "5 1.0 8.92 9.3450 8.9200 9.320 634700.0 \n", "6 1.0 9.40 9.5400 9.1800 9.200 441500.0 \n", "7 1.0 9.15 9.1801 8.8901 8.960 627600.0 \n", "8 1.0 8.72 8.7300 8.4000 8.570 692000.0 \n", "9 1.0 8.64 8.6400 8.4000 8.495 553600.0 \n", "10 1.0 8.60 8.8600 8.5206 8.630 302700.0 \n", "11 1.0 8.80 9.3800 8.8000 9.330 743000.0 \n", "12 1.0 9.35 9.9200 9.2750 9.775 737400.0 \n", "13 1.0 9.77 9.7900 9.2400 9.380 397700.0 \n", "14 1.0 9.32 9.4500 8.9900 9.020 451100.0 \n", "15 1.0 9.10 9.1000 8.5500 8.560 1390500.0 \n", "16 1.0 3.91 4.7900 3.8600 4.300 10958600.0 \n", "17 1.0 4.57 5.0500 4.5000 4.610 3767900.0 \n", "18 1.0 4.69 5.0100 4.6500 4.820 2346800.0 \n", "19 1.0 5.02 6.1280 4.8500 6.060 4417200.0 \n", "20 1.0 5.98 6.0500 5.7900 5.980 2933200.0 \n", "\n", " PDUFA \n", "0 False \n", "1 False \n", "2 False \n", "3 False \n", "4 False \n", "5 False \n", "6 False \n", "7 False \n", "8 False \n", "9 False \n", "10 False \n", "11 False \n", "12 False \n", "13 False \n", "14 False \n", "15 True \n", "16 False \n", "17 False \n", "18 False \n", "19 False \n", "20 False " ] }, "execution_count": 45, "metadata": {}, "output_type": "execute_result" }, { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAABXIAAAYUCAYAAABD9/BCAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMi4yLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvhp/UCwAAIABJREFUeJzs3Xt4VcWh///3AGIVFERbkOopYBU0kIQQkPtFqqAiikoBFYpUES9FUVux3nvqOVaxiNbq0YJYRUBR8FL0ixZEQBESboKlWiSKQtFKRQEpaOb3R5L9S0ICCMnOBt6v5+FJstasmVl7z17ZfDJ7VogxIkmSJEmSJElKXdWqugOSJEmSJEmSpJ0zyJUkSZIkSZKkFGeQK0mSJEmSJEkpziBXkiRJkiRJklKcQa4kSZIkSZIkpTiDXEmSJEmSJElKcQa5kiRJkiRJkpTiDHIlSZIkSZIkKcUZ5EqSJEmSJElSiqtR1R0oy5FHHhmPOeaYqu6GJEmSJEmSJO2VZcuW/SvG+P29rSclg9xjjjmGGTNmVHU3JEmSJEmSJGmvNGjQ4MOKqMelFSRJkiRJkiQpxaXkjNzi1q5dy5AhQ1i2bBn5+flV3R1J0gGqWrVqpKenM27cOBo2bFjV3ZEkSZIkHWBSPsgdMmQIffv25e2336ZmzZpV3R1J0gFq27Zt3HPPPQwZMoRXXnmlqrsjSZIkSTrAhBhjVfdhBxkZGbFojdyGDRvy9ddfG+JKkqrctm3bOOSQQ1i7dm1Vd0WSJEmStI9o0KBBbowxe2/rSfk1cvPz8w1xJUkpoWbNmi7zI0mSJEmqEikf5EqSJEmSJEnSga7CgtwQwrgQwqchhOXFtt0TQlgZQlgWQpgaQqhbUe1JkiRJkiRJ0oGiImfkjgd6ltr2KtA8xpgOvAfcWIHtSZIkSZIkSdIBocKC3BjjG8CGUttmxBi/KfxxPnBMRbVXlvvuu48tW7ZUZhMJU6dOJYTAypUrk9Le3qpdu3ZVd0GSJEmSJEnSHkrmGrlDgJfL2xlCGBpCyAkh5GzYsKG8YjuVzCB34sSJdOzYkUmTJlVYnd98882uC0mSJEmSJEk64CQlyA0h3AR8A0wor0yM8ZEYY3aMMbtevXq7rHPz5s2ceeaZZGRk0Lx5c+644w7Wrl1Lt27d6NatGwCXX3452dnZpKWlcdtttyWOnT59Os2aNaNjx44MHz6cXr16JeocMmQIrVu3pmXLljz//PNltr1p0ybmzZvH2LFjSwS5r7/+Op07d6ZPnz6cdNJJDBs2LHF389q1a3PdddeRlZVF9+7d+eyzzwDo2rUrv/71r+nSpQtjxozhww8/pHv37qSnp9O9e3c++ugjNm7cSKNGjRJ1bdmyhWOPPZbt27ezatUqevbsSatWrejUqVNihvDq1atp164drVu35pZbbtnl4ylJkiRJkiQpdVV6kBtC+BnQC7gwxhgrqt5XXnmFhg0bsnTpUpYvX84111xDw4YNmTVrFrNmzQLgzjvvJCcnh2XLljF79myWLVvG1q1bueyyy3j55ZeZO3duIlAtKn/KKaewcOFCZs2axS9/+Us2b97M2rVrOeOMMxLlpk2bRs+ePTnhhBOoV68eixYtSuxbsGAB9957L++88w6rVq3iueeeAwpC4qysLBYtWkSXLl244447Esd88cUXzJ49m+uuu46rrrqKQYMGsWzZMi688EKGDx9OnTp1yMjIYPbs2QC8+OKL9OjRg4MOOoihQ4fywAMPkJuby6hRo7jiiisAuPrqq7n88stZuHAhDRo0qKiHXZIkSZIkSVIVqNQgN4TQE7gB6B1jrNA1D1q0aMFrr73GDTfcwJw5c6hTp84OZZ5++mmysrJo2bIlK1as4N1332XlypU0adKExo0bAzBgwIBE+RkzZnDXXXeRmZlJ165d2bp1Kx999BENGzZk+vTpiXITJ06kf//+APTv35+JEycm9rVp04YmTZpQvXp1BgwYwNy5cwGoVq0a/fr1A+Ciiy5KbAcS2wHeeustLrjgAgAGDhyYKNevXz8mT54MwKRJk+jXrx+bNm3izTffpG/fvmRmZnLZZZexbt06AObNm5c4t4EDB+7RYyxJkiRJkiQpNdSoqIpCCBOBrsBRIYSPgduAG4GDgVdDCADzY4zDKqK9E044gdzcXKZPn86NN97IaaedVmL/6tWrGTVqFAsXLuSII45g8ODBbN26lZ1NCo4x8uyzz9K0adNyy3z++efMnDmT5cuXE0Lg22+/JYTA3XffDUDheSaU/rms7bVq1Sq3vaJyvXv35sYbb2TDhg3k5uZyyimnsHnzZurWrcuSJUt22YYkSZIkSZKkfVeFzciNMQ6IMR4dYzwoxnhMjHFsjPHHMcZjY4yZhf8qJMQFWLt2LYceeigXXXQR119/PYsWLeKwww7jq6++AuDLL7+kVq1a1KlTh/Xr1/PyywX3WWvWrBkffPABeXl5AIlZrgA9evTggQceSIS9ixcv3qHdKVOmMGjQID788EPy8vJYs2YNjRs3TsycXbBgAatXryY/P5/JkyfTsWNHAPLz85kyZQoATz31VGJ7ae3bt0+suzthwoREudq1a9OmTRuuvvpqevXqRfXq1Tn88MNp3LgxzzzzDFAQRC9duhSADh06lKhHkiRJkiRJ0r4rKTc7qwzvvPMObdq0ITMzkzvvvJObb76ZoUOHcvrpp9OtWzcyMjJo2bIlaWlpDBkyhA4dOgBwyCGH8Mc//pGePXvSsWNH6tevn1iW4ZZbbmH79u2kp6fTvHnzxE3Ciq+RO3HiRPr06VOiL+eddx5PPfUUAO3atWPkyJE0b96cxo0bJ8rWqlWLFStW0KpVK2bOnMmtt95a5nndf//9PPbYY6Snp/PEE08wZsyYxL5+/frx5JNPlliKYcKECYwdO5aMjAzS0tISN2gbM2YMDz74IK1bt2bjxo17/XhLkiRJkiRJqjqhAu8/VmEyMjLijBkzAGjQoMFOl0PYE5s2baJ27drEGLnyyis5/vjjGTFixF7X+/rrrzNq1CheeumlHfbVrl2bTZs27XUbkqSqFULgn//8Z1V3Q5IkSZK0j2jQoEFujDF7b+vZZ2fk7o1HH32UzMxM0tLS2LhxI5dddllVd0mSJEmSJEmSynVAzsiVJGlPOSNXkiRJkvRdOCOXguUKihs/fjxXXXUVM2bMoF27dokA+NtvvyUzM5M333wTgEceeYRmzZrRrFkzsrOzef311wG4/fbbufHGG0vUuWTJEk488UQAGjVqxL/+9a/EvqlTpxJCYOXKlbvV33HjxtGiRYvEGrxF69mWp+h89lZeXl5iDd99wf/8z/9UaH3jx49n7dq1FVrnd21n5cqVZGZm0rJlS1atWlXpfYGCpT6KxjzAww8/zJ///Oc9qqsyxtAll1zCu+++C5R8zvPy8mjevHmFtbN27VrOP//8Cqvvu3rhhRe46667qqz9PVH62lqW+++/nxNPPJELL7xwt86xffv2FdW972TdunX06tULKHhN1KlTh5YtW3LiiSdyxx13JLYXlXnppZe47bbbqqSvkiRJkiTtzD4d5JbntNNO40c/+hFjx44F4IEHHqB169a0b9+el156if/7v/9j7ty5rFy5kkceeYSLLrqITz75hAEDBjB58uQSdU2aNIkLLrigzHYmTpxIx44dmTRp0i779PHHH3PnnXcyd+5cli1bxvz580lPT9/7k90N+0uQG2MkPz//O9eXCkHutGnTOPvss1m8eDHHHXfcLuva03MtrnSQO2zYMAYNGrRHdVXGGPrTn/7ESSedBFR8eF/km2++oWHDhkyZMqVS6t4dvXv3ZuTIkRXeflX74x//yPTp05kwYcJunWPxsZhMv//977n00ksTP3fq1InFixeTk5PDk08+SW5ubonyZ555Ji+88AJbtmxJdlclSZIkSdqp/TLIBRg9ejT/+7//y4oVK/jDH/7A7373OwB+97vfcc8993DUUUcBkJWVxcUXX8yDDz5I06ZNqVu3Lm+//Xainqeffpr+/fvvUP+mTZuYN28eY8eO3a0g99NPP+Wwww5LzHSrXbs2jRs3BqBr167k5OQA8K9//YtGjRoljluzZg09e/akadOmidljAH/+859JT08nIyODgQMHAjB48OASgVVRWyNHjmTOnDlkZmYyevRo8vLy6NSpE1lZWWRlZSUCltdff52uXbty/vnn06xZMy688MLErObc3Fy6dOlCq1at6NGjB+vWrQMKZiy3bduW9PR0+vTpw7///e+dntOKFSto06YNmZmZpKen8/7775d4nEaOHMnXX39NZmYmF154IXl5eZx44olcccUVZGVlsWbNmsSM66ysLPr27Zu4idxvfvMbWrduTfPmzRk6dCgxRqZMmUJOTg4XXnghmZmZfP311zRq1Ihf//rXtGvXjuzsbBYtWkSPHj047rjjePjhhxN9ueeee2jdujXp6emJGXpF/bn00ktJS0vjtNNO4+uvvy6znSLTp0/nvvvu409/+hPdunUDCsKl5s2b07x5c+67774SdRc/1+IaNWrEDTfcQJs2bWjTpg3/+Mc/AHjxxRc5+eSTadmyJT/5yU9Yv349eXl5PPzww4wePZrMzEzmzJnD7bffzqhRowBYtWoVPXv2pFWrVnTq1Ckxq3zw4MEMHz6c9u3b06RJk8R4Kj2GdvU8Pv3001x77bUAjBkzhiZNmiTa7dixY4kxUvo5h4JZ9KUf49IGDx7MsGHD6NSpEyeccELiJoPjx4+nb9++nHXWWZx22mklZviOHz+ec845h7POOovGjRvzhz/8gd///ve0bNmStm3bsmHDBqBgHe3WrVuTkZHBeeedlwj1Bg8ezLXXXku3bt345S9/yfHHH89nn30GQH5+Pj/+8Y9LzNovarNoZv3gwYO5/PLL6datG02aNGH27NkMGTKEE088kcGDByeOqV27NjfccAOtWrXiJz/5CQsWLKBr1640adKEF154YYd6AXr16pX4dEHt2rW56aabyMjIoG3btqxfvx6ADz/8kO7du5Oenk737t356KOPAFi9ejXt2rWjdevW3HLLLSX6X9brYNiwYXzwwQf07t2b0aNHl+jL+vXr6dOnDxkZGWRkZCSuL8Vn+X6X1xbAP/7xD37yk5+QkZFBVlYWq1atYuDAgSU+1VA0M7i0Z599lp49e+6wvVatWrRq1WqHGfIhBLp27VrmTSslSZIkSapK+3SQWxT+FP279dZbE/uOPvporrnmGtq1a8fNN99MvXr1gIIgsVWrViXqyc7OTnzEe8CAAYlgdv78+Rx55JEcf/zxO7Q9bdo0evbsyQknnEC9evVYtGjRTvuakZFB/fr1ady4MRdffDEvvvjibp3jggULmDBhAkuWLOGZZ54hJyeHFStWcOeddzJz5kyWLl3KmDFjdlrHXXfdRadOnViyZAkjRozgBz/4Aa+++iqLFi1i8uTJDB8+PFF28eLF3Hfffbz77rt88MEHzJs3j+3bt/OLX/yCKVOmkJuby5AhQ7jpppsAGDRoEL/73e9YtmwZLVq0KBE2l+Xhhx/m6quvZsmSJeTk5HDMMcfs0NdDDjmEJUuWMGHCBAD+/ve/M2jQIBYvXkytWrX47W9/y2uvvcaiRYvIzs7m97//PQBXXXUVCxcuZPny5Xz99de89NJLnH/++WRnZycew0MOOQSAY489lrfeeotOnTolAvD58+cnxtCMGTN4//33WbBgAUuWLCE3N5c33ngDgPfff58rr7ySFStWULduXZ599tly2wE444wzGDZsGCNGjGDWrFnk5uby2GOP8fbbbzN//nweffRRFi9evMO5/uhHP9rh8Tv88MNZsGABV111Fddccw0AHTt2ZP78+SxevJj+/ftz991306hRo0SbS5YsoVOnTiXqGTp0KA888AC5ubmMGjWKK664IrFv3bp1zJ07l5deeikxy7L0GNrV89i5c2fmzJkDwJw5czjyyCP55JNPmDt37g59Kes5L+sxLkteXh6zZ8/mL3/5C8OGDWPr1q0AvPXWWzz++OPMnDlzh2OWL1/OU089xYIFC7jppps49NBDWbx4Me3atUssPXHuueeycOFCli5dyoknnpiY3Q/w3nvv8dprrzF69GguuuiiRJ9fe+01MjIyEn8kKs+///1vZs6cyejRoznrrLMYMWIEK1as4J133mHJkiUAbN68ma5du5Kbm8thhx3GzTffzKuvvsrUqVNLXOfKs3nzZtq2bcvSpUvp3Lkzjz76KFDwGhk0aBDLli3jwgsvTLz2r776ai6//HIWLlxIgwYNEvWU9zp4+OGHadiwIbNmzWLEiBEl2h4+fDhdunRh6dKlLFq0iLS0tBL7v+trCwpC2iuvvJKlS5fy5ptvcvTRR3PJJZfw2GOPAbBx40befPNNzjjjjBJtrV69miOOOIKDDz54h8fo888/Z/78+Tv0Dwp+JxSNX0mSJEmSUkWNqu7A3igKf4qMHz8+MQsU4Morr2TkyJElZrqVpfjN1Pr370/79u259957mTRpEgMGDCjzmIkTJyaCtP79+zNx4kSysrLKbaN69eq88sorLFy4kL/+9a+MGDGC3Nxcbr/99p327dRTT+XII48ECsKluXPnUr16dc4///xEYFQUUu+u7du3c9VVV7FkyRKqV6/Oe++9l9jXpk2bRCiXmZlJXl4edevWZfny5Zx66qlAwWzJo48+mo0bN/LFF1/QpUsXAH72s5/Rt2/fnbbdrl077rzzTj7++GPOPffcMkPy0n70ox/Rtm1boCBcf/fdd+nQoQMA27Zto127dgDMmjWLu+++my1btrBhwwbS0tI466yzyqyzd+/eALRo0YJNmzZx2GGHcdhhh/G9732PL774ghkzZjBjxgxatmwJFMzAfv/99/mv//ovGjduTGZmJgCtWrUiLy9vl+dQ3Ny5c+nTpw+1atUCCp7XOXPm0Lt37xLnWpai8ThgwIBEgPbxxx/Tr18/1q1bx7Zt2xIzvcuzadMm3nzzzRLP1X/+85/E9+eccw7VqlXjpJNOSszkLG1Xz2ODBg3YtGkTX331FWvWrOGCCy7gjTfeYM6cOZx77rk77R+w24/xT3/6U6pVq8bxxx9PkyZNEjOLTz311HJfF926dUs833Xq1EmMkRYtWrBs2TKgIOy9+eab+eKLL9i0aRM9evRIHN+3b1+qV68OwJAhQzj77LO55pprGDduHBdffPEuz+2ss84ihECLFi2oX78+LVq0ACAtLY28vDwyMzOpWbNmYhZpixYtOPjggznooINo0aLFbo23mjVrJtZ8bdWqFa+++ipQEHA/99xzAAwcOJBf/epXAMybNy8Rmg4cOJAbbrgBoNzXQefOnctte+bMmYlAvHr16tSpU6fE/u/62vrqq6/45JNP6NOnDwDf+973AOjSpQtXXnkln376Kc899xznnXceNWqU/JW2bt06vv/975fYNmfOHFq2bEm1atUYOXIkaWlpiZnMRX7wgx8kZTkWSZIkSZK+i306yN2VatWqEUIose2kk04iNzeXU045JbGtaGYnFMzUbNSoEbNnz+bZZ5/lrbfe2qHezz//nJkzZ7J8+XJCCHz77beEELj77rt3aK+4EELiY/GnnnoqF198Mbfffjs1atRIrIdaNKOw+DGlf44xltlO8XpijGzbtq3MfowePZr69euzdOlS8vPzE8EIUGLmWvXq1fnmm2+IMZKWlrbDY7Fx48Zyz7W8c7rgggs4+eST+ctf/kKPHj3405/+VOK5KEtR4Fl0XqeeeioTJ04sUWbr1q1cccUV5OTkcOyxx3L77bfv8FgWV3Se1apVK3HO1apVS5zzjTfeyGWXXVbiuLy8vB0eo7I+9r8zxf9wUFrxcy1L8ee96Ptf/OIXXHvttfTu3ZvXX399l38cyM/Pp27duiX+CFJc8fMrr6+78zy2a9eOxx57jKZNm9KpUyfGjRvHW2+9xb333rvT/pXuw84e47JeH7Dzx7H08118LBStezt48GCmTZtGRkYG48ePLxH0Fa/72GOPpX79+sycOZO33347MTt3d86tvLEHcNBBByXOpbw+Fn+NQcnXWfHji17HZSlrPBVX3utgb3zX19bOXi8DBw5kwoQJTJo0iXHjxu2w/5BDDtnhOtCpU6ddLpuwdevWErPqJUmSJElKBfv00gp74le/+hU33HADn3/+OVCwxuvUqVNLhApFsx2PO+64HT4yDjBlyhQGDRrEhx9+SF5eHmvWrKFx48bMnTu33HbXrl1bYvmFJUuWJD4636hRo8QNd0rflOnVV19lw4YNfP3110ybNo0OHTrQvXt3nn766cQ5FK3rWbye559/nu3btwNw2GGH8dVXXyXq3LhxI0cffTTVqlXjiSee4Ntvv93pY9a0aVM+++yzRJC7fft2VqxYQZ06dTjiiCMSH0F+4oknErNzyzunDz74gCZNmjB8+HB69+6dmAFZ3EEHHZToe2lt27Zl3rx5ifVht2zZwnvvvZcIa4466ig2bdpUos3S5787evTowbhx4xLr737yySd8+umnOz1md9vp3Lkz06ZNY8uWLWzevJmpU6fusNxAeYpuxjd58uTETOSNGzfywx/+EIDHH398l/05/PDDady4Mc888wxQEKwtXbr0O53b7jyPnTt3ZtSoUXTu3JmWLVsya9YsDj744B1maMLOn/OdeeaZZ8jPz2fVqlV88MEHNG3a9DvXUZavvvqKo48+mu3bt+8ynL3kkku46KKL+OlPf5qYqZsMjRo1YsmSJeTn57NmzRoWLFiwy2Pat2+fWDpmwoQJifWKO3ToUGJ7kT15HXTv3p2HHnoIKJi9/+WXX5bY/13rPPzwwznmmGOYNm0aUDB7vPiaxUVrTJe1RMIJJ5zwnWfMQ8HyGUXrKkuSJEmSlCoOuCC3d+/e/PznP6dDhw78+Mc/pmPHjkybNq3Ex2/79u3LihUryrzJGRQsq1D0Md8i5513Hk899VS57W7fvp3rr7+eZs2akZmZyeTJkxNr215//fU89NBDtG/ffocbJXXs2JGBAweSmZnJeeedR3Z2Nmlpadx000106dKFjIyMxE2lLr30UmbPnk2bNm14++23EzMH09PTqVGjBhkZGYwePZorrriCxx9/nLZt2/Lee+/tchZozZo1mTJlCjfccAMZGRlkZmYmbmD0+OOP88tf/pL09HSWLFmSWL+zvHOaPHkyzZs3JzMzk5UrVzJo0KAd2hs6dCjp6emJG18V9/3vf5/x48czYMAA0tPTadu2LStXrqRu3bpceumltGjRgnPOOYfWrVsnjim6KVbpm5DtzGmnncYFF1xAu3btaNGiBeeff/4uQ9rdbScrK4vBgwfTpk0bTj75ZC655JLEx8x35T//+Q8nn3wyY8aMYfTo0QDcfvvt9O3bl06dOpVYn/Wss85i6tSpiZudFTdhwgTGjh1LRkYGaWlpJW4aVZbSY2h3nsdOnTqxZs0aOnfuTPXq1Tn22GMTwWFpO3vOd6Zp06Z06dKF008/nYcffrjE7PK98d///d+cfPLJnHrqqTRr1mynZXv37s2mTZt2a1mFitShQwcaN25MixYtuP7663e6tEuR+++/n8cee4z09HSeeOKJxDVozJgxPPjgg7Ru3brETPs9eR2MGTOGWbNm0aJFC1q1asWKFStK7N+TOp944gnuv/9+0tPTad++Pf/85z8BqF+/PieeeGK5j32tWrU47rjjEn/42V2zZs3izDPP/E7HSJIkSZJU2cLOPrZaVTIyMuKMGTOAgrU2K6uP33zzDRdffDH5+fk8+eSTO10WQapqjRo1IicnZ5c30zpQDB48mF69enH++edXaT9ycnIYMWKEN8eqAlu2bKFFixYsWrSozJneAFOnTiU3N5ff/va3u1Xn+vXrueCCC/jrX/9abpkQQiJMliRJkiRpVxo0aJAbY8ze23r26zVyd6VGjRo88cQTVd0NSfuou+66i4ceemi31sZVxXrttdcYMmQI1157bbkhLkCfPn0Sy9Dsjo8++mi31nGWJEmSJCnZKmxGbghhHNAL+DTG2LxwW1/gduBEoE2MMWd36krWjFxJkr4rZ+RKkiRJkr6LipqRW5Fr5I4Hepbathw4F3ijAtuRJEmSJEmSpANKhS2tEGN8I4TQqNS2vwGuPStJkiRJkiRJe6EiZ+TulRDC0BBCTgghZ8OGDYnt1apVY9u2bVXYM0mSCmzbto1q1VLmV6ckSZIk6QCSMv8bjTE+EmPMjjFm16tXL7E9PT2de+65xzBXklSltm3bxj333EN6enpVd0WSJEmSdACqsKUVKsu4ceMYMmQIt956K/n5+VXdHUnSAapatWqkp6czbty4qu6KJEmSJOkAlPJBbsOGDXnllVequhuSJEmSJEmSVGUqbGmFEMJE4C2gaQjh4xDCz0MIfUIIHwPtgL+EEP5fRbUnSZIkSZIkSQeKCpuRG2McUM6uqRXVhiRJkiRJkiQdiFLmZmeSJEmSJEmSpLIZ5EqSJEmSJElSijPIlSRJkiRJkqQUZ5ArSZIkSZIkSSnOIFeSJEmSJEmSUpxBriRJkiRJkiSlOINcSZIkSZIkSUpxBrmSJEmSJEmSlOIMciVJkiRJkiQpxRnkSpIkSZIkSVKKM8iVJEmSJEmSpBRnkCtJkiRJkiRJKc4gV5IkSZIkSZJSXIUFuSGEcSGET0MIy4ttqxdCeDWE8H7h1yMqqj1JkiRJkiRJOlBU5Izc8UDPUttGAn+NMR4P/LXwZ0mSJEmSJEnSd1BhQW6M8Q1gQ6nNZwOPF37/OHBORbUnSZIkSZIkSQeKyl4jt36McR1A4dcflFcwhDA0hJATQsjZsKF0HixJkiRJkiRJB66UudlZjPGRGGN2jDG7Xr16Vd0dSZIkSZIkSUoZlR3krg8hHA1Q+PXTSm5PkiRJkiRJkvY7NSq5/heAnwF3FX59fncOWr9+PQ0aNKjMfkmSJEmSJEnSPqPCgtwQwkSgK3BUCOFj4DYKAtynQwg/Bz4C+u5OXfXr12fp0qUV1TVJkiRJkiRJqhIVNWG1woLcGOOAcnZ1r6g2JEmSJEmSJOlAlDI3O5MkSZIkSZIklc3Tw/ihAAAgAElEQVQgV5IkSZIkSZJSnEGuJEmSJEmSJKU4g1xJkiRJkiRJSnEGuZIkSZIkSZKU4gxyJUmSJEmSJCnFGeRKkiRJkiRJUoozyJUkSZIkSZKkFGeQK0mSJEmSJEkpziBXkiRJkiRJklKcQa4kSZIkSZIkpTiDXEmSJEmSJElKcQa5kiRJkiRJkpTiDHIlSZIkSZIkKcUlJcgNIVwdQlgeQlgRQrgmGW1KkiRJkiRJ0v6i0oPcEEJz4FKgDZAB9AohHF/Z7UqSJEmSJEnS/iIZM3JPBObHGLfEGL8BZgN9ktCuJEmSJEmSJO0XkhHkLgc6hxCODCEcCpwBHFu6UAhhaAghJ4SQs2HDhiR0S5IkSZIkSZL2DZUe5MYY/wb8DngVeAVYCnxTRrlHYozZMcbsevXqVXa3JEmSJEmSJGmfkZSbncUYx8YYs2KMnYENwPvJaFeSJEmSJEmS9gc1ktFICOEHMcZPQwj/BZwLtEtGu5IkSZIkSZK0P0hKkAs8G0I4EtgOXBlj/HeS2pUkSZIkSZKkfV5SgtwYY6dktCNJkiRJkiRJ+6OkrJErSZIkSZIkSdpzBrmSJEmSJEmSlOIMciVJkiRJkiQpxRnkSpIkSZIkSVKKM8iVJEmSJEmSpBRnkCtJkiRJkiRJKc4gV5IkSZIkSZJSnEGuJEmSJEmSJKU4g1xJkiRJkiRJSnEGuZIkSZIkSZKU4gxyJUmSJEmSJCnFGeRKkiRJkiRJUoozyJUkSZIkSZKkFJeUIDeEMCKEsCKEsDyEMDGE8L1ktCtJkiRJkiRJ+4NKD3JDCD8EhgPZMcbmQHWgf2W3K0mSJEmSJEn7i2QtrVADOCSEUAM4FFibpHYlSZIkSZIkaZ9X6UFujPETYBTwEbAO2BhjnFG6XAhhaAghJ4SQs2HDhsruliRJkiRJkiTtM5KxtMIRwNlAY6AhUCuEcFHpcjHGR2KM2THG7Hr16lV2tyRJkiRJkiRpn5GMpRV+AqyOMX4WY9wOPAe0T0K7kiRJkiRJkrRfSEaQ+xHQNoRwaAghAN2BvyWhXUmSJEmSJEnaLyRjjdy3gSnAIuCdwjYfqex2JUmSJEmSJGl/USMZjcQYbwNuS0ZbkiRJkiRJkrS/ScbSCpIkSZIkSZKkvWCQK0mSJEmSJEkpziBXkiRJkiRJklKcQa4kSZIkSZIkpTiDXEmSJEmSJElKcQa5kiRJkiRJkpTiDHIlSZIkSZIkKcUZ5EqSJEmSJElSijPIlSRJkiRJkqQUZ5ArSZIkSZIkSSnOIFeSJEmSJEmSUpxBriRJkiRJkiSlOINcSZIkSZIkSUpxBrmSJEmSJEmSlOIqPcgNITQNISwp9u/LEMI1ld2uJEmSJEmSJO0valR2AzHGvwOZACGE6sAnwNTKbleSJEmSJEmS9hfJXlqhO7AqxvhhktuVJEmSJEmSpH1WsoPc/sDEsnaEEIaGEHJCCDkbNmxIcrckSZIkSZIkKXUlLcgNIdQEegPPlLU/xvhIjDE7xphdr169ZHVLkiRJkiRJklJeMmfkng4sijGuT2KbkiRJkiRJkrTPS2aQO4ByllWQJEmSJEmSJJUvKUFuCOFQ4FTguWS0J0mSJEmSJEn7kxrJaCTGuAU4MhltSZIkSZIkSdL+JplLK0iSJEmSJEmS9oBBriRJkiRJkiSlOINcSZIkSZIkSUpxBrmSJEmSJEmSlOIMciVJkiRJkiQpxRnkSpIkSZIkSVKKM8iVJEmSJEmSpBRnkCtJkiRJkiRJKc4gV5IkSZIkSZJSnEGuJEmSJEmSJKU4g1xJkiRJkiRJSnEGuZIkSZIkSZKU4gxyJUmSJEmSJCnFJSXIDSHUDSFMCSGsDCH8LYTQLhntSpIkSZIkSdL+oEaS2hkDvBJjPD+EUBM4NEntSpIkSZIkSdI+r9KD3BDC4UBnYDBAjHEbsK2y25UkSZIkSZKk/UUyllZoAnwGPBZCWBxC+FMIoVbpQiGEoSGEnBBCzoYNG5LQLUmSJEmSJEnaNyQjyK0BZAEPxRhbApuBkaULxRgfiTFmxxiz69Wrl4RuSZIkSZIkSdK+IRlB7sfAxzHGtwt/nkJBsCtJkiRJkiRJ2g2VHuTGGP8JrAkhNC3c1B14t7LblSRJkiRJkqT9RaXf7KzQL4AJIYSawAfAxUlqV5IkSZIkSZL2eUkJcmOMS4DsZLQlSZIkSZIkSfubZKyRK0mSJEmSJEnaCwa5kiRJkiRJkpTiDHIlSZIkSZIkKcUZ5EqSJEmSJElSijPIlSRJkiRJkqQUZ5ArSZIkSZIkSSnOIFeSJEmSJEmSUpxBriRJkiRJkiSlOINcSZIkSZIkSUpxBrmSJEmSJEmSlOIMciVJkiRJkiQpxRnkSpIkSZIkSVKKM8iVJEmSJEmSpBRnkCtJkiRJkiRJKa5GMhoJIeQBXwHfAt/EGLOT0a4kSZIkSZIk7Q+SEuQW6hZj/FcS25MkSZIkSZKk/YJLK0iSJEmSJElSiktWkBuBGSGE3BDC0LIKhBCGhhByQgg5GzZsSFK3JEmSJEmSJCn1JSvI7RBjzAJOB64MIXQuXSDG+EiMMTvGmF2vXr0kdUuSJEmSJEmSUl9SgtwY49rCr58CU4E2yWhXkiRJkiRJkvYHlR7khhBqhRAOK/oeOA1YXtntSpIkSZIkSdL+okYS2qgPTA0hFLX3VIzxlSS0K0mSJEmSJEn7hUoPcmOMHwAZld2OJEmSJEmSJO2vknWzM0mSJEmSJEnSHjLIlSRJkiRJkqQUZ5ArSZIkSZIkSSnOIFeSJEmSJEmSUpxBriRJkiRJkiSlOINcSZIkSZIkSUpxBrmSJEmSJEmSlOIMciVJkiRJkiQpxRnkSpIkSZIkSVKKM8iVJEmSJEmSpBQXYoxV3YcdhBC+Av5e1f2QynAU8K+q7oRUBsemUpnjU6nKsalU5vhUqnJsKlU5NpXKmsYYD9vbSmpURE8qwd9jjNlV3QmptBBCjmNTqcixqVTm+FSqcmwqlTk+laocm0pVjk2lshBCTkXU49IKkiRJkiRJkpTiDHIlSZIkSZIkKcWlapD7SFV3QCqHY1OpyrGpVOb4VKpybCqVOT6VqhybSlWOTaWyChmfKXmzM0mSJEmSJEnS/y9VZ+RKkiRJkiRJkgoZ5EqSJEmSJElSiquyIDeE0DOE8PcQwj9CCCPL2H9wCGFy4f63QwiNkt9LHYhCCMeGEGaFEP4WQlgRQri6jDJdQwgbQwhLCv/dWhV91YEnhJAXQnincNzllLE/hBDuL7x2LgshZFVFP3XgCSE0LXZNXBJC+DKEcE2pMl47lRQhhHEhhE9DCMuLbasXQng1hPB+4dcjyjn2Z4Vl3g8h/Cx5vdaBopzxeU8IYWXh7+6pIYS65Ry70/cB0t4oZ2zeHkL4pNjv7jPKOXan/7+X9kY5Y3NysXGZF0JYUs6xXjdVacrLjyrzfWeVrJEbQqgOvAecCnwMLAQGxBjfLVbmCiA9xjgshNAf6BNj7Jf0zuqAE0I4Gjg6xrgohHAYkAucU2p8dgWujzH2qqJu6gAVQsgDsmOM/ypn/xnAL4AzgJOBMTHGk5PXQynxe/4T4OQY44fFtnfFa6eSIITQGdgE/DnG2Lxw293AhhjjXYUhwxExxhtKHVcPyAGygUjBe4BWMcZ/J/UEtF8rZ3yeBsyMMX4TQvgdQOnxWVguj528D5D2Rjlj83ZgU4xx1E6O2+X/76W9UdbYLLX/XmBjjPE3ZezLw+umKkl5+REwmEp631lVM3LbAP+IMX4QY9wGTALOLlXmbODxwu+nAN1DCCGJfdQBKsa4Lsa4qPD7r4C/AT+s2l5Ju+1sCt7gxBjjfKBu4S8XKZm6A6uKh7hSMsUY3wA2lNpc/L3l4xS8yS6tB/BqjHFD4ZvoV4GeldZRHZDKGp8xxhkxxm8Kf5wPHJP0jumAV861c3fszv/vpT22s7FZmBP9FJiY1E5J7DQ/qrT3nVUV5P4QWFPs54/ZMShLlCl8U7MRODIpvZMKhYIlPVoCb5exu10IYWkI4eUQQlpSO6YDWQRmhBByQwhDy9i/O9dXqbL1p/w30147VVXqxxjXQcGbbuAHZZTxGqpUMAR4uZx9u3ofIFWGqwqX/RhXzseDvXaqKnUC1scY3y9nv9dNJUWp/KjS3ndWVZBb1sza0ms87E4ZqdKEEGoDzwLXxBi/LLV7EfCjGGMG8AAwLdn90wGrQ4wxCzgduLLwY0bFee1UlQoh1AR6A8+Usdtrp1Kd11BVqRDCTcA3wIRyiuzqfYBU0R4CjgMygXXAvWWU8dqpqjSAnc/G9bqpSreL/Kjcw8rYtstrZ1UFuR8Dxxb7+RhgbXllQgg1gDrs2cc8pO8shHAQBS/CCTHG50rvjzF+GWPcVPj9dOCgEMJRSe6mDkAxxrWFXz8FplLwUbbiduf6KlWm04FFMcb1pXd47VQVW1+01Ezh10/LKOM1VFWm8CYnvYALYzk3MtmN9wFShYoxro8xfhtjzAcepewx57VTVaIwKzoXmFxeGa+bqmzl5EeV9r6zqoLchcDxIYTGhTN3+gMvlCrzAlB0x7bzKVj837/qqdIVrrEzFvhbjPH35ZRpULRmcwihDQWvpc+T10sdiEIItQoXUCeEUAs4DVheqtgLwKBQoC0Fi/6vS3JXdWArd1aE105VseLvLX8GPF9Gmf8HnBZCOKLw48OnFW6TKlUIoSdwA9A7xrilnDK78z5AqlCl7rXQh7LH3O78/16qDD8BVsYYPy5rp9dNVbad5EeV9r6zxt51ec8U3o31Kgo6WB0YF2NcEUL4DZATY3yBggfiiRDCPyiYidu/KvqqA1IHYCDwTghhSeG2XwP/BRBjfJiCPy5cHkL4Bvga6O8fGpQE9YGphTlYDeCpGOMrIYRhkBib04EzgH8AW4CLq6ivOgCFEA6l4I7VlxXbVnx8eu1UUoQQJgJdgaNCCB8DtwF3AU+HEH4OfAT0LSybDQyLMV4SY9wQQvhvCkIJgN/EGP1EmCpUOePzRuBg4NXC3/PzY4zDQggNgT/FGM+gnPcBVXAK2k+VMza7hhAyKfi4bx6Fv+OLj83y/n9fBaeg/VRZYzPGOJYy7svgdVNJVl5+VGnvO4P/f5IkSZIkSZKk1FZVSytIkiRJkiRJknaTQa4kSZIkSZIkpTiDXEmSJEmSJElKcQa5kiRJkiRJkpTiDHIlSZIkSZIkKcUZ5EqSJEmSJElSijPIlSRJkiRJkqQUZ5ArSZIkSZIkSSnOIFeSJEmSJEmSUpxBriRJkiRJkiSlOINcSZIkSZIkSUpxBrmSJEmSJEmSlOIMciVJkiRJkiQpxRnkSpIkSZIkSVKKM8iVJEmSJEmSpBRnkCtJkiRJkiRJKc4gV5IkSZIkSZJSnEGuJEmSJEmSJKU4g1xJkiRJkiRJSnEGuZIkSZIkSZKU4mpUdQfKctRRR8VGjRpVdTckSZIkSZIkaa/k5ub+K8b4/b2tJyWD3EaNGpGTk1PV3ZAkSZIkSZKkvRJC+LAi6nFpBUmSJEmSJElKcSk5I7e4jz/+mD59+rBo0SLy8/OrujuSpANUtWrVyMrKYurUqRxzzDFV3R1JkiRJ0gEm5YPcPn36cO655zJv3jxq1qxZ1d2RJB2gtm3bxqhRo+jTpw8LFy6s6u5IkiRJkg4wIcZY1X3YQXZ2dixaI7d69ep8/fXXhriSpCq3bds2DjnkEL799tuq7ookSZIkaR8RQsiNMWbvbT0pv0Zufn6+Ia4kKSXUrFnTZX4kSZIkSVUi5YNcSZIkSZIkSTrQGeRKkiRJkiRJUoozyJUkSZIkSZKkFLdfBbn33XcfW7ZsSUpbU6dOJYTAypUrk9Le3qpdu3ZVd0GSJEmSJEnSHjLI3UMTJ06kY8eOTJo0qcLq/OabbyqsLkmSJEmSJEn7j302yN28eTNnnnkmGRkZNG/enDvuuIO1a9fSrVs3unXrBsDll19OdnY2aWlp3HbbbYljp0+fTrNmzejYsSPDhw+nV69eiTqHDBlC69atadmyJc8//3yZbW/atIl58+YxduzYEkHu66+/TufOnenTpw8nnXQSw4YNS9zdvHbt2lx33XVkZWXRvXt3PvvsMwC6du3Kr3/9a7p06cKYMWP48MMP6d69O+np6XTv3p2PPvqIjRs30qhRo0RdW7Zs4dhjj2X79u2sWrWKnj170qpVKzp16pSYIbx69WratWtH69atueWWWyr40ZckSZIkSZKUTPtskPvKK6/QsGFDli5dyvLly7nmmmto2LAhs2bNYtasWQDceeed5OTksGzZMmbPns2yZcvYunUrl112GS+//DJz585NBKpF5U855RQWLlzIrFmz+OUvf8nmzZtZu3YtZ5xxRqLctGnT6NmzJyeccAL16tVj0aJFiX0LFizg3nvv5Z133mHVqlU899xzQEFInJWVxaJFi+jSpQt33HFH4pgvvviC2bNnc91113HVVVcxaNAgli1bxoUXXsjw4cOpU6cOGRkZzJ49G4AXX3yRHj16cNBBBzF06FAeeOABcnNzGTVqFFdccQUAV199NZdffjkLFy6kQYMGlfdESJIkSZIkSap0+2yQ26JFC1577TVuuOEG5syZQ506dXYo8/TTT5OVlUXLli1ZsWIF7777LitXrqRJkyY0btwYgAEDBiTKz5gxg7vuuovMzEy6du3K1q1b+eijj2jYsCHTp09PlJs4cSL9+/cHoH///kycODGxr02bNjRp0oTq1aszYMAA5s6dC0C1atXo168fABdddFFiO5DYDvDWW29xwQUXADBw4MBEuX79+jF58mQAJk2aRL9+/di0aRNvvvkmffv2JTMzk8suu4x169YBMG/evMS5DRw4cI8eY0mSJEmSJEmpocauCoQQxgG9gE9jjM0Lt9UDJgONgDzgpzHGf5c6LhN4CDgc+Ba4M8Y4uaI6fsIJJ5Cbm8v06dO58cYbOe2000rsX716NaNGjWLhwoUcccQRDB48mK1btxJjLLfOGCPPPvssTZs2LbfM559/zsyZM1m+fDkhBL799ltCCNx9990AhBBKlC/9c1nba9WqVW57ReV69+7NjTfeyIYNG8jNzeWUU05h8+bN1K1blyVLluyyDUmSJEmSJEn7rt2ZkTse6Flq20jgrzHG44G/Fv5c2hZgUIwxrfD4+0IIdfeiryWsXbuWQw89lIsuuojrr7+eRYsWcdhhh/HVV18B8OWXX1KrVi3q1KnD+vXrefnllwFo1qwZH3zwAXl5eQCJWa4APXr04IEHHkiEvYsXL96h3SlTpjBo0CA+/PBD8vLyWLNmDY0bN07MnF2wYAGrV68mPz+fyZMn07FjRwDy8/OZMmUKAE899VRie2nt27dPrLs7YcKERLnatWvTpk0brr76anr16kX16tU5/PDDady4Mc888wxQEEQvXboUgA4dOpSoR5IkSZIkSdK+a5dBbozxDWBDqc1nA48Xfv84cE4Zx70XY3y/8Pu1wKfA9/eqt8W88847tGnThszMTO68805uvvlmhg4dyumnn063bt3IyMigZcuWpKWlMWTIEDp06ADAIYccwh//+Ed69uxJx44dqV+/fmJZhltuuYXt27eTnp5O8+bNEzcJK75G7sSJE+nTp0+Jvpx33nk89dRTALRr146RI0fSvHlzGjdunChbq1YtVqxYQatWrZg5cya33nprmed1//3389hjj5Gens4TTzzBmDFjEvv69evHk08+WWIphgkTJjB27FgyMjJIS0tL3KBtzJgxPPjgg7Ru3ZqNGzfu9eMtSZIkSZIkqeqEnS01kCgUQiPgpWJLK3wRY6xbbP+/Y4xH7OT4NhQEvmkxxvxdtZednR1zcnKKjt3pcgh7YtOmTdSuXZsYI1deeSXHH388I0aM2Ot6X3/9dUaNGsVLL720w77atWuzadOmvW5DklS1KuP3kiRJkiRp/xVCyI0xZu9tPZV+s7MQwtHAE8DFOwtxQwhDQwg5IYSczz77rFL79Oijj5KZmUlaWhobN27ksssuq9T2JEmSJEmSJGlv7OmM3L8DXWOM6wqD2tdjjDvcISyEcDjwOvC/McZndrdTlT0jV5KkPeXvJUmSJEnSd1HVM3JfAH5W+P3PgOdLFwgh1ASmAn/+LiGuJEmSJEmSJKmkXQa5Ifx/7N15fFTV/f/x9wcQNxBQcUGQTWQJyYSQsIdFZFEQZVNxI6BYW9SCDyloq6LW/nArRa1SkU2kioogtYigAqICEjDQoBRQIyCUVZCwCEk+vz+SzDc7gQEykNfz8cgjmXvPPefcmTOX4Z2Tc+1NSYsl1TezTWZ2p6RRkjqZ2TpJnbIey8xizey1rENvlNRWUoKZJWV9RR/PzleoUCHX40mTJunee+/V3Llz1bJly+CMqfT0dEVHR+vLL7+UJL366qtq0KCBGjRooNjYWC1YsECSNHLkSD300EO56kxKSlLDhg0lSbVq1dKOHTuC+2bMmCEz05o1a4rV3wkTJigyMjJ4M7XsG5MVJvt8QpWSkhK8Gdup4C9/+ctxrW/SpEnavHnzca3zaNtZs2aNoqOj1aRJE3333XcnvC9S5prN2WNeksaOHavXX3/9mOo6EWPorrvu0jfffCMp92uekpKixo0bH7d2Nm/erD59+hy3+o7WrFmzNGrUqBJr/1jkvbYW5IUXXlDDhg116623FuscW7Vqdby6d1S2bNmi7t27S8p8T1SqVElNmjRRw4YN9fjjjwe3Z5f54IMP9Nhjj5VIXwEAAAAAKMoRg1x37+ful7r7Ge5e3d3Hu/tOd+/o7vWyvu/KKpvo7ndl/fxG1jHROb6STvQJSVLnzp1Vs2ZNjR8/XpL04osvKi4uTq1atdIHH3ygf/zjH/r888+1Zs0avfrqq7rtttv0008/qV+/fpo2bVquut566y3dcsstBbbz5ptvqk2bNnrrrbeO2KdNmzbpqaee0ueff65Vq1ZpyZIlioqKCv1ki+F0CXLdXRkZR7xXXj7hEOTOnDlT119/vb7++mvVrVv3iHUd67nmlDfIveeee3THHXccU10nYgy99tpratSokaTjH95nS0tLU7Vq1fTuu++ekLqLo0ePHhoxYsRxb7+kvfzyy5o9e7amTp1arHPMORZPpr/+9a8aNGhQ8HF8fLy+/vprJSYm6o033tDy5ctzle/WrZtmzZql/fv3n+yuAgAAAABQpBN+s7OSMnr0aP2///f/tHr1ar300kt6+umnJUlPP/20nn32WV144YWSpJiYGA0YMEB///vfVb9+fVWuXFlLly4N1vP222/r5ptvzld/amqqvvjiC40fP75YQe62bdtUsWLF4Ey3ChUqqHbt2pKk9u3bK3tN4B07dqhWrVrB4zZu3KiuXbuqfv36wdljkvT6668rKipKgUBAt99+uyQpISEhV2CV3daIESO0aNEiRUdHa/To0UpJSVF8fLxiYmIUExMTDFgWLFig9u3bq0+fPmrQoIFuvfXW4Kzm5cuXq127dmratKm6dOmiLVu2SMqcsdyiRQtFRUWpZ8+e+vnnn4s8p9WrV6tZs2aKjo5WVFSU1q1bl+t5GjFihA4cOKDo6GjdeuutSklJUcOGDfW73/1OMTEx2rhxY3DGdUxMjPr27avU1FRJ0hNPPKG4uDg1btxYd999t9xd7777rhITE3XrrbcqOjpaBw4cUK1atfTwww+rZcuWio2N1YoVK9SlSxfVrVtXY8eODfbl2WefVVxcnKKiooIz9LL7M2jQIEVERKhz5846cOBAge1kmz17tv72t7/ptddeU4cOHSRlhkuNGzdW48aN9be//S1X3TnPNadatWpp+PDhatasmZo1a6b169dLkv71r3+pefPmatKkia6++mpt3bpVKSkpGjt2rEaPHq3o6GgtWrRII0eO1HPPPSdJ+u6779S1a1c1bdpU8fHxwVnlCQkJuv/++9WqVSvVqVMnOJ7yjqEjvY5vv/22HnjgAUnSmDFjVKdOnWC7bdq0yTVG8r7mUuYs+rzPcV4JCQm65557FB8fryuvvFIffPCBpMxAvW/fvrruuuvUuXPnXDN8J02apBtuuEHXXXedateurZdeekl//etf1aRJE7Vo0UK7du2SlHlDxLi4OAUCAfXu3TsY6iUkJOiBBx5Qhw4dNGzYMNWrV0/ZN2fMyMjQFVdckWvWfnab2TPrExIS9Nvf/lYdOnRQnTp1tHDhQg0cOFANGzZUQkJC8JgKFSpo+PDhatq0qa6++mp99dVXat++verUqaNZs2blq1eSunfvHvzrggoVKuiPf/yjAoGAWrRooa1bt0qSfvzxR3Xs2FFRUVHq2LGjNmzYIEn64Ycf1LJlS8XFxemRRx7J1f+C3gf33HOPvv/+e/Xo0UOjR4/O1ZetW7eqZ8+eCgQCCgQCwetLzlm+R/PekqT169fr6quvViAQUExMjL777jvdfvvtuf6qIXtmcF7Tp09X165d820/99xz1bRp03wz5M1M7du3D44nAAAAAADChruH3VfTpk09W2YXC1amTBkPBALBrxo1avjgwYOD+1944QWvWLGiT5w4MbitSpUqvnv37lz1zJw506+//np3d3/mmWd8yJAh7u6+ePFij42NDZarWbOmb9++3d3dp0yZ4gMHDnR395YtW/ry5csL7ae7e1pamnfu3Nlr1KjhCQkJPmvWrOC+du3a+bJly9zdffv27V6zZk13d584caJfcsklvmPHDt+/f79HRET4smXLPDk52a+88spgX3bu3Onu7v379/d33nknWO+5557r7u7z58/3bt26Bbfv27fPDxw44O7ua9eu9ezne/78+X7eeef5xo0bPT093Vu0aOGLFi3yQ4cOecuWLX3btm3u7v7WW2/5gAED3N09MjLSFyxY4O7ujzzyiP/+978v8pzuvfdef+ONN9zd/ddff/X9+/fne66y++3u/sMPP7iZ+cYauRIAACAASURBVOLFi4N1xcfHe2pqqru7jxo1yh9//PFcz4O7+2233RZ8jnP2xT3zdXz55Zfd3X3IkCEeGRnpv/zyi2/bts2rVq3q7u4fffSRDxo0yDMyMjw9Pd27devmCxcu9B9++MHLli3rX3/9tbu79+3b16dMmVJgOzk99thj/uyzz7q7e2Jiojdu3NhTU1N979693qhRI1+xYkW+c82rZs2a/uc//9nd3SdPnhx8TXft2uUZGRnu7j5u3Dh/4IEH8rWZ9/FVV13la9eudXf3JUuWeIcOHdw9cwz16dPH09PTffXq1V63bl13zz+GjvQ6btmyJfje6d27t8fGxvqmTZt80qRJPmLEiHzPV97XvLDnOKf+/ft7ly5dPD093deuXeuXXXaZHzhwwCdOnOiXXXZZcDz88MMPHhER4e6Z76m6desGX+/zzjvPX3nlFXfPHAujR492d/cdO3YE2/njH//oL7zwQrDNbt26eVpamru7jxw5MnjMRx995L169crXz4kTJwavS/379/ebbrrJMzIyfObMmV6xYkVftWqVp6ene0xMTPCcJfns2bPd3f2GG27wTp06+aFDhzwpKckDgUC+et3du3Xr5vPnzw8enz3+hw0b5k8++aS7u3fv3t0nTZrk7u7jx48PXveuu+46nzx5sru7v/TSS8HXo7D3gXvu62HOvtx4443B5yQtLS14vT1SnUW97s2aNfP33nvP3d0PHDjg+/bt8wULFgT7v3v3bq9Vq5YfPnw413P//fffe0xMTPBxznG8Y8cOr1mzpicnJ+cb32+88Ybfe++9+V7LbEX9uwQAAAAAQF6SEv04ZKblSjRFDtHZZ5+tpKT/W61h0qRJwVmgkjR48GCNGDEi10y3gniOu4/ffPPNatWqlZ5//nm99dZb6tevX4HHvPnmmxoyZEjwmDfffFMxMTGFtlG2bFnNmTNHy5Yt0yeffKKhQ4dq+fLlGjlyZJF969Spky644AJJUq9evfT555+rbNmy6tOnT3BW8fnnn19kHXkdPnxY9957r5KSklS2bFmtXbs2uK9Zs2aqXr26JCk6OlopKSmqXLmykpOT1alTJ0mZsyUvvfRS7dmzR7t371a7du0kSf3791ffvn2LbLtly5Z66qmntGnTJvXq1Uv16tU7Yn9r1qypFi1aSJKWLFmib775Rq1bt5YkHTp0SC1btpQkzZ8/X88884z279+vXbt2KSIiQtddd12Bdfbo0UOSFBkZqdTUVFWsWFEVK1bUWWedpd27d2vu3LmaO3eumjRpIilzBva6det0+eWXq3bt2oqOzlzuuWnTpkpJSTniOeT0+eefq2fPnjr33HMlZb6uixYtUo8ePXKda0Gyx2O/fv00dOhQSZnLdtx0003asmWLDh06FJzpXZjU1FR9+eWXuV6rX3/9NfjzDTfcoDJlyqhRo0bBmZx5Hel1vOSSS5Samqq9e/dq48aNuuWWW/TZZ59p0aJF6tWrV5H9k1Ts5/jGG29UmTJlVK9ePdWpUyc4s7hTp06Fvi86dOgQfL0rVaoUHCORkZFatWqVJCk5OVl/+tOftHv3bqWmpqpLly7B4/v27auyZctKkgYOHKjrr79eQ4YM0YQJEzRgwIAjntt1110nM1NkZKQuvvhiRUZGSpIiIiKUkpKi6OholS9fPjiLNDIyUmeeeabOOOMMRUZGFmu8lS9fPrjma9OmTTVv3jxJ0uLFi/Xee+9Jkm6//Xb94Q9/kCR98cUXmj59enD78OHDJanQ90Hbtm0LbfvTTz8NrsVctmxZVapUKdf+o31v7d27Vz/99JN69uwpSTrrrLMkSe3atdPgwYO1bds2vffee+rdu7fKlcv9T9qWLVtUtWrVXNsWLVqkJk2aqEyZMhoxYoQiIiKCM5mzXXTRRSdlORYAAAAAAI7GKR3kHkmZMmVkZrm2NWrUSMuXL9dVV10V3LZixQrFxsZKkmrUqKFatWpp4cKFmj59uhYvXpyv3p07d+rTTz9VcnKyzEzp6ekyMz3zzDP52svJzIJ/Ft+pUycNGDBAI0eOVLly5YLroR48eDDfMXkfu3uB7eSsx9116NChAvsxevRoXXzxxVq5cqUyMjKCwYgknXnmmcGfy5Ytq7S0NLm7IiIi8j0Xe/bsKfRcCzunW265Rc2bN9e///1vdenSRa+99lqu16Ig2YFn9nl16tRJb775Zq4yBw8e1O9+9zslJiaqRo0aGjlyZL7nMqfs8yxTpkyucy5TpkzwnB966CH95je/yXVcSkpKvueooD/7L0rOXxzklfNcC5Lzdc/++b777tMDDzygHj16aMGCBUf85UBGRoYqV66c65cgOeU8v8L6WpzXsWXLlpo4caLq16+v+Ph4TZgwQYsXL9bzzz9fZP/y9qGo57ig94dU9POY9/XOORay171NSEjQzJkzFQgENGnSpFxBX866a9SooYsvvliffvqpli5dqqlTpxb73Aobe5J0xhlnBM+lsD7mfI9Jud9nOY/Pfh8XpKDxlFNh74NQHO17q6j3y+23366pU6fqrbfe0oQJE/LtP/vss/NdB+Lj44+4bMLBgwd19tlnF+d0AAAAAAA4aU7bNXIL84c//EHDhw/Xzp07JWWu8TpjxoxcoUL2bMe6desGZ6fm9O677+qOO+7Qjz/+qJSUFG3cuFG1a9fW559/Xmi7mzdv1ooVK4KPk5KSVLNmTUmZa59m33An702Z5s2bp127dunAgQOaOXOmWrdurY4dO+rtt98OnkP2up4563n//fd1+PBhSVLFihW1d+/eYJ179uzRpZdeqjJlymjKlClKT08v8jmrX7++tm/fHgxyDx8+rNWrV6tSpUqqUqWKFi1aJEmaMmVKcHZuYef0/fffq06dOrr//vvVo0eP4AzInM4444xg3/Nq0aKFvvjii+D6sPv379fatWuDYc2FF16o1NTUXG3mPf/i6NKliyZMmBBcf/enn37Stm3bijymuO20bdtWM2fO1P79+7Vv3z7NmDFD8fHxxepX9s34pk2bFpyJvGfPHl122WWSpMmTJx+xP+edd55q166td955R1JmsLZy5cqjOrfivI5t27bVc889p7Zt26pJkyaaP3++zjzzzHwzNKWiX/OivPPOO8rIyNB3332n77//XvXr1z/qOgqyd+9eXXrppTp8+PARw9m77rpLt912m2688cbgTN2ToVatWkpKSlJGRoY2btyor7766ojHtGrVKrim99SpU4PrFbdu3TrX9mzH8j7o2LGjXnnlFUmZs/d/+eWXXPuPts7zzjtP1atX18yZMyVlzh7PuWZx9hrTERER+Y698sorj3rGvCStXbs2uK4yAAAAAADhotQFuT169NCdd96p1q1b64orrlCbNm00c+bMXH9+27dvX61evbrAm5xJmcsqZP+Zb7bevXvrn//8Z6HtHj58WA8++KAaNGig6OhoTZs2TWPGjJEkPfjgg3rllVfUqlWrfDdKatOmjW6//XZFR0erd+/eio2NVUREhP74xz+qXbt2CgQCwZtKDRo0SAsXLlSzZs20dOnS4MzBqKgolStXToFAQKNHj9bvfvc7TZ48WS1atNDatWuPOAu0fPnyevfddzV8+HAFAgFFR0cHb2A0efJkDRs2TFFRUUpKStKjjz5a5DlNmzZNjRs3VnR0tNasWaM77rgjX3t33323oqKigje+yqlq1aqaNGmS+vXrp6ioKLVo0UJr1qxR5cqVNWjQIEVGRuqGG25QXFxc8Jjsm2LlvQlZUTp37qxbbrlFLVu2VGRkpPr06XPEkLa47cTExCghIUHNmjVT8+bNdddddwX/zPxIfv31VzVv3lxjxozR6NGjJUkjR45U3759FR8fH1xuQ8r8E/4ZM2YEb3aW09SpUzV+/HgFAgFFRETkumlUQfKOoeK8jvHx8dq4caPatm2rsmXLqkaNGsHgMK+iXvOi1K9fX+3atdM111yjsWPH5ppdHoonn3xSzZs3V6dOndSgQYMiy/bo0UOpqanFWlbheGrdurVq166tyMhIPfjgg0Uu7ZLthRde0MSJExUVFaUpU6YEr0FjxozR3//+d8XFxeWaaX8s74MxY8Zo/vz5ioyMVNOmTbV69epc+4+lzilTpuiFF15QVFSUWrVqpf/973+SpIsvvlgNGzYs9Lk/99xzVbdu3eAvfopr/vz56tat21EdAwAAAADAiWZF/dlqSYmNjfXstW6zlxI4EdLS0jRgwABlZGTojTfeKHJZBKCk1apVS4mJibnC2tIsISFB3bt3V58+fUq0H4mJiRo6dGi+sBwn3v79+xUZGakVK1YUONNbkmbMmKHly5frz3/+c7Hq3Lp1q2655RZ98sknhZY5kf8uAQAAAABOP2a23N1jQ63ntF4j90jKlSunKVOmlHQ3AJyiRo0apVdeeaVYa+Pi+Pr44481cOBAPfDAA4WGuJLUs2fP4DI0xbFhw4ZireMMAAAAAMDJVqpn5AIAcLT4dwkAAAAAcDSO14zcUrdGLgAAAAAAAACcaghyAQAAAAAAACDMhX2QW6ZMGR06dKikuwEAgA4dOqQyZcL+n04AAAAAwGko7P83GhMTo+eee44wFwBQog4dOqTnnntOMTExJd0VAAAAAEApVK6kO3AkM2bMUM+ePfXII48oIyOjpLsDACilypQpo5iYGM2YMaOkuwIAAAAAKIXCPsitXr26li1bVtLdAAAAAAAAAIASE/ZLKwAAAAAAAABAaUeQCwAAAAAAAABhrlhBrplNMLNtZpacY9v5ZjbPzNZlfa9SyLH9s8qsM7P+x6vjAAAAAAAAAFBaFHdG7iRJXfNsGyHpE3evJ+mTrMe5mNn5kh6T1FxSM0mPFRb4AgAAAAAAAAAKVqwg190/k7Qrz+brJU3O+nmypBsKOLSLpHnuvsvdf5Y0T/kDYQAAAAAAAABAEUJZI/did98iSVnfLyqgzGWSNuZ4vClrWz5mdreZJZpZ4vbt20PoFgAAAAAAAACcXk70zc6sgG1eUEF3f9XdY909tmrVqie4WwAAAAAAAABw6igXwrFbzexSd99iZpdK2lZAmU2S2ud4XF3SgiNVvHnzZpkVlAEDAAAAAAAAQOkTSpA7S1J/SaOyvr9fQJmPJP0lxw3OOkt66EgVV6tWTZs3bw6hawAAAAAAAABQ8o7XhNViLa1gZm9KWiypvpltMrM7lRngdjKzdZI6ZT2WmcWa2WuS5O67JD0paVnW1xNZ2wAAAAAAAAAAxWTuBS5ZW6JiY2M9MTGxpLsBAAAAAAAAACExs+XuHhtqPSf6ZmcAAAAAAAAAgBAR5AIAAAAAAABAmCPIBQAAAAAAAIAwR5ALAAAAAAAAAGGOIBcAAAAAAAAAwhxBLgAAAAAAAACEOYJcAAAAAAAAAAhzBLkAAAAAAAAAEOYIcgEAAAAAAAAgzBHkAgAAAAAAAECYI8gFAAAAAAAAgDBHkAsAAAAAAAAAYY4gFwAAAAAAAADCHEEuAAAAAAAAAIQ5glwAAAAAAAAACHMEuQAAAAAAAAAQ5ghyAQAAAAAAACDMhRTkmtnvzSzZzFab2ZAC9lcys3+Z2cqsMgNCaQ8AAAAAAAAASqNjDnLNrLGkQZKaSQpI6m5m9fIUGyzpG3cPSGov6XkzK3+sbQIAAAAAAABAaRTKjNyGkpa4+353T5O0UFLPPGVcUkUzM0kVJO2SlBZCmwAAAAAAAABQ6oQS5CZLamtmF5jZOZKulVQjT5mXlBn4bpb0H0m/d/eMgiozs7vNLNHMErdv3x5CtwAAAAAAAADg9HLMQa67fyvpaUnzJM2RtFL5Z9t2kZQkqZqkaEkvmdl5hdT3qrvHunts1apVj7VbAAAAAAAAAHDaCelmZ+4+3t1j3L2tMpdNWJenyABJ73mm9ZJ+kNQglDYBAAAAAAAAoLQJKcg1s4uyvl8uqZekN/MU2SCpY1aZiyXVl/R9KG0CAAAAAAAAQGlTLsTjp5vZBZIOSxrs7j+b2T2S5O5jJT0paZKZ/UeSSRru7jtCbBMAAAAAAAAASpWQglx3jy9g29gcP2+W1DmUNgAAAAAAAACgtAtpaQUAAAAAAAAAwIlHkAsAAAAAAAAAYY4gFwAAAAAAAADCHEEuAAAAAAAAAIQ5glwAAAAAAAAACHMEuQAAAAAAAAAQ5ghyAQAAAAAAACDMEeQCAAAAAAAAQJgjyAUAAAAAAACAMEeQCwAAAAAAAABhjiAXAAAAAAAAAMIcQS4AAAAAAAAAhDmCXAAAAAAAAAAIcwS5AAAAAAAAABDmCHIBAAAAAAAAIMwR5AIAAAAAAABAmCPIBQAAAAAAAIAwF1KQa2a/N7NkM1ttZkMKKdPezJKyyiwMpT0AAAAAAAAAKI3KHeuBZtZY0iBJzSQdkjTHzP7t7utylKks6WVJXd19g5ldFGqHAQAAAAAAAKC0CWVGbkNJS9x9v7unSVooqWeeMrdIes/dN0iSu28LoT0AAAAAAAAAKJVCCXKTJbU1swvM7BxJ10qqkafMlZKqmNkCM1tuZncUVpmZ3W1miWaWuH379hC6BQAAAAAAAACnl2NeWsHdvzWzpyXNk5QqaaWktALqbyqpo6SzJS02syXuvraA+l6V9KokxcbG+rH2CwAAAAAAAABONyHd7Mzdx7t7jLu3lbRL0ro8RTZJmuPu+9x9h6TPJAVCaRMAAAAAAAAASpuQgtzsm5eZ2eWSekl6M0+R9yXFm1m5rOUXmkv6NpQ2AQAAAAAAAKC0OealFbJMN7MLJB2WNNjdfzazeyTJ3cdmLb8wR9IqSRmSXnP35BDbBAAAAAAAAIBSJaQg193jC9g2Ns/jZyU9G0o7AAAAAAAAAFCahbS0AgAAAAAAAADgxCPIBQAAAAAAAIAwR5ALAAAAAAAAAGGOIBcAAAAAAAAAwhxBLgAAAAAAAACEOYJcAAAAAAAAAAhzBLkAAAAAAAAAEOYIcgEAAAAAAAAgzBHkAgAAAAAAAECYI8gFAAAAAAAAgDBHkAsAAAAAAAAAYY4gFwAAAAAAAADCHEEuAAAAAAAAAIQ5glwAAAAAAAAACHMEuQAAAAAAAAAQ5ghyAQAAAAAAACDMEeQCAAAAAAAAQJgLKcg1s9+bWbKZrTazIUWUizOzdDPrE0p7AAAAAAAAAFAaHXOQa2aNJQ2S1ExSQFJ3M6tXQLmykp6W9NGxtgUAAAAAAAAApVkoM3IbSlri7vvdPU3SQkk9Cyh3n6TpkraF0BYAAAAAAAAAlFqhBLnJktqa2QVmdo6kayXVyFnAzC5TZrg79kiVmdndZpZoZonbt28PoVsAAAAAAAAAcHo55iDX3b9V5pIJ8yTNkbRSUlqeYn+TNNzd04tR36vuHuvusVWrVj3WbgEAAAAAAADAaadcKAe7+3hJ4yXJzP4iaVOeIrGS3jIzSbpQ0rVmlubuM0NpFwAAAAAAAABKk5CCXDO7yN23mdnlknpJaplzv7vXzlF2kqQPCHEBAAAAAAAA4OiEFORKmm5mF0g6LGmwu/9sZvdIkrsfcV1cAAAAAAAAAMCRhbq0QnwB2woMcN09IZS2AAAAAAAAAKC0OuabnQEAAAAAAAAATg6CXAAAAAAAAAAIcwS5AAAAAAAAABDmCHIBAAAAAAAAIMwR5AIAAAAAAABAmCPIBQAAAAAAAIAwR5ALAAAAAAAAAGGOIBcAAAAAAAAAwhxBLgAAAAAAAACEOYJcAAAAAAAAAAhzBLkAAAAAAAAAEOYIcgEAAAAAAAAgzBHkAgAAAAAAAECYI8gFAAAAAAAAgDBHkAsAAAAAAAAAYY4gFwAAAAAAAADCXEhBrpn93sySzWy1mQ0pYP+tZrYq6+tLMwuE0h4AAAAAAAAAlEbHHOSaWWNJgyQ1kxSQ1N3M6uUp9oOkdu4eJelJSa8ea3sAAAAAAAAAUFqFMiO3oaQl7r7f3dMkLZTUM2cBd//S3X/OerhEUvUQ2gMAAAAAAACAUimUIDdZUlszu8DMzpF0raQaRZS/U9KHhe00s7vNLNHMErdv3x5CtwAAAAAAAADg9FLuWA9092/N7GlJ8ySlSlopKa2gsmbWQZlBbpsi6ntVWUsvxMbG+rH2CwAAAAAAAABONyHd7Mzdx7t7jLu3lbRL0rq8ZcwsStJrkq53952htAcAAAAAAAAApdExz8iVJDO7yN23mdnlknpJapln/+WS3pN0u7uvDaUtAAAAAAAAACitQgpyJU03swskHZY02N1/NrN7JMndx0p6VNIFkl42M0lKc/fYENsEAAAAAAAAgFIlpCDX3eML2DY2x893SborlDYAAAAAAAAAoLQLaY1cAAAAAAAAAMCJR5ALAAAAAAAAAGGOIBcAAAAAAAAAwhxBLgAAAAAAAACEOYJcAAAAAAAAAAhzBLkAAAAAAAAAEOYIcgEAAAAAAAAgzBHkAgAAAAAAAECYI8gFAAAAAAAAgDBHkAsAAAAAAAAAYY4gFwAAAAAAAADCHEEuAAAAAAAAAIQ5glwAAAAAAAAACHMEuQAAAAAAAAAQ5ghyAQAAAAAAACDMEeQCAAAAAAAAQJgjyAUAAAAAAACAMBdSkGtmvzezZDNbbWZDCthvZvaCma03s1VmFhNKewAAAAAAAABQGh1zkGtmjSUNktRMUkBSdzOrl6fYNZLqZX3dLemVY20PAAAAAAAAAEqrUGbkNpS0xN33u3uapIWSeuYpc72k1z3TEkmVzezSENoEAAAAAAAAgFInlCA3WVJbM7vAzM6RdK2kGnnKXCZpY47Hm7K25WNmd5tZopklbt++PYRuAQAAAAAAAMDp5ZiDXHf/VtLTkuZJmiNppaS0PMWsoEMLqe9Vd49199iqVasea7cAAAAAAAAA4LQT0s3O3H28u8e4e1tJuySty1Nkk3LP0q0uaXMobQIAAAAAAABAaRNSkGtmF2V9v1xSL0lv5ikyS9IdlqmFpD3uviWUNgEAAAAAAACgtCkX4vHTzewCSYclDXb3n83sHkly97GSZitz7dz1kvZLGhBiewAAAAAAAABQ6oQU5Lp7fAHbxub42SUNDqUNAAAAAAAAACjtQlpaAQAAAAAAAABw4hHkAgAAAAAAAECYI8gFAAAAAAAAgDBHkAsAAAAAAAAAYY4gFwAAAAAAAADCHEEuAAAAAAAAAIQ5glwAAAAAAAAACHPm7iXdh3zMbK+k/5Z0P4BjdKGkHSXdCeAYMX5xKmP84lTG+MWpjjGMUxnjF6cyxu+poaa7Vw21knLHoycnwH/dPbakOwEcCzNLZPziVMX4xamM8YtTGeMXpzrGME5ljF+cyhi/pQtLKwAAAAAAAABAmCPIBQAAAAAAAIAwF65B7qsl3QEgBIxfnMoYvziVMX5xKmP84lTHGMapjPGLUxnjtxQJy5udAQAAAAAAAAD+T7jOyAUAAAAAAAAAZCHIBQAAAAAAAIAwV2JBrpl1NbP/mtl6MxtRwP4zzWxa1v6lZlbr5PcSKJiZ1TCz+Wb2rZmtNrPfF1CmvZntMbOkrK9HS6KvQEHMLMXM/pM1NhML2G9m9kLWNXiVmcWURD+BvMysfo7rapKZ/WJmQ/KU4fqLsGFmE8xsm5kl59h2vpnNM7N1Wd+rFHJs/6wy68ys/8nrNfB/ChnDz5rZmqzPCDPMrHIhxxb5eQM40QoZvyPN7KccnxOuLeTYIjML4EQrZPxOyzF2U8wsqZBjuf6epkpkjVwzKytpraROkjZJWiapn7t/k6PM7yRFufs9ZnazpJ7uftNJ7yxQADO7VNKl7r7CzCpKWi7phjxjuL2kB929ewl1EyiUmaVIinX3HYXsv1bSfZKuldRc0hh3b37yeggcWdbniZ8kNXf3H3Nsby+uvwgTZtZWUqqk1929cda2ZyTtcvdRWeFAFXcfnue48yUlSoqV5Mr8rNHU3X8+qSeAUq+QMdxZ0qfunmZmT0tS3jGcVS5FRXzeAE60QsbvSEmp7v5cEccdMbMATrSCxm+e/c9L2uPuTxSwL0Vcf09LJTUjt5mk9e7+vbsfkvSWpOvzlLle0uSsn9+V1NHM7CT2ESiUu29x9xVZP++V9K2ky0q2V8Bxdb0yPzC4uy+RVDnrFxhAOOko6bucIS4Qbtz9M0m78mzO+Tl3sqQbCji0i6R57r4rK7ydJ6nrCesoUIiCxrC7z3X3tKyHSyRVP+kdA4qhkGtwcRQnswBOqKLGb1Y+dqOkN09qp1DiSirIvUzSxhyPNyl/CBYsk/UhYY+kC05K74CjkLXsRxNJSwvY3dLMVprZh2YWcVI7BhTNJc01s+VmdncB+4tznQZK2s0q/MMr11+Es4vdfYuU+cthSRcVUIbrME4VAyV9WMi+I33eAErKvVlLg0woZHkbrsEId/GStrr7ukL2c/09TZVUkFvQzNq8azwUpwxQosysgqTpkoa4+y95dq+QVNPdA5JelDTzZPcPKEJrd4+RdI2kwVl/tpMT12CENTMrL6mHpHcK2M31F6cDrsMIe2b2R0lpkqYWUuRInzeAkvCKpLqSoiVtkfR8AWW4BiPc9VPRs3G5/p6mSirI3SSpRo7H1SVtLqyMmZWTVEnH9icRwAlhZmcoM8Sd6u7v5d3v7r+4e2rWz7MlnWFmF57kbgIFcvfNWd+3SZqhzD8fy6k412mgJF0jaYW7b827g+svTgFbs5eryfq+rYAyXIcR1rJuwNdd0q1eyI1XivF5Azjp3H2ru6e7e4akcSp4XHINRtjKysh6SZpWWBmuv6evkgpyl0mqZ2a1s2bU3CxpVp4ysyRl3523jzIX0+c3YAgLWevRjJf0rbv/tZAyl2Sv62xmzZT5ftt58noJFMzMzs26SZ/M7FxJnSUl5yk2S9IdlqmFMhfR33KSuwoUpdBZCFx/cQrI+Tm3v6T3CyjzkaTOZlYl689+O2dtA0qcmXWVNFxSD3ffX0iZ4nzeAE66PPd96KmCx2VxMgugpFwtlmN70AAAIABJREFUaY27bypoJ9ff01u5kmg06+6m9yrzw2hZSRPcfbWZPSEp0d1nKTMkm2Jm65U5E/fmkugrUIjWkm6X9B8zS8ra9rCkyyXJ3ccq8xcQvzWzNEkHJN3MLyMQJi6WNCMr5yon6Z/uPsfM7pGC43e2pGslrZe0X9KAEuorkI+ZnaPMu0j/Jse2nOOX6y/Chpm9Kam9pAvNbJOkxySNkvS2md0paYOkvlllYyXd4+53ufsuM3tSmWGCJD3h7vx1Gk66QsbwQ5LOlDQv6/PEEne/x8yqSXrN3a9VIZ83SuAUUIoVMn7bm1m0MpdKSFHW54mc47ewzKIETgGlWEHj193Hq4D7RHD9LT2M/9cAAAAAAAAAQHgrqaUVAAAAAAAAAADFRJALAAAAAAAAAGGOIBcAAAAAAAAAwhxBLgAAAAAAAACEOYJcAAAAAAAAAAhzBLkAAAAAAAAAEOYIcgEAAAAAAAAgzBHkAgAAAAAAAECYI8gFAAAAAAAAgDBHkAsAAAAAAAAAYY4gFwAAAAAAAADCHEEuAAAAAAAAAIQ5glwAAAAAAAAACHMEuQAAAAAAAAAQ5ghyAQAAAAAAACDMEeQCAAAAAAAAQJgjyAUAAAAAAACAMEeQCwAAAAAAAABhjiAXAAAAAAAAAMIcQS4AAAAAAAAAhLlyJd2BglxwwQVevXr1ku4GAAAAAAAAAIRk1apVO9y9aqj1hGWQW716dc2dO7ekuwEAAAAAAAAAIbnkkkt+PB71sLQCAAAAAAAAAIS5sJyRm9PmzZs1cOBArVq1ShkZGSXdHeCUVaZMGUVFRWnChAmqVq1aSXcHAAAAAAAARyHsg9yBAweqb9++Wrp0qcqXL1/S3QFOWYcOHdKzzz6rgQMHas6cOSXdHQAAAAAAABwFc/eS7kM+gUDAs9fIrVatmg4cOECICxwHhw4d0tlnn63NmzeXdFcAAAAAAABKhUsuuWS5u8eGWk/Yr5GbkZFBiAscJ+XLl2eJEgAAAAAAgFNQ2Ae5AAAAAAAAAFDaEeQCAAAAAAAAQJg7bkGumU0ws21mlpxn+31m9l8zW21mzxyv9gAAAAAAAACgtDieM3InSeqac4OZdZB0vaQod4+Q9NxxbK9Af/vb37R///4T3YzKli2r6OhoNW7cWH379tX+/fuVkpKixo0bn/C2JengwYNq1qyZAoGAIiIi9Nhjj52UdgEAAAAAAACcfMctyHX3zyTtyrP5t5JGufuvWWW2Ha/2CnOygtyzzz5bSUlJSk5OVvny5TV27NgT3mZOZ555pj799FOtXLlSSUlJmjNnjpYsWXJS+wAAAAAAAADg5DjRa+ReKSnezJaa2UIziyusoJndbWaJZpa4a1fePDi/ffv2qVu3bgoEAmrcuLGmTZumF154QZs3b1aHDh3UoUMHSdJvf/tbxcbG5pu1Onv2bDVo0EBt2rTR/fffr+7duwfrHThwoOLi4tSkSRO9//77R+xLfHy81q9fL0lKT0/XoEGDFBERoc6dO+vAgQOSpHHjxikuLk6BQEC9e/cOhs3vvPOOGjdurEAgoLZt2wbrGDZsmOLi4hQVFaV//OMfBT1fqlChgiTp8OHDOnz4sMzsiH0FAAAAAAAAcOo50UFuOUlVJLWQNEzS21ZI2ujur7p7rLvHnn/++UeseM6cOapWrZpWrlyp5ORkde3aVffff7+qVaum+fPna/78+ZKkp556SomJiVq1apUWLlyoVatW6eDBg/rNb36jDz/8UJ9//rm2b98erPepp57SVVddpWXLlmn+/PkaNmyY9u3bp82bN+vaa6/N14+0tDR9+OGHioyMlCStW7dOgwcP1urVq1W5cmVNnz5dktSrVy8tW7ZMK1euVMOGDTV+/HhJ0hNPPKGPPvpIK1eu1KxZsyRJ48ePV6VKlbRs2TItW7ZM48aN0w8//JCv7fT0dEVHR+uiiy5Sp06d1Lx58yM+bwAAAAAAAABOPSc6yN0k6T3P9JWkDEkXHo+KIyMj9fHHH2v48OFatGiRKlWqVGC5t99+WzExMWrSpIlWr16tb775RmvWrFGdOnVUu3ZtSVK/fv2C5efOnatRo0YpOjpa7du318GDB7VhwwZVq1ZNs2fPDpY7cOCAoqOjFRsbq8svv1x33nmnJKl27dqKjo6WJDVt2lQpKSmSpOTkZMXHxysyMlJTp07V6tWrJUmtW7dWQkKCxo0bp/T09GAfXn/9dUVHR6t58+bauXOn1q1bl+/cypYtq6SkJG3atElfffWVkpOT85UBAAAAAAAAcOord4LrnynpKkkLzOxKSeUl7TgeFV955ZVavny5Zs+erYceekidO3fWo48+mqvMDz/8oOeee07Lli1TlSpVlJCQoIMHD8rdC63X3TV9+nTVr1+/yPaz18jN68wzzwz+XLZs2eDSCgkJCZo5c6YCgYAmTZqkBQsWSJLGjh2rpUuX6t///reio6OVlJQkd9eLL76oLl26FOu5qFy5stq3b685c+actJutAQAAAAAAADh5jtuMXDN7U9JiSfXNbJOZ3SlpgqQ6ZpYs6S1J/b2oFPUobN68Weecc45uu+02Pfjgg1qxYoUkqWLFitq7d68k6ZdfftG5556rSpUqaevWrfrwww8lSQ0aNND3338fnC07bdq0YL1dunTRiy++GAx7v/766+PRXe3du1eXXnqpDh8+rKlTpwa3f/fdd2revLmeeOIJXXjhhdq4caO6dOmiV155RYcPH5YkrV27Vvv27ctV3/bt27V7925JmbODP/74YzVo0OC49BUAAAAAAABAeDluM3LdvV8hu247Xm3k9J///EfDhg1TmTJldMYZZ+iVV16RJN1999265pprdOmll2r+/Plq0qSJIiIiVKdOHbVu3VpS5mzal19+WV27dtWFF16oZs2aBet95JFHNGTIEEVFRcndVatWLX3wwQfavHmz7rrrrlzLKxyNJ598Us2bN1fNmjUVGRkZDJuHDRumdevWyd3VsWNHBQIBRUVFKSUlRTExMXJ3Va1aVTNnzsxV35YtW9S/f3+lp6crIyNDN954Y/CGbQAAAAAAAABOL3acJsgeV4FAwOfOnStJuuSSS4pcCuFYpaamqkKFCnJ3DR48WPXq1dPQoUOPeztAuDEz/e9//yvpbgAAAAAAAJQKl1xyyXJ3jw21nhN9s7OwNW7cOEVHRysiIkJ79uzRb37zm5LuEgAAAAAAAAAU6ETf7CxsDR06lBm4AAAAAAAAAE4JpXZGLgAAAAAAAACcKk7pILds2bKKjo5W48aN1bdvX+3fvz/X9uyvUaNGSZLS0tL08MMPq169esF9Tz311BHrq1ChQq52J02apHvvvVeS9Ne//lWNGjVSVFSUOnbsqB9//DFYbvLkyapXr57q1aunyZMnH/X5FdVutkAgoH79ct9nLiEhQe+++26++lavXq2rrrpKV155perVq6cnn3yy0PWH77zzzuCN1/r06aPU1FRJ0q+//qqbbrpJV1xxhZo3b66UlBRJ0s6dO9WhQwdVqFAhXx8Lk5CQoNq1ays6OloxMTFavHhxsY47WZKSknLd3G7WrFnBsQQAAAAAAACcTKd0kHv22WcrKSlJycnJKl++vMaOHZtre/bXiBEjJEl/+tOftHnzZv3nP/9RUlKSFi1apMOHDx+xvqI0adJEiYmJWrVqlfr06aM//OEPkqRdu3bp8ccf19KlS/XVV1/p8ccf188//3xcz//bb79VRkaGPvvsM+3bt6/IsgcOHFCPHj00YsQIrV27VitXrtSXX36pl19+ucDyo0eP1sqVK7Vq1SpdfvnleumllyRJ48ePV5UqVbR+/XoNHTpUw4cPlySdddZZevLJJ/Xcc88d1Tk8++yzSkpK0qhRo07oOsVpaWlHfUzeIDf7+TtVHMs5AwAAAAAAIDyd0kFuTvHx8Vq/fn2h+/fv369x48bpxRdf1FlnnSVJqlixokaOHHlM9WXr0KGDzjnnHElSixYttGnTJknSRx99pE6dOun8889XlSpV1KlTJ82ZM+coz6po//znP3X77berc+fOmjVr1hHLtm7dWp07d5YknXPOOXrppZcKnWF63nnnSZLcXQcOHJCZSZLef/999e/fX5LUp08fffLJJ3J3nXvuuWrTpk3wuT1abdu2DT7f48aNU1xcnAKBgHr37h2cGZ2QkKD7779frVq1Up06dXLNOn7mmWcUGRmpQCAQDFvbt2+vhx9+WO3atdOYMWO0fft29e7dW3FxcYqLi9MXX3whSfrqq6/UqlUrNWnSRK1atdJ///tfHTp0SI8++qimTZum6OhoTZs2LdeM6K1bt6pnz54KBAIKBAL68ssv853TnDlzFBMTo0AgoI4dOxbalpQ527pXr17q2rWr6tWrF/yFQGH17Nu3TwMHDlRcXJyaNGmi999/P1hP3759dd111wVfawAAAAAAAJz6ToubnaWlpenDDz9U165dJWXOPo2Ojg7uf+ihh9SwYUNdfvnlqlixYsj17dq1Sz169Mh33Pjx43XNNddIkn766SfVqFEjuK969er66aefjuq8jtTutGnTNG/ePP33v//VSy+9lG+JhZxWr16tpk2b5tpWt25dpaam6pdffgkGtzkNGDBAs2fPVqNGjfT888/nO69y5cqpUqVK2rlzpy688MKjOre8/vWvfykyMlKS1KtXLw0aNEhS5izq8ePH67777pMkbdmyRZ9//rnWrFmjHj16qE+fPvrwww81c+ZMLV26VOecc4527doVrHf37t1auHChJOmWW27R0KFD1aZNG23YsEFdunTRt99+qwYNGuizzz5TuXLl9PHHH+vhhx/W9OnT9cQTTygxMTE4G3nSpEnBeu+//361a9dOM2bMUHp6enDpiWzbt2/XoEGD9Nlnn6l27drBPhXWlpQ5A/jrr7/WmWeeqfr16+u+++7TWWedVWA9Tz31lK666ipNmDBBu3fvVrNmzXT11VdLkhYvXqxVq1bp/PPPD+k1AQAAAAAAQPg4pYPcnEFnfHy87rzzTkn/t0RCTqtWrcr1eOLEiRozZox27typL7/8UjVq1Ch2fZMmTVJiYmKu+t544w0lJiYGQ8OC1p7NntVaXEW1u2zZMlWtWlU1a9ZU9erVNXDgQP3888+qUqVKgXW5e6HtF7Z94sSJSk9P13333adp06ZpwIABx+W8cho2bJj+/Oc/q2rVqho/frwkKTk5WX/605+0e/dupaamqkuXLsHyN9xwg8qUKaNGjRpp69atkqSPP/5YAwYMCM6Mzhlg3nTTTcGfP/74Y33zzTfBx7/88ov27t2rPXv2qH///lq3bp3MLNdyG4X59NNP9frrr0vKXFu5UqVKufYvWbJEbdu2Ve3atXP1qai2OnbsGKynUaNG+vHHH/Xzzz8XWM/cuXM1a9as4FIWBw8e1IYNGyQpOBMcAAAAAAAAp49TemmFnGvhvvjiiypfvnyhZa+44gpt2LBBe/fu1f9n787D7KrqfOF/V5JGmQRyA0oADU4MmYpQBGjAl4AMoiJIc4UXFVomQRqlX2m0aUAZ7vURFAVtaRQ6eKUjKiIRBQE7yKAgAUIMSINIhBgENIwCHUjW+0dVzq2EqpBUTqhdyefzPDxVe5+91/qdU2ufFN9aZ+2ka7bpjBkzst5662XBggXL3V5P119/fc4666xMnTo1r3vd65J0zcB95JFHWsfMmTMnI0eOXOy82267rXXTtVdbGmFJU6ZMyX333ZdRo0blbW97W5555pnWzM7ejB49+hXh8+9///uss846WXfddbPXXnulo6MjRxxxxGLHDB06NB/60Idabfd8Xi+//HKefvrpFQoNF62Re91112XMmDFJupZQ+NrXvpbf/OY3Oe200/Liiy+2jl/0+ib/NyxfWki99tprt75fuHBhfvWrX7V+xn/84x+z7rrr5pRTTsmkSZMya9as/PjHP16sv/7qq6al9dXzuQ0dOjQvv/xyn+3UWnP55Ze3nsvDDz+crbba6hXPGQAAAIBVw6AOcpfHWmutlcMPPzzHHXdcKzxbsGBB5s+fv0Lt3nXXXTn66KMzderUbLTRRq39e+21V6699to8+eSTefLJJ3PttdcuNrM0SbbffvtWENfbUg19WbhwYb7//e9n5syZmT17dmbPnp0rr7wyU6ZM6fOcQw45JDfffHOuv/76JF2zmY8//vjWWqw/+9nPMmPGjHzrW99KrbW1Xm2tNT/+8Y+z5ZZbJum64dcll1ySJPnBD36Q3XbbbYVm5Pbm2WefzcYbb5yXXnopl1566asev+eee+biiy9uraXbc2mFJY9btExCktZs56effjqbbLJJksWXT1h33XVbwf+Sdt9993zjG99I0jWOnnnmmcUe33HHHfOLX/wiDz300GI19dVXX/pqZ6+99sr555/fCrPvuuuuV20LAAAAgMFrlQxyFy2RsOi/RTe/Ouuss7LxxhtnzJgx2WabbbLLLrvk0EMPfcVM2eVx4okn5rnnnsuBBx6Yjo6OViA7fPjwnHLKKa0ba5166qlt+7j7jTfemE022aQVCCZdNwu799578+ijjyZJjj766Gy66abZdNNNs+OOO2bNNdfMlVdemTPPPDNbbLFFxo4dm+222651866eaq059NBDM3bs2IwdOzaPPvpoTj311CTJ4Ycfnr/85S95+9vfni9/+cuL3Sxt1KhR+cd//MdMnjw5m2666WLLGCyPM844I9tvv3322GOPVoC8NHvvvXf23XffdHZ2pqOjo7XcwJLOO++8TJ8+PePGjcvWW2+dCy64IEnyT//0T/nsZz+bnXbaqTU7O+m6kd29997butlZT1/96lczbdq0jB07Nttuu23uueeexR7fcMMNc+GFF+aDH/xgxo8f31rioa+++tJXO6ecckpeeumljBs3LmPGjMkpp5zyqm0BAAAAMHiV3tY8HWjjx4+v1157bZLkTW96U6/rsgL9U0rJn/70p4EuAwAAAGC18KY3vemOWmvnirazSs7IBQAAAABYlQhyAQAAAAAaTpALAAAAANBwglwAAAAAgIZrfJA7ZMiQzJ8/f6DLgFXC/PnzM2RI4y97AAAAAJbQ+ERn3LhxOfvss4W5sILmz5+fs88+O+PGjRvoUgAAAABYTsPa1VAp5eIk70vyeK11TPe+zyU5MskT3Yf9c631p8vT7sUXX5yPfexjOfXUU7Nw4cJ2lQurnSFDhmTcuHG5+OKLB7oUAAAAAJZT24LcJJOTfC3Jt5fYf26t9Zz+Njpy5Mhcc801K1IXAAAAAMCg1ralFWqtNyaZ1672AAAAAADo8lqskXtcKWVmKeXiUsoGfR1USjmqlDK9lDJ93jx5MAAAAADAIis7yP1Gkrcl6UjyaJIv9XVgrfXCWmtnrbVz+PDhK7ksAAAAAIDBY6UGubXWx2qtC2qtC5N8M8nEldkfAAAAAMCqaKUGuaWUjXts7p9k1srsDwAAAABgVTSsXQ2VUqYk2TXJiFLKnCSnJdm1lNKRpCaZneTodvUHAAAAALC6aFuQW2s9uJfdF7WrfQAAAACA1dXKvtkZAAAAAAArSJALAAAAANBwglwAAAAAgIYT5AIAAAAANJwgFwAAAACg4QS5AAAAAAANJ8gFAAAAAGg4QS4AAAAAQMMJcgEAAAAAGk6QCwAAAADQcIJcAAAAAICGGzbQBfTmsccey5ve9KaBLgMAAAAAoBEaGeS+8Y1vzN133z3QZQAAAAAArJB2TVi1tAIAAAAAQMMJcgEAAAAAGk6QCwAAAADQcIJcAAAAAICGE+QCAAAAADScIBcAAAAAoOHaFuSWUi4upTxeSpnVy2OfLqXUUsqIdvUHAAAAALC6aOeM3MlJ9l5yZyllsyR7JHm4jX0BAAAAAKw22hbk1lpvTDKvl4fOTfJPSWq7+gIAAAAAWJ2s1DVySyn7JvljrfXuZTj2qFLK9FLK9HnzesuDAQAAAABWTystyC2lrJXk5CSnLsvxtdYLa62dtdbO4cOHr6yyAAAAAAAGnZU5I/dtSTZPcncpZXaSTZPcWUp500rsEwAAAABglTNsZTVca/1Nko0WbXeHuZ211j+vrD4BAAAAAFZFbZuRW0qZkuRXSbYopcwppRzerrYBAAAAAFZnbZuRW2s9+FUeH9WuvgAAAAAAVicrc41cAAAAAADaQJALAAAAANBwglwAAAAAgIYT5AIAAAAANJwgFwAAAACg4QS5AAAAAAANJ8gFAAAAAGg4QS4AAAAAQMMJcgEAAAAAGk6QCwAAAADQcIJcAAAAAICGE+QCAAAAADScIBcAAAAAoOEEuQAAAAAADSfIBQAAAABoOEEuAAAAAEDDCXIBAAAAABpOkAsAAAAA0HCCXAAAAACAhmtbkFtKubiU8ngpZVaPfWeUUmaWUmaUUq4tpYxsV38AAAAAAKuLds7InZxk7yX2nV1rHVdr7UhyVZJT29gfAAAAAMBqoW1Bbq31xiTzltj3TI/NtZPUdvUHAAAAALC6GLayOyilnJXko0meTjJpKccdleSoJNl0001XdlkAAAAAAIPGSr/ZWa315FrrZkkuTXLcUo67sNbaWWvtHD58+MouCwAAAABg0FjpQW4P/5HkgNewPwAAAACAVcJKDXJLKe/osblvkvtWZn8AAAAAAKuitq2RW0qZkmTXJCNKKXOSnJZkn1LKFkkWJvlDko+3qz8AAAAAgNVF24LcWuvBvey+qF3tAwAAAACsrl7LNXIBAAAAAOgHQS4AAAAAQMMJcgEAAAAAGk6QCwAAAADQcIJcAAAAAICGE+QCAAAAADScIBcAAAAAoOEEuQAAAAAADSfIBQAAAABoOEEuAAAAAEDDCXIBAAAAABpOkAsAAAAA0HCCXAAAAACAhhPkAgAAAAA0nCAXAAAAAKDhBLkAAAAAAA0nyAUAAAAAaDhBLgAAAABAwwlyAQAAAAAarm1Bbinl4lLK46WUWT32nV1Kua+UMrOUckUpZf129QcAAAAAsLpo54zcyUn2XmLfdUnG1FrHJbk/yWfb2B8AAAAAwGqhbUFurfXGJPOW2HdtrfXl7s1bk2zarv4AAAAAAFYXr+UauR9LcnVfD5ZSjiqlTC+lTJ83b15fhwEAAAAArHZekyC3lHJykpeTXNrXMbXWC2utnbXWzuHDh78WZQEAAAAADArDVnYHpZRDk7wvye611rqy+wMAAAAAWNWs1CC3lLJ3kpOS/D+11udXZl8AAAAAAKuqti2tUEqZkuRXSbYopcwppRye5GtJ1k1yXSllRinlgnb1BwAAAACwumjbjNxa68G97L6oXe0DAAAAAKyuXpObnQEAAAAA0H+CXAAAAACAhhPkAgAAAAA0nCAXAAAAAKDhBLkAAAAAAA0nyAUAAAAAaDhBLgAAAABAwwlyAQAAAAAaTpALAAAAANBwglwAAAAAgIYT5AIAAAAANJwgFwAAAACg4QS5AAAAAAANJ8gFAAAAAGg4QS4AAAAAQMMJcgEAAAAAGk6QCwAAAADQcIJcAAAAAICGE+QCAAAAADRc24LcUsrFpZTHSymzeuw7sJRyTyllYSmls119AQAAAACsTto5I3dykr2X2DcryQeT3NjGfgAAAAAAVivD2tVQrfXGUsqoJfb9NklKKe3qBgAAAABgtdOYNXJLKUeVUqaXUqbPmzdvoMsBAAAAAGiMxgS5tdYLa62dtdbO4cOHD3Q5AAAAAACN0ZggFwAAAACA3glyAQAAAAAarm1BbillSpJfJdmilDKnlHJ4KWX/UsqcJDsm+Ukp5Wft6g8AAAAAYHUxrF0N1VoP7uOhK9rVBwAAAADA6sjSCgAAAAAADSfIBQAAAABoOEEuAAAAAEDDCXIBAAAAABpOkAsAAAAA0HCCXAAAAACAhhPkAgAAAAA0nCAXAAAAAKDhBLkAAAAAAA0nyAUAAAAAaDhBLgAAAABAwwlyAQAAAAAaTpALAAAAANBwglwAAAAAgIYT5AIAAAAANJwgFwAAAACg4QS5AAAAAAANJ8gFAAAAAGg4QS4AAAAAQMO1LcgtpVxcSnm8lDKrx77hpZTrSikPdH/doF39AQAAAACsLto5I3dykr2X2PeZJD+vtb4jyc+7twEAAAAAWA5tC3JrrTcmmbfE7g8kuaT7+0uS7Neu/gAAAAAAVhcre43cN9ZaH02S7q8b9XVgKeWoUsr0Usr0efOWzIMBAAAAAFZfjbnZWa31wlprZ621c/jw4QNdDgAAAABAY6zsIPexUsrGSdL99fGV3B8AAAAAwCpnZQe5U5Mc2v39oUmuXMn9AQAAAACsctoW5JZSpiT5VZItSilzSimHJ/lCkj1KKQ8k2aN7GwAAAACA5TCsXQ3VWg/u46Hd29UHAAAAAMDqqNRaB7qGVyilPJvkvwa6DlYZI5L8eaCLYJViTNFuxhTtZkzRbsYU7WQ80W7GFO1mTNFuW9Ra113RRto2I7fN/qvW2jnQRbBqKKVMN55oJ2OKdjOmaDdjinYzpmgn44l2M6ZoN2OKdiulTG9HOyv7ZmcAAAAAAKwgQS4AAAAAQMM1Nci9cKALYJViPNFuxhTtZkzRbsYU7WZM0U7GE+1mTNFuxhTt1pYx1cibnQEAAAAA8H81dUYuAAAAAADdBLkAAAAAAA3XqCC3lLJ3KeW/Sim/K6V8ZqDrYXArpWxWSplWSvltKeWeUsonB7omBr9SytBSyl2llKsGuhZWDaWU9UspPyil3Nf9frXjQNfE4FVKOaH737xZpZQppZTXD3RNDC6llItLKY+XUmb12De8lHJdKeWB7q8bDGSNDC59jKmzu//dm1lKuaKUsv5A1sjg0tuY6vHYp0sptZQyYiBqY3Dqa0yVUv6hO6O6p5TyxYGqj8Gnj3/7Okopt5ZSZpRSppdSJvan7cYEuaWUoUm+nuQ9SbZOcnApZeuBrYpB7uUk/1+tdaskOyT5hDFFG3y11xZcAAAgAElEQVQyyW8HughWKV9Nck2tdcsk42N80U+llE2SHJ+ks9Y6JsnQJAcNbFUMQpOT7L3Evs8k+Xmt9R1Jft69Dctqcl45pq5LMqbWOi7J/Uk++1oXxaA2Oa8cUymlbJZkjyQPv9YFMehNzhJjqpQyKckHkoyrtY5Ocs4A1MXgNTmvfJ/6YpLP11o7kpzavb3cGhPkJpmY5He11t/XWucn+W66Lhrol1rro7XWO7u/fzZd4cgmA1sVg1kpZdMk703yrYGuhVVDKeUNSd6V5KIkqbXOr7U+NbBVMcgNS7JmKWVYkrWSzB3gehhkaq03Jpm3xO4PJLmk+/tLkuz3mhbFoNbbmKq1Xltrfbl789Ykm77mhTFo9fE+lSTnJvmnJO7oznLpY0wdk+QLtdb/7j7m8de8MAatPsZUTfKG7u/XSz9/T29SkLtJkkd6bM+J0I02KaWMSrJNktsGthIGua+k65fDhQNdCKuMtyZ5Ism/dy/Z8a1SytoDXRSDU631j+maLfJwkkeTPF1rvXZgq2IV8cZa66NJ1x/Kk2w0wPWwavlYkqsHuggGt1LKvkn+WGu9e6BrYZXxziS7lFJuK6X8opSy3UAXxKD3qSRnl1IeSdfv7P36NEqTgtzSyz5/SWOFlVLWSXJ5kk/VWp8Z6HoYnEop70vyeK31joGuhVXKsCQTknyj1rpNkr/GR5bpp+51Sz+QZPMkI5OsXUr58MBWBdC3UsrJ6VoO7dKBroXBq5SyVpKT0/VRZWiXYUk2SNcyjScm+V4ppbfcCpbVMUlOqLVuluSEdH8qc3k1Kcidk2SzHtubxscBWUGllL9JV4h7aa31hwNdD4PaTkn2LaXMTtfSL7uVUr4zsCWxCpiTZE6tddGnBX6QrmAX+uPdSR6qtT5Ra30pyQ+T/O0A18Sq4bFSysZJ0v3Vx0tZYaWUQ5O8L8khtVYTeFgRb0vXHzHv7v5dfdMkd5ZS3jSgVTHYzUnyw9rl1+n6VKab6LEiDk3X7+dJ8v10LTG73JoU5N6e5B2llM1LKWuk6+YcUwe4Jgax7r+WXZTkt7XWLw90PQxutdbP1lo3rbWOStf703/WWs10Y4XUWv+U5JFSyhbdu3ZPcu8AlsTg9nCSHUopa3X/G7h73DyP9piarv/5SPfXKwewFlYBpZS9k5yUZN9a6/MDXQ+DW631N7XWjWqto7p/V5+TZEL371nQXz9KsluSlFLemWSNJH8e0IoY7OYm+X+6v98tyQP9aWRY28pZQbXWl0spxyX5WbrusnxxrfWeAS6LwW2nJB9J8ptSyozuff9ca/3pANYEsKR/SHJp9x8xf5/k7we4HgapWuttpZQfJLkzXR9VvivJhQNbFYNNKWVKkl2TjCilzElyWpIvpOsjpYen6w8GBw5chQw2fYypzyZ5XZLruj+pfGut9eMDViSDSm9jqtbar48oQ9Ln+9TFSS4upcxKMj/JoT49wLLqY0wdmeSr3TclfjHJUf1q2zgEAAAAAGi2Ji2tAAAAAABALwS5AAAAAAANJ8gFAAAAAGg4QS4AAAAAQMMJcgEAAAAAGk6QCwAAAADQcIJcAAAAAICGE+QCAAAAADScIBcAAAAAoOEEuQAAAAAADSfIBQAAAABoOEEuAAAAAEDDCXIBAAAAABpOkAsAAAAA0HCCXAAAAACAhhPkAgAAAAA0nCAXAAAAAKDhBLkAAAAAAA0nyAUAAAAAaDhBLgAAAABAww0b6AJ6M2LEiDpq1KiBLgMAAAAAYIXccccdf661brii7TQyyB01alSmT58+0GUAAAAAAKyQUsof2tGOpRUAAAAAABqukTNye5ozZ07233//3HnnnVm4cOFAlwMw4IYMGZIJEybkiiuuyKabbjrQ5QAAAACvgcYHufvvv38++MEP5pZbbskaa6wx0OUADLj58+fnnHPOyf7775/bb799oMsBAAAAXgOl1jrQNbxCZ2dnXbRG7tChQ/PCCy8IcQF6mD9/ftZcc80sWLBgoEsBAAAAlqKUckettXNF22n8GrkLFy4U4gIsYY011rDcDAAAAKxGGh/kAgAAAACs7gS5AAAAAAANJ8gFAAAAAGi4VS7I/cpXvpLnn39+pfczdOjQdHR0ZMyYMTnwwAPz/PPPZ/bs2RkzZsxK7ztJXnzxxUycODHjx4/P6NGjc9ppp70m/QIAAAAArz1Bbj+tueaamTFjRmbNmpU11lgjF1xwwUrvs6fXve51+c///M/cfffdmTFjRq655prceuutr2kNAAAAAMBrY9AGuX/961/z3ve+N+PHj8+YMWNy2WWX5bzzzsvcuXMzadKkTJo0KUlyzDHHpLOz8xWzVn/6059myy23zM4775zjjz8+73vf+1rtfuxjH8t2222XbbbZJldeeeWr1rLLLrvkd7/7XZJkwYIFOfLIIzN69OjsueeeeeGFF5Ik3/zmN7Pddttl/PjxOeCAA1ph8/e///2MGTMm48ePz7ve9a5WGyeeeGK22267jBs3Lv/2b//2ij5LKVlnnXWSJC+99FJeeumllFL6+3ICAAAAAA02aIPca665JiNHjszdd9+dWbNmZe+9987xxx+fkSNHZtq0aZk2bVqS5Kyzzsr06dMzc+bM/OIXv8jMmTPz4osv5uijj87VV1+dm2++OU888USr3bPOOiu77bZbbr/99kybNi0nnnhi/vrXv2bu3LnZZ599XlHHyy+/nKuvvjpjx45NkjzwwAP5xCc+kXvuuSfrr79+Lr/88iTJBz/4wdx+++25++67s9VWW+Wiiy5Kkpx++un52c9+lrvvvjtTp05Nklx00UVZb731cvvtt+f222/PN7/5zTz00EOv6HvBggXp6OjIRhttlD322CPbb799e19kAAAAAKARBm2QO3bs2Fx//fU56aSTctNNN2W99dbr9bjvfe97mTBhQrbZZpvcc889uffee3PfffflrW99azbffPMkycEHH9w6/tprr80XvvCFdHR0ZNddd82LL76Yhx9+OCNHjsxPf/rT1nEvvPBCOjo60tnZmTe/+c05/PDDkySbb755Ojo6kiTbbrttZs+enSSZNWtWdtlll4wdOzaXXnpp7rnnniTJTjvtlMMOOyzf/OY3s2DBglYN3/72t9PR0ZHtt98+f/nLX/LAAw+84rkNHTo0M2bMyJw5c/LrX/86s2bNWsFXFQAAAABoomEDXUB/vfOd78wdd9yRn/70p/nsZz+bPffcM6eeeupixzz00EM555xzcvvtt2eDDTbIYYcdlhdffDG11j7brbXm8ssvzxZbbLHU/hetkbuk173uda3vhw4d2lpa4bDDDsuPfvSjjB8/PpMnT84NN9yQJLngggty22235Sc/+Uk6OjoyY8aM1Fpz/vnnZ6+99lqm12L99dfPrrvummuuueY1u9kaAAAAAPDaGbQzcufOnZu11lorH/7wh/PpT386d955Z5Jk3XXXzbPPPpskeeaZZ7L22mtnvfXWy2OPPZarr746SbLlllvm97//fWu27GWXXdZqd6+99sr555/fCnvvuuuuttT77LPPZuONN85LL72USy+9tLX/wQcfzPbbb5/TTz89I0aMyCOPPJK99tor3/jGN/LSSy8lSe6///789a9/Xay9J554Ik899VSSrtnB119/fbbccsu21AoAAAAANMugnZH7m9/8JieeeGKGDBmSv/mbv8k3vvGNJMlRRx2V97znPdl4440zbdq0bLPNNhk9enTe+ta3ZqeddkrSNZv2X//1X7P33ntnxIgRmThxYqvdU045JZ/61Kcybty41FozatSoXHXVVZk7d26OOOKIxZZXWB5nnHFGtt9++7zlLW/J2LFjW2HziSeemAceeCC11uy+++4ZP358xo0bl9mzZ2fChAmptWbDDTfMj370o8Xae/TRR3PooYdmwYIFWbhwYf7n//yfrRu2AQAAAACrlrK0ZQYGSmdnZ50+fXqSpJSy1KUQ+uu5557LOuusk1prPvGJT+Qd73hHTjjhhLb3A7CyrKz3RwAAAKB9Sil31Fo7V7SdQbu0wor65je/mY6OjowePTpPP/10jj766IEuCQAAAACgV6vtjFyAwc77IwAAADSfGbkAAAAAAKuJQR3kDh06NB0dHRkzZkwOPPDAPP/888t1/hFHHJF77713qcd85StfWe52l8fs2bMzZsyYxfZ97nOfyznnnLPS+lyaH/3oR4u9Jqeeemquv/765WrjrrvuyhFHHLHYvg984APZcccdF9v3uc99LptssknrZzh16tTW/iWf/6hRo/LnP/85SbLOOusk6XrtSik5//zzW8cdd9xxmTx5cpLksMMOyw9+8IPsv//+6ejoyNvf/vast9566ejoSEdHR3bbbbecdNJJrXP/8Ic/5K1vfWueeuqpHHTQQXnggQeW6fm+/PLLGTFiRD772c/2ecwNN9zQuhnd1KlT84UvfGGZ2m6HpY3hXXfdNYtmvyeLj8cbbrhhsdero6OjNRZ6Xnvvf//789RTTyVJZsyYkR133DGjR4/OuHHjctlll/Wr5smTJ+e4447r17n9ccMNN+SXv/zla9YfAAAAwPIa1EHummuumRkzZmTWrFlZY401csEFFyzzuQsWLMi3vvWtbL311ks9bkWD3FGjRvX73GX18ssvt62tJYPc008/Pe9+97uXq43/9b/+V/7hH/6htf3UU0/lzjvvzFNPPZWHHnposWNPOOGEzJgxI9///vfzsY99LAsXLlyuvjbaaKN89atfzfz58/s85oorrsiMGTPyrW99K7vssktmzJiRGTNm5Cc/+UmuvPLK/Pa3v02SfPKTn8wZZ5yR9ddfP8ccc0y++MUvLlMN1157bbbYYot873vfW6aPue+77775zGc+s2xPsA1WZAz3fL1mzJjRGgs9r73hw4fn61//epJkrbXWyre//e3cc889ueaaa/KpT32qFfL21I7rota63OOlL00PchcsWDDQJQAAAAADbFAHuT3tsssu+d3vfpck+c53vpOJEyemo6MjRx99dCsEWWeddXLqqadm++23z69+9avFZiNee+212XHHHTNhwoQceOCBee6553Leeedl7ty5mTRpUiZNmpQkOeaYY9LZ2ZnRo0fntNNOW+nP68EHH8zee++dbbfdNrvsskvuu+++JF2zTf/xH/8xkyZNykknnZTnnnsuf//3f5+xY8dm3Lhxufzyy/t8XklXkHbSSSdl4sSJmThxYn73u9/ll7/8ZaZOnZoTTzwxHR0defDBB1uzWhedc9ppp2XChAkZO3Zsq5aenn322cycOTPjx49v7bv88svz/ve/PwcddFC++93v9vo8t9pqqwwbNqw163ZZbbjhhtl9991zySWXLNd5SVcY+eUvfznHHntsrr766jz77LM55JBDknSNp+uvv36ZQvIpU6bkk5/8ZN785jfn1ltvbe2/5pprsuWWW2bnnXfOD3/4w9b+nrNNe76+yf+dbfyhD30oP/3pT1v7DzvssFx++eWZPXt2dtlll0yYMCETJkxohY833HBDdt111/zd3/1dttxyyxxyyCGptfY6htttxx13zB//+MckyTvf+c684x3vSJKMHDkyG220UZ544ol+tfvII49k7733zhZbbJHPf/7zSbpmDG+11VY59thjM2HChDzyyCN9jvHTTz892223XcaMGZOjjjqqFbKfd9552XrrrTNu3LgcdNBBmT17di644IKce+656ejoyE033bRYHX1dW329F/R1nfTnGj399NOz88475/vf/36/XkMAAABg1bFKBLkvv/xyrr766owdOza//e1vc9lll+WWW27JjBkzMnTo0Fx66aVJkr/+9a8ZM2ZMbrvttuy8886t8//85z/nzDPPzPXXX58777wznZ2d+fKXv5zjjz8+I0eOzLRp0zJt2rQkyVlnnZXp06dn5syZ+cUvfpGZM2eucP0PPvjgYh9f7zmz+Kijjsr555+fO+64I+ecc06OPfbY1mP3339/rr/++nzpS1/KGWeckfXWWy+/+c1vMnPmzOy22259Pq9F3vCGN+TXv/51jjvuuHzqU5/K3/7t32bffffN2WefnRkzZuRtb3vbK2odMWJE7rzzzhxzzDG9Lv8wffr0VywVMWXKlBx88ME5+OCDM2XKlF5fg9tuuy1DhgzJhhtumCStUG3Rf3Pnzu3z9fvMZz6TL33pS/2atbjPPvtk+PDh+ehHP5p//dd/be0fMmRI3v72t+fuu+9e6vkvvPBCfv7zn+d973vfYs/vxRdfzJFHHpkf//jHuemmm/KnP/1pueo66KCDWssSzJ8/Pz//+c+zzz77ZKONNsp1112XO++8M5dddlmOP/741jl33XVXvvKVr+Tee+/N73//+9xyyy29juElHXLIIa3XeZ999lnssZtuummxn8ODDz642OMLFizIz3/+8+y7776vaPfXv/515s+f3+s4Wha//vWvc+mll7ZmbC/6o8t//dd/5aMf/WjuuuuurL322n2O8eOOOy633357Zs2alRdeeCFXXXVVkuQLX/hC7rrrrsycOTMXXHBBRo0alY9//OOt2eG77LLLYnX0dm0lS38v6O066c81+vrXvz4333xzDjrooH69hgAAAMCqY9hAF7AiXnjhhXR0dCTpmkF5+OGH58ILL8wdd9yR7bbbrnXMRhttlKRrXc8DDjjgFe3ceuutuffee7PTTjsl6QrOllzPdZHvfe97ufDCC/Pyyy/n0Ucfzb333ptx48YtdsxZZ53VmkE3d+7cVo077bRT6yPoPb3tbW/LjBkzWtuf+9znknTN4PvlL3+ZAw88sPXYf//3f7e+P/DAAzN06NAkyfXXX7/YbNcNNtggV1111VKf18EHH9z6esIJJ/T6fJf0wQ9+MEmy7bbbLjbLdJFHH320FcYmyWOPPZbf/e532XnnnVNKybBhwzJr1qxW2HvuuefmO9/5TtZdd91cdtllKaUk6Vpy4dOf/nSrnaV9FH/zzTfPxIkT8x//8R/L9ByW9IlPfCIvvPBCtthii8X2b7TRRpk7d2623XbbPs+96qqrMmnSpKy11lo54IADcsYZZ+Tcc8/Nfffdl80337w1O/XDH/5wLrzwwmWu6T3veU+OP/74/Pd//3euueaavOtd78qaa66Zp59+Oscdd1zrjxT3339/65yJEydm0003TZJ0dHRk9uzZi/3Boi+XXnppOju7bpw4e/bs1lq+Sdd1tSgA7WnRtTd79uxsu+222WOPPRZ7/NFHH81HPvKRXHLJJRkypOvvRZ/4xCdyyy23JFn8ujjwwANz8sknv6KPPfbYI//jf/yPJF3j7uabb85+++2Xt7zlLdlhhx2SLP3anTZtWr74xS/m+eefz7x58zJ69Oi8//3vz7hx43LIIYdkv/32y3777feqr09v11ay9PeC3q6T/lyjH/rQh161PgAAAGD1MKiD3EXrdPZUa82hhx6a//2///crjn/961/fCj6XPGePPfboc7boIg899FDOOeec3H777dlggw1y2GGH5cUXX3zFcSeffHIrmBo1atQralxWCxcuzPrrr9/n+WuvvfZiz2FRCNpz39KeV8/jlzy3L6973euSdIXivS07sOaaay72mlx22WV58skns/nmmydJnnnmmXz3u9/NmWeemeSVgW1//fM//3P+7u/+Lu9617uW+9whQ4a0wsaeXnzxxay55ppLPXfKlCm55ZZbWkHzX/7yl0ybNi0jRoxYptd02LBhrXVea62ttX5f//rXZ9ddd83PfvazXHbZZa3Q/dxzz80b3/jG3H333Vm4cGFe//rXt9pa9LNJ+v75tMuia+/pp5/O+973vnz9619vzQ5+5pln8t73vjdnnnlmK3BNstgfMZbluljy9Vu0veS4722Mv/jiizn22GMzffr0bLbZZvnc5z7XGpc/+clPcuONN2bq1Kk544wzcs899yy1jt6urVd7L+jtOunPNdrzuQIAAACrt1ViaYWedt999/zgBz/I448/niSZN29e/vCHPyz1nB122CG33HJLa43d559/vjXTcd11182zzz6bpCugWnvttbPeeuvlsccey9VXX70Sn0nX0gebb755a3ZvrbXPj/rvueee+drXvtbafvLJJ5f6vJK0Prp/2WWXtWYB9ny+/bHVVlu1+ku6gs5rrrkms2fPzuzZs3PHHXf0uU7uithyyy2z9dZb9zp7tL/uv//+jB49us/Hn3nmmdx88815+OGHW8/v61//eqZMmZItt9wyDz30UGspgr6CulGjRuWOO+5Iklx55ZV56aWXWo8ddNBB+fd///fcdNNN2WuvvZIkTz/9dDbeeOMMGTIk/+f//J9lWk5iRX+mS7PeeuvlvPPOyznnnJOXXnop8+fPz/7775+PfvSji80k74/rrrsu8+bNywsvvJAf/ehHrVmrPfU1xheFqiNGjMhzzz3XWod44cKFeeSRRzJp0qR88YtfzFNPPZXnnntuqa9Rb9dWf94L+nONAgAAACyyygW5W2+9dc4888zsueeeGTduXPbYY488+uijfR5fSsmGG26YyZMn5+CDD864ceOyww47tG5QdNRRR+U973lPJk2alPHjx2ebbbbJ6NGj87GPfazXYKndLr300lx00UUZP358Ro8enSuvvLLX4/7lX/4lTz75ZMaMGZPx48dn2rRpS31eSdcyDdtvv32++tWv5txzz03SFR6effbZ2WabbV6xHuqy2HLLLfP000/n2WefzezZs/Pwww8vNitz8803zxve8Ibcdttty932qzn55JMzZ86ctrT12GOPZc0118zGG2/c5zE//OEPs9tuuy02E/YDH/hApk6dmlJKLrzwwrz3ve/NzjvvnLe85S2LnbtoZuaRRx6ZX/ziF5k4cWJuu+22xWZg7rnnnrnxxhvz7ne/O2ussUaS5Nhjj80ll1ySHXbYIffff/8yzdjsOYaX15Jr5Pa8Mdsi22yzTcaPH5/vfve7+d73vpcbb7wxkydPbp3T3xnpO++8cz7ykY+ko6MjBxxwQGv5h576GuPrr79+jjzyyIwdOzb77bdfa6mVBQsW5MMf/nDGjh2bbbbZJieccELWX3/9vP/9788VV1zR683Oeru2+vNe0J9rFAAAAGCRsuhO7ks9qJSLk7wvyeO11jFLPPbpJGcn2bDW+udezj00yb90b55Za73k1frr7Oysi25sVErJstTYH2PHjs3UqVNbH/tfnYwaNSrTp0/PiBEj2t72ueeem3XXXTdHHHFE29t+rZx77rl5wxvekMMPP7ztbX/pS1/KM888k89//vNtb5vVy8p8fwQAAADao5RyR631lTPUltOyzsidnGTvXorYLMkeSR7u7aRSyvAkpyXZPsnEJKeVUjboV6Vttscee2Ts2LGrZYi7sh1zzDGLzVIdjNZff/0ceuihbW/3ggsuyOTJk/PhD3+47W0DAAAAsOpaphm5SVJKGZXkqp4zckspP0hyRpIrk3QuOSO3lHJwkl1rrUd3b/9bkhtqrUu9q9hrNSMXYDDz/ggAAADN91rPyO2tgH2T/LHW2vvdt7pskuSRHttzuvf11t5RpZTppZTpTzzxRH/LAgAAAABY5fQryC2lrJXk5CSnvtqhvezrdfpYrfXCWmtnrbVzww037E9ZAAAAAACrpP7OyH1bks2T3F1KmZ1k0yR3llLetMRxc5Js1mN70yRzl6vAIUMyf/78fpYJsGqaP39+hgzp94cqAAAAgEGmXylArfU3tdaNaq2jaq2j0hXYTqi1/mmJQ3+WZM9SygbdNznbs3vfMpswYULOOeccYS5At/nz5+ecc87JhAkTBroUAAAA4DUybFkOKqVMSbJrkhGllDlJTqu1XtTHsZ1JPl5rPaLWOq+UckaS27sfPr3WOm95Crziiiuy//7755RTTsnChQuX51SAVdKQIUMyYcKEXHHFFQNdCgAAAPAaKU2843lnZ2edPn36QJcBAAAAALBCSil31Fo7V7QdCywCAAAAADScIBcAAAAAoOEEuQAAAAAADSfIBQAAAABoOEEuAAAAAEDDCXIBAAAAABpOkAsAAAAA0HCCXAAAAACAhhPkAgAAAAA0nCAXAAAAAKDhhg10Ab2ZO3duSikDXQYAAAAAQCM0MsgdOXJk5s6dO9BlAAAAAACskHZNWLW0AgAAAABAwwlyAQAAAAAaTpALAAAAANBwglwAAAAAgIYT5AIAAAAANJwgFwAAAACg4QS5AAAAAAANJ8gFAAAAAGg4QS4AAAAAQMMJcgEAAAAAGk6QCwAAAADQcIJcAAAAAICGE+QCAAAAADScIBcAAAAAoOEEuQAAAAAADSfIBQAAAABouFcNckspF5dSHi+lzOqx74xSysxSyoxSyrWllJF9nLug+5gZpZSp7SwcAAAAAGB1sSwzcicn2XuJfWfXWsfVWjuSXJXk1D7OfaHW2tH9374rUCcAAAAAwGrrVYPcWuuNSeYtse+ZHptrJ6ltrgsAAAAAgG79XiO3lHJWKeWRJIek7xm5ry+lTC+l3FpK2e9V2juq+9jpTzzxRH/LAgAAAABY5fQ7yK21nlxr3SzJpUmO6+OwN9daO5P8v0m+Ukp521Lau7DW2llr7dxwww37WxYAAAAAwCqn30FuD/+R5IDeHqi1zu3++vskNyTZpg39AQAAAACsVvoV5JZS3tFjc98k9/VyzAallNd1fz8iyU5J7u1PfwAAAAAAq7Nhr3ZAKWVKkl2TjCilzElyWpJ9SilbJFmY5A9JPt59bGeSj9daj0iyVZJ/K6UsTFdg/IVaqyAXAAAAAGA5lVrrQNfwCp2dnXX69OkDXQYAAAAAwAoppdzRfR+xFdKONXIBAAAAAFiJBLkAAAAAAA0nyAUAAAAAaDhBLgAAAABAwwlyAQAAAAAaTpALAAAAANBwglwAAAAAgIYT5AIAAAAANJwgFwAAAACg4a5he28AACAASURBVAS5AAAAAAANJ8gFAAAAAGg4QS4AAAAAQMMJcgEAAAAAGk6QCwAAAADQcIJcAAAAAICGE+QCAAAAADScIBcAAAAAoOEEuQAAAAAADSfIBQAAAABoOEEuAAAAAEDDCXIBAAAAABpOkAsAAAAA0HCCXAAAAACAhhPkAgAAAAA0nCAXAAAAAKDhBLkAAAAAAA0nyAUAAAAAaLhlCnJLKReXUh4vpczqse+MUsrMUsqMUsq1pZSRfZx7aCnlge7/Dm1X4QAAAAAAq4tlnZE7OcneS+w7u9Y6rtbakeSqJKcueVIpZXiS05Jsn2RiktNKKRv0v1wAAAAAgNXPMgW5tdYbk8xbYt8zPTbXTlJ7OXWvJNfVWufVWp9Mcl1eGQgDAAAAALAUw1bk5FLKWUk+muTpJJN6OWSTJI/02J7Tva+3to5KclSSvPnNb16RsgAAAAAAVikrdLOzWuvJtdbNklya5LheDim9ndZHWxfWWjtrrZ0bbrjhipQFAAAAALBKWaEgt4f/SHJAL/vnJNmsx/amSea2qU8AAAAAgNVCv4PcUso7emzum+S+Xg77WZI9SykbdN/kbM/ufQAAAAAALKNlWiO3lDIlya5JRpRS5iQ5Lck+pZQtkixM8ockH+8+tjPJx2utR9Ra55VSzkhye3dTp9da572iAwAAAAAA+lRq7XXJ2gHV2dlZp0+fPtBlAAAAAACskFLKHbXWzhVtp11r5AIAAAAAsJIIcgEAAAAAGk6QCwAAAADQcIJcAAAAAICGE+QCAAAAADScIBcAAAAAoOEEuQAAAAAADSfIBQAAAABoOEEuAAAAAEDDCXIBAAAAABpOkAsAAAAA0HCCXAAAAACAhhPkAgAAAAA0nCAXAAAAAKDhBLkAAAAAAA0nyAUAAAAAaDhBLgAAAABAwwlyAQAAAAAaTpALAAAAANBwglwAAAAAgIYT5AIAAAAANJwgFwAAAACg4QS5AAAAAAANJ8gFAAAAAGg4QS4AAAAAQMMJcgEAAAAAGk6QCwAAAADQcIJcAAAAAICGe9Ugt5RycSnl8VLKrB77zi6l3FdKmVlKuaKUsn4f584upfymlDKj/P/s3X+0XWV9J/73BygoPwZJQSEEBZWCkB8XDKSKWJASAuPgT6rUaUFQsCMydb5FRQtYKGsxRW0VplKQFJ1BStVBYsuPwEiljoBETUJAEIoRQxAoQX4zkPB8/8jhermck4SbH/ck9/Va6657zrOfvffnXJ7stXnf5z67as6aLBwAAAAAYKxYlRm5FyWZMaztmiQTW2uTk/wsyckr2P/A1tpAa23qyEoEAAAAABjbVhrkttauT7JkWNvs1trSztsbk0xYC7UBAAAAAJA1s0buMUmu7LGtJZldVT+qquNWdJCqOq6q5lTVnAcffHANlAUAAAAAsGFYrSC3qj6TZGmSi3t02a+1tneSQ5N8tKre2utYrbXzW2tTW2tTt9tuu9UpCwAAAABggzLiILeqjkry9iQfaK21bn1aa4s73x9IclmSfUd6PgAAAACAsWpEQW5VzUjyySSHt9ae7NFni6ra6vnXSaYnWTDSQgEAAAAAxqqVBrlVdUmSG5LsVlWLqurYJOcm2SrJNVU1t6rO6/QdX1VXdHZ9VZLvV9W8JD9M8s+ttavWyqcAAAAAANiAbbKyDq21I7s0X9ij7+Ikh3Ve351kympVBwAAAADA6j3sDAAAAACAtU+QCwAAAADQ5wS5AAAAAAB9TpALAAAAANDnBLkAAAAAAH1OkAsAAAAA0OcEuQAAAAAAfU6QCwAAAADQ5wS5AAAAAAB9TpALAAAAANDnBLkAAAAAAH1OkAsAAAAA0OcEuQAAAAAAfU6QCwAAAADQ5wS5AAAAAAB9TpALAAAAANDnBLkAAAAAAH1OkAsAAAAA0OcEuQAAAAAAfU6QCwAAAADQ5wS5AAAAAAB9TpALAAAAANDnBLkAAAAAAH1OkAsAAAAA0OcEuQAAAAAAfU6QCwAAAADQ5wS5AAAAAAB9TpALAAAAANDnVhrkVtXMqnqgqhYMaTu7qm6vqvlVdVlVvaLHvjOq6o6ququqPrUmCwcAAAAAGCtWZUbuRUlmDGu7JsnE1trkJD9LcvLwnapq4yT/I8mhSfZIcmRV7bFa1QIAAAAAjEErDXJba9cnWTKsbXZrbWnn7Y1JJnTZdd8kd7XW7m6tPZPkH5K8YzXrBQAAAAAYc9bEGrnHJLmyS/uOSX455P2iTltXVXVcVc2pqjkPPvjgGigLAAAAAGDDsFpBblV9JsnSJBd329ylrfU6Vmvt/Nba1Nba1O222251ygIAAAAA2KBsMtIdq+qoJG9PclBrrVtAuyjJTkPeT0iyeKTnAwAAAAAYq0Y0I7eqZiT5ZJLDW2tP9uh2c5Jdq2qXqto0yfuTzBpZmQAAAAAAY9dKg9yquiTJDUl2q6pFVXVsknOTbJXkmqqaW1XndfqOr6orkqTzMLQTklyd5KdJ/rG1duta+hwAAAAAABus6r4qwuiaOnVqmzNnzmiXAQAAAACwWqrqR621qat9nH4McqvqsSR3jHYdMELbJvn30S4CRsj4ZX1m/LI+M35Z3xnDrM+MX9Znxu/64TWtte1W9yAjftjZWnbHmkipYTRU1Rzjl/WV8cv6zPhlfWb8sr4zhlmfGb+sz4zfsWVEDzsDAAAAAGDdEeQCAAAAAPS5fg1yzx/tAmA1GL+sz4xf1mfGL+sz45f1nTHM+sz4ZX1m/I4hffmwMwAAAAAAfqNfZ+QCAAAAANAhyAUAAAAA6HOjFuRW1YyquqOq7qqqT3XZvllVXdrZflNV7bzuq4Tuqmqnqrquqn5aVbdW1X/t0ueAqnqkquZ2vk4djVqhm6paWFW3dMbmnC7bq6q+1LkGz6+qvUejThiuqnYbcl2dW1WPVtWfDuvj+kvfqKqZVfVAVS0Y0jauqq6pqjs737fpse9RnT53VtVR665q+I0eY/jsqrq9c49wWVW9ose+K7zfgLWtx/j9bFXdO+Q+4bAe+64ws4C1rcf4vXTI2F1YVXN77Ov6u4EalTVyq2rjJD9LcnCSRUluTnJka+22IX3+S5LJrbWPVNX7k7yrtfa+dV4sdFFVOyTZobX246raKsmPkrxz2Bg+IMmftdbePkplQk9VtTDJ1Nbav/fYfliSjyU5LMm0JF9srU1bdxXCynXuJ+5NMq219osh7QfE9Zc+UVVvTfJ4kq+11iZ22v4qyZLW2lmdcGCb1tonh+03LsmcJFOTtCy/13hja+3hdfoBGPN6jOHpSb7bWltaVf89SYaP4U6/hVnB/QasbT3G72eTPN5a+9wK9ltpZgFrW7fxO2z755M80lo7vcu2hXH93SCN1ozcfZPc1Vq7u7X2TJJ/SPKOYX3ekeSrndffTHJQVdU6rBF6aq3d11r7cef1Y0l+mmTH0a0K1qh3ZPkNQ2ut3ZjkFZ1fYEA/OSjJvw0NcaHftNauT7JkWPPQ+9yvJnlnl10PSXJNa21JJ7y9JsmMtVYo9NBtDLfWZrfWlnbe3phkwjovDFZBj2vwqliVzALWqhWN304+9gdJLlmnRTHqRivI3THJL4e8X5QXh2CDfTo3CY8k+e11Uh28BJ1lP/ZKclOXzW+qqnlVdWVV7blOC4MVa0lmV9WPquq4LttX5ToNo+396X3z6vpLP3tVa+2+ZPkvh5O8sksf12HWF8ckubLHtpXdb8BoOaGzNMjMHsvbuAbT7/ZPcn9r7c4e211/N1CjFeR2m1k7fI2HVekDo6qqtkzyrSR/2lp7dNjmHyd5TWttSpJzknx7XdcHK7Bfa23vJIcm+Wjnz3aGcg2mr1XVpkkOT/KNLptdf9kQuA7T96rqM0mWJrm4R5eV3W/AaPhyktclGUhyX5LPd+njGky/OzIrno3r+ruBGq0gd1GSnYa8n5Bkca8+VbVJkq0zsj+JgLWiqn4ry0Pci1tr/3v49tbao621xzuvr0jyW1W17TouE7pqrS3ufH8gyWVZ/udjQ63KdRpG06FJftxau3/4Btdf1gP3P79cTef7A136uA7T1zoP4Ht7kg+0Hg9eWYX7DVjnWmv3t9aWtdaeS3JBuo9L12D6Vicje3eSS3v1cf3dcI1WkHtzkl2rapfOjJr3J5k1rM+sJM8/nfe9Wb6Yvt+A0Rc669FcmOSnrbUv9Oiz/fPrOlfVvln+7+2hdVcldFdVW3Qe0peq2iLJ9CQLhnWbleSPa7nfzfJF9O9bx6XCivScheD6y3pg6H3uUUku79Ln6iTTq2qbzp/9Tu+0wairqhlJPpnk8Nbakz36rMr9Bqxzw5778K50H5erklnAaPn9JLe31hZ12+j6u2HbZDRO2nm66QlZfjO6cZKZrbVbq+r0JHNaa7OyPCT7n1V1V5bPxH3/aNQKPeyX5I+S3FJVczttn07y6iRprZ2X5b+A+JOqWprkqSTv98sI+sSrklzWybk2SfL11tpVVfWRZHD8XpHksCR3JXkyyQdHqVZ4karaPMufIn38kLah49f1l75RVZckOSDJtlW1KMlpSc5K8o9VdWySe5Ic0ek7NclHWmsfaq0tqaozsjxMSJLTW2v+Oo11rscYPjnJZkmu6dxP3Nha+0hVjU/yldbaYelxvzEKH4ExrMf4PaCqBrJ8qYSF6dxPDB2/vTKLUfgIjGHdxm9r7cJ0eU6E6+/YUf6/BgAAAACgv43W0goAAAAAAKwiQS4AAAAAQJ8T5AIAAAAA9DlBLgAAAABAnxPkAgAAAAD0OUEuAAAAAECfE+QCAAAAAPQ5QS4AAAAAQJ8T5AIAAAAA9DlBLgAAAABAnxPkAgAAAAD0OUEuAAAAAECfE+QCAAAAAPQ5QS4AAAAAQJ8T5AIAAAAA9DlBLgAAAABAnxPkAgAAAAD0OUEuAAAAAECfE+QCAAAAAPQ5QS4AAAAAQJ/bZLQL6Oa3f/u324QJE0a7DAAAAACA1TJ//vx/b61tt7rH6csgd8KECZk9e/ZolwEAAAAAsFq23377X6yJ41haAQAAAACgz/XljNyhFi9enGOOOSbz58/Pc889N9rlwHpro402yuTJkzNz5syMHz9+tMsBAAAA4CXo+yD3mGOOyRFHHJGbbropm2666WiXA+utZ555JmeffXaOOeaYXHXVVaNdDgAAAAAvQbXWRruGF5kyZUp7fo3c8ePH56mnnhLiwhrwzDPP5OUvf3kWL1482qUAAAAAjAnbb7/9j1prU1f3OH2/Ru5zzz0nxIU1ZNNNN7VECQAAAMB6qO+DXAAAAACAsU6QCwAAAADQ5wS5AAAAAAB9boMLcv/mb/4mTz755Fo/z8Ybb5yBgYFMnDgxRxxxRJ588sksXLgwEydOXOvnTpKnn346++67b6ZMmZI999wzp5122jo5LwAAAACw7glyR+jlL3955s6dmwULFmTTTTfNeeedt9bPOdRmm22W7373u5k3b17mzp2bq666KjfeeOM6rQEAAAAAWDfW2yD3iSeeyH/8j/8xU6ZMycSJE3PppZfmS1/6UhYvXpwDDzwwBx54YJLkT/7kTzJ16tQXzVq94oorsvvuu+ctb3lLTjzxxLz97W8fPO4xxxyTffbZJ3vttVcuv/zylday//7756677kqSLFu2LB/+8Iez5557Zvr06XnqqaeSJBdccEH22WefTJkyJe95z3sGw+ZvfOMbmThxYqZMmZK3vvWtg8c46aSTss8++2Ty5Mn5u7/7uxeds6qy5ZZbJkmeffbZPPvss6mqkf44AQAAAIA+tt4GuVdddVXGjx+fefPmZcGCBZkxY0ZOPPHEjB8/Ptddd12uu+66JMmZZ56ZOXPmZP78+fne976X+fPn5+mnn87xxx+fK6+8Mt///vfz4IMPDh73zDPPzNve9rbcfPPNue6663LSSSfliSeeyOLFi3PYYYe9qI6lS5fmyiuvzKRJk5Ikd955Zz760Y/m1ltvzSte8Yp861vfSpK8+93vzs0335x58+blDW94Qy688MIkyemnn56rr7468+bNy6xZs5IkF154YbbeeuvcfPPNufnmm3PBBRfk5z//+YvOvWzZsgwMDOSVr3xlDj744EybNm3N/pABAAAAgL6w3ga5kyZNyrXXXptPfvKT+dd//ddsvfXWXfv94z/+Y/bee+/stddeufXWW3Pbbbfl9ttvz2tf+9rssssuSZIjjzxysP/s2bNz1llnZWBgIAcccECefvrp3HPPPRk/fnyuuOKKwX5PPfVUBgYGMnXq1Lz61a/OsccemyTZZZddMjAwkCR54xvfmIULFyZJFixYkP333z+TJk3KxRdfnFtvvTVJst9+++Xoo4/OBRdckGXLlg3W8LWvfS0DAwOZNm1aHnroodx5550v+mwbb7xx5s6dm0WLFuWHP/xhFixYsJo/VQAAAACgH20y2gWM1O/8zu/kRz/6Ua644oqcfPLJmT59ek499dQX9Pn5z3+ez33uc7n55puzzTbb5Oijj87TTz+d1lrP47bW8q1vfSu77bbbCs///Bq5w2222WaDrzfeeOPBpRWOPvrofPvb386UKVNy0UUX5V/+5V+SJOedd15uuumm/PM//3MGBgYyd+7ctNZyzjnn5JBDDlmln8UrXvGKHHDAAbnqqqvW2cPWAAAAAIB1Z72dkbt48eJsvvnm+c//+T/nz/7sz/LjH/84SbLVVlvlscceS5I8+uij2WKLLbL11lvn/vvvz5VXXpkk2X333XP33XcPzpa99NJLB497yCGH5JxzzhkMe3/yk5+skXofe+yx7LDDDnn22Wdz8cUXD7b/27/9W6ZNm5bTTz892267bX75y1/mkEMOyZe//OU8++yzSZKf/exneeKJJ15wvAcffDC//vWvkyyfHXzttddm9913XyO1AgAAAAD9ZaUzcqtqZpK3J3mgtTax0/bZJB9O8vzisp9urV3RZd+FSR5LsizJ0tba1DVTdnLLLbfkpJNOykYbbZTf+q3fype//OUkyXHHHZdDDz00O+ywQ6677rrstdde2XPPPfPa1742++23X5Lls2n/9m//NjNmzMi2226bfffdd/C4p5xySv70T/80kydPTmstO++8c/7pn/4pixcvzoc+9KEXLK/wUpxxxhmZNm1aXvOa12TSpEmDYfNJJ52UO++8M621HHTQQZkyZUomT56chQsXZu+9905rLdttt12+/e1vv+B49913X4466qgsW7Yszz33XP7gD/5g8IFtAAAAAMCGpVa0zECSVNVbkzye5GvDgtzHW2ufW8m+C5NMba39+0spasqUKW327NlJku23336FSyGM1OOPP54tt9wyrbV89KMfza677pqPf/zja/w80G+qKr/61a9GuwwAAACAMWH77bf/0ZqY4LrSpRVaa9cnWbK6J+o3F1xwQQYGBrLnnnvmkUceyfHHHz/aJQEAAAAAdLU6Dzs7oar+OMmcJP9fa+3hLn1aktlV1ZL8XWvt/F4Hq6rjkhyXJBMmTFiNslbNxz/+cTNwAQAAAID1wkgfdvblJK9LMpDkviSf79Fvv9ba3kkOTfLRzjINXbXWzm+tTW2tTR03btwqFbHxxhtnYGAgEydOzBFHHJEnn3zyBe3Pf5111llJkqVLl+bTn/50dt1118FtZ5555kqPt+WWW77gvBdddFFOOOGEJMkXvvCF7LHHHpk8eXIOOuig/OIXvxjs99WvfjW77rprdt1113z1q19dpc801IrO+7wpU6bkyCOPfEHb0UcfnW9+85svOt6tt96at73tbfmd3/md7LrrrjnjjDN6Lltx7LHHDq7X+973vjePP/54kuT//b//l/e97315/etfn2nTpg0+MO6hhx7KgQcemC233PJFNfZy9NFHZ5dddsnAwED23nvv3HDDDau037oyd+7cF6yJPGvWrMGxBAAAAADr0oiC3Nba/a21Za2155JckGTfHv0Wd74/kOSyXv1G6uUvf3nmzp2bBQsWZNNNN8155533gvbnvz71qU8lSf78z/88ixcvzi233JK5c+fmX//1X/Pss8+u9Hgrstdee2XOnDmZP39+3vve9+YTn/hEkmTJkiX5i7/4i9x000354Q9/mL/4i7/Iww93m7Q8cj/96U/z3HPP5frrr88TTzyxwr5PPfVUDj/88HzqU5/Kz372s8ybNy8/+MEP8rd/+7dd+//1X/915s2bl/nz5+fVr351zj333CTJhRdemG222SZ33XVXPv7xj+eTn/xkkuRlL3tZzjjjjHzucytcNvlFzj777MydOzdnnXXWWl3eYunSpS95n+FB7vM/v/XFSD4zAAAAAP1pREFuVe0w5O27kizo0meLqtrq+ddJpnfrt6bsv//+ueuuu3puf/LJJ3PBBRfknHPOycte9rIkyVZbbZXPfvazIzre8w488MBsvvnmSZLf/d3fzaJFi5IkV199dQ4++OCMGzcu22yzTQ4++OBcddVVL/FTrdjXv/71/NEf/VGmT5+eWbNmrbTvfvvtl+nTpydJNt9885x77rk9Z5j+h//wH5IkrbU89dRTqaokyeWXX56jjjoqSfLe9743/+f//J+01rLFFlvkLW95y+DP9qV661vfOvjzvuCCC7LPPvtkypQpec973jM4M/roo4/OiSeemDe/+c157Wtf+4JZx3/1V3+VSZMmZcqUKYNh6wEHHJBPf/rT+b3f+7188YtfzIMPPpj3vOc92WeffbLPPvvk//7f/5sk+eEPf5g3v/nN2WuvvfLmN785d9xxR5555pmceuqpufTSSzMwMJBLL730BTOi77///rzrXe/KlClTMmXKlPzgBz940We66qqrsvfee2fKlCk56KCDep4rWT7b+t3vfndmzJiRXXfddfAXAr2O88QTT+SYY47JPvvsk7322iuXX3754HGOOOKI/Kf/9J8G/1sDAAAAsP5b6Rq5VXVJkgOSbFtVi5KcluSAqhrI8jVwFyY5vtN3fJKvtNYOS/KqJJd1AsBNkny9tbZmk8yOpUuX5sorr8yMGTOSLJ99OjAwMLj95JNPzhve8Ia8+tWvzlZbbbXax1uyZEkOP/zwF+134YUX5tBDD02S3Hvvvdlpp50Gt02YMCH33nvvS/pcKzvvpZdemmuuuSZ33HFHzj333BctsTDUrbfemje+8Y0vaHvd616Xxx9/PI8++uhgcDvUBz/4wVxxxRXZY4898vnPf/5Fn2uTTTbJ1ltvnYceeijbbrvtS/psw33nO9/JpEmTkiTvfve78+EPfzjJ8lnUF154YT72sY8lSe677758//vfz+23357DDz88733ve3PllVfm29/+dm666aZsvvnmWbLkN8/m+/Wvf53vfe97SZI//MM/zMc//vG85S1vyT333JNDDjkkP/3pT7P77rvn+uuvzyabbJJrr702n/70p/Otb30rp59+eubMmTM4G/miiy4aPO6JJ56Y3/u938tll12WZcuWDS498bwHH3wwH/7wh3P99ddnl112Gayp17mS5TOAf/KTn2SzzTbLbrvtlo997GN52cte1vU4Z555Zt72trdl5syZ+fWvf5199903v//7v58kueGGGzJ//vys6hIlAAAAAPS/lQa5rbVu6eCFPfouTnJY5/XdSaasVnUrMTTo3H///XPssccm+c0SCUPNnz//Be///u//Pl/84hfz0EMP5Qc/+EF22mmnVT7eRRddlDlz5rzgeP/rf/2vzJkzZzA07Lb27POzWlfVis578803Z7vttstrXvOaTJgwIcccc0wefvjhbLPNNl2P1Vrref5e7X//93+fZcuW5WMf+1guvfTSfPCDH1wjn2uok046KX/5l3+Z7bbbLhdeuHxYLViwIH/+53+eX//613n88cdzyCGHDPZ/5zvfmY022ih77LFH7r///iTJtddemw9+8IODM6OHBpjve9/7Bl9fe+21ue222wbfP/roo3nsscfyyCOP5Kijjsqdd96ZqnrBchu9fPe7383Xvva1JMvXVt56661fsP3GG2/MW9/61uyyyy4vqGlF5zrooIMGj7PHHnvkF7/4RR5++OGux5k9e3ZmzZo1uJTF008/nXvuuSdJBmeCAwAAALDhGOnDzvrC0LVwzznnnGy66aY9+77+9a/PPffck8ceeyzJ8tmmc+fOzdZbb51ly5a95OMNde211+bMM8/MrFmzstlmmyVZPgP3l7/85WCfRYsWZfz48S/Y76abbhp86NrKlkYY7pJLLsntt9+enXfeOa973evy6KOPDs7s7GbPPfd8Ufh89913Z8stt8xWW22VQw45JAMDA/nQhz70gj4bb7xx3ve+9w0ee+jnWrp0aR555JHVCg2fXyP3mmuuycSJE5MsX0Lh3HPPzS233JLTTjstTz/99GD/53++yW/C8hWF1FtsscXg6+eeey433HDD4H/je++9N1tttVVOOeWUHHjggVmwYEG+853vvOB8I9WrphWda+hn23jjjbN06dKex2mt5Vvf+tbgZ7nnnnvyhje84UWfGQAAAIANw3od5L4Um2++eY499ticcMIJg+HZsmXL8swzz6zWcX/yk5/k+OOPz6xZs/LKV75ysP2QQw7J7Nmz8/DDD+fhhx/O7NmzXzCzNEmmTZs2GMR1W6qhl+eeey7f+MY3Mn/+/CxcuDALFy7M5ZdfnksuuaTnPh/4wAfy/e9/P9dee22S5bOZTzzxxMG1WK+++urMnTs3X/nKV9JaG1yvtrWW73znO9l9992TLH/g11e/+tUkyTe/+c287W1vW60Zud089thj2WGHHfLss8/m4osvXmn/6dOnZ+bMmYNr6Q5dWmF4v+eXSUgyONv5kUceyY477pjkhcsnbLXVVoPB/3AHHXRQvvzlLydZPo4effTRF2x/05velO9973v5+c9//oKaep2rl17HOeSQQ3LOOecMhtk/+clPVnosAAAAANZfG2SQ+/wSCc9/Pf/wMZ0FpAAAIABJREFUqzPPPDM77LBDJk6cmL322iv7779/jjrqqBfNlH0pTjrppDz++OM54ogjMjAwMBjIjhs3Lqeccsrgg7VOPfXUNfbn7tdff3123HHHwUAwWf6wsNtuuy333XdfkuT444/PhAkTMmHChLzpTW/Ky1/+8lx++eX5y7/8y+y2226ZNGlS9tlnn8GHdw3VWstRRx2VSZMmZdKkSbnvvvty6qmnJkmOPfbYPPTQQ3n961+fL3zhCy94WNrOO++c//bf/lsuuuiiTJgw4QXLGLwUZ5xxRqZNm5aDDz54MEBekRkzZuTwww/P1KlTMzAwMLjcwHBf+tKXMmfOnEyePDl77LFHzjvvvCTJJz7xiZx88snZb7/9BmdnJ8sfZHfbbbcNPuxsqC9+8Yu57rrrMmnSpLzxjW/Mrbfe+oLt2223Xc4///y8+93vzpQpUwaXeOh1rl56HeeUU07Js88+m8mTJ2fixIk55ZRTVnosAAAAANZf1W3N09E2ZcqUNnv27CTJ9ttv33VdVmBkqiq/+tWvRrsMAAAAgDFh++23/1FrberqHmeDnJELAAAAALAhEeQCAAAAAPQ5QS4AAAAAQJ8T5AIAAAAA9Lm+D3I32mijPPPMM6NdBmwQnnnmmWy0Ud//swcAAABgmL5PdCZPnpyzzz5bmAur6ZlnnsnZZ5+dyZMnj3YpAAAAALxEm4x2ASszc+bMHHPMMTn11FPz3HPPjXY5sN7aaKONMnny5MycOXO0SwEAAADgJer7IHf8+PG56qqrRrsMAAAAAIBR0/dLKwAAAAAAjHUrDXKramZVPVBVC4a0fbaq7q2quZ2vw3rsO6Oq7qiqu6rqU2uycAAAAACAsWJVZuRelGRGl/a/bq0NdL6uGL6xqjZO8j+SHJpkjyRHVtUeq1MsAAAAAMBYtNIgt7V2fZIlIzj2vknuaq3d3Vp7Jsk/JHnHCI4DAAAAADCmrc4auSdU1fzO0gvbdNm+Y5JfDnm/qNPWVVUdV1VzqmrOkiUjyY0BAAAAADZMIw1yv5zkdUkGktyX5PNd+lSXttbrgK2181trU1trU8eNGzfCsgAAAAAANjwjCnJba/e31pa11p5LckGWL6Mw3KIkOw15PyHJ4pGcDwAAAABgLBtRkFtVOwx5+64kC7p0uznJrlW1S1VtmuT9SWaN5HwAAAAAAGPZJivrUFWXJDkgybZVtSjJaUkOqKqBLF8qYWGS4zt9xyf5SmvtsNba0qo6IcnVSTZOMrO1duta+RQAAAAAABuwlQa5rbUjuzRf2KPv4iSHDXl/RZIrRlwdAAAAAAAjftgZAAAAAADriCAXAAAAAKDPCXIBAAAAAPqcIBcAAAAAoM8JcgEAAAAA+pwgFwAAAACgz20y2gV0c//992f77bcf7TIAAAAAAPpCXwa5r3rVqzJv3rzRLgMAAAAAYLWsqQmrllYAAAAAAOhzglwAAAAAgD4nyAUAAAAA6HOCXAAAAACAPrfSILeqZlbVA1W1oMu2P6uqVlXb9th3WVXN7XzNWhMFAwAAAACMNZusQp+Lkpyb5GtDG6tqpyQHJ7lnBfs+1VobGHF1AAAAAACsfEZua+36JEu6bPrrJJ9I0tZ0UQAAAAAA/MaI1sitqsOT3Ntam7eSri+rqjlVdWNVvXMlxzyu03fOkiXdcmMAAAAAgLFpVZZWeIGq2jzJZ5JMX4Xur26tLa6q1yb5blXd0lr7t24dW2vnJzk/SaZMmWKWLwAAAABAx0hm5L4uyS5J5lXVwiQTkvy4qrYf3rG1trjz/e4k/5JkrxFXCgAAAAAwRr3kILe1dktr7ZWttZ1bazsnWZRk79bar4b2q6ptqmqzzuttk+yX5LY1UDMAAAAAwJiy0iC3qi5JckOS3apqUVUdu4K+U6vqK523b0gyp6rmJbkuyVmtNUEuAAAAAMBLtNI1cltrR65k+85DXs9J8qHO6x8kmbSa9QEAAAAAjHkjWSMXAAAAAIB1SJALAAAAANDnBLkAAAAAAH1OkAsAAAAA0OcEuQAAAAAAfU6QCwAAAADQ5wS5AAAAAAB9TpALAAAAANDnBLkAAAAAAH1OkAsAAAAA0OcEuQAAAAAAfU6QCwAAAADQ5wS5AAAAAAB9bpWC3KqaWVUPVNWCLtv+rKpaVW3bY9+jqurOztdRq1swAAAAAMBYs6ozci9KMmN4Y1XtlOTgJPd026mqxiU5Lcm0JPsmOa2qthlRpQAAAAAAY9QqBbmtteuTLOmy6a+TfCJJ67HrIUmuaa0taa09nOSadAmEAQAAAADobcRr5FbV4Unuba3NW0G3HZP8csj7RZ22bsc7rqrmVNWcJUu6ZcYAAAAAAGPTiILcqto8yWeSnLqyrl3aus7eba2d31qb2lqbOm7cuJGUBQAAAACwQRrpjNzXJdklybyqWphkQpIfV9X2w/otSrLTkPcTkiwe4TkBAAAAAMakEQW5rbVbWmuvbK3t3FrbOcsD271ba78a1vXqJNOrapvOQ86md9oAAAAAAFhFqxTkVtUlSW5IsltVLaqqY1fQd2pVfSVJWmtLkpyR5ObO1+mdNgAAAAAAVtEmq9KptXbkSrbvPOT1nCQfGvJ+ZpKZI6wPAAAAAGDMG+kauQAAAAAArCOCXAAAAACAPifIBQAAAADoc4JcAAAAAIA+J8gFAAAAAOhzglwAAAAAgD4nyAUAAAAA6HOCXAAAAACAPifIBQAAAADoc4JcAAAAAIA+J8gFAAAAAOhzglwAAAAAgD4nyAUAAAAA6HMrDXKramZVPVBVC4a0nVFV86tqblXNrqrxPfZd1ukzt6pmrcnCAQAAAADGilWZkXtRkhnD2s5urU1urQ0k+ackp/bY96nW2kDn6/DVqBMAAAAAYMxaaZDbWrs+yZJhbY8OebtFkraG6wIAAAAAoGPEa+RW1ZlV9cskH0jvGbkvq6o5VXVjVb1zJcc7rtN3zpIlS1bUFQAAAABgTBlxkNta+0xrbackFyc5oUe3V7fWpib5wyR/U1WvW8Hxzm+tTW2tTR03btxIywIAAAAA2OCMOMgd4utJ3tNtQ2ttcef73Un+Jclea+B8AAAAAABjyoiC3Kradcjbw5Pc3qXPNlW1Wef1tkn2S3LbSM4HAAAAADCWbbKyDlV1SZIDkmxbVYuSnJbksKraLclzSX6R5COdvlOTfKS19qEkb0jyd1X1XJYHxme11gS5AAAAAAAv0UqD3NbakV2aL+zRd06SD3Ve/yDJpNWqDgAAAACANbJGLgAAAAAAa5EgFwAAAACgzwlyAQAAAAD6nCAXAAAAAKDPCXIBAAAAAPqcIBcAAAAAoM8JcgEAAAAA+pwgFwAAAACgzwlyAQAAAAD6nCAXAAAAAKDPCXIBAAAAAPqcIBcAAAAAoM+tUpBbVTOr6oGqWjCk7Yyqml9Vc6tqdlWN77HvUVV1Z+frqDVVOAAAAADAWLGqM3IvSjJjWNvZrbXJrbWBJP+U5NThO1XVuCSnJZmWZN8kp1XVNiMvFwAAAABg7FmlILe1dn2SJcPaHh3ydoskrcuuhyS5prW2pLX2cJJr8uJAGAAAAACAFdhkdXauqjOT/HGSR5Ic2KXLjkl+OeT9ok5bt2Mdl+S4JJkwYcLqlAUAAAAAsEFZrYedtdY+01rbKcnFSU7o0qW67dbjWOe31qa21qaOGzdudcoCAAAAANigrFaQO8TXk7ynS/uiJDsNeT8hyeI1dE4AAAAAgDFhxEFuVe065O3hSW7v0u3qJNOrapvOQ86md9oAAAAAAFhFq7RGblVdkuSAJNtW1aIkpyU5rKp2S/Jckl8k+Uin79QkH2mtfai1tqSqzkhyc+dQp7fWlrzoBAAAAAAA9FStdV2ydlRNmTKlzZ49e7TLAAAAAABYLdtvv/2PWmtTV/c4a2qNXAAAAAAA1hJBLgAAAABAnxPkAgAAAAD0OUEuAAAAAECfE+QCAAAAAPQ5QS4AAAAAQJ8T5AIAAAAA9DlBLgAAAABAnxPkAgAAAAD0OUEuAAAAAECfE+QCAAAAAPQ5QS4AAAAAQJ8T5AIAAAAA9LmVBrlVNbOqHqiqBUPazq6q26tqflVdVlWv6LHvwqq6parmVtWcNVk4AAAAAMBYsSozci9KMmNY2zVJJrbWJif5WZKTV7D/ga21gdba1JGVCAAAAAAwtq00yG2tXZ9kybC22a21pZ23NyaZsBZqAwAAAAAga2aN3GOSXNljW0syu6p+VFXHreggVXVcVc2pqjlLlixZUVcAAAAAgDFltYLcqvpMkqVJLu7RZb/W2t5JDk3y0ap6a69jtdbOb61Nba1NHTdu3OqUBQAAAACwQRlxkFtVRyV5e5IPtNZatz6ttcWd7w8kuSzJviM9HwAAAADAWDWiILeqZiT5ZJLDW2tP9uizRVVt9fzrJNOTLBhpoQAAAAAAY9VKg9yquiTJDUl2q6pFVXVsknOTbJXkmqqaW1XndfqOr6orOru+Ksn3q2pekh8m+efW2lVr5VMAAAAAAGzANllZh9bakV2aL+zRd3GSwzqv704yZbWqAwAAAABg9R52BgAAAADA2ifIBQAAAADoc4JcAAAAAIA+J8gFAAAAAOhzglwAAAAAgD4nyAUAAAAA6HOCXAAAAACAPifIBQAAAADoc4JcAAAAAIA+J8gFAAAAAOhzglwAAAAAgD4nyAUAAAAA6HOCXAAAAACAPrfSILeqZlbVA1W1YEjb2VV1e1XNr6rLquoVPfadUVV3VNVdVfWpNVk4AAAAAMBYsSozci9KMmNY2zVJJrbWJif5WZKTh+9UVRsn+R9JDk2yR5Ijq2qP1aoWAAAAAGAMWmmQ21q7PsmSYW2zW2tLO29vTDKhy677JrmrtXZ3a+2ZJP+Q5B2rWS8AAAAAwJizJtbIPSbJlV3ad0zyyyHvF3Xauqqq46pqTlXNWbJkSa9uAAAAAABjzmoFuVX1mSRLk1zcbXOXttbrWK2181trU1trU8eNG7c6ZQEAAAAAbFA2GemOVXVUkrcnOai11i2gXZRkpyHvJyRZPNLzAQAAAACMVSOakVtVM5J8MsnhrbUne3S7OcmuVbVLVW2a5P1JZo2sTAAAAACAsWulQW5VXZLkhiS7VdWiqjo2yblJtkpyTVXNrarzOn3HV9UVSdJ5GNoJSa5O8tMk/9hau3UtfQ4AAAAAgA3WSpdWaK0d2aX5wh59Fyc5bMj7K5JcMeLqAAAAAABYvYedAQAAAACw9glyAQAAAAD6nCAXAAAAAKDPCXIBAAAAAPqcIBcAAAAAoM8JcgEAAAAA+pwgFwAAAACgz1VrbbRreJGqeizJHaNdB4zQtkn+fbSLgBEyflmfGb+sz4xf1nfGMOsz45f1mfG7fnhNa2271T3IJmuikrXgjtba1NEuAkaiquYYv6yvjF/WZ8Yv6zPjl/WdMcz6zPhlfWb8ji2WVgAAAAAA6HOCXAAAAACAPtevQe75o10ArAbjl/WZ8cv6zPhlfWb8sr4zhlmfGb+sz4zfMaQvH3YGAAAAAMBv9OuMXAAAAAAAOgS5AAAAAAB9btSC3KqaUVV3VNVdVfWpLts3q6pLO9tvqqqd132V0F1V7VRV11XVT6vq1qr6r136HFBVj1TV3M7XqaNRK3RTVQur6pbO2JzTZXtV1Zc61+D5VbX3aNQJw1XVbkOuq3Or6tGq+tNhfVx/6RtVNbOqHqiqBUPaxlXVNVV1Z+f7Nj32ParT586qOmrdVQ2/0WMMn11Vt3fuES6rqlf02HeF9xuwtvUYv5+tqnuH3Ccc1mPfFWYWsLb1GL+XDhm7C6tqbo99XX83UKOyRm5VbZzkZ0kOTrIoyc1Jjmyt3Takz39JMrm19pGqen+Sd7XW3rfOi4UuqmqHJDu01n5cVVsl+VGSdw4bwwck+bPW2ttHqUzoqaoWJpnaWvv3HtsPS/KxJIclmZbki621aeuuQli5zv3EvUmmtdZ+MaT9gLj+0ieq6q1JHk/ytdbaxE7bXyVZ0lo7qxMObNNa++Sw/cYlmZNkapKW5fcab2ytPbxOPwBjXo8xPD3Jd1trS6vqvyfJ8DHc6bcwK7jfgLWtx/j9bJLHW2ufW8F+K80sYG3rNn6Hbf98kkdaa6d32bYwrr8bpNGakbtvkrtaa3e31p5J8g9J3jGszzuSfLXz+ptJDqqqWoc1Qk+ttftaaz/uvH4syU+T7Di6VcEa9Y4sv2ForbUbk7yi8wsM6CcHJfm3oSEu9JvW2vVJlgxrHnqf+9Uk7+yy6yFJrmmtLemEt9ckmbHWCoUeuo3h1trs1trSztsbk0xY54XBKuhxDV4Vq5JZwFq1ovHbycf+IMkl67QoRt1oBbk7JvnlkPeL8uIQbLBP5ybhkSS/vU6qg5egs+zHXklu6rL5TVU1r6qurKo912lhsGItyeyq+lFVHddl+6pcp2G0vT+9b15df+lnr2qt3Zcs/+Vwkld26eM6zPrimCRX9ti2svsNGC0ndJYGmdljeRvXYPrd/knub63d2WO76+8GarSC3G4za4ev8bAqfWBUVdWWSb6V5E9ba48O2/zjJK9prU1Jck6Sb6/r+mAF9mut7Z3k0CQf7fzZzlCuwfS1qto0yeFJvtFls+svGwLXYfpeVX0mydIkF/fosrL7DRgNX07yuiQDSe5L8vkufVyD6XdHZsWzcV1/N1CjFeQuSrLTkPcTkizu1aeqNkmydUb2JxGwVlTVb2V5iHtxa+1/D9/eWnu0tfZ45/UVSX6rqrZdx2VCV621xZ3vDyS5LMv/fGyoVblOw2g6NMmPW2v3D9/g+st64P7nl6vpfH+gSx/XYfpa5wF8b0/ygdbjwSurcL8B61xr7f7W2rLW2nNJLkj3cekaTN/qZGTvTnJprz6uvxuu0Qpyb06ya1Xt0plR8/4ks4b1mZXk+afzvjfLF9P3GzD6Qmc9mguT/LS19oUefbZ/fl3nqto3y/+9PbTuqoTuqmqLzkP6UlVbJJmeZMGwbrOS/HEt97tZvoj+feu4VFiRnrMQXH9ZDwy9zz0qyeVd+lydZHpVbdP5s9/pnTYYdVU1I8knkxzeWnuyR59Vud+AdW7Ycx/ele7jclUyCxgtv5/k9tbaom4bXX83bJuMxkk7Tzc9IctvRjdOMrO1dmtVnZ5kTmttVpaHZP+zqu7K8pm47x+NWqGH/ZL8UZJbqmpup+3TSV6dJK2187L8FxB/UlVLkzyV5P1+GUGfeFWSyzo51yZJvt5au6qqPpIMjt8rkhyW5K4kTyb54CjVCi9SVZtn+VOkjx/SNnT8uv7SN6rqkiQHJNm2qhYlOS3JWUn+saqOTXJPkiM6facm+Uhr7UOttSVVdUaWhwlJcnprzV+nsc71GMMnJ9ksyTWd+4kbW2sfqarxSb7SWjssPe43RuEjMIb1GL8HVNVAli+VsDCd+4mh47dXZjEKH4ExrNv4ba1dmC7PiXD9HTvK/9cAAAAAAPS30VpaAQAAAACAVSTIBQAAAADoc4JcAAAAAIA+J8gFAAAAAOhzglwAAAAAgD4nyAUAAAAA6HOCXAAAAACAPifIBQAAAADoc4JcAAAAAIA+J8gFAAAAAOhzglwAAAAAgD4nyAUAAAAA6HOCXAAAAACAPifIBQAAAADoc4JcAAAAAIA+J8gFAAAAAOhzglwAAAAAgD4nyAUAAAAA6HOC3P+fvbsPj6o61z9+P0BRBARsQI2giRZB8jYJQxABy4tARETRcoT6xkEFUYp6qlVrBQQ5x59iUamWglpsixAUUYqAiAIKKiTBEAOigkShoYgi72AgWb8/MpkmYSYJk8AM5Pu5rlzJrL322s8Me/Y13FlZGwAAAAAAAAAiHEEuAAAAAAAAAES4euEuIJCoqCgXExMT7jIAAAAAAAAAoFqysrK+d841r+44ERnkxsTEKDMzM9xlAAAAAAAAAEC1mNk3NTEOSysAAAAAAAAAQISLyBm5pW3dulUDBgzQmjVrVFRUFO5yACDs6tSpo5SUFM2dO1ctW7YMdzkAAAAAAOAEiPggd8CAAbruuuu0cuVK1a9fP9zlAEDYFRQUaOLEiRowYIAyMjLCXQ4AAAAAADgBzDkX7hqO4vV6XckauXXr1tXBgwcJcQGglIKCAjVo0ECFhYXhLgUAAAAAAFTAzLKcc97qjhPxa+QWFRUR4gJAOfXr12e5GQAAAAAAapGID3IBAAAAAAAAoLYjyAUAAAAAAACACEeQCwAAAAAAAAAR7pQLcp955hkdOHDguB+nbt268ng8io+P18CBA3XgwAHl5eUpPj7+uB9bkg4dOqTU1FQlJSUpLi5OY8aMOSHHBQAAAAAAAHDiEeSGqEGDBsrOzlZubq7q16+vKVOmHPdjlnbaaafp/fff19q1a5Wdna1Fixbpk08+OaE1AAAAAAAAADgxTtogd//+/brqqquUlJSk+Ph4paen67nnnlN+fr66d++u7t27S5JGjBghr9d71KzVBQsWqG3bturSpYtGjRqlfv36+ccdOnSoOnTooOTkZL311luV1tK1a1dt3LhRklRYWKg77rhDcXFx6t27tw4ePChJmjZtmjp06KCkpCRdf/31/rD5tddeU3x8vJKSknT55Zf7x3jggQfUoUMHJSYm6i9/+ctRxzQzNWrUSJJ0+PBhHT58WGYW6ssJAAAAAAAAIIKdtEHuokWLFB0drbVr1yo3N1dpaWkaNWqUoqOjtXTpUi1dulSSNGHCBGVmZionJ0fLly9XTk6ODh06pOHDh2vhwoVasWKFduzY4R93woQJ6tGjhzIyMrR06VI98MAD2r9/v/Lz89W3b9+j6jhy5IgWLlyohIQESdJXX32lu+++W+vWrVPTpk01Z84cSdJ1112njIwMrV27VpdccoleeuklSdK4ceP0zjvvaO3atZo3b54k6aWXXlKTJk2UkZGhjIwMTZs2TZs3bz7q2IWFhfJ4PGrRooV69eqljh071uyLDAAAAAAAACAinLRBbkJCgpYsWaIHH3xQH374oZo0aRKw3+zZs5WSkqLk5GStW7dO69ev14YNG3ThhRcqNjZWkjR48GB//8WLF+uJJ56Qx+NRt27ddOjQIX377beKjo7WggUL/P0OHjwoj8cjr9er888/X7fddpskKTY2Vh6PR5LUvn175eXlSZJyc3PVtWtXJSQkaMaMGVq3bp0kqXPnzhoyZIimTZumwsJCfw1/+9vf5PF41LFjR/3www/66quvjnpudevWVXZ2trZu3arVq1crNze3mq8qAAAAAAAAgEhUL9wFhOriiy9WVlaWFixYoIcffli9e/fW6NGjy/TZvHmzJk6cqIyMDDVr1kxDhgzRoUOH5JwLOq5zTnPmzFGbNm0qPH7JGrnlnXbaaf6f69at619aYciQIXrzzTeVlJSk6dOna9myZZKkKVOmaNWqVXr77bfl8XiUnZ0t55wmT56sPn36VOm1aNq0qbp166ZFixadsJutAQAAAAAAADhxTtoZufn5+TrjjDN000036f7779eaNWskSY0bN9bevXslSXv27FHDhg3VpEkTbd++XQsXLpQktW3bVl9//bV/tmx6erp/3D59+mjy5Mn+sPfTTz+tkXr37t2rc889V4cPH9aMGTP87Zs2bVLHjh01btw4RUVFacuWLerTp4/+/Oc/6/Dhw5KkL7/8Uvv37y8z3o4dO7Rr1y5JxbODlyxZorZt29ZIrQAAAAAAAAAiy0k7I/ezzz7TAw88oDp16uhnP/uZ/vznP0uShg0bpiuvvFLnnnuuli5dquTkZMXFxenCCy9U586dJRXPpn3hhReUlpamqKgopaam+sd99NFHde+99yoxMVHOOcXExGj+/PnKz8/X7bffXmZ5hWMxfvx4dezYURdccIESEhL8YfMDDzygr776Ss459ezZU0lJSUpMTFReXp5SUlLknFPz5s315ptvlhlv27ZtuvXWW1VYWKiioiL913/9l/+GbQAAAAAAAABOLVbRMgOSZGYvS+on6TvnXLyvbaykOySV3CXs9865oxJOM8uTtFdSoaQjzjlvVYryer0uMzOzZIwKl0II1b59+9SoUSM553T33XerdevWuu+++2r8OABwvByv6yMAAAAAAKg5ZpZV1Vy0IlVZWmG6pLQA7ZOccx7fV0XTVLv7+lS72Jo0bdo0eTwexcXFaffu3Ro+fHi4SwIAAAAAAACAgCpdWsE594GZxRz/Uk6s++67jxm4AAAAAAAAAE4K1bnZ2UgzyzGzl82sWZA+TtJiM8sys2EVDWZmw8ws08wyd+zYUVFXAAAAAAAAAKhVQg1y/yzpIkkeSdskPR2kX2fnXIqkKyXdbWaXBxvQOTfVOed1znmbN29epSLq1q0rj8ej+Ph4DRw4UAcOHDimJ3H77bdr/fr1FfZ55plnjnncY5GXl6f4+PgybWPHjtXEiROP2zEr8uabb5Z5TUaPHq0lS5Yc0xiffvqpbr/99jJt11xzjTp16lSmbezYsTrvvPP8/4bz5s3zt5d//jExMfr+++8lSY0aNZJU/NqZmSZPnuzvN3LkSE2fPl2SNGTIEL3++usaMGCAPB6PfvGLX6hJkybyeDzyeDzq0aOHHnzwQf++33zzjS688ELt2rVLgwYN0ldffVWl53vkyBFFRUXp4YcfDtpn2bJl/pvRzZs3T0888USVxq4JFZ3D3bp1U8l61FLZ83HZsmVlXi+Px+M/F0q/966++mrt2rVLkpSdna1OnTopLi5OiYmJSk9PD6nm6dOna+TIkSHtG4ply5bpo48+OmHHAwAAAAAAOFYhBbnOue3OuULnXJGkaZJSg/TL933/TtLcYP1C1aBBA2VnZys3N1f169fXlClTqrxvYWGhXnzxRbVr167CftUNcmNiYkLet6qOHDlSY2OVD3LHjRunK6644pjG+N///V/95je/8T/etWuX1qxZo127dmnz5s1l+t53333Kzs7Wa6/Tpo2TAAAgAElEQVS9pqFDh6qoqOiYjtWiRQs9++yzKigoCNpn7ty5ys7O1osvvqiuXbsqOztb2dnZevvtt/XWW2/p888/lyTdc889Gj9+vJo2baoRI0boySefrFINixcvVps2bTR79uwq3Xiqf//+euihh6r2BGtAdc7h0q9Xdna2/1wo/d4766yz9Pzzz0uSzjjjDP3tb3/TunXrtGjRIt17773+kLe0mnhfOOeO+XwJJtKD3MLCwnCXAAAAAAAAwiykINfMzi31cICk3AB9GppZ45KfJfUO1K+mdO3aVRs3bpQk/eMf/1Bqaqo8Ho+GDx/uD0EaNWqk0aNHq2PHjvr444/LzEZcvHixOnXqpJSUFA0cOFD79u3Tc889p/z8fHXv3l3du3eXJI0YMUJer1dxcXEaM2bM8Xo6fps2bVJaWprat2+vrl27asOGDZKKZ5v+z//8j7p3764HH3xQ+/bt03//938rISFBiYmJmjNnTtDnJRUHaQ8++KBSU1OVmpqqjRs36qOPPtK8efP0wAMPyOPxaNOmTf5ZrSX7jBkzRikpKUpISPDXUtrevXuVk5OjpKQkf9ucOXN09dVXa9CgQZo1a1bA53nJJZeoXr16/lm3VdW8eXP17NlTr7zyyjHtJxWHkX/84x911113aeHChdq7d69uvPFGScXn05IlS6oUks+cOVP33HOPzj//fH3yySf+9kWLFqlt27bq0qWL3njjDX976dmmpV9f6T+zjW+44QYtWPCfewgOGTJEc+bMUV5enrp27aqUlBSlpKT4w8dly5apW7du+tWvfqW2bdvqxhtvlHMu4Dlc0zp16qR//etfkqSLL75YrVu3liRFR0erRYsWCnWplC1btigtLU1t2rTRY489Jql4xvAll1yiu+66SykpKdqyZUvQc3zcuHHq0KGD4uPjNWzYMH/I/txzz6ldu3ZKTEzUoEGDlJeXpylTpmjSpEnyeDz68MMPy9QR7L0V7FoQ7H0Synt03Lhx6tKli1577bWQXkMAAAAAAHDqqDTINbOZkj6W1MbMtprZbZKeNLPPzCxHUndJ9/n6RptZSfp0tqQVZrZW0mpJbzvnFh2PJ3HkyBEtXLhQCQkJ+vzzz5Wenq6VK1cqOztbdevW1YwZMyRJ+/fvV3x8vFatWqUuXbr49//+++/1+OOPa8mSJVqzZo28Xq/++Mc/atSoUYqOjtbSpUu1dOlSSdKECROUmZmpnJwcLV++XDk5OdWuf9OmTWX+fL30zOJhw4Zp8uTJysrK0sSJE3XXXXf5t3355ZdasmSJnn76aY0fP15NmjTRZ599ppycHPXo0SPo8ypx5plnavXq1Ro5cqTuvfdeXXbZZerfv7+eeuopZWdn66KLLjqq1qioKK1Zs0YjRowIuPxDZmbmUUtFzJw5U4MHD9bgwYM1c+bMgK/BqlWrVKdOHZUsq1ESqpV85efnB339HnroIT399NMhzVrs27evzjrrLN1yyy164YUX/O116tTRL37xC61du7bC/Q8ePKj33ntP/fr1K/P8Dh06pDvuuEP//Oc/9eGHH+rf//73MdU1aNAg/7IEBQUFeu+999S3b1+1aNFC7777rtasWaP09HSNGjXKv8+nn36qZ555RuvXr9fXX3+tlStXBjyHy7vxxhv9r3Pfvn3LbPvwww/L/Dts2rSpzPbCwkK999576t+//1Hjrl69WgUFBQHPo6pYvXq1ZsyY4Z+xXfJLly+++EK33HKLPv30UzVs2DDoOT5y5EhlZGQoNzdXBw8e1Pz58yVJTzzxhD799FPl5ORoypQpiomJ0Z133umfHd61a9cydQR6b0kVXwsCvU9CeY+efvrpWrFihQYNGhTSawgAAAAAAE4d9Srr4JwbHKD5pSB98yX19f38taSkQP1qysGDB+XxeCQVz6C87bbbNHXqVGVlZalDhw7+Pi1atJBUvK7n9ddff9Q4n3zyidavX6/OnTtLKg7Oyq/nWmL27NmaOnWqjhw5om3btmn9+vVKTEws02fChAn+GXT5+fn+Gjt37uz/E/TSLrroImVnZ/sfjx07VlLxDL6PPvpIAwcO9G/76aef/D8PHDhQdevWlSQtWbKkzGzXZs2aaf78+RU+r8GDB/u/33fffQGfb3nXXXedJKl9+/ZlZpmW2LZtm0qvcbx9+3Zt3LhRXbp0kZmpXr16ys3N9Ye9kyZN0j/+8Q81btxY6enpMjNJxUsu3H///f5xKvpT/NjYWKWmpurVV1+t0nMo7+6779bBgwfVpk2bMu0tWrRQfn6+2rdvH3Tf+fPnq3v37jrjjDN0/fXXa/z48Zo0aZI2bNig2NhY/+zUm266SVOnTq1yTVdeeaVGjRqln376SYsWLdLll1+uBg0aaPfu3Ro5cqT/lxRffvmlf5/U1FS1bNlSkuTxeJSXl1fmFxbBzJgxQ16vV1LxjNeStXyl4vdVSQBaWsl7Ly8vT+3bt1evXr3KbN+2bZtuvvlmvfLKK6pTp/j3RXfffbdWrlwpqez7YuDAgXrkkUeOOkavXr3085//XFLxebdixQpde+21uuCCC3TppZdKqvi9u3TpUj355JM6cOCAdu7cqbi4OF199dVKTEzUjTfeqGuvvVbXXnttpa9PoPeWVPG1IND7JJT36A033FBpfQAAAAAAoHaoNMiNZCXrdJbmnNOtt96q//u//zuq/+mnn+4PPsvv06tXr6CzRUts3rxZEydOVEZGhpo1a6YhQ4bo0KFDR/V75JFH/MFUTEzMUTVWVVFRkZo2bRp0/4YNG5Z5DiUhaOm2ip5X6f7l9w3mtNNOk1QcigdadqBBgwZlXpP09HT9+OOPio2NlSTt2bNHs2bN0uOPPy7p6MA2VL///e/1q1/9SpdfHvR+ekHVqVPHHzaWdujQITVo0KDCfWfOnKmVK1f6g+YffvhBS5cuVVRUVJVe03r16vnXeXXO+df6Pf3009WtWze98847Sk9P94fukyZN0tlnn621a9eqqKhIp59+un+skn8bKfi/T00pee/t3r1b/fr10/PPP++fHbxnzx5dddVVevzxx/2Bq6Qyv8Soyvui/OtX8rj8eR/oHD906JDuuusuZWZmqlWrVho7dqz/vHz77bf1wQcfaN68eRo/frzWrVtXYR2B3luVXQsCvU9CeY+Wfq4AAAAAAKB2C2mN3EjWs2dPvf766/ruu+8kSTt37tQ333xT4T6XXnqpVq5c6V9j98CBA/6Zjo0bN9bevXslFQdUDRs2VJMmTbR9+3YtXLjwOD6T4qUPYmNj/bN7nXNB/9S/d+/e+tOf/uR//OOPP1b4vCT5/3Q/PT3dPwuw9PMNxSWXXOI/nlQcdC5atEh5eXnKy8tTVlZW0HVyq6Nt27Zq165dwNmjofryyy8VFxcXdPuePXu0YsUKffvtt/7n9/zzz2vmzJlq27atNm/e7F+KIFhQFxMTo6ysLEnSW2+9pcOHD/u3DRo0SH/961/14Ycfqk+fPpKk3bt369xzz1WdOnX097//vUrLSVT337QiTZo00XPPPaeJEyfq8OHDKigo0IABA3TLLbeUmUkeinfffVc7d+7UwYMH9eabb/pnrZYW7BwvCVWjoqK0b98+/zrERUVF2rJli7p3764nn3xSu3bt0r59+yp8jQK9t0K5FoTyHgUAAAAAAChxygW57dq10+OPP67evXsrMTFRvXr10rZt24L2NzM1b95c06dP1+DBg5WYmKhLL73Uf4OiYcOG6corr1T37t2VlJSk5ORkxcXFaejQoQGDpZo2Y8YMvfTSS0pKSlJcXJzeeuutgP3+8Ic/6Mcff1R8fLySkpK0dOnSCp+XVLxMQ8eOHfXss89q0qRJkorDw6eeekrJyclHrYdaFW3bttXu3bu1d+9e5eXl6dtvvy0zKzM2NlZnnnmmVq1adcxjV+aRRx7R1q1ba2Ss7du3q0GDBjr33HOD9nnjjTfUo0ePMjNhr7nmGs2bN09mpqlTp+qqq65Sly5ddMEFF5TZt2Rm5h133KHly5crNTVVq1atKjMDs3fv3vrggw90xRVXqH79+pKku+66S6+88oouvfRSffnll1WasVn6HD5W5dfILX1jthLJyclKSkrSrFmzNHv2bH3wwQeaPn26f59QZ6R36dJFN998szwej66//nr/8g+lBTvHmzZtqjvuuEMJCQm69tpr/UutFBYW6qabblJCQoKSk5N13333qWnTprr66qs1d+7cgDc7C/TeCuVaEMp7FAAAAAAAoISV3Mk9kni9XldyYyMz0/GqMSEhQfPmzfP/2X9tEhMTo8zMTEVFRdX42JMmTVLjxo11++231/jYJ8qkSZN05pln6rbbbqvxsZ9++mnt2bNHjz32WI2PjdrleF4fAQAAAABAzTCzLOfc0TPUjtEpNyO3qnr16qWEhIRaGeIebyNGjCgzS/Vk1LRpU9166601Pu6UKVM0ffp03XTTTTU+NgAAAAAAAE5dtXpGLgCczLg+AgAAAAAQ+ZiRCwAAAAAAAAC1BEEuAAAAAAAAAES4iA9y69Spo4KCgnCXAQARpaCgQHXqRPwlHAAAAAAA1JCITwFSUlI0ceJEwlwA8CkoKNDEiROVkpIS7lIAAAAAAMAJUi/cBVRm7ty5GjBggB599FEVFRWFuxwACLs6deooJSVFc+fODXcpAAAAAADgBIn4ILdly5bKyMgIdxkAAAAAAAAAEDaVLq1gZi+b2XdmlluqbayZ/cvMsn1ffYPsm2ZmX5jZRjN7qCYLBwAAAAAAAIDaoipr5E6XlBagfZJzzuP7WlB+o5nVlfS8pCsltZM02MzaVadYAAAAAAAAAKiNKg1ynXMfSNoZwtipkjY65752zhVImiXpmhDGAQAAAAAAAIBarSozcoMZaWY5vqUXmgXYfp6kLaUeb/W1BWRmw8ws08wyd+zYUY2yAAAAAAAAAODUEmqQ+2dJF0nySNom6ekAfSxAmws2oHNuqnPO65zzNm/ePMSyAAAAAAAAAODUE1KQ65zb7pwrdM4VSZqm4mUUytsqqVWpxy0l5YdyPAAAAAAAAACozUIKcs3s3FIPB0jKDdAtQ1JrM4s1s/qSBkmaF8rxAAAAAAAAAKA2q1dZBzObKambpCgz2yppjKRuZuZR8VIJeZKG+/pGS3rROdfXOXfEzEZKekdSXUkvO+fWHZdnAQAAAAAAAACnMHMu6LK1YeP1el1mZma4ywAAAAAAAACAajGzLOect7rjhHqzMwAAAAAAAADACUKQCwAAAAAAAAARjiAXAAAAAAAAACIcQS4AAAAAAAAARDiCXAAAAAAAAACIcAS5AAAAAAAAABDh6oW7gEDy8/NlZuEuAwAAAAAAAAAiQkQGudHR0crPzw93GQAAAAAAAABQLTU1YZWlFQAAAAAAAAAgwhHkAgAAAAAAAECEI8gFAAAAAAAAgAhHkAsAAAAAAAAAEY4gFwAAAAAAAAAiXKVBrpm9bGbfmVlugG33m5kzs6gg+xaaWbbva15NFAwAAAAAAAAAtU29KvSZLulPkv5WutHMWknqJenbCvY96JzzhFwdAAAAAAAAAKDyGbnOuQ8k7QywaZKk30lyNV0UAAAAAAAAAOA/Qloj18z6S/qXc25tJV1PN7NMM/vEzK6tZMxhvr6ZO3bsCKUsAAAAAAAAADglVWVphTLM7AxJj0jqXYXu5zvn8s3sQknvm9lnzrlNgTo656ZKmipJXq+XWb4AAAAAAAAA4BPKjNyLJMVKWmtmeZJaSlpjZueU7+icy/d9/1rSMknJIVcKAAAAAAAAALXUMQe5zrnPnHMtnHMxzrkYSVslpTjn/l26n5k1M7PTfD9HSeosaX0N1AwAAAAAAAAAtUqlQa6ZzZT0saQ2ZrbVzG6roK/XzF70PbxEUqaZrZW0VNITzjmCXAAAAAAAAAA4RpWukeucG1zJ9phSP2dKut3380eSEqpZHwAAAAAAAADUeqGskQsAAAAAAAAAOIEIcgEAAAAAAAAgwhHkAgAAAAAAAECEI8gFAAAAAAAAgAhHkAsAAAAAAAAAEY4gFwAAAAAAAAAiHEEuAAAAAAAAAEQ4glwAAAAAAAAAiHAEuQAAAAAAAAAQ4QhyAQAAAAAAACDCEeQCAAAAAAAAQIQjyAUAAAAAAACACEeQCwAAAAAAAAARrkpBrpm9bGbfmVlugG33m5kzs6gg+95qZl/5vm6tbsEAAAAAAAAAUNtUdUbudElp5RvNrJWkXpK+DbSTmZ0laYykjpJSJY0xs2YhVQoAAAAAAAAAtVSVglzn3AeSdgbYNEnS7yS5ILv2kfSuc26nc+5HSe8qQCAMAAAAAAAAAAgu5DVyzay/pH8559ZW0O08SVtKPd7qaws03jAzyzSzzB07doRaFgAAAAAAAACcckIKcs3sDEmPSBpdWdcAbQFn7zrnpjrnvM45b/PmzUMpCwAAAAAAAABOSaHOyL1IUqyktWaWJ6mlpDVmdk65flsltSr1uKWk/BCPCQAAAAAAAAC1UkhBrnPuM+dcC+dcjHMuRsWBbYpz7t/lur4jqbeZNfPd5Ky3rw0AAAAAAAAAUEVVCnLNbKakjyW1MbOtZnZbBX29ZvaiJDnndkoaLynD9zXO1wYAAAAAAAAAqCJzLuCStWHl9XpdZmZmuMsAAAAAAAAAgGoxsyznnLe644S6Ri4AAAAAAAAA4AQhyAUAAAAAAACACEeQCwAAAAAAAAARjiAXAAAAAAAAACIcQS4AAAAAAAAARDiCXAAAAAAAAACIcAS5AAAAAAAAABDhCHIBAAAAAAAAIMIR5AIAAAAAAABAhCPIBQAAAAAAAIAIR5ALAAAAAAAAABGOIBcAAAAAAAAAIlylQa6ZvWxm35lZbqm28WaWY2bZZrbYzKKD7Fvo65NtZvNqsnAAAAAAAAAAqC2qMiN3uqS0cm1POecSnXMeSfMljQ6y70HnnMf31b8adQIAAAAAAABArVVpkOuc+0DSznJte0o9bCjJ1XBdAAAAAAAAAACfkNfINbMJZrZF0o0KPiP3dDPLNLNPzOzaSsYb5uubuWPHjlDLAgAAAAAAAIBTTshBrnPuEedcK0kzJI0M0u1855xX0q8lPWNmF1Uw3lTnnNc5523evHmoZQEAAAAAAADAKSfkILeUVyVdH2iDcy7f9/1rScskJdfA8QAAAAAAAACgVgkpyDWz1qUe9pe0IUCfZmZ2mu/nKEmdJa0P5XgAAAAAAAAAUJvVq6yDmc2U1E1SlJltlTRGUl8zayOpSNI3ku709fVKutM5d7ukSyT9xcyKVBwYP+GcI8gFAAAAAAAAgGNkzrlw13AUr9frMjMzw10GAAAAAAAAAFSLmWX57iNWLTWxRi4AAAAAAAAA4DgiyAUAAAAAAACACEeQCwAAAAAAAAARjiAXAAAAAAAAACIcQS4AAAAAAAAARDiCXAAAAAAAAACIcAS5AAAAAAAAABDhCHIBAAAAAAAAIMIR5AIAAAAAAABAhCPIBQAAAAAAAIAIR5ALAAAAAAAAABGOIBcAAAAAAAAAIhxBLgAAAAAAAABEuCoFuWb2spl9Z2a5pdrGm1mOmWWb2WIziw6y761m9pXv69aaKhwAAAAAAAAAaouqzsidLimtXNtTzrlE55xH0nxJo8vvZGZnSRojqaOkVEljzKxZ6OUCAAAAAAAAQO1TpSDXOfeBpJ3l2vaUethQkguwax9J7zrndjrnfpT0ro4OhAEAAAAAAAAAFahXnZ3NbIKkWyTtltQ9QJfzJG0p9Xirry3QWMMkDZOk888/vzplAQAAAAAAAMAppVo3O3POPeKcayVphqSRAbpYoN2CjDXVOed1znmbN29enbIAAAAAAAAA4JRSrSC3lFclXR+gfaukVqUet5SUX0PHBAAAAAAAAIBaIeQg18xal3rYX9KGAN3ekdTbzJr5bnLW29cGAAAAAAAAAKiiKq2Ra2YzJXWTFGVmWyWNkdTXzNpIKpL0jaQ7fX29ku50zt3unNtpZuMlZfiGGuec23nUAQAAAAAAAAAAQZlzAZesDSuv1+syMzPDXQYAAAAAAAAAVIuZZTnnvNUdp6bWyAUAAAAAAAAAHCcEuQAAAAAAAAAQ4QhyAQAAAAAAACDCEeQCAAAAAAAAQIQjyAUAAAAAAACACEeQCwAAAAAAAAARjiAXAAAAAAAAACIcQS4AAAAAAAAARDiCXAAAAAAAAACIcAS5AAAAAAAAABDhCHIBAAAAAAAAIMIR5AIAAAAAAABAhCPIBQAAAAAAAIAIV2mQa2Yvm9l3ZpZbqu0pM9tgZjlmNtfMmgbZN8/MPjOzbDPLrMnCAQAAAAAAAKC2qMqM3OmS0sq1vSsp3jmXKOlLSQ9XsH9355zHOecNrUQAAAAAAAAAqN0qDXKdcx9I2lmubbFz7ojv4SeSWh6H2gAAAAAAAAAAqpk1codKWhhkm5O02MyyzGxYRYOY2TAzyzSzzB07dtRAWQAAAAAAAABwaqhWkGtmj0g6ImlGkC6dnXMpkq6UdLeZXR5sLOfcVOec1znnbd68eXXKAgAAAAAAAIBTSshBrpndKqmfpBudcy5QH+dcvu/7d5LmSkoN9XgAAAAAAAAAUFuFFOSaWZqkByX1d84dCNKnoZk1LvlZUm9JuaEWCgAAAAAAAAC1VaVBrpnNlPSxpDZmttXMbpP0J0mNJb1rZtlmNsXXN9rMFvh2PVvSCjNbK2m1pLedc4uOy7MAAAAAAAAAgFNYvco6OOcGB2h+KUjffEl9fT9/LSmpWtUBAAAAAAAAAKp3szMAAAAAAAAAwPFHkAsAAAAAAAAAEY4gFwAAAAAAAAAiHEEuAAAAAAAAAEQ4glwAAAAAAAAAiHAEuQAAAAAAAAAQ4QhyAQAAAAAAACDCEeQCAAAAAAAAQIQjyAUAAAAAAACACEeQCwAAAAAAAAARjiAXAAAAAAAAACIcQS4AAAAAAAAARLhKg1wze9nMvjOz3FJtT5nZBjPLMbO5ZtY0yL5pZvaFmW00s4dqsnAAAAAAAAAAqC2qMiN3uqS0cm3vSop3ziVK+lLSw+V3MrO6kp6XdKWkdpIGm1m7alULAAAAAAAAALVQpUGuc+4DSTvLtS12zh3xPfxEUssAu6ZK2uic+9o5VyBplqRrqlkvAAAAAAAAANQ6NbFG7lBJCwO0nydpS6nHW31tAZnZMDPLNLPMHTt21EBZAAAAAAAAAHBqqFaQa2aPSDoiaUagzQHaXLCxnHNTnXNe55y3efPm1SkLAAAAAAAAAE4p9ULd0cxuldRPUk/nXKCAdqukVqUet5SUH+rxAAAAAAAAAKC2CmlGrpmlSXpQUn/n3IEg3TIktTazWDOrL2mQpHmhlQkAAAAAAAAAtVelQa6ZzZT0saQ2ZrbVzG6T9CdJjSW9a2bZZjbF1zfazBZIku9maCMlvSPpc0mznXPrjtPzAAAAAAAAAIBTlgVeFSG8vF6vy8zMDHcZAAAAAAAAAFAtZpblnPNWd5xq3ewMAAAAAAAAAHD8EeQCAAAAAAAAQIQjyAUAAAAAAACACEeQCwAAAAAAAAARjiAXAAAAAAAAACIcQS4AAAAAAAAARDiCXAAAAAAAAACIcAS5AAAAAAAAABDhzDkX7hqOYmZ7JX0R7jqAEEVJ+j7cRQAh4vzFyYzzFyczzl+c7DiHcTLj/MXJjPP35HCBc655dQepVxOVHAdfOOe84S4CCIWZZXL+4mTF+YuTGecvTmacvzjZcQ7jZMb5i5MZ52/twtIKAAAAAAAAABDhCHIBAAAAAAAAIMJFapA7NdwFANXA+YuTGecvTmacvziZcf7iZMc5jJMZ5y9OZpy/tUhE3uwMAAAAAAAAAPAfkTojFwAAAAAAAADgQ5ALAAAAAAAAABEubEGumaWZ2RdmttHMHgqw/TQzS/dtX2VmMSe+SiAwM2tlZkvN7HMzW2dm9wTo083MdptZtu9rdDhqBQIxszwz+8x3bmYG2G5m9pzvGpxjZinhqBMoz8zalLquZpvZHjO7t1wfrr+IGGb2spl9Z2a5pdrOMrN3zewr3/dmQfa91dfnKzO79cRVDfxHkHP4KTPb4PuMMNfMmgbZt8LPG8DxFuT8HWtm/yr1OaFvkH0rzCyA4y3I+Zte6tzNM7PsIPty/T1FhWWNXDOrK+lLSb0kbZWUIWmwc259qT53SUp0zt1pZoMkDXDO3XDCiwUCMLNzJZ3rnFtjZo0lZUm6ttw53E3S/c65fmEqEwjKzPIkeZ1z3wfZ3lfSbyT1ldRR0rPOuY4nrkKgcr7PE/+S1NE5902p9m7i+osIYWaXS9on6W/OuXhf25OSdjrnnvCFA82ccw+W2+8sSZmSvJKcij9rtHfO/XhCnwBqvSDncG9J7zvnjpjZ/5Ok8uewr1+eKvi8ARxvQc7fsZL2OecmVrBfpZkFcLwFOn/LbX9a0m7n3LgA2/LE9feUFK4ZuamSNjrnvnbOFUiaJemacn2ukfSK7+fXJfU0MzuBNQJBOee2OefW+H7eK+lzSeeFtyqgRl2j4g8Mzjn3iaSmvl9gAJGkp6RNpUNcINI45z6QtLNcc+nPua9IujbArn0kveuc2+kLb9+VlHbcCgWCCHQOO+cWO+eO+B5+IqnlCS8MqIIg1+CqqEpmARxXFZ2/vnzsvyTNPKFFIezCFeSeJ2lLqcdbdXQI5u/j+5CwW9LPT0h1wDHwLfuRLGlVgM2dzGytmS00s7gTWhhQMSdpsZllmdmwANurcp0Gwm2Qgn945fqLSHa2c26bVPzLYUktAvThOoyTxVBJC4Nsq+zzBhAuI31Lg7wcZHkbrsGIdF0lbXfOfRVkO9ffU1S4gtxAM2vLr/FQlT5AWJlZI0lzJN3rnNtTbvMaSRc455IkTZb05omuD6hAZ+dciqQrJd3t+7Od0rgGI6KZWX1J/SW9FmAz11+cCrgOI+KZ2SOSjkiaEaRLZecBGpoAACAASURBVJ83gHD4s6SLJHkkbZP0dIA+XIMR6Qar4tm4XH9PUeEKcrdKalXqcUtJ+cH6mFk9SU0U2p9EAMeFmf1MxSHuDOfcG+W3O+f2OOf2+X5eIOlnZhZ1gssEAnLO5fu+fydpror/fKy0qlyngXC6UtIa59z28hu4/uIksL1kuRrf9+8C9OE6jIjmuwFfP0k3uiA3XqnC5w3ghHPObXfOFTrniiRNU+DzkmswIpYvI7tOUnqwPlx/T13hCnIzJLU2s1jfjJpBkuaV6zNPUsndeX+l4sX0+Q0YIoJvPZqXJH3unPtjkD7nlKzrbGapKn6//XDiqgQCM7OGvpv0ycwaSuotKbdct3mSbrFil6p4Ef1tJ7hUoCJBZyFw/cVJoPTn3FslvRWgzzuSeptZM9+f/fb2tQFhZ2Zpkh6U1N85dyBIn6p83gBOuHL3fRigwOdlVTILIFyukLTBObc10Eauv6e2euE4qO/upiNV/GG0rqSXnXPrzGycpEzn3DwVh2R/N7ONKp6JOygctQJBdJZ0s6TPzCzb1/Z7SedLknNuiop/ATHCzI5IOihpEL+MQIQ4W9JcX85VT9KrzrlFZnan5D9/F0jqK2mjpAOS/jtMtQJHMbMzVHwX6eGl2kqfv1x/ETHMbKakbpKizGyrpDGSnpA028xuk/StpIG+vl5JdzrnbnfO7TSz8SoOEyRpnHOOv07DCRfkHH5Y0mmS3vV9nvjEOXenmUVLetE511dBPm+E4SmgFgty/nYzM4+Kl0rIk+/zROnzN1hmEYangFos0PnrnHtJAe4TwfW39jD+XwMAAAAAAAAAkS1cSysAAAAAAAAAAKqIIBcAAAAAAAAAIhxBLgAAAAAAAABEOIJcAAAAAAAAAIhwBLkAAAAAAAAAEOEIcgEAAAAAAAAgwhHkAgAAAAAAAECEI8gFAAAAAAAAgAhHkAsAAAAAAAAAEY4gFwAAAAAAAAAiHEEuAAAAAAAAAEQ4glwAAAAAAAAAiHAEuQAAAAAAAAAQ4QhyAQAAAAAAACDCEeQCAAAAAAAAQIQjyAUAAAAAAACACEeQCwAAAAAAAAARjiAXAAAAAAAAACIcQS4AAAAAAAAARDiCXAAAAAAAAACIcPXCXUAgP//5z13Lli3DXQYAAAAAAAAAVEtOTs73zrnm1R0nIoPcli1bavHixeEuAwAAAAAAAACq5ZxzzvmmJsZhaQUAAAAAAAAAiHAROSO3tPz8fA0dOlQ5OTkqKioKdzkAalCdOnWUmJiol19+WdHR0eEuBwAAAAAAIGJFfJA7dOhQDRw4UKtWrVL9+vXDXQ6AGlRQUKCnnnpKQ4cO1aJFi8JdDgAAAAAAQMQy51y4azhKUlKSK1kjNzo6WgcPHiTEBU5RBQUFatCggfLz88NdCgAAAAAAQI0755xzspxz3uqOE/Fr5BYVFRHiAqew+vXrs2wKAAAAAABAJSoNcs3sZTP7zsxyy7X/xsy+MLN1ZvZkkH3TfH02mtlDNVU0AAAAAAAAANQmVZmRO11SWukGM+su6RpJic65OEkTy+9kZnUlPS/pSkntJA02s3bVLRgAAAAAAAAAaptKg1zn3AeSdpZrHiHpCefcT74+3wXYNVXSRufc1865AkmzVBz+AgAAAAAAAACOQahr5F4sqauZrTKz5WbWIUCf8yRtKfV4q68tIDMbZmaZZpa5c2f53LhqnnnmGR04cCCkfY/V3LlzZWbasGHDCTledTVq1CjcJQAAAAAAAAAIUahBbj1JzSRdKukBSbPNzMr1Kf9YklywAZ1zU51zXuec96yzzgqpqBMZ5M6cOVNdunTRrFmzamzMI0eO1NhYAAAAAAAAAE4doQa5WyW94YqtllQkKSpAn1alHreUlB/i8Y6yf/9+XXXVVUpKSlJ8fLwee+wx5efnq3v37urevbskacSIEfJ6vYqLi9OYMWP8+y5YsEBt27ZVly5dNGrUKPXr188/5tChQ9WhQwclJyfrrbfeCnjsffv2aeXKlXrppZfKBLnLli3T5ZdfrgEDBqhdu3a68847VVRUJKl4Ruxvf/tbpaSkqGfPntqxY4ckqVu3bvr973+vX/7yl3r22Wf1zTffqGfPnkpMTFTPnj317bffavfu3YqJifGPdeDAAbVq1UqHDx/Wpk2blJaWpvbt26tr167+GcKbN29Wp06d1KFDBz366KM19bIDAAAAAAAACINQg9w3JfWQJDO7WFJ9Sd+X65MhqbWZxZpZfUmDJM0LtdDyFi1apOjoaK1du1a5ubm69957FR0draVLl2rp0qWSpAkTJigzM1M5OTlavny5cnJydOjQIQ0fPlwLFy7UihUr/IFqSf8ePXooIyNDS5cu1QMPPKD9+/crPz9fffv2/c+Tf/NNpaWl6eKLL9ZZZ52lNWvW+LetXr1aTz/9tD777DNt2rRJb7zxhqTikDglJUVr1qzRL3/5Sz322GP+fXbt2qXly5frt7/9rUaOHKlbbrlFOTk5uvHGGzVq1Cg1adJESUlJWr58uSTpn//8p/r06aOf/exnGjZsmCZPnqysrCxNnDhRd911lyTpnnvu0YgRI5SRkaFzzjmnpl52AAAAAAAAAGFQaZBrZjMlfSypjZltNbPbJL0s6UIzy1XxTcxudc45M4s2swWS5Jw7ImmkpHckfS5ptnNuXU0VnpCQoCVLlujBBx/Uhx9+qCZNmhzVZ/bs2UpJSVFycrLWrVun9evXa8OGDbrwwgsVGxsrSRo8eLC//+LFi/XEE0/I4/GoW7duOnTokL799ltFR0drwYIF/n4zZ87UoEGDJEmDBg3SzJkz/dtSU1N14YUXqm7duho8eLBWrFghSapTp45uuOEGSdJNN93kb5fkb5ekjz/+WL/+9a8lSTfffLO/3w033KD09HRJ0qxZs3TDDTdo3759+uijjzRw4EB5PB4NHz5c27ZtkyStXLnS/9xuvvnmkF5jAAAAAAAAAJGhXmUdnHODg2y6KUDffEl9Sz1eIGlB+X414eKLL1ZWVpYWLFighx9+WL179y6zffPmzZo4caIyMjLUrFkzDRkyRIcOHZJzQZfplXNOc+bMUZs2bYL2+eGHH/T+++8rNzdXZqbCwkKZmZ588klJUvmlgo9eOvjo9oYNGwY9Xkm//v376+GHH9bOnTuVlZWlHj16aP/+/WratKmys7MrPQYAAAAAAACAk1eoSyuEXX5+vs444wzddNNNuv/++7VmzRo1btxYe/fulSTt2bNHDRs2VJMmTbR9+3YtXLhQktS2bVt9/fXXysvLkyT/LFdJ6tOnjyZPnuwPez/99NOjjvv666/rlltu0TfffKO8vDxt2bJFsbGx/pmzq1ev1ubNm1VUVKT09HR16dJFklRUVKTXX39dkvTqq6/628u77LLL/Ovuzpgxw9+vUaNGSk1N1T333KN+/fqpbt26OvPMMxUbG6vXXntNUnEQvXbtWklS586dy4wDAAAAAAAA4OR10ga5n332mVJTU+XxeDRhwgT94Q9/0LBhw3TllVeqe/fuSkpKUnJysuLi4jR06FB17txZktSgQQO98MILSktLU5cuXXT22Wf7l2V49NFHdfjwYSUmJio+Pt5/k7DSa+TOnDlTAwYMKFPL9ddfr1dffVWS1KlTJz300EOKj49XbGysv2/Dhg21bt06tW/fXu+//75Gjx4d8Hk999xz+utf/6rExET9/e9/17PPPuvfdsMNN+gf//hHmaUYZsyYoZdeeklJSUmKi4vz36Dt2Wef1fPPP68OHTpo9+7d1X69AQAAAAAAAISPVbTUQLgkJSW5xYsXS5LOOeecCpdDCMW+ffvUqFEjOed09913q3Xr1rrvvvuqPe6yZcs0ceJEzZ8//6htjRo10r59+6p9DOBUZGb697//He4yAAAAAAAAatw555yT5ZzzVneck3ZGbnVMmzZNHo9HcXFx2r17t4YPHx7ukgAAAAAAAAAgqFo5IxdAZGFGLgAAAAAAOFUxIxcAAAAAAAAAaomTOsidMGGC4uLilJiYKI/Ho1WrVlXYf+zYsZo4cWK1j5udna0FCxZUe5xw6du3r3bt2qVdu3bphRdeqJGxqmv69OkaOXJklfuPHTtWDz/8cJm27OxsXXLJJcd03NGjR2vJkiXHtE9V5eXlKT4+PuC2bt26KTMzs9rHONbXDQAAAAAAACenkzbI/fjjjzV//nytWbNGOTk5WrJkiVq1anVCjn2yBrnOORUVFWnBggVq2rRpjQS5JWOdaIMHD1Z6enqZtlmzZunXv/51lccoLCzUuHHjdMUVV9R0eVDx6wsAAAAAAICacdIGudu2bVNUVJROO+00SVJUVJSio6MlSTExMfr+++8lSZmZmerWrZt/v7Vr16pHjx5q3bq1pk2b5m9/8sknlZCQoKSkJD300EOSys6a/P777xUTE6OCggKNHj1a6enp8ng8Sk9P1+rVq3XZZZcpOTlZl112mb744gtJxbMlr7vuOqWlpal169b63e9+5z/e4sWL1alTJ6WkpGjgwIHat2+fJOm9995TcnKyEhISNHToUP30008VPqfly5fL4/HI4/EoOTn5/7d3/1F2lfW9+N8fyLUgtUCAGpEU+LL4JflFnCJtUKGWFNEFrRYhX6wgpRSE7/LSpeKPahC9Lbdg7fVLF16KEdsqIHql9iotoAKFC0KAIUAERBtMDMLFIMoCiyHP/SMnc4fhnJlh8mOOzOu11qw5+9mfvc9z9jzZs+edfZ6Tn/3sZ885TitWrMj++++fd73rXZk/f35Wrlw5tK/3v//9+d73vpd58+blve99b6677rq8+c1vHtr2jDPOyCWXXJInnngi++6779DrWrRo0dCx27CvFStWZL/99svJJ5+cWbNm5fjjj8+1116bBQsWZO+9986tt96aJD2PVZKsXLkyRxxxRPbdd9989KMfHfXnv++++2aHHXZ4zl3YX/ziF3PcccclSU477bQMDAzkgAMOyOLFi4dq9thjj5xzzjk55JBDcsUVV+TEE0/Ml770pc1y7JNk7dq1OeGEEzJnzpz84R/+YZ566qnn1Vx66aWZPXt2Zs2albPOOmvM9s9+9rPZZ5998vrXvz433XRT1+Pz5JNP5p3vfGdmz56dOXPm5Mtf/vKYx2Xx4sWZP39+Zs+enfvuu2/U/fQavyOP76c+9am86lWvypw5c4Z+NgAAAAC8cL+0Qe7ChQuzcuXK7LPPPnnXu96V66+/flzbLVu2LF/72tdy880355xzzsnq1atz1VVX5corr8y3v/3t3HXXXc8JXEd6yUteknPOOSfHHntsBgcHc+yxx2a//fbLDTfckDvvvDPnnHNOPvjBDw7VDw4O5vLLL8/dd9+dyy+/PCtXrsxjjz2Wj3/847n22mtzxx13ZGBgIH/913+dn//85znxxBOH6teuXZsLL7xw1Ndz/vnn52//9m8zODiYf/u3f8u22277vJr7778/73jHO3LnnXdm9913H2o/99xzs9dee2VwcDDnnXdez+fYfvvtc8EFF+TEE0/MZZddlscffzx/8id/8ry6Bx98MO9+97uzbNmy3HffffnCF76QG2+8Meeff37+4i/+IklGPVa33nprPv/5z2dwcDBXXHHFmFMPLFq0KJdddlmS5JZbbslOO+2UvffeO8n6aTeWLl2aZcuW5frrr8+yZcuGtttmm21y4403PidY3JzH/pRTTsmyZcvya7/2a8+7A3r16tU566yz8s1vfjODg4O57bbbcuWVV/Zsf/jhh7N48eLcdNNNueaaa7J8+fKuffvYxz6W7bffPnfffXeWLVuW3/md3xnzuOy888654447ctpppw1NQdJtP73Gb7fje+655+bOO+/MsmXL8ulPf3rU4wkAAABAb7+0Qe6v/uqv5vbbb89FF12UXXbZJccee2wuueSSMbc7+uijs+2222bnnXfOYYcdlltvvTXXXntt3vnOd+alL31pkmT69OkvqC9PPPFEjjnmmMyaNStnnnlm7r333qF1b3jDG7L99ttnm222yate9ao89NBDueWWW7J8+fIsWLAg8+bNy+c+97k89NBDuf/++7Pnnntmn332SZKccMIJueGGG0Z97gULFuTP/uzP8qlPfSo/+clPMm3atOfV7L777jn44INf0Gsa6fDDD8/s2bNz+umn5+KLL+5as+eee2b27NnZaqutcsABB+QNb3hDqiqzZ8/OihUrkox+rA4//PDstNNO2XbbbfOWt7wlN95446h9Ou644/KlL30p69aty2WXXZZFixYNrfviF7+Y+fPn58ADD8y99977nMDz2GOPfd6+NtexnzlzZhYsWJAkefvb3/6813Tbbbfl0EMPzS677JJp06bl+OOPzw033NCz/dvf/vZQ+0te8pKuryVJrr322px++ulDyzvuuOOYx+Utb3lLkuTVr3710M+r2356jd8Nhvdpzpw5Of744/OP//iPXY8PAAAAAOPzSxvkJsnWW2+dQw89NB/96EdzwQUXDL3te9q0aVm3bl2S9XdaDldVz1turT2vfaz9DPfhD384hx12WO6555788z//83NqN0z9sKG/a9euTWsthx9+eAYHBzM4OJjly5fnM5/5TFprPZ+jV1/e//735+KLL87TTz+dgw8+eOgt8cNtt912Pffb6zlGPs+6devyne98J9tuu23WrFnTdfvhr3WrrbYaWt5qq62ydu3aJKMfq24/m9HMnDkze+yxR66//vp8+ctfztve9rYkyb//+7/n/PPPzze+8Y0sW7Ysb3rTm57zPN2Ox+Y69mO9pl7PO1p/xjouG7YfWTfWcdnw89owTnvtp9f43WD48f3a176W008/Pbfffnte/epXD+0XAAAAgBfmlzbIvf/++/Pd7353aHlwcHBo2oA99tgjt99+e5IMhbsb/NM//VN+/vOf58c//nGuu+66/OZv/mYWLlyYJUuWDM1fuiGoHL6fDfOoJsnLXvay58yH+sQTT+SVr3xlkozrruCDDz44N910Ux588MEkyVNPPZUHHngg++23X1asWDHU/g//8A95/etfP+pr+t73vpfZs2fnrLPOysDAQNcwsZeRr2P33XfP8uXL8x//8R954okn8o1vfGNo3Sc/+cnsv//+ufTSS3PSSSflF7/4xbifZ7jRjtU111yTNWvW5Omnn86VV145dCfraBYtWpQzzzwze+21V3bbbbckyU9/+tNst9122X777fPII4/kqquuGnM/m+vY/+AHP8jNN9+cZP2ct4cccshz1r/mNa/J9ddfn8ceeyzPPvtsLr300rz+9a8ftf26667Lj3/84/ziF7/IFVdc0fX1LFy4MBdccMHQ8uOPPz6h49JtP73G70jr1q3LypUrc9hhh+Wv/uqv8pOf/GRoLl0AAAAAXphf2iD3ySefzAknnDD0QUrLly/P2WefnSRZvHhx3v3ud+e1r31ttt566+dsd9BBB+VNb3pTDj744Hz4wx/OrrvumiOOOCJHHXVUBgYGMm/evKH5Qd/znvfkwgsvzG//9m8PfdhVkhx22GFZvnz50Iedve9978sHPvCBLFiwIM8+++yYfd9ll11yySWXZNGiRZkzZ87Q3ZzbbLNNPvvZz+aYY44ZmqLg1FNPHfU1/c3f/E1mzZqVuXPnZtttt80b3/jGcR/DnXbaKQsWLMisWbPy3ve+NzNnzszb3va2obfDH3jggUmSBx54IBdffHE+8YlP5LWvfW1e97rX5eMf//i4n2e40Y7VIYcckj/6oz/KvHnz8ta3vjUDAwNj7u+YY47Jvffe+5z5bufOnZsDDzwwBxxwQE466aRxBcKb69jvv//++dznPpc5c+ZkzZo1Oe20056z/hWveEX+8i//Mocddljmzp2b+fPn5+ijjx61/eyzz85v/dZv5Xd/93czf/78rq/nz//8z/P4448P9e9b3/rWhI5Lt/30Gr8jPfvss3n729+e2bNn58ADD8yZZ56ZHXbYYcznBAAAAOD5arS3cCdJVS1J8uYkj7bWZnXazk7yJ0n+d6fsg621r3fZdkWSnyV5Nsna1trYyVySuXPntquvvjpJMmPGjFHfZg788quq/OhHP5rsbgAAAABscjNmzLh9vLnoaMbz6UOXJLkgyd+PaP9ka+38cWx/WGvtsbHLAAAAAADoZsypFVprNyTp/ulWAAAAAABsdhszR+4ZVbWsqpZU1Y49alqSq6vq9qo6ZbSdVdUpVbW0qpZu+LAxAAAAAAAmHuRemGSvJPOSPJzkEz3qFrTW5id5Y5LTq+p1vXbYWruotTbQWhuYPn36BLsFAAAAAPDiM6Egt7X2SGvt2dbauiR/l+SgHnWrO98fTfKVXnWjdnCrrfLMM89MpJvAL4FnnnkmW221MW8OAAAAAHjxm1B6UlWvGLb4B0nu6VKzXVW9bMPjJAu71Y1lzpw5Oe+884S58CL0zDPP5LzzzsucOXMmuysAAAAAfW3aWAVVdWmSQ5PsXFWrkixOcmhVzcv6OXBXJPnTTu2uSS5urR2Z5OVJvlJVG57nC621f3mhHVyyZElOOumkfOQjH8m6dete6OZAH9tqq60yZ86cLFmyZLK7AgAAANDXqrU22X14nrlz57arr756srsBAAAAALBRZsyYcXtrbWBj92NiSgAAAACAPifIBQAAAADoc4JcAAAAAIA+J8gFAAAAAOhzglwAAAAAgD4nyAUAAAAA6HOCXAAAAACAPifIBQAAAADoc4JcAAAAAIA+J8gFAAAAAOhzglwAAAAAgD4nyAUAAAAA6HOCXAAAAACAPjdmkFtVS6rq0aq6Z1jb2VX1w6oa7Hwd2WPbI6rq/qp6sKrevyk7DgAAAAAwVVRrbfSCqtcleTLJ37fWZnXazk7yZGvt/FG22zrJA0kOT7IqyW1JFrXWlo/VqRkzZrRHHnlkvK8BAAAAAKBf3d5aG9jYnUwbq6C1dkNV7TGBfR+U5MHW2veTpKouS3J0kjGD3Je//OW56667JvCUAAAAAAD9Y8aMGZtkPxszR+4ZVbWsM/XCjl3WvzLJymHLqzptXVXVKVW1tKqWrlmzZiO6BQAAAADw4jLRIPfCJHslmZfk4SSf6FJTXdp6zuPQWruotTbQWhuYPn36BLsFAAAAAPDiM6Egt7X2SGvt2dbauiR/l/XTKIy0KsnMYcu7JVk9kecDAAAAAJjKJhTkVtUrhi3+QZJ7upTdlmTvqtqzql6S5LgkX53I8wEAAAAATGVjfthZVV2a5NAkO1fVqiSLkxxaVfOyfqqEFUn+tFO7a5KLW2tHttbWVtUZSf41ydZJlrTW7t0srwIAAAAA4EVszCC3tbaoS/NnetSuTnLksOWvJ/n6hHsHAAAAAMCEP+wMAAAAAIAtRJALAAAAANDnBLkAAAAAAH1OkAsAAAAA0OcEuQAAAAAAfU6QCwAAAADQ5wS5AAAAAAB9TpALAAAAANDnBLkAAAAAAH1OkAsAAAAA0OcEuQAAAAAAfU6QCwAAAADQ5wS5AAAAAAB9TpALAAAAANDnxgxyq2pJVT1aVfd0WfeeqmpVtXOPbZ+tqsHO11c3RYcBAAAAAKaaaeOouSTJBUn+fnhjVc1McniSH4yy7dOttXkT7h0AAAAAAGPfkdtauyHJmi6rPpnkfUnapu4UAAAAAAD/14TmyK2qo5L8sLV21xil21TV0qq6pap+f4x9ntKpXbpmTbfcGAAAAABgahrP1ArPUVUvTfKhJAvHUf4brbXVVfX/JPlmVd3dWvtet8LW2kVJLkqSuXPnussXAAAAAKBjInfk7pVkzyR3VdWKJLsluaOqZowsbK2t7nz/fpLrkhw44Z4CAAAAAExRLzjIba3d3Vr79dbaHq21PZKsSjK/tfaj4XVVtWNV/Urn8c5JFiRZvgn6DAAAAAAwpYwZ5FbVpUluTrJvVa2qqj8epXagqi7uLO6fZGlV3ZXkW0nOba0JcgEAAAAAXqAx58htrS0aY/0ewx4vTXJy5/H/SjJ7I/sHAAAAADDlTWSOXAAAAAAAtiBBLgAAAABAnxPkAgAAAAD0OUEuAAAAAECfE+QCAAAAAPQ5QS4AAAAAQJ8T5AIAAAAA9DlBLgAAAABAnxPkAgAAAAD0OUEuAAAAAECfE+QCAAAAAPQ5QS4AAAAAQJ8T5AIAAAAA9DlBLgAAAABAnxtXkFtVS6rq0aq6p8u691RVq6qde2x7QlV9t/N1wsZ2GAAAAABgqhnvHbmXJDliZGNVzUxyeJIfdNuoqqYnWZzkNUkOSrK4qnacUE8BAAAAAKaocQW5rbUbkqzpsuqTSd6XpPXY9PeSXNNaW9NaezzJNekSCAMAAAAA0NuE58itqqOS/LC1dtcoZa9MsnLY8qpOW7f9nVJVS6tq6Zo13TJjAAAAAICpaUJBblW9NMmHknxkrNIubV3v3m2tXdRaG2itDUyfPn0i3QIAAAAAeFGa6B25eyXZM8ldVbUiyW5J7qiqGSPqViWZOWx5tySrJ/icAAAAAABT0oSC3Nba3a21X2+t7dFa2yPrA9v5rbUfjSj91yQLq2rHzoecLey0AQAAAAAwTuMKcqvq0iQ3J9m3qlZV1R+PUjtQVRcnSWttTZKPJbmt83VOpw0AAAAAgHGaNp6i1tqiMdbvMezx0iQnD1tekmTJBPsHAAAAADDlTXSOXAAAAAAAthBBLgAAAABAnxPkAgAAAAD0OUEuAAAAAECfE+QCAAAAAPQ5QS4AAAAAQJ8T5AIAAAAA9DlBLgAAAABAnxPkAgAAAAD0OUEuAAAAAECfE+QCAAAAAPQ5QS4AAAAAQJ8T5AIAAAAA9Lkxg9yqWlJVj1bVPcPaPlZVy6pqsKqurqpde2z7bKdmsKq+uik7DgAAAAAwVYznjtxLkhwxou281tqc1tq8JP8zyUd6bPt0a21e5+uojegnAAAAAMCUNWaQ21q7IcmaEW0/Hba4evMB3gAADCdJREFUXZK2ifsFAAAAAEDHhOfIrar/UlUrkxyf3nfkblNVS6vqlqr6/TH2d0qndumaNWtGKwUAAAAAmFImHOS21j7UWpuZ5PNJzuhR9huttYEk/2+Sv6mqvUbZ30WttYHW2sD06dMn2i0AAAAAgBedCQe5w3whyVu7rWitre58/36S65IcuAmeDwAAAABgSplQkFtVew9bPCrJfV1qdqyqX+k83jnJgiTLJ/J8AAAAAABT2bSxCqrq0iSHJtm5qlYlWZzkyKraN8m6JA8lObVTO5Dk1NbayUn2T/Lfq2pd1gfG57bWBLkAAAAAAC/QmEFua21Rl+bP9KhdmuTkzuP/lWT2RvUOAAAAAIBNMkcuAAAAAACbkSAXAAAAAKDPCXIBAAAAAPqcIBcAAAAAoM8JcgEAAAAA+pwgFwAAAACgzwlyAQAAAAD6nCAXAAAAAKDPCXIBAAAAAPqcIBcAAAAAoM8JcgEAAAAA+pwgFwAAAACgzwlyAQAAAAD6nCAXAAAAAKDPjSvIraolVfVoVd0zrO1jVbWsqgar6uqq2rXHtidU1Xc7Xydsqo4DAAAAAEwV470j95IkR4xoO6+1Nqe1Ni/J/0zykZEbVdX0JIuTvCbJQUkWV9WOE+8uAAAAAMDUM64gt7V2Q5I1I9p+OmxxuySty6a/l+Sa1tqa1trjSa7J8wNhAAAAAABGMW1jNq6q/5LkHUmeSHJYl5JXJlk5bHlVp63bvk5JckqS7LbbbhvTLQAAAACAF5WN+rCz1tqHWmszk3w+yRldSqrbZj32dVFrbaC1NjB9+vSN6RYAAAAAwIvKRgW5w3whyVu7tK9KMnPY8m5JVm+i5wQAAAAAmBImHORW1d7DFo9Kcl+Xsn9NsrCqdux8yNnCThsAAAAAAOM0rjlyq+rSJIcm2bmqViVZnOTIqto3ybokDyU5tVM7kOTU1trJrbU1VfWxJLd1dnVOa23N854AAAAAAICeqrWuU9ZOqrlz57arr756srsBAAAAALBRZsyYcXtrbWBj97Op5sgFAAAAAGAzEeQCAAAAAPQ5QS4AAAAAQJ8T5AIAAAAA9DlBLgAAAABAnxPkAgAAAAD0OUEuAAAAAECfE+QCAAAAAPQ5QS4AAAAAQJ8T5AIAAAAA9DlBLgAAAABAnxPkAgAAAAD0OUEuAAAAAECfGzPIraolVfVoVd0zrO28qrqvqpZV1Veqaoce266oqrurarCqlm7KjgMAAAAATBXjuSP3kiRHjGi7Jsms1tqcJA8k+cAo2x/WWpvXWhuYWBcBAAAAAKa2MYPc1toNSdaMaLu6tba2s3hLkt02Q98AAAAAAMimmSP3pCRX9VjXklxdVbdX1Smj7aSqTqmqpVW1dM2aNaOVAgAAAABMKRsV5FbVh5KsTfL5HiULWmvzk7wxyelV9bpe+2qtXdRaG2itDUyfPn1jugUAAAAA8KIy4SC3qk5I8uYkx7fWWrea1trqzvdHk3wlyUETfT4AAAAAgKlqQkFuVR2R5KwkR7XWnupRs11VvWzD4yQLk9wz0Y4CAAAAAExVYwa5VXVpkpuT7FtVq6rqj5NckORlSa6pqsGq+nSndteq+npn05cnubGq7kpya5Kvtdb+ZbO8CgAAAACAF7FpYxW01hZ1af5Mj9rVSY7sPP5+krkb1TsAAAAAADbuw84AAAAAANj8BLkAAAAAAH1OkAsAAAAA0OcEuQAAAAAAfU6QCwAAAADQ5wS5AAAAAAB9TpALAAAAANDnBLkAAAAAAH1OkAsAAAAA0OcEuQAAAAAAfU6QCwAAAADQ5wS5AAAAAAB9rlprk92H56mqnyW5f7L7AV3snOSxye4EdGFs0s+MT/qVsUk/Mz7pV8Ym/crYpJ/t21p72cbuZNqm6MlmcH9rbWCyOwEjVdVSY5N+ZGzSz4xP+pWxST8zPulXxib9ytikn1XV0k2xH1MrAAAAAAD0OUEuAAAAAECf69cg96LJ7gD0YGzSr4xN+pnxSb8yNulnxif9ytikXxmb9LNNMj778sPOAAAAAAD4v/r1jlwAAAAAADoEuQAAAAAAfW7SgtyqOqKq7q+qB6vq/V3W/0pVXd5Z/+2q2mPL95KpqKpmVtW3quo7VXVvVb27S82hVfVEVQ12vj4yGX1l6qmqFVV1d2fcLe2yvqrqU51z57Kqmj8Z/WTqqap9h50TB6vqp1X1n0fUOHeyRVTVkqp6tKruGdY2vaquqarvdr7v2GPbEzo1362qE7Zcr5kqeozP86rqvs7v7q9U1Q49th31OgA2Ro+xeXZV/XDY7+4je2w76t/3sDF6jM3Lh43LFVU12GNb5002m1750ea87pyUOXKrauskDyQ5PMmqJLclWdRaWz6s5l1J5rTWTq2q45L8QWvt2C3eWaacqnpFkle01u6oqpcluT3J748Yn4cmeU9r7c2T1E2mqKpakWSgtfZYj/VHJvn/khyZ5DVJ/ltr7TVbrocw9Hv+h0le01p7aFj7oXHuZAuoqtcleTLJ37fWZnXa/irJmtbauZ2QYcfW2lkjtpueZGmSgSQt668BXt1ae3yLvgBe1HqMz4VJvtlaW1tV/zVJRo7PTt2KjHIdABujx9g8O8mTrbXzR9luzL/vYWN0G5sj1n8iyROttXO6rFsR5002k175UZITs5muOyfrjtyDkjzYWvt+a+2ZJJclOXpEzdFJPtd5/KUkb6iq2oJ9ZIpqrT3cWruj8/hnSb6T5JWT2ysYt6Oz/gKntdZuSbJD55cLbElvSPK94SEubEmttRuSrBnRPPza8nNZf5E90u8luaa1tqZzEX1NkiM2W0eZkrqNz9ba1a21tZ3FW5LstsU7xpTX49w5HuP5+x4mbLSx2cmJ3pbk0i3aKcio+dFmu+6crCD3lUlWDltelecHZUM1nYuaJ5LstEV6Bx21fkqPA5N8u8vq36qqu6rqqqo6YIt2jKmsJbm6qm6vqlO6rB/P+RU2t+PS+2LauZPJ8vLW2sPJ+ovuJL/epcY5lH5wUpKreqwb6zoANoczOtN+LOnx9mDnTibTa5M80lr7bo/1zptsESPyo8123TlZQW63O2tHzvEwnhrYbKrqV5N8Ocl/bq39dMTqO5Ls3lqbm+T/T3Lllu4fU9aC1tr8JG9McnrnbUbDOXcyqarqJUmOSnJFl9XOnfQ751AmVVV9KMnaJJ/vUTLWdQBsahcm2SvJvCQPJ/lElxrnTibToox+N67zJpvdGPlRz826tI157pysIHdVkpnDlndLsrpXTVVNS7J9JvY2D3jBquo/Zf0/ws+31v7HyPWttZ+21p7sPP56kv9UVTtv4W4yBbXWVne+P5rkK1n/VrbhxnN+hc3pjUnuaK09MnKFcyeT7JENU810vj/apcY5lEnT+ZCTNyc5vvX4IJNxXAfAJtVae6S19mxrbV2Sv0v3MefcyaToZEVvSXJ5rxrnTTa3HvnRZrvunKwg97Yke1fVnp07d45L8tURNV9NsuET2/4w6yf/9796bHadOXY+k+Q7rbW/7lEzY8OczVV1UNb/W/rxluslU1FVbdeZQD1VtV2ShUnuGVH21STvqPUOzvpJ/x/ewl1laut5V4RzJ5Ns+LXlCUn+qUvNvyZZWFU7dt4+vLDTBptVVR2R5KwkR7XWnupRM57rANikRnzWwh+k+5gbz9/3sDn8bpL7Wmuruq103mRzGyU/2mzXndM2rssT0/k01jOyvoNbJ1nSWru3qs5JsrS19tWsPxD/UFUPZv2duMdNRl+ZkhYk+aMkd1fVYKftg0l+I0laa5/O+v9cOK2q1iZ5Oslx/qOBLeDlSb7SycGmJflCa+1fqurUZGhsfj3JkUkeTPJUkndOUl+ZgqrqpVn/idV/Oqxt+Ph07mSLqKpLkxyaZOeqWpVkcZJzk3yxqv44yQ+SHNOpHUhyamvt5Nbamqr6WNaHEklyTmvNO8LYpHqMzw8k+ZUk13R+z9/SWju1qnZNcnFr7cj0uA6YhJfAi1SPsXloVc3L+rf7rkjnd/zwsdnr7/tJeAm8SHUbm621z6TL5zI4b7KF9cqPNtt1Z/n7CQAAAACgv03W1AoAAAAAAIyTIBcAAAAAoM8JcgEAAAAA+pwgFwAAAACgzwlyAQAAAAD6nCAXAAAAAKDPCXIBAAAAAPrc/wGFQpgBkvbQggAAAABJRU5ErkJggg==\n", "text/plain": [ "<Figure size 1728x2016 with 7 Axes>" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "# You may need to install htmllib5,lxml, and BeautifulSoup4. In your terminal/command prompt run:\n", "\n", "# conda install lxml\n", "# conda install html5lib\n", "# conda install BeautifulSoup4\n", "# Then restart Jupyter Notebook. (or use pip install if you aren't using the Anaconda Distribution)\n", "import numpy as np\n", "import pandas as pd\n", "import os.path\n", "import matplotlib.pyplot as plt\n", "from datetime import datetime, timedelta\n", "from dateutil.parser import parse\n", "from dateutil.relativedelta import relativedelta\n", "from pandas.tseries.offsets import *\n", "from pandas.tseries.holiday import USFederalHolidayCalendar\n", "from pylab import text\n", "from mpl_toolkits.axes_grid.anchored_artists import AnchoredText\n", "import quandl\n", "\n", "\n", "# Quandl API key\n", "quandl.ApiConfig.api_key = \"UsYsv7dKGxHHQ5oURP4B\"\n", "\n", "# Some formatting\n", "pd.set_option('display.max_colwidth', -1)\n", "pd.set_option('display.max_seq_items', 2)\n", "\n", "# Only pull fresh PDUFA data\n", "three_weeks_ago = relativedelta(weeks=3)\n", "one_week_ahead = relativedelta(weeks=1)\n", "one_hour_ago = datetime.now() - timedelta(hours=1)\n", "if os.path.exists(\"history.csv\"):\n", " filetime = datetime.fromtimestamp(os.path.getctime(\"history.csv\"))\n", " if filetime < one_hour_ago:\n", " histdata = pd.read_html(\"https://www.biopharmcatalyst.com/calendars/historical-catalyst-calendar\")\n", " histdata[0].to_csv('history.csv',index=False)\n", "else:\n", " histdata = pd.read_html(\"https://www.biopharmcatalyst.com/calendars/historical-catalyst-calendar\")\n", " histdata[0].to_csv('history.csv',index=False)\n", "\n", "# Create dataframe\n", "us_bd = CustomBusinessDay(calendar=USFederalHolidayCalendar())\n", "df = pd.read_csv('history.csv').set_index('Ticker')\n", "df.index.name=None\n", "df[[\"Date\",\"Catalyst\"]] = df.Catalyst.str.extract('(?P<Date>[0-9]{2}\\/[0-9]{2}\\/[0-9]{4})(?P<Catalyst>.*)', expand=True)\n", "df['Date'] = pd.to_datetime(df['Date'])\n", "df['day_of_week'] = df['Date'].dt.day_name()\n", "df[\"Original_PDUFA\"] = df[\"Date\"]\n", "df[\"Date\"] = df[\"Date\"].map(lambda x : x + 0*us_bd)\n", "\n", "df[\"Past\"] = df[\"Date\"] - DateOffset(weeks=3)\n", "df[\"Future\"] = df[\"Date\"] + DateOffset(weeks=1)\n", "# Set stock ticker\n", "stockpick=\"HALO\"\n", "dataset=str(f\"WIKI/{stockpick}\")\n", "# Set variables for plot creation\n", "length = len(df.loc[stockpick].index)\n", "count = 0\n", "fig, axes = plt.subplots(nrows=length, ncols=1,figsize=(24,length * 4))\n", "#set hspace and wspace to 0 for stacked \"sparklines\" of sorts\n", "fig.subplots_adjust(hspace=.2, wspace=0)\n", "allplots=[]\n", "\n", "# Combine all data together into list of dataframes, iterate through each part of the list, plot each frame.\n", "while (count < length):\n", " pasttime= df.loc[stockpick].iloc[count][\"Past\"]\n", " futuretime= df.loc[stockpick].iloc[count][\"Future\"]\n", " pdufa=df.loc[stockpick].iloc[count][\"Date\"]\n", " annotate = df.loc[stockpick].iloc[count][\"Date\"] + timedelta(days=1)\n", " stage = df.loc[stockpick].iloc[count][\"Stage\"]\n", " catalyst = df.loc[stockpick].iloc[count][\"Catalyst\"]\n", " drug = df.loc[stockpick].iloc[count][\"Drug\"]\n", " print(type(pdufa))\n", " #Annotation\n", " tooltip = f\"stage:{stage}\\n{drug}\"\n", " at = AnchoredText(tooltip,\n", " prop=dict(size=10), frameon=True,\n", " loc=2, \n", " )\n", " at.patch.set_boxstyle(\"round,pad=0.2,rounding_size=0.2\")\n", " axes[count].add_artist(at)\n", " axes[count].margins(0.0, 0.5)\n", " #Get quandl data\n", " mydata = quandl.get(dataset,start_date=pasttime,end_date=futuretime)\n", " allplots.append(mydata)\n", " allplots[count].reset_index(inplace=True)\n", " allplots[count][\"PDUFA\"] = allplots[count][\"Date\"] == pdufa\n", "# axes[count].annotate('local max', xy=(pdufa, allplots[count][\"Close\"].max()), xytext=(annotate, (allplots[count][\"Close\"].max() - allplots[count][\"Close\"].min()) * 0.9 + allplots[count][\"Close\"].min()),\n", "# arrowprops=dict(facecolor='black', shrink=0.05, width=1, headwidth=5),)\n", " # Set y limit for notes\n", " axes[count].set_ylim(allplots[count][\"Close\"].min() * .99 , (allplots[count][\"Close\"].max()-allplots[count][\"Close\"].min()) * 0.5 + allplots[count][\"Close\"].max())\n", " axes[count].hlines(allplots[count][\"Close\"].max() * 1.01, allplots[count].head(1).index, allplots[count].tail(1).index, linestyle=\"-\", lw=1, color='black')\n", " if count % 2 == 0:\n", " axes[count].set_facecolor((0.91, 0.91, 0.91)) \n", "\n", "# axes[count].vlines(15, allplots[count][\"Close\"].min() * .99, allplots[count][\"Close\"].max() * 1.01, linestyle=\"--\", color='black')\n", "# axes[count].plot(allplots[count].index,allplots[count][\"Close\"],c=np.random.rand(3,), lw=2, label=pdufa) \n", "# axes[count].axes.get_xaxis().set_visible(False) # remove x axis\n", " count = count + 1\n", "# plt.show() # need to show x axis temporarily to ensure null times aren't being added\n", "# allplots[0].reset_index(inplace=True)\n", "allplots[0]" ] }, { "cell_type": "code", "execution_count": 30, "metadata": {}, "outputs": [ { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAf4AAAF5CAYAAAB+2khFAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMi4yLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvhp/UCwAAIABJREFUeJzsnXl8nFW5+L/PZE+atUmXJG3TvXSBBlqEUgTKUgW5VFQWL171qlxxQUWr1B+K16sWrdd9ReX2AgqC1MAVpIKlbC1LSwptaUP3NpOmSdNszZ7M+f3xvpNOkplkJpl9nu/nM59kzvvOe855Z573Oc85z3keMcagKIqiKEpi4Ih0AxRFURRFCR+q+BVFURQlgVDFryiKoigJhCp+RVEURUkgVPEriqIoSgKhil9RFEVREghV/EpIEJHbROSEiJwWkfFjvNZhEbkiWG1TFGUgIjLVltWkEc67VESqA7jud0TkpIjUjr2VSrBQxa94xVa2HSLSKiJNIrJFRD4tIiP+ZkQkBfgRcJUxZpwxpiGI7fqWiDwYrOspSqCIyIdFZJutKI+LyN9FZPkYrxnW3/XgwbQx5qgtq31BrGMK8GVgvjFmUrCuO4b2rBeR7wwqS0ijQhW/MhzXGmOygWnAPcDXgD/48bmJQDqwO4RtU5SwIyJ3AD8Bvof1O58K/Aq4LpLtilKmAQ3GmLpAPygiySFoT1ARi9jUocYYfelryAs4DFwxqOx8wAUsBNKAHwJHgRPAb4AMYA7QBhjgNLDJ/uxPgWNAC7AduNjjuuuB73i8vxSoHtwW4D1AN9BjX/vNSN8nfSXOC8i1f3cfGuackX7LXwOcQCtQBVzu63cNFANPAKeA/cCnPK7zLeBR4EH7Wjtt2VsD1NmydpWPNj5gy3GHXd9XgTJbZpPtcwqA/wFqgEagwkd/bgfeBkoH1XGFfX2XXcd6u/xfsAyCJmAzcJbHZw7b9+ctoAtItstW22VtWIbHRODvdr+fBfI9rvEoUAs0Ay8AC+zyW+3722235/+83Qf73AuALXYb3wQu9bj+ZuC7wMv252ZF+nc5qt9ypBugr+h84UXx2+VHgduwrJ4n7AdEti1Ia+1zBjxE7LJbgPG2MH/ZFs50+9h6/FD89v/fAh6M9P3RV+K9sBR0r+fv2ss5Pn/LwFwshVxsvy8DZtr/D/ldA89jzSakA4uBeuByj/M7gZW2TN0PHAL+H5ACfAo4NEw7B8j3YJkFngT+DOTb17vES3++AbwBFPmoY7Acu42CK+1rfhVrQJPq0aYdwBQgw6PsFSxlX4I1qHkDKMcyPjYBd3vU8e9Yz6M0rGfUDl/fjY/7UAI0AFdjzYhfab8vso9vxnoGLrDve0qkf5ejecXmNIUSSWqwlP2ngC8ZY04ZY1qxpj5v8vUhY8yDxpgGY0yvMea/sQRzblharCjBYTxw0hjTO8rP92H97ueLSIox5rAx5oC3E+318eXA14wxncaYHcDvgY94nPaiMWaj3Z5HgSLgHmNMD/AwUCYieYE2UkQmA+8FPm2MaTTG9Bhjnh94ivwIa9BxmTGm3s9L3wg8aYx5xm7jD7FmCZd5nPMzY8wxY0yHR9nPjTEnjDFO4EXgVWNMpTGmC/gr1iAAAGPMfcaYVvvYt4BzRCQ3gO7fAjxljHnKGOMyxjwDbMMaCLhZb4zZbT/LegK4dtSgil8JlBKskW4msN12/GsCnsZ68HhFRL4sIntEpNk+PxcoDEuLFSU4NACFo11/NsbsB76IpZDqRORhESn2cXox4B5UuzmCJX9uTnj834E1KOnzeA8wbhRNnWLX3ejjeB7W1PlaY0xzANctxuoDAMYYF9YMiGefjnn53OB+Dn4/DkBEkkTkHhE5ICItWNY8BPacmQZ8yP1cs59Vy4HJI7QxplDFr/iNiCzFEtIKLIFbYIzJs1+5xhivDxkRuRhr7e4GrPW4PKw1OLFPacMaSLgZzgNY00kqkWIr1vT6qmHOGfa3bIz5kzFmOZaCMcD33YcGXacGKBCRbI+yqVj+AcFgODk6Ztfta7agEXgf8D8iclEAddZg9Ruwpg2wBhmefRqLfH8Yy8nyCizDosxd1TDXHlx2DHjA47mWZ4zJMsbcE6Q2RgWq+JUREZEcEXkf1vThg8aYN4HfAT8WkQn2OSUistLHJbKx1kbrgWQR+SaQ43F8B3C1iBSIyCQsq8gXJ7CmMPW3q4QV27r9JvBLEVklIpkikiIi7xWRH9in+fwti8hcEVkhImlYA4gOrOl/GPS7NsYcw3IwWysi6SJyNvAJ4I9B6s4JYIaPfh7Hcp77lYjk231896BzNgP/CvxVRN7lZ52PANeIyOX2lt8vYznxbRllHwaTbV+vAWvw9b1Bx731eXDZg8C1IrLSnkFIt2MXlAapjVGBPjyV4fg/EWnFGgX/P6y9+R+3j30NyzHnFXta7Vl8r9lvxHqQvIM11dfJwOmyB7C8Zw8D/8ByKvLFo/bfBhF5I8D+KMqYMMb8CLgDuAtrIHsM+BzWLBgM/1tOw9oWexLLuXUC8HX7mLff9c1YVmsN1lr23faaczBYC9xlT2d/xcvxj2B5we/FcqgbMhi32/Jx4AkROW+kCo0xVVhr6D/HugfXYm0Z7h51LwZyP9bzxYm10+CVQcf/gOVf0SQi7u9rwH2wB1zXYX0v7u93NXGmK8X2VFQURVEUJQGIq1GMoiiKoijDo4pfURRFURIIVfyKoiiKkkCo4lcURVGUBCLqEyGMhsLCQlNWVhbpZihK1LN9+/aTxhifgZcijcqyovhHILIcdsUvIvdhBX+oM8YstMsWYyV5Scfa7/0ZY8xrdoCHn2KFS2wHPmaMGXELV1lZGdu2bQtVFxQlbhCRIyOfNeznQyrPKsuK4h+ByHIkpvrXYyW78OQHwH8aYxZjBchwB8N4LzDbft0K/DpMbVQUxT/Wo/KsKDFF2BW/MeYFrDSTA4o5E8ktFytgBViBFO43Fq8AeXYCCUVRogCVZ0WJPaJljf+LwEYR+SHWYMSdramEgRHequ2y44MvICK3YlkRTJ06NaSNVRRlWMYkzyrLihJaosWr/zasFK9TgC9hhVaEM8kVPPEaatAYc68xZokxZklRUdT6KilKIjAmeVZZVpTQEi0W/0eBL9j/P4qVdxosi2CKx3mlnJk2VIJERaWTdRurqGnqoDgvg9Ur57KqvGTkDyqKd1SeI4DKseIv0aL4a4BLgM3ACmCfXf4E8DkReRh4F9BsZ45SxoDnAyI3I4W27l56+izDy9nUwZoNOwH0oaGMFpXnEOJNwQOs2bCTjh4r2Z/KsTIckdjO9xBwKVAoItXA3cCngJ+KSDJW5rZb7dOfwtr6sx9r+8/Hh1xQCYiKSueAB0RTR8+Qczp6+li3sUofGMqIqDyHl8Hy61bwacmO/jI3KseKL8Ku+I0xN/s4NCSto7FSB342tC1KLNZtrBrygPBGTVNHGFqjxDoqz+HFm/x29PT5lGmVY8Ub0eLcp4QJfx8ExXkZIW6JoiiBEqgin5SbHqKWKLGMKv4Ewx+FnuyQ/nVDRVGiB1/ym5eRQkZK0pDytGQHLZ1Dl/OUxEYVf4KxeuVckmTgrqoUh5CfmYIA6SkOel2G7z61h+l3PslF92yiotIZmcYqijKA1SvnkpY88LGdkZLEt/5lAWuvX0RJXgYClORl8PFl06hu7OCan77IhWv/qfKs9BMtXv1KmFhVXsI9f99DY3sP3b2uIdt+/vTqEb7+113Ut3YB6h2sKNHEqvIS/rG7lqd21SIwRH4Hy2iSw8HvXzrU/17lWQFV/AlHe3cvda1dfG7FbO64cs6Q47987sCQMvUOVpTo4URrF2eX5vLE55aPeO7fd9UOKVN5VnSqP8HYc7wFl4GFxTlej/tyHlLvYEWJPM3tPVQebeSSOf5FNFR5Vryhij/B2FndDMCi0lyvx305D03ISQtZmxRF8Y8X99fjMnDpXP8Uvy951l07iY0q/gRjV00LheNSmZTjfZvP6pVzvXoHt3X1Unm0MdTNUxRlGDZX1ZObkcLiKfl+ne9Nnh2C7tpJcFTxJxi7nM0sLMlFxFu+FMvhZ7B38Jr3zqUgK40b732FJ97U0OqKEglcLsPz79Rz8exCkhze5Xcwg+U5Jz0Zl4GibJ3BS2TUuS+B6OzpY1/daa44a+Kw560qLxni+POhJVP59APbuf2hSg7Wn+YLl8/2OXhQFCX47Kltob61y+/1fTee8tzZ08cVP3qe//rb2zx5+8V+DyCU+EIt/gRiz/EW+lyGhSXe1/eHoyArlQc+eT4fOLeUnzy7jy88vINOP0L/KooSHDZX1QNwiZ/r+95IT0lizXvPYm9tK49sOxaspikxhir+BGKXc3jHvpFIS07ihx86m6++Zy5PvFnDzb97pX+/v6IooeX5qnoWFOcwIXtsYXivXjSJpWX5/Pc/qmjVqH4JiSr+KKai0slF92wKWsStnc5mCrJSKR5D/G4R4TOXzuI3t5zLnuMtrPrly+ytbRlTuxQlkfFHzps7etgewDa+4RAR7rpmPidPd/OrzUPjdijxj67xRym+0m/C6CNu7XS2sKA4Jyhr8+9ZOJlH8zL55P2v84FfbeFf3zWVJ3fW9ucIv2xeEc/trR+QM1wDhijKQPyV8y37T9LnMlw6d0JQ6j1nSh7Xl5dw7/MH2PBGNXUtXQPktKLSybqNVSq/cYpa/FGKr/Sb6zZWjep6nT197DvRyqJRrO/7YlFpLo9/djn5mSnc++IhnE0dGKyH14OvHB3wfs2GnRojXFEG4a+cb66qJzs9mXOn5gWt7rOn5NJn4ERL1wA5vatiJ2s2vKXyG8eo4o9Sgh1xq6q2lV6XCariByvtZ58Z+byxDFoUJV7xR86NObONLzkpeI/s371waEhZR08fD75ylI4e15Byld/4QRV/lOIrspYBVv3yZR5+7Sinu3r9vt5O27FvNB79I1Hb3OnXeRomVFEG4k9kvaoTrdS2dAZlfd+TQOVR5Td+UMUfpaxeOZeUpIFr8ekpDlYtLqa9u5c7N+zk/O8+y1f/8ibbjzRizPBm9+6aZnIzUijND36oTn/Df2qYUEUZyBevmD2kTIDbLp3R/75/G9+c4Kzvu/Elj4PTdo90vhJ7qOKPUlaVlzBn4jiSRPoj6N1z/dn85KZyNn7x3Wz4zDKuPbuYv711nA/8egtX/fgFfv/iQU61dXu93k5nM4uGidg3FnyF+fUkIyVJw4QqyiD6XNaAvXBcKmL/dQg8sq26f0Zvc1Ud8yZlM2kMu3G84U1uM1KSuPldU7yWq/zGD+rVH6W0dfWyr66Nf1s2jbuvXTDgmIhw7tR8zp2azzeunc+Tb9Xw8OvH+M6Te/j+03u5av4kblw6heWzCnnizRp+8PReapo7GZeWTEWlM+jeue7reXoBu736nU0dJDuEtdcvUq9gRfHA5TLc++JBFhTn8LfPL+8flG/ae4JP3b+d9//yJVq7+qgNkex6k1u39/6SaQWs27gXZ1Mn6ckOld84QxV/lLK5qp7uXhfvWTBp2PPGpSVz49Kp3Lh0KlW1rfz59WNsqKzmyZ3HyctI4XRXL722VXG6q3fMWwJ94S3ML8DP/7mP/37mHVacFdxpSkWJdf65t46D9W389KbFA2biVsybyE1LS/njq2ci64VKdn3Jrbv8roqdbHjDyXsXDf8cUmILneqPUjburmV8VipLygr8/szcSdl889r5vPr1y/n5zeV09PT1K3034fbOdUcJdEcNVBTF4t4XDlCSl8E1iyYPOba56uSQskh41q+YN4H27j5ePXgqrPUqoUUVfxTS1dvHpr11XDl/4qiSaKQlJ3HtOcV097q8Hg+nd+7Zpda+453VqvgVxc0bRxt5/XAjn1g+3esWvWBv5x0tF84oJC3Zwaa9dWGtVwktqvijkC37Gzjd1cvKhWObXvNnq1CoKchKpTQ/g7dU8StKP/c+f5DcjBRuXDrF6/FokF2AjNQkls0cz3NVdSPuHFJiB1X8UcjG3bWMS0tm2czxY7qOL6/dcHvnnl2ay1vOprDWqSjRyqGTbWx8u5ZbLphKVpp3N6tokV2AFWdN5EhDOwdPtoW9biU0qOKPMvpchmfePsGKeRNISx5+i9xIrCovYe31iyjJy+jfEhgJ79yzS/M4dqqDRh9bDRUlkfj9iwdJcTj46LIyn+dEi+yCtc4P8JxO98cN6tUfRVRUOvnOk2/T0NbNi/vqg7J9x5fXbjg5244W+JazOejRxxQlVqiodHLP03upbe4kMzWJLfsbhpXNaJBdsAYdcydms2lvHZ+8eMbIH1CiHrX4owR3lq6Tpy2ruLG9J24SYyy0Pft3Vut0v5KYuOXbHd66vbsvpuT7snkTeO3QKVo7eyLdFCUIhF3xi8h9IlInIrs8yv4sIjvs12ER2WGXl4lIh8ex34S7veBfvuyxEuxsfNFETnoKMwqz1MEvzohFWfZFqGU81uV7xbwJ9LoML+0bus1QiT0iMdW/HvgFcL+7wBhzo/t/EflvwFNDHDDGLA5b6wbhb77ssRIt23dCxaLSXN0LHH+sJ4Zk2RfhkPFYl+9zp+aRm5HCpr11vNdL3AEltgi7xW+MeQHwqgHECl91A/BQWBs1DOEaqU/M8R6HO14SY5xdmkdtSyd1Lf5l8lOin1iTZV+EWsZdLkNaivdHbazId3KSg3fPKeK5qnpcLt3WF+tE2xr/xcAJY8w+j7LpIlIpIs+LyMW+Pigit4rINhHZVl9fH7QG+RqRO5s6eG5vHb193oPkBEpJ3lDFH0+JMc52r/NrBL9EIepk2RehtsZ//Ow7dPa4hmTbjDX5XjGviJOnu9hVozIc60Sb4r+ZgRbCcWCqMaYcuAP4k4jkePugMeZeY8wSY8ySoqLgeY77GpE7BD6+/nUuvGcTa5/aw74TraOuY/uRU2w/2sSVZ02Iiu07oWBBcQ4OgTd1nT9RiDpZ9oUvGc9OTx5z0JrHdzj5+ab93LR0Cj/4wNkxLd+XzJmACBrFLw6Imu18IpIMXA+c5y4zxnQBXfb/20XkADAH2Baudq1eOZevPPrmgJj3GSlJ/Nd1C8jOSOHRbdX8/qVD/PaFg5xTmssHzyvl2nOK2VxV7zVbnWcWLIAfbNxLTVMnDoEr50/kdx9dGq6uhZXM1GRmT8hWz/4EIFpl2RerV87lS4/swFPHJ4nQ0tnLv/ziJU6e7qa2uXNA9rqKSqfXrHbAgGMGmFmYxbevW0hqsoP3n1samU4GgYKsVMqn5PHc3jq+eMWcSDdHGQNRo/iBK4C9xphqd4GIFAGnjDF9IjIDmA0cDGejVpWX8JNn38HZ1EFvnxki5CsXTKK+tYvHdzj5y/ZqvvH4br71xG4A+uwHibOpgwdfOdp/TWdTB6sffRMEeuyTXAbufuJtUpOTYsoKCITcjGSef6ee6Xc+OeQ+KnFFVMqyL2YWjcMY6/fZ0tFLcV4GX7lqDs+/U0/Fjpr+85xNHdy54S22HTnFY9udXp0BgQGOggDO5g6e2nk8Ln7rk3LSeWpXrcpwjBN2xS8iDwGXAoUiUg3cbYz5A3ATQx2B3g18W0R6gT7g08aYsLqGN7Z1c/RUO59bMZs7rvQ+yi3KTuOTF8/gE8uns7umhRvv3UpbV5/Xc930eHGQcTsUxaMgVVQ6qTzWhMtjMBSqFMFKeIg1WfbF/VsPk5maxAtfXUFuRkp/+Q//8c6Qczt7XAMG8W46evr46l/eQgS6BiXH6uxxxYVcV1Q6+ac9zW9QGY5lwq74jTE3+yj/mJeyx4DHQt2m4Xj+nXpc5kzYyuEQERaW5NI+gtIfjljZ3hMo6zZW9c9uuInngU4iEGuy7I3Gtm6eeLOGD5xXOkDpQ+Cy2D2Mo288yPW6jVVDBjUqw7FJtDn3RR2b9tZROC61P+ysP4xli06sbO8JlFjfx6zEJ49sO0ZXr4t/u3DakGO+ZDFJvKfKLsnLoCRKsuqFApXh+EEV/zD09rl4/p16LpkzAYfDu7B7w1tmrcGkOCTmt/cEQrSkGVUUN30uw4OvHuH86QXMmzR0g4GvDHk3v2uKz8x50ZRVL9ioDMcPqviHofJYE80dPX5N83viLbPWLRdMHfB+3YfOYd0Hz4np7T2BEM8PRCU22VxVx7FTHXz0wjKvx31lyPvOqkU+M+dFU1a9YKMyHD9Ek1d/1LFpbx3JDuHiOYUBf9bfzFrx8EDwB3c/v/n4Llo6e5mcm87X3jMvYfqvRB/3bz3CxJw0rlow0ec5vuR4OPmOlqx6wcbdp3Ubq3A2dZCW7IibQU2ioRb/MDy3t44lZfnkpKeMfLIyIqvKS/j5h88F4Ec3LNYHhhIxDp9s4/l36vnw+dNISdLHoL+sKi/h5TtX8Inl0zHAexZOinSTlFGgv3gfOJs62FvbGvA0vzI8Z03OBmDP8ZYIt0RJZB545QjJDuHm86dEuikxyfJZhXT3uth+pDHSTVFGgSp+L1RUOrn6py8C8PsXD8VMzuxYYEJ2OoXj0nhbFb8SASoqnVy49p/84aVDpCQ52HKgIdJNiknOn15ASpLw0n5N0xuL6Br/IAan6Kxr7dIgFUHmrMnZavErYWewbHf09Klsj5KstGTKp+bzsir+mEQt/kGEKw1vIjO/OId9J07TE6TMhoriDyrbwWX5rEJ2Optpau+OdFOUAFHFPwgNUhF65k/OobvPxYH605FuipJAqGwHl4tmFWIMbNXlkphDFf8gMlO9B97RIBXBY/5kK1jK2zU63a+Eh8qjvp3QVLZHxzmluYxLS9Z1/hgk4db4vaXThDN7UwEcAp45dDRIRXCZXphFarJD1/mVMeMrPa5n+fhxqbR29JCflUJbV9+AePMq26MnOcnBBTPGq+KPQRJK8Q927vGWHhcsxZ+bkUJTe4+mngwByUkO5k3KVs9+ZUx4k+c1G3YOSZt78nQ3Aqy5fDZ5GaleBwrK6Fg+azzP7jnBsVPtTCnIjHRzFD9JKMXvzbnHW3rcXhdkpiZT+c2rwtW0hOOsSTk8s+cExhjER9ITRRkOX856f3z1KGaQWBvgdy8c4uU7V6iiDyLLZ1tRTV/ef5Kbzp8a4dYo/pJQa/yBOPGow09oOWtyNqfaujnR0hXppigxii8ZHaz0RzpfGT0zi8YxMSdNp/tjjIRS/IE48ajDT2iZX2ylOdZ1fmW0+JJRX4k0VaaDj4hw0axCthxowOVl9lSJThJK8XvLLpVo6XGjhXl26F5d51dGi69scR9+11TNIhdGls8q5FRbN3tqVZZjhYRa4/fMLuXNq18dfsJHTnoKUwoyBih+Xx7aiuINX/K8qryEJdMK9LcUJi6adWadf4E9k+dGZTo6SSjFD8On2VTCy1mTcthj7+X35aEN+t0ovhlN2lwluEzMSWf2hHG8tL+BW989s79cZTp6SaipfiW6mF+cw6GGNtq7ezWcqqLEMBfNKuS1Qw109Z6RYZXp6CXhLH4lemjp6MEYWPDNjfhyC1JPbEWJfpIdQmePi7l3PU1JXgYfPK+0PyDaYFSmI49a/EpEqKh08sdXjwL4VPqgntiKEu1UVDp58NUj/e+dTR389J/78BWdQ2U68qjiVyLCuo1VA0KneiM1SdQTW1GinHUbq+jsGSrLORnJursiSlHFr0SE4ab7BEhyCBOy07hucXH4GqUoSsD4kuWWjl7WXr+IEtvCT3IIa69fpI59UYAqfiUi+JruK8nL4NA917D2+kVUN3Wyuao+zC1TFCUQfMlycV4Gq8pLePnOFdx1zVn0uQzLZo4Pc+sUb6jiVyKCr+Ar7mnA95eXUJKXwc827cP4isGqKErEGUmWAc6blg/AtiO+0yMr4UMVvxIRVpWX9E8DCpal7zkNmJLk4LZLZ1J5tImX9zdEtrGKovhkJFkGWFCcS3qKg9cPn4pcQ5V+dDufEjFGCrLyoSWl/GLTfn62aV9/FjBFUaKPkWQ5NdnBOaV5bFeLPyoIu8UvIveJSJ2I7PIo+7OI7LBfh0Vkh8exNSKyX0SqRGRluNurRI605CT+45IZvHboFK8eVKs/GlF5VvxlaVkBu2taaOvqjXRTEp5ITPWvB97jWWCMudEYs9gYsxh4DNgAICLzgZuABfZnfiUiAxeTlLjmpqVTKRyXyi+e2x/ppijeWY/Ks+IHS8ry6XMZdhxrinRTEp6wK35jzAuA14UeERHgBuAhu+g64GFjTJcx5hCwHzg/LA1VooKM1CQ+dfEMXtx3ksqjOk0Ybag8K/5y7rR8RGDbYZXjSBNtzn0XAyeMMfvs9yXAMY/j1XbZEETkVhHZJiLb6ut1C1g8ccsF08jPTOHnm9TqjzFGJc8qy/FJTnoKcydms+2IOvhFmmhT/DdzxjoAvEZ99Lq3yxhzrzFmiTFmSVFRUUgap0SGrLRkPrF8Opv21rHL2Rzp5ij+Myp5VlmOX5aWFfDGkUZ6+4aP2qmElqhR/CKSDFwP/NmjuBqY4vG+FKgJZ7uU6ODflpWRnZ7ML9TqjwlUnhVvLCnLp627j721rZFuSkITNYofuALYa4yp9ih7ArhJRNJEZDowG3gtIq1TIkpOegofX1bG07trqdKHRiyg8qwMYUlZAYBu64swkdjO9xCwFZgrItUi8gn70E0MnBbEGLMbeAR4G3ga+KwxZmCCZyVh+Pfl08lKTVIP/yhC5VkJhJK8DIpz0zWQT4QJewAfY8zNPso/5qP8u8B3Q9kmJTbIy0zlIxeW8dsXDvDFK2Yzs2hcpJuU8Kg8K4FyXlkBrx86hTEGa+OHEm6iaapfUUbkkxdPJy3Zwa+eOxDppiiKMgqWluVT29KJc5gMnUpoUcWvxBSF49L48PnTqNjh5GhDe6SboyhKgPQn7NH9/BFDFb8Sc/zHJTNIcgi/fl7X+hUl1pg3KYdxacm6nz+CqOJXYo6JOencuGQKf9lerdOFihJjJDmEc6flq8UfQVTxKzHJpy+diTFw7/O61q8oscaSaflUnWiluaMn0k1JSFTxKzFJSV4GHzi3lIdeP0ZdS2ekm6MoSgAsKcvHGHhD829EBFX8Sszymctm0tPrYsV/b2b6nU9y0T2bqKh0RrpZiqKMQPUpyzH34//zusptBAj7Pn6aHKR/AAAgAElEQVRFCRaVR5twiHC6y4oB42zqYM2GnQCsKveay0lRlAhTUenk7ife7n+vcht+VPErMcu6jVX0mYE5Xjp6+li3sWrYB0hFpZN1G6uoaeqgOC+D1Svn6gNHUcLEuo1VdPQMDNjoj9z6QuU5cFTxKzFLjQ+Pfl/lYD0k1mzY2f/gUWtDUcLLaOTWFyrPo0MVvxKzFOdleN3OV5yXMeC9p0XgEOgblAh2LNaGoiiB4a/cDmawZf+VK+fwnaf2BHX2IFFQ5z4lZlm9ci4ZKUkDylKTHaxeObf/vdsicDZ1YBiq9N2MxtqIVioqnVx0zyZ1eFSiEm9yC3DN2ZN8fmawHDubOrjj0TdpaOv2en68yHOoZFktfiVmcY/oPa35wqxUrj2nuP8cb+uJ3hjJ2ogVdOpTiXYGy+2k3HQE+NOrx/jgeVOYMzF7yGe8ybEBHAIuL4P5eJDnUMqyWvxKTLOqvISX71zBoXuu4Wc3n0tNcycPvXa0/7g/I/+MlKQBswSxzHCOU4oSLXjK7dY1l/OX25aRnpLEJ/73dU4NsuLbunp9Ruh0GYbMHsSLPIdSltXiV+KGqxdNYmZhFt98fBffqNhFXmYKPmb2ESyLoSQvndUr58WNNRxMxylFCRfFeRn87t/O48Z7X+GDv95CZ08fx5s7yc1Ioc/l8vm5EtuL/xuP76K1s5fi3HS++p74kOdQyrJa/Erc8PiOGqqbOnAZS6k3tlvhQFOSBub8zkhJ4n1nTwbgmTsuiYuHhBtfU5zxMPWpxDflU/O5cUkpB0+2UdPciQGaOno43d3HyvkTfVr2q8pL+Ob75gPw0K0XxI08h1KWVfErccO6jVV09Q61DrJSkynJy0CwLIS11y/i4tlFAEOmFWOd1SvnkiRDBzrxMPWpxD+b9tYPKTMGdtW0sPb6RUPk2K3kJ+dayvB4c/yE7169cq5XoyUYsqxT/Urc4GsKrLmjhx13XzWg7Jm3TwDQ2NZDaX7ImxY2VpWX8L2n9tDS0UNXr0sDmigxxXDT26vKS3z+jifnpQNwvDl+lrRWlZdw30sH2V3TisuYoMqyKn4lbghkf3BBVgoAp9rjy+Lv6O7j5OkuPnfZLO64Sq18JbYY7R7/ybluxR8/Fn9vn4tDDe3csLSUtdefHdRr61S/Ejd42x/sa2osPzMVgMY4m+rfW9uCy8D84txIN0VRAiYQGfYkMzWZ3IwUjjfFj+J/s7qZ1s5els8qCvq11eJX4obB+4OHmxpzK/54W+PfXdMCwILinAi3RFECJxAZHszk3PS4svhf3FePCFw0a3zQr62KX4krhlsH9CQnIwWHQGOcTfXvrmkhJz2Z0nz14ldiE39leDCW4o+fNf4X953k7NI88mwjJZjoVL+SkCQ5hLzM1Liz+N8+3sL84hxkkGe/osQ7k/MyqI0Ti7+ls4cdx5p49+zCkFxfFb+SsORnpsSVxd/b52Lv8RYW6Pq+koBMzkmnoa2bTj9CdEc7Ww800Ocy/duOg40qfiVhKciKL4v/4Mk2unpdur6vJCSTbc//eLD6X9xXT1ZqEuVT80JyfVX8SsKSn5lKY1tPpJsRNHbXNAOoxa8kJPG0pe/FfSe5cOZ4UpJCo6JV8SsJS0FWalzt43+7poXUZAczi7Ii3RRFCTtnFH9sO/gdaWjjSEN7yKb5QRW/ksDkZ6XS2NaNMb5S+cQWu2tamDcpm+QQWQmKEs3ES9jeF/edBODiEDn2QQQUv4jcJyJ1IrJrUPnnRaRKRHaLyA/ssjIR6RCRHfbrN+FurxK/FGSm0usytHb1RropY8YYw+6alrCu76ssK9FERmoSeZkpMW/xv7ivnpK8DKYXhm7mLhL7+NcDvwDudxeIyGXAdcDZxpguEZngcf4BY8zi8DZRSQTys85E78tJT4lwa8ZGTXMnzR094Y7Ytx6VZSWKmJwb21v6evtcbDnQwPvOnhzSLblht/iNMS8ApwYV3wbcY4zpss+pC3e7lMTDHa/fnb43ltntdDv2hc/iV1lWoo3JuenUxHDY3lCG6fUkWhYD5wAXi8irIvK8iCz1ODZdRCrt8ot9XUBEbhWRbSKyrb5+aGpHRRlMPMXr313TggjMm5Qd6aaoLCsRI9aj94UyTK8n0aL4k4F84AJgNfCIWPMcx4Gpxphy4A7gTyLi1aQxxtxrjFlijFlSVBTa0ZISHxRkxU+8/t01LcwozCIzNeJRuFWWlYgxOTedxvaemA3iE8owvZ5Ei+KvBjYYi9cAF1BojOkyxjQAGGO2AwewLApFGTP9a/wxvKWvotLJRfds4tk9J6hp6qSi0hnpJqksKxEjVj37KyqdXLj2n2w/0sjButMhl+NoUfwVwAoAEZkDpAInRaRIRJLs8hnAbOBgxFqpxBXZackkOyRmLf6KSidrNuzsz1/e0dPHmg07I638VZaViBGLe/ndcuwerLR29YZcjiOxne8hYCswV0SqReQTwH3ADHtb0MPAR421ufrdwFsi8ibwF+DTxpjBzkSKMipErEQ9sWrxr9tYRcegKc2Onj7WbawKS/0qy0q04Q7bezyGHPwiIcdhXxA0xtzs49AtXs59DHgstC1SEpmCrJSYtfhrmrxbNb7Kg43KshJtTMqxLP7althR/JGQ42iZ6leUiBDL8fqLbevG33JFiXcyUpPIz0wJ2+A3GERCjlXxKwlNLMfrX71yLqnJA0U4IyWJ1SvnRqhFihJ5Yi2Iz22XzhxSFmo5VsWvJDTueP2xyKryEs6dkocAApTkZbD2+kWsKi+JdNMUJWJMzk2nJoYU/7HGdgAmZKeFTY4jvulXUSJJge3c53IZHI7QhcgMBV29fbx9vIX3l5fwoxs1Eq6iAEzOS2f70cZIN8Mv6lu7uH/LEVYtLuYnN5WHrV61+JWEJj8rFZeBls7YW+ffXFVPS2cv/7K4ONJNUZSoYXJuBk3tPXR0R38Qn98+f4Cu3j5uv3x2WOtVxa8kNO54/bHo2f/4DieF41JZPit06TsVJdaIlb38dS2dPPDKEd5fXsqMonFhrVun+pWEpj9e/xgd/CoqnazbWEVNUwfFeRmsXjk3pGt0rZ09PLunjg+fP5XkJB2/K4qbSbbir23uDEihhluGf/38AXpdhtsvnxWyOnyhil9JaM7E6x/9VL878pY7CIezqYM1G3YChOzB8fSuWrp7XTrNryiDKLbD9gbi4BduGa5t7uSPrx7lA+eWMG18VtCvPxKq+JWEJhgW/3CRt4L90HBbJc6mDpIcwpGTbZw7NT+odShKLHPG4vd/qj9cMuwpvwBzI5RNUxW/ktC4Lf6xbOkLV+StwVZJn8vw9b/uQkR0C5+i2KSnJFGQlRqQxR8OGR4svwA/3PgO47PSwi6/ujioJDSZqUmkJjvGFMQnXJG3Ih2bX1Fihcm56QEF8QmHDEeT/KriVxIaESE/M2VMFv/qlXPJSEkaUBaKyFuRjs2vKLHC5Nz0gOQiHDIcTfKril9JePIzU8fk3LeqvIS11y8iJckKAJSW7AhJ5C2Nza8o/jE5N6M/za0/rCov4dvXLeh/7xD43vsXBlWGo0l+VfErCU9B1thT864qL6FoXBoA47NSQ7Jmt3rlXFKTNDa/oozEpNx0mjt6aO/u9fszC0tyAbhwxnhcBsqD7DS7euVc0qIkt4YqfiXhCUa8fpfLUNfaRWqyg5rmTlpDEAlwVXkJl8yxgvVobH5F8U1xnjuIj/9W/6GTbQDcsLQUgNcOnwpqm1aVl/DRC6cBkZdf9epXEp6CzLFn6Gto66bXZVg+Yzwv7T/Jgfo2Fk/JC1ILz3CqvYfyqXn89TMXBf3aihIvTMqxps9rmzuZ6WcQH7fiv3L+JPIy32bb4VPcsGRKUNs1xd6z/8rXL2diTnpQrx0IavErCU9+VirNHT309rlGfY0TLZZlsXy2ZZHvO9EalLZ5crqrlzePNbFs5vigX1tR4gm3xR+I49zB+jYm5aQzLi2ZJdMKeP1w8BP9VDe2k5rk6F8WjBSq+JWEpyAzBWOguWP00/PurUNLy/JJTXawr+50sJrXz+uHT9HrMiybqbH5FWU43NZ0IFv6Dp08zfRCyyJfWpbPoZNt1LUGN72vs7GDyXnpEc8EqopfSXjys8Yeve+E/YAozstgZtG4kFj8rxxoIDXJwXnTNFKfogxHekoS4wMM4nPwZBvTi2zFP70AgO1BtvqdTR2U5kd+F44qfiXhCUa8/hPNnYhA0bg0Zk8YFxKLf8uBBsqn5pE+aL+xoihDmZyX7neGvsa2bprae5hhW/wLi3NJT3EE3cGvurGDkijYfquKX0l43PH6x5Kat7alk8JxaSQnOZgzcRzVjR20dfm/lWgkmtt72FXTrNP8iuInk3Iy/J7qP2g79rmn+lOTHSyeksfrQVT8nT191Ld2UZqfGbRrjhZV/ErCUxCMqf6WLibZ64qzJliJNw7UB8/qf+VQA8bAslnq2Kco/lCc53/0PrdHv2ca3/PLCni7poXTQRrAu9uiFr+iRAHBsPhPtHT2OxTNnmg9PPadCJ7i33qggYyUJM4pDf4WQUWJRyblptPS2evXzNuhk6dJdsiA9fel0wtwGXjjSHDW+d0Z+XSNX1GigIzUJDJSkmgag8Vf29LJxBxri860gkxSk4Lr2b/1QANL7B0DiqKMTHGupWD9CeJzsL6NqQWZpHhExiyfmo9DYFuQpvudjbbFr4pfUaKDgqzRx+vv7Omjqb2nf6o/OcnBjKKsoHn217d2UXWiVdf3FSUAJuX6v6Xv0Mm2/vV9N+PSkllQnBs0B7/qxg6SHNL/nIgkqvgVBcjLTBn1Gn9dSxcAE3PPCPSsIHr2v3KwAYALNXCPoviN2+KvGcGz3+UyXhU/wNKyAiqPNtHdO/rgXm6cTR1MykknOSnyajfyLVCUCFNR6WR/3Wk27a3jons2UVHpDOjz7j38niE4Z0/I5lhjOx3dfb4+5jdbDzaQnZbMwuKcMV9LURKF1w5ZA+av/uWtYeX6eEsnXb2uAY59bpaW5dPV62JXTfOY21Pd2B4V0/ygil9JcCoqnazZsJMue0TvbOpgzYadASl/91Si5xTenInjMCY4nv1bDzTwrhkFUWEpKEosUFHp5BuP7+5/P5xcH6ofuJXPkyVlViCf1w+Nfbrf2RgdwXsgAopfRO4TkToR2TWo/PMiUiUiu0XkBx7la0Rkv31sZbjbq8Q36zZW0dEz0Crv6Olj3cYqv6/hjtPvqfj7PfvrxrbOf7y5g0Mn27gwStf3VZ6VaCQQuT500hqczygaqviLstOYUZg15v38PX0uals6KY2CrXwQmex864FfAPe7C0TkMuA64GxjTJeITLDL5wM3AQuAYuBZEZljjBn7/Kmi4DuJRyDJPU60dJKW7CAn44w4TRufRUqSjHlL39YD9vr+jKhd31+PyrMSZQQi1wfq28hMTWJCtvfEOUvK8vnH2ydwucyoY+zXNnfiMtHh0Q8RsPiNMS8Ag4dPtwH3GGO67HPq7PLrgIeNMV3GmEPAfuD8sDVWiXuKfYzAfZV7o7ali0m56YiceSikJDmYXpg1Zge/LQcayM9MYd6k7DFdJ1SoPCvRSCBy7Xbs85RfT5aWFdDU3sP+MSzbVTe69/BHPmofRM8a/xzgYhF5VUSeF5GldnkJcMzjvGq7bAgicquIbBORbfX19SFurhIvrF45l4xBse9F4CtXzvH7GieaO73m1p49IXtMW/qMMWw90MCFM8dHPJtXgIxJnlWWlbHiTa4zUpJYvXLukHMPnWzz6tjn5nw7Yc9rY1jnr25sB6Ijah9Ej+JPBvKBC4DVwCNiDb+8Pe2MtwsYY+41xiwxxiwpKioKXUuVuGJVeQlrr19ESV4GAuTbKXp7XF5/Zl450epd8ff2uTjc0M70O58c1W6Bo6facTZ1RPM0vy/GJM8qy8pY8ZRrgCSH8L33L2RV+cBxZldvH9WN7V4d+9y8caQRh8BdFbtGJcdgOReKWImDooFIrPF7oxrYYIwxwGsi4gIK7fIpHueVAjURaJ8Sx6wqL+l/IBhjuOG3W7nn6b1ctWAieXY4X18YY6ht7uSq+QPXBysqnWyqsma4DWe8it31+UP/+n6UOvYNg8qzEnHccv3A1sN84/HdnDNlaLjrY6facRn6s/INpqLSydf/ugu3HTAaOQZrqn9CdhppydGRWTNaLP4KYAWAiMwBUoGTwBPATSKSJiLTgdnAaxFrpRL3iAjfvm4hzR09/PAfI3v2N3f00NXrGmLxr9tYRU/fQGM20N0CWw40MCE7jZlevI2jHJVnJWq4dO4EADZXDV02OjDMVj4Izq4fsLbyRcs0P0RmO99DwFZgrohUi8gngPuAGfaWoIeBjxqL3cAjwNvA08Bn1QNYCTVnTc7hIxdM44+vHmVn9fCBO064o/YNUvxj3S1gjGHLgQaWzRzv0+koGlB5VqKdKQWZzCzK4rmquiHH3Fn5pvsYXAdj1w9YMwXR4tgHEZjqN8bc7OPQLT7O/y7w3dC1SFGG8qUr5/C3t47zjcd3seG2ZT6d62rde/hzByr+4ryM/mxcg8v9YX/daU6e7or6ML0qz0oscOncCTzwyhHau3vJTD2j9g7Vt1E4Lo2c9BSvnxurHAP0uQw1TR1cc/bkwBseIqJlql9RoorcjBS+fvU8dhxr4tHtx3ye5y14DwTmVeyNrXZ8fk3Moyhj57K5E+judfX7zbg5dLLN5/o+jF2OAepaO+l1maiJ2geq+BXFJ+8vL2FpWT73/H2vz5S9J+xwvUWDgn+4vYozU62HRkleBmuvX+S3Q9CW/Q2U5mcwpSB6pgcVJVZZOj2fzNSkIev8B30k53EzeHeAQ/C6O2A43Hv4E3qNX1FiBbejX0tnr09nntqWTvIzU0hPGeqtu6q8hM9eNguAZ+54t98PC5fL8MqhhljcxqcoUUlachLLZhbyXFUd1mYTaOns4eTpLp/r+25WlZfw8p0r+Na183EZWDYrsFk4Z3/wHlX8ihITnDU5h49eWMafXjvKW9VNQ46faOnyuoffzbTxlsV+9FS733XuqW2hqb2HZbNU8StKsLh0bhHVjR39nvzu5DzDTfV7srAkF4BdzsAy9Z0J3hM9s3eq+BVlBL545WzGZ6Xxjcd34xoU2OdEi/fgPW6mFVgPlSMN/iv+M/H5dX1fUYLFpXOtYFCbbe9+t0e/t+Q83jhrcg4isMvZElC9zqYOxmelkpEaHXv4QRW/ooxITnoK/++aebx5rIlHtg109Ktt6Rzi2OfJVLfFH4Di33KggRlFWUN2CiiKMnpK8zOZPWFc/zr/wZNtOAS//Wiy0pKZUZjFrppALf7oScfrRhW/ovjBqsUlnF9WwPef3ktjm+Xo19vn4uTpLiYOo6BzM1LIy0zhyKk2v+rp7XPx2qFTur6vKCHgsnkTePVQA21dvRw62UZpfmZA0fQWluSyO8CpfmdjR9Rk5XOjil9R/EBE+PaqBZajnx3Rr/50F8YM3co3mGkFmX5P9e90NnO6q1e38SlKCLh0ThE9fYaX95/kYP3pYT36vbGoJJea5k4aTnf5db4xBmdTdEXtA1X8iuI38ybl8LFlZTz02lHePNZErb2Vb2KO9zzebqaOz/LbuW+Lvb5/wYyCsTVWUZQhLCkrICs1ieeq6u2sfIEp/gXFtoNfjX/r/PWnu+jqdUVV1D5Qxa8oAfHFK2ZTOC6Nbz6+y0Pxj2zxOxs76O1zjXj9rQcamDcpm/Hjhh9MKIoSOKnJDi6aVcjf3qqhvbvPb49+N/OLcwD/PfudUbiHH1TxK0pAZKencNc1Z/FmdTO3P1wJwCfv3zZsqs6p4zPpdRlqmjqHvXZXbx+vHz4V9WF6FSWWyctMobWzF4CfPLsvoDS7uRkpTBufyW4/Hfzc4X5LC1TxK0pM43IZHEJ/9r3a5k7WbNjp8wEyzfYaHsnBb8fRJrp6Xbq+ryghoqLSyRM7zmSCbmjrHlZ2vbGwONfvLX3RGLUPVPErSsD88B/vMGg7/7CpOqeN928v/5YDDTgEzp+u6/uKEgrWbayis3fgklugaXYXlORw9FQ7ze09I57rbOwgJz2ZbB9JgCKFKn5FCZBAU3VOyE4jLdkxooPf1gMNLCzJJTcjuh4SihIvBCPN7iI7gt/u4yNP91c3tkedYx+o4leUgPGVktNXucMhTC3I5EiD76n+ju4+Ko816vq+ooSQQGXXG/2e/X44+Dmbom8PP6jiV5SAGU2qzmnjh9/Lv+3IKXr6jK7vK0oICUaa3YKsVEryMkZc5zfG4IzCqH0AyZFugKLEGu4se+s2VlHT1EFxXgarV84dNvve1IIsthxowBiDiAw5vuVAA8kOYWlZfsjarSiJzmhk1xsLinNGDN3b1N5DW3df1Dn2gSp+RRkVq8pLAnpYTBufSXt3HydPd1OUPXSP/pYDDSyekkdmqoqkooSSQGXXGwtLcnlmzwlOd/UyLs27zPZv5YtCi1+n+hUlDPQn6/Gypa+ls4ed1U0s0/V9RYkJFpbkYAzsOe57ut+djled+xQlQenfy+9lnf/1Q6dwGbhQ1/cVJSZY6IeDX7Tu4QdV/IoSFkrzM3GId8W/5UADqckOyqfmRaBliqIEyoScdCZkp7FzBMWflZpEXmb0bc9Vxa8oYSA12cHk3IwBe/krKp1cdM8m/vDSIQR4eldt5BqoKEpAWCl6vU/1V1Q6efi1o7R197H8+88FFBkwHKjiV5QwYW3ps9b4KyqdrNmws98BqKvXFXDoUEVRIsfC4hz21bXS0d03oNwt2+4Igc6mjqiTbVX8ihImpo3P7Lf4122soqNn4AMj0NChiqJEjgUlubgM7K0daPXHgmyr4leUMDG1IIuTp7s53dUblNChiqJEjoV26N5dNQMVfyzItip+RQkT09xb+hramZyb7vWcQEKHKooSOYpz08nPTGG3h4PfsVPtJCcNDdAF0SXbGi1EUcLEgfrTAFz9sxdJ8TLkDjR0qKIokUNEmJCdxmNvVPPn149RkJVKe3cvDoHUJAfdfWeyAEabbKviV5QwUFHp5JfP7e9/3+MCAfIyU2hq7xl16FBFUSJDRaWTA/Vt9No5uhvauhHg61efRVF22pjDAocSVfyKEgbWbayis2dgHnADZKYmU/nNqyLTKEVRRs26jVX9St+NAdZvOczLd66IKkU/mLCv8YvIfSJSJyK7PMq+JSJOEdlhv662y8tEpMOj/Dfhbq+iBINYcPgJFJVlJZGJZZmOhMW/HvgFcP+g8h8bY37o5fwDxpjFIW+VooSQ4ryM/j37g8tjmPWoLCsJSizLdNgtfmPMC8CpcNerKJEkGHnAow2VZSWRiWWZjqbtfJ8Tkbfs6UPPpOTTRaRSRJ4XkYt9fVhEbhWRbSKyrb6+PgzNVRT/WVVewtrrF1GSl4FgJe5Ye/2iqF4HHAMqy0rcE8syLcaYkc8KdqUiZcDfjDEL7fcTgZNYvhH/BUw2xvy7iKQB44wxDSJyHlABLDDG+M6FCCxZssRs27YtlF1QlLhARLYbY5aM4fNlqCwrSsQJRJajwuI3xpwwxvQZY1zA74Dz7fIuY0yD/f924AAwJ3ItVRRlOFSWFSX6iQrFLyKTPd6+H9hllxeJSJL9/wxgNnAw/C1UFMUfVJYVJfoJu1e/iDwEXAoUikg1cDdwqYgsxpoePAz8h336u4Fvi0gv0Ad82hijzkSKEgWoLCtKbBJ2xW+MudlL8R98nPsY8FhoW6QoymhQWVaU2CQizn2hRkTqgSMjnFaI5YQUbrRerTea6p1mjCkKdmOChZ+yDJG775EkEfsMidlvf/rstyzHpeL3BxHZNhZvZq1X69V6o4dE7H8i9hkSs9/B7nNUOPcpiqIoihIeVPEriqIoSgKRyIr/Xq1X69V644ZE7H8i9hkSs99B7XPCrvEriqIoSiKSyBa/oiiKoiQcqvgVRVEUJYGIa8UvIpJI9SYaep8VRVECJ64Vv4mQA0Mk6hWL/xgUKz1cdY/zbEc4qw5jXVaFFjeIyPgI1B2p+6woShwRl4pfRD4iIs+JyDoR+VAY671FRF4SkW+LyPVhrHclsBdYBqSGsd5/FZFtwDoR+TaEZ9Bj3+ftdr0fDHV9HvW+D9gHXAZkhLHeiNznUJKIA5dE7DMkZr+jvc9hj9UfKuwbnQmsBRZhJQyZB9woIgftVKChrP9S4DPAasCFlZAEY8wGEUkyxvSFqN5k4GrgdmPMxkHHJNgKwr7P6cBXgBXAHUADsF5EHjHG7ApmfV7qXwB8CfgCUACstvv5aIjvcwbwQeCTxpjNg44F/T7b103H+j2F/T6HmlgfuIyGROwzJGa/o73PcWHxi0iqsWgDdgCrjDEvAE8AjUBaqOr1eLsMeMwY87IxZivwFnAPQKiUkX3tXqy85sdEJFdEviwiV4ZI6afY97kD+Ksx5jL7PqdiWcLOYNbnUa/n9zcBeMEY85Ix5gngB8APIfj3edD3mwTkAW+KSKG9rHKeXW9IhNwY0wlUhOs+hwsR+ZOIfMH+PynS7QkHidhnSMx+x0KfY17xi8jdwJ9E5OMikmOMuQ9ota2/WmAWIVgL9qzXLtoB3O6hpOqBJBFZY58flHstIl8XkXfZ/yeJSC5QBSwF/goUAf8P+ImIZAejTruuNcAfRORjIjLebXGKyOXAg1gK+Uci8hW7PFj9vRN4REQ+JSKFQAtWilcAjDH/B+xzT4EHsV739/tRESnAGjx2AxdiZZlbAPxMRL5vnx+U39ig79dhjNlp/x/S+xxqRCTHnp0C+A3wWRFJDuWgONIkYp8hMfsdc302xsTsC2vK9xngcuAB4CfAZI/jk4CngewQ1vsg8DMsi/D3wP3Am8B3sKZoHwHSglDnZCyF0wTsG3Tsv4B/AF+235cArwHnBKHeecAWu5/XAn8DPuvuEzAXKPD4/zRQGIR6FwBb7XqvAJ4CbvCCQMMAACAASURBVLWPvQzc5XHuYuAlYFyIflc/xVre+Kld9832eTOBaqA4VN8vZ4JszQnFfQ71C8sX4kfAZmA9MNUu/zFwfqTbp33Wfidin2PCWvCGPYVSDvynMeafWMqvA2vt181EoMMY0yoii0TkvSGo99tYluAaY8wngTuBTxlj7sKaaThijOkKgkXYDDxqjMkDmkTkDo9jvwH6gBQRyTDGOIF3gOljrBOgFXjEGHOLsazrDcCFxpguAGNMlTHmlPt/4P+wrNKxUg3cbdf7LLAby3cC4DbgCyIyyX7fgLW0MmbL28fvqhtrMPAtIB9w2EspB7AGArPHUqeNr+83GcAY806I7nPIEJGpWAO2VOADQCfW4BisQeprg84/P7wtDD6J2GdIzH7HdJ8jPfIY5SjLbQWtA/7H/t+BNd39OLDELrsFeBL4BrANuD7E9S71ONcB/A/w9SD2O9v+uxxL2aV6HLsRa637e1gj0G3Yo88g1Jvl8f8CLKWTNuicZKyZjyeBzCD2OQX4OVBn13sr1uzKN4CHgJuA3wIVQNJovk8/v9+/AaXAv9vtuc2+z1uA8WOpd6TvF3CE+j4H8wWk238nAVd7lGcCb3DGKhLPz2DtTLlouHsUra9E7HOi9jse+hwzFr/nWqax7xzWA79URM4zxriAw8DrwDn28XcBl2Dd9HcbYzaEuN5F9mdWYCkEF5ZyCBhva7fGmrkQY8xLwPNYlr6bR7AUfxOW9XiJMeZokOpt83i7AjhmbIvf/swtWEsLfcCHjDHtwajXrrsHeMUYMwFL2U8DbsdaSlmPtaOhE/iwCXA9zeP7HPze1/d7KdZg7l6gDGuG6UpjTMNY6vUo9/r92m0Iyn0OJSJSKiJ/Be4VkY8Zy8fmn/YxwVoaqXP/Lt33wfbHcVtLN3kei3YSsc+QmP2Opz5H9XY+EfkXYJYx5keDyh32w/Ao8CzwVeBGY0y9iEwATtin/h34tTHm7TDVW2ufuh/4gLGm3INRr0D/jyUJ6MWyOPeIyFexpnwdxphdIrIu0B+VP/Xajiq9WD/uF+zj5wEHsAY5LxtjDoWgvxhj/mj/3SEi78eyhA2wUUQ22YODQOq9BvhXrOWQB40x++1y93ZAb9/veMBp17tTRNa4FXIQ6nXY3fX1/U7Ecmp8kVHc53AgllPrr7EGSH8Hvi8i04wx/+mWG/trbfHycfd9rCDKly88ScQ+Q2L2O+76HIpphLG+sAYkX8OytFzAYrs8adB5RUAx1kP6LiyltBH4WITq/WgY6k33eP97+/zXgAUhrjfL/v93wOexLN+ngLIQ15vm8X68Xedo73M6lhX9Kpaj4v9izZJM9/P7/bcw1Ovt+30dmB8M2QrFC8uXJQv4g7udWLtpDgJzPc77FvBV+/8bgUmRbrv2WfudiH2Oyql+Y1mW72B5lN/BmSnPPujfxvZzzjwYv4jlXflnLItofYTq/d8Q1vszLKU7Q0QcIvIRLG/3rxljzjfG7A5xvcUiMhHLb+I/gDeNMVcbYw6HuN7ZIpIvIr/AmlbbPIb73AnsAT5oLEfFtcC5WEsFiEjKCN/v/SGsd7jvd6kJcNYqnBjrSZcB5ALp9nLFfuAvwH9C/yzODCBNRB7DcpZMj1CTx0wi9hkSs99x2edIjzw8Rku3YwW8ucF+n+Jx7BDWGq77/TlYFmf+oGsEvG0uVusFlgB5Eaj3S9jbysJc7y1jrPdD9vsMrBG8ezviM8C59v+LQ/D9jqre0X6/kXhxxinyB8DvPcqTsIINuWd0KrGWhm6IdJu1z9rvRO5z5BtgPQy/hLUt6oNYltHHgAke57wfa33V2+cD8uSOg3qTE6y/wa63yOOcKfbxnCiqd1TfbzheWMsz1w2+N5zZfZCDFcPiKs54Pv8UK7dBOpYjpqensyMc7dY+a7+1z4P6GukG2DfoCeAy+//3YHnCf2TQOc8BX7H/vzIYN1brTbh6f+xZry2o99n/FwPlsVxvqF5YsQsewNrF8AvgLB/npdl9+zPWMskNwE5g5qDzRjWo0j5rv7XPwXmFdY3f7a3t8d5d/zbgYgBjzNNY8cgXiMhcj9NvA34gIrVYD0uMn17VWq/Wa9f7jl3vAvt4EdApIp/Hct4rjYV6w4WcCUHqwvJoXoA1vblMRLI8zpslIs8CfzLGPIUV52AqVsyDO4wV6KgfE61hTEnMPkNi9jsR++wm3M59A1KZejzo9gPZIrLIfv88liNFNoCILMZyfHoMa100UOcurVfr9azXff4q4NNYHrrvMZbjXSzUG1LESvb0E6x8D+dihQd+xRhzEKsvF2A9JN28F/hfY8wHAIwVh2C1MeY9xphnxtiWySLyObFyUoSMROyzXVdU9DsR+2y3JWz99iQsil9ELrA9HX8pIleJnbHIY8TlDkpypVj7xd/Gije/xD7eAHzGGPMhY0yN1qv1jrFed+jMB4DLjTFfMAHEXIhUveFArP3KG7CeDfuBz2EtwbgHNX/G2o1wqYhMtst+ZYx5wP68OxuZO+jQqJ4xIpJp/5sOPGSMaR7NdfysK+H6bNcX8X4nYp/tz4W134MJueIXK0/9r7BudhWWd3a+WEEPegGMtTXidSwL6E77o13AEfv4MWNnKdN6td4g1HvQPr7BGPNcLNQbRoqAw8aY240xP8FyXrrJPXthjDFYMzMzgRIRuRorvgIiIu5pTvu8US1fiMgc4NsiMs4Yc8gEGBlxFCRinyHC/U7EPtvXiUS/B2JC7zhxO/Bb+/9SrPjqnkFKvoMVGKEMa1/3E8B2rLCpo3Z20nq13niqN1wvYBxWYKWzPMq+Djw26LzfAzVYg7dzg1T3tX6cE/QY54nY50j2258+63cd2lcofkwXAHM83i8GTgF3Y4XS3QzchxXZaBnwJ6ywrZ5fzGj2p2u9Wm/c1BvqF148j91lWBknN3iUT8IawLh3H7wXa130jiC36fNYmc6GDJCAFdrn+Oj3cH3W7zo8r2B2Kg8rY1grVpjTcR7Hzrcfjh+w338Cy5nrnP/f3nmH21lVafz33oSEAIHQq4AQQUBQamiKASxURdGZwQIKMiNSRLEijyNSRIpKkUFQBAsKgqI4oigqKCogXQTGFkSldymB5J0/1j65Xw6J5Obec+85Z6/f8+znfmV/395vPlj77LZWI89C9Yay3Cy3n8odjUSsRr4WOA54Tau+FB8CxELE64Fdy/lkwsHQeuV8FWCpkdLKAvRyiN0PBwKbLkyZNWruNt0Lojm/9cJ/66GkkZzjX7xU/qBy/PLWDUdc4uUpc7rA5YRhfQhoBr/JcrPc2svtKJI+DuxF7EOeQRgbiGnLZ8vxk8DhwEmKHRebAOsBM0vGv9t+pLWwabhaXSxdWz2XVmNLFfAuIurk8ZIWH0qZNWou7+sq3fPSXOqZ33qY33qoDKvhl/R2SdtJWtKxOvkLRHjYp4BpklYp+SYSEdwOKI/uACxT8g35HzbLzXL7qdzRQOH/fyIR6e8jji1J9xGOk7BtSWtKOhs41bFf+VRgf2Ix4wl+7n7lEddZ6nkq8e/7+kZZdzpWVs+gxHaQ5vajMJ93VaW58b6qdNeoeVj1mM+PsPk/EJVZiZjLnE34Jl4cOMT2/SXPNoRXo2s9uA1iA2JedCXgGeBA27/PcrPcGssdDYq2N9v+ZuPaOYTO8YTr0asIV6R7AXsTURg/3sg/wfbMUazz5sD7gb8CTxBbnW5TCQtdekmtgEdXS1KzR1Wj5vKO6nTXqHnE8NDmKlqLI9Yh4olD/AOfQmOxRLl+KLHCeQowqVybBKw1lDKz3Cy338odjUQsNLyNGNZ8d+P6ZGBTIkjQC8u1zwHfbnt+4F+dj3BdNyRGTAYIz2mTiR0RnyEcHbU6KIuUvx8Efpia69Vdo+aRTAs01C9pvKRjgGMkbQesSzgowTFvcjCwVbnX4kxiRfNlwF8krWr7SYd3pAUiy81y+6ncUWYSEU1sR2A/SUsA2H4MMPBn238ueU8ABhQezVR6GXMNc7afjwSSVpT0ZeBc4JPAEbZn2X7M9m3ADcSPsq3KI606fB54RHO7fIY6NUOdumvUPGI8b8NfjN9viUAGfyAEPANMl7QFzFm8cCTw341HdyHmQG8ANvQQPZRluVluP5XbaSStJOlgxbQEtn8CnG/7l8BNlLjhhRuBPSXtofBO9ingD7YfcWEU6rsqcCKxp3oT4H+BF0maokHvaJcSC662LZpaPtCnAP8AxlWo+YH81tVo7pxjn+cbEiBWMzcji32eCKiyD/Dbcm2AmOs8H1izXHsd8Irne3+Wm+XWUG4nE+Fr4I6i5dfAR5h7++H6hHHcqHHtrYTr4FuIHz+jHlEMWKlx/N+lPsu35dmGMNxfIAxla1j0m4RRrUnz54B/z29dhebPAet3rG4LUPnFiHCErfnQtwDHluMbgIPK8WbEQoWR+kfLcrPcvim3kwk4BDixHL8EuAB4EzCxkecTwFfK8dqAiPUMyzbydNxrWCl3oHE+noiD/sti7M6m4TgF2I7o+fyaCGjUun4EcEplmlcm5n/zW/e/5pWBJTtVz+cd6rf9hO2nPTgM8SpimwTAO4D1JF1CuC69DkZmG0KWm+X2U7kjiaQXSZqm2L4EcBewqGIb4i3Aj4jhw6mtZxwrmadJ+ithiCbbftb2Axrcr9zRIVBJ4xzMlrSIykpm4Bu2t7F9COHa+K2SppTH9gSOAd4GPNTQfCsxb9u3mm1vCfyx9a1t/4PYdZLfus80297S9qUtW2P7H7Yf7Vhlh/BLZhwxBPoDiktS4h9+CvERVu3EL5MsN8vtp3KHWedJRNzw64BvE/t9XwBMJ1YIb1byLUEMK+5RzhcFjifmDQ8cg3q3r6D+GGEAl5lH3i2A0xhc4Vyd5lp116i57d6oTUcMxYHPbGAR4H5go9IrOgKYbfsX7txipyw3y+2ncofD+wFsb0IM7z8MvIYYJpwAbCFpRduPE9MW7yjPzSJ6ilNtnwqjN4rRXEEtaTdJVxIhij8EjJe0aLk3QdKOhIF/wPYz5RU1aoY6ddeoeU5dPTgK2XmG+MtmS8Jg/gLYdxR/UWW5WW7flDvEOq5GLD5ckYj4t3rj3snA/uV4N+CzwOHlfG/ih8y4tvd1cr/yPOdQCXeo3yZiH7yE2NN8bklLlTwnAVcAr61Rc37rejR3qn5D0jJE4asRKyondqIyWW6WW0O5C1i3VYidBWsXA/hvLcPD4NDo54BDG89sQkxd/JBw/TltlOo6AOwBTC/niwEbtf5dgQ+36g8cRgzlHtz2jtVr1Nz2rafWorvWb91852jUfb6axrLwTJkyPTcB7yG2bG1Tzt8JvI+5VyiPI4IDbdj27LLA5qNc36WLkf4YsS3yD8BPmDv06asJ/wknEwuv5uho0/zyWjTnt67rW8/rfKzSSEbnS5JkGJTV2+OA5QiHH7eUW+cDp9luOvRYAbjT9s2S9pN0qqTFbD9g+5ryvo79/y1pMUlbKiIRPkQYwiWB3YEdbe8ArCvpTeWRicB+tg+2/VjDiclmbZpv6nfNtmflt67nWzff234+VmTDnyRdgCLy35uKYTiP6GXsXLZxPW776bYFS8sCb5D0M2IY8gu2n2i+052NErgUsDlwpKQTiWHOe4npk1a40aOAgyVNtv0929cropMNlMavOs2Q37oWzR2s27DJhj9JxpBGr+UJ4JWSlrd9B3A1EYhknVZel7HCwhbAQ0Q40V1s39TplcxtPax7gVcQcQ0m2r6Y6MX9ijCY2D4PeIxwOtPS0DTW1Wh27O3Ob12B5g7/IBkRsuFPkjGk1SDYfhj4GTGHCLFPeTFgG0lLtvI3jN/ZttewfUm5PtBmOEeUtm1LuxNG8UTgy4Q7VWzfSjhb2UDStPLoJ1v1a72rRs0lb3W6a9TcC/RUZZOkH2gZNwXrE0OfEKuBl5W0msNr1/eJns+GrWfbjV9jLrGjvQzblrStpJOA/YmtVdcCXye8He5csn6P8I/wakmTbP/K9hFExLSqNJdGL791BZp7oZffJBv+JBllipFZoRi5lYGWs6AZhKOSHUu+i4BHiSHSpdrfUf52ZC6xZXAbDddqwCmEM5XTiaHQj9r+NbFCe0dJawMbEAb+e7afnPuVdWlu9VJr002l37oT9ewUPVXZJOlFNLiquXU+HfiSpPcSnsmeAPBgiNFpknYq2b9B7O/eSRFmdFKH69rya94yuK2h102A222fT8x1HgK8uRjMbxCrmn8NrGv7XODmtldvR59rtn1D81uXHn9+6z7UbPuG5nt7rcc/5vsJM2WqJREGcelyvC5wONEbugx4abk+iXAGch3wwnLtUOB6yr7nUarrLsRQ52nAiyjbqygxDIgtWVcBpzfqvULj+ZYzluo016q7Rs29mlofLEmSEULSFsBDtv+vnG8PHEv4F98AONL2j8q944CXEYFGbgLOdKxgPoQYkbsCuJEY/ezUsOeABxc2LQt8mlit/F3CQA4QLkffAWxpe2dJLyNCGk8jnK8MEKuw/0S4QZ7e75ptX1u+9SPAHbad37o/Ndu+tjw/jojn0dMNZw71J8kIUuYq3wB8tHH5tYTr0f8kXJXuosGQoy8h3HzuAdxNrHSGmG88DbjJEV50xI1iY9hztqTxrcuEMXzM9uXEquYnSv2OASzpYmLR05XEMO+iLc22ZxWj2O+an2186w83GoJ+113lt269s6G5p8mGP0lGgNYiIduPABcAUyTtKGlxYDKwn6TrgFNsH2L76fLoE8QQ4oO2j3YsJsKxH3im547YNpL1HdfoBX0IOFPSm4me0GHArqUeNxPGb11gU9u7AAfZXp9YqLUx8OcKNd+X37oazfd1oo5jSTb8STICtHoBZQjzYCJm+F62/0lE61oa2Nr2ZyQtIunA8uilwM9b72n9gOgEkiZKuk7S2g5valMknUJ4IzuZmJM9kBgCnSGp5ZjkSsJgTi31myXpNGA/Yl/2nrVptv23/NZ1aHZ3hugeHu6ChQaZMvVaIoYMB9quTSeclLwQ+C9iz+8biPC/PyHCj+5W8pwPLDaK9R0of/8HuLQcTwFOIPZRH0t4U9uk3NuG2Ma0cjlfrqWZGO59YQ2aG996UktzDbpr/dbleI7mfk1jXoFMmXot0WjwKauYy/FRwKnleAkioMf3iK1ArwSOBC4E3jgGdW6uOL+bmJedAFwC/BF4f+P+auXvZ4mAJE3DOlCL5obelvYqdNf6rZva+z2NeQUyZeqF1DCGrZ0wA8XQ3UgJxUmsAP4psEzJ80piJfNR83nnqG4JAsaXv/sBt5bjk4hwoxPK+YeALxK9nho1zxnJqUx3jZp7ekvecFLO8SfJgnGZpD1sW9LGwLeJ1b67EyuZ9wf+SQwnnlSeeQEx7PmApHFq8xbmYolGEkkbSlq0WU4L28+Wv2cRq9L3BY4jIqFdKulKYFvgc7afqlFzqV91umvUXLR2NPBP1zLWvzwyZeqFBKzFYC9iW+B+YM9yvgPweWBnYpHTpcSc5xXAWqNYxwHgLOCYcv6cHg0wrvzdGvgHEXkMwmf6yxv5VKPm/Nb1aB6tendjGvMKZMrUK4kYInxvOT4S+Erj3uHA8Qx6/lp9FOu1WuN4vXaD3G7kGBzWvZyIgtb+vnE1a65Vd42aa01jXoFMmXolAYsDDxCLmdYAvgX8R7m3EXAmsFHbMx1dLES4Gj2dGM7cjvCSthWw+HzyDzDYK1oCWD41p+5aNdeaxrwCmTL1UiK2MZ1Zjvcmhjwnl/NR2b5EDM02e2pfJYZmLwDWnkf+5YDD5/We8vdfGu8aNdequ0bNNaaWG8MkSRaMLwB/UsQZvwBYE1hK0uO2n5AkF2vTCRrvnyVpCtEjmkn4Tj/J9h8ljXdZ6FSYSUQ/+43tH7cuturp548sVqNmqFN3jZqrI1f1J8kQKEbkHcDxtp+w/QnbdzWMTMeMYvP9kt5PBEVZG3gX8HHg6JLn2bbH/gl8ZxhlVqe5vLM63TVqrpFs+JNkiNj+KfD61nmH3ZAOtL9f0uuBHYFptn/gCHDyXWCmpH1KnnUa9Z1FhCC9amHrUaPm8p7qdNeouTYyLG+SLCRqhPvs9PslrWj7nnJ8BBH291RJiwFP2rakHYih2tuJYCofAJ4ayTrWqLm9Xp2gG3XXqLkWsuFPki5C0gTCM9rd5XwJYohzcyLYycVEqNM32t6p8dxytu+XtDux4vm80a/9wlGjZqhTd42au5Fs+JOkSyiLmd4JXG77hnLtU8A9hAOVLwMr2Z4u6U7CYF5MREzbCjjQ9kON93W0xzYS1KgZ6tRdo+ZuJef4k2SMac1x2n4YOAW4W9ImkgaAlYihzQuB8cB7ymPvJJyZnEf4TD+6aRTL+7rWKNaoGerUXaPmbie38yXJGCFpgu2ZbSulJwEfAR6zfZ2kScDXgFfZvrY8tyNwpe0fS1rD9oxyvaNbrUaCGjVDnbpr1NwrZI8/ScYASa8lejlImijpw5K2A54hDOGykrYHPkFsV7pX0tKSPg0cQgRIoWEUB7rdKNaoGerUXaPmXiLn+JNkFGnNS5bhz9uJmOCbAFMId6lr2n6NpA8CyxCG8d2Ey9QNgGsIL2UPzbOALqRGzVCn7ho19yTuAveBmTL1e4LBOO+Na28B7gI+2rh2NXAAsDLho3yvxr01Gsdd74a0Rs216q5Rcy+nHOpPklHAwWxJK0l6k6QlbX+N6OGs3sj6fsJz2j3A9cDGkjYq75ihoCdWM9eoGerUXaPmXiYb/iTpEJJeJWmNxvl7ib3KewFnSNoN+CCwo6SpJdvjwG+L4bsYWApYpPWOloEdLQ1DpUbNUKfuGjX3C9nwJ0kHKKuV9we2kTRJ0kRgU2A723sAXyeGPB8ELgK+KeldwJeAB8sc6WLAloRx7Hpq1Ax16q5Rcz+RDX+SjDCSxtl+EjiXiCG+DDEHuj0RbQzgSuB3wKuBY4AXAYsCe9v+qG0DTxPx0C8fZQlDpkbNUKfuGjX3G7mPP0lGkGIUZwHY/p6kGbb/Vu6dAewHHGz7YYUns5nleBvbN5d8Inbc/B34+xhJWWBq1Ax16q5Rcz+S2/mSZARoX5AkaVfgatv3Nq5NJWKcf4PS2wEOtX3V/N7TzdSoGerUXaPmfiaH+pNkGLSvQpb0OknXEMOeDzbz2v4DsC9hFDcmtjJd1Zan641ijZqhTt01aq6B7PEnyRCZV69F0gZEUJHxxErm+4C3Ad+yfedQ3tWN1KgZ6tRdo+bayB5/kiwgiqAiOPYrj2tcPwA4n1ixvDuwC3AZ8GyvG8UaNUOdumvUXCvZ8CfJAtIY7nwf8EVJbykG8uuEy1GAqwg/49vaPnlB3tfN1KgZ6tRdo+ZayVX9STIfpMFoYGUl8iTgk8ASwEnAOYRXshOJPc1vAPa1/bvyzJwV0L1CjZqhTt01ak6CbPiTZB60LWhqBh6ZTfgYf2M5/rntmZLOsn16Kz/hhKynjGKNmqFO3TVqTgbJhj9J5kFjnvMY4ElJlwG/B1YDvgP8j+1NASStCtxbjnu2F1SjZqhTd42ak0Fyjj9JCqXH0zrejBjqnAA8ApwMbE4EFzkTOK3key9wLDARoNeMYo2aoU7dNWpO5k32+JOkYNuSVgeWBA4B1re9CcwZ3nwpcCnwCuASSbOBp4AjbD8+RtUeFjVqhjp116g5mTe5jz+plvZhS0lLAL8C9iQWNR0EfNb25ZJeAPwQ2Nn2XyRtAky2/fPy7JyFUt1MjZqhTt01ak4WjBzqT6pD0oowOGwpaUVJ40uv5udEj+fXwC3AdEmL2/4rcCcwpTx7XcMojut2o1ijZqhTd42ak6GRQ/1JVUhaE3ibpFOAVYEDgcnA5YSDkjuBJ2w/JulK4MPAupKWBe4Cbmt/Z7fPe9aoGerUXaPmZOhkw59UgaSLgPNsXyDpJcDNROjQjwHLAp+R9DARI/zVwNcIY7kxsDTwBds/HpPKLyQ1aoY6ddeoOVl4cqg/6WskTSiHFxK+xiEclDxIzG/+yfY1xGKnrYFNgRUkLWv7aeAnRBzx1cv7uv7/mRo1Q526a9ScDJ/8yElfY3tmObwFWFrSPrZ3IbYrHVj2MmP7t4TXst8RQ6MPl+u/Af5A2cfsHnBDWqNmqFN3jZqT4ZOr+pO+RtI6RICRHwPLEwFG1iCGP48Hzrd9oaQ1bM8oz9wKvNn2LeV8vO1nx0TAQlCjZqhTd42ak+GTPf6k31kDuML2Ybb3Jgzk5x1RxS4GDpN0CbCfpAmSVgPuB+bsW+5Bo1ijZqhTd42ak2GSi/uSvuBf7DPejLJFqfAh4EZJG9j+uqRFgUVsn1Hesx1wse2/dLzSw6RGzVCn7ho1J50jh/qTnkXSW4mtSRfN455sW9IKwP8Bm9u+Q9LKxGrmR21Pm99zHa/8QlKjZqhTd42ak9Ehe/xJTyLpA8C7gR9K+qPtG5tGrRjFcbbvlXQ8cIqkK4AtgI8DN5X3tAyoXBgrTc9HjZqhTt01ak5Gj+zxJz2DwuXoa4Bf2L6n9HbeAzxARBObqYab0qahlLQ1sBtwve3zy7U5oUm7lRo1Q526a9ScjA3Z4096ibWA7YHxkr5Vejt3EFHFtgF+2jCKrRjjA7Zn274KuKr1omI0e8Eo1qgZ6tRdo+ZkDMhV/UlXI2kHSdcXA3cTcB3wImDlkuX7wKPA1pKWk7S8pA8CL4bn7kuWIjRpNw951qgZ6tRdo+Zk7MmGP+l2NiPChR5Tzr8DnGX7LgDbDwNXACsCWxHblLYAloO5Y5CX/L1gEGvUDHXqrlFzMsZkw590JRp0HfpHYC/gAEnr237A9t0lT8voXU4EGNkWGEdEIJsOvWUIa9QMdequUXPSPeTivqRrkLSh7ZvbFi2dBxwL7AFsaXuntmdaq5ZfBvw7cKvtc0e98gtJjZqhTt01ak66k+zxJ2OOpF0l/Qk4V9LUYuhawUduAO6z/QlgS0mPSdq29WzL10kYRgAABtRJREFUgNq+gRj+3EnSKuW9okupUTPUqbtGzUl3k6v6k27gpcDZwExi+9KhHgw+shbhbvQlRCCRxW3/ov0FktYCBJxs++/Q9cOgNWqGOnXXqDnpYrLHn4wZjXnOE4DPEHOZa0ma3sh2O/Au4Je21wVmSjq0/V2O8KP72v5Vp+s9HGrUDHXqrlFz0hvkHH/SNUhaHHgnsCXw1jIkuhpwj+1nSp41gX84Yon3PDVqhjp116g56U6yx5+MCpKmS3qFpKXars+Zp7T9T+AyYkjzDeXyo7afkTSu5L3T9tON3lTXUqNmqFN3jZqT3iV7/ElHkbQGcCKwJnAHsR9552Lcmu5H58QEL0OhRxEG8hzgi+6h0KE1aoY6ddeoOel98ldl0jEkjQd2B26zvZntvYAJwK4AtmdJWlTS4cD2kgZKr2c/YCpwie0zesko1qgZ6tRdo+akP8hV/cmII+lVwA2275P0XeC+xu3vAxsAFyqCkJwN3A98xuF7fEPgEeDFth8q7+v6UKI1aoY6ddeoOekvcqg/GTEUW47OBiYCfwOusf2ptjz/S7gkvUjSosBStu8p9+aKJiZpHDC7m41ijZqhTt01ak76k+zxJyPJVsCfbe8jaT3gAklXAVcS00omXI7+puT3vzCKas2Pdjk1aoY6ddeoOelDco4/GUmeAh6WtKTt3wNnAfsAyxUjtxgRW3ympKOAoyVNgudGGeuhXlCNmqFO3TVqTvqQbPiTkWQAWASYUs5PBdYAti7nOwE7A98GVgVOsP3kaFdyhKlRM9Spu0bNSR+SDX8yJCRtIWlfSes0rrX2Kn8XWAV4uaTJZbXy+cAh5f7TwPXA+2y/w/bdvbBfuUbNUKfuGjUn9ZH/USYLRNmWdCLwJSKG+HcUnsig/Hfk8Db2FeC1wA7l3s3AteX4Z7an275awUD7EGg3UaNmqFN3jZqTesmGP1lQVgXWAza2/W5iC9PGEPuVASQdBFwN/BB4m6SvARcR/six/WjJN85BtxvFGjVDnbpr1JxUSq7qT+aLpIke9Bm+FPAM8DpJJkKEbiVpBrGS+VPl2pdtf1XS5UTP6HDbf2m+t5tXM9eoGerUXaPmJIHcx5/Mg7JV6avAxcBxDvejywCvAV5POCg5DHgdMKvkm2H7jvJ8z+1XrlEz1Km7Rs1J0iR7/MlcSFoR2JdwULIlsA5ws+0HgfMkTQZ+ZftSSVcC3wEWsX1HayFTr+1XrlEz1Km7Rs1J0k7O8SfAnGAjEHObX7K9OxF0ZG9JS5Q8Iv6beVbSYo5oY/dTfkDant1L+5Vr1Ax16q5Rc5LMj2z4K0fSqyVdA5wl6QBgVdu3ltsnApsC0xTRxQzcA0wDvlh6RJOAX4xF3ReWGjVDnbpr1Jwkz0fO8VdM6eGcQ8xh3gq8k3BOcpDtp0qeDwAvBQ5orFpeAfg34HbbPxqLui8sNWqGOnXXqDlJFoRs+CujzEm6HK9KOCXZzvbjkqYCHyAM3kklzwDwTeAHwIbAb2x/o+2dc+KOdyM1aoY6ddeoOUmGSg71V4Sk/YDvSzpK0iq2/wb8CXhvyTID+BawbTGarYVMs4AzgGUJA9l6n0qerjWKNWqGOnXXqDlJFoZs+CtA0tKSvgW8ETiacDt6Trl9OrCNpNVsP0MYyr8DLyjP7kIYxK1sv932Iw2D2LXDRTVqhjp116g5SYaF7Ux9moClgRcTDkje3rg+npjznAosDnyaiCHeun8p4cEMYInG9QFgYKx1pebUXavmTJlGIuU+/v5mV2Af2ztI+i6ApPHAikTP5y+2n5V0HHCFpMOAZQgvZk8C2H68PNcrfsdr1Ax16q5Rc5IMmxzq728uBO6XtLfthwEcEcVmA0sAE8u1B4D/AB4EVgb2tH1b80U9ZBRr1Ax16q5Rc5IMm1zV3+dI2hB42sXdaLn2HmA92wdK2hi4y/Z9bc/1bA+oRs1Qp+4aNSfJcMkef59j++amUSysDNwu6QSi17R282avG8UaNUOdumvUnCTDJef4K6Kxx3lbYHMi4ti6jtXOc+gno1ijZqhTd42ak2RhyKH+ypA0kZjv/KntGeVaXzsoqVEz1Km7Rs1JMlSy4a+Iplezct734URr1Ax16q5Rc5IsDNnwJ0mSJElF5OK+JEmSJKmIbPiTJEmSpCKy4U+SJEmSisiGP0mSJEkqIhv+JEmSJKmIbPiTJEmSpCKy4U+SJEmSisiGP0mSJEkqIhv+JEmSJKmIbPiTJEmSpCKy4U+SJEmSisiGP0mSJEkqIhv+JEmSJKmIbPiTJEmSpCKy4U+SJEmSisiGP0mSJEkqIhv+JEmSJKmIbPiTJEmSpCL+H3z/PiOXqc+OAAAAAElFTkSuQmCC\n", "text/plain": [ "<Figure size 576x288 with 2 Axes>" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "\n", "\"\"\"\n", "=====================================\n", "Custom tick formatter for time series\n", "=====================================\n", "\n", "When plotting time series, e.g., financial time series, one often wants\n", "to leave out days on which there is no data, i.e. weekends. The example\n", "below shows how to use an 'index formatter' to achieve the desired plot\n", "\"\"\"\n", "from __future__ import print_function\n", "import numpy as np\n", "import matplotlib.pyplot as plt\n", "import matplotlib.mlab as mlab\n", "import matplotlib.cbook as cbook\n", "import matplotlib.ticker as ticker\n", "r = quandl.get(\"wiki/aapl\",start_date=\"2018-01-01\",end_date=\"2018-02-14\")\n", "\n", "\n", "# first we'll do it the default way, with gaps on weekends\n", "fig, axes = plt.subplots(ncols=2, figsize=(8, 4))\n", "ax = axes[0]\n", "ax.plot(r.index, r['Adj. Close'], 'o-')\n", "ax.set_title(\"Default\")\n", "fig.autofmt_xdate()\n", "\n", "# next we'll write a custom formatter\n", "N = len(r)\n", "ind = np.arange(N) # the evenly spaced plot indices\n", "\n", "\n", "def format_date(x, pos=None):\n", " thisind = np.clip(int(x + 0.5), 0, N - 1)\n", " return r.index.strftime('%Y-%m-%d')\n", "\n", "ax = axes[1]\n", "ax.plot(ind, r['Adj. Close'], 'o-')\n", "ax.xaxis.set_major_formatter(ticker.FuncFormatter(format_date))\n", "ax.set_title(\"Custom tick formatter\")\n", "fig.autofmt_xdate()\n", "\n", "plt.show()" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [] } ], "metadata": { "kernelspec": { "display_name": "Python 3", "language": "python", "name": "python3" }, "language_info": { "codemirror_mode": { "name": "ipython", "version": 3 }, "file_extension": ".py", "mimetype": "text/x-python", "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", "version": "3.6.5" } }, "nbformat": 4, "nbformat_minor": 2 }
agpl-3.0
juliusf/ipython-notebooks
probabilistic_programming/.ipynb_checkpoints/Erlang_1,k-checkpoint.ipynb
1
6212
{ "metadata": { "name": "", "signature": "sha256:dd8cf2ea3523ff88f56f45eab5f5de0597186f187bb049652f5dbab4f1bdd2eb" }, "nbformat": 3, "nbformat_minor": 0, "worksheets": [ { "cells": [ { "cell_type": "markdown", "metadata": {}, "source": [ "# Erlang_1,k\n", "This notebook computes the CDF of an Erlang_1,k distribution" ] }, { "cell_type": "code", "collapsed": false, "input": [ "from sympy import *\n", "from mpmath import *\n", "%matplotlib inline\n", "init_printing()\n", "p, mu, t, k = symbols('p, mu, t, k')\n" ], "language": "python", "metadata": {}, "outputs": [], "prompt_number": 3 }, { "cell_type": "code", "collapsed": false, "input": [ "pdf = p * mu * exp(-mu*t) + (1-p)* (mu**k) * ((t**(k-1))/fac(k-1)) *exp(-mu*t)" ], "language": "python", "metadata": {}, "outputs": [ { "ename": "TypeError", "evalue": "cannot create mpf from -mu*t", "output_type": "pyerr", "traceback": [ "\u001b[1;31m---------------------------------------------------------------------------\u001b[0m\n\u001b[1;31mTypeError\u001b[0m Traceback (most recent call last)", "\u001b[1;32m<ipython-input-16-93bcaec81069>\u001b[0m in \u001b[0;36m<module>\u001b[1;34m()\u001b[0m\n\u001b[1;32m----> 1\u001b[1;33m \u001b[0mpdf\u001b[0m \u001b[1;33m=\u001b[0m \u001b[0mp\u001b[0m \u001b[1;33m*\u001b[0m \u001b[0mmu\u001b[0m \u001b[1;33m*\u001b[0m \u001b[0mexp\u001b[0m\u001b[1;33m(\u001b[0m\u001b[1;33m-\u001b[0m\u001b[0mmu\u001b[0m\u001b[1;33m*\u001b[0m\u001b[0mt\u001b[0m\u001b[1;33m)\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[0m", "\u001b[1;32m/home/jules/ipython-notebooks/env/lib/python2.7/site-packages/mpmath/ctx_mp_python.pyc\u001b[0m in \u001b[0;36mf\u001b[1;34m(x, **kwargs)\u001b[0m\n\u001b[0;32m 982\u001b[0m \u001b[1;32mdef\u001b[0m \u001b[0mf\u001b[0m\u001b[1;33m(\u001b[0m\u001b[0mx\u001b[0m\u001b[1;33m,\u001b[0m \u001b[1;33m**\u001b[0m\u001b[0mkwargs\u001b[0m\u001b[1;33m)\u001b[0m\u001b[1;33m:\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[0;32m 983\u001b[0m \u001b[1;32mif\u001b[0m \u001b[0mtype\u001b[0m\u001b[1;33m(\u001b[0m\u001b[0mx\u001b[0m\u001b[1;33m)\u001b[0m \u001b[1;32mnot\u001b[0m \u001b[1;32min\u001b[0m \u001b[0mctx\u001b[0m\u001b[1;33m.\u001b[0m\u001b[0mtypes\u001b[0m\u001b[1;33m:\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[1;32m--> 984\u001b[1;33m \u001b[0mx\u001b[0m \u001b[1;33m=\u001b[0m \u001b[0mctx\u001b[0m\u001b[1;33m.\u001b[0m\u001b[0mconvert\u001b[0m\u001b[1;33m(\u001b[0m\u001b[0mx\u001b[0m\u001b[1;33m)\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[0m\u001b[0;32m 985\u001b[0m \u001b[0mprec\u001b[0m\u001b[1;33m,\u001b[0m \u001b[0mrounding\u001b[0m \u001b[1;33m=\u001b[0m \u001b[0mctx\u001b[0m\u001b[1;33m.\u001b[0m\u001b[0m_prec_rounding\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[0;32m 986\u001b[0m \u001b[1;32mif\u001b[0m \u001b[0mkwargs\u001b[0m\u001b[1;33m:\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n", "\u001b[1;32m/home/jules/ipython-notebooks/env/lib/python2.7/site-packages/mpmath/ctx_mp_python.pyc\u001b[0m in \u001b[0;36mconvert\u001b[1;34m(ctx, x, strings)\u001b[0m\n\u001b[0;32m 660\u001b[0m \u001b[1;32mif\u001b[0m \u001b[0mhasattr\u001b[0m\u001b[1;33m(\u001b[0m\u001b[0mx\u001b[0m\u001b[1;33m,\u001b[0m \u001b[1;34m'_mpmath_'\u001b[0m\u001b[1;33m)\u001b[0m\u001b[1;33m:\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[0;32m 661\u001b[0m \u001b[1;32mreturn\u001b[0m \u001b[0mctx\u001b[0m\u001b[1;33m.\u001b[0m\u001b[0mconvert\u001b[0m\u001b[1;33m(\u001b[0m\u001b[0mx\u001b[0m\u001b[1;33m.\u001b[0m\u001b[0m_mpmath_\u001b[0m\u001b[1;33m(\u001b[0m\u001b[0mprec\u001b[0m\u001b[1;33m,\u001b[0m \u001b[0mrounding\u001b[0m\u001b[1;33m)\u001b[0m\u001b[1;33m)\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[1;32m--> 662\u001b[1;33m \u001b[1;32mreturn\u001b[0m \u001b[0mctx\u001b[0m\u001b[1;33m.\u001b[0m\u001b[0m_convert_fallback\u001b[0m\u001b[1;33m(\u001b[0m\u001b[0mx\u001b[0m\u001b[1;33m,\u001b[0m \u001b[0mstrings\u001b[0m\u001b[1;33m)\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[0m\u001b[0;32m 663\u001b[0m \u001b[1;33m\u001b[0m\u001b[0m\n\u001b[0;32m 664\u001b[0m \u001b[1;32mdef\u001b[0m \u001b[0misnan\u001b[0m\u001b[1;33m(\u001b[0m\u001b[0mctx\u001b[0m\u001b[1;33m,\u001b[0m \u001b[0mx\u001b[0m\u001b[1;33m)\u001b[0m\u001b[1;33m:\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n", "\u001b[1;32m/home/jules/ipython-notebooks/env/lib/python2.7/site-packages/mpmath/ctx_mp.pyc\u001b[0m in \u001b[0;36m_convert_fallback\u001b[1;34m(ctx, x, strings)\u001b[0m\n\u001b[0;32m 612\u001b[0m \u001b[1;32melse\u001b[0m\u001b[1;33m:\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[0;32m 613\u001b[0m \u001b[1;32mraise\u001b[0m \u001b[0mValueError\u001b[0m\u001b[1;33m(\u001b[0m\u001b[1;34m\"can only create mpf from zero-width interval\"\u001b[0m\u001b[1;33m)\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[1;32m--> 614\u001b[1;33m \u001b[1;32mraise\u001b[0m \u001b[0mTypeError\u001b[0m\u001b[1;33m(\u001b[0m\u001b[1;34m\"cannot create mpf from \"\u001b[0m \u001b[1;33m+\u001b[0m \u001b[0mrepr\u001b[0m\u001b[1;33m(\u001b[0m\u001b[0mx\u001b[0m\u001b[1;33m)\u001b[0m\u001b[1;33m)\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[0m\u001b[0;32m 615\u001b[0m \u001b[1;33m\u001b[0m\u001b[0m\n\u001b[0;32m 616\u001b[0m \u001b[1;32mdef\u001b[0m \u001b[0mmpmathify\u001b[0m\u001b[1;33m(\u001b[0m\u001b[0mctx\u001b[0m\u001b[1;33m,\u001b[0m \u001b[1;33m*\u001b[0m\u001b[0margs\u001b[0m\u001b[1;33m,\u001b[0m \u001b[1;33m**\u001b[0m\u001b[0mkwargs\u001b[0m\u001b[1;33m)\u001b[0m\u001b[1;33m:\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n", "\u001b[1;31mTypeError\u001b[0m: cannot create mpf from -mu*t" ] } ], "prompt_number": 16 }, { "cell_type": "code", "collapsed": false, "input": [], "language": "python", "metadata": {}, "outputs": [] } ], "metadata": {} } ] }
apache-2.0
danielfrg/datasciencebox
examples/spark-mesos-df.ipynb
1
8197
{ "cells": [ { "cell_type": "code", "execution_count": 1, "metadata": { "collapsed": true }, "outputs": [], "source": [ "import os" ] }, { "cell_type": "code", "execution_count": 2, "metadata": { "collapsed": true }, "outputs": [], "source": [ "from pyspark import SparkContext" ] }, { "cell_type": "code", "execution_count": 3, "metadata": { "collapsed": false }, "outputs": [], "source": [ "SparkContext.setSystemProperty(\"spark.executor.uri\", os.environ[\"SPARK_EXECUTOR_URI\"])" ] }, { "cell_type": "code", "execution_count": 4, "metadata": { "collapsed": true }, "outputs": [], "source": [ "sc = SparkContext(os.environ.get(\"CLUSTER_URL\"), 'pyspark-demo')" ] }, { "cell_type": "code", "execution_count": 5, "metadata": { "collapsed": true }, "outputs": [], "source": [ "from pyspark.sql import SQLContext" ] }, { "cell_type": "code", "execution_count": 6, "metadata": { "collapsed": true }, "outputs": [], "source": [ "sqlContext = SQLContext(sc)" ] }, { "cell_type": "code", "execution_count": 7, "metadata": { "collapsed": false }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "--2015-08-24 19:46:19-- http://files.figshare.com/1315364/iris.json\n", "Resolving files.figshare.com (files.figshare.com)... 54.231.129.44\n", "Connecting to files.figshare.com (files.figshare.com)|54.231.129.44|:80... connected.\n", "HTTP request sent, awaiting response... 200 OK\n", "Length: 15802 (15K) [application/json]\n", "Saving to: 'iris.json'\n", "\n", "100%[======================================>] 15,802 --.-K/s in 0.08s \n", "\n", "2015-08-24 19:46:19 (204 KB/s) - 'iris.json' saved [15802/15802]\n", "\n" ] } ], "source": [ "!wget http://files.figshare.com/1315364/iris.json" ] }, { "cell_type": "code", "execution_count": 8, "metadata": { "collapsed": false }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "SLF4J: Failed to load class \"org.slf4j.impl.StaticLoggerBinder\".\r\n", "SLF4J: Defaulting to no-operation (NOP) logger implementation\r\n", "SLF4J: See http://www.slf4j.org/codes.html#StaticLoggerBinder for further details.\r\n" ] } ], "source": [ "!hadoop fs -put iris.json /tmp" ] }, { "cell_type": "code", "execution_count": 9, "metadata": { "collapsed": false }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "lsr: DEPRECATED: Please use 'ls -R' instead.\n", "SLF4J: Failed to load class \"org.slf4j.impl.StaticLoggerBinder\".\n", "SLF4J: Defaulting to no-operation (NOP) logger implementation\n", "SLF4J: See http://www.slf4j.org/codes.html#StaticLoggerBinder for further details.\n", "-rw-r--r-- 3 dsb supergroup 15802 2015-08-24 19:46 /tmp/iris.json\n" ] } ], "source": [ "!hadoop fs -lsr /tmp" ] }, { "cell_type": "code", "execution_count": 10, "metadata": { "collapsed": false }, "outputs": [], "source": [ "iris = sqlContext.read.load('hdfs://54.159.244.205:8020/tmp/iris.json', 'json')" ] }, { "cell_type": "code", "execution_count": 11, "metadata": { "collapsed": false }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "+---------------+-----------+----------+-----------+----------+-------+\n", "|_corrupt_record|petalLength|petalWidth|sepalLength|sepalWidth|species|\n", "+---------------+-----------+----------+-----------+----------+-------+\n", "| [| null| null| null| null| null|\n", "| null| 1.4| 0.2| 5.1| 3.5| setosa|\n", "| null| 1.4| 0.2| 4.9| 3.0| setosa|\n", "| null| 1.3| 0.2| 4.7| 3.2| setosa|\n", "| null| 1.5| 0.2| 4.6| 3.1| setosa|\n", "| null| 1.4| 0.2| 5.0| 3.6| setosa|\n", "| null| 1.7| 0.4| 5.4| 3.9| setosa|\n", "| null| 1.4| 0.3| 4.6| 3.4| setosa|\n", "| null| 1.5| 0.2| 5.0| 3.4| setosa|\n", "| null| 1.4| 0.2| 4.4| 2.9| setosa|\n", "| null| 1.5| 0.1| 4.9| 3.1| setosa|\n", "| null| 1.5| 0.2| 5.4| 3.7| setosa|\n", "| null| 1.6| 0.2| 4.8| 3.4| setosa|\n", "| null| 1.4| 0.1| 4.8| 3.0| setosa|\n", "| null| 1.1| 0.1| 4.3| 3.0| setosa|\n", "| null| 1.2| 0.2| 5.8| 4.0| setosa|\n", "| null| 1.5| 0.4| 5.7| 4.4| setosa|\n", "| null| 1.3| 0.4| 5.4| 3.9| setosa|\n", "| null| 1.4| 0.3| 5.1| 3.5| setosa|\n", "| null| 1.7| 0.3| 5.7| 3.8| setosa|\n", "+---------------+-----------+----------+-----------+----------+-------+\n", "\n" ] } ], "source": [ "iris.show()" ] }, { "cell_type": "code", "execution_count": 12, "metadata": { "collapsed": false }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "root\n", " |-- _corrupt_record: string (nullable = true)\n", " |-- petalLength: double (nullable = true)\n", " |-- petalWidth: double (nullable = true)\n", " |-- sepalLength: double (nullable = true)\n", " |-- sepalWidth: double (nullable = true)\n", " |-- species: string (nullable = true)\n", "\n" ] } ], "source": [ "iris.printSchema()" ] }, { "cell_type": "code", "execution_count": 14, "metadata": { "collapsed": false }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "+---------------+-----------+----------+-----------+----------+-------+\n", "|_corrupt_record|petalLength|petalWidth|sepalLength|sepalWidth|species|\n", "+---------------+-----------+----------+-----------+----------+-------+\n", "| null| 1.1| 0.1| 4.3| 3.0| setosa|\n", "| null| 1.0| 0.2| 4.6| 3.6| setosa|\n", "+---------------+-----------+----------+-----------+----------+-------+\n", "\n" ] } ], "source": [ "iris.filter(iris.petalLength < 1.2).show()" ] }, { "cell_type": "code", "execution_count": 15, "metadata": { "collapsed": false }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "+----------+-----+\n", "| species|count|\n", "+----------+-----+\n", "|versicolor| 50|\n", "| setosa| 50|\n", "| virginica| 50|\n", "| null| 2|\n", "+----------+-----+\n", "\n" ] } ], "source": [ "iris.groupBy(\"species\").count().show()" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "collapsed": true }, "outputs": [], "source": [] } ], "metadata": { "kernelspec": { "display_name": "Python 2", "language": "python", "name": "python2" }, "language_info": { "codemirror_mode": { "name": "ipython", "version": 2 }, "file_extension": ".py", "mimetype": "text/x-python", "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython2", "version": "2.7.10" } }, "nbformat": 4, "nbformat_minor": 0 }
apache-2.0
haraldurt/UCSBDataScienceBootcamp2015
Day02_EverythingData/notebooks/Data Preparation.ipynb
1
1122
{ "metadata": { "name": "", "signature": "sha256:3d38a2151c316250cf43eed8b80040bfc0c0bfd97247185b35de07e70078f31d" }, "nbformat": 3, "nbformat_minor": 0, "worksheets": [ { "cells": [ { "cell_type": "markdown", "metadata": {}, "source": [ "## Data Wrangling with Python and Pandas (tutorial)\n", "\n", "Pandas Tutorial:\n", "\n", "http://pandas.pydata.org/pandas-docs/stable/10min.html\n", "\n", "[Run through it]" ] }, { "cell_type": "code", "collapsed": false, "input": [], "language": "python", "metadata": {}, "outputs": [] }, { "cell_type": "markdown", "metadata": {}, "source": [ "A More involved example:\n", "\n", "http://nbviewer.ipython.org/github/herrfz/dataanalysis/blob/master/week4/clustering_example.ipynb\n", "\n", "(replace \"%load_ext rmagic\" with \"%load_ext rpy2.ipython\")\n", "\n", "An 11-lesson tutorial:\n", "\n", "https://bitbucket.org/hrojas/learn-pandas" ] } ], "metadata": {} } ] }
cc0-1.0
abeelen/GeometryInMotion
circle-wave.ipynb
1
4977
{ "metadata": { "name": "", "signature": "sha256:f30402e115bf43412f8f35d1e83168891153789d05f29cd60a0f5791c623e081" }, "nbformat": 3, "nbformat_minor": 0, "worksheets": [ { "cells": [ { "cell_type": "markdown", "metadata": {}, "source": [ "# Circle-wave\n", "\n", "Inspired by https://dribbble.com/shots/1696376-Circle-wave\n", "\n", "They are several ways to produce such a plot : \n", "* fixed rotating curve\n", "* moving filter to a fixed curve\n", "\n", "I tried the second approach here" ] }, { "cell_type": "code", "collapsed": false, "input": [ "%matplotlib \n", " \n", "import numpy as np\n", "import matplotlib.pyplot as plt\n", "import matplotlib.animation as manimation\n", "\n", "plt.ion()" ], "language": "python", "metadata": {}, "outputs": [] }, { "cell_type": "code", "collapsed": false, "input": [ "nwave = 8\n", "amp_wave = 0.1\n", "rad_wave = 0.8\n", "frames = 100\n", "\n", "npoints=500" ], "language": "python", "metadata": {}, "outputs": [] }, { "cell_type": "code", "collapsed": false, "input": [ "# We want a square figure with a black background\n", "\n", "fig = plt.figure(facecolor='k', figsize=(5,5))\n", "\n", "# Obviously a polar plot and enough space to see all the curves\n", "ax = fig.add_subplot(111, polar=True)\n", "ax.set_xlim(0,rad_wave+amp_wave*1.1)\n", "ax.set_ylim(0,rad_wave+amp_wave*1.1)\n", "\n", "# Let's put everything in black and remove the axis \n", "ax.set_axis_bgcolor('black')\n", "ax.xaxis.set_visible(False)\n", "ax.yaxis.set_visible(False)\n", "for spine in ax.spines.itervalues():\n", " spine.set_visible(False)\n" ], "language": "python", "metadata": {}, "outputs": [] }, { "cell_type": "markdown", "metadata": {}, "source": [ "We basically need two cosine plots" ] }, { "cell_type": "code", "collapsed": false, "input": [ "x = np.linspace(0,2*np.pi,npoints)\n", "\n", "plots = [ ax.plot(x, rad_wave+amp_wave*np.cos(nwave*x), color='w', linewidth=4)[0], \\\n", " ax.plot(x, rad_wave-amp_wave*np.cos(nwave*x), color='w', linewidth=4)[0] ]\n", "\n", "fig.tight_layout()" ], "language": "python", "metadata": {}, "outputs": [] }, { "cell_type": "markdown", "metadata": {}, "source": [ "We can define an atenuation filter on those plots, let's try a simple gaussian" ] }, { "cell_type": "code", "collapsed": false, "input": [ "tau = np.exp(-(x-np.pi)**2/(2*(np.pi/4)**2))\n", "\n", "plots[0].set_ydata(rad_wave+amp_wave*np.cos(nwave*x)*tau)\n", "plots[1].set_ydata(rad_wave-amp_wave*np.cos(nwave*x)*tau)" ], "language": "python", "metadata": {}, "outputs": [] }, { "cell_type": "markdown", "metadata": {}, "source": [ "Looks good enough, we can try to animate it by shifting the filter" ] }, { "cell_type": "code", "collapsed": false, "input": [ "def init():\n", " return plots\n", "\n", "def update_image(iframe):\n", " global x\n", " tau = np.roll( np.exp(-(x-np.pi)**2/(2*(np.pi/4)**2)), -int(iframe*1.0/frames*npoints))\n", " plots[0].set_ydata( rad_wave+amp_wave*np.cos(nwave*x)*tau )\n", " plots[1].set_ydata( rad_wave-amp_wave*np.cos(nwave*x)*tau )\n", "\n", " return plots\n" ], "language": "python", "metadata": {}, "outputs": [] }, { "cell_type": "code", "collapsed": false, "input": [ "map_animation = manimation.FuncAnimation(fig, update_image, init_func=init, frames=frames, interval=50, repeat=True)\n", "plt.show()" ], "language": "python", "metadata": {}, "outputs": [] }, { "cell_type": "markdown", "metadata": {}, "source": [ "And we can simply save this animation as a gif" ] }, { "cell_type": "code", "collapsed": false, "input": [ "map_animation.save('circle-wave.gif', writer='imagemagic', dpi=40, fps=25, savefig_kwargs=dict(facecolor=fig.get_facecolor(), edgecolor='none'))" ], "language": "python", "metadata": {}, "outputs": [] }, { "cell_type": "markdown", "metadata": {}, "source": [ "<img file='circle-wave.gif'>" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "And if everything worked properly you should get a tidy gif : \n", "<img src='circle-wave.gif'/>" ] } ], "metadata": {} } ] }
gpl-2.0
opensyllabus/osp-pipeline
osp_pipeline/corpus/notebooks/01-token-counts.ipynb
1
72698
{ "cells": [ { "cell_type": "markdown", "metadata": {}, "source": [ "# Word counts" ] }, { "cell_type": "code", "execution_count": 46, "metadata": { "collapsed": true }, "outputs": [], "source": [ "import matplotlib as mpl\n", "import matplotlib.pyplot as plt\n", "\n", "%matplotlib inline\n", "mpl.style.use('bmh')" ] }, { "cell_type": "code", "execution_count": 2, "metadata": { "collapsed": true }, "outputs": [], "source": [ "import pandas as pd" ] }, { "cell_type": "code", "execution_count": 22, "metadata": { "collapsed": true }, "outputs": [], "source": [ "df = pd.read_csv('data/token-counts.csv').sort_values('token_count')" ] }, { "cell_type": "code", "execution_count": 45, "metadata": {}, "outputs": [], "source": [ "x = df['token_count']\n", "y = df['count']" ] }, { "cell_type": "code", "execution_count": 44, "metadata": {}, "outputs": [ { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAABKQAAAJdCAYAAAAMbq87AAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzs3X103Nld5/nPVw8lV9uyLD9W0+lJeg6hoZPghQ3JQJoQ\nYx6UM0AORdgQIAyQhDV0akdwdpNAdocAM9DszLIC8dBDQkgITB5m0QKbaRRgcdMJCUsSzxjSCTR9\nMmnSHZcl22pZVssqlXT3D5U8arVsf68t6d5bfr/O6dNWVanqW613W/bV73d/FkIQAAAAAAAAsFN6\nUg8AAAAAAACAWwsLUgAAAAAAANhRLEgBAAAAAABgR7EgBQAAAAAAgB3FghQAAAAAAAB2FAtSAAAA\nAAAA2FEsSAEAAGTKzB4ys3emnmM9Mwtm9v2p5wAAAGVjQQoAAGwrM3t3ZxEjmNmSmZ0zs4+a2ZvN\nbHfq+XaamT2n89/iFalnuRYze6eZPZR6DgAA0J1YkAIAADvhI5Jul/RcScck/Z6kN0k6ZWZHUg4G\nAACAnceCFAAA2AmtEEIzhPDFEMLfhhB+Q9LXSjok6f61B5lZv5ndb2ZPmlnLzD5jZt+7/onMbI+Z\njZnZF8xs0cw+b2Y/1bnveZ2jj+7d8DmPmdnb130czKxhZh8ws3kz+0cze7WZDZnZ75nZnJl9zsy+\na8PzHOkc8TXdecxfmtnL193/is5zf7OZPWxmT3fewyvXPc0XOv8+2Xns52P+Q3bm/jszu2xm/2Bm\nbzOzvnX3f97MftbMftnMLpjZWTP7Pzc8pmpmv2lms2Y2Y2a/bma/YGaPde5/u6TXS/qGdUe3/eC6\nMfaa2Xs7/w2eMLOf3DDjq8zsP3fe/1Nm9tdm9lUx7xMAAHQ3FqQAAEASIYQntXqkVN3M1v5M8vOS\n3ihpVNILJf2upN81s+OSZGYm6UOSvkNSQ9JXSPoBSdM3MMLbJD0o6WjnOd8r6f2S/lTSV0n6T5J+\nx8wOdF67KumkpEFJr+w85kFJf2pmX7Hhuf9d570clfT/SfqAmQ137vvqzr+/S6tHjX2Nd+DOQtH/\nLOkntfre/6Wk/1HST294aEPSGUkv7fz6TZL+xbr7f1HSqyS9TtI/kzQr6cc2zP8fJH28M+Ptkj6w\n7v6flvSwpP9O0i9I+vl1X6OapP8o6X2SXqDVhccxSW3v+wQAAN3PQgipZwAAAF3MzN4t6TkhhG/a\n5L4Tkn5D0hFJlyTNSPrxEMKvr3vM/y1pKITwjZ1Fjz+T9DUhhE9u8nzPk/RfJX19COGj625/TNLv\nhhDe3vk4SPrlEMJo5+NDkqYk/WoIodG5bVjSBUnfHkL4UOcIoX8t6XkhhPa65/5zSX8TQhjt7At1\nUtJ3hRAmOvcfkdSUNBJC+LCZPUerR0kdCyE8dJ3/dg9JeiyE8AYzu03SOUn1EMLkusf8gKRfCSHs\n63z8+c4837HuMX8s6akQwms7+3ZdkPRjIYTfWveYv5J0MITwpZ2P3ynpS0MIr9gwU5A0HkL4n9bd\n9llJfxBC+MnOkVCnJN0VQvj8td4fAAC4dfVd/yEAAADbxjr/DpK+VFJFq0ferPcXWj0iSJL+e0kz\nmy1G3YDTa78IIUyb2bKkv1l324yZtSQd7tz0NZJqkp5aPVDrigFJCxue+7+se56znee+2b2yXiCp\nKun3O4tCa3ol7TKzQyGEtSPF/suGz/2ipLs6v1777/xXGx7zcUnf7pxls+dfe39/I+nDkj5tZn8q\n6SFJEyGELwgAAKCDBSkAAJDSC7R6uth5rZ4WdrNWOv+2Dbf3b/LYJcdtQf9ti4MeSZ+V9J2bfN7T\nGz5ubfKYm90qYe3zv1vSo5vcf+Ear7/+fay/7UZd9flDCMudPbO+RtI3afXUxPvN7LtDCB+6idcE\nAABdhAUpAACQhJndIen7tHr0zErntLpFSS+X9Ol1D/2GdR9/StKwmb34KkdJrR0h9CXrXuewpDu2\nYORPanW/qoshhKmbeJ61xZzeyM97RNJlSf80hPDgTbz+Y50ZvlbSZ9bd/s82PK6l+BklSWF1T4i/\n7vzz82Y2KemHtLpXFwAAAAtSAABgR1Q6m133SDog6V6tnoY31fm3QghPm9mvSPo5M5vW6il1r9bq\n5tvf3HmeP5f0Ea1uEv4TWj097EskfUUI4Z0hhAUz+0tJbzazv9Pqn3X+jVYXum7W70n6cUn/ycze\nptWjlI5I+kZJnw0h/IHzec5pdb+sbzGzRyQthhBmrvdJIYRLZvbzWl3gCVrdS6tP0oskfVUI4S2e\nFw8hzJvZv5f0r83sbOd9/AutbpK+fnP4/yrpu83sBZLOSpoLIVz3v6OZfZ2k45L+RKsbqz9f0ldK\n+q1rfR4AALi1cJU9AACwE75eq4sT/6jVPYW+T9KvSvrqEMLZdY97m6R3aPWqbJ+W9P2Svj+E8P9K\nV468+edavbrdA5L+XqtX4ju47jl+WKsLPh/T6lXzfrPz2jclhHBZq0drfVLSb2t1IWdC0kskPR7x\nPCuS7pP0P0h6QtJ/jvjcn5P0E1q9EuFpSR/V6iLZ573P0fEWSf+PVq+k99eShiW9W6tHYK35LUmf\n0Op/x2lJr3U+96xWj776Q0n/IOldWl3M+7nIGQEAQBfjKnsAAABYu1rgTAjhu1LPAgAAuh+n7AEA\nANxizOxFkr5aq1fWq0h6naRjkl6Zci4AAHDrYEEKAADg1hMk/aikX9HqFg5/J+k7QwiTSacCAAC3\nDE7ZAwAAAAAAwI5iU3MAAAAAAADsKBakAAAAAAAAsKOK3kPqoYceCgMDA6nHAAAAAAAA6BpPP/30\nuePHjx/aztfIckHKzL5e0vdpdb57Qghfd5XH6cu//Mt3dDaU6Qtf+ILuvPPO1GOgEPQCL1pBDHqB\nF60gBr3Ai1YQ49SpU49v92vs2Cl7ZvYuM5sys09vuH3EzP7ezB4zs7dKUgjhIyGEE5I+JOk9OzUj\nupeZpR4BBaEXeNEKYtALvGgFMegFXrSC3OzkHlLvljSy/gYz65X0a5JeKekeSa81s3vWPeR7Jf2H\nqz1hX1+WB3ghQ/v37089AgpCL/CiFcSgF3jRCmLQC7xoBbnZsRWdEMLDZva8DTe/RNJjIYTPSZKZ\nvV/SqyR9xsz+iaTZEMLc1Z5zampKb3zjG9XX16fl5WXV63Xdd999ajab2r17t3p7e3Xx4kUdOnRI\nFy5cUAhBhw4d0tmzZ7Vnzx5J0qVLl3TkyBFNT0/LzLR//35NT09r7969Wl5e1vz8vGq1mprNpvr7\n+zU0NKRz585paGhIrVZLCwsLV+6vVCoaHBzU+fPnNTw8rIWFBV2+fPnK/bt27VK1WtXMzIwOHDig\nubk5tVqtK/dXq1VVKhXNzs7q4MGDmp2d1dLS0pX7eU83/p6azabuvvvurnpP3fh1yuU9PfbYY7rj\njju66j1149cph/fUarW0Z8+ernpP3fh1yuU9zc3N6a677uqq99SNX6cc3tO5c+dUrVa76j1149cp\nl/e0vLys3t7ernpP3fh1yuE9PfbYY7rzzju76j1149cpl/e0EyyEsCMvJEmdBakPhRBe2Pn41ZJG\nQghv6Hz8OkkvDSG8ycx+RtKHQwgfu9rzfeQjHwkvfOELt39wFG9mZkbDw8Opx0Ah6AVetIIY9AIv\nWkEMeoEXrSDGqVOnPnX8+PEXb+drZHvOWwjhp1PPgO6xvLycegQUhF7gRSuIQS/wohXEoBd40Qpy\ns5N7SG3mSUnrt/l/Tuc2F/6Hgtf8/HzqEVAQeoEXrSAGvcCLVhCDXuBFK8hN6gWpT0h6vpndZWYV\nSd8j6Y+8n7ywsKDR0VFNTk5u24DoDrVaLfUIKAi9wItWEINe4EUriEEv8KIV5GbHFqTM7H2SPi7p\nbjN7wsxeH0JoS3qTpA9L+qykD4YQHvE+Z7Va1djYmEZGRq7/YNzSms1m6hFQEHqBF60gBr3Ai1YQ\ng17gRSvIzU5eZe+1V7n9QUkP3shzmtlNzYRbR39/f+oRUBB6gRetIAa9wItWEINe4EUryE3qU/Zu\nyvz8PKfswWVoaCj1CCgIvcCLVhCDXuBFK4hBL/CiFeSm6AWp2267jVP24HLu3LnUI6Ag9AIvWkEM\neoEXrSAGvcCLVpCbohekent7U4+AQvDTAMSgF3jRCmLQC7xoBTHoBV60gtwUvSAVQkg9AgrRarVS\nj4CC0Au8aAUx6AVetIIY9AIvWkFuil6QWllZST0CCrGwsJB6BBSEXuBFK4hBL/CiFcSgF3jRCnJT\n9ILUwsICm5rDpVarpR4BBaEXeNEKYtALvGgFMegFXrSC3BS9IFWtVtnUHC7NZjP1CCgIvcCLVhCD\nXuBFK4hBL/CiFeSm6AWpnp6ix8cOqlQqqUdAQegFXrSCGPQCL1pBDHqBF60gN0Wv6LAgBa/BwcHU\nI6Ag9AIvWkEMeoEXrSAGvcCLVpCbold02u126hFQiPPnz6ceAQWhF3jRCmLQC7xoBTHoBV60gtwU\nvSD19NNPs6k5XIaHh1OPgILQC7xoBTHoBV60ghj0Ai9aQW6KXpDas2cPm5rDhUucIga9wItWEINe\n4EUriEEv8KIV5KboBamVlZXUI6AQly9fTj0CCkIv8KIVxKAXeNEKYtALvGgFuSl6QWpgdlaDx45p\nYHw89SjIXK1WSz0CCkIv8KIVxKAXeNEKYtALvGgFuSl6QWqp3Vbf6dOqTEykHgWZazabqUdAQegF\nXrSCGPQCL1pBDHqBF60gN0UvSM2trOgN+/frD17wgtSjIHO7du1KPQIKQi/wohXEoBd40Qpi0Au8\naAW56Us9wM3Yt2uXHrjzTrXuvluLqYdB1qrVauoRUBB6gRetIAa9wItWEINe4EUryE3RR0gtt1qc\nsgeXmZmZ1COgIPQCL1pBDHqBF60gBr3Ai1aQm6IXpHr7+9U+elStej31KMjcgQMHUo+AgtALvGgF\nMegFXrSCGPQCL1pBbopekFret09zJ09qsdFIPQoyNzc3l3oEFIRe4EUriEEv8KIVxKAXeNEKclP0\ngtTKykrqEVCIVquVegQUhF7gRSuIQS/wohXEoBd40QpyU/SCVH9/f+oRUIharZZ6BBSEXuBFK4hB\nL/CiFcSgF3jRCnJT9ILU0tKSBsbHNXjsmAbGx1OPg4w1m83UI6Ag9AIvWkEMeoEXrSAGvcCLVpCb\noheknv7CF/Qv779ff8yV9nAdXOIUMegFXrSCGPQCL1pBDHqBF60gN32pB7gZ+9ptPbBvn8KXfRlX\n2sM1VSqV1COgIPQCL1pBDHqBF60gBr3Ai1aQm6KPkGrv3avFEye40h6ua3Z2NvUIKAi9wItWEINe\n4EUriEEv8KIV5KboBan+y5dTj4BCHDx4MPUIKAi9wItWEINe4EUriEEv8KIV5KboBam2mQYeeIBN\nzXFd/DQAMegFXrSCGPQCL1pBDHqBF60gN0UvSIWBAUlSH5ua4zqWlpZSj4CC0Au8aAUx6AVetIIY\n9AIvWkFuil6Q6q3VtHjihNpHj7KpOa6pVqulHgEFoRd40Qpi0Au8aAUx6AVetILcFL0gtbS0pMVG\ng03NcV3NZjP1CCgIvcCLVhCDXuBFK4hBL/CiFeSm6AWp3t7e1COgELt37049AgpCL/CiFcSgF3jR\nCmLQC7xoBbkpekFqbm5Oo6Ojmpyc1MD4OJub46pYvEQMeoEXrSAGvcCLVhCDXuBFK8hN0QtSt912\nm8bGxjQyMqLKxASbm+OqLl68mHoEFIRe4EUriEEv8KIVxKAXeNEKctOXeoCb0d/ff+XXa5uas7k5\nNnPo0KHUI6Ag9AIvWkEMeoEXrSAGvcCLVpCboo+QarfbV37N5ua4lgsXLqQeAQWhF3jRCmLQC7xo\nBTHoBV60gtwUvSAFeIUQUo+AgtALvGgFMegFXrSCGPQCL1pBbopekOrrK/qMQ+wgDk9FDHqBF60g\nBr3Ai1YQg17gRSvITdELUktLS6lHQCHOnj2begQUhF7gRSuIQS/wohXEoBd40QpyU/SCFJethNee\nPXtSj4CC0Au8aAUx6AVetIIY9AIvWkFuil6QAgAAAAAAQHmKXpBaXl5OPQIKcenSpdQjoCD0Ai9a\nQQx6gRetIAa9wItWkJuiF6T6+/tTj4BCHDlyJPUIKAi9wItWEINe4EUriEEv8KIV5KboBal2u516\nBBRieno69QgoCL3Ai1YQg17gRSuIQS/wohXkpugFKcDLzFKPgILQC7xoBTHoBV60ghj0Ai9aQW6K\nXpB6+umnNTo6qsnJydSjIHP79+9PPQIKQi/wohXEoBd40Qpi0Au8aAW5KXpBqlqtamxsTK/6h3/Q\n4LFjGhgfTz0SMsXhqYhBL/CiFcSgF3jRCmLQC7xoBbkpekGqt7dXklSZmFDf6dOqTEwkngi52rt3\nb+oRUBB6gRetIAa9wItWEINe4EUryE1f6gG2Qqtef8a/gY2Wl5dTj4CC0Au8aAUx6AVetIIY9AIv\nWkFuij5Cau1/qMVGQ3MnT2qx0Ug8EXI1Pz+fegQUhF7gRSuIQS/wohXEoBd40QpyU/SCVH9/f+oR\nUIharZZ6BBSEXuBFK4hBL/CiFcSgF3jRCnJT9ILU0tJS6hFQiGazmXoEFIRe4EUriEEv8KIVxKAX\neNEKclP0HlJmJkkaGB9XZWJCK4cPq2dqSq16ndP38AwcTYcY9AIvWkEMeoEXrSAGvcCLVpCbohek\nNl5lL1SrsoUFSWJBCs8wNDSUegQUhF7gRSuIQS/wohXEoBd40QpyU/Qpe+12W9Lq1fXaR49q6d57\n1T56lKvt4VnOnTuXegQUhF7gRSuIQS/wohXEoBd40Qpy0xVHSC02GhwRhWvipwGIQS/wohXEoBd4\n0Qpi0Au8aAW5KfoIqRBC6hFQiFarlXoEFIRe4EUriEEv8KIVxKAXeNEKclP0gtTKykrqEVCIhc7e\nYoAHvcCLVhCDXuBFK4hBL/CiFeSm6AUprhIAr1qtlnoEFIRe4EUriEEv8KIVxKAXeNEKclP0gtTS\n0lLqEVCIZrOZegQUhF7gRSuIQS/wohXEoBd40QpyU/SCVE/PM8cfGB/X4LFjGhgfTzQRclWpVFKP\ngILQC7xoBTHoBV60ghj0Ai9aQW66akGqMjGhvtOnVZmYSDQRcjU4OJh6BBSEXuBFK4hBL/CiFcSg\nF3jRCnJT9IJUu91+xsetel3to0fVqtcTTYRcnT9/PvUIKAi9wItWEINe4EUriEEv8KIV5KYv9QCb\nMbMeST8naa+kT4YQ3rPZ4/r6njn+YqOhxUZj+wdEcYaHh1OPgILQC7xoBTHoBV60ghj0Ai9aQW52\n7AgpM3uXmU2Z2ac33D5iZn9vZo+Z2Vs7N79K0nMkLUl64mrPubKysn0Do6twiVPEoBd40Qpi0Au8\naAUx6AVetILc7OQpe++WNLL+BjPrlfRrkl4p6R5JrzWzeyTdLeljIYSfkPSjV3tCFqTgdfny5dQj\noCD0Ai9aQQx6gRetIAa9wItWkJsdW5AKITws6cKGm18i6bEQwudCCC1J79fq0VFPSJrpPGb5as/Z\n39+/HaOiC9VqtdQjoCD0Ai9aQQx6gRetIAa9wItWkJvUe0jdIekL6z5+QtJLJf2ypHEz+3pJD1/t\nk6empvTGN75RfX19Wl5eVr1e13333adms6ndu3ert7dXFy9e1KFDh3ThwgWFEHTo0CGdPXtWe/bs\nkSRdunRJR44c0fT0tMxM+/fv1/T0tPbu3avl5WXNz8+rVqup2Wyqv79fQ0NDOnfunIaGhtRqtbSw\nsHDl/kqlosHBQZ0/f17Dw8NaWFjQ5cuXr9y/a9cuVatVzczM6MCBA5qbm1Or1bpyf7VaVaVS0ezs\nrA4ePKjZ2VktLS1duZ/3dOPvqdls6u677+6q99SNX6dc3tOjjz6qO+64o6veUzd+nXJ4T61WS3v2\n7Omq99SNX6dc3tPc3JzuuuuurnpP3fh1yuE9nTt3TtVqtaveUzd+nXJ5T8vLy+rt7e2q99SNX6cc\n3tNjjz2mO++8s6veUzd+nXJ5TzvBQgg78kKSZGbPk/ShEMILOx+/WtJICOENnY9fJ+mlIYQ3eZ7v\n4YcfDi960Yu2aVp0k7Nnz+rIkSOpx0Ah6AVetIIY9AIvWkEMeoEXrSDGqVOnPnX8+PEXb+dr7OQe\nUpt5UtKd6z5+Tuc2l56e1OOjFNVqNfUIKAi9wItWEINe4EUriEEv8KIV5Cb1is4nJD3fzO4ys4qk\n75H0R95PfuqppzQ6OqrJycltGxDdYWZm5voPAjroBV60ghj0Ai9aQQx6gRetIDc7toeUmb1P0isk\nHTSzJyT9dAjht8zsTZI+LKlX0rtCCI94n3Pfvn0aGxvblnnRXQ4cOJB6BBSEXuBFK4hBL/CiFcSg\nF3jRCnKzYwtSIYTXXuX2ByU9eCPPubKyclMz4dYxNzd3ZeM44HroBV60ghj0Ai9aQQx6gRetIDep\nT9m7KSxIwavVaqUeAQWhF3jRCmLQC7xoBTHoBV60gtwUvSC1sLDAHlJwqdVqqUdAQegFXrSCGPQC\nL1pBDHqBF60gN0UvSFWrVY2NjWlkZCT1KMhcs9lMPQIKQi/wohXEoBd40Qpi0Au8aAW5KXpBqqen\n6PGxg7jEKWLQC7xoBTHoBV60ghj0Ai9aQW6KXtExs2fdNjA+rsFjxzQwPp5gIuSqUqmkHgEFoRd4\n0Qpi0Au8aAUx6AVetILcFL0gNTs7+6w9pCoTE+o7fVqViYmEkyE3s7OzqUdAQegFXrSCGPQCL1pB\nDHqBF60gN32pB7gZ+/bt09jY2DNua9Xrz/g3IEkHDx5MPQIKQi/wohXEoBd40Qpi0Au8aAW5KfoI\nqeXl5WfdtthoaO7kSS02GgkmQq74aQBi0Au8aAUx6AVetIIY9AIvWkFuil6QCiGkHgGFWFpaSj0C\nCkIv8KIVxKAXeNEKYtALvGgFuSl6Qaq/vz/1CChErVZLPQIKQi/wohXEoBd40Qpi0Au8aAW5KXpB\namZm5lmbmgObaTabqUdAQegFXrSCGPQCL1pBDHqBF60gN0Vvaj40NPSsTc2BzezevTv1CCgIvcCL\nVhCDXuBFK4hBL/CiFeSm6COkAK/e3t7UI6Ag9AIvWkEMeoEXrSAGvcCLVpCbohekNrvKHrCZixcv\nph4BBaEXeNEKYtALvGgFMegFXrSC3BS9IMWm5vA6dOhQ6hFQEHqBF60gBr3Ai1YQg17gRSvITdEL\nUu12O/UIKMSFCxdSj4CC0Au8aAUx6AVetIIY9AIvWkFuil6Qmpube9ZV9gbGxzV47JgGxscTTobc\nhBBSj4CC0Au8aAUx6AVetIIY9AIvWkFuir7K3vDw8LOusleZmFDf6dOSpMVGI8VYyBCHpyIGvcCL\nVhCDXuBFK4hBL/CiFeSm6COklpaWnnVbq15X++hRter1BBMhV2fPnk09AgpCL/CiFcSgF3jRCmLQ\nC7xoBbkpekFqs8tWLjYamjt5UpI4dQ9X7NmzJ/UIKAi9wItWEINe4EUriEEv8KIV5KboBalrWTt1\nrzIxkXoUAAAAAAAArFP0gtTy8vJV7+PUPax36dKl1COgIPQCL1pBDHqBF60gBr3Ai1aQm6IXpPr7\n+69639qpe2xsDkk6cuRI6hFQEHqBV8pWuKpsefi9BV60ghj0Ai9aQW6KXpCamZnR6OioJicnU4+C\nzE1PT6ceAQWhF3ilbIVT08vD7y3wohXEoBd40Qpy05d6gJsxODiosbGx1GOgAGaWegQUhF7glbKV\ntVPSOTW9HPzeAi9aQQx6gRetIDdFL0j19RU9PnbQ/v37U4+AgtALvFK2sthocFp6Yfi9BV60ghj0\nAi9aQW6KPmVvaWkp9QgoBIenIga9wItWEINe4EUriEEv8KIV5KboBane3t7UI6AQe/fuTT0CCkIv\n8KIVxKAXeNEKYtALvGgFuSl6QQrwWl5eTj0CCkIv8KIVxKAXeNEKYtALvGgFuSl6QYr/oeA1Pz+f\negQUhF7gRSuIQS/wohXEoBd40QpyU/SCVH9/f+oRUIharZZ6BBSEXuBFK4hBL/CiFcSgF3jRCnJT\n9IIUm5rDq9lsph4BBaEXeNEKYtALvGgFMegFXrSC3BS9IHXp0iWNjo5qcnIy9SjIHEfTIQa9wItW\nEINe4EUriEEv8KIV5KYv9QA3Y9++fRobG0s9BgowNDSUegQUhF7glbKVgfFxVSYm1KrXtdhoJJsD\nfvzeAi9aQQx6gRetIDdFHyHVbreTvO7A+LgGjx3TwPh4ktdHvHPnzqUeAQWhF3ilamVgfFzV++9X\n3+nTqkxMJJkB8fi9BV60ghj0Ai9aQW6KXpDq7e1N8rqViQn+ElAYfhqAGPQCr1StVCYmZAsLCtWq\nWvV6khkQj99b4EUriEEv8KIV5KboU/ZCCEled+0P//wloBytViv1CCgIvcArVSvrvw9xul45+L0F\nXrSCGPQCL1pBbopekFpZWUnyuouNBn8BKMzCwkLqEVAQeoFXqlb4PlQmfm+BF60gBr3Ai1aQm6JP\n2eMqAfCq1WqpR0BB6AVetIIY9AIvWkEMeoEXrSA3RS9ILS0tpR4BhWg2m6lHQEHoBV60ghj0Ai9a\nQQx6gRetIDdFL0j19Gw+PlfBw0aVSiX1CCgIvcCLVhCDXuBFK4hBL/CiFeSmKxekbuYqeCxmdafB\nwcHUI6Ag9AKv1K3wPassqXtBOWgFMegFXrSC3BS9INVutze9vVWvq3306A1dBe9mFrOQr/Pnz6ce\nAQWhF3ilboXvWWVJ3QvKQSuIQS/wohXkpuir7PX1bT7+zVx9aP2ltNE9hoeHU4+AgtALvFK3wves\nsqTuBeWgFcSgF3jRCnJT9BFSKysrW/6ci42G5k6e5HLaXYZLnCIGvcArdSt8zypL6l5QDlpBDHqB\nF60gN0UvSF28eFGjo6OanJxMPQoyd/ny5dQjoCD0Ai9aQQx6gRetIAa9wItWkJuiT9kbHh7W2NjY\ns24fGB9XZWJCrXqdnxpDklSr1VKPgILQC7xoBTHoBV60ghj0Ai9aQW6KPkJqaWlp09vZ5BUbNZvN\n1COgIPSJEzP8AAAgAElEQVQCL1pBDHqBF60gBr3Ai1aQm6IXpHp6Nh+/Va9r+fbbZVNTXAobkqRd\nu3alHgEFoRd40Qpi0Au8aAUx6AVetILcdOWC1GKjoXD4sHrPnOEoKUiSqtVq6hFQEHqBF60gBr3A\ni1YQg17gRSvITdELUu12+6r3tep1tY8e5VLYkCTNzMykHgEFoRd40Qpi0Au8aAUx6AVetILcFL2p\neV/f1cdfbDTY0BxXHDhwIPUIKAi9wItWEINe4EUriEEv8KIV5KboI6RWVlZSj4BCzM3NpR4BBaEX\neNEKYtALvGgFMegFXrSC3LAghVtCq9VKPQIKQi/wohXEoBd40Qpi0Au8aAW5KXpBqr+//5r3D4yP\na/DYsagr7d3I5yB/tVot9QgoCL3Ai1YQg17gRSuIQS/wohXkpugFqaWlpWveX5mYUN/p01FX2ruR\nz0H+ms1m6hFQEHqBF60gBr3Ai1YQg17gRSvITdELUj091x7/Rq60x9X5uhOXOEUMeoFXDq1wZG85\ncugFZaAVxKAXeNEKclP0VfbM7Jr338iV9rg6X3eqVCqpR0BB6AVeObSydmSvJL5/ZS6HXlAGWkEM\neoEXrSA3RR8htby8nHoEFGJ2djb1CCgIvcArh1Y4srccOfSCMtAKYtALvGgFuSl6Qaqv7/oHeHEq\nAyTp4MGDqUdAQegFXjm0sthoaO7kSY6OKkAOvaAMtIIY9AIvWkFuil6Q8hwhxSblkPhpAOLQC7xo\nBTHoBV60ghj0Ai9aQW6KXpAKIVz3MZzKAOn6V2QE1qMXeOXQCkcClyOHXlAGWkEMeoEXrSA3RW9q\n3t/ff93HsEk5JKlWq6UeAQWhF3jl0Aqbmpcjh15QBlpBDHqBF60gN0UfIeVZ4eUnx5CkZrOZegQU\nhF7glUMrHAlcjhx6QRloBTHoBV60gtxkeYSUmb1C0s9JekTS+0MID232uN7e3us+19pPjnsffVQS\nPz2+Ve3evTv1CCgIvcArh1Y4ErgcOfSCMtAKYtALvGgFudmxI6TM7F1mNmVmn95w+4iZ/b2ZPWZm\nb+3cHCRdkrRL0hM387qtel2hWpUtLLCx+S3Ms3gJrKEXeNEKYtALvGgFMegFXrSC3OzkKXvvljSy\n/gYz65X0a5JeKekeSa81s3skfSSE8EpJb5H0M1d7Qs9V9hYbDS3de69CtaqVw4dvfHoU7eLFi6lH\nQEHoBV60ghj0Ai9aQQx6gRetIDc7dspeCOFhM3vehptfIumxEMLnJMnM3i/pVSGEz3Tun5E0cLXn\nnJ2d1cte9jL19fVpeXlZ9Xpd9913n5rNpnbv3q3e3l5dvHhRz1tZ0flv/Va177xTey9f1tmzZ7Vn\nzx5J0qVLl3TkyBFNT0/LzLR//35NT09r7969Wl5e1vz8vGq1mprNpvr7+zU0NKRz585paGhIrVZL\nCwsLV+6vVCoaHBzU+fPnNTw8rIWFBV2+fPnK/bt27VK1WtXMzIwOHDigubk5tVqtK/dXq1VVKhXN\nzs7q4MGDmp2d1dLS0pX717+nQ4cO6cKFCwoh6NChQ7yn67ynpaUlLS4udtV76savUy7vaWlpSefP\nn++q99SNX6cc3tPu3bt15syZrnpP3fh1yuU9hRA0Pz/fVe+pG79OObyngYEBPf744131nrrx65TL\nexoaGtLjjz/eVe+pG79OObynpaUlzczMdNV76savUy7vaSdYCGFHXkiSOgtSHwohvLDz8asljYQQ\n3tD5+HWSXirpzyV9q6R9kn7jantI/cVf/EX4yq/8yuu+7sD4uCoTE2rV6+yzcYt64okn9JznPCf1\nGCgEvcCLVhCDXuBFK4hBL/CiFcQ4derUp44fP/7i7XyNLDc1DyFMSNqyDZ/Y8BU7ufCK8tELvGgF\nMegFXrSCGPQCL1pBbnZyD6nNPCnpznUfP6dzm0tfX5bracjQoUOHUo+AgtALvGgFMegFXrSCGPQC\nL1pBblIvSH1C0vPN7C4zq0j6Hkl/5P3kmZkZjY6OanJyctsGRHc4e/Zs6hFQEHqBF60gBr3Ai1YQ\ng17gRSvIzY4tSJnZ+yR9XNLdZvaEmb0+hNCW9CZJH5b0WUkfDCE84n3OoaEhjY2NaWRk5LqPHRgf\n1+CxYxoYH7/Bd4CSrW0aB3jQC7xoBTHoBV60ghj0Ai9aQW528ip7r73K7Q9KenC7X78yMaG+06cl\nif2kAABdhYt3AAAAoDSpT9m7KbOzs+5T9lYOH1aoVrVy+PAOTIbcXLp0KfUIKAi9wCuXVtZ+6FKZ\n2LLrgWAb5NIL8kcriEEv8KIV5KboXcGHh4c1NjbmemzP1JRsYUE9U1PbPBVydOTIkdQjoCD0Aq9c\nWmnV68/4N/KUSy/IH60gBr3Ai1aQm6KPkGq32+7Htup1tY8e5Q/rt6jp6enUI6Ag9AKvXFpZbDQ0\nd/Ikp+tlLpdekD9aQQx6gRetIDdFHyEVY+0P6WunM/CH9luLmaUeAQWhF3jRCmLQC7xoBTHoBV60\ngtwUfYRUX1/cehp7bNy69u/fn3oEFIRe4EUriEEv8KIVxKAXeNEKclP0gtTMzIx7U3OJ0/ZuZRye\nihj0Ai9aQQx6gRetIAa9wItWkJuiT9kbGhpyb2ourZ6mx6l6t6a9e/emHgEFoRd40Qpi0Au8aAUx\n6AVetILcFH2EVKyB8XENHjumgfHx1KNghy0vL6ceAQWhF3jRCmLQC7xoBTHoBV60gtwUvSAV+z/U\n2h5S1fvvZ1HqFjM/P596BBSEXuBFK4hBL/CiFcSgF3jRCnJT9IJUf39/1ONb9bpCtSpbWGBj81tM\nrVZLPQIKQi/wohXEoBd40Qpi0Au8aAW5KXpBKnZT88VGQwtvfSsbm9+Cms1m6hFQEHqBF60gBr3A\ni1YQg17gRSvITdGbmg8ODkZtai7pyqbma0dIscn5rSH2aDrc2ugFXrSCGPQCL1pBDHqBF60gN0Uf\nIdXb23tDn7e2lxSn7d06hoaGUo+AgtALvGgFMegFXrSCGPQCL1pBbopekGq32zf0ea16ndP2bjHn\nzp1LPQIKQi/wohXEoBd40Qpi0Au8aAW5KfqUvRs9Qmqx0eBUvVsMPw1ADHqBF60gBr3Ai1YQg17g\nRSvITdFHSF28eDFqU3PculqtVuoRUBB6gRetIAa9wItWEINe4EUryE3RC1K7d+/W2NiYRkZGoj5v\nYHxcg8eOaWB8fJsmQ24WFhZSj4CC0Au8UrXC97Ey8XsLvGgFMegFXrSC3BR9yt6NXiVgbVPz3kcf\nlcSV9m4FtVot9QgoCL3AK1Ura9/HJL6HlYTfW+BFK4hBL/CiFeSm6COklpaWbujzWvW6Ql+fbGFB\nAw88sMVTIUfNZjP1CCgIvcArVStcnKNM/N4CL1pBDHqBF60gN0UvSPX03Nj4i42GVg4d2uJpkLNK\npZJ6BBSEXuCVqpXFRkNzJ09ydFRh+L0FXrSCGPQCL1pBbm7JBSlJWjxxQu2jR7V44sQWToRcDQ4O\nph4BBaEXeNEKYtALvGgFMegFXrSC3BS9INVut2/4c/np8q3l/PnzqUdAQegFXrm0wibnZcilF+SP\nVhCDXuBFK8hN0QtSTz/9tEZHRzU5OZl6FGRueHg49QgoCL3AK5dW1jY5r0xMpB4F15BLL8gfrSAG\nvcCLVpCbohek9uzZo7GxMY2MjNzQ5+9+zWu07447tPs1r9niyZAbLnGKGPQCr1xaYZPzMuTSC/JH\nK4hBL/CiFeSm6AWplZWVm/r8/o9+VLawoP4/+zNOc+hyly9fTj0CCkIv8MqlFU5DL0MuvSB/tIIY\n9AIvWkFuil6Q6u/vv6nPX7r3XgUzWQic5tDlarVa6hFQEHqBF60gBr3Ai1YQg17gRSvITdELUktL\nSzf1+fMf+IAW3v52Ld9+u2xqiqOkuliz2Uw9AgpCL/CiFcSgF3jRCmLQC7xoBbkpekGqp+fmx19s\nNBQOH1bvmTMcJdXFdu3alXoEFIRe4EUriEEv8KIVxKAXeNEKctOXeoCbsRULUpKubALLZrDdq1qt\nph4BBaEXeNEKYtALvGgFMegFXrSC3BR9hFS73d6S52Ez2O43MzOTegQUhF7gRSuIQS/wohXEoBd4\n0QpyU/SCVF9f0Qd4YQcdOHAg9QgoCL3Ai1YQg17gRSuIQS/wohXkpugFqZWVldQjoBBzc3OpR0BB\n6AVetIIY9AIvWkEMeoEXrSA3RS9IXbx4UaOjo5qcnEw9CjLXarVSj4CC0Au8aAUx6AVetIIY9AIv\nWkFuij7nbXh4WGNjY1vyXAPj46pMTKhVr7OXVBeq1WqpR0BB6AVetIIY9AIvWkEMeoEXrSA3RR8h\ntbS0tGXPNfDAA+o7fVoDDzywZc+JfDSbzdQjoCD0Ai9aQQx6gRetIAa9wItWkJuiF6R6erZm/IHx\ncfVMT2/JcyFPXOIUMegFXrSCGPQCL1pBDHqBF60gN0UvSJnZljxPZWJC1m4rVKtaPHFiS54TealU\nKqlHQEHoBV60ghj0Ai9aQQx6gRetIDdFL0gtLy9vyfO06nW1jx7Vwlvfyv5RXWp2djb1CCgIvcAr\np1YGxsc1eOyYBsbHU4+Cq8ipF+SNVhCDXuBFK8hN0Zua9/VtzfiLjQYLUV3u4MGDqUdAQegFXjm1\nUpmYUN/p05LE97RM5dQL8kYriEEv8KIV5IYjpK6CnzR3F34agBj0Aq+cWlk72rdVr6ceBVeRUy/I\nG60gBr3Ai1aQm6KPkAohbNtz85Pm7rKVV2RE96MXeOXUCkf75i+nXpA3WkEMeoEXrSA3RR8h1d/f\nv23PzU+au0utVks9AgpCL/DKvRWO9s1L7r0gH7SCGPQCL1pBbopekNrqFd71f3BfbDQ0d/IkP23u\nEs1mM/UIKAi9wCv3VtaO9q1MTKQeBcq/F+SDVhCDXuBFK8hN0afs9fb2bunzcZpe99q9e3fqEVAQ\neoFX7q2sHeXL0b55yL0X5INWEINe4EUryE3RC1JbjT+4d6+tXrxEd6MXeOXeCvtK5SX3XpAPWkEM\neoEXrSA3RZ+yNzs7q9HRUU1OTqYeBZm7ePFi6hFQEHqBF60gBr3Ai1YQg17gRSvITdFHSA0PD2ts\nbGzLno9T9rrXoUOHUo+AgtALvGgFMegFXrSCGPQCL1pBboo+Qqrdbm/p83Flve514cKF1COgIPQC\nL1pBDHqBF60gBr3Ai1aQG9eClJkdM7O7Or++3czeY2a/bWZddd3IrbyyHpfazksIIfUIKAi9wItW\nEINe4EUriEEv8KIV5MZ7hNSvS1ru/Pr/kNQvaUXSb27HUF59ffmecciltvPC4amIQS/wohXEoBd4\n0Qpi0Au8aAW58S5I3RFC+Ecz65P0rZJ+RNKPSvq6bZvMYWlpaVuedyuObuL0v7ycPXs29QgoCL3A\ni1YQg17gRSuIQS/wohXkxrsgddHMjkj6BkmfCSFc6tzevz1j+WzXZSu34uimrTz9Dzdvz549qUdA\nQegFXjm1wqni+cupF+SNVhCDXuBFK8iN95y3cUmfkFSRNNq57WWS/m47hkpt7agmjm4CAJSCK8UC\nAACgJK4jpEIIvyjpmyS9LITw/s7NT0p6/XYN5rG8vHz9B92AxUZDrXpdlYkJftLcJS5dunT9BwEd\n9AKvnFrhVPH85dQL8kYriEEv8KIV5MZ1hJSZ/WEI4VXrbwshPGpmE5KS/cm3v3/7zhjkJ83d5ciR\nI6lHQEHoBV45tbLYaPD9KnM59YK80Qpi0Au8aAW58e4hdewqt79ii+a4Ie12e9uee/1PmtmXo3zT\n09OpR0BB6AVetIIY9AIvWkEMeoEXrSA31zxCysx+tvPLyrpfr/mnkh7flqkysP4nzYPHjnG0VOHM\nLPUIKAi9wItWEINe4EUriEEv8KIV5OZ6p+zd2fl3z7pfS1KQ9AVJb9+Gmdz6+rx7st+YgfFxVSYm\ntHL4MPtyFG7//v2pR0BB6AVetIIY9AIvWkEMeoEXrSA311zRCSH8kCSZ2cdCCO/YmZH8lpaWtvX5\nBx54QL1nzmj59tt18ZFHtvW1sL2mp6f13Oc+N/UYKAS9wItWEINe4EUriEEv8KIV5MZ1iFEI4R1m\nNiTpbkl7Ntz359sxmEdvb++Ovdba0VJrR0mt/ZpT+Mqwd+/e1COgIPQCL1pBDHqBF60gBr3Ai1aQ\nG+9V9n5Q0q9JuiTp6XV3Ba3uJdWVFk+cuLLwtP6qe5LYU6owy8vLqUdAQegFXrSCGPQCL1pBDHqB\nF60gN96r7P0bSa8OIRwJIdy17p+ki1Hb/T/UYqOhuZMntdhoqFWva/n222VTU+wpVaD5+fnUI6Ag\n9AKv3FrhqrB5y60X5ItWEINe4EUryI13QapP0p9s5yA3or+/f9tfY+0P95IUDh9W75kz6pmaurJQ\nhTLUarXUI6Ag9AKv3FpZO5q3MjGRehRsIrdekC9aQQx6gRetIDfeBalflPS/mpn38TfNzHab2SfN\n7Nuu9pjt3tRc+m9/uK/efz9HRhWs2WymHgEFoRd45dZKq17n+1TGcusF+aIVxKAXeNEKcuPaQ0rS\nj0uqSXqzmZ1ff0cI4Z94nsDM3iXp2yRNhRBeuO72EUm/LKlX0jtDCPd37nqLpA9e5zmd49+4Vr2u\n3kcflS0sXDkyCuXZiaPp0D3oBV65tbLYaHD0bsZy6wX5ohXEoBd40Qpy412Q+v4teK13S/pVSb+z\ndoOZ9Wp1s/RvlvSEpE+Y2R9JukPSZyTtutYT7tRV9lb27ZP27eMnzgUbGhpKPQIKQi/wohXEoBd4\n0Qpi0Au8aAW5cS1IhRD+4mZfKITwsJk9b8PNL5H0WAjhc5JkZu+X9CpJeyTtlnSPpAUzezCEsLLx\nOdvt9s2OdV2ViQn1njmj9tGj/NS5YOfOndPu3btTj4FC0Au8aAUx6AVetIIY9AIvWkFuXAtSZjYg\n6V9Jeq2kAyGEITP7FklfFkL41Zt4/TskfWHdx09IemkI4U2d1/1BSec2W4ySpKeeekove9nL1NfX\np+XlZdXrdd13331qNpvavXu3ent7dfHiRR06dEgXLlxQCEGHDh3S2bNntWfPHknSpUuXdOTIEU1P\nT8vMtH//fk1PT2vv3r1aXl7Wkz/2Y3ree9+rz7/udbIvflFDQ0M6d+6choaG1Gq1tLCwoFqtpmaz\nqUqlosHBQZ0/f17Dw8NaWFhQ++GHr3x+38tfrmq1qpmZGR04cEBzc3NqtVpXPr9arapSqWh2dlYH\nDx7U7OyslpaWrty/Ve9pfn7+ynP29/dHv6fLly9fuX/Xrl1FvKfLly9rcXGxq95TN36dcnlPly9f\n1vnz57vqPXXj1ymH91SpVHTmzJmuek/d+HXK5T21223Nz8931Xvqxq9TDu+pp6dHjz/+eFe9p278\nOuXynm677TY9/vjjXfWeuvHrlMN7unz5smZmZrrqPXXj1ymX97QTLIRw/QeZ/bpWF4/ul/THIYR9\nZnaHpD8JIbzA/WKrR0h9aG0PKTN7taSREMIbOh+/TusWpK7n4YcfDi960Yu8L5/E4LFj6jt9Wu2j\nR9l/KqGpqSkdPnw49RgoBL3Ai1YQg17gRSuIQS/wohXEOHXq1KeOHz/+4u18De9V875T0veGED4u\naUWSQghPanWR6mY8KenOdR8/p3Oby8rKpgdOZYUrHuVhYWEh9QgoCL3Aq4RWBsbHNXjsmAbGx1OP\ncssroRfkgVYQg17gRSvIjXdBqqUNp/eZ2SFJ5zd/uNsnJD3fzO4ys4qk75H0R95PXlhY0OjoqCYn\nJ29yjO2z2Gho7uRJ9p9KrFarpR4BBaEXeJXQSmViQn2nT6syMZF6lFteCb0gD7SCGPQCL1pBbrwL\nUv9R0nvM7C5JMrPbtXrFvPd7X8jM3ifp45LuNrMnzOz1IYS2pDdJ+rCkz0r6YAjhEe9zVqtVjY2N\naWRkxPspSfDT6fSazWbqEVAQeoFXbq1s9v2GI3XzkVsvyBetIAa9wItWkBvXpuaSfkrSL0r6W0m3\nSfoHSe+Q9LPeFwohvPYqtz8o6UHv86zX0+NdT0tr7afTkjhSKpFKpZJ6BBSEXuCVWyubfb9ZbDT4\n3pOJ3HpBvmgFMegFXrSC3LgWpEIILUk/LunHO6fqnQue3dC3Wc4LUgPj46pMTKhVr1/5qTQ/nU5n\ncHAw9QgoCL3AK7dW+H6Tt9x6Qb5oBTHoBV60gty4V3TM7DYz+0pJz5f0tWb2dWb2dds32vU99dRT\nyfaQut5peOv37GAfqfTOn7/Z7c5wK6EXeOXWCt9v8pZbL8gXrSAGvcCLVpAb1xFSZvYDWt0zqiVp\n/db8QdI/2Ya5XPbt26exsbEdfc21I59sakq9Z85I2vw0vFa9Lpuakk1NaWB8nL8cJDY8PJx6BBSE\nXuBFK4hBL/CiFcSgF3jRCnLjPULqf5f0XSGEgyGEO9f9k2wxSpJWVlZ29PUGxsdVvf/+K/tzbLZJ\n7NqRU5IUDh9W75kzXNkoA1ziFDHoBV60ghj0Ai9aQQx6gRetIDfeTc1bkh7axjluyE4vSFUmJmQL\nCwrVqhZPnNj0qKf1G8qyl0c+Ll++nHoEFIRe4EUriEEv8KIVxKAXeNEKcuNdkPrfJP2Smf1MCOHc\ndg4UY2FhQaOjoxoZGdHIyMi2v976BaarnYK38TGcqpeHWq2WegQUhF7gRSuIQS/wohXEoBd40Qpy\n4z1l71FJ3yHprJktd/5ZMbPlbZztuqrVqsbGxnZkMUpa3SuqVa+rMjFxZTPzjZubb/YYpNdsNlOP\ngILQC7xoBTHoBV60ghj0Ai9aQW68R0i9V9LvSPqAnrmpeVI9Pe6LBG6Z9afkLTYaz/p4/WNsakqV\niQmtHD6snqmpax5Zhe21a9eu1COgIPQCL1pBDHqBF60gBr3Ai1aQG++C1AFJ/yqEELZzmFgpFqQ2\n7gu12T5Ra7+2qSn1nT6tUK3KOhvIsSCVRrVaTT0CCkIv8MqxlbWrwfJDkPzk2AvyRCuIQS/wohXk\nxrui89uSXredg9yIdru946+52Gho7uTJK3/I3/jxM247cULto0e1dO+9m16RDztnZmYm9QgoCL3A\nK8dW1o7S5Qqv+cmxF+SJVhCDXuBFK8iN9wipl0h6k5m9TdLZ9XeEEF6+5VM5Pf300zu6qfl6np9A\ns6l5Pg4cOJB6BBSEXuCVYytc4TVfOfaCPNEKYtALvGgFufEuSL2j809W9uzZo7GxsSSvvdneUcjX\n3Nyc9uzZk3oMFIJe4JVjK/wwJF859oI80Qpi0Au8aAW5cS1IhRDes92D3IiVlZVkr81PoMvSarVS\nj4CC0Au8aAUx6AVetIIY9AIvWkFuXAtSZvbDV7svhPCurRsnTn9/f6qXfsYV9dZ/jDzVarXUI6Ag\n9AIvWkEMeoEXrSAGvcCLVpAb76bmr9vwz/8i6QEl3uh8aWkp5ctHbRw7MD6uwWPHNDA+vgOTYaNm\ns5l6BBSEXuBFK4hBL/CiFcSgF3jRCnLjPWXv2MbbOkdNfcWWTxShp8e7nrY9Yk7bY8+ptLjEKWLQ\nC7xoBTHoBV60ghj0Ai9aQW5uZkXn3ZJev0Vz3JBLly5pdHRUk5OTSV5/sdFQq15XZWLiukc+tep1\ntY8eZc+pRCqVSuoRUBB6gVeurXBUbp5y7QX5oRXEoBd40Qpy491DauPC1W2Svl/SU1s+UYTbbrst\n2VX21niPfOKqR2nNzs5q3759qcdAIegFXrm2sv5709rHrXqd70OJ5doL8kMriEEv8KIV5Ma1ICWp\nLSlsuO1JST+ytePE6evzjr991p+2NzA+rsrEhFYOH1bP1NQ1//C/9lj+grAzDh48mHoEFIRe4JVr\nK+u/N3HKeD5y7QX5oRXEoBd40Qpy413RuWvDx/MhhHNbPUys5eXl1CM848inwWPH1Hf6tEK1KltY\nuHL/ZvgLws6anZ3V7t27U4+BQtALvHJtZbOjcjllPL1ce0F+aAUx6AVetILcxBwh9XQIYWbtBjMb\nllQNIXxxWyZzCGHjQVtp7H7Na9T/0Y9q+Y471D569BlHSF1NzIbouHmpr8iIstALvEpohVPG81FC\nL8gDrSAGvcCLVpAb8yzqmNknJP1wCOFv1932IknvDCG8dBvnu6a//Mu/DPfcc0+ql79i3x13yBYW\nFMy08Pa38wf/DC0uLmpgYCD1GCgEvcAr11Y4LTxPufaC/NAKYtALvGgFMU6dOvWp48ePv3g7X8N7\nlb271y9GSVLn4y/f+pH8clnhXbr3XgVJFoIGHngg6nO5EtLOaDabqUdAQegFXrm2snZaeGViIvUo\nWCfXXpAfWkEMeoEXrSA33gWpKTP70vU3dD4+v/Uj+c3Pz2t0dFSTk5Mpx9D8Bz6gldtvv6HPXftL\nQ/X++zddlGLBamtwrjRi0Au8cm2lVa+rffQop4VnJtdekB9aQQx6gRetIDfeBal3Sfp9M/s2M7vH\nzL5d0v8l6Z3bN9r17d27V2NjYxoZGUk5hiRp8cQJLXcWpWIWj1r1+pVN0DdblOKn3Fujt7c39Qgo\nCL3AK9dWFhsNzZ08yel6mcm1F+SHVhCDXuBFK8iNd0Hqfkm/K+nfSfqEpH/b+fj+bZrLJYer7K1Z\nbDQUDh9W75kzmy4eXe1Ip8VGQwtvfeuVRamNn8tPubfGxYsXU4+AgtALvGgFMegFXrSCGPQCL1pB\nblxX2QshrGh1Eerfbu84cfr7+1OP8AzXunLe2pFOkp71E+u1j9c2oN14Hz/hvnmHDh1KPQIKQi/w\nohXEoBd40Qpi0Au8aAW5cS1ISZKZvULSD0i6Q9KTkt4bQji5TXO5tNvtlC//LNdaPLrWYtX1Phc3\n78KFC7rttttSj4FC0Au8aAUx6AVetIIY9AIvWkFuXKfsmdkbJH1QUlPShKQzkt5nZm/cxtm6ysb9\nPNisfGeFEFKPgILQC7xoBTHoBV60ghj0Ai9aQW68R0i9WdI3hxBOr91gZh+Q9PuS3rEdg3n09bkP\n8NEe0swAACAASURBVMrOtU7hw9bj8FTEoBd40Qpi0Au8aAUx6AVetILceDc1PyDpMxtu+3tJ+7d2\nnDhLS0spXz7a+qOiunmz8hyP/jp79mzqEVAQeoFXKa3k+PvyraiUXpAerSAGvcCLVpAb7yFGH5X0\nS2b2lhDC02a2W9IvSPrY9o12faVdtnL9UVHdfDnuHI/+2rNnT+oRUBB6gVcpreT4+/KtqJRekB6t\nIAa9wItWkBvvgtQJSR+QNGtmF7R6ZNTHJL12uwbzuHjxokZHRzUyMqKRkZGUo7hcb2PzbnGrvE8A\nKAW/LwMAACA3FrOxmZndKel2SV8MITyxbVM5PfTQQ+Ho0aOpx0ABHn/8cT33uc9NPQYKQS/wohXE\noBd40Qpi0Au8aAUxTp069anjx4+/eDtf46p7SJlZz8Z/JD0p6ZOSvrjutmT6+/tTvnw09vBI58iR\nI6lHQEHoBV60ghj0Ai9aQQx6gRetIDfXWlBqS1py/JNMu91O+fLR1vbwqExMSGKBaidNT0+nHgEF\noRd45dwK32Pyk3MvyAutIAa9wItWkJtr7SF117pf/3NJr9bqRuaPS3qupLdI+v3tG637bNzDg01m\nd46ZpR4BBaEXeOXcCt9j8pNzL8gLrSAGvcCLVpCbqy5IhRAeX/u1mf2EpBeHEJ7q3PSomX1Sq6fv\n/cb2jnh1fX3ePdnzsNhoPOMvBWwyu3P279+fegQUhF7glXMrfI/JT869IC+0ghj0Ai9aQW68e0AN\nSbptw223dW5PZmkp6RmDN22x0dDcyZP85HoHcHgqYtALvHJuhe8x+cm5F+SFVhCDXuBFK8iNd0Hq\nPZL+zMx+xMxeaWY/IunDnduT6e3tTfnyN4Q9PdLYu3dv6hFQEHqBF60gBr3Ai1YQg17gRSvIjXdB\n6s2SfkXSayT9kqTvkfSrndsRYePG5huxYLU9lpeXU4+AgtALvEpqhe8v6ZXUC9KiFcSgF3jRCnLj\nWpAKIayEEB4IIRwPIXxFCOEbOx8nLbrE/6FWDh9W6OtTz+c+t+lfCtYWrKr3389fGrbQ/Px86hFQ\nEHqBV86tbFyAut4PRLD9cu4FeaEVxKAXeNEKcuM9QipL/f39qUeI1jM1JWu31TM3t+lfClYOH1Yw\nky0s8JeGLVSr1VKPgILQC7xybmXjAlSrXlf76FE2OU8o516QF1pBDHqBF60gN0UvSJW4qXmrXtfy\n7bdr+fbbtXL48LNOn+iZmpKFoFCtbno/bkyz2Uw9AgpCL/DKuZW17zc2NaWB8XE2Oc9Azr0gL7SC\nGPSydbr99HZaQW6KXpAys9QjRFtsNHTxkUd08ZFH1DM19YyfXg+Mj8umprQyOKiVffvU++lPc3rF\nFinxaDqkQy/wyrmVxUZD4fBh9Z45w/eRTOTcC/JCK4hBL1un209vpxXk5qoLUmb2V+t+/dM7M06c\n+fl5jY6OanJyMvUoN2Tj6ROViQn1njkja7fVe+aMJHF6xRYZGhpKPQIKQi/wyr0VTtPLS+69IB+0\nghj0snW6/fsmrSA3FkLY/A6zC5K+JIRw2cwuhhCyu0bkQw89FI4ePZp6jJsyMD6ugQcekCQtv/CF\n6pma0srhw+r99KclSYsnTmR/esXA+LgqExNq1evZzvr444/ruc99buoxUAh6gRetIAa9wItWEINe\n4EUriHHq1KlPHT9+/MXb+Rp917jvDyU9amafl1Q1s4c3e1AI4eXbMZhHb29vqpfeMmtHRUlSOHxY\ncydPSpIGjx27crhoros8a9YObZWU7az8NAAx6AVetIIY9AIvWkEMeoEXrSA3V12QCiH8kJndK+l5\nkr5G0m/t1FBeVzu6qyStel02NXXl12tWDh++srF57tbmzvnQ1larlXoEFIRe4EUriEEv8KIVxKAX\neNEKcnOtI6QUQviopI+aWSWE8J4dmsltZWUl9Qg3bbHRuHJU0dpVHVr1+urV9hYW1NNZrMrZ+veQ\nq4WFhdQjdK0STtmMRS/wohXEoBd40Qpi0Au8aAW5ueaC1JoQwrvM7BWSfkDSHZKelPTeEMLJbZzt\nurrtKgHrT30r4aijktRqtdQjdK0STtmMRS/wohXEoBd40Qpi0Au8aAW5uepV9tYzszdI+qCkpqQJ\nSWckvc/M3riNs13X0tJSypffcuuv6rDYaGju5Mmu+Qt+as1mM/UIXatVr2v59ttlU1MaGB9PPc6W\noBd40Qpi0Au8aAUx6AVetILcuBakJL1Z0jeHEH4qhPDvQwhvk/QtnduT6enxjl8GFqG2T6VSST1C\n11psNBQOH1bvmTOqTEykHmdL0Au8aAUx6AVetIIY9IL/n737D3LrvM9D/7wAFiC4P0iKJLgrWqHE\nKHbFpb3pvRrTt9m2ZuW0e1PXTdGojJPSozpxu42znf0jM5eZW6eceu5ctsl02NlEdydNXTe+Nwmb\n3L1tJrXkxA0leZVkZJsz9IiJxciSaYnGEksK3MWuQGABvPeP3QMdnD0HeF/gHJzznn0+MxpxF8B7\n3nPw4AB4932/RxWzQlGjOqJzGMCfO373GoCH/O2OnrgNSLnJLCxgbHISY5OTbbNPrHpTcZmRErTR\n0dGwuxBr9tl9ccC8kCpmhXQwL6SKWSEdzAupYlYoalRHdJYB/DshxH4AEEIMA/hlAH8SVMdU1Ov1\nMDc/EOmlJSQLhV2zT6y6PXGZkRK0e/fuhd2FWIvb7D7mhVQxK6SDeSFVzArpYF5IFbNCUaM6IDUL\nYArAmhDiDoD7Oz//s6A6piKVUqrJbjSrPk9zdLStRk9UZ6REdebWoUOHwu4CGYR5IVXMCulgXkgV\ns0I6mBdSxaxQ1CgNSEkpC1LKvwHgMQB/D8BjUsq/KaX8fqC966LZbIa5+YGozs1h/cYNNE+ebJsl\nFdUZKVGducVLnAYrqgORvWJeSJVJWYnb69REJuWFwsWskA7mxV9xfr9kVihqtIowSSnfllK+IqV8\nO6gO6dgLA1LA9klRFItoTExEbkaUU1Rnbj148CDsLsRaVAcie8W8kCqTshK316mJTMoLhYtZIR3M\ni7/i/H7JrFDUGL3mbWhoKOwuDIRVR6o+NRW5GVFO1bm5SPZxfHw87C7EmjUAGbWByF4xL6TKpKzE\n7XVqIpPyQuFiVkgH8+KvOL9fMisUNUZfpm5rayvsLgxEVGcdmWRlZSXsLsRaVJeQ9op5IVUmZSVu\nr1MTmZQXChezQjqYF3/F+f2SWaGo6TogJYRICCH+lhAiPYgO6UgkjB5PU6ZyUozzWmc/7Nu3L+wu\nkEGYF1LFrJAO5oVUMSukg3nxx174PsWsUNR0HdGRUjYB/DcpZW0A/dGyVwakLMPnzuHg8eMYPndu\n121hrnU24eSdzWbD7gIZhHkhVcwK6WBeSBWzQjqYF3/EuXaUhVmhqFEd0XlJCPGRQHvSg3q9HnYX\nBmpoeRmiUsHQV7+6a/AnzGV9Jpy8S6VS2F0ggzAvpIpZIR3MC6liVkgH8+KPvVAmhVmhqFEtan4L\nwHNCiP8G4C0A0rpBSvlLQXRMRSpldE12bVvT0xj66lchpET20iUAaC3jG2Qx8czCAtJLS6jl86jO\nzRlR+O/w4cNhdyH2nLkwGfNCqpgV0sG8kCpmhXQwL/6I6sWZ/MSsUNSozpDKAviv2B6Ieh+AR2z/\n+U4I8YQQYlEI8XtCiH/udb9msxnE5iMps7CARLGIrY99DDKbhahUkL10KZRlcs4ZUSYU/iuXy2F3\nIfZMmCmninkhVcwK6WBeSBWzQjqYF1LFrFDUKE0xklL+k343JIT4AoCPAyhKKU/bfj8D4N8DSAL4\nDSnlJSnlXwCYFUIkAPwmgP/Lrc29NCBlfdmvT029N1OqUkH24kWklpexeeXKwPpiwowop1otciXQ\nYsfEXHhhXkgVs0I6mBdSxayQDuaFVDErFDVCStn9XgCEEH8FwNMAjkkpf14I8QEAGSnltxQf/zcA\nbAD4TWtASgiRBHATwI8CeBvA1wF8Ukr550KITwD45wC+JKX8Lbc2X375ZXnq1Cml/pvOvhzKGpyS\nAAQAmUqhMTkZi6VSQalWq8hkMmF3gwzBvJAqZoV0MC+kilkhHcwLqWJWSMe1a9e++dRTTz0Z5DaU\nZkgJIZ4G8CyA/xfATwH4eQCjAC4B+JhKG1LKl4QQjzp+/WEAr0sp39jZzu8A+PsA/lxK+fsAfl8I\n8d8BuA5IFYtFfOYzn0EqlUKj0UA+n8dnP/tZrKysYHh4GMlkEuvr6zh69CjeeecdSClx9OhR3Llz\nByMjIwCAjY0NHDt2DKurqxBC4KGHHsLq6irGxsbQaDSwubmJ8fFxrKysYGhoCAcOHMDdu3dx4MAB\n1Go1VCqV1u3pdBqjo6O4d+8eDh06hEqlggcPHrRu37dvH7LZLEqlEg4fPoxyuYxarda6PZvNIp1O\nY21tDUeOHMHa2hq2trYwPj6OW5/4BIY/+Ukkk0m8Oz6O9/2X/4LVRx+FfPddPPxnf4bbp07hwB/+\nIapjYyh99KNG7NMgn6eVlRV84AMfiNU+xfF5iso+3bx5E8ePH4/VPsXxeYrCPtVqNYyMjMRqn+L4\nPEVln8rlMh577LFY7VMcn6co7NPdu3eRzWZjtU9xfJ6isk+NRgPJZDJW+xTH5ykK+/T666/jkUce\nidU+xfF5iso+DYLSDCkhxF8A+Ekp5XUhRElKeUgIMQTg+1LKo8ob2x6Q+gPbDKmfADAjpfzZnZ/P\nAzgD4PcA5AFkAHxLSvlrbu299NJL8oMf/KDq5mMrs7CA7KVLEJUKZDaLyoULnCnlUCwWkcvlwu4G\nGYJ5IVXMCulgXkgVs0I6mBdSxayQjkHMkFItap4DYC3Nk7b/q6330ySlfEFK+S+klP/MazAKAIQQ\nQWzeKJmFBWQWFyFTKchUCqJSiUVRab+l0+mwu0AGYV5IlWlZySwsYPTs2VAuiEHm5YXCw6yQDuaF\nVDErFDWqA1LfBHDe8bufBPBKn9u/jfYr9b1v53dK1tbWMD8/j+eff77PbpgrvbSEZKGARLkMmc1C\nZrNoctR7l7W1tbC7QAZhXkiVaVmJ09UwTWRaXig8zArpYF5IFbNCUaNUQwrAvwDwh0KInwEwLIT4\nCoD3A/jbfW7/6wB+SAjxGLYHon4S2zWqlBw8eBCXL1/uswtmq+XzEMVi6+dEoYChq1cxNjmJ6uws\nl+7tGNQa2L3MXnjf9NwxL6TKtKzE6WqYJjItLxQeZoV0MC+kilmhqFGaISWl/DaAvwLg1wD8SwD/\nCcAHpZR/qbohIcRvA/hTAB8QQrwthPgZKWUd2wXSvwLgLwD8FynlDdU2G42G6l1jqzo3h/UbN7B+\n4waqs7OQ2SxEvY5kocC/gNvwrwHBi9PMC+aFVJmWlercHMpXrxo/aGwq0/JC4WFWSAfzQqqYFYoa\n1RlSkFK+K4R4GcCb2C5mvqGzISnlJz1+/2UAX9Zpy/bYXh4WW9YXjMziIoBw/gIe1VkyW1tbYXch\n9uI084J5IVXMCulgXkgVs0I6mBdSxaxQ1CgNSAkhfgDA/wPgIwBKAA4JIf4MwD+WUt4KsH8dVSoV\nzM/PY2ZmBjMzM2F1I3JkLodmLtc2U2VQg0TWLBkAkRqQGh8fD7sLsVedm4vUc94P5oVUMSukg3kh\nVcwK6WBeSBWzQlGjOkPqP2O7sPmMlHJTCDEC4PM7v/9oQH3rKpvN7vkaUk7WgJBMpSDqdSTeeAOi\nXoeoVAAEP0gU1VkyKysrOHHiRNjdIEMwL6SKWSEdzAupYlZIB/NCqpgVihrVAan/GcDfllJuAYCU\nckMI8b8BuBdYzxQkk8kwNx9J1kBQ4o03IMpliM1NiGYTMpVCM5fD6Nmzgc6UiuosmeHh4bC7QAZh\nXkgVs0I6mBdSxayQDuaFVDErFDVKRc0B/BmADzt+9yS2i5RThFgFax/8wi+gMTEB7NTZah49ikSx\nGJui07o4eEk6mBdSxayQDuaFVDErpIN5IVXMCkWN54CUEOJfW/8B+A6ALwshfksI8W+EEL+F7ULk\nrw+qo27W1tYwPz+P559/PsxuRFJ1bg4yl4OQcnv53sYGEm+8geboKESxiMzCQthdHKj19fWwu0AG\nYV5IFbNCOpgXUsWskA7mhVQxKxQ1nZbsPeL42ZpWkwNQBfD/AdgXRKdUHTp0iDWkOrCW74liEclC\nAQAgs1kkCgVkL11q3S+KV8Xz29GjR8PuQmxF9cqK/WBeSBWzQjqYF1LFrJAO5oVUMSsUNZ4DUlLK\nfzLIjvSiXq+H3YVIs+o5ZRYWkFlcBADI4WEkX38dolLBvl/5lVbB8+TNm63HxNE777yD/fv3h92N\nWLJfWdH62fTBKeaFVDErpIN5IVXMCulgXkgVs0JRo1pDCkKI/UKIDwkh/pr9vyA7R/3JLCxg9OxZ\nAMD6jRuozs4iefs2xM7tolKBqFQghYCoVGJdW0ru1NIi/9XyedSnplDL51uDU6ZniXkhVaZlxXpf\n2GvLtqPCtLxQeJgV0sG8kCpmhaJG6Sp7QohPAfhVADUAFdtNEsAPBNAvJamU6kUC9yb7zJXq3BzS\nS0vbA1CpFGQ2C2D7CQSA5shIa4lfJ6Yuz+L01OC4XVlRJUtRxryQKtOy4nxfoMEyLS8UHmaFdDAv\npIpZoahRnSH1bwH8QynlESnlI7b/QhuMAoBSqcSi5h3YZ67Yf6587nNonjyJRLkMUa8jUS5D5nJK\nX05MnQFz586dsLuwJ1hXeTT9iy7zQqpMy4rzfYEGy7S8UHiYFdLBvJAqZoWiRnWKUQ3ACwH2oycH\nDhxgUfMOnDNX7D+nlpchs1k0jh+H2NxsXXmv20CCfXDLJCMjI2F3gQzCvJAq07LiNqORBse0vFB4\nmBXSwbyQKmaFokZ1htTnAPw7IcSRIDtDg5MoFiEqFWB4GDKXQ7JQUJr1FJcZMEREexXrSBERERFR\nFKgOSN0E8AkAd4QQjZ3/mkKIRoB966rRCHXzRrMv21BZwmH6F5iNjY2wu7BnmJ4VgHkhdSZmxdSl\n13FgYl4oHMwK6WBeSBWzQlGjumTvSwB+E8AVtBc1D9XQ0FDYXTCW27KN9NISUsvLSL76KgCgcfo0\nkq++CrGxsX1Fvnq99VjTHDt2LOwu7BlxKJrMvJAqE7Ni6tLrODAxLxQOZoV0MC+kilmhqFEdkDoM\n4JdkxK4TWd8ZIKH+ZRYXkSwUIFOp1sBTolCAsN1HZrPGfoFZXV3FI488EnY39oQ4fNllXkiViVlh\nHanwmJgXCgezQjqYF1LFrFDUqC7Z+08AzgfZkV6Uy2VeZc9vjQaao6OQQGswSgqBxsQEKhcuGPsl\nRgjR/U7kizjUGWNeSBWzQjqYF1LFrJAO5oVUMSsUNaoDUh8G8BtCiNeEEC/Z/wuyc90cOnQIly9f\nxszMTJjdiIXq7CxkNgshJZonT2LrR38UMpVCc3QUlYsXsX7jBgC0agO51QmKcu2ghx56KOwukEGY\nF1LFrJAO5oVUMSukg3nxT5S/z/iBWaGoUV2y9x92/ouUra2tsLsQG9W5OaSWlzG0vAxsbiJRLKLy\nuc8BeK+21NDy8vaV+XY46wRFuXbQ6uoqTpw4EXY3yBDMC6kyMSuZhQWkl5ZQy+cjd66OOxPzQuFg\nVkgH8+KfKH+f8QOzQlGjNCAlpfzPQXekF8lkMuwuxEqiWISoVJC8fXvXwJPMZiEqlV11pNz+HcXa\nQWNjY2F3Yc+Iw5dd5oVUmZiVuH/YjjIT80LhYFZIB/Pinyh/n/EDs0JRozQgJYT4tNdtUsov+Ncd\nCpN14m3mckgUi20nYut3zVwO6aUlNHO5XY+PcqHcRqMRdhf2jDh82WVeSJWJWYn7h+0oMzEvFA5m\nhXQwL/6J8vcZPzArFDWqS/acBc3HAfwggJcBhDYgxReUv7xOwNbvMgsLyF661JopZc2iMuGkvbm5\niSNHjoTdjT0hDl92mRdSZWJW4v5hO8pMzAuFg1khHcwLqWJWKGqUippLKc86/nsCwCyAbwTbvc6G\nhobC3Pyek15aag1GbU1PozExAVEsehb9i1JRwPHx8bC7sGfE4Sp7zAupYlZIB/NCqpgV0sG8kCpm\nhaJG9Sp7br4I4Gd86kdPSqUS5ufn8fzzz4fZjT2jls+jPjWFyoUL2LxyBTKXQ7JQQPbSJdcr71lL\nt9JLSyH3HFhZWQm7C3tKlAYje8G8kCpmhXQwL6SKWSEdzAupYlYoalRrSDkHrvYD+McA7vveIw2j\no6O4fPlymF3YU5zLPJq5HCQAUakgs7gImcshdf06RLHYqjNVn5qKxNItzqYbLNPrSDEvpIpZIR3M\nC6liVkgH80KqmBWKGtUaUnUA0vG72wA+42939PAqe+FKFIsQtp+tgSdRLCJ1/XprMMqaIRXmwMSB\nAwdC2/ZeZHodKeaFVJmalThcDdNEpuaFBo9ZIR3MC6liVihqVJfsPQbgpO2/Y1LKH5BSfiWwnimo\n1+thbn7Pq+XzaExMoDExgers7Hu1g2Zn2wajrGV7YS7junv37sC3uZeZXkeKeSFVpmYlSkuq9xJT\n80KDx6yQDuYlWKaXorBjVihqlGZISSlvBd2RXnCGVLg6XZXP+Xv74JR1n0HiXwNIB/NCqkzNiumz\nGE1lal5o8JgV0sG8BMv0UhR2zApFTccBKSHEVexeqmcnpZRP+dsldVJ26hoNktfyD6/BqUGr1WoD\n3yaZi3khVaZmxesPChQsU/NCg8eskA7mJVhx+iMOs0JR022G1P/t8fvjAP4Ftoubh6bZbIa5ebJx\n/uVg+Nw5DC0vY2t6GvXp6dZgVVg1pSqVysC2ReZjXkgVs0I6mBdSxayQDuYlWHH6Iw6zQlHTcUBK\nSvkf7T8LIQ4D+EVsFzO/AuBfB9e17niVgOhw/uVgaHkZolLB0PIyEjtFzpM3b6J58CCShULrSnzW\njKqgC+yOj4/73ibFF/NCqpgV0sG8kCpmhXQwL6SKWaGoUSpqLoQYE0J8HsDrAI4B+J+klP9USvl2\noL3rYmtrK8zNk42ziPXW9DRkNout6Wk0czlIISB2RuTrU1MA0FZQN+gCuysrK4G0S+5ML/7IvJAq\nZoV0MC+kilkhHcwLqWJWKGo6DkgJIbJCiF8E8AaAJwBMSynPSym/M5DedZFIqF4kkAZt88oV3L99\nG/Xp6e3ZUlJCCoHG6dO7rsQHYHvQKptFM5cLpD/pdDqQdsmd6VfwYl5IFbNCOpgXUsWskA7mhVQx\nKxQ13WpIfRfbg1b/FsA3ABwTQhyz30FK+cfBdK27jY0NzM/PY2ZmBjMzM2F1gzpILy1BVCrbM6Sk\nxNDyMobPnUOiWGxbnpcoFiEqFSSKxUD6MTo6Gki75M704o/MC6liVkgH80KqmBXSwbyQKmaFoqbb\ngFQF21fZ++cet0sAJ33tkYb9+/fj8uXLYW2eFNhnQLXqSl29ClGvQxSLrQEp+wCGvZ4UAF9qS927\ndw8jIyN97g2pMr34I/NCqpgV0sG8kCpmhXQwL6SKWaGo6VbU/NEB9aMnqVS38TQKm31gwhpoSrzx\nBkS5jMTKCsYmJ9E4fbptxtTo2bOtK/YBaLt6n5NqMfRDhw75vGcUZ8wLqWJWSAfzQqqYFdLBvJAq\nZoWixugiTM1mM+wukAar8PmDX/gFyGwWQkokCwUMffWrrXpDmYUFiGIRjYkJ1PL5rrWlVGsV8RKn\npIN5IVWmZsX0Cw+YytS80OAxK6SDeSFVzApFjdFTjDggZabWjKnFRSRWVyHq9dagU/bSJYhKBY2J\nibbbvWpLqdYqevDggb87QbHGvJAqU7NiDeYD7rNPKRim5oUGj1khHcwLqWJWKGqMniE1NDQUdheo\nR9W5OazfuIHK5z6H+tQUKhcutAqbSyEgNjaQLBRag1VeA07WrKtuX6jGx8eD2A3qwOQZGMwLqTI1\nK7V8vu1KpzQYpuaFBo9ZIR3MC6liVihqjB6Q2traCrsL1IfMwgIyi4sQO7Ofavl8aymfHBlBc3QU\nMpXC1vQ0APQ1uLGysuJbv0mN6nLKKGJeSJWpWVEdzCd/mZoXGjxmhXQwL6SKWaGoMXrJXiJh9Hja\nnpdeWkKyUGj9u3z1auvfravy7SzXc1teolrQHAD27dsX4J6QG9XllFHEvJAqZoV0MC+kilkhHcwL\nqWJWKGo4IEWhqeXzbbOjgPeuyjd69uz28r2d2lLJV19FM51G8sYNjH74w8DwMESx2BrQ6jYglc1m\ng90Z2sV+hUXTMC+kilkhHcwLqWJWSAfzQqqYFYoaowek6vV62F2gPjgHLOwznuyza6yZVFKI7Svz\nvf46BAApROtqfN2USiWMjY0FtSsUM8wLqWJWSAfzQqqYFdLBvJAqZoWixugBqVTK6O6Tg31Znmtt\nk83N1mAUgO1aU7mc0iycw4cP+9xbijPmhVQxK6SDeSFVzArpYF5IFbNCUWP0mrdmsxl2F8hH3a76\nVDt/Hs2JCQCABCBTKWBzE2OTkxibnMTwuXOehc/L5XKQXaeYYV5IFbNCOpgXUsWskA7mhVQxKxQ1\nRk8xWl9fx/z8PGZmZjAzMxN2d6hPXjWH2gqaz84ivbTUqh+VvH0bolIBACQKhdbsKWc7tVrNdZs6\nhdFp7/DKC5ETs0I6mBdSxayQDuaFVDErFDVGz5A6dOgQLl++zMGomLPPnGpdqnx2FvWpKWxNT2/P\nlAK260pls64zrMbHx13btga70ktLQe4CGcYrL0ROJmcls7DgOauUgmFyXmiwmBXSwbyQKmaFosbo\nAamtra2wu0AD0BqEss1gsn63eeUKKp/7HBoTE2hMTKBy4QKqc3O7vmitrKy4tt1tmSDtTV55IXIy\nOSsckB88k/NCg8WskA7mhVQxKxQ1Ri/ZSySMHk8jn9iX+lkDUa0lfTdvIrW8jIfGx5F5/PG2+9mv\n6Gd9IeOyPf+ZuCySl8QlVSZnxX41UxoMk/NCg8WskA7mhVQxKxQ1Rg9ICSG634n2jMzCArKXgqJh\nmwAAIABJREFULkFUKpBCQAIQlQqGvvpV7J+cRPpb32oNiNjrUgFA6vp1JG/eBMBBKb+11QAz5Nim\n02kjB9Jo8NLpdNhd6JlX3T4Kjsl5ocFiVkgH80KqmBWKGqOnGDUajbC7QBHhHIwSUm7XlNr5992/\n+lfbZgHYl+rV8nnIbBaiUuHSlQCYuCxybW2Ny5lIydraWthdIIMwL6SKWSEdzAupYlYoaoyeIZVK\nGd198lF6aWl7MCqbxdb0NJKvvgqxsQEAaI6M4OjW1vYAw/IyEsUimrlc2+ObBw8CBw8aNWhiChNn\nYRw5coTLmUjJkSNHwu4CGYR5IVXMCulgXkgVs0JRY/SIDmdIkcU5eJAoFgEAyUIBsl7H/UQCh69f\nb82YsmZEJW/cAACIeh31qamOAydBLeGK89IwU/dtbW0NwwYOpNHgra2tYXh4OOxukCGYF1LFrJAO\n5oVUMSsUNUYv2ZNSht0Figj7lfjsNYusgafa8DBkKrU9GJVKYWt6evu2eh2iXofMZlHL5zteBt1q\nN7O46Oul0uO6NMxaRmnivvEKnqSKWSEdzAupYlZIB/NCqpgVihqjZ0gNDQ2F3QWKIOdsqfTSEo6v\nrrbdpz49jfr0NDKLiwCA6uwsqnNzGJucRLJQgCgWd82OsdoTxWLPRbrdZgzFdWmYfRmlafs2Pj4e\ndhfIEKZnxdRZjKYyPS80OMwK6WBeSBWzQlFj9AwpjvCSG/tsKevftx99dHsmlBAQ9TrSS0uozs1h\n/cYNrN+4seuLWGJ1ddcMqFa7s7M9F+l2mw1l768OazbX8Llzvs7Y8otVzLxy4YJxX3RXVlbC7gIZ\nwvSsxHWGZlSZnhcaHGaFdDAvpIpZoagxeoZUMpkMuwtkiOyjj6I+NYVmLodEseg6mGQN6MhUqm3Q\nyrrNPoug11pT/cyGcrZrfZG0liUC+jO2gmT1xfqiG6W+dcO19aTK9KzEdYZmVJmeFxocZoV0MC+k\nilmhqDF6QIpIVfPv/T2UP/WpjvdJLy0hWSigMTEBmcu1akrt+5VfgSiXIYBWEfTq3JzrwJNVN8lr\ngKifK87Za2NV5+ZaXyA7DbKFzdlnU3Cwm1SZnhUTr4JpMtPzQoPDrJAO5oVUMSsUNUYPSPEqe6Rq\nfX0dhw4davudc0DJrfaUKBaRKJdbj7HPnLIGW5I3biCzuIjq7KwvdZO8Zlg5+2fCF0lTZ1+45YXI\nDbNCOpgXUsWskA7mhVQxKxQ1Rg9Isag5qTp69Gjr39aAjygWkSwUAOyevWMNNjVHRyGFAKSETKch\nDx9um5lk1aRKFgqtQSQAfRUI9ppVZMIAlJOJfQba80LUCbNCOpgXUsWskA7mhVQxKxQ1Rg9I1ev1\nsLtAhnjnnXewf/9+AO8N+DQmJtqKk1u/F8UixMbG9mDT5iaElKhPTaF89Wpbm4liEUJKyFQKzaNH\nlepLqTB1VlGc2PNC1AmzQjqYF1LFrJAO5oVUMSsUNUYPSBGpklK2/u01i8n6fdsyPSk9l991mg3V\nz6XUTZ1VFCf2vBB1wqyQDuaFVDErpIN5IVXMCkWNMDmUL7/8sjx16lTY3SADPHjwAPv27VO6b2Zh\nAZnFxe1ZUiMjqM7Otg0QqQw2jZ4925qFZZHDw0jevo2t6WlsXrnS3w5RoHTyQnsbs0I6mBdSxayQ\nDuaFVDErpOPatWvffOqpp54MchuJIBsP2tbWVthdIEPcuXNH+b7VuTms37iBtVu3sH7jhmd9qeyl\nSxg+dw6jZ88is7DQdp9aPo/61BQAIFkobP/3+usQlQqGlpd73o/MwoLr9lRvJzU6eaG9jVkhHcwL\nqWJWSAfzQqqYFYqayA5ICSF+XAjxH4QQV4QQf9vtPrxsJakaGRnxpZ3MwgJEsQiZSrUGl1LXryO9\ntNR2v+rcHMpXr6I6OwuZ2l4ZK9NpyGwWW9PTPW/fGgxzbk/19jgJcvDNr7xQ/JmeFQ5iD5bpeaHB\nYVZIB/NCqpgVipqB1pASQnwBwMcBFKWUp22/nwHw7wEkAfyGlPKSlPK/AvivQohDAH4FwB8Osq9E\nbtJLS0gWCmhMTEDmcmjmckgUi6jl87uW8lk/b50927pP0AXP91JBdK+rERKROr6OiIiIiCgsg54h\n9UUAM/ZfCCGSAH4NwP8K4BSATwoh7IWh/uXO7bs0Go1gekmxs7Gx4Us71lK8xunt8dT69PT2TKi5\nuV2zkzKLi0hdv47kq6+27tOv1swrj7a63R4n1nMRxOCbX3mh+DM9K7V8Ho2JCYhicdcsKc6e8p/p\neaHBYVZIB/NCqpgVipqBDkhJKV8C8I7j1x8G8LqU8g0pZQ3A7wD4+2LbvwHwnJTymlt7Q0NDwXaY\nYuPYsWO+tGMN+CSKxfbBp52lfI2JidZsqcTqKgAgsbra9oXO7Usev/jpC3Lwza+8UPyZnpXq3Bxk\nLodkobBrqe9eWgI8KKbnhQaHWSEdzAupYlYoaga6ZM/DcQBv2X5+G8AZAHMAPgbggBDicSnlovOB\nxWIRn/nMZ5BKpdBoNJDP5/HZz34WKysrGB4eRjKZxPr6Oo4ePYp33nkHUkocPXoUd+7caa2f3djY\nwLFjx7C6ugohBB566CGsrq5ibGwMjUYDm5ubGB8fx8rKCoaGhnDgwAHcvXsXBw4cQK1WQ6VSad2e\nTqcxOjqKe/fu4dChQ6hUKnjw4EHr9n379iGbzaJUKuHw4cMol8uo1Wqt27PZLNLpNNbW1nDkyBGs\nra1ha2urdTv3qfd9unPnDt7//vf7tk/vfupTWH/rLRyemMDq97+PRKmEx6pVvPmpTyH1yU9i5Bd/\nEW89/TQe/trXUHzySdTv3sXYgwe4c+cOcn/yJ0ik0yi9/TYOPniA1dVVZFdWMHH3Lt4qlZAplfbs\n8xSVffrLv/xLPPzww7Hapzg+T1HYp62tLQwPDxu9T7d/7ucw8qd/ivTp0yjeutV6nm7/3M/h0S99\nCd89fx5DxaJR+xTV7G1sbODRRx+N1T7F8XmKwj698847yGQysdqnOD5PUdmnZrOJRCIRq32K4/MU\nhX36zne+g/e9732x2qc4Pk9R2adBEFLKgWyotUEhHgXwB1YNKSHETwCYkVL+7M7P5wGckVL+fLe2\nXnzxRfmhD30owN5SXLz99tt43/veF1j7w+fOYWh5GVvT09i8cqVVP8peY8qayTM2OdmqQ7V+44br\n4/3krG1F3QWdF4oPZoV0MC+kilkhHcwLqWJWSMe1a9e++dRTTz0Z5DaicJW92wAesf38vp3fdZVK\nRWGCF5ngoYceCrT9RLEIUakgUSwCeG852eaVK23LyqwleY2JCVRnZz0fb7Ev5eu2rM/rdquWVWZx\n1yRDLhX0EHReKD7Gv/xlvoZIGc8tpIpZIR3MC6liVihqojCi83UAPySEeAzbA1E/CeCnVB5YKpUw\nPz+PmZkZzMzMdH8A7Vmrq6s4ceJEYO2rXt3OukpffWqqbZDKWX8qvbQEbG4i+Z3vQNhmMaauX0fy\n5k0AaLuSXy2fR2ZxEclCAWJnUKs1Q2unlpVXf3iFrd2CzgvFx92VFRzla4gU8dxCqpgV0sG8kCpm\nhaJmoANSQojfBvBRAEeEEG8D+FdSyv8ohPh5AF8BkATwBSnlDZX2Dhw4gMuXLwfWX4qPsbGxQNuv\nzs0pfRm1BqyauRxGz55FLZ/fNUg1evYsUtevQwIQAKQQrcclb96EqFSQXlpqu7Kfk/V7mc1C1OuQ\n2WzbjCxnf4K4Up2dacsGg84LxcfID/xAYFd7pPjhuYVUMSukg3nxl2mfW3UwKxQ1Ax2QklJ+0uP3\nXwbw5UH2hfaWRqMxkO10ewOzBq6sOlKiWGwNFNkHh6yBJykEtj72sba2MouLrUu0OweUrG1b3GpY\nufUnaKbNxBpUXsh8Dz7+cZSfeSbsbpAheG4hVcwK6WBe/GXa51YdzApFTRSW7PWMLyhStbm5GfiV\nAjILC8heugRRqQBQewOzltOVr17F8LlzyF66hK3paVQuXGgb2LIPdAFAslBAZnER6zdutG3H699u\nfXUbOAvqL0LNXA4ym0Uzl/OtzSANIi8UD8wK6WBeSBWzQjqYF38NagVBGJgVipooFDXvWaVSwfz8\nPJ5//vmwu0IRNz4+Hvg20ktL27Oastmub2DV2dnWcrrspUvILCxgaHkZolLB0PKya9up69e3a0vt\nEBsbPRU5t7dnbbvTdvzgVbQ9qgaRF4oHZoV0MC+kilkhHcyLv6yLE8VtdhTArFD0JC9evBh2H3p2\n+/bti8888wwef/zxsLtCEXf79m0cPHgw0G2IchmiVEL1M5/p+gbWOHMGMp1GankZolZD4rXXUH/y\nSSQKBWxNTyP1jW8gdf06RKmE2jPPtNqu5fNoPPkkRKkEbG0h9frrrfs47b9wodWGKJex/8IFiHIZ\njTNnIMrltm1XP/vZtn2o5fNIvfJK22P8ODa1fL7vtgZhEHmheGBWSAfzQqqYFdLBvJAqZoV0FAqF\nwsmTJ389yG0YvWRPCBF2F8gQQ0NDgW+jUz0mt6Vw1bm51pXxAGDzypXW/Zq5XFuhZGfbbsv4nOzT\njZ3Fz9NLS9sztMplJFZXkVlY2NV3t8f0upRvULWq/DKIvFA8hJGVOBdbjTueW0gVs0I6mBdSxaxQ\n1Bi9ZC+ZTIbdBTLEgQMHQt2+11K46uzs9tX1dgqbW/dLFIsoX70KABg9exbD5861Lb/r9IXUWqoH\nvDcYZR/gsrYhKhXIVAqiXm/1y97PWj6/6zH9LOXrtIQwasLOC5kjjKwEtbSWgsdzC6liVkgH80Kq\nmBWKGqNnSN2/fx/z8/OYmZnBzMxM2N2hCLt79y6Gh4dD275XcUTnzCG3q+alrl/fns1kK5be6eof\n1qwrUSxC5nJIXb+O+tQUmrkcspcuoXH8eKu9xsQEZC63a7vWQJez7Vo+v2tmlupMDZOuWBJ2Xsgc\nYWRlUMVWORPLfzy3kCpmhXQwL8GLy3sis0JRY/SA1IEDB3D58uWwu0EGCPuvAapL1rwGqJq5HBLF\nouvAUac3SPv9rCsAJr/zHWx97GOt9qzH2JcLWjMv7MsLrX+Pnj3btpRPdZDJ2XeVN/aw3vzDzguZ\nI4ysDGoJrEmDyKbguYVUMSukg3kJXlzeE5kVihqjB6SklGF3gQxRq9XC7kJPrDc8t/pTbgNE1bk5\nVGdnkVlcbLVRvnoVmYUFyNT2y11I2bYkENge+LEGrJyzsZzcZmeozNRwfom2z+TyemMP683f1LzQ\n4MU5K3G+7HVY4pwX8hezQjqYl+DF5T2RWaGoMbqGVLPZDLsLZIjKzgCLibrVi7HXegK2B25kLodk\nodBWGypRLqM5MdF2X/s2rMEoa0lfM5fr2rdeL4ubWVhAYnW16/1q+TwaExMQxeJAa0+ZnBcarLhm\nxTlj0oTabyaIa17If8wK6WBegtfrZ96oYVYoaoyeIcWrBJCq8fHxsLvQs25/kfGq9eT1f7c30mYu\nB5nNYmt6GoliEaJSQaJY3HU/+0yq5M2bre3rSi8tQdTrkNlsq6C7177ZB+QG9SHA5LzQYMUhK25L\nY73q11F/4pAXGgxmhXQwL6SKWaGoMXqGVKlUwvz8PJ5//vmwu0IRt7KyEnYXeqbyFxnnFeycj+nU\nRmZhAUPLy61BKGvGVTOX23Vlv9ayPgCiUmlbGqjD2kblwgWl2lNus7qCZHJeKDhuV4qMQ1bcZmFa\nr7ut6emBv/7iLA55ocFgVkgH80KqmBWKGqNnSI2NjbGoOSlJp9NhdyEQ1swGUSy26jHpFgq3L9ez\nP641E+rGjdbAk3U/mUpBlMsQGxsYPXtWqei4c7uqsy3c7ht0sfO45oX641bTLA5ZcZuFOajC6XtN\nHPJCg8GskA7mhVQxKxQ1Rs+QSiSM7j4N0OjoaNhdCIT9C3J9agoAOtabsj/Guo/bbKXWIJUQEPU6\nkoUCAKAxMYHmwYOof+QjqE9NQY6MdN2e13b74WdbFvvsl7jmhfrjNlsvDlmJS10ME8QhLzQYzArp\nYF5IFbNCUWP0iE69Xg+7C2SIe/fuhd2FQFhfkKuzs9tfKGdnuy6vcSuC7vwy2lqu87GPoTExgcbE\nBKqzs61i6dZV+lS252zTbSmgcxlUJ5mFBYhiEY2JiZ6WEXltzxrkyl66hLXnnuurLYont9dKXM8t\nFAzmhVQxK6SDeSFVzApFjZBSht2Hni0vL8vJycmwu0EGWF9fx9jYWNjdiDSVZXD9LpWz16GqT02h\nfPUqRs+eRer69dbP3ejev9v23W67NzWFrMI+9tMXigeeW0gH80KqmBXSwbyQKmaFdFy7du2bTz31\n1JNBbsPoGVLNZjPsLpAheInT7lSWwfW7tMdZrwrQL1re7f6dZi25bd9SnZtD5cIFyGwW7x4+7Hoc\nnG2HUXCdooXnFtLBvJAqZoV0MC+kilmhqDG6qPn6+jrm5+cxMzODmZmZsLtDEfbgwYOwuxB5boWN\ng9yG/QqAXlf/c5uN1a3Yslvh6U7bt7N+t1EqoXboUNe2dftO8cNzC+lgXkgVs0I6mBdSxaxQ1CQv\nXrwYdh96trq6evH8+fN4/PHHw+4KRVw2m0UqZfT4a+AaZ86g9swzaJw5E+g2RLm8PVOpXPbclrV8\nLvn220i89hrSv/d7bffPLCxg/4ULrm2IchmiVEItn991m8o+Ns6cwdBHPgL8tb+26zavtp392X/h\nAlLXr2/f95lnVA/PrmPgtY9RZ3LfdcXl3LKXnrMwxSUvFDxmhXQwL6SKWSEdhUKhcPLkyV8PchtG\nL9nb2toKuwtkiJWVlbC7QDucSwPdlthlFhe3l9btvGE6lxJ2Wl5oLSsE0HPBca+8eC1Z9LpyYT+z\nzYK4kuCgmNx3XXE5t+yl5yxMcckLBY9ZIR3MC6liVihqjB6QSiSM7j4N0L59+8LugpEyCwsYm5zE\n2OQkhs+d6/uKcm5XyOv0Rbh59Ciqs7NoTExAFIuetZvcBrXsV83z6rNXvSndvKhcubDbNru1qfv4\nMO2l2lpxObfspecsTHHJCwWPWSEdzAupYlYoaowe0eGAFKnKZrNhd8FI6aUlJAsFJAsFDC0v9z2D\nwmpP5nKozs25DlABQHV2FvWpKVRnZ1Gdm4PM5ZAsFFrbdg74uA1q1fJ5yGwWolLx7LPXYJhuXnSK\nvavORLG3aR+EMmEmS7/F703CcwvpYF5IFbNCOpgX/5nwB8BeMCsUNUYvIK3X62F3gQxRKpV4idMe\n1PJ5iGIRANA4fRqJYrGvGRTOwunWAFV9aqpj4fJuBdetflqzqOyPt4qLq/THUv7KV3D82WeVipLr\nFjDvpXi8vZj6IIrPk7q4nFs6XQyA/BOXvFDwmBXSwbz4L67vi8wKRY2QUobdh54tLy/LycnJsLtB\nBtjY2MDIyEjY3SAHP69GN3r2LFLXr6M+NdWqIdWr5k//NA4/95xSW35u18ugr9rHqwSqi8u5xXrO\nm7lca+CZz73/4pIXCh6zQjqYF//F9bMQs0I6rl279s2nnnrqySC3YfSat/v372N+fh7PP/982F2h\niCuXy2F3gRQ4p0d3mi7tvM1eA8e6bfjcuVYNLGcbndq+93f/7q62vKZsd6pn5dd0b+cSuKCnkZuw\nLFBXUMcsjHNLEPtiZSxRLCJ1/Toyi4uxXKoQNr4XkSpmhXQwL/6La/kBZoWixugleyMjI7h8+XLY\n3SAD1Gq1sLtALpzTobv93Omx9mV61qwlq4YUAGQ//3lkFhdbdansj7fas/4K9u6P/AjKP/VTbW2J\nYtH1L2XO5YXOdnud7t1pxoqf08jd/gIYx2WBQU29D+PcEuQyAus5FzsDU0FsYy/jexGpYlZIB/NC\nqpgViprkxYsXw+5Dz27fvn3x6NGjYXeDDJDNZpFKGT3+GjmZhQXsv3ABolxG48yZntoQ5TJEqYRa\nPo/GmTOePzdzOex79tm2bTnva+9TM5eDHB1F44kngEoF4sEDiHodiY2N7cc88wxEuYzEa69BbG4i\n9Y1vIPX66xClEkS5jEO/+qsYunu3rQ9ic7N1n9ozz6jt0xNPePbf6xhav0u9+CJSr7+ORKGA5Ntv\nt23Xue/9PBf7L1zYHnCztW/td3ppqa/nN0rc8uKHMM4tQe0LsP3c1555Bmg2A9vGXsb3IlLFrJAO\n5oVUMSuko1AoFE6ePPnrQW7D6BpSL7zwgpyamgq7G2SAW7du4cSJE2F3I1YGUTvJua3GxARkLue5\nnt+rT5mFBWQWFwGgNUPKq9300hK+c+oUfvDP/7ytjeFz5zC0vIyt6WnUp6e16grYZ2xVLlzYtX17\nf519Uqnp089z4VUjQfWYR9Eg6z7w3EI6mBdSxayQDuaFVDErpIM1pLpIJIzuPg0QL3HqP2ftpH6o\n1mkC0FbbqFMdKbvq3BzWb9zA+o0bu67eV5+aQnV2tlUnoJbPI7u52bpin7WdoeVliEoFiZ2le1Y/\nVGpG1fL51vJBe99FsYjGxESrVtXY5CQSb7yB5uho63GbV660+ubWvrMd3WPtVSPB65hHkXOfBlkD\ni+cW0sG8kCpmxVxB13l0w7yQKmaFosboER0hRNhdIEOk0+mwuxA7fhZ77DaA0NrW7GzbgJPzcfY+\nqXwgtO4PoHXf6twcMkIgWSi02k0vLUFUKpDZLJq5XNsAkL0PXvtRnZtD5cIF1Kem0Mzltre1uIhk\noQCZy7VqWiULBSTKZYh6vW37wPYH3OylS7sG5LKXLrW10++x7nbMo8i5T34Olnbddp/nljC+uOgy\noY+m4HsRqWJWzBXGhUGYF1LFrFDUGD0g1Wg0wu4CGWJtbS3sLlAHtXwezdFRJG/cwPC5c573s2Yw\nWTOTavk8GhMTbbOZLF4fCN2+XDvvu/pjP9Y2oGENcFQuXECiWGwbALL3oZnLeQ6EOK9iBmDXNhoT\nE2hMTGwvC3S0Yx8Usw/IOX+ncqx1BmuifJUZ67l0HvdB9rnfc0tmcbF1VbuoCHPGWdzxvYhUMSvm\nGuQfRSzMC6liVihqjK5oxoJspOrIkSNhd4E6qM7NIXvpEkS9jqGrVzF69uyu+j9WXSCxMyAEAOWr\nV1tfljOLi211oryuFOe8QpnbkreDP/ZjKD/9dOuLeS2f31WbyZrpVMvnIXO57RpRuVzXGk72fnW6\nWp/K47za6sTajn3feh24sddqAtqvVKj7+F76YD2XftQxc/ZFtW/9nFsyCwtIrK72/PigOF8jcbzq\nYlj4XkSqmBVzdXs/DwLzQqqYFYoazpCiPYF/DYi+relpyFQKaDZdZ2PYvyS7zSxKrK4iWSi0lrp1\nqo1kn1VlLZWzL3mz8uI2e8U508katPCaqaVas6kb5+wwt7Y6La3yc9aLVe8q+/nPd12u2Em/M2/8\n/Cu0sy+qfevn3JJeWoKo1yGzWVRnZ3tux2/NXK61PBWI9iw50/C9iFQxK6SDeSFVzApFjdEDUuVy\nGfPz83j++efD7gpF3NbWVthdoC42r1xBY3ISotl0XYJmfUlunD7d9uW4OjcHmcttf7FPpdAcHe04\nMAQAMpdrDVy5DWp0yovbMjGrD866T0D3gQ2d+jxWW9lLl1zv37r985/H2OQkhs+de6/gumNwTWUw\nx6tv1iCeNZhSy+e1B4d0i7G78XOgxNn/TvtjPy79nFusbWztXLUxKjWaEsViq4C/Jeg6UlGsU+VH\nn5xtxOG9KIrPVRzFISs0OMwLqWJWKGqMXvN26NAhXL58OexukAHGx8fD7gIp6LQEzetLcnppqW1w\nyD4AZG/DPsPKuR3ntqy8VGdn25ak2dtxLhOr5fMQxWJrMMy5rM6+xM+rX9bPXsvEavk8kjdvtq7W\n5zb7y7o9WSggcf8+RKXieqxVlhRYhddFsdh232YuB5lKQWazePALv9A2OKjKGtSqT01FYuaN83h0\nOj7252z8n/7TXberLveztjF69mzbErmwuS3Rcy7j81vQ7ffCjz4524jDe1EUn6s4ikNW9qp+l6P3\ngnkhVcwKRY3RA1Ic4SVVKysrOHHiRNjdoC46DQJ0+pLsVkPIup990MpaVgegY82hlZUVvP/3f9/1\nA6VXPR3rSnnOwTDnoEPy5s3W753tdfuiZ/3OOUhmvz21vIyhr34VkBKy0UDTNgPJ+TjVD82J1dW2\nQbZEsQhRr6Nx8qR2vahmLodElwLwUWd/ztzOLbpf2KNWo8ntdajSx36+hEXtGAD+9MnZRhzei6L4\nXMVRHLKyV4UxaMu8mCmMwUtmhaJGSCnD7kPPvva1r8nTp0+H3Q0ywN27d1nEL4ZU3sitgaD61BQA\nKBXBvnv3Lh57+mntgtmd+pNZWNgu3F6peLbpxwcT+2wbAB37bz82Xv1x63Mv/bS2JbPZjsfANG7n\nljA+YEZBtzwR34tIHbNirjDeA5gXM4XxvsmskI5r165986mnnnoyyG0kL168GGT7gfre9753MbdT\ndJWok2q1imw2G3Y3yGeNM2dQe+YZNM6c8byPKJchSqXtwuNPPPHev3cek1lYwP4LFyDK5dbvqtUq\nsltbu+6r0h9RLm8Xq7a1Z90m0+mObTofn3rllV1960aUy0i89hogBJqHD6N2/rzrYzMLC0i9+CIg\nBLC1BTSbu+7n1We34+52HJ39EqUS5L59EJUKGk88ga2nn3btl+4+B8mrP9bvH+zfj/QP/3DbY1Ry\nGUdtr7U9tu+q+F5EqpgVc4XxHsC8mCmM901mhXQUCoXCyZMnfz3IbRg9Q+qFF16QUzuzHog6uXXr\nFqenGmLQf1l0++uUMy86fVL5a5dz+Zq9Xd0ZXSp9c9uetaSgnxlL9m1b7TUmJiBzOc/+WPvndT/7\n7Zbq7GzPWeg3T17Pp/X7v5ifx/gv/VJPfYuzvTpLrBu+F5EqZoV0MC+kilkhHYOYIWV0DamhoaGw\nu0CGOHr0aNhdIEWDqL1g/7LsVg/FmRe3Pnl94ba35zXw5BwMsm/HrbaSV60W+5I6e98rfkSuAAAg\nAElEQVScnNtL3ryJrelp1Kem2vqmO4jgViheFIsdn79O97NfeQ8AkoVCazt+FJW2fnbun9d+d7oS\noPXzkRgVB/VzEClqha+jMkDG9yJSxaxE53VrAuaFVIWRFb6WqZNE2B3oR71eD7sLZIh33nkn7C6Q\nolo+H3ixa2fxcWvmi3Upc2de3PpktZG9dKnt8udWe/aBp6Hl5db2rPYaExOQqdT24MvmJrIXLyJ1\n/ToSxWLr8fa2vPZDVCqQqRQSb7yBscnJXZdizywsIPHGG9vbOn68NSg1tLyMWj6PzStXdvXX6qe9\njbHJSRw4caJtG/bj0urr7GzH5895P+vqg9aHlWShAJnLoTo7i8bEhOtgUDf2y9Lb++i1f51+3+qP\n4zmozs2hls/j/q1bu465qbyOgxv7Mbb/2zKI17EOnX0LkunvRW7PNQXD9Kz4wfm6Zf68MS+kKoys\nROU9mKLJ6BlSRKpMXpq613S60p5ful3WXv74j3ftUy2fR/LmTYhKxXMGj9W+fRaS1Z412FE/eXK7\nHSkhhdD6Am+fbZQsFICd+lP2vqSXlpAol7d/GB5G5cKF1qwq5329rp5l9RVA2zbcjovq8+e8+qBz\n+/3kwP5cug3oec12Uv29fTt4//uR/pM/icVf/HSunuaceeacDTWI17GOqFwZzvT3oqjNfIsz07Pi\nB+frlvnzxryQqjCyEpX3YIomo4ua3759+yKnqJKKTCaDVIrjr7TNreCovbBk8q//dde82AtcV+fm\nPIuUW/drPPEEGk88gdQ3vtE2TdkqKC5HR1E7fx4AkCgUsPXRj6Lyy7+stA/26c+NJ59E8pvf3C5M\nfvp0W7Fwq8i5ta1O/fYqxKpaKN2rn92KnSdeew1icxONJ5/Eu88+q13Y07kNryKhXvun+3t73/e/\n+irkj/1Y332OAp1CvN0uFhA1QRYZ1nkuTX8vYuH6wTE9K35wvm6ZP2/MC6kKIyt79WIvccCi5l2w\nqDmpYgE/0uGVF9XL81r3k9ksmgcPbs+Esj2m38v82mtHWW0EfengTuv/VYq0y2wWW9PTu26336db\n37364PV4nZoFKvvndluv55YwLvUcNYOqKRH0dnSey730XhSHmiFh7sNeygr1j3kJxqDPAYPYHrNC\nOljUvItkMhl2F8gQIyMjYXeBDOKVF9Upx/blfDh40LNIea9Tl1u1o7LZXW0FNR2601IJtyLt1n3s\nx2Joedm1ALtq37360GmpoeryDpX9c7ut13MLp68PbvlN0NvReS730ntRHJZXhbkPeykr1D/mJRiD\nPgcMYnvMCkWN0Uv2vve9713M5XJhd4MMUKlUsH///rC7QYbwyovqlOPGmTPvLYs7f37XMjTVdjIL\nCxj+9KeRefbZ7eV4jmUL1c98pvWBpZ/p0CpLjjotlRh67jkkCoXtoumZDMTmZqu/9mPReOKJ7aWD\nikvpOvUh9corbcsnrce37YvHUjK3/XXbP+t+zVxuV7+t2zb370fmh39Y+5h22ucoLufrlde+OJet\nBrmfQS/z0Xnt7aX3ojgsrwpzH/ZSVqh/zEswBn0OGMT2mBXSwSV7XfzBH/yB/N3f/V3MzMxgZmYm\n7O5QhHF6KumISl7sBb+DXNrV7/Ix++MBDGQpmlefVfZFd+ml2/2s2/5ifh7jv/RLPW+jn/6ZoJ/n\nKY6icm6h6GNWSAfzQqqYFdIxiCV7Rs+QWl1dvXj+/Hk8/vjjYXeFIm7fvn0s9kjKopIXezFxbG21\nzZLqxmt2ldd27DOPVB9nbadtpsvOrKRmLod9zz7r+ywf56wl53a8/rpoPW7oueeQePNN15k5qsXR\n7ccs9ZGPYN+f/mmr7VZf+ij0HbWZJfZjp/uceu1L1PaxF/a82GfsddqfIM8tQc2si9OMPZNYWeHx\nHyxTj3fYn1tMOm4m9TUIYWeFzMIZUl28+OKL8kMf+lDY3SADvPXWW3jkkUfC7gYZImp56WU2Sa+z\nq3QfZ+9bLZ9vFeO06iD0Uqi8U1FP57Hw2r6zLVEsIlkotOpcdZr1JLNZVC5cUOrPW2+9hVOf+lRb\nDS2rL5nFRYiNDciREVRnZ42to2M/LlbtMuv4RLlwda+F6lXb6WVmYJDnlqBmne3V2Wxhs7LC4z9Y\nOsc7Sue/sD+3mJRTk/oahLCzQmZhUXMinwghwu4CGSRqeemlAHYtn4coFgN/nL1v9mKc/RQq71TU\n06uIu3P7zrYaExOoT021XQnQbV+sAuzppSWl/gghWm3Z204vLSFZKGzfqVxua8809v2zCtNb+xPl\nwtW9FqpXbcct493yHuS5JahC+SzAHw4rKzz+g6VzvKN0/gv7c4tJOTWpr0EIOytETkbPkHr55Zfl\nqVOnwu4GGeDdd99lAT9Sxrz0xv7XYmD7w3ozl0Py1VcBAI3Tp1sDNvbZR5nFRQBozSKy2rEGeLC5\nieTt22gcPw4MD3v+NbpTW6p/wdadsWVlxXkfqy9iY6N1X9WZUn7N7AmC237qHC+3tuwDebptdLqv\nV1/tmdR5Ptz6qcLej9LP/AzPLS6CynXYr5d+8H0o+qKUL+aFVDErpGMQM6SMHpB64YUX5NTOVHmi\nTljAj3QwL/1zLvMC4LlcrlvhaykEhJSt//tRsNwvVlZUCqAD+ssgvdqK8lID3aLxbrnQ2U8/tufn\nfnV63Ktf/CLPLS643HA3vg+RDuaFVDErpGMQA1KJIBsPWjKZDLsLZIixsbGwu0AGiWteMgsLGD17\nFpmFhbafh8+dw9jkJA6cOIGxycnW7f2o5fOoT01ha3oajYkJNCYmsDU93aqv5HZfr983fvAHIVMp\nyKEhNCYmWvdz7o9XW/b7uT3G7biMTU7uOhZuj7WyYm23mcu59sk6Bm6325+H0bNn0czlXI9Hp2Pl\nB7f9s9+mmpFmLgeZzaKZy7U91v64zMICRLHomYtu+2lvs9PxsrNnslvbbseh12Nvf1xczy2q/D62\n3Xi12ynrUbHXs0LbnO8PXpllXrz1+3o34Xyhg1mhqDF6htTXvvY1efr06bC7QQa4e/cujhw5EnY3\nyBBxzYtXQXD7LCZArwj6oLjNdNCdGeNVfNrruADouj1nVrr1qdN+9Dpzxy+qs7yAzhlROZ79zlzp\ntWi/TttBPA9xPbeoisqMpaj0o5O9nhXapvr+wLx48+v9JsrnCx3MCukYxAyp5MWLF4NsP1Bvvvnm\nxfHx8bC7QQZYXV3FwYMHw+4GGSKueRHlMkSptD1j58yZ1s+NJ54AKhVACDQPH0bt/PlQL4Xsdklm\nq6/NXA77nn12+7YnnmjtT+qVV9oe09aG7X5t/3a0bT8uiddegxwdRfOxx9q2l3jtNYjNTaDZROPM\nGayuruLYl77U2pa4dw+JQgGNJ57A1tNP79o3q217G87nwX6bdTyGP/1pZJ59tu33fnMeB7d+d8tI\nZmEBqRdfBIQAtraQeuklJN58c9fjOm1Lta/Wc+TWl26X9bZuH3ruudbzm3rlFQx/+tNI3LkT2Osg\n6HNLmJczV9l2v8+7X6LSj07i+j4UZkZNZH9/kKOjnpmNa1564cyYH+83UT9f6GBWSEehUCicPHny\n14PchtEzpFjUnFRVq1VkMpmwu0GGYF7C1UsNJa9ZOf3+RbNbu9VqFUdmZjrOwOp3/4KcDeQ351/z\nw5r1pTpTzd4/AIEf56DPLWH+JT9uswjCFtf3IeYkGHHNSy+Ysc6YFdLBGVJdvPHGG5whRUpu377N\nvwaQMubFW1B/3faa0eSc+eT1l8pdM49cZkL1wjkzq5nLtf2V+vbt2ziYSHScgWXfx04zcKzZRc5Z\nP91mA0WJ86/51v+buRyyFy+6zvLyypT9984cqPbD6/l3nXWwMwNO5Tj3+jqwzi1eM7R63V/V/dah\nOsus02uzl+Pk9pgoz6oJqm/OrERl392yu2tWaofXtzMnUds/INp588LPLdu83keD2E6vGQk7X8wK\n6eAMqS5efPFF+aEPfSjsbpABvv/97+Phhx8OuxtkCObF26CvhhXE1db87J9OVrrNdIrzX3U77bvK\ncw90n3k2SL0+V1ZeOs3Qisr+9lIPrZf7qDwmyq+NoPrmzEpU9t2rplGv5/Co7R8QzT51w88t2wb1\n3PWznbDzxayQjkHMkEoF2XjQeJU9UnXgwIGwu0AGYV68WVerCuJqWG7t6mwvqL51alsnK7V8HqJY\ndG2n0zbioNO+6zz3UTk2vT5XVl6sxzVzOSSKRc99DHN/u+2jyjHo5Th1et6j8vzbBdU3Z1aisu9e\n2e31HB61/QOi2adu+Lll26Ceu362E3a+mBWKGqNnSL3wwgtyaucviUSd3Lp1CydOnAi7G2QI5sUf\nmYUFpJeWUMvnUZ2b6/h7r/t6PUb3/l63AejYTrd2b//u7+Kv7Czls76cddqeyjasx2QWFwEAjdOn\nPdsOk+rz2Mv+9/I46/6dngvV9nu9rRv7uUU30zr8bCsoJvQxTF7vQzxueoI8XlF6LtzyEqX+RVU/\nnyVMxc+4pGMQM6QSQTYeNM6QIlX8awDpYF78kV5aQur6daSXlrr+3uu+Xrfr3t/rtm7tdGv36Je/\njNT16xhaXlbanqr00hKShQKShULHtsOk+jz2sv+9PM66v+rxUs1Iv/2ys59bdDOtw8+2gmJCH8Pk\n9T7E46YnyOMVpefCLS9R6l9U9fNZwlT8jEtRY3RR81u3bl08duxY2N0gA6yvr2N4eDjsbpAh9nJe\nVIttqtxv6LnnkCgU0HjiCWw9/XTr927Fj1WLUFu3697feZtVAL352GOtotapV17B8Kc/7Vp42+2x\naDZROnUKo9//vuslua1j5CyE7nYM3Yq3WwW2608+2fFy34Nm3y9UKu8Vkvd4XlQLbXsVP7YKynfL\npFuhcudx9Sqe75aRXm4bPncOw/PzSL7ySlvmLevr63joC19wzYVXu70UwLW3pVIgPcgiu15t6xRg\nD7sIsCo/++n1PuQ8B/VaAF+VKcfei0rOet1HPy8i0C+3vPTTP9Ofd1X9fJYIUpDHv9Nn3F63u1fy\nshexqHkXXLJHqjg9lXTs5byoFtsMqqDxoHQqnAy4Fx13e+yrX/yiZ1Z0ivkC4RexVhVUv/0obN+t\nzaAzefD4cYhKBTKbxf3bt3fdfuvWLZx+5hmtPvTb57Bfq360HeVziZ2f/ez0PjTIc4cpx74fcdhH\nvz+3xOGYmCzI4696btHZLvMSXyxq3sXQ0FDYXSBDjI+Ph90FMshezotqsc2gChoPilfh5E5Fx90e\n2ykrvRTzjeKxcgqq370WRdZpM+hMbk1PY2h5GVvT0663j4+Pa/eh3z6H/Vr1o+0on0vs/Oyn7rkl\nqGNjyrHvRxz20e/PLXE4JiYL8vj387nF78cRARGdISWEOAngfwdwQEr5E1734wwpUrWXZ7yQPuYl\n2nSLkgdZlNTvrDgLc6sW6B60oI5p0O2qHE+dIrcAPIvPu7UziHOLzutDtxB8p231clEAv9gvAlCd\nnXUtqA/A9T5+bV+3CL7X82T9+9s/93M47rLss5c+9COORZ0tYe+bnwW1gzi3hH18dJjUV139XIjF\nDT/jko5YzZASQnwBwMcBFKWUp22/nwHw7wEkAfyGlPKSlPINAD8jhPi9Tm0mEkbXZKcBSqfTYXeB\nDMK8RJtVZNRi/dvrw5n9/n5/UPU7K1ZfZTbbWvolKhUA/ve9H0Ed06DbVTme3frgzF+yUAAAJO7f\nb2vbrZ1BnFt0Xh86x6XbtlQeF+Tzaz0P6aWl9463x3Nlv49f2/faL6/bvJ4n69/7X3kF0BiQMu01\nGQVh75vOuaZb/4I4t4R9fHSY1Fddup95urbHz7gUMYNcsvdFAL8K4DetXwghkgB+DcCPAngbwNeF\nEL8vpfxzlQY5IEWqRkdHw+4CGYR5iTbd5SpBTiX3OytWH91mSEVJUMc06HZVjqfuUktrmad9hpRX\nO4M4t+i8PnSOi+q2/Ly/Tj/cltt6PVeDzK3OUlT7v/d/4AO+9aEfcV6KE/a+9bKs20sQ55awj48O\nk/qqy+8luvyMS1Ez0CV7QohHAfyBNUNKCPG/ALgopfw7Oz//IgBIKf/PnZ9/j0v2yA+cnko6mJd2\nfk+FV1neEvRSNb/2aVBZicNyBLd90H2+nUuzgPblC9btYmMDcmSk69KsQR9Xt7w4++C2PEP39eC2\nhK3T8e+0zDAqhs+da9Xn2rxyxZc2VZdMOY9/L0v0dLZXy+dx8xOfiPwSLD/b81p22U9fopRnnfzq\n9Nu6r7XEs9d97vf46/Z70Prtmx/7Nug+eN2/188tvfQ/Cse9H2FvPwpitWTPw3EAb9l+fhvAGSHE\nYQD/B4C/KoT4RWuAyun+/fv4kR/5EaRSKTQaDeTzeXz2s5/FysoKhoeHkUwmsb6+jqNHj+Kdd96B\nlBJHjx7FnTt3MDIyAgDY2NjAsWPHsLq6CiEEHnroIayurmJsbAyNRgObm5sYHx/HysoKhoaGcODA\nAdy9excHDhxArVZDpVJp3Z5OpzE6Oop79+7h0KFDqFQqePDgQev2ffv2IZvNolQq4fDhwyiXy6jV\naq3bs9ks0uk01tbWcOTIEaytrWFra6t1O/ep932qVquoVqux2qc4Pk9R2adqtYp79+7Fap/6eZ4e\nfvllvHXqFA5eu4b7xWLf+yRKJTz21lu4VSohUSy27dO927fROHUKP/Dii3jzb/5NDH/726iVSpHd\np0wmg0KhEPjzlF1ZwcTdu3irVEKmVDIye9kbN7Bx6hQm/viP8daP/ziEEHjkpZe2n4c330Rj/36s\nlUo4tHOudtunZqmEx6pV3Po7fwdD3/seDnz/+3jr1Ck89PWv496dO5DW7R//OPbfuYN9X/86bt+6\n5blPB69dw/1Tp5B7+WV8/x/+w8BfT9bPu/Zp5/UgCwUc+7M/a+3T5pEjqNpeD5k334RYX+/6PD0o\nlXA8nca906fxwDqmpRIO7N8P8a1v4c6tWzh69CjurqwA738/jv3xH+PWJz6BozduIJlOo1Qq4eCD\nB5E6790ZH8fDuRzujoxg/dYtX56nlVIJhxMJ1L79bdy1tWnt00qphKONBh5Iic1Tp3D8j/4Itz7x\nCYx973t4aGMDhVIJ+9fX2/epVMLI4cOu2Xv8j/4I3zl1CtnXX0fj/v1dryfr9uFvfxupfB63dp6n\nqJ33VM7luueIozduIPm+92Ht8cfbzhGq2Zu4dg1bBw6gbDuHdHyeBvye+0OvvYZbH/84BIDsu+/6\n9jzJN99E9dQpHPof/wO3PvxhHHzzTYxVq7hTKmFkY0N5nx7/oz/C6x/9KEa/+922c4Sfr6cw359G\nvvUtrJ86hWMvvYS3/8E/0H49pb/97bZzQC/7JG2vF3HnjvY+JWyPT92929N77kMPPYRqtYpSD58j\nenk99XuOSN+9i0cKBdwqlTAUwufyXl9Pcfr+NAhhz5D6CQAzUsqf3fn5PIAzUsqfV2nvpZdekh/8\n4AcD6i3FyZ07d3Ds2LGwu0GGYF7acYaUt0FlJQ5/peMMKfe8cIaUmr02Q+p7/+gf+X5u4Qyp8AQ9\nQ+q7P/uzOPzTP80ZUh6iMFMnKjOkev3cwhlS0cr0oAxihlTYA1Idl+x1wyV7pIpLsEgH8+KNb87t\ndLLixwezoK4S1q9evkB5fWH3GnCy/u02OOPHYIuf2R4+dw5DV69CJhKQhw+36ks5r5zW6epwvQwo\nqep2hbdeBlNUt+d1pTk/BjTcnm+/Brd7yXgzl0Py1VcB7L4KY7dtqCzZ08m4Sv+jdH5XHQzUHcD1\nex+dA02DGOR1azMqn1tUz1NRH0Ds1yDOeb22GeWsqNwWJf2cV03Zx0EMSIVdFfzrAH5ICPGYECIN\n4CcB/L7qgyuVCubn5/H8888H1kGKh/Hx8bC7QAZhXrxZV3tJLy2F3ZVI0MlKv8cuvbR9JbFkoRC5\n46+zb53u69xH+32tfw8tL+96vFubzt9166Of2R5aXoao15Go1ZAsFFp9fvRLX+q4v51+r7KPqtyO\nq/PfnR6jy+uxfh5zr+fbLS9+tK9y36Hl5dbzqNIP+zZUzi06GVfpf5TO717PX6d9VnnO/d7HoeVl\niEoFQ8vLXfvnF7c2o/K5RfU85ef5LIoGcc7rtc0oZ0Xltijp57xqyj4OwsBqSAkhfhvARwEcEUK8\nDeBfSSn/oxDi5wF8BUASwBeklDdU28xms7h8+XIg/aV4WVlZicRfA8gMzIu3OF/Jphc6Wen32NXy\n7lcSiwKdfet0X699tP/b7Ypwbm06f9etj35me2t62nWG1HfPn8dxxza99tf5e5V9VNWpLa/2+jk+\nXo/185h7HSe/rlTZS8a9ZkipbEPl3KKTcZX+R+n87vX8qexzp+fc733cmp5uzZBS7V+/3NqMyucW\n1fOUn+ezKBrEOa/XNqOcFZXboqSf86op+zgIA12y5zfWkCJVrAlEOpgXUsWskA7mhVQxK6SDeSFV\nzArp2AtL9vqSSBjdfRqgbDYbdhfIIMwLqXLLSmZhAaNnzyKzsNDxdyp6fVxUZRYWMDY5ibHJyV37\n1M8x8mqzl/7Z++Bn2wAw9t//u9Y+Wv0ZPneu7f+ZhYVdt+n0L7OwgAMnTuBgLofhc+d63Z1dx8ft\n+HXqm/12r8f2sn9e2/D7cZ36328/vN6HumXSftzc7tcpU7q6vV68+qqSa7+Oo9fj+82V6naCOuc7\nj60zL1776fc5jd6je/4LYpsqVD/jerWt+/uwdepXkOcbP49HVI+tXwa2ZC8I9+/fx/z8PGZmZjAz\nMxN2dyjCSqUSxsbGwu4GGYJ5IVVuWbHqAgBoFap0+52KXh8XVVZtJOvf9n3q5xh5tdlL/+x98LNt\nAFh7+208rLGPVn9kNgtRqbT+b7Hfptqm1W6iXAaAVu2bXjiPj9Unqy/dnlP77V6P7WX/vLbh92uv\nU//77YfX+1C3TLodN/v9OmVK9/h2e70AcO2rSq69+tPvOdGvXKluR7d91cc5j3XpE59oy4vXfvp9\nTqP3uL0egn7/7mUbqp9xvdrW/X3YOvVL5z2q3/NjP6J6bP1i9IDUwYMHWUOKlBw+fDjsLpBBmBdS\n5ZaVoGv9mKxTHax+jpFftbXc6r74Wbfr0MMPoz41pdyWs46OW22cXmok1fJ5JN54A6JSadW+6UW3\nml+91O3yuwZUkK+9brW4+umH1/tQt0y61a9y61+nTKlSeb10ykenPvh1HL0e71dtsW7bCeqc7zzW\nzrx0qsEV1VqEphtE/bBu21Sh+hlXt/ZRVD+v9FOrqp998vN4RPXY+oU1pGhPKBQKmJiYCLsbZAjm\nhVQxK6SDeSFVzArpYF5IFbNCOlhDqotmsxl2F8gQtVot7C6QQZiXvcGPNfm9ZiXu9QAA//fRz9pc\nzna71VRRqbvTrS/D584hcekShs+d66kGh05tmV7a0KmZ1Kn+Tre6QV51guyP69a+ar0h1X51q8k0\nNjmJAydODLTuTr/nliBrQ3W7fy/b6JVqDRi/akbp1Jzx4/Ws+rharaZ9jlA5JqqvD+fr1rQ6Q1EU\n1LHaK59xdY+fzntgWPn183NQ2PtiZ/QMqeeee07+zu/8DmtIUVfVahWZTCbsbpAhmJe9YfTsWaSu\nX0d9agrlq1d7aqPXrPix7ajzex/d2vNjG1YbADzbse7jrHmj05eDx4+jms0iU6mg8f73u963Uxuq\n+9prGyrtO49Dp3YAeB4fAJ7PJQCl9r3a6XZcvPrl/L3b47zuE4R+zy2djqFqG9ZjVY+Rzrb8Oj90\na8eP49HL9rrls9f993pctVrFkZkZrXOEyjHReX3Y2/Pa973w3ueXoI7VXvmMq3v8dN4Dw8qvn5+D\nVB83iBlSRteQymazrCFFSlZWVnDixImwu0GGYF72Bj/W5PealbjXAwD830c/a3M52+1WU0Wn5o1X\nG1vT0/ju+DhOrqygvlO3SacGh05tmV7a0KmZ1Kn+jmpdKbd/W49rnD7dsf1O7XTqu1e/utVkEsUi\nxMYG5MjIwF6z/Z5bgq4N1en+vWyjV6o1YPyqGdVPXTSddnS3v7KygjHNc4TKMVF9fQDur1tT6gxF\nUVDHaq98xtU9fjrvgWHl18/PQWHvi53RM6RYQ4pUFYtF5HK5sLtBhmBeSBWzQjqYF1LFrJAO5oVU\nMSukgzWkuhBChN0FMkQ6nQ67C2QQ5oVUMSukg3khVcwK6WBeSBWzQlFj9IBUo9EIuwtkiLW1tbC7\nQAZhXkgVsxJMYUyvwsCdivH6WURXpYi5Sn+dvPLSS6FSP4qc6zymUzv/f3v3HmTHeZd5/PnN1aO5\nSaPb2GNnrIQ41EjYJCRKYJVgo61k4iV20AbGCRUCZJNiN6TWxbIQilrI1l4o2FpWhaDWVSwhhEui\nwAo2EJPYYX0bLw6OhW2U4MiSbSGPNBqPNNJcNNZc9O4f02fSOu7u875nzpw+LX0/VafmTJ/ut3/v\n28/pGbXO9Ns5MqKN27apd3AwuJ6ssUtrN2156M2aQ27c7buOr0rHpTwrIftOG+Na3ejc53hXe/P5\nJJ0jI9o4MKDu3buvaNPnJvhZ7cUnGPC5UX/v4ODqIyQDWeeTeD+6d+9erStp+6yxnHvwwZrc7Dgt\nZ+V9SKu12v1WI+tcsp77yVqe942iffZfOrfkUWst9rnW417L8/h6W8t45Z3FEIX+k73777/fHTx4\nkJuao6K5uTl1dnbmXQYKgrzAF1lZn5t8pt0YuPQ85Kbia7nhctZNzH3qLV83LS/V3Ki0Fjc5D9km\nq52NAwOy+XlJlW/6nXbD7KSxS2s3bXk1N2v2vXF3fBufflZS6biUZyVk32l9q9WNzpuPHq14vKu9\n+XyS0vF2ZjLnrmhTyr4JfmZ7HR2rEwz43qg/LvRmyUnnkyv6EfXPdXTo/NjYa7bPHMt77tGmBx5Y\n882OK938f7UPKbVWu99qZJ1LarnfkJ8tjXjT63Klc0setdZin2s97rU8j6+3tYVH1m4AACAASURB\nVIxXrY4vNzWvoLOzk5uaw8uFCxeu+X80wh95gS+ysj43xqx0Y+CQm4qv5YbLWTcxD6m3JC0v1dyo\ntBY3OQ/ZJqudxT171PrQQ3IdHcH1ZO0rrd205aE3ay7/6nNz+0rr+Kp0XMqzErLvtLGt1Y3OW0ZH\nKx7vam8+n2Rxzx61jo5qeWBA6uxcbcfnJvhZ7S3u2bM6wYDPjfptdnZ1WcgN7iudT0r9cJ2dah4b\n02JUU/n2WWM5cffd6j5zZs03O866+X+8D5qbS6y12v1Ww+dcsh77yVqe942iffZfOrfkUWst9rnW\n417L8/h6W8t45Z3FEIX+hNTDDz/sbov+twDIcuLEiWtiRgnUBnmBL7KCEOQFvsgKQpAX+CIrCMFN\nzStobW3NuwQURH9/f94loEDIC3yRFYQgL/BFVhCCvMAXWUGjKfQFqcXFxbxLQEGMj4/nXQIKhLzA\nF1lBCPICX2QFIcgLfJEVNJpCX5Bqbm7OuwQUxLV+jxeEIS/XhlrMQEJWvqNIM7rEredsdeU2PvLI\nmtqIz/YVnyEoZBao+AxjafsInaEu6bVKs5bVYgbB8nXbDxxQ7+CgNm7bdsWMbJXaD5mxLWvGs0oz\nlGUdn9fMMBhwbqlm1iifmduqmZ2vfEa6pJoqtVvtey2t3ZBZIKupYa3nhlrMSNjZ2ZmZv/Llaxlj\nn6xVO8Nf0jZJsyKm9a9zZMTrvVzvmQDXMsNlLetoP3BgNStrnaGwlufxaoX87PPdfj1n4Qttu54z\nAqaNWdvk5PZ13bEKfkFqZmZG9957r77yla/kXQoaHBcvEYK8XBvaDh1SyzPPqO3QoarbICvfUYvx\nzINv3bXoX/tjj62pjbZDh9R8+rSaZmbUfPr0ajtptSUtbx0dlc3Pq3V0NHUflWrMWqf0WuvoaMV1\n0vYRMtbxddsOHVLTzIxsaUnNx4977780rs2nT2fWnbS/tHbi2/scn/J1Qs4tafuttE3avsvXqTQm\nSbU0zcy8Jqe+7Vb7Xktrt3V0VLa0pKaZmarGp5brVtq+2raam5sz81e+fC1j7JO1atpP2yZ+zkpa\np/z96/NertfPq2reQ+tZR9uhQ6tZKT931ep4+b5eCyE/+3y3r+Z8GlJvSNvrWUvSvhLff7Ozfeu6\nYxV8lr0NGzYwyx68TE9Pa9OmTXmXgYIgL9eGWsxAQla+o0gzusSt52x15c6++93aeuxY1W3EZ/uK\nz/IVMgtUfIaxtH0kteW7js+MbrWaQTBp3aYXXpDNz2v55puvmJEta5v4rEuVZmyrNLNW1gxlIbN0\nhZxbqpk1ymfmtmpm5yufkS5pNrpK7Vb7XktrN2QWyGpqWOu5oRYzEk5PT2fmr3z5WsbYJ2vVzvCX\ntE3SrIhp/VvetUvNR46sPq/2HFQr1byH1rOOhX37VrNSvjz+NbTNal6vhZBzq+/26zkLX2jb9ZwR\nMPX919V1bl13rILPsvf444+7oaGhvMtAAVy8eFEbNmzIuwwUBHmBL7KCEOQFvsgKQpAX+CIrCMEs\nexUsLS3lXQIK4ty5db+4i6sIeYEvsoIQ5AW+yApCkBf4IitoNIW+IAX4KvInAVF/5AW+yApCkBf4\nIisIQV7gi6yg0RT6glRLS6FvgYU62rp1a94loEDIC3yRFYQgL/BFVhCCvMAXWUGjKfQFqcXFxbxL\nQEGcOXMm7xJQIOQFvq7lrOQ5pXORxPtw5syZ1Gmmq532vRZTxie12bNzp3oHB18zfXqex2Q9+pq0\nj7Rptq+YOj02FX35a5Xqjreftr+zf/mXmdPXZ41F1lTzaet2796tjQMD6t69O7P/5a/5TkvuOz17\nWnu+x76a9bLqTRrD0L75vH/SjkvW8Y23sdafRZXGKn4+CHnP+WTRd4yT3g8h54FKfewdHNTGbdtW\n39PVtONbQ+fIiNf7Zj3aTMpK0nkp7VwXUlOts5L1HljL+73S+kn5K50zQ8bFt56s/pX2X/51LefD\nvBX6I0Zzc3O69957NTw8rOHh4bzLQQPr6urKuwQUCHmBr2s5K6UpgiXp0ic/Wdh9rLd4H7o+9KHE\nPsWXSQrq81q2zWqz+fTplW9mZtR0/rxsfr6m+6i2rlr3NWkfpb63HTp0Rdvx/TcfPbo6FX35a+X1\nlNcdb7/8+9K2m/7mb1aXx8ffJzOl11xHR+Z2V6xrJnNOzcePy6I/6Unqf3mtWeOVNgZpY5rVnu+x\nr2a9pJqzxjC0b/E20mpKOy5J2yTtb60/iyrlN34+yDrOae1mZdF3jJPeD5L/eaBSH5tmZiRp9T1d\nTTuVJPU5ZDxr0WZSVsrfd5JSz3UhNUn+Y1TNeStrnbXUk3VeKuWvdM4MGRfferL6Vxqf8q+V+i3l\n97O7kkJfkOrp6dH+/fvzLgMAgGtOnlM6F4nP9Nprmfa9FlPGJ7VpExOy2Vm5rq7E6dPzOCbr0dek\nfaRNsx3ff8vo6OpU9Gm1pdVd3n7S/pa+//u1/NhjkpKnr/fJUdJU86k5nJtT89iYlgcGZHNzqf0v\nr9V3WnLf6dnT2vM99mtZL+n1pDEM7VvWcUhrw+f41jL7lfIbPx+E7NdnDHzHuJSLas9HlfrY9MIL\nsvn51fd0Ne341nB52zY1HzlSdTu1bjPrfVd+rgupqdZZCf05Wm09WeelUv5K58yQcfGtJ6t/pfEp\n/7qW82HerMg3Nnv44YfdbbfdlncZKIATJ05ocHAw7zJQEOQFvsgKQpAX+CIrCEFe4IusIMThw4ef\n2rt371vXcx+FvodUa2tr3iWgILZv3553CSgQ8gJfZAUhyAt8kRWEIC/wRVbQaAp9QWppaSnvElAQ\nr7zySt4loEDIC3yRFYQgL/BFVhCCvMAXWUGjKfQFKcCXmeVdAgqEvMAXWUEI8gJfZAUhyAt8kRU0\nmkJfkGppKfQ92VFHfX19eZeAAiEv8EVWEIK8wBdZQQjyAl9kBY2m0BekFhcX8y4BBcHHUxGCvMAX\nWUEI8gJfZAUhyAt8kRU0mkJfkGpubs67BBRET09P3iWgQMgLfJGVa1f7gQPqvuMOtR844L1NrfJS\n2nfnyEhwDXloP3BAPTt3qmfnztVa08av0rjGX/cdh6RtssYsqd7Q/mbV5VN3T0/Pa+r2HUPfvoSM\n9Vr49Ld8X759q1X+Q9uqVG8txjYkt2nnlkrvs/U+h/iMQ8/OneodHHxNtsuXx2uu5v0Zfy9Uem9m\nZbS0bfxrUh9CxqJzZEQbN2/Wxi1b1Dky4t2P8vHq2blT3bt3a+O2beodHEzMTikrSfVUk2vfrJcf\nt5D3XKX3Qtqx9am/c2TkivHy6Vf8tc6REW0cGFg9buW1pOU7KUNJY1PLc6Hvz6Z6/05hzrm67rCW\nvvzlL7svfvGLGh4e1vDwcN7loIFNTk5qy5YteZeBgiAv8EVWrl3dd9yhlmee0dJtt2nmoYe8tqlV\nXkr7dh0dsvn5oBryUKpX0mqtaeNXaVzjr0vyGoekbbLGLKneavqbVpfP8ZucnNSOH/3R19Qdr8kn\ng1l9CRnrteTLp7/l+wrpWy3yH9pWpXprMbYhuU07t1R6n633OcR3HErKxy++XLry/R5fP6QWSRXf\nm1kZLW1b/rW8DyFjsXFgYLUN19Gh82NjXv1IGi9nJov+fZ+UnVJWkuqpJte+x7j8uJXXlaXSeyHt\n2Javm1RrfOx9+xV/rfno0dUcnB8bS6ylpLyOpAyV1+0zTr7nL9+fTfHlhw8ffmrv3r1vzTg8a1bo\nmzB1dnZq//79eZeBApibm+MfjfBGXuCLrFy7Fvbtu+Krj1rlpbTPy9u2qWliIqiGPCzs2yebmFh9\nnvQ1vm7S8qzXK41D0jZZY5ZUb4hKx8fn+M3Nzb2mbt8x9O1LNWNdDZ/+pvWpUt9qUV81bVWqtxZj\nG5LbtHNLpffZep9DfMbBJiZks7NyXV1XrJ+0vFRz85Ejme1m7UuSlnftynxvZmW0NGbxr81HjiTW\n6tv24p49av3a1yQzLe7Z492P8vGSJNfZqeaXXpLr6EjMTikrWfkKybVv1tOOm88xrPReqHRss+pf\n3LNHrQ89lDpelc5XLaOjah0dXT1u5bUkZSMpS5XGphbnQt+fTfX+naLQn5B6/PHH3dDQUN5loAAu\nXbqk9vb2vMtAQZAX+CIrCEFe4IusIAR5gS+yghD1+IRUoe8hxU3N4Wt8fDzvElAg5AW+yApCkBf4\nIisIQV7gi6yg0RT6gpSZ5V0CCqK1tTXvElAg5AW+yApCkBf4IisIQV7gi6yg0RT6ghSz7MFXb29v\n3iWgQMgLfJEVhCAv8EVWEIK8wBdZQaMp9AWppaWlvEtAQUxOTuZdAgqEvMAXWUEI8gJfZAUhyAt8\nkRU0mkJfkOITUvDF/wYgBHmBL7KCEOQFvsgKQpAX+CIraDSFviBV5BkCUV8LCwt5l4ACIS/wRVYQ\ngrzAF1lBCPICX2QFjabQF6QuX76cdwkoiPn5+bxLQIGQF/giKwhBXuCLrCAEeYEvsoJGU+gLUswS\nAF/9/f15l4ACIS/wRVYQgrzAF1lBCPICX2QFjabQF6QWFxfzLgEFMT4+nncJKBDyAl9kBSHIC3yR\nFYQgL/BFVtBoCn1Bqqmp0OWjjtra2vIuAQVCXuCLrBRX+4ED6r7jDrUfOFC3fa5nXrL6037ggHp2\n7lTPzp2p/U3a3meMqt2umnVrzWdcfNoIqd93THt/7de86qpm/ErbdI6MZGam2nZrlRffGta6Xml5\n9+7d2jgwoM6RkSteK2WkNF5p41apjrXmLd5+/HnnyIg2/sqvvKZu3xo7R0ZW+522jySdIyPauG2b\negcHE49n2nhljYPvGMX3kbV+Vi3xfq9Fec0+76+48jrKj0FS/0KyVH4c29rago5zUlvl4xnv61p+\nJpT61Ts4mNnn0nEvXy+pX+W1+eSlfPusmnxymDUGoccibf1qjmn7gQPqHRzUxs2b1Ts4mHg82yYn\nt2c2UgNW5BuD33///e7gwYMaHh7W8PBw3uWggc3OzqqrqyvvMlAQ5AW+yEpxdd9xh1qeeUZLt92m\nmYceqss+1zMvWf0pvSYptb9J2/uMUbXb+dS93nzGxbcN3+19x3R2dlYbjx+v2G4141faxnV0yObn\nMzNTTbu1yotvDWtdb3U8zGTOyXV06PzY2BWvSVodr7Rxq1THWvMWb1/S6vPmo0d14YYb1Hvq1Gvq\n9qlx48DAar+Wb7klcR9JtZa2K+9Peb7KxytrHHzHqHwfaetn1dJ89OjqstK4VaO85tK4Zb2/4uLj\nf35sLPE4l/cvJEvlx3x2dlbXv+993sc5qa3y8Yz3Nam90PdoSVqf48c9vl7S2CXVljZuWdtn1VQp\nh1ljkPa+9jmHxtdPex4y3knH8xuf/OTFd3z0o52pjdRAy3o2vt42bNig/fv3510GCuDs2bP8oxHe\nyAt8kZXiWti374qv9bCeecnqz8K+fbKJidTX07b3GaNqt6tm3VrzGRefNkK29x3T0y+/rO6LFyu2\nW834lda9vG2bmiYmUjNTbbu1yotvDWtdb/X7uTk1j41pcc+eK14rZWR51y41TUykjlulOtaat7Sx\naxkd1Xh/vzbE/hQrZEwX9+xR6+ioFvfs0VLU96TjU25xzx61PvSQXEdH4vqlcSofr6xx8B2j+D6a\njxxJXT+rlpbR0dV+r0VazVnvr7j4+MfbKH1NajskS+XtnT17Vpsz3oc+bZWPZ1Jfq/mZUOqXzc7K\ndXWl9nl51y41HznymvWS9lNeW9a4pW2ftK/y8cjKYdYYZJ0TfdvxeZ7WVtMLL6z2bekd73jN8Vzs\n6jqX2UgNFPoTUqOjo27nzp15l4ECmJ6eVk9PT95loCDIC3yRFYQgL/BFVhCCvMAXWUGIw4cPP7V3\n7963ruc+Cn0TpsuXL+ddAgqCKU4RgrzAF1lBCPICX2QFIcgLfJEVNBouSOGa8Oqrr+ZdAgqEvMAX\nWUEI8gJfZAUhyAt8kRU0mkJfkGptbc27BBREf39/3iWgQMgLfJEVhCAv8EVWEIK8wBdZQaMp9AWp\nxcXFvEtAQYzHbvQIVEJe4IusIAR5gS+yghDkBb7IChpNoS9INTUVunzU0XXXXZd3CSgQ8gJfZAUh\nyAt8kRWEIC/wRVbQaAp9RYcLUvDV0dGRdwkoEPICX2QFIcgLfJEVhCAv8EVW0GgKfUVnaWkp7xJQ\nEFNTU3mXgAIhL/BFVhCCvMAXWUEI8gJfZAWNptAXpFpaWvIuAQWxefPmvEtAgZAX+CIrCEFe4Ius\nIAR5gS+ygkZT6AtSly9fzrsEFMTMzEzeJaBAyAt8kRWEIC/wRVYQgrzAF1lBo+GCFK4JCwsLeZeA\nAiEv8EVWEIK8wBdZQQjyAl9kBY2m0BekWltb8y4BBdHf3593CSgQ8gJfZAUhyAt8kRWEIC/wRVbQ\naAp9QWpxcTHvElAQ4+PjeZeAAiEv8EVWEIK8wBdZQQjyAl9kBY2m0BekmpoKXT7qiClOEYK8wBdZ\nQQjyAl9kBSHIC3yRFTSaQl/RMbO8S0BBtLW15V0CCoS8wBdZQQjyAl9kBSHIC3yRFTSaQl+QWl5e\nzrsEFMSFCxfyLgEFQl7gi6wgBHmBL7KCEOQFvsgKGk2hL0i1tLTkXQIKYsuWLXmXgAIhL/BFVhCC\nvMAXWUEI8gJfZAWNpiEvSJlZp5n9gZn9rpn9eNp6fEIKvvjfAIQgL/BFVhCCvMAXWUEI8gJfZAWN\npm4XpMzsM2Y2YWZHypYPm9m3zeyYmX0qWrxP0p855z4m6a60Np1z61gxribMyIgQ5AW+yApCkBf4\nIisIQV7gi6yg0dTzE1KflTQcX2BmzZJ+R9J7JQ1J+qCZDUm6UdLJaLXUj0G1trauS6G4+vT39+dd\nAgqEvMAXWUGIIual/cABdd9xh9oPHMi7lJqoV39C91O+fq2z4lNP+4ED6tm5Uz07dwaPj2/71Y69\n77al9TpHRqqqJ76sc2REGwcG1DkyElyvr0o1+Bq8//6ajn+t140fl6SMlR+38q+ldX3r8j12oZkv\n33/a9/H6y9uv5r1Y6k/37t1B2Yhv17Nzp3oHB/XGD37wilrS6ovXnnXc4suzjrNPu/GxKT3v3r07\nse9Z45j0WjwTWe+7Wpw70vKcNnZJ41We4fL1s2pN6ktp+97BQa+8l9bvOn781swVa6BuN2Fyzj1q\nZjeXLd4t6Zhz7gVJMrMvSLpb0stauSj1tDIumk1MTOhjH/uYWlpatLy8rH379ukTn/iExsfH1dnZ\nqebmZk1PT2vr1q06d+6cnHPaunWrzpw5o66uLknS7Oystm/frldeeUVmpr6+Pr3yyivq6enR8vKy\n5ubm1N/fr/HxcbW2tqq3t1eTk5Pq7e3VwsKC5ufnV19va2tTd3e3zp49q02bNml+fl6vvvrq6uvX\nXXedOjo6NDU1pc2bN2tmZkYLCwurr3d0dKitrU0XLlzQli1bdOHCBS0uLq6+Tp+q79P4+Lje9KY3\nXVV9uhqPU6P06ejRoxoYGLiq+nQ1HqdG6NPCwoK6urquqj5djcepUfo0MzOjHTt2FKpPHePjun5y\nUienptQ+NVX44zQxOamWHTu0+dFHdeKuu9Yte5uffFInh4a05YkndOYDH6jYp6apKe04eVInpqbU\nMjmpyclJdXR01Cx7XWNj2nb+vMampnTd+fOJfdr+xBM6efvt2vr3f6/pF1/U+RMnvI9T37Fj2rC8\nrFemptQ9N5d4nLqefVbTQ0Pa/uijevlHfiSoT9uffVZuwwZdmJrSpkuXUo/T5WgcX7r1Vl3X1KTu\nJ57QybvuSjxOG198UT2XLunM1JS6Zmc1MzMjix2Hbud03RveoMn+fnWl9Gmt54i2557T3NCQBh58\nUCfuukutra264fHHdXJoSBsPH9b5iQmv7DVfuKC2oSG1v/iibHo6+ThNTam7t1ethw/r9IkTme+n\nS1NTumlyUqfHxzV/8uSazxGlPvUdPapLb3yj5gYGVvu8mr2hIW351rd0cfNmzfX36+anntJLt96q\nzuVlXffkkxo7cUI3PfGEJvr7NR/LQdL7qbm/Xzd3dOil/n41T06mHqfxqSltuvFGSdLU1JQ2vvpq\n5vvpux58UMeHhtQ8Nqbr5uY0PjWlrcvLunjsmM6dOLH6evvsrDbOzmr81lu17eRJzd1wg2ZLNU9N\nqWvz5tU+pb6fNm/W2e/5Hm17/HGNd3Vp8f3v1+seeED/9La3qfO557QwNVUxe2f6+/W67m69/OY3\nq3lxUduffFLPfPjDev3hw5qdnNTS1JR2XLqkE+95z2v69Kpzmrv9dg1+9at6qb9f1zU1aeOxYzo9\nNaUN09Oan5+Xi23f/uKL6pyc1MmhIW175hlduPVWXerrWz3OpXPEZH+/bjh6VGd37dKlvj7d/NRT\nOvGe96jzuefUvLCweo545ZZbpFtu0Q2PPqqX3/9+9R4/Ljm3epyyzuXlx2lyclID587p0tveptn+\nft0Yvd76T/+k1tlZnT17VgNPPqmzseydmJqSnTmTeN4rtd9x7JiWz5/XhQsXNPj44zpz4416dWpK\nN33jGzo+NKTuU6fU0tSkc/39uvFb37ri/RTP3vn+fr3umWc09oM/KI2Pa8PFizrT36++7/5uLS0s\naCLK1rHbb1fb9LT6nn9e49/3fSvvp95ezcTeD0nvp9mopmO3364NZ86o89SpK857ST+fXp2a0kBb\nm2xpad0/AWT1/LO36ILUXznndkXff0DSsHPuX0Xff1jS2yX9oqTflvSqpFHn3B8ntffYY4+5Xbt2\n1aFyFN3k5CQ38YM38gJfZAUhipiX9gMH1HbokBb27dOlT34y73LWrF79Cd1P+fq1zopPPe0HDqj9\nvvskSZd+5meCxse3/WrH3nfb0nqXt21T08REcD3xZS2jo2odHdXinj2aO3gwqN619Kuacbrwuc/p\nxt///ZqNf63XjR+X5iMrd2+JZ6z8uJV/LbXtW1fnyIjXsQvNfPn+076P11/e32rei6UsLg8MSJ2d\n3tkojcPywIBsbk42O6tT73yn+t7+9tVayvufdKyWd+1KPW7x7SWlHmefdkvbL+zbt/pcc3NqHht7\nTd+zxjHptXgmlvbsSX3f1eLcER+HpByXj13S+JZnuHz9tHbT+iJJ7ffdJ5udlevqqpj30v6+8elP\nL7794x9vS12xBhrygpRz7md92uOCFHxNTU1p06ZNeZeBgiAv8EVWEIK8wBdZQQjyAl9kBSEOHz78\n1N69e9+6nvvIe5a9MUk3xb6/MVrmhVn24Gt6ejrvElAg5AW+yApCkBf4IisIQV7gi6yg0eR9QepJ\nSW80sx1m1ibpHklf8t14fn5e9957r77yla+sW4G4OmzdujXvElAg5AW+yApCkBf4IisIQV7gi6yg\n0dTtgpSZfV7S30p6k5m9bGYfdc4tSfpZSV+V9I+Svuic+6Zvmxs2bND+/fs1PDxceWVc086dO5d3\nCSgQ8gJfZAUhyAt8kRWEIC/wRVbQaOo5y94HU5bfL+n+etWBa1M975WG4iMv8EVWEIK8wBdZQQjy\nAl9kBY0m7z/ZW5OWlrpdT0PB8fFUhCAv8EVWEIK8wBdZQQjyAl9kBY2m0BekpqamuIcUvJw5cybv\nElAg5AW+yApCkBf4IisIQV7gi6yg0RT6I0a9vb3av39/3mWgALq6uvIuAQVCXuCLrCAEeYEvsoIQ\n5AW+yAoaTaE/IQUAAAAAAIDiKfQFqeXl5bxLQEHMzs7mXQIKhLzAF1lBCPICX2QFIcgLfJEVNJpC\nX5Can5/nHlLwsn379rxLQIGQF/giKwhBXuCLrCAEeYEvsoJGU+gLUhs2bND+/fs1PDycdylocK+8\n8kreJaBAyAt8kRWEIC/wRVYQgrzAF1lBoyn0BSnAl5nlXQIKhLzAF1lBCPICX2QFIcgLfJEVNJpC\nX5BqaSn0JIGoo76+vrxLQIGQF/giKwhBXuCLrCAEeYEvsoJGU+gLUouLi3mXgILg46kIQV7gi6wg\nBHmBL7KCEOQFvsgKGk2hL0hdvHiRm5rDS09PT94loEDIC3yRFYQgL/BFVhCCvMAXWUGjKfTfvHV3\nd2v//v15l4ECWF5ezrsEFAh5gS+yghDkBb7ICkKQF/giK2g0hf6EFG8o+Jqbm8u7BBQIeYEvsoIQ\n5AW+yApCkBf4IitoNIW+INXa2pp3CSiI/v7+vEtAgZAX+CIrCEFe4IusIAR5gS+ygkZT6AtS3NQc\nvsbHx/MuAQVCXuCLrCAEeYEvsoIQ5AW+yAoaTaEvSJ0/fz7vElAQf/EXf5F3CSgQ8gJfZAUhyAt8\nkRWEIC/wRVYQ4ty5c1vWex+FviB19uxZZtmDl0OHDuVdAgqEvMAXWUEI8gJfZAUhyAt8kRWEmJ6e\n3rre+yj0LHtNTU3MsgcvS0tLeZeAAiEv8EVWEIK8wBdZQQjyAl9kBY3GnHN511C1+++/f6a9vf3b\nedeBxnfu3LktfX19k3nXgWIgL/BFVhCCvMAXWUEI8gJfZAUhLl269KY777yzez33UegLUgAAAAAA\nACieQt9DCgAAAAAAAMXDBSkAAAAAAADUVSEvSJnZsJl928yOmdmn8q4H9WFmN5nZQ2b2LTP7ppn9\n22j5p81szMyejh53xrb5pSgn3zaz98SWJ2bIzHaY2dej5QfNrK2+vUQtmdlLZvYPUS6+ES3rM7MH\nzez56OumaLmZ2W9Fx/5ZM3tLrJ2PROs/b2YfiS3/vqj9Y9G2Vv9eYq3M7E2x88fTZjZtZvdybkGJ\nmX3GzCbM7Ehs2bqfS9L2gcaVkpX/ZmbPRXn4czPbGC2/2czmY+eY+2LbBGUiK3doXCl5WfefPWbW\nHn1/LHr95vr0GNVKycrBWE5eMrOno+WcW65hlv5v5sb8vcU5V6iHpGZJxyW9XlKbpGckDeVdF4+6\nHPvrJb0let4t6aikIUmflvTzCesPRflol7Qjyk1zVoYkfVHSPdHz+yT9rqS0bwAACUFJREFU67z7\nzWNNmXlJ0payZb8h6VPR809J+vXo+Z2S/lqSSXqHpK9Hy/skvRB93RQ93xS99nfRuhZt+968+8xj\nzZlpljQuaZBzC4/YMX+XpLdIOhJbtu7nkrR98GjcR0pW3i2pJXr+67Gs3Bxfr6ydoEyk5Y5HYz9S\n8rLuP3sk/RtJ90XP75F0MO+x4BGelbLX/7ukX4mec265hh9K/zdzQ/7eUsRPSO2WdMw594JzbkHS\nFyTdnXNNqAPn3Gnn3OHo+Yykf5Q0kLHJ3ZK+4Jy75Jx7UdIxreQnMUPRld0fkvRn0fZ/IOn969Mb\n5OhurRxb6cpjfLekz7kVT0jaaGbXS3qPpAedc+ecc1OSHpQ0HL3W45x7wq2cdT8n8nI12CvpuHPu\nRMY6nFuuMc65RyWdK1tcj3NJ2j7QoJKy4px7wDlXmmv9CUk3ZrVRZSbScocGlnJuSVPLnz3xHP2Z\npL2lTzigMWVlJTp2Pybp81ltcG65NmT8m7khf28p4gWpAUknY9+/rOyLErgKRR8tfrOkr0eLfjb6\niOFnYh8NTMtK2vLNks7HfmkkW8XnJD1gZk+Z2cejZdudc6ej5+OStkfPQ/MyED0vX45iu0dX/kLH\nuQVp6nEuSdsHiuuntfK/ySU7zOzvzewRM3tntKyaTPD78dVlvX/2rG4TvX4hWh/F9E5JZ5xzz8eW\ncW5B+b+ZG/L3liJekMI1zsy6JP1vSfc656Yl/U9Jb5D0vZJOa+Ujq4Ak7XHOvUXSeyV9wszeFX8x\nuqrvcqkMDSe6t8Zdkv40WsS5BV7qcS7hfFV8ZvbLkpYk/XG06LSk1znn3izp5yT9iZn1+LZHJq5a\n/OxBqA/qyv9M49yCpH8zr2qk31uKeEFqTNJNse9vjJbhGmBmrVp5Y/2xc+6QJDnnzjjnlp1zlyX9\nrlY+uiylZyVt+VmtfESxpWw5Cso5NxZ9nZD051rJxpnSR42jrxPR6qF5GdOVf3ZBXorvvZIOO+fO\nSJxbUFE9ziVp+0DBmNlPSvphST8e/ZKu6E+vzkbPn9LKfYBuUXWZ4Pfjq0SdfvasbhO93hutj4KJ\njt8+SQdLyzi3IOnfzGrQ31uKeEHqSUlvtJVZI9q08ucVX8q5JtRB9PfRvyfpH51zvxlbHv875h+R\nVJp94kuS7rGVmUR2SHqjVm7Alpih6BfEhyR9INr+I5L+z3r2CevHzDrNrLv0XCs3lT2ilVyUZomI\nH+MvSfqJaKaJd0i6EH3k9KuS3m1mm6KPzb9b0lej16bN7B1RNn9C5KXorvgfRs4tqKAe55K0faBA\nzGxY0i9Iuss5dzG2fKuZNUfPX6+Vc8kLVWYiLXcomDr97Inn6AOS/m/pQikK559Les45t/onVJxb\nrm1p/2ZWo/7e4hrgTvChD63cCf6oVq72/nLe9fCo23Hfo5WP/T0r6enocaekP5T0D9HyL0m6PrbN\nL0c5+bZiM6ClZUgrM5T8nVZuFPmnktrz7jePqvPyeq3MNPOMpG+WjrNW7pHwN5Kel/Q1SX3RcpP0\nO1Em/kHSW2Nt/XSUiWOSfiq2/K1a+UXxuKTflmR595tH1Xnp1Mr/DvfGlnFu4VE6fp/Xyp9ALGrl\nXgkfrce5JG0fPBr3kZKVY1q5D0fpd5fS7Gb/Mvr59LSkw5LeV20msnLHo3EfKXlZ9589kq6Lvj8W\nvf76vMeCR3hWouWflfQzZetybrmGH0r/N3ND/t5S2hAAAAAAAACoiyL+yR4AAAAAAAAKjAtSAAAA\nAAAAqCsuSAEAAAAAAKCuuCAFAAAAAACAuuKCFAAAAAAAAOqKC1IAAAA1ZGafNrM/yrsOAACARsYF\nKQAAcNUys18ys78uW/Z8yrJ76ltdfZjZ7Wb2ct51AAAAxHFBCgAAXM0elfQDZtYsSWZ2vaRWSW8u\nW/Zd0brebAW/SwEAAFSBX6IAAMDV7EmtXID63uj7d0p6SNK3y5Ydd86dkiQz+wEze9LMLkRff6DU\nmJk9bGb/xcwel3RR0uvNbIeZPWJmM2b2oKQtWQWZ2d1m9rSZTZvZcTMbjpbfYGZfMrNzZnbMzD4W\n2+azZvafY99f8aknM3vJzH7ezJ6N6j5oZteZWaekv5Z0g5nNRo8bqhxLAACAmuGCFAAAuGo55xYk\nfV3Su6JF75L0mKTRsmWPSpKZ9Un6sqTfkrRZ0m9K+rKZbY41+2FJH5fULemEpD+R9JRWLkT9J0kf\nSavHzHZL+pykfy9pY7Tvl6KXvyDpZUk3SPqApP9qZj8U0N0fkzQsaYekWyX9pHNuTtJ7JZ1yznVF\nj1MBbQIAAKwLLkgBAICr3SP6zsWnd2rlgtRjZcseiZ7/C0nPO+f+0Dm35Jz7vKTnJL0v1t5nnXPf\ndM4tSbpe0tsk/Qfn3CXn3KOS/jKjlo9K+oxz7kHn3GXn3Jhz7jkzu0nSP5P0i865V51zT0v6X5J+\nIqCfv+WcO+WcOxfV8L2VNgAAAMgLF6QAAMDV7lFJe6JPP211zj0v6f9p5d5SfZJ26Tv3j7pBK596\nijshaSD2/cnY8xskTUWfRIqvn+YmSccTlt8g6ZxzbiZjv5WMx55flNQVsC0AAEBdcUEKAABc7f5W\nUq+kj0l6XJKcc9OSTkXLTjnnXozWPSVpsGz710kai33vYs9PS9oU3aspvn6ak5LekLD8lKQ+M+tO\n2e+cpA2x1/oz9lHOVV4FAACgvrggBQAArmrOuXlJ35D0c1r5U72S0WhZfHa9+yXdYmYfMrMWMxuR\nNCTpr1LaPhG1/R/NrM3M9ujKP+8r93uSfsrM9ppZk5kNmNl3O+dOauVTW78W3Yz8Vq38ed8fRds9\nLelOM+szs35J9wYMwRlJm82sN2AbAACAdcUFKQAAcC14RNI2rVyEKnksWrZ6Qco5d1bSD0v6d5LO\nSvoFST/snJvMaPtDkt4u6ZykX9XKTcsTOef+TtJPSfofki5EdZU+kfVBSTdr5dNSfy7pV51zX4te\n+0NJz2jlBugPSDqY3d0r9vmcpM9LesHMzjPLHgAAaATmHJ/iBgAAAAAAQP3wCSkAAAAAAADUFRek\nAAAAAAAAUFdckAIAAAAAAEBdcUEKAAAAAAAAdcUFKQAAAAAAANQVF6QAAAAAAABQV1yQAgAAAAAA\nQF1xQQoAAAAAAAB1xQUpAAAAAAAA1NX/B51Xxsb/9HZSAAAAAElFTkSuQmCC\n", "text/plain": [ "<matplotlib.figure.Figure at 0x7f55f8853198>" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "plt.figure(figsize=(20, 10))\n", "\n", "plt.title('Document lengths')\n", "plt.xlabel('Word count')\n", "plt.ylabel('Number of documents')\n", "plt.yscale('log')\n", "plt.xlim((0, 200000))\n", "plt.scatter(x, y, s=5, c='r')\n", "plt.show()" ] } ], "metadata": { "kernelspec": { "display_name": "Python 3", "language": "python", "name": "python3" }, "language_info": { "codemirror_mode": { "name": "ipython", "version": 3 }, "file_extension": ".py", "mimetype": "text/x-python", "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", "version": "3.4.3" } }, "nbformat": 4, "nbformat_minor": 2 }
apache-2.0
YufeiZhang/Principles-of-Programming-Python-3
Lectures/Lecture_6/permutation_efficiency.ipynb
1
21934
{ "cells": [ { "cell_type": "markdown", "metadata": {}, "source": [ "<h1 align=\"center\">Comparison of 3 permutation algorithms</h1>" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "Inserting elements at the end of a list" ] }, { "cell_type": "code", "execution_count": 4, "metadata": { "collapsed": false }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "\n" ] }, { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAXQAAAEACAYAAACj0I2EAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzt3Xl8VOXVwPHfmRCWBBJIwhK2kIAgoKyyugVwqVUEabFA\n1RZ3rChSfVUUQbFqsVYBqxaKiAvoK3XB140KjSuICgFkXyRAIJEtJCxJyOS8f8xkTEKWycyEmYTz\n/Xzmw8zce597MgyHJ+c+93lEVTHGGFPzOYIdgDHGmMCwhG6MMbWEJXRjjKklLKEbY0wtYQndGGNq\nCUvoxhhTS1Sa0EVkrohkisjaUu+PF5GNIrJORJ6qvhCNMcZ4o44X+8wDZgGvFr0hIsnAUOBcVS0Q\nkbjqCc8YY4y3Ku2hq+pXwOFSb48DnlLVAvc+B6ohNmOMMVXgaw29I3CRiKwQkf+KyHmBDMoYY0zV\neVNyKe+4JqraX0T6AP8LJAUuLGOMMVXla0LfDbwDoKrfiUihiMSq6sHSO4qITRZjjDE+UFWpyv7e\nllzE/SjyHjAYQEQ6AuFlJfNiQYXUY8qUKUGPoSbEFKpxWUwW05kQly8q7aGLyAIgGYgVkV3AFOBl\nYJ6IrAPygBt8OrsxxpiAqTShq+qYcjZdH+BYjDHGAM+vfN6n487IO0WTk5ODHcIpQjEmCM24LCbv\nWEzeC7W4/r787z4dJ77Warw+gYhW9zmMMaa2yMrNovXfW3PsoWNoFS+K+jrKxRjj1q5dO9LS0oId\nhqmhEhIS2Llzp+f1mow1dGvejeUsr3JbltCN8VNaWprPoxKMESnZCU/NSKVHix4+JfQzsoZujDGh\nKjUzlZ4tevp0rCV0Y4wJIav3raZHix4+HWsJ3RhjQkS+M58tB7dwTrNzfDreEroxJigcDgc7duwI\ndhghZcP+DSQ1SaJBeAOfjreEbkwtlpiYyLJly5g/fz4XXnihX219/vnntGnTJkCRnXox0PhXbgFL\n6MacMfxJoE6nE1UNaBK2kUGnKhrh4itL6MbUchs3buT2229n+fLlNGrUiJiYGADy8/O59957SUhI\nID4+njvuuIO8vDzgl9749OnTiY+PZ8yYMfz6179m7969NGrUiKioKDIyMsjPz2fChAm0atWK1q1b\nc88993Dy5EnPuefMmcNZZ51FXFwcw4cPZ9++fWXG+NFHH9G1a1eioqJo06YNf/+7b3dK1nT+jHAB\nS+jG1HqdO3fmpZdeYsCAAeTk5HDo0CEA7r//frZt28batWvZtm0b6enpPPbYY57jMjIyyMrKYteu\nXbz66qt8/PHHtGzZkpycHLKzs2nRogWPP/44K1euZO3ataxZs4aVK1fy+OOPA7Bs2TImTZrEokWL\n2LdvH23btmXUqFFlxnjzzTczZ84csrOz+fHHHxk8eHD1fzAhplALSc1IpXuL7j63YQndmGomEphH\noM2ZM4dnn32W6OhoIiMjeeCBB1i4cKFne1hYGI8++ijh4eHUq1evzDYWLFjAlClTiI2NJTY2lilT\npvDaa695tt100010796d8PBwnnzySZYvX86uXbtOaadu3bqsX7+enJwcoqOj6dHD97JDTbUzaydR\n9aKIi/B9iWZL6MZUM9XAPAJp//79HD9+nN69exMTE0NMTAxXXHEFBw/+sqxB06ZNCQ8Pr7CdvXv3\n0rZtW8/rhIQE9u7d69mWkJDg2RYZGUlsbCzp6emntPPvf/+bDz/8kISEBAYNGsSKFSv8/RFrnNQM\n/8otYAndmDNC6YuZcXFxREREsH79eg4dOsShQ4fIysriyJEj5R5T1gXRVq1alZjHJi0tjZYtWwLQ\nsmXLEtuOHTvGwYMHad269Snt9O7dm/fee4/9+/czbNgwrr32Wt9+0BrM3xEuYAndmDNC8+bN2bNn\nj+eCpYhwyy23MGHCBPbv3w9Aeno6S5YsqbCNgwcPkp2d7Xlv1KhRPP744xw4cIADBw4wbdo0rr/e\ntVTC6NGjmTdvHmvXriUvL49JkybRv3//U4Y+njx5kgULFpCdnU1YWBiNGjUiLCws0B9ByEvN9G+E\nC1hCN6ZWK+pVDx48mK5du9KiRQuaNWsGwFNPPUWHDh3o378/jRs35rLLLmPLli3lttWpUydGjx5N\nUlISMTExZGRk8PDDD3PeeefRrVs3unfvznnnncdDDz0EwJAhQ5g2bRojRoygVatW/PTTT7z55pun\nxAbw2muvkZiYSOPGjZk9ezYLFiyojo8jpAWi5GLzoRvjJxGxMdXGZyLC/mP76TCzA4fvP+z5j879\nvaqWRaKNMcZUk6Lhiv7euFVpQheRuSKSKSJry9j2ZxEpFJEYv6IwxpgzWCDKLeBdD30ecHnpN0Wk\nNXApYEu1GGOMH1Zn+D/CBbxI6Kr6FXC4jE3PAvf5HYExxpzh/J3DpYhPNXQRuRrYrarr/I7AGGPO\ncD8d/okuTbv43U6V1xQVkQbAJFzlFs/bfkdijDFnqE5xnagbVtfvdnxZJLo90A5YI65Lsq2BH0Sk\nr6r+XNYBU6dO9TxPTk4mOTnZh9MaY0zt1KNFD1JSUkhJSfGrHa/GoYtIO+ADVT23jG0/Ab1Utaw6\nu41DN7WejUM3/hARZqyYwV397jrl/YCPQxeRBcA3QEcR2SUiY0vtoljJxRjjg0AsQ5eWlobD4aCw\nsDBAUZ1+gbggCt6Nchmjqi1VtZ6qtlXVeaW2J6nqoYBEY4wJqKIl6IBavQxdTV/Orntz3+dAL87u\nFDXmDOHvEnK2DF31ia4fHZB2LKEbcwbYtGkT48aNqxXL0BUWFnLvvffStGlTOnTowIcfflhi+759\n+xg2bBixsbF07NiRf/3rXyWOfeKJJ+jQoQPR0dH06dOnzPnZayxVrdaH6xTG1F6h/B1v166dLl26\nVFVVX3nlFb3wwgtLbJ8wYYIOGzZMs7Ky9OjRo3r11VfrpEmTVFU1JSVF69Spow8++KDm5+drbm6u\npqSkaJs2bUq0MXnyZB0wYIAeOHBADxw4oAMHDtRHHnlEVVWXLl2qcXFxmpqaqvn5+Tp+/Hi96KKL\nPMeKiG7fvl1VVePj4/Xrr79WVdWsrCxdvXp1mT/Tiy++qJ07d9b09HQ9fPiwDho0SB0OhzqdTlVV\nvfDCC/XOO+/U/Px8TU1N1aZNm+p///tfVVWdPn26duvWTbdu3aqqqmvXrtVDhw75/PkGQnnfH/f7\nVcu3VT2gyicI4S+7MYFQ2XecqQTk4YvKEnpkZKTu2LHD8/qbb77RxMREVXUl9Hr16ml+fr5ne1kJ\nvX379vrJJ594Xn/66aeeNm666Sa9//77PduOHj2q4eHhmpaWpqolE3pCQoLOnj1bs7OzK/yZBg8e\nrP/85z89r5csWeJJ6Lt27dI6derosWPHPNsffPBBHTt2rKqqdurUST/44IMK2z/dApnQfRmHboyp\nAp0SmnXi4svQFSksLCxR1w7EMnTF2y++DF3xY8C1DN20adO4//776d69O08++ST9+/cv83zFL8wW\nX+Zu3759xMTEEBERUWL7Dz/8AMDu3btJSkqq8OepyayGbswZorYsQxcfH8/u3btLnK9Iy5YtOXTo\nEMeOHfO8t2vXLlq1agVAmzZt2L59e5nt1gaW0I05Q9SWZeiuvfZaZs6cSXp6OocPH+avf/2rZ1vr\n1q0ZOHAgDz74IHl5eaxdu5a5c+d64rn55puZPHky27ZtA2DdunUcPlzmPZE1U1VrNFV9YDV0U8uF\n8nc8MTHRU0PPz8/Xq666SmNiYrRp06aqqpqbm6uTJk3SpKQkjY6O1i5duuisWbNUtex6uaqrLh4b\nG6tNmjTRffv2aW5urt59990aHx+vLVu21AkTJmheXp5n/3/+85/avn17jY2N1aFDh2p6erpnm8Ph\n0O3bt2t+fr7+6le/0piYGI2Ojta+ffvqN998U+bPVFBQoBMnTtTY2FhNSkrSF154ocRF0fT0dM/P\n2aFDB509e7bnWKfTqX/5y180MTFRo6KitG/fviXiCYbyvj/4UEO3JeiM8ZPd+m/8Ud73x5agM8aY\nM5gldGOMqSUsoRtjTC1hCd0YY2oJS+jGGFNLWEI3xphawhK6McbUEpbQjTGmlrCEbowxXmjUqBE7\nd+4MdhgVsoRuTC1WfAm6IoFYii6QitYEjYqKIioqisTERKZNmxbssE6Rk5NDu3btgh1GhSqdPldE\n5gJXAZmq2s393nRgKJAHbAfGqmp2+a0YY0JJqK3BKSIcOXIEEeGHH37g4osv5rzzzuOKK644bTE4\nnc5yJwSrKbzpoc8DLi/13hKgq6r2ALYCDwY6MGPM6bFv3z5++9vf0qxZM9q3b8+sWbM827777jsG\nDhxIkyZNaNWqFePHj6egoMCz3eFwMGvWLNq3b0+zZs34n//5H8+27du3k5ycTOPGjWnWrBmjR4+u\nMI6i+Ux69+5N165dWb9+vVcxFl9WLioqyrOsXFHPv7Cw0LPvoEGDePnllwHXbyoXXHABEydOJC4u\njkcffbTCmB0OBzt27GDlypXEx8eXmH/l3XffpXv37p6f46mnnqJDhw40bdqUUaNGkZWV5d1fhp8q\nTeiq+hVwuNR7n6lq0ae0Ajh1cmNjTEgqnohUlaFDh9KzZ0/27dvH0qVLmTFjBv/5z38ACAsL47nn\nnuPQoUMsX76cZcuW8cILL5Ro77333mPVqlWsWrWK999/35MwJ0+ezOWXX05WVhZ79uxh/PjxXsW1\nYsUKNmzYQJ8+fbyK8ZlnnuGtt97ik08+ITs7m5dfftmzwEVlv4l8++23dOjQgZ9//plJkyZVGHNR\nW3379qVhw4YlSlkLFy7kuuuuA2DmzJksXryYL7/8kr1799KkSRPuuOOOCuMIGG+mZAQSgLXlbFsM\njKngWD8mljQm9FX6HYfAPHzQrl07bdSokTZp0sTziIiI8CxFt2LFCk1ISChxzJNPPqk33nhjme09\n99xzOmLECM9rEdElS5Z4Xr/wwgt6ySWXqKrqDTfcoLfddpvu2bOnwhh37typIqJNmjTRBg0aqMPh\n0L/97W+e7d9++22FMZa3rNzOnTtLTKurqpqcnKxz585VVdeSfKXbrSjm4svlPfzww57zZ2dna2Rk\npO7evVtVVTt37qzLli3zHLd3714NDw8vEUdx5X1/ON1L0InIQ8BJVV1Q0X5Tp071PE9OTiY5Odmf\n0xpTswR5at3333+fQYMGeV7Pnz+fuXPnAq7VfNLT04mJiQFcHbzCwkIuuugiALZu3crEiRP5/vvv\nOXHiBAUFBSWWlANKrD5UfPm56dOnM3nyZPr27UtMTAwTJ05k7NixZcYoIhw8eBCAGTNm8Mwzz3Dr\nrbfSqFEj0tLSKozRn2XlSi+08fTTT/Pwww9XGvOYMWM4//zzeemll3jnnXfo3bu353NIS0vjmmuu\nweFweOINDw8nMzOT+Pj4cmNJSUkhJSXFp5/Dw5usTxk9dOCPwNdAvUqOLfN/H2Nqi1D+jhdfJLpI\n8cWily9frh07diz3+CFDhuh9993nWXT5ueeeK7HQtIjop59+6nn94osvenroxX311Vdav359Tw+3\nuLJ60hdccIE++uijXsV49tln6+LFi095f//+/epwODQnJ6fEvsV76KUXza4o5uI9dFXVHj166Hvv\nvaeXX365vvTSSyXOUd7iHGUp7/uDDz10b4ctivvheiHyK+A+4GpVzfPvvxRjTLD07duXRo0aMX36\ndHJzc3E6naxfv57vv/8ecA3Vi4qKIiIigk2bNvHiiy+e0sbTTz9NVlYWu3fvZsaMGYwaNQqARYsW\nkZ6eDkDjxo1xOByeXmtpWuq3mAceeICZM2dy4sSJSmO86aabylxWLi4ujlatWvH6669TWFjIyy+/\nXOl6olWJecyYMcyYMYMvv/ySkSNHet6/7bbbmDRpErt27QJci3EvXry4wvMGSqUJXUQWAN8AHUVk\nl4iMBWYBDYH/iMgqEXmhwkaMMUFR2UVBh8PB//3f/5GamkpiYiLNmjXjlltu8awZ+re//Y033niD\nqKgobrvtNk+yLm7YsGH07t2bXr16MXToUG688UbANUKmX79+REVFMXz4cGbOnFnuOO7ScV555ZXE\nx8czZ86cSmOcOHEi1157LZdddhnR0dHcfPPNnDhxAoDZs2czffp04uLi2LhxI+eff36Fn0dFMZeO\ncdSoUXzxxRcMGTLEUw4CuPvuuxk2bJgnnoEDB7Jy5coKzxsotgSdMX46k5egczgcbNu2zecatrEl\n6IwxxpTBEroxxmehdsfpmc6vYYvGmDOb0+kMdgimGOuhG2NMLWEJ3RhjaglL6MYYU0tYQjfGmFrC\nEroxxtQSltCNMWe8r776is6dOwc7DL9ZQjemFqtJS9AVLUQxduxYHnnkkWo9Z9FiFUUuuOACNm7c\nWK3nPB0soRtzBgq1G4ICGY83Y+ND7ecPFEvoxpzhQmUJOoA5c+bwxhtvMH36dKKiohg2bFilMT76\n6KOMHDmS66+/nsaNGzN//vwK47744otRVbp160ZUVBRvv/02n3/+uWdu9OnTp5eYPRFcE25NmDAB\ngOzsbG6++WZatmxJmzZtmDx5cujM5VPV+Xar+iCE54o2JhBC+Tte1nzo8+bN88wDXlhYqL1799bH\nH39cCwoK9KefftL27dt7ViH64Ycf9Ntvv9XCwkJNS0vTLl266IwZMzxtiYgOHjxYs7KydPfu3dqx\nY0fPfOOjR4/WJ554QlVV8/Ly9Ouvvy4zxtLzof/xj3/UyZMne7ZXFuPUqVO1bt26njnRc3NzddWq\nVZXGvWPHDs/rlJQUbdOmjaqqpqWlaWRkpB49elRVVZ1Op8bHx+vKlStVVXX48OE6btw4PXHihO7f\nv1/79euns2fP9v4vpZTyvj+c7hWLjDGVE39XoXFTH1f6Gj58OHXq/PJPPS8vz7Pq0MqVKzlw4AAP\nPfQQAO3atePmm2/mzTff5NJLL6VXr16e49q2bcutt97K559/zl133eV5/4EHHiA6Opro6GgmTJjA\nwoULufHGGwkPD/esNtSqVSsGDhzoU/zfffddhTECDBgwgKFDhwJQr149evbsWWncWk6vum3btvTq\n1Yt3332X6667jqVLlxIZGUmfPn3IzMzk448/5siRI9SrV4/69eszYcIEZs+ezS233OLTzxdIltCN\nqWa+JuJAqQlL0FWksiXo4NSl5LyJuyKjR4/2LPy8cOFCxowZA7g+r5MnT3qWkivqGbdt27bKP1d1\nsIRuTC1XXk8UXIkwKSmJzZs3l7l93Lhx9OrVi7feeouIiAhmzJjBv//97xL77N692zPkb9euXbRs\n2RKA5s2bM3v2bAC+/vprLrnkEi6++OJK504vfcGyshjLOsabuCsycuRI7r33XtLT03n33XdZsWKF\nJ5b69etz8ODBkLywahdFjTmDheISdM2bNy8xpLCyGMtSWdwtWrQocY7S4uLiuPjiixk7dixJSUl0\n6tTJc9xll13GPffcQ05ODqrKjh07+OKLL8pt63SyhG5MLVYTl6C76aabWL9+PTExMYwYMaLSGMtS\nWdxTp07lhhtuICYmhkWLFpXZxpgxY1i6dCm///3vS7z/6quvkp+fT5cuXYiJiWHkyJFkZGSUG8vp\nZEvQGeMnW4LOlqDzx2ldgk5E5opIpoisLfZeExFZIiKbReRTEYmuykmNMcYEnjcll3nA5aXeewD4\nTFU7AcuABwMdmDEm9IXihcEzmVclFxFJAD5Q1W7u15uAi1U1U0RaACmqenY5x1rJxdRqZ3LJxfjv\ntJZcytFMVTMBVDUDaOZjO8YYYwIkUOPQK+yeTJ061fM8OTmZ5CDfaGGMMaEmJSWFFD/vKva15LIR\nSC5WcvmvqpY5mbCVXExtZyUX449Ally87aGL+1FkMfBH4K/AH4D3q3JSY2qThIQEuzhofJaQkBCw\ntirtoYvIAiAZiAUygSnAe8DbQBsgDbhWVbPKOd566MaYM8rCdQt5Z9M7vD3ybZ/bqJYeuqqOKWfT\nJVU5kTHGnClWZ6ymR/Mep/28duu/McYEWGpGKj1aWEI3xpgaTVVJzUilZ3zPyncOMEvoxhgTQHtz\nXPPBxzeMP+3ntoRujDEBVFRuCcbIJ0voxhgTQMGqn4MldGOMCajVGavp2eL018/BEroxxgSU9dCN\nMaYWyM7LJuNoBh1jOwbl/JbQjTEmQNZkrOGcZucQ5ggLyvktoRtjTIAEs9wCltCNMSZgLKEbY0wt\nEcwRLmAJ3RhjAiLfmc+mA5s4t/m5QYvBEroxxgTApgObSGicQER4RNBisIRujDEBsHpfcMstYAnd\nGGMCItgXRMESujHGBERqpiV0Y4yp8YrmQLeEbowxNVzakTQiwiNoFtksqHH4ldBF5EERWS8ia0Xk\nDRGpG6jAjDGmpgiF3jn4kdBFJAG4Beipqt1wLTg9KlCBGWNMTZGakRr0ES7gXw89G8gHIkWkDhAB\n7A1IVMYYU4Oszlhds3voqnoYeAbYBaQDWar6WaACM8aYmiJUSi51fD1QRJKAe4AE4AiwSETGqOqC\n0vtOnTrV8zw5OZnk5GRfT2uMMSHl0IlDHD5xmKQmSX61k5KSQkpKil9tiKr6dqDItcClqnqL+/X1\nQD9VvbPUfurrOYwxJtQt+2kZU1Km8OXYLwParoigqlVaadqfGvpmoL+I1BfX8tZDgI1+tGeMMTVO\nakYqPZoHv9wC/tXQ1wCvAj8AawABZgcoLmOMqRFSM1LpGR/8ES7g5zh0VX1aVbuqajdV/YOqngxU\nYMYYUxOEyggXsDtFjTHGZ7kFuWw/tJ2uTbsGOxTAEroxxvhs/c/rOSv2LOrVqRfsUABL6MYY47NQ\nKreAJXRjjPFZKI1wAUvoxhjjs1Aa4QKW0I0xxieFWsiazDV0b9492KF4WEI3xhgfbD+0ndgGsTRp\n0CTYoXhYQjfGGB+EWrkFLKEbY4xPVmesDqkLomAJ3RhjfBIqU+YWZwndGGN8UK0ll3HjfDrMErox\nxlRR5tFMcgtyaRPVJvCN79gBb7/t06GW0I0xpoqKyi2umcMD7IUX4MYbfTrUEroxxlRRtS0KffQo\nvPIK3HGHT4dbQjfGmCqqtjlcXn8dLroI2rXz6XBL6MYYU0XVMsJFFWbOhPHjfW7CEroxxlTBsfxj\n7Dqyi7Pjzg5sw0uXQlgYJCf73IQldGOMqYK1mWvp0rQL4WHhgW145ky46y7w40JrnQCGY4wxtV61\nlFu2b4fly+HNN/1qxq8euohEi8jbIrJRRNaLSD+/ojHGmBBXLSNc/vEP11DFiAi/mvG3hz4D+EhV\nR4pIHcC/aIwxJsStzljNDd1vCFyDR4/C/PmwapXfTfmc0EUkCrhQVf8IoKoFQLbfERljTIgqKCxg\n/f71dGveLXCNvvqq60JoQoLfTflTckkEDojIPBFZJSKzRaSB3xEZY0yI2nJwC60ataJRvUaBabCw\nEGbNcl0MDQB/Si51gF7An1T1exF5DngAmFJ6x6lTp3qeJycnk+zHsBxjjAmW1fsCfEPRZ59B3bpw\n0UWkpKSQkpLiV3Oiqr4dKNIcWK6qSe7XFwD3q+rQUvupr+cwxphQct+S+2jSoAmTLpwUmAavugqu\nuQZuuumUTSKCqlZpDKPPJRdVzQR2i0hH91tDgA2+tmeMMaEuNTOAI1y2bYOVK2HMmMC0h/+jXO4C\n3hCRcGAHMNb/kIwxJvSoamBLLv/4h6tn3iBwlx79SuiqugboE6BYjDEmZKXnpBPmCKNFwxb+N5aT\n4xrdsnq1/20VY7f+G2OMF4puKArIHOivvgqDB0Pbtv63VYzd+m+MMV4IWLmlaKjinDn+t1WK9dCN\nMcYLqZkBmsPlP/+B+vXhggv8b6sUS+jGGOOFgM3hEoBZFctjJRdjjKnEkdwjZB7NpENMB/8a2roV\nvvsOFi0KTGClWA/dGGMqsSZzDec2P5cwR5h/DT3/PNx8c0CHKhZnPXRjjKlEQMot2dnw2muwZk1g\ngiqD9dCNMaYSAVkUev58uOQSaNMmMEGVwRK6McZUwu9VigI8q2J5LKEbY0wF8p35bD6wmXObnet7\nI59+Cg0bwvnnBy6wMlhCN8aYCmzYv4HEJok0CPfjQmY1DlUszi6KGmNMBfwut2zZ4lpe7t13vT7k\ntYwMn05lPXRjjKmA3yNcnn8ebrnFdXeoFzYcO8bE7dt9OpUldGOMqYBfI1yys+H112HcOK92L1Tl\n9i1bmNqunU+ns4RujDHlUFXWZKzxPaG/8gpcdhm0auXd7hkZ5BYWcnvLlj6dzmroxhhTjp1ZO2lU\nrxFxEXFVP7hoqOL8+V7tvj8/nwd37OCTbt0I8/HiqfXQjTGmHH6VWz75BKKjYcAAr3a/b/t2ft+8\nOT0bNfLtfFgP3RhjypWakUqP5j4m9JkzYfx4r4Yqphw+zLKsLDb08W8BOOuhG2NMOVIzUukZ78MI\nl02bXMvL/e53le6aV1jI7Vu2MLNDBxrW8a+P7XdCFxGHiKwSkcX+tmWMMaHE55LL88/Drbd6NVRx\n+q5ddIqIYHjTpj5EWFIgSi53AxuAqAC0ZYwxIeHA8QNk52XTrnG7qh145AgsWADr1lW669bjx5mx\nZw+rzjvPtyBL8auHLiKtgV8D/wpINMYYEyKKhis6pIppct48uPzySocqqip3bN3KgwkJtPXypqPK\n+NtDfxa4D4gOQCzGGBMyVmesrvoFUafTNVTx9dcr3XXhzz+zPz+fu70co+4NnxO6iFwJZKpqqogk\nA+Veyp06darneXJyMsnJyb6e1hhjTovUjFSGJA6p2kEffwwxMdC/f4W7HT55knu3b+fdc86hjsP1\nG0BKSgopKSk+RusiqurbgSJPANcBBUADoBHwjqreUGo/9fUcxhgTLOe8cA6vj3i9ahdFL78crrsO\nrr++wt1u37wZhwgvdOxY7j4igqpW6Q4jnxN6qRNfDPxZVa8uY5sldGNMjXLi5Alip8eS9UAWdcPq\nenfQxo0waBCkpUG9euXutvzIEX6zfj0b+vShcXh4ufv5ktBtHLoxxpTy488/0jG2o/fJHFxDFW+7\nrcJkfrJcIaXrAAAQr0lEQVSwkNu2bOHv7dtXmMx9FZA7RVX1c+DzQLRljDHBVuUbirKyYOFCWL++\nwt2e27OH+Lp1+V2zZn5GWDa79d8YY0qp8giXefPgiisgPr7cXdJyc/nrrl1827s3Uk0rF1nJxRhj\nSqnSKkVOp6vcUsEC0KrKnVu3ck+bNrRv4MdSdpWwHroxxhTjLHSy7ud13if0jz6CuDjo16/cXd49\ncIDtJ07w765dAxRl2SyhG2NMMdsObaNpRFOi63t5v2TRrIrlyCko4O5t23ijc2fqOqq3KGIlF2OM\nKaZK5ZYNG+DHH2HkyHJ3mfzTT1zapAkXNW4coAjLZz10Y4wppkqLQs+aVeFQxVU5Obz588/86Oc8\n596yHroxxhTj9ZS5hw/Dm2+6EnoZnKrctmULTyUlEVe3CuPZ/WAJ3RhjivG65PLyy3DlleUOVXwh\nPZ1Ih4M/tGgR4AjLZyUXY4xxyziaQUFhAa2jWle8Y9FQxbfeKnNzel4ej6Wl8WWPHtU25rws1kM3\nxhi31ftc5ZZKk/CHH0Lz5tC3b5mbJ2zbxu0tW3J2ZGQ1RFk+66EbY4yb1+WWmTPLvZHoo4MHWZ2T\nw6tnnx3g6CpnPXRjjHFLzfRihMv69a7hir/97Smbjjud/GnrVl7s2JEGYWHVFGX5LKEbY4xbUcml\nQrNmwe23QxkjVx7buZMBUVFcGhNTTRFWzEouxhgD5OTlkJ6TTqe4TuXvdPiw60Lopk2nbPrx6FFe\nzshgbYAWfPaF9dCNMQZY9/M6ujbtSh1HBf3cuXNh6FDXBdFiCt1jzh9r144WFcyHXt2sh26MMXhR\nbikaqvj226dsmrtvH4XArS1bVl+AXrCEbowxeLGoxQcfQMuWUOo2/p/z83nop5/4rHt3HKdxzHlZ\nrORijDF4McKlnKGKf96+nT+0aEG3hg2rMTrv+JzQRaS1iCwTkfUisk5Eyp/d3RhjQthJ50nW/7ye\nc5ufW/YO69bB5s3wm9+UeHvp4cN8mZXF1Hbtqj9IL/hTcikAJqpqqog0BH4QkSWqeurlX2OMCWGb\nD26mTXQbGtYtp5ddNFSx2MLOuU4n47ZsYdZZZxEZhDHnZfE5oatqBpDhfn5URDYCrQBL6MaYGqXC\nKXMPHnRdCC01VPGpXbs4JzKSoXFxpyFC7wTkoqiItAN6AN8Goj1jjDmdKhzhMncuXH11iaGKm48f\n5/n0dFKDOOa8LH5fFHWXWxYBd6vqUf9DMsaY0ys1s5w5XAoK4B//KHExVFW5Y8sWHk5IoHX9+qcx\nysr51UMXkTq4kvlrqvp+eftNnTrV8zw5OZnk5GR/TmuMMQGjquVPyvXBB9C6NfTu7Xnr9cxMDhcU\ncGerVgGNIyUlhZSUFL/aEFX1/WCRV4EDqjqxgn3Un3MYY0x12nVkF/3+1Y99f9536sZBg1wXQ3/3\nOwAOnTxJ1+++Y/E559AnKqpa4xIRVLVKA9v9GbZ4PvB7YLCIrBaRVSLyK1/bM8aYYCi3d752LWzd\nCiNGeN66f8cOftu0abUnc1/5M8rlayA0xuoYY4yPUjNS6dG8jIQ+axaMG+cZqvhVVhYfHzzI+nIW\ntQgFduu/MeaMtjpjNaPPGV3yzYMHYdEi2LIFgPzCQm7fsoVnO3Qguk7opk279d8Yc8bKPJrJyvSV\np5Zc/vUvGD4cmjYF4O+7d9O2fn1+634dqkL3vxpjjKkmh04c4umvn2b2qtnc2ONGOsR0+GVj0VDF\n994D4KcTJ/jb7t1817v3aV3w2ReW0I0xZ4yj+UeZsWIGz654lhGdR5B6WyptotuU3On99yEhAXr1\nQlX509at3NumDYkNGgQn6CqwhG6MqfVyC3J56fuXeOqrpxiSNITlNy3nrNizyt652KyKi/bvZ1du\nLn8+55zTGK3vLKEbY2qtk86TvJL6Co998Ri94nux5PoldGverfwDUlNh+3YYPpwjBQXcs20bb3Xt\nSrijZlxutIRujKl1CrWQN398k0f++wiJTRJZNHIR/Vr3q/zAWbPgjjsgPJyHt27lithYzo+Orv6A\nA8QSujGm1lBVFm9ezMP/fZhGdRsxZ+gcBiUO8u7gAwfgnXdgyxa+y85m0f79rC+1OlGos4RujKnx\nVJWlPy3loWUPkVuQy5NDnuTKs66s2qiUOXPgmmsoiI3ltlWrmJ6UREyx+c9rAr/mcvHqBDaXizGm\nGn2z+xseWvYQ6dnpTBs0jZFdR+KQKta8CwogMREWL+a5uDg+OHiQz7p3D+owRV/mcrEeujGmRkrN\nSOXhZQ+z7ud1TLl4Cjd0v4E6Dh9T2nvvQWIiezp35vHvv+frXr1Cfsx5WayHboypUTYf2MwjKY/w\nRdoXTLpgErf2vpV6der51+hFF8FddzHi7LPpFhnJ1MTEwATrh9M626IxxpxOaVlp3Pj+jVww7wJ6\nNO/BtvHbGN9vvP/JfPVq2LmTDy68kB+PHeOBtm0DE3AQWMnFGBPSMo5m8MSXT/DGujcYd944to7f\nSuP6jQPTuCrMmMGxO+9k/I4dvHz22dQPkQWffWEJ3RgTkorPt3JDtxvY+KeNNIts5l+jubmwahUs\nXw7ffOP6s149pt57LxeGhTG4SZPABB8kVkM3xoSUnLwcZnw7g+dWPMeIziOYfNHkU+db8dbevb8k\n7m++cS1a0akTDBwIAwbAwIGsiYvj0rVr+bFPH5rVrRvYH8YPNsrFGFNj5Rbk8uJ3L/LU109xSdIl\nFc+3UpaTJ2HNmpIJ/OhRT+LmiSegTx80MpLM/Hw2HD/OhmPHmL1pE39JTAypZO4r66EbY4LqpPMk\n81LnMe2LafSO7820QdM4t/m5lR+4f3/J0skPP7jGkrsTuPbvz56EBDacOMGGY8c8CXzD8eOEAV0j\nI+kSGUmvhg25KT4eR4gNU/Slh24J3RgTFM5CJ2/++CZTUqaQ2CSRxwc9Xv58K04n/Phjyd73gQPQ\nrx+FAweSNmAAG84+mw3gSdwbjx+nYVgYXSIi6BIZSWf3n10iImgaor3xEycgPR327IFBg05zQncv\nCv0cruGPc1X1r2XsYwndGOOhqry/+X0m/3cyjeo24i+D/3LqfCuHD8OKFb8k8JUrKWjdmh2XXsqG\nfv3Y0KEDGxo2ZOPx42w6fpzY8HBP4i6ewJuE0K37x4+7EvWePbB79y/Pi7/OyYFWraB1a/jyy9OY\n0EXEAWwBhgB7ge+AUaq6qdR+IZfQU1JSSE5ODnYYJYRiTBCacVlM3gmlmPKd+WTnZfPyuy+z6Pgi\n8p35PD74cdd8K6qwaZOn552/ciXbnE42DBrEhl692JCQwIaGDdman0/LunVL9LS7REZydkQEUX6u\n8+nvZ3X0aMkEXTpp797tSuitW//yaNPm1NdxcVA0U+/pvijaF9iqqmnuk78JDAM2VXhUCAilL3qR\nUIwJQjMui8k7gYipUAs5ln+MI3lHOJJ7hOy8bI7kuf/MPVLieXb+qe8VPS8oLCCqXhR1v6jL8w8/\nwTU5rcj/35Ws3fK/bDx8mA1nncWGc89lw8iR/HT99bRt0MCTtIdGRnJ/RASdIiKIqKYx4hV9Vjk5\nFfeq9+yBvLySybl1a+jRA6666pfXcXFQ3WV6fxJ6K2B3sdd7cCV5Y0wIcBY62X9svycJF0/IR05k\ncfTYYY4fPczxY1kcP5bFsWM5nMg9Ru6J4+TlnSAvNw/nyXwaOBrQMKwhDcMiiQiLoL40oF5YfepJ\nPepKXRpIXRpJOA6icEgMQhhIGKoOwIETwalQkK98dCSFV1MyeeCsKHYPGED7AQPo0rgxXWJiGOlO\n4Gc1aFDlm3tUXWX2wkLXn+U9ytqenw/btrnWhS4rYRcUnNqb7t0bhg375XVMTPUna2+clmGL/Z97\n5nScxmt7VnzDJxZT5cQd14zQiUsR9qxYzscz/l729gr/UVXyL66CzVrBRhXYu3IFHz7/HOp579T9\nf4lNSrwWz/76y3k8x//ynoogxfcp473i581MXc3bby+m0BFGQVgdnGGuPwvqNOJkWGNO1unAyQZ1\nKGgYhjMsjDoFBdRxOqlT4KSOs5A6BYXUcSphzkLCChWHUwkrUMIKweGEMKficAriBEehIE7BUShQ\n6ECc7j8Lw8DpgMIwKAxjj3MvWdv/QOQ3UZzzcwP0pIOtTtjkhLd9TMhOpyuhOxwQFlbyUdZ7pR/h\n4XDsGNSt60rOffvCb37zS7Ju3Dg0krU3/Kmh9wemquqv3K8fALT0hVERCa0CujHG1BCn86JoGLAZ\n10XRfcBKYLSqbvSpQWOMMX7xueSiqk4RuRNYwi/DFi2ZG2NMkFT7jUXGGGNOj2qbD11E5opIpois\nra5zVJWItBaRZSKyXkTWichdIRBTPRH5VkRWu+N6ItgxFRERh4isEpHFwY4FQER2isga92e1Mtjx\nFBGRaBF5W0Q2uv8OvVhevlrj6ej+jFa5/zwSIt/1B92fz1oReUNEgn67pojc7c4FQcsHZeVKEWki\nIktEZLOIfCoi0d60VZ0LXMwDLq/G9n1RAExU1a7AAOBPInJ2MANS1TxgkKr2BLoBg0Xk/GDGVMzd\nwIZgB1FMIZCsqj1VNZSGyM4APlLVzkB3IKilR1Xd4v6MegG9gWPAu8GMSUQSgFuAnqraDVe5d1SQ\nY+oK3AScB/QArhKRpCCEUlaufAD4TFU7AcuAB71pqNoSuqp+BRyurvZ9oaoZqprqfn4U1z+8VsGN\nClT1uPtpPVx/J0H/3ESkNfBr4F/BjqUYIcRW2RKRKOBCVZ0HoKoFqpod5LCKuwTYrqq7K92zemUD\n+UCkiNQBInDdYR5MnYFvVTVPVZ3AF8CI0x1EOblyGDDf/Xw+MNybtkLqH8fpJCLtcP2v/G1wI/GU\nNlYDGUCKqoZCr/hZ4D4glC6yKPAfEflORG4JdjBuicABEZnnLnHMFpEGwQ6qmN8BC4MdhKoeBp4B\ndgHpQJaqfhbcqPgRuNBd3ojA1YHxceL1gGumqpng6ogCXq3scUYmdBFpCCwC7nb31INKVQvdJZfW\nwEUicnEw4xGRK4FM928zQqV35Jw257vLCL/GVS67INgB4Sod9AL+4Y7tOK5fl4NORMKBq4G3QyCW\nJOAeIAFoCTQUkTHBjMk979Rfgf8AHwGrAWcwY6qAVx2rMy6hu3/dWwS8pqrvBzue4ty/qn+Iq6YX\nTOcDV4vIDly9u0Ei8mqQY0JV97n/3I+rJhwKdfQ9wG5V/d79ehGuBB8KrgB+cH9ewXYe8LWqHnKX\nN94BBgY5JlR1nqqep6rJQBauCQdDQaaINAcQkRbAz94cVN0JPZR6d0VeBjao6oxgBwIgInFFV7Dd\nv6pfCqQGMyZVnaSqbVU1CdeFq2WqekMwYxKRCPdvVohIJHAZrl+Zg8r9a/FuEenofmsIoXMheTQh\nUG5x2wz0F5H6IiK4Pqeg37ciIk3df7YFrgEWBCsUSubKxcAf3c//AHjV+ay2uVxEZAGQDMSKyC5g\nStGFo2Bxjx75PbDOXbNWYJKqfhLEsOKB+e4vuQPXbw5LgxhPqGoOvOueSqIO8IaqLglyTEXuAt5w\nlzh2AGODHA/umvAlwK3BjgVAVde4f8v7AVdZYzUwO7hRAfBvEYkBTgJ3BOOCdlm5EngKeFtEbgTS\ngGu9astuLDLGmNrhjKuhG2NMbWUJ3RhjaglL6MYYU0tYQjfGmFrCEroxxtQSltCNMaaWsIRujDG1\nhCV0Y4ypJf4fvKAS2vu0/7QAAAAASUVORK5CYII=\n", "text/plain": [ "<matplotlib.figure.Figure at 0x107c37cc0>" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "%matplotlib inline\n", "from matplotlib.pyplot import plot, legend\n", "\n", "import itertools\n", "from time import time\n", "import sys\n", "sys.setrecursionlimit(10000)\n", "\n", "# Recursive implementation of Heap's algorithm\n", "def recursive_permute(L):\n", " yield from recursive_heap_permute(L, len(L))\n", " \n", "def recursive_heap_permute(L, length):\n", " if length <= 1:\n", " yield L\n", " else:\n", " length -= 1\n", " for i in range(length):\n", " yield from recursive_heap_permute(L, length)\n", " if length % 2:\n", " L[i], L[length] = L[length], L[i]\n", " else:\n", " L[0], L[length] = L[length], L[0]\n", " yield from recursive_heap_permute(L, length)\n", "\n", "# Iterative implementation of Heap's algorithm\n", "def iterative_permute(L):\n", " yield L\n", " stack = [(0, i) for i in range(len(L) - 1, 0, -1)]\n", " while stack:\n", " low, high = stack.pop()\n", " if high % 2:\n", " L[low], L[high] = L[high], L[low]\n", " else:\n", " L[0], L[high] = L[high], L[0]\n", " yield L\n", " if low + 1 != high:\n", " stack.append((low + 1, high))\n", " for i in range(high - 1, 0, -1):\n", " stack.append((0, i))\n", "\n", "# As documentated in the itertools module for its permutations() function.\n", "def permutations(iterable, r=None):\n", " pool = tuple(iterable)\n", " n = len(pool)\n", " r = n if r is None else r\n", " indices = list(range(n))\n", " cycles = list(range(n-r+1, n+1)[::-1])\n", " yield tuple(pool[i] for i in indices[:r])\n", " while n:\n", " for i in reversed(range(r)):\n", " cycles[i] -= 1\n", " if cycles[i] == 0:\n", " indices[i:] = indices[i+1:] + indices[i:i+1]\n", " cycles[i] = n - i\n", " else:\n", " j = cycles[i]\n", " indices[i], indices[-j] = indices[-j], indices[i]\n", " yield tuple(pool[i] for i in indices[:r])\n", " break\n", " else:\n", " return\n", "\n", "\n", "data = [], [], [], []\n", "for i in range(1, 11):\n", " L = list(range(i))\n", " before = time()\n", " for _ in itertools.permutations(L):\n", " pass\n", " after = time()\n", " data[0].append((i, after - before))\n", "\n", " L = list(range(i))\n", " before = time()\n", " for _ in permutations(L):\n", " pass\n", " after = time()\n", " data[1].append((i, after - before))\n", " \n", " L = list(range(i))\n", " before = time()\n", " for _ in recursive_permute(L):\n", " list(_)\n", " after = time()\n", " data[2].append((i, after - before))\n", "\n", " L = list(range(i))\n", " before = time()\n", " for _ in iterative_permute(L):\n", " list(_)\n", " after = time()\n", " data[3].append((i, after - before))\n", "\n", "labels = 'Itertools', 'Itertools doc', 'Heaps Recursive', 'Heaps Iterative'\n", "for i in range(4):\n", " plot(*tuple(zip(*data[i])), label = labels[i])\n", "legend()\n", "print()" ] } ], "metadata": { "kernelspec": { "display_name": "Python 3", "language": "python", "name": "python3" }, "language_info": { "codemirror_mode": { "name": "ipython", "version": 3 }, "file_extension": ".py", "mimetype": "text/x-python", "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", "version": "3.5.2" } }, "nbformat": 4, "nbformat_minor": 0 }
gpl-3.0
mne-tools/mne-tools.github.io
0.19/_downloads/ff83425ee773d1d588a6994e5560c06c/plot_mne_dspm_source_localization.ipynb
1
10087
{ "cells": [ { "cell_type": "code", "execution_count": null, "metadata": { "collapsed": false }, "outputs": [], "source": [ "%matplotlib inline" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "\n\nSource localization with MNE/dSPM/sLORETA/eLORETA\n=================================================\n\nThe aim of this tutorial is to teach you how to compute and apply a linear\ninverse method such as MNE/dSPM/sLORETA/eLORETA on evoked/raw/epochs data.\n" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "collapsed": false }, "outputs": [], "source": [ "import numpy as np\nimport matplotlib.pyplot as plt\n\nimport mne\nfrom mne.datasets import sample\nfrom mne.minimum_norm import make_inverse_operator, apply_inverse" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "Process MEG data\n\n" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "collapsed": false }, "outputs": [], "source": [ "data_path = sample.data_path()\nraw_fname = data_path + '/MEG/sample/sample_audvis_filt-0-40_raw.fif'\n\nraw = mne.io.read_raw_fif(raw_fname) # already has an average reference\nevents = mne.find_events(raw, stim_channel='STI 014')\n\nevent_id = dict(aud_l=1) # event trigger and conditions\ntmin = -0.2 # start of each epoch (200ms before the trigger)\ntmax = 0.5 # end of each epoch (500ms after the trigger)\nraw.info['bads'] = ['MEG 2443', 'EEG 053']\nbaseline = (None, 0) # means from the first instant to t = 0\nreject = dict(grad=4000e-13, mag=4e-12, eog=150e-6)\n\nepochs = mne.Epochs(raw, events, event_id, tmin, tmax, proj=True,\n picks=('meg', 'eog'), baseline=baseline, reject=reject)" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "Compute regularized noise covariance\n------------------------------------\n\nFor more details see `tut_compute_covariance`.\n\n" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "collapsed": false }, "outputs": [], "source": [ "noise_cov = mne.compute_covariance(\n epochs, tmax=0., method=['shrunk', 'empirical'], rank=None, verbose=True)\n\nfig_cov, fig_spectra = mne.viz.plot_cov(noise_cov, raw.info)" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "Compute the evoked response\n---------------------------\nLet's just use MEG channels for simplicity.\n\n" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "collapsed": false }, "outputs": [], "source": [ "evoked = epochs.average().pick('meg')\nevoked.plot(time_unit='s')\nevoked.plot_topomap(times=np.linspace(0.05, 0.15, 5), ch_type='mag',\n time_unit='s')\n\n# Show whitening\nevoked.plot_white(noise_cov, time_unit='s')\n\ndel epochs # to save memory" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "Inverse modeling: MNE/dSPM on evoked and raw data\n-------------------------------------------------\n\n" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "collapsed": false }, "outputs": [], "source": [ "# Read the forward solution and compute the inverse operator\nfname_fwd = data_path + '/MEG/sample/sample_audvis-meg-oct-6-fwd.fif'\nfwd = mne.read_forward_solution(fname_fwd)\n\n# make an MEG inverse operator\ninfo = evoked.info\ninverse_operator = make_inverse_operator(info, fwd, noise_cov,\n loose=0.2, depth=0.8)\ndel fwd\n\n# You can write it to disk with::\n#\n# >>> from mne.minimum_norm import write_inverse_operator\n# >>> write_inverse_operator('sample_audvis-meg-oct-6-inv.fif',\n# inverse_operator)" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "Compute inverse solution\n------------------------\n\n" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "collapsed": false }, "outputs": [], "source": [ "method = \"dSPM\"\nsnr = 3.\nlambda2 = 1. / snr ** 2\nstc, residual = apply_inverse(evoked, inverse_operator, lambda2,\n method=method, pick_ori=None,\n return_residual=True, verbose=True)" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "Visualization\n-------------\nView activation time-series\n\n" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "collapsed": false }, "outputs": [], "source": [ "plt.figure()\nplt.plot(1e3 * stc.times, stc.data[::100, :].T)\nplt.xlabel('time (ms)')\nplt.ylabel('%s value' % method)\nplt.show()" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "Examine the original data and the residual after fitting:\n\n" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "collapsed": false }, "outputs": [], "source": [ "fig, axes = plt.subplots(2, 1)\nevoked.plot(axes=axes)\nfor ax in axes:\n ax.texts = []\n for line in ax.lines:\n line.set_color('#98df81')\nresidual.plot(axes=axes)" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "Here we use peak getter to move visualization to the time point of the peak\nand draw a marker at the maximum peak vertex.\n\n" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "collapsed": false }, "outputs": [], "source": [ "vertno_max, time_max = stc.get_peak(hemi='rh')\n\nsubjects_dir = data_path + '/subjects'\nsurfer_kwargs = dict(\n hemi='rh', subjects_dir=subjects_dir,\n clim=dict(kind='value', lims=[8, 12, 15]), views='lateral',\n initial_time=time_max, time_unit='s', size=(800, 800), smoothing_steps=5)\nbrain = stc.plot(**surfer_kwargs)\nbrain.add_foci(vertno_max, coords_as_verts=True, hemi='rh', color='blue',\n scale_factor=0.6, alpha=0.5)\nbrain.add_text(0.1, 0.9, 'dSPM (plus location of maximal activation)', 'title',\n font_size=14)" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "Morph data to average brain\n---------------------------\n\n" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "collapsed": false }, "outputs": [], "source": [ "# setup source morph\nmorph = mne.compute_source_morph(\n src=inverse_operator['src'], subject_from=stc.subject,\n subject_to='fsaverage', spacing=5, # to ico-5\n subjects_dir=subjects_dir)\n# morph data\nstc_fsaverage = morph.apply(stc)\n\nbrain = stc_fsaverage.plot(**surfer_kwargs)\nbrain.add_text(0.1, 0.9, 'Morphed to fsaverage', 'title', font_size=20)\ndel stc_fsaverage" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "Dipole orientations\n-------------------\nThe ``pick_ori`` parameter of the\n:func:`mne.minimum_norm.apply_inverse` function controls\nthe orientation of the dipoles. One useful setting is ``pick_ori='vector'``,\nwhich will return an estimate that does not only contain the source power at\neach dipole, but also the orientation of the dipoles.\n\n" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "collapsed": false }, "outputs": [], "source": [ "stc_vec = apply_inverse(evoked, inverse_operator, lambda2,\n method=method, pick_ori='vector')\nbrain = stc_vec.plot(**surfer_kwargs)\nbrain.add_text(0.1, 0.9, 'Vector solution', 'title', font_size=20)\ndel stc_vec" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "Note that there is a relationship between the orientation of the dipoles and\nthe surface of the cortex. For this reason, we do not use an inflated\ncortical surface for visualization, but the original surface used to define\nthe source space.\n\nFor more information about dipole orientations, see\n`tut-dipole-orientations`.\n\n" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "Now let's look at each solver:\n\n" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "collapsed": false }, "outputs": [], "source": [ "for mi, (method, lims) in enumerate((('dSPM', [8, 12, 15]),\n ('sLORETA', [3, 5, 7]),\n ('eLORETA', [0.75, 1.25, 1.75]),)):\n surfer_kwargs['clim']['lims'] = lims\n stc = apply_inverse(evoked, inverse_operator, lambda2,\n method=method, pick_ori=None)\n brain = stc.plot(figure=mi, **surfer_kwargs)\n brain.add_text(0.1, 0.9, method, 'title', font_size=20)\n del stc" ] } ], "metadata": { "kernelspec": { "display_name": "Python 3", "language": "python", "name": "python3" }, "language_info": { "codemirror_mode": { "name": "ipython", "version": 3 }, "file_extension": ".py", "mimetype": "text/x-python", "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", "version": "3.7.4" } }, "nbformat": 4, "nbformat_minor": 0 }
bsd-3-clause
tensorflow/kfac
kfac/examples/keras/KFAC_vs_Adam_on_CIFAR10.ipynb
1
21591
{ "cells": [ { "cell_type": "markdown", "metadata": { "colab_type": "text", "id": "_DDaAex5Q7u-" }, "source": [ "##### Copyright 2019 The TensorFlow Authors." ] }, { "cell_type": "code", "execution_count": 0, "metadata": { "cellView": "both", "colab": {}, "colab_type": "code", "id": "W1dWWdNHQ9L0" }, "outputs": [], "source": [ "#@title Licensed under the Apache License, Version 2.0 (the \"License\");\n", "# you may not use this file except in compliance with the License.\n", "# You may obtain a copy of the License at\n", "#\n", "# https://www.apache.org/licenses/LICENSE-2.0\n", "#\n", "# Unless required by applicable law or agreed to in writing, software\n", "# distributed under the License is distributed on an \"AS IS\" BASIS,\n", "# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.\n", "# See the License for the specific language governing permissions and\n", "# limitations under the License." ] }, { "cell_type": "markdown", "metadata": { "colab_type": "text", "id": "_C170SDp6jBt" }, "source": [ "# KFAC vs Adam on CIFAR10 on a GPU\n", "\n", "This notebook contains the code used to run the experiment comparing KFAC and Adam on CIFAR 10 with a Resnet-20. This was run on a NVIDIA Tesla P100 for the experiment. It can be run on a public GPU colab instance.\n", "\n", "[![Open In Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/github/tensorflow/kfac/blob/master/kfac/examples/keras/KFAC_vs_Adam_on_CIFAR10.ipynb)" ] }, { "cell_type": "code", "execution_count": 0, "metadata": { "colab": {}, "colab_type": "code", "id": "rw0qz2RWkLeJ" }, "outputs": [], "source": [ "!pip install kfac" ] }, { "cell_type": "code", "execution_count": 0, "metadata": { "colab": {}, "colab_type": "code", "id": "LfGyhnaOsgYu" }, "outputs": [], "source": [ "import tensorflow as tf\n", "import tensorflow_datasets as tfds\n", "import math\n", "import kfac" ] }, { "cell_type": "code", "execution_count": 0, "metadata": { "colab": {}, "colab_type": "code", "id": "DYWIY0C380ye" }, "outputs": [], "source": [ "TRAINING_SIZE = 40000\n", "VALIDATION_SIZE = 10000\n", "TEST_SIZE = 10000\n", "SEED = 20190524\n", "\n", "num_training_steps = 7500\n", "batch_size = 1000\n", "layers = tf.keras.layers\n", "\n", "# We take the ceiling because we do not drop the remainder of the batch\n", "compute_steps_per_epoch = lambda x: int(math.ceil(1. * x / batch_size))\n", "steps_per_epoch = compute_steps_per_epoch(TRAINING_SIZE)\n", "val_steps = compute_steps_per_epoch(VALIDATION_SIZE)" ] }, { "cell_type": "code", "execution_count": 0, "metadata": { "colab": {}, "colab_type": "code", "id": "GfeTgsbh5G4g" }, "outputs": [], "source": [ "optimizer_name = 'kfac' # 'kfac' or 'adam'\n", "\n", "# Best Hyperparameters from the Random Search\n", "if optimizer_name == 'kfac':\n", " init_learning_rate = 0.22721400059936694\n", " final_learning_rate = 1e-04\n", " init_damping = 0.28872127217018184\n", " final_damping = 1e-6\n", " momentum = 1 - 0.018580394981260295\n", " lr_decay_rate = 1 - 0.001090107322908028\n", " damping_decay_rate = 1 - 0.0002870880729016523\n", "elif optimizer_name == 'adam':\n", " init_learning_rate = 2.24266320779\n", " final_learning_rate = 1e-4\n", " init_epsilon = 0.183230038808\n", " final_epsilon = 1e-8\n", " momentum = 1 - 0.0296561513388\n", " lr_decay_rate = 1 - 0.000610416031571\n", " epsilon_decay_rate = 1 - 0.000212682338199\n", "else:\n", " raise ValueError('Ensure optimizer_name is kfac or adam')" ] }, { "cell_type": "markdown", "metadata": { "colab_type": "text", "id": "v3vSki-usp9k" }, "source": [ "## Input Pipeline" ] }, { "cell_type": "code", "execution_count": 0, "metadata": { "colab": {}, "colab_type": "code", "id": "D2U3i5kgssy_" }, "outputs": [], "source": [ "def _parse_fn(x):\n", " image, label = x['image'], x['label']\n", " image = tf.cast(image, tf.float32)\n", " label = tf.cast(label, tf.int32)\n", " image = image / 127.5 - 1\n", " return image, label\n", "\n", "\n", "def _augment_image(image, crop_amount, seed=None):\n", " # Random Brightness, Contrast, Jpeg Quality, Hue, and Saturation did not\n", " # seem to work well as augmentations for our training specifications\n", " input_shape = image.shape.as_list()\n", " cropped_size = [input_shape[0] - crop_amount,\n", " input_shape[1] - crop_amount,\n", " input_shape[2]]\n", " flipped = tf.image.random_flip_left_right(image, seed)\n", " cropped = tf.image.random_crop(flipped, cropped_size, seed)\n", " return tf.image.pad_to_bounding_box(image=cropped,\n", " offset_height=crop_amount // 2,\n", " offset_width=crop_amount // 2,\n", " target_height=input_shape[0],\n", " target_width=input_shape[1])\n", "\n", "\n", "def _get_raw_data():\n", " # We split the training data into training and validation ourselves for\n", " # hyperparameter tuning.\n", " training_pct = int(100.0 * TRAINING_SIZE / (TRAINING_SIZE + VALIDATION_SIZE))\n", " train_split = tfds.Split.TRAIN.subsplit(tfds.percent[:training_pct])\n", " validation_split = tfds.Split.TRAIN.subsplit(tfds.percent[training_pct:])\n", "\n", " train_data, info = tfds.load('cifar10:3.*.*', with_info=True, split=train_split)\n", " val_data = tfds.load('cifar10:3.*.*', split=validation_split)\n", " test_data = tfds.load('cifar10:3.*.*', split='test')\n", "\n", " input_shape = info.features['image'].shape\n", " num_classes = info.features['label'].num_classes\n", " info = {'input_shape': input_shape, 'num_classes': num_classes}\n", " return info, train_data, val_data, test_data\n", "\n", "\n", "def get_input_pipeline(batch_size=None,\n", " use_augmentation=True,\n", " seed=None,\n", " crop_amount=6,\n", " drop_remainder=False,\n", " repeat_validation=True):\n", " \"\"\"Creates CIFAR10 Data Pipeline.\n", "\n", " Args:\n", " batch_size (int): Batch size used for training.\n", " use_augmentation (bool): If true, applies random horizontal flips and crops\n", " then pads to images.\n", " seed (int): Random seed used for augmentation operations.\n", " crop_amount (int): Number of pixels to crop from the height and width of the\n", " image. So, the cropped image will be [height - crop_amount, width -\n", " crop_amount, channels] before it is padded to restore its original size.\n", " drop_remainder (bool): Whether to drop the remainder of the batch. Needs to\n", " be true to work on TPUs.\n", " repeat_validation (bool): Whether to repeat the validation set. Test set is\n", " never repeated.\n", "\n", " Returns:\n", " A tuple with an info dict (with input_shape (tuple) and number of classes\n", " (int)) and data dict (train_data (tf.DatasetAdapter), validation_data,\n", " (tf.DatasetAdapter) and test_data (tf.DatasetAdapter))\n", " \"\"\"\n", " info, train_data, val_data, test_data = _get_raw_data()\n", "\n", " if not batch_size:\n", " batch_size = max(TRAINING_SIZE, VALIDATION_SIZE, TEST_SIZE)\n", "\n", " train_data = train_data.map(_parse_fn).shuffle(8192, seed=seed).repeat()\n", " if use_augmentation:\n", " train_data = train_data.map(\n", " lambda x, y: (_augment_image(x, crop_amount, seed), y))\n", " train_data = train_data.batch(\n", " min(batch_size, TRAINING_SIZE), drop_remainder=drop_remainder)\n", " train_data = train_data.prefetch(buffer_size=tf.data.experimental.AUTOTUNE)\n", "\n", " val_data = val_data.map(_parse_fn)\n", " if repeat_validation:\n", " val_data = val_data.repeat()\n", " val_data = val_data.batch(\n", " min(batch_size, VALIDATION_SIZE), drop_remainder=drop_remainder)\n", " val_data = val_data.prefetch(buffer_size=tf.data.experimental.AUTOTUNE)\n", "\n", " # Don't repeat test data because it is only used once to evaluate at the end.\n", " test_data = test_data.map(_parse_fn)\n", " if repeat_validation:\n", " test_data = test_data.repeat()\n", " test_data = test_data.batch(\n", " min(batch_size, TEST_SIZE), drop_remainder=drop_remainder)\n", " test_data = test_data.prefetch(buffer_size=tf.data.experimental.AUTOTUNE)\n", "\n", " data = {'train': train_data, 'validation': val_data, 'test': test_data}\n", " return data, info" ] }, { "cell_type": "markdown", "metadata": { "colab_type": "text", "id": "SLvlpsups2aR" }, "source": [ "## Model - Resnet V2\n", "\n", "Based on https://keras.io/examples/cifar10_resnet/. The only difference is that tf.keras layer implementations are used." ] }, { "cell_type": "code", "execution_count": 0, "metadata": { "colab": {}, "colab_type": "code", "id": "Cch3Ld5Ds4i2" }, "outputs": [], "source": [ "def resnet_layer(inputs,\n", " num_filters=16,\n", " kernel_size=3,\n", " strides=1,\n", " activation='relu',\n", " batch_normalization=True,\n", " conv_first=True):\n", " \"\"\"2D Convolution-Batch Normalization-Activation stack builder.\n", "\n", " Based on https://keras.io/examples/cifar10_resnet/.\n", "\n", " Args:\n", " inputs (tensor): input tensor from input image or previous layer\n", " num_filters (int): Conv2D number of filters\n", " kernel_size (int): Conv2D square kernel dimensions\n", " strides (int): Conv2D square stride dimensions\n", " activation (string): activation name\n", " batch_normalization (bool): whether to include batch normalization\n", " conv_first (bool): conv-bn-activation (True) or bn-activation-conv (False)\n", "\n", " Returns:\n", " x (tensor): tensor as input to the next layer\n", " \"\"\"\n", " conv = layers.Conv2D(num_filters,\n", " kernel_size=kernel_size,\n", " strides=strides,\n", " padding='same',\n", " kernel_initializer='he_normal',\n", " kernel_regularizer=tf.keras.regularizers.l2(1e-4))\n", "\n", " x = inputs\n", " if conv_first:\n", " x = conv(x)\n", " if batch_normalization:\n", " x = layers.BatchNormalization()(x)\n", " if activation is not None:\n", " x = layers.Activation(activation)(x)\n", " else:\n", " if batch_normalization:\n", " x = layers.BatchNormalization()(x)\n", " if activation is not None:\n", " x = layers.Activation(activation)(x)\n", " x = conv(x)\n", " return x\n", "\n", "\n", "def resnet_v2(input_shape, depth, num_classes=10):\n", " \"\"\"ResNet Version 2 Model builder [b].\n", "\n", " Based on https://keras.io/examples/cifar10_resnet/.\n", "\n", " Stacks of (1 x 1)-(3 x 3)-(1 x 1) BN-ReLU-Conv2D or also known as\n", " bottleneck layer\n", " First shortcut connection per layer is 1 x 1 Conv2D.\n", " Second and onwards shortcut connection is identity.\n", " At the beginning of each stage, the feature map size is halved (downsampled)\n", " by a convolutional layer with strides=2, while the number of filter maps is\n", " doubled. Within each stage, the layers have the same number filters and the\n", " same filter map sizes.\n", " Features maps sizes:\n", " conv1 : 32x32, 16\n", " stage 0: 32x32, 64\n", " stage 1: 16x16, 128\n", " stage 2: 8x8, 256\n", "\n", " Args:\n", " input_shape (tuple/list): shape of input image tensor\n", " depth (int): number of core convolutional layers\n", " num_classes (int): number of classes (CIFAR10 has 10)\n", "\n", " Returns:\n", " model (Model): Keras model instance\n", " \"\"\"\n", " if (depth - 2) % 9 != 0:\n", " raise ValueError('depth should be 9n+2 (eg 56 or 110 in [b])')\n", " # Start model definition.\n", " num_filters_in = 16\n", " num_res_blocks = int((depth - 2) / 9)\n", "\n", " inputs = tf.keras.Input(shape=input_shape)\n", " # v2 performs Conv2D with BN-ReLU on input before splitting into 2 paths\n", " x = resnet_layer(inputs=inputs, num_filters=num_filters_in, conv_first=True)\n", "\n", " # Instantiate the stack of residual units\n", " for stage in range(3):\n", " for res_block in range(num_res_blocks):\n", " activation = 'relu'\n", " batch_normalization = True\n", " strides = 1\n", " if stage == 0:\n", " num_filters_out = num_filters_in * 4\n", " if res_block == 0: # first layer and first stage\n", " activation = None\n", " batch_normalization = False\n", " else:\n", " num_filters_out = num_filters_in * 2\n", " if res_block == 0: # first layer but not first stage\n", " strides = 2 # downsample\n", "\n", " # bottleneck residual unit\n", " y = resnet_layer(inputs=x,\n", " num_filters=num_filters_in,\n", " kernel_size=1,\n", " strides=strides,\n", " activation=activation,\n", " batch_normalization=batch_normalization,\n", " conv_first=False)\n", " y = resnet_layer(inputs=y, num_filters=num_filters_in, conv_first=False)\n", " y = resnet_layer(inputs=y,\n", " num_filters=num_filters_out,\n", " kernel_size=1,\n", " conv_first=False)\n", " if res_block == 0:\n", " # linear projection residual shortcut connection to match\n", " # changed dims\n", " x = resnet_layer(inputs=x,\n", " num_filters=num_filters_out,\n", " kernel_size=1,\n", " strides=strides,\n", " activation=None,\n", " batch_normalization=False)\n", " x = layers.Add()([x, y])\n", "\n", " num_filters_in = num_filters_out\n", "\n", " # Add classifier on top.\n", " # v2 has BN-ReLU before Pooling\n", " x = layers.BatchNormalization()(x)\n", " x = layers.Activation('relu')(x)\n", " x = layers.AveragePooling2D(pool_size=8)(x)\n", " y = layers.Flatten()(x)\n", " outputs = layers.Dense(num_classes,\n", " activation='softmax',\n", " kernel_initializer='he_normal')(y)\n", "\n", " # Instantiate model.\n", " model = tf.keras.Model(inputs=inputs, outputs=outputs)\n", " return model" ] }, { "cell_type": "markdown", "metadata": { "colab_type": "text", "id": "dAUaN-i9tHMY" }, "source": [ "## Training" ] }, { "cell_type": "code", "execution_count": 0, "metadata": { "colab": {}, "colab_type": "code", "id": "Hf5WFHYP8tT9" }, "outputs": [], "source": [ "tf.reset_default_graph()\n", "tf.set_random_seed(SEED)\n", "\n", "data, info = get_input_pipeline(batch_size=batch_size,\n", " seed=SEED,\n", " repeat_validation=True,\n", " use_augmentation=True)\n", "\n", "model = resnet_v2(input_shape=info['input_shape'],\n", " depth=20,\n", " num_classes=info['num_classes'])\n", "\n", "loss = 'sparse_categorical_crossentropy'\n", "\n", "training_callbacks = [\n", " kfac.keras.callbacks.ExponentialDecay(hyperparameter='learning_rate',\n", " init_value=init_learning_rate,\n", " final_value=final_learning_rate,\n", " decay_rate=lr_decay_rate)\n", "]\n", "\n", "if optimizer_name == 'kfac':\n", " opt = kfac.keras.optimizers.Kfac(learning_rate=init_learning_rate,\n", " damping=init_damping,\n", " model=model,\n", " loss=loss,\n", " momentum=momentum,\n", " seed=SEED)\n", " training_callbacks.append(kfac.keras.callbacks.ExponentialDecay(\n", " hyperparameter='damping',\n", " init_value=init_damping,\n", " final_value=final_damping,\n", " decay_rate=damping_decay_rate))\n", "\n", "elif optimizer_name == 'adam':\n", " opt = tf.keras.optimizers.Adam(learning_rate=init_learning_rate,\n", " beta_1=momentum,\n", " epsilon=init_epsilon)\n", " training_callbacks.append(kfac.keras.callbacks.ExponentialDecay(\n", " hyperparameter='epsilon',\n", " init_value=init_epsilon,\n", " final_value=final_epsilon,\n", " decay_rate=epsilon_decay_rate))\n", "\n", "else:\n", " raise ValueError('optimizer_name must be \"adam\" or \"kfac\"')\n", "\n", "model.compile(loss=loss, optimizer=opt, metrics=['acc'])" ] }, { "cell_type": "code", "execution_count": 0, "metadata": { "colab": {}, "colab_type": "code", "id": "dD8b27hLy6lO" }, "outputs": [], "source": [ "history = model.fit(x=data['train'],\n", " epochs=num_training_steps//steps_per_epoch,\n", " steps_per_epoch=steps_per_epoch,\n", " validation_data=data['validation'],\n", " validation_steps=val_steps,\n", " callbacks=training_callbacks)" ] } ], "metadata": { "colab": { "collapsed_sections": [ "_DDaAex5Q7u-" ], "last_runtime": { "build_target": "", "kind": "local" }, "name": "KFAC vs Adam on CIFAR10.ipynb", "provenance": [ { "file_id": "1pqtoYduODZyJKt4-kwVkt_KtNQCnaNDp", "timestamp": 1565229994386 } ], "version": "0.3.2" }, "kernelspec": { "display_name": "Python 2", "name": "python2" } }, "nbformat": 4, "nbformat_minor": 0 }
apache-2.0
zzsza/Datascience_School
12. 추정 및 검정/02. 검정과 유의 확률.ipynb
2
202380
{ "cells": [ { "cell_type": "markdown", "metadata": { "school_cell_uuid": "e366c994b84e45ce81ca615e2f61250f" }, "source": [ "# 검정과 유의 확률" ] }, { "cell_type": "markdown", "metadata": { "school_cell_uuid": "08e6e95c92d146b79af0c0facba90c9e" }, "source": [ "**검정(testing)**은 데이터 뒤에 숨어있는 확률 변수의 분포와 모수에 대한 가설의 진위를 정량적(quantitatively)으로 증명하는 작업을 말한다." ] }, { "cell_type": "markdown", "metadata": { "school_cell_uuid": "d2762322694e4f608412735e6feffd60" }, "source": [ "[[school_notebook:87b67dafd7544e3380af278ff4f22d77]]" ] }, { "cell_type": "markdown", "metadata": { "school_cell_uuid": "1abace5a14db49d19d992128fb862448" }, "source": [ "예를 들어 다음과 같은 문제가 주어졌다면 어떻게 풀겠는가?" ] }, { "cell_type": "markdown", "metadata": { "school_cell_uuid": "b1ebd502176b4836b5c71ff5fb5e8f10" }, "source": [ "* 문제1\n", "\n", "<blockquote> \n", "어떤 동전을 15번 던졌더니 12번이 앞면이 나왔다. 이 동전은 휘어지지 않은 공정한 동전(fair coin)인가?\n", "</blockquote>" ] }, { "cell_type": "markdown", "metadata": { "school_cell_uuid": "88c6d96390ce4a4797c46dd173665b38" }, "source": [ "* 문제2\n", "\n", "<blockquote> \n", "어떤 트레이더의 일주일 수익률은 다음과 같다.:<br>\n", "-2.5%, -5%, 4.3%, -3.7% -5.6% <br>\n", "이 트레이더는 돈을 벌어다 줄 사람인가, 아니면 돈을 잃을 사람인가? \n", "</blockquote>" ] }, { "cell_type": "markdown", "metadata": { "school_cell_uuid": "cf3289eed06a4906bf5b739d5476591a" }, "source": [ "이러한 문제들을 데이터 분석의 방법론으로 푼다면 다음과 같이 풀 수 있다.\n", "\n", "1. 데이터가 어떤 고정된(fixed) 확률 분포를 가지는 확률 변수라고 가정한다. 동전은 베르누이 분포를 따르는 확률 변수의 표본이며 트레이더의 수익률은 정규 분포를 따르는 확률 변수의 표본이라고 가정한다.\n", "\n", "2. 이 확률 분포의 모수값이 특정한 값을 가지는지 혹은 특정한 값보다 크거나 같은지 알고자 한다. 동전이 공정한 동전이라고 주정하는 것은 그 뒤의 베르누이 확률 분포의 모수 $\\theta$의 값이 0.5 이라고 주장하는 것과 같다. 트레이더가 장기적으로 돈을 벌어다 줄 것이라고 주장하는 것은 그 뒤의 정규 분포의 기댓값 모수 $\\mu$ 가 0보다 크거나 같다고 주장하는 것이다.\n", "\n", "3. 모수 값이 이러한 주장을 따른다고 가정하면 실제로 현실에 나타난 데이터가 나올 확률을 계산할 수 있다. 동전의 경우에는 공정한 동전임에도 불구하고 15번 중 12번이나 앞면이 나올 확률을 계산할 수 있으며 트레이더의 경우에는 정규 분포에서 해당 데이터가 나올 확률을 계산할 수 있다.\n", "\n", "4. 이렇게 구한 확률의 값이 판단자가 정한 특정한 기준에 미치지 못한다면 이러한 주장이 틀렸다고 생각할 수 밖에 없다. 반대로 값이 기준보다 높다면 그 주장이 틀렸다고 판단할 증거가 부족한 것이다." ] }, { "cell_type": "markdown", "metadata": { "school_cell_uuid": "01c507456a5645a2a6867965fbcb6b80" }, "source": [ "## 가설" ] }, { "cell_type": "markdown", "metadata": { "school_cell_uuid": "65d026dd0fa3417dbb6913887667db15" }, "source": [ "이렇게 확률 분포에 대한 어떤 주장을 가설(hypothesis)이라고 하며 $H$로 표기하는 경우가 많다. 이 가설을 증명하는 행위를 통계적 가설 검정(statistical hypothesis testing) 줄여서 검정(testing)이라고 한다. 특히 확률 분포의 모수 값이 특정한 값을 가진다는 주장을 모수 검정 (parameter testing)이라고 한다. \n", "\n", "가장 일반적으로 사용되는 가설은 모수의 값이 0 이라는 가설이다. \n", "\n", "$$ H: \\theta = 0 $$\n", "\n", "이 가설은 회귀 분석(regression)에서 흔하게 사용되는데 회귀 계수의 값이 0 이면 종속 변수(target)가 해당 독립 변수(feature)의 영향을 받지 않는 다는 의미가 된다." ] }, { "cell_type": "markdown", "metadata": { "school_cell_uuid": "3ee48965237d4473990f3cd798ee6163" }, "source": [ "## 검정 방법론" ] }, { "cell_type": "markdown", "metadata": { "school_cell_uuid": "68bc265c4cd34feeb66816fd021cb783" }, "source": [ "가설 증명, 즉 검정의 기본적인 논리는 다음과 같다.\n", "\n", "1. 만약 가설이 맞다면 즉, 모수 값이 특정한 조건을 만족한다면 해당 확률 변수로부터 만들어진 표본(sample) 데이터들은 어떤 규칙을 따르게 된다.\n", "\n", "2. 해당 규칙에 따라 표본 데이터 집합에서 어떤 숫자를 계산하면 계산된 숫자는 특정한 확률 분포를 따르게 된다. 이 숫자를 **검정 통계치(test statistics)**라고 하며 확률 분포를 **검정 통계 분포(test statistics distribution)**라고 한다. 검정 통계 분포의 종류 및 모수의 값은 처음에 정한 가설에 의해 결정된다. 이렇게 검정 통계 분포를 결정하는 최초의 가설을 **귀무 가설(Null hypothesis)**이라고 한다.\n", "\n", "3. 데이터에 의해서 실제로 계산된 숫자, 즉, 검정 통계치가 해당 검정 통계 분포에서 나올 수 있는 확률을 계산한다. 이를 **유의 확률(p-value)라**고 한다.\n", "\n", "4. 만약 유의 확률이 미리 정한 특정한 기준값보다 작은 경우를 생각하자. 이 기준값을 **유의 수준(significance level)**이라고 하는 데 보통 1% 혹은 5% 정도의 작은 값을 지정한다. 유의 확률이 유의 수준으로 정한 값(예 1%)보다도 작다는 말은 해당 검정 통계 분포에서 이 검정 통계치가 나올 수 있는 확률이 아주 작다는 의미이므로 가장 근본이 되는 가설 즉, 귀무 가설이 틀렸다는 의미이다. 따라서 이 경우에는 귀무 가설을 **기각(reject)**한다.\n", "\n", "5. 만약 유의 확률이 유의 수준보다 크다면 해당 검정 통계 분포에서 이 검정 통계치가 나오는 것이 불가능하지만은 않다는 의미이므로 귀무 가설을 기각할 수 없다. 따라서 이 경우에는 귀무 가설을 **채택(accept)**한다." ] }, { "cell_type": "markdown", "metadata": { "school_cell_uuid": "e9908998a20040f2b5c1c160a0b6d64b" }, "source": [ "## 귀무 가설과 대립 가설" ] }, { "cell_type": "markdown", "metadata": { "school_cell_uuid": "161f109dc2094bc080209a947d377d61" }, "source": [ "검정 작업을 하기 위해서는 기각 혹은 채택하고자 하는 가설을 만들어야 한다. 이러한 가설을 귀무 가설(Null Hypothesis)이라고 하며 $H_0$ 로 표기한다. 일반적으로 검정에서 그냥 가설이라고 하면 귀무가설을 가리킨다. 귀무 가설이 사실이라고 증명되면 채택(accept)하고 거짓이라고 증명되면 기각(reject)한다." ] }, { "cell_type": "markdown", "metadata": { "school_cell_uuid": "59e0a587b3bd41d5ab40f8b65219cca6" }, "source": [ "귀무 가설이 기각되면 채택할 수도 있는 가설을 대립 가설(Alternative Hypothesis)이라고 하며 보통 $H_a$ 로 표기한다. \n", "\n", "예를 들어 귀무 가설 $H_0$가 다음과 같다고 가정하면,\n", "$$ H_0: \\theta = 0 $$\n", "\n", "다음 가설들은 이 귀무 가설에 대한 대립 가설이 될 수 있다.\n", "$$ H_a: \\theta \\neq 0 $$\n", "$$ H_a: \\theta > 0 $$\n", "$$ H_a: \\theta < 0 $$\n", "\n", "첫번째와 같은 형태의 대립 가설을 가지는 경우를 양측 검정(two-tailed testing), 두번째나 세번째와 같은 형태의 대립 가설을 가지는 경우를 단측 검정(one-tailed testing)이라고 한다." ] }, { "cell_type": "markdown", "metadata": { "school_cell_uuid": "f62b5d3bf0da4550a04371dde2cb5beb" }, "source": [ "## 검정 통계량" ] }, { "cell_type": "markdown", "metadata": { "school_cell_uuid": "e8c3cc775ac440ceb7c30c80aff0f049" }, "source": [ "검정을 하려면 즉, 귀무 가설이 맞거나 틀린 것을 증명하려면 어떤 증거가 있어야 한다. 이 증거에 해당하는 숫자를 검정 통계량(test statistics)라고 한다. \n", "\n", "비유를 들어보자.\n", "\n", "\"어떤 병에 걸렸다\"라는 가설을 증명하려면 환자의 혈액을 채취하여 혈액 내의 특정한 성분의 수치를 측정해야 한다고 가정하자. 이 때 해당 수치가 바로 검정 통계량이 된다.\n", "\n", "\"어떤 학생이 우등 상장을 받을 수 있는 우등생이다\"라는 가설을 증명하려면 시험(test)에 대한 성적을 측정하면 된다. 이 시험 성적을 검정 통계량이라고 부를 수 있다." ] }, { "cell_type": "markdown", "metadata": { "school_cell_uuid": "66a0f080efdb4ec988641f4c1926cdb6" }, "source": [ "데이터 분석의 경우 검정 통계량은 데이터로부터 계산되는 일종의 함수이다.\n", "\n", "$$\n", "\\text{test statistics } t = f(x_1, x_2, \\ldots, x_n)\n", "$$" ] }, { "cell_type": "markdown", "metadata": { "school_cell_uuid": "8212fb27fcd241319ec7c6a5fd9a2941" }, "source": [ "예를 들어 동전을 $N$번 던질 경우 앞면이 나온 횟수가 $n$ 자체가 검정 통계량이 될 수 있다. \n", "\n", "\n", "정규 분포를 따르는 수익률의 경우라면 $N$개의 수익률 데이터 $x_1, \\ldots, x_N$에서 다음 수식으로 계산한 값도 검정 통계량이 된다. \n", "\n", "\n", "$$\n", "t = \\dfrac{m}{\\frac{s}{\\sqrt{N}}}\n", "$$\n", "\n", "여기에서\n", "\n", "$$\n", "m = \\dfrac{1}{N}\\sum_{i=1}^{N} x_i\n", "$$\n", "\n", "$$\n", "s^2 = \\dfrac{1}{N}\\sum_{i=1}^{N} (x_i-m)^2\n", "$$" ] }, { "cell_type": "markdown", "metadata": { "school_cell_uuid": "918080d17c9a4da8a5849d9d8b64da4b" }, "source": [ "검정 통계량은 표본 자료에서 계산된 함수값이므로 표본처럼 확률적(random)이다. 즉, 경우에 따라 표본 값이 달라질 수 있는 것처럼 달라진 표본값에 의해 검정 통계량도 달라진다. 따라서 검정 통계량 $t$ 도 검정 통계량 확률 변수 $T$ 라는 확률 변수의 표본으로 볼 수 있다." ] }, { "cell_type": "markdown", "metadata": { "school_cell_uuid": "a996812dd14448e5a1ec592b1f888b2a" }, "source": [ "데이터에 대한 아무 함수나 검정 통계량이 될 수 있는 것이 아닌다. 어떤 함수가 검정 통계량이 되려면 **귀무 가설이 사실일 경우 표본에서 계산된 검정 통계량이 따르는 검정 통계량 확률 변수 $T$의 확률 분포를 귀무 가설로부터 알 수 있어야만 한다.**\n", "\n", "예를 들어 \"어떤 병에 걸렸다\"는 가설을 혈액 성분 수치로부터 판단하려면 병에 걸린 환자의 성분 수치가 어떤 분포를 따르는지 알 수 있어야 한다. 현실에서는 실제로 병에 걸린 다수의 환자의 혈액 성분 수치를 사용하여 검정 통계량 분포를 구한다. 또한 \"어떤 학생이 우등생이다\"라는 가설을 시험 성적으로부터 판단하라면 우등생인 모든 학생의 시험 성적에 대한 분포를 구해야 한다.\n", "\n", "데이터 분석에서는 어떤 귀무 가설을 만족하는 표본을 입력 변수로 놓고 특정한 함수로 계산한 검정 통계량이 특정한 분포를 따른다는 것을 수학적인 증명을 통해 보이는 것이 일반적이다. 통계학자들의 중요한 업적 중의 하나가 특정한 귀무 가설에 대해 어떤 검정 통계량 함수가 어떤 검정 통계량 분포를 따른 다는 것을 증명해 준 것이다. " ] }, { "cell_type": "markdown", "metadata": { "school_cell_uuid": "86a7a166bf3d4cc388f23d0dde88d294" }, "source": [ "## 검정 통계량의 예" ] }, { "cell_type": "markdown", "metadata": { "school_cell_uuid": "f2469373c46649648ad4309d74425dbf" }, "source": [ "일반적으로 많이 사용되는 검정 통계량에는 다음과 같은 것들이 있다." ] }, { "cell_type": "markdown", "metadata": { "school_cell_uuid": "a364125cf5654b4da87801b24bb6eed8" }, "source": [ "### 1. 베르누이 분포 확률 변수" ] }, { "cell_type": "markdown", "metadata": { "school_cell_uuid": "487776c92c8b45c28519d2590a051983" }, "source": [ "모수 $\\theta$를 가지는 베르누이 분포 확률 변수에 대해서는 전체 시도 횟수 $N$ 번 중 성공한 횟수 $n$ 자체를 검정 통계량으로 쓸 수 있다. 이 검정 통계량은 자유도 $N$과 모수 $\\theta$를 가지는 이항 분포를 따른다.\n", "\n", "$$ x \\sim \\text{Ber} \\;\\; \\rightarrow \\;\\; t = \\sum x \\sim \\text{Bin} $$" ] }, { "cell_type": "markdown", "metadata": { "school_cell_uuid": "c5a687d47a6149fa93a69263208f8ada" }, "source": [ "### 2. 카테고리 분포 확률 변수" ] }, { "cell_type": "markdown", "metadata": { "school_cell_uuid": "64d20f92a2a14b8d9998401f98c339df" }, "source": [ "모수 벡터 $\\alpha$를 가지는 카테고리 분포 확률 변수에 대해서는 전체 시도 횟수 $N$ 번 중 성공한 횟수 벡터 $x$ 자체를 검정 통계량으로 쓸 수 있다. 이 검정 통계량은 자유도 $N$과 모수 벡터 $\\alpha$를 가지는 다항 분포를 따른다.\n", "\n", "$$ x \\sim \\text{Cat} \\;\\; \\rightarrow \\;\\; t = \\sum x \\sim \\text{Mul} $$" ] }, { "cell_type": "markdown", "metadata": { "school_cell_uuid": "eee6e1f0beff4c93ac631df8a32ecb72" }, "source": [ "### 3. 분산 $\\sigma^2$ 값을 알고 있는 정규 분포 확률 변수" ] }, { "cell_type": "markdown", "metadata": { "school_cell_uuid": "274ccd7ee2c24571a82e72d17b3c203d" }, "source": [ "분산 모수 $\\sigma^2$의 값을 알고 있는 정규 분포 확률 변수에 대해서는 다음과 같이 샘플 평균을 정규화(nomarlize)한 값을 검정 통계량으로 쓴다. 이 검정 통계량은 표준 정규 분포를 따른다. 이 검정 통계량은 특별히 $z$라고 부른다.\n", "\n", "\n", "$$\n", "x \\sim \\mathcal{N}(\\mu, \\sigma^2) \\;\\; \\rightarrow \\;\\; z = \\dfrac{m-\\mu}{\\frac{\\sigma}{\\sqrt{N}}} \\sim \\mathcal{N}(z;0,1)\n", "$$\n", "\n", "여기에서 $m$은 샘플 평균\n", "\n", "$$\n", "m = \\dfrac{1}{N}\\sum_{i=1}^{N} x_i\n", "$$" ] }, { "cell_type": "markdown", "metadata": { "school_cell_uuid": "0c7b136e0d184371b4836a136c5d20c1" }, "source": [ "### 4. 분산 $\\sigma^2$ 값을 모르는 정규 분포 확률 변수" ] }, { "cell_type": "markdown", "metadata": { "school_cell_uuid": "00a33c12f69c453387c3378fdf2cf40d" }, "source": [ "이번에는 분산 모수 $\\sigma^2$의 값을 모르는 정규 분포 확률 변수를 고려하자.\n", "\n", "평균 모수 $\\mu$ 에 대한 검정을 할 때는 다음과 같이 샘플 평균을 샘플 분산으로 정규화(nomarlize)한 값을 검정 통계량으로 쓴다. 이 검정 통계량은 자유도가 $N-1$인 표준 student-t 분포를 따른다. $N$은 데이터의 수이다.\n", "\n", "\n", "$$\n", "x \\sim \\mathcal{N}(\\mu, \\sigma^2) \\;\\; \\rightarrow \\;\\; t = \\dfrac{m-\\mu}{\\frac{s}{\\sqrt{N}}} \\sim t(t;0,1,N-1)\n", "$$\n", "\n", "여기에서 $m$은 샘플 평균\n", "\n", "$$\n", "m = \\dfrac{1}{N}\\sum_{i=1}^{N} x_i\n", "$$\n", "\n", "$s^2$은 샘플 분산이다.\n", "$$\n", "s^2 = \\dfrac{1}{N-1}\\sum_{i=1}^{N} (x_i-m)^2\n", "$$" ] }, { "cell_type": "markdown", "metadata": { "school_cell_uuid": "2fd8b09f4a934951beeba78dbceda14d" }, "source": [ "분산 모수 $\\sigma^2$에 대한 검정을 할 때는 다음과 같이 샘플 분산을 정규화(normalize)한 값을 검정 통계량으로 쓴다. 이 검정 통계량은 자유도가 $N-1$인 카이 제곱 분포를 따른다. $N$은 데이터의 수이다.\n", "\n", "$$\n", "x \\sim \\mathcal{N}(\\mu, \\sigma^2) \\;\\; \\rightarrow \\;\\; t = (N-1)\\dfrac{s^2}{\\sigma^2} \\sim \\chi^2 (t;N-1)\n", "$$" ] }, { "cell_type": "markdown", "metadata": { "school_cell_uuid": "81bc9e4dfae2486c9a62933a36955db3" }, "source": [ "## 유의 확률 p-value" ] }, { "cell_type": "markdown", "metadata": { "school_cell_uuid": "9947d04fc7304b1181e41f37c7ba9fdc" }, "source": [ "귀무 가설이 사실이라는 가정하에 검정 통계량이 따르는 검정 통계량 분포를 알고 있다면 실제 데이터에서 계산한 검정 통계량 숫자가 분포에서 어느 부분쯤에 위치해 있는지를 알 수 있다. 이 위치를 나타내는 값이 바로 **유의 확률(p-value)** 이다.\n", "\n", "검정 통계량의 유의 확률은 **검정 통계량 숫자보다 더 희귀한(rare) 값이면서 대립 가설을 따르는 값이 나올 수 있는 확률**을 말한다. 이 확률은 검정 통계 확률 분포 밀도 함수(pdf)에서 양 끝의 꼬리(tail)부분에 해당하는 영역의 면적으로 계산한다. 실제로는 누적 확률 분포 함수를 사용한다.\n", "\n", "유의 확률은 같은 귀무 가설에 대해서도 대립 가설이 어떤 것인가에 따라 달라질 수 있다. " ] }, { "cell_type": "code", "execution_count": 1, "metadata": { "collapsed": false, "school_cell_uuid": "6ae08bb79b3a4ec7bdc3f62aeb782c79" }, "outputs": [ { "data": { "image/svg+xml": [ "<?xml version=\"1.0\" encoding=\"utf-8\" standalone=\"no\"?>\n", "<!DOCTYPE svg PUBLIC \"-//W3C//DTD SVG 1.1//EN\"\n", " \"http://www.w3.org/Graphics/SVG/1.1/DTD/svg11.dtd\">\n", "<!-- Created with matplotlib (http://matplotlib.org/) -->\n", "<svg height=\"382pt\" version=\"1.1\" viewBox=\"0 0 564 382\" width=\"564pt\" xmlns=\"http://www.w3.org/2000/svg\" xmlns:xlink=\"http://www.w3.org/1999/xlink\">\n", " <defs>\n", " <style type=\"text/css\">\n", "*{stroke-linecap:butt;stroke-linejoin:round;stroke-miterlimit:100000;}\n", " </style>\n", " </defs>\n", " <g id=\"figure_1\">\n", " <g id=\"patch_1\">\n", " <path d=\"M 0 382.465312 \n", "L 564.221406 382.465312 \n", "L 564.221406 0 \n", "L 0 0 \n", "z\n", "\" style=\"fill:#ffffff;\"/>\n", " </g>\n", " <g id=\"axes_1\">\n", " <g id=\"patch_2\">\n", " <path d=\"M 33.660938 103.76 \n", "L 554.240937 103.76 \n", "L 554.240937 20.84 \n", "L 33.660938 20.84 \n", "z\n", "\" style=\"fill:#eaeaf2;\"/>\n", " </g>\n", " <g id=\"matplotlib.axis_1\">\n", " <g id=\"xtick_1\">\n", " <g id=\"line2d_1\">\n", " <path clip-path=\"url(#pb07fcf890f)\" d=\"M 33.660937 103.76 \n", "L 33.660937 20.84 \n", "\" style=\"fill:none;stroke:#ffffff;stroke-linecap:round;\"/>\n", " </g>\n", " <g id=\"line2d_2\">\n", " <defs>\n", " <path d=\"M 0 0 \n", "L 0 0 \n", "\" id=\"m52a7ca0acb\" style=\"stroke:#262626;\"/>\n", " </defs>\n", " <g>\n", " <use style=\"fill:#262626;stroke:#262626;\" x=\"33.6609375\" xlink:href=\"#m52a7ca0acb\" y=\"103.76\"/>\n", " </g>\n", " </g>\n", " <g id=\"line2d_3\">\n", " <g>\n", " <use style=\"fill:#262626;stroke:#262626;\" x=\"33.6609375\" xlink:href=\"#m52a7ca0acb\" y=\"20.84\"/>\n", " </g>\n", " </g>\n", " <g id=\"text_1\">\n", " <!-- −4 -->\n", " <defs>\n", " <path d=\"M 52.828125 31.203125 \n", "L 5.5625 31.203125 \n", "L 5.5625 39.40625 \n", "L 52.828125 39.40625 \n", "z\n", "\" id=\"ArialMT-2212\"/>\n", " <path d=\"M 32.328125 0 \n", "L 32.328125 17.140625 \n", "L 1.265625 17.140625 \n", "L 1.265625 25.203125 \n", "L 33.9375 71.578125 \n", "L 41.109375 71.578125 \n", "L 41.109375 25.203125 \n", "L 50.78125 25.203125 \n", "L 50.78125 17.140625 \n", "L 41.109375 17.140625 \n", "L 41.109375 0 \n", "z\n", "M 32.328125 25.203125 \n", "L 32.328125 57.46875 \n", "L 9.90625 25.203125 \n", "z\n", "\" id=\"ArialMT-34\"/>\n", " </defs>\n", " <g style=\"fill:#262626;\" transform=\"translate(27.96015625 117.9178125)scale(0.1 -0.1)\">\n", " <use xlink:href=\"#ArialMT-2212\"/>\n", " <use x=\"58.3984375\" xlink:href=\"#ArialMT-34\"/>\n", " </g>\n", " </g>\n", " </g>\n", " <g id=\"xtick_2\">\n", " <g id=\"line2d_4\">\n", " <path clip-path=\"url(#pb07fcf890f)\" d=\"M 98.733437 103.76 \n", "L 98.733437 20.84 \n", "\" style=\"fill:none;stroke:#ffffff;stroke-linecap:round;\"/>\n", " </g>\n", " <g id=\"line2d_5\">\n", " <g>\n", " <use style=\"fill:#262626;stroke:#262626;\" x=\"98.7334375\" xlink:href=\"#m52a7ca0acb\" y=\"103.76\"/>\n", " </g>\n", " </g>\n", " <g id=\"line2d_6\">\n", " <g>\n", " <use style=\"fill:#262626;stroke:#262626;\" x=\"98.7334375\" xlink:href=\"#m52a7ca0acb\" y=\"20.84\"/>\n", " </g>\n", " </g>\n", " <g id=\"text_2\">\n", " <!-- −3 -->\n", " <defs>\n", " <path d=\"M 4.203125 18.890625 \n", "L 12.984375 20.0625 \n", "Q 14.5 12.59375 18.140625 9.296875 \n", "Q 21.78125 6 27 6 \n", "Q 33.203125 6 37.46875 10.296875 \n", "Q 41.75 14.59375 41.75 20.953125 \n", "Q 41.75 27 37.796875 30.921875 \n", "Q 33.84375 34.859375 27.734375 34.859375 \n", "Q 25.25 34.859375 21.53125 33.890625 \n", "L 22.515625 41.609375 \n", "Q 23.390625 41.5 23.921875 41.5 \n", "Q 29.546875 41.5 34.03125 44.421875 \n", "Q 38.53125 47.359375 38.53125 53.46875 \n", "Q 38.53125 58.296875 35.25 61.46875 \n", "Q 31.984375 64.65625 26.8125 64.65625 \n", "Q 21.6875 64.65625 18.265625 61.421875 \n", "Q 14.84375 58.203125 13.875 51.765625 \n", "L 5.078125 53.328125 \n", "Q 6.6875 62.15625 12.390625 67.015625 \n", "Q 18.109375 71.875 26.609375 71.875 \n", "Q 32.46875 71.875 37.390625 69.359375 \n", "Q 42.328125 66.84375 44.9375 62.5 \n", "Q 47.5625 58.15625 47.5625 53.265625 \n", "Q 47.5625 48.640625 45.0625 44.828125 \n", "Q 42.578125 41.015625 37.703125 38.765625 \n", "Q 44.046875 37.3125 47.5625 32.6875 \n", "Q 51.078125 28.078125 51.078125 21.140625 \n", "Q 51.078125 11.765625 44.234375 5.25 \n", "Q 37.40625 -1.265625 26.953125 -1.265625 \n", "Q 17.53125 -1.265625 11.296875 4.34375 \n", "Q 5.078125 9.96875 4.203125 18.890625 \n", "\" id=\"ArialMT-33\"/>\n", " </defs>\n", " <g style=\"fill:#262626;\" transform=\"translate(93.03265625 117.9178125)scale(0.1 -0.1)\">\n", " <use xlink:href=\"#ArialMT-2212\"/>\n", " <use x=\"58.3984375\" xlink:href=\"#ArialMT-33\"/>\n", " </g>\n", " </g>\n", " </g>\n", " <g id=\"xtick_3\">\n", " <g id=\"line2d_7\">\n", " <path clip-path=\"url(#pb07fcf890f)\" d=\"M 163.805937 103.76 \n", "L 163.805937 20.84 \n", "\" style=\"fill:none;stroke:#ffffff;stroke-linecap:round;\"/>\n", " </g>\n", " <g id=\"line2d_8\">\n", " <g>\n", " <use style=\"fill:#262626;stroke:#262626;\" x=\"163.8059375\" xlink:href=\"#m52a7ca0acb\" y=\"103.76\"/>\n", " </g>\n", " </g>\n", " <g id=\"line2d_9\">\n", " <g>\n", " <use style=\"fill:#262626;stroke:#262626;\" x=\"163.8059375\" xlink:href=\"#m52a7ca0acb\" y=\"20.84\"/>\n", " </g>\n", " </g>\n", " <g id=\"text_3\">\n", " <!-- −2 -->\n", " <defs>\n", " <path d=\"M 50.34375 8.453125 \n", "L 50.34375 0 \n", "L 3.03125 0 \n", "Q 2.9375 3.171875 4.046875 6.109375 \n", "Q 5.859375 10.9375 9.828125 15.625 \n", "Q 13.8125 20.3125 21.34375 26.46875 \n", "Q 33.015625 36.03125 37.109375 41.625 \n", "Q 41.21875 47.21875 41.21875 52.203125 \n", "Q 41.21875 57.421875 37.46875 61 \n", "Q 33.734375 64.59375 27.734375 64.59375 \n", "Q 21.390625 64.59375 17.578125 60.78125 \n", "Q 13.765625 56.984375 13.71875 50.25 \n", "L 4.6875 51.171875 \n", "Q 5.609375 61.28125 11.65625 66.578125 \n", "Q 17.71875 71.875 27.9375 71.875 \n", "Q 38.234375 71.875 44.234375 66.15625 \n", "Q 50.25 60.453125 50.25 52 \n", "Q 50.25 47.703125 48.484375 43.546875 \n", "Q 46.734375 39.40625 42.65625 34.8125 \n", "Q 38.578125 30.21875 29.109375 22.21875 \n", "Q 21.1875 15.578125 18.9375 13.203125 \n", "Q 16.703125 10.84375 15.234375 8.453125 \n", "z\n", "\" id=\"ArialMT-32\"/>\n", " </defs>\n", " <g style=\"fill:#262626;\" transform=\"translate(158.10515625 117.9178125)scale(0.1 -0.1)\">\n", " <use xlink:href=\"#ArialMT-2212\"/>\n", " <use x=\"58.3984375\" xlink:href=\"#ArialMT-32\"/>\n", " </g>\n", " </g>\n", " </g>\n", " <g id=\"xtick_4\">\n", " <g id=\"line2d_10\">\n", " <path clip-path=\"url(#pb07fcf890f)\" d=\"M 228.878437 103.76 \n", "L 228.878437 20.84 \n", "\" style=\"fill:none;stroke:#ffffff;stroke-linecap:round;\"/>\n", " </g>\n", " <g id=\"line2d_11\">\n", " <g>\n", " <use style=\"fill:#262626;stroke:#262626;\" x=\"228.8784375\" xlink:href=\"#m52a7ca0acb\" y=\"103.76\"/>\n", " </g>\n", " </g>\n", " <g id=\"line2d_12\">\n", " <g>\n", " <use style=\"fill:#262626;stroke:#262626;\" x=\"228.8784375\" xlink:href=\"#m52a7ca0acb\" y=\"20.84\"/>\n", " </g>\n", " </g>\n", " <g id=\"text_4\">\n", " <!-- −1 -->\n", " <defs>\n", " <path d=\"M 37.25 0 \n", "L 28.46875 0 \n", "L 28.46875 56 \n", "Q 25.296875 52.984375 20.140625 49.953125 \n", "Q 14.984375 46.921875 10.890625 45.40625 \n", "L 10.890625 53.90625 \n", "Q 18.265625 57.375 23.78125 62.296875 \n", "Q 29.296875 67.234375 31.59375 71.875 \n", "L 37.25 71.875 \n", "z\n", "\" id=\"ArialMT-31\"/>\n", " </defs>\n", " <g style=\"fill:#262626;\" transform=\"translate(223.17765625 117.9178125)scale(0.1 -0.1)\">\n", " <use xlink:href=\"#ArialMT-2212\"/>\n", " <use x=\"58.3984375\" xlink:href=\"#ArialMT-31\"/>\n", " </g>\n", " </g>\n", " </g>\n", " <g id=\"xtick_5\">\n", " <g id=\"line2d_13\">\n", " <path clip-path=\"url(#pb07fcf890f)\" d=\"M 293.950937 103.76 \n", "L 293.950937 20.84 \n", "\" style=\"fill:none;stroke:#ffffff;stroke-linecap:round;\"/>\n", " </g>\n", " <g id=\"line2d_14\">\n", " <g>\n", " <use style=\"fill:#262626;stroke:#262626;\" x=\"293.9509375\" xlink:href=\"#m52a7ca0acb\" y=\"103.76\"/>\n", " </g>\n", " </g>\n", " <g id=\"line2d_15\">\n", " <g>\n", " <use style=\"fill:#262626;stroke:#262626;\" x=\"293.9509375\" xlink:href=\"#m52a7ca0acb\" y=\"20.84\"/>\n", " </g>\n", " </g>\n", " <g id=\"text_5\">\n", " <!-- 0 -->\n", " <defs>\n", " <path d=\"M 4.15625 35.296875 \n", "Q 4.15625 48 6.765625 55.734375 \n", "Q 9.375 63.484375 14.515625 67.671875 \n", "Q 19.671875 71.875 27.484375 71.875 \n", "Q 33.25 71.875 37.59375 69.546875 \n", "Q 41.9375 67.234375 44.765625 62.859375 \n", "Q 47.609375 58.5 49.21875 52.21875 \n", "Q 50.828125 45.953125 50.828125 35.296875 \n", "Q 50.828125 22.703125 48.234375 14.96875 \n", "Q 45.65625 7.234375 40.5 3 \n", "Q 35.359375 -1.21875 27.484375 -1.21875 \n", "Q 17.140625 -1.21875 11.234375 6.203125 \n", "Q 4.15625 15.140625 4.15625 35.296875 \n", "M 13.1875 35.296875 \n", "Q 13.1875 17.671875 17.3125 11.828125 \n", "Q 21.4375 6 27.484375 6 \n", "Q 33.546875 6 37.671875 11.859375 \n", "Q 41.796875 17.71875 41.796875 35.296875 \n", "Q 41.796875 52.984375 37.671875 58.78125 \n", "Q 33.546875 64.59375 27.390625 64.59375 \n", "Q 21.34375 64.59375 17.71875 59.46875 \n", "Q 13.1875 52.9375 13.1875 35.296875 \n", "\" id=\"ArialMT-30\"/>\n", " </defs>\n", " <g style=\"fill:#262626;\" transform=\"translate(291.17046875 117.9178125)scale(0.1 -0.1)\">\n", " <use xlink:href=\"#ArialMT-30\"/>\n", " </g>\n", " </g>\n", " </g>\n", " <g id=\"xtick_6\">\n", " <g id=\"line2d_16\">\n", " <path clip-path=\"url(#pb07fcf890f)\" d=\"M 359.023437 103.76 \n", "L 359.023437 20.84 \n", "\" style=\"fill:none;stroke:#ffffff;stroke-linecap:round;\"/>\n", " </g>\n", " <g id=\"line2d_17\">\n", " <g>\n", " <use style=\"fill:#262626;stroke:#262626;\" x=\"359.0234375\" xlink:href=\"#m52a7ca0acb\" y=\"103.76\"/>\n", " </g>\n", " </g>\n", " <g id=\"line2d_18\">\n", " <g>\n", " <use style=\"fill:#262626;stroke:#262626;\" x=\"359.0234375\" xlink:href=\"#m52a7ca0acb\" y=\"20.84\"/>\n", " </g>\n", " </g>\n", " <g id=\"text_6\">\n", " <!-- 1 -->\n", " <g style=\"fill:#262626;\" transform=\"translate(356.24296875 117.9178125)scale(0.1 -0.1)\">\n", " <use xlink:href=\"#ArialMT-31\"/>\n", " </g>\n", " </g>\n", " </g>\n", " <g id=\"xtick_7\">\n", " <g id=\"line2d_19\">\n", " <path clip-path=\"url(#pb07fcf890f)\" d=\"M 424.095937 103.76 \n", "L 424.095937 20.84 \n", "\" style=\"fill:none;stroke:#ffffff;stroke-linecap:round;\"/>\n", " </g>\n", " <g id=\"line2d_20\">\n", " <g>\n", " <use style=\"fill:#262626;stroke:#262626;\" x=\"424.0959375\" xlink:href=\"#m52a7ca0acb\" y=\"103.76\"/>\n", " </g>\n", " </g>\n", " <g id=\"line2d_21\">\n", " <g>\n", " <use style=\"fill:#262626;stroke:#262626;\" x=\"424.0959375\" xlink:href=\"#m52a7ca0acb\" y=\"20.84\"/>\n", " </g>\n", " </g>\n", " <g id=\"text_7\">\n", " <!-- 2 -->\n", " <g style=\"fill:#262626;\" transform=\"translate(421.31546875 117.9178125)scale(0.1 -0.1)\">\n", " <use xlink:href=\"#ArialMT-32\"/>\n", " </g>\n", " </g>\n", " </g>\n", " <g id=\"xtick_8\">\n", " <g id=\"line2d_22\">\n", " <path clip-path=\"url(#pb07fcf890f)\" d=\"M 489.168437 103.76 \n", "L 489.168437 20.84 \n", "\" style=\"fill:none;stroke:#ffffff;stroke-linecap:round;\"/>\n", " </g>\n", " <g id=\"line2d_23\">\n", " <g>\n", " <use style=\"fill:#262626;stroke:#262626;\" x=\"489.1684375\" xlink:href=\"#m52a7ca0acb\" y=\"103.76\"/>\n", " </g>\n", " </g>\n", " <g id=\"line2d_24\">\n", " <g>\n", " <use style=\"fill:#262626;stroke:#262626;\" x=\"489.1684375\" xlink:href=\"#m52a7ca0acb\" y=\"20.84\"/>\n", " </g>\n", " </g>\n", " <g id=\"text_8\">\n", " <!-- 3 -->\n", " <g style=\"fill:#262626;\" transform=\"translate(486.38796875 117.9178125)scale(0.1 -0.1)\">\n", " <use xlink:href=\"#ArialMT-33\"/>\n", " </g>\n", " </g>\n", " </g>\n", " <g id=\"xtick_9\">\n", " <g id=\"line2d_25\">\n", " <path clip-path=\"url(#pb07fcf890f)\" d=\"M 554.240937 103.76 \n", "L 554.240937 20.84 \n", "\" style=\"fill:none;stroke:#ffffff;stroke-linecap:round;\"/>\n", " </g>\n", " <g id=\"line2d_26\">\n", " <g>\n", " <use style=\"fill:#262626;stroke:#262626;\" x=\"554.2409375\" xlink:href=\"#m52a7ca0acb\" y=\"103.76\"/>\n", " </g>\n", " </g>\n", " <g id=\"line2d_27\">\n", " <g>\n", " <use style=\"fill:#262626;stroke:#262626;\" x=\"554.2409375\" xlink:href=\"#m52a7ca0acb\" y=\"20.84\"/>\n", " </g>\n", " </g>\n", " <g id=\"text_9\">\n", " <!-- 4 -->\n", " <g style=\"fill:#262626;\" transform=\"translate(551.46046875 117.9178125)scale(0.1 -0.1)\">\n", " <use xlink:href=\"#ArialMT-34\"/>\n", " </g>\n", " </g>\n", " </g>\n", " </g>\n", " <g id=\"matplotlib.axis_2\">\n", " <g id=\"ytick_1\">\n", " <g id=\"line2d_28\">\n", " <path clip-path=\"url(#pb07fcf890f)\" d=\"M 33.660938 103.76 \n", "L 554.240937 103.76 \n", "\" style=\"fill:none;stroke:#ffffff;stroke-linecap:round;\"/>\n", " </g>\n", " <g id=\"line2d_29\">\n", " <g>\n", " <use style=\"fill:#262626;stroke:#262626;\" x=\"33.6609375\" xlink:href=\"#m52a7ca0acb\" y=\"103.76\"/>\n", " </g>\n", " </g>\n", " <g id=\"line2d_30\">\n", " <g>\n", " <use style=\"fill:#262626;stroke:#262626;\" x=\"554.2409375\" xlink:href=\"#m52a7ca0acb\" y=\"103.76\"/>\n", " </g>\n", " </g>\n", " <g id=\"text_10\">\n", " <!-- 0.00 -->\n", " <defs>\n", " <path d=\"M 9.078125 0 \n", "L 9.078125 10.015625 \n", "L 19.09375 10.015625 \n", "L 19.09375 0 \n", "z\n", "\" id=\"ArialMT-2e\"/>\n", " </defs>\n", " <g style=\"fill:#262626;\" transform=\"translate(7.2 106.34515625)scale(0.1 -0.1)\">\n", " <use xlink:href=\"#ArialMT-30\"/>\n", " <use x=\"55.615234375\" xlink:href=\"#ArialMT-2e\"/>\n", " <use x=\"83.3984375\" xlink:href=\"#ArialMT-30\"/>\n", " <use x=\"139.013671875\" xlink:href=\"#ArialMT-30\"/>\n", " </g>\n", " </g>\n", " </g>\n", " <g id=\"ytick_2\">\n", " <g id=\"line2d_31\">\n", " <path clip-path=\"url(#pb07fcf890f)\" d=\"M 33.660938 93.395 \n", "L 554.240937 93.395 \n", "\" style=\"fill:none;stroke:#ffffff;stroke-linecap:round;\"/>\n", " </g>\n", " <g id=\"line2d_32\">\n", " <g>\n", " <use style=\"fill:#262626;stroke:#262626;\" x=\"33.6609375\" xlink:href=\"#m52a7ca0acb\" y=\"93.395\"/>\n", " </g>\n", " </g>\n", " <g id=\"line2d_33\">\n", " <g>\n", " <use style=\"fill:#262626;stroke:#262626;\" x=\"554.2409375\" xlink:href=\"#m52a7ca0acb\" y=\"93.395\"/>\n", " </g>\n", " </g>\n", " <g id=\"text_11\">\n", " <!-- 0.05 -->\n", " <defs>\n", " <path d=\"M 4.15625 18.75 \n", "L 13.375 19.53125 \n", "Q 14.40625 12.796875 18.140625 9.390625 \n", "Q 21.875 6 27.15625 6 \n", "Q 33.5 6 37.890625 10.78125 \n", "Q 42.28125 15.578125 42.28125 23.484375 \n", "Q 42.28125 31 38.0625 35.34375 \n", "Q 33.84375 39.703125 27 39.703125 \n", "Q 22.75 39.703125 19.328125 37.765625 \n", "Q 15.921875 35.84375 13.96875 32.765625 \n", "L 5.71875 33.84375 \n", "L 12.640625 70.609375 \n", "L 48.25 70.609375 \n", "L 48.25 62.203125 \n", "L 19.671875 62.203125 \n", "L 15.828125 42.96875 \n", "Q 22.265625 47.46875 29.34375 47.46875 \n", "Q 38.71875 47.46875 45.15625 40.96875 \n", "Q 51.609375 34.46875 51.609375 24.265625 \n", "Q 51.609375 14.546875 45.953125 7.46875 \n", "Q 39.0625 -1.21875 27.15625 -1.21875 \n", "Q 17.390625 -1.21875 11.203125 4.25 \n", "Q 5.03125 9.71875 4.15625 18.75 \n", "\" id=\"ArialMT-35\"/>\n", " </defs>\n", " <g style=\"fill:#262626;\" transform=\"translate(7.2 95.98015625)scale(0.1 -0.1)\">\n", " <use xlink:href=\"#ArialMT-30\"/>\n", " <use x=\"55.615234375\" xlink:href=\"#ArialMT-2e\"/>\n", " <use x=\"83.3984375\" xlink:href=\"#ArialMT-30\"/>\n", " <use x=\"139.013671875\" xlink:href=\"#ArialMT-35\"/>\n", " </g>\n", " </g>\n", " </g>\n", " <g id=\"ytick_3\">\n", " <g id=\"line2d_34\">\n", " <path clip-path=\"url(#pb07fcf890f)\" d=\"M 33.660938 83.03 \n", "L 554.240937 83.03 \n", "\" style=\"fill:none;stroke:#ffffff;stroke-linecap:round;\"/>\n", " </g>\n", " <g id=\"line2d_35\">\n", " <g>\n", " <use style=\"fill:#262626;stroke:#262626;\" x=\"33.6609375\" xlink:href=\"#m52a7ca0acb\" y=\"83.03\"/>\n", " </g>\n", " </g>\n", " <g id=\"line2d_36\">\n", " <g>\n", " <use style=\"fill:#262626;stroke:#262626;\" x=\"554.2409375\" xlink:href=\"#m52a7ca0acb\" y=\"83.03\"/>\n", " </g>\n", " </g>\n", " <g id=\"text_12\">\n", " <!-- 0.10 -->\n", " <g style=\"fill:#262626;\" transform=\"translate(7.2 85.61515625)scale(0.1 -0.1)\">\n", " <use xlink:href=\"#ArialMT-30\"/>\n", " <use x=\"55.615234375\" xlink:href=\"#ArialMT-2e\"/>\n", " <use x=\"83.3984375\" xlink:href=\"#ArialMT-31\"/>\n", " <use x=\"139.013671875\" xlink:href=\"#ArialMT-30\"/>\n", " </g>\n", " </g>\n", " </g>\n", " <g id=\"ytick_4\">\n", " <g id=\"line2d_37\">\n", " <path clip-path=\"url(#pb07fcf890f)\" d=\"M 33.660938 72.665 \n", "L 554.240937 72.665 \n", "\" style=\"fill:none;stroke:#ffffff;stroke-linecap:round;\"/>\n", " </g>\n", " <g id=\"line2d_38\">\n", " <g>\n", " <use style=\"fill:#262626;stroke:#262626;\" x=\"33.6609375\" xlink:href=\"#m52a7ca0acb\" y=\"72.665\"/>\n", " </g>\n", " </g>\n", " <g id=\"line2d_39\">\n", " <g>\n", " <use style=\"fill:#262626;stroke:#262626;\" x=\"554.2409375\" xlink:href=\"#m52a7ca0acb\" y=\"72.665\"/>\n", " </g>\n", " </g>\n", " <g id=\"text_13\">\n", " <!-- 0.15 -->\n", " <g style=\"fill:#262626;\" transform=\"translate(7.2 75.25015625)scale(0.1 -0.1)\">\n", " <use xlink:href=\"#ArialMT-30\"/>\n", " <use x=\"55.615234375\" xlink:href=\"#ArialMT-2e\"/>\n", " <use x=\"83.3984375\" xlink:href=\"#ArialMT-31\"/>\n", " <use x=\"139.013671875\" xlink:href=\"#ArialMT-35\"/>\n", " </g>\n", " </g>\n", " </g>\n", " <g id=\"ytick_5\">\n", " <g id=\"line2d_40\">\n", " <path clip-path=\"url(#pb07fcf890f)\" d=\"M 33.660938 62.3 \n", "L 554.240937 62.3 \n", "\" style=\"fill:none;stroke:#ffffff;stroke-linecap:round;\"/>\n", " </g>\n", " <g id=\"line2d_41\">\n", " <g>\n", " <use style=\"fill:#262626;stroke:#262626;\" x=\"33.6609375\" xlink:href=\"#m52a7ca0acb\" y=\"62.3\"/>\n", " </g>\n", " </g>\n", " <g id=\"line2d_42\">\n", " <g>\n", " <use style=\"fill:#262626;stroke:#262626;\" x=\"554.2409375\" xlink:href=\"#m52a7ca0acb\" y=\"62.3\"/>\n", " </g>\n", " </g>\n", " <g id=\"text_14\">\n", " <!-- 0.20 -->\n", " <g style=\"fill:#262626;\" transform=\"translate(7.2 64.88515625)scale(0.1 -0.1)\">\n", " <use xlink:href=\"#ArialMT-30\"/>\n", " <use x=\"55.615234375\" xlink:href=\"#ArialMT-2e\"/>\n", " <use x=\"83.3984375\" xlink:href=\"#ArialMT-32\"/>\n", " <use x=\"139.013671875\" xlink:href=\"#ArialMT-30\"/>\n", " </g>\n", " </g>\n", " </g>\n", " <g id=\"ytick_6\">\n", " <g id=\"line2d_43\">\n", " <path clip-path=\"url(#pb07fcf890f)\" d=\"M 33.660938 51.935 \n", "L 554.240937 51.935 \n", "\" style=\"fill:none;stroke:#ffffff;stroke-linecap:round;\"/>\n", " </g>\n", " <g id=\"line2d_44\">\n", " <g>\n", " <use style=\"fill:#262626;stroke:#262626;\" x=\"33.6609375\" xlink:href=\"#m52a7ca0acb\" y=\"51.935\"/>\n", " </g>\n", " </g>\n", " <g id=\"line2d_45\">\n", " <g>\n", " <use style=\"fill:#262626;stroke:#262626;\" x=\"554.2409375\" xlink:href=\"#m52a7ca0acb\" y=\"51.935\"/>\n", " </g>\n", " </g>\n", " <g id=\"text_15\">\n", " <!-- 0.25 -->\n", " <g style=\"fill:#262626;\" transform=\"translate(7.2 54.52015625)scale(0.1 -0.1)\">\n", " <use xlink:href=\"#ArialMT-30\"/>\n", " <use x=\"55.615234375\" xlink:href=\"#ArialMT-2e\"/>\n", " <use x=\"83.3984375\" xlink:href=\"#ArialMT-32\"/>\n", " <use x=\"139.013671875\" xlink:href=\"#ArialMT-35\"/>\n", " </g>\n", " </g>\n", " </g>\n", " <g id=\"ytick_7\">\n", " <g id=\"line2d_46\">\n", " <path clip-path=\"url(#pb07fcf890f)\" d=\"M 33.660938 41.57 \n", "L 554.240937 41.57 \n", "\" style=\"fill:none;stroke:#ffffff;stroke-linecap:round;\"/>\n", " </g>\n", " <g id=\"line2d_47\">\n", " <g>\n", " <use style=\"fill:#262626;stroke:#262626;\" x=\"33.6609375\" xlink:href=\"#m52a7ca0acb\" y=\"41.57\"/>\n", " </g>\n", " </g>\n", " <g id=\"line2d_48\">\n", " <g>\n", " <use style=\"fill:#262626;stroke:#262626;\" x=\"554.2409375\" xlink:href=\"#m52a7ca0acb\" y=\"41.57\"/>\n", " </g>\n", " </g>\n", " <g id=\"text_16\">\n", " <!-- 0.30 -->\n", " <g style=\"fill:#262626;\" transform=\"translate(7.2 44.15515625)scale(0.1 -0.1)\">\n", " <use xlink:href=\"#ArialMT-30\"/>\n", " <use x=\"55.615234375\" xlink:href=\"#ArialMT-2e\"/>\n", " <use x=\"83.3984375\" xlink:href=\"#ArialMT-33\"/>\n", " <use x=\"139.013671875\" xlink:href=\"#ArialMT-30\"/>\n", " </g>\n", " </g>\n", " </g>\n", " <g id=\"ytick_8\">\n", " <g id=\"line2d_49\">\n", " <path clip-path=\"url(#pb07fcf890f)\" d=\"M 33.660938 31.205 \n", "L 554.240937 31.205 \n", "\" style=\"fill:none;stroke:#ffffff;stroke-linecap:round;\"/>\n", " </g>\n", " <g id=\"line2d_50\">\n", " <g>\n", " <use style=\"fill:#262626;stroke:#262626;\" x=\"33.6609375\" xlink:href=\"#m52a7ca0acb\" y=\"31.205\"/>\n", " </g>\n", " </g>\n", " <g id=\"line2d_51\">\n", " <g>\n", " <use style=\"fill:#262626;stroke:#262626;\" x=\"554.2409375\" xlink:href=\"#m52a7ca0acb\" y=\"31.205\"/>\n", " </g>\n", " </g>\n", " <g id=\"text_17\">\n", " <!-- 0.35 -->\n", " <g style=\"fill:#262626;\" transform=\"translate(7.2 33.79015625)scale(0.1 -0.1)\">\n", " <use xlink:href=\"#ArialMT-30\"/>\n", " <use x=\"55.615234375\" xlink:href=\"#ArialMT-2e\"/>\n", " <use x=\"83.3984375\" xlink:href=\"#ArialMT-33\"/>\n", " <use x=\"139.013671875\" xlink:href=\"#ArialMT-35\"/>\n", " </g>\n", " </g>\n", " </g>\n", " <g id=\"ytick_9\">\n", " <g id=\"line2d_52\">\n", " <path clip-path=\"url(#pb07fcf890f)\" d=\"M 33.660938 20.84 \n", "L 554.240937 20.84 \n", "\" style=\"fill:none;stroke:#ffffff;stroke-linecap:round;\"/>\n", " </g>\n", " <g id=\"line2d_53\">\n", " <g>\n", " <use style=\"fill:#262626;stroke:#262626;\" x=\"33.6609375\" xlink:href=\"#m52a7ca0acb\" y=\"20.84\"/>\n", " </g>\n", " </g>\n", " <g id=\"line2d_54\">\n", " <g>\n", " <use style=\"fill:#262626;stroke:#262626;\" x=\"554.2409375\" xlink:href=\"#m52a7ca0acb\" y=\"20.84\"/>\n", " </g>\n", " </g>\n", " <g id=\"text_18\">\n", " <!-- 0.40 -->\n", " <g style=\"fill:#262626;\" transform=\"translate(7.2 23.42515625)scale(0.1 -0.1)\">\n", " <use xlink:href=\"#ArialMT-30\"/>\n", " <use x=\"55.615234375\" xlink:href=\"#ArialMT-2e\"/>\n", " <use x=\"83.3984375\" xlink:href=\"#ArialMT-34\"/>\n", " <use x=\"139.013671875\" xlink:href=\"#ArialMT-30\"/>\n", " </g>\n", " </g>\n", " </g>\n", " </g>\n", " <g id=\"PolyCollection_1\">\n", " <defs>\n", " <path d=\"M 33.660937 -278.705312 \n", "L 33.660937 -278.733056 \n", "L 38.919321 -278.743517 \n", "L 44.177705 -278.757581 \n", "L 49.436089 -278.776356 \n", "L 54.694473 -278.801248 \n", "L 59.952857 -278.834017 \n", "L 65.211241 -278.876856 \n", "L 70.469624 -278.932466 \n", "L 75.728008 -279.004145 \n", "L 80.986392 -279.095884 \n", "L 86.244776 -279.212464 \n", "L 91.50316 -279.359555 \n", "L 96.761544 -279.543813 \n", "L 102.019927 -279.772971 \n", "L 107.278311 -280.055909 \n", "L 112.536695 -280.402707 \n", "L 117.795079 -280.824669 \n", "L 123.053463 -281.334305 \n", "L 128.311847 -281.945266 \n", "L 133.57023 -282.672222 \n", "L 138.828614 -283.530675 \n", "L 144.086998 -284.536696 \n", "L 149.345382 -285.70659 \n", "L 154.603766 -287.056479 \n", "L 159.86215 -288.601799 \n", "L 165.120533 -290.356737 \n", "L 170.378917 -292.333594 \n", "L 175.637301 -294.542106 \n", "L 180.895685 -296.988734 \n", "L 186.154069 -299.675957 \n", "L 191.412453 -302.601586 \n", "L 196.670836 -305.758139 \n", "L 201.92922 -309.132317 \n", "L 207.187604 -312.704601 \n", "L 212.445988 -316.449018 \n", "L 217.704372 -320.3331 \n", "L 222.962756 -324.318057 \n", "L 228.22114 -328.359189 \n", "L 233.479523 -332.406537 \n", "L 238.737907 -336.405777 \n", "L 243.996291 -340.299326 \n", "L 249.254675 -344.027659 \n", "L 254.513059 -347.530774 \n", "L 259.771443 -350.749769 \n", "L 265.029826 -353.628472 \n", "L 270.28821 -356.115066 \n", "L 275.546594 -358.163629 \n", "L 280.804978 -359.735551 \n", "L 286.063362 -360.800738 \n", "L 291.321746 -361.338571 \n", "L 296.580129 -361.338571 \n", "L 301.838513 -360.800738 \n", "L 307.096897 -359.735551 \n", "L 312.355281 -358.163629 \n", "L 317.613665 -356.115066 \n", "L 322.872049 -353.628472 \n", "L 328.130432 -350.749769 \n", "L 333.388816 -347.530774 \n", "L 338.6472 -344.027659 \n", "L 343.905584 -340.299326 \n", "L 349.163968 -336.405777 \n", "L 354.422352 -332.406537 \n", "L 359.680735 -328.359189 \n", "L 364.939119 -324.318057 \n", "L 370.197503 -320.3331 \n", "L 375.455887 -316.449018 \n", "L 380.714271 -312.704601 \n", "L 385.972655 -309.132317 \n", "L 391.231039 -305.758139 \n", "L 396.489422 -302.601586 \n", "L 401.747806 -299.675957 \n", "L 407.00619 -296.988734 \n", "L 412.264574 -294.542106 \n", "L 417.522958 -292.333594 \n", "L 422.781342 -290.356737 \n", "L 428.039725 -288.601799 \n", "L 433.298109 -287.056479 \n", "L 438.556493 -285.70659 \n", "L 443.814877 -284.536696 \n", "L 449.073261 -283.530675 \n", "L 454.331645 -282.672222 \n", "L 459.590028 -281.945266 \n", "L 464.848412 -281.334305 \n", "L 470.106796 -280.824669 \n", "L 475.36518 -280.402707 \n", "L 480.623564 -280.055909 \n", "L 485.881948 -279.772971 \n", "L 491.140331 -279.543813 \n", "L 496.398715 -279.359555 \n", "L 501.657099 -279.212464 \n", "L 506.915483 -279.095884 \n", "L 512.173867 -279.004145 \n", "L 517.432251 -278.932466 \n", "L 522.690634 -278.876856 \n", "L 527.949018 -278.834017 \n", "L 533.207402 -278.801248 \n", "L 538.465786 -278.776356 \n", "L 543.72417 -278.757581 \n", "L 548.982554 -278.743517 \n", "L 554.240937 -278.733056 \n", "L 554.240937 -278.705312 \n", "L 554.240937 -278.705312 \n", "L 548.982554 -278.705312 \n", "L 543.72417 -278.705312 \n", "L 538.465786 -278.705312 \n", "L 533.207402 -278.705312 \n", "L 527.949018 -278.705312 \n", "L 522.690634 -278.705312 \n", "L 517.432251 -278.705312 \n", "L 512.173867 -278.705312 \n", "L 506.915483 -278.705312 \n", "L 501.657099 -278.705312 \n", "L 496.398715 -278.705312 \n", "L 491.140331 -278.705312 \n", "L 485.881948 -278.705312 \n", "L 480.623564 -278.705312 \n", "L 475.36518 -278.705312 \n", "L 470.106796 -278.705312 \n", "L 464.848412 -278.705312 \n", "L 459.590028 -278.705312 \n", "L 454.331645 -278.705312 \n", "L 449.073261 -278.705312 \n", "L 443.814877 -278.705312 \n", "L 438.556493 -278.705312 \n", "L 433.298109 -278.705312 \n", "L 428.039725 -278.705312 \n", "L 422.781342 -278.705312 \n", "L 417.522958 -278.705312 \n", "L 412.264574 -278.705312 \n", "L 407.00619 -278.705312 \n", "L 401.747806 -278.705312 \n", "L 396.489422 -278.705312 \n", "L 391.231039 -278.705312 \n", "L 385.972655 -278.705312 \n", "L 380.714271 -278.705312 \n", "L 375.455887 -278.705312 \n", "L 370.197503 -278.705312 \n", "L 364.939119 -278.705312 \n", "L 359.680735 -278.705312 \n", "L 354.422352 -278.705312 \n", "L 349.163968 -278.705312 \n", "L 343.905584 -278.705312 \n", "L 338.6472 -278.705312 \n", "L 333.388816 -278.705312 \n", "L 328.130432 -278.705312 \n", "L 322.872049 -278.705312 \n", "L 317.613665 -278.705312 \n", "L 312.355281 -278.705312 \n", "L 307.096897 -278.705312 \n", "L 301.838513 -278.705312 \n", "L 296.580129 -278.705312 \n", "L 291.321746 -278.705312 \n", "L 286.063362 -278.705312 \n", "L 280.804978 -278.705312 \n", "L 275.546594 -278.705312 \n", "L 270.28821 -278.705312 \n", "L 265.029826 -278.705312 \n", "L 259.771443 -278.705312 \n", "L 254.513059 -278.705312 \n", "L 249.254675 -278.705312 \n", "L 243.996291 -278.705312 \n", "L 238.737907 -278.705312 \n", "L 233.479523 -278.705312 \n", "L 228.22114 -278.705312 \n", "L 222.962756 -278.705312 \n", "L 217.704372 -278.705312 \n", "L 212.445988 -278.705312 \n", "L 207.187604 -278.705312 \n", "L 201.92922 -278.705312 \n", "L 196.670836 -278.705312 \n", "L 191.412453 -278.705312 \n", "L 186.154069 -278.705312 \n", "L 180.895685 -278.705312 \n", "L 175.637301 -278.705312 \n", "L 170.378917 -278.705312 \n", "L 165.120533 -278.705312 \n", "L 159.86215 -278.705312 \n", "L 154.603766 -278.705312 \n", "L 149.345382 -278.705312 \n", "L 144.086998 -278.705312 \n", "L 138.828614 -278.705312 \n", "L 133.57023 -278.705312 \n", "L 128.311847 -278.705312 \n", "L 123.053463 -278.705312 \n", "L 117.795079 -278.705312 \n", "L 112.536695 -278.705312 \n", "L 107.278311 -278.705312 \n", "L 102.019927 -278.705312 \n", "L 96.761544 -278.705312 \n", "L 91.50316 -278.705312 \n", "L 86.244776 -278.705312 \n", "L 80.986392 -278.705312 \n", "L 75.728008 -278.705312 \n", "L 70.469624 -278.705312 \n", "L 65.211241 -278.705312 \n", "L 59.952857 -278.705312 \n", "L 54.694473 -278.705312 \n", "L 49.436089 -278.705312 \n", "L 44.177705 -278.705312 \n", "L 38.919321 -278.705312 \n", "L 33.660937 -278.705312 \n", "z\n", "\" id=\"m4c0c945ab2\" style=\"stroke:#1a1a1a;stroke-opacity:0.1;stroke-width:0.3;\"/>\n", " </defs>\n", " <g clip-path=\"url(#pb07fcf890f)\">\n", " <use style=\"fill:#008000;fill-opacity:0.1;stroke:#1a1a1a;stroke-opacity:0.1;stroke-width:0.3;\" x=\"0.0\" xlink:href=\"#m4c0c945ab2\" y=\"382.4653125\"/>\n", " </g>\n", " </g>\n", " <g id=\"PolyCollection_2\">\n", " <defs>\n", " <path d=\"M 33.660937 -278.705312 \n", "L 33.660937 -278.733056 \n", "L 34.975533 -278.735384 \n", "L 36.290129 -278.737895 \n", "L 37.604725 -278.740602 \n", "L 38.919321 -278.743517 \n", "L 40.233917 -278.746656 \n", "L 41.548513 -278.750035 \n", "L 42.863109 -278.753671 \n", "L 44.177705 -278.757581 \n", "L 45.492301 -278.761784 \n", "L 46.806897 -278.766299 \n", "L 48.121493 -278.771149 \n", "L 49.436089 -278.776356 \n", "L 50.750685 -278.781944 \n", "L 52.065281 -278.787937 \n", "L 53.379877 -278.794362 \n", "L 54.694473 -278.801248 \n", "L 56.009069 -278.808624 \n", "L 57.323665 -278.816522 \n", "L 58.638261 -278.824975 \n", "L 59.952857 -278.834017 \n", "L 61.267453 -278.843687 \n", "L 62.582049 -278.854022 \n", "L 63.896645 -278.865064 \n", "L 65.211241 -278.876856 \n", "L 66.525836 -278.889444 \n", "L 67.840432 -278.902874 \n", "L 69.155028 -278.917197 \n", "L 70.469624 -278.932466 \n", "L 71.78422 -278.948736 \n", "L 73.098816 -278.966065 \n", "L 74.413412 -278.984513 \n", "L 75.728008 -279.004145 \n", "L 77.042604 -279.025027 \n", "L 78.3572 -279.047228 \n", "L 79.671796 -279.070822 \n", "L 80.986392 -279.095884 \n", "L 82.300988 -279.122495 \n", "L 83.615584 -279.150737 \n", "L 84.93018 -279.180696 \n", "L 86.244776 -279.212464 \n", "L 87.559372 -279.246134 \n", "L 88.873968 -279.281804 \n", "L 90.188564 -279.319575 \n", "L 91.50316 -279.359555 \n", "L 92.817756 -279.401852 \n", "L 94.132352 -279.446581 \n", "L 95.446948 -279.49386 \n", "L 96.761544 -279.543813 \n", "L 98.07614 -279.596567 \n", "L 99.390735 -279.652253 \n", "L 100.705331 -279.711007 \n", "L 102.019927 -279.772971 \n", "L 103.334523 -279.838291 \n", "L 104.649119 -279.907116 \n", "L 105.963715 -279.979602 \n", "L 107.278311 -280.055909 \n", "L 108.592907 -280.136201 \n", "L 109.907503 -280.220648 \n", "L 111.222099 -280.309423 \n", "L 112.536695 -280.402707 \n", "L 113.851291 -280.500683 \n", "L 115.165887 -280.603538 \n", "L 116.480483 -280.711468 \n", "L 117.795079 -280.824669 \n", "L 119.109675 -280.943344 \n", "L 120.424271 -281.0677 \n", "L 121.738867 -281.197949 \n", "L 123.053463 -281.334305 \n", "L 124.368059 -281.476989 \n", "L 125.682655 -281.626225 \n", "L 126.997251 -281.78224 \n", "L 128.311847 -281.945266 \n", "L 129.626443 -282.115538 \n", "L 130.941039 -282.293293 \n", "L 132.255634 -282.478773 \n", "L 133.57023 -282.672222 \n", "L 134.884826 -282.873887 \n", "L 136.199422 -283.084017 \n", "L 137.514018 -283.302862 \n", "L 138.828614 -283.530675 \n", "L 140.14321 -283.767709 \n", "L 141.457806 -284.014221 \n", "L 142.772402 -284.270464 \n", "L 144.086998 -284.536696 \n", "L 145.401594 -284.81317 \n", "L 146.71619 -285.100141 \n", "L 148.030786 -285.397864 \n", "L 149.345382 -285.70659 \n", "L 150.659978 -286.026569 \n", "L 151.974574 -286.358048 \n", "L 153.28917 -286.701271 \n", "L 154.603766 -287.056479 \n", "L 155.918362 -287.423907 \n", "L 157.232958 -287.803787 \n", "L 158.547554 -288.196344 \n", "L 159.86215 -288.601799 \n", "L 161.176746 -289.020364 \n", "L 162.491342 -289.452245 \n", "L 163.805937 -289.89764 \n", "L 163.805937 -278.705312 \n", "L 163.805937 -278.705312 \n", "L 162.491342 -278.705312 \n", "L 161.176746 -278.705312 \n", "L 159.86215 -278.705312 \n", "L 158.547554 -278.705312 \n", "L 157.232958 -278.705312 \n", "L 155.918362 -278.705312 \n", "L 154.603766 -278.705312 \n", "L 153.28917 -278.705312 \n", "L 151.974574 -278.705312 \n", "L 150.659978 -278.705312 \n", "L 149.345382 -278.705312 \n", "L 148.030786 -278.705312 \n", "L 146.71619 -278.705312 \n", "L 145.401594 -278.705312 \n", "L 144.086998 -278.705312 \n", "L 142.772402 -278.705312 \n", "L 141.457806 -278.705312 \n", "L 140.14321 -278.705312 \n", "L 138.828614 -278.705312 \n", "L 137.514018 -278.705312 \n", "L 136.199422 -278.705312 \n", "L 134.884826 -278.705312 \n", "L 133.57023 -278.705312 \n", "L 132.255634 -278.705312 \n", "L 130.941039 -278.705312 \n", "L 129.626443 -278.705312 \n", "L 128.311847 -278.705312 \n", "L 126.997251 -278.705312 \n", "L 125.682655 -278.705312 \n", "L 124.368059 -278.705312 \n", "L 123.053463 -278.705312 \n", "L 121.738867 -278.705312 \n", "L 120.424271 -278.705312 \n", "L 119.109675 -278.705312 \n", "L 117.795079 -278.705312 \n", "L 116.480483 -278.705312 \n", "L 115.165887 -278.705312 \n", "L 113.851291 -278.705312 \n", "L 112.536695 -278.705312 \n", "L 111.222099 -278.705312 \n", "L 109.907503 -278.705312 \n", "L 108.592907 -278.705312 \n", "L 107.278311 -278.705312 \n", "L 105.963715 -278.705312 \n", "L 104.649119 -278.705312 \n", "L 103.334523 -278.705312 \n", "L 102.019927 -278.705312 \n", "L 100.705331 -278.705312 \n", "L 99.390735 -278.705312 \n", "L 98.07614 -278.705312 \n", "L 96.761544 -278.705312 \n", "L 95.446948 -278.705312 \n", "L 94.132352 -278.705312 \n", "L 92.817756 -278.705312 \n", "L 91.50316 -278.705312 \n", "L 90.188564 -278.705312 \n", "L 88.873968 -278.705312 \n", "L 87.559372 -278.705312 \n", "L 86.244776 -278.705312 \n", "L 84.93018 -278.705312 \n", "L 83.615584 -278.705312 \n", "L 82.300988 -278.705312 \n", "L 80.986392 -278.705312 \n", "L 79.671796 -278.705312 \n", "L 78.3572 -278.705312 \n", "L 77.042604 -278.705312 \n", "L 75.728008 -278.705312 \n", "L 74.413412 -278.705312 \n", "L 73.098816 -278.705312 \n", "L 71.78422 -278.705312 \n", "L 70.469624 -278.705312 \n", "L 69.155028 -278.705312 \n", "L 67.840432 -278.705312 \n", "L 66.525836 -278.705312 \n", "L 65.211241 -278.705312 \n", "L 63.896645 -278.705312 \n", "L 62.582049 -278.705312 \n", "L 61.267453 -278.705312 \n", "L 59.952857 -278.705312 \n", "L 58.638261 -278.705312 \n", "L 57.323665 -278.705312 \n", "L 56.009069 -278.705312 \n", "L 54.694473 -278.705312 \n", "L 53.379877 -278.705312 \n", "L 52.065281 -278.705312 \n", "L 50.750685 -278.705312 \n", "L 49.436089 -278.705312 \n", "L 48.121493 -278.705312 \n", "L 46.806897 -278.705312 \n", "L 45.492301 -278.705312 \n", "L 44.177705 -278.705312 \n", "L 42.863109 -278.705312 \n", "L 41.548513 -278.705312 \n", "L 40.233917 -278.705312 \n", "L 38.919321 -278.705312 \n", "L 37.604725 -278.705312 \n", "L 36.290129 -278.705312 \n", "L 34.975533 -278.705312 \n", "L 33.660937 -278.705312 \n", "z\n", "\" id=\"m60c67b79d2\" style=\"stroke:#1a1a1a;stroke-opacity:0.35;stroke-width:0.3;\"/>\n", " </defs>\n", " <g clip-path=\"url(#pb07fcf890f)\">\n", " <use style=\"fill:#0000ff;fill-opacity:0.35;stroke:#1a1a1a;stroke-opacity:0.35;stroke-width:0.3;\" x=\"0.0\" xlink:href=\"#m60c67b79d2\" y=\"382.4653125\"/>\n", " </g>\n", " </g>\n", " <g id=\"PolyCollection_3\">\n", " <defs>\n", " <path d=\"M 424.095937 -278.705312 \n", "L 424.095937 -289.89764 \n", "L 425.410533 -289.452245 \n", "L 426.725129 -289.020364 \n", "L 428.039725 -288.601799 \n", "L 429.354321 -288.196344 \n", "L 430.668917 -287.803787 \n", "L 431.983513 -287.423907 \n", "L 433.298109 -287.056479 \n", "L 434.612705 -286.701271 \n", "L 435.927301 -286.358048 \n", "L 437.241897 -286.026569 \n", "L 438.556493 -285.70659 \n", "L 439.871089 -285.397864 \n", "L 441.185685 -285.100141 \n", "L 442.500281 -284.81317 \n", "L 443.814877 -284.536696 \n", "L 445.129473 -284.270464 \n", "L 446.444069 -284.014221 \n", "L 447.758665 -283.767709 \n", "L 449.073261 -283.530675 \n", "L 450.387857 -283.302862 \n", "L 451.702453 -283.084017 \n", "L 453.017049 -282.873887 \n", "L 454.331645 -282.672222 \n", "L 455.646241 -282.478773 \n", "L 456.960836 -282.293293 \n", "L 458.275432 -282.115538 \n", "L 459.590028 -281.945266 \n", "L 460.904624 -281.78224 \n", "L 462.21922 -281.626225 \n", "L 463.533816 -281.476989 \n", "L 464.848412 -281.334305 \n", "L 466.163008 -281.197949 \n", "L 467.477604 -281.0677 \n", "L 468.7922 -280.943344 \n", "L 470.106796 -280.824669 \n", "L 471.421392 -280.711468 \n", "L 472.735988 -280.603538 \n", "L 474.050584 -280.500683 \n", "L 475.36518 -280.402707 \n", "L 476.679776 -280.309423 \n", "L 477.994372 -280.220648 \n", "L 479.308968 -280.136201 \n", "L 480.623564 -280.055909 \n", "L 481.93816 -279.979602 \n", "L 483.252756 -279.907116 \n", "L 484.567352 -279.838291 \n", "L 485.881948 -279.772971 \n", "L 487.196544 -279.711007 \n", "L 488.51114 -279.652253 \n", "L 489.825735 -279.596567 \n", "L 491.140331 -279.543813 \n", "L 492.454927 -279.49386 \n", "L 493.769523 -279.446581 \n", "L 495.084119 -279.401852 \n", "L 496.398715 -279.359555 \n", "L 497.713311 -279.319575 \n", "L 499.027907 -279.281804 \n", "L 500.342503 -279.246134 \n", "L 501.657099 -279.212464 \n", "L 502.971695 -279.180696 \n", "L 504.286291 -279.150737 \n", "L 505.600887 -279.122495 \n", "L 506.915483 -279.095884 \n", "L 508.230079 -279.070822 \n", "L 509.544675 -279.047228 \n", "L 510.859271 -279.025027 \n", "L 512.173867 -279.004145 \n", "L 513.488463 -278.984513 \n", "L 514.803059 -278.966065 \n", "L 516.117655 -278.948736 \n", "L 517.432251 -278.932466 \n", "L 518.746847 -278.917197 \n", "L 520.061443 -278.902874 \n", "L 521.376039 -278.889444 \n", "L 522.690634 -278.876856 \n", "L 524.00523 -278.865064 \n", "L 525.319826 -278.854022 \n", "L 526.634422 -278.843687 \n", "L 527.949018 -278.834017 \n", "L 529.263614 -278.824975 \n", "L 530.57821 -278.816522 \n", "L 531.892806 -278.808624 \n", "L 533.207402 -278.801248 \n", "L 534.521998 -278.794362 \n", "L 535.836594 -278.787937 \n", "L 537.15119 -278.781944 \n", "L 538.465786 -278.776356 \n", "L 539.780382 -278.771149 \n", "L 541.094978 -278.766299 \n", "L 542.409574 -278.761784 \n", "L 543.72417 -278.757581 \n", "L 545.038766 -278.753671 \n", "L 546.353362 -278.750035 \n", "L 547.667958 -278.746656 \n", "L 548.982554 -278.743517 \n", "L 550.29715 -278.740602 \n", "L 551.611746 -278.737895 \n", "L 552.926342 -278.735384 \n", "L 554.240937 -278.733056 \n", "L 554.240937 -278.705312 \n", "L 554.240937 -278.705312 \n", "L 552.926342 -278.705312 \n", "L 551.611746 -278.705312 \n", "L 550.29715 -278.705312 \n", "L 548.982554 -278.705312 \n", "L 547.667958 -278.705312 \n", "L 546.353362 -278.705312 \n", "L 545.038766 -278.705312 \n", "L 543.72417 -278.705312 \n", "L 542.409574 -278.705312 \n", "L 541.094978 -278.705312 \n", "L 539.780382 -278.705312 \n", "L 538.465786 -278.705312 \n", "L 537.15119 -278.705312 \n", "L 535.836594 -278.705312 \n", "L 534.521998 -278.705312 \n", "L 533.207402 -278.705312 \n", "L 531.892806 -278.705312 \n", "L 530.57821 -278.705312 \n", "L 529.263614 -278.705312 \n", "L 527.949018 -278.705312 \n", "L 526.634422 -278.705312 \n", "L 525.319826 -278.705312 \n", "L 524.00523 -278.705312 \n", "L 522.690634 -278.705312 \n", "L 521.376039 -278.705312 \n", "L 520.061443 -278.705312 \n", "L 518.746847 -278.705312 \n", "L 517.432251 -278.705312 \n", "L 516.117655 -278.705312 \n", "L 514.803059 -278.705312 \n", "L 513.488463 -278.705312 \n", "L 512.173867 -278.705312 \n", "L 510.859271 -278.705312 \n", "L 509.544675 -278.705312 \n", "L 508.230079 -278.705312 \n", "L 506.915483 -278.705312 \n", "L 505.600887 -278.705312 \n", "L 504.286291 -278.705312 \n", "L 502.971695 -278.705312 \n", "L 501.657099 -278.705312 \n", "L 500.342503 -278.705312 \n", "L 499.027907 -278.705312 \n", "L 497.713311 -278.705312 \n", "L 496.398715 -278.705312 \n", "L 495.084119 -278.705312 \n", "L 493.769523 -278.705312 \n", "L 492.454927 -278.705312 \n", "L 491.140331 -278.705312 \n", "L 489.825735 -278.705312 \n", "L 488.51114 -278.705312 \n", "L 487.196544 -278.705312 \n", "L 485.881948 -278.705312 \n", "L 484.567352 -278.705312 \n", "L 483.252756 -278.705312 \n", "L 481.93816 -278.705312 \n", "L 480.623564 -278.705312 \n", "L 479.308968 -278.705312 \n", "L 477.994372 -278.705312 \n", "L 476.679776 -278.705312 \n", "L 475.36518 -278.705312 \n", "L 474.050584 -278.705312 \n", "L 472.735988 -278.705312 \n", "L 471.421392 -278.705312 \n", "L 470.106796 -278.705312 \n", "L 468.7922 -278.705312 \n", "L 467.477604 -278.705312 \n", "L 466.163008 -278.705312 \n", "L 464.848412 -278.705312 \n", "L 463.533816 -278.705312 \n", "L 462.21922 -278.705312 \n", "L 460.904624 -278.705312 \n", "L 459.590028 -278.705312 \n", "L 458.275432 -278.705312 \n", "L 456.960836 -278.705312 \n", "L 455.646241 -278.705312 \n", "L 454.331645 -278.705312 \n", "L 453.017049 -278.705312 \n", "L 451.702453 -278.705312 \n", "L 450.387857 -278.705312 \n", "L 449.073261 -278.705312 \n", "L 447.758665 -278.705312 \n", "L 446.444069 -278.705312 \n", "L 445.129473 -278.705312 \n", "L 443.814877 -278.705312 \n", "L 442.500281 -278.705312 \n", "L 441.185685 -278.705312 \n", "L 439.871089 -278.705312 \n", "L 438.556493 -278.705312 \n", "L 437.241897 -278.705312 \n", "L 435.927301 -278.705312 \n", "L 434.612705 -278.705312 \n", "L 433.298109 -278.705312 \n", "L 431.983513 -278.705312 \n", "L 430.668917 -278.705312 \n", "L 429.354321 -278.705312 \n", "L 428.039725 -278.705312 \n", "L 426.725129 -278.705312 \n", "L 425.410533 -278.705312 \n", "L 424.095937 -278.705312 \n", "z\n", "\" id=\"m6e7d20114e\" style=\"stroke:#1a1a1a;stroke-opacity:0.35;stroke-width:0.3;\"/>\n", " </defs>\n", " <g clip-path=\"url(#pb07fcf890f)\">\n", " <use style=\"fill:#0000ff;fill-opacity:0.35;stroke:#1a1a1a;stroke-opacity:0.35;stroke-width:0.3;\" x=\"0.0\" xlink:href=\"#m6e7d20114e\" y=\"382.4653125\"/>\n", " </g>\n", " </g>\n", " <g id=\"patch_3\">\n", " <path d=\"M 33.660937 20.84 \n", "L 554.240937 20.84 \n", "\" style=\"fill:none;\"/>\n", " </g>\n", " <g id=\"patch_4\">\n", " <path d=\"M 554.240937 103.76 \n", "L 554.240937 20.84 \n", "\" style=\"fill:none;\"/>\n", " </g>\n", " <g id=\"patch_5\">\n", " <path d=\"M 33.660937 103.76 \n", "L 554.240937 103.76 \n", "\" style=\"fill:none;\"/>\n", " </g>\n", " <g id=\"patch_6\">\n", " <path d=\"M 33.660938 103.76 \n", "L 33.660938 20.84 \n", "\" style=\"fill:none;\"/>\n", " </g>\n", " <g id=\"text_19\">\n", " <!-- p-value=0.046 -->\n", " <defs>\n", " <path d=\"M 40.4375 6.390625 \n", "Q 35.546875 2.25 31.03125 0.53125 \n", "Q 26.515625 -1.171875 21.34375 -1.171875 \n", "Q 12.796875 -1.171875 8.203125 3 \n", "Q 3.609375 7.171875 3.609375 13.671875 \n", "Q 3.609375 17.484375 5.34375 20.625 \n", "Q 7.078125 23.78125 9.890625 25.6875 \n", "Q 12.703125 27.59375 16.21875 28.5625 \n", "Q 18.796875 29.25 24.03125 29.890625 \n", "Q 34.671875 31.15625 39.703125 32.90625 \n", "Q 39.75 34.71875 39.75 35.203125 \n", "Q 39.75 40.578125 37.25 42.78125 \n", "Q 33.890625 45.75 27.25 45.75 \n", "Q 21.046875 45.75 18.09375 43.578125 \n", "Q 15.140625 41.40625 13.71875 35.890625 \n", "L 5.125 37.0625 \n", "Q 6.296875 42.578125 8.984375 45.96875 \n", "Q 11.671875 49.359375 16.75 51.1875 \n", "Q 21.828125 53.03125 28.515625 53.03125 \n", "Q 35.15625 53.03125 39.296875 51.46875 \n", "Q 43.453125 49.90625 45.40625 47.53125 \n", "Q 47.359375 45.171875 48.140625 41.546875 \n", "Q 48.578125 39.3125 48.578125 33.453125 \n", "L 48.578125 21.734375 \n", "Q 48.578125 9.46875 49.140625 6.21875 \n", "Q 49.703125 2.984375 51.375 0 \n", "L 42.1875 0 \n", "Q 40.828125 2.734375 40.4375 6.390625 \n", "M 39.703125 26.03125 \n", "Q 34.90625 24.078125 25.34375 22.703125 \n", "Q 19.921875 21.921875 17.671875 20.9375 \n", "Q 15.4375 19.96875 14.203125 18.09375 \n", "Q 12.984375 16.21875 12.984375 13.921875 \n", "Q 12.984375 10.40625 15.640625 8.0625 \n", "Q 18.3125 5.71875 23.4375 5.71875 \n", "Q 28.515625 5.71875 32.46875 7.9375 \n", "Q 36.421875 10.15625 38.28125 14.015625 \n", "Q 39.703125 17 39.703125 22.796875 \n", "z\n", "\" id=\"ArialMT-61\"/>\n", " <path d=\"M 42.09375 16.703125 \n", "L 51.171875 15.578125 \n", "Q 49.03125 7.625 43.21875 3.21875 \n", "Q 37.40625 -1.171875 28.375 -1.171875 \n", "Q 17 -1.171875 10.328125 5.828125 \n", "Q 3.65625 12.84375 3.65625 25.484375 \n", "Q 3.65625 38.578125 10.390625 45.796875 \n", "Q 17.140625 53.03125 27.875 53.03125 \n", "Q 38.28125 53.03125 44.875 45.953125 \n", "Q 51.46875 38.875 51.46875 26.03125 \n", "Q 51.46875 25.25 51.421875 23.6875 \n", "L 12.75 23.6875 \n", "Q 13.234375 15.140625 17.578125 10.59375 \n", "Q 21.921875 6.0625 28.421875 6.0625 \n", "Q 33.25 6.0625 36.671875 8.59375 \n", "Q 40.09375 11.140625 42.09375 16.703125 \n", "M 13.234375 30.90625 \n", "L 42.1875 30.90625 \n", "Q 41.609375 37.453125 38.875 40.71875 \n", "Q 34.671875 45.796875 27.984375 45.796875 \n", "Q 21.921875 45.796875 17.796875 41.75 \n", "Q 13.671875 37.703125 13.234375 30.90625 \n", "\" id=\"ArialMT-65\"/>\n", " <path d=\"M 40.578125 0 \n", "L 40.578125 7.625 \n", "Q 34.515625 -1.171875 24.125 -1.171875 \n", "Q 19.53125 -1.171875 15.546875 0.578125 \n", "Q 11.578125 2.34375 9.640625 5 \n", "Q 7.71875 7.671875 6.9375 11.53125 \n", "Q 6.390625 14.109375 6.390625 19.734375 \n", "L 6.390625 51.859375 \n", "L 15.1875 51.859375 \n", "L 15.1875 23.09375 \n", "Q 15.1875 16.21875 15.71875 13.8125 \n", "Q 16.546875 10.359375 19.234375 8.375 \n", "Q 21.921875 6.390625 25.875 6.390625 \n", "Q 29.828125 6.390625 33.296875 8.421875 \n", "Q 36.765625 10.453125 38.203125 13.9375 \n", "Q 39.65625 17.4375 39.65625 24.078125 \n", "L 39.65625 51.859375 \n", "L 48.4375 51.859375 \n", "L 48.4375 0 \n", "z\n", "\" id=\"ArialMT-75\"/>\n", " <path d=\"M 21 0 \n", "L 1.265625 51.859375 \n", "L 10.546875 51.859375 \n", "L 21.6875 20.796875 \n", "Q 23.484375 15.765625 25 10.359375 \n", "Q 26.171875 14.453125 28.265625 20.21875 \n", "L 39.796875 51.859375 \n", "L 48.828125 51.859375 \n", "L 29.203125 0 \n", "z\n", "\" id=\"ArialMT-76\"/>\n", " <path d=\"M 3.171875 21.484375 \n", "L 3.171875 30.328125 \n", "L 30.171875 30.328125 \n", "L 30.171875 21.484375 \n", "z\n", "\" id=\"ArialMT-2d\"/>\n", " <path d=\"M 6.59375 -19.875 \n", "L 6.59375 51.859375 \n", "L 14.59375 51.859375 \n", "L 14.59375 45.125 \n", "Q 17.4375 49.078125 21 51.046875 \n", "Q 24.5625 53.03125 29.640625 53.03125 \n", "Q 36.28125 53.03125 41.359375 49.609375 \n", "Q 46.4375 46.1875 49.015625 39.953125 \n", "Q 51.609375 33.734375 51.609375 26.3125 \n", "Q 51.609375 18.359375 48.75 11.984375 \n", "Q 45.90625 5.609375 40.453125 2.21875 \n", "Q 35.015625 -1.171875 29 -1.171875 \n", "Q 24.609375 -1.171875 21.109375 0.6875 \n", "Q 17.625 2.546875 15.375 5.375 \n", "L 15.375 -19.875 \n", "z\n", "M 14.546875 25.640625 \n", "Q 14.546875 15.625 18.59375 10.84375 \n", "Q 22.65625 6.0625 28.421875 6.0625 \n", "Q 34.28125 6.0625 38.453125 11.015625 \n", "Q 42.625 15.96875 42.625 26.375 \n", "Q 42.625 36.28125 38.546875 41.203125 \n", "Q 34.46875 46.140625 28.8125 46.140625 \n", "Q 23.1875 46.140625 18.859375 40.890625 \n", "Q 14.546875 35.640625 14.546875 25.640625 \n", "\" id=\"ArialMT-70\"/>\n", " <path d=\"M 6.390625 0 \n", "L 6.390625 71.578125 \n", "L 15.1875 71.578125 \n", "L 15.1875 0 \n", "z\n", "\" id=\"ArialMT-6c\"/>\n", " <path d=\"M 49.75 54.046875 \n", "L 41.015625 53.375 \n", "Q 39.84375 58.546875 37.703125 60.890625 \n", "Q 34.125 64.65625 28.90625 64.65625 \n", "Q 24.703125 64.65625 21.53125 62.3125 \n", "Q 17.390625 59.28125 14.984375 53.46875 \n", "Q 12.59375 47.65625 12.5 36.921875 \n", "Q 15.671875 41.75 20.265625 44.09375 \n", "Q 24.859375 46.4375 29.890625 46.4375 \n", "Q 38.671875 46.4375 44.84375 39.96875 \n", "Q 51.03125 33.5 51.03125 23.25 \n", "Q 51.03125 16.5 48.125 10.71875 \n", "Q 45.21875 4.9375 40.140625 1.859375 \n", "Q 35.0625 -1.21875 28.609375 -1.21875 \n", "Q 17.625 -1.21875 10.6875 6.859375 \n", "Q 3.765625 14.9375 3.765625 33.5 \n", "Q 3.765625 54.25 11.421875 63.671875 \n", "Q 18.109375 71.875 29.4375 71.875 \n", "Q 37.890625 71.875 43.28125 67.140625 \n", "Q 48.6875 62.40625 49.75 54.046875 \n", "M 13.875 23.1875 \n", "Q 13.875 18.65625 15.796875 14.5 \n", "Q 17.71875 10.359375 21.1875 8.171875 \n", "Q 24.65625 6 28.46875 6 \n", "Q 34.03125 6 38.03125 10.484375 \n", "Q 42.046875 14.984375 42.046875 22.703125 \n", "Q 42.046875 30.125 38.078125 34.390625 \n", "Q 34.125 38.671875 28.125 38.671875 \n", "Q 22.171875 38.671875 18.015625 34.390625 \n", "Q 13.875 30.125 13.875 23.1875 \n", "\" id=\"ArialMT-36\"/>\n", " <path d=\"M 52.828125 42.09375 \n", "L 5.5625 42.09375 \n", "L 5.5625 50.296875 \n", "L 52.828125 50.296875 \n", "z\n", "M 52.828125 20.359375 \n", "L 5.5625 20.359375 \n", "L 5.5625 28.5625 \n", "L 52.828125 28.5625 \n", "z\n", "\" id=\"ArialMT-3d\"/>\n", " </defs>\n", " <g style=\"fill:#262626;\" transform=\"translate(60.53875 83.03)scale(0.12 -0.12)\">\n", " <use xlink:href=\"#ArialMT-70\"/>\n", " <use x=\"55.615234375\" xlink:href=\"#ArialMT-2d\"/>\n", " <use x=\"88.916015625\" xlink:href=\"#ArialMT-76\"/>\n", " <use x=\"138.916015625\" xlink:href=\"#ArialMT-61\"/>\n", " <use x=\"194.53125\" xlink:href=\"#ArialMT-6c\"/>\n", " <use x=\"216.748046875\" xlink:href=\"#ArialMT-75\"/>\n", " <use x=\"272.36328125\" xlink:href=\"#ArialMT-65\"/>\n", " <use x=\"327.978515625\" xlink:href=\"#ArialMT-3d\"/>\n", " <use x=\"386.376953125\" xlink:href=\"#ArialMT-30\"/>\n", " <use x=\"441.9921875\" xlink:href=\"#ArialMT-2e\"/>\n", " <use x=\"469.775390625\" xlink:href=\"#ArialMT-30\"/>\n", " <use x=\"525.390625\" xlink:href=\"#ArialMT-34\"/>\n", " <use x=\"581.005859375\" xlink:href=\"#ArialMT-36\"/>\n", " </g>\n", " </g>\n", " <g id=\"text_20\">\n", " <!-- Test statistics = 2. Two-tailed test. $H_a: \\mu \\neq 0$ -->\n", " <defs>\n", " <path d=\"M 40.4375 19 \n", "L 49.078125 17.875 \n", "Q 47.65625 8.9375 41.8125 3.875 \n", "Q 35.984375 -1.171875 27.484375 -1.171875 \n", "Q 16.84375 -1.171875 10.375 5.78125 \n", "Q 3.90625 12.75 3.90625 25.734375 \n", "Q 3.90625 34.125 6.6875 40.421875 \n", "Q 9.46875 46.734375 15.15625 49.875 \n", "Q 20.84375 53.03125 27.546875 53.03125 \n", "Q 35.984375 53.03125 41.359375 48.75 \n", "Q 46.734375 44.484375 48.25 36.625 \n", "L 39.703125 35.296875 \n", "Q 38.484375 40.53125 35.375 43.15625 \n", "Q 32.28125 45.796875 27.875 45.796875 \n", "Q 21.234375 45.796875 17.078125 41.03125 \n", "Q 12.9375 36.28125 12.9375 25.984375 \n", "Q 12.9375 15.53125 16.9375 10.796875 \n", "Q 20.953125 6.0625 27.390625 6.0625 \n", "Q 32.5625 6.0625 36.03125 9.234375 \n", "Q 39.5 12.40625 40.4375 19 \n", "\" id=\"ArialMT-63\"/>\n", " <path d=\"M 63.703125 12 \n", "L 31.09375 12 \n", "L 19.09375 -15.59375 \n", "L 13.703125 -15.59375 \n", "L 25.703125 12 \n", "L 4.796875 12 \n", "L 4.796875 18.59375 \n", "L 28.59375 18.59375 \n", "L 34.5 32 \n", "L 4.796875 32 \n", "L 4.796875 38.59375 \n", "L 37.40625 38.59375 \n", "L 49.40625 66.203125 \n", "L 54.796875 66.203125 \n", "L 42.703125 38.59375 \n", "L 63.703125 38.59375 \n", "L 63.703125 32 \n", "L 39.90625 32 \n", "L 34 18.59375 \n", "L 63.703125 18.59375 \n", "z\n", "\" id=\"STIXGeneral-Regular-2260\"/>\n", " <path d=\"M 25 -2.203125 \n", "Q 12.75 -2.203125 8.328125 7.875 \n", "Q 3.90625 17.96875 3.90625 31.890625 \n", "Q 3.90625 40.578125 5.484375 48.234375 \n", "Q 7.078125 55.90625 11.78125 61.25 \n", "Q 16.5 66.609375 25 66.609375 \n", "Q 31.59375 66.609375 35.78125 63.375 \n", "Q 39.984375 60.15625 42.1875 55.046875 \n", "Q 44.390625 49.953125 45.1875 44.109375 \n", "Q 46 38.28125 46 31.890625 \n", "Q 46 23.296875 44.40625 15.796875 \n", "Q 42.828125 8.296875 38.1875 3.046875 \n", "Q 33.546875 -2.203125 25 -2.203125 \n", "M 25 0.390625 \n", "Q 30.5625 0.390625 33.296875 6.09375 \n", "Q 36.03125 11.8125 36.671875 18.75 \n", "Q 37.3125 25.6875 37.3125 33.5 \n", "Q 37.3125 41.015625 36.671875 47.359375 \n", "Q 36.03125 53.71875 33.3125 58.859375 \n", "Q 30.609375 64.015625 25 64.015625 \n", "Q 19.34375 64.015625 16.609375 58.828125 \n", "Q 13.875 53.65625 13.234375 47.328125 \n", "Q 12.59375 41.015625 12.59375 33.5 \n", "Q 12.59375 27.9375 12.859375 23 \n", "Q 13.140625 18.0625 14.3125 12.8125 \n", "Q 15.484375 7.5625 18.09375 3.96875 \n", "Q 20.703125 0.390625 25 0.390625 \n", "\" id=\"Cmr10-30\"/>\n", " <path d=\"M 40.234375 0 \n", "L 40.234375 6.546875 \n", "Q 35.296875 -1.171875 25.734375 -1.171875 \n", "Q 19.53125 -1.171875 14.328125 2.25 \n", "Q 9.125 5.671875 6.265625 11.796875 \n", "Q 3.421875 17.921875 3.421875 25.875 \n", "Q 3.421875 33.640625 6 39.96875 \n", "Q 8.59375 46.296875 13.765625 49.65625 \n", "Q 18.953125 53.03125 25.34375 53.03125 \n", "Q 30.03125 53.03125 33.6875 51.046875 \n", "Q 37.359375 49.078125 39.65625 45.90625 \n", "L 39.65625 71.578125 \n", "L 48.390625 71.578125 \n", "L 48.390625 0 \n", "z\n", "M 12.453125 25.875 \n", "Q 12.453125 15.921875 16.640625 10.984375 \n", "Q 20.84375 6.0625 26.5625 6.0625 \n", "Q 32.328125 6.0625 36.34375 10.765625 \n", "Q 40.375 15.484375 40.375 25.140625 \n", "Q 40.375 35.796875 36.265625 40.765625 \n", "Q 32.171875 45.75 26.171875 45.75 \n", "Q 20.3125 45.75 16.375 40.96875 \n", "Q 12.453125 36.1875 12.453125 25.875 \n", "\" id=\"ArialMT-64\"/>\n", " <path d=\"M 25.78125 7.859375 \n", "L 27.046875 0.09375 \n", "Q 23.34375 -0.6875 20.40625 -0.6875 \n", "Q 15.625 -0.6875 12.984375 0.828125 \n", "Q 10.359375 2.34375 9.28125 4.8125 \n", "Q 8.203125 7.28125 8.203125 15.1875 \n", "L 8.203125 45.015625 \n", "L 1.765625 45.015625 \n", "L 1.765625 51.859375 \n", "L 8.203125 51.859375 \n", "L 8.203125 64.703125 \n", "L 16.9375 69.96875 \n", "L 16.9375 51.859375 \n", "L 25.78125 51.859375 \n", "L 25.78125 45.015625 \n", "L 16.9375 45.015625 \n", "L 16.9375 14.703125 \n", "Q 16.9375 10.9375 17.40625 9.859375 \n", "Q 17.875 8.796875 18.921875 8.15625 \n", "Q 19.96875 7.515625 21.921875 7.515625 \n", "Q 23.390625 7.515625 25.78125 7.859375 \n", "\" id=\"ArialMT-74\"/>\n", " <path d=\"M 6.640625 61.46875 \n", "L 6.640625 71.578125 \n", "L 15.4375 71.578125 \n", "L 15.4375 61.46875 \n", "z\n", "M 6.640625 0 \n", "L 6.640625 51.859375 \n", "L 15.4375 51.859375 \n", "L 15.4375 0 \n", "z\n", "\" id=\"ArialMT-69\"/>\n", " <path d=\"M 16.15625 0 \n", "L 0.296875 51.859375 \n", "L 9.375 51.859375 \n", "L 17.625 21.921875 \n", "L 20.703125 10.796875 \n", "Q 20.90625 11.625 23.390625 21.484375 \n", "L 31.640625 51.859375 \n", "L 40.671875 51.859375 \n", "L 48.4375 21.78125 \n", "L 51.03125 11.859375 \n", "L 54 21.875 \n", "L 62.890625 51.859375 \n", "L 71.4375 51.859375 \n", "L 55.21875 0 \n", "L 46.09375 0 \n", "L 37.84375 31.0625 \n", "L 35.84375 39.890625 \n", "L 25.34375 0 \n", "z\n", "\" id=\"ArialMT-77\"/>\n", " <path d=\"M 25.921875 0 \n", "L 25.921875 63.140625 \n", "L 2.34375 63.140625 \n", "L 2.34375 71.578125 \n", "L 59.078125 71.578125 \n", "L 59.078125 63.140625 \n", "L 35.40625 63.140625 \n", "L 35.40625 0 \n", "z\n", "\" id=\"ArialMT-54\"/>\n", " <path d=\"M 3.078125 15.484375 \n", "L 11.765625 16.84375 \n", "Q 12.5 11.625 15.84375 8.84375 \n", "Q 19.1875 6.0625 25.203125 6.0625 \n", "Q 31.25 6.0625 34.171875 8.515625 \n", "Q 37.109375 10.984375 37.109375 14.3125 \n", "Q 37.109375 17.28125 34.515625 19 \n", "Q 32.71875 20.171875 25.53125 21.96875 \n", "Q 15.875 24.421875 12.140625 26.203125 \n", "Q 8.40625 27.984375 6.46875 31.125 \n", "Q 4.546875 34.28125 4.546875 38.09375 \n", "Q 4.546875 41.546875 6.125 44.5 \n", "Q 7.71875 47.46875 10.453125 49.421875 \n", "Q 12.5 50.921875 16.03125 51.96875 \n", "Q 19.578125 53.03125 23.640625 53.03125 \n", "Q 29.734375 53.03125 34.34375 51.265625 \n", "Q 38.96875 49.515625 41.15625 46.5 \n", "Q 43.359375 43.5 44.1875 38.484375 \n", "L 35.59375 37.3125 \n", "Q 35.015625 41.3125 32.203125 43.546875 \n", "Q 29.390625 45.796875 24.265625 45.796875 \n", "Q 18.21875 45.796875 15.625 43.796875 \n", "Q 13.03125 41.796875 13.03125 39.109375 \n", "Q 13.03125 37.40625 14.109375 36.03125 \n", "Q 15.1875 34.625 17.484375 33.6875 \n", "Q 18.796875 33.203125 25.25 31.453125 \n", "Q 34.578125 28.953125 38.25 27.359375 \n", "Q 41.9375 25.78125 44.03125 22.75 \n", "Q 46.140625 19.734375 46.140625 15.234375 \n", "Q 46.140625 10.84375 43.578125 6.953125 \n", "Q 41.015625 3.078125 36.171875 0.953125 \n", "Q 31.34375 -1.171875 25.25 -1.171875 \n", "Q 15.140625 -1.171875 9.84375 3.03125 \n", "Q 4.546875 7.234375 3.078125 15.484375 \n", "\" id=\"ArialMT-73\"/>\n", " <path d=\"M 17.390625 -1.125 \n", "Q 11.078125 -1.125 7.4375 3.640625 \n", "Q 3.8125 8.40625 3.8125 14.890625 \n", "Q 3.8125 21.296875 7.125 28.171875 \n", "Q 10.453125 35.0625 16.09375 39.625 \n", "Q 21.734375 44.1875 28.21875 44.1875 \n", "Q 31.203125 44.1875 33.546875 42.578125 \n", "Q 35.890625 40.96875 37.203125 38.1875 \n", "Q 38.328125 42.1875 41.609375 42.1875 \n", "Q 42.875 42.1875 43.71875 41.421875 \n", "Q 44.578125 40.671875 44.578125 39.40625 \n", "Q 44.578125 39.109375 44.546875 38.953125 \n", "Q 44.53125 38.8125 44.484375 38.625 \n", "L 37.5 10.6875 \n", "Q 36.8125 7.71875 36.8125 5.8125 \n", "Q 36.8125 1.515625 39.703125 1.515625 \n", "Q 42.828125 1.515625 44.453125 5.484375 \n", "Q 46.09375 9.46875 47.21875 14.703125 \n", "Q 47.40625 15.28125 48 15.28125 \n", "L 49.21875 15.28125 \n", "Q 49.609375 15.28125 49.84375 14.9375 \n", "Q 50.09375 14.59375 50.09375 14.3125 \n", "Q 48.34375 7.328125 46.265625 3.09375 \n", "Q 44.1875 -1.125 39.5 -1.125 \n", "Q 36.140625 -1.125 33.546875 0.84375 \n", "Q 30.953125 2.828125 30.328125 6.109375 \n", "Q 23.875 -1.125 17.390625 -1.125 \n", "M 17.484375 1.515625 \n", "Q 21.09375 1.515625 24.484375 4.21875 \n", "Q 27.875 6.9375 30.328125 10.59375 \n", "Q 30.421875 10.6875 30.421875 10.890625 \n", "L 35.796875 32.625 \n", "L 35.890625 32.90625 \n", "Q 35.296875 36.46875 33.3125 39.03125 \n", "Q 31.34375 41.609375 27.984375 41.609375 \n", "Q 24.609375 41.609375 21.703125 38.84375 \n", "Q 18.796875 36.078125 16.796875 32.328125 \n", "Q 14.84375 28.328125 13.0625 21.34375 \n", "Q 11.28125 14.359375 11.28125 10.5 \n", "Q 11.28125 7.03125 12.765625 4.265625 \n", "Q 14.265625 1.515625 17.484375 1.515625 \n", "\" id=\"Cmmi10-61\"/>\n", " <path d=\"M 8.40625 5.515625 \n", "Q 8.40625 7.765625 10.0625 9.375 \n", "Q 11.71875 10.984375 13.921875 10.984375 \n", "Q 15.28125 10.984375 16.59375 10.25 \n", "Q 17.921875 9.515625 18.65625 8.203125 \n", "Q 19.390625 6.890625 19.390625 5.515625 \n", "Q 19.390625 3.328125 17.765625 1.65625 \n", "Q 16.15625 0 13.921875 0 \n", "Q 11.71875 0 10.0625 1.65625 \n", "Q 8.40625 3.328125 8.40625 5.515625 \n", "M 8.40625 37.59375 \n", "Q 8.40625 39.015625 9.125 40.28125 \n", "Q 9.859375 41.546875 11.15625 42.328125 \n", "Q 12.453125 43.109375 13.921875 43.109375 \n", "Q 15.328125 43.109375 16.625 42.328125 \n", "Q 17.921875 41.546875 18.65625 40.28125 \n", "Q 19.390625 39.015625 19.390625 37.59375 \n", "Q 19.390625 35.359375 17.796875 33.71875 \n", "Q 16.21875 32.078125 13.921875 32.078125 \n", "Q 11.671875 32.078125 10.03125 33.71875 \n", "Q 8.40625 35.359375 8.40625 37.59375 \n", "\" id=\"Cmr10-3a\"/>\n", " <path d=\"M 2.78125 -18.796875 \n", "Q 2.78125 -18.21875 2.875 -18.015625 \n", "L 17.578125 41.015625 \n", "Q 18.015625 42.4375 19.15625 43.3125 \n", "Q 20.3125 44.1875 21.78125 44.1875 \n", "Q 23.046875 44.1875 23.921875 43.421875 \n", "Q 24.8125 42.671875 24.8125 41.40625 \n", "Q 24.8125 41.109375 24.78125 40.9375 \n", "Q 24.75 40.765625 24.703125 40.578125 \n", "L 18.796875 17.1875 \n", "Q 17.828125 13.03125 17.828125 10.015625 \n", "Q 17.828125 6.296875 19.578125 3.90625 \n", "Q 21.34375 1.515625 24.90625 1.515625 \n", "Q 32.171875 1.515625 37.703125 10.59375 \n", "Q 37.75 10.6875 37.765625 10.734375 \n", "Q 37.796875 10.796875 37.796875 10.890625 \n", "L 45.015625 39.890625 \n", "Q 45.359375 41.21875 46.578125 42.15625 \n", "Q 47.796875 43.109375 49.21875 43.109375 \n", "Q 50.390625 43.109375 51.296875 42.328125 \n", "Q 52.203125 41.546875 52.203125 40.28125 \n", "Q 52.203125 39.703125 52.09375 39.5 \n", "L 44.921875 10.6875 \n", "Q 44.1875 7.859375 44.1875 5.8125 \n", "Q 44.1875 1.515625 47.125 1.515625 \n", "Q 50.25 1.515625 51.828125 5.375 \n", "Q 53.421875 9.234375 54.59375 14.703125 \n", "Q 54.78125 15.28125 55.421875 15.28125 \n", "L 56.59375 15.28125 \n", "Q 56.984375 15.28125 57.25 14.96875 \n", "Q 57.515625 14.65625 57.515625 14.3125 \n", "Q 55.765625 7.328125 53.6875 3.09375 \n", "Q 51.609375 -1.125 46.921875 -1.125 \n", "Q 43.609375 -1.125 41.046875 0.78125 \n", "Q 38.484375 2.6875 37.703125 5.90625 \n", "Q 35.203125 2.78125 31.859375 0.828125 \n", "Q 28.515625 -1.125 24.8125 -1.125 \n", "Q 18.5625 -1.125 14.984375 1.8125 \n", "L 9.90625 -18.40625 \n", "Q 9.625 -19.828125 8.453125 -20.703125 \n", "Q 7.28125 -21.578125 5.8125 -21.578125 \n", "Q 4.59375 -21.578125 3.6875 -20.8125 \n", "Q 2.78125 -20.0625 2.78125 -18.796875 \n", "\" id=\"Cmmi10-b9\"/>\n", " <path d=\"M 3.328125 25.921875 \n", "Q 3.328125 40.328125 11.328125 47.265625 \n", "Q 18.015625 53.03125 27.640625 53.03125 \n", "Q 38.328125 53.03125 45.109375 46.015625 \n", "Q 51.90625 39.015625 51.90625 26.65625 \n", "Q 51.90625 16.65625 48.90625 10.90625 \n", "Q 45.90625 5.171875 40.15625 2 \n", "Q 34.421875 -1.171875 27.640625 -1.171875 \n", "Q 16.75 -1.171875 10.03125 5.8125 \n", "Q 3.328125 12.796875 3.328125 25.921875 \n", "M 12.359375 25.921875 \n", "Q 12.359375 15.96875 16.703125 11.015625 \n", "Q 21.046875 6.0625 27.640625 6.0625 \n", "Q 34.1875 6.0625 38.53125 11.03125 \n", "Q 42.875 16.015625 42.875 26.21875 \n", "Q 42.875 35.84375 38.5 40.796875 \n", "Q 34.125 45.75 27.640625 45.75 \n", "Q 21.046875 45.75 16.703125 40.8125 \n", "Q 12.359375 35.890625 12.359375 25.921875 \n", "\" id=\"ArialMT-6f\"/>\n", " <path d=\"M 4.6875 0 \n", "Q 3.71875 0 3.71875 1.3125 \n", "Q 3.765625 1.5625 3.90625 2.171875 \n", "Q 4.046875 2.78125 4.3125 3.140625 \n", "Q 4.59375 3.515625 4.984375 3.515625 \n", "Q 11.078125 3.515625 13.484375 4.203125 \n", "Q 14.796875 4.640625 15.375 6.890625 \n", "L 29.109375 61.8125 \n", "Q 29.296875 62.796875 29.296875 63.1875 \n", "Q 29.296875 64.265625 28.078125 64.40625 \n", "Q 26.21875 64.796875 20.90625 64.796875 \n", "Q 19.921875 64.796875 19.921875 66.109375 \n", "Q 20.265625 67.390625 20.453125 67.84375 \n", "Q 20.65625 68.3125 21.578125 68.3125 \n", "L 48.484375 68.3125 \n", "Q 49.515625 68.3125 49.515625 67 \n", "Q 49.46875 66.75 49.3125 66.15625 \n", "Q 49.171875 65.578125 48.921875 65.1875 \n", "Q 48.6875 64.796875 48.1875 64.796875 \n", "Q 42.09375 64.796875 39.703125 64.109375 \n", "Q 38.375 63.625 37.796875 61.375 \n", "L 31.78125 37.3125 \n", "L 61.8125 37.3125 \n", "L 67.921875 61.8125 \n", "Q 68.109375 62.796875 68.109375 63.1875 \n", "Q 68.109375 64.265625 66.890625 64.40625 \n", "Q 64.984375 64.796875 59.71875 64.796875 \n", "Q 58.6875 64.796875 58.6875 66.109375 \n", "Q 59.03125 67.390625 59.21875 67.84375 \n", "Q 59.421875 68.3125 60.40625 68.3125 \n", "L 87.3125 68.3125 \n", "Q 88.28125 68.3125 88.28125 67 \n", "Q 88.234375 66.75 88.078125 66.140625 \n", "Q 87.9375 65.53125 87.671875 65.15625 \n", "Q 87.40625 64.796875 87.015625 64.796875 \n", "Q 80.90625 64.796875 78.515625 64.109375 \n", "Q 77.203125 63.671875 76.609375 61.375 \n", "L 62.890625 6.5 \n", "Q 62.703125 5.515625 62.703125 5.078125 \n", "Q 62.703125 4.046875 63.921875 3.90625 \n", "Q 65.828125 3.515625 71.09375 3.515625 \n", "Q 72.125 3.515625 72.125 2.203125 \n", "Q 71.828125 1.03125 71.53125 0.515625 \n", "Q 71.234375 0 70.40625 0 \n", "L 43.5 0 \n", "Q 42.484375 0 42.484375 1.3125 \n", "Q 42.671875 2.046875 42.765625 2.390625 \n", "Q 42.875 2.734375 43.140625 3.125 \n", "Q 43.40625 3.515625 43.796875 3.515625 \n", "Q 49.90625 3.515625 52.296875 4.203125 \n", "Q 53.609375 4.640625 54.203125 6.890625 \n", "L 60.890625 33.796875 \n", "L 30.90625 33.796875 \n", "L 24.125 6.5 \n", "Q 23.875 5.28125 23.875 5.078125 \n", "Q 23.875 4.046875 25.09375 3.90625 \n", "Q 27 3.515625 32.328125 3.515625 \n", "Q 33.296875 3.515625 33.296875 2.203125 \n", "Q 32.953125 0.875 32.734375 0.4375 \n", "Q 32.515625 0 31.59375 0 \n", "z\n", "\" id=\"Cmmi10-48\"/>\n", " <path id=\"ArialMT-20\"/>\n", " </defs>\n", " <g style=\"fill:#262626;\" transform=\"translate(177.5509375 15.84)scale(0.12 -0.12)\">\n", " <use transform=\"translate(0.0 0.125)\" xlink:href=\"#ArialMT-54\"/>\n", " <use transform=\"translate(61.083984375 0.125)\" xlink:href=\"#ArialMT-65\"/>\n", " <use transform=\"translate(116.69921875 0.125)\" xlink:href=\"#ArialMT-73\"/>\n", " <use transform=\"translate(166.69921875 0.125)\" xlink:href=\"#ArialMT-74\"/>\n", " <use transform=\"translate(194.482421875 0.125)\" xlink:href=\"#ArialMT-20\"/>\n", " <use transform=\"translate(222.265625 0.125)\" xlink:href=\"#ArialMT-73\"/>\n", " <use transform=\"translate(272.265625 0.125)\" xlink:href=\"#ArialMT-74\"/>\n", " <use transform=\"translate(300.048828125 0.125)\" xlink:href=\"#ArialMT-61\"/>\n", " <use transform=\"translate(355.6640625 0.125)\" xlink:href=\"#ArialMT-74\"/>\n", " <use transform=\"translate(383.447265625 0.125)\" xlink:href=\"#ArialMT-69\"/>\n", " <use transform=\"translate(405.6640625 0.125)\" xlink:href=\"#ArialMT-73\"/>\n", " <use transform=\"translate(455.6640625 0.125)\" xlink:href=\"#ArialMT-74\"/>\n", " <use transform=\"translate(483.447265625 0.125)\" xlink:href=\"#ArialMT-69\"/>\n", " <use transform=\"translate(505.6640625 0.125)\" xlink:href=\"#ArialMT-63\"/>\n", " <use transform=\"translate(555.6640625 0.125)\" xlink:href=\"#ArialMT-73\"/>\n", " <use transform=\"translate(605.6640625 0.125)\" xlink:href=\"#ArialMT-20\"/>\n", " <use transform=\"translate(633.447265625 0.125)\" xlink:href=\"#ArialMT-3d\"/>\n", " <use transform=\"translate(691.845703125 0.125)\" xlink:href=\"#ArialMT-20\"/>\n", " <use transform=\"translate(719.62890625 0.125)\" xlink:href=\"#ArialMT-32\"/>\n", " <use transform=\"translate(775.244140625 0.125)\" xlink:href=\"#ArialMT-2e\"/>\n", " <use transform=\"translate(803.02734375 0.125)\" xlink:href=\"#ArialMT-20\"/>\n", " <use transform=\"translate(830.810546875 0.125)\" xlink:href=\"#ArialMT-54\"/>\n", " <use transform=\"translate(891.89453125 0.125)\" xlink:href=\"#ArialMT-77\"/>\n", " <use transform=\"translate(964.111328125 0.125)\" xlink:href=\"#ArialMT-6f\"/>\n", " <use transform=\"translate(1019.7265625 0.125)\" xlink:href=\"#ArialMT-2d\"/>\n", " <use transform=\"translate(1053.02734375 0.125)\" xlink:href=\"#ArialMT-74\"/>\n", " <use transform=\"translate(1080.81054688 0.125)\" xlink:href=\"#ArialMT-61\"/>\n", " <use transform=\"translate(1136.42578125 0.125)\" xlink:href=\"#ArialMT-69\"/>\n", " <use transform=\"translate(1158.64257812 0.125)\" xlink:href=\"#ArialMT-6c\"/>\n", " <use transform=\"translate(1180.859375 0.125)\" xlink:href=\"#ArialMT-65\"/>\n", " <use transform=\"translate(1236.47460938 0.125)\" xlink:href=\"#ArialMT-64\"/>\n", " <use transform=\"translate(1292.08984375 0.125)\" xlink:href=\"#ArialMT-20\"/>\n", " <use transform=\"translate(1319.87304688 0.125)\" xlink:href=\"#ArialMT-74\"/>\n", " <use transform=\"translate(1347.65625 0.125)\" xlink:href=\"#ArialMT-65\"/>\n", " <use transform=\"translate(1403.27148438 0.125)\" xlink:href=\"#ArialMT-73\"/>\n", " <use transform=\"translate(1453.27148438 0.125)\" xlink:href=\"#ArialMT-74\"/>\n", " <use transform=\"translate(1481.0546875 0.125)\" xlink:href=\"#ArialMT-2e\"/>\n", " <use transform=\"translate(1508.83789062 0.125)\" xlink:href=\"#ArialMT-20\"/>\n", " <use transform=\"translate(1536.62109375 0.125)\" xlink:href=\"#Cmmi10-48\"/>\n", " <use transform=\"translate(1619.7265625 -16.88125)scale(0.7)\" xlink:href=\"#Cmmi10-61\"/>\n", " <use transform=\"translate(1680.61074219 0.125)\" xlink:href=\"#Cmr10-3a\"/>\n", " <use transform=\"translate(1725.85488281 0.125)\" xlink:href=\"#Cmmi10-b9\"/>\n", " <use transform=\"translate(1803.61855469 0.125)\" xlink:href=\"#STIXGeneral-Regular-2260\"/>\n", " <use transform=\"translate(1889.67713318 0.125)\" xlink:href=\"#Cmr10-30\"/>\n", " </g>\n", " </g>\n", " </g>\n", " <g id=\"axes_2\">\n", " <g id=\"patch_7\">\n", " <path d=\"M 33.660938 231.44 \n", "L 554.240937 231.44 \n", "L 554.240937 148.52 \n", "L 33.660938 148.52 \n", "z\n", "\" style=\"fill:#eaeaf2;\"/>\n", " </g>\n", " <g id=\"matplotlib.axis_3\">\n", " <g id=\"xtick_10\">\n", " <g id=\"line2d_55\">\n", " <path clip-path=\"url(#p208ff1ae7e)\" d=\"M 33.660937 231.44 \n", "L 33.660937 148.52 \n", "\" style=\"fill:none;stroke:#ffffff;stroke-linecap:round;\"/>\n", " </g>\n", " <g id=\"line2d_56\">\n", " <g>\n", " <use style=\"fill:#262626;stroke:#262626;\" x=\"33.6609375\" xlink:href=\"#m52a7ca0acb\" y=\"231.44\"/>\n", " </g>\n", " </g>\n", " <g id=\"line2d_57\">\n", " <g>\n", " <use style=\"fill:#262626;stroke:#262626;\" x=\"33.6609375\" xlink:href=\"#m52a7ca0acb\" y=\"148.52\"/>\n", " </g>\n", " </g>\n", " <g id=\"text_21\">\n", " <!-- −4 -->\n", " <g style=\"fill:#262626;\" transform=\"translate(27.96015625 245.5978125)scale(0.1 -0.1)\">\n", " <use xlink:href=\"#ArialMT-2212\"/>\n", " <use x=\"58.3984375\" xlink:href=\"#ArialMT-34\"/>\n", " </g>\n", " </g>\n", " </g>\n", " <g id=\"xtick_11\">\n", " <g id=\"line2d_58\">\n", " <path clip-path=\"url(#p208ff1ae7e)\" d=\"M 98.733437 231.44 \n", "L 98.733437 148.52 \n", "\" style=\"fill:none;stroke:#ffffff;stroke-linecap:round;\"/>\n", " </g>\n", " <g id=\"line2d_59\">\n", " <g>\n", " <use style=\"fill:#262626;stroke:#262626;\" x=\"98.7334375\" xlink:href=\"#m52a7ca0acb\" y=\"231.44\"/>\n", " </g>\n", " </g>\n", " <g id=\"line2d_60\">\n", " <g>\n", " <use style=\"fill:#262626;stroke:#262626;\" x=\"98.7334375\" xlink:href=\"#m52a7ca0acb\" y=\"148.52\"/>\n", " </g>\n", " </g>\n", " <g id=\"text_22\">\n", " <!-- −3 -->\n", " <g style=\"fill:#262626;\" transform=\"translate(93.03265625 245.5978125)scale(0.1 -0.1)\">\n", " <use xlink:href=\"#ArialMT-2212\"/>\n", " <use x=\"58.3984375\" xlink:href=\"#ArialMT-33\"/>\n", " </g>\n", " </g>\n", " </g>\n", " <g id=\"xtick_12\">\n", " <g id=\"line2d_61\">\n", " <path clip-path=\"url(#p208ff1ae7e)\" d=\"M 163.805937 231.44 \n", "L 163.805937 148.52 \n", "\" style=\"fill:none;stroke:#ffffff;stroke-linecap:round;\"/>\n", " </g>\n", " <g id=\"line2d_62\">\n", " <g>\n", " <use style=\"fill:#262626;stroke:#262626;\" x=\"163.8059375\" xlink:href=\"#m52a7ca0acb\" y=\"231.44\"/>\n", " </g>\n", " </g>\n", " <g id=\"line2d_63\">\n", " <g>\n", " <use style=\"fill:#262626;stroke:#262626;\" x=\"163.8059375\" xlink:href=\"#m52a7ca0acb\" y=\"148.52\"/>\n", " </g>\n", " </g>\n", " <g id=\"text_23\">\n", " <!-- −2 -->\n", " <g style=\"fill:#262626;\" transform=\"translate(158.10515625 245.5978125)scale(0.1 -0.1)\">\n", " <use xlink:href=\"#ArialMT-2212\"/>\n", " <use x=\"58.3984375\" xlink:href=\"#ArialMT-32\"/>\n", " </g>\n", " </g>\n", " </g>\n", " <g id=\"xtick_13\">\n", " <g id=\"line2d_64\">\n", " <path clip-path=\"url(#p208ff1ae7e)\" d=\"M 228.878437 231.44 \n", "L 228.878437 148.52 \n", "\" style=\"fill:none;stroke:#ffffff;stroke-linecap:round;\"/>\n", " </g>\n", " <g id=\"line2d_65\">\n", " <g>\n", " <use style=\"fill:#262626;stroke:#262626;\" x=\"228.8784375\" xlink:href=\"#m52a7ca0acb\" y=\"231.44\"/>\n", " </g>\n", " </g>\n", " <g id=\"line2d_66\">\n", " <g>\n", " <use style=\"fill:#262626;stroke:#262626;\" x=\"228.8784375\" xlink:href=\"#m52a7ca0acb\" y=\"148.52\"/>\n", " </g>\n", " </g>\n", " <g id=\"text_24\">\n", " <!-- −1 -->\n", " <g style=\"fill:#262626;\" transform=\"translate(223.17765625 245.5978125)scale(0.1 -0.1)\">\n", " <use xlink:href=\"#ArialMT-2212\"/>\n", " <use x=\"58.3984375\" xlink:href=\"#ArialMT-31\"/>\n", " </g>\n", " </g>\n", " </g>\n", " <g id=\"xtick_14\">\n", " <g id=\"line2d_67\">\n", " <path clip-path=\"url(#p208ff1ae7e)\" d=\"M 293.950937 231.44 \n", "L 293.950937 148.52 \n", "\" style=\"fill:none;stroke:#ffffff;stroke-linecap:round;\"/>\n", " </g>\n", " <g id=\"line2d_68\">\n", " <g>\n", " <use style=\"fill:#262626;stroke:#262626;\" x=\"293.9509375\" xlink:href=\"#m52a7ca0acb\" y=\"231.44\"/>\n", " </g>\n", " </g>\n", " <g id=\"line2d_69\">\n", " <g>\n", " <use style=\"fill:#262626;stroke:#262626;\" x=\"293.9509375\" xlink:href=\"#m52a7ca0acb\" y=\"148.52\"/>\n", " </g>\n", " </g>\n", " <g id=\"text_25\">\n", " <!-- 0 -->\n", " <g style=\"fill:#262626;\" transform=\"translate(291.17046875 245.5978125)scale(0.1 -0.1)\">\n", " <use xlink:href=\"#ArialMT-30\"/>\n", " </g>\n", " </g>\n", " </g>\n", " <g id=\"xtick_15\">\n", " <g id=\"line2d_70\">\n", " <path clip-path=\"url(#p208ff1ae7e)\" d=\"M 359.023437 231.44 \n", "L 359.023437 148.52 \n", "\" style=\"fill:none;stroke:#ffffff;stroke-linecap:round;\"/>\n", " </g>\n", " <g id=\"line2d_71\">\n", " <g>\n", " <use style=\"fill:#262626;stroke:#262626;\" x=\"359.0234375\" xlink:href=\"#m52a7ca0acb\" y=\"231.44\"/>\n", " </g>\n", " </g>\n", " <g id=\"line2d_72\">\n", " <g>\n", " <use style=\"fill:#262626;stroke:#262626;\" x=\"359.0234375\" xlink:href=\"#m52a7ca0acb\" y=\"148.52\"/>\n", " </g>\n", " </g>\n", " <g id=\"text_26\">\n", " <!-- 1 -->\n", " <g style=\"fill:#262626;\" transform=\"translate(356.24296875 245.5978125)scale(0.1 -0.1)\">\n", " <use xlink:href=\"#ArialMT-31\"/>\n", " </g>\n", " </g>\n", " </g>\n", " <g id=\"xtick_16\">\n", " <g id=\"line2d_73\">\n", " <path clip-path=\"url(#p208ff1ae7e)\" d=\"M 424.095937 231.44 \n", "L 424.095937 148.52 \n", "\" style=\"fill:none;stroke:#ffffff;stroke-linecap:round;\"/>\n", " </g>\n", " <g id=\"line2d_74\">\n", " <g>\n", " <use style=\"fill:#262626;stroke:#262626;\" x=\"424.0959375\" xlink:href=\"#m52a7ca0acb\" y=\"231.44\"/>\n", " </g>\n", " </g>\n", " <g id=\"line2d_75\">\n", " <g>\n", " <use style=\"fill:#262626;stroke:#262626;\" x=\"424.0959375\" xlink:href=\"#m52a7ca0acb\" y=\"148.52\"/>\n", " </g>\n", " </g>\n", " <g id=\"text_27\">\n", " <!-- 2 -->\n", " <g style=\"fill:#262626;\" transform=\"translate(421.31546875 245.5978125)scale(0.1 -0.1)\">\n", " <use xlink:href=\"#ArialMT-32\"/>\n", " </g>\n", " </g>\n", " </g>\n", " <g id=\"xtick_17\">\n", " <g id=\"line2d_76\">\n", " <path clip-path=\"url(#p208ff1ae7e)\" d=\"M 489.168437 231.44 \n", "L 489.168437 148.52 \n", "\" style=\"fill:none;stroke:#ffffff;stroke-linecap:round;\"/>\n", " </g>\n", " <g id=\"line2d_77\">\n", " <g>\n", " <use style=\"fill:#262626;stroke:#262626;\" x=\"489.1684375\" xlink:href=\"#m52a7ca0acb\" y=\"231.44\"/>\n", " </g>\n", " </g>\n", " <g id=\"line2d_78\">\n", " <g>\n", " <use style=\"fill:#262626;stroke:#262626;\" x=\"489.1684375\" xlink:href=\"#m52a7ca0acb\" y=\"148.52\"/>\n", " </g>\n", " </g>\n", " <g id=\"text_28\">\n", " <!-- 3 -->\n", " <g style=\"fill:#262626;\" transform=\"translate(486.38796875 245.5978125)scale(0.1 -0.1)\">\n", " <use xlink:href=\"#ArialMT-33\"/>\n", " </g>\n", " </g>\n", " </g>\n", " <g id=\"xtick_18\">\n", " <g id=\"line2d_79\">\n", " <path clip-path=\"url(#p208ff1ae7e)\" d=\"M 554.240937 231.44 \n", "L 554.240937 148.52 \n", "\" style=\"fill:none;stroke:#ffffff;stroke-linecap:round;\"/>\n", " </g>\n", " <g id=\"line2d_80\">\n", " <g>\n", " <use style=\"fill:#262626;stroke:#262626;\" x=\"554.2409375\" xlink:href=\"#m52a7ca0acb\" y=\"231.44\"/>\n", " </g>\n", " </g>\n", " <g id=\"line2d_81\">\n", " <g>\n", " <use style=\"fill:#262626;stroke:#262626;\" x=\"554.2409375\" xlink:href=\"#m52a7ca0acb\" y=\"148.52\"/>\n", " </g>\n", " </g>\n", " <g id=\"text_29\">\n", " <!-- 4 -->\n", " <g style=\"fill:#262626;\" transform=\"translate(551.46046875 245.5978125)scale(0.1 -0.1)\">\n", " <use xlink:href=\"#ArialMT-34\"/>\n", " </g>\n", " </g>\n", " </g>\n", " </g>\n", " <g id=\"matplotlib.axis_4\">\n", " <g id=\"ytick_10\">\n", " <g id=\"line2d_82\">\n", " <path clip-path=\"url(#p208ff1ae7e)\" d=\"M 33.660938 231.44 \n", "L 554.240937 231.44 \n", "\" style=\"fill:none;stroke:#ffffff;stroke-linecap:round;\"/>\n", " </g>\n", " <g id=\"line2d_83\">\n", " <g>\n", " <use style=\"fill:#262626;stroke:#262626;\" x=\"33.6609375\" xlink:href=\"#m52a7ca0acb\" y=\"231.44\"/>\n", " </g>\n", " </g>\n", " <g id=\"line2d_84\">\n", " <g>\n", " <use style=\"fill:#262626;stroke:#262626;\" x=\"554.2409375\" xlink:href=\"#m52a7ca0acb\" y=\"231.44\"/>\n", " </g>\n", " </g>\n", " <g id=\"text_30\">\n", " <!-- 0.00 -->\n", " <g style=\"fill:#262626;\" transform=\"translate(7.2 234.02515625)scale(0.1 -0.1)\">\n", " <use xlink:href=\"#ArialMT-30\"/>\n", " <use x=\"55.615234375\" xlink:href=\"#ArialMT-2e\"/>\n", " <use x=\"83.3984375\" xlink:href=\"#ArialMT-30\"/>\n", " <use x=\"139.013671875\" xlink:href=\"#ArialMT-30\"/>\n", " </g>\n", " </g>\n", " </g>\n", " <g id=\"ytick_11\">\n", " <g id=\"line2d_85\">\n", " <path clip-path=\"url(#p208ff1ae7e)\" d=\"M 33.660938 221.075 \n", "L 554.240937 221.075 \n", "\" style=\"fill:none;stroke:#ffffff;stroke-linecap:round;\"/>\n", " </g>\n", " <g id=\"line2d_86\">\n", " <g>\n", " <use style=\"fill:#262626;stroke:#262626;\" x=\"33.6609375\" xlink:href=\"#m52a7ca0acb\" y=\"221.075\"/>\n", " </g>\n", " </g>\n", " <g id=\"line2d_87\">\n", " <g>\n", " <use style=\"fill:#262626;stroke:#262626;\" x=\"554.2409375\" xlink:href=\"#m52a7ca0acb\" y=\"221.075\"/>\n", " </g>\n", " </g>\n", " <g id=\"text_31\">\n", " <!-- 0.05 -->\n", " <g style=\"fill:#262626;\" transform=\"translate(7.2 223.66015625)scale(0.1 -0.1)\">\n", " <use xlink:href=\"#ArialMT-30\"/>\n", " <use x=\"55.615234375\" xlink:href=\"#ArialMT-2e\"/>\n", " <use x=\"83.3984375\" xlink:href=\"#ArialMT-30\"/>\n", " <use x=\"139.013671875\" xlink:href=\"#ArialMT-35\"/>\n", " </g>\n", " </g>\n", " </g>\n", " <g id=\"ytick_12\">\n", " <g id=\"line2d_88\">\n", " <path clip-path=\"url(#p208ff1ae7e)\" d=\"M 33.660938 210.71 \n", "L 554.240937 210.71 \n", "\" style=\"fill:none;stroke:#ffffff;stroke-linecap:round;\"/>\n", " </g>\n", " <g id=\"line2d_89\">\n", " <g>\n", " <use style=\"fill:#262626;stroke:#262626;\" x=\"33.6609375\" xlink:href=\"#m52a7ca0acb\" y=\"210.71\"/>\n", " </g>\n", " </g>\n", " <g id=\"line2d_90\">\n", " <g>\n", " <use style=\"fill:#262626;stroke:#262626;\" x=\"554.2409375\" xlink:href=\"#m52a7ca0acb\" y=\"210.71\"/>\n", " </g>\n", " </g>\n", " <g id=\"text_32\">\n", " <!-- 0.10 -->\n", " <g style=\"fill:#262626;\" transform=\"translate(7.2 213.29515625)scale(0.1 -0.1)\">\n", " <use xlink:href=\"#ArialMT-30\"/>\n", " <use x=\"55.615234375\" xlink:href=\"#ArialMT-2e\"/>\n", " <use x=\"83.3984375\" xlink:href=\"#ArialMT-31\"/>\n", " <use x=\"139.013671875\" xlink:href=\"#ArialMT-30\"/>\n", " </g>\n", " </g>\n", " </g>\n", " <g id=\"ytick_13\">\n", " <g id=\"line2d_91\">\n", " <path clip-path=\"url(#p208ff1ae7e)\" d=\"M 33.660938 200.345 \n", "L 554.240937 200.345 \n", "\" style=\"fill:none;stroke:#ffffff;stroke-linecap:round;\"/>\n", " </g>\n", " <g id=\"line2d_92\">\n", " <g>\n", " <use style=\"fill:#262626;stroke:#262626;\" x=\"33.6609375\" xlink:href=\"#m52a7ca0acb\" y=\"200.345\"/>\n", " </g>\n", " </g>\n", " <g id=\"line2d_93\">\n", " <g>\n", " <use style=\"fill:#262626;stroke:#262626;\" x=\"554.2409375\" xlink:href=\"#m52a7ca0acb\" y=\"200.345\"/>\n", " </g>\n", " </g>\n", " <g id=\"text_33\">\n", " <!-- 0.15 -->\n", " <g style=\"fill:#262626;\" transform=\"translate(7.2 202.93015625)scale(0.1 -0.1)\">\n", " <use xlink:href=\"#ArialMT-30\"/>\n", " <use x=\"55.615234375\" xlink:href=\"#ArialMT-2e\"/>\n", " <use x=\"83.3984375\" xlink:href=\"#ArialMT-31\"/>\n", " <use x=\"139.013671875\" xlink:href=\"#ArialMT-35\"/>\n", " </g>\n", " </g>\n", " </g>\n", " <g id=\"ytick_14\">\n", " <g id=\"line2d_94\">\n", " <path clip-path=\"url(#p208ff1ae7e)\" d=\"M 33.660938 189.98 \n", "L 554.240937 189.98 \n", "\" style=\"fill:none;stroke:#ffffff;stroke-linecap:round;\"/>\n", " </g>\n", " <g id=\"line2d_95\">\n", " <g>\n", " <use style=\"fill:#262626;stroke:#262626;\" x=\"33.6609375\" xlink:href=\"#m52a7ca0acb\" y=\"189.98\"/>\n", " </g>\n", " </g>\n", " <g id=\"line2d_96\">\n", " <g>\n", " <use style=\"fill:#262626;stroke:#262626;\" x=\"554.2409375\" xlink:href=\"#m52a7ca0acb\" y=\"189.98\"/>\n", " </g>\n", " </g>\n", " <g id=\"text_34\">\n", " <!-- 0.20 -->\n", " <g style=\"fill:#262626;\" transform=\"translate(7.2 192.56515625)scale(0.1 -0.1)\">\n", " <use xlink:href=\"#ArialMT-30\"/>\n", " <use x=\"55.615234375\" xlink:href=\"#ArialMT-2e\"/>\n", " <use x=\"83.3984375\" xlink:href=\"#ArialMT-32\"/>\n", " <use x=\"139.013671875\" xlink:href=\"#ArialMT-30\"/>\n", " </g>\n", " </g>\n", " </g>\n", " <g id=\"ytick_15\">\n", " <g id=\"line2d_97\">\n", " <path clip-path=\"url(#p208ff1ae7e)\" d=\"M 33.660938 179.615 \n", "L 554.240937 179.615 \n", "\" style=\"fill:none;stroke:#ffffff;stroke-linecap:round;\"/>\n", " </g>\n", " <g id=\"line2d_98\">\n", " <g>\n", " <use style=\"fill:#262626;stroke:#262626;\" x=\"33.6609375\" xlink:href=\"#m52a7ca0acb\" y=\"179.615\"/>\n", " </g>\n", " </g>\n", " <g id=\"line2d_99\">\n", " <g>\n", " <use style=\"fill:#262626;stroke:#262626;\" x=\"554.2409375\" xlink:href=\"#m52a7ca0acb\" y=\"179.615\"/>\n", " </g>\n", " </g>\n", " <g id=\"text_35\">\n", " <!-- 0.25 -->\n", " <g style=\"fill:#262626;\" transform=\"translate(7.2 182.20015625)scale(0.1 -0.1)\">\n", " <use xlink:href=\"#ArialMT-30\"/>\n", " <use x=\"55.615234375\" xlink:href=\"#ArialMT-2e\"/>\n", " <use x=\"83.3984375\" xlink:href=\"#ArialMT-32\"/>\n", " <use x=\"139.013671875\" xlink:href=\"#ArialMT-35\"/>\n", " </g>\n", " </g>\n", " </g>\n", " <g id=\"ytick_16\">\n", " <g id=\"line2d_100\">\n", " <path clip-path=\"url(#p208ff1ae7e)\" d=\"M 33.660938 169.25 \n", "L 554.240937 169.25 \n", "\" style=\"fill:none;stroke:#ffffff;stroke-linecap:round;\"/>\n", " </g>\n", " <g id=\"line2d_101\">\n", " <g>\n", " <use style=\"fill:#262626;stroke:#262626;\" x=\"33.6609375\" xlink:href=\"#m52a7ca0acb\" y=\"169.25\"/>\n", " </g>\n", " </g>\n", " <g id=\"line2d_102\">\n", " <g>\n", " <use style=\"fill:#262626;stroke:#262626;\" x=\"554.2409375\" xlink:href=\"#m52a7ca0acb\" y=\"169.25\"/>\n", " </g>\n", " </g>\n", " <g id=\"text_36\">\n", " <!-- 0.30 -->\n", " <g style=\"fill:#262626;\" transform=\"translate(7.2 171.83515625)scale(0.1 -0.1)\">\n", " <use xlink:href=\"#ArialMT-30\"/>\n", " <use x=\"55.615234375\" xlink:href=\"#ArialMT-2e\"/>\n", " <use x=\"83.3984375\" xlink:href=\"#ArialMT-33\"/>\n", " <use x=\"139.013671875\" xlink:href=\"#ArialMT-30\"/>\n", " </g>\n", " </g>\n", " </g>\n", " <g id=\"ytick_17\">\n", " <g id=\"line2d_103\">\n", " <path clip-path=\"url(#p208ff1ae7e)\" d=\"M 33.660938 158.885 \n", "L 554.240937 158.885 \n", "\" style=\"fill:none;stroke:#ffffff;stroke-linecap:round;\"/>\n", " </g>\n", " <g id=\"line2d_104\">\n", " <g>\n", " <use style=\"fill:#262626;stroke:#262626;\" x=\"33.6609375\" xlink:href=\"#m52a7ca0acb\" y=\"158.885\"/>\n", " </g>\n", " </g>\n", " <g id=\"line2d_105\">\n", " <g>\n", " <use style=\"fill:#262626;stroke:#262626;\" x=\"554.2409375\" xlink:href=\"#m52a7ca0acb\" y=\"158.885\"/>\n", " </g>\n", " </g>\n", " <g id=\"text_37\">\n", " <!-- 0.35 -->\n", " <g style=\"fill:#262626;\" transform=\"translate(7.2 161.47015625)scale(0.1 -0.1)\">\n", " <use xlink:href=\"#ArialMT-30\"/>\n", " <use x=\"55.615234375\" xlink:href=\"#ArialMT-2e\"/>\n", " <use x=\"83.3984375\" xlink:href=\"#ArialMT-33\"/>\n", " <use x=\"139.013671875\" xlink:href=\"#ArialMT-35\"/>\n", " </g>\n", " </g>\n", " </g>\n", " <g id=\"ytick_18\">\n", " <g id=\"line2d_106\">\n", " <path clip-path=\"url(#p208ff1ae7e)\" d=\"M 33.660938 148.52 \n", "L 554.240937 148.52 \n", "\" style=\"fill:none;stroke:#ffffff;stroke-linecap:round;\"/>\n", " </g>\n", " <g id=\"line2d_107\">\n", " <g>\n", " <use style=\"fill:#262626;stroke:#262626;\" x=\"33.6609375\" xlink:href=\"#m52a7ca0acb\" y=\"148.52\"/>\n", " </g>\n", " </g>\n", " <g id=\"line2d_108\">\n", " <g>\n", " <use style=\"fill:#262626;stroke:#262626;\" x=\"554.2409375\" xlink:href=\"#m52a7ca0acb\" y=\"148.52\"/>\n", " </g>\n", " </g>\n", " <g id=\"text_38\">\n", " <!-- 0.40 -->\n", " <g style=\"fill:#262626;\" transform=\"translate(7.2 151.10515625)scale(0.1 -0.1)\">\n", " <use xlink:href=\"#ArialMT-30\"/>\n", " <use x=\"55.615234375\" xlink:href=\"#ArialMT-2e\"/>\n", " <use x=\"83.3984375\" xlink:href=\"#ArialMT-34\"/>\n", " <use x=\"139.013671875\" xlink:href=\"#ArialMT-30\"/>\n", " </g>\n", " </g>\n", " </g>\n", " </g>\n", " <g id=\"PolyCollection_4\">\n", " <defs>\n", " <path d=\"M 33.660937 -151.025312 \n", "L 33.660937 -151.053056 \n", "L 38.919321 -151.063517 \n", "L 44.177705 -151.077581 \n", "L 49.436089 -151.096356 \n", "L 54.694473 -151.121248 \n", "L 59.952857 -151.154017 \n", "L 65.211241 -151.196856 \n", "L 70.469624 -151.252466 \n", "L 75.728008 -151.324145 \n", "L 80.986392 -151.415884 \n", "L 86.244776 -151.532464 \n", "L 91.50316 -151.679555 \n", "L 96.761544 -151.863813 \n", "L 102.019927 -152.092971 \n", "L 107.278311 -152.375909 \n", "L 112.536695 -152.722707 \n", "L 117.795079 -153.144669 \n", "L 123.053463 -153.654305 \n", "L 128.311847 -154.265266 \n", "L 133.57023 -154.992222 \n", "L 138.828614 -155.850675 \n", "L 144.086998 -156.856696 \n", "L 149.345382 -158.02659 \n", "L 154.603766 -159.376479 \n", "L 159.86215 -160.921799 \n", "L 165.120533 -162.676737 \n", "L 170.378917 -164.653594 \n", "L 175.637301 -166.862106 \n", "L 180.895685 -169.308734 \n", "L 186.154069 -171.995957 \n", "L 191.412453 -174.921586 \n", "L 196.670836 -178.078139 \n", "L 201.92922 -181.452317 \n", "L 207.187604 -185.024601 \n", "L 212.445988 -188.769018 \n", "L 217.704372 -192.6531 \n", "L 222.962756 -196.638057 \n", "L 228.22114 -200.679189 \n", "L 233.479523 -204.726537 \n", "L 238.737907 -208.725777 \n", "L 243.996291 -212.619326 \n", "L 249.254675 -216.347659 \n", "L 254.513059 -219.850774 \n", "L 259.771443 -223.069769 \n", "L 265.029826 -225.948472 \n", "L 270.28821 -228.435066 \n", "L 275.546594 -230.483629 \n", "L 280.804978 -232.055551 \n", "L 286.063362 -233.120738 \n", "L 291.321746 -233.658571 \n", "L 296.580129 -233.658571 \n", "L 301.838513 -233.120738 \n", "L 307.096897 -232.055551 \n", "L 312.355281 -230.483629 \n", "L 317.613665 -228.435066 \n", "L 322.872049 -225.948472 \n", "L 328.130432 -223.069769 \n", "L 333.388816 -219.850774 \n", "L 338.6472 -216.347659 \n", "L 343.905584 -212.619326 \n", "L 349.163968 -208.725777 \n", "L 354.422352 -204.726537 \n", "L 359.680735 -200.679189 \n", "L 364.939119 -196.638057 \n", "L 370.197503 -192.6531 \n", "L 375.455887 -188.769018 \n", "L 380.714271 -185.024601 \n", "L 385.972655 -181.452317 \n", "L 391.231039 -178.078139 \n", "L 396.489422 -174.921586 \n", "L 401.747806 -171.995957 \n", "L 407.00619 -169.308734 \n", "L 412.264574 -166.862106 \n", "L 417.522958 -164.653594 \n", "L 422.781342 -162.676737 \n", "L 428.039725 -160.921799 \n", "L 433.298109 -159.376479 \n", "L 438.556493 -158.02659 \n", "L 443.814877 -156.856696 \n", "L 449.073261 -155.850675 \n", "L 454.331645 -154.992222 \n", "L 459.590028 -154.265266 \n", "L 464.848412 -153.654305 \n", "L 470.106796 -153.144669 \n", "L 475.36518 -152.722707 \n", "L 480.623564 -152.375909 \n", "L 485.881948 -152.092971 \n", "L 491.140331 -151.863813 \n", "L 496.398715 -151.679555 \n", "L 501.657099 -151.532464 \n", "L 506.915483 -151.415884 \n", "L 512.173867 -151.324145 \n", "L 517.432251 -151.252466 \n", "L 522.690634 -151.196856 \n", "L 527.949018 -151.154017 \n", "L 533.207402 -151.121248 \n", "L 538.465786 -151.096356 \n", "L 543.72417 -151.077581 \n", "L 548.982554 -151.063517 \n", "L 554.240937 -151.053056 \n", "L 554.240937 -151.025312 \n", "L 554.240937 -151.025312 \n", "L 548.982554 -151.025312 \n", "L 543.72417 -151.025312 \n", "L 538.465786 -151.025312 \n", "L 533.207402 -151.025312 \n", "L 527.949018 -151.025312 \n", "L 522.690634 -151.025312 \n", "L 517.432251 -151.025312 \n", "L 512.173867 -151.025312 \n", "L 506.915483 -151.025312 \n", "L 501.657099 -151.025312 \n", "L 496.398715 -151.025312 \n", "L 491.140331 -151.025312 \n", "L 485.881948 -151.025312 \n", "L 480.623564 -151.025312 \n", "L 475.36518 -151.025312 \n", "L 470.106796 -151.025312 \n", "L 464.848412 -151.025312 \n", "L 459.590028 -151.025312 \n", "L 454.331645 -151.025312 \n", "L 449.073261 -151.025312 \n", "L 443.814877 -151.025312 \n", "L 438.556493 -151.025312 \n", "L 433.298109 -151.025312 \n", "L 428.039725 -151.025312 \n", "L 422.781342 -151.025312 \n", "L 417.522958 -151.025312 \n", "L 412.264574 -151.025312 \n", "L 407.00619 -151.025312 \n", "L 401.747806 -151.025312 \n", "L 396.489422 -151.025312 \n", "L 391.231039 -151.025312 \n", "L 385.972655 -151.025312 \n", "L 380.714271 -151.025312 \n", "L 375.455887 -151.025312 \n", "L 370.197503 -151.025312 \n", "L 364.939119 -151.025312 \n", "L 359.680735 -151.025312 \n", "L 354.422352 -151.025312 \n", "L 349.163968 -151.025312 \n", "L 343.905584 -151.025312 \n", "L 338.6472 -151.025312 \n", "L 333.388816 -151.025312 \n", "L 328.130432 -151.025312 \n", "L 322.872049 -151.025312 \n", "L 317.613665 -151.025312 \n", "L 312.355281 -151.025312 \n", "L 307.096897 -151.025312 \n", "L 301.838513 -151.025312 \n", "L 296.580129 -151.025312 \n", "L 291.321746 -151.025312 \n", "L 286.063362 -151.025312 \n", "L 280.804978 -151.025312 \n", "L 275.546594 -151.025312 \n", "L 270.28821 -151.025312 \n", "L 265.029826 -151.025312 \n", "L 259.771443 -151.025312 \n", "L 254.513059 -151.025312 \n", "L 249.254675 -151.025312 \n", "L 243.996291 -151.025312 \n", "L 238.737907 -151.025312 \n", "L 233.479523 -151.025312 \n", "L 228.22114 -151.025312 \n", "L 222.962756 -151.025312 \n", "L 217.704372 -151.025312 \n", "L 212.445988 -151.025312 \n", "L 207.187604 -151.025312 \n", "L 201.92922 -151.025312 \n", "L 196.670836 -151.025312 \n", "L 191.412453 -151.025312 \n", "L 186.154069 -151.025312 \n", "L 180.895685 -151.025312 \n", "L 175.637301 -151.025312 \n", "L 170.378917 -151.025312 \n", "L 165.120533 -151.025312 \n", "L 159.86215 -151.025312 \n", "L 154.603766 -151.025312 \n", "L 149.345382 -151.025312 \n", "L 144.086998 -151.025312 \n", "L 138.828614 -151.025312 \n", "L 133.57023 -151.025312 \n", "L 128.311847 -151.025312 \n", "L 123.053463 -151.025312 \n", "L 117.795079 -151.025312 \n", "L 112.536695 -151.025312 \n", "L 107.278311 -151.025312 \n", "L 102.019927 -151.025312 \n", "L 96.761544 -151.025312 \n", "L 91.50316 -151.025312 \n", "L 86.244776 -151.025312 \n", "L 80.986392 -151.025312 \n", "L 75.728008 -151.025312 \n", "L 70.469624 -151.025312 \n", "L 65.211241 -151.025312 \n", "L 59.952857 -151.025312 \n", "L 54.694473 -151.025312 \n", "L 49.436089 -151.025312 \n", "L 44.177705 -151.025312 \n", "L 38.919321 -151.025312 \n", "L 33.660937 -151.025312 \n", "z\n", "\" id=\"m25c380b9e1\" style=\"stroke:#1a1a1a;stroke-opacity:0.1;stroke-width:0.3;\"/>\n", " </defs>\n", " <g clip-path=\"url(#p208ff1ae7e)\">\n", " <use style=\"fill:#008000;fill-opacity:0.1;stroke:#1a1a1a;stroke-opacity:0.1;stroke-width:0.3;\" x=\"0.0\" xlink:href=\"#m25c380b9e1\" y=\"382.4653125\"/>\n", " </g>\n", " </g>\n", " <g id=\"PolyCollection_5\">\n", " <defs>\n", " <path d=\"M 424.095937 -151.025312 \n", "L 424.095937 -162.21764 \n", "L 425.410533 -161.772245 \n", "L 426.725129 -161.340364 \n", "L 428.039725 -160.921799 \n", "L 429.354321 -160.516344 \n", "L 430.668917 -160.123787 \n", "L 431.983513 -159.743907 \n", "L 433.298109 -159.376479 \n", "L 434.612705 -159.021271 \n", "L 435.927301 -158.678048 \n", "L 437.241897 -158.346569 \n", "L 438.556493 -158.02659 \n", "L 439.871089 -157.717864 \n", "L 441.185685 -157.420141 \n", "L 442.500281 -157.13317 \n", "L 443.814877 -156.856696 \n", "L 445.129473 -156.590464 \n", "L 446.444069 -156.334221 \n", "L 447.758665 -156.087709 \n", "L 449.073261 -155.850675 \n", "L 450.387857 -155.622862 \n", "L 451.702453 -155.404017 \n", "L 453.017049 -155.193887 \n", "L 454.331645 -154.992222 \n", "L 455.646241 -154.798773 \n", "L 456.960836 -154.613293 \n", "L 458.275432 -154.435538 \n", "L 459.590028 -154.265266 \n", "L 460.904624 -154.10224 \n", "L 462.21922 -153.946225 \n", "L 463.533816 -153.796989 \n", "L 464.848412 -153.654305 \n", "L 466.163008 -153.517949 \n", "L 467.477604 -153.3877 \n", "L 468.7922 -153.263344 \n", "L 470.106796 -153.144669 \n", "L 471.421392 -153.031468 \n", "L 472.735988 -152.923538 \n", "L 474.050584 -152.820683 \n", "L 475.36518 -152.722707 \n", "L 476.679776 -152.629423 \n", "L 477.994372 -152.540648 \n", "L 479.308968 -152.456201 \n", "L 480.623564 -152.375909 \n", "L 481.93816 -152.299602 \n", "L 483.252756 -152.227116 \n", "L 484.567352 -152.158291 \n", "L 485.881948 -152.092971 \n", "L 487.196544 -152.031007 \n", "L 488.51114 -151.972253 \n", "L 489.825735 -151.916567 \n", "L 491.140331 -151.863813 \n", "L 492.454927 -151.81386 \n", "L 493.769523 -151.766581 \n", "L 495.084119 -151.721852 \n", "L 496.398715 -151.679555 \n", "L 497.713311 -151.639575 \n", "L 499.027907 -151.601804 \n", "L 500.342503 -151.566134 \n", "L 501.657099 -151.532464 \n", "L 502.971695 -151.500696 \n", "L 504.286291 -151.470737 \n", "L 505.600887 -151.442495 \n", "L 506.915483 -151.415884 \n", "L 508.230079 -151.390822 \n", "L 509.544675 -151.367228 \n", "L 510.859271 -151.345027 \n", "L 512.173867 -151.324145 \n", "L 513.488463 -151.304513 \n", "L 514.803059 -151.286065 \n", "L 516.117655 -151.268736 \n", "L 517.432251 -151.252466 \n", "L 518.746847 -151.237197 \n", "L 520.061443 -151.222874 \n", "L 521.376039 -151.209444 \n", "L 522.690634 -151.196856 \n", "L 524.00523 -151.185064 \n", "L 525.319826 -151.174022 \n", "L 526.634422 -151.163687 \n", "L 527.949018 -151.154017 \n", "L 529.263614 -151.144975 \n", "L 530.57821 -151.136522 \n", "L 531.892806 -151.128624 \n", "L 533.207402 -151.121248 \n", "L 534.521998 -151.114362 \n", "L 535.836594 -151.107937 \n", "L 537.15119 -151.101944 \n", "L 538.465786 -151.096356 \n", "L 539.780382 -151.091149 \n", "L 541.094978 -151.086299 \n", "L 542.409574 -151.081784 \n", "L 543.72417 -151.077581 \n", "L 545.038766 -151.073671 \n", "L 546.353362 -151.070035 \n", "L 547.667958 -151.066656 \n", "L 548.982554 -151.063517 \n", "L 550.29715 -151.060602 \n", "L 551.611746 -151.057895 \n", "L 552.926342 -151.055384 \n", "L 554.240937 -151.053056 \n", "L 554.240937 -151.025312 \n", "L 554.240937 -151.025312 \n", "L 552.926342 -151.025312 \n", "L 551.611746 -151.025312 \n", "L 550.29715 -151.025312 \n", "L 548.982554 -151.025312 \n", "L 547.667958 -151.025312 \n", "L 546.353362 -151.025312 \n", "L 545.038766 -151.025312 \n", "L 543.72417 -151.025312 \n", "L 542.409574 -151.025312 \n", "L 541.094978 -151.025312 \n", "L 539.780382 -151.025312 \n", "L 538.465786 -151.025312 \n", "L 537.15119 -151.025312 \n", "L 535.836594 -151.025312 \n", "L 534.521998 -151.025312 \n", "L 533.207402 -151.025312 \n", "L 531.892806 -151.025312 \n", "L 530.57821 -151.025312 \n", "L 529.263614 -151.025312 \n", "L 527.949018 -151.025312 \n", "L 526.634422 -151.025312 \n", "L 525.319826 -151.025312 \n", "L 524.00523 -151.025312 \n", "L 522.690634 -151.025312 \n", "L 521.376039 -151.025312 \n", "L 520.061443 -151.025312 \n", "L 518.746847 -151.025312 \n", "L 517.432251 -151.025312 \n", "L 516.117655 -151.025312 \n", "L 514.803059 -151.025312 \n", "L 513.488463 -151.025312 \n", "L 512.173867 -151.025312 \n", "L 510.859271 -151.025312 \n", "L 509.544675 -151.025312 \n", "L 508.230079 -151.025312 \n", "L 506.915483 -151.025312 \n", "L 505.600887 -151.025312 \n", "L 504.286291 -151.025312 \n", "L 502.971695 -151.025312 \n", "L 501.657099 -151.025312 \n", "L 500.342503 -151.025312 \n", "L 499.027907 -151.025312 \n", "L 497.713311 -151.025312 \n", "L 496.398715 -151.025312 \n", "L 495.084119 -151.025312 \n", "L 493.769523 -151.025312 \n", "L 492.454927 -151.025312 \n", "L 491.140331 -151.025312 \n", "L 489.825735 -151.025312 \n", "L 488.51114 -151.025312 \n", "L 487.196544 -151.025312 \n", "L 485.881948 -151.025312 \n", "L 484.567352 -151.025312 \n", "L 483.252756 -151.025312 \n", "L 481.93816 -151.025312 \n", "L 480.623564 -151.025312 \n", "L 479.308968 -151.025312 \n", "L 477.994372 -151.025312 \n", "L 476.679776 -151.025312 \n", "L 475.36518 -151.025312 \n", "L 474.050584 -151.025312 \n", "L 472.735988 -151.025312 \n", "L 471.421392 -151.025312 \n", "L 470.106796 -151.025312 \n", "L 468.7922 -151.025312 \n", "L 467.477604 -151.025312 \n", "L 466.163008 -151.025312 \n", "L 464.848412 -151.025312 \n", "L 463.533816 -151.025312 \n", "L 462.21922 -151.025312 \n", "L 460.904624 -151.025312 \n", "L 459.590028 -151.025312 \n", "L 458.275432 -151.025312 \n", "L 456.960836 -151.025312 \n", "L 455.646241 -151.025312 \n", "L 454.331645 -151.025312 \n", "L 453.017049 -151.025312 \n", "L 451.702453 -151.025312 \n", "L 450.387857 -151.025312 \n", "L 449.073261 -151.025312 \n", "L 447.758665 -151.025312 \n", "L 446.444069 -151.025312 \n", "L 445.129473 -151.025312 \n", "L 443.814877 -151.025312 \n", "L 442.500281 -151.025312 \n", "L 441.185685 -151.025312 \n", "L 439.871089 -151.025312 \n", "L 438.556493 -151.025312 \n", "L 437.241897 -151.025312 \n", "L 435.927301 -151.025312 \n", "L 434.612705 -151.025312 \n", "L 433.298109 -151.025312 \n", "L 431.983513 -151.025312 \n", "L 430.668917 -151.025312 \n", "L 429.354321 -151.025312 \n", "L 428.039725 -151.025312 \n", "L 426.725129 -151.025312 \n", "L 425.410533 -151.025312 \n", "L 424.095937 -151.025312 \n", "z\n", "\" id=\"maa2d8b0614\" style=\"stroke:#1a1a1a;stroke-opacity:0.35;stroke-width:0.3;\"/>\n", " </defs>\n", " <g clip-path=\"url(#p208ff1ae7e)\">\n", " <use style=\"fill:#0000ff;fill-opacity:0.35;stroke:#1a1a1a;stroke-opacity:0.35;stroke-width:0.3;\" x=\"0.0\" xlink:href=\"#maa2d8b0614\" y=\"382.4653125\"/>\n", " </g>\n", " </g>\n", " <g id=\"patch_8\">\n", " <path d=\"M 33.660937 148.52 \n", "L 554.240937 148.52 \n", "\" style=\"fill:none;\"/>\n", " </g>\n", " <g id=\"patch_9\">\n", " <path d=\"M 554.240937 231.44 \n", "L 554.240937 148.52 \n", "\" style=\"fill:none;\"/>\n", " </g>\n", " <g id=\"patch_10\">\n", " <path d=\"M 33.660937 231.44 \n", "L 554.240937 231.44 \n", "\" style=\"fill:none;\"/>\n", " </g>\n", " <g id=\"patch_11\">\n", " <path d=\"M 33.660938 231.44 \n", "L 33.660938 148.52 \n", "\" style=\"fill:none;\"/>\n", " </g>\n", " <g id=\"text_39\">\n", " <!-- p-value=0.023 -->\n", " <g style=\"fill:#262626;\" transform=\"translate(450.97375 210.71)scale(0.12 -0.12)\">\n", " <use xlink:href=\"#ArialMT-70\"/>\n", " <use x=\"55.615234375\" xlink:href=\"#ArialMT-2d\"/>\n", " <use x=\"88.916015625\" xlink:href=\"#ArialMT-76\"/>\n", " <use x=\"138.916015625\" xlink:href=\"#ArialMT-61\"/>\n", " <use x=\"194.53125\" xlink:href=\"#ArialMT-6c\"/>\n", " <use x=\"216.748046875\" xlink:href=\"#ArialMT-75\"/>\n", " <use x=\"272.36328125\" xlink:href=\"#ArialMT-65\"/>\n", " <use x=\"327.978515625\" xlink:href=\"#ArialMT-3d\"/>\n", " <use x=\"386.376953125\" xlink:href=\"#ArialMT-30\"/>\n", " <use x=\"441.9921875\" xlink:href=\"#ArialMT-2e\"/>\n", " <use x=\"469.775390625\" xlink:href=\"#ArialMT-30\"/>\n", " <use x=\"525.390625\" xlink:href=\"#ArialMT-32\"/>\n", " <use x=\"581.005859375\" xlink:href=\"#ArialMT-33\"/>\n", " </g>\n", " </g>\n", " <g id=\"text_40\">\n", " <!-- Test statistics = 2. One-tailed test. $H_a: \\mu &gt; 0$ -->\n", " <defs>\n", " <path d=\"M 8.296875 -2 \n", "Q 8.296875 -0.734375 9.625 -0.09375 \n", "L 62.703125 25 \n", "L 9.28125 50.296875 \n", "Q 8.296875 50.59375 8.296875 52 \n", "Q 8.296875 52.6875 8.859375 53.34375 \n", "Q 9.421875 54 10.296875 54 \n", "Q 10.5 54 11.078125 53.8125 \n", "L 68.5 26.703125 \n", "Q 69.390625 26.265625 69.390625 25 \n", "Q 69.390625 23.6875 68.21875 23.1875 \n", "L 11.078125 -3.8125 \n", "Q 10.5 -4 10.296875 -4 \n", "Q 9.421875 -4 8.859375 -3.34375 \n", "Q 8.296875 -2.6875 8.296875 -2 \n", "\" id=\"Cmmi10-3e\"/>\n", " <path d=\"M 6.59375 0 \n", "L 6.59375 51.859375 \n", "L 14.5 51.859375 \n", "L 14.5 44.484375 \n", "Q 20.21875 53.03125 31 53.03125 \n", "Q 35.6875 53.03125 39.625 51.34375 \n", "Q 43.5625 49.65625 45.515625 46.921875 \n", "Q 47.46875 44.1875 48.25 40.4375 \n", "Q 48.734375 37.984375 48.734375 31.890625 \n", "L 48.734375 0 \n", "L 39.9375 0 \n", "L 39.9375 31.546875 \n", "Q 39.9375 36.921875 38.90625 39.578125 \n", "Q 37.890625 42.234375 35.28125 43.8125 \n", "Q 32.671875 45.40625 29.15625 45.40625 \n", "Q 23.53125 45.40625 19.453125 41.84375 \n", "Q 15.375 38.28125 15.375 28.328125 \n", "L 15.375 0 \n", "z\n", "\" id=\"ArialMT-6e\"/>\n", " <path d=\"M 4.828125 34.859375 \n", "Q 4.828125 52.6875 14.390625 62.765625 \n", "Q 23.96875 72.859375 39.109375 72.859375 \n", "Q 49.03125 72.859375 56.984375 68.109375 \n", "Q 64.9375 63.375 69.109375 54.90625 \n", "Q 73.296875 46.4375 73.296875 35.6875 \n", "Q 73.296875 24.8125 68.890625 16.21875 \n", "Q 64.5 7.625 56.4375 3.203125 \n", "Q 48.390625 -1.21875 39.0625 -1.21875 \n", "Q 28.953125 -1.21875 20.984375 3.65625 \n", "Q 13.03125 8.546875 8.921875 16.984375 \n", "Q 4.828125 25.4375 4.828125 34.859375 \n", "M 14.59375 34.71875 \n", "Q 14.59375 21.78125 21.546875 14.328125 \n", "Q 28.515625 6.890625 39.015625 6.890625 \n", "Q 49.703125 6.890625 56.609375 14.40625 \n", "Q 63.53125 21.921875 63.53125 35.75 \n", "Q 63.53125 44.484375 60.578125 51 \n", "Q 57.625 57.515625 51.921875 61.109375 \n", "Q 46.234375 64.703125 39.15625 64.703125 \n", "Q 29.109375 64.703125 21.84375 57.78125 \n", "Q 14.59375 50.875 14.59375 34.71875 \n", "\" id=\"ArialMT-4f\"/>\n", " </defs>\n", " <g style=\"fill:#262626;\" transform=\"translate(177.0109375 143.52)scale(0.12 -0.12)\">\n", " <use transform=\"translate(0.0 0.140625)\" xlink:href=\"#ArialMT-54\"/>\n", " <use transform=\"translate(61.083984375 0.140625)\" xlink:href=\"#ArialMT-65\"/>\n", " <use transform=\"translate(116.69921875 0.140625)\" xlink:href=\"#ArialMT-73\"/>\n", " <use transform=\"translate(166.69921875 0.140625)\" xlink:href=\"#ArialMT-74\"/>\n", " <use transform=\"translate(194.482421875 0.140625)\" xlink:href=\"#ArialMT-20\"/>\n", " <use transform=\"translate(222.265625 0.140625)\" xlink:href=\"#ArialMT-73\"/>\n", " <use transform=\"translate(272.265625 0.140625)\" xlink:href=\"#ArialMT-74\"/>\n", " <use transform=\"translate(300.048828125 0.140625)\" xlink:href=\"#ArialMT-61\"/>\n", " <use transform=\"translate(355.6640625 0.140625)\" xlink:href=\"#ArialMT-74\"/>\n", " <use transform=\"translate(383.447265625 0.140625)\" xlink:href=\"#ArialMT-69\"/>\n", " <use transform=\"translate(405.6640625 0.140625)\" xlink:href=\"#ArialMT-73\"/>\n", " <use transform=\"translate(455.6640625 0.140625)\" xlink:href=\"#ArialMT-74\"/>\n", " <use transform=\"translate(483.447265625 0.140625)\" xlink:href=\"#ArialMT-69\"/>\n", " <use transform=\"translate(505.6640625 0.140625)\" xlink:href=\"#ArialMT-63\"/>\n", " <use transform=\"translate(555.6640625 0.140625)\" xlink:href=\"#ArialMT-73\"/>\n", " <use transform=\"translate(605.6640625 0.140625)\" xlink:href=\"#ArialMT-20\"/>\n", " <use transform=\"translate(633.447265625 0.140625)\" xlink:href=\"#ArialMT-3d\"/>\n", " <use transform=\"translate(691.845703125 0.140625)\" xlink:href=\"#ArialMT-20\"/>\n", " <use transform=\"translate(719.62890625 0.140625)\" xlink:href=\"#ArialMT-32\"/>\n", " <use transform=\"translate(775.244140625 0.140625)\" xlink:href=\"#ArialMT-2e\"/>\n", " <use transform=\"translate(803.02734375 0.140625)\" xlink:href=\"#ArialMT-20\"/>\n", " <use transform=\"translate(830.810546875 0.140625)\" xlink:href=\"#ArialMT-4f\"/>\n", " <use transform=\"translate(908.59375 0.140625)\" xlink:href=\"#ArialMT-6e\"/>\n", " <use transform=\"translate(964.208984375 0.140625)\" xlink:href=\"#ArialMT-65\"/>\n", " <use transform=\"translate(1019.82421875 0.140625)\" xlink:href=\"#ArialMT-2d\"/>\n", " <use transform=\"translate(1053.125 0.140625)\" xlink:href=\"#ArialMT-74\"/>\n", " <use transform=\"translate(1080.90820312 0.140625)\" xlink:href=\"#ArialMT-61\"/>\n", " <use transform=\"translate(1136.5234375 0.140625)\" xlink:href=\"#ArialMT-69\"/>\n", " <use transform=\"translate(1158.74023438 0.140625)\" xlink:href=\"#ArialMT-6c\"/>\n", " <use transform=\"translate(1180.95703125 0.140625)\" xlink:href=\"#ArialMT-65\"/>\n", " <use transform=\"translate(1236.57226562 0.140625)\" xlink:href=\"#ArialMT-64\"/>\n", " <use transform=\"translate(1292.1875 0.140625)\" xlink:href=\"#ArialMT-20\"/>\n", " <use transform=\"translate(1319.97070312 0.140625)\" xlink:href=\"#ArialMT-74\"/>\n", " <use transform=\"translate(1347.75390625 0.140625)\" xlink:href=\"#ArialMT-65\"/>\n", " <use transform=\"translate(1403.36914062 0.140625)\" xlink:href=\"#ArialMT-73\"/>\n", " <use transform=\"translate(1453.36914062 0.140625)\" xlink:href=\"#ArialMT-74\"/>\n", " <use transform=\"translate(1481.15234375 0.140625)\" xlink:href=\"#ArialMT-2e\"/>\n", " <use transform=\"translate(1508.93554688 0.140625)\" xlink:href=\"#ArialMT-20\"/>\n", " <use transform=\"translate(1536.71875 0.140625)\" xlink:href=\"#Cmmi10-48\"/>\n", " <use transform=\"translate(1619.82421875 -16.865625)scale(0.7)\" xlink:href=\"#Cmmi10-61\"/>\n", " <use transform=\"translate(1680.70839844 0.140625)\" xlink:href=\"#Cmr10-3a\"/>\n", " <use transform=\"translate(1725.95253906 0.140625)\" xlink:href=\"#Cmmi10-b9\"/>\n", " <use transform=\"translate(1803.71621094 0.140625)\" xlink:href=\"#Cmmi10-3e\"/>\n", " <use transform=\"translate(1898.96035156 0.140625)\" xlink:href=\"#Cmr10-30\"/>\n", " </g>\n", " </g>\n", " </g>\n", " <g id=\"axes_3\">\n", " <g id=\"patch_12\">\n", " <path d=\"M 33.660938 359.12 \n", "L 554.240937 359.12 \n", "L 554.240937 276.2 \n", "L 33.660938 276.2 \n", "z\n", "\" style=\"fill:#eaeaf2;\"/>\n", " </g>\n", " <g id=\"matplotlib.axis_5\">\n", " <g id=\"xtick_19\">\n", " <g id=\"line2d_109\">\n", " <path clip-path=\"url(#pd5ca579c4c)\" d=\"M 33.660937 359.12 \n", "L 33.660937 276.2 \n", "\" style=\"fill:none;stroke:#ffffff;stroke-linecap:round;\"/>\n", " </g>\n", " <g id=\"line2d_110\">\n", " <g>\n", " <use style=\"fill:#262626;stroke:#262626;\" x=\"33.6609375\" xlink:href=\"#m52a7ca0acb\" y=\"359.12\"/>\n", " </g>\n", " </g>\n", " <g id=\"line2d_111\">\n", " <g>\n", " <use style=\"fill:#262626;stroke:#262626;\" x=\"33.6609375\" xlink:href=\"#m52a7ca0acb\" y=\"276.2\"/>\n", " </g>\n", " </g>\n", " <g id=\"text_41\">\n", " <!-- −4 -->\n", " <g style=\"fill:#262626;\" transform=\"translate(27.96015625 373.2778125)scale(0.1 -0.1)\">\n", " <use xlink:href=\"#ArialMT-2212\"/>\n", " <use x=\"58.3984375\" xlink:href=\"#ArialMT-34\"/>\n", " </g>\n", " </g>\n", " </g>\n", " <g id=\"xtick_20\">\n", " <g id=\"line2d_112\">\n", " <path clip-path=\"url(#pd5ca579c4c)\" d=\"M 98.733437 359.12 \n", "L 98.733437 276.2 \n", "\" style=\"fill:none;stroke:#ffffff;stroke-linecap:round;\"/>\n", " </g>\n", " <g id=\"line2d_113\">\n", " <g>\n", " <use style=\"fill:#262626;stroke:#262626;\" x=\"98.7334375\" xlink:href=\"#m52a7ca0acb\" y=\"359.12\"/>\n", " </g>\n", " </g>\n", " <g id=\"line2d_114\">\n", " <g>\n", " <use style=\"fill:#262626;stroke:#262626;\" x=\"98.7334375\" xlink:href=\"#m52a7ca0acb\" y=\"276.2\"/>\n", " </g>\n", " </g>\n", " <g id=\"text_42\">\n", " <!-- −3 -->\n", " <g style=\"fill:#262626;\" transform=\"translate(93.03265625 373.2778125)scale(0.1 -0.1)\">\n", " <use xlink:href=\"#ArialMT-2212\"/>\n", " <use x=\"58.3984375\" xlink:href=\"#ArialMT-33\"/>\n", " </g>\n", " </g>\n", " </g>\n", " <g id=\"xtick_21\">\n", " <g id=\"line2d_115\">\n", " <path clip-path=\"url(#pd5ca579c4c)\" d=\"M 163.805937 359.12 \n", "L 163.805937 276.2 \n", "\" style=\"fill:none;stroke:#ffffff;stroke-linecap:round;\"/>\n", " </g>\n", " <g id=\"line2d_116\">\n", " <g>\n", " <use style=\"fill:#262626;stroke:#262626;\" x=\"163.8059375\" xlink:href=\"#m52a7ca0acb\" y=\"359.12\"/>\n", " </g>\n", " </g>\n", " <g id=\"line2d_117\">\n", " <g>\n", " <use style=\"fill:#262626;stroke:#262626;\" x=\"163.8059375\" xlink:href=\"#m52a7ca0acb\" y=\"276.2\"/>\n", " </g>\n", " </g>\n", " <g id=\"text_43\">\n", " <!-- −2 -->\n", " <g style=\"fill:#262626;\" transform=\"translate(158.10515625 373.2778125)scale(0.1 -0.1)\">\n", " <use xlink:href=\"#ArialMT-2212\"/>\n", " <use x=\"58.3984375\" xlink:href=\"#ArialMT-32\"/>\n", " </g>\n", " </g>\n", " </g>\n", " <g id=\"xtick_22\">\n", " <g id=\"line2d_118\">\n", " <path clip-path=\"url(#pd5ca579c4c)\" d=\"M 228.878437 359.12 \n", "L 228.878437 276.2 \n", "\" style=\"fill:none;stroke:#ffffff;stroke-linecap:round;\"/>\n", " </g>\n", " <g id=\"line2d_119\">\n", " <g>\n", " <use style=\"fill:#262626;stroke:#262626;\" x=\"228.8784375\" xlink:href=\"#m52a7ca0acb\" y=\"359.12\"/>\n", " </g>\n", " </g>\n", " <g id=\"line2d_120\">\n", " <g>\n", " <use style=\"fill:#262626;stroke:#262626;\" x=\"228.8784375\" xlink:href=\"#m52a7ca0acb\" y=\"276.2\"/>\n", " </g>\n", " </g>\n", " <g id=\"text_44\">\n", " <!-- −1 -->\n", " <g style=\"fill:#262626;\" transform=\"translate(223.17765625 373.2778125)scale(0.1 -0.1)\">\n", " <use xlink:href=\"#ArialMT-2212\"/>\n", " <use x=\"58.3984375\" xlink:href=\"#ArialMT-31\"/>\n", " </g>\n", " </g>\n", " </g>\n", " <g id=\"xtick_23\">\n", " <g id=\"line2d_121\">\n", " <path clip-path=\"url(#pd5ca579c4c)\" d=\"M 293.950937 359.12 \n", "L 293.950937 276.2 \n", "\" style=\"fill:none;stroke:#ffffff;stroke-linecap:round;\"/>\n", " </g>\n", " <g id=\"line2d_122\">\n", " <g>\n", " <use style=\"fill:#262626;stroke:#262626;\" x=\"293.9509375\" xlink:href=\"#m52a7ca0acb\" y=\"359.12\"/>\n", " </g>\n", " </g>\n", " <g id=\"line2d_123\">\n", " <g>\n", " <use style=\"fill:#262626;stroke:#262626;\" x=\"293.9509375\" xlink:href=\"#m52a7ca0acb\" y=\"276.2\"/>\n", " </g>\n", " </g>\n", " <g id=\"text_45\">\n", " <!-- 0 -->\n", " <g style=\"fill:#262626;\" transform=\"translate(291.17046875 373.2778125)scale(0.1 -0.1)\">\n", " <use xlink:href=\"#ArialMT-30\"/>\n", " </g>\n", " </g>\n", " </g>\n", " <g id=\"xtick_24\">\n", " <g id=\"line2d_124\">\n", " <path clip-path=\"url(#pd5ca579c4c)\" d=\"M 359.023437 359.12 \n", "L 359.023437 276.2 \n", "\" style=\"fill:none;stroke:#ffffff;stroke-linecap:round;\"/>\n", " </g>\n", " <g id=\"line2d_125\">\n", " <g>\n", " <use style=\"fill:#262626;stroke:#262626;\" x=\"359.0234375\" xlink:href=\"#m52a7ca0acb\" y=\"359.12\"/>\n", " </g>\n", " </g>\n", " <g id=\"line2d_126\">\n", " <g>\n", " <use style=\"fill:#262626;stroke:#262626;\" x=\"359.0234375\" xlink:href=\"#m52a7ca0acb\" y=\"276.2\"/>\n", " </g>\n", " </g>\n", " <g id=\"text_46\">\n", " <!-- 1 -->\n", " <g style=\"fill:#262626;\" transform=\"translate(356.24296875 373.2778125)scale(0.1 -0.1)\">\n", " <use xlink:href=\"#ArialMT-31\"/>\n", " </g>\n", " </g>\n", " </g>\n", " <g id=\"xtick_25\">\n", " <g id=\"line2d_127\">\n", " <path clip-path=\"url(#pd5ca579c4c)\" d=\"M 424.095937 359.12 \n", "L 424.095937 276.2 \n", "\" style=\"fill:none;stroke:#ffffff;stroke-linecap:round;\"/>\n", " </g>\n", " <g id=\"line2d_128\">\n", " <g>\n", " <use style=\"fill:#262626;stroke:#262626;\" x=\"424.0959375\" xlink:href=\"#m52a7ca0acb\" y=\"359.12\"/>\n", " </g>\n", " </g>\n", " <g id=\"line2d_129\">\n", " <g>\n", " <use style=\"fill:#262626;stroke:#262626;\" x=\"424.0959375\" xlink:href=\"#m52a7ca0acb\" y=\"276.2\"/>\n", " </g>\n", " </g>\n", " <g id=\"text_47\">\n", " <!-- 2 -->\n", " <g style=\"fill:#262626;\" transform=\"translate(421.31546875 373.2778125)scale(0.1 -0.1)\">\n", " <use xlink:href=\"#ArialMT-32\"/>\n", " </g>\n", " </g>\n", " </g>\n", " <g id=\"xtick_26\">\n", " <g id=\"line2d_130\">\n", " <path clip-path=\"url(#pd5ca579c4c)\" d=\"M 489.168437 359.12 \n", "L 489.168437 276.2 \n", "\" style=\"fill:none;stroke:#ffffff;stroke-linecap:round;\"/>\n", " </g>\n", " <g id=\"line2d_131\">\n", " <g>\n", " <use style=\"fill:#262626;stroke:#262626;\" x=\"489.1684375\" xlink:href=\"#m52a7ca0acb\" y=\"359.12\"/>\n", " </g>\n", " </g>\n", " <g id=\"line2d_132\">\n", " <g>\n", " <use style=\"fill:#262626;stroke:#262626;\" x=\"489.1684375\" xlink:href=\"#m52a7ca0acb\" y=\"276.2\"/>\n", " </g>\n", " </g>\n", " <g id=\"text_48\">\n", " <!-- 3 -->\n", " <g style=\"fill:#262626;\" transform=\"translate(486.38796875 373.2778125)scale(0.1 -0.1)\">\n", " <use xlink:href=\"#ArialMT-33\"/>\n", " </g>\n", " </g>\n", " </g>\n", " <g id=\"xtick_27\">\n", " <g id=\"line2d_133\">\n", " <path clip-path=\"url(#pd5ca579c4c)\" d=\"M 554.240937 359.12 \n", "L 554.240937 276.2 \n", "\" style=\"fill:none;stroke:#ffffff;stroke-linecap:round;\"/>\n", " </g>\n", " <g id=\"line2d_134\">\n", " <g>\n", " <use style=\"fill:#262626;stroke:#262626;\" x=\"554.2409375\" xlink:href=\"#m52a7ca0acb\" y=\"359.12\"/>\n", " </g>\n", " </g>\n", " <g id=\"line2d_135\">\n", " <g>\n", " <use style=\"fill:#262626;stroke:#262626;\" x=\"554.2409375\" xlink:href=\"#m52a7ca0acb\" y=\"276.2\"/>\n", " </g>\n", " </g>\n", " <g id=\"text_49\">\n", " <!-- 4 -->\n", " <g style=\"fill:#262626;\" transform=\"translate(551.46046875 373.2778125)scale(0.1 -0.1)\">\n", " <use xlink:href=\"#ArialMT-34\"/>\n", " </g>\n", " </g>\n", " </g>\n", " </g>\n", " <g id=\"matplotlib.axis_6\">\n", " <g id=\"ytick_19\">\n", " <g id=\"line2d_136\">\n", " <path clip-path=\"url(#pd5ca579c4c)\" d=\"M 33.660938 359.12 \n", "L 554.240937 359.12 \n", "\" style=\"fill:none;stroke:#ffffff;stroke-linecap:round;\"/>\n", " </g>\n", " <g id=\"line2d_137\">\n", " <g>\n", " <use style=\"fill:#262626;stroke:#262626;\" x=\"33.6609375\" xlink:href=\"#m52a7ca0acb\" y=\"359.12\"/>\n", " </g>\n", " </g>\n", " <g id=\"line2d_138\">\n", " <g>\n", " <use style=\"fill:#262626;stroke:#262626;\" x=\"554.2409375\" xlink:href=\"#m52a7ca0acb\" y=\"359.12\"/>\n", " </g>\n", " </g>\n", " <g id=\"text_50\">\n", " <!-- 0.00 -->\n", " <g style=\"fill:#262626;\" transform=\"translate(7.2 361.70515625)scale(0.1 -0.1)\">\n", " <use xlink:href=\"#ArialMT-30\"/>\n", " <use x=\"55.615234375\" xlink:href=\"#ArialMT-2e\"/>\n", " <use x=\"83.3984375\" xlink:href=\"#ArialMT-30\"/>\n", " <use x=\"139.013671875\" xlink:href=\"#ArialMT-30\"/>\n", " </g>\n", " </g>\n", " </g>\n", " <g id=\"ytick_20\">\n", " <g id=\"line2d_139\">\n", " <path clip-path=\"url(#pd5ca579c4c)\" d=\"M 33.660938 348.755 \n", "L 554.240937 348.755 \n", "\" style=\"fill:none;stroke:#ffffff;stroke-linecap:round;\"/>\n", " </g>\n", " <g id=\"line2d_140\">\n", " <g>\n", " <use style=\"fill:#262626;stroke:#262626;\" x=\"33.6609375\" xlink:href=\"#m52a7ca0acb\" y=\"348.755\"/>\n", " </g>\n", " </g>\n", " <g id=\"line2d_141\">\n", " <g>\n", " <use style=\"fill:#262626;stroke:#262626;\" x=\"554.2409375\" xlink:href=\"#m52a7ca0acb\" y=\"348.755\"/>\n", " </g>\n", " </g>\n", " <g id=\"text_51\">\n", " <!-- 0.05 -->\n", " <g style=\"fill:#262626;\" transform=\"translate(7.2 351.34015625)scale(0.1 -0.1)\">\n", " <use xlink:href=\"#ArialMT-30\"/>\n", " <use x=\"55.615234375\" xlink:href=\"#ArialMT-2e\"/>\n", " <use x=\"83.3984375\" xlink:href=\"#ArialMT-30\"/>\n", " <use x=\"139.013671875\" xlink:href=\"#ArialMT-35\"/>\n", " </g>\n", " </g>\n", " </g>\n", " <g id=\"ytick_21\">\n", " <g id=\"line2d_142\">\n", " <path clip-path=\"url(#pd5ca579c4c)\" d=\"M 33.660938 338.39 \n", "L 554.240937 338.39 \n", "\" style=\"fill:none;stroke:#ffffff;stroke-linecap:round;\"/>\n", " </g>\n", " <g id=\"line2d_143\">\n", " <g>\n", " <use style=\"fill:#262626;stroke:#262626;\" x=\"33.6609375\" xlink:href=\"#m52a7ca0acb\" y=\"338.39\"/>\n", " </g>\n", " </g>\n", " <g id=\"line2d_144\">\n", " <g>\n", " <use style=\"fill:#262626;stroke:#262626;\" x=\"554.2409375\" xlink:href=\"#m52a7ca0acb\" y=\"338.39\"/>\n", " </g>\n", " </g>\n", " <g id=\"text_52\">\n", " <!-- 0.10 -->\n", " <g style=\"fill:#262626;\" transform=\"translate(7.2 340.97515625)scale(0.1 -0.1)\">\n", " <use xlink:href=\"#ArialMT-30\"/>\n", " <use x=\"55.615234375\" xlink:href=\"#ArialMT-2e\"/>\n", " <use x=\"83.3984375\" xlink:href=\"#ArialMT-31\"/>\n", " <use x=\"139.013671875\" xlink:href=\"#ArialMT-30\"/>\n", " </g>\n", " </g>\n", " </g>\n", " <g id=\"ytick_22\">\n", " <g id=\"line2d_145\">\n", " <path clip-path=\"url(#pd5ca579c4c)\" d=\"M 33.660938 328.025 \n", "L 554.240937 328.025 \n", "\" style=\"fill:none;stroke:#ffffff;stroke-linecap:round;\"/>\n", " </g>\n", " <g id=\"line2d_146\">\n", " <g>\n", " <use style=\"fill:#262626;stroke:#262626;\" x=\"33.6609375\" xlink:href=\"#m52a7ca0acb\" y=\"328.025\"/>\n", " </g>\n", " </g>\n", " <g id=\"line2d_147\">\n", " <g>\n", " <use style=\"fill:#262626;stroke:#262626;\" x=\"554.2409375\" xlink:href=\"#m52a7ca0acb\" y=\"328.025\"/>\n", " </g>\n", " </g>\n", " <g id=\"text_53\">\n", " <!-- 0.15 -->\n", " <g style=\"fill:#262626;\" transform=\"translate(7.2 330.61015625)scale(0.1 -0.1)\">\n", " <use xlink:href=\"#ArialMT-30\"/>\n", " <use x=\"55.615234375\" xlink:href=\"#ArialMT-2e\"/>\n", " <use x=\"83.3984375\" xlink:href=\"#ArialMT-31\"/>\n", " <use x=\"139.013671875\" xlink:href=\"#ArialMT-35\"/>\n", " </g>\n", " </g>\n", " </g>\n", " <g id=\"ytick_23\">\n", " <g id=\"line2d_148\">\n", " <path clip-path=\"url(#pd5ca579c4c)\" d=\"M 33.660938 317.66 \n", "L 554.240937 317.66 \n", "\" style=\"fill:none;stroke:#ffffff;stroke-linecap:round;\"/>\n", " </g>\n", " <g id=\"line2d_149\">\n", " <g>\n", " <use style=\"fill:#262626;stroke:#262626;\" x=\"33.6609375\" xlink:href=\"#m52a7ca0acb\" y=\"317.66\"/>\n", " </g>\n", " </g>\n", " <g id=\"line2d_150\">\n", " <g>\n", " <use style=\"fill:#262626;stroke:#262626;\" x=\"554.2409375\" xlink:href=\"#m52a7ca0acb\" y=\"317.66\"/>\n", " </g>\n", " </g>\n", " <g id=\"text_54\">\n", " <!-- 0.20 -->\n", " <g style=\"fill:#262626;\" transform=\"translate(7.2 320.24515625)scale(0.1 -0.1)\">\n", " <use xlink:href=\"#ArialMT-30\"/>\n", " <use x=\"55.615234375\" xlink:href=\"#ArialMT-2e\"/>\n", " <use x=\"83.3984375\" xlink:href=\"#ArialMT-32\"/>\n", " <use x=\"139.013671875\" xlink:href=\"#ArialMT-30\"/>\n", " </g>\n", " </g>\n", " </g>\n", " <g id=\"ytick_24\">\n", " <g id=\"line2d_151\">\n", " <path clip-path=\"url(#pd5ca579c4c)\" d=\"M 33.660938 307.295 \n", "L 554.240937 307.295 \n", "\" style=\"fill:none;stroke:#ffffff;stroke-linecap:round;\"/>\n", " </g>\n", " <g id=\"line2d_152\">\n", " <g>\n", " <use style=\"fill:#262626;stroke:#262626;\" x=\"33.6609375\" xlink:href=\"#m52a7ca0acb\" y=\"307.295\"/>\n", " </g>\n", " </g>\n", " <g id=\"line2d_153\">\n", " <g>\n", " <use style=\"fill:#262626;stroke:#262626;\" x=\"554.2409375\" xlink:href=\"#m52a7ca0acb\" y=\"307.295\"/>\n", " </g>\n", " </g>\n", " <g id=\"text_55\">\n", " <!-- 0.25 -->\n", " <g style=\"fill:#262626;\" transform=\"translate(7.2 309.88015625)scale(0.1 -0.1)\">\n", " <use xlink:href=\"#ArialMT-30\"/>\n", " <use x=\"55.615234375\" xlink:href=\"#ArialMT-2e\"/>\n", " <use x=\"83.3984375\" xlink:href=\"#ArialMT-32\"/>\n", " <use x=\"139.013671875\" xlink:href=\"#ArialMT-35\"/>\n", " </g>\n", " </g>\n", " </g>\n", " <g id=\"ytick_25\">\n", " <g id=\"line2d_154\">\n", " <path clip-path=\"url(#pd5ca579c4c)\" d=\"M 33.660938 296.93 \n", "L 554.240937 296.93 \n", "\" style=\"fill:none;stroke:#ffffff;stroke-linecap:round;\"/>\n", " </g>\n", " <g id=\"line2d_155\">\n", " <g>\n", " <use style=\"fill:#262626;stroke:#262626;\" x=\"33.6609375\" xlink:href=\"#m52a7ca0acb\" y=\"296.93\"/>\n", " </g>\n", " </g>\n", " <g id=\"line2d_156\">\n", " <g>\n", " <use style=\"fill:#262626;stroke:#262626;\" x=\"554.2409375\" xlink:href=\"#m52a7ca0acb\" y=\"296.93\"/>\n", " </g>\n", " </g>\n", " <g id=\"text_56\">\n", " <!-- 0.30 -->\n", " <g style=\"fill:#262626;\" transform=\"translate(7.2 299.51515625)scale(0.1 -0.1)\">\n", " <use xlink:href=\"#ArialMT-30\"/>\n", " <use x=\"55.615234375\" xlink:href=\"#ArialMT-2e\"/>\n", " <use x=\"83.3984375\" xlink:href=\"#ArialMT-33\"/>\n", " <use x=\"139.013671875\" xlink:href=\"#ArialMT-30\"/>\n", " </g>\n", " </g>\n", " </g>\n", " <g id=\"ytick_26\">\n", " <g id=\"line2d_157\">\n", " <path clip-path=\"url(#pd5ca579c4c)\" d=\"M 33.660938 286.565 \n", "L 554.240937 286.565 \n", "\" style=\"fill:none;stroke:#ffffff;stroke-linecap:round;\"/>\n", " </g>\n", " <g id=\"line2d_158\">\n", " <g>\n", " <use style=\"fill:#262626;stroke:#262626;\" x=\"33.6609375\" xlink:href=\"#m52a7ca0acb\" y=\"286.565\"/>\n", " </g>\n", " </g>\n", " <g id=\"line2d_159\">\n", " <g>\n", " <use style=\"fill:#262626;stroke:#262626;\" x=\"554.2409375\" xlink:href=\"#m52a7ca0acb\" y=\"286.565\"/>\n", " </g>\n", " </g>\n", " <g id=\"text_57\">\n", " <!-- 0.35 -->\n", " <g style=\"fill:#262626;\" transform=\"translate(7.2 289.15015625)scale(0.1 -0.1)\">\n", " <use xlink:href=\"#ArialMT-30\"/>\n", " <use x=\"55.615234375\" xlink:href=\"#ArialMT-2e\"/>\n", " <use x=\"83.3984375\" xlink:href=\"#ArialMT-33\"/>\n", " <use x=\"139.013671875\" xlink:href=\"#ArialMT-35\"/>\n", " </g>\n", " </g>\n", " </g>\n", " <g id=\"ytick_27\">\n", " <g id=\"line2d_160\">\n", " <path clip-path=\"url(#pd5ca579c4c)\" d=\"M 33.660938 276.2 \n", "L 554.240937 276.2 \n", "\" style=\"fill:none;stroke:#ffffff;stroke-linecap:round;\"/>\n", " </g>\n", " <g id=\"line2d_161\">\n", " <g>\n", " <use style=\"fill:#262626;stroke:#262626;\" x=\"33.6609375\" xlink:href=\"#m52a7ca0acb\" y=\"276.2\"/>\n", " </g>\n", " </g>\n", " <g id=\"line2d_162\">\n", " <g>\n", " <use style=\"fill:#262626;stroke:#262626;\" x=\"554.2409375\" xlink:href=\"#m52a7ca0acb\" y=\"276.2\"/>\n", " </g>\n", " </g>\n", " <g id=\"text_58\">\n", " <!-- 0.40 -->\n", " <g style=\"fill:#262626;\" transform=\"translate(7.2 278.78515625)scale(0.1 -0.1)\">\n", " <use xlink:href=\"#ArialMT-30\"/>\n", " <use x=\"55.615234375\" xlink:href=\"#ArialMT-2e\"/>\n", " <use x=\"83.3984375\" xlink:href=\"#ArialMT-34\"/>\n", " <use x=\"139.013671875\" xlink:href=\"#ArialMT-30\"/>\n", " </g>\n", " </g>\n", " </g>\n", " </g>\n", " <g id=\"PolyCollection_6\">\n", " <defs>\n", " <path d=\"M 33.660937 -23.345313 \n", "L 33.660937 -23.373056 \n", "L 38.919321 -23.383517 \n", "L 44.177705 -23.397581 \n", "L 49.436089 -23.416356 \n", "L 54.694473 -23.441248 \n", "L 59.952857 -23.474017 \n", "L 65.211241 -23.516856 \n", "L 70.469624 -23.572466 \n", "L 75.728008 -23.644145 \n", "L 80.986392 -23.735884 \n", "L 86.244776 -23.852464 \n", "L 91.50316 -23.999555 \n", "L 96.761544 -24.183813 \n", "L 102.019927 -24.412971 \n", "L 107.278311 -24.695909 \n", "L 112.536695 -25.042707 \n", "L 117.795079 -25.464669 \n", "L 123.053463 -25.974305 \n", "L 128.311847 -26.585266 \n", "L 133.57023 -27.312222 \n", "L 138.828614 -28.170675 \n", "L 144.086998 -29.176696 \n", "L 149.345382 -30.34659 \n", "L 154.603766 -31.696479 \n", "L 159.86215 -33.241799 \n", "L 165.120533 -34.996737 \n", "L 170.378917 -36.973594 \n", "L 175.637301 -39.182106 \n", "L 180.895685 -41.628734 \n", "L 186.154069 -44.315957 \n", "L 191.412453 -47.241586 \n", "L 196.670836 -50.398139 \n", "L 201.92922 -53.772317 \n", "L 207.187604 -57.344601 \n", "L 212.445988 -61.089018 \n", "L 217.704372 -64.9731 \n", "L 222.962756 -68.958057 \n", "L 228.22114 -72.999189 \n", "L 233.479523 -77.046537 \n", "L 238.737907 -81.045777 \n", "L 243.996291 -84.939326 \n", "L 249.254675 -88.667659 \n", "L 254.513059 -92.170774 \n", "L 259.771443 -95.389769 \n", "L 265.029826 -98.268472 \n", "L 270.28821 -100.755066 \n", "L 275.546594 -102.803629 \n", "L 280.804978 -104.375551 \n", "L 286.063362 -105.440738 \n", "L 291.321746 -105.978571 \n", "L 296.580129 -105.978571 \n", "L 301.838513 -105.440738 \n", "L 307.096897 -104.375551 \n", "L 312.355281 -102.803629 \n", "L 317.613665 -100.755066 \n", "L 322.872049 -98.268472 \n", "L 328.130432 -95.389769 \n", "L 333.388816 -92.170774 \n", "L 338.6472 -88.667659 \n", "L 343.905584 -84.939326 \n", "L 349.163968 -81.045777 \n", "L 354.422352 -77.046537 \n", "L 359.680735 -72.999189 \n", "L 364.939119 -68.958057 \n", "L 370.197503 -64.9731 \n", "L 375.455887 -61.089018 \n", "L 380.714271 -57.344601 \n", "L 385.972655 -53.772317 \n", "L 391.231039 -50.398139 \n", "L 396.489422 -47.241586 \n", "L 401.747806 -44.315957 \n", "L 407.00619 -41.628734 \n", "L 412.264574 -39.182106 \n", "L 417.522958 -36.973594 \n", "L 422.781342 -34.996737 \n", "L 428.039725 -33.241799 \n", "L 433.298109 -31.696479 \n", "L 438.556493 -30.34659 \n", "L 443.814877 -29.176696 \n", "L 449.073261 -28.170675 \n", "L 454.331645 -27.312222 \n", "L 459.590028 -26.585266 \n", "L 464.848412 -25.974305 \n", "L 470.106796 -25.464669 \n", "L 475.36518 -25.042707 \n", "L 480.623564 -24.695909 \n", "L 485.881948 -24.412971 \n", "L 491.140331 -24.183813 \n", "L 496.398715 -23.999555 \n", "L 501.657099 -23.852464 \n", "L 506.915483 -23.735884 \n", "L 512.173867 -23.644145 \n", "L 517.432251 -23.572466 \n", "L 522.690634 -23.516856 \n", "L 527.949018 -23.474017 \n", "L 533.207402 -23.441248 \n", "L 538.465786 -23.416356 \n", "L 543.72417 -23.397581 \n", "L 548.982554 -23.383517 \n", "L 554.240937 -23.373056 \n", "L 554.240937 -23.345313 \n", "L 554.240937 -23.345313 \n", "L 548.982554 -23.345313 \n", "L 543.72417 -23.345313 \n", "L 538.465786 -23.345313 \n", "L 533.207402 -23.345313 \n", "L 527.949018 -23.345313 \n", "L 522.690634 -23.345313 \n", "L 517.432251 -23.345313 \n", "L 512.173867 -23.345313 \n", "L 506.915483 -23.345313 \n", "L 501.657099 -23.345313 \n", "L 496.398715 -23.345313 \n", "L 491.140331 -23.345313 \n", "L 485.881948 -23.345313 \n", "L 480.623564 -23.345313 \n", "L 475.36518 -23.345313 \n", "L 470.106796 -23.345313 \n", "L 464.848412 -23.345313 \n", "L 459.590028 -23.345313 \n", "L 454.331645 -23.345313 \n", "L 449.073261 -23.345313 \n", "L 443.814877 -23.345313 \n", "L 438.556493 -23.345313 \n", "L 433.298109 -23.345313 \n", "L 428.039725 -23.345313 \n", "L 422.781342 -23.345313 \n", "L 417.522958 -23.345313 \n", "L 412.264574 -23.345313 \n", "L 407.00619 -23.345313 \n", "L 401.747806 -23.345313 \n", "L 396.489422 -23.345313 \n", "L 391.231039 -23.345313 \n", "L 385.972655 -23.345313 \n", "L 380.714271 -23.345313 \n", "L 375.455887 -23.345313 \n", "L 370.197503 -23.345313 \n", "L 364.939119 -23.345313 \n", "L 359.680735 -23.345313 \n", "L 354.422352 -23.345313 \n", "L 349.163968 -23.345313 \n", "L 343.905584 -23.345313 \n", "L 338.6472 -23.345313 \n", "L 333.388816 -23.345313 \n", "L 328.130432 -23.345313 \n", "L 322.872049 -23.345313 \n", "L 317.613665 -23.345313 \n", "L 312.355281 -23.345313 \n", "L 307.096897 -23.345313 \n", "L 301.838513 -23.345313 \n", "L 296.580129 -23.345313 \n", "L 291.321746 -23.345313 \n", "L 286.063362 -23.345313 \n", "L 280.804978 -23.345313 \n", "L 275.546594 -23.345313 \n", "L 270.28821 -23.345313 \n", "L 265.029826 -23.345313 \n", "L 259.771443 -23.345313 \n", "L 254.513059 -23.345313 \n", "L 249.254675 -23.345313 \n", "L 243.996291 -23.345313 \n", "L 238.737907 -23.345313 \n", "L 233.479523 -23.345313 \n", "L 228.22114 -23.345313 \n", "L 222.962756 -23.345313 \n", "L 217.704372 -23.345313 \n", "L 212.445988 -23.345313 \n", "L 207.187604 -23.345313 \n", "L 201.92922 -23.345313 \n", "L 196.670836 -23.345313 \n", "L 191.412453 -23.345313 \n", "L 186.154069 -23.345313 \n", "L 180.895685 -23.345313 \n", "L 175.637301 -23.345313 \n", "L 170.378917 -23.345313 \n", "L 165.120533 -23.345313 \n", "L 159.86215 -23.345313 \n", "L 154.603766 -23.345313 \n", "L 149.345382 -23.345313 \n", "L 144.086998 -23.345313 \n", "L 138.828614 -23.345313 \n", "L 133.57023 -23.345313 \n", "L 128.311847 -23.345313 \n", "L 123.053463 -23.345313 \n", "L 117.795079 -23.345313 \n", "L 112.536695 -23.345313 \n", "L 107.278311 -23.345313 \n", "L 102.019927 -23.345313 \n", "L 96.761544 -23.345313 \n", "L 91.50316 -23.345313 \n", "L 86.244776 -23.345313 \n", "L 80.986392 -23.345313 \n", "L 75.728008 -23.345313 \n", "L 70.469624 -23.345313 \n", "L 65.211241 -23.345313 \n", "L 59.952857 -23.345313 \n", "L 54.694473 -23.345313 \n", "L 49.436089 -23.345313 \n", "L 44.177705 -23.345313 \n", "L 38.919321 -23.345313 \n", "L 33.660937 -23.345313 \n", "z\n", "\" id=\"mcf32ea1c53\" style=\"stroke:#1a1a1a;stroke-opacity:0.1;stroke-width:0.3;\"/>\n", " </defs>\n", " <g clip-path=\"url(#pd5ca579c4c)\">\n", " <use style=\"fill:#008000;fill-opacity:0.1;stroke:#1a1a1a;stroke-opacity:0.1;stroke-width:0.3;\" x=\"0.0\" xlink:href=\"#mcf32ea1c53\" y=\"382.4653125\"/>\n", " </g>\n", " </g>\n", " <g id=\"PolyCollection_7\">\n", " <defs>\n", " <path d=\"M 33.660937 -23.345313 \n", "L 33.660937 -23.373056 \n", "L 34.975533 -23.375384 \n", "L 36.290129 -23.377895 \n", "L 37.604725 -23.380602 \n", "L 38.919321 -23.383517 \n", "L 40.233917 -23.386656 \n", "L 41.548513 -23.390035 \n", "L 42.863109 -23.393671 \n", "L 44.177705 -23.397581 \n", "L 45.492301 -23.401784 \n", "L 46.806897 -23.406299 \n", "L 48.121493 -23.411149 \n", "L 49.436089 -23.416356 \n", "L 50.750685 -23.421944 \n", "L 52.065281 -23.427937 \n", "L 53.379877 -23.434362 \n", "L 54.694473 -23.441248 \n", "L 56.009069 -23.448624 \n", "L 57.323665 -23.456522 \n", "L 58.638261 -23.464975 \n", "L 59.952857 -23.474017 \n", "L 61.267453 -23.483687 \n", "L 62.582049 -23.494022 \n", "L 63.896645 -23.505064 \n", "L 65.211241 -23.516856 \n", "L 66.525836 -23.529444 \n", "L 67.840432 -23.542874 \n", "L 69.155028 -23.557197 \n", "L 70.469624 -23.572466 \n", "L 71.78422 -23.588736 \n", "L 73.098816 -23.606065 \n", "L 74.413412 -23.624513 \n", "L 75.728008 -23.644145 \n", "L 77.042604 -23.665027 \n", "L 78.3572 -23.687228 \n", "L 79.671796 -23.710822 \n", "L 80.986392 -23.735884 \n", "L 82.300988 -23.762495 \n", "L 83.615584 -23.790737 \n", "L 84.93018 -23.820696 \n", "L 86.244776 -23.852464 \n", "L 87.559372 -23.886134 \n", "L 88.873968 -23.921804 \n", "L 90.188564 -23.959575 \n", "L 91.50316 -23.999555 \n", "L 92.817756 -24.041852 \n", "L 94.132352 -24.086581 \n", "L 95.446948 -24.13386 \n", "L 96.761544 -24.183813 \n", "L 98.07614 -24.236567 \n", "L 99.390735 -24.292253 \n", "L 100.705331 -24.351007 \n", "L 102.019927 -24.412971 \n", "L 103.334523 -24.478291 \n", "L 104.649119 -24.547116 \n", "L 105.963715 -24.619602 \n", "L 107.278311 -24.695909 \n", "L 108.592907 -24.776201 \n", "L 109.907503 -24.860648 \n", "L 111.222099 -24.949423 \n", "L 112.536695 -25.042707 \n", "L 113.851291 -25.140683 \n", "L 115.165887 -25.243538 \n", "L 116.480483 -25.351468 \n", "L 117.795079 -25.464669 \n", "L 119.109675 -25.583344 \n", "L 120.424271 -25.7077 \n", "L 121.738867 -25.837949 \n", "L 123.053463 -25.974305 \n", "L 124.368059 -26.116989 \n", "L 125.682655 -26.266225 \n", "L 126.997251 -26.42224 \n", "L 128.311847 -26.585266 \n", "L 129.626443 -26.755538 \n", "L 130.941039 -26.933293 \n", "L 132.255634 -27.118773 \n", "L 133.57023 -27.312222 \n", "L 134.884826 -27.513887 \n", "L 136.199422 -27.724017 \n", "L 137.514018 -27.942862 \n", "L 138.828614 -28.170675 \n", "L 140.14321 -28.407709 \n", "L 141.457806 -28.654221 \n", "L 142.772402 -28.910464 \n", "L 144.086998 -29.176696 \n", "L 145.401594 -29.45317 \n", "L 146.71619 -29.740141 \n", "L 148.030786 -30.037864 \n", "L 149.345382 -30.34659 \n", "L 150.659978 -30.666569 \n", "L 151.974574 -30.998048 \n", "L 153.28917 -31.341271 \n", "L 154.603766 -31.696479 \n", "L 155.918362 -32.063907 \n", "L 157.232958 -32.443787 \n", "L 158.547554 -32.836344 \n", "L 159.86215 -33.241799 \n", "L 161.176746 -33.660364 \n", "L 162.491342 -34.092245 \n", "L 163.805937 -34.53764 \n", "L 163.805937 -23.345313 \n", "L 163.805937 -23.345313 \n", "L 162.491342 -23.345313 \n", "L 161.176746 -23.345313 \n", "L 159.86215 -23.345313 \n", "L 158.547554 -23.345313 \n", "L 157.232958 -23.345313 \n", "L 155.918362 -23.345313 \n", "L 154.603766 -23.345313 \n", "L 153.28917 -23.345313 \n", "L 151.974574 -23.345313 \n", "L 150.659978 -23.345313 \n", "L 149.345382 -23.345313 \n", "L 148.030786 -23.345313 \n", "L 146.71619 -23.345313 \n", "L 145.401594 -23.345313 \n", "L 144.086998 -23.345313 \n", "L 142.772402 -23.345313 \n", "L 141.457806 -23.345313 \n", "L 140.14321 -23.345313 \n", "L 138.828614 -23.345313 \n", "L 137.514018 -23.345313 \n", "L 136.199422 -23.345313 \n", "L 134.884826 -23.345313 \n", "L 133.57023 -23.345313 \n", "L 132.255634 -23.345313 \n", "L 130.941039 -23.345313 \n", "L 129.626443 -23.345313 \n", "L 128.311847 -23.345313 \n", "L 126.997251 -23.345313 \n", "L 125.682655 -23.345313 \n", "L 124.368059 -23.345313 \n", "L 123.053463 -23.345313 \n", "L 121.738867 -23.345313 \n", "L 120.424271 -23.345313 \n", "L 119.109675 -23.345313 \n", "L 117.795079 -23.345313 \n", "L 116.480483 -23.345313 \n", "L 115.165887 -23.345313 \n", "L 113.851291 -23.345313 \n", "L 112.536695 -23.345313 \n", "L 111.222099 -23.345313 \n", "L 109.907503 -23.345313 \n", "L 108.592907 -23.345313 \n", "L 107.278311 -23.345313 \n", "L 105.963715 -23.345313 \n", "L 104.649119 -23.345313 \n", "L 103.334523 -23.345313 \n", "L 102.019927 -23.345313 \n", "L 100.705331 -23.345313 \n", "L 99.390735 -23.345313 \n", "L 98.07614 -23.345313 \n", "L 96.761544 -23.345313 \n", "L 95.446948 -23.345313 \n", "L 94.132352 -23.345313 \n", "L 92.817756 -23.345313 \n", "L 91.50316 -23.345313 \n", "L 90.188564 -23.345313 \n", "L 88.873968 -23.345313 \n", "L 87.559372 -23.345313 \n", "L 86.244776 -23.345313 \n", "L 84.93018 -23.345313 \n", "L 83.615584 -23.345313 \n", "L 82.300988 -23.345313 \n", "L 80.986392 -23.345313 \n", "L 79.671796 -23.345313 \n", "L 78.3572 -23.345313 \n", "L 77.042604 -23.345313 \n", "L 75.728008 -23.345313 \n", "L 74.413412 -23.345313 \n", "L 73.098816 -23.345313 \n", "L 71.78422 -23.345313 \n", "L 70.469624 -23.345313 \n", "L 69.155028 -23.345313 \n", "L 67.840432 -23.345313 \n", "L 66.525836 -23.345313 \n", "L 65.211241 -23.345313 \n", "L 63.896645 -23.345313 \n", "L 62.582049 -23.345313 \n", "L 61.267453 -23.345313 \n", "L 59.952857 -23.345313 \n", "L 58.638261 -23.345313 \n", "L 57.323665 -23.345313 \n", "L 56.009069 -23.345313 \n", "L 54.694473 -23.345313 \n", "L 53.379877 -23.345313 \n", "L 52.065281 -23.345313 \n", "L 50.750685 -23.345313 \n", "L 49.436089 -23.345313 \n", "L 48.121493 -23.345313 \n", "L 46.806897 -23.345313 \n", "L 45.492301 -23.345313 \n", "L 44.177705 -23.345313 \n", "L 42.863109 -23.345313 \n", "L 41.548513 -23.345313 \n", "L 40.233917 -23.345313 \n", "L 38.919321 -23.345313 \n", "L 37.604725 -23.345313 \n", "L 36.290129 -23.345313 \n", "L 34.975533 -23.345313 \n", "L 33.660937 -23.345313 \n", "z\n", "\" id=\"md00aefaaf5\" style=\"stroke:#1a1a1a;stroke-opacity:0.35;stroke-width:0.3;\"/>\n", " </defs>\n", " <g clip-path=\"url(#pd5ca579c4c)\">\n", " <use style=\"fill:#0000ff;fill-opacity:0.35;stroke:#1a1a1a;stroke-opacity:0.35;stroke-width:0.3;\" x=\"0.0\" xlink:href=\"#md00aefaaf5\" y=\"382.4653125\"/>\n", " </g>\n", " </g>\n", " <g id=\"patch_13\">\n", " <path d=\"M 33.660937 276.2 \n", "L 554.240937 276.2 \n", "\" style=\"fill:none;\"/>\n", " </g>\n", " <g id=\"patch_14\">\n", " <path d=\"M 554.240937 359.12 \n", "L 554.240937 276.2 \n", "\" style=\"fill:none;\"/>\n", " </g>\n", " <g id=\"patch_15\">\n", " <path d=\"M 33.660937 359.12 \n", "L 554.240937 359.12 \n", "\" style=\"fill:none;\"/>\n", " </g>\n", " <g id=\"patch_16\">\n", " <path d=\"M 33.660938 359.12 \n", "L 33.660938 276.2 \n", "\" style=\"fill:none;\"/>\n", " </g>\n", " <g id=\"text_59\">\n", " <!-- p-value=0.023 -->\n", " <g style=\"fill:#262626;\" transform=\"translate(60.53875 338.39)scale(0.12 -0.12)\">\n", " <use xlink:href=\"#ArialMT-70\"/>\n", " <use x=\"55.615234375\" xlink:href=\"#ArialMT-2d\"/>\n", " <use x=\"88.916015625\" xlink:href=\"#ArialMT-76\"/>\n", " <use x=\"138.916015625\" xlink:href=\"#ArialMT-61\"/>\n", " <use x=\"194.53125\" xlink:href=\"#ArialMT-6c\"/>\n", " <use x=\"216.748046875\" xlink:href=\"#ArialMT-75\"/>\n", " <use x=\"272.36328125\" xlink:href=\"#ArialMT-65\"/>\n", " <use x=\"327.978515625\" xlink:href=\"#ArialMT-3d\"/>\n", " <use x=\"386.376953125\" xlink:href=\"#ArialMT-30\"/>\n", " <use x=\"441.9921875\" xlink:href=\"#ArialMT-2e\"/>\n", " <use x=\"469.775390625\" xlink:href=\"#ArialMT-30\"/>\n", " <use x=\"525.390625\" xlink:href=\"#ArialMT-32\"/>\n", " <use x=\"581.005859375\" xlink:href=\"#ArialMT-33\"/>\n", " </g>\n", " </g>\n", " <g id=\"text_60\">\n", " <!-- Test statistics = -2. One-tailed test. $H_a: \\mu &lt; 0$ -->\n", " <defs>\n", " <path d=\"M 9.28125 23.296875 \n", "Q 8.296875 23.734375 8.296875 25 \n", "Q 8.296875 26.265625 9.625 26.90625 \n", "L 66.703125 53.8125 \n", "Q 67.09375 54 67.390625 54 \n", "Q 68.265625 54 68.828125 53.390625 \n", "Q 69.390625 52.78125 69.390625 52 \n", "Q 69.390625 50.78125 68.21875 50.09375 \n", "L 14.984375 25 \n", "L 68.5 -0.296875 \n", "Q 69.390625 -0.59375 69.390625 -2 \n", "Q 69.390625 -2.78125 68.828125 -3.390625 \n", "Q 68.265625 -4 67.390625 -4 \n", "Q 67.09375 -4 66.703125 -3.8125 \n", "z\n", "\" id=\"Cmmi10-3c\"/>\n", " </defs>\n", " <g style=\"fill:#262626;\" transform=\"translate(174.9709375 271.2)scale(0.12 -0.12)\">\n", " <use transform=\"translate(0.0 0.140625)\" xlink:href=\"#ArialMT-54\"/>\n", " <use transform=\"translate(61.083984375 0.140625)\" xlink:href=\"#ArialMT-65\"/>\n", " <use transform=\"translate(116.69921875 0.140625)\" xlink:href=\"#ArialMT-73\"/>\n", " <use transform=\"translate(166.69921875 0.140625)\" xlink:href=\"#ArialMT-74\"/>\n", " <use transform=\"translate(194.482421875 0.140625)\" xlink:href=\"#ArialMT-20\"/>\n", " <use transform=\"translate(222.265625 0.140625)\" xlink:href=\"#ArialMT-73\"/>\n", " <use transform=\"translate(272.265625 0.140625)\" xlink:href=\"#ArialMT-74\"/>\n", " <use transform=\"translate(300.048828125 0.140625)\" xlink:href=\"#ArialMT-61\"/>\n", " <use transform=\"translate(355.6640625 0.140625)\" xlink:href=\"#ArialMT-74\"/>\n", " <use transform=\"translate(383.447265625 0.140625)\" xlink:href=\"#ArialMT-69\"/>\n", " <use transform=\"translate(405.6640625 0.140625)\" xlink:href=\"#ArialMT-73\"/>\n", " <use transform=\"translate(455.6640625 0.140625)\" xlink:href=\"#ArialMT-74\"/>\n", " <use transform=\"translate(483.447265625 0.140625)\" xlink:href=\"#ArialMT-69\"/>\n", " <use transform=\"translate(505.6640625 0.140625)\" xlink:href=\"#ArialMT-63\"/>\n", " <use transform=\"translate(555.6640625 0.140625)\" xlink:href=\"#ArialMT-73\"/>\n", " <use transform=\"translate(605.6640625 0.140625)\" xlink:href=\"#ArialMT-20\"/>\n", " <use transform=\"translate(633.447265625 0.140625)\" xlink:href=\"#ArialMT-3d\"/>\n", " <use transform=\"translate(691.845703125 0.140625)\" xlink:href=\"#ArialMT-20\"/>\n", " <use transform=\"translate(719.62890625 0.140625)\" xlink:href=\"#ArialMT-2d\"/>\n", " <use transform=\"translate(752.9296875 0.140625)\" xlink:href=\"#ArialMT-32\"/>\n", " <use transform=\"translate(808.544921875 0.140625)\" xlink:href=\"#ArialMT-2e\"/>\n", " <use transform=\"translate(836.328125 0.140625)\" xlink:href=\"#ArialMT-20\"/>\n", " <use transform=\"translate(864.111328125 0.140625)\" xlink:href=\"#ArialMT-4f\"/>\n", " <use transform=\"translate(941.89453125 0.140625)\" xlink:href=\"#ArialMT-6e\"/>\n", " <use transform=\"translate(997.509765625 0.140625)\" xlink:href=\"#ArialMT-65\"/>\n", " <use transform=\"translate(1053.125 0.140625)\" xlink:href=\"#ArialMT-2d\"/>\n", " <use transform=\"translate(1086.42578125 0.140625)\" xlink:href=\"#ArialMT-74\"/>\n", " <use transform=\"translate(1114.20898438 0.140625)\" xlink:href=\"#ArialMT-61\"/>\n", " <use transform=\"translate(1169.82421875 0.140625)\" xlink:href=\"#ArialMT-69\"/>\n", " <use transform=\"translate(1192.04101562 0.140625)\" xlink:href=\"#ArialMT-6c\"/>\n", " <use transform=\"translate(1214.2578125 0.140625)\" xlink:href=\"#ArialMT-65\"/>\n", " <use transform=\"translate(1269.87304688 0.140625)\" xlink:href=\"#ArialMT-64\"/>\n", " <use transform=\"translate(1325.48828125 0.140625)\" xlink:href=\"#ArialMT-20\"/>\n", " <use transform=\"translate(1353.27148438 0.140625)\" xlink:href=\"#ArialMT-74\"/>\n", " <use transform=\"translate(1381.0546875 0.140625)\" xlink:href=\"#ArialMT-65\"/>\n", " <use transform=\"translate(1436.66992188 0.140625)\" xlink:href=\"#ArialMT-73\"/>\n", " <use transform=\"translate(1486.66992188 0.140625)\" xlink:href=\"#ArialMT-74\"/>\n", " <use transform=\"translate(1514.453125 0.140625)\" xlink:href=\"#ArialMT-2e\"/>\n", " <use transform=\"translate(1542.23632812 0.140625)\" xlink:href=\"#ArialMT-20\"/>\n", " <use transform=\"translate(1570.01953125 0.140625)\" xlink:href=\"#Cmmi10-48\"/>\n", " <use transform=\"translate(1653.125 -16.865625)scale(0.7)\" xlink:href=\"#Cmmi10-61\"/>\n", " <use transform=\"translate(1714.00917969 0.140625)\" xlink:href=\"#Cmr10-3a\"/>\n", " <use transform=\"translate(1759.25332031 0.140625)\" xlink:href=\"#Cmmi10-b9\"/>\n", " <use transform=\"translate(1837.01699219 0.140625)\" xlink:href=\"#Cmmi10-3c\"/>\n", " <use transform=\"translate(1932.26113281 0.140625)\" xlink:href=\"#Cmr10-30\"/>\n", " </g>\n", " </g>\n", " </g>\n", " </g>\n", " <defs>\n", " <clipPath id=\"pb07fcf890f\">\n", " <rect height=\"82.92\" width=\"520.58\" x=\"33.6609375\" y=\"20.84\"/>\n", " </clipPath>\n", " <clipPath id=\"pd5ca579c4c\">\n", " <rect height=\"82.92\" width=\"520.58\" x=\"33.6609375\" y=\"276.2\"/>\n", " </clipPath>\n", " <clipPath id=\"p208ff1ae7e\">\n", " <rect height=\"82.92\" width=\"520.58\" x=\"33.6609375\" y=\"148.52\"/>\n", " </clipPath>\n", " </defs>\n", "</svg>\n" ], "text/plain": [ "<matplotlib.figure.Figure at 0x7f2300d05f50>" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "xx1 = np.linspace(-4, 4, 100)\n", "xx2 = np.linspace(-4, -2, 100)\n", "xx3 = np.linspace(2, 4, 100)\n", "\n", "plt.subplot(3, 1, 1)\n", "plt.fill_between(xx1, sp.stats.norm.pdf(xx1), facecolor='green', alpha=0.1)\n", "plt.fill_between(xx2, sp.stats.norm.pdf(xx2), facecolor='blue', alpha=0.35)\n", "plt.fill_between(xx3, sp.stats.norm.pdf(xx3), facecolor='blue', alpha=0.35)\n", "plt.text(-3, 0.1, \"p-value=%5.3f\" % (2*sp.stats.norm.cdf(-2)), horizontalalignment='center')\n", "plt.title(r\"Test statistics = 2. Two-tailed test. $H_a: \\mu \\neq 0$\")\n", "\n", "plt.subplot(3, 1, 2)\n", "plt.fill_between(xx1, sp.stats.norm.pdf(xx1), facecolor='green', alpha=0.1)\n", "plt.fill_between(xx3, sp.stats.norm.pdf(xx3), facecolor='blue', alpha=0.35)\n", "plt.text(3, 0.1, \"p-value=%5.3f\" % (sp.stats.norm.cdf(-2)), horizontalalignment='center')\n", "plt.title(r\"Test statistics = 2. One-tailed test. $H_a: \\mu > 0$\")\n", "\n", "plt.subplot(3, 1, 3)\n", "plt.fill_between(xx1, sp.stats.norm.pdf(xx1), facecolor='green', alpha=0.1)\n", "plt.fill_between(xx2, sp.stats.norm.pdf(xx2), facecolor='blue', alpha=0.35)\n", "plt.text(-3, 0.1, \"p-value=%5.3f\" % (sp.stats.norm.cdf(-2)), horizontalalignment='center')\n", "plt.title(r\"Test statistics = -2. One-tailed test. $H_a: \\mu < 0$\")\n", "\n", "plt.tight_layout()\n", "plt.show()" ] }, { "cell_type": "markdown", "metadata": { "school_cell_uuid": "64b4d833e05c45ea922211b0798e69c4" }, "source": [ "유의 확률의 값이 아주 작으면 귀무 가설이 맞다는 가정하에 계산된 검정 통계량이 나올 가능성이 희귀하다는 의미이다. \n", "\n", "다시 예를 들자면 \"어떤 병에 걸렸다\"는 귀무 가설을 증명하기 위한 검정에서 혈액 검사를 사용하여 계산한 유의확률이 0.02%라는 의미는 실제로 병에 걸린 환자들 중 혈액 검사 수치가 해당 환자의 혈액 검사 수치보다 낮은 사람은 0.02% 뿐이었다는 뜻이고 \"어떤 학생이 우등생이다.\"라는 귀무사설을 증명하기 위한 검정에서 시험 성적을 사용하여 계산한 유의확률이 0.3%라는 의미는 실제로 우등생의 성적을 분석해 보면 실수로 시험을 잘 못치른 경우를 포함해도 해당 점수보다 나쁜 경우는 0.3%에 지나지 않는다는 뜻이다.\n", "\n", "따라서 이렇게 유의 확률의 값이 아주 작은 숫자가 나오면 해당 귀무 가설을 기각할 수 있다." ] }, { "cell_type": "markdown", "metadata": { "school_cell_uuid": "8446d8ad9ffe40bcae14b551c23ef0bc" }, "source": [ "## 유의 수준과 기각역" ] }, { "cell_type": "markdown", "metadata": { "school_cell_uuid": "dcdc65c683c24764a33d1cec41589915" }, "source": [ "계산된 유의 확률 값에 대해 귀무 가설을 기각하는지 채택하는지를 결정할 수 있는 기준 값을 유의 수준(level of significance)라고 한다. 일반적으로 사용되는 유의 수준은 1%, 5%, 10% 등이다.\n", "\n", "검정 통계량이 나오면 확률 밀도 함수(또는 누적 확률 함수)를 사용하여 유의 확률을 계산할 수 있는 것처럼 반대로 특정한 유의 확률 값에 대해 해당하는 검정 통계량을 계산할 수도 있다. 유의 수준에 대해 계산된 검정 통계량을 기각역(critical value)라고 한다.\n", "\n", "기각역 값을 알고 있다면 유의 확률을 유의 수준과 비교하는 것이 아니라 검정 통계량을 직접 기각역과 비교하여 기각/채택 여부를 판단할 수도 있다." ] }, { "cell_type": "markdown", "metadata": { "school_cell_uuid": "b60eca4086e4454591f2ce749cbc3da0" }, "source": [ "## 검정의 예" ] }, { "cell_type": "markdown", "metadata": { "school_cell_uuid": "21eb88f74605471d93189344242eef92" }, "source": [ "이제 서두에서 제기한 문제를 다시 풀어보자." ] }, { "cell_type": "markdown", "metadata": { "school_cell_uuid": "24301de086ca4c159e0a551ab2f69c0f" }, "source": [ "* 문제1\n", "\n", "<blockquote> \n", "어떤 동전을 15번 던졌더니 12번이 앞면이 나왔다. 이 동전은 휘어지지 않은 공정한 동전(fair coin)인가?\n", "</blockquote>" ] }, { "cell_type": "markdown", "metadata": { "school_cell_uuid": "c92271c42de54a6482e69eba26389cf3" }, "source": [ "동전의 앞면이 나오는 것을 숫자 1, 뒷면이 나오는 것을 숫자 0으로 나타낸다면 이 문제는 베르누이 확률 변수의 모수 검정 문제로 생각할 수 있다. 판단하고자하는 귀무 가설은 베르누이 확률 분포 모수 $\\theta = 0.5$이다. \n", "\n", "이 문제에 대한 검정 통계량은 15번 던져 앞면이 나온 횟수가 12이고 이 값은 자유도가 15인 이항 분포를 따른다. 이 경우의 유의 확률을 계산하면 \n", "1.76% 이다.\n", "$$ \\text{Bin}(n \\geq 12;N=15) = 0.017578125 $$" ] }, { "cell_type": "code", "execution_count": 2, "metadata": { "collapsed": false, "school_cell_uuid": "44db517275524cffb37731b26f1321bd" }, "outputs": [ { "data": { "text/plain": [ "0.017578125" ] }, "execution_count": 2, "metadata": {}, "output_type": "execute_result" } ], "source": [ "1 - sp.stats.binom(15, 0.5).cdf(12-1)" ] }, { "cell_type": "markdown", "metadata": { "school_cell_uuid": "811c0d31a35e4c308fb43dd8a100a2f9" }, "source": [ "이 값은 5% 보다는 작고 1% 보다는 크기 때문에 유의 수준이 5% 라면 기각할 수 있으며(즉 공정한 동전이 아니라고 말할 수 있다.) 유의 수준이 1% 라면 기각할 수 없다.(즉, 공정한 동전이 아니라고 말할 수 없다.)" ] }, { "cell_type": "markdown", "metadata": { "school_cell_uuid": "719566b3f8c941bc9df784887de97953" }, "source": [ "* 문제2\n", "\n", "<blockquote> \n", "어떤 트레이더의 일주일 수익률은 다음과 같다.:<br>\n", "-2.5%, -5%, 4.3%, -3.7% -5.6% <br>\n", "이 트레이더는 돈을 벌어다 줄 사람인가, 아니면 돈을 잃을 사람인가? \n", "</blockquote>" ] }, { "cell_type": "markdown", "metadata": { "school_cell_uuid": "241b569358004affb1f29aad847f9f9d" }, "source": [ "수익률이 정규 분포를 따른 다고 가정하면 이 트레이더의 검정통계량은 다음과 같이 계산된다.\n", "\n", "$$ t = \\dfrac{m}{\\frac{s}{\\sqrt{N}}} = -1.4025 $$\n", "\n", "이 검정 통계량에 대한 유의 확률은 11.67%이다.\n", "\n", "$$ F(t=-1.4025;4) = 0.1167 $$" ] }, { "cell_type": "code", "execution_count": 3, "metadata": { "collapsed": false, "school_cell_uuid": "47c7632b55bb4f62974155cef74007ec" }, "outputs": [ { "data": { "text/plain": [ "(-1.4025921414082105, 0.11669216509589829)" ] }, "execution_count": 3, "metadata": {}, "output_type": "execute_result" } ], "source": [ "x = np.array([-0.025, -0.05, 0.043, -0.037, -0.056])\n", "t = x.mean()/x.std(ddof=1)*np.sqrt(len(x))\n", "t, sp.stats.t(df=4).cdf(t)" ] }, { "cell_type": "markdown", "metadata": { "school_cell_uuid": "5573c7a910d04305aab626d155bb12c2" }, "source": [ "만약 유의 수준이 10%라면 유의 확률이 이보다 크기 때문에 귀무 가설을 기각할 수 없다. 즉, 정규 분포의 기댓값이 0 보다 작다고 말할수 없다. 따라서 해당 트레이더가 장기적으로 손실을 보는 트레이더라고 말할 수 있는 증거가 부족하다는 의미이다." ] } ], "metadata": { "kernelspec": { "display_name": "Python [Root]", "language": "python", "name": "Python [Root]" }, "language_info": { "codemirror_mode": { "name": "ipython", "version": 2 }, "file_extension": ".py", "mimetype": "text/x-python", "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython2", "version": "2.7.12" } }, "nbformat": 4, "nbformat_minor": 0 }
mit
limiear/soyprice
soyprice/notes/Soy maximum prices.ipynb
2
3396
{ "metadata": { "name": "", "signature": "sha256:f8ca1583ad39f712aeccc4875ae2f7f21b357adcc45421bae6264951f3cddba2" }, "nbformat": 3, "nbformat_minor": 0, "worksheets": [ { "cells": [ { "cell_type": "code", "collapsed": false, "input": [ "import sys\n", "sys.path.append('../')" ], "language": "python", "metadata": {}, "outputs": [], "prompt_number": 6 }, { "cell_type": "code", "collapsed": false, "input": [ "from variables.core import get_var\n", "from datetime import datetime\n", "soy = get_var(name=u'soy/afascl')\n", "to_date = lambda m: datetime.strptime(m, '%Y-%m-%d').date()\n", "data = map(lambda c: (to_date(c['moment']), float(c['value'])), soy['changes'])\n", "years = sorted(list(set(map(lambda d: d[0].year, data))))\n", "print years\n", "print '-' * 80\n", "rank = {}\n", "for y in years:\n", " values = filter(lambda d: d[0].year == y, data)\n", " m = max(map(lambda v: v[1], values))\n", " elems = filter(lambda v: v[1] > m * 0.96, values)\n", " months = map(lambda e: e[0].month, elems)\n", " print y, m, m * 0.96, months\n", " for m in months:\n", " rank[m] = rank.get(m, 0) - 1 / (y - 2017)\n", "print '-' * 80\n", "print rank\n", "{k:v for k, v in rank.items() if v > 13}" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "[2007, 2008, 2009, 2010, 2011, 2012, 2013, 2014, 2015, 2016]\n", "--------------------------------------------------------------------------------\n", "2007 910.0 873.6 [12, 12, 12]\n", "2008 1173.0 1126.08 [2, 2, 2, 3]\n", "2009 1100.0 1056.0 [6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 7]\n", "2010 1470.0 1411.2 [12, 12, 12, 12, 12]\n", "2011 1500.0 1440.0 [1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 2, 2, 2, 2, 2, 2]\n", "2012 2050.0 1968.0 [8, 8, 8, 8, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 10, 10, 10, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12]\n", "2013 2300.0 2208.0 [11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12]\n", "2014 3000.0 2880.0 [3]\n", "2015 3000.0 2880.0 [12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12]\n", "2016 3650.0 3504.0 [2, 2, 2, 2, 2, 2, 2, 2, 2, 3, 3, 3]\n", "--------------------------------------------------------------------------------\n", "{1: 8, 2: 20, 3: 5, 6: 11, 7: 1, 8: 4, 9: 15, 10: 3, 11: 23, 12: 59}\n" ] }, { "metadata": {}, "output_type": "pyout", "prompt_number": 7, "text": [ "{2: 20, 9: 15, 11: 23, 12: 59}" ] } ], "prompt_number": 7 }, { "cell_type": "code", "collapsed": false, "input": [ "3000 * 1.3043" ], "language": "python", "metadata": {}, "outputs": [ { "metadata": {}, "output_type": "pyout", "prompt_number": 8, "text": [ "3912.9" ] } ], "prompt_number": 8 } ], "metadata": {} } ] }
gpl-3.0
maxalbert/tohu
notebooks/v6/Primitive_generators.ipynb
1
21404
{ "cells": [ { "cell_type": "markdown", "metadata": {}, "source": [ "# Primitive generators" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "This notebook contains tests for tohu's primitive generators." ] }, { "cell_type": "code", "execution_count": 1, "metadata": {}, "outputs": [], "source": [ "import tohu\n", "from tohu.v6.primitive_generators import *\n", "from tohu.v6.generator_dispatch import *\n", "from tohu.v6.utils import print_generated_sequence" ] }, { "cell_type": "code", "execution_count": 2, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "Tohu version: v0.5.2+316.g62e480a\n" ] } ], "source": [ "print(f'Tohu version: {tohu.__version__}')" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Constant" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "`Constant` simply returns the same, constant value every time." ] }, { "cell_type": "code", "execution_count": 3, "metadata": {}, "outputs": [], "source": [ "g = Constant('quux')" ] }, { "cell_type": "code", "execution_count": 4, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "Generated sequence: quux, quux, quux, quux, quux, quux, quux, quux, quux, quux\n" ] } ], "source": [ "print_generated_sequence(g, num=10, seed=12345)" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Boolean" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "`Boolean` returns either `True` or `False`, optionally with different probabilities." ] }, { "cell_type": "code", "execution_count": 5, "metadata": {}, "outputs": [], "source": [ "g1 = Boolean()\n", "g2 = Boolean(p=0.8)" ] }, { "cell_type": "code", "execution_count": 6, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "Generated sequence: True, True, False, True, True, True, False, True, True, True, False, True, False, True, False, True, False, True, False, True\n", "Generated sequence: True, True, False, True, True, True, True, False, True, False, True, True, True, True, True, True, True, True, False, True\n" ] } ], "source": [ "print_generated_sequence(g1, num=20, seed=12345)\n", "print_generated_sequence(g2, num=20, seed=99999)" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Incremental" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "`Incremental` returns a sequence of numbers that increase in regular steps." ] }, { "cell_type": "code", "execution_count": 7, "metadata": {}, "outputs": [], "source": [ "g = Incremental(start=200, step=4)" ] }, { "cell_type": "code", "execution_count": 8, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "Generated sequence: 200, 204, 208, 212, 216, 220, 224, 228, 232, 236, 240, 244, 248, 252, 256, 260, 264, 268, 272, 276\n" ] } ], "source": [ "print_generated_sequence(g, num=20, seed=12345)" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Integer" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "`Integer` returns a random integer between `low` and `high` (both inclusive)." ] }, { "cell_type": "code", "execution_count": 9, "metadata": {}, "outputs": [], "source": [ "g = Integer(low=100, high=200)" ] }, { "cell_type": "code", "execution_count": 10, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "Generated sequence: 102, 164, 118, 185, 182, 124, 149, 158, 100, 160, 162, 179, 145, 109, 122, 196, 197, 141, 147, 106\n" ] } ], "source": [ "print_generated_sequence(g, num=20, seed=12345)" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Float" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "`Float` returns a random float between `low` and `high` (both inclusive)." ] }, { "cell_type": "code", "execution_count": 11, "metadata": {}, "outputs": [], "source": [ "g = Float(low=2.3, high=4.2)" ] }, { "cell_type": "code", "execution_count": 12, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "Generated sequence:\n", "\n", "3.091577757836\n", "2.319321421968\n", "3.867892367582\n", "2.867415724879\n", "2.999982210028\n", "2.667956563186\n", "3.375415520585\n", "2.607206865466\n", "2.536107080139\n", "3.122578909219\n" ] } ], "source": [ "print_generated_sequence(g, num=10, sep='\\n', fmt='.12f', seed=12345)" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## CharString" ] }, { "cell_type": "code", "execution_count": 13, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "Generated sequence: bFj7lCDM5eUVwz8, QG5ThX0t5TMklKn, Qule67xq5QaV597, SA4TteJc6OZuDxy, HxzQkefvT0jmCgC\n", "Generated sequence: Ylx3SYjPqrPO0vC, udVUmJ5f2xi6RRv, 8ZYmUYrEgjY5INZ, B9cgzt0nNwfbstm, h84ObqDckapVKgd\n" ] } ], "source": [ "g = CharString(length=15)\n", "print_generated_sequence(g, num=5, seed=12345)\n", "print_generated_sequence(g, num=5, seed=99999)" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "It is possible to explicitly specify the character set." ] }, { "cell_type": "code", "execution_count": 14, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "Generated sequence:\n", "\n", "ADBGBDDEGAFF\n", "CCGEDGFAFFCG\n", "FEBBEBECBAGG\n", "CBGEAFGGGFDG\n", "FCAEAGEFCDCC\n" ] } ], "source": [ "g = CharString(length=12, charset=\"ABCDEFG\")\n", "print_generated_sequence(g, num=5, sep='\\n', seed=12345)" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "There are also a few pre-defined character sets." ] }, { "cell_type": "code", "execution_count": 15, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "Generated sequence:\n", "\n", "andyelmqybtt\n", "jkzrnytduvhy\n", "tqeepfrifbyz\n", "jgyratyzzslx\n", "sibpayqvimjk\n", "\n", "Generated sequence:\n", "\n", "ASF8GQRW7C11\n", "NO9YS70E24L7\n", "0WGGVHYMGC78\n", "NJ7YA1798ZP6\n", "0LCUB8X4MRNN\n" ] } ], "source": [ "g1 = CharString(length=12, charset=\"<lowercase>\")\n", "g2 = CharString(length=12, charset=\"<alphanumeric_uppercase>\")\n", "print_generated_sequence(g1, num=5, sep='\\n', seed=12345); print()\n", "print_generated_sequence(g2, num=5, sep='\\n', seed=12345)" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## DigitString" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "`DigitString` is the same as `CharString` with `charset='0123456789'`." ] }, { "cell_type": "code", "execution_count": 16, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "Generated sequence: 051914469077349, 659717839761152, 631099329607999, 749730509683433, 534610037812414\n", "Generated sequence: 813878162266834, 307715908319673, 988278241189568, 490143826300232, 199602401027500\n" ] } ], "source": [ "g = DigitString(length=15)\n", "print_generated_sequence(g, num=5, seed=12345)\n", "print_generated_sequence(g, num=5, seed=99999)" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Sequential" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "Generates a sequence of sequentially numbered strings with a given prefix." ] }, { "cell_type": "code", "execution_count": 17, "metadata": {}, "outputs": [], "source": [ "g = Sequential(prefix='Foo_', digits=3)" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "Calling `reset()` on the generator makes the numbering start from 1 again." ] }, { "cell_type": "code", "execution_count": 18, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "Generated sequence: Foo_001, Foo_002, Foo_003, Foo_004, Foo_005\n", "Generated sequence: Foo_006, Foo_007, Foo_008, Foo_009, Foo_010\n", "\n", "Generated sequence: Foo_001, Foo_002, Foo_003, Foo_004, Foo_005\n" ] } ], "source": [ "g.reset()\n", "print_generated_sequence(g, num=5)\n", "print_generated_sequence(g, num=5)\n", "print()\n", "g.reset()\n", "print_generated_sequence(g, num=5)" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "Note that the method `Sequential.reset()` supports the `seed` argument for consistency with other generators, but its value is ignored - the generator is simply reset to its initial value. This is illustrated here:" ] }, { "cell_type": "code", "execution_count": 19, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "Generated sequence: Foo_001, Foo_002, Foo_003, Foo_004, Foo_005\n", "Generated sequence: Foo_001, Foo_002, Foo_003, Foo_004, Foo_005\n" ] } ], "source": [ "g.reset(seed=12345); print_generated_sequence(g, num=5)\n", "g.reset(seed=99999); print_generated_sequence(g, num=5)" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## HashDigest" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "`HashDigest` returns hex strings representing hash digest values (or alternatively raw bytes)." ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "### HashDigest hex strings (uppercase)" ] }, { "cell_type": "code", "execution_count": 20, "metadata": {}, "outputs": [], "source": [ "g = HashDigest(length=6)" ] }, { "cell_type": "code", "execution_count": 21, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "Generated sequence: E251FB, E52DE1, 1DFDFD, 810876, A44D15, A9AD2D, FE0F5E, 7E5191, 656D56, 224236\n" ] } ], "source": [ "print_generated_sequence(g, num=10, seed=12345)" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "### HashDigest hex strings (lowercase)" ] }, { "cell_type": "code", "execution_count": 22, "metadata": {}, "outputs": [], "source": [ "g = HashDigest(length=6, uppercase=False)" ] }, { "cell_type": "code", "execution_count": 23, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "Generated sequence: e251fb, e52de1, 1dfdfd, 810876, a44d15, a9ad2d, fe0f5e, 7e5191, 656d56, 224236\n" ] } ], "source": [ "print_generated_sequence(g, num=10, seed=12345)" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "### HashDigest byte strings" ] }, { "cell_type": "code", "execution_count": 24, "metadata": {}, "outputs": [], "source": [ "g = HashDigest(length=10, as_bytes=True)" ] }, { "cell_type": "code", "execution_count": 25, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "Generated sequence:\n", "\n", "b'\\xe2Q\\xfb\\xed\\xe5-\\xe1\\xe3\\x1d\\xfd'\n", "b'\\x81\\x08v!\\xa4M\\x15/\\xa9\\xad'\n", "b'\\xfe\\x0f^4~Q\\x91\\xd3em'\n", "b'\"B6\\x88\\x1d\\x9eu\\x98\\x01\\xbb'\n", "b'vl\\xea\\xf6q\\xcd@v;\\x9d'\n" ] } ], "source": [ "print_generated_sequence(g, num=5, seed=12345, sep='\\n')" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## NumpyRandomGenerator" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "This generator can produce random numbers using any of the random number generators [supported](https://docs.scipy.org/doc/numpy/reference/routines.random.html) by numpy." ] }, { "cell_type": "code", "execution_count": 26, "metadata": {}, "outputs": [], "source": [ "g1 = NumpyRandomGenerator(method=\"normal\", loc=3.0, scale=5.0)\n", "g2 = NumpyRandomGenerator(method=\"poisson\", lam=30)\n", "g3 = NumpyRandomGenerator(method=\"exponential\", scale=0.3)" ] }, { "cell_type": "code", "execution_count": 27, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "Generated sequence: 1.9764617025764353, 5.394716690287741, 0.40280642471630923, 0.22134847826254989\n", "Generated sequence: 40, 24, 31, 34, 27, 32, 29, 29, 35, 38, 30, 32, 38, 36, 36\n", "Generated sequence: 0.7961371899305246, 0.11410397056571128, 0.060972430042086474, 0.06865806254932436\n" ] } ], "source": [ "g1.reset(seed=12345); print_generated_sequence(g1, num=4)\n", "g2.reset(seed=12345); print_generated_sequence(g2, num=15)\n", "g3.reset(seed=12345); print_generated_sequence(g3, num=4)" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## FakerGenerator" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "`FakerGenerator` gives access to any of the methods supported by the [faker](https://faker.readthedocs.io/) module. Here are a couple of examples." ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "#### Example: random names" ] }, { "cell_type": "code", "execution_count": 28, "metadata": {}, "outputs": [], "source": [ "g = FakerGenerator(method='name')" ] }, { "cell_type": "code", "execution_count": 29, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "Generated sequence: Adam Bryan, Jacob Lee, Candice Martinez, Justin Thompson, Heather Rubio, William Jenkins, Brittany Ball, Glenn Johnson\n" ] } ], "source": [ "print_generated_sequence(g, num=8, seed=12345)" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "#### Example: random addresses" ] }, { "cell_type": "code", "execution_count": 30, "metadata": {}, "outputs": [], "source": [ "g = FakerGenerator(method='address')" ] }, { "cell_type": "code", "execution_count": 31, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "Generated sequence:\n", "\n", "453 Ryan Islands\n", "Greenstad, FL 97251\n", "---\n", "USS Irwin\n", "FPO AA 66552\n", "---\n", "55075 William Rest\n", "North Elizabeth, NH 38062\n", "---\n", "926 Alexandra Road\n", "Romanberg, HI 99597\n", "---\n", "8202 Michelle Branch\n", "Baileyborough, AL 08481\n", "---\n", "205 William Coves\n", "Alexanderport, WI 72565\n", "---\n", "821 Patricia Hill Apt. 242\n", "Apriltown, MO 24730\n", "---\n", "486 Karen Lodge Apt. 205\n", "West Gregory, MT 33130\n" ] } ], "source": [ "print_generated_sequence(g, num=8, seed=12345, sep='\\n---\\n')" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Timestamp" ] }, { "cell_type": "code", "execution_count": 32, "metadata": {}, "outputs": [], "source": [ "g = Timestamp(start=\"2018-01-01 11:22:33\", end=\"2018-02-13 12:23:34\")" ] }, { "cell_type": "code", "execution_count": 33, "metadata": {}, "outputs": [ { "data": { "text/plain": [ "datetime.datetime" ] }, "execution_count": 33, "metadata": {}, "output_type": "execute_result" } ], "source": [ "type(next(g))" ] }, { "cell_type": "code", "execution_count": 34, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "Generated sequence:\n", "\n", "2018-01-02 13:07:20\n", "2018-01-26 00:51:38\n", "2018-02-10 08:57:07\n", "2018-01-08 16:01:04\n", "2018-02-02 22:03:09\n", "2018-02-01 18:16:12\n", "2018-01-10 19:21:16\n", "2018-01-20 02:51:48\n", "2018-01-23 19:07:20\n", "2018-01-01 17:56:48\n" ] } ], "source": [ "print_generated_sequence(g, num=10, seed=12345, sep='\\n')" ] }, { "cell_type": "code", "execution_count": 35, "metadata": {}, "outputs": [], "source": [ "g = Timestamp(start=\"2018-01-01 11:22:33\", end=\"2018-02-13 12:23:34\").strftime(\"%-d %b %Y, %H:%M (%a)\")" ] }, { "cell_type": "code", "execution_count": 36, "metadata": {}, "outputs": [ { "data": { "text/plain": [ "str" ] }, "execution_count": 36, "metadata": {}, "output_type": "execute_result" } ], "source": [ "type(next(g))" ] }, { "cell_type": "code", "execution_count": 37, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "Generated sequence:\n", "\n", "2 Jan 2018, 13:07 (Tue)\n", "26 Jan 2018, 00:51 (Fri)\n", "10 Feb 2018, 08:57 (Sat)\n", "8 Jan 2018, 16:01 (Mon)\n", "2 Feb 2018, 22:03 (Fri)\n", "1 Feb 2018, 18:16 (Thu)\n", "10 Jan 2018, 19:21 (Wed)\n", "20 Jan 2018, 02:51 (Sat)\n", "23 Jan 2018, 19:07 (Tue)\n", "1 Jan 2018, 17:56 (Mon)\n" ] } ], "source": [ "print_generated_sequence(g, num=10, seed=12345, sep='\\n')" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Date" ] }, { "cell_type": "code", "execution_count": 38, "metadata": {}, "outputs": [], "source": [ "g = Date(start=\"2018-01-01\", end=\"2018-02-13\")" ] }, { "cell_type": "code", "execution_count": 39, "metadata": {}, "outputs": [ { "data": { "text/plain": [ "datetime.date" ] }, "execution_count": 39, "metadata": {}, "output_type": "execute_result" } ], "source": [ "type(next(g))" ] }, { "cell_type": "code", "execution_count": 40, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "Generated sequence:\n", "\n", "2018-01-02\n", "2018-02-02\n", "2018-01-10\n", "2018-02-12\n", "2018-02-11\n", "2018-01-13\n", "2018-01-25\n", "2018-01-30\n", "2018-01-01\n", "2018-01-31\n" ] } ], "source": [ "print_generated_sequence(g, num=10, seed=12345, sep='\\n')" ] }, { "cell_type": "code", "execution_count": 41, "metadata": {}, "outputs": [], "source": [ "g = Date(start=\"2018-01-01\", end=\"2018-02-13\").strftime(\"%-d %b %Y\")" ] }, { "cell_type": "code", "execution_count": 42, "metadata": {}, "outputs": [ { "data": { "text/plain": [ "str" ] }, "execution_count": 42, "metadata": {}, "output_type": "execute_result" } ], "source": [ "type(next(g))" ] }, { "cell_type": "code", "execution_count": 43, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "Generated sequence:\n", "\n", "2 Jan 2018\n", "25 Jan 2018\n", "9 Feb 2018\n", "8 Jan 2018\n", "2 Feb 2018\n", "1 Feb 2018\n", "10 Jan 2018\n", "19 Jan 2018\n", "23 Jan 2018\n", "1 Jan 2018\n" ] } ], "source": [ "print_generated_sequence(g, num=10, seed=12345, sep='\\n')" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [] } ], "metadata": { "kernelspec": { "display_name": "Python 3", "language": "python", "name": "python3" }, "language_info": { "codemirror_mode": { "name": "ipython", "version": 3 }, "file_extension": ".py", "mimetype": "text/x-python", "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", "version": "3.7.0" } }, "nbformat": 4, "nbformat_minor": 2 }
mit
rysard/cursos
julia/data-science/Machine learning.ipynb
1
3453
{ "cells": [ { "cell_type": "markdown", "metadata": {}, "source": [ "# Machine learning" ] }, { "cell_type": "code", "execution_count": 2, "metadata": {}, "outputs": [ { "name": "stderr", "output_type": "stream", "text": [ "\u001b[1m\u001b[36mINFO: \u001b[39m\u001b[22m\u001b[36mCloning cache of IterTools from https://github.com/JuliaCollections/IterTools.jl.git\n", "\u001b[39m\u001b[1m\u001b[36mINFO: \u001b[39m\u001b[22m\u001b[36mCloning cache of MLBase from https://github.com/JuliaStats/MLBase.jl.git\n", "\u001b[39m\u001b[1m\u001b[36mINFO: \u001b[39m\u001b[22m\u001b[36mInstalling IterTools v0.1.0\n", "\u001b[39m\u001b[1m\u001b[36mINFO: \u001b[39m\u001b[22m\u001b[36mInstalling MLBase v0.7.0\n", "\u001b[39m\u001b[1m\u001b[36mINFO: \u001b[39m\u001b[22m\u001b[36mBuilding SpecialFunctions\n", "\u001b[39m\u001b[1m\u001b[36mINFO: \u001b[39m\u001b[22m\u001b[36mPackage database updated\n", "\u001b[39m\u001b[1m\u001b[36mINFO: \u001b[39m\u001b[22m\u001b[36mMETADATA is out-of-date — you may not have the latest version of MLBase\n", "\u001b[39m\u001b[1m\u001b[36mINFO: \u001b[39m\u001b[22m\u001b[36mUse `Pkg.update()` to get the latest versions of your packages\n", "\u001b[39m" ] } ], "source": [ "Pkg.add(\"MLBase\")" ] }, { "cell_type": "code", "execution_count": 3, "metadata": {}, "outputs": [ { "name": "stderr", "output_type": "stream", "text": [ "\u001b[1m\u001b[36mINFO: \u001b[39m\u001b[22m\u001b[36mPrecompiling module IterTools.\n", "\u001b[39m\u001b[1m\u001b[36mINFO: \u001b[39m\u001b[22m\u001b[36mRecompiling stale cache file /home/ricardo/.julia/lib/v0.6/StatsBase.ji for module StatsBase.\n", "\u001b[39m\u001b[91mERROR (unhandled task failure): \u001b[91mInterruptException:\u001b[39m\n", "Stacktrace:\n", " [1] \u001b[1mprocess_events\u001b[22m\u001b[22m at \u001b[1m./libuv.jl:82\u001b[22m\u001b[22m [inlined]\n", " [2] \u001b[1mwait\u001b[22m\u001b[22m\u001b[1m(\u001b[22m\u001b[22m\u001b[1m)\u001b[22m\u001b[22m at \u001b[1m./event.jl:216\u001b[22m\u001b[22m\n", " [3] \u001b[1mwait\u001b[22m\u001b[22m\u001b[1m(\u001b[22m\u001b[22m::Condition\u001b[1m)\u001b[22m\u001b[22m at \u001b[1m./event.jl:27\u001b[22m\u001b[22m\n", " [4] \u001b[1mstream_wait\u001b[22m\u001b[22m\u001b[1m(\u001b[22m\u001b[22m::Timer, ::Condition, ::Vararg{Condition,N} where N\u001b[1m)\u001b[22m\u001b[22m at \u001b[1m./stream.jl:42\u001b[22m\u001b[22m\n", " [5] \u001b[1mwait\u001b[22m\u001b[22m\u001b[1m(\u001b[22m\u001b[22m::Timer\u001b[1m)\u001b[22m\u001b[22m at \u001b[1m./event.jl:357\u001b[22m\u001b[22m\n", " [6] \u001b[1m(::Base.##300#301{IJulia.#send_stderr,Timer})\u001b[22m\u001b[22m\u001b[1m(\u001b[22m\u001b[22m\u001b[1m)\u001b[22m\u001b[22m at \u001b[1m./event.jl:430\u001b[22m\u001b[22m\n", "\u001b[39m" ] } ], "source": [ "using MLBase" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "collapsed": true }, "outputs": [], "source": [] } ], "metadata": { "kernelspec": { "display_name": "Julia 0.6.1", "language": "julia", "name": "julia-0.6" }, "language_info": { "file_extension": ".jl", "mimetype": "application/julia", "name": "julia", "version": "0.6.1" } }, "nbformat": 4, "nbformat_minor": 2 }
gpl-3.0
ProfessorKazarinoff/staticsite
content/code/matplotlib_plots/stress_strain_curves/stress_strain_curve_with_python.ipynb
1
87571
{ "cells": [ { "cell_type": "markdown", "metadata": {}, "source": [ "In this post, we'll use data from a tensile test to build a stress strain curve with Python and Matplotlib." ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "A tensile test is a type of mechanical test performed by engineers used to determine the mechanical properties of a material. Engineering metal alloys such as steel and aluminum alloys are tensile tested in order to determine their strength and stiffness. Tensile tests are performed in a piece of equipment called a mechanical test frame.\n", "\n", "![instron]({static}/code/matplotlib_plots/stress_strain_curves/images/instron.jpg)" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "After a tensile test is complete, a set of data is produced by the mechanical test frame. Using the data acquired during a tensile test, a stress-strain curve can be produced. " ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "In this post, we will create a stress-strain curve (a plot) from a set of tensile test data of a steel 1045 sample and an aluminum 6061 sample. The stress strain curve we construct will have the following features:\n", "\n", " * A descriptive title\n", " * Axes labels with units\n", " * Two lines on the same plot. One line for steel 1045 and one line for aluminum 6061\n", " * A legend" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Install Python\n", "\n", "We are going to build our stress strain curve with Python and a Jupyter notebook. I suggest engineers and problem-solvers download and install the [Anaconda distribution of Python](https://anaconda.com). See [this post]({filename}/posts/installation/installing_anaconda_on_windows.md) to learn how to install Anaconda on your computer. Alternatively, you can download Python form [Python.org](https://python.org) or download Python the Microsoft Store." ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Install Jupyter, NumPy, Pandas, and Matplotlib\n", "\n", "Once Python is installed, the next thing we need to do is install a couple of Python packages. If you are using the Anaconda distribution of Python, the packages we are going to use to build the plot: Jupyter, NumPy, Pandas, and Matplotlib come pre-installed and no additional installation steps are necessary. \n", "\n", "However, if you downloaded Python from Python.org or installed Python using the Microsoft Store, you will need to install install Jupyter, NumPy, Pandas, and Matplotlib separately. You can install Jupyter, NumPy, Pandas, and Matplotlib with pip (the Python package manager) or install theses four packages with the Anaconda Prompt.\n", "\n", "If you are using a terminal and pip, type:\n", "\n", "```text\n", "> pip install jupyter numpy pandas matplotlib \n", "```\n", "\n", "If you have Anaconda installed and use the Anaconda Prompt, type:\n", "\n", "```text\n", "> conda install jupyter numpy pandas matplotlib \n", "```" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Open a Jupyter notebook\n", "\n", "We will construct our stress strain curve using a Jupyter notebook. See [this post]({filename}/posts/jupyter/opening_jupyter_notebook.md) to see how to open a Jupyter notebook. \n", "\n", "Make sure to save your Jupyter notebook with a recognizable name." ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Download the data and move the data into the same folder as the Jupyter notebook\n", "\n", "Next, we need to download the two data files that we will use to build our stress-strain curve. You can download sample data using the links below:\n", "\n", "[steel1045.xls](https://github.com/ProfessorKazarinoff/staticsite/raw/master/content/code/matplotlib_plots/stress_strain_curves/steel1045.xls)\n", "\n", "[aluminum6061.xls](https://github.com/ProfessorKazarinoff/staticsite/raw/master/content/code/matplotlib_plots/stress_strain_curves/aluminum6061.xls)\n", "\n", "After these .xls files are downloaded, both .xls files need to be moved into the same folder as our Jupyter notebook." ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Import NumPy, Pandas, and Matplotlib\n", "\n", "Now that our Jupyter notebook is open and the two .xls data files are in the same folder as the Jupyter notebook, we can start coding and build our plot.\n", "\n", "At the top of the Jupyter notebook, import NumPy, Pandas and Matplotlib. The command ```%matplotlib inline``` is included so that our plot will display directly inside our Jupyter notebook. If you are using a .py file instead of a Jupyter notebook, make sure to comment out ```%matplotlib inline``` as this line is not valid Python code.\n", " \n", "We will also print out the versions of our NumPy and Pandas packages using the ```.__version__``` attribute. If the versions of NumPy and Pandas prints out, that means that NumPy and Pandas are installed and we can use these packages in our code." ] }, { "cell_type": "code", "execution_count": 1, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "NumPy version: 1.16.5\n", "Pandas version: 0.25.1\n" ] } ], "source": [ "import numpy as np\n", "import pandas as pd\n", "import matplotlib.pyplot as plt\n", "%matplotlib inline\n", "\n", "print(\"NumPy version:\",np.__version__)\n", "print(\"Pandas version:\",pd.__version__)" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Ensure the two .xls data files are in the same folder as the Jupyter notebook\n", "\n", "Before we proceed, let's make sure the two .xls data files are in the same folder as our running Jupyter notebook. We'll use a Jupyter notebook magic command to print out the contents of the folder that our notebook is in. The ```%ls``` command lists the contents of the current folder." ] }, { "cell_type": "code", "execution_count": 2, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ " Volume in drive C is Windows\n", " Volume Serial Number is A048-4C53\n", "\n", " Directory of C:\\Users\\peter.kazarinoff\\Documents\\staticsite\\content\\code\\matplotlib_plots\\stress_strain_curves\n", "\n", "02/13/2020 02:50 PM <DIR> .\n", "02/13/2020 02:50 PM <DIR> ..\n", "05/20/2019 10:37 AM <DIR> .ipynb_checkpoints\n", "05/13/2019 12:59 PM 36,864 aluminum6061.xls\n", "05/20/2019 10:20 AM <DIR> images\n", "05/13/2019 01:09 PM 38,912 steel1045.xls\n", "10/21/2019 11:22 AM 44,972 stress_strain_curve_with_inset.png\n", "10/21/2019 11:22 AM 148,175 stress_strain_curve_with_inset_elastic_region.ipynb\n", "02/13/2020 02:50 PM 87,568 stress_strain_curve_with_python.ipynb\n", "02/13/2020 02:40 PM 113,352 stress-strain_curve.png\n", " 6 File(s) 469,843 bytes\n", " 4 Dir(s) 119,576,158,208 bytes free\n" ] } ], "source": [ "%ls" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "We can see our Jupyter notebook ```stress_strain_curve_with_python.ipynb``` as well as the two .xls data files ```aluminum6061.xls``` and ```steel1045.xls``` are in our current folder. \n", "\n", "Now that we are sure the two .xls data files are in the same folder as our notebook, we can import the data in the two two .xls files using Panda's ```pd.read_excel()``` function. The data from the two excel files will be stored in two Pandas dataframes called ```steel_df``` and ```al_df```." ] }, { "cell_type": "code", "execution_count": 3, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "WARNING *** OLE2 inconsistency: SSCS size is 0 but SSAT size is non-zero\n", "WARNING *** OLE2 inconsistency: SSCS size is 0 but SSAT size is non-zero\n" ] } ], "source": [ "steel_df = pd.read_excel(\"steel1045.xls\")\n", "al_df = pd.read_excel(\"aluminum6061.xls\")" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "We can use Pandas ```.head()``` method to view the first five rows of each dataframe. " ] }, { "cell_type": "code", "execution_count": 4, "metadata": {}, "outputs": [ { "data": { "text/html": [ "<div>\n", "<style scoped>\n", " .dataframe tbody tr th:only-of-type {\n", " vertical-align: middle;\n", " }\n", "\n", " .dataframe tbody tr th {\n", " vertical-align: top;\n", " }\n", "\n", " .dataframe thead th {\n", " text-align: right;\n", " }\n", "</style>\n", "<table border=\"1\" class=\"dataframe\">\n", " <thead>\n", " <tr style=\"text-align: right;\">\n", " <th></th>\n", " <th>TESTNUM</th>\n", " <th>POINTNUM</th>\n", " <th>TIME</th>\n", " <th>POSIT</th>\n", " <th>FORCE</th>\n", " <th>EXT</th>\n", " <th>CH5</th>\n", " <th>CH6</th>\n", " <th>CH7</th>\n", " <th>CH8</th>\n", " </tr>\n", " </thead>\n", " <tbody>\n", " <tr>\n", " <td>0</td>\n", " <td>762</td>\n", " <td>1</td>\n", " <td>5.969</td>\n", " <td>0.01284</td>\n", " <td>201.030792</td>\n", " <td>0.001572</td>\n", " <td>-0.007133</td>\n", " <td>NaN</td>\n", " <td>NaN</td>\n", " <td>NaN</td>\n", " </tr>\n", " <tr>\n", " <td>1</td>\n", " <td>762</td>\n", " <td>2</td>\n", " <td>6.242</td>\n", " <td>0.01392</td>\n", " <td>215.235886</td>\n", " <td>0.000009</td>\n", " <td>-0.014581</td>\n", " <td>NaN</td>\n", " <td>NaN</td>\n", " <td>NaN</td>\n", " </tr>\n", " <tr>\n", " <td>2</td>\n", " <td>762</td>\n", " <td>3</td>\n", " <td>6.936</td>\n", " <td>0.01646</td>\n", " <td>246.816742</td>\n", " <td>-0.000832</td>\n", " <td>0.006942</td>\n", " <td>NaN</td>\n", " <td>NaN</td>\n", " <td>NaN</td>\n", " </tr>\n", " <tr>\n", " <td>3</td>\n", " <td>762</td>\n", " <td>4</td>\n", " <td>8.632</td>\n", " <td>0.02340</td>\n", " <td>371.870361</td>\n", " <td>0.002203</td>\n", " <td>0.000776</td>\n", " <td>NaN</td>\n", " <td>NaN</td>\n", " <td>NaN</td>\n", " </tr>\n", " <tr>\n", " <td>4</td>\n", " <td>762</td>\n", " <td>5</td>\n", " <td>10.533</td>\n", " <td>0.03110</td>\n", " <td>502.501862</td>\n", " <td>0.001481</td>\n", " <td>0.018102</td>\n", " <td>NaN</td>\n", " <td>NaN</td>\n", " <td>NaN</td>\n", " </tr>\n", " </tbody>\n", "</table>\n", "</div>" ], "text/plain": [ " TESTNUM POINTNUM TIME POSIT FORCE EXT CH5 CH6 \\\n", "0 762 1 5.969 0.01284 201.030792 0.001572 -0.007133 NaN \n", "1 762 2 6.242 0.01392 215.235886 0.000009 -0.014581 NaN \n", "2 762 3 6.936 0.01646 246.816742 -0.000832 0.006942 NaN \n", "3 762 4 8.632 0.02340 371.870361 0.002203 0.000776 NaN \n", "4 762 5 10.533 0.03110 502.501862 0.001481 0.018102 NaN \n", "\n", " CH7 CH8 \n", "0 NaN NaN \n", "1 NaN NaN \n", "2 NaN NaN \n", "3 NaN NaN \n", "4 NaN NaN " ] }, "execution_count": 4, "metadata": {}, "output_type": "execute_result" } ], "source": [ "steel_df.head()" ] }, { "cell_type": "code", "execution_count": 5, "metadata": {}, "outputs": [ { "data": { "text/html": [ "<div>\n", "<style scoped>\n", " .dataframe tbody tr th:only-of-type {\n", " vertical-align: middle;\n", " }\n", "\n", " .dataframe tbody tr th {\n", " vertical-align: top;\n", " }\n", "\n", " .dataframe thead th {\n", " text-align: right;\n", " }\n", "</style>\n", "<table border=\"1\" class=\"dataframe\">\n", " <thead>\n", " <tr style=\"text-align: right;\">\n", " <th></th>\n", " <th>TESTNUM</th>\n", " <th>POINTNUM</th>\n", " <th>TIME</th>\n", " <th>POSIT</th>\n", " <th>FORCE</th>\n", " <th>EXT</th>\n", " <th>CH5</th>\n", " <th>CH6</th>\n", " <th>CH7</th>\n", " <th>CH8</th>\n", " </tr>\n", " </thead>\n", " <tbody>\n", " <tr>\n", " <td>0</td>\n", " <td>761</td>\n", " <td>1</td>\n", " <td>6.532</td>\n", " <td>0.01524</td>\n", " <td>201.158508</td>\n", " <td>0.018893</td>\n", " <td>-0.023081</td>\n", " <td>NaN</td>\n", " <td>NaN</td>\n", " <td>NaN</td>\n", " </tr>\n", " <tr>\n", " <td>1</td>\n", " <td>761</td>\n", " <td>2</td>\n", " <td>6.702</td>\n", " <td>0.01600</td>\n", " <td>205.978119</td>\n", " <td>0.000265</td>\n", " <td>-0.013024</td>\n", " <td>NaN</td>\n", " <td>NaN</td>\n", " <td>NaN</td>\n", " </tr>\n", " <tr>\n", " <td>2</td>\n", " <td>761</td>\n", " <td>3</td>\n", " <td>7.098</td>\n", " <td>0.01720</td>\n", " <td>219.295441</td>\n", " <td>-0.000877</td>\n", " <td>-0.024879</td>\n", " <td>NaN</td>\n", " <td>NaN</td>\n", " <td>NaN</td>\n", " </tr>\n", " <tr>\n", " <td>3</td>\n", " <td>761</td>\n", " <td>4</td>\n", " <td>8.697</td>\n", " <td>0.02350</td>\n", " <td>268.505890</td>\n", " <td>0.001453</td>\n", " <td>-0.006798</td>\n", " <td>NaN</td>\n", " <td>NaN</td>\n", " <td>NaN</td>\n", " </tr>\n", " <tr>\n", " <td>4</td>\n", " <td>761</td>\n", " <td>5</td>\n", " <td>10.196</td>\n", " <td>0.03004</td>\n", " <td>322.028168</td>\n", " <td>0.001865</td>\n", " <td>0.012563</td>\n", " <td>NaN</td>\n", " <td>NaN</td>\n", " <td>NaN</td>\n", " </tr>\n", " </tbody>\n", "</table>\n", "</div>" ], "text/plain": [ " TESTNUM POINTNUM TIME POSIT FORCE EXT CH5 CH6 \\\n", "0 761 1 6.532 0.01524 201.158508 0.018893 -0.023081 NaN \n", "1 761 2 6.702 0.01600 205.978119 0.000265 -0.013024 NaN \n", "2 761 3 7.098 0.01720 219.295441 -0.000877 -0.024879 NaN \n", "3 761 4 8.697 0.02350 268.505890 0.001453 -0.006798 NaN \n", "4 761 5 10.196 0.03004 322.028168 0.001865 0.012563 NaN \n", "\n", " CH7 CH8 \n", "0 NaN NaN \n", "1 NaN NaN \n", "2 NaN NaN \n", "3 NaN NaN \n", "4 NaN NaN " ] }, "execution_count": 5, "metadata": {}, "output_type": "execute_result" } ], "source": [ "al_df.head()" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "We see a number of columns in each dataframe. The columns we are interested in are **FORCE**, **EXT**, and **CH5**. Below is a description of what these columns mean.\n", "\n", " * **FORCE** Force measurements from the load cell in pounds (lb), force in pounds\n", " * **EXT** Extension measurements from the mechanical extensometer in percent (%), strain in percent\n", " * **CH5** Extension readings from the laser extensometer in percent (%), strain in percent" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "# Create stress and strain series from the **FORCE**, **EXT**, and **CH5** columns\n", "\n", "Next we'll create a four Pandas series from the ```['CH5']``` and ```['FORCE']``` columns of our ```al_df``` and ```steel_df``` dataframes. The equations below show how to calculate stress, $\\sigma$, and strain, $\\epsilon$, from force $F$ and cross-sectional area $A$. Cross-sectional area $A$ is the formula for the area of a circle. For the steel and aluminum samples we tested, the diameter $d$ was $0.506 \\ in$.\n", "\n", "$$ \\sigma = \\frac{F}{A_0} $$\n", "\n", "$$ F \\ (kip) = F \\ (lb) \\times 0.001 $$\n", "\n", "$$ A_0 = \\pi (d/2)^2 $$\n", "\n", "$$ d = 0.506 \\ in $$\n", "\n", "$$ \\epsilon \\ (unitless) = \\epsilon \\ (\\%) \\times 0.01 $$" ] }, { "cell_type": "code", "execution_count": 6, "metadata": {}, "outputs": [], "source": [ "strain_steel = steel_df['CH5']*0.01\n", "d_steel = 0.506 # test bar diameter = 0.506 inches\n", "stress_steel = (steel_df['FORCE']*0.001)/(np.pi*((d_steel/2)**2))\n", "\n", "strain_al = al_df['CH5']*0.01\n", "d_al = 0.506 # test bar diameter = 0.506 inches\n", "stress_al = (al_df['FORCE']*0.001)/(np.pi*((d_al/2)**2))" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "# Build a quick plot\n", "\n", "Now that we have the data from the tensile test in four series, we can build a quick plot using Matplotlib's ```plt.plot()``` method. The first x,y pair we pass to ```plt.plot()``` is ```strain_steel,stress_steel``` and the second x,y pair we pass in is ```strain_al,stress_al```. The command ```plt.show()``` shows the plot." ] }, { "cell_type": "code", "execution_count": 7, "metadata": {}, "outputs": [ { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAXcAAAD4CAYAAAAXUaZHAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4xLjEsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy8QZhcZAAAgAElEQVR4nO3deXwcd33/8ddnD933LUu25UO2YzunFSdOyNEk5OAXCIWQhITEhbQubVNKgRZo+/sBLTx+hR+F0vLjMGcSyMWZ5EdCCM6FQy7bceIzlnzLlnWfK2nP7++PGdlrWY5k7a5mNft5Ph77mNmZ2dmPxuP3fvc7szNijEEppZS7eJwuQCmlVPJpuCullAtpuCullAtpuCullAtpuCullAv5nC4AoKKiwjQ0NDhdhlJKzSqbN2/uMsZUTjQvLcK9oaGBTZs2OV2GUkrNKiJy8HTztFtGKaVcSMNdKaVcSMNdKaVcSMNdKaVcSMNdKaVcSMNdKaVcSMNdKaVcKC3Oc1cqmYwxDAYj9A+H6R8JE4xECUUMkViMSNQQjsaIxKxhOGqIRGOEY9YwEjWE7eUiMUO2z0OO30uu30uO32MNs7zk+LzkZk083e8VRMTpzaAynIa7SlvGGHqHw7QPjNIbCNE/Ep7SY2AkTMzB2xR4PXI89E98MHjjPgA8cR8M1qMkz09tcQ41RTnUFudSVZRNjt/r3B+hZj0Nd+UIYww9gRCHe0c41j/Ksf4R2gZG7fFRjg2M0tY/SigSm/D1Xo9QnOunONdPUa6f0rwsGsrzj0+Ln5eb5cXvEfw+Dz6P4Pd68HkFn8dD1ti4V/B7rHG/14Pf68EjEIrGGA3FGI1EGQlFGQlHGQ2fGI6GYydNPzEvZg1D0ZNeOzASpiPu9SMha9lQ9NS/szw/i+qiHCv0i3OYU5LLwop8GqsLmF+ej9+rvarq9DTcVUoNBSO0dAxxoCvA/q4AB7qt4f6uAIOjkZOWzfJ6qC7OprYol3PqS7huhdWSrS7KoSw/ywrsPCu087O8M9L1ke3zku3zUow/pe8zFIwc/2Br67c+8NoGRmnvtz7kXj/cR08gdHx5n0doqMhncWUBjdUFLK4qoKE8n4YK6wNOqUnDXUR+CNwIdBhjVtrT/g/wbiAE7AU+bIzps+d9FrgbiAIfM8Y8laLaVRqJxQwHe4bZ3TbArmOD9nCAwz0jx5cRgbqSXBZU5PPe8+pYUJHP3LI8aout1mlZflbG9lUXZPtYXGWF9OkMhyLs6wzQ0jFEc8cgze1D7OkY5Old7UTj+qHK87NoqMinoTyfhZX5NFYVcE59CTXFOTPxp6g0IZPdQ1VELgeGgPviwv1a4BljTEREvgxgjPm0iCwHHgRWA3OA3wNLjDHRt3uPpqYmoxcOmz0GR8PsahtkV9sAu48NsKttkLeODTIStv6ZPQILKvJZVlvE8toiFlcVsNAOcu1HTr5gJMqh7uHj34jivx21DwSPL1dVmM059SWcU19sP0ooy89ysHKVKBHZbIxpmmjepC13Y8wLItIwbtrv4p6+DNxsj98EPGSMCQL7RaQFK+hfmkbdKk10DwV57UAPr+7v5dUD3ew8OnD8gGVJnp+zaoq4bfVczqop4qzaIhqrCzTEZ1C2z0tjdSGN1YWnzAsEI+w+Nsi21j7ebO3njdY+NuxuZ6xNN7csl3PqSo6H/cq6IgpztFvHDZLR5/4R4GF7vA4r7Me02tNOISLrgHUA8+bNS0IZKpkO9wzz1I5jPLXjGJsO9mIMZPs8XDCvlHuuauT8uSWcVVtEdVF2xnalzAb52T5WzS9l1fzS49MGR8NsPzLAm3bgv3mkj99sawOsrrOFFfmcW1/C2Xbgr5hTpB/Ws1BC4S4i/wxEgJ+OTZpgsQn7fYwx64H1YHXLJFKHSlxvIMRL+7p5saWLP+7tZn9XAIBlNYV87KpGLl9Sydl1xWT59AyN2a4wx8+aReWsWVR+fFpPIHQi7Fv72djSxS9fPwJAjt/DxQvLuXJJJVcuraKhIt+p0tUZmHa4i8harAOtV5sTHfetwNy4xeqBo9MvT6VSa+8wv91+jN9uP8bmQ1brPD/Ly0ULy7njonlcc1a1/kfOEGX5WVy5tIorl1Ydn3asf5Q3Wvt4aW83z+/p5POP74THd1JdlM2KOcWsmFNkP4qpL83Vb3BpZlrhLiLXA58GrjDGDMfNegx4QES+hnVAtRF4NeEqVdLs6xziSTvQtx3pB+Cs2iL+7upGLmus4Jz6Ej1/WgFQU5xDTXEN162oAeBgd4Dn93Sy9VAfO44O8PyezuNn6ZTk+bm8sZJ3Lq/miqWVFGm/veOmcrbMg8CVQAXQDnwO+CyQDXTbi71sjPmovfw/Y/XDR4CPG2OenKwIPVsm9TYd6OHfn9zNpoO9AJw7t4QbVtZw/YoabZ2raRkNR3nr2CA7jg6w5VAvz+7uoDsQwucRVi8o4/IllVzeWMlZtYXaqk+RtztbZtJwnwka7qkxGo7y1I5jPLLpMC+2dFNVmM26yxfyrrNrmVOS63R5ymWiMcPWw738bmc7z7/Vye5jgwBUFmZzWWMFVyyp5B2LKygvyHa4UvfQcM8w24/087NNh/n11qP0j4SpK8nl9ovm8eFLG8jL0h8lq5nRPjDKC3s6eaG5i43NnfQOhxGBlXOKuXxJBZc3VnLB/FLtBkyAhnsGiMUMj795lPUv7GPH0QGyfB6uX1HDLU1zuWRROR6Pfi1WzonGDNuP9Nth38mWQ31EY4aCbB9rFpWzan4pZ9cVs3JOMcV52l8/VRruLhaNGV7Y08k3NjSz9XAfy2oKuf2iebzn3DmU5OmvD1V6GhgN88eWbl5o7mRjcxeHek6clzG/PI+VdcVcOL+UWy+cR26WnmN/OhruLjQajvKjFw/w01cO0to7QnVRNv9w3TLed36dttLVrNMTCLH9SD/bjvQfH7b2jjCnOIdPXLuUdy6v1guiTUDD3WW2H+nn4w9vpaVjiDULy7nj4nlcu7xGf2CkXOXV/T184fEd7Dg6gEesM7zesbiCdyyu4Px5pbq/o+HuGh2Do3zj9808+OohKguz+eoHzuWyxkqny1IqZaIxw6YDPWxs6WJjSxdvHO4jZiDX7+WihWVW2DdWsLQ6M0+31HCfxWIxwwvNnTz82mF+v6udmIE7L57Px69p1D51lXH6R8K8bF8mY2NzF/vsy2RUFGTzjsXlXGqHfW1xZpzqq+E+C8Vihqd2HOPrv9/DnvYhyvKzeN/5ddxx8XwW6I+OlALgSN/I8aB/saWLbvuGJosq87mssZJLF1dwyaJy8rPdeQqwhvss9IXHd/CjFw+wqDKfj13dyA0ra7WPUam3EYsZ3mofZGOz1YXzyv5uRsMxKgqy+crNZ3PVsmqnS0w6DfdZ5s3WPt7zzRe58+L5fP49K/Dq2S9KnbFgJMpr+3v54m92svvYIO9cXs219rVvqgrdcVeqhG7WoWbehl0deAQ+ee0SDXalpinb5+UdjRU8es+l/PeGFh7ZdJind7YDcE59MZc3VnLJonIumF/qyuvVa7inkZf3dVNTlENr7wi1xbl6wFSpJMj2efnUdUv55LVL2Nk2wHNvdfLM7g6+/fxevvlsC1k+D6vmlXLzqnred0Gda8660XBPA+FojK8+9RbffWEfK+YUsbCyAL/XHTuYUulCROzr0BfzN3+ymKFghNf29/DHvV08v6eTT/7sDR567RB/f80SVi8owzfLr3mjfe4O23l0gE/97A12tg1w7twS3jjcR2VhNiW5fp7+xBVOl6dURojFDD/f3Mr/fnIXvcNhSvL8XL2smmtXVHPp4goK0vRsG+1zT0PGGH76yiH+9fGdFOX6+c6HVnHl0kre8eVn6BwMUqmXRVVqxng8wi0XzuXGc2t5YU8Xv9txjN/vaucXW1rxeYRz55ZwiX1rwqb5ZbPizDUNdwfs7wrwP3+9nY0tXVyxpJKv33oeZflW//pdaxr42tN78M+CnUcpt8nL8nH9yhquX1lDOBrjtQM9x+8r/K3n9vLfz7RQV5LLx69p5H0X1Kf1CQ8a7jPsmd3t/O0Dr+MR4d9uWsEdF80/6UJfH7p4Pt96rgV/Gu80SmUCv9fDJYsquGRRBQCDo2FebOnm28+18A8/f5P1L+zjU9ct5drl1Wl5EFb73GeIMYYfvXiAL/5mJ8vnFPG9u5pO+xPph187hM/j4f2r6me4SqXUZIyxfj3+lafeYl9ngPnleccvaLZmUfmMnuWmP2JyWDga4/OP7eCnrxziuhXVfP3W8/SOSErNcpFojF9vPcpvt7fx0t5uAqEoIrC6oYzP3LCM8+eVprwGDXcH9Y+EueeBLfyhuYuPXrGIf7xuqV5vXSmXCUdjvHG4jz80d/HAq4foHAzy/gvq+fQNS1P6a1gNd4cc7A7wkR+/xqGeYb70p2dzS9Ncp0tSSqXYUDDCN59p4Ycb95Pl87Du8oXceE4tCysLkv5eGu4OeHV/D395/yYM8J0PreLiheVOl6SUmkEHugJ88Tc7+f2uDgAWVuZzzVnVvHN5NU3zS5NyEFbDfYb9YnMrn/nlm8wtzeMHf3ahXqJXqQzW2jvMhl0d/H5XOy/v6yYcNSyvLeKjVy7i3efUJhTyCf2ISUR+CNwIdBhjVtrTyoCHgQbgAHCLMaZXrCq/AbwLGAb+zBizZdqVzzKhSIyv/HY339+4n0sWlfPtO1bpndyVynD1pXmsvaSBtZc0MDga5oltbfzH7/bwsQdfpyDbm7JLEU/llzI/Bq4fN+0zwAZjTCOwwX4OcAPQaD/WAd9OTpnpr284xC3ffYnvb9zPXWvmc+9HVmuwK6VOUpjj59YL5/HoPZfynnPnUJaful+iT9pyN8a8ICIN4ybfBFxpj98LPAd82p5+n7H6el4WkRIRqTXGtCWr4HTUGwhxx/dfoaVziG/fcQE3nF3rdElKqTRWW5zLf33w/JS+x3R/4149Ftj2sMqeXgccjluu1Z52ChFZJyKbRGRTZ2fnNMtwXvdQkNvtYP/eXU0a7EqptJDsC5hMdGRgwiO2xpj1xpgmY0xTZWVlksuYGR0Do9y2/mX2dQ7x/buauGLJ7Pw7lFLuM91wbxeRWgB72GFPbwXiT+auB45Ov7z0dbRvhFu++xJH+kb48YdXc7kGu1IqjUw33B8D1trja4FH46bfJZaLgX439rcf6x/lg997me5AiJ/8+UWsWaTnsCul0stUToV8EOvgaYWItAKfA/4deERE7gYOAR+wF38C6zTIFqxTIT+cgpod1TEwyu3fe5nuoRD33716Rq4foZRSZ2oqZ8t88DSzrp5gWQP8TaJFpauD3QHu+uGrdA4Gue8jGuxKqfSllyacokAwwu3fe4VAKML9d1/Eqvka7Eqp9KXhPgWBYISPP7yVI30j/PyjazTYlVJpT8N9El1DQdb+8FV2tQ3wv25cTlNDmdMlKaXUpDTc30bfcIhb7dMdf7D2Qv5kWdXkL1JKqTSg4X4aA6Nh1t2/mUM9w9x/90V6yV6l1Kyi4T6B0XCU2777MnvaB/mPW87VYFdKzToa7hP4rw3N7GwbYP2dq7h2RY3T5Sil1BlL9rVlZr2vPvUW33puL++/oF6DXSk1a2m4x9mwq51vPtvCLU31fOXmc5wuRymlpk3D3baxuYt7HnidZTWF/Nt7V+L1JH5/Q6WUcoqGO9YVHj/6k83ML8/jvrtXk+3zOl2SUkolJOPDfXA0zF/9ZDPRmOF7dzVRVZjjdElKKZWwjD5bZjQc5e57N7H96ADf/dAq5pblOV2SUkolRUa33D/xyFZeO9DD1245l2uWp+YO5Eop5YSMDfcnt7XxxLZjfOrapdx03oS3eVVKqVkrI8O9uX2Qf/zFm5xdV8y6yxc6XY5SSiVdxoV7S8cQt65/mWyfl2/dcQF+b8ZtAqVUBsi4ZPvC4zuIxgw/++gaPYCqlHKtjAr3jc1d/KG5i7+9ajELKvKdLkcppVImY8I9FjN8+be7qSvJ5c41850uRymlUipjwv2RTYfZdqSfT167RH+BqpRyvYwI9/aBUb7w+E7WLCzX0x6VUhkhI8J9w64ORsJRvnDTCr0gmFIqIyQU7iLy9yKyQ0S2i8iDIpIjIgtE5BURaRaRh0UkK1nFTtcfmjuZU5xDY1WB06UopdSMmHa4i0gd8DGgyRizEvACtwFfBr5ujGkEeoG7k1HodHUPBXlmdwdXnVWFiLbalVKZIdFuGR+QKyI+IA9oA64Cfm7Pvxd4b4LvkZBfbGklGInxZ5c0OFmGUkrNqGmHuzHmCPBV4BBWqPcDm4E+Y0zEXqwVmPAIpoisE5FNIrKps7NzumVM6sntx1hZV8TiqsKUvYdSSqWbRLplSoGbgAXAHCAfuGGCRc1ErzfGrDfGNBljmiorK6dbxttq6x/h9UN9XK/3QlVKZZhEumWuAfYbYzqNMWHgl8AlQIndTQNQDxxNsMZpe2Z3BwDXr9RwV0pllkTC/RBwsYjkiXWk8mpgJ/AscLO9zFrg0cRKnL59nQFy/B4WVepZMkqpzJJIn/srWAdOtwDb7HWtBz4NfEJEWoBy4AdJqHNathzqZWl1oZ4lo5TKOAndZs8Y8zngc+Mm7wNWJ7LeZBgNR3njcB9/feVip0tRSqkZ59pfqB7oDhAz0FitXTJKqczj2nDf2xEA0P52pVRGcm24bz3cS5bPoy13pVRGcm247+sMsKiyQC/vq5TKSK4N97b+UWqLc5wuQymlHOHacD/SN0JdSa7TZSillCNcGe5DwQj9I2HqSjXclVKZyZXhfqR3BEBb7kqpjOXOcO8bBtCWu1IqY7kz3O2We7223JVSGcqd4d43SpbXQ0VBttOlKKWUI1wZ7j2BIGX5WXj0ZthKqQzlynDf2xnQ/nalVEZzZbgf6x+loTzf6TKUUsoxrgz3SCyG36tdMkqpzOXKcB8Nx/B7XfmnKaXUlLguATsGRukfCTO/PM/pUpRSyjGuC/c/NHcBsGZRucOVKKWUc1wX7j67r93ncd2fppRSU+a6BCzMsW4LOxSMOFyJUko5x3XhfvzSA3qeu1Iqg7ku3I/2j+LzCJV66QGlVAZzXbgLYADR09yVUhnMdeE+FIyQl+VFNN2VUhksoXAXkRIR+bmI7BaRXSKyRkTKRORpEWm2h6XJKnYqjurt9ZRSKuGW+zeA3xpjlgHnAruAzwAbjDGNwAb7+YwZGI1QlOufybdUSqm0M+1wF5Ei4HLgBwDGmJAxpg+4CbjXXuxe4L2JFnkmhkMRCrJ9M/mWSimVdhJpuS8EOoEficjrIvJ9EckHqo0xbQD2sGqiF4vIOhHZJCKbOjs7EyjjZIFglLwsb9LWp5RSs1Ei4e4DLgC+bYw5HwhwBl0wxpj1xpgmY0xTZWVlAmWcLBDUlrtSSiUS7q1AqzHmFfv5z7HCvl1EagHsYUdiJU5dLGboGwlrn7tSKuNNO9yNMceAwyKy1J50NbATeAxYa09bCzyaUIVnoGc4RCgSY05xzky9pVJKpaVE+y/+FvipiGQB+4APY31gPCIidwOHgA8k+B5TFosZALx6LXelVIZLKNyNMVuBpglmXZ3IeqerdzgMQLF2yyilMpyrmrhH+oYBmKsXDVNKZThXhfvgqHWZXz2gqpTKdK4K9xy/dX77SCjqcCVKKeUsV4V71D6gqpRSmc5V4X60z7pRx9xSvTm2UiqzuSrcPfZlfg3agldKZTZXhbvfZ/05oWjM4UqUUspZrgr3kZB1tszYgVWllMpUrgr3oaB1lkyhXjhMKZXhXBXuY/QWe0qpTOfKcFdKqUznqv6LfZ1D1BTpFSFnDWMgFoVoEKJhMDHruYnGDSMQi42bFp1guUnmTbh87MRQPODxgog1Ll57ODbdc+rjpOlxrz1l+tjyntNMP9P39YE3y1qfUqfhqnA/2D3M0ppCp8uYXYyByCiER048IiMQHoXwsD1veNzzseXi5kVGIBKCaOhEWEfsYTRoTT8+335EgqCnrU6fNxt8OeCbwtCfC1n54M87eXh8PA+yCiG3FPLKIKfY+nBRs5arwt3jhq728Ci8+RAM99it1ogVkGPjkz2fyrLR0MmhPB3iAV+uFRr+3BMh4vVboeP1Q16+1cIce/jGxrNPHvf6rYd4T7RWPV6rhTp+mtjTj4974pYZmzd+2ti6PCdPOz4U60POxE5uzRv7G4OJnfiWccr0mP3NYqLpca+dcPq4x1TfNxaxPigjo9YH5ITDURjts56PfRCHAta/ezQ0lX9gK+DHwj63FHLLTvO89MTznGJreyrHuSrcu4ZCLKwscLqMU0XDEByE4IA1jIag+mwr4MZ74pPw+k9Onubx2Q8/eOPGPb5xz71WSI499+dCduGp87x2S86fY7XafPbwpOdjoZ078bJev/4nnq2i4RNBHxqGcMAaBgetD4ThHhjphZGeE+PD3dDdAsO9EOw//bo9fiishaI5UFQLRXXWeGH8eI21/6iUclW4B0IRinKS+CdFQieH8knj8dPsx+jAxNMnah3nlMBZN8KKP4UFV5zY2XsPQtUK+IsNJ0JZQ1Qlk9cPuSXWYzqikVM/BEZ6reeBThhsg4Gj0PYmvPXbCfZ/gYIqO+jn2B8E8Y8668MgSy8jkghXhftoOEqWbwoHmQJdViukZx/0HbZ2yECnNT3QabVSgoNWX/FkxAs5RVYLOdseFlRB+WJ7Wtz0sYeJWjv9jketVnpuKZz1bivoB9ugvNFqLSuVjrw+yK+wHpMxxvogGDg67nHE2td798PBF61lxsspsVv79jeBsoVQ1wQ1K6152uh5W64J90g0xmg4RmHOBF/3omFo/h289QTs/wP0HTx5fm4p5Fdaj6pldt/huMA+KaDjxv2509vJVvyp1ee99xnY8SvY/kvYcp81r2Lp279WqdlCxO6PL4XqFadfLhSAgTYYjAv/AfsbwKD9LSDQcWL5rEIorh/3mHtivGhOxnf9uCbcB+wbdRSO75bZ9xw8eg/0H7YO9jRcBqv/AiqXWS2B4rkT933PBH8OLHuX9QiPQMsGK+gXX+NMPUo5JSsfKhZbj9MZ7oEjm6FzN/Qfsf5P97fC0ddhuGvcwmL17RfXW//Xa86BikYobbCmZUDwuybcj/Ra/XpzSuK6M3Y/AQ/dbv2j3vYgNL4zff9R/blWH/xZNzpdiVLpKa/M+j/c+M5T54WGrVb+WOCPPfoOWt/YX7//xLLitQK+5myou8Bq5BXW2o8a66wvF3BNuPcOW6d3lefHtcLfeAAKqmHdc1bLQCnlTll5p2/5GwODx6BnL/QesB7dLdD2Buz+f+MWFqheCfMugnlrYO5qKKqflT8Yc024D4yGAU70uQeHoPlp60ClBrtSmUvEPihbCw3vOHneSN+J/v3Bo9B3CFpfg60Pwmvft5bxZlkHdovroWQ+1DfBgsutFn8aH9R1TbgPju9zb99h/XBj5fsdrEopldbGTgkdf7A3GoH2bVYff9+hE908zU/BVvt3KIVzoOFSK/ALa6yz5AprrT7+nKKZ/1vGSTjcRcQLbAKOGGNuFJEFwENAGbAFuNMYM5WfxCVk0G65F+XaLfexM2LKFqX6rZVSbuP1wZzzrUc8Y6B7Lxx4wTrz7uAfYfsvrF8PHydQdRbUX2h169Svtk6NnuGunWS03P8O2AWMfVR9Gfi6MeYhEfkOcDfw7SS8z9saCVkbN3fsRh1Htli/xCyak+q3VkplCpETfftNH7GmxaLWb2MGj9k/3toKh1+FHb+GLfday+SU2GF/Eaz+c+vU0BRLKNxFpB74H8CXgE+IdSH1q4Db7UXuBT7PDIR7tt/6VBwJRynI9kF3s3XOenYaXo5AKeUeHq/VJVNQBbXnwNLrremxGHTtgdZXrbA/sBFanoZnvwiN11nL1pxt/TCruC7pZSXacv9P4B+BsUsxlgN9xpiI/bwVmLBqEVkHrAOYN29egmXA0b4RCrN95Gd5rR9EHNgIy/S0QqWUQzweq4FZtQwuuMuatuV+OPAH60dZLU9b3Tlr7oHrvpT0t592uIvIjUCHMWaziFw5NnmCRSe8pqsxZj2wHqCpqSnh6776PB6ixlh3YRq7Cl59U6KrVUqp5LngTusBVk6175z+NX4mkUjL/VLgPSLyLiAHq8/9P4ESEfHZrfd64GjiZU4ux+8hHLUPagy2WcOCqpl4a6WUOnP+XKhflbLVT/vwrTHms8aYemNMA3Ab8Iwx5g7gWeBme7G1wKMJVzkFoUiMLK/953TvtYZlC2firZVSKu2k4tycT2MdXG3B6oP/QQre4xShaAz/2BUhh9qtocc1p/ErpdQZSUr6GWOeA56zx/cBq5Ox3jNxUsu9Y5d9FbqVM12GUkqlhdl3wYTTCEVjJ67lfmST3u5LKZXR3BPukbhwH2iDORc4W5BSSjnINeHe1j9KRb59qU5vlnUzZKWUylCuScDhUJT8bK91wbDBo6deE0IppTKIa8K9MMfHUDBiXcUNrKu1KaVUhnJNuHcOBqkqyjlx+mNOan71pZRSs4Frwt0Yg1fEursKWNdVVkqpDOWacPeIEDUG9r9gTXDJfRCVUmo6XPMTzu5AiNI8PzAfAp16jrtSKqO5puV+vFtm8Ch4/E6Xo5RSjnJNuEdjBq/HA4EuqNMfMCmlMptrwj0SM/g9xrqbud5aTymV4VwR7rGYIRozlIXbIRxwuhyllHKcK8J9YDRMJGYoGbv8QCzy9i9QSimXc0W4hyLWHZgKYgPWhIqlDlajlFLOc0W4dwwGAZgf3GNNqL/QwWqUUsp5rgj3MZHsYmvE65rT95VSalpcEe5Bu1smNzZsTcgtdbAapZRynivCfThkHUAtChywJuSVO1eMUkqlAVeEeyAYBSAn1GtdDTIr3+GKlFLKWa4I97GWe85IG5QvcrgapZRynivCPRCyWu5ZffuhoNrhapRSynmuCPfhYAQvUTyBdiiZ73Q5SinluGmHu4jMFZFnRWSXiOwQkb+zp5eJyNMi0mwPU37qSiAUZamnFYmFoW5Vqt9OKaXSXiIt9wjwSWPMWcDFwN+IyHLgM8AGY0wjsMF+nlLDwQiVvlHrSb6eKaOUUtMOd2NMmzFmiz0+COwC6oCbgNP66kMAAAlwSURBVHvtxe4F3ptokZMJhKIU+61+d72Wu1JKJanPXUQagPOBV4BqY0wbWB8AQNVpXrNORDaJyKbOzs6E3n84FGGet9t6UrYgoXUppZQbJBzuIlIA/AL4uDFmYKqvM8asN8Y0GWOaKisrE6ohEIxS7+kG8UJBTULrUkopN0go3EXEjxXsPzXG/NKe3C4itfb8WqAjsRInNxyKUCpD4MvR68oopRSJnS0jwA+AXcaYr8XNegxYa4+vBR6dfnlTEwhF8Xj9YKJgTKrfTiml0l4izdxLgTuBbSKy1Z72T8C/A4+IyN3AIeADiZU4uZFQhArTozfpUEop27TD3RizEZDTzL56uuudjkAwisfvhcJakNOVpJRSmcMVv1AdCkbIkTAEB50uRSml0sKsD/eB0TD9I2FieRXgz3W6HKWUSguzPtyDYfv+qdE+yKtwuBqllEoPsz7c87K8AGQFuyFfw10ppcAF4R6JWqc+5oZ7IT+xH0MppZRbzPpwz/Z7yCZEXrALCia80oFSSmWcWR/uOX4vy7O78MWCMOd8p8tRSqm0MOvDPRiJYkLD1pOcYmeLUUqpNDHrwz3b52V+tn29sjy9lrtSSoELwh1gkWm1RiqWOFuIUkqlCVeEe1Wsg4CvFLILnC5FKaXSwqwP90g0Rj7D+E3Q6VKUUiptzPpwH43EyGcUj9ErQiql1JjZH+7hKB2mhIg33+lSlFIqbcz6cD/aN4JfIsT8eU6XopRSaWPWh3tPIEQ2YesWe0oppQAXhPu21n6KGOaAXspdKaWOm/XhDjBCNjWxdojqQVWllAIXhHthjo9tsQWUyZB1g2yllFKzP9ybGsoolGGiHj94s5wuRyml0sKsD/fOwSCrPM2EihbozbGVUso268O948h+mjx7MHPOc7oUpZRKG7M+3AebXwQgd+GlDleilFLpI2XhLiLXi8hbItIiIp9J1fss7vwdI558ZMVNqXoLpZSadVIS7iLiBf4vcAOwHPigiCxP9vuEnv8aV0ZfYkt0EeSWJnv1Sik1a6Wq5b4aaDHG7DPGhICHgKQ3rf0LL+Nw1iIC1/5HsletlFKzmi9F660DDsc9bwUuSvabyNwLmftPW5ib7BUrpdQsl6qW+0TnJJqTFhBZJyKbRGRTZ2dnispQSqnMlKpwb4WTGtT1wNH4BYwx640xTcaYpsrKyhSVoZRSmSlV4f4a0CgiC0QkC7gNeCxF76WUUmqclPS5G2MiInIP8BTgBX5ojNmRivdSSil1qlQdUMUY8wTwRKrWr5RS6vRm/S9UlVJKnUrDXSmlXEjDXSmlXEiMMZMvleoiRDqBgwmsogLoSlI5qaa1Jt9sqRO01lTJ1FrnG2MmPJc8LcI9USKyyRjT5HQdU6G1Jt9sqRO01lTRWk+l3TJKKeVCGu5KKeVCbgn39U4XcAa01uSbLXWC1poqWus4ruhzV0opdTK3tNyVUkrF0XBXSikXSrtwn+zeqyKSLSIP2/NfEZGGuHmftae/JSLXTXWdM12riLxTRDaLyDZ7eFXca56z17nVflQ5XGuDiIzE1fOduNessv+GFhH5LxGZ6Dr+M1nrHXF1bhWRmIicZ89zarteLiJbRCQiIjePm7dWRJrtx9q46UnfrtOtU0TOE5GXRGSHiLwpIrfGzfuxiOyP26bnJVpnIrXa86Jx9TwWN32Bva802/tOlpO1isifjNtXR0Xkvfa85GxXY0zaPLCuILkXWAhkAW8Ay8ct89fAd+zx24CH7fHl9vLZwAJ7Pd6prNOBWs8H5tjjK4Ejca95DmhKo+3aAGw/zXpfBdZg3ZzlSeAGJ2sdt8zZwL402K4NwDnAfcDNcdPLgH32sNQeL03Fdk2wziVAoz0+B2gDSuznP45f1ultas8bOs16HwFus8e/A/yV07WO2xd6gLxkbtd0a7lP5d6rNwH32uM/B662WzY3AQ8ZY4LGmP1Ai72+VN3Pddq1GmNeN8aM3bxkB5AjItlJqCnptZ5uhSJSCxQZY14y1h55H/DeNKr1g8CDSajn7UxaqzHmgDHmTSA27rXXAU8bY3qMMb3A08D1Kdqu067TGLPHGNNsjx8FOoBU3l0nkW06IXvfuAprXwFr35mRfXWKtd4MPGmMGU5CTcelW7hPdO/VutMtY4yJAP1A+du8dirrnOla470feN0YE4yb9iP769j/TFJXR6K1LhCR10XkeRG5LG751knW6UStY27l1HB3Yrue6WtTsV2T8n9ARFZjtVD3xk3+kt1d8/UkNVASrTVHrNt3vjzWzYG1b/TZ+8p01nk6ycqW2zh1X014u6ZbuE9679W3WeZMpycqkVqtmSIrgC8Dfxk3/w5jzNnAZfbjzgTrnLSOSZZpA+YZY84HPgE8ICJFU1zndCRju14EDBtjtsfNd2q7nulrU7FdE16n/Y3ifuDDxpixVuhngWXAhVhdC59OpMixt5pg2pnUOs9YP+2/HfhPEVmUhHWeTrK269lYNzYak5Ttmm7hPum9V+OXEREfUIzVX3W6105lnTNdKyJSD/wKuMsYc7wlZIw5Yg8HgQewvvo5VqvdzdVt17QZq9W2xF6+fpJ1zmitcfNPaQk5uF3P9LWp2K4J/R+wP8x/A/yLMeblsenGmDZjCQI/wvltOtZ1hDFmH9ZxlvOxLtJVYu8rZ7zOVNVquwX4lTEmPDYhWds13cJ9KvdefQwYO7PgZuAZu2/yMeA2sc6kWAA0Yh2YStX9XKddq4iUYP1n+awx5sWxhUXEJyIV9rgfuBHYTuISqbVSRLx2TQuxtus+Y0wbMCgiF9tdHHcBjzpZq12jB/gAVv8n9jQnt+vpPAVcKyKlIlIKXAs8laLtOu067eV/BdxnjPnZuHm19lCw+rAd3ab2tsy2xyuAS4Gd9r7xLNa+Ata+M1P76mROOTaUtO2a6BHZZD+AdwF7sFqI/2xP+1fgPfZ4DvAzrAOmrwIL4177z/br3iLuDIOJ1ulkrcC/AAFga9yjCsgHNgNvYh1o/QbgdbjW99u1vAFsAd4dt84me8fbC3wT+xfPDu8DVwIvj1ufk9v1QqwWXgDoBnbEvfYj9t/QgtXdkbLtOt06gQ8B4XH76nn2vGeAbXatPwEKnNymwCV2PW/Yw7vj1rnQ3lda7H0nOw3+/RuAI4Bn3DqTsl318gNKKeVC6dYto5RSKgk03JVSyoU03JVSyoU03JVSyoU03JVSyoU03JVSyoU03JVSyoX+P5Pn12BpilWnAAAAAElFTkSuQmCC\n", "text/plain": [ "<Figure size 432x288 with 1 Axes>" ] }, "metadata": { "needs_background": "light" }, "output_type": "display_data" } ], "source": [ "plt.plot(strain_steel,stress_steel,strain_al,stress_al)\n", "\n", "plt.show()" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "We see a plot with two lines. One line represents the steel sample and one line represents the aluminum sample. We can improve our plot by adding axis labels with units, a title and a legend." ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Add axis labels, title and a legend\n", "\n", "Axis labels, titles and a legend are added to our plot with three Matplotlib methods. The methods are summarized in the table below.\n", "\n", "| Matplotlib method | description | example |\n", "| --- | --- | --- |\n", "| ```plt.xlabel()``` | x-axis label | ```plt.xlabel('strain (in/in)')``` |\n", "| ```plt.ylabel()``` | y-axis label | ```plt.ylabel('stress (ksi)')``` |\n", "| ```plt.title()``` | plot title | ```plt.title('Stress Strain Curve')``` |\n", "| ```plt.legend()``` | legend | ```plt.legend(['steel','aluminum'])``` |\n", "\n", "The code cell below shows these four methods in action and produces a plot." ] }, { "cell_type": "code", "execution_count": 8, "metadata": {}, "outputs": [ { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAaAAAAEWCAYAAAAgpUMxAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4xLjEsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy8QZhcZAAAgAElEQVR4nOzdd3gc5bX48e9Z9e4iucq94oYxopjq0IuBJDQTeriXcG/AIYQL5EeKSeASuIQAaYQEMCXYEDoEYpoN2KHZxoAbtnGVqyRbve7u+f3xjuS1rGZJuytrz+d59tndqWdnZ+bM+847M6KqGGOMMZHmi3YAxhhjYpMlIGOMMVFhCcgYY0xUWAIyxhgTFZaAjDHGRIUlIGOMMVFhCSiMRGSFiEyLdhyRJiJ3ikihiOyIchzTRCQ/mjFEmojMFpE72znuUBFREYkPQ1yXishbnT3dg9nBsH8Id4xhSUAicpyI/FtESkRkt4gsEpEjvH5XicjCcMz3AGPMFZEXvB1liYh8JSJXef06ZUNU1fGquqCd8YmIzBSR5SJSISL5IvIPEZnYkZjCTUQGAT8Bxqlqv2aG+X8iskFEyr3f9WxIvwUi8h8RivXX3v/uF5FZTfT/nohs8pb/yyLSq4lhRolItYg8HdJtmogEvd9X/7oyzD+nzbz4VERuidQ8VfXvqnpapObXEhGJ8w6StolImYh8LiI9Qvr/WER2ePuFx0QkqdH4P/LW3woRWSUio73u/UXkVW+6KiJDW4qjg/sHFZGR7Rn3QHQkxrbo9AQkIpnA68DvgV7AQOAOoOYAphHX2XE14SlgCzAE6A1cAexs68jhOEps5EHgR8BM3HIcDbwMnH2gE4pArKGGAEWququZWK4ELgdOUdV0IA94N4LxhVoH3AL8s3EPERkP/AUXa1+gEvhTE9P4I/BZE923qWp6yOuJzgu7w64EdnvvsegO4BhgKpCJ+4+rAUTkdOA24GRgKDDcGx6v/38A1+C2w3RgOlDo9Q4C/wLOj8Bv6B5UtVNfuB1KcTP9DsH90QGgvH44YDbwZ+ANoAI4BUgC7gM24xLDw0CKN3w2LskV4zakDwGf1+9WYCtQBnwNnNxMLOXA5Gb6bQbUG6Yct6JeBSwCfufN805gBPAeUIRbCf8O9AiZzkbcjhZgFvAc8KQX2wogr5n5j/KW0ZEtLOcFwH+EfL8KWBjyXYEfAmuBDd7yu6/RNF4BbvI+DwBeAAq84We2MO8s73cUAJuAn+EOZk4BqnAbYjkwu4lx/wA80Mx07/J+d7U3/h+87mOBt73l/jVwUcg4La0n04D8NqyzTwOzGnX7X+CZkO8jgFogI6TbDO8/nQU8HdK9TfMNGf5B3MFQKbAEOD6kX4vrDXAYsNTr9ywwF7izhXmlesPO8H5P6LSGeutNfOP1NySWpxsNe7UX+x7gOuAI4EvctvmHVtbP63Dr5x5cIpfG82kmrgW47e/f3nryGu4g8u/eMvwMGNrM7+/pjTOimf7PAP8b8v1kYIf32ef91ib3KSHjxHvxNhlDJ+wfPvCmX+H9lou97tOBZd6y/zcwqdG8bvb+mxJvXUn2+rW0Pw2NMQl4ANjmvR4AkkLXeVztxy5gO3B1q+t+WzeSA9iYMnE75CeAM4GejfrvsyJ63WZ7C+VY709O9n7cq7ij/wxvJbvbG/5u3I4mwXsdDwgwxltBBoSsuM2taO/gEsoMYHCjfkMJWeFD4vYDN3grWAowEjjV+2NyvBXjgZBxGq9g1cBZQJz3Gz5uJrbrgE2tLOcFtJ6A3vaWXwpwgrds6jfynrhkMcBb5kuAXwCJuKO+9cDpzcz7SVzyyvCW1RrgmtAVsYW4L8Ot5P+DO1iJa+V3pXlxX+0t9ym4ZD/e69/SetJiLCHzaCoBvQLc2qhbOXB4yHq+BhhE0wmoFpcQN+AOWtJaWSa9vd/3E2AHe3cOza433n+1Cfgxbju4AKij5QR0OW7nEOctq4eaW+9pWwJ6GLe9nubF+TLQB1fzsQs4sYX183WgBzAYdzBzRuP5NBPXAlzpdQTuYGil91+c4i3DJ4HHm/n9J+B2tLd6y3kN8MOQ/l/g7dC979nevHt7cSquZmKL99/egbezDhmnvQmoTfuHkOU3MuT7FG95H+WNf6U3/aSQeX2K2957AauA61ranzYR46+Aj73/NweX5H4dss77vWESvN9RSaP9f+NXp1fBqWopcJy3gP4KFHj1on1bGfUVVV2kqkFcdd1/Aj9W1d2qWoY7Ip3hDVsH9AeGqGqdqn6obikEcMlgnIgkqOpGVf2mmfldiMv0Pwc2iMiy+vNULdimqr9XVb+qVqnqOlV9W1VrVLUAuB84sYXxF6rqG6oawFUBHtrMcL1xO4mOuttbflW436q4lQvczuojVd2GO2rNUdVfqWqtqq7H/XczGk/Qqx69GPipqpap6kbgt7gdW6tU9WlcEj8deB/YJSK3tTDKdGCjqj7uLfeluJLaBSIitLyedEQ67qAoVAkuyQH8GnhUVbc0Me5qYDJuHT0JOBy3bjRJVZ9W1SLv9/0Wtw6PCRmkufXmaNzG/oC3HTxP09WBoa4EnvWm9QxwiYgktDJOS36tqtWq+hbuiHyOqu5S1a24de6wFsb9jaoWq+pmYD5umbXV46r6jaqWAG8C36jqO6rqB/7RwnxzcUlrNDAMtx3MEpFTvf6N//f6zxneuOCS7UTgW8AluCq5ztDW/UNT/hP4i6p+oqoBdVW+Nbh1pN5DqrpNVXfjDj7ql3dz+9PGLgV+5f2/BbjkG7rd13n961T1DdwB25gmptMgLI0QVHWVql6lqrnABFzWfaCV0UI35BxcVcESESkWkWJc3WqO1///cEdAb4nI+vodmKquA27EHU3sEpG5IjKgmRj3qOptqjoeV8e/DHjZ26m1JUZEpI83j60iUoo7ks5uYfzQVmGVQHIz52eKcCtERzXE661Qc3EbDMD3cFUW4M7bDKhf1t7y/n+45dJYNnuPvOttwh3xtom6E9Kn4I5+rwN+5dW9N2UIcFSj2C4F+tH6etIR5bhSTqhMoExEJuOOtn/X1IiqukNVV6pqUFU34M4zXdDcjETkJ97J7BLvN2Sx73rU3HozANjaaGcR+r80ns8g3E6z/n9/BVd6OeDziiFCz5tWNfE9vYVxG/+ulobtrPlWee+/8g4iv8RtF2d53Rv/7/Wfy0LGvddLnBtx5wnPonO0df/QlCHATxptJ4Nw60hz069fRk3uT5swgP23+9DpF3kHAE3No0lhb4atqqtxVWwT6js1N2jI50Lcnz1eVXt4ryx1J63xjrx/oqrDgXOAm0TkZK/fM6p6HO4PUeCeNsRYiDuPUF88bUuM4IquiqtrzcRVpbSUwNrqXSBXRPJaGKYCt/Ot11SLs8bxzsGVHIbgiuoveN23ABtClnUPVc1Q1aY2rELckc6QkG6DcefdDoh3pPQPXL10c+vHFuD9RrGlq+p/0cp60kErCDkCFZHhuJLJGlx1w1Bgs7im5jcD54vI0uZ+Ks2sFyJyPK466CJcdUUP3FF3W9aj7cDARgdNg1sY/nLcNv+aF/d6XAK6opnh27KOhUM45/ul997cNr7P/+593qmqRbjzj7UtjBtNW4C7Gm0nqao6p7URW9qfNrKN/bf7bR0JOhyt4MZ6R3S53vdBuKPuj71BduJ2ronNTUNdNdxfgd+JSB9vOgPrj5JFZLqIjPQ2vFJc1VtARMaIyEles8lq3M4p0Eyc94jIBBGJF5EM4L+Add6KVoA7kT68lZ+bgdeYQkQG4s5rdJiqrsW1uJrjNZlNFJFkEZkRcnSyDPiuiKR6zTFbrQZQ1c9xv+1vwDxVLfZ6fQqUisitIpLiNVOd0FSVpFc98Bxwl4hkeMnsJlzpr1XimuGf7Y3rE5EzgfHAJ94gO9l3ub8OjBaRy0UkwXsdISKHtLaetCGWBBFJxm0H8d4yrm+B+XfgHBE5XkTScHXbL3rVfI/gzj9M9l4P41rS1a+f00RksDiDgN/gShtNycDVnRd4MfyC/UtezfnIG3emtx5/FziyheGvwFWbTA55nQ+cLSK9mxh+GTDDW055tFCK62TLgBO8ZZgF/LSzJqyuSv5D4HYRSRKRQ3BVyq97gzwJXCMi40SkJ66BzWxv3ErcyftbvPU3F1f1VT8u3vpU32w7yfseDo23k78C14nIUd56l1a/nbU2oeb2p00MOgf4mYjkiEg27pxxm7b75oSjBFSGO7r+REQqcIlnOe7kKrhWYyuAHSJS2PQkAHdUuA742Kveeoe99YmjvO/luI3wT+raqifhNvZCXHGzD64qqSmpwEu4E5LrcZn9XGhY0e4CFnnF2aObmcYduJN/Jbgd0Ist/J4DNRPXYuyPXozfAN/B1d2Cq/6pP9H9BHurVVozB1d99Ex9By+pnIPbIW3ALb+/4aqCmnID7ih1PbDQm9ZjbZx/Ke4/2Yz7XfcC/6Wq9deGPYgrpe0RkYe8Hf5puPM623D/6z3s3chbWk9a81fcQcolwO3e58sBVHUFrnrw77iTuxnAf3v9Kr1qth2qugO3HlZ79eLg1omPvGX0b9z6P7OZGObhzmGswVVpVNOoqrc5qloLfBd3gn8Pbkfa5DrorcNDgT+Gxq6qr+KW3yVNjPZzXKLdg1vXn2limE6nqm/jdvRf4hrHvN7yGAfsErzLBXDb7c9V9V1v3v/CrZPzcf/HJuCXIeNej/u/t+H+48brfpXXH9y5wCrCYxbwhLd/ukhVF+OS4R9w/9c63HrRFs3tTxu7E1iM+1++wrW+bNdFz/XqWzoYY4wxEWW34jHGGBMVloCMMcZEhSUgY4wxUWEJyBhjTFRE8iaVnS47O1uHDh0a7TCMMeagsmTJkkJV7YwLtjvkoE5AQ4cOZfHixdEOwxhjDioi0uwdMyLJquCMMcZEhSUgY4wxUWEJyBhjTFRYAjLGGBMVloCMMcZEhSUgY4wxUWEJyBhjTFQc1NcBGdOZVJWyGj8llXWUVNVR4w9Q61f8wSD+gFIXCOIPuve6gOIPBKkLund/QKnzhvMHlaR4H8kJcaQkxJGc4HPviXEkx8eRkth094Q4QVp8IK8x3YslINPtqCp7KuvYWVrNnopaSqrq2vQqraojGMWnk8T5pCEx7U1ecSFJyheSvNyrR2oC/bOS6ZeZTP+sFPpkJpGcENf6zIzpAiwBmYOKqrK7opYte6rYUVLNjpIqtpdWe5+r2VFazfaSamr9wSbHj/MJWSkJZKUkkJmSQM/URIb2TmvoFtovJTGOBJ+QEO8j3ickxPmIjxPifT4S6z/HCQk+9zkhzkdCnA+fQG0gSHVtkGp/gKraAFV1Aarr9r5X1wX36b63X9C91wb2Gbe0qo5dIeNX1bphawP7/87eaYn0zUx2iSkrmQE9UhiencaovukM6Z1GQpzVvJuuwRKQ6ZLKa/ys21XOxsIKNhRWsLHIvW8orKCs2r/PsIlxPvpmJdE/M4VJuT04fbwrEfTNTKZXWqJLKqkusaQlxkWkmispPo6k+DiySAjrfMpr/A3Jd3uJS8rbS6vZWeIS8edbitldUdswfLxPGJqdxsicdEb1TWdkn3SG9k5jaLZLwsZEUtgSkIg8BkwHdqnqBK/b/+Ee/VyLe8T01apa7PX7KXAN7lnkM1V1XrhiM11HMKhs2l3J6u2lrNpR5r2XsmX33icZi8DAHikMy07j25MHMiw7jUG9Uumf5Y7ye6Ulxuy5k/SkeEb2cYmkOZW1ftYXVLBuVzlrd5Wxdmc5a3aV8faqnQRC6hx7pyUyNDuNob3TGJ6Txqg+6UzK7UG/rORI/BQTg8L2SG4ROQH3jPEnQxLQacB7quoXkXsAVPVWERkHzAGOBAbgnk8+WlUDLc0jLy9P7WakB4+y6jpWbS9j1fZSVu8oZdX2Mr7eUUZVnfubfQLDstMY2z+Tcf0zGdknneFesrHzGp2vxh9gc1FlQ8kytJS5s7SmYbg+GUlMyu3BpNws79WDXmmJUYzcdJSILFHVvGjHEbYSkKp+ICJDG3V7K+Trx8AF3ufzgLmqWgNsEJF1uGT0UbjiM+FXVF7DZxt38+mGPXy6sYiV20obTvL3SE3gkH6ZzDhyEIf0y+SQ/pmM6ptuiSaCkuLjGNU3g1F9M/brV1HjZ/WOMr7KL+bL/BK+yC/m3dU7qT9eHdQrhUkDezQkpAkDM8lItio8c2CieQ7o+8Cz3ueBuIRUL9/rth8RuRa4FmDw4MHhjM+0w5bdlcxbsYN5K3aweNMeVCEp3seUwT25/qRRHDaoB4f0z6RvZlLMVpsdDNKS4jl8SE8OH9KzoVtZdR3Lt5bypZeUvtxazD+/2g64atLh2WkcmtuDiV5SGj8g0w4oTIuikoBE5HbAD/y9vlMTgzVZN6iqjwCPgKuCC0uAps32VNTy0foiFq0r5N/fFLGhsAKAsf0ymHnSKE4YncPEgVkkxlvLq4NdRnICU0f0ZuqI3g3ddlfU7k1I+SUsXFfIi59vBSA5wcfRw3szbXQO08b0YWh2WrRCN11UxBOQiFyJa5xwsu49AZUPDAoZLBfYFunYTNvk76nkX8t38K/lO1iy2ZVy0hLjOGp4by49ajCnHNLXdjYxoldaItPG9GHamD4N3XaUVPNFfjEffVPE+2sKmPXaSnhtJX0zkxg/IIvxAzK9Vxa5PVOsJBzDIpqAROQM4FbgRFWtDOn1KvCMiNyPa4QwCvg0krGZlq0vKOdNL+l8tbUEgEP6Z/Kjk0dx/KhsJuX2sOtLDAD9spLpl9WP08f3A2BTUQXvrylg2eZiVmwr5f01BQ2t73qkJnDCqBxOHdeXE8fkkGnnkWJKOFvBzQGmAdnATuCXwE+BJKDIG+xjVb3OG/523HkhP3Cjqr7Z2jysFVz4Ld64m9+8uZrFm/YAcOigHpw5oR9njO9npRzTLtV1Ab7eUcaKbaUs3byH+at3UVRRS7xPOHJYL04YncMJo3I4pH+GlY7CpKu0ggtbAooES0DhUV0XYN6KHTy3eAuL1hXRJyOJa08YzlkT+zOgR0q0wzPdTCCoLNuyh7dW7uT9rwtYvaMMgJyMJI4flc2Jo3M4bmQ2vdOTohxp92EJqBNYAupcy7eW8I/FW3h52TZKquoY2COF7x01mKuPHUpqot00w0TGztJqPlhTwAdrC1m4toA9lXWIwIQBWZwwOpsTRuUwZUhPq/LtAEtAncASUMcFg8prX27jkQ/Ws2JbKYnxPs4Y34+L8gZxzIje+HxWBWKiJxBUlm8t8RJSAUs3FxMIKulJ8Uwd0ZvDh/Rk4sAsJgzIIivVzh+1lSWgTmAJqP0CQeWDNQU8+O5alm0pZmy/DL531GDOPXQAPVLtKnfTNZVW1/HvdUV8sLaAhWsL2bx7b1umIb1TmTAwiyOG9OTiIwaTkmjXIDXHElAnsAR04KrrAjy+aCN//2QT+Xuq6JuZxP+cPpbvHjbQSjvmoLO7opblW0v4amtJw3v+nioGZCVz02ljOHVcX7vJahMsAXUCS0AHZvnWEm58dhnrdpUzdXhvLj16MKeN62cXiZpu5dMNu7njtRWs2FaKT1zLzeNGZnPcyGwOG9zT1ncsAXUKS0Bts6usmgffWcucTzeTk5HEfRceyvGjcqIdljFhEwgqizfuZuG6QhauK+SLLcUEFVIS4jhqeC+XkEZlM6ZvbDb1tgTUCSwBNS8YVD5YW8Czn23hnVU7CSpcfvQQbjxllJ3jMTGnpKqOj71bRi1cW8h675ZR2elJHDeyN8d6Cal/VmxcZmAJqBNYAtpfMKjMW7GD372zhjU7y+mVlsh3DxvIpUcPYZhdOGoMAFuLqxqS0aJ1hRR5D+0bkZPG8aNyOHZkNseM6E1aUve8/MASUCewBLS/O15bweOLNjIiJ42ZJ4/izAn9rc7bmBYEg8rXO8tYuNZV132yoYjquiDZ6Unce8FEThrbN9ohdjpLQJ3AEtC+vswv5tw/LOLyo4cw69zxxFmrNmMOWI0/wGcb9nDnP1eyekcZp47ry2never6ZHSPp8N2lQTUPcuXMerdVbvwCfzktNGWfIxpp6T4OI4blc0r1x/L799dx3OLt/D2yp0ATMrN4oRRORwzojdThvS05x11kCWgbuDj9UX0y0wmf08V/bNSrJGBMZ0gKT6Om08fw09OG83K7aUs+LqA91bv4s/vf8Mf5q8jMd7H4YN7csHhuXx3ysCYbE3XUZaADmJ1gSD3zfuav3ywnvEDMhmek05CnG0ExnQmEfGeY5TFD781kvIaP59t2M2/vynk/TUF/OQfXzD3s838+JTRHDmsF/F2j7o2s3NAB6mV20q5+R9fsHJ7KYcO6sEXW4rJyUiiR0oCb990YrTDMyYmBIPK80vyufvNVeyprKNHagInj+3LaeP7cuzIbNK7aCs6Owdk2kVV+fsnm/nVayvJTEng4csOZ9qYHI675z0KymrIsVvWGxMxPp9w0RGDmH5ofz5YU8hbK3bwzqqdvLA0n3ifcOigHhzjPcY8b0gva5HaiCWgg8iGwgp+/vJyFq4r5MTROfzu4sn0SnPne66YOpT7315Dgq3gxkRcamI8Z0zoxxkT+lEXCPLZxt0sWlfIv78p4k8LvuH3761jYI8UbjxlFN+dkmuNhDyWgA4S763eyQ3PfI5PhF+fN55Ljxqyz81DLzt6CH9asI4EW7GNiaqEOB/HjMjmmBHZAJRV17FoXRF/XrCO/3n+Sx75YD03nz6G08b1jfmGC3YOqItTVR5ftJE7/7mScQMy+esVec3eLuTZzzYT7/Nx/uG5EY7SGNMaVXeXknvnfc36ggqG9E5tuEnq1BG9I9p6taucA7IE1IXVBYLMenUFf/9kM6eP78vvLp5sTyY15iDnDwR5edk2/rV8Ox99U0RFbQAROHJoL247cyyHDe4Z9hgsAXWC7pyASqrquP6ZpXy4tpDrThzBLaePsef1GNPN1AWCfLGlmA/XFvLMp5spKKvh/Cm53HrmmLDedcESUCforgloU1EF35/9GZt3V3LXdyZyUd6gaIdkjAmz8ho/f3hvHY8t3EBivI9rTxjO9En9GZ6T3unzsgTUCbpjAvp0w25+8NRiFHj4ssM5enjvaIdkjImgjYUV3PnPlbyzahcAw3PSOOWQvpw6ri95Q3p2SsMFS0CdoLsloBeW5HPbi18yqGcqj151hD0+wZgYlr+nkndX7eKdVTv5eH0RdQFlXP9Mrps2gnMm9e9QIuoqCShsZ7RF5DFgOrBLVSd43XoBzwJDgY3ARaq6R9ySfBA4C6gErlLVpeGKraup9Qe591+r+dvCDRwzojd/vvRwslLtOfbGxLLcnqlcecxQrjxmKGXVdbzx1XZ++9YaZs75nPSkuG7xmIhwXrU4GzijUbfbgHdVdRTwrvcd4ExglPe6FvhzGOPqUoora7noLx/xt4UbuGLqEJ74/pGWfIwx+8hITuDiIwbzyvXHcu6hA+iV1j3ueBK2EpCqfiAiQxt1Pg+Y5n1+AlgA3Op1f1JdfeDHItJDRPqr6vZwxdcV7Kmo5dK/fcK6gnL+fOkUzpzYP9ohGWO6sP5ZKTx0yWHRDqPTRPq+LX3rk4r33sfrPhDYEjJcvtdtPyJyrYgsFpHFBQUFYQ02nIrKa/iel3z+ekWeJR9jTMzpKjcOa+psWpOtI1T1EVXNU9W8nJycMIcVHrtKq5nxyMesLyjnb1fkceLog/N3GGNMR0Q6Ae0Ukf4A3vsur3s+EHqxSy6wLcKxRcS24iou+stHbC2uYvbVR3KCJR9jTIyKdAJ6FbjS+3wl8EpI9yvEORoo6Y7nf3aUVHPJXz+mqKKWp//jKKaOsGt8jDGxK5zNsOfgGhxki0g+8EvgN8BzInINsBm40Bv8DVwT7HW4ZthXhyuuaNlVWs33/voxReW1PHXNkRG535MxxnRl4WwFd0kzvU5uYlgFfhiuWKJtU1EFVzz2KQVlNTz5fUs+xhgD9jygsKuo8fO9v35CRa2fp645isOHWPIxxhiwBBRWFTV+bnx2GVuLq3j+uqmWfIwxJoQloDApLK/hysc+ZdX2Un4xfRx5Q3tFOyRjjOlSLAGFQXFlLRd7Ta0fvfIIvjW2T+sjGWNMjLEE1MlKq+u49qklbN5dyVPXHGWPUzDGmGZYAupE1XUBZvzlY9bsLOO3Fx1qyccYY1pgCagTPfTuWlZuL+WRyw/ntPH9oh2OMcZ0aV3lXnAHvfvmfc2fFnzD+VNyLfkYY0wbWALqBO+u2skf5q/jorxc7r1gUrTDMcaYg4IloA5auLaQ65/5nLH9Mvj1tycQ5+v489qNMSYWWALqgG3FVVz39BKG9E7lyWuOJCk+LtohGWPMQcMSUDuVVdfxX08vIRBU/npFHn0ykqMdkjHGHFSsFVw7VNcFuOaJxSzfVspfLjucQb1Sox2SMcYcdKwE1A43PbeMzzbu5v6LDuWUcX2jHY4xxhyULAEdoDe/2s4bX+3g5tPGcN7kgdEOxxhjDlqWgA7A2p1l3PLCl0wcmMW1JwyPdjjGGHNQswTURut2lXPxIx+TFB/Hny6dQkKcLTpjjOkI24u20R2vrSAQVP5x3VRrdGCMMZ3AElAbLFxbyIdrC7nhpJEMy06LdjjGGNMtWAJqRTCo3POv1QzskcLlU4dEOxxjjOk2LAG14rnFW/hqawk/OW203enAGGM6kSWgFuwsreaO11YydXhva3JtjDGdzBJQC95dtYuqugB3nDfebjJqjDGdLCoJSER+LCIrRGS5iMwRkWQRGSYin4jIWhF5VkQSoxFbqA/XFjAgK5lRfdKjHYoxxnQ7EU9AIjIQmAnkqeoEIA6YAdwD/E5VRwF7gGsiHVuoovIa3lu9i5MO6YOIlX6MMaazRasKLh5IEZF4IBXYDpwEPO/1fwL4dpRiA+CFpfnU+INcdczQaIZhjDHdVsQTkKpuBe4DNuMSTwmwBChWVb83WD7Q5Fl/EblWRBaLyOKCgoKwxfnm8h1MGJjJyD4ZYZuHMcbEsmhUwfUEzgOGAQOANODMJgbVpsZX1UdUNU9V83JycsIS4/aSKj7fXMwZ4/uFZfrGGGOiUwV3CrBBVQtUtQ54ETgG6OFVyQHkAp5/FbUAACAASURBVNuiEBsA763eBcAZEywBGWNMuEQjAW0GjhaRVHFn908GVgLzgQu8Ya4EXolCbACsL6ggOcHHiBxr/WaMMeHS6hNRRSQX10rteFyVWRWwHPgn8KaqBg9khqr6iYg8DywF/MDnwCPe9OaKyJ1et0cPZLqdaenmPYzpm2Gt34wxJoxaTEAi8jiuMcDruGbSu4BkYDRwBnC7iNymqh8cyExV9ZfALxt1Xg8ceSDTCYfqugBfbCnmv6eNjHYoxhjTrbVWAvqtqi5vovty4EXvYtHBnR9W9GwsqiCoMKqvVb8ZY0w4tZiAmkk+of1rgXWdGlGUfbOrAsDO/xhjTJi1VgX3nKpeJCJfsW+zaAFUVSeFNbooWLZlD4nxPisBGWNMmLVWBfcj7316uAPpKtYXVDAiJ90evWCMMWHWYjNsVd3ufSwEtqjqJiAJOJQoXqcTTttLqumflRztMIwxpttr63VAHwDJ3o1E3wWuBmaHK6ho2lpcxcAeKdEOwxhjur22JiBR1Urgu8DvVfU7wLjwhRUd5TV+SqrqGNjTEpAxxoRbmxOQiEwFLsVdMAptuIj1YLN1TxWAlYCMMSYC2pqAfgT8FHhJVVeIyHDcrXO6la3FlQBWAjLGmAhoaylms6qeW/9FVdeLyFNhiilq6ktAuVYCMsaYsGtrCegFrwECACJyIvBYeEKKnq3F1STG+chOT4p2KMYY0+21NQFdB7wsIv1E5CzgQeCs8IUVHbsrauiVlojPZzchNcaYcGtTFZyqfiYiM4G3gGrgVFUN3+NIo+Sbggo7/2OMMRHS2q14XmPfW/Ck4h6h/aiIEHpeqDvYUVLN0cN7RzsMY4yJCa2VgO6LSBRdhD8YJCHOqt+MMSYSWktAH6iqtjSAiEhrwxwsquuCJMRF4yGxxhgTe1rb284XkRtEZJ9n/ohIooicJCJP4B6ffdDbVVpNSVUdQ3qnRjsUY4yJCa2VgM4Avg/MEZFhQDHuiahxuAYJv1PVZeENMTI+XFsIwNQRdg7IGGMiobUH0lUDfwL+JCIJQDZQparFkQgukuK9cz/xPquCM8aYSGjz/dxUtQ7Y3uqAB6mMZLcoymv8UY7EGGNigx3uexpuw2PXARljTERYAvJsK6km3ifk2G14jDEmItqUgEQkTUR83ufRInKud06o2xDcFbdilwEZY0xE2BNRPeU1flIT4xDLQMYYExFReSKqiPQQkedFZLWIrBKRqSLSS0TeFpG13nvP9k6/PbbZo7iNMSaiovVE1AeBf6nqWOBQYBVwG/Cuqo7ClbJu68D0D1hptZ/MlG5Vq2iMMV1aWxPQjXTSE1FFJBM4AXgUQFVrveuKzgOe8AZ7Avh2e6bfXpW1ftKTut1Txo0xpstq6+MY3gfeB/AaIxSq6sx2znM4UAA8LiKHAktwj/zuq6rbvfltF5E+TY0sItcC1wIMHjy4qUHapaImQGrvuE6bnjHGmJa1tRXcMyKSKSJpwErgaxH5n3bOMx6YAvxZVQ8DKjiA6jZVfURV81Q1Lycnp50h7K+ixkpAxhgTSW2tghunqqW4arE3gMHA5e2cZz6Qr6qfeN+fxyWknSLSH8B739XO6R+wYFAprqqzc0DGGBNBbU1ACd51P98GXvFuy9OuRzCo6g5gi4iM8TqdjCtVvcreO2tfCbzSnum3x+7KWmr9QQZkJUdqlsYYE/PaWuf0F2Aj8AXwgYgMAUo7MN8bgL+LSCKwHnddkQ94TkSuATYDF3Zg+gckGHS5NM6eBWSMMRHT1kYIDwEPhXTaJCLfau9MvUc45DXR6+T2TrMj9lTWAZBlVXDGGBMxbW2E0FdEHhWRN73v4+gmD6ID2FpcCcAguxGpMcZETFvrnGYD84AB3vc1uGuDuoWyavcIBmuEYIwxkdPWBJStqs8BQQBV9QOBsEUVYckJ7vqfqtpu85OMMabLa2sCqhCR3ngt30TkaKAkbFFFWCDYrgZ9xhhjOqCtreBuwjWTHiEii4Ac4IKwRRVh24rdw+gG9UyNciTGGBM7Wk1A3q13koETgTG4R+d87V0L1C34vEcwaPsubTLGGNMOrSYgVQ2KyG9VdSqwIgIxRVxCvKuJrA0EoxyJMcbEjraeA3pLRM6Xbvq0tqpa1wquvjGCMcaY8DuQc0BpgF9EqvGeYK2qmWGLLILKa1zrtwy7GakxxkRMW++EkBHuQLqCblrAM8aYLqmtd0J4ty3djDHGmLZqsQQkIslAKpAtIj1xVW8Amey9K8JBb31BOf0y7U7YBw1VCAYgUAOBOtCg+66BkHc/BIONugWaGK6Vfk0OH9z7Lj7wxYGI+yxx3nt9d9/+r326h4y7X/f64X3NdD/Q+cZDXKKbnjFdQGtVcD/A3XJnAO7JpfUJqBT4YxjjiqhNRZWM6RcTtYydRxX81VBXtfflr4K6aqir9PpVNvpeP1xIP38V+GshULs3ofi990CN697Q33v5a2jn00AMQFwSxCdDfBveE1IgMQ0SUvd9b/icCokZkNITUntBcpZLgMa0QYsJSFUfBB4UkRtU9fcRiinifN3h1E9dNXw5Fyp3e0f/frcTr//c2ve2DBuo3TdxtIf4ID7F7dgSUvbu6OIS3I4xLgFS09yRev0rvv5z0r6f4xLcS+L2HvX74tyRfuNu4nVv+OwLGaa+X+Nu9dPy7dut4V1cItbgvqUi9UpeGtxbWtuve9AroTXVPWTcJrs3erV1vkG/S+b+apfEm3yvhupi973+YKG2wv3vgdq2/MEuCdUnpJSekNKrme89935PznLL08SUtjb72iEiGapaJiI/wz3B9E5VXRrG2CKmsLyW4Tnp0Q5jf4E6qCmDmlL3HqiFvhPdTrixN34Cnz+9bzdfvPdKgLiQz774Rt/j3I68/ntCCiRl7N8vzjsiTkh2R7/x3vs+3+sTS0rTw8Yl2I7mYBWo25uMaiuhrsK915S5pFW5G6r2QNXuvZ8ri6BoHVTugZoW7t7lS4CM/pA5ADL7Q+ZA9zkj9HM/t/6YbqOtCejnqvoPETkOOB24D/gzcFTYIougilo/mcmd2ATbX7tv4tjnc2g371Vd2nT3pkoZyT3gkOkw/jsw7MS9G+SeTdBnPPznu3sTh+3oTWeKS4CUHu7VHgH//omqao/7XlEAZduhdBts/xK+/lcT679Aeh8vGQ3wklXoa6BLWIl2S62DRVv3uvW3iT4b+LOqviIis8ITUuRV1wVIjG/DidmKQnc0t3s9FG9xG01FgeteUeCO9mrK3LmL1kgcJGe6kkaS957eB3qP9LqFdK9/acBtmCtecaWdlJ5wyDkuGZVth96jXKnDmK4oLh7Sst2rNaouWZVua/Ta6tb1PRtg0yI3TGPJPbxSk1ei6jUcBuZBvwmunx2YdRltTUBbReQvwCnAPSKSRNvvotCl+QNBquuCZCQ3UbQP1MHat+DrN2DDh1C8ad/+KT0hLce9+oz16rIbJZV9kkjI54SU9m0I47/jzsF88x6seAmWvwhLn3T9sscc+PSM6YpEvPNDPaHv+OaHq62A0u1QFpKgSr2SVJlXmqrYtXf4xAzIym30GrT3c+YAq+aLoLYmoIuAM4D7VLVYRPoD/xO+sCKn1HsYXUbjKrj1C+CV66FkiztBOvR4OPI/IWesO6LKGtT0uZhISEiGsWe5V10VrHvXJaORp0QnHmOiJTENske6V3Mqd8PWJVCwGkq2um26JB+2fQ6VhY0GFneuKSvXbev9JkH2KOg51HWz5NSp2nonhErgxZDv24Ht4QoqkrbucfXMA3qEVF2tfgPmfs+teDPmwKhTu+6Kl5DizgkdMj3akRjTNaX2ctvwqFP371db6UpL9Ump/lW8ydV8fP7U3mElziWhfhNh4BR3IJrR33v1c605zQGJ+Zuf7al0TUt7p4WUZr54BtL7wrUL3BGWMaZ7SkxtvgSlCmU7YPc3sGejexWtg+1fwOrXGw0s0HcCDD4KBk+FQUdCZq5d9NuKmE9ApdXusUYN54BqymHt2+7kviUfY2KXiNeQoT8MPW7fflXFe883lW2D4s2Q/xksmwOf/c0NE5foGkNk5UKPIZCbB8NOcCUnawgBWAKirPE5oJ0r3MV3E86PYlTGmC6tvjl64wYSAT/s/MqdcyrevLdKb+08WOZdp5cxAIYe65JSRj/X+jWjvzvnlNwtHjDQZlFLQCISBywGtqrqdBEZBswFegFLgctVtS2XXndImVcCykzxSkD1Ld16jQj3rI0x3U1cPAw4zL1CqULRN7DxA9eidtO/YfkL7i4VDQT6HAK5R7gqvNwj3WUZ3bgaL5oloB8Bq3A3NgW4B/idqs4VkYeBa3AXu4ZVVa1bAVLqH0a3dam74j+z29xr1RgTbSJ7zzXlfd91CwbctYNlO7wLcJfBlk9hxcuw9Ak3THIPLyEdBUf+h2uW3o1EJQGJSC7uota7gJu8J62eBHzPG+QJYBYRSEBJCe7ooqouQHpSPBStddf0JHXBW/MYY7oPX5yrfkvvA/0nwZgzXPdgEArXQP6nLiFtXAjr3ob5d8Ko092w/Sa6i2uzBkb3N3RQtEpADwC3APW3oO4NFKuq3/ueDzS5ZEXkWuBagMGDB3c4kG3FVWQkxZOWGOcuatu4EMZak2ZjTJT4fO4guM9YmHKF67b0Kdj4obuwdt3brupu6vVw+l3RjbWDIp6ARGQ6sEtVl4jItPrOTQza5P32VfUR4BGAvLy8Dt+TP97nI6DqnoZaf/ff3LyOTtYYYzrPlMvdC9x+aufK9t+TrwuJRgnoWOBcETkLSMadA3oA6CEi8V4pKBfYFolgkhN81AW8E4Fl3rW16X0iMWtjjDlwCSmQe3i0o+gUEW9eoao/VdVcVR0KzADeU9VLgfnABd5gVwKvRCKeWn+QxDhvMRR94957DY/ErI0xJqZ1pfZ9t+IaJKzDnRN6NBIzrQ0ESai/E3b5Tvfui/nLo4wxJuyiuqdV1QXAAu/zeuDISMewTwlo1yrv7rsTIh2GMcbEnK5UAoqK2kBw77OAti62RwMbY0yEWALyhySg0u0wYEp0AzLGmBgR8wloe0k12WnebdTjEkFifpEYY0xExPzetrI2QFpSnLsJadm2/e/hZIwxJixiPgFlJMdTXuN3d68Fd5daY4wxYRfzCaigrIY+mcl7m14nH/xXFxtjzMEg5hOQqhIn4p5yCO65HMYYY8Iu5hOQT4SAKmz4wHWw57obY0xExPwl/0UVtfRMTQCGQEWBXQNkjDEREvMloIYquLJt4EuIdjjGGBMzYj4BBYJKnM8HFYUw0C5CNcaYSIn5BOQPKgk+hapiewy3McZEUEwnoGBQCQSVXnU7oa4i2uEYY0xMiekEVFpdhz+o9Ki/FU/Q3/IIxhhjOk1MJ6Bav3sSanqw1HXIHhPFaIwxJrbEdALaVVYDwJCaNa5D7hFRjMYYY2JLTCegev6kLPchLuYvizLGmIiJ6QRU41XBpQQrXYeUnlGMxhhjYktMJ6DKWtfoILNio+uQ2jt6wRhjTIyJ6QRUURMAILl2j7sLdmJalCMyxpjYEdMJqL4ElFy1HXqPiHI0xhgTW2I6AVXUuhJQYvEGSO8b5WiMMSa2xHQCqqzxE0cAX8VO6DEk2uEYY0xMiXgCEpFBIjJfRFaJyAoR+ZHXvZeIvC0ia733sDdJq6gNMMaXjwTrYODh4Z6dMcaYENEoAfmBn6jqIcDRwA9FZBxwG/Cuqo4C3vW+h1VljZ+c+Gr3Jc1awBljTCRFPAGp6nZVXep9LgNWAQOB84AnvMGeAL4d7lgqagNkJbjzQPYsIGOMiayongMSkaHAYcAnQF9V3Q4uSQF9mhnnWhFZLCKLCwoKOjT/ylo/g+OK3Jdewzo0LWOMMQcmaglIRNKBF4AbVbW0reOp6iOqmqeqeTk5OR2KoaImQK6vCCQO0vt1aFrGGGMOTFQSkIgk4JLP31X1Ra/zThHp7/XvD+wKdxyVtX56SjnEJ9t94IwxJsIivtcVEQEeBVap6v0hvV4FrgR+472/Eu5YKmoD+OISoC4AqiAS7lkac1Coq6sjPz+f6urqaIdiOiA5OZnc3FwSErrmOe5oHPYfC1wOfCUiy7xu/w+XeJ4TkWuAzcCF4Q6kqtZPtu62B9EZ00h+fj4ZGRkMHToUsQOzg5KqUlRURH5+PsOGdc1z3BFPQKq6EGhujT45krFU1ATwJcRBRn8r/RgTorq62pLPQU5E6N27Nx1trBVOMX0nhPIaP8lSBzVl0Q7FmC7Hks/Br6v/hzGbgEqr6yipqiOYmg0JKdEOxxhjYk7MJqCaOvcwuvRAMaRmRzkaY0xjd911F+PHj2fSpElMnjyZTz75BIAHHniAysrKdk/3qquu4vnnn9+v+z/+8Q/Gjx+Pz+dj8eLF+/S7++67GTlyJGPGjGHevHn79AsEAhx22GFMnz59n3kMGzaMyZMnM3nyZJYtW4bZX8y2PU5NjAMgsaYIsjt2PZExpnN99NFHvP766yxdupSkpCQKCwupra0FXAK67LLLSE1N7dR5TpgwgRdffJEf/OAH+3RfuXIlc+fOZcWKFWzbto1TTjmFNWvWEBfn9iEPPvgghxxyCKWl+17O+H//939ccMEFnRpjdxOzCcgfUABS6vZA2rgoR2NM13XHaytYua3N14q3ybgBmfzynPHN9t++fTvZ2dkkJSUBkJ3taikeeughtm3bxre+9S2ys7OZP38+b731Fr/85S+pqalhxIgRPP7446Snp7NkyRJuuukmysvLyc7OZvbs2fTv37/ZeR5yyCFNdn/llVeYMWMGSUlJDBs2jJEjR/Lpp58ydepU8vPz+ec//8ntt9/O/fff3+T4pnkxWwWXlOAjiVpSawohvcm7/hhjouS0005jy5YtjB49mv/+7//m/fffB2DmzJkMGDCA+fPnM3/+fAoLC7nzzjt55513WLp0KXl5edx///3U1dVxww038Pzzz7NkyRK+//3vc/vtt7crlq1btzJo0KCG77m5uWzduhWAG2+8kXvvvRefb/9d6e23386kSZP48Y9/TE1NTbvm3d3FbAkoOSGOcUmFxAdrYMBh0Q7HmC6rpZJKuNSXYD788EPmz5/PxRdfzG9+8xuuuuqqfYb7+OOPWblyJcceeywAtbW1TJ06la+//prly5dz6qmnAu48TUuln5ao6n7dRITXX3+dPn36cPjhh7NgwYJ9+t99993069eP2tparr32Wu655x5+8YtftGv+3VnMJqAafwCtrYQkIDkr2uEYYxqJi4tj2rRpTJs2jYkTJ/LEE0/sl4BUlVNPPZU5c+bs0/2rr75i/PjxfPTRRx2OIzc3ly1btjR8z8/PZ8CAAbz66qu8+uqrvPHGG1RXV1NaWspll13G008/3ZDskpKSuPrqq7nvvvs6HEd3FLtVcPFxDEny6rVT7VlAxnQlX3/9NWvXrm34vmzZMoYMcU8tzsjIoKzMXbt39NFHs2jRItatWwdAZWUla9asYcyYMRQUFDQkoLq6OlasWNGuWM4991zmzp1LTU0NGzZsYO3atRx55JHcfffd5Ofns3HjRubOnctJJ53E008/DbhzWOAS5Msvv8yECRPatyC6uZgtAQGM0Hx3T4bs0dEOxRgTory8nBtuuIHi4mLi4+MZOXIkjzzyCADXXnstZ555Jv3792f+/PnMnj2bSy65pOE8y5133sno0aN5/vnnmTlzJiUlJfj9fm688UbGj2++OvGll17ihhtuoKCggLPPPpvJkyczb948xo8fz0UXXcS4ceOIj4/nj3/8Y0MLuOZceumlFBQUoKpMnjyZhx9+uPMWTjciTdVvHizy8vK0cXv9AzH359/hnKTPSfvZxs4LyphuYNWqVc22CjMHl6b+SxFZoqp5UQqpQcxWwfkDQdKoJEGtdYoxxkRDzCagan+QNKrxqd0J2xhjoiF2E1BdgF3aA39cWrRDMcaYmBSzCWhbcRUJ4ieY0Lm38zDGGNM2MZuAdlfUkkSdexy3McaYiIvZBPRVfgmZVLLRHgVkjDFREbMJCKCKJPoFd0LAGiIY0xW99NJLiAirV69u6LZx48ZOu7Bz8eLFzJw5s1Om1Vb1t+cZPXo0Y8eO5YUXXgCgpqaGiy++mJEjR3LUUUexcePGhnG+/PJLpk6dyvjx45k4cSLV1dWAu9/coEGDSE9Pj+hv6Cwxm4AykuP5KjiMXlIOGoh2OMaYJsyZM4fjjjuOuXPnhmX6eXl5PPTQQ2GZdnPuuusu+vTpw5o1a1i5ciUnnngiAI8++ig9e/Zk3bp1/PjHP+bWW28FwO/3c9lll/Hwww+zYsUKFixYQEJCAgDnnHMOn376aUTj70wxeyeEvKG9WCSVBHwJxMUlRjscY7quN2+DHV917jT7TYQzf9PiIOXl5SxatIj58+dz7rnnMmvWrP2GmT17NosXL+YPf/gDANOnT+fmm29m2rRppKen88Mf/pB33nmHnj178r//+7/ccsstbN68mQceeIBzzz2XBQsWcN999/H6668za9YsNm/ezPr169m8eTM33ngjM2fOZOPGjUyfPp3ly5cDcN9991FeXs6sWbOYNm0ahx12GEuWLKGgoIAnn3ySu+++m6+++oqLL76YO++8c7+YH3vssYYSnc/na3jUxCuvvNLwGy+44AKuv/56VJW33nqLSZMmceihhwLQu/feW4cdffTRB7bcu5iYLQEVlNVwuG8ttZnDoIs/N92YWPTyyy9zxhlnMHr0aHr16sXSpUsPaPyKigqmTZvGkiVLyMjI4Gc/+xlvv/02L730UrN3pl69ejXz5s3j008/5Y477qCurq7V+SQmJvLBBx9w3XXXcd555/HHP/6R5cuXM3v2bIqKivYZtri4GICf//znTJkyhQsvvJCdO3cC+z72IT4+nqysLIqKilizZg0iwumnn86UKVO49957D2g5dGUxWwLatXUD3/KtoXLARdEOxZiurZWSSrjMmTOHG2+8EYAZM2YwZ84cpkyZ0ubxExMTOeOMMwCYOHEiSUlJJCQkMHHixH3Or4Q6++yzSUpKIikpiT59+jQkh5ace+65DfMYP358w52whw8fzpYtW/Ypsfj9fvLz8zn22GO5//77uf/++7n55pt56qmnmn3sg9/vZ+HChXz22WekpqZy8sknc/jhh3PyySe3eVl0VTGbgMrWLgIgZfixUY7EGNNYUVER7733HsuXL0dECAQCiMh+R//x8fEEg8GG7/Un5wESEhIQr3bD5/M1PF3V5/Ph9zfd8Kh+GHCPg/D7/S3OI3Sc0Hk0N5/evXuTmprKd77zHQAuvPBCHn30UWDvYx9yc3Px+/2UlJTQq1cvcnNzOfHEExuq6s466yyWLl3aLRJQl6uCE5EzRORrEVknIreFaz4jC96iypeGjD8vXLMwxrTT888/zxVXXMGmTZvYuHEjW7ZsYdiwYSxcuHCf4YYOHcqyZcsIBoNs2bIlLCfk+/bty65duygqKqKmpobXX3+93dMSEc4555yGB9i9++67jBs3DnAlqSeeeAJwv/+kk05qqHr78ssvqaysxO/38/777zeMc7DrUglIROKAPwJnAuOAS0Sk05d07fv3My3wEUsDIyClZ2dP3hjTQXPmzGkoJdQ7//zzeeaZZ/bpduyxxzJs2DAmTpzIzTfffEBVdG2VkJDAL37xC4466iimT5/O2LFjOzS9e+65h1mzZjFp0iSeeuopfvvb3wJwzTXXUFRUxMiRI7n//vv5zW9c1WfPnj256aabOOKII5g8eTJTpkzh7LPPBuCWW24hNzeXyspKcnNzm2yo0ZV1qccxiMhUYJaqnu59/ymAqt7d1PDtfRyDbvmM/Kd+wKoTH+a0Y4/sSMjGdEv2OIbuoys/jqGrnQMaCGwJ+Z4PHNXZM5FBRzDo/y1lUGdP2BhjTJt1qSo43PNJG9uniCYi14rIYhFZXFBQEKGwjDHGdLauloDyYZ+CSS6wLXQAVX1EVfNUNS8nJyeiwRkTS7pS9bxpn67+H3a1BPQZMEpEholIIjADeDXKMRkTc5KTkykqKuryOzDTPFWlqKiI5OSue8f/LnUOSFX9InI9MA+IAx5T1RVRDsuYmJObm0t+fj5WzX1wS05OJjc3N9phNKtLJSAAVX0DeCPacRgTyxISEhg2bFi0wzDdXFergjPGGBMjLAEZY4yJCktAxhhjoqJL3QnhQIlIAbCpA5PIBgo7KZxws1g738ESJ1is4RKrsQ5R1ahfx3JQJ6COEpHFXeF2FG1hsXa+gyVOsFjDxWKNLquCM8YYExWWgIwxxkRFrCegR6IdwAGwWDvfwRInWKzhYrFGUUyfAzLGGBM9sV4CMsYYEyWWgIwxxkRFt0lAInKGiHwtIutE5LYm+ieJyLNe/09EZGhIv5963b8WkdPbOs1Ixyoip4rIEhH5yns/KWScBd40l3mvPlGOdaiIVIXE83DIOId7v2GdiDwkIk09ByqSsV4aEucyEQmKyGSvX7SW6wkislRE/CJyQaN+V4rIWu91ZUj3Tl+u7Y1TRCaLyEciskJEvhSRi0P6zRaRDSHLdHJH4+xIrF6/QEg8r4Z0H+atK2u9dScxmrGKyLcaravVIvJtr19YlmtYqepB/8LdOfsbYDiQCHwBjGs0zH8DD3ufZwDPep/HecMnAcO86cS1ZZpRiPUwYID3eQKwNWScBUBeF1quQ4HlzUz3U2Aq7gGEbwJnRjPWRsNMBNZ3geU6FJgEPAlcENK9F7Dee+/pfe4ZjuXawThHA6O8zwOA7UAP7/vs0GGjvUy9fuXNTPc5YIb3+WHgv6Ida6N1YTeQGq7lGu5XdykBHQmsU9X1qloLzAXOazTMecAT3ufngZO9I8TzgLmqWqOqG4B13vTaMs2Ixqqqn6tq/QP6VgDJIpLUCTF1eqzNTVBE+gOZqvqRuq3mSeDbXSjWS4A5nRBPS1qNVVU3YGxkpAAABnZJREFUquqXQLDRuKcDb6vqblXdA7wNnBGm5druOFV1jaqu9T5vA3YB4bzyviPLtEneunESbl0Bt+5EZF1tY6wXAG+qamUnxBQV3SUBDQS2hHzP97o1OYyq+oESoHcL47ZlmpGONdT5wOeqWhPS7XGv6P3zTqrW6misw0TkcxF5X0SODxk+v5VpRiPWehezfwKKxnI90HHDsVw7ZRsQkSNxR/rfhHS+y6ua+10nHUR1NNZkEVksIh/XV2nh1o1ib11pzzSb01n7lhnsv6529nINq+6SgJraKTRuX97cMAfavaM6EqvrKTIeuAf4QUj/S1V1InC897q8g3G2Gkcrw2wHBqvqYcBNwDMiktnGabZHZyzXo4BKVV0e0j9ay/VAxw3Hcu3wNL2S2VPA1apafzT/U2AscASuGunWjgRZP6smuh1IrIPV3ebme8ADIjKiE6bZnM5arhNxD++sF47lGlbdJQHlA4NCvucC25obRkTigSxc/Wlz47ZlmpGOFRHJBV4CrlDVhiNKVd3qvZcBz+CK+VGL1avSLPJiWoI7+h3tDR/6iMYusVw9+x1RRnG5Hui44ViuHdoGvAOOfwI/U9WP67ur6nZ1aoDHif4yra8mRFXX4877HYa78WcPb1054GmGK1bPRcBLqlpX3yFMyzWsuksC+gwY5bVYScTtSF5tNMyrQH2LoQuA97y68leBGeJaSA0DRuFO5rZlmhGNVUR64Dbon6rqovqBRSReRLK9zwnAdGA5HdeRWHNEJM6LaThuua5X1e1AmYgc7VVnXQG8Es1YvRh9wIW4+ni8btFcrs2ZB5wmIj1FpCdwGjAvTMu13XF6w78EPPn/27ub0LiqMIzj/8cKSU2Dm2KJbqSIiFpra4poFBroogp2o+DGhR+4EFRU3FULLYqKbizBQptld0FxoZiVQalSPyrGaNVSJSAqaASlFsWSvi7OGXo73mkyQ6bHmT4/GObm3nPOPXNzwjv3I++JiKmmbSP5XaR7KkWPaT6WA3l5LTAGHM1jY4Y0ViCNnfM1Vpfyn3uVXTqu3VX6KYiVegF3AsdI37R35nV7gB15eRCYIj1k8DGwvlJ3Z673LZUnh+raLNlX4BngJPB55XUZMAQcAb4gPZzwKrCqcF/vzn2ZBT4D7qq0OUr64/gOmCBn5Cg8BrYCh5vaK3lct5C+KZ8EfgO+qtR9MH+G46RLW107rp32E7gPONU0Vm/M294F5nJfDwJrSh5T4Nbcn9n8/lClzfV5rBzPY2fgf/D7vxL4Ebioqc2uHNduvpyKx8zMiuiXS3BmZtZjHIDMzKwIByAzMyvCAcjMzIpwADIzsyIcgOyCJOkJSZd0UG+PpG1t1tkkaTIv79AyM6tLmpZ0haRJSdcuUfZRSQ+00y+z0vwYtl2QJM2Tslwv1GxbFRGLK7ivKeC5iJhto85q4L2IWNZ/s+dg+kGk1EdmPcFnQNbXJA1JelvSrKQvJd0r6XHSFAEzkmZyuT/z2c1HwC2Sdkn6JNfZ30hCqjTnyj15eV7SbqV5W+YkXVOz/2HghkbwkXS/pIlKW3slfSjpe509R81WUkqYxpxEo5V+Pp8/z2FJ6wAiZUSeV0r8adYTHICs320HfoqIjRFxPTAdEXtJubfGI2I8lxsizV90c0QcAiYiYkuus5qUhqfOQkRsBvYBT9dsb2QnaGUEuC23/2Jl/R3AdE35IVLGho3A+8DDlW2fkhKmmvUEByDrd3PANkkvSbo9Iv5oUW4ReL3y87jSTJhzpDlhrmtR7438foSUIqXZCPDrOfr3ZkScjoijwLrK+jHgUE35f4C3WuzzF9KZnVlPcACyvhYRx4CbSIHoBUm7WhT9u3HfR9Ig8BppdskNwAFSHrk6jfmYFoGLa7b/dY661fqQ0/Tn5K0/RJqsrNmpOHPjtnmfg3l/Zj3BAcj6mqTLSXP8HAReATbnTSeA4RbVGgFjQdIazmRD7sTXwFVt1ml1+W0pV9MLGZDNsrpvbGb9ZAPwsqTTpOzMj+T1+4F3JP1cuQ8EQET8LukA6axpnpQ+vyMR8Y2kSyUNR5pTaDm2A491sLsxYHcH9cyK8GPYZl0m6UngRERMLqPsAOlx6tE297EJeCoiVmLGVrPzwpfgzLpvH2ff62kp0kyybQWfbC3wbAf1zIrxGZCZmRXhMyAzMyvCAcjMzIpwADIzsyIcgMzMrAgHIDMzK+JfmbCVLLPjoysAAAAASUVORK5CYII=\n", "text/plain": [ "<Figure size 432x288 with 1 Axes>" ] }, "metadata": { "needs_background": "light" }, "output_type": "display_data" } ], "source": [ "plt.plot(strain_steel,stress_steel,strain_al,stress_al)\n", "plt.xlabel('strain (in/in)')\n", "plt.ylabel('stress (ksi)')\n", "plt.title('Stress Strain Curve of Steel 1045 and Aluminum 6061 in tension')\n", "plt.legend(['Steel 1045','Aluminum 6061'])\n", "\n", "plt.show()" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "The plot we see has two lines, axis labels, a title and a legend. Next we'll save the plot to a .png image file." ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Save the plot as a .png image\n", " \n", "Now we can save the plot as a .png image using Matplotlib's ```plt.savefig()``` method. The code cell below builds the plot and saves an image file called ```stress-strain_curve.png```. The argument ```dpi=300``` inside of Matplotlib's ```plt.savefig()``` method specifies the resolution of our saved image. The image ```stress-strain_curve.png``` will be saved in the same folder as our running Jupyter notebook." ] }, { "cell_type": "code", "execution_count": 9, "metadata": {}, "outputs": [ { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAaAAAAEWCAYAAAAgpUMxAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4xLjEsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy8QZhcZAAAgAElEQVR4nOzdd3gc5bX48e9Z9e4iucq94oYxopjq0IuBJDQTeriXcG/AIYQL5EeKSeASuIQAaYQEMCXYEDoEYpoN2KHZxoAbtnGVqyRbve7u+f3xjuS1rGZJuytrz+d59tndqWdnZ+bM+847M6KqGGOMMZHmi3YAxhhjYpMlIGOMMVFhCcgYY0xUWAIyxhgTFZaAjDHGRIUlIGOMMVFhCSiMRGSFiEyLdhyRJiJ3ikihiOyIchzTRCQ/mjFEmojMFpE72znuUBFREYkPQ1yXishbnT3dg9nBsH8Id4xhSUAicpyI/FtESkRkt4gsEpEjvH5XicjCcMz3AGPMFZEXvB1liYh8JSJXef06ZUNU1fGquqCd8YmIzBSR5SJSISL5IvIPEZnYkZjCTUQGAT8Bxqlqv2aG+X8iskFEyr3f9WxIvwUi8h8RivXX3v/uF5FZTfT/nohs8pb/yyLSq4lhRolItYg8HdJtmogEvd9X/7oyzD+nzbz4VERuidQ8VfXvqnpapObXEhGJ8w6StolImYh8LiI9Qvr/WER2ePuFx0QkqdH4P/LW3woRWSUio73u/UXkVW+6KiJDW4qjg/sHFZGR7Rn3QHQkxrbo9AQkIpnA68DvgV7AQOAOoOYAphHX2XE14SlgCzAE6A1cAexs68jhOEps5EHgR8BM3HIcDbwMnH2gE4pArKGGAEWququZWK4ELgdOUdV0IA94N4LxhVoH3AL8s3EPERkP/AUXa1+gEvhTE9P4I/BZE923qWp6yOuJzgu7w64EdnvvsegO4BhgKpCJ+4+rAUTkdOA24GRgKDDcGx6v/38A1+C2w3RgOlDo9Q4C/wLOj8Bv6B5UtVNfuB1KcTP9DsH90QGgvH44YDbwZ+ANoAI4BUgC7gM24xLDw0CKN3w2LskV4zakDwGf1+9WYCtQBnwNnNxMLOXA5Gb6bQbUG6Yct6JeBSwCfufN805gBPAeUIRbCf8O9AiZzkbcjhZgFvAc8KQX2wogr5n5j/KW0ZEtLOcFwH+EfL8KWBjyXYEfAmuBDd7yu6/RNF4BbvI+DwBeAAq84We2MO8s73cUAJuAn+EOZk4BqnAbYjkwu4lx/wA80Mx07/J+d7U3/h+87mOBt73l/jVwUcg4La0n04D8NqyzTwOzGnX7X+CZkO8jgFogI6TbDO8/nQU8HdK9TfMNGf5B3MFQKbAEOD6kX4vrDXAYsNTr9ywwF7izhXmlesPO8H5P6LSGeutNfOP1NySWpxsNe7UX+x7gOuAI4EvctvmHVtbP63Dr5x5cIpfG82kmrgW47e/f3nryGu4g8u/eMvwMGNrM7+/pjTOimf7PAP8b8v1kYIf32ef91ib3KSHjxHvxNhlDJ+wfPvCmX+H9lou97tOBZd6y/zcwqdG8bvb+mxJvXUn2+rW0Pw2NMQl4ANjmvR4AkkLXeVztxy5gO3B1q+t+WzeSA9iYMnE75CeAM4GejfrvsyJ63WZ7C+VY709O9n7cq7ij/wxvJbvbG/5u3I4mwXsdDwgwxltBBoSsuM2taO/gEsoMYHCjfkMJWeFD4vYDN3grWAowEjjV+2NyvBXjgZBxGq9g1cBZQJz3Gz5uJrbrgE2tLOcFtJ6A3vaWXwpwgrds6jfynrhkMcBb5kuAXwCJuKO+9cDpzcz7SVzyyvCW1RrgmtAVsYW4L8Ot5P+DO1iJa+V3pXlxX+0t9ym4ZD/e69/SetJiLCHzaCoBvQLc2qhbOXB4yHq+BhhE0wmoFpcQN+AOWtJaWSa9vd/3E2AHe3cOza433n+1Cfgxbju4AKij5QR0OW7nEOctq4eaW+9pWwJ6GLe9nubF+TLQB1fzsQs4sYX183WgBzAYdzBzRuP5NBPXAlzpdQTuYGil91+c4i3DJ4HHm/n9J+B2tLd6y3kN8MOQ/l/g7dC979nevHt7cSquZmKL99/egbezDhmnvQmoTfuHkOU3MuT7FG95H+WNf6U3/aSQeX2K2957AauA61ranzYR46+Aj73/NweX5H4dss77vWESvN9RSaP9f+NXp1fBqWopcJy3gP4KFHj1on1bGfUVVV2kqkFcdd1/Aj9W1d2qWoY7Ip3hDVsH9AeGqGqdqn6obikEcMlgnIgkqOpGVf2mmfldiMv0Pwc2iMiy+vNULdimqr9XVb+qVqnqOlV9W1VrVLUAuB84sYXxF6rqG6oawFUBHtrMcL1xO4mOuttbflW436q4lQvczuojVd2GO2rNUdVfqWqtqq7H/XczGk/Qqx69GPipqpap6kbgt7gdW6tU9WlcEj8deB/YJSK3tTDKdGCjqj7uLfeluJLaBSIitLyedEQ67qAoVAkuyQH8GnhUVbc0Me5qYDJuHT0JOBy3bjRJVZ9W1SLv9/0Wtw6PCRmkufXmaNzG/oC3HTxP09WBoa4EnvWm9QxwiYgktDJOS36tqtWq+hbuiHyOqu5S1a24de6wFsb9jaoWq+pmYD5umbXV46r6jaqWAG8C36jqO6rqB/7RwnxzcUlrNDAMtx3MEpFTvf6N//f6zxneuOCS7UTgW8AluCq5ztDW/UNT/hP4i6p+oqoBdVW+Nbh1pN5DqrpNVXfjDj7ql3dz+9PGLgV+5f2/BbjkG7rd13n961T1DdwB25gmptMgLI0QVHWVql6lqrnABFzWfaCV0UI35BxcVcESESkWkWJc3WqO1///cEdAb4nI+vodmKquA27EHU3sEpG5IjKgmRj3qOptqjoeV8e/DHjZ26m1JUZEpI83j60iUoo7ks5uYfzQVmGVQHIz52eKcCtERzXE661Qc3EbDMD3cFUW4M7bDKhf1t7y/n+45dJYNnuPvOttwh3xtom6E9Kn4I5+rwN+5dW9N2UIcFSj2C4F+tH6etIR5bhSTqhMoExEJuOOtn/X1IiqukNVV6pqUFU34M4zXdDcjETkJ97J7BLvN2Sx73rU3HozANjaaGcR+r80ns8g3E6z/n9/BVd6OeDziiFCz5tWNfE9vYVxG/+ulobtrPlWee+/8g4iv8RtF2d53Rv/7/Wfy0LGvddLnBtx5wnPonO0df/QlCHATxptJ4Nw60hz069fRk3uT5swgP23+9DpF3kHAE3No0lhb4atqqtxVWwT6js1N2jI50Lcnz1eVXt4ryx1J63xjrx/oqrDgXOAm0TkZK/fM6p6HO4PUeCeNsRYiDuPUF88bUuM4IquiqtrzcRVpbSUwNrqXSBXRPJaGKYCt/Ot11SLs8bxzsGVHIbgiuoveN23ABtClnUPVc1Q1aY2rELckc6QkG6DcefdDoh3pPQPXL10c+vHFuD9RrGlq+p/0cp60kErCDkCFZHhuJLJGlx1w1Bgs7im5jcD54vI0uZ+Ks2sFyJyPK466CJcdUUP3FF3W9aj7cDARgdNg1sY/nLcNv+aF/d6XAK6opnh27KOhUM45/ul997cNr7P/+593qmqRbjzj7UtjBtNW4C7Gm0nqao6p7URW9qfNrKN/bf7bR0JOhyt4MZ6R3S53vdBuKPuj71BduJ2ronNTUNdNdxfgd+JSB9vOgPrj5JFZLqIjPQ2vFJc1VtARMaIyEles8lq3M4p0Eyc94jIBBGJF5EM4L+Add6KVoA7kT68lZ+bgdeYQkQG4s5rdJiqrsW1uJrjNZlNFJFkEZkRcnSyDPiuiKR6zTFbrQZQ1c9xv+1vwDxVLfZ6fQqUisitIpLiNVOd0FSVpFc98Bxwl4hkeMnsJlzpr1XimuGf7Y3rE5EzgfHAJ94gO9l3ub8OjBaRy0UkwXsdISKHtLaetCGWBBFJxm0H8d4yrm+B+XfgHBE5XkTScHXbL3rVfI/gzj9M9l4P41rS1a+f00RksDiDgN/gShtNycDVnRd4MfyC/UtezfnIG3emtx5/FziyheGvwFWbTA55nQ+cLSK9mxh+GTDDW055tFCK62TLgBO8ZZgF/LSzJqyuSv5D4HYRSRKRQ3BVyq97gzwJXCMi40SkJ66BzWxv3ErcyftbvPU3F1f1VT8u3vpU32w7yfseDo23k78C14nIUd56l1a/nbU2oeb2p00MOgf4mYjkiEg27pxxm7b75oSjBFSGO7r+REQqcIlnOe7kKrhWYyuAHSJS2PQkAHdUuA742Kveeoe99YmjvO/luI3wT+raqifhNvZCXHGzD64qqSmpwEu4E5LrcZn9XGhY0e4CFnnF2aObmcYduJN/Jbgd0Ist/J4DNRPXYuyPXozfAN/B1d2Cq/6pP9H9BHurVVozB1d99Ex9By+pnIPbIW3ALb+/4aqCmnID7ih1PbDQm9ZjbZx/Ke4/2Yz7XfcC/6Wq9deGPYgrpe0RkYe8Hf5puPM623D/6z3s3chbWk9a81fcQcolwO3e58sBVHUFrnrw77iTuxnAf3v9Kr1qth2qugO3HlZ79eLg1omPvGX0b9z6P7OZGObhzmGswVVpVNOoqrc5qloLfBd3gn8Pbkfa5DrorcNDgT+Gxq6qr+KW3yVNjPZzXKLdg1vXn2limE6nqm/jdvRf4hrHvN7yGAfsErzLBXDb7c9V9V1v3v/CrZPzcf/HJuCXIeNej/u/t+H+48brfpXXH9y5wCrCYxbwhLd/ukhVF+OS4R9w/9c63HrRFs3tTxu7E1iM+1++wrW+bNdFz/XqWzoYY4wxEWW34jHGGBMVloCMMcZEhSUgY4wxUWEJyBhjTFRE8iaVnS47O1uHDh0a7TCMMeagsmTJkkJV7YwLtjvkoE5AQ4cOZfHixdEOwxhjDioi0uwdMyLJquCMMcZEhSUgY4wxUWEJyBhjTFRYAjLGGBMVloCMMcZEhSUgY4wxUWEJyBhjTFQc1NcBGdOZVJWyGj8llXWUVNVR4w9Q61f8wSD+gFIXCOIPuve6gOIPBKkLund/QKnzhvMHlaR4H8kJcaQkxJGc4HPviXEkx8eRkth094Q4QVp8IK8x3YslINPtqCp7KuvYWVrNnopaSqrq2vQqraojGMWnk8T5pCEx7U1ecSFJyheSvNyrR2oC/bOS6ZeZTP+sFPpkJpGcENf6zIzpAiwBmYOKqrK7opYte6rYUVLNjpIqtpdWe5+r2VFazfaSamr9wSbHj/MJWSkJZKUkkJmSQM/URIb2TmvoFtovJTGOBJ+QEO8j3ickxPmIjxPifT4S6z/HCQk+9zkhzkdCnA+fQG0gSHVtkGp/gKraAFV1Aarr9r5X1wX36b63X9C91wb2Gbe0qo5dIeNX1bphawP7/87eaYn0zUx2iSkrmQE9UhiencaovukM6Z1GQpzVvJuuwRKQ6ZLKa/ys21XOxsIKNhRWsLHIvW8orKCs2r/PsIlxPvpmJdE/M4VJuT04fbwrEfTNTKZXWqJLKqkusaQlxkWkmispPo6k+DiySAjrfMpr/A3Jd3uJS8rbS6vZWeIS8edbitldUdswfLxPGJqdxsicdEb1TWdkn3SG9k5jaLZLwsZEUtgSkIg8BkwHdqnqBK/b/+Ee/VyLe8T01apa7PX7KXAN7lnkM1V1XrhiM11HMKhs2l3J6u2lrNpR5r2XsmX33icZi8DAHikMy07j25MHMiw7jUG9Uumf5Y7ye6Ulxuy5k/SkeEb2cYmkOZW1ftYXVLBuVzlrd5Wxdmc5a3aV8faqnQRC6hx7pyUyNDuNob3TGJ6Txqg+6UzK7UG/rORI/BQTg8L2SG4ROQH3jPEnQxLQacB7quoXkXsAVPVWERkHzAGOBAbgnk8+WlUDLc0jLy9P7WakB4+y6jpWbS9j1fZSVu8oZdX2Mr7eUUZVnfubfQLDstMY2z+Tcf0zGdknneFesrHzGp2vxh9gc1FlQ8kytJS5s7SmYbg+GUlMyu3BpNws79WDXmmJUYzcdJSILFHVvGjHEbYSkKp+ICJDG3V7K+Trx8AF3ufzgLmqWgNsEJF1uGT0UbjiM+FXVF7DZxt38+mGPXy6sYiV20obTvL3SE3gkH6ZzDhyEIf0y+SQ/pmM6ptuiSaCkuLjGNU3g1F9M/brV1HjZ/WOMr7KL+bL/BK+yC/m3dU7qT9eHdQrhUkDezQkpAkDM8lItio8c2CieQ7o+8Cz3ueBuIRUL9/rth8RuRa4FmDw4MHhjM+0w5bdlcxbsYN5K3aweNMeVCEp3seUwT25/qRRHDaoB4f0z6RvZlLMVpsdDNKS4jl8SE8OH9KzoVtZdR3Lt5bypZeUvtxazD+/2g64atLh2WkcmtuDiV5SGj8g0w4oTIuikoBE5HbAD/y9vlMTgzVZN6iqjwCPgKuCC0uAps32VNTy0foiFq0r5N/fFLGhsAKAsf0ymHnSKE4YncPEgVkkxlvLq4NdRnICU0f0ZuqI3g3ddlfU7k1I+SUsXFfIi59vBSA5wcfRw3szbXQO08b0YWh2WrRCN11UxBOQiFyJa5xwsu49AZUPDAoZLBfYFunYTNvk76nkX8t38K/lO1iy2ZVy0hLjOGp4by49ajCnHNLXdjYxoldaItPG9GHamD4N3XaUVPNFfjEffVPE+2sKmPXaSnhtJX0zkxg/IIvxAzK9Vxa5PVOsJBzDIpqAROQM4FbgRFWtDOn1KvCMiNyPa4QwCvg0krGZlq0vKOdNL+l8tbUEgEP6Z/Kjk0dx/KhsJuX2sOtLDAD9spLpl9WP08f3A2BTUQXvrylg2eZiVmwr5f01BQ2t73qkJnDCqBxOHdeXE8fkkGnnkWJKOFvBzQGmAdnATuCXwE+BJKDIG+xjVb3OG/523HkhP3Cjqr7Z2jysFVz4Ld64m9+8uZrFm/YAcOigHpw5oR9njO9npRzTLtV1Ab7eUcaKbaUs3byH+at3UVRRS7xPOHJYL04YncMJo3I4pH+GlY7CpKu0ggtbAooES0DhUV0XYN6KHTy3eAuL1hXRJyOJa08YzlkT+zOgR0q0wzPdTCCoLNuyh7dW7uT9rwtYvaMMgJyMJI4flc2Jo3M4bmQ2vdOTohxp92EJqBNYAupcy7eW8I/FW3h52TZKquoY2COF7x01mKuPHUpqot00w0TGztJqPlhTwAdrC1m4toA9lXWIwIQBWZwwOpsTRuUwZUhPq/LtAEtAncASUMcFg8prX27jkQ/Ws2JbKYnxPs4Y34+L8gZxzIje+HxWBWKiJxBUlm8t8RJSAUs3FxMIKulJ8Uwd0ZvDh/Rk4sAsJgzIIivVzh+1lSWgTmAJqP0CQeWDNQU8+O5alm0pZmy/DL531GDOPXQAPVLtKnfTNZVW1/HvdUV8sLaAhWsL2bx7b1umIb1TmTAwiyOG9OTiIwaTkmjXIDXHElAnsAR04KrrAjy+aCN//2QT+Xuq6JuZxP+cPpbvHjbQSjvmoLO7opblW0v4amtJw3v+nioGZCVz02ljOHVcX7vJahMsAXUCS0AHZvnWEm58dhnrdpUzdXhvLj16MKeN62cXiZpu5dMNu7njtRWs2FaKT1zLzeNGZnPcyGwOG9zT1ncsAXUKS0Bts6usmgffWcucTzeTk5HEfRceyvGjcqIdljFhEwgqizfuZuG6QhauK+SLLcUEFVIS4jhqeC+XkEZlM6ZvbDb1tgTUCSwBNS8YVD5YW8Czn23hnVU7CSpcfvQQbjxllJ3jMTGnpKqOj71bRi1cW8h675ZR2elJHDeyN8d6Cal/VmxcZmAJqBNYAtpfMKjMW7GD372zhjU7y+mVlsh3DxvIpUcPYZhdOGoMAFuLqxqS0aJ1hRR5D+0bkZPG8aNyOHZkNseM6E1aUve8/MASUCewBLS/O15bweOLNjIiJ42ZJ4/izAn9rc7bmBYEg8rXO8tYuNZV132yoYjquiDZ6Unce8FEThrbN9ohdjpLQJ3AEtC+vswv5tw/LOLyo4cw69zxxFmrNmMOWI0/wGcb9nDnP1eyekcZp47ry2never6ZHSPp8N2lQTUPcuXMerdVbvwCfzktNGWfIxpp6T4OI4blc0r1x/L799dx3OLt/D2yp0ATMrN4oRRORwzojdThvS05x11kCWgbuDj9UX0y0wmf08V/bNSrJGBMZ0gKT6Om08fw09OG83K7aUs+LqA91bv4s/vf8Mf5q8jMd7H4YN7csHhuXx3ysCYbE3XUZaADmJ1gSD3zfuav3ywnvEDMhmek05CnG0ExnQmEfGeY5TFD781kvIaP59t2M2/vynk/TUF/OQfXzD3s838+JTRHDmsF/F2j7o2s3NAB6mV20q5+R9fsHJ7KYcO6sEXW4rJyUiiR0oCb990YrTDMyYmBIPK80vyufvNVeyprKNHagInj+3LaeP7cuzIbNK7aCs6Owdk2kVV+fsnm/nVayvJTEng4csOZ9qYHI675z0KymrIsVvWGxMxPp9w0RGDmH5ofz5YU8hbK3bwzqqdvLA0n3ifcOigHhzjPcY8b0gva5HaiCWgg8iGwgp+/vJyFq4r5MTROfzu4sn0SnPne66YOpT7315Dgq3gxkRcamI8Z0zoxxkT+lEXCPLZxt0sWlfIv78p4k8LvuH3761jYI8UbjxlFN+dkmuNhDyWgA4S763eyQ3PfI5PhF+fN55Ljxqyz81DLzt6CH9asI4EW7GNiaqEOB/HjMjmmBHZAJRV17FoXRF/XrCO/3n+Sx75YD03nz6G08b1jfmGC3YOqItTVR5ftJE7/7mScQMy+esVec3eLuTZzzYT7/Nx/uG5EY7SGNMaVXeXknvnfc36ggqG9E5tuEnq1BG9I9p6taucA7IE1IXVBYLMenUFf/9kM6eP78vvLp5sTyY15iDnDwR5edk2/rV8Ox99U0RFbQAROHJoL247cyyHDe4Z9hgsAXWC7pyASqrquP6ZpXy4tpDrThzBLaePsef1GNPN1AWCfLGlmA/XFvLMp5spKKvh/Cm53HrmmLDedcESUCforgloU1EF35/9GZt3V3LXdyZyUd6gaIdkjAmz8ho/f3hvHY8t3EBivI9rTxjO9En9GZ6T3unzsgTUCbpjAvp0w25+8NRiFHj4ssM5enjvaIdkjImgjYUV3PnPlbyzahcAw3PSOOWQvpw6ri95Q3p2SsMFS0CdoLsloBeW5HPbi18yqGcqj151hD0+wZgYlr+nkndX7eKdVTv5eH0RdQFlXP9Mrps2gnMm9e9QIuoqCShsZ7RF5DFgOrBLVSd43XoBzwJDgY3ARaq6R9ySfBA4C6gErlLVpeGKraup9Qe591+r+dvCDRwzojd/vvRwslLtOfbGxLLcnqlcecxQrjxmKGXVdbzx1XZ++9YaZs75nPSkuG7xmIhwXrU4GzijUbfbgHdVdRTwrvcd4ExglPe6FvhzGOPqUoora7noLx/xt4UbuGLqEJ74/pGWfIwx+8hITuDiIwbzyvXHcu6hA+iV1j3ueBK2EpCqfiAiQxt1Pg+Y5n1+AlgA3Op1f1JdfeDHItJDRPqr6vZwxdcV7Kmo5dK/fcK6gnL+fOkUzpzYP9ohGWO6sP5ZKTx0yWHRDqPTRPq+LX3rk4r33sfrPhDYEjJcvtdtPyJyrYgsFpHFBQUFYQ02nIrKa/iel3z+ekWeJR9jTMzpKjcOa+psWpOtI1T1EVXNU9W8nJycMIcVHrtKq5nxyMesLyjnb1fkceLog/N3GGNMR0Q6Ae0Ukf4A3vsur3s+EHqxSy6wLcKxRcS24iou+stHbC2uYvbVR3KCJR9jTIyKdAJ6FbjS+3wl8EpI9yvEORoo6Y7nf3aUVHPJXz+mqKKWp//jKKaOsGt8jDGxK5zNsOfgGhxki0g+8EvgN8BzInINsBm40Bv8DVwT7HW4ZthXhyuuaNlVWs33/voxReW1PHXNkRG535MxxnRl4WwFd0kzvU5uYlgFfhiuWKJtU1EFVzz2KQVlNTz5fUs+xhgD9jygsKuo8fO9v35CRa2fp645isOHWPIxxhiwBBRWFTV+bnx2GVuLq3j+uqmWfIwxJoQloDApLK/hysc+ZdX2Un4xfRx5Q3tFOyRjjOlSLAGFQXFlLRd7Ta0fvfIIvjW2T+sjGWNMjLEE1MlKq+u49qklbN5dyVPXHGWPUzDGmGZYAupE1XUBZvzlY9bsLOO3Fx1qyccYY1pgCagTPfTuWlZuL+WRyw/ntPH9oh2OMcZ0aV3lXnAHvfvmfc2fFnzD+VNyLfkYY0wbWALqBO+u2skf5q/jorxc7r1gUrTDMcaYg4IloA5auLaQ65/5nLH9Mvj1tycQ5+v489qNMSYWWALqgG3FVVz39BKG9E7lyWuOJCk+LtohGWPMQcMSUDuVVdfxX08vIRBU/npFHn0ykqMdkjHGHFSsFVw7VNcFuOaJxSzfVspfLjucQb1Sox2SMcYcdKwE1A43PbeMzzbu5v6LDuWUcX2jHY4xxhyULAEdoDe/2s4bX+3g5tPGcN7kgdEOxxhjDlqWgA7A2p1l3PLCl0wcmMW1JwyPdjjGGHNQswTURut2lXPxIx+TFB/Hny6dQkKcLTpjjOkI24u20R2vrSAQVP5x3VRrdGCMMZ3AElAbLFxbyIdrC7nhpJEMy06LdjjGGNMtWAJqRTCo3POv1QzskcLlU4dEOxxjjOk2LAG14rnFW/hqawk/OW203enAGGM6kSWgFuwsreaO11YydXhva3JtjDGdzBJQC95dtYuqugB3nDfebjJqjDGdLCoJSER+LCIrRGS5iMwRkWQRGSYin4jIWhF5VkQSoxFbqA/XFjAgK5lRfdKjHYoxxnQ7EU9AIjIQmAnkqeoEIA6YAdwD/E5VRwF7gGsiHVuoovIa3lu9i5MO6YOIlX6MMaazRasKLh5IEZF4IBXYDpwEPO/1fwL4dpRiA+CFpfnU+INcdczQaIZhjDHdVsQTkKpuBe4DNuMSTwmwBChWVb83WD7Q5Fl/EblWRBaLyOKCgoKwxfnm8h1MGJjJyD4ZYZuHMcbEsmhUwfUEzgOGAQOANODMJgbVpsZX1UdUNU9V83JycsIS4/aSKj7fXMwZ4/uFZfrGGGOiUwV3CrBBVQtUtQ54ETgG6OFVyQHkAp5/FbUAACAASURBVNuiEBsA763eBcAZEywBGWNMuEQjAW0GjhaRVHFn908GVgLzgQu8Ya4EXolCbACsL6ggOcHHiBxr/WaMMeHS6hNRRSQX10rteFyVWRWwHPgn8KaqBg9khqr6iYg8DywF/MDnwCPe9OaKyJ1et0cPZLqdaenmPYzpm2Gt34wxJoxaTEAi8jiuMcDruGbSu4BkYDRwBnC7iNymqh8cyExV9ZfALxt1Xg8ceSDTCYfqugBfbCnmv6eNjHYoxhjTrbVWAvqtqi5vovty4EXvYtHBnR9W9GwsqiCoMKqvVb8ZY0w4tZiAmkk+of1rgXWdGlGUfbOrAsDO/xhjTJi1VgX3nKpeJCJfsW+zaAFUVSeFNbooWLZlD4nxPisBGWNMmLVWBfcj7316uAPpKtYXVDAiJ90evWCMMWHWYjNsVd3ufSwEtqjqJiAJOJQoXqcTTttLqumflRztMIwxpttr63VAHwDJ3o1E3wWuBmaHK6ho2lpcxcAeKdEOwxhjur22JiBR1Urgu8DvVfU7wLjwhRUd5TV+SqrqGNjTEpAxxoRbmxOQiEwFLsVdMAptuIj1YLN1TxWAlYCMMSYC2pqAfgT8FHhJVVeIyHDcrXO6la3FlQBWAjLGmAhoaylms6qeW/9FVdeLyFNhiilq6ktAuVYCMsaYsGtrCegFrwECACJyIvBYeEKKnq3F1STG+chOT4p2KMYY0+21NQFdB7wsIv1E5CzgQeCs8IUVHbsrauiVlojPZzchNcaYcGtTFZyqfiYiM4G3gGrgVFUN3+NIo+Sbggo7/2OMMRHS2q14XmPfW/Ck4h6h/aiIEHpeqDvYUVLN0cN7RzsMY4yJCa2VgO6LSBRdhD8YJCHOqt+MMSYSWktAH6iqtjSAiEhrwxwsquuCJMRF4yGxxhgTe1rb284XkRtEZJ9n/ohIooicJCJP4B6ffdDbVVpNSVUdQ3qnRjsUY4yJCa2VgM4Avg/MEZFhQDHuiahxuAYJv1PVZeENMTI+XFsIwNQRdg7IGGMiobUH0lUDfwL+JCIJQDZQparFkQgukuK9cz/xPquCM8aYSGjz/dxUtQ7Y3uqAB6mMZLcoymv8UY7EGGNigx3uexpuw2PXARljTERYAvJsK6km3ifk2G14jDEmItqUgEQkTUR83ufRInKud06o2xDcFbdilwEZY0xE2BNRPeU1flIT4xDLQMYYExFReSKqiPQQkedFZLWIrBKRqSLSS0TeFpG13nvP9k6/PbbZo7iNMSaiovVE1AeBf6nqWOBQYBVwG/Cuqo7ClbJu68D0D1hptZ/MlG5Vq2iMMV1aWxPQjXTSE1FFJBM4AXgUQFVrveuKzgOe8AZ7Avh2e6bfXpW1ftKTut1Txo0xpstq6+MY3gfeB/AaIxSq6sx2znM4UAA8LiKHAktwj/zuq6rbvfltF5E+TY0sItcC1wIMHjy4qUHapaImQGrvuE6bnjHGmJa1tRXcMyKSKSJpwErgaxH5n3bOMx6YAvxZVQ8DKjiA6jZVfURV81Q1Lycnp50h7K+ixkpAxhgTSW2tghunqqW4arE3gMHA5e2cZz6Qr6qfeN+fxyWknSLSH8B739XO6R+wYFAprqqzc0DGGBNBbU1ACd51P98GXvFuy9OuRzCo6g5gi4iM8TqdjCtVvcreO2tfCbzSnum3x+7KWmr9QQZkJUdqlsYYE/PaWuf0F2Aj8AXwgYgMAUo7MN8bgL+LSCKwHnddkQ94TkSuATYDF3Zg+gckGHS5NM6eBWSMMRHT1kYIDwEPhXTaJCLfau9MvUc45DXR6+T2TrMj9lTWAZBlVXDGGBMxbW2E0FdEHhWRN73v4+gmD6ID2FpcCcAguxGpMcZETFvrnGYD84AB3vc1uGuDuoWyavcIBmuEYIwxkdPWBJStqs8BQQBV9QOBsEUVYckJ7vqfqtpu85OMMabLa2sCqhCR3ngt30TkaKAkbFFFWCDYrgZ9xhhjOqCtreBuwjWTHiEii4Ac4IKwRRVh24rdw+gG9UyNciTGGBM7Wk1A3q13koETgTG4R+d87V0L1C34vEcwaPsubTLGGNMOrSYgVQ2KyG9VdSqwIgIxRVxCvKuJrA0EoxyJMcbEjraeA3pLRM6Xbvq0tqpa1wquvjGCMcaY8DuQc0BpgF9EqvGeYK2qmWGLLILKa1zrtwy7GakxxkRMW++EkBHuQLqCblrAM8aYLqmtd0J4ty3djDHGmLZqsQQkIslAKpAtIj1xVW8Amey9K8JBb31BOf0y7U7YBw1VCAYgUAOBOtCg+66BkHc/BIONugWaGK6Vfk0OH9z7Lj7wxYGI+yxx3nt9d9/+r326h4y7X/f64X3NdD/Q+cZDXKKbnjFdQGtVcD/A3XJnAO7JpfUJqBT4YxjjiqhNRZWM6RcTtYydRxX81VBXtfflr4K6aqir9PpVNvpeP1xIP38V+GshULs3ofi990CN697Q33v5a2jn00AMQFwSxCdDfBveE1IgMQ0SUvd9b/icCokZkNITUntBcpZLgMa0QYsJSFUfBB4UkRtU9fcRiinifN3h1E9dNXw5Fyp3e0f/frcTr//c2ve2DBuo3TdxtIf4ID7F7dgSUvbu6OIS3I4xLgFS09yRev0rvv5z0r6f4xLcS+L2HvX74tyRfuNu4nVv+OwLGaa+X+Nu9dPy7dut4V1cItbgvqUi9UpeGtxbWtuve9AroTXVPWTcJrs3erV1vkG/S+b+apfEm3yvhupi973+YKG2wv3vgdq2/MEuCdUnpJSekNKrme89935PznLL08SUtjb72iEiGapaJiI/wz3B9E5VXRrG2CKmsLyW4Tnp0Q5jf4E6qCmDmlL3HqiFvhPdTrixN34Cnz+9bzdfvPdKgLiQz774Rt/j3I68/ntCCiRl7N8vzjsiTkh2R7/x3vs+3+sTS0rTw8Yl2I7mYBWo25uMaiuhrsK915S5pFW5G6r2QNXuvZ8ri6BoHVTugZoW7t7lS4CM/pA5ADL7Q+ZA9zkj9HM/t/6YbqOtCejnqvoPETkOOB24D/gzcFTYIougilo/mcmd2ATbX7tv4tjnc2g371Vd2nT3pkoZyT3gkOkw/jsw7MS9G+SeTdBnPPznu3sTh+3oTWeKS4CUHu7VHgH//omqao/7XlEAZduhdBts/xK+/lcT679Aeh8vGQ3wklXoa6BLWIl2S62DRVv3uvW3iT4b+LOqviIis8ITUuRV1wVIjG/DidmKQnc0t3s9FG9xG01FgeteUeCO9mrK3LmL1kgcJGe6kkaS957eB3qP9LqFdK9/acBtmCtecaWdlJ5wyDkuGZVth96jXKnDmK4oLh7Sst2rNaouWZVua/Ta6tb1PRtg0yI3TGPJPbxSk1ei6jUcBuZBvwmunx2YdRltTUBbReQvwCnAPSKSRNvvotCl+QNBquuCZCQ3UbQP1MHat+DrN2DDh1C8ad/+KT0hLce9+oz16rIbJZV9kkjI54SU9m0I47/jzsF88x6seAmWvwhLn3T9sscc+PSM6YpEvPNDPaHv+OaHq62A0u1QFpKgSr2SVJlXmqrYtXf4xAzIym30GrT3c+YAq+aLoLYmoIuAM4D7VLVYRPoD/xO+sCKn1HsYXUbjKrj1C+CV66FkiztBOvR4OPI/IWesO6LKGtT0uZhISEiGsWe5V10VrHvXJaORp0QnHmOiJTENske6V3Mqd8PWJVCwGkq2um26JB+2fQ6VhY0GFneuKSvXbev9JkH2KOg51HWz5NSp2nonhErgxZDv24Ht4QoqkrbucfXMA3qEVF2tfgPmfs+teDPmwKhTu+6Kl5DizgkdMj3akRjTNaX2ctvwqFP371db6UpL9Ump/lW8ydV8fP7U3mElziWhfhNh4BR3IJrR33v1c605zQGJ+Zuf7al0TUt7p4WUZr54BtL7wrUL3BGWMaZ7SkxtvgSlCmU7YPc3sGejexWtg+1fwOrXGw0s0HcCDD4KBk+FQUdCZq5d9NuKmE9ApdXusUYN54BqymHt2+7kviUfY2KXiNeQoT8MPW7fflXFe883lW2D4s2Q/xksmwOf/c0NE5foGkNk5UKPIZCbB8NOcCUnawgBWAKirPE5oJ0r3MV3E86PYlTGmC6tvjl64wYSAT/s/MqdcyrevLdKb+08WOZdp5cxAIYe65JSRj/X+jWjvzvnlNwtHjDQZlFLQCISBywGtqrqdBEZBswFegFLgctVtS2XXndImVcCykzxSkD1Ld16jQj3rI0x3U1cPAw4zL1CqULRN7DxA9eidtO/YfkL7i4VDQT6HAK5R7gqvNwj3WUZ3bgaL5oloB8Bq3A3NgW4B/idqs4VkYeBa3AXu4ZVVa1bAVLqH0a3dam74j+z29xr1RgTbSJ7zzXlfd91CwbctYNlO7wLcJfBlk9hxcuw9Ak3THIPLyEdBUf+h2uW3o1EJQGJSC7uota7gJu8J62eBHzPG+QJYBYRSEBJCe7ooqouQHpSPBStddf0JHXBW/MYY7oPX5yrfkvvA/0nwZgzXPdgEArXQP6nLiFtXAjr3ob5d8Ko092w/Sa6i2uzBkb3N3RQtEpADwC3APW3oO4NFKuq3/ueDzS5ZEXkWuBagMGDB3c4kG3FVWQkxZOWGOcuatu4EMZak2ZjTJT4fO4guM9YmHKF67b0Kdj4obuwdt3brupu6vVw+l3RjbWDIp6ARGQ6sEtVl4jItPrOTQza5P32VfUR4BGAvLy8Dt+TP97nI6DqnoZaf/ff3LyOTtYYYzrPlMvdC9x+aufK9t+TrwuJRgnoWOBcETkLSMadA3oA6CEi8V4pKBfYFolgkhN81AW8E4Fl3rW16X0iMWtjjDlwCSmQe3i0o+gUEW9eoao/VdVcVR0KzADeU9VLgfnABd5gVwKvRCKeWn+QxDhvMRR94957DY/ErI0xJqZ1pfZ9t+IaJKzDnRN6NBIzrQ0ESai/E3b5Tvfui/nLo4wxJuyiuqdV1QXAAu/zeuDISMewTwlo1yrv7rsTIh2GMcbEnK5UAoqK2kBw77OAti62RwMbY0yEWALyhySg0u0wYEp0AzLGmBgR8wloe0k12WnebdTjEkFifpEYY0xExPzetrI2QFpSnLsJadm2/e/hZIwxJixiPgFlJMdTXuN3d68Fd5daY4wxYRfzCaigrIY+mcl7m14nH/xXFxtjzMEg5hOQqhIn4p5yCO65HMYYY8Iu5hOQT4SAKmz4wHWw57obY0xExPwl/0UVtfRMTQCGQEWBXQNkjDEREvMloIYquLJt4EuIdjjGGBMzYj4BBYJKnM8HFYUw0C5CNcaYSIn5BOQPKgk+hapiewy3McZEUEwnoGBQCQSVXnU7oa4i2uEYY0xMiekEVFpdhz+o9Ki/FU/Q3/IIxhhjOk1MJ6Bav3sSanqw1HXIHhPFaIwxJrbEdALaVVYDwJCaNa5D7hFRjMYYY2JLTCegev6kLPchLuYvizLGmIiJ6QRU41XBpQQrXYeUnlGMxhhjYktMJ6DKWtfoILNio+uQ2jt6wRhjTIyJ6QRUURMAILl2j7sLdmJalCMyxpjYEdMJqL4ElFy1HXqPiHI0xhgTW2I6AVXUuhJQYvEGSO8b5WiMMSa2xHQCqqzxE0cAX8VO6DEk2uEYY0xMiXgCEpFBIjJfRFaJyAoR+ZHXvZeIvC0ia733sDdJq6gNMMaXjwTrYODh4Z6dMcaYENEoAfmBn6jqIcDRwA9FZBxwG/Cuqo4C3vW+h1VljZ+c+Gr3Jc1awBljTCRFPAGp6nZVXep9LgNWAQOB84AnvMGeAL4d7lgqagNkJbjzQPYsIGOMiayongMSkaHAYcAnQF9V3Q4uSQF9mhnnWhFZLCKLCwoKOjT/ylo/g+OK3Jdewzo0LWOMMQcmaglIRNKBF4AbVbW0reOp6iOqmqeqeTk5OR2KoaImQK6vCCQO0vt1aFrGGGMOTFQSkIgk4JLP31X1Ra/zThHp7/XvD+wKdxyVtX56SjnEJ9t94IwxJsIivtcVEQEeBVap6v0hvV4FrgR+472/Eu5YKmoD+OISoC4AqiAS7lkac1Coq6sjPz+f6urqaIdiOiA5OZnc3FwSErrmOe5oHPYfC1wOfCUiy7xu/w+XeJ4TkWuAzcCF4Q6kqtZPtu62B9EZ00h+fj4ZGRkMHToUsQOzg5KqUlRURH5+PsOGdc1z3BFPQKq6EGhujT45krFU1ATwJcRBRn8r/RgTorq62pLPQU5E6N27Nx1trBVOMX0nhPIaP8lSBzVl0Q7FmC7Hks/Br6v/hzGbgEqr6yipqiOYmg0JKdEOxxhjYk7MJqCaOvcwuvRAMaRmRzkaY0xjd911F+PHj2fSpElMnjyZTz75BIAHHniAysrKdk/3qquu4vnnn9+v+z/+8Q/Gjx+Pz+dj8eLF+/S7++67GTlyJGPGjGHevHn79AsEAhx22GFMnz59n3kMGzaMyZMnM3nyZJYtW4bZX8y2PU5NjAMgsaYIsjt2PZExpnN99NFHvP766yxdupSkpCQKCwupra0FXAK67LLLSE1N7dR5TpgwgRdffJEf/OAH+3RfuXIlc+fOZcWKFWzbto1TTjmFNWvWEBfn9iEPPvgghxxyCKWl+17O+H//939ccMEFnRpjdxOzCcgfUABS6vZA2rgoR2NM13XHaytYua3N14q3ybgBmfzynPHN9t++fTvZ2dkkJSUBkJ3taikeeughtm3bxre+9S2ys7OZP38+b731Fr/85S+pqalhxIgRPP7446Snp7NkyRJuuukmysvLyc7OZvbs2fTv37/ZeR5yyCFNdn/llVeYMWMGSUlJDBs2jJEjR/Lpp58ydepU8vPz+ec//8ntt9/O/fff3+T4pnkxWwWXlOAjiVpSawohvcm7/hhjouS0005jy5YtjB49mv/+7//m/fffB2DmzJkMGDCA+fPnM3/+fAoLC7nzzjt55513WLp0KXl5edx///3U1dVxww038Pzzz7NkyRK+//3vc/vtt7crlq1btzJo0KCG77m5uWzduhWAG2+8kXvvvRefb/9d6e23386kSZP48Y9/TE1NTbvm3d3FbAkoOSGOcUmFxAdrYMBh0Q7HmC6rpZJKuNSXYD788EPmz5/PxRdfzG9+8xuuuuqqfYb7+OOPWblyJcceeywAtbW1TJ06la+//prly5dz6qmnAu48TUuln5ao6n7dRITXX3+dPn36cPjhh7NgwYJ9+t99993069eP2tparr32Wu655x5+8YtftGv+3VnMJqAafwCtrYQkIDkr2uEYYxqJi4tj2rRpTJs2jYkTJ/LEE0/sl4BUlVNPPZU5c+bs0/2rr75i/PjxfPTRRx2OIzc3ly1btjR8z8/PZ8CAAbz66qu8+uqrvPHGG1RXV1NaWspll13G008/3ZDskpKSuPrqq7nvvvs6HEd3FLtVcPFxDEny6rVT7VlAxnQlX3/9NWvXrm34vmzZMoYMcU8tzsjIoKzMXbt39NFHs2jRItatWwdAZWUla9asYcyYMRQUFDQkoLq6OlasWNGuWM4991zmzp1LTU0NGzZsYO3atRx55JHcfffd5Ofns3HjRubOnctJJ53E008/DbhzWOAS5Msvv8yECRPatyC6uZgtAQGM0Hx3T4bs0dEOxRgTory8nBtuuIHi4mLi4+MZOXIkjzzyCADXXnstZ555Jv3792f+/PnMnj2bSy65pOE8y5133sno0aN5/vnnmTlzJiUlJfj9fm688UbGj2++OvGll17ihhtuoKCggLPPPpvJkyczb948xo8fz0UXXcS4ceOIj4/nj3/8Y0MLuOZceumlFBQUoKpMnjyZhx9+uPMWTjciTdVvHizy8vK0cXv9AzH359/hnKTPSfvZxs4LyphuYNWqVc22CjMHl6b+SxFZoqp5UQqpQcxWwfkDQdKoJEGtdYoxxkRDzCagan+QNKrxqd0J2xhjoiF2E1BdgF3aA39cWrRDMcaYmBSzCWhbcRUJ4ieY0Lm38zDGGNM2MZuAdlfUkkSdexy3McaYiIvZBPRVfgmZVLLRHgVkjDFREbMJCKCKJPoFd0LAGiIY0xW99NJLiAirV69u6LZx48ZOu7Bz8eLFzJw5s1Om1Vb1t+cZPXo0Y8eO5YUXXgCgpqaGiy++mJEjR3LUUUexcePGhnG+/PJLpk6dyvjx45k4cSLV1dWAu9/coEGDSE9Pj+hv6Cwxm4AykuP5KjiMXlIOGoh2OMaYJsyZM4fjjjuOuXPnhmX6eXl5PPTQQ2GZdnPuuusu+vTpw5o1a1i5ciUnnngiAI8++ig9e/Zk3bp1/PjHP+bWW28FwO/3c9lll/Hwww+zYsUKFixYQEJCAgDnnHMOn376aUTj70wxeyeEvKG9WCSVBHwJxMUlRjscY7quN2+DHV917jT7TYQzf9PiIOXl5SxatIj58+dz7rnnMmvWrP2GmT17NosXL+YPf/gDANOnT+fmm29m2rRppKen88Mf/pB33nmHnj178r//+7/ccsstbN68mQceeIBzzz2XBQsWcN999/H6668za9YsNm/ezPr169m8eTM33ngjM2fOZOPGjUyfPp3ly5cDcN9991FeXs6sWbOYNm0ahx12GEuWLKGgoIAnn3ySu+++m6+++oqLL76YO++8c7+YH3vssYYSnc/na3jUxCuvvNLwGy+44AKuv/56VJW33nqLSZMmceihhwLQu/feW4cdffTRB7bcu5iYLQEVlNVwuG8ttZnDoIs/N92YWPTyyy9zxhlnMHr0aHr16sXSpUsPaPyKigqmTZvGkiVLyMjI4Gc/+xlvv/02L730UrN3pl69ejXz5s3j008/5Y477qCurq7V+SQmJvLBBx9w3XXXcd555/HHP/6R5cuXM3v2bIqKivYZtri4GICf//znTJkyhQsvvJCdO3cC+z72IT4+nqysLIqKilizZg0iwumnn86UKVO49957D2g5dGUxWwLatXUD3/KtoXLARdEOxZiurZWSSrjMmTOHG2+8EYAZM2YwZ84cpkyZ0ubxExMTOeOMMwCYOHEiSUlJJCQkMHHixH3Or4Q6++yzSUpKIikpiT59+jQkh5ace+65DfMYP358w52whw8fzpYtW/Ypsfj9fvLz8zn22GO5//77uf/++7n55pt56qmnmn3sg9/vZ+HChXz22WekpqZy8sknc/jhh3PyySe3eVl0VTGbgMrWLgIgZfixUY7EGNNYUVER7733HsuXL0dECAQCiMh+R//x8fEEg8GG7/Un5wESEhIQr3bD5/M1PF3V5/Ph9zfd8Kh+GHCPg/D7/S3OI3Sc0Hk0N5/evXuTmprKd77zHQAuvPBCHn30UWDvYx9yc3Px+/2UlJTQq1cvcnNzOfHEExuq6s466yyWLl3aLRJQl6uCE5EzRORrEVknIreFaz4jC96iypeGjD8vXLMwxrTT888/zxVXXMGmTZvYuHEjW7ZsYdiwYSxcuHCf4YYOHcqyZcsIBoNs2bIlLCfk+/bty65duygqKqKmpobXX3+93dMSEc4555yGB9i9++67jBs3DnAlqSeeeAJwv/+kk05qqHr78ssvqaysxO/38/777zeMc7DrUglIROKAPwJnAuOAS0Sk05d07fv3My3wEUsDIyClZ2dP3hjTQXPmzGkoJdQ7//zzeeaZZ/bpduyxxzJs2DAmTpzIzTfffEBVdG2VkJDAL37xC4466iimT5/O2LFjOzS9e+65h1mzZjFp0iSeeuopfvvb3wJwzTXXUFRUxMiRI7n//vv5zW9c1WfPnj256aabOOKII5g8eTJTpkzh7LPPBuCWW24hNzeXyspKcnNzm2yo0ZV1qccxiMhUYJaqnu59/ymAqt7d1PDtfRyDbvmM/Kd+wKoTH+a0Y4/sSMjGdEv2OIbuoys/jqGrnQMaCGwJ+Z4PHNXZM5FBRzDo/y1lUGdP2BhjTJt1qSo43PNJG9uniCYi14rIYhFZXFBQEKGwjDHGdLauloDyYZ+CSS6wLXQAVX1EVfNUNS8nJyeiwRkTS7pS9bxpn67+H3a1BPQZMEpEholIIjADeDXKMRkTc5KTkykqKuryOzDTPFWlqKiI5OSue8f/LnUOSFX9InI9MA+IAx5T1RVRDsuYmJObm0t+fj5WzX1wS05OJjc3N9phNKtLJSAAVX0DeCPacRgTyxISEhg2bFi0wzDdXFergjPGGBMjLAEZY4yJCktAxhhjoqJL3QnhQIlIAbCpA5PIBgo7KZxws1g738ESJ1is4RKrsQ5R1ahfx3JQJ6COEpHFXeF2FG1hsXa+gyVOsFjDxWKNLquCM8YYExWWgIwxxkRFrCegR6IdwAGwWDvfwRInWKzhYrFGUUyfAzLGGBM9sV4CMsYYEyWWgIwxxkRFt0lAInKGiHwtIutE5LYm+ieJyLNe/09EZGhIv5963b8WkdPbOs1Ixyoip4rIEhH5yns/KWScBd40l3mvPlGOdaiIVIXE83DIOId7v2GdiDwkIk09ByqSsV4aEucyEQmKyGSvX7SW6wkislRE/CJyQaN+V4rIWu91ZUj3Tl+u7Y1TRCaLyEciskJEvhSRi0P6zRaRDSHLdHJH4+xIrF6/QEg8r4Z0H+atK2u9dScxmrGKyLcaravVIvJtr19YlmtYqepB/8LdOfsbYDiQCHwBjGs0zH8DD3ufZwDPep/HecMnAcO86cS1ZZpRiPUwYID3eQKwNWScBUBeF1quQ4HlzUz3U2Aq7gGEbwJnRjPWRsNMBNZ3geU6FJgEPAlcENK9F7Dee+/pfe4ZjuXawThHA6O8zwOA7UAP7/vs0GGjvUy9fuXNTPc5YIb3+WHgv6Ida6N1YTeQGq7lGu5XdykBHQmsU9X1qloLzAXOazTMecAT3ufngZO9I8TzgLmqWqOqG4B13vTaMs2Ixqqqn6tq/QP6VgDJIpLUCTF1eqzNTVBE+gOZqvqRuq3mSeDbXSjWS4A5nRBPS1qNVVU3YGxkpAAABnZJREFUquqXQLDRuKcDb6vqblXdA7wNnBGm5druOFV1jaqu9T5vA3YB4bzyviPLtEneunESbl0Bt+5EZF1tY6wXAG+qamUnxBQV3SUBDQS2hHzP97o1OYyq+oESoHcL47ZlmpGONdT5wOeqWhPS7XGv6P3zTqrW6misw0TkcxF5X0SODxk+v5VpRiPWehezfwKKxnI90HHDsVw7ZRsQkSNxR/rfhHS+y6ua+10nHUR1NNZkEVksIh/XV2nh1o1ib11pzzSb01n7lhnsv6529nINq+6SgJraKTRuX97cMAfavaM6EqvrKTIeuAf4QUj/S1V1InC897q8g3G2Gkcrw2wHBqvqYcBNwDMiktnGabZHZyzXo4BKVV0e0j9ay/VAxw3Hcu3wNL2S2VPA1apafzT/U2AscASuGunWjgRZP6smuh1IrIPV3ebme8ADIjKiE6bZnM5arhNxD++sF47lGlbdJQHlA4NCvucC25obRkTigSxc/Wlz47ZlmpGOFRHJBV4CrlDVhiNKVd3qvZcBz+CK+VGL1avSLPJiWoI7+h3tDR/6iMYusVw9+x1RRnG5Hui44ViuHdoGvAOOfwI/U9WP67ur6nZ1aoDHif4yra8mRFXX4877HYa78WcPb1054GmGK1bPRcBLqlpX3yFMyzWsuksC+gwY5bVYScTtSF5tNMyrQH2LoQuA97y68leBGeJaSA0DRuFO5rZlmhGNVUR64Dbon6rqovqBRSReRLK9zwnAdGA5HdeRWHNEJM6LaThuua5X1e1AmYgc7VVnXQG8Es1YvRh9wIW4+ni8btFcrs2ZB5wmIj1FpCdwGjAvTMu13XF6w78EPPn/27ub0LiqMIzj/8cKSU2Dm2KJbqSIiFpra4poFBroogp2o+DGhR+4EFRU3FULLYqKbizBQptld0FxoZiVQalSPyrGaNVSJSAqaASlFsWSvi7OGXo73mkyQ6bHmT4/GObm3nPOPXNzwjv3I++JiKmmbSP5XaR7KkWPaT6WA3l5LTAGHM1jY4Y0ViCNnfM1Vpfyn3uVXTqu3VX6KYiVegF3AsdI37R35nV7gB15eRCYIj1k8DGwvlJ3Z673LZUnh+raLNlX4BngJPB55XUZMAQcAb4gPZzwKrCqcF/vzn2ZBT4D7qq0OUr64/gOmCBn5Cg8BrYCh5vaK3lct5C+KZ8EfgO+qtR9MH+G46RLW107rp32E7gPONU0Vm/M294F5nJfDwJrSh5T4Nbcn9n8/lClzfV5rBzPY2fgf/D7vxL4Ebioqc2uHNduvpyKx8zMiuiXS3BmZtZjHIDMzKwIByAzMyvCAcjMzIpwADIzsyIcgOyCJOkJSZd0UG+PpG1t1tkkaTIv79AyM6tLmpZ0haRJSdcuUfZRSQ+00y+z0vwYtl2QJM2Tslwv1GxbFRGLK7ivKeC5iJhto85q4L2IWNZ/s+dg+kGk1EdmPcFnQNbXJA1JelvSrKQvJd0r6XHSFAEzkmZyuT/z2c1HwC2Sdkn6JNfZ30hCqjTnyj15eV7SbqV5W+YkXVOz/2HghkbwkXS/pIlKW3slfSjpe509R81WUkqYxpxEo5V+Pp8/z2FJ6wAiZUSeV0r8adYTHICs320HfoqIjRFxPTAdEXtJubfGI2I8lxsizV90c0QcAiYiYkuus5qUhqfOQkRsBvYBT9dsb2QnaGUEuC23/2Jl/R3AdE35IVLGho3A+8DDlW2fkhKmmvUEByDrd3PANkkvSbo9Iv5oUW4ReL3y87jSTJhzpDlhrmtR7438foSUIqXZCPDrOfr3ZkScjoijwLrK+jHgUE35f4C3WuzzF9KZnVlPcACyvhYRx4CbSIHoBUm7WhT9u3HfR9Ig8BppdskNwAFSHrk6jfmYFoGLa7b/dY661fqQ0/Tn5K0/RJqsrNmpOHPjtnmfg3l/Zj3BAcj6mqTLSXP8HAReATbnTSeA4RbVGgFjQdIazmRD7sTXwFVt1ml1+W0pV9MLGZDNsrpvbGb9ZAPwsqTTpOzMj+T1+4F3JP1cuQ8EQET8LukA6axpnpQ+vyMR8Y2kSyUNR5pTaDm2A491sLsxYHcH9cyK8GPYZl0m6UngRERMLqPsAOlx6tE297EJeCoiVmLGVrPzwpfgzLpvH2ff62kp0kyybQWfbC3wbAf1zIrxGZCZmRXhMyAzMyvCAcjMzIpwADIzsyIcgMzMrAgHIDMzK+JfmbCVLLPjoysAAAAASUVORK5CYII=\n", "text/plain": [ "<Figure size 432x288 with 1 Axes>" ] }, "metadata": { "needs_background": "light" }, "output_type": "display_data" } ], "source": [ "plt.plot(strain_steel,stress_steel,strain_al,stress_al)\n", "plt.xlabel('strain (in/in)')\n", "plt.ylabel('stress (ksi)')\n", "plt.title('Stress Strain Curve of Steel 1045 and Aluminum 6061 in tension')\n", "plt.legend(['Steel 1045','Aluminum 6061'])\n", "\n", "plt.savefig('stress-strain_curve.png', dpi=300, bbox_inches='tight')\n", "plt.show()" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "Our complete stress strain curve contains two lines, one for steel and one for aluminum. The plot has axis labels with units, a title and a legend. A copy of the plot is now saved as ```stress-strain_curve.png``` in the same folder as our Jupyter notebook." ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Summary\n", "\n", "In this post, we built a stress strain curve using Python. First we installed Python and made sure that NumPy, Pandas, Matplotlib and Jupyter were installed. Next we opened a Jupyter notebook and moved our .xls data files into the same folder as the Jupyter notebook. Inside the Jupyter notebook we entered code into a couple different code cells. \n", "\n", "In the first Jupyter notebook code cell, we imported NumPy, Pandas, and Matplotlib and printed our their versions. In the next code cell, we saved the data from two .xls data files into two Pandas dataframes. In the third code cell, we created Pandas series for stress and strain from the columns in the dataframes. In the final code cell we built our stress strain curve with Matplotlib and saved the plot to a .png image file." ] } ], "metadata": { "kernelspec": { "display_name": "Python 3", "language": "python", "name": "python3" }, "language_info": { "codemirror_mode": { "name": "ipython", "version": 3 }, "file_extension": ".py", "mimetype": "text/x-python", "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", "version": "3.7.4" } }, "nbformat": 4, "nbformat_minor": 2 }
gpl-3.0
lesley2958/lesley2958.github.io
blog/2018/gis.ipynb
1
6614
{ "cells": [ { "cell_type": "code", "execution_count": 1, "metadata": {}, "outputs": [], "source": [ "import os\n", "import folium" ] }, { "cell_type": "code", "execution_count": 2, "metadata": {}, "outputs": [ { "ename": "ImportError", "evalue": "dlopen(/Users/nipun/anaconda3/lib/python3.6/site-packages/fiona/ogrext.cpython-36m-darwin.so, 2): Library not loaded: @rpath/libjson-c.2.dylib\n Referenced from: /Users/nipun/anaconda3/lib/libgdal.20.dylib\n Reason: image not found", "output_type": "error", "traceback": [ "\u001b[0;31m---------------------------------------------------------------------------\u001b[0m", "\u001b[0;31mImportError\u001b[0m Traceback (most recent call last)", "\u001b[0;32m<ipython-input-2-6de75afd7bba>\u001b[0m in \u001b[0;36m<module>\u001b[0;34m()\u001b[0m\n\u001b[1;32m 2\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 3\u001b[0m \u001b[0;32mimport\u001b[0m \u001b[0mpandas\u001b[0m \u001b[0;32mas\u001b[0m \u001b[0mpd\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m----> 4\u001b[0;31m \u001b[0;32mimport\u001b[0m \u001b[0mgeopandas\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 5\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 6\u001b[0m \u001b[0mpd\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0moptions\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mdisplay\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mmax_rows\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0;36m10\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n", "\u001b[0;32m~/anaconda3/lib/python3.6/site-packages/geopandas/__init__.py\u001b[0m in \u001b[0;36m<module>\u001b[0;34m()\u001b[0m\n\u001b[1;32m 2\u001b[0m \u001b[0;32mfrom\u001b[0m \u001b[0mgeopandas\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mgeodataframe\u001b[0m \u001b[0;32mimport\u001b[0m \u001b[0mGeoDataFrame\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 3\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m----> 4\u001b[0;31m \u001b[0;32mfrom\u001b[0m \u001b[0mgeopandas\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mio\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mfile\u001b[0m \u001b[0;32mimport\u001b[0m \u001b[0mread_file\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 5\u001b[0m \u001b[0;32mfrom\u001b[0m \u001b[0mgeopandas\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mio\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0msql\u001b[0m \u001b[0;32mimport\u001b[0m \u001b[0mread_postgis\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 6\u001b[0m \u001b[0;32mfrom\u001b[0m \u001b[0mgeopandas\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mtools\u001b[0m \u001b[0;32mimport\u001b[0m \u001b[0msjoin\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n", "\u001b[0;32m~/anaconda3/lib/python3.6/site-packages/geopandas/io/file.py\u001b[0m in \u001b[0;36m<module>\u001b[0;34m()\u001b[0m\n\u001b[1;32m 1\u001b[0m \u001b[0;32mimport\u001b[0m \u001b[0mos\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 2\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m----> 3\u001b[0;31m \u001b[0;32mimport\u001b[0m \u001b[0mfiona\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 4\u001b[0m \u001b[0;32mimport\u001b[0m \u001b[0mnumpy\u001b[0m \u001b[0;32mas\u001b[0m \u001b[0mnp\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 5\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n", "\u001b[0;32m~/anaconda3/lib/python3.6/site-packages/fiona/__init__.py\u001b[0m in \u001b[0;36m<module>\u001b[0;34m()\u001b[0m\n\u001b[1;32m 67\u001b[0m \u001b[0;32mfrom\u001b[0m \u001b[0msix\u001b[0m \u001b[0;32mimport\u001b[0m \u001b[0mstring_types\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 68\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m---> 69\u001b[0;31m \u001b[0;32mfrom\u001b[0m \u001b[0mfiona\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mcollection\u001b[0m \u001b[0;32mimport\u001b[0m \u001b[0mCollection\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mBytesCollection\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mvsi_path\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 70\u001b[0m \u001b[0;32mfrom\u001b[0m \u001b[0mfiona\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0m_drivers\u001b[0m \u001b[0;32mimport\u001b[0m \u001b[0mdriver_count\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mGDALEnv\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 71\u001b[0m \u001b[0;32mfrom\u001b[0m \u001b[0mfiona\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mdrvsupport\u001b[0m \u001b[0;32mimport\u001b[0m \u001b[0msupported_drivers\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n", "\u001b[0;32m~/anaconda3/lib/python3.6/site-packages/fiona/collection.py\u001b[0m in \u001b[0;36m<module>\u001b[0;34m()\u001b[0m\n\u001b[1;32m 7\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 8\u001b[0m \u001b[0;32mfrom\u001b[0m \u001b[0mfiona\u001b[0m \u001b[0;32mimport\u001b[0m \u001b[0mcompat\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m----> 9\u001b[0;31m \u001b[0;32mfrom\u001b[0m \u001b[0mfiona\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mogrext\u001b[0m \u001b[0;32mimport\u001b[0m \u001b[0mIterator\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mItemsIterator\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mKeysIterator\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 10\u001b[0m \u001b[0;32mfrom\u001b[0m \u001b[0mfiona\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mogrext\u001b[0m \u001b[0;32mimport\u001b[0m \u001b[0mSession\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mWritingSession\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 11\u001b[0m from fiona.ogrext import (\n", "\u001b[0;31mImportError\u001b[0m: dlopen(/Users/nipun/anaconda3/lib/python3.6/site-packages/fiona/ogrext.cpython-36m-darwin.so, 2): Library not loaded: @rpath/libjson-c.2.dylib\n Referenced from: /Users/nipun/anaconda3/lib/libgdal.20.dylib\n Reason: image not found" ] } ], "source": [ "%matplotlib inline\n", "\n", "import pandas as pd\n", "import geopandas\n", "\n", "pd.options.display.max_rows = 10" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [] } ], "metadata": { "kernelspec": { "display_name": "Python 3", "language": "python", "name": "python3" }, "language_info": { "codemirror_mode": { "name": "ipython", "version": 3 }, "file_extension": ".py", "mimetype": "text/x-python", "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", "version": "3.6.3" } }, "nbformat": 4, "nbformat_minor": 2 }
mit
JaeGyu/PythonEx_1
kimsh_multi Variable 선형 회귀 lab1_2.ipynb
1
90167
{ "cells": [ { "cell_type": "code", "execution_count": 1, "metadata": { "collapsed": false }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "1.2.0\n" ] } ], "source": [ "import tensorflow as tf\n", "print(tf.__version__)" ] }, { "cell_type": "code", "execution_count": 2, "metadata": { "collapsed": true }, "outputs": [], "source": [ "x_data = [[73., 80., 75.],[93., 88., 93.],[89., 91., 90.],[96., 98., 100.],[73., 66., 70.]]\n", "y_data = [[152.],[185.],[180.],[196.],[142.]]\n", "\n", "X = tf.placeholder(tf.float32, shape=[None,3]) #shape에서 None은 지금은 5개지만 n개까지 가능하도록 None로 설정 그리고 3은 각 인스턴스(데이터)안에 포함된 피쳐의 개수 3개 \n", "Y = tf.placeholder(tf.float32, shape=[None,1]) #마찬가지로 None로 설정 그리고 y의 피쳐의 개수는 1개\n", "\n", "W = tf.Variable(tf.random_normal([3,1]), name=\"weight\")\n", "b = tf.Variable(tf.random_normal([1]), name=\"bias\")\n", "\n", "hypothesis = tf.matmul(X, W) + b\n", "\n", "cost = tf.reduce_mean(tf.square(hypothesis - Y))\n", "\n", "\n", "optimizer = tf.train.GradientDescentOptimizer(learning_rate=1e-5)\n", "train = optimizer.minimize(cost)" ] }, { "cell_type": "code", "execution_count": 3, "metadata": { "collapsed": true }, "outputs": [], "source": [ "sess = tf.Session()\n", "sess.run(tf.global_variables_initializer())" ] }, { "cell_type": "code", "execution_count": 8, "metadata": { "collapsed": false }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "0 Cost : 29726.2 \n", "Prediction:\n", " [[ 294.35977173]\n", " [ 374.81066895]\n", " [ 358.01467896]\n", " [ 395.2791748 ]\n", " [ 286.68954468]]\n", "================================================================================\n", "10 Cost : 36.4391 \n", "Prediction:\n", " [[ 141.95579529]\n", " [ 191.59107971]\n", " [ 177.50691223]\n", " [ 198.70704651]\n", " [ 146.93186951]]\n", "================================================================================\n", "20 Cost : 36.0007 \n", "Prediction:\n", " [[ 141.51651001]\n", " [ 191.02185059]\n", " [ 176.96759033]\n", " [ 198.11610413]\n", " [ 146.49043274]]\n", "================================================================================\n", "30 Cost : 35.835 \n", "Prediction:\n", " [[ 141.53700256]\n", " [ 191.00531006]\n", " [ 176.97279358]\n", " [ 198.11813354]\n", " [ 146.47061157]]\n", "================================================================================\n", "40 Cost : 35.6702 \n", "Prediction:\n", " [[ 141.55879211]\n", " [ 190.99046326]\n", " [ 176.97962952]\n", " [ 198.12193298]\n", " [ 146.4520874 ]]\n", "================================================================================\n", "50 Cost : 35.5061 \n", "Prediction:\n", " [[ 141.58056641]\n", " [ 190.97566223]\n", " [ 176.98643494]\n", " [ 198.12574768]\n", " [ 146.43362427]]\n", "================================================================================\n", "60 Cost : 35.343 \n", "Prediction:\n", " [[ 141.60224915]\n", " [ 190.96089172]\n", " [ 176.99324036]\n", " [ 198.12953186]\n", " [ 146.41520691]]\n", "================================================================================\n", "70 Cost : 35.1808 \n", "Prediction:\n", " [[ 141.62388611]\n", " [ 190.94616699]\n", " [ 177. ]\n", " [ 198.13330078]\n", " [ 146.39685059]]\n", "================================================================================\n", "80 Cost : 35.0194 \n", "Prediction:\n", " [[ 141.64546204]\n", " [ 190.9315033 ]\n", " [ 177.00675964]\n", " [ 198.13703918]\n", " [ 146.37854004]]\n", "================================================================================\n", "90 Cost : 34.8589 \n", "Prediction:\n", " [[ 141.66700745]\n", " [ 190.91687012]\n", " [ 177.01351929]\n", " [ 198.14080811]\n", " [ 146.36029053]]\n", "================================================================================\n", "100 Cost : 34.6992 \n", "Prediction:\n", " [[ 141.68849182]\n", " [ 190.90228271]\n", " [ 177.02024841]\n", " [ 198.14456177]\n", " [ 146.34208679]]\n", "================================================================================\n", "110 Cost : 34.5403 \n", "Prediction:\n", " [[ 141.70988464]\n", " [ 190.88768005]\n", " [ 177.02693176]\n", " [ 198.14823914]\n", " [ 146.32389832]]\n", "================================================================================\n", "120 Cost : 34.3824 \n", "Prediction:\n", " [[ 141.73123169]\n", " [ 190.87316895]\n", " [ 177.03363037]\n", " [ 198.15194702]\n", " [ 146.30580139]]\n", "================================================================================\n", "130 Cost : 34.2252 \n", "Prediction:\n", " [[ 141.75253296]\n", " [ 190.8586731 ]\n", " [ 177.04031372]\n", " [ 198.15565491]\n", " [ 146.28773499]]\n", "================================================================================\n", "140 Cost : 34.0689 \n", "Prediction:\n", " [[ 141.77377319]\n", " [ 190.84422302]\n", " [ 177.04695129]\n", " [ 198.15933228]\n", " [ 146.26974487]]\n", "================================================================================\n", "150 Cost : 33.9136 \n", "Prediction:\n", " [[ 141.79495239]\n", " [ 190.82984924]\n", " [ 177.05360413]\n", " [ 198.1630249 ]\n", " [ 146.25178528]]\n", "================================================================================\n", "160 Cost : 33.7589 \n", "Prediction:\n", " [[ 141.81608582]\n", " [ 190.81546021]\n", " [ 177.06019592]\n", " [ 198.16667175]\n", " [ 146.23387146]]\n", "================================================================================\n", "170 Cost : 33.605 \n", "Prediction:\n", " [[ 141.8371582 ]\n", " [ 190.8011322 ]\n", " [ 177.06681824]\n", " [ 198.17030334]\n", " [ 146.21601868]]\n", "================================================================================\n", "180 Cost : 33.452 \n", "Prediction:\n", " [[ 141.85818481]\n", " [ 190.78683472]\n", " [ 177.07339478]\n", " [ 198.1739502 ]\n", " [ 146.19821167]]\n", "================================================================================\n", "190 Cost : 33.2998 \n", "Prediction:\n", " [[ 141.87911987]\n", " [ 190.77255249]\n", " [ 177.07995605]\n", " [ 198.17755127]\n", " [ 146.18045044]]\n", "================================================================================\n", "200 Cost : 33.1484 \n", "Prediction:\n", " [[ 141.90005493]\n", " [ 190.75836182]\n", " [ 177.08651733]\n", " [ 198.18119812]\n", " [ 146.1627655 ]]\n", "================================================================================\n", "210 Cost : 32.9978 \n", "Prediction:\n", " [[ 141.92089844]\n", " [ 190.74417114]\n", " [ 177.0930481 ]\n", " [ 198.18476868]\n", " [ 146.14509583]]\n", "================================================================================\n", "220 Cost : 32.8481 \n", "Prediction:\n", " [[ 141.94168091]\n", " [ 190.73002625]\n", " [ 177.0995636 ]\n", " [ 198.18836975]\n", " [ 146.12748718]]\n", "================================================================================\n", "230 Cost : 32.6991 \n", "Prediction:\n", " [[ 141.96243286]\n", " [ 190.71592712]\n", " [ 177.10606384]\n", " [ 198.19194031]\n", " [ 146.10992432]]\n", "================================================================================\n", "240 Cost : 32.551 \n", "Prediction:\n", " [[ 141.98312378]\n", " [ 190.70187378]\n", " [ 177.11254883]\n", " [ 198.19552612]\n", " [ 146.09243774]]\n", "================================================================================\n", "250 Cost : 32.4036 \n", "Prediction:\n", " [[ 142.00376892]\n", " [ 190.68786621]\n", " [ 177.11903381]\n", " [ 198.19908142]\n", " [ 146.07499695]]\n", "================================================================================\n", "260 Cost : 32.2569 \n", "Prediction:\n", " [[ 142.02430725]\n", " [ 190.67381287]\n", " [ 177.1254425 ]\n", " [ 198.20256042]\n", " [ 146.05754089]]\n", "================================================================================\n", "270 Cost : 32.1111 \n", "Prediction:\n", " [[ 142.04484558]\n", " [ 190.65988159]\n", " [ 177.13188171]\n", " [ 198.20613098]\n", " [ 146.04019165]]\n", "================================================================================\n", "280 Cost : 31.9661 \n", "Prediction:\n", " [[ 142.06530762]\n", " [ 190.64596558]\n", " [ 177.13832092]\n", " [ 198.20962524]\n", " [ 146.02288818]]\n", "================================================================================\n", "290 Cost : 31.8218 \n", "Prediction:\n", " [[ 142.08572388]\n", " [ 190.63209534]\n", " [ 177.14471436]\n", " [ 198.21313477]\n", " [ 146.00561523]]\n", "================================================================================\n", "300 Cost : 31.6783 \n", "Prediction:\n", " [[ 142.1060791 ]\n", " [ 190.61824036]\n", " [ 177.15109253]\n", " [ 198.21662903]\n", " [ 145.98840332]]\n", "================================================================================\n", "310 Cost : 31.5355 \n", "Prediction:\n", " [[ 142.12638855]\n", " [ 190.60444641]\n", " [ 177.1574707 ]\n", " [ 198.22010803]\n", " [ 145.97123718]]\n", "================================================================================\n", "320 Cost : 31.3935 \n", "Prediction:\n", " [[ 142.14665222]\n", " [ 190.59068298]\n", " [ 177.16381836]\n", " [ 198.22358704]\n", " [ 145.95411682]]\n", "================================================================================\n", "330 Cost : 31.2522 \n", "Prediction:\n", " [[ 142.1668396 ]\n", " [ 190.57693481]\n", " [ 177.1701355 ]\n", " [ 198.22702026]\n", " [ 145.93702698]]\n", "================================================================================\n", "340 Cost : 31.1118 \n", "Prediction:\n", " [[ 142.1869812 ]\n", " [ 190.56323242]\n", " [ 177.17648315]\n", " [ 198.23048401]\n", " [ 145.92002869]]\n", "================================================================================\n", "350 Cost : 30.972 \n", "Prediction:\n", " [[ 142.20707703]\n", " [ 190.54959106]\n", " [ 177.18278503]\n", " [ 198.2339325 ]\n", " [ 145.90304565]]\n", "================================================================================\n", "360 Cost : 30.833 \n", "Prediction:\n", " [[ 142.22709656]\n", " [ 190.53593445]\n", " [ 177.18904114]\n", " [ 198.23731995]\n", " [ 145.88609314]]\n", "================================================================================\n", "370 Cost : 30.6948 \n", "Prediction:\n", " [[ 142.24710083]\n", " [ 190.52238464]\n", " [ 177.19532776]\n", " [ 198.24075317]\n", " [ 145.86924744]]\n", "================================================================================\n", "380 Cost : 30.5572 \n", "Prediction:\n", " [[ 142.26705933]\n", " [ 190.50883484]\n", " [ 177.20158386]\n", " [ 198.24417114]\n", " [ 145.85241699]]\n", "================================================================================\n", "390 Cost : 30.4204 \n", "Prediction:\n", " [[ 142.28691101]\n", " [ 190.49528503]\n", " [ 177.20777893]\n", " [ 198.24749756]\n", " [ 145.83560181]]\n", "================================================================================\n", "400 Cost : 30.2843 \n", "Prediction:\n", " [[ 142.30674744]\n", " [ 190.48182678]\n", " [ 177.21403503]\n", " [ 198.25091553]\n", " [ 145.81886292]]\n", "================================================================================\n", "410 Cost : 30.1489 \n", "Prediction:\n", " [[ 142.32652283]\n", " [ 190.46838379]\n", " [ 177.22024536]\n", " [ 198.25428772]\n", " [ 145.8021698 ]]\n", "================================================================================\n", "420 Cost : 30.0143 \n", "Prediction:\n", " [[ 142.34625244]\n", " [ 190.45497131]\n", " [ 177.22640991]\n", " [ 198.25762939]\n", " [ 145.78552246]]\n", "================================================================================\n", "430 Cost : 29.8804 \n", "Prediction:\n", " [[ 142.36592102]\n", " [ 190.44161987]\n", " [ 177.23258972]\n", " [ 198.26098633]\n", " [ 145.76893616]]\n", "================================================================================\n", "440 Cost : 29.7472 \n", "Prediction:\n", " [[ 142.38554382]\n", " [ 190.42828369]\n", " [ 177.23875427]\n", " [ 198.264328 ]\n", " [ 145.75238037]]\n", "================================================================================\n", "450 Cost : 29.6146 \n", "Prediction:\n", " [[ 142.40509033]\n", " [ 190.41493225]\n", " [ 177.24487305]\n", " [ 198.26760864]\n", " [ 145.7358551 ]]\n", "================================================================================\n", "460 Cost : 29.4829 \n", "Prediction:\n", " [[ 142.42460632]\n", " [ 190.40168762]\n", " [ 177.25100708]\n", " [ 198.2709198 ]\n", " [ 145.71939087]]\n", "================================================================================\n", "470 Cost : 29.3518 \n", "Prediction:\n", " [[ 142.4440918 ]\n", " [ 190.38848877]\n", " [ 177.25714111]\n", " [ 198.27424622]\n", " [ 145.70300293]]\n", "================================================================================\n", "480 Cost : 29.2213 \n", "Prediction:\n", " [[ 142.46348572]\n", " [ 190.37527466]\n", " [ 177.26321411]\n", " [ 198.27749634]\n", " [ 145.68659973]]\n", "================================================================================\n", "490 Cost : 29.0916 \n", "Prediction:\n", " [[ 142.48284912]\n", " [ 190.36210632]\n", " [ 177.26930237]\n", " [ 198.28077698]\n", " [ 145.67030334]]\n", "================================================================================\n", "500 Cost : 28.9626 \n", "Prediction:\n", " [[ 142.50215149]\n", " [ 190.34898376]\n", " [ 177.27534485]\n", " [ 198.28404236]\n", " [ 145.65400696]]\n", "================================================================================\n", "510 Cost : 28.8342 \n", "Prediction:\n", " [[ 142.5214386 ]\n", " [ 190.33592224]\n", " [ 177.28141785]\n", " [ 198.287323 ]\n", " [ 145.63778687]]\n", "================================================================================\n", "520 Cost : 28.7066 \n", "Prediction:\n", " [[ 142.5406189 ]\n", " [ 190.3228302 ]\n", " [ 177.28741455]\n", " [ 198.2905426 ]\n", " [ 145.62158203]]\n", "================================================================================\n", "530 Cost : 28.5797 \n", "Prediction:\n", " [[ 142.55979919]\n", " [ 190.30986023]\n", " [ 177.29347229]\n", " [ 198.29380798]\n", " [ 145.60548401]]\n", "================================================================================\n", "540 Cost : 28.4533 \n", "Prediction:\n", " [[ 142.57888794]\n", " [ 190.29682922]\n", " [ 177.29942322]\n", " [ 198.29698181]\n", " [ 145.58935547]]\n", "================================================================================\n", "550 Cost : 28.3276 \n", "Prediction:\n", " [[ 142.59794617]\n", " [ 190.28387451]\n", " [ 177.30540466]\n", " [ 198.30020142]\n", " [ 145.57330322]]\n", "================================================================================\n", "560 Cost : 28.2027 \n", "Prediction:\n", " [[ 142.61697388]\n", " [ 190.27099609]\n", " [ 177.31140137]\n", " [ 198.30340576]\n", " [ 145.55731201]]\n", "================================================================================\n", "570 Cost : 28.0784 \n", "Prediction:\n", " [[ 142.63589478]\n", " [ 190.25808716]\n", " [ 177.31733704]\n", " [ 198.30659485]\n", " [ 145.54133606]]\n", "================================================================================\n", "580 Cost : 27.9548 \n", "Prediction:\n", " [[ 142.65480042]\n", " [ 190.24525452]\n", " [ 177.32327271]\n", " [ 198.30976868]\n", " [ 145.52542114]]\n", "================================================================================\n", "590 Cost : 27.8316 \n", "Prediction:\n", " [[ 142.6736908 ]\n", " [ 190.23243713]\n", " [ 177.32920837]\n", " [ 198.3129425 ]\n", " [ 145.509552 ]]\n", "================================================================================\n", "600 Cost : 27.7093 \n", "Prediction:\n", " [[ 142.69247437]\n", " [ 190.21963501]\n", " [ 177.33508301]\n", " [ 198.31607056]\n", " [ 145.49371338]]\n", "================================================================================\n", "610 Cost : 27.5877 \n", "Prediction:\n", " [[ 142.71122742]\n", " [ 190.20690918]\n", " [ 177.34100342]\n", " [ 198.31922913]\n", " [ 145.47793579]]\n", "================================================================================\n", "620 Cost : 27.4666 \n", "Prediction:\n", " [[ 142.72994995]\n", " [ 190.19419861]\n", " [ 177.34689331]\n", " [ 198.32237244]\n", " [ 145.46220398]]\n", "================================================================================\n", "630 Cost : 27.3461 \n", "Prediction:\n", " [[ 142.74861145]\n", " [ 190.1815033 ]\n", " [ 177.35273743]\n", " [ 198.32548523]\n", " [ 145.44651794]]\n", "================================================================================\n", "640 Cost : 27.2264 \n", "Prediction:\n", " [[ 142.76721191]\n", " [ 190.16886902]\n", " [ 177.35858154]\n", " [ 198.32859802]\n", " [ 145.43086243]]\n", "================================================================================\n", "650 Cost : 27.1073 \n", "Prediction:\n", " [[ 142.7857666 ]\n", " [ 190.15626526]\n", " [ 177.3644104 ]\n", " [ 198.33171082]\n", " [ 145.41525269]]\n", "================================================================================\n", "660 Cost : 26.9887 \n", "Prediction:\n", " [[ 142.80429077]\n", " [ 190.14367676]\n", " [ 177.370224 ]\n", " [ 198.33479309]\n", " [ 145.39968872]]\n", "================================================================================\n", "670 Cost : 26.8709 \n", "Prediction:\n", " [[ 142.82273865]\n", " [ 190.13114929]\n", " [ 177.37602234]\n", " [ 198.33787537]\n", " [ 145.38417053]]\n", "================================================================================\n", "680 Cost : 26.7535 \n", "Prediction:\n", " [[ 142.84118652]\n", " [ 190.11863708]\n", " [ 177.38183594]\n", " [ 198.3409729 ]\n", " [ 145.36869812]]\n", "================================================================================\n", "690 Cost : 26.6369 \n", "Prediction:\n", " [[ 142.85951233]\n", " [ 190.10614014]\n", " [ 177.38757324]\n", " [ 198.34399414]\n", " [ 145.35325623]]\n", "================================================================================\n", "700 Cost : 26.5208 \n", "Prediction:\n", " [[ 142.87785339]\n", " [ 190.09371948]\n", " [ 177.39335632]\n", " [ 198.34706116]\n", " [ 145.33787537]]\n", "================================================================================\n", "710 Cost : 26.4055 \n", "Prediction:\n", " [[ 142.89610291]\n", " [ 190.08131409]\n", " [ 177.39907837]\n", " [ 198.35009766]\n", " [ 145.32252502]]\n", "================================================================================\n", "720 Cost : 26.2907 \n", "Prediction:\n", " [[ 142.91433716]\n", " [ 190.06893921]\n", " [ 177.40481567]\n", " [ 198.35313416]\n", " [ 145.30723572]]\n", "================================================================================\n", "730 Cost : 26.1764 \n", "Prediction:\n", " [[ 142.93251038]\n", " [ 190.05657959]\n", " [ 177.41052246]\n", " [ 198.35614014]\n", " [ 145.29196167]]\n", "================================================================================\n", "740 Cost : 26.0629 \n", "Prediction:\n", " [[ 142.9506073 ]\n", " [ 190.04425049]\n", " [ 177.41621399]\n", " [ 198.35914612]\n", " [ 145.27674866]]\n", "================================================================================\n", "750 Cost : 25.9499 \n", "Prediction:\n", " [[ 142.96870422]\n", " [ 190.03199768]\n", " [ 177.42190552]\n", " [ 198.3621521 ]\n", " [ 145.26158142]]\n", "================================================================================\n", "760 Cost : 25.8375 \n", "Prediction:\n", " [[ 142.98675537]\n", " [ 190.01976013]\n", " [ 177.42758179]\n", " [ 198.36514282]\n", " [ 145.24645996]]\n", "================================================================================\n", "770 Cost : 25.7257 \n", "Prediction:\n", " [[ 143.00469971]\n", " [ 190.00750732]\n", " [ 177.43319702]\n", " [ 198.36807251]\n", " [ 145.23132324]]\n", "================================================================================\n", "780 Cost : 25.6145 \n", "Prediction:\n", " [[ 143.0226593 ]\n", " [ 189.99536133]\n", " [ 177.43887329]\n", " [ 198.37107849]\n", " [ 145.21632385]]\n", "================================================================================\n", "790 Cost : 25.5039 \n", "Prediction:\n", " [[ 143.04052734]\n", " [ 189.98320007]\n", " [ 177.44447327]\n", " [ 198.37402344]\n", " [ 145.2013092 ]]\n", "================================================================================\n", "800 Cost : 25.3938 \n", "Prediction:\n", " [[ 143.05836487]\n", " [ 189.97106934]\n", " [ 177.45010376]\n", " [ 198.37696838]\n", " [ 145.18634033]]\n", "================================================================================\n", "810 Cost : 25.2844 \n", "Prediction:\n", " [[ 143.07617188]\n", " [ 189.95901489]\n", " [ 177.45570374]\n", " [ 198.37992859]\n", " [ 145.1714325 ]]\n", "================================================================================\n", "820 Cost : 25.1756 \n", "Prediction:\n", " [[ 143.09390259]\n", " [ 189.94696045]\n", " [ 177.46127319]\n", " [ 198.38284302]\n", " [ 145.15653992]]\n", "================================================================================\n", "830 Cost : 25.0672 \n", "Prediction:\n", " [[ 143.11160278]\n", " [ 189.93492126]\n", " [ 177.46684265]\n", " [ 198.38575745]\n", " [ 145.14170837]]\n", "================================================================================\n", "840 Cost : 24.9595 \n", "Prediction:\n", " [[ 143.12927246]\n", " [ 189.92294312]\n", " [ 177.47239685]\n", " [ 198.38865662]\n", " [ 145.12692261]]\n", "================================================================================\n", "850 Cost : 24.8523 \n", "Prediction:\n", " [[ 143.14685059]\n", " [ 189.91094971]\n", " [ 177.47790527]\n", " [ 198.39154053]\n", " [ 145.11213684]]\n", "================================================================================\n", "860 Cost : 24.7458 \n", "Prediction:\n", " [[ 143.16442871]\n", " [ 189.89906311]\n", " [ 177.48344421]\n", " [ 198.3944397 ]\n", " [ 145.09745789]]\n", "================================================================================\n", "870 Cost : 24.6398 \n", "Prediction:\n", " [[ 143.18190002]\n", " [ 189.88716125]\n", " [ 177.48893738]\n", " [ 198.39729309]\n", " [ 145.08277893]]\n", "================================================================================\n", "880 Cost : 24.5343 \n", "Prediction:\n", " [[ 143.1993866 ]\n", " [ 189.87528992]\n", " [ 177.4944458 ]\n", " [ 198.40016174]\n", " [ 145.06814575]]\n", "================================================================================\n", "890 Cost : 24.4293 \n", "Prediction:\n", " [[ 143.21682739]\n", " [ 189.86346436]\n", " [ 177.49992371]\n", " [ 198.4030304 ]\n", " [ 145.05357361]]\n", "================================================================================\n", "900 Cost : 24.3251 \n", "Prediction:\n", " [[ 143.23417664]\n", " [ 189.85166931]\n", " [ 177.50538635]\n", " [ 198.40586853]\n", " [ 145.03901672]]\n", "================================================================================\n", "910 Cost : 24.2212 \n", "Prediction:\n", " [[ 143.25152588]\n", " [ 189.83992004]\n", " [ 177.510849 ]\n", " [ 198.40870667]\n", " [ 145.02452087]]\n", "================================================================================\n", "920 Cost : 24.1179 \n", "Prediction:\n", " [[ 143.26879883]\n", " [ 189.82815552]\n", " [ 177.51628113]\n", " [ 198.41152954]\n", " [ 145.01004028]]\n", "================================================================================\n", "930 Cost : 24.0152 \n", "Prediction:\n", " [[ 143.28604126]\n", " [ 189.81645203]\n", " [ 177.52171326]\n", " [ 198.41433716]\n", " [ 144.99562073]]\n", "================================================================================\n", "940 Cost : 23.9131 \n", "Prediction:\n", " [[ 143.30323792]\n", " [ 189.80480957]\n", " [ 177.52713013]\n", " [ 198.41716003]\n", " [ 144.98124695]]\n", "================================================================================\n", "950 Cost : 23.8114 \n", "Prediction:\n", " [[ 143.32037354]\n", " [ 189.7931366 ]\n", " [ 177.53251648]\n", " [ 198.41995239]\n", " [ 144.96688843]]\n", "================================================================================\n", "960 Cost : 23.7103 \n", "Prediction:\n", " [[ 143.33747864]\n", " [ 189.78152466]\n", " [ 177.53790283]\n", " [ 198.42272949]\n", " [ 144.95259094]]\n", "================================================================================\n", "970 Cost : 23.6098 \n", "Prediction:\n", " [[ 143.35455322]\n", " [ 189.76997375]\n", " [ 177.54328918]\n", " [ 198.42552185]\n", " [ 144.93833923]]\n", "================================================================================\n", "980 Cost : 23.5097 \n", "Prediction:\n", " [[ 143.37155151]\n", " [ 189.75840759]\n", " [ 177.54862976]\n", " [ 198.42826843]\n", " [ 144.92410278]]\n", "================================================================================\n", "990 Cost : 23.4102 \n", "Prediction:\n", " [[ 143.38853455]\n", " [ 189.74690247]\n", " [ 177.5539856 ]\n", " [ 198.43104553]\n", " [ 144.90994263]]\n", "================================================================================\n", "1000 Cost : 23.3113 \n", "Prediction:\n", " [[ 143.40542603]\n", " [ 189.73538208]\n", " [ 177.5592804 ]\n", " [ 198.43377686]\n", " [ 144.89576721]]\n", "================================================================================\n", "1010 Cost : 23.2128 \n", "Prediction:\n", " [[ 143.42233276]\n", " [ 189.72393799]\n", " [ 177.56462097]\n", " [ 198.4365387 ]\n", " [ 144.88168335]]\n", "================================================================================\n", "1020 Cost : 23.1149 \n", "Prediction:\n", " [[ 143.43913269]\n", " [ 189.7124939 ]\n", " [ 177.56990051]\n", " [ 198.4392395 ]\n", " [ 144.86763 ]]\n", "================================================================================\n", "1030 Cost : 23.0175 \n", "Prediction:\n", " [[ 143.45593262]\n", " [ 189.70111084]\n", " [ 177.57519531]\n", " [ 198.44197083]\n", " [ 144.85360718]]\n", "================================================================================\n", "1040 Cost : 22.9205 \n", "Prediction:\n", " [[ 143.47267151]\n", " [ 189.68972778]\n", " [ 177.58047485]\n", " [ 198.44465637]\n", " [ 144.83959961]]\n", "================================================================================\n", "1050 Cost : 22.8241 \n", "Prediction:\n", " [[ 143.48937988]\n", " [ 189.6783905 ]\n", " [ 177.58570862]\n", " [ 198.44737244]\n", " [ 144.82565308]]\n", "================================================================================\n", "1060 Cost : 22.7283 \n", "Prediction:\n", " [[ 143.50605774]\n", " [ 189.66711426]\n", " [ 177.59098816]\n", " [ 198.45007324]\n", " [ 144.81178284]]\n", "================================================================================\n", "1070 Cost : 22.6328 \n", "Prediction:\n", " [[ 143.52264404]\n", " [ 189.65579224]\n", " [ 177.59619141]\n", " [ 198.45269775]\n", " [ 144.79788208]]\n", "================================================================================\n", "1080 Cost : 22.538 \n", "Prediction:\n", " [[ 143.53924561]\n", " [ 189.64459229]\n", " [ 177.60144043]\n", " [ 198.45542908]\n", " [ 144.78408813]]\n", "================================================================================\n", "1090 Cost : 22.4437 \n", "Prediction:\n", " [[ 143.55574036]\n", " [ 189.63336182]\n", " [ 177.60662842]\n", " [ 198.45805359]\n", " [ 144.77027893]]\n", "================================================================================\n", "1100 Cost : 22.3498 \n", "Prediction:\n", " [[ 143.57223511]\n", " [ 189.62217712]\n", " [ 177.61183167]\n", " [ 198.46072388]\n", " [ 144.75654602]]\n", "================================================================================\n", "1110 Cost : 22.2564 \n", "Prediction:\n", " [[ 143.58865356]\n", " [ 189.61100769]\n", " [ 177.61700439]\n", " [ 198.46334839]\n", " [ 144.74282837]]\n", "================================================================================\n", "1120 Cost : 22.1635 \n", "Prediction:\n", " [[ 143.60505676]\n", " [ 189.59986877]\n", " [ 177.62216187]\n", " [ 198.46598816]\n", " [ 144.72914124]]\n", "================================================================================\n", "1130 Cost : 22.071 \n", "Prediction:\n", " [[ 143.62141418]\n", " [ 189.58877563]\n", " [ 177.62731934]\n", " [ 198.46861267]\n", " [ 144.71551514]]\n", "================================================================================\n", "1140 Cost : 21.9791 \n", "Prediction:\n", " [[ 143.63772583]\n", " [ 189.57769775]\n", " [ 177.63244629]\n", " [ 198.47119141]\n", " [ 144.7019043 ]]\n", "================================================================================\n", "1150 Cost : 21.8877 \n", "Prediction:\n", " [[ 143.65400696]\n", " [ 189.56668091]\n", " [ 177.6375885 ]\n", " [ 198.47383118]\n", " [ 144.68836975]]\n", "================================================================================\n", "1160 Cost : 21.7967 \n", "Prediction:\n", " [[ 143.67021179]\n", " [ 189.5556488 ]\n", " [ 177.6427002 ]\n", " [ 198.47642517]\n", " [ 144.67485046]]\n", "================================================================================\n", "1170 Cost : 21.7062 \n", "Prediction:\n", " [[ 143.68641663]\n", " [ 189.54469299]\n", " [ 177.64781189]\n", " [ 198.47903442]\n", " [ 144.66137695]]\n", "================================================================================\n", "1180 Cost : 21.6162 \n", "Prediction:\n", " [[ 143.70254517]\n", " [ 189.53372192]\n", " [ 177.65287781]\n", " [ 198.48158264]\n", " [ 144.6479187 ]]\n", "================================================================================\n", "1190 Cost : 21.5268 \n", "Prediction:\n", " [[ 143.71862793]\n", " [ 189.52281189]\n", " [ 177.65795898]\n", " [ 198.48416138]\n", " [ 144.63452148]]\n", "================================================================================\n", "1200 Cost : 21.4376 \n", "Prediction:\n", " [[ 143.73469543]\n", " [ 189.51190186]\n", " [ 177.6630249 ]\n", " [ 198.48672485]\n", " [ 144.62115479]]\n", "================================================================================\n", "1210 Cost : 21.3491 \n", "Prediction:\n", " [[ 143.75068665]\n", " [ 189.5010376 ]\n", " [ 177.6680603 ]\n", " [ 198.48925781]\n", " [ 144.6078186 ]]\n", "================================================================================\n", "1220 Cost : 21.261 \n", "Prediction:\n", " [[ 143.76669312]\n", " [ 189.49023438]\n", " [ 177.67312622]\n", " [ 198.49183655]\n", " [ 144.59455872]]\n", "================================================================================\n", "1230 Cost : 21.1733 \n", "Prediction:\n", " [[ 143.78257751]\n", " [ 189.47937012]\n", " [ 177.67810059]\n", " [ 198.49430847]\n", " [ 144.58125305]]\n", "================================================================================\n", "1240 Cost : 21.0862 \n", "Prediction:\n", " [[ 143.79849243]\n", " [ 189.46864319]\n", " [ 177.68315125]\n", " [ 198.49688721]\n", " [ 144.56808472]]\n", "================================================================================\n", "1250 Cost : 20.9994 \n", "Prediction:\n", " [[ 143.8143158 ]\n", " [ 189.45783997]\n", " [ 177.68811035]\n", " [ 198.49935913]\n", " [ 144.55487061]]\n", "================================================================================\n", "1260 Cost : 20.9131 \n", "Prediction:\n", " [[ 143.83013916]\n", " [ 189.44715881]\n", " [ 177.69311523]\n", " [ 198.50187683]\n", " [ 144.54176331]]\n", "================================================================================\n", "1270 Cost : 20.8272 \n", "Prediction:\n", " [[ 143.84590149]\n", " [ 189.43644714]\n", " [ 177.6980896 ]\n", " [ 198.50437927]\n", " [ 144.52864075]]\n", "================================================================================\n", "1280 Cost : 20.7419 \n", "Prediction:\n", " [[ 143.86160278]\n", " [ 189.42578125]\n", " [ 177.70303345]\n", " [ 198.50686646]\n", " [ 144.51556396]]\n", "================================================================================\n", "1290 Cost : 20.6569 \n", "Prediction:\n", " [[ 143.87731934]\n", " [ 189.41517639]\n", " [ 177.70802307]\n", " [ 198.50938416]\n", " [ 144.50254822]]\n", "================================================================================\n", "1300 Cost : 20.5725 \n", "Prediction:\n", " [[ 143.89291382]\n", " [ 189.40452576]\n", " [ 177.71290588]\n", " [ 198.51179504]\n", " [ 144.48951721]]\n", "================================================================================\n", "1310 Cost : 20.4884 \n", "Prediction:\n", " [[ 143.90853882]\n", " [ 189.39396667]\n", " [ 177.71786499]\n", " [ 198.51428223]\n", " [ 144.47659302]]\n", "================================================================================\n", "1320 Cost : 20.4048 \n", "Prediction:\n", " [[ 143.92407227]\n", " [ 189.38339233]\n", " [ 177.72273254]\n", " [ 198.51669312]\n", " [ 144.46363831]]\n", "================================================================================\n", "1330 Cost : 20.3216 \n", "Prediction:\n", " [[ 143.93960571]\n", " [ 189.37287903]\n", " [ 177.72766113]\n", " [ 198.5191803 ]\n", " [ 144.45079041]]\n", "================================================================================\n", "1340 Cost : 20.2389 \n", "Prediction:\n", " [[ 143.95506287]\n", " [ 189.36238098]\n", " [ 177.73252869]\n", " [ 198.52157593]\n", " [ 144.43792725]]\n", "================================================================================\n", "1350 Cost : 20.1567 \n", "Prediction:\n", " [[ 143.97050476]\n", " [ 189.35192871]\n", " [ 177.73739624]\n", " [ 198.52401733]\n", " [ 144.42512512]]\n", "================================================================================\n", "1360 Cost : 20.0748 \n", "Prediction:\n", " [[ 143.98588562]\n", " [ 189.34146118]\n", " [ 177.74224854]\n", " [ 198.52642822]\n", " [ 144.41235352]]\n", "================================================================================\n", "1370 Cost : 19.9934 \n", "Prediction:\n", " [[ 144.00125122]\n", " [ 189.33106995]\n", " [ 177.74710083]\n", " [ 198.52883911]\n", " [ 144.39959717]]\n", "================================================================================\n", "1380 Cost : 19.9124 \n", "Prediction:\n", " [[ 144.01655579]\n", " [ 189.32067871]\n", " [ 177.75193787]\n", " [ 198.53125 ]\n", " [ 144.38691711]]\n", "================================================================================\n", "1390 Cost : 19.8318 \n", "Prediction:\n", " [[ 144.03184509]\n", " [ 189.31031799]\n", " [ 177.7567749 ]\n", " [ 198.53364563]\n", " [ 144.37425232]]\n", "================================================================================\n", "1400 Cost : 19.7517 \n", "Prediction:\n", " [[ 144.04707336]\n", " [ 189.30000305]\n", " [ 177.76158142]\n", " [ 198.536026 ]\n", " [ 144.36161804]]\n", "================================================================================\n", "1410 Cost : 19.672 \n", "Prediction:\n", " [[ 144.0622406 ]\n", " [ 189.28968811]\n", " [ 177.76635742]\n", " [ 198.53839111]\n", " [ 144.34901428]]\n", "================================================================================\n", "1420 Cost : 19.5927 \n", "Prediction:\n", " [[ 144.07739258]\n", " [ 189.27941895]\n", " [ 177.77114868]\n", " [ 198.54075623]\n", " [ 144.3364563 ]]\n", "================================================================================\n", "1430 Cost : 19.5137 \n", "Prediction:\n", " [[ 144.09251404]\n", " [ 189.26914978]\n", " [ 177.77589417]\n", " [ 198.54309082]\n", " [ 144.32392883]]\n", "================================================================================\n", "1440 Cost : 19.4353 \n", "Prediction:\n", " [[ 144.10760498]\n", " [ 189.25897217]\n", " [ 177.78070068]\n", " [ 198.54547119]\n", " [ 144.3114624 ]]\n", "================================================================================\n", "1450 Cost : 19.3572 \n", "Prediction:\n", " [[ 144.12260437]\n", " [ 189.24873352]\n", " [ 177.78541565]\n", " [ 198.54776001]\n", " [ 144.29898071]]\n", "================================================================================\n", "1460 Cost : 19.2795 \n", "Prediction:\n", " [[ 144.13761902]\n", " [ 189.23858643]\n", " [ 177.79017639]\n", " [ 198.55012512]\n", " [ 144.28657532]]\n", "================================================================================\n", "1470 Cost : 19.2023 \n", "Prediction:\n", " [[ 144.15254211]\n", " [ 189.22840881]\n", " [ 177.79486084]\n", " [ 198.55241394]\n", " [ 144.27416992]]\n", "================================================================================\n", "1480 Cost : 19.1254 \n", "Prediction:\n", " [[ 144.16749573]\n", " [ 189.21833801]\n", " [ 177.79962158]\n", " [ 198.55477905]\n", " [ 144.26184082]]\n", "================================================================================\n", "1490 Cost : 19.0489 \n", "Prediction:\n", " [[ 144.18235779]\n", " [ 189.20822144]\n", " [ 177.80427551]\n", " [ 198.55703735]\n", " [ 144.24952698]]\n", "================================================================================\n", "1500 Cost : 18.9729 \n", "Prediction:\n", " [[ 144.19720459]\n", " [ 189.19818115]\n", " [ 177.80899048]\n", " [ 198.55934143]\n", " [ 144.23724365]]\n", "================================================================================\n", "1510 Cost : 18.8973 \n", "Prediction:\n", " [[ 144.2119751 ]\n", " [ 189.18812561]\n", " [ 177.81362915]\n", " [ 198.56161499]\n", " [ 144.22499084]]\n", "================================================================================\n", "1520 Cost : 18.822 \n", "Prediction:\n", " [[ 144.22676086]\n", " [ 189.17814636]\n", " [ 177.81832886]\n", " [ 198.56394958]\n", " [ 144.21281433]]\n", "================================================================================\n", "1530 Cost : 18.7472 \n", "Prediction:\n", " [[ 144.24143982]\n", " [ 189.1681366 ]\n", " [ 177.82293701]\n", " [ 198.56616211]\n", " [ 144.2006073 ]]\n", "================================================================================\n", "1540 Cost : 18.6727 \n", "Prediction:\n", " [[ 144.25616455]\n", " [ 189.15821838]\n", " [ 177.8276062 ]\n", " [ 198.56846619]\n", " [ 144.18849182]]\n", "================================================================================\n", "1550 Cost : 18.5986 \n", "Prediction:\n", " [[ 144.27078247]\n", " [ 189.14825439]\n", " [ 177.83222961]\n", " [ 198.57069397]\n", " [ 144.17636108]]\n", "================================================================================\n", "1560 Cost : 18.525 \n", "Prediction:\n", " [[ 144.28540039]\n", " [ 189.13838196]\n", " [ 177.83685303]\n", " [ 198.57295227]\n", " [ 144.16430664]]\n", "================================================================================\n", "1570 Cost : 18.4517 \n", "Prediction:\n", " [[ 144.29995728]\n", " [ 189.12849426]\n", " [ 177.84144592]\n", " [ 198.57519531]\n", " [ 144.1522522 ]]\n", "================================================================================\n", "1580 Cost : 18.3787 \n", "Prediction:\n", " [[ 144.31448364]\n", " [ 189.11863708]\n", " [ 177.84605408]\n", " [ 198.5774231 ]\n", " [ 144.14025879]]\n", "================================================================================\n", "1590 Cost : 18.3062 \n", "Prediction:\n", " [[ 144.32896423]\n", " [ 189.10882568]\n", " [ 177.85061646]\n", " [ 198.57963562]\n", " [ 144.12828064]]\n", "================================================================================\n", "1600 Cost : 18.234 \n", "Prediction:\n", " [[ 144.34344482]\n", " [ 189.0990448 ]\n", " [ 177.85520935]\n", " [ 198.58187866]\n", " [ 144.11636353]]\n", "================================================================================\n", "1610 Cost : 18.1623 \n", "Prediction:\n", " [[ 144.35784912]\n", " [ 189.08926392]\n", " [ 177.85975647]\n", " [ 198.58406067]\n", " [ 144.10444641]]\n", "================================================================================\n", "1620 Cost : 18.0908 \n", "Prediction:\n", " [[ 144.37223816]\n", " [ 189.07951355]\n", " [ 177.86430359]\n", " [ 198.58627319]\n", " [ 144.09259033]]\n", "================================================================================\n", "1630 Cost : 18.0198 \n", "Prediction:\n", " [[ 144.38658142]\n", " [ 189.06980896]\n", " [ 177.86885071]\n", " [ 198.58847046]\n", " [ 144.08076477]]\n", "================================================================================\n", "1640 Cost : 17.9492 \n", "Prediction:\n", " [[ 144.40084839]\n", " [ 189.06008911]\n", " [ 177.87335205]\n", " [ 198.59062195]\n", " [ 144.06893921]]\n", "================================================================================\n", "1650 Cost : 17.8789 \n", "Prediction:\n", " [[ 144.41511536]\n", " [ 189.05041504]\n", " [ 177.87785339]\n", " [ 198.5927887 ]\n", " [ 144.05717468]]\n", "================================================================================\n", "1660 Cost : 17.809 \n", "Prediction:\n", " [[ 144.42935181]\n", " [ 189.04078674]\n", " [ 177.88237 ]\n", " [ 198.59498596]\n", " [ 144.04545593]]\n", "================================================================================\n", "1670 Cost : 17.7394 \n", "Prediction:\n", " [[ 144.44354248]\n", " [ 189.03117371]\n", " [ 177.88685608]\n", " [ 198.59710693]\n", " [ 144.03373718]]\n", "================================================================================\n", "1680 Cost : 17.6702 \n", "Prediction:\n", " [[ 144.45770264]\n", " [ 189.02159119]\n", " [ 177.89134216]\n", " [ 198.59928894]\n", " [ 144.02207947]]\n", "================================================================================\n", "1690 Cost : 17.6014 \n", "Prediction:\n", " [[ 144.47180176]\n", " [ 189.01200867]\n", " [ 177.89576721]\n", " [ 198.60139465]\n", " [ 144.01042175]]\n", "================================================================================\n", "1700 Cost : 17.5328 \n", "Prediction:\n", " [[ 144.48590088]\n", " [ 189.00247192]\n", " [ 177.90026855]\n", " [ 198.6035614 ]\n", " [ 143.99884033]]\n", "================================================================================\n", "1710 Cost : 17.4648 \n", "Prediction:\n", " [[ 144.49992371]\n", " [ 188.99295044]\n", " [ 177.90467834]\n", " [ 198.60566711]\n", " [ 143.98727417]]\n", "================================================================================\n", "1720 Cost : 17.397 \n", "Prediction:\n", " [[ 144.51393127]\n", " [ 188.98347473]\n", " [ 177.90913391]\n", " [ 198.60778809]\n", " [ 143.97573853]]\n", "================================================================================\n", "1730 Cost : 17.3296 \n", "Prediction:\n", " [[ 144.52789307]\n", " [ 188.97399902]\n", " [ 177.91352844]\n", " [ 198.6098938 ]\n", " [ 143.9642334 ]]\n", "================================================================================\n", "1740 Cost : 17.2626 \n", "Prediction:\n", " [[ 144.5418396 ]\n", " [ 188.96458435]\n", " [ 177.91796875]\n", " [ 198.61201477]\n", " [ 143.95278931]]\n", "================================================================================\n", "1750 Cost : 17.1958 \n", "Prediction:\n", " [[ 144.55570984]\n", " [ 188.9551239 ]\n", " [ 177.9223175 ]\n", " [ 198.61405945]\n", " [ 143.9413147 ]]\n", "================================================================================\n", "1760 Cost : 17.1295 \n", "Prediction:\n", " [[ 144.56959534]\n", " [ 188.94577026]\n", " [ 177.92674255]\n", " [ 198.61618042]\n", " [ 143.92993164]]\n", "================================================================================\n", "1770 Cost : 17.0635 \n", "Prediction:\n", " [[ 144.5834198 ]\n", " [ 188.93640137]\n", " [ 177.93112183]\n", " [ 198.61825562]\n", " [ 143.91856384]]\n", "================================================================================\n", "1780 Cost : 16.9978 \n", "Prediction:\n", " [[ 144.59721375]\n", " [ 188.92704773]\n", " [ 177.93547058]\n", " [ 198.62033081]\n", " [ 143.90722656]]\n", "================================================================================\n", "1790 Cost : 16.9325 \n", "Prediction:\n", " [[ 144.6109314 ]\n", " [ 188.91770935]\n", " [ 177.93981934]\n", " [ 198.62237549]\n", " [ 143.89588928]]\n", "================================================================================\n", "1800 Cost : 16.8675 \n", "Prediction:\n", " [[ 144.62466431]\n", " [ 188.90844727]\n", " [ 177.94416809]\n", " [ 198.62445068]\n", " [ 143.88464355]]\n", "================================================================================\n", "1810 Cost : 16.8029 \n", "Prediction:\n", " [[ 144.63832092]\n", " [ 188.89915466]\n", " [ 177.94848633]\n", " [ 198.6264801 ]\n", " [ 143.87336731]]\n", "================================================================================\n", "1820 Cost : 16.7386 \n", "Prediction:\n", " [[ 144.6519928 ]\n", " [ 188.88995361]\n", " [ 177.95283508]\n", " [ 198.62854004]\n", " [ 143.86218262]]\n", "================================================================================\n", "1830 Cost : 16.6746 \n", "Prediction:\n", " [[ 144.66555786]\n", " [ 188.88069153]\n", " [ 177.95710754]\n", " [ 198.63053894]\n", " [ 143.85098267]]\n", "================================================================================\n", "1840 Cost : 16.611 \n", "Prediction:\n", " [[ 144.67915344]\n", " [ 188.87153625]\n", " [ 177.96144104]\n", " [ 198.63259888]\n", " [ 143.83985901]]\n", "================================================================================\n", "1850 Cost : 16.5477 \n", "Prediction:\n", " [[ 144.69268799]\n", " [ 188.86235046]\n", " [ 177.9657135 ]\n", " [ 198.63459778]\n", " [ 143.82873535]]\n", "================================================================================\n", "1860 Cost : 16.4847 \n", "Prediction:\n", " [[ 144.70617676]\n", " [ 188.85321045]\n", " [ 177.96998596]\n", " [ 198.63659668]\n", " [ 143.81764221]]\n", "================================================================================\n", "1870 Cost : 16.422 \n", "Prediction:\n", " [[ 144.71963501]\n", " [ 188.84407043]\n", " [ 177.97424316]\n", " [ 198.63859558]\n", " [ 143.80657959]]\n", "================================================================================\n", "1880 Cost : 16.3597 \n", "Prediction:\n", " [[ 144.73309326]\n", " [ 188.83499146]\n", " [ 177.97851562]\n", " [ 198.64060974]\n", " [ 143.795578 ]]\n", "================================================================================\n", "1890 Cost : 16.2977 \n", "Prediction:\n", " [[ 144.74647522]\n", " [ 188.82591248]\n", " [ 177.98275757]\n", " [ 198.64257812]\n", " [ 143.78456116]]\n", "================================================================================\n", "1900 Cost : 16.236 \n", "Prediction:\n", " [[ 144.75984192]\n", " [ 188.81686401]\n", " [ 177.98698425]\n", " [ 198.64454651]\n", " [ 143.77362061]]\n", "================================================================================\n", "1910 Cost : 16.1747 \n", "Prediction:\n", " [[ 144.77316284]\n", " [ 188.80784607]\n", " [ 177.99121094]\n", " [ 198.64654541]\n", " [ 143.76269531]]\n", "================================================================================\n", "1920 Cost : 16.1136 \n", "Prediction:\n", " [[ 144.78643799]\n", " [ 188.79884338]\n", " [ 177.99542236]\n", " [ 198.64848328]\n", " [ 143.75178528]]\n", "================================================================================\n", "1930 Cost : 16.0529 \n", "Prediction:\n", " [[ 144.79969788]\n", " [ 188.78987122]\n", " [ 177.99961853]\n", " [ 198.65045166]\n", " [ 143.74092102]]\n", "================================================================================\n", "1940 Cost : 15.9925 \n", "Prediction:\n", " [[ 144.81291199]\n", " [ 188.78091431]\n", " [ 178.0038147 ]\n", " [ 198.65240479]\n", " [ 143.73007202]]\n", "================================================================================\n", "1950 Cost : 15.9324 \n", "Prediction:\n", " [[ 144.82611084]\n", " [ 188.77198792]\n", " [ 178.00799561]\n", " [ 198.65434265]\n", " [ 143.71929932]]\n", "================================================================================\n", "1960 Cost : 15.8726 \n", "Prediction:\n", " [[ 144.83924866]\n", " [ 188.76304626]\n", " [ 178.012146 ]\n", " [ 198.65623474]\n", " [ 143.70849609]]\n", "================================================================================\n", "1970 Cost : 15.8132 \n", "Prediction:\n", " [[ 144.85238647]\n", " [ 188.75421143]\n", " [ 178.0163269 ]\n", " [ 198.65820312]\n", " [ 143.69778442]]\n", "================================================================================\n", "1980 Cost : 15.754 \n", "Prediction:\n", " [[ 144.86546326]\n", " [ 188.74533081]\n", " [ 178.02046204]\n", " [ 198.66011047]\n", " [ 143.6870575 ]]\n", "================================================================================\n", "1990 Cost : 15.6952 \n", "Prediction:\n", " [[ 144.87852478]\n", " [ 188.73651123]\n", " [ 178.02461243]\n", " [ 198.66203308]\n", " [ 143.6763916 ]]\n", "================================================================================\n", "2000 Cost : 15.6367 \n", "Prediction:\n", " [[ 144.89151001]\n", " [ 188.72769165]\n", " [ 178.02871704]\n", " [ 198.66392517]\n", " [ 143.66572571]]\n", "================================================================================\n", "2010 Cost : 15.5784 \n", "Prediction:\n", " [[ 144.90452576]\n", " [ 188.71891785]\n", " [ 178.03286743]\n", " [ 198.66584778]\n", " [ 143.65512085]]\n", "================================================================================\n", "2020 Cost : 15.5205 \n", "Prediction:\n", " [[ 144.91744995]\n", " [ 188.71012878]\n", " [ 178.03694153]\n", " [ 198.66770935]\n", " [ 143.64451599]]\n", "================================================================================\n", "2030 Cost : 15.4629 \n", "Prediction:\n", " [[ 144.93035889]\n", " [ 188.70140076]\n", " [ 178.0410614 ]\n", " [ 198.6696167 ]\n", " [ 143.63395691]]\n", "================================================================================\n", "2040 Cost : 15.4055 \n", "Prediction:\n", " [[ 144.9432373 ]\n", " [ 188.69267273]\n", " [ 178.04515076]\n", " [ 198.67147827]\n", " [ 143.62342834]]\n", "================================================================================\n", "2050 Cost : 15.3484 \n", "Prediction:\n", " [[ 144.95608521]\n", " [ 188.68397522]\n", " [ 178.04922485]\n", " [ 198.67333984]\n", " [ 143.61291504]]\n", "================================================================================\n", "2060 Cost : 15.2917 \n", "Prediction:\n", " [[ 144.96890259]\n", " [ 188.67530823]\n", " [ 178.05328369]\n", " [ 198.67521667]\n", " [ 143.60244751]]\n", "================================================================================\n", "2070 Cost : 15.2353 \n", "Prediction:\n", " [[ 144.98167419]\n", " [ 188.66665649]\n", " [ 178.05732727]\n", " [ 198.67706299]\n", " [ 143.5920105 ]]\n", "================================================================================\n", "2080 Cost : 15.1791 \n", "Prediction:\n", " [[ 144.99443054]\n", " [ 188.65803528]\n", " [ 178.06138611]\n", " [ 198.6789093 ]\n", " [ 143.581604 ]]\n", "================================================================================\n", "2090 Cost : 15.1233 \n", "Prediction:\n", " [[ 145.0071106 ]\n", " [ 188.6493988 ]\n", " [ 178.06538391]\n", " [ 198.6807251 ]\n", " [ 143.57121277]]\n", "================================================================================\n", "2100 Cost : 15.0676 \n", "Prediction:\n", " [[ 145.01982117]\n", " [ 188.64083862]\n", " [ 178.06944275]\n", " [ 198.68257141]\n", " [ 143.56086731]]\n", "================================================================================\n", "2110 Cost : 15.0124 \n", "Prediction:\n", " [[ 145.03244019]\n", " [ 188.63227844]\n", " [ 178.07342529]\n", " [ 198.68438721]\n", " [ 143.55053711]]\n", "================================================================================\n", "2120 Cost : 14.9574 \n", "Prediction:\n", " [[ 145.04507446]\n", " [ 188.62373352]\n", " [ 178.07745361]\n", " [ 198.68621826]\n", " [ 143.54025269]]\n", "================================================================================\n", "2130 Cost : 14.9027 \n", "Prediction:\n", " [[ 145.05763245]\n", " [ 188.61521912]\n", " [ 178.08143616]\n", " [ 198.6880188 ]\n", " [ 143.52998352]]\n", "================================================================================\n", "2140 Cost : 14.8482 \n", "Prediction:\n", " [[ 145.07020569]\n", " [ 188.60675049]\n", " [ 178.08544922]\n", " [ 198.68984985]\n", " [ 143.51976013]]\n", "================================================================================\n", "2150 Cost : 14.7941 \n", "Prediction:\n", " [[ 145.08270264]\n", " [ 188.5982666 ]\n", " [ 178.08938599]\n", " [ 198.69161987]\n", " [ 143.509552 ]]\n", "================================================================================\n", "2160 Cost : 14.7402 \n", "Prediction:\n", " [[ 145.09516907]\n", " [ 188.58979797]\n", " [ 178.09333801]\n", " [ 198.69338989]\n", " [ 143.49935913]]\n", "================================================================================\n", "2170 Cost : 14.6867 \n", "Prediction:\n", " [[ 145.1076355 ]\n", " [ 188.58140564]\n", " [ 178.09732056]\n", " [ 198.69520569]\n", " [ 143.48924255]]\n", "================================================================================\n", "2180 Cost : 14.6333 \n", "Prediction:\n", " [[ 145.12002563]\n", " [ 188.57296753]\n", " [ 178.10124207]\n", " [ 198.69696045]\n", " [ 143.47909546]]\n", "================================================================================\n", "2190 Cost : 14.5803 \n", "Prediction:\n", " [[ 145.13243103]\n", " [ 188.56462097]\n", " [ 178.10520935]\n", " [ 198.69874573]\n", " [ 143.46903992]]\n", "================================================================================\n", "2200 Cost : 14.5275 \n", "Prediction:\n", " [[ 145.14477539]\n", " [ 188.5562439 ]\n", " [ 178.10910034]\n", " [ 198.70050049]\n", " [ 143.45895386]]\n", "================================================================================\n", "2210 Cost : 14.475 \n", "Prediction:\n", " [[ 145.15710449]\n", " [ 188.54789734]\n", " [ 178.11302185]\n", " [ 198.70225525]\n", " [ 143.44892883]]\n", "================================================================================\n", "2220 Cost : 14.4228 \n", "Prediction:\n", " [[ 145.16938782]\n", " [ 188.53959656]\n", " [ 178.1169281 ]\n", " [ 198.70401001]\n", " [ 143.43891907]]\n", "================================================================================\n", "2230 Cost : 14.3709 \n", "Prediction:\n", " [[ 145.18164062]\n", " [ 188.53129578]\n", " [ 178.12081909]\n", " [ 198.70573425]\n", " [ 143.42893982]]\n", "================================================================================\n", "2240 Cost : 14.3192 \n", "Prediction:\n", " [[ 145.19389343]\n", " [ 188.52304077]\n", " [ 178.12472534]\n", " [ 198.70750427]\n", " [ 143.41902161]]\n", "================================================================================\n", "2250 Cost : 14.2678 \n", "Prediction:\n", " [[ 145.20605469]\n", " [ 188.51478577]\n", " [ 178.1285553 ]\n", " [ 198.709198 ]\n", " [ 143.40907288]]\n", "================================================================================\n", "2260 Cost : 14.2166 \n", "Prediction:\n", " [[ 145.2182312 ]\n", " [ 188.50657654]\n", " [ 178.13244629]\n", " [ 198.7109375 ]\n", " [ 143.3992157 ]]\n", "================================================================================\n", "2270 Cost : 14.1658 \n", "Prediction:\n", " [[ 145.23034668]\n", " [ 188.49836731]\n", " [ 178.1362915 ]\n", " [ 198.71263123]\n", " [ 143.38934326]]\n", "================================================================================\n", "2280 Cost : 14.1151 \n", "Prediction:\n", " [[ 145.24246216]\n", " [ 188.49017334]\n", " [ 178.14013672]\n", " [ 198.71434021]\n", " [ 143.3795166 ]]\n", "================================================================================\n", "2290 Cost : 14.0648 \n", "Prediction:\n", " [[ 145.25450134]\n", " [ 188.48200989]\n", " [ 178.14398193]\n", " [ 198.71604919]\n", " [ 143.3697052 ]]\n", "================================================================================\n", "2300 Cost : 14.0147 \n", "Prediction:\n", " [[ 145.26654053]\n", " [ 188.47386169]\n", " [ 178.14779663]\n", " [ 198.71772766]\n", " [ 143.35992432]]\n", "================================================================================\n", "2310 Cost : 13.9648 \n", "Prediction:\n", " [[ 145.27854919]\n", " [ 188.46574402]\n", " [ 178.15162659]\n", " [ 198.71942139]\n", " [ 143.35017395]]\n", "================================================================================\n", "2320 Cost : 13.9153 \n", "Prediction:\n", " [[ 145.29049683]\n", " [ 188.4576416 ]\n", " [ 178.15541077]\n", " [ 198.72109985]\n", " [ 143.34043884]]\n", "================================================================================\n", "2330 Cost : 13.8659 \n", "Prediction:\n", " [[ 145.30245972]\n", " [ 188.44960022]\n", " [ 178.15924072]\n", " [ 198.72279358]\n", " [ 143.33076477]]\n", "================================================================================\n", "2340 Cost : 13.8168 \n", "Prediction:\n", " [[ 145.31436157]\n", " [ 188.44151306]\n", " [ 178.16300964]\n", " [ 198.72444153]\n", " [ 143.3210907 ]]\n", "================================================================================\n", "2350 Cost : 13.768 \n", "Prediction:\n", " [[ 145.32621765]\n", " [ 188.43345642]\n", " [ 178.16677856]\n", " [ 198.72608948]\n", " [ 143.31143188]]\n", "================================================================================\n", "2360 Cost : 13.7195 \n", "Prediction:\n", " [[ 145.33808899]\n", " [ 188.42547607]\n", " [ 178.17054749]\n", " [ 198.72776794]\n", " [ 143.30186462]]\n", "================================================================================\n", "2370 Cost : 13.6711 \n", "Prediction:\n", " [[ 145.34991455]\n", " [ 188.41749573]\n", " [ 178.17431641]\n", " [ 198.72941589]\n", " [ 143.2922821 ]]\n", "================================================================================\n", "2380 Cost : 13.6231 \n", "Prediction:\n", " [[ 145.36169434]\n", " [ 188.40951538]\n", " [ 178.17807007]\n", " [ 198.73104858]\n", " [ 143.28269958]]\n", "================================================================================\n", "2390 Cost : 13.5752 \n", "Prediction:\n", " [[ 145.37342834]\n", " [ 188.40153503]\n", " [ 178.18179321]\n", " [ 198.73265076]\n", " [ 143.27316284]]\n", "================================================================================\n", "2400 Cost : 13.5277 \n", "Prediction:\n", " [[ 145.38514709]\n", " [ 188.39363098]\n", " [ 178.18551636]\n", " [ 198.73428345]\n", " [ 143.26368713]]\n", "================================================================================\n", "2410 Cost : 13.4803 \n", "Prediction:\n", " [[ 145.39686584]\n", " [ 188.38572693]\n", " [ 178.18925476]\n", " [ 198.7359314 ]\n", " [ 143.25421143]]\n", "================================================================================\n", "2420 Cost : 13.4333 \n", "Prediction:\n", " [[ 145.4085083 ]\n", " [ 188.37783813]\n", " [ 178.19296265]\n", " [ 198.73753357]\n", " [ 143.24476624]]\n", "================================================================================\n", "2430 Cost : 13.3865 \n", "Prediction:\n", " [[ 145.42015076]\n", " [ 188.36997986]\n", " [ 178.19667053]\n", " [ 198.73916626]\n", " [ 143.23535156]]\n", "================================================================================\n", "2440 Cost : 13.3398 \n", "Prediction:\n", " [[ 145.43174744]\n", " [ 188.36210632]\n", " [ 178.20033264]\n", " [ 198.74073792]\n", " [ 143.22593689]]\n", "================================================================================\n", "2450 Cost : 13.2935 \n", "Prediction:\n", " [[ 145.44332886]\n", " [ 188.35432434]\n", " [ 178.20405579]\n", " [ 198.74235535]\n", " [ 143.21659851]]\n", "================================================================================\n", "2460 Cost : 13.2474 \n", "Prediction:\n", " [[ 145.45484924]\n", " [ 188.34649658]\n", " [ 178.20770264]\n", " [ 198.743927 ]\n", " [ 143.20724487]]\n", "================================================================================\n", "2470 Cost : 13.2015 \n", "Prediction:\n", " [[ 145.46635437]\n", " [ 188.33869934]\n", " [ 178.21138 ]\n", " [ 198.74549866]\n", " [ 143.19793701]]\n", "================================================================================\n", "2480 Cost : 13.1558 \n", "Prediction:\n", " [[ 145.47787476]\n", " [ 188.33096313]\n", " [ 178.21505737]\n", " [ 198.74711609]\n", " [ 143.18865967]]\n", "================================================================================\n", "2490 Cost : 13.1104 \n", "Prediction:\n", " [[ 145.48927307]\n", " [ 188.32318115]\n", " [ 178.21864319]\n", " [ 198.74862671]\n", " [ 143.17936707]]\n", "================================================================================\n", "2500 Cost : 13.0652 \n", "Prediction:\n", " [[ 145.50074768]\n", " [ 188.31550598]\n", " [ 178.22232056]\n", " [ 198.75022888]\n", " [ 143.17018127]]\n", "================================================================================\n", "2510 Cost : 13.0203 \n", "Prediction:\n", " [[ 145.51211548]\n", " [ 188.30778503]\n", " [ 178.22595215]\n", " [ 198.75177002]\n", " [ 143.16094971]]\n", "================================================================================\n", "2520 Cost : 12.9756 \n", "Prediction:\n", " [[ 145.52349854]\n", " [ 188.30012512]\n", " [ 178.22956848]\n", " [ 198.75334167]\n", " [ 143.15177917]]\n", "================================================================================\n", "2530 Cost : 12.9311 \n", "Prediction:\n", " [[ 145.5348053 ]\n", " [ 188.29244995]\n", " [ 178.23316956]\n", " [ 198.75486755]\n", " [ 143.1426239 ]]\n", "================================================================================\n", "2540 Cost : 12.8868 \n", "Prediction:\n", " [[ 145.5460968 ]\n", " [ 188.28477478]\n", " [ 178.23675537]\n", " [ 198.75637817]\n", " [ 143.13346863]]\n", "================================================================================\n", "2550 Cost : 12.8428 \n", "Prediction:\n", " [[ 145.55740356]\n", " [ 188.27719116]\n", " [ 178.24038696]\n", " [ 198.75794983]\n", " [ 143.12442017]]\n", "================================================================================\n", "2560 Cost : 12.7989 \n", "Prediction:\n", " [[ 145.56864929]\n", " [ 188.26957703]\n", " [ 178.24395752]\n", " [ 198.75946045]\n", " [ 143.11532593]]\n", "================================================================================\n", "2570 Cost : 12.7554 \n", "Prediction:\n", " [[ 145.5798645 ]\n", " [ 188.26200867]\n", " [ 178.24752808]\n", " [ 198.76098633]\n", " [ 143.10627747]]\n", "================================================================================\n", "2580 Cost : 12.712 \n", "Prediction:\n", " [[ 145.59104919]\n", " [ 188.25444031]\n", " [ 178.25109863]\n", " [ 198.76249695]\n", " [ 143.09727478]]\n", "================================================================================\n", "2590 Cost : 12.6689 \n", "Prediction:\n", " [[ 145.60218811]\n", " [ 188.24688721]\n", " [ 178.25462341]\n", " [ 198.76397705]\n", " [ 143.08825684]]\n", "================================================================================\n", "2600 Cost : 12.626 \n", "Prediction:\n", " [[ 145.61332703]\n", " [ 188.23937988]\n", " [ 178.25819397]\n", " [ 198.76550293]\n", " [ 143.07928467]]\n", "================================================================================\n", "2610 Cost : 12.5833 \n", "Prediction:\n", " [[ 145.62442017]\n", " [ 188.23188782]\n", " [ 178.26173401]\n", " [ 198.76698303]\n", " [ 143.07035828]]\n", "================================================================================\n", "2620 Cost : 12.5408 \n", "Prediction:\n", " [[ 145.63548279]\n", " [ 188.22438049]\n", " [ 178.26524353]\n", " [ 198.76846313]\n", " [ 143.06141663]]\n", "================================================================================\n", "2630 Cost : 12.4985 \n", "Prediction:\n", " [[ 145.64656067]\n", " [ 188.21694946]\n", " [ 178.26881409]\n", " [ 198.76998901]\n", " [ 143.05255127]]\n", "================================================================================\n", "2640 Cost : 12.4565 \n", "Prediction:\n", " [[ 145.657547 ]\n", " [ 188.2094574 ]\n", " [ 178.27226257]\n", " [ 198.77140808]\n", " [ 143.0436554 ]]\n", "================================================================================\n", "2650 Cost : 12.4147 \n", "Prediction:\n", " [[ 145.66853333]\n", " [ 188.20205688]\n", " [ 178.27578735]\n", " [ 198.77290344]\n", " [ 143.03482056]]\n", "================================================================================\n", "2660 Cost : 12.373 \n", "Prediction:\n", " [[ 145.67950439]\n", " [ 188.19467163]\n", " [ 178.27929688]\n", " [ 198.77436829]\n", " [ 143.02601624]]\n", "================================================================================\n", "2670 Cost : 12.3317 \n", "Prediction:\n", " [[ 145.69041443]\n", " [ 188.18727112]\n", " [ 178.28277588]\n", " [ 198.77581787]\n", " [ 143.01721191]]\n", "================================================================================\n", "2680 Cost : 12.2905 \n", "Prediction:\n", " [[ 145.70132446]\n", " [ 188.17991638]\n", " [ 178.28625488]\n", " [ 198.77728271]\n", " [ 143.00843811]]\n", "================================================================================\n", "2690 Cost : 12.2495 \n", "Prediction:\n", " [[ 145.71217346]\n", " [ 188.17256165]\n", " [ 178.28970337]\n", " [ 198.77870178]\n", " [ 142.99969482]]\n", "================================================================================\n", "2700 Cost : 12.2087 \n", "Prediction:\n", " [[ 145.72303772]\n", " [ 188.16525269]\n", " [ 178.29318237]\n", " [ 198.78015137]\n", " [ 142.99099731]]\n", "================================================================================\n", "2710 Cost : 12.1682 \n", "Prediction:\n", " [[ 145.7338562 ]\n", " [ 188.15794373]\n", " [ 178.29663086]\n", " [ 198.78160095]\n", " [ 142.98231506]]\n", "================================================================================\n", "2720 Cost : 12.1278 \n", "Prediction:\n", " [[ 145.74461365]\n", " [ 188.15061951]\n", " [ 178.30003357]\n", " [ 198.78297424]\n", " [ 142.97361755]]\n", "================================================================================\n", "2730 Cost : 12.0877 \n", "Prediction:\n", " [[ 145.75540161]\n", " [ 188.14338684]\n", " [ 178.30351257]\n", " [ 198.78443909]\n", " [ 142.9650116 ]]\n", "================================================================================\n", "2740 Cost : 12.0477 \n", "Prediction:\n", " [[ 145.76611328]\n", " [ 188.13612366]\n", " [ 178.30693054]\n", " [ 198.7858429 ]\n", " [ 142.95639038]]\n", "================================================================================\n", "2750 Cost : 12.008 \n", "Prediction:\n", " [[ 145.77684021]\n", " [ 188.12890625]\n", " [ 178.31036377]\n", " [ 198.78727722]\n", " [ 142.94779968]]\n", "================================================================================\n", "2760 Cost : 11.9685 \n", "Prediction:\n", " [[ 145.7875061 ]\n", " [ 188.1217041 ]\n", " [ 178.31375122]\n", " [ 198.78866577]\n", " [ 142.93922424]]\n", "================================================================================\n", "2770 Cost : 11.9291 \n", "Prediction:\n", " [[ 145.79814148]\n", " [ 188.11448669]\n", " [ 178.31713867]\n", " [ 198.79005432]\n", " [ 142.93067932]]\n", "================================================================================\n", "2780 Cost : 11.89 \n", "Prediction:\n", " [[ 145.80877686]\n", " [ 188.10733032]\n", " [ 178.32052612]\n", " [ 198.79144287]\n", " [ 142.92216492]]\n", "================================================================================\n", "2790 Cost : 11.851 \n", "Prediction:\n", " [[ 145.81938171]\n", " [ 188.10018921]\n", " [ 178.32392883]\n", " [ 198.79284668]\n", " [ 142.91368103]]\n", "================================================================================\n", "2800 Cost : 11.8123 \n", "Prediction:\n", " [[ 145.82992554]\n", " [ 188.09303284]\n", " [ 178.32728577]\n", " [ 198.79420471]\n", " [ 142.90519714]]\n", "================================================================================\n", "2810 Cost : 11.7738 \n", "Prediction:\n", " [[ 145.84046936]\n", " [ 188.0859375 ]\n", " [ 178.33068848]\n", " [ 198.79560852]\n", " [ 142.89675903]]\n", "================================================================================\n", "2820 Cost : 11.7354 \n", "Prediction:\n", " [[ 145.85096741]\n", " [ 188.07881165]\n", " [ 178.33401489]\n", " [ 198.79693604]\n", " [ 142.88833618]]\n", "================================================================================\n", "2830 Cost : 11.6973 \n", "Prediction:\n", " [[ 145.86146545]\n", " [ 188.07174683]\n", " [ 178.33737183]\n", " [ 198.79832458]\n", " [ 142.87995911]]\n", "================================================================================\n", "2840 Cost : 11.6594 \n", "Prediction:\n", " [[ 145.87191772]\n", " [ 188.06469727]\n", " [ 178.3407135 ]\n", " [ 198.79968262]\n", " [ 142.87156677]]\n", "================================================================================\n", "2850 Cost : 11.6216 \n", "Prediction:\n", " [[ 145.88232422]\n", " [ 188.05763245]\n", " [ 178.34402466]\n", " [ 198.80101013]\n", " [ 142.86320496]]\n", "================================================================================\n", "2860 Cost : 11.584 \n", "Prediction:\n", " [[ 145.89274597]\n", " [ 188.0506134 ]\n", " [ 178.34736633]\n", " [ 198.80236816]\n", " [ 142.85491943]]\n", "================================================================================\n", "2870 Cost : 11.5467 \n", "Prediction:\n", " [[ 145.90312195]\n", " [ 188.04362488]\n", " [ 178.35069275]\n", " [ 198.8037262 ]\n", " [ 142.84661865]]\n", "================================================================================\n", "2880 Cost : 11.5094 \n", "Prediction:\n", " [[ 145.91345215]\n", " [ 188.03659058]\n", " [ 178.35395813]\n", " [ 198.80500793]\n", " [ 142.83830261]]\n", "================================================================================\n", "2890 Cost : 11.4725 \n", "Prediction:\n", " [[ 145.92379761]\n", " [ 188.02967834]\n", " [ 178.3572998 ]\n", " [ 198.80638123]\n", " [ 142.83009338]]\n", "================================================================================\n", "2900 Cost : 11.4357 \n", "Prediction:\n", " [[ 145.93408203]\n", " [ 188.02270508]\n", " [ 178.36056519]\n", " [ 198.80767822]\n", " [ 142.82185364]]\n", "================================================================================\n", "2910 Cost : 11.399 \n", "Prediction:\n", " [[ 145.9443512 ]\n", " [ 188.01577759]\n", " [ 178.36387634]\n", " [ 198.80900574]\n", " [ 142.81364441]]\n", "================================================================================\n", "2920 Cost : 11.3626 \n", "Prediction:\n", " [[ 145.9546051 ]\n", " [ 188.00888062]\n", " [ 178.36714172]\n", " [ 198.81033325]\n", " [ 142.80548096]]\n", "================================================================================\n", "2930 Cost : 11.3264 \n", "Prediction:\n", " [[ 145.96478271]\n", " [ 188.00195312]\n", " [ 178.37039185]\n", " [ 198.81161499]\n", " [ 142.79730225]]\n", "================================================================================\n", "2940 Cost : 11.2903 \n", "Prediction:\n", " [[ 145.9750061 ]\n", " [ 187.99508667]\n", " [ 178.37367249]\n", " [ 198.81292725]\n", " [ 142.78918457]]\n", "================================================================================\n", "2950 Cost : 11.2544 \n", "Prediction:\n", " [[ 145.98516846]\n", " [ 187.98823547]\n", " [ 178.37692261]\n", " [ 198.81422424]\n", " [ 142.78108215]]\n", "================================================================================\n", "2960 Cost : 11.2187 \n", "Prediction:\n", " [[ 145.99528503]\n", " [ 187.98138428]\n", " [ 178.38014221]\n", " [ 198.81549072]\n", " [ 142.772995 ]]\n", "================================================================================\n", "2970 Cost : 11.1832 \n", "Prediction:\n", " [[ 146.00540161]\n", " [ 187.97457886]\n", " [ 178.38340759]\n", " [ 198.81680298]\n", " [ 142.76493835]]\n", "================================================================================\n", "2980 Cost : 11.1479 \n", "Prediction:\n", " [[ 146.01547241]\n", " [ 187.96775818]\n", " [ 178.38661194]\n", " [ 198.8180542 ]\n", " [ 142.75689697]]\n", "================================================================================\n", "2990 Cost : 11.1127 \n", "Prediction:\n", " [[ 146.0255127 ]\n", " [ 187.96095276]\n", " [ 178.38980103]\n", " [ 198.81930542]\n", " [ 142.74885559]]\n", "================================================================================\n", "3000 Cost : 11.0777 \n", "Prediction:\n", " [[ 146.03559875]\n", " [ 187.95422363]\n", " [ 178.39305115]\n", " [ 198.82061768]\n", " [ 142.74090576]]\n", "================================================================================\n" ] } ], "source": [ "for step in range(3001):\n", " cost_val, hy_val, _ = sess.run([cost, hypothesis, train], feed_dict = {X: x_data, Y: y_data})\n", " if step % 10 == 0:\n", " print(step,\" Cost : \", cost_val, \"\\nPrediction:\\n\", hy_val)\n", " print(\"=\"*80)" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "collapsed": true }, "outputs": [], "source": [] } ], "metadata": { "anaconda-cloud": {}, "kernelspec": { "display_name": "Python [Root]", "language": "python", "name": "Python [Root]" }, "language_info": { "codemirror_mode": { "name": "ipython", "version": 3 }, "file_extension": ".py", "mimetype": "text/x-python", "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", "version": "3.5.2" } }, "nbformat": 4, "nbformat_minor": 0 }
mit
zipeiyang/liupengyuan.github.io
chapter2/homework/computer/4-5/201611680969.task5.ipynb
27
5560
{ "cells": [ { "cell_type": "code", "execution_count": 3, "metadata": { "collapsed": false }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "请输入一个整数,以回车结束0\n", "请输入一个整数,以回车结束100\n", "请输入一个整数,以回车结束3\n", "12\n", "70\n", "55\n", "11.704699910719626\n" ] } ], "source": [ "import random,math\n", "m=int(input('请输入一个整数,以回车结束'))\n", "k=int(input('请输入一个整数,以回车结束'))\n", "n=int(input('请输入一个整数,以回车结束'))\n", "i=0\n", "total=0\n", "while i<n:\n", " i=i+1\n", " number = random.randint(m,k)\n", " print(number)\n", " total=total+number\n", "print(math.sqrt(total))\n" ] }, { "cell_type": "code", "execution_count": 14, "metadata": { "collapsed": false }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "请输入一个整数,以回车结束0\n", "请输入一个整数,以回车结束100\n", "请输入一个整数,以回车结束3\n", "99\n", "24\n", "56\n", "17.021674042858372\n", "0.5411439264025237\n" ] } ], "source": [ "import random,math\n", "m=int(input('请输入一个整数,以回车结束'))\n", "k=int(input('请输入一个整数,以回车结束'))\n", "n=int(input('请输入一个整数,以回车结束'))\n", "i=0\n", "total=0\n", "sum=0\n", "while i<n:\n", " i=i+1\n", " num = random.randint(m,k)\n", " print(num)\n", " x=(math.log2(num))\n", " total=total+x\n", " sum=sum+1/x\n", "print(total)\n", "print(sum)" ] }, { "cell_type": "code", "execution_count": 18, "metadata": { "collapsed": false }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "请输入一个整数,以回车结束3\n", "5\n", "615\n" ] } ], "source": [ "import random\n", "n=int(input('请输入一个整数,以回车结束'))\n", "a=random.randint(1,9)\n", "print(a)\n", "i=0\n", "total=0\n", "while i<n+2:\n", " s=a*n\n", " i=i+1\n", " a=a*10\n", " n=n-1\n", " total=total+s\n", "print(total) " ] }, { "cell_type": "code", "execution_count": 29, "metadata": { "collapsed": false }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "请输入一个整数,以回车结束29\n", "请输入一个整数,以回车结束1000\n", "请输入要猜整数,以回车结束479\n", "376\n", "一共可以猜 9 次\n", "你已经猜了 1 次\n", "你猜小了\n", "692\n", "一共可以猜 9 次\n", "你已经猜了 2 次\n", "你猜大了\n", "426\n", "一共可以猜 9 次\n", "你已经猜了 3 次\n", "你猜小了\n", "688\n", "一共可以猜 9 次\n", "你已经猜了 4 次\n", "你猜大了\n", "524\n", "一共可以猜 9 次\n", "你已经猜了 5 次\n", "你猜大了\n", "522\n", "一共可以猜 9 次\n", "你已经猜了 6 次\n", "你猜大了\n", "441\n", "一共可以猜 9 次\n", "你已经猜了 7 次\n", "你猜小了\n", "462\n", "一共可以猜 9 次\n", "你已经猜了 8 次\n", "你猜小了\n", "494\n", "一共可以猜 9 次\n", "你已经猜了 9 次\n", "你猜大了\n", "487\n", "一共可以猜 9 次\n", "你已经猜了 10 次\n", "你猜大了\n", "484\n", "You Lose!\n" ] } ], "source": [ "import random,math\n", "m=int(input('请输入一个整数,以回车结束'))\n", "k=int(input('请输入一个整数,以回车结束'))\n", "n=int(input('请输入要猜整数,以回车结束'))\n", "max_times = math.ceil(math.log(n, 2))\n", "guess=random.randint(m,k)\n", "print(guess)\n", "guess_times=0\n", "while guess_times<=max_times:\n", " guess_times+=1\n", " print('一共可以猜', max_times, '次')\n", " print('你已经猜了', guess_times, '次')\n", " if(guess==n):\n", " print('You Win!')\n", " elif(guess>n):\n", " print('你猜大了')\n", " k=guess\n", " guess=random.randint(m,k)\n", " else:\n", " print('你猜小了')\n", " m=guess\n", " guess=random.randint(m,k)\n", " print(guess)\n", "if(guess_times>max_times):\n", " print('You Lose!')\n", "\n", " \n", " \n", "\n" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "collapsed": true }, "outputs": [], "source": [] } ], "metadata": { "kernelspec": { "display_name": "Python 3", "language": "python", "name": "python3" }, "language_info": { "codemirror_mode": { "name": "ipython", "version": 3 }, "file_extension": ".py", "mimetype": "text/x-python", "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", "version": "3.6.0" } }, "nbformat": 4, "nbformat_minor": 2 }
mit
jakobkolb/MayaSim
Evaluation_Notebooks/X2_agriculture_vs_ecosystem.ipynb
1
1344360
null
gpl-3.0
scikit-multilearn/scikit-multilearn
docs/source/multilabelembeddings.ipynb
1
8931
{ "cells": [ { "cell_type": "markdown", "metadata": {}, "source": [ "# Multi-label embedding-based classification " ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "Multi-label embedding techniques emerged as a response the need to cope with a large label space, but with the rise of computing power they became a method of improving classification quality. Typically the embedding-based multi-label classification starts with embedding the label matrix of the training set in some way, training a regressor for unseen samples to predict their embeddings, and a classifier (sometimes very simple ones) to correct the regression error. Scikit-multilearn provides several multi-label embedders alongisde a general regressor-classifier classification class. \n", "\n", "Currently available embedding strategies include: \n", "\n", "- Label Network Embeddings via OpenNE network embedding library, as in the [LNEMLC paper](https://arxiv.org/abs/1812.02956)\n", "- Cost-Sensitive Label Embedding with Multidimensional Scaling, as in the [CLEMS paper](https://github.com/ej0cl6/csmlc)\n", "- scikit-learn based embeddings such as PCA or [manifold learning approaches](https://scikit-learn.org/stable/modules/manifold.html)\n", "\n", "Let's start with loading some data:" ] }, { "cell_type": "code", "execution_count": 6, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "emotions:train - exists, not redownloading\n", "emotions:test - exists, not redownloading\n" ] } ], "source": [ "import numpy\n", "import sklearn.metrics as metrics\n", "from skmultilearn.dataset import load_dataset\n", "\n", "X_train, y_train, feature_names, label_names = load_dataset('emotions', 'train')\n", "X_test, y_test, _, _ = load_dataset('emotions', 'test')" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Label Network Embeddings\n", "\n", "The label network embeddings approaches require a working tensorflow installation and the OpenNE library. To install them, run the following code:\n", "\n", "```bash\n", "pip install networkx tensorflow\n", "git clone https://github.com/thunlp/OpenNE/\n", "pip install -e OpenNE/src\n", "```" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "![ ](_static/lnemlc.png)\n", "\n", "For an example we will use the LINE embedding method, one of the most efficient and well-performing state of the art approaches, for the meaning of parameters consult the [OpenNE documentation](). We select `order = 3` which means that the method will take both first and second order proximities between labels for embedding. We select a dimension of 5 times the number of labels, as the linear embeddings tend to need more dimensions for best performance, normalize the label weights to maintain normalized distances in the network and agregate label embedings per sample by summation which is a classical approach." ] }, { "cell_type": "code", "execution_count": 7, "metadata": {}, "outputs": [], "source": [ "from skmultilearn.embedding import OpenNetworkEmbedder \n", "from skmultilearn.cluster import LabelCooccurrenceGraphBuilder" ] }, { "cell_type": "code", "execution_count": 8, "metadata": {}, "outputs": [], "source": [ "graph_builder = LabelCooccurrenceGraphBuilder(weighted=True, include_self_edges=False)\n", "openne_line_params = dict(batch_size=1000, order=3)\n", "embedder = OpenNetworkEmbedder(\n", " graph_builder, \n", " 'LINE', \n", " dimension = 5*y_train.shape[1], \n", " aggregation_function = 'add', \n", " normalize_weights=True, \n", " param_dict = openne_line_params\n", ")" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "We now need to select a regressor and a classifier, we use random forest regressors with MLkNN which is a well working combination often used for multi-label embedding:" ] }, { "cell_type": "code", "execution_count": 9, "metadata": {}, "outputs": [], "source": [ "from skmultilearn.embedding import EmbeddingClassifier\n", "from sklearn.ensemble import RandomForestRegressor\n", "from skmultilearn.adapt import MLkNN" ] }, { "cell_type": "code", "execution_count": 10, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "Pre-procesing for non-uniform negative sampling!\n", "Pre-procesing for non-uniform negative sampling!\n", "epoch:0 sum of loss:4.97153359652\n", "epoch:0 sum of loss:5.11869335175\n", "epoch:1 sum of loss:4.98133981228\n", "epoch:1 sum of loss:4.97720247507\n", "epoch:2 sum of loss:4.81723511219\n", "epoch:2 sum of loss:5.05428689718\n", "epoch:3 sum of loss:5.09079384804\n", "epoch:3 sum of loss:4.72988516092\n", "epoch:4 sum of loss:5.0347994566\n", "epoch:4 sum of loss:4.95063251257\n", "epoch:5 sum of loss:4.68008613586\n", "epoch:5 sum of loss:4.9329983592\n", "epoch:6 sum of loss:4.74205821753\n", "epoch:6 sum of loss:4.68989795446\n", "epoch:7 sum of loss:4.62912601233\n", "epoch:7 sum of loss:4.81548637152\n", "epoch:8 sum of loss:4.40033769608\n", "epoch:8 sum of loss:4.73801320791\n", "epoch:9 sum of loss:4.61178982258\n", "epoch:9 sum of loss:4.91443294287\n" ] } ], "source": [ "clf = EmbeddingClassifier(\n", " embedder,\n", " RandomForestRegressor(n_estimators=10),\n", " MLkNN(k=5)\n", ")\n", "\n", "clf.fit(X_train, y_train)\n", "\n", "predictions = clf.predict(X_test)" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Cost-Sensitive Label Embedding with Multidimensional Scaling\n", "\n", "CLEMS is another well-perfoming method in multi-label embeddings. It uses weighted multi-dimensional scaling to embedd a cost-matrix of unique label combinations. The cost-matrix contains the cost of mistaking a given label combination for another, thus real-valued functions are better ideas than discrete ones. Also, the `is_score` parameter is used to tell the embedder if the cost function is a score (the higher the better) or a loss (the lower the better). Additional params can be also assigned to the weighted scaler. The most efficient parameter for the number of dimensions is equal to number of labels, and is thus enforced here." ] }, { "cell_type": "code", "execution_count": 14, "metadata": {}, "outputs": [], "source": [ "from skmultilearn.embedding import CLEMS, EmbeddingClassifier\n", "from sklearn.ensemble import RandomForestRegressor\n", "from skmultilearn.adapt import MLkNN\n", "\n", "dimensional_scaler_params = {'n_jobs': -1}\n", "\n", "clf = EmbeddingClassifier(\n", " CLEMS(metrics.jaccard_similarity_score, is_score=True, params=dimensional_scaler_params),\n", " RandomForestRegressor(n_estimators=10, n_jobs=-1),\n", " MLkNN(k=1),\n", " regressor_per_dimension= True\n", ")\n", "\n", "clf.fit(X_train, y_train)\n", "\n", "predictions = clf.predict(X_test)" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Scikit-learn based embedders\n", "\n", "Any scikit-learn embedder can be used for multi-label classification embeddings with scikit-multilearn, just select one and try, here's a spectral embedding approach with 10 dimensions of the embedding space:" ] }, { "cell_type": "code", "execution_count": 15, "metadata": {}, "outputs": [], "source": [ "from skmultilearn.embedding import SKLearnEmbedder, EmbeddingClassifier\n", "from sklearn.manifold import SpectralEmbedding\n", "from sklearn.ensemble import RandomForestRegressor\n", "from skmultilearn.adapt import MLkNN\n", "\n", "clf = EmbeddingClassifier(\n", " SKLearnEmbedder(SpectralEmbedding(n_components = 10)),\n", " RandomForestRegressor(n_estimators=10),\n", " MLkNN(k=5)\n", ")\n", "\n", "clf.fit(X_train, y_train)\n", "\n", "predictions = clf.predict(X_test)" ] } ], "metadata": { "kernelspec": { "display_name": "Python 3", "language": "python", "name": "python3" }, "language_info": { "codemirror_mode": { "name": "ipython", "version": 3 }, "file_extension": ".py", "mimetype": "text/x-python", "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", "version": "3.6.6" } }, "nbformat": 4, "nbformat_minor": 2 }
bsd-2-clause
rsignell-usgs/notebook
CSW/CSW_ISO_Queryables-IOOS.ipynb
2
18947
{ "cells": [ { "cell_type": "markdown", "metadata": {}, "source": [ "#CSW access with OWSLib using ISO queryables \n", "\n", "Demonstration of how to use the OGC Catalog Services for the Web (CSW) to search for find all datasets containing a specified variable that fall withing a specified date range and geospatial bounding box, and then use the data access service contained in the returned metadata to retrieve and visualize the data. <P> Here we are accessing a Geoportal Server CSW, but in the future we should be able to point it toward any another CSW service, such as the one provided by catalog.data.gov." ] }, { "cell_type": "code", "execution_count": 28, "metadata": { "collapsed": false }, "outputs": [], "source": [ "from pylab import *\n", "from owslib.csw import CatalogueServiceWeb\n", "from owslib.sos import SensorObservationService\n", "from owslib import fes\n", "import netCDF4\n", "import pandas as pd\n", "import datetime as dt\n", "from IPython.core.display import HTML" ] }, { "cell_type": "code", "execution_count": 29, "metadata": { "collapsed": false }, "outputs": [ { "data": { "text/html": [ "<iframe src=http://www.nodc.noaa.gov/geoportal/ width=950 height=400></iframe>" ], "text/plain": [ "<IPython.core.display.HTML at 0x3baf610>" ] }, "execution_count": 29, "metadata": {}, "output_type": "execute_result" } ], "source": [ "HTML('<iframe src=http://www.nodc.noaa.gov/geoportal/ width=950 height=400></iframe>')" ] }, { "cell_type": "code", "execution_count": 3, "metadata": { "collapsed": false }, "outputs": [ { "data": { "text/plain": [ "'2.0.2'" ] }, "execution_count": 3, "metadata": {}, "output_type": "execute_result" } ], "source": [ "# connect to CSW, explore it's properties\n", "\n", "endpoint = 'http://www.ngdc.noaa.gov/geoportal/csw' # NGDC Geoportal\n", "\n", "#endpoint = 'http://www.nodc.noaa.gov/geoportal/csw' # NODC Geoportal: granule level\n", "#endpoint = 'http://data.nodc.noaa.gov/geoportal/csw' # NODC Geoportal: collection level \n", "#endpoint = 'http://geodiscover.cgdi.ca/wes/serviceManagerCSW/csw' # NRCAN CUSTOM\n", "#endpoint = 'http://geoport.whoi.edu/gi-cat/services/cswiso' # USGS Woods Hole GI_CAT\n", "#endpoint = 'http://cida.usgs.gov/gdp/geonetwork/srv/en/csw' # USGS CIDA Geonetwork\n", "#endpoint = 'http://cmgds.marine.usgs.gov/geonetwork/srv/en/csw' # USGS Coastal and Marine Program\n", "#endpoint = 'http://geoport.whoi.edu/geoportal/csw' # USGS Woods Hole Geoportal \n", "#endpoint = 'http://geo.gov.ckan.org/csw' # CKAN testing site for new Data.gov\n", "#endpoint = 'https://edg.epa.gov/metadata/csw' # EPA\n", "#endpoint = 'http://cwic.csiss.gmu.edu/cwicv1/discovery' # CWIC\n", "\n", "csw = CatalogueServiceWeb(endpoint,timeout=60)\n", "csw.version" ] }, { "cell_type": "code", "execution_count": 30, "metadata": { "collapsed": false }, "outputs": [ { "data": { "text/plain": [ "<owslib.fes.FilterCapabilities at 0x3babdd0>" ] }, "execution_count": 30, "metadata": {}, "output_type": "execute_result" } ], "source": [] }, { "cell_type": "markdown", "metadata": {}, "source": [ "On the GeoIDE Wiki they give some example CSW examples to illustrate the range possibilities. Here's one where to search for PACIOOS WMS services:" ] }, { "cell_type": "code", "execution_count": 31, "metadata": { "collapsed": false }, "outputs": [ { "data": { "text/html": [ "<iframe src=https://geo-ide.noaa.gov/wiki/index.php?title=ESRI_Geoportal#PacIOOS_WAF width=950 height=350></iframe>" ], "text/plain": [ "<IPython.core.display.HTML at 0x3baf790>" ] }, "execution_count": 31, "metadata": {}, "output_type": "execute_result" } ], "source": [ "HTML('<iframe src=https://geo-ide.noaa.gov/wiki/index.php?title=ESRI_Geoportal#PacIOOS_WAF width=950 height=350></iframe>')\n" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "Also on the GEO-IDE Wiki we find the list of UUIDs for each region/provider, which we turn into a dictionary here:" ] }, { "cell_type": "code", "execution_count": 33, "metadata": { "collapsed": false }, "outputs": [], "source": [ "regionids = {'AOOS':\t'{1E96581F-6B73-45AD-9F9F-2CC3FED76EE6}',\n", "'CENCOOS':\t'{BE483F24-52E7-4DDE-909F-EE8D4FF118EA}',\n", "'CARICOOS':\t'{0C4CA8A6-5967-4590-BFE0-B8A21CD8BB01}',\n", "'GCOOS':\t'{E77E250D-2D65-463C-B201-535775D222C9}',\n", "'GLOS':\t'{E4A9E4F4-78A4-4BA0-B653-F548D74F68FA}',\n", "'MARACOOS':\t'{A26F8553-798B-4B1C-8755-1031D752F7C2}',\n", "'NANOOS':\t'{C6F4754B-30DC-459E-883A-2AC79DA977AB}',\n", "'NAVY':\t'{FB160233-7C3B-4841-AD4B-EB5AD843E743}',\n", "'NDBC':\t'{B3F50F38-3DE4-4EC9-ABF8-955887829FCC}',\n", "'NERACOOS':\t'{E13C88D9-3FF3-4232-A379-84B6A1D7083E}',\n", "'NOS/CO-OPS':\t'{2F58127E-A139-4A45-83F2-9695FB704306}',\n", "'PacIOOS':\t'{78C0463E-2FCE-4AB2-A9C9-6A34BF261F52}',\n", "'SCCOOS':\t'{20A3408F-9EC4-4B36-8E10-BBCDB1E81BDF}',\n", "'SECOORA':\t'{E796C954-B248-4118-896C-42E6FAA6EDE9}',\n", "'USACE':\t'{4C080A33-F3C3-4F27-AF16-F85BF3095C41}',\n", "'USGS/CMGP': '{275DFB94-E58A-4157-8C31-C72F372E72E}'}" ] }, { "cell_type": "code", "execution_count": 34, "metadata": { "collapsed": false }, "outputs": [ { "data": { "text/plain": [ "['GetCapabilities',\n", " 'DescribeRecord',\n", " 'GetRecords',\n", " 'GetRecordById',\n", " 'Transaction']" ] }, "execution_count": 34, "metadata": {}, "output_type": "execute_result" } ], "source": [ "[op.name for op in csw.operations]" ] }, { "cell_type": "code", "execution_count": 35, "metadata": { "collapsed": false }, "outputs": [], "source": [ "def dateRange(start_date='1900-01-01',stop_date='2100-01-01',constraint='overlaps'):\n", " if constraint == 'overlaps':\n", " start = fes.PropertyIsLessThanOrEqualTo(propertyname='startDate', literal=stop_date)\n", " stop = fes.PropertyIsGreaterThanOrEqualTo(propertyname='endDate', literal=start_date)\n", " elif constraint == 'within':\n", " start = fes.PropertyIsGreaterThanOrEqualTo(propertyname='startDate', literal=start_date)\n", " stop = fes.PropertyIsLessThanOrEqualTo(propertyname='endDate', literal=stop_date)\n", " return start,stop" ] }, { "cell_type": "code", "execution_count": 80, "metadata": { "collapsed": false }, "outputs": [], "source": [ "# get specific ServiceType URL from records\n", "def service_urls(records,service_string='urn:x-esri:specification:ServiceType:odp:url'):\n", " urls=[]\n", " for key,rec in records.iteritems():\n", " #create a generator object, and iterate through it until the match is found\n", " #if not found, gets the default value (here \"none\")\n", " url = next((d['url'] for d in rec.references if d['scheme'] == service_string), None)\n", " if url is not None:\n", " urls.append(url)\n", " return urls" ] }, { "cell_type": "code", "execution_count": 74, "metadata": { "collapsed": false }, "outputs": [], "source": [ "# Perform the CSW query, using Kyle's cool new filters on ISO queryables\n", "# find all datasets in a bounding box and temporal extent that have \n", "# specific keywords and also can be accessed via OPeNDAP \n", "\n", "box=[-89.0, 30.0, -87.0, 31.0]\n", "start_date='2013-08-21'\n", "stop_date='2013-08-30'\n", "std_name = 'temperature'\n", "service_type='SOS'\n", "region_id = regionids['GCOOS']\n", "\n", "# convert User Input into FES filters\n", "start,stop = dateRange(start_date,stop_date,constraint='overlaps')\n", "bbox = fes.BBox(box)\n", "keywords = fes.PropertyIsLike(propertyname='anyText', literal=std_name)\n", "serviceType = fes.PropertyIsLike(propertyname='apiso:ServiceType', literal=('*%s*' % service_type))\n", "siteid = fes.PropertyIsEqualTo(propertyname='sys.siteuuid', literal=region_id)" ] }, { "cell_type": "code", "execution_count": 75, "metadata": { "collapsed": false }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "carocoops:cap2:buoy\n", "Weatherflow, Inc. SOS\n", "Central & Northern California Ocean Observing System -- SOS\n", "carocoops:cap2:buoy\n", "carocoops:cap2:buoy\n", "Louisiana Universities Marine Consortium (LUMCON) SOS\n", "NOAA.NOS.CO-OPS SOS\n", "carocoops:cap2:buoy\n", "NERRS SOS\n", "carocoops:cap2:buoy\n", "carocoops:cap2:buoy\n", "carocoops:cap2:buoy\n", "Central and Northern California Ocean Observing System SOS\n", "Central Gulf of Mexico Ocean Observing System SOS\n", "carocoops:cap2:buoy\n" ] } ], "source": [ "# try simple query with serviceType and keyword first\n", "csw.getrecords2(constraints=[[serviceType,keywords]],maxrecords=15,esn='full')\n", "for rec,item in csw.records.iteritems():\n", " print item.title" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "The filters can be passed as a list to getrecords2, with AND or OR implied by syntax: \n", "<pre>\n", "[a,b,c] --> a || b || c\n", "\n", "[[a,b,c]] --> a && b && c\n", "\n", "[[a,b],[c],[d],[e]] or [[a,b],c,d,e] --> (a && b) || c || d || e\n", "</pre>" ] }, { "cell_type": "code", "execution_count": 76, "metadata": { "collapsed": false }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "carocoops:cap2:buoy\n", "Weatherflow, Inc. SOS\n", "Central & Northern California Ocean Observing System -- SOS\n", "carocoops:cap2:buoy\n", "carocoops:cap2:buoy\n", "Louisiana Universities Marine Consortium (LUMCON) SOS\n", "NOAA.NOS.CO-OPS SOS\n", "carocoops:cap2:buoy\n", "NERRS SOS\n", "carocoops:cap2:buoy\n", "carocoops:cap2:buoy\n", "carocoops:cap2:buoy\n", "Central and Northern California Ocean Observing System SOS\n", "Central Gulf of Mexico Ocean Observing System SOS\n", "carocoops:cap2:buoy\n" ] } ], "source": [ "# try simple query with serviceType and keyword first\n", "csw.getrecords2(constraints=[[serviceType,keywords]],maxrecords=15,esn='full')\n", "for rec,item in csw.records.iteritems():\n", " print item.title" ] }, { "cell_type": "code", "execution_count": 77, "metadata": { "collapsed": false }, "outputs": [ { "data": { "text/plain": [ "[{'scheme': 'urn:x-esri:specification:ServiceType:ArcIMS:Metadata:Onlink',\n", " 'url': 'http://opendap.co-ops.nos.noaa.gov/ioos-dif-sos/SOS?service=SOS&request=GetCapabilities'},\n", " {'scheme': 'urn:x-esri:specification:ServiceType:ArcIMS:Metadata:Document',\n", " 'url': 'http://www.ngdc.noaa.gov/geoportal/csw?getxml=%7BA0CDFAA4-1667-4538-A26C-225E2AAE119A%7D'},\n", " {'scheme': 'urn:x-esri:specification:ServiceType:sos:url',\n", " 'url': 'http://opendap.co-ops.nos.noaa.gov/ioos-dif-sos/SOS?service=SOS&request=GetCapabilities'},\n", " {'scheme': 'urn:x-esri:specification:ServiceType:sos:url',\n", " 'url': 'http://opendap.co-ops.nos.noaa.gov/ioos-dif-sos/SOS?service=SOS&request=GetCapabilities'},\n", " {'scheme': 'urn:x-esri:specification:ServiceType:download:url',\n", " 'url': 'http://opendap.co-ops.nos.noaa.gov/ioos-dif-sos/SOS?service=SOS&request=GetCapabilities'}]" ] }, "execution_count": 77, "metadata": {}, "output_type": "execute_result" } ], "source": [ "# check out references for one of the returned records\n", "csw.records['NOAA.NOS.CO-OPS SOS'].references" ] }, { "cell_type": "code", "execution_count": 79, "metadata": { "collapsed": false }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "Dauphin Island Sea Lab SOS\n", "Louisiana Universities Marine Consortium (LUMCON) SOS\n", "Conrad Blucher Institute for Surveying and Science at Texas A&M University-Corpus Christi SOS\n", "WAVCIS SOS DATA SERVICE\n", "Central Gulf of Mexico Ocean Observing System SOS\n", "University of South Florida COMPS SOS\n" ] } ], "source": [ "# filter for GCOOS SOS data\n", "csw.getrecords2(constraints=[[keywords,serviceType,siteid]],maxrecords=15,esn='full')\n", "for rec,item in csw.records.iteritems():\n", " print item.title" ] }, { "cell_type": "code", "execution_count": 78, "metadata": { "collapsed": false }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "National Data Buoy Center SOS\n", "Weatherflow, Inc. SOS\n", "Central Gulf of Mexico Ocean Observing System SOS\n", "NOAA.NOS.CO-OPS SOS\n", "Dauphin Island Sea Lab SOS\n" ] } ], "source": [ "# filter for SOS data in BBOX\n", "csw.getrecords2(constraints=[[keywords,serviceType,bbox]],maxrecords=15,esn='full')\n", "for rec,item in csw.records.iteritems():\n", " print item.title" ] }, { "cell_type": "code", "execution_count": 89, "metadata": { "collapsed": false }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "http://gcoos.disl.org/cgi-bin/oostethys_sos.cgi?service=SOS&request=GetCapabilities\n", "http://weather.lumcon.edu/sos/oostethys_server.asp?service=SOS&request=GetCapabilities\n", "http://lighthouse.tamucc.edu/sos?service=SOS&request=GetCapabilities\n", "http://www.wavcis.lsu.edu/gcoos/oostethys_server.asp?service=SOS&request=GetCapabilities\n", "http://www.cengoos.org/cgi-bin/oostethys_sos.cgi?service=SOS&request=GetCapabilities\n", "http://comps.marine.usf.edu/cgi-bin/sos/v1.0/oostethys_sos.cgi?service=SOS&request=GetCapabilities\n" ] } ], "source": [ "urls = service_urls(csw.records,service_string='urn:x-esri:specification:ServiceType:sos:url')\n", "print \"\\n\".join(urls)" ] }, { "cell_type": "code", "execution_count": 90, "metadata": { "collapsed": false }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "http://lighthouse.tamucc.edu/sos?service=SOS&request=GetCapabilities\n" ] } ], "source": [ "urls = [url for url in urls if 'oostethys' not in url]\n", "print \"\\n\".join(urls)" ] }, { "cell_type": "code", "execution_count": 100, "metadata": { "collapsed": false }, "outputs": [], "source": [ "sos = SensorObservationService(urls[0])" ] }, { "cell_type": "code", "execution_count": 101, "metadata": { "collapsed": false }, "outputs": [], "source": [ "getob = sos.get_operation_by_name('getobservation')" ] }, { "cell_type": "code", "execution_count": 102, "metadata": { "collapsed": false }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "{'eventTime': {'values': []}, 'observedProperty': {'values': ['air_pressure', 'air_temperature', 'chl_concentration', 'conductivity', 'current_speed', 'depth', 'eastward_current', 'northward_current', 'oxygen_concentration', 'oxygen_saturation', 'photosynthetically_available_radiation', 'relative_humidity', 'salinity', 'sea_surface_elevation', 'signifcant_wave_height', 'signifcant_wave_to_direction', 'significant_wave_period', 'specific_conductance', 'turbidity', 'vertical_current', 'voltage', 'water_pressure', 'water_temperature', 'wind_from_direction', 'wind_gust', 'wind_speed']}, 'offering': {'values': ['001', '002', '003', '004', '005', '006', '007', '008', '009', '010', '011', '012', '013', '017', '023', '024', '025', '026', '028', '029', '030', '031', '032', '033', '034', '035', '036', '037', '038', '039', '041', '042', '043', '046', '047', '048', '049', '050', '051', '054', '057', '058', '059', '060', '061', '064', '065', '068', '069', '072', '074', '075', '076', '077', '078', '079', '080', '082', '083', '084', '085', '086', '087', '088', '089', '090', '094', '095', '096', '098', '100', '106', '108', '109', '110', '111', '113', '114', '115', '116', '117', '118', '119', '121', '122', '123', '124', '125', '126', '127', '128', '129', '130', '131', '132', '133', '134', '135', '136', '137', '138', '139', '140', '141', '146', '147', '148', '149', '150', '151', '153', '168', '170', '171', '181', '185', '198', '200', '201', '202', '205', '206', '207', '208', '209', '210', '211', '212', '213', '214', '215', '216', '217', '218', '219', '220', '248', '255', '501', '502', '503', '504', '505', '506', '507', '508', '509', '513', '514', '515', '517', '518', '519', '520', '521', '522', '523', '524', '525', '526', '527', '528', '529', '532', '533', '920']}}\n" ] } ], "source": [ "print getob.parameters" ] }, { "cell_type": "code", "execution_count": 103, "metadata": { "collapsed": false }, "outputs": [], "source": [ "off = sos.offerings[1]\n", "offerings = [off.name]\n", "responseFormat = off.response_formats[0]\n", "observedProperties = [off.observed_properties[0]]" ] }, { "cell_type": "code", "execution_count": 105, "metadata": { "collapsed": false }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "Offering id: 001, name: 001\n" ] } ], "source": [ "print sos.offerings[0]" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "collapsed": false }, "outputs": [], "source": [] } ], "metadata": { "kernelspec": { "display_name": "Python 2", "language": "python", "name": "python2" }, "language_info": { "codemirror_mode": { "name": "ipython", "version": 2 }, "file_extension": ".py", "mimetype": "text/x-python", "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython2", "version": "2.7.12" } }, "nbformat": 4, "nbformat_minor": 0 }
mit
keflavich/APEX_CMZ_H2CO
reduction/BaselineFlagging_TestonData_HighFreq.ipynb
2
1509263
null
bsd-3-clause
mu4farooqi/deep-learning-projects
language-translation/dlnd_language_translation.ipynb
2
62981
{ "cells": [ { "cell_type": "markdown", "metadata": { "collapsed": true }, "source": [ "# Language Translation\n", "In this project, you’re going to take a peek into the realm of neural network machine translation. You’ll be training a sequence to sequence model on a dataset of English and French sentences that can translate new sentences from English to French.\n", "## Get the Data\n", "Since translating the whole language of English to French will take lots of time to train, we have provided you with a small portion of the English corpus." ] }, { "cell_type": "code", "execution_count": null, "metadata": { "collapsed": true }, "outputs": [], "source": [ "\"\"\"\n", "DON'T MODIFY ANYTHING IN THIS CELL\n", "\"\"\"\n", "import helper\n", "import problem_unittests as tests\n", "\n", "source_path = 'data/small_vocab_en'\n", "target_path = 'data/small_vocab_fr'\n", "source_text = helper.load_data(source_path)\n", "target_text = helper.load_data(target_path)" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Explore the Data\n", "Play around with view_sentence_range to view different parts of the data." ] }, { "cell_type": "code", "execution_count": 2, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "Dataset Stats\n", "Roughly the number of unique words: 227\n", "Number of sentences: 137861\n", "Average number of words in a sentence: 13.225277634719028\n", "\n", "English sentences 0 to 10:\n", "new jersey is sometimes quiet during autumn , and it is snowy in april .\n", "the united states is usually chilly during july , and it is usually freezing in november .\n", "california is usually quiet during march , and it is usually hot in june .\n", "the united states is sometimes mild during june , and it is cold in september .\n", "your least liked fruit is the grape , but my least liked is the apple .\n", "his favorite fruit is the orange , but my favorite is the grape .\n", "paris is relaxing during december , but it is usually chilly in july .\n", "new jersey is busy during spring , and it is never hot in march .\n", "our least liked fruit is the lemon , but my least liked is the grape .\n", "the united states is sometimes busy during january , and it is sometimes warm in november .\n", "\n", "French sentences 0 to 10:\n", "new jersey est parfois calme pendant l' automne , et il est neigeux en avril .\n", "les états-unis est généralement froid en juillet , et il gèle habituellement en novembre .\n", "california est généralement calme en mars , et il est généralement chaud en juin .\n", "les états-unis est parfois légère en juin , et il fait froid en septembre .\n", "votre moins aimé fruit est le raisin , mais mon moins aimé est la pomme .\n", "son fruit préféré est l'orange , mais mon préféré est le raisin .\n", "paris est relaxant en décembre , mais il est généralement froid en juillet .\n", "new jersey est occupé au printemps , et il est jamais chaude en mars .\n", "notre fruit est moins aimé le citron , mais mon moins aimé est le raisin .\n", "les états-unis est parfois occupé en janvier , et il est parfois chaud en novembre .\n" ] } ], "source": [ "view_sentence_range = (0, 10)\n", "\n", "\"\"\"\n", "DON'T MODIFY ANYTHING IN THIS CELL\n", "\"\"\"\n", "import numpy as np\n", "\n", "print('Dataset Stats')\n", "print('Roughly the number of unique words: {}'.format(len({word: None for word in source_text.split()})))\n", "\n", "sentences = source_text.split('\\n')\n", "word_counts = [len(sentence.split()) for sentence in sentences]\n", "print('Number of sentences: {}'.format(len(sentences)))\n", "print('Average number of words in a sentence: {}'.format(np.average(word_counts)))\n", "\n", "print()\n", "print('English sentences {} to {}:'.format(*view_sentence_range))\n", "print('\\n'.join(source_text.split('\\n')[view_sentence_range[0]:view_sentence_range[1]]))\n", "print()\n", "print('French sentences {} to {}:'.format(*view_sentence_range))\n", "print('\\n'.join(target_text.split('\\n')[view_sentence_range[0]:view_sentence_range[1]]))" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Implement Preprocessing Function\n", "### Text to Word Ids\n", "As you did with other RNNs, you must turn the text into a number so the computer can understand it. In the function `text_to_ids()`, you'll turn `source_text` and `target_text` from words to ids. However, you need to add the `<EOS>` word id at the end of `target_text`. This will help the neural network predict when the sentence should end.\n", "\n", "You can get the `<EOS>` word id by doing:\n", "```python\n", "target_vocab_to_int['<EOS>']\n", "```\n", "You can get other word ids using `source_vocab_to_int` and `target_vocab_to_int`." ] }, { "cell_type": "code", "execution_count": 6, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "Tests Passed\n" ] } ], "source": [ "def text_to_ids(source_text, target_text, source_vocab_to_int, target_vocab_to_int):\n", " \"\"\"\n", " Convert source and target text to proper word ids\n", " :param source_text: String that contains all the source text.\n", " :param target_text: String that contains all the target text.\n", " :param source_vocab_to_int: Dictionary to go from the source words to an id\n", " :param target_vocab_to_int: Dictionary to go from the target words to an id\n", " :return: A tuple of lists (source_id_text, target_id_text)\n", " \"\"\"\n", " source_id_text = [[source_vocab_to_int[word] for word in line.split()] for line in source_text.split('\\n')]\n", " target_id_text = [[target_vocab_to_int[word] for word in line.split()] + [target_vocab_to_int['<EOS>']] for line in target_text.split('\\n')]\n", " return source_id_text, target_id_text\n", "\n", "\"\"\"\n", "DON'T MODIFY ANYTHING IN THIS CELL THAT IS BELOW THIS LINE\n", "\"\"\"\n", "tests.test_text_to_ids(text_to_ids)" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "### Preprocess all the data and save it\n", "Running the code cell below will preprocess all the data and save it to file." ] }, { "cell_type": "code", "execution_count": 7, "metadata": { "collapsed": true }, "outputs": [], "source": [ "\"\"\"\n", "DON'T MODIFY ANYTHING IN THIS CELL\n", "\"\"\"\n", "helper.preprocess_and_save_data(source_path, target_path, text_to_ids)" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "# Check Point\n", "This is your first checkpoint. If you ever decide to come back to this notebook or have to restart the notebook, you can start from here. The preprocessed data has been saved to disk." ] }, { "cell_type": "code", "execution_count": 3, "metadata": { "collapsed": true }, "outputs": [], "source": [ "\"\"\"\n", "DON'T MODIFY ANYTHING IN THIS CELL\n", "\"\"\"\n", "import numpy as np\n", "import helper\n", "import problem_unittests as tests\n", "\n", "(source_int_text, target_int_text), (source_vocab_to_int, target_vocab_to_int), _ = helper.load_preprocess()" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "### Check the Version of TensorFlow and Access to GPU\n", "This will check to make sure you have the correct version of TensorFlow and access to a GPU" ] }, { "cell_type": "code", "execution_count": 4, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "TensorFlow Version: 1.3.0\n", "Default GPU Device: /gpu:0\n" ] } ], "source": [ "\"\"\"\n", "DON'T MODIFY ANYTHING IN THIS CELL\n", "\"\"\"\n", "from distutils.version import LooseVersion\n", "import warnings\n", "import tensorflow as tf\n", "from tensorflow.python.layers.core import Dense\n", "\n", "# Check TensorFlow Version\n", "assert LooseVersion(tf.__version__) >= LooseVersion('1.1'), 'Please use TensorFlow version 1.1 or newer'\n", "print('TensorFlow Version: {}'.format(tf.__version__))\n", "\n", "# Check for a GPU\n", "if not tf.test.gpu_device_name():\n", " warnings.warn('No GPU found. Please use a GPU to train your neural network.')\n", "else:\n", " print('Default GPU Device: {}'.format(tf.test.gpu_device_name()))" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Build the Neural Network\n", "You'll build the components necessary to build a Sequence-to-Sequence model by implementing the following functions below:\n", "- `model_inputs`\n", "- `process_decoder_input`\n", "- `encoding_layer`\n", "- `decoding_layer_train`\n", "- `decoding_layer_infer`\n", "- `decoding_layer`\n", "- `seq2seq_model`\n", "\n", "### Input\n", "Implement the `model_inputs()` function to create TF Placeholders for the Neural Network. It should create the following placeholders:\n", "\n", "- Input text placeholder named \"input\" using the TF Placeholder name parameter with rank 2.\n", "- Targets placeholder with rank 2.\n", "- Learning rate placeholder with rank 0.\n", "- Keep probability placeholder named \"keep_prob\" using the TF Placeholder name parameter with rank 0.\n", "- Target sequence length placeholder named \"target_sequence_length\" with rank 1\n", "- Max target sequence length tensor named \"max_target_len\" getting its value from applying tf.reduce_max on the target_sequence_length placeholder. Rank 0.\n", "- Source sequence length placeholder named \"source_sequence_length\" with rank 1\n", "\n", "Return the placeholders in the following the tuple (input, targets, learning rate, keep probability, target sequence length, max target sequence length, source sequence length)" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "### Process Decoder Input\n", "Implement `process_decoder_input` by removing the last word id from each batch in `target_data` and concat the GO ID to the begining of each batch." ] }, { "cell_type": "code", "execution_count": 5, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "ERROR:tensorflow:==================================\n", "Object was never used (type <class 'tensorflow.python.framework.ops.Operation'>):\n", "<tf.Operation 'assert_rank_2/Assert/Assert' type=Assert>\n", "If you want to mark it as used call its \"mark_used()\" method.\n", "It was originally created here:\n", "['File \"/home/ufarooqi/anaconda3/lib/python3.6/runpy.py\", line 193, in _run_module_as_main\\n \"__main__\", mod_spec)', 'File \"/home/ufarooqi/anaconda3/lib/python3.6/runpy.py\", line 85, in _run_code\\n exec(code, run_globals)', 'File \"/home/ufarooqi/anaconda3/lib/python3.6/site-packages/ipykernel/__main__.py\", line 3, in <module>\\n app.launch_new_instance()', 'File \"/home/ufarooqi/anaconda3/lib/python3.6/site-packages/traitlets/config/application.py\", line 658, in launch_instance\\n app.start()', 'File \"/home/ufarooqi/anaconda3/lib/python3.6/site-packages/ipykernel/kernelapp.py\", line 477, in start\\n ioloop.IOLoop.instance().start()', 'File \"/home/ufarooqi/anaconda3/lib/python3.6/site-packages/zmq/eventloop/ioloop.py\", line 177, in start\\n super(ZMQIOLoop, self).start()', 'File \"/home/ufarooqi/anaconda3/lib/python3.6/site-packages/tornado/ioloop.py\", line 888, in start\\n handler_func(fd_obj, events)', 'File \"/home/ufarooqi/anaconda3/lib/python3.6/site-packages/tornado/stack_context.py\", line 277, in null_wrapper\\n return fn(*args, **kwargs)', 'File \"/home/ufarooqi/anaconda3/lib/python3.6/site-packages/zmq/eventloop/zmqstream.py\", line 440, in _handle_events\\n self._handle_recv()', 'File \"/home/ufarooqi/anaconda3/lib/python3.6/site-packages/zmq/eventloop/zmqstream.py\", line 472, in _handle_recv\\n self._run_callback(callback, msg)', 'File \"/home/ufarooqi/anaconda3/lib/python3.6/site-packages/zmq/eventloop/zmqstream.py\", line 414, in _run_callback\\n callback(*args, **kwargs)', 'File \"/home/ufarooqi/anaconda3/lib/python3.6/site-packages/tornado/stack_context.py\", line 277, in null_wrapper\\n return fn(*args, **kwargs)', 'File \"/home/ufarooqi/anaconda3/lib/python3.6/site-packages/ipykernel/kernelbase.py\", line 283, in dispatcher\\n return self.dispatch_shell(stream, msg)', 'File \"/home/ufarooqi/anaconda3/lib/python3.6/site-packages/ipykernel/kernelbase.py\", line 235, in dispatch_shell\\n handler(stream, idents, msg)', 'File \"/home/ufarooqi/anaconda3/lib/python3.6/site-packages/ipykernel/kernelbase.py\", line 399, in execute_request\\n user_expressions, allow_stdin)', 'File \"/home/ufarooqi/anaconda3/lib/python3.6/site-packages/ipykernel/ipkernel.py\", line 196, in do_execute\\n res = shell.run_cell(code, store_history=store_history, silent=silent)', 'File \"/home/ufarooqi/anaconda3/lib/python3.6/site-packages/ipykernel/zmqshell.py\", line 533, in run_cell\\n return super(ZMQInteractiveShell, self).run_cell(*args, **kwargs)', 'File \"/home/ufarooqi/anaconda3/lib/python3.6/site-packages/IPython/core/interactiveshell.py\", line 2698, in run_cell\\n interactivity=interactivity, compiler=compiler, result=result)', 'File \"/home/ufarooqi/anaconda3/lib/python3.6/site-packages/IPython/core/interactiveshell.py\", line 2808, in run_ast_nodes\\n if self.run_code(code, result):', 'File \"/home/ufarooqi/anaconda3/lib/python3.6/site-packages/IPython/core/interactiveshell.py\", line 2862, in run_code\\n exec(code_obj, self.user_global_ns, self.user_ns)', 'File \"<ipython-input-5-4de6f2622d71>\", line 22, in <module>\\n tests.test_model_inputs(model_inputs)', 'File \"/home/ufarooqi/workspace/deep-learning/language-translation/problem_unittests.py\", line 106, in test_model_inputs\\n assert tf.assert_rank(lr, 0, message=\\'Learning Rate has wrong rank\\')', 'File \"/home/ufarooqi/anaconda3/lib/python3.6/site-packages/tensorflow/python/ops/check_ops.py\", line 617, in assert_rank\\n dynamic_condition, data, summarize)', 'File \"/home/ufarooqi/anaconda3/lib/python3.6/site-packages/tensorflow/python/ops/check_ops.py\", line 571, in _assert_rank_condition\\n return control_flow_ops.Assert(condition, data, summarize=summarize)', 'File \"/home/ufarooqi/anaconda3/lib/python3.6/site-packages/tensorflow/python/util/tf_should_use.py\", line 175, in wrapped\\n return _add_should_use_warning(fn(*args, **kwargs))', 'File \"/home/ufarooqi/anaconda3/lib/python3.6/site-packages/tensorflow/python/util/tf_should_use.py\", line 144, in _add_should_use_warning\\n wrapped = TFShouldUseWarningWrapper(x)', 'File \"/home/ufarooqi/anaconda3/lib/python3.6/site-packages/tensorflow/python/util/tf_should_use.py\", line 101, in __init__\\n stack = [s.strip() for s in traceback.format_stack()]']\n", "==================================\n", "ERROR:tensorflow:==================================\n", "Object was never used (type <class 'tensorflow.python.framework.ops.Operation'>):\n", "<tf.Operation 'assert_rank_3/Assert/Assert' type=Assert>\n", "If you want to mark it as used call its \"mark_used()\" method.\n", "It was originally created here:\n", "['File \"/home/ufarooqi/anaconda3/lib/python3.6/runpy.py\", line 193, in _run_module_as_main\\n \"__main__\", mod_spec)', 'File \"/home/ufarooqi/anaconda3/lib/python3.6/runpy.py\", line 85, in _run_code\\n exec(code, run_globals)', 'File \"/home/ufarooqi/anaconda3/lib/python3.6/site-packages/ipykernel/__main__.py\", line 3, in <module>\\n app.launch_new_instance()', 'File \"/home/ufarooqi/anaconda3/lib/python3.6/site-packages/traitlets/config/application.py\", line 658, in launch_instance\\n app.start()', 'File \"/home/ufarooqi/anaconda3/lib/python3.6/site-packages/ipykernel/kernelapp.py\", line 477, in start\\n ioloop.IOLoop.instance().start()', 'File \"/home/ufarooqi/anaconda3/lib/python3.6/site-packages/zmq/eventloop/ioloop.py\", line 177, in start\\n super(ZMQIOLoop, self).start()', 'File \"/home/ufarooqi/anaconda3/lib/python3.6/site-packages/tornado/ioloop.py\", line 888, in start\\n handler_func(fd_obj, events)', 'File \"/home/ufarooqi/anaconda3/lib/python3.6/site-packages/tornado/stack_context.py\", line 277, in null_wrapper\\n return fn(*args, **kwargs)', 'File \"/home/ufarooqi/anaconda3/lib/python3.6/site-packages/zmq/eventloop/zmqstream.py\", line 440, in _handle_events\\n self._handle_recv()', 'File \"/home/ufarooqi/anaconda3/lib/python3.6/site-packages/zmq/eventloop/zmqstream.py\", line 472, in _handle_recv\\n self._run_callback(callback, msg)', 'File \"/home/ufarooqi/anaconda3/lib/python3.6/site-packages/zmq/eventloop/zmqstream.py\", line 414, in _run_callback\\n callback(*args, **kwargs)', 'File \"/home/ufarooqi/anaconda3/lib/python3.6/site-packages/tornado/stack_context.py\", line 277, in null_wrapper\\n return fn(*args, **kwargs)', 'File \"/home/ufarooqi/anaconda3/lib/python3.6/site-packages/ipykernel/kernelbase.py\", line 283, in dispatcher\\n return self.dispatch_shell(stream, msg)', 'File \"/home/ufarooqi/anaconda3/lib/python3.6/site-packages/ipykernel/kernelbase.py\", line 235, in dispatch_shell\\n handler(stream, idents, msg)', 'File \"/home/ufarooqi/anaconda3/lib/python3.6/site-packages/ipykernel/kernelbase.py\", line 399, in execute_request\\n user_expressions, allow_stdin)', 'File \"/home/ufarooqi/anaconda3/lib/python3.6/site-packages/ipykernel/ipkernel.py\", line 196, in do_execute\\n res = shell.run_cell(code, store_history=store_history, silent=silent)', 'File \"/home/ufarooqi/anaconda3/lib/python3.6/site-packages/ipykernel/zmqshell.py\", line 533, in run_cell\\n return super(ZMQInteractiveShell, self).run_cell(*args, **kwargs)', 'File \"/home/ufarooqi/anaconda3/lib/python3.6/site-packages/IPython/core/interactiveshell.py\", line 2698, in run_cell\\n interactivity=interactivity, compiler=compiler, result=result)', 'File \"/home/ufarooqi/anaconda3/lib/python3.6/site-packages/IPython/core/interactiveshell.py\", line 2808, in run_ast_nodes\\n if self.run_code(code, result):', 'File \"/home/ufarooqi/anaconda3/lib/python3.6/site-packages/IPython/core/interactiveshell.py\", line 2862, in run_code\\n exec(code_obj, self.user_global_ns, self.user_ns)', 'File \"<ipython-input-5-4de6f2622d71>\", line 22, in <module>\\n tests.test_model_inputs(model_inputs)', 'File \"/home/ufarooqi/workspace/deep-learning/language-translation/problem_unittests.py\", line 107, in test_model_inputs\\n assert tf.assert_rank(keep_prob, 0, message=\\'Keep Probability has wrong rank\\')', 'File \"/home/ufarooqi/anaconda3/lib/python3.6/site-packages/tensorflow/python/ops/check_ops.py\", line 617, in assert_rank\\n dynamic_condition, data, summarize)', 'File \"/home/ufarooqi/anaconda3/lib/python3.6/site-packages/tensorflow/python/ops/check_ops.py\", line 571, in _assert_rank_condition\\n return control_flow_ops.Assert(condition, data, summarize=summarize)', 'File \"/home/ufarooqi/anaconda3/lib/python3.6/site-packages/tensorflow/python/util/tf_should_use.py\", line 175, in wrapped\\n return _add_should_use_warning(fn(*args, **kwargs))', 'File \"/home/ufarooqi/anaconda3/lib/python3.6/site-packages/tensorflow/python/util/tf_should_use.py\", line 144, in _add_should_use_warning\\n wrapped = TFShouldUseWarningWrapper(x)', 'File \"/home/ufarooqi/anaconda3/lib/python3.6/site-packages/tensorflow/python/util/tf_should_use.py\", line 101, in __init__\\n stack = [s.strip() for s in traceback.format_stack()]']\n", "==================================\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ "Tests Passed\n" ] } ], "source": [ "def model_inputs():\n", " \"\"\"\n", " Create TF Placeholders for input, targets, learning rate, and lengths of source and target sequences.\n", " :return: Tuple (input, targets, learning rate, keep probability, target sequence length,\n", " max target sequence length, source sequence length)\n", " \"\"\"\n", " input_data = tf.placeholder(tf.int32, [None, None], name='input')\n", " targets = tf.placeholder(tf.int32, [None, None], name='targets')\n", " lr = tf.placeholder(tf.float32, name='learning_rate')\n", " keep_prob = tf.placeholder(tf.float32, name='keep_prob')\n", "\n", " target_sequence_length = tf.placeholder(tf.int32, (None,), name='target_sequence_length')\n", " max_target_sequence_length = tf.reduce_max(target_sequence_length, name='max_target_len')\n", " source_sequence_length = tf.placeholder(tf.int32, (None,), name='source_sequence_length')\n", " \n", " return input_data, targets, lr, keep_prob, target_sequence_length, max_target_sequence_length, source_sequence_length\n", "\n", "\n", "\"\"\"\n", "DON'T MODIFY ANYTHING IN THIS CELL THAT IS BELOW THIS LINE\n", "\"\"\"\n", "tests.test_model_inputs(model_inputs)" ] }, { "cell_type": "code", "execution_count": 6, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "Tests Passed\n" ] } ], "source": [ "def process_decoder_input(target_data, target_vocab_to_int, batch_size):\n", " \"\"\"\n", " Preprocess target data for encoding\n", " :param target_data: Target Placehoder\n", " :param target_vocab_to_int: Dictionary to go from the target words to an id\n", " :param batch_size: Batch Size\n", " :return: Preprocessed target data\n", " \"\"\"\n", " ending = tf.strided_slice(target_data, [0, 0], [batch_size, -1], [1, 1])\n", " return tf.concat([tf.fill([batch_size, 1], target_vocab_to_int['<GO>']), ending], 1)\n", "\n", "\"\"\"\n", "DON'T MODIFY ANYTHING IN THIS CELL THAT IS BELOW THIS LINE\n", "\"\"\"\n", "tests.test_process_encoding_input(process_decoder_input)" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "### Encoding\n", "Implement `encoding_layer()` to create a Encoder RNN layer:\n", " * Embed the encoder input using [`tf.contrib.layers.embed_sequence`](https://www.tensorflow.org/api_docs/python/tf/contrib/layers/embed_sequence)\n", " * Construct a [stacked](https://github.com/tensorflow/tensorflow/blob/6947f65a374ebf29e74bb71e36fd82760056d82c/tensorflow/docs_src/tutorials/recurrent.md#stacking-multiple-lstms) [`tf.contrib.rnn.LSTMCell`](https://www.tensorflow.org/api_docs/python/tf/contrib/rnn/LSTMCell) wrapped in a [`tf.contrib.rnn.DropoutWrapper`](https://www.tensorflow.org/api_docs/python/tf/contrib/rnn/DropoutWrapper)\n", " * Pass cell and embedded input to [`tf.nn.dynamic_rnn()`](https://www.tensorflow.org/api_docs/python/tf/nn/dynamic_rnn)" ] }, { "cell_type": "code", "execution_count": 7, "metadata": { "scrolled": false }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "Tests Passed\n" ] } ], "source": [ "from imp import reload\n", "reload(tests)\n", "\n", "def encoding_layer(rnn_inputs, rnn_size, num_layers, keep_prob, \n", " source_sequence_length, source_vocab_size, \n", " encoding_embedding_size):\n", " \"\"\"\n", " Create encoding layer\n", " :param rnn_inputs: Inputs for the RNN\n", " :param rnn_size: RNN Size\n", " :param num_layers: Number of layers\n", " :param keep_prob: Dropout keep probability\n", " :param source_sequence_length: a list of the lengths of each sequence in the batch\n", " :param source_vocab_size: vocabulary size of source data\n", " :param encoding_embedding_size: embedding size of source data\n", " :return: tuple (RNN output, RNN state)\n", " \"\"\"\n", " rnn_inputs = tf.contrib.layers.embed_sequence(rnn_inputs, source_vocab_size, encoding_embedding_size)\n", " lstm = lambda: tf.contrib.rnn.DropoutWrapper(tf.contrib.rnn.LSTMCell(rnn_size), output_keep_prob=keep_prob)\n", " return tf.nn.dynamic_rnn(tf.contrib.rnn.MultiRNNCell([lstm() for _ in range(num_layers)]), rnn_inputs, source_sequence_length, dtype=tf.float32)\n", " \n", "\"\"\"\n", "DON'T MODIFY ANYTHING IN THIS CELL THAT IS BELOW THIS LINE\n", "\"\"\"\n", "tests.test_encoding_layer(encoding_layer)" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "### Decoding - Training\n", "Create a training decoding layer:\n", "* Create a [`tf.contrib.seq2seq.TrainingHelper`](https://www.tensorflow.org/api_docs/python/tf/contrib/seq2seq/TrainingHelper) \n", "* Create a [`tf.contrib.seq2seq.BasicDecoder`](https://www.tensorflow.org/api_docs/python/tf/contrib/seq2seq/BasicDecoder)\n", "* Obtain the decoder outputs from [`tf.contrib.seq2seq.dynamic_decode`](https://www.tensorflow.org/api_docs/python/tf/contrib/seq2seq/dynamic_decode)" ] }, { "cell_type": "code", "execution_count": 10, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "Tests Passed\n" ] } ], "source": [ "\n", "def decoding_layer_train(encoder_state, dec_cell, dec_embed_input, \n", " target_sequence_length, max_summary_length, \n", " output_layer, keep_prob):\n", " \"\"\"\n", " Create a decoding layer for training\n", " :param encoder_state: Encoder State\n", " :param dec_cell: Decoder RNN Cell\n", " :param dec_embed_input: Decoder embedded input\n", " :param target_sequence_length: The lengths of each sequence in the target batch\n", " :param max_summary_length: The length of the longest sequence in the batch\n", " :param output_layer: Function to apply the output layer\n", " :param keep_prob: Dropout keep probability\n", " :return: BasicDecoderOutput containing training logits and sample_id\n", " \"\"\"\n", " taining_helper = tf.contrib.seq2seq.TrainingHelper(dec_embed_input, target_sequence_length)\n", " decoder = tf.contrib.seq2seq.BasicDecoder(dec_cell, taining_helper, encoder_state, output_layer)\n", " output = tf.contrib.seq2seq.dynamic_decode(decoder, maximum_iterations=max_summary_length)\n", " return output[0]\n", "\n", "\n", "\"\"\"\n", "DON'T MODIFY ANYTHING IN THIS CELL THAT IS BELOW THIS LINE\n", "\"\"\"\n", "tests.test_decoding_layer_train(decoding_layer_train)" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "### Decoding - Inference\n", "Create inference decoder:\n", "* Create a [`tf.contrib.seq2seq.GreedyEmbeddingHelper`](https://www.tensorflow.org/api_docs/python/tf/contrib/seq2seq/GreedyEmbeddingHelper)\n", "* Create a [`tf.contrib.seq2seq.BasicDecoder`](https://www.tensorflow.org/api_docs/python/tf/contrib/seq2seq/BasicDecoder)\n", "* Obtain the decoder outputs from [`tf.contrib.seq2seq.dynamic_decode`](https://www.tensorflow.org/api_docs/python/tf/contrib/seq2seq/dynamic_decode)" ] }, { "cell_type": "code", "execution_count": 12, "metadata": { "scrolled": true }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "Tests Passed\n" ] } ], "source": [ "def decoding_layer_infer(encoder_state, dec_cell, dec_embeddings, start_of_sequence_id,\n", " end_of_sequence_id, max_target_sequence_length,\n", " vocab_size, output_layer, batch_size, keep_prob):\n", " \"\"\"\n", " Create a decoding layer for inference\n", " :param encoder_state: Encoder state\n", " :param dec_cell: Decoder RNN Cell\n", " :param dec_embeddings: Decoder embeddings\n", " :param start_of_sequence_id: GO ID\n", " :param end_of_sequence_id: EOS Id\n", " :param max_target_sequence_length: Maximum length of target sequences\n", " :param vocab_size: Size of decoder/target vocabulary\n", " :param decoding_scope: TenorFlow Variable Scope for decoding\n", " :param output_layer: Function to apply the output layer\n", " :param batch_size: Batch size\n", " :param keep_prob: Dropout keep probability\n", " :return: BasicDecoderOutput containing inference logits and sample_id\n", " \"\"\"\n", " \n", " start_tokens = tf.tile(tf.constant([start_of_sequence_id], dtype=tf.int32), [batch_size], name='start_tokens')\n", " taining_helper = tf.contrib.seq2seq.GreedyEmbeddingHelper(dec_embeddings, start_tokens, end_of_sequence_id)\n", " decoder = tf.contrib.seq2seq.BasicDecoder(dec_cell, taining_helper, encoder_state, output_layer)\n", " output = tf.contrib.seq2seq.dynamic_decode(decoder, maximum_iterations=max_target_sequence_length)\n", " return output[0]\n", "\n", "\n", "\n", "\"\"\"\n", "DON'T MODIFY ANYTHING IN THIS CELL THAT IS BELOW THIS LINE\n", "\"\"\"\n", "tests.test_decoding_layer_infer(decoding_layer_infer)" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "### Build the Decoding Layer\n", "Implement `decoding_layer()` to create a Decoder RNN layer.\n", "\n", "* Embed the target sequences\n", "* Construct the decoder LSTM cell (just like you constructed the encoder cell above)\n", "* Create an output layer to map the outputs of the decoder to the elements of our vocabulary\n", "* Use the your `decoding_layer_train(encoder_state, dec_cell, dec_embed_input, target_sequence_length, max_target_sequence_length, output_layer, keep_prob)` function to get the training logits.\n", "* Use your `decoding_layer_infer(encoder_state, dec_cell, dec_embeddings, start_of_sequence_id, end_of_sequence_id, max_target_sequence_length, vocab_size, output_layer, batch_size, keep_prob)` function to get the inference logits.\n", "\n", "Note: You'll need to use [tf.variable_scope](https://www.tensorflow.org/api_docs/python/tf/variable_scope) to share variables between training and inference." ] }, { "cell_type": "code", "execution_count": 13, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "Tests Passed\n" ] } ], "source": [ "def decoding_layer(dec_input, encoder_state,\n", " target_sequence_length, max_target_sequence_length,\n", " rnn_size,\n", " num_layers, target_vocab_to_int, target_vocab_size,\n", " batch_size, keep_prob, decoding_embedding_size):\n", " \"\"\"\n", " Create decoding layer\n", " :param dec_input: Decoder input\n", " :param encoder_state: Encoder state\n", " :param target_sequence_length: The lengths of each sequence in the target batch\n", " :param max_target_sequence_length: Maximum length of target sequences\n", " :param rnn_size: RNN Size\n", " :param num_layers: Number of layers\n", " :param target_vocab_to_int: Dictionary to go from the target words to an id\n", " :param target_vocab_size: Size of target vocabulary\n", " :param batch_size: The size of the batch\n", " :param keep_prob: Dropout keep probability\n", " :param decoding_embedding_size: Decoding embedding size\n", " :return: Tuple of (Training BasicDecoderOutput, Inference BasicDecoderOutput)\n", " \"\"\"\n", " dec_embeddings = tf.Variable(tf.random_uniform([target_vocab_size, decoding_embedding_size]))\n", " dec_embed_input = tf.nn.embedding_lookup(dec_embeddings, dec_input)\n", " lstm = lambda: tf.contrib.rnn.DropoutWrapper(tf.contrib.rnn.LSTMCell(rnn_size), output_keep_prob=keep_prob)\n", " dec_cell = tf.contrib.rnn.MultiRNNCell([lstm() for _ in range(num_layers)])\n", " output_layer = Dense(target_vocab_size,\n", " kernel_initializer = tf.truncated_normal_initializer(mean = 0.0, stddev=0.1))\n", " \n", " with tf.variable_scope('decoder'):\n", " dec_train = decoding_layer_train(encoder_state, dec_cell, dec_embed_input, target_sequence_length, \n", " max_target_sequence_length, output_layer, keep_prob)\n", " \n", " with tf.variable_scope('decoder', reuse=True):\n", " dec_infer = decoding_layer_infer(encoder_state, dec_cell, dec_embeddings, target_vocab_to_int['<GO>'],\n", " target_vocab_to_int['<EOS>'], max_target_sequence_length,\n", " target_vocab_size, output_layer, batch_size, keep_prob)\n", " \n", " return dec_train, dec_infer\n", "\n", "\n", "\n", "\"\"\"\n", "DON'T MODIFY ANYTHING IN THIS CELL THAT IS BELOW THIS LINE\n", "\"\"\"\n", "tests.test_decoding_layer(decoding_layer)" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "### Build the Neural Network\n", "Apply the functions you implemented above to:\n", "\n", "- Encode the input using your `encoding_layer(rnn_inputs, rnn_size, num_layers, keep_prob, source_sequence_length, source_vocab_size, encoding_embedding_size)`.\n", "- Process target data using your `process_decoder_input(target_data, target_vocab_to_int, batch_size)` function.\n", "- Decode the encoded input using your `decoding_layer(dec_input, enc_state, target_sequence_length, max_target_sentence_length, rnn_size, num_layers, target_vocab_to_int, target_vocab_size, batch_size, keep_prob, dec_embedding_size)` function." ] }, { "cell_type": "code", "execution_count": 22, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "Tests Passed\n" ] } ], "source": [ "def seq2seq_model(input_data, target_data, keep_prob, batch_size,\n", " source_sequence_length, target_sequence_length,\n", " max_target_sentence_length,\n", " source_vocab_size, target_vocab_size,\n", " enc_embedding_size, dec_embedding_size,\n", " rnn_size, num_layers, target_vocab_to_int):\n", " \"\"\"\n", " Build the Sequence-to-Sequence part of the neural network\n", " :param input_data: Input placeholder\n", " :param target_data: Target placeholder\n", " :param keep_prob: Dropout keep probability placeholder\n", " :param batch_size: Batch Size\n", " :param source_sequence_length: Sequence Lengths of source sequences in the batch\n", " :param target_sequence_length: Sequence Lengths of target sequences in the batch\n", " :param source_vocab_size: Source vocabulary size\n", " :param target_vocab_size: Target vocabulary size\n", " :param enc_embedding_size: Decoder embedding size\n", " :param dec_embedding_size: Encoder embedding size\n", " :param rnn_size: RNN Size\n", " :param num_layers: Number of layers\n", " :param target_vocab_to_int: Dictionary to go from the target words to an id\n", " :return: Tuple of (Training BasicDecoderOutput, Inference BasicDecoderOutput)\n", " \"\"\"\n", " _, encoder_state = encoding_layer(input_data, rnn_size, num_layers, keep_prob, source_sequence_length, \n", " source_vocab_size, enc_embedding_size)\n", " dec_input = process_decoder_input(target_data, target_vocab_to_int, batch_size)\n", " return decoding_layer(dec_input, encoder_state, target_sequence_length, max_target_sentence_length, \n", " rnn_size, num_layers, target_vocab_to_int, target_vocab_size, \n", " batch_size, keep_prob, dec_embedding_size)\n", "\n", "\n", "\"\"\"\n", "DON'T MODIFY ANYTHING IN THIS CELL THAT IS BELOW THIS LINE\n", "\"\"\"\n", "tests.test_seq2seq_model(seq2seq_model)" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Neural Network Training\n", "### Hyperparameters\n", "Tune the following parameters:\n", "\n", "- Set `epochs` to the number of epochs.\n", "- Set `batch_size` to the batch size.\n", "- Set `rnn_size` to the size of the RNNs.\n", "- Set `num_layers` to the number of layers.\n", "- Set `encoding_embedding_size` to the size of the embedding for the encoder.\n", "- Set `decoding_embedding_size` to the size of the embedding for the decoder.\n", "- Set `learning_rate` to the learning rate.\n", "- Set `keep_probability` to the Dropout keep probability\n", "- Set `display_step` to state how many steps between each debug output statement" ] }, { "cell_type": "code", "execution_count": 27, "metadata": { "collapsed": true }, "outputs": [], "source": [ "# Number of Epochs\n", "epochs = 3\n", "# Batch Size\n", "batch_size = 256\n", "# RNN Size\n", "rnn_size = 256\n", "# Number of Layers\n", "num_layers = 2\n", "# Embedding Size\n", "encoding_embedding_size = 300\n", "decoding_embedding_size = 300\n", "# Learning Rate\n", "learning_rate = 0.01\n", "# Dropout Keep Probability\n", "keep_probability = 0.75\n", "display_step = 20" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "### Build the Graph\n", "Build the graph using the neural network you implemented." ] }, { "cell_type": "code", "execution_count": 28, "metadata": {}, "outputs": [], "source": [ "\"\"\"\n", "DON'T MODIFY ANYTHING IN THIS CELL\n", "\"\"\"\n", "save_path = 'checkpoints/dev'\n", "(source_int_text, target_int_text), (source_vocab_to_int, target_vocab_to_int), _ = helper.load_preprocess()\n", "max_target_sentence_length = max([len(sentence) for sentence in source_int_text])\n", "\n", "train_graph = tf.Graph()\n", "with train_graph.as_default():\n", " input_data, targets, lr, keep_prob, target_sequence_length, max_target_sequence_length, source_sequence_length = model_inputs()\n", "\n", " #sequence_length = tf.placeholder_with_default(max_target_sentence_length, None, name='sequence_length')\n", " input_shape = tf.shape(input_data)\n", "\n", " train_logits, inference_logits = seq2seq_model(tf.reverse(input_data, [-1]),\n", " targets,\n", " keep_prob,\n", " batch_size,\n", " source_sequence_length,\n", " target_sequence_length,\n", " max_target_sequence_length,\n", " len(source_vocab_to_int),\n", " len(target_vocab_to_int),\n", " encoding_embedding_size,\n", " decoding_embedding_size,\n", " rnn_size,\n", " num_layers,\n", " target_vocab_to_int)\n", "\n", "\n", " training_logits = tf.identity(train_logits.rnn_output, name='logits')\n", " inference_logits = tf.identity(inference_logits.sample_id, name='predictions')\n", "\n", " masks = tf.sequence_mask(target_sequence_length, max_target_sequence_length, dtype=tf.float32, name='masks')\n", "\n", " with tf.name_scope(\"optimization\"):\n", " # Loss function\n", " cost = tf.contrib.seq2seq.sequence_loss(\n", " training_logits,\n", " targets,\n", " masks)\n", "\n", " # Optimizer\n", " optimizer = tf.train.AdamOptimizer(lr)\n", "\n", " # Gradient Clipping\n", " gradients = optimizer.compute_gradients(cost)\n", " capped_gradients = [(tf.clip_by_value(grad, -1., 1.), var) for grad, var in gradients if grad is not None]\n", " train_op = optimizer.apply_gradients(capped_gradients)\n" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "Batch and pad the source and target sequences" ] }, { "cell_type": "code", "execution_count": 29, "metadata": { "collapsed": true }, "outputs": [], "source": [ "\"\"\"\n", "DON'T MODIFY ANYTHING IN THIS CELL\n", "\"\"\"\n", "def pad_sentence_batch(sentence_batch, pad_int):\n", " \"\"\"Pad sentences with <PAD> so that each sentence of a batch has the same length\"\"\"\n", " max_sentence = max([len(sentence) for sentence in sentence_batch])\n", " return [sentence + [pad_int] * (max_sentence - len(sentence)) for sentence in sentence_batch]\n", "\n", "\n", "def get_batches(sources, targets, batch_size, source_pad_int, target_pad_int):\n", " \"\"\"Batch targets, sources, and the lengths of their sentences together\"\"\"\n", " for batch_i in range(0, len(sources)//batch_size):\n", " start_i = batch_i * batch_size\n", "\n", " # Slice the right amount for the batch\n", " sources_batch = sources[start_i:start_i + batch_size]\n", " targets_batch = targets[start_i:start_i + batch_size]\n", "\n", " # Pad\n", " pad_sources_batch = np.array(pad_sentence_batch(sources_batch, source_pad_int))\n", " pad_targets_batch = np.array(pad_sentence_batch(targets_batch, target_pad_int))\n", "\n", " # Need the lengths for the _lengths parameters\n", " pad_targets_lengths = []\n", " for target in pad_targets_batch:\n", " pad_targets_lengths.append(len(target))\n", "\n", " pad_source_lengths = []\n", " for source in pad_sources_batch:\n", " pad_source_lengths.append(len(source))\n", "\n", " yield pad_sources_batch, pad_targets_batch, pad_source_lengths, pad_targets_lengths\n" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "### Train\n", "Train the neural network on the preprocessed data. If you have a hard time getting a good loss, check the forms to see if anyone is having the same problem." ] }, { "cell_type": "code", "execution_count": 30, "metadata": { "scrolled": true }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "Epoch 0 Batch 20/538 - Train Accuracy: 0.3679, Validation Accuracy: 0.4071, Loss: 2.8275\n", "Epoch 0 Batch 40/538 - Train Accuracy: 0.5179, Validation Accuracy: 0.5167, Loss: 2.1477\n", "Epoch 0 Batch 60/538 - Train Accuracy: 0.5229, Validation Accuracy: 0.5579, Loss: 1.7172\n", "Epoch 0 Batch 80/538 - Train Accuracy: 0.5439, Validation Accuracy: 0.5788, Loss: 1.2155\n", "Epoch 0 Batch 100/538 - Train Accuracy: 0.5875, Validation Accuracy: 0.5914, Loss: 0.8572\n", "Epoch 0 Batch 120/538 - Train Accuracy: 0.6160, Validation Accuracy: 0.6108, Loss: 0.7206\n", "Epoch 0 Batch 140/538 - Train Accuracy: 0.5998, Validation Accuracy: 0.6301, Loss: 0.7124\n", "Epoch 0 Batch 160/538 - Train Accuracy: 0.6347, Validation Accuracy: 0.6312, Loss: 0.5701\n", "Epoch 0 Batch 180/538 - Train Accuracy: 0.6881, Validation Accuracy: 0.6610, Loss: 0.5387\n", "Epoch 0 Batch 200/538 - Train Accuracy: 0.6904, Validation Accuracy: 0.6770, Loss: 0.5034\n", "Epoch 0 Batch 220/538 - Train Accuracy: 0.6559, Validation Accuracy: 0.6667, Loss: 0.4566\n", "Epoch 0 Batch 240/538 - Train Accuracy: 0.7180, Validation Accuracy: 0.6886, Loss: 0.4349\n", "Epoch 0 Batch 260/538 - Train Accuracy: 0.7156, Validation Accuracy: 0.7143, Loss: 0.4067\n", "Epoch 0 Batch 280/538 - Train Accuracy: 0.7548, Validation Accuracy: 0.7225, Loss: 0.3641\n", "Epoch 0 Batch 300/538 - Train Accuracy: 0.7442, Validation Accuracy: 0.7427, Loss: 0.3624\n", "Epoch 0 Batch 320/538 - Train Accuracy: 0.7455, Validation Accuracy: 0.7530, Loss: 0.3213\n", "Epoch 0 Batch 340/538 - Train Accuracy: 0.8113, Validation Accuracy: 0.7736, Loss: 0.3211\n", "Epoch 0 Batch 360/538 - Train Accuracy: 0.7957, Validation Accuracy: 0.8010, Loss: 0.2826\n", "Epoch 0 Batch 380/538 - Train Accuracy: 0.8203, Validation Accuracy: 0.8118, Loss: 0.2615\n", "Epoch 0 Batch 400/538 - Train Accuracy: 0.8369, Validation Accuracy: 0.8184, Loss: 0.2396\n", "Epoch 0 Batch 420/538 - Train Accuracy: 0.8615, Validation Accuracy: 0.8629, Loss: 0.2175\n", "Epoch 0 Batch 440/538 - Train Accuracy: 0.8566, Validation Accuracy: 0.8686, Loss: 0.2054\n", "Epoch 0 Batch 460/538 - Train Accuracy: 0.8482, Validation Accuracy: 0.8677, Loss: 0.1855\n", "Epoch 0 Batch 480/538 - Train Accuracy: 0.9038, Validation Accuracy: 0.8656, Loss: 0.1584\n", "Epoch 0 Batch 500/538 - Train Accuracy: 0.9261, Validation Accuracy: 0.8706, Loss: 0.1261\n", "Epoch 0 Batch 520/538 - Train Accuracy: 0.8996, Validation Accuracy: 0.8887, Loss: 0.1401\n", "Epoch 1 Batch 20/538 - Train Accuracy: 0.9040, Validation Accuracy: 0.8981, Loss: 0.1180\n", "Epoch 1 Batch 40/538 - Train Accuracy: 0.9180, Validation Accuracy: 0.9048, Loss: 0.0926\n", "Epoch 1 Batch 60/538 - Train Accuracy: 0.9148, Validation Accuracy: 0.9171, Loss: 0.0963\n", "Epoch 1 Batch 80/538 - Train Accuracy: 0.9176, Validation Accuracy: 0.9176, Loss: 0.0943\n", "Epoch 1 Batch 100/538 - Train Accuracy: 0.9396, Validation Accuracy: 0.9139, Loss: 0.0730\n", "Epoch 1 Batch 120/538 - Train Accuracy: 0.9361, Validation Accuracy: 0.9023, Loss: 0.0700\n", "Epoch 1 Batch 140/538 - Train Accuracy: 0.9219, Validation Accuracy: 0.9142, Loss: 0.0916\n", "Epoch 1 Batch 160/538 - Train Accuracy: 0.9020, Validation Accuracy: 0.9286, Loss: 0.0694\n", "Epoch 1 Batch 180/538 - Train Accuracy: 0.9373, Validation Accuracy: 0.9249, Loss: 0.0667\n", "Epoch 1 Batch 200/538 - Train Accuracy: 0.9447, Validation Accuracy: 0.9324, Loss: 0.0567\n", "Epoch 1 Batch 220/538 - Train Accuracy: 0.9381, Validation Accuracy: 0.9263, Loss: 0.0672\n", "Epoch 1 Batch 240/538 - Train Accuracy: 0.9324, Validation Accuracy: 0.9498, Loss: 0.0582\n", "Epoch 1 Batch 260/538 - Train Accuracy: 0.9055, Validation Accuracy: 0.9286, Loss: 0.0654\n", "Epoch 1 Batch 280/538 - Train Accuracy: 0.9554, Validation Accuracy: 0.9144, Loss: 0.0505\n", "Epoch 1 Batch 300/538 - Train Accuracy: 0.9379, Validation Accuracy: 0.9320, Loss: 0.0624\n", "Epoch 1 Batch 320/538 - Train Accuracy: 0.9544, Validation Accuracy: 0.9391, Loss: 0.0507\n", "Epoch 1 Batch 340/538 - Train Accuracy: 0.9301, Validation Accuracy: 0.9391, Loss: 0.0576\n", "Epoch 1 Batch 360/538 - Train Accuracy: 0.9301, Validation Accuracy: 0.9457, Loss: 0.0515\n", "Epoch 1 Batch 380/538 - Train Accuracy: 0.9375, Validation Accuracy: 0.9467, Loss: 0.0472\n", "Epoch 1 Batch 400/538 - Train Accuracy: 0.9509, Validation Accuracy: 0.9524, Loss: 0.0548\n", "Epoch 1 Batch 420/538 - Train Accuracy: 0.9531, Validation Accuracy: 0.9478, Loss: 0.0446\n", "Epoch 1 Batch 440/538 - Train Accuracy: 0.9359, Validation Accuracy: 0.9423, Loss: 0.0547\n", "Epoch 1 Batch 460/538 - Train Accuracy: 0.9356, Validation Accuracy: 0.9341, Loss: 0.0515\n", "Epoch 1 Batch 480/538 - Train Accuracy: 0.9580, Validation Accuracy: 0.9334, Loss: 0.0452\n", "Epoch 1 Batch 500/538 - Train Accuracy: 0.9627, Validation Accuracy: 0.9350, Loss: 0.0377\n", "Epoch 1 Batch 520/538 - Train Accuracy: 0.9531, Validation Accuracy: 0.9384, Loss: 0.0464\n", "Epoch 2 Batch 20/538 - Train Accuracy: 0.9410, Validation Accuracy: 0.9524, Loss: 0.0528\n", "Epoch 2 Batch 40/538 - Train Accuracy: 0.9293, Validation Accuracy: 0.9538, Loss: 0.0377\n", "Epoch 2 Batch 60/538 - Train Accuracy: 0.9420, Validation Accuracy: 0.9467, Loss: 0.0469\n", "Epoch 2 Batch 80/538 - Train Accuracy: 0.9539, Validation Accuracy: 0.9537, Loss: 0.0442\n", "Epoch 2 Batch 100/538 - Train Accuracy: 0.9484, Validation Accuracy: 0.9304, Loss: 0.0431\n", "Epoch 2 Batch 120/538 - Train Accuracy: 0.9695, Validation Accuracy: 0.9522, Loss: 0.0313\n", "Epoch 2 Batch 140/538 - Train Accuracy: 0.9369, Validation Accuracy: 0.9339, Loss: 0.0519\n", "Epoch 2 Batch 160/538 - Train Accuracy: 0.9338, Validation Accuracy: 0.9402, Loss: 0.0484\n", "Epoch 2 Batch 180/538 - Train Accuracy: 0.9442, Validation Accuracy: 0.9432, Loss: 0.0470\n", "Epoch 2 Batch 200/538 - Train Accuracy: 0.9652, Validation Accuracy: 0.9309, Loss: 0.0365\n", "Epoch 2 Batch 220/538 - Train Accuracy: 0.9457, Validation Accuracy: 0.9492, Loss: 0.0395\n", "Epoch 2 Batch 240/538 - Train Accuracy: 0.9670, Validation Accuracy: 0.9490, Loss: 0.0420\n", "Epoch 2 Batch 260/538 - Train Accuracy: 0.9232, Validation Accuracy: 0.9498, Loss: 0.0501\n", "Epoch 2 Batch 280/538 - Train Accuracy: 0.9580, Validation Accuracy: 0.9549, Loss: 0.0333\n", "Epoch 2 Batch 300/538 - Train Accuracy: 0.9496, Validation Accuracy: 0.9693, Loss: 0.0450\n", "Epoch 2 Batch 320/538 - Train Accuracy: 0.9552, Validation Accuracy: 0.9519, Loss: 0.0366\n", "Epoch 2 Batch 340/538 - Train Accuracy: 0.9523, Validation Accuracy: 0.9576, Loss: 0.0444\n", "Epoch 2 Batch 360/538 - Train Accuracy: 0.9549, Validation Accuracy: 0.9538, Loss: 0.0408\n", "Epoch 2 Batch 380/538 - Train Accuracy: 0.9570, Validation Accuracy: 0.9471, Loss: 0.0371\n", "Epoch 2 Batch 400/538 - Train Accuracy: 0.9550, Validation Accuracy: 0.9634, Loss: 0.0416\n", "Epoch 2 Batch 420/538 - Train Accuracy: 0.9568, Validation Accuracy: 0.9510, Loss: 0.0379\n", "Epoch 2 Batch 440/538 - Train Accuracy: 0.9459, Validation Accuracy: 0.9572, Loss: 0.0429\n", "Epoch 2 Batch 460/538 - Train Accuracy: 0.9440, Validation Accuracy: 0.9583, Loss: 0.0419\n", "Epoch 2 Batch 480/538 - Train Accuracy: 0.9606, Validation Accuracy: 0.9510, Loss: 0.0380\n", "Epoch 2 Batch 500/538 - Train Accuracy: 0.9810, Validation Accuracy: 0.9474, Loss: 0.0242\n", "Epoch 2 Batch 520/538 - Train Accuracy: 0.9488, Validation Accuracy: 0.9474, Loss: 0.0452\n", "Model Trained and Saved\n" ] } ], "source": [ "\"\"\"\n", "DON'T MODIFY ANYTHING IN THIS CELL\n", "\"\"\"\n", "def get_accuracy(target, logits):\n", " \"\"\"\n", " Calculate accuracy\n", " \"\"\"\n", " max_seq = max(target.shape[1], logits.shape[1])\n", " if max_seq - target.shape[1]:\n", " target = np.pad(\n", " target,\n", " [(0,0),(0,max_seq - target.shape[1])],\n", " 'constant')\n", " if max_seq - logits.shape[1]:\n", " logits = np.pad(\n", " logits,\n", " [(0,0),(0,max_seq - logits.shape[1])],\n", " 'constant')\n", "\n", " return np.mean(np.equal(target, logits))\n", "\n", "# Split data to training and validation sets\n", "train_source = source_int_text[batch_size:]\n", "train_target = target_int_text[batch_size:]\n", "valid_source = source_int_text[:batch_size]\n", "valid_target = target_int_text[:batch_size]\n", "(valid_sources_batch, valid_targets_batch, valid_sources_lengths, valid_targets_lengths ) = next(get_batches(valid_source,\n", " valid_target,\n", " batch_size,\n", " source_vocab_to_int['<PAD>'],\n", " target_vocab_to_int['<PAD>'])) \n", "with tf.Session(graph=train_graph) as sess:\n", " sess.run(tf.global_variables_initializer())\n", "\n", " for epoch_i in range(epochs):\n", " for batch_i, (source_batch, target_batch, sources_lengths, targets_lengths) in enumerate(\n", " get_batches(train_source, train_target, batch_size,\n", " source_vocab_to_int['<PAD>'],\n", " target_vocab_to_int['<PAD>'])):\n", "\n", " _, loss = sess.run(\n", " [train_op, cost],\n", " {input_data: source_batch,\n", " targets: target_batch,\n", " lr: learning_rate,\n", " target_sequence_length: targets_lengths,\n", " source_sequence_length: sources_lengths,\n", " keep_prob: keep_probability})\n", "\n", "\n", " if batch_i % display_step == 0 and batch_i > 0:\n", "\n", "\n", " batch_train_logits = sess.run(\n", " inference_logits,\n", " {input_data: source_batch,\n", " source_sequence_length: sources_lengths,\n", " target_sequence_length: targets_lengths,\n", " keep_prob: 1.0})\n", "\n", "\n", " batch_valid_logits = sess.run(\n", " inference_logits,\n", " {input_data: valid_sources_batch,\n", " source_sequence_length: valid_sources_lengths,\n", " target_sequence_length: valid_targets_lengths,\n", " keep_prob: 1.0})\n", "\n", " train_acc = get_accuracy(target_batch, batch_train_logits)\n", "\n", " valid_acc = get_accuracy(valid_targets_batch, batch_valid_logits)\n", "\n", " print('Epoch {:>3} Batch {:>4}/{} - Train Accuracy: {:>6.4f}, Validation Accuracy: {:>6.4f}, Loss: {:>6.4f}'\n", " .format(epoch_i, batch_i, len(source_int_text) // batch_size, train_acc, valid_acc, loss))\n", "\n", " # Save Model\n", " saver = tf.train.Saver()\n", " saver.save(sess, save_path)\n", " print('Model Trained and Saved')" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "### Save Parameters\n", "Save the `batch_size` and `save_path` parameters for inference." ] }, { "cell_type": "code", "execution_count": 31, "metadata": { "collapsed": true }, "outputs": [], "source": [ "\"\"\"\n", "DON'T MODIFY ANYTHING IN THIS CELL\n", "\"\"\"\n", "# Save parameters for checkpoint\n", "helper.save_params(save_path)" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "# Checkpoint" ] }, { "cell_type": "code", "execution_count": 32, "metadata": { "collapsed": true }, "outputs": [], "source": [ "\"\"\"\n", "DON'T MODIFY ANYTHING IN THIS CELL\n", "\"\"\"\n", "import tensorflow as tf\n", "import numpy as np\n", "import helper\n", "import problem_unittests as tests\n", "\n", "_, (source_vocab_to_int, target_vocab_to_int), (source_int_to_vocab, target_int_to_vocab) = helper.load_preprocess()\n", "load_path = helper.load_params()" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Sentence to Sequence\n", "To feed a sentence into the model for translation, you first need to preprocess it. Implement the function `sentence_to_seq()` to preprocess new sentences.\n", "\n", "- Convert the sentence to lowercase\n", "- Convert words into ids using `vocab_to_int`\n", " - Convert words not in the vocabulary, to the `<UNK>` word id." ] }, { "cell_type": "code", "execution_count": 33, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "Tests Passed\n" ] } ], "source": [ "def sentence_to_seq(sentence, vocab_to_int):\n", " \"\"\"\n", " Convert a sentence to a sequence of ids\n", " :param sentence: String\n", " :param vocab_to_int: Dictionary to go from the words to an id\n", " :return: List of word ids\n", " \"\"\"\n", " return [vocab_to_int.get(word, vocab_to_int['<UNK>']) for word in sentence.lower().split()]\n", "\n", "\n", "\"\"\"\n", "DON'T MODIFY ANYTHING IN THIS CELL THAT IS BELOW THIS LINE\n", "\"\"\"\n", "tests.test_sentence_to_seq(sentence_to_seq)" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Translate\n", "This will translate `translate_sentence` from English to French." ] }, { "cell_type": "code", "execution_count": 34, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "INFO:tensorflow:Restoring parameters from checkpoints/dev\n", "Input\n", " Word Ids: [112, 71, 35, 100, 14, 138, 199]\n", " English Words: ['he', 'saw', 'a', 'old', 'yellow', 'truck', '.']\n", "\n", "Prediction\n", " Word Ids: [280, 100, 30, 199, 23, 122, 135, 76, 1]\n", " French Words: il a vu un vieux camion jaune . <EOS>\n" ] } ], "source": [ "translate_sentence = 'he saw a old yellow truck .'\n", "\n", "\n", "\"\"\"\n", "DON'T MODIFY ANYTHING IN THIS CELL\n", "\"\"\"\n", "translate_sentence = sentence_to_seq(translate_sentence, source_vocab_to_int)\n", "\n", "loaded_graph = tf.Graph()\n", "with tf.Session(graph=loaded_graph) as sess:\n", " # Load saved model\n", " loader = tf.train.import_meta_graph(load_path + '.meta')\n", " loader.restore(sess, load_path)\n", "\n", " input_data = loaded_graph.get_tensor_by_name('input:0')\n", " logits = loaded_graph.get_tensor_by_name('predictions:0')\n", " target_sequence_length = loaded_graph.get_tensor_by_name('target_sequence_length:0')\n", " source_sequence_length = loaded_graph.get_tensor_by_name('source_sequence_length:0')\n", " keep_prob = loaded_graph.get_tensor_by_name('keep_prob:0')\n", "\n", " translate_logits = sess.run(logits, {input_data: [translate_sentence]*batch_size,\n", " target_sequence_length: [len(translate_sentence)*2]*batch_size,\n", " source_sequence_length: [len(translate_sentence)]*batch_size,\n", " keep_prob: 1.0})[0]\n", "\n", "print('Input')\n", "print(' Word Ids: {}'.format([i for i in translate_sentence]))\n", "print(' English Words: {}'.format([source_int_to_vocab[i] for i in translate_sentence]))\n", "\n", "print('\\nPrediction')\n", "print(' Word Ids: {}'.format([i for i in translate_logits]))\n", "print(' French Words: {}'.format(\" \".join([target_int_to_vocab[i] for i in translate_logits])))\n" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Imperfect Translation\n", "You might notice that some sentences translate better than others. Since the dataset you're using only has a vocabulary of 227 English words of the thousands that you use, you're only going to see good results using these words. For this project, you don't need a perfect translation. However, if you want to create a better translation model, you'll need better data.\n", "\n", "You can train on the [WMT10 French-English corpus](http://www.statmt.org/wmt10/training-giga-fren.tar). This dataset has more vocabulary and richer in topics discussed. However, this will take you days to train, so make sure you've a GPU and the neural network is performing well on dataset we provided. Just make sure you play with the WMT10 corpus after you've submitted this project.\n", "## Submitting This Project\n", "When submitting this project, make sure to run all the cells before saving the notebook. Save the notebook file as \"dlnd_language_translation.ipynb\" and save it as a HTML file under \"File\" -> \"Download as\". Include the \"helper.py\" and \"problem_unittests.py\" files in your submission." ] } ], "metadata": { "anaconda-cloud": {}, "kernelspec": { "display_name": "Python [conda root]", "language": "python", "name": "conda-root-py" }, "language_info": { "codemirror_mode": { "name": "ipython", "version": 3 }, "file_extension": ".py", "mimetype": "text/x-python", "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", "version": "3.6.0" } }, "nbformat": 4, "nbformat_minor": 1 }
gpl-3.0
zzsza/Kaggle_Expedia-hotel-recommendations
notebook/07. Feature Engineering(2).ipynb
1
45739
{ "cells": [ { "cell_type": "code", "execution_count": 1, "metadata": { "collapsed": true }, "outputs": [], "source": [ "import pandas as pd\n", "import numpy as np\n", "import seaborn as sns\n", "import matplotlib.pyplot as plt\n", "from __future__ import print_function\n", "import sklearn\n", "from sklearn.ensemble import RandomForestClassifier\n", "from sklearn import preprocessing\n", "from datetime import datetime\n", "import os\n", "\n", "%matplotlib inline\n", "%config InlineBackend.figure_format = 'png'\n", "pd.set_option(\"max_columns\",50)" ] }, { "cell_type": "code", "execution_count": 2, "metadata": { "collapsed": false }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "Wall time: 41.9 s\n" ] } ], "source": [ "%%time\n", "train = pd.read_csv(\"../data/train_2013.csv\", index_col=0)\n", "train = train.reset_index(drop=True)\n", "train = train[train[\"is_booking\"] == 1]\n", "np.random.seed(402)\n", "train = train.ix[np.random.choice(train.index, 50000)]\n", "train = train.reset_index(drop=True)" ] }, { "cell_type": "code", "execution_count": 3, "metadata": { "collapsed": false }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "preprocessing train_data\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ "C:\\Users\\Byeon\\Anaconda3\\envs\\py27\\lib\\site-packages\\ipykernel\\__main__.py:8: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame.\n", "Try using .loc[row_indexer,col_indexer] = value instead\n", "\n", "See the caveats in the documentation: http://pandas.pydata.org/pandas-docs/stable/indexing.html#indexing-view-versus-copy\n", "C:\\Users\\Byeon\\Anaconda3\\envs\\py27\\lib\\site-packages\\ipykernel\\__main__.py:9: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame.\n", "Try using .loc[row_indexer,col_indexer] = value instead\n", "\n", "See the caveats in the documentation: http://pandas.pydata.org/pandas-docs/stable/indexing.html#indexing-view-versus-copy\n", "C:\\Users\\Byeon\\Anaconda3\\envs\\py27\\lib\\site-packages\\ipykernel\\__main__.py:10: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame.\n", "Try using .loc[row_indexer,col_indexer] = value instead\n", "\n", "See the caveats in the documentation: http://pandas.pydata.org/pandas-docs/stable/indexing.html#indexing-view-versus-copy\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ "Wall time: 617 ms\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ "C:\\Users\\Byeon\\Anaconda3\\envs\\py27\\lib\\site-packages\\ipykernel\\__main__.py:11: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame.\n", "Try using .loc[row_indexer,col_indexer] = value instead\n", "\n", "See the caveats in the documentation: http://pandas.pydata.org/pandas-docs/stable/indexing.html#indexing-view-versus-copy\n" ] } ], "source": [ "%%time\n", "\n", "print('preprocessing train_data')\n", "use_col = [\"srch_co\",\"srch_ci\",\"srch_destination_id\",\"hotel_country\",\"srch_adults_cnt\",\"srch_children_cnt\",\"hotel_cluster\"]\n", "\n", "train_y = train[[\"hotel_cluster\"]]\n", "\n", "train_x = train[use_col]\n", "train_x[\"srch_ci\"] = pd.to_datetime(train_x[\"srch_ci\"], errors=\"coerce\")\n", "train_x[\"srch_co\"] = pd.to_datetime(train_x[\"srch_co\"], errors=\"coerce\")\n", "train_x[\"period\"] = train_x[\"srch_co\"] - train_x[\"srch_ci\"]\n", "train_x[\"period\"] = (train_x[\"period\"] / np.timedelta64(1, 'D')).astype(int)\n", "train_x = train_x.drop([\"srch_co\",\"srch_ci\"], axis=1)\n", "train_x[\"srch_adults_cnt\"] = train_x[\"srch_adults_cnt\"].apply(lambda x: 3 if x>=3 else x)\n", "train_x = train_x.drop([\"srch_children_cnt\"], axis=1)\n", "train_x = train_x[[\"srch_destination_id\",\"hotel_country\",\"srch_adults_cnt\",\"period\"]]\n", "\n" ] }, { "cell_type": "code", "execution_count": 6, "metadata": { "collapsed": false }, "outputs": [ { "data": { "text/html": [ "<div>\n", "<table border=\"1\" class=\"dataframe\">\n", " <thead>\n", " <tr style=\"text-align: right;\">\n", " <th></th>\n", " <th>srch_destination_id</th>\n", " <th>hotel_country</th>\n", " <th>srch_adults_cnt</th>\n", " <th>period</th>\n", " </tr>\n", " </thead>\n", " <tbody>\n", " <tr>\n", " <th>0</th>\n", " <td>12696</td>\n", " <td>8</td>\n", " <td>1</td>\n", " <td>1</td>\n", " </tr>\n", " <tr>\n", " <th>1</th>\n", " <td>12189</td>\n", " <td>50</td>\n", " <td>2</td>\n", " <td>4</td>\n", " </tr>\n", " <tr>\n", " <th>2</th>\n", " <td>2758</td>\n", " <td>31</td>\n", " <td>1</td>\n", " <td>8</td>\n", " </tr>\n", " <tr>\n", " <th>3</th>\n", " <td>8267</td>\n", " <td>50</td>\n", " <td>3</td>\n", " <td>2</td>\n", " </tr>\n", " <tr>\n", " <th>4</th>\n", " <td>18741</td>\n", " <td>50</td>\n", " <td>1</td>\n", " <td>3</td>\n", " </tr>\n", " </tbody>\n", "</table>\n", "</div>" ], "text/plain": [ " srch_destination_id hotel_country srch_adults_cnt period\n", "0 12696 8 1 1\n", "1 12189 50 2 4\n", "2 2758 31 1 8\n", "3 8267 50 3 2\n", "4 18741 50 1 3" ] }, "execution_count": 6, "metadata": {}, "output_type": "execute_result" } ], "source": [ "train_x.head()" ] }, { "cell_type": "code", "execution_count": 8, "metadata": { "collapsed": false }, "outputs": [ { "data": { "text/plain": [ "array([15, 72, 58, 56, 42, 0, 96, 18, 95, 91, 11, 43, 12, 46, 26, 5, 2,\n", " 16, 70, 33, 21, 4, 51, 40, 20, 89, 48, 82, 1, 79, 8, 50, 97, 47,\n", " 63, 55, 61, 77, 6, 59, 3, 49, 64, 41, 13, 94, 98, 19, 28, 14, 37,\n", " 62, 10, 36, 74, 80, 44, 31, 32, 29, 45, 7, 87, 99, 35, 68, 57, 9,\n", " 81, 86, 60, 30, 52, 39, 75, 83, 78, 65, 25, 88, 90, 69, 71, 76, 23,\n", " 66, 67, 54, 53, 92, 17, 85, 24, 22, 84, 38, 73, 34, 93, 27], dtype=int64)" ] }, "execution_count": 8, "metadata": {}, "output_type": "execute_result" } ], "source": [ "train[\"hotel_cluster\"].unique()" ] }, { "cell_type": "code", "execution_count": 13, "metadata": { "collapsed": false }, "outputs": [ { "data": { "text/html": [ "<div>\n", "<table border=\"1\" class=\"dataframe\">\n", " <thead>\n", " <tr style=\"text-align: right;\">\n", " <th></th>\n", " <th></th>\n", " <th>sum</th>\n", " <th>count</th>\n", " </tr>\n", " <tr>\n", " <th>srch_destination_id</th>\n", " <th>hotel_cluster</th>\n", " <th></th>\n", " <th></th>\n", " </tr>\n", " </thead>\n", " <tbody>\n", " <tr>\n", " <th>2</th>\n", " <th>20</th>\n", " <td>1</td>\n", " <td>1</td>\n", " </tr>\n", " <tr>\n", " <th rowspan=\"3\" valign=\"top\">4</th>\n", " <th>67</th>\n", " <td>1</td>\n", " <td>1</td>\n", " </tr>\n", " <tr>\n", " <th>78</th>\n", " <td>1</td>\n", " <td>1</td>\n", " </tr>\n", " <tr>\n", " <th>81</th>\n", " <td>1</td>\n", " <td>1</td>\n", " </tr>\n", " <tr>\n", " <th rowspan=\"5\" valign=\"top\">8</th>\n", " <th>7</th>\n", " <td>1</td>\n", " <td>1</td>\n", " </tr>\n", " <tr>\n", " <th>32</th>\n", " <td>1</td>\n", " <td>1</td>\n", " </tr>\n", " <tr>\n", " <th>42</th>\n", " <td>1</td>\n", " <td>1</td>\n", " </tr>\n", " <tr>\n", " <th>48</th>\n", " <td>1</td>\n", " <td>1</td>\n", " </tr>\n", " <tr>\n", " <th>76</th>\n", " <td>1</td>\n", " <td>1</td>\n", " </tr>\n", " <tr>\n", " <th>11</th>\n", " <th>91</th>\n", " <td>1</td>\n", " <td>1</td>\n", " </tr>\n", " <tr>\n", " <th rowspan=\"2\" valign=\"top\">14</th>\n", " <th>20</th>\n", " <td>1</td>\n", " <td>1</td>\n", " </tr>\n", " <tr>\n", " <th>61</th>\n", " <td>1</td>\n", " <td>1</td>\n", " </tr>\n", " <tr>\n", " <th rowspan=\"2\" valign=\"top\">16</th>\n", " <th>15</th>\n", " <td>1</td>\n", " <td>1</td>\n", " </tr>\n", " <tr>\n", " <th>85</th>\n", " <td>1</td>\n", " <td>1</td>\n", " </tr>\n", " <tr>\n", " <th>19</th>\n", " <th>64</th>\n", " <td>1</td>\n", " <td>1</td>\n", " </tr>\n", " <tr>\n", " <th rowspan=\"4\" valign=\"top\">21</th>\n", " <th>62</th>\n", " <td>1</td>\n", " <td>1</td>\n", " </tr>\n", " <tr>\n", " <th>67</th>\n", " <td>3</td>\n", " <td>3</td>\n", " </tr>\n", " <tr>\n", " <th>82</th>\n", " <td>1</td>\n", " <td>1</td>\n", " </tr>\n", " <tr>\n", " <th>89</th>\n", " <td>1</td>\n", " <td>1</td>\n", " </tr>\n", " <tr>\n", " <th rowspan=\"7\" valign=\"top\">24</th>\n", " <th>3</th>\n", " <td>1</td>\n", " <td>1</td>\n", " </tr>\n", " <tr>\n", " <th>23</th>\n", " <td>1</td>\n", " <td>1</td>\n", " </tr>\n", " <tr>\n", " <th>42</th>\n", " <td>1</td>\n", " <td>1</td>\n", " </tr>\n", " <tr>\n", " <th>47</th>\n", " <td>2</td>\n", " <td>2</td>\n", " </tr>\n", " <tr>\n", " <th>60</th>\n", " <td>1</td>\n", " <td>1</td>\n", " </tr>\n", " <tr>\n", " <th>76</th>\n", " <td>2</td>\n", " <td>2</td>\n", " </tr>\n", " <tr>\n", " <th>91</th>\n", " <td>3</td>\n", " <td>3</td>\n", " </tr>\n", " <tr>\n", " <th rowspan=\"4\" valign=\"top\">25</th>\n", " <th>5</th>\n", " <td>1</td>\n", " <td>1</td>\n", " </tr>\n", " <tr>\n", " <th>10</th>\n", " <td>1</td>\n", " <td>1</td>\n", " </tr>\n", " <tr>\n", " <th>13</th>\n", " <td>2</td>\n", " <td>2</td>\n", " </tr>\n", " <tr>\n", " <th>32</th>\n", " <td>1</td>\n", " <td>1</td>\n", " </tr>\n", " <tr>\n", " <th>...</th>\n", " <th>...</th>\n", " <td>...</td>\n", " <td>...</td>\n", " </tr>\n", " <tr>\n", " <th rowspan=\"2\" valign=\"top\">60988</th>\n", " <th>41</th>\n", " <td>1</td>\n", " <td>1</td>\n", " </tr>\n", " <tr>\n", " <th>68</th>\n", " <td>1</td>\n", " <td>1</td>\n", " </tr>\n", " <tr>\n", " <th rowspan=\"2\" valign=\"top\">61097</th>\n", " <th>28</th>\n", " <td>1</td>\n", " <td>1</td>\n", " </tr>\n", " <tr>\n", " <th>72</th>\n", " <td>1</td>\n", " <td>1</td>\n", " </tr>\n", " <tr>\n", " <th>61102</th>\n", " <th>95</th>\n", " <td>1</td>\n", " <td>1</td>\n", " </tr>\n", " <tr>\n", " <th>61128</th>\n", " <th>12</th>\n", " <td>1</td>\n", " <td>1</td>\n", " </tr>\n", " <tr>\n", " <th rowspan=\"2\" valign=\"top\">61193</th>\n", " <th>30</th>\n", " <td>1</td>\n", " <td>1</td>\n", " </tr>\n", " <tr>\n", " <th>36</th>\n", " <td>2</td>\n", " <td>2</td>\n", " </tr>\n", " <tr>\n", " <th>61306</th>\n", " <th>60</th>\n", " <td>1</td>\n", " <td>1</td>\n", " </tr>\n", " <tr>\n", " <th rowspan=\"2\" valign=\"top\">61413</th>\n", " <th>29</th>\n", " <td>1</td>\n", " <td>1</td>\n", " </tr>\n", " <tr>\n", " <th>62</th>\n", " <td>1</td>\n", " <td>1</td>\n", " </tr>\n", " <tr>\n", " <th>61418</th>\n", " <th>58</th>\n", " <td>1</td>\n", " <td>1</td>\n", " </tr>\n", " <tr>\n", " <th>61442</th>\n", " <th>5</th>\n", " <td>1</td>\n", " <td>1</td>\n", " </tr>\n", " <tr>\n", " <th rowspan=\"3\" valign=\"top\">61528</th>\n", " <th>32</th>\n", " <td>1</td>\n", " <td>1</td>\n", " </tr>\n", " <tr>\n", " <th>49</th>\n", " <td>1</td>\n", " <td>1</td>\n", " </tr>\n", " <tr>\n", " <th>72</th>\n", " <td>1</td>\n", " <td>1</td>\n", " </tr>\n", " <tr>\n", " <th>61531</th>\n", " <th>10</th>\n", " <td>1</td>\n", " <td>1</td>\n", " </tr>\n", " <tr>\n", " <th rowspan=\"3\" valign=\"top\">61533</th>\n", " <th>11</th>\n", " <td>1</td>\n", " <td>1</td>\n", " </tr>\n", " <tr>\n", " <th>41</th>\n", " <td>2</td>\n", " <td>2</td>\n", " </tr>\n", " <tr>\n", " <th>83</th>\n", " <td>1</td>\n", " <td>1</td>\n", " </tr>\n", " <tr>\n", " <th rowspan=\"4\" valign=\"top\">61702</th>\n", " <th>33</th>\n", " <td>1</td>\n", " <td>1</td>\n", " </tr>\n", " <tr>\n", " <th>47</th>\n", " <td>1</td>\n", " <td>1</td>\n", " </tr>\n", " <tr>\n", " <th>48</th>\n", " <td>1</td>\n", " <td>1</td>\n", " </tr>\n", " <tr>\n", " <th>91</th>\n", " <td>2</td>\n", " <td>2</td>\n", " </tr>\n", " <tr>\n", " <th rowspan=\"3\" valign=\"top\">61756</th>\n", " <th>56</th>\n", " <td>2</td>\n", " <td>2</td>\n", " </tr>\n", " <tr>\n", " <th>72</th>\n", " <td>1</td>\n", " <td>1</td>\n", " </tr>\n", " <tr>\n", " <th>77</th>\n", " <td>1</td>\n", " <td>1</td>\n", " </tr>\n", " <tr>\n", " <th>62487</th>\n", " <th>6</th>\n", " <td>1</td>\n", " <td>1</td>\n", " </tr>\n", " <tr>\n", " <th>62508</th>\n", " <th>32</th>\n", " <td>1</td>\n", " <td>1</td>\n", " </tr>\n", " <tr>\n", " <th>62824</th>\n", " <th>21</th>\n", " <td>1</td>\n", " <td>1</td>\n", " </tr>\n", " </tbody>\n", "</table>\n", "<p>22857 rows × 2 columns</p>\n", "</div>" ], "text/plain": [ " sum count\n", "srch_destination_id hotel_cluster \n", "2 20 1 1\n", "4 67 1 1\n", " 78 1 1\n", " 81 1 1\n", "8 7 1 1\n", " 32 1 1\n", " 42 1 1\n", " 48 1 1\n", " 76 1 1\n", "11 91 1 1\n", "14 20 1 1\n", " 61 1 1\n", "16 15 1 1\n", " 85 1 1\n", "19 64 1 1\n", "21 62 1 1\n", " 67 3 3\n", " 82 1 1\n", " 89 1 1\n", "24 3 1 1\n", " 23 1 1\n", " 42 1 1\n", " 47 2 2\n", " 60 1 1\n", " 76 2 2\n", " 91 3 3\n", "25 5 1 1\n", " 10 1 1\n", " 13 2 2\n", " 32 1 1\n", "... ... ...\n", "60988 41 1 1\n", " 68 1 1\n", "61097 28 1 1\n", " 72 1 1\n", "61102 95 1 1\n", "61128 12 1 1\n", "61193 30 1 1\n", " 36 2 2\n", "61306 60 1 1\n", "61413 29 1 1\n", " 62 1 1\n", "61418 58 1 1\n", "61442 5 1 1\n", "61528 32 1 1\n", " 49 1 1\n", " 72 1 1\n", "61531 10 1 1\n", "61533 11 1 1\n", " 41 2 2\n", " 83 1 1\n", "61702 33 1 1\n", " 47 1 1\n", " 48 1 1\n", " 91 2 2\n", "61756 56 2 2\n", " 72 1 1\n", " 77 1 1\n", "62487 6 1 1\n", "62508 32 1 1\n", "62824 21 1 1\n", "\n", "[22857 rows x 2 columns]" ] }, "execution_count": 13, "metadata": {}, "output_type": "execute_result" } ], "source": [ "train.groupby(['srch_destination_id',\n", " 'hotel_cluster'])['is_booking'].agg(['sum','count'])\n", "\n", "# srch_destination_id = ex) 도쿄라고 했을때 나오는 그룹 => hotel_cluster 고로, srch_destination_id 와 hotel_country는 유사할것임" ] }, { "cell_type": "markdown", "metadata": { "collapsed": true }, "source": [ "# 이게 baseline 앞으론 남들과 다르게 예약한 사람을 찾아서 그들을 지켜보자" ] }, { "cell_type": "code", "execution_count": 2, "metadata": { "collapsed": false }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "preprocessing train_data\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ "C:\\Users\\Byeon\\Anaconda3\\envs\\py27\\lib\\site-packages\\ipykernel\\__main__.py:14: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame.\n", "Try using .loc[row_indexer,col_indexer] = value instead\n", "\n", "See the caveats in the documentation: http://pandas.pydata.org/pandas-docs/stable/indexing.html#indexing-view-versus-copy\n", "C:\\Users\\Byeon\\Anaconda3\\envs\\py27\\lib\\site-packages\\ipykernel\\__main__.py:15: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame.\n", "Try using .loc[row_indexer,col_indexer] = value instead\n", "\n", "See the caveats in the documentation: http://pandas.pydata.org/pandas-docs/stable/indexing.html#indexing-view-versus-copy\n", "C:\\Users\\Byeon\\Anaconda3\\envs\\py27\\lib\\site-packages\\ipykernel\\__main__.py:16: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame.\n", "Try using .loc[row_indexer,col_indexer] = value instead\n", "\n", "See the caveats in the documentation: http://pandas.pydata.org/pandas-docs/stable/indexing.html#indexing-view-versus-copy\n" ] }, { "ename": "ValueError", "evalue": "Cannot convert NA to integer", "output_type": "error", "traceback": [ "\u001b[0;31m---------------------------------------------------------------------------\u001b[0m", "\u001b[0;31mValueError\u001b[0m Traceback (most recent call last)", "\u001b[0;32m<ipython-input-2-fb4819ba599b>\u001b[0m in \u001b[0;36m<module>\u001b[0;34m()\u001b[0m\n\u001b[0;32m----> 1\u001b[0;31m \u001b[0mget_ipython\u001b[0m\u001b[1;33m(\u001b[0m\u001b[1;33m)\u001b[0m\u001b[1;33m.\u001b[0m\u001b[0mrun_cell_magic\u001b[0m\u001b[1;33m(\u001b[0m\u001b[1;34mu'time'\u001b[0m\u001b[1;33m,\u001b[0m \u001b[1;34mu''\u001b[0m\u001b[1;33m,\u001b[0m \u001b[1;34mu'%%time\\ntrain = pd.read_csv(\"../data/train_2013.csv\", index_col=0)\\ntrain = train.reset_index(drop=True)\\nnp.random.seed(402)\\ntrain = train.ix[np.random.choice(train.index, 50000)]\\ntrain = train.reset_index(drop=True)\\n\\n\\nprint(\\'preprocessing train_data\\')\\nuse_col = [\"srch_co\",\"srch_ci\",\"user_location_region\",\\\\\\n \"hotel_market\",\"srch_destination_id\",\"hotel_country\",\"srch_adults_cnt\",\"srch_children_cnt\",\"hotel_cluster\"]\\n\\ntrain_y = train[[\"hotel_cluster\"]]\\n\\ntrain_x = train[use_col]\\ntrain_x[\"srch_ci\"] = pd.to_datetime(train_x[\"srch_ci\"], errors=\"coerce\")\\ntrain_x[\"srch_co\"] = pd.to_datetime(train_x[\"srch_co\"], errors=\"coerce\")\\ntrain_x[\"period\"] = train_x[\"srch_co\"] - train_x[\"srch_ci\"]\\ntrain_x[\"period\"] = (train_x[\"period\"] / np.timedelta64(1, \\'D\\')).astype(int)\\ntrain_x = train_x.drop([\"srch_co\",\"srch_ci\"], axis=1)\\ntrain_x[\"srch_adults_cnt\"] = train_x[\"srch_adults_cnt\"].apply(lambda x: 3 if x>=3 else x)\\ntrain_x = train_x.drop([\"srch_children_cnt\"], axis=1)\\ntrain_x = train_x[[\"hotel_market\",\"srch_destination_id\",\"hotel_country\",\"srch_adults_cnt\",\"period\",\"user_location_region\"]]\\n\\n\\n\\nuse_col = [\"srch_co\",\"srch_ci\",\"user_location_region\",\\\\\\n \"hotel_market\",\"srch_destination_id\",\"hotel_country\",\"srch_adults_cnt\",\"srch_children_cnt\"]\\nprint(\"read the test.csv\")\\ntest = pd.read_csv(\"../data/test.csv\")\\ntest = test[use_col]\\n\\nprint(\"preprocessing test_data\")\\n\\ntest[\"srch_ci\"] = pd.to_datetime(test[\"srch_ci\"], errors=\"coerce\")\\ntest[\"srch_co\"] = pd.to_datetime(test[\"srch_co\"], errors=\"coerce\")\\ntest[\"period\"] = test[\"srch_co\"] - test[\"srch_ci\"]\\ntest[\"period\"] = (test[\"period\"] / np.timedelta64(1, \\'D\\')).fillna(0.0).astype(int)\\ntest = test.drop([\"srch_co\",\"srch_ci\"], axis=1)\\ntest[\"num\"] = 1\\ntest[\"srch_adults_cnt\"] = test[\"srch_adults_cnt\"].apply(lambda x: 3 if x>=3 else x)\\ntest = test.drop([\"num\",\"srch_children_cnt\"], axis=1)\\n\\ntest = test[[\"hotel_market\",\"srch_destination_id\",\"hotel_country\",\"srch_adults_cnt\",\"period\",\"user_location_region\"]]\\n\\nprint(\"modeling strart\")\\nmodel = RandomForestClassifier(n_estimators=10, max_depth=7, n_jobs=-1, random_state=777)\\nprint(\\'=\\'*50)\\nprint(\\'# Test shape : {}\\'.format(test.shape))\\n\\nmodel.fit(train_x,train_y)\\n\\npreds = model.predict_proba(test)\\npreds = np.fliplr(np.argsort(preds, axis=1))\\n\\nprint(\"save file\")\\n\\nresult_df = pd.DataFrame([ \" \".join(row) for row in preds[:,:5].astype(str)], columns=[\"hotel_cluster\"])\\nresult_df.index.names = [\"id\"]\\nfile_name = datetime.now().strftime(\"result_%Y%m%d%H%M%S\") + \\'.csv\\'\\nresult_df.to_csv(os.path.join(\\'../output\\',file_name), index=True)'\u001b[0m\u001b[1;33m)\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[0m", "\u001b[0;32mC:\\Users\\Byeon\\Anaconda3\\envs\\py27\\lib\\site-packages\\IPython\\core\\interactiveshell.pyc\u001b[0m in \u001b[0;36mrun_cell_magic\u001b[0;34m(self, magic_name, line, cell)\u001b[0m\n\u001b[1;32m 2113\u001b[0m \u001b[0mmagic_arg_s\u001b[0m \u001b[1;33m=\u001b[0m \u001b[0mself\u001b[0m\u001b[1;33m.\u001b[0m\u001b[0mvar_expand\u001b[0m\u001b[1;33m(\u001b[0m\u001b[0mline\u001b[0m\u001b[1;33m,\u001b[0m \u001b[0mstack_depth\u001b[0m\u001b[1;33m)\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[1;32m 2114\u001b[0m \u001b[1;32mwith\u001b[0m \u001b[0mself\u001b[0m\u001b[1;33m.\u001b[0m\u001b[0mbuiltin_trap\u001b[0m\u001b[1;33m:\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[0;32m-> 2115\u001b[0;31m \u001b[0mresult\u001b[0m \u001b[1;33m=\u001b[0m \u001b[0mfn\u001b[0m\u001b[1;33m(\u001b[0m\u001b[0mmagic_arg_s\u001b[0m\u001b[1;33m,\u001b[0m \u001b[0mcell\u001b[0m\u001b[1;33m)\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 2116\u001b[0m \u001b[1;32mreturn\u001b[0m \u001b[0mresult\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[1;32m 2117\u001b[0m \u001b[1;33m\u001b[0m\u001b[0m\n", "\u001b[0;32m<decorator-gen-60>\u001b[0m in \u001b[0;36mtime\u001b[0;34m(self, line, cell, local_ns)\u001b[0m\n", "\u001b[0;32mC:\\Users\\Byeon\\Anaconda3\\envs\\py27\\lib\\site-packages\\IPython\\core\\magic.pyc\u001b[0m in \u001b[0;36m<lambda>\u001b[0;34m(f, *a, **k)\u001b[0m\n\u001b[1;32m 186\u001b[0m \u001b[1;31m# but it's overkill for just that one bit of state.\u001b[0m\u001b[1;33m\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[1;32m 187\u001b[0m \u001b[1;32mdef\u001b[0m \u001b[0mmagic_deco\u001b[0m\u001b[1;33m(\u001b[0m\u001b[0marg\u001b[0m\u001b[1;33m)\u001b[0m\u001b[1;33m:\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[0;32m--> 188\u001b[0;31m \u001b[0mcall\u001b[0m \u001b[1;33m=\u001b[0m \u001b[1;32mlambda\u001b[0m \u001b[0mf\u001b[0m\u001b[1;33m,\u001b[0m \u001b[1;33m*\u001b[0m\u001b[0ma\u001b[0m\u001b[1;33m,\u001b[0m \u001b[1;33m**\u001b[0m\u001b[0mk\u001b[0m\u001b[1;33m:\u001b[0m \u001b[0mf\u001b[0m\u001b[1;33m(\u001b[0m\u001b[1;33m*\u001b[0m\u001b[0ma\u001b[0m\u001b[1;33m,\u001b[0m \u001b[1;33m**\u001b[0m\u001b[0mk\u001b[0m\u001b[1;33m)\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 189\u001b[0m \u001b[1;33m\u001b[0m\u001b[0m\n\u001b[1;32m 190\u001b[0m \u001b[1;32mif\u001b[0m \u001b[0mcallable\u001b[0m\u001b[1;33m(\u001b[0m\u001b[0marg\u001b[0m\u001b[1;33m)\u001b[0m\u001b[1;33m:\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n", "\u001b[0;32mC:\\Users\\Byeon\\Anaconda3\\envs\\py27\\lib\\site-packages\\IPython\\core\\magics\\execution.pyc\u001b[0m in \u001b[0;36mtime\u001b[0;34m(self, line, cell, local_ns)\u001b[0m\n\u001b[1;32m 1174\u001b[0m \u001b[1;32mif\u001b[0m \u001b[0mmode\u001b[0m\u001b[1;33m==\u001b[0m\u001b[1;34m'eval'\u001b[0m\u001b[1;33m:\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[1;32m 1175\u001b[0m \u001b[0mst\u001b[0m \u001b[1;33m=\u001b[0m \u001b[0mclock2\u001b[0m\u001b[1;33m(\u001b[0m\u001b[1;33m)\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[0;32m-> 1176\u001b[0;31m \u001b[0mout\u001b[0m \u001b[1;33m=\u001b[0m \u001b[0meval\u001b[0m\u001b[1;33m(\u001b[0m\u001b[0mcode\u001b[0m\u001b[1;33m,\u001b[0m \u001b[0mglob\u001b[0m\u001b[1;33m,\u001b[0m \u001b[0mlocal_ns\u001b[0m\u001b[1;33m)\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 1177\u001b[0m \u001b[0mend\u001b[0m \u001b[1;33m=\u001b[0m \u001b[0mclock2\u001b[0m\u001b[1;33m(\u001b[0m\u001b[1;33m)\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[1;32m 1178\u001b[0m \u001b[1;32melse\u001b[0m\u001b[1;33m:\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n", "\u001b[0;32m<timed eval>\u001b[0m in \u001b[0;36m<module>\u001b[0;34m()\u001b[0m\n", "\u001b[0;32mC:\\Users\\Byeon\\Anaconda3\\envs\\py27\\lib\\site-packages\\IPython\\core\\interactiveshell.pyc\u001b[0m in \u001b[0;36mrun_cell_magic\u001b[0;34m(self, magic_name, line, cell)\u001b[0m\n\u001b[1;32m 2113\u001b[0m \u001b[0mmagic_arg_s\u001b[0m \u001b[1;33m=\u001b[0m \u001b[0mself\u001b[0m\u001b[1;33m.\u001b[0m\u001b[0mvar_expand\u001b[0m\u001b[1;33m(\u001b[0m\u001b[0mline\u001b[0m\u001b[1;33m,\u001b[0m \u001b[0mstack_depth\u001b[0m\u001b[1;33m)\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[1;32m 2114\u001b[0m \u001b[1;32mwith\u001b[0m \u001b[0mself\u001b[0m\u001b[1;33m.\u001b[0m\u001b[0mbuiltin_trap\u001b[0m\u001b[1;33m:\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[0;32m-> 2115\u001b[0;31m \u001b[0mresult\u001b[0m \u001b[1;33m=\u001b[0m \u001b[0mfn\u001b[0m\u001b[1;33m(\u001b[0m\u001b[0mmagic_arg_s\u001b[0m\u001b[1;33m,\u001b[0m \u001b[0mcell\u001b[0m\u001b[1;33m)\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 2116\u001b[0m \u001b[1;32mreturn\u001b[0m \u001b[0mresult\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[1;32m 2117\u001b[0m \u001b[1;33m\u001b[0m\u001b[0m\n", "\u001b[0;32m<decorator-gen-60>\u001b[0m in \u001b[0;36mtime\u001b[0;34m(self, line, cell, local_ns)\u001b[0m\n", "\u001b[0;32mC:\\Users\\Byeon\\Anaconda3\\envs\\py27\\lib\\site-packages\\IPython\\core\\magic.pyc\u001b[0m in \u001b[0;36m<lambda>\u001b[0;34m(f, *a, **k)\u001b[0m\n\u001b[1;32m 186\u001b[0m \u001b[1;31m# but it's overkill for just that one bit of state.\u001b[0m\u001b[1;33m\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[1;32m 187\u001b[0m \u001b[1;32mdef\u001b[0m \u001b[0mmagic_deco\u001b[0m\u001b[1;33m(\u001b[0m\u001b[0marg\u001b[0m\u001b[1;33m)\u001b[0m\u001b[1;33m:\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[0;32m--> 188\u001b[0;31m \u001b[0mcall\u001b[0m \u001b[1;33m=\u001b[0m \u001b[1;32mlambda\u001b[0m \u001b[0mf\u001b[0m\u001b[1;33m,\u001b[0m \u001b[1;33m*\u001b[0m\u001b[0ma\u001b[0m\u001b[1;33m,\u001b[0m \u001b[1;33m**\u001b[0m\u001b[0mk\u001b[0m\u001b[1;33m:\u001b[0m \u001b[0mf\u001b[0m\u001b[1;33m(\u001b[0m\u001b[1;33m*\u001b[0m\u001b[0ma\u001b[0m\u001b[1;33m,\u001b[0m \u001b[1;33m**\u001b[0m\u001b[0mk\u001b[0m\u001b[1;33m)\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 189\u001b[0m \u001b[1;33m\u001b[0m\u001b[0m\n\u001b[1;32m 190\u001b[0m \u001b[1;32mif\u001b[0m \u001b[0mcallable\u001b[0m\u001b[1;33m(\u001b[0m\u001b[0marg\u001b[0m\u001b[1;33m)\u001b[0m\u001b[1;33m:\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n", "\u001b[0;32mC:\\Users\\Byeon\\Anaconda3\\envs\\py27\\lib\\site-packages\\IPython\\core\\magics\\execution.pyc\u001b[0m in \u001b[0;36mtime\u001b[0;34m(self, line, cell, local_ns)\u001b[0m\n\u001b[1;32m 1178\u001b[0m \u001b[1;32melse\u001b[0m\u001b[1;33m:\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[1;32m 1179\u001b[0m \u001b[0mst\u001b[0m \u001b[1;33m=\u001b[0m \u001b[0mclock2\u001b[0m\u001b[1;33m(\u001b[0m\u001b[1;33m)\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[0;32m-> 1180\u001b[0;31m \u001b[1;32mexec\u001b[0m\u001b[1;33m(\u001b[0m\u001b[0mcode\u001b[0m\u001b[1;33m,\u001b[0m \u001b[0mglob\u001b[0m\u001b[1;33m,\u001b[0m \u001b[0mlocal_ns\u001b[0m\u001b[1;33m)\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 1181\u001b[0m \u001b[0mend\u001b[0m \u001b[1;33m=\u001b[0m \u001b[0mclock2\u001b[0m\u001b[1;33m(\u001b[0m\u001b[1;33m)\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[1;32m 1182\u001b[0m \u001b[0mout\u001b[0m \u001b[1;33m=\u001b[0m \u001b[0mNone\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n", "\u001b[0;32m<timed exec>\u001b[0m in \u001b[0;36m<module>\u001b[0;34m()\u001b[0m\n", "\u001b[0;32mC:\\Users\\Byeon\\Anaconda3\\envs\\py27\\lib\\site-packages\\pandas\\core\\generic.pyc\u001b[0m in \u001b[0;36mastype\u001b[0;34m(self, dtype, copy, raise_on_error, **kwargs)\u001b[0m\n\u001b[1;32m 2948\u001b[0m \u001b[1;33m\u001b[0m\u001b[0m\n\u001b[1;32m 2949\u001b[0m mgr = self._data.astype(dtype=dtype, copy=copy,\n\u001b[0;32m-> 2950\u001b[0;31m raise_on_error=raise_on_error, **kwargs)\n\u001b[0m\u001b[1;32m 2951\u001b[0m \u001b[1;32mreturn\u001b[0m \u001b[0mself\u001b[0m\u001b[1;33m.\u001b[0m\u001b[0m_constructor\u001b[0m\u001b[1;33m(\u001b[0m\u001b[0mmgr\u001b[0m\u001b[1;33m)\u001b[0m\u001b[1;33m.\u001b[0m\u001b[0m__finalize__\u001b[0m\u001b[1;33m(\u001b[0m\u001b[0mself\u001b[0m\u001b[1;33m)\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[1;32m 2952\u001b[0m \u001b[1;33m\u001b[0m\u001b[0m\n", "\u001b[0;32mC:\\Users\\Byeon\\Anaconda3\\envs\\py27\\lib\\site-packages\\pandas\\core\\internals.pyc\u001b[0m in \u001b[0;36mastype\u001b[0;34m(self, dtype, **kwargs)\u001b[0m\n\u001b[1;32m 2936\u001b[0m \u001b[1;33m\u001b[0m\u001b[0m\n\u001b[1;32m 2937\u001b[0m \u001b[1;32mdef\u001b[0m \u001b[0mastype\u001b[0m\u001b[1;33m(\u001b[0m\u001b[0mself\u001b[0m\u001b[1;33m,\u001b[0m \u001b[0mdtype\u001b[0m\u001b[1;33m,\u001b[0m \u001b[1;33m**\u001b[0m\u001b[0mkwargs\u001b[0m\u001b[1;33m)\u001b[0m\u001b[1;33m:\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[0;32m-> 2938\u001b[0;31m \u001b[1;32mreturn\u001b[0m \u001b[0mself\u001b[0m\u001b[1;33m.\u001b[0m\u001b[0mapply\u001b[0m\u001b[1;33m(\u001b[0m\u001b[1;34m'astype'\u001b[0m\u001b[1;33m,\u001b[0m \u001b[0mdtype\u001b[0m\u001b[1;33m=\u001b[0m\u001b[0mdtype\u001b[0m\u001b[1;33m,\u001b[0m \u001b[1;33m**\u001b[0m\u001b[0mkwargs\u001b[0m\u001b[1;33m)\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 2939\u001b[0m \u001b[1;33m\u001b[0m\u001b[0m\n\u001b[1;32m 2940\u001b[0m \u001b[1;32mdef\u001b[0m \u001b[0mconvert\u001b[0m\u001b[1;33m(\u001b[0m\u001b[0mself\u001b[0m\u001b[1;33m,\u001b[0m \u001b[1;33m**\u001b[0m\u001b[0mkwargs\u001b[0m\u001b[1;33m)\u001b[0m\u001b[1;33m:\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n", "\u001b[0;32mC:\\Users\\Byeon\\Anaconda3\\envs\\py27\\lib\\site-packages\\pandas\\core\\internals.pyc\u001b[0m in \u001b[0;36mapply\u001b[0;34m(self, f, axes, filter, do_integrity_check, consolidate, raw, **kwargs)\u001b[0m\n\u001b[1;32m 2888\u001b[0m \u001b[1;33m\u001b[0m\u001b[0m\n\u001b[1;32m 2889\u001b[0m \u001b[0mkwargs\u001b[0m\u001b[1;33m[\u001b[0m\u001b[1;34m'mgr'\u001b[0m\u001b[1;33m]\u001b[0m \u001b[1;33m=\u001b[0m \u001b[0mself\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[0;32m-> 2890\u001b[0;31m \u001b[0mapplied\u001b[0m \u001b[1;33m=\u001b[0m \u001b[0mgetattr\u001b[0m\u001b[1;33m(\u001b[0m\u001b[0mb\u001b[0m\u001b[1;33m,\u001b[0m \u001b[0mf\u001b[0m\u001b[1;33m)\u001b[0m\u001b[1;33m(\u001b[0m\u001b[1;33m**\u001b[0m\u001b[0mkwargs\u001b[0m\u001b[1;33m)\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 2891\u001b[0m \u001b[0mresult_blocks\u001b[0m \u001b[1;33m=\u001b[0m \u001b[0m_extend_blocks\u001b[0m\u001b[1;33m(\u001b[0m\u001b[0mapplied\u001b[0m\u001b[1;33m,\u001b[0m \u001b[0mresult_blocks\u001b[0m\u001b[1;33m)\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[1;32m 2892\u001b[0m \u001b[1;33m\u001b[0m\u001b[0m\n", "\u001b[0;32mC:\\Users\\Byeon\\Anaconda3\\envs\\py27\\lib\\site-packages\\pandas\\core\\internals.pyc\u001b[0m in \u001b[0;36mastype\u001b[0;34m(self, dtype, copy, raise_on_error, values, **kwargs)\u001b[0m\n\u001b[1;32m 432\u001b[0m **kwargs):\n\u001b[1;32m 433\u001b[0m return self._astype(dtype, copy=copy, raise_on_error=raise_on_error,\n\u001b[0;32m--> 434\u001b[0;31m values=values, **kwargs)\n\u001b[0m\u001b[1;32m 435\u001b[0m \u001b[1;33m\u001b[0m\u001b[0m\n\u001b[1;32m 436\u001b[0m def _astype(self, dtype, copy=False, raise_on_error=True, values=None,\n", "\u001b[0;32mC:\\Users\\Byeon\\Anaconda3\\envs\\py27\\lib\\site-packages\\pandas\\core\\internals.pyc\u001b[0m in \u001b[0;36m_astype\u001b[0;34m(self, dtype, copy, raise_on_error, values, klass, mgr, **kwargs)\u001b[0m\n\u001b[1;32m 475\u001b[0m \u001b[1;33m\u001b[0m\u001b[0m\n\u001b[1;32m 476\u001b[0m \u001b[1;31m# _astype_nansafe works fine with 1-d only\u001b[0m\u001b[1;33m\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[0;32m--> 477\u001b[0;31m \u001b[0mvalues\u001b[0m \u001b[1;33m=\u001b[0m \u001b[0mcom\u001b[0m\u001b[1;33m.\u001b[0m\u001b[0m_astype_nansafe\u001b[0m\u001b[1;33m(\u001b[0m\u001b[0mvalues\u001b[0m\u001b[1;33m.\u001b[0m\u001b[0mravel\u001b[0m\u001b[1;33m(\u001b[0m\u001b[1;33m)\u001b[0m\u001b[1;33m,\u001b[0m \u001b[0mdtype\u001b[0m\u001b[1;33m,\u001b[0m \u001b[0mcopy\u001b[0m\u001b[1;33m=\u001b[0m\u001b[0mTrue\u001b[0m\u001b[1;33m)\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 478\u001b[0m \u001b[0mvalues\u001b[0m \u001b[1;33m=\u001b[0m \u001b[0mvalues\u001b[0m\u001b[1;33m.\u001b[0m\u001b[0mreshape\u001b[0m\u001b[1;33m(\u001b[0m\u001b[0mself\u001b[0m\u001b[1;33m.\u001b[0m\u001b[0mshape\u001b[0m\u001b[1;33m)\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[1;32m 479\u001b[0m \u001b[1;33m\u001b[0m\u001b[0m\n", "\u001b[0;32mC:\\Users\\Byeon\\Anaconda3\\envs\\py27\\lib\\site-packages\\pandas\\core\\common.pyc\u001b[0m in \u001b[0;36m_astype_nansafe\u001b[0;34m(arr, dtype, copy)\u001b[0m\n\u001b[1;32m 1912\u001b[0m \u001b[1;33m\u001b[0m\u001b[0m\n\u001b[1;32m 1913\u001b[0m \u001b[1;32mif\u001b[0m \u001b[0mnp\u001b[0m\u001b[1;33m.\u001b[0m\u001b[0misnan\u001b[0m\u001b[1;33m(\u001b[0m\u001b[0marr\u001b[0m\u001b[1;33m)\u001b[0m\u001b[1;33m.\u001b[0m\u001b[0many\u001b[0m\u001b[1;33m(\u001b[0m\u001b[1;33m)\u001b[0m\u001b[1;33m:\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[0;32m-> 1914\u001b[0;31m \u001b[1;32mraise\u001b[0m \u001b[0mValueError\u001b[0m\u001b[1;33m(\u001b[0m\u001b[1;34m'Cannot convert NA to integer'\u001b[0m\u001b[1;33m)\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 1915\u001b[0m \u001b[1;32melif\u001b[0m \u001b[0marr\u001b[0m\u001b[1;33m.\u001b[0m\u001b[0mdtype\u001b[0m \u001b[1;33m==\u001b[0m \u001b[0mnp\u001b[0m\u001b[1;33m.\u001b[0m\u001b[0mobject_\u001b[0m \u001b[1;32mand\u001b[0m \u001b[0mnp\u001b[0m\u001b[1;33m.\u001b[0m\u001b[0missubdtype\u001b[0m\u001b[1;33m(\u001b[0m\u001b[0mdtype\u001b[0m\u001b[1;33m.\u001b[0m\u001b[0mtype\u001b[0m\u001b[1;33m,\u001b[0m \u001b[0mnp\u001b[0m\u001b[1;33m.\u001b[0m\u001b[0minteger\u001b[0m\u001b[1;33m)\u001b[0m\u001b[1;33m:\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[1;32m 1916\u001b[0m \u001b[1;31m# work around NumPy brokenness, #1987\u001b[0m\u001b[1;33m\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n", "\u001b[0;31mValueError\u001b[0m: Cannot convert NA to integer" ] } ], "source": [ "%%time\n", "train = pd.read_csv(\"../data/train_2013.csv\", index_col=0)\n", "train = train.reset_index(drop=True)\n", "np.random.seed(402)\n", "train = train.ix[np.random.choice(train.index, 50000)]\n", "train = train.reset_index(drop=True)\n", "\n", "\n", "print('preprocessing train_data')\n", "use_col = [\"srch_co\",\"srch_ci\",\"user_location_region\",\\\n", " \"hotel_market\",\"srch_destination_id\",\"hotel_country\",\"srch_adults_cnt\",\"srch_children_cnt\",\"hotel_cluster\"]\n", "\n", "train_y = train[[\"hotel_cluster\"]]\n", "\n", "train_x = train[use_col]\n", "train_x[\"srch_ci\"] = pd.to_datetime(train_x[\"srch_ci\"], errors=\"coerce\")\n", "train_x[\"srch_co\"] = pd.to_datetime(train_x[\"srch_co\"], errors=\"coerce\")\n", "train_x[\"period\"] = train_x[\"srch_co\"] - train_x[\"srch_ci\"]\n", "train_x[\"period\"] = (train_x[\"period\"] / np.timedelta64(1, 'D')).fillna(0.0).astype(int)\n", "train_x = train_x.drop([\"srch_co\",\"srch_ci\"], axis=1)\n", "train_x[\"srch_adults_cnt\"] = train_x[\"srch_adults_cnt\"].apply(lambda x: 3 if x>=3 else x)\n", "train_x = train_x.drop([\"srch_children_cnt\"], axis=1)\n", "train_x = train_x[[\"hotel_market\",\"srch_destination_id\",\"hotel_country\",\"srch_adults_cnt\",\"period\",\"user_location_region\"]]\n", "\n", "\n", "\n", "use_col = [\"srch_co\",\"srch_ci\",\"user_location_region\",\\\n", " \"hotel_market\",\"srch_destination_id\",\"hotel_country\",\"srch_adults_cnt\",\"srch_children_cnt\"]\n", "print(\"read the test.csv\")\n", "test = pd.read_csv(\"../data/test.csv\")\n", "test = test[use_col]\n", "\n", "print(\"preprocessing test_data\")\n", "\n", "test[\"srch_ci\"] = pd.to_datetime(test[\"srch_ci\"], errors=\"coerce\")\n", "test[\"srch_co\"] = pd.to_datetime(test[\"srch_co\"], errors=\"coerce\")\n", "test[\"period\"] = test[\"srch_co\"] - test[\"srch_ci\"]\n", "test[\"period\"] = (test[\"period\"] / np.timedelta64(1, 'D')).fillna(0.0).astype(int)\n", "test = test.drop([\"srch_co\",\"srch_ci\"], axis=1)\n", "test[\"num\"] = 1\n", "test[\"srch_adults_cnt\"] = test[\"srch_adults_cnt\"].apply(lambda x: 3 if x>=3 else x)\n", "test = test.drop([\"num\",\"srch_children_cnt\"], axis=1)\n", "\n", "test = test[[\"hotel_market\",\"srch_destination_id\",\"hotel_country\",\"srch_adults_cnt\",\"period\",\"user_location_region\"]]\n", "\n", "print(\"modeling strart\")\n", "model = RandomForestClassifier(n_estimators=10, max_depth=7, n_jobs=-1, random_state=777)\n", "print('='*50)\n", "print('# Test shape : {}'.format(test.shape))\n", "\n", "model.fit(train_x,train_y)\n", "\n", "preds = model.predict_proba(test)\n", "preds = np.fliplr(np.argsort(preds, axis=1))\n", "\n", "print(\"save file\")\n", "\n", "result_df = pd.DataFrame([ \" \".join(row) for row in preds[:,:5].astype(str)], columns=[\"hotel_cluster\"])\n", "result_df.index.names = [\"id\"]\n", "file_name = datetime.now().strftime(\"result_%Y%m%d%H%M%S\") + '.csv'\n", "result_df.to_csv(os.path.join('../output',file_name), index=True)" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "collapsed": true }, "outputs": [], "source": [] } ], "metadata": { "kernelspec": { "display_name": "Python 2", "language": "python", "name": "python2" }, "language_info": { "codemirror_mode": { "name": "ipython", "version": 2 }, "file_extension": ".py", "mimetype": "text/x-python", "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython2", "version": "2.7.12" } }, "nbformat": 4, "nbformat_minor": 0 }
mit