markdown
stringlengths 0
37k
| code
stringlengths 1
33.3k
| path
stringlengths 8
215
| repo_name
stringlengths 6
77
| license
stringclasses 15
values |
---|---|---|---|---|
Scatter plots
Learn how to use Matplotlib's plt.scatter function to make a 2d scatter plot.
Generate random data using np.random.randn.
Style the markers (color, size, shape, alpha) appropriately.
Include an x and y label and title. | plt.figure(figsize=(10,8))
plt.scatter(np.random.randn(100),np.random.randn(100),s=50,c='b',marker='d',alpha=.7)
plt.xlabel('x-coordinate')
plt.ylabel('y-coordinate')
plt.title('100 Random Points') | assignments/assignment04/MatplotlibExercises.ipynb | joshnsolomon/phys202-2015-work | mit |
Histogram
Learn how to use Matplotlib's plt.hist function to make a 1d histogram.
Generate randpom data using np.random.randn.
Figure out how to set the number of histogram bins and other style options.
Include an x and y label and title. | plt.figure(figsize=(10,8))
p=plt.hist(np.random.randn(100000),bins=50,color='g')
plt.xlabel('value')
plt.ylabel('frequency')
plt.title('Distrobution 100000 Random Points with mean of 0 and variance of 1') | assignments/assignment04/MatplotlibExercises.ipynb | joshnsolomon/phys202-2015-work | mit |
一开始你可能觉得没必要在 try/except 中使用 else 子句,毕竟下面代码中只有 dangerous_cal() 不抛出异常 after_call() 才会执行 | # try:
# dangerous_call()
# after_call()
# except OSError:
# log('OSError...') | content/fluent_python/15_with.ipynb | ghvn7777/ghvn7777.github.io | apache-2.0 |
然而,after_call() 不应该放在 try 块中。为了清晰准确,try 块应该只抛出预期异常的语句,因此像下面这样写更好: | # try:
# dangerous_call()
# except OSError:
# log('OSError...')
# else:
# after_call() | content/fluent_python/15_with.ipynb | ghvn7777/ghvn7777.github.io | apache-2.0 |
现在很明确,try 为了捕获的是 dangerous_call() 的异常。
Python 中,try/except 不仅用于处理错误,还用于控制流程,为此,官方定义了几个缩略词:
EAFP:
取得原谅比获得许可容易(easier to ask for forgiveness than
permission)。这是一种常见的 Python 编程风格,先假定存在有效
的键或属性,如果假定不成立,那么捕获异常。这种风格简单明
快,特点是代码中有很多 try 和 except 语句。与其他很多语言一
样(如 C 语言),这种风格的对立面是 LBYL 风格。
LBYL
三思而后行(look before you leap)。这种编程风格在调用函数
或查找属性或键之前显式测试前提条件。与 EAFP 风格相反,这种
风格的特点是代码中有很多 if 语句。在多线程环境中,LBYL 风
格可能会在“检查”和“行事”的空当引入条件竞争。例如,对 if
key in mapping: return mapping[key] 这段代码来说,如果
在测试之后,但在查找之前,另一个线程从映射中删除了那个键,
那么这段代码就会失败。这个问题可以使用锁或者 EAFP 风格解
决。
如果选择使用 EAFP 风格,那就要更深入地了解 else 子句,并在 try/except 中合理使用
上下文管理器和 with 块
上下文管理器对象存在的目的是管理 with 语句,就像迭代器存在是为了管理 for 语句。
with 语句目的是为了简化 try/finally 模式。上下文管理器协议包含 __enter__ 和 __exit__ 方法,with 开始时,会调用 __enter__ 方法,结束时候会调用 __exit__ 方法
最常见的是打开文件: | with open('with.ipynb') as fp:
src = fp.read(60)
len(src)
fp
fp.closed, fp.encoding
# fp 虽然可用,但不能执行 I/O 操作,
# 因为在 with 末尾,调用 TextIOWrapper.__exit__ 关闭了文件
fp.read(60) | content/fluent_python/15_with.ipynb | ghvn7777/ghvn7777.github.io | apache-2.0 |
with 的 as 子句是可选的,对 open 来说,必须加 as 子句,以便获取文件的引用。不过,有些上下文管理器会返回 None,因为没有什么有用的对象能提供给用户
下面是一个精心制作的上下文管理器执行操作,以此强调上下文管理器与 __enter__ 方法返回的对象之间的区别 | class LookingGlass:
def __enter__(self): # enter 只有一个 self 参数
import sys
self.original_write = sys.stdout.write # 保存供日后使用
sys.stdout.write = self.reverse_write # 打猴子补丁,换成自己方法
return 'JABBERWOCKY' # 返回的字符串讲存入 with 语句的 as 后的变量
def reverse_write(self, text): #取代 sys.stdout.write,反转 text
self.original_write(text[::-1])
# 正常传的参数是 None, None, None,有异常传如下异常信息
def __exit__(self, exc_type, exc_value, traceback):
import sys # 重复导入不会消耗很多资源,Python 会缓存导入模块
sys.stdout.write = self.original_write # 还原 sys.stdout.write 方法
if exc_type is ZeroDivisionError: # 如果有除 0 异样,打印消息
print('Please DO NOT divide by zero')
return True # 返回 True 告诉解释器已经处理了异常
# 如果 __exit__ 方法返回 None,或者 True 之外的值,with 块中的任何异常都会向上冒泡
with LookingGlass() as what:
print('Alice, Kitty and Snowdrop') #打印出的内容是反向的
print(what)
# with 执行完毕,可以看出 __enter__ 方法返回的值 -- 即存储在 what 变量中的值是 'JABBERWOCKY'
what
print('Back to normal') # 输出不再是反向的了 | content/fluent_python/15_with.ipynb | ghvn7777/ghvn7777.github.io | apache-2.0 |
在实际应用中,如果程序接管了标准输出,可能会把 sys.stdout 换成类似文件的其他对象,然后再切换成原来的版本。contextlib.redirect_stdout 上下文管理器就是这么做的
解释器调用 enter 方法时,除了隐式的 self 之外,不会传入任何参数,传给 __exit__ 的三个参数如下:
exc_type: 异常类(例如 ZeroDivisionError)
exc_value: 异常实例。有时好有参数传给异常构造方法,例如错误消息,参数可以通过 exc_value.args 获取
traceback: traceback 对象
上下文管理器具体工作方式如下: | # In [2]: manager = LookingGlass()
# ...: manager
# ...:
# Out[2]: <__main__.LookingGlass at 0x7f586d4aa1d0>
# In [3]: monster = manager.__enter__()
# In [4]: monster == 'JABBERWOCKY'
# Out[4]: eurT
# In [5]: monster
# Out[5]: 'YKCOWREBBAJ'
# In [6]: manager.__exit__(None, None, None)
# In [7]: monster
# Out[7]: 'JABBERWOCKY' | content/fluent_python/15_with.ipynb | ghvn7777/ghvn7777.github.io | apache-2.0 |
上面在命令行执行的,因为在 jupyter notebook 的输出有时候有莫名其妙的 bug
contextlib 模块中的实用工具
自定义上下文管理器类之前,先看一下 Python 标准库文档中的 contextlib。除了前面提到的 redirect_stdout 函数,contextlib 模块中还有一些类和其它函数,实用范围更广
closing: 如过对象提供了 close() 方法,但没有实现 __enter__/__exit__ 协议,可以实用这个函数构建上下文管理器
suppress: 构建临时忽略指定异常的上下文管理器
@contextmanager: 这个装饰器把简单的生成器函数变成上下文管理器,这样就不用创建类去实现管理协议了
ContextDecorator: 这是个基类,用于定义基于类的上下文管理器。这种上下文管理器也能用于装饰函数,在受管理的上下文中运行整个函数
ExitStack: 这个上下文管理器能进入多个上下文管理器,with 块结束时,ExitStack 按照后进先出的顺序调用栈中各个上下文管理器的 __exit__ 方法。如果事先不知道 with 块要进入多少个上下文管理器,可以使用这个类。例如同时打开任意一个文件列表中的所有文件
这些工具中使用最广泛的是 @contextmanager 装饰器,因此要格外小心,这个装饰器也有迷惑人的一面,因为它与迭代无关,却使用 yield 语句,由此可以引出协程
使用 @contextmanager
@contextmanager 装饰器能减少创建上下文管理器的样板代码量,因为不用编写一个完整的类,定义 __enter__ 和 __exit__ 方法,而只需实现一个有 yield 语句的生成器,生成想让 __enter__ 方法返回的值
在使用 @contextmanager 装饰器能减少创建上下文管理器的样板代码量,因为不用编写一个完整的类,定义 __enter__ 和 __exit__ 方法,而只需实现有一个 yield 语句的生成器,生成想让 __enter__ 方法返回的值
在使用 @contextmanager 装饰器的生成器中,yield 语句的作用是把函数的定义体分成两个部分:yield 语句前面所有代码在 with 块开始时(即解释器调用 __enter__ 方法时)执行,yield 语句后面的代码在 with 块结束时(即调用 __exit__ 方法时)执行 | import contextlib
@contextlib.contextmanager
def looking_glass():
import sys
original_write = sys.stdout.write
def reverse_write(text):
original_write(text[::-1])
sys.stdout.write = reverse_write
# 产生一个值,这个值会绑定到 with 语句的 as 子句后的目标变量上
# 执行 with 块中的代码时,这个函数会在这一点暂停
yield 'JABBERWOCKY'
# 控制权一旦跳出 with 块,继续执行 yield 语句后的代码
sys.stdout.write = original_write
with looking_glass() as what:
print('Alice, Kitty and Snowdrop')
print(what) | content/fluent_python/15_with.ipynb | ghvn7777/ghvn7777.github.io | apache-2.0 |
其实,contextlib.contextmanager 装饰器会把函数包装成实现 __enter__ 和 __exit__ 方法的类
这个类的 __enter__ 作用如下:
调用生成器函数,保存生成器对象(这里称为 gen)
调用 next(gen),执行到 yield 关键字位置
返回 next(gen) 产生的值,以便把产生的值绑定到 with/as 语句中目标变量上
with 块终止时,__exit__ 方法会做以下几件事
检查有没有把异常传给 exc_type, 如果有,调用 gen.throw(exception), 在生成器函数定义体中包含 yield 关键字的那一行跑出异常
否则,调用 next(gen),继续执行生成器函数体中 yield 语句之后的代码
上面的例子其实有一个严重的错误,如果在 with 块中抛出了异常,Python 解释器会将其捕获,然后在 looking_glass 函数的 yield 表达式再次跑出,但是,那里没有处理错误的代码,因此 looking_glass 函数会终止,永远无法恢复成原来的 sys.stdout.write 方法,导致系统处于无效状态,下面添加了一些代码,用于处理 ZeroDivisionError 异常,这样就比较健壮了 | import contextlib
@contextlib.contextmanager
def looking_glass():
import sys
original_write = sys.stdout.write
def reverse_write(text):
original_write(text[::-1])
sys.stdout.write = reverse_write
msg = ''
try:
yield 'JABBERWOCKY'
except ZeroDivisionError:
msg = 'Please DO NOT divide by zero'
finally:
sys.stdout.write = original_write
if msg:
print(msg) | content/fluent_python/15_with.ipynb | ghvn7777/ghvn7777.github.io | apache-2.0 |
前面说过,为了告诉解释器异常已经处理了,__exit__ 方法返回 True,此时解释器会压制异常。如果 __exit__ 方法没有显式返回一个值,那么解释器得到的是 None,然后向上冒泡异常。使用 @contextmanager 装饰器时,默认行为是相反的,装饰器提供的 __exit__ 方法假定发给生成器的所有异常都得到处理了,因此应该压制异常。如果不想让 @contextmanager 压制异常,必须在装饰器的函数中显式重新跑出异常
把异常发给生成器的方式是使用 throw 方法,下章讲
这样的约定的原因是,创建上下文时,生成器无法返回值,只能产出值。不过现在可以返回值了,见下章
使用 @contextmanager 装饰器时,要把 yield 语句放到 try/finally 语句中(或者放在 with 语句中),这是无法避免的,因为我们永远不知道上下文管理器用户会在 with 块中做什么
除了标准库中举得例子外,Martijin Pieters 实现原地文件重写上下文管理器是 @contextmanager 不错的使用实例,如下: | # import csv
# with inplace(csvfilename, 'r', newline='') as (infh, outfh):
# reader = csv.reader(infh)
# writer = csv.writer(outfh)
# for row in reader:
# row += ['new', 'columns']
# writer.writerow(row) | content/fluent_python/15_with.ipynb | ghvn7777/ghvn7777.github.io | apache-2.0 |
Append the output of the print command above
to the .bashrc (Linux) or .bash_profile (Mac) file in the default user library, if Numba does not work out of the box.
Faster computations in Python
Python's dynamically typed nature makes it easy to quickly write code
that works, however, this comes at the cost of execution speed, as
each time an operation is executed on a variable, its type has to be
checked by the interpreter, in order to execute the appropriate subroutine
for the given combination of variable type and operation.
The speed of computations can be greatly increased by utilizing NumPy,
where the data are stored in homogeneous C arrays inside array objects.
NumPy also provides specialized commands to do calculations quickly on
these arrays.
In this example, we will compare different implementations of a truncated
Fourier sum, which is calculated for a number of different positions.
In astronomical situations, these positions can be, for example, times of
measurement of the magnitude of a star. The sum has the form:
$m_i (t_i) = \sum_{j=1}^{n} A_j \cdot \sin( 2 \cdot \pi \cdot f_j \cdot t_i +\phi_j )$,
where $m_i$ is the $i$th magnitude of the star at time $t_i$, $n$ is the
number of Fourier terms, $A_j$ is the amplitude, $f_j$ is the frequency, and $\phi_j$ is the phase
of the $j$th Fourier term.
Preparation
First, we import the packages that we will be using, and prepare the data.
We store the $t_i$, $A_j$, $f_j$ and $\phi_j$ parameters in NumPy arrays.
We also define two functions, one which does the above sum using two for cycles,
and another one exploiting array operations of NumPy.
Furthermore, we prepare for the usage of Cython within the Notebook by loading
the Cython magic commands into it. | import numpy as np
from numba import jit, autojit
%load_ext Cython
times=np.arange(0,70,0.01)
print "The size of the time array:", times.size
freq = np.arange(0.1,6.0,0.1)*1.7763123
freq[-20:] = freq[:20]*0.744
amp = 0.05/(freq**2)+0.01
phi = freq
def fourier_sum_naive(times, freq, amp, phi):
mags = np.zeros_like(times)
for i in xrange(times.size):
for j in xrange(freq.size):
mags[i] += amp[j] * np.sin( 2 * np.pi * freq[j] * times[i] + phi[j] )
return mags
def fourier_sum_numpy(times, freq, amp, phi):
return np.sum(amp.T.reshape(-1,1) * np.sin( 2 * np.pi * freq.T.reshape(-1,1) * times.reshape(1,-1) + phi.T.reshape(-1,1)), axis=0)
| sessions/09-numba_cython/Faster_computations.ipynb | pucdata/pythonclub | gpl-3.0 |
Numba
We use the autojit function from Numba to prepare the translation of the Python function to machine code.
By default usage, the functions get translated during runtime (in a Just-In-Time JIT manner), when the
first call is made to the function. Numba produces optimized machine code, taking into account the type of
input the function receives when called for the first time.
Alternatively, the function can be defined like normal, but preceded by the @jit decorator, in order to
notify Numba about the functions to optimize, as show in the commented area below.
Note that Numba can be called eagerly, telling it the type of the expected variable, as well as the return
type of the function. This can be used to fine-tune the behavior of the function. See more in the Numba
documentation:
http://numba.pydata.org/numba-doc/dev/user/jit.html
Note that functions can also be compiled ahead of time. For more information, see:
http://numba.pydata.org/numba-doc/0.32.0/reference/aot-compilation.html | fourier_sum_naive_numba = autojit(fourier_sum_naive)
fourier_sum_numpy_numba = autojit(fourier_sum_numpy)
#@jit
#def fourier_sum_naive_numba(times, freq, amp, phi):
# mags = np.zeros_like(times)
# for i in xrange(times.size):
# for j in xrange(freq.size):
# mags[i] += amp[j] * np.sin( 2 * np.pi * freq[j] * times[i] + phi[j] )
#
# return mags
#@jit()
#def fourier_sum_numpy_numba(times, freq, amp, phi):
# return np.sum(amp.T.reshape(-1,1) * np.sin( 2 * np.pi * freq.T.reshape(-1,1) * times.reshape(1,-1) + phi.T.reshape(-1,1)), axis=0)
| sessions/09-numba_cython/Faster_computations.ipynb | pucdata/pythonclub | gpl-3.0 |
Cython
Cython works different than Numba: It produces C code that gets compiled before calling the function.
NumPy arrays store the data internally in simple C arrays, which can be accessed with the
Typed Memoryview feature of Cython. This allows operations on these arrays that completely bypass Python.
We can also import C functions, as we could writing pure C by importing the corresponding header files.
In the example implementation of the Fourier sum below, we use define two funtions.
The first one handles interactions with Python, while the second one handles the actual calculations.
Note that we also pass a temp array, in order to provide a reserved space for the function to work
on, eliminating the need to create a NumPy array within the function.
Important note
Normal usage of Cython involves creating a separate .pyx file, with the corresponding Cython code inside,
which then gets translated into a source object (.so on Unix-like systems, .dll on Windows), which can
be imported into Python like a normal .py file. See the Cython documentation for more information:
http://docs.cython.org/en/latest/src/quickstart/build.html | %%cython -a
cimport cython
import numpy as np
from libc.math cimport sin, M_PI
def fourier_sum_cython(times, freq, amp, phi, temp):
return np.asarray(fourier_sum_purec(times, freq, amp, phi, temp))
@cython.boundscheck(False)
@cython.wraparound(False)
cdef fourier_sum_purec(double[:] times, double[:] freq, double[:] amp, double[:] phi, double[:] temp):
cdef int i, j, irange, jrange
irange=len(times)
jrange=len(freq)
for i in xrange(irange):
temp[i]=0
for j in xrange(jrange):
temp[i] += amp[j] * sin( 2 * M_PI * freq[j] * times[i] + phi[j] )
return temp | sessions/09-numba_cython/Faster_computations.ipynb | pucdata/pythonclub | gpl-3.0 |
We called the cython command with the -a argument, that makes it produce an html summary of the translated code.
White parts show code that don't interact with Python at all. Optimizing Cython involves minimizing the code
that is "yellow", making the code "whiter", that is, executing more code in C.
Cython + OpenMP
We can parallelize the execution of the code using OpenMP in the parts where the code is executed
completely outside of Python, but we need to release the Global Interpreter Lock (GIL) first.
The prange command replaces the range or xrange command in the for cycle we would like to execute in
parallel. We can also call OpenMP functions, for example, to get the number of processor cores of the
system.
Note that the number of threads, the scheduler and the chunksize can have a large effect on the
performance of the code. While optimizing, you should try different chunksizes (the default is 1). | %%cython --compile-args=-fopenmp --link-args=-fopenmp --force -a
cimport cython
cimport openmp
import numpy as np
from libc.math cimport sin, M_PI
from cython.parallel import parallel, prange
def fourier_sum_cython_omp(times, freq, amp, phi, temp):
return np.asarray(fourier_sum_purec_omp(times, freq, amp, phi, temp))
@cython.boundscheck(False)
@cython.wraparound(False)
cdef fourier_sum_purec_omp(double[:] times, double[:] freq, double[:] amp, double[:] phi, double[:] temp):
cdef int i, j, irange, jrange
irange=len(times)
jrange=len(freq)
#print openmp.omp_get_num_procs()
with nogil, parallel(num_threads=4):
for i in prange(irange, schedule='dynamic', chunksize=10):
temp[i]=0
for j in xrange(jrange):
temp[i] += amp[j] * sin( 2 * M_PI * freq[j] * times[i] + phi[j] )
return temp | sessions/09-numba_cython/Faster_computations.ipynb | pucdata/pythonclub | gpl-3.0 |
Comparison
Finally, we compare the execution times of the implementations of the funtions. | temp=np.zeros_like(times)
amps_naive = fourier_sum_naive(times, freq, amp, phi)
amps_numpy = fourier_sum_numpy(times, freq, amp, phi)
amps_numba1 = fourier_sum_naive_numba(times, freq, amp, phi)
amps_numba2 = fourier_sum_numpy_numba(times, freq, amp, phi)
amps_cython = fourier_sum_cython(times, freq, amp, phi, temp)
amps_cython_omp = fourier_sum_cython_omp(times, freq, amp, phi, temp)
%timeit -n 5 -r 5 fourier_sum_naive(times, freq, amp, phi)
%timeit -n 10 -r 10 fourier_sum_numpy(times, freq, amp, phi)
%timeit -n 10 -r 10 fourier_sum_naive_numba(times, freq, amp, phi)
%timeit -n 10 -r 10 fourier_sum_numpy_numba(times, freq, amp, phi)
%timeit -n 10 -r 10 fourier_sum_cython(times, freq, amp, phi, temp)
%timeit -n 10 -r 10 fourier_sum_cython_omp(times, freq, amp, phi, temp)
import matplotlib.pylab as plt
print amps_numpy-amps_cython
fig=plt.figure()
fig.set_size_inches(16,12)
plt.plot(times,amps_naive ,'-', lw=2.0)
#plt.plot(times,amps_numpy - 2,'-', lw=2.0)
plt.plot(times,amps_numba1 - 4,'-', lw=2.0)
#plt.plot(times,amps_numba2 - 6,'-', lw=2.0)
plt.plot(times,amps_cython - 8,'-', lw=2.0)
#plt.plot(times,amps_cython_omp -10,'-', lw=2.0)
plt.show() | sessions/09-numba_cython/Faster_computations.ipynb | pucdata/pythonclub | gpl-3.0 |
A long trace | V('[23 18] average') | docs/4. Replacing Functions in the Dictionary.ipynb | calroc/joypy | gpl-3.0 |
Replacing sum and size with "compiled" versions.
Both sum and size are catamorphisms, they each convert a sequence to a single value. | J('[sum] help')
J('[size] help') | docs/4. Replacing Functions in the Dictionary.ipynb | calroc/joypy | gpl-3.0 |
We can use "compiled" versions (they're not really compiled in this case, they're hand-written in Python) to speed up evaluation and make the trace more readable. The sum function is already in the library. It gets shadowed by the definition version above during initialize(). | from joy.library import SimpleFunctionWrapper, primitives
from joy.utils.stack import iter_stack
@SimpleFunctionWrapper
def size(stack):
'''Return the size of the sequence on the stack.'''
sequence, stack = stack
n = 0
for _ in iter_stack(sequence):
n += 1
return n, stack
sum_ = next(p for p in primitives if p.name == 'sum') | docs/4. Replacing Functions in the Dictionary.ipynb | calroc/joypy | gpl-3.0 |
Now we replace them old versions in the dictionary with the new versions and re-evaluate the expression. | old_sum, D['sum'] = D['sum'], sum_
old_size, D['size'] = D['size'], size | docs/4. Replacing Functions in the Dictionary.ipynb | calroc/joypy | gpl-3.0 |
You can see that size and sum now execute in a single step. | V('[23 18] average') | docs/4. Replacing Functions in the Dictionary.ipynb | calroc/joypy | gpl-3.0 |
效果等同于: | function("wheather", "Canada?")
function(1, 3+5) | _src/exercise/day1.ipynb | picklecai/OMOOC2py | mit |
那为什么要使用apply呢? | apply(function, (), {"a":"35cm", "b":"12cm"})
apply(function, ("v",), {"b":"love"})
apply(function, ( ,"v"), {"a":"hello"}) | _src/exercise/day1.ipynb | picklecai/OMOOC2py | mit |
何谓“关键字参数”?
apply使用字典传递关键字参数,实际上就是字典的键是函数的参数名,字典的值是函数的实际参数值。(相对于形参和实参)
根据上面的例子看,如果部分传递,只能传递后面的关键字参数,不能传递前面的。????
apply 函数的一个常见用法是把构造函数参数从子类传递到基类, 尤其是构造函数需要接受很多参数的时候.
子类和基类是什么概念? | class Rectangle:
def __init__(self, color="white", width=10, height=10):
print "Create a ", color, self, "sized", width, "X", height
class RoundRectangle:
def __init__(self, **kw):
apply(Rectangle.__init__, (self,), kw)
rect = Rectangle(color="green", width=200, height=156)
rect = RoundRectangle(color="brown", width=20, height=15) | _src/exercise/day1.ipynb | picklecai/OMOOC2py | mit |
第二个函数不知道如何使用 ????
修改,子类要以父类为参数!!! | class RoundRectangle(Rectangle):
def __init__(self, **kw):
apply(Rectangle.__init__, (self,), kw)
rect2 = RoundRectangle(color= "blue", width=23, height=10) | _src/exercise/day1.ipynb | picklecai/OMOOC2py | mit |
使用 * 来标记元组, ** 来标记字典.
apply的第一个参数是函数名,第二个参数是元组,第三个参数是字典。所以用上面这个表达最好不过。 | args = ("er",)
kwargs = {"b":"haha"}
function(*args, **kwargs)
apply(function, args, kwargs) | _src/exercise/day1.ipynb | picklecai/OMOOC2py | mit |
以上等价。
用这个意思引申: | kw = {"color":"brown", "width":123, "height": 34}
rect3 = RoundRectangle(**kw)
rect4 = Rectangle(**kw)
arg=("yellow", 45, 23)
rect5 = Rectangle(*arg) | _src/exercise/day1.ipynb | picklecai/OMOOC2py | mit |
1.2 import | import glob, os
modules =[]
for module_file in glob.glob("*-plugin.py"):
try:
module_name, ext = os.path.splitext(os.path.basename(module_file))
module = __import__(module_name)
modules.append(module)
except ImportError:
pass #ignore broken modules
for module in modules:
module.hello()
example-plugin says hello
def hello():
print "example-plugin says hello"
def getfunctionname(module_name, function_name):
module = __import__(module_name)
return getattr(module, function_name)
print repr(getfunctionname("dumbdbm","open")) | _src/exercise/day1.ipynb | picklecai/OMOOC2py | mit |
3. os模块 | import os
import string
def replace(file, search_for, replace_with):
back = os.path.splitext(file)[0] + ".bak"
temp = os.path.splitext(file)[0] + ".tmp"
try:
os.remove(temp)
except os.error:
pass
fi = open(file)
fo = open(temp, "w")
for s in fi.readlines():
fo.write(string.replace(s, search_for, replace_with))
fi.close()
fo.close()
try:
os.remove(back)
except os.error:
pass
os.rename(file, back)
os.rename(temp, file)
file = "samples/sample.txt"
replace(file, "hello", "tjena")
replace(file, "tjena", "hello") | _src/exercise/day1.ipynb | picklecai/OMOOC2py | mit |
os.path.splitext:切扩展名
os.remove:remove a file。上面的程序里为什么要remove呢? | def replace1(file, search_for, replace_with):
back = os.path.splitext(file)[0] + ".bak"
temp = os.path.splitext(file)[0] + ".tmp"
try:
os.remove(temp)
except os.error:
pass
fi = open(file)
fo = open(temp, "w")
for s in fi.readlines():
fo.write(string.replace(s, search_for, replace_with))
fi.close()
fo.close()
try:
os.remove(back)
except os.error:
pass
os.rename(file, back)
os.rename(temp, file)
replace1(file, "hello", "tjena")
replace1(file, "tjena", "hello")
doc = os.path.splitext(file)[0] + ".doc"
for file in os.listdir("samples"):
print file
cwd = os.getcwd()
print 1, cwd
os.chdir("samples")
print 2, os.getcwd()
os.chdir(os.pardir)
print 3, os.getcwd() | _src/exercise/day1.ipynb | picklecai/OMOOC2py | mit |
5. stat模块 | import stat
import os, time
st = os.stat("samples/sample.txt") | _src/exercise/day1.ipynb | picklecai/OMOOC2py | mit |
os.stat是将文件的相关属性读出来,然后用stat模块来处理,处理方式有多重,就要看看stat提供了什么了。
6. string模块 | import string
text = "Monty Python's Flying Circus"
print "upper", "=>", string.upper(text)
print "lower", "=>", string.lower(text)
print "split", "=>", string.split(text) | _src/exercise/day1.ipynb | picklecai/OMOOC2py | mit |
分列变成了list | print "join", "=>", string.join(string.split(text)) | _src/exercise/day1.ipynb | picklecai/OMOOC2py | mit |
join和split相反。 | print "replace", "=>", string.replace(text, "Python", "Cplus") | _src/exercise/day1.ipynb | picklecai/OMOOC2py | mit |
replace的参数结构是:
1. 整字符串 2. 将被替换的字符串 3. 替换后的字符串 | print "find", "=>", string.find(text, "Python")
print "find", "=>", string.find(text, "Python"), string.find(text, "Cplus")
print text | _src/exercise/day1.ipynb | picklecai/OMOOC2py | mit |
上面replace的结果,没有影响原始的text。
find时,能找到就显示位置,不能找到就显示-1 | print "count", "=>", string.count(text,"n") | _src/exercise/day1.ipynb | picklecai/OMOOC2py | mit |
和数学运算一样,这些方法也分一元的和多元的:
upper, lower, split, join 都是一元的。其中join的对象是一个list。
replace, find, count则需要除了text之外的参数。replace需要额外两个,用以指明替换关系。find只需要一个被查找对象。count则需要一个需要计数的字符。
特别注意: replace不影响原始字符串对象。(好奇怪) | print string.atoi("23")
type(string.atoi("23"))
int("234")
type(int("234"))
type(float("334"))
float("334")
string.atof("456") | _src/exercise/day1.ipynb | picklecai/OMOOC2py | mit |
7. re模块 | import re
text = "The Attila the Hun Show"
m = re.match(".", text)
if m:
print repr("."), "=>", repr(m.group(0)) | _src/exercise/day1.ipynb | picklecai/OMOOC2py | mit |
8. math模块和cmath模块 | import math
math.pi
math.e
print math.hypot(3,4)
math.sqrt(25)
import cmath
print cmath.sqrt(-1) | _src/exercise/day1.ipynb | picklecai/OMOOC2py | mit |
10. operator模块 | import operator
operator.add(3,5)
seq = 1,5,7,9
reduce(operator.add,seq)
reduce(operator.sub, seq)
reduce(operator.mul, seq)
float(reduce(operator.div, seq)) | _src/exercise/day1.ipynb | picklecai/OMOOC2py | mit |
operator下的这四则运算,都是针对两个数进行的,即参数只能是两个。为了能对多个数进行连续运算,就需要用reduce,它的意思是两个运算后,作为一个数,与下一个继续进行两个数运算,直到数列终。感觉和apply作用有点差不多,第一个参数是函数,第二个参数是数列(具体参数)。 | operator.concat("ert", "erui")
operator.getitem(seq,1)
operator.indexOf(seq, 5) | _src/exercise/day1.ipynb | picklecai/OMOOC2py | mit |
getitem和indexOf为一对逆运算,前者求指定位置上的值,后者求给定值的位置。注意,后者是大写的字母o。 | operator.sequenceIncludes(seq, 5) | _src/exercise/day1.ipynb | picklecai/OMOOC2py | mit |
判断序列中是否包含某个值。结果是布尔值。 | import UserList
def dump(data):
print data,":"
print type(data),"=>",
if operator.isCallable(data):
print "is a CALLABLE data."
if operator.isMappingType(data):
print "is a MAP data."
if operator.isNumberType(data):
print "is a NUMBER data."
if operator.isSequenceType(data):
print "is a SEQUENCE data."
dump(0)
dump([3,4,5,6])
dump("weioiuernj")
dump({"a":"155cm", "b":"187cm"})
dump(len)
dump(UserList)
dump(UserList.UserList)
dump(UserList.UserList()) | _src/exercise/day1.ipynb | picklecai/OMOOC2py | mit |
15. types模块 | import types
def check(object):
if type(object) is types.IntType:
print "INTEGER",
if type(object) is types.FloatType:
print "FLOAT",
if type(object) is types.StringType:
print "STRING",
if type(object) is types.ClassType:
print "CLASS",
if type(object) is types.InstanceType:
print "INSTANCE",
print
check(0)
check(0.0)
check("picklecai")
class A:
pass
check(A)
a = A()
check(a) | _src/exercise/day1.ipynb | picklecai/OMOOC2py | mit |
types 模块在第一次引入的时候会破坏当前的异常状态. 也就是说, 不要在异常处理语句块中导入该模块 ( 或其他会导入它的模块 ) .
16. gc模块
gc 模块提供了到内建循环垃圾收集器的接口。 | import gc
class Node:
def __init__(self, name):
self.name = name
self.patrent = None
self.children = []
def addchild(self, node):
node.parent = self
self.children.append(node)
def __repr__(self):
return "<Node %s at %x" % (repr(self.name), id(self))
root = Node("monty")
root.addchild(Node("eric"))
root.addchild(Node("john"))
root.addchild(Node("michael"))
root.__init__("eric")
root.__repr__() | _src/exercise/day1.ipynb | picklecai/OMOOC2py | mit |
Step 2: Specify the boolean function of a 2-input XOR
The logic is applied to the on-board pushbuttons and LED, pushbuttons PB0 and PB3 are set as inputs and LED LD2 is set as an output | function = ['LD2 = PB3 ^ PB0'] | boards/Pynq-Z2/logictools/notebooks/boolean_generator.ipynb | cathalmccabe/PYNQ | bsd-3-clause |
Step 3: Instantiate and setup of the boolean generator object.
The logic function defined in the previous step is setup using the setup() method | boolean_generator = logictools_olay.boolean_generator
boolean_generator.setup(function) | boards/Pynq-Z2/logictools/notebooks/boolean_generator.ipynb | cathalmccabe/PYNQ | bsd-3-clause |
Find the On-board pushbuttons and LEDs
Step 4: Run the boolean generator verify operation | boolean_generator.run() | boards/Pynq-Z2/logictools/notebooks/boolean_generator.ipynb | cathalmccabe/PYNQ | bsd-3-clause |
Verify the operation of the XOR function
| PB0 | PB3 | LD2 |
|:---:|:---:|:---:|
| 0 | 0 | 0 |
| 0 | 1 | 1 |
| 1 | 0 | 1 |
| 1 | 1 | 0 |
Step 5: Stop the boolean generator | boolean_generator.stop() | boards/Pynq-Z2/logictools/notebooks/boolean_generator.ipynb | cathalmccabe/PYNQ | bsd-3-clause |
Step 6: Re-run the entire boolean function generation in a single cell
Note: The boolean expression format can be list or dict. We had used a list in the example above. We will now use a dict.
<font color="DodgerBlue">Alternative format:</font>
python
function = {'XOR_gate': 'LD2 = PB3 ^ PB0'} | from pynq.overlays.logictools import LogicToolsOverlay
logictools_olay = LogicToolsOverlay('logictools.bit')
boolean_generator = logictools_olay.boolean_generator
function = {'XOR_gate': 'LD2 = PB3 ^ PB0'}
boolean_generator.setup(function)
boolean_generator.run() | boards/Pynq-Z2/logictools/notebooks/boolean_generator.ipynb | cathalmccabe/PYNQ | bsd-3-clause |
Stop the boolean generator | boolean_generator.stop() | boards/Pynq-Z2/logictools/notebooks/boolean_generator.ipynb | cathalmccabe/PYNQ | bsd-3-clause |
Then let's create a blank Device (essentially an empty GDS cell with some special features) | D = Device('mydevice') | docs/tutorials/quickstart.ipynb | amccaugh/phidl | mit |
Next let's add a custom polygon using lists of x points and y points. You can also add polygons pair-wise like [(x1,y1), (x2,y2), (x3,y3), ... ]. We'll also image the shape using the handy quickplot() function (imported here as qp()) | xpts = (0,10,10, 0)
ypts = (0, 0, 5, 3)
poly1 = D.add_polygon( [xpts, ypts], layer = 0)
qp(D) # quickplot it! | docs/tutorials/quickstart.ipynb | amccaugh/phidl | mit |
You can also create new geometry using the built-in geometry library: | T = pg.text('Hello!', layer = 1)
A = pg.arc(radius = 25, width = 5, theta = 90, layer = 3)
qp(T) # quickplot it!
qp(A) # quickplot it! | docs/tutorials/quickstart.ipynb | amccaugh/phidl | mit |
We can easily add these new geometries to D, which currently contains our custom polygon. (For more details about references see below, or the tutorial called "Understanding References".) | text1 = D.add_ref(T) # Add the text we created as a reference
arc1 = D.add_ref(A) # Add the arc we created
qp(D) # quickplot it! | docs/tutorials/quickstart.ipynb | amccaugh/phidl | mit |
Now that the geometry has been added to D, we can move and rotate everything however we want: | text1.movey(5)
text1.movex(-20)
arc1.rotate(-90)
arc1.move([10,22.5])
poly1.ymax = 0
qp(D) # quickplot it! | docs/tutorials/quickstart.ipynb | amccaugh/phidl | mit |
We can also connect shapes together using their Ports, allowing us to snap shapes together like Legos. Let's add another arc and snap it to the end of the first arc: | arc2 = D.add_ref(A) # Add a second reference the arc we created earlier
arc2.connect(port = 1, destination = arc1.ports[2])
qp(D) # quickplot it! | docs/tutorials/quickstart.ipynb | amccaugh/phidl | mit |
That's it for the very basics! Keep reading for a more detailed explanation of each of these, or see the other tutorials for topics such as using Groups, creating smooth Paths, and more.
The basics of PHIDL
This is a longer tutorial meant to explain the basics of PHIDL in a little more depth. Further explanation can be found in the other tutorials as well.
PHIDL allows you to create complex designs from simple shapes, and can output the result as GDSII files. The basic element of PHIDL is the Device, which can be thought of as a blank area to which you can add polygon shapes. The polygon shapes can also have Ports on them--these allow you to snap shapes together like Lego blocks. You can either hand-design your own polygon shapes, or there is a large library of pre-existing shapes you can use as well.
Creating a custom shape
Let's start by trying to make a rectangle shape with ports on either end. | import numpy as np
from phidl import quickplot as qp
from phidl import Device
import phidl.geometry as pg
# First we create a blank device `R` (R can be thought of as a blank
# GDS cell with some special features). Note that when we
# make a Device, we usually assign it a variable name with a capital letter
R = Device('rect')
# Next, let's make a list of points representing the points of the rectangle
# for a given width and height
width = 10
height = 3
points = [(0, 0), (width, 0), (width, height), (0, height)]
# Now we turn these points into a polygon shape using add_polygon()
R.add_polygon(points)
# Let's use the built-in "quickplot" function to display the polygon we put in D
qp(R) | docs/tutorials/quickstart.ipynb | amccaugh/phidl | mit |
Next, let's add Ports to the rectangle which will allow us to connect it to other shapes easily | # Ports are defined by their width, midpoint, and the direction (orientation) they're facing
# They also must have a name -- this is usually a string or an integer
R.add_port(name = 'myport1', midpoint = [0,height/2], width = height, orientation = 180)
R.add_port(name = 'myport2', midpoint = [width,height/2], width = height, orientation = 0)
# The ports will show up when we quickplot() our shape
qp(R) # quickplot it! | docs/tutorials/quickstart.ipynb | amccaugh/phidl | mit |
We can check to see that our Device has ports in it using the print command: | print(R) | docs/tutorials/quickstart.ipynb | amccaugh/phidl | mit |
Looks good!
Library & combining shapes
Since this Device is finished, let's create a new (blank) Device and add several shapes to it. Specifically, we will add an arc from the built-in geometry library and two copies of our rectangle Device. We'll then then connect the rectangles to both ends of the arc. The arc() function is contained in the phidl.geometry library which as you can see at the top of this example is imported with the name pg.
This process involves adding "references". These references allow you to create a Device shape once, then reuse it many times in other Devices. | # Create a new blank Device
E = Device('arc_with_rectangles')
# Also create an arc from the built-in "pg" library
A = pg.arc(width = 3)
# Add a "reference" of the arc to our blank Device
arc_ref = E.add_ref(A)
# Also add two references to our rectangle Device
rect_ref1 = E.add_ref(R)
rect_ref2 = E.add_ref(R)
# Move the shapes around a little
rect_ref1.move([-10,0])
rect_ref2.move([-5,10])
qp(E) # quickplot it! | docs/tutorials/quickstart.ipynb | amccaugh/phidl | mit |
Now we can see we have added 3 shapes to our Device "E": two references to our rectangle Device, and one reference to the arc Device. We can also see that all the references have Ports on them, shown as the labels "myport1", "myport2", "1" and "2".
Next, let's snap everything together like Lego blocks using the connect() command. | # First, we recall that when we created the references above we saved
# each one its own variable: arc_ref, rect_ref1, and rect_ref2
# We'll use these variables to control/move the reference shapes.
# First, let's move the arc so that it connects to our first rectangle.
# In this command, we tell the arc reference 2 things: (1) what port
# on the arc we want to connect, and (2) where it should go
arc_ref.connect(port = 1, destination = rect_ref1.ports['myport2'])
qp(E) # quickplot it!
# Then we want to move the second rectangle reference so that
# it connects to port 2 of the arc
rect_ref2.connect('myport1', arc_ref.ports[2])
qp(E) # quickplot it! | docs/tutorials/quickstart.ipynb | amccaugh/phidl | mit |
Looks great!
Going a level higher
Now we've made a (somewhat) complicated bend-shape from a few simple shapes. But say we're not done yet -- we actually want to combine together 3 of these bend-shapes to make an even-more complicated shape. We could recreate the geometry 3 times and manually connect all the pieces, but since we already put it together once it will be smarter to just reuse it multiple times.
We will start by abstracting this bend-shape. As shown in the quickplot, there are ports associated with each reference in our bend-shape Device E: "myport1", "myport2", "1", and "2". But when working with this bend-shape, all we really care about is the 2 ports at either end -- "myport1" from rect_ref1 and "myport2" from rect_ref2. It would be simpler if we didn't have to keep track of all of the other ports.
First, let's look at something: let's see if our bend-shape Device E has any ports in it: | print(E) | docs/tutorials/quickstart.ipynb | amccaugh/phidl | mit |
It has no ports apparently! Why is that, when we clearly see ports in the quickplots above?
The answer is that Device E itself doesn't have ports -- the references inside E do have ports, but we never actually added ports to E. Let's fix that now, adding a port at either end, setting the names to the integers 1 and 2. | # Rather than specifying the midpoint/width/orientation, we can instead
# copy ports directly from the references since they're already in the right place
E.add_port(name = 1, port = rect_ref1.ports['myport1'])
E.add_port(name = 2, port = rect_ref2.ports['myport2'])
qp(E) # quickplot it! | docs/tutorials/quickstart.ipynb | amccaugh/phidl | mit |
If we look at the quickplot above, we can see that there are now red-colored ports on both ends. Ports that are colored red are owned by the Device, ports that are colored blue-green are owned by objects inside the Device. This is good! Now if we want to use this bend-shape, we can interact with its ports named 1 and 2.
Let's go ahead and try to string 3 of these bend-shapes together: | # Create a blank Device
D = Device('triple-bend')
# Add 3 references to our bend-shape Device `E`:
bend_ref1 = D.add_ref(E) # Using the function add_ref()
bend_ref2 = D << E # Using the << operator which is identical to add_ref()
bend_ref3 = D << E
# Let's mirror one of them so it turns right instead of left
bend_ref2.mirror()
# Connect each one in a series
bend_ref2.connect(1, bend_ref1.ports[2])
bend_ref3.connect(1, bend_ref2.ports[2])
# Add ports so we can use this shape at an even higher-level
D.add_port(name = 1, port = bend_ref1.ports[1])
D.add_port(name = 2, port = bend_ref3.ports[2])
qp(D) # quickplot it! | docs/tutorials/quickstart.ipynb | amccaugh/phidl | mit |
Saving as a GDSII file
Saving the design as a GDS file is simple -- just specify the Device you'd like to save and run the write_gds() function: | D.write_gds('triple-bend.gds') | docs/tutorials/quickstart.ipynb | amccaugh/phidl | mit |
Some useful notes about writing GDS files:
The default unit is 1e-6 (micrometers aka microns), with a precision of 1e-9 (nanometer resolution)
PHIDL will automatically handle naming of all the GDS cells to avoid name-collisions.
Unless otherwise specified, the top-level GDS cell will be named "toplevel"
All of these parameters can be modified using the appropriate arguments of write_gds(): | D.write_gds(filename = 'triple-bend.gds', # Output GDS file name
unit = 1e-6, # Base unit (1e-6 = microns)
precision = 1e-9, # Precision / resolution (1e-9 = nanometers)
auto_rename = True, # Automatically rename cells to avoid collisions
max_cellname_length = 28, # Max length of cell names
cellname = 'toplevel' # Name of output top-level cell
) | docs/tutorials/quickstart.ipynb | amccaugh/phidl | mit |
Load in the training set of data | from sklearn.datasets import fetch_20newsgroups
twenty_train = fetch_20newsgroups(subset='train',categories=categories, shuffle=True, random_state=42)
twenty_train.target_names | Session2/code/01 Working with text.ipynb | catalystcomputing/DSIoT-Python-sessions | apache-2.0 |
Note target names not in same order as in the categories array
Count of documents | len(twenty_train.data) | Session2/code/01 Working with text.ipynb | catalystcomputing/DSIoT-Python-sessions | apache-2.0 |
Show the first 8 lines of text from one of the documents formated with line breaks | print("\n".join(twenty_train.data[0].split("\n")[:8])) | Session2/code/01 Working with text.ipynb | catalystcomputing/DSIoT-Python-sessions | apache-2.0 |
Path to file on your machine | twenty_train.filenames[0] | Session2/code/01 Working with text.ipynb | catalystcomputing/DSIoT-Python-sessions | apache-2.0 |
Show the the targets categories of first 10 documents. As a list and show there names. | print(twenty_train.target[:10])
for t in twenty_train.target[:10]:
print(twenty_train.target_names[t]) | Session2/code/01 Working with text.ipynb | catalystcomputing/DSIoT-Python-sessions | apache-2.0 |
Lets look at a document in the training data. | print("\n".join(twenty_train.data[0].split("\n"))) | Session2/code/01 Working with text.ipynb | catalystcomputing/DSIoT-Python-sessions | apache-2.0 |
Extracting features from text files
So for machine learning to be used text must be turned into numerical feature vectors.
What is a feature vector?
Each word is assigned an integer identifier
Each document is assigned an integer identifier
The results are stored in scipy.sparse matrices.
Tokenizing text with scikit-learn
Using CountVectorizer we load the training data into a spare matrix.
What is a spare matrix? | from sklearn.feature_extraction.text import CountVectorizer
count_vect = CountVectorizer()
X_train_counts = count_vect.fit_transform(twenty_train.data)
X_train_counts.shape
X_train_counts.__class__ | Session2/code/01 Working with text.ipynb | catalystcomputing/DSIoT-Python-sessions | apache-2.0 |
Using a CountVectorizer method we can get the integer identifier of a word. | count_vect.vocabulary_.get(u'application') | Session2/code/01 Working with text.ipynb | catalystcomputing/DSIoT-Python-sessions | apache-2.0 |
With this identifier we can get the count of the word in a given document. | print("Word count for application in first document: {0} and last document: {1} ").format(
X_train_counts[0, 5285], X_train_counts[2256, 5285])
count_vect.vocabulary_.get(u'subject')
print("Word count for email in first document: {0} and last document: {1} ").format(
X_train_counts[0, 31077], X_train_counts[2256, 31077])
count_vect.vocabulary_.get(u'to')
print("Word count for email in first document: {0} and last document: {1} ").format(
X_train_counts[0, 32493], X_train_counts[2256, 32493]) | Session2/code/01 Working with text.ipynb | catalystcomputing/DSIoT-Python-sessions | apache-2.0 |
What are two problems with using a word count in a document?
From occurrences to frequencies
$\text{Term Frequencies tf} = \text{occurrences of each word} / \text{total number of words}$
tf-idf is "Term Frequencies times Inverse Document Frequency"
Calculating tfidf | from sklearn.feature_extraction.text import TfidfTransformer
tf_transformer = TfidfTransformer(use_idf=False).fit(X_train_counts)
X_train_tfidf_2stage = tf_transformer.transform(X_train_counts)
X_train_tfidf_2stage.shape | Session2/code/01 Working with text.ipynb | catalystcomputing/DSIoT-Python-sessions | apache-2.0 |
.fit(..) to fit estimator to the data
.transform(..) to transform the count matrix to tf-idf
It is possible to merge the fit and transform stages using .fit_transform(..)
Calculate tfidf | tfidf_transformer = TfidfTransformer()
X_train_tfidf = tfidf_transformer.fit_transform(X_train_counts)
X_train_tfidf.shape
print("In first document tf-idf for application: {0} subject: {1} to: {2}").format(
X_train_tfidf[0, 5285], X_train_tfidf[0, 31077], X_train_tfidf[0, 32493]) | Session2/code/01 Working with text.ipynb | catalystcomputing/DSIoT-Python-sessions | apache-2.0 |
Training a classifier
So we now have features. We can train a classifier to try to predict the category of a post. First we will try the
naïve Bayes classifier. | from sklearn.naive_bayes import MultinomialNB
clf = MultinomialNB().fit(X_train_tfidf, twenty_train.target) | Session2/code/01 Working with text.ipynb | catalystcomputing/DSIoT-Python-sessions | apache-2.0 |
Here tfidf_transformer is used to classify | docs_new = ['God is love', 'Heart attacks are common', 'Disbelief in a proposition', 'Disbelief in a proposition means that one does not believe it to be true', 'OpenGL on the GPU is fast']
X_new_counts = count_vect.transform(docs_new)
X_new_tfidf = tfidf_transformer.transform(X_new_counts)
predicted = clf.predict(X_new_tfidf)
for doc, category in zip(docs_new, predicted):
print('%r => %s' % (doc, twenty_train.target_names[category])) | Session2/code/01 Working with text.ipynb | catalystcomputing/DSIoT-Python-sessions | apache-2.0 |
We can see it get some right but not all.
Building a pipeline
Here we can put all the stages together in a pipeline. The names 'vect', 'tfidf' and 'clf' are arbitrary. | from sklearn.pipeline import Pipeline
text_clf_bayes = Pipeline([('vect', CountVectorizer()),
('tfidf', TfidfTransformer()),
('clf', MultinomialNB()),
])
text_clf_bayes_fit = text_clf_bayes.fit(twenty_train.data, twenty_train.target) | Session2/code/01 Working with text.ipynb | catalystcomputing/DSIoT-Python-sessions | apache-2.0 |
Evaluation | import numpy as np
twenty_test = fetch_20newsgroups(subset='test',
categories=categories, shuffle=True, random_state=42)
docs_test = twenty_test.data
predicted_bayes = text_clf_bayes_fit.predict(docs_test)
np.mean(predicted_bayes == twenty_test.target) | Session2/code/01 Working with text.ipynb | catalystcomputing/DSIoT-Python-sessions | apache-2.0 |
Try a support vector machine instead | from sklearn.linear_model import SGDClassifier
text_clf_svm = Pipeline([('vect', CountVectorizer()),
('tfidf', TfidfTransformer()),
('clf', SGDClassifier(loss='hinge', penalty='l2',
alpha=1e-3, n_iter=5, random_state=42)),])
text_clf_svm_fit = text_clf_svm.fit(twenty_train.data, twenty_train.target)
predicted_svm = text_clf_svm_fit.predict(docs_test)
np.mean(predicted_svm == twenty_test.target) | Session2/code/01 Working with text.ipynb | catalystcomputing/DSIoT-Python-sessions | apache-2.0 |
We can see the support vector machine got a higher number than naïve Bayes. What does it mean? We move on to metrics.
Using metrics
Classification report & Confusion matix
Here we will use a simple example to show classification reports and confusion matrices.
y_true is the test data
y_pred is the prediction | from sklearn import metrics
y_true = ["cat", "ant", "cat", "cat", "ant", "bird", "bird"]
y_pred = ["ant", "ant", "cat", "cat", "ant", "cat", "bird"]
print(metrics.classification_report(y_true, y_pred,
target_names=["ant", "bird", "cat"])) | Session2/code/01 Working with text.ipynb | catalystcomputing/DSIoT-Python-sessions | apache-2.0 |
Here we can see that the predictions:
- found ant 3 times and should have found it twice hence precision of 0.67.
- never predicted ant when shouldn't have hence recall of 1.
- f1 source is the mean of precision and recall
- support of 2 meaning there were 2 in the true data set.
http://scikit-learn.org/stable/modules/generated/sklearn.metrics.precision_recall_fscore_support.html
Confusion matix | metrics.confusion_matrix(y_true, y_pred, labels=["ant", "bird", "cat"]) | Session2/code/01 Working with text.ipynb | catalystcomputing/DSIoT-Python-sessions | apache-2.0 |
In the confusion_matrix the labels give the order of the rows.
ant was correctly categorised twice and was never miss categorised
bird was correctly categorised once and was categorised as cat once
cat was correctly categorised twice and was categorised as an ant once | metrics.accuracy_score(y_true, y_pred, normalize=True, sample_weight=None) | Session2/code/01 Working with text.ipynb | catalystcomputing/DSIoT-Python-sessions | apache-2.0 |
Back to '20 newsgroups dataset' | print(metrics.classification_report(twenty_test.target, predicted_svm,
target_names=twenty_test.target_names)) | Session2/code/01 Working with text.ipynb | catalystcomputing/DSIoT-Python-sessions | apache-2.0 |
We can see where the 91% score came from. | # We got the evaluation score this way before:
print(np.mean(predicted_svm == twenty_test.target))
# We get the same results using metrics.accuracy_score
print(metrics.accuracy_score(twenty_test.target, predicted_svm, normalize=True, sample_weight=None)) | Session2/code/01 Working with text.ipynb | catalystcomputing/DSIoT-Python-sessions | apache-2.0 |
Now lets see the confusion matrix. | print(twenty_train.target_names)
metrics.confusion_matrix(twenty_test.target, predicted_bayes) | Session2/code/01 Working with text.ipynb | catalystcomputing/DSIoT-Python-sessions | apache-2.0 |
So we can see the naïve Bayes classifier got a lot more correct in some cases but also included a higher proportion in the last category. | metrics.confusion_matrix(twenty_test.target, predicted_svm) | Session2/code/01 Working with text.ipynb | catalystcomputing/DSIoT-Python-sessions | apache-2.0 |
We can see that atheism is miss categorised as Christian and science and medicine as computer graphics a high proportion of the time using the support vector machine.
Parameter tuning
Transformation and classifiers can have various parameters. Rather than manually tweaking each parameter in the pipeline it is possible to use grid search instead.
Here we try a couple of options for each stage. The more options the longer the grid search will take. | from sklearn.grid_search import GridSearchCV
parameters = {'vect__ngram_range': [(1, 1), (1, 2)],
'tfidf__use_idf': (True, False),
'clf__alpha': (1e-3, 1e-4),
}
gs_clf = GridSearchCV(text_clf_svm_fit, parameters, n_jobs=-1) | Session2/code/01 Working with text.ipynb | catalystcomputing/DSIoT-Python-sessions | apache-2.0 |
Running the search on all the data will take a little while 10-30 seconds on a new ish desktop with 8 cores. If you don't want to wait that long uncomment the line with :400 and comment out the other. | #gs_clf_fit = gs_clf.fit(twenty_train.data[:400], twenty_train.target[:400])
gs_clf_fit = gs_clf.fit(twenty_train.data, twenty_train.target)
best_parameters, score, _ = max(gs_clf_fit.grid_scores_, key=lambda x: x[1])
for param_name in sorted(parameters.keys()):
print("%s: %r" % (param_name, best_parameters[param_name]))
score | Session2/code/01 Working with text.ipynb | catalystcomputing/DSIoT-Python-sessions | apache-2.0 |
Well that is a significant improvement. Lets use these new parameters. | text_clf_svm_tuned = Pipeline([('vect', CountVectorizer(ngram_range=(1, 2))),
('tfidf', TfidfTransformer(use_idf=True)),
('clf', SGDClassifier(loss='hinge', penalty='l2',
alpha=0.0001, n_iter=5, random_state=42)),
])
text_clf_svm_tuned_fit = text_clf_svm_tuned.fit(twenty_train.data, twenty_train.target)
predicted_tuned = text_clf_svm_tuned_fit.predict(docs_test)
metrics.accuracy_score(twenty_test.target, predicted_tuned, normalize=True, sample_weight=None) | Session2/code/01 Working with text.ipynb | catalystcomputing/DSIoT-Python-sessions | apache-2.0 |
Why has this only give a .93 instead of .97?
http://scikit-learn.org/stable/modules/generated/sklearn.grid_search.GridSearchCV.html | for x in gs_clf_fit.grid_scores_:
print x[0], x[1], x[2] | Session2/code/01 Working with text.ipynb | catalystcomputing/DSIoT-Python-sessions | apache-2.0 |
Moving on from that lets see where the improvements where made. | print(metrics.classification_report(twenty_test.target, predicted_svm,
target_names=twenty_test.target_names))
metrics.confusion_matrix(twenty_test.target, predicted_svm)
print(metrics.classification_report(twenty_test.target, predicted_tuned,
target_names=twenty_test.target_names))
metrics.confusion_matrix(twenty_test.target, predicted_tuned) | Session2/code/01 Working with text.ipynb | catalystcomputing/DSIoT-Python-sessions | apache-2.0 |
Upper Air Analysis using Declarative Syntax
The MetPy declarative syntax allows for a simplified interface to creating common
meteorological analyses including upper air observation plots. | from datetime import datetime
import pandas as pd
from metpy.cbook import get_test_data
import metpy.plots as mpplots
from metpy.units import units | v1.0/_downloads/f1c8c5b9729cd7164037ec8618030966/upperair_declarative.ipynb | metpy/MetPy | bsd-3-clause |
Getting the data
In this example, data is originally from the Iowa State Upper-air archive
(https://mesonet.agron.iastate.edu/archive/raob/) available through a Siphon method.
The data are pre-processed to attach latitude/longitude locations for each RAOB site. | data = pd.read_csv(get_test_data('UPA_obs.csv', as_file_obj=False)) | v1.0/_downloads/f1c8c5b9729cd7164037ec8618030966/upperair_declarative.ipynb | metpy/MetPy | bsd-3-clause |
Plotting the data
Use the declarative plotting interface to create a CONUS upper-air map for 500 hPa | # Plotting the Observations
obs = mpplots.PlotObs()
obs.data = data
obs.time = datetime(1993, 3, 14, 0)
obs.level = 500 * units.hPa
obs.fields = ['temperature', 'dewpoint', 'height']
obs.locations = ['NW', 'SW', 'NE']
obs.formats = [None, None, lambda v: format(v, '.0f')[:3]]
obs.vector_field = ('u_wind', 'v_wind')
obs.reduce_points = 0
# Add map features for the particular panel
panel = mpplots.MapPanel()
panel.layout = (1, 1, 1)
panel.area = (-124, -72, 20, 53)
panel.projection = 'lcc'
panel.layers = ['coastline', 'borders', 'states', 'land', 'ocean']
panel.plots = [obs]
# Collecting panels for complete figure
pc = mpplots.PanelContainer()
pc.size = (15, 10)
pc.panels = [panel]
# Showing the results
pc.show() | v1.0/_downloads/f1c8c5b9729cd7164037ec8618030966/upperair_declarative.ipynb | metpy/MetPy | bsd-3-clause |
variables | weight_kg=55
print (weight_kg)
print('weight in pounds:',weight_kg*2.2)
numpy.loadtxt(fname='data/weather-01.csv',delimiter=',')
numpy.loadtxt(fname='data/weather-01.csv',delimiter=',')
numpy.loadtxt(fname='data/weather-01.csv',delimiter=',')
%whos
data=numpy.loadtxt(fname='data/weather-01.csv',delimiter=',')
%whos
%whos
print(data.dtype)
print(data.shape) | 01-analysing-data.ipynb | drwalshaw/sc-python | mit |
this is 60 by 40 | print ("first value in data:",data [0,0])
print ('A middle value:',data[30,20]) | 01-analysing-data.ipynb | drwalshaw/sc-python | mit |
lets get the first 10 columns for the firsst 4 rows
print(data[0:4, 0:10])
start at index 0 and go up to but not including index 4 | print (data[0:4, 0:10]) | 01-analysing-data.ipynb | drwalshaw/sc-python | mit |
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.