markdown
stringlengths
0
37k
code
stringlengths
1
33.3k
path
stringlengths
8
215
repo_name
stringlengths
6
77
license
stringclasses
15 values
Attributes are data associated with an object (instance) or class. Object attributes (and methods) are specified by using "self". Instance attributes and methods are accessed using the dot "." operator.
class Car(object): # The following method is called when the class # is created or "constructed". The variables "self.x" refers # to the variable "x" in a created object. def __init__(self, color, car_type, speed): self.color = color self.car_type = car_type self.speed = speed car1 = Car("blue", "sedan", "very slow") car2 = Car("red", "sedan", "not so slow") print(car1.speed, car2.speed) class Car(object): # The following method is called when the class # is created or "constructed". The variables "self.x" refers # to the variable "x" in a created object. def __init__(self, color, car_type, speed, sunroof=True): self.color = color self.car_type = car_type if isinstance(speed, int): self.speed = speed else: raise ValueError("Bad speed value.") self.sunroof = sunroof car = Car("blue", "sedan", 100) # Creating an object for a class with arguments in the __init__ method car = Car("Blue", "HatchBack", 100) car.color # Creating an object for a class with arguments in the __init__ method joe_car = Car("Blue", "Sedan", 100) dave_car = Car("Red", "Sports", 150) print ("Type of joe_car is %s. Type of dave_car is %s"% (type(joe_car), type(dave_car))) # Accessed instance attributes joe_car = Car("Blue", "Sedan", 100) print ("Type of joe_car has (color, type, speed)=%s." % str((joe_car.color, joe_car.car_type, joe_car.speed)))
Spring2019/06a_Objects/Building Software With Objects.ipynb
UWSEDS/LectureNotes
bsd-2-clause
EXERCISE: Change the constructor for Car to include the attribute "doors". Instance Methods
from IPython.display import Image Image(filename='InstanceMethods.png') #Class diagram from IPython.display import Image Image(filename='SingleClassDiagram.png', width=200, height=200)
Spring2019/06a_Objects/Building Software With Objects.ipynb
UWSEDS/LectureNotes
bsd-2-clause
A class diagram provides a more compact representation of a class. There are three sections. - Class name - Attributes - Methods Instance methods - functions associated with the objects constructed for a class - provide a way to transform data in objects - use instance attributes (references to variables beginning with "self.")
class Car(object): def __init__(self, color, car_type, speed): """ :param str color: :param str car_type: :param int speed: """ self.color = color self.car_type = car_type self.speed = speed def start(self): print ("%s %s started!" % (self.color, self.car_type)) def stop(self): pass def turn(self, direction): """ :parm str direction: left or right """ pass car = Car("Blue", "Sedan", 100) car.start()
Spring2019/06a_Objects/Building Software With Objects.ipynb
UWSEDS/LectureNotes
bsd-2-clause
EXERCISE: Implement the stop and turn methods. Run the methods. Inheritance Inheritance is a common way that classes reuse data and code from other classes. A child class or derived class gets attributes and methods from its parent class. Programmatically: - Specify inheritance in the class statement - Constructor for derived class (class that inherits) have access to the constructor of its parent. Inheritance is represented in diagrams as an arror from the child class to its parent class.
from IPython.display import Image Image(filename='SimpleClassHierarchy.png', width=400, height=400) # Code for inheritance class Sedan(Car): # Sedan inherits from car def __init__(self, color, speed): """ :param str color: :param int speed: """ super().__init__(color, "Sedan", speed) def play_cd(self): print ("Playing cd in %s sedan" % self.color) sedan = Sedan("Yellow", 1e6) sedan.color sedan.car_type sedan.car_type joe_car = Sedan("Blue", 100) print ("Type of joe_car has (color, type, speed)=%s." % str((joe_car.color, joe_car.car_type, joe_car.speed)))
Spring2019/06a_Objects/Building Software With Objects.ipynb
UWSEDS/LectureNotes
bsd-2-clause
Exercise: Implement SportsCar and create dave_car from SportsCar. Print attributes of dave_car.
from IPython.display import Image Image(filename='ClassInheritance.png', width=400, height=400)
Spring2019/06a_Objects/Building Software With Objects.ipynb
UWSEDS/LectureNotes
bsd-2-clause
Subclasses can have their own methods. Exercise: Add the play_cd() to Sedan and play_bluetooth() method to SportsCar. Construct a test to run these methods. What Else? Class attributes Class methods Object Oriented Design A design methodology must specify: - Components: What they do and how to build them - Interactions: How the components interact to implement use cases Object oriented designed - Components are specified by class diagrams. - Interactions are specified by interaction diagrams. Class diagram for the ATM system
from IPython.display import Image Image(filename='ATMClassDiagram.png', width=400, height=400)
Spring2019/06a_Objects/Building Software With Objects.ipynb
UWSEDS/LectureNotes
bsd-2-clause
The diamond arrow is a "has-a" relationship. For example, the Controller has-a ATMInput. This means that a Controller object has an instance variable for an ATMInput object. Interaction Diagram for the ATM System An interaction diagram specifies how components interact to achieve a use case. Interactions are from one object to another object, indicating that the first object calls a method in the second object. Rules for drawing lines in an interaction diagram: - The calling object must know about the called object. - The called object must have the method invoked by the calling object.
from IPython.display import Image Image(filename='ATMAuthentication.png', width=800, height=800)
Spring2019/06a_Objects/Building Software With Objects.ipynb
UWSEDS/LectureNotes
bsd-2-clause
Look at Objects/ATMDiagrams.pdf for a solution. What Else in Design? Other diagrams: state diagrams, package diagrams, ... Object oriented design patterns Complex Example of Class Hierarchy
from IPython.display import Image Image(filename='SciSheetsCoreClasses.png', width=300, height=30)
Spring2019/06a_Objects/Building Software With Objects.ipynb
UWSEDS/LectureNotes
bsd-2-clause
Section 1: Exemple de signaux, temps et fréquence 1. Commençons par générer un signal d'intérêt:
%%matlab %% Définition du signal d'intêret % fréquence du signal freq = 1; % on crée des blocs off/on de 15 secondes bloc = repmat([zeros(1,15*freq) ones(1,15*freq)],[1 10]); % les temps d'acquisition ech = (0:(1/freq):(length(bloc)/freq)-(1/freq)); % ce paramètre fixe le pic de la réponse hémodynamique pic = 5; % noyau de réponse hémodynamique noyau = [linspace(0,1,(pic*freq)+1) linspace(1,-0.3,(pic*freq)/2) linspace(-0.3,0,(pic*freq)/2)]; noyau = [zeros(1,length(noyau)-1) noyau]; % normalisation du noyau noyau = noyau/sum(abs(noyau)); % convolution du bloc avec le noyau signal = conv(bloc,noyau,'same'); % on fixe la moyenne de la réponse à zéro signal = signal - mean(signal);
NSC2006/labo8_filtrage/labo 8 Introduction au filtrage reponses.ipynb
SIMEXP/Projects
mit
Représentez noyau et signal en temps, à l'aide de la commande plot. Utiliser les temps d'acquisition corrects, et labéliser les axes (xlabel, ylabel). Comment est généré signal? reconnaissez vous le processus employé? Est ce que le signal est périodique? si oui, quelle est sa période? Peut-on trouver la réponse dans le code?
%%matlab %% représentation en temps % Nouvelle figure figure % On commence par tracer le noyau plot(noyau,'-bo') % Nouvelle figure figure % On trace le signal, en utilisant ech pour spécifier les échantillons temporels plot(ech,signal) % Les fonctions xlim et ylim permettent d'ajuster les valeurs min/max des axes xlim([-1 max(ech)+1]) ylim([-0.6 0.7]) % Les fonctions xlabel et ylabel permettent de labéliser les axes xlabel('Temps (s)') ylabel('a.u')
NSC2006/labo8_filtrage/labo 8 Introduction au filtrage reponses.ipynb
SIMEXP/Projects
mit
A partir du graphe du noyau, on reconnait la fonction de réponse hémodynamique utilisée lors du laboratoire sur la convolution. Le signal est généré par convolution du noyau avec un vecteur bloc (ligne 18 du bloc de code initial). On voit que bloc est créé en assemblant deux vecteurs de 15 zéros et de 15 uns (ligne 7). Le signal est donc périodique. Comme la fréquence d'acquisition est de 1 Hz (ligne 9 définissant les échantillons temporels, on voit un pas de 1/freq, avec freq=1, ligne 5), la période du signal est de 30 secondes, soit une fréquence de 0.033Hz. On peut confirmer cela visuellement sur le graphe. 2. Représenter le contenu fréquentiel de signal avec la commande Analyse_Frequence_Puissance. Utilisez la commande ylim pour ajuster les limites de l'axe y et pouvoir bien observer le signal. Notez que l'axe y (puissance) est en échelle log (dB). Quelles sont les fréquences principales contenues dans le signal? Etait-ce attendu?
%%matlab %% représentation en fréquences % Nouvelle figure figure % La fonction utilise le signal comme premier argument, et les échantillons temporels comme deuxième Analyse_Frequence_Puissance(signal,ech); % On ajuste l'échelle de l'axe y. ylim([10^(-10) 1])
NSC2006/labo8_filtrage/labo 8 Introduction au filtrage reponses.ipynb
SIMEXP/Projects
mit
Comme attendu, étant donné le caractère périodique de période 30s du signal, la fréquence principale est de 0.033 Hz. Les pics suivants sont situés à 0.1 Hz et 0.166 Hz. 3. Répétez les questions 1.1 et 1.2 avec un bruit dit blanc, généré ci dessous.
%%matlab %% définition du bruit blanc bruit = 0.05*randn(size(signal));
NSC2006/labo8_filtrage/labo 8 Introduction au filtrage reponses.ipynb
SIMEXP/Projects
mit
Pourquoi est ce que ce bruit porte ce nom?
%%matlab % Ce code n'est pas commenté, car essentiellement identique % à ceux présentés en question 1.1. et 1.2. %% représentation en temps figure plot(ech,bruit) ylim([-0.6 0.7]) xlabel('Temps (s)') ylabel('a.u') %% représentation en fréquences figure Analyse_Frequence_Puissance(bruit,ech); ylim([10^(-10) 1])
NSC2006/labo8_filtrage/labo 8 Introduction au filtrage reponses.ipynb
SIMEXP/Projects
mit
Le vecteur bruit est généré à l'aide de la fonction randn, qui est un générateur pseudo-aléatoires d'échantillons indépendants Gaussiens. Le spectre de puissance représente l'amplitude de la contribution de chaque fréquence au signal. On peut également décomposer une couleur en fréquences. Quand toutes les fréquences sont présentes, et en proportion similaire, on obtient du blanc. Le bruit Gaussien a un spectre de puissance plat (hormis de petites variations aléatoires), ce qui lui vaut son surnom de bruit blanc. 4. Bruit respiratoire. Répétez les les questions 1.1 et 1.2 avec un bruit dit respiratoire, généré ci dessous.
%%matlab %% définition du signal de respiration % fréquence de la respiration freq_resp = 0.3; % un modéle simple (cosinus) des fluctuations liées à la respiration resp = cos(2*pi*freq_resp*ech/freq); % fréquence de modulation lente de l'amplitude respiratoire freq_mod = 0.01; % modulation de l'amplitude du signal lié à la respiration resp = resp.*(ones(size(resp))-0.1*cos(2*pi*freq_mod*ech/freq)); % on force une moyenne nulle, et une amplitude max de 0.1 resp = 0.1*(resp-mean(resp)); %%matlab % Ce code n'est pas commenté, car essentiellement identique % à ceux présentés en question 1.1. et 1.2. %% représentation en temps figure plot(ech,resp) xlim([-1 max(ech)/2+1]) xlabel('Temps (s)') ylabel('a.u') %% représentation en fréquences figure [ech_f,signal_f,signal_af,signal_pu] = Analyse_Frequence_Puissance(resp,ech); set(gca,'yscale','log'); ylim([10^(-35) 1])
NSC2006/labo8_filtrage/labo 8 Introduction au filtrage reponses.ipynb
SIMEXP/Projects
mit
Est ce une simulation raisonnable de variations liées à la respiration? pourquoi? On voit que ce signal est essentiellement composé de fréquences autour de 0.3Hz. Cela était déjà apparent avec l'introduction d'un cosinus de fréquence 0.3Hz dans la génération (ligne 7). L'amplitude de ce cosinus est elle-même modulée par un autre cosinus, plus lent (ligne 11). D'aprés wikipedia, un adulte respire de 16 à 20 fois par minutes, soit une fréquence de 0.26 à 0.33Hz (en se ramenant en battements par secondes). Cette simulation utilise donc une fréquence raisonnable pour simuler la respiration. 5. Ligne de base. Répétez les les questions 1.1 et 1.2 avec une dérive de la ligne de base, telle que générée ci dessous.
%%matlab %% définition de la ligne de base base = 0.1*(ech-mean(ech))/mean(ech); %%matlab % Ce code n'est pas commenté, car essentiellement identique % à ceux présentés en question 1.1. et 1.2. %% représentation en temps figure plot(ech,base) xlim([-1 max(ech)+1]) ylim([-0.6 0.7]) xlabel('Temps (s)') ylabel('a.u') %% représentation en fréquence figure [ech_f,base_f,base_af,base_pu] = Analyse_Frequence_Puissance(base,ech); ylim([10^(-10) 1])
NSC2006/labo8_filtrage/labo 8 Introduction au filtrage reponses.ipynb
SIMEXP/Projects
mit
Le vecteur base est une fonction linéaire du temps (ligne 4). En représentation fréquentielle, il s'agit d'un signal essentiellement basse fréquence. 6. Mélange de signaux. On va maintenant mélanger nos différentes signaux, tel qu'indiqué ci-dessous. Représentez les trois mélanges en temps et en fréquence, superposé au signal d'intérêt sans aucun bruit (variable signal). Pouvez-vous reconnaitre la contribution de chaque source dans le mélange fréquentiel? Est ce que les puissances de fréquences s'additionnent systématiquement?
%%matlab %% Mélanges de signaux y_sr = signal + resp; y_srb = signal + resp + bruit; y_srbb = signal + resp + bruit + base; %%matlab % Ce code n'est pas commenté, car essentiellement identique % à ceux présentés en question 1.1. et 1.2. % notez tout de même l'utilisation d'un hold on pour superposer la variable `signal` (sans bruit) % au mélange de signaux. y = y_sr; % représentation en temps figure plot(ech,y) hold on plot(ech,signal,'r') xlim([-1 301]) ylim([-0.8 0.8]) xlabel('Temps (s)') ylabel('a.u') % représentation en fréquence figure Analyse_Frequence_Puissance(y,ech); ylim([10^(-10) 1])
NSC2006/labo8_filtrage/labo 8 Introduction au filtrage reponses.ipynb
SIMEXP/Projects
mit
On reconnait clairement la série de pics qui composent la variable signal auquelle vient se rajouter les fréquences de la variable resp, à 0.3 Hz. Notez que les spectres de puissance ne s'additionnent pas nécessairement, cela dépend si, à une fréquence donnée, les signaux que l'on additionne sont ou non en phase.
%%matlab % Idem au code précédent, y_sr est remplacé par y_srb dans la ligne suivante. y = y_srb; % représentation en temps figure plot(ech,y) hold on plot(ech,signal,'r') xlim([-1 301]) ylim([-0.8 0.8]) xlabel('Temps (s)') ylabel('a.u') % représentation en fréquence figure [freq_f,y_f,y_af,y_pu] = Analyse_Frequence_Puissance(y,ech); ylim([10^(-10) 1])
NSC2006/labo8_filtrage/labo 8 Introduction au filtrage reponses.ipynb
SIMEXP/Projects
mit
L'addition du bruit blanc ajoute des variations aléatoires dans la totalité du spectre et, hormis les pics du spectre associé à signal, il devient difficile de distinguer la contribution de resp.
%%matlab % Idem au code précédent, y_srb est remplacé par y_srbb dans la ligne suivante. y = y_srbb; % représentation en temps figure plot(ech,y) hold on plot(ech,signal,'r') xlim([-1 301]) ylim([-0.8 0.8]) xlabel('Temps (s)') ylabel('a.u') % représentation en fréquence figure [freq_f,y_f,y_af,y_pu] = Analyse_Frequence_Puissance(y,ech); ylim([10^(-10) 1])
NSC2006/labo8_filtrage/labo 8 Introduction au filtrage reponses.ipynb
SIMEXP/Projects
mit
Section 2: Optimisation de filtre 2.1. Nous allons commencer par appliquer un filtre de moyenne mobile, avec le signal le plus simple (y_sr). Pour cela on crée un noyau et on applique une convolution, comme indiqué ci dessous.
%%matlab %%définition d'un noyau de moyenne mobile % taille de la fenêtre pour la moyenne mobile, en nombre d'échantillons temporels taille = ceil(3*freq); % le noyau, défini sur une fenêtre identique aux signaux précédents noyau = [zeros(1,(length(signal)-taille-1)/2) ones(1,taille) zeros(1,(length(signal)-taille-1)/2)]; % normalisation du moyau noyau = noyau/sum(abs(noyau)); % convolution avec le noyau (filtrage) y_f = conv(y_sr,noyau,'same');
NSC2006/labo8_filtrage/labo 8 Introduction au filtrage reponses.ipynb
SIMEXP/Projects
mit
Représentez le noyau en fréquence (avec Analyse_Frequence_Puissance), commentez sur l'impact fréquentiel de la convolution. Faire un deuxième graphe représentant le signal d'intérêt superposé au signal filtré.
%%matlab %% Représentation fréquentielle du filtre figure % représentation fréquentielle du noyau Analyse_Frequence_Puissance(noyau,ech); ylim([10^(-10) 1]) %% représentation du signal filtré figure % signal aprés filtrage plot(ech,y_f,'k') hold on % signal sans bruit plot(ech,signal,'r') %% erreur résiduelle err = sqrt(mean((signal-y_f).^2))
NSC2006/labo8_filtrage/labo 8 Introduction au filtrage reponses.ipynb
SIMEXP/Projects
mit
On voit que cette convolution supprime exactement la fréquence correspondant à la largeur du noyau (3 secondes). Il se trouve que cette fréquence est aussi trés proche de la fréquence respiratoire choisie! Visuellement, le signal filtré est très proche du signal original. La mesure d'erreur (tel que demandée dans la question 2.2. ci dessous est de 3%. 2.2 Répétez la question 2.1 avec un noyau plus gros. Commentez qualitativement sur la qualité du débruitage.
%%matlab % taille de la fenêtre pour la moyenne mobile, en nombre d'échantillons temporels % On passe de 3 à 7 % ATTENTION: sous matlab, ce code ne marche qu'avec des noyaux de taille impaire taille = ceil(6*freq); % le noyau, défini sur une fenêtre identique aux signaux précédents noyau = [zeros(1,(length(signal)-taille-1)/2) ones(1,taille) zeros(1,(length(signal)-taille-1)/2)]; % normalisation du moyau noyau = noyau/sum(abs(noyau)); % convolution avec le noyau (filtrage) y_f = conv(y_sr,noyau,'same'); %% Représentation fréquentielle du filtre figure Analyse_Frequence_Puissance(noyau,ech); ylim([10^(-10) 1]) %% représentation du signal filtré figure plot(ech,y_f,'k') hold on plot(ech,signal,'r') %% erreur résiduelle err = sqrt(mean((signal-y_f).^2))
NSC2006/labo8_filtrage/labo 8 Introduction au filtrage reponses.ipynb
SIMEXP/Projects
mit
On voit que ce noyau, en plus de supprimer une fréquence légèrement au dessus de 0.3 Hz, supprime aussi une fréquence proche de 0.16 Hz. C'était l'un des pics que l'on avait identifié dans le spectre de signal. De fait, dans la représentation temporelle, on voit que le signal filtré (en noir) est dégradé: les fluctuations rapides du signal rouge sont perdues. Et effectivement, on a maintenant une erreur résiduelle de 7.6%, supérieure au 3% du filtre précédent. 2.3 Nous allons maintenant appliquer des filtres de Butterworth. Ces filtres sont disponibles dans des fonctions que vous avez déjà utilisé lors du laboratoire sur la transformée de Fourier: - FiltrePasseHaut.m: suppression des basses fréquences. - FiltrePasseBas.m: suppression des hautes fréquences. Le filtre de Butterworth n'utilise pas explicitement un noyau de convolution. Mais comme il s'agit d'un systéme linéaire invariant dans le temps, on peut toujours récupérer le noyau en regardant la réponse à une impulsion finie unitaire.
%%matlab %% Définition d'une implusion finie unitaire impulsion = zeros(size(signal)); impulsion(round(length(impulsion)/2))=1; noyau = FiltrePasseHaut(impulsion,freq,0.1);
NSC2006/labo8_filtrage/labo 8 Introduction au filtrage reponses.ipynb
SIMEXP/Projects
mit
Représentez le noyau en temps et en fréquence. Quelle est la fréquence de coupure du filtre?
%%matlab %% représentation temporelle figure plot(ech,noyau) xlabel('Temps (s)') ylabel('a.u') %% représentation fréquentielle figure Analyse_Frequence_Puissance(noyau,ech); set(gca,'yscale','log');
NSC2006/labo8_filtrage/labo 8 Introduction au filtrage reponses.ipynb
SIMEXP/Projects
mit
On observe une réduction importante de l'amplitude des fréquences inférieures à 0.1 Hz, qui correspond donc à la fréquence de coupure du filtre. 2.4. Application du filtre de Butterworth. L'exemple ci dessous filtre le signal avec un filtre passe bas, avec une fréquence de coupure de 0.1. Faire un graphe représentant le signal d'intérêt (signal) superposé au signal filtré. Calculez l'erreur résiduelle, et comparez au filtre par moyenne mobile évalué précédemment.
%%matlab y = y_sr; y_f = FiltrePasseBas(y,freq,0.1); %%représentation du signal filtré plot(ech,signal,'r') hold on plot(ech,y_f,'k') err = sqrt(mean((signal-y_f).^2))
NSC2006/labo8_filtrage/labo 8 Introduction au filtrage reponses.ipynb
SIMEXP/Projects
mit
Avec une fréquence de coupure de 0.1 Hz, on perd de nombreux pics de signal, notamment celui situé à 0.16Hz. Effectivement dans la représentation en temps on voit que les variations rapides de signal sont perdues, et l'erreur résiduelle est de 6%. 2.5. Optimisation du filtre de Butterworth. Trouvez une combinaison de filtre passe-haut et de filtre passe-bas de Butterworth qui permette d'améliorer l'erreur résiduelle par rapport au filtre de moyenne mobile. Faire un graphe représentant le signal d'intérêt (signal) superposé au signal filtré, et un second avec le signal d'intérêt superposé au signal bruité, pour référence.
%%matlab y = y_sr; %% filtre de Butterworth % on combine une passe-haut et un passe-bas, de maniére à retirer uniquement les fréquences autour de 0.3 Hz y_f = FiltrePasseHaut(y,freq,0.35); y_f = y_f+FiltrePasseBas(y,freq,0.25); %% représentation du signal filtré figure plot(ech,signal,'r') hold on plot(ech,y_f,'k') err = sqrt(mean((signal-y_f).^2)) %% représentation du signal brut figure plot(ech,signal,'r') hold on plot(ech,y,'k')
NSC2006/labo8_filtrage/labo 8 Introduction au filtrage reponses.ipynb
SIMEXP/Projects
mit
Numpy Arrays Manipulating numpy arrays is an important part of doing machine learning (or, really, any type of scientific computation) in Python. This will likely be review for most: we'll quickly go through some of the most important features.
import numpy as np # Generating a random array X = np.random.random((3, 5)) # a 3 x 5 array print(X) # Accessing elements # get a single element print(X[0, 0]) # get a row print(X[1]) # get a column print(X[:, 1]) # Transposing an array print(X.T) # Turning a row vector into a column vector y = np.linspace(0, 12, 5) print(y) # make into a column vector print(y[:, np.newaxis])
_doc/notebooks/sklearn_ensae_course/01_data_manipulation.ipynb
sdpython/ensae_teaching_cs
mit
There is much, much more to know, but these few operations are fundamental to what we'll do during this tutorial. Scipy Sparse Matrices We won't make very much use of these in this tutorial, but sparse matrices are very nice in some situations. For example, in some machine learning tasks, especially those associated with textual analysis, the data may be mostly zeros. Storing all these zeros is very inefficient. We can create and manipulate sparse matrices as follows:
from scipy import sparse # Create a random array with a lot of zeros X = np.random.random((10, 5)) print(X) # set the majority of elements to zero X[X < 0.7] = 0 print(X) # turn X into a csr (Compressed-Sparse-Row) matrix X_csr = sparse.csr_matrix(X) print(X_csr) # convert the sparse matrix to a dense array print(X_csr.toarray())
_doc/notebooks/sklearn_ensae_course/01_data_manipulation.ipynb
sdpython/ensae_teaching_cs
mit
Matplotlib Another important part of machine learning is visualization of data. The most common tool for this in Python is matplotlib. It is an extremely flexible package, but we will go over some basics here. First, something special to IPython notebook. We can turn on the "IPython inline" mode, which will make plots show up inline in the notebook.
%matplotlib inline # Here we import the plotting functions import matplotlib.pyplot as plt # plotting a line x = np.linspace(0, 10, 100) plt.plot(x, np.sin(x)); # scatter-plot points x = np.random.normal(size=500) y = np.random.normal(size=500) plt.scatter(x, y); # showing images x = np.linspace(1, 12, 100) y = x[:, np.newaxis] im = y * np.sin(x) * np.cos(y) print(im.shape) # imshow - note that origin is at the top-left by default! plt.imshow(im); # Contour plot - note that origin here is at the bottom-left by default! plt.contour(im);
_doc/notebooks/sklearn_ensae_course/01_data_manipulation.ipynb
sdpython/ensae_teaching_cs
mit
There are many, many more plot types available. One useful way to explore these is by looking at the matplotlib gallery: http://matplotlib.org/gallery.html You can test these examples out easily in the notebook: simply copy the Source Code link on each page, and put it in a notebook using the %load magic. For example:
# %load http://matplotlib.org/mpl_examples/pylab_examples/ellipse_collection.py import matplotlib.pyplot as plt import numpy as np from matplotlib.collections import EllipseCollection x = np.arange(10) y = np.arange(15) X, Y = np.meshgrid(x, y) XY = np.hstack((X.ravel()[:, np.newaxis], Y.ravel()[:, np.newaxis])) ww = X/10.0 hh = Y/15.0 aa = X*9 fig, ax = plt.subplots() ec = EllipseCollection(ww, hh, aa, units='x', offsets=XY, transOffset=ax.transData) ec.set_array((X + Y).ravel()) ax.add_collection(ec) ax.autoscale_view() ax.set_xlabel('X') ax.set_ylabel('y') cbar = plt.colorbar(ec) cbar.set_label('X+Y');
_doc/notebooks/sklearn_ensae_course/01_data_manipulation.ipynb
sdpython/ensae_teaching_cs
mit
To quickly inspect the data we can export it as a dictionary of numpy arrays thanks to the AsNumpy RDataFrame method. Note that for each row, E is an array of values:
npy_dict = df.AsNumpy(["E"]) for row, vec in enumerate(npy_dict["E"]): print(f"\nRow {row} contains:\n{vec}")
NCPSchool2021/RDataFrame/02-rdataframe-collections.ipynb
root-mirror/training
gpl-2.0
Define a new column with operations on RVecs
df1 = df.Define("good_pt", "sqrt(px*px + py*py)[E>100]")
NCPSchool2021/RDataFrame/02-rdataframe-collections.ipynb
root-mirror/training
gpl-2.0
sqrt(px*px + py*py)[E&gt;100]: * px, py and E are columns the elements of which are RVecs * Operations on RVecs like sum, product, sqrt preserve the dimensionality of the array * [E&gt;100] selects the elements of the array that satisfy the condition * E &gt; 100: boolean expressions on RVecs such as E &gt; 100 return a mask, that is an array with information on which values pass the selection (e.g. [0, 1, 0, 0] if only the second element satisfies the condition) Now we can plot the newly defined column values in a histogram
c = ROOT.TCanvas() h = df1.Histo1D(("pt", "pt", 16, 0, 4), "good_pt") h.Draw() c.Draw()
NCPSchool2021/RDataFrame/02-rdataframe-collections.ipynb
root-mirror/training
gpl-2.0
Base manifold (three dimensional) Metric tensor (cartesian coordinates - norm = False)
from sympy import cos, sin, symbols g3coords = (x,y,z) = symbols('x y z') g3 = Ga('ex ey ez', g = [1,1,1], coords = g3coords,norm=False) # Create g3 (e_x,e_y,e_z) = g3.mv() Math(r'g =%s' % latex(g3.g))
examples/ipython/colored_christoffel_symbols.ipynb
arsenovic/galgebra
bsd-3-clause
Two dimensioanal submanifold - Unit sphere Basis not normalised
sp2coords = (theta, phi) = symbols(r'{\color{airforceblue}\theta} {\color{applegreen}\phi}', real = True) sp2param = [sin(theta)*cos(phi), sin(theta)*sin(phi), cos(theta)] sp2 = g3.sm(sp2param, sp2coords, norm = False) # submanifold (etheta, ephi) = sp2.mv() # sp2 basis vectors (rtheta, rphi) = sp2.mvr() # sp2 reciprocal basis vectors sp2grad = sp2.grad sph_map = [1, theta, phi] # Coordinate map for sphere of r = 1 Math(r'(\theta,\phi)\rightarrow (r,\theta,\phi) = %s' % latex(sph_map)) Math(r'e_\theta \cdot e_\theta = %s' % (etheta|etheta)) Math(r'e_\phi \cdot e_\phi = %s' % (ephi|ephi)) Math('g = %s' % latex(sp2.g)) Math(r'g^{-1} = %s' % latex(sp2.g_inv))
examples/ipython/colored_christoffel_symbols.ipynb
arsenovic/galgebra
bsd-3-clause
Christoffel symbols of the first kind:
Cf1 = sp2.Christoffel_symbols(mode=1) Cf1 = permutedims(Array(Cf1), (2, 0, 1)) Math(r'\Gamma_{1, \alpha, \beta} = %s \quad \Gamma_{2, \alpha, \beta} = %s ' % (latex(Cf1[0, :, :]), latex(Cf1[1, :, :]))) Cf2 = sp2.Christoffel_symbols(mode=2) Cf2 = permutedims(Array(Cf2), (2, 0, 1)) Math(r'\Gamma^{1}_{\phantom{1,}\alpha, \beta} = %s \quad \Gamma^{2}_{\phantom{2,}\alpha, \beta} = %s ' % (latex(Cf2[0, :, :]), latex(Cf2[1, :, :]))) F = sp2.mv('F','vector',f=True) #scalar function f = sp2.mv('f','scalar',f=True) #vector function Math(r'\nabla = %s' % sp2grad) Math(r'\nabla f = %s' % (sp2.grad * f)) Math(r'F = %s' % F) Math(r'\nabla F = %s' % (sp2.grad * F))
examples/ipython/colored_christoffel_symbols.ipynb
arsenovic/galgebra
bsd-3-clause
One dimensioanal submanifold Basis not normalised
cir_th = phi = symbols(r'{\color{atomictangerine}\phi}',real = True) cir_map = [pi/8, phi] Math(r'(\phi)\rightarrow (\theta,\phi) = %s' % latex(cir_map)) cir1d = sp2.sm( cir_map , (cir_th,), norm = False) # submanifold cir1dgrad = cir1d.grad (ephi) = cir1d.mv() Math(r'e_\phi \cdot e_\phi = %s' % latex(ephi[0] | ephi[0])) Math('g = %s' % latex(cir1d.g)) h = cir1d.mv('h','scalar',f= True) H = cir1d.mv('H','vector',f= True) Math(r'\nabla = %s' % cir1dgrad) Math(r'\nabla h = %s' %(cir1d.grad * h).simplify()) Math('H = %s' % H) Math(r'\nabla H = %s' % (cir1d.grad * H).simplify())
examples/ipython/colored_christoffel_symbols.ipynb
arsenovic/galgebra
bsd-3-clause
Pandas Data Structures Series A Series is a single vector of data (like a NumPy array) with an index that labels each element in the vector.
counts = pd.Series([632, 1638, 569, 115]) counts
Day_01/01_Pandas/1. Introduction to Pandas.ipynb
kialio/gsfcpyboot
mit
If an index is not specified, a default sequence of integers is assigned as the index. A NumPy array comprises the values of the Series, while the index is a pandas Index object.
counts.values counts.index
Day_01/01_Pandas/1. Introduction to Pandas.ipynb
kialio/gsfcpyboot
mit
We can assign meaningful labels to the index, if they are available:
bacteria = pd.Series([632, 1638, 569, 115], index=['Firmicutes', 'Proteobacteria', 'Actinobacteria', 'Bacteroidetes']) bacteria
Day_01/01_Pandas/1. Introduction to Pandas.ipynb
kialio/gsfcpyboot
mit
These labels can be used to refer to the values in the Series.
bacteria['Actinobacteria'] bacteria[[name.endswith('bacteria') for name in bacteria.index]] [name.endswith('bacteria') for name in bacteria.index]
Day_01/01_Pandas/1. Introduction to Pandas.ipynb
kialio/gsfcpyboot
mit
Notice that the indexing operation preserved the association between the values and the corresponding indices. We can still use positional indexing if we wish.
bacteria[0]
Day_01/01_Pandas/1. Introduction to Pandas.ipynb
kialio/gsfcpyboot
mit
We can give both the array of values and the index meaningful labels themselves:
bacteria.name = 'counts' bacteria.index.name = 'phylum' bacteria
Day_01/01_Pandas/1. Introduction to Pandas.ipynb
kialio/gsfcpyboot
mit
NumPy's math functions and other operations can be applied to Series without losing the data structure.
np.log(bacteria) bacteria
Day_01/01_Pandas/1. Introduction to Pandas.ipynb
kialio/gsfcpyboot
mit
We can also filter according to the values in the Series:
bacteria[bacteria>1000]
Day_01/01_Pandas/1. Introduction to Pandas.ipynb
kialio/gsfcpyboot
mit
A Series can be thought of as an ordered key-value store. In fact, we can create one from a dict:
bacteria_dict = {'Firmicutes': 632, 'Proteobacteria': 1638, 'Actinobacteria': 569, 'Bacteroidetes': 115} pd.Series(bacteria_dict)
Day_01/01_Pandas/1. Introduction to Pandas.ipynb
kialio/gsfcpyboot
mit
Notice that the Series is created in key-sorted order. If we pass a custom index to Series, it will select the corresponding values from the dict, and treat indices without corrsponding values as missing. Pandas uses the NaN (not a number) type for missing values.
bacteria2 = pd.Series(bacteria_dict, index=['Cyanobacteria','Firmicutes','Proteobacteria','Actinobacteria']) bacteria2 bacteria2.isnull()
Day_01/01_Pandas/1. Introduction to Pandas.ipynb
kialio/gsfcpyboot
mit
Critically, the labels are used to align data when used in operations with other Series objects:
bacteria + bacteria2
Day_01/01_Pandas/1. Introduction to Pandas.ipynb
kialio/gsfcpyboot
mit
Contrast this with NumPy arrays, where arrays of the same length will combine values element-wise; adding Series combined values with the same label in the resulting series. Notice also that the missing values were propogated by addition. DataFrame Inevitably, we want to be able to store, view and manipulate data that is multivariate, where for every index there are multiple fields or columns of data, often of varying data type. A DataFrame is a tabular data structure, encapsulating multiple series like columns in a spreadsheet. Data are stored internally as a 2-dimensional object, but the DataFrame allows us to represent and manipulate higher-dimensional data.
data = pd.DataFrame({'value':[632, 1638, 569, 115, 433, 1130, 754, 555], 'patient':[1, 1, 1, 1, 2, 2, 2, 2], 'phylum':['Firmicutes', 'Proteobacteria', 'Actinobacteria', 'Bacteroidetes', 'Firmicutes', 'Proteobacteria', 'Actinobacteria', 'Bacteroidetes']}) data
Day_01/01_Pandas/1. Introduction to Pandas.ipynb
kialio/gsfcpyboot
mit
Notice the DataFrame is sorted by column name. We can change the order by indexing them in the order we desire:
newdata = data[['phylum','value','patient']] newdata
Day_01/01_Pandas/1. Introduction to Pandas.ipynb
kialio/gsfcpyboot
mit
A DataFrame has a second index, representing the columns:
data.columns newdata.columns
Day_01/01_Pandas/1. Introduction to Pandas.ipynb
kialio/gsfcpyboot
mit
If we wish to access columns, we can do so either by dict-like indexing or by attribute:
data['value'] data.value type(data.value) type(data[['value']])
Day_01/01_Pandas/1. Introduction to Pandas.ipynb
kialio/gsfcpyboot
mit
Notice this is different than with Series, where dict-like indexing retrieved a particular element (row). If we want access to a row in a DataFrame, we index its ix attribute.
data.ix[3]
Day_01/01_Pandas/1. Introduction to Pandas.ipynb
kialio/gsfcpyboot
mit
Alternatively, we can create a DataFrame with a dict of dicts:
data = pd.DataFrame({0: {'patient': 1, 'phylum': 'Firmicutes', 'value': 632}, 1: {'patient': 1, 'phylum': 'Proteobacteria', 'value': 1638}, 2: {'patient': 1, 'phylum': 'Actinobacteria', 'value': 569}, 3: {'patient': 1, 'phylum': 'Bacteroidetes', 'value': 115}, 4: {'patient': 2, 'phylum': 'Firmicutes', 'value': 433}, 5: {'patient': 2, 'phylum': 'Proteobacteria', 'value': 1130}, 6: {'patient': 2, 'phylum': 'Actinobacteria', 'value': 754}, 7: {'patient': 2, 'phylum': 'Bacteroidetes', 'value': 555}}) data
Day_01/01_Pandas/1. Introduction to Pandas.ipynb
kialio/gsfcpyboot
mit
We probably want this transposed:
data = data.T data
Day_01/01_Pandas/1. Introduction to Pandas.ipynb
kialio/gsfcpyboot
mit
Its important to note that the Series returned when a DataFrame is indexted is merely a view on the DataFrame, and not a copy of the data itself. So you must be cautious when manipulating this data:
vals = data.value vals vals[5] = 0 vals data vals = data.value.copy() vals[5] = 1000 data
Day_01/01_Pandas/1. Introduction to Pandas.ipynb
kialio/gsfcpyboot
mit
We can create or modify columns by assignment:
data.value[3] = 14 data data['year'] = 2013 data
Day_01/01_Pandas/1. Introduction to Pandas.ipynb
kialio/gsfcpyboot
mit
But note, we cannot use the attribute indexing method to add a new column:
data.treatment = 1 data data.treatment
Day_01/01_Pandas/1. Introduction to Pandas.ipynb
kialio/gsfcpyboot
mit
Specifying a Series as a new columns cause its values to be added according to the DataFrame's index:
treatment = pd.Series([0]*4 + [1]*2) treatment data['treatment'] = treatment data
Day_01/01_Pandas/1. Introduction to Pandas.ipynb
kialio/gsfcpyboot
mit
Other Python data structures (ones without an index) need to be the same length as the DataFrame:
month = ['Jan', 'Feb', 'Mar', 'Apr'] data['month'] = month data['month'] = ['Jan']*len(data) data
Day_01/01_Pandas/1. Introduction to Pandas.ipynb
kialio/gsfcpyboot
mit
We can use del to remove columns, in the same way dict entries can be removed:
del data['month'] data
Day_01/01_Pandas/1. Introduction to Pandas.ipynb
kialio/gsfcpyboot
mit
We can extract the underlying data as a simple ndarray by accessing the values attribute:
data.values
Day_01/01_Pandas/1. Introduction to Pandas.ipynb
kialio/gsfcpyboot
mit
Notice that because of the mix of string and integer (and NaN) values, the dtype of the array is object. The dtype will automatically be chosen to be as general as needed to accomodate all the columns.
df = pd.DataFrame({'foo': [1,2,3], 'bar':[0.4, -1.0, 4.5]}) df.values
Day_01/01_Pandas/1. Introduction to Pandas.ipynb
kialio/gsfcpyboot
mit
Pandas uses a custom data structure to represent the indices of Series and DataFrames.
data.index
Day_01/01_Pandas/1. Introduction to Pandas.ipynb
kialio/gsfcpyboot
mit
Index objects are immutable:
data.index[0] = 15
Day_01/01_Pandas/1. Introduction to Pandas.ipynb
kialio/gsfcpyboot
mit
This is so that Index objects can be shared between data structures without fear that they will be changed.
bacteria2.index = bacteria.index bacteria2
Day_01/01_Pandas/1. Introduction to Pandas.ipynb
kialio/gsfcpyboot
mit
Importing data A key, but often under-appreciated, step in data analysis is importing the data that we wish to analyze. Though it is easy to load basic data structures into Python using built-in tools or those provided by packages like NumPy, it is non-trivial to import structured data well, and to easily convert this input into a robust data structure: genes = np.loadtxt("genes.csv", delimiter=",", dtype=[('gene', '|S10'), ('value', '&lt;f4')]) Pandas provides a convenient set of functions for importing tabular data in a number of formats directly into a DataFrame object. These functions include a slew of options to perform type inference, indexing, parsing, iterating and cleaning automatically as data are imported. Let's start with some more bacteria data, stored in csv format.
!cat data/microbiome.csv
Day_01/01_Pandas/1. Introduction to Pandas.ipynb
kialio/gsfcpyboot
mit
This table can be read into a DataFrame using read_csv:
mb = pd.read_csv("data/microbiome.csv") mb
Day_01/01_Pandas/1. Introduction to Pandas.ipynb
kialio/gsfcpyboot
mit
Notice that read_csv automatically considered the first row in the file to be a header row. We can override default behavior by customizing some the arguments, like header, names or index_col.
pd.read_csv("data/microbiome.csv", header=None).head()
Day_01/01_Pandas/1. Introduction to Pandas.ipynb
kialio/gsfcpyboot
mit
read_csv is just a convenience function for read_table, since csv is such a common format:
mb = pd.read_table("data/microbiome.csv", sep=',')
Day_01/01_Pandas/1. Introduction to Pandas.ipynb
kialio/gsfcpyboot
mit
The sep argument can be customized as needed to accomodate arbitrary separators. For example, we can use a regular expression to define a variable amount of whitespace, which is unfortunately very common in some data formats: sep='\s+' For a more useful index, we can specify the first two columns, which together provide a unique index to the data.
mb = pd.read_csv("data/microbiome.csv", index_col=['Taxon','Patient']) mb.head()
Day_01/01_Pandas/1. Introduction to Pandas.ipynb
kialio/gsfcpyboot
mit
This is called a hierarchical index, which we will revisit later in the tutorial. If we have sections of data that we do not wish to import (for example, known bad data), we can populate the skiprows argument:
pd.read_csv("data/microbiome.csv", skiprows=[3,4,6]).head()
Day_01/01_Pandas/1. Introduction to Pandas.ipynb
kialio/gsfcpyboot
mit
Conversely, if we only want to import a small number of rows from, say, a very large data file we can use nrows:
pd.read_csv("data/microbiome.csv", nrows=4)
Day_01/01_Pandas/1. Introduction to Pandas.ipynb
kialio/gsfcpyboot
mit
Alternately, if we want to process our data in reasonable chunks, the chunksize argument will return an iterable object that can be employed in a data processing loop. For example, our microbiome data are organized by bacterial phylum, with 15 patients represented in each:
data_chunks = pd.read_csv("data/microbiome.csv", chunksize=15) mean_tissue = {chunk.Taxon[0]:chunk.Tissue.mean() for chunk in data_chunks} mean_tissue
Day_01/01_Pandas/1. Introduction to Pandas.ipynb
kialio/gsfcpyboot
mit
Most real-world data is incomplete, with values missing due to incomplete observation, data entry or transcription error, or other reasons. Pandas will automatically recognize and parse common missing data indicators, including NA and NULL.
!cat data/microbiome_missing.csv pd.read_csv("data/microbiome_missing.csv").head(20)
Day_01/01_Pandas/1. Introduction to Pandas.ipynb
kialio/gsfcpyboot
mit
Above, Pandas recognized NA and an empty field as missing data.
pd.isnull(pd.read_csv("data/microbiome_missing.csv")).head(20)
Day_01/01_Pandas/1. Introduction to Pandas.ipynb
kialio/gsfcpyboot
mit
Unfortunately, there will sometimes be inconsistency with the conventions for missing data. In this example, there is a question mark "?" and a large negative number where there should have been a positive integer. We can specify additional symbols with the na_values argument:
pd.read_csv("data/microbiome_missing.csv", na_values=['?', -99999]).head(20)
Day_01/01_Pandas/1. Introduction to Pandas.ipynb
kialio/gsfcpyboot
mit
These can be specified on a column-wise basis using an appropriate dict as the argument for na_values. Microsoft Excel Since so much financial and scientific data ends up in Excel spreadsheets (regrettably), Pandas' ability to directly import Excel spreadsheets is valuable. This support is contingent on having one or two dependencies (depending on what version of Excel file is being imported) installed: xlrd and openpyxl (these may be installed with either pip or easy_install). Importing Excel data to Pandas is a two-step process. First, we create an ExcelFile object using the path of the file:
mb_file = pd.ExcelFile('data/microbiome/MID1.xls') mb_file
Day_01/01_Pandas/1. Introduction to Pandas.ipynb
kialio/gsfcpyboot
mit
Then, since modern spreadsheets consist of one or more "sheets", we parse the sheet with the data of interest:
mb1 = mb_file.parse("Sheet 1", header=None) mb1.columns = ["Taxon", "Count"] mb1.head()
Day_01/01_Pandas/1. Introduction to Pandas.ipynb
kialio/gsfcpyboot
mit
There is now a read_excel convenience function in Pandas that combines these steps into a single call:
mb2 = pd.read_excel('data/microbiome/MID2.xls', sheetname='Sheet 1', header=None) mb2.head()
Day_01/01_Pandas/1. Introduction to Pandas.ipynb
kialio/gsfcpyboot
mit
There are several other data formats that can be imported into Python and converted into DataFrames, with the help of buitl-in or third-party libraries. These include JSON, XML, HDF5, relational and non-relational databases, and various web APIs. These are beyond the scope of this tutorial, but are covered in Python for Data Analysis. Pandas Fundamentals This section introduces the new user to the key functionality of Pandas that is required to use the software effectively. For some variety, we will leave our digestive tract bacteria behind and employ some baseball data.
baseball = pd.read_csv("data/baseball.csv", index_col='id') baseball.head()
Day_01/01_Pandas/1. Introduction to Pandas.ipynb
kialio/gsfcpyboot
mit
Notice that we specified the id column as the index, since it appears to be a unique identifier. We could try to create a unique index ourselves by combining player and year:
player_id = baseball.player + baseball.year.astype(str) baseball_newind = baseball.copy() baseball_newind.index = player_id baseball_newind.head()
Day_01/01_Pandas/1. Introduction to Pandas.ipynb
kialio/gsfcpyboot
mit
This looks okay, but let's check:
baseball_newind.index.is_unique
Day_01/01_Pandas/1. Introduction to Pandas.ipynb
kialio/gsfcpyboot
mit
So, indices need not be unique. Our choice is not unique because some players change teams within years.
pd.Series(baseball_newind.index).value_counts()
Day_01/01_Pandas/1. Introduction to Pandas.ipynb
kialio/gsfcpyboot
mit
The most important consequence of a non-unique index is that indexing by label will return multiple values for some labels:
baseball_newind.ix['wickmbo012007']
Day_01/01_Pandas/1. Introduction to Pandas.ipynb
kialio/gsfcpyboot
mit
We will learn more about indexing below. We can create a truly unique index by combining player, team and year:
player_unique = baseball.player + baseball.team + baseball.year.astype(str) baseball_newind = baseball.copy() baseball_newind.index = player_unique baseball_newind.head() baseball_newind.index.is_unique
Day_01/01_Pandas/1. Introduction to Pandas.ipynb
kialio/gsfcpyboot
mit
We can create meaningful indices more easily using a hierarchical index; for now, we will stick with the numeric id field as our index. Manipulating indices Reindexing allows users to manipulate the data labels in a DataFrame. It forces a DataFrame to conform to the new index, and optionally, fill in missing data if requested. A simple use of reindex is to alter the order of the rows:
baseball.reindex(baseball.index[::-1]).head()
Day_01/01_Pandas/1. Introduction to Pandas.ipynb
kialio/gsfcpyboot
mit
Notice that the id index is not sequential. Say we wanted to populate the table with every id value. We could specify and index that is a sequence from the first to the last id numbers in the database, and Pandas would fill in the missing data with NaN values:
id_range = range(baseball.index.values.min(), baseball.index.values.max()) baseball.reindex(id_range).head()
Day_01/01_Pandas/1. Introduction to Pandas.ipynb
kialio/gsfcpyboot
mit
Missing values can be filled as desired, either with selected values, or by rule:
baseball.reindex(id_range, method='ffill', columns=['player','year']).head() baseball.reindex(id_range, fill_value='mr.nobody', columns=['player']).head()
Day_01/01_Pandas/1. Introduction to Pandas.ipynb
kialio/gsfcpyboot
mit
Keep in mind that reindex does not work if we pass a non-unique index series. We can remove rows or columns via the drop method:
baseball.shape baseball.drop([89525, 89526]) baseball.drop(['ibb','hbp'], axis=1)
Day_01/01_Pandas/1. Introduction to Pandas.ipynb
kialio/gsfcpyboot
mit
Indexing and Selection Indexing works analogously to indexing in NumPy arrays, except we can use the labels in the Index object to extract values in addition to arrays of integers.
# Sample Series object hits = baseball_newind.h hits # Numpy-style indexing hits[:3] # Indexing by label hits[['womacto01CHN2006','schilcu01BOS2006']]
Day_01/01_Pandas/1. Introduction to Pandas.ipynb
kialio/gsfcpyboot
mit
We can also slice with data labels, since they have an intrinsic order within the Index:
hits['womacto01CHN2006':'gonzalu01ARI2006'] hits['womacto01CHN2006':'gonzalu01ARI2006'] = 5 hits
Day_01/01_Pandas/1. Introduction to Pandas.ipynb
kialio/gsfcpyboot
mit
In a DataFrame we can slice along either or both axes:
baseball_newind[['h','ab']] baseball_newind[baseball_newind.ab>500]
Day_01/01_Pandas/1. Introduction to Pandas.ipynb
kialio/gsfcpyboot
mit
The indexing field ix allows us to select subsets of rows and columns in an intuitive way:
baseball_newind.ix['gonzalu01ARI2006', ['h','X2b', 'X3b', 'hr']] baseball_newind.ix[['gonzalu01ARI2006','finlest01SFN2006'], 5:8] baseball_newind.ix[:'myersmi01NYA2006', 'hr']
Day_01/01_Pandas/1. Introduction to Pandas.ipynb
kialio/gsfcpyboot
mit
Similarly, the cross-section method xs (not a field) extracts a single column or row by label and returns it as a Series:
baseball_newind.xs('myersmi01NYA2006')
Day_01/01_Pandas/1. Introduction to Pandas.ipynb
kialio/gsfcpyboot
mit
Operations DataFrame and Series objects allow for several operations to take place either on a single object, or between two or more objects. For example, we can perform arithmetic on the elements of two objects, such as combining baseball statistics across years:
hr2006 = baseball[baseball.year==2006].xs('hr', axis=1) hr2006.index = baseball.player[baseball.year==2006] hr2007 = baseball[baseball.year==2007].xs('hr', axis=1) hr2007.index = baseball.player[baseball.year==2007] hr2006 = pd.Series(baseball.hr[baseball.year==2006].values, index=baseball.player[baseball.year==2006]) hr2007 = pd.Series(baseball.hr[baseball.year==2007].values, index=baseball.player[baseball.year==2007]) hr_total = hr2006 + hr2007 hr_total
Day_01/01_Pandas/1. Introduction to Pandas.ipynb
kialio/gsfcpyboot
mit
Pandas' data alignment places NaN values for labels that do not overlap in the two Series. In fact, there are only 6 players that occur in both years.
hr_total[hr_total.notnull()]
Day_01/01_Pandas/1. Introduction to Pandas.ipynb
kialio/gsfcpyboot
mit
While we do want the operation to honor the data labels in this way, we probably do not want the missing values to be filled with NaN. We can use the add method to calculate player home run totals by using the fill_value argument to insert a zero for home runs where labels do not overlap:
hr2007.add(hr2006, fill_value=0)
Day_01/01_Pandas/1. Introduction to Pandas.ipynb
kialio/gsfcpyboot
mit
Operations can also be broadcast between rows or columns. For example, if we subtract the maximum number of home runs hit from the hr column, we get how many fewer than the maximum were hit by each player:
baseball.hr - baseball.hr.max()
Day_01/01_Pandas/1. Introduction to Pandas.ipynb
kialio/gsfcpyboot
mit
Or, looking at things row-wise, we can see how a particular player compares with the rest of the group with respect to important statistics
baseball.ix[89521]["player"] stats = baseball[['h','X2b', 'X3b', 'hr']] diff = stats - stats.xs(89521) diff[:10]
Day_01/01_Pandas/1. Introduction to Pandas.ipynb
kialio/gsfcpyboot
mit
We can also apply functions to each column or row of a DataFrame
stats.apply(np.median) stat_range = lambda x: x.max() - x.min() stats.apply(stat_range)
Day_01/01_Pandas/1. Introduction to Pandas.ipynb
kialio/gsfcpyboot
mit