markdown
stringlengths 0
37k
| code
stringlengths 1
33.3k
| path
stringlengths 8
215
| repo_name
stringlengths 6
77
| license
stringclasses 15
values |
---|---|---|---|---|
Operations are then also done based off of index: | ser1 + ser2 | 17-09-17-Python-for-Financial-Analysis-and-Algorithmic-Trading/03-General Pandas/02-Series.ipynb | arcyfelix/Courses | apache-2.0 |
Load the data file shared/bladder_cancer_genes_tcga.txt into a pandas.DataFrame, convert it to a numpy.ndarray matrix, and print the matrix dimensions | gene_matrix_for_network_df = pandas.read_csv("shared/bladder_cancer_genes_tcga.txt", sep="\t")
gene_matrix_for_network = gene_matrix_for_network_df.as_matrix()
print(gene_matrix_for_network.shape) | class21_reveal_python3.ipynb | ramseylab/networkscompbio | apache-2.0 |
Filter the matrix to include only rows for which the column-wise median is > 14; matrix should now be 13 x 414. | genes_keep = numpy.where(numpy.median(gene_matrix_for_network, axis=1) > 14)
matrix_filt = gene_matrix_for_network[genes_keep, ][0]
matrix_filt.shape
N = matrix_filt.shape[0]
M = matrix_filt.shape[1] | class21_reveal_python3.ipynb | ramseylab/networkscompbio | apache-2.0 |
Binarize the gene expression matrix using the mean value as a breakpoint, turning it into a NxM matrix of booleans (True/False). Call it gene_matrix_binarized. | gene_matrix_binarized = numpy.tile(numpy.mean(matrix_filt, axis=1),(M,1)).transpose() < matrix_filt
print(gene_matrix_binarized.shape) | class21_reveal_python3.ipynb | ramseylab/networkscompbio | apache-2.0 |
Test your matrix by printing the first four columns of the first four rows: | gene_matrix_binarized[0:4,0:4] | class21_reveal_python3.ipynb | ramseylab/networkscompbio | apache-2.0 |
The core part of the REVEAL algorithm is a function that can compute the joint entropy of a collection of binary (TRUE/FALSE) vectors X1, X2, ..., Xn (where length(X1) = length(Xi) = M).
Write a function entropy_multiple_vecs that takes as its input a nxM matrix (where n is the number of variables, i.e., genes, and M is the number of samples in which gene expression was measured). The function should use the log2 definition of the Shannon entropy. It should return the joint entropy H(X1, X2, ..., Xn) as a scalar numeric value. I have created a skeleton version of this function for you, in which you can fill in the code. I have also created some test code that you can use to test your function, below. | def entropy_multiple_vecs(binary_vecs):
## use shape to get the numbers of rows and columns as [n,M]
[n, M] = binary_vecs.shape
# make a "M x n" dataframe from the transpose of the matrix binary_vecs
binary_df = pandas.DataFrame(binary_vecs.transpose())
# use the groupby method to obtain a data frame of counts of unique occurrences of the 2^n possible logical states
binary_df_counts = binary_df.groupby(binary_df.columns.values.tolist()).size().values
# divide the matrix of counts by M, to get a probability matrix
probvec = binary_df_counts/M
# compute the shannon entropy using the formula
hvec = -probvec*numpy.log2(probvec)
return numpy.sum(hvec) | class21_reveal_python3.ipynb | ramseylab/networkscompbio | apache-2.0 |
This test case should produce the value 3.938: | print(entropy_multiple_vecs(gene_matrix_binarized[0:4,])) | class21_reveal_python3.ipynb | ramseylab/networkscompbio | apache-2.0 |
Example implementation of the REVEAL algorithm:
We'll go through stage 3 | ratio_thresh = 0.1
genes_to_fit = list(range(0,N))
stage = 0
regulators = [None]*N
entropies_for_stages = [None]*N
max_stage = 4
entropies_for_stages[0] = numpy.zeros(N)
for i in range(0,N):
single_row_matrix = gene_matrix_binarized[i,:,None].transpose()
entropies_for_stages[0][i] = entropy_multiple_vecs(single_row_matrix)
genes_to_fit = set(range(0,N))
for stage in range(1,max_stage + 1):
for gene in genes_to_fit.copy():
# we are trying to find regulators for gene "gene"
poss_regs = set(range(0,N)) - set([gene])
poss_regs_combs = [list(x) for x in itertools.combinations(poss_regs, stage)]
HGX = numpy.array([ entropy_multiple_vecs(gene_matrix_binarized[[gene] + poss_regs_comb,:]) for poss_regs_comb in poss_regs_combs ])
HX = numpy.array([ entropy_multiple_vecs(gene_matrix_binarized[poss_regs_comb,:]) for poss_regs_comb in poss_regs_combs ])
HG = entropies_for_stages[0][gene]
min_value = numpy.min(HGX - HX)
if HG - min_value >= ratio_thresh * HG:
regulators[gene]=poss_regs_combs[numpy.argmin(HGX - HX)]
genes_to_fit.remove(gene)
regulators | class21_reveal_python3.ipynb | ramseylab/networkscompbio | apache-2.0 |
Let's start by examining the current state of the dataset. source_sentences contains the entire input sequence file as text delimited by newline symbols. | source_sentences[:50].split('\n') | seq2seq/sequence_to_sequence_implementation.ipynb | elenduuche/deep-learning | mit |
target_sentences contains the entire output sequence file as text delimited by newline symbols. Each line corresponds to the line from source_sentences. target_sentences contains a sorted characters of the line. | target_sentences[:50].split('\n') | seq2seq/sequence_to_sequence_implementation.ipynb | elenduuche/deep-learning | mit |
Preprocess
To do anything useful with it, we'll need to turn the characters into a list of integers: | def extract_character_vocab(data):
special_words = ['<pad>', '<unk>', '<s>', '<\s>']
set_words = set([character for line in data.split('\n') for character in line])
int_to_vocab = {word_i: word for word_i, word in enumerate(special_words + list(set_words))}
vocab_to_int = {word: word_i for word_i, word in int_to_vocab.items()}
return int_to_vocab, vocab_to_int
# Build int2letter and letter2int dicts
source_int_to_letter, source_letter_to_int = extract_character_vocab(source_sentences)
target_int_to_letter, target_letter_to_int = extract_character_vocab(target_sentences)
# Convert characters to ids
source_letter_ids = [[source_letter_to_int.get(letter, source_letter_to_int['<unk>']) for letter in line] for line in source_sentences.split('\n')]
target_letter_ids = [[target_letter_to_int.get(letter, target_letter_to_int['<unk>']) for letter in line] for line in target_sentences.split('\n')]
print("Example source sequence")
print(source_letter_ids[:3])
print("\n")
print("Example target sequence")
print(target_letter_ids[:3])
print()
print("<s> index is {}".format(target_letter_to_int['<s>'])) | seq2seq/sequence_to_sequence_implementation.ipynb | elenduuche/deep-learning | mit |
The last step in the preprocessing stage is to determine the the longest sequence size in the dataset we'll be using, then pad all the sequences to that length. | def pad_id_sequences(source_ids, source_letter_to_int, target_ids, target_letter_to_int, sequence_length):
new_source_ids = [sentence + [source_letter_to_int['<pad>']] * (sequence_length - len(sentence)) \
for sentence in source_ids]
new_target_ids = [sentence + [target_letter_to_int['<pad>']] * (sequence_length - len(sentence)) \
for sentence in target_ids]
return new_source_ids, new_target_ids
# Use the longest sequence as sequence length
sequence_length = max(
[len(sentence) for sentence in source_letter_ids] + [len(sentence) for sentence in target_letter_ids])
# Pad all sequences up to sequence length
source_ids, target_ids = pad_id_sequences(source_letter_ids, source_letter_to_int,
target_letter_ids, target_letter_to_int, sequence_length)
print("Sequence Length")
print(sequence_length)
print("\n")
print("Input sequence example")
print(source_ids[:3])
print("\n")
print("Target sequence example")
print(target_ids[:3]) | seq2seq/sequence_to_sequence_implementation.ipynb | elenduuche/deep-learning | mit |
This is the final shape we need them to be in. We can now proceed to building the model.
Model
Check the Version of TensorFlow
This will check to make sure you have the correct version of TensorFlow | from distutils.version import LooseVersion
import tensorflow as tf
# Check TensorFlow Version
assert LooseVersion(tf.__version__) >= LooseVersion('1.0'), 'Please use TensorFlow version 1.0 or newer'
print('TensorFlow Version: {}'.format(tf.__version__)) | seq2seq/sequence_to_sequence_implementation.ipynb | elenduuche/deep-learning | mit |
Hyperparameters | # Number of Epochs
epochs = 60
# Batch Size
batch_size = 128
# RNN Size
rnn_size = 50
# Number of Layers
num_layers = 2
# Embedding Size
encoding_embedding_size = 13
decoding_embedding_size = 13
# Learning Rate
learning_rate = 0.001 | seq2seq/sequence_to_sequence_implementation.ipynb | elenduuche/deep-learning | mit |
Input | input_data = tf.placeholder(tf.int32, [batch_size, sequence_length])
targets = tf.placeholder(tf.int32, [batch_size, sequence_length])
lr = tf.placeholder(tf.float32) | seq2seq/sequence_to_sequence_implementation.ipynb | elenduuche/deep-learning | mit |
Sequence to Sequence
The decoder is probably the most complex part of this model. We need to declare a decoder for the training phase, and a decoder for the inference/prediction phase. These two decoders will share their parameters (so that all the weights and biases that are set during the training phase can be used when we deploy the model).
First, we'll need to define the type of cell we'll be using for our decoder RNNs. We opted for LSTM.
Then, we'll need to hookup a fully connected layer to the output of decoder. The output of this layer tells us which word the RNN is choosing to output at each time step.
Let's first look at the inference/prediction decoder. It is the one we'll use when we deploy our chatbot to the wild (even though it comes second in the actual code).
<img src="images/sequence-to-sequence-inference-decoder.png"/>
We'll hand our encoder hidden state to the inference decoder and have it process its output. TensorFlow handles most of the logic for us. We just have to use tf.contrib.seq2seq.simple_decoder_fn_inference and tf.contrib.seq2seq.dynamic_rnn_decoder and supply them with the appropriate inputs.
Notice that the inference decoder feeds the output of each time step as an input to the next.
As for the training decoder, we can think of it as looking like this:
<img src="images/sequence-to-sequence-training-decoder.png"/>
The training decoder does not feed the output of each time step to the next. Rather, the inputs to the decoder time steps are the target sequence from the training dataset (the orange letters).
Encoding
Embed the input data using tf.contrib.layers.embed_sequence
Pass the embedded input into a stack of RNNs. Save the RNN state and ignore the output. | #print(source_letter_to_int)
source_vocab_size = len(source_letter_to_int)
print("Length of letter to int is {}".format(source_vocab_size))
print("encoding embedding size is {}".format(encoding_embedding_size))
# Encoder embedding
enc_embed_input = tf.contrib.layers.embed_sequence(input_data, source_vocab_size, encoding_embedding_size)
# Encoder
enc_cell = tf.contrib.rnn.MultiRNNCell([tf.contrib.rnn.BasicLSTMCell(rnn_size)] * num_layers)
_, enc_state = tf.nn.dynamic_rnn(enc_cell, enc_embed_input, dtype=tf.float32) | seq2seq/sequence_to_sequence_implementation.ipynb | elenduuche/deep-learning | mit |
Process Decoding Input | import numpy as np
# Process the input we'll feed to the decoder
ending = tf.strided_slice(targets, [0, 0], [batch_size, -1], [1, 1])
dec_input = tf.concat([tf.fill([batch_size, 1], target_letter_to_int['<s>']), ending], 1)
#Demonstration/Example
demonstration_outputs = np.reshape(range(batch_size * sequence_length), (batch_size, sequence_length))
sess = tf.InteractiveSession()
print("Targets")
print(demonstration_outputs[:2])
print("\n")
print("Processed Decoding Input")
print(sess.run(dec_input, {targets: demonstration_outputs})[:2])
print("targets shape is {} and ending shape is {}".format(targets.shape, ending.shape))
print("demonstration_outputs shape is {}".format(demonstration_outputs.shape)) | seq2seq/sequence_to_sequence_implementation.ipynb | elenduuche/deep-learning | mit |
Decoding
Embed the decoding input
Build the decoding RNNs
Build the output layer in the decoding scope, so the weight and bias can be shared between the training and inference decoders. | target_vocab_size = len(target_letter_to_int)
#print(target_vocab_size, " : ", decoding_embedding_size)
# Decoder Embedding
dec_embeddings = tf.Variable(tf.random_uniform([target_vocab_size, decoding_embedding_size]))
dec_embed_input = tf.nn.embedding_lookup(dec_embeddings, dec_input)
#print(dec_input, target_vocab_size, decoding_embedding_size)
# Decoder RNNs
dec_cell = tf.contrib.rnn.MultiRNNCell([tf.contrib.rnn.BasicLSTMCell(rnn_size)] * num_layers)
with tf.variable_scope("decoding") as decoding_scope:
# Output Layer
output_fn = lambda x: tf.contrib.layers.fully_connected(x, target_vocab_size, None, scope=decoding_scope) | seq2seq/sequence_to_sequence_implementation.ipynb | elenduuche/deep-learning | mit |
Decoder During Training
Build the training decoder using tf.contrib.seq2seq.simple_decoder_fn_train and tf.contrib.seq2seq.dynamic_rnn_decoder.
Apply the output layer to the output of the training decoder | with tf.variable_scope("decoding") as decoding_scope:
# Training Decoder
train_decoder_fn = tf.contrib.seq2seq.simple_decoder_fn_train(enc_state)
train_pred, _, _ = tf.contrib.seq2seq.dynamic_rnn_decoder(
dec_cell, train_decoder_fn, dec_embed_input, sequence_length, scope=decoding_scope)
# Apply output function
train_logits = output_fn(train_pred) | seq2seq/sequence_to_sequence_implementation.ipynb | elenduuche/deep-learning | mit |
Decoder During Inference
Reuse the weights the biases from the training decoder using tf.variable_scope("decoding", reuse=True)
Build the inference decoder using tf.contrib.seq2seq.simple_decoder_fn_inference and tf.contrib.seq2seq.dynamic_rnn_decoder.
The output function is applied to the output in this step | with tf.variable_scope("decoding", reuse=True) as decoding_scope:
# Inference Decoder
infer_decoder_fn = tf.contrib.seq2seq.simple_decoder_fn_inference(
output_fn, enc_state, dec_embeddings, target_letter_to_int['<s>'], target_letter_to_int['<\s>'],
sequence_length - 1, target_vocab_size)
inference_logits, _, _ = tf.contrib.seq2seq.dynamic_rnn_decoder(dec_cell, infer_decoder_fn, scope=decoding_scope)
print(inference_logits.shape) | seq2seq/sequence_to_sequence_implementation.ipynb | elenduuche/deep-learning | mit |
Optimization
Our loss function is tf.contrib.seq2seq.sequence_loss provided by the tensor flow seq2seq module. It calculates a weighted cross-entropy loss for the output logits. | # Loss function
cost = tf.contrib.seq2seq.sequence_loss(
train_logits,
targets,
tf.ones([batch_size, sequence_length]))
# Optimizer
optimizer = tf.train.AdamOptimizer(lr)
# Gradient Clipping
gradients = optimizer.compute_gradients(cost)
capped_gradients = [(tf.clip_by_value(grad, -1., 1.), var) for grad, var in gradients if grad is not None]
train_op = optimizer.apply_gradients(capped_gradients) | seq2seq/sequence_to_sequence_implementation.ipynb | elenduuche/deep-learning | mit |
Train
We're now ready to train our model. If you run into OOM (out of memory) issues during training, try to decrease the batch_size. | import numpy as np
train_source = source_ids[batch_size:]
train_target = target_ids[batch_size:]
valid_source = source_ids[:batch_size]
valid_target = target_ids[:batch_size]
sess.run(tf.global_variables_initializer())
for epoch_i in range(epochs):
for batch_i, (source_batch, target_batch) in enumerate(
helper.batch_data(train_source, train_target, batch_size)):
_, loss = sess.run(
[train_op, cost],
{input_data: source_batch, targets: target_batch, lr: learning_rate})
batch_train_logits = sess.run(
inference_logits,
{input_data: source_batch})
batch_valid_logits = sess.run(
inference_logits,
{input_data: valid_source})
train_acc = np.mean(np.equal(target_batch, np.argmax(batch_train_logits, 2)))
valid_acc = np.mean(np.equal(valid_target, np.argmax(batch_valid_logits, 2)))
print('Epoch {:>3} Batch {:>4}/{} - Train Accuracy: {:>6.3f}, Validation Accuracy: {:>6.3f}, Loss: {:>6.3f}'
.format(epoch_i, batch_i, len(source_ids) // batch_size, train_acc, valid_acc, loss)) | seq2seq/sequence_to_sequence_implementation.ipynb | elenduuche/deep-learning | mit |
Prediction | input_sentence = 'hello'
input_sentence = [source_letter_to_int.get(word, source_letter_to_int['<unk>']) for word in input_sentence.lower()]
input_sentence = input_sentence + [0] * (sequence_length - len(input_sentence))
batch_shell = np.zeros((batch_size, sequence_length))
batch_shell[0] = input_sentence
chatbot_logits = sess.run(inference_logits, {input_data: batch_shell})[0]
print('Input')
print(' Word Ids: {}'.format([i for i in input_sentence]))
print(' Input Words: {}'.format([source_int_to_letter[i] for i in input_sentence]))
print('\nPrediction')
print(' Word Ids: {}'.format([i for i in np.argmax(chatbot_logits, 1)]))
print(' Chatbot Answer Words: {}'.format([target_int_to_letter[i] for i in np.argmax(chatbot_logits, 1)])) | seq2seq/sequence_to_sequence_implementation.ipynb | elenduuche/deep-learning | mit |
Lets load up our trajectory. This is the trajectory that we generated in
the "Running a simulation in OpenMM and analyzing the results with mdtraj"
example. | traj = md.load('ala2.h5')
traj | examples/principal-components.ipynb | swails/mdtraj | lgpl-2.1 |
Create a two component PCA model, and project our data down into this
reduced dimensional space. Using just the cartesian coordinates as
input to PCA, it's important to start with some kind of alignment. | pca1 = PCA(n_components=2)
traj.superpose(traj, 0)
reduced_cartesian = pca1.fit_transform(traj.xyz.reshape(traj.n_frames, traj.n_atoms * 3))
print(reduced_cartesian.shape) | examples/principal-components.ipynb | swails/mdtraj | lgpl-2.1 |
Now we can plot the data on this projection. | plt.figure()
plt.scatter(reduced_cartesian[:, 0], reduced_cartesian[:,1], marker='x', c=traj.time)
plt.xlabel('PC1')
plt.ylabel('PC2')
plt.title('Cartesian coordinate PCA: alanine dipeptide')
cbar = plt.colorbar()
cbar.set_label('Time [ps]') | examples/principal-components.ipynb | swails/mdtraj | lgpl-2.1 |
Lets try cross-checking our result by using a different feature space that isn't sensitive to alignment, and instead to "featurize" our trajectory by computing the pairwise distance between every atom in each frame, and using that as our high dimensional input space for PCA. | pca2 = PCA(n_components=2)
from itertools import combinations
# this python function gives you all unique pairs of elements from a list
atom_pairs = list(combinations(range(traj.n_atoms), 2))
pairwise_distances = md.geometry.compute_distances(traj, atom_pairs)
print(pairwise_distances.shape)
reduced_distances = pca2.fit_transform(pairwise_distances)
plt.figure()
plt.scatter(reduced_distances[:, 0], reduced_distances[:,1], marker='x', c=traj.time)
plt.xlabel('PC1')
plt.ylabel('PC2')
plt.title('Pairwise distance PCA: alanine dipeptide')
cbar = plt.colorbar()
cbar.set_label('Time [ps]') | examples/principal-components.ipynb | swails/mdtraj | lgpl-2.1 |
Time to build the network
Below you'll build your network. We've built out the structure and the backwards pass. You'll implement the forward pass through the network. You'll also set the hyperparameters: the learning rate, the number of hidden units, and the number of training passes.
The network has two layers, a hidden layer and an output layer. The hidden layer will use the sigmoid function for activations. The output layer has only one node and is used for the regression, the output of the node is the same as the input of the node. That is, the activation function is $f(x)=x$. A function that takes the input signal and generates an output signal, but takes into account the threshold, is called an activation function. We work through each layer of our network calculating the outputs for each neuron. All of the outputs from one layer become inputs to the neurons on the next layer. This process is called forward propagation.
We use the weights to propagate signals forward from the input to the output layers in a neural network. We use the weights to also propagate error backwards from the output back into the network to update our weights. This is called backpropagation.
Hint: You'll need the derivative of the output activation function ($f(x) = x$) for the backpropagation implementation. If you aren't familiar with calculus, this function is equivalent to the equation $y = x$. What is the slope of that equation? That is the derivative of $f(x)$.
Below, you have these tasks:
1. Implement the sigmoid function to use as the activation function. Set self.activation_function in __init__ to your sigmoid function.
2. Implement the forward pass in the train method.
3. Implement the backpropagation algorithm in the train method, including calculating the output error.
4. Implement the forward pass in the run method. | class NeuralNetwork(object):
def __init__(self, input_nodes, hidden_nodes, output_nodes, learning_rate):
# Set number of nodes in input, hidden and output layers.
self.input_nodes = input_nodes
self.hidden_nodes = hidden_nodes
self.output_nodes = output_nodes
# Initialize weights
self.weights_input_to_hidden = np.random.normal(0.0, self.hidden_nodes**-0.5,
(self.hidden_nodes, self.input_nodes))
self.weights_hidden_to_output = np.random.normal(0.0, self.output_nodes**-0.5,
(self.output_nodes, self.hidden_nodes))
self.lr = learning_rate
def train(self, inputs_list, targets_list):
# Convert inputs list to 2d array
inputs = np.array(inputs_list, ndmin=2).T
targets = np.array(targets_list, ndmin=2).T
### Forward pass ###
hidden_inputs = np.dot(self.weights_input_to_hidden,inputs)
hidden_outputs = self.activation_function(hidden_inputs)
final_inputs = np.dot(self.weights_hidden_to_output, hidden_outputs)
final_outputs = final_inputs
### Backward pass ###
output_errors = targets-final_outputs
output_grad = output_errors
hidden_errors = np.dot(self.weights_hidden_to_output.T,output_errors)
hidden_grad = self.activation_function_derivative(hidden_inputs)
self.weights_hidden_to_output += self.lr*np.dot(output_grad,hidden_outputs.T)
self.weights_input_to_hidden += self.lr*np.dot(hidden_errors* hidden_grad,inputs.T)
def activation_function(self,x):
return 1/(1 + np.exp(-x))
def activation_function_derivative(self,x):
return self.activation_function(x)*(1-self.activation_function(x))
def run(self, inputs_list):
# Run a forward pass through the network
inputs = np.array(inputs_list, ndmin=2).T
hidden_inputs = np.dot(self.weights_input_to_hidden,inputs)
hidden_outputs = self.activation_function(hidden_inputs)
final_inputs = np.dot(self.weights_hidden_to_output,hidden_outputs)
final_outputs = final_inputs
return final_outputs
def MSE(y, Y):
return np.mean((y-Y)**2) | Project 1/Project-1.ipynb | ajaybhat/DLND | apache-2.0 |
Training the network
Here you'll set the hyperparameters for the network. The strategy here is to find hyperparameters such that the error on the training set is low, but you're not overfitting to the data. If you train the network too long or have too many hidden nodes, it can become overly specific to the training set and will fail to generalize to the validation set. That is, the loss on the validation set will start increasing as the training set loss drops.
You'll also be using a method know as Stochastic Gradient Descent (SGD) to train the network. The idea is that for each training pass, you grab a random sample of the data instead of using the whole data set. You use many more training passes than with normal gradient descent, but each pass is much faster. This ends up training the network more efficiently. You'll learn more about SGD later.
Choose the number of epochs
This is the number of times the dataset will pass through the network, each time updating the weights. As the number of epochs increases, the network becomes better and better at predicting the targets in the training set. You'll need to choose enough epochs to train the network well but not too many or you'll be overfitting.
Choose the learning rate
This scales the size of weight updates. If this is too big, the weights tend to explode and the network fails to fit the data. A good choice to start at is 0.1. If the network has problems fitting the data, try reducing the learning rate. Note that the lower the learning rate, the smaller the steps are in the weight updates and the longer it takes for the neural network to converge.
Choose the number of hidden nodes
The more hidden nodes you have, the more accurate predictions the model will make. Try a few different numbers and see how it affects the performance. You can look at the losses dictionary for a metric of the network performance. If the number of hidden units is too low, then the model won't have enough space to learn and if it is too high there are too many options for the direction that the learning can take. The trick here is to find the right balance in number of hidden units you choose. | import sys
### Set the hyperparameters here ###
epochs = 2000
learning_rate = 0.008
hidden_nodes = 10
output_nodes = 1
N_i = train_features.shape[1]
network = NeuralNetwork(N_i, hidden_nodes, output_nodes, learning_rate)
losses = {'train':[], 'validation':[]}
for e in range(epochs):
# Go through a random batch of 128 records from the training data set
batch = np.random.choice(train_features.index, size=128)
for record, target in zip(train_features.ix[batch].values,
train_targets.ix[batch]['cnt']):
network.train(record, target)
# Printing out the training progress
train_loss = MSE(network.run(train_features), train_targets['cnt'].values)
val_loss = MSE(network.run(val_features), val_targets['cnt'].values)
if e%(epochs/10) == 0:
sys.stdout.write("\nProgress: " + str(100 * e/float(epochs))[:4] \
+ "% ... Training loss: " + str(train_loss)[:5] \
+ " ... Validation loss: " + str(val_loss)[:5])
losses['train'].append(train_loss)
losses['validation'].append(val_loss)
plt.plot(losses['train'], label='Training loss')
plt.plot(losses['validation'], label='Validation loss')
plt.legend()
plt.ylim(ymax=0.5) | Project 1/Project-1.ipynb | ajaybhat/DLND | apache-2.0 |
Check out your predictions
Here, use the test data to view how well your network is modeling the data. If something is completely wrong here, make sure each step in your network is implemented correctly. | fig, ax = plt.subplots(figsize=(8,4))
mean, std = scaled_features['cnt']
predictions = network.run(test_features)*std + mean
ax.plot(predictions[0], 'r',label='Prediction')
ax.plot((test_targets['cnt']*std + mean).values, 'g', label='Data')
ax.set_xlim(right=len(predictions))
ax.legend()
dates = pd.to_datetime(rides.ix[test_data.index]['dteday'])
dates = dates.apply(lambda d: d.strftime('%b %d'))
ax.set_xticks(np.arange(len(dates))[12::24])
_ = ax.set_xticklabels(dates[12::24], rotation=45) | Project 1/Project-1.ipynb | ajaybhat/DLND | apache-2.0 |
Thinking about your results
Answer these questions about your results. How well does the model predict the data? Where does it fail? Why does it fail where it does?
Note: You can edit the text in this cell by double clicking on it. When you want to render the text, press control + enter
Your answer below
The model predicts the data fairly well for the limited amount it is provided. It fails massively for the period December 23-28, because real-world scenarios indicate most people would not get bikes at that time, and would be staying home. However, the network predicts the same behavior as the other days of the month, and so it fails. This could be avoided by feeding it similar data of the type seen in the sample (as part of the training data).
Another way is to experiment with the activation function itself: Sigmoid can be replaced by tanh or Leaky RelU functions. http://cs231n.github.io/neural-networks-1/
Unit tests
Run these unit tests to check the correctness of your network implementation. These tests must all be successful to pass the project. | import unittest
inputs = [0.5, -0.2, 0.1]
targets = [0.4]
test_w_i_h = np.array([[0.1, 0.4, -0.3],
[-0.2, 0.5, 0.2]])
test_w_h_o = np.array([[0.3, -0.1]])
class TestMethods(unittest.TestCase):
##########
# Unit tests for data loading
##########
def test_data_path(self):
# Test that file path to dataset has been unaltered
self.assertTrue(data_path.lower() == 'bike-sharing-dataset/hour.csv')
def test_data_loaded(self):
# Test that data frame loaded
self.assertTrue(isinstance(rides, pd.DataFrame))
##########
# Unit tests for network functionality
##########
def test_activation(self):
network = NeuralNetwork(3, 2, 1, 0.5)
# Test that the activation function is a sigmoid
self.assertTrue(np.all(network.activation_function(0.5) == 1/(1+np.exp(-0.5))))
def test_train(self):
# Test that weights are updated correctly on training
network = NeuralNetwork(3, 2, 1, 0.5)
network.weights_input_to_hidden = test_w_i_h.copy()
network.weights_hidden_to_output = test_w_h_o.copy()
network.train(inputs, targets)
self.assertTrue(np.allclose(network.weights_hidden_to_output,
np.array([[ 0.37275328, -0.03172939]])))
self.assertTrue(np.allclose(network.weights_input_to_hidden,
np.array([[ 0.10562014, 0.39775194, -0.29887597],
[-0.20185996, 0.50074398, 0.19962801]])))
def test_run(self):
# Test correctness of run method
network = NeuralNetwork(3, 2, 1, 0.5)
network.weights_input_to_hidden = test_w_i_h.copy()
network.weights_hidden_to_output = test_w_h_o.copy()
self.assertTrue(np.allclose(network.run(inputs), 0.09998924))
def runTest(self):
pass
suite = unittest.TestLoader().loadTestsFromModule(TestMethods())
unittest.TextTestRunner(verbosity=1).run(suite) | Project 1/Project-1.ipynb | ajaybhat/DLND | apache-2.0 |
Summary Report | import itertools
import json
import os
import re
import pickle
import platform
import time
from collections import defaultdict as dd
from functools import partial
from os.path import abspath, dirname, exists, join
from string import Template
import numpy as np
import pandas as pd
import seaborn as sns
import scipy.stats as stats
from matplotlib import pyplot as plt
from IPython import sys_info
from IPython.display import display, HTML, Image, Javascript, Markdown, SVG
from rsmtool.utils.files import (get_output_directory_extension,
parse_json_with_comments)
from rsmtool.utils.notebook import (float_format_func,
int_or_float_format_func,
bold_highlighter,
color_highlighter,
show_thumbnail)
from rsmtool.reader import DataReader
from rsmtool.writer import DataWriter
from rsmtool.version import VERSION as rsmtool_version
# turn off interactive plotting
plt.ioff()
rsm_report_dir = os.environ.get('RSM_REPORT_DIR', None)
if rsm_report_dir is None:
rsm_report_dir = os.getcwd()
rsm_environ_config = join(rsm_report_dir, '.environ.json')
if not exists(rsm_environ_config):
raise FileNotFoundError('The file {} cannot be located. '
'Please make sure that either (1) '
'you have set the correct directory with the `RSM_REPORT_DIR` '
'environment variable, or (2) that your `.environ.json` '
'file is in the same directory as your notebook.'.format(rsm_environ_config))
environ_config = parse_json_with_comments(rsm_environ_config) | rsmtool/notebooks/summary/header.ipynb | EducationalTestingService/rsmtool | apache-2.0 |
<style type="text/css">
div.prompt.output_prompt {
color: white;
}
span.highlight_color {
color: red;
}
span.highlight_bold {
font-weight: bold;
}
@media print {
@page {
size: landscape;
margin: 0cm 0cm 0cm 0cm;
}
* {
margin: 0px;
padding: 0px;
}
#toc {
display: none;
}
span.highlight_color, span.highlight_bold {
font-weight: bolder;
text-decoration: underline;
}
div.prompt.output_prompt {
display: none;
}
h3#Python-packages, div#packages {
display: none;
}
</style> | # NOTE: you will need to set the following manually
# if you are using this notebook interactively.
summary_id = environ_config.get('SUMMARY_ID')
description = environ_config.get('DESCRIPTION')
jsons = environ_config.get('JSONS')
output_dir = environ_config.get('OUTPUT_DIR')
use_thumbnails = environ_config.get('USE_THUMBNAILS')
file_format_summarize = environ_config.get('FILE_FORMAT')
# groups for subgroup analysis.
groups_desc = environ_config.get('GROUPS_FOR_DESCRIPTIVES')
groups_eval = environ_config.get('GROUPS_FOR_EVALUATIONS')
# javascript path
javascript_path = environ_config.get("JAVASCRIPT_PATH")
# initialize id generator for thumbnails
id_generator = itertools.count(1)
with open(join(javascript_path, "sort.js"), "r", encoding="utf-8") as sortf:
display(Javascript(data=sortf.read()))
# load the information about all models
model_list = []
for (json_file, experiment_name) in jsons:
model_config = json.load(open(json_file))
model_id = model_config['experiment_id']
model_name = experiment_name if experiment_name else model_id
model_csvdir = dirname(json_file)
model_file_format = get_output_directory_extension(model_csvdir, model_id)
model_list.append((model_id, model_name, model_config, model_csvdir, model_file_format))
Markdown("This report presents the analysis for **{}**: {} \n ".format(summary_id, description))
HTML(time.strftime('%c'))
# get a matched list of model ids and descriptions
models_and_desc = zip([model_name for (model_id, model_name, config, csvdir, model_file_format) in model_list],
[config['description'] for (model_id, model_name, config, csvdir, file_format) in model_list])
model_desc_list = '\n\n'.join(['**{}**: {}'.format(m, d) for (m, d) in models_and_desc])
Markdown("The report compares the following models: \n\n {}".format(model_desc_list))
if use_thumbnails:
display(Markdown("""***Note: Images in this report have been converted to """
"""clickable thumbnails***"""))
%%html
<div id="toc"></div> | rsmtool/notebooks/summary/header.ipynb | EducationalTestingService/rsmtool | apache-2.0 |
The role of dipole orientations in distributed source localization
When performing source localization in a distributed manner
(MNE/dSPM/sLORETA/eLORETA),
the source space is defined as a grid of dipoles that spans a large portion of
the cortex. These dipoles have both a position and an orientation. In this
tutorial, we will look at the various options available to restrict the
orientation of the dipoles and the impact on the resulting source estimate.
See inverse_orientation_constrains
Loading data
Load everything we need to perform source localization on the sample dataset. | import mne
import numpy as np
from mne.datasets import sample
from mne.minimum_norm import make_inverse_operator, apply_inverse
data_path = sample.data_path()
evokeds = mne.read_evokeds(data_path + '/MEG/sample/sample_audvis-ave.fif')
left_auditory = evokeds[0].apply_baseline()
fwd = mne.read_forward_solution(
data_path + '/MEG/sample/sample_audvis-meg-eeg-oct-6-fwd.fif')
mne.convert_forward_solution(fwd, surf_ori=True, copy=False)
noise_cov = mne.read_cov(data_path + '/MEG/sample/sample_audvis-cov.fif')
subject = 'sample'
subjects_dir = data_path + '/subjects'
trans_fname = data_path + '/MEG/sample/sample_audvis_raw-trans.fif' | 0.19/_downloads/a1ab4842a5aa341564b4fa0a6bf60065/plot_dipole_orientations.ipynb | mne-tools/mne-tools.github.io | bsd-3-clause |
The source space
Let's start by examining the source space as constructed by the
:func:mne.setup_source_space function. Dipoles are placed along fixed
intervals on the cortex, determined by the spacing parameter. The source
space does not define the orientation for these dipoles. | lh = fwd['src'][0] # Visualize the left hemisphere
verts = lh['rr'] # The vertices of the source space
tris = lh['tris'] # Groups of three vertices that form triangles
dip_pos = lh['rr'][lh['vertno']] # The position of the dipoles
dip_ori = lh['nn'][lh['vertno']]
dip_len = len(dip_pos)
dip_times = [0]
white = (1.0, 1.0, 1.0) # RGB values for a white color
actual_amp = np.ones(dip_len) # misc amp to create Dipole instance
actual_gof = np.ones(dip_len) # misc GOF to create Dipole instance
dipoles = mne.Dipole(dip_times, dip_pos, actual_amp, dip_ori, actual_gof)
trans = mne.read_trans(trans_fname)
fig = mne.viz.create_3d_figure(size=(600, 400), bgcolor=white)
coord_frame = 'mri'
# Plot the cortex
fig = mne.viz.plot_alignment(subject=subject, subjects_dir=subjects_dir,
trans=trans, surfaces='white',
coord_frame=coord_frame, fig=fig)
# Mark the position of the dipoles with small red dots
fig = mne.viz.plot_dipole_locations(dipoles=dipoles, trans=trans,
mode='sphere', subject=subject,
subjects_dir=subjects_dir,
coord_frame=coord_frame,
scale=7e-4, fig=fig)
mne.viz.set_3d_view(figure=fig, azimuth=180, distance=0.25) | 0.19/_downloads/a1ab4842a5aa341564b4fa0a6bf60065/plot_dipole_orientations.ipynb | mne-tools/mne-tools.github.io | bsd-3-clause |
Fixed dipole orientations
While the source space defines the position of the dipoles, the inverse
operator defines the possible orientations of them. One of the options is to
assign a fixed orientation. Since the neural currents from which MEG and EEG
signals originate flows mostly perpendicular to the cortex [1]_, restricting
the orientation of the dipoles accordingly places a useful restriction on the
source estimate.
By specifying fixed=True when calling
:func:mne.minimum_norm.make_inverse_operator, the dipole orientations are
fixed to be orthogonal to the surface of the cortex, pointing outwards. Let's
visualize this: | fig = mne.viz.create_3d_figure(size=(600, 400))
# Plot the cortex
fig = mne.viz.plot_alignment(subject=subject, subjects_dir=subjects_dir,
trans=trans,
surfaces='white', coord_frame='head', fig=fig)
# Show the dipoles as arrows pointing along the surface normal
fig = mne.viz.plot_dipole_locations(dipoles=dipoles, trans=trans,
mode='arrow', subject=subject,
subjects_dir=subjects_dir,
coord_frame='head',
scale=7e-4, fig=fig)
mne.viz.set_3d_view(figure=fig, azimuth=180, distance=0.1) | 0.19/_downloads/a1ab4842a5aa341564b4fa0a6bf60065/plot_dipole_orientations.ipynb | mne-tools/mne-tools.github.io | bsd-3-clause |
Restricting the dipole orientations in this manner leads to the following
source estimate for the sample data: | # Compute the source estimate for the 'left - auditory' condition in the sample
# dataset.
inv = make_inverse_operator(left_auditory.info, fwd, noise_cov, fixed=True)
stc = apply_inverse(left_auditory, inv, pick_ori=None)
# Visualize it at the moment of peak activity.
_, time_max = stc.get_peak(hemi='lh')
brain_fixed = stc.plot(surface='white', subjects_dir=subjects_dir,
initial_time=time_max, time_unit='s', size=(600, 400)) | 0.19/_downloads/a1ab4842a5aa341564b4fa0a6bf60065/plot_dipole_orientations.ipynb | mne-tools/mne-tools.github.io | bsd-3-clause |
The direction of the estimated current is now restricted to two directions:
inward and outward. In the plot, blue areas indicate current flowing inwards
and red areas indicate current flowing outwards. Given the curvature of the
cortex, groups of dipoles tend to point in the same direction: the direction
of the electromagnetic field picked up by the sensors.
Loose dipole orientations
Forcing the source dipoles to be strictly orthogonal to the cortex makes the
source estimate sensitive to the spacing of the dipoles along the cortex,
since the curvature of the cortex changes within each ~10 square mm patch.
Furthermore, misalignment of the MEG/EEG and MRI coordinate frames is more
critical when the source dipole orientations are strictly constrained [2]_.
To lift the restriction on the orientation of the dipoles, the inverse
operator has the ability to place not one, but three dipoles at each
location defined by the source space. These three dipoles are placed
orthogonally to form a Cartesian coordinate system. Let's visualize this: | fig = mne.viz.create_3d_figure(size=(600, 400))
# Plot the cortex
fig = mne.viz.plot_alignment(subject=subject, subjects_dir=subjects_dir,
trans=trans,
surfaces='white', coord_frame='head', fig=fig)
# Show the three dipoles defined at each location in the source space
fig = mne.viz.plot_alignment(subject=subject, subjects_dir=subjects_dir,
trans=trans, fwd=fwd,
surfaces='white', coord_frame='head', fig=fig)
mne.viz.set_3d_view(figure=fig, azimuth=180, distance=0.1) | 0.19/_downloads/a1ab4842a5aa341564b4fa0a6bf60065/plot_dipole_orientations.ipynb | mne-tools/mne-tools.github.io | bsd-3-clause |
When computing the source estimate, the activity at each of the three dipoles
is collapsed into the XYZ components of a single vector, which leads to the
following source estimate for the sample data: | # Make an inverse operator with loose dipole orientations
inv = make_inverse_operator(left_auditory.info, fwd, noise_cov, fixed=False,
loose=1.0)
# Compute the source estimate, indicate that we want a vector solution
stc = apply_inverse(left_auditory, inv, pick_ori='vector')
# Visualize it at the moment of peak activity.
_, time_max = stc.magnitude().get_peak(hemi='lh')
brain_mag = stc.plot(subjects_dir=subjects_dir, initial_time=time_max,
time_unit='s', size=(600, 400), overlay_alpha=0) | 0.19/_downloads/a1ab4842a5aa341564b4fa0a6bf60065/plot_dipole_orientations.ipynb | mne-tools/mne-tools.github.io | bsd-3-clause |
Limiting orientations, but not fixing them
Often, the best results will be obtained by allowing the dipoles to have
somewhat free orientation, but not stray too far from a orientation that is
perpendicular to the cortex. The loose parameter of the
:func:mne.minimum_norm.make_inverse_operator allows you to specify a value
between 0 (fixed) and 1 (unrestricted or "free") to indicate the amount the
orientation is allowed to deviate from the surface normal. | # Set loose to 0.2, the default value
inv = make_inverse_operator(left_auditory.info, fwd, noise_cov, fixed=False,
loose=0.2)
stc = apply_inverse(left_auditory, inv, pick_ori='vector')
# Visualize it at the moment of peak activity.
_, time_max = stc.magnitude().get_peak(hemi='lh')
brain_loose = stc.plot(subjects_dir=subjects_dir, initial_time=time_max,
time_unit='s', size=(600, 400), overlay_alpha=0) | 0.19/_downloads/a1ab4842a5aa341564b4fa0a6bf60065/plot_dipole_orientations.ipynb | mne-tools/mne-tools.github.io | bsd-3-clause |
Discarding dipole orientation information
Often, further analysis of the data does not need information about the
orientation of the dipoles, but rather their magnitudes. The pick_ori
parameter of the :func:mne.minimum_norm.apply_inverse function allows you
to specify whether to return the full vector solution ('vector') or
rather the magnitude of the vectors (None, the default) or only the
activity in the direction perpendicular to the cortex ('normal'). | # Only retain vector magnitudes
stc = apply_inverse(left_auditory, inv, pick_ori=None)
# Visualize it at the moment of peak activity.
_, time_max = stc.get_peak(hemi='lh')
brain = stc.plot(surface='white', subjects_dir=subjects_dir,
initial_time=time_max, time_unit='s', size=(600, 400)) | 0.19/_downloads/a1ab4842a5aa341564b4fa0a6bf60065/plot_dipole_orientations.ipynb | mne-tools/mne-tools.github.io | bsd-3-clause |
Use the np.random module to generate a normal distribution of 1,000 data points in two dimensions (e.g. x, y) - choose whatever mean and sigma^2 you like. Generate another 1,000 data points with a normal distribution in two dimensions that are well separated from the first set. You now have two "clusters". Concatenate them so you have 2,000 data points in two dimensions. Plot the points. This will be the training set.
Plot the points.
Generate 100 data points with the same distribution as your first random normal 2-d set, and 100 data points with the same distribution as your second random normal 2-d set. This will be the test set labeled X_test_normal.
Generate 100 data points with a random uniform distribution. This will be the test set labeled X_test_uniform.
Define a model classifier with the svm.OneClassSVM | model = svm.OneClassSVM() | notebooks/anomaly_detection/sample_anomaly_detection.ipynb | cavestruz/MLPipeline | mit |
Fit the model to the training data.
Use the trained model to predict whether X_test_normal data point are in the same distributions. Calculate the fraction of "false" predictions.
Use the trained model to predict whether X_test_uniform is in the same distribution. Calculate the fraction of "false" predictions.
Use the trained model to see how well it recovers the training data. (Predict on the training data, and calculate the fraction of "false" predictions.)
Create another instance of the model classifier, but change the kwarg value for nu. Hint: Use help to figure out what the kwargs are.
Redo the prediction on the training set, prediction on X_test_random, and prediction on X_test.
Plot in scatter points the X_train in blue, X_test_normal in red, and X_test_uniform in black. Overplot the trained model decision function boundary for the first instance of the model classifier.
Do the same for the second instance of the model classifier. | from sklearn.covariance import EllipticEnvelope | notebooks/anomaly_detection/sample_anomaly_detection.ipynb | cavestruz/MLPipeline | mit |
Model and parameters
Electron only device is simulated, without contact barrier. Note that more trap levels can be included by modifying traps= argument below. Each trap level should have unique name. | L = 200e-9 # device thickness, m
model = oedes.models.std.electrononly(L, traps=['trap'])
params = {
'T': 300, # K
'electrode0.workfunction': 0, # eV
'electrode1.workfunction': 0, # eV
'electron.energy': 0, # eV
'electron.mu': 1e-9, # m2/(Vs)
'electron.N0': 2.4e26, # 1/m^3
'electron.trap.energy': 0, # eV
'electron.trap.trate': 1e-22, # 1/(m^3 s)
'electron.trap.N0': 6.2e22, # 1/m^3
'electrode0.voltage': 0, # V
'electrode1.voltage': 0, # V
'epsilon_r': 3. # 1
} | examples/scl/scl-trapping.ipynb | mzszym/oedes | agpl-3.0 |
Sweep parameters
For simplicity, the case of absent traps is modeled by putting trap level 1 eV above transport level. This makes trap states effectively unoccupied. | trapenergy_sweep = oedes.sweep('electron.trap.energy',np.asarray([-0.45, -0.33, -0.21, 1.]))
voltage_sweep = oedes.sweep('electrode0.voltage', np.logspace(-3, np.log10(20.), 100)) | examples/scl/scl-trapping.ipynb | mzszym/oedes | agpl-3.0 |
Result | c=oedes.context(model)
for tdepth,ct in c.sweep(params, trapenergy_sweep):
for _ in ct.sweep(ct.params, voltage_sweep):
pass
v,j = ct.teval(voltage_sweep.parameter_name,'J')
oedes.testing.store(j, rtol=1e-3) # for automatic testing
if tdepth < 0:
label = 'no traps'
else:
label = 'trap depth %s eV' % tdepth
plt.plot(v,j,label=label)
plt.xscale('log')
plt.yscale('log')
plt.xlabel('V')
plt.ylabel(r'$\mathrm{A/m^2}$')
plt.legend(loc=0,frameon=False); | examples/scl/scl-trapping.ipynb | mzszym/oedes | agpl-3.0 |
Step 1
I started with the "Franchises" list on Boxofficemojo.com. Within each franchise page, I scraped each movie's information and enter it into a Python dictionary. If it's already in the dictionary, the entry will be overwritten, except with a different Franchise name. But note below that the url for "Franchises" list was sorted Ascending, so this conveniently rolls "subfranchises" into their "parent" franchise.
E.g., "Fantastic Beasts" and the "Harry Potter" movies have their own separate Franchises, but they will all be tagged as the "JKRowling" franchise, i.e. "./chart/?id=jkrowling.htm"
Also, because I was comparing sequels to their predecessors, I focused on Domestic Gross, adjusted for ticket price inflation. | url = 'http://www.boxofficemojo.com/franchises/?view=Franchise&sort=nummovies&order=ASC&p=.htm'
response = requests.get(url)
page = response.text
soup = BeautifulSoup(page,"lxml")
tables = soup.find_all("table")
rows = [row for row in tables[3].find_all('tr')]
rows = rows[1:]
# Initialize empty dictionary of movies
movies = {}
for row in rows:
items = row.find_all('td')
franchise = items[0].find('a')['href']
franchiseurl = 'http://www.boxofficemojo.com/franchises/' + franchise[2:]
response = requests.get(franchiseurl)
franchise_page = response.text
franchise_soup = BeautifulSoup(franchise_page,"lxml")
franchise_tables = franchise_soup.find_all("table")
franchise_gross = [row for row in franchise_tables[4].find_all('tr')]
franchise_gross = franchise_gross[1:len(franchise_gross)-2]
franchise_adjgross = [row for row in franchise_tables[5].find_all('tr')]
franchise_adjgross = franchise_adjgross[1:len(franchise_adjgross)-2]
# Assign movieurl as key
# Add title, franchise, inflation-adjusted gross, release date.
for row in franchise_adjgross:
movie_info = row.find_all('td')
movieurl = movie_info[1].find('a')['href']
title = movie_info[1]
adjgross = movie_info[3]
release = movie_info[5]
movies[movieurl] = [title.text]
movies[movieurl].append(franchise)
movies[movieurl].append(adjgross.text)
movies[movieurl].append(release.text)
# Add number of theaters for the above movies
for row in franchise_gross:
movie_info = row.find_all('td')
movieurl = movie_info[1].find('a')['href']
theaters = movie_info[4]
if movieurl in movies.keys():
movies[movieurl].append(theaters.text)
df = pd.DataFrame(movies.values())
df.columns = ['Title','Franchise', 'AdjGross', 'Release', 'Theaters']
df.head()
df.shape | Projects/Project2/Project2_Prashant.ipynb | ptpro3/ptpro3.github.io | mit |
Step 2
Clean up data. | # Remove movies that were re-issues, special editions, or separate 3D or IMAX versions.
df['Ignore'] = df['Title'].apply(lambda x: 're-issue' in x.lower() or 're-release' in x.lower() or 'special edition' in x.lower() or '3d)' in x.lower() or 'imax' in x.lower())
df = df[(df.Ignore == False)]
del df['Ignore']
df.shape
# Convert Adjusted Gross to a number
df['AdjGross'] = df['AdjGross'].apply(lambda x: int(x.replace('$','').replace(',','')))
# Convert Date string to dateobject. Need to prepend '19' for dates > 17 because Python treats '/60' as year '2060'
df['Release'] = df['Release'].apply(lambda x: (x[:-2] + '19' + x[-2:]) if int(x[-2:]) > 17 else x)
df['Release'] = df['Release'].apply(lambda x: dateutil.parser.parse(x)) | Projects/Project2/Project2_Prashant.ipynb | ptpro3/ptpro3.github.io | mit |
The films need to be grouped by franchise so that franchise-related data can be included as featured for each observation.
- The Average Adjusted Gross of all previous films in the franchise
- The Adjusted Gross of the very first film in the franchise
- The Release Date of the previous film in the franchise
- The Release Date of the very first film in the franchise
- The Series Number of the film in that franchise
-- I considered using the film's number in the franchise as a rank value that could be split into indicator variables, but it's useful as a linear value because the total accrued sum of $ earned by the franchise is a linear combination of "SeriesNum" and "PrevAvgGross" | df = df.sort_values(['Franchise','Release'])
df['CumGross'] = df.groupby(['Franchise'])['AdjGross'].apply(lambda x: x.cumsum())
df['SeriesNum'] = df.groupby(['Franchise'])['Release'].apply(lambda x: x.rank())
df['PrevAvgGross'] = (df['CumGross'] - df['AdjGross'])/(df['SeriesNum'] - 1) | Projects/Project2/Project2_Prashant.ipynb | ptpro3/ptpro3.github.io | mit |
Number of Theaters in which the film showed
-- Where this number was unavailable, replaced '-' with 0; the 0 will later be replaced with the mean number of theaters for the other films in the same franchise. I chose the average as a reasonable estimate. | df.Theaters = df.Theaters.replace('-','0')
df['Theaters'] = df['Theaters'].apply(lambda x: int(x.replace(',','')))
df['PrevRelease'] = df['Release'].shift()
# Create a second dataframe with franchise group-related information.
df_group = pd.DataFrame(df.groupby(['Franchise'])['Title'].apply(lambda x: x.count()))
df_group['FirstGross'] = df.groupby(['Franchise'])['AdjGross'].first()
df_group['FirstRelease'] = df.groupby(['Franchise'])['Release'].first()
df_group['SumTheaters'] = df.groupby(['Franchise'])['Theaters'].apply(lambda x: x.sum())
df_group.columns = ['NumOfFilms','FirstGross','FirstRelease','SumTheaters']
df_group['AvgTheaters'] = df_group['SumTheaters']/df_group['NumOfFilms']
df_group['Franchise'] = df.groupby(['Franchise'])['Franchise'].first()
df = df.merge(df_group, on='Franchise')
df.head()
df['Theaters'] = df.Theaters.replace(0,df.AvgTheaters)
# Drop rows with NaN. Drops all first films, but I've already stored first film information within other features.
df = df.dropna()
df.shape
df['DaysSinceFirstFilm'] = df.Release - df.FirstRelease
df['DaysSinceFirstFilm'] = df['DaysSinceFirstFilm'].apply(lambda x: x.days)
df['DaysSincePrevFilm'] = df.Release - df.PrevRelease
df['DaysSincePrevFilm'] = df['DaysSincePrevFilm'].apply(lambda x: x.days)
df.sort_values('Release',ascending=False).head() | Projects/Project2/Project2_Prashant.ipynb | ptpro3/ptpro3.github.io | mit |
For the regression model, I decided to keep data for films released through 2016, but drop the 3 films released this year; because of their recent release date, their gross earnings will not yet be representative. | films17 = df.loc[[530,712,676]]
# Grabbing columns for regression model and dropping 2017 films
dfreg = df[['AdjGross','Theaters','SeriesNum','PrevAvgGross','FirstGross','DaysSinceFirstFilm','DaysSincePrevFilm']]
dfreg = dfreg.drop([530,712,676])
dfreg.shape | Projects/Project2/Project2_Prashant.ipynb | ptpro3/ptpro3.github.io | mit |
Step 3
Apply Linear Regression. | dfreg.corr()
sns.pairplot(dfreg);
sns.regplot((dfreg.PrevAvgGross), (dfreg.AdjGross));
sns.regplot(np.log(dfreg.Theaters), np.log(dfreg.AdjGross)); | Projects/Project2/Project2_Prashant.ipynb | ptpro3/ptpro3.github.io | mit |
In the pairplot we can see that 'AdjGross' may have some correlation with the variables, particularly 'Theaters' and 'PrevAvgGross'. However, it looks like a polynomial model, or natural log / some other transformation will be required before fitting a linear model. | y, X = patsy.dmatrices('AdjGross ~ Theaters + SeriesNum + PrevAvgGross + FirstGross + DaysSinceFirstFilm + DaysSincePrevFilm', data=dfreg, return_type="dataframe") | Projects/Project2/Project2_Prashant.ipynb | ptpro3/ptpro3.github.io | mit |
First try: Initial linear regression model with statsmodels | model = sm.OLS(y, X)
fit = model.fit()
fit.summary()
fit.resid.plot(style='o'); | Projects/Project2/Project2_Prashant.ipynb | ptpro3/ptpro3.github.io | mit |
Try Polynomial Regression | polyX=PolynomialFeatures(2).fit_transform(X)
polymodel = sm.OLS(y, polyX)
polyfit = polymodel.fit()
polyfit.rsquared
polyfit.resid.plot(style='o');
polyfit.rsquared_adj | Projects/Project2/Project2_Prashant.ipynb | ptpro3/ptpro3.github.io | mit |
Heteroskedasticity
The polynomial regression improved the Adjusted Rsquared and the residual plot, but there's still issues with other statistics including skew. It's worth running the Breusch-Pagan test: | hetnames = ['Lagrange multiplier statistic', 'p-val', 'f-val', 'f p-val']
hettest = sm.stats.diagnostic.het_breushpagan(fit.resid, fit.model.exog)
zip(hetnames,hettest)
hetnames = ['Lagrange multiplier statistic', 'p-val', 'f-val', 'f p-val']
hettest = sm.stats.diagnostic.het_breushpagan(polyfit.resid, fit.model.exog)
zip(hetnames,hettest) | Projects/Project2/Project2_Prashant.ipynb | ptpro3/ptpro3.github.io | mit |
Apply Box-Cox Transformation
As seen above the p-values were very low, suggesting the data is indeed tending towards heteroskedasticity. To improve the data we can apply boxcox. | dfPolyX = pd.DataFrame(polyX)
bcPolyX = pd.DataFrame()
for i in range(dfPolyX.shape[1]):
bcPolyX[i] = scipy.stats.boxcox(dfPolyX[i])[0]
# Transformed data with Box-Cox:
bcPolyX.head()
# Introduce log(y) for target variable:
y = y.reset_index(drop=True)
logy = np.log(y) | Projects/Project2/Project2_Prashant.ipynb | ptpro3/ptpro3.github.io | mit |
Try Polynomial Regression again with Log Y and Box-Cox transformed X | logPolyModel = sm.OLS(logy, bcPolyX)
logPolyFit = logPolyModel.fit()
logPolyFit.rsquared_adj | Projects/Project2/Project2_Prashant.ipynb | ptpro3/ptpro3.github.io | mit |
Apply Regularization using Elastic Net to optimize this model. | X_scaled = preprocessing.scale(bcPolyX)
en_cv = linear_model.ElasticNetCV(cv=10, normalize=False)
en_cv.fit(X_scaled, logy)
en_cv.coef_
logy_en = en_cv.predict(X_scaled)
mse = metrics.mean_squared_error(logy, logy_en)
# The mean square error for this model
mse
plt.scatter([x for x in range(540)],(pd.DataFrame(logy_en)[0] - logy['AdjGross'])); | Projects/Project2/Project2_Prashant.ipynb | ptpro3/ptpro3.github.io | mit |
Step 4
As seen above, Polynomial Regression with Elastic Net produces a model with several nonzero coefficients for the given features. I decided to try testing this model on the three new sequels for 2017. | films17
df17 = films17[['AdjGross','Theaters','SeriesNum','PrevAvgGross','FirstGross','DaysSinceFirstFilm','DaysSincePrevFilm']]
y17, X17 = patsy.dmatrices('AdjGross ~ Theaters + SeriesNum + PrevAvgGross + FirstGross + DaysSinceFirstFilm + DaysSincePrevFilm', data=df17, return_type="dataframe")
polyX17 = PolynomialFeatures(2).fit_transform(X17)
dfPolyX17 = pd.DataFrame(polyX17)
bcPolyX17 = pd.DataFrame()
for i in range(dfPolyX17.shape[1]):
bcPolyX17[i] = scipy.stats.boxcox(dfPolyX17[i])[0]
X17_scaled = preprocessing.scale(bcPolyX17)
# Run the "en_cv" model from above on the 2017 data:
logy_en_2017 = en_cv.predict(X17_scaled)
# Predicted Adjusted Gross:
pd.DataFrame(np.exp(logy_en_2017))
# Adjusted Gross as of 2/1:
y17 | Projects/Project2/Project2_Prashant.ipynb | ptpro3/ptpro3.github.io | mit |
Multiplexers
\begin{definition}\label{def:MUX}
A Multiplexer, typically referred to as a MUX, is a Digital(or analog) switching unit that picks one input channel to be streamed to an output via a control input. For single output MUXs with $2^n$ inputs, there are then $n$ input selection signals that make up the control word to select the input channel for output.
From a behavioral standpoint, a MUX can be thought of as an element that performs the same functionality as the if-elif-else (case) control statements found in almost every software language.
\end{definition}
2 Channel Input:1 Channel Output multiplexer in Gate Level Logic
\begin{figure}
\centerline{\includegraphics{MUX21Gate.png}}
\caption{\label{fig:M21G} 2:1 MUX Symbol and Gate internals}
\end{figure}
Sympy Expression | x0, x1, s, y=symbols('x0, x1, s, y')
y21Eq=Eq(y, (~s&x0) |(s&x1) ); y21Eq
TruthTabelGenrator(y21Eq)[[x1, x0, s, y]]
y21EqN=lambdify([x0, x1, s], y21Eq.rhs, dummify=False)
SystmaticVals=np.array(list(itertools.product([0,1], repeat=3)))
print(SystmaticVals)
y21EqN(SystmaticVals[:, 1], SystmaticVals[:, 2], SystmaticVals[:, 0]).astype(int) | myHDL_DigLogicFundamentals/myHDL_Combinational/Multiplexers(MUX).ipynb | PyLCARS/PythonUberHDL | bsd-3-clause |
myHDL Module | @block
def MUX2_1_Combo(x0, x1, s, y):
"""
2:1 Multiplexer written in full combo
Input:
x0(bool): input channel 0
x1(bool): input channel 1
s(bool): channel selection input
Output:
y(bool): ouput
"""
@always_comb
def logic():
y.next= (not s and x0) |(s and x1)
return instances() | myHDL_DigLogicFundamentals/myHDL_Combinational/Multiplexers(MUX).ipynb | PyLCARS/PythonUberHDL | bsd-3-clause |
myHDL Testing | #generate systmatic and random test values
#stimules inputs X1 and X2
TestLen=10
SystmaticVals=list(itertools.product([0,1], repeat=3))
x0TVs=np.array([i[1] for i in SystmaticVals]).astype(int)
np.random.seed(15)
x0TVs=np.append(x0TVs, np.random.randint(0,2, TestLen)).astype(int)
x1TVs=np.array([i[2] for i in SystmaticVals]).astype(int)
#the random genrator must have a differint seed beween each generation
#call in order to produce differint values for each call
np.random.seed(16)
x1TVs=np.append(x1TVs, np.random.randint(0,2, TestLen)).astype(int)
sTVs=np.array([i[0] for i in SystmaticVals]).astype(int)
#the random genrator must have a differint seed beween each generation
#call in order to produce differint values for each call
np.random.seed(17)
sTVs=np.append(sTVs, np.random.randint(0,2, TestLen)).astype(int)
TestLen=len(x0TVs)
x0TVs, x1TVs, sTVs, TestLen
Peeker.clear()
x0=Signal(bool(0)); Peeker(x0, 'x0')
x1=Signal(bool(0)); Peeker(x1, 'x1')
s=Signal(bool(0)); Peeker(s, 's')
y=Signal(bool(0)); Peeker(y, 'y')
DUT=MUX2_1_Combo(x0, x1, s, y)
def MUX2_1_Combo_TB():
"""
myHDL only testbench for module `MUX2_1_Combo`
"""
@instance
def stimules():
for i in range(TestLen):
x0.next=int(x0TVs[i])
x1.next=int(x1TVs[i])
s.next=int(sTVs[i])
yield delay(1)
raise StopSimulation()
return instances()
sim=Simulation(DUT, MUX2_1_Combo_TB(), *Peeker.instances()).run()
Peeker.to_wavedrom('x1', 'x0', 's', 'y')
MUX2_1_ComboData=Peeker.to_dataframe()
MUX2_1_ComboData=MUX2_1_ComboData[['x1', 'x0', 's', 'y']]
MUX2_1_ComboData
MUX2_1_ComboData['yRef']=MUX2_1_ComboData.apply(lambda row:y21EqN(row['x0'], row['x1'], row['s']), axis=1).astype(int)
MUX2_1_ComboData
Test=(MUX2_1_ComboData['y']==MUX2_1_ComboData['yRef']).all()
print(f'Module `MUX2_1_Combo` works as exspected: {Test}') | myHDL_DigLogicFundamentals/myHDL_Combinational/Multiplexers(MUX).ipynb | PyLCARS/PythonUberHDL | bsd-3-clause |
Verilog Conversion | DUT.convert()
VerilogTextReader('MUX2_1_Combo'); | myHDL_DigLogicFundamentals/myHDL_Combinational/Multiplexers(MUX).ipynb | PyLCARS/PythonUberHDL | bsd-3-clause |
\begin{figure}
\centerline{\includegraphics[width=10cm]{MUX2_1_Combo_RTL.png}}
\caption{\label{fig:M21CRTL} MUX2_1_Combo RTL schematic; Xilinx Vivado 2017.4}
\end{figure}
\begin{figure}
\centerline{\includegraphics[width=10cm]{MUX2_1_Combo_SYN.png}}
\caption{\label{fig:M21CSYN} MUX2_1_Combo Synthesized Schematic; Xilinx Vivado 2017.4}
\end{figure}
\begin{figure}
\centerline{\includegraphics[width=10cm]{MUX2_1_Combo_IMP.png}}
\caption{\label{fig:M21CIMP} MUX2_1_Combo Implementated Schematic; Xilinx Vivado 2017.4}
\end{figure}
myHDL to Verilog Testbench | #create BitVectors
x0TVs=intbv(int(''.join(x0TVs.astype(str)), 2))[TestLen:]
x1TVs=intbv(int(''.join(x1TVs.astype(str)), 2))[TestLen:]
sTVs=intbv(int(''.join(sTVs.astype(str)), 2))[TestLen:]
x0TVs, bin(x0TVs), x1TVs, bin(x1TVs), sTVs, bin(sTVs)
@block
def MUX2_1_Combo_TBV():
"""
myHDL -> Verilog testbench for module `MUX2_1_Combo`
"""
x0=Signal(bool(0))
x1=Signal(bool(0))
s=Signal(bool(0))
y=Signal(bool(0))
@always_comb
def print_data():
print(x0, x1, s, y)
#Test Signal Bit Vectors
x0TV=Signal(x0TVs)
x1TV=Signal(x1TVs)
sTV=Signal(sTVs)
DUT=MUX2_1_Combo(x0, x1, s, y)
@instance
def stimules():
for i in range(TestLen):
x0.next=int(x0TV[i])
x1.next=int(x1TV[i])
s.next=int(sTV[i])
yield delay(1)
raise StopSimulation()
return instances()
TB=MUX2_1_Combo_TBV()
TB.convert(hdl="Verilog", initial_values=True)
VerilogTextReader('MUX2_1_Combo_TBV'); | myHDL_DigLogicFundamentals/myHDL_Combinational/Multiplexers(MUX).ipynb | PyLCARS/PythonUberHDL | bsd-3-clause |
PYNQ-Z1 Deployment
Board Circuit
\begin{figure}
\centerline{\includegraphics[width=5cm]{MUX21PYNQZ1Circ.png}}
\caption{\label{fig:M21Circ} 2:1 MUX PYNQ-Z1 (Non SoC) conceptualized circuit}
\end{figure}
Board Constraint | ConstraintXDCTextReader('MUX2_1'); | myHDL_DigLogicFundamentals/myHDL_Combinational/Multiplexers(MUX).ipynb | PyLCARS/PythonUberHDL | bsd-3-clause |
Video of Deployment
MUX2_1_Combo myHDL PYNQ-Z1 (YouTube)
4 Channel Input : 1 Channel Output multiplexer in Gate Level Logic
Sympy Expression | x0, x1, x2, x3, s0, s1, y=symbols('x0, x1, x2, x3, s0, s1, y')
y41Eq=Eq(y, (~s0&~s1&x0) | (s0&~s1&x1)| (~s0&s1&x2)|(s0&s1&x3))
y41Eq
TruthTabelGenrator(y41Eq)[[x3, x2, x1, x0, s1, s0, y]]
y41EqN=lambdify([x0, x1, x2, x3, s0, s1], y41Eq.rhs, dummify=False)
SystmaticVals=np.array(list(itertools.product([0,1], repeat=6)))
SystmaticVals
y41EqN(*[SystmaticVals[:, i] for i in range(6)] ).astype(int) | myHDL_DigLogicFundamentals/myHDL_Combinational/Multiplexers(MUX).ipynb | PyLCARS/PythonUberHDL | bsd-3-clause |
myHDL Module | @block
def MUX4_1_Combo(x0, x1, x2, x3, s0, s1, y):
"""
4:1 Multiplexer written in full combo
Input:
x0(bool): input channel 0
x1(bool): input channel 1
x2(bool): input channel 2
x3(bool): input channel 3
s1(bool): channel selection input bit 1
s0(bool): channel selection input bit 0
Output:
y(bool): ouput
"""
@always_comb
def logic():
y.next= (not s0 and not s1 and x0) or (s0 and not s1 and x1) or (not s0 and s1 and x2) or (s0 and s1 and x3)
return instances() | myHDL_DigLogicFundamentals/myHDL_Combinational/Multiplexers(MUX).ipynb | PyLCARS/PythonUberHDL | bsd-3-clause |
myHDL Testing | #generate systmatic and random test values
TestLen=5
SystmaticVals=list(itertools.product([0,1], repeat=6))
s0TVs=np.array([i[0] for i in SystmaticVals]).astype(int)
np.random.seed(15)
s0TVs=np.append(s0TVs, np.random.randint(0,2, TestLen)).astype(int)
s1TVs=np.array([i[1] for i in SystmaticVals]).astype(int)
#the random genrator must have a differint seed beween each generation
#call in order to produce differint values for each call
np.random.seed(16)
s1TVs=np.append(s1TVs, np.random.randint(0,2, TestLen)).astype(int)
x0TVs=np.array([i[2] for i in SystmaticVals]).astype(int)
#the random genrator must have a differint seed beween each generation
#call in order to produce differint values for each call
np.random.seed(17)
x0TVs=np.append(x0TVs, np.random.randint(0,2, TestLen)).astype(int)
x1TVs=np.array([i[3] for i in SystmaticVals]).astype(int)
#the random genrator must have a differint seed beween each generation
#call in order to produce differint values for each call
np.random.seed(18)
x1TVs=np.append(x1TVs, np.random.randint(0,2, TestLen)).astype(int)
x2TVs=np.array([i[4] for i in SystmaticVals]).astype(int)
#the random genrator must have a differint seed beween each generation
#call in order to produce differint values for each call
np.random.seed(19)
x2TVs=np.append(x2TVs, np.random.randint(0,2, TestLen)).astype(int)
x3TVs=np.array([i[5] for i in SystmaticVals]).astype(int)
#the random genrator must have a differint seed beween each generation
#call in order to produce differint values for each call
np.random.seed(20)
x3TVs=np.append(x3TVs, np.random.randint(0,2, TestLen)).astype(int)
TestLen=len(x0TVs)
SystmaticVals, s0TVs, s1TVs, x3TVs, x2TVs, x1TVs, x0TVs, TestLen
Peeker.clear()
x0=Signal(bool(0)); Peeker(x0, 'x0')
x1=Signal(bool(0)); Peeker(x1, 'x1')
x2=Signal(bool(0)); Peeker(x2, 'x2')
x3=Signal(bool(0)); Peeker(x3, 'x3')
s0=Signal(bool(0)); Peeker(s0, 's0')
s1=Signal(bool(0)); Peeker(s1, 's1')
y=Signal(bool(0)); Peeker(y, 'y')
DUT=MUX4_1_Combo(x0, x1, x2, x3, s0, s1, y)
def MUX4_1_Combo_TB():
"""
myHDL only testbench for module `MUX4_1_Combo`
"""
@instance
def stimules():
for i in range(TestLen):
x0.next=int(x0TVs[i])
x1.next=int(x1TVs[i])
x2.next=int(x2TVs[i])
x3.next=int(x3TVs[i])
s0.next=int(s0TVs[i])
s1.next=int(s1TVs[i])
yield delay(1)
raise StopSimulation()
return instances()
sim=Simulation(DUT, MUX4_1_Combo_TB(), *Peeker.instances()).run()
Peeker.to_wavedrom()
MUX4_1_ComboData=Peeker.to_dataframe()
MUX4_1_ComboData=MUX4_1_ComboData[['x3', 'x2', 'x1', 'x0', 's1', 's0', 'y']]
MUX4_1_ComboData
MUX4_1_ComboData['yRef']=MUX4_1_ComboData.apply(lambda row:y41EqN(row['x0'], row['x1'], row['x2'], row['x3'], row['s0'], row['s1']), axis=1).astype(int)
MUX4_1_ComboData
Test=(MUX4_1_ComboData['y']==MUX4_1_ComboData['yRef']).all()
print(f'Module `MUX4_1_Combo` works as exspected: {Test}') | myHDL_DigLogicFundamentals/myHDL_Combinational/Multiplexers(MUX).ipynb | PyLCARS/PythonUberHDL | bsd-3-clause |
Verilog Conversion | DUT.convert()
VerilogTextReader('MUX4_1_Combo'); | myHDL_DigLogicFundamentals/myHDL_Combinational/Multiplexers(MUX).ipynb | PyLCARS/PythonUberHDL | bsd-3-clause |
\begin{figure}
\centerline{\includegraphics[width=10cm]{MUX4_1_Combo_RTL.png}}
\caption{\label{fig:M41CRTL} MUX4_1_Combo RTL schematic; Xilinx Vivado 2017.4}
\end{figure}
\begin{figure}
\centerline{\includegraphics[width=10cm]{MUX4_1_Combo_SYN.png}}
\caption{\label{fig:M41CSYN} MUX4_1_Combo Synthesized Schematic; Xilinx Vivado 2017.4}
\end{figure}
\begin{figure}
\centerline{\includegraphics[width=10cm]{MUX4_1_Combo_IMP.png}}
\caption{\label{fig:M41CIMP} MUX4_1_Combo Implementated Schematic; Xilinx Vivado 2017.4}
\end{figure}
myHDL to Verilog Testbench | #create BitVectors for MUX4_1_Combo_TBV
x0TVs=intbv(int(''.join(x0TVs.astype(str)), 2))[TestLen:]
x1TVs=intbv(int(''.join(x1TVs.astype(str)), 2))[TestLen:]
x2TVs=intbv(int(''.join(x2TVs.astype(str)), 2))[TestLen:]
x3TVs=intbv(int(''.join(x3TVs.astype(str)), 2))[TestLen:]
s0TVs=intbv(int(''.join(s0TVs.astype(str)), 2))[TestLen:]
s1TVs=intbv(int(''.join(s1TVs.astype(str)), 2))[TestLen:]
x0TVs, bin(x0TVs), x1TVs, bin(x1TVs), x2TVs, bin(x2TVs), x3TVs, bin(x3TVs), s0TVs, bin(s0TVs), s1TVs, bin(s1TVs)
@block
def MUX4_1_Combo_TBV():
"""
myHDL -> Verilog testbench for module `MUX4_1_Combo`
"""
x0=Signal(bool(0))
x1=Signal(bool(0))
x2=Signal(bool(0))
x3=Signal(bool(0))
y=Signal(bool(0))
s0=Signal(bool(0))
s1=Signal(bool(0))
@always_comb
def print_data():
print(x0, x1, x2, x3, s0, s1, y)
#Test Signal Bit Vectors
x0TV=Signal(x0TVs)
x1TV=Signal(x1TVs)
x2TV=Signal(x2TVs)
x3TV=Signal(x3TVs)
s0TV=Signal(s0TVs)
s1TV=Signal(s1TVs)
DUT=MUX4_1_Combo(x0, x1, x2, x3, s0, s1, y)
@instance
def stimules():
for i in range(TestLen):
x0.next=int(x0TV[i])
x1.next=int(x1TV[i])
x2.next=int(x2TV[i])
x3.next=int(x3TV[i])
s0.next=int(s0TV[i])
s1.next=int(s1TV[i])
yield delay(1)
raise StopSimulation()
return instances()
TB=MUX4_1_Combo_TBV()
TB.convert(hdl="Verilog", initial_values=True)
VerilogTextReader('MUX4_1_Combo_TBV'); | myHDL_DigLogicFundamentals/myHDL_Combinational/Multiplexers(MUX).ipynb | PyLCARS/PythonUberHDL | bsd-3-clause |
PYNQ-Z1 Deployment
Board Circuit
\begin{figure}
\centerline{\includegraphics[width=5cm]{MUX41PYNQZ1Circ.png}}
\caption{\label{fig:M41Circ} 4:1 MUX PYNQ-Z1 (Non SoC) conceptualized circuit}
\end{figure}
Board Constraint | ConstraintXDCTextReader('MUX4_1'); | myHDL_DigLogicFundamentals/myHDL_Combinational/Multiplexers(MUX).ipynb | PyLCARS/PythonUberHDL | bsd-3-clause |
Video of Deployment
MUX4_1_MS myHDL PYNQ-Z1 (YouTube)
Shannon's Expansion Formula & Stacking of MUXs
Claude Shannon, of the famed Shannon-Nyquist theorem, discovered that any boolean expression $F(x_0, x_1, \ldots, x_n)$ can be decomposed in a manner akin to polynomials of perfect squares via
$$
F(x_0, x_1, \ldots, x_n)=x_0 \cdot F(x_0=1, x_1, \ldots, x_n) +\overline{x_0} \cdot F(x_0=0, x_1, \ldots, x_n)
$$
known as the Sum of Products (SOP) form since when the expansion is completed for all $x_n$ the result is that
$$
F(x_0, x_1, \ldots, x_n)=\sum^{2^n-1}_{i=0} (m_i \cdot F(m_i))
$$
aka the Sum of all Minterms ($m_i$) belonging to the original boolean expression $F$ factored down to the $i$th of $n$ variables belonging to $F$ and product (&) of $F$ evaluated with the respective minterm as the argument
The Dual to the SOP form of Shannon's expansion formula is the Product of Sum (POS) form
$$
F(x_0, x_1, \ldots, x_n)=(x_0+ F(x_0=1, x_1, \ldots, x_n)) \cdot (\overline{x_0} + F(x_0=0, x_1, \ldots, x_n))
$$
thus
$$F(x_0, x_1, \ldots, x_n)=\prod^{2^n-1}_{i=0} (M_i + F(M_i))
$$
with $M_i$ being the $i$th Maxterm
it is for this reason that Shannon's Expansion Formula is known is further liked to the fundamental theorem of algebra that it is called the "fundamental theorem of Boolean algebra"
So why then is Shannon's decomposition formula discussed in terms of Multiplexers. Because the general expression for a $2^n:1$ multiplexer is
$$y_{\text{MUX}}=\sum^{2^n-1}_{i=0}m_i\cdot x_n$$ where then $n$ is the required number of control inputs (referred to in this tutorial as $s_i$). Which is the same as the SOP form of Shannon's Formula for a boolean expression that has been fully decomposed (Factored). And further, if the boolean expression has not been fully factored we can replace $n-1$ parts of the partially factored expression with multiplexers. This then gives way to what is called "Multiplexer Stacking" in order to implement large boolean expressions and or large multiplexers
4 Channel Input: 1 Channel Output multiplexer via MUX Stacking
\begin{figure}
\centerline{\includegraphics{MUX41MS.png}}
\caption{\label{fig:M41MS} 4:1 MUX via MUX stacking 2:1MUXs}
\end{figure}
myHDL Module | @block
def MUX4_1_MS(x0, x1, x2, x3, s0, s1, y):
"""
4:1 Multiplexer via 2:1 MUX stacking
Input:
x0(bool): input channel 0
x1(bool): input channel 1
x2(bool): input channel 2
x3(bool): input channel 3
s1(bool): channel selection input bit 1
s0(bool): channel selection input bit 0
Output:
y(bool): ouput
"""
#create ouput from x0x1 input MUX to y ouput MUX
x0x1_yWire=Signal(bool(0))
#create instance of 2:1 mux and wire in inputs
#a, b, s0 and wire to ouput mux
x0x1MUX=MUX2_1_Combo(x0, x1, s0, x0x1_yWire)
#create ouput from x2x3 input MUX to y ouput MUX
x2x3_yWire=Signal(bool(0))
#create instance of 2:1 mux and wire in inputs
#c, d, s0 and wire to ouput mux
x2x3MUX=MUX2_1_Combo(x2, x3, s0, x2x3_yWire)
#create ouput MUX and wire to internal wires,
#s1 and ouput y
yMUX=MUX2_1_Combo(x0x1_yWire, x2x3_yWire, s1, y)
return instances() | myHDL_DigLogicFundamentals/myHDL_Combinational/Multiplexers(MUX).ipynb | PyLCARS/PythonUberHDL | bsd-3-clause |
myHDL Testing | #generate systmatic and random test values
TestLen=5
SystmaticVals=list(itertools.product([0,1], repeat=6))
s0TVs=np.array([i[0] for i in SystmaticVals]).astype(int)
np.random.seed(15)
s0TVs=np.append(s0TVs, np.random.randint(0,2, TestLen)).astype(int)
s1TVs=np.array([i[1] for i in SystmaticVals]).astype(int)
#the random genrator must have a differint seed beween each generation
#call in order to produce differint values for each call
np.random.seed(16)
s1TVs=np.append(s1TVs, np.random.randint(0,2, TestLen)).astype(int)
x0TVs=np.array([i[2] for i in SystmaticVals]).astype(int)
#the random genrator must have a differint seed beween each generation
#call in order to produce differint values for each call
np.random.seed(17)
x0TVs=np.append(x0TVs, np.random.randint(0,2, TestLen)).astype(int)
x1TVs=np.array([i[3] for i in SystmaticVals]).astype(int)
#the random genrator must have a differint seed beween each generation
#call in order to produce differint values for each call
np.random.seed(18)
x1TVs=np.append(x1TVs, np.random.randint(0,2, TestLen)).astype(int)
x2TVs=np.array([i[4] for i in SystmaticVals]).astype(int)
#the random genrator must have a differint seed beween each generation
#call in order to produce differint values for each call
np.random.seed(19)
x2TVs=np.append(x2TVs, np.random.randint(0,2, TestLen)).astype(int)
x3TVs=np.array([i[5] for i in SystmaticVals]).astype(int)
#the random genrator must have a differint seed beween each generation
#call in order to produce differint values for each call
np.random.seed(20)
x3TVs=np.append(x3TVs, np.random.randint(0,2, TestLen)).astype(int)
TestLen=len(x0TVs)
SystmaticVals, s0TVs, s1TVs, x3TVs, x2TVs, x1TVs, x0TVs, TestLen
Peeker.clear()
x0=Signal(bool(0)); Peeker(x0, 'x0')
x1=Signal(bool(0)); Peeker(x1, 'x1')
x2=Signal(bool(0)); Peeker(x2, 'x2')
x3=Signal(bool(0)); Peeker(x3, 'x3')
s0=Signal(bool(0)); Peeker(s0, 's0')
s1=Signal(bool(0)); Peeker(s1, 's1')
y=Signal(bool(0)); Peeker(y, 'y')
DUT=MUX4_1_MS(x0, x1, x2, x3, s0, s1, y)
def MUX4_1_MS_TB():
"""
myHDL only testbench for module `MUX4_1_MS`
"""
@instance
def stimules():
for i in range(TestLen):
x0.next=int(x0TVs[i])
x1.next=int(x1TVs[i])
x2.next=int(x2TVs[i])
x3.next=int(x3TVs[i])
s0.next=int(s0TVs[i])
s1.next=int(s1TVs[i])
yield delay(1)
raise StopSimulation()
return instances()
sim=Simulation(DUT, MUX4_1_MS_TB(), *Peeker.instances()).run()
Peeker.to_wavedrom()
MUX4_1_MSData=Peeker.to_dataframe()
MUX4_1_MSData=MUX4_1_MSData[['x3', 'x2', 'x1', 'x0', 's1', 's0', 'y']]
MUX4_1_MSData
Test=MUX4_1_ComboData[['x3', 'x2', 'x1', 'x0', 's1', 's0', 'y']]==MUX4_1_MSData
Test=Test.all().all()
print(f'Module `MUX4_1_MS` works as exspected: {Test}') | myHDL_DigLogicFundamentals/myHDL_Combinational/Multiplexers(MUX).ipynb | PyLCARS/PythonUberHDL | bsd-3-clause |
Verilog Conversion | DUT.convert()
VerilogTextReader('MUX4_1_MS'); | myHDL_DigLogicFundamentals/myHDL_Combinational/Multiplexers(MUX).ipynb | PyLCARS/PythonUberHDL | bsd-3-clause |
\begin{figure}
\centerline{\includegraphics[width=10cm]{MUX4_1_MS_RTL.png}}
\caption{\label{fig:M41MSRTL} MUX4_1_MS RTL schematic; Xilinx Vivado 2017.4}
\end{figure}
\begin{figure}
\centerline{\includegraphics[width=10cm]{MUX4_1_MS_SYN.png}}
\caption{\label{fig:M41MSSYN} MUX4_1_MS Synthesized Schematic; Xilinx Vivado 2017.4}
\end{figure}
\begin{figure}
\centerline{\includegraphics[width=10cm]{MUX4_1_MS_IMP.png}}
\caption{\label{fig:M41MSIMP} MUX4_1_MS Implementated Schematic; Xilinx Vivado 2017.4}
\end{figure}
myHDL to Verilog Testbench | #create BitVectors
x0TVs=intbv(int(''.join(x0TVs.astype(str)), 2))[TestLen:]
x1TVs=intbv(int(''.join(x1TVs.astype(str)), 2))[TestLen:]
x2TVs=intbv(int(''.join(x2TVs.astype(str)), 2))[TestLen:]
x3TVs=intbv(int(''.join(x3TVs.astype(str)), 2))[TestLen:]
s0TVs=intbv(int(''.join(s0TVs.astype(str)), 2))[TestLen:]
s1TVs=intbv(int(''.join(s1TVs.astype(str)), 2))[TestLen:]
x0TVs, bin(x0TVs), x1TVs, bin(x1TVs), x2TVs, bin(x2TVs), x3TVs, bin(x3TVs), s0TVs, bin(s0TVs), s1TVs, bin(s1TVs)
@block
def MUX4_1_MS_TBV():
"""
myHDL -> Verilog testbench for module `MUX4_1_MS`
"""
x0=Signal(bool(0))
x1=Signal(bool(0))
x2=Signal(bool(0))
x3=Signal(bool(0))
y=Signal(bool(0))
s0=Signal(bool(0))
s1=Signal(bool(0))
@always_comb
def print_data():
print(x0, x1, x2, x3, s0, s1, y)
#Test Signal Bit Vectors
x0TV=Signal(x0TVs)
x1TV=Signal(x1TVs)
x2TV=Signal(x2TVs)
x3TV=Signal(x3TVs)
s0TV=Signal(s0TVs)
s1TV=Signal(s1TVs)
DUT=MUX4_1_MS(x0, x1, x2, x3, s0, s1, y)
@instance
def stimules():
for i in range(TestLen):
x0.next=int(x0TV[i])
x1.next=int(x1TV[i])
x2.next=int(x2TV[i])
x3.next=int(x3TV[i])
s0.next=int(s0TV[i])
s1.next=int(s1TV[i])
yield delay(1)
raise StopSimulation()
return instances()
TB=MUX4_1_MS_TBV()
TB.convert(hdl="Verilog", initial_values=True)
VerilogTextReader('MUX4_1_MS_TBV'); | myHDL_DigLogicFundamentals/myHDL_Combinational/Multiplexers(MUX).ipynb | PyLCARS/PythonUberHDL | bsd-3-clause |
PYNQ-Z1 Deployment
Board Circuit
See Board Circuit for "4 Channel Input : 1 Channel Output multiplexer in Gate Level Logic"
Board Constraint
uses same 'MUX4_1.xdc' as "4 Channel Input : 1 Channel Output multiplexer in Gate Level Logic"
Video of Deployment
MUX4_1_MS myHDL PYNQ-Z1 (YouTube)
Introduction to HDL Behavioral Modeling
HDL behavioral modeling is a "High" level, though not at the HLS level, HDL syntax where the intended hardware element is modeled via its intended abstract algorithm behavior. Thus the common computer science (and mathematician)tool of abstraction is borrowed and incorporated into the HDL syntax. The abstraction that follows has, like all things, its pros and cons.
As a pro, this means that the Hard Ware Designer is no longer consumed by the manuchia of implementing boolean algebra for every device and can instead focus on implementing the intended algorithm in hardware. And it is thanks to this blending of Software and Hardware that the design of digital devices has grown as prolific as it has. However, there is quite a cache for using behavioral modeling. First off HDL now absolutely requires synthesis tools that can map the behavioral statements to hardware. And even when the behavioral logic is mapped at least to the RTL level there is no escaping two points. 1. At the end of the day, the RTL will be implemented via Gate level devices in some form or another. 2. the way the synthesis tool has mapped the abstract behavioral to RTL may not be physical implementable especially in ASIC implementations.
For these reasons it as Hardware Developers using Behavioral HDL we have to be able to still be able to implement the smallest indivisible units of our HDL at the gate level. Must know what physical limits our target architecture (FPGA, ASIC, etc) has and keep within these limits when writing our HDL code. And lastly, we can not grow lazy in writing behavioral HDL, but must always see at least down to the major RTL elements that our behavioral statements are embodying.
2:1 MUX via Behavioral IF
myHDL Module | @block
def MUX2_1_B(x0, x1, s, y):
"""
2:1 Multiplexer written via behavioral if
Input:
x0(bool): input channel 0
x1(bool): input channel 1
s(bool): channel selection input
Output:
y(bool): ouput
"""
@always_comb
def logic():
if s:
y.next=x1
else:
y.next=x0
return instances() | myHDL_DigLogicFundamentals/myHDL_Combinational/Multiplexers(MUX).ipynb | PyLCARS/PythonUberHDL | bsd-3-clause |
myHDL Testing | #generate systmatic and random test values
TestLen=10
SystmaticVals=list(itertools.product([0,1], repeat=3))
x0TVs=np.array([i[1] for i in SystmaticVals]).astype(int)
np.random.seed(15)
x0TVs=np.append(x0TVs, np.random.randint(0,2, TestLen)).astype(int)
x1TVs=np.array([i[2] for i in SystmaticVals]).astype(int)
#the random genrator must have a differint seed beween each generation
#call in order to produce differint values for each call
np.random.seed(16)
x1TVs=np.append(x1TVs, np.random.randint(0,2, TestLen)).astype(int)
sTVs=np.array([i[0] for i in SystmaticVals]).astype(int)
#the random genrator must have a differint seed beween each generation
#call in order to produce differint values for each call
np.random.seed(17)
sTVs=np.append(sTVs, np.random.randint(0,2, TestLen)).astype(int)
TestLen=len(x0TVs)
x0TVs, x1TVs, sTVs, TestLen
Peeker.clear()
x0=Signal(bool(0)); Peeker(x0, 'x0')
x1=Signal(bool(0)); Peeker(x1, 'x1')
s=Signal(bool(0)); Peeker(s, 's')
y=Signal(bool(0)); Peeker(y, 'y')
DUT=MUX2_1_B(x0, x1, s, y)
def MUX2_1_B_TB():
"""
myHDL only testbench for module `MUX2_1_B`
"""
@instance
def stimules():
for i in range(TestLen):
x0.next=int(x0TVs[i])
x1.next=int(x1TVs[i])
s.next=int(sTVs[i])
yield delay(1)
raise StopSimulation()
return instances()
sim=Simulation(DUT, MUX2_1_B_TB(), *Peeker.instances()).run()
Peeker.to_wavedrom('x1', 'x0', 's', 'y')
MUX2_1_BData=Peeker.to_dataframe()
MUX2_1_BData=MUX2_1_BData[['x1', 'x0', 's', 'y']]
MUX2_1_BData
Test=MUX2_1_ComboData[['x1', 'x0', 's', 'y']]==MUX2_1_BData
Test=Test.all().all()
print(f'`MUX2_1_B` Behavioral is Eqivlint to `MUX2_1_Combo`: {Test}') | myHDL_DigLogicFundamentals/myHDL_Combinational/Multiplexers(MUX).ipynb | PyLCARS/PythonUberHDL | bsd-3-clause |
Verilog Conversion | DUT.convert()
VerilogTextReader('MUX2_1_B'); | myHDL_DigLogicFundamentals/myHDL_Combinational/Multiplexers(MUX).ipynb | PyLCARS/PythonUberHDL | bsd-3-clause |
\begin{figure}
\centerline{\includegraphics[width=10cm]{MUX2_1_B_RTL.png}}
\caption{\label{fig:M21BRTL} MUX2_1_B RTL schematic; Xilinx Vivado 2017.4}
\end{figure}
\begin{figure}
\centerline{\includegraphics[width=10cm]{MUX2_1_B_SYN.png}}
\caption{\label{fig:M21BSYN} MUX2_1_B Synthesized Schematic; Xilinx Vivado 2017.4}
\end{figure}
\begin{figure}
\centerline{\includegraphics[width=10cm]{MUX2_1_B_IMP.png}}
\caption{\label{fig:M21BIMP} MUX2_1_B Implementated Schematic; Xilinx Vivado 2017.4}
\end{figure}
myHDL to Verilog Testbench | #create BitVectors
x0TVs=intbv(int(''.join(x0TVs.astype(str)), 2))[TestLen:]
x1TVs=intbv(int(''.join(x1TVs.astype(str)), 2))[TestLen:]
sTVs=intbv(int(''.join(sTVs.astype(str)), 2))[TestLen:]
x0TVs, bin(x0TVs), x1TVs, bin(x1TVs), sTVs, bin(sTVs)
@block
def MUX2_1_B_TBV():
"""
myHDL -> Verilog testbench for module `MUX2_1_B`
"""
x0=Signal(bool(0))
x1=Signal(bool(0))
s=Signal(bool(0))
y=Signal(bool(0))
@always_comb
def print_data():
print(x0, x1, s, y)
#Test Signal Bit Vectors
x0TV=Signal(x0TVs)
x1TV=Signal(x1TVs)
sTV=Signal(sTVs)
DUT=MUX2_1_B(x0, x1, s, y)
@instance
def stimules():
for i in range(TestLen):
x0.next=int(x0TV[i])
x1.next=int(x1TV[i])
s.next=int(sTV[i])
yield delay(1)
raise StopSimulation()
return instances()
TB=MUX2_1_B_TBV()
TB.convert(hdl="Verilog", initial_values=True)
VerilogTextReader('MUX2_1_B_TBV'); | myHDL_DigLogicFundamentals/myHDL_Combinational/Multiplexers(MUX).ipynb | PyLCARS/PythonUberHDL | bsd-3-clause |
PYNQ-Z1 Deployment
Board Circuit
See Board Circuit for "2 Channel Input:1 Channel Output multiplexer in Gate Level Logic"
Board Constraint
uses the same MUX2_1.xdc as "2 Channel Input:1 Channel Output multiplexer in Gate Level Logic"
Video of Deployment
MUX2_1_B myHDL PYNQ-Z1 (YouTube)
4:1 MUX via Behavioral if-elif-else
myHDL Module | @block
def MUX4_1_B(x0, x1, x2, x3, s0, s1, y):
"""
4:1 Multiblexer written in if-elif-else Behavioral
Input:
x0(bool): input channel 0
x1(bool): input channel 1
x2(bool): input channel 2
x3(bool): input channel 3
s1(bool): channel selection input bit 1
s0(bool): channel selection input bit 0
Output:
y(bool): ouput
"""
@always_comb
def logic():
if s0==0 and s1==0:
y.next=x0
elif s0==1 and s1==0:
y.next=x1
elif s0==0 and s1==1:
y.next=x2
else:
y.next=x3
return instances() | myHDL_DigLogicFundamentals/myHDL_Combinational/Multiplexers(MUX).ipynb | PyLCARS/PythonUberHDL | bsd-3-clause |
myHDL Testing | #generate systmatic and random test values
TestLen=5
SystmaticVals=list(itertools.product([0,1], repeat=6))
s0TVs=np.array([i[0] for i in SystmaticVals]).astype(int)
np.random.seed(15)
s0TVs=np.append(s0TVs, np.random.randint(0,2, TestLen)).astype(int)
s1TVs=np.array([i[1] for i in SystmaticVals]).astype(int)
#the random genrator must have a differint seed beween each generation
#call in order to produce differint values for each call
np.random.seed(16)
s1TVs=np.append(s1TVs, np.random.randint(0,2, TestLen)).astype(int)
x0TVs=np.array([i[2] for i in SystmaticVals]).astype(int)
#the random genrator must have a differint seed beween each generation
#call in order to produce differint values for each call
np.random.seed(17)
x0TVs=np.append(x0TVs, np.random.randint(0,2, TestLen)).astype(int)
x1TVs=np.array([i[3] for i in SystmaticVals]).astype(int)
#the random genrator must have a differint seed beween each generation
#call in order to produce differint values for each call
np.random.seed(18)
x1TVs=np.append(x1TVs, np.random.randint(0,2, TestLen)).astype(int)
x2TVs=np.array([i[4] for i in SystmaticVals]).astype(int)
#the random genrator must have a differint seed beween each generation
#call in order to produce differint values for each call
np.random.seed(19)
x2TVs=np.append(x2TVs, np.random.randint(0,2, TestLen)).astype(int)
x3TVs=np.array([i[5] for i in SystmaticVals]).astype(int)
#the random genrator must have a differint seed beween each generation
#call in order to produce differint values for each call
np.random.seed(20)
x3TVs=np.append(x3TVs, np.random.randint(0,2, TestLen)).astype(int)
TestLen=len(x0TVs)
SystmaticVals, s0TVs, s1TVs, x3TVs, x2TVs, x1TVs, x0TVs, TestLen
Peeker.clear()
x0=Signal(bool(0)); Peeker(x0, 'x0')
x1=Signal(bool(0)); Peeker(x1, 'x1')
x2=Signal(bool(0)); Peeker(x2, 'x2')
x3=Signal(bool(0)); Peeker(x3, 'x3')
s0=Signal(bool(0)); Peeker(s0, 's0')
s1=Signal(bool(0)); Peeker(s1, 's1')
y=Signal(bool(0)); Peeker(y, 'y')
DUT=MUX4_1_B(x0, x1, x2, x3, s0, s1, y)
def MUX4_1_B_TB():
"""
myHDL only testbench for module `MUX4_1_B`
"""
@instance
def stimules():
for i in range(TestLen):
x0.next=int(x0TVs[i])
x1.next=int(x1TVs[i])
x2.next=int(x2TVs[i])
x3.next=int(x3TVs[i])
s0.next=int(s0TVs[i])
s1.next=int(s1TVs[i])
yield delay(1)
raise StopSimulation()
return instances()
sim=Simulation(DUT, MUX4_1_B_TB(), *Peeker.instances()).run()
Peeker.to_wavedrom()
MUX4_1_BData=Peeker.to_dataframe()
MUX4_1_BData=MUX4_1_BData[['x3', 'x2', 'x1', 'x0', 's1', 's0', 'y']]
MUX4_1_BData
Test=MUX4_1_ComboData[['x3', 'x2', 'x1', 'x0', 's1', 's0', 'y']]==MUX4_1_BData
Test=Test.all().all()
print(f'Module `MUX4_1_B` works as exspected: {Test}') | myHDL_DigLogicFundamentals/myHDL_Combinational/Multiplexers(MUX).ipynb | PyLCARS/PythonUberHDL | bsd-3-clause |
Verilog Conversion | DUT.convert()
VerilogTextReader('MUX4_1_B'); | myHDL_DigLogicFundamentals/myHDL_Combinational/Multiplexers(MUX).ipynb | PyLCARS/PythonUberHDL | bsd-3-clause |
\begin{figure}
\centerline{\includegraphics[width=10cm]{MUX4_1_B_RTL.png}}
\caption{\label{fig:M41BRTL} MUX4_1_B RTL schematic; Xilinx Vivado 2017.4}
\end{figure}
\begin{figure}
\centerline{\includegraphics[width=10cm]{MUX4_1_B_SYN.png}}
\caption{\label{fig:M41BSYN} MUX4_1_B Synthesized Schematic; Xilinx Vivado 2017.4}
\end{figure}
\begin{figure}
\centerline{\includegraphics[width=10cm]{MUX4_1_B_IMP.png}}
\caption{\label{fig:M41BIMP} MUX4_1_B Implementated Schematic; Xilinx Vivado 2017.4}
\end{figure}
myHDL to Verilog Testbench | #create BitVectors
x0TVs=intbv(int(''.join(x0TVs.astype(str)), 2))[TestLen:]
x1TVs=intbv(int(''.join(x1TVs.astype(str)), 2))[TestLen:]
x2TVs=intbv(int(''.join(x2TVs.astype(str)), 2))[TestLen:]
x3TVs=intbv(int(''.join(x3TVs.astype(str)), 2))[TestLen:]
s0TVs=intbv(int(''.join(s0TVs.astype(str)), 2))[TestLen:]
s1TVs=intbv(int(''.join(s1TVs.astype(str)), 2))[TestLen:]
x0TVs, bin(x0TVs), x1TVs, bin(x1TVs), x2TVs, bin(x2TVs), x3TVs, bin(x3TVs), s0TVs, bin(s0TVs), s1TVs, bin(s1TVs)
@block
def MUX4_1_B_TBV():
"""
myHDL -> Verilog testbench for module `MUX4_1_B`
"""
x0=Signal(bool(0))
x1=Signal(bool(0))
x2=Signal(bool(0))
x3=Signal(bool(0))
y=Signal(bool(0))
s0=Signal(bool(0))
s1=Signal(bool(0))
@always_comb
def print_data():
print(x0, x1, x2, x3, s0, s1, y)
#Test Signal Bit Vectors
x0TV=Signal(x0TVs)
x1TV=Signal(x1TVs)
x2TV=Signal(x2TVs)
x3TV=Signal(x3TVs)
s0TV=Signal(s0TVs)
s1TV=Signal(s1TVs)
DUT=MUX4_1_B(x0, x1, x2, x3, s0, s1, y)
@instance
def stimules():
for i in range(TestLen):
x0.next=int(x0TV[i])
x1.next=int(x1TV[i])
x2.next=int(x2TV[i])
x3.next=int(x3TV[i])
s0.next=int(s0TV[i])
s1.next=int(s1TV[i])
yield delay(1)
raise StopSimulation()
return instances()
TB=MUX4_1_B_TBV()
TB.convert(hdl="Verilog", initial_values=True)
VerilogTextReader('MUX4_1_B_TBV'); | myHDL_DigLogicFundamentals/myHDL_Combinational/Multiplexers(MUX).ipynb | PyLCARS/PythonUberHDL | bsd-3-clause |
PYNQ-Z1 Deployment
Board Circuit
See Board Circuit for "4 Channel Input : 1 Channel Output multiplexer in Gate Level Logic"
Board Constraint
uses same 'MUX4_1.xdc' as "4 Channel Input : 1 Channel Output multiplexer in Gate Level Logic"
Video of Deployment
MUX4_1_B myHDL PYNQ-Z1 (YouTube)
Multiplexer 4:1 Behavioral via Bitvectors
myHDL Module | @block
def MUX4_1_BV(X, S, y):
"""
4:1 Multiblexerwritten in behvioral "if-elif-else"(case)
with BitVector inputs
Input:
X(4bitBV):input bit vector; min=0, max=15
S(2bitBV):selection bit vector; min=0, max=3
Output:
y(bool): ouput
"""
@always_comb
def logic():
if S==0:
y.next=X[0]
elif S==1:
y.next=X[1]
elif S==2:
y.next=X[2]
else:
y.next=X[3]
return instances() | myHDL_DigLogicFundamentals/myHDL_Combinational/Multiplexers(MUX).ipynb | PyLCARS/PythonUberHDL | bsd-3-clause |
myHDL Testing | XTVs=np.array([1,2,4,8])
XTVs=np.append(XTVs, np.random.choice([1,2,4,8], 6)).astype(int)
TestLen=len(XTVs)
np.random.seed(12)
STVs=np.arange(0,4)
STVs=np.append(STVs, np.random.randint(0,4, 5))
TestLen, XTVs, STVs
Peeker.clear()
X=Signal(intbv(0)[4:]); Peeker(X, 'X')
S=Signal(intbv(0)[2:]); Peeker(S, 'S')
y=Signal(bool(0)); Peeker(y, 'y')
DUT=MUX4_1_BV(X, S, y)
def MUX4_1_BV_TB():
@instance
def stimules():
for i in STVs:
for j in XTVs:
S.next=int(i)
X.next=int(j)
yield delay(1)
raise StopSimulation()
return instances()
sim=Simulation(DUT, MUX4_1_BV_TB(), *Peeker.instances()).run()
Peeker.to_wavedrom('X', 'S', 'y', start_time=0, stop_time=2*TestLen+2)
MUX4_1_BVData=Peeker.to_dataframe()
MUX4_1_BVData=MUX4_1_BVData[['X', 'S', 'y']]
MUX4_1_BVData
MUX4_1_BVData['x0']=None; MUX4_1_BVData['x1']=None; MUX4_1_BVData['x2']=None; MUX4_1_BVData['x3']=None
MUX4_1_BVData[['x3', 'x2', 'x1', 'x0']]=MUX4_1_BVData[['X']].apply(lambda bv: [int(i) for i in bin(bv, 4)], axis=1, result_type='expand')
MUX4_1_BVData['s0']=None; MUX4_1_BVData['s1']=None
MUX4_1_BVData[['s1', 's0']]=MUX4_1_BVData[['S']].apply(lambda bv: [int(i) for i in bin(bv, 2)], axis=1, result_type='expand')
MUX4_1_BVData=MUX4_1_BVData[['X', 'x0', 'x1', 'x2', 'x3', 'S', 's0', 's1', 'y']]
MUX4_1_BVData
MUX4_1_BVData['yRef']=MUX4_1_BVData.apply(lambda row:y41EqN(row['x0'], row['x1'], row['x2'], row['x3'], row['s0'], row['s1']), axis=1).astype(int)
MUX4_1_BVData
Test=(MUX4_1_BVData['y']==MUX4_1_BVData['yRef']).all()
print(f'Module `MUX4_1_BVData` works as exspected: {Test}') | myHDL_DigLogicFundamentals/myHDL_Combinational/Multiplexers(MUX).ipynb | PyLCARS/PythonUberHDL | bsd-3-clause |
Verilog Conversion | DUT.convert()
VerilogTextReader('MUX4_1_BV'); | myHDL_DigLogicFundamentals/myHDL_Combinational/Multiplexers(MUX).ipynb | PyLCARS/PythonUberHDL | bsd-3-clause |
\begin{figure}
\centerline{\includegraphics[width=10cm]{MUX4_1_BV_RTL.png}}
\caption{\label{fig:M41BVRTL} MUX4_1_BV RTL schematic; Xilinx Vivado 2017.4}
\end{figure}
\begin{figure}
\centerline{\includegraphics[width=10cm]{MUX4_1_BV_SYN.png}}
\caption{\label{fig:M41BVSYN} MUX4_1_BV Synthesized Schematic; Xilinx Vivado 2017.4}
\end{figure}
\begin{figure}
\centerline{\includegraphics[width=10cm]{MUX4_1_BV_IMP.png}}
\caption{\label{fig:M41BVIMP} MUX4_1_BV Implementated Schematic; Xilinx Vivado 2017.4}
\end{figure}
myHDL to Verilog Testbench
Will Do later
PYNQ-Z1 Deployment
Board Circuit
See Board Circuit for "4 Channel Input : 1 Channel Output multiplexer in Gate Level Logic"
Board Constraint
notice that in get_ports the pin is set to the a single bit of the bitvector via bitvector indexing | ConstraintXDCTextReader('MUX4_1_BV'); | myHDL_DigLogicFundamentals/myHDL_Combinational/Multiplexers(MUX).ipynb | PyLCARS/PythonUberHDL | bsd-3-clause |
Using MPI
To distribute emcee3 across nodes on a cluster, you'll need to use MPI. This can be done with the MPIPool from schwimmbad. To use this, you'll need to install the dependency mpi4py. Otherwise, the code is almost the same as the multiprocessing example above – the main change is the definition of the pool:
The if not pool.is_master() block is crucial otherwise the code will hang at the end of execution. To run this code, you would execute something like the following:
Using ipyparallel
ipyparallel is a
flexible and powerful framework for running distributed computation in Python.
It works on a single machine with multiple cores in the same way as it does on
a huge compute cluster and in both cases it is very efficient!
To use IPython parallel, make sure that you have a recent version of IPython
installed (ipyparallel docs) and start up the cluster
by running:
Then, run the following: | # Connect to the cluster.
from ipyparallel import Client
rc = Client()
dv = rc.direct_view()
# Run the imports on the cluster too.
with dv.sync_imports():
import emcee3
import numpy
# Define the model.
def log_prob(x):
return -0.5 * numpy.sum(x ** 2)
# Distribute the model to the nodes of the cluster.
dv.push(dict(log_prob=log_prob), block=True)
# Set up the ensemble with the IPython "DirectView" as the pool.
ndim, nwalkers = 10, 100
ensemble = emcee3.Ensemble(log_prob, numpy.random.randn(nwalkers, ndim), pool=dv)
# Run the sampler in the same way as usual.
sampler = emcee3.Sampler()
ensemble = sampler.run(ensemble, 1000) | docs/user/parallel.ipynb | dfm/emcee3 | mit |
1. Conceptual Questions (8 Points)
Answer these in Markdown
[1 point] In problem 4 from HW 3 we discussed probabilities of having HIV and results of a test being positive. What was the sample space for this problem?
[4 points] One of the notations in the answer key is a random variable $H$ which indicated if a person has HIV. Make a table showing this functions inputs and outputs for the sample space. Making Markdown Tables
[1 point] A probability density function is used for what types of probability distributions?
[2 points] What is the probability of $t > 4$ in an exponential distribution with $\lambda = 1$? Leave your answer in terms of an exponential.
1.1
First element is HIV and second is test
$$
{ (0,0), (1,0), (0,1), (1,1)}
$$
1.2
|$x$|$H$|
|---|---:|
|(0,0)| 0|
|(0,1)| 0|
|(1,0)| 1|
|(1,1)| 1|
1.3
Continuous
1.4
$$
\int_4^{\infty} e^{-t} \, dt = \left. -e^{-t}\right]_4^{\infty} = 0 - - e^{-4} = e^{-4}
$$
2. The Nile (10 Points)
Answer in Python
[4 points] Load the Nile dataset and convert to a numpy array. It contains measurements of the annual flow of the river Nile at Aswan. Make a scatter plot of the year vs flow rate. If you get an error when loading pydataset that says No Module named 'pydataset', then execute this code in a new cell once: !pip install pydataset
[2 points] Report the correlation coefficient between year and flow rate.
[4 points] Create a histogram of the flow rates and show the median with a vertical line. Labels your axes and make a legend indicating what the vertical line is. | #2.1
nile = pydataset.data('Nile').as_matrix()
plt.plot(nile[:,0], nile[:,1], '-o')
plt.xlabel('Year')
plt.ylabel('Nile Flow Rate')
plt.show()
#2.2
print('{:.3}'.format(np.corrcoef(nile[:,0], nile[:,1])[0,1]))
#2.3 ok to distplot or plt.hist
sns.distplot(nile[:,1])
plt.axvline(np.mean(nile[:,1]), color='C2', label='Mean')
plt.legend()
plt.xlabel('Flow Rate')
plt.show() | unit_7/hw_2018/Homework_7_Key.ipynb | whitead/numerical_stats | gpl-3.0 |
2. Insect Spray (10 Points)
Answer in Python
[2 points] Load the 'InsectSpray' dataset, convert to a numpy array and print the number of rows and columns. Recall that numpy arrays can only hold one type of data (e.g., string, float, int). What is the data type of the loaded dataset?
[2 points] Using np.unique, print out the list of insect spray used. This data is a count insects on a crop field with various insect sprays.
[4 points] Create a violin plot of the data. Label your axes.
[2 points] Which insect spray worked best? What is the mean number of insects for the best insect spray? | #1.1
insect = pydataset.data('InsectSprays').as_matrix()
print(insect.shape, 'string or object is acceptable')
#1.2
print(np.unique(insect[:,1]))
#1.3
labels = np.unique(insect[:,1])
ldata = []
#slice out each set of rows that matches label
#and add to list
for l in labels:
ldata.append(insect[insect[:,1] == l, 0].astype(float))
sns.violinplot(data=ldata)
plt.xticks(range(len(labels)), labels)
plt.xlabel('Insecticide Type')
plt.ylabel('Insect Count')
plt.show()
#1.4
print('C is best and its mean is {:.2}'.format(np.mean(ldata[2]))) | unit_7/hw_2018/Homework_7_Key.ipynb | whitead/numerical_stats | gpl-3.0 |
3. NY Air Quality (6 Points)
Load the 'airquality' dataset and convert into to a numpy array. Make a scatter plot of wind (column 2, mph) and ozone concentration (column 0, ppb). Using the plt.text command, display the correlation coefficient in the plot. This data as nan, which means "not a number". You can select non-nans by using x[~numpy.isnan(x)]. You'll need to remove these to calculate correlation coefficient. | nyair = pydataset.data('airquality').as_matrix()
plt.plot(nyair[:,2], nyair[:,0], 'o')
plt.xlabel('Wind [mph]')
plt.ylabel('Ozone [ppb]')
nans = np.isnan(nyair[:,0])
r = np.corrcoef(nyair[~nans,2], nyair[~nans,0])[0,1]
plt.text(10, 130, 'Correlation Coefficient = {:.2}'.format(r))
plt.show() | unit_7/hw_2018/Homework_7_Key.ipynb | whitead/numerical_stats | gpl-3.0 |
Read the RIRE data and generate a larger point set as a reference | fixed_image = sitk.ReadImage(fdata("training_001_ct.mha"), sitk.sitkFloat32)
moving_image = sitk.ReadImage(fdata("training_001_mr_T1.mha"), sitk.sitkFloat32)
fixed_fiducial_points, moving_fiducial_points = ru.load_RIRE_ground_truth(fdata("ct_T1.standard"))
# Estimate the reference_transform defined by the RIRE fiducials and check that the FRE makes sense (low)
R, t = ru.absolute_orientation_m(fixed_fiducial_points, moving_fiducial_points)
reference_transform = sitk.Euler3DTransform()
reference_transform.SetMatrix(R.flatten())
reference_transform.SetTranslation(t)
reference_errors_mean, reference_errors_std, _, reference_errors_max,_ = ru.registration_errors(reference_transform, fixed_fiducial_points, moving_fiducial_points)
print('Reference data errors (FRE) in millimeters, mean(std): {:.2f}({:.2f}), max: {:.2f}'.format(reference_errors_mean, reference_errors_std, reference_errors_max))
# Generate a reference dataset from the reference transformation
# (corresponding points in the fixed and moving images).
fixed_points = ru.generate_random_pointset(image=fixed_image, num_points=100)
moving_points = [reference_transform.TransformPoint(p) for p in fixed_points]
# Compute the TRE prior to registration.
pre_errors_mean, pre_errors_std, pre_errors_min, pre_errors_max, _ = ru.registration_errors(sitk.Euler3DTransform(), fixed_points, moving_points, display_errors = True)
print('Before registration, errors (TRE) in millimeters, mean(std): {:.2f}({:.2f}), max: {:.2f}'.format(pre_errors_mean, pre_errors_std, pre_errors_max)) | 62_Registration_Tuning.ipynb | thewtex/SimpleITK-Notebooks | apache-2.0 |
Initial Alignment
We use the CenteredTransformInitializer. Should we use the GEOMETRY based version or the MOMENTS based one? | initial_transform = sitk.CenteredTransformInitializer(sitk.Cast(fixed_image,moving_image.GetPixelIDValue()),
moving_image,
sitk.Euler3DTransform(),
sitk.CenteredTransformInitializerFilter.GEOMETRY)
initial_errors_mean, initial_errors_std, initial_errors_min, initial_errors_max, _ = ru.registration_errors(initial_transform, fixed_points, moving_points, min_err=pre_errors_min, max_err=pre_errors_max, display_errors=True)
print('After initialization, errors (TRE) in millimeters, mean(std): {:.2f}({:.2f}), max: {:.2f}'.format(initial_errors_mean, initial_errors_std, initial_errors_max)) | 62_Registration_Tuning.ipynb | thewtex/SimpleITK-Notebooks | apache-2.0 |
Registration
Possible choices for simple rigid multi-modality registration framework (<b>300</b> component combinations, in addition to parameter settings for each of the components):
<ul>
<li>Similarity metric, 2 options (Mattes MI, JointHistogram MI):
<ul>
<li>Number of histogram bins.</li>
<li>Sampling strategy, 3 options (NONE, REGULAR, RANDOM)</li>
<li>Sampling percentage.</li>
</ul>
</li>
<li>Interpolator, 10 options (sitkNearestNeighbor, sitkLinear, sitkGaussian, sitkBSpline,...)</li>
<li>Optimizer, 5 options (GradientDescent, GradientDescentLineSearch, RegularStepGradientDescent...):
<ul>
<li>Number of iterations.</li>
<li>learning rate (step size along parameter space traversal direction).</li>
</ul>
</li>
</ul>
In this example we will plot the similarity metric's value and more importantly the TREs for our reference data. A good choice for the former should be reflected by the later. That is, the TREs should go down as the similarity measure value goes down (not necessarily at the same rates).
Finally, we are also interested in timing our registration. Ipython allows us to do this with minimal effort using the <a href="http://ipython.org/ipython-doc/stable/interactive/magics.html?highlight=timeit#magic-timeit">timeit</a> cell magic (Ipython has a set of predefined functions that use a command line syntax, and are referred to as magic functions). | #%%timeit -r1 -n1
# to time this cell uncomment the line above
#the arguments to the timeit magic specify that this cell should only be run once. running it multiple
#times to get performance statistics is also possible, but takes time. if you want to analyze the accuracy
#results from multiple runs you will have to modify the code to save them instead of just printing them out.
registration_method = sitk.ImageRegistrationMethod()
registration_method.SetMetricAsMattesMutualInformation(numberOfHistogramBins=50)
registration_method.SetMetricSamplingStrategy(registration_method.RANDOM)
registration_method.SetMetricSamplingPercentage(0.01)
registration_method.SetInterpolator(sitk.sitkNearestNeighbor) #2. Replace with sitkLinear
registration_method.SetOptimizerAsGradientDescent(learningRate=1.0, numberOfIterations=100) #1. Increase to 1000
registration_method.SetOptimizerScalesFromPhysicalShift()
# Don't optimize in-place, we would like to run this cell multiple times
registration_method.SetInitialTransform(initial_transform, inPlace=False)
# Add callbacks which will display the similarity measure value and the reference data during the registration process
registration_method.AddCommand(sitk.sitkStartEvent, rc.metric_and_reference_start_plot)
registration_method.AddCommand(sitk.sitkEndEvent, rc.metric_and_reference_end_plot)
registration_method.AddCommand(sitk.sitkIterationEvent, lambda: rc.metric_and_reference_plot_values(registration_method, fixed_points, moving_points))
final_transform_single_scale = registration_method.Execute(sitk.Cast(fixed_image, sitk.sitkFloat32),
sitk.Cast(moving_image, sitk.sitkFloat32))
print('Final metric value: {0}'.format(registration_method.GetMetricValue()))
print('Optimizer\'s stopping condition, {0}'.format(registration_method.GetOptimizerStopConditionDescription()))
final_errors_mean, final_errors_std, _, final_errors_max,_ = ru.registration_errors(final_transform_single_scale, fixed_points, moving_points, min_err=initial_errors_min, max_err=initial_errors_max, display_errors=True)
print('After registration, errors in millimeters, mean(std): {:.2f}({:.2f}), max: {:.2f}'.format(final_errors_mean, final_errors_std, final_errors_max)) | 62_Registration_Tuning.ipynb | thewtex/SimpleITK-Notebooks | apache-2.0 |
In some cases visual comparison of the registration errors using the same scale is not informative, as seen above [all points are grey/black]. We therefor set the color scale to the min-max error range found in the current data and not the range from the previous stage. | final_errors_mean, final_errors_std, _, final_errors_max,_ = ru.registration_errors(final_transform_single_scale, fixed_points, moving_points, display_errors=True) | 62_Registration_Tuning.ipynb | thewtex/SimpleITK-Notebooks | apache-2.0 |
Now using the built in multi-resolution framework
Perform registration using the same settings as above, but take advantage of the multi-resolution framework which provides a significant speedup with minimal effort (3 lines of code).
It should be noted that when using this framework the similarity metric value will not necessarily decrease between resolutions, we are only ensured that it decreases per resolution. This is not an issue, as we are actually observing the values of a different function at each resolution.
The example below shows that registration is improving even though the similarity value increases when changing resolution levels. | %%timeit -r1 -n1
#the arguments to the timeit magic specify that this cell should only be run once. running it multiple
#times to get performance statistics is also possible, but takes time. if you want to analyze the accuracy
#results from multiple runs you will have to modify the code to save them instead of just printing them out.
registration_method = sitk.ImageRegistrationMethod()
registration_method.SetMetricAsMattesMutualInformation(numberOfHistogramBins=50)
registration_method.SetMetricSamplingStrategy(registration_method.RANDOM)
registration_method.SetMetricSamplingPercentage(0.1)
registration_method.SetInterpolator(sitk.sitkLinear) #2. Replace with sitkLinear
registration_method.SetOptimizerAsGradientDescent(learningRate=1.0, numberOfIterations=100)
registration_method.SetOptimizerScalesFromPhysicalShift()
# Don't optimize in-place, we would like to run this cell multiple times
registration_method.SetInitialTransform(initial_transform, inPlace=False)
# Add callbacks which will display the similarity measure value and the reference data during the registration process
registration_method.AddCommand(sitk.sitkStartEvent, rc.metric_and_reference_start_plot)
registration_method.AddCommand(sitk.sitkEndEvent, rc.metric_and_reference_end_plot)
registration_method.AddCommand(sitk.sitkIterationEvent, lambda: rc.metric_and_reference_plot_values(registration_method, fixed_points, moving_points))
registration_method.SetShrinkFactorsPerLevel(shrinkFactors = [4,2,1])
registration_method.SetSmoothingSigmasPerLevel(smoothingSigmas=[2,1,0])
registration_method.SmoothingSigmasAreSpecifiedInPhysicalUnitsOn()
final_transform = registration_method.Execute(sitk.Cast(fixed_image, sitk.sitkFloat32),
sitk.Cast(moving_image, sitk.sitkFloat32))
print('Final metric value: {0}'.format(registration_method.GetMetricValue()))
print('Optimizer\'s stopping condition, {0}'.format(registration_method.GetOptimizerStopConditionDescription()))
final_errors_mean, final_errors_std, _, final_errors_max,_ = ru.registration_errors(final_transform, fixed_points, moving_points, True)
print('After registration, errors in millimeters, mean(std): {:.2f}({:.2f}), max: {:.2f}'.format(final_errors_mean, final_errors_std, final_errors_max)) | 62_Registration_Tuning.ipynb | thewtex/SimpleITK-Notebooks | apache-2.0 |
Sufficient accuracy <u>inside</u> the ROI
Up to this point our accuracy evaluation has ignored the content of the image and is likely overly conservative. We have been looking at the registration errors inside the volume, but not necesserily in the smaller ROI.
To see the difference you will have to <b>comment out the timeit magic in the code above</b>, run it again, and then run the following cell. | # Threshold the original fixed, CT, image at 0HU (water), resulting in a binary labeled [0,1] image.
roi = fixed_image> 0
# Our ROI consists of all voxels with a value of 1, now get the bounding box surrounding the head.
label_shape_analysis = sitk.LabelShapeStatisticsImageFilter()
label_shape_analysis.SetBackgroundValue(0)
label_shape_analysis.Execute(roi)
bounding_box = label_shape_analysis.GetBoundingBox(1)
# Bounding box in physical space.
sub_image_min = fixed_image.TransformIndexToPhysicalPoint((bounding_box[0],bounding_box[1], bounding_box[2]))
sub_image_max = fixed_image.TransformIndexToPhysicalPoint((bounding_box[0]+bounding_box[3]-1,
bounding_box[1]+bounding_box[4]-1,
bounding_box[2]+bounding_box[5]-1))
# Only look at the points inside our bounding box.
sub_fixed_points = []
sub_moving_points = []
for fixed_pnt, moving_pnt in zip(fixed_points, moving_points):
if sub_image_min[0]<=fixed_pnt[0]<=sub_image_max[0] and \
sub_image_min[1]<=fixed_pnt[1]<=sub_image_max[1] and \
sub_image_min[2]<=fixed_pnt[2]<=sub_image_max[2] :
sub_fixed_points.append(fixed_pnt)
sub_moving_points.append(moving_pnt)
final_errors_mean, final_errors_std, _, final_errors_max,_ = ru.registration_errors(final_transform, sub_fixed_points, sub_moving_points, True)
print('After registration, errors in millimeters, mean(std): {:.2f}({:.2f}), max: {:.2f}'.format(final_errors_mean, final_errors_std, final_errors_max)) | 62_Registration_Tuning.ipynb | thewtex/SimpleITK-Notebooks | apache-2.0 |
Line Chart Selectors
Fast Interval Selector | ## First we define a Figure
dt_x_fast = DateScale()
lin_y = LinearScale()
x_ax = Axis(label="Index", scale=dt_x_fast)
x_ay = Axis(label=(symbol + " Price"), scale=lin_y, orientation="vertical")
lc = Lines(
x=dates_actual, y=prices, scales={"x": dt_x_fast, "y": lin_y}, colors=["orange"]
)
lc_2 = Lines(
x=dates_actual[50:],
y=prices[50:] + 2,
scales={"x": dt_x_fast, "y": lin_y},
colors=["blue"],
)
## Next we define the type of selector we would like
intsel_fast = FastIntervalSelector(scale=dt_x_fast, marks=[lc, lc_2])
## Now, we define a function that will be called when the FastIntervalSelector is interacted with
def fast_interval_change_callback(change):
db_fast.value = "The selected period is " + str(change.new)
## Now we connect the selectors to that function
intsel_fast.observe(fast_interval_change_callback, names=["selected"])
## We use the HTML widget to see the value of what we are selecting and modify it when an interaction is performed
## on the selector
db_fast = HTML()
db_fast.value = "The selected period is " + str(intsel_fast.selected)
fig_fast_intsel = Figure(
marks=[lc, lc_2],
axes=[x_ax, x_ay],
title="Fast Interval Selector Example",
interaction=intsel_fast,
) # This is where we assign the interaction to this particular Figure
VBox([db_fast, fig_fast_intsel]) | examples/Interactions/Interaction Layer.ipynb | bloomberg/bqplot | apache-2.0 |
Index Selector | db_index = HTML(value="[]")
## Now we try a selector made to select all the y-values associated with a single x-value
index_sel = IndexSelector(scale=dt_x_fast, marks=[lc, lc_2])
## Now, we define a function that will be called when the selectors are interacted with
def index_change_callback(change):
db_index.value = "The selected date is " + str(change.new)
index_sel.observe(index_change_callback, names=["selected"])
fig_index_sel = Figure(
marks=[lc, lc_2],
axes=[x_ax, x_ay],
title="Index Selector Example",
interaction=index_sel,
)
VBox([db_index, fig_index_sel]) | examples/Interactions/Interaction Layer.ipynb | bloomberg/bqplot | apache-2.0 |
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.