markdown
stringlengths
0
37k
code
stringlengths
1
33.3k
path
stringlengths
8
215
repo_name
stringlengths
6
77
license
stringclasses
15 values
Looking at these, it appears that there are some overlap between the hospitals. Hospital 17, 21, 42, and 95 are the 4 common hospital that are in the top ten of both these products. We will turn to a hospital examination down the road.
set(data.get_hospitals_by_product('product_1842').index.tolist()) & set(data.get_hospitals_by_product('product_1807').index.tolist())
reports/neiss.ipynb
minh5/cpsc
mit
Could be useful to compare stratum types - Do large hospitals see different rates of injury than small hospitals? Another way of examining product harm would not only to count the total numbers of products but also to see what is the top product that is reported for each hosptial. Here we can look at not only the sheer number which could be due to over reporting or awareness but also to see if there are geographic differences for product harm. However, after examining this, we see that 70 out of the 82 hospitals surveyed have product 1842 and 1807 as the top product. However an interesting finding is that product_1267, product_3299, and product_3283 are in the top ten list of top products by hospital but not in the top ten overall. However, the number is small as it only affects 5 hospitals and 14,844 reported cases. It would be interesting to see where these five hospital are at and why these products are the top of their product harm.
data.top_product_for_hospital()
reports/neiss.ipynb
minh5/cpsc
mit
Another way of approaching would be to fit a Negative Binomial Regression to see if there are any meaningful differences between the sizes of the hospitals. I use a negative binomial regression rather than a poisson regression because there is strong evidence of overdispersion, that is, the variance of the data is much higher than the mean, as shown below. This also occurs across all stratum (only shown for small, medium, and large).
counts = data.data.ix[data.data['product'] == 'product_1842',:]['hospital'].value_counts() print('variance of product 1842 counts:', np.var(counts.values)) print('mean of product 1842 counts:', np.mean(counts.values)) data.plot_stratum_dist('product_1842', 'S') data.plot_stratum_dist('product_1842', 'M') data.plot_stratum_dist('product_1842', 'L') df = data.prepare_stratum_modeling('product_1842') df.head() model = smf.glm("counts ~ stratum", data=df, family=sm.families.NegativeBinomial()).fit() model.summary()
reports/neiss.ipynb
minh5/cpsc
mit
From the model, we see that there are only significant differences between Medium and Small hospital. Given the coefficients, the log count difference between Medium and Small hospitals is -1.55. Other than that there doesn't seem to be any other signficant differences between hospital sizes for Product 1842. We can do the same to examine the 2nd most reported product, Product 1807. Below I check the assumption to fit a negative binomial regression, that the variance is far greater than the mean. In this case we see that it is the case.
data.plot_stratum_dist('product_1807', 'S') data.plot_stratum_dist('product_1807', 'M') data.plot_stratum_dist('product_1807', 'L')
reports/neiss.ipynb
minh5/cpsc
mit
The assumptions have been met and after building the model, we see very similar results as the previous model, that there are only significant differences between the small and large hospitals. For future research, we can use similar techniques to see significant differences between hospital sizes for all products.
df2 = data.prepare_stratum_modeling('product_1807') model = smf.glm("counts ~ stratum", data=df, family=sm.families.NegativeBinomial()).fit() model.summary()
reports/neiss.ipynb
minh5/cpsc
mit
Do we see meaningful trends when race is reported? From the top items, we don't see any meaningful differences between the top ten items for people who have race reported and race not reported. Even among the data where we do have race reported, there doesn't seem to be much variation when it comes to the top ten products causes most harm.
data.retrieve_query('race_reported', 'reported', 'product') data.retrieve_query('race_reported', 'not reported', 'product') races = ['white', 'black', 'hispanic', 'other'] for race in races: print(race) print(data.retrieve_query('new_race', race, 'product'))
reports/neiss.ipynb
minh5/cpsc
mit
Integral 1 $$ I_1 = \int_0^a {\sqrt{a^2-x^2} dx} = \frac{\pi a^2}{4} $$
def integrand(x, a): return np.sqrt(a**2 - x**2) def integral_approx(a): # Use the args keyword argument to feed extra arguments to your integrand I, e = integrate.quad(integrand, 0, a, args=(a,)) return I def integral_exact(a): return 0.25*np.pi print("Numerical: ", integral_approx(1.0)) print("Exact : ", integral_exact(1.0)) assert True # leave this cell to grade the above integral
Integration/IntegrationEx02.ipynb
JAmarel/Phys202
mit
Integral 2 $$ I_2 = \int_0^{\frac{\pi}{2}} {\sin^2{x}}{ } {dx} = \frac{\pi}{4} $$
def integrand(x): return np.sin(x)**2 def integral_approx(): I, e = integrate.quad(integrand, 0, np.pi/2) return I def integral_exact(): return 0.25*np.pi print("Numerical: ", integral_approx()) print("Exact : ", integral_exact()) assert True # leave this cell to grade the above integral
Integration/IntegrationEx02.ipynb
JAmarel/Phys202
mit
Integral 3 $$ I_3 = \int_0^{2\pi} \frac{dx}{a+b\sin{x}} = {\frac{2\pi}{\sqrt{a^2-b^2}}} $$
def integrand(x,a,b): return 1/(a+ b*np.sin(x)) def integral_approx(a,b): I, e = integrate.quad(integrand, 0, 2*np.pi,args=(a,b)) return I def integral_exact(a,b): return 2*np.pi/np.sqrt(a**2-b**2) print("Numerical: ", integral_approx(10,0)) print("Exact : ", integral_exact(10,0)) assert True # leave this cell to grade the above integral
Integration/IntegrationEx02.ipynb
JAmarel/Phys202
mit
Integral 4 $$ I_4 = \int_0^{\infty} \frac{x}{e^{x}+1} = {\frac{\pi^2}{12}} $$
def integrand(x): return x/(np.exp(x)+1) def integral_approx(): I, e = integrate.quad(integrand, 0, np.inf) return I def integral_exact(): return (1/12)*np.pi**2 print("Numerical: ", integral_approx()) print("Exact : ", integral_exact()) assert True # leave this cell to grade the above integral
Integration/IntegrationEx02.ipynb
JAmarel/Phys202
mit
Integral 5 $$ I_5 = \int_0^{\infty} \frac{x}{e^{x}-1} = {\frac{\pi^2}{6}} $$
def integrand(x): return x/(np.exp(x)-1) def integral_approx(): I, e = integrate.quad(integrand, 0, np.inf) return I def integral_exact(): return (1/6)*np.pi**2 print("Numerical: ", integral_approx()) print("Exact : ", integral_exact()) assert True # leave this cell to grade the above integral
Integration/IntegrationEx02.ipynb
JAmarel/Phys202
mit
EXERCISE: Use any of the solvers we've seen thus far to find the minimum of the zimmermann function (i.e. use mystic.models.zimmermann as the objective). Use the bounds suggested below, if your choice of solver allows it.
import scipy.optimize as opt import mystic.models result = opt.minimize(mystic.models.zimmermann, [10., 1.], method='powell') print(result.x)
solutions.ipynb
mmckerns/tutmom
bsd-3-clause
EXERCISE: Do the same for the fosc3d function found at mystic.models.fosc3d, using the bounds suggested by the documentation, if your chosen solver accepts bounds or constraints.
import scipy.optimize as opt import mystic.models result = opt.minimize(mystic.models.fosc3d, [-5., 0.5], method='powell') print(result.x)
solutions.ipynb
mmckerns/tutmom
bsd-3-clause
EXERCISE: Use mystic to find the minimum for the peaks test function, with the bound specified by the mystic.models.peaks documentation.
import mystic import mystic.models result = mystic.solvers.fmin_powell(mystic.models.peaks, [0., -2.], bounds=[(-5.,5.)]*2) print(result)
solutions.ipynb
mmckerns/tutmom
bsd-3-clause
EXERCISE: Use mystic to do a fit to the noisy data in the scipy.optimize.curve_fit example (the least squares fit).
import numpy as np import scipy.stats as stats from mystic.solvers import fmin_powell from mystic import reduced # Define the function to fit. def function(coeffs, x): a,b,f,phi = coeffs return a * np.exp(-b * np.sin(f * x + phi)) # Create a noisy data set around the actual parameters true_params = [3, 2, 1, np.pi/4] print("target parameters: {}".format(true_params)) x = np.linspace(0, 2*np.pi, 25) exact = function(true_params, x) noisy = exact + 0.3*stats.norm.rvs(size=len(x)) # Define an objective that fits against the noisy data @reduced(lambda x,y: abs(x)+abs(y)) def objective(coeffs, x, y): return function(coeffs, x) - y # Use curve_fit to estimate the function parameters from the noisy data. initial_guess = [1,1,1,1] args = (x, noisy) estimated_params = fmin_powell(objective, initial_guess, args=args) print("solved parameters: {}".format(estimated_params))
solutions.ipynb
mmckerns/tutmom
bsd-3-clause
EXERCISE: Solve the chebyshev8.cost example exactly, by applying the knowledge that the last term in the chebyshev polynomial will always be be one. Use numpy.round or mystic.constraints.integers or to constrain solutions to the set of integers. Does using mystic.suppressed to supress small numbers accelerate the solution?
# Differential Evolution solver from mystic.solvers import DifferentialEvolutionSolver2 # Chebyshev polynomial and cost function from mystic.models.poly import chebyshev8, chebyshev8cost from mystic.models.poly import chebyshev8coeffs # tools from mystic.termination import VTR, CollapseAt, Or from mystic.strategy import Best1Exp from mystic.monitors import VerboseMonitor from mystic.tools import random_seed from mystic.math import poly1d import numpy as np if __name__ == '__main__': print("Differential Evolution") print("======================") ndim = 9 random_seed(123) # configure monitor stepmon = VerboseMonitor(50,50) # build a constraints function def constraints(x): x[-1] = 1. return np.round(x) stop = Or(VTR(0.0001), CollapseAt(0.0, generations=2)) # use DE to solve 8th-order Chebyshev coefficients npop = 10*ndim solver = DifferentialEvolutionSolver2(ndim,npop) solver.SetRandomInitialPoints(min=[-100]*ndim, max=[100]*ndim) solver.SetGenerationMonitor(stepmon) solver.SetConstraints(constraints) solver.enable_signal_handler() solver.Solve(chebyshev8cost, termination=stop, strategy=Best1Exp, \ CrossProbability=1.0, ScalingFactor=0.9) solution = solver.Solution() # use monitor to retrieve results information iterations = len(stepmon) cost = stepmon.y[-1] print("Generation %d has best Chi-Squared: %f" % (iterations, cost)) # use pretty print for polynomials print(poly1d(solution)) # compare solution with actual 8th-order Chebyshev coefficients print("\nActual Coefficients:\n %s\n" % poly1d(chebyshev8coeffs))
solutions.ipynb
mmckerns/tutmom
bsd-3-clause
EXERCISE: Replace the symbolic constraints in the following "Pressure Vessel Design" code with explicit penalty functions (i.e. use a compound penalty built with mystic.penalty.quadratic_inequality).
"Pressure Vessel Design" def objective(x): x0,x1,x2,x3 = x return 0.6224*x0*x2*x3 + 1.7781*x1*x2**2 + 3.1661*x0**2*x3 + 19.84*x0**2*x2 bounds = [(0,1e6)]*4 # with penalty='penalty' applied, solution is: xs = [0.72759093, 0.35964857, 37.69901188, 240.0] ys = 5804.3762083 from mystic.constraints import as_constraint from mystic.penalty import quadratic_inequality def penalty1(x): # <= 0.0 return -x[0] + 0.0193*x[2] def penalty2(x): # <= 0.0 return -x[1] + 0.00954*x[2] def penalty3(x): # <= 0.0 from math import pi return -pi*x[2]**2*x[3] - (4/3.)*pi*x[2]**3 + 1296000.0 def penalty4(x): # <= 0.0 return x[3] - 240.0 @quadratic_inequality(penalty1, k=1e12) @quadratic_inequality(penalty2, k=1e12) @quadratic_inequality(penalty3, k=1e12) @quadratic_inequality(penalty4, k=1e12) def penalty(x): return 0.0 if __name__ == '__main__': from mystic.solvers import diffev2 from mystic.math import almostEqual result = diffev2(objective, x0=bounds, bounds=bounds, penalty=penalty, npop=40, gtol=500, disp=True, full_output=True) print(result[0])
solutions.ipynb
mmckerns/tutmom
bsd-3-clause
EXERCISE: Solve the cvxopt "qp" example with mystic. Use symbolic constaints, penalty functions, or constraints operators. If you get it quickly, do all three methods.
def objective(x): x0,x1 = x return 2*x0**2 + x1**2 + x0*x1 + x0 + x1 bounds = [(0.0, None),(0.0, None)] # with penalty='penalty' applied, solution is: xs = [0.25, 0.75] ys = 1.875 from mystic.math.measures import normalize def constraint(x): # impose exactly return normalize(x, 1.0) if __name__ == '__main__': from mystic.solvers import diffev2, fmin_powell result = diffev2(objective, x0=bounds, bounds=bounds, npop=40, constraints=constraint, disp=False, full_output=True) print(result[0])
solutions.ipynb
mmckerns/tutmom
bsd-3-clause
EXERCISE: Convert one of our previous mystic examples to use parallel computing. Note that if the solver has a SetMapper method, it can take a parallel map.
from mystic.termination import VTR, ChangeOverGeneration, And, Or stop = Or(And(VTR(), ChangeOverGeneration()), VTR(1e-8)) from mystic.models import rosen from mystic.monitors import VerboseMonitor from mystic.solvers import DifferentialEvolutionSolver2 from pathos.pools import ThreadPool if __name__ == '__main__': solver = DifferentialEvolutionSolver2(3,40) solver.SetRandomInitialPoints([-10,-10,-10],[10,10,10]) solver.SetGenerationMonitor(VerboseMonitor(10)) solver.SetMapper(ThreadPool().map) #NOTE: evaluation of objective in parallel solver.SetTermination(stop) solver.SetObjective(rosen) solver.SetStrictRanges([-10,-10,-10],[10,10,10]) solver.SetEvaluationLimits(generations=600) solver.Solve() print(solver.bestSolution)
solutions.ipynb
mmckerns/tutmom
bsd-3-clause
Rabi Oscillations $\hat{H} = \hat{H}_0 + \Omega \sin((\omega_0+\Delta)t) \hat{\sigma}_x$ $\hat{H}_0 = \frac{\omega_0}{2}\hat{\sigma}_z$
initial_state = basis(2, 0) initial_state ω0 = 1 Δ = 0.002 Ω = 0.005 ts = 6*np.pi/Ω*np.linspace(0,1,120) H = ω0/2 * sigmaz() + Ω * sigmax() * sin((ω0+Δ)*t) H res = mesolve(H, [], initial_state, ts) σz_expect = expect(sigmaz(), res) res[20] plt.plot(ts*Ω/np.pi, σz_expect, 'r.', label='numerical result') Ωp = (Ω**2+Δ**2)**0.5 plt.plot(ts*Ω/np.pi, 1-(Ω/Ωp)**2*2*np.sin(Ωp*ts/2)**2, 'b-', label=r'$1-2(\Omega^\prime/\Omega)^2\sin^2(\Omega^\prime t/2)$') plt.title(r'$\langle\sigma_z\rangle$-vs-$t\Omega/\pi$ at ' r'$\Delta/\Omega=%.2f$, $\omega_0/\Omega=%.2f$'%(Δ/Ω, ω0/Ω)) plt.ylim(-1,1) plt.legend(loc=3);
examples/Lindblad_Master_Equation_Solver_Examples.ipynb
Krastanov/cutiepy
bsd-3-clause
With Rotating Wave Approximation $\hat{H}^\prime = e^{i\hat{H}_0 t}\hat{H} e^{-i\hat{H}_0 t} \approx \frac{\Delta}{2} \hat{\sigma}_z + \frac{\Omega}{2} \hat{\sigma}_x$
Hp = Δ/2 * sigmaz() + Ω/2 * sigmax() Hp res = mesolve(Hp, [], initial_state, ts) σz_expect = expect(sigmaz(), res) plt.plot(ts*Ω/np.pi, σz_expect, 'r.', label='numerical result') Ωp = (Ω**2+Δ**2)**0.5 plt.plot(ts*Ω/np.pi, 1-(Ω/Ωp)**2*2*np.sin(Ωp*ts/2)**2, 'b-', label=r'$1-2(\Omega^\prime/\Omega)^2\sin^2(\Omega^\prime t/2)$') plt.title(r'$\langle\sigma_z\rangle$-vs-$t\Omega/\pi$ at ' r'$\Delta/\Omega=%.2f$ in RWA'%(Δ/Ω)) plt.ylim(-1,1) plt.legend(loc=3);
examples/Lindblad_Master_Equation_Solver_Examples.ipynb
Krastanov/cutiepy
bsd-3-clause
With $\gamma_1$ collapse
γ1 = 0.2*Ω c1 = γ1**0.5 * sigmam() c1 res = mesolve(Hp, [c1], initial_state, ts) σz_expect = expect(sigmaz(), res) plt.plot(ts*Ω/np.pi, σz_expect, 'r.', label='numerical result') plt.ylim(-1,1) plt.title(r'$\langle\sigma_z\rangle$-vs-$t\Omega/\pi$ at ' r'$\Delta/\Omega=%.2f$ in RWA'%(Δ/Ω) + '\n' + r'with $\gamma_1 \hat{\sigma}_-$ at $\gamma_1=0.2\Omega$') plt.hlines(0,0,ts[-1]*Ω/np.pi) plt.legend(loc=3);
examples/Lindblad_Master_Equation_Solver_Examples.ipynb
Krastanov/cutiepy
bsd-3-clause
With $\gamma_2$ collapse
γ2 = 0.2*Ω c2 = γ2**0.5 * sigmaz() c2 res = mesolve(Hp, [c2], initial_state, ts) σz_expect = expect(sigmaz(), res) plt.plot(ts*Ω/np.pi, σz_expect, 'r.', label='numerical result') plt.ylim(-1,1) plt.title(r'$\langle\sigma_z\rangle$-vs-$t\Omega/\pi$ at ' r'$\Delta/\Omega=%.2f$ in RWA'%(Δ/Ω) + '\n' + r'with $\gamma_2 \hat{\sigma}_z$ at $\gamma_2=0.2\Omega$') plt.hlines(0,0,ts[-1]*Ω/np.pi) plt.legend(loc=3);
examples/Lindblad_Master_Equation_Solver_Examples.ipynb
Krastanov/cutiepy
bsd-3-clause
Coherent State in a Harmonic Oscillator $|\alpha\rangle$ evolving under $\hat{H} = \hat{n}$ coupled to a zero temperature heat bath $\kappa = 0.5$
N_cutoff = 40 α = 2.5 initial_state = coherent(N_cutoff, α) initial_state H = num(N_cutoff) H κ = 0.5 n_th = 0 c_down = (κ * (1 + n_th))**2 * destroy(N_cutoff) c_down ts = 2*np.pi*np.linspace(0,1,41) res = mesolve(H, [c_down], initial_state, ts) a = destroy(N_cutoff) a_expect = expect(a, res, keep_complex=True) plt.figure(figsize=(4,4)) plt.plot(np.real(a_expect), np.imag(a_expect), 'b-') for t, alpha in list(zip(ts,a_expect))[:40:4]: plt.plot(np.real(alpha), np.imag(alpha), 'r.') plt.text(np.real(alpha), np.imag(alpha), r'$t=%.1f\pi$'%(t/np.pi), fontsize=14) plt.title(r'$\langle\hat{a}\rangle$-vs-$t$') plt.ylabel(r'$\mathcal{I}(\alpha)$') plt.xlabel(r'$\mathcal{R}(\alpha)$') l = abs(a_expect[0]) plt.xlim(-l,l) plt.ylim(-l,l);
examples/Lindblad_Master_Equation_Solver_Examples.ipynb
Krastanov/cutiepy
bsd-3-clause
Estimate aggregated features
from datetime import datetime, timedelta from tqdm import tqdm
notebooks/14-KaggleCompetition.ipynb
albahnsen/ML_SecurityInformatics
mit
Split for each account and create the date as index
card_numbers = data['card_number'].unique() data['trx_id'] = data.index data.index = pd.DatetimeIndex(data['date']) data_ = [] for card_number in tqdm(card_numbers): data_.append(data.query('card_number == ' + str(card_number)))
notebooks/14-KaggleCompetition.ipynb
albahnsen/ML_SecurityInformatics
mit
Create Aggregated Features for one account
res_agg = pd.DataFrame(index=data['trx_id'].values, columns=['Trx_sum_7D', 'Trx_count_1D']) trx = data_[0] for i in range(trx.shape[0]): date = trx.index[i] trx_id = int(trx.ix[i, 'trx_id']) # Sum 7 D agg_ = trx[date-pd.datetools.to_offset('7D').delta:date-timedelta(0,0,1)] res_agg.loc[trx_id, 'Trx_sum_7D'] = agg_['amount'].sum() # Count 1D agg_ = trx[date-pd.datetools.to_offset('1D').delta:date-timedelta(0,0,1)] res_agg.loc[trx_id, 'Trx_count_1D'] = agg_['amount'].shape[0] res_agg.mean()
notebooks/14-KaggleCompetition.ipynb
albahnsen/ML_SecurityInformatics
mit
All accounts
for trx in tqdm(data_): for i in range(trx.shape[0]): date = trx.index[i] trx_id = int(trx.ix[i, 'trx_id']) # Sum 7 D agg_ = trx[date-pd.datetools.to_offset('7D').delta:date-timedelta(0,0,1)] res_agg.loc[trx_id, 'Trx_sum_7D'] = agg_['amount'].sum() # Count 1D agg_ = trx[date-pd.datetools.to_offset('1D').delta:date-timedelta(0,0,1)] res_agg.loc[trx_id, 'Trx_count_1D'] = agg_['amount'].shape[0] res_agg.head() data.index = data.trx_id data = data.join(res_agg) data.sample(15, random_state=42).sort_index()
notebooks/14-KaggleCompetition.ipynb
albahnsen/ML_SecurityInformatics
mit
Split train and test
X = data.loc[~data.fraud.isnull()] y = X.fraud X = X.drop(['fraud', 'date', 'card_number'], axis=1) X_kaggle = data.loc[data.fraud.isnull()] X_kaggle = X_kaggle.drop(['fraud', 'date', 'card_number'], axis=1) X_kaggle.head()
notebooks/14-KaggleCompetition.ipynb
albahnsen/ML_SecurityInformatics
mit
Simple Random Forest
from sklearn.ensemble import RandomForestClassifier clf = RandomForestClassifier(n_estimators=100, n_jobs=-1, class_weight='balanced') from sklearn.metrics import fbeta_score
notebooks/14-KaggleCompetition.ipynb
albahnsen/ML_SecurityInformatics
mit
KFold cross-validation
from sklearn.cross_validation import KFold kf = KFold(X.shape[0], n_folds=5) res = [] for train, test in kf: X_train, X_test, y_train, y_test = X.iloc[train], X.iloc[test], y.iloc[train], y.iloc[test] clf.fit(X_train, y_train) y_pred_proba = clf.predict_proba(X_test)[:, 1] y_pred = (y_pred_proba>0.05).astype(int) res.append(fbeta_score(y_test, y_pred, beta=2)) pd.Series(res).describe()
notebooks/14-KaggleCompetition.ipynb
albahnsen/ML_SecurityInformatics
mit
Train with all Predict and send to Kaggle
clf.fit(X, y) y_pred = clf.predict_proba(X_kaggle)[:, 1] y_pred = (y_pred>0.05).astype(int) y_pred = pd.Series(y_pred,name='fraud', index=X_kaggle.index) y_pred.head(10) y_pred.to_csv('fraud_transactions_kaggle_1.csv', header=True, index_label='ID')
notebooks/14-KaggleCompetition.ipynb
albahnsen/ML_SecurityInformatics
mit
Vertex AI Pipelines: AutoML text classification pipelines using google-cloud-pipeline-components <table align="left"> <td> <a href="https://colab.research.google.com/github/GoogleCloudPlatform/vertex-ai-samples/blob/master/notebooks/official/pipelines/google_cloud_pipeline_components_automl_text.ipynb"> <img src="https://cloud.google.com/ml-engine/images/colab-logo-32px.png" alt="Colab logo"> Run in Colab </a> </td> <td> <a href="https://github.com/GoogleCloudPlatform/vertex-ai-samples/blob/master/notebooks/official/pipelines/google_cloud_pipeline_components_automl_text.ipynb"> <img src="https://cloud.google.com/ml-engine/images/github-logo-32px.png" alt="GitHub logo"> View on GitHub </a> </td> <td> <a href="https://console.cloud.google.com/vertex-ai/notebooks/deploy-notebook?download_url=https://github.com/GoogleCloudPlatform/vertex-ai-samples/blob/master/notebooks/official/pipelines/google_cloud_pipeline_components_automl_text.ipynb"> Open in Vertex AI Workbench </a> </td> </table> <br/><br/><br/> Overview This notebook shows how to use the components defined in google_cloud_pipeline_components to build an AutoML text classification workflow on Vertex AI Pipelines. Dataset The dataset used for this tutorial is the Happy Moments dataset from Kaggle Datasets. The version of the dataset you will use in this tutorial is stored in a public Cloud Storage bucket. Objective In this tutorial, you create an AutoML text classification using a pipeline with components from google_cloud_pipeline_components. The steps performed include: Create a Dataset resource. Train an AutoML Model resource. Creates an Endpoint resource. Deploys the Model resource to the Endpoint resource. The components are documented here. Costs This tutorial uses billable components of Google Cloud: Vertex AI Cloud Storage Learn about Vertex AI pricing and Cloud Storage pricing, and use the Pricing Calculator to generate a cost estimate based on your projected usage. Set up your local development environment If you are using Colab or Google Cloud Notebook, your environment already meets all the requirements to run this notebook. You can skip this step. Otherwise, make sure your environment meets this notebook's requirements. You need the following: The Cloud Storage SDK Git Python 3 virtualenv Jupyter notebook running in a virtual environment with Python 3 The Cloud Storage guide to Setting up a Python development environment and the Jupyter installation guide provide detailed instructions for meeting these requirements. The following steps provide a condensed set of instructions: Install and initialize the SDK. Install Python 3. Install virtualenv and create a virtual environment that uses Python 3. Activate that environment and run pip3 install Jupyter in a terminal shell to install Jupyter. Run jupyter notebook on the command line in a terminal shell to launch Jupyter. Open this notebook in the Jupyter Notebook Dashboard. Installation Install the latest version of Vertex AI SDK for Python.
import os # Google Cloud Notebook if os.path.exists("/opt/deeplearning/metadata/env_version"): USER_FLAG = "--user" else: USER_FLAG = "" ! pip3 install --upgrade google-cloud-aiplatform $USER_FLAG
notebooks/official/pipelines/google_cloud_pipeline_components_automl_text.ipynb
GoogleCloudPlatform/vertex-ai-samples
apache-2.0
Install the latest GA version of google-cloud-storage library as well.
! pip3 install -U google-cloud-storage $USER_FLAG
notebooks/official/pipelines/google_cloud_pipeline_components_automl_text.ipynb
GoogleCloudPlatform/vertex-ai-samples
apache-2.0
Install the latest GA version of google-cloud-pipeline-components library as well.
! pip3 install $USER kfp google-cloud-pipeline-components --upgrade
notebooks/official/pipelines/google_cloud_pipeline_components_automl_text.ipynb
GoogleCloudPlatform/vertex-ai-samples
apache-2.0
Check the versions of the packages you installed. The KFP SDK version should be >=1.6.
! python3 -c "import kfp; print('KFP SDK version: {}'.format(kfp.__version__))" ! python3 -c "import google_cloud_pipeline_components; print('google_cloud_pipeline_components version: {}'.format(google_cloud_pipeline_components.__version__))"
notebooks/official/pipelines/google_cloud_pipeline_components_automl_text.ipynb
GoogleCloudPlatform/vertex-ai-samples
apache-2.0
Before you begin GPU runtime This tutorial does not require a GPU runtime. Set up your Google Cloud project The following steps are required, regardless of your notebook environment. Select or create a Google Cloud project. When you first create an account, you get a $300 free credit towards your compute/storage costs. Make sure that billing is enabled for your project. Enable the Vertex AI APIs, Compute Engine APIs, and Cloud Storage. The Google Cloud SDK is already installed in Google Cloud Notebook. Enter your project ID in the cell below. Then run the cell to make sure the Cloud SDK uses the right project for all the commands in this notebook. Note: Jupyter runs lines prefixed with ! as shell commands, and it interpolates Python variables prefixed with $.
PROJECT_ID = "[your-project-id]" # @param {type:"string"} if PROJECT_ID == "" or PROJECT_ID is None or PROJECT_ID == "[your-project-id]": # Get your GCP project id from gcloud shell_output = ! gcloud config list --format 'value(core.project)' 2>/dev/null PROJECT_ID = shell_output[0] print("Project ID:", PROJECT_ID) ! gcloud config set project $PROJECT_ID
notebooks/official/pipelines/google_cloud_pipeline_components_automl_text.ipynb
GoogleCloudPlatform/vertex-ai-samples
apache-2.0
Authenticate your Google Cloud account If you are using Google Cloud Notebook, your environment is already authenticated. Skip this step. If you are using Colab, run the cell below and follow the instructions when prompted to authenticate your account via oAuth. Otherwise, follow these steps: In the Cloud Console, go to the Create service account key page. Click Create service account. In the Service account name field, enter a name, and click Create. In the Grant this service account access to project section, click the Role drop-down list. Type "Vertex" into the filter box, and select Vertex Administrator. Type "Storage Object Admin" into the filter box, and select Storage Object Admin. Click Create. A JSON file that contains your key downloads to your local environment. Enter the path to your service account key as the GOOGLE_APPLICATION_CREDENTIALS variable in the cell below and run the cell.
# If you are running this notebook in Colab, run this cell and follow the # instructions to authenticate your GCP account. This provides access to your # Cloud Storage bucket and lets you submit training jobs and prediction # requests. import os import sys # If on Google Cloud Notebook, then don't execute this code if not os.path.exists("/opt/deeplearning/metadata/env_version"): if "google.colab" in sys.modules: from google.colab import auth as google_auth google_auth.authenticate_user() # If you are running this notebook locally, replace the string below with the # path to your service account key and run this cell to authenticate your GCP # account. elif not os.getenv("IS_TESTING"): %env GOOGLE_APPLICATION_CREDENTIALS ''
notebooks/official/pipelines/google_cloud_pipeline_components_automl_text.ipynb
GoogleCloudPlatform/vertex-ai-samples
apache-2.0
Create a Cloud Storage bucket The following steps are required, regardless of your notebook environment. When you initialize the Vertex AI SDK for Python, you specify a Cloud Storage staging bucket. The staging bucket is where all the data associated with your dataset and model resources are retained across sessions. Set the name of your Cloud Storage bucket below. Bucket names must be globally unique across all Google Cloud projects, including those outside of your organization.
BUCKET_NAME = "gs://[your-bucket-name]" # @param {type:"string"} if BUCKET_NAME == "" or BUCKET_NAME is None or BUCKET_NAME == "gs://[your-bucket-name]": BUCKET_NAME = "gs://" + PROJECT_ID + "aip-" + TIMESTAMP
notebooks/official/pipelines/google_cloud_pipeline_components_automl_text.ipynb
GoogleCloudPlatform/vertex-ai-samples
apache-2.0
Service Account If you don't know your service account, try to get your service account using gcloud command by executing the second cell below.
SERVICE_ACCOUNT = "[your-service-account]" # @param {type:"string"} if ( SERVICE_ACCOUNT == "" or SERVICE_ACCOUNT is None or SERVICE_ACCOUNT == "[your-service-account]" ): # Get your GCP project id from gcloud shell_output = !gcloud auth list 2>/dev/null SERVICE_ACCOUNT = shell_output[2].strip() print("Service Account:", SERVICE_ACCOUNT)
notebooks/official/pipelines/google_cloud_pipeline_components_automl_text.ipynb
GoogleCloudPlatform/vertex-ai-samples
apache-2.0
Set service account access for Vertex AI Pipelines Run the following commands to grant your service account access to read and write pipeline artifacts in the bucket that you created in the previous step -- you only need to run these once per service account.
! gsutil iam ch serviceAccount:{SERVICE_ACCOUNT}:roles/storage.objectCreator $BUCKET_NAME ! gsutil iam ch serviceAccount:{SERVICE_ACCOUNT}:roles/storage.objectViewer $BUCKET_NAME
notebooks/official/pipelines/google_cloud_pipeline_components_automl_text.ipynb
GoogleCloudPlatform/vertex-ai-samples
apache-2.0
Vertex AI Pipelines constants Setup up the following constants for Vertex AI Pipelines:
PIPELINE_ROOT = "{}/pipeline_root/happydb".format(BUCKET_NAME)
notebooks/official/pipelines/google_cloud_pipeline_components_automl_text.ipynb
GoogleCloudPlatform/vertex-ai-samples
apache-2.0
Additional imports.
import kfp
notebooks/official/pipelines/google_cloud_pipeline_components_automl_text.ipynb
GoogleCloudPlatform/vertex-ai-samples
apache-2.0
Initialize Vertex AI SDK for Python Initialize the Vertex AI SDK for Python for your project and corresponding bucket.
aip.init(project=PROJECT_ID, staging_bucket=BUCKET_NAME)
notebooks/official/pipelines/google_cloud_pipeline_components_automl_text.ipynb
GoogleCloudPlatform/vertex-ai-samples
apache-2.0
Define AutoML text classification model pipeline that uses components from google_cloud_pipeline_components Next, you define the pipeline. Create and deploy an AutoML text classification Model resource using a Dataset resource.
IMPORT_FILE = "gs://cloud-ml-data/NL-classification/happiness.csv" @kfp.dsl.pipeline(name="automl-text-classification" + TIMESTAMP) def pipeline( project: str = PROJECT_ID, region: str = REGION, import_file: str = IMPORT_FILE ): from google_cloud_pipeline_components import aiplatform as gcc_aip from google_cloud_pipeline_components.v1.endpoint import (EndpointCreateOp, ModelDeployOp) dataset_create_task = gcc_aip.TextDatasetCreateOp( display_name="train-automl-happydb", gcs_source=import_file, import_schema_uri=aip.schema.dataset.ioformat.text.multi_label_classification, project=project, ) training_run_task = gcc_aip.AutoMLTextTrainingJobRunOp( dataset=dataset_create_task.outputs["dataset"], display_name="train-automl-happydb", prediction_type="classification", multi_label=True, training_fraction_split=0.6, validation_fraction_split=0.2, test_fraction_split=0.2, model_display_name="train-automl-happydb", project=project, ) endpoint_op = EndpointCreateOp( project=project, location=region, display_name="train-automl-flowers", ) ModelDeployOp( model=training_run_task.outputs["model"], endpoint=endpoint_op.outputs["endpoint"], automatic_resources_min_replica_count=1, automatic_resources_max_replica_count=1, )
notebooks/official/pipelines/google_cloud_pipeline_components_automl_text.ipynb
GoogleCloudPlatform/vertex-ai-samples
apache-2.0
Compile the pipeline Next, compile the pipeline.
from kfp.v2 import compiler # noqa: F811 compiler.Compiler().compile( pipeline_func=pipeline, package_path="text classification_pipeline.json".replace(" ", "_"), )
notebooks/official/pipelines/google_cloud_pipeline_components_automl_text.ipynb
GoogleCloudPlatform/vertex-ai-samples
apache-2.0
Run the pipeline Next, run the pipeline.
DISPLAY_NAME = "happydb_" + TIMESTAMP job = aip.PipelineJob( display_name=DISPLAY_NAME, template_path="text classification_pipeline.json".replace(" ", "_"), pipeline_root=PIPELINE_ROOT, enable_caching=False, ) job.run() ! rm text_classification_pipeline.json
notebooks/official/pipelines/google_cloud_pipeline_components_automl_text.ipynb
GoogleCloudPlatform/vertex-ai-samples
apache-2.0
Click on the generated link to see your run in the Cloud Console. <!-- It should look something like this as it is running: <a href="https://storage.googleapis.com/amy-jo/images/mp/automl_tabular_classif.png" target="_blank"><img src="https://storage.googleapis.com/amy-jo/images/mp/automl_tabular_classif.png" width="40%"/></a> --> In the UI, many of the pipeline DAG nodes will expand or collapse when you click on them. Here is a partially-expanded view of the DAG (click image to see larger version). <a href="https://storage.googleapis.com/amy-jo/images/mp/automl_text_classif.png" target="_blank"><img src="https://storage.googleapis.com/amy-jo/images/mp/automl_text_classif.png" width="40%"/></a> Cleaning up To clean up all Google Cloud resources used in this project, you can delete the Google Cloud project you used for the tutorial. Otherwise, you can delete the individual resources you created in this tutorial -- Note: this is auto-generated and not all resources may be applicable for this tutorial: Dataset Pipeline Model Endpoint Batch Job Custom Job Hyperparameter Tuning Job Cloud Storage Bucket
delete_dataset = True delete_pipeline = True delete_model = True delete_endpoint = True delete_batchjob = True delete_customjob = True delete_hptjob = True delete_bucket = True try: if delete_model and "DISPLAY_NAME" in globals(): models = aip.Model.list( filter=f"display_name={DISPLAY_NAME}", order_by="create_time" ) model = models[0] aip.Model.delete(model) print("Deleted model:", model) except Exception as e: print(e) try: if delete_endpoint and "DISPLAY_NAME" in globals(): endpoints = aip.Endpoint.list( filter=f"display_name={DISPLAY_NAME}_endpoint", order_by="create_time" ) endpoint = endpoints[0] endpoint.undeploy_all() aip.Endpoint.delete(endpoint.resource_name) print("Deleted endpoint:", endpoint) except Exception as e: print(e) if delete_dataset and "DISPLAY_NAME" in globals(): if "text" == "tabular": try: datasets = aip.TabularDataset.list( filter=f"display_name={DISPLAY_NAME}", order_by="create_time" ) dataset = datasets[0] aip.TabularDataset.delete(dataset.resource_name) print("Deleted dataset:", dataset) except Exception as e: print(e) if "text" == "image": try: datasets = aip.ImageDataset.list( filter=f"display_name={DISPLAY_NAME}", order_by="create_time" ) dataset = datasets[0] aip.ImageDataset.delete(dataset.resource_name) print("Deleted dataset:", dataset) except Exception as e: print(e) if "text" == "text": try: datasets = aip.TextDataset.list( filter=f"display_name={DISPLAY_NAME}", order_by="create_time" ) dataset = datasets[0] aip.TextDataset.delete(dataset.resource_name) print("Deleted dataset:", dataset) except Exception as e: print(e) if "text" == "video": try: datasets = aip.VideoDataset.list( filter=f"display_name={DISPLAY_NAME}", order_by="create_time" ) dataset = datasets[0] aip.VideoDataset.delete(dataset.resource_name) print("Deleted dataset:", dataset) except Exception as e: print(e) try: if delete_pipeline and "DISPLAY_NAME" in globals(): pipelines = aip.PipelineJob.list( filter=f"display_name={DISPLAY_NAME}", order_by="create_time" ) pipeline = pipelines[0] aip.PipelineJob.delete(pipeline.resource_name) print("Deleted pipeline:", pipeline) except Exception as e: print(e) if delete_bucket and "BUCKET_NAME" in globals(): ! gsutil rm -r $BUCKET_NAME
notebooks/official/pipelines/google_cloud_pipeline_components_automl_text.ipynb
GoogleCloudPlatform/vertex-ai-samples
apache-2.0
K-fold CV K-fold CV(cross-validation) 방법은 데이터 셋을 K개의 sub-set로 분리하는 방법이다. 분리된 K개의 sub-set 중 하나만 제외한 K-1개의 sub-sets를 training set으로 이용하여 K개의 모형 추정한다. <img src="https://docs.google.com/drawings/d/1JdgUDzuE75LBxqT5sKOhlPgP6umEkvD3Sm-gKnu-jqA/pub?w=762&h=651" style="margin: 0 auto 0 auto;"> Scikit-Learn 의 cross_validation 서브 패키지는 K-Fold를 위한 KFold 클래스를 제공한다.
N = 5 X = np.arange(8 * N).reshape(-1, 2) * 10 y = np.hstack([np.ones(N), np.ones(N) * 2, np.ones(N) * 3, np.ones(N) * 4]) print("X:\n", X, sep="") print("y:\n", y, sep="") from sklearn.cross_validation import KFold cv = KFold(len(X), n_folds=3, random_state=0) for train_index, test_index in cv: print("test y:", y[test_index]) print("." * 80 ) print("train y:", y[train_index]) print("=" * 80 )
16. 과최적화와 정규화/02. 교차 검증.ipynb
zzsza/Datascience_School
mit
Stratified K-Fold target class가 어느 한 data set에 몰리지 않도록 한다
from sklearn.cross_validation import StratifiedKFold cv = StratifiedKFold(y, n_folds=3, random_state=0) for train_index, test_index in cv: print("test X:\n", X[test_index]) print("." * 80 ) print("test y:", y[test_index]) print("=" * 80 )
16. 과최적화와 정규화/02. 교차 검증.ipynb
zzsza/Datascience_School
mit
Leave-One-Out (LOO) 하나의 sample만을 test set으로 남긴다.
from sklearn.cross_validation import LeaveOneOut cv = LeaveOneOut(5) for train_index, test_index in cv: print("test X:", X[test_index]) print("." * 80 ) print("test y:", y[test_index]) print("=" * 80 )
16. 과최적화와 정규화/02. 교차 검증.ipynb
zzsza/Datascience_School
mit
Label K-Fold 같은 label이 test와 train에 동시에 들어가지 않게 조절 label에 의한 영향을 최소화
from sklearn.cross_validation import LabelKFold cv = LabelKFold(y, n_folds=3) for train_index, test_index in cv: print("test y:", y[test_index]) print("." * 80 ) print("train y:", y[train_index]) print("=" * 80 )
16. 과최적화와 정규화/02. 교차 검증.ipynb
zzsza/Datascience_School
mit
ShuffleSplit 중복된 데이터를 허용
from sklearn.cross_validation import ShuffleSplit cv = ShuffleSplit(5) for train_index, test_index in cv: print("test X:", X[test_index]) print("=" * 20 )
16. 과최적화와 정규화/02. 교차 검증.ipynb
zzsza/Datascience_School
mit
교차 평가 시행 CV는 단순히 데이터 셋을 나누는 역할을 수행할 뿐이다. 실제로 모형의 성능(편향 오차 및 분산)을 구하려면 이렇게 나누어진 데이터셋을 사용하여 평가를 반복하여야 한다. 이 과정을 자동화하는 명령이 cross_val_score() 이다. cross_val_score(estimator, X, y=None, scoring=None, cv=None) cross validation iterator cv를 이용하여 X, y data 를 분할하고 estimator에 넣어서 scoring metric을 구하는 과정을 반복 인수 estimator : ‘fit’메서드가 제공되는 모형 X : 배열 독립 변수 데이터 y : 배열 종속 변수 데이터 scoring : 문자열 성능 검증에 사용할 함수 cv : Cross Validator None 이면 디폴트인 3-폴드 CV 숫자 K 이면 K-폴드 CV Cross Validator 클래스 객체 반환값 scores 계산된 성능 값의 리스트
from sklearn.datasets import make_regression from sklearn.linear_model import LinearRegression from sklearn.metrics import mean_squared_error X, y, coef = make_regression(n_samples=1000, n_features=1, noise=20, coef=True, random_state=0) model = LinearRegression() cv = KFold(1000, 10) scores = np.zeros(10) for i, (train_index, test_index) in enumerate(cv): X_train = X[train_index] y_train = y[train_index] X_test = X[test_index] y_test = y[test_index] model.fit(X_train, y_train) y_pred = model.predict(X_test) scores[i] = mean_squared_error(y_test, y_pred) scores from sklearn.cross_validation import cross_val_score cross_val_score(model, X, y, "mean_squared_error", cv)
16. 과최적화와 정규화/02. 교차 검증.ipynb
zzsza/Datascience_School
mit
Camera Calibration with OpenCV Run the code in the cell below to extract object points and image points for camera calibration.
import numpy as np import cv2 import glob import matplotlib.pyplot as plt %matplotlib qt # prepare object points, like (0,0,0), (1,0,0), (2,0,0) ....,(6,5,0) objp = np.zeros((6*8,3), np.float32) objp[:,:2] = np.mgrid[0:8, 0:6].T.reshape(-1,2) # Arrays to store object points and image points from all the images. objpoints = [] # 3d points in real world space imgpoints = [] # 2d points in image plane. # Make a list of calibration images images = glob.glob('calibration_wide/GO*.jpg') # Step through the list and search for chessboard corners for idx, fname in enumerate(images): img = cv2.imread(fname) gray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY) # Find the chessboard corners ret, corners = cv2.findChessboardCorners(gray, (8,6), None) # If found, add object points, image points if ret == True: objpoints.append(objp) imgpoints.append(corners) # Draw and display the corners cv2.drawChessboardCorners(img, (8,6), corners, ret) #write_name = 'corners_found'+str(idx)+'.jpg' #cv2.imwrite(write_name, img) cv2.imshow('img', img) cv2.waitKey(500) cv2.destroyAllWindows()
CarND-Camera-Calibration/camera_calibration.ipynb
phuongxuanpham/SelfDrivingCar
gpl-3.0
IO: Reading and preprocess the data We can define a function which will read the data and process them.
def read_spectra(path_csv): """Read and parse data in pandas DataFrames. Parameters ---------- path_csv : str Path to the CSV file to read. Returns ------- spectra : pandas DataFrame, shape (n_spectra, n_freq_point) DataFrame containing all Raman spectra. concentration : pandas Series, shape (n_spectra,) Series containing the concentration of the molecule. molecule : pandas Series, shape (n_spectra,) Series containing the type of chemotherapeutic agent. """ if not isinstance(path_csv, six.string_types): raise TypeError("'path_csv' needs to be string. Got {}" " instead.".format(type(path_csv))) else: if not path_csv.endswith('.csv'): raise ValueError('Wrong file format. Expecting csv file') data = pd.read_csv(path_csv) concentration = data['concentration'] molecule = data['molecule'] spectra_string = data['spectra'] spectra = [] for spec in spectra_string: # remove the first and last bracket and convert to a numpy array spectra.append(np.fromstring(spec[1:-1], sep=',')) spectra = pd.DataFrame(spectra) return spectra, concentration, molecule # read the frequency and get a pandas serie frequency = pd.read_csv('data/freq.csv')['freqs'] # read all data for training filenames = ['data/spectra_{}.csv'.format(i) for i in range(4)] spectra, concentration, molecule = [], [], [] for filename in filenames: spectra_file, concentration_file, molecule_file = read_spectra(filename) spectra.append(spectra_file) concentration.append(concentration_file) molecule.append(molecule_file) # Concatenate in single DataFrame and Serie spectra = pd.concat(spectra) concentration = pd.concat(concentration) molecule = pd.concat(molecule)
Day_2_Software_engineering_best_practices/solutions/03_code_style.ipynb
paris-saclay-cds/python-workshop
bsd-3-clause
Plot helper functions We can create two functions: (i) to plot all spectra and (ii) plot the mean spectra with the std intervals. We will make a "private" function which will be used by both plot types.
def _apply_axis_layout(ax, title): """Apply despine style and add labels to axis.""" ax.set_xlabel('Frequency') ax.set_ylabel('Intensity') ax.set_title(title) ax.spines['top'].set_visible(False) ax.spines['right'].set_visible(False) ax.get_xaxis().tick_bottom() ax.get_yaxis().tick_left() ax.spines['left'].set_position(('outward', 10)) ax.spines['bottom'].set_position(('outward', 10)) def plot_spectra(frequency, spectra, title=''): """Plot a bunch of Raman spectra. Parameters ---------- frequency : pandas Series, shape (n_freq_points,) Frequencies for which the Raman spectra were acquired. spectra : pandas DataFrame, shape (n_spectra, n_freq_points) DataFrame containing all Raman spectra. title : str Title added to the plot. Returns ------- None """ fig, ax = plt.subplots() ax.plot(frequency, spectra.T) _apply_axis_layout(ax, title) return fig, ax def plot_spectra_by_type(frequency, spectra, classes, title=''): """Plot mean spectrum with its variance for a given class. Parameters ---------- frequency : pandas Series, shape (n_freq_points,) Frequencies for which the Raman spectra were acquired. spectra : pandas DataFrame, shape (n_spectra, n_freq_points) DataFrame containing all Raman spectra. classes : array-like, shape (n_classes,) Array contining the different spectra class which will be plotted. title : str Title added to the plot. Returns ------- None """ fig, ax = plt.subplots() for label in np.unique(classes): label_index = np.flatnonzero(classes == label) spectra_mean = np.mean(spectra.iloc[label_index], axis=0) spectra_std = np.std(spectra.iloc[label_index], axis=0) ax.plot(frequency, spectra_mean, label=label) ax.fill_between(frequency, spectra_mean + spectra_std, spectra_mean - spectra_std, alpha=0.2) _apply_axis_layout(ax, title) ax.legend(loc='center left', bbox_to_anchor=(1, 0.5)) return fig, ax fig, ax = plot_spectra(frequency, spectra, 'All training spectra') fig, ax = plot_spectra_by_type(frequency, spectra, molecule) ax.set_title('Mean spectra in function of the molecules') fig, ax = plot_spectra_by_type(frequency, spectra, concentration, 'Mean spectra in function of the concentrations')
Day_2_Software_engineering_best_practices/solutions/03_code_style.ipynb
paris-saclay-cds/python-workshop
bsd-3-clause
Reusability for new data:
spectra_test, concentration_test, molecule_test = read_spectra('data/spectra_4.csv') plot_spectra(frequency, spectra_test, 'All training spectra') plot_spectra_by_type(frequency, spectra_test, molecule_test, 'Mean spectra in function of the molecules') plot_spectra_by_type(frequency, spectra_test, concentration_test, 'Mean spectra in function of the concentrations');
Day_2_Software_engineering_best_practices/solutions/03_code_style.ipynb
paris-saclay-cds/python-workshop
bsd-3-clause
Training and testing a machine learning model for classification
def plot_cm(cm, classes, title): """Plot a confusion matrix. Parameters ---------- cm : ndarray, shape (n_classes, n_classes) Confusion matrix. classes : array-like, shape (n_classes,) Array contining the different spectra classes used in the classification problem. title : str Title added to the plot. Returns ------- None """ fig, ax = plt.subplots() plt.imshow(cm, interpolation='nearest', cmap='bwr') plt.title(title) plt.colorbar() tick_marks = np.arange(len(classes)) plt.xticks(tick_marks, classes, rotation=45) plt.yticks(tick_marks, classes) fmt = 'd' thresh = cm.max() / 2. for i, j in itertools.product(range(cm.shape[0]), range(cm.shape[1])): plt.text(j, i, format(cm[i, j], fmt), horizontalalignment="center", color="white" if cm[i, j] > thresh else "black") plt.tight_layout() plt.ylabel('True label') plt.xlabel('Predicted label') return fig, ax for clf in [RandomForestClassifier(random_state=0), LinearSVC(random_state=0)]: pipeline = make_pipeline(StandardScaler(), PCA(n_components=100, random_state=0), clf) y_pred = pipeline.fit(spectra, molecule).predict(spectra_test) plot_cm(confusion_matrix(molecule_test, y_pred), pipeline.classes_, 'Confusion matrix using {}'.format(clf.__class__.__name__)) print('Accuracy score: {0:.2f}'.format(pipeline.score(spectra_test, molecule_test)))
Day_2_Software_engineering_best_practices/solutions/03_code_style.ipynb
paris-saclay-cds/python-workshop
bsd-3-clause
Training and testing a machine learning model for regression
def plot_regression(y_true, y_pred, title): """Plot actual vs. predicted scatter plot. Parameters ---------- y_true : array-like, shape (n_samples,) Ground truth (correct) target values. y_pred : array-like, shape (n_samples,) Estimated targets as returned by a regressor. title : str Title added to the plot. Returns ------- None """ fig, ax = plt.subplots() ax.scatter(y_true, y_pred) ax.plot([0, 25000], [0, 25000], '--k') ax.set_ylabel('Target predicted') ax.set_xlabel('True Target') ax.set_title(title) ax.text(1000, 20000, r'$R^2$=%.2f, MAE=%.2f' % ( r2_score(y_true, y_pred), median_absolute_error(y_true, y_pred))) ax.set_xlim([0, 25000]) ax.set_ylim([0, 25000]) return fig, ax def regression_experiment(X_train, X_test, y_train, y_test): """Perform regression experiment. Build a pipeline using PCA and either a Ridge or a RandomForestRegressor model. Parameters ---------- X_train : pandas DataFrame, shape (n_spectra, n_freq_points) DataFrame containing training Raman spectra. X_test : pandas DataFrame, shape (n_spectra, n_freq_points) DataFrame containing testing Raman spectra. y_training : pandas Serie, shape (n_spectra,) Serie containing the training concentrations acting as targets. y_testing : pandas Serie, shape (n_spectra,) Serie containing the testing concentrations acting as targets. Returns ------- None """ for reg in [RidgeCV(), RandomForestRegressor(random_state=0)]: pipeline = make_pipeline(PCA(n_components=100), reg) y_pred = pipeline.fit(X_train, y_train).predict(X_test) plot_regression(y_test, y_pred, 'Regression using {}'.format(reg.__class__.__name__)) regression_experiment(spectra, spectra_test, concentration, concentration_test) def fit_params(data): """Compute statistics for robustly scale data. Compute the median and the variance, i.e. the difference between the 75th and 25th percentiles. These statistics are used later to scale data. Parameters ---------- data : pandas DataFrame, shape (n_spectra, n_freq_point) DataFrame containing all Raman spectra. Returns ------- median : ndarray, shape (n_freq_point,) Median for each wavelength. variance : ndarray, shape (n_freq_point,) Variance (difference between the 75th and 25th percentiles) for each wavelength. """ median = np.median(data, axis=0) percentile_25 = np.percentile(data, 25, axis=0) percentile_75 = np.percentile(data, 75, axis=0) return median, (percentile_75 - percentile_25) def transform(data, median, var_25_75): """Scale data using robust estimators. Scale the data by subtracting the median and dividing by the variance, i.e. the difference between the 75th and 25th percentiles. Parameters ---------- data : pandas DataFrame, shape (n_spectra, n_freq_point) DataFrame containing all Raman spectra. median : ndarray, shape (n_freq_point,) Median for each wavelength. var_25_75 : ndarray, shape (n_freq_point,) Variance (difference between the 75th and 25th percentiles) for each wavelength. Returns ------- data_scaled : pandas DataFrame, shape (n_spectra, n_freq_point) DataFrame containing all scaled Raman spectra. """ return (data - median) / var_25_75 # compute the statistics on the training data med, var = fit_params(spectra) # transform the training and testing data spectra_scaled = transform(spectra, med, var) spectra_test_scaled = transform(spectra_test, med, var) regression_experiment(spectra_scaled, spectra_test_scaled, concentration, concentration_test)
Day_2_Software_engineering_best_practices/solutions/03_code_style.ipynb
paris-saclay-cds/python-workshop
bsd-3-clause
Exemple d'un Socket client qui envoi des données
msg = b'GET /ETS/media/Prive/logo/ETS-rouge-devise-ecran.jpg HTTP/1.1\r\nHost:etsmtl.ca\r\n\r\n' sock.sendall(msg)
IntroductionIOAsync/IntroductionIOAsync.ipynb
luctrudeau/Teaching
lgpl-3.0
Exemple d'un Socket qui reçoit des données
recvd = b'' while True: data = sock.recv(1024) if not data: break recvd += data sock.shutdown(1) sock.close() response = recvd.split(b'\r\n\r\n', 1) Image(data=response[1])
IntroductionIOAsync/IntroductionIOAsync.ipynb
luctrudeau/Teaching
lgpl-3.0
Quoique les versions de l'interface Socket ont évolué avec les années, surtout sur les plateformes orientées-objet, l'essence de l'interface de 1983 reste très présente dans les implémentations modernes. 2.3.1.5. Making connections connect(s, name, namelen); 2.3.1.6. Sending and receiving data cc = sendto(s, buf, len, flags, to, tolen); msglen = recvfrom(s, buf, len, flags, from, fromlenaddr); Extrait du manuel system de BSD 4.2 [1983] Socket Synchrone Le Socket Berkeley de 1983 est synchrone Ceci implique que lorsqu'une fonction comme connect, sendto, recvfrom... est invoquée, le processus bloque jusqu'à l'obtention de la réponse. Notons la présence dans le même document d'une fonction d'I/O asynchrone. Fail Whale Le Socket synchrone n'est pas efficace en conditions de charge élevée Le déploiement de réseaux haute vitesse combiné à l'explosion de la popularité des réseaux sociaux le démontre bien Les sites de réseau sociaux ne savent pas comment gérer cette impasse. La situation est telle, que les pages d'erreurs de Twitter deviennent célèbres. Le Problème: Lors d'un appel bloquant, le processus et ses ressources sont suspendus. Lorsque la charge augmente, la quantité de ressources suspendue devient ingérable pour le système d'exploitation La Solution: Il ne faut pas bloquer Le Socket Asynchrone Dès 1983, le socket de Berkley offre un mode asynchrones. Cependant, il n'est pas très utilisé, car ils sont beaucoup plus complexes et prône à l'erreur. Le Patron Reactor En 1995, le Patron Reactor est découvert ce patron simplifie grandement l'I/O Asynchrone http://www.dre.vanderbilt.edu/~schmidt/PDF/reactor-siemens.pdf Une influence est du patron Reactor est la fonction Select Select est la fonction asynchrone présentée dans le même document que le Socket Exemple d'un Socket client asynchrone qui se connecte (Avec le Patron Reactor)
import selectors import socket import errno sel = selectors.DefaultSelector() def connector(sock, mask): msg = b'GET /ETS/media/Prive/logo/ETS-rouge-devise-ecran.jpg HTTP/1.1\r\nHost:etsmtl.ca\r\n\r\n' sock.sendall(msg) # Le connector a pour responsabilité # d'instancier un nouveau Handler # et de l'ajouter au Selector h = HTTPHandler() sel.modify(sock, selectors.EVENT_READ, h.handle) class HTTPHandler: recvd = b'' def handle(self, sock, mask): data = sock.recv(1024) if not data: # Le Handler se retire # lorsqu'il a terminé. sel.unregister(sock) response = self.recvd.split(b'\r\n\r\n', 1) display(Image(data=response[1])) else: self.recvd += data
IntroductionIOAsync/IntroductionIOAsync.ipynb
luctrudeau/Teaching
lgpl-3.0
Création d'un Socket Asynchrone
sock = socket.socket(socket.AF_INET, socket.SOCK_STREAM) sock.setblocking(False) try: sock.connect(("etsmtl.ca" , 80)) except socket.error: pass # L'exception est toujours lancé! # C'est normal, l'OS veut nous avertir que # nous ne sommes pas encore connecté
IntroductionIOAsync/IntroductionIOAsync.ipynb
luctrudeau/Teaching
lgpl-3.0
Enregistrement du Connector
# L'application enregistre le Connector sel.register(sock, selectors.EVENT_WRITE, connector) # Le Reactor while len(sel.get_map()): events = sel.select() for key, mask in events: handleEvent = key.data handleEvent(key.fileobj, mask)
IntroductionIOAsync/IntroductionIOAsync.ipynb
luctrudeau/Teaching
lgpl-3.0
Unit Test The following unit test is expected to fail until you solve the challenge.
# %load test_check_balance.py from nose.tools import assert_equal class TestCheckBalance(object): def test_check_balance(self): node = Node(5) insert(node, 3) insert(node, 8) insert(node, 1) insert(node, 4) assert_equal(check_balance(node), True) node = Node(5) insert(node, 3) insert(node, 8) insert(node, 9) insert(node, 10) assert_equal(check_balance(node), False) print('Success: test_check_balance') def main(): test = TestCheckBalance() test.test_check_balance() if __name__ == '__main__': main()
interactive-coding-challenges/graphs_trees/check_balance/check_balance_challenge.ipynb
ThunderShiviah/code_guild
mit
Now that you have imported the library, we will walk you through its different applications. You will start with an example, where we compute for you the loss of one training example. $$loss = \mathcal{L}(\hat{y}, y) = (\hat y^{(i)} - y^{(i)})^2 \tag{1}$$
y_hat = tf.constant(36, name='y_hat') # Define y_hat constant. Set to 36. y = tf.constant(39, name='y') # Define y. Set to 39 loss = tf.Variable((y - y_hat)**2, name='loss') # Create a variable for the loss init = tf.global_variables_initializer() # When init is run later (session.run(init)), # the loss variable will be initialized and ready to be computed with tf.Session() as session: # Create a session and print the output session.run(init) # Initializes the variables print(session.run(loss)) # Prints the loss
deep_learning_ai/Tensorflow+Tutorial+dropout.ipynb
trangel/Data-Science
gpl-3.0
Writing and running programs in TensorFlow has the following steps: Create Tensors (variables) that are not yet executed/evaluated. Write operations between those Tensors. Initialize your Tensors. Create a Session. Run the Session. This will run the operations you'd written above. Therefore, when we created a variable for the loss, we simply defined the loss as a function of other quantities, but did not evaluate its value. To evaluate it, we had to run init=tf.global_variables_initializer(). That initialized the loss variable, and in the last line we were finally able to evaluate the value of loss and print its value. Now let us look at an easy example. Run the cell below:
a = tf.constant(2) b = tf.constant(10) c = tf.multiply(a,b) print(c)
deep_learning_ai/Tensorflow+Tutorial+dropout.ipynb
trangel/Data-Science
gpl-3.0
As expected, you will not see 20! You got a tensor saying that the result is a tensor that does not have the shape attribute, and is of type "int32". All you did was put in the 'computation graph', but you have not run this computation yet. In order to actually multiply the two numbers, you will have to create a session and run it.
sess = tf.Session() print(sess.run(c))
deep_learning_ai/Tensorflow+Tutorial+dropout.ipynb
trangel/Data-Science
gpl-3.0
Great! To summarize, remember to initialize your variables, create a session and run the operations inside the session. Next, you'll also have to know about placeholders. A placeholder is an object whose value you can specify only later. To specify values for a placeholder, you can pass in values by using a "feed dictionary" (feed_dict variable). Below, we created a placeholder for x. This allows us to pass in a number later when we run the session.
# Change the value of x in the feed_dict x = tf.placeholder(tf.int64, name = 'x') print(sess.run(2 * x, feed_dict = {x: 3})) sess.close()
deep_learning_ai/Tensorflow+Tutorial+dropout.ipynb
trangel/Data-Science
gpl-3.0
When you first defined x you did not have to specify a value for it. A placeholder is simply a variable that you will assign data to only later, when running the session. We say that you feed data to these placeholders when running the session. Here's what's happening: When you specify the operations needed for a computation, you are telling TensorFlow how to construct a computation graph. The computation graph can have some placeholders whose values you will specify only later. Finally, when you run the session, you are telling TensorFlow to execute the computation graph. 1.1 - Linear function Lets start this programming exercise by computing the following equation: $Y = WX + b$, where $W$ and $X$ are random matrices and b is a random vector. Exercise: Compute $WX + b$ where $W, X$, and $b$ are drawn from a random normal distribution. W is of shape (4, 3), X is (3,1) and b is (4,1). As an example, here is how you would define a constant X that has shape (3,1): ```python X = tf.constant(np.random.randn(3,1), name = "X") ``` You might find the following functions helpful: - tf.matmul(..., ...) to do a matrix multiplication - tf.add(..., ...) to do an addition - np.random.randn(...) to initialize randomly
# GRADED FUNCTION: linear_function def linear_function(): """ Implements a linear function: Initializes W to be a random tensor of shape (4,3) Initializes X to be a random tensor of shape (3,1) Initializes b to be a random tensor of shape (4,1) Returns: result -- runs the session for Y = WX + b """ np.random.seed(1) ### START CODE HERE ### (4 lines of code) X = tf.constant(np.random.randn(3,1), name = 'X') W = tf.constant(np.random.randn(4,3), name = 'W') b = tf.constant(np.random.randn(4,1), name = 'b') Y = tf.constant(np.random.randn(4,1), name = 'Y') ### END CODE HERE ### # Create the session using tf.Session() and run it with sess.run(...) on the variable you want to calculate ### START CODE HERE ### sess = tf.Session() result = sess.run(tf.add(tf.matmul(W,X),b)) ### END CODE HERE ### # close the session sess.close() return result print( "result = " + str(linear_function()))
deep_learning_ai/Tensorflow+Tutorial+dropout.ipynb
trangel/Data-Science
gpl-3.0
Expected Output : <table> <tr> <td> **result** </td> <td> [[-2.15657382] [ 2.95891446] [-1.08926781] [-0.84538042]] </td> </tr> </table> 1.2 - Computing the sigmoid Great! You just implemented a linear function. Tensorflow offers a variety of commonly used neural network functions like tf.sigmoid and tf.softmax. For this exercise lets compute the sigmoid function of an input. You will do this exercise using a placeholder variable x. When running the session, you should use the feed dictionary to pass in the input z. In this exercise, you will have to (i) create a placeholder x, (ii) define the operations needed to compute the sigmoid using tf.sigmoid, and then (iii) run the session. Exercise : Implement the sigmoid function below. You should use the following: tf.placeholder(tf.float32, name = "...") tf.sigmoid(...) sess.run(..., feed_dict = {x: z}) Note that there are two typical ways to create and use sessions in tensorflow: Method 1: ```python sess = tf.Session() Run the variables initialization (if needed), run the operations result = sess.run(..., feed_dict = {...}) sess.close() # Close the session **Method 2:**python with tf.Session() as sess: # run the variables initialization (if needed), run the operations result = sess.run(..., feed_dict = {...}) # This takes care of closing the session for you :) ```
# GRADED FUNCTION: sigmoid def sigmoid(z): """ Computes the sigmoid of z Arguments: z -- input value, scalar or vector Returns: results -- the sigmoid of z """ ### START CODE HERE ### ( approx. 4 lines of code) # Create a placeholder for x. Name it 'x'. x = tf.placeholder(tf.float32, name='x') # compute sigmoid(x) sigmoid = tf.sigmoid(x) # Create a session, and run it. Please use the method 2 explained above. # You should use a feed_dict to pass z's value to x. with tf.Session() as sess: # Run session and call the output "result" result = sess.run(sigmoid, feed_dict = {x: z}) ### END CODE HERE ### return result print ("sigmoid(0) = " + str(sigmoid(0))) print ("sigmoid(12) = " + str(sigmoid(12)))
deep_learning_ai/Tensorflow+Tutorial+dropout.ipynb
trangel/Data-Science
gpl-3.0
Expected Output : <table> <tr> <td> **sigmoid(0)** </td> <td> 0.5 </td> </tr> <tr> <td> **sigmoid(12)** </td> <td> 0.999994 </td> </tr> </table> <font color='blue'> To summarize, you how know how to: 1. Create placeholders 2. Specify the computation graph corresponding to operations you want to compute 3. Create the session 4. Run the session, using a feed dictionary if necessary to specify placeholder variables' values. 1.3 - Computing the Cost You can also use a built-in function to compute the cost of your neural network. So instead of needing to write code to compute this as a function of $a^{2}$ and $y^{(i)}$ for i=1...m: $$ J = - \frac{1}{m} \sum_{i = 1}^m \large ( \small y^{(i)} \log a^{ [2] (i)} + (1-y^{(i)})\log (1-a^{ [2] (i)} )\large )\small\tag{2}$$ you can do it in one line of code in tensorflow! Exercise: Implement the cross entropy loss. The function you will use is: tf.nn.sigmoid_cross_entropy_with_logits(logits = ..., labels = ...) Your code should input z, compute the sigmoid (to get a) and then compute the cross entropy cost $J$. All this can be done using one call to tf.nn.sigmoid_cross_entropy_with_logits, which computes $$- \frac{1}{m} \sum_{i = 1}^m \large ( \small y^{(i)} \log \sigma(z^{2}) + (1-y^{(i)})\log (1-\sigma(z^{2})\large )\small\tag{2}$$
# GRADED FUNCTION: cost def cost(logits, labels): """     Computes the cost using the sigmoid cross entropy          Arguments:     logits -- vector containing z, output of the last linear unit (before the final sigmoid activation)     labels -- vector of labels y (1 or 0) Note: What we've been calling "z" and "y" in this class are respectively called "logits" and "labels" in the TensorFlow documentation. So logits will feed into z, and labels into y.          Returns:     cost -- runs the session of the cost (formula (2)) """ ### START CODE HERE ### # Create the placeholders for "logits" (z) and "labels" (y) (approx. 2 lines) z = tf.placeholder(tf.float32, name='logits') y = tf.placeholder(tf.float32, name='labels') # Use the loss function (approx. 1 line) cost = tf.nn.sigmoid_cross_entropy_with_logits(logits = z, labels = y) # Create a session (approx. 1 line). See method 1 above. sess = tf.Session() # Run the session (approx. 1 line). cost = sess.run(cost, feed_dict = {z:logits, y:labels}) # Close the session (approx. 1 line). See method 1 above. sess.close() ### END CODE HERE ### return cost logits = sigmoid(np.array([0.2,0.4,0.7,0.9])) cost = cost(logits, np.array([0,0,1,1])) print ("cost = " + str(cost))
deep_learning_ai/Tensorflow+Tutorial+dropout.ipynb
trangel/Data-Science
gpl-3.0
Expected Output : <table> <tr> <td> **cost** </td> <td> [ 1.00538719 1.03664088 0.41385433 0.39956614] </td> </tr> </table> 1.4 - Using One Hot encodings Many times in deep learning you will have a y vector with numbers ranging from 0 to C-1, where C is the number of classes. If C is for example 4, then you might have the following y vector which you will need to convert as follows: <img src="images/onehot.png" style="width:600px;height:150px;"> This is called a "one hot" encoding, because in the converted representation exactly one element of each column is "hot" (meaning set to 1). To do this conversion in numpy, you might have to write a few lines of code. In tensorflow, you can use one line of code: tf.one_hot(labels, depth, axis) Exercise: Implement the function below to take one vector of labels and the total number of classes $C$, and return the one hot encoding. Use tf.one_hot() to do this.
# GRADED FUNCTION: one_hot_matrix def one_hot_matrix(labels, C): """ Creates a matrix where the i-th row corresponds to the ith class number and the jth column corresponds to the jth training example. So if example j had a label i. Then entry (i,j) will be 1. Arguments: labels -- vector containing the labels C -- number of classes, the depth of the one hot dimension Returns: one_hot -- one hot matrix """ ### START CODE HERE ### # Create a tf.constant equal to C (depth), name it 'C'. (approx. 1 line) C = tf.constant(C, name='C') # Use tf.one_hot, be careful with the axis (approx. 1 line) one_hot_matrix = tf.one_hot(labels, C, axis=0) # Create the session (approx. 1 line) sess = tf.Session() # Run the session (approx. 1 line) one_hot = sess.run(one_hot_matrix) # Close the session (approx. 1 line). See method 1 above. sess.close() ### END CODE HERE ### return one_hot labels = np.array([1,2,3,0,2,1]) one_hot = one_hot_matrix(labels, C = 4) print ("one_hot = " + str(one_hot))
deep_learning_ai/Tensorflow+Tutorial+dropout.ipynb
trangel/Data-Science
gpl-3.0
Expected Output: <table> <tr> <td> **one_hot** </td> <td> [[ 0. 0. 0. 1. 0. 0.] [ 1. 0. 0. 0. 0. 1.] [ 0. 1. 0. 0. 1. 0.] [ 0. 0. 1. 0. 0. 0.]] </td> </tr> </table> 1.5 - Initialize with zeros and ones Now you will learn how to initialize a vector of zeros and ones. The function you will be calling is tf.ones(). To initialize with zeros you could use tf.zeros() instead. These functions take in a shape and return an array of dimension shape full of zeros and ones respectively. Exercise: Implement the function below to take in a shape and to return an array (of the shape's dimension of ones). tf.ones(shape)
# GRADED FUNCTION: ones def ones(shape): """ Creates an array of ones of dimension shape Arguments: shape -- shape of the array you want to create Returns: ones -- array containing only ones """ ### START CODE HERE ### # Create "ones" tensor using tf.ones(...). (approx. 1 line) ones = tf.ones(shape) # Create the session (approx. 1 line) sess = tf.Session() # Run the session to compute 'ones' (approx. 1 line) ones = sess.run(ones) # Close the session (approx. 1 line). See method 1 above. sess.close() ### END CODE HERE ### return ones print ("ones = " + str(ones([3])))
deep_learning_ai/Tensorflow+Tutorial+dropout.ipynb
trangel/Data-Science
gpl-3.0
Expected Output: <table> <tr> <td> **ones** </td> <td> [ 1. 1. 1.] </td> </tr> </table> 2 - Building your first neural network in tensorflow In this part of the assignment you will build a neural network using tensorflow. Remember that there are two parts to implement a tensorflow model: Create the computation graph Run the graph Let's delve into the problem you'd like to solve! 2.0 - Problem statement: SIGNS Dataset One afternoon, with some friends we decided to teach our computers to decipher sign language. We spent a few hours taking pictures in front of a white wall and came up with the following dataset. It's now your job to build an algorithm that would facilitate communications from a speech-impaired person to someone who doesn't understand sign language. Training set: 1080 pictures (64 by 64 pixels) of signs representing numbers from 0 to 5 (180 pictures per number). Test set: 120 pictures (64 by 64 pixels) of signs representing numbers from 0 to 5 (20 pictures per number). Note that this is a subset of the SIGNS dataset. The complete dataset contains many more signs. Here are examples for each number, and how an explanation of how we represent the labels. These are the original pictures, before we lowered the image resolutoion to 64 by 64 pixels. <img src="images/hands.png" style="width:800px;height:350px;"><caption><center> <u><font color='purple'> Figure 1</u><font color='purple'>: SIGNS dataset <br> <font color='black'> </center> Run the following code to load the dataset.
# Loading the dataset X_train_orig, Y_train_orig, X_test_orig, Y_test_orig, classes = load_dataset()
deep_learning_ai/Tensorflow+Tutorial+dropout.ipynb
trangel/Data-Science
gpl-3.0
Change the index below and run the cell to visualize some examples in the dataset.
# Example of a picture index = 0 plt.imshow(X_train_orig[index]) print ("y = " + str(np.squeeze(Y_train_orig[:, index])))
deep_learning_ai/Tensorflow+Tutorial+dropout.ipynb
trangel/Data-Science
gpl-3.0
As usual you flatten the image dataset, then normalize it by dividing by 255. On top of that, you will convert each label to a one-hot vector as shown in Figure 1. Run the cell below to do so.
# Flatten the training and test images X_train_flatten = X_train_orig.reshape(X_train_orig.shape[0], -1).T X_test_flatten = X_test_orig.reshape(X_test_orig.shape[0], -1).T # Normalize image vectors X_train = X_train_flatten/255. X_test = X_test_flatten/255. # Convert training and test labels to one hot matrices Y_train = convert_to_one_hot(Y_train_orig, 6) Y_test = convert_to_one_hot(Y_test_orig, 6) print ("number of training examples = " + str(X_train.shape[1])) print ("number of test examples = " + str(X_test.shape[1])) print ("X_train shape: " + str(X_train.shape)) print ("Y_train shape: " + str(Y_train.shape)) print ("X_test shape: " + str(X_test.shape)) print ("Y_test shape: " + str(Y_test.shape))
deep_learning_ai/Tensorflow+Tutorial+dropout.ipynb
trangel/Data-Science
gpl-3.0
Note that 12288 comes from $64 \times 64 \times 3$. Each image is square, 64 by 64 pixels, and 3 is for the RGB colors. Please make sure all these shapes make sense to you before continuing. Your goal is to build an algorithm capable of recognizing a sign with high accuracy. To do so, you are going to build a tensorflow model that is almost the same as one you have previously built in numpy for cat recognition (but now using a softmax output). It is a great occasion to compare your numpy implementation to the tensorflow one. The model is LINEAR -> RELU -> LINEAR -> RELU -> LINEAR -> SOFTMAX. The SIGMOID output layer has been converted to a SOFTMAX. A SOFTMAX layer generalizes SIGMOID to when there are more than two classes. 2.1 - Create placeholders Your first task is to create placeholders for X and Y. This will allow you to later pass your training data in when you run your session. Exercise: Implement the function below to create the placeholders in tensorflow.
# GRADED FUNCTION: create_placeholders def create_placeholders(n_x, n_y): """ Creates the placeholders for the tensorflow session. Arguments: n_x -- scalar, size of an image vector (num_px * num_px = 64 * 64 * 3 = 12288) n_y -- scalar, number of classes (from 0 to 5, so -> 6) Returns: X -- placeholder for the data input, of shape [n_x, None] and dtype "float" Y -- placeholder for the input labels, of shape [n_y, None] and dtype "float" Tips: - You will use None because it let's us be flexible on the number of examples you will for the placeholders. In fact, the number of examples during test/train is different. """ ### START CODE HERE ### (approx. 2 lines) X = tf.placeholder(dtype=tf.float32, shape=[n_x, None], name='X') Y = tf.placeholder(dtype=tf.float32, shape=[n_y, None], name='Y') keep_prob = tf.placeholder(dtype=tf.float32, shape=[2], name='keep_prob') ### END CODE HERE ### return X, Y, keep_prob X, Y, keep_prob = create_placeholders(12288, 6) print ("X = " + str(X)) print ("Y = " + str(Y))
deep_learning_ai/Tensorflow+Tutorial+dropout.ipynb
trangel/Data-Science
gpl-3.0
Expected Output: <table> <tr> <td> **X** </td> <td> Tensor("Placeholder_1:0", shape=(12288, ?), dtype=float32) (not necessarily Placeholder_1) </td> </tr> <tr> <td> **Y** </td> <td> Tensor("Placeholder_2:0", shape=(10, ?), dtype=float32) (not necessarily Placeholder_2) </td> </tr> </table> 2.2 - Initializing the parameters Your second task is to initialize the parameters in tensorflow. Exercise: Implement the function below to initialize the parameters in tensorflow. You are going use Xavier Initialization for weights and Zero Initialization for biases. The shapes are given below. As an example, to help you, for W1 and b1 you could use: python W1 = tf.get_variable("W1", [25,12288], initializer = tf.contrib.layers.xavier_initializer(seed = 1)) b1 = tf.get_variable("b1", [25,1], initializer = tf.zeros_initializer()) Please use seed = 1 to make sure your results match ours.
# GRADED FUNCTION: initialize_parameters def initialize_parameters(): """ Initializes parameters to build a neural network with tensorflow. The shapes are: W1 : [25, 12288] b1 : [25, 1] W2 : [12, 25] b2 : [12, 1] W3 : [6, 12] b3 : [6, 1] Returns: parameters -- a dictionary of tensors containing W1, b1, W2, b2, W3, b3 """ tf.set_random_seed(1) # so that your "random" numbers match ours ### START CODE HERE ### (approx. 6 lines of code) W1 = tf.get_variable("W1", [25,12288], initializer = tf.contrib.layers.xavier_initializer(seed=1)) b1 = tf.get_variable("b1", [25,1], initializer = tf.zeros_initializer()) W2 = tf.get_variable('W2', [12,25], initializer = tf.contrib.layers.xavier_initializer(seed=1)) b2 = tf.get_variable('b2', [12,1], initializer = tf.zeros_initializer()) W3 = tf.get_variable('W3', [6,12], initializer = tf.contrib.layers.xavier_initializer(seed=1)) b3 = tf.get_variable('b3', [6,1], initializer = tf.zeros_initializer()) ### END CODE HERE ### parameters = {"W1": W1, "b1": b1, "W2": W2, "b2": b2, "W3": W3, "b3": b3} return parameters tf.reset_default_graph() with tf.Session() as sess: parameters = initialize_parameters() print("W1 = " + str(parameters["W1"])) print("b1 = " + str(parameters["b1"])) print("W2 = " + str(parameters["W2"])) print("b2 = " + str(parameters["b2"]))
deep_learning_ai/Tensorflow+Tutorial+dropout.ipynb
trangel/Data-Science
gpl-3.0
Expected Output: <table> <tr> <td> **W1** </td> <td> < tf.Variable 'W1:0' shape=(25, 12288) dtype=float32_ref > </td> </tr> <tr> <td> **b1** </td> <td> < tf.Variable 'b1:0' shape=(25, 1) dtype=float32_ref > </td> </tr> <tr> <td> **W2** </td> <td> < tf.Variable 'W2:0' shape=(12, 25) dtype=float32_ref > </td> </tr> <tr> <td> **b2** </td> <td> < tf.Variable 'b2:0' shape=(12, 1) dtype=float32_ref > </td> </tr> </table> As expected, the parameters haven't been evaluated yet. 2.3 - Forward propagation in tensorflow You will now implement the forward propagation module in tensorflow. The function will take in a dictionary of parameters and it will complete the forward pass. The functions you will be using are: tf.add(...,...) to do an addition tf.matmul(...,...) to do a matrix multiplication tf.nn.relu(...) to apply the ReLU activation Question: Implement the forward pass of the neural network. We commented for you the numpy equivalents so that you can compare the tensorflow implementation to numpy. It is important to note that the forward propagation stops at z3. The reason is that in tensorflow the last linear layer output is given as input to the function computing the loss. Therefore, you don't need a3!
# GRADED FUNCTION: forward_propagation def forward_propagation(X, parameters, keep_prob): """ Implements the forward propagation for the model: LINEAR -> RELU -> LINEAR -> RELU -> LINEAR -> SOFTMAX Arguments: X -- input dataset placeholder, of shape (input size, number of examples) parameters -- python dictionary containing your parameters "W1", "b1", "W2", "b2", "W3", "b3" the shapes are given in initialize_parameters Returns: Z3 -- the output of the last LINEAR unit """ # Retrieve the parameters from the dictionary "parameters" W1 = parameters['W1'] b1 = parameters['b1'] W2 = parameters['W2'] b2 = parameters['b2'] W3 = parameters['W3'] b3 = parameters['b3'] ### START CODE HERE ### (approx. 5 lines) # Numpy Equivalents: Z1 = tf.add(tf.matmul(W1, X), b1) # Z1 = np.dot(W1, X) + b1 A1 = tf.nn.relu(Z1) # A1 = relu(Z1) A1_dropout = tf.nn.dropout(A1, keep_prob[0]) # apply dropout (*) Z2 = tf.add(tf.matmul(W2, A1_dropout), b2) # Z2 = np.dot(W2, a1) + b2 A2 = tf.nn.relu(Z2) # A2 = relu(Z2) A2_dropout = tf.nn.dropout(A2, keep_prob[1]) # apply dropout (*) Z3 = tf.add(tf.matmul(W3, A2_dropout), b3) # Z3 = np.dot(W3,Z2) + b3 ### END CODE HERE ### return Z3 tf.reset_default_graph() with tf.Session() as sess: X, Y, keep_prob = create_placeholders(12288, 6) parameters = initialize_parameters() Z3 = forward_propagation(X, parameters, keep_prob) print("Z3 = " + str(Z3))
deep_learning_ai/Tensorflow+Tutorial+dropout.ipynb
trangel/Data-Science
gpl-3.0
Expected Output: <table> <tr> <td> **Z3** </td> <td> Tensor("Add_2:0", shape=(6, ?), dtype=float32) </td> </tr> </table> You may have noticed that the forward propagation doesn't output any cache. You will understand why below, when we get to brackpropagation. 2.4 Compute cost As seen before, it is very easy to compute the cost using: python tf.reduce_mean(tf.nn.softmax_cross_entropy_with_logits(logits = ..., labels = ...)) Question: Implement the cost function below. - It is important to know that the "logits" and "labels" inputs of tf.nn.softmax_cross_entropy_with_logits are expected to be of shape (number of examples, num_classes). We have thus transposed Z3 and Y for you. - Besides, tf.reduce_mean basically does the summation over the examples.
# GRADED FUNCTION: compute_cost def compute_cost(Z3, Y): """ Computes the cost Arguments: Z3 -- output of forward propagation (output of the last LINEAR unit), of shape (6, number of examples) Y -- "true" labels vector placeholder, same shape as Z3 Returns: cost - Tensor of the cost function """ # to fit the tensorflow requirement for tf.nn.softmax_cross_entropy_with_logits(...,...) logits = tf.transpose(Z3) labels = tf.transpose(Y) ### START CODE HERE ### (1 line of code) cost = tf.reduce_mean(tf.nn.softmax_cross_entropy_with_logits(labels=labels, logits=logits)) ### END CODE HERE ### return cost tf.reset_default_graph() with tf.Session() as sess: X, Y, keep_prob = create_placeholders(12288, 6) parameters = initialize_parameters() Z3 = forward_propagation(X, parameters, keep_prob) cost = compute_cost(Z3, Y) print("cost = " + str(cost))
deep_learning_ai/Tensorflow+Tutorial+dropout.ipynb
trangel/Data-Science
gpl-3.0
Expected Output: <table> <tr> <td> **cost** </td> <td> Tensor("Mean:0", shape=(), dtype=float32) </td> </tr> </table> 2.5 - Backward propagation & parameter updates This is where you become grateful to programming frameworks. All the backpropagation and the parameters update is taken care of in 1 line of code. It is very easy to incorporate this line in the model. After you compute the cost function. You will create an "optimizer" object. You have to call this object along with the cost when running the tf.session. When called, it will perform an optimization on the given cost with the chosen method and learning rate. For instance, for gradient descent the optimizer would be: python optimizer = tf.train.GradientDescentOptimizer(learning_rate = learning_rate).minimize(cost) To make the optimization you would do: python _ , c = sess.run([optimizer, cost], feed_dict={X: minibatch_X, Y: minibatch_Y}) This computes the backpropagation by passing through the tensorflow graph in the reverse order. From cost to inputs. Note When coding, we often use _ as a "throwaway" variable to store values that we won't need to use later. Here, _ takes on the evaluated value of optimizer, which we don't need (and c takes the value of the cost variable). 2.6 - Building the model Now, you will bring it all together! Exercise: Implement the model. You will be calling the functions you had previously implemented.
def model(X_train, Y_train, X_test, Y_test, learning_rate = 0.0001, num_epochs = 3000, minibatch_size = 32, print_cost = True): """ Implements a three-layer tensorflow neural network: LINEAR->RELU->LINEAR->RELU->LINEAR->SOFTMAX. Arguments: X_train -- training set, of shape (input size = 12288, number of training examples = 1080) Y_train -- test set, of shape (output size = 6, number of training examples = 1080) X_test -- training set, of shape (input size = 12288, number of training examples = 120) Y_test -- test set, of shape (output size = 6, number of test examples = 120) learning_rate -- learning rate of the optimization num_epochs -- number of epochs of the optimization loop minibatch_size -- size of a minibatch print_cost -- True to print the cost every 100 epochs Returns: parameters -- parameters learnt by the model. They can then be used to predict. """ ops.reset_default_graph() # to be able to rerun the model without overwriting tf variables tf.set_random_seed(1) # to keep consistent results seed = 3 # to keep consistent results (n_x, m) = X_train.shape # (n_x: input size, m : number of examples in the train set) n_y = Y_train.shape[0] # n_y : output size costs = [] # To keep track of the cost # Create Placeholders of shape (n_x, n_y) ### START CODE HERE ### (1 line) X, Y, keep_prob = create_placeholders(n_x, n_y) ### END CODE HERE ### # Initialize parameters ### START CODE HERE ### (1 line) parameters = initialize_parameters() ### END CODE HERE ### # Forward propagation: Build the forward propagation in the tensorflow graph ### START CODE HERE ### (1 line) Z3 = forward_propagation(X, parameters, keep_prob) ### END CODE HERE ### # Cost function: Add cost function to tensorflow graph ### START CODE HERE ### (1 line) cost = compute_cost(Z3, Y) ### END CODE HERE ### # Backpropagation: Define the tensorflow optimizer. Use an AdamOptimizer. ### START CODE HERE ### (1 line) optimizer = tf.train.AdamOptimizer(learning_rate = learning_rate).minimize(cost) ### END CODE HERE ### # Initialize all the variables init = tf.global_variables_initializer() keep_prob_train = [0.9, 1.0] # Start the session to compute the tensorflow graph with tf.Session() as sess: # Run the initialization sess.run(init) # Do the training loop for epoch in range(num_epochs): epoch_cost = 0. # Defines a cost related to an epoch num_minibatches = int(m / minibatch_size) # number of minibatches of size minibatch_size in the train set seed = seed + 1 minibatches = random_mini_batches(X_train, Y_train, minibatch_size, seed) for minibatch in minibatches: # Select a minibatch (minibatch_X, minibatch_Y) = minibatch # IMPORTANT: The line that runs the graph on a minibatch. # Run the session to execute the "optimizer" and the "cost", the feedict should contain a minibatch for (X,Y). ### START CODE HERE ### (1 line) _ , minibatch_cost = sess.run([optimizer, cost], feed_dict={X: minibatch_X, Y: minibatch_Y, keep_prob:keep_prob_train}) ### END CODE HERE ### epoch_cost += minibatch_cost / num_minibatches # Print the cost every epoch if print_cost == True and epoch % 100 == 0: print ("Cost after epoch %i: %f" % (epoch, epoch_cost)) if print_cost == True and epoch % 5 == 0: costs.append(epoch_cost) # plot the cost plt.plot(np.squeeze(costs)) plt.ylabel('cost') plt.xlabel('iterations (per tens)') plt.title("Learning rate =" + str(learning_rate)) plt.show() # lets save the parameters in a variable parameters = sess.run(parameters) print ("Parameters have been trained!") # Calculate the correct predictions correct_prediction = tf.equal(tf.argmax(Z3), tf.argmax(Y)) # Calculate accuracy on the test set accuracy = tf.reduce_mean(tf.cast(correct_prediction, "float")) print ("Train Accuracy:", accuracy.eval({X: X_train, Y: Y_train, keep_prob : [1.0, 1.0]})) print ("Test Accuracy:", accuracy.eval({X: X_test, Y: Y_test, keep_prob : [1.0, 1.0]})) return parameters
deep_learning_ai/Tensorflow+Tutorial+dropout.ipynb
trangel/Data-Science
gpl-3.0
Run the following cell to train your model! On our machine it takes about 5 minutes. Your "Cost after epoch 100" should be 1.016458. If it's not, don't waste time; interrupt the training by clicking on the square (⬛) in the upper bar of the notebook, and try to correct your code. If it is the correct cost, take a break and come back in 5 minutes!
parameters = model(X_train, Y_train, X_test, Y_test)
deep_learning_ai/Tensorflow+Tutorial+dropout.ipynb
trangel/Data-Science
gpl-3.0
Expected Output: <table> <tr> <td> **Train Accuracy** </td> <td> 0.999074 </td> </tr> <tr> <td> **Test Accuracy** </td> <td> 0.716667 </td> </tr> </table> Amazing, your algorithm can recognize a sign representing a figure between 0 and 5 with 71.7% accuracy. Insights: - Your model seems big enough to fit the training set well. However, given the difference between train and test accuracy, you could try to add L2 or dropout regularization to reduce overfitting. - Think about the session as a block of code to train the model. Each time you run the session on a minibatch, it trains the parameters. In total you have run the session a large number of times (1500 epochs) until you obtained well trained parameters. 2.7 - Test with your own image (optional / ungraded exercise) Congratulations on finishing this assignment. You can now take a picture of your hand and see the output of your model. To do that: 1. Click on "File" in the upper bar of this notebook, then click "Open" to go on your Coursera Hub. 2. Add your image to this Jupyter Notebook's directory, in the "images" folder 3. Write your image's name in the following code 4. Run the code and check if the algorithm is right!
import scipy from PIL import Image from scipy import ndimage ## START CODE HERE ## (PUT YOUR IMAGE NAME) my_image = "thumbs_up.jpg" ## END CODE HERE ## # We preprocess your image to fit your algorithm. fname = "images/" + my_image image = np.array(ndimage.imread(fname, flatten=False)) my_image = scipy.misc.imresize(image, size=(64,64)).reshape((1, 64*64*3)).T my_image_prediction = predict(my_image, parameters) plt.imshow(image) print("Your algorithm predicts: y = " + str(np.squeeze(my_image_prediction)))
deep_learning_ai/Tensorflow+Tutorial+dropout.ipynb
trangel/Data-Science
gpl-3.0
For a detailed explanation of the above, please refer to Rates Information.
response = oanda.create_order(account_id, instrument = "AUD_USD", units=1000, side="buy", type="limit", price=0.7420, expiry=trade_expire) print(response) pd.Series(response["orderOpened"]) order_id = response["orderOpened"]['id']
Oanda v1 REST-oandapy/04.00 Order Management.ipynb
anthonyng2/FX-Trading-with-Python-and-Oanda
mit
Getting Open Orders get_orders(self, account_id, **params)
response = oanda.get_orders(account_id) print(response) pd.DataFrame(response['orders'])
Oanda v1 REST-oandapy/04.00 Order Management.ipynb
anthonyng2/FX-Trading-with-Python-and-Oanda
mit
Getting Specific Order Information get_order(self, account_id, order_id, **params)
response = oanda.get_orders(account_id) id = response['orders'][0]['id'] oanda.get_order(account_id, order_id=id)
Oanda v1 REST-oandapy/04.00 Order Management.ipynb
anthonyng2/FX-Trading-with-Python-and-Oanda
mit
Modify Order modify_order(self, account_id, order_id, **params)
response = oanda.get_orders(account_id) id = response['orders'][0]['id'] oanda.modify_order(account_id, order_id=id, price=0.7040)
Oanda v1 REST-oandapy/04.00 Order Management.ipynb
anthonyng2/FX-Trading-with-Python-and-Oanda
mit
Close Order close_order(self, account_id, order_id, **params)
response = oanda.get_orders(account_id) id = response['orders'][0]['id'] oanda.close_order(account_id, order_id=id)
Oanda v1 REST-oandapy/04.00 Order Management.ipynb
anthonyng2/FX-Trading-with-Python-and-Oanda
mit
Now when we check the orders. The above order has been closed and removed without being filled. There is only one outstanding order now.
oanda.get_orders(account_id)
Oanda v1 REST-oandapy/04.00 Order Management.ipynb
anthonyng2/FX-Trading-with-Python-and-Oanda
mit
This is a bog standard user registration endpoint. We create a form, check if it's valid, shove that information on a user model and then into the database and redirect off. If it's not valid or if it wasn't submitted (the user just navigated to the page), we render out some HTML. It's all very basic, well trodden code. Besides, who wants to do registration again? It's boring. We want to do the interesting stuff. But there's some very real consequences to this code: It's not testable Everything is wrapped up together, form validation, database stuff, rendering. Honestly, I'm not interested in testing if SQLAlchemy, WTForms of Jinja2 work -- they have their own tests. So testing this ends up looking like this:
@mock.patch('myapp.views.RegisterUserForm') @mock.patch('myapp.views.db') @mock.patch('myapp.views.redirect') @mock.patch('myapp.views.url_for') @mock.patch('myapp.views.render_template') def test_register_new_user(render, url_for, redirect, db, form): # TODO: Write test assert True
hexagonal/refactoring_and_interfaces.ipynb
justanr/notebooks
mit
What's even the point of this? We're just testing if Mock works at this point. There's actual things we can do to make it more testable, but before delving into that, It hides logic If registering a user was solely about, "Fill this form out and we'll shove it into a database" there wouldn't be a blog post here. However, there is some logic hiding out here in the form:
class RegisterUserForm(Form): def validate_username(self, field): if User.query.filter(User.username == field.data).count(): raise ValidationError("Username in use already") def validate_email(self, field): if User.query.filter(User.email == field.data).count(): raise ValidationError("Email in use already")
hexagonal/refactoring_and_interfaces.ipynb
justanr/notebooks
mit
When we call RegisterUserForm.validate_on_submit it also runs these two methods. However, I'm not of the opinion that the form should talk to the database at all, let alone run validation against database contents. So, let's write a little test harness that can prove that an existing user with a given username and email causes us to not register:
from myapp.forms import RegisterUserForm from myapp.models import User from collections import namedtuple from unittest import mock FakeData = namedtuple('User', ['username', 'email', 'password', 'confirm_password']) def test_existing_username_fails_validation(): test_data = FakeData('fred', '[email protected]', 'a', 'a') UserModel = mock.Mock() UserModel.query.filter.count.return_value = 1 form = RegisterUserForm(obj=test_data) with mock.patch('myapp.forms.User', UserModel): form.validate() assert form.errors['username'] == "Username in use already" def test_existing_email_fails_validation(): test_user = FakeUser('fred', '[email protected]', 'a', 'a') UserModel = mock.Mock() UserModel.query.filter.first.return_value = True form = RegisterUserForm(obj=test_user) with mock.patch('myapp.forms.User', UserModel): form.validate() assert form.errors['username'] == "Email in use already"
hexagonal/refactoring_and_interfaces.ipynb
justanr/notebooks
mit
If these pass -- which they should, but you may have to install mock if you're not on Python 3 -- I think we should move the username and email validation into their own callables that are independently testable:
def is_username_free(username): return User.query.filter(User.username == username).count() == 0 def is_email_free(email): return User.query.filter(User.email == email).count() == 0
hexagonal/refactoring_and_interfaces.ipynb
justanr/notebooks
mit
And then use these in the endpoint itself:
@app.route('/register', methods=['GET', 'POST']) def register(): form = RegisterUserForm() if form.validate_on_submit(): if not is_username_free(form.username.data): form.errors['username'] = ['Username in use already'] return render_template('register.html', form=form) if not is_email_free(form.email.data): form.errors['email'] = ['Email in use already'] return render_template('register.html', form=form) user = User() form.populate_obj(user) db.session.add(user) db.session.commit() return redirect('homepage') return render_template('register.html', form=form)
hexagonal/refactoring_and_interfaces.ipynb
justanr/notebooks
mit
This is really hard to test, so instead of even attempting that -- being honest, I spent the better part of an hour attempting to test the actual endpoint and it was just a complete mess -- let's extract out the actual logic and place it into it's own callable:
class OurValidationError(Exception): def __init__(self, msg, field): self.msg = msg self.field = field def register_user(username, email, password): if not is_username_free(username): raise OurValidationError('Username in use already', 'username') if not is_email_free(email): raise OurValidationError('Email in use already', 'email') user = User(username=username, email=email, password=password) db.session.add(user) db.session.commit() @app.route('/register', methods=['GET', 'POST']) def register_user_view(): form = RegisterUserForm() if form.validate_on_submit(): try: register_user(form.username.data, form.email.data, form.password.data) except OurValidationError as e: form.errors[e.field] = [e.msg] return render_template('register.html', form=form) else: return redirect('homepage') return render_template('register.html', form=form)
hexagonal/refactoring_and_interfaces.ipynb
justanr/notebooks
mit
Now we're beginning to see the fruits of our labors. These aren't the easiest functions to test, but there's less we need to mock out in order to test the actual logic we're after.
def test_duplicated_user_raises_error(): ChasteValidator = mock.Mock(return_value=False) with mock.patch('myapp.logic.is_username_free', ChasteValidator): with pytest.raises(OurValidationError) as excinfo: register_user('fred', '[email protected]', 'fredpassword') assert excinfo.value.msg == 'Username in use already' assert excinfo.value.field == 'username' def test_duplicated_user_raises_error(): ChasteValidator = mock.Mock(return_value=False) PromisciousValidator = mock.Mock(return_value=True) with mock.patch('myapp.logic.is_username_free', PromisciousValidator), mock.patch('myapp.logic.is_email_free', ChasteValidator): with pytest.raises(OurValidationError) as excinfo: register_user('fred', '[email protected]', 'fredpassword') assert excinfo.value.msg == 'Email in use already' assert excinfo.value.field == 'email' def test_register_user_happy_path(): PromisciousValidator = mock.Mock(return_value=True) MockDB = mock.Mock() with mock.patch('myapp.logic.is_username_free', PromisciousValidator), mock.patch('myapp.logic.is_email_free', ChasteValidator), mock.patch('myapp.logic.db', MockDB): register_user('fred', '[email protected]', 'freddpassword') assert MockDB.commit.call_count
hexagonal/refactoring_and_interfaces.ipynb
justanr/notebooks
mit
Of course, we should also write tests for the controller. I'll leave that as an exercise. However, there's something very important we're learning from these tests. We have to mock.patch everything still. Our validators lean directly on the database, our user creation leans directly on the database, everything leans directly on the database. And I don't want to do that, we've found that it makes testing hard. We're also seeing if we need to add another registration restriction -- say we don't like people named Fred so we won't let anyone register with a username or email containing Fred in it -- we need to crack open the register_user function and add it directly. We can solve both of these problems. The Database Problem To address the database problem we need to realize something. We're not actually interested in the database, we're interested in the data it stores. And since we're interested in finding data rather than where it's stored at, why not stuff an interface in the way?
from abc import ABC, abstractmethod class AbstractUserRepository(ABC): @abstractmethod def find_by_username(self, username): pass @abstractmethod def find_by_email(self, email): pass @abstractmethod def persist(self, user): pass
hexagonal/refactoring_and_interfaces.ipynb
justanr/notebooks
mit
Hmm...that's interesting. Since we'll end up depending on this instead of a concrete implementation, we can run our tests completely in memory and production on top of SQLAlchemy, Mongo, a foreign API, whatever. But we need to inject it into our validators instead of reaching out into the global namespace like we currently are.
def is_username_free(user_repository): def is_username_free(username): return not user_repository.find_by_username(username) return is_username_free def is_email_free(user_repository): def is_email_free(email): return not user_repository.find_by_email(email) return is_email_free
hexagonal/refactoring_and_interfaces.ipynb
justanr/notebooks
mit