markdown
stringlengths
0
37k
code
stringlengths
1
33.3k
path
stringlengths
8
215
repo_name
stringlengths
6
77
license
stringclasses
15 values
Step 2: Putting in the Operations Load the word embeddings for the word ids. You can do this using tf.nn.embedding_lookup. Remember to use your embeddings placeholder. You should end up with a Tensor of dimensions batch_size * sentence_length * embedding size. To represent a whole tweet, let's use a neural bag of words. This means we represent each tweet by the words that occur in it; it's a basic representation but gets us pretty far. To do this in a neural way, we can just average the embeddings in the tweet, leaving a single vector of embedding size for each tweet. You should end up with a Tensor of dimensions batch_size * embedding size. Apply projection to the hidden layer of size 100 (ie. multiply the input by a weight vector and add a bias ) Apply a nonlinearity like tf.tanh Project this to the output layer of size 1 (ie. multiply the input by a wieght vector and add a bias). Put this in a python variable called logits.
"TODO"
draft/part1.ipynb
yala/introdeeplearning
mit
Set up loss function, and optimizer to minimize it. We'll be using Adam as our optimizer
## Make sure to call your output embedding logits, and your sentiments placeholder sentiments in python loss = tf.nn.sigmoid_cross_entropy_with_logits(logits, sentiments) loss = tf.reduce_sum(loss) optimizer = tf.train.AdamOptimizer(1e-2).minimize(loss)
draft/part1.ipynb
yala/introdeeplearning
mit
Run the Graph Step 3: Set up training, and fetch optimizer at each iteration to train the model First initialize all variables as in the toy example Sample 20 random tweet,sentiment pairs for our feed_dict dictionary. Remember to feed in the embedding matrix. fetch dictionary, the ops we want to run and tensors we want back Execute this many times to train
trainSet = p.load( open('data/trainTweets_preprocessed.p','rb')) random.shuffle(trainSet) " TODO Init vars" losses = [] for i in range(5000): trainTweet = np.array( [ t[0] for t in trainSet[i: i+ minibatch_size]]) trainLabels = np.array( [int(t[1]) for t in trainSet[i: i+ minibatch_size] ]) results = "TODO, run graph with data" losses.append(results['loss']) if i % 500 == 0: print("Iteration",i,"Loss", sum(losses[-500:-1])/500. if i > 0 else losses[-1])
draft/part1.ipynb
yala/introdeeplearning
mit
Step 4: Check validation results, and tune Try running the graph on validation data, without fetching the train op. See how the results compare. If the train loss is much lower than the development loss, we may be overfitting. If the train loss is still high, try experimenting with the model archetecture to increase it's capacity.
validationSet = p.load( open('data/devTweets_preprocessed.p','rb')) random.shuffle(validationSet) losses = [] for i in range(20000/20): valTweet = np.array( [ t[0] for t in validationSet[i: i+ minibatch_size]]) valLabels = np.array( [int(t[1]) for t in validationSet[i: i+ minibatch_size] ]) results = "TODO" losses.append(results['loss']) print("Dev Loss", sum(losses)*1./len(losses))
draft/part1.ipynb
yala/introdeeplearning
mit
Future Steps: Things to try on your own: - Adding in a tensor for accuracy, and log it at each step. - Iterate over whole validation dataset to get more stable validation score - Try tensorboard and graphing accuracy over both sets time. - experiment with different archetectures that maximize validation score. Maybe bag of words, which doesn't distinguish between "bad not good" and "good not bad" isn't a good enough representation. - test it on the test data - Do the RNN tutorial! Solutions! Do not look unless you really have to. Ask TA's for help first. Fight for the intuition, you'll get more out of it.
# Step 1: tf.reset_default_graph() session = tf.Session() minibatch_size = 20 tweet_length = 20 embedding_size = 100 hidden_dim_size = 100 output_size = 1 init_bias = 0 tweets = tf.placeholder(tf.int32, shape=[minibatch_size,tweet_length]) sentiments = tf.placeholder(tf.float32, shape=[minibatch_size]) embeddingMatrix = tf.placeholder(tf.float32, shape =[vocab_size, embedding_size] ) W_hidden = tf.get_variable("W_hidden", [embedding_size, hidden_dim_size], tf.float32, tf.random_normal_initializer(stddev=1.0 / hidden_dim_size)) b_hidden = tf.get_variable("b_hidden", [hidden_dim_size], initializer=tf.constant_initializer(init_bias)) W_output = tf.get_variable("W_output", [hidden_dim_size, output_size], tf.float32, tf.random_normal_initializer(stddev=1.0 / hidden_dim_size)) b_output = tf.get_variable("b_output", [output_size], initializer=tf.constant_initializer(init_bias)) # Step 2: tweet_embedded = tf.nn.embedding_lookup(embeddingMatrix, tweets) averagedTweets = tf.reduce_mean(tweet_embedded, axis=1) hidden_proj = tf.matmul( averagedTweets, W_hidden) + b_hidden non_linearity = tf.nn.tanh(hidden_proj) logits = tf.matmul( non_linearity, W_output)+ b_output logits = tf.reshape(logits, shape=[minibatch_size]) ## Make sure to call your output embedding logits, and your sentiments placeholder sentiments in python loss = tf.nn.sigmoid_cross_entropy_with_logits(logits, sentiments) loss = tf.reduce_sum(loss) optimizer = tf.train.AdamOptimizer().minimize(loss) # Step 3: trainSet = p.load( open('data/trainTweets_preprocessed.p','rb')) random.shuffle(trainSet) tf.global_variables_initializer().run(session=session) losses = [] for i in range(5000): trainTweet = np.array( [ t[0] for t in trainSet[i: i+ minibatch_size]]) trainLabels = np.array( [int(t[1]) for t in trainSet[i: i+ minibatch_size] ]) feed_dict = { embeddingMatrix: word_embeddings, tweets: trainTweet, sentiments: trainLabels } fetch = { 'loss': loss, 'trainOp': optimizer } results = session.run(fetch, feed_dict=feed_dict) losses.append(results['loss']) if i % 500 == 0: print("Iteration",i,"Loss", sum(losses[-500:-1])/500. if i > 0 else losses[-1]) # Step 4: validationSet = p.load( open('data/devTweets_preprocessed.p','rb')) random.shuffle(validationSet) losses = [] for i in range(20000/20): valTweet = np.array( [ t[0] for t in validationSet[i: i+ minibatch_size]]) valLabels = np.array( [int(t[1]) for t in validationSet[i: i+ minibatch_size] ]) feed_dict = { embeddingMatrix: word_embeddings, tweets: valTweet, sentiments: valLabels } fetch = { 'loss': loss, } results = session.run(fetch, feed_dict=feed_dict) losses.append(results['loss']) print("Dev Loss", sum(losses)*1./len(losses))
draft/part1.ipynb
yala/introdeeplearning
mit
TOC Thematic Report - February 2019 (Part 2: Annual trends) 1. Get list of stations
# Select projects prj_grid = nivapy.da.select_resa_projects(eng) prj_grid prj_df = prj_grid.get_selected_df() print (len(prj_df)) prj_df # Get stations stn_df = nivapy.da.select_resa_project_stations(prj_df, eng) print(len(stn_df)) stn_df.head() # Map nivapy.spatial.quickmap(stn_df, popup='station_code')
toc_report_feb_2019_part2.ipynb
JamesSample/icpw
mit
2. Calculate annual trends
# User input # Specify projects of interest proj_list = ['ICPWaters US', 'ICPWaters NO', 'ICPWaters CA', 'ICPWaters UK', 'ICPWaters FI', 'ICPWaters SE', 'ICPWaters CZ', 'ICPWaters IT', 'ICPWaters PL', 'ICPWaters CH', 'ICPWaters LV', 'ICPWaters EE', 'ICPWaters IE', 'ICPWaters MD', 'ICPWaters DE'] # Specify results folder res_fold = (r'../../../Thematic_Trends_Report_2019/results')
toc_report_feb_2019_part2.ipynb
JamesSample/icpw
mit
1. 1990 to 2016
# Specify period of interest st_yr, end_yr = 1990, 2016 # Build output paths plot_fold = os.path.join(res_fold, 'trends_plots_%s-%s' % (st_yr, end_yr)) res_csv = os.path.join(res_fold, 'res_%s-%s.csv' % (st_yr, end_yr)) dup_csv = os.path.join(res_fold, 'dup_%s-%s.csv' % (st_yr, end_yr)) nd_csv = os.path.join(res_fold, 'nd_%s-%s.csv' % (st_yr, end_yr)) # Run analysis res_df, dup_df, nd_df = resa2_trends.run_trend_analysis(proj_list, eng, st_yr=st_yr, end_yr=end_yr, plot=False, fold=plot_fold) # Delete mk_std_dev col as not relevant here del res_df['mk_std_dev'] # Write output res_df.to_csv(res_csv, index=False) dup_df.to_csv(dup_csv, index=False) if nd_df is not None: nd_df.to_csv(nd_csv, index=False)
toc_report_feb_2019_part2.ipynb
JamesSample/icpw
mit
There are lots of warnings printed above, but the main one of interest is: Some stations have no relevant data in the period specified. Which station(s) are missing data?
# Get stations with no data stn_df[stn_df['station_id'].isin(nd_df['station_id'])]
toc_report_feb_2019_part2.ipynb
JamesSample/icpw
mit
It seems that one Irish station has no associated data. This is as expected, because all the data supplied by Julian for this site comes from "near-shore" sampling (rather than "open water") and these have been omitted from the data upload - see here for details. 3. Basic checking 3.1. Boxplots
# Set up plot fig = plt.figure(figsize=(20,10)) sn.set(style="ticks", palette="muted", color_codes=True, font_scale=2) # Horizontal boxplots ax = sn.boxplot(x="mean", y="par_id", data=res_df, whis=np.inf, color="c") # Add "raw" data points for each observation, with some "jitter" # to make them visible sn.stripplot(x="mean", y="par_id", data=res_df, jitter=True, size=3, color=".3", linewidth=0) # Remove axis lines sn.despine(trim=True)
toc_report_feb_2019_part2.ipynb
JamesSample/icpw
mit
4. Data restructuring The code below is taken from here. It is used to generate output files in the format requested by Heleen. 4.1. Combine datasets
# Change 'period' col to 'data_period' and add 'analysis_period' res_df['data_period'] = res_df['period'] del res_df['period'] res_df['analysis_period'] = '1990-2016' # Join df = pd.merge(res_df, stn_df, how='left', on='station_id') # Re-order columns df = df[['station_id', 'station_code', 'station_name', 'latitude', 'longitude', 'analysis_period', 'data_period', 'par_id', 'non_missing', 'n_start', 'n_end', 'mean', 'median', 'std_dev', 'mk_stat', 'norm_mk_stat', 'mk_p_val', 'trend', 'sen_slp']] df.head()
toc_report_feb_2019_part2.ipynb
JamesSample/icpw
mit
4.3. SO4 at Abiskojaure SO4 for this station ('station_id=36458' in the "core" dataset) should be removed. See here.
# Remove sulphate-related series at Abiskojaure df = df.query('not((station_id==36458) and ((par_id=="ESO4") or ' '(par_id=="ESO4X") or ' '(par_id=="ESO4_ECl")))')
toc_report_feb_2019_part2.ipynb
JamesSample/icpw
mit
7.5. Tidy
# Remove unwanted cols df.drop(labels=['mean', 'n_end', 'n_start', 'mk_stat', 'norm_mk_stat'], axis=1, inplace=True) # Reorder columns df = df[['station_id', 'station_code', 'station_name', 'latitude', 'longitude', 'analysis_period', 'data_period', 'par_id', 'non_missing', 'median', 'std_dev', 'mk_p_val', 'trend', 'sen_slp', 'rel_sen_slp', 'include']] # Write to output out_path = os.path.join(res_fold, 'toc_core_trends_long_format.csv') df.to_csv(out_path, index=False, encoding='utf-8') df.head()
toc_report_feb_2019_part2.ipynb
JamesSample/icpw
mit
7.6. Convert to "wide" format
del df['data_period'] # Melt to "long" format melt_df = pd.melt(df, id_vars=['station_id', 'station_code', 'station_name', 'latitude', 'longitude', 'analysis_period', 'par_id', 'include'], var_name='stat') # Get only values where include='yes' melt_df = melt_df.query('include == "yes"') del melt_df['include'] # Build multi-index on everything except "value" melt_df.set_index(['station_id', 'station_code', 'station_name', 'latitude', 'longitude', 'par_id', 'analysis_period', 'stat'], inplace=True) # Unstack levels of interest to columns wide_df = melt_df.unstack(level=['par_id', 'analysis_period', 'stat']) # Drop unwanted "value" level in index wide_df.columns = wide_df.columns.droplevel(0) # Replace multi-index with separate components concatenated with '_' wide_df.columns = ["_".join(item) for item in wide_df.columns] # Reset multiindex on rows wide_df = wide_df.reset_index() # Save output out_path = os.path.join(res_fold, 'toc_trends_wide_format.csv') wide_df.to_csv(out_path, index=False, encoding='utf-8') wide_df.head()
toc_report_feb_2019_part2.ipynb
JamesSample/icpw
mit
Throughout the tutorial we'll want to visualize GPs. So we define a helper function for plotting:
# note that this helper function does three different things: # (i) plots the observed data; # (ii) plots the predictions from the learned GP after conditioning on data; # (iii) plots samples from the GP prior (with no conditioning on observed data) def plot(plot_observed_data=False, plot_predictions=False, n_prior_samples=0, model=None, kernel=None, n_test=500): plt.figure(figsize=(12, 6)) if plot_observed_data: plt.plot(X.numpy(), y.numpy(), 'kx') if plot_predictions: Xtest = torch.linspace(-0.5, 5.5, n_test) # test inputs # compute predictive mean and variance with torch.no_grad(): if type(model) == gp.models.VariationalSparseGP: mean, cov = model(Xtest, full_cov=True) else: mean, cov = model(Xtest, full_cov=True, noiseless=False) sd = cov.diag().sqrt() # standard deviation at each input point x plt.plot(Xtest.numpy(), mean.numpy(), 'r', lw=2) # plot the mean plt.fill_between(Xtest.numpy(), # plot the two-sigma uncertainty about the mean (mean - 2.0 * sd).numpy(), (mean + 2.0 * sd).numpy(), color='C0', alpha=0.3) if n_prior_samples > 0: # plot samples from the GP prior Xtest = torch.linspace(-0.5, 5.5, n_test) # test inputs noise = (model.noise if type(model) != gp.models.VariationalSparseGP else model.likelihood.variance) cov = kernel.forward(Xtest) + noise.expand(n_test).diag() samples = dist.MultivariateNormal(torch.zeros(n_test), covariance_matrix=cov)\ .sample(sample_shape=(n_prior_samples,)) plt.plot(Xtest.numpy(), samples.numpy().T, lw=2, alpha=0.4) plt.xlim(-0.5, 5.5)
tutorial/source/gp.ipynb
uber/pyro
apache-2.0
Data The data consist of $20$ points sampled from $$ y = 0.5\sin(3x) + \epsilon, \quad \epsilon \sim \mathcal{N}(0, 0.2).$$ with $x$ sampled uniformly from the interval $[0, 5]$.
N = 20 X = dist.Uniform(0.0, 5.0).sample(sample_shape=(N,)) y = 0.5 * torch.sin(3*X) + dist.Normal(0.0, 0.2).sample(sample_shape=(N,)) plot(plot_observed_data=True) # let's plot the observed data
tutorial/source/gp.ipynb
uber/pyro
apache-2.0
Define model First we define a RBF kernel, specifying the values of the two hyperparameters variance and lengthscale. Then we construct a GPRegression object. Here we feed in another hyperparameter, noise, that corresponds to $\epsilon$ above.
kernel = gp.kernels.RBF(input_dim=1, variance=torch.tensor(5.), lengthscale=torch.tensor(10.)) gpr = gp.models.GPRegression(X, y, kernel, noise=torch.tensor(1.))
tutorial/source/gp.ipynb
uber/pyro
apache-2.0
Let's see what samples from this GP function prior look like. Note that this is before we've conditioned on the data. The shape these functions take—their smoothness, their vertical scale, etc.—is controlled by the GP kernel.
plot(model=gpr, kernel=kernel, n_prior_samples=2)
tutorial/source/gp.ipynb
uber/pyro
apache-2.0
For example, if we make variance and noise smaller we will see function samples with smaller vertical amplitude:
kernel2 = gp.kernels.RBF(input_dim=1, variance=torch.tensor(0.1), lengthscale=torch.tensor(10.)) gpr2 = gp.models.GPRegression(X, y, kernel2, noise=torch.tensor(0.1)) plot(model=gpr2, kernel=kernel2, n_prior_samples=2)
tutorial/source/gp.ipynb
uber/pyro
apache-2.0
Inference In the above we set the kernel hyperparameters by hand. If we want to learn the hyperparameters from the data, we need to do inference. In the simplest (conjugate) case we do gradient ascent on the log marginal likelihood. In pyro.contrib.gp, we can use any PyTorch optimizer to optimize parameters of a model. In addition, we need a loss function which takes inputs are the pair model and guide and returns an ELBO loss (see SVI Part I tutorial).
optimizer = torch.optim.Adam(gpr.parameters(), lr=0.005) loss_fn = pyro.infer.Trace_ELBO().differentiable_loss losses = [] num_steps = 2500 if not smoke_test else 2 for i in range(num_steps): optimizer.zero_grad() loss = loss_fn(gpr.model, gpr.guide) loss.backward() optimizer.step() losses.append(loss.item()) # let's plot the loss curve after 2500 steps of training plt.plot(losses);
tutorial/source/gp.ipynb
uber/pyro
apache-2.0
Let's see if we're learned anything reasonable:
plot(model=gpr, plot_observed_data=True, plot_predictions=True)
tutorial/source/gp.ipynb
uber/pyro
apache-2.0
Here the thick red curve is the mean prediction and the blue band represents the 2-sigma uncertainty around the mean. It seems we learned reasonable kernel hyperparameters, as both the mean and uncertainty give a reasonable fit to the data. (Note that learning could have easily gone wrong if we e.g. chose too large of a learning rate or chose bad initital hyperparameters.) Note that the kernel is only well-defined if variance and lengthscale are positive. Under the hood Pyro is using PyTorch constraints (see docs) to ensure that hyperparameters are constrained to the appropriate domains. Let's see the constrained values we've learned.
gpr.kernel.variance.item() gpr.kernel.lengthscale.item() gpr.noise.item()
tutorial/source/gp.ipynb
uber/pyro
apache-2.0
The period of the sinusoid that generated the data is $T = 2\pi/3 \approx 2.09$ so learning a lengthscale that's approximiately equal to a quarter period makes sense. Fit the model using MAP We need to define priors for the hyperparameters.
# Define the same model as before. pyro.clear_param_store() kernel = gp.kernels.RBF(input_dim=1, variance=torch.tensor(5.), lengthscale=torch.tensor(10.)) gpr = gp.models.GPRegression(X, y, kernel, noise=torch.tensor(1.)) # note that our priors have support on the positive reals gpr.kernel.lengthscale = pyro.nn.PyroSample(dist.LogNormal(0.0, 1.0)) gpr.kernel.variance = pyro.nn.PyroSample(dist.LogNormal(0.0, 1.0)) optimizer = torch.optim.Adam(gpr.parameters(), lr=0.005) loss_fn = pyro.infer.Trace_ELBO().differentiable_loss losses = [] num_steps = 2500 if not smoke_test else 2 for i in range(num_steps): optimizer.zero_grad() loss = loss_fn(gpr.model, gpr.guide) loss.backward() optimizer.step() losses.append(loss.item()) plt.plot(losses); plot(model=gpr, plot_observed_data=True, plot_predictions=True)
tutorial/source/gp.ipynb
uber/pyro
apache-2.0
Let's inspect the hyperparameters we've learned:
# tell gpr that we want to get samples from guides gpr.set_mode('guide') print('variance = {}'.format(gpr.kernel.variance)) print('lengthscale = {}'.format(gpr.kernel.lengthscale)) print('noise = {}'.format(gpr.noise))
tutorial/source/gp.ipynb
uber/pyro
apache-2.0
Note that the MAP values are different from the MLE values due to the prior. Sparse GPs For large datasets computing the log marginal likelihood is costly due to the expensive matrix operations involved (e.g. see Section 2.2 of [1]). A variety of so-called 'sparse' variational methods have been developed to make GPs viable for larger datasets. This is a big area of research and we won't be going into all the details. Instead we quickly show how we can use SparseGPRegression in pyro.contrib.gp to make use of these methods. First, we generate more data.
N = 1000 X = dist.Uniform(0.0, 5.0).sample(sample_shape=(N,)) y = 0.5 * torch.sin(3*X) + dist.Normal(0.0, 0.2).sample(sample_shape=(N,)) plot(plot_observed_data=True)
tutorial/source/gp.ipynb
uber/pyro
apache-2.0
Using the sparse GP is very similar to using the basic GP used above. We just need to add an extra parameter $X_u$ (the inducing points).
# initialize the inducing inputs Xu = torch.arange(20.) / 4.0 # initialize the kernel and model pyro.clear_param_store() kernel = gp.kernels.RBF(input_dim=1) # we increase the jitter for better numerical stability sgpr = gp.models.SparseGPRegression(X, y, kernel, Xu=Xu, jitter=1.0e-5) # the way we setup inference is similar to above optimizer = torch.optim.Adam(sgpr.parameters(), lr=0.005) loss_fn = pyro.infer.Trace_ELBO().differentiable_loss losses = [] num_steps = 2500 if not smoke_test else 2 for i in range(num_steps): optimizer.zero_grad() loss = loss_fn(sgpr.model, sgpr.guide) loss.backward() optimizer.step() losses.append(loss.item()) plt.plot(losses); # let's look at the inducing points we've learned print("inducing points:\n{}".format(sgpr.Xu.data.numpy())) # and plot the predictions from the sparse GP plot(model=sgpr, plot_observed_data=True, plot_predictions=True)
tutorial/source/gp.ipynb
uber/pyro
apache-2.0
We can see that the model learns a reasonable fit to the data. There are three different sparse approximations that are currently implemented in Pyro: "DTC" (Deterministic Training Conditional) "FITC" (Fully Independent Training Conditional) "VFE" (Variational Free Energy) By default, SparseGPRegression will use "VFE" as the inference method. We can use other methods by passing a different approx flag to SparseGPRegression. More Sparse GPs Both GPRegression and SparseGPRegression above are limited to Gaussian likelihoods. We can use other likelihoods with GPs—for example, we can use the Bernoulli likelihood for classification problems—but the inference problem becomes more difficult. In this section, we show how to use the VariationalSparseGP module, which can handle non-Gaussian likelihoods. So we can compare to what we've done above, we're still going to use a Gaussian likelihood. The point is that the inference that's being done under the hood can support other likelihoods.
# initialize the inducing inputs Xu = torch.arange(10.) / 2.0 # initialize the kernel, likelihood, and model pyro.clear_param_store() kernel = gp.kernels.RBF(input_dim=1) likelihood = gp.likelihoods.Gaussian() # turn on "whiten" flag for more stable optimization vsgp = gp.models.VariationalSparseGP(X, y, kernel, Xu=Xu, likelihood=likelihood, whiten=True) # instead of defining our own training loop, we will # use the built-in support provided by the GP module num_steps = 1500 if not smoke_test else 2 losses = gp.util.train(vsgp, num_steps=num_steps) plt.plot(losses); plot(model=vsgp, plot_observed_data=True, plot_predictions=True)
tutorial/source/gp.ipynb
uber/pyro
apache-2.0
<span class="exercize">Exercise: RGB intensity plot</span> Plot the intensity of each channel of the image along a given row. Start with the following template:
def plot_intensity(image, row): # Fill in the three lines below red_values = ... green_values = ... blue_values = ... plt.figure() plt.plot(red_values) plt.plot(green_values) plt.plot(blue_values) pass
scikit_image/lectures/00_images_are_arrays.v3.ipynb
M-R-Houghton/euroscipy_2015
mit
K-Means Clustering Motivation Given a set of objects, we specify that we want $k$ clusters. Each cluster has a mean representing it, and we assign each point to the clusters based on which cluster mean its closest to. For each point, the reconstruction error is defined to be its distance to its cluster mean. This gives us the total reconstruction error, the sum of all the individual reconstruction errors, as an error value that we want to minimize. Formally, we have a set of object vectors ${x_n}{n = 1}^N$ and a set of $K$ cluster means ${\mu_k}{k = 1}^K$, where $x_n, \mu_k \in \mathbb{R}^D$. We represent each object's cluster assignment with the $K$ dimensional vector $r_n$, where $r_{nk} = 1$ if $x_n$ is in cluster $k$, and 0 otherwise. This gives us the individual reconstruction error $$J_n(r_n, {\mu_k}) = \sum_{k = 1}^K r_{nk} \cdot |x_n - \mu_k|^2$$ and the total reconstruction error $$J({r_n}, {\mu_k}) = \sum_{n = 1}^N \sum_{k = 1}^K r_{nk} \cdot |x_n - \mu_k|^2$$ As you can see, the reconstruction error on a set of objects is a function of assignments and means. How would you go about choosing the assignments ${r_n}$ and means ${\mu_k}$ that minimize the reconstruction error? Lloyd's Algorithm proposes a two step error minimization. Step 1: minimize $J$ by updating the $r_n$, assigning each $x_n$ to its closest cluster mean. Step 2: minimize $J$ by recalculting the $\mu_k$ to be the average over all vectors assigned to cluster $k$. Repeating this process until the assignments do not change, the algorithm will converge upon a local minima. The algorithm can be optimized by starting with reasonable distributions for cluster centers rather than choosing randomly (K-Means ++) or adding the condition that the cluster mean must be a point (K-Medoids). Application SKLearn has a K-Means implementation that is documented here. In this example, we use K-Means to classify flowers into 3 classes based on their properties. Note that choosing the right $k$ is crucial. The true number of categories within the dataset is 3, so with this knowlegde, we can let $k$ be 3 to get the most logical split. However, if we didn't know that the dataset consisted of three types of flowers, choosing $k$ to be a value like 7 might result in less logical clusters.
import numpy as np import matplotlib.pyplot as plt from mpl_toolkits.mplot3d import Axes3D from sklearn.cluster import KMeans from sklearn.cluster import AgglomerativeClustering from sklearn import datasets centers = [[1, 1], [-1, -1], [1, -1]] iris = datasets.load_iris() X = iris.data y = iris.target estimators = {'K-Means 3': KMeans(n_clusters=3), 'K-Means 8': KMeans(n_clusters=7)} fignum = 1 for name, est in estimators.items(): fig = plt.figure(fignum, figsize=(4, 3)) plt.clf() ax = Axes3D(fig, rect=[0, 0, .95, 1], elev=48, azim=134) plt.cla() est.fit(X) labels = est.labels_ ax.scatter(X[:, 3], X[:, 0], X[:, 2], c=labels.astype(np.float)) ax.w_xaxis.set_ticklabels([]) ax.w_yaxis.set_ticklabels([]) ax.w_zaxis.set_ticklabels([]) ax.set_xlabel('Petal width') ax.set_ylabel('Sepal length') ax.set_zlabel('Petal length') ax.set_title(name) fignum = fignum + 1 plt.show()
3/1-Clustering.ipynb
dataventures/workshops
mit
Hierarchical Clustering Motivation K-Means is one of the most common and simple clustering methods, but it has a couple of key limitations. First off, it is nondeterministic as it depends on the initial choice of cluster means, and Lloyd's Algorithm only arrives upon local minima rather than the global minimum. Furthermore, the algorithm requires you to decide what $k$ is, as we saw earlier. Finally, K-Means can be inflexible, as the only way cluster centers are derived is through the mean distance from all of the points assigned to the cluster. Because of this construction, K-Means doesn't perform well on clusters that are connected but not compact. Hierarchical clustering solves many of these issues. The motivation between hierarchical clustering is building up clusters as a hierarchy. All objects start out in their individual groups, and at each level, the groups that are a certain distance apart are joined to form a larger group. A variety of different distance metrics can be used in building up these groups to result in different types of hierarchical clusters. A dendrogram is a way of visualizing the groups as they are aggregated together in the hierarchy. As you can see, hierarchical clustering not only resolves some of the problems explained concerning K-Means - it also prevents a very nice way of representing the structure of the clusters, identifying subclusters within the clusters. Application Once again, we can use the SKLearn hierarchical clustering implementation, in the same way as we used clustering. However, there are many resources on the page documenting the different distance metrics that you can use.
estimators = {'Hierarchical 3': AgglomerativeClustering(n_clusters=3)} fignum = 1 for name, est in estimators.items(): fig = plt.figure(fignum, figsize=(4, 3)) plt.clf() ax = Axes3D(fig, rect=[0, 0, .95, 1], elev=48, azim=134) plt.cla() est.fit(X) labels = est.labels_ ax.scatter(X[:, 3], X[:, 0], X[:, 2], c=labels.astype(np.float)) ax.w_xaxis.set_ticklabels([]) ax.w_yaxis.set_ticklabels([]) ax.w_zaxis.set_ticklabels([]) ax.set_xlabel('Petal width') ax.set_ylabel('Sepal length') ax.set_zlabel('Petal length') ax.set_title(name) fignum = fignum + 1 plt.show()
3/1-Clustering.ipynb
dataventures/workshops
mit
Challenge Look at the other clustering methods provided by SKLearn, and consider their use cases. Pick three to run on the sample iris dataset that you think will produce the most accurate clusters. Tune parameters and look at the different options to try and get your clusters as close to the ground truth as possible. This challenge hopes to help you familiarize yourself with the documentation that SKLearn provides and figure out the best clustering method given a problem to solve. We only covered two clustering models in depth to give you a taste of what clustering can do, but there many more clustering models out there all with their own optimal use cases.
np.random.seed(5) centers = [[1, 1], [-1, -1], [1, -1]] iris = datasets.load_iris() X = iris.data y = iris.target # TODO: choose three additional estimators here that will give the best results. estimators = {'Hierarchical 3': AgglomerativeClustering(n_clusters=3), 'K-Means 3': KMeans(n_clusters=3), 'K-Means 7': KMeans(n_clusters=7)} fignum = 1 for name, est in estimators.items(): fig = plt.figure(fignum, figsize=(4, 3)) plt.clf() ax = Axes3D(fig, rect=[0, 0, .95, 1], elev=48, azim=134) plt.cla() est.fit(X) labels = est.labels_ ax.scatter(X[:, 3], X[:, 0], X[:, 2], c=labels.astype(np.float)) ax.w_xaxis.set_ticklabels([]) ax.w_yaxis.set_ticklabels([]) ax.w_zaxis.set_ticklabels([]) ax.set_xlabel('Petal width') ax.set_ylabel('Sepal length') ax.set_zlabel('Petal length') ax.set_title(name) fignum = fignum + 1 # Plot the ground truth fig = plt.figure(fignum, figsize=(4, 3)) plt.clf() ax = Axes3D(fig, rect=[0, 0, .95, 1], elev=48, azim=134) plt.cla() for name, label in [('Setosa', 0), ('Versicolour', 1), ('Virginica', 2)]: ax.text3D(X[y == label, 3].mean(), X[y == label, 0].mean() + 1.5, X[y == label, 2].mean(), name, horizontalalignment='center', bbox=dict(alpha=.5, edgecolor='w', facecolor='w')) y = np.choose(y, [1, 2, 0]).astype(np.float) ax.scatter(X[:, 3], X[:, 0], X[:, 2], c=y) ax.w_xaxis.set_ticklabels([]) ax.w_yaxis.set_ticklabels([]) ax.w_zaxis.set_ticklabels([]) ax.set_xlabel('Petal width') ax.set_ylabel('Sepal length') ax.set_zlabel('Petal length') ax.set_title('Ground Truth') plt.show()
3/1-Clustering.ipynb
dataventures/workshops
mit
Visualize Data View a sample from the dataset. You do not need to modify this section.
import random import numpy as np import matplotlib.pyplot as plt %matplotlib inline index = random.randint(1, len(X_train)) image = X_train[index].squeeze() plt.figure(figsize=(1,1)) plt.imshow(image, cmap="gray") print(y_train[index])
CarND-LetNet/LeNet-Lab.ipynb
swirlingsand/self-driving-car-nanodegree-nd013
mit
Setup TensorFlow The EPOCH and BATCH_SIZE values affect the training speed and model accuracy. You do not need to modify this section.
import tensorflow as tf EPOCHS = 20 BATCH_SIZE = 64
CarND-LetNet/LeNet-Lab.ipynb
swirlingsand/self-driving-car-nanodegree-nd013
mit
TODO: Implement LeNet-5 Implement the LeNet-5 neural network architecture. This is the only cell you need to edit. Input The LeNet architecture accepts a 32x32xC image as input, where C is the number of color channels. Since MNIST images are grayscale, C is 1 in this case. Architecture Layer 1: Convolutional. The output shape should be 28x28x6. Activation. Your choice of activation function. Pooling. The output shape should be 14x14x6. Layer 2: Convolutional. The output shape should be 10x10x16. Activation. Your choice of activation function. Pooling. The output shape should be 5x5x16. Flatten. Flatten the output shape of the final pooling layer such that it's 1D instead of 3D. The easiest way to do is by using tf.contrib.layers.flatten, which is already imported for you. Layer 3: Fully Connected. This should have 120 outputs. Activation. Your choice of activation function. Layer 4: Fully Connected. This should have 84 outputs. Activation. Your choice of activation function. Layer 5: Fully Connected (Logits). This should have 10 outputs. Output Return the result of the 2nd fully connected layer.
from tensorflow.contrib.layers import flatten def LeNet(x): # Hyperparameters mu = 0 sigma = 0.1 # Layer 1: Convolutional. Input = 32x32x1. Output = 28x28x6. convolutional_1_weights = tf.Variable(tf.truncated_normal(shape=(5,5,1,6), mean = mu, stddev = sigma)) convolutional_1_bias = tf.Variable(tf.zeros(6)) # set to 6 as output is 6 convolutional_1 = tf.nn.conv2d(x, convolutional_1_weights, strides=[1,1,1,1], padding='VALID') + convolutional_1_bias # Activation. convolutional_1 = tf.nn.relu(convolutional_1) # Pooling. Input = 28x28x6. Output = 14x14x6. # Stride of 2 reduces output by 2 convolutional_1 = tf.nn.max_pool(convolutional_1, ksize=[1,2,2,1], strides=[1,2,2,1], padding='VALID') ## END Layer 1 # Layer 2: Convolutional. Output = 10x10x16. convolutional_2_weights = tf.Variable(tf.truncated_normal(shape=(5,5,6,16), mean = mu, stddev = sigma)) convolutional_2_bias = tf.Variable(tf.zeros(16)) # pass the first layer convolutional_2 = tf.nn.conv2d(convolutional_1, convolutional_2_weights, strides=[1,1,1,1], padding='VALID' ) + convolutional_2_bias # Activation. convolutional_2 = tf.nn.relu(convolutional_2) # Pooling. Input = 10x10x16. Output = 5x5x16. convolutional_2 = tf.nn.max_pool(convolutional_2, ksize=[1,2,2,1], strides=[1,2,2,1], padding='VALID') # Flatten. Input = 5x5x16. Output = 400. fully_connected_0 = flatten(convolutional_2) ### End Layer 2 # Layer 3: Fully Connected. Input = 400. Output = 120. fully_connected_1_weights = tf.Variable(tf.truncated_normal(shape=(400,120), mean=mu, stddev=sigma)) fully_connected_1_bias = tf.Variable(tf.zeros(120)) fully_connected_1 = tf.matmul(fully_connected_0, fully_connected_1_weights) + fully_connected_1_bias # Activation. fully_connected_1 = tf.nn.relu(fully_connected_1) # Layer 4: Fully Connected. Input = 120. Output = 84. # shape = (input, output) fully_connected_2_weights = tf.Variable(tf.truncated_normal(shape=(120,84), mean=mu, stddev=sigma)) fully_connected_2_bias = tf.Variable(tf.zeros(84)) fully_connected_2 = tf.matmul(fully_connected_1, fully_connected_2_weights) + fully_connected_2_bias # Activation. fully_connected_2 = tf.nn.relu(fully_connected_2) # Layer 5: Fully Connected. Input = 84. Output = 10. fully_connected_3_weights = tf.Variable(tf.truncated_normal(shape=(84,10), mean=mu, stddev=sigma)) fully_connected_3_bias = tf.Variable(tf.zeros(10)) logits = tf.matmul(fully_connected_2, fully_connected_3_weights) + fully_connected_3_bias return logits
CarND-LetNet/LeNet-Lab.ipynb
swirlingsand/self-driving-car-nanodegree-nd013
mit
Features and Labels Train LeNet to classify MNIST data. x is a placeholder for a batch of input images. y is a placeholder for a batch of output labels. You do not need to modify this section.
x = tf.placeholder(tf.float32, (None, 32, 32, 1)) y = tf.placeholder(tf.int32, (None)) # added this to fix bug CUDA_ERROR_ILLEGAL_ADDRESS / kernal crash with tf.device('/cpu:0'): one_hot_y = tf.one_hot(y, 10)
CarND-LetNet/LeNet-Lab.ipynb
swirlingsand/self-driving-car-nanodegree-nd013
mit
Exercício 2: Crie uma função para determinar se um ano é bissexto. O ano é bissexto se for múltiplo de 400 ou múltiplo de 4 e não múltiplo de 100. Utilize o operador de resto da divisão (%) para determinar se um número é múltiplo de outro.
print (Bissexto(2000)) # True print (Bissexto(2004)) # True print (Bissexto(1900)) # False
ListaEX_02.ipynb
folivetti/PIPYTHON
mit
Exercício 3: Crie uma função que receba três valores x, y, z como parâmetros e retorne-os em ordem crescente. O Python permite que você faça comparações relacionais entre as 3 variáveis em uma única instrução: Python x &lt; y &lt; z
print (Crescente(1,2,3)) print (Crescente(1,3,2)) print (Crescente(2,1,3)) print (Crescente(2,3,1)) print (Crescente(3,1,2)) print (Crescente(3,2,1)) print (Crescente(1,2,2))
ListaEX_02.ipynb
folivetti/PIPYTHON
mit
Exercício 4: O peso ideial de uma pessoa segue a seguinte tabela: |Altura|Peso Homem|Peso Mulher| |--|--|--| |1,5 m|50 kg|48 kg| |1,7 m|74 kg|68 kg| |1,9 m|98 kg|88 kg| |2,1 m|122 kg|108 kg| Faça uma função que receba como parâmetro o gênero, altura e peso da pessoa e retorne True se ela está com o peso ideal.
print (PesoIdeal("masculino", 1.87, 75)) # True print (PesoIdeal("masculino", 1.92, 200)) # False print (PesoIdeal("feminino", 1.87, 90)) # False print (PesoIdeal("feminino", 1.6, 40)) # True
ListaEX_02.ipynb
folivetti/PIPYTHON
mit
Exercício 5: Crie uma função que receba as coordenadas cx, cy, o raio r correspondentes ao centro e raio de uma circunferência e receba também coordenadas x, y de um ponto. A função deve retornar True se o ponto está dentro da circunferência e False, caso contrário.
print (Circunferencia(0,0,10,5,5) ) # True print (Circunferencia(0,0,10,15,5)) # False
ListaEX_02.ipynb
folivetti/PIPYTHON
mit
Exercício 5b: Crie uma função chamada Circunferencia que recebe como entrada as coordenadas do centro cx e cy e o raio r da circunferência. Essa função deve criar uma outra função chamada VerificaPonto que recebe como entrada as coordenadas x e y de um ponto e retorna True caso o ponto esteja dentro da circunferência, ou False caso contrário. A função Circunferencia deve retornar a função Verifica.
Verifica = Circunferencia(0,0,10) print (Verifica(5,5)) print (Verifica(15,5))
ListaEX_02.ipynb
folivetti/PIPYTHON
mit
Exercício 6: A Estrela da Morte é uma arma desenvolvida pelo império para dominar o universo. Um telescópio digital foi desenvolvido pelas forças rebeldes para detectar o local dela. Mas tal telescópio só consegue mostrar o contorno das circunferências encontradas indicando o centro e o raio delas. Sabendo que uma Estrela da Morte é definida por: O raio de uma circunferência for 10 vezes maior que o raio da outra A circunferência menor se encontrar totalmente dentro da maior O contorno da circunferência menor está a pelo menos 2 unidades de distância do contorno da maior Faça uma função (utilizando os exercícios anteriores), para detectar se duas circunferências definidas por (cx1,cy1,r1) e (cx2,cy2,r2) podem formar uma Estrela da Morte. Bônus: plote as circunferências utilizando a biblioteca gráfica.
import math print (EstrelaMorte(0,0,20,3,3,10)) print (EstrelaMorte(0,0,200,3,3,10)) print (EstrelaMorte(0,0,200,195,3,10))
ListaEX_02.ipynb
folivetti/PIPYTHON
mit
Exercício 7: Crie uma função para determinar as raízes reais da equação do segundo grau: $$ a.x^{2} + b.x + c = 0 $$ Faça com que a função retorne: Uma raíz quando $b^2 = 4ac$ Raízes complexas quando $b^2 < 4ac$ Raízes reais, caso contrário Utilize a biblioteca cmath para calcular a raíz quadrada para números complexos.
import math, cmath print (RaizSegundoGrau(2,4,2) ) # -1.0 print (RaizSegundoGrau(2,2,2)) # -0.5 - 0.9j, -0.5+0.9j print (RaizSegundoGrau(2,6,2)) # -2.6, -0.38
ListaEX_02.ipynb
folivetti/PIPYTHON
mit
Discriminator and Generator Losses Now we need to calculate the losses, which is a little tricky. For the discriminator, the total loss is the sum of the losses for real and fake images, d_loss = d_loss_real + d_loss_fake. The losses will by sigmoid cross-entropys, which we can get with tf.nn.sigmoid_cross_entropy_with_logits. We'll also wrap that in tf.reduce_mean to get the mean for all the images in the batch. So the losses will look something like python tf.reduce_mean(tf.nn.sigmoid_cross_entropy_with_logits(logits=logits, labels=labels)) For the real image logits, we'll use d_logits_real which we got from the discriminator in the cell above. For the labels, we want them to be all ones, since these are all real images. To help the discriminator generalize better, the labels are reduced a bit from 1.0 to 0.9, for example, using the parameter smooth. This is known as label smoothing, typically used with classifiers to improve performance. In TensorFlow, it looks something like labels = tf.ones_like(tensor) * (1 - smooth) The discriminator loss for the fake data is similar. The logits are d_logits_fake, which we got from passing the generator output to the discriminator. These fake logits are used with labels of all zeros. Remember that we want the discriminator to output 1 for real images and 0 for fake images, so we need to set up the losses to reflect that. Finally, the generator losses are using d_logits_fake, the fake image logits. But, now the labels are all ones. The generator is trying to fool the discriminator, so it wants to discriminator to output ones for fake images.
# Calculate losses d_loss_real = tf.reduce_mean( tf.nn.sigmoid_cross_entropy_with_logits(logits=d_logits_real, labels=tf.ones_like(d_logits_real) * (1 - smooth))) d_loss_fake = tf.reduce_mean( tf.nn.sigmoid_cross_entropy_with_logits(logits=d_logits_fake, labels=tf.zeros_like(d_logits_fake))) d_loss = d_loss_real + d_loss_fake g_loss = tf.reduce_mean( tf.nn.sigmoid_cross_entropy_with_logits(logits=d_logits_fake, labels=tf.ones_like(d_logits_fake)))
gan_mnist/Intro_to_GANs_Solution.ipynb
udacity/deep-learning
mit
1. Data We should now have all the data loaded, named as it was before. As a reminder, these are the NGC numbers of the galaxies in the data set:
ngc_numbers
tutorials/cepheids_all_galaxies.ipynb
KIPAC/StatisticalMethods
gpl-2.0
2. Independent fits for each galaxy This class will package up the fitting using the "4b" method from the previous notebook (emcee plus analytic integration). In particular, it relies on the log_prior, log_posterior and log_likelihood_B functions (as well as the data, among other previous global-scope definitions). If you want to use a different approach instead, feel free. There are various defaults here (e.g. nsteps, burn, maxlag) that you might want to tweak, but in principle they should work well enough for this problem.
class singleFitter: def __init__(self, ngc): ''' ngc: NGC identifier of the galaxy to fit ''' self.ngc = ngc self.data = data[ngc] # from global scope # reproducing this for paranoia's sake self.param_names = ['a', 'b', 'sigma'] self.param_labels = [r'$a$', r'$b$', r'$\sigma$'] def _logpost_vecarg_B(self, pvec): params = {name:pvec[i] for i,name in enumerate(self.param_names)} return log_posterior(self.data, log_likelihood_B, **params) def fit(self, guess, nsteps=7500): npars = len(self.param_names) nwalkers = 2*npars sampler = emcee.EnsembleSampler(nwalkers, npars, self._logpost_vecarg_B) start = np.array([np.array(guess)*(1.0 + 0.01*np.random.randn(npars)) for j in range(nwalkers)]) %time sampler.run_mcmc(start, nsteps) plt.rcParams['figure.figsize'] = (16.0, 3.0*npars) fig, ax = plt.subplots(npars, 1); cr.plot_traces(sampler.chain[:min(8,nwalkers),:,:], ax, labels=self.param_labels); self.sampler = sampler self.nwalkers = nwalkers self.npars = npars self.nsteps = nsteps def burnin(self, burn=1000, maxlag=1000): tmp_samples = [self.sampler.chain[i,burn:,:] for i in range(self.nwalkers)] print('R =', cr.GelmanRubinR(tmp_samples)) print('neff =', cr.effective_samples(tmp_samples, maxlag=maxlag)) print('NB: Since walkers are not independent, these will be optimistic!') self.samples = self.sampler.chain[:,burn:,:].reshape(self.nwalkers*(self.nsteps-burn), self.npars) del self.sampler # make it simpler/more readable to access the parameter samples # (could have been fancier and more robust by using self.param_names here) self.a = self.samples[:,0] self.b = self.samples[:,1] self.sigma = self.samples[:,2] def thin(self, thinto=1000): j = np.round(np.linspace(0, self.samples.shape[0]-1, thinto)).astype(int) self.a = self.samples[j,0] self.b = self.samples[j,1] self.sigma = self.samples[j,2]
tutorials/cepheids_all_galaxies.ipynb
KIPAC/StatisticalMethods
gpl-2.0
Let's set up and run each of these fits, which hopefully shouldn't take too long. As always, you are responsible for looking over the trace plots and making sure everything is ok.
independent_fits = [singleFitter(ngc) for ngc in ngc_numbers] independent_fits[0].fit(guessvec) independent_fits[1].fit(guessvec) independent_fits[2].fit(guessvec) independent_fits[3].fit(guessvec) independent_fits[4].fit(guessvec) independent_fits[5].fit(guessvec) independent_fits[6].fit(guessvec) independent_fits[7].fit(guessvec) independent_fits[8].fit(guessvec)
tutorials/cepheids_all_galaxies.ipynb
KIPAC/StatisticalMethods
gpl-2.0
Based on the plots above, remove some burn-in. Check that the quantitative diagnostics are acceptable as they are printed out.
TBC(1) # burn = ... for f in independent_fits: print('NGC', f.ngc) f.burnin(burn=burn) # optionally, set maxlag here also print('')
tutorials/cepheids_all_galaxies.ipynb
KIPAC/StatisticalMethods
gpl-2.0
Now we'll use pygtc to plot all the individual posteriors, and see how they compare.
plotGTC([f.samples for f in independent_fits], paramNames=param_labels, chainLabels=['NGC'+str(f.ngc) for f in independent_fits], figureSize=8, customLabelFont={'size':12}, customTickFont={'size':12}, customLegendFont={'size':16});
tutorials/cepheids_all_galaxies.ipynb
KIPAC/StatisticalMethods
gpl-2.0
Visually, would you say that it's likely that all the scaling parameters, or some subset, are universal? TBC commentary 2. A hierarchical model for all galaxies On the basis of the last section, it should be clear that at least one of the scaling parameters in question is not universal amongst galaxies in the data set, and at least one may well be. Further, it isn't obvious that there is any particular correlation or anticorrelation between the galaxy-to-galaxy differences in these parameters. If we were doing this as a research project, the latter would be an important thing to investigate, along with possible physical explanations for outliers. But we'll keep it relatively simple here. Let's add a level of hierarchy to the model by assuming that the values of $a$ for each galaxy come from a normal distribution with mean $\mu_a$ and standard deviation $\tau_a$, and similarly $b$ and $\sigma$ come from their own normal distributions. We will not consider the possibility that, for example, all 3 come from a joint, multivariate normal distribution with possible correlations between them, although that could easily be justified. In practice, fitting for independent distributions for each parameter is a reasonable first step, much as fitting each galaxies data independently in Section 1 was a reasonable zeroth step. Make the relatively simple modifications to your PGM and probabilistic expressions from Section 2 of the previous notebook to accomodate this model. TBC probabilistic expressions and PGM We will adopt wide, uniform priors on the new hyperparameters of the model, to make life easier. 3. Strategy Even more than last time, the total number of free parameters in the model is, technically, staggering. We already know some ways of reducing the overhead associated with each galaxy. For example, using the analytic integration approach from the previous notebook, we have have only 3 parameters left to sample per galaxy, for a total of $3N_\mathrm{gal}+6=33$ parameters. Brute force sampling of these 33 parameters is not unthinkable, although in practice it may or may not be a headache. Another option is to make use of the samples we obtained in Section 1. These are samples of the posterior (for each galaxy) when the priors on the scaling parameters are very wide and uniform, i.e. constant over the domain where the likelihood is significantly non-zero. They are, therefore, also samples from a PDF that is proportional to the likelihood function. To see why that might be helpful, consider the posterior for the hyperparameters of the new model, $\vec{\alpha} = (\mu_a,\tau_a,\mu_b,\tau_b,\mu_\sigma,\tau_\sigma)$, marginalized over all the pesky $a_i$, $b_i$ and $\sigma_i$ parameters: $p(\vec{\alpha}|\mathrm{data}) \propto p(\vec{\alpha}) \prod_{i=1}^{N_\mathrm{gal}} \int da_i db_i d\sigma_i \, p(a_i,b_i,\sigma_i|\vec{\alpha}) \, p(\mathrm{data}|a_i,b_i,\sigma_i)$. To restate what we said above, our individual fits (with uniform priors) give us samples from PDFs $q(a_i,b_i,\sigma_i|\mathrm{data}) \propto p(\mathrm{data}|a_i,b_i,\sigma_i)$. We can do this integral by simple monte carlo as $p(\vec{\alpha}|\mathrm{data}) \propto p(\vec{\alpha}) \prod_{i=1}^{N_\mathrm{gal}} \frac{1}{n_i}\sum_{k=1}^{n_i} p(a_{ik},b_{ik},\sigma_{ik}|\vec{\alpha})$, where the $n_i$ samples of $(a_{ik},b_{ik},\sigma_{ik}) \sim q(a_i,b_i,\sigma_i|\mathrm{data})$. Our samples from Section 1 happen to satisfy this. (Had we used a non-uniform prior before, we could do something similar, but would need to divide by that prior density in the sum above.) This approach has the advantage that we only need to sample the 6 parameters in $\vec{\alpha}$ to constrain our hierarchical model, since a lot of work is already done. On the other hand, carrying out the sums for each galaxy can become its own numerical challenge. If we're really stuck in terms of computing power, we could consider a more compressed version of this, by approximating the posterior from each individual galaxy fit as a 3-dimensional Gaussian, or some other simple function. This approximation may or may not be a significant concession on our parts; here it's clearly a bit sketchy in the case of $\sigma$, which has a hard cut at $\sigma=0$ that at least one individual galaxy is consistent with. But, with this approximation, the integral in the first equation above could be done analytically, much as we simplified things for the single-galaxy analysis. Finally, not that this is an exhaustive list, we could again consider whether conjugate Gibbs sampling is an option. Since the normal distribution has nice conjugacies, we could consider a scheme where we sample $\mu_a|\tau_a,{a_i}$, then $\tau_a|\mu_a,{a_i}$, then similarly for $\mu_b$, $\tau_b$, $\mu_\sigma$ and $\tau_\sigma$, and then all the individual $a_i$, $b_i$, $\sigma_i$ and $M_{ij}$ parameters as we did with LRGS in the previous notebook (accounting for the normal "prior" on $a_i$ given by $\mu_a$ and $\tau_a$, etc.). Or we could conjugate-Gibbs sample the $\mu$'s and $\tau$'s, while using some other method entirely for the galaxy-specific parameters. (We will not actually walk through this, since (a) LRGS (in python) doesn't implement Gaussian priors on the intercept/slope parameters, even though it's a simple addition; (b) I don't feel like dragging yet another code into the mix; and (c) the Gaussian parent distribution is not conjugate for the $\sigma$ parameters, so we'd have to use a different sampling method for those parameters anyway.) 4. Obtain the posterior 4a. Brute force Let's again start by trying brute force, although in this case we'll still use the analytic integration method from the last notebook rather than the brutest force, which would have a free absolute magnitude for every cepheid in every galaxy. We can make use of our array of singleFitter objects, and specifically their _logpost_vecarg_B methods to do that part of the calculation. The prototypes below assume the 33 parameters are ordered as: $(\mu_a,\tau_a,\mu_b,\tau_b,\mu_\sigma,\tau_\sigma,a_1,b_1,\sigma_1,a_2,b_2,\sigma_2,\ldots)$. Also, Let's... not include all the individual galaxy parameters in these lists of parameter names:
param_names_all = ['mu_a', 'tau_a', 'mu_b', 'tau_b', 'mu_s', 'tau_s'] param_labels_all = [r'$\mu_a$', r'$\tau_a$', r'$\mu_b$', r'$\tau_b$', r'$\mu_\sigma$', r'$\tau_\sigma$']
tutorials/cepheids_all_galaxies.ipynb
KIPAC/StatisticalMethods
gpl-2.0
Complete the log-likelihood function for this part. Similarly to the way we dealt with Mtrue before, the galparams argument will end up being an array containing $(a_1,b_1,\sigma_1,a_2,b_2,\sigma_2,\ldots)$, from which we can extract arrays of $a_i$, $b_i$ and $\sigma_i$ if we want. The line given to you accounts for the $\prod_{i=1}^{N_\mathrm{gal}} p(\mathrm{data}|a_i,b_i,\sigma_i)$ part, ultimately calling log_likelihood_B and log_prior from the last notebook (see comments below).
def log_likelihood_all_A(mu_a, tau_a, mu_b, tau_b, mu_s, tau_s, galparams): lnp = np.sum([f._logpost_vecarg_B(galparams[(0+3*i):(3+3*i)]) for i,f in enumerate(independent_fits)]) TBC() # lnp += ... more stuff ... return lnp TBC_above()
tutorials/cepheids_all_galaxies.ipynb
KIPAC/StatisticalMethods
gpl-2.0
As a consequence of the code above calling _logpost_vecarg_B (note post), the old priors for the $a_i$, $b_i$ and $\sigma_i$ will be included in the return value. This is ok only because we're using uniform priors, so in the log those priors are either a finite constant or $-\infty$. In general, we would need to divide the old priors out somewhere in the new posterior calculation. Even better, we would not write such dangerously lazy code. But for our limited purposes, it should work. The bottom line is that we don't need to worry about the priors for the $a_i$, $b_i$ and $\sigma_i$ in the function below, just the hyperparameters of their parent distributions. Again like the last notebook, we will make galparams an optional argument to the log-prior function, so we can re-use the function later, when the $a_i$, $b_i$ and $\sigma_i$ are not being sampled.
def log_prior_all(mu_a, tau_a, mu_b, tau_b, mu_s, tau_s, galparams=None): TBC() TBC_above()
tutorials/cepheids_all_galaxies.ipynb
KIPAC/StatisticalMethods
gpl-2.0
You can have the log-posterior functions.
def log_posterior_all(loglike, **params): lnp = log_prior_all(**params) if lnp != -np.inf: lnp += loglike(**params) return lnp def logpost_vecarg_all_A(pvec): params = {name:pvec[i] for i,name in enumerate(param_names_all)} params['galparams'] = pvec[len(param_names_all):] return log_posterior_all(log_likelihood_all_A, **params)
tutorials/cepheids_all_galaxies.ipynb
KIPAC/StatisticalMethods
gpl-2.0
Based on the triangle plot in the first section, guess rough starting values for $(\mu_a,\tau_a,\mu_b,\tau_b,\mu_\sigma,\tau_\sigma)$. (NB: make this a list rather than the usual dictionary.) We'll re-use the previous guess for the galaxy-specific parameters.
TBC() # guess_all = [list of hyperparameter starting values] guess_all_A = np.array(guess_all + guessvec*9)
tutorials/cepheids_all_galaxies.ipynb
KIPAC/StatisticalMethods
gpl-2.0
Quick check that the functions above work:
logpost_vecarg_all_A(guess_all_A)
tutorials/cepheids_all_galaxies.ipynb
KIPAC/StatisticalMethods
gpl-2.0
Below, we run emcee as before. IMPORTANT You should find this to be more tractable than the "brute force" solution in the previous notebook, but still very slow compared to what we normally see in class. Again, you do not need to run this version long enough to get what we would normally consider acceptable results, in terms of convergence and number of independent samples. Just convince yourself that it's functioning, and see how it performs. Again, please do not turn in a notebook where the sampling cell below takes longer than $\sim30$ seconds to evaluate.
%%time nsteps = 100 # or whatever npars = len(guess_all_A) nwalkers = 2*npars sampler = emcee.EnsembleSampler(nwalkers, npars, logpost_vecarg_all_A) start = np.array([np.array(guess_all_A)*(1.0 + 0.01*np.random.randn(npars)) for j in range(nwalkers)]) sampler.run_mcmc(start, nsteps) print('Yay!')
tutorials/cepheids_all_galaxies.ipynb
KIPAC/StatisticalMethods
gpl-2.0
Look at the traces (we'll only include one of the galaxy's scaling parameters).
npars = len(guess_all)+3 plt.rcParams['figure.figsize'] = (16.0, 3.0*npars) fig, ax = plt.subplots(npars, 1); cr.plot_traces(sampler.chain[:min(8,nwalkers),:,:npars], ax, labels=param_labels_all+param_labels); npars = len(guess_all_A)
tutorials/cepheids_all_galaxies.ipynb
KIPAC/StatisticalMethods
gpl-2.0
Go through the usual motions, making sure to set burn and maxlag to something appropriate for the length of the chain.
TBC() # burn = ... # maxlag = ... tmp_samples = [sampler.chain[i,burn:,:9] for i in range(nwalkers)] print('R =', cr.GelmanRubinR(tmp_samples)) print('neff =', cr.effective_samples(tmp_samples, maxlag=maxlag)) print('NB: Since walkers are not independent, these will be optimistic!') print("Plus, there's a good chance that the results in this section are garbage...")
tutorials/cepheids_all_galaxies.ipynb
KIPAC/StatisticalMethods
gpl-2.0
As before, we'll be comparing the posteriors from the methods we attempt:
samples_all_A = sampler.chain[:,burn:,:].reshape(nwalkers*(nsteps-burn), npars) plotGTC([samples_all_A[:,:9]], paramNames=param_labels_all+param_labels, chainLabels=['emcee/brute'], figureSize=12, customLabelFont={'size':12}, customTickFont={'size':12}, customLegendFont={'size':16});
tutorials/cepheids_all_galaxies.ipynb
KIPAC/StatisticalMethods
gpl-2.0
To be more thorough, we would also want to see how well the new hierarchical part of the model fits, meaning whether the posteriors of $a_i$, $b_i$ and $\sigma_i$ are collectively consistent with being drawn from their respective fitted Gaussians. Things might look slightly different than the plots we made above, since those fits used uniform priors rather than the hierarchical model. With only 9 galaxies, it seems unlikely that we could really rule out a Gaussian distribution, and it's tangential to the point of this tutorial. So this can be an exercise for the reader, if you want. 4b. Sampling with numerical marginalization Let's see how we do trying to marginalize out the per-galaxy parameters by simple monte carlo, as described above, $p(\mathrm{data}|\vec{\alpha}) = \prod_{i=1}^{N_\mathrm{gal}} \frac{1}{n_i}\sum_{k=1}^{n_i} p(a_{ik},b_{ik},\sigma_{ik}|\vec{\alpha})$. Note that, because we are taking a sum of probabilities above, we do actually need to work with probabilities, as opposed to log-probabilities. You might reasonably worry about numerical stability here, but in this case a naive implementation seems to be ok. (In general, what we would need to check is whether the summands contributing most of the sum are easily floating-point representable, i.e. not so tiny that they underflow. We could always renormalize the summands to avoid this, since we will just end up taking the log afterwards.) Implement the log-likelihood for this approach below.
def log_likelihood_all_B(mu_a, tau_a, mu_b, tau_b, mu_s, tau_s): TBC() TBC_above()
tutorials/cepheids_all_galaxies.ipynb
KIPAC/StatisticalMethods
gpl-2.0
This is for free:
def logpost_vecarg_all_B(pvec): params = {name:pvec[i] for i,name in enumerate(param_names_all)} return log_posterior_all(log_likelihood_all_B, **params)
tutorials/cepheids_all_galaxies.ipynb
KIPAC/StatisticalMethods
gpl-2.0
The usual sanity check:
logpost_vecarg_all_B(guess_all)
tutorials/cepheids_all_galaxies.ipynb
KIPAC/StatisticalMethods
gpl-2.0
Let's get an idea of how computationally expensive all these sums are by running a very short chain.
nsteps = 10 npars = len(guess_all) nwalkers = 2*npars sampler = emcee.EnsembleSampler(nwalkers, npars, logpost_vecarg_all_B) start = np.array([np.array(guess_all)*(1.0 + 0.01*np.random.randn(npars)) for j in range(nwalkers)]) %time sampler.run_mcmc(start, nsteps) print('Yay?')
tutorials/cepheids_all_galaxies.ipynb
KIPAC/StatisticalMethods
gpl-2.0
For me this comes out to about 7 seconds for 10 steps - slower than we'd ideally like, at least without more serious computing resources than my laptop. (If you run longer, though, you should see performance better than in part A.) However, its worth asking if we can get away with using fewer samples. In principle, we are well justified in doing this, since the effective number of independent samples estimated for some of the individual fits are only $\sim500$ (when I ran them, anyway). Note that the cell below is destructive, in that we can't easily get the original chains back after running it. Keep that in mind if you plan to play around, or improve on the code at the start of the notebook.
for f in independent_fits: f.thin(500)
tutorials/cepheids_all_galaxies.ipynb
KIPAC/StatisticalMethods
gpl-2.0
With only 500 samples left in the sum for each galaxy, it should be possible to get results that appear basically converged with a couple of minutes runtime (and you should do so). Nevertheless, before turning in the notebook, please reduce the number of steps such that the sampling cell below takes longer than $\sim30$ seconds to evaluate. (You can leave a comment saying what number of steps you actually used, if you like.)
%%time TBC() # nsteps = npars = len(guess_all) nwalkers = 2*npars sampler = emcee.EnsembleSampler(nwalkers, npars, logpost_vecarg_all_B) start = np.array([np.array(guess_all)*(1.0 + 0.01*np.random.randn(npars)) for j in range(nwalkers)]) sampler.run_mcmc(start, nsteps); print('Yay!')
tutorials/cepheids_all_galaxies.ipynb
KIPAC/StatisticalMethods
gpl-2.0
Let's see how it does:
plt.rcParams['figure.figsize'] = (16.0, 3.0*npars) fig, ax = plt.subplots(npars, 1); cr.plot_traces(sampler.chain[:min(8,nwalkers),:,:npars], ax, labels=param_labels_all);
tutorials/cepheids_all_galaxies.ipynb
KIPAC/StatisticalMethods
gpl-2.0
The sampler is probably struggling to move around efficiently, but you could imagine running patiently for a while and ending up with something useful. Let's call this approach viable, but not ideal. Still, make sure you have reasonable convergence before continuing.
TBC() # burn = ... # maxlag = ... tmp_samples = [sampler.chain[i,burn:,:] for i in range(nwalkers)] print('R =', cr.GelmanRubinR(tmp_samples)) print('neff =', cr.effective_samples(tmp_samples, maxlag=maxlag)) print('NB: Since walkers are not independent, these will be optimistic!')
tutorials/cepheids_all_galaxies.ipynb
KIPAC/StatisticalMethods
gpl-2.0
And now the burning question: how does the posterior compare with the brute force version?
samples_all_B = sampler.chain[:,burn:,:].reshape(nwalkers*(nsteps-burn), npars) plotGTC([samples_all_A[:,:len(param_names_all)], samples_all_B], paramNames=param_labels_all, chainLabels=['emcee/brute', 'emcee/SMC'], figureSize=10, customLabelFont={'size':12}, customTickFont={'size':12}, customLegendFont={'size':16});
tutorials/cepheids_all_galaxies.ipynb
KIPAC/StatisticalMethods
gpl-2.0
Checkpoint: Your posterior is compared with our solution by the cell below. Keep in mind they may have very different numbers of samples - we let ours run for several minutes.
sol = np.loadtxt('solutions/ceph2.dat.gz') plotGTC([sol, samples_all_B], paramNames=param_labels_all, chainLabels=['solution', 'my emcee/SMC'], figureSize=8, customLabelFont={'size':12}, customTickFont={'size':12}, customLegendFont={'size':16});
tutorials/cepheids_all_galaxies.ipynb
KIPAC/StatisticalMethods
gpl-2.0
Setup This example depends on the following software: IPython NumPy SciPy SymPy >= 0.7.6 matplotlib The easiest way to install the Python packages it is to use conda: $ conda install ipython-notebook numpy scipy sympy matplotlib To create animations you need a video encoder like ffmpeg installed. Equations of Motion We'll start by generating the equations of motion for the system with SymPy mechanics. The functionality that mechanics provides is much more in depth than Mathematica's functionality. In the Mathematica example, Lagrangian mechanics were implemented manually with Mathematica's symbolic functionality. mechanics provides an assortment of functions and classes to derive the equations of motion for arbitrarily complex (i.e. configuration constraints, nonholonomic motion constraints, etc) multibody systems in a very natural way. First we import the necessary functionality from SymPy.
from __future__ import division, print_function import sympy as sm import sympy.physics.mechanics as me
examples/npendulum/n-pendulum-control.ipynb
oliverlee/pydy
bsd-3-clause
The coordinate trajectories are plotted below.
lines = plt.plot(t, x[:, :x.shape[1] // 2]) lab = plt.xlabel('Time [sec]') leg = plt.legend(dynamic[:x.shape[1] // 2])
examples/npendulum/n-pendulum-control.ipynb
oliverlee/pydy
bsd-3-clause
And the generalized speed trajectories.
lines = plt.plot(t, x[:, x.shape[1] // 2:]) lab = plt.xlabel('Time [sec]') leg = plt.legend(dynamic[x.shape[1] // 2:])
examples/npendulum/n-pendulum-control.ipynb
oliverlee/pydy
bsd-3-clause
The following function was modeled from Jake Vanderplas's post on matplotlib animations. The default animation writer is used (typically ffmpeg), you can change it by adding writer argument to anim.save call.
def animate_pendulum(t, states, length, filename=None): """Animates the n-pendulum and optionally saves it to file. Parameters ---------- t : ndarray, shape(m) Time array. states: ndarray, shape(m,p) State time history. length: float The length of the pendulum links. filename: string or None, optional If true a movie file will be saved of the animation. This may take some time. Returns ------- fig : matplotlib.Figure The figure. anim : matplotlib.FuncAnimation The animation. """ # the number of pendulum bobs numpoints = states.shape[1] // 2 # first set up the figure, the axis, and the plot elements we want to animate fig = plt.figure() # some dimesions cart_width = 0.4 cart_height = 0.2 # set the limits based on the motion xmin = np.around(states[:, 0].min() - cart_width / 2.0, 1) xmax = np.around(states[:, 0].max() + cart_width / 2.0, 1) # create the axes ax = plt.axes(xlim=(xmin, xmax), ylim=(-1.1, 1.1), aspect='equal') # display the current time time_text = ax.text(0.04, 0.9, '', transform=ax.transAxes) # create a rectangular cart rect = Rectangle([states[0, 0] - cart_width / 2.0, -cart_height / 2], cart_width, cart_height, fill=True, color='red', ec='black') ax.add_patch(rect) # blank line for the pendulum line, = ax.plot([], [], lw=2, marker='o', markersize=6) # initialization function: plot the background of each frame def init(): time_text.set_text('') rect.set_xy((0.0, 0.0)) line.set_data([], []) return time_text, rect, line, # animation function: update the objects def animate(i): time_text.set_text('time = {:2.2f}'.format(t[i])) rect.set_xy((states[i, 0] - cart_width / 2.0, -cart_height / 2)) x = np.hstack((states[i, 0], np.zeros((numpoints - 1)))) y = np.zeros((numpoints)) for j in np.arange(1, numpoints): x[j] = x[j - 1] + length * np.cos(states[i, j]) y[j] = y[j - 1] + length * np.sin(states[i, j]) line.set_data(x, y) return time_text, rect, line, # call the animator function anim = animation.FuncAnimation(fig, animate, frames=len(t), init_func=init, interval=t[-1] / len(t) * 1000, blit=True, repeat=False) # save the animation if a filename is given if filename is not None: anim.save(filename, fps=30, codec='libx264')
examples/npendulum/n-pendulum-control.ipynb
oliverlee/pydy
bsd-3-clause
Also convert equilibrium_point to a numeric array:
equilibrium_point = np.asarray([x.evalf() for x in equilibrium_point], dtype=float)
examples/npendulum/n-pendulum-control.ipynb
oliverlee/pydy
bsd-3-clause
Now that we have a linear system, the SciPy package can be used to design an optimal controller for the system.
from numpy.linalg import matrix_rank from scipy.linalg import solve_continuous_are
examples/npendulum/n-pendulum-control.ipynb
oliverlee/pydy
bsd-3-clause
First we can check to see if the system is, in fact, controllable. The rank of the controllability matrix must be equal to the number of rows in $A$, but the matrix_rank algorithm is numerically ill conditioned and for certain values of $n$ this will fail, as seen below for $n=5$. Nevertheless, the system is controllable, no matter the number of links.
def controllable(a, b): """Returns true if the system is controllable and false if not. Parameters ---------- a : array_like, shape(n,n) The state matrix. b : array_like, shape(n,r) The input matrix. Returns ------- controllable : boolean """ a = np.matrix(a) b = np.matrix(b) n = a.shape[0] controllability_matrix = [] for i in range(n): controllability_matrix.append(a ** i * b) controllability_matrix = np.hstack(controllability_matrix) return np.linalg.matrix_rank(controllability_matrix) == n controllable(A, B)
examples/npendulum/n-pendulum-control.ipynb
oliverlee/pydy
bsd-3-clause
So now we can compute the optimal gains with a linear quadratic regulator. I chose identity matrices for the weightings for simplicity.
Q = np.eye(A.shape[0]) R = np.eye(B.shape[1]) S = solve_continuous_are(A, B, Q, R); K = np.dot(np.dot(np.linalg.inv(R), B.T), S) K
examples/npendulum/n-pendulum-control.ipynb
oliverlee/pydy
bsd-3-clause
The plots show that we seem to have a stable system.
lines = plt.plot(t, x[:, :x.shape[1] // 2]) lab = plt.xlabel('Time [sec]') leg = plt.legend(dynamic[:x.shape[1] // 2]) lines = plt.plot(t, x[:, x.shape[1] // 2:]) lab = plt.xlabel('Time [sec]') leg = plt.legend(dynamic[x.shape[1] // 2:]) animate_pendulum(t, x, arm_length, filename="closed-loop.mp4") from IPython.display import HTML html = \ """ <video width="640" height="480" controls> <source src="closed-loop.mp4" type="video/mp4"> Your browser does not support the video tag, check out the YouTube version instead: http://youtu.be/SpgBHqW9om0 </video> """ HTML(html)
examples/npendulum/n-pendulum-control.ipynb
oliverlee/pydy
bsd-3-clause
The video clearly shows that the controller can balance all $n$ of the pendulum links. The weightings in the lqr design can be tweaked to give different performance if needed. This example shows that the free and open source scientific Python tools for dynamics are easily comparable in ability and quality to a commercial package such as Mathematica. The IPython notebook for this example can be downloaded from https://github.com/pydy/pydy/tree/master/examples/npendulum. You can try out different $n$ values. I've gotten the equations of motion to compute for an open loop simulation of 10 links. My computer ran out of memory when I tried to compute for $n=50$. The controller weightings and initial conditions will probably have to be adjusted for better performance for $n>5$, but it should work.
# Install with pip install version_information %load_ext version_information %version_information numpy, sympy, scipy, matplotlib, control
examples/npendulum/n-pendulum-control.ipynb
oliverlee/pydy
bsd-3-clause
경우 2 만약 $$ \mu = \begin{bmatrix}2 \ 3 \end{bmatrix}. \;\;\; \Sigma = \begin{bmatrix}2 & 3 \ 3 & 7 \end{bmatrix} $$ 이면 $$ ; \Sigma ; = 5,\;\;\; \Sigma^{-1} = \begin{bmatrix}1.4 & -0.6 \ -0.6 & 0.4 \end{bmatrix} $$ $$ (x-\mu)^T \Sigma^{-1} (x-\mu) = \begin{bmatrix}x_1 - 2 & x_2 - 3 \end{bmatrix} \begin{bmatrix}1.4 & -0.6 \ -0.6 & 0.4\end{bmatrix} \begin{bmatrix}x_1 - 2 \ x_2 - 3 \end{bmatrix} = \dfrac{1}{10}\left(14(x_1 - 2)^2 - 12(x_1 - 2)(x_2 - 3) + 4(x_2 - 3)^2\right) $$ $$ \mathcal{N}(x_1, x_2) = \dfrac{1}{20\pi} \exp \left( -\dfrac{1}{10}\left(7(x_1 - 2)^2 - 6(x_1 - 2)(x_2 - 3) + 2(x_2 - 3)^2\right) \right) $$ 이 확률 밀도 함수의 모양은 다음과 같다.
mu = [2, 3] cov = [[2, 3],[3, 7]] rv = sp.stats.multivariate_normal(mu, cov) xx = np.linspace(0, 4, 120) yy = np.linspace(1, 5, 150) XX, YY = np.meshgrid(xx, yy) plt.grid(False) plt.contourf(XX, YY, rv.pdf(np.dstack([XX, YY]))) plt.axis("equal") plt.show()
10. 기초 확률론3 - 확률 분포 모형/13. 다변수 가우시안 정규 분포.ipynb
zzsza/Datascience_School
mit
Installing django and selenium
# Create a virtual env to load with selenium and django #!conda create -yn django_env django python=3 # y flag automatically selects yes to install #!source activate django_eng # activate virtual environment #!pip install --upgrade selenium # install selenium.
wk9/notebooks/.ipynb_checkpoints/ch.1-getting-started-with-django-checkpoint.ipynb
saashimi/code_guild
mit
Fixing our failure
# Use django to create a project called 'superlists' #django-admin.py startproject superlists !tree ../examples/
wk9/notebooks/.ipynb_checkpoints/ch.1-getting-started-with-django-checkpoint.ipynb
saashimi/code_guild
mit
Next, we evaluate scikit-learn accuracy where we predict feed implementation based on latency.
import graphviz import pandas from sklearn import tree from sklearn.model_selection import train_test_split clf = tree.DecisionTreeClassifier() input = pandas.read_csv("/home/glenn/git/clojure-news-feed/client/ml/etl/latency.csv") data = input[input.columns[7:9]] data['cloud'] = input['cloud'].apply(lambda x: 1.0 if x == 'GKE' else 0.0) target = input['feed'] X_train, X_test, y_train, y_test = train_test_split(data, target, test_size=0.4, random_state=0) clf = clf.fit(X_train, y_train) clf.score(X_test, y_test)
client/ml/dt/accuracy.ipynb
gengstrand/clojure-news-feed
epl-1.0
As you can see, scikit-learn has a 99% accuracy rate. We now do the same thing with tensorflow.
import tensorflow as tf import numpy as np import pandas from tensorflow.python.ops import parsing_ops from tensorflow.contrib.tensor_forest.python import tensor_forest from tensorflow.contrib.learn.python.learn.utils import input_fn_utils from sklearn.model_selection import train_test_split input = pandas.read_csv("/home/glenn/git/clojure-news-feed/client/ml/etl/latency.csv") data = input[input.columns[7:9]] data['cloud'] = input['cloud'].apply(lambda x: 1.0 if x == 'GKE' else 0.0) X_train, X_test, y_train, y_test = train_test_split(data, input['feed'], test_size=0.4, random_state=0) X_train_np = np.array(X_train, dtype=np.float32) y_train_np = np.array(y_train, dtype=np.int32) X_test_np = np.array(X_test, dtype=np.float32) y_test_np = np.array(y_test, dtype=np.int32) hparams = tensor_forest.ForestHParams(num_classes=7, num_features=3, num_trees=1, regression=False, max_nodes=500).fill() classifier = tf.contrib.tensor_forest.client.random_forest.TensorForestEstimator(hparams) c = classifier.fit(x=X_train_np, y=y_train_np) c.evaluate(x=X_test_np, y=y_test_np)
client/ml/dt/accuracy.ipynb
gengstrand/clojure-news-feed
epl-1.0
Looks like tensorflow has a 98% accuracy rate which is 1% less than scikit-learn algo. Let us use Tensorflow to look at the accuracy of predicting cloud vendor based on throughput.
import tensorflow as tf import numpy as np import pandas from tensorflow.python.ops import parsing_ops from tensorflow.contrib.tensor_forest.python import tensor_forest from tensorflow.contrib.learn.python.learn.utils import input_fn_utils from sklearn.model_selection import train_test_split input = pandas.read_csv("/home/glenn/git/clojure-news-feed/client/ml/etl/throughput.csv") data = input[input.columns[6:9]] target = input['cloud'].apply(lambda x: 1.0 if x == 'GKE' else 0.0) X_train, X_test, y_train, y_test = train_test_split(data, target, test_size=0.4, random_state=0) X_train_np = np.array(X_train, dtype=np.float32) y_train_np = np.array(y_train, dtype=np.int32) X_test_np = np.array(X_test, dtype=np.float32) y_test_np = np.array(y_test, dtype=np.int32) hparams = tensor_forest.ForestHParams(num_classes=3, num_features=3, num_trees=1, regression=False, max_nodes=500).fill() classifier = tf.contrib.tensor_forest.client.random_forest.TensorForestEstimator(hparams) c = classifier.fit(x=X_train_np, y=y_train_np) c.evaluate(x=X_test_np, y=y_test_np)
client/ml/dt/accuracy.ipynb
gengstrand/clojure-news-feed
epl-1.0
Using PCA to Plot Datasets PCA is a useful preprocessing technique for both visualizing data in 2 or 3 dimensions, and for improving the performance of downstream algorithms such as classifiers. We will see more details about using PCA as part of a machine learning pipeline in the net section, but here we will explore the intuition behind what PCA does, and why it is useful for certain tasks. The goal of PCA is to find the dimensions of maximum variation in the data, and project onto them. This is helpful for data that is stretched in a particular dimension. Here we show an example in two dimensions, to get an understanding for how PCA can help classification.
import numpy as np random_state = np.random.RandomState(1999) X = np.random.randn(500, 2) red_idx = np.where(X[:, 0] < 0)[0] blue_idx = np.where(X[:, 0] >= 0)[0] # Stretching s_matrix = np.array([[1, 0], [0, 20]]) # Rotation r_angle = 33 r_rad = np.pi * r_angle / 180 r_matrix = np.array([[np.cos(r_rad), -np.sin(r_rad)], [np.sin(r_rad), np.cos(r_rad)]]) X = np.dot(X, s_matrix).dot(r_matrix) plt.scatter(X[red_idx, 0], X[red_idx, 1], color="darkred") plt.scatter(X[blue_idx, 0], X[blue_idx, 1], color="steelblue") # Fix axes to show mismatched dimensions plt.axis('off') plt.title("Skewed Data") from sklearn.decomposition import PCA pca = PCA() X_t = pca.fit_transform(X) plt.scatter(X_t[red_idx, 0], X_t[red_idx, 1], color="darkred") plt.scatter(X_t[blue_idx, 0], X_t[blue_idx, 1], color="steelblue") plt.axis('off') plt.title("PCA Corrected Data")
notebooks/03.2 Methods - Unsupervised Preprocessing.ipynb
samstav/scipy_2015_sklearn_tutorial
cc0-1.0
We can also use PCA to visualize complex data in low dimensions in order to see how "close" and "far" different datapoints are in a 2D space. There are many different ways to do this visualization, and some common algorithms are found in sklearn.manifold. PCA is one of the simplest and most common methods for quickly visualizing a dataset. Now we'll take a look at unsupervised learning on a facial recognition example. This uses a dataset available within scikit-learn consisting of a subset of the Labeled Faces in the Wild data. Note that this is a relatively large download (~200MB) so it may take a while to execute.
from sklearn import datasets lfw_people = datasets.fetch_lfw_people(min_faces_per_person=70, resize=0.4, data_home='datasets') lfw_people.data.shape
notebooks/03.2 Methods - Unsupervised Preprocessing.ipynb
samstav/scipy_2015_sklearn_tutorial
cc0-1.0
决策树原理与实现简介 前言 为什么讲决策树? 原理简单,直白易懂。 可解释性好。 变种在工业上应用多:随机森林、GBDT。 深化拓展 理论,考古:ID3, C4.5, CART 工程,实现细节: demo scikit-learn spark xgboost 应用,调参分析 演示 理论 算法: ID3 C4.5 C5.0 CART CHAID MARS 行业黑话 分类问题 vs 回归问题 样本 = (特征$x$,真实值$y$) 目的:找到模型$h(\cdot)$,使得预测值$\hat{y} = h(x)$ $\to$ 真实值$y$
from sklearn.datasets import load_iris data = load_iris() # 准备特征数据 X = pd.DataFrame(data.data, columns=["sepal_length", "sepal_width", "petal_length", "petal_width"]) # 准备标签数据 y = pd.DataFrame(data.target, columns=['target']) y.replace(to_replace=range(3), value=data.target_names, inplace=True) # 组建样本 [特征,标签] samples = pd.concat([X, y], axis=1, keys=["x", "y"]) samples.head(5) samples["y", "target"].value_counts() samples["x"].describe()
machine_learning/tree/decision_tree/presentation.ipynb
facaiy/book_notes
cc0-1.0
三分钟明白决策树
Image(url="https://upload.wikimedia.org/wikipedia/commons/f/f3/CART_tree_titanic_survivors.png") Image(url="http://scikit-learn.org/stable/_images/iris.svg") Image(url="http://scikit-learn.org/stable/_images/sphx_glr_plot_iris_0011.png") samples = pd.concat([X, y], axis=1) samples.head(3)
machine_learning/tree/decision_tree/presentation.ipynb
facaiy/book_notes
cc0-1.0
工程 Demo实现 其主要问题是在每次决策时找到一个分割点,让生成的子集尽可能地纯净。这里涉及到四个问题: 如何分割样本? 如何评价子集的纯净度? 如何找到单个最佳的分割点,其子集最为纯净? 如何找到最佳的分割点序列,其最终分割子集总体最为纯净?
Image(url="https://upload.wikimedia.org/wikipedia/commons/f/f3/CART_tree_titanic_survivors.png")
machine_learning/tree/decision_tree/presentation.ipynb
facaiy/book_notes
cc0-1.0
2. 如何评价子集的纯净度? 常用的评价函数正是计算各标签 $c_k$ 在子集中的占比 $p_k = c_k / \sum (c_k)$,并通过组合 $p_k$ 来描述占比集中或分散。
def calc_class_proportion(node): # 计算各标签在集合中的占比 y = node["target"] return y.value_counts() / y.count() calc_class_proportion(split["left_nodes"]) calc_class_proportion(split["right_nodes"])
machine_learning/tree/decision_tree/presentation.ipynb
facaiy/book_notes
cc0-1.0
Data setup We are going to use data from Fermi-LAT, Fermi-GBM and Swift-XRT. Let's go through the process of setting up the data from each instrument. We will work from high energy to low energy. Fermi-LAT Once we have obtained the Fermi-LAT data, in this case, the LAT Low Energy (LLE) data, we can reduce the data into an plugin using the light curve tools provided in 3ML. LLE data is in the format of FITS event files with an associated spacecraft point history file and energy dispersion response. The TimeSeriesBuilder class has special methods for dealing with the LLE data.
lle = TimeSeriesBuilder.from_lat_lle('lle',ft2_file="lle_pt.fit", lle_file="lle.fit", rsp_file="lle.rsp") lle.set_background_interval('-100--10','150-500') lle.set_active_time_interval('68-110') lle.view_lightcurve(-200,500); lle_plugin = lle.to_spectrumlike() lle_plugin.use_effective_area_correction() lle_plugin.display() lle_plugin.view_count_spectrum();
examples/grb_multi_analysis.ipynb
giacomov/3ML
bsd-3-clause
Fermi-GBM
gbm_detectors = ["n4", "n7", "n8", "b0"] for det in gbm_detectors: ts_cspec = TimeSeriesBuilder.from_gbm_cspec_or_ctime( det, cspec_or_ctime_file=f"cspec_{det}.pha", rsp_file=f"cspec_{det}.rsp2" ) ts_cspec.set_background_interval("-400--10", "700-1200") ts_cspec.save_background(filename=f"{det}_bkg.h5", overwrite=True) gbm_time_series = {} gbm_plugins = {} for det in gbm_detectors: ts = TimeSeriesBuilder.from_gbm_tte( det, tte_file=f"tte_{det}.fit.gz", rsp_file=f"cspec_{det}.rsp2", restore_background=f"{det}_bkg.h5", ) gbm_time_series[det] = ts ts.view_lightcurve(-10, 200) ts.set_active_time_interval("68-110") gbm_plugins[det] = ts.to_spectrumlike() for det, plugin in gbm_plugins.items(): if det.startswith("b"): plugin.set_active_measurements("250-30000") else: plugin.set_active_measurements("10-900") if det != "n3": plugin.use_effective_area_correction() plugin.rebin_on_background(1) plugin.view_count_spectrum()
examples/grb_multi_analysis.ipynb
giacomov/3ML
bsd-3-clause
Swift-XRT For Swift-XRT, we can use the normal OGIPLike plugin, but the energy resolution of the instrument is so fine that we would waste time integrating over the photon bins during forward-folding. Thus, there is a special plugin that overrides the computation of the photon integrals with a simple sum.
xrt = SwiftXRTLike( "xrt", observation="awt.pi", background="awtback.pi", arf_file="awt.arf", response="awt.rmf", ) xrt.display() xrt.remove_rebinning() xrt.set_active_measurements('4-10') xrt.rebin_on_background(1.) xrt.use_effective_area_correction() xrt.view_count_spectrum();
examples/grb_multi_analysis.ipynb
giacomov/3ML
bsd-3-clause
Combining all the plugins
all_plugins = [lle_plugin, xrt] for _ , plugin in gbm_plugins.items(): all_plugins.append(plugin) datalist = DataList(*all_plugins)
examples/grb_multi_analysis.ipynb
giacomov/3ML
bsd-3-clause
Fitting Model setup Band Function
sbpl = SmoothlyBrokenPowerLaw(pivot=1E3) sbpl.alpha.prior = Truncated_gaussian(lower_bound=-1.5, upper_bound=0, mu=-1, sigma=.5) sbpl.beta.prior = Truncated_gaussian(lower_bound=-3., upper_bound=-1.6, mu=-2, sigma=.5) sbpl.break_energy.prior = Log_uniform_prior(lower_bound=1, upper_bound=1E3) sbpl.break_scale.prior = Log_uniform_prior(lower_bound=1E-4, upper_bound=10.) sbpl.K.prior = Log_uniform_prior(lower_bound=1E-2, upper_bound=1E2) sbpl.K = 1E-1 sbpl.break_energy.bounds = (0, None) sbpl.break_scale.free=True ps = PointSource('grb',0,0,spectral_shape=sbpl) model = Model(ps) bayes = BayesianAnalysis(model,datalist) bayes.set_sampler('multinest') for k,v in model.free_parameters.items(): if "cons" in k: v.prior = Truncated_gaussian(lower_bound=.8, upper_bound=1.2, mu=1, sigma=.1) #bayes.sampler.setup(dlogz=10.,frac_remain=.5) bayes.sampler.setup(n_live_points=1000) bayes.sample() bayes.restore_median_fit() #sbpl.K = 1E-1 display_spectrum_model_counts(bayes, min_rate=[-1,5,5,5,5,5]); bayes.results.corner_plot(); plot_point_source_spectra(bayes.results, flux_unit='erg2/(cm2 s keV)',ene_max =1E5);
examples/grb_multi_analysis.ipynb
giacomov/3ML
bsd-3-clause
There are warnings, but that's okay - this happens a lot these days due to the whole ipython/jupyter renaming process. You can ignore them. Get a database Using the bash shell (not a notebook!), follow the instructions at the SW Carpentry db lessons discussion page to get the survey.db file. This is a sqlite3 database. I recommend following up with the rest of the instructions on that page to explore sqlite3. Connecting to a Sqlite3 database This part is easy, just connect like so (assuming the survey.db file is in the same directory as this notebook):
%sql sqlite:///survey.db %sql SELECT * FROM Person;
lectures/week-03/sql-demo.ipynb
dchud/warehousing-course
cc0-1.0
You should be able to execute all the standard SQL queries from the lesson here now. Note that you can also do this on the command line. Note specialized sqlite3 commands like ".schema" might not work. Connecting to a MySQL database Now that you've explored the survey.db sample database with sqlite3, let's try working with mysql:
%sql mysql://mysqluser:mysqlpass@localhost/
lectures/week-03/sql-demo.ipynb
dchud/warehousing-course
cc0-1.0
note if you get an error about MySQLdb not being installed here, enter this back in your bash shell: % sudo pip install mysql-python If it asks for your password, it's "vagrant". After doing this, try executing the above cell again. You should see: u'Connected: mysqluser@' ...if it works. Creating a database Now that we're connected, let's create a database.
%sql CREATE DATABASE week3demo;
lectures/week-03/sql-demo.ipynb
dchud/warehousing-course
cc0-1.0
Now that we've created the database week3demo, we need to tell MySQL that we want to use it:
%sql USE week3demo;
lectures/week-03/sql-demo.ipynb
dchud/warehousing-course
cc0-1.0
But there's nothing in it:
%sql SHOW TABLES;
lectures/week-03/sql-demo.ipynb
dchud/warehousing-course
cc0-1.0