markdown
stringlengths 0
37k
| code
stringlengths 1
33.3k
| path
stringlengths 8
215
| repo_name
stringlengths 6
77
| license
stringclasses 15
values |
---|---|---|---|---|
We generate two random patterns and test whether the field (h) is dependent on the initial state. We see very similar normal behavior for both of them | x = np.dot(nn.w, np.sign(prng.normal(size=n_dim)))
y = np.dot(nn.w, np.sign(prng.normal(size=n_dim)))
fig = plt.figure(figsize=(16, 12))
ax = fig.add_subplot(111)
ax.hist(x)
ax.hist(y)
print(np.std(x)) | notebooks/2016-12-11(Study of connectivity distribution).ipynb | h-mayorquin/hopfield_sequences | mit |
We now then try this with 10 patterns to see how the distributions behave | fig = plt.figure(figsize=(16, 12))
ax = fig.add_subplot(111)
for i in range(10):
x = np.dot(nn.w, np.sign(prng.normal(size=n_dim)))
ax.hist(x, alpha=0.5) | notebooks/2016-12-11(Study of connectivity distribution).ipynb | h-mayorquin/hopfield_sequences | mit |
We see that the normal distribution is mainted, then we calculate the field h (result of the np.dot(w, s) calculation) for a bunch of different initial random states and concatenate the results to see how the whole distribution looks like | n_dim = 400
nn = Hopfield(n_dim=n_dim, T=T, prng=prng)
list_of_patterns = nn.generate_random_patterns(n_dim)
nn.train(list_of_patterns, normalize=normalize)
x = np.empty(n_dim)
for i in range(N_samples):
h = np.dot(nn.w, np.sign(prng.normal(size=n_dim)))
x = np.concatenate((x, h))
fig = plt.figure(figsize=(16, 12))
ax = fig.add_subplot(111)
n, bins, patches = ax.hist(x, bins=30)
print(np.var(x))
print(nn.sigma) | notebooks/2016-12-11(Study of connectivity distribution).ipynb | h-mayorquin/hopfield_sequences | mit |
Dependence on network size
Now we test test how the histogram looks for different sizes | n_dimensions = [200, 800, 2000, 5000]
fig = plt.figure(figsize=(16, 12))
gs = gridspec.GridSpec(2, 2)
for index, n_dim in enumerate(n_dimensions):
nn = Hopfield(n_dim=n_dim, T=T, prng=prng)
list_of_patterns = nn.generate_random_patterns(n_store)
nn.train(list_of_patterns, normalize=normalize)
x = np.empty(n_dim)
for i in range(N_samples):
h = np.dot(nn.w, np.sign(prng.normal(size=n_dim)))
x = np.concatenate((x, h))
ax = fig.add_subplot(gs[index//2, index%2])
ax.set_xlim([-1, 1])
ax.set_title('n_dim = ' + str(n_dim) + ' std = ' + str(np.std(x)))
weights = np.ones_like(x)/float(len(x))
n, bins, patches = ax.hist(x, bins=30, weights=weights, normed=False) | notebooks/2016-12-11(Study of connectivity distribution).ipynb | h-mayorquin/hopfield_sequences | mit |
Now we calculate the variance of the h vector as a function of the dimension | n_dimensions = np.logspace(1, 4, num=20)
variances = []
standar_deviations = []
for index, n_dim in enumerate(n_dimensions):
print('number', index, 'of', n_dimensions.size, ' n_dim =', n_dim)
n_dim = int(n_dim)
nn = Hopfield(n_dim=n_dim, T=T, prng=prng)
list_of_patterns = nn.generate_random_patterns(n_store)
nn.train(list_of_patterns, normalize=normalize)
x = np.empty(n_dim)
for i in range(N_samples):
h = np.dot(nn.w, np.sign(prng.normal(size=n_dim)))
x = np.concatenate((x, h))
variances.append(np.var(x))
standar_deviations.append(np.std(x))
fig = plt.figure(figsize=(16, 12))
ax = fig.add_subplot(111)
ax.semilogx(n_dimensions, variances,'*-', markersize=16, label='var')
ax.semilogx(n_dimensions, standar_deviations, '*-', markersize=16, label='std')
ax.axhline(y=nn.sigma, color='k', label='nn.sigma')
ax.legend() | notebooks/2016-12-11(Study of connectivity distribution).ipynb | h-mayorquin/hopfield_sequences | mit |
TFP, backed by Jax
Jax-backed TFP is a work in progress, but many distributions and bijectors are currently working! How do you use the alternative backend?
<table class="tfo-notebook-buttons" align="left">
<td>
<a target="_blank" href="https://colab.research.google.com/github/tensorflow/probability/blob/main/discussion/examples/TFP_and_Jax.ipynb"><img src="https://www.tensorflow.org/images/colab_logo_32px.png" />Run in Google Colab</a>
</td>
<td>
<a target="_blank" href="https://github.com/tensorflow/probability/blob/main/discussion/examples/TFP_and_Jax.ipynb"><img src="https://www.tensorflow.org/images/GitHub-Mark-32px.png" />View source on GitHub</a>
</td>
</table>
Importing | # Importing the TFP with Jax backend
!pip3 install -q 'tfp-nightly[jax]' tf-nightly-cpu # We (currently) still require TF, but TF's smaller CPU build will work.
import tensorflow_probability as tfp
tfp = tfp.experimental.substrates.jax
tf = tfp.tf2jax
# Standard TFP Imports
tfd = tfp.distributions
tfb = tfp.bijectors
tfpk = tfp.math.psd_kernels
# Jax imports
import jax
import jax.numpy as np
from jax import random
# Other imports
import matplotlib.pyplot as plt
import seaborn as sns
sns.set(style='white') | discussion/examples/TFP_and_Jax.ipynb | tensorflow/probability | apache-2.0 |
TF Interface to Jax
We've reimplemented the TF API, but with Jax functions instead of TF functions and DeviceArrays instead of TF Tensors. | tf.ones(5)
tf.matmul(tf.ones([1, 2]), tf.ones([2, 4])) | discussion/examples/TFP_and_Jax.ipynb | tensorflow/probability | apache-2.0 |
Some differences:
Shapes are tuples, not TensorShapes | tf.ones(5).shape | discussion/examples/TFP_and_Jax.ipynb | tensorflow/probability | apache-2.0 |
Randomness is stateless, like in Jax and requires Jax PRNGKeys to operate. | tf.random.stateless_uniform([1, 2], seed=random.PRNGKey(0)) | discussion/examples/TFP_and_Jax.ipynb | tensorflow/probability | apache-2.0 |
Placeholders don't exist. | tf.compat.v1.placeholder_with_default(tf.ones(5), (5,)) | discussion/examples/TFP_and_Jax.ipynb | tensorflow/probability | apache-2.0 |
Math libraries
TFP's math libraries are now largely working, i.e. tfp.math
Bijectors
Most bijectors have tests passing!
Unary bijectors | bij = tfb.Shift(1.)(tfb.Scale(3.))
print(bij.forward(np.ones(5)))
print(bij.inverse(np.ones(5))) | discussion/examples/TFP_and_Jax.ipynb | tensorflow/probability | apache-2.0 |
Meta bijectors | b = tfb.FillScaleTriL(diag_bijector=tfb.Exp(), diag_shift=None)
print(b.forward(x=[0., 0., 0.]))
print(b.inverse(y=[[1., 0], [.5, 2]]))
b = tfb.Chain([tfb.Exp(), tfb.Softplus()])
# or:
# b = tfb.Exp()(tfb.Softplus())
print(b.forward(-np.ones(5))) | discussion/examples/TFP_and_Jax.ipynb | tensorflow/probability | apache-2.0 |
MCMC coming soon
We are migrating TFP's random samplers to be internally-stateless, then will update MCMC to support JAX.
Some don't work yet
For example: FFJORD, MAF (WIP), Real NVP
Distributions
When sampling, we need to pass in a seed. | dist = tfd.Normal(loc=0., scale=1.)
print(dist.sample(seed=random.PRNGKey(0))) | discussion/examples/TFP_and_Jax.ipynb | tensorflow/probability | apache-2.0 |
Jax distributions obey the same batching semantics as their TensorFlow counterparts. | dist = tfd.Normal(np.zeros(5), np.ones(5))
s = dist.sample(sample_shape=(10, 2), seed=random.PRNGKey(0))
print(dist.log_prob(s).shape)
dist = tfd.Independent(tfd.Normal(np.zeros(5), np.ones(5)), 1)
s = dist.sample(sample_shape=(10, 2), seed=random.PRNGKey(0))
print(dist.log_prob(s).shape) | discussion/examples/TFP_and_Jax.ipynb | tensorflow/probability | apache-2.0 |
Most meta distributions are working! | dist = tfd.TransformedDistribution(
tfd.MultivariateNormalDiag(tf.zeros(5), tf.ones(5)),
tfb.Exp())
# or:
# dist = tfb.Exp()(tfd.MultivariateNormalDiag(tf.zeros(5), tf.ones(5)))
s = dist.sample(sample_shape=2, seed=random.PRNGKey(0))
print(s)
print(dist.log_prob(s).shape) | discussion/examples/TFP_and_Jax.ipynb | tensorflow/probability | apache-2.0 |
Gaussian processes and PSD kernels also work. | k1, k2, k3 = random.split(random.PRNGKey(0), 3)
observation_noise_variance = 0.01
f = lambda x: np.sin(10*x[..., 0]) * np.exp(-x[..., 0]**2)
observation_index_points = tf.random.stateless_uniform(
[50], minval=-1.,maxval= 1., seed=k1)[..., np.newaxis]
observations = f(observation_index_points) + tfd.Normal(loc=0., scale=np.sqrt(observation_noise_variance)).sample(seed=k2)
index_points = np.linspace(-1., 1., 100)[..., np.newaxis]
kernel = tfpk.ExponentiatedQuadratic(length_scale=0.1)
gprm = tfd.GaussianProcessRegressionModel(
kernel=kernel,
index_points=index_points,
observation_index_points=observation_index_points,
observations=observations,
observation_noise_variance=observation_noise_variance)
samples = gprm.sample(10, seed=k3)
for i in range(10):
plt.plot(index_points, samples[i])
plt.show() | discussion/examples/TFP_and_Jax.ipynb | tensorflow/probability | apache-2.0 |
Get information about the datatype 'Bodemlocatie'
Other datatypes are also possible:
* Bodemsite: BodemsiteSearch
* Bodemmonster: BodemmonsterSearch
* Bodemobservatie: BodemobservatieSearch | from pydov.search.bodemlocatie import BodemlocatieSearch
bodemlocatie = BodemlocatieSearch() | docs/notebooks/search_bodem.ipynb | DOV-Vlaanderen/pydov | mit |
A description is provided for the 'Bodemlocatie' datatype: | bodemlocatie.get_description() | docs/notebooks/search_bodem.ipynb | DOV-Vlaanderen/pydov | mit |
The different fields that are available for objects of the 'Bodemlocatie' datatype can be requested with the get_fields() method: | fields = bodemlocatie.get_fields()
# print available fields
for f in fields.values():
print(f['name']) | docs/notebooks/search_bodem.ipynb | DOV-Vlaanderen/pydov | mit |
You can get more information of a field by requesting it from the fields dictionary:
* name: name of the field
* definition: definition of this field
* cost: currently this is either 1 or 10, depending on the datasource of the field. It is an indication of the expected time it will take to retrieve this field in the output dataframe.
* notnull: whether the field is mandatory or not
* type: datatype of the values of this field | fields['type'] | docs/notebooks/search_bodem.ipynb | DOV-Vlaanderen/pydov | mit |
Optionally, if the values of the field have a specific domain the possible values are listed as values: | fields['type']['values'] | docs/notebooks/search_bodem.ipynb | DOV-Vlaanderen/pydov | mit |
Example use cases
Get bodemsites in a bounding box
Get data for all the bodemsites that are geographically located completely within the bounds of the specified box.
The coordinates are in the Belgian Lambert72 (EPSG:31370) coordinate system and are given in the order of lower left x, lower left y, upper right x, upper right y.
The same methods can be used for other bodem objects. | from pydov.search.bodemsite import BodemsiteSearch
bodemsite = BodemsiteSearch()
from pydov.util.location import Within, Box
df = bodemsite.search(location=Within(Box(148000, 160800, 160000, 169500)))
df.head() | docs/notebooks/search_bodem.ipynb | DOV-Vlaanderen/pydov | mit |
The dataframe contains a list of bodemsites. The available data are flattened to represent unique attributes per row of the dataframe.
Using the pkey_bodemsite field one can request the details of this bodemsite in a webbrowser: | for pkey_bodemsite in set(df.pkey_bodemsite):
print(pkey_bodemsite) | docs/notebooks/search_bodem.ipynb | DOV-Vlaanderen/pydov | mit |
Get bodemlocaties with specific properties
Next to querying bodem objects based on their geographic location within a bounding box, we can also search for bodem objects matching a specific set of properties.
The same methods can be used for all bodem objects.
For this we can build a query using a combination of the 'Bodemlocatie' fields and operators provided by the WFS protocol.
A list of possible operators can be found below: | [i for i,j in inspect.getmembers(sys.modules['owslib.fes'], inspect.isclass) if 'Property' in i] | docs/notebooks/search_bodem.ipynb | DOV-Vlaanderen/pydov | mit |
In this example we build a query using the PropertyIsEqualTo operator to find all bodemlocaties with bodemstreek 'zandstreek'.
We use max_features=10 to limit the results to 10. | from owslib.fes import PropertyIsEqualTo
query = PropertyIsEqualTo(propertyname='bodemstreek',
literal='Zandstreek')
df = bodemlocatie.search(query=query, max_features=10)
df.head() | docs/notebooks/search_bodem.ipynb | DOV-Vlaanderen/pydov | mit |
Once again we can use the pkey_bodemlocatie as a permanent link to the information of these bodemlocaties: | for pkey_bodemlocatie in set(df.pkey_bodemlocatie):
print(pkey_bodemlocatie) | docs/notebooks/search_bodem.ipynb | DOV-Vlaanderen/pydov | mit |
Get all direct and indirect bodemobservaties in bodemlocatie
Get all bodemobservaties in a specific bodemlocatie.
Direct means bodemobservaties directly linked with a bodemlocatie.
Indirect means bodemobservaties linked with child-objects of the bodemlocatie, like bodemmonsters. | from pydov.search.bodemobservatie import BodemobservatieSearch
from pydov.search.bodemlocatie import BodemlocatieSearch
bodemobservatie = BodemobservatieSearch()
bodemlocatie = BodemlocatieSearch()
from owslib.fes import PropertyIsEqualTo
from pydov.util.query import Join
bodemlocaties = bodemlocatie.search(query=PropertyIsEqualTo(propertyname='naam', literal='VMM_INF_52'),
return_fields=('pkey_bodemlocatie',))
bodemobservaties = bodemobservatie.search(query=Join(bodemlocaties, 'pkey_bodemlocatie'))
bodemobservaties.head() | docs/notebooks/search_bodem.ipynb | DOV-Vlaanderen/pydov | mit |
Get all bodemobservaties in a bodemmonster
Get all bodemobservaties linked with a bodemmonster | from pydov.search.bodemmonster import BodemmonsterSearch
bodemmonster = BodemmonsterSearch()
bodemmonsters = bodemmonster.search(query=PropertyIsEqualTo(propertyname = 'identificatie', literal='A0057359'),
return_fields=('pkey_bodemmonster',))
bodemobservaties = bodemobservatie.search(query=Join(bodemmonsters, on = 'pkey_parent', using='pkey_bodemmonster'))
bodemobservaties.head() | docs/notebooks/search_bodem.ipynb | DOV-Vlaanderen/pydov | mit |
Find all soil locations with a given soil classification
Get all soil locations with a given soil classification: | from owslib.fes import PropertyIsEqualTo
from pydov.util.query import Join
from pydov.search.bodemclassificatie import BodemclassificatieSearch
from pydov.search.bodemlocatie import BodemlocatieSearch
bodemclassificatie = BodemclassificatieSearch()
bl_Scbz = bodemclassificatie.search(query=PropertyIsEqualTo('bodemtype', 'Scbz'), return_fields=['pkey_bodemlocatie'])
bodemlocatie = BodemlocatieSearch()
bl = bodemlocatie.search(query=Join(bl_Scbz, 'pkey_bodemlocatie'))
bl.head() | docs/notebooks/search_bodem.ipynb | DOV-Vlaanderen/pydov | mit |
We can also get their observations: | from pydov.search.bodemobservatie import BodemobservatieSearch
bodemobservatie = BodemobservatieSearch()
obs = bodemobservatie.search(query=Join(bl_Scbz, 'pkey_bodemlocatie'), max_features=10)
obs.head() | docs/notebooks/search_bodem.ipynb | DOV-Vlaanderen/pydov | mit |
Get all depth intervals and observations from a soil location | from pydov.search.bodemlocatie import BodemlocatieSearch
from pydov.search.bodemdiepteinterval import BodemdiepteintervalSearch
from pydov.util.query import Join
from owslib.fes import PropertyIsEqualTo
bodemlocatie = BodemlocatieSearch()
bodemdiepteinterval = BodemdiepteintervalSearch()
bodemlocaties = bodemlocatie.search(query=PropertyIsEqualTo(propertyname='naam', literal='VMM_INF_52'),
return_fields=('pkey_bodemlocatie',))
bodemdiepteintervallen = bodemdiepteinterval.search(
query=Join(bodemlocaties, on='pkey_bodemlocatie'))
bodemdiepteintervallen | docs/notebooks/search_bodem.ipynb | DOV-Vlaanderen/pydov | mit |
And get their observations: | from pydov.search.bodemobservatie import BodemobservatieSearch
bodemobservatie = BodemobservatieSearch()
bodemobservaties = bodemobservatie.search(query=Join(
bodemdiepteintervallen, on='pkey_parent', using='pkey_diepteinterval'))
bodemobservaties.head() | docs/notebooks/search_bodem.ipynb | DOV-Vlaanderen/pydov | mit |
Find all bodemlocaties where observations exist for organic carbon percentage in East-Flanders between 0 and 30 cm deep
Get boundaries of East-Flanders by using a WFS | from owslib.etree import etree
from owslib.wfs import WebFeatureService
from pydov.util.location import (
GmlFilter,
Within,
)
provinciegrenzen = WebFeatureService(
'https://geoservices.informatievlaanderen.be/overdrachtdiensten/VRBG/wfs',
version='1.1.0')
provincie_filter = PropertyIsEqualTo(propertyname='NAAM', literal='Oost-Vlaanderen')
provincie_poly = provinciegrenzen.getfeature(
typename='VRBG:Refprv',
filter=etree.tostring(provincie_filter.toXML()).decode("utf8")).read() | docs/notebooks/search_bodem.ipynb | DOV-Vlaanderen/pydov | mit |
Get bodemobservaties in East-Flanders with the requested properties | from owslib.fes import PropertyIsEqualTo
from owslib.fes import And
from pydov.search.bodemobservatie import BodemobservatieSearch
bodemobservatie = BodemobservatieSearch()
# Select only layers with the boundaries 10-30
bodemobservaties = bodemobservatie.search(
location=GmlFilter(provincie_poly, Within),
query=And([
PropertyIsEqualTo(propertyname="parameter", literal="Organische C - percentage"),
PropertyIsEqualTo(propertyname="diepte_tot_cm", literal = '30'),
PropertyIsEqualTo(propertyname="diepte_van_cm", literal = '0')
]))
bodemobservaties.head() | docs/notebooks/search_bodem.ipynb | DOV-Vlaanderen/pydov | mit |
Now we have all observations with the requested properties.
Next we need to link them with the bodemlocatie | from pydov.search.bodemlocatie import BodemlocatieSearch
from pydov.util.query import Join
import pandas as pd
# Find bodemlocatie information for all observations
bodemlocatie = BodemlocatieSearch()
bodemlocaties = bodemlocatie.search(query=Join(bodemobservaties, on = 'pkey_bodemlocatie', using='pkey_bodemlocatie'))
# remove x, y, mv_mtaw from observatie dataframe to prevent duplicates while merging
bodemobservaties = bodemobservaties.drop(['x', 'y', 'mv_mtaw'], axis=1)
# Merge the bodemlocatie information together with the observation information
merged = pd.merge(bodemobservaties, bodemlocaties, on="pkey_bodemlocatie", how='left')
merged.head() | docs/notebooks/search_bodem.ipynb | DOV-Vlaanderen/pydov | mit |
To export the results to CSV, you can use for example:
python
merged.to_csv("test.csv")
We can plot also the results on a map
This can take some time! | import folium
from folium.plugins import MarkerCluster
from pyproj import Transformer
# convert the coordinates to lat/lon for folium
def convert_latlon(x1, y1):
transformer = Transformer.from_crs("epsg:31370", "epsg:4326", always_xy=True)
x2,y2 = transformer.transform(x1, y1)
return x2, y2
#convert coordinates to wgs84
merged['lon'], merged['lat'] = zip(*map(convert_latlon, merged['x'], merged['y']))
# Get only location and value
loclist = merged[['lat', 'lon']].values.tolist()
# initialize the Folium map on the centre of the selected locations, play with the zoom until ok
fmap = folium.Map(location=[merged['lat'].mean(), merged['lon'].mean()], zoom_start=10)
marker_cluster = MarkerCluster().add_to(fmap)
for loc in range(0, len(loclist)):
popup = 'Bodemlocatie: ' + merged['pkey_bodemlocatie'][loc]
popup = popup + '<br> Bodemobservatie: ' + merged['pkey_bodemobservatie'][loc]
popup = popup + '<br> Value: ' + merged['waarde'][loc] + "%"
folium.Marker(loclist[loc], popup=popup).add_to(marker_cluster)
fmap | docs/notebooks/search_bodem.ipynb | DOV-Vlaanderen/pydov | mit |
Calculate carbon stock in Ghent in the layer 0 - 23 cm
At the moment, there are no bulkdensities available. As soon as there are observations with bulkdensities, this example can be used to calculate a carbon stock in a layer.
Get boundaries of Ghent using WFS | from owslib.etree import etree
from owslib.fes import PropertyIsEqualTo
from owslib.wfs import WebFeatureService
from pydov.util.location import (
GmlFilter,
Within,
)
stadsgrenzen = WebFeatureService(
'https://geoservices.informatievlaanderen.be/overdrachtdiensten/VRBG/wfs',
version='1.1.0')
gent_filter = PropertyIsEqualTo(propertyname='NAAM', literal='Gent')
gent_poly = stadsgrenzen.getfeature(
typename='VRBG:Refgem',
filter=etree.tostring(gent_filter.toXML()).decode("utf8")).read()
| docs/notebooks/search_bodem.ipynb | DOV-Vlaanderen/pydov | mit |
First get all observations in Ghent for organisch C percentage in requested layer | from owslib.fes import PropertyIsEqualTo, PropertyIsGreaterThan, PropertyIsLessThan
from owslib.fes import And
from pydov.search.bodemobservatie import BodemobservatieSearch
bodemobservatie = BodemobservatieSearch()
# all layers intersect the layer 0-23cm
carbon_observaties = bodemobservatie.search(
location=GmlFilter(gent_poly, Within),
query=And([
PropertyIsEqualTo(propertyname="parameter", literal="Organische C - percentage"),
PropertyIsGreaterThan(propertyname="diepte_tot_cm", literal = '0'),
PropertyIsLessThan(propertyname="diepte_van_cm", literal = '23')
]),
return_fields=('pkey_bodemlocatie', 'waarde'))
carbon_observaties = carbon_observaties.rename(columns={"waarde": "organic_c_percentage"})
carbon_observaties.head()
| docs/notebooks/search_bodem.ipynb | DOV-Vlaanderen/pydov | mit |
Then get all observations in Ghent for bulkdensity in requested layer | density_observaties = bodemobservatie.search(
location=GmlFilter(gent_poly, Within),
query=And([
PropertyIsEqualTo(propertyname="parameter", literal="Bulkdensiteit - gemeten"),
PropertyIsGreaterThan(propertyname="diepte_tot_cm", literal = '0'),
PropertyIsLessThan(propertyname="diepte_van_cm", literal = '23')
]),
return_fields=('pkey_bodemlocatie', 'waarde'))
density_observaties = density_observaties.rename(columns={"waarde": "bulkdensity"})
density_observaties.head() | docs/notebooks/search_bodem.ipynb | DOV-Vlaanderen/pydov | mit |
Merge results together based on their bodemlocatie. Only remains the records where both parameters exists | import pandas as pd
merged = pd.merge(carbon_observaties, density_observaties, on="pkey_bodemlocatie")
merged.head() | docs/notebooks/search_bodem.ipynb | DOV-Vlaanderen/pydov | mit |
Filter Aardewerk soil locations
Since we know that Aardewerk soil locations make use of a specific suffix, a query could be built filtering these out.
Since we only need to match a partial string in the name, we will build a query using the PropertyIsLike operator to find all Aardewerk bodemlocaties.
We use max_features=10 to limit the results to 10. | from owslib.fes import PropertyIsLike
query = PropertyIsLike(propertyname='naam',
literal='KART_PROF_%', wildCard='%')
df = bodemlocatie.search(query=query, max_features=10)
df.head() | docs/notebooks/search_bodem.ipynb | DOV-Vlaanderen/pydov | mit |
As seen in the soil data example, we can use the pkey_bodemlocatie as a permanent link to the information of these bodemlocaties: | for pkey_bodemlocatie in set(df.pkey_bodemlocatie):
print(pkey_bodemlocatie) | docs/notebooks/search_bodem.ipynb | DOV-Vlaanderen/pydov | mit |
What about Spark DataFrames?
No problem! We can easily perform the same steps on a Spark DataFrame. One important thing to note there is that we need to include a jar file when we create our Spark session. This is used by spark to create the histograms using Histogrammar. The jar file will be automatically downloaded the first time you run this command. | # download histogrammar jar files if not already installed, used for histogramming of spark dataframe
try:
from pyspark.sql import SparkSession
from pyspark.sql.functions import col
from pyspark import __version__ as pyspark_version
pyspark_installed = True
except ImportError:
print("pyspark needs to be installed for this example")
pyspark_installed = False
# this is the jar file for spark 3.0
# for spark 2.X, in the jars string, for both jar files change "_2.12" into "_2.11".
if pyspark_installed:
scala = '2.12' if int(pyspark_version[0]) >= 3 else '2.11'
hist_jar = f'io.github.histogrammar:histogrammar_{scala}:1.0.20'
hist_spark_jar = f'io.github.histogrammar:histogrammar-sparksql_{scala}:1.0.20'
spark = SparkSession.builder.config(
"spark.jars.packages", f'{hist_spark_jar},{hist_jar}'
).getOrCreate()
sdf = spark.createDataFrame(df) | histogrammar/notebooks/histogrammar_tutorial_advanced.ipynb | histogrammar/histogrammar-python | apache-2.0 |
Filling histograms with spark
Filling histograms with spark dataframes is just as simple as it is with pandas dataframes. | # example: filling from a pandas dataframe
hist = hg.SparselyHistogram(binWidth=100, quantity='transaction')
hist.fill.numpy(df)
hist.plot.matplotlib();
# for spark you will need this spark column function:
if pyspark_installed:
from pyspark.sql.functions import col | histogrammar/notebooks/histogrammar_tutorial_advanced.ipynb | histogrammar/histogrammar-python | apache-2.0 |
Let's make the same histogram but from a spark dataframe. There are just two differences:
- When declaring a histogram, always set quantity to col('columns_name') instead of 'columns_name'
- When filling the histogram from a dataframe, use the fill.sparksql() method instead of fill.numpy(). | # example: filling from a pandas dataframe
if pyspark_installed:
hist = hg.SparselyHistogram(binWidth=100, quantity=col('transaction'))
hist.fill.sparksql(sdf)
hist.plot.matplotlib(); | histogrammar/notebooks/histogrammar_tutorial_advanced.ipynb | histogrammar/histogrammar-python | apache-2.0 |
Apart from these two differences, all functionality is the same between pandas and spark histograms!
Like pandas, we can also do directly from the dataframe: | if pyspark_installed:
h2 = sdf.hg_SparselyProfileErr(25, col('longitude'), col('age'))
h2.plot.matplotlib();
if pyspark_installed:
h3 = sdf.hg_TwoDimensionallySparselyHistogram(25, col('longitude'), 10, col('latitude'))
h3.plot.matplotlib(); | histogrammar/notebooks/histogrammar_tutorial_advanced.ipynb | histogrammar/histogrammar-python | apache-2.0 |
All examples below also work with spark dataframes.
Making many histograms at once
Histogrammar has a nice method to make many histograms in one go. See here.
By default automagical binning is applied to make the histograms. | hists = df.hg_make_histograms()
# histogrammar has made histograms of all features, using an automated binning.
hists.keys()
h = hists['transaction']
h.plot.matplotlib();
# you can select which features you want to histogram with features=:
hists = df.hg_make_histograms(features = ['longitude', 'age', 'eyeColor'])
# you can also make multi-dimensional histograms
# here longitude is the first axis of each histogram.
hists = df.hg_make_histograms(features = ['longitude:age', 'longitude:age:eyeColor']) | histogrammar/notebooks/histogrammar_tutorial_advanced.ipynb | histogrammar/histogrammar-python | apache-2.0 |
Working with timestamps | # Working with a dedicated time axis, make histograms of each feature over time.
hists = df.hg_make_histograms(time_axis="date")
hists.keys()
h2 = hists['date:age']
h2.plot.matplotlib(); | histogrammar/notebooks/histogrammar_tutorial_advanced.ipynb | histogrammar/histogrammar-python | apache-2.0 |
Histogrammar does not support pandas' timestamps natively, but converts timestamps into nanoseconds since 1970-1-1. | h2.bin_edges() | histogrammar/notebooks/histogrammar_tutorial_advanced.ipynb | histogrammar/histogrammar-python | apache-2.0 |
The datatype shows the datetime though: | h2.datatype
# convert these back to timestamps with:
pd.Timestamp(h2.bin_edges()[0])
# For the time axis, you can set the binning specifications with time_width and time_offset:
hists = df.hg_make_histograms(time_axis="date", time_width='28d', time_offset='2014-1-4', features=['date:isActive', 'date:age'])
hists['date:isActive'].plot.matplotlib(); | histogrammar/notebooks/histogrammar_tutorial_advanced.ipynb | histogrammar/histogrammar-python | apache-2.0 |
Setting binning specifications | # histogram selections. Here 'date' is the first axis of each histogram.
features=[
'date', 'latitude', 'longitude', 'age', 'eyeColor', 'favoriteFruit', 'transaction'
]
# Specify your own binning specifications for individual features or combinations thereof.
# This bin specification uses open-ended ("sparse") histograms; unspecified features get
# auto-binned. The time-axis binning, when specified here, needs to be in nanoseconds.
bin_specs={
'longitude': {'binWidth': 10.0, 'origin': 0.0},
'latitude': {'edges': [-100, -75, -25, 0, 25, 75, 100]},
'age': {'num': 100, 'low': 0, 'high': 100},
'transaction': {'centers': [-1000, -500, 0, 500, 1000, 1500]},
'date': {'binWidth': pd.Timedelta('4w').value, 'origin': pd.Timestamp('2015-1-1').value}
}
# this binning specification is making:
# - a sparse histogram for: longitude
# - an irregular binned histogram for: latitude
# - a closed-range evenly spaced histogram for: age
# - a histogram centered around bin centers for: transaction
hists = df.hg_make_histograms(features=features, bin_specs=bin_specs)
hists.keys()
hists['transaction'].plot.matplotlib();
# all available bin specifications are (just examples):
bin_specs = {'x': {'bin_width': 1, 'bin_offset': 0}, # SparselyBin histogram
'y': {'num': 10, 'low': 0.0, 'high': 2.0}, # Bin histogram
'x:y': [{}, {'num': 5, 'low': 0.0, 'high': 1.0}], # SparselyBin vs Bin histograms
'a': {'edges': [0, 2, 10, 11, 21, 101]}, # IrregularlyBin histogram
'b': {'centers': [1, 6, 10.5, 16, 20, 100]}, # CentrallyBin histogram
'c': {'max': True}, # Maximize histogram
'd': {'min': True}, # Minimize histogram
'e': {'sum': True}, # Sum histogram
'z': {'deviate': True}, # Deviate histogram
'f': {'average': True}, # Average histogram
'a:f': [{'edges': [0, 10, 101]}, {'average': True}], # IrregularlyBin vs Average histograms
'g': {'thresholds': [0, 2, 10, 11, 21, 101]}, # Stack histogram
'h': {'bag': True}, # Bag histogram
}
# to set binning specs for a specific 2d histogram, you can do this:
# if these are not provide, the 1d binning specifications are picked up for 'a:f'
bin_specs = {'a:f': [{'edges': [0, 10, 101]}, {'average': True}]}
# For example
features = ['latitude:age', 'longitude:age', 'age', 'longitude']
bin_specs = {
'latitude': {'binWidth': 25},
'longitude:': {'edges': [-100, -75, -25, 0, 25, 75, 100]},
'age': {'deviate': True},
'longitude:age': [{'binWidth': 25}, {'average': True}],
}
hists = df.hg_make_histograms(features=features, bin_specs=bin_specs)
h = hists['latitude:age']
h.bins
hists['longitude:age'].plot.matplotlib(); | histogrammar/notebooks/histogrammar_tutorial_advanced.ipynb | histogrammar/histogrammar-python | apache-2.0 |
We just defined a BitwiseAnd class that takes one integer column as input, and returns a scalar output of the same type as the input. This matches both the requirements of a reduction and the spepcifics of the function that we want to implement.
Note: It is very important that you write the correct argument rules and output type here. The expression will not work otherwise.
Step 2: Define the API
Because every reduction in ibis has the ability to filter out values during aggregation (a typical feature in databases and analytics tools), to make an expression out of BitwiseAnd we need to pass an additional argument: where to our BitwiseAnd constructor. | from ibis.expr.types import IntegerColumn # not IntegerValue! reductions are only valid on columns
def bitwise_and(integer_column, where=None):
return BitwiseAnd(integer_column, where=where).to_expr()
IntegerColumn.bitwise_and = bitwise_and | docs/source/notebooks/tutorial/10-Adding-a-new-reduction-expression.ipynb | deepfield/ibis | apache-2.0 |
Interlude: Create some expressions using bitwise_and | import ibis
t = ibis.table([('bigint_col', 'int64'), ('string_col', 'string')], name='t')
t.bigint_col.bitwise_and()
t.bigint_col.bitwise_and(t.string_col == '1') | docs/source/notebooks/tutorial/10-Adding-a-new-reduction-expression.ipynb | deepfield/ibis | apache-2.0 |
Step 3: Turn the Expression into SQL | import sqlalchemy as sa
@ibis.postgres.compiles(BitwiseAnd)
def compile_sha1(translator, expr):
# pull out the arguments to the expression
arg, where = expr.op().args
# compile the argument
compiled_arg = translator.translate(arg)
# call the appropriate postgres function
agg = sa.func.bit_and(compiled_arg)
# handle a non-None filter clause
if where is not None:
return agg.filter(translator.translate(where))
return agg | docs/source/notebooks/tutorial/10-Adding-a-new-reduction-expression.ipynb | deepfield/ibis | apache-2.0 |
Step 4: Putting it all Together
Connect to the ibis_testing database
NOTE:
To be able to execute the rest of this notebook you need to run the following command from your ibis clone:
sh
ci/build.sh | con = ibis.postgres.connect(
user='postgres',
host='postgres',
password='postgres',
database='ibis_testing'
) | docs/source/notebooks/tutorial/10-Adding-a-new-reduction-expression.ipynb | deepfield/ibis | apache-2.0 |
Create and execute a bitwise_and expression | t = con.table('functional_alltypes')
t
expr = t.bigint_col.bitwise_and()
expr
sql_expr = expr.compile()
print(sql_expr)
expr.execute() | docs/source/notebooks/tutorial/10-Adding-a-new-reduction-expression.ipynb | deepfield/ibis | apache-2.0 |
Let's see what a bitwise_and call looks like with a where argument | expr = t.bigint_col.bitwise_and(where=(t.bigint_col == 10) | (t.bigint_col == 40))
expr
result = expr.execute()
result | docs/source/notebooks/tutorial/10-Adding-a-new-reduction-expression.ipynb | deepfield/ibis | apache-2.0 |
Let's confirm that taking bitwise AND of 10 and 40 is in fact 8 | 10 & 40
print(' {:0>8b}'.format(10))
print('& {:0>8b}'.format(40))
print('-' * 10)
print(' {:0>8b}'.format(10 & 40)) | docs/source/notebooks/tutorial/10-Adding-a-new-reduction-expression.ipynb | deepfield/ibis | apache-2.0 |
For the estimation of the 2D SFS, realSFS has only taken sites that had data from at least 9 individuals in each population (see assembly.sh, lines 1423 onwards). | sfs2d_unfolded.S() | Data_analysis/SNP-indel-calling/dadi/05_2D.ipynb | claudiuskerth/PhDthesis | mit |
The 2D spectrum contains counts from 60k sites that are variable in par or ery or both. | import pylab
%matplotlib inline
# note this needs to be in the same cell as the dadi plotting function call to take effect
pylab.rcParams['font.size'] = 14.0
pylab.rcParams['figure.figsize'] = [12.0, 10.0]
dadi.Plotting.plot_single_2d_sfs(sfs2d_unfolded, vmin=1, cmap=pylab.cm.jet)
%psource dadi.Plotting.plot_single_2d_sfs | Data_analysis/SNP-indel-calling/dadi/05_2D.ipynb | claudiuskerth/PhDthesis | mit |
More colormaps | sfs2d_folded = sfs2d_unfolded.fold()
# plot the folded GLOBAL minor allele frequency spectrum
dadi.Plotting.plot_single_2d_sfs(sfs2d_folded, vmin=1, cmap=pylab.cm.jet)
# setting the smallest grid size slightly larger than the largest population sample size (36)
pts_l = [40, 50, 60] | Data_analysis/SNP-indel-calling/dadi/05_2D.ipynb | claudiuskerth/PhDthesis | mit |
The fitting of parameters for various 1D models to the SFS's of par and ery has indicated the following:
- ery has undergone a population size increase by >20 fold (between about 1-2 $\times2N_{ref}$ generations ago) and later (<1 $\times2N_{ref}$ generations ago) a decrease to about 15% of the ancient populations size
- par has undergone only one size change to <10% of the ancient population size, this is inferred to have happened in the distant past, about 2-4 ($\times 2N_{ref}$) generations ago
I think it would be good to incorporate this information in the specification of a more complex 2D model. | %pinfo dadi.Demographics2D.split_mig | Data_analysis/SNP-indel-calling/dadi/05_2D.ipynb | claudiuskerth/PhDthesis | mit |
There are a couple of built-in models that I could use, but I think I need a custom model here that includes the information from the 1D model fitting.
I would like to write a model function that specifies an ancient split between ery and par, then a population decline in par that lasts until the present and later an exponential growth in ery that is more recently followed by a population decline.
An alternative model to test would be a population decline in the ancestral population, followed by the split between, later population increase in ery which is more recently followed by a population decline. | def split_1grow_2decline_1decline_nomig((nu1s, nu2s, nu2f, nu1b, nu1f, Ts, T2, Tb, Tf), (n1, n2), pts):
"""
model function: specifies an ancient split, followed by growth in pop1 and
decline in pop2, later also decline in pop1
nu1s: rel. size of pop1 after split
nu2s: rel. size of pop2 after split
nu2f: final rel. size for pop2
nu1b: rel. size of pop1 after first size change
nu1f: final rel. size of pop1
Ts: time betweem population split and size change in pop2
T2: time between size change in pop2 and first size change in pop1
Tb: time between first and second size change in pop1
Tf: time between second size change in pop1 and present
The population split happend Tf+Tb+T2+Ts (x2N) generations in the past.
n1,n2: sample sizes
pts: number of grid points to use in extrapolation
"""
# define grid
xx = yy = dadi.Numerics.default_grid(pts)
# phi for the equilibrium ancestral pop
phi = dadi.PhiManip.phi_1D(xx)
# population split into pop1 and pop2
phi = dadi.PhiManip.phi_1D_to_2D(xx, phi)
# stepwise change in size for pop1 and pop2 after split
phi = dadi.Integration.two_pops(phi, xx, Ts, nu2=nu2s, nu1=nu1s, m12=0, m21=0)
# stepwise change in size for pop2 only
phi = dadi.Integration.two_pops(phi, xx, T2, nu2=nu2f, nu1=nu1s, m12=0, m21=0)
# stepwise change in size for pop1 only
phi = dadi.Integration.two_pops(phi, xx, Tb, nu2=nu2f, nu1=nu1b, m12=0, m21=0)
# stepwise change in size for pop1 only
phi = dadi.Integration.two_pops(phi, xx, Tf, nu2=nu2f, nu1=nu1f, m12=0, m21=0)
# calculate spectrum
sfs = dadi.Spectrum.from_phi(phi, (n1, n2), (xx, yy))
return sfs | Data_analysis/SNP-indel-calling/dadi/05_2D.ipynb | claudiuskerth/PhDthesis | mit |
I wonder which population dadi assumes to be pop1. In the sfs2d spectrum object, ery is pop1 and par is pop2. | ?dadi.PhiManip.phi_1D_to_2D
# create link to function that specifies the model
func = split_1grow_2decline_1decline_nomig
# create extrapolating version of the model function
func_ex = dadi.Numerics.make_extrap_log_func(func)
?split_1grow_2decline_1decline_nomig
nu1s = 0.5
nu2s = 0.5
nu2f = 0.05
nu1b = 40
nu1f = 0.15
Ts = 0.1
T2 = 0.1
Tb = 0.1
Tf = 0.1
sfs2d_folded.sample_sizes
model_spectrum = func_ex((nu1s, nu2s, nu2f, nu1b, nu1f, Ts, T2, Tb, Tf), sfs2d_folded.sample_sizes, pts_l)
theta = dadi.Inference.optimal_sfs_scaling(model_spectrum.fold(), sfs2d_folded)
theta
dadi.Plotting.plot_2d_comp_multinom(model_spectrum.fold(), sfs2d_folded, vmin=1) | Data_analysis/SNP-indel-calling/dadi/05_2D.ipynb | claudiuskerth/PhDthesis | mit |
Thought: For feature extraction, it would probably be faster to extract all time domain vectors $y$ into a NumPy array and perform the necessary LibROSA operations across the rows of the vector, possibly leveraging under-the-hood efficiencies.
"1min 43s per loop" below | for i, row in df.iterrows():
session = nonrealtimetools.Session()
builder = gk.generator.gendy1.make_builder(row)
out = gk.generator.gendy1.build_out(builder)
synthdef = builder.build()
with session.at(0):
synth_a = session.add_synth(duration=10, synthdef=synthdef)
gk.util.render_session(session, this_dir, row["hash"])
y, sr = librosa.load(os.path.join(this_dir, "aif_files", row["hash"] + ".aiff"))
_y_normed = librosa.util.normalize(y)
_mfcc = librosa.feature.mfcc(y=_y_normed, sr=sr, n_mfcc=13)
_cent = np.mean(librosa.feature.spectral_centroid(y=_y_normed, sr=sr))
_mfcc_mean = gk.feature_extraction.get_stats(_mfcc)["mean"]
X_row = np.append(_mfcc_mean, _cent)
if i==0:
X_mtx = X_row
else:
X_mtx = np.vstack((X_mtx, X_row))
X_mtx.shape
def col_rename_4_mfcc(c):
if (c < 13):
return "mfcc_mean_{}".format(c)
else:
return "spectral_centroid"
pd.DataFrame(X_mtx).rename_axis(lambda c: col_rename_4_mfcc(c), axis=1)
from sklearn import linear_model
from sklearn import model_selection
from sklearn import preprocessing
import sklearn as sk
import matplotlib.pyplot as plt
%matplotlib inline
pmtx.shape
X_mtx.shape
X_mtx[0]
X_train, X_test, y_train, y_test = sk.model_selection.train_test_split(
X_mtx, pmtx, test_size=0.4, random_state=1)
# Create linear regression objectc
regr = linear_model.LinearRegression()
# Train the model using the training sets
regr.fit(X_train, y_train)
# The coefficients
print('Coefficients: \n', regr.coef_)
# The mean squared error
print("Mean squared error: %.2f"
% np.mean((regr.predict(X_test) - y_test) ** 2))
# Explained variance score: 1 is perfect prediction
print('Variance score: %.2f' % regr.score(X_test, y_test)) | Notebooks/Experiments/17_01_10_regress_w_gendy_dists.ipynb | spacecoffin/GravelKicker | apache-2.0 |
In a nutshell, method 1 generates an array with shape (x, y, z) -- specifically, (540, 717, 1358). The method 2 generates a numpy array with shape (z, y, x) -- specifically, (1358, 717, 540). Since we want the first column to be z slices, the original method was granting me x-slices (hence the cigar-tube dimensions).
In order to interconvert, we can either just use the rawData approach after directly calling from ndstore, or we can take our numpy array after loading from nibabel and use numpy's swapaxes method to just swap two of the dimensions (shown below). | ## if we have (i, j, k), we want (k, j, i) (converts nibabel format to sitk format)
new_im = newer_img.swapaxes(0,2) # just swap i and k | Tony/ipynb/Ilastik on Raw and HistEq Fear199 Data.ipynb | NeuroDataDesign/seelviz | apache-2.0 |
Task 2: Generating raw TIFF slices.
Now that I have appropiate coordinates, I generated a subset of TIFF slices to run the training module for the image classifier. Using the script here: | plane = 0;
for plane in (0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 100, 101, 102, 103, 104):
output = np.asarray(rawData[plane])
## Save as TIFF for Ilastik
scipy.misc.toimage(output).save('RAWoutfile' + TokenName + 'ITK' + str(plane) + '.tiff') | Tony/ipynb/Ilastik on Raw and HistEq Fear199 Data.ipynb | NeuroDataDesign/seelviz | apache-2.0 |
Take a first look at the data | data = apc.asbestos()
data.head() | apc/vignettes/vignette_mesothelioma.ipynb | JonasHarnau/apc | gpl-3.0 |
Set up a model and attach the data to it. | model = apc.Model()
model.data_from_df(data) | apc/vignettes/vignette_mesothelioma.ipynb | JonasHarnau/apc | gpl-3.0 |
Now we look at a first plot of the data. We plot the response over each of the three time-scales. | model.plot_data_sums(figsize=(10,4)) | apc/vignettes/vignette_mesothelioma.ipynb | JonasHarnau/apc | gpl-3.0 |
Martinez Miranda et al. (2015), drop age groups older than 89 due to sparsity. We redo the plot looking exclusively at data for these age groups. | model.sub_model(age_from_to=(80,None)).plot_data_sums(figsize=(10,4)) | apc/vignettes/vignette_mesothelioma.ipynb | JonasHarnau/apc | gpl-3.0 |
We can see that there is indeed a sharp drop towards the end of the sample. Thus, we set up a sub-model that does not include these groups. | model = model.sub_model(age_from_to=(None, 89)) | apc/vignettes/vignette_mesothelioma.ipynb | JonasHarnau/apc | gpl-3.0 |
To confirm, we take a look at the data in vector form as organized by data_from_df: | model.data_vector.tail() | apc/vignettes/vignette_mesothelioma.ipynb | JonasHarnau/apc | gpl-3.0 |
Success! The oldest age groups have been removed.
Next, we plot the data of one time-scale within another. | model.plot_data_within(figsize=(10,8), logy=True) | apc/vignettes/vignette_mesothelioma.ipynb | JonasHarnau/apc | gpl-3.0 |
From the cohort within period plot (bottom middle), we can see that mortality seems to slowly taper off for the 1917-1938 cohorts while that for the 1939-1960 appears to still be rising.
Next, we fit a deviance table of a Poisson model to the data. | model.fit_table('poisson_response')
model.deviance_table | apc/vignettes/vignette_mesothelioma.ipynb | JonasHarnau/apc | gpl-3.0 |
We see that an age-period-cohort model cannot be rejected with a p-value of 0.85 (against a saturated model with as many parameters as observations). The same holds for an age-cohort model with a p-value of 0.78. A reduction from an age-period-cohort to an age-cohort model yields a p-value of 0.03. Miranda et al. point out that it may still be acceptable to use this model since it eases forecasting substantially: it makes it unnecessary to extrapolate the period parameters into the future which would introduce another source of uncertainty. Further, simpler models often seem to be beneficial for forecasting.
Remark: see Nielsen (2014) for an explanation of the individual predictors.
We thus fit an age-cohort model to the data. | model.fit('poisson_response', 'AC') | apc/vignettes/vignette_mesothelioma.ipynb | JonasHarnau/apc | gpl-3.0 |
We can now plot the parameters and their standard errors. | model.plot_parameters(around_coef=False) | apc/vignettes/vignette_mesothelioma.ipynb | JonasHarnau/apc | gpl-3.0 |
The level combined with the two linear trends specify a plane. The detrended double sums of double differences in the bottom row show deviations over and above this plane. To obtain the fitted value of the linear predictor for a given age and cohort, we add together the level, and the value of the linear trends and detrended double sums at the relevant age and cohort. The fitted value for the response would be the exponential of this value. The detrended double sums start and end in zero by design.
We can move on to look at a residual plot. | model.plot_residuals('deviance') | apc/vignettes/vignette_mesothelioma.ipynb | JonasHarnau/apc | gpl-3.0 |
We would like this plot to look like white noise. While this looks quite reasonable for the upper age groups, the pattern appears somewhat different for the lower ages up to about 37. It seems that the fit there is generally somewhat better. From what we saw above, this may relate to the fact that the death counts for these age groups are quite low so that predicting something close to zero is going to give good results. Fitting these cells seems somewhat 'easier'.
Next, we move on to forecast from the model. The idea is to forecast mortality for future periods based on parameter estimates that are already available from the data. We can visualize that in a heatmap plot in age-cohort space. | model.plot_data_heatmaps(space='AC') | apc/vignettes/vignette_mesothelioma.ipynb | JonasHarnau/apc | gpl-3.0 |
Here, the idea is to fill in the empty values in the bottom right triangle. Estimates for age and cohort effects for these cells are already available. Since we do not have a period effect in the model, this is all we need.
We can now forecast from the model. | model.forecast() | apc/vignettes/vignette_mesothelioma.ipynb | JonasHarnau/apc | gpl-3.0 |
This call generated (distribution) forecasts for individual cells, as well as aggregated by age, period and cohort. In the heatmap plot above, these correspond to row, column and (counter-)diagonal sums in the lower right triangle, respectively. Finally, a forecast for the total, that is the sum over all cells in the triangle, is available.
We find the peak in the point forecasts. | peak_year = model.forecasts['Period']['point_forecast'].idxmax()
print('Peak year is {}.'.format(peak_year))
model.forecasts['Period'].loc[peak_year-2:peak_year+2] | apc/vignettes/vignette_mesothelioma.ipynb | JonasHarnau/apc | gpl-3.0 |
We can see that the generated arrays include not just the point forecast but also standard errors (broken down into process and estimation error) and quantile forecasts.
Next, we plot the forecasts aggregated by period. | model.plot_forecast() | apc/vignettes/vignette_mesothelioma.ipynb | JonasHarnau/apc | gpl-3.0 |
The plot includes one and two standard error bands. If we look closely, we can see that the fit seems to be somewhat worse for the last couple periods before the sample ends. One way to correct this is apply intercept correction. Martinez Miranda et al. (2015) suggest to multiply the point forecasts by the ratio of the last realization to the last fitted value. | final_realized = model.data_vector.sum(level='Period').sort_index().iloc[-1][0]
final_fitted = model.fitted_values.sum(level='Period').sort_index().iloc[-1]
print('Death counts for last period: {}'.format(final_realized))
print('Fitted value for last period: {:.2f}'.format(final_fitted))
print('Intercept correction factor: {:.2f}'.format(final_realized/final_fitted)) | apc/vignettes/vignette_mesothelioma.ipynb | JonasHarnau/apc | gpl-3.0 |
We take a look at the plot with intercept correction, limiting our attention toe the period from 1990 to 2040. | model.plot_forecast(ic=True, from_to=(1990,2040)) | apc/vignettes/vignette_mesothelioma.ipynb | JonasHarnau/apc | gpl-3.0 |
This plot does have a more natural appearance, lacking the jump at the end of the sample.
We can also look at forecasts over a different time scale, for example by age. In this case, we already have some data available for all age groups under consideration. We may then be more interested not just in the forecasts, but maybe in the sum of response and forecast. | model.plot_forecast(by='Age', aggregate=True) | apc/vignettes/vignette_mesothelioma.ipynb | JonasHarnau/apc | gpl-3.0 |
Creating and Modeling a Noisy Training Set
Our biggest step in the data programming pipeline is the creation - and modeling - of a noisy training set. We'll approach this in three main steps:
Creating labeling functions (LFs): This is where most of our development time would actually go into if this were a real application. Labeling functions encode our heuristics and weak supervision signals to generate (noisy) labels for our training candidates.
Applying the LFs: Here, we actually use them to label our candidates!
Training a generative model of our training set: Here we learn a model over our LFs, learning their respective accuracies automatically. This will allow us to combine them into a single, higher-quality label set.
We'll also add some detail on how to go about developing labeling functions and then debugging our model of them to improve performance.
1. Creating Labeling Functions
In Snorkel, our primary interface through which we provide training signal to the end extraction model we are training is by writing labeling functions (LFs) (as opposed to hand-labeling massive training sets). We'll go through some examples for our spouse extraction task below.
A labeling function is just a Python function that accepts a Candidate and returns 1 to mark the Candidate as true, -1 to mark the Candidate as false, and 0 to abstain from labeling the Candidate (note that the non-binary classification setting is covered in the advanced tutorials!).
In the next stages of the Snorkel pipeline, we'll train a model to learn the accuracies of the labeling functions and trewieght them accordingly, and then use them to train a downstream model. It turns out by doing this, we can get high-quality models even with lower-quality labeling functions. So they don't need to be perfect! Now on to writing some: | import re
from snorkel.lf_helpers import (
get_left_tokens, get_right_tokens, get_between_tokens,
get_text_between, get_tagged_text,
) | tutorials/intro/Intro_Tutorial_2.ipynb | jasontlam/snorkel | apache-2.0 |
Now I’ve harped on about vectorization in the last couple of videos and I’ve told you that it’s great but I haven’t shown you how it’s so great.
Here are the two powerful reasons
- Concise
- Efficient
The fundamental idea behind array programming is that operations apply at once to an entire set of values. This makes it a high-level programming model as it allows the programmer to think and operate on whole aggregates of data, without having to resort to explicit loops of individual scalar operations.
You can read more here:
https://en.wikipedia.org/wiki/Array_programming | npa | 3 - NumPy Basics/3-3 NumPy Array Basics - Vectorization.ipynb | anabranch/data_analysis_with_python_and_pandas | apache-2.0 |
With vectorization we can apply changes to the entire array extremely efficiently, no more for loops. If we want to double the array, we just multiply by 2 if we want to cube it we just cube it. | npa * 2
npa ** 3
[x * 2 for x in npa] | 3 - NumPy Basics/3-3 NumPy Array Basics - Vectorization.ipynb | anabranch/data_analysis_with_python_and_pandas | apache-2.0 |
So who cares? Again it’s going to be efficiency thing just like boolean selection Let’s try something a bit more complex.
Define a function named new_func that cubes the value if it is less than 5 and squares it if it is greater or equal to 5. | def new_func(numb):
if numb < 10:
return numb**3
else:
return numb**2
new_func(npa) | 3 - NumPy Basics/3-3 NumPy Array Basics - Vectorization.ipynb | anabranch/data_analysis_with_python_and_pandas | apache-2.0 |
However we can’t just pass in the whole vector because we’re going to get this array ambiguity. | ?np.vectorize | 3 - NumPy Basics/3-3 NumPy Array Basics - Vectorization.ipynb | anabranch/data_analysis_with_python_and_pandas | apache-2.0 |
We need to vectorize this operation and we do that with np.vectorize
We can then apply that to our entire array and it takes care of the complexity for us. We can think in terms of the data without having to think about each individual element. | vect_new_func = np.vectorize(new_func)
type(vect_new_func)
vect_new_func(npa)
[new_func(x) for x in npa] | 3 - NumPy Basics/3-3 NumPy Array Basics - Vectorization.ipynb | anabranch/data_analysis_with_python_and_pandas | apache-2.0 |
It's also much faster to vectorize operations and while these are simple examples the benefits will become apparent as we continue through this course.
this has changed since python3 and the list comprehension has gotten much faster. However, this doesn't mean that vectorization is slower, just that it's a bit heavier because it places a lot more tools at your disposal like we'll see in the next video. | %timeit [new_func(x) for x in npa]
%timeit vect_new_func(npa)
npa2 = np.random.random_integers(0,100,20*1000) | 3 - NumPy Basics/3-3 NumPy Array Basics - Vectorization.ipynb | anabranch/data_analysis_with_python_and_pandas | apache-2.0 |
Speed comparisons with size. | %timeit [new_func(x) for x in npa2]
%timeit vect_new_func(npa2) | 3 - NumPy Basics/3-3 NumPy Array Basics - Vectorization.ipynb | anabranch/data_analysis_with_python_and_pandas | apache-2.0 |
Line magics
Prefix and infix support | %plc (1 and? 1)
%plc (True ⊕ False ⊕ True ⊕ False ⊕ True)
%plc ( ( ∧ 1 1 1 ) ∨ ( ∧ 1 1 0 ) ) | Hy -level PLCParser.ipynb | markomanninen/PLCParser | mit |
Cell magics
Prefix and infix support | %%plc
#$(1 and? (or? 0 1)) | Hy -level PLCParser.ipynb | markomanninen/PLCParser | mit |
Registering additional operators | %%plc
; register + sign for infix notation
#>+
; evaluate code
#$(1 + (2 + (3))) | Hy -level PLCParser.ipynb | markomanninen/PLCParser | mit |
Adding more complex custom operators | %%plc
; use operator macro to add mean operator with custom symbol
(defoperator mean x̄ [&rest args]
(/ (sum args) (len args)))
; try prefix notation with nested structure
(print (x̄ 1 2 3 4))
(print (x̄ 1 2 (x̄ 3 4)))
; note that infix notation in cell magics needs to be prefixed with
; #$ reader macro marker while in line magics it is not required
(print #$(1 x̄ 2 x̄ 3 x̄ 4)) | Hy -level PLCParser.ipynb | markomanninen/PLCParser | mit |
Order of precedence
By default order of precedence is from left to right. Here we will use defoperators to define additional operators beyond logical ones. Then for variety we use defmixfix macro to evaluate clause. First evaluation will give 9 as an answer because evaluation is started from 1 + 2 and then that is multiplied | %%plc
(defoperators * +)
(print "First"
(defmixfix 1 + 2 * 3))
(defprecedence * +)
(print "Second"
(defmixfix 1 + 2 * 3)) | Hy -level PLCParser.ipynb | markomanninen/PLCParser | mit |
Mixing Hy and Python on same cell | # the first line is hy code supporting infix and prefix logical clauses
%plc ( 1 and? 1 or? (0) )
# the second line is python code. this is possible because above code is line magics
[a for a in (1, 2, 3)] | Hy -level PLCParser.ipynb | markomanninen/PLCParser | mit |
Normal Hy language support | %%plc
; just define a function ...
(defn f [x] (print x))
; ... and call it
(f 3.1416)
; cant use python code in plc cell magics!
%%plc
; set up variables
(setv A True B True C True)
(setv clause "( A ∧ B ∧ C )")
; use variables on clause
(print clause "=" #$( A ∧ B ∧ C )) | Hy -level PLCParser.ipynb | markomanninen/PLCParser | mit |
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.