markdown
stringlengths 0
37k
| code
stringlengths 1
33.3k
| path
stringlengths 8
215
| repo_name
stringlengths 6
77
| license
stringclasses 15
values |
---|---|---|---|---|
Q8. Compute softmax cross entropy between logits and labels. | logits = tf.random_normal(shape=[2, 5, 10])
labels = tf.convert_to_tensor(np.random.randint(0, 10, size=[2, 5]), tf.int32)
labels = tf.one_hot(labels, depth=10)
output = tf.nn....
with tf.Session() as sess:
print(sess.run(output)) | programming/Python/tensorflow/exercises/Neural_Network_Part2.ipynb | diegocavalca/Studies | cc0-1.0 |
Embeddings
Q9. Map tensor x to the embedding. | tf.reset_default_graph()
x = tf.constant([0, 2, 1, 3, 4], tf.int32)
embedding = tf.constant([0, 0.1, 0.2, 0.3, 0.4], tf.float32)
output = tf.nn....
with tf.Session() as sess:
print(sess.run(output)) | programming/Python/tensorflow/exercises/Neural_Network_Part2.ipynb | diegocavalca/Studies | cc0-1.0 |
Choose most probable B-events | _, take_indices = numpy.unique(data[event_id_column], return_index=True)
figure(figsize=[15, 5])
subplot(1, 2, 1)
hist(data.Bmass.values[take_indices], bins=100)
title('B mass hist')
xlabel('mass')
subplot(1, 2, 2)
hist(data.N_sig_sw.values[take_indices], bins=100, normed=True)
title('sWeights hist')
xlabel('signal sWeights')
#plt.savefig('img/Bmass_less_PID.png' , format='png') | Stefania_files/track-based-tagging-track-sign-usage.ipynb | tata-antares/tagging_LHCb | apache-2.0 |
Define B-like events for training
Events with low sWeight still will be used only to test quality. | sweight_threshold = 1.
data_sw_passed = data[data.N_sig_sw > sweight_threshold]
data_sw_not_passed = data[data.N_sig_sw <= sweight_threshold]
get_events_statistics(data_sw_passed)
_, take_indices = numpy.unique(data_sw_passed[event_id_column], return_index=True)
figure(figsize=[15, 5])
subplot(1, 2, 1)
hist(data_sw_passed.Bmass.values[take_indices], bins=100)
title('B mass hist for sWeight > 1 selection')
xlabel('mass')
subplot(1, 2, 2)
hist(data_sw_passed.N_sig_sw.values[take_indices], bins=100, normed=True)
title('sWeights hist for sWeight > 1 selection')
xlabel('signal sWeights')
# plt.savefig('img/Bmass_selected_less_PID.png' , format='png')
hist(data_sw_passed.diff_pt.values, bins=100)
pass | Stefania_files/track-based-tagging-track-sign-usage.ipynb | tata-antares/tagging_LHCb | apache-2.0 |
Main idea:
find tracks, which can help reconstruct the sign of B if you know track sign.
label = signB * signTrack
* the highest output means that this is same sign B as track
* the lowest output means that this is opposite sign B than track
Define features | features = list(set(data.columns) - {'index', 'run', 'event', 'i', 'signB', 'N_sig_sw', 'Bmass', 'mult',
'PIDNNp', 'PIDNNpi', 'label', 'thetaMin', 'Dist_phi', event_id_column,
'mu_cut', 'e_cut', 'K_cut', 'ID', 'diff_phi', 'group_column'})
features | Stefania_files/track-based-tagging-track-sign-usage.ipynb | tata-antares/tagging_LHCb | apache-2.0 |
PID pairs scatters | figure(figsize=[15, 16])
bins = 60
step = 3
for i, (feature1, feature2) in enumerate(combinations(['PIDNNk', 'PIDNNm', 'PIDNNe', 'PIDNNp', 'PIDNNpi'], 2)):
subplot(4, 3, i + 1)
Z, (x, y) = numpy.histogramdd(data_sw_passed[[feature1, feature2]].values, bins=bins, range=([0, 1], [0, 1]))
pcolor(numpy.log(Z).T, vmin=0)
xlabel(feature1)
ylabel(feature2)
xticks(numpy.arange(bins, step), x[::step]), yticks(numpy.arange(bins, step), y[::step])
# plt.savefig('img/PID_selected_less_PID.png' , format='png') | Stefania_files/track-based-tagging-track-sign-usage.ipynb | tata-antares/tagging_LHCb | apache-2.0 |
count of tracks | _, n_tracks = numpy.unique(data_sw_passed[event_id_column], return_counts=True)
hist(n_tracks, bins=100)
title('Number of tracks')
# plt.savefig('img/tracks_number_less_PID.png' , format='png') | Stefania_files/track-based-tagging-track-sign-usage.ipynb | tata-antares/tagging_LHCb | apache-2.0 |
DT | from rep.estimators import XGBoostClassifier
xgb_base = XGBoostClassifier(n_estimators=100, colsample=0.7, eta=0.01, nthreads=12,
subsample=0.1, max_depth=6)
xgb_folding = FoldingGroupClassifier(xgb_base, n_folds=2, random_state=11,
train_features=features, group_feature='group_column')
%time xgb_folding.fit_lds(data_sw_passed_lds)
pass
comparison_report = ClassificationReport({'tt': xgb_folding}, data_sw_passed_lds)
comparison_report.compute_metric(RocAuc())
lc = comparison_report.learning_curve(RocAuc(), steps=1)
lc
tt_base = DecisionTrainClassifier(learning_rate=0.02, n_estimators=3000, depth=6, pretransform_needed=True,
max_features=15, loss=LogLossFunction(regularization=100), n_threads=8)
tt_folding = FoldingGroupClassifier(SklearnClassifier(tt_base), n_folds=2, random_state=11,
train_features=features, group_feature='group_column')
%time tt_folding.fit_lds(data_sw_passed_lds)
pass
import cPickle
with open('models/dt_full_group_sign.pkl', 'w') as f:
cPickle.dump(tt_folding, f)
comparison_report = ClassificationReport({'tt': tt_folding}, data_sw_passed_lds)
comparison_report.compute_metric(RocAuc())
comparison_report.roc()
lc = comparison_report.learning_curve(RocAuc(), steps=1)
lc
comparison_report.feature_importance() | Stefania_files/track-based-tagging-track-sign-usage.ipynb | tata-antares/tagging_LHCb | apache-2.0 |
Triangular mesh generation
In the last lesson we learned how to create a quad mesh by Transfinite Interpolation to accurately approximate the strong topography of a sea dike. We can use this mesh for spectral element modelling. But what should we do, if we need a triangular mesh for example for Finite Element modelling?
Yigma Tepe - another problem with strong topography
You might think that the sea dike topography was already quite complex. Well, here is another problem we are currently working on at the "Applied Geophysics" group at Christian-Albrechts University Kiel:
<img src="images/yigmatepe_1.jpg" width="100%">
This is Yigma Tepe, a tumulus which might be a burial of an Attilad King located in Pergamon (Turkey). Extensive geophysical prospecting and archaeological excavations revealed small scale near-surface structures, which makes Yigma Tepe an ideal target to further develop 2D SH and 3D seismic full waveform inversion in the field of archaeological prospection. A critical part is the correct discretization of the complex free-surface topography, crucial for accurate modelling of surface waves.
Let's take a look at a 2D quad mesh created by Transfinite-Interpolation for a SH-profile along the tumulus. | # Import Libraries
%matplotlib inline
import numpy as np
import matplotlib.pyplot as plt
# Here, I introduce a new library, which is useful
# to define the fonts and size of a figure in a notebook
from pylab import rcParams
# Get rid of a Matplotlib deprecation warning
import warnings
warnings.filterwarnings("ignore")
# Load Yigma Tepe quad mesh created by TFI
X = np.loadtxt('data/yigma_tepe_TFI_mesh_X.dat', delimiter=' ', skiprows=0, unpack='True')
Z = np.loadtxt('data/yigma_tepe_TFI_mesh_Z.dat', delimiter=' ', skiprows=0, unpack='True')
# number of grid points in each spatial direction
NZ, NX = np.shape(X)
print("NX = ", NX)
print("NZ = ", NZ)
# Define figure size
rcParams['figure.figsize'] = 10, 7
# Plot Yigma Tepe TFI mesh
plt.plot(X, Z, 'k')
plt.plot(X.T, Z.T, 'k')
plt.plot(X, Z, 'bo', markersize=4)
plt.title("Yigma Tepe TFI mesh" )
plt.xlabel("x [m]")
plt.ylabel("z [m]")
plt.axes().set_aspect('equal')
#plt.savefig('yigma_tepe_TFI.pdf', bbox_inches='tight', format='pdf')
plt.show() | 02_Mesh_generation/4_Tri_mesh_delaunay_yigma_tepe.ipynb | daniel-koehn/Theory-of-seismic-waves-II | gpl-3.0 |
This quad mesh is already able to accurately describe the free-surface topography.
Triangular mesh generation
If we need a triangular mesh, for example for finite element or finite volume modelling, we could apply Delaunay triangulation to the node point distribution of the Yigma Tepe TFI mesh. For further details related to Delaunay triangulation, I refer to Computational Geometry in Python by Francisco Blanco-Silva.
In a first step, we assemble the x- and z-vectors in a (NX*NZ x 2) matrix. | # Reshape X and Z vector
x = X.flatten()
z = Z.flatten()
# Assemble x and z vector into NX*NZ x 2 matrix
points = np.vstack([x,z]).T | 02_Mesh_generation/4_Tri_mesh_delaunay_yigma_tepe.ipynb | daniel-koehn/Theory-of-seismic-waves-II | gpl-3.0 |
Next, we compute the Voronoi diagram for the mesh points. This describes the partitioning of a plane with n points into convex polygons such that each polygon contains exactly one generating point and every point in a given polygon is closer to its generating point than to any other. | # calculate and plot Voronoi diagram for mesh points
from scipy.spatial import Voronoi, voronoi_plot_2d
vor = Voronoi(points)
plt.figure(figsize=(12,6))
ax = plt.subplot(111, aspect='equal')
voronoi_plot_2d(vor, ax=ax)
plt.title("Part of Yigma Tepe (Voronoi diagram)" )
plt.xlabel("x [m]")
plt.ylabel("z [m]")
plt.xlim( 25, 75)
plt.ylim(10, 35)
plt.show() | 02_Mesh_generation/4_Tri_mesh_delaunay_yigma_tepe.ipynb | daniel-koehn/Theory-of-seismic-waves-II | gpl-3.0 |
The Delaunay triangulation creates triangles by connecting the points in neighbouring Voronoi cells. | # Apply Delaunay triangulation to the quad mesh node points
from scipy.spatial import Delaunay
tri = Delaunay(points)
plt.figure(figsize=(12,6))
ax = plt.subplot(111, aspect='equal')
voronoi_plot_2d(vor, ax=ax)
plt.triplot(points[:,0], points[:,1], tri.simplices.copy(), linewidth=3, color='b')
plt.title("Part of Yigma Tepe (Voronoi diagram & Delaunay triangulation)" )
plt.xlabel("x [m]")
plt.ylabel("z [m]")
plt.xlim( 25, 75)
plt.ylim(10, 35)
plt.show() | 02_Mesh_generation/4_Tri_mesh_delaunay_yigma_tepe.ipynb | daniel-koehn/Theory-of-seismic-waves-II | gpl-3.0 |
Let's take a look at the final mesh for the Yigma Tepe model | # Plot triangular mesh
plt.triplot(points[:,0], points[:,1], tri.simplices.copy())
plt.title("Yigma Tepe Delaunay mesh" )
plt.xlabel("x [m]")
plt.ylabel("z [m]")
plt.axes().set_aspect('equal')
plt.show() | 02_Mesh_generation/4_Tri_mesh_delaunay_yigma_tepe.ipynb | daniel-koehn/Theory-of-seismic-waves-II | gpl-3.0 |
The regular triangulation within the tumulus looks reasonable. However, the Delaunay triangulation also added unwanted triangles above the topography. To solve this problem we have to use constrained Delaunay triangulation in order to restrict the triangulation to the model below the free-surface topography. Unfortunately, constrained Delaunay triangulation is not available within SciPy.
However, there exists a python wrapper to the mesh generator Triangle by Richard Shewchuck. This wrapper can be installed by
git clone --depth=1 https://github.com/drufat/triangle.git
cd triangle
python setup.py install
A detailed documentation of the Triangle Python wrapper by Dzhelil Rufat can be found here. | # import triangulate library
from triangle import triangulate, show_data, plot as tplot
import triangle | 02_Mesh_generation/4_Tri_mesh_delaunay_yigma_tepe.ipynb | daniel-koehn/Theory-of-seismic-waves-II | gpl-3.0 |
In order to use the constrained Delaunay triangulation, we obviously have to define the constraining vertex points lying on the boundaries of our model. In this case it is quite easy, because the TFI mesh is regular.
OK, perhaps not so easy, because we have to be sure that no redundant points are in the final list and the points are sequentially defined in clockwise direction. | # Estimate boundary points
# surface topography
surf = np.vstack([X[9,:-2],Z[9,:-2]]).T
# right model boundary
right = np.vstack([X[1:,69],Z[1:,69]]).T
# bottom model boundary
bottom = np.vstack([X[0,1:],Z[0,1:]]).T
# left model boundary
left = np.vstack([X[:-2,0],Z[:-2,0]]).T
# assemble model boundary
model_stack = np.vstack([surf,np.flipud(right)])
model_stack1 = np.vstack([model_stack,np.flipud(bottom)])
model_bound = np.vstack([model_stack1,left]) | 02_Mesh_generation/4_Tri_mesh_delaunay_yigma_tepe.ipynb | daniel-koehn/Theory-of-seismic-waves-II | gpl-3.0 |
The above code looks a little bit chaotic, but you can check that the points in the resulting array model_bound are correctly sorted and contains no redundant points. | plt.plot(model_bound[:,0],model_bound[:,1],'bo')
plt.title("Yigma Tepe model boundary" )
plt.xlabel("x [m]")
plt.ylabel("z [m]")
plt.axes().set_aspect('equal')
plt.show() | 02_Mesh_generation/4_Tri_mesh_delaunay_yigma_tepe.ipynb | daniel-koehn/Theory-of-seismic-waves-II | gpl-3.0 |
Good, now we have defined the model boundary points. Time for some constrained Delaunay triangulation ... | # define vertices (no redundant points)
vert = model_bound
# apply Delaunay triangulation to vertices
tri = triangle.delaunay(vert)
# define vertex markers
vertm = np.array(np.zeros((len(vert),1)),dtype='int32')
# define how the vertices are connected, e.g. point 0 is connected to point 1,
# point 1 to point 2 and so on ...
points1 = np.arange(len(vert))
points2 = np.arange(len(vert))+1
# last point is connected to the first point
points2[-1] = 0
# define connectivity of boundary polygon
seg = np.array(np.vstack([points1,points2]).T,dtype='int32')
# define marker for boundary polygon
segm = np.array(np.ones((len(seg),1)),dtype='int32')
# assemble dictionary for triangle optimisation
A = dict(vertices=vert, vertex_markers=vertm, segments=seg, segment_markers=segm,triangles=tri)
# Optimise initial triangulation
cndt = triangle.triangulate(A,'pD')
ax = plt.subplot(111, aspect='equal')
tplot.plot(ax,**cndt) | 02_Mesh_generation/4_Tri_mesh_delaunay_yigma_tepe.ipynb | daniel-koehn/Theory-of-seismic-waves-II | gpl-3.0 |
Very good, compared to the SciPy Delaunay triangulation, no triangles are added above the topography. However, most triangles have very small minimum angles, which would lead to serious numerical issues in later finite element modelling runs. So in the next step we restrict the minimum angle to 20° using the option q20. | cncfq20dt = triangulate(A,'pq20D')
ax = plt.subplot(111, aspect='equal')
tplot.plot(ax,**cncfq20dt) | 02_Mesh_generation/4_Tri_mesh_delaunay_yigma_tepe.ipynb | daniel-koehn/Theory-of-seismic-waves-II | gpl-3.0 |
Finally, we want a more evenly distribution of the triangle sizes. This can be achieved by imposing a maximum area to the triangles with the option a20. | cncfq20adt = triangulate(A,'pq20a20D')
ax = plt.subplot(111, aspect='equal')
tplot.plot(ax,**cncfq20adt) | 02_Mesh_generation/4_Tri_mesh_delaunay_yigma_tepe.ipynb | daniel-koehn/Theory-of-seismic-waves-II | gpl-3.0 |
All hypotheses discussed herein will be expressed with Gaussian / normal distributions. Let's look at the properties of this distribution.
Start by plotting it. We'll set the mean to 0 and the width the 1...the standard normal distribution. | x = np.arange(-10, 10, 0.001)
plt.plot(x,norm.pdf(x,0,1)) # final arguments are mean and width | error_statistics-101/error_stats_and_severity.ipynb | gitreset/Data-Science-45min-Intros | unlicense |
Now look at the cumulative distribution function of the standard normal, which integrates from negative infinity up to the function argument, on a unit-normalized distribution. | norm.cdf(0) | error_statistics-101/error_stats_and_severity.ipynb | gitreset/Data-Science-45min-Intros | unlicense |
The function also accepts a list. | norm.cdf([-1., 0, 1]) | error_statistics-101/error_stats_and_severity.ipynb | gitreset/Data-Science-45min-Intros | unlicense |
Now let's be more explicit about the parameters of the distribution. | mu = 0
sigma = 1
norm(loc=mu, scale=sigma)
norm.cdf([-1., 0, 1])
sigma=2
mu = 0
n = norm(loc=mu, scale=sigma)
n.cdf([-1., 0, 1]) | error_statistics-101/error_stats_and_severity.ipynb | gitreset/Data-Science-45min-Intros | unlicense |
In addition to exploring properties of the exact function, we can sample points from it. | [normal() for _ in range(5)] | error_statistics-101/error_stats_and_severity.ipynb | gitreset/Data-Science-45min-Intros | unlicense |
We can also approximate the exact distribution by sampling a large number of points from it. | size = 1000000
num_bins = 300
plt.hist([normal() for _ in range(size)],num_bins)
plt.xlim([-10,10])
| error_statistics-101/error_stats_and_severity.ipynb | gitreset/Data-Science-45min-Intros | unlicense |
Data samples
If we have sample of points, we can summarize them in a model-nonspecific way by calculating the mean.
Here, we draw them from a Gaussian for convenience. | n = 10
my_sample = [normal() for _ in range(n)]
my_sample_mean = np.mean(my_sample)
print(my_sample_mean) | error_statistics-101/error_stats_and_severity.ipynb | gitreset/Data-Science-45min-Intros | unlicense |
Now let's generate a large number of data samples and plot the corresponding distribution of sample means. | n = 10
means_10 = []
for _ in range(10000):
my_sample = [normal() for _ in range(n)]
my_sample_mean = np.mean(my_sample)
means_10.append(my_sample_mean)
plt.hist(means_10,100)
plt.xlim([-1.5,1.5])
plt.xlabel("P(mean(X))")
plt.show()
n = 100
means_100 = []
for _ in range(10000):
my_sample = [normal() for _ in range(n)]
my_sample_mean = np.mean(my_sample)
means_100.append(my_sample_mean)
plt.hist(means_100,100)
plt.xlim([-1.5,1.5])
plt.xlabel("P(mean(X))")
plt.show()
# show 1/sqrt(n) scaling of deviation
n_s = []
std_100 = []
for i in range(1, 1000, 50):
means_100 = []
for _ in range(5000):
my_sample = [normal() for _ in range(i)]
my_sample_mean = np.mean(my_sample)
means_100.append(my_sample_mean)
my_sample_std = np.std(means_100)
std_100.append(1./(my_sample_std*my_sample_std))
n_s.append(i)
plt.scatter(n_s,std_100)
plt.xlim([0,1000])
plt.ylabel("std(mean(X;sample))")
plt.xlabel("sample")
plt.show() | error_statistics-101/error_stats_and_severity.ipynb | gitreset/Data-Science-45min-Intros | unlicense |
Note that by increasing the number of data points, the variation on the mean decreases.
Notation: the variable containing all possible n-sized sets of samples is called $X$. A specific $X$, like the one actually observed in an experiment, is called $X_0$.
What can we say about the data?
are the data consistent with having been sampled from a certain distribution?
if not, what distribution are they consistent with?
Hypotheses
In our tutorial, a hypothesis is expressed as a distribution from which the data may have been drawn. Our goal is to provide a procedure for rejection of the null hypothesis, and, in the case of rejecting the null, provide warranted inference of one or more alternate hypotheses.
Simplification: the hypothesis space is defined as all normal distributions with variable mean $\mu$ and fixed variance. Generalizing this assumption changes almost nothing.
Corollary: the hypothesis space is one-dimensional, and the logical not of a hypothesis is simple to comprehend.
A Test Statistic
To relate observed data to hypotheses, we need to define a test statistic, which summarizes a particular experimental result. This statistic is also a function of the hypothesis, and will have different sampling distributions under different hypotheses.
$d(X;H_\mu) = (\bar X - \mu)/(\sigma/\sqrt n)$,
where $\bar X$ is the mean of $X$. For Gaussian hypotheses, $d$ is distributed as a unit normal. | def d(X=[0], mu = 0, sigma = 1):
X_bar = np.mean(X)
return (X_bar - mu) / sigma * np.sqrt(len(X))
n = 10
my_sample = [normal() for _ in range(n)]
d(my_sample) | error_statistics-101/error_stats_and_severity.ipynb | gitreset/Data-Science-45min-Intros | unlicense |
Let's numerically determine the sampling distribution under the hypothesis: $H_0$: $\mu = 0, \sigma = 1$ | size = 100000
n = 10
d_sample = []
for _ in range(size):
my_sample = [normal() for _ in range(n)] # get a sample of size n
d_sample.append(d(my_sample)) # add test statistic for this sample to the list
plt.hist(d_sample,100)
plt.xlabel("P(d(X);H0)")
| error_statistics-101/error_stats_and_severity.ipynb | gitreset/Data-Science-45min-Intros | unlicense |
With this sampling distribution (which can be calculated exactly), we know exectly how likely a particular result $d(X_0)$ is. We also know how likely it is to observe a result that is even less probable than $d(X_0)$, $P(d(X) > d(X_0); \mu)$.
Rejecting the null
This probability is the famous p-value. When the p-value for a particular experimental outcome is less that some pre-determined amount (usually called $\alpha$), we can:
infer that $H_0$ is falsified at level $\alpha$
take the action that has been specified for this situation
infer that $X_0$ indicates something about an alternate hypothesis. If $H_0$ corresponds to $\mu = \mu_0$, then we infer that $\mu > \mu_0 + \delta$.
If $H_0$ is rejected, we can now also begin to speak about statistical properties of $H_1$ where $H_1 != H_0$.
Neyman-Pearson digression
The traditional frequentist procedure (due to Neyman and Pearson) is to construct a test that fixes the probability of rejecting $H_0$ when it’s true, and maximizes the power: the probability of statistical similarity with $H_1$ when it is true. In other words, for a fixed probability of rejecting $H_0$ when it's true, maximize the probability of accepting $H_1$ when it's true.
The N-P construction is fixed before $X_0$ is observed. We wish to extend this and, when $H_0$ is rejected, infer regions of alternate parameter space that are severely tested by the outcome $X_0$.
Inference of an alternate hypothesis
When the null hypothesis is rejected, we are interested in ranges of alternate hypotheses that, if not true, are highly likely to have produced a test statistic less significant than $d(X_0)$. We say these ranges of parameters space, which can be thought of as composite hypotheses, have been severely tested. We call the level of testing severity and it is a function of the observed data ($X_0$), the range of alternate hypothesis ($H$), and the test constuction itself.
This is the point of the tutorial: we are warrented to infer ranges of hypothesis space when that range has been severely tested. | # look at the distributions of sample means for two hypotheses
def make_histograms(mu0=0,mu1=1,num_samples=10000,n=100,sigma=1):
#d0_sample = []
#d1_sample = []
m0_sample = []
m1_sample = []
for _ in range(num_samples):
H0_sample = [normal(loc=mu0,scale=sigma) for _ in range(n)] # get a sample of size n from H0
H1_sample = [normal(loc=mu1,scale=sigma) for _ in range(n)] # get a sample of size n from H1
m0_sample.append( np.mean(H0_sample) ) # add mean for this sample to the m0 list
m1_sample.append( np.mean(H1_sample) ) # add mean for this sample to the m1 list
# remember that the test statistic is unit-normal-distributed for Gaussian hypotheses,
# so these distributions should be identical
#d0_sample.append( d(H0_sample,mu0,sigma) ) # add test statistic for this sample to the d0 list
#d1_sample.append( d(H1_sample,mu1,sigma) ) # add test statistic for this sample to the d1 list
plt.hist(m0_sample,100,label="H0")
plt.hist(m1_sample,100,label="H1")
plt.xlabel(r"$\bar{X}$")
plt.legend()
num_samples = 10000
n = 100
mu0 = 0
mu1 = 1
sigma=2
make_histograms(mu0=mu0,mu1=mu1,num_samples=num_samples,n=n,sigma=sigma) | error_statistics-101/error_stats_and_severity.ipynb | gitreset/Data-Science-45min-Intros | unlicense |
Now, imagine that we observe $\bar X_0 = 0.4$. The probability of $\bar X > 0.4$ is less than $2\%$ under $H_0$, so let's say we've rejected $H_0$.
Question, what regions of $\mu$ (defined as $\mu > \mu_1$) have been severely tested?
$SEV(\mu>\mu_1) = P(d(X)<d(X_0);!(\mu>\mu_1)) = P(d(X)<d(X_0); \mu<=\mu_1)$ ---> $P(d(X)<d(X_0);\mu = \mu_1)$
So we only need to calculate the probability of a result less anomalous than $d(X_0)$, given $\mu_1$. | # severity for the interval: mu > mu_1
# note that we calculate the probability in terms of the _lower bound_ of the interval,
# since it will provide the _lowest_ severity
def severity(mu_1=0, x=[0], mu0=0, sigma=sigma, n=100):
# find the mean of the observed data
x_bar = np.mean(x)
# calculate the test statistic w.r.t. mu_1
dx = (x_bar - mu_1)/sigma*np.sqrt(n)
# the test statistic is distributed as a unit normal
n = norm()
return n.cdf(dx) | error_statistics-101/error_stats_and_severity.ipynb | gitreset/Data-Science-45min-Intros | unlicense |
Calculate the severity of an outcome that is rather unlike (is lower) than the lower bound of a range of alternate hypotheses ($\mu > \mu_1$). | sigma = 2
mu_1 = 0.2
x = [0.4]
severity(mu_1=mu_1,x=x,sigma=sigma)
num_samples = 10000
n = 100
mu0 = 0
mu1 = 0.2
sigma=2
make_histograms(mu0=mu0,mu1=mu1,num_samples=num_samples,n=n,sigma=sigma) | error_statistics-101/error_stats_and_severity.ipynb | gitreset/Data-Science-45min-Intros | unlicense |
Calculate the severity for a set of observations. | x_bar_values = [[0.4],[0.6],[1.]]
color_indices = ["b","k","r"]
for x,color_idx in zip(x_bar_values,color_indices):
mu_values = scipy.linspace(0,1,100)
sev = [severity(mu_1=mu_1,x=x,sigma=sigma) for mu_1 in mu_values]
plt.plot(mu_values,sev,color_idx,label=x)
plt.ylim(0,1.1)
plt.ylabel("severity for $H: \mu > \mu_1$")
plt.legend(loc="lower left")
plt.xlabel(r"$\mu_1$") | error_statistics-101/error_stats_and_severity.ipynb | gitreset/Data-Science-45min-Intros | unlicense |
Create a mock light curve | lc = MockLC(SimulationSetup('M', 0.1, 0.0, 0.0, 'short_transit', cteff=5500, know_orbit=True))
lc.create(wnsigma=[0.001, 0.001, 0.001, 0.001], rnsigma=0.00001, rntscale=0.5, nights=1);
lc.plot(); | notebooks/contamination/example_1b.ipynb | hpparvi/PyTransit | gpl-2.0 |
If we want to do any "feature engineering" like creating new features or adjusting existing ones we should do this directly using the SFrames as seen in the other Week 2 notebook. For this notebook, however, we will work with the existing features.
Convert to Numpy Array
Although SFrames offer a number of benefits to users (especially when using Big Data and built-in graphlab functions) in order to understand the details of the implementation of algorithms it's important to work with a library that allows for direct (and optimized) matrix operations. Numpy is a Python solution to work with matrices (or any multi-dimensional "array").
Recall that the predicted value given the weights and the features is just the dot product between the feature and weight vector. Similarly, if we put all of the features row-by-row in a matrix then the predicted value for all the observations can be computed by right multiplying the "feature matrix" by the "weight vector".
First we need to take the SFrame of our data and convert it into a 2D numpy array (also called a matrix). To do this we use graphlab's built in .to_dataframe() which converts the SFrame into a Pandas (another python library) dataframe. We can then use Panda's .as_matrix() to convert the dataframe into a numpy matrix. | print sales.head()
import numpy as np # note this allows us to refer to numpy as np instead | Machine-Learning-Specialization/machine_learning_regression/week2/multiple-regression-assignment-2.ipynb | subhankarb/Machine-Learning-PlayGround | apache-2.0 |
Computing the Derivative
We are now going to move to computing the derivative of the regression cost function. Recall that the cost function is the sum over the data points of the squared difference between an observed output and a predicted output.
Since the derivative of a sum is the sum of the derivatives we can compute the derivative for a single data point and then sum over data points. We can write the squared difference between the observed output and predicted output for a single point as follows:
(w[0]*[CONSTANT] + w[1]*[feature_1] + ... + w[i] *[feature_i] + ... + w[k]*[feature_k] - output)^2
Where we have k features and a constant. So the derivative with respect to weight w[i] by the chain rule is:
2*(w[0]*[CONSTANT] + w[1]*[feature_1] + ... + w[i] *[feature_i] + ... + w[k]*[feature_k] - output)* [feature_i]
The term inside the paranethesis is just the error (difference between prediction and output). So we can re-write this as:
2*error*[feature_i]
That is, the derivative for the weight for feature i is the sum (over data points) of 2 times the product of the error and the feature itself. In the case of the constant then this is just twice the sum of the errors!
Recall that twice the sum of the product of two vectors is just twice the dot product of the two vectors. Therefore the derivative for the weight for feature_i is just two times the dot product between the values of feature_i and the current errors.
With this in mind complete the following derivative function which computes the derivative of the weight given the value of the feature (over all data points) and the errors (over all data points). | def feature_derivative(errors, feature):
# Assume that errors and feature are both numpy arrays of the same length (number of data points)
# compute twice the dot product of these vectors as 'derivative' and return the value
derivative = 2 * np.dot(errors, feature)
return derivative | Machine-Learning-Specialization/machine_learning_regression/week2/multiple-regression-assignment-2.ipynb | subhankarb/Machine-Learning-PlayGround | apache-2.0 |
Gradient Descent
Now we will write a function that performs a gradient descent. The basic premise is simple. Given a starting point we update the current weights by moving in the negative gradient direction. Recall that the gradient is the direction of increase and therefore the negative gradient is the direction of decrease and we're trying to minimize a cost function.
The amount by which we move in the negative gradient direction is called the 'step size'. We stop when we are 'sufficiently close' to the optimum. We define this by requiring that the magnitude (length) of the gradient vector to be smaller than a fixed 'tolerance'.
With this in mind, complete the following gradient descent function below using your derivative function above. For each step in the gradient descent we update the weight for each feature befofe computing our stopping criteria | from math import sqrt # recall that the magnitude/length of a vector [g[0], g[1], g[2]] is sqrt(g[0]^2 + g[1]^2 + g[2]^2)
def regression_gradient_descent(feature_matrix, output, initial_weights, step_size, tolerance):
converged = False
weights = np.array(initial_weights) # make sure it's a numpy array
count = 0
while not converged:
print 'weights in ',count ,'iteration is: ', weights
# compute the predictions based on feature_matrix and weights using your predict_output() function
predictions = np.dot(feature_matrix, weights)
# compute the errors as predictions - output
errors = predictions - output
gradient_sum_squares = 0 # initialize the gradient sum of squares
# while we haven't reached the tolerance yet, update each feature's weight
for i in range(len(weights)): # loop over each weight
# Recall that feature_matrix[:, i] is the feature column associated with weights[i]
# compute the derivative for weight[i]:
derivative = feature_derivative(errors, feature_matrix[:, i])
# add the squared value of the derivative to the gradient sum of squares (for assessing convergence)
gradient_sum_squares = gradient_sum_squares + (derivative * derivative)
# subtract the step size times the derivative from the current weight
weights[i] = weights[i] - (step_size * derivative)
# compute the square-root of the gradient sum of squares to get the gradient matnigude:
gradient_magnitude = sqrt(gradient_sum_squares)
# print 'gradient_magnitude: ', gradient_magnitude , 'and tolerance: ', tolerance
if gradient_magnitude < tolerance:
converged = True
count = count + 1
return(weights) | Machine-Learning-Specialization/machine_learning_regression/week2/multiple-regression-assignment-2.ipynb | subhankarb/Machine-Learning-PlayGround | apache-2.0 |
Now compute your predictions using test_simple_feature_matrix and your weights from above. | predictions = predict_output(test_simple_feature_matrix, simple_weights)
print predictions | Machine-Learning-Specialization/machine_learning_regression/week2/multiple-regression-assignment-2.ipynb | subhankarb/Machine-Learning-PlayGround | apache-2.0 |
Quiz Question: What is the predicted price for the 1st house in the TEST data set for model 1 (round to nearest dollar)? | print predictions[0] | Machine-Learning-Specialization/machine_learning_regression/week2/multiple-regression-assignment-2.ipynb | subhankarb/Machine-Learning-PlayGround | apache-2.0 |
Now that you have the predictions on test data, compute the RSS on the test data set. Save this value for comparison later. Recall that RSS is the sum of the squared errors (difference between prediction and output). | rss = ((predictions - test_output) ** 2).sum()
print rss | Machine-Learning-Specialization/machine_learning_regression/week2/multiple-regression-assignment-2.ipynb | subhankarb/Machine-Learning-PlayGround | apache-2.0 |
Running a multiple regression
Now we will use more than one actual feature. Use the following code to produce the weights for a second model with the following parameters: | model_features = ['sqft_living', 'sqft_living15'] # sqft_living15 is the average squarefeet for the nearest 15 neighbors.
my_output = 'price'
(feature_matrix, multi_output) = get_numpy_data(train_data, model_features, my_output)
initial_weights = np.array([-100000., 1., 1.])
step_size = 4e-12
tolerance = 1e9 | Machine-Learning-Specialization/machine_learning_regression/week2/multiple-regression-assignment-2.ipynb | subhankarb/Machine-Learning-PlayGround | apache-2.0 |
Use the above parameters to estimate the model weights. Record these values for your quiz. | multi_weights = regression_gradient_descent(feature_matrix, multi_output, initial_weights, step_size, tolerance)
print multi_weights | Machine-Learning-Specialization/machine_learning_regression/week2/multiple-regression-assignment-2.ipynb | subhankarb/Machine-Learning-PlayGround | apache-2.0 |
Use your newly estimated weights and the predict_output function to compute the predictions on the TEST data. Don't forget to create a numpy array for these features from the test set first! | (test_multi_feature_matrix, multi_output) = get_numpy_data(test_data, model_features, my_output)
multi_predictions = predict_output(test_multi_feature_matrix, multi_weights)
print multi_predictions | Machine-Learning-Specialization/machine_learning_regression/week2/multiple-regression-assignment-2.ipynb | subhankarb/Machine-Learning-PlayGround | apache-2.0 |
Quiz Question: What is the predicted price for the 1st house in the TEST data set for model 2 (round to nearest dollar)? | print multi_predictions[0] | Machine-Learning-Specialization/machine_learning_regression/week2/multiple-regression-assignment-2.ipynb | subhankarb/Machine-Learning-PlayGround | apache-2.0 |
Quiz Question: Which estimate was closer to the true price for the 1st house on the Test data set, model 1 or model 2?
Now use your predictions and the output to compute the RSS for model 2 on TEST data. | print 'prediction from first model is $356134 and prediction from 2nd model is $366651' | Machine-Learning-Specialization/machine_learning_regression/week2/multiple-regression-assignment-2.ipynb | subhankarb/Machine-Learning-PlayGround | apache-2.0 |
Quiz Question: Which model (1 or 2) has lowest RSS on all of the TEST data? | rss = ((multi_predictions - multi_output) ** 2).sum()
print rss
print 'RSS from first model is 2.75400047593e+14 and RSS from 2nd model is 2.70263446465e+14' | Machine-Learning-Specialization/machine_learning_regression/week2/multiple-regression-assignment-2.ipynb | subhankarb/Machine-Learning-PlayGround | apache-2.0 |
Again, none of these are beautiful, but for mean and standard deviation I think that magnetic_field_y and magnetic_field_z will be the most helpful.
That gives us a "who made the cut" feature list:
attitude_roll
attitude_pitch
attitude_yaw
rotation_rate_x
rotation_rate_y
gravity_z
user_acc_y
user_acc_z
magnetic_field_y
mangetic_Field_z
Still way too many! My next cut could be for which wave forms drift up or down a lot-- drifting would mess up mean and standard deviation. I'll go with attitude_roll, rotation_rate_x, and user_acc_z.
Next step: chunk up the data | # http://stackoverflow.com/questions/17315737/split-a-large-pandas-dataframe
# input - df: a Dataframe, chunkSize: the chunk size
# output - a list of DataFrame
# purpose - splits the DataFrame into smaller of max size chunkSize (last may be smaller)
def splitDataFrameIntoSmaller(df, chunkSize = 1000):
listOfDf = list()
numberChunks = len(df) // chunkSize + 1
for i in range(numberChunks):
listOfDf.append(df[i*chunkSize:(i+1)*chunkSize])
return listOfDf
# Set up the 10-second chunks
walk_chunked = splitDataFrameIntoSmaller(walk_raw)
for idx, df in enumerate(walk_chunked):
walk_chunked[idx] = pd.DataFrame(df)
drive_chunked = splitDataFrameIntoSmaller(drive_raw)
for idx, df in enumerate(drive_chunked):
drive_chunked[idx] = pd.DataFrame(df)
static_chunked = splitDataFrameIntoSmaller(static_raw)
for idx, df in enumerate(static_chunked):
static_chunked[idx] = pd.DataFrame(df)
upstairs_chunked = splitDataFrameIntoSmaller(upstairs_raw)
for idx, df in enumerate(upstairs_chunked):
upstairs_chunked[idx] = pd.DataFrame(df)
run_chunked = splitDataFrameIntoSmaller(run_raw)
for idx, df in enumerate(run_chunked):
run_chunked[idx] = pd.DataFrame(df) | .ipynb_checkpoints/.ipynb_checkpoints/A3-checkpoint.ipynb | eherold/PersonalInformatics | mit |
Now it's time to add those features | # This is where the feature data will go. The array for each activity will have length 30.
walk_featured = []
drive_featured = []
static_featured = []
upstairs_featured = []
run_featured = []
# Populate the features
for df in walk_chunked:
features = df.mean()[['attitude_roll','rotation_rate_x','user_acc_z','user_acc_x']].values.tolist() + df.std()[['attitude_roll','rotation_rate_x','user_acc_z','user_acc_x']].values.tolist()
walk_featured.append(features)
for df in drive_chunked:
features = df.mean()[['attitude_roll','rotation_rate_x','user_acc_z','user_acc_x']].values.tolist() + df.std()[['attitude_roll','rotation_rate_x','user_acc_z','user_acc_x']].values.tolist()
drive_featured.append(features)
for df in static_chunked:
features = df.mean()[['attitude_roll','rotation_rate_x','user_acc_z','user_acc_x']].values.tolist() + df.std()[['attitude_roll','rotation_rate_x','user_acc_z','user_acc_x']].values.tolist()
static_featured.append(features)
for df in upstairs_chunked:
features = df.mean()[['attitude_roll','rotation_rate_x','user_acc_z','user_acc_x']].values.tolist() + df.std()[['attitude_roll','rotation_rate_x','user_acc_z','user_acc_x']].values.tolist()
upstairs_featured.append(features)
for df in run_chunked:
features = df.mean()[['attitude_roll','rotation_rate_x','user_acc_z','user_acc_x']].values.tolist() + df.std()[['attitude_roll','rotation_rate_x','user_acc_z','user_acc_x']].values.tolist()
run_featured.append(features)
# Combine all of the feature sets into one big one. Along the way, generate my target array.
all_featured = walk_featured + drive_featured + static_featured + upstairs_featured + run_featured
target = [] + [0] * len(walk_featured)
target = target + [1] * len(drive_featured)
target = target + [2] * len(static_featured)
target = target + [3] * len(upstairs_featured)
target = target + [4] * len(run_featured)
# If I accidentally didn't add the right numbers to the target array, throw an error!
if target.count(0) != 30 or target.count(1) != 30 or target.count(2) != 30 or target.count(3) != 30 or target.count(4) != 30:
raise ValueError('Target is corrupt') | .ipynb_checkpoints/.ipynb_checkpoints/A3-checkpoint.ipynb | eherold/PersonalInformatics | mit |
Running Cross-Validation | # Create and run cross-validation on a K-Nearest Neighbors classifier
knn = KNeighborsClassifier()
knn_scores = cross_val_score(knn, all_featured, target, cv = 5)
print 'K-NEAREST NEIGHBORS CLASSIFIER'
print knn_scores
# Create and run cross-validation on a Logistic Regression classifier
lr = LogisticRegression()
lr_scores = cross_val_score(lr, all_featured, target, cv = 5)
print 'LOGISTIC REGRESSION CLASSIFIER'
print lr_scores
# Create and run cross-validation on a Decision Tree classifier
svc = svm.SVC(kernel='linear')
svc_scores = cross_val_score(svc, all_featured, target, cv = 5)
print 'DECISION TREE CLASSIFIER'
print svc_scores
# Create and run cross-validation on a Support Vector Machine classifier
dtree = tree.DecisionTreeClassifier()
dtree_scores = cross_val_score(dtree, all_featured, target, cv = 5)
print 'SUPPORT VECTOR MACHINE CLASSIFIER'
print dtree_scores
# How I started figuring out features:
print walk_raw[['attitude_yaw']].describe()[2:3]
print run_raw[['attitude_yaw']].describe()[2:3]
print static_raw[['attitude_yaw']].describe()[2:3]
print upstairs_raw[['attitude_yaw']].describe()[2:3]
print drive_raw[['attitude_yaw']].describe()[2:3] | .ipynb_checkpoints/.ipynb_checkpoints/A3-checkpoint.ipynb | eherold/PersonalInformatics | mit |
What if I don't know how to use a function, you can access the documentation.
? <module>.<function>
Let's look at the documentation of math.log10 | ?? math.log10 | notebooks/python_intro.ipynb | mined-gatech/pymks_overview | mit |
Use the cell below to manipulate the array we just created. | B + B | notebooks/python_intro.ipynb | mined-gatech/pymks_overview | mit |
Let's do some simple matrix multiplication using np.dot.
$$ \mathbf{A} \overrightarrow{x} = \overrightarrow{y}$$
First checkout the documentation of np.dot. | ? np.dot
N = 5
A = np.eye(N) * 2
x = np.arange(N)
print('A =')
print(A)
print('x =')
print(x)
= np.dot(A, x)
print('y =')
print(y) | notebooks/python_intro.ipynb | mined-gatech/pymks_overview | mit |
Use the cell below to call another function from NumPy.
Scikit-Learn
Scikit-Learn, a.k.a. sklearn, is a scientific toolkit (there are many others) for machine learning and it built on SciPy and NumPy.
Below is an example from scikit-learn for linear regression.
This example also using the plotting library matplotlib to display the results. | %matplotlib inline
# Code source: Jaques Grobler
# License: BSD 3 clause
import matplotlib.pyplot as plt
from sklearn import datasets, linear_model
# Load the diabetes dataset
diabetes = datasets.load_diabetes()
# Use only one feature
diabetes_X = diabetes.data[:, np.newaxis]
diabetes_X_temp = diabetes_X[:, :, 2]
# Split the data into training/testing sets
diabetes_X_train = diabetes_X_temp[:-20]
diabetes_X_test = diabetes_X_temp[-20:]
# Split the targets into training/testing sets
diabetes_y_train = diabetes.target[:-20]
diabetes_y_test = diabetes.target[-20:]
# Create linear regression object
regr = linear_model.LinearRegression()
# Train the model using the training sets
regr.fit(diabetes_X_train, diabetes_y_train)
# Predict result
y = regr.predict(diabetes_X_test)
# The coefficients
print('Coefficients: \n', regr.coef_)
# The mean square error
print("Residual sum of squares: %.2f"
% np.mean((y - diabetes_y_test) ** 2))
# Explained variance score: 1 is perfect prediction
print('Variance score: %.2f' % regr.score(diabetes_X_test, diabetes_y_test))
# Plot outputs
plt.scatter(diabetes_X_test, diabetes_y_test, color='black')
plt.plot(diabetes_X_test, y, color='blue', linewidth=3)
plt.xticks(())
plt.yticks(())
plt.show() | notebooks/python_intro.ipynb | mined-gatech/pymks_overview | mit |
Series
Panda's Series class extends NumPy's ndarray with a labelled index. The key to using Series is to understand how to use its index. | # Create a Series with auto-generated indices
pd.Series(data=[100, 101, 110, 111], dtype=np.int8)
# Create a Series with custom indices
pd.Series(data=[100, 101, 110, 111], index=['a', 'b', 'c', 'd'], dtype=np.int8)
# Create a Series using a dictionary
d = {'a' : 100, 'b': 101, 'c': 110, 'd': 111}
pd.Series(data=d, dtype=np.int8) | pandas.ipynb | sheikhomar/ml | mit |
Arithmetic | day1 = pd.Series(data=[400, 600, 400], index=['breakfast', 'lunch', 'dinner'], dtype=np.int16)
day1
day2 = pd.Series(data=[350, 500, 150], index=['breakfast', 'lunch', 'snack'], dtype=np.int16)
day2
# Note that only values of matched indices are added together.
day1 + day2 | pandas.ipynb | sheikhomar/ml | mit |
DataFrame
A DataFrame is container for tabular data. Basically, a DataFrame is just a collection of Series that share the same index. | def init_df():
return pd.DataFrame(data=np.arange(1,17).reshape(4,4), index='w x y z'.split(), columns='A B C D'.split())
df = init_df()
df | pandas.ipynb | sheikhomar/ml | mit |
Creating and deleting | # Create a new column based on another column
df['E'] = df['A'] ** 2
df
# Create a new DataFrame, where certain columns are excluded.
df.drop(['A', 'E'], axis=1)
# Remove a column permanently
df.drop('E', axis=1, inplace=True)
df | pandas.ipynb | sheikhomar/ml | mit |
Querying | # Select column 'A'
df['A']
# Note that all columns are stored as Series objects
type(df['A'])
# Selecting multiple columns, we get a new DataFrame object
df[['A', 'D']]
# Select a row by its label
df.loc['x']
# Select a row by its numerical index position
df.iloc[0]
# Select the value of the first cell
df.loc['w', 'A']
# Select a subset of the DataFrame
df.loc[['x', 'y'], ['B', 'C']]
# Conditional selection
df[df > 10]
# Note that the conditional selection only
# returns cells whose boolean value is True
# in the following DataFrame
df > 10
# Select the rows where column A is larger or equal to 9
df[df['A'] >= 9]
# Note that we use `&` as conjunction since Python's `and` operator
# can only deal with single Boolean values e.g. `True and True`
df[(df['A'] >= 9) & (df['C'] == 11)]
df[(df['A'] >= 9) | (df['C'] == 3)] | pandas.ipynb | sheikhomar/ml | mit |
Indicies | # Reset the index to a numerical value
# Note that the old index will become
# a column in our DataFrame.
df.reset_index()
# Set a new index.
df['Country'] = 'CA DE DK NO'.split()
df.set_index('Country')
# To overrides the old index use following line instead:
# df.set_index('Country', inplace=True) | pandas.ipynb | sheikhomar/ml | mit |
Hierarchical indexing | outside = 'p p p q q q'.split()
inside = [1, 2, 3, 1, 2, 3]
hierarchical_index = list(zip(outside, inside))
multi_index = pd.MultiIndex.from_tuples(hierarchical_index, names='outside inside'.split())
multi_index
df = pd.DataFrame(data=np.random.randn(6,2), index=multi_index, columns=['Column 1', 'Column 2'])
df
# Select using the outer index
df.loc['p']
# Select using the inside index
df.loc['p'].loc[2]
# Select a specific cell
df.loc['p'].loc[2]['Column 1']
# Rename index names
df.index.names = ['O', 'I']
df | pandas.ipynb | sheikhomar/ml | mit |
Cross section is used when we need to select data at a particular level. | # Select rows whose inside index is equal 1
df.xs(1, level='I') | pandas.ipynb | sheikhomar/ml | mit |
Dealing with missing data | d = {'A': [1, 2, np.nan], 'B': [1, np.nan, np.nan], 'C': [1, 2, 3]}
df = pd.DataFrame(d)
df
# Drop any rows with missing values
df.dropna()
# Keep only the rows with at least 2 non-na values:
df.dropna(thresh=2) | pandas.ipynb | sheikhomar/ml | mit |
The subset parameter can be used to specify which columns an action should apply to instead of all columns. For instance, if we want to drop rows with missing values, subset specifies a list of columns to include.
For instance, df.dropna(thresh=1, subset=['A','B']) will drop all rows with less than 1 NA value in only columns A and B(rather than all the columns to consider for thresh=1).
The line df.dropna(how=all, subset=['A','B']) will drop all rows with all NA values in only columns A and B. | # Drop any columns with missing values
df.dropna(axis=1)
# Replace missing values
df.fillna(0)
# Replace missing values with the mean of the column
df['A'].fillna(value=df['A'].mean()) | pandas.ipynb | sheikhomar/ml | mit |
Grouping | columns = 'Id EmployeeName JobTitle TotalPay Year'.split()
salaries_df = pd.read_csv('data/sf-salaries-subset.csv', index_col='Id', usecols=columns)
salaries_df.head()
# Group by job title
salaries_by_job_df = salaries_df.groupby('JobTitle')
# Get some statistics on the TotalPay column
salaries_by_job_df['TotalPay'].describe()
# Get some statistics on all numeric columns
salaries_by_job_df.describe()
# Present statistics in a different way
salaries_by_job_df.describe().transpose()
# Count number of rows in each group
salaries_by_job_df.count()
# Find the mean of numeric columns
salaries_by_job_df.mean()
# Get the highest pay
salaries_df['TotalPay'].max()
# Get the position of the highest pay
salaries_df['TotalPay'].argmax()
# Get the person with the highest pay
salaries_df.iloc[salaries_df['TotalPay'].argmax()] | pandas.ipynb | sheikhomar/ml | mit |
Combining DataFrames | df1 = pd.DataFrame({'A': ['A0', 'A1', 'A2', 'A3'],
'B': ['B0', 'B1', 'B2', 'B3'],
'C': ['C0', 'C1', 'C2', 'C3'],
'D': ['D0', 'D1', 'D2', 'D3']},
index=[0, 1, 2, 3])
df2 = pd.DataFrame({'A': ['A4', 'A5', 'A6', 'A7'],
'B': ['B4', 'B5', 'B6', 'B7'],
'C': ['C4', 'C5', 'C6', 'C7'],
'D': ['D4', 'D5', 'D6', 'D7']},
index=[4, 5, 6, 7])
df3 = pd.DataFrame({'A': ['A8', 'A9', 'A10', 'A11'],
'B': ['B8', 'B9', 'B10', 'B11'],
'C': ['C8', 'C9', 'C10', 'C11'],
'D': ['D8', 'D9', 'D10', 'D11']},
index=[8, 9, 10, 11])
# Combine along the rows
pd.concat([df1, df2, df3])
# Combine along the columns
# Note that Pandas assigns cell values that does not align correct to NaN
pd.concat([df1, df2, df3], axis=1) | pandas.ipynb | sheikhomar/ml | mit |
The merge function is useful if we want to combine DataFrames like we join tables using SQL. | left = pd.DataFrame({'key1': ['K0', 'K0', 'K1', 'K2'],
'key2': ['K0', 'K1', 'K0', 'K1'],
'A': ['A0', 'A1', 'A2', 'A3'],
'B': ['B0', 'B1', 'B2', 'B3']})
right = pd.DataFrame({'key1': ['K0', 'K1', 'K1', 'K2'],
'key2': ['K0', 'K0', 'K0', 'K0'],
'C': ['C0', 'C1', 'C2', 'C3'],
'D': ['D0', 'D1', 'D2', 'D3']})
pd.merge(left, right, how='inner', on=['key1', 'key2']) | pandas.ipynb | sheikhomar/ml | mit |
The join function is used to combine the columns of DataFrames that may have different indices. It works exactly like the merge function except the keys that we join on are on the indices instead of the columns. | left = pd.DataFrame({'A': ['A0', 'A1', 'A2'],
'B': ['B0', 'B1', 'B2']},
index=['K0', 'K1', 'K2'])
right = pd.DataFrame({'C': ['C0', 'C2', 'C3'],
'D': ['D0', 'D2', 'D3']},
index=['K0', 'K2', 'K3'])
left.join(right)
left.join(right, how='outer') | pandas.ipynb | sheikhomar/ml | mit |
Operations | df = pd.DataFrame({'col1':[1,2,3,4],
'col2':[444,555,666,444],
'col3':['abc','def','ghi','xyz']})
df.head()
# Find the unique values in col2
df['col2'].unique()
# Find the number of unique values in col2
df['col2'].nunique()
# Find the unique values in col2
df['col2'].value_counts()
# The value_counts() can be used to find top X row most common value
df['col2'].value_counts().head(1)
# Apply custom function to each element of a column
df['col1'].apply(lambda element_value: element_value**2)
# Find the names of all the columns in the DataFrame
df.columns
# Sort data
df.sort_values(by='col2')
# Find null values
df.isnull() | pandas.ipynb | sheikhomar/ml | mit |
Reading data from HTML | data = pd.read_html('https://borsen.dk/kurser/danske_aktier/c20_cap.html', thousands='.', decimal=',')
df = data[0]
# Show information about the data
df.info()
df.columns
df.columns = ['Akie', '%', '+/-', 'Kurs', 'ATD%', 'Bud', 'Udbud', 'Omsætning']
df.info()
df['Omsætning'][0] | pandas.ipynb | sheikhomar/ml | mit |
Loading up the raw data | mldb.put('/v1/procedures/import_reddit', {
"type": "import.text",
"params": {
"dataFileUrl": "file://mldb/mldb_test_data/reddit.csv.zst",
'delimiter':'',
'quoteChar':'',
'outputDataset': 'reddit_raw',
'runOnCreation': True
}
})
| container_files/demos/Mapping Reddit.ipynb | mldbai/mldb | apache-2.0 |
And here is what our raw dataset looks like. The lineText column will need to be parsed: it's comma-delimited, with the first token being a user ID and the remaining tokens being the set of subreddits that user contributed to. | mldb.query("select * from reddit_raw limit 5") | container_files/demos/Mapping Reddit.ipynb | mldbai/mldb | apache-2.0 |
Transforming the raw data into a sparse matrix
We will create and run a Procedure of type transform. The tokenize function will project out the subreddit names into columns. | mldb.put('/v1/procedures/reddit_import', {
"type": "transform",
"params": {
"inputData": "select tokenize(lineText, {offset: 1, value: 1}) as * from reddit_raw",
"outputDataset": "reddit_dataset",
"runOnCreation": True
}
}) | container_files/demos/Mapping Reddit.ipynb | mldbai/mldb | apache-2.0 |
Here is the resulting dataset: it's a sparse matrix with a row per user and a column per subreddit, where the cells are 1 if the row's user was a contributor to the column's subreddit, and null otherwise. | mldb.query("select * from reddit_dataset limit 5") | container_files/demos/Mapping Reddit.ipynb | mldbai/mldb | apache-2.0 |
Dimensionality Reduction with Singular Value Decomposition (SVD)
We will create and run a Procedure of type svd.train. | mldb.put('/v1/procedures/reddit_svd', {
"type" : "svd.train",
"params" : {
"trainingData" : """
SELECT
COLUMN EXPR (AS columnName() ORDER BY rowCount() DESC, columnName() LIMIT 4000)
FROM reddit_dataset
""",
"columnOutputDataset" : "reddit_svd_embedding",
"runOnCreation": True
}
})
| container_files/demos/Mapping Reddit.ipynb | mldbai/mldb | apache-2.0 |
The result of this operation is a new dataset with a row per subreddit for the 4000 most-active subreddits and columns representing coordinates for that subreddit in a 100-dimensional space.
Note: the row names are the subreddit names followed by ".numberEquals.1" because the SVD training procedure interpreted the input matrix as categorical rather than numerical. | mldb.query("select * from reddit_svd_embedding limit 5") | container_files/demos/Mapping Reddit.ipynb | mldbai/mldb | apache-2.0 |
Clustering with K-Means
We will create and run a Procedure of type kmeans.train. | mldb.put('/v1/procedures/reddit_kmeans', {
"type" : "kmeans.train",
"params" : {
"trainingData" : "select * from reddit_svd_embedding",
"outputDataset" : "reddit_kmeans_clusters",
"numClusters" : 20,
"runOnCreation": True
}
})
| container_files/demos/Mapping Reddit.ipynb | mldbai/mldb | apache-2.0 |
The result of this operation is a simple dataset which associates each row in the input (i.e. each subreddit) to one of 20 clusters. | mldb.query("select * from reddit_kmeans_clusters limit 5") | container_files/demos/Mapping Reddit.ipynb | mldbai/mldb | apache-2.0 |
2-d Dimensionality Reduction with t-SNE
We will create and run a Procedure of type tsne.train. | mldb.put('/v1/procedures/reddit_tsne', {
"type" : "tsne.train",
"params" : {
"trainingData" : "select * from reddit_svd_embedding",
"rowOutputDataset" : "reddit_tsne_embedding",
"runOnCreation": True
}
})
| container_files/demos/Mapping Reddit.ipynb | mldbai/mldb | apache-2.0 |
The result is similar to the SVD step above: we get a row per subreddit and the columns are coordinates, but this time in a 2-dimensional space appropriate for visualization. | mldb.query("select * from reddit_tsne_embedding limit 5") | container_files/demos/Mapping Reddit.ipynb | mldbai/mldb | apache-2.0 |
Counting the number of users per subreddit
We will create and run a Procedure of type transform on the transpose of the original input dataset. | mldb.put('/v1/procedures/reddit_count_users', {
"type": "transform",
"params": {
"inputData": "select columnCount() as numUsers from transpose(reddit_dataset)",
"outputDataset": "reddit_user_counts",
"runOnCreation": True
}
}) | container_files/demos/Mapping Reddit.ipynb | mldbai/mldb | apache-2.0 |
We appended "|1" to the row names in this dataset to allow the merge operation below to work well. | mldb.query("select * from reddit_user_counts limit 5") | container_files/demos/Mapping Reddit.ipynb | mldbai/mldb | apache-2.0 |
Querying and Visualizating the output
We'll use the Query API to get the data into a Pandas DataFrame and then use Bokeh to visualize it.
In the query below we renamed the rows to get rid of the "|1" which the SVD appended to each subreddit name and we filter out rows where cluster is null because we only clustered the 4000 most-active subreddits. | df = mldb.query("""
select c.* as *, m.* as *, quantize(m.x, 7) as grid_x, quantize(m.y, 7) as grid_y
named c.rowName()
from merge(reddit_tsne_embedding, reddit_kmeans_clusters) as m
join reddit_user_counts as c on c.rowName() = m.rowPathElement(0)
where m.cluster is not null
order by c.numUsers desc
""")
df.head()
import numpy as np
colormap = np.array([
"#1f77b4", "#aec7e8", "#ff7f0e", "#ffbb78", "#2ca02c",
"#98df8a", "#d62728", "#ff9896", "#9467bd", "#c5b0d5",
"#8c564b", "#c49c94", "#e377c2", "#f7b6d2", "#7f7f7f",
"#c7c7c7", "#bcbd22", "#dbdb8d", "#17becf", "#9edae5"
])
import bokeh.plotting as bp
from bokeh.models import HoverTool
#this line must be in its own cell
bp.output_notebook()
x = bp.figure(plot_width=900, plot_height=700, title="Subreddit Map by t-SNE",
tools=[HoverTool( tooltips=[ ("/r/", "@subreddit") ] )], toolbar_location=None,
x_axis_type=None, y_axis_type=None, min_border=1)
x.scatter(
x = df.x.values,
y=df.y.values,
color=colormap[df.cluster.astype(int).values],
alpha=0.6,
radius=(df.numUsers.values ** .3)/15,
source=bp.ColumnDataSource({"subreddit": df.index.values})
)
labels = df.reset_index().groupby(['grid_x', 'grid_y'], as_index=False).first()
labels = labels[labels["numUsers"] > 10000]
x.text(
x = labels.x.values,
y = labels.y.values,
text = labels._rowName.values,
text_align="center", text_baseline="middle",
text_font_size="8pt", text_font_style="bold",
text_color="#333333"
)
bp.show(x) | container_files/demos/Mapping Reddit.ipynb | mldbai/mldb | apache-2.0 |
Create a soil layer, which defines the median value. | soil_type = pysra.site.DarendeliSoilType(18.0, plas_index=0, ocr=1, stress_mean=50) | examples/example-05.ipynb | arkottke/pysra | mit |
Create the simulated nonlinear curves | n = 10
correlation = 0
simulated = []
for name, model in zip(
["Darendeli (2001)", "EPRI SPID (2014)"],
[
pysra.variation.DarendeliVariation(correlation),
pysra.variation.SpidVariation(correlation),
],
):
simulated.append((name, [model(soil_type) for _ in range(n)])) | examples/example-05.ipynb | arkottke/pysra | mit |
Compare the uncertainty models. | fig, axes = plt.subplots(2, 2, sharex=True, sharey="row", subplot_kw={"xscale": "log"})
for i, (name, sims) in enumerate(simulated):
for j, prop in enumerate(["mod_reduc", "damping"]):
axes[j, i].plot(
getattr(soil_type, prop).strains,
np.transpose([getattr(s, prop).values for s in sims]),
linewidth=0.5,
color="C0",
alpha=0.8,
)
if j == 0:
axes[j, i].set_title(name)
axes[0, 0].set_ylabel("$G/G_{max}$")
axes[1, 0].set_ylabel("$D$ (%)")
plt.setp(axes[1, :], xlabel="Strain, $\gamma$ (%)")
fig.tight_layout(); | examples/example-05.ipynb | arkottke/pysra | mit |
1. Inference
detect.py runs YOLOv3 inference on a variety of sources, downloading models automatically from the latest YOLOv3 release, and saving results to runs/detect. Example inference sources are:
<img src="https://user-images.githubusercontent.com/26833433/114307955-5c7e4e80-9ae2-11eb-9f50-a90e39bee53f.png" width="900"> | !python detect.py --weights yolov3.pt --img 640 --conf 0.25 --source data/images/
Image(filename='runs/detect/exp/zidane.jpg', width=600) | components/detection/trafficMonitoringInOutdoorEnv/yolov3/tutorial.ipynb | robocomp/robocomp-robolab | gpl-3.0 |
2. Test
Test a model's accuracy on COCO val or test-dev datasets. Models are downloaded automatically from the latest YOLOv3 release. To show results by class use the --verbose flag. Note that pycocotools metrics may be ~1% better than the equivalent repo metrics, as is visible below, due to slight differences in mAP computation.
COCO val2017
Download COCO val 2017 dataset (1GB - 5000 images), and test model accuracy. | # Download COCO val2017
torch.hub.download_url_to_file('https://github.com/ultralytics/yolov5/releases/download/v1.0/coco2017val.zip', 'tmp.zip')
!unzip -q tmp.zip -d ../ && rm tmp.zip
# Run YOLOv3 on COCO val2017
!python test.py --weights yolov3.pt --data coco.yaml --img 640 --iou 0.65 | components/detection/trafficMonitoringInOutdoorEnv/yolov3/tutorial.ipynb | robocomp/robocomp-robolab | gpl-3.0 |
COCO test-dev2017
Download COCO test2017 dataset (7GB - 40,000 images), to test model accuracy on test-dev set (20,000 images, no labels). Results are saved to a *.json file which should be zipped and submitted to the evaluation server at https://competitions.codalab.org/competitions/20794. | # Download COCO test-dev2017
torch.hub.download_url_to_file('https://github.com/ultralytics/yolov5/releases/download/v1.0/coco2017labels.zip', 'tmp.zip')
!unzip -q tmp.zip -d ../ && rm tmp.zip # unzip labels
!f="test2017.zip" && curl http://images.cocodataset.org/zips/$f -o $f && unzip -q $f && rm $f # 7GB, 41k images
%mv ./test2017 ../coco/images # move to /coco
# Run YOLOv3 on COCO test-dev2017 using --task test
!python test.py --weights yolov3.pt --data coco.yaml --task test | components/detection/trafficMonitoringInOutdoorEnv/yolov3/tutorial.ipynb | robocomp/robocomp-robolab | gpl-3.0 |
3. Train
Download COCO128, a small 128-image tutorial dataset, start tensorboard and train YOLOv3 from a pretrained checkpoint for 3 epochs (note actual training is typically much longer, around 300-1000 epochs, depending on your dataset). | # Download COCO128
torch.hub.download_url_to_file('https://github.com/ultralytics/yolov5/releases/download/v1.0/coco128.zip', 'tmp.zip')
!unzip -q tmp.zip -d ../ && rm tmp.zip | components/detection/trafficMonitoringInOutdoorEnv/yolov3/tutorial.ipynb | robocomp/robocomp-robolab | gpl-3.0 |
Train a YOLOv3 model on COCO128 with --data coco128.yaml, starting from pretrained --weights yolov3.pt, or from randomly initialized --weights '' --cfg yolov3.yaml. Models are downloaded automatically from the latest YOLOv3 release, and COCO, COCO128, and VOC datasets are downloaded automatically on first use.
All training results are saved to runs/train/ with incrementing run directories, i.e. runs/train/exp2, runs/train/exp3 etc. | # Tensorboard (optional)
%load_ext tensorboard
%tensorboard --logdir runs/train
# Weights & Biases (optional)
%pip install -q wandb
import wandb
wandb.login()
# Train YOLOv3 on COCO128 for 3 epochs
!python train.py --img 640 --batch 16 --epochs 3 --data coco128.yaml --weights yolov3.pt --nosave --cache | components/detection/trafficMonitoringInOutdoorEnv/yolov3/tutorial.ipynb | robocomp/robocomp-robolab | gpl-3.0 |
4. Visualize
Weights & Biases Logging 🌟 NEW
Weights & Biases (W&B) is now integrated with YOLOv3 for real-time visualization and cloud logging of training runs. This allows for better run comparison and introspection, as well improved visibility and collaboration for teams. To enable W&B pip install wandb, and then train normally (you will be guided through setup on first use).
During training you will see live updates at https://wandb.ai/home, and you can create and share detailed Reports of your results. For more information see the YOLOv5 Weights & Biases Tutorial.
<img src="https://user-images.githubusercontent.com/26833433/98184457-bd3da580-1f0a-11eb-8461-95d908a71893.jpg" width="800">
Local Logging
All results are logged by default to runs/train, with a new experiment directory created for each new training as runs/train/exp2, runs/train/exp3, etc. View train and test jpgs to see mosaics, labels, predictions and augmentation effects. Note a Mosaic Dataloader is used for training (shown below), a new concept developed by Ultralytics and first featured in YOLOv4. | Image(filename='runs/train/exp/train_batch0.jpg', width=800) # train batch 0 mosaics and labels
Image(filename='runs/train/exp/test_batch0_labels.jpg', width=800) # test batch 0 labels
Image(filename='runs/train/exp/test_batch0_pred.jpg', width=800) # test batch 0 predictions | components/detection/trafficMonitoringInOutdoorEnv/yolov3/tutorial.ipynb | robocomp/robocomp-robolab | gpl-3.0 |
<img src="https://user-images.githubusercontent.com/26833433/83667642-90fcb200-a583-11ea-8fa3-338bbf7da194.jpeg" width="750">
train_batch0.jpg shows train batch 0 mosaics and labels
<img src="https://user-images.githubusercontent.com/26833433/83667626-8c37fe00-a583-11ea-997b-0923fe59b29b.jpeg" width="750">
test_batch0_labels.jpg shows test batch 0 labels
<img src="https://user-images.githubusercontent.com/26833433/83667635-90641b80-a583-11ea-8075-606316cebb9c.jpeg" width="750">
test_batch0_pred.jpg shows test batch 0 predictions
Training losses and performance metrics are also logged to Tensorboard and a custom results.txt logfile which is plotted as results.png (below) after training completes. Here we show YOLOv3 trained on COCO128 to 300 epochs, starting from scratch (blue), and from pretrained --weights yolov3.pt (orange). | from utils.plots import plot_results
plot_results(save_dir='runs/train/exp') # plot all results*.txt as results.png
Image(filename='runs/train/exp/results.png', width=800) | components/detection/trafficMonitoringInOutdoorEnv/yolov3/tutorial.ipynb | robocomp/robocomp-robolab | gpl-3.0 |
<img src="https://user-images.githubusercontent.com/26833433/97808309-8182b180-1c66-11eb-8461-bffe1a79511d.png" width="800">
Environments
YOLOv3 may be run in any of the following up-to-date verified environments (with all dependencies including CUDA/CUDNN, Python and PyTorch preinstalled):
Google Colab and Kaggle notebooks with free GPU: <a href="https://colab.research.google.com/github/ultralytics/yolov5/blob/master/tutorial.ipynb"><img src="https://colab.research.google.com/assets/colab-badge.svg" alt="Open In Colab"></a> <a href="https://www.kaggle.com/ultralytics/yolov5"><img src="https://kaggle.com/static/images/open-in-kaggle.svg" alt="Open In Kaggle"></a>
Google Cloud Deep Learning VM. See GCP Quickstart Guide
Amazon Deep Learning AMI. See AWS Quickstart Guide
Docker Image. See Docker Quickstart Guide <a href="https://hub.docker.com/r/ultralytics/yolov5"><img src="https://img.shields.io/docker/pulls/ultralytics/yolov5?logo=docker" alt="Docker Pulls"></a>
Status
If this badge is green, all YOLOv3 GitHub Actions Continuous Integration (CI) tests are currently passing. CI tests verify correct operation of YOLOv3 training (train.py), testing (test.py), inference (detect.py) and export (export.py) on MacOS, Windows, and Ubuntu every 24 hours and on every commit.
Appendix
Optional extras below. Unit tests validate repo functionality and should be run on any PRs submitted. | # Re-clone repo
%cd ..
%rm -rf yolov3 && git clone https://github.com/ultralytics/yolov3
%cd yolov3
# Reproduce
for x in 'yolov3', 'yolov3-spp', 'yolov3-tiny':
!python test.py --weights {x}.pt --data coco.yaml --img 640 --conf 0.25 --iou 0.45 # speed
!python test.py --weights {x}.pt --data coco.yaml --img 640 --conf 0.001 --iou 0.65 # mAP
# PyTorch Hub
import torch
# Model
model = torch.hub.load('ultralytics/yolov3', 'yolov3') # or 'yolov3_spp', 'yolov3_tiny'
# Images
dir = 'https://ultralytics.com/images/'
imgs = [dir + f for f in ('zidane.jpg', 'bus.jpg')] # batch of images
# Inference
results = model(imgs)
results.print() # or .show(), .save()
# Unit tests
%%shell
export PYTHONPATH="$PWD" # to run *.py. files in subdirectories
rm -rf runs # remove runs/
for m in yolov3; do # models
python train.py --weights $m.pt --epochs 3 --img 320 --device 0 # train pretrained
python train.py --weights '' --cfg $m.yaml --epochs 3 --img 320 --device 0 # train scratch
for d in 0 cpu; do # devices
python detect.py --weights $m.pt --device $d # detect official
python detect.py --weights runs/train/exp/weights/best.pt --device $d # detect custom
python test.py --weights $m.pt --device $d # test official
python test.py --weights runs/train/exp/weights/best.pt --device $d # test custom
done
python hubconf.py # hub
python models/yolo.py --cfg $m.yaml # inspect
python models/export.py --weights $m.pt --img 640 --batch 1 # export
done
# Profile
from utils.torch_utils import profile
m1 = lambda x: x * torch.sigmoid(x)
m2 = torch.nn.SiLU()
profile(x=torch.randn(16, 3, 640, 640), ops=[m1, m2], n=100)
# Evolve
!python train.py --img 640 --batch 64 --epochs 100 --data coco128.yaml --weights yolov3.pt --cache --noautoanchor --evolve
!d=runs/train/evolve && cp evolve.* $d && zip -r evolve.zip $d && gsutil mv evolve.zip gs://bucket # upload results (optional)
# VOC
for b, m in zip([64, 48, 32, 16], ['yolov3', 'yolov3-spp', 'yolov3-tiny']): # zip(batch_size, model)
!python train.py --batch {b} --weights {m}.pt --data voc.yaml --epochs 50 --cache --img 512 --nosave --hyp hyp.finetune.yaml --project VOC --name {m} | components/detection/trafficMonitoringInOutdoorEnv/yolov3/tutorial.ipynb | robocomp/robocomp-robolab | gpl-3.0 |
Import Data
Cerebral Cortex provides a set of predefined data import routines that fit typical use cases. The most common is CSV data parser, csv_data_parser. These parsers are easy to write and can be extended to support most types of data. Additionally, the data importer, import_data, needs to be brought into this notebook so that we can start the data import process.
The import_data method requires several parameters that are discussed below.
- cc_config: The path to the configuration files for Cerebral Cortex; this is the same folder that you would utilize for the Kernel initialization
- input_data_dir: The path to where the data to be imported is located; in this example, sample_data is available in the file/folder browser on the left and you should explore the files located inside of it
- user_id: The universally unique identifier (UUID) that owns the data to be imported into the system
- data_file_extension: The type of files to be considered for import
- data_parser: The import method or another that defines how to interpret the data samples on a per-line basis
- gen_report: A simple True/False value that controls if a report is printed to the screen when complete | iot_stream = CC.read_csv(file_path="sample_data/data.csv", stream_name="some-sample-iot-stream", column_names=["timestamp", "some_vals", "version", "user"]) | jupyter_demo/import_and_analyse_data.ipynb | MD2Korg/CerebralCortex | bsd-2-clause |
View Imported Data | iot_stream.show(4) | jupyter_demo/import_and_analyse_data.ipynb | MD2Korg/CerebralCortex | bsd-2-clause |
Document Data | stream_metadata = Metadata()
stream_metadata.set_name("iot-data-stream").set_description("This is randomly generated data for demo purposes.") \
.add_dataDescriptor(
DataDescriptor().set_name("timestamp").set_type("datetime").set_attribute("description", "UTC timestamp of data point collection.")) \
.add_dataDescriptor(
DataDescriptor().set_name("some_vals").set_type("float").set_attribute("description", \
"Random values").set_attribute("range", \
"Data is between 0 and 1.")) \
.add_dataDescriptor(
DataDescriptor().set_name("version").set_type("int").set_attribute("description", "version of the data")) \
.add_dataDescriptor(
DataDescriptor().set_name("user").set_type("string").set_attribute("description", "user id")) \
.add_module(ModuleMetadata().set_name("cerebralcortex.data_importer").set_attribute("url", "hhtps://md2k.org").set_author(
"Nasir Ali", "[email protected]"))
iot_stream.metadata = stream_metadata | jupyter_demo/import_and_analyse_data.ipynb | MD2Korg/CerebralCortex | bsd-2-clause |
View Metadata | iot_stream.metadata | jupyter_demo/import_and_analyse_data.ipynb | MD2Korg/CerebralCortex | bsd-2-clause |
How to write an algorithm
This section provides an example of how to write a simple smoothing algorithm and apply it to the data that was just imported.
Import the necessary modules | from pyspark.sql.functions import pandas_udf, PandasUDFType
from pyspark.sql.types import StructField, StructType, StringType, FloatType, TimestampType, IntegerType
from pyspark.sql.functions import minute, second, mean, window
from pyspark.sql import functions as F
import numpy as np | jupyter_demo/import_and_analyse_data.ipynb | MD2Korg/CerebralCortex | bsd-2-clause |
Define the Schema
This schema defines what the computation module will return to the execution context for each row or window in the datastream. | from pyspark.sql.types import StructField, StructType, StringType, DoubleType, IntegerType, TimestampType
schema = StructType([
StructField("timestamp", TimestampType()),
StructField("some_vals", DoubleType()),
StructField("version", IntegerType()),
StructField("user", StringType())
]) | jupyter_demo/import_and_analyse_data.ipynb | MD2Korg/CerebralCortex | bsd-2-clause |
Write a user defined function
The user-defined function (UDF) is one of two mechanisms available for distributed data processing within the Apache Spark framework.
The F.udf Python decorator assigns the recently defined schema as a return type of the udf method. The method, smooth_algo, accepts a list of values, vals, and any python-based operations can be run over this data window to produce the result defined in the schema. In this case, we are computing a simple windowed average. | @pandas_udf(schema, PandasUDFType.GROUPED_MAP)
def smooth_algo(df):
some_vals_mean = df["some_vals"].mean()
df["some_vals"] = df["some_vals"]/some_vals_mean
return df | jupyter_demo/import_and_analyse_data.ipynb | MD2Korg/CerebralCortex | bsd-2-clause |
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.