markdown
stringlengths
0
37k
code
stringlengths
1
33.3k
path
stringlengths
8
215
repo_name
stringlengths
6
77
license
stringclasses
15 values
The default for Robust Linear Models is MAD another popular choice is Huber's proposal 2
np.random.seed(12345) fat_tails = stats.t(6).rvs(40) kde = sm.nonparametric.KDEUnivariate(fat_tails) kde.fit() fig = plt.figure(figsize=(12, 8)) ax = fig.add_subplot(111) ax.plot(kde.support, kde.density) print(fat_tails.mean(), fat_tails.std()) print(stats.norm.fit(fat_tails)) print(stats.t.fit(fat_tails, f0=6)) huber = sm.robust.scale.Huber() loc, scale = huber(fat_tails) print(loc, scale) sm.robust.mad(fat_tails) sm.robust.mad(fat_tails, c=stats.t(6).ppf(0.75)) sm.robust.scale.mad(fat_tails)
v0.13.1/examples/notebooks/generated/robust_models_1.ipynb
statsmodels/statsmodels.github.io
bsd-3-clause
Duncan's Occupational Prestige data - M-estimation for outliers
from statsmodels.graphics.api import abline_plot from statsmodels.formula.api import ols, rlm prestige = sm.datasets.get_rdataset("Duncan", "carData", cache=True).data print(prestige.head(10)) fig = plt.figure(figsize=(12, 12)) ax1 = fig.add_subplot(211, xlabel="Income", ylabel="Prestige") ax1.scatter(prestige.income, prestige.prestige) xy_outlier = prestige.loc["minister", ["income", "prestige"]] ax1.annotate("Minister", xy_outlier, xy_outlier + 1, fontsize=16) ax2 = fig.add_subplot(212, xlabel="Education", ylabel="Prestige") ax2.scatter(prestige.education, prestige.prestige) ols_model = ols("prestige ~ income + education", prestige).fit() print(ols_model.summary()) infl = ols_model.get_influence() student = infl.summary_frame()["student_resid"] print(student) print(student.loc[np.abs(student) > 2]) print(infl.summary_frame().loc["minister"]) sidak = ols_model.outlier_test("sidak") sidak.sort_values("unadj_p", inplace=True) print(sidak) fdr = ols_model.outlier_test("fdr_bh") fdr.sort_values("unadj_p", inplace=True) print(fdr) rlm_model = rlm("prestige ~ income + education", prestige).fit() print(rlm_model.summary()) print(rlm_model.weights)
v0.13.1/examples/notebooks/generated/robust_models_1.ipynb
statsmodels/statsmodels.github.io
bsd-3-clause
Hertzprung Russell data for Star Cluster CYG 0B1 - Leverage Points Data is on the luminosity and temperature of 47 stars in the direction of Cygnus.
dta = sm.datasets.get_rdataset("starsCYG", "robustbase", cache=True).data from matplotlib.patches import Ellipse fig = plt.figure(figsize=(12, 8)) ax = fig.add_subplot( 111, xlabel="log(Temp)", ylabel="log(Light)", title="Hertzsprung-Russell Diagram of Star Cluster CYG OB1", ) ax.scatter(*dta.values.T) # highlight outliers e = Ellipse((3.5, 6), 0.2, 1, alpha=0.25, color="r") ax.add_patch(e) ax.annotate( "Red giants", xy=(3.6, 6), xytext=(3.8, 6), arrowprops=dict(facecolor="black", shrink=0.05, width=2), horizontalalignment="left", verticalalignment="bottom", clip_on=True, # clip to the axes bounding box fontsize=16, ) # annotate these with their index for i, row in dta.loc[dta["log.Te"] < 3.8].iterrows(): ax.annotate(i, row, row + 0.01, fontsize=14) xlim, ylim = ax.get_xlim(), ax.get_ylim() from IPython.display import Image Image(filename="star_diagram.png") y = dta["log.light"] X = sm.add_constant(dta["log.Te"], prepend=True) ols_model = sm.OLS(y, X).fit() abline_plot(model_results=ols_model, ax=ax) rlm_mod = sm.RLM(y, X, sm.robust.norms.TrimmedMean(0.5)).fit() abline_plot(model_results=rlm_mod, ax=ax, color="red")
v0.13.1/examples/notebooks/generated/robust_models_1.ipynb
statsmodels/statsmodels.github.io
bsd-3-clause
Why? Because M-estimators are not robust to leverage points.
infl = ols_model.get_influence() h_bar = 2 * (ols_model.df_model + 1) / ols_model.nobs hat_diag = infl.summary_frame()["hat_diag"] hat_diag.loc[hat_diag > h_bar] sidak2 = ols_model.outlier_test("sidak") sidak2.sort_values("unadj_p", inplace=True) print(sidak2) fdr2 = ols_model.outlier_test("fdr_bh") fdr2.sort_values("unadj_p", inplace=True) print(fdr2)
v0.13.1/examples/notebooks/generated/robust_models_1.ipynb
statsmodels/statsmodels.github.io
bsd-3-clause
Let's delete that line
l = ax.lines[-1] l.remove() del l weights = np.ones(len(X)) weights[X[X["log.Te"] < 3.8].index.values - 1] = 0 wls_model = sm.WLS(y, X, weights=weights).fit() abline_plot(model_results=wls_model, ax=ax, color="green")
v0.13.1/examples/notebooks/generated/robust_models_1.ipynb
statsmodels/statsmodels.github.io
bsd-3-clause
MM estimators are good for this type of problem, unfortunately, we do not yet have these yet. It's being worked on, but it gives a good excuse to look at the R cell magics in the notebook.
yy = y.values[:, None] xx = X["log.Te"].values[:, None]
v0.13.1/examples/notebooks/generated/robust_models_1.ipynb
statsmodels/statsmodels.github.io
bsd-3-clause
Note: The R code and the results in this notebook has been converted to markdown so that R is not required to build the documents. The R results in the notebook were computed using R 3.5.1 and robustbase 0.93. ```ipython %load_ext rpy2.ipython %R library(robustbase) %Rpush yy xx %R mod <- lmrob(yy ~ xx); %R params <- mod$coefficients; %Rpull params ``` ipython %R print(mod) Call: lmrob(formula = yy ~ xx) \--&gt; method = "MM" Coefficients: (Intercept) xx -4.969 2.253
params = [-4.969387980288108, 2.2531613477892365] # Computed using R print(params[0], params[1]) abline_plot(intercept=params[0], slope=params[1], ax=ax, color="red")
v0.13.1/examples/notebooks/generated/robust_models_1.ipynb
statsmodels/statsmodels.github.io
bsd-3-clause
Exercise: Breakdown points of M-estimator
np.random.seed(12345) nobs = 200 beta_true = np.array([3, 1, 2.5, 3, -4]) X = np.random.uniform(-20, 20, size=(nobs, len(beta_true) - 1)) # stack a constant in front X = sm.add_constant(X, prepend=True) # np.c_[np.ones(nobs), X] mc_iter = 500 contaminate = 0.25 # percentage of response variables to contaminate all_betas = [] for i in range(mc_iter): y = np.dot(X, beta_true) + np.random.normal(size=200) random_idx = np.random.randint(0, nobs, size=int(contaminate * nobs)) y[random_idx] = np.random.uniform(-750, 750) beta_hat = sm.RLM(y, X).fit().params all_betas.append(beta_hat) all_betas = np.asarray(all_betas) se_loss = lambda x: np.linalg.norm(x, ord=2) ** 2 se_beta = lmap(se_loss, all_betas - beta_true)
v0.13.1/examples/notebooks/generated/robust_models_1.ipynb
statsmodels/statsmodels.github.io
bsd-3-clause
Squared error loss
np.array(se_beta).mean() all_betas.mean(0) beta_true se_loss(all_betas.mean(0) - beta_true)
v0.13.1/examples/notebooks/generated/robust_models_1.ipynb
statsmodels/statsmodels.github.io
bsd-3-clause
<b>Import dependencies. </b>
# from apache_beam.options.pipeline_options import PipelineOptions # from apache_beam.options.pipeline_options import GoogleCloudOptions # from apache_beam.options.pipeline_options import StandardOptions # import apache_beam as beam from tensorflow.core.example import example_pb2 import tensorflow as tf import time from proto import version_config_pb2 from proto.stu3 import fhirproto_extensions_pb2 from proto.stu3 import resources_pb2 from google.protobuf import text_format from py.google.fhir.labels import label from py.google.fhir.labels import bundle_to_label from py.google.fhir.seqex import bundle_to_seqex from py.google.fhir.models import model from py.google.fhir.models.model import make_estimator
examples/gcp_datalab/notebooks/2_deploy_and_run_ml_model_to_predict_los.ipynb
google/fhir
apache-2.0
<b>Optionally, enable logging for debugging.</b>
import logging logger = logging.getLogger() #logger.setLevel(logging.INFO) logger.setLevel(logging.ERROR)
examples/gcp_datalab/notebooks/2_deploy_and_run_ml_model_to_predict_los.ipynb
google/fhir
apache-2.0
<b> Previous step saved Sequence Examples into GCS. Let's examine file size and location of the Sequence Examples we will use of the inference. </b>
%bash gsutil ls -l ${SEQEX_IN_GCS}
examples/gcp_datalab/notebooks/2_deploy_and_run_ml_model_to_predict_los.ipynb
google/fhir
apache-2.0
<h2> 2. Deploy and Run ML Model on Cloud ML</h2> <ul> <li>A pre-trained ML Model which was exported to GCS in step 1 will be deployed to Cloud ML Serving.</li> </ul> <b>2a. Let's start with exporting our model for serving.<b>
from py.google.fhir.models.model import get_serving_input_fn hparams = model.create_hparams() time_crossed_features = [ cross.split(':') for cross in hparams.time_crossed_features if cross ] LABEL_VALUES = ['less_or_equal_3', '3_7', '7_14', 'above_14'] estimator = make_estimator(hparams, LABEL_VALUES, MODEL_PATH) serving_input_fn = get_serving_input_fn(hparams.dedup, hparams.time_windows, hparams.include_age, hparams.categorical_context_features, hparams.sequence_features, time_crossed_features) export_dir = estimator.export_savedmodel(SAVED_MODEL_PATH, serving_input_fn) os.putenv("MODEL_BINARY", export_dir)
examples/gcp_datalab/notebooks/2_deploy_and_run_ml_model_to_predict_los.ipynb
google/fhir
apache-2.0
<b>2b. List all the models deployed currently in the Cloud ML Engine</b>
%%bash gcloud ml-engine models list
examples/gcp_datalab/notebooks/2_deploy_and_run_ml_model_to_predict_los.ipynb
google/fhir
apache-2.0
<b>2c. Optionally run following cell to delete previously deployed model. </b>
%%bash gcloud ml-engine versions delete v1 --model ${MODEL_NAME} -q gcloud ml-engine models delete $MODEL_NAME -q
examples/gcp_datalab/notebooks/2_deploy_and_run_ml_model_to_predict_los.ipynb
google/fhir
apache-2.0
<b>2d. Run following cell to create a new model if it does not exist </b>
%%bash gcloud ml-engine models create $MODEL_NAME --regions=$REGION
examples/gcp_datalab/notebooks/2_deploy_and_run_ml_model_to_predict_los.ipynb
google/fhir
apache-2.0
<b> 2e. List versions of the Model</b>
%%bash gcloud ml-engine versions list --model ${MODEL_NAME}
examples/gcp_datalab/notebooks/2_deploy_and_run_ml_model_to_predict_los.ipynb
google/fhir
apache-2.0
<b> 2f. Run following cell to create a new version of the model. Increment the version number like v1, v2, v3 </b> <br /> Optionally, you can delete a version using: <br /> gcloud ml-engine versions delete v1 --model ${MODEL_NAME} -q
%%bash #gcloud ml-engine versions delete v1 --model ${MODEL_NAME} -q gcloud ml-engine versions create v1 \ --model ${MODEL_NAME} \ --origin ${MODEL_BINARY} \ --runtime-version 1.12
examples/gcp_datalab/notebooks/2_deploy_and_run_ml_model_to_predict_los.ipynb
google/fhir
apache-2.0
<b> 2g. Run an inference job on CloudML engine </b>
%%bash INFER_JOB_NAME="job_inf_$(date +%Y%m%d_%H%M%S)" gcloud ml-engine jobs submit prediction $INFER_JOB_NAME --model $MODEL_NAME --version v1 --data-format tf-record --region $REGION --input-paths $SERVING_DATASET --output-path $INFERENCE_PATH
examples/gcp_datalab/notebooks/2_deploy_and_run_ml_model_to_predict_los.ipynb
google/fhir
apache-2.0
<b>You can check the status of the job and other information on <a href="https://console.cloud.google.com/mlengine/jobs">GCP CloudML page</a> </b> <b> 2h. View the prediction (output) generated by the inference job </b>
%%bash gsutil cat ${INFERENCE_PATH}/prediction.results-00000-of-00001
examples/gcp_datalab/notebooks/2_deploy_and_run_ml_model_to_predict_los.ipynb
google/fhir
apache-2.0
Connect to Cloud SQL using the Cloud SQL Python Connector This notebook will be demonstrating how to connect and query data from a Cloud SQL database in an easy and efficient way all from within a jupyter style notebook! Let's have some fun! πŸ“’ Using this interactive notebook Click the run icons ▢️ of each section within this notebook. πŸ’‘ Alternatively, you can run the currently selected cell with Ctrl + Enter (or ⌘ + Enter on a Mac). ⚠️ To avoid any errors, wait for each section to finish in their order before clicking the next β€œrun” icon. This sample must be connected to a Google Cloud project, but nothing else is needed other than your Google Cloud project. You can use an existing project. Alternatively, you can create a new Cloud project with cloud credits for free. 🐍 Cloud SQL Python Connector To connect and access our Cloud SQL database instance(s) we will leverage the Cloud SQL Python Connector. The Cloud SQL Python Connector is a library that can be used alongside a database driver to allow users to easily connect to a Cloud SQL database without having to manually allowlist IP or manage SSL certificates. πŸ₯³ πŸŽ‰ 🀩 β™₯️ Benefits of Using a Connector Using a Cloud SQL connector provides the following benefits: πŸ”‘ IAM Authorization: uses IAM permissions to control who/what can connect to your Cloud SQL instances. πŸ”’ Improved Security: uses robust, updated TLS 1.3 encryption and identity verification between the client connector and the server-side proxy, independent of the database protocol. πŸ‘ Convenience: removes the requirement to use and distribute SSL certificates, as well as manage firewalls or source/destination IP addresses. πŸͺͺ IAM DB Authentication (optional): provides support for Cloud SQL’s automatic IAM DB AuthN feature. πŸ“± Supported Dialects/Drivers Google Cloud SQL and the Python Connector currently support the following dialects of SQL: MySQL, PostgreSQL, and SQL Server. Depending on which dialect you are using for your relational database(s) the Python Connector will utilize a different database driver. SUPPORTED DRIVERS: pymysql (MySQL) 🐬 pg8000 (PostgreSQL) 🐘 pytds (SQL Server) πŸ—„ Therefore, depending on the dialect of your database you will need to switch to the corresponding notebook! πŸ“— MySQL Notebook πŸ“˜ PostgreSQL Notebook (this notebook) πŸ“• SQL Server Notebook 🚧 Getting Started This notebook requires the following steps to be completed in order to successfully make Cloud SQL connections with the Cloud SQL Python Connector. πŸ” Authenticate to Google Cloud within Colab Authenticate to Google Cloud as the IAM user logged into this notebook in order to access your Google Cloud Project.
from google.colab import auth auth.authenticate_user()
samples/notebooks/postgres_python_connector.ipynb
GoogleCloudPlatform/cloud-sql-python-connector
apache-2.0
πŸ”— Connect Your Google Cloud Project Time to connect your Google Cloud Project to this notebook so that you can leverage Google Cloud from within Colab. πŸ… πŸ˜€
#@markdown Please fill in the value below with your GCP project ID and then run the cell. # Please fill in these values. project_id = "" #@param {type:"string"} # Quick input validations. assert project_id, "⚠️ Please provide a Google Cloud project ID" # Configure gcloud. !gcloud config set project {project_id}
samples/notebooks/postgres_python_connector.ipynb
GoogleCloudPlatform/cloud-sql-python-connector
apache-2.0
☁ Configure Your Google Cloud Project Configure the following in your Google Cloud Project. IAM principal (user, service account, etc.) with the Cloud SQL Client role. 🚨 The user logged into this notebook will be used as the IAM principal and will be granted the Cloud SQL Client role.
# grant Cloud SQL Client role to authenticated user current_user = !gcloud auth list --filter=status:ACTIVE --format="value(account)" !gcloud projects add-iam-policy-binding {project_id} \ --member=user:{current_user[0]} \ --role="roles/cloudsql.client"
samples/notebooks/postgres_python_connector.ipynb
GoogleCloudPlatform/cloud-sql-python-connector
apache-2.0
Enable the Cloud SQL Admin API within your project.
# enable Cloud SQL Admin API !gcloud services enable sqladmin.googleapis.com
samples/notebooks/postgres_python_connector.ipynb
GoogleCloudPlatform/cloud-sql-python-connector
apache-2.0
☁️ Setting up Cloud SQL A Postgres Cloud SQL instance is required for the following stages of this notebook. πŸ’½ Create a Postgres Instance Running the below cell will verify the existence of a Cloud SQL instance or create a new one if one does not exist. ⏳ - Creating a Cloud SQL instance may take a few minutes.
#@markdown Please fill in the both the Google Cloud region and name of your Cloud SQL instance. Once filled in, run the cell. # Please fill in these values. region = "us-central1" #@param {type:"string"} instance_name = "" #@param {type:"string"} # Quick input validations. assert region, "⚠️ Please provide a Google Cloud region" assert instance_name, "⚠️ Please provide the name of your instance" # check if Cloud SQL instance exists in the provided region database_version = !gcloud sql instances describe {instance_name} --format="value(databaseVersion)" if database_version[0].startswith("POSTGRES"): print("Found existing Postgres Cloud SQL Instance!") else: print("Creating new Cloud SQL instance...") password = input("Please provide a password to be used for 'postgres' database user: ") !gcloud sql instances create {instance_name} --database-version=POSTGRES_14 \ --region={region} --cpu=1 --memory=4GB --root-password={password} \ --database-flags=cloudsql.iam_authentication=On
samples/notebooks/postgres_python_connector.ipynb
GoogleCloudPlatform/cloud-sql-python-connector
apache-2.0
🎬 Create a Movies Database A movies database will be used in later steps when connecting to and querying a Cloud SQL database. To create a movies database within your Cloud SQL instance run the below command:
!gcloud sql databases create movies --instance={instance_name}
samples/notebooks/postgres_python_connector.ipynb
GoogleCloudPlatform/cloud-sql-python-connector
apache-2.0
πŸ₯· Create Batman Database User To create the batman database user that is used throughout the notebook, run the following gcloud command.
!gcloud sql users create batman \ --instance={instance_name} \ --password="robin"
samples/notebooks/postgres_python_connector.ipynb
GoogleCloudPlatform/cloud-sql-python-connector
apache-2.0
<img src='https://i.pinimg.com/originals/12/64/dd/1264dd5ff31fbc65c5edbb5e1a71830e.gif' class="center"/> 🐍 Python Connector Usage Let's now connect to Cloud SQL using the Python Connector! πŸš€ ⭐ 🐍 🎟 Configuring Credentials The Cloud SQL Python Connector uses Application Default Credentials (ADC) strategy for resolving credentials. πŸ’‘ Using the Python Connector in Cloud Run, App Engine, or Cloud Functions will automatically use the service account deployed with each service, allowing this step to be skipped. βœ… Please see the google.auth package documentation for more information on how these credentials are sourced. This means setting default credentials was previously done for you when you ran: ```python from google.colab import auth auth.authenticate_user() ``` πŸ’» Install Code Dependencies It is recommended to use the Connector alongside a library that can create connection pools, such as SQLAlchemy. This will allow for connections to remain open and be reused, reducing connection overhead and the number of connections needed Let's pip install the Cloud SQL Python Connector as well as SQLAlchemy, using the below command.
# install dependencies import sys !{sys.executable} -m pip install cloud-sql-python-connector["pg8000"] SQLAlchemy
samples/notebooks/postgres_python_connector.ipynb
GoogleCloudPlatform/cloud-sql-python-connector
apache-2.0
🐘 Connect to a Postgres Instance We are now ready to connect to a Postgres instance using the Cloud SQL Python Connector! 🐍 ⭐ ☁ Let's set some parameters that are needed to connect properly to a Cloud SQL instance: * INSTANCE_CONNECTION_NAME : The connection name to your Cloud SQL Instance, takes the form PROJECT_ID:REGION:INSTANCE_NAME. * DB_USER : The user that the connector will use to connect to the database. * DB_PASS : The password of the DB_USER. * DB_NAME : The name of the database on the Cloud SQL instance to connect to.
# initialize parameters INSTANCE_CONNECTION_NAME = f"{project_id}:{region}:{instance_name}" # i.e demo-project:us-central1:demo-instance print(f"Your instance connection name is: {INSTANCE_CONNECTION_NAME}") DB_USER = "batman" DB_PASS = "robin" DB_NAME = "movies"
samples/notebooks/postgres_python_connector.ipynb
GoogleCloudPlatform/cloud-sql-python-connector
apache-2.0
βœ… Basic Usage To connect to Cloud SQL using the connector, inititalize a Connector object and call its connect method with the proper input parameters. The connect method takes in the parameters we previously defined, as well as a few additional parameters such as: * driver: The name of the database driver to connect with. * ip_type (optional): The IP type (public or private) used to connect. IP types can be either IPTypes.PUBLIC or IPTypes.PRIVATE. (Example) * enable_iam_auth: (optional) Boolean enabling IAM based authentication. (Example) Let's show an example! 🀘 πŸ™Œ
from google.cloud.sql.connector import Connector import sqlalchemy # initialize Connector object connector = Connector() # function to return the database connection object def getconn(): conn = connector.connect( INSTANCE_CONNECTION_NAME, "pg8000", user=DB_USER, password=DB_PASS, db=DB_NAME ) return conn # create connection pool with 'creator' argument to our connection object function pool = sqlalchemy.create_engine( "postgresql+pg8000://", creator=getconn, )
samples/notebooks/postgres_python_connector.ipynb
GoogleCloudPlatform/cloud-sql-python-connector
apache-2.0
To use this connector with SQLAlchemy, we use the creator argument for sqlalchemy.create_engine Now that we have established a connection pool, let's write a query! πŸŽ‰ πŸ“
# connect to connection pool with pool.connect() as db_conn: # create ratings table in our movies database db_conn.execute( "CREATE TABLE IF NOT EXISTS ratings " "( id SERIAL NOT NULL, title VARCHAR(255) NOT NULL, " "genre VARCHAR(255) NOT NULL, rating FLOAT NOT NULL, " "PRIMARY KEY (id));" ) # insert data into our ratings table insert_stmt = sqlalchemy.text( "INSERT INTO ratings (title, genre, rating) VALUES (:title, :genre, :rating)", ) # insert entries into table db_conn.execute(insert_stmt, title="Batman Begins", genre="Action", rating=8.5) db_conn.execute(insert_stmt, title="Star Wars: Return of the Jedi", genre="Action", rating=9.1) db_conn.execute(insert_stmt, title="The Breakfast Club", genre="Drama", rating=8.3) # query and fetch ratings table results = db_conn.execute("SELECT * FROM ratings").fetchall() # show results for row in results: print(row)
samples/notebooks/postgres_python_connector.ipynb
GoogleCloudPlatform/cloud-sql-python-connector
apache-2.0
You have successfully been able to connect to a Cloud SQL instance from this notebook and make a query. YOU DID IT! πŸ•Ί 🎊 πŸ’ƒ <img src=https://media.giphy.com/media/MtHGs1yo4FFKrIs55L/giphy.gif /> To close the Connector object's background resources, call it's close() method at the end of your code as follows:
# cleanup connector object connector.close()
samples/notebooks/postgres_python_connector.ipynb
GoogleCloudPlatform/cloud-sql-python-connector
apache-2.0
πŸͺͺ IAM Database Authentication Automatic IAM database authentication is supported for Postgres Cloud SQL instances. πŸ’‘ This allows an IAM user to establish an authenticated connection to a Postgres database without having to set a password and enabling the enable_iam_auth parameter in the connector's connect method. 🚨 If you are using a pre-existing Cloud SQL instance within this notebook you may need to configure Cloud SQL instance to allow IAM authentication by setting the cloudsql.iam_authentication database flag to On. (Cloud SQL instances created within this notebook already have it enabled) IAM principals wanting to use IAM authentication to connect to a Cloud SQL instance require the Cloud SQL Instance User and Cloud SQL Client IAM role. Let's add the Cloud SQL Instance User role to the IAM account logged into this notebook. (Client role previously granted)
# add Cloud SQL Instance User role to current logged in IAM user !gcloud projects add-iam-policy-binding {project_id} \ --member=user:{current_user[0]} \ --role="roles/cloudsql.instanceUser"
samples/notebooks/postgres_python_connector.ipynb
GoogleCloudPlatform/cloud-sql-python-connector
apache-2.0
Now the current IAM user can be added to the Cloud SQL instance as an IAM database user.
# add current logged in IAM user to database !gcloud sql users create {current_user[0]} \ --instance={instance_name} \ --type=cloud_iam_user
samples/notebooks/postgres_python_connector.ipynb
GoogleCloudPlatform/cloud-sql-python-connector
apache-2.0
Finally, let's update our getconn function to connect to our Cloud SQL instance with IAM database authentication enabled. ⚠️ The below sample is a limited example as it logs in to the Cloud SQL instance and outputs the current time. By default new IAM database users have no permissions on a Cloud SQL instance. To connect to specific tables and perform more complex queries, permissions must be granted at the database level. (Grant Database Privileges to the IAM user)
from google.cloud.sql.connector import Connector import sqlalchemy # IAM database user parameter (IAM user's email) IAM_USER = current_user[0] # initialize connector connector = Connector() # getconn now using IAM user and requiring no password with IAM Auth enabled def getconn(): conn = connector.connect( INSTANCE_CONNECTION_NAME, "pg8000", user=IAM_USER, db="postgres", enable_iam_auth=True ) return conn # create connection pool pool = sqlalchemy.create_engine( "postgresql+pg8000://", creator=getconn, ) # connect to connection pool with pool.connect() as db_conn: # get current datetime from database results = db_conn.execute("SELECT NOW()").fetchone() # output time print("Current time: ", results[0]) # cleanup connector connector.close()
samples/notebooks/postgres_python_connector.ipynb
GoogleCloudPlatform/cloud-sql-python-connector
apache-2.0
Sucess! You were able to connect to Cloud SQL as an IAM authenticated user using the Cloud SQL Python Connector! 🍾 πŸ‘ πŸ† <img src="https://media.giphy.com/media/YTbZzCkRQCEJa/giphy.gif" /> πŸ—‘ Clean Up Notebook Resources Make sure to delete your Cloud SQL instance when your are finished with this notebook to avoid further costs. πŸ’Έ πŸ’°
# delete Cloud SQL instance !gcloud sql instances delete {instance_name}
samples/notebooks/postgres_python_connector.ipynb
GoogleCloudPlatform/cloud-sql-python-connector
apache-2.0
✍ Appendix Additional information provided for connecting to a Cloud SQL instance using private IP connections. πŸ”’ Using Private IP Connections By default the connector connects to the Cloud SQL instance database using a Public IP address. Private IP connections are also supported by the connector and can be easily enabled through the ip_type parameter in the connector's connect method. ⚠️ To connect via Private IP, the Cloud SQL instance being connected to must have a Private IP address configured within a VPC Network. (How to Configure Private IP) 🚫 The below cell is a working sample but will not work within this notebook as the notebook is not within your VPC Network! The cell should be copied into an environment (Cloud Run, Cloud Functions, App Engine etc.) that has access to the VPC Network. Connecting Cloud Run to a VPC Network Let's update our getconn function to connect to our Cloud SQL instance with Private IP.
from google.cloud.sql.connector import Connector, IPTypes import sqlalchemy # initialize connector connector = Connector() # getconn now set to private IP def getconn(): conn = connector.connect( INSTANCE_CONNECTION_NAME, # <PROJECT-ID>:<REGION>:<INSTANCE-NAME> "pg8000", user=DB_USER, password=DB_PASS, db=DB_NAME, ip_type=IPTypes.PRIVATE ) return conn # create connection pool pool = sqlalchemy.create_engine( "postgresql+pg8000://", creator=getconn, ) # connect to connection pool with pool.connect() as db_conn: # query database and fetch results results = db_conn.execute("SELECT * FROM ratings").fetchall() # show results for row in results: print(row) # cleanup connector connector.close()
samples/notebooks/postgres_python_connector.ipynb
GoogleCloudPlatform/cloud-sql-python-connector
apache-2.0
There are two versions of each data set from PsychSignal. A simple version with fewer fields and full version with more fields. This is an basic data set with fewer fields. Let's go over the columns: - asof_date: The date to which this data applies. - symbol: stock ticker symbol of the affected company. - source: the same value for all records in this data set - bull_scored_messages: total count of bullish sentiment messages scored by PsychSignal's algorithm - bear_scored_messages: total count of bearish sentiment messages scored by PsychSignal's algorithm - bullish_intensity: score for each message's language for the stength of the bullishness present in the messages on a 0-4 scale. 0 indicates no bullish sentiment measured, 4 indicates strongest bullish sentiment measured. 4 is rare - bearish_intensity: score for each message's language for the stength of the bearish present in the messages on a 0-4 scale. 0 indicates no bearish sentiment measured, 4 indicates strongest bearish sentiment measured. 4 is rare - total_scanned_messages: number of messages coming through PsuchSignal's feeds and attributable to a symbol regardless of whether the PsychSignal sentiment engine can score them for bullish or bearish intensity- timestamp: this is our timestamp on when we registered the data. - bull_minus_bear: subtracts the bearish intesity from the bullish intensity [BULL - BEAR] to rpovide an immediate net score. - bull_bear_msg_ratio: the ratio between bull scored messages and bear scored messages. - sid: the equity's unique identifier. Use this instead of the symbol. We've done much of the data processing for you. Fields like timestamp and sid are standardized across all our Store Datasets, so the datasets are easy to combine. We have standardized the sid across all our equity databases. We can select columns and rows with ease. Below, we'll fetch all rows for Apple (sid 24) and explore the scores a bit with a chart.
# Filtering for AAPL aapl = dataset[dataset.sid == 24] aapl_df = odo(aapl.sort('asof_date'), pd.DataFrame) plt.plot(aapl_df.asof_date, aapl_df.bull_scored_messages, marker='.', linestyle='None', color='r') plt.plot(aapl_df.asof_date, pd.rolling_mean(aapl_df.bull_scored_messages, 30)) plt.xlabel("As Of Date (asof_date)") plt.ylabel("Count of Bull Messages") plt.title("Count of Bullish Messages for AAPL") plt.legend(["Bull Messages - Single Day", "30 Day Rolling Average"], loc=2)
notebooks/data/psychsignal.stocktwits/notebook.ipynb
quantopian/research_public
apache-2.0
<a id='pipeline'></a> Pipeline Overview Accessing the data in your algorithms & research The only method for accessing partner data within algorithms running on Quantopian is via the pipeline API. Different data sets work differently but in the case of this data, you can add this data to your pipeline as follows: Import the data set here from quantopian.pipeline.data.psychsignal import ( stocktwits_free ) Then in intialize() you could do something simple like adding the raw value of one of the fields to your pipeline: pipe.add(stocktwits_free.total_scanned_messages.latest, 'total_scanned_messages')
# Import necessary Pipeline modules from quantopian.pipeline import Pipeline from quantopian.research import run_pipeline from quantopian.pipeline.factors import AverageDollarVolume # For use in your algorithms # Using the full paid dataset in your pipeline algo # from quantopian.pipeline.data.psychsignal import stocktwits # Using the free sample in your pipeline algo from quantopian.pipeline.data.psychsignal import stocktwits_free
notebooks/data/psychsignal.stocktwits/notebook.ipynb
quantopian/research_public
apache-2.0
Now that we've imported the data, let's take a look at which fields are available for each dataset. You'll find the dataset, the available fields, and the datatypes for each of those fields.
print "Here are the list of available fields per dataset:" print "---------------------------------------------------\n" def _print_fields(dataset): print "Dataset: %s\n" % dataset.__name__ print "Fields:" for field in list(dataset.columns): print "%s - %s" % (field.name, field.dtype) print "\n" for data in (stocktwits_free ,): _print_fields(data) print "---------------------------------------------------\n"
notebooks/data/psychsignal.stocktwits/notebook.ipynb
quantopian/research_public
apache-2.0
Now that we know what fields we have access to, let's see what this data looks like when we run it through Pipeline. This is constructed the same way as you would in the backtester. For more information on using Pipeline in Research view this thread: https://www.quantopian.com/posts/pipeline-in-research-build-test-and-visualize-your-factors-and-filters
# Let's see what this data looks like when we run it through Pipeline # This is constructed the same way as you would in the backtester. For more information # on using Pipeline in Research view this thread: # https://www.quantopian.com/posts/pipeline-in-research-build-test-and-visualize-your-factors-and-filters pipe = Pipeline() pipe.add(stocktwits_free.total_scanned_messages.latest, 'total_scanned_messages') pipe.add(stocktwits_free.bear_scored_messages .latest, 'bear_scored_messages ') pipe.add(stocktwits_free.bull_scored_messages .latest, 'bull_scored_messages ') pipe.add(stocktwits_free.bull_bear_msg_ratio .latest, 'bull_bear_msg_ratio ') # Setting some basic liquidity strings (just for good habit) dollar_volume = AverageDollarVolume(window_length=20) top_1000_most_liquid = dollar_volume.rank(ascending=False) < 1000 pipe.set_screen(top_1000_most_liquid & (stocktwits_free.total_scanned_messages.latest>20)) # The show_graph() method of pipeline objects produces a graph to show how it is being calculated. pipe.show_graph(format='png') # run_pipeline will show the output of your pipeline pipe_output = run_pipeline(pipe, start_date='2013-11-01', end_date='2013-11-25') pipe_output
notebooks/data/psychsignal.stocktwits/notebook.ipynb
quantopian/research_public
apache-2.0
Taking what we've seen from above, let's see how we'd move that into the backtester.
# This section is only importable in the backtester from quantopian.algorithm import attach_pipeline, pipeline_output # General pipeline imports from quantopian.pipeline import Pipeline from quantopian.pipeline.factors import AverageDollarVolume # Import the datasets available # For use in your algorithms # Using the full paid dataset in your pipeline algo # from quantopian.pipeline.data.psychsignal import stocktwits # Using the free sample in your pipeline algo from quantopian.pipeline.data.psychsignal import stocktwits_free def make_pipeline(): # Create our pipeline pipe = Pipeline() # Screen out penny stocks and low liquidity securities. dollar_volume = AverageDollarVolume(window_length=20) is_liquid = dollar_volume.rank(ascending=False) < 1000 # Create the mask that we will use for our percentile methods. base_universe = (is_liquid) # Add pipeline factors pipe.add(stocktwits_free.total_scanned_messages.latest, 'total_scanned_messages') pipe.add(stocktwits_free.bear_scored_messages .latest, 'bear_scored_messages ') pipe.add(stocktwits_free.bull_scored_messages .latest, 'bull_scored_messages ') pipe.add(stocktwits_free.bull_bear_msg_ratio .latest, 'bull_bear_msg_ratio ') # Set our pipeline screens pipe.set_screen(is_liquid) return pipe def initialize(context): attach_pipeline(make_pipeline(), "pipeline") def before_trading_start(context, data): results = pipeline_output('pipeline')
notebooks/data/psychsignal.stocktwits/notebook.ipynb
quantopian/research_public
apache-2.0
Compute seed based time-frequency connectivity in sensor space Computes the connectivity between a seed-gradiometer close to the visual cortex and all other gradiometers. The connectivity is computed in the time-frequency domain using Morlet wavelets and the debiased Squared Weighted Phase Lag Index [1]_ is used as connectivity metric. .. [1] Vinck et al. "An improved index of phase-synchronization for electro- physiological data in the presence of volume-conduction, noise and sample-size bias" NeuroImage, vol. 55, no. 4, pp. 1548-1565, Apr. 2011.
# Author: Martin Luessi <[email protected]> # # License: BSD (3-clause) import numpy as np import mne from mne import io from mne.connectivity import spectral_connectivity, seed_target_indices from mne.datasets import sample from mne.time_frequency import AverageTFR print(__doc__)
0.14/_downloads/plot_cwt_sensor_connectivity.ipynb
mne-tools/mne-tools.github.io
bsd-3-clause
Set parameters
data_path = sample.data_path() raw_fname = data_path + '/MEG/sample/sample_audvis_filt-0-40_raw.fif' event_fname = data_path + '/MEG/sample/sample_audvis_filt-0-40_raw-eve.fif' # Setup for reading the raw data raw = io.read_raw_fif(raw_fname) events = mne.read_events(event_fname) # Add a bad channel raw.info['bads'] += ['MEG 2443'] # Pick MEG gradiometers picks = mne.pick_types(raw.info, meg='grad', eeg=False, stim=False, eog=True, exclude='bads') # Create epochs for left-visual condition event_id, tmin, tmax = 3, -0.2, 0.5 epochs = mne.Epochs(raw, events, event_id, tmin, tmax, picks=picks, baseline=(None, 0), reject=dict(grad=4000e-13, eog=150e-6), preload=True) # Use 'MEG 2343' as seed seed_ch = 'MEG 2343' picks_ch_names = [raw.ch_names[i] for i in picks] # Create seed-target indices for connectivity computation seed = picks_ch_names.index(seed_ch) targets = np.arange(len(picks)) indices = seed_target_indices(seed, targets) # Define wavelet frequencies and number of cycles cwt_frequencies = np.arange(7, 30, 2) cwt_n_cycles = cwt_frequencies / 7. # Run the connectivity analysis using 2 parallel jobs sfreq = raw.info['sfreq'] # the sampling frequency con, freqs, times, _, _ = spectral_connectivity( epochs, indices=indices, method='wpli2_debiased', mode='cwt_morlet', sfreq=sfreq, cwt_frequencies=cwt_frequencies, cwt_n_cycles=cwt_n_cycles, n_jobs=1) # Mark the seed channel with a value of 1.0, so we can see it in the plot con[np.where(indices[1] == seed)] = 1.0 # Show topography of connectivity from seed title = 'WPLI2 - Visual - Seed %s' % seed_ch layout = mne.find_layout(epochs.info, 'meg') # use full layout tfr = AverageTFR(epochs.info, con, times, freqs, len(epochs)) tfr.plot_topo(fig_facecolor='w', font_color='k', border='k')
0.14/_downloads/plot_cwt_sensor_connectivity.ipynb
mne-tools/mne-tools.github.io
bsd-3-clause
Synthetic signals Here, we make a synthetic measurement. The synthetic signal $\mathrm{y}$ is simulated from the grand truth solution $g_true$ and random gaussian noise.
n = 30 N = 40 # radial coordinate r = np.linspace(0, 1., n) # synthetic latent function f = np.exp(-(r-0.3)*(r-0.3)/0.1) + np.exp(-(r+0.3)*(r+0.3)/0.1) # plotting the latent function plt.figure(figsize=(5,3)) plt.plot(r, f) plt.xlabel('$r$: Radial coordinate') plt.ylabel('$f$: Function value')
notebooks/Abel_inversion.ipynb
fujii-team/GPinv
apache-2.0
Prepare the synthetic signal.
# los height z = np.linspace(-0.9,0.9, N) # Los-matrix A = make_LosMatrix.make_LosMatrix(r, z) # noise amplitude e_amp = 0.1 # synthetic observation y = np.dot(A, f) + e_amp * np.random.randn(N) plt.figure(figsize=(5,3)) plt.plot(z, y, 'o', [-1,1],[0,0], '--k', ms=5) plt.xlabel('$z$: Los-height') plt.ylabel('$y$: Observation')
notebooks/Abel_inversion.ipynb
fujii-team/GPinv
apache-2.0
Inference In order to carry out an inference, a custom likelihood, which calculates $p(\mathbf{Y}|\mathbf{f})$ with given $\mathbf{f}$, must be prepared according to the problem. The method to be implemented is logp(f,Y) method, that calculates log-likelihood for data Y with given f
class AbelLikelihood(GPinv.likelihoods.Likelihood): def __init__(self, Amat): GPinv.likelihoods.Likelihood.__init__(self) self.Amat = GPinv.param.DataHolder(Amat) self.variance = GPinv.param.Param(np.ones(1), GPinv.transforms.positive) def logp(self, F, Y): Af = self.sample_F(F) Y = tf.tile(tf.expand_dims(Y, 0), [tf.shape(F)[0],1,1]) return GPinv.densities.gaussian(Af, Y, self.variance) def sample_F(self, F): N = tf.shape(F)[0] Amat = tf.tile(tf.expand_dims(self.Amat,0), [N, 1,1]) Af = tf.batch_matmul(Amat, tf.exp(F)) return Af def sample_Y(self, F): f_sample = self.sample_F(F) return f_sample + tf.random_normal(tf.shape(f_sample)) * tf.sqrt(self.variance)
notebooks/Abel_inversion.ipynb
fujii-team/GPinv
apache-2.0
Variational inference by StVGP In StVGP, we evaluate the posterior $p(\mathbf{f}|\mathbf{y},\theta)$ by approximating as a multivariate Gaussian distribution. The hyperparameters are obtained at the maximum of the evidence lower bound (ELBO) $p(\mathbf{y}|\theta)$. Kernel The statistical property is interpreted in Gaussian Process kernel. In our example, since $f$ is a cylindrically symmetric function, we adopt RBF_csym kernel. MeanFunction To make $f$ scale invariant, we added the constant mean_function to $f$.
model_stvgp = GPinv.stvgp.StVGP(r.reshape(-1,1), y.reshape(-1,1), kern = GPinv.kernels.RBF_csym(1,1), mean_function = GPinv.mean_functions.Constant(1), likelihood=AbelLikelihood(A), num_samples=10)
notebooks/Abel_inversion.ipynb
fujii-team/GPinv
apache-2.0
Check the initial estimate
# Data Y should scatter around the transform F of the GP function f. sample_F = model_stvgp.sample_F(100) plt.figure(figsize=(5,3)) plt.plot(z, y, 'o', [-1,1],[0,0], '--k', ms=5) for s in sample_F: plt.plot(z, s, '-k', alpha=0.1, lw=1) plt.xlabel('$z$: Los-height') plt.ylabel('$y$: Observation')
notebooks/Abel_inversion.ipynb
fujii-team/GPinv
apache-2.0
Iteration Although the initial estimate is not very good, we start iteration.
# This function is just for the visualization of the iteration from IPython import display logf = [] def logger(x): if (logger.i % 10) == 0: obj = -model_stvgp._objective(x)[0] logf.append(obj) # display if (logger.i % 100) ==0: plt.clf() plt.plot(logf, '--ko', markersize=3, linewidth=1) plt.ylabel('ELBO') plt.xlabel('iteration') display.display(plt.gcf()) display.clear_output(wait=True) logger.i+=1 logger.i = 1 plt.figure(figsize=(5,3)) # Rough optimization by scipy.minimize model_stvgp.optimize() # Final optimization by tf.train trainer = tf.train.AdamOptimizer(learning_rate=0.002) _= model_stvgp.optimize(trainer, maxiter=5000, callback=logger) display.clear_output(wait=True)
notebooks/Abel_inversion.ipynb
fujii-team/GPinv
apache-2.0
Plot results
# Predict the latent function f, which follows Gaussian Process r_new = np.linspace(0.,1.2, 40) f_pred, f_var = model_stvgp.predict_f(r_new.reshape(-1,1)) # Data Y should scatter around the transform F of the GP function f. sample_F = model_stvgp.sample_F(100) plt.figure(figsize=(8,3)) plt.subplot(1,2,1) f_plus = np.exp(f_pred.flatten() + 2.*np.sqrt(f_var.flatten())) f_minus = np.exp(f_pred.flatten() - 2.*np.sqrt(f_var.flatten())) plt.fill_between(r_new, f_plus, f_minus, alpha=0.2) plt.plot(r_new, np.exp(f_pred.flatten()), label='StVGP',lw=1.5) plt.plot(r, f, '-r', label='true',lw=1.5)# ground truth plt.xlabel('$r$: Radial coordinate') plt.ylabel('$g$: Latent function') plt.legend(loc='best') plt.subplot(1,2,2) for s in sample_F: plt.plot(z, s, '-k', alpha=0.05, lw=1) plt.plot(z, y, 'o', ms=5) plt.plot(z, np.dot(A, f), 'r', label='true',lw=1.5) plt.xlabel('$z$: Los-height') plt.ylabel('$y$: Observation') plt.legend(loc='best') plt.tight_layout()
notebooks/Abel_inversion.ipynb
fujii-team/GPinv
apache-2.0
MCMC MCMC is fully Bayesian inference. The hyperparameters are numerically marginalized out.
model_gpmc = GPinv.gpmc.GPMC(r.reshape(-1,1), y.reshape(-1,1), kern = GPinv.kernels.RBF_csym(1,1), mean_function = GPinv.mean_functions.Constant(1), likelihood=AbelLikelihood(A))
notebooks/Abel_inversion.ipynb
fujii-team/GPinv
apache-2.0
Sample from posterior
samples = model_gpmc.sample(300, thin=3, burn=500, verbose=True, epsilon=0.01, Lmax=15)
notebooks/Abel_inversion.ipynb
fujii-team/GPinv
apache-2.0
Plot result
r_new = np.linspace(0.,1.2, 40) plt.figure(figsize=(8,3)) # Latent function plt.subplot(1,2,1) for i in range(0,len(samples),3): s = samples[i] model_gpmc.set_state(s) f_pred, f_var = model_gpmc.predict_f(r_new.reshape(-1,1)) plt.plot(r_new, np.exp(f_pred.flatten()), 'k',lw=1, alpha=0.1) plt.plot(r, f, '-r', label='true',lw=1.5)# ground truth plt.xlabel('$r$: Radial coordinate') plt.ylabel('$g$: Latent function') plt.legend(loc='best') # plt.subplot(1,2,2) for i in range(0,len(samples),3): s = samples[i] model_gpmc.set_state(s) f_sample = model_gpmc.sample_F() plt.plot(z, f_sample[0], 'k',lw=1, alpha=0.1) plt.plot(z, y, 'o', ms=5) plt.plot(z, np.dot(A, f), 'r', label='true',lw=1.5) plt.xlabel('$z$: Los-height') plt.ylabel('$y$: Observation') plt.legend(loc='best') plt.tight_layout()
notebooks/Abel_inversion.ipynb
fujii-team/GPinv
apache-2.0
Comparison between StVGP and GPMC The StVGP makes a point estimate for the hyperparameter (variance and length-scale of the kernel, mean function value, and variance at the likelihood), while the GPMC integrate them out. Therefore, there is some difference between them. Difference in the hyperparameter estimation
# make a histogram (posterior) for these hyperparameter estimated by GPMC gpmc_hyp_samples = { 'k_variance' : [], # variance 'k_lengthscale': [], # kernel lengthscale 'mean' : [], # mean function values 'lik_variance' : [], # variance for the likelihood } for s in samples: model_gpmc.set_state(s) gpmc_hyp_samples['k_variance' ].append(model_gpmc.kern.variance.value[0]) gpmc_hyp_samples['k_lengthscale'].append(model_gpmc.kern.lengthscales.value[0]) gpmc_hyp_samples['mean'].append(model_gpmc.mean_function.c.value[0]) gpmc_hyp_samples['lik_variance'].append(model_gpmc.likelihood.variance.value[0]) plt.figure(figsize=(10,2)) # kernel variance plt.subplot(1,4,1) plt.title('k_variance') _= plt.hist(gpmc_hyp_samples['k_variance']) plt.plot([model_stvgp.kern.variance.value]*2, [0,100], '-r') plt.subplot(1,4,2) plt.title('k_lengthscale') _= plt.hist(gpmc_hyp_samples['k_lengthscale']) plt.plot([model_stvgp.kern.lengthscales.value]*2, [0,100], '-r') plt.subplot(1,4,3) plt.title('mean') _= plt.hist(gpmc_hyp_samples['mean']) plt.plot([model_stvgp.mean_function.c.value]*2, [0,100], '-r') plt.subplot(1,4,4) plt.title('lik_variance') _= plt.hist(gpmc_hyp_samples['lik_variance']) plt.plot([model_stvgp.likelihood.variance.value]*2, [0,100], '-r') plt.tight_layout() print('Here the red line shows the MAP estimate by StVGP')
notebooks/Abel_inversion.ipynb
fujii-team/GPinv
apache-2.0
Difference in the prediction.
r_new = np.linspace(0.,1.2, 40) plt.figure(figsize=(4,3)) # StVGP f_pred, f_var = model_stvgp.predict_f(r_new.reshape(-1,1)) f_plus = np.exp(f_pred.flatten() + 2.*np.sqrt(f_var.flatten())) f_minus = np.exp(f_pred.flatten() - 2.*np.sqrt(f_var.flatten())) plt.plot(r_new, np.exp(f_pred.flatten()), 'b', label='StVGP',lw=1.5) plt.plot(r_new, f_plus, '--b', r_new, f_minus, '--b', lw=1.5) # GPMC for i in range(0,len(samples),3): s = samples[i] model_gpmc.set_state(s) f_pred, f_var = model_gpmc.predict_f(r_new.reshape(-1,1)) plt.plot(r_new, np.exp(f_pred.flatten()), 'k',lw=1, alpha=0.1) plt.plot(r_new, np.exp(f_pred.flatten()), 'k',lw=1, alpha=0.1, label='GPMC') plt.xlabel('$r$: Radial coordinate') plt.ylabel('$g$: Latent function') plt.legend(loc='best')
notebooks/Abel_inversion.ipynb
fujii-team/GPinv
apache-2.0
<br> add_numbers is a function that takes two numbers and adds them together.
def add_numbers(x, y): return x + y add_numbers(x, y)
Data_Science_Course/Michigan Data Analysis Course/0 Introduction to Data Science in Python/Week1/Week+1.ipynb
Z0m6ie/Zombie_Code
mit
<br> add_numbers updated to take an optional 3rd parameter. Using print allows printing of multiple expressions within a single cell.
def add_numbers(x,y,z=None): if (z==None): return x+y else: return x+y+z print(add_numbers(1, 2)) print(add_numbers(1, 2, 3))
Data_Science_Course/Michigan Data Analysis Course/0 Introduction to Data Science in Python/Week1/Week+1.ipynb
Z0m6ie/Zombie_Code
mit
<br> add_numbers updated to take an optional flag parameter.
def add_numbers(x, y, z=None, flag=False): if (flag): print('Flag is true!') if (z==None): return x + y else: return x + y + z print(add_numbers(1, 2, flag=True))
Data_Science_Course/Michigan Data Analysis Course/0 Introduction to Data Science in Python/Week1/Week+1.ipynb
Z0m6ie/Zombie_Code
mit
<br> Assign function add_numbers to variable a.
def add_numbers(x,y): return x+y a = add_numbers a(1,2)
Data_Science_Course/Michigan Data Analysis Course/0 Introduction to Data Science in Python/Week1/Week+1.ipynb
Z0m6ie/Zombie_Code
mit
<br> The Python Programming Language: Types and Sequences <br> Use type to return the object's type.
type('This is a string') type(None) type(1) type(1.0) type(add_numbers)
Data_Science_Course/Michigan Data Analysis Course/0 Introduction to Data Science in Python/Week1/Week+1.ipynb
Z0m6ie/Zombie_Code
mit
<br> Tuples are an immutable data structure (cannot be altered).
x = (1, 'a', 2, 'b') type(x)
Data_Science_Course/Michigan Data Analysis Course/0 Introduction to Data Science in Python/Week1/Week+1.ipynb
Z0m6ie/Zombie_Code
mit
<br> Lists are a mutable data structure.
x = [1, 'a', 2, 'b'] type(x)
Data_Science_Course/Michigan Data Analysis Course/0 Introduction to Data Science in Python/Week1/Week+1.ipynb
Z0m6ie/Zombie_Code
mit
<br> Use append to append an object to a list.
x.append(3.3) print(x)
Data_Science_Course/Michigan Data Analysis Course/0 Introduction to Data Science in Python/Week1/Week+1.ipynb
Z0m6ie/Zombie_Code
mit
<br> This is an example of how to loop through each item in the list.
for item in x: print(item)
Data_Science_Course/Michigan Data Analysis Course/0 Introduction to Data Science in Python/Week1/Week+1.ipynb
Z0m6ie/Zombie_Code
mit
<br> Or using the indexing operator:
i=0 while( i != len(x) ): print(x[i]) i = i + 1
Data_Science_Course/Michigan Data Analysis Course/0 Introduction to Data Science in Python/Week1/Week+1.ipynb
Z0m6ie/Zombie_Code
mit
<br> Use + to concatenate lists.
[1,2] + [3,4]
Data_Science_Course/Michigan Data Analysis Course/0 Introduction to Data Science in Python/Week1/Week+1.ipynb
Z0m6ie/Zombie_Code
mit
<br> Use * to repeat lists.
[1]*3
Data_Science_Course/Michigan Data Analysis Course/0 Introduction to Data Science in Python/Week1/Week+1.ipynb
Z0m6ie/Zombie_Code
mit
<br> Use the in operator to check if something is inside a list.
1 in [1, 2, 3]
Data_Science_Course/Michigan Data Analysis Course/0 Introduction to Data Science in Python/Week1/Week+1.ipynb
Z0m6ie/Zombie_Code
mit
<br> Now let's look at strings. Use bracket notation to slice a string.
x = 'This is a string' print(x[0]) #first character print(x[0:1]) #first character, but we have explicitly set the end character print(x[0:2]) #first two characters print(x[::-1])
Data_Science_Course/Michigan Data Analysis Course/0 Introduction to Data Science in Python/Week1/Week+1.ipynb
Z0m6ie/Zombie_Code
mit
<br> This will return the last element of the string.
x[-1]
Data_Science_Course/Michigan Data Analysis Course/0 Introduction to Data Science in Python/Week1/Week+1.ipynb
Z0m6ie/Zombie_Code
mit
<br> This will return the slice starting from the 4th element from the end and stopping before the 2nd element from the end.
x[-4:-2]
Data_Science_Course/Michigan Data Analysis Course/0 Introduction to Data Science in Python/Week1/Week+1.ipynb
Z0m6ie/Zombie_Code
mit
<br> This is a slice from the beginning of the string and stopping before the 3rd element.
x[:3]
Data_Science_Course/Michigan Data Analysis Course/0 Introduction to Data Science in Python/Week1/Week+1.ipynb
Z0m6ie/Zombie_Code
mit
<br> And this is a slice starting from the 3rd element of the string and going all the way to the end.
x[3:] firstname = 'Christopher' lastname = 'Brooks' print(firstname + ' ' + lastname) print(firstname*3) print('Chris' in firstname)
Data_Science_Course/Michigan Data Analysis Course/0 Introduction to Data Science in Python/Week1/Week+1.ipynb
Z0m6ie/Zombie_Code
mit
<br> split returns a list of all the words in a string, or a list split on a specific character.
firstname = 'Christopher Arthur Hansen Brooks'.split(' ')[0] # [0] selects the first element of the list lastname = 'Christopher Arthur Hansen Brooks'.split(' ')[-1] # [-1] selects the last element of the list print(firstname) print(lastname)
Data_Science_Course/Michigan Data Analysis Course/0 Introduction to Data Science in Python/Week1/Week+1.ipynb
Z0m6ie/Zombie_Code
mit
<br> Make sure you convert objects to strings before concatenating.
'Chris' + 2 'Chris' + str(2)
Data_Science_Course/Michigan Data Analysis Course/0 Introduction to Data Science in Python/Week1/Week+1.ipynb
Z0m6ie/Zombie_Code
mit
<br> Dictionaries associate keys with values.
x = {'Christopher Brooks': '[email protected]', 'Bill Gates': '[email protected]'} x['Christopher Brooks'] # Retrieve a value by using the indexing operator x['Kevyn Collins-Thompson'] = "Test Test" x['Kevyn Collins-Thompson']
Data_Science_Course/Michigan Data Analysis Course/0 Introduction to Data Science in Python/Week1/Week+1.ipynb
Z0m6ie/Zombie_Code
mit
<br> Iterate over all of the keys:
for name in x: print(x[name])
Data_Science_Course/Michigan Data Analysis Course/0 Introduction to Data Science in Python/Week1/Week+1.ipynb
Z0m6ie/Zombie_Code
mit
<br> Iterate over all of the values:
for email in x.values(): print(email)
Data_Science_Course/Michigan Data Analysis Course/0 Introduction to Data Science in Python/Week1/Week+1.ipynb
Z0m6ie/Zombie_Code
mit
<br> Iterate over all of the items in the list:
for name, email in x.items(): print(name) print(email)
Data_Science_Course/Michigan Data Analysis Course/0 Introduction to Data Science in Python/Week1/Week+1.ipynb
Z0m6ie/Zombie_Code
mit
<br> You can unpack a sequence into different variables:
x = ('Christopher', 'Brooks', '[email protected]') fname, lname, email = x fname lname
Data_Science_Course/Michigan Data Analysis Course/0 Introduction to Data Science in Python/Week1/Week+1.ipynb
Z0m6ie/Zombie_Code
mit
<br> Make sure the number of values you are unpacking matches the number of variables being assigned.
x = ('Christopher', 'Brooks', '[email protected]', 'Ann Arbor') fname, lname, email, location = x
Data_Science_Course/Michigan Data Analysis Course/0 Introduction to Data Science in Python/Week1/Week+1.ipynb
Z0m6ie/Zombie_Code
mit
<br> The Python Programming Language: More on Strings
print("Chris" + 2) print('Chris' + str(2))
Data_Science_Course/Michigan Data Analysis Course/0 Introduction to Data Science in Python/Week1/Week+1.ipynb
Z0m6ie/Zombie_Code
mit
<br> Python has a built in method for convenient string formatting.
sales_record = { 'price': 3.24, 'num_items': 4, 'person': 'Chris'} sales_statement = '{} bought {} item(s) at a price of {} each for a total of {}' print(sales_statement.format(sales_record['person'], sales_record['num_items'], sales_record['price'], sales_record['num_items']*sales_record['price']))
Data_Science_Course/Michigan Data Analysis Course/0 Introduction to Data Science in Python/Week1/Week+1.ipynb
Z0m6ie/Zombie_Code
mit
<br> Reading and Writing CSV files <br> Let's import our datafile mpg.csv, which contains fuel economy data for 234 cars. mpg : miles per gallon class : car classification cty : city mpg cyl : # of cylinders displ : engine displacement in liters drv : f = front-wheel drive, r = rear wheel drive, 4 = 4wd fl : fuel (e = ethanol E85, d = diesel, r = regular, p = premium, c = CNG) hwy : highway mpg manufacturer : automobile manufacturer model : model of car trans : type of transmission year : model year
import csv import pandas as pd # Nice, sets decimple point %precision 2 with open('mpg.csv') as csvfile: mpg = list(csv.DictReader(csvfile)) df = pd.read_csv('mpg.csv') mpg[:3] # The first three dictionaries in our list. df
Data_Science_Course/Michigan Data Analysis Course/0 Introduction to Data Science in Python/Week1/Week+1.ipynb
Z0m6ie/Zombie_Code
mit
<br> csv.Dictreader has read in each row of our csv file as a dictionary. len shows that our list is comprised of 234 dictionaries.
len(mpg)
Data_Science_Course/Michigan Data Analysis Course/0 Introduction to Data Science in Python/Week1/Week+1.ipynb
Z0m6ie/Zombie_Code
mit
<br> keys gives us the column names of our csv.
mpg[0].keys()
Data_Science_Course/Michigan Data Analysis Course/0 Introduction to Data Science in Python/Week1/Week+1.ipynb
Z0m6ie/Zombie_Code
mit
<br> This is how to find the average cty fuel economy across all cars. All values in the dictionaries are strings, so we need to convert to float.
sum(float(d['cty']) for d in mpg) / len(mpg)
Data_Science_Course/Michigan Data Analysis Course/0 Introduction to Data Science in Python/Week1/Week+1.ipynb
Z0m6ie/Zombie_Code
mit
<br> Similarly this is how to find the average hwy fuel economy across all cars.
sum(float(d['hwy']) for d in mpg) / len(mpg)
Data_Science_Course/Michigan Data Analysis Course/0 Introduction to Data Science in Python/Week1/Week+1.ipynb
Z0m6ie/Zombie_Code
mit
<br> Use set to return the unique values for the number of cylinders the cars in our dataset have.
# set returns unique values cylinders = set(d['cyl'] for d in mpg) cylinders
Data_Science_Course/Michigan Data Analysis Course/0 Introduction to Data Science in Python/Week1/Week+1.ipynb
Z0m6ie/Zombie_Code
mit
<br> Here's a more complex example where we are grouping the cars by number of cylinder, and finding the average cty mpg for each group.
CtyMpgByCyl = [] for c in cylinders: # iterate over all the cylinder levels summpg = 0 cyltypecount = 0 for d in mpg: # iterate over all dictionaries if d['cyl'] == c: # if the cylinder level type matches, summpg += float(d['cty']) # add the cty mpg cyltypecount += 1 # increment the count CtyMpgByCyl.append((c, summpg / cyltypecount)) # append the tuple ('cylinder', 'avg mpg') CtyMpgByCyl.sort(key=lambda x: x[0]) CtyMpgByCyl
Data_Science_Course/Michigan Data Analysis Course/0 Introduction to Data Science in Python/Week1/Week+1.ipynb
Z0m6ie/Zombie_Code
mit
<br> Use set to return the unique values for the class types in our dataset.
vehicleclass = set(d['class'] for d in mpg) # what are the class types vehicleclass
Data_Science_Course/Michigan Data Analysis Course/0 Introduction to Data Science in Python/Week1/Week+1.ipynb
Z0m6ie/Zombie_Code
mit
<br> And here's an example of how to find the average hwy mpg for each class of vehicle in our dataset.
HwyMpgByClass = [] for t in vehicleclass: # iterate over all the vehicle classes summpg = 0 vclasscount = 0 for d in mpg: # iterate over all dictionaries if d['class'] == t: # if the cylinder amount type matches, summpg += float(d['hwy']) # add the hwy mpg vclasscount += 1 # increment the count HwyMpgByClass.append((t, summpg / vclasscount)) # append the tuple ('class', 'avg mpg') HwyMpgByClass.sort(key=lambda x: x[1]) HwyMpgByClass
Data_Science_Course/Michigan Data Analysis Course/0 Introduction to Data Science in Python/Week1/Week+1.ipynb
Z0m6ie/Zombie_Code
mit
<br> The Python Programming Language: Dates and Times
import datetime as dt import time as tm
Data_Science_Course/Michigan Data Analysis Course/0 Introduction to Data Science in Python/Week1/Week+1.ipynb
Z0m6ie/Zombie_Code
mit
<br> time returns the current time in seconds since the Epoch. (January 1st, 1970)
tm.time()
Data_Science_Course/Michigan Data Analysis Course/0 Introduction to Data Science in Python/Week1/Week+1.ipynb
Z0m6ie/Zombie_Code
mit
<br> Convert the timestamp to datetime.
dtnow = dt.datetime.fromtimestamp(tm.time()) dtnow
Data_Science_Course/Michigan Data Analysis Course/0 Introduction to Data Science in Python/Week1/Week+1.ipynb
Z0m6ie/Zombie_Code
mit
<br> Handy datetime attributes:
dtnow.year, dtnow.month, dtnow.day, dtnow.hour, dtnow.minute, dtnow.second # get year, month, day, etc.from a datetime
Data_Science_Course/Michigan Data Analysis Course/0 Introduction to Data Science in Python/Week1/Week+1.ipynb
Z0m6ie/Zombie_Code
mit
<br> timedelta is a duration expressing the difference between two dates.
delta = dt.timedelta(days = 100) # create a timedelta of 100 days delta dt.date.today()
Data_Science_Course/Michigan Data Analysis Course/0 Introduction to Data Science in Python/Week1/Week+1.ipynb
Z0m6ie/Zombie_Code
mit
<br> date.today returns the current local date.
today = dt.date.today() today - delta # the date 100 days ago today > today-delta # compare dates
Data_Science_Course/Michigan Data Analysis Course/0 Introduction to Data Science in Python/Week1/Week+1.ipynb
Z0m6ie/Zombie_Code
mit
<br> The Python Programming Language: Objects and map() <br> An example of a class in python:
class Person: department = 'School of Information' #a class variable def set_name(self, new_name): #a method self.name = new_name def set_location(self, new_location): self.location = new_location person = Person() person.set_name('Christopher Brooks') person.set_location('Ann Arbor, MI, USA') print('{} live in {} and works in the department {}'.format(person.name, person.location, person.department))
Data_Science_Course/Michigan Data Analysis Course/0 Introduction to Data Science in Python/Week1/Week+1.ipynb
Z0m6ie/Zombie_Code
mit