markdown
stringlengths 0
37k
| code
stringlengths 1
33.3k
| path
stringlengths 8
215
| repo_name
stringlengths 6
77
| license
stringclasses 15
values |
---|---|---|---|---|
To be able to process our data in the notebook environment and explore the PCollections, we will use the interactive runner. We create this pipeline object in the same manner as usually, but passing in InteractiveRunner() as the runner. | p = beam.Pipeline(InteractiveRunner()) | courses/dataflow/demos/beam_notebooks/beam_notebooks_demo.ipynb | GoogleCloudPlatform/training-data-analyst | apache-2.0 |
Now we're ready to start processing our data! We first apply our ReadWordsFromText transform to read in the lines of text from Google Cloud Storage and parse into individual words. | words = p | 'ReadWordsFromText' >> ReadWordsFromText('gs://apache-beam-samples/shakespeare/kinglear.txt') | courses/dataflow/demos/beam_notebooks/beam_notebooks_demo.ipynb | GoogleCloudPlatform/training-data-analyst | apache-2.0 |
Now we will see some capabilities of the interactive runner. First we can use ib.show to view the contents of a specific PCollection from any point of our pipeline. | ib.show(words) | courses/dataflow/demos/beam_notebooks/beam_notebooks_demo.ipynb | GoogleCloudPlatform/training-data-analyst | apache-2.0 |
Great! We see that we have 28,001 words in our PCollection and we can view the words in our PCollection.
We can also view the current DAG for our graph by using the ib.show_graph() method. Note that here we pass in the pipeline object rather than a PCollection | ib.show_graph(p) | courses/dataflow/demos/beam_notebooks/beam_notebooks_demo.ipynb | GoogleCloudPlatform/training-data-analyst | apache-2.0 |
In the above graph, the rectanglar boxes correspond to PTransforms and the circles correspond to PCollections.
Next we will add a simple schema to our PCollection and convert the PCollection into a dataframe using the to_dataframe method. | word_rows = words | 'ToRows' >> beam.Map(lambda word: beam.Row(word=word))
df = to_dataframe(word_rows) | courses/dataflow/demos/beam_notebooks/beam_notebooks_demo.ipynb | GoogleCloudPlatform/training-data-analyst | apache-2.0 |
We can now explore our PCollection as a Pandas-like dataframe! One of the first things many data scientists do as soon as they load data into a dataframe is explore the first few rows of data using the head method. Let's see what happens here. | df.head() | courses/dataflow/demos/beam_notebooks/beam_notebooks_demo.ipynb | GoogleCloudPlatform/training-data-analyst | apache-2.0 |
Notice that we got a very specific type of error! The WontImplementError is for Pandas methods that will not be implemented for Beam dataframes. These are methods that violate the Beam model for one reason or another. For example, in this case the head method depends on the order of the dataframe. However, this is in conflict with the Beam model.
Our goal however is to count the number of times each word appears in the ingested text. First we will add a new column in our dataframe named count with a value of 1 for all rows. After that, we will group by the value of the word column and apply the sum method for the count field. | df['count'] = 1
counted = df.groupby('word').sum() | courses/dataflow/demos/beam_notebooks/beam_notebooks_demo.ipynb | GoogleCloudPlatform/training-data-analyst | apache-2.0 |
That's it! It looks exactly like the code one would write when using Pandas. However, what does this look like in the DAG for the pipeline? We can see this by executing ib.show_graph(p) as before. | ib.show_graph(p) | courses/dataflow/demos/beam_notebooks/beam_notebooks_demo.ipynb | GoogleCloudPlatform/training-data-analyst | apache-2.0 |
We can see that the dataframe manipulations added a new PTransform to our pipeline. Let us convert the dataframe back to a PCollection so we can use ib.show to view the contents. | word_counts = to_pcollection(counted, include_indexes=True)
ib.show(word_counts) | courses/dataflow/demos/beam_notebooks/beam_notebooks_demo.ipynb | GoogleCloudPlatform/training-data-analyst | apache-2.0 |
Great! We can now see that the words have been successfully counted. Finally let us build in a sink into the pipeline. We can do this in two ways. If we wish to write to a CSV file, then we can use the dataframe's to_csv method. We can also use the WriteToText transform after converting back to a PCollection. Let's do both and explore the outputs. | counted.to_csv('from_df.csv')
_ = word_counts | beam.io.WriteToText('from_pcoll.csv')
ib.show_graph(p) | courses/dataflow/demos/beam_notebooks/beam_notebooks_demo.ipynb | GoogleCloudPlatform/training-data-analyst | apache-2.0 |
Note that we can see the branching with two different sinks, also we can see where the dataframe is converted back to a PCollection. We can run our entire pipeline by using p.run() as normal. | p.run() | courses/dataflow/demos/beam_notebooks/beam_notebooks_demo.ipynb | GoogleCloudPlatform/training-data-analyst | apache-2.0 |
Let us now look at the beginning of the CSV files using the bash line magic with the head command to compare. | !head from_df*
!head from_pcoll* | courses/dataflow/demos/beam_notebooks/beam_notebooks_demo.ipynb | GoogleCloudPlatform/training-data-analyst | apache-2.0 |
Next, import the relevant modules:
Hint: Find corresponding bio-entity representation used in BioThings Explorer based on user input (could be any database IDs, symbols, names)
FindConnection: Find intermediate bio-entities which connects user specified input and output | from biothings_explorer.hint import Hint
from biothings_explorer.user_query_dispatcher import FindConnection
import nest_asyncio
nest_asyncio.apply() | jupyter notebooks/Multi intermediate nodes query.ipynb | biothings/biothings_explorer | apache-2.0 |
Step 1: Find representation of "Anisindione" in BTE
In this step, BioThings Explorer translates our query string "Anisindioine" into BioThings objects, which contain mappings to many common identifiers. Generally, the top result returned by the Hint module will be the correct item, but you should confirm that using the identifiers shown.
Search terms can correspond to any child of BiologicalEntity from the Biolink Model, including DiseaseOrPhenotypicFeature (e.g., "lupus"), ChemicalSubstance (e.g., "acetaminophen"), Gene (e.g., "CDK2"), BiologicalProcess (e.g., "T cell differentiation"), and Pathway (e.g., "Citric acid cycle"). | ht = Hint()
anisindione = ht.query("Anisindione")['ChemicalSubstance'][0]
anisindione | jupyter notebooks/Multi intermediate nodes query.ipynb | biothings/biothings_explorer | apache-2.0 |
Step 2: Find phenotypes that are associated with Anisindione through Gene and DiseaseOrPhenotypicFeature as intermediate nodes
In this section, we find all paths in the knowledge graph that connect Anisindione to any entity that is a phenotypic feature. To do that, we will use FindConnection. This class is a convenient wrapper around two advanced functions for query path planning and query path execution. More advanced features for both query path planning and query path execution are in development and will be documented in the coming months. | fc = FindConnection(input_obj=anisindione,
output_obj='PhenotypicFeature',
intermediate_nodes=['Gene', 'Disease'])
fc.connect(verbose=True)
df = fc.display_table_view()
df.head() | jupyter notebooks/Multi intermediate nodes query.ipynb | biothings/biothings_explorer | apache-2.0 |
The df object contains the full output from BioThings Explorer. Each row shows one path that joins the input node (ANISINDIONE) to an intermediate node (a gene or protein) to another intermediate node (a DisseaseOrPhenotypicFeature) to an ending node (a Phenotypic Feature). The data frame includes a set of columns with additional details on each node and edge (including human-readable labels, identifiers, and sources). Let's remove all examples where the output_name (the phenotype label) is None, and specifically focus on paths with specific mechanistic predicates target and causes. | dfFilt = df.loc[df['output_name'].notnull()].query('pred1 == "physically_interacts_with" and pred2 == "prevents"')
dfFilt | jupyter notebooks/Multi intermediate nodes query.ipynb | biothings/biothings_explorer | apache-2.0 |
This line create a CSV (comma seperated file) called hw1data.csv in the current working directory. | %%file hw1data.csv
id,sex,weight
1,M,190
2,F,120
3,F,110
4,M,150
5,O,120
6,M,120
7,F,140 | homework/homework1.ipynb | AlJohri/DAT-DC-12 | mit |
Basic | def double(x):
"""
double the value x
"""
assert double(10) == 20
def apply_to_100(f):
"""
runs some abitrary function f on the value 100 and returns the output
"""
assert(apply_to_100(double) == 200)
"""
create a an anonymous function using lambda that takes some value x and adds 1 to x
"""
add_one = lambda x: x
assert apply_to_100(add_one) == 101
def get_up_to_first_three_elements(l):
"""
get up to the first three elements in list l
"""
return
assert get_up_to_first_three_elements([1,2,3,4]) == [1,2,3]
assert get_up_to_first_three_elements([1,2]) == [1,2]
assert get_up_to_first_three_elements([1]) == [1]
assert get_up_to_first_three_elements([]) == []
def caesar_cipher(s, key):
"""
https://www.hackerrank.com/challenges/caesar-cipher-1
Given an unencrypted string s and an encryption key (an integer), compute the caesar cipher.
Basically just shift each letter by the value of key. A becomes C if key = 2. This is case sensitive.
What is a Caesar Cipher? https://en.wikipedia.org/wiki/Caesar_cipher
Hint: ord function https://docs.python.org/2/library/functions.html#ord
Hint: chr function https://docs.python.org/2/library/functions.html#chr
print(ord('A'), ord('Z'), ord('a'), ord('z'))
print(chr(65), chr(90), chr(97), chr(122))
"""
new_s = []
for c in s:
if ord('A') <= ord(c) <= ord('Z'):
new_c = chr(ord('A') + (ord(c) - ord('A') + 2) % 26)
new_s.append(new_c)
elif ord('a') <= ord(c) <= ord('z'):
new_c = chr(ord('a') + (ord(c) - ord('a') + 2) % 26)
new_s.append(new_c)
else:
new_s.append(c)
return "".join(new_s)
assert caesar_cipher("middle-Outz", 2) == "okffng-Qwvb" | homework/homework1.ipynb | AlJohri/DAT-DC-12 | mit |
Working with Files | def create_list_of_lines_in_hw1data():
"""
Read each line of hw1data.csv into a list and return the list of lines.
Remove the newline character ("\n") at the end of each line.
What is a newline character? https://en.wikipedia.org/wiki/Newline
Hint: Reading a File (https://docs.python.org/3/tutorial/inputoutput.html#methods-of-file-objects)
"""
with open("hw1data.csv", "r") as f:
return [line.strip() for line in f]
# lines = f.read().splitlines() # alternative 1
# lines = [line.strip() for line in f.readlines()] # altenative 2
assert create_list_of_lines_in_hw1data() == [
"id,sex,weight", "1,M,190", "2,F,120", "3,F,110",
"4,M,150", "5,O,120", "6,M,120", "7,F,140",
]
def filter_to_lines_with_just_M():
"""
Read each line in like last time except filter down to only the rows with "M" in them.
Hint: Filter using List Comprehensions (http://www.diveintopython.net/power_of_introspection/filtering_lists.html)
"""
lines = create_list_of_lines_in_hw1data()
return [line for line in lines ]
assert filter_to_lines_with_just_M() == ["1,M,190", "4,M,150", "6,M,120"]
def filter_to_lines_with_just_F():
"""
Read each line in like last time except filter down to only the rows with "F" in them.
"""
lines = create_list_of_lines_in_hw1data()
return [line for line in lines ]
assert filter_to_lines_with_just_F() == ["2,F,120", "3,F,110", "7,F,140"]
def filter_to_lines_with_any_sex(sex):
"""
Read each line in like last time except filter down to only the rows with "M" in them.
"""
lines = create_list_of_lines_in_hw1data()
return [line for line in lines ]
assert filter_to_lines_with_any_sex("O") == ["5,O,120"]
def get_average_weight():
"""
This time instead of just reading the file, parse the csv using csv.reader.
get the average weight of all people rounded to the hundredth place
Hint: https://docs.python.org/3/library/csv.html#csv.reader
"""
weights = []
with open("hw1data.csv", "r") as f:
reader = csv.reader(f)
next(reader)
for row in reader:
print(int(row[2]))
return round(avg_weight, 2)
assert get_average_weight() == 135.71
def create_list_of_dicts_in_hw1data():
"""
create list of dicts for each line in the hw1data (except the header)
"""
with open("hw1data.csv", "r") as f:
return []
assert create_list_of_dicts_in_hw1data() == [
{"id": "1", "sex": "M", "weight": "190"},
{"id": "2", "sex": "F", "weight": "120"},
{"id": "3", "sex": "F", "weight": "110"},
{"id": "4", "sex": "M", "weight": "150"},
{"id": "5", "sex": "O", "weight": "120"},
{"id": "6", "sex": "M", "weight": "120"},
{"id": "7", "sex": "F", "weight": "140"}
] | homework/homework1.ipynb | AlJohri/DAT-DC-12 | mit |
Project Euler | def sum_of_multiples_of_three_and_five_below_1000():
"""
https://projecteuler.net/problem=1
If we list all the natural numbers below 10 that are multiples of 3 or 5, we get 3, 5, 6 and 9.
The sum of these multiples is 23.
Find the sum of all the multiples of 3 or 5 below 1000.
Hint: Modulo Operator (https://docs.python.org/3/reference/expressions.html#binary-arithmetic-operations)
Hint: List Comprehension (https://docs.python.org/3/tutorial/datastructures.html#list-comprehensions)
Hint: Range Function (https://docs.python.org/3/library/functions.html#func-range)
"""
return
def sum_of_even_fibonacci_under_4million():
"""
https://projecteuler.net/problem=2
Each new term in the Fibonacci sequence is generated by adding the previous two terms.
By starting with 1 and 2, the first 10 terms will be:
1, 2, 3, 5, 8, 13, 21, 34, 55, 89, ...
By considering the terms in the Fibonacci sequence whose values do not exceed four million,
find the sum of the even-valued terms.
Hint: While Loops (http://learnpythonthehardway.org/book/ex33.html)
"""
the_sum = 0
a, b = 1, 2
while b < 4000000:
return the_sum
def test_all():
assert sum_of_multiples_of_three_and_five_below_1000() == 233168
assert sum_of_even_fibonacci_under_4million() == 4613732
test_all() | homework/homework1.ipynb | AlJohri/DAT-DC-12 | mit |
Strings | from collections import Counter
def remove_punctuation(s):
"""remove periods, commas, and semicolons
"""
return s.replace()
def tokenize(s):
"""return a list of lowercased tokens (words) in a string without punctuation
"""
return remove_punctuation(s.lower())
def word_count(s):
"""count the number of times each word (lowercased) appears and return a dictionary
"""
return Counter(words)
def test_all():
test_string1 = "A quick brown Al, jumps over the lazy dog; sometimes..."
test_string2 = "This this is a sentence sentence with words multiple multiple times."
# ---------------------------------------------------------------------------------- #
test_punctuation1 = "A quick brown Al jumps over the lazy dog sometimes"
test_punctuation2 = "This this is a sentence sentence with words multiple multiple times"
assert remove_punctuation(test_string1) == test_punctuation1
assert remove_punctuation(test_string2) == test_punctuation2
# ---------------------------------------------------------------------------------- #
test_tokens1 = ["a", "quick", "brown", "al", "jumps", "over", "the", "lazy", "dog", "sometimes"]
test_tokens2 = [
"this", "this", "is", "a", "sentence", "sentence", "with", "words", "multiple", "multiple", "times"
]
assert tokenize(test_string1) == test_tokens1
assert tokenize(test_string2) == test_tokens2
# ---------------------------------------------------------------------------------- #
test_wordcount1 = {
"a": 1, "quick": 1, "brown": 1, "al": 1, "jumps": 1, "over": 1, "the": 1, "lazy": 1, "dog": 1, "sometimes": 1
}
test_wordcount2 = {"this": 2, "is": 1, "a": 1, "sentence": 2, "with": 1, "words": 1, "multiple": 2, "times": 1}
assert word_count(test_string1) == test_wordcount1
assert word_count(test_string2) == test_wordcount2
test_all() | homework/homework1.ipynb | AlJohri/DAT-DC-12 | mit |
Linear Algebra
Please find the following empty functions and write the code to complete the logic.
These functions are focused around implementing vector algebra operations. The vectors can be of any length. If a function accepts two vectors, assume they are the same length.
Khan Academy has a decent introduction:
[https://www.khanacademy.org/math/linear-algebra/vectors_and_spaces/vectors/v/vector-introduction-linear-algebra] | def vector_add(v, w):
"""adds two vectors componentwise and returns the result
hint: use zip()
v + w = [4, 5, 1] + [9, 8, 1] = [13, 13, 2]
"""
return []
def vector_subtract(v, w):
"""subtracts two vectors componentwise and returns the result
hint use zip()
v + w = [4, 5, 1] - [9, 8, 1] = [-5, -3, 0]
"""
return []
def vector_sum(vectors):
"""sums a list of vectors or arbitrary length and returns the resulting vector
[[1,2], [4,5], [8,3]] = [13,10]
"""
v_copy = list(vectors)
result = v_copy.pop()
for v in v_copy:
result =
return result
def scalar_multiply(c, v):
"""returns a vector where components are multplied by c"""
return []
def dot(v, w):
"""dot product v.w
v_1 * w_1 + ... + v_n * w_n"""
return sum()
def sum_of_squares(v):
""" v.v square each component and sum them
v_1 * v_1 + ... + v_n * v_n"""
return
def magnitude(v):
"""the Norm of a vector, the sqrt of the sum of the squares of the components"""
return math.sqrt()
def distance(v, w):
""" the distance of v to w"""
return
def cross_product(v, w): # or outer_product(v, w)
"""Bonus:
The outer/cross product of v and w"""
for i in v:
yield scalar_multiply(i, w)
def test_all():
test_v = [4, 5, 1]
test_w = [9, 8, 1]
list_v = [[1,2], [4,5], [8,3]]
print("Vector Add", test_v, test_w, vector_add(test_v, test_w))
print("Vector Subtract", test_v, test_w, vector_subtract(test_v, test_w))
print("Vector Sum", list_v, vector_sum(list_v))
print("Scalar Multiply", 3, test_w, scalar_multiply(3, test_w))
print("Dot", test_v, test_w, dot(test_v, test_w))
print("Sum of Squares", test_v, sum_of_squares(test_v))
print("Magnitude", test_v, magnitude(test_v))
print("Distance", test_v, test_w, distance(test_v, test_w))
print("Cross Product", list(cross_product(test_v, test_w)))
assert vector_add(test_v, test_w) == [13, 13, 2]
assert vector_subtract(test_v, test_w) == [-5, -3, 0]
assert vector_sum(list_v) == [13,10]
assert scalar_multiply(3, test_w) == [27, 24, 3]
assert dot(test_v, test_w) == 77
assert sum_of_squares(test_v) == 42
assert magnitude(test_v) == 6.48074069840786
assert distance(test_v, test_w) == 5.830951894845301
assert list(cross_product(test_v, test_w)) == [[36, 32, 4], [45, 40, 5], [9, 8, 1]]
test_all() | homework/homework1.ipynb | AlJohri/DAT-DC-12 | mit |
Run a simulation | nregions = [fp.Region(0,1,1),fp.Region(2,3,1)]
sregions = [fp.ExpS(1,2,1,-0.1),fp.ExpS(1,2,0.01,0.001)]
rregions = [fp.Region(0,3,1)]
rng = fp.GSLrng(101)
popsizes = np.array([1000],dtype=np.uint32)
popsizes=np.tile(popsizes,10000)
#Initialize a vector with 1 population of size N = 1,000
pops=fp.SpopVec(1,1000)
#This sampler object will record selected mutation
#frequencies over time. A sampler gets the length
#of pops as a constructor argument because you
#need a different sampler object in memory for
#each population.
sampler=fp.FreqSampler(len(pops))
#Record mutation frequencies every generation
#The function evolve_regions sampler takes any
#of fwdpy's temporal samplers and applies them.
#For users familiar with C++, custom samplers will be written,
#and we plan to allow for custom samplers to be written primarily
#using Cython, but we are still experimenting with how best to do so.
rawTraj=fp.evolve_regions_sampler(rng,pops,sampler,
popsizes[0:],0.001,0.001,0.001,
nregions,sregions,rregions,
#The one means we sample every generation.
1)
rawTraj = [i for i in sampler]
#This example has only 1 set of trajectories, so let's make a variable for thet
#single replicate
traj=rawTraj[0]
print traj.head()
print traj.tail()
print traj.freq.max() | docs/examples/trajectories.ipynb | molpopgen/fwdpy | gpl-3.0 |
Group mutation trajectories by position and effect size
Max mutation frequencies | mfreq = traj.groupby(['pos','esize']).max().reset_index()
#Print out info for all mutations that hit a frequency of 1 (e.g., fixed)
mfreq[mfreq['freq']==1] | docs/examples/trajectories.ipynb | molpopgen/fwdpy | gpl-3.0 |
The only fixation has an 'esize' $> 0$, which means that it was positively selected,
Frequency trajectory of fixations | #Get positions of mutations that hit q = 1
mpos=mfreq[mfreq['freq']==1]['pos']
#Frequency trajectories of fixations
fig = plt.figure()
ax = plt.subplot(111)
plt.xlabel("Time (generations)")
plt.ylabel("Mutation frequency")
ax.set_xlim(traj['generation'].min(),traj['generation'].max())
for i in mpos:
plt.plot(traj[traj['pos']==i]['generation'],traj[traj['pos']==i]['freq'])
#Let's get histogram of effect sizes for all mutations that did not fix
fig = plt.figure()
ax = plt.subplot(111)
plt.xlabel(r'$s$ (selection coefficient)')
plt.ylabel("Number of mutations")
mfreq[mfreq['freq']<1.0]['esize'].hist() | docs/examples/trajectories.ipynb | molpopgen/fwdpy | gpl-3.0 |
Input Parameter | # Discretization
c1=30 # Number of grid points per dominant wavelength
c2=0.2 # CFL-Number
nx=300 # Number of grid points in X
ny=300 # Number of grid points in Y
T=1 # Total propagation time
# Source Signal
f0= 5 # Center frequency Ricker-wavelet
q0= 100 # Maximum amplitude Ricker-Wavelet
xscr = 150 # Source position (in grid points) in X
yscr = 150 # Source position (in grid points) in Y
# Receiver
xrec1=150; yrec1=120; # Position Reciever 1 (in grid points)
xrec2=150; yrec2=150; # Position Reciever 2 (in grid points)
xrec3=150; yrec3=180;# Position Reciever 3 (in grid points)
# Velocity and density
modell_v = 3000*np.ones((ny,nx))
rho=2.2*np.ones((ny,nx)) | JupyterNotebook/2D/FD_2D_DX4_DT2_fast.ipynb | florianwittkamp/FD_ACOUSTIC | gpl-3.0 |
Preparation | # Init wavefields
vx=np.zeros(shape = (ny,nx))
vy=np.zeros(shape = (ny,nx))
p=np.zeros(shape = (ny,nx))
vx_x=np.zeros(shape = (ny,nx))
vy_y=np.zeros(shape = (ny,nx))
p_x=np.zeros(shape = (ny,nx))
p_y=np.zeros(shape = (ny,nx))
# Calculate first Lame-Paramter
l=rho * modell_v * modell_v
cmin=min(modell_v.flatten()) # Lowest P-wave velocity
cmax=max(modell_v.flatten()) # Highest P-wave velocity
fmax=2*f0 # Maximum frequency
dx=cmin/(fmax*c1) # Spatial discretization (in m)
dy=dx # Spatial discretization (in m)
dt=dx/(cmax)*c2 # Temporal discretization (in s)
lampda_min=cmin/fmax # Smallest wavelength
# Output model parameter:
print("Model size: x:",dx*nx,"in m, y:",dy*ny,"in m")
print("Temporal discretization: ",dt," s")
print("Spatial discretization: ",dx," m")
print("Number of gridpoints per minimum wavelength: ",lampda_min/dx) | JupyterNotebook/2D/FD_2D_DX4_DT2_fast.ipynb | florianwittkamp/FD_ACOUSTIC | gpl-3.0 |
Create space and time vector | x=np.arange(0,dx*nx,dx) # Space vector in X
y=np.arange(0,dy*ny,dy) # Space vector in Y
t=np.arange(0,T,dt) # Time vector
nt=np.size(t) # Number of time steps
# Plotting model
fig, (ax1, ax2) = plt.subplots(1, 2)
fig.subplots_adjust(wspace=0.4,right=1.6)
ax1.plot(x,modell_v)
ax1.set_ylabel('VP in m/s')
ax1.set_xlabel('Depth in m')
ax1.set_title('P-wave velocity')
ax2.plot(x,rho)
ax2.set_ylabel('Density in g/cm^3')
ax2.set_xlabel('Depth in m')
ax2.set_title('Density');
| JupyterNotebook/2D/FD_2D_DX4_DT2_fast.ipynb | florianwittkamp/FD_ACOUSTIC | gpl-3.0 |
Source signal - Ricker-wavelet | tau=np.pi*f0*(t-1.5/f0)
q=q0*(1.0-2.0*tau**2.0)*np.exp(-tau**2)
# Plotting source signal
plt.figure(3)
plt.plot(t,q)
plt.title('Source signal Ricker-Wavelet')
plt.ylabel('Amplitude')
plt.xlabel('Time in s')
plt.draw() | JupyterNotebook/2D/FD_2D_DX4_DT2_fast.ipynb | florianwittkamp/FD_ACOUSTIC | gpl-3.0 |
Time stepping | # Init Seismograms
Seismogramm=np.zeros((3,nt)); # Three seismograms
# Calculation of some coefficients
i_dx=1.0/(dx)
i_dy=1.0/(dy)
c1=9.0/(8.0*dx)
c2=1.0/(24.0*dx)
c3=9.0/(8.0*dy)
c4=1.0/(24.0*dy)
c5=1.0/np.power(dx,3)
c6=1.0/np.power(dy,3)
c7=1.0/np.power(dx,2)
c8=1.0/np.power(dy,2)
c9=np.power(dt,3)/24.0
# Prepare slicing parameter:
kxM2=slice(5-2,nx-4-2)
kxM1=slice(5-1,nx-4-1)
kx=slice(5,nx-4)
kxP1=slice(5+1,nx-4+1)
kxP2=slice(5+2,nx-4+2)
kyM2=slice(5-2,ny-4-2)
kyM1=slice(5-1,ny-4-1)
ky=slice(5,ny-4)
kyP1=slice(5+1,ny-4+1)
kyP2=slice(5+2,ny-4+2)
## Time stepping
print("Starting time stepping...")
for n in range(2,nt):
# Inject source wavelet
p[yscr,xscr]=p[yscr,xscr]+q[n]
# Update velocity
p_x[ky,kx]=c1*(p[ky,kxP1]-p[ky,kx])-c2*(p[ky,kxP2]-p[ky,kxM1])
p_y[ky,kx]=c3*(p[kyP1,kx]-p[ky,kx])-c4*(p[kyP2,kx]-p[kyM1,kx])
vx=vx-dt/rho*p_x
vy=vy-dt/rho*p_y
# Update pressure
vx_x[ky,kx]=c1*(vx[ky,kx]-vx[ky,kxM1])-c2*(vx[ky,kxP1]-vx[ky,kxM2])
vy_y[ky,kx]=c3*(vy[ky,kx]-vy[kyM1,kx])-c4*(vy[kyP1,kx]-vy[kyM2,kx])
p=p-l*dt*(vx_x+vy_y)
# Save seismograms
Seismogramm[0,n]=p[yrec1,xrec1]
Seismogramm[1,n]=p[yrec2,xrec2]
Seismogramm[2,n]=p[yrec3,xrec3]
print("Finished time stepping!") | JupyterNotebook/2D/FD_2D_DX4_DT2_fast.ipynb | florianwittkamp/FD_ACOUSTIC | gpl-3.0 |
Save seismograms | ## Save seismograms
np.save("Seismograms/FD_2D_DX4_DT2_fast",Seismogramm) | JupyterNotebook/2D/FD_2D_DX4_DT2_fast.ipynb | florianwittkamp/FD_ACOUSTIC | gpl-3.0 |
Plotting | ## Image plot
fig, ax = plt.subplots(1,1)
img = ax.imshow(p);
ax.set_title('P-Wavefield')
ax.set_xticks(range(0,nx+1,int(nx/5)))
ax.set_yticks(range(0,ny+1,int(ny/5)))
ax.set_xlabel('Grid-points in X')
ax.set_ylabel('Grid-points in Y')
fig.colorbar(img)
## Plot seismograms
fig, (ax1, ax2, ax3) = plt.subplots(3, 1)
fig.subplots_adjust(hspace=0.4,right=1.6, top = 2 )
ax1.plot(t,Seismogramm[0,:])
ax1.set_title('Seismogram 1')
ax1.set_ylabel('Amplitude')
ax1.set_xlabel('Time in s')
ax1.set_xlim(0, T)
ax2.plot(t,Seismogramm[1,:])
ax2.set_title('Seismogram 2')
ax2.set_ylabel('Amplitude')
ax2.set_xlabel('Time in s')
ax2.set_xlim(0, T)
ax3.plot(t,Seismogramm[2,:])
ax3.set_title('Seismogram 3')
ax3.set_ylabel('Amplitude')
ax3.set_xlabel('Time in s')
ax3.set_xlim(0, T); | JupyterNotebook/2D/FD_2D_DX4_DT2_fast.ipynb | florianwittkamp/FD_ACOUSTIC | gpl-3.0 |
Import the digits dataset (http://scikit-learn.org/stable/auto_examples/datasets/plot_digits_last_image.html) and show its attributes | from sklearn.datasets import load_digits
digits = load_digits()
X_digits, y_digits = digits.data, digits.target
print digits.keys() | scikit-learn/scikit-learn-book/Chapter 3 - Unsupervised Learning - Principal Component Analysis.ipynb | marcelomiky/PythonCodes | mit |
Let's show how the digits look like... | n_row, n_col = 2, 5
def print_digits(images, y, max_n=10):
# set up the figure size in inches
fig = plt.figure(figsize=(2. * n_col, 2.26 * n_row))
i=0
while i < max_n and i < images.shape[0]:
p = fig.add_subplot(n_row, n_col, i + 1, xticks=[], yticks=[])
p.imshow(images[i], cmap=plt.cm.bone, interpolation='nearest')
# label the image with the target value
p.text(0, -1, str(y[i]))
i = i + 1
print_digits(digits.images, digits.target, max_n=10) | scikit-learn/scikit-learn-book/Chapter 3 - Unsupervised Learning - Principal Component Analysis.ipynb | marcelomiky/PythonCodes | mit |
Now, let's define a function that will plot a scatter with the two-dimensional points that will be obtained by a PCA transformation. Our data points will also be colored according to their classes. Recall that the target class will not be used to perform the transformation; we want to investigate if the distribution after PCA reveals the distribution of the different classes, and if they are clearly separable. We will use ten different colors for each of the digits, from 0 to 9.
Find components and plot first and second components | def plot_pca_scatter():
colors = ['black', 'blue', 'purple', 'yellow', 'white', 'red', 'lime', 'cyan', 'orange', 'gray']
for i in xrange(len(colors)):
px = X_pca[:, 0][y_digits == i]
py = X_pca[:, 1][y_digits == i]
plt.scatter(px, py, c=colors[i])
plt.legend(digits.target_names)
plt.xlabel('First Principal Component')
plt.ylabel('Second Principal Component') | scikit-learn/scikit-learn-book/Chapter 3 - Unsupervised Learning - Principal Component Analysis.ipynb | marcelomiky/PythonCodes | mit |
At this point, we are ready to perform the PCA transformation. In scikit-learn, PCA is implemented as a transformer object that learns n number of components through the fit method, and can be used on new data to project it onto these components. In scikit-learn, we have various classes that implement different kinds of PCA decompositions. In our case, we will work with the PCA class from the sklearn.decomposition module. The most important parameter we can change is n_components, which allows us to specify the number of features that the obtained instances will have. | from sklearn.decomposition import PCA
n_components = n_row * n_col # 10
estimator = PCA(n_components=n_components)
X_pca = estimator.fit_transform(X_digits)
plot_pca_scatter() # Note that we only plot the first and second principal component | scikit-learn/scikit-learn-book/Chapter 3 - Unsupervised Learning - Principal Component Analysis.ipynb | marcelomiky/PythonCodes | mit |
To finish, let us look at principal component transformations. We will take the principal components from the estimator by accessing the components attribute. Each of its components is a matrix that is used to transform a vector from the original space to the transformed space. In the scatter we previously plotted, we only took into account the first two components. | def print_pca_components(images, n_col, n_row):
plt.figure(figsize=(2. * n_col, 2.26 * n_row))
for i, comp in enumerate(images):
plt.subplot(n_row, n_col, i + 1)
plt.imshow(comp.reshape((8, 8)), interpolation='nearest')
plt.text(0, -1, str(i + 1) + '-component')
plt.xticks(())
plt.yticks(())
print_pca_components(estimator.components_[:n_components], n_col, n_row) | scikit-learn/scikit-learn-book/Chapter 3 - Unsupervised Learning - Principal Component Analysis.ipynb | marcelomiky/PythonCodes | mit |
The BERT repo uses Tensorflow 1 and thus a few of the functions have been moved/changed/renamed in Tensorflow 2. In order for the BERT tokenizer to be used, one of the lines in the repo that was just cloned needs to be modified to comply with Tensorflow 2. Line 125 in the BERT tokenization.py file must be changed as follows:
From => with tf.gfile.GFile(vocab_file, "r") as reader:
To => with tf.io.gfile.GFile(vocab_file, "r") as reader:
Once that is complete and the file is saved, the tokenization library can be imported. | import tokenization | examples/Document_representation_from_BERT.ipynb | google/patents-public-data | apache-2.0 |
Load BERT | MAX_SEQ_LENGTH = 512
MODEL_DIR = 'path/to/model'
VOCAB = 'path/to/vocab'
tokenizer = tokenization.FullTokenizer(VOCAB, do_lower_case=True)
model = tf.compat.v2.saved_model.load(export_dir=MODEL_DIR, tags=['serve'])
model = model.signatures['serving_default']
# Mean pooling layer for combining
pooling = tf.keras.layers.GlobalAveragePooling1D() | examples/Document_representation_from_BERT.ipynb | google/patents-public-data | apache-2.0 |
Get a couple of Patents
Here we do a simple query from the BigQuery patents data to collect the claims for a sample set of patents. | # Put your publications here.
test_pubs = (
'US-8000000-B2', 'US-2007186831-A1', 'US-2009030261-A1', 'US-10722718-B2'
)
js = r"""
// Regex to find the separations of the claims data
var pattern = new RegExp(/[.][\\s]+[0-9]+[\\s]*[.]/, 'g');
if (pattern.test(text)) {
return text.split(pattern);
}
"""
query = r'''
#standardSQL
CREATE TEMPORARY FUNCTION breakout_claims(text STRING) RETURNS ARRAY<STRING>
LANGUAGE js AS """
{}
""";
SELECT
pubs.publication_number,
title.text as title,
breakout_claims(claims.text) as claims
FROM `patents-public-data.patents.publications` as pubs,
UNNEST(claims_localized) as claims,
UNNEST(title_localized) as title
WHERE
publication_number in {}
'''.format(js, test_pubs)
df = bq_client.query(query).to_dataframe()
df.head()
def get_bert_token_input(texts):
input_ids = []
input_mask = []
segment_ids = []
for text in texts:
tokens = tokenizer.tokenize(text)
if len(tokens) > MAX_SEQ_LENGTH - 2:
tokens = tokens[0:(MAX_SEQ_LENGTH - 2)]
tokens = ['[CLS]'] + tokens + ['[SEP]']
ids = tokenizer.convert_tokens_to_ids(tokens)
token_pad = MAX_SEQ_LENGTH - len(ids)
input_mask.append([1] * len(ids) + [0] * token_pad)
input_ids.append(ids + [0] * token_pad)
segment_ids.append([0] * MAX_SEQ_LENGTH)
return {
'segment_ids': tf.convert_to_tensor(segment_ids, dtype=tf.int64),
'input_mask': tf.convert_to_tensor(input_mask, dtype=tf.int64),
'input_ids': tf.convert_to_tensor(input_ids, dtype=tf.int64),
'mlm_positions': tf.convert_to_tensor([], dtype=tf.int64)
}
docs_embeddings = []
for _, row in df.iterrows():
inputs = get_bert_token_input(row['claims'])
response = model(**inputs)
avg_embeddings = pooling(
tf.reshape(response['encoder_layer'], shape=[1, -1, 1024]))
docs_embeddings.append(avg_embeddings.numpy()[0])
pairwise.cosine_similarity(docs_embeddings)
docs_embeddings[0].shape | examples/Document_representation_from_BERT.ipynb | google/patents-public-data | apache-2.0 |
3. Enter DV360 Report To Sheets Recipe Parameters
Specify either report name or report id to move a report.
The most recent valid file will be moved to the sheet.
Modify the values below for your use case, can be done multiple times, then click play. | FIELDS = {
'auth_read':'user', # Credentials used for reading data.
'report_id':'', # DV360 report ID given in UI, not needed if name used.
'report_name':'', # Name of report, not needed if ID used.
'sheet':'', # Full URL to sheet being written to.
'tab':'', # Existing tab in sheet to write to.
}
print("Parameters Set To: %s" % FIELDS)
| colabs/dbm_to_sheets.ipynb | google/starthinker | apache-2.0 |
4. Execute DV360 Report To Sheets
This does NOT need to be modified unless you are changing the recipe, click play. | from starthinker.util.configuration import execute
from starthinker.util.recipe import json_set_fields
TASKS = [
{
'dbm':{
'auth':{'field':{'name':'auth_read','kind':'authentication','order':1,'default':'user','description':'Credentials used for reading data.'}},
'report':{
'report_id':{'field':{'name':'report_id','kind':'integer','order':1,'default':'','description':'DV360 report ID given in UI, not needed if name used.'}},
'name':{'field':{'name':'report_name','kind':'string','order':2,'default':'','description':'Name of report, not needed if ID used.'}}
},
'out':{
'sheets':{
'sheet':{'field':{'name':'sheet','kind':'string','order':3,'default':'','description':'Full URL to sheet being written to.'}},
'tab':{'field':{'name':'tab','kind':'string','order':4,'default':'','description':'Existing tab in sheet to write to.'}},
'range':'A1'
}
}
}
}
]
json_set_fields(TASKS, FIELDS)
execute(CONFIG, TASKS, force=True)
| colabs/dbm_to_sheets.ipynb | google/starthinker | apache-2.0 |
https://docs.scipy.org/doc/scipy-1.3.0/reference/tutorial/integrate.html
https://docs.scipy.org/doc/scipy-1.3.0/reference/integrate.html
Integrating functions, given callable object (scipy.integrate.quad)
See:
- https://docs.scipy.org/doc/scipy-1.3.0/reference/tutorial/integrate.html#general-integration-quad
- https://docs.scipy.org/doc/scipy-1.3.0/reference/generated/scipy.integrate.quad.html#scipy.integrate.quad
Example:
$$I = \int_{0}^{3} x^2 dx = \frac{1}{3} 3^3 = 9$$ | f = lambda x: np.power(x, 2)
result = scipy.integrate.quad(f, 0, 3)
result | nb_dev_python/python_scipy_integrate.ipynb | jdhp-docs/python_notebooks | mit |
The return value is a tuple, with the first element holding the estimated value of the integral and the second element holding an upper bound on the error.
Integrating functions, given fixed samples
https://docs.scipy.org/doc/scipy-1.3.0/reference/tutorial/integrate.html#integrating-using-samples | x = np.linspace(0., 3., 100)
y = f(x)
plt.plot(x, y); | nb_dev_python/python_scipy_integrate.ipynb | jdhp-docs/python_notebooks | mit |
In case of arbitrary spaced samples, the two functions trapz and simps are available. | result = scipy.integrate.simps(y, x)
result
result = scipy.integrate.trapz(y, x)
result | nb_dev_python/python_scipy_integrate.ipynb | jdhp-docs/python_notebooks | mit |
Notice that I've updated the assert to include the word "To-Do" instead of "Django". Now our test should fail. Let's check that it fails. | # First start up the server:
#!python3 manage.py runserver
# Run test
!python3 functional_tests.py | wk9/notebooks/Ch.2-Extending our functional test using the unittest module.ipynb | ThunderShiviah/code_guild | mit |
We got what was called an expected fail which is what we wanted!
Python Standard Library's unittest Module
There are a couple of little annoyances we should probably deal with. Firstly, the message "AssertionError" isn’t very helpful—it would be nice if the test told us what it actually found as the browser title. Also, it’s left a Firefox window hanging around the desktop, it would be nice if this would clear up for us automatically.
One option would be to use the second parameter to the assert keyword, something like:
python
assert 'To-Do' in browser.title, "Browser title was " + browser.title
And we could also use a try/finally to clean up the old Firefox window. But these sorts of problems are quite common in testing, and there are some ready-made solutions for us in the standard library’s unittest module. Let’s use that! In functional_tests.py: | %%writefile functional_tests.py
from selenium import webdriver
import unittest
class NewVisitorTest(unittest.TestCase): #1
def setUp(self): #2
self.browser = webdriver.Firefox()
self.browser.implicitly_wait(3) # Wait three seconds before trying anything.
def tearDown(self): #3
self.browser.quit()
def test_can_start_a_list_and_retrieve_it_later(self): #4
# Edith has heard about a cool new online to-do app. She goes
# to check out its homepage
self.browser.get('http://localhost:8000')
# She notices the page title and header mention to-do lists
self.assertIn('To-Do', self.browser.title) #5
self.fail('Finish the test!') #6
# She is invited to enter a to-do item straight away
# [...rest of comments as before]
if __name__ == '__main__': #7
unittest.main(warnings='ignore') #8 | wk9/notebooks/Ch.2-Extending our functional test using the unittest module.ipynb | ThunderShiviah/code_guild | mit |
Some things to notice about our new test file:
Tests are organised into classes, which inherit from unittest.TestCase.
and
setUp and tearDown are special methods which get run before and after each test. I’m using them to start and stop our browser—note that they’re a bit like a try/except, in that tearDown will run even if there’s an error during the test itself.[4] No more Firefox windows left lying around!
The main body of the test is in a method called test_can_start_a_list_and_retrieve_it_later. Any method whose name starts with test is a test method, and will be run by the test runner. You can have more than one test_ method per class. Nice descriptive names for our test methods are a good idea too.
We use self.assertIn instead of just assert to make our test assertions. unittest provides lots of helper functions like this to make test assertions, like assertEqual, assertTrue, assertFalse, and so on. You can find more in the unittest documentation.
self.fail just fails no matter what, producing the error message given. I’m using it as a reminder to finish the test.
Finally, we have the if name == 'main' clause (if you’ve not seen it before, that’s how a Python script checks if it’s been executed from the command line, rather than just imported by another script). We call unittest.main(), which launches the unittest test runner, which will automatically find test classes and methods in the file and run them.
warnings='ignore' suppresses a superfluous ResourceWarning which was being emitted at the time of writing. It may have disappeared by the time you read this; feel free to try removing it!
Running our new test | !python3 functional_tests.py | wk9/notebooks/Ch.2-Extending our functional test using the unittest module.ipynb | ThunderShiviah/code_guild | mit |
Visualizing the Tracked Object Distance
The next cell visualizes the simulating data. The first visualization shows the object distance over time. You can see that the car is moving forward although decelerating. Then the car stops for 5 seconds and then drives backwards for 5 seconds. | ax1 = data_groundtruth.plot(kind='line', x='time', y='distance', title='Object Distance Versus Time')
ax1.set(xlabel='time (milliseconds)', ylabel='distance (meters)') | matrix/kalman_filter_demo.ipynb | jingr1/SelfDrivingCar | mit |
Visualizing Velocity Over Time
The next cell outputs a visualization of the velocity over time. The tracked car starts at 100 km/h and decelerates to 0 km/h. Then the car idles and eventually starts to decelerate again until reaching -10 km/h. | ax2 = data_groundtruth.plot(kind='line', x='time', y='velocity', title='Object Velocity Versus Time')
ax2.set(xlabel='time (milliseconds)', ylabel='velocity (km/h)') | matrix/kalman_filter_demo.ipynb | jingr1/SelfDrivingCar | mit |
Visualizing Acceleration Over Time
This cell visualizes the tracked cars acceleration. The vehicle declerates at 10 m/s^2. Then the vehicle stops for 5 seconds and briefly accelerates again. | data_groundtruth['acceleration'] = data_groundtruth['acceleration'] * 1000 / math.pow(60 * 60, 2)
ax3 = data_groundtruth.plot(kind='line', x='time', y='acceleration', title='Object Acceleration Versus Time')
ax3.set(xlabel='time (milliseconds)', ylabel='acceleration (m/s^2)') | matrix/kalman_filter_demo.ipynb | jingr1/SelfDrivingCar | mit |
Simulate Lidar Data
The following code cell creates simulated lidar data. Lidar data is noisy, so the simulator takes ground truth measurements every 0.05 seconds and then adds random noise. | # make lidar measurements
lidar_standard_deviation = 0.15
lidar_measurements = datagenerator.generate_lidar(distance_groundtruth, lidar_standard_deviation)
lidar_time = time_groundtruth | matrix/kalman_filter_demo.ipynb | jingr1/SelfDrivingCar | mit |
Visualize Lidar Meausrements
Run the following cell to visualize the lidar measurements versus the ground truth. The ground truth is shown in red, and you can see that the lidar measurements are a bit noisy. | data_lidar = pd.DataFrame(
{'time': time_groundtruth,
'distance': distance_groundtruth,
'lidar': lidar_measurements
})
matplotlib.rcParams.update({'font.size': 22})
ax4 = data_lidar.plot(kind='line', x='time', y ='distance', label='ground truth', figsize=(20, 15), alpha=0.8,
title = 'Lidar Measurements Versus Ground Truth', color='red')
ax5 = data_lidar.plot(kind='scatter', x ='time', y ='lidar', label='lidar measurements', ax=ax4, alpha=0.6, color='g')
ax5.set(xlabel='time (milliseconds)', ylabel='distance (meters)')
plt.show() | matrix/kalman_filter_demo.ipynb | jingr1/SelfDrivingCar | mit |
Part 2 - Using a Kalman Filter
The next part of the demonstration will use your matrix class to run a Kalman filter. This first cell initializes variables and defines a few functions.
The following cell runs the Kalman filter using the lidar data. | # Kalman Filter Initialization
initial_distance = 0
initial_velocity = 0
x_initial = m.Matrix([[initial_distance], [initial_velocity * 1e-3 / (60 * 60)]])
P_initial = m.Matrix([[5, 0],[0, 5]])
acceleration_variance = 50
lidar_variance = math.pow(lidar_standard_deviation, 2)
H = m.Matrix([[1, 0]])
R = m.Matrix([[lidar_variance]])
I = m.identity(2)
def F_matrix(delta_t):
return m.Matrix([[1, delta_t], [0, 1]])
def Q_matrix(delta_t, variance):
t4 = math.pow(delta_t, 4)
t3 = math.pow(delta_t, 3)
t2 = math.pow(delta_t, 2)
return variance * m.Matrix([[(1/4)*t4, (1/2)*t3], [(1/2)*t3, t2]]) | matrix/kalman_filter_demo.ipynb | jingr1/SelfDrivingCar | mit |
Run the Kalman filter
The next code cell runs the Kalman filter. In this demonstration, the prediction step starts with the second lidar measurement. When the first lidar signal arrives, there is no previous lidar measurement with which to calculate velocity. In other words, the Kalman filter predicts where the vehicle is going to be, but it can't make a prediction until time has passed between the first and second lidar reading.
The Kalman filter has two steps: a prediction step and an update step. In the prediction step, the filter uses a motion model to figure out where the object has traveled in between sensor measurements. The update step uses the sensor measurement to adjust the belief about where the object is. | # Kalman Filter Implementation
x = x_initial
P = P_initial
x_result = []
time_result = []
v_result = []
for i in range(len(lidar_measurements) - 1):
# calculate time that has passed between lidar measurements
delta_t = (lidar_time[i + 1] - lidar_time[i]) / 1000.0
# Prediction Step - estimates how far the object traveled during the time interval
F = F_matrix(delta_t)
Q = Q_matrix(delta_t, acceleration_variance)
x_prime = F * x
P_prime = F * P * F.T() + Q
# Measurement Update Step - updates belief based on lidar measurement
y = m.Matrix([[lidar_measurements[i + 1]]]) - H * x_prime
S = H * P_prime * H.T() + R
K = P_prime * H.T() * S.inverse()
x = x_prime + K * y
P = (I - K * H) * P_prime
# Store distance and velocity belief and current time
x_result.append(x[0][0])
v_result.append(3600.0/1000 * x[1][0])
time_result.append(lidar_time[i+1])
result = pd.DataFrame(
{'time': time_result,
'distance': x_result,
'velocity': v_result
}) | matrix/kalman_filter_demo.ipynb | jingr1/SelfDrivingCar | mit |
Visualize the Results
The following code cell outputs a visualization of the Kalman filter. The chart contains ground turth, the lidar measurements, and the Kalman filter belief. Notice that the Kalman filter tends to smooth out the information obtained from the lidar measurement.
It turns out that using multiple sensors like radar and lidar at the same time, will give even better results. Using more than one type of sensor at once is called sensor fusion, which you will learn about in the Self-Driving Car Engineer Nanodegree | ax6 = data_lidar.plot(kind='line', x='time', y ='distance', label='ground truth', figsize=(22, 18), alpha=.3, title='Lidar versus Kalman Filter versus Ground Truth')
ax7 = data_lidar.plot(kind='scatter', x ='time', y ='lidar', label='lidar sensor', ax=ax6)
ax8 = result.plot(kind='scatter', x = 'time', y = 'distance', label='kalman', ax=ax7, color='r')
ax8.set(xlabel='time (milliseconds)', ylabel='distance (meters)')
plt.show() | matrix/kalman_filter_demo.ipynb | jingr1/SelfDrivingCar | mit |
Visualize the Velocity
One of the most interesting benefits of Kalman filters is that they can give you insights into variables that you
cannot directly measured. Although lidar does not directly give velocity information, the Kalman filter can infer velocity from the lidar measurements.
This visualization shows the Kalman filter velocity estimation versus the ground truth. The motion model used in this Kalman filter is relatively simple; it assumes velocity is constant and that acceleration a random noise. You can see that this motion model might be too simplistic because the Kalman filter has trouble predicting velocity as the object decelerates. | ax1 = data_groundtruth.plot(kind='line', x='time', y ='velocity', label='ground truth', figsize=(22, 18), alpha=.8, title='Kalman Filter versus Ground Truth Velocity')
ax2 = result.plot(kind='scatter', x = 'time', y = 'velocity', label='kalman', ax=ax1, color='r')
ax2.set(xlabel='time (milliseconds)', ylabel='velocity (km/h)')
plt.show() | matrix/kalman_filter_demo.ipynb | jingr1/SelfDrivingCar | mit |
Scrape swear word list
We scrape swear words from the web from the site:
http://www.noswearing.com/
It is a community driven list of swear words. | import string
import os
import requests
from fake_useragent import UserAgent
from lxml import html
def requests_get(url):
ua = UserAgent().random
return requests.get(url, headers={'User-Agent': ua})
def get_swear_words(save_file='swear-words.txt'):
"""
Scrapes a comprehensive list of swear words from noswearing.com
"""
words = ['niggas']
if os.path.isfile(save_file):
with open(save_file, 'rt') as f:
for line in f:
words.append(line.strip())
return words
base_url = 'http://www.noswearing.com/dictionary/'
letters = '1' + string.ascii_lowercase
for letter in letters:
full_url = base_url + letter
result = requests_get(full_url)
tree = html.fromstring(result.text)
search = tree.xpath("//td[@valign='top']/a[@name and string-length(@name) != 0]")
if search is None:
continue
for result in search:
words.append(result.get('name').lower())
with open(save_file, 'wt') as f:
for word in words:
f.write(word)
f.write('\n')
return words
print(get_swear_words())
| notebooks/exploratory/02-raw-lyric-analysis.ipynb | tylerwmarrs/billboard-hot-100-lyric-analysis | mit |
Testing TextBlob
I don't really like TextBlob as it tries to be "nice", but lacks a lot of basic functionality.
Stop words not included
Tokenizer is pretty meh.
No built in way to obtain word frequency | import os
import operator
import pandas as pd
from textblob import TextBlob, WordList
from nltk.corpus import stopwords
def get_data_paths():
dir_path = os.path.dirname(os.path.realpath('.'))
data_dir = os.path.join(dir_path, 'billboard-hot-100-data')
dirs = [os.path.join(data_dir, d, 'songs.csv') for d in os.listdir(data_dir)
if os.path.isdir(os.path.join(data_dir, d))]
return dirs
def lyric_file_to_text_blob(row):
"""
Transform lyrics column to TextBlob instances.
"""
return TextBlob(row['lyrics'])
def remove_stop_words(word_list):
wl = WordList([])
stop_words = stopwords.words('english')
for word in word_list:
if word.lower() not in stop_words:
wl.append(word)
return wl
def word_freq(words, sort='desc'):
"""
Returns frequency table for all words provided in the list.
"""
reverse = sort == 'desc'
freq = {}
for word in words:
if word in freq:
freq[word] = freq[word] + 1
else:
freq[word] = 1
return sorted(freq.items(), key=operator.itemgetter(1), reverse=reverse)
data_paths = corpus.raw_data_dirs()
songs = corpus.load_songs(data_paths[0])
songs = pd.DataFrame.from_dict(songs)
songs["lyrics"] = songs.apply(lyric_file_to_text_blob, axis=1)
all_words = WordList([])
for i, row in songs.iterrows():
all_words.extend(row['lyrics'].words)
cleaned_all_words = remove_stop_words(all_words)
cleaned_all_words = pd.DataFrame(word_freq(cleaned_all_words.lower()), columns=['word', 'frequency'])
cleaned_all_words
import pandas as pd
import nltk
def remove_extra_junk(word_list):
words = []
remove = [",", "n't", "'m", ")", "(", "'s", "'", "]", "["]
for word in word_list:
if word not in remove:
words.append(word)
return words
data_paths = corpus.raw_data_dirs()
songs = corpus.load_songs(data_paths[0])
songs = pd.DataFrame.from_dict(songs)
all_words = []
for i, row in songs.iterrows():
all_words.extend(nltk.tokenize.word_tokenize(row['lyrics']))
cleaned_all_words = [w.lower() for w in remove_extra_junk(remove_stop_words(all_words))]
freq_dist = nltk.FreqDist(cleaned_all_words)
freq_dist.plot(50)
freq_dist.most_common(100)
#cleaned_all_words = pd.DataFrame(word_freq(cleaned_all_words), columns=['word', 'frequency'])
#cleaned_all_words | notebooks/exploratory/02-raw-lyric-analysis.ipynb | tylerwmarrs/billboard-hot-100-lyric-analysis | mit |
Repetitive songs skewing data?
Some songs may be super reptitive. Lets look at a couple of songs that have the word in the title. These songs probably repeat the title a decent amount in their song. Hence treating all lyrics as one group of text less reliable in analyzing frequency.
To simplify this process, we can look at only single word titles. This will at least give us a general idea if the data could be skewed by a single song or not. | for i, song in songs.iterrows():
title = song['title']
title_words = title.split(' ')
if len(title_words) > 1:
continue
lyrics = song['lyrics']
words = nltk.tokenize.word_tokenize(lyrics)
clean_words = [w.lower() for w in remove_extra_junk(remove_stop_words(words))]
dist = nltk.FreqDist(clean_words)
freq = dist.freq(title_words[0].lower())
if freq > .1:
print(song['artist'], title) | notebooks/exploratory/02-raw-lyric-analysis.ipynb | tylerwmarrs/billboard-hot-100-lyric-analysis | mit |
Seems pretty reptitive
There are a handful of single word song titles that repeat the title within the song at least 10% of the time. This gives us a general idea that there is most likely a skew to the data. I think it is safe to assume that if a single word is repeated many times, the song is most likely reptitive.
Lets look at the song "water" by Ugly God to confirm. | song_title_to_analyze = 'Water'
lyrics = songs['lyrics'].where(songs['title'] == song_title_to_analyze, '').max()
print(lyrics)
words = nltk.tokenize.word_tokenize(lyrics)
clean_words = [w.lower() for w in remove_extra_junk(remove_stop_words(words))]
water_dist = nltk.FreqDist(clean_words)
water_dist.plot(25)
water_dist.freq(song_title_to_analyze.lower()) | notebooks/exploratory/02-raw-lyric-analysis.ipynb | tylerwmarrs/billboard-hot-100-lyric-analysis | mit |
Looking at swear word distribution
Let's look at the distribution of swear words... | sws = []
for sw in set(corpus.swear_words()):
sws.append({'word': sw,
'dist': freq_dist.freq(sw)})
sw_df = pd.DataFrame.from_dict(sws)
sw_df.nlargest(10, 'dist').plot(x='word', kind='bar') | notebooks/exploratory/02-raw-lyric-analysis.ipynb | tylerwmarrs/billboard-hot-100-lyric-analysis | mit |
Create Variables
The xs array is a tuple of SymPy symbolic variables,
and the ys array is a PyEDA function array. | xs = sympy.symbols(",".join("x%d" % i for i in range(64)))
ys = pyeda.boolalg.bfarray.exprvars('y', 64) | ipynb/SymPy_Comparison.ipynb | karissa/pyeda | bsd-2-clause |
Basic Boolean Functions
Create a SymPy XOR function: | f = sympy.Xor(*xs[:4]) | ipynb/SymPy_Comparison.ipynb | karissa/pyeda | bsd-2-clause |
Create a PyEDA XOR function: | g = pyeda.boolalg.expr.Xor(*ys[:4]) | ipynb/SymPy_Comparison.ipynb | karissa/pyeda | bsd-2-clause |
SymPy atoms method is similar to PyEDA's support property: | f.atoms()
g.support | ipynb/SymPy_Comparison.ipynb | karissa/pyeda | bsd-2-clause |
SymPy's subs method is similar to PyEDA's restrict method: | f.subs({xs[0]: 0, xs[1]: 1})
g.restrict({ys[0]: 0, ys[1]: 1}) | ipynb/SymPy_Comparison.ipynb | karissa/pyeda | bsd-2-clause |
Conversion to NNF
Conversion to negation normal form is also similar. One difference is that SymPy inverts the variables by applying a Not operator, but PyEDA converts inverted variables to complements (a negative literal). | sympy.to_nnf(f)
type(sympy.Not(xs[0]))
g.to_nnf()
type(~ys[0]) | ipynb/SymPy_Comparison.ipynb | karissa/pyeda | bsd-2-clause |
Conversion to DNF
Conversion to disjunctive normal form, on the other hand, has some differences. With only four input variables, SymPy takes a couple seconds to do the calculation. The output is large, with unsimplified values and redundant clauses. | sympy.to_dnf(f) | ipynb/SymPy_Comparison.ipynb | karissa/pyeda | bsd-2-clause |
PyEDA's DNF conversion is minimal: | g.to_dnf() | ipynb/SymPy_Comparison.ipynb | karissa/pyeda | bsd-2-clause |
It's a little hard to do an apples-to-apples comparison, because 1) SymPy is pure Python and 2) the algorithms are probably different.
The simplify_logic function actually looks better for comparison: | from sympy.logic import simplify_logic
simplify_logic(f)
simplify_logic(f) | ipynb/SymPy_Comparison.ipynb | karissa/pyeda | bsd-2-clause |
Running this experiment from N=2 to N=6 shows that PyEDA's runtime grows significantly slower. | import numpy as np
import matplotlib.pyplot as plt
%matplotlib inline
N = 5
sympy_times = (.000485, .000957, .00202, .00426, .0103)
pyeda_times = (.0000609, .000104, .000147, .00027, .000451)
ind = np.arange(N) # the x locations for the groups
width = 0.35 # the width of the bars
fig, ax = plt.subplots()
rects1 = ax.bar(ind, sympy_times, width, color='r')
rects2 = ax.bar(ind + width, pyeda_times, width, color='y')
# add some text for labels, title and axes ticks
ax.set_ylabel('Time (s)')
ax.set_title('SymPy vs. PyEDA: Xor(x[0], x[1], ..., x[n-1]) to DNF')
ax.set_xticks(ind + width)
ax.set_xticklabels(('N=2', 'N=3', 'N=4', 'N=5', 'N=6'))
ax.legend((rects1[0], rects2[0]), ('SymPy', 'PyEDA'))
plt.show() | ipynb/SymPy_Comparison.ipynb | karissa/pyeda | bsd-2-clause |
Going a bit further, things get worse.
These numbers are from my laptop:
| N | sympy | pyeda | ratio |
|----|----------|----------|--------|
| 2 | .000485 | .0000609 | 7.96 |
| 3 | .000957 | .000104 | 9.20 |
| 4 | .00202 | .000147 | 13.74 |
| 5 | .00426 | .00027 | 15.78 |
| 6 | .0103 | .000451 | 22.84 |
| 7 | .0231 | .000761 | 30.35 |
| 8 | .0623 | .00144 | 43.26 |
| 9 | .162 | .00389 | 41.65 |
| 10 | .565 | .00477 | 118.45 |
| 11 | 1.78 | .012 | 148.33 |
| 12 | 6.46 | .0309 | 209.06 |
Simplification
SymPy supports some obvious simplifications, but PyEDA supports more. Here are a few examples. | sympy.Equivalent(xs[0], xs[1], 0)
pyeda.boolalg.expr.Equal(ys[0], ys[1], 0)
sympy.ITE(xs[0], 0, xs[1])
pyeda.boolalg.expr.ITE(ys[0], 0, ys[1])
sympy.Or(xs[0], sympy.Or(xs[1], xs[2]))
pyeda.boolalg.expr.Or(ys[0], pyeda.boolalg.expr.Or(ys[1], ys[2]))
sympy.Xor(xs[0], sympy.Not(sympy.Xor(xs[1], xs[2])))
pyeda.boolalg.expr.Xor(ys[0], pyeda.boolalg.expr.Xnor(ys[1], ys[2])) | ipynb/SymPy_Comparison.ipynb | karissa/pyeda | bsd-2-clause |
Vertex SDK: Submit a HyperParameter tuning training job with TensorFlow
Installation
Install the latest (preview) version of Vertex SDK. | ! pip3 install -U google-cloud-aiplatform --user | notebooks/community/migration/UJ11 HyperParameter Tuning Training Job with TensorFlow.ipynb | GoogleCloudPlatform/vertex-ai-samples | apache-2.0 |
Set up variables
Next, set up some variables used throughout the tutorial.
Import libraries and define constants
Import Vertex SDK
Import the Vertex SDK into our Python environment. | import os
import sys
import time
from google.cloud.aiplatform import gapic as aip
from google.protobuf import json_format
from google.protobuf.json_format import MessageToJson, ParseDict
from google.protobuf.struct_pb2 import Struct, Value | notebooks/community/migration/UJ11 HyperParameter Tuning Training Job with TensorFlow.ipynb | GoogleCloudPlatform/vertex-ai-samples | apache-2.0 |
Prepare a trainer script
Package assembly | # Make folder for python training script
! rm -rf custom
! mkdir custom
# Add package information
! touch custom/README.md
setup_cfg = "[egg_info]\n\
tag_build =\n\
tag_date = 0"
! echo "$setup_cfg" > custom/setup.cfg
setup_py = "import setuptools\n\
# Requires TensorFlow Datasets\n\
setuptools.setup(\n\
install_requires=[\n\
'tensorflow_datasets==1.3.0',\n\
],\n\
packages=setuptools.find_packages())"
! echo "$setup_py" > custom/setup.py
pkg_info = "Metadata-Version: 1.0\n\
Name: Hyperparameter Tuning - Boston Housing\n\
Version: 0.0.0\n\
Summary: Demonstration hyperparameter tuning script\n\
Home-page: www.google.com\n\
Author: Google\n\
Author-email: [email protected]\n\
License: Public\n\
Description: Demo\n\
Platform: Vertex AI"
! echo "$pkg_info" > custom/PKG-INFO
# Make the training subfolder
! mkdir custom/trainer
! touch custom/trainer/__init__.py | notebooks/community/migration/UJ11 HyperParameter Tuning Training Job with TensorFlow.ipynb | GoogleCloudPlatform/vertex-ai-samples | apache-2.0 |
Task.py contents | %%writefile custom/trainer/task.py
# hyperparameter tuningfor Boston Housing
import tensorflow_datasets as tfds
import tensorflow as tf
from tensorflow.python.client import device_lib
from hypertune import HyperTune
import numpy as np
import argparse
import os
import sys
tfds.disable_progress_bar()
parser = argparse.ArgumentParser()
parser.add_argument('--model-dir', dest='model_dir',
default='/tmp/saved_model', type=str, help='Model dir.')
parser.add_argument('--lr', dest='lr',
default=0.001, type=float,
help='Learning rate.')
parser.add_argument('--units', dest='units',
default=64, type=int,
help='Number of units.')
parser.add_argument('--epochs', dest='epochs',
default=20, type=int,
help='Number of epochs.')
parser.add_argument('--param-file', dest='param_file',
default='/tmp/param.txt', type=str,
help='Output file for parameters')
args = parser.parse_args()
print('Python Version = {}'.format(sys.version))
print('TensorFlow Version = {}'.format(tf.__version__))
print('TF_CONFIG = {}'.format(os.environ.get('TF_CONFIG', 'Not found')))
def make_dataset():
# Scaling Boston Housing data features
def scale(feature):
max = np.max(feature)
feature = (feature / max).astype(np.float)
return feature, max
(x_train, y_train), (x_test, y_test) = tf.keras.datasets.boston_housing.load_data(
path="boston_housing.npz", test_split=0.2, seed=113
)
params = []
for _ in range(13):
x_train[_], max = scale(x_train[_])
x_test[_], _ = scale(x_test[_])
params.append(max)
# store the normalization (max) value for each feature
with tf.io.gfile.GFile(args.param_file, 'w') as f:
f.write(str(params))
return (x_train, y_train), (x_test, y_test)
# Build the Keras model
def build_and_compile_dnn_model():
model = tf.keras.Sequential([
tf.keras.layers.Dense(args.units, activation='relu', input_shape=(13,)),
tf.keras.layers.Dense(args.units, activation='relu'),
tf.keras.layers.Dense(1, activation='linear')
])
model.compile(
loss='mse',
optimizer=tf.keras.optimizers.RMSprop(learning_rate=args.lr))
return model
model = build_and_compile_dnn_model()
# Instantiate the HyperTune reporting object
hpt = HyperTune()
# Reporting callback
class HPTCallback(tf.keras.callbacks.Callback):
def on_epoch_end(self, epoch, logs=None):
global hpt
hpt.report_hyperparameter_tuning_metric(
hyperparameter_metric_tag='val_loss',
metric_value=logs['val_loss'],
global_step=epoch)
# Train the model
BATCH_SIZE = 16
(x_train, y_train), (x_test, y_test) = make_dataset()
model.fit(x_train, y_train, epochs=args.epochs, batch_size=BATCH_SIZE, validation_split=0.1, callbacks=[HPTCallback()])
model.save(args.model_dir)
| notebooks/community/migration/UJ11 HyperParameter Tuning Training Job with TensorFlow.ipynb | GoogleCloudPlatform/vertex-ai-samples | apache-2.0 |
Store training script on your Cloud Storage bucket | ! rm -f custom.tar custom.tar.gz
! tar cvf custom.tar custom
! gzip custom.tar
! gsutil cp custom.tar.gz gs://$BUCKET_NAME/hpt_boston_housing.tar.gz | notebooks/community/migration/UJ11 HyperParameter Tuning Training Job with TensorFlow.ipynb | GoogleCloudPlatform/vertex-ai-samples | apache-2.0 |
Train a model
projects.locations.hyperparameterTuningJob.create
Request | JOB_NAME = "hyperparameter_tuning_" + TIMESTAMP
WORKER_POOL_SPEC = [
{
"replica_count": 1,
"machine_spec": {"machine_type": "n1-standard-4", "accelerator_count": 0},
"python_package_spec": {
"executor_image_uri": "gcr.io/cloud-aiplatform/training/tf-cpu.2-1:latest",
"package_uris": ["gs://" + BUCKET_NAME + "/hpt_boston_housing.tar.gz"],
"python_module": "trainer.task",
"args": ["--model-dir=" + "gs://{}/{}".format(BUCKET_NAME, JOB_NAME)],
},
}
]
STUDY_SPEC = {
"metrics": [
{"metric_id": "val_loss", "goal": aip.StudySpec.MetricSpec.GoalType.MINIMIZE}
],
"parameters": [
{
"parameter_id": "lr",
"discrete_value_spec": {"values": [0.001, 0.01, 0.1]},
"scale_type": aip.StudySpec.ParameterSpec.ScaleType.UNIT_LINEAR_SCALE,
},
{
"parameter_id": "units",
"integer_value_spec": {"min_value": 32, "max_value": 256},
"scale_type": aip.StudySpec.ParameterSpec.ScaleType.UNIT_LINEAR_SCALE,
},
],
"algorithm": aip.StudySpec.Algorithm.RANDOM_SEARCH,
}
hyperparameter_tuning_job = aip.HyperparameterTuningJob(
display_name=JOB_NAME,
trial_job_spec={"worker_pool_specs": WORKER_POOL_SPEC},
study_spec=STUDY_SPEC,
max_trial_count=6,
parallel_trial_count=1,
)
print(
MessageToJson(
aip.CreateHyperparameterTuningJobRequest(
parent=PARENT, hyperparameter_tuning_job=hyperparameter_tuning_job
).__dict__["_pb"]
)
) | notebooks/community/migration/UJ11 HyperParameter Tuning Training Job with TensorFlow.ipynb | GoogleCloudPlatform/vertex-ai-samples | apache-2.0 |
Example output:
{
"parent": "projects/migration-ucaip-training/locations/us-central1",
"hyperparameterTuningJob": {
"displayName": "hyperparameter_tuning_20210226020029",
"studySpec": {
"metrics": [
{
"metricId": "val_loss",
"goal": "MINIMIZE"
}
],
"parameters": [
{
"parameterId": "lr",
"discreteValueSpec": {
"values": [
0.001,
0.01,
0.1
]
},
"scaleType": "UNIT_LINEAR_SCALE"
},
{
"parameterId": "units",
"integerValueSpec": {
"minValue": "32",
"maxValue": "256"
},
"scaleType": "UNIT_LINEAR_SCALE"
}
],
"algorithm": "RANDOM_SEARCH"
},
"maxTrialCount": 6,
"parallelTrialCount": 1,
"trialJobSpec": {
"workerPoolSpecs": [
{
"machineSpec": {
"machineType": "n1-standard-4"
},
"replicaCount": "1",
"pythonPackageSpec": {
"executorImageUri": "gcr.io/cloud-aiplatform/training/tf-cpu.2-1:latest",
"packageUris": [
"gs://migration-ucaip-trainingaip-20210226020029/hpt_boston_housing.tar.gz"
],
"pythonModule": "trainer.task",
"args": [
"--model-dir=gs://migration-ucaip-trainingaip-20210226020029/hyperparameter_tuning_20210226020029"
]
}
}
]
}
}
}
Call | request = clients["job"].create_hyperparameter_tuning_job(
parent=PARENT, hyperparameter_tuning_job=hyperparameter_tuning_job
) | notebooks/community/migration/UJ11 HyperParameter Tuning Training Job with TensorFlow.ipynb | GoogleCloudPlatform/vertex-ai-samples | apache-2.0 |
Example output:
{
"name": "projects/116273516712/locations/us-central1/hyperparameterTuningJobs/5264408897233354752",
"displayName": "hyperparameter_tuning_20210226020029",
"studySpec": {
"metrics": [
{
"metricId": "val_loss",
"goal": "MINIMIZE"
}
],
"parameters": [
{
"parameterId": "lr",
"discreteValueSpec": {
"values": [
0.001,
0.01,
0.1
]
},
"scaleType": "UNIT_LINEAR_SCALE"
},
{
"parameterId": "units",
"integerValueSpec": {
"minValue": "32",
"maxValue": "256"
},
"scaleType": "UNIT_LINEAR_SCALE"
}
],
"algorithm": "RANDOM_SEARCH"
},
"maxTrialCount": 6,
"parallelTrialCount": 1,
"trialJobSpec": {
"workerPoolSpecs": [
{
"machineSpec": {
"machineType": "n1-standard-4"
},
"replicaCount": "1",
"diskSpec": {
"bootDiskType": "pd-ssd",
"bootDiskSizeGb": 100
},
"pythonPackageSpec": {
"executorImageUri": "gcr.io/cloud-aiplatform/training/tf-cpu.2-1:latest",
"packageUris": [
"gs://migration-ucaip-trainingaip-20210226020029/hpt_boston_housing.tar.gz"
],
"pythonModule": "trainer.task",
"args": [
"--model-dir=gs://migration-ucaip-trainingaip-20210226020029/hyperparameter_tuning_20210226020029"
]
}
}
]
},
"state": "JOB_STATE_PENDING",
"createTime": "2021-02-26T02:02:02.787187Z",
"updateTime": "2021-02-26T02:02:02.787187Z"
} | # The full unique ID for the hyperparameter tuningjob
hyperparameter_tuning_id = request.name
# The short numeric ID for the hyperparameter tuningjob
hyperparameter_tuning_short_id = hyperparameter_tuning_id.split("/")[-1]
print(hyperparameter_tuning_id) | notebooks/community/migration/UJ11 HyperParameter Tuning Training Job with TensorFlow.ipynb | GoogleCloudPlatform/vertex-ai-samples | apache-2.0 |
projects.locations.hyperparameterTuningJob.get
Call | request = clients["job"].get_hyperparameter_tuning_job(name=hyperparameter_tuning_id) | notebooks/community/migration/UJ11 HyperParameter Tuning Training Job with TensorFlow.ipynb | GoogleCloudPlatform/vertex-ai-samples | apache-2.0 |
Example output:
{
"name": "projects/116273516712/locations/us-central1/hyperparameterTuningJobs/5264408897233354752",
"displayName": "hyperparameter_tuning_20210226020029",
"studySpec": {
"metrics": [
{
"metricId": "val_loss",
"goal": "MINIMIZE"
}
],
"parameters": [
{
"parameterId": "lr",
"discreteValueSpec": {
"values": [
0.001,
0.01,
0.1
]
},
"scaleType": "UNIT_LINEAR_SCALE"
},
{
"parameterId": "units",
"integerValueSpec": {
"minValue": "32",
"maxValue": "256"
},
"scaleType": "UNIT_LINEAR_SCALE"
}
],
"algorithm": "RANDOM_SEARCH"
},
"maxTrialCount": 6,
"parallelTrialCount": 1,
"trialJobSpec": {
"workerPoolSpecs": [
{
"machineSpec": {
"machineType": "n1-standard-4"
},
"replicaCount": "1",
"diskSpec": {
"bootDiskType": "pd-ssd",
"bootDiskSizeGb": 100
},
"pythonPackageSpec": {
"executorImageUri": "gcr.io/cloud-aiplatform/training/tf-cpu.2-1:latest",
"packageUris": [
"gs://migration-ucaip-trainingaip-20210226020029/hpt_boston_housing.tar.gz"
],
"pythonModule": "trainer.task",
"args": [
"--model-dir=gs://migration-ucaip-trainingaip-20210226020029/hyperparameter_tuning_20210226020029"
]
}
}
]
},
"state": "JOB_STATE_PENDING",
"createTime": "2021-02-26T02:02:02.787187Z",
"updateTime": "2021-02-26T02:02:02.787187Z"
}
Wait for the study to complete | while True:
response = clients["job"].get_hyperparameter_tuning_job(
name=hyperparameter_tuning_id
)
if response.state != aip.PipelineState.PIPELINE_STATE_SUCCEEDED:
print("Study trials have not completed:", response.state)
if response.state == aip.PipelineState.PIPELINE_STATE_FAILED:
break
else:
print("Study trials have completed:", response.end_time - response.start_time)
break
time.sleep(20) | notebooks/community/migration/UJ11 HyperParameter Tuning Training Job with TensorFlow.ipynb | GoogleCloudPlatform/vertex-ai-samples | apache-2.0 |
Review the results of the study | best = (None, None, None, 0.0)
response = clients["job"].get_hyperparameter_tuning_job(name=hyperparameter_tuning_id)
for trial in response.trials:
print(MessageToJson(trial.__dict__["_pb"]))
# Keep track of the best outcome
try:
if float(trial.final_measurement.metrics[0].value) > best[3]:
best = (
trial.id,
float(trial.parameters[0].value),
float(trial.parameters[1].value),
float(trial.final_measurement.metrics[0].value),
)
except:
pass
print()
print("ID", best[0])
print("Decay", best[1])
print("Learning Rate", best[2])
print("Validation Accuracy", best[3]) | notebooks/community/migration/UJ11 HyperParameter Tuning Training Job with TensorFlow.ipynb | GoogleCloudPlatform/vertex-ai-samples | apache-2.0 |
Example output:
```
{
"id": "1",
"state": "SUCCEEDED",
"parameters": [
{
"parameterId": "lr",
"value": 0.1
},
{
"parameterId": "units",
"value": 80.0
}
],
"finalMeasurement": {
"stepCount": "19",
"metrics": [
{
"metricId": "val_loss",
"value": 46.61515110294993
}
]
},
"startTime": "2021-02-26T02:05:16.935353384Z",
"endTime": "2021-02-26T02:12:44Z"
}
{
"id": "2",
"state": "SUCCEEDED",
"parameters": [
{
"parameterId": "lr",
"value": 0.01
},
{
"parameterId": "units",
"value": 45.0
}
],
"finalMeasurement": {
"stepCount": "19",
"metrics": [
{
"metricId": "val_loss",
"value": 32.55313952376203
}
]
},
"startTime": "2021-02-26T02:15:31.357856840Z",
"endTime": "2021-02-26T02:24:18Z"
}
{
"id": "3",
"state": "SUCCEEDED",
"parameters": [
{
"parameterId": "lr",
"value": 0.1
},
{
"parameterId": "units",
"value": 70.0
}
],
"finalMeasurement": {
"stepCount": "19",
"metrics": [
{
"metricId": "val_loss",
"value": 42.709188321741614
}
]
},
"startTime": "2021-02-26T02:26:40.704476222Z",
"endTime": "2021-02-26T02:34:21Z"
}
{
"id": "4",
"state": "SUCCEEDED",
"parameters": [
{
"parameterId": "lr",
"value": 0.01
},
{
"parameterId": "units",
"value": 173.0
}
],
"finalMeasurement": {
"stepCount": "17",
"metrics": [
{
"metricId": "val_loss",
"value": 46.12480219399057
}
]
},
"startTime": "2021-02-26T02:37:45.275581053Z",
"endTime": "2021-02-26T02:51:07Z"
}
{
"id": "5",
"state": "SUCCEEDED",
"parameters": [
{
"parameterId": "lr",
"value": 0.01
},
{
"parameterId": "units",
"value": 223.0
}
],
"finalMeasurement": {
"stepCount": "19",
"metrics": [
{
"metricId": "val_loss",
"value": 24.875632611716664
}
]
},
"startTime": "2021-02-26T02:53:32.612612421Z",
"endTime": "2021-02-26T02:54:19Z"
}
{
"id": "6",
"state": "SUCCEEDED",
"parameters": [
{
"parameterId": "lr",
"value": 0.1
},
{
"parameterId": "units",
"value": 123.0
}
],
"finalMeasurement": {
"stepCount": "13",
"metrics": [
{
"metricId": "val_loss",
"value": 43.352300690441595
}
]
},
"startTime": "2021-02-26T02:56:47.323707459Z",
"endTime": "2021-02-26T03:03:49Z"
}
ID 1
Decay 0.1
Learning Rate 80.0
Validation Accuracy 46.61515110294993
```
Cleaning up
To clean up all GCP resources used in this project, you can delete the GCP
project you used for the tutorial.
Otherwise, you can delete the individual resources you created in this tutorial. | delete_hpt_job = True
delete_bucket = True
# Delete the hyperparameter tuningusing the Vertex AI fully qualified identifier for the custome training
try:
if delete_hpt_job:
clients["job"].delete_hyperparameter_tuning_job(name=hyperparameter_tuning_id)
except Exception as e:
print(e)
if delete_bucket and "BUCKET_NAME" in globals():
! gsutil rm -r gs://$BUCKET_NAME | notebooks/community/migration/UJ11 HyperParameter Tuning Training Job with TensorFlow.ipynb | GoogleCloudPlatform/vertex-ai-samples | apache-2.0 |
Download the dataset of characters 'A' to 'J' rendered in various fonts as 28x28 images.
There is training set of about 500k images and a test set of about 19000 images. | url = "http://yaroslavvb.com/upload/notMNIST/"
data_path = outputer.setup_directory("notMNIST")
def maybe_download(path, filename, expected_bytes):
"""Download a file if not present, and make sure it's the right size."""
file_path = os.path.join(path, filename)
if not os.path.exists(file_path):
file_path, _ = urllib.request.urlretrieve(url + filename, file_path)
statinfo = os.stat(file_path)
if statinfo.st_size == expected_bytes:
print("Found", file_path, "with correct size.")
else:
raise Exception("Error downloading " + filename)
return file_path
train_filename = maybe_download(data_path, "notMNIST_large.tar.gz", 247336696)
test_filename = maybe_download(data_path, "notMNIST_small.tar.gz", 8458043) | notMNIST_setup.ipynb | ponderousmad/pyndent | mit |
Extract the dataset from the compressed .tar.gz file.
This should give you a set of directories, labelled A through J. | def extract(filename, root, class_count):
# remove path and .tar.gz
dir_name = os.path.splitext(os.path.splitext(os.path.basename(filename))[0])[0]
path = os.path.join(root, dir_name)
print("Extracting", filename, "to", path)
tar = tarfile.open(filename)
tar.extractall(path=root)
tar.close()
data_folders = [os.path.join(path, d) for d in sorted(os.listdir(path))]
if len(data_folders) != class_count:
raise Exception("Expected %d folders, one per class. Found %d instead." %
(class_count, len(data_folders)))
print(data_folders)
return data_folders
train_folders = []
test_folders = []
for name in os.listdir(data_path):
path = os.path.join(data_path, name)
target = None
print("Checking", path)
if path.endswith("_small"):
target = test_folders
elif path.endswith("_large"):
target = train_folders
if target is not None:
target.extend([os.path.join(path, name) for name in os.listdir(path)])
print("Found", target)
expected_classes = 10
if len(train_folders) < expected_classes:
train_folders = extract(train_filename, data_path, expected_classes)
if len(test_folders) < expected_classes:
test_folders = extract(test_filename, data_path, expected_classes) | notMNIST_setup.ipynb | ponderousmad/pyndent | mit |
Inspect Data
Verify that the images contain rendered glyphs. | Image(filename="notMNIST/notMNIST_small/A/MDEtMDEtMDAudHRm.png")
Image(filename="notMNIST/notMNIST_large/A/a2F6b28udHRm.png")
Image(filename="notMNIST/notMNIST_large/C/ZXVyb2Z1cmVuY2UgaXRhbGljLnR0Zg==.png")
# This I is all white
Image(filename="notMNIST/notMNIST_small/I/SVRDIEZyYW5rbGluIEdvdGhpYyBEZW1pLnBmYg==.png") | notMNIST_setup.ipynb | ponderousmad/pyndent | mit |
Convert the data into an array of normalized grayscale floating point images, and an array of classification labels.
Unreadable images are skipped. |
def normalize_separator(path):
return path.replace("\\", "/")
def load(data_folders, set_id, min_count, max_count):
# Create arrays large enough for maximum expected data.
dataset = np.ndarray(shape=(max_count, image_size, image_size), dtype=np.float32)
labels = np.ndarray(shape=(max_count), dtype=np.int32)
label_index = 0
image_index = 0
solid_blacks = []
solid_whites = []
for folder in sorted(data_folders):
print(folder)
for image in os.listdir(folder):
if image_index >= max_count:
raise Exception("More than %d images!" % (max_count,))
image_file = os.path.join(folder, image)
if normalize_separator(image_file) in skip_list:
continue
try:
raw_data = ndimage.imread(image_file)
# Keep track of images a that are solid white or solid black.
if np.all(raw_data == 0):
solid_blacks.append(image_file)
if np.all(raw_data == int(pixel_depth)):
solid_whites.append(image_file)
# Convert to float and normalize.
image_data = (raw_data.astype(float) - pixel_depth / 2) / pixel_depth
if image_data.shape != (image_size, image_size):
raise Exception("Unexpected image shape: %s" % str(image_data.shape))
# Capture the image data and label.
dataset[image_index, :, :] = image_data
labels[image_index] = label_index
image_index += 1
except IOError as e:
skip_list.append(normalize_separator(image_file))
print("Could not read:", image_file, ':', e, "skipping.")
label_index += 1
image_count = image_index
# Trim down to just the used portion of the arrays.
dataset = dataset[0:image_count, :, :]
labels = labels[0:image_count]
if image_count < min_count:
raise Exception('Many fewer images than expected: %d < %d' %
(num_images, min_num_images))
print("Input data shape:", dataset.shape)
print("Mean of all normalized pixels:", np.mean(dataset))
print("Standard deviation of normalized pixels:", np.std(dataset))
print('Labels shape:', labels.shape)
print("Found", len(solid_whites), "solid white images, and",
len(solid_blacks), "solid black images.")
return dataset, labels
train_dataset, train_labels = load(train_folders, "train", 450000, 550000)
test_dataset, test_labels = load(test_folders, 'test', 18000, 20000)
skip_list | notMNIST_setup.ipynb | ponderousmad/pyndent | mit |
Verify Proccessed Data | exemplar = plt.imshow(train_dataset[0])
train_labels[0]
exemplar = plt.imshow(train_dataset[373])
train_labels[373]
exemplar = plt.imshow(test_dataset[18169])
test_labels[18169]
exemplar = plt.imshow(train_dataset[-9])
train_labels[-9] | notMNIST_setup.ipynb | ponderousmad/pyndent | mit |
Compress and Store Data | pickle_file = 'notMNIST/full.pickle'
try:
f = gzip.open(pickle_file, 'wb')
save = {
'train_dataset': train_dataset,
'train_labels': train_labels,
'test_dataset': test_dataset,
'test_labels': test_labels
}
pickle.dump(save, f, pickle.HIGHEST_PROTOCOL)
f.close()
except Exception as e:
print('Unable to save data to', pickle_file, ':', e)
raise
statinfo = os.stat(pickle_file)
print('Compressed pickle size:', statinfo.st_size) | notMNIST_setup.ipynb | ponderousmad/pyndent | mit |
Peak finding
Write a function find_peaks that finds and returns the indices of the local maxima in a sequence. Your function should:
Properly handle local maxima at the endpoints of the input array.
Return a Numpy array of integer indices.
Handle any Python iterable as input. | np.array(range(5)).max()
list(range(1,5))
find_peaks([2,0,1,0,2,0,1])
def find_peaks(a):
"""Find the indices of the local maxima in a sequence."""
b=[]
c=np.array(a)
if c[0]>c[1]:
b.append(0)
for i in range(1,len(c)-1):
if c[i]>c[i-1] and c[i]>c[i+1]:
b.append(i)
if c[len(c)-1]>c[len(c)-2]:
b.append(len(c)-1)
return b
p1 = find_peaks([2,0,1,0,2,0,1])
assert np.allclose(p1, np.array([0,2,4,6]))
p2 = find_peaks(np.array([0,1,2,3]))
assert np.allclose(p2, np.array([3]))
p3 = find_peaks([3,2,1,0])
assert np.allclose(p3, np.array([0])) | assignments/assignment07/AlgorithmsEx02.ipynb | hunterherrin/phys202-2015-work | mit |
Here is a string with the first 10000 digits of $\pi$ (after the decimal). Write code to perform the following:
Convert that string to a Numpy array of integers.
Find the indices of the local maxima in the digits of $\pi$.
Use np.diff to find the distances between consequtive local maxima.
Visualize that distribution using an appropriately customized histogram. | from sympy import pi, N
pi_digits_str = str(N(pi, 10001))[2:]
first_10000=np.array(list(pi_digits_str), dtype=int)
peaks=find_peaks(first_10000)
differences=np.diff(peaks)
plt.figure(figsize=(10,10))
plt.hist(differences, 20, (1,20))
plt.title('Hoe Far Apart the Local Maxima of the First 10,0000 Digits of $\pi$ Are')
plt.ylabel('Number of Occurences')
plt.xlabel('Distance Apart')
plt.tight_layout()
assert True # use this for grading the pi digits histogram | assignments/assignment07/AlgorithmsEx02.ipynb | hunterherrin/phys202-2015-work | mit |
Define the variables for this analysis.
1. how many percentiles the data is divided into
2. where the Z-Maps (from neurosynth) lie
3. where the binned gradient maps lie
4. where a mask of the brain lies (not used at the moment). | percentiles = range(10)
# unthresholded z-maps from neurosynth:
zmaps = [os.path.join(os.getcwd(), 'ROIs_Mask', fname) for fname in os.listdir(os.path.join(os.getcwd(), 'ROIs_Mask'))
if 'z.nii' in fname]
# individual, binned gradient maps, in a list of lists:
gradmaps = [[os.path.join(os.getcwd(), 'data', 'Outputs', 'Bins', str(percentile), fname)
for fname in os.listdir(os.path.join(os.getcwd(), 'data', 'Outputs', 'Bins', str(percentile)))]
for percentile in percentiles]
# a brain mask file:
brainmaskfile = os.path.join(os.getcwd(), 'ROIs_Mask', 'rbgmask.nii') | 6b_networks-inside-gradients.ipynb | autism-research-centre/Autism-Gradients | gpl-3.0 |
Next define a function to take the average of an image inside a mask and return it: | def zinsidemask(zmap, mask):
#
zaverage = zmap.dataobj[
np.logical_and(np.not_equal(mask.dataobj, 0), brainmask.dataobj>0)
].mean()
return zaverage | 6b_networks-inside-gradients.ipynb | autism-research-centre/Autism-Gradients | gpl-3.0 |
This next cell will step through each combination of gradient, subject and network file to calculate the average z-score inside the mask defined by the gradient percentile. This will take a long time to run! | zaverages = np.zeros([len(zmaps), len(gradmaps), len(gradmaps[0])])
# load first gradmap just for resampling
gradmap = nib.load(gradmaps[0][0])
# Load a brainmask
brainmask = nib.load(brainmaskfile)
brainmask = resample_img(brainmask, target_affine=gradmap.affine, target_shape=gradmap.shape)
# Initialise a progress bar:
progbar = FloatProgress(min=0, max=zaverages.size)
display(progbar)
# loop through the network files:
for i1, zmapfile in enumerate(zmaps):
# load the neurosynth activation file:
zmap = nib.load(zmapfile)
# make sure the images are in the same space:
zmap = resample_img(zmap,
target_affine=gradmap.affine,
target_shape=gradmap.shape)
# loop through the bins:
for i2, percentile in enumerate(percentiles):
# loop through the subjects:
for i3, gradmapfile in enumerate(gradmaps[percentile]):
gradmap = nib.load(gradmapfile) # load image
zaverages[i1, i2, i3] = zinsidemask(zmap, gradmap) # calculate av. z-score
progbar.value += 1 # update progressbar (only works in jupyter notebooks)
| 6b_networks-inside-gradients.ipynb | autism-research-centre/Autism-Gradients | gpl-3.0 |
To save time next time, we'll save the result of this to file: | # np.save(os.path.join(os.getcwd(), 'data', 'average-abs-z-scores'), zaverages)
zaverages = np.load(os.path.join(os.getcwd(), 'data', 'average-z-scores.npy')) | 6b_networks-inside-gradients.ipynb | autism-research-centre/Autism-Gradients | gpl-3.0 |
Extract a list of which group contains which participants. | df_phen = pd.read_csv('data' + os.sep + 'SelectedSubjects.csv')
diagnosis = df_phen.loc[:, 'DX_GROUP']
fileids = df_phen.loc[:, 'FILE_ID']
groupvec = np.zeros(len(gradmaps[0]))
for filenum, filename in enumerate(gradmaps[0]):
fileid = os.path.split(filename)[-1][5:-22]
groupvec[filenum] = (diagnosis[fileids.str.contains(fileid)])
print(groupvec.shape) | 6b_networks-inside-gradients.ipynb | autism-research-centre/Autism-Gradients | gpl-3.0 |
Make a plot of the z-scores inside each parcel for each gradient, split by group! | fig = plt.figure(figsize=(15, 8))
grouplabels = ['Control group', 'Autism group']
for group in np.unique(groupvec):
ylabels = [os.path.split(fname)[-1][0:-23].replace('_', ' ') for fname in zmaps]
# remove duplicates!
includenetworks = []
seen = set()
for string in ylabels:
includenetworks.append(string not in seen)
seen.add(string)
ylabels = [string for index, string in enumerate(ylabels) if includenetworks[index]]
tmp_zaverages = zaverages[includenetworks, :, :]
tmp_zaverages = tmp_zaverages[:, :, groupvec==group]
tmp_zaverages = tmp_zaverages[np.argsort(np.argmax(tmp_zaverages.mean(axis=2), axis=1)), :, :]
# make the figure
plt.subplot(1, 2, group)
cax = plt.imshow(tmp_zaverages.mean(axis=2),
cmap='bwr', interpolation='nearest',
vmin=zaverages.mean(axis=2).min(),
vmax=zaverages.mean(axis=2).max())
ax = plt.gca()
plt.title(grouplabels[int(group-1)])
plt.xlabel('Percentile of principle gradient')
ax.set_xticks(np.arange(0, len(percentiles), 3))
ax.set_xticklabels(['100-90', '70-60', '40-30', '10-0'])
ax.set_yticks(np.arange(0, len(seen), 1))
ax.set_yticklabels(ylabels)
ax.set_yticks(np.arange(-0.5, len(seen), 1), minor=True)
ax.set_xticks(np.arange(-0.5, 10, 1), minor=True)
ax.grid(which='minor', color='w', linewidth=2)
fig.subplots_adjust(right=0.8)
cbar_ax = fig.add_axes([0.85, 0.15, 0.01, 0.7])
fig.colorbar(cax, cax=cbar_ax, label='Average Z-Score')
#fig.colorbar(cax, cmap='bwr', orientation='horizontal')
plt.savefig('./figures/z-scores-inside-gradient-bins.png') | 6b_networks-inside-gradients.ipynb | autism-research-centre/Autism-Gradients | gpl-3.0 |
Spacy Documentation
Spacy is an NLP/Computational Linguistics package built from the ground up. It's written in Cython so it's fast!!
Let's check it out. Here's some text from Alice in Wonderland free on Gutenberg. | text = """'Please would you tell me,' said Alice, a little timidly, for she was not quite sure whether it was good manners for her to speak first, 'why your cat grins like that?'
'It's a Cheshire cat,' said the Duchess, 'and that's why. Pig!'
She said the last word with such sudden violence that Alice quite jumped; but she saw in another moment that it was addressed to the baby, and not to her, so she took courage, and went on again:—
'I didn't know that Cheshire cats always grinned; in fact, I didn't know that cats could grin.'
'They all can,' said the Duchess; 'and most of 'em do.'
'I don't know of any that do,' Alice said very politely, feeling quite pleased to have got into a conversation.
'You don't know much,' said the Duchess; 'and that's a fact.'""" | notebooks/nlp_spacy.ipynb | AlJohri/DAT-DC-12 | mit |
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.