markdown
stringlengths
0
37k
code
stringlengths
1
33.3k
path
stringlengths
8
215
repo_name
stringlengths
6
77
license
stringclasses
15 values
visualize with plotly: we make three diagrams: 1) a horizontal bar plot comparing the overall papers per db 2) a vertical bar plot differentiating time and db 3) a vertical bar plot differentiating tima and db with a logarithmic y-scale (allows for better inspection of smaller numbers)
#set data for horizontal bar plot: data = [go.Bar( x=[pd.DataFrame.sum(df2)['wos'],pd.DataFrame.sum(df2)['scopus'],pd.DataFrame.sum(df2)['ARTICLE_TITLE']], y=['Web of Science', 'Scopus', 'Total'], orientation = 'h', marker=dict( color=colorlist ) )] #py.plot(data, filename='big_data_papers_horizontal') #for uploading to plotly py.iplot(data, filename='horizontal-bar') #set data for stacked bar plot: trace1 = go.Bar( x=df2['PUBYEAR_y'], y=df2['wos'], name='Web of Science', marker=dict( color=colorlist[0] ) ) trace2 = go.Bar( x=df2['PUBYEAR_y'], y=df2['scopus'], name='Scopus', marker=dict( color=colorlist[1] ) ) trace3 = go.Bar( x=df2['PUBYEAR_y'], y=df2['ARTICLE_TITLE'], name='All Papers', marker=dict( color=colorlist[2] ) ) data = [trace1, trace2,trace3] #set layout for stacked bar chart with logarithmic y scale: #set layout for stacked bar chart with normal y scale: layout_no_log = go.Layout( title='Big data papers over time', barmode='group', xaxis=dict( title='year', titlefont=dict( family='Arial, sans-serif', size=14, color='lightgrey' ), tickfont=dict( family='Arial, sans-serif', size=10, color='black' ), showticklabels=True, dtick=1, tickangle=45, ) ) #plot: fig1 = go.Figure(data=data, layout=layout_no_log) py.iplot(fig1, filename='big_data_papers_no_log') layout_log = go.Layout( title='Big data papers over time (log y-scale)', barmode='group', xaxis=dict( title='year', titlefont=dict( family='Arial, sans-serif', size=14, color='lightgrey' ), tickfont=dict( family='Arial, sans-serif', size=10, color='black' ), showticklabels=True, dtick=1, tickangle=45, ), yaxis=dict( type='log' ) ) fig2 = go.Figure(data=data, layout=layout_log) py.iplot(fig2, filename='big_data_papers_log')
1-number of papers over time/Creating overview bar-plots.ipynb
MathiasRiechert/BigDataPapers
gpl-3.0
Source localization with MNE/dSPM/sLORETA/eLORETA The aim of this tutorial is to teach you how to compute and apply a linear inverse method such as MNE/dSPM/sLORETA/eLORETA on evoked/raw/epochs data.
import numpy as np import matplotlib.pyplot as plt import mne from mne.datasets import sample from mne.minimum_norm import make_inverse_operator, apply_inverse
0.19/_downloads/ff83425ee773d1d588a6994e5560c06c/plot_mne_dspm_source_localization.ipynb
mne-tools/mne-tools.github.io
bsd-3-clause
Process MEG data
data_path = sample.data_path() raw_fname = data_path + '/MEG/sample/sample_audvis_filt-0-40_raw.fif' raw = mne.io.read_raw_fif(raw_fname) # already has an average reference events = mne.find_events(raw, stim_channel='STI 014') event_id = dict(aud_l=1) # event trigger and conditions tmin = -0.2 # start of each epoch (200ms before the trigger) tmax = 0.5 # end of each epoch (500ms after the trigger) raw.info['bads'] = ['MEG 2443', 'EEG 053'] baseline = (None, 0) # means from the first instant to t = 0 reject = dict(grad=4000e-13, mag=4e-12, eog=150e-6) epochs = mne.Epochs(raw, events, event_id, tmin, tmax, proj=True, picks=('meg', 'eog'), baseline=baseline, reject=reject)
0.19/_downloads/ff83425ee773d1d588a6994e5560c06c/plot_mne_dspm_source_localization.ipynb
mne-tools/mne-tools.github.io
bsd-3-clause
Compute the evoked response Let's just use MEG channels for simplicity.
evoked = epochs.average().pick('meg') evoked.plot(time_unit='s') evoked.plot_topomap(times=np.linspace(0.05, 0.15, 5), ch_type='mag', time_unit='s') # Show whitening evoked.plot_white(noise_cov, time_unit='s') del epochs # to save memory
0.19/_downloads/ff83425ee773d1d588a6994e5560c06c/plot_mne_dspm_source_localization.ipynb
mne-tools/mne-tools.github.io
bsd-3-clause
Note that there is a relationship between the orientation of the dipoles and the surface of the cortex. For this reason, we do not use an inflated cortical surface for visualization, but the original surface used to define the source space. For more information about dipole orientations, see tut-dipole-orientations. Now let's look at each solver:
for mi, (method, lims) in enumerate((('dSPM', [8, 12, 15]), ('sLORETA', [3, 5, 7]), ('eLORETA', [0.75, 1.25, 1.75]),)): surfer_kwargs['clim']['lims'] = lims stc = apply_inverse(evoked, inverse_operator, lambda2, method=method, pick_ori=None) brain = stc.plot(figure=mi, **surfer_kwargs) brain.add_text(0.1, 0.9, method, 'title', font_size=20) del stc
0.19/_downloads/ff83425ee773d1d588a6994e5560c06c/plot_mne_dspm_source_localization.ipynb
mne-tools/mne-tools.github.io
bsd-3-clause
์œ ์˜ ํ™•๋ฅ ์˜ ๊ฐ’์ด ์•„์ฃผ ์ž‘์œผ๋ฉด ๊ท€๋ฌด ๊ฐ€์„ค์ด ๋งž๋‹ค๋Š” ๊ฐ€์ •ํ•˜์— ๊ณ„์‚ฐ๋œ ๊ฒ€์ • ํ†ต๊ณ„๋Ÿ‰์ด ๋‚˜์˜ฌ ๊ฐ€๋Šฅ์„ฑ์ด ํฌ๊ท€ํ•˜๋‹ค๋Š” ์˜๋ฏธ์ด๋‹ค. ๋‹ค์‹œ ์˜ˆ๋ฅผ ๋“ค์ž๋ฉด "์–ด๋–ค ๋ณ‘์— ๊ฑธ๋ ธ๋‹ค"๋Š” ๊ท€๋ฌด ๊ฐ€์„ค์„ ์ฆ๋ช…ํ•˜๊ธฐ ์œ„ํ•œ ๊ฒ€์ •์—์„œ ํ˜ˆ์•ก ๊ฒ€์‚ฌ๋ฅผ ์‚ฌ์šฉํ•˜์—ฌ ๊ณ„์‚ฐํ•œ ์œ ์˜ํ™•๋ฅ ์ด 0.02%๋ผ๋Š” ์˜๋ฏธ๋Š” ์‹ค์ œ๋กœ ๋ณ‘์— ๊ฑธ๋ฆฐ ํ™˜์ž๋“ค ์ค‘ ํ˜ˆ์•ก ๊ฒ€์‚ฌ ์ˆ˜์น˜๊ฐ€ ํ•ด๋‹น ํ™˜์ž์˜ ํ˜ˆ์•ก ๊ฒ€์‚ฌ ์ˆ˜์น˜๋ณด๋‹ค ๋‚ฎ์€ ์‚ฌ๋žŒ์€ 0.02% ๋ฟ์ด์—ˆ๋‹ค๋Š” ๋œป์ด๊ณ  "์–ด๋–ค ํ•™์ƒ์ด ์šฐ๋“ฑ์ƒ์ด๋‹ค."๋ผ๋Š” ๊ท€๋ฌด์‚ฌ์„ค์„ ์ฆ๋ช…ํ•˜๊ธฐ ์œ„ํ•œ ๊ฒ€์ •์—์„œ ์‹œํ—˜ ์„ฑ์ ์„ ์‚ฌ์šฉํ•˜์—ฌ ๊ณ„์‚ฐํ•œ ์œ ์˜ํ™•๋ฅ ์ด 0.3%๋ผ๋Š” ์˜๋ฏธ๋Š” ์‹ค์ œ๋กœ ์šฐ๋“ฑ์ƒ์˜ ์„ฑ์ ์„ ๋ถ„์„ํ•ด ๋ณด๋ฉด ์‹ค์ˆ˜๋กœ ์‹œํ—˜์„ ์ž˜ ๋ชป์น˜๋ฅธ ๊ฒฝ์šฐ๋ฅผ ํฌํ•จํ•ด๋„ ํ•ด๋‹น ์ ์ˆ˜๋ณด๋‹ค ๋‚˜์œ ๊ฒฝ์šฐ๋Š” 0.3%์— ์ง€๋‚˜์ง€ ์•Š๋Š”๋‹ค๋Š” ๋œป์ด๋‹ค. ๋”ฐ๋ผ์„œ ์ด๋ ‡๊ฒŒ ์œ ์˜ ํ™•๋ฅ ์˜ ๊ฐ’์ด ์•„์ฃผ ์ž‘์€ ์ˆซ์ž๊ฐ€ ๋‚˜์˜ค๋ฉด ํ•ด๋‹น ๊ท€๋ฌด ๊ฐ€์„ค์„ ๊ธฐ๊ฐํ•  ์ˆ˜ ์žˆ๋‹ค. ์œ ์˜ ์ˆ˜์ค€๊ณผ ๊ธฐ๊ฐ์—ญ ๊ณ„์‚ฐ๋œ ์œ ์˜ ํ™•๋ฅ  ๊ฐ’์— ๋Œ€ํ•ด ๊ท€๋ฌด ๊ฐ€์„ค์„ ๊ธฐ๊ฐํ•˜๋Š”์ง€ ์ฑ„ํƒํ•˜๋Š”์ง€๋ฅผ ๊ฒฐ์ •ํ•  ์ˆ˜ ์žˆ๋Š” ๊ธฐ์ค€ ๊ฐ’์„ ์œ ์˜ ์ˆ˜์ค€(level of significance)๋ผ๊ณ  ํ•œ๋‹ค. ์ผ๋ฐ˜์ ์œผ๋กœ ์‚ฌ์šฉ๋˜๋Š” ์œ ์˜ ์ˆ˜์ค€์€ 1%, 5%, 10% ๋“ฑ์ด๋‹ค. ๊ฒ€์ • ํ†ต๊ณ„๋Ÿ‰์ด ๋‚˜์˜ค๋ฉด ํ™•๋ฅ  ๋ฐ€๋„ ํ•จ์ˆ˜(๋˜๋Š” ๋ˆ„์  ํ™•๋ฅ  ํ•จ์ˆ˜)๋ฅผ ์‚ฌ์šฉํ•˜์—ฌ ์œ ์˜ ํ™•๋ฅ ์„ ๊ณ„์‚ฐํ•  ์ˆ˜ ์žˆ๋Š” ๊ฒƒ์ฒ˜๋Ÿผ ๋ฐ˜๋Œ€๋กœ ํŠน์ •ํ•œ ์œ ์˜ ํ™•๋ฅ  ๊ฐ’์— ๋Œ€ํ•ด ํ•ด๋‹นํ•˜๋Š” ๊ฒ€์ • ํ†ต๊ณ„๋Ÿ‰์„ ๊ณ„์‚ฐํ•  ์ˆ˜๋„ ์žˆ๋‹ค. ์œ ์˜ ์ˆ˜์ค€์— ๋Œ€ํ•ด ๊ณ„์‚ฐ๋œ ๊ฒ€์ • ํ†ต๊ณ„๋Ÿ‰์„ ๊ธฐ๊ฐ์—ญ(critical value)๋ผ๊ณ  ํ•œ๋‹ค. ๊ธฐ๊ฐ์—ญ ๊ฐ’์„ ์•Œ๊ณ  ์žˆ๋‹ค๋ฉด ์œ ์˜ ํ™•๋ฅ ์„ ์œ ์˜ ์ˆ˜์ค€๊ณผ ๋น„๊ตํ•˜๋Š” ๊ฒƒ์ด ์•„๋‹ˆ๋ผ ๊ฒ€์ • ํ†ต๊ณ„๋Ÿ‰์„ ์ง์ ‘ ๊ธฐ๊ฐ์—ญ๊ณผ ๋น„๊ตํ•˜์—ฌ ๊ธฐ๊ฐ/์ฑ„ํƒ ์—ฌ๋ถ€๋ฅผ ํŒ๋‹จํ•  ์ˆ˜๋„ ์žˆ๋‹ค. ๊ฒ€์ •์˜ ์˜ˆ ์ด์ œ ์„œ๋‘์—์„œ ์ œ๊ธฐํ•œ ๋ฌธ์ œ๋ฅผ ๋‹ค์‹œ ํ’€์–ด๋ณด์ž. ๋ฌธ์ œ1 <blockquote> ์–ด๋–ค ๋™์ „์„ 15๋ฒˆ ๋˜์กŒ๋”๋‹ˆ 12๋ฒˆ์ด ์•ž๋ฉด์ด ๋‚˜์™”๋‹ค. ์ด ๋™์ „์€ ํœ˜์–ด์ง€์ง€ ์•Š์€ ๊ณต์ •ํ•œ ๋™์ „(fair coin)์ธ๊ฐ€? </blockquote> ๋™์ „์˜ ์•ž๋ฉด์ด ๋‚˜์˜ค๋Š” ๊ฒƒ์„ ์ˆซ์ž 1, ๋’ท๋ฉด์ด ๋‚˜์˜ค๋Š” ๊ฒƒ์„ ์ˆซ์ž 0์œผ๋กœ ๋‚˜ํƒ€๋‚ธ๋‹ค๋ฉด ์ด ๋ฌธ์ œ๋Š” ๋ฒ ๋ฅด๋ˆ„์ด ํ™•๋ฅ  ๋ณ€์ˆ˜์˜ ๋ชจ์ˆ˜ ๊ฒ€์ • ๋ฌธ์ œ๋กœ ์ƒ๊ฐํ•  ์ˆ˜ ์žˆ๋‹ค. ํŒ๋‹จํ•˜๊ณ ์žํ•˜๋Š” ๊ท€๋ฌด ๊ฐ€์„ค์€ ๋ฒ ๋ฅด๋ˆ„์ด ํ™•๋ฅ  ๋ถ„ํฌ ๋ชจ์ˆ˜ $\theta = 0.5$์ด๋‹ค. ์ด ๋ฌธ์ œ์— ๋Œ€ํ•œ ๊ฒ€์ • ํ†ต๊ณ„๋Ÿ‰์€ 15๋ฒˆ ๋˜์ ธ ์•ž๋ฉด์ด ๋‚˜์˜จ ํšŸ์ˆ˜๊ฐ€ 12์ด๊ณ  ์ด ๊ฐ’์€ ์ž์œ ๋„๊ฐ€ 15์ธ ์ดํ•ญ ๋ถ„ํฌ๋ฅผ ๋”ฐ๋ฅธ๋‹ค. ์ด ๊ฒฝ์šฐ์˜ ์œ ์˜ ํ™•๋ฅ ์„ ๊ณ„์‚ฐํ•˜๋ฉด 1.76% ์ด๋‹ค. $$ \text{Bin}(n \geq 12;N=15) = 0.017578125 $$
1 - sp.stats.binom(15, 0.5).cdf(12-1)
12. ์ถ”์ • ๋ฐ ๊ฒ€์ •/02. ๊ฒ€์ •๊ณผ ์œ ์˜ ํ™•๋ฅ .ipynb
zzsza/Datascience_School
mit
์ด ๊ฐ’์€ 5% ๋ณด๋‹ค๋Š” ์ž‘๊ณ  1% ๋ณด๋‹ค๋Š” ํฌ๊ธฐ ๋•Œ๋ฌธ์— ์œ ์˜ ์ˆ˜์ค€์ด 5% ๋ผ๋ฉด ๊ธฐ๊ฐํ•  ์ˆ˜ ์žˆ์œผ๋ฉฐ(์ฆ‰ ๊ณต์ •ํ•œ ๋™์ „์ด ์•„๋‹ˆ๋ผ๊ณ  ๋งํ•  ์ˆ˜ ์žˆ๋‹ค.) ์œ ์˜ ์ˆ˜์ค€์ด 1% ๋ผ๋ฉด ๊ธฐ๊ฐํ•  ์ˆ˜ ์—†๋‹ค.(์ฆ‰, ๊ณต์ •ํ•œ ๋™์ „์ด ์•„๋‹ˆ๋ผ๊ณ  ๋งํ•  ์ˆ˜ ์—†๋‹ค.) ๋ฌธ์ œ2 <blockquote> ์–ด๋–ค ํŠธ๋ ˆ์ด๋”์˜ ์ผ์ฃผ์ผ ์ˆ˜์ต๋ฅ ์€ ๋‹ค์Œ๊ณผ ๊ฐ™๋‹ค.:<br> -2.5%, -5%, 4.3%, -3.7% -5.6% <br> ์ด ํŠธ๋ ˆ์ด๋”๋Š” ๋ˆ์„ ๋ฒŒ์–ด๋‹ค ์ค„ ์‚ฌ๋žŒ์ธ๊ฐ€, ์•„๋‹ˆ๋ฉด ๋ˆ์„ ์žƒ์„ ์‚ฌ๋žŒ์ธ๊ฐ€? </blockquote> ์ˆ˜์ต๋ฅ ์ด ์ •๊ทœ ๋ถ„ํฌ๋ฅผ ๋”ฐ๋ฅธ ๋‹ค๊ณ  ๊ฐ€์ •ํ•˜๋ฉด ์ด ํŠธ๋ ˆ์ด๋”์˜ ๊ฒ€์ •ํ†ต๊ณ„๋Ÿ‰์€ ๋‹ค์Œ๊ณผ ๊ฐ™์ด ๊ณ„์‚ฐ๋œ๋‹ค. $$ t = \dfrac{m}{\frac{s}{\sqrt{N}}} = -1.4025 $$ ์ด ๊ฒ€์ • ํ†ต๊ณ„๋Ÿ‰์— ๋Œ€ํ•œ ์œ ์˜ ํ™•๋ฅ ์€ 11.67%์ด๋‹ค. $$ F(t=-1.4025;4) = 0.1167 $$
x = np.array([-0.025, -0.05, 0.043, -0.037, -0.056]) t = x.mean()/x.std(ddof=1)*np.sqrt(len(x)) t, sp.stats.t(df=4).cdf(t)
12. ์ถ”์ • ๋ฐ ๊ฒ€์ •/02. ๊ฒ€์ •๊ณผ ์œ ์˜ ํ™•๋ฅ .ipynb
zzsza/Datascience_School
mit
Incremental Incremental returns a sequence of numbers that increase in regular steps.
g = Incremental(start=200, step=4) print_generated_sequence(g, num=20, seed=12345)
notebooks/v6/Primitive_generators.ipynb
maxalbert/tohu
mit
Integer Integer returns a random integer between low and high (both inclusive).
g = Integer(low=100, high=200) print_generated_sequence(g, num=20, seed=12345)
notebooks/v6/Primitive_generators.ipynb
maxalbert/tohu
mit
Timestamp
g = Timestamp(start="2018-01-01 11:22:33", end="2018-02-13 12:23:34") type(next(g)) print_generated_sequence(g, num=10, seed=12345, sep='\n') g = Timestamp(start="2018-01-01 11:22:33", end="2018-02-13 12:23:34").strftime("%-d %b %Y, %H:%M (%a)") type(next(g)) print_generated_sequence(g, num=10, seed=12345, sep='\n')
notebooks/v6/Primitive_generators.ipynb
maxalbert/tohu
mit
Date
g = Date(start="2018-01-01", end="2018-02-13") type(next(g)) print_generated_sequence(g, num=10, seed=12345, sep='\n') g = Date(start="2018-01-01", end="2018-02-13").strftime("%-d %b %Y") type(next(g)) print_generated_sequence(g, num=10, seed=12345, sep='\n')
notebooks/v6/Primitive_generators.ipynb
maxalbert/tohu
mit
Ensure the two .xls data files are in the same folder as the Jupyter notebook Before we proceed, let's make sure the two .xls data files are in the same folder as our running Jupyter notebook. We'll use a Jupyter notebook magic command to print out the contents of the folder that our notebook is in. The %ls command lists the contents of the current folder.
%ls
content/code/matplotlib_plots/stress_strain_curves/stress_strain_curve_with_python.ipynb
ProfessorKazarinoff/staticsite
gpl-3.0
We can see our Jupyter notebook stress_strain_curve_with_python.ipynb as well as the two .xls data files aluminum6061.xls and steel1045.xls are in our current folder. Now that we are sure the two .xls data files are in the same folder as our notebook, we can import the data in the two two .xls files using Panda's pd.read_excel() function. The data from the two excel files will be stored in two Pandas dataframes called steel_df and al_df.
steel_df = pd.read_excel("steel1045.xls") al_df = pd.read_excel("aluminum6061.xls")
content/code/matplotlib_plots/stress_strain_curves/stress_strain_curve_with_python.ipynb
ProfessorKazarinoff/staticsite
gpl-3.0
We can use Pandas .head() method to view the first five rows of each dataframe.
steel_df.head() al_df.head()
content/code/matplotlib_plots/stress_strain_curves/stress_strain_curve_with_python.ipynb
ProfessorKazarinoff/staticsite
gpl-3.0
We see a number of columns in each dataframe. The columns we are interested in are FORCE, EXT, and CH5. Below is a description of what these columns mean. FORCE Force measurements from the load cell in pounds (lb), force in pounds EXT Extension measurements from the mechanical extensometer in percent (%), strain in percent CH5 Extension readings from the laser extensometer in percent (%), strain in percent Create stress and strain series from the FORCE, EXT, and CH5 columns Next we'll create a four Pandas series from the ['CH5'] and ['FORCE'] columns of our al_df and steel_df dataframes. The equations below show how to calculate stress, $\sigma$, and strain, $\epsilon$, from force $F$ and cross-sectional area $A$. Cross-sectional area $A$ is the formula for the area of a circle. For the steel and aluminum samples we tested, the diameter $d$ was $0.506 \ in$. $$ \sigma = \frac{F}{A_0} $$ $$ F \ (kip) = F \ (lb) \times 0.001 $$ $$ A_0 = \pi (d/2)^2 $$ $$ d = 0.506 \ in $$ $$ \epsilon \ (unitless) = \epsilon \ (\%) \times 0.01 $$
strain_steel = steel_df['CH5']*0.01 d_steel = 0.506 # test bar diameter = 0.506 inches stress_steel = (steel_df['FORCE']*0.001)/(np.pi*((d_steel/2)**2)) strain_al = al_df['CH5']*0.01 d_al = 0.506 # test bar diameter = 0.506 inches stress_al = (al_df['FORCE']*0.001)/(np.pi*((d_al/2)**2))
content/code/matplotlib_plots/stress_strain_curves/stress_strain_curve_with_python.ipynb
ProfessorKazarinoff/staticsite
gpl-3.0
Build a quick plot Now that we have the data from the tensile test in four series, we can build a quick plot using Matplotlib's plt.plot() method. The first x,y pair we pass to plt.plot() is strain_steel,stress_steel and the second x,y pair we pass in is strain_al,stress_al. The command plt.show() shows the plot.
plt.plot(strain_steel,stress_steel,strain_al,stress_al) plt.show()
content/code/matplotlib_plots/stress_strain_curves/stress_strain_curve_with_python.ipynb
ProfessorKazarinoff/staticsite
gpl-3.0
We see a plot with two lines. One line represents the steel sample and one line represents the aluminum sample. We can improve our plot by adding axis labels with units, a title and a legend. Add axis labels, title and a legend Axis labels, titles and a legend are added to our plot with three Matplotlib methods. The methods are summarized in the table below. | Matplotlib method | description | example | | --- | --- | --- | | plt.xlabel() | x-axis label | plt.xlabel('strain (in/in)') | | plt.ylabel() | y-axis label | plt.ylabel('stress (ksi)') | | plt.title() | plot title | plt.title('Stress Strain Curve') | | plt.legend() | legend | plt.legend(['steel','aluminum']) | The code cell below shows these four methods in action and produces a plot.
plt.plot(strain_steel,stress_steel,strain_al,stress_al) plt.xlabel('strain (in/in)') plt.ylabel('stress (ksi)') plt.title('Stress Strain Curve of Steel 1045 and Aluminum 6061 in tension') plt.legend(['Steel 1045','Aluminum 6061']) plt.show()
content/code/matplotlib_plots/stress_strain_curves/stress_strain_curve_with_python.ipynb
ProfessorKazarinoff/staticsite
gpl-3.0
The plot we see has two lines, axis labels, a title and a legend. Next we'll save the plot to a .png image file. Save the plot as a .png image Now we can save the plot as a .png image using Matplotlib's plt.savefig() method. The code cell below builds the plot and saves an image file called stress-strain_curve.png. The argument dpi=300 inside of Matplotlib's plt.savefig() method specifies the resolution of our saved image. The image stress-strain_curve.png will be saved in the same folder as our running Jupyter notebook.
plt.plot(strain_steel,stress_steel,strain_al,stress_al) plt.xlabel('strain (in/in)') plt.ylabel('stress (ksi)') plt.title('Stress Strain Curve of Steel 1045 and Aluminum 6061 in tension') plt.legend(['Steel 1045','Aluminum 6061']) plt.savefig('stress-strain_curve.png', dpi=300, bbox_inches='tight') plt.show()
content/code/matplotlib_plots/stress_strain_curves/stress_strain_curve_with_python.ipynb
ProfessorKazarinoff/staticsite
gpl-3.0
Label Network Embeddings The label network embeddings approaches require a working tensorflow installation and the OpenNE library. To install them, run the following code: bash pip install networkx tensorflow git clone https://github.com/thunlp/OpenNE/ pip install -e OpenNE/src For an example we will use the LINE embedding method, one of the most efficient and well-performing state of the art approaches, for the meaning of parameters consult the OpenNE documentation. We select order = 3 which means that the method will take both first and second order proximities between labels for embedding. We select a dimension of 5 times the number of labels, as the linear embeddings tend to need more dimensions for best performance, normalize the label weights to maintain normalized distances in the network and agregate label embedings per sample by summation which is a classical approach.
from skmultilearn.embedding import OpenNetworkEmbedder from skmultilearn.cluster import LabelCooccurrenceGraphBuilder graph_builder = LabelCooccurrenceGraphBuilder(weighted=True, include_self_edges=False) openne_line_params = dict(batch_size=1000, order=3) embedder = OpenNetworkEmbedder( graph_builder, 'LINE', dimension = 5*y_train.shape[1], aggregation_function = 'add', normalize_weights=True, param_dict = openne_line_params )
docs/source/multilabelembeddings.ipynb
scikit-multilearn/scikit-multilearn
bsd-2-clause
We now need to select a regressor and a classifier, we use random forest regressors with MLkNN which is a well working combination often used for multi-label embedding:
from skmultilearn.embedding import EmbeddingClassifier from sklearn.ensemble import RandomForestRegressor from skmultilearn.adapt import MLkNN clf = EmbeddingClassifier( embedder, RandomForestRegressor(n_estimators=10), MLkNN(k=5) ) clf.fit(X_train, y_train) predictions = clf.predict(X_test)
docs/source/multilabelembeddings.ipynb
scikit-multilearn/scikit-multilearn
bsd-2-clause
Cost-Sensitive Label Embedding with Multidimensional Scaling CLEMS is another well-perfoming method in multi-label embeddings. It uses weighted multi-dimensional scaling to embedd a cost-matrix of unique label combinations. The cost-matrix contains the cost of mistaking a given label combination for another, thus real-valued functions are better ideas than discrete ones. Also, the is_score parameter is used to tell the embedder if the cost function is a score (the higher the better) or a loss (the lower the better). Additional params can be also assigned to the weighted scaler. The most efficient parameter for the number of dimensions is equal to number of labels, and is thus enforced here.
from skmultilearn.embedding import CLEMS, EmbeddingClassifier from sklearn.ensemble import RandomForestRegressor from skmultilearn.adapt import MLkNN dimensional_scaler_params = {'n_jobs': -1} clf = EmbeddingClassifier( CLEMS(metrics.jaccard_similarity_score, is_score=True, params=dimensional_scaler_params), RandomForestRegressor(n_estimators=10, n_jobs=-1), MLkNN(k=1), regressor_per_dimension= True ) clf.fit(X_train, y_train) predictions = clf.predict(X_test)
docs/source/multilabelembeddings.ipynb
scikit-multilearn/scikit-multilearn
bsd-2-clause
Scikit-learn based embedders Any scikit-learn embedder can be used for multi-label classification embeddings with scikit-multilearn, just select one and try, here's a spectral embedding approach with 10 dimensions of the embedding space:
from skmultilearn.embedding import SKLearnEmbedder, EmbeddingClassifier from sklearn.manifold import SpectralEmbedding from sklearn.ensemble import RandomForestRegressor from skmultilearn.adapt import MLkNN clf = EmbeddingClassifier( SKLearnEmbedder(SpectralEmbedding(n_components = 10)), RandomForestRegressor(n_estimators=10), MLkNN(k=5) ) clf.fit(X_train, y_train) predictions = clf.predict(X_test)
docs/source/multilabelembeddings.ipynb
scikit-multilearn/scikit-multilearn
bsd-2-clause
On the GeoIDE Wiki they give some example CSW examples to illustrate the range possibilities. Here's one where to search for PACIOOS WMS services:
HTML('<iframe src=https://geo-ide.noaa.gov/wiki/index.php?title=ESRI_Geoportal#PacIOOS_WAF width=950 height=350></iframe>')
CSW/CSW_ISO_Queryables-IOOS.ipynb
rsignell-usgs/notebook
mit
Also on the GEO-IDE Wiki we find the list of UUIDs for each region/provider, which we turn into a dictionary here:
regionids = {'AOOS': '{1E96581F-6B73-45AD-9F9F-2CC3FED76EE6}', 'CENCOOS': '{BE483F24-52E7-4DDE-909F-EE8D4FF118EA}', 'CARICOOS': '{0C4CA8A6-5967-4590-BFE0-B8A21CD8BB01}', 'GCOOS': '{E77E250D-2D65-463C-B201-535775D222C9}', 'GLOS': '{E4A9E4F4-78A4-4BA0-B653-F548D74F68FA}', 'MARACOOS': '{A26F8553-798B-4B1C-8755-1031D752F7C2}', 'NANOOS': '{C6F4754B-30DC-459E-883A-2AC79DA977AB}', 'NAVY': '{FB160233-7C3B-4841-AD4B-EB5AD843E743}', 'NDBC': '{B3F50F38-3DE4-4EC9-ABF8-955887829FCC}', 'NERACOOS': '{E13C88D9-3FF3-4232-A379-84B6A1D7083E}', 'NOS/CO-OPS': '{2F58127E-A139-4A45-83F2-9695FB704306}', 'PacIOOS': '{78C0463E-2FCE-4AB2-A9C9-6A34BF261F52}', 'SCCOOS': '{20A3408F-9EC4-4B36-8E10-BBCDB1E81BDF}', 'SECOORA': '{E796C954-B248-4118-896C-42E6FAA6EDE9}', 'USACE': '{4C080A33-F3C3-4F27-AF16-F85BF3095C41}', 'USGS/CMGP': '{275DFB94-E58A-4157-8C31-C72F372E72E}'} [op.name for op in csw.operations] def dateRange(start_date='1900-01-01',stop_date='2100-01-01',constraint='overlaps'): if constraint == 'overlaps': start = fes.PropertyIsLessThanOrEqualTo(propertyname='startDate', literal=stop_date) stop = fes.PropertyIsGreaterThanOrEqualTo(propertyname='endDate', literal=start_date) elif constraint == 'within': start = fes.PropertyIsGreaterThanOrEqualTo(propertyname='startDate', literal=start_date) stop = fes.PropertyIsLessThanOrEqualTo(propertyname='endDate', literal=stop_date) return start,stop # get specific ServiceType URL from records def service_urls(records,service_string='urn:x-esri:specification:ServiceType:odp:url'): urls=[] for key,rec in records.iteritems(): #create a generator object, and iterate through it until the match is found #if not found, gets the default value (here "none") url = next((d['url'] for d in rec.references if d['scheme'] == service_string), None) if url is not None: urls.append(url) return urls # Perform the CSW query, using Kyle's cool new filters on ISO queryables # find all datasets in a bounding box and temporal extent that have # specific keywords and also can be accessed via OPeNDAP box=[-89.0, 30.0, -87.0, 31.0] start_date='2013-08-21' stop_date='2013-08-30' std_name = 'temperature' service_type='SOS' region_id = regionids['GCOOS'] # convert User Input into FES filters start,stop = dateRange(start_date,stop_date,constraint='overlaps') bbox = fes.BBox(box) keywords = fes.PropertyIsLike(propertyname='anyText', literal=std_name) serviceType = fes.PropertyIsLike(propertyname='apiso:ServiceType', literal=('*%s*' % service_type)) siteid = fes.PropertyIsEqualTo(propertyname='sys.siteuuid', literal=region_id) # try simple query with serviceType and keyword first csw.getrecords2(constraints=[[serviceType,keywords]],maxrecords=15,esn='full') for rec,item in csw.records.iteritems(): print item.title
CSW/CSW_ISO_Queryables-IOOS.ipynb
rsignell-usgs/notebook
mit
The filters can be passed as a list to getrecords2, with AND or OR implied by syntax: <pre> [a,b,c] --> a || b || c [[a,b,c]] --> a && b && c [[a,b],[c],[d],[e]] or [[a,b],c,d,e] --> (a && b) || c || d || e </pre>
# try simple query with serviceType and keyword first csw.getrecords2(constraints=[[serviceType,keywords]],maxrecords=15,esn='full') for rec,item in csw.records.iteritems(): print item.title # check out references for one of the returned records csw.records['NOAA.NOS.CO-OPS SOS'].references # filter for GCOOS SOS data csw.getrecords2(constraints=[[keywords,serviceType,siteid]],maxrecords=15,esn='full') for rec,item in csw.records.iteritems(): print item.title # filter for SOS data in BBOX csw.getrecords2(constraints=[[keywords,serviceType,bbox]],maxrecords=15,esn='full') for rec,item in csw.records.iteritems(): print item.title urls = service_urls(csw.records,service_string='urn:x-esri:specification:ServiceType:sos:url') print "\n".join(urls) urls = [url for url in urls if 'oostethys' not in url] print "\n".join(urls) sos = SensorObservationService(urls[0]) getob = sos.get_operation_by_name('getobservation') print getob.parameters off = sos.offerings[1] offerings = [off.name] responseFormat = off.response_formats[0] observedProperties = [off.observed_properties[0]] print sos.offerings[0]
CSW/CSW_ISO_Queryables-IOOS.ipynb
rsignell-usgs/notebook
mit
Implement Preprocessing Function Text to Word Ids As you did with other RNNs, you must turn the text into a number so the computer can understand it. In the function text_to_ids(), you'll turn source_text and target_text from words to ids. However, you need to add the &lt;EOS&gt; word id at the end of target_text. This will help the neural network predict when the sentence should end. You can get the &lt;EOS&gt; word id by doing: python target_vocab_to_int['&lt;EOS&gt;'] You can get other word ids using source_vocab_to_int and target_vocab_to_int.
def text_to_ids(source_text, target_text, source_vocab_to_int, target_vocab_to_int): """ Convert source and target text to proper word ids :param source_text: String that contains all the source text. :param target_text: String that contains all the target text. :param source_vocab_to_int: Dictionary to go from the source words to an id :param target_vocab_to_int: Dictionary to go from the target words to an id :return: A tuple of lists (source_id_text, target_id_text) """ source_id_text = [[source_vocab_to_int[word] for word in line.split()] for line in source_text.split('\n')] target_id_text = [[target_vocab_to_int[word] for word in line.split()] + [target_vocab_to_int['<EOS>']] for line in target_text.split('\n')] return source_id_text, target_id_text """ DON'T MODIFY ANYTHING IN THIS CELL THAT IS BELOW THIS LINE """ tests.test_text_to_ids(text_to_ids)
language-translation/dlnd_language_translation.ipynb
mu4farooqi/deep-learning-projects
gpl-3.0
Check Point This is your first checkpoint. If you ever decide to come back to this notebook or have to restart the notebook, you can start from here. The preprocessed data has been saved to disk.
""" DON'T MODIFY ANYTHING IN THIS CELL """ import numpy as np import helper import problem_unittests as tests (source_int_text, target_int_text), (source_vocab_to_int, target_vocab_to_int), _ = helper.load_preprocess()
language-translation/dlnd_language_translation.ipynb
mu4farooqi/deep-learning-projects
gpl-3.0
Check the Version of TensorFlow and Access to GPU This will check to make sure you have the correct version of TensorFlow and access to a GPU
""" DON'T MODIFY ANYTHING IN THIS CELL """ from distutils.version import LooseVersion import warnings import tensorflow as tf from tensorflow.python.layers.core import Dense # Check TensorFlow Version assert LooseVersion(tf.__version__) >= LooseVersion('1.1'), 'Please use TensorFlow version 1.1 or newer' print('TensorFlow Version: {}'.format(tf.__version__)) # Check for a GPU if not tf.test.gpu_device_name(): warnings.warn('No GPU found. Please use a GPU to train your neural network.') else: print('Default GPU Device: {}'.format(tf.test.gpu_device_name()))
language-translation/dlnd_language_translation.ipynb
mu4farooqi/deep-learning-projects
gpl-3.0
Build the Neural Network You'll build the components necessary to build a Sequence-to-Sequence model by implementing the following functions below: - model_inputs - process_decoder_input - encoding_layer - decoding_layer_train - decoding_layer_infer - decoding_layer - seq2seq_model Input Implement the model_inputs() function to create TF Placeholders for the Neural Network. It should create the following placeholders: Input text placeholder named "input" using the TF Placeholder name parameter with rank 2. Targets placeholder with rank 2. Learning rate placeholder with rank 0. Keep probability placeholder named "keep_prob" using the TF Placeholder name parameter with rank 0. Target sequence length placeholder named "target_sequence_length" with rank 1 Max target sequence length tensor named "max_target_len" getting its value from applying tf.reduce_max on the target_sequence_length placeholder. Rank 0. Source sequence length placeholder named "source_sequence_length" with rank 1 Return the placeholders in the following the tuple (input, targets, learning rate, keep probability, target sequence length, max target sequence length, source sequence length) Process Decoder Input Implement process_decoder_input by removing the last word id from each batch in target_data and concat the GO ID to the begining of each batch.
def model_inputs(): """ Create TF Placeholders for input, targets, learning rate, and lengths of source and target sequences. :return: Tuple (input, targets, learning rate, keep probability, target sequence length, max target sequence length, source sequence length) """ input_data = tf.placeholder(tf.int32, [None, None], name='input') targets = tf.placeholder(tf.int32, [None, None], name='targets') lr = tf.placeholder(tf.float32, name='learning_rate') keep_prob = tf.placeholder(tf.float32, name='keep_prob') target_sequence_length = tf.placeholder(tf.int32, (None,), name='target_sequence_length') max_target_sequence_length = tf.reduce_max(target_sequence_length, name='max_target_len') source_sequence_length = tf.placeholder(tf.int32, (None,), name='source_sequence_length') return input_data, targets, lr, keep_prob, target_sequence_length, max_target_sequence_length, source_sequence_length """ DON'T MODIFY ANYTHING IN THIS CELL THAT IS BELOW THIS LINE """ tests.test_model_inputs(model_inputs) def process_decoder_input(target_data, target_vocab_to_int, batch_size): """ Preprocess target data for encoding :param target_data: Target Placehoder :param target_vocab_to_int: Dictionary to go from the target words to an id :param batch_size: Batch Size :return: Preprocessed target data """ ending = tf.strided_slice(target_data, [0, 0], [batch_size, -1], [1, 1]) return tf.concat([tf.fill([batch_size, 1], target_vocab_to_int['<GO>']), ending], 1) """ DON'T MODIFY ANYTHING IN THIS CELL THAT IS BELOW THIS LINE """ tests.test_process_encoding_input(process_decoder_input)
language-translation/dlnd_language_translation.ipynb
mu4farooqi/deep-learning-projects
gpl-3.0
Encoding Implement encoding_layer() to create a Encoder RNN layer: * Embed the encoder input using tf.contrib.layers.embed_sequence * Construct a stacked tf.contrib.rnn.LSTMCell wrapped in a tf.contrib.rnn.DropoutWrapper * Pass cell and embedded input to tf.nn.dynamic_rnn()
from imp import reload reload(tests) def encoding_layer(rnn_inputs, rnn_size, num_layers, keep_prob, source_sequence_length, source_vocab_size, encoding_embedding_size): """ Create encoding layer :param rnn_inputs: Inputs for the RNN :param rnn_size: RNN Size :param num_layers: Number of layers :param keep_prob: Dropout keep probability :param source_sequence_length: a list of the lengths of each sequence in the batch :param source_vocab_size: vocabulary size of source data :param encoding_embedding_size: embedding size of source data :return: tuple (RNN output, RNN state) """ rnn_inputs = tf.contrib.layers.embed_sequence(rnn_inputs, source_vocab_size, encoding_embedding_size) lstm = lambda: tf.contrib.rnn.DropoutWrapper(tf.contrib.rnn.LSTMCell(rnn_size), output_keep_prob=keep_prob) return tf.nn.dynamic_rnn(tf.contrib.rnn.MultiRNNCell([lstm() for _ in range(num_layers)]), rnn_inputs, source_sequence_length, dtype=tf.float32) """ DON'T MODIFY ANYTHING IN THIS CELL THAT IS BELOW THIS LINE """ tests.test_encoding_layer(encoding_layer)
language-translation/dlnd_language_translation.ipynb
mu4farooqi/deep-learning-projects
gpl-3.0
Decoding - Training Create a training decoding layer: * Create a tf.contrib.seq2seq.TrainingHelper * Create a tf.contrib.seq2seq.BasicDecoder * Obtain the decoder outputs from tf.contrib.seq2seq.dynamic_decode
def decoding_layer_train(encoder_state, dec_cell, dec_embed_input, target_sequence_length, max_summary_length, output_layer, keep_prob): """ Create a decoding layer for training :param encoder_state: Encoder State :param dec_cell: Decoder RNN Cell :param dec_embed_input: Decoder embedded input :param target_sequence_length: The lengths of each sequence in the target batch :param max_summary_length: The length of the longest sequence in the batch :param output_layer: Function to apply the output layer :param keep_prob: Dropout keep probability :return: BasicDecoderOutput containing training logits and sample_id """ taining_helper = tf.contrib.seq2seq.TrainingHelper(dec_embed_input, target_sequence_length) decoder = tf.contrib.seq2seq.BasicDecoder(dec_cell, taining_helper, encoder_state, output_layer) output = tf.contrib.seq2seq.dynamic_decode(decoder, maximum_iterations=max_summary_length) return output[0] """ DON'T MODIFY ANYTHING IN THIS CELL THAT IS BELOW THIS LINE """ tests.test_decoding_layer_train(decoding_layer_train)
language-translation/dlnd_language_translation.ipynb
mu4farooqi/deep-learning-projects
gpl-3.0
Decoding - Inference Create inference decoder: * Create a tf.contrib.seq2seq.GreedyEmbeddingHelper * Create a tf.contrib.seq2seq.BasicDecoder * Obtain the decoder outputs from tf.contrib.seq2seq.dynamic_decode
def decoding_layer_infer(encoder_state, dec_cell, dec_embeddings, start_of_sequence_id, end_of_sequence_id, max_target_sequence_length, vocab_size, output_layer, batch_size, keep_prob): """ Create a decoding layer for inference :param encoder_state: Encoder state :param dec_cell: Decoder RNN Cell :param dec_embeddings: Decoder embeddings :param start_of_sequence_id: GO ID :param end_of_sequence_id: EOS Id :param max_target_sequence_length: Maximum length of target sequences :param vocab_size: Size of decoder/target vocabulary :param decoding_scope: TenorFlow Variable Scope for decoding :param output_layer: Function to apply the output layer :param batch_size: Batch size :param keep_prob: Dropout keep probability :return: BasicDecoderOutput containing inference logits and sample_id """ start_tokens = tf.tile(tf.constant([start_of_sequence_id], dtype=tf.int32), [batch_size], name='start_tokens') taining_helper = tf.contrib.seq2seq.GreedyEmbeddingHelper(dec_embeddings, start_tokens, end_of_sequence_id) decoder = tf.contrib.seq2seq.BasicDecoder(dec_cell, taining_helper, encoder_state, output_layer) output = tf.contrib.seq2seq.dynamic_decode(decoder, maximum_iterations=max_target_sequence_length) return output[0] """ DON'T MODIFY ANYTHING IN THIS CELL THAT IS BELOW THIS LINE """ tests.test_decoding_layer_infer(decoding_layer_infer)
language-translation/dlnd_language_translation.ipynb
mu4farooqi/deep-learning-projects
gpl-3.0
Build the Decoding Layer Implement decoding_layer() to create a Decoder RNN layer. Embed the target sequences Construct the decoder LSTM cell (just like you constructed the encoder cell above) Create an output layer to map the outputs of the decoder to the elements of our vocabulary Use the your decoding_layer_train(encoder_state, dec_cell, dec_embed_input, target_sequence_length, max_target_sequence_length, output_layer, keep_prob) function to get the training logits. Use your decoding_layer_infer(encoder_state, dec_cell, dec_embeddings, start_of_sequence_id, end_of_sequence_id, max_target_sequence_length, vocab_size, output_layer, batch_size, keep_prob) function to get the inference logits. Note: You'll need to use tf.variable_scope to share variables between training and inference.
def decoding_layer(dec_input, encoder_state, target_sequence_length, max_target_sequence_length, rnn_size, num_layers, target_vocab_to_int, target_vocab_size, batch_size, keep_prob, decoding_embedding_size): """ Create decoding layer :param dec_input: Decoder input :param encoder_state: Encoder state :param target_sequence_length: The lengths of each sequence in the target batch :param max_target_sequence_length: Maximum length of target sequences :param rnn_size: RNN Size :param num_layers: Number of layers :param target_vocab_to_int: Dictionary to go from the target words to an id :param target_vocab_size: Size of target vocabulary :param batch_size: The size of the batch :param keep_prob: Dropout keep probability :param decoding_embedding_size: Decoding embedding size :return: Tuple of (Training BasicDecoderOutput, Inference BasicDecoderOutput) """ dec_embeddings = tf.Variable(tf.random_uniform([target_vocab_size, decoding_embedding_size])) dec_embed_input = tf.nn.embedding_lookup(dec_embeddings, dec_input) lstm = lambda: tf.contrib.rnn.DropoutWrapper(tf.contrib.rnn.LSTMCell(rnn_size), output_keep_prob=keep_prob) dec_cell = tf.contrib.rnn.MultiRNNCell([lstm() for _ in range(num_layers)]) output_layer = Dense(target_vocab_size, kernel_initializer = tf.truncated_normal_initializer(mean = 0.0, stddev=0.1)) with tf.variable_scope('decoder'): dec_train = decoding_layer_train(encoder_state, dec_cell, dec_embed_input, target_sequence_length, max_target_sequence_length, output_layer, keep_prob) with tf.variable_scope('decoder', reuse=True): dec_infer = decoding_layer_infer(encoder_state, dec_cell, dec_embeddings, target_vocab_to_int['<GO>'], target_vocab_to_int['<EOS>'], max_target_sequence_length, target_vocab_size, output_layer, batch_size, keep_prob) return dec_train, dec_infer """ DON'T MODIFY ANYTHING IN THIS CELL THAT IS BELOW THIS LINE """ tests.test_decoding_layer(decoding_layer)
language-translation/dlnd_language_translation.ipynb
mu4farooqi/deep-learning-projects
gpl-3.0
Build the Neural Network Apply the functions you implemented above to: Encode the input using your encoding_layer(rnn_inputs, rnn_size, num_layers, keep_prob, source_sequence_length, source_vocab_size, encoding_embedding_size). Process target data using your process_decoder_input(target_data, target_vocab_to_int, batch_size) function. Decode the encoded input using your decoding_layer(dec_input, enc_state, target_sequence_length, max_target_sentence_length, rnn_size, num_layers, target_vocab_to_int, target_vocab_size, batch_size, keep_prob, dec_embedding_size) function.
def seq2seq_model(input_data, target_data, keep_prob, batch_size, source_sequence_length, target_sequence_length, max_target_sentence_length, source_vocab_size, target_vocab_size, enc_embedding_size, dec_embedding_size, rnn_size, num_layers, target_vocab_to_int): """ Build the Sequence-to-Sequence part of the neural network :param input_data: Input placeholder :param target_data: Target placeholder :param keep_prob: Dropout keep probability placeholder :param batch_size: Batch Size :param source_sequence_length: Sequence Lengths of source sequences in the batch :param target_sequence_length: Sequence Lengths of target sequences in the batch :param source_vocab_size: Source vocabulary size :param target_vocab_size: Target vocabulary size :param enc_embedding_size: Decoder embedding size :param dec_embedding_size: Encoder embedding size :param rnn_size: RNN Size :param num_layers: Number of layers :param target_vocab_to_int: Dictionary to go from the target words to an id :return: Tuple of (Training BasicDecoderOutput, Inference BasicDecoderOutput) """ _, encoder_state = encoding_layer(input_data, rnn_size, num_layers, keep_prob, source_sequence_length, source_vocab_size, enc_embedding_size) dec_input = process_decoder_input(target_data, target_vocab_to_int, batch_size) return decoding_layer(dec_input, encoder_state, target_sequence_length, max_target_sentence_length, rnn_size, num_layers, target_vocab_to_int, target_vocab_size, batch_size, keep_prob, dec_embedding_size) """ DON'T MODIFY ANYTHING IN THIS CELL THAT IS BELOW THIS LINE """ tests.test_seq2seq_model(seq2seq_model)
language-translation/dlnd_language_translation.ipynb
mu4farooqi/deep-learning-projects
gpl-3.0
Neural Network Training Hyperparameters Tune the following parameters: Set epochs to the number of epochs. Set batch_size to the batch size. Set rnn_size to the size of the RNNs. Set num_layers to the number of layers. Set encoding_embedding_size to the size of the embedding for the encoder. Set decoding_embedding_size to the size of the embedding for the decoder. Set learning_rate to the learning rate. Set keep_probability to the Dropout keep probability Set display_step to state how many steps between each debug output statement
# Number of Epochs epochs = 3 # Batch Size batch_size = 256 # RNN Size rnn_size = 256 # Number of Layers num_layers = 2 # Embedding Size encoding_embedding_size = 300 decoding_embedding_size = 300 # Learning Rate learning_rate = 0.01 # Dropout Keep Probability keep_probability = 0.75 display_step = 20
language-translation/dlnd_language_translation.ipynb
mu4farooqi/deep-learning-projects
gpl-3.0
Build the Graph Build the graph using the neural network you implemented.
""" DON'T MODIFY ANYTHING IN THIS CELL """ save_path = 'checkpoints/dev' (source_int_text, target_int_text), (source_vocab_to_int, target_vocab_to_int), _ = helper.load_preprocess() max_target_sentence_length = max([len(sentence) for sentence in source_int_text]) train_graph = tf.Graph() with train_graph.as_default(): input_data, targets, lr, keep_prob, target_sequence_length, max_target_sequence_length, source_sequence_length = model_inputs() #sequence_length = tf.placeholder_with_default(max_target_sentence_length, None, name='sequence_length') input_shape = tf.shape(input_data) train_logits, inference_logits = seq2seq_model(tf.reverse(input_data, [-1]), targets, keep_prob, batch_size, source_sequence_length, target_sequence_length, max_target_sequence_length, len(source_vocab_to_int), len(target_vocab_to_int), encoding_embedding_size, decoding_embedding_size, rnn_size, num_layers, target_vocab_to_int) training_logits = tf.identity(train_logits.rnn_output, name='logits') inference_logits = tf.identity(inference_logits.sample_id, name='predictions') masks = tf.sequence_mask(target_sequence_length, max_target_sequence_length, dtype=tf.float32, name='masks') with tf.name_scope("optimization"): # Loss function cost = tf.contrib.seq2seq.sequence_loss( training_logits, targets, masks) # Optimizer optimizer = tf.train.AdamOptimizer(lr) # Gradient Clipping gradients = optimizer.compute_gradients(cost) capped_gradients = [(tf.clip_by_value(grad, -1., 1.), var) for grad, var in gradients if grad is not None] train_op = optimizer.apply_gradients(capped_gradients)
language-translation/dlnd_language_translation.ipynb
mu4farooqi/deep-learning-projects
gpl-3.0
Batch and pad the source and target sequences
""" DON'T MODIFY ANYTHING IN THIS CELL """ def pad_sentence_batch(sentence_batch, pad_int): """Pad sentences with <PAD> so that each sentence of a batch has the same length""" max_sentence = max([len(sentence) for sentence in sentence_batch]) return [sentence + [pad_int] * (max_sentence - len(sentence)) for sentence in sentence_batch] def get_batches(sources, targets, batch_size, source_pad_int, target_pad_int): """Batch targets, sources, and the lengths of their sentences together""" for batch_i in range(0, len(sources)//batch_size): start_i = batch_i * batch_size # Slice the right amount for the batch sources_batch = sources[start_i:start_i + batch_size] targets_batch = targets[start_i:start_i + batch_size] # Pad pad_sources_batch = np.array(pad_sentence_batch(sources_batch, source_pad_int)) pad_targets_batch = np.array(pad_sentence_batch(targets_batch, target_pad_int)) # Need the lengths for the _lengths parameters pad_targets_lengths = [] for target in pad_targets_batch: pad_targets_lengths.append(len(target)) pad_source_lengths = [] for source in pad_sources_batch: pad_source_lengths.append(len(source)) yield pad_sources_batch, pad_targets_batch, pad_source_lengths, pad_targets_lengths
language-translation/dlnd_language_translation.ipynb
mu4farooqi/deep-learning-projects
gpl-3.0
Train Train the neural network on the preprocessed data. If you have a hard time getting a good loss, check the forms to see if anyone is having the same problem.
""" DON'T MODIFY ANYTHING IN THIS CELL """ def get_accuracy(target, logits): """ Calculate accuracy """ max_seq = max(target.shape[1], logits.shape[1]) if max_seq - target.shape[1]: target = np.pad( target, [(0,0),(0,max_seq - target.shape[1])], 'constant') if max_seq - logits.shape[1]: logits = np.pad( logits, [(0,0),(0,max_seq - logits.shape[1])], 'constant') return np.mean(np.equal(target, logits)) # Split data to training and validation sets train_source = source_int_text[batch_size:] train_target = target_int_text[batch_size:] valid_source = source_int_text[:batch_size] valid_target = target_int_text[:batch_size] (valid_sources_batch, valid_targets_batch, valid_sources_lengths, valid_targets_lengths ) = next(get_batches(valid_source, valid_target, batch_size, source_vocab_to_int['<PAD>'], target_vocab_to_int['<PAD>'])) with tf.Session(graph=train_graph) as sess: sess.run(tf.global_variables_initializer()) for epoch_i in range(epochs): for batch_i, (source_batch, target_batch, sources_lengths, targets_lengths) in enumerate( get_batches(train_source, train_target, batch_size, source_vocab_to_int['<PAD>'], target_vocab_to_int['<PAD>'])): _, loss = sess.run( [train_op, cost], {input_data: source_batch, targets: target_batch, lr: learning_rate, target_sequence_length: targets_lengths, source_sequence_length: sources_lengths, keep_prob: keep_probability}) if batch_i % display_step == 0 and batch_i > 0: batch_train_logits = sess.run( inference_logits, {input_data: source_batch, source_sequence_length: sources_lengths, target_sequence_length: targets_lengths, keep_prob: 1.0}) batch_valid_logits = sess.run( inference_logits, {input_data: valid_sources_batch, source_sequence_length: valid_sources_lengths, target_sequence_length: valid_targets_lengths, keep_prob: 1.0}) train_acc = get_accuracy(target_batch, batch_train_logits) valid_acc = get_accuracy(valid_targets_batch, batch_valid_logits) print('Epoch {:>3} Batch {:>4}/{} - Train Accuracy: {:>6.4f}, Validation Accuracy: {:>6.4f}, Loss: {:>6.4f}' .format(epoch_i, batch_i, len(source_int_text) // batch_size, train_acc, valid_acc, loss)) # Save Model saver = tf.train.Saver() saver.save(sess, save_path) print('Model Trained and Saved')
language-translation/dlnd_language_translation.ipynb
mu4farooqi/deep-learning-projects
gpl-3.0
Sentence to Sequence To feed a sentence into the model for translation, you first need to preprocess it. Implement the function sentence_to_seq() to preprocess new sentences. Convert the sentence to lowercase Convert words into ids using vocab_to_int Convert words not in the vocabulary, to the &lt;UNK&gt; word id.
def sentence_to_seq(sentence, vocab_to_int): """ Convert a sentence to a sequence of ids :param sentence: String :param vocab_to_int: Dictionary to go from the words to an id :return: List of word ids """ return [vocab_to_int.get(word, vocab_to_int['<UNK>']) for word in sentence.lower().split()] """ DON'T MODIFY ANYTHING IN THIS CELL THAT IS BELOW THIS LINE """ tests.test_sentence_to_seq(sentence_to_seq)
language-translation/dlnd_language_translation.ipynb
mu4farooqi/deep-learning-projects
gpl-3.0
Translate This will translate translate_sentence from English to French.
translate_sentence = 'he saw a old yellow truck .' """ DON'T MODIFY ANYTHING IN THIS CELL """ translate_sentence = sentence_to_seq(translate_sentence, source_vocab_to_int) loaded_graph = tf.Graph() with tf.Session(graph=loaded_graph) as sess: # Load saved model loader = tf.train.import_meta_graph(load_path + '.meta') loader.restore(sess, load_path) input_data = loaded_graph.get_tensor_by_name('input:0') logits = loaded_graph.get_tensor_by_name('predictions:0') target_sequence_length = loaded_graph.get_tensor_by_name('target_sequence_length:0') source_sequence_length = loaded_graph.get_tensor_by_name('source_sequence_length:0') keep_prob = loaded_graph.get_tensor_by_name('keep_prob:0') translate_logits = sess.run(logits, {input_data: [translate_sentence]*batch_size, target_sequence_length: [len(translate_sentence)*2]*batch_size, source_sequence_length: [len(translate_sentence)]*batch_size, keep_prob: 1.0})[0] print('Input') print(' Word Ids: {}'.format([i for i in translate_sentence])) print(' English Words: {}'.format([source_int_to_vocab[i] for i in translate_sentence])) print('\nPrediction') print(' Word Ids: {}'.format([i for i in translate_logits])) print(' French Words: {}'.format(" ".join([target_int_to_vocab[i] for i in translate_logits])))
language-translation/dlnd_language_translation.ipynb
mu4farooqi/deep-learning-projects
gpl-3.0
We will create a Twitter API handle for fetching data Inorder to qualify for a Twitter API handle you need to be a Phone Verified Twitter user. Goto Twitter settings page twitter.com/settings/account Choose Mobile tab on left pane, then enter your phone number and verify by OTP Now you should be able to register new API handle for your account for programmatic tweeting Now goto Twitter Application Management page Click Create New Appbutton Enter a Unique App name(global namespace), you might have to try few time to get it correct Description can be anything you wish website can be some <yourname>.com, you dont really have to own the domain Leave the callback URL empty, agree to the terms and condition unconditionally Click create You can find the api credentials in Application Management consol Choose the App and goto keys and access tokens tab to get API_KEY, API_SECRET, ACCESS_TOKEN and ACCESS_TOKEN_SECRET RUN THE CODE BLOCK BELOW ONLY ON FIRST TIME YOU CONFIGURE THE TWITTER API
# make sure to exclued this folder in git ignore path_to_cred_file = path.abspath('../restricted/api_credentials.p') # we will store twitter handle credentials in a pickle file (object de-serialization) # code for pickling credentials need to be run only once during initial configuration # fill the following dictionary with your twitter credentials twitter_credentials = {'api_key':'API_KEY', \ 'api_secret':'API_SECRET', \ 'access_token':'ACCESS_TOKEN', \ 'access_token_secret':'ACCESS_TOKEN_SECRET'} pickle.dump(twitter_credentials,open(path_to_cred_file, "wb")) print("Pickled credentials saved to :\n"+path_to_cred_file+"\n") print("\n".join(["{:20} : {}".format(key,value) for key,value in twitter_credentials.items()]))
sentiment_analysis/twitter_sentiment_analysis-jallikattu/code/twitter_sentiment_analysis-jallikattu_FINAL.ipynb
nixphix/ml-projects
mit
From second run you can load the credentials securely form stored file If you want to check the credentials uncomment the last line in below code block
# make sure to exclued this folder in git ignore path_to_cred_file = path.abspath('../restricted/api_credentials.p') # load saved twitter credentials twitter_credentials = pickle.load(open(path_to_cred_file,'rb')) #print("\n".join(["{:20} : {}".format(key,value) for key,value in twitter_credentials.items()]))
sentiment_analysis/twitter_sentiment_analysis-jallikattu/code/twitter_sentiment_analysis-jallikattu_FINAL.ipynb
nixphix/ml-projects
mit
Creating an Open Auth Instance With the created api and token we will open an open auth instance to authenticate our twitter account. If you feel that your twitter api credentials have been compromised you can just generate a new set of access token-secret pair, access token is like RSA to authenticate your api key.
# lets create an open authentication handler and initialize it with our twitter handlers api key auth = tweepy.OAuthHandler(twitter_credentials['api_key'],twitter_credentials['api_secret']) # access token is like password for the api key, auth.set_access_token(twitter_credentials['access_token'],twitter_credentials['access_token_secret'])
sentiment_analysis/twitter_sentiment_analysis-jallikattu/code/twitter_sentiment_analysis-jallikattu_FINAL.ipynb
nixphix/ml-projects
mit
Twitter API Handle Tweepy comes with a Twitter API wrapper class called 'API', passing the open auth instance to this API creates a live Twitter handle to our account. ATTENTION: Please beware that this is a handle you your own account not any pseudo account, if you tweet something with this it will be your tweet This is the reason I took care not to expose my api credentials, if you expose anyone can mess up your Twitter account. Let's open the twitter handle and print the Name and Location of the twitter account owner, you should be seeing your name.
# lets create an instance of twitter api wrapper api = tweepy.API(auth) # lets do some self check user = api.me() print("{}\n{}".format(user.name,user.location))
sentiment_analysis/twitter_sentiment_analysis-jallikattu/code/twitter_sentiment_analysis-jallikattu_FINAL.ipynb
nixphix/ml-projects
mit
Inspiration for this Project I drew inspiration for this project from the ongoing issue on traditional bull fighting AKA Jallikattu. Here I'm trying read pulse of the people based on tweets. We are searching for key word Jallikattu in Twitters public tweets, in the retured search result we are taking 150 tweets to do our Sentiment Analysis. Please dont go for large number of tweets there is an upper limit of 450 tweets, for more on api rate limits checkout Twitter Developer Doc.
# now lets get some data to check the sentiment on it # lets search for key word jallikattu and check the sentiment on it query = 'jallikattu' tweet_cnt = 150 peta_tweets = api.search(q=query,count=tweet_cnt)
sentiment_analysis/twitter_sentiment_analysis-jallikattu/code/twitter_sentiment_analysis-jallikattu_FINAL.ipynb
nixphix/ml-projects
mit
Processing Tweets Once we get the tweets, we will iterate through the tweets and do following oprations 1. Pass the tweet text to TextBlob to process the tweet 2. Processed tweets will have two attributes * Polarity which is a numerical value between -1 to 1, the sentiment of the text can be infered from this. * Subjectivity this shows wheather the text is stated as a fact or an opinion, value ranges from 0 to 1 3. For each tweet we will find sentiment of the text (positive, neutral or negative) and update a counter variable accordingly, this counter is later ploted as a pie chart. 4. Then we pass the tweet text to a regular expression to extract hash tags, which we later use to create an awesome word cloud visualization.
# lets go over the tweets sentiment_polarity = [0,0,0] tags = [] for tweet in peta_tweets: processed_tweet = textblob.TextBlob(tweet.text) polarity = processed_tweet.sentiment.polarity upd_index = 0 if polarity > 0 else (1 if polarity == 0 else 2) sentiment_polarity[upd_index] = sentiment_polarity[upd_index]+1 tags.extend(re.findall(r"#(\w+)", tweet.text)) #print(tweet.text) #print(processed_tweet.sentiment,'\n') sentiment_label = ['Positive','Neutral','Negative'] #print("\n".join(["{:8} tweets count {}".format(s,val) for s,val in zip(sentiment_label,sentiment_polarity)])) # plotting sentiment pie chart colors = ['yellowgreen', 'gold', 'coral'] # lets explode the positive sentiment for visual appeal explode = (0.1, 0, 0) plt.pie(sentiment_polarity,labels=sentiment_label,colors=colors,explode=explode,shadow=True,autopct='%1.1f%%') plt.axis('equal') plt.legend(bbox_to_anchor=(1.3,1)) plt.title('Twitter Sentiment on \"'+query+'\"') plt.show()
sentiment_analysis/twitter_sentiment_analysis-jallikattu/code/twitter_sentiment_analysis-jallikattu_FINAL.ipynb
nixphix/ml-projects
mit
Sentiment Analysis We can see that majority is neutral which is contributed by 1. Tweets with media only(photo, video) 2. Tweets in regional language. Textblob do not work on our indian languages. 3. Some tweets contains only stop words or the words that do not give any positive or negative perspective. 4. Polarity is calculated by the number of positive words like "great, awesome, etc." or negative words like "hate, bad, etc" One more point to note is that TextBlob is not a complete NLP package it does not do context aware search, such sophisticated deep learing abilities are available only with likes of Google.
# lets process the hash tags in the tweets and make a word cloud visualization # normalizing tags by converting all tags to lowercase tags = [t.lower() for t in tags] # get unique count of tags to take count for each uniq_tags = list(set(tags)) tag_count = [] # for each unique hash tag take frequency of occurance for tag in uniq_tags: tag_count.append((tag,tags.count(tag))) # lets print the top five tags tag_count =sorted(tag_count,key=lambda x:-x[1])[:5] print("\n".join(["{:8} {}".format(tag,val) for tag,val in tag_count]))
sentiment_analysis/twitter_sentiment_analysis-jallikattu/code/twitter_sentiment_analysis-jallikattu_FINAL.ipynb
nixphix/ml-projects
mit
Simple Word Cloud with Twitter #tags Let us viualize the tags used in for Jallikattu by creating a tag cloud. The wordcloud package takes a single string of tags separated by whitespace. We will concatinate the tags and pass it to generate method to create a tag cloud image.
# we will create a vivid tag cloud visualization # creating a single string of texts from tags, the tag's font size is proportional to its frequency text = " ".join(tags) # this generates an image from the long string, if you wish you may save it to local wc = WordCloud().generate(text) # we will display the image with matplotlibs image show, removed x and y axis ticks plt.imshow(wc) plt.axis("off") plt.show()
sentiment_analysis/twitter_sentiment_analysis-jallikattu/code/twitter_sentiment_analysis-jallikattu_FINAL.ipynb
nixphix/ml-projects
mit
Masked Word Cloud The tag cloud can be masked using a grascale stencil image the wordcloud package neatly arranges the word in side the mask image. I have supreimposed generated word cloud image on to the mask image to provide a detailing otherwise the background of the word cloud will be white and it will appeare like words are hanging in space instead. Inorder to make the image superimposing work well, we need to manipulate image transparency using image alpha channel. If you look at the visual only fine detail of mask image is seen in the tag cloud this is bacause word cloud is layed on mask image and the transparency of word cloud image is 90% so only 10% of mask image is seen.
# we can also create a masked word cloud from the tags by using grayscale image as stencil # lets load the mask image from local bull_mask = np.array(Image.open(path.abspath('../asset/bull_mask_1.jpg'))) wc_mask = WordCloud(background_color="white", mask=bull_mask).generate(text) mask_image = plt.imshow(bull_mask, cmap=plt.cm.gray) word_cloud = plt.imshow(wc_mask,alpha=0.9) plt.axis("off") plt.title("Twitter Hash Tag Word Cloud for "+query) plt.show()
sentiment_analysis/twitter_sentiment_analysis-jallikattu/code/twitter_sentiment_analysis-jallikattu_FINAL.ipynb
nixphix/ml-projects
mit
Gromov-Wasserstein example This example is designed to show how to use the Gromov-Wassertsein distance computation in POT.
# Author: Erwan Vautier <[email protected]> # Nicolas Courty <[email protected]> # # License: MIT License import scipy as sp import numpy as np import matplotlib.pylab as pl from mpl_toolkits.mplot3d import Axes3D # noqa import ot
docs/source/auto_examples/plot_gromov.ipynb
rflamary/POT
mit
Sample two Gaussian distributions (2D and 3D) The Gromov-Wasserstein distance allows to compute distances with samples that do not belong to the same metric space. For demonstration purpose, we sample two Gaussian distributions in 2- and 3-dimensional spaces.
n_samples = 30 # nb samples mu_s = np.array([0, 0]) cov_s = np.array([[1, 0], [0, 1]]) mu_t = np.array([4, 4, 4]) cov_t = np.array([[1, 0, 0], [0, 1, 0], [0, 0, 1]]) xs = ot.datasets.make_2D_samples_gauss(n_samples, mu_s, cov_s) P = sp.linalg.sqrtm(cov_t) xt = np.random.randn(n_samples, 3).dot(P) + mu_t
docs/source/auto_examples/plot_gromov.ipynb
rflamary/POT
mit
Plotting the distributions
fig = pl.figure() ax1 = fig.add_subplot(121) ax1.plot(xs[:, 0], xs[:, 1], '+b', label='Source samples') ax2 = fig.add_subplot(122, projection='3d') ax2.scatter(xt[:, 0], xt[:, 1], xt[:, 2], color='r') pl.show()
docs/source/auto_examples/plot_gromov.ipynb
rflamary/POT
mit
Compute distance kernels, normalize them and then display
C1 = sp.spatial.distance.cdist(xs, xs) C2 = sp.spatial.distance.cdist(xt, xt) C1 /= C1.max() C2 /= C2.max() pl.figure() pl.subplot(121) pl.imshow(C1) pl.subplot(122) pl.imshow(C2) pl.show()
docs/source/auto_examples/plot_gromov.ipynb
rflamary/POT
mit
Compute Gromov-Wasserstein plans and distance
p = ot.unif(n_samples) q = ot.unif(n_samples) gw0, log0 = ot.gromov.gromov_wasserstein( C1, C2, p, q, 'square_loss', verbose=True, log=True) gw, log = ot.gromov.entropic_gromov_wasserstein( C1, C2, p, q, 'square_loss', epsilon=5e-4, log=True, verbose=True) print('Gromov-Wasserstein distances: ' + str(log0['gw_dist'])) print('Entropic Gromov-Wasserstein distances: ' + str(log['gw_dist'])) pl.figure(1, (10, 5)) pl.subplot(1, 2, 1) pl.imshow(gw0, cmap='jet') pl.title('Gromov Wasserstein') pl.subplot(1, 2, 2) pl.imshow(gw, cmap='jet') pl.title('Entropic Gromov Wasserstein') pl.show()
docs/source/auto_examples/plot_gromov.ipynb
rflamary/POT
mit
Resolviendo el problema en forma analรญtica con SymPy Para resolver el problema, debemos utilizar la La Ecuaciรณn diferencial de la ley del enfriamiento de Newton. Los datos que tenemos son: Temperatura inicial = 34.5 Temperatura 1 hora despues = 33.9 Temperatura del ambiente = 15 Temperatura normal promedio de un ser humano = 37
# defino las incognitas t, k = sympy.symbols('t k') y = sympy.Function('y') # expreso la ecuacion f = k*(y(t) -15) sympy.Eq(y(t).diff(t), f) # Resolviendo la ecuaciรณn edo_sol = sympy.dsolve(y(t).diff(t) - f) edo_sol
content/notebooks/ecuaciones-diferenciales.ipynb
relopezbriega/mi-python-blog
gpl-2.0
Ahora que tenemos la soluciรณn de la Ecuaciรณn diferencial, despejemos constante de integraciรณn utilizando la condiciรณn inicial.
# Condiciรณn inicial ics = {y(0): 34.5} C_eq = sympy.Eq(edo_sol.lhs.subs(t, 0).subs(ics), edo_sol.rhs.subs(t, 0)) C_eq C = sympy.solve(C_eq)[0] C
content/notebooks/ecuaciones-diferenciales.ipynb
relopezbriega/mi-python-blog
gpl-2.0
Ahora que ya sabemos el valor de C, podemos determinar el valor de $k$.
eq = sympy.Eq(y(t), C * sympy.E**(k*t) +15) eq ics = {y(1): 33.9} k_eq = sympy.Eq(eq.lhs.subs(t, 1).subs(ics), eq.rhs.subs(t, 1)) kn = round(sympy.solve(k_eq)[0], 4) kn
content/notebooks/ecuaciones-diferenciales.ipynb
relopezbriega/mi-python-blog
gpl-2.0
Ahora que ya tenemos todos los datos, podemos determinar la hora aproximada de la muerte.
hmuerte = sympy.Eq(37, 19.5 * sympy.E**(kn*t) + 15) hmuerte t = round(sympy.solve(hmuerte)[0],2) t h, m = divmod(t*-60, 60) print "%d horas, %d minutos" % (h, m)
content/notebooks/ecuaciones-diferenciales.ipynb
relopezbriega/mi-python-blog
gpl-2.0
Es decir, que pasaron aproximadamente 3 horas y 51 minutos desde que ocurriรณ el crimen, por lo tanto la hora del asesinato debio haber sido alredor de las 10:50 pm. Transformada de Laplace Un mรฉtodo alternativo que podemos utilizar para resolver en forma analรญtica Ecuaciones diferenciales ordinarias complejas, es utilizar la Transformada de Laplace, que es un tipo particular de transformada integral. La idea es que podemos utilizar esta tรฉcnica para transformar nuestra Ecuaciรณn diferencial en algo mรกs simple, resolver esta ecuaciรณn mรกs simple y, a continuaciรณn, invertir la transformaciรณn para recuperar la soluciรณn a la Ecuaciรณn diferencial original. ยฟQuรฉ es una Transformada de Laplace? Para poder comprender la Transformada de Laplace, primero debemos revisar la definiciรณn general de la transformada integral, la cuรกl adapta la siguiente forma: $$T(f(t)) = \int_{\alpha}^{\beta} K (s, t) \ f(t) \ dt = F(s) $$ En este caso, $f(t)$ es la funciรณn que queremos transformar, y $F(s)$ es la funciรณn transformada. Los lรญmites de la integraciรณn, $\alpha$ y $\beta$, pueden ser cualquier valor entre $-\infty$ y $+\infty$ y $K(s, t)$ es lo que se conoce como el nรบcleo o kernel de la transformada, y podemos elegir el kernel que nos plazca. La idea es poder elegir un kernel que nos dรฉ la oportunidad de simplificar la Ecuaciรณn diferencial con mayor facilidad. Si nos restringimos a Ecuaciones diferenciales con coeficientes constantes, entonces un kernel que resulta realmente รบtil es $e^{-st}$, ya que al diferenciar este kernel con respecto de $t$, terminamos obteniendo potencias de $s$, que podemos equiparar a los coeficientes constantes. De esta forma, podemos arribar a la definiciรณn de la Transformada de Laplace: $$\mathcal{L}{f(t)}=\int_0^{\infty} e^{-st} \ f(t) \ dt$$ Transformada de Laplace con SymPy La principal ventaja de utilizar Transformadas de Laplace es que cambia la Ecuaciรณn diferencial en una ecuaciรณn algebraica, lo que simplifica el proceso para calcular su soluciรณn. La รบnica parte complicada es encontrar las transformaciones y las inversas de las transformaciones de los varios tรฉrminos de la Ecuaciรณn diferencial que queramos resolver. Aquรญ es donde nos podemos ayudar de SymPy. Vamos a intentar resolver la siguiente ecuaciรณn: $$y'' + 3y' + 2y = 0$$ con las siguientes condiciones iniciales: $y(0) = 2$ y $y'(0) = -3$
# Ejemplo de transformada de Laplace # Defino las incognitas t = sympy.symbols("t", positive=True) y = sympy.Function("y") # simbolos adicionales. s, Y = sympy.symbols("s, Y", real=True) # Defino la ecuaciรณn edo = y(t).diff(t, t) + 3*y(t).diff(t) + 2*y(t) sympy.Eq(edo) # Calculo la transformada de Laplace L_edo = sympy.laplace_transform(edo, t, s, noconds=True) L_edo_2 = laplace_transform_derivatives(L_edo) # reemplazamos la transfomada de Laplace de y(t) por la incognita Y # para facilitar la lectura de la ecuaciรณn. L_edo_3 = L_edo_2.subs(sympy.laplace_transform(y(t), t, s), Y) sympy.Eq(L_edo_3)
content/notebooks/ecuaciones-diferenciales.ipynb
relopezbriega/mi-python-blog
gpl-2.0
Aquรญ ya logramos convertir a la Ecuaciรณn diferencial en una ecuaciรณn algebraica. Ahora podemos aplicarle las condiciones iniciales para resolverla.
# Definimos las condiciones iniciales ics = {y(0): 2, y(t).diff(t).subs(t, 0): -3} ics # Aplicamos las condiciones iniciales L_edo_4 = L_edo_3.subs(ics) # Resolvemos la ecuaciรณn y arribamos a la Transformada de Laplace # que es equivalente a nuestra ecuaciรณn diferencial Y_sol = sympy.solve(L_edo_4, Y) Y_sol # Por รบltimo, calculamos al inversa de la Transformada de Laplace que # obtuvimos arriba, para obtener la soluciรณn de nuestra ecuaciรณn diferencial. y_sol = sympy.inverse_laplace_transform(Y_sol[0], s, t) y_sol # Comprobamos la soluciรณn. y_sol.subs(t, 0), sympy.diff(y_sol).subs(t, 0)
content/notebooks/ecuaciones-diferenciales.ipynb
relopezbriega/mi-python-blog
gpl-2.0
Las Transformadas de Laplace, pueden ser una buena alternativa para resolver Ecuaciones diferenciales en forma analรญtica. Pero aรบn asรญ, siguen existiendo ecuaciones que se resisten a ser resueltas por medios analรญticos, para estos casos, debemos recurrir a los mรฉtodos numรฉricos. Series de potencias y campos de direcciones Supongamos ahora que queremos resolver con SymPy la siguiente Ecuaciรณn diferencial: $$\frac{dy}{dx} = x^2 + y^2 -1$$ con una condiciรณn inicial de $y(0) = 0$. Si aplicamos lo que vimos hasta ahora, vamos a obtener el siguiente resultado:
# Defino incognitas x = sympy.symbols('x') y = sympy.Function('y') # Defino la funciรณn f = y(x)**2 + x**2 -1 # Condiciรณn inicial ics = {y(0): 0} # Resolviendo la ecuaciรณn diferencial edo_sol = sympy.dsolve(y(x).diff(x) - f, ics=ics) edo_sol
content/notebooks/ecuaciones-diferenciales.ipynb
relopezbriega/mi-python-blog
gpl-2.0
El resultado que nos da SymPy, es una aproximaciรณn con Series de potencias (una serie de Taylor); y el problema con las Series de potencias es que sus resultados sรณlo suelen vรกlidos para un rango determinado de valores. Una herramienta que nos puede ayudar a visualizar el rango de validez de una aproximaciรณn con Series de potencias son los Campos de direcciones. Campos de direcciones Los Campos de direcciones es una tรฉcnica sencilla pero รบtil para visualizar posibles soluciones a las ecuaciones diferenciales de primer orden. Se compone de lรญneas cortas que muestran la pendiente de la funciรณn incรณgnita en el plano x-y. Este grรกfico se puede producir fรกcilmente debido a que la pendiente de $y(x)$ en los puntos arbitrarios del plano x-y estรก dada por la definiciรณn misma de la Ecuaciรณn diferencial ordinaria: $$\frac{dy}{dx} = f(x, y(x))$$ Es decir, que sรณlo tenemos que iterar sobre los valores $x$ e $y$ en la grilla de coordenadas de interรฉs y evaluar $f(x, y(x))$ para saber la pendiente de $y(x)$ en ese punto. Cuantos mรกs segmentos de lรญneas trazamos en un Campo de direcciรณn, mรกs clara serรก la imagen. La razรณn por la cual el grรกfico de Campos de direcciones es รบtil, es que las curvas suaves y continuos que son <a href="https://es.wikipedia.org/wiki/Tangente_(geometr%C3%ADa)">tangentes</a> a las lรญneas de pendiente en cada punto del grรกfico, son las posibles soluciones a la Ecuaciรณn diferencial ordinaria. Por ejemplo, el Campos de direcciones de la ecuaciรณn: $$\frac{dy}{dx} = x^2 + y^2 -1$$ es el siguiente:
# grafico de campo de direcciรณn fig, axes = plt.subplots(1, 1, figsize=(7, 5)) campo_dir = plot_direction_field(x, y(x), f, ax=axes)
content/notebooks/ecuaciones-diferenciales.ipynb
relopezbriega/mi-python-blog
gpl-2.0
Rango de validez de la soluciรณn de series de potencia Ahora que ya conocemos a los Campos de direcciones, volvamos a la soluciรณn aproximada con Series de potencias que habiamos obtenido anteriormente. Podemos graficar esa soluciรณn en el Campos de direcciones, y compararla con una soluciรณn por mรฉtodo nรบmericos. <img title="Campo de direcciones" src="https://relopezbriega.github.io/images/campo_direcciones.png" width="600" height="250"> En el panel de la izquierda podemos ver el grรกfico de la soluciรณn aproximada por la Serie de potencias. La soluciรณn aproximada se alinea bien con el campo de direcciones para los valores de $x$ entre $-1.5$ y $1.5$, luego comienza a desviarse, lo que nos indica que la soluciรณn aproximada ya no serรญa vรกlida.
fig, axes = plt.subplots(1, 2, figsize=(10, 5)) # panel izquierdo - soluciรณn aproximada por Serie de potencias plot_direction_field(x, y(x), f, ax=axes[0]) x_vec = np.linspace(-3, 3, 100) axes[0].plot(x_vec, sympy.lambdify(x, edo_sol.rhs.removeO())(x_vec), 'b', lw=2) # panel derecho - Soluciรณn por mรฉtodo iterativo plot_direction_field(x, y(x), f, ax=axes[1]) x_vec = np.linspace(-1, 1, 100) axes[1].plot(x_vec, sympy.lambdify(x, edo_sol.rhs.removeO())(x_vec), 'b', lw=2) # Resolviendo la EDO en forma iterativa edo_sol_m = edo_sol_p = edo_sol dx = 0.125 # x positivos for x0 in np.arange(1, 2., dx): x_vec = np.linspace(x0, x0 + dx, 100) ics = {y(x0): edo_sol_p.rhs.removeO().subs(x, x0)} edo_sol_p = sympy.dsolve(y(x).diff(x) - f, ics=ics, n=6) axes[1].plot(x_vec, sympy.lambdify(x, edo_sol_p.rhs.removeO())(x_vec), 'r', lw=2) # x negativos for x0 in np.arange(1, 5, dx): x_vec = np.linspace(-x0-dx, -x0, 100) ics = {y(-x0): edo_sol_m.rhs.removeO().subs(x, -x0)} edo_sol_m = sympy.dsolve(y(x).diff(x) - f, ics=ics, n=6) axes[1].plot(x_vec, sympy.lambdify(x, edo_sol_m.rhs.removeO())(x_vec), 'r', lw=2)
content/notebooks/ecuaciones-diferenciales.ipynb
relopezbriega/mi-python-blog
gpl-2.0
<center><h1>Soluciones numรฉricas con Python</h1> <br> <h2>SciPy<h2> <br> <a href="https://scipy.org/" target="_blank"><img src="https://www2.warwick.ac.uk/fac/sci/moac/people/students/peter_cock/python/scipy_logo.png?maxWidth=175&maxHeight=61" title="SciPy"></a> </center> # SciPy [SciPy](https://www.scipy.org/) es un conjunto de paquetes donde cada uno ellos ataca un problema distinto dentro de la computaciรณn cientรญfica y el anรกlisis numรฉrico. Algunos de los paquetes que incluye, son: * **`scipy.integrate`**: que proporciona diferentes funciones para resolver problemas de integraciรณn numรฉrica. * **`scipy.linalg`**: que proporciona funciones para resolver problemas de รกlgebra lineal. * **`scipy.optimize`**: para los problemas de optimizaciรณn y minimizaciรณn. * **`scipy.signal`**: para el anรกlisis y procesamiento de seรฑales. * **`scipy.sparse`**: para matrices dispersas y solucionar sistemas lineales dispersos * **`scipy.stats`**: para el anรกlisis de estadรญstica y probabilidades. Para resolver las [Ecuaciones diferenciales](https://relopezbriega.github.io/blog/2016/01/10/ecuaciones-diferenciales-con-python/), el paquete que nos interesa es `scipy.integrate`. ## Resolviendo Ecuaciones diferenciales con SciPy [SciPy](https://www.scipy.org/) nos ofrece dos solucionadores de [ecuaciones diferenciales ordinarias](https://relopezbriega.github.io/blog/2016/01/10/ecuaciones-diferenciales-con-python/), `integrate.odeint` y `integrate.ode`. La principal diferencia entre ambos, es que `integrate.ode` es mรกs flexible, ya que nos ofrece la posibilidad de elegir entre distintos *solucionadores*; aunque `integrate.odeint` es mรกs fรกcil de utilizar. Tratemos de resolver la siguiente ecuaciรณn: $$\frac{dy}{dx} = x + y^2$$
# Defino la funciรณn f = y(x)**2 + x f # la convierto en una funciรณn ejecutable f_np = sympy.lambdify((y(x), x), f) # Definimos los valores de la condiciรณn inicial y el rango de x sobre los # que vamos a iterar para calcular y(x) y0 = 0 xp = np.linspace(0, 1.9, 100) # Calculando la soluciรณn numerica para los valores de y0 y xp yp = integrate.odeint(f_np, y0, xp) # Aplicamos el mismo procedimiento para valores de x negativos xn = np.linspace(0, -5, 100) yn = integrate.odeint(f_np, y0, xn)
content/notebooks/ecuaciones-diferenciales.ipynb
relopezbriega/mi-python-blog
gpl-2.0
Los resultados son dos matrices unidimensionales de NumPy $yp$ y $yn$, de la misma longitud que las correspondientes matrices de coordenadas $xp$ y $xn$, que contienen las soluciones numรฉricas de la ecuaciรณn diferencial ordinaria para esos puntos especรญficos. Para visualizar la soluciรณn, podemos graficar las matrices $yp$ y $yn$, junto con su Campo de direcciones.
# graficando la solucion con el campo de direcciones fig, axes = plt.subplots(1, 1, figsize=(8, 6)) plot_direction_field(x, y(x), f, ax=axes) axes.plot(xn, yn, 'b', lw=2) axes.plot(xp, yp, 'r', lw=2) plt.show()
content/notebooks/ecuaciones-diferenciales.ipynb
relopezbriega/mi-python-blog
gpl-2.0
Sistemas de ecuaciones diferenciales En este ejemplo, solucionamos solo una ecuaciรณn. Generalmente, la mayorรญa de los problemas se presentan en la forma de sistemas de ecuaciones diferenciales ordinarias, es decir, que incluyen varias ecuaciones a resolver. Para ver como podemos utilizar a integrate.odeint para resolver este tipo de problemas, consideremos el siguiente sistema de ecuaciones diferenciales ordinarias, conocido el atractor de Lorenz: $$x'(t) = \sigma(y -x), \ y'(t) = x(\rho -z)-y, \ z'(t) = xy - \beta z $$ Estas ecuaciones son conocidas por sus soluciones caรณticas, que dependen sensiblemente de los valores de los parรกmetros $\sigma$, $\rho$ y $\beta$. Veamos como podemos resolverlas con la ayuda de Python.
# Definimos el sistema de ecuaciones def f(xyz, t, sigma, rho, beta): x, y, z = xyz return [sigma * (y - x), x * (rho - z) - y, x * y - beta * z] # Asignamos valores a los parรกmetros sigma, rho, beta = 8, 28, 8/3.0 # Condiciรณn inicial y valores de t sobre los que calcular xyz0 = [1.0, 1.0, 1.0] t = np.linspace(0, 25, 10000) # Resolvemos las ecuaciones xyz1 = integrate.odeint(f, xyz0, t, args=(sigma, rho, beta)) xyz2 = integrate.odeint(f, xyz0, t, args=(sigma, rho, 0.6*beta)) xyz3 = integrate.odeint(f, xyz0, t, args=(2*sigma, rho, 0.6*beta)) # Graficamos las soluciones from mpl_toolkits.mplot3d.axes3d import Axes3D fig, (ax1,ax2,ax3) = plt.subplots(1, 3, figsize=(12, 4), subplot_kw={'projection':'3d'}) for ax, xyz, c in [(ax1, xyz1, 'r'), (ax2, xyz2, 'b'), (ax3, xyz3, 'g')]: ax.plot(xyz[:,0], xyz[:,1], xyz[:,2], c, alpha=0.5) ax.set_xlabel('$x$', fontsize=16) ax.set_ylabel('$y$', fontsize=16) ax.set_zlabel('$z$', fontsize=16) ax.set_xticks([-15, 0, 15]) ax.set_yticks([-20, 0, 20]) ax.set_zticks([0, 20, 40])
content/notebooks/ecuaciones-diferenciales.ipynb
relopezbriega/mi-python-blog
gpl-2.0
Ecuaciones en derivadas parciales Los casos que vimos hasta ahora, se trataron de ecuaciones diferenciales ordinarias, pero ยฟcรณmo podemos hacer para resolver ecuaciones en derivadas parciales? Estas ecuaciones son mucho mรกs difรญciles de resolver, pero podes recurrir a la poderosa herramienta que nos proporciona el Mรฉtodo de los Elementos Finitos para resolverlas en forma numรฉrica. Mรฉtodo de los elementos finitos La idea general detrรกs del Mรฉtodo de los Elementos Finitos es la divisiรณn de un continuo en un conjunto de pequeรฑos elementos interconectados por una serie de puntos llamados nodos. Las ecuaciones que rigen el comportamiento del continuo regirรกn tambiรฉn el del elemento. De esta forma se consigue pasar de un sistema continuo (infinitos grados de libertad), que es regido por una ecuaciรณn diferencial o un sistema de ecuaciones diferenciales, a un sistema con un nรบmero de grados de libertad finito cuyo comportamiento se modela por un sistema de ecuaciones, lineales o no. Por ejemplo, en siguiente imagen, podemos ver que en primer lugar tenemos una placa con un hueco en el centro, supongamos que queremos determinar su distribuciรณn de temperatura. Para realizar esto, deberรญamos resolver la ecuaciรณn del calor para cada punto en la placa. El enfoque que utiliza el Mรฉtodo de los Elementos Finitos es el de dividir al objeto en elementos finitos conectados entre sรญ por nodos; como lo muestran la tercera y cuarta imagen. Este nuevo objeto, constituido por los elementos finitos (los triรกngulos de la segunda imagen) se llama malla y es una representaciรณn aproximada del objeto original. Mientras mรกs nodos tengamos, mรกs exacta serรก la soluciรณn. <img alt="Mรฉtodo de los Elementos Finitos con python" title="Mรฉtodo de los Elementos Finitos con python" src="https://relopezbriega.github.io/images/FEM.png " > El proyecto FEniCS El proyecto FEniCS es un framework para resolver numรฉricamente problemas generales de ecuaciones en derivadas parciales utilizando el mรฉtodos de los elementos finitos. Podemos instalarlo en Ubuntu con los siguientes comandos: sudo add-apt-repository ppa:fenics-packages/fenics sudo apt-get update sudo apt-get install fenics La interfaz principal que vamos a utilizar para trabajar con este framework nos la proporcionan las librerรญas dolfin y mshr; las cuales debemos importar para poder trabajar con el. Por ahora solo funciona con Python 2. Problema a resolver El problema que vamos a resolver con la ayuda de FEniCS, va a ser la ecuaciรณn del calor en dos dimensiones en estado estacionario, definida por: $$u_{xx} + u_{yy} = f$$ donde f es la funciรณn fuente y donde tenemos las siguientes condiciones de frontera: $$u(x=0) = 3 ; \ u(x=1)=-1 ; \ u(y=0) = -5 ; \ u(y=1) = 5$$ El primer paso en la soluciรณn de una EDP utilizando el mรฉtodos de los elementos finitos, es definir una malla que describa la discretizaciรณn del dominio del problema. Para este caso, vamos a utilizar la funciรณn RectangleMesh que nos ofrece FEniCS.
# Discretizando el problema N1 = N2 = 75 mesh = dolfin.RectangleMesh(dolfin.Point(0, 0), dolfin.Point(1, 1), N1, N2) # grafico de la malla. dolfin.RectangleMesh(dolfin.Point(0, 0), dolfin.Point(1, 1), 10, 10)
content/notebooks/ecuaciones-diferenciales.ipynb
relopezbriega/mi-python-blog
gpl-2.0
El siguiente paso es definir una representaciรณn del espacio funcional para las funciones de ensayo y prueba. Para esto vamos a utilizar la clase FunctionSpace. El constructor de esta clase tiene al menos tres argumentos: un objeto de malla, el nombre del tipo de funciรณn base, y el grado de la funciรณn base. En este caso, vamos a utilizar la funciรณn de Lagrange.
# Funciones bases V = dolfin.FunctionSpace(mesh, 'Lagrange', 1) u = dolfin.TrialFunction(V) v = dolfin.TestFunction(V)
content/notebooks/ecuaciones-diferenciales.ipynb
relopezbriega/mi-python-blog
gpl-2.0
Ahora debemos definir a nuestra EDP en su formulaciรณn dรฉbil equivalente para poder tratarla como un problema de รกlgebra lineal que podamos resolver con el MEF.
# Formulaciรณn debil de la EDP a = dolfin.inner(dolfin.nabla_grad(u), dolfin.nabla_grad(v)) * dolfin.dx f = dolfin.Constant(0.0) L = f * v * dolfin.dx
content/notebooks/ecuaciones-diferenciales.ipynb
relopezbriega/mi-python-blog
gpl-2.0
Y definimos las condiciones de frontera.
# Defino condiciones de frontera def u0_top_boundary(x, on_boundary): return on_boundary and abs(x[1]-1) < 1e-8 def u0_bottom_boundary(x, on_boundary): return on_boundary and abs(x[1]) < 1e-8 def u0_left_boundary(x, on_boundary): return on_boundary and abs(x[0]) < 1e-8 def u0_right_boundary(x, on_boundary): return on_boundary and abs(x[0]-1) < 1e-8 # Definiendo condiciones de frontera de Dirichlet bc_t = dolfin.DirichletBC(V, dolfin.Constant(5), u0_top_boundary) bc_b = dolfin.DirichletBC(V, dolfin.Constant(-5), u0_bottom_boundary) bc_l = dolfin.DirichletBC(V, dolfin.Constant(3), u0_left_boundary) bc_r = dolfin.DirichletBC(V, dolfin.Constant(-1), u0_right_boundary) # Lista de condiciones de frontera bcs = [bc_t, bc_b, bc_r, bc_l]
content/notebooks/ecuaciones-diferenciales.ipynb
relopezbriega/mi-python-blog
gpl-2.0
Ahora ya podemos resolver la EDP utilizando la funciรณn dolfin.solve. El vector resultante, luego lo podemos convertir a una matriz de NumPy y utilizarla para graficar la soluciรณn con Matplotlib.
# Resolviendo la EDP u_sol = dolfin.Function(V) dolfin.solve(a == L, u_sol, bcs) # graficando la soluciรณn u_mat = u_sol.vector().array().reshape(N1+1, N2+1) x = np.linspace(0, 1, N1+2) y = np.linspace(0, 1, N1+2) X, Y = np.meshgrid(x, y) fig, ax = plt.subplots(1, 1, figsize=(8, 6)) c = ax.pcolor(X, Y, u_mat, vmin=-5, vmax=5, cmap=mpl.cm.get_cmap('RdBu_r')) cb = plt.colorbar(c, ax=ax) ax.set_xlabel(r"$x_1$", fontsize=18) ax.set_ylabel(r"$x_2$", fontsize=18) cb.set_label(r"$u(x_1, x_2)$", fontsize=18) fig.tight_layout()
content/notebooks/ecuaciones-diferenciales.ipynb
relopezbriega/mi-python-blog
gpl-2.0
Inintialize model and solve
# Input model parameters beta = 0.99 sigma= 1 eta = 1 omega= 0.8 kappa= (sigma+eta)*(1-omega)*(1-beta*omega)/omega rhor = 0.9 phipi= 1.5 phiy = 0 rhog = 0.5 rhou = 0.5 rhov = 0.9 Sigma = 0.001*np.eye(3) # Store parameters parameters = pd.Series({ 'beta':beta, 'sigma':sigma, 'eta':eta, 'omega':omega, 'kappa':kappa, 'rhor':rhor, 'phipi':phipi, 'phiy':phiy, 'rhog':rhog, 'rhou':rhou, 'rhov':rhov }) # Define function that computes equilibrium conditions def equations(variables_forward,variables_current,parameters): # Parameters p = parameters # Variables fwd = variables_forward cur = variables_current # Exogenous demand g_proc = p.rhog*cur.g - fwd.g # Exogenous inflation u_proc = p.rhou*cur.u - fwd.u # Exogenous monetary policy v_proc = p.rhov*cur.v - fwd.v # Euler equation euler_eqn = fwd.y -1/p.sigma*(cur.i-fwd.pi) + fwd.g - cur.y # NK Phillips curve evolution phillips_curve = p.beta*fwd.pi + p.kappa*cur.y + fwd.u - cur.pi # interest rate rule interest_rule = p.phiy*cur.y+p.phipi*cur.pi + fwd.v - cur.i # Fisher equation fisher_eqn = cur.i - fwd.pi - cur.r # Stack equilibrium conditions into a numpy array return np.array([ g_proc, u_proc, v_proc, euler_eqn, phillips_curve, interest_rule, fisher_eqn ]) # Initialize the nk model nk = ls.model(equations=equations, n_states=3, n_exo_states = 3, var_names=['g','u','v','i','r','y','pi'], parameters=parameters) # Set the steady state of the nk model nk.set_ss([0,0,0,0,0,0,0]) # Find the log-linear approximation around the non-stochastic steady state nk.linear_approximation() # Solve the nk model nk.solve_klein(nk.a,nk.b)
examples/nk_model.ipynb
letsgoexploring/linearsolve-package
mit
Compute impulse responses and plot Compute impulse responses of the endogenous variables to a one percent shock to each exogenous variable.
# Compute impulse responses nk.impulse(T=11,t0=1,shocks=None) # Create the figure and axes fig = plt.figure(figsize=(12,12)) ax1 = fig.add_subplot(3,1,1) ax2 = fig.add_subplot(3,1,2) ax3 = fig.add_subplot(3,1,3) # Plot commands nk.irs['e_g'][['g','y','i','pi','r']].plot(lw='5',alpha=0.5,grid=True,title='Demand shock',ax=ax1).legend(loc='upper right',ncol=5) nk.irs['e_u'][['u','y','i','pi','r']].plot(lw='5',alpha=0.5,grid=True,title='Inflation shock',ax=ax2).legend(loc='upper right',ncol=5) nk.irs['e_v'][['v','y','i','pi','r']].plot(lw='5',alpha=0.5,grid=True,title='Interest rate shock',ax=ax3).legend(loc='upper right',ncol=5)
examples/nk_model.ipynb
letsgoexploring/linearsolve-package
mit
Construct a stochastic simulation and plot Contruct a 151 period stochastic simulation by first siumlating the model for 251 periods and then dropping the first 100 values. The seed for the numpy random number generator is set to 0.
# Compute stochastic simulation nk.stoch_sim(T=151,drop_first=100,cov_mat=Sigma,seed=0) # Create the figure and axes fig = plt.figure(figsize=(12,8)) ax1 = fig.add_subplot(2,1,1) ax2 = fig.add_subplot(2,1,2) # Plot commands nk.simulated[['y','i','pi','r']].plot(lw='5',alpha=0.5,grid=True,title='Output, inflation, and interest rates',ax=ax1).legend(ncol=4) nk.simulated[['g','u','v']].plot(lw='5',alpha=0.5,grid=True,title='Exogenous demand, inflation, and policy',ax=ax2).legend(ncol=4,loc='lower right') # Plot simulated exogenous shocks nk.simulated[['e_g','g']].plot(lw='5',alpha=0.5,grid=True).legend(ncol=2) nk.simulated[['e_u','u']].plot(lw='5',alpha=0.5,grid=True).legend(ncol=2) nk.simulated[['e_v','v']].plot(lw='5',alpha=0.5,grid=True).legend(ncol=2)
examples/nk_model.ipynb
letsgoexploring/linearsolve-package
mit
Filling in Missing Values
# Impute missing values # Manually set metadata properties, as current py_entitymatching.impute_table() # requires 'fk_ltable', 'fk_rtable', 'ltable', 'rtable' properties em.set_property(A, 'fk_ltable', 'id') em.set_property(A, 'fk_rtable', 'id') em.set_property(A, 'ltable', A) em.set_property(A, 'rtable', A) A_all_attrs = list(A.columns.values) A_impute_attrs = ['year','min_num_players','max_num_players','min_gameplay_time','max_gameplay_time','min_age'] A_exclude_attrs = list(set(A_all_attrs) - set(A_impute_attrs)) A1 = em.impute_table(A, exclude_attrs=A_exclude_attrs, missing_val='NaN', strategy='most_frequent', axis=0, val_all_nans=0, verbose=True) # Compare number of missing values to check the results print(sum(A['min_num_players'].isnull())) print(sum(A1['min_num_players'].isnull())) # Do the same thing for B em.set_property(B, 'fk_ltable', 'id') em.set_property(B, 'fk_rtable', 'id') em.set_property(B, 'ltable', B) em.set_property(B, 'rtable', B) B_all_attrs = list(B.columns.values) # TODO: add 'min_age' B_impute_attrs = ['year','min_num_players','max_num_players','min_gameplay_time','max_gameplay_time'] B_exclude_attrs = list(set(B_all_attrs) - set(B_impute_attrs)) B1 = em.impute_table(B, exclude_attrs=B_exclude_attrs, missing_val='NaN', strategy='most_frequent', axis=0, val_all_nans=0, verbose=True) # Compare number of missing values to check the results print(sum(B['min_num_players'].isnull())) print(sum(B1['min_num_players'].isnull())) # Load the pre-labeled data S = em.read_csv_metadata('sample_labeled.csv', key='_id', ltable=A1, rtable=B1, fk_ltable='ltable_id', fk_rtable='rtable_id') # Split S into I an J IJ = em.split_train_test(S, train_proportion=0.75, random_state=35) I = IJ['train'] J = IJ['test'] corres = em.get_attr_corres(A1, B1) print(corres)
stage4/stage4_report.ipynb
malnoxon/board-game-data-science
gpl-3.0
Generating Features Here, we generate all the features we decided upon after our final iteration of cross validation and debugging. We only use the relevant subset of all these features in the reported iterations below.
# Generate a set of features #import pdb; pdb.set_trace(); import py_entitymatching.feature.attributeutils as au import py_entitymatching.feature.simfunctions as sim import py_entitymatching.feature.tokenizers as tok ltable = A1 rtable = B1 # Get similarity functions for generating the features for matching sim_funcs = sim.get_sim_funs_for_matching() # Get tokenizer functions for generating the features for matching tok_funcs = tok.get_tokenizers_for_matching() # Get the attribute types of the input tables attr_types_ltable = au.get_attr_types(ltable) attr_types_rtable = au.get_attr_types(rtable) # Get the attribute correspondence between the input tables attr_corres = au.get_attr_corres(ltable, rtable) print(attr_types_ltable['name']) print(attr_types_rtable['name']) attr_types_ltable['name'] = 'str_bt_5w_10w' attr_types_rtable['name'] = 'str_bt_5w_10w' # Get the features F = em.get_features(ltable, rtable, attr_types_ltable, attr_types_rtable, attr_corres, tok_funcs, sim_funcs) #F = em.get_features_for_matching(A1, B1) print(F['feature_name']) #TODO get name feature! #http://pradap-www.cs.wisc.edu/cs638/py_entitymatching/user-manual/_modules/py_entitymatching/feature/simfunctions.html#get_sim_funs_for_matching #name_feature = em.get_feature_fn('name', em.get_tokenizers_for_matching(), em.get_sim_funs_for_matching()) #print(name_feature) #em.add_feature(F, 'name_dist', name_feature) #print(F['feature_name'])
stage4/stage4_report.ipynb
malnoxon/board-game-data-science
gpl-3.0
Cross Validation Method
def cross_validation_eval(H): cv_iter = pd.DataFrame(columns=['Precision', 'Recall', 'F1']) # Matchers matchers = [em.DTMatcher(name='DecisionTree', random_state=0), em.RFMatcher(name='RandomForest', random_state=0), em.SVMMatcher(name='SVM', random_state=0), em.NBMatcher(name='NaiveBayes'), em.LogRegMatcher(name='LogReg', random_state=0), ] for m in matchers: prec_result = em.select_matcher([m], table=H, exclude_attrs=['_id', 'ltable_id', 'rtable_id','label'], k=5, target_attr='label', metric='precision', random_state=0) recall_result = em.select_matcher([m], table=H, exclude_attrs=['_id', 'ltable_id', 'rtable_id','label'], k=5, target_attr='label', metric='recall', random_state=0) f1_result = em.select_matcher([m], table=H, exclude_attrs=['_id', 'ltable_id', 'rtable_id','label'], k=5, target_attr='label', metric='f1', random_state=0) cv_iter = cv_iter.append( pd.DataFrame([ [prec_result['cv_stats']['Mean score'][0], recall_result['cv_stats']['Mean score'][0], f1_result['cv_stats']['Mean score'][0], ]], index=[m.name], columns=['Precision', 'Recall', 'F1'])) return cv_iter
stage4/stage4_report.ipynb
malnoxon/board-game-data-science
gpl-3.0
Iteration 1: CV
# Subset of features we used on our first iteration include_features = [ 'min_num_players_min_num_players_lev_dist', 'max_num_players_max_num_players_lev_dist', 'min_gameplay_time_min_gameplay_time_lev_dist', 'max_gameplay_time_max_gameplay_time_lev_dist', ] F_1 = F.loc[F['feature_name'].isin(include_features)] # Convert the I into a set of feature vectors using F H_1 = em.extract_feature_vecs(I, feature_table=F_1, attrs_after='label', show_progress=False) H_1.head(10) cross_validation_eval(H_1)
stage4/stage4_report.ipynb
malnoxon/board-game-data-science
gpl-3.0
Iteration 2: Debug
PQ = em.split_train_test(H_1, train_proportion=0.80, random_state=0) P = PQ['train'] Q = PQ['test'] # Convert the I into a set of feature vectors using F # Here, we add name edit distance as a feature include_features_2 = [ 'min_num_players_min_num_players_lev_dist', 'max_num_players_max_num_players_lev_dist', 'min_gameplay_time_min_gameplay_time_lev_dist', 'max_gameplay_time_max_gameplay_time_lev_dist', 'name_name_lev_dist' ] F_2 = F.loc[F['feature_name'].isin(include_features_2)] H_2 = em.extract_feature_vecs(I, feature_table=F_2, attrs_after='label', show_progress=False) H_2.head(10) # Split H into P and Q PQ = em.split_train_test(H_2, train_proportion=0.75, random_state=0) P = PQ['train'] Q = PQ['test']
stage4/stage4_report.ipynb
malnoxon/board-game-data-science
gpl-3.0
Iteration 3: CV
# Convert the I into a set of feature vectors using F # Here, we add name edit distance as a feature include_features_3 = [ 'min_num_players_min_num_players_lev_dist', 'max_num_players_max_num_players_lev_dist', 'min_gameplay_time_min_gameplay_time_lev_dist', 'max_gameplay_time_max_gameplay_time_lev_dist', 'name_name_lev_dist' ] F_3 = F.loc[F['feature_name'].isin(include_features_3)] H_3 = em.extract_feature_vecs(I, feature_table=F_3, attrs_after='label', show_progress=False) cross_validation_eval(H_3)
stage4/stage4_report.ipynb
malnoxon/board-game-data-science
gpl-3.0
Iteration 4: CV
# Convert the I into a set of feature vectors using F # Here, we add name edit distance as a feature include_features_4 = [ 'min_num_players_min_num_players_lev_dist', 'max_num_players_max_num_players_lev_dist', 'min_gameplay_time_min_gameplay_time_lev_dist', 'max_gameplay_time_max_gameplay_time_lev_dist', 'name_name_jac_qgm_3_qgm_3' ] F_4 = F.loc[F['feature_name'].isin(include_features_4)] H_4 = em.extract_feature_vecs(I, feature_table=F_4, attrs_after='label', show_progress=False) cross_validation_eval(H_4)
stage4/stage4_report.ipynb
malnoxon/board-game-data-science
gpl-3.0
Train-Test Set Accuracy
# Apply train, test set evaluation I_table = em.extract_feature_vecs(I, feature_table=F_2, attrs_after='label', show_progress=False) J_table = em.extract_feature_vecs(J, feature_table=F_2, attrs_after='label', show_progress=False) matchers = [ #em.DTMatcher(name='DecisionTree', random_state=0), #em.RFMatcher(name='RF', random_state=0), #em.NBMatcher(name='NaiveBayes'), em.LogRegMatcher(name='LogReg', random_state=0), #em.SVMMatcher(name='SVM', random_state=0) ] for m in matchers: m.fit(table=I_table, exclude_attrs=['_id', 'ltable_id', 'rtable_id','label'], target_attr='label') J_table['prediction'] = m.predict( table=J_table, exclude_attrs=['_id', 'ltable_id', 'rtable_id', 'label'], target_attr='label', ) print(m.name) em.print_eval_summary(em.eval_matches(J_table, 'label', 'prediction')) J_table.drop('prediction', axis=1, inplace=True) print('') log_matcher = matchers[0] J_table['prediction'] = m.predict( table=J_table, exclude_attrs=['_id', 'ltable_id', 'rtable_id', 'label'], target_attr='label', ) print(m.name) em.print_eval_summary(em.eval_matches(J_table, 'label', 'prediction')) J_table.drop('prediction', axis=1, inplace=True) print('') candidate_set_C1.csv
stage4/stage4_report.ipynb
malnoxon/board-game-data-science
gpl-3.0
In that case libm_cbrt is expected to be a capsule containing the function pointer to libm's cbrt (cube root) function. This capsule can be created using ctypes:
import ctypes # capsulefactory PyCapsule_New = ctypes.pythonapi.PyCapsule_New PyCapsule_New.restype = ctypes.py_object PyCapsule_New.argtypes = ctypes.c_void_p, ctypes.c_char_p, ctypes.c_void_p # load libm libm = ctypes.CDLL('libm.so.6') # extract the proper symbol cbrt = libm.cbrt # wrap it cbrt_capsule = PyCapsule_New(cbrt, "double(double)".encode(), None)
docs/examples/Third Party Libraries.ipynb
pombredanne/pythran
bsd-3-clause
The capsule is not usable from Python context (it's some kind of opaque box) but Pythran knows how to use it. beware, it does not try to do any kind of type verification. It trusts your #pythran export line.
pythran_cbrt(cbrt_capsule, 8.)
docs/examples/Third Party Libraries.ipynb
pombredanne/pythran
bsd-3-clause
With Pointers Now, let's try to use the sincos function. It's C signature is void sincos(double, double*, double*). How do we pass that to Pythran?
%%pythran #pythran export pythran_sincos(None(float64, float64*, float64*), float64) def pythran_sincos(libm_sincos, val): import numpy as np val_sin, val_cos = np.empty(1), np.empty(1) libm_sincos(val, val_sin, val_cos) return val_sin[0], val_cos[0]
docs/examples/Third Party Libraries.ipynb
pombredanne/pythran
bsd-3-clause
There is some magic happening here: None is used to state the function pointer does not return anything. In order to create pointers, we actually create empty one-dimensional array and let pythran handle them as pointer. Beware that you're in charge of all the memory checking stuff! Apart from that, we can now call our function with the proper capsule parameter.
sincos_capsule = PyCapsule_New(libm.sincos, "unchecked anyway".encode(), None) pythran_sincos(sincos_capsule, 0.)
docs/examples/Third Party Libraries.ipynb
pombredanne/pythran
bsd-3-clause
With Pythran It is naturally also possible to use capsule generated by Pythran. In that case, no type shenanigans is required, we're in our small world. One just need to use the capsule keyword to indicate we want to generate a capsule.
%%pythran ## This is the capsule. #pythran export capsule corp((int, str), str set) def corp(param, lookup): res, key = param return res if key in lookup else -1 ## This is some dummy callsite #pythran export brief(int, int((int, str), str set)): def brief(val, capsule): return capsule((val, "doctor"), {"some"})
docs/examples/Third Party Libraries.ipynb
pombredanne/pythran
bsd-3-clause
It's not possible to call the capsule directly, it's an opaque structure.
try: corp((1,"some"),set()) except TypeError as e: print(e)
docs/examples/Third Party Libraries.ipynb
pombredanne/pythran
bsd-3-clause
It's possible to pass it to the according pythran function though.
brief(1, corp)
docs/examples/Third Party Libraries.ipynb
pombredanne/pythran
bsd-3-clause
With Cython The capsule pythran uses may come from Cython-generated code. This uses a little-known feature from cython: api and __pyx_capi__. nogil is of importance here: Pythran releases the GIL, so better not call a cythonized function that uses it.
!find -name 'cube*' -delete %%file cube.pyx #cython: language_level=3 cdef api double cube(double x) nogil: return x * x * x from setuptools import setup from Cython.Build import cythonize _ = setup( name='cube', ext_modules=cythonize("cube.pyx"), zip_safe=False, # fake CLI call script_name='setup.py', script_args=['--quiet', 'build_ext', '--inplace'] )
docs/examples/Third Party Libraries.ipynb
pombredanne/pythran
bsd-3-clause
The cythonized module has a special dictionary that holds the capsule we're looking for.
import sys sys.path.insert(0, '.') import cube print(type(cube.__pyx_capi__['cube'])) cython_cube = cube.__pyx_capi__['cube'] pythran_cbrt(cython_cube, 2.)
docs/examples/Third Party Libraries.ipynb
pombredanne/pythran
bsd-3-clause
Document Table of Contents 1. Key Properties 2. Key Properties --&gt; Flux Correction 3. Key Properties --&gt; Genealogy 4. Key Properties --&gt; Software Properties 5. Key Properties --&gt; Coupling 6. Key Properties --&gt; Tuning Applied 7. Key Properties --&gt; Conservation --&gt; Heat 8. Key Properties --&gt; Conservation --&gt; Fresh Water 9. Key Properties --&gt; Conservation --&gt; Salt 10. Key Properties --&gt; Conservation --&gt; Momentum 11. Radiative Forcings 12. Radiative Forcings --&gt; Greenhouse Gases --&gt; CO2 13. Radiative Forcings --&gt; Greenhouse Gases --&gt; CH4 14. Radiative Forcings --&gt; Greenhouse Gases --&gt; N2O 15. Radiative Forcings --&gt; Greenhouse Gases --&gt; Tropospheric O3 16. Radiative Forcings --&gt; Greenhouse Gases --&gt; Stratospheric O3 17. Radiative Forcings --&gt; Greenhouse Gases --&gt; CFC 18. Radiative Forcings --&gt; Aerosols --&gt; SO4 19. Radiative Forcings --&gt; Aerosols --&gt; Black Carbon 20. Radiative Forcings --&gt; Aerosols --&gt; Organic Carbon 21. Radiative Forcings --&gt; Aerosols --&gt; Nitrate 22. Radiative Forcings --&gt; Aerosols --&gt; Cloud Albedo Effect 23. Radiative Forcings --&gt; Aerosols --&gt; Cloud Lifetime Effect 24. Radiative Forcings --&gt; Aerosols --&gt; Dust 25. Radiative Forcings --&gt; Aerosols --&gt; Tropospheric Volcanic 26. Radiative Forcings --&gt; Aerosols --&gt; Stratospheric Volcanic 27. Radiative Forcings --&gt; Aerosols --&gt; Sea Salt 28. Radiative Forcings --&gt; Other --&gt; Land Use 29. Radiative Forcings --&gt; Other --&gt; Solar 1. Key Properties Key properties of the model 1.1. Model Overview Is Required: TRUE&nbsp;&nbsp;&nbsp;&nbsp;Type: STRING&nbsp;&nbsp;&nbsp;&nbsp;Cardinality: 1.1 Top level overview of coupled model
# PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.toplevel.key_properties.model_overview') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # TODO - please enter value(s)
notebooks/hammoz-consortium/cmip6/models/sandbox-1/toplevel.ipynb
ES-DOC/esdoc-jupyterhub
gpl-3.0
1.2. Model Name Is Required: TRUE&nbsp;&nbsp;&nbsp;&nbsp;Type: STRING&nbsp;&nbsp;&nbsp;&nbsp;Cardinality: 1.1 Name of coupled model.
# PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.toplevel.key_properties.model_name') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # TODO - please enter value(s)
notebooks/hammoz-consortium/cmip6/models/sandbox-1/toplevel.ipynb
ES-DOC/esdoc-jupyterhub
gpl-3.0
2. Key Properties --&gt; Flux Correction Flux correction properties of the model 2.1. Details Is Required: TRUE&nbsp;&nbsp;&nbsp;&nbsp;Type: STRING&nbsp;&nbsp;&nbsp;&nbsp;Cardinality: 1.1 Describe if/how flux corrections are applied in the model
# PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.toplevel.key_properties.flux_correction.details') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # TODO - please enter value(s)
notebooks/hammoz-consortium/cmip6/models/sandbox-1/toplevel.ipynb
ES-DOC/esdoc-jupyterhub
gpl-3.0
3. Key Properties --&gt; Genealogy Genealogy and history of the model 3.1. Year Released Is Required: TRUE&nbsp;&nbsp;&nbsp;&nbsp;Type: STRING&nbsp;&nbsp;&nbsp;&nbsp;Cardinality: 1.1 Year the model was released
# PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.toplevel.key_properties.genealogy.year_released') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # TODO - please enter value(s)
notebooks/hammoz-consortium/cmip6/models/sandbox-1/toplevel.ipynb
ES-DOC/esdoc-jupyterhub
gpl-3.0
3.2. CMIP3 Parent Is Required: FALSE&nbsp;&nbsp;&nbsp;&nbsp;Type: STRING&nbsp;&nbsp;&nbsp;&nbsp;Cardinality: 0.1 CMIP3 parent if any
# PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.toplevel.key_properties.genealogy.CMIP3_parent') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # TODO - please enter value(s)
notebooks/hammoz-consortium/cmip6/models/sandbox-1/toplevel.ipynb
ES-DOC/esdoc-jupyterhub
gpl-3.0
3.3. CMIP5 Parent Is Required: FALSE&nbsp;&nbsp;&nbsp;&nbsp;Type: STRING&nbsp;&nbsp;&nbsp;&nbsp;Cardinality: 0.1 CMIP5 parent if any
# PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.toplevel.key_properties.genealogy.CMIP5_parent') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # TODO - please enter value(s)
notebooks/hammoz-consortium/cmip6/models/sandbox-1/toplevel.ipynb
ES-DOC/esdoc-jupyterhub
gpl-3.0
3.4. Previous Name Is Required: FALSE&nbsp;&nbsp;&nbsp;&nbsp;Type: STRING&nbsp;&nbsp;&nbsp;&nbsp;Cardinality: 0.1 Previously known as
# PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.toplevel.key_properties.genealogy.previous_name') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # TODO - please enter value(s)
notebooks/hammoz-consortium/cmip6/models/sandbox-1/toplevel.ipynb
ES-DOC/esdoc-jupyterhub
gpl-3.0
4. Key Properties --&gt; Software Properties Software properties of model 4.1. Repository Is Required: FALSE&nbsp;&nbsp;&nbsp;&nbsp;Type: STRING&nbsp;&nbsp;&nbsp;&nbsp;Cardinality: 0.1 Location of code for this component.
# PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.toplevel.key_properties.software_properties.repository') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # TODO - please enter value(s)
notebooks/hammoz-consortium/cmip6/models/sandbox-1/toplevel.ipynb
ES-DOC/esdoc-jupyterhub
gpl-3.0
4.2. Code Version Is Required: FALSE&nbsp;&nbsp;&nbsp;&nbsp;Type: STRING&nbsp;&nbsp;&nbsp;&nbsp;Cardinality: 0.1 Code version identifier.
# PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.toplevel.key_properties.software_properties.code_version') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # TODO - please enter value(s)
notebooks/hammoz-consortium/cmip6/models/sandbox-1/toplevel.ipynb
ES-DOC/esdoc-jupyterhub
gpl-3.0