doc_content
stringlengths
1
386k
doc_id
stringlengths
5
188
tf.raw_ops.InitializeTableV2 Table initializer that takes two tensors for keys and values respectively. View aliases Compat aliases for migration See Migration guide for more details. tf.compat.v1.raw_ops.InitializeTableV2 tf.raw_ops.InitializeTableV2( table_handle, keys, values, name=None ) Args table_handle A Tensor of type resource. Handle to a table which will be initialized. keys A Tensor. Keys of type Tkey. values A Tensor. Values of type Tval. name A name for the operation (optional). Returns The created Operation.
tensorflow.raw_ops.initializetablev2
tf.raw_ops.InplaceAdd Adds v into specified rows of x. View aliases Compat aliases for migration See Migration guide for more details. tf.compat.v1.raw_ops.InplaceAdd tf.raw_ops.InplaceAdd( x, i, v, name=None ) Computes y = x; y[i, :] += v; return y. Args x A Tensor. A Tensor of type T. i A Tensor of type int32. A vector. Indices into the left-most dimension of x. v A Tensor. Must have the same type as x. A Tensor of type T. Same dimension sizes as x except the first dimension, which must be the same as i's size. name A name for the operation (optional). Returns A Tensor. Has the same type as x.
tensorflow.raw_ops.inplaceadd
tf.raw_ops.InplaceSub Subtracts v into specified rows of x. View aliases Compat aliases for migration See Migration guide for more details. tf.compat.v1.raw_ops.InplaceSub tf.raw_ops.InplaceSub( x, i, v, name=None ) Computes y = x; y[i, :] -= v; return y. Args x A Tensor. A Tensor of type T. i A Tensor of type int32. A vector. Indices into the left-most dimension of x. v A Tensor. Must have the same type as x. A Tensor of type T. Same dimension sizes as x except the first dimension, which must be the same as i's size. name A name for the operation (optional). Returns A Tensor. Has the same type as x.
tensorflow.raw_ops.inplacesub
tf.raw_ops.InplaceUpdate Updates specified rows 'i' with values 'v'. View aliases Compat aliases for migration See Migration guide for more details. tf.compat.v1.raw_ops.InplaceUpdate tf.raw_ops.InplaceUpdate( x, i, v, name=None ) Computes x[i, :] = v; return x. Originally this function is mutative however for compilation we make this operation create / operate on a copy of x. Args x A Tensor. A tensor of type T. i A Tensor of type int32. A vector. Indices into the left-most dimension of x. v A Tensor. Must have the same type as x. A Tensor of type T. Same dimension sizes as x except the first dimension, which must be the same as i's size. name A name for the operation (optional). Returns A Tensor. Has the same type as x.
tensorflow.raw_ops.inplaceupdate
tf.raw_ops.InterleaveDataset Creates a dataset that applies f to the outputs of input_dataset. View aliases Compat aliases for migration See Migration guide for more details. tf.compat.v1.raw_ops.InterleaveDataset tf.raw_ops.InterleaveDataset( input_dataset, other_arguments, cycle_length, block_length, f, output_types, output_shapes, name=None ) Unlike MapDataset, the f in InterleaveDataset is expected to return a Dataset variant, and InterleaveDataset will flatten successive results into a single Dataset. Unlike FlatMapDataset, InterleaveDataset will interleave sequences of up to block_length consecutive elements from cycle_length input elements. Args input_dataset A Tensor of type variant. other_arguments A list of Tensor objects. cycle_length A Tensor of type int64. block_length A Tensor of type int64. f A function decorated with @Defun. A function mapping elements of input_dataset, concatenated with other_arguments, to a Dataset variant that contains elements matching output_types and output_shapes. output_types A list of tf.DTypes that has length >= 1. output_shapes A list of shapes (each a tf.TensorShape or list of ints) that has length >= 1. name A name for the operation (optional). Returns A Tensor of type variant.
tensorflow.raw_ops.interleavedataset
tf.raw_ops.InTopK Says whether the targets are in the top K predictions. View aliases Compat aliases for migration See Migration guide for more details. tf.compat.v1.raw_ops.InTopK tf.raw_ops.InTopK( predictions, targets, k, name=None ) This outputs a batch_size bool array, an entry out[i] is true if the prediction for the target class is among the top k predictions among all predictions for example i. Note that the behavior of InTopK differs from the TopK op in its handling of ties; if multiple classes have the same prediction value and straddle the top-k boundary, all of those classes are considered to be in the top k. More formally, let \(predictions_i\) be the predictions for all classes for example i, \(targets_i\) be the target class for example i, \(out_i\) be the output for example i, $$out_i = predictions_{i, targets_i} \in TopKIncludingTies(predictions_i)$$ Args predictions A Tensor of type float32. A batch_size x classes tensor. targets A Tensor. Must be one of the following types: int32, int64. A batch_size vector of class ids. k An int. Number of top elements to look at for computing precision. name A name for the operation (optional). Returns A Tensor of type bool.
tensorflow.raw_ops.intopk
tf.raw_ops.InTopKV2 Says whether the targets are in the top K predictions. View aliases Compat aliases for migration See Migration guide for more details. tf.compat.v1.raw_ops.InTopKV2 tf.raw_ops.InTopKV2( predictions, targets, k, name=None ) This outputs a batch_size bool array, an entry out[i] is true if the prediction for the target class is among the top k predictions among all predictions for example i. Note that the behavior of InTopK differs from the TopK op in its handling of ties; if multiple classes have the same prediction value and straddle the top-k boundary, all of those classes are considered to be in the top k. More formally, let \(predictions_i\) be the predictions for all classes for example i, \(targets_i\) be the target class for example i, \(out_i\) be the output for example i, $$out_i = predictions_{i, targets_i} \in TopKIncludingTies(predictions_i)$$ Args predictions A Tensor of type float32. A batch_size x classes tensor. targets A Tensor. Must be one of the following types: int32, int64. A batch_size vector of class ids. k A Tensor. Must have the same type as targets. Number of top elements to look at for computing precision. name A name for the operation (optional). Returns A Tensor of type bool.
tensorflow.raw_ops.intopkv2
tf.raw_ops.Inv Computes the reciprocal of x element-wise. View aliases Compat aliases for migration See Migration guide for more details. tf.compat.v1.raw_ops.Inv tf.raw_ops.Inv( x, name=None ) I.e., \(y = 1 / x\). Args x A Tensor. Must be one of the following types: bfloat16, half, float32, float64, int8, int16, int32, int64, complex64, complex128. name A name for the operation (optional). Returns A Tensor. Has the same type as x.
tensorflow.raw_ops.inv
tf.raw_ops.Invert Invert (flip) each bit of supported types; for example, type uint8 value 01010101 becomes 10101010. View aliases Compat aliases for migration See Migration guide for more details. tf.compat.v1.raw_ops.Invert tf.raw_ops.Invert( x, name=None ) Flip each bit of supported types. For example, type int8 (decimal 2) binary 00000010 becomes (decimal -3) binary 11111101. This operation is performed on each element of the tensor argument x. Example: import tensorflow as tf from tensorflow.python.ops import bitwise_ops # flip 2 (00000010) to -3 (11111101) tf.assert_equal(-3, bitwise_ops.invert(2)) dtype_list = [dtypes.int8, dtypes.int16, dtypes.int32, dtypes.int64, dtypes.uint8, dtypes.uint16, dtypes.uint32, dtypes.uint64] inputs = [0, 5, 3, 14] for dtype in dtype_list: # Because of issues with negative numbers, let's test this indirectly. # 1. invert(a) and a = 0 # 2. invert(a) or a = invert(0) input_tensor = tf.constant([0, 5, 3, 14], dtype=dtype) not_a_and_a, not_a_or_a, not_0 = [bitwise_ops.bitwise_and( input_tensor, bitwise_ops.invert(input_tensor)), bitwise_ops.bitwise_or( input_tensor, bitwise_ops.invert(input_tensor)), bitwise_ops.invert( tf.constant(0, dtype=dtype))] expected = tf.constant([0, 0, 0, 0], dtype=tf.float32) tf.assert_equal(tf.cast(not_a_and_a, tf.float32), expected) expected = tf.cast([not_0] * 4, tf.float32) tf.assert_equal(tf.cast(not_a_or_a, tf.float32), expected) # For unsigned dtypes let's also check the result directly. if dtype.is_unsigned: inverted = bitwise_ops.invert(input_tensor) expected = tf.constant([dtype.max - x for x in inputs], dtype=tf.float32) tf.assert_equal(tf.cast(inverted, tf.float32), tf.cast(expected, tf.float32)) Args x A Tensor. Must be one of the following types: int8, int16, int32, int64, uint8, uint16, uint32, uint64. name A name for the operation (optional). Returns A Tensor. Has the same type as x.
tensorflow.raw_ops.invert
tf.raw_ops.InvertPermutation Computes the inverse permutation of a tensor. View aliases Compat aliases for migration See Migration guide for more details. tf.compat.v1.raw_ops.InvertPermutation tf.raw_ops.InvertPermutation( x, name=None ) This operation computes the inverse of an index permutation. It takes a 1-D integer tensor x, which represents the indices of a zero-based array, and swaps each value with its index position. In other words, for an output tensor y and an input tensor x, this operation computes the following: y[x[i]] = i for i in [0, 1, ..., len(x) - 1] The values must include 0. There can be no duplicate values or negative values. For example: # tensor `x` is [3, 4, 0, 2, 1] invert_permutation(x) ==> [2, 4, 3, 0, 1] Args x A Tensor. Must be one of the following types: int32, int64. 1-D. name A name for the operation (optional). Returns A Tensor. Has the same type as x.
tensorflow.raw_ops.invertpermutation
tf.raw_ops.InvGrad Computes the gradient for the inverse of x wrt its input. View aliases Compat aliases for migration See Migration guide for more details. tf.compat.v1.raw_ops.InvGrad tf.raw_ops.InvGrad( y, dy, name=None ) Specifically, grad = -dy * y*y, where y = 1/x, and dy is the corresponding input gradient. Args y A Tensor. Must be one of the following types: bfloat16, half, float32, float64, complex64, complex128. dy A Tensor. Must have the same type as y. name A name for the operation (optional). Returns A Tensor. Has the same type as y.
tensorflow.raw_ops.invgrad
tf.raw_ops.IRFFT Inverse real-valued fast Fourier transform. View aliases Compat aliases for migration See Migration guide for more details. tf.compat.v1.raw_ops.IRFFT tf.raw_ops.IRFFT( input, fft_length, Treal=tf.dtypes.float32, name=None ) Computes the inverse 1-dimensional discrete Fourier transform of a real-valued signal over the inner-most dimension of input. The inner-most dimension of input is assumed to be the result of RFFT: the fft_length / 2 + 1 unique components of the DFT of a real-valued signal. If fft_length is not provided, it is computed from the size of the inner-most dimension of input (fft_length = 2 * (inner - 1)). If the FFT length used to compute input is odd, it should be provided since it cannot be inferred properly. Along the axis IRFFT is computed on, if fft_length / 2 + 1 is smaller than the corresponding dimension of input, the dimension is cropped. If it is larger, the dimension is padded with zeros. Args input A Tensor. Must be one of the following types: complex64, complex128. A complex tensor. fft_length A Tensor of type int32. An int32 tensor of shape [1]. The FFT length. Treal An optional tf.DType from: tf.float32, tf.float64. Defaults to tf.float32. name A name for the operation (optional). Returns A Tensor of type Treal.
tensorflow.raw_ops.irfft
tf.raw_ops.IRFFT2D Inverse 2D real-valued fast Fourier transform. View aliases Compat aliases for migration See Migration guide for more details. tf.compat.v1.raw_ops.IRFFT2D tf.raw_ops.IRFFT2D( input, fft_length, Treal=tf.dtypes.float32, name=None ) Computes the inverse 2-dimensional discrete Fourier transform of a real-valued signal over the inner-most 2 dimensions of input. The inner-most 2 dimensions of input are assumed to be the result of RFFT2D: The inner-most dimension contains the fft_length / 2 + 1 unique components of the DFT of a real-valued signal. If fft_length is not provided, it is computed from the size of the inner-most 2 dimensions of input. If the FFT length used to compute input is odd, it should be provided since it cannot be inferred properly. Along each axis IRFFT2D is computed on, if fft_length (or fft_length / 2 + 1 for the inner-most dimension) is smaller than the corresponding dimension of input, the dimension is cropped. If it is larger, the dimension is padded with zeros. Args input A Tensor. Must be one of the following types: complex64, complex128. A complex tensor. fft_length A Tensor of type int32. An int32 tensor of shape [2]. The FFT length for each dimension. Treal An optional tf.DType from: tf.float32, tf.float64. Defaults to tf.float32. name A name for the operation (optional). Returns A Tensor of type Treal.
tensorflow.raw_ops.irfft2d
tf.raw_ops.IRFFT3D Inverse 3D real-valued fast Fourier transform. View aliases Compat aliases for migration See Migration guide for more details. tf.compat.v1.raw_ops.IRFFT3D tf.raw_ops.IRFFT3D( input, fft_length, Treal=tf.dtypes.float32, name=None ) Computes the inverse 3-dimensional discrete Fourier transform of a real-valued signal over the inner-most 3 dimensions of input. The inner-most 3 dimensions of input are assumed to be the result of RFFT3D: The inner-most dimension contains the fft_length / 2 + 1 unique components of the DFT of a real-valued signal. If fft_length is not provided, it is computed from the size of the inner-most 3 dimensions of input. If the FFT length used to compute input is odd, it should be provided since it cannot be inferred properly. Along each axis IRFFT3D is computed on, if fft_length (or fft_length / 2 + 1 for the inner-most dimension) is smaller than the corresponding dimension of input, the dimension is cropped. If it is larger, the dimension is padded with zeros. Args input A Tensor. Must be one of the following types: complex64, complex128. A complex tensor. fft_length A Tensor of type int32. An int32 tensor of shape [3]. The FFT length for each dimension. Treal An optional tf.DType from: tf.float32, tf.float64. Defaults to tf.float32. name A name for the operation (optional). Returns A Tensor of type Treal.
tensorflow.raw_ops.irfft3d
tf.raw_ops.IsBoostedTreesEnsembleInitialized Checks whether a tree ensemble has been initialized. View aliases Compat aliases for migration See Migration guide for more details. tf.compat.v1.raw_ops.IsBoostedTreesEnsembleInitialized tf.raw_ops.IsBoostedTreesEnsembleInitialized( tree_ensemble_handle, name=None ) Args tree_ensemble_handle A Tensor of type resource. Handle to the tree ensemble resource. name A name for the operation (optional). Returns A Tensor of type bool.
tensorflow.raw_ops.isboostedtreesensembleinitialized
tf.raw_ops.IsBoostedTreesQuantileStreamResourceInitialized Checks whether a quantile stream has been initialized. View aliases Compat aliases for migration See Migration guide for more details. tf.compat.v1.raw_ops.IsBoostedTreesQuantileStreamResourceInitialized tf.raw_ops.IsBoostedTreesQuantileStreamResourceInitialized( quantile_stream_resource_handle, name=None ) An Op that checks if quantile stream resource is initialized. Args quantile_stream_resource_handle A Tensor of type resource. resource; The reference to quantile stream resource handle. name A name for the operation (optional). Returns A Tensor of type bool.
tensorflow.raw_ops.isboostedtreesquantilestreamresourceinitialized
tf.raw_ops.IsFinite Returns which elements of x are finite. View aliases Compat aliases for migration See Migration guide for more details. tf.compat.v1.raw_ops.IsFinite tf.raw_ops.IsFinite( x, name=None ) Example: x = tf.constant([5.0, 4.8, 6.8, np.inf, np.nan]) tf.math.is_finite(x) ==> [True, True, True, False, False] Args x A Tensor. Must be one of the following types: bfloat16, half, float32, float64. name A name for the operation (optional). Returns A Tensor of type bool. Numpy Compatibility Equivalent to np.isfinite
tensorflow.raw_ops.isfinite
tf.raw_ops.IsInf Returns which elements of x are Inf. View aliases Compat aliases for migration See Migration guide for more details. tf.compat.v1.raw_ops.IsInf tf.raw_ops.IsInf( x, name=None ) Example: x = tf.constant([5.0, np.inf, 6.8, np.inf]) tf.math.is_inf(x) ==> [False, True, False, True] Args x A Tensor. Must be one of the following types: bfloat16, half, float32, float64. name A name for the operation (optional). Returns A Tensor of type bool. Numpy Compatibility Equivalent to np.isinf
tensorflow.raw_ops.isinf
tf.raw_ops.IsNan Returns which elements of x are NaN. View aliases Compat aliases for migration See Migration guide for more details. tf.compat.v1.raw_ops.IsNan tf.raw_ops.IsNan( x, name=None ) Example: x = tf.constant([5.0, np.nan, 6.8, np.nan, np.inf]) tf.math.is_nan(x) ==> [False, True, False, True, False] Args x A Tensor. Must be one of the following types: bfloat16, half, float32, float64. name A name for the operation (optional). Returns A Tensor of type bool. Numpy Compatibility Equivalent to np.isnan
tensorflow.raw_ops.isnan
tf.raw_ops.IsotonicRegression Solves a batch of isotonic regression problems. View aliases Compat aliases for migration See Migration guide for more details. tf.compat.v1.raw_ops.IsotonicRegression tf.raw_ops.IsotonicRegression( input, output_dtype=tf.dtypes.float32, name=None ) Args input A Tensor. Must be one of the following types: float32, float64, int32, uint8, int16, int8, int64, bfloat16, uint16, half, uint32, uint64. A (batch_size, dim)-tensor holding a batch of inputs. output_dtype An optional tf.DType from: tf.half, tf.bfloat16, tf.float32, tf.float64. Defaults to tf.float32. Dtype of output. name A name for the operation (optional). Returns A tuple of Tensor objects (output, segments). output A Tensor of type output_dtype. segments A Tensor of type int32.
tensorflow.raw_ops.isotonicregression
tf.raw_ops.IsVariableInitialized Checks whether a tensor has been initialized. View aliases Compat aliases for migration See Migration guide for more details. tf.compat.v1.raw_ops.IsVariableInitialized tf.raw_ops.IsVariableInitialized( ref, name=None ) Outputs boolean scalar indicating whether the tensor has been initialized. Args ref A mutable Tensor. Should be from a Variable node. May be uninitialized. name A name for the operation (optional). Returns A Tensor of type bool.
tensorflow.raw_ops.isvariableinitialized
tf.raw_ops.Iterator A container for an iterator resource. View aliases Compat aliases for migration See Migration guide for more details. tf.compat.v1.raw_ops.Iterator tf.raw_ops.Iterator( shared_name, container, output_types, output_shapes, name=None ) Args shared_name A string. container A string. output_types A list of tf.DTypes that has length >= 1. output_shapes A list of shapes (each a tf.TensorShape or list of ints) that has length >= 1. name A name for the operation (optional). Returns A Tensor of type resource.
tensorflow.raw_ops.iterator
tf.raw_ops.IteratorFromStringHandle Converts the given string representing a handle to an iterator to a resource. View aliases Compat aliases for migration See Migration guide for more details. tf.compat.v1.raw_ops.IteratorFromStringHandle tf.raw_ops.IteratorFromStringHandle( string_handle, output_types=[], output_shapes=[], name=None ) Args string_handle A Tensor of type string. A string representation of the given handle. output_types An optional list of tf.DTypes. Defaults to []. If specified, defines the type of each tuple component in an element produced by the resulting iterator. output_shapes An optional list of shapes (each a tf.TensorShape or list of ints). Defaults to []. If specified, defines the shape of each tuple component in an element produced by the resulting iterator. name A name for the operation (optional). Returns A Tensor of type resource.
tensorflow.raw_ops.iteratorfromstringhandle
tf.raw_ops.IteratorFromStringHandleV2 View aliases Compat aliases for migration See Migration guide for more details. tf.compat.v1.raw_ops.IteratorFromStringHandleV2 tf.raw_ops.IteratorFromStringHandleV2( string_handle, output_types=[], output_shapes=[], name=None ) Args string_handle A Tensor of type string. output_types An optional list of tf.DTypes. Defaults to []. output_shapes An optional list of shapes (each a tf.TensorShape or list of ints). Defaults to []. name A name for the operation (optional). Returns A Tensor of type resource.
tensorflow.raw_ops.iteratorfromstringhandlev2
tf.raw_ops.IteratorGetDevice Returns the name of the device on which resource has been placed. View aliases Compat aliases for migration See Migration guide for more details. tf.compat.v1.raw_ops.IteratorGetDevice tf.raw_ops.IteratorGetDevice( resource, name=None ) Args resource A Tensor of type resource. name A name for the operation (optional). Returns A Tensor of type string.
tensorflow.raw_ops.iteratorgetdevice
tf.raw_ops.IteratorGetNext Gets the next output from the given iterator . View aliases Compat aliases for migration See Migration guide for more details. tf.compat.v1.raw_ops.IteratorGetNext tf.raw_ops.IteratorGetNext( iterator, output_types, output_shapes, name=None ) Args iterator A Tensor of type resource. output_types A list of tf.DTypes that has length >= 1. output_shapes A list of shapes (each a tf.TensorShape or list of ints) that has length >= 1. name A name for the operation (optional). Returns A list of Tensor objects of type output_types.
tensorflow.raw_ops.iteratorgetnext
tf.raw_ops.IteratorGetNextAsOptional Gets the next output from the given iterator as an Optional variant. View aliases Compat aliases for migration See Migration guide for more details. tf.compat.v1.raw_ops.IteratorGetNextAsOptional tf.raw_ops.IteratorGetNextAsOptional( iterator, output_types, output_shapes, name=None ) Args iterator A Tensor of type resource. output_types A list of tf.DTypes that has length >= 1. output_shapes A list of shapes (each a tf.TensorShape or list of ints) that has length >= 1. name A name for the operation (optional). Returns A Tensor of type variant.
tensorflow.raw_ops.iteratorgetnextasoptional
tf.raw_ops.IteratorGetNextSync Gets the next output from the given iterator. View aliases Compat aliases for migration See Migration guide for more details. tf.compat.v1.raw_ops.IteratorGetNextSync tf.raw_ops.IteratorGetNextSync( iterator, output_types, output_shapes, name=None ) This operation is a synchronous version IteratorGetNext. It should only be used in situations where the iterator does not block the calling thread, or where the calling thread is not a member of the thread pool used to execute parallel operations (e.g. in eager mode). Args iterator A Tensor of type resource. output_types A list of tf.DTypes that has length >= 1. output_shapes A list of shapes (each a tf.TensorShape or list of ints) that has length >= 1. name A name for the operation (optional). Returns A list of Tensor objects of type output_types.
tensorflow.raw_ops.iteratorgetnextsync
tf.raw_ops.IteratorToStringHandle Converts the given resource_handle representing an iterator to a string. View aliases Compat aliases for migration See Migration guide for more details. tf.compat.v1.raw_ops.IteratorToStringHandle tf.raw_ops.IteratorToStringHandle( resource_handle, name=None ) Args resource_handle A Tensor of type resource. A handle to an iterator resource. name A name for the operation (optional). Returns A Tensor of type string.
tensorflow.raw_ops.iteratortostringhandle
tf.raw_ops.IteratorV2 View aliases Compat aliases for migration See Migration guide for more details. tf.compat.v1.raw_ops.IteratorV2 tf.raw_ops.IteratorV2( shared_name, container, output_types, output_shapes, name=None ) Args shared_name A string. container A string. output_types A list of tf.DTypes that has length >= 1. output_shapes A list of shapes (each a tf.TensorShape or list of ints) that has length >= 1. name A name for the operation (optional). Returns A Tensor of type resource.
tensorflow.raw_ops.iteratorv2
tf.raw_ops.L2Loss L2 Loss. View aliases Compat aliases for migration See Migration guide for more details. tf.compat.v1.raw_ops.L2Loss tf.raw_ops.L2Loss( t, name=None ) Computes half the L2 norm of a tensor without the sqrt: output = sum(t ** 2) / 2 Args t A Tensor. Must be one of the following types: half, bfloat16, float32, float64. Typically 2-D, but may have any dimensions. name A name for the operation (optional). Returns A Tensor. Has the same type as t.
tensorflow.raw_ops.l2loss
tf.raw_ops.LatencyStatsDataset Records the latency of producing input_dataset elements in a StatsAggregator. View aliases Compat aliases for migration See Migration guide for more details. tf.compat.v1.raw_ops.LatencyStatsDataset tf.raw_ops.LatencyStatsDataset( input_dataset, tag, output_types, output_shapes, name=None ) Args input_dataset A Tensor of type variant. tag A Tensor of type string. output_types A list of tf.DTypes that has length >= 1. output_shapes A list of shapes (each a tf.TensorShape or list of ints) that has length >= 1. name A name for the operation (optional). Returns A Tensor of type variant.
tensorflow.raw_ops.latencystatsdataset
tf.raw_ops.LeakyRelu Computes rectified linear: max(features, features * alpha). View aliases Compat aliases for migration See Migration guide for more details. tf.compat.v1.raw_ops.LeakyRelu tf.raw_ops.LeakyRelu( features, alpha=0.2, name=None ) Args features A Tensor. Must be one of the following types: half, bfloat16, float32, float64. alpha An optional float. Defaults to 0.2. name A name for the operation (optional). Returns A Tensor. Has the same type as features.
tensorflow.raw_ops.leakyrelu
tf.raw_ops.LeakyReluGrad Computes rectified linear gradients for a LeakyRelu operation. View aliases Compat aliases for migration See Migration guide for more details. tf.compat.v1.raw_ops.LeakyReluGrad tf.raw_ops.LeakyReluGrad( gradients, features, alpha=0.2, name=None ) Args gradients A Tensor. Must be one of the following types: half, bfloat16, float32, float64. The backpropagated gradients to the corresponding LeakyRelu operation. features A Tensor. Must have the same type as gradients. The features passed as input to the corresponding LeakyRelu operation, OR the outputs of that operation (both work equivalently). alpha An optional float. Defaults to 0.2. name A name for the operation (optional). Returns A Tensor. Has the same type as gradients.
tensorflow.raw_ops.leakyrelugrad
tf.raw_ops.LearnedUnigramCandidateSampler Generates labels for candidate sampling with a learned unigram distribution. View aliases Compat aliases for migration See Migration guide for more details. tf.compat.v1.raw_ops.LearnedUnigramCandidateSampler tf.raw_ops.LearnedUnigramCandidateSampler( true_classes, num_true, num_sampled, unique, range_max, seed=0, seed2=0, name=None ) See explanations of candidate sampling and the data formats at go/candidate-sampling. For each batch, this op picks a single set of sampled candidate labels. The advantages of sampling candidates per-batch are simplicity and the possibility of efficient dense matrix multiplication. The disadvantage is that the sampled candidates must be chosen independently of the context and of the true labels. Args true_classes A Tensor of type int64. A batch_size * num_true matrix, in which each row contains the IDs of the num_true target_classes in the corresponding original label. num_true An int that is >= 1. Number of true labels per context. num_sampled An int that is >= 1. Number of candidates to randomly sample. unique A bool. If unique is true, we sample with rejection, so that all sampled candidates in a batch are unique. This requires some approximation to estimate the post-rejection sampling probabilities. range_max An int that is >= 1. The sampler will sample integers from the interval [0, range_max). seed An optional int. Defaults to 0. If either seed or seed2 are set to be non-zero, the random number generator is seeded by the given seed. Otherwise, it is seeded by a random seed. seed2 An optional int. Defaults to 0. An second seed to avoid seed collision. name A name for the operation (optional). Returns A tuple of Tensor objects (sampled_candidates, true_expected_count, sampled_expected_count). sampled_candidates A Tensor of type int64. true_expected_count A Tensor of type float32. sampled_expected_count A Tensor of type float32.
tensorflow.raw_ops.learnedunigramcandidatesampler
tf.raw_ops.LeftShift Elementwise computes the bitwise left-shift of x and y. View aliases Compat aliases for migration See Migration guide for more details. tf.compat.v1.raw_ops.LeftShift tf.raw_ops.LeftShift( x, y, name=None ) If y is negative, or greater than or equal to the width of x in bits the result is implementation defined. Example: import tensorflow as tf from tensorflow.python.ops import bitwise_ops import numpy as np dtype_list = [tf.int8, tf.int16, tf.int32, tf.int64] for dtype in dtype_list: lhs = tf.constant([-1, -5, -3, -14], dtype=dtype) rhs = tf.constant([5, 0, 7, 11], dtype=dtype) left_shift_result = bitwise_ops.left_shift(lhs, rhs) print(left_shift_result) # This will print: # tf.Tensor([ -32 -5 -128 0], shape=(4,), dtype=int8) # tf.Tensor([ -32 -5 -384 -28672], shape=(4,), dtype=int16) # tf.Tensor([ -32 -5 -384 -28672], shape=(4,), dtype=int32) # tf.Tensor([ -32 -5 -384 -28672], shape=(4,), dtype=int64) lhs = np.array([-2, 64, 101, 32], dtype=np.int8) rhs = np.array([-1, -5, -3, -14], dtype=np.int8) bitwise_ops.left_shift(lhs, rhs) # <tf.Tensor: shape=(4,), dtype=int8, numpy=array([ -2, 64, 101, 32], dtype=int8)> Args x A Tensor. Must be one of the following types: int8, int16, int32, int64, uint8, uint16, uint32, uint64. y A Tensor. Must have the same type as x. name A name for the operation (optional). Returns A Tensor. Has the same type as x.
tensorflow.raw_ops.leftshift
tf.raw_ops.LegacyParallelInterleaveDatasetV2 Creates a dataset that applies f to the outputs of input_dataset. View aliases Compat aliases for migration See Migration guide for more details. tf.compat.v1.raw_ops.LegacyParallelInterleaveDatasetV2 tf.raw_ops.LegacyParallelInterleaveDatasetV2( input_dataset, other_arguments, cycle_length, block_length, buffer_output_elements, prefetch_input_elements, f, output_types, output_shapes, deterministic='default', name=None ) The resulting dataset is similar to the InterleaveDataset, with the exception that if retrieving the next value from a dataset would cause the requester to block, it will skip that input dataset. This dataset is especially useful when loading data from a variable-latency datastores (e.g. HDFS, GCS), as it allows the training step to proceed so long as some data is available. !! WARNING !! This dataset is not deterministic! Args input_dataset A Tensor of type variant. other_arguments A list of Tensor objects. cycle_length A Tensor of type int64. block_length A Tensor of type int64. buffer_output_elements A Tensor of type int64. prefetch_input_elements A Tensor of type int64. f A function decorated with @Defun. A function mapping elements of input_dataset, concatenated with other_arguments, to a Dataset variant that contains elements matching output_types and output_shapes. output_types A list of tf.DTypes that has length >= 1. output_shapes A list of shapes (each a tf.TensorShape or list of ints) that has length >= 1. deterministic An optional string. Defaults to "default". name A name for the operation (optional). Returns A Tensor of type variant.
tensorflow.raw_ops.legacyparallelinterleavedatasetv2
tf.raw_ops.Less Returns the truth value of (x < y) element-wise. View aliases Compat aliases for migration See Migration guide for more details. tf.compat.v1.raw_ops.Less tf.raw_ops.Less( x, y, name=None ) Note: math.less supports broadcasting. More about broadcasting here Example: x = tf.constant([5, 4, 6]) y = tf.constant([5]) tf.math.less(x, y) ==> [False, True, False] x = tf.constant([5, 4, 6]) y = tf.constant([5, 6, 7]) tf.math.less(x, y) ==> [False, True, True] Args x A Tensor. Must be one of the following types: float32, float64, int32, uint8, int16, int8, int64, bfloat16, uint16, half, uint32, uint64. y A Tensor. Must have the same type as x. name A name for the operation (optional). Returns A Tensor of type bool.
tensorflow.raw_ops.less
tf.raw_ops.LessEqual Returns the truth value of (x <= y) element-wise. View aliases Compat aliases for migration See Migration guide for more details. tf.compat.v1.raw_ops.LessEqual tf.raw_ops.LessEqual( x, y, name=None ) Note: math.less_equal supports broadcasting. More about broadcasting here Example: x = tf.constant([5, 4, 6]) y = tf.constant([5]) tf.math.less_equal(x, y) ==> [True, True, False] x = tf.constant([5, 4, 6]) y = tf.constant([5, 6, 6]) tf.math.less_equal(x, y) ==> [True, True, True] Args x A Tensor. Must be one of the following types: float32, float64, int32, uint8, int16, int8, int64, bfloat16, uint16, half, uint32, uint64. y A Tensor. Must have the same type as x. name A name for the operation (optional). Returns A Tensor of type bool.
tensorflow.raw_ops.lessequal
tf.raw_ops.Lgamma Computes the log of the absolute value of Gamma(x) element-wise. View aliases Compat aliases for migration See Migration guide for more details. tf.compat.v1.raw_ops.Lgamma tf.raw_ops.Lgamma( x, name=None ) For positive numbers, this function computes log((input - 1)!) for every element in the tensor. lgamma(5) = log((5-1)!) = log(4!) = log(24) = 3.1780539 Example: x = tf.constant([0, 0.5, 1, 4.5, -4, -5.6]) tf.math.lgamma(x) ==> [inf, 0.5723649, 0., 2.4537368, inf, -4.6477685] Args x A Tensor. Must be one of the following types: bfloat16, half, float32, float64. name A name for the operation (optional). Returns A Tensor. Has the same type as x.
tensorflow.raw_ops.lgamma
tf.raw_ops.LinSpace Generates values in an interval. View aliases Compat aliases for migration See Migration guide for more details. tf.compat.v1.raw_ops.LinSpace tf.raw_ops.LinSpace( start, stop, num, name=None ) A sequence of num evenly-spaced values are generated beginning at start. If num > 1, the values in the sequence increase by stop - start / num - 1, so that the last one is exactly stop. For example: tf.linspace(10.0, 12.0, 3, name="linspace") => [ 10.0 11.0 12.0] Args start A Tensor. Must be one of the following types: bfloat16, half, float32, float64. 0-D tensor. First entry in the range. stop A Tensor. Must have the same type as start. 0-D tensor. Last entry in the range. num A Tensor. Must be one of the following types: int32, int64. 0-D tensor. Number of values to generate. name A name for the operation (optional). Returns A Tensor. Has the same type as start.
tensorflow.raw_ops.linspace
tf.raw_ops.ListDiff Computes the difference between two lists of numbers or strings. View aliases Compat aliases for migration See Migration guide for more details. tf.compat.v1.raw_ops.ListDiff tf.raw_ops.ListDiff( x, y, out_idx=tf.dtypes.int32, name=None ) Given a list x and a list y, this operation returns a list out that represents all values that are in x but not in y. The returned list out is sorted in the same order that the numbers appear in x (duplicates are preserved). This operation also returns a list idx that represents the position of each out element in x. In other words: out[i] = x[idx[i]] for i in [0, 1, ..., len(out) - 1] For example, given this input: x = [1, 2, 3, 4, 5, 6] y = [1, 3, 5] This operation would return: out ==> [2, 4, 6] idx ==> [1, 3, 5] Args x A Tensor. 1-D. Values to keep. y A Tensor. Must have the same type as x. 1-D. Values to remove. out_idx An optional tf.DType from: tf.int32, tf.int64. Defaults to tf.int32. name A name for the operation (optional). Returns A tuple of Tensor objects (out, idx). out A Tensor. Has the same type as x. idx A Tensor of type out_idx.
tensorflow.raw_ops.listdiff
tf.raw_ops.LMDBDataset Creates a dataset that emits the key-value pairs in one or more LMDB files. View aliases Compat aliases for migration See Migration guide for more details. tf.compat.v1.raw_ops.LMDBDataset tf.raw_ops.LMDBDataset( filenames, output_types, output_shapes, name=None ) The Lightning Memory-Mapped Database Manager, or LMDB, is an embedded binary key-value database. This dataset can read the contents of LMDB database files, the names of which generally have the .mdb suffix. Each output element consists of a key-value pair represented as a pair of scalar string Tensors, where the first Tensor contains the key and the second Tensor contains the value. LMDB uses different file formats on big- and little-endian machines. LMDBDataset can only read files in the format of the host machine. Args filenames A Tensor of type string. A scalar or a vector containing the name(s) of the binary file(s) to be read. output_types A list of tf.DTypes that has length >= 1. output_shapes A list of shapes (each a tf.TensorShape or list of ints) that has length >= 1. name A name for the operation (optional). Returns A Tensor of type variant.
tensorflow.raw_ops.lmdbdataset
tf.raw_ops.LMDBReader A Reader that outputs the records from a LMDB file. View aliases Compat aliases for migration See Migration guide for more details. tf.compat.v1.raw_ops.LMDBReader tf.raw_ops.LMDBReader( container='', shared_name='', name=None ) Args container An optional string. Defaults to "". If non-empty, this reader is placed in the given container. Otherwise, a default container is used. shared_name An optional string. Defaults to "". If non-empty, this reader is named in the given bucket with this shared_name. Otherwise, the node name is used instead. name A name for the operation (optional). Returns A Tensor of type mutable string.
tensorflow.raw_ops.lmdbreader
tf.raw_ops.LoadAndRemapMatrix Loads a 2-D (matrix) Tensor with name old_tensor_name from the checkpoint View aliases Compat aliases for migration See Migration guide for more details. tf.compat.v1.raw_ops.LoadAndRemapMatrix tf.raw_ops.LoadAndRemapMatrix( ckpt_path, old_tensor_name, row_remapping, col_remapping, initializing_values, num_rows, num_cols, max_rows_in_memory=-1, name=None ) at ckpt_path and potentially reorders its rows and columns using the specified remappings. Most users should use one of the wrapper initializers (such as tf.contrib.framework.load_and_remap_matrix_initializer) instead of this function directly. The remappings are 1-D tensors with the following properties: row_remapping must have exactly num_rows entries. Row i of the output matrix will be initialized from the row corresponding to index row_remapping[i] in the old Tensor from the checkpoint. col_remapping must have either 0 entries (indicating that no column reordering is needed) or num_cols entries. If specified, column j of the output matrix will be initialized from the column corresponding to index col_remapping[j] in the old Tensor from the checkpoint. A value of -1 in either of the remappings signifies a "missing" entry. In that case, values from the initializing_values tensor will be used to fill that missing row or column. If row_remapping has r missing entries and col_remapping has c missing entries, then the following condition must be true: (r * num_cols) + (c * num_rows) - (r * c) == len(initializing_values) The remapping tensors can be generated using the GenerateVocabRemapping op. As an example, with row_remapping = [1, 0, -1], col_remapping = [0, 2, -1], initializing_values = [0.5, -0.5, 0.25, -0.25, 42], and w(i, j) representing the value from row i, column j of the old tensor in the checkpoint, the output matrix will look like the following: [[w(1, 0), w(1, 2), 0.5], [w(0, 0), w(0, 2), -0.5], [0.25, -0.25, 42]] Args ckpt_path A Tensor of type string. Path to the TensorFlow checkpoint (version 2, TensorBundle) from which the old matrix Tensor will be loaded. old_tensor_name A Tensor of type string. Name of the 2-D Tensor to load from checkpoint. row_remapping A Tensor of type int64. An int Tensor of row remappings (generally created by generate_vocab_remapping). Even if no row remapping is needed, this must still be an index-valued Tensor (e.g. [0, 1, 2, ...]), or a shifted index-valued Tensor (e.g. [8, 9, 10, ...], for partitioned Variables). col_remapping A Tensor of type int64. An int Tensor of column remappings (generally created by generate_vocab_remapping). May be a size-0 Tensor if only row remapping is to be done (e.g. column ordering is the same). initializing_values A Tensor of type float32. A float Tensor containing values to fill in for cells in the output matrix that are not loaded from the checkpoint. Length must be exactly the same as the number of missing / new cells. num_rows An int that is >= 0. Number of rows (length of the 1st dimension) in the output matrix. num_cols An int that is >= 1. Number of columns (length of the 2nd dimension) in the output matrix. max_rows_in_memory An optional int. Defaults to -1. The maximum number of rows to load from the checkpoint at once. If less than or equal to 0, the entire matrix will be loaded into memory. Setting this arg trades increased disk reads for lower memory usage. name A name for the operation (optional). Returns A Tensor of type float32.
tensorflow.raw_ops.loadandremapmatrix
tf.raw_ops.LoadDataset View aliases Compat aliases for migration See Migration guide for more details. tf.compat.v1.raw_ops.LoadDataset tf.raw_ops.LoadDataset( path, reader_func_other_args, output_types, output_shapes, reader_func, compression='', name=None ) Args path A Tensor of type string. reader_func_other_args A list of Tensor objects. output_types A list of tf.DTypes that has length >= 1. output_shapes A list of shapes (each a tf.TensorShape or list of ints) that has length >= 1. reader_func A function decorated with @Defun. compression An optional string. Defaults to "". name A name for the operation (optional). Returns A Tensor of type variant.
tensorflow.raw_ops.loaddataset
tf.raw_ops.LoadTPUEmbeddingAdadeltaParameters Load Adadelta embedding parameters. View aliases Compat aliases for migration See Migration guide for more details. tf.compat.v1.raw_ops.LoadTPUEmbeddingAdadeltaParameters tf.raw_ops.LoadTPUEmbeddingAdadeltaParameters( parameters, accumulators, updates, num_shards, shard_id, table_id=-1, table_name='', config='', name=None ) An op that loads optimization parameters into HBM for embedding. Must be preceded by a ConfigureTPUEmbeddingHost op that sets up the correct embedding table configuration. For example, this op is used to install parameters that are loaded from a checkpoint before a training loop is executed. Args parameters A Tensor of type float32. Value of parameters used in the Adadelta optimization algorithm. accumulators A Tensor of type float32. Value of accumulators used in the Adadelta optimization algorithm. updates A Tensor of type float32. Value of updates used in the Adadelta optimization algorithm. num_shards An int. shard_id An int. table_id An optional int. Defaults to -1. table_name An optional string. Defaults to "". config An optional string. Defaults to "". name A name for the operation (optional). Returns The created Operation.
tensorflow.raw_ops.loadtpuembeddingadadeltaparameters
tf.raw_ops.LoadTPUEmbeddingAdadeltaParametersGradAccumDebug Load Adadelta parameters with debug support. View aliases Compat aliases for migration See Migration guide for more details. tf.compat.v1.raw_ops.LoadTPUEmbeddingAdadeltaParametersGradAccumDebug tf.raw_ops.LoadTPUEmbeddingAdadeltaParametersGradAccumDebug( parameters, accumulators, updates, gradient_accumulators, num_shards, shard_id, table_id=-1, table_name='', config='', name=None ) An op that loads optimization parameters into HBM for embedding. Must be preceded by a ConfigureTPUEmbeddingHost op that sets up the correct embedding table configuration. For example, this op is used to install parameters that are loaded from a checkpoint before a training loop is executed. Args parameters A Tensor of type float32. Value of parameters used in the Adadelta optimization algorithm. accumulators A Tensor of type float32. Value of accumulators used in the Adadelta optimization algorithm. updates A Tensor of type float32. Value of updates used in the Adadelta optimization algorithm. gradient_accumulators A Tensor of type float32. Value of gradient_accumulators used in the Adadelta optimization algorithm. num_shards An int. shard_id An int. table_id An optional int. Defaults to -1. table_name An optional string. Defaults to "". config An optional string. Defaults to "". name A name for the operation (optional). Returns The created Operation.
tensorflow.raw_ops.loadtpuembeddingadadeltaparametersgradaccumdebug
tf.raw_ops.LoadTPUEmbeddingAdagradParameters Load Adagrad embedding parameters. View aliases Compat aliases for migration See Migration guide for more details. tf.compat.v1.raw_ops.LoadTPUEmbeddingAdagradParameters tf.raw_ops.LoadTPUEmbeddingAdagradParameters( parameters, accumulators, num_shards, shard_id, table_id=-1, table_name='', config='', name=None ) An op that loads optimization parameters into HBM for embedding. Must be preceded by a ConfigureTPUEmbeddingHost op that sets up the correct embedding table configuration. For example, this op is used to install parameters that are loaded from a checkpoint before a training loop is executed. Args parameters A Tensor of type float32. Value of parameters used in the Adagrad optimization algorithm. accumulators A Tensor of type float32. Value of accumulators used in the Adagrad optimization algorithm. num_shards An int. shard_id An int. table_id An optional int. Defaults to -1. table_name An optional string. Defaults to "". config An optional string. Defaults to "". name A name for the operation (optional). Returns The created Operation.
tensorflow.raw_ops.loadtpuembeddingadagradparameters
tf.raw_ops.LoadTPUEmbeddingAdagradParametersGradAccumDebug Load Adagrad embedding parameters with debug support. View aliases Compat aliases for migration See Migration guide for more details. tf.compat.v1.raw_ops.LoadTPUEmbeddingAdagradParametersGradAccumDebug tf.raw_ops.LoadTPUEmbeddingAdagradParametersGradAccumDebug( parameters, accumulators, gradient_accumulators, num_shards, shard_id, table_id=-1, table_name='', config='', name=None ) An op that loads optimization parameters into HBM for embedding. Must be preceded by a ConfigureTPUEmbeddingHost op that sets up the correct embedding table configuration. For example, this op is used to install parameters that are loaded from a checkpoint before a training loop is executed. Args parameters A Tensor of type float32. Value of parameters used in the Adagrad optimization algorithm. accumulators A Tensor of type float32. Value of accumulators used in the Adagrad optimization algorithm. gradient_accumulators A Tensor of type float32. Value of gradient_accumulators used in the Adagrad optimization algorithm. num_shards An int. shard_id An int. table_id An optional int. Defaults to -1. table_name An optional string. Defaults to "". config An optional string. Defaults to "". name A name for the operation (optional). Returns The created Operation.
tensorflow.raw_ops.loadtpuembeddingadagradparametersgradaccumdebug
tf.raw_ops.LoadTPUEmbeddingADAMParameters Load ADAM embedding parameters. View aliases Compat aliases for migration See Migration guide for more details. tf.compat.v1.raw_ops.LoadTPUEmbeddingADAMParameters tf.raw_ops.LoadTPUEmbeddingADAMParameters( parameters, momenta, velocities, num_shards, shard_id, table_id=-1, table_name='', config='', name=None ) An op that loads optimization parameters into HBM for embedding. Must be preceded by a ConfigureTPUEmbeddingHost op that sets up the correct embedding table configuration. For example, this op is used to install parameters that are loaded from a checkpoint before a training loop is executed. Args parameters A Tensor of type float32. Value of parameters used in the ADAM optimization algorithm. momenta A Tensor of type float32. Value of momenta used in the ADAM optimization algorithm. velocities A Tensor of type float32. Value of velocities used in the ADAM optimization algorithm. num_shards An int. shard_id An int. table_id An optional int. Defaults to -1. table_name An optional string. Defaults to "". config An optional string. Defaults to "". name A name for the operation (optional). Returns The created Operation.
tensorflow.raw_ops.loadtpuembeddingadamparameters
tf.raw_ops.LoadTPUEmbeddingADAMParametersGradAccumDebug Load ADAM embedding parameters with debug support. View aliases Compat aliases for migration See Migration guide for more details. tf.compat.v1.raw_ops.LoadTPUEmbeddingADAMParametersGradAccumDebug tf.raw_ops.LoadTPUEmbeddingADAMParametersGradAccumDebug( parameters, momenta, velocities, gradient_accumulators, num_shards, shard_id, table_id=-1, table_name='', config='', name=None ) An op that loads optimization parameters into HBM for embedding. Must be preceded by a ConfigureTPUEmbeddingHost op that sets up the correct embedding table configuration. For example, this op is used to install parameters that are loaded from a checkpoint before a training loop is executed. Args parameters A Tensor of type float32. Value of parameters used in the ADAM optimization algorithm. momenta A Tensor of type float32. Value of momenta used in the ADAM optimization algorithm. velocities A Tensor of type float32. Value of velocities used in the ADAM optimization algorithm. gradient_accumulators A Tensor of type float32. Value of gradient_accumulators used in the ADAM optimization algorithm. num_shards An int. shard_id An int. table_id An optional int. Defaults to -1. table_name An optional string. Defaults to "". config An optional string. Defaults to "". name A name for the operation (optional). Returns The created Operation.
tensorflow.raw_ops.loadtpuembeddingadamparametersgradaccumdebug
tf.raw_ops.LoadTPUEmbeddingCenteredRMSPropParameters Load centered RMSProp embedding parameters. View aliases Compat aliases for migration See Migration guide for more details. tf.compat.v1.raw_ops.LoadTPUEmbeddingCenteredRMSPropParameters tf.raw_ops.LoadTPUEmbeddingCenteredRMSPropParameters( parameters, ms, mom, mg, num_shards, shard_id, table_id=-1, table_name='', config='', name=None ) An op that loads optimization parameters into HBM for embedding. Must be preceded by a ConfigureTPUEmbeddingHost op that sets up the correct embedding table configuration. For example, this op is used to install parameters that are loaded from a checkpoint before a training loop is executed. Args parameters A Tensor of type float32. Value of parameters used in the centered RMSProp optimization algorithm. ms A Tensor of type float32. Value of ms used in the centered RMSProp optimization algorithm. mom A Tensor of type float32. Value of mom used in the centered RMSProp optimization algorithm. mg A Tensor of type float32. Value of mg used in the centered RMSProp optimization algorithm. num_shards An int. shard_id An int. table_id An optional int. Defaults to -1. table_name An optional string. Defaults to "". config An optional string. Defaults to "". name A name for the operation (optional). Returns The created Operation.
tensorflow.raw_ops.loadtpuembeddingcenteredrmspropparameters
tf.raw_ops.LoadTPUEmbeddingFTRLParameters Load FTRL embedding parameters. View aliases Compat aliases for migration See Migration guide for more details. tf.compat.v1.raw_ops.LoadTPUEmbeddingFTRLParameters tf.raw_ops.LoadTPUEmbeddingFTRLParameters( parameters, accumulators, linears, num_shards, shard_id, table_id=-1, table_name='', config='', name=None ) An op that loads optimization parameters into HBM for embedding. Must be preceded by a ConfigureTPUEmbeddingHost op that sets up the correct embedding table configuration. For example, this op is used to install parameters that are loaded from a checkpoint before a training loop is executed. Args parameters A Tensor of type float32. Value of parameters used in the FTRL optimization algorithm. accumulators A Tensor of type float32. Value of accumulators used in the FTRL optimization algorithm. linears A Tensor of type float32. Value of linears used in the FTRL optimization algorithm. num_shards An int. shard_id An int. table_id An optional int. Defaults to -1. table_name An optional string. Defaults to "". config An optional string. Defaults to "". name A name for the operation (optional). Returns The created Operation.
tensorflow.raw_ops.loadtpuembeddingftrlparameters
tf.raw_ops.LoadTPUEmbeddingFTRLParametersGradAccumDebug Load FTRL embedding parameters with debug support. View aliases Compat aliases for migration See Migration guide for more details. tf.compat.v1.raw_ops.LoadTPUEmbeddingFTRLParametersGradAccumDebug tf.raw_ops.LoadTPUEmbeddingFTRLParametersGradAccumDebug( parameters, accumulators, linears, gradient_accumulators, num_shards, shard_id, table_id=-1, table_name='', config='', name=None ) An op that loads optimization parameters into HBM for embedding. Must be preceded by a ConfigureTPUEmbeddingHost op that sets up the correct embedding table configuration. For example, this op is used to install parameters that are loaded from a checkpoint before a training loop is executed. Args parameters A Tensor of type float32. Value of parameters used in the FTRL optimization algorithm. accumulators A Tensor of type float32. Value of accumulators used in the FTRL optimization algorithm. linears A Tensor of type float32. Value of linears used in the FTRL optimization algorithm. gradient_accumulators A Tensor of type float32. Value of gradient_accumulators used in the FTRL optimization algorithm. num_shards An int. shard_id An int. table_id An optional int. Defaults to -1. table_name An optional string. Defaults to "". config An optional string. Defaults to "". name A name for the operation (optional). Returns The created Operation.
tensorflow.raw_ops.loadtpuembeddingftrlparametersgradaccumdebug
tf.raw_ops.LoadTPUEmbeddingMDLAdagradLightParameters Load MDL Adagrad Light embedding parameters. View aliases Compat aliases for migration See Migration guide for more details. tf.compat.v1.raw_ops.LoadTPUEmbeddingMDLAdagradLightParameters tf.raw_ops.LoadTPUEmbeddingMDLAdagradLightParameters( parameters, accumulators, weights, benefits, num_shards, shard_id, table_id=-1, table_name='', config='', name=None ) An op that loads optimization parameters into HBM for embedding. Must be preceded by a ConfigureTPUEmbeddingHost op that sets up the correct embedding table configuration. For example, this op is used to install parameters that are loaded from a checkpoint before a training loop is executed. Args parameters A Tensor of type float32. Value of parameters used in the MDL Adagrad Light optimization algorithm. accumulators A Tensor of type float32. Value of accumulators used in the MDL Adagrad Light optimization algorithm. weights A Tensor of type float32. Value of weights used in the MDL Adagrad Light optimization algorithm. benefits A Tensor of type float32. Value of benefits used in the MDL Adagrad Light optimization algorithm. num_shards An int. shard_id An int. table_id An optional int. Defaults to -1. table_name An optional string. Defaults to "". config An optional string. Defaults to "". name A name for the operation (optional). Returns The created Operation.
tensorflow.raw_ops.loadtpuembeddingmdladagradlightparameters
tf.raw_ops.LoadTPUEmbeddingMomentumParameters Load Momentum embedding parameters. View aliases Compat aliases for migration See Migration guide for more details. tf.compat.v1.raw_ops.LoadTPUEmbeddingMomentumParameters tf.raw_ops.LoadTPUEmbeddingMomentumParameters( parameters, momenta, num_shards, shard_id, table_id=-1, table_name='', config='', name=None ) An op that loads optimization parameters into HBM for embedding. Must be preceded by a ConfigureTPUEmbeddingHost op that sets up the correct embedding table configuration. For example, this op is used to install parameters that are loaded from a checkpoint before a training loop is executed. Args parameters A Tensor of type float32. Value of parameters used in the Momentum optimization algorithm. momenta A Tensor of type float32. Value of momenta used in the Momentum optimization algorithm. num_shards An int. shard_id An int. table_id An optional int. Defaults to -1. table_name An optional string. Defaults to "". config An optional string. Defaults to "". name A name for the operation (optional). Returns The created Operation.
tensorflow.raw_ops.loadtpuembeddingmomentumparameters
tf.raw_ops.LoadTPUEmbeddingMomentumParametersGradAccumDebug Load Momentum embedding parameters with debug support. View aliases Compat aliases for migration See Migration guide for more details. tf.compat.v1.raw_ops.LoadTPUEmbeddingMomentumParametersGradAccumDebug tf.raw_ops.LoadTPUEmbeddingMomentumParametersGradAccumDebug( parameters, momenta, gradient_accumulators, num_shards, shard_id, table_id=-1, table_name='', config='', name=None ) An op that loads optimization parameters into HBM for embedding. Must be preceded by a ConfigureTPUEmbeddingHost op that sets up the correct embedding table configuration. For example, this op is used to install parameters that are loaded from a checkpoint before a training loop is executed. Args parameters A Tensor of type float32. Value of parameters used in the Momentum optimization algorithm. momenta A Tensor of type float32. Value of momenta used in the Momentum optimization algorithm. gradient_accumulators A Tensor of type float32. Value of gradient_accumulators used in the Momentum optimization algorithm. num_shards An int. shard_id An int. table_id An optional int. Defaults to -1. table_name An optional string. Defaults to "". config An optional string. Defaults to "". name A name for the operation (optional). Returns The created Operation.
tensorflow.raw_ops.loadtpuembeddingmomentumparametersgradaccumdebug
tf.raw_ops.LoadTPUEmbeddingProximalAdagradParameters Load proximal Adagrad embedding parameters. View aliases Compat aliases for migration See Migration guide for more details. tf.compat.v1.raw_ops.LoadTPUEmbeddingProximalAdagradParameters tf.raw_ops.LoadTPUEmbeddingProximalAdagradParameters( parameters, accumulators, num_shards, shard_id, table_id=-1, table_name='', config='', name=None ) An op that loads optimization parameters into HBM for embedding. Must be preceded by a ConfigureTPUEmbeddingHost op that sets up the correct embedding table configuration. For example, this op is used to install parameters that are loaded from a checkpoint before a training loop is executed. Args parameters A Tensor of type float32. Value of parameters used in the proximal Adagrad optimization algorithm. accumulators A Tensor of type float32. Value of accumulators used in the proximal Adagrad optimization algorithm. num_shards An int. shard_id An int. table_id An optional int. Defaults to -1. table_name An optional string. Defaults to "". config An optional string. Defaults to "". name A name for the operation (optional). Returns The created Operation.
tensorflow.raw_ops.loadtpuembeddingproximaladagradparameters
tf.raw_ops.LoadTPUEmbeddingProximalAdagradParametersGradAccumDebug Load proximal Adagrad embedding parameters with debug support. View aliases Compat aliases for migration See Migration guide for more details. tf.compat.v1.raw_ops.LoadTPUEmbeddingProximalAdagradParametersGradAccumDebug tf.raw_ops.LoadTPUEmbeddingProximalAdagradParametersGradAccumDebug( parameters, accumulators, gradient_accumulators, num_shards, shard_id, table_id=-1, table_name='', config='', name=None ) An op that loads optimization parameters into HBM for embedding. Must be preceded by a ConfigureTPUEmbeddingHost op that sets up the correct embedding table configuration. For example, this op is used to install parameters that are loaded from a checkpoint before a training loop is executed. Args parameters A Tensor of type float32. Value of parameters used in the proximal Adagrad optimization algorithm. accumulators A Tensor of type float32. Value of accumulators used in the proximal Adagrad optimization algorithm. gradient_accumulators A Tensor of type float32. Value of gradient_accumulators used in the proximal Adagrad optimization algorithm. num_shards An int. shard_id An int. table_id An optional int. Defaults to -1. table_name An optional string. Defaults to "". config An optional string. Defaults to "". name A name for the operation (optional). Returns The created Operation.
tensorflow.raw_ops.loadtpuembeddingproximaladagradparametersgradaccumdebug
tf.raw_ops.LoadTPUEmbeddingProximalYogiParameters View aliases Compat aliases for migration See Migration guide for more details. tf.compat.v1.raw_ops.LoadTPUEmbeddingProximalYogiParameters tf.raw_ops.LoadTPUEmbeddingProximalYogiParameters( parameters, v, m, num_shards, shard_id, table_id=-1, table_name='', config='', name=None ) Args parameters A Tensor of type float32. v A Tensor of type float32. m A Tensor of type float32. num_shards An int. shard_id An int. table_id An optional int. Defaults to -1. table_name An optional string. Defaults to "". config An optional string. Defaults to "". name A name for the operation (optional). Returns The created Operation.
tensorflow.raw_ops.loadtpuembeddingproximalyogiparameters
tf.raw_ops.LoadTPUEmbeddingProximalYogiParametersGradAccumDebug View aliases Compat aliases for migration See Migration guide for more details. tf.compat.v1.raw_ops.LoadTPUEmbeddingProximalYogiParametersGradAccumDebug tf.raw_ops.LoadTPUEmbeddingProximalYogiParametersGradAccumDebug( parameters, v, m, gradient_accumulators, num_shards, shard_id, table_id=-1, table_name='', config='', name=None ) Args parameters A Tensor of type float32. v A Tensor of type float32. m A Tensor of type float32. gradient_accumulators A Tensor of type float32. num_shards An int. shard_id An int. table_id An optional int. Defaults to -1. table_name An optional string. Defaults to "". config An optional string. Defaults to "". name A name for the operation (optional). Returns The created Operation.
tensorflow.raw_ops.loadtpuembeddingproximalyogiparametersgradaccumdebug
tf.raw_ops.LoadTPUEmbeddingRMSPropParameters Load RMSProp embedding parameters. View aliases Compat aliases for migration See Migration guide for more details. tf.compat.v1.raw_ops.LoadTPUEmbeddingRMSPropParameters tf.raw_ops.LoadTPUEmbeddingRMSPropParameters( parameters, ms, mom, num_shards, shard_id, table_id=-1, table_name='', config='', name=None ) An op that loads optimization parameters into HBM for embedding. Must be preceded by a ConfigureTPUEmbeddingHost op that sets up the correct embedding table configuration. For example, this op is used to install parameters that are loaded from a checkpoint before a training loop is executed. Args parameters A Tensor of type float32. Value of parameters used in the RMSProp optimization algorithm. ms A Tensor of type float32. Value of ms used in the RMSProp optimization algorithm. mom A Tensor of type float32. Value of mom used in the RMSProp optimization algorithm. num_shards An int. shard_id An int. table_id An optional int. Defaults to -1. table_name An optional string. Defaults to "". config An optional string. Defaults to "". name A name for the operation (optional). Returns The created Operation.
tensorflow.raw_ops.loadtpuembeddingrmspropparameters
tf.raw_ops.LoadTPUEmbeddingRMSPropParametersGradAccumDebug Load RMSProp embedding parameters with debug support. View aliases Compat aliases for migration See Migration guide for more details. tf.compat.v1.raw_ops.LoadTPUEmbeddingRMSPropParametersGradAccumDebug tf.raw_ops.LoadTPUEmbeddingRMSPropParametersGradAccumDebug( parameters, ms, mom, gradient_accumulators, num_shards, shard_id, table_id=-1, table_name='', config='', name=None ) An op that loads optimization parameters into HBM for embedding. Must be preceded by a ConfigureTPUEmbeddingHost op that sets up the correct embedding table configuration. For example, this op is used to install parameters that are loaded from a checkpoint before a training loop is executed. Args parameters A Tensor of type float32. Value of parameters used in the RMSProp optimization algorithm. ms A Tensor of type float32. Value of ms used in the RMSProp optimization algorithm. mom A Tensor of type float32. Value of mom used in the RMSProp optimization algorithm. gradient_accumulators A Tensor of type float32. Value of gradient_accumulators used in the RMSProp optimization algorithm. num_shards An int. shard_id An int. table_id An optional int. Defaults to -1. table_name An optional string. Defaults to "". config An optional string. Defaults to "". name A name for the operation (optional). Returns The created Operation.
tensorflow.raw_ops.loadtpuembeddingrmspropparametersgradaccumdebug
tf.raw_ops.LoadTPUEmbeddingStochasticGradientDescentParameters Load SGD embedding parameters. View aliases Compat aliases for migration See Migration guide for more details. tf.compat.v1.raw_ops.LoadTPUEmbeddingStochasticGradientDescentParameters tf.raw_ops.LoadTPUEmbeddingStochasticGradientDescentParameters( parameters, num_shards, shard_id, table_id=-1, table_name='', config='', name=None ) An op that loads optimization parameters into HBM for embedding. Must be preceded by a ConfigureTPUEmbeddingHost op that sets up the correct embedding table configuration. For example, this op is used to install parameters that are loaded from a checkpoint before a training loop is executed. Args parameters A Tensor of type float32. Value of parameters used in the stochastic gradient descent optimization algorithm. num_shards An int. shard_id An int. table_id An optional int. Defaults to -1. table_name An optional string. Defaults to "". config An optional string. Defaults to "". name A name for the operation (optional). Returns The created Operation.
tensorflow.raw_ops.loadtpuembeddingstochasticgradientdescentparameters
tf.raw_ops.LoadTPUEmbeddingStochasticGradientDescentParametersGradAccumDebug Load SGD embedding parameters. View aliases Compat aliases for migration See Migration guide for more details. tf.compat.v1.raw_ops.LoadTPUEmbeddingStochasticGradientDescentParametersGradAccumDebug tf.raw_ops.LoadTPUEmbeddingStochasticGradientDescentParametersGradAccumDebug( parameters, gradient_accumulators, num_shards, shard_id, table_id=-1, table_name='', config='', name=None ) An op that loads optimization parameters into HBM for embedding. Must be preceded by a ConfigureTPUEmbeddingHost op that sets up the correct embedding table configuration. For example, this op is used to install parameters that are loaded from a checkpoint before a training loop is executed. Args parameters A Tensor of type float32. Value of parameters used in the stochastic gradient descent optimization algorithm. gradient_accumulators A Tensor of type float32. Value of gradient_accumulators used in the Adadelta optimization algorithm. num_shards An int. shard_id An int. table_id An optional int. Defaults to -1. table_name An optional string. Defaults to "". config An optional string. Defaults to "". name A name for the operation (optional). Returns The created Operation.
tensorflow.raw_ops.loadtpuembeddingstochasticgradientdescentparametersgradaccumdebug
tf.raw_ops.Log Computes natural logarithm of x element-wise. View aliases Compat aliases for migration See Migration guide for more details. tf.compat.v1.raw_ops.Log tf.raw_ops.Log( x, name=None ) I.e., \(y = \log_e x\). Example: x = tf.constant([0, 0.5, 1, 5]) tf.math.log(x) See: https://en.wikipedia.org/wiki/Logarithm Args x A Tensor. Must be one of the following types: bfloat16, half, float32, float64, complex64, complex128. name A name for the operation (optional). Returns A Tensor. Has the same type as x.
tensorflow.raw_ops.log
tf.raw_ops.Log1p Computes natural logarithm of (1 + x) element-wise. View aliases Compat aliases for migration See Migration guide for more details. tf.compat.v1.raw_ops.Log1p tf.raw_ops.Log1p( x, name=None ) I.e., \(y = \log_e (1 + x)\). Example: x = tf.constant([0, 0.5, 1, 5]) tf.math.log1p(x) <tf.Tensor: shape=(4,), dtype=float32, numpy=array([0. , 0.4054651, 0.6931472, 1.7917595], dtype=float32)> Args x A Tensor. Must be one of the following types: bfloat16, half, float32, float64, complex64, complex128. name A name for the operation (optional). Returns A Tensor. Has the same type as x.
tensorflow.raw_ops.log1p
tf.raw_ops.LogicalAnd Returns the truth value of x AND y element-wise. View aliases Compat aliases for migration See Migration guide for more details. tf.compat.v1.raw_ops.LogicalAnd tf.raw_ops.LogicalAnd( x, y, name=None ) Note: LogicalAnd supports broadcasting. More about broadcasting here Args x A Tensor of type bool. y A Tensor of type bool. name A name for the operation (optional). Returns A Tensor of type bool.
tensorflow.raw_ops.logicaland
tf.raw_ops.LogicalNot Returns the truth value of NOT x element-wise. View aliases Compat aliases for migration See Migration guide for more details. tf.compat.v1.raw_ops.LogicalNot tf.raw_ops.LogicalNot( x, name=None ) Example: tf.math.logical_not(tf.constant([True, False])) <tf.Tensor: shape=(2,), dtype=bool, numpy=array([False, True])> Args x A Tensor of type bool. A Tensor of type bool. name A name for the operation (optional). Returns A Tensor of type bool.
tensorflow.raw_ops.logicalnot
tf.raw_ops.LogicalOr Returns the truth value of x OR y element-wise. View aliases Compat aliases for migration See Migration guide for more details. tf.compat.v1.raw_ops.LogicalOr tf.raw_ops.LogicalOr( x, y, name=None ) Note: math.logical_or supports broadcasting. More about broadcasting here Args x A Tensor of type bool. y A Tensor of type bool. name A name for the operation (optional). Returns A Tensor of type bool.
tensorflow.raw_ops.logicalor
tf.raw_ops.LogMatrixDeterminant Computes the sign and the log of the absolute value of the determinant of View aliases Compat aliases for migration See Migration guide for more details. tf.compat.v1.raw_ops.LogMatrixDeterminant tf.raw_ops.LogMatrixDeterminant( input, name=None ) one or more square matrices. The input is a tensor of shape [N, M, M] whose inner-most 2 dimensions form square matrices. The outputs are two tensors containing the signs and absolute values of the log determinants for all N input submatrices [..., :, :] such that determinant = sign*exp(log_abs_determinant). The log_abs_determinant is computed as det(P)*sum(log(diag(LU))) where LU is the LU decomposition of the input and P is the corresponding permutation matrix. Args input A Tensor. Must be one of the following types: half, float32, float64, complex64, complex128. Shape is [N, M, M]. name A name for the operation (optional). Returns A tuple of Tensor objects (sign, log_abs_determinant). sign A Tensor. Has the same type as input. log_abs_determinant A Tensor. Has the same type as input.
tensorflow.raw_ops.logmatrixdeterminant
tf.raw_ops.LogSoftmax Computes log softmax activations. View aliases Compat aliases for migration See Migration guide for more details. tf.compat.v1.raw_ops.LogSoftmax tf.raw_ops.LogSoftmax( logits, name=None ) For each batch i and class j we have logsoftmax[i, j] = logits[i, j] - log(sum(exp(logits[i]))) Args logits A Tensor. Must be one of the following types: half, bfloat16, float32, float64. 2-D with shape [batch_size, num_classes]. name A name for the operation (optional). Returns A Tensor. Has the same type as logits.
tensorflow.raw_ops.logsoftmax
tf.raw_ops.LogUniformCandidateSampler Generates labels for candidate sampling with a log-uniform distribution. View aliases Compat aliases for migration See Migration guide for more details. tf.compat.v1.raw_ops.LogUniformCandidateSampler tf.raw_ops.LogUniformCandidateSampler( true_classes, num_true, num_sampled, unique, range_max, seed=0, seed2=0, name=None ) See explanations of candidate sampling and the data formats at go/candidate-sampling. For each batch, this op picks a single set of sampled candidate labels. The advantages of sampling candidates per-batch are simplicity and the possibility of efficient dense matrix multiplication. The disadvantage is that the sampled candidates must be chosen independently of the context and of the true labels. Args true_classes A Tensor of type int64. A batch_size * num_true matrix, in which each row contains the IDs of the num_true target_classes in the corresponding original label. num_true An int that is >= 1. Number of true labels per context. num_sampled An int that is >= 1. Number of candidates to randomly sample. unique A bool. If unique is true, we sample with rejection, so that all sampled candidates in a batch are unique. This requires some approximation to estimate the post-rejection sampling probabilities. range_max An int that is >= 1. The sampler will sample integers from the interval [0, range_max). seed An optional int. Defaults to 0. If either seed or seed2 are set to be non-zero, the random number generator is seeded by the given seed. Otherwise, it is seeded by a random seed. seed2 An optional int. Defaults to 0. An second seed to avoid seed collision. name A name for the operation (optional). Returns A tuple of Tensor objects (sampled_candidates, true_expected_count, sampled_expected_count). sampled_candidates A Tensor of type int64. true_expected_count A Tensor of type float32. sampled_expected_count A Tensor of type float32.
tensorflow.raw_ops.loguniformcandidatesampler
tf.raw_ops.LookupTableExport Outputs all keys and values in the table. View aliases Compat aliases for migration See Migration guide for more details. tf.compat.v1.raw_ops.LookupTableExport tf.raw_ops.LookupTableExport( table_handle, Tkeys, Tvalues, name=None ) Args table_handle A Tensor of type mutable string. Handle to the table. Tkeys A tf.DType. Tvalues A tf.DType. name A name for the operation (optional). Returns A tuple of Tensor objects (keys, values). keys A Tensor of type Tkeys. values A Tensor of type Tvalues.
tensorflow.raw_ops.lookuptableexport
tf.raw_ops.LookupTableExportV2 Outputs all keys and values in the table. View aliases Compat aliases for migration See Migration guide for more details. tf.compat.v1.raw_ops.LookupTableExportV2 tf.raw_ops.LookupTableExportV2( table_handle, Tkeys, Tvalues, name=None ) Args table_handle A Tensor of type resource. Handle to the table. Tkeys A tf.DType. Tvalues A tf.DType. name A name for the operation (optional). Returns A tuple of Tensor objects (keys, values). keys A Tensor of type Tkeys. values A Tensor of type Tvalues.
tensorflow.raw_ops.lookuptableexportv2
tf.raw_ops.LookupTableFind Looks up keys in a table, outputs the corresponding values. View aliases Compat aliases for migration See Migration guide for more details. tf.compat.v1.raw_ops.LookupTableFind tf.raw_ops.LookupTableFind( table_handle, keys, default_value, name=None ) The tensor keys must of the same type as the keys of the table. The output values is of the type of the table values. The scalar default_value is the value output for keys not present in the table. It must also be of the same type as the table values. Args table_handle A Tensor of type mutable string. Handle to the table. keys A Tensor. Any shape. Keys to look up. default_value A Tensor. name A name for the operation (optional). Returns A Tensor. Has the same type as default_value.
tensorflow.raw_ops.lookuptablefind
tf.raw_ops.LookupTableFindV2 Looks up keys in a table, outputs the corresponding values. View aliases Compat aliases for migration See Migration guide for more details. tf.compat.v1.raw_ops.LookupTableFindV2 tf.raw_ops.LookupTableFindV2( table_handle, keys, default_value, name=None ) The tensor keys must of the same type as the keys of the table. The output values is of the type of the table values. The scalar default_value is the value output for keys not present in the table. It must also be of the same type as the table values. Args table_handle A Tensor of type resource. Handle to the table. keys A Tensor. Any shape. Keys to look up. default_value A Tensor. name A name for the operation (optional). Returns A Tensor. Has the same type as default_value.
tensorflow.raw_ops.lookuptablefindv2
tf.raw_ops.LookupTableImport Replaces the contents of the table with the specified keys and values. View aliases Compat aliases for migration See Migration guide for more details. tf.compat.v1.raw_ops.LookupTableImport tf.raw_ops.LookupTableImport( table_handle, keys, values, name=None ) The tensor keys must be of the same type as the keys of the table. The tensor values must be of the type of the table values. Args table_handle A Tensor of type mutable string. Handle to the table. keys A Tensor. Any shape. Keys to look up. values A Tensor. Values to associate with keys. name A name for the operation (optional). Returns The created Operation.
tensorflow.raw_ops.lookuptableimport
tf.raw_ops.LookupTableImportV2 Replaces the contents of the table with the specified keys and values. View aliases Compat aliases for migration See Migration guide for more details. tf.compat.v1.raw_ops.LookupTableImportV2 tf.raw_ops.LookupTableImportV2( table_handle, keys, values, name=None ) The tensor keys must be of the same type as the keys of the table. The tensor values must be of the type of the table values. Args table_handle A Tensor of type resource. Handle to the table. keys A Tensor. Any shape. Keys to look up. values A Tensor. Values to associate with keys. name A name for the operation (optional). Returns The created Operation.
tensorflow.raw_ops.lookuptableimportv2
tf.raw_ops.LookupTableInsert Updates the table to associates keys with values. View aliases Compat aliases for migration See Migration guide for more details. tf.compat.v1.raw_ops.LookupTableInsert tf.raw_ops.LookupTableInsert( table_handle, keys, values, name=None ) The tensor keys must be of the same type as the keys of the table. The tensor values must be of the type of the table values. Args table_handle A Tensor of type mutable string. Handle to the table. keys A Tensor. Any shape. Keys to look up. values A Tensor. Values to associate with keys. name A name for the operation (optional). Returns The created Operation.
tensorflow.raw_ops.lookuptableinsert
tf.raw_ops.LookupTableInsertV2 Updates the table to associates keys with values. View aliases Compat aliases for migration See Migration guide for more details. tf.compat.v1.raw_ops.LookupTableInsertV2 tf.raw_ops.LookupTableInsertV2( table_handle, keys, values, name=None ) The tensor keys must be of the same type as the keys of the table. The tensor values must be of the type of the table values. Args table_handle A Tensor of type resource. Handle to the table. keys A Tensor. Any shape. Keys to look up. values A Tensor. Values to associate with keys. name A name for the operation (optional). Returns The created Operation.
tensorflow.raw_ops.lookuptableinsertv2
tf.raw_ops.LookupTableRemoveV2 Removes keys and its associated values from a table. View aliases Compat aliases for migration See Migration guide for more details. tf.compat.v1.raw_ops.LookupTableRemoveV2 tf.raw_ops.LookupTableRemoveV2( table_handle, keys, name=None ) The tensor keys must of the same type as the keys of the table. Keys not already in the table are silently ignored. Args table_handle A Tensor of type resource. Handle to the table. keys A Tensor. Any shape. Keys of the elements to remove. name A name for the operation (optional). Returns The created Operation.
tensorflow.raw_ops.lookuptableremovev2
tf.raw_ops.LookupTableSize Computes the number of elements in the given table. View aliases Compat aliases for migration See Migration guide for more details. tf.compat.v1.raw_ops.LookupTableSize tf.raw_ops.LookupTableSize( table_handle, name=None ) Args table_handle A Tensor of type mutable string. Handle to the table. name A name for the operation (optional). Returns A Tensor of type int64.
tensorflow.raw_ops.lookuptablesize
tf.raw_ops.LookupTableSizeV2 Computes the number of elements in the given table. View aliases Compat aliases for migration See Migration guide for more details. tf.compat.v1.raw_ops.LookupTableSizeV2 tf.raw_ops.LookupTableSizeV2( table_handle, name=None ) Args table_handle A Tensor of type resource. Handle to the table. name A name for the operation (optional). Returns A Tensor of type int64.
tensorflow.raw_ops.lookuptablesizev2
tf.raw_ops.LoopCond Forwards the input to the output. View aliases Compat aliases for migration See Migration guide for more details. tf.compat.v1.raw_ops.LoopCond tf.raw_ops.LoopCond( input, name=None ) This operator represents the loop termination condition used by the "pivot" switches of a loop. Args input A Tensor of type bool. A boolean scalar, representing the branch predicate of the Switch op. name A name for the operation (optional). Returns A Tensor of type bool.
tensorflow.raw_ops.loopcond
tf.raw_ops.LowerBound Applies lower_bound(sorted_search_values, values) along each row. View aliases Compat aliases for migration See Migration guide for more details. tf.compat.v1.raw_ops.LowerBound tf.raw_ops.LowerBound( sorted_inputs, values, out_type=tf.dtypes.int32, name=None ) Each set of rows with the same index in (sorted_inputs, values) is treated independently. The resulting row is the equivalent of calling np.searchsorted(sorted_inputs, values, side='left'). The result is not a global index to the entire Tensor, but rather just the index in the last dimension. A 2-D example: sorted_sequence = [[0, 3, 9, 9, 10], [1, 2, 3, 4, 5]] values = [[2, 4, 9], [0, 2, 6]] result = LowerBound(sorted_sequence, values) result == [[1, 2, 2], [0, 1, 5]] Args sorted_inputs A Tensor. 2-D Tensor where each row is ordered. values A Tensor. Must have the same type as sorted_inputs. 2-D Tensor with the same numbers of rows as sorted_search_values. Contains the values that will be searched for in sorted_search_values. out_type An optional tf.DType from: tf.int32, tf.int64. Defaults to tf.int32. name A name for the operation (optional). Returns A Tensor of type out_type.
tensorflow.raw_ops.lowerbound
tf.raw_ops.LRN Local Response Normalization. View aliases Compat aliases for migration See Migration guide for more details. tf.compat.v1.raw_ops.LRN tf.raw_ops.LRN( input, depth_radius=5, bias=1, alpha=1, beta=0.5, name=None ) The 4-D input tensor is treated as a 3-D array of 1-D vectors (along the last dimension), and each vector is normalized independently. Within a given vector, each component is divided by the weighted, squared sum of inputs within depth_radius. In detail, sqr_sum[a, b, c, d] = sum(input[a, b, c, d - depth_radius : d + depth_radius + 1] ** 2) output = input / (bias + alpha * sqr_sum) ** beta For details, see Krizhevsky et al., ImageNet classification with deep convolutional neural networks (NIPS 2012). Args input A Tensor. Must be one of the following types: half, bfloat16, float32. 4-D. depth_radius An optional int. Defaults to 5. 0-D. Half-width of the 1-D normalization window. bias An optional float. Defaults to 1. An offset (usually positive to avoid dividing by 0). alpha An optional float. Defaults to 1. A scale factor, usually positive. beta An optional float. Defaults to 0.5. An exponent. name A name for the operation (optional). Returns A Tensor. Has the same type as input.
tensorflow.raw_ops.lrn
tf.raw_ops.LRNGrad Gradients for Local Response Normalization. View aliases Compat aliases for migration See Migration guide for more details. tf.compat.v1.raw_ops.LRNGrad tf.raw_ops.LRNGrad( input_grads, input_image, output_image, depth_radius=5, bias=1, alpha=1, beta=0.5, name=None ) Args input_grads A Tensor. Must be one of the following types: half, bfloat16, float32. 4-D with shape [batch, height, width, channels]. input_image A Tensor. Must have the same type as input_grads. 4-D with shape [batch, height, width, channels]. output_image A Tensor. Must have the same type as input_grads. 4-D with shape [batch, height, width, channels]. depth_radius An optional int. Defaults to 5. A depth radius. bias An optional float. Defaults to 1. An offset (usually > 0 to avoid dividing by 0). alpha An optional float. Defaults to 1. A scale factor, usually positive. beta An optional float. Defaults to 0.5. An exponent. name A name for the operation (optional). Returns A Tensor. Has the same type as input_grads.
tensorflow.raw_ops.lrngrad
tf.raw_ops.LSTMBlockCell Computes the LSTM cell forward propagation for 1 time step. View aliases Compat aliases for migration See Migration guide for more details. tf.compat.v1.raw_ops.LSTMBlockCell tf.raw_ops.LSTMBlockCell( x, cs_prev, h_prev, w, wci, wcf, wco, b, forget_bias=1, cell_clip=3, use_peephole=False, name=None ) This implementation uses 1 weight matrix and 1 bias vector, and there's an optional peephole connection. This kernel op implements the following mathematical equations: xh = [x, h_prev] [i, f, ci, o] = xh * w + b f = f + forget_bias if not use_peephole: wci = wcf = wco = 0 i = sigmoid(cs_prev * wci + i) f = sigmoid(cs_prev * wcf + f) ci = tanh(ci) cs = ci .* i + cs_prev .* f cs = clip(cs, cell_clip) o = sigmoid(cs * wco + o) co = tanh(cs) h = co .* o Args x A Tensor. Must be one of the following types: half, float32. The input to the LSTM cell, shape (batch_size, num_inputs). cs_prev A Tensor. Must have the same type as x. Value of the cell state at previous time step. h_prev A Tensor. Must have the same type as x. Output of the previous cell at previous time step. w A Tensor. Must have the same type as x. The weight matrix. wci A Tensor. Must have the same type as x. The weight matrix for input gate peephole connection. wcf A Tensor. Must have the same type as x. The weight matrix for forget gate peephole connection. wco A Tensor. Must have the same type as x. The weight matrix for output gate peephole connection. b A Tensor. Must have the same type as x. The bias vector. forget_bias An optional float. Defaults to 1. The forget gate bias. cell_clip An optional float. Defaults to 3. Value to clip the 'cs' value to. use_peephole An optional bool. Defaults to False. Whether to use peephole weights. name A name for the operation (optional). Returns A tuple of Tensor objects (i, cs, f, o, ci, co, h). i A Tensor. Has the same type as x. cs A Tensor. Has the same type as x. f A Tensor. Has the same type as x. o A Tensor. Has the same type as x. ci A Tensor. Has the same type as x. co A Tensor. Has the same type as x. h A Tensor. Has the same type as x.
tensorflow.raw_ops.lstmblockcell
tf.raw_ops.LSTMBlockCellGrad Computes the LSTM cell backward propagation for 1 timestep. View aliases Compat aliases for migration See Migration guide for more details. tf.compat.v1.raw_ops.LSTMBlockCellGrad tf.raw_ops.LSTMBlockCellGrad( x, cs_prev, h_prev, w, wci, wcf, wco, b, i, cs, f, o, ci, co, cs_grad, h_grad, use_peephole, name=None ) This implementation is to be used in conjunction of LSTMBlockCell. Args x A Tensor. Must be one of the following types: half, float32. The input to the LSTM cell, shape (batch_size, num_inputs). cs_prev A Tensor. Must have the same type as x. The previous cell state. h_prev A Tensor. Must have the same type as x. The previous h state. w A Tensor. Must have the same type as x. The weight matrix. wci A Tensor. Must have the same type as x. The weight matrix for input gate peephole connection. wcf A Tensor. Must have the same type as x. The weight matrix for forget gate peephole connection. wco A Tensor. Must have the same type as x. The weight matrix for output gate peephole connection. b A Tensor. Must have the same type as x. The bias vector. i A Tensor. Must have the same type as x. The input gate. cs A Tensor. Must have the same type as x. The cell state before the tanh. f A Tensor. Must have the same type as x. The forget gate. o A Tensor. Must have the same type as x. The output gate. ci A Tensor. Must have the same type as x. The cell input. co A Tensor. Must have the same type as x. The cell after the tanh. cs_grad A Tensor. Must have the same type as x. The current gradient of cs. h_grad A Tensor. Must have the same type as x. The gradient of h vector. use_peephole A bool. Whether the cell uses peephole connections. name A name for the operation (optional). Returns A tuple of Tensor objects (cs_prev_grad, dicfo, wci_grad, wcf_grad, wco_grad). cs_prev_grad A Tensor. Has the same type as x. dicfo A Tensor. Has the same type as x. wci_grad A Tensor. Has the same type as x. wcf_grad A Tensor. Has the same type as x. wco_grad A Tensor. Has the same type as x.
tensorflow.raw_ops.lstmblockcellgrad
tf.raw_ops.Lu Computes the LU decomposition of one or more square matrices. View aliases Compat aliases for migration See Migration guide for more details. tf.compat.v1.raw_ops.Lu tf.raw_ops.Lu( input, output_idx_type=tf.dtypes.int32, name=None ) The input is a tensor of shape [..., M, M] whose inner-most 2 dimensions form square matrices. The input has to be invertible. The output consists of two tensors LU and P containing the LU decomposition of all input submatrices [..., :, :]. LU encodes the lower triangular and upper triangular factors. For each input submatrix of shape [M, M], L is a lower triangular matrix of shape [M, M] with unit diagonal whose entries correspond to the strictly lower triangular part of LU. U is a upper triangular matrix of shape [M, M] whose entries correspond to the upper triangular part, including the diagonal, of LU. P represents a permutation matrix encoded as a list of indices each between 0 and M-1, inclusive. If P_mat denotes the permutation matrix corresponding to P, then the L, U and P satisfies P_mat * input = L * U. Args input A Tensor. Must be one of the following types: float64, float32, half, complex64, complex128. A tensor of shape [..., M, M] whose inner-most 2 dimensions form matrices of size [M, M]. output_idx_type An optional tf.DType from: tf.int32, tf.int64. Defaults to tf.int32. name A name for the operation (optional). Returns A tuple of Tensor objects (lu, p). lu A Tensor. Has the same type as input. p A Tensor of type output_idx_type.
tensorflow.raw_ops.lu
tf.raw_ops.MakeIterator Makes a new iterator from the given dataset and stores it in iterator. View aliases Compat aliases for migration See Migration guide for more details. tf.compat.v1.raw_ops.MakeIterator tf.raw_ops.MakeIterator( dataset, iterator, name=None ) This operation may be executed multiple times. Each execution will reset the iterator in iterator to the first element of dataset. Args dataset A Tensor of type variant. iterator A Tensor of type resource. name A name for the operation (optional). Returns The created Operation.
tensorflow.raw_ops.makeiterator
tf.raw_ops.MapAndBatchDataset Creates a dataset that fuses mapping with batching. View aliases Compat aliases for migration See Migration guide for more details. tf.compat.v1.raw_ops.MapAndBatchDataset tf.raw_ops.MapAndBatchDataset( input_dataset, other_arguments, batch_size, num_parallel_calls, drop_remainder, f, output_types, output_shapes, preserve_cardinality=False, name=None ) Creates a dataset that applies f to the outputs of input_dataset and then batches batch_size of them. Unlike a "MapDataset", which applies f sequentially, this dataset invokes up to batch_size * num_parallel_batches copies of f in parallel. Args input_dataset A Tensor of type variant. A variant tensor representing the input dataset. other_arguments A list of Tensor objects. A list of tensors, typically values that were captured when building a closure for f. batch_size A Tensor of type int64. A scalar representing the number of elements to accumulate in a batch. It determines the number of concurrent invocations of f that process elements from input_dataset in parallel. num_parallel_calls A Tensor of type int64. A scalar representing the maximum number of parallel invocations of the map_fn function. Applying the map_fn on consecutive input elements in parallel has the potential to improve input pipeline throughput. drop_remainder A Tensor of type bool. A scalar representing whether the last batch should be dropped in case its size is smaller than desired. f A function decorated with @Defun. A function to apply to the outputs of input_dataset. output_types A list of tf.DTypes that has length >= 1. output_shapes A list of shapes (each a tf.TensorShape or list of ints) that has length >= 1. preserve_cardinality An optional bool. Defaults to False. name A name for the operation (optional). Returns A Tensor of type variant.
tensorflow.raw_ops.mapandbatchdataset
tf.raw_ops.MapClear Op removes all elements in the underlying container. View aliases Compat aliases for migration See Migration guide for more details. tf.compat.v1.raw_ops.MapClear tf.raw_ops.MapClear( dtypes, capacity=0, memory_limit=0, container='', shared_name='', name=None ) Args dtypes A list of tf.DTypes. capacity An optional int that is >= 0. Defaults to 0. memory_limit An optional int that is >= 0. Defaults to 0. container An optional string. Defaults to "". shared_name An optional string. Defaults to "". name A name for the operation (optional). Returns The created Operation.
tensorflow.raw_ops.mapclear
tf.raw_ops.MapDataset Creates a dataset that applies f to the outputs of input_dataset. View aliases Compat aliases for migration See Migration guide for more details. tf.compat.v1.raw_ops.MapDataset tf.raw_ops.MapDataset( input_dataset, other_arguments, f, output_types, output_shapes, use_inter_op_parallelism=True, preserve_cardinality=False, name=None ) Args input_dataset A Tensor of type variant. other_arguments A list of Tensor objects. f A function decorated with @Defun. output_types A list of tf.DTypes that has length >= 1. output_shapes A list of shapes (each a tf.TensorShape or list of ints) that has length >= 1. use_inter_op_parallelism An optional bool. Defaults to True. preserve_cardinality An optional bool. Defaults to False. name A name for the operation (optional). Returns A Tensor of type variant.
tensorflow.raw_ops.mapdataset
tf.raw_ops.MapDefun Maps a function on the list of tensors unpacked from arguments on dimension 0. View aliases Compat aliases for migration See Migration guide for more details. tf.compat.v1.raw_ops.MapDefun tf.raw_ops.MapDefun( arguments, captured_inputs, output_types, output_shapes, f, max_intra_op_parallelism=1, name=None ) The function given by f is assumed to be stateless, and is executed concurrently on all the slices; up to batch_size (i.e. the size of the 0th dimension of each argument) functions will be scheduled at once. The max_intra_op_parallelism attr, which defaults to 1, can be used to limit the intra op parallelism. To limit inter-op parallelism, a user can set a private threadpool on the dataset using tf.data.Options's ThreadingOptions. Note that this op is not exposed to users directly, but is invoked in tf.data rewrites. Args arguments A list of Tensor objects. A list of tensors whose types are Targuments, corresponding to the inputs the function should be mapped over. captured_inputs A list of Tensor objects. A list of tensors whose types are Tcaptured, corresponding to the captured inputs of the defun. output_types A list of tf.DTypes that has length >= 1. A list of types. output_shapes A list of shapes (each a tf.TensorShape or list of ints) that has length >= 1. A list of shapes. f A function decorated with @Defun. max_intra_op_parallelism An optional int. Defaults to 1. name A name for the operation (optional). Returns A list of Tensor objects of type output_types.
tensorflow.raw_ops.mapdefun
tf.raw_ops.MapIncompleteSize Op returns the number of incomplete elements in the underlying container. View aliases Compat aliases for migration See Migration guide for more details. tf.compat.v1.raw_ops.MapIncompleteSize tf.raw_ops.MapIncompleteSize( dtypes, capacity=0, memory_limit=0, container='', shared_name='', name=None ) Args dtypes A list of tf.DTypes. capacity An optional int that is >= 0. Defaults to 0. memory_limit An optional int that is >= 0. Defaults to 0. container An optional string. Defaults to "". shared_name An optional string. Defaults to "". name A name for the operation (optional). Returns A Tensor of type int32.
tensorflow.raw_ops.mapincompletesize
tf.raw_ops.MapPeek Op peeks at the values at the specified key. If the View aliases Compat aliases for migration See Migration guide for more details. tf.compat.v1.raw_ops.MapPeek tf.raw_ops.MapPeek( key, indices, dtypes, capacity=0, memory_limit=0, container='', shared_name='', name=None ) underlying container does not contain this key this op will block until it does. Args key A Tensor of type int64. indices A Tensor of type int32. dtypes A list of tf.DTypes that has length >= 1. capacity An optional int that is >= 0. Defaults to 0. memory_limit An optional int that is >= 0. Defaults to 0. container An optional string. Defaults to "". shared_name An optional string. Defaults to "". name A name for the operation (optional). Returns A list of Tensor objects of type dtypes.
tensorflow.raw_ops.mappeek
tf.raw_ops.MapSize Op returns the number of elements in the underlying container. View aliases Compat aliases for migration See Migration guide for more details. tf.compat.v1.raw_ops.MapSize tf.raw_ops.MapSize( dtypes, capacity=0, memory_limit=0, container='', shared_name='', name=None ) Args dtypes A list of tf.DTypes. capacity An optional int that is >= 0. Defaults to 0. memory_limit An optional int that is >= 0. Defaults to 0. container An optional string. Defaults to "". shared_name An optional string. Defaults to "". name A name for the operation (optional). Returns A Tensor of type int32.
tensorflow.raw_ops.mapsize