sequence_id
stringlengths
7
7
sequence_name
stringlengths
4
573
sequence
sequencelengths
1
348
keywords
sequencelengths
1
8
score
int64
1
2.31k
offset_a
int64
-14,827
666,262,453B
offset_b
int64
0
635M
cross_references
sequencelengths
1
128
former_ids
sequencelengths
1
3
author
stringlengths
7
231
timestamp
timestamp[us]date
1999-12-11 03:00:00
2025-04-28 00:58:08
filename
stringlengths
29
29
hash
stringlengths
32
32
A001101
Moran numbers: k such that k/(sum of digits of k) is prime.
[ "18", "21", "27", "42", "45", "63", "84", "111", "114", "117", "133", "152", "153", "156", "171", "190", "195", "198", "201", "207", "209", "222", "228", "247", "261", "266", "285", "333", "370", "372", "399", "402", "407", "423", "444", "465", "481", "511", "516", "518", "531", "555", "558", "592", "603" ]
[ "nonn", "base", "nice" ]
54
1
1
[ "A001101", "A005349", "A007953", "A010051", "A062339", "A085775", "A108780", "A130338" ]
null
Bill Moran (moran1(AT)llnl.gov)
2024-02-19T01:47:45
oeisdata/seq/A001/A001101.seq
474ff7fe1d611deee46161ee4729d22e
A001102
Numbers k such that k / (sum of digits of k) is a square.
[ "1", "2", "3", "4", "5", "6", "7", "8", "9", "12", "24", "36", "48", "81", "100", "144", "150", "192", "200", "225", "288", "300", "320", "324", "375", "400", "441", "500", "512", "600", "640", "648", "700", "704", "735", "800", "832", "882", "900", "960", "1014", "1088", "1200", "1452", "1458", "1521", "1815", "2023" ]
[ "nonn", "base", "nice" ]
29
1
2
[ "A001102", "A005349", "A028839" ]
null
N. J. A. Sloane, Bill Moran (moran1(AT)llnl.gov)
2022-09-08T08:44:28
oeisdata/seq/A001/A001102.seq
f6e05ce1a14ce64aa91ef64b8f56be94
A001103
Numbers k such that (k / product of digits of k) is 1 or a prime.
[ "1", "2", "3", "4", "5", "6", "7", "8", "9", "11", "15", "24", "36", "115", "175", "212", "624", "735", "816", "1115", "1184", "1197", "1416", "2144", "3171", "3276", "3915", "6624", "7119", "8832", "9612", "11133", "11212", "11331", "12128", "12216", "12768", "13131", "21184", "21728", "24912", "31113", "31488", "32172", "32616", "35175" ]
[ "nonn", "base", "nice" ]
46
1
2
[ "A001103", "A007602", "A007954", "A010051", "A052382", "A066577", "A188642" ]
null
N. J. A. Sloane, Bill Moran (moran1(AT)llnl.gov)
2024-03-30T15:37:01
oeisdata/seq/A001/A001103.seq
575ca818814a594bb2e25d23b48463bb
A001104
Numbers n such that n / product of digits of n is a square.
[ "1", "2", "3", "4", "5", "6", "7", "8", "9", "135", "144", "384", "1575", "1715", "6144", "6912", "11664", "14112", "16224", "18816", "23328", "26136", "31212", "41616", "82944", "83232", "93312", "131424", "131712", "186624", "248832", "371112", "1168128", "2214144", "2239488", "2333772", "3321216", "3881472", "6642432" ]
[ "nonn", "base" ]
12
1
2
null
null
N. J. A. Sloane, Bill Moran (moran1(AT)llnl.gov)
2019-05-09T09:21:06
oeisdata/seq/A001/A001104.seq
9ea88c131b33dc0d3daf2332406bc753
A001105
a(n) = 2*n^2.
[ "0", "2", "8", "18", "32", "50", "72", "98", "128", "162", "200", "242", "288", "338", "392", "450", "512", "578", "648", "722", "800", "882", "968", "1058", "1152", "1250", "1352", "1458", "1568", "1682", "1800", "1922", "2048", "2178", "2312", "2450", "2592", "2738", "2888", "3042", "3200", "3362", "3528", "3698", "3872", "4050", "4232", "4418" ]
[ "nonn", "easy" ]
402
0
2
[ "A000217", "A000290", "A001105", "A002061", "A002266", "A006331", "A016742", "A028982", "A028983", "A056106", "A058331", "A077591", "A116471", "A139098", "A165900", "A183300", "A194715", "A226488", "A245508", "A247375", "A251599", "A290391", "A290392" ]
null
Bernd.Walter(AT)frankfurt.netsurf.de
2025-03-14T17:50:21
oeisdata/seq/A001/A001105.seq
8a58db94072e484a978a0704ab830f82
A001106
9-gonal (or enneagonal or nonagonal) numbers: a(n) = n*(7*n-5)/2.
[ "0", "1", "9", "24", "46", "75", "111", "154", "204", "261", "325", "396", "474", "559", "651", "750", "856", "969", "1089", "1216", "1350", "1491", "1639", "1794", "1956", "2125", "2301", "2484", "2674", "2871", "3075", "3286", "3504", "3729", "3961", "4200", "4446", "4699", "4959", "5226", "5500", "5781", "6069", "6364" ]
[ "nonn", "easy", "nice" ]
184
0
3
[ "A001106", "A016993", "A057655", "A069099", "A093564", "A131875", "A244646" ]
[ "M4604" ]
N. J. A. Sloane
2025-02-16T08:32:22
oeisdata/seq/A001/A001106.seq
ba514d66fc0e7aedd1374cd9d3203431
A001107
10-gonal (or decagonal) numbers: a(n) = n*(4*n-3).
[ "0", "1", "10", "27", "52", "85", "126", "175", "232", "297", "370", "451", "540", "637", "742", "855", "976", "1105", "1242", "1387", "1540", "1701", "1870", "2047", "2232", "2425", "2626", "2835", "3052", "3277", "3510", "3751", "4000", "4257", "4522", "4795", "5076", "5365", "5662", "5967", "6280", "6601", "6930", "7267", "7612", "7965", "8326" ]
[ "nonn", "easy", "nice" ]
200
0
3
[ "A000217", "A000290", "A000384", "A001107", "A002061", "A002378", "A002620", "A002939", "A002943", "A003215", "A007585", "A007742", "A014105", "A016742", "A016754", "A017077", "A028994", "A033951", "A033952", "A033953", "A033954", "A033988", "A033989", "A033990", "A033991", "A033996", "A035608", "A053755", "A054552", "A054554", "A054556", "A054567", "A054569", "A080335", "A093565", "A137932", "A156859", "A267682", "A317186" ]
[ "M4690" ]
N. J. A. Sloane
2025-02-16T08:32:22
oeisdata/seq/A001/A001107.seq
b03a2c7e84443f4e7657d90e8da40852
A001108
a(n)-th triangular number is a square: a(n+1) = 6*a(n) - a(n-1) + 2, with a(0) = 0, a(1) = 1.
[ "0", "1", "8", "49", "288", "1681", "9800", "57121", "332928", "1940449", "11309768", "65918161", "384199200", "2239277041", "13051463048", "76069501249", "443365544448", "2584123765441", "15061377048200", "87784138523761", "511643454094368", "2982076586042449", "17380816062160328", "101302819786919521" ]
[ "nonn", "easy", "nice", "changed" ]
295
0
3
[ "A000129", "A000203", "A000217", "A000290", "A001108", "A001109", "A001110", "A001652", "A002315", "A005319", "A007913", "A072221", "A084301", "A115598" ]
[ "M4536", "N1924" ]
N. J. A. Sloane
2025-04-15T08:28:46
oeisdata/seq/A001/A001108.seq
619e838bd3b6e19a61ca6c0a172c2c56
A001109
a(n)^2 is a triangular number: a(n) = 6*a(n-1) - a(n-2) with a(0)=0, a(1)=1.
[ "0", "1", "6", "35", "204", "1189", "6930", "40391", "235416", "1372105", "7997214", "46611179", "271669860", "1583407981", "9228778026", "53789260175", "313506783024", "1827251437969", "10650001844790", "62072759630771", "361786555939836", "2108646576008245", "12290092900109634", "71631910824649559", "417501372047787720" ]
[ "nonn", "easy", "nice" ]
620
0
3
[ "A000027", "A000217", "A000290", "A001090", "A001108", "A001109", "A001353", "A001542", "A001653", "A001850", "A002315", "A002965", "A004189", "A004191", "A007655", "A029547", "A029548", "A049660", "A075843", "A077412", "A077421", "A077423", "A078987", "A097309", "A097311", "A097313", "A097316", "A144128", "A278310", "A323182" ]
[ "M4217", "N1760" ]
N. J. A. Sloane
2025-01-05T19:51:31
oeisdata/seq/A001/A001109.seq
0cfb754c75aa95d3e3041d57e65245c5
A001110
Square triangular numbers: numbers that are both triangular and square.
[ "0", "1", "36", "1225", "41616", "1413721", "48024900", "1631432881", "55420693056", "1882672131025", "63955431761796", "2172602007770041", "73804512832419600", "2507180834294496361", "85170343853180456676", "2893284510173841030625", "98286503002057414584576", "3338847817559778254844961", "113422539294030403250144100" ]
[ "nonn", "easy", "nice" ]
416
0
3
[ "A000217", "A000290", "A001014", "A001108", "A001109", "A001110", "A004146", "A004191", "A005214", "A010052", "A010054", "A049682", "A049683", "A049684", "A054493", "A054686", "A100047", "A182334", "A229131", "A232847", "A233267", "A240129", "A299921" ]
[ "M5259", "N2291" ]
N. J. A. Sloane
2025-03-16T08:18:01
oeisdata/seq/A001/A001110.seq
a43e75ddc68d76fcbe5914cacfb6741b
A001111
Number of inequivalent Hadamard designs of order 4n.
[ "1", "1", "1", "5", "6", "1106", "208310", "10374196953" ]
[ "nonn", "hard", "nice", "more" ]
23
1
4
null
null
N. J. A. Sloane
2023-09-19T05:13:27
oeisdata/seq/A001/A001111.seq
99fca3bfa9866b0c8dc313dc224f3a7e
A001112
A continued fraction.
[ "0", "1", "1", "3", "4", "11", "136", "283", "419", "1121", "1540", "38081", "39621", "117323", "156944", "431211", "5331476", "11094163", "16425639", "43945441", "60371080", "1492851361", "1553222441", "4599296243", "6152518684", "16904333611", "209004522016", "434913377643", "643917899659" ]
[ "nonn", "frac", "easy" ]
30
0
4
[ "A001112", "A010211", "A041298" ]
[ "M2370", "N0939" ]
N. J. A. Sloane
2022-09-08T08:44:28
oeisdata/seq/A001/A001112.seq
675124ebe690896e8782a358531b3c2f
A001113
Decimal expansion of e.
[ "2", "7", "1", "8", "2", "8", "1", "8", "2", "8", "4", "5", "9", "0", "4", "5", "2", "3", "5", "3", "6", "0", "2", "8", "7", "4", "7", "1", "3", "5", "2", "6", "6", "2", "4", "9", "7", "7", "5", "7", "2", "4", "7", "0", "9", "3", "6", "9", "9", "9", "5", "9", "5", "7", "4", "9", "6", "6", "9", "6", "7", "6", "2", "7", "7", "2", "4", "0", "7", "6", "6", "3", "0", "3", "5", "3", "5", "4", "7", "5", "9", "4", "5", "7", "1", "3", "8", "2", "1", "7", "8", "5", "2", "5", "1", "6", "6", "4", "2", "7", "4", "2", "7", "4", "6" ]
[ "nonn", "cons", "nice", "core" ]
344
1
1
[ "A001113", "A002034", "A003417", "A004593", "A004594", "A004595", "A004596", "A004597", "A004598", "A004599", "A004600", "A068985", "A072334", "A073229", "A091933", "A092426", "A092511", "A092513", "A092553", "A092555", "A092560", "A092577", "A092578", "A122214", "A122215", "A122216", "A122217", "A122416", "A122417", "A170873" ]
[ "M1727", "N0684" ]
N. J. A. Sloane
2025-03-22T13:13:43
oeisdata/seq/A001/A001113.seq
daaebccd3b880d90fb7b67f6f1c774d3
A001114
Increasing blocks of digits of e.
[ "2", "7", "18", "28", "182", "845", "904", "5235", "36028", "74713", "526624", "977572", "4709369", "9959574", "96696762", "7724076630", "35354759457", "138217852516", "642742746639", "1932003059921", "8174135966290", "43572900334295", "260595630738132", "328627943490763", "2338298807531952", "5101901157383418" ]
[ "nonn", "base" ]
21
1
1
null
[ "M1747", "N0692" ]
N. J. A. Sloane
2021-02-07T21:10:31
oeisdata/seq/A001/A001114.seq
ccd0d623d08f2b38e61134a41fc62d28
A001115
Maximal number of pairwise relatively prime polynomials of degree n over GF(2).
[ "1", "2", "3", "4", "6", "9", "14", "23", "38", "64", "113", "200", "358", "653", "1202", "2223", "4151", "7781", "14659", "27721", "52603", "100084", "190969", "365134", "699617", "1342923", "2582172", "4972385", "9588933", "18515328", "35794987", "69278386", "134224480", "260309786", "505302925", "981723316", "1908898002", "3714597352", "7233673969", "14096361346", "27487875487" ]
[ "nonn" ]
22
0
2
[ "A001037", "A001115" ]
[ "M0575", "N0209" ]
N. J. A. Sloane
2021-12-19T10:58:34
oeisdata/seq/A001/A001115.seq
445453a7e41dc9d7e559aa74d360ee5a
A001116
Maximal kissing number of an n-dimensional lattice.
[ "0", "2", "6", "12", "24", "40", "72", "126", "240", "272" ]
[ "nonn", "nice", "hard", "more" ]
70
0
2
[ "A001116", "A002336", "A028923", "A257479" ]
[ "M1585", "N0617" ]
N. J. A. Sloane
2025-02-16T08:32:22
oeisdata/seq/A001/A001116.seq
d0014a2f063c7c5bad87ecc570297962
A001117
a(n) = 3^n - 3*2^n + 3.
[ "1", "0", "0", "6", "36", "150", "540", "1806", "5796", "18150", "55980", "171006", "519156", "1569750", "4733820", "14250606", "42850116", "128746950", "386634060", "1160688606", "3483638676", "10454061750", "31368476700", "94118013006", "282379204836", "847187946150", "2541664501740", "7625194831806" ]
[ "nonn", "easy" ]
100
0
4
[ "A000919", "A001117", "A001118", "A019538" ]
[ "M4219", "N1763" ]
N. J. A. Sloane
2024-08-05T13:35:07
oeisdata/seq/A001/A001117.seq
67364c6c6f124d381de97ee761e33c74
A001118
Number of labeled ordered set partitions into 5 parts for n>=1, a(0)=1.
[ "1", "0", "0", "0", "0", "120", "1800", "16800", "126000", "834120", "5103000", "29607600", "165528000", "901020120", "4809004200", "25292030400", "131542866000", "678330198120", "3474971465400", "17710714165200", "89904730860000", "454951508208120", "2296538629446600", "11570026582092000", "58200094019430000" ]
[ "nonn", "easy" ]
81
0
6
[ "A000919", "A000920", "A001117", "A001118", "A019538" ]
[ "M5377", "N2334" ]
N. J. A. Sloane
2023-06-25T02:22:39
oeisdata/seq/A001/A001118.seq
4b0472432dd2fc2ca91fd0bbd7cf0178
A001119
Number of skew-symmetric Hadamard matrices of order 4n.
[ "1", "1", "2", "2", "16", "54" ]
[ "nonn", "hard", "more", "nice" ]
24
2
3
null
null
N. J. A. Sloane.
2024-10-27T12:12:43
oeisdata/seq/A001/A001119.seq
68727610a1947b12561bba542c523204
A001120
a(0) = a(1) = 1; for n > 1, a(n) = n*a(n-1) + (-1)^n.
[ "1", "1", "3", "8", "33", "164", "985", "6894", "55153", "496376", "4963761", "54601370", "655216441", "8517813732", "119249392249", "1788740883734", "28619854139745", "486537520375664", "8757675366761953", "166395831968477106", "3327916639369542121", "69886249426760384540", "1537497487388728459881" ]
[ "nonn", "easy" ]
55
0
3
[ "A000142", "A000166", "A001120", "A334715" ]
[ "M2760", "N1110" ]
N. J. A. Sloane, Simon Plouffe
2024-02-19T01:47:58
oeisdata/seq/A001/A001120.seq
fd1f8a6e5d94008101f1e088a8cbf2aa
A001121
Number of doubly-regular tournaments of order 4n-1.
[ "1", "1", "2", "2", "37", "722" ]
[ "nonn", "hard", "more", "nice" ]
15
2
3
null
null
N. J. A. Sloane
2017-05-02T21:48:41
oeisdata/seq/A001/A001121.seq
b2951eefdc837a956145baf917872ad3
A001122
Primes with primitive root 2.
[ "3", "5", "11", "13", "19", "29", "37", "53", "59", "61", "67", "83", "101", "107", "131", "139", "149", "163", "173", "179", "181", "197", "211", "227", "269", "293", "317", "347", "349", "373", "379", "389", "419", "421", "443", "461", "467", "491", "509", "523", "541", "547", "557", "563", "587", "613", "619", "653", "659", "661", "677", "701", "709", "757", "773", "787", "797" ]
[ "nonn", "easy", "nice" ]
272
1
1
[ "A001122", "A001123", "A001913", "A001917", "A002326", "A005596", "A050229", "A071642", "A127209", "A163782", "A216838", "A292270" ]
[ "M2473", "N0981" ]
N. J. A. Sloane
2025-03-29T15:31:45
oeisdata/seq/A001/A001122.seq
d4009eb440451255253a2a013389ee61
A001123
Primes with 3 as smallest primitive root.
[ "7", "17", "31", "43", "79", "89", "113", "127", "137", "199", "223", "233", "257", "281", "283", "331", "353", "401", "449", "463", "487", "521", "569", "571", "593", "607", "617", "631", "641", "691", "739", "751", "809", "811", "823", "857", "881", "929", "953", "977", "1013", "1039", "1049", "1063", "1087", "1097", "1193", "1217" ]
[ "nonn" ]
59
1
1
[ "A001122", "A001123", "A001124", "A019334" ]
[ "M4356", "N1825" ]
N. J. A. Sloane
2023-02-13T11:16:43
oeisdata/seq/A001/A001123.seq
3dc9857df02260308f95de340b0a7adb
A001124
Primes with 5 as smallest primitive root.
[ "23", "47", "73", "97", "103", "157", "167", "193", "263", "277", "307", "383", "397", "433", "503", "577", "647", "673", "683", "727", "743", "863", "887", "937", "967", "983", "1033", "1093", "1103", "1153", "1163", "1223", "1367", "1487", "1543", "1583", "1607", "1777", "1823", "1847", "1933", "1993", "2003", "2017", "2063", "2087", "2113", "2203", "2207" ]
[ "nonn" ]
36
1
1
[ "A001122", "A001123", "A001124", "A001125" ]
[ "M5132", "N2224" ]
N. J. A. Sloane
2023-02-13T09:52:17
oeisdata/seq/A001/A001124.seq
124ec94c95dd0aa17628b26479f7fe98
A001125
Primes with 6 as smallest primitive root.
[ "41", "109", "151", "229", "251", "271", "367", "733", "761", "971", "991", "1069", "1289", "1303", "1429", "1471", "1759", "1789", "1811", "1879", "2411", "2441", "2551", "2749", "2791", "3061", "3079", "3109", "3229", "3251", "3301", "3319", "3967", "4211", "4549", "4721", "4783", "4909", "4931", "4951", "5101", "5167", "5581", "5791" ]
[ "nonn" ]
31
1
1
[ "A001122", "A001123", "A001124", "A001125" ]
[ "M5275", "N2293" ]
N. J. A. Sloane
2018-05-08T15:11:53
oeisdata/seq/A001/A001125.seq
444d93f6285ae08c2a7965abb53a3b5b
A001126
Primes with 7 as smallest primitive root.
[ "71", "239", "241", "359", "431", "499", "599", "601", "919", "997", "1051", "1181", "1249", "1439", "1609", "1753", "2039", "2089", "2111", "2179", "2251", "2281", "2341", "2591", "2593", "2671", "2711", "2879", "3119", "3121", "3169", "3181", "3457", "3511", "3541", "3719", "3739", "3769", "4271", "4513", "4799", "4801", "4943", "5197" ]
[ "nonn" ]
30
1
1
null
[ "M5348", "N2325" ]
N. J. A. Sloane
2018-05-08T15:11:53
oeisdata/seq/A001/A001126.seq
0fe7e9498e089ac2c83cf737f3ad56b0
A001127
Trajectory of 1 under map x->x + (x-with-digits-reversed).
[ "1", "2", "4", "8", "16", "77", "154", "605", "1111", "2222", "4444", "8888", "17776", "85547", "160105", "661166", "1322332", "3654563", "7309126", "13528163", "49710694", "99312488", "187733887", "976071668", "1842242347", "9274664828", "17559329557", "93151725128", "175304440267", "937348843838", "1775697687577" ]
[ "nonn", "base", "easy", "nice" ]
35
0
2
[ "A001127", "A004086", "A006960", "A023108", "A033648", "A033649", "A033650", "A033651", "A056964", "A243238" ]
null
N. J. A. Sloane, Jun 05 2002
2023-10-27T18:03:38
oeisdata/seq/A001/A001127.seq
9976f572ec5c866423f93f1ed6a93984
A001128
Reverse digits of previous term and multiply by previous term.
[ "2", "4", "16", "976", "662704", "269896807264", "124883600543123110859968", "108643488775144622666209173128243503963147630528" ]
[ "nonn", "base" ]
17
1
1
[ "A001128", "A061205" ]
null
N. J. A. Sloane
2017-03-18T05:17:43
oeisdata/seq/A001/A001128.seq
3af7b9421d0a16d70ae72d17a842c3d2
A001129
Iccanobif numbers: reverse digits of two previous terms and add.
[ "0", "1", "1", "2", "3", "5", "8", "13", "39", "124", "514", "836", "1053", "4139", "12815", "61135", "104937", "792517", "1454698", "9679838", "17354310", "9735140", "1760750", "986050", "621360", "113815", "581437", "1252496", "7676706", "13019288", "94367798", "178067380", "173537220", "106496242", "265429972", "522619163" ]
[ "nonn", "base", "easy", "nice" ]
55
0
4
[ "A001129", "A014258", "A014259", "A014260" ]
null
N. J. A. Sloane
2023-10-27T19:22:18
oeisdata/seq/A001/A001129.seq
2c021625ae39fad66925ebde1c28e3bb
A001130
Number of graphical basis partitions of 2n.
[ "1", "1", "3", "4", "6", "11", "16", "23", "36", "52", "71", "103", "141", "197", "272", "366", "482", "657", "863", "1140", "1489", "1951", "2511", "3241", "4155", "5317", "6782", "8574", "10786", "13645", "17111", "21313", "26631", "33020", "41005", "50640", "62373", "76510", "94089", "114991", "140376", "170970", "207837", "251552", "305342", "368474", "444360", "534692", "642593", "770278" ]
[ "nonn" ]
29
1
3
[ "A000041", "A000569", "A001130", "A066447" ]
null
Pranav Kumar Tiwari (pktiwari(AT)eos.ncsu.edu)
2015-09-17T19:58:29
oeisdata/seq/A001/A001130.seq
58ef206876d8ead29a1357a0b808e353
A001131
Number of red-black rooted trees with n-1 internal nodes.
[ "0", "1", "2", "2", "3", "8", "14", "20", "35", "64", "122", "260", "586", "1296", "2708", "5400", "10468", "19888", "37580", "71960", "140612", "279264", "560544", "1133760", "2310316", "4750368", "9876264", "20788880", "44282696", "95241664", "206150208", "447470464", "970862029", "2100029344" ]
[ "nonn" ]
44
0
3
[ "A001131", "A001137", "A014535", "A037026" ]
null
Frank Ruskey
2025-02-16T08:32:22
oeisdata/seq/A001/A001131.seq
6ceb3dc92e6b53647d9e59b668ba2c33
A001132
Primes == +-1 (mod 8).
[ "7", "17", "23", "31", "41", "47", "71", "73", "79", "89", "97", "103", "113", "127", "137", "151", "167", "191", "193", "199", "223", "233", "239", "241", "257", "263", "271", "281", "311", "313", "337", "353", "359", "367", "383", "401", "409", "431", "433", "439", "449", "457", "463", "479", "487", "503", "521", "569", "577", "593", "599" ]
[ "nonn", "nice", "easy" ]
80
1
1
[ "A001132", "A007519", "A007522", "A010051", "A038873", "A040028", "A040098", "A040159", "A040992", "A042966", "A045315", "A049542", "A049595", "A049596", "A118905" ]
[ "M4354", "N1824" ]
N. J. A. Sloane
2022-05-22T09:40:10
oeisdata/seq/A001/A001132.seq
8b9cc0c868969e66143892c6ea979667
A001133
Primes p such that the multiplicative order of 2 modulo p is (p-1)/3.
[ "43", "109", "157", "229", "277", "283", "307", "499", "643", "691", "733", "739", "811", "997", "1021", "1051", "1069", "1093", "1459", "1579", "1597", "1627", "1699", "1723", "1789", "1933", "2179", "2203", "2251", "2341", "2347", "2749", "2917", "3163", "3181", "3229", "3259", "3373", "4027", "4339", "4549", "4597", "4651", "4909", "5101", "5197", "5323", "5413", "5437", "5653", "6037" ]
[ "nonn" ]
30
1
1
[ "A001133", "A001134", "A001135", "A001136", "A014752", "A040028", "A059914", "A115586", "A115591" ]
[ "M5283", "N2299" ]
N. J. A. Sloane
2022-09-08T08:44:28
oeisdata/seq/A001/A001133.seq
4fce0bdba4e7fa203d211e6a999cf34c
A001134
Primes p such that the multiplicative order of 2 modulo p is (p-1)/4.
[ "113", "281", "353", "577", "593", "617", "1033", "1049", "1097", "1153", "1193", "1201", "1481", "1601", "1889", "2129", "2273", "2393", "2473", "3049", "3089", "3137", "3217", "3313", "3529", "3673", "3833", "4001", "4217", "4289", "4457", "4801", "4817", "4937", "5233", "5393", "5881", "6121", "6521", "6569", "6761", "6793", "6841", "7129", "7481", "7577", "7793", "7817", "7841", "8209" ]
[ "nonn" ]
36
1
1
[ "A001133", "A001134", "A001135", "A001136", "A115586", "A115591" ]
[ "M5371", "N2332" ]
N. J. A. Sloane
2022-09-08T08:44:28
oeisdata/seq/A001/A001134.seq
e6096423eeb0039a2fcb7dcbba5bd992
A001135
Primes p such that the multiplicative order of 2 modulo p is (p-1)/5.
[ "251", "571", "971", "1181", "1811", "2011", "2381", "2411", "3221", "3251", "3301", "3821", "4211", "4861", "4931", "5021", "5381", "5861", "6221", "6571", "6581", "8461", "8501", "9091", "9461", "10061", "10211", "10781", "11251", "11701", "11941", "12541", "13171", "13381", "13421", "13781", "14251", "15541", "16091", "16141", "16451", "16661", "16691", "16811", "17291" ]
[ "nonn" ]
29
1
1
[ "A001133", "A001134", "A001135", "A001136", "A115586", "A115591" ]
[ "M5424", "N2356" ]
N. J. A. Sloane
2023-12-12T12:18:21
oeisdata/seq/A001/A001135.seq
f38005b90c76a4cf396d163f9a13de9d
A001136
Primes p such that the multiplicative order of 2 modulo p is (p-1)/6.
[ "31", "223", "433", "439", "457", "727", "919", "1327", "1399", "1423", "1471", "1831", "1999", "2017", "2287", "2383", "2671", "2767", "2791", "2953", "3271", "3343", "3457", "3463", "3607", "3631", "3823", "3889", "4129", "4423", "4519", "4567", "4663", "4729", "4759", "5167", "5449", "5503", "5953", "6007", "6079", "6151", "6217", "6271", "6673", "6961", "6967", "7321" ]
[ "nonn" ]
26
1
1
[ "A001133", "A001136" ]
[ "M5221", "N2271" ]
N. J. A. Sloane
2022-09-08T08:44:28
oeisdata/seq/A001/A001136.seq
6ebb3cb312c16ead810963b6552ead9a
A001137
Number of black-rooted red-black trees with n internal nodes.
[ "1", "2", "2", "4", "8", "16", "33", "56", "90", "164", "330", "688", "1440", "3008", "6291", "13168", "27604", "57896", "120730", "248312", "501464", "995664", "1954582", "3821328", "7495996", "14848472", "29815976", "60741680", "125363472", "261452256", "549461078", "1160693056", "2459679936", "5221717888" ]
[ "nonn" ]
34
1
2
[ "A001131", "A001137" ]
null
Frank Ruskey
2025-02-16T08:32:22
oeisdata/seq/A001/A001137.seq
a766638cf1e6ceec320583fd2ecbd14a
A001138
Red rooted red-black trees with n internal nodes.
[ "1", "0", "1", "4", "6", "4", "2", "8", "32", "96", "256", "608", "1268", "2392", "4177", "6720", "9976", "14064", "19882", "30952", "59080", "138096", "355734", "929040", "2380268", "5940408", "14466720", "34499984", "80786736", "186018208", "421400951", "939336288", "2060601888", "4450171328", "9468023540" ]
[ "nonn" ]
19
1
4
null
null
Frank Ruskey
2025-02-16T08:32:22
oeisdata/seq/A001/A001138.seq
9f2ff23416405747fdaa9f4a1a2f8056
A001139
Number of stable feedback shift registers with n stages.
[ "1", "3", "21", "6615", "64595475" ]
[ "nonn", "more" ]
19
2
2
null
[ "M3088", "N1252" ]
N. J. A. Sloane
2022-02-02T00:07:06
oeisdata/seq/A001/A001139.seq
2181d8e856bed9abecbd51dbf90427df
A001140
Describe the previous term! (method A - initial term is 4).
[ "4", "14", "1114", "3114", "132114", "1113122114", "311311222114", "13211321322114", "1113122113121113222114", "31131122211311123113322114", "132113213221133112132123222114", "11131221131211132221232112111312111213322114", "31131122211311123113321112131221123113111231121123222114" ]
[ "nonn", "base", "easy", "nice" ]
58
1
1
[ "A001140", "A001141", "A001143", "A001145", "A001151", "A001154", "A001155", "A005150", "A006715", "A006751" ]
null
N. J. A. Sloane
2024-07-29T08:43:43
oeisdata/seq/A001/A001140.seq
da00734a29319362273fdfc2d0f1cbe9
A001141
Describe the previous term! (method A - initial term is 5).
[ "5", "15", "1115", "3115", "132115", "1113122115", "311311222115", "13211321322115", "1113122113121113222115", "31131122211311123113322115", "132113213221133112132123222115" ]
[ "nonn", "base", "easy", "nice" ]
36
1
1
[ "A001140", "A001141", "A001143", "A001145", "A001151", "A001154", "A001155", "A005150", "A006715", "A006751" ]
null
N. J. A. Sloane
2024-07-29T08:24:28
oeisdata/seq/A001/A001141.seq
e47efd5e752751751f73ad17d2e0bd69
A001142
a(n) = Product_{k=1..n} k^(2k - 1 - n).
[ "1", "1", "2", "9", "96", "2500", "162000", "26471025", "11014635520", "11759522374656", "32406091200000000", "231627686043080250000", "4311500661703860387840000", "209706417310526095716965894400", "26729809777664965932590782608648192" ]
[ "nonn", "easy" ]
167
0
3
[ "A000178", "A000225", "A001142", "A002109", "A004788", "A007318", "A056077", "A056606", "A187059", "A249151", "A249343", "A249345", "A249346", "A249347", "A249421", "A256113" ]
[ "M1953", "N0773" ]
N. J. A. Sloane
2023-08-28T08:28:28
oeisdata/seq/A001/A001142.seq
56f74aa09b87927ff4a9dc25494d6ec2
A001143
Describe the previous term! (method A - initial term is 6).
[ "6", "16", "1116", "3116", "132116", "1113122116", "311311222116", "13211321322116", "1113122113121113222116", "31131122211311123113322116", "132113213221133112132123222116" ]
[ "nonn", "base", "easy", "nice" ]
31
1
1
[ "A001140", "A001141", "A001143", "A001145", "A001151", "A001154", "A001155", "A005150", "A006715", "A006751" ]
null
N. J. A. Sloane
2023-08-30T05:20:56
oeisdata/seq/A001/A001143.seq
fd56a0f40d82cdfe8b278b577b6ca8c1
A001144
An exponential function on partitions (next term is 2^512).
[ "1", "2", "3", "4", "9", "27", "512", "134217728" ]
[ "nonn" ]
23
1
2
[ "A000792", "A001144", "A014221" ]
[ "M0593", "N0214" ]
N. J. A. Sloane
2022-02-02T00:06:49
oeisdata/seq/A001/A001144.seq
720dd11f03263cc31d4e667bf462629a
A001145
Describe the previous term! (method A - initial term is 7).
[ "7", "17", "1117", "3117", "132117", "1113122117", "311311222117", "13211321322117", "1113122113121113222117", "31131122211311123113322117", "132113213221133112132123222117" ]
[ "nonn", "base", "easy", "nice" ]
24
1
1
[ "A001140", "A001141", "A001143", "A001145", "A001151", "A001154", "A001155", "A005150", "A006715", "A006751" ]
null
N. J. A. Sloane
2019-04-14T10:26:30
oeisdata/seq/A001/A001145.seq
bb11cfce4dcb3ffec5099dc50dfd866c
A001146
a(n) = 2^(2^n).
[ "2", "4", "16", "256", "65536", "4294967296", "18446744073709551616", "340282366920938463463374607431768211456", "115792089237316195423570985008687907853269984665640564039457584007913129639936" ]
[ "nonn", "easy", "nice" ]
177
0
1
[ "A000079", "A000215", "A001146", "A003018", "A007404", "A026477", "A051179", "A062090", "A062091", "A112535", "A155538", "A165420", "A173419", "A215016", "A247165", "A247219" ]
[ "M1297", "N0497" ]
N. J. A. Sloane
2025-02-16T08:32:22
oeisdata/seq/A001/A001146.seq
618c34a8f362aeb5aa216330691a6ae1
A001147
Double factorial of odd numbers: a(n) = (2*n-1)!! = 1*3*5*...*(2*n-1).
[ "1", "1", "3", "15", "105", "945", "10395", "135135", "2027025", "34459425", "654729075", "13749310575", "316234143225", "7905853580625", "213458046676875", "6190283353629375", "191898783962510625", "6332659870762850625", "221643095476699771875", "8200794532637891559375", "319830986772877770815625" ]
[ "nonn", "easy", "nice", "core" ]
672
0
3
[ "A000085", "A000108", "A000165", "A000680", "A000698", "A001147", "A001190", "A001813", "A001818", "A006882", "A009445", "A028338", "A029635", "A033282", "A039683", "A051125", "A053871", "A055142", "A060540", "A076795", "A079267", "A082161", "A086677", "A086810", "A087547", "A094638", "A098503", "A099020", "A099174", "A102992", "A123023", "A126216", "A132101", "A133437", "A134264", "A134685", "A134991", "A161124", "A161198", "A181983", "A248652", "A344678" ]
[ "M3002", "N1217" ]
N. J. A. Sloane
2025-03-19T08:22:39
oeisdata/seq/A001/A001147.seq
df74da61ea7afcf7d5f0cd1d0c14eb33
A001148
Final digit of 3^n.
[ "1", "3", "9", "7", "1", "3", "9", "7", "1", "3", "9", "7", "1", "3", "9", "7", "1", "3", "9", "7", "1", "3", "9", "7", "1", "3", "9", "7", "1", "3", "9", "7", "1", "3", "9", "7", "1", "3", "9", "7", "1", "3", "9", "7", "1", "3", "9", "7", "1", "3", "9", "7", "1", "3", "9", "7", "1", "3", "9", "7", "1", "3", "9", "7", "1", "3", "9", "7", "1", "3", "9", "7", "1", "3", "9", "7", "1", "3", "9", "7", "1" ]
[ "nonn", "cofr", "easy" ]
51
0
2
null
null
N. J. A. Sloane
2023-12-14T06:16:44
oeisdata/seq/A001/A001148.seq
5eee6a57d58e7608815730cf582efb7a
A001149
A self-generating sequence: a(1)=1, a(2)=2, a(n+1) chosen so that a(n+1)-a(n-1) is the first number not obtainable as a(j)-a(i) for 1<=i<j<=n.
[ "1", "2", "3", "5", "8", "13", "17", "26", "34", "45", "54", "67", "81", "97", "115", "132", "153", "171", "198", "228", "256", "288", "323", "357", "400", "439", "488", "530", "581", "627", "681", "732", "790", "843", "908", "963", "1029", "1085", "1152", "1213", "1284", "1346", "1418", "1484", "1561", "1630", "1710", "1785", "1867", "1945", "2034", "2116" ]
[ "nonn" ]
37
1
2
[ "A001149", "A005282", "A054540" ]
[ "M0689", "N0254" ]
N. J. A. Sloane
2017-06-26T22:58:43
oeisdata/seq/A001/A001149.seq
69c363eebca0171afe37144b45a8f030
A001150
Number of n-input 2-output switching networks with GL(n,2) acting on the input and S(2) and C(2,2) acting on the output.
[ "3", "13", "146", "40422", "232328410830", "2110021709419835241732893678", "88336965390726143627393089434752334013039840509115817923869114" ]
[ "nonn" ]
19
1
1
null
[ "M2960", "N1196" ]
N. J. A. Sloane
2022-02-02T00:07:37
oeisdata/seq/A001/A001150.seq
48d2081c208f097a4a5a9d3b417c69c8
A001151
Describe the previous term! (method A - initial term is 8).
[ "8", "18", "1118", "3118", "132118", "1113122118", "311311222118", "13211321322118", "1113122113121113222118", "31131122211311123113322118", "132113213221133112132123222118", "11131221131211132221232112111312111213322118", "31131122211311123113321112131221123113111231121123222118" ]
[ "nonn", "base", "easy", "nice" ]
31
1
1
[ "A001140", "A001141", "A001143", "A001145", "A001151", "A001154", "A001155", "A005150", "A006715", "A006751" ]
null
N. J. A. Sloane
2024-09-15T22:09:35
oeisdata/seq/A001/A001151.seq
3c9e31a0bcb53a39f5b1a41422f137d2
A001152
Number of n-input 3-output switching networks with GL(n,2) acting on the input and S(3) and C(2,3) acting on the output.
[ "4", "36", "3178", "298908192", "165073828103027338592", "6487168790978377311010208151738379048817328948" ]
[ "nonn" ]
19
1
1
null
[ "M3668", "N1494" ]
N. J. A. Sloane
2022-02-02T00:07:50
oeisdata/seq/A001/A001152.seq
96140d55e27e3bd2bbea0104dd6d10e6
A001153
Degrees of primitive irreducible trinomials: n such that 2^n - 1 is a Mersenne prime and x^n + x^k + 1 is a primitive irreducible polynomial over GF(2) for some k with 0 < k < n.
[ "2", "3", "5", "7", "17", "31", "89", "127", "521", "607", "1279", "2281", "3217", "4423", "9689", "19937", "23209", "44497", "110503", "132049", "756839", "859433", "3021377", "6972593", "24036583", "25964951", "30402457", "32582657", "42643801", "43112609" ]
[ "nonn", "nice", "hard", "more" ]
64
1
1
[ "A000043", "A001153", "A002475", "A057486", "A073571", "A073639", "A073726", "A074743" ]
[ "M0678", "N0250" ]
N. J. A. Sloane
2018-08-06T05:22:50
oeisdata/seq/A001/A001153.seq
b257eb552cd04c95d8a0b3f589efda19
A001154
Describe the previous term! (method A - initial term is 9).
[ "9", "19", "1119", "3119", "132119", "1113122119", "311311222119", "13211321322119", "1113122113121113222119", "31131122211311123113322119", "132113213221133112132123222119" ]
[ "nonn", "base", "easy", "nice" ]
26
1
1
[ "A001140", "A001141", "A001143", "A001145", "A001151", "A001154", "A001155", "A005150", "A006715", "A006751" ]
null
N. J. A. Sloane
2019-04-14T10:27:11
oeisdata/seq/A001/A001154.seq
b9fcf29a7bc79b45ba16e195d9cb7202
A001155
Describe the previous term! (method A - initial term is 0).
[ "0", "10", "1110", "3110", "132110", "1113122110", "311311222110", "13211321322110", "1113122113121113222110", "31131122211311123113322110", "132113213221133112132123222110", "11131221131211132221232112111312111213322110", "31131122211311123113321112131221123113111231121123222110" ]
[ "nonn", "base", "easy", "nice" ]
44
1
2
[ "A001140", "A001141", "A001143", "A001145", "A001151", "A001154", "A001155", "A005150", "A006715", "A006751", "A036058" ]
null
N. J. A. Sloane
2023-03-02T15:55:23
oeisdata/seq/A001/A001155.seq
3738e923077425c8ba03a0865d35b02a
A001156
Number of partitions of n into squares.
[ "1", "1", "1", "1", "2", "2", "2", "2", "3", "4", "4", "4", "5", "6", "6", "6", "8", "9", "10", "10", "12", "13", "14", "14", "16", "19", "20", "21", "23", "26", "27", "28", "31", "34", "37", "38", "43", "46", "49", "50", "55", "60", "63", "66", "71", "78", "81", "84", "90", "98", "104", "107", "116", "124", "132", "135", "144", "154", "163", "169", "178", "192", "201", "209", "220", "235", "247", "256" ]
[ "nonn", "easy" ]
115
0
5
[ "A000041", "A000161", "A000290", "A001156", "A001462", "A003108", "A003114", "A006141", "A010052", "A011757", "A033461", "A037444", "A039900", "A046042", "A047993", "A052335", "A062457", "A064174", "A078134", "A078135", "A109298", "A117144", "A131799", "A218494", "A243148", "A259792", "A259793", "A285218", "A294529", "A304046", "A308297", "A324524", "A324572", "A324587", "A324588" ]
[ "M0221", "N0079" ]
N. J. A. Sloane
2025-02-16T08:32:22
oeisdata/seq/A001/A001156.seq
ebb97f0381857f13f1810ae1d21c1180
A001157
a(n) = sigma_2(n): sum of squares of divisors of n.
[ "1", "5", "10", "21", "26", "50", "50", "85", "91", "130", "122", "210", "170", "250", "260", "341", "290", "455", "362", "546", "500", "610", "530", "850", "651", "850", "820", "1050", "842", "1300", "962", "1365", "1220", "1450", "1300", "1911", "1370", "1810", "1700", "2210", "1682", "2500", "1850", "2562", "2366", "2650", "2210", "3410", "2451", "3255" ]
[ "nonn", "core", "nice", "easy", "mult" ]
138
1
2
[ "A000005", "A000203", "A001157", "A001158", "A001159", "A048250", "A053807", "A064602", "A082063", "A127093", "A134841", "A179931", "A192794", "A192795", "A242639", "A333972" ]
[ "M3799", "N1551" ]
N. J. A. Sloane, R. K. Guy
2025-02-16T08:32:22
oeisdata/seq/A001/A001157.seq
11dd1c09ee9bfe7b0ac4f397d94f57f4
A001158
sigma_3(n): sum of cubes of divisors of n.
[ "1", "9", "28", "73", "126", "252", "344", "585", "757", "1134", "1332", "2044", "2198", "3096", "3528", "4681", "4914", "6813", "6860", "9198", "9632", "11988", "12168", "16380", "15751", "19782", "20440", "25112", "24390", "31752", "29792", "37449", "37296", "44226", "43344", "55261", "50654", "61740", "61544", "73710", "68922", "86688" ]
[ "nonn", "easy", "nice", "mult" ]
134
1
2
[ "A000005", "A000203", "A001157", "A001158", "A004009", "A027748", "A051731", "A064603", "A124010", "A127093" ]
[ "M4605", "N1964" ]
N. J. A. Sloane, R. K. Guy
2025-02-16T08:32:22
oeisdata/seq/A001/A001158.seq
44f22fb89bcb7da7d8139ff2ee426cdb
A001159
sigma_4(n): sum of 4th powers of divisors of n.
[ "1", "17", "82", "273", "626", "1394", "2402", "4369", "6643", "10642", "14642", "22386", "28562", "40834", "51332", "69905", "83522", "112931", "130322", "170898", "196964", "248914", "279842", "358258", "391251", "485554", "538084", "655746", "707282", "872644", "923522", "1118481", "1200644" ]
[ "nonn", "easy", "mult" ]
69
1
2
[ "A000005", "A000203", "A001157", "A001158", "A001159" ]
[ "M5041", "N2177" ]
N. J. A. Sloane
2024-01-27T05:25:41
oeisdata/seq/A001/A001159.seq
da442d8a1f6acebb1ce35b9e309cca6e
A001160
sigma_5(n), the sum of the 5th powers of the divisors of n.
[ "1", "33", "244", "1057", "3126", "8052", "16808", "33825", "59293", "103158", "161052", "257908", "371294", "554664", "762744", "1082401", "1419858", "1956669", "2476100", "3304182", "4101152", "5314716", "6436344", "8253300", "9768751", "12252702", "14408200", "17766056", "20511150" ]
[ "nonn", "easy", "mult" ]
67
1
2
[ "A000005", "A000203", "A000584", "A001157", "A001158", "A001159", "A001160", "A013973", "A178448" ]
[ "M5240", "N2279" ]
N. J. A. Sloane
2024-01-23T02:10:50
oeisdata/seq/A001/A001160.seq
82b772efe5393d46ac0b8ed8ea9af58d
A001161
Numbers containing an even number of letters.
[ "0", "4", "5", "9", "11", "12", "13", "14", "18", "19", "20", "24", "25", "29", "30", "34", "35", "39", "41", "42", "43", "46", "47", "48", "51", "52", "53", "56", "57", "58", "61", "62", "63", "66", "67", "68", "71", "72", "73", "76", "77", "78", "80", "84", "85", "89", "90", "94", "95", "99" ]
[ "nonn", "word" ]
8
1
2
[ "A001161", "A001162", "A005589" ]
null
William P. Everts [ bille(AT)regenisys.com ]
2013-09-04T05:12:57
oeisdata/seq/A001/A001161.seq
154a2d2302dabb3c18102373cc4df131
A001162
Numbers containing an odd number of letters.
[ "1", "2", "3", "6", "7", "8", "10", "15", "16", "17", "21", "22", "23", "26", "27", "28", "31", "32", "33", "36", "37", "38", "40", "44", "45", "49", "50", "54", "55", "59", "60", "64", "65", "69", "70", "74", "75", "79", "81", "82", "83", "86", "87", "88", "91", "92", "93", "96", "97", "98" ]
[ "nonn", "word" ]
8
1
2
[ "A001161", "A001162", "A005589" ]
null
William P. Everts [ bille(AT)regenisys.com ]
2013-09-04T05:12:50
oeisdata/seq/A001/A001162.seq
d3362effd61ee08052579b00c522b940
A001163
Stirling's formula: numerators of asymptotic series for Gamma function.
[ "1", "1", "1", "-139", "-571", "163879", "5246819", "-534703531", "-4483131259", "432261921612371", "6232523202521089", "-25834629665134204969", "-1579029138854919086429", "746590869962651602203151", "1511513601028097903631961", "-8849272268392873147705987190261", "-142801712490607530608130701097701" ]
[ "sign", "frac", "nice" ]
103
0
4
[ "A001163", "A001164", "A097303", "A143475", "A143476", "A317747", "A317796", "A318713", "A318714" ]
[ "M5400", "N2347" ]
N. J. A. Sloane
2025-02-16T08:32:22
oeisdata/seq/A001/A001163.seq
e98e80cbcf3b78f88e5c6e16ed3c39da
A001164
Stirling's formula: denominators of asymptotic series for Gamma function.
[ "1", "12", "288", "51840", "2488320", "209018880", "75246796800", "902961561600", "86684309913600", "514904800886784000", "86504006548979712000", "13494625021640835072000", "9716130015581401251840000", "116593560186976815022080000", "2798245444487443560529920000", "299692087104605205332754432000000", "57540880724084199423888850944000000" ]
[ "nonn", "frac", "nice" ]
77
0
2
[ "A001163", "A001164", "A143475", "A143476", "A317747", "A317796" ]
[ "M4878", "N2091" ]
N. J. A. Sloane
2025-03-31T04:47:57
oeisdata/seq/A001/A001164.seq
e90779c927ab25c09e07a3a16e031673
A001165
Position of first even digit after decimal point in sqrt(n).
[ "1", "1", "3", "1", "1", "1", "1", "1", "1", "2", "3", "1", "1", "2", "1", "1", "2", "1", "3", "1", "2", "1", "4", "1", "1", "1", "3", "1", "2", "1", "2", "1", "2", "1", "3", "1", "1", "2", "1", "2", "1", "1", "4", "1", "2", "2", "1", "2", "1", "1", "2", "1", "1", "2", "1", "1", "2", "1", "1", "2", "1", "1", "4", "1", "1", "2", "2", "1", "2", "2", "1", "1", "2", "1", "1", "7", "3", "1", "1", "2", "1", "1", "3", "2", "1", "1", "2" ]
[ "nonn", "base" ]
17
1
3
null
null
Howard Givner
2019-04-17T10:07:54
oeisdata/seq/A001/A001165.seq
f7635be37b562c2ccebca467f316d6d7
A001166
Smallest natural number requiring n letters in English.
[ "1", "4", "3", "11", "15", "13", "17", "24", "23", "73", "3000", "11000", "15000", "101", "104", "103", "111", "115", "113", "117", "124", "123", "173", "323", "373", "1104", "1103", "1111", "1115", "1113", "1117", "1124", "1123", "1173", "1323", "1373", "3323", "3373", "11373", "13323", "13373", "17373", "23323", "23373", "73373", "101123", "101173", "101323", "101373", "103323", "103373", "111373", "113323", "113373", "117373" ]
[ "word", "nonn" ]
37
3
2
[ "A000916", "A001166", "A014388", "A045494", "A045495", "A080777" ]
[ "M3215", "N1301" ]
N. J. A. Sloane
2024-01-21T09:28:14
oeisdata/seq/A001/A001166.seq
637fbbdb55bb192a0c83c35e6e9f1079
A001167
Smallest natural number requiring n words in English (as spoken in England).
[ "1", "21", "21000", "101", "121", "1101", "1121", "21121", "101101", "101121", "121121", "1101121", "1121121", "21121121", "101101121", "101121121", "121121121", "1101121121", "1121121121", "21121121121", "101101121121", "101121121121", "121121121121", "1101121121121", "1121121121121", "21121121121121" ]
[ "nonn", "word" ]
29
1
2
null
[ "M5122", "N2218" ]
N. J. A. Sloane
2023-01-13T21:13:02
oeisdata/seq/A001/A001167.seq
d386896ee80d2f1695321ceac60e88be
A001168
Number of fixed polyominoes with n cells.
[ "1", "1", "2", "6", "19", "63", "216", "760", "2725", "9910", "36446", "135268", "505861", "1903890", "7204874", "27394666", "104592937", "400795844", "1540820542", "5940738676", "22964779660", "88983512783", "345532572678", "1344372335524", "5239988770268", "20457802016011", "79992676367108", "313224032098244", "1228088671826973" ]
[ "nonn", "nice" ]
171
0
3
[ "A000105", "A000988", "A001168", "A006746", "A006747", "A006748", "A006749", "A006762", "A056877", "A056878", "A142886", "A144553", "A210986", "A210987", "A308359", "A366767" ]
[ "M1639", "N0641" ]
N. J. A. Sloane
2025-02-16T08:32:22
oeisdata/seq/A001/A001168.seq
2fb42ef39b791943735429b1b4578dad
A001169
Number of board-pile polyominoes with n cells.
[ "1", "2", "6", "19", "61", "196", "629", "2017", "6466", "20727", "66441", "212980", "682721", "2188509", "7015418", "22488411", "72088165", "231083620", "740754589", "2374540265", "7611753682", "24400004911", "78215909841", "250726529556", "803721298537", "2576384425157", "8258779154250", "26474089989299" ]
[ "nonn", "nice", "easy" ]
102
1
2
[ "A001169", "A049219", "A049220", "A049221", "A049222", "A246773", "A273895" ]
[ "M1636", "N0639" ]
N. J. A. Sloane
2025-02-16T08:32:22
oeisdata/seq/A001/A001169.seq
7c67d14b00a21b108ab24239892626c8
A001170
Number of board-pair-pile polyominoes with n cells.
[ "1", "2", "6", "19", "63", "216", "760", "2723", "9880", "36168", "133237", "492993", "1829670", "6804267", "25336611", "94416842", "351989967", "1312471879", "4894023222", "18248301701", "68036380665", "253638655582", "945464013411", "3523978989671", "13133649924269" ]
[ "nonn" ]
26
1
2
null
[ "M1638", "N0640" ]
N. J. A. Sloane
2022-02-02T00:07:22
oeisdata/seq/A001/A001170.seq
25902b58131762f06d76b702b8be6ea7
A001171
From least significant term in expansion of E( tr (X'*X)^n ), X rectangular and Gaussian. Also number of types of sequential n-swap moves for traveling salesman problem.
[ "1", "1", "4", "20", "148", "1348", "15104", "198144", "2998656", "51290496", "979732224", "20661458688", "476936766720", "11959743432960", "323764901314560", "9410647116349440", "292316310979706880", "9663569062008422400", "338760229843058688000" ]
[ "nonn", "nice" ]
44
1
3
[ "A001171", "A061714" ]
[ "M3570", "N1447" ]
Colin Mallows
2019-10-15T12:23:10
oeisdata/seq/A001/A001171.seq
20a6b201a7a727fe62dd89ff557786b5
A001172
Smallest even number that is an unordered sum of two odd primes in exactly n ways.
[ "0", "6", "10", "22", "34", "48", "60", "78", "84", "90", "114", "144", "120", "168", "180", "234", "246", "288", "240", "210", "324", "300", "360", "474", "330", "528", "576", "390", "462", "480", "420", "570", "510", "672", "792", "756", "876", "714", "798", "690", "1038", "630", "1008", "930", "780", "960", "870", "924", "900", "1134", "1434", "840", "990", "1302" ]
[ "nonn", "nice", "look", "easy" ]
38
0
2
[ "A000954", "A000974", "A001172", "A002375", "A005843", "A023036", "A258713" ]
[ "M4085", "N1694" ]
N. J. A. Sloane, Eric Wolman, Dec 17 1969
2021-12-11T11:05:25
oeisdata/seq/A001/A001172.seq
17145352788147ade0fde1cfb37e75ad
A001173
Half the number of binary relations on n unlabeled points.
[ "1", "5", "52", "1522", "145984", "48464496", "56141454464", "229148550030864", "3333310786076963968", "174695272746749919580928", "33301710992539090379269318144", "23278728241293494533015563325552128", "60084295633556503802059558812644803074048", "576025077880237078776946730871618386151571214336" ]
[ "nonn", "nice" ]
51
1
2
[ "A000595", "A001173", "A001174" ]
[ "M4010", "N1662" ]
N. J. A. Sloane
2024-07-05T16:12:42
oeisdata/seq/A001/A001173.seq
459d71ebe377d9e3905f4d6b97e4860e
A001174
Number of oriented graphs (i.e., digraphs with no bidirected edges) on n unlabeled nodes. Also number of complete digraphs on n unlabeled nodes. Number of antisymmetric relations (i.e., oriented graphs with loops) on n unlabeled nodes is A083670.
[ "1", "2", "7", "42", "582", "21480", "2142288", "575016219", "415939243032", "816007449011040", "4374406209970747314", "64539836938720749739356", "2637796735571225009053373136", "300365896158980530053498490893399" ]
[ "nonn", "nice", "easy" ]
55
1
2
[ "A000595", "A001173", "A001174", "A047656", "A054941", "A086345", "A281446" ]
[ "M1809", "N0715" ]
N. J. A. Sloane
2025-02-16T08:32:22
oeisdata/seq/A001/A001174.seq
9e46391ee3d0a177ca373d2d89f00e22
A001175
Pisano periods (or Pisano numbers): period of Fibonacci numbers mod n.
[ "1", "3", "8", "6", "20", "24", "16", "12", "24", "60", "10", "24", "28", "48", "40", "24", "36", "24", "18", "60", "16", "30", "48", "24", "100", "84", "72", "48", "14", "120", "30", "48", "40", "36", "80", "24", "76", "18", "56", "60", "40", "48", "88", "30", "120", "48", "32", "24", "112", "300", "72", "84", "108", "72", "20", "48", "72", "42", "58", "120", "60", "30", "48", "96", "140", "120", "136" ]
[ "nonn", "nice" ]
251
1
2
[ "A001175", "A001178", "A001179", "A003893", "A060305", "A066853", "A222413", "A235702", "A296240" ]
[ "M2710", "N1087" ]
N. J. A. Sloane
2025-02-16T08:32:22
oeisdata/seq/A001/A001175.seq
6435214db72c42f79288026dfc6b0972
A001176
Number of zeros in fundamental period of Fibonacci numbers mod n.
[ "1", "1", "2", "1", "4", "2", "2", "2", "2", "4", "1", "2", "4", "2", "2", "2", "4", "2", "1", "2", "2", "1", "2", "2", "4", "4", "2", "2", "1", "2", "1", "2", "2", "4", "2", "2", "4", "1", "2", "2", "2", "2", "2", "1", "2", "2", "2", "2", "2", "4", "2", "2", "4", "2", "2", "2", "2", "1", "1", "2", "4", "1", "2", "2", "4", "2", "2", "2", "2", "2", "1", "2", "4", "4", "2", "1", "2", "2", "1", "2", "2", "2", "2", "2", "4", "2", "2", "2", "4", "2", "2", "2", "2", "2", "2", "2", "4", "2", "2", "2", "1", "2", "2", "2", "2" ]
[ "nonn", "easy" ]
70
1
3
[ "A001175", "A001176", "A001177", "A053027", "A053028", "A053029", "A053030", "A053031", "A053032", "A235715" ]
[ "M0165", "N0064" ]
N. J. A. Sloane
2022-02-22T23:08:47
oeisdata/seq/A001/A001176.seq
00a29052b31518a3c8759091b4c58883
A001177
Fibonacci entry points: a(n) = least k >= 1 such that n divides Fibonacci number F_k (=A000045(k)).
[ "1", "3", "4", "6", "5", "12", "8", "6", "12", "15", "10", "12", "7", "24", "20", "12", "9", "12", "18", "30", "8", "30", "24", "12", "25", "21", "36", "24", "14", "60", "30", "24", "20", "9", "40", "12", "19", "18", "28", "30", "20", "24", "44", "30", "60", "24", "16", "12", "56", "75", "36", "42", "27", "36", "10", "24", "36", "42", "58", "60", "15", "30", "24", "48", "35", "60", "68", "18", "24", "120" ]
[ "nonn" ]
213
1
2
[ "A000045", "A000057", "A000217", "A001175", "A001176", "A001177", "A001602", "A037943", "A046737", "A047930", "A060383", "A106535", "A120255", "A120256", "A131401", "A132632", "A132633", "A175026", "A213648", "A214028", "A214031", "A214528", "A214781", "A214783", "A215011", "A215453", "A217036", "A223486", "A230359", "A233281", "A233283", "A233285", "A233287" ]
[ "M2314", "N0914" ]
N. J. A. Sloane
2025-02-16T08:32:22
oeisdata/seq/A001/A001177.seq
6b6de665e27e9dafc8d2b8275afdae18
A001178
Fibonacci frequency of n.
[ "0", "4", "3", "2", "3", "1", "2", "2", "1", "2", "3", "1", "3", "2", "3", "1", "2", "1", "2", "2", "2", "2", "2", "0", "3", "3", "2", "2", "3", "1", "2", "2", "3", "2", "2", "1", "3", "2", "3", "2", "3", "2", "3", "2", "1", "2", "3", "1", "3", "2", "2", "3", "3", "2", "3", "2", "2", "3", "4", "1", "2", "2", "2", "3", "3", "1", "3", "2", "2" ]
[ "nonn" ]
37
1
2
[ "A001175", "A001178", "A235702" ]
[ "M3207", "N1298" ]
N. J. A. Sloane
2022-02-28T14:59:57
oeisdata/seq/A001/A001178.seq
58a177053d6ab5defb090136661088c1
A001179
Leonardo logarithm of n.
[ "0", "1", "1", "1", "2", "1", "1", "1", "1", "2", "2", "1", "1", "1", "2", "1", "1", "1", "1", "2", "1", "2", "1", "1", "3", "1", "1", "1", "1", "2", "2", "1", "2", "1", "2", "1", "1", "1", "1", "2", "2", "1", "2", "2", "2", "1", "1", "1", "1", "3", "1", "1", "1", "1", "2", "1", "1", "1", "1", "2", "2", "2", "1", "1", "2", "2", "1", "1", "1", "2", "2", "1" ]
[ "nonn", "nice" ]
32
1
5
[ "A001175", "A001179", "A235249" ]
[ "M0052", "N0017" ]
N. J. A. Sloane
2024-10-22T09:45:24
oeisdata/seq/A001/A001179.seq
2ea3df3b27f07c1cb0e3dd36b69350f1
A001180
Erroneous version of A002572.
[ "1", "1", "2", "3", "3", "5", "9", "16", "28", "50", "89", "159", "285", "510", "914", "1639", "2938", "5269", "9451", "16952" ]
[ "dead" ]
7
1
3
null
[ "M0442", "N0165" ]
null
2010-06-01T03:00:00
oeisdata/seq/A001/A001180.seq
eab9ec59fcd911ee0a304825a12f451a
A001181
Number of Baxter permutations of length n (also called Baxter numbers).
[ "1", "1", "2", "6", "22", "92", "422", "2074", "10754", "58202", "326240", "1882960", "11140560", "67329992", "414499438", "2593341586", "16458756586", "105791986682", "687782586844", "4517543071924", "29949238543316", "200234184620736", "1349097425104912", "9154276618636016", "62522506583844272" ]
[ "nonn", "nice", "easy" ]
330
0
3
[ "A001181", "A001183", "A001185", "A006002", "A007318", "A046996", "A056939", "A359363" ]
[ "M1661", "N0652" ]
N. J. A. Sloane, Simon Plouffe
2025-03-31T04:47:42
oeisdata/seq/A001/A001181.seq
0045608d341b9eae736fd60e68c118c5
A001182
Number of cells of square lattice of edge 1/n inside quadrant of unit circle centered at 0.
[ "0", "1", "4", "8", "15", "22", "30", "41", "54", "69", "83", "98", "119", "139", "162", "183", "208", "234", "263", "294", "322", "357", "390", "424", "465", "504", "545", "585", "628", "675", "719", "770", "819", "872", "928", "977", "1036", "1090", "1155", "1216", "1274", "1339", "1404", "1475", "1545", "1610", "1683", "1755", "1832", "1911", "1992", "2072" ]
[ "nonn" ]
26
1
3
[ "A001182", "A242118", "A261849", "A281795" ]
null
Tihamer von Ghyczy (ghyczy(AT)esinet.net)
2024-07-18T21:02:35
oeisdata/seq/A001/A001182.seq
efca174cb82d33de8da176d55271dca1
A001183
Number of nontrivial Baxter permutations of length 2n-1.
[ "0", "2", "2", "18", "66", "374", "1694", "9822", "51698" ]
[ "nonn", "more" ]
25
1
2
[ "A001181", "A001183", "A001185", "A046996" ]
[ "M0390", "N0148" ]
N. J. A. Sloane
2024-10-23T16:12:35
oeisdata/seq/A001/A001183.seq
a4f139346535682c815c50fd0b3a055c
A001184
Number of simple Hamiltonian paths connecting opposite corners of a 2n+1 X 2n+1 grid.
[ "1", "2", "104", "111712", "2688307514", "1445778936756068", "17337631013706758184626", "4628650743368437273677525554148", "27478778338807945303765092195103685118924" ]
[ "nonn", "more", "walk" ]
19
0
2
[ "A001184", "A121788", "A333580" ]
null
Don Knuth, Dec 07 1995
2022-01-30T12:31:25
oeisdata/seq/A001/A001184.seq
879b24e26da9201414bf9035badb1f22
A001185
Number of nontrivial Baxter permutations of length 2n-1.
[ "0", "1", "1", "7", "21", "112", "456", "2603", "13203" ]
[ "nonn", "nice", "more" ]
22
1
4
[ "A001181", "A001183", "A001185" ]
[ "M4372", "N1837" ]
N. J. A. Sloane
2024-10-23T16:13:03
oeisdata/seq/A001/A001185.seq
6eea504befd57322aa197308e2c34d8b
A001186
Number of cubic Hamiltonian graphs with 2n nodes.
[ "1", "2", "5", "17", "80", "474", "3841", "39635", "495991", "7170657", "116171803", "2070451150", "40130198979", "839266928707", "18826133329753" ]
[ "nonn", "hard", "nice", "more" ]
53
2
2
null
null
Martin Harborth (Martin.Harborth(AT)vt.siemens.de)
2025-02-16T08:32:22
oeisdata/seq/A001/A001186.seq
19118102b08879e65ad7e539d77fddfe
A001187
Number of connected labeled graphs with n nodes.
[ "1", "1", "1", "4", "38", "728", "26704", "1866256", "251548592", "66296291072", "34496488594816", "35641657548953344", "73354596206766622208", "301272202649664088951808", "2471648811030443735290891264", "40527680937730480234609755344896", "1328578958335783201008338986845427712" ]
[ "nonn", "nice", "easy" ]
167
0
4
[ "A001187", "A006125", "A053549", "A062734" ]
[ "M3671", "N1496" ]
N. J. A. Sloane
2025-02-16T08:32:22
oeisdata/seq/A001/A001187.seq
736c3391e58d983b9efbb88e4749a17e
A001188
Number of even graphs with n edges.
[ "1", "2", "8", "60", "672", "9953", "184557", "4142631", "109813842", "3373122370", "118280690398", "4678086540493", "206625802351035", "10107719377251109", "543762148079927802", "31975474310851749920", "2044501883873268414092", "141485408653554069693421" ]
[ "nonn" ]
24
1
2
null
[ "M1892", "N0746" ]
N. J. A. Sloane
2015-06-15T18:31:13
oeisdata/seq/A001/A001188.seq
9ff8d726b1af800d10b49e9e5d923247
A001189
Number of degree-n permutations of order exactly 2.
[ "0", "1", "3", "9", "25", "75", "231", "763", "2619", "9495", "35695", "140151", "568503", "2390479", "10349535", "46206735", "211799311", "997313823", "4809701439", "23758664095", "119952692895", "618884638911", "3257843882623", "17492190577599", "95680443760575", "532985208200575", "3020676745975551" ]
[ "nonn", "nice", "easy" ]
58
1
3
[ "A001189", "A001470", "A001473", "A052501", "A053496", "A053504", "A057731", "A061121", "A061128", "A080510", "A143911", "A182222" ]
[ "M2801", "N1127" ]
N. J. A. Sloane
2023-02-23T18:06:37
oeisdata/seq/A001/A001189.seq
76d01397733b2921e485898be08fb269
A001190
Wedderburn-Etherington numbers: unlabeled binary rooted trees (every node has outdegree 0 or 2) with n endpoints (and 2n-1 nodes in all).
[ "0", "1", "1", "1", "2", "3", "6", "11", "23", "46", "98", "207", "451", "983", "2179", "4850", "10905", "24631", "56011", "127912", "293547", "676157", "1563372", "3626149", "8436379", "19680277", "46026618", "107890609", "253450711", "596572387", "1406818759", "3323236238", "7862958391", "18632325319", "44214569100", "105061603969" ]
[ "easy", "core", "nonn", "nice", "eigen" ]
286
0
5
[ "A000108", "A001190", "A001699", "A002658", "A003214", "A006894", "A006961", "A086317", "A086318", "A088325", "A240943", "A292085", "A292553", "A292554", "A292555", "A292556", "A299038", "A319539", "A319541" ]
[ "M0790", "N0298" ]
N. J. A. Sloane
2025-03-07T07:51:36
oeisdata/seq/A001/A001190.seq
e4a913a223d10cb6a9d3607774cd4533
A001191
Digits of positive squares.
[ "1", "4", "9", "1", "6", "2", "5", "3", "6", "4", "9", "6", "4", "8", "1", "1", "0", "0", "1", "2", "1", "1", "4", "4", "1", "6", "9", "1", "9", "6", "2", "2", "5", "2", "5", "6", "2", "8", "9", "3", "2", "4", "3", "6", "1", "4", "0", "0", "4", "4", "1", "4", "8", "4", "5", "2", "9", "5", "7", "6", "6", "2", "5", "6", "7", "6", "7", "2", "9", "7", "8", "4", "8", "4", "1", "9", "0", "0" ]
[ "nonn", "base", "easy" ]
46
1
2
null
null
Charlie Peck (peck(AT)Alice.Wonderland.Caltech.EDU)
2015-11-26T05:54:26
oeisdata/seq/A001/A001191.seq
0071bd514cff4825192c56b7c95c7d70
A001192
Number of full sets of size n.
[ "1", "1", "1", "2", "9", "88", "1802", "75598", "6421599", "1097780312", "376516036188", "258683018091900", "355735062429124915", "978786413996934006272", "5387230452634185460127166", "59308424712939278997978128490", "1305926814154452720947815884466579" ]
[ "nonn", "nice" ]
63
0
4
[ "A000295", "A001192", "A004111", "A115728", "A182161", "A279861", "A279863" ]
[ "M1951", "N0772" ]
N. J. A. Sloane
2023-12-08T12:05:44
oeisdata/seq/A001/A001192.seq
705892f47ef589249ed5267854448eea
A001193
a(n) = (n+1)*(2*n)!/(2^n*n!) = (n+1)*(2n-1)!!.
[ "1", "2", "9", "60", "525", "5670", "72765", "1081080", "18243225", "344594250", "7202019825", "164991726900", "4111043861925", "110681950128750", "3201870700153125", "99044533658070000", "3262279327362680625", "113987877673731311250", "4211218814057295665625", "164015890652757831187500" ]
[ "nonn", "easy" ]
63
0
2
[ "A001193", "A059366", "A167591", "A167594" ]
[ "M1944", "N0770" ]
N. J. A. Sloane
2020-05-15T02:22:27
oeisdata/seq/A001/A001193.seq
dc1cb26c66365dc52237754a3b9709bc
A001194
a(n) = A059366(n,n-2) = A059366(n,2) for n >= 2, where the triangle A059366 arises in the expansion of a trigonometric integral.
[ "3", "9", "54", "450", "4725", "59535", "873180", "14594580", "273648375", "5685805125", "129636356850", "3217338674550", "86331921100425", "2490343877896875", "76844896803675000", "2525635608280785000", "88081541838792376875", "3248654513701342370625" ]
[ "nonn" ]
36
2
1
null
[ "M2826", "N1139" ]
N. J. A. Sloane
2024-11-27T11:50:56
oeisdata/seq/A001/A001194.seq
37a858492680fe1b1ad77765c9055d52
A001195
a(n) = floor(n*log((14/11)*n^(10/9))).
[ "0", "2", "4", "7", "10", "13", "16", "20", "24", "27", "31", "36", "40", "44", "48", "53", "57", "62", "66", "71", "76", "80", "85", "90", "95", "100", "105", "110", "115", "120", "125", "130", "136", "141", "146", "152", "157", "162", "168", "173", "179", "184", "190", "195", "201", "206", "212", "218", "223", "229", "235", "240", "246", "252", "258", "263", "269", "275" ]
[ "nonn" ]
16
1
2
null
null
Herman H. Rosenfeld (herm3(AT)pacbell.net)
2023-12-12T14:51:26
oeisdata/seq/A001/A001195.seq
fe3db8e78476467653cfdf307c796049
A001196
Double-bitters: only even length runs in binary expansion.
[ "0", "3", "12", "15", "48", "51", "60", "63", "192", "195", "204", "207", "240", "243", "252", "255", "768", "771", "780", "783", "816", "819", "828", "831", "960", "963", "972", "975", "1008", "1011", "1020", "1023", "3072", "3075", "3084", "3087", "3120", "3123", "3132", "3135", "3264", "3267", "3276", "3279", "3312", "3315", "3324", "3327", "3840", "3843" ]
[ "nonn", "base", "easy" ]
101
0
2
[ "A000695", "A001196", "A005823", "A054238", "A097252", "A097262", "A191108", "A338086", "A338754" ]
null
N. J. A. Sloane, based on an email from Bart la Bastide (bart(AT)xs4all.nl)
2025-02-16T08:32:22
oeisdata/seq/A001/A001196.seq
8d9af7bb0ebf67510ad94491729c8621
A001197
Zarankiewicz's problem k_2(n).
[ "4", "7", "10", "13", "17", "22", "25", "30", "35", "40", "46", "53", "57", "62", "68", "75", "82", "89", "97", "106", "109", "116", "123" ]
[ "nonn", "hard", "more" ]
55
2
1
[ "A001197", "A001198", "A006613", "A006616", "A006626", "A072567", "A339635", "A347472", "A350296", "A376167" ]
[ "M3300", "N1330" ]
N. J. A. Sloane
2024-09-14T16:46:24
oeisdata/seq/A001/A001197.seq
4de30c5b6b131045695c9afc2ce9fc70
A001198
Zarankiewicz's problem k_3(n).
[ "9", "14", "21", "27", "34", "43", "50", "61", "70", "81", "93", "106", "121", "129" ]
[ "nonn", "more", "hard" ]
38
3
1
[ "A001197", "A001198", "A006613", "A006626", "A339635", "A347473", "A350237", "A350304" ]
[ "M4601", "N1962" ]
N. J. A. Sloane
2022-10-18T13:04:44
oeisdata/seq/A001/A001198.seq
bd50eaf8e344c9875379dd2c1877d4b1
A001199
Erroneous version of A056642.
[ "1", "1", "2", "6", "32", "353", "8390", "436399", "50468754" ]
[ "dead" ]
11
1
3
null
[ "M1699", "N0670" ]
null
2010-06-01T03:00:00
oeisdata/seq/A001/A001199.seq
fdefed4cd6c6d0c489d9c77d490baa9e
A001200
Number of linear geometries on n (unlabeled) points.
[ "1", "1", "1", "2", "3", "5", "10", "24", "69", "384", "5250", "232929", "28872973" ]
[ "nonn", "hard", "more", "nice", "changed" ]
53
0
4
[ "A000041", "A001200", "A001548", "A056642", "A058731" ]
[ "M0726", "N0271" ]
N. J. A. Sloane, D.Glynn(AT)math.canterbury.ac.nz
2025-04-19T19:37:06
oeisdata/seq/A001/A001200.seq
ecb3943adf246676afa742047f66f057