Dataset Viewer
Auto-converted to Parquet
_id
stringlengths
24
24
id
stringlengths
5
121
author
stringlengths
2
42
cardData
stringlengths
2
1.07M
disabled
bool
2 classes
gated
null
lastModified
timestamp[ns]date
2021-02-05 16:03:35
2025-04-27 23:31:04
likes
int64
0
7.74k
trendingScore
float64
-1
114
private
bool
1 class
sha
stringlengths
40
40
description
stringlengths
0
6.67k
downloads
int64
0
5.24M
downloadsAllTime
int64
0
142M
tags
sequencelengths
1
7.92k
createdAt
timestamp[ns]date
2022-03-02 23:29:22
2025-04-27 23:30:57
citation
stringlengths
0
10.7k
paperswithcode_id
stringclasses
658 values
68072cc4cce05035af98207e
nvidia/OpenMathReasoning
nvidia
{"language": ["en"], "license": "cc-by-4.0", "size_categories": ["1M<n<10M"], "task_categories": ["question-answering", "text-generation"], "pretty_name": "OpenMathReasoning", "tags": ["math", "nvidia"], "configs": [{"config_name": "default", "data_files": [{"split": "cot", "path": "data/cot-*"}, {"split": "tir", "path": "data/tir-*"}, {"split": "genselect", "path": "data/genselect-*"}]}], "dataset_info": {"features": [{"name": "expected_answer", "dtype": "string"}, {"name": "problem_type", "dtype": "string"}, {"name": "problem_source", "dtype": "string"}, {"name": "generation_model", "dtype": "string"}, {"name": "pass_rate_72b_tir", "dtype": "string"}, {"name": "problem", "dtype": "string"}, {"name": "generated_solution", "dtype": "string"}, {"name": "inference_mode", "dtype": "string"}], "splits": [{"name": "cot", "num_bytes": 71638774515, "num_examples": 3201061}, {"name": "tir", "num_bytes": 35467270369, "num_examples": 1703010}, {"name": "genselect", "num_bytes": 6981053721, "num_examples": 565620}], "download_size": 49370957110, "dataset_size": 114087098605}}
false
null
2025-04-24T04:13:32
114
114
false
47ea246374954205b6b9c8a7077b9bb0fd58b11a
OpenMathReasoning OpenMathReasoning is a large-scale math reasoning dataset for training large language models (LLMs). This dataset contains 540K unique mathematical problems sourced from AoPS forums, 3.2M long chain-of-thought (CoT) solutions 1.7M long tool-integrated reasoning (TIR) solutions 566K samples that select the most promising solution out of many candidates (GenSelect) We used Qwen2.5-32B-Instruct to preprocess problems, and DeepSeek-R1 and QwQ-32B to generate… See the full description on the dataset page: https://huggingface.co/datasets/nvidia/OpenMathReasoning.
8,453
8,453
[ "task_categories:question-answering", "task_categories:text-generation", "language:en", "license:cc-by-4.0", "size_categories:1M<n<10M", "format:parquet", "modality:text", "library:datasets", "library:dask", "library:mlcroissant", "library:polars", "arxiv:2504.16891", "region:us", "math", "nvidia" ]
2025-04-22T05:44:36
null
null
67f75f7450cb3eb7e88dc887
Anthropic/values-in-the-wild
Anthropic
{"license": "cc-by-4.0", "configs": [{"config_name": "values_frequencies", "data_files": "values_frequencies.csv"}, {"config_name": "values_tree", "data_files": "values_tree.csv"}]}
false
null
2025-04-27T23:09:05
111
111
false
11b75bed1c2412bbfc1844ba5e8403c1dc8cf039
Summary This dataset presents a comprehensive taxonomy of 3307 values expressed by Claude (an AI assistant) across hundreds of thousands of real-world conversations. Using a novel privacy-preserving methodology, these values were extracted and classified without human reviewers accessing any conversation content. The dataset reveals patterns in how AI systems express values "in the wild" when interacting with diverse users and tasks. We're releasing this resource to advance research… See the full description on the dataset page: https://huggingface.co/datasets/Anthropic/values-in-the-wild.
327
327
[ "license:cc-by-4.0", "region:us" ]
2025-04-10T06:04:36
null
null
67fa1588873f5fd677eb1161
OpenGVLab/InternVL-Data
OpenGVLab
{"language": ["multilingual"], "license": "cc-by-4.0", "task_categories": ["image-to-text", "question-answering"], "size_categories": ["10M<n<100M"]}
false
null
2025-04-27T19:28:16
82
76
false
7e5ac72fb5a016ed7786baade134cb74c491ccd7
InternVL-Data [📂 GitHub] [📜 InternVL 1.0] [📜 InternVL 1.5] [📜 InternVL 2.5] [📜 InternVL2.5-MPO] [📜 InternVL3] [🆕 Blog] [🗨️ Chat Demo] [🤗 HF Demo] [🚀 Quick Start] [📖 Documents] Introduction Welcome to the InternVL3 Open Dataset! This dataset is designed to support research and development in the field of multimodal large language models (MLLMs), specifically for tasks involving image, text, and video understanding. The dataset is composed of data… See the full description on the dataset page: https://huggingface.co/datasets/OpenGVLab/InternVL-Data.
2,565
2,565
[ "task_categories:image-to-text", "task_categories:question-answering", "language:multilingual", "license:cc-by-4.0", "size_categories:10M<n<100M", "arxiv:2312.14238", "arxiv:2404.16821", "arxiv:2412.05271", "arxiv:2411.10442", "arxiv:2504.10479", "region:us" ]
2025-04-12T07:26:00
null
null
67fce65dd1ec7d15ba6a2da3
zwhe99/DeepMath-103K
zwhe99
{"license": "mit", "configs": [{"config_name": "default", "data_files": [{"split": "train", "path": "data/train-*"}]}], "dataset_info": {"features": [{"name": "question", "dtype": "string"}, {"name": "final_answer", "dtype": "string"}, {"name": "difficulty", "dtype": "float64"}, {"name": "topic", "dtype": "string"}, {"name": "r1_solution_1", "dtype": "string"}, {"name": "r1_solution_2", "dtype": "string"}, {"name": "r1_solution_3", "dtype": "string"}], "splits": [{"name": "train", "num_bytes": 4963982703, "num_examples": 103110}], "download_size": 2135928958, "dataset_size": 4963982703}, "task_categories": ["text-generation", "text2text-generation"], "language": ["en"], "tags": ["math", "reasoning", "rl"], "pretty_name": "deepmath-103k", "size_categories": ["100K<n<1M"]}
false
null
2025-04-18T06:29:38
155
52
false
736ce9bfca63afc046a07d545915fa261bbe843f
DeepMath-103K 📖 Overview DeepMath-103K is meticulously curated to push the boundaries of mathematical reasoning in language models. Key features include:1. Challenging Problems: DeepMath-103K has a strong focus on difficult mathematical problems (primarily Levels 5-9), significantly raising the complexity bar compared to many existing open datasets. Difficulty… See the full description on the dataset page: https://huggingface.co/datasets/zwhe99/DeepMath-103K.
15,710
15,710
[ "task_categories:text-generation", "task_categories:text2text-generation", "language:en", "license:mit", "size_categories:100K<n<1M", "format:parquet", "modality:text", "library:datasets", "library:dask", "library:mlcroissant", "library:polars", "arxiv:2504.11456", "region:us", "math", "reasoning", "rl" ]
2025-04-14T10:41:33
null
null
67ec47948647cfa17739af7a
nvidia/OpenCodeReasoning
nvidia
{"license": "cc-by-4.0", "size_categories": ["100K<n<1M"], "pretty_name": "OpenCodeReasoning", "dataset_info": [{"config_name": "split_0", "features": [{"name": "id", "dtype": "string"}, {"name": "input", "dtype": "string"}, {"name": "output", "dtype": "string"}, {"name": "source", "dtype": "string"}, {"name": "license", "dtype": "string"}, {"name": "dataset", "dtype": "string"}, {"name": "split", "dtype": "string"}, {"name": "difficulty", "dtype": "string"}, {"name": "solution", "dtype": "string"}], "splits": [{"name": "split_0", "num_bytes": 28108469190, "num_examples": 567850}]}, {"config_name": "split_1", "features": [{"name": "id", "dtype": "string"}, {"name": "input", "dtype": "string"}, {"name": "output", "dtype": "string"}, {"name": "source", "dtype": "string"}, {"name": "license", "dtype": "string"}, {"name": "dataset", "dtype": "string"}, {"name": "split", "dtype": "string"}, {"name": "difficulty", "dtype": "string"}, {"name": "solution", "dtype": "string"}, {"name": "index", "dtype": "string"}], "splits": [{"name": "split_1", "num_bytes": 4722811278, "num_examples": 167405}]}], "configs": [{"config_name": "split_0", "data_files": [{"split": "split_0", "path": "split_0/train-*"}]}, {"config_name": "split_1", "data_files": [{"split": "split_1", "path": "split_1/train-*"}]}], "task_categories": ["text-generation"], "tags": ["synthetic"]}
false
null
2025-04-15T16:56:07
307
51
false
c141f0b01e489370f312cd54985b7b02e8dab8da
OpenCodeReasoning: Advancing Data Distillation for Competitive Coding Data Overview OpenCodeReasoning is the largest reasoning-based synthetic dataset to date for coding, comprises 735,255 samples in Python across 28,319 unique competitive programming questions. OpenCodeReasoning is designed for supervised fine-tuning (SFT). Technical Report - Discover the methodology and technical details behind OpenCodeReasoning. Github Repo - Access the complete pipeline used to… See the full description on the dataset page: https://huggingface.co/datasets/nvidia/OpenCodeReasoning.
13,382
13,382
[ "task_categories:text-generation", "license:cc-by-4.0", "size_categories:100K<n<1M", "format:parquet", "modality:text", "library:datasets", "library:dask", "library:mlcroissant", "library:polars", "arxiv:2504.01943", "region:us", "synthetic" ]
2025-04-01T20:07:48
null
null
63990f21cc50af73d29ecfa3
fka/awesome-chatgpt-prompts
fka
{"license": "cc0-1.0", "tags": ["ChatGPT"], "task_categories": ["question-answering"], "size_categories": ["100K<n<1M"]}
false
null
2025-01-06T00:02:53
7,738
34
false
68ba7694e23014788dcc8ab5afe613824f45a05c
🧠 Awesome ChatGPT Prompts [CSV dataset] This is a Dataset Repository of Awesome ChatGPT Prompts View All Prompts on GitHub License CC-0
12,044
150,563
[ "task_categories:question-answering", "license:cc0-1.0", "size_categories:n<1K", "format:csv", "modality:text", "library:datasets", "library:pandas", "library:mlcroissant", "library:polars", "region:us", "ChatGPT" ]
2022-12-13T23:47:45
null
null
679dee7e52390b33e5970da6
future-technologies/Universal-Transformers-Dataset
future-technologies
{"task_categories": ["text-classification", "token-classification", "table-question-answering", "question-answering", "zero-shot-classification", "translation", "summarization", "feature-extraction", "text-generation", "text2text-generation", "fill-mask", "sentence-similarity", "text-to-speech", "text-to-audio", "automatic-speech-recognition", "audio-to-audio", "audio-classification", "voice-activity-detection", "depth-estimation", "image-classification", "object-detection", "image-segmentation", "text-to-image", "image-to-text", "image-to-image", "image-to-video", "unconditional-image-generation", "video-classification", "reinforcement-learning", "robotics", "tabular-classification", "tabular-regression", "tabular-to-text", "table-to-text", "multiple-choice", "text-retrieval", "time-series-forecasting", "text-to-video", "visual-question-answering", "zero-shot-image-classification", "graph-ml", "mask-generation", "zero-shot-object-detection", "text-to-3d", "image-to-3d", "image-feature-extraction", "video-text-to-text"], "language": ["ab", "ace", "ady", "af", "alt", "am", "ami", "an", "ang", "anp", "ar", "arc", "ary", "arz", "as", "ast", "atj", "av", "avk", "awa", "ay", "az", "azb", "ba", "ban", "bar", "bbc", "bcl", "be", "bg", "bh", "bi", "bjn", "blk", "bm", "bn", "bo", "bpy", "br", "bs", "bug", "bxr", "ca", "cbk", "cdo", "ce", "ceb", "ch", "chr", "chy", "ckb", "co", "cr", "crh", "cs", "csb", "cu", "cv", "cy", "da", "dag", "de", "dga", "din", "diq", "dsb", "dty", "dv", "dz", "ee", "el", "eml", "en", "eo", "es", "et", "eu", "ext", "fa", "fat", "ff", "fi", "fj", "fo", "fon", "fr", "frp", "frr", "fur", "fy", "ga", "gag", "gan", "gcr", "gd", "gl", "glk", "gn", "gom", "gor", "got", "gpe", "gsw", "gu", "guc", "gur", "guw", "gv", "ha", "hak", "haw", "hbs", "he", "hi", "hif", "hr", "hsb", "ht", "hu", "hy", "hyw", "ia", "id", "ie", "ig", "ik", "ilo", "inh", "io", "is", "it", "iu", "ja", "jam", "jbo", "jv", "ka", "kaa", "kab", "kbd", "kbp", "kcg", "kg", "ki", "kk", "kl", "km", "kn", "ko", "koi", "krc", "ks", "ksh", "ku", "kv", "kw", "ky", "la", "lad", "lb", "lbe", "lez", "lfn", "lg", "li", "lij", "lld", "lmo", "ln", "lo", "lt", "ltg", "lv", "lzh", "mad", "mai", "map", "mdf", "mg", "mhr", "mi", "min", "mk", "ml", "mn", "mni", "mnw", "mr", "mrj", "ms", "mt", "mwl", "my", "myv", "mzn", "nah", "nan", "nap", "nds", "ne", "new", "nia", "nl", "nn", "no", "nov", "nqo", "nrf", "nso", "nv", "ny", "oc", "olo", "om", "or", "os", "pa", "pag", "pam", "pap", "pcd", "pcm", "pdc", "pfl", "pi", "pih", "pl", "pms", "pnb", "pnt", "ps", "pt", "pwn", "qu", "rm", "rmy", "rn", "ro", "ru", "rue", "rup", "rw", "sa", "sah", "sat", "sc", "scn", "sco", "sd", "se", "sg", "sgs", "shi", "shn", "si", "sk", "skr", "sl", "sm", "smn", "sn", "so", "sq", "sr", "srn", "ss", "st", "stq", "su", "sv", "sw", "szl", "szy", "ta", "tay", "tcy", "te", "tet", "tg", "th", "ti", "tk", "tl", "tly", "tn", "to", "tpi", "tr", "trv", "ts", "tt", "tum", "tw", "ty", "tyv", "udm", "ug", "uk", "ur", "uz", "ve", "vec", "vep", "vi", "vls", "vo", "vro", "wa", "war", "wo", "wuu", "xal", "xh", "xmf", "yi", "yo", "yue", "za", "zea", "zgh", "zh", "zu"], "tags": ["tabular", "video", "image", "audio", "text-prompts", "text", "universal", "transformer", "database", "massive-data", "ai", "training", "huggingface", "ai", "artificial-intelligence", "machine-learning", "deep-learning", "transformers", "neural-networks", "text", "image", "audio", "video", "multimodal", "structured-data", "tabular-data", "nlp", "computer-vision", "speech-recognition", "reinforcement-learning", "time-series", "large-language-models", "generative-ai", "huggingface-dataset", "huggingface", "pytorch", "tensorflow", "jax", "pretraining", "finetuning", "self-supervised-learning", "few-shot-learning", "zero-shot-learning", "unsupervised-learning", "meta-learning", "diffusion-models"], "size_categories": ["n>1T"], "pretty_name": "Universal Transformers: Multilingual & Scalable AI Dataset"}
false
null
2025-04-27T18:04:47
89
31
false
0ba8d0c58bc60286dd11ed8db62cc836add775df
Universal Transformer Dataset Join Our Discord Community! 💠 A Message from Ujjawal Tyagi (Founder & CEO) "This is more than a dataset..... it’s the start of a new world....." I’m Ujjawal Tyagi, Founder of Lambda Go & GoX AI Platform — proudly born in the land of wisdom, resilience, and rising technology..... India 🇮🇳 What we’ve built here isn’t just numbers, files, or data points..... it’s purpose. It’s a movement. It’s for every developer, researcher… See the full description on the dataset page: https://huggingface.co/datasets/future-technologies/Universal-Transformers-Dataset.
5,569
5,634
[ "task_categories:text-classification", "task_categories:token-classification", "task_categories:table-question-answering", "task_categories:question-answering", "task_categories:zero-shot-classification", "task_categories:translation", "task_categories:summarization", "task_categories:feature-extraction", "task_categories:text-generation", "task_categories:text2text-generation", "task_categories:fill-mask", "task_categories:sentence-similarity", "task_categories:text-to-speech", "task_categories:text-to-audio", "task_categories:automatic-speech-recognition", "task_categories:audio-to-audio", "task_categories:audio-classification", "task_categories:voice-activity-detection", "task_categories:depth-estimation", "task_categories:image-classification", "task_categories:object-detection", "task_categories:image-segmentation", "task_categories:text-to-image", "task_categories:image-to-text", "task_categories:image-to-image", "task_categories:image-to-video", "task_categories:unconditional-image-generation", "task_categories:video-classification", "task_categories:reinforcement-learning", "task_categories:robotics", "task_categories:tabular-classification", "task_categories:tabular-regression", "task_categories:tabular-to-text", "task_categories:table-to-text", "task_categories:multiple-choice", "task_categories:text-retrieval", "task_categories:time-series-forecasting", "task_categories:text-to-video", "task_categories:visual-question-answering", "task_categories:zero-shot-image-classification", "task_categories:graph-ml", "task_categories:mask-generation", "task_categories:zero-shot-object-detection", "task_categories:text-to-3d", "task_categories:image-to-3d", "task_categories:image-feature-extraction", "task_categories:video-text-to-text", "language:ab", "language:ace", "language:ady", "language:af", "language:alt", "language:am", "language:ami", "language:an", "language:ang", "language:anp", "language:ar", "language:arc", "language:ary", "language:arz", "language:as", "language:ast", "language:atj", "language:av", "language:avk", "language:awa", "language:ay", "language:az", "language:azb", "language:ba", "language:ban", "language:bar", "language:bbc", "language:bcl", "language:be", "language:bg", "language:bh", "language:bi", "language:bjn", "language:blk", "language:bm", "language:bn", "language:bo", "language:bpy", "language:br", "language:bs", "language:bug", "language:bxr", "language:ca", "language:cbk", "language:cdo", "language:ce", "language:ceb", "language:ch", "language:chr", "language:chy", "language:ckb", "language:co", "language:cr", "language:crh", "language:cs", "language:csb", "language:cu", "language:cv", "language:cy", "language:da", "language:dag", "language:de", "language:dga", "language:din", "language:diq", "language:dsb", "language:dty", "language:dv", "language:dz", "language:ee", "language:el", "language:eml", "language:en", "language:eo", "language:es", "language:et", "language:eu", "language:ext", "language:fa", "language:fat", "language:ff", "language:fi", "language:fj", "language:fo", "language:fon", "language:fr", "language:frp", "language:frr", "language:fur", "language:fy", "language:ga", "language:gag", "language:gan", "language:gcr", "language:gd", "language:gl", "language:glk", "language:gn", "language:gom", "language:gor", "language:got", "language:gpe", "language:gsw", "language:gu", "language:guc", "language:gur", "language:guw", "language:gv", "language:ha", "language:hak", "language:haw", "language:hbs", "language:he", "language:hi", "language:hif", "language:hr", "language:hsb", "language:ht", "language:hu", "language:hy", "language:hyw", "language:ia", "language:id", "language:ie", "language:ig", "language:ik", "language:ilo", "language:inh", "language:io", "language:is", "language:it", "language:iu", "language:ja", "language:jam", "language:jbo", "language:jv", "language:ka", "language:kaa", "language:kab", "language:kbd", "language:kbp", "language:kcg", "language:kg", "language:ki", "language:kk", "language:kl", "language:km", "language:kn", "language:ko", "language:koi", "language:krc", "language:ks", "language:ksh", "language:ku", "language:kv", "language:kw", "language:ky", "language:la", "language:lad", "language:lb", "language:lbe", "language:lez", "language:lfn", "language:lg", "language:li", "language:lij", "language:lld", "language:lmo", "language:ln", "language:lo", "language:lt", "language:ltg", "language:lv", "language:lzh", "language:mad", "language:mai", "language:map", "language:mdf", "language:mg", "language:mhr", "language:mi", "language:min", "language:mk", "language:ml", "language:mn", "language:mni", "language:mnw", "language:mr", "language:mrj", "language:ms", "language:mt", "language:mwl", "language:my", "language:myv", "language:mzn", "language:nah", "language:nan", "language:nap", "language:nds", "language:ne", "language:new", "language:nia", "language:nl", "language:nn", "language:no", "language:nov", "language:nqo", "language:nrf", "language:nso", "language:nv", "language:ny", "language:oc", "language:olo", "language:om", "language:or", "language:os", "language:pa", "language:pag", "language:pam", "language:pap", "language:pcd", "language:pcm", "language:pdc", "language:pfl", "language:pi", "language:pih", "language:pl", "language:pms", "language:pnb", "language:pnt", "language:ps", "language:pt", "language:pwn", "language:qu", "language:rm", "language:rmy", "language:rn", "language:ro", "language:ru", "language:rue", "language:rup", "language:rw", "language:sa", "language:sah", "language:sat", "language:sc", "language:scn", "language:sco", "language:sd", "language:se", "language:sg", "language:sgs", "language:shi", "language:shn", "language:si", "language:sk", "language:skr", "language:sl", "language:sm", "language:smn", "language:sn", "language:so", "language:sq", "language:sr", "language:srn", "language:ss", "language:st", "language:stq", "language:su", "language:sv", "language:sw", "language:szl", "language:szy", "language:ta", "language:tay", "language:tcy", "language:te", "language:tet", "language:tg", "language:th", "language:ti", "language:tk", "language:tl", "language:tly", "language:tn", "language:to", "language:tpi", "language:tr", "language:trv", "language:ts", "language:tt", "language:tum", "language:tw", "language:ty", "language:tyv", "language:udm", "language:ug", "language:uk", "language:ur", "language:uz", "language:ve", "language:vec", "language:vep", "language:vi", "language:vls", "language:vo", "language:vro", "language:wa", "language:war", "language:wo", "language:wuu", "language:xal", "language:xh", "language:xmf", "language:yi", "language:yo", "language:yue", "language:za", "language:zea", "language:zgh", "language:zh", "language:zu", "size_categories:100M<n<1B", "format:parquet", "modality:tabular", "modality:text", "modality:video", "modality:image", "modality:audio", "library:datasets", "library:dask", "library:mlcroissant", "library:polars", "region:us", "tabular", "video", "image", "audio", "text-prompts", "text", "universal", "transformer", "database", "massive-data", "ai", "training", "huggingface", "artificial-intelligence", "machine-learning", "deep-learning", "transformers", "neural-networks", "multimodal", "structured-data", "tabular-data", "nlp", "computer-vision", "speech-recognition", "reinforcement-learning", "time-series", "large-language-models", "generative-ai", "huggingface-dataset", "pytorch", "tensorflow", "jax", "pretraining", "finetuning", "self-supervised-learning", "few-shot-learning", "zero-shot-learning", "unsupervised-learning", "meta-learning", "diffusion-models" ]
2025-02-01T09:50:54
null
null
6807bc2b567016bd8ab2025c
Eureka-Lab/PHYBench
Eureka-Lab
{"license": "mit", "task_categories": ["question-answering", "mathematical-reasoning"], "language": ["en"], "size_categories": ["500<n<1K"]}
false
null
2025-04-26T13:56:46
26
26
false
e9ad4df6b2bbdbefdde1653da01e2226348e7c19
PHYBench: Holistic Evaluation of Physical Perception and Reasoning in Large Language Models [🌐 Project] [📄 Paper] [💻 Code] [🌟 Overview] [🔧 Data Details] [🚩 Citation] New Updates 2025.4.25: We release our code of EED Score. View and star on our github page! Recently: The leaderboard is still under progress, we'll release it as soon as possible. 🚀 Acknowledgement and Progress We're excited to announce the initial release of our PHYBench dataset! 100… See the full description on the dataset page: https://huggingface.co/datasets/Eureka-Lab/PHYBench.
171
171
[ "task_categories:question-answering", "language:en", "license:mit", "size_categories:1K<n<10K", "format:json", "modality:text", "library:datasets", "library:dask", "library:mlcroissant", "arxiv:2504.16074", "region:us" ]
2025-04-22T15:56:27
null
null
68051956b83ee49250233b17
marcodsn/academic-chains
marcodsn
{"tags": ["reasoning-datasets-competition", "reasoning", "academic-papers", "question-answering", "chain-of-thought", "biology", "economics"], "language": ["en"], "license": "apache-2.0", "pretty_name": "Academic Reasoning and Intuition Chains", "configs": [{"config_name": "default", "data_files": [{"split": "train", "path": "data/train-*"}, {"split": "zraw", "path": "data/zraw-*"}, {"split": "zraw_curator", "path": "data/zraw_curator-*"}]}], "dataset_info": {"features": [{"name": "arxiv_id", "dtype": "string"}, {"name": "paper_doi", "dtype": "string"}, {"name": "paper_authors", "sequence": "string"}, {"name": "paper_published_date", "dtype": "int64"}, {"name": "paper_updated_date", "dtype": "int64"}, {"name": "conversations", "list": [{"name": "role", "dtype": "string"}, {"name": "content", "dtype": "string"}]}, {"name": "entry_type", "dtype": "string"}, {"name": "categories", "sequence": "string"}, {"name": "avg_thinking_tokens", "dtype": "float64"}, {"name": "model", "dtype": "string"}], "splits": [{"name": "train", "num_bytes": 3915833.8152380954, "num_examples": 478}, {"name": "zraw", "num_bytes": 8601727, "num_examples": 1050}, {"name": "zraw_curator", "num_bytes": 3557678, "num_examples": 496}], "download_size": 7757626, "dataset_size": 16075238.815238096}}
false
null
2025-04-27T18:42:20
21
21
false
3802f414d5f4c44f9fdba1248f924cbccf822e6a
Dataset Card for Academic Reasoning and Intuition Chains This dataset contains reasoning (and intuition) chains distilled from open-access research papers, primarily focusing on the q-bio and econ.GN categories (check arXiv for more information about the categories). The goal is to create academically-grounded reasoning chains that capture the underlying logical structure, argumentation, or justification presented by the authors. This dataset was created as a proof-of-concept for… See the full description on the dataset page: https://huggingface.co/datasets/marcodsn/academic-chains.
1,318
1,318
[ "language:en", "license:apache-2.0", "size_categories:1K<n<10K", "format:parquet", "modality:tabular", "modality:text", "library:datasets", "library:pandas", "library:mlcroissant", "library:polars", "region:us", "reasoning-datasets-competition", "reasoning", "academic-papers", "question-answering", "chain-of-thought", "biology", "economics" ]
2025-04-20T15:57:10
null
null
67f9abed63243ae752060832
openai/mrcr
openai
{"license": "mit"}
false
null
2025-04-14T18:58:12
130
20
false
204b0d4e8d9ca5c0a90bf942fdb2a5969094adc0
OpenAI MRCR: Long context multiple needle in a haystack benchmark OpenAI MRCR (Multi-round co-reference resolution) is a long context dataset for benchmarking an LLM's ability to distinguish between multiple needles hidden in context. This eval is inspired by the MRCR eval first introduced by Gemini (https://arxiv.org/pdf/2409.12640v2). OpenAI MRCR expands the tasks's difficulty and provides opensource data for reproducing results. The task is as follows: The model is given a long… See the full description on the dataset page: https://huggingface.co/datasets/openai/mrcr.
3,174
3,174
[ "license:mit", "size_categories:1K<n<10K", "format:parquet", "modality:tabular", "modality:text", "library:datasets", "library:dask", "library:mlcroissant", "library:polars", "arxiv:2409.12640", "region:us" ]
2025-04-11T23:55:25
null
null
67ffa22d0d123ebf23677e9e
JoeYing/ReTool-SFT
JoeYing
{"license": "apache-2.0"}
false
null
2025-04-16T12:58:58
23
19
false
8b676fbb9f095830253943699f16035381a2baa1
null
686
686
[ "license:apache-2.0", "size_categories:1K<n<10K", "format:parquet", "modality:text", "library:datasets", "library:pandas", "library:mlcroissant", "library:polars", "region:us" ]
2025-04-16T12:27:25
null
null
6807532a88578d94443709fe
nvidia/describe-anything-dataset
nvidia
{"configs": [{"config_name": "COCOStuff", "data_files": [{"split": "train", "path": "COCOStuff/images/*.tar"}]}, {"config_name": "LVIS", "data_files": [{"split": "train", "path": "LVIS/images/*.tar"}]}, {"config_name": "Mapillary", "data_files": [{"split": "train", "path": "Mapillary/images/*.tar"}]}, {"config_name": "OpenImages", "data_files": [{"split": "train", "path": "OpenImages/images/*.tar"}]}, {"config_name": "PACO", "data_files": [{"split": "train", "path": "PACO/images/*.tar"}]}, {"config_name": "SAM", "data_files": [{"split": "train", "path": "SAM/images/*.tar"}]}, {"config_name": "SAV", "data_files": [{"split": "train", "path": "SAV/images/*.tar"}]}], "language": ["en"], "task_categories": ["image-to-text", "video-text-to-text"], "tags": ["image", "video"]}
false
null
2025-04-24T21:29:02
19
19
false
058b14afa104276d2e24872bfa059ee8249a3dc6
Describe Anything: Detailed Localized Image and Video Captioning NVIDIA, UC Berkeley, UCSF Long Lian, Yifan Ding, Yunhao Ge, Sifei Liu, Hanzi Mao, Boyi Li, Marco Pavone, Ming-Yu Liu, Trevor Darrell, Adam Yala, Yin Cui [Paper] | [Code] | [Project Page] | [Video] | [HuggingFace Demo] | [Model/Benchmark/Datasets] | [Citation] Dataset Card for Describe Anything Datasets Datasets used in the training of describe anything models (DAM). The datasets are in tar files. These… See the full description on the dataset page: https://huggingface.co/datasets/nvidia/describe-anything-dataset.
3,159
3,159
[ "task_categories:image-to-text", "task_categories:video-text-to-text", "language:en", "size_categories:100K<n<1M", "format:webdataset", "modality:image", "modality:text", "modality:video", "library:datasets", "library:webdataset", "library:mlcroissant", "arxiv:2504.16072", "region:us", "image", "video" ]
2025-04-22T08:28:26
null
null
67d3479522a51de18affff22
nvidia/Llama-Nemotron-Post-Training-Dataset
nvidia
{"license": "cc-by-4.0", "configs": [{"config_name": "SFT", "data_files": [{"split": "code", "path": "SFT/code/*.jsonl"}, {"split": "math", "path": "SFT/math/*.jsonl"}, {"split": "science", "path": "SFT/science/*.jsonl"}, {"split": "chat", "path": "SFT/chat/*.jsonl"}, {"split": "safety", "path": "SFT/safety/*.jsonl"}], "default": true}, {"config_name": "RL", "data_files": [{"split": "instruction_following", "path": "RL/instruction_following/*.jsonl"}]}]}
false
null
2025-04-27T18:10:38
428
16
false
9d14669b5faf555a04aa7fbd5791b2ac7a83f25e
Llama-Nemotron-Post-Training-Dataset-v1.1 Release Update [4/8/2025]: v1.1: We are releasing an additional 2.2M Math and 500K Code Reasoning Data in support of our release of Llama-3.1-Nemotron-Ultra-253B-v1. 🎉 Data Overview This dataset is a compilation of SFT and RL data that supports improvements of math, code, general reasoning, and instruction following capabilities of the original Llama instruct model, in support of NVIDIA’s release of… See the full description on the dataset page: https://huggingface.co/datasets/nvidia/Llama-Nemotron-Post-Training-Dataset.
8,107
8,118
[ "license:cc-by-4.0", "size_categories:1M<n<10M", "format:json", "modality:text", "library:datasets", "library:dask", "library:mlcroissant", "region:us" ]
2025-03-13T21:01:09
null
null
680636da910fa3a21b4acd1e
newsletter/HiDream-I1-Artists
newsletter
null
false
null
2025-04-21T12:32:46
16
16
false
a5a3958eedaf092219d6eb9ca9c9fe8a43b534d4
null
4,116
4,116
[ "size_categories:1K<n<10K", "format:imagefolder", "modality:image", "library:datasets", "library:mlcroissant", "region:us" ]
2025-04-21T12:15:22
null
null
67b32145bac2756ce9a4a0fe
Congliu/Chinese-DeepSeek-R1-Distill-data-110k
Congliu
{"license": "apache-2.0", "language": ["zh"], "size_categories": ["100K<n<1M"], "task_categories": ["text-generation", "text2text-generation", "question-answering"]}
false
null
2025-02-21T02:18:08
647
15
false
8520b649430617c2be4490f424d251d09d835ed3
中文基于满血DeepSeek-R1蒸馏数据集(Chinese-Data-Distill-From-R1) 🤗 Hugging Face   |   🤖 ModelScope    |   🚀 Github    |   📑 Blog 注意:提供了直接SFT使用的版本,点击下载。将数据中的思考和答案整合成output字段,大部分SFT代码框架均可直接直接加载训练。 本数据集为中文开源蒸馏满血R1的数据集,数据集中不仅包含math数据,还包括大量的通用类型数据,总数量为110K。 为什么开源这个数据? R1的效果十分强大,并且基于R1蒸馏数据SFT的小模型也展现出了强大的效果,但检索发现,大部分开源的R1蒸馏数据集均为英文数据集。 同时,R1的报告中展示,蒸馏模型中同时也使用了部分通用场景数据集。 为了帮助大家更好地复现R1蒸馏模型的效果,特此开源中文数据集。该中文数据集中的数据分布如下: Math:共计36568个样本, Exam:共计2432个样本, STEM:共计12648个样本,… See the full description on the dataset page: https://huggingface.co/datasets/Congliu/Chinese-DeepSeek-R1-Distill-data-110k.
2,535
12,962
[ "task_categories:text-generation", "task_categories:text2text-generation", "task_categories:question-answering", "language:zh", "license:apache-2.0", "size_categories:100K<n<1M", "format:json", "modality:tabular", "modality:text", "library:datasets", "library:pandas", "library:mlcroissant", "library:polars", "region:us" ]
2025-02-17T11:45:09
null
null
67f9a5dde1bb509430e6af04
openai/graphwalks
openai
{"license": "mit"}
false
null
2025-04-14T17:22:42
65
15
false
6fe75ac25ccf55853294fe7995332d4f59d91bfb
GraphWalks: a multi hop reasoning long context benchmark In Graphwalks, the model is given a graph represented by its edge list and asked to perform an operation. Example prompt: You will be given a graph as a list of directed edges. All nodes are at least degree 1. You will also get a description of an operation to perform on the graph. Your job is to execute the operation on the graph and return the set of nodes that the operation results in. If asked for a breadth-first search… See the full description on the dataset page: https://huggingface.co/datasets/openai/graphwalks.
1,271
1,271
[ "license:mit", "size_categories:1K<n<10K", "format:parquet", "modality:text", "library:datasets", "library:dask", "library:mlcroissant", "library:polars", "region:us" ]
2025-04-11T23:29:33
null
null
6801c3764dc338207b777a11
a-m-team/AM-DeepSeek-Distilled-40M
a-m-team
{"language": ["zh", "en"], "license": "cc-by-nc-4.0", "size_categories": ["35M<n<45M"], "task_categories": ["text-generation"], "tags": ["code", "math", "science", "instruction follow", "reasoning", "thinking", "deepseek-r1", "distill"], "configs": [{"config_name": "code_1.5b_1pass", "data_files": "code_1.5b_1pass.jsonl", "features": [{"name": "question", "dtype": "string"}, {"name": "answer", "dtype": "string"}, {"name": "question_source", "dtype": "string"}, {"name": "answer_source", "dtype": "string"}, {"name": "category", "dtype": "string"}, {"name": "ground_truth", "dtype": "string"}, {"name": "test_case", "dtype": "string"}, {"name": "instruction_constrain", "dtype": "string"}, {"name": "pass_rate_r1", "dtype": "float32"}, {"name": "pass_rate_7b", "dtype": "float32"}, {"name": "pass_rate_1.5b", "dtype": "float32"}, {"name": "verify_score", "dtype": "float32"}, {"name": "ppl", "dtype": "float32"}, {"name": "model_name", "dtype": "string"}]}, {"config_name": "code_1.5b_2pass", "data_files": "code_1.5b_2pass.jsonl", "features": [{"name": "question", "dtype": "string"}, {"name": "answer", "dtype": "string"}, {"name": "question_source", "dtype": "string"}, {"name": "answer_source", "dtype": "string"}, {"name": "category", "dtype": "string"}, {"name": "ground_truth", "dtype": "string"}, {"name": "test_case", "dtype": "string"}, {"name": "instruction_constrain", "dtype": "string"}, {"name": "pass_rate_r1", "dtype": "float32"}, {"name": "pass_rate_7b", "dtype": "float32"}, {"name": "pass_rate_1.5b", "dtype": "float32"}, {"name": "verify_score", "dtype": "float32"}, {"name": "ppl", "dtype": "float32"}, {"name": "model_name", "dtype": "string"}]}, {"config_name": "code_1.5b_3pass", "data_files": "code_1.5b_3pass.jsonl", "features": [{"name": "question", "dtype": "string"}, {"name": "answer", "dtype": "string"}, {"name": "question_source", "dtype": "string"}, {"name": "answer_source", "dtype": "string"}, {"name": "category", "dtype": "string"}, {"name": "ground_truth", "dtype": "string"}, {"name": "test_case", "dtype": "string"}, {"name": "instruction_constrain", "dtype": "string"}, {"name": "pass_rate_r1", "dtype": "float32"}, {"name": "pass_rate_7b", "dtype": "float32"}, {"name": "pass_rate_1.5b", "dtype": "float32"}, {"name": "verify_score", "dtype": "float32"}, {"name": "ppl", "dtype": "float32"}, {"name": "model_name", "dtype": "string"}]}, {"config_name": "code_1.5b_4pass", "data_files": "code_1.5b_4pass.jsonl", "features": [{"name": "question", "dtype": "string"}, {"name": "answer", "dtype": "string"}, {"name": "question_source", "dtype": "string"}, {"name": "answer_source", "dtype": "string"}, {"name": "category", "dtype": "string"}, {"name": "ground_truth", "dtype": "string"}, {"name": "test_case", "dtype": "string"}, {"name": "instruction_constrain", "dtype": "string"}, {"name": "pass_rate_r1", "dtype": "float32"}, {"name": "pass_rate_7b", "dtype": "float32"}, {"name": "pass_rate_1.5b", "dtype": "float32"}, {"name": "verify_score", "dtype": "float32"}, {"name": "ppl", "dtype": "float32"}, {"name": "model_name", "dtype": "string"}]}, {"config_name": "code_7b_1pass", "data_files": "code_7b_1pass.jsonl", "features": [{"name": "question", "dtype": "string"}, {"name": "answer", "dtype": "string"}, {"name": "question_source", "dtype": "string"}, {"name": "answer_source", "dtype": "string"}, {"name": "category", "dtype": "string"}, {"name": "ground_truth", "dtype": "string"}, {"name": "test_case", "dtype": "string"}, {"name": "instruction_constrain", "dtype": "string"}, {"name": "pass_rate_r1", "dtype": "float32"}, {"name": "pass_rate_7b", "dtype": "float32"}, {"name": "pass_rate_1.5b", "dtype": "float32"}, {"name": "verify_score", "dtype": "float32"}, {"name": "ppl", "dtype": "float32"}, {"name": "model_name", "dtype": "string"}]}, {"config_name": "code_7b_2pass", "data_files": "code_7b_2pass.jsonl", "features": [{"name": "question", "dtype": "string"}, {"name": "answer", "dtype": "string"}, {"name": "question_source", "dtype": "string"}, {"name": "answer_source", "dtype": "string"}, {"name": "category", "dtype": "string"}, {"name": "ground_truth", "dtype": "string"}, {"name": "test_case", "dtype": "string"}, {"name": "instruction_constrain", "dtype": "string"}, {"name": "pass_rate_r1", "dtype": "float32"}, {"name": "pass_rate_7b", "dtype": "float32"}, {"name": "pass_rate_1.5b", "dtype": "float32"}, {"name": "verify_score", "dtype": "float32"}, {"name": "ppl", "dtype": "float32"}, {"name": "model_name", "dtype": "string"}]}, {"config_name": "code_7b_3pass", "data_files": "code_7b_3pass.jsonl", "features": [{"name": "question", "dtype": "string"}, {"name": "answer", "dtype": "string"}, {"name": "question_source", "dtype": "string"}, {"name": "answer_source", "dtype": "string"}, {"name": "category", "dtype": "string"}, {"name": "ground_truth", "dtype": "string"}, {"name": "test_case", "dtype": "string"}, {"name": "instruction_constrain", "dtype": "string"}, {"name": "pass_rate_r1", "dtype": "float32"}, {"name": "pass_rate_7b", "dtype": "float32"}, {"name": "pass_rate_1.5b", "dtype": "float32"}, {"name": "verify_score", "dtype": "float32"}, {"name": "ppl", "dtype": "float32"}, {"name": "model_name", "dtype": "string"}]}, {"config_name": "code_7b_4pass", "data_files": "code_7b_4pass.jsonl", "features": [{"name": "question", "dtype": "string"}, {"name": "answer", "dtype": "string"}, {"name": "question_source", "dtype": "string"}, {"name": "answer_source", "dtype": "string"}, {"name": "category", "dtype": "string"}, {"name": "ground_truth", "dtype": "string"}, {"name": "test_case", "dtype": "string"}, {"name": "instruction_constrain", "dtype": "string"}, {"name": "pass_rate_r1", "dtype": "float32"}, {"name": "pass_rate_7b", "dtype": "float32"}, {"name": "pass_rate_1.5b", "dtype": "float32"}, {"name": "verify_score", "dtype": "float32"}, {"name": "ppl", "dtype": "float32"}, {"name": "model_name", "dtype": "string"}]}, {"config_name": "code_r1_1pass", "data_files": "code_r1_1pass.jsonl", "features": [{"name": "question", "dtype": "string"}, {"name": "answer", "dtype": "string"}, {"name": "question_source", "dtype": "string"}, {"name": "answer_source", "dtype": "string"}, {"name": "category", "dtype": "string"}, {"name": "ground_truth", "dtype": "string"}, {"name": "test_case", "dtype": "string"}, {"name": "instruction_constrain", "dtype": "string"}, {"name": "pass_rate_r1", "dtype": "float32"}, {"name": "pass_rate_7b", "dtype": "float32"}, {"name": "pass_rate_1.5b", "dtype": "float32"}, {"name": "verify_score", "dtype": "float32"}, {"name": "ppl", "dtype": "float32"}, {"name": "model_name", "dtype": "string"}]}, {"config_name": "code_r1_2pass", "data_files": "code_r1_2pass.jsonl", "features": [{"name": "question", "dtype": "string"}, {"name": "answer", "dtype": "string"}, {"name": "question_source", "dtype": "string"}, {"name": "answer_source", "dtype": "string"}, {"name": "category", "dtype": "string"}, {"name": "ground_truth", "dtype": "string"}, {"name": "test_case", "dtype": "string"}, {"name": "instruction_constrain", "dtype": "string"}, {"name": "pass_rate_r1", "dtype": "float32"}, {"name": "pass_rate_7b", "dtype": "float32"}, {"name": "pass_rate_1.5b", "dtype": "float32"}, {"name": "verify_score", "dtype": "float32"}, {"name": "ppl", "dtype": "float32"}, {"name": "model_name", "dtype": "string"}]}, {"config_name": "code_r1_3pass", "data_files": "code_r1_3pass.jsonl", "features": [{"name": "question", "dtype": "string"}, {"name": "answer", "dtype": "string"}, {"name": "question_source", "dtype": "string"}, {"name": "answer_source", "dtype": "string"}, {"name": "category", "dtype": "string"}, {"name": "ground_truth", "dtype": "string"}, {"name": "test_case", "dtype": "string"}, {"name": "instruction_constrain", "dtype": "string"}, {"name": "pass_rate_r1", "dtype": "float32"}, {"name": "pass_rate_7b", "dtype": "float32"}, {"name": "pass_rate_1.5b", "dtype": "float32"}, {"name": "verify_score", "dtype": "float32"}, {"name": "ppl", "dtype": "float32"}, {"name": "model_name", "dtype": "string"}]}, {"config_name": "code_r1_4pass", "data_files": "code_r1_4pass.jsonl", "features": [{"name": "question", "dtype": "string"}, {"name": "answer", "dtype": "string"}, {"name": "question_source", "dtype": "string"}, {"name": "answer_source", "dtype": "string"}, {"name": "category", "dtype": "string"}, {"name": "ground_truth", "dtype": "string"}, {"name": "test_case", "dtype": "string"}, {"name": "instruction_constrain", "dtype": "string"}, {"name": "pass_rate_r1", "dtype": "float32"}, {"name": "pass_rate_7b", "dtype": "float32"}, {"name": "pass_rate_1.5b", "dtype": "float32"}, {"name": "verify_score", "dtype": "float32"}, {"name": "ppl", "dtype": "float32"}, {"name": "model_name", "dtype": "string"}]}, {"config_name": "if_1.5b_1pass", "data_files": "if_1.5b_1pass.jsonl", "features": [{"name": "question", "dtype": "string"}, {"name": "answer", "dtype": "string"}, {"name": "question_source", "dtype": "string"}, {"name": "answer_source", "dtype": "string"}, {"name": "category", "dtype": "string"}, {"name": "ground_truth", "dtype": "string"}, {"name": "test_case", "dtype": "string"}, {"name": "instruction_constrain", "dtype": "string"}, {"name": "pass_rate_r1", "dtype": "float32"}, {"name": "pass_rate_7b", "dtype": "float32"}, {"name": "pass_rate_1.5b", "dtype": "float32"}, {"name": "verify_score", "dtype": "float32"}, {"name": "ppl", "dtype": "float32"}, {"name": "model_name", "dtype": "string"}]}, {"config_name": "if_1.5b_2pass", "data_files": "if_1.5b_2pass.jsonl", "features": [{"name": "question", "dtype": "string"}, {"name": "answer", "dtype": "string"}, {"name": "question_source", "dtype": "string"}, {"name": "answer_source", "dtype": "string"}, {"name": "category", "dtype": "string"}, {"name": "ground_truth", "dtype": "string"}, {"name": "test_case", "dtype": "string"}, {"name": "instruction_constrain", "dtype": "string"}, {"name": "pass_rate_r1", "dtype": "float32"}, {"name": "pass_rate_7b", "dtype": "float32"}, {"name": "pass_rate_1.5b", "dtype": "float32"}, {"name": "verify_score", "dtype": "float32"}, {"name": "ppl", "dtype": "float32"}, {"name": "model_name", "dtype": "string"}]}, {"config_name": "if_1.5b_3pass", "data_files": "if_1.5b_3pass.jsonl", "features": [{"name": "question", "dtype": "string"}, {"name": "answer", "dtype": "string"}, {"name": "question_source", "dtype": "string"}, {"name": "answer_source", "dtype": "string"}, {"name": "category", "dtype": "string"}, {"name": "ground_truth", "dtype": "string"}, {"name": "test_case", "dtype": "string"}, {"name": "instruction_constrain", "dtype": "string"}, {"name": "pass_rate_r1", "dtype": "float32"}, {"name": "pass_rate_7b", "dtype": "float32"}, {"name": "pass_rate_1.5b", "dtype": "float32"}, {"name": "verify_score", "dtype": "float32"}, {"name": "ppl", "dtype": "float32"}, {"name": "model_name", "dtype": "string"}]}, {"config_name": "if_1.5b_4pass", "data_files": "if_1.5b_4pass.jsonl", "features": [{"name": "question", "dtype": "string"}, {"name": "answer", "dtype": "string"}, {"name": "question_source", "dtype": "string"}, {"name": "answer_source", "dtype": "string"}, {"name": "category", "dtype": "string"}, {"name": "ground_truth", "dtype": "string"}, {"name": "test_case", "dtype": "string"}, {"name": "instruction_constrain", "dtype": "string"}, {"name": "pass_rate_r1", "dtype": "float32"}, {"name": "pass_rate_7b", "dtype": "float32"}, {"name": "pass_rate_1.5b", "dtype": "float32"}, {"name": "verify_score", "dtype": "float32"}, {"name": "ppl", "dtype": "float32"}, {"name": "model_name", "dtype": "string"}]}, {"config_name": "if_7b_1pass", "data_files": "if_7b_1pass.jsonl", "features": [{"name": "question", "dtype": "string"}, {"name": "answer", "dtype": "string"}, {"name": "question_source", "dtype": "string"}, {"name": "answer_source", "dtype": "string"}, {"name": "category", "dtype": "string"}, {"name": "ground_truth", "dtype": "string"}, {"name": "test_case", "dtype": "string"}, {"name": "instruction_constrain", "dtype": "string"}, {"name": "pass_rate_r1", "dtype": "float32"}, {"name": "pass_rate_7b", "dtype": "float32"}, {"name": "pass_rate_1.5b", "dtype": "float32"}, {"name": "verify_score", "dtype": "float32"}, {"name": "ppl", "dtype": "float32"}, {"name": "model_name", "dtype": "string"}]}, {"config_name": "if_7b_2pass", "data_files": "if_7b_2pass.jsonl", "features": [{"name": "question", "dtype": "string"}, {"name": "answer", "dtype": "string"}, {"name": "question_source", "dtype": "string"}, {"name": "answer_source", "dtype": "string"}, {"name": "category", "dtype": "string"}, {"name": "ground_truth", "dtype": "string"}, {"name": "test_case", "dtype": "string"}, {"name": "instruction_constrain", "dtype": "string"}, {"name": "pass_rate_r1", "dtype": "float32"}, {"name": "pass_rate_7b", "dtype": "float32"}, {"name": "pass_rate_1.5b", "dtype": "float32"}, {"name": "verify_score", "dtype": "float32"}, {"name": "ppl", "dtype": "float32"}, {"name": "model_name", "dtype": "string"}]}, {"config_name": "if_7b_3pass", "data_files": "if_7b_3pass.jsonl", "features": [{"name": "question", "dtype": "string"}, {"name": "answer", "dtype": "string"}, {"name": "question_source", "dtype": "string"}, {"name": "answer_source", "dtype": "string"}, {"name": "category", "dtype": "string"}, {"name": "ground_truth", "dtype": "string"}, {"name": "test_case", "dtype": "string"}, {"name": "instruction_constrain", "dtype": "string"}, {"name": "pass_rate_r1", "dtype": "float32"}, {"name": "pass_rate_7b", "dtype": "float32"}, {"name": "pass_rate_1.5b", "dtype": "float32"}, {"name": "verify_score", "dtype": "float32"}, {"name": "ppl", "dtype": "float32"}, {"name": "model_name", "dtype": "string"}]}, {"config_name": "if_7b_4pass", "data_files": "if_7b_4pass.jsonl", "features": [{"name": "question", "dtype": "string"}, {"name": "answer", "dtype": "string"}, {"name": "question_source", "dtype": "string"}, {"name": "answer_source", "dtype": "string"}, {"name": "category", "dtype": "string"}, {"name": "ground_truth", "dtype": "string"}, {"name": "test_case", "dtype": "string"}, {"name": "instruction_constrain", "dtype": "string"}, {"name": "pass_rate_r1", "dtype": "float32"}, {"name": "pass_rate_7b", "dtype": "float32"}, {"name": "pass_rate_1.5b", "dtype": "float32"}, {"name": "verify_score", "dtype": "float32"}, {"name": "ppl", "dtype": "float32"}, {"name": "model_name", "dtype": "string"}]}, {"config_name": "if_r1_1pass", "data_files": "if_r1_1pass.jsonl", "features": [{"name": "question", "dtype": "string"}, {"name": "answer", "dtype": "string"}, {"name": "question_source", "dtype": "string"}, {"name": "answer_source", "dtype": "string"}, {"name": "category", "dtype": "string"}, {"name": "ground_truth", "dtype": "string"}, {"name": "test_case", "dtype": "string"}, {"name": "instruction_constrain", "dtype": "string"}, {"name": "pass_rate_r1", "dtype": "float32"}, {"name": "pass_rate_7b", "dtype": "float32"}, {"name": "pass_rate_1.5b", "dtype": "float32"}, {"name": "verify_score", "dtype": "float32"}, {"name": "ppl", "dtype": "float32"}, {"name": "model_name", "dtype": "string"}]}, {"config_name": "if_r1_2pass", "data_files": "if_r1_2pass.jsonl", "features": [{"name": "question", "dtype": "string"}, {"name": "answer", "dtype": "string"}, {"name": "question_source", "dtype": "string"}, {"name": "answer_source", "dtype": "string"}, {"name": "category", "dtype": "string"}, {"name": "ground_truth", "dtype": "string"}, {"name": "test_case", "dtype": "string"}, {"name": "instruction_constrain", "dtype": "string"}, {"name": "pass_rate_r1", "dtype": "float32"}, {"name": "pass_rate_7b", "dtype": "float32"}, {"name": "pass_rate_1.5b", "dtype": "float32"}, {"name": "verify_score", "dtype": "float32"}, {"name": "ppl", "dtype": "float32"}, {"name": "model_name", "dtype": "string"}]}, {"config_name": "if_r1_3pass", "data_files": "if_r1_3pass.jsonl", "features": [{"name": "question", "dtype": "string"}, {"name": "answer", "dtype": "string"}, {"name": "question_source", "dtype": "string"}, {"name": "answer_source", "dtype": "string"}, {"name": "category", "dtype": "string"}, {"name": "ground_truth", "dtype": "string"}, {"name": "test_case", "dtype": "string"}, {"name": "instruction_constrain", "dtype": "string"}, {"name": "pass_rate_r1", "dtype": "float32"}, {"name": "pass_rate_7b", "dtype": "float32"}, {"name": "pass_rate_1.5b", "dtype": "float32"}, {"name": "verify_score", "dtype": "float32"}, {"name": "ppl", "dtype": "float32"}, {"name": "model_name", "dtype": "string"}]}, {"config_name": "if_r1_4pass", "data_files": "if_r1_4pass.jsonl", "features": [{"name": "question", "dtype": "string"}, {"name": "answer", "dtype": "string"}, {"name": "question_source", "dtype": "string"}, {"name": "answer_source", "dtype": "string"}, {"name": "category", "dtype": "string"}, {"name": "ground_truth", "dtype": "string"}, {"name": "test_case", "dtype": "string"}, {"name": "instruction_constrain", "dtype": "string"}, {"name": "pass_rate_r1", "dtype": "float32"}, {"name": "pass_rate_7b", "dtype": "float32"}, {"name": "pass_rate_1.5b", "dtype": "float32"}, {"name": "verify_score", "dtype": "float32"}, {"name": "ppl", "dtype": "float32"}, {"name": "model_name", "dtype": "string"}]}, {"config_name": "math_1.5b_1pass", "data_files": "math_1.5b_1pass.jsonl", "features": [{"name": "question", "dtype": "string"}, {"name": "answer", "dtype": "string"}, {"name": "question_source", "dtype": "string"}, {"name": "answer_source", "dtype": "string"}, {"name": "category", "dtype": "string"}, {"name": "ground_truth", "dtype": "string"}, {"name": "test_case", "dtype": "string"}, {"name": "instruction_constrain", "dtype": "string"}, {"name": "pass_rate_r1", "dtype": "float32"}, {"name": "pass_rate_7b", "dtype": "float32"}, {"name": "pass_rate_1.5b", "dtype": "float32"}, {"name": "verify_score", "dtype": "float32"}, {"name": "ppl", "dtype": "float32"}, {"name": "model_name", "dtype": "string"}]}, {"config_name": "math_1.5b_2pass", "data_files": "math_1.5b_2pass.jsonl", "features": [{"name": "question", "dtype": "string"}, {"name": "answer", "dtype": "string"}, {"name": "question_source", "dtype": "string"}, {"name": "answer_source", "dtype": "string"}, {"name": "category", "dtype": "string"}, {"name": "ground_truth", "dtype": "string"}, {"name": "test_case", "dtype": "string"}, {"name": "instruction_constrain", "dtype": "string"}, {"name": "pass_rate_r1", "dtype": "float32"}, {"name": "pass_rate_7b", "dtype": "float32"}, {"name": "pass_rate_1.5b", "dtype": "float32"}, {"name": "verify_score", "dtype": "float32"}, {"name": "ppl", "dtype": "float32"}, {"name": "model_name", "dtype": "string"}]}, {"config_name": "math_1.5b_3pass", "data_files": "math_1.5b_3pass.jsonl", "features": [{"name": "question", "dtype": "string"}, {"name": "answer", "dtype": "string"}, {"name": "question_source", "dtype": "string"}, {"name": "answer_source", "dtype": "string"}, {"name": "category", "dtype": "string"}, {"name": "ground_truth", "dtype": "string"}, {"name": "test_case", "dtype": "string"}, {"name": "instruction_constrain", "dtype": "string"}, {"name": "pass_rate_r1", "dtype": "float32"}, {"name": "pass_rate_7b", "dtype": "float32"}, {"name": "pass_rate_1.5b", "dtype": "float32"}, {"name": "verify_score", "dtype": "float32"}, {"name": "ppl", "dtype": "float32"}, {"name": "model_name", "dtype": "string"}]}, {"config_name": "math_1.5b_4pass", "data_files": "math_1.5b_4pass.jsonl", "features": [{"name": "question", "dtype": "string"}, {"name": "answer", "dtype": "string"}, {"name": "question_source", "dtype": "string"}, {"name": "answer_source", "dtype": "string"}, {"name": "category", "dtype": "string"}, {"name": "ground_truth", "dtype": "string"}, {"name": "test_case", "dtype": "string"}, {"name": "instruction_constrain", "dtype": "string"}, {"name": "pass_rate_r1", "dtype": "float32"}, {"name": "pass_rate_7b", "dtype": "float32"}, {"name": "pass_rate_1.5b", "dtype": "float32"}, {"name": "verify_score", "dtype": "float32"}, {"name": "ppl", "dtype": "float32"}, {"name": "model_name", "dtype": "string"}]}, {"config_name": "math_7b_1pass", "data_files": "math_7b_1pass.jsonl", "features": [{"name": "question", "dtype": "string"}, {"name": "answer", "dtype": "string"}, {"name": "question_source", "dtype": "string"}, {"name": "answer_source", "dtype": "string"}, {"name": "category", "dtype": "string"}, {"name": "ground_truth", "dtype": "string"}, {"name": "test_case", "dtype": "string"}, {"name": "instruction_constrain", "dtype": "string"}, {"name": "pass_rate_r1", "dtype": "float32"}, {"name": "pass_rate_7b", "dtype": "float32"}, {"name": "pass_rate_1.5b", "dtype": "float32"}, {"name": "verify_score", "dtype": "float32"}, {"name": "ppl", "dtype": "float32"}, {"name": "model_name", "dtype": "string"}]}, {"config_name": "math_7b_2pass", "data_files": "math_7b_2pass.jsonl", "features": [{"name": "question", "dtype": "string"}, {"name": "answer", "dtype": "string"}, {"name": "question_source", "dtype": "string"}, {"name": "answer_source", "dtype": "string"}, {"name": "category", "dtype": "string"}, {"name": "ground_truth", "dtype": "string"}, {"name": "test_case", "dtype": "string"}, {"name": "instruction_constrain", "dtype": "string"}, {"name": "pass_rate_r1", "dtype": "float32"}, {"name": "pass_rate_7b", "dtype": "float32"}, {"name": "pass_rate_1.5b", "dtype": "float32"}, {"name": "verify_score", "dtype": "float32"}, {"name": "ppl", "dtype": "float32"}, {"name": "model_name", "dtype": "string"}]}, {"config_name": "math_7b_3pass", "data_files": "math_7b_3pass.jsonl", "features": [{"name": "question", "dtype": "string"}, {"name": "answer", "dtype": "string"}, {"name": "question_source", "dtype": "string"}, {"name": "answer_source", "dtype": "string"}, {"name": "category", "dtype": "string"}, {"name": "ground_truth", "dtype": "string"}, {"name": "test_case", "dtype": "string"}, {"name": "instruction_constrain", "dtype": "string"}, {"name": "pass_rate_r1", "dtype": "float32"}, {"name": "pass_rate_7b", "dtype": "float32"}, {"name": "pass_rate_1.5b", "dtype": "float32"}, {"name": "verify_score", "dtype": "float32"}, {"name": "ppl", "dtype": "float32"}, {"name": "model_name", "dtype": "string"}]}, {"config_name": "math_7b_4pass", "data_files": "math_7b_4pass.jsonl", "features": [{"name": "question", "dtype": "string"}, {"name": "answer", "dtype": "string"}, {"name": "question_source", "dtype": "string"}, {"name": "answer_source", "dtype": "string"}, {"name": "category", "dtype": "string"}, {"name": "ground_truth", "dtype": "string"}, {"name": "test_case", "dtype": "string"}, {"name": "instruction_constrain", "dtype": "string"}, {"name": "pass_rate_r1", "dtype": "float32"}, {"name": "pass_rate_7b", "dtype": "float32"}, {"name": "pass_rate_1.5b", "dtype": "float32"}, {"name": "verify_score", "dtype": "float32"}, {"name": "ppl", "dtype": "float32"}, {"name": "model_name", "dtype": "string"}]}, {"config_name": "math_r1_1pass", "data_files": "math_r1_1pass.jsonl", "features": [{"name": "question", "dtype": "string"}, {"name": "answer", "dtype": "string"}, {"name": "question_source", "dtype": "string"}, {"name": "answer_source", "dtype": "string"}, {"name": "category", "dtype": "string"}, {"name": "ground_truth", "dtype": "string"}, {"name": "test_case", "dtype": "string"}, {"name": "instruction_constrain", "dtype": "string"}, {"name": "pass_rate_r1", "dtype": "float32"}, {"name": "pass_rate_7b", "dtype": "float32"}, {"name": "pass_rate_1.5b", "dtype": "float32"}, {"name": "verify_score", "dtype": "float32"}, {"name": "ppl", "dtype": "float32"}, {"name": "model_name", "dtype": "string"}]}, {"config_name": "math_r1_2pass", "data_files": "math_r1_2pass.jsonl", "features": [{"name": "question", "dtype": "string"}, {"name": "answer", "dtype": "string"}, {"name": "question_source", "dtype": "string"}, {"name": "answer_source", "dtype": "string"}, {"name": "category", "dtype": "string"}, {"name": "ground_truth", "dtype": "string"}, {"name": "test_case", "dtype": "string"}, {"name": "instruction_constrain", "dtype": "string"}, {"name": "pass_rate_r1", "dtype": "float32"}, {"name": "pass_rate_7b", "dtype": "float32"}, {"name": "pass_rate_1.5b", "dtype": "float32"}, {"name": "verify_score", "dtype": "float32"}, {"name": "ppl", "dtype": "float32"}, {"name": "model_name", "dtype": "string"}]}, {"config_name": "math_r1_3pass", "data_files": "math_r1_3pass.jsonl", "features": [{"name": "question", "dtype": "string"}, {"name": "answer", "dtype": "string"}, {"name": "question_source", "dtype": "string"}, {"name": "answer_source", "dtype": "string"}, {"name": "category", "dtype": "string"}, {"name": "ground_truth", "dtype": "string"}, {"name": "test_case", "dtype": "string"}, {"name": "instruction_constrain", "dtype": "string"}, {"name": "pass_rate_r1", "dtype": "float32"}, {"name": "pass_rate_7b", "dtype": "float32"}, {"name": "pass_rate_1.5b", "dtype": "float32"}, {"name": "verify_score", "dtype": "float32"}, {"name": "ppl", "dtype": "float32"}, {"name": "model_name", "dtype": "string"}]}, {"config_name": "math_r1_4pass", "data_files": "math_r1_4pass.jsonl", "features": [{"name": "question", "dtype": "string"}, {"name": "answer", "dtype": "string"}, {"name": "question_source", "dtype": "string"}, {"name": "answer_source", "dtype": "string"}, {"name": "category", "dtype": "string"}, {"name": "ground_truth", "dtype": "string"}, {"name": "test_case", "dtype": "string"}, {"name": "instruction_constrain", "dtype": "string"}, {"name": "pass_rate_r1", "dtype": "float32"}, {"name": "pass_rate_7b", "dtype": "float32"}, {"name": "pass_rate_1.5b", "dtype": "float32"}, {"name": "verify_score", "dtype": "float32"}, {"name": "ppl", "dtype": "float32"}, {"name": "model_name", "dtype": "string"}]}]}
false
null
2025-04-25T12:28:24
22
15
false
6b3eee01e89e4e87a9b7f13208913cb126c7177a
For more open-source datasets, models, and methodologies, please visit our GitHub repository and paper: DeepDistill: Enhancing LLM Reasoning Capabilities via Large-Scale Difficulty-Graded Data Training. Model Training Performance based on this dataset On AIME 2024, our 72B model achieved a score of 79.2 using only supervised fine-tuning (SFT). The 32B model reached 75.8 and improved further to 77.9 through annealing training, approaching state-of-the-art open-source performance.… See the full description on the dataset page: https://huggingface.co/datasets/a-m-team/AM-DeepSeek-Distilled-40M.
2,321
2,321
[ "task_categories:text-generation", "language:zh", "language:en", "license:cc-by-nc-4.0", "size_categories:10M<n<100M", "format:json", "modality:tabular", "modality:text", "library:datasets", "library:pandas", "library:mlcroissant", "library:polars", "arxiv:2504.17565", "region:us", "code", "math", "science", "instruction follow", "reasoning", "thinking", "deepseek-r1", "distill" ]
2025-04-18T03:13:58
null
null
67e428ff51af4261f7bed8c7
nvidia/ClimbLab
nvidia
{"language": ["en"], "license": "cc-by-nc-4.0", "task_categories": ["text-generation"]}
false
null
2025-04-21T19:02:49
30
14
false
9c3267aa7b4b4eda47fba41bbc95d99d072416c5
ClimbLab Dataset 🚀 Creating the highest-quality pre-training datasets for LLMs 🌟 📄 PAPER 🤗 CLIMBLAB 🤗 CLIMBMIX 🏠 HOMEPAGE Figure 1: Continuously training a 1B model yields a 2.0% improvement over Llama-3.2-1B, demonstrating a more efficient scaling trend compared to prior models. Figure 2: Pre-training a 1B model from scratch on ClimbMix shows better scaling effects than training on other datasets.… See the full description on the dataset page: https://huggingface.co/datasets/nvidia/ClimbLab.
10,919
10,919
[ "task_categories:text-generation", "language:en", "license:cc-by-nc-4.0", "size_categories:1B<n<10B", "format:parquet", "library:datasets", "library:dask", "library:mlcroissant", "library:polars", "arxiv:2504.13161", "region:us" ]
2025-03-26T16:19:11
null
null
6532270e829e1dc2f293d6b8
gaia-benchmark/GAIA
gaia-benchmark
{"language": ["en"], "pretty_name": "General AI Assistants Benchmark", "extra_gated_prompt": "To avoid contamination and data leakage, you agree to not reshare this dataset outside of a gated or private repository on the HF hub.", "extra_gated_fields": {"I agree to not reshare the GAIA submissions set according to the above conditions": "checkbox"}}
false
null
2025-02-13T08:36:12
308
13
false
897f2dfbb5c952b5c3c1509e648381f9c7b70316
GAIA dataset GAIA is a benchmark which aims at evaluating next-generation LLMs (LLMs with augmented capabilities due to added tooling, efficient prompting, access to search, etc). We added gating to prevent bots from scraping the dataset. Please do not reshare the validation or test set in a crawlable format. Data and leaderboard GAIA is made of more than 450 non-trivial question with an unambiguous answer, requiring different levels of tooling and autonomy to solve. It… See the full description on the dataset page: https://huggingface.co/datasets/gaia-benchmark/GAIA.
11,369
47,664
[ "language:en", "arxiv:2311.12983", "region:us" ]
2023-10-20T07:06:54
null
6802d31c7694675650679ff7
nvidia/dynpose-100k
nvidia
{"license": "other", "language": ["en"], "pretty_name": "dynpose-100k", "size_categories": ["100K<n<1M"], "task_categories": ["other"]}
false
null
2025-04-25T02:29:31
12
12
false
dd6884f0d88ff6d11fbd6a571c412a011cea1086
DynPose-100K Dynamic Camera Poses and Where to Find Them Chris Rockwell1,2, Joseph Tung3, Tsung-Yi Lin1, Ming-Yu Liu1, David F. Fouhey3, Chen-Hsuan Lin1 1NVIDIA 2University of Michigan 3New York University Overview DynPose-100K is a large-scale dataset of diverse, dynamic videos with camera annotations. We curate 100K videos containing dynamic content while ensuring cameras can be accurately estimated (including intrinsics and poses), addressing two key challenges:… See the full description on the dataset page: https://huggingface.co/datasets/nvidia/dynpose-100k.
507
507
[ "task_categories:other", "language:en", "license:other", "size_categories:100K<n<1M", "arxiv:2504.17788", "region:us" ]
2025-04-18T22:33:00
null
null
672d8bf4bde669ec7e63ba72
allenai/tulu-3-sft-mixture
allenai
{"annotations_creators": ["crowdsourced", "expert-generated", "machine-generated"], "language": ["amh", "arb", "ary", "ars", "acq", "arz", "apc", "ben", "ceb", "dan", "deu", "ell", "eng", "eus", "fil", "fin", "fra", "gle", "guj", "hat", "hau", "hin", "hun", "ibo", "ind", "ita", "jav", "jpn", "kan", "kir", "kor", "kur", "lit", "mal", "mar", "mlg", "msa", "mya", "nep", "nld", "nso", "nya", "pan", "pes", "pol", "por", "pus", "rus", "sin", "sna", "snd", "som", "spa", "sqi", "srp", "sun", "swa", "swe", "tam", "tel", "tha", "tur", "ukr", "urd", "vie", "wol", "xho", "yor", "zho", "zul"], "license": "odc-by", "multilinguality": ["multilingual"], "size_categories": ["100K<n<1M"], "source_datasets": ["allenai/coconot", "ai2-adapt-dev/flan_v2_converted", "HuggingFaceH4/no_robots", "OpenAssistant/oasst1", "allenai/tulu-3-personas-math", "allenai/tulu-3-sft-personas-math-grade", "allenai/tulu-3-sft-personas-code", "allenai/tulu-3-personas-algebra", "allenai/tulu-3-sft-personas-instruction-following", "AI-MO/NuminaMath-TIR", "allenai/wildguardmix", "allenai/wildjailbreak", "allenai/tulu-3-hard-coded", "CohereForAI/aya_dataset", "allenai/WildChat-1M", "LipengCS/Table-GPT", "allenai/SciRIFF", "theblackcat102/evol-codealpaca-v1"], "task_categories": ["other"], "dataset_info": {"features": [{"name": "id", "dtype": "string"}, {"name": "messages", "list": [{"name": "content", "dtype": "string"}, {"name": "role", "dtype": "string"}]}, {"name": "source", "dtype": "string"}], "splits": [{"name": "train", "num_bytes": 2914250826.5647593, "num_examples": 939343}], "download_size": 1412954868, "dataset_size": 2914250826.5647593}, "configs": [{"config_name": "default", "data_files": [{"split": "train", "path": "data/train-*"}]}]}
false
null
2024-12-02T19:48:33
140
11
false
b14afda60f1bbebe55d5d2fa1e4df5042f97f8be
Tulu 3 SFT Mixture Note that this collection is licensed under ODC-BY-1.0 license; different licenses apply to subsets of the data. Some portions of the dataset are non-commercial. We present the mixture as a research artifact. The Tulu 3 SFT mixture was used to train the Tulu 3 series of models. It contains 939,344 samples from the following sets: CoCoNot (ODC-BY-1.0), 10,983 prompts (Brahman et al., 2024) FLAN v2 via ai2-adapt-dev/flan_v2_converted, 89,982 prompts (Longpre… See the full description on the dataset page: https://huggingface.co/datasets/allenai/tulu-3-sft-mixture.
5,028
27,667
[ "task_categories:other", "annotations_creators:crowdsourced", "annotations_creators:expert-generated", "annotations_creators:machine-generated", "multilinguality:multilingual", "source_datasets:allenai/coconot", "source_datasets:ai2-adapt-dev/flan_v2_converted", "source_datasets:HuggingFaceH4/no_robots", "source_datasets:OpenAssistant/oasst1", "source_datasets:allenai/tulu-3-personas-math", "source_datasets:allenai/tulu-3-sft-personas-math-grade", "source_datasets:allenai/tulu-3-sft-personas-code", "source_datasets:allenai/tulu-3-personas-algebra", "source_datasets:allenai/tulu-3-sft-personas-instruction-following", "source_datasets:AI-MO/NuminaMath-TIR", "source_datasets:allenai/wildguardmix", "source_datasets:allenai/wildjailbreak", "source_datasets:allenai/tulu-3-hard-coded", "source_datasets:CohereForAI/aya_dataset", "source_datasets:allenai/WildChat-1M", "source_datasets:LipengCS/Table-GPT", "source_datasets:allenai/SciRIFF", "source_datasets:theblackcat102/evol-codealpaca-v1", "language:amh", "language:arb", "language:ary", "language:ars", "language:acq", "language:arz", "language:apc", "language:ben", "language:ceb", "language:dan", "language:deu", "language:ell", "language:eng", "language:eus", "language:fil", "language:fin", "language:fra", "language:gle", "language:guj", "language:hat", "language:hau", "language:hin", "language:hun", "language:ibo", "language:ind", "language:ita", "language:jav", "language:jpn", "language:kan", "language:kir", "language:kor", "language:kur", "language:lit", "language:mal", "language:mar", "language:mlg", "language:msa", "language:mya", "language:nep", "language:nld", "language:nso", "language:nya", "language:pan", "language:pes", "language:pol", "language:por", "language:pus", "language:rus", "language:sin", "language:sna", "language:snd", "language:som", "language:spa", "language:sqi", "language:srp", "language:sun", "language:swa", "language:swe", "language:tam", "language:tel", "language:tha", "language:tur", "language:ukr", "language:urd", "language:vie", "language:wol", "language:xho", "language:yor", "language:zho", "language:zul", "license:odc-by", "size_categories:100K<n<1M", "format:parquet", "modality:text", "library:datasets", "library:dask", "library:mlcroissant", "library:polars", "region:us" ]
2024-11-08T03:56:36
null
null
676f70846bf205795346d2be
FreedomIntelligence/medical-o1-reasoning-SFT
FreedomIntelligence
{"license": "apache-2.0", "task_categories": ["question-answering", "text-generation"], "language": ["en", "zh"], "tags": ["medical", "biology"], "configs": [{"config_name": "en", "data_files": "medical_o1_sft.json"}, {"config_name": "zh", "data_files": "medical_o1_sft_Chinese.json"}, {"config_name": "en_mix", "data_files": "medical_o1_sft_mix.json"}, {"config_name": "zh_mix", "data_files": "medical_o1_sft_mix_Chinese.json"}]}
false
null
2025-04-22T15:11:21
662
11
false
fc2c9e8a37b38f38da6d449564a8c350b244aef4
News [2025/04/22] We split the data and kept only the medical SFT dataset (medical_o1_sft.json). The file medical_o1_sft_mix.json contains a mix of medical and general instruction data. [2025/02/22] We released the distilled dataset from Deepseek-R1 based on medical verifiable problems. You can use it to initialize your models with the reasoning chain from Deepseek-R1. [2024/12/25] We open-sourced the medical reasoning dataset for SFT, built on medical verifiable problems and an LLM… See the full description on the dataset page: https://huggingface.co/datasets/FreedomIntelligence/medical-o1-reasoning-SFT.
13,227
60,816
[ "task_categories:question-answering", "task_categories:text-generation", "language:en", "language:zh", "license:apache-2.0", "size_categories:10K<n<100K", "format:json", "modality:text", "library:datasets", "library:pandas", "library:mlcroissant", "library:polars", "arxiv:2412.18925", "region:us", "medical", "biology" ]
2024-12-28T03:29:08
null
null
67ddbf33273db7cb5c4f3f32
UCSC-VLAA/MedReason
UCSC-VLAA
{"license": "apache-2.0", "tags": ["reasoning-datasets-competition", "reasoning-LLMs"], "task_categories": ["question-answering"]}
false
null
2025-04-26T03:12:41
40
11
false
a7f2ef2ac65b2af79029ab3b7d4c68ca7da93a3e
MedReason: Eliciting Factual Medical Reasoning Steps in LLMs via Knowledge Graphs 📃 Paper |🤗 MedReason-8B | 📚 MedReason Data ⚡Introduction MedReason is a large-scale high-quality medical reasoning dataset designed to enable faithful and explainable medical problem-solving in large language models (LLMs). We utilize a structured medical knowledge graph (KG) to convert clinical QA pairs into logical chains of reasoning, or “thinking paths”. Our pipeline generates… See the full description on the dataset page: https://huggingface.co/datasets/UCSC-VLAA/MedReason.
1,666
1,666
[ "task_categories:question-answering", "license:apache-2.0", "size_categories:10K<n<100K", "format:json", "modality:text", "library:datasets", "library:pandas", "library:mlcroissant", "library:polars", "arxiv:2504.00993", "region:us", "reasoning-datasets-competition", "reasoning-LLMs" ]
2025-03-21T19:34:11
null
null
67e72ca8f52d9d15f9d38a2a
facebook/PE-Video
facebook
{"license": "cc-by-nc-4.0"}
false
null
2025-04-18T22:33:23
20
11
false
43a297dde47e2036721f259397df04b3c338d002
PE Video Dataset (PVD) [📃 Tech Report] [📂 Github] The PE Video Dataset (PVD) is a large-scale collection of 1 million diverse videos, featuring 120,000+ expertly annotated clips. The dataset was introduced in our paper "Perception Encoder". Overview PE Video Dataset (PVD) comprises 1M high quality and diverse videos. Among them, 120K videos are accompanied by automated and human-verified annotations. and all videos are accompanied with video description and keywords.… See the full description on the dataset page: https://huggingface.co/datasets/facebook/PE-Video.
6,976
6,976
[ "license:cc-by-nc-4.0", "size_categories:100K<n<1M", "format:webdataset", "modality:text", "library:datasets", "library:webdataset", "library:mlcroissant", "arxiv:2504.13181", "region:us" ]
2025-03-28T23:11:36
null
null
67ffe2dd906793fb908651af
bh2821/LightNovel5000
bh2821
{"license": "zlib", "task_categories": ["text-generation", "text2text-generation", "translation"], "language": ["zh"], "tags": ["Novel", "Light-Novel", "Japanese", "Chinese"], "size_categories": ["100M<n<1B"]}
false
null
2025-04-16T20:25:38
28
11
false
a9c8ce088c4c89321b1321654568dc99930938e5
Light novels translated in Chinese - crawled from public websites that do not prohibit crawlers 脚盆轻小说汉化 - 从未禁止爬虫的公共网站爬取 Version 0 版本 0 Contains around 1000 light novels, including PDF with illustration and txt text files. It may be a good source of data that can be used to train your stylish LLM. Kindly note that the author has partially clean the text BUT DOES NOT GUARANTEE that it is fully cleaned up. 包含约 1000 部轻小说,包括带插图的 PDF 和 txt 文本文件。… See the full description on the dataset page: https://huggingface.co/datasets/bh2821/LightNovel5000.
760
760
[ "task_categories:text-generation", "task_categories:text2text-generation", "task_categories:translation", "language:zh", "license:zlib", "size_categories:1M<n<10M", "format:text", "modality:text", "library:datasets", "library:mlcroissant", "region:us", "Novel", "Light-Novel", "Japanese", "Chinese" ]
2025-04-16T17:03:25
null
null
67e72b7a8743733af57793b1
facebook/PLM-Video-Human
facebook
{"annotations_creators": ["other"], "language_creators": ["other"], "language": ["en"], "task_categories": ["multiple-choice", "visual-question-answering"], "pretty_name": "plm_video_human", "dataset_info": [{"config_name": "fgqa", "features": [{"name": "qa_id", "dtype": "string"}, {"name": "segment_id", "dtype": "string"}, {"name": "question", "dtype": "string"}, {"name": "answer", "dtype": "string"}, {"name": "metadata", "struct": [{"name": "source_video_id", "dtype": "string"}, {"name": "source_dataset", "dtype": "string"}, {"name": "source_start_time", "dtype": "float"}, {"name": "source_end_time", "dtype": "float"}, {"name": "what_description", "dtype": "string"}, {"name": "q_type", "dtype": "string"}, {"name": "q_subtype", "dtype": "string"}, {"name": "domain", "dtype": "string"}, {"name": "is_audited", "dtype": "int32"}]}], "splits": [{"name": "train", "num_bytes": 409709782, "num_examples": 2321035}]}, {"config_name": "rcap", "features": [{"name": "uid", "dtype": "int32"}, {"name": "video", "dtype": "string"}, {"name": "masklet_id", "dtype": "int32"}, {"name": "total_frames", "dtype": "int32"}, {"name": "caption", "dtype": "string"}, {"name": "start_frame", "dtype": "int32"}, {"name": "end_frame", "dtype": "int32"}], "splits": [{"name": "train", "num_bytes": 13738246, "num_examples": 179447}]}, {"config_name": "rdcap", "features": [{"name": "uid", "dtype": "int32"}, {"name": "video", "dtype": "string"}, {"name": "masklet_id", "dtype": "int32"}, {"name": "total_frames", "dtype": "int32"}, {"name": "dense_captions", "list": [{"name": "start_frame", "dtype": "int32"}, {"name": "end_frame", "dtype": "int32"}, {"name": "caption", "dtype": "string"}]}], "splits": [{"name": "train", "num_bytes": 14268327, "num_examples": 117248}]}, {"config_name": "rtloc", "features": [{"name": "uid", "dtype": "int32"}, {"name": "video", "dtype": "string"}, {"name": "masklet_id", "dtype": "int32"}, {"name": "total_frames", "dtype": "int32"}, {"name": "caption", "dtype": "string"}, {"name": "start_frame", "dtype": "int32"}, {"name": "end_frame", "dtype": "int32"}], "splits": [{"name": "train", "num_bytes": 13739069, "num_examples": 179447}]}], "configs": [{"config_name": "fgqa", "data_files": [{"split": "train", "path": "fgqa/plm_fgqa_train.parquet"}]}, {"config_name": "rcap", "data_files": [{"split": "train", "path": "rcap/plm_rcap_train.parquet"}]}, {"config_name": "rdcap", "data_files": [{"split": "train", "path": "rdcap/plm_rdcap_train.parquet"}]}, {"config_name": "rtloc", "data_files": [{"split": "train", "path": "rtloc/plm_rtloc_train.parquet"}]}], "license": "cc-by-4.0"}
false
null
2025-04-18T21:50:35
18
10
false
b79420a848932e314e096d9607f08d066f9b838d
Dataset Card for PLM-Video Human PLM-Video-Human is a collection of human-annotated resources for training Vision Language Models, focused on detailed video understanding. Training tasks include: fine-grained open-ended question answering (FGQA), Region-based Video Captioning (RCap), Region-based Dense Video Captioning (RDCap) and Region-based Temporal Localization (RTLoc). [📃 Tech Report] [📂 Github] Dataset Structure Fine-Grained Question Answering… See the full description on the dataset page: https://huggingface.co/datasets/facebook/PLM-Video-Human.
1,739
1,739
[ "task_categories:multiple-choice", "task_categories:visual-question-answering", "annotations_creators:other", "language_creators:other", "language:en", "license:cc-by-4.0", "size_categories:1M<n<10M", "format:parquet", "modality:tabular", "modality:text", "library:datasets", "library:pandas", "library:mlcroissant", "library:polars", "arxiv:2504.13180", "region:us" ]
2025-03-28T23:06:34
null
null
67fa39f24a13bd97755f08db
Skywork/Skywork-OR1-RL-Data
Skywork
{"dataset_info": {"features": [{"name": "data_source", "dtype": "string"}, {"name": "prompt", "list": [{"name": "content", "dtype": "string"}, {"name": "role", "dtype": "string"}]}, {"name": "ability", "dtype": "string"}, {"name": "reward_model", "struct": [{"name": "ground_truth", "dtype": "string"}, {"name": "style", "dtype": "string"}]}, {"name": "extra_info", "struct": [{"name": "index", "dtype": "int64"}, {"name": "model_difficulty", "struct": [{"name": "DeepSeek-R1-Distill-Qwen-1.5B", "dtype": "int64"}, {"name": "DeepSeek-R1-Distill-Qwen-32B", "dtype": "int64"}, {"name": "DeepSeek-R1-Distill-Qwen-7B", "dtype": "int64"}]}]}], "splits": [{"name": "math", "num_bytes": 40461845, "num_examples": 105055}, {"name": "code", "num_bytes": 1474827100, "num_examples": 14057}], "download_size": 823104116, "dataset_size": 1515288945}, "configs": [{"config_name": "default", "data_files": [{"split": "math", "path": "data/math-*"}, {"split": "code", "path": "data/code-*"}]}]}
false
null
2025-04-15T08:31:20
29
10
false
d3dd0aaddf1f74f14d37331b574ebf5746670645
🤔 Skywork-OR1-RL-Data 🔥 News April 15, 2025: We are excited to release our RL training dataset Skywork-OR1-RL-Data For our final training phase, we filtered problems based on their difficulty levels (0-16, higher values indicate harder problems) relative to specific model variants (DeepSeek-R1-Distill-Qwen-{1.5,7,32}B. For each model variant, we excluded problems with difficulty values of 0 and 16 specific to that model from its training data.You can… See the full description on the dataset page: https://huggingface.co/datasets/Skywork/Skywork-OR1-RL-Data.
1,875
1,875
[ "size_categories:100K<n<1M", "format:parquet", "modality:text", "library:datasets", "library:dask", "library:mlcroissant", "library:polars", "region:us" ]
2025-04-12T10:01:22
null
null
621ffdd236468d709f181f3d
qiaojin/PubMedQA
qiaojin
{"annotations_creators": ["expert-generated", "machine-generated"], "language_creators": ["expert-generated"], "language": ["en"], "license": ["mit"], "multilinguality": ["monolingual"], "size_categories": ["100K<n<1M", "10K<n<100K", "1K<n<10K"], "source_datasets": ["original"], "task_categories": ["question-answering"], "task_ids": ["multiple-choice-qa"], "paperswithcode_id": "pubmedqa", "pretty_name": "PubMedQA", "config_names": ["pqa_artificial", "pqa_labeled", "pqa_unlabeled"], "dataset_info": [{"config_name": "pqa_artificial", "features": [{"name": "pubid", "dtype": "int32"}, {"name": "question", "dtype": "string"}, {"name": "context", "sequence": [{"name": "contexts", "dtype": "string"}, {"name": "labels", "dtype": "string"}, {"name": "meshes", "dtype": "string"}]}, {"name": "long_answer", "dtype": "string"}, {"name": "final_decision", "dtype": "string"}], "splits": [{"name": "train", "num_bytes": 443501057, "num_examples": 211269}], "download_size": 233411194, "dataset_size": 443501057}, {"config_name": "pqa_labeled", "features": [{"name": "pubid", "dtype": "int32"}, {"name": "question", "dtype": "string"}, {"name": "context", "sequence": [{"name": "contexts", "dtype": "string"}, {"name": "labels", "dtype": "string"}, {"name": "meshes", "dtype": "string"}, {"name": "reasoning_required_pred", "dtype": "string"}, {"name": "reasoning_free_pred", "dtype": "string"}]}, {"name": "long_answer", "dtype": "string"}, {"name": "final_decision", "dtype": "string"}], "splits": [{"name": "train", "num_bytes": 2088898, "num_examples": 1000}], "download_size": 1075513, "dataset_size": 2088898}, {"config_name": "pqa_unlabeled", "features": [{"name": "pubid", "dtype": "int32"}, {"name": "question", "dtype": "string"}, {"name": "context", "sequence": [{"name": "contexts", "dtype": "string"}, {"name": "labels", "dtype": "string"}, {"name": "meshes", "dtype": "string"}]}, {"name": "long_answer", "dtype": "string"}], "splits": [{"name": "train", "num_bytes": 125922964, "num_examples": 61249}], "download_size": 66010017, "dataset_size": 125922964}], "configs": [{"config_name": "pqa_artificial", "data_files": [{"split": "train", "path": "pqa_artificial/train-*"}]}, {"config_name": "pqa_labeled", "data_files": [{"split": "train", "path": "pqa_labeled/train-*"}]}, {"config_name": "pqa_unlabeled", "data_files": [{"split": "train", "path": "pqa_unlabeled/train-*"}]}]}
false
null
2024-03-06T01:50:16
216
9
false
9001f2853fb87cab8d220904e0de81ac6973b318
Dataset Card for [Dataset Name] Dataset Summary The task of PubMedQA is to answer research questions with yes/no/maybe (e.g.: Do preoperative statins reduce atrial fibrillation after coronary artery bypass grafting?) using the corresponding abstracts. Supported Tasks and Leaderboards The official leaderboard is available at: https://pubmedqa.github.io/. 500 questions in the pqa_labeled are used as the test set. They can be found at… See the full description on the dataset page: https://huggingface.co/datasets/qiaojin/PubMedQA.
13,254
423,944
[ "task_categories:question-answering", "task_ids:multiple-choice-qa", "annotations_creators:expert-generated", "annotations_creators:machine-generated", "language_creators:expert-generated", "multilinguality:monolingual", "source_datasets:original", "language:en", "license:mit", "size_categories:100K<n<1M", "format:parquet", "modality:text", "library:datasets", "library:pandas", "library:mlcroissant", "library:polars", "arxiv:1909.06146", "region:us" ]
2022-03-02T23:29:22
null
pubmedqa
639244f571c51c43091df168
Anthropic/hh-rlhf
Anthropic
{"license": "mit", "tags": ["human-feedback"]}
false
null
2023-05-26T18:47:34
1,325
9
false
09be8c5bbc57cb3887f3a9732ad6aa7ec602a1fa
Dataset Card for HH-RLHF Dataset Summary This repository provides access to two different kinds of data: Human preference data about helpfulness and harmlessness from Training a Helpful and Harmless Assistant with Reinforcement Learning from Human Feedback. These data are meant to train preference (or reward) models for subsequent RLHF training. These data are not meant for supervised training of dialogue agents. Training dialogue agents on these data is likely… See the full description on the dataset page: https://huggingface.co/datasets/Anthropic/hh-rlhf.
15,816
1,575,971
[ "license:mit", "size_categories:100K<n<1M", "format:json", "modality:text", "library:datasets", "library:dask", "library:mlcroissant", "library:polars", "arxiv:2204.05862", "region:us", "human-feedback" ]
2022-12-08T20:11:33
null
null
66212f29fb07c3e05ad0432e
HuggingFaceFW/fineweb
HuggingFaceFW
{"license": "odc-by", "task_categories": ["text-generation"], "language": ["en"], "pretty_name": "FineWeb", "size_categories": ["n>1T"], "configs": [{"config_name": "default", "data_files": [{"split": "train", "path": "data/*/*"}]}, {"config_name": "sample-10BT", "data_files": [{"split": "train", "path": "sample/10BT/*"}]}, {"config_name": "sample-100BT", "data_files": [{"split": "train", "path": "sample/100BT/*"}]}, {"config_name": "sample-350BT", "data_files": [{"split": "train", "path": "sample/350BT/*"}]}, {"config_name": "CC-MAIN-2024-51", "data_files": [{"split": "train", "path": "data/CC-MAIN-2024-51/*"}]}, {"config_name": "CC-MAIN-2024-46", "data_files": [{"split": "train", "path": "data/CC-MAIN-2024-46/*"}]}, {"config_name": "CC-MAIN-2024-42", "data_files": [{"split": "train", "path": "data/CC-MAIN-2024-42/*"}]}, {"config_name": "CC-MAIN-2024-38", "data_files": [{"split": "train", "path": "data/CC-MAIN-2024-38/*"}]}, {"config_name": "CC-MAIN-2024-33", "data_files": [{"split": "train", "path": "data/CC-MAIN-2024-33/*"}]}, {"config_name": "CC-MAIN-2024-30", "data_files": [{"split": "train", "path": "data/CC-MAIN-2024-30/*"}]}, {"config_name": "CC-MAIN-2024-26", "data_files": [{"split": "train", "path": "data/CC-MAIN-2024-26/*"}]}, {"config_name": "CC-MAIN-2024-22", "data_files": [{"split": "train", "path": "data/CC-MAIN-2024-22/*"}]}, {"config_name": "CC-MAIN-2024-18", "data_files": [{"split": "train", "path": "data/CC-MAIN-2024-18/*"}]}, {"config_name": "CC-MAIN-2024-10", "data_files": [{"split": "train", "path": "data/CC-MAIN-2024-10/*"}]}, {"config_name": "CC-MAIN-2023-50", "data_files": [{"split": "train", "path": "data/CC-MAIN-2023-50/*"}]}, {"config_name": "CC-MAIN-2023-40", "data_files": [{"split": "train", "path": "data/CC-MAIN-2023-40/*"}]}, {"config_name": "CC-MAIN-2023-23", "data_files": [{"split": "train", "path": "data/CC-MAIN-2023-23/*"}]}, {"config_name": "CC-MAIN-2023-14", "data_files": [{"split": "train", "path": "data/CC-MAIN-2023-14/*"}]}, {"config_name": "CC-MAIN-2023-06", "data_files": [{"split": "train", "path": "data/CC-MAIN-2023-06/*"}]}, {"config_name": "CC-MAIN-2022-49", "data_files": [{"split": "train", "path": "data/CC-MAIN-2022-49/*"}]}, {"config_name": "CC-MAIN-2022-40", "data_files": [{"split": "train", "path": "data/CC-MAIN-2022-40/*"}]}, {"config_name": "CC-MAIN-2022-33", "data_files": [{"split": "train", "path": "data/CC-MAIN-2022-33/*"}]}, {"config_name": "CC-MAIN-2022-27", "data_files": [{"split": "train", "path": "data/CC-MAIN-2022-27/*"}]}, {"config_name": "CC-MAIN-2022-21", "data_files": [{"split": "train", "path": "data/CC-MAIN-2022-21/*"}]}, {"config_name": "CC-MAIN-2022-05", "data_files": [{"split": "train", "path": "data/CC-MAIN-2022-05/*"}]}, {"config_name": "CC-MAIN-2021-49", "data_files": [{"split": "train", "path": "data/CC-MAIN-2021-49/*"}]}, {"config_name": "CC-MAIN-2021-43", "data_files": [{"split": "train", "path": "data/CC-MAIN-2021-43/*"}]}, {"config_name": "CC-MAIN-2021-39", "data_files": [{"split": "train", "path": "data/CC-MAIN-2021-39/*"}]}, {"config_name": "CC-MAIN-2021-31", "data_files": [{"split": "train", "path": "data/CC-MAIN-2021-31/*"}]}, {"config_name": "CC-MAIN-2021-25", "data_files": [{"split": "train", "path": "data/CC-MAIN-2021-25/*"}]}, {"config_name": "CC-MAIN-2021-21", "data_files": [{"split": "train", "path": "data/CC-MAIN-2021-21/*"}]}, {"config_name": "CC-MAIN-2021-17", "data_files": [{"split": "train", "path": "data/CC-MAIN-2021-17/*"}]}, {"config_name": "CC-MAIN-2021-10", "data_files": [{"split": "train", "path": "data/CC-MAIN-2021-10/*"}]}, {"config_name": "CC-MAIN-2021-04", "data_files": [{"split": "train", "path": "data/CC-MAIN-2021-04/*"}]}, {"config_name": "CC-MAIN-2020-50", "data_files": [{"split": "train", "path": "data/CC-MAIN-2020-50/*"}]}, {"config_name": "CC-MAIN-2020-45", "data_files": [{"split": "train", "path": "data/CC-MAIN-2020-45/*"}]}, {"config_name": "CC-MAIN-2020-40", "data_files": [{"split": "train", "path": "data/CC-MAIN-2020-40/*"}]}, {"config_name": "CC-MAIN-2020-34", "data_files": [{"split": "train", "path": "data/CC-MAIN-2020-34/*"}]}, {"config_name": "CC-MAIN-2020-29", "data_files": [{"split": "train", "path": "data/CC-MAIN-2020-29/*"}]}, {"config_name": "CC-MAIN-2020-24", "data_files": [{"split": "train", "path": "data/CC-MAIN-2020-24/*"}]}, {"config_name": "CC-MAIN-2020-16", "data_files": [{"split": "train", "path": "data/CC-MAIN-2020-16/*"}]}, {"config_name": "CC-MAIN-2020-10", "data_files": [{"split": "train", "path": "data/CC-MAIN-2020-10/*"}]}, {"config_name": "CC-MAIN-2020-05", "data_files": [{"split": "train", "path": "data/CC-MAIN-2020-05/*"}]}, {"config_name": "CC-MAIN-2019-51", "data_files": [{"split": "train", "path": "data/CC-MAIN-2019-51/*"}]}, {"config_name": "CC-MAIN-2019-47", "data_files": [{"split": "train", "path": "data/CC-MAIN-2019-47/*"}]}, {"config_name": "CC-MAIN-2019-43", "data_files": [{"split": "train", "path": "data/CC-MAIN-2019-43/*"}]}, {"config_name": "CC-MAIN-2019-39", "data_files": [{"split": "train", "path": "data/CC-MAIN-2019-39/*"}]}, {"config_name": "CC-MAIN-2019-35", "data_files": [{"split": "train", "path": "data/CC-MAIN-2019-35/*"}]}, {"config_name": "CC-MAIN-2019-30", "data_files": [{"split": "train", "path": "data/CC-MAIN-2019-30/*"}]}, {"config_name": "CC-MAIN-2019-26", "data_files": [{"split": "train", "path": "data/CC-MAIN-2019-26/*"}]}, {"config_name": "CC-MAIN-2019-22", "data_files": [{"split": "train", "path": "data/CC-MAIN-2019-22/*"}]}, {"config_name": "CC-MAIN-2019-18", "data_files": [{"split": "train", "path": "data/CC-MAIN-2019-18/*"}]}, {"config_name": "CC-MAIN-2019-13", "data_files": [{"split": "train", "path": "data/CC-MAIN-2019-13/*"}]}, {"config_name": "CC-MAIN-2019-09", "data_files": [{"split": "train", "path": "data/CC-MAIN-2019-09/*"}]}, {"config_name": "CC-MAIN-2019-04", "data_files": [{"split": "train", "path": "data/CC-MAIN-2019-04/*"}]}, {"config_name": "CC-MAIN-2018-51", "data_files": [{"split": "train", "path": "data/CC-MAIN-2018-51/*"}]}, {"config_name": "CC-MAIN-2018-47", "data_files": [{"split": "train", "path": "data/CC-MAIN-2018-47/*"}]}, {"config_name": "CC-MAIN-2018-43", "data_files": [{"split": "train", "path": "data/CC-MAIN-2018-43/*"}]}, {"config_name": "CC-MAIN-2018-39", "data_files": [{"split": "train", "path": "data/CC-MAIN-2018-39/*"}]}, {"config_name": "CC-MAIN-2018-34", "data_files": [{"split": "train", "path": "data/CC-MAIN-2018-34/*"}]}, {"config_name": "CC-MAIN-2018-30", "data_files": [{"split": "train", "path": "data/CC-MAIN-2018-30/*"}]}, {"config_name": "CC-MAIN-2018-26", "data_files": [{"split": "train", "path": "data/CC-MAIN-2018-26/*"}]}, {"config_name": "CC-MAIN-2018-22", "data_files": [{"split": "train", "path": "data/CC-MAIN-2018-22/*"}]}, {"config_name": "CC-MAIN-2018-17", "data_files": [{"split": "train", "path": "data/CC-MAIN-2018-17/*"}]}, {"config_name": "CC-MAIN-2018-13", "data_files": [{"split": "train", "path": "data/CC-MAIN-2018-13/*"}]}, {"config_name": "CC-MAIN-2018-09", "data_files": [{"split": "train", "path": "data/CC-MAIN-2018-09/*"}]}, {"config_name": "CC-MAIN-2018-05", "data_files": [{"split": "train", "path": "data/CC-MAIN-2018-05/*"}]}, {"config_name": "CC-MAIN-2017-51", "data_files": [{"split": "train", "path": "data/CC-MAIN-2017-51/*"}]}, {"config_name": "CC-MAIN-2017-47", "data_files": [{"split": "train", "path": "data/CC-MAIN-2017-47/*"}]}, {"config_name": "CC-MAIN-2017-43", "data_files": [{"split": "train", "path": "data/CC-MAIN-2017-43/*"}]}, {"config_name": "CC-MAIN-2017-39", "data_files": [{"split": "train", "path": "data/CC-MAIN-2017-39/*"}]}, {"config_name": "CC-MAIN-2017-34", "data_files": [{"split": "train", "path": "data/CC-MAIN-2017-34/*"}]}, {"config_name": "CC-MAIN-2017-30", "data_files": [{"split": "train", "path": "data/CC-MAIN-2017-30/*"}]}, {"config_name": "CC-MAIN-2017-26", "data_files": [{"split": "train", "path": "data/CC-MAIN-2017-26/*"}]}, {"config_name": "CC-MAIN-2017-22", "data_files": [{"split": "train", "path": "data/CC-MAIN-2017-22/*"}]}, {"config_name": "CC-MAIN-2017-17", "data_files": [{"split": "train", "path": "data/CC-MAIN-2017-17/*"}]}, {"config_name": "CC-MAIN-2017-13", "data_files": [{"split": "train", "path": "data/CC-MAIN-2017-13/*"}]}, {"config_name": "CC-MAIN-2017-09", "data_files": [{"split": "train", "path": "data/CC-MAIN-2017-09/*"}]}, {"config_name": "CC-MAIN-2017-04", "data_files": [{"split": "train", "path": "data/CC-MAIN-2017-04/*"}]}, {"config_name": "CC-MAIN-2016-50", "data_files": [{"split": "train", "path": "data/CC-MAIN-2016-50/*"}]}, {"config_name": "CC-MAIN-2016-44", "data_files": [{"split": "train", "path": "data/CC-MAIN-2016-44/*"}]}, {"config_name": "CC-MAIN-2016-40", "data_files": [{"split": "train", "path": "data/CC-MAIN-2016-40/*"}]}, {"config_name": "CC-MAIN-2016-36", "data_files": [{"split": "train", "path": "data/CC-MAIN-2016-36/*"}]}, {"config_name": "CC-MAIN-2016-30", "data_files": [{"split": "train", "path": "data/CC-MAIN-2016-30/*"}]}, {"config_name": "CC-MAIN-2016-26", "data_files": [{"split": "train", "path": "data/CC-MAIN-2016-26/*"}]}, {"config_name": "CC-MAIN-2016-22", "data_files": [{"split": "train", "path": "data/CC-MAIN-2016-22/*"}]}, {"config_name": "CC-MAIN-2016-18", "data_files": [{"split": "train", "path": "data/CC-MAIN-2016-18/*"}]}, {"config_name": "CC-MAIN-2016-07", "data_files": [{"split": "train", "path": "data/CC-MAIN-2016-07/*"}]}, {"config_name": "CC-MAIN-2015-48", "data_files": [{"split": "train", "path": "data/CC-MAIN-2015-48/*"}]}, {"config_name": "CC-MAIN-2015-40", "data_files": [{"split": "train", "path": "data/CC-MAIN-2015-40/*"}]}, {"config_name": "CC-MAIN-2015-35", "data_files": [{"split": "train", "path": "data/CC-MAIN-2015-35/*"}]}, {"config_name": "CC-MAIN-2015-32", "data_files": [{"split": "train", "path": "data/CC-MAIN-2015-32/*"}]}, {"config_name": "CC-MAIN-2015-27", "data_files": [{"split": "train", "path": "data/CC-MAIN-2015-27/*"}]}, {"config_name": "CC-MAIN-2015-22", "data_files": [{"split": "train", "path": "data/CC-MAIN-2015-22/*"}]}, {"config_name": "CC-MAIN-2015-18", "data_files": [{"split": "train", "path": "data/CC-MAIN-2015-18/*"}]}, {"config_name": "CC-MAIN-2015-14", "data_files": [{"split": "train", "path": "data/CC-MAIN-2015-14/*"}]}, {"config_name": "CC-MAIN-2015-11", "data_files": [{"split": "train", "path": "data/CC-MAIN-2015-11/*"}]}, {"config_name": "CC-MAIN-2015-06", "data_files": [{"split": "train", "path": "data/CC-MAIN-2015-06/*"}]}, {"config_name": "CC-MAIN-2014-52", "data_files": [{"split": "train", "path": "data/CC-MAIN-2014-52/*"}]}, {"config_name": "CC-MAIN-2014-49", "data_files": [{"split": "train", "path": "data/CC-MAIN-2014-49/*"}]}, {"config_name": "CC-MAIN-2014-42", "data_files": [{"split": "train", "path": "data/CC-MAIN-2014-42/*"}]}, {"config_name": "CC-MAIN-2014-41", "data_files": [{"split": "train", "path": "data/CC-MAIN-2014-41/*"}]}, {"config_name": "CC-MAIN-2014-35", "data_files": [{"split": "train", "path": "data/CC-MAIN-2014-35/*"}]}, {"config_name": "CC-MAIN-2014-23", "data_files": [{"split": "train", "path": "data/CC-MAIN-2014-23/*"}]}, {"config_name": "CC-MAIN-2014-15", "data_files": [{"split": "train", "path": "data/CC-MAIN-2014-15/*"}]}, {"config_name": "CC-MAIN-2014-10", "data_files": [{"split": "train", "path": "data/CC-MAIN-2014-10/*"}]}, {"config_name": "CC-MAIN-2013-48", "data_files": [{"split": "train", "path": "data/CC-MAIN-2013-48/*"}]}, {"config_name": "CC-MAIN-2013-20", "data_files": [{"split": "train", "path": "data/CC-MAIN-2013-20/*"}]}]}
false
null
2025-01-31T14:10:44
2,120
9
false
0f039043b23fe1d4eed300b504aa4b4a68f1c7ba
🍷 FineWeb 15 trillion tokens of the finest data the 🌐 web has to offer What is it? The 🍷 FineWeb dataset consists of more than 15T tokens of cleaned and deduplicated english web data from CommonCrawl. The data processing pipeline is optimized for LLM performance and ran on the 🏭 datatrove library, our large scale data processing library. 🍷 FineWeb was originally meant to be a fully open replication of 🦅 RefinedWeb, with a release of the full dataset under… See the full description on the dataset page: https://huggingface.co/datasets/HuggingFaceFW/fineweb.
839,815
3,153,298
[ "task_categories:text-generation", "language:en", "license:odc-by", "size_categories:10B<n<100B", "format:parquet", "modality:tabular", "modality:text", "library:datasets", "library:dask", "library:mlcroissant", "library:polars", "arxiv:2306.01116", "arxiv:2109.07445", "arxiv:2406.17557", "doi:10.57967/hf/2493", "region:us" ]
2024-04-18T14:33:13
null
null
67e104c5e5179149a17a9b58
amazon-agi/SIFT-50M
amazon-agi
{"license": "cdla-sharing-1.0", "language": ["en", "de", "fr", "it", "es"], "size_categories": ["10M<n<100M"], "task_categories": ["audio-text-to-text", "audio-classification", "text-to-speech", "audio-to-audio"], "pretty_name": "SIFT-50M", "configs": [{"config_name": "closed_ended_acoustic_level", "data_files": [{"split": "train", "path": "train/closed_ended/acoustic_level/*/*.jsonl"}, {"split": "validation", "path": "dev/closed_ended/acoustic_level/*/*.jsonl"}, {"split": "EvalSIFT", "path": "EvalSIFT/closed_ended/acoustic_level/*/*.jsonl"}]}, {"config_name": "closed_ended_content_level", "data_files": [{"split": "train", "path": "train/closed_ended/content_level/*/*.jsonl"}, {"split": "validation", "path": "dev/closed_ended/content_level/*/*.jsonl"}, {"split": "EvalSIFT", "path": "EvalSIFT/closed_ended/content_level/*/*.jsonl"}]}, {"config_name": "closed_ended_word_align", "data_files": [{"split": "train", "path": "train/closed_ended/word_align/*/*.jsonl"}, {"split": "validation", "path": "dev/closed_ended/word_align/*/*.jsonl"}, {"split": "EvalSIFT", "path": "EvalSIFT/closed_ended/word_align/*/*.jsonl"}]}, {"config_name": "closed_ended_comparison", "data_files": [{"split": "train", "path": "train/closed_ended/comparison/*/*.jsonl"}, {"split": "validation", "path": "dev/closed_ended/comparison/*/*.jsonl"}, {"split": "EvalSIFT", "path": "EvalSIFT/closed_ended/comparison/*/*.jsonl"}]}, {"config_name": "open_ended", "data_files": [{"split": "train", "path": "train/open_ended/*/*.jsonl"}, {"split": "validation", "path": "dev/open_ended/*/*.jsonl"}, {"split": "EvalSIFT", "path": "EvalSIFT/open_ended/*/*.jsonl"}]}, {"config_name": "controllable_generation", "data_files": [{"split": "train", "path": "train/controllable_generation/*/*.jsonl"}, {"split": "validation", "path": "dev/controllable_generation/*/*.jsonl"}, {"split": "EvalSIFT", "path": "EvalSIFT/controllable_generation/*/*.jsonl"}]}], "tags": ["speech", "speech-llm", "spoken-language-understanding", "controllable-speech-synthesis", "instruction-finetuning"]}
false
null
2025-04-23T05:08:59
17
9
false
1277f4010c28983c41e4e549071f01b22af4bc87
Dataset Card for SIFT-50M SIFT-50M (Speech Instruction Fine-Tuning) is a 50-million-example dataset designed for instruction fine-tuning and pre-training of speech-text large language models (LLMs). It is built from publicly available speech corpora containing a total of 14K hours of speech and leverages LLMs and off-the-shelf expert models. The dataset spans five languages, covering diverse aspects of speech understanding and controllable speech generation instructions. SIFT-50M… See the full description on the dataset page: https://huggingface.co/datasets/amazon-agi/SIFT-50M.
7,117
7,564
[ "task_categories:audio-text-to-text", "task_categories:audio-classification", "task_categories:text-to-speech", "task_categories:audio-to-audio", "language:en", "language:de", "language:fr", "language:it", "language:es", "license:cdla-sharing-1.0", "size_categories:10M<n<100M", "format:json", "modality:text", "library:datasets", "library:dask", "library:mlcroissant", "arxiv:2504.09081", "region:us", "speech", "speech-llm", "spoken-language-understanding", "controllable-speech-synthesis", "instruction-finetuning" ]
2025-03-24T07:07:49
null
null
67ff98b701428cf3b86fe77e
Smatteux/sentiment-analysis-test
Smatteux
{"dataset_info": {"features": [{"name": "text", "dtype": "string"}, {"name": "sentiment", "dtype": "string"}], "splits": [{"name": "train", "num_bytes": 28302.111747851002, "num_examples": 279}, {"name": "test", "num_bytes": 7100.888252148997, "num_examples": 70}], "download_size": 23427, "dataset_size": 35403}, "configs": [{"config_name": "default", "data_files": [{"split": "train", "path": "data/train-*"}, {"split": "test", "path": "data/test-*"}]}], "annotations_creators": ["expert-generated", "crowdsourced"], "language": ["it"], "language_creators": ["crowdsourced"], "license": ["mit"], "multilinguality": ["monolingual"], "pretty_name": "a sentiment analysis database created in a school envronment ", "size_categories": ["n<1K"], "source_datasets": ["original"], "tags": [], "task_categories": ["text-classification"], "task_ids": ["sentiment-analysis"]}
false
null
2025-04-16T12:51:30
9
9
false
f00483c98dfd16fbc1d1e9dcbcd84ba830639b4e
progetto scolastico per l'analisi dei sentimenti il dataset è stato creato con un questionario online in cu isi chiedeva ad un pubblico di studenti, docenti, personale amministrativo, famiglie di rispondere ad alcune domande sul loro rapporto con la scuola. Le annotazioni sono state effettuate correlando le risposte testuali ad indicatori di gradimento. Il dataset è stato stato realizzato all'interno di un corsp pomeridiano scolastico dedicato all'intelligenza artificiale. Grazie a… See the full description on the dataset page: https://huggingface.co/datasets/Smatteux/sentiment-analysis-test.
439
439
[ "task_categories:text-classification", "task_ids:sentiment-analysis", "annotations_creators:expert-generated", "annotations_creators:crowdsourced", "language_creators:crowdsourced", "multilinguality:monolingual", "source_datasets:original", "language:it", "license:mit", "size_categories:n<1K", "format:parquet", "modality:text", "library:datasets", "library:pandas", "library:mlcroissant", "library:polars", "region:us" ]
2025-04-16T11:47:03
null
null
67ff9b10e3e15a8be9b4971e
MarcPal08/sentiment-analysis-test
MarcPal08
{"dataset_info": {"features": [{"name": "text", "dtype": "string"}, {"name": "sentiment", "dtype": "string"}], "splits": [{"name": "train", "num_bytes": 28302.111747851002, "num_examples": 279}, {"name": "test", "num_bytes": 7100.888252148997, "num_examples": 70}], "download_size": 23157, "dataset_size": 35403}, "configs": [{"config_name": "default", "data_files": [{"split": "train", "path": "data/train-*"}, {"split": "test", "path": "data/test-*"}]}], "annotations_creators": ["expert-generated", "crowdsourced"], "language": ["it"], "language_creators": ["crowdsourced"], "license": ["mit"], "multilinguality": ["monolingual"], "pretty_name": "A sentiment analisys database created in a school environment.", "size_categories": ["n<1K"], "source_datasets": ["original"], "tags": ["school", "high-school"], "task_categories": ["text-classification"], "task_ids": ["sentiment-analysis"]}
false
null
2025-04-16T12:51:30
9
9
false
f870060177dff27ea2e81215f68d3c3f019bd51e
Progetto scolastico per l'analisi dei sentimenti Il dataset è stato creato con un questionario online in cui si chiedeva ad un pubblico di studenti, docenti, personale amministrativo, famiglie di rispondere ad alcune domande sul loro rapporto con la scuola. Le annotazioni sono state effettuate correlando le risposte testuali ad indicatori di gradimento. Il dataset è stato realizzato all'interno di un corso pomeridiano scolastico dedicato all'intelligenza artificiale. Grazie a tutti… See the full description on the dataset page: https://huggingface.co/datasets/MarcPal08/sentiment-analysis-test.
416
416
[ "task_categories:text-classification", "task_ids:sentiment-analysis", "annotations_creators:expert-generated", "annotations_creators:crowdsourced", "language_creators:crowdsourced", "multilinguality:monolingual", "source_datasets:original", "language:it", "license:mit", "size_categories:n<1K", "format:parquet", "modality:text", "library:datasets", "library:pandas", "library:mlcroissant", "library:polars", "region:us", "school", "high-school" ]
2025-04-16T11:57:04
null
null
67ffa024a1c34809696a1765
Giova-tech/sentiment-analysis-test
Giova-tech
{"dataset_info": {"features": [{"name": "text", "dtype": "string"}, {"name": "sentiment", "dtype": "string"}], "splits": [{"name": "train", "num_bytes": 28302.111747851002, "num_examples": 279}, {"name": "test", "num_bytes": 7100.888252148997, "num_examples": 70}], "download_size": 23157, "dataset_size": 35403}, "configs": [{"config_name": "default", "data_files": [{"split": "train", "path": "data/train-*"}, {"split": "test", "path": "data/test-*"}]}], "annotations_creators": ["expert-generated", "crowdsourced"], "language": ["it"], "language_creators": ["crowdsourced"], "license": ["mit"], "multilinguality": ["monolingual"], "pretty_name": "A sentiment analisis database created in a school environment\n", "size_categories": ["n<1K"], "source_datasets": ["original"], "tags": ["school", "high-school"], "task_categories": ["text-classification"], "task_ids": ["sentiment-analysis"]}
false
null
2025-04-16T12:51:43
9
9
false
ad783643608757dc726d2376d370b7d6bfe5039d
progetto scolastico per l'analisi dei sentimenti Il dataset è stato creato con un questionario online in cui si chiedeva ad un pubblico di studenti, docenti, personake amministrativo e famiglie di rispondere ad alcune domande sul loro rapporto con la scuola. Le annotazioni sono state effettuate correlando le risposte testuali an indicatori di gradimento. Il dataset è stato realizzato all'interno di un corso pomeridiano scolastico dedicato all'intelliggenza artificiale. Grazie a… See the full description on the dataset page: https://huggingface.co/datasets/Giova-tech/sentiment-analysis-test.
410
410
[ "task_categories:text-classification", "task_ids:sentiment-analysis", "annotations_creators:expert-generated", "annotations_creators:crowdsourced", "language_creators:crowdsourced", "multilinguality:monolingual", "source_datasets:original", "language:it", "license:mit", "size_categories:n<1K", "format:parquet", "modality:text", "library:datasets", "library:pandas", "library:mlcroissant", "library:polars", "region:us", "school", "high-school" ]
2025-04-16T12:18:44
null
null
6809becb4c287fa790959bc2
miscovery/arabic_egypt_english_world_facts
miscovery
{"license": "mit", "task_categories": ["question-answering", "translation", "text-generation", "fill-mask"], "language": ["en", "ar"], "pretty_name": "Arabic_Egypt_English_World_Facts", "size_categories": ["10K<n<100K"]}
false
null
2025-04-26T02:18:29
9
9
false
cd71750efb8dc8f03228b3930612679fb93deecf
🌍 Version (v2.0) World Facts in English, Arabic & Egyptian Arabic (Categorized) The World Facts General Knowledge Dataset (v2.0) is a high-quality, human-reviewed Q&A resource by Miscovery. It features general facts categorized across 50+ knowledge domains, provided in three languages: 🌍 English 🇸🇦 Modern Standard Arabic (MSA) 🇪🇬 Egyptian Arabic (Dialect) Each entry includes: The question and answer A category and sub-category Language tag (en, ar, ar_eg) Basic metadata:… See the full description on the dataset page: https://huggingface.co/datasets/miscovery/arabic_egypt_english_world_facts.
128
128
[ "task_categories:question-answering", "task_categories:translation", "task_categories:text-generation", "task_categories:fill-mask", "language:en", "language:ar", "license:mit", "size_categories:10K<n<100K", "format:csv", "modality:tabular", "modality:text", "library:datasets", "library:pandas", "library:mlcroissant", "library:polars", "region:us" ]
2025-04-24T04:32:11
null
null
680a2f2273a233a03913a327
stepfun-ai/GEdit-Bench
stepfun-ai
{"license": "mit"}
false
null
2025-04-24T13:00:51
9
9
false
58159f3de6689982b1df7f1a6c557ded16548a24
null
252
252
[ "license:mit", "size_categories:1K<n<10K", "format:arrow", "modality:image", "modality:text", "library:datasets", "library:mlcroissant", "region:us" ]
2025-04-24T12:31:30
null
null
End of preview. Expand in Data Studio

NEW Changes Feb 27th

  • Added new fields on the models split: downloadsAllTime, safetensors, gguf

  • Added new field on the datasets split: downloadsAllTime

  • Added new split: papers which is all of the Daily Papers

Updated Daily

Downloads last month
7,039

Data Sourcing report

powered
by Spawning.ai

No elements in this dataset have been identified as either opted-out, or opted-in, by their creator.

Spaces using cfahlgren1/hub-stats 13