post_href
stringlengths 57
213
| python_solutions
stringlengths 71
22.3k
| slug
stringlengths 3
77
| post_title
stringlengths 1
100
| user
stringlengths 3
29
| upvotes
int64 -20
1.2k
| views
int64 0
60.9k
| problem_title
stringlengths 3
77
| number
int64 1
2.48k
| acceptance
float64 0.14
0.91
| difficulty
stringclasses 3
values | __index_level_0__
int64 0
34k
|
---|---|---|---|---|---|---|---|---|---|---|---|
https://leetcode.com/problems/minimum-amount-of-time-to-collect-garbage/discuss/2494579/O(n)-with-total-time-costs-for-every-garbage-and-moving-using-Hash-Map | class Solution:
def garbageCollection(self, garbage: List[str], travel: List[int]) -> int:
n = len(garbage)
s = [0] * n
for i in range(1, n):
s[i] = s[i-1] + travel[i-1]
ans = 0
h_total = {}
g_total = {}
for i in range(n):
g = {}
for gi in garbage[i]:
g[gi] = g.get(gi, 0) + 1
for k in g:
h_total[k] = s[i]
g_total[k] = g_total.get(k, 0) + g[k]
print(g_total, h_total)
ans = sum(h_total.values()) + sum(g_total.values())
print("=" * 20)
return ans
print = lambda *a,**aa: () | minimum-amount-of-time-to-collect-garbage | O(n) with total time costs for every garbage and moving using Hash-Map | dntai | 0 | 2 | minimum amount of time to collect garbage | 2,391 | 0.851 | Medium | 32,700 |
https://leetcode.com/problems/minimum-amount-of-time-to-collect-garbage/discuss/2493329/Secret-Python-Answer-Using-a-Stack | class Solution:
def garbageCollection(self, garbage: List[str], travel: List[int]) -> int:
def traverse(t):
vis = [g.count(t) for g in garbage]
while(vis and vis[-1] == 0):
vis.pop()
total = 0
if not vis:
return 0
total += vis[0]
for i in range(1,len(vis)):
total += travel[i-1]
total += vis[i]
return total
res = 0
res += traverse('M')
res += traverse('P')
res += traverse('G')
return res | minimum-amount-of-time-to-collect-garbage | [Secret Python Answerπ€«πππ] Using a Stack | xmky | 0 | 8 | minimum amount of time to collect garbage | 2,391 | 0.851 | Medium | 32,701 |
https://leetcode.com/problems/minimum-amount-of-time-to-collect-garbage/discuss/2493013/Python3-Simulation-Iteration-Easy-Solution | class Solution:
def garbageCollection(self, garbage: List[str], travel: List[int]) -> int:
def getlast(arr,n, x):
for i in range(n-1, -1, -1):
if x in arr[i]:
return i
return 0
ans=0
n = len(garbage)
g = getlast(garbage,n, "G")
p = getlast(garbage,n, "P")
m = getlast(garbage,n, "M")
for i in garbage:
if "G" in i:
ans += (i.count("G"))
if "P" in i:
ans += (i.count("P"))
if "M" in i:
ans += (i.count("M"))
ans += sum(travel[:g])
ans += sum(travel[:p])
ans += sum(travel[:m])
return ans | minimum-amount-of-time-to-collect-garbage | Python3, Simulation, Iteration, Easy Solution | mrprashantkumar | 0 | 6 | minimum amount of time to collect garbage | 2,391 | 0.851 | Medium | 32,702 |
https://leetcode.com/problems/minimum-amount-of-time-to-collect-garbage/discuss/2492949/Python3-or-Solved-Intuitively-With-Help-of-Three-Hashmaps | class Solution:
#If I let n = travel.length and m = garbage.length...
#Time-Complexity: O(travel.length + garbage.length*10 + 3*garbage.length) -> O(n + m)
#Space-Complexity: O(3m + (n+1)) ->O(m + n)
def garbageCollection(self, garbage: List[str], travel: List[int]) -> int:
#Approach: First, traverse through garbage array and identify the count as well as the index position of houses
#each type of garbage is at!
#Utilize 3 hashmaps: one for metal , one for glass , and one for paper!
#key: index pos -> count: number of garbage at index pos house of that particular type!
metal = {}
paper = {}
glass = {}
#need to allocate another array that describes time cost to reach ith index house!
travel_cost = []
travel_cost.append(0)
cur_cost = 0
for e in travel:
cur_cost += e
travel_cost.append(cur_cost)
for i in range(len(garbage)):
for c in garbage[i]:
if(c == 'M'):
if(i not in metal):
metal[i] = 1
else:
metal[i] += 1
elif(c == 'P'):
if(i not in paper):
paper[i] = 1
else:
paper[i] += 1
else:
if(i not in glass):
glass[i] = 1
else:
glass[i] += 1
#once hashmaps are updated, handle 3 types of garbage collection!
#1. Metal
metal_cost = 0
pre = 0
metal_keys = sorted(metal.keys())
for mk in metal_keys:
metal_cost += metal[mk]
metal_cost += (travel_cost[mk] - travel_cost[pre])
pre = mk
#2. Paper
paper_cost = 0
pre2 = 0
paper_keys = sorted(paper.keys())
for pk in paper_keys:
paper_cost += paper[pk]
paper_cost += (travel_cost[pk] - travel_cost[pre2])
pre2 = pk
#3. glass
glass_cost = 0
pre3 = 0
glass_keys = sorted(glass.keys())
for gk in glass_keys:
glass_cost += glass[gk]
glass_cost += (travel_cost[gk] - travel_cost[pre3])
pre3 = gk
return metal_cost + paper_cost + glass_cost | minimum-amount-of-time-to-collect-garbage | Python3 | Solved Intuitively With Help of Three Hashmaps | JOON1234 | 0 | 9 | minimum amount of time to collect garbage | 2,391 | 0.851 | Medium | 32,703 |
https://leetcode.com/problems/build-a-matrix-with-conditions/discuss/2492822/Python3-topological-sort | class Solution:
def buildMatrix(self, k: int, rowConditions: List[List[int]], colConditions: List[List[int]]) -> List[List[int]]:
def fn(cond):
"""Return topological sort"""
graph = [[] for _ in range(k)]
indeg = [0]*k
for u, v in cond:
graph[u-1].append(v-1)
indeg[v-1] += 1
queue = deque(u for u, x in enumerate(indeg) if x == 0)
ans = []
while queue:
u = queue.popleft()
ans.append(u+1)
for v in graph[u]:
indeg[v] -= 1
if indeg[v] == 0: queue.append(v)
return ans
row = fn(rowConditions)
col = fn(colConditions)
if len(row) < k or len(col) < k: return []
ans = [[0]*k for _ in range(k)]
row = {x : i for i, x in enumerate(row)}
col = {x : j for j, x in enumerate(col)}
for x in range(1, k+1): ans[row[x]][col[x]] = x
return ans | build-a-matrix-with-conditions | [Python3] topological sort | ye15 | 12 | 339 | build a matrix with conditions | 2,392 | 0.592 | Hard | 32,704 |
https://leetcode.com/problems/build-a-matrix-with-conditions/discuss/2494198/Python-3-Topological-Sort-Ez-To-Understand | class Solution:
def buildMatrix(self, n: int, rowC: List[List[int]], colC: List[List[int]]) -> List[List[int]]:
# create two graphs, one for row and one for columns
row_adj = {i: [] for i in range(1, n + 1)}
col_adj = {i: [] for i in range(1, n + 1)}
for u, v in rowC:
row_adj[u].append(v)
for u, v in colC:
col_adj[u].append(v)
# inorder to do topological sort, we need to maintain two visit lists: one marks which node
# we have already processed (because not all nodes are connected to each other and we do not
# want to end up in a infinite loop), the other one marks nodes we are currently visiting(or in
# our recursion stack). If we visit a node that we are currently visiting, that means there is
# a loop, so we return False; if it is not in our current visit but has already been visited, we
# can safely travel to the next node and return True.
row_stack = []
row_visit = set()
row_visiting = set()
col_stack = []
col_visit = set()
col_visiting = set()
def dfs(node, stack, visit, visiting, adj):
if node in visiting:
return False
if node in visit:
return True
visit.add(node)
visiting.add(node)
for child in adj[node]:
if not dfs(child, stack, visit, visiting, adj):
return False
visiting.remove(node)
stack.append(node)
return True
# do dfs on each row/col graph
for i in range(1, n + 1):
if i not in row_visit:
if not dfs(i, row_stack, row_visit, row_visiting, row_adj):
return []
if i not in col_visit:
if not dfs(i, col_stack, col_visit, col_visiting, col_adj):
return []
# After the dfs, we also need a stack to store which node has been entirely explored. That's why we
# append the current node to our stack after exploring all its neighbors. Remember we have to reverse
# the stack after all DFS's, because the first-explored node gets appended first.
row_stack, col_stack = row_stack[::-1], col_stack[::-1]
# mark position for each element
row_memo, col_memo = {}, {}
for idx, num in enumerate(row_stack):
row_memo[num] = idx
for idx, num in enumerate(col_stack):
col_memo[num] = idx
# create an empty matrix as our ans
ans = [[0]*n for _ in range(n)]
# plug in values from what we have discovered
for i in range(1, n + 1):
ans[row_memo[i]][col_memo[i]] = i
return ans | build-a-matrix-with-conditions | [Python 3] Topological Sort Ez To Understand | Che4pSc1ent1st | 1 | 12 | build a matrix with conditions | 2,392 | 0.592 | Hard | 32,705 |
https://leetcode.com/problems/build-a-matrix-with-conditions/discuss/2675288/Python3-or-Toposort-or-Kahn's-Algorithm | class Solution:
def buildMatrix(self, k: int, rc: List[List[int]], cc: List[List[int]]) -> List[List[int]]:
def toposortBFS(cond):
adj=[[] for i in range(k+1)]
for u,v in cond:
adj[u].append(v)
inDegree=[0 for i in range(k+1)]
topoArray=[]
q=[]
for i in range(1,k+1):
for j in adj[i]:
inDegree[j]+=1
for i in range(1,k+1):
if inDegree[i]==0:
q.append(i)
while q:
ele=q.pop(0)
topoArray.append(ele)
for it in adj[ele]:
inDegree[it]-=1
if inDegree[it]==0:
q.append(it)
return topoArray
t1=toposortBFS(rc)
t2=toposortBFS(cc)
if len(t1)<k or len(t2)<k:
return []
ans=[[0 for i in range(k)] for i in range(k)]
hmap=defaultdict(list)
for ind,x in enumerate(t1):
hmap[x].append(ind)
for ind,x in enumerate(t2):
hmap[x].append(ind)
for key in hmap.keys():
x,y=hmap[key]
ans[x][y]=key
return ans | build-a-matrix-with-conditions | [Python3] | Toposort | Kahn's Algorithm | swapnilsingh421 | 0 | 9 | build a matrix with conditions | 2,392 | 0.592 | Hard | 32,706 |
https://leetcode.com/problems/build-a-matrix-with-conditions/discuss/2499448/Topological-Sort | class Solution:
def buildMatrix(self, k: int, rs1: List[List[int]], cs: List[List[int]]) -> List[List[int]]:
def solve(rs):
adj,ind,q,l = defaultdict(list),{},deque(),[]
for val in rs:
adj[val[1]].append(val[0])
ind[val[0]] = ind.get(val[0],0)+1
for val in range(1,k+1):
if ind.get(val,0) == 0:
q.append(val)
l.append(val)
while q:
t = q.popleft()
for val in adj[t]:
ind[val] -= 1
if ind[val] == 0:
q.append(val)
l.append(val)
return l
l,l1,dx,dy,ans = solve(rs1),solve(cs),{},{},[[0 for i in range(k)]for j in range(k)]
if len(l) != k or len(l1)!=k:
return []
for i in range(k):
dx[l[i]] = k-1-i
for j in range(k):
dy[l1[j]] = k-1-j
for i in range(1,k+1):
ans[dx[i]][dy[i]] = i
return ans | build-a-matrix-with-conditions | Topological Sort | Shivamk09 | 0 | 9 | build a matrix with conditions | 2,392 | 0.592 | Hard | 32,707 |
https://leetcode.com/problems/build-a-matrix-with-conditions/discuss/2496111/Python-3Kahn's-algorithm | class Solution:
def buildMatrix(self, k: int, rowConditions: List[List[int]], colConditions: List[List[int]]) -> List[List[int]]:
gr, gc = defaultdict(set), defaultdict(set)
dr, dc = defaultdict(int), defaultdict(int)
for a, b in rowConditions:
if b in gr[a]: continue #drop duplicates
gr[a].add(b)
dr[b] += 1
for a, b in colConditions:
if b in gc[a]: continue
gc[a].add(b)
dc[b] += 1
# start from leftmost and upmost nodes
row_start = [i for i in range(1, k+1) if not dr[i]]
col_start = [i for i in range(1, k+1) if not dc[i]]
if not row_start or not col_start:
return []
# row and col locations for nodes
r, c = defaultdict(lambda: -1), defaultdict(lambda: -1)
cnt = 0
while row_start:
q = []
for x in row_start:
r[x] = cnt
cnt += 1
for nei in gr[x]:
dr[nei] -= 1
if not dr[nei]:
q.append(nei)
row_start = q
# if still nodes with degree above zero, then cycle detected
# e.g. [[1, 4], [4, 2], [2, 3], [3, 4]]
if any(dr[x] for x in dr): return []
cnt = 0
while col_start:
q = []
for x in col_start:
c[x] = cnt
cnt += 1
for nei in gc[x]:
dc[nei] -= 1
if not dc[nei]:
q.append(nei)
col_start = q
if any(dc[x] for x in dc): return []
non_used_row, non_used_col = len(r), len(c) # for undefined nodes pick any unused row/cols
ans = [[0] * k for _ in range(k)]
for i in range(1, k+1):
x, y = None, None
if r[i] != -1:
x = r[i]
else:
x = non_used_row
non_used_row += 1
if c[i] != -1:
y = c[i]
else:
y = non_used_col
non_used_col += 1
ans[x][y] = i
return ans | build-a-matrix-with-conditions | [Python 3]Kahn's algorithm | chestnut890123 | 0 | 9 | build a matrix with conditions | 2,392 | 0.592 | Hard | 32,708 |
https://leetcode.com/problems/build-a-matrix-with-conditions/discuss/2495550/Python3-Topological-Sort-or-Expending-from-other's-work | class Solution:
def buildMatrix(self, k: int, rowConditions, colConditions):
def releaseSeq(cond):
# build dependence map
dep = [set() for i in range(k)]
acquire = [set() for i in range(k)]
for a, b in cond:
dep[b - 1].add(a - 1)
acquire[a - 1].add(b - 1)
# finding item already free
released = deque()
for i, s in enumerate(dep):
if len(s) == 0:
released.append(i)
if not released:
return None
ans = [None for i in range(k)]
allocatedNum = 0
while released:
idx = released.popleft()
ans[idx] = allocatedNum
allocatedNum += 1
# releasing lock
for b in acquire[idx]:
dep[b].discard(idx)
if len(dep[b]) == 0:
# add new free into queue
released.append(b)
# not all item been released
if allocatedNum < k:
return None
return ans
row = releaseSeq(rowConditions)
col = None
if row is not None:
col = releaseSeq(colConditions)
if row is None or \
col is None:
return []
r = [[0 for i in range(k)] for j in range(k)]
for (n, (i, j)) in enumerate(zip(row, col), start = 1):
r[i][j] = n
return r | build-a-matrix-with-conditions | [Python3] Topological Sort | Expending from other's work | staytime | 0 | 6 | build a matrix with conditions | 2,392 | 0.592 | Hard | 32,709 |
https://leetcode.com/problems/build-a-matrix-with-conditions/discuss/2494730/python3-topological-sorting-sol-for-reference. | class Solution:
def getOrder(self, cond, k):
gc = defaultdict(set)
order = []
cond = set([tuple(i) for i in cond])
indegree = [0]*(k+1)
for a, b in cond:
gc[a].add(b)
indegree[b] += 1
for i in range(1,k+1):
if indegree[i] == 0:
order.append(i)
orderidx = 0
while orderidx < len(order):
node = order[orderidx]
orderidx += 1
for nei in gc[node]:
indegree[nei] -= 1
if indegree[nei] == 0:
order.append(nei)
return order
def buildMatrix(self, k: int, rowConditions: List[List[int]], colConditions: List[List[int]]) -> List[List[int]]:
rorder = self.getOrder(rowConditions, k)
corder = self.getOrder(colConditions, k)
korder = [[0,0] for _ in range(k+1)]
if len(rorder) != k or len(corder) != k:
return []
for r in range(1,k+1):
korder[rorder[r-1]][0] = r-1
korder[corder[r-1]][1] = r-1
kmatrix = [[0 for _ in range(k)] for _ in range(k)]
for i in range(1, k+1):
x,y = korder[i]
kmatrix [x][y] = i
return kmatrix | build-a-matrix-with-conditions | [python3] topological sorting sol for reference. | vadhri_venkat | 0 | 5 | build a matrix with conditions | 2,392 | 0.592 | Hard | 32,710 |
https://leetcode.com/problems/build-a-matrix-with-conditions/discuss/2493386/Simple-Answer-Alien-Dictionary-Graph-%2B-DFS | class Solution:
def buildMatrix(self, k: int, rowConditions: List[List[int]], colConditions: List[List[int]]) -> List[List[int]]:
graph_row = defaultdict(set)
graph_col = defaultdict(set)
for row in rowConditions:
graph_row[row[0]].add(row[1])
for col in colConditions:
graph_col[col[0]].add(col[1])
order_row = list()
order_col = list()
visited_row = defaultdict(bool)
visited_col = defaultdict(bool)
def dfs(i,v,o,g):
if i in v:
return v[i]
v[i] = True
for n in g[i]:
if dfs(n,v,o,g):
return True
v[i] = False
o.append(i)
for i in range(1,k+1):
if dfs(i,visited_row, order_row,graph_row):
return []
for i in range(1,k+1):
if dfs(i,visited_col,order_col ,graph_col):
return []
order_row.reverse()
order_col.reverse()
pos = [[0,0] for i in range(k+1)]
for i,v in enumerate(order_row):
pos[v][0] = i
for i,v in enumerate(order_col):
pos[v][1] = i
res = [[0 for i in range(k)] for j in range(k)]
for i,p in enumerate(pos):
if i == 0:
continue
res[p[0]][p[1]] = i
return res | build-a-matrix-with-conditions | [Simple Answerπ€«πππ] Alien Dictionary Graph + DFS | xmky | 0 | 17 | build a matrix with conditions | 2,392 | 0.592 | Hard | 32,711 |
https://leetcode.com/problems/build-a-matrix-with-conditions/discuss/2492772/Python3-or-Easy-to-understand-solution-based-on-210-or-Topological-Sort | class Solution:
def buildMatrix(self, k: int, rowCond: List[List[int]], colCond: List[List[int]]) -> List[List[int]]:
# topological sort:
# For rows, in other words "above" should be put on the rows with index smaller than "after"
# so if we could form an k-length result array with the order restricted by rowCondition
# then we know we should put the numbers to the rows accordingly
# For example, as for example 1,
# if we get [3, 1, 2] as one of the topological sorted result array,
# we know that 3 should be put in the first row (idx = 0), 1 in the second row (idx = 1), 2 in the third row(idx = 2)
# so we get the row index for each number in [1, k]
# We could get the col index similarily
def topo(cond):
G = defaultdict(list)
indegree = [0] * (k + 1)
# build graph, above_edge -> below_edge, or left -> right
for a, b in cond:
G[a].append(b)
indegree[b] += 1
queue = deque([i for i in range(1, k + 1) if indegree[i] == 0])
res = []
while queue:
cur = queue.popleft()
res.append(cur)
for nxt in G[cur]:
indegree[nxt] -= 1
if indegree[nxt] == 0:
queue.append(nxt)
return res
rows, cols = topo(rowCond), topo(colCond)
# can not form a solution with exact k value sorted in topological order
if len(rows) != k or len(cols) != k:
return []
# build num -> idx mp for easier queries
mp1, mp2 = {}, {}
for i, r in enumerate(rows):
mp1[r] = i
for i, c in enumerate(cols):
mp2[c] = i
res = [[0] * k for _ in range(k)]
for num in range(1, k + 1):
ri, ci = mp1[num], mp2[num]
res[ri][ci] = num
return res | build-a-matrix-with-conditions | Python3 | Easy to understand solution based on 210 | Topological Sort | silencea | 0 | 8 | build a matrix with conditions | 2,392 | 0.592 | Hard | 32,712 |
https://leetcode.com/problems/find-subarrays-with-equal-sum/discuss/2525818/Python-oror-Sliding-window-oror-Bruteforce | class Solution:
def findSubarrays(self, nums: List[int]) -> bool:
"""
Bruteforce approch
"""
# for i in range(len(nums)-2):
# summ1 = nums[i] + nums[i+1]
# # for j in range(i+1,len(nums)):
# for j in range(i+1,len(nums)-1):
# summ = nums[j] + nums[j+1]
# if summ == summ1:
# return True
# return False
"""
Sliding Window
"""
one ,two = len(nums)-2,len(nums)-1 // at end of list
dic = {}
while one >= 0:
# print(one,two)
summ = nums[one] + nums[two]
if summ in dic:
return True // if already there then there is 2 pairs
else:
dic[summ] = 1 // add summ in of window in dictonary
one -=1
two -=1
return False | find-subarrays-with-equal-sum | Python || Sliding window || Bruteforce | 1md3nd | 4 | 85 | find subarrays with equal sum | 2,395 | 0.639 | Easy | 32,713 |
https://leetcode.com/problems/find-subarrays-with-equal-sum/discuss/2600901/Python-Simple-Python-Solution-Using-Dictionary-or-95-Faster | class Solution:
def findSubarrays(self, nums: List[int]) -> bool:
dictionary = {}
for i in range(len(nums) - 1):
subarray_sum = sum(nums[i:i+2])
if subarray_sum not in dictionary:
dictionary[subarray_sum] = nums[i:i+2]
else:
return True
return False | find-subarrays-with-equal-sum | [ Python ] β
β
Simple Python Solution Using Dictionary | 95% Faster π₯³βπ | ASHOK_KUMAR_MEGHVANSHI | 2 | 53 | find subarrays with equal sum | 2,395 | 0.639 | Easy | 32,714 |
https://leetcode.com/problems/find-subarrays-with-equal-sum/discuss/2525530/Python-or-Easy-Understanding | class Solution:
def findSubarrays(self, nums: List[int]) -> bool:
all_sums = []
for i in range(0, len(nums) - 1):
if nums[i] + nums[i + 1] in all_sums:
return True
else:
all_sums.append(nums[i] + nums[i + 1])
return False | find-subarrays-with-equal-sum | Python | Easy Understanding | cyber_kazakh | 2 | 38 | find subarrays with equal sum | 2,395 | 0.639 | Easy | 32,715 |
https://leetcode.com/problems/find-subarrays-with-equal-sum/discuss/2525028/Python-99-Easy-Simple-Solution-or-Set | class Solution:
def findSubarrays(self, nums: list[int]) -> bool:
sums = set()
for i in range(len(nums) - 1):
getSum = nums[i] + nums[i + 1]
if getSum in sums:
return True
sums.add(getSum)
return False | find-subarrays-with-equal-sum | β
Python 99% Easy Simple Solution | Set | sezanhaque | 1 | 14 | find subarrays with equal sum | 2,395 | 0.639 | Easy | 32,716 |
https://leetcode.com/problems/find-subarrays-with-equal-sum/discuss/2839515/Simple-Hashmap-solution-Python | class Solution:
def findSubarrays(self, nums: List[int]) -> bool:
dic = {}
for i in range(0,len(nums)-1):
s = nums[i] + nums[i+1]
if s in dic:
return True
dic[s] = i
return False | find-subarrays-with-equal-sum | Simple Hashmap solution Python | aruj900 | 0 | 1 | find subarrays with equal sum | 2,395 | 0.639 | Easy | 32,717 |
https://leetcode.com/problems/find-subarrays-with-equal-sum/discuss/2638521/Python-easy | class Solution:
def findSubarrays(self, nums: List[int]) :
res=[]
i,j=0,1
while j<=len(nums)-1:
res.append(nums[i]+nums[j])
i+=1
j+=1
return len(res)!=len(set(res)) | find-subarrays-with-equal-sum | Python easy | HeyAnirudh | 0 | 12 | find subarrays with equal sum | 2,395 | 0.639 | Easy | 32,718 |
https://leetcode.com/problems/find-subarrays-with-equal-sum/discuss/2567170/Hope-you-like-it | class Solution:
def findSubarrays(self, nums: List[int]) -> bool:
no=nums
d=defaultdict(int)
flag=False
for i in range(len(no)-1):
if sum((no[i],no[i+1])) in d:
flag=True
else:
d[sum((no[i],no[i+1]))]+=1
return flag | find-subarrays-with-equal-sum | Hope you like it | mailer2021rad | 0 | 10 | find subarrays with equal sum | 2,395 | 0.639 | Easy | 32,719 |
https://leetcode.com/problems/find-subarrays-with-equal-sum/discuss/2565796/Python3-Easy-solution-or-Hashmap | class Solution:
def findSubarrays(self, nums: List[int]) -> bool:
sums = set()
# Note: using range(1, len(nums)) will be 30% slower
for i in range(len(nums)-1):
sum = nums[i] + nums[i+1]
if sum in sums:
return True
sums.add(sum)
return False | find-subarrays-with-equal-sum | Python3 Easy solution | Hashmap | ckayfok | 0 | 28 | find subarrays with equal sum | 2,395 | 0.639 | Easy | 32,720 |
https://leetcode.com/problems/find-subarrays-with-equal-sum/discuss/2540663/Using-set()-and-zip()-94-speed | class Solution:
def findSubarrays(self, nums: List[int]) -> bool:
sums = set()
for a, b in zip(nums, nums[1:]):
if (s := a + b) in sums:
return True
else:
sums.add(s)
return False | find-subarrays-with-equal-sum | Using set() and zip(), 94% speed | EvgenySH | 0 | 9 | find subarrays with equal sum | 2,395 | 0.639 | Easy | 32,721 |
https://leetcode.com/problems/find-subarrays-with-equal-sum/discuss/2526368/Python3-Hash-Set-O(n)-Time-and-Space | class Solution:
def findSubarrays(self, nums: List[int]) -> bool:
"""
Logic: Hash set
Time: O(n)
Space: O(n)
"""
visited = set()
for i in range(1, len(nums)):
if nums[i] + nums[i-1] not in visited:
visited.add(nums[i] + nums[i-1])
else:
return True
return False | find-subarrays-with-equal-sum | [Python3] Hash Set - O(n) Time & Space | hanelios | 0 | 2 | find subarrays with equal sum | 2,395 | 0.639 | Easy | 32,722 |
https://leetcode.com/problems/find-subarrays-with-equal-sum/discuss/2525313/Python-simple-solution | class Solution:
def findSubarrays(self, nums: List[int]) -> bool:
seen = set()
for i in range(1, len(nums)):
if nums[i-1]+nums[i] in seen:
return True
else:
seen.add(nums[i-1]+nums[i])
return False | find-subarrays-with-equal-sum | Python simple solution | StikS32 | 0 | 8 | find subarrays with equal sum | 2,395 | 0.639 | Easy | 32,723 |
https://leetcode.com/problems/find-subarrays-with-equal-sum/discuss/2525295/Easy-Python-Solution-With-Set | class Solution:
def findSubarrays(self, nums: List[int]) -> bool:
s=set()
for i in range(len(nums)-1):
x=sum(nums[i:i+2])
if x in s:
return True
else:
s.add(x)
return False | find-subarrays-with-equal-sum | Easy Python Solution With Set | a_dityamishra | 0 | 3 | find subarrays with equal sum | 2,395 | 0.639 | Easy | 32,724 |
https://leetcode.com/problems/find-subarrays-with-equal-sum/discuss/2525251/Python-set | class Solution:
def findSubarrays(self, nums: List[int]) -> bool:
sums = set()
for i in range(1, len(nums)):
s = nums[i] + nums[i-1]
if s in sums:
return True
sums.add(s)
return False | find-subarrays-with-equal-sum | Python, set | blue_sky5 | 0 | 19 | find subarrays with equal sum | 2,395 | 0.639 | Easy | 32,725 |
https://leetcode.com/problems/find-subarrays-with-equal-sum/discuss/2524923/Set | class Solution:
def findSubarrays(self, nums: List[int]) -> bool:
possibleSums = set()
for i in range(1, len(nums)):
possibleSum = nums[i - 1] + nums[i]
if possibleSum in possibleSums:
return True
possibleSums.add(possibleSum)
return False | find-subarrays-with-equal-sum | Set | sr_vrd | 0 | 4 | find subarrays with equal sum | 2,395 | 0.639 | Easy | 32,726 |
https://leetcode.com/problems/find-subarrays-with-equal-sum/discuss/2524740/Python3-hash-set | class Solution:
def findSubarrays(self, nums: List[int]) -> bool:
seen = set()
for i in range(1, len(nums)):
sm = nums[i-1] + nums[i]
if sm in seen: return True
seen.add(sm)
return False | find-subarrays-with-equal-sum | [Python3] hash set | ye15 | 0 | 13 | find subarrays with equal sum | 2,395 | 0.639 | Easy | 32,727 |
https://leetcode.com/problems/find-subarrays-with-equal-sum/discuss/2524699/Sliding-Window | class Solution:
def findSubarrays(self, nums: List[int]) -> bool:
subSum = 0
p1 = 0
count = defaultdict(int)
for p2, num in enumerate(nums):
subSum += num
ln = p2 - p1 + 1
if(ln < 2):
continue
elif(ln > 2):
subSum -= nums[p1]
p1 += 1
count[subSum] += 1
if(count[subSum] == 2):
return True
return False | find-subarrays-with-equal-sum | Sliding Window | thoufic | 0 | 11 | find subarrays with equal sum | 2,395 | 0.639 | Easy | 32,728 |
https://leetcode.com/problems/strictly-palindromic-number/discuss/2801453/Python-oror-95.34-Faster-oror-Easy-and-Actual-Solution-oror-O(n)-Solution | class Solution:
def isStrictlyPalindromic(self, n: int) -> bool:
def int2base(n,b):
r=""
while n>0:
r+=str(n%b)
n//=b
return int(r[-1::-1])
for i in range(2,n-1):
if int2base(n,i)!=n:
return False
return True | strictly-palindromic-number | Python || 95.34% Faster || Easy and Actual Solution || O(n) Solution | DareDevil_007 | 2 | 186 | strictly palindromic number | 2,396 | 0.877 | Medium | 32,729 |
https://leetcode.com/problems/strictly-palindromic-number/discuss/2525677/Python-oror-Bruteforce-oror-Easy | class Solution:
def isStrictlyPalindromic(self, n: int) -> bool:
def pald(num):
if num == num[::-1]:
return True
return False
def pw(num,q):
res =""
while num > 0:
temp = num % q
res = str(temp) + res
num //= q
return res
for i in range(2,n-1):
one = pw(n,i)
# print(one)
if not pald(one):
return False
return True | strictly-palindromic-number | Python || Bruteforce || Easy | 1md3nd | 2 | 48 | strictly palindromic number | 2,396 | 0.877 | Medium | 32,730 |
https://leetcode.com/problems/strictly-palindromic-number/discuss/2621892/One-Word-Solution-or-Python | class Solution:
def isStrictlyPalindromic(self, n: int) -> bool:
pass | strictly-palindromic-number | One Word Solution | Python | RajatGanguly | 1 | 122 | strictly palindromic number | 2,396 | 0.877 | Medium | 32,731 |
https://leetcode.com/problems/strictly-palindromic-number/discuss/2820929/Python-Solution | class Solution:
def isStrictlyPalindromic(self, n: int) -> bool:
BS="0123456789ABCDEFGHIJKLMNOPQRSTUVWXYZ"
def to_base(n, b):
return "0" if not n else to_base(n//b, b).lstrip("0") + BS[n%b]
res = False
for i in range(2,n-1):
i_base = to_base(n, i)
if i_base[::-1] == i_base:
res = True
else:
return False
return res | strictly-palindromic-number | Python Solution | khaled_achech | 0 | 2 | strictly palindromic number | 2,396 | 0.877 | Medium | 32,732 |
https://leetcode.com/problems/strictly-palindromic-number/discuss/2783926/Python-Straight-forward-algorithm | class Solution:
def isStrictlyPalindromic(self, n: int) -> bool:
def convert(n, base):
ans = ''
while n >= 1:
ans = str(n % base) + ans
n //= base
return ans
for i in range(2, n - 1):
res = convert(n, i)
if res != res[::-1]:
return False
return True | strictly-palindromic-number | [Python] Straight-forward algorithm | Mark_computer | 0 | 7 | strictly palindromic number | 2,396 | 0.877 | Medium | 32,733 |
https://leetcode.com/problems/strictly-palindromic-number/discuss/2781741/Simple-Solution-oror-Python3 | class Solution:
def isStrictlyPalindromic(self, n: int) -> bool:
return False | strictly-palindromic-number | Simple Solution || Python3 | joshua_mur | 0 | 5 | strictly palindromic number | 2,396 | 0.877 | Medium | 32,734 |
https://leetcode.com/problems/strictly-palindromic-number/discuss/2781741/Simple-Solution-oror-Python3 | class Solution:
def isStrictlyPalindromic(self, n: int) -> bool:
for i in range(2, n - 1):
num = self.baseb(n, i)
if not self.isPalindromic(num):
return False
return True
def isPalindromic(self, s: str) -> bool:
l = len(s)
if l % 2 and s[:l // 2] == s[l // 2 + 2:][::-1]:
return True
elif not l % 2 and s[:l // 2] == s[l // 2:][::-1]:
return True
return False
def baseb(self, n, b):
e = n // b
q = n % b
if n == 0:
return '0'
elif e == 0:
return str(q)
else:
return self.baseb(e, b) + str(q) | strictly-palindromic-number | Simple Solution || Python3 | joshua_mur | 0 | 5 | strictly palindromic number | 2,396 | 0.877 | Medium | 32,735 |
https://leetcode.com/problems/strictly-palindromic-number/discuss/2719359/python-solution-or-converting-to-it's-base-or | class Solution:
def solve(self, n, i): #to check wheather the given number(n) and it's base (i)
sign = '-' if n<0 else ''
n = abs(n)
if n < i:
return str(n)
s = ''
while n != 0:
s = str(n%i) + s
n = n//i
return sign+s
def isStrictlyPalindromic(self, n: int) -> bool:
for i in range(2,n-1):
check = self.solve(n, i)
print(check)
if check == n : #if the number (n) less than it's base (i)
return False
else:
if check[::-1] != check: #checking if it's a palindrome
return False | strictly-palindromic-number | python solution | converting to it's base | | pandish | 0 | 6 | strictly palindromic number | 2,396 | 0.877 | Medium | 32,736 |
https://leetcode.com/problems/strictly-palindromic-number/discuss/2710118/Do-not-write-%22return-False%22 | class Solution:
def to_baseX(self, n: int, base: int) -> str:
"""
:param n:
:param base:
:return: convert to base X str
"""
nums = []
while n:
n, mod = divmod(n, base)
nums.append(str(mod))
return ''.join(reversed(nums))
def isStrictlyPalindromic(self, n: int) -> bool:
for base in range(2, n - 1):
result = self.to_baseX(n, base)
if result != result[::-1]:
return False
return True | strictly-palindromic-number | Do not write "return False" | namashin | 0 | 4 | strictly palindromic number | 2,396 | 0.877 | Medium | 32,737 |
https://leetcode.com/problems/strictly-palindromic-number/discuss/2653490/O(1)-approach | class Solution:
def isStrictlyPalindromic(self, n: int) -> bool:
return False | strictly-palindromic-number | O(1) approach | maq2628 | 0 | 4 | strictly palindromic number | 2,396 | 0.877 | Medium | 32,738 |
https://leetcode.com/problems/strictly-palindromic-number/discuss/2533263/Python-or-O(1) | class Solution:
def isStrictlyPalindromic(self, n: int) -> bool:
for i in range(2, n-1):
base = ""
j = n
while j>0:
base += str(j%i)
j//=i
if base != base[::-1]:
return False
return True | strictly-palindromic-number | Python | O(1) | coolakash10 | 0 | 24 | strictly palindromic number | 2,396 | 0.877 | Medium | 32,739 |
https://leetcode.com/problems/strictly-palindromic-number/discuss/2533263/Python-or-O(1) | class Solution:
def isStrictlyPalindromic(self, n: int) -> bool:
return False | strictly-palindromic-number | Python | O(1) | coolakash10 | 0 | 24 | strictly palindromic number | 2,396 | 0.877 | Medium | 32,740 |
https://leetcode.com/problems/strictly-palindromic-number/discuss/2525332/Easy-Python-Solution | class Solution:
def isStrictlyPalindromic(self, n: int) -> bool:
for i in range(2,n-1):
s=n
sr=""
while s>0:
d=s%i
if s<10:
sr+=str(d)
else:
sr+=chr(ord("A")+d-10)
s=s//i
if sr!=sr[::-1]:
return False
return True | strictly-palindromic-number | Easy Python Solution | a_dityamishra | 0 | 29 | strictly palindromic number | 2,396 | 0.877 | Medium | 32,741 |
https://leetcode.com/problems/strictly-palindromic-number/discuss/2525332/Easy-Python-Solution | class Solution:
def isStrictlyPalindromic(self, n: int) -> bool:
return False | strictly-palindromic-number | Easy Python Solution | a_dityamishra | 0 | 29 | strictly palindromic number | 2,396 | 0.877 | Medium | 32,742 |
https://leetcode.com/problems/strictly-palindromic-number/discuss/2524755/Python3-Brain-teaser | class Solution:
def isStrictlyPalindromic(self, n: int) -> bool:
return False | strictly-palindromic-number | [Python3] Brain teaser | ye15 | 0 | 30 | strictly palindromic number | 2,396 | 0.877 | Medium | 32,743 |
https://leetcode.com/problems/maximum-rows-covered-by-columns/discuss/2524746/Python-Simple-Solution | class Solution:
def maximumRows(self, mat: List[List[int]], cols: int) -> int:
n,m = len(mat),len(mat[0])
ans = 0
def check(state,row,rowIncludedCount):
nonlocal ans
if row==n:
if sum(state)<=cols:
ans = max(ans,rowIncludedCount)
return
check(state[::],row+1,rowIncludedCount)
for j in range(m):
if mat[row][j]==1:
state[j] = 1
check(state,row+1,rowIncludedCount+1)
check([0]*m,0,0)
return ans | maximum-rows-covered-by-columns | Python Simple Solution | RedHeadphone | 4 | 431 | maximum rows covered by columns | 2,397 | 0.525 | Medium | 32,744 |
https://leetcode.com/problems/maximum-rows-covered-by-columns/discuss/2526485/Python-oror-recursion-oror-backtracking | class Solution:
def maximumRows(self, mat: List[List[int]], cols: int) -> int:
res = []
M = len(mat)
N = len(mat[0])
def check(seen):
count = 0
for row in mat:
flag = True
for c in range(N):
if row[c] == 1:
if c in seen:
continue
else:
flag = False
break
if flag:
count +=1
res.append(count)
def solve(c,seen,cols):
if cols == 0:
check(seen)
return
if c == N:
return
else:
seen.add(c)
solve(c+1,seen,cols-1)
seen.remove(c)
solve(c+1,seen,cols)
seen = set()
solve(0,seen,cols)
return max(res) | maximum-rows-covered-by-columns | Python || recursion || backtracking | 1md3nd | 3 | 113 | maximum rows covered by columns | 2,397 | 0.525 | Medium | 32,745 |
https://leetcode.com/problems/maximum-rows-covered-by-columns/discuss/2830072/Python-(Simple-Maths) | class Solution:
def maximumRows(self, matrix, numSelect):
m, n = len(matrix), len(matrix[0])
list_combinations, dict2 = list(combinations({i for i in range(n)},n-numSelect)), defaultdict(int)
for i in list_combinations:
res = set()
for j in i:
for k in range(m):
if matrix[k][j] == 1:
res.add(k)
dict2[i] = m - len(res)
return max(dict2.values()) | maximum-rows-covered-by-columns | Python (Simple Maths) | rnotappl | 0 | 1 | maximum rows covered by columns | 2,397 | 0.525 | Medium | 32,746 |
https://leetcode.com/problems/maximum-rows-covered-by-columns/discuss/2566226/Combinations-and-issubset()-77-speed | class Solution:
def maximumRows(self, matrix: List[List[int]], numSelect: int) -> int:
ans = 0
m_ones = [{i for i, v in enumerate(row) if v} for row in matrix]
for comb in combinations(range(len(matrix[0])), numSelect):
set_comb = set(comb)
ans = max(ans, sum(s.issubset(set_comb) for s in m_ones))
return ans | maximum-rows-covered-by-columns | Combinations and issubset(), 77% speed | EvgenySH | 0 | 38 | maximum rows covered by columns | 2,397 | 0.525 | Medium | 32,747 |
https://leetcode.com/problems/maximum-rows-covered-by-columns/discuss/2534047/Python3-Solution-or-Very-Easy-Approach | class Solution:
def maximumRows(self, mat: List[List[int]], cols: int) -> int:
allCombinations = []
def combina(nums, k, path):
if len(path) == k:
allCombinations.append((path))
return
for i in range(len(nums)):
combina(nums[i+1:], k, path+[nums[i]])
col = len(mat[0])
ans = 0
combina(list(range(0, col)), cols, [])
for comb in allCombinations:
tot = 0
comb = set(comb)
for row in mat:
flag = True
for i in range(col):
if row[i] and i not in comb:
flag = False
break
if flag:
tot += 1
ans = max(ans, tot)
return ans | maximum-rows-covered-by-columns | Python3 Solution | Very Easy Approach | leet_satyam | 0 | 42 | maximum rows covered by columns | 2,397 | 0.525 | Medium | 32,748 |
https://leetcode.com/problems/maximum-rows-covered-by-columns/discuss/2527141/Python3-Brute-force-with-combination-helper-function | class Solution:
def maximumRows(self, mat: List[List[int]], cols: int) -> int:
def helper(start, end, left):
if left == 0:
return [[]]
else:
res = []
for element in range(start, end+1):
temp_res = helper(element+1, end, left-1)
for can in temp_res:
res.append([element] + can)
return res
res = -sys.maxsize
m, n = len(mat), len(mat[0])
for element in helper(0, n-1, cols):
chosen = set(element)
temp_res = 0
for i in range(m):
target = mat[i].count(1)
row_counter = 0
for j in range(n):
if mat[i][j] == 1 and j in chosen:
row_counter += 1
if row_counter == target:
temp_res += 1
res = max(temp_res, res)
return res | maximum-rows-covered-by-columns | Python3 Brute force with combination helper function | xxHRxx | 0 | 10 | maximum rows covered by columns | 2,397 | 0.525 | Medium | 32,749 |
https://leetcode.com/problems/maximum-rows-covered-by-columns/discuss/2526593/Python3-Backtracing-with-sets | class Solution:
def maximumRows(self, mat: List[List[int]], cols: int) -> int:
m = len(mat)
n = len(mat[0])
# map row to columns with 1s
# For example:
# mat = [[0,0,0],[1,0,1],[0,1,1],[0,0,1]]
# cols_with_ones = {
# 0: set([]) # row 0 have no ones
# 1: set([0, 2]) # row 1 have ones in column 0 and 2
# 2: set([1, 2])
# 3: set([2])
# }
cols_with_ones = defaultdict(set)
for i in range(m):
for j in range(n):
if mat[i][j] == 1:
cols_with_ones[i].add(j)
def rows_covered(cols_choosen):
covered = 0
for i in range(m):
if len(cols_with_ones[i] - cols_choosen) == 0:
covered += 1
return covered
def backtrack(curr_col, cols_choosen):
if len(cols_choosen) == cols:
return rows_covered(cols_choosen)
if curr_col == n:
return 0
cols_choosen.add(curr_col) # choose current column
v1 = backtrack(curr_col + 1, cols_choosen)
cols_choosen.remove(curr_col) # skip current column
v2 = backtrack(curr_col + 1, cols_choosen)
return max(v1, v2)
return backtrack(0, set()) | maximum-rows-covered-by-columns | [Python3] Backtracing with sets | helnokaly | 0 | 11 | maximum rows covered by columns | 2,397 | 0.525 | Medium | 32,750 |
https://leetcode.com/problems/maximum-rows-covered-by-columns/discuss/2525353/Back-tracking-to-find-best-combinations | class Solution:
def maximumRows(self, mat: List[List[int]], cols: int) -> int:
def fsol(v, k, n, m):
vmin = 0 if k==0 else chk[v-1] + 1
vmax = n - k + v
# print(v, vmin, vmax, chk)
for i in range(vmin, vmax + 1):
chk[v] = i
if v == k-1:
tt = [True] * m
for jj in range(n):
if jj not in chk:
for ii in range(m):
if mat[ii][jj]==1:
tt[ii] = False
ret = m
for ii in range(m):
if tt[ii] == False:
ret = ret - 1
q[0] = max(q[0], ret)
# print(chk, tt, ret)
else:
fsol(v + 1, k, n, m)
chk[v] = -1
pass
# print(cols)
# print("\n".join([" ".join([str(i) for i in v]) for v in mat]))
# print()
q = [0]
m, n = len(mat), len(mat[0])
chk = [-1] * n
fsol(0, cols, n, m)
ans = q[0]
# print("ans:", ans)
# print("=" * 20)
return ans
pass | maximum-rows-covered-by-columns | Back-tracking to find best combinations | dntai | 0 | 9 | maximum rows covered by columns | 2,397 | 0.525 | Medium | 32,751 |
https://leetcode.com/problems/maximum-rows-covered-by-columns/discuss/2525189/Hard-Core-Brute-force-accepted-python3-solution | class Solution:
def maximumRows(self, mat: List[List[int]], cols: int) -> int:
if cols>=len(mat[0]):
return len(mat)
matrix =[]
dup_matrix = [i for i in range(len(mat[0]))]
print("dup_mat", dup_matrix)
def generate(dup_matrix , cols , i , temp):
if i == len(dup_matrix):
temp.sort()
if len(temp) == cols and temp not in matrix:
matrix.append(temp)
return
return
generate(dup_matrix , cols , i+1 , temp + [dup_matrix[i]])
generate(dup_matrix , cols , i+1 , temp )
generate(dup_matrix , cols , 0 , [])
print("matrix", matrix)
self.ans =0
def max_count(matrix ,covered):
# covered = 0
for i in range(len(mat)):
count = 0
for j in range(len(mat[0])):
if mat[i][j] == 1 and j in matrix:
count = count +1
if mat[i][j] == 0:
count = count+1
print("count" , count ,len(mat))
if count == len(mat[0]):
covered = covered+1
print("covered........................." , covered)
self.ans = max(self.ans, covered)
for i in range(len(matrix)):
print("matrix", matrix[i])
max_count(matrix[i], 0)
return self.ans | maximum-rows-covered-by-columns | Hard Core Brute force accepted python3 solution | Afzal543 | 0 | 12 | maximum rows covered by columns | 2,397 | 0.525 | Medium | 32,752 |
https://leetcode.com/problems/maximum-rows-covered-by-columns/discuss/2524820/Python-or-Combinations-%2B-Counter | class Solution:
def maximumRows(self, mat: List[List[int]], cols: int) -> int:
m = len(mat); n = len(mat[0])
if n <= cols:
return m
numberOfOnes = [Counter(row)[1] for row in mat]
def numberOfCoveredRows(columns: List[int]) -> int:
coveredRows = 0
for j, row in enumerate(mat):
if Counter([row[i] for i in columns])[1] == numberOfOnes[j]:
coveredRows += 1
return coveredRows
maxCovered = 0
for combination in combinations(range(n), cols):
coveredRows = numberOfCoveredRows(combination)
if coveredRows == m:
return m
maxCovered = max(maxCovered, coveredRows)
return maxCovered | maximum-rows-covered-by-columns | Python | Combinations + Counter | sr_vrd | 0 | 29 | maximum rows covered by columns | 2,397 | 0.525 | Medium | 32,753 |
https://leetcode.com/problems/maximum-rows-covered-by-columns/discuss/2524799/Python3-enumeration | class Solution:
def maximumRows(self, mat: List[List[int]], cols: int) -> int:
m, n = len(mat), len(mat[0])
masks = []
for i in range(m):
mask = reduce(xor, (1<<j for j in range(n) if mat[i][j]), 0)
masks.append(mask)
ans = 0
for x in range(1<<n):
if x.bit_count() <= cols:
ans = max(ans, sum(mask & x == mask for mask in masks))
return ans | maximum-rows-covered-by-columns | [Python3] enumeration | ye15 | 0 | 33 | maximum rows covered by columns | 2,397 | 0.525 | Medium | 32,754 |
https://leetcode.com/problems/maximum-number-of-robots-within-budget/discuss/2526141/Python3-Intuition-Explained-or-Sliding-Window-or-Similar-Problems-Link | class Solution:
def maximumRobots(self, chargeTimes: List[int], runningCosts: List[int], budget: int) -> int:
n=len(chargeTimes)
start=0
runningsum=0
max_consecutive=0
max_so_far=0
secondmax=0
for end in range(n):
runningsum+=runningCosts[end]
if max_so_far<=chargeTimes[end]:
secondmax=max_so_far
max_so_far=chargeTimes[end]
k=end-start+1
currentbudget=max_so_far+(k*runningsum)
if currentbudget>budget:
runningsum-=runningCosts[start]
max_so_far=secondmax if chargeTimes[start]==max_so_far else max_so_far
start+=1
max_consecutive=max(max_consecutive,end-start+1)
return max_consecutive | maximum-number-of-robots-within-budget | [Python3] Intuition Explained π₯ | Sliding Window | Similar Problems Link π | glimloop | 1 | 61 | maximum number of robots within budget | 2,398 | 0.322 | Hard | 32,755 |
https://leetcode.com/problems/maximum-number-of-robots-within-budget/discuss/2536386/Python3-%2B-Sliding-Window-%2B-Max-Heap | class Solution:
def maximumRobots(self, charge: List[int], cost: List[int], budget: int) -> int:
res, add, start, mxheap = 0, 0, 0, []
heapify(mxheap)
for end in range(len(charge)):
add += cost[end]
heappush(mxheap, (-1*charge[end], end))
while mxheap and -1*mxheap[0][0]+(end-start+1)*add > budget:
add -= cost[start]
while mxheap and mxheap[0][1] <= start:
heappop(mxheap)
start += 1
res = max(res, end-start+1)
return res | maximum-number-of-robots-within-budget | Python3 + Sliding Window + Max Heap | leet_satyam | 0 | 34 | maximum number of robots within budget | 2,398 | 0.322 | Hard | 32,756 |
https://leetcode.com/problems/maximum-number-of-robots-within-budget/discuss/2532148/Java-or-Python3-or-Beats-100-or-O(n)-or-Monotonic-Queue | class Solution:
def maximumRobots(self, chargeTimes: List[int], runningCosts: List[int], budget: int) -> int:
q = []
f, l, currSum, ans, n = 0, 0, 0, 0, len(chargeTimes)
while (f < n):
while (len(q) != 0 and chargeTimes[q[-1]] < chargeTimes[f]):
q.pop()
q.append(f)
currSum += runningCosts[f]
f += 1
while (l != f and chargeTimes[q[0]] + (f-l) * currSum > budget):
if q[0] == l:
q.pop(0)
currSum -= runningCosts[l]
l += 1
ans = max(ans, f-l)
return ans | maximum-number-of-robots-within-budget | Java | Python3 | Beats 100% | O(n) | Monotonic Queue | DheerajGadwala | 0 | 21 | maximum number of robots within budget | 2,398 | 0.322 | Hard | 32,757 |
https://leetcode.com/problems/maximum-number-of-robots-within-budget/discuss/2525438/Python-MaxHeap-%2B-prefix-Sum-Easy-understanding-Simple-Solution. | class Solution:
def maximumRobots(self, chargeTimes: List[int], runningCosts: List[int], budget: int) -> int:
i = 0
j = 0
maxi = 0
total = 0
maxHeap = []
heapq.heapify(maxHeap)
prev = 0
maxj = 0
prefix = [0]*len(chargeTimes)
while i<=j and j < len(chargeTimes):
if total>=budget:
maxHeap.remove(-1*chargeTimes[i])
i+=1
heapq.heappush(maxHeap,-1*chargeTimes[j])
prefix[j] = prev + runningCosts[j]
prev = prefix[j]
max_charge = -1*maxHeap[0]
if i == 0 :
running = prefix[j]
elif i==j:
running = runningCosts[j]
else:
running = prefix[j] -prefix[i-1]
total = max_charge + (j-i+1) * running
if total<=budget:
maxi = max(maxi,j-i+1)
j+=1
return maxi | maximum-number-of-robots-within-budget | Python MaxHeap + prefix Sum, Easy understanding, Simple Solution. | shashichintu | 0 | 17 | maximum number of robots within budget | 2,398 | 0.322 | Hard | 32,758 |
https://leetcode.com/problems/maximum-number-of-robots-within-budget/discuss/2525281/Clean-Python3-or-Sliding-Window-and-Heap-or-O(nlogn) | class Solution:
def maximumRobots(self, chargeTimes: List[int], runningCosts: List[int], budget: int) -> int:
n, max_robots = len(chargeTimes), 0
max_charge = [] # max heap with tuples: (charge, index)
running = runsum = 0
p1 = p2 = cost = 0
while p2 <= n:
k = p2 - p1
if cost <= budget:
max_robots = max(max_robots, k)
if p2 == n:
break
# pop any charge times that are not in the current window
while max_charge and max_charge[0][1] < p1:
heapq.heappop(max_charge)
if cost <= budget: # add the next robot if we are within budget
heapq.heappush(max_charge, (-chargeTimes[p2], p2))
running += runsum + (k + 1) * runningCosts[p2]
runsum += runningCosts[p2]
cost = running - max_charge[0][0] # max heap stores negs
p2 += 1
elif k == 1:
p1 = p2
cost = running = runsum = 0
else: # shrink window if budget is exceeded
while max_charge and max_charge[0][1] <= p1:
heapq.heappop(max_charge)
running -= runsum + (k - 1) * runningCosts[p1]
runsum -= runningCosts[p1]
cost = running - max_charge[0][0]
p1 += 1
return max_robots | maximum-number-of-robots-within-budget | Clean Python3 | Sliding Window & Heap | O(nlogn) | ryangrayson | 0 | 12 | maximum number of robots within budget | 2,398 | 0.322 | Hard | 32,759 |
https://leetcode.com/problems/maximum-number-of-robots-within-budget/discuss/2524778/Sliding-window-%2B-window-maximum-%2B-prefix-sum-O(N) | class Solution:
def maximumRobots(self, time: List[int], cost: List[int], budget: int) -> int:
prefix_sum = [0]
S = 0
for v in cost:
S += v
prefix_sum.append(S)
# print(prefix_sum)
maxQ = deque()
# slide window
n = len(time)
l = 0
ret = 0
# the window considered here is [l,r], boundary included
for r in range(n):
while len(maxQ) and time[r] > maxQ[-1]:
maxQ.pop()
maxQ.append(time[r])
k = r-l+1
tc = prefix_sum[r+1] - prefix_sum[l] # total cost
mt = maxQ[0] # max time
while l<=r and (mt + k*tc) > budget:
if time[l] == maxQ[0]:
maxQ.popleft()
l += 1
if l > r:
break
k = r-l+1
tc = prefix_sum[r+1] - prefix_sum[l]
mt = maxQ[0]
ret = max(ret, r-l+1)
return ret | maximum-number-of-robots-within-budget | Sliding window + window maximum + prefix sum, O(N) | LeonDong1993 | 0 | 12 | maximum number of robots within budget | 2,398 | 0.322 | Hard | 32,760 |
https://leetcode.com/problems/maximum-number-of-robots-within-budget/discuss/2524718/Python3-Binary-search | class Solution:
def maximumRobots(self, chargeTimes: List[int], runningCosts: List[int], budget: int) -> int:
def fn(k):
"""Return min cost of running k consecutive robots."""
if k == 0: return 0
ans = inf
sm = 0
pq = []
for i, (ct, rc) in enumerate(zip(chargeTimes, runningCosts)):
sm += rc
heappush(pq, (-ct, i))
if i >= k:
sm -= runningCosts[i-k]
while pq[0][1] <= i-k: heappop(pq)
if i >= k-1: ans = min(ans, -pq[0][0] + k*sm)
return ans
lo, hi = 0, len(chargeTimes)
while lo < hi:
mid = lo + hi + 1 >> 1
if fn(mid) <= budget: lo = mid
else: hi = mid - 1
return lo | maximum-number-of-robots-within-budget | [Python3] Binary search | ye15 | 0 | 31 | maximum number of robots within budget | 2,398 | 0.322 | Hard | 32,761 |
https://leetcode.com/problems/maximum-number-of-robots-within-budget/discuss/2524718/Python3-Binary-search | class Solution:
def maximumRobots(self, chargeTimes: List[int], runningCosts: List[int], budget: int) -> int:
ii = rsm = 0
qq = deque()
for i, (ct, rc) in enumerate(zip(chargeTimes, runningCosts)):
rsm += rc
while qq and qq[-1][0] <= ct: qq.pop()
qq.append((ct, i))
if chargeTimes[qq[0][1]] + (i - ii + 1) * rsm > budget:
if qq[0][1] == ii: qq.popleft()
rsm -= runningCosts[ii]
ii += 1
return len(chargeTimes)-ii | maximum-number-of-robots-within-budget | [Python3] Binary search | ye15 | 0 | 31 | maximum number of robots within budget | 2,398 | 0.322 | Hard | 32,762 |
https://leetcode.com/problems/check-distances-between-same-letters/discuss/2531135/Python3-oror-3-lines-TM%3A-36ms13.8MB | class Solution: # Pretty much explains itself.
def checkDistances(self, s: str, distance: List[int]) -> bool:
d = defaultdict(list)
for i, ch in enumerate(s):
d[ch].append(i)
return all(b-a-1 == distance[ord(ch)-97] for ch, (a,b) in d.items()) | check-distances-between-same-letters | Python3 || 3 lines, T/M: 36ms/13.8MB | warrenruud | 8 | 596 | check distances between same letters | 2,399 | 0.704 | Easy | 32,763 |
https://leetcode.com/problems/check-distances-between-same-letters/discuss/2527598/Python-Dictionary-oror-Easy-to-understand | class Solution:
def checkDistances(self, s: str, distance: List[int]) -> bool:
hashmap = {}
for i in range(len(s)):
if s[i] in hashmap and i - hashmap[s[i]] - 1 != distance[ord(s[i]) - ord('a')]:
return False
hashmap[s[i]] = i
return True | check-distances-between-same-letters | Python Dictionary || Easy to understand | fight2022 | 5 | 285 | check distances between same letters | 2,399 | 0.704 | Easy | 32,764 |
https://leetcode.com/problems/check-distances-between-same-letters/discuss/2596604/Python-Solution-or-Easy-Understanding | class Solution:
def mapper(self, s): # finds difference of indices
result = dict()
for letter in set(s):
indices = []
for idx, value in enumerate(s):
if value == letter:
indices.append(idx)
result[letter] = indices[1] - indices[0] - 1
return result # dict like {'a':1, 'b':0}
def checkDistances(self, s, distance) -> bool:
alphabet = 'abcdefghijklmnopqrstuvwxyz'
for key, value in self.mapper(s).items():
if distance[alphabet.index(key)] != value:
return False
return True | check-distances-between-same-letters | Python Solution | Easy Understanding | cyber_kazakh | 1 | 42 | check distances between same letters | 2,399 | 0.704 | Easy | 32,765 |
https://leetcode.com/problems/check-distances-between-same-letters/discuss/2529388/Python-oror-iterative-oror-Easy | class Solution:
def checkDistances(self, s: str, distance: List[int]) -> bool:
n = len(s)
for i in range(n-1):
for j in range(i+1,n):
if s[i] == s[j]:
if distance[ord(s[i]) - 97] != (j - i - 1):
return False
else:
break
return True | check-distances-between-same-letters | Python || iterative || Easy | 1md3nd | 1 | 51 | check distances between same letters | 2,399 | 0.704 | Easy | 32,766 |
https://leetcode.com/problems/check-distances-between-same-letters/discuss/2786345/python3-98.8-89-easy | class Solution:
def checkDistances(self, s: str, distance: List[int]) -> bool:
seen = defaultdict(int)
for i , c in enumerate(s):
if c not in seen:
seen[c] = i
elif (i - seen[c])-1 != distance[ord(c)-97]:
return False
return True | check-distances-between-same-letters | python3 98.8% 89% easy | 1ncu804u | 0 | 4 | check distances between same letters | 2,399 | 0.704 | Easy | 32,767 |
https://leetcode.com/problems/check-distances-between-same-letters/discuss/2746443/Python-O(N) | class Solution:
def checkDistances(self, s: str, distance: List[int]) -> bool:
arr = list(s)
hash = {}
hash2 = {}
for i in range(0, 26):
hash2[chr(97+i)] = i
for i in range(len(arr)):
if arr[i] not in hash:
hash[arr[i]] = i
else:
hash[arr[i]] = i - hash[arr[i]] - 1
for x in hash:
if hash[x] != distance[hash2[x]]:
return False
return True | check-distances-between-same-letters | Python O(N) | Hurley2017 | 0 | 4 | check distances between same letters | 2,399 | 0.704 | Easy | 32,768 |
https://leetcode.com/problems/check-distances-between-same-letters/discuss/2745383/Easy-Python-Solution-Using-Dictionary-and-Absolute-Value | class Solution:
def checkDistances(self, s: str, distance: List[int]) -> bool:
dic = {}
for i,w in enumerate(s):
if w in dic:
dic[w].append(i)
else:
dic[w] = [i]
for key, val in dic.items():
if abs(val[0] - val[-1])-1 != distance[ord(key)-97]:
return False
return True | check-distances-between-same-letters | Easy Python Solution Using Dictionary and Absolute Value | jacobsimonareickal | 0 | 8 | check distances between same letters | 2,399 | 0.704 | Easy | 32,769 |
https://leetcode.com/problems/check-distances-between-same-letters/discuss/2693642/Python3-No-additional-memory-with-single-pass | class Solution:
def checkDistances(self, s: str, distance: List[int]) -> bool:
# go through the letters and check whether we find the
# second one as noted. We use the distance array to
# mark letters we have visited
for idx, char in enumerate(s):
# check the distance
dist = distance[ord(char)-ord('a')]
# check that we have not yet visited
if dist >= 0:
# check whether our character is well spaced
if idx+dist+1 < len(s) and s[idx+dist+1] == char:
# mark the letter a visited
distance[ord(char)-ord('a')] = -1
else:
return False
return True | check-distances-between-same-letters | [Python3] - No additional memory with single pass | Lucew | 0 | 5 | check distances between same letters | 2,399 | 0.704 | Easy | 32,770 |
https://leetcode.com/problems/check-distances-between-same-letters/discuss/2547130/Python-runtime-O(n)-memory-O(n) | class Solution:
def checkDistances(self, s: str, distance: List[int]) -> bool:
d = {}
for i in range(len(s)):
if s[i] not in d:
d[s[i]] = [i]
else:
d[s[i]].append(i)
for e in d.keys():
dis = d[e][1] - d[e][0] - 1
if distance[ord(e)-ord('a')] != dis:
return False
return True | check-distances-between-same-letters | Python, runtime O(n), memory O(n) | tsai00150 | 0 | 42 | check distances between same letters | 2,399 | 0.704 | Easy | 32,771 |
https://leetcode.com/problems/check-distances-between-same-letters/discuss/2534137/One-pass-and-list-for-seen-chars-71-speed | class Solution:
def checkDistances(self, s: str, distance: List[int]) -> bool:
seen = [False] * 26
for i, c in enumerate(map(lambda x: ord(x) - 97, s)):
if seen[c]:
if distance[c] != i - 1:
return False
else:
distance[c] += i
seen[c] = True
return True | check-distances-between-same-letters | One pass and list for seen chars, 71% speed | EvgenySH | 0 | 13 | check distances between same letters | 2,399 | 0.704 | Easy | 32,772 |
https://leetcode.com/problems/check-distances-between-same-letters/discuss/2529909/Simpler-Python-Solution | class Solution:
def checkDistances(self, s: str, distance: List[int]) -> bool:
map = dict(zip(string.ascii_lowercase, range(26)))
s_map = defaultdict(list)
for key, val in enumerate(s):
s_map[val].append(key)
for char in s_map.keys():
tmp = s_map[char][-1] - s_map[char][0]
if not distance[map[char]] == tmp - 1:
return False
return True | check-distances-between-same-letters | Simpler Python Solution | blazers08 | 0 | 17 | check distances between same letters | 2,399 | 0.704 | Easy | 32,773 |
https://leetcode.com/problems/check-distances-between-same-letters/discuss/2529658/Easy-Python-Solution-With-Dictionary | class Solution:
def checkDistances(self, s: str, distance: List[int]) -> bool:
d=defaultdict(list)
for i in range(len(s)):
d[s[i]].append(i)
l=[0]*26
for i,j in d.items():
l[ord(i)-97]=(j[1]-j[0]-1)
n=len(set(s))
for j in range(len(distance)):
if chr(97+j) not in s:
distance[j]=0
return l==distance | check-distances-between-same-letters | Easy Python Solution With Dictionary | a_dityamishra | 0 | 16 | check distances between same letters | 2,399 | 0.704 | Easy | 32,774 |
https://leetcode.com/problems/check-distances-between-same-letters/discuss/2528363/Easy-to-understand-Python-Soln | class Solution:
def checkDistances(self, s: str, distance: List[int]) -> bool:
indexes = collections.defaultdict(list)
for k,v in enumerate(s):
newChar = ord(v)
indexes[newChar].append(k)
for i in range(len(distance)):
newValue = i + 97
if not indexes[newValue]:
continue
value1, value2 = indexes[newValue]
num = value2 - value1
if (num - 1) != distance[i]:
return False
return True | check-distances-between-same-letters | Easy to understand Python Soln | 113377code | 0 | 32 | check distances between same letters | 2,399 | 0.704 | Easy | 32,775 |
https://leetcode.com/problems/check-distances-between-same-letters/discuss/2527830/Python | class Solution:
def checkDistances(self, s: str, distance: List[int]) -> bool:
idx = {}
for i, c in enumerate(s):
if c in idx:
if i - idx[c] - 1 != distance[ord(c) - ord('a')]:
return False
else:
idx[c] = i
return True | check-distances-between-same-letters | Python | blue_sky5 | 0 | 31 | check distances between same letters | 2,399 | 0.704 | Easy | 32,776 |
https://leetcode.com/problems/check-distances-between-same-letters/discuss/2527530/Readable-python3-or-Find-location-of-first-occurrence-verify-next-appears-after-k-positions | class Solution:
def checkDistances(self, s: str, distance: List[int]) -> bool:
total = len(s)
for index, character_distance in enumerate(distance):
character_distance += 1
character = chr(index + ord('a'))
location = s.find(character)
next_location = location + character_distance
if location != -1 and (next_location >= total or s[next_location] != character):
return False
return True | check-distances-between-same-letters | Readable python3 | Find location of first occurrence, verify next appears after k positions | _snake_case | 0 | 19 | check distances between same letters | 2,399 | 0.704 | Easy | 32,777 |
https://leetcode.com/problems/check-distances-between-same-letters/discuss/2527471/Either-use-indexing-or-use-dictionary-oror-Python-oror-Simplest-Solution-oror | class Solution:
def checkDistances(self, s: str, distance: List[int]) -> bool:
length = len(s)
for ch in s:
left = s.find(ch)
right = length - (s[::-1].find(ch)) -1
s.replace(ch, "")
if (right - left - 1) != (distance[ord(ch) -97 ]):
return False
return True | check-distances-between-same-letters | π’ Either use indexing or use dictionary || Python || Simplest Solution || | NITIN_DS | 0 | 17 | check distances between same letters | 2,399 | 0.704 | Easy | 32,778 |
https://leetcode.com/problems/check-distances-between-same-letters/discuss/2527471/Either-use-indexing-or-use-dictionary-oror-Python-oror-Simplest-Solution-oror | class Solution:
def checkDistances(self, s: str, distance: List[int]) -> bool:
d1 = {}
for i in range(len(s)):
if s[i] not in d1.keys():
d1[ s[i] ] = i
else:
if (i - d1[ s[i] ] - 1) != (distance[ord(s[i]) -97 ]) :
return False
return True | check-distances-between-same-letters | π’ Either use indexing or use dictionary || Python || Simplest Solution || | NITIN_DS | 0 | 17 | check distances between same letters | 2,399 | 0.704 | Easy | 32,779 |
https://leetcode.com/problems/check-distances-between-same-letters/discuss/2527369/Python-Simple-Python-Solution-Using-Dictionary-or-HashMap | class Solution:
def checkDistances(self, s: str, distance: List[int]) -> bool:
d = {}
for i in range(len(s)):
if s[i] not in d:
d[s[i]] = [i]
else:
d[s[i]].append(i)
d = dict(sorted(d.items(), key = lambda x : x[0]))
for i in d:
difference = d[i][1] - d[i][0] - 1
index = ord(i) - 97
if distance[index] != difference:
return False
return True | check-distances-between-same-letters | [ Python ] β
β
Simple Python Solution Using Dictionary | HashMapπ₯³βπ | ASHOK_KUMAR_MEGHVANSHI | 0 | 37 | check distances between same letters | 2,399 | 0.704 | Easy | 32,780 |
https://leetcode.com/problems/number-of-ways-to-reach-a-position-after-exactly-k-steps/discuss/2554923/Python3-oror-3-lines-combs-w-explanation-oror-TM%3A-9692 | class Solution: # A few points on the problem:
# β’ The start and end is a "red herring." The answer to the problem
# depends only on the distance (dist = end-start) and k.
#
# β’ A little thought will convince one that theres no paths possible
# if k%2 != dist%2 or if abs(dist) > k.
# β’ The problem is equivalent to:
# Determine the count of distinct lists of length k with sum = dist
# and elements 1 and -1, in which the counts of 1s and -1s in each
# list differ by dist.
#
# β’ The count of the lists is equal to the number of ways the combination
# C((k, (dist+k)//2)). For example, if dist = 1 and k = 5. the count of 1s
#. is (5+1)//2 = 3, and C(5,3) = 10.
# (Note that if dist= -1 in this example, (5-1)//2 = 2, and C(5,2) = 10)
def numberOfWays(self, startPos: int, endPos: int, k: int) -> int:
dist = endPos-startPos
if k%2 != dist%2 or abs(dist) > k: return 0
return comb(k, (dist+k)//2) %1000000007 | number-of-ways-to-reach-a-position-after-exactly-k-steps | Python3 || 3 lines, combs, w/ explanation || T/M: 96%/92% | warrenruud | 3 | 157 | number of ways to reach a position after exactly k steps | 2,400 | 0.323 | Medium | 32,781 |
https://leetcode.com/problems/number-of-ways-to-reach-a-position-after-exactly-k-steps/discuss/2533891/DP-or-Recursion-oror-Memoization-oror-Python3 | class Solution(object):
def numberOfWays(self, startPos, endPos, k):
"""
:type startPos: int
:type endPos: int
:type k: int
:rtype: int
"""
MOD=1e9+7
dp={}
def A(currpos,k):
if (currpos,k) in dp:
return dp[(currpos,k)]
#base case
if currpos==endPos and k==0:
return 1
#base case
if k<=0:
return 0
ans1,ans2=0,0
#move left
ans1+=A(currpos-1,k-1)
#move right
ans2+=A(currpos+1,k-1)
#sum of left + right possibilities
dp[(currpos,k)]=(ans1+ans2)%MOD
#return the result
return dp[(currpos,k)]
return int(A(startPos,k)%MOD)
``` | number-of-ways-to-reach-a-position-after-exactly-k-steps | DP }| Recursion || Memoization || Python3 | srikarsai550 | 2 | 21 | number of ways to reach a position after exactly k steps | 2,400 | 0.323 | Medium | 32,782 |
https://leetcode.com/problems/number-of-ways-to-reach-a-position-after-exactly-k-steps/discuss/2848349/Python-easy-to-read-and-understand-or-recursion-%2B-memoization | class Solution:
def dfs(self, s, e, k):
if k == 0:
if s == e:
return 1
return 0
return self.dfs(s+1, e, k-1) + self.dfs(s-1, e, k-1)
def numberOfWays(self, startPos: int, endPos: int, k: int) -> int:
return self.dfs(startPos, endPos, k) % (10**9 + 7) | number-of-ways-to-reach-a-position-after-exactly-k-steps | Python easy to read and understand | recursion + memoization | sanial2001 | 0 | 1 | number of ways to reach a position after exactly k steps | 2,400 | 0.323 | Medium | 32,783 |
https://leetcode.com/problems/number-of-ways-to-reach-a-position-after-exactly-k-steps/discuss/2848349/Python-easy-to-read-and-understand-or-recursion-%2B-memoization | class Solution:
def dfs(self, s, e, k):
if k <= 0:
if k == 0 and s == e:
return 1
return 0
if (s, k) in self.d:
return self.d[(s, k)]
self.d[(s, k)] = self.dfs(s+1, e, k-1) + self.dfs(s-1, e, k-1)
return self.d[(s, k)]
def numberOfWays(self, startPos: int, endPos: int, k: int) -> int:
self.d = {}
return self.dfs(startPos, endPos, k) % (10**9 + 7) | number-of-ways-to-reach-a-position-after-exactly-k-steps | Python easy to read and understand | recursion + memoization | sanial2001 | 0 | 1 | number of ways to reach a position after exactly k steps | 2,400 | 0.323 | Medium | 32,784 |
https://leetcode.com/problems/number-of-ways-to-reach-a-position-after-exactly-k-steps/discuss/2842609/Simple-Python3-Math-Explained | class Solution:
def numberOfWays(self, start: int, end: int, k: int) -> int:
d = abs(start - end)
if (k + d) % 2:
return 0
r = (k + d) // 2
return math.comb(k, r) % (10**9 + 7) | number-of-ways-to-reach-a-position-after-exactly-k-steps | Simple Python3 Math Explained | ryangrayson | 0 | 4 | number of ways to reach a position after exactly k steps | 2,400 | 0.323 | Medium | 32,785 |
https://leetcode.com/problems/number-of-ways-to-reach-a-position-after-exactly-k-steps/discuss/2821115/Python-simple-recursive-solution | class Solution:
def numberOfWays(self, startPos: int, endPos: int, k: int) -> int:
cache = {}
def findWays(pos, k):
if (pos, k) in cache:
return cache[(pos, k)]
if k == 0:
return pos == endPos
res = findWays(pos+1, k-1)+findWays(pos-1, k-1)
cache[(pos, k)] = res
return res
return findWays(startPos, k)%(10**9+7) | number-of-ways-to-reach-a-position-after-exactly-k-steps | Python simple recursive solution | ankurkumarpankaj | 0 | 1 | number of ways to reach a position after exactly k steps | 2,400 | 0.323 | Medium | 32,786 |
https://leetcode.com/problems/number-of-ways-to-reach-a-position-after-exactly-k-steps/discuss/2811166/Python-(Simple-Maths) | class Solution:
def numberOfWays(self, startPos, endPos, k):
res = [1]*abs(endPos - startPos)
rem_k = k - abs(endPos - startPos)
if rem_k%2 != 0 or rem_k < 0:
return 0
res = res + [1]*(rem_k//2) + [-1]*(rem_k//2)
dict1 = Counter(res)
final_ans = math.comb(sum(dict1.values()),dict1[1])
return final_ans%(10**9+7) | number-of-ways-to-reach-a-position-after-exactly-k-steps | Python (Simple Maths) | rnotappl | 0 | 3 | number of ways to reach a position after exactly k steps | 2,400 | 0.323 | Medium | 32,787 |
https://leetcode.com/problems/number-of-ways-to-reach-a-position-after-exactly-k-steps/discuss/2811156/Python-(Simple-Maths) | class Solution:
def numberOfWays(self, startPos, endPos, k):
res = [1]*abs(endPos - startPos)
rem_k = k - abs(endPos - startPos)
if rem_k%2 != 0 or rem_k < 0:
return 0
res = res + [1]*(rem_k//2) + [-1]*(rem_k//2)
dict1 = Counter(res)
final_ans = math.factorial(sum(dict1.values()))//(math.factorial(dict1[1])*math.factorial(dict1[-1]))
return final_ans%(10**9+7) | number-of-ways-to-reach-a-position-after-exactly-k-steps | Python (Simple Maths) | rnotappl | 0 | 2 | number of ways to reach a position after exactly k steps | 2,400 | 0.323 | Medium | 32,788 |
https://leetcode.com/problems/number-of-ways-to-reach-a-position-after-exactly-k-steps/discuss/2729637/Python3-Solution-or-2-Line-Solution | class Solution:
def numberOfWays(self, S, E, K):
D = K - abs(E - S)
return 0 if D < 0 or D & 1 else math.comb(K, D // 2) % (10 ** 9 + 7) | number-of-ways-to-reach-a-position-after-exactly-k-steps | β Python3 Solution | 2 Line Solution | satyam2001 | 0 | 5 | number of ways to reach a position after exactly k steps | 2,400 | 0.323 | Medium | 32,789 |
https://leetcode.com/problems/number-of-ways-to-reach-a-position-after-exactly-k-steps/discuss/2557593/Simple-maths-python-easy-readable-code-with-comments | class Solution:
def numberOfWays(self, startPos: int, endPos: int, k: int) -> int:
# just two equations
# 1. left+right=k i.e. sum of left and right steps should be k.
# 2. right-left=endpos-startpos i.e. diff b/w right and left steps should be equal to final-startpos.
total_steps=k
dif_r_l_step=endPos-startPos
r_step=(total_steps+dif_r_l_step)//2
r_step2=(total_steps+dif_r_l_step)/2
if r_step!=r_step2:
return 0
return comb(total_steps,(r_step))%(10**9+7) | number-of-ways-to-reach-a-position-after-exactly-k-steps | Simple maths , python , easy readable code with comments | Aniket_liar07 | 0 | 60 | number of ways to reach a position after exactly k steps | 2,400 | 0.323 | Medium | 32,790 |
https://leetcode.com/problems/number-of-ways-to-reach-a-position-after-exactly-k-steps/discuss/2553718/python-or-top_down-and-bottom-up-or-explanation-in-comments | class Solution:
MOD = 1000000007
def top_down(self, step: int, dist: int) -> int:
if dist >= step :
return int(step == dist)
if self.memo[step][dist] == 0:
self.memo[step][dist] = 1 + self.top_down(step - 1, abs(dist - 1)) + self.top_down(step - 1, dist + 1)
self.memo[step][dist] = self.memo[step][dist] % Solution.MOD
return self.memo[step][dist] - 1
def bottom_up(self, steps: int, dist: int) -> int:
prev, curr = None, []
for k in range(steps + 1):
for d in range(k + 1):
# there is only 1 possible way to cover a distance of 'd' in 'k' steps
if d == k:
curr.append(1)
# if distance was plotted on the x-axis, this is to account for approaching from the -ve part of x-axis
elif d == 0:
num_ways = 2 * prev[1] if k > 1 else 0
curr.append(num_ways % Solution.MOD)
# it is only possible to cover distance 'd' in 'k' steps if 'k' is atleast as big as 'd'
elif d <= k:
num_ways = prev[d - 1]
num_ways += prev[d + 1] if d + 1 < len(prev) else 0
curr.append(num_ways % Solution.MOD)
prev = curr
curr = []
res = prev[dist] if dist <= k else 0
return res
def numberOfWays(self, startPos: int, endPos: int, k: int, is_top_down: bool = False) -> int:
if is_top_down:
# declare memo
self.memo = [[0] * 1001 for _ in range(1001)]
# get number of ways to cover distance 'd' (endPos - startPos)
res = self.top_down(k, abs(endPos - startPos))
else:
res = self.bottom_up(k, abs(endPos - startPos))
return res | number-of-ways-to-reach-a-position-after-exactly-k-steps | python | top_down and bottom-up | explanation in comments | sproq | 0 | 60 | number of ways to reach a position after exactly k steps | 2,400 | 0.323 | Medium | 32,791 |
https://leetcode.com/problems/number-of-ways-to-reach-a-position-after-exactly-k-steps/discuss/2547198/Python-runtime-O(n)-memory-O(n)-with-simple-math | class Solution:
def numberOfWays(self, startPos: int, endPos: int, k: int) -> int:
dis = endPos - startPos
if k-abs(dis) < 0 or (k-dis)%2 == 1:
return 0
if k-abs(dis) == 0:
return 1
if dis >= 0:
left = self.getWays((k-dis)//2)
right = self.getWays((k-dis)//2 + dis)
else:
left = self.getWays((k+dis)//2 - dis)
right = self.getWays((k+dis)//2)
return (self.getWays(k) // (left*right)) % (10**9+7)
def getWays(self, n):
s = 1
for i in range(1, n+1):
s *= i
print(s)
return s | number-of-ways-to-reach-a-position-after-exactly-k-steps | Python, runtime O(n), memory O(n) with simple math | tsai00150 | 0 | 57 | number of ways to reach a position after exactly k steps | 2,400 | 0.323 | Medium | 32,792 |
https://leetcode.com/problems/number-of-ways-to-reach-a-position-after-exactly-k-steps/discuss/2530471/Python3-combinations-Quick-Math | class Solution:
def numberOfWays(self, startPos: int, endPos: int, k: int) -> int:
distance = endPos - startPos
if (k - distance) % 2 == 1 or distance > k: return 0
else:
choose = (k - distance) // 2
# k choose (k - distance) // 2
res = 1
for t in range(k - choose + 1, k+1):
res *= t
for t in range(choose, 0, -1):
res //= t
return res % (10**9 + 7) | number-of-ways-to-reach-a-position-after-exactly-k-steps | Python3 combinations Quick Math | xxHRxx | 0 | 5 | number of ways to reach a position after exactly k steps | 2,400 | 0.323 | Medium | 32,793 |
https://leetcode.com/problems/number-of-ways-to-reach-a-position-after-exactly-k-steps/discuss/2528013/Math-explained-or-Python-or-permutation-and-combination | class Solution:
def numberOfWays(self, startPos: int, endPos: int, k: int) -> int:
D = abs(endPos-startPos)
if D>k or (k+D)%2!=0: return 0
mod = 10**9 + 7
def fact(n,lower):
if n <= lower:
return 1
return (n * fact(n - 1, lower))
f = (D + k)//2
b = k- f
ans = comb(k,f)
return int(ans%mod) | number-of-ways-to-reach-a-position-after-exactly-k-steps | Math explained | Python | permutation and combination | mync | 0 | 20 | number of ways to reach a position after exactly k steps | 2,400 | 0.323 | Medium | 32,794 |
https://leetcode.com/problems/number-of-ways-to-reach-a-position-after-exactly-k-steps/discuss/2527594/O(k2)-with-bfs-%2B-two-queues-%2B-hashmap-(Illustration-by-Examples) | class Solution:
def numberOfWays(self, startPos: int, endPos: int, k: int) -> int:
mod = 10**9 + 7
q1 = {startPos: 1}
for i in range(1, k + 1):
q2 = {}
for di in q1:
q2[di-1] = q2.get(di-1, 0) + q1[di]
q2[di+1] = q2.get(di+1, 0) + q1[di]
q1 = q2
ans = q1.get(endPos, 0) % mod
return ans | number-of-ways-to-reach-a-position-after-exactly-k-steps | O(k^2) with bfs + two queues + hashmap (Illustration by Examples) | dntai | 0 | 37 | number of ways to reach a position after exactly k steps | 2,400 | 0.323 | Medium | 32,795 |
https://leetcode.com/problems/number-of-ways-to-reach-a-position-after-exactly-k-steps/discuss/2527428/8-lines-Python-DP-with-lru_cache-(includes-TLE-BFS-approach-as-well) | class Solution:
def numberOfWays(self, startPos: int, endPos: int, k: int) -> int:
@lru_cache(maxsize=None)
def dfs(position, moves):
if moves == k:
return int(position == endPos)
if abs(position - endPos) > k-moves:
return 0
return dfs(position+1, moves+1) + dfs(position-1, moves+1)
return (dfs(startPos+1, 1) + dfs(startPos-1, 1)) % (10**9 + 7) | number-of-ways-to-reach-a-position-after-exactly-k-steps | 8 lines Python DP with lru_cache (includes TLE BFS approach as well) | _snake_case | 0 | 43 | number of ways to reach a position after exactly k steps | 2,400 | 0.323 | Medium | 32,796 |
https://leetcode.com/problems/number-of-ways-to-reach-a-position-after-exactly-k-steps/discuss/2527428/8-lines-Python-DP-with-lru_cache-(includes-TLE-BFS-approach-as-well) | class Solution:
def numberOfWays(self, startPos: int, endPos: int, k: int) -> int:
ways = 0
if k == 0:
return 1 if startPos == endPos else 0
queue = collections.deque()
queue.append((startPos+1, 1))
queue.append((startPos-1, 1))
while queue:
position, moves = queue.popleft()
if abs(position - endPos) > k-moves:
continue
if moves == k:
ways += int(position == endPos)
continue
queue.append((position+1, moves+1))
queue.append((position-1, moves+1))
return ways | number-of-ways-to-reach-a-position-after-exactly-k-steps | 8 lines Python DP with lru_cache (includes TLE BFS approach as well) | _snake_case | 0 | 43 | number of ways to reach a position after exactly k steps | 2,400 | 0.323 | Medium | 32,797 |
https://leetcode.com/problems/number-of-ways-to-reach-a-position-after-exactly-k-steps/discuss/2527390/Python-or-Traditional-top-down-DP | class Solution:
def numberOfWays(self, startPos: int, endPos: int, k: int) -> int:
if abs(startPos - endPos) > k:
return 0
@cache
def dp(currentPosition: int = startPos, stepsAvailable: int = k) -> int:
if stepsAvailable == 0:
return 1 if currentPosition == endPos else 0
numWays = dp(currentPosition + 1, stepsAvailable - 1) + dp(currentPosition - 1, stepsAvailable - 1)
return numWays % (10 ** 9 + 7)
return dp() | number-of-ways-to-reach-a-position-after-exactly-k-steps | Python | Traditional top -down DP | sr_vrd | 0 | 30 | number of ways to reach a position after exactly k steps | 2,400 | 0.323 | Medium | 32,798 |
https://leetcode.com/problems/longest-nice-subarray/discuss/2527285/Bit-Magic-with-Explanation-and-Complexities | class Solution:
def longestNiceSubarray(self, nums: List[int]) -> int:
maximum_length = 1
n = len(nums)
current_group = 0
left = 0
for right in range(n):
# If the number at the right point is safe to include, include it in the group and update the maximum length.
if nums[right] & current_group == 0:
current_group |=nums[right]
maximum_length = max(maximum_length, right - left + 1)
continue
# Shrink the window until the number at the right pointer is safe to include.
while left < right and nums[right] & current_group != 0:
current_group &= (~nums[left])
left += 1
# Include the number at the right pointer in the group.
current_group |= nums[right]
return maximum_length | longest-nice-subarray | Bit Magic with Explanation and Complexities | wickedmishra | 19 | 488 | longest nice subarray | 2,401 | 0.48 | Medium | 32,799 |
Subsets and Splits