post_href
stringlengths 57
213
| python_solutions
stringlengths 71
22.3k
| slug
stringlengths 3
77
| post_title
stringlengths 1
100
| user
stringlengths 3
29
| upvotes
int64 -20
1.2k
| views
int64 0
60.9k
| problem_title
stringlengths 3
77
| number
int64 1
2.48k
| acceptance
float64 0.14
0.91
| difficulty
stringclasses 3
values | __index_level_0__
int64 0
34k
|
---|---|---|---|---|---|---|---|---|---|---|---|
https://leetcode.com/problems/replace-elements-in-an-array/discuss/2114715/Simple-Python-Solution-Hashmap-and-list-O(N%2BK)-time-O(N)-space-complexity | class Solution:
def arrayChange(self, nums: List[int], operations: List[List[int]]) -> List[int]:
results = [0 for i in range(len(nums))]
ht = defaultdict(list)
for i in range(len(nums)):
ht[nums[i]].append(i)
for old, new in operations:
ht[new].append(ht[old].pop())
for i in ht:
for index in ht[i]:
results[index] = i
return results | replace-elements-in-an-array | Simple Python Solution - Hashmap and list - O(N+K) time, O(N) space complexity | lcshiung | 0 | 11 | replace elements in an array | 2,295 | 0.576 | Medium | 31,700 |
https://leetcode.com/problems/replace-elements-in-an-array/discuss/2114192/Python-Easy-and-Efficient-Map-Solution | class Solution:
def arrayChange(self, nums: List[int], operations: List[List[int]]) -> List[int]:
d = {}
for x, y in reversed(operations) :
d[x] = d[y] if y in d else y
for i, x in enumerate(nums) :
if x in d :
nums[i] = d[x]
return nums | replace-elements-in-an-array | Python Easy and Efficient Map Solution | runtime-terror | 0 | 23 | replace elements in an array | 2,295 | 0.576 | Medium | 31,701 |
https://leetcode.com/problems/replace-elements-in-an-array/discuss/2112631/Python-Simple-Python-Solution-Using-Dictionary-oror-HashMap | class Solution:
def arrayChange(self, nums: List[int], operations: List[List[int]]) -> List[int]:
store_index = {}
for i in range(len(nums)):
store_index[nums[i]] = i
for i in operations:
old_value , new_value = i
index = store_index[old_value]
nums[store_index[old_value]] = new_value
del store_index[old_value]
store_index[new_value] = index
return nums | replace-elements-in-an-array | [ Python ] ✅✅ Simple Python Solution Using Dictionary || HashMap 🥳✌👍 | ASHOK_KUMAR_MEGHVANSHI | 0 | 24 | replace elements in an array | 2,295 | 0.576 | Medium | 31,702 |
https://leetcode.com/problems/replace-elements-in-an-array/discuss/2112420/Concise-Python-Solution | class Solution:
def arrayChange(self, nums: List[int], operations: List[List[int]]) -> List[int]:
d = {n: i for i, n in enumerate(nums)}
for x, y in operations:
d[y] = d[x]
del d[x]
ans = [0] * len(nums)
for k, v in d.items():
ans[v] = k
return ans | replace-elements-in-an-array | Concise Python Solution | user6397p | 0 | 19 | replace elements in an array | 2,295 | 0.576 | Medium | 31,703 |
https://leetcode.com/problems/replace-elements-in-an-array/discuss/2112280/Python-3-DictHashmap-Solution-8-lines | class Solution:
def arrayChange(self, nums: List[int], operations: List[List[int]]) -> List[int]:
hmap = {}
for i,num in enumerate(nums):
hmap[num] = i
for op in operations:
index = hmap[op[0]]
nums[index] = op[1]
hmap[op[1]] = index
return nums | replace-elements-in-an-array | [Python 3] Dict/Hashmap Solution - 8 lines | parthberk | 0 | 14 | replace elements in an array | 2,295 | 0.576 | Medium | 31,704 |
https://leetcode.com/problems/replace-elements-in-an-array/discuss/2111972/Python-or-Easy-to-Understand | class Solution:
def arrayChange(self, nums: List[int], operations: List[List[int]]) -> List[int]:
# traverse from the end to the front!
n = len(operations)
dic = defaultdict()
for i in range(n-1, -1, -1):
key, value = operations[i]
if value in dic:
tmp = dic[value]
del dic[value]
dic[key] = tmp
else:
dic[key] = value
for i, num in enumerate(nums):
if num in dic:
nums[i] = dic[num]
return nums | replace-elements-in-an-array | Python | Easy to Understand | Mikey98 | 0 | 27 | replace elements in an array | 2,295 | 0.576 | Medium | 31,705 |
https://leetcode.com/problems/replace-elements-in-an-array/discuss/2111971/Python-or-Hashmap-or-dictionary-or-O(N)-time-complexity | class Solution:
def arrayChange(self, nums: List[int], operations: List[List[int]]) -> List[int]:
d = {}
for i in range(len(nums)):
d[nums[i]] = i
for a,b in operations:
if a in d:
d[b] = d[a]
d[a] = -1
for i in d:
if d[i]!=-1:
nums[d[i]] = i
return nums | replace-elements-in-an-array | Python | Hashmap | dictionary | O(N) time complexity | AkashHooda | 0 | 16 | replace elements in an array | 2,295 | 0.576 | Medium | 31,706 |
https://leetcode.com/problems/replace-elements-in-an-array/discuss/2111931/Python-Very-simple-Hashmap-solution-O(n-%2B-m) | class Solution:
def arrayChange(self, nums: List[int], operations: List[List[int]]) -> List[int]:
hashmap = {}
for i, number in enumerate(nums):
hashmap[number] = i
for start, end in operations:
if start in hashmap:
nums[hashmap[start]] = end
hashmap[end] = hashmap[start]
return nums | replace-elements-in-an-array | Python Very simple Hashmap solution O(n + m) | tyrocoder | 0 | 20 | replace elements in an array | 2,295 | 0.576 | Medium | 31,707 |
https://leetcode.com/problems/strong-password-checker-ii/discuss/2139499/Nothing-Special | class Solution:
def strongPasswordCheckerII(self, pwd: str) -> bool:
return (
len(pwd) > 7
and max(len(list(p[1])) for p in groupby(pwd)) == 1
and reduce(
lambda a, b: a | (1 if b.isdigit() else 2 if b.islower() else 4 if b.isupper() else 8), pwd, 0
) == 15
) | strong-password-checker-ii | Nothing Special | votrubac | 22 | 882 | strong password checker ii | 2,299 | 0.567 | Easy | 31,708 |
https://leetcode.com/problems/strong-password-checker-ii/discuss/2139347/PythonJavaC%2B%2BCJavaScriptPHP-Regex | class Solution:
def strongPasswordCheckerII(self, password):
return re.match(r'^(?!.*(.)\1)(?=.*[a-z])(?=.*[A-Z])(?=.*[0-9])(?=.*[!@#$%^&*()+-]).{8,}$', password) | strong-password-checker-ii | [Python/Java/C++/C#/JavaScript/PHP] Regex | i-i | 6 | 219 | strong password checker ii | 2,299 | 0.567 | Easy | 31,709 |
https://leetcode.com/problems/strong-password-checker-ii/discuss/2183796/Python-simple-solution | class Solution:
def strongPasswordCheckerII(self, ps: str) -> bool:
ln = len(ps) >= 8
lower = False
upper = False
dig = False
spec = False
spec_symb = "!@#$%^&*()-+"
not_adj = True
for i in ps:
if i.islower():
lower = True
if i.isupper():
upper = True
if i.isdigit():
dig = True
if i in spec_symb:
spec = True
for i in range(1, len(ps)):
if ps[i] == ps[i-1]:
not_adj = False
return ln == lower == upper == dig == spec == not_adj | strong-password-checker-ii | Python simple solution | StikS32 | 1 | 69 | strong password checker ii | 2,299 | 0.567 | Easy | 31,710 |
https://leetcode.com/problems/strong-password-checker-ii/discuss/2815364/Python-one-liner | class Solution:
def strongPasswordCheckerII(self, password: str) -> bool:
return len(password)>=8 \
and any([c.isdigit() for c in password]) \
and any([c.lower()!=c for c in password]) \
and any([c.upper()!=c for c in password]) \
and any([c in "!@#$%^&*()-+" for c in password]) \
and not any([password[i]==password[i+1] for i in range(len(password)-1)]) | strong-password-checker-ii | Python one-liner | denfedex | 0 | 2 | strong password checker ii | 2,299 | 0.567 | Easy | 31,711 |
https://leetcode.com/problems/strong-password-checker-ii/discuss/2783050/Single-Pass-Python-Solution | class Solution:
def strongPasswordCheckerII(self, password: str) -> bool:
if len(password) < 8:
return False
lower = upper = digit = special = False
prev = ""
for char in password:
if char == prev:
return False
if char.islower():
lower = True
elif char.isupper():
upper = True
elif char.isdigit():
digit = True
else:
special = True
prev = char
return lower and upper and digit and special | strong-password-checker-ii | Single Pass Python Solution | kcstar | 0 | 2 | strong password checker ii | 2,299 | 0.567 | Easy | 31,712 |
https://leetcode.com/problems/strong-password-checker-ii/discuss/2649673/Python3-Use-A-Dict-for-character-types | class Solution:
def strongPasswordCheckerII(self, password: str) -> bool:
if len(password) >=8:
k = 1
else:
return False
for i in range(1,len(password)):
if password[i] == password[i-1]:
return False
d = defaultdict(lambda: 0)
for x in string.ascii_lowercase:
d[x]=2
for x in string.ascii_uppercase:
d[x]=4
for x in string.digits:
d[x]=8
for x in "!@#$%^&*()-+":
d[x]=16
for x in password:
k |= d[x]
return k == 31 | strong-password-checker-ii | Python3 Use A Dict for character types | godshiva | 0 | 1 | strong password checker ii | 2,299 | 0.567 | Easy | 31,713 |
https://leetcode.com/problems/strong-password-checker-ii/discuss/2644047/Python-solution-or-space-O(1)-or-time-O(n) | class Solution:
def strongPasswordCheckerII(self, password: str) -> bool:
if len(password)<8:
return False
lower=set('abcdefghijklmnopqrstuvwxyz')
upper=set('ABCDEFGHIJKLMNOPQRSTUVWXYZ')
digit=set('1234567890')
sp_char=set("!@#$%^&*()-+")
count_lower=count_upper=count_sp=count_digit=0
for x in range(len(password)):
if x>0 and password[x]==password[x-1]:
return False
if password[x] in upper:
count_upper+=1
elif password[x] in lower:
count_lower +=1
elif password[x] in digit:
count_digit += 1
elif password[x] in sp_char:
count_sp += 1
if count_lower>=1 and count_upper>=1 and count_digit>=1 and count_sp>=1:
return True
return False | strong-password-checker-ii | Python solution | space-O(1) | time-O(n) | I_am_SOURAV | 0 | 12 | strong password checker ii | 2,299 | 0.567 | Easy | 31,714 |
https://leetcode.com/problems/strong-password-checker-ii/discuss/2147918/Python-Solution-oror-Simple-Approach-oror-June-Contest-2022 | class Solution:
def strongPasswordCheckerII(self, password: str) -> bool:
l="abcdefghijklmnopqrstuvwxyz"
u="ABCDEFGHIJKLMNOPQRSTUVWXYZ"
d="0123456789"
s="!@#$%^&*()-+"
sett=set()
f=0
for i in range(len(password)):
if password[i] in l:
sett.add(1)
f=1
elif password[i] in u:
sett.add(2)
f=1
elif password[i] in d:
sett.add(3)
f=1
elif password[i] in s:
sett.add(4)
f=1
else:
f=0
break
for i in range(len(password)-1):
if password[i]==password[i+1]:
f=0
break
if len(password)>=8 and len(sett)==4 and f==1:
return True
else:
return False | strong-password-checker-ii | Python Solution || Simple Approach || June Contest 2022 | T1n1_B0x1 | 0 | 41 | strong password checker ii | 2,299 | 0.567 | Easy | 31,715 |
https://leetcode.com/problems/strong-password-checker-ii/discuss/2139950/Python-oror-Easy-Approach | class Solution:
def strongPasswordCheckerII(self, password: str) -> bool:
l, u, p, d = 0, 0, 0, 0
if (len(password) >= 8):
for i in password:
# counting lowercase alphabets
if (i.islower()):
l+=1
# counting uppercase alphabets
if (i.isupper()):
u+=1
# counting digits
if (i.isdigit()):
d+=1
# counting the mentioned special characters
if(i in "!@#$%^&*()-+"):
p+=1
flag = 1
k = 0
while k < len(password):
if k + 1 < len(password) and password[k] == password[k + 1]:
flag = 0
k += 1
if (l>=1 and u>=1 and p>=1 and d>=1 and flag == 1 and l+p+u+d==len(password)):
return True
else:
return False | strong-password-checker-ii | ✅Python || Easy Approach | chuhonghao01 | 0 | 12 | strong password checker ii | 2,299 | 0.567 | Easy | 31,716 |
https://leetcode.com/problems/strong-password-checker-ii/discuss/2139868/python-O(n) | class Solution:
def strongPasswordCheckerII(self, password: str) -> bool:
if len(password) <= 7:
return False
lower_case = False
upper_case = False
digit = False
special = False
prev = None
for char in password:
if char in "!@#$%^&*()-+":
special = True
elif char in string.ascii_lowercase:
lower_case = True
elif char in string.ascii_uppercase:
upper_case = True
elif char in string.digits:
digit = True
if char == prev:
return False
prev = char
if all([lower_case, upper_case, digit, special]):
return True
else:
return False | strong-password-checker-ii | python, O(n) | emersonexus | 0 | 12 | strong password checker ii | 2,299 | 0.567 | Easy | 31,717 |
https://leetcode.com/problems/strong-password-checker-ii/discuss/2139485/Strong-password-oror-Python-oror-easy-solution | class Solution:
def strongPasswordCheckerII(self, S: str) -> bool:
if len(S)<8:
return False
num=0
upper=0
lower=0
spec=0
char="!@#$%^&*()-+"
for i in range(len(S)):
if i>0 and S[i]==S[i-1]:
return False
if S[i].isdigit():
num+=1
if S[i].isupper():
upper+=1
if S[i].islower():
lower+=1
if S[i] in char:
spec+=1
if num>0 and upper >0 and lower>0 and spec>0 :
return True
return False | strong-password-checker-ii | Strong password || Python || easy solution | Aniket_liar07 | 0 | 23 | strong password checker ii | 2,299 | 0.567 | Easy | 31,718 |
https://leetcode.com/problems/successful-pairs-of-spells-and-potions/discuss/2139547/Python-3-or-Math-Binary-Search-or-Explanation | class Solution:
def successfulPairs(self, spells: List[int], potions: List[int], success: int) -> List[int]:
potions.sort()
ans, n = [], len(potions)
for spell in spells:
val = success // spell
if success % spell == 0:
idx = bisect.bisect_left(potions, val)
else:
idx = bisect.bisect_right(potions, val)
ans.append(n - idx)
return ans | successful-pairs-of-spells-and-potions | Python 3 | Math, Binary Search | Explanation | idontknoooo | 2 | 89 | successful pairs of spells and potions | 2,300 | 0.317 | Medium | 31,719 |
https://leetcode.com/problems/successful-pairs-of-spells-and-potions/discuss/2777879/or-Python-or-Binary-Search | class Solution:
def successfulPairs(self, spells: List[int], potions: List[int], success: int) -> List[int]:
potions.sort()
N = len(potions)
return [N - bisect_left(potions, success / x) for x in spells] | successful-pairs-of-spells-and-potions | ✔️ | Python | Binary Search | code_alone | 0 | 2 | successful pairs of spells and potions | 2,300 | 0.317 | Medium | 31,720 |
https://leetcode.com/problems/successful-pairs-of-spells-and-potions/discuss/2494724/Python-2-liner | class Solution:
def successfulPairs(self, spells: List[int], potions: List[int], success: int) -> List[int]:
potions = [math.ceil(success/potion) for potion in reversed(sorted(potions)) ]
return [bisect_right(potions, spell) for spell in spells] | successful-pairs-of-spells-and-potions | Python 2 liner | mync | 0 | 19 | successful pairs of spells and potions | 2,300 | 0.317 | Medium | 31,721 |
https://leetcode.com/problems/successful-pairs-of-spells-and-potions/discuss/2151263/Bisect-library-98-speed | class Solution:
def successfulPairs(self, spells: List[int], potions: List[int], success: int) -> List[int]:
potions.sort()
len_p = len(potions)
return [len_p - bisect_left(potions, ceil(success / s)) for s in spells] | successful-pairs-of-spells-and-potions | Bisect library, 98% speed | EvgenySH | 0 | 25 | successful pairs of spells and potions | 2,300 | 0.317 | Medium | 31,722 |
https://leetcode.com/problems/successful-pairs-of-spells-and-potions/discuss/2139972/Python-oror-O(nlogn)-oror-Binary-Search-oror-Easy-Approach | class Solution:
def successfulPairs(self, spells: List[int], potions: List[int], success: int) -> List[int]:
ans = []
potions.sort(reverse=True)
for i in range(len(spells)):
l, r = 0, len(potions) - 1
while l <= r:
p = (l + r) // 2
if potions[p] * spells[i] >= success:
l = p + 1
else:
r = p - 1
if potions[p] * spells[i] >= success:
ans.append(p + 1)
else:
ans.append(p)
return ans | successful-pairs-of-spells-and-potions | ✅Python || O(nlogn) || Binary Search || Easy Approach | chuhonghao01 | 0 | 9 | successful pairs of spells and potions | 2,300 | 0.317 | Medium | 31,723 |
https://leetcode.com/problems/successful-pairs-of-spells-and-potions/discuss/2139931/Python3-binary-search | class Solution:
def successfulPairs(self, spells: List[int], potions: List[int], success: int) -> List[int]:
result = []
potions.sort()
for i, spell in enumerate(spells):
target = math.ceil(success / spell)
cnt = bisect.bisect_left(potions, target)
if cnt != -1:
result.append(len(potions) - cnt)
else:
result.append(0)
return result | successful-pairs-of-spells-and-potions | Python3 binary search | emersonexus | 0 | 11 | successful pairs of spells and potions | 2,300 | 0.317 | Medium | 31,724 |
https://leetcode.com/problems/successful-pairs-of-spells-and-potions/discuss/2139488/Python-or-Sort-and-Binary-Search | class Solution:
def successfulPairs(self, spells: List[int], potions: List[int], success: int) -> List[int]:
total = []
potions.sort()
n = len(potions)
for num in spells: total.append(n - bisect.bisect_left(potions, success/num))
return total | successful-pairs-of-spells-and-potions | Python | Sort and Binary Search | rbhandu | 0 | 13 | successful pairs of spells and potions | 2,300 | 0.317 | Medium | 31,725 |
https://leetcode.com/problems/successful-pairs-of-spells-and-potions/discuss/2139400/python-3-oror-simple-binary-search | class Solution:
def successfulPairs(self, spells: List[int], potions: List[int], success: int) -> List[int]:
potions.sort()
m = len(potions)
return [m - bisect.bisect_left(potions, math.ceil(success / spell))
for spell in spells] | successful-pairs-of-spells-and-potions | python 3 || simple binary search | dereky4 | 0 | 17 | successful pairs of spells and potions | 2,300 | 0.317 | Medium | 31,726 |
https://leetcode.com/problems/match-substring-after-replacement/discuss/2140652/Python-Precalculation-O(n*k)-without-TLE | class Solution:
def matchReplacement(self, s: str, sub: str, mappings: List[List[str]]) -> bool:
s_maps = defaultdict(lambda : set())
for x,y in mappings:
s_maps[x].add(y)
# build a sequence of set for substring match
# eg: sub=leet, mappings = {e: 3, t:7}
# subs = [{l}, {e, 3}, {e, 3}, {t, 7}]
# precalculation helps to eliminate TLE
subs = [s_maps[c] | {c} for c in sub]
for i in range(len(s)-len(sub) + 1):
c=s[i]
j=i
# Try to match substring
while j-i<len(sub) and s[j] in subs[j-i]:
j+=1
if j-i==len(sub): # a valid match if iterated through the whole length of substring
return True
return False | match-substring-after-replacement | ✅ Python Precalculation O(n*k) without TLE | constantine786 | 7 | 181 | match substring after replacement | 2,301 | 0.393 | Hard | 31,727 |
https://leetcode.com/problems/match-substring-after-replacement/discuss/2142973/Python3-Easy-to-understand-Solution-using-Dictionary-and-HashSet | class Solution:
def matchReplacement(self, s: str, sub: str, mappings: List[List[str]]) -> bool:
dic = {}
for m in mappings:
if m[0] not in dic:
dic[m[0]] = {m[1]}
else:
dic[m[0]].add(m[1])
for i in range(len(s)-len(sub)+1):
j = 0
while j < len(sub) and (s[i+j] == sub[j] or
(sub[j] in dic and s[i+j] in dic[sub[j]])):
j += 1
if j == len(sub): return True
return False
# Time: O(len(s) * len(sub))
# Space: O(len(mapping)) | match-substring-after-replacement | [Python3] Easy to understand Solution using Dictionary and HashSet | samirpaul1 | 3 | 90 | match substring after replacement | 2,301 | 0.393 | Hard | 31,728 |
https://leetcode.com/problems/match-substring-after-replacement/discuss/2369542/faster-than-84.22-or-Simple-python-or-solution | class Solution:
def matchReplacement(self, s: str, sub: str, mappings: List[List[str]]) -> bool:
if len(s) < len(sub):
return False
maps = defaultdict(set)
for u, v in mappings:
maps[u].add(v)
def f(s1):
for c1, c2 in zip(s1, sub):
if c1 != c2 and c1 not in maps[c2]:
return False
return True
for i in range(len(s) - len(sub) + 1):
if f(s[i:i+len(sub)]):
return True
return False | match-substring-after-replacement | faster than 84.22% | Simple python | solution | vimla_kushwaha | 1 | 59 | match substring after replacement | 2,301 | 0.393 | Hard | 31,729 |
https://leetcode.com/problems/match-substring-after-replacement/discuss/2147817/python3-Iteration-solution-for-refrence. | class Solution:
def iteration(self, s, sub, mappings):
h = defaultdict(int)
# put mappings in hashmap data structure.
for k, v in mappings:
if k not in h:
h[k] = {v: 1}
else:
h[k][v] = 1
siter = 0
subiter = 0
jump = -1
# Iterate through the string 's' and locate jump points as we go.
while siter < len(s):
# two chars are equal if they are same in both strings or mapping / replacement equates them
if s[siter] == sub[subiter] or (sub[subiter] in h and s[siter] in h[sub[subiter]]):
# keep track of jump location of next string if we encounter a start char while in the middle of an evaluation.
# abbabbc would have two 'a' chars to start evaluating substring 'abbc'
jump = siter if (s[siter] == sub[0] and subiter > 0) else -1
subiter += 1
if subiter == len(sub):
return True
else:
# relocate the jump point to previously encoutered start character.
siter = (jump-1) if jump != -1 else siter
if s[siter] == sub[0] and jump == -1:
siter -= 1
subiter = 0
jump = -1
siter += 1
return False
def dp(self, s, sub, mappings):
h = defaultdict(dict)
S = len(s)
SU = len(sub)
for k, v in mappings:
if k not in h:
h[k] = {v: 1}
else:
h[k][v] = 1
dp = [[0 for _ in range(S)] for _ in range(SU)]
for subiter in range(SU):
for siter in range(S):
if sub[subiter] == s[siter]:
dp[subiter][siter] = dp[subiter-1][siter-1] + 1
elif dp[subiter-1][siter-1]:
if (sub[subiter] in h and s[siter] in h[sub[subiter]]):
dp[subiter][siter] = dp[subiter-1][siter-1] + 1
if dp[subiter][siter] == len(sub):
for d in dp:
print ("".join([str(i) for i in d]))
return True
return False
def matchReplacement(self, s: str, sub: str, mappings: List[List[str]]) -> bool:
return self.iteration(s, sub, mappings) | match-substring-after-replacement | [python3] Iteration solution for refrence. | vadhri_venkat | 0 | 11 | match substring after replacement | 2,301 | 0.393 | Hard | 31,730 |
https://leetcode.com/problems/match-substring-after-replacement/discuss/2140362/Python3-or-Short-Easy-Understanding-or-Examples-with-Explaination-or-Sliding-Window-%2B-Brute-Force | class Solution:
def matchReplacement(self, s: str, sub: str, mappings: List[List[str]]) -> bool:
dic=defaultdict(set)
for k,v in mappings:
dic[k].add(v) # dic{'t':set{'l','3'}, 'e':set{'4'}} as an example
def check(toCheck,sub): # Here len(toCheck) = len(sub)
for char_check, char_sub in zip(toCheck, sub):
if char_check != char_sub and char_check not in dic[char_sub]:
return False
return True
for start in range(len(s)-len(sub)+1):
if check(s[start:start+len(sub)],sub): # check sliding window with length of sub
return True
return False | match-substring-after-replacement | Python3 | Short Easy Understanding | Examples with Explaination | Sliding Window + Brute Force | yzhao156 | 0 | 29 | match substring after replacement | 2,301 | 0.393 | Hard | 31,731 |
https://leetcode.com/problems/match-substring-after-replacement/discuss/2140141/Python-3KMP-Algorithm | class Solution:
def matchReplacement(self, s: str, p: str, mappings: List[List[str]]) -> bool:
m = defaultdict(set)
for a, b in mappings:
m[a].add(b)
# build pattern array
i, j = 0, 1
arr = [0] * len(p)
while j < len(p):
if p[i] == p[j]:
arr[j] = arr[j-1] + 1
i += 1
j += 1
else:
# no need to go to beginning of pattern (only need to go to previous arr index)
while i > 0 and p[j] != p[i]:
i = arr[i-1]
if p[i] == p[j]:
arr[j] = arr[i] + 1
j += 1
i = j = 0
while i < len(s):
if s[i] == p[j] or s[i] in m[p[j]]:
i += 1
j += 1
if j == len(p): return True
else:
# find previous latest index as long as two characters matched or convertible
origin_j = j
while j > 0 and not (s[i] == p[j] or s[i] in m[p[j]]):
j = arr[j - 1]
i = i - (origin_j - j) + 1
# if s[i] != p[j]:
# i += 1
return False | match-substring-after-replacement | [Python 3]KMP Algorithm | chestnut890123 | 0 | 74 | match substring after replacement | 2,301 | 0.393 | Hard | 31,732 |
https://leetcode.com/problems/match-substring-after-replacement/discuss/2138927/HashMap-or-Greedy-Approach-in-Python-or-O(N*K) | class Solution:
def matchReplacement(self, s: str, sub: str, mappings: List[List[str]]) -> bool:
# maintain a map to know which letters can be changed
d = defaultdict(set)
for i,j in mappings:
d[i].add(j)
k = len(sub)
# iterate over all possibilities of size len(sub)
for i in range(len(s)-k+1):
st = s[i:i+k]
fl = 0
# iterate greedily and try if we can replace cur character or not if not we break
for j in range(k):
if sub[j] != st[j]:
if st[j] not in d[sub[j]]:
fl = 1
break
if fl ==0: return True
return False | match-substring-after-replacement | HashMap | Greedy Approach in Python | O(N*K) | hash1023 | 0 | 12 | match substring after replacement | 2,301 | 0.393 | Hard | 31,733 |
https://leetcode.com/problems/count-subarrays-with-score-less-than-k/discuss/2138778/Sliding-Window | class Solution:
def countSubarrays(self, nums: List[int], k: int) -> int:
sum, res, j = 0, 0, 0
for i, n in enumerate(nums):
sum += n
while sum * (i - j + 1) >= k:
sum -= nums[j]
j += 1
res += i - j + 1
return res | count-subarrays-with-score-less-than-k | Sliding Window | votrubac | 126 | 4,700 | count subarrays with score less than k | 2,302 | 0.522 | Hard | 31,734 |
https://leetcode.com/problems/count-subarrays-with-score-less-than-k/discuss/2140147/Python-3-or-Sliding-Window-Two-Pointers-Math-or-Explanation | class Solution:
def countSubarrays(self, nums: List[int], k: int) -> int:
nums += [k]
slow = cur = ans = 0
for i, num in enumerate(nums):
cur += num
while cur * (i - slow + 1) >= k:
ans += i - slow
cur -= nums[slow]
slow += 1
return ans | count-subarrays-with-score-less-than-k | Python 3 | Sliding Window, Two Pointers, Math | Explanation | idontknoooo | 1 | 67 | count subarrays with score less than k | 2,302 | 0.522 | Hard | 31,735 |
https://leetcode.com/problems/count-subarrays-with-score-less-than-k/discuss/2769948/Python-or-Sliding-Window | class Solution:
def countSubarrays(self, xs: List[int], k: int) -> int:
n = len(xs)
i, j, sub_sum = 0, 0, 0
ans = 0
while j < n:
sub_sum += xs[j]
if sub_sum * (j - i + 1) < k:
ans += j - i + 1
j += 1
elif i == j:
sub_sum = 0
j += 1
i = j
else:
sub_sum -= xs[i] + xs[j]
i += 1
return ans | count-subarrays-with-score-less-than-k | Python | Sliding Window | on_danse_encore_on_rit_encore | 0 | 3 | count subarrays with score less than k | 2,302 | 0.522 | Hard | 31,736 |
https://leetcode.com/problems/count-subarrays-with-score-less-than-k/discuss/2520338/Python-easy-to-read-and-understand-or-sliding-window | class Solution:
def countSubarrays(self, nums: List[int], k: int) -> int:
i, start = 0, 0
n = len(nums)
val, ans, sums = 1, 0, 0
while i < n:
sums += nums[i]
val = sums * (i-start+1)
while start <= i and val >= k:
sums -= nums[start]
start += 1
val = sums * (i-start+1)
ans += (i-start+1)
i += 1
return ans | count-subarrays-with-score-less-than-k | Python easy to read and understand | sliding-window | sanial2001 | 0 | 32 | count subarrays with score less than k | 2,302 | 0.522 | Hard | 31,737 |
https://leetcode.com/problems/count-subarrays-with-score-less-than-k/discuss/2170246/python3-sliding-window-sol-for-ref. | class Solution:
def countSubarrays(self, nums: List[int], k: int) -> int:
start = 0
end = 0
N = len(nums)
rolling_sum = 0
ans = 0
for idx, value in enumerate(nums):
rolling_sum += value
window_size = end-start
while start < end and rolling_sum * (end-start+1) >= k:
rolling_sum -= nums[start]
start += 1
window_size -= 1
window_size = end-start
if rolling_sum * (window_size+1) < k:
ans += window_size if window_size >= 0 else 0
# add single self array
if value < k:
ans += 1
end += 1
return ans | count-subarrays-with-score-less-than-k | [python3] sliding window sol for ref. | vadhri_venkat | 0 | 39 | count subarrays with score less than k | 2,302 | 0.522 | Hard | 31,738 |
https://leetcode.com/problems/count-subarrays-with-score-less-than-k/discuss/2139551/python-3-oror-simple-sliding-window-solution-oror-O(n)O(1) | class Solution:
def countSubarrays(self, nums: List[int], k: int) -> int:
res = 0
left = 0
windowSum = 0
for right, num in enumerate(nums):
windowSum += num
windowLength = right - left + 1
while windowSum * windowLength >= k:
windowSum -= nums[left]
left += 1
windowLength -= 1
res += windowLength
return res | count-subarrays-with-score-less-than-k | python 3 || simple sliding window solution || O(n)/O(1) | dereky4 | 0 | 20 | count subarrays with score less than k | 2,302 | 0.522 | Hard | 31,739 |
https://leetcode.com/problems/calculate-amount-paid-in-taxes/discuss/2141187/Python3-bracket-by-bracket | class Solution:
def calculateTax(self, brackets: List[List[int]], income: int) -> float:
ans = prev = 0
for hi, pct in brackets:
hi = min(hi, income)
ans += (hi - prev)*pct/100
prev = hi
return ans | calculate-amount-paid-in-taxes | [Python3] bracket by bracket | ye15 | 14 | 535 | calculate amount paid in taxes | 2,303 | 0.634 | Easy | 31,740 |
https://leetcode.com/problems/calculate-amount-paid-in-taxes/discuss/2140940/Simple-Python-Solution | class Solution:
def calculateTax(self, brackets: List[List[int]], income: int) -> float:
brackets.sort(key=lambda x: x[0])
res = 0 # Total Tax
prev = 0 # Prev Bracket Upperbound
for u, p in brackets:
if income >= u: #
res += ((u-prev) * p) / 100
prev = u
else:
res += ((income-prev) * p) / 100
break # As total income has been taxed at this point.
return res | calculate-amount-paid-in-taxes | Simple Python Solution | anCoderr | 2 | 95 | calculate amount paid in taxes | 2,303 | 0.634 | Easy | 31,741 |
https://leetcode.com/problems/calculate-amount-paid-in-taxes/discuss/2166711/Python3-solution-or-Easy-to-understand-or-concise-and-simple-code-or | class Solution:
def calculateTax(self, brackets: List[List[int]], income: int) -> float:
lower = 0;
tax = 0;
left = income # amount left to be taxed
for i in brackets:
k = i[0]-lower # amount being taxed
if k<= left:
tax+=k*i[1]/100; left-=k; lower=i[0]
else:
tax+= left*i[1]/100
break
return tax | calculate-amount-paid-in-taxes | Python3 solution | Easy to understand | concise and simple code | | rogan35 | 1 | 58 | calculate amount paid in taxes | 2,303 | 0.634 | Easy | 31,742 |
https://leetcode.com/problems/calculate-amount-paid-in-taxes/discuss/2150061/Python-oror-Simple-6-Liner | class Solution:
def calculateTax(self, l: List[List[int]], k: int) -> float:
prev=sol=0
for x,y in l:
t, prev = min(x,k)-prev, x
if t<0:break
sol+=t*y/100
return sol | calculate-amount-paid-in-taxes | Python || Simple 6-Liner | subin_nair | 1 | 39 | calculate amount paid in taxes | 2,303 | 0.634 | Easy | 31,743 |
https://leetcode.com/problems/calculate-amount-paid-in-taxes/discuss/2843675/Python-easy-solution | class Solution:
def calculateTax(self, brackets: List[List[int]], income: int) -> float:
total_tax = 0
prev = 0
for i in range(len(brackets)):
if income > brackets[i][0]:
total_tax += (brackets[i][0] - prev) * brackets[i][1]
prev = brackets[i][0]
else:
total_tax += (income - prev) * brackets[i][1]
break
return total_tax/100 | calculate-amount-paid-in-taxes | Python easy solution | chacha_chaudhary | 0 | 1 | calculate amount paid in taxes | 2,303 | 0.634 | Easy | 31,744 |
https://leetcode.com/problems/calculate-amount-paid-in-taxes/discuss/2738499/Python3-Commented-Solution | class Solution:
def calculateTax(self, brackets: List[List[int]], income: int) -> float:
# we will iterate through the tax brackets as long as there is income
# left
taxes = 0
prev = 0
for upper, percent in brackets:
# check which dollars are in this tax bracket
dollars = upper - prev
# check whether the amount of dollars in the bracket is bigger
# than the income
if dollars < income:
# tax the bracket
taxes += dollars*(percent/100)
# subtract this upper from the income
income -= dollars
else:
# tax the leftover income
taxes += income * (percent/100)
break
# set the prev
prev = upper
return taxes | calculate-amount-paid-in-taxes | [Python3] - Commented Solution | Lucew | 0 | 8 | calculate amount paid in taxes | 2,303 | 0.634 | Easy | 31,745 |
https://leetcode.com/problems/calculate-amount-paid-in-taxes/discuss/2708448/Python-(Simple-Approach-and-Beginner-Friendly) | class Solution:
def calculateTax(self, brackets: List[List[int]], income: int) -> float:
tax = 0
inc = income
prev = 0
for i in brackets:
if income > i[0] and income>0:
tax+= ((i[0]-prev)*(i[1]/100))
prev = i[0]
income -= abs(i[0]-prev)
else:
tax+= ((inc-prev)*(i[1]/100))
return tax
return tax | calculate-amount-paid-in-taxes | Python (Simple Approach and Beginner-Friendly) | vishvavariya | 0 | 6 | calculate amount paid in taxes | 2,303 | 0.634 | Easy | 31,746 |
https://leetcode.com/problems/calculate-amount-paid-in-taxes/discuss/2586797/Python-O(n)-Easy-and-concise | class Solution:
def calculateTax(self, brackets: List[List[int]], income: int) -> float:
brackets = [[0, 0]] + brackets # add [0, 0] as first element to make things easier
total = 0
for i in range(1, len(brackets)):
# calculate the difference between two consecutive uppers
# and just get the minimum between the income and the diff so that you are not overtaxed
diff = min(income, brackets[i][0] - brackets[i - 1][0])
# calculate the taxes
total += diff * (brackets[i][1] / 100)
# Update the income so that always is bigger or equal to 0
income = max(income - diff, 0)
return total | calculate-amount-paid-in-taxes | Python O(n) Easy & concise | asbefu | 0 | 44 | calculate amount paid in taxes | 2,303 | 0.634 | Easy | 31,747 |
https://leetcode.com/problems/calculate-amount-paid-in-taxes/discuss/2367842/Python3-cumulative-brackets-easy | class Solution:
def calculateTax(self, brackets: List[List[int]], income: int) -> float:
tax=0
last=0
for i,val in enumerate(brackets):
bracket=val[0]-last
tax+= min(income,bracket)*val[1]
if income <=bracket:
return tax/100
income-=bracket
last=val[0]
return tax/100 | calculate-amount-paid-in-taxes | [Python3] cumulative brackets - easy | sunakshi132 | 0 | 29 | calculate amount paid in taxes | 2,303 | 0.634 | Easy | 31,748 |
https://leetcode.com/problems/calculate-amount-paid-in-taxes/discuss/2329059/Python-easy-to-understand | class Solution:
def calculateTax(self, b: List[List[int]], income: int) -> float:
if income <= b[0][0]:
return income * (b[0][1] / 100)
res = b[0][0] * (b[0][1] / 100)
for i in range(1, len(b)):
print(res)
if income <= b[i][0]:
res += (income - b[i-1][0]) * (b[i][1] / 100)
break
else:
res += (b[i][0]-b[i-1][0]) * (b[i][1] / 100)
return res | calculate-amount-paid-in-taxes | Python easy to understand | scr112 | 0 | 43 | calculate amount paid in taxes | 2,303 | 0.634 | Easy | 31,749 |
https://leetcode.com/problems/calculate-amount-paid-in-taxes/discuss/2184650/Python3-simple-solution | class Solution:
def calculateTax(self, brackets: List[List[int]], income: int) -> float:
ans = 0
c = 0
for i in range(len(brackets)):
if income <= 0:
break
if income >= brackets[i][0]-c:
ans += round(((brackets[i][0] - c) * brackets[i][1])/100,5)
else:
ans += round((income * brackets[i][1])/100,5)
income -= (brackets[i][0]-c)
c = brackets[i][0]
return ans | calculate-amount-paid-in-taxes | Python3 simple solution | EklavyaJoshi | 0 | 30 | calculate amount paid in taxes | 2,303 | 0.634 | Easy | 31,750 |
https://leetcode.com/problems/calculate-amount-paid-in-taxes/discuss/2151359/Python-Solution-with-explanation | class Solution:
def calculateTax(self, brackets: List[List[int]], income: int) -> float:
"""
Time Complexity: O(n)
Space Complexity: O(n)
"""
tax = 0
pre_upper = 0
for tax_bracket in brackets:
upper = tax_bracket[0]
percent = tax_bracket[1]
split_income = upper - pre_upper if income >= upper else income - pre_upper
tax += split_income * percent * 0.01
if income < upper:
break
pre_upper = upper
return tax | calculate-amount-paid-in-taxes | Python Solution with explanation | Zewei_Liu | 0 | 33 | calculate amount paid in taxes | 2,303 | 0.634 | Easy | 31,751 |
https://leetcode.com/problems/calculate-amount-paid-in-taxes/discuss/2146243/Python3-Very-short-and-clean | class Solution:
def calculateTax(self, brackets: list[list[int]], income: int) -> float:
cur, res = 0, 0
for upper, percent in brackets:
pre, cur = cur, min(upper, income)
res += (cur - pre) * percent
return res / 100 | calculate-amount-paid-in-taxes | [Python3] Very short and clean | miguel_v | 0 | 30 | calculate amount paid in taxes | 2,303 | 0.634 | Easy | 31,752 |
https://leetcode.com/problems/calculate-amount-paid-in-taxes/discuss/2143867/One-pass | class Solution:
def calculateTax(self, brackets: List[List[int]], income: int) -> float:
taxes = taxed_amount = prev_upper = 0
for upper_i, percent_i in brackets:
amount = min(income - taxed_amount, upper_i - prev_upper)
taxes += amount * percent_i / 100
taxed_amount += amount
prev_upper = upper_i
if taxed_amount == income:
break
return taxes | calculate-amount-paid-in-taxes | One pass | EvgenySH | 0 | 14 | calculate amount paid in taxes | 2,303 | 0.634 | Easy | 31,753 |
https://leetcode.com/problems/calculate-amount-paid-in-taxes/discuss/2142602/Python-Simple-Python-Solution | class Solution:
def calculateTax(self, brackets: List[List[int]], income: int) -> float:
result = 0
previous = 0
for i in brackets:
upper, percent = i
new_upper= min(upper,income)
if new_upper - previous<0:
return result
result = result + (( new_upper - previous) * percent / 100)
previous = upper
return result | calculate-amount-paid-in-taxes | [ Python ] ✅✅ Simple Python Solution 🥳✌👍 | ASHOK_KUMAR_MEGHVANSHI | 0 | 113 | calculate amount paid in taxes | 2,303 | 0.634 | Easy | 31,754 |
https://leetcode.com/problems/calculate-amount-paid-in-taxes/discuss/2142602/Python-Simple-Python-Solution | class Solution:
def calculateTax(self, brackets: List[List[int]], income: int) -> float:
if income == 0 :
return 0
result = 0
upper, percent = brackets[0]
previous = upper
if upper <= income:
result = result + ( upper * percent )/ 100
else:
return ( income * percent ) / 100
for i in brackets[1:]:
new_upper, percent = i
if new_upper <= income:
result = result + (( new_upper - previous) * percent )/ 100
else:
result = result + (( income - previous) * percent ) / 100
break
previous = new_upper
return result | calculate-amount-paid-in-taxes | [ Python ] ✅✅ Simple Python Solution 🥳✌👍 | ASHOK_KUMAR_MEGHVANSHI | 0 | 113 | calculate amount paid in taxes | 2,303 | 0.634 | Easy | 31,755 |
https://leetcode.com/problems/calculate-amount-paid-in-taxes/discuss/2141825/java-python-easy-to-understand | class Solution:
def calculateTax(self, brackets: List[List[int]], income: int) -> float:
i, summ, rest = 0, 0, 0
while i != len(brackets) :
brackets[i][0], rest = brackets[i][0] - rest, brackets[i][0]
if income > brackets[i][0] :
summ += brackets[i][0] * brackets[i][1]
income -= brackets[i][0]
i += 1
else :
if income != 0 : summ += income * brackets[i][1]
break
return summ / 100 | calculate-amount-paid-in-taxes | java, python - easy to understand | ZX007java | 0 | 12 | calculate amount paid in taxes | 2,303 | 0.634 | Easy | 31,756 |
https://leetcode.com/problems/calculate-amount-paid-in-taxes/discuss/2141720/Python-solution-with-explanation-or-Time-O(n)-or-Space-O(1) | class Solution:
def calculateTax(self, brackets: List[List[int]], income: int) -> float:
result, sumValue = 0, 0
for value in brackets :
if income >= value[ 0 ] :
result += float( ( value[ 0 ] - sumValue ) * ( value[ 1 ] / 100 ) )
#important step
sumValue = value[ 0 ]
else :
result += float( ( income - sumValue ) * ( value[ 1 ] / 100 ) )
break
return result | calculate-amount-paid-in-taxes | Python solution with explanation | Time O(n) | Space O(1) | athrvb | 0 | 13 | calculate amount paid in taxes | 2,303 | 0.634 | Easy | 31,757 |
https://leetcode.com/problems/calculate-amount-paid-in-taxes/discuss/2141427/Python-simple-solution | class Solution:
def calculateTax(self, brackets: List[List[int]], income: int) -> float:
amount_tax = 0.0
total_tax = 0.0
money_left = income
prev_bracket = 0.0
for upper, percent in brackets:
if money_left > (upper - prev_bracket):
amount_to_tax = upper - prev_bracket
money_left = money_left - amount_to_tax
else:
amount_to_tax = money_left
money_left = 0
# Nothing left to tax
if amount_to_tax == 0:
break
total_tax += amount_to_tax * percent / 100.0
prev_bracket = upper
return total_tax | calculate-amount-paid-in-taxes | [Python] 😎🍁😎🍁😎🍁 simple solution | LivesByTheOcean | 0 | 11 | calculate amount paid in taxes | 2,303 | 0.634 | Easy | 31,758 |
https://leetcode.com/problems/calculate-amount-paid-in-taxes/discuss/2141089/Python-Simple-Solution-or-O(N)-or-Simple-maths | class Solution:
def calculateTax(self, brackets: List[List[int]], income: int) -> float:
c=0
if brackets[0][0]>=income:
return (brackets[0][1]*income*1.0)/100
else:
c+=(brackets[0][0]*brackets[0][1]*1.0)/100
income-=brackets[0][0]
i = 1
while i<len(brackets) and income>0:
x = brackets[i][0]-brackets[i-1][0]
if x>=income:
c+=(brackets[i][1]*income*1.0)/100
income=0
else:
c+=(brackets[i][1]*x*1.0)/100
income-=x
i+=1
return c | calculate-amount-paid-in-taxes | Python Simple Solution | O(N) | Simple maths | AkashHooda | 0 | 17 | calculate amount paid in taxes | 2,303 | 0.634 | Easy | 31,759 |
https://leetcode.com/problems/calculate-amount-paid-in-taxes/discuss/2140994/Python-oror-Easy-Approach | class Solution:
def calculateTax(self, brackets: List[List[int]], income: int) -> float:
ans = 0
n = len(brackets)
if income <= brackets[0][0]:
return income * brackets[0][1] * 0.01
# brackets[k - 1] < income < brackets[k]
k = 0
for i in range(n):
if income > brackets[i][0]:
k += 1
j = 1
ans += brackets[0][0] * brackets[0][1] * 0.01
while j < k:
ans += (brackets[j][0] - brackets[j - 1][0]) * brackets[j][1] * 0.01
j += 1
ans += (income - brackets[j - 1][0]) * brackets[j][1] * 0.01
return ans | calculate-amount-paid-in-taxes | ✅Python || Easy Approach | chuhonghao01 | 0 | 20 | calculate amount paid in taxes | 2,303 | 0.634 | Easy | 31,760 |
https://leetcode.com/problems/minimum-path-cost-in-a-grid/discuss/2141004/Python-Recursion-%2B-Memoization | class Solution:
def minPathCost(self, grid: List[List[int]], moveCost: List[List[int]]) -> int:
max_row, max_col = len(grid), len(grid[0])
dp = [[-1] * max_col for _ in range(max_row)]
def recursion(row, col):
if row == max_row - 1: # If last row then return nodes value
return grid[row][col]
if dp[row][col] == -1: # If DP for this node is not computed then we will do so now.
current = grid[row][col] # Current Node Value
res = float('inf') # To store best path from Current Node
for c in range(max_col): # Traverse all path from Current Node
val = moveCost[current][c] + recursion(row + 1, c) # Move cost + Target Node Value
res = min(res, val)
dp[row][col] = res + current # DP[current node] = Best Path + Target Node Val + Current Node Val
return dp[row][col]
for c in range(max_col):
recursion(0, c) # Start recursion from all nodes in 1st row
return min(dp[0]) # Return min value from 1st row | minimum-path-cost-in-a-grid | Python Recursion + Memoization | anCoderr | 13 | 501 | minimum path cost in a grid | 2,304 | 0.656 | Medium | 31,761 |
https://leetcode.com/problems/minimum-path-cost-in-a-grid/discuss/2140985/Python-or-Memoization | class Solution:
def minPathCost(self, grid: list[list[int]], moveCost: list[list[int]]) -> int:
@lru_cache()
def helper(i, j):
if i >= len(grid) - 1:
return grid[i][j]
m_cost = 9999999999
cost = 0
for k in range(len(grid[0])):
cost = grid[i][j] + moveCost[grid[i][j]][k] + helper(i + 1, k)
m_cost = min(cost, m_cost)
return m_cost
cost, min_cost = 0, 999999999999
n = len(grid[0])
for j in range(n):
cost = helper(0, j)
min_cost = min(cost, min_cost)
return min_cost | minimum-path-cost-in-a-grid | Python | Memoization | GigaMoksh | 10 | 1,000 | minimum path cost in a grid | 2,304 | 0.656 | Medium | 31,762 |
https://leetcode.com/problems/minimum-path-cost-in-a-grid/discuss/2140985/Python-or-Memoization | class Solution:
def minPathCost(self, grid: List[List[int]], moveCost: List[List[int]]) -> int:
m, n = len(grid), len(grid[0])
@lru_cache()
def helper(i, j):
if i == 0:
return grid[i][j]
else:
return grid[i][j] + min(moveCost[grid[i - 1][k]][j] + helper(i - 1, k) for k in range(n))
return min(helper(m - 1, j) for j in range(n)) | minimum-path-cost-in-a-grid | Python | Memoization | GigaMoksh | 10 | 1,000 | minimum path cost in a grid | 2,304 | 0.656 | Medium | 31,763 |
https://leetcode.com/problems/minimum-path-cost-in-a-grid/discuss/2141191/Python3-top-down-dp | class Solution:
def minPathCost(self, grid: List[List[int]], moveCost: List[List[int]]) -> int:
m, n = len(grid), len(grid[0])
@cache
def fn(i, j):
"""Return min cost of moving from (i, j) to bottom row."""
if i == m-1: return grid[i][j]
ans = inf
for jj in range(n):
ans = min(ans, grid[i][j] + fn(i+1, jj) + moveCost[grid[i][j]][jj])
return ans
return min(fn(0, j) for j in range(n)) | minimum-path-cost-in-a-grid | [Python3] top-down dp | ye15 | 4 | 251 | minimum path cost in a grid | 2,304 | 0.656 | Medium | 31,764 |
https://leetcode.com/problems/minimum-path-cost-in-a-grid/discuss/2141059/Python-or-DFS-%2B-Memoization | class Solution:
def minPathCost(self, grid: List[List[int]], moveCost: List[List[int]]) -> int:
floor = len(grid) - 1
memo = {}
def dfs(node, level):
key = (node, level)
if key in memo:
return memo[key]
if level == floor:
return node
min_path = float('inf')
for i, next_node in enumerate(grid[level + 1]):
path = dfs(next_node, level + 1) + moveCost[node][i]
min_path = min(min_path, path)
memo[key] = min_path + node
return memo[key]
result = float('inf')
for node in grid[0]:
result = min(result, dfs(node, 0))
return result | minimum-path-cost-in-a-grid | Python | DFS + Memoization | JustKievn | 2 | 38 | minimum path cost in a grid | 2,304 | 0.656 | Medium | 31,765 |
https://leetcode.com/problems/minimum-path-cost-in-a-grid/discuss/2849630/DP | class Solution:
def minPathCost(self, grid: List[List[int]], moveCost: List[List[int]]) -> int:
m = len(grid)
n = len(grid[0])
dummy = [[0]*n for _ in range(m)]
dummy[0] = grid[0]
for i in range(1,m):
for j in range(n):
min_cost = math.inf
for k in range(n):
if min_cost > dummy[i-1][k] + grid[i][j] + moveCost[grid[i-1][k]][j]:
dummy[i][j] = dummy[i-1][k] + grid[i][j] + moveCost[grid[i-1][k]][j]
min_cost = dummy[i-1][k] + grid[i][j] + moveCost[grid[i-1][k]][j]
return(min(dummy[m-1])) | minimum-path-cost-in-a-grid | DP | amanjhurani5 | 0 | 1 | minimum path cost in a grid | 2,304 | 0.656 | Medium | 31,766 |
https://leetcode.com/problems/minimum-path-cost-in-a-grid/discuss/2849437/Python-DP-based-solution | class Solution:
def minPathCost(self, grid: List[List[int]], moveCost: List[List[int]]) -> int:
m = len(grid)
n = len(grid[0])
dp = [[float("inf") for _ in range(n)] for _ in range(m)]
<!-- only way to reach row 0 is from itself -->
for i in range(n):
dp[0][i] = grid[0][i]
for i in range(1, m):
for j in range(n):
for k in range(n):
<!-- dp[i-1][k] is the cost to reach the prev cell-->
<!-- moveCost[grid[i-1][k]][j] is the cost to reach the cell from the diagonal/straight cell in prev row -->
<!-- grid[i][j] is the cost of the cell visited -->
dp[i][j] = min(dp[i][j], dp[i-1][k]+moveCost[grid[i-1][k]][j]+grid[i][j])
return int(min(dp[m-1])) | minimum-path-cost-in-a-grid | Python DP based solution | pranav_hq | 0 | 1 | minimum path cost in a grid | 2,304 | 0.656 | Medium | 31,767 |
https://leetcode.com/problems/minimum-path-cost-in-a-grid/discuss/2848964/Python-easy-to-read-and-understand-or-recursion-%2B-memoization | class Solution:
def solve(self, grid, move, row, col):
m, n = len(grid), len(grid[0])
if row == m-1:
return grid[row][col]
if (row, col) in self.d:
return self.d[(row, col)]
self.d[(row, col)] = float("inf")
for j in range(n):
temp = self.solve(grid, move, row+1, j) + move[grid[row][col]][j] + grid[row][col]
self.d[(row, col)] = min(self.d[(row, col)], temp)
return self.d[(row, col)]
def minPathCost(self, grid: List[List[int]], moveCost: List[List[int]]) -> int:
m, n = len(grid), len(grid[0])
self.d = {}
res = float("inf")
for j in range(n):
res = min(res, self.solve(grid, moveCost, 0, j))
return res | minimum-path-cost-in-a-grid | Python easy to read and understand | recursion + memoization | sanial2001 | 0 | 1 | minimum path cost in a grid | 2,304 | 0.656 | Medium | 31,768 |
https://leetcode.com/problems/minimum-path-cost-in-a-grid/discuss/2153833/python-dp-solution | class Solution(object):
def minPathCost(self, grid, moveCost):
"""
:type grid: List[List[int]]
:type moveCost: List[List[int]]
:rtype: int
"""
m, n = len(grid), len(grid[0])
res = copy.deepcopy(grid)
for i in range(1, m):
for j in range(n):
res[i][j] += min([res[i - 1][k] + moveCost[grid[i - 1][k]][j] for k in range(n)])
return min(res[-1]) | minimum-path-cost-in-a-grid | python dp solution | Kennyyhhu | 0 | 34 | minimum path cost in a grid | 2,304 | 0.656 | Medium | 31,769 |
https://leetcode.com/problems/minimum-path-cost-in-a-grid/discuss/2146195/java-python-simple-easy-fast | class Solution:
def minPathCost(self, grid: List[List[int]], moveCost: List[List[int]]) -> int:
idx = grid[0]
for i in range (1, len(grid)):
add =[1000000000]*len(grid[0])
for j in range (0, len(grid[0])):
for k in range (0, len(grid[0])):
add[k] = min(add[k], grid[i-1][j] + moveCost[idx[j]][k])
for j in range (0, len(grid[0])):
idx[j] = grid[i][j]
grid[i][j] += add[j]
return min(grid[-1]) | minimum-path-cost-in-a-grid | java, python - simple, easy, fast | ZX007java | 0 | 26 | minimum path cost in a grid | 2,304 | 0.656 | Medium | 31,770 |
https://leetcode.com/problems/minimum-path-cost-in-a-grid/discuss/2144985/Python-Dynamic-Programming | class Solution:
def minPathCost(self, grid: List[List[int]], moveCost: List[List[int]]) -> int:
m, n = len(grid), len(grid[0])
dp = [[0 for _ in range(n)] for _ in range(m)]
for j in range(n):
dp[0][j] = grid[0][j]
for i in range(1, m):
for j in range(n):
dp[i][j] = min(dp[i-1][y] + grid[i][j] + moveCost[grid[i-1][y]][j] for y in range(n))
return min(dp[-1]) | minimum-path-cost-in-a-grid | Python Dynamic Programming | lukefall425 | 0 | 23 | minimum path cost in a grid | 2,304 | 0.656 | Medium | 31,771 |
https://leetcode.com/problems/minimum-path-cost-in-a-grid/discuss/2144293/Python-simple-breadth-first-search-with-sensible-use-of-visited-or-alternate-soln%3A-Dijkstra'ish | class Solution:
def minPathCost(self, grid: List[List[int]], moveCost: List[List[int]]) -> int:
q = deque()
m, n = len(grid), len(grid[0])
visited = [[math.inf]*n for d in range(m)]
mincost = math.inf
for j in range(n):
q.append((0, j, grid[0][j]))
visited[0][j] = grid[0][j]
while q:
i, j, cost = q.popleft()
val = grid[i][j]
if cost > visited[i][j]:
continue
if i == m - 1:
mincost = min(mincost, cost)
else:
for newj in range(n):
newcost = cost + moveCost[val][newj] + grid[i+1][newj]
if newcost < visited[i+1][newj]:
visited[i+1][newj] = newcost
q.append((i+1, newj, newcost))
return mincost | minimum-path-cost-in-a-grid | [Python] simple breadth first search with sensible use of visited | alternate soln: Dijkstra'ish | megZo | 0 | 21 | minimum path cost in a grid | 2,304 | 0.656 | Medium | 31,772 |
https://leetcode.com/problems/minimum-path-cost-in-a-grid/discuss/2144293/Python-simple-breadth-first-search-with-sensible-use-of-visited-or-alternate-soln%3A-Dijkstra'ish | class Solution:
def minPathCost(self, grid: List[List[int]], moveCost: List[List[int]]) -> int:
q = []
m, n = len(grid), len(grid[0])
visited = [[math.inf]*n for d in range(m)]
mincost = math.inf
for j in range(n):
heappush(q, (0, j, grid[0][j]))
visited[0][j] = grid[0][j]
while q:
i, j, cost = heappop(q)
val = grid[i][j]
if cost > visited[i][j]:
continue
if i == m - 1:
mincost = min(mincost, cost)
else:
for newj in range(n):
newcost = cost + moveCost[val][newj] + grid[i+1][newj]
if newcost < visited[i+1][newj]:
visited[i+1][newj] = newcost
heappush(q, (i+1, newj, newcost))
return mincost | minimum-path-cost-in-a-grid | [Python] simple breadth first search with sensible use of visited | alternate soln: Dijkstra'ish | megZo | 0 | 21 | minimum path cost in a grid | 2,304 | 0.656 | Medium | 31,773 |
https://leetcode.com/problems/minimum-path-cost-in-a-grid/discuss/2143619/Python-or-Tabulation-or-Bottom-up-DP | class Solution:
def minPathCost(self, grid: List[List[int]], moveCost: List[List[int]]) -> int:
dp = [[[float('inf'),float('inf')] for _ in range(len(grid[0]))] for _ in range(len(grid))]
lmin = float('inf')
for i in range(len(grid)):
for j in range(len(grid[0])):
dp[i][j][0] = grid[i][j]
if i > 0:
for k in range(len(grid[0])):
dp[i][j][1] = min(dp[i][j][1], dp[i-1][k][0] + moveCost[grid[i-1][k]][j])
dp[i][j][0] += dp[i][j][1]
if i == len(grid) - 1:
lmin = min(lmin, dp[i][j][0])
return lmin | minimum-path-cost-in-a-grid | Python | Tabulation | Bottom-up DP | davidseungjin | 0 | 16 | minimum path cost in a grid | 2,304 | 0.656 | Medium | 31,774 |
https://leetcode.com/problems/minimum-path-cost-in-a-grid/discuss/2142001/Weekly-Contest-or-Python-or-Easy-understanding | class Solution:
def minPathCost(self, grid: List[List[int]], moveCost: List[List[int]]) -> int:
max_int = 100000000
dp = [[0] * 100 for i in range(100)]
rows, cols = len(grid), len(grid[0])
for r in range(rows):
for c in range(cols):
if r == 0:
dp[r][c] = grid[r][c]
else:
dp[r][c] = max_int
for k in range(cols):
dp[r][c] = min(dp[r][c], dp[r - 1][k] + grid[r][c] + moveCost[grid[r-1][k]][c])
res = max_int
for i in range(cols):
res = min(res, dp[rows - 1][i])
return res | minimum-path-cost-in-a-grid | Weekly Contest | Python | Easy-understanding | JavanMyna | 0 | 6 | minimum path cost in a grid | 2,304 | 0.656 | Medium | 31,775 |
https://leetcode.com/problems/minimum-path-cost-in-a-grid/discuss/2141174/python-or-memoization | class Solution:
def minPathCost(self, grid: List[List[int]], moveCost: List[List[int]]) -> int:
def DFS(n,m,i,j):
if i == n - 1:
return grid[i][j]
if (i,j) in dp:
return dp[i,j]
ans = float('inf')
for k in range(m):
ele = grid[i][j]
curr = ele + moveCost[ele][k] + DFS(n,m,i+1,k)
ans = min(ans,curr)
dp[i,j] = ans
return dp[i,j]
n,m = len(grid),len(grid[0])
output = float("inf")
dp = {}
for c in range(m):
currCost = DFS(n,m,0,c)
output = min(output,currCost)
return output | minimum-path-cost-in-a-grid | python | memoization | Jashwanthk | 0 | 9 | minimum path cost in a grid | 2,304 | 0.656 | Medium | 31,776 |
https://leetcode.com/problems/minimum-path-cost-in-a-grid/discuss/2141061/Python-DP-solution-or-Optimized-Solution-(memoization) | class Solution:
def minPathCost(self, grid: List[List[int]], moveCost: List[List[int]]) -> int:
l = [[0]*(len(grid[0])) for i in range(len(grid))]
l[0] = grid[0]
for i in range(1,len(grid)):
for j in range(len(grid[0])):
m = float('inf')
for k in range(len(grid[0])):
m = min(m,l[i-1][k] + moveCost[grid[i-1][k]][j])
l[i][j] = m + grid[i][j]
return min(l[-1]) | minimum-path-cost-in-a-grid | Python DP solution | Optimized Solution (memoization) | AkashHooda | 0 | 22 | minimum path cost in a grid | 2,304 | 0.656 | Medium | 31,777 |
https://leetcode.com/problems/minimum-path-cost-in-a-grid/discuss/2141012/Python-or-Bottom-up-DP | class Solution:
def minPathCost(self, grid: List[List[int]], moveCost: List[List[int]]) -> int:
m, n = len(grid), len(grid[0])
dp = [[float('inf') for _ in range(n)] for _ in range(m)]
dp [-1] = grid[-1]
for i in reversed(range(m-1)):
for j in reversed(range(n)):
for k in range(n):
dp[i][j] = min(dp[i][j], grid[i][j] + moveCost[grid[i][j]][k] + dp[i+1][k])
return min(dp[0]) | minimum-path-cost-in-a-grid | Python | Bottom up DP | rbhandu | 0 | 28 | minimum path cost in a grid | 2,304 | 0.656 | Medium | 31,778 |
https://leetcode.com/problems/minimum-path-cost-in-a-grid/discuss/2140979/Python-or-DP | class Solution:
def minPathCost(self, grid: List[List[int]], moveCost: List[List[int]]) -> int:
m = len(grid)
n = len(grid[0])
dic = defaultdict(list)
lastRow = set(grid[-1])
for i in range(m*n):
for j in range(n):
if i in lastRow:
continue
else:
# (cost, dest_col)
dic[i].append((moveCost[i][j], j))
dp = [[float('inf')] * n for _ in range(m)]
for i in range(n):
dp[0][i] = grid[0][i]
for i in range(m-1):
for j in range(n):
start = grid[i][j]
for cost, dest_col in dic[start]:
dp[i + 1][dest_col] = min(dp[i + 1][dest_col], dp[i][j] + cost + grid[i + 1][dest_col])
return min(dp[-1]) | minimum-path-cost-in-a-grid | Python | DP | Mikey98 | 0 | 34 | minimum path cost in a grid | 2,304 | 0.656 | Medium | 31,779 |
https://leetcode.com/problems/fair-distribution-of-cookies/discuss/2141013/Python-optimized-solution-or-Backtracking-Implemented-or-O(KN)-Time-Complexity | class Solution:
def distributeCookies(self, cookies: List[int], k: int) -> int:
l = [0]*k
self.s = float('inf')
def ser(l,i):
if i>=len(cookies):
self.s = min(self.s,max(l))
return
if max(l)>=self.s:
return
for j in range(k):
l[j]+=cookies[i]
ser(l,i+1)
l[j]-=cookies[i]
ser(l,0)
return self.s | fair-distribution-of-cookies | Python optimized solution | Backtracking Implemented | O(K^N) Time Complexity | AkashHooda | 5 | 852 | fair distribution of cookies | 2,305 | 0.626 | Medium | 31,780 |
https://leetcode.com/problems/fair-distribution-of-cookies/discuss/2141241/Python-or-Backtrack-or-Easy-to-Understand | class Solution:
def distributeCookies(self, cookies: List[int], k: int) -> int:
result = float('inf')
children = [0] * k
def backtrack(index):
nonlocal result, children
if index == len(cookies):
result = min(result, max(children))
return
# key point to pass the TLE!
if result <= max(children):
return
for i in range(k):
children[i] += cookies[index]
backtrack(index + 1)
children[i] -= cookies[index]
backtrack(0)
return result | fair-distribution-of-cookies | Python | Backtrack | Easy to Understand | Mikey98 | 2 | 156 | fair distribution of cookies | 2,305 | 0.626 | Medium | 31,781 |
https://leetcode.com/problems/fair-distribution-of-cookies/discuss/2141196/Python3-bitmask-dp | class Solution:
def distributeCookies(self, cookies: List[int], k: int) -> int:
n = len(cookies)
@cache
def fn(mask, k):
"""Return min unfairness of distributing cookies marked by mask to k children."""
if mask == 0: return 0
if k == 0: return inf
ans = inf
orig = mask
while mask:
mask = orig & (mask - 1)
amt = sum(cookies[i] for i in range(n) if (orig ^ mask) & 1<<i)
ans = min(ans, max(amt, fn(mask, k-1)))
return ans
return fn((1<<n)-1, k) | fair-distribution-of-cookies | [Python3] bitmask dp | ye15 | 2 | 189 | fair distribution of cookies | 2,305 | 0.626 | Medium | 31,782 |
https://leetcode.com/problems/fair-distribution-of-cookies/discuss/2147138/Python3-or-BackTracking | class Solution:
def distributeCookies(self, cookies: List[int], k: int) -> int:
bag=[0]*k
self.ans=float('inf')
self.helper(cookies,bag,0,k)
return self.ans
def helper(self,cookies,bag,start,k):
if max(bag)>self.ans:
return
if start>=len(cookies):
temp=max(bag)
self.ans=min(self.ans,temp)
return
for j in range(k):
bag[j]+=cookies[start]
self.helper(cookies,bag,start+1,k)
bag[j]-=cookies[start]
return | fair-distribution-of-cookies | [Python3] | BackTracking | swapnilsingh421 | 1 | 71 | fair distribution of cookies | 2,305 | 0.626 | Medium | 31,783 |
https://leetcode.com/problems/fair-distribution-of-cookies/discuss/2851291/Python-(Simple-Backtracking) | class Solution:
def distributeCookies(self, cookies, k):
if k == len(cookies):
return max(cookies)
self.min_val = float("inf")
def backtrack(idx,ans):
if idx == len(cookies):
self.min_val = min(self.min_val,max(ans))
return
seen = set()
for i in range(k):
if ans[i] in seen: continue
if ans[i] + cookies[idx] >= self.min_val: continue
seen.add(ans[i])
ans[i] += cookies[idx]
backtrack(idx+1,ans)
ans[i] -= cookies[idx]
backtrack(0, [0]*k)
return self.min_val | fair-distribution-of-cookies | Python (Simple Backtracking) | rnotappl | 0 | 1 | fair distribution of cookies | 2,305 | 0.626 | Medium | 31,784 |
https://leetcode.com/problems/fair-distribution-of-cookies/discuss/2829412/Python-or-Bottom-UP-DP | class Solution:
def distributeCookies(self, cookies: List[int], k: int) -> int:
n=len(cookies)
#if the number of kids is equivalent to number of bags then just return the bag with max value
if n==k:
return max(cookies)
#initialize the set
l=[[0]*k]
division=set(tuple(i) for i in l)
#calculate possible permutations for curr number of bags (i+1)
for i in range(n):
div=set()
for d in division:
for j in range(k):
temp=list(d)
temp[j]+=cookies[i]
div.add(tuple(temp))
#we delete the previous set to get rid of previous permutations because we only need ith perm to calculate i+1th perm
del division
division=div
# print(division)
return min([max(t) for t in division]) | fair-distribution-of-cookies | Python | Bottom-UP DP | jaidev2 | 0 | 11 | fair distribution of cookies | 2,305 | 0.626 | Medium | 31,785 |
https://leetcode.com/problems/fair-distribution-of-cookies/discuss/2743811/Backtracking-Python-or-with-bounding-condition-and-no-TLE | class Solution:
def distributeCookies(self, cookies: List[int], k: int) -> int:
def backtrack(bagNumber):
if bagNumber == len(cookies):
self.minResult = min(self.minResult, max(self.fairDistribution))
return
if self.minResult <= max(self.fairDistribution):
return
for child in range(k):
self.fairDistribution[child] += cookies[bagNumber]
backtrack(bagNumber+1)
self.fairDistribution[child] -= cookies[bagNumber]
self.minResult = float('inf')
self.fairDistribution = [0 for _ in range(k)]
if k == len(cookies):
return max(cookies)
backtrack(0)
return self.minResult | fair-distribution-of-cookies | Backtracking - Python | with bounding condition and no TLE | shor123 | 0 | 10 | fair distribution of cookies | 2,305 | 0.626 | Medium | 31,786 |
https://leetcode.com/problems/fair-distribution-of-cookies/discuss/2465990/Python3-or-Avoid-TLE-With-One-Logical-Optimization-Check-Before-Recursing | class Solution:
#Time-Complexity: O(k + k^n), O(k) time to intialize count array but branching factor is
#still in worst case k and height of tree is at worst n!-> O(k^n)
#Space-Complexity: O(k + n) -> O(n) due to call stack for recursion in terms of its
#max depth!
def distributeCookies(self, cookies: List[int], k: int) -> int:
#Approach: For each and every ith bag of cookies, we have k choices! Give it to
#0th index person, 1st index person, ..., k-1th person!
#We can keep track of running total count of cookies per person in pass by ref array,
#as well as the 2d pass by reference array also that keeps track of cookie bag counts
#every ith person has!
#n = number of cookie bags! Used to handle base case!
n = len(cookies)
#initialize min unfairness as garbage value!
ans = float(inf)
#3 paramters
#1. i -> index of which ith cookie bag we are making decision for currently!
#2. cur -> 2d array, passed by ref across rec. calls, which keeps track of
#cookie bags held by each and every person!
#3. count -> total number of cookies per person!
def helper(i, count):
nonlocal n, ans, k, cookies
#base case: index i out of bounds! We distributed each and every bag of cookies!
if(i == n):
#flag will equal True if each and every person has positive amount of cookies!
flag = True
#initialize unfairness!
unfairness = float(-inf)
for e in count:
#check if current count of cookies is zero!
if(e == 0):
flag = False
break
unfairness = max(unfairness, e)
#check boolean flag!
if(flag):
ans = min(ans, unfairness)
return
num_of_cookies = cookies[i]
#iterate through all people!
for a in range(0, k):
#also, update count array!
count[a] += num_of_cookies
#we should only recurse if giving num_of_cookies to ath child causes
#his cookie count < current built up answer! If not, the recursive path
#won't lead to solution anyways -> prevent unnecessary recursive calls!
if(count[a] < ans):
helper(i+1, count)
count[a] -= num_of_cookies
#once for loop is all exhausted, we recursively explored all possible ways to
#give ith bag of cookies to each and every person! So, simply return!
return
#initialize count array initially to kick off recursion!
initial_count = [0 for _ in range(k)]
helper(0, initial_count)
return ans | fair-distribution-of-cookies | Python3 | Avoid TLE With One Logical Optimization Check Before Recursing | JOON1234 | 0 | 80 | fair distribution of cookies | 2,305 | 0.626 | Medium | 31,787 |
https://leetcode.com/problems/fair-distribution-of-cookies/discuss/2465626/Python3-or-How-to-Optimize-to-Avoid-TLE-I-am-Facing | class Solution:
def distributeCookies(self, cookies: List[int], k: int) -> int:
#Approach: For each and every ith bag of cookies, we have k choices! Give it to
#0th index person, 1st index person, ..., k-1th person!
#We can keep track of running total count of cookies per person in pass by ref array,
#as well as the 2d pass by reference array also that keeps track of cookie bag counts
#every ith person has!
#n = number of cookie bags! Used to handle base case!
n = len(cookies)
#initialize min unfairness as garbage value!
ans = float(inf)
#3 paramters
#1. i -> index of which ith cookie bag we are making decision for currently!
#2. cur -> 2d array, passed by ref across rec. calls, which keeps track of
#cookie bags held by each and every person!
#3. count -> total number of cookies per person!
def helper(i, count):
nonlocal n, ans, k, cookies
#base case: index i out of bounds! We distributed each and every bag of cookies!
if(i == n):
#flag will equal True if each and every person has positive amount of cookies!
flag = True
#initialize unfairness!
unfairness = float(-inf)
for e in count:
#check if current count of cookies is zero!
if(e == 0):
flag = False
break
unfairness = max(unfairness, e)
#check boolean flag!
if(flag):
ans = min(ans, unfairness)
return
num_of_cookies = cookies[i]
#iterate through all people!
for a in range(0, k):
#also, update count array!
count[a] += num_of_cookies
#simply recurse!
helper(i+1, count)
count[a] -= num_of_cookies
#once for loop is all exhausted, we recursively explored all possible ways to
#give ith bag of cookies to each and every person! So, simply return!
return
#initialize count array initially to kick off recursion!
initial_count = [0 for _ in range(k)]
helper(0, initial_count)
return ans | fair-distribution-of-cookies | Python3 | How to Optimize to Avoid TLE I am Facing | JOON1234 | 0 | 35 | fair distribution of cookies | 2,305 | 0.626 | Medium | 31,788 |
https://leetcode.com/problems/fair-distribution-of-cookies/discuss/2155799/Python-optimized-or-precompute-or-29ms-less-than-50-backtrack()-calls-per-test | class Solution:
def distributeCookies(self, cookies: List[int], k: int) -> int:
n = len(cookies)
if k == 1:
return sum(cookies)
elif k == n:
return max(cookies)
cookies.sort(reverse=True)
if k == n - 1:
return max(cookies[0], sum(cookies[-2:]))
dist = [0] * k
# precompute an approximate solution
for cookie in cookies:
heappush(dist, heappop(dist) + cookie)
ans = max(dist)
dist = [0] * k
def backtrack(i=0):
nonlocal ans
if i < n:
cookie = cookies[i]
for d, j in {d: j for j, d in enumerate(dist)}.items():
if d + cookie < ans:
dist[j] += cookie
backtrack(i + 1)
dist[j] -= cookie
else:
ans = min(ans, max(dist))
backtrack()
return ans | fair-distribution-of-cookies | Python optimized | precompute | 29ms, less than 50 backtrack() calls per test | jmj1 | 0 | 103 | fair distribution of cookies | 2,305 | 0.626 | Medium | 31,789 |
https://leetcode.com/problems/fair-distribution-of-cookies/discuss/2147178/Python-backtracking | class Solution:
def distributeCookies(self, cookies: List[int], k: int) -> int:
def backtrack(ci, dist):
if ci == len(cookies):
self.result = min(self.result, max(dist))
return
for di in range(k):
dist[di] += cookies[ci]
if dist[di] < self.result:
backtrack(ci + 1, dist)
dist[di] -= cookies[ci]
self.result = math.inf
backtrack(0, [0]*k)
return self.result | fair-distribution-of-cookies | Python, backtracking | blue_sky5 | 0 | 64 | fair distribution of cookies | 2,305 | 0.626 | Medium | 31,790 |
https://leetcode.com/problems/fair-distribution-of-cookies/discuss/2143569/Python-3DP-bit-mask%2B-Binary-search | class Solution:
def distributeCookies(self, cookies: List[int], k: int) -> int:
n = len(cookies)
@lru_cache(None)
def dp(mask, k, tot):
if k < 0 or tot < 0:
return False
if mask == (1 << n) - 1:
return True
for i in range(n):
if mask & (1 << i): continue
if dp(mask ^ (1 << i), k, tot - cookies[i]) or dp(mask, k-1, mid):
return True
return False
l, h = max(cookies), sum(cookies)
while l < h:
mid = l + (h - l) // 2
if dp(0, k-1, mid):
h = mid
else:
l = mid + 1
dp.cache_clear()
return l | fair-distribution-of-cookies | [Python 3]DP bit-mask+ Binary search | chestnut890123 | 0 | 76 | fair distribution of cookies | 2,305 | 0.626 | Medium | 31,791 |
https://leetcode.com/problems/fair-distribution-of-cookies/discuss/2141389/Python-Easy-Backtracking | class Solution:
def distributeCookies(self, cookies: List[int], k: int) -> int:
ans = sum(cookies)
N = len(cookies)
total = [0]*k
def backtrack(i, total):
nonlocal ans
if i == N:
ans = min(ans, max(total))
return
if max(total) >= ans:
return
for j in range(k):
total[j] += cookies[i]
backtrack(i+1, total)
total[j] -= cookies[i]
backtrack(0, total)
return ans | fair-distribution-of-cookies | [Python] Easy Backtracking | nightybear | 0 | 49 | fair distribution of cookies | 2,305 | 0.626 | Medium | 31,792 |
https://leetcode.com/problems/naming-a-company/discuss/2147565/Python-or-Faster-than-100-or-groupby-detailed-explanation | class Solution:
def distinctNames(self, ideas: List[str]) -> int:
names=defaultdict(set)
res=0
#to store first letter as key and followed suffix as val
for i in ideas:
names[i[0]].add(i[1:])
#list of distinct first-letters available in ideas (may or may not contain all alphabets,depends upon elements in ideas)
arr=list(names.keys())
ans,n=0,len(arr)
for i in range(n):
for j in range(i+1,n):
#a,b => 2 distinct first letters
a,b=arr[i],arr[j]
# adding the number of distinct posssible suffixes and multiplying by 2 as the new word formed might be "newword1 newword2" or "newword2 newword1"
res+=len(names[a]-names[b])*len(names[b]-names[a])*2
return res | naming-a-company | Python | Faster than 100% | groupby detailed explanation | anjalianupam23 | 4 | 172 | naming a company | 2,306 | 0.344 | Hard | 31,793 |
https://leetcode.com/problems/naming-a-company/discuss/2315350/Python3.-oror-dict-8-lines-w-explanation-oror-TM%3A-9965 | class Solution: # Suppose, as an example,
# ideas = [azz, byy, cxx, cww, bww, avv].
# Here's the plan:
#
# • We construct a dict with each initial as the key and the set of
# suffixes accompanying that initial. For our example:
# dct = {a:[zz,vv], b:[yy,ww], c:[xx,ww]}
#
# • Next, for each pair of initials we figure out the number of vaiid
# names (we will worry about doubling the # of pairs at the end).
#
# For the pair a, b we get:
# a, b -> ayy & bzz, ayy & bvv, aww & bzz, aww & bvv,
# which is (2 "a" suffixes) x (2 "b" suffixes) = 4.
#
# Continuing:
# a, c -> axx & czz, axx & cvv, aww & czz, aww & cvv.
# again, 2x2 = 4
# However, the remaining pair:
# b, c -> bxx & cyy, {bxx & cww, bww & cyy, bww & cww.} has
# only one valid answer. The pairs in the {} are invalid. The reason
# is that ww is in both suffixes. When we remove that common suffix
# from both sets, we have 1x1 = 1.
#
# • Finally, we determine the answer to return. The # of overall valid
# pairs from above is 4 + 4 + 1 = 9. Each valid pair can be reversed
# to give another. We return the answer 2 x 9 = 18.
def distinctNames(self, ideas: List[str]) -> int:
dct, ans = defaultdict(set), 0
for idea in ideas: # <-- construct the dict w/ initial:{suffixes}
dct[idea[0]].add(idea[1:]) # and sort the items to get a list of tuples to
d = sorted(dct.items()) # help do the counting
for init1, suff1 in d: # <-- evaluate the number for each pair of initials
for init2, suff2 in d:
if init2 >= init1: break
c = len(suff1&suff2) # <-- determine the # of suffixes in
ans += (len(suff1)-c) * (len(suff2)-c) # common, and subtract that number from
# the each suffix # before multiplying.
return ans * 2 # <-- finally, return the sum times 2. | naming-a-company | Python3. || dict, 8 lines, w/ explanation || T/M: 99%/65% | warrenruud | 3 | 111 | naming a company | 2,306 | 0.344 | Hard | 31,794 |
https://leetcode.com/problems/naming-a-company/discuss/2141202/Python3-freq-table | class Solution:
def distinctNames(self, ideas: List[str]) -> int:
seen = set(ideas)
freq = Counter()
letters = {x[0] for x in ideas}
for idea in ideas:
for ch in letters:
if ch + idea[1:] not in seen: freq[idea[0], ch] += 1
ans = 0
for idea in ideas:
for ch in letters:
if ch + idea[1:] not in seen: ans += freq[ch, idea[0]]
return ans | naming-a-company | [Python3] freq table | ye15 | 1 | 51 | naming a company | 2,306 | 0.344 | Hard | 31,795 |
https://leetcode.com/problems/greatest-english-letter-in-upper-and-lower-case/discuss/2168442/Counter | class Solution:
def greatestLetter(self, s: str) -> str:
cnt = Counter(s)
return next((u for u in reversed(ascii_uppercase) if cnt[u] and cnt[u.lower()]), "") | greatest-english-letter-in-upper-and-lower-case | Counter | votrubac | 37 | 2,500 | greatest english letter in upper and lower case | 2,309 | 0.686 | Easy | 31,796 |
https://leetcode.com/problems/greatest-english-letter-in-upper-and-lower-case/discuss/2731538/python-oror-O(N) | class Solution:
def greatestLetter(self, s: str) -> str:
s = set(s)
upper, lower = ord('Z'), ord('z')
for i in range(26):
if chr(upper - i) in s and chr(lower - i) in s:
return chr(upper - i)
return '' | greatest-english-letter-in-upper-and-lower-case | python || O(N) | Sneh713 | 2 | 68 | greatest english letter in upper and lower case | 2,309 | 0.686 | Easy | 31,797 |
https://leetcode.com/problems/greatest-english-letter-in-upper-and-lower-case/discuss/2421496/Python-Elegant-and-Short-or-98.51-faster-or-Two-solutions-or-O(n*log(n))-and-O(n) | class Solution:
"""
Time: O(2*26*log(2*26))
Memory: O(2*26)
"""
def greatestLetter(self, s: str) -> str:
letters = set(s)
for ltr in sorted(letters, reverse=True):
if ltr.isupper() and ltr.lower() in letters:
return ltr
return ''
class Solution:
"""
Time: O(2*26)
Memory: O(2*26)
"""
def greatestLetter(self, s: str) -> str:
letters = set(s)
greatest = ''
for ltr in letters:
if ltr.isupper() and ltr.lower() in letters:
greatest = max(ltr, greatest)
return greatest | greatest-english-letter-in-upper-and-lower-case | Python Elegant & Short | 98.51% faster | Two solutions | O(n*log(n)) and O(n) | Kyrylo-Ktl | 2 | 99 | greatest english letter in upper and lower case | 2,309 | 0.686 | Easy | 31,798 |
https://leetcode.com/problems/greatest-english-letter-in-upper-and-lower-case/discuss/2176707/Simple-Python-Solution | class Solution:
def greatestLetter(self, s: str) -> str:
l=['A','B','C','D','E','F','G','H','I','J','K','L','M','N','O','P','Q','R','S','T','U','V','W','X','Y','Z']
for i in l[::-1]:
if i.lower() in s and i in s:
return i
return "" | greatest-english-letter-in-upper-and-lower-case | Simple Python Solution | glavanya | 2 | 63 | greatest english letter in upper and lower case | 2,309 | 0.686 | Easy | 31,799 |
Subsets and Splits