body
stringlengths
26
98.2k
body_hash
int64
-9,222,864,604,528,158,000
9,221,803,474B
docstring
stringlengths
1
16.8k
path
stringlengths
5
230
name
stringlengths
1
96
repository_name
stringlengths
7
89
lang
stringclasses
1 value
body_without_docstring
stringlengths
20
98.2k
def write(self, data): 'Send raw bytes to the instrument.\n\n :param data: bytes to be sent to the instrument\n :type data: bytes\n ' (begin, end, size) = (0, 0, len(data)) bytes_sent = 0 raw_write = super(USBTMC, self).write while ((end == 0) or (end < size)): (begin, end) = (end, (begin + self.RECV_CHUNK)) self._btag = ((self._btag % 255) + 1) eom = (end >= size) data = BulkOutMessage.build_array(self._btag, eom, data[begin:end]) bytes_sent += raw_write(data) return size
-2,811,891,068,964,354,000
Send raw bytes to the instrument. :param data: bytes to be sent to the instrument :type data: bytes
pyvisa-py/protocols/usbtmc.py
write
circuitfox/pyvisa-py
python
def write(self, data): 'Send raw bytes to the instrument.\n\n :param data: bytes to be sent to the instrument\n :type data: bytes\n ' (begin, end, size) = (0, 0, len(data)) bytes_sent = 0 raw_write = super(USBTMC, self).write while ((end == 0) or (end < size)): (begin, end) = (end, (begin + self.RECV_CHUNK)) self._btag = ((self._btag % 255) + 1) eom = (end >= size) data = BulkOutMessage.build_array(self._btag, eom, data[begin:end]) bytes_sent += raw_write(data) return size
def testV1ScaleIOVolumeSource(self): '\n Test V1ScaleIOVolumeSource\n ' pass
7,621,895,843,589,934,000
Test V1ScaleIOVolumeSource
kubernetes/test/test_v1_scale_io_volume_source.py
testV1ScaleIOVolumeSource
MiaoRachelYu/python
python
def testV1ScaleIOVolumeSource(self): '\n \n ' pass
def create_tenant(self, name: str, slug: str=None) -> str: '\n Creates a new tenant.\n\n Note this route only works when run against Prefect Server.\n\n Args:\n - name (str): the name of the tenant to create\n - slug (str, optional): the slug of the tenant to create; defaults to name\n\n Returns:\n - str: the ID of the newly created tenant, or the ID of the currently active tenant\n\n Raises:\n - ValueError: if run against Prefect Cloud\n ' if (prefect.config.backend != 'server'): msg = 'To create a tenant with Prefect Cloud, please signup at https://cloud.prefect.io/' raise ValueError(msg) if (slug is None): slug = slugify(name) tenant_info = self.graphql({'mutation($input: create_tenant_input!)': {'create_tenant(input: $input)': {'id'}}}, variables=dict(input=dict(name=name, slug=slug))) return tenant_info.data.create_tenant.id
4,363,685,843,409,000,400
Creates a new tenant. Note this route only works when run against Prefect Server. Args: - name (str): the name of the tenant to create - slug (str, optional): the slug of the tenant to create; defaults to name Returns: - str: the ID of the newly created tenant, or the ID of the currently active tenant Raises: - ValueError: if run against Prefect Cloud
src/prefect/client/client.py
create_tenant
zmac12/prefect
python
def create_tenant(self, name: str, slug: str=None) -> str: '\n Creates a new tenant.\n\n Note this route only works when run against Prefect Server.\n\n Args:\n - name (str): the name of the tenant to create\n - slug (str, optional): the slug of the tenant to create; defaults to name\n\n Returns:\n - str: the ID of the newly created tenant, or the ID of the currently active tenant\n\n Raises:\n - ValueError: if run against Prefect Cloud\n ' if (prefect.config.backend != 'server'): msg = 'To create a tenant with Prefect Cloud, please signup at https://cloud.prefect.io/' raise ValueError(msg) if (slug is None): slug = slugify(name) tenant_info = self.graphql({'mutation($input: create_tenant_input!)': {'create_tenant(input: $input)': {'id'}}}, variables=dict(input=dict(name=name, slug=slug))) return tenant_info.data.create_tenant.id
def get(self, path: str, server: str=None, headers: dict=None, params: Dict[(str, JSONLike)]=None, token: str=None, retry_on_api_error: bool=True) -> dict: "\n Convenience function for calling the Prefect API with token auth and GET request\n\n Args:\n - path (str): the path of the API url. For example, to GET\n http://prefect-server/v1/auth/login, path would be 'auth/login'.\n - server (str, optional): the server to send the GET request to;\n defaults to `self.api_server`\n - headers (dict, optional): Headers to pass with the request\n - params (dict): GET parameters\n - token (str): an auth token. If not supplied, the `client.access_token` is used.\n - retry_on_api_error (bool): whether the operation should be retried if the API returns\n an API_ERROR code\n\n Returns:\n - dict: Dictionary representation of the request made\n " response = self._request(method='GET', path=path, params=params, server=server, headers=headers, token=token, retry_on_api_error=retry_on_api_error) if response.text: return response.json() else: return {}
-2,281,131,258,830,956,500
Convenience function for calling the Prefect API with token auth and GET request Args: - path (str): the path of the API url. For example, to GET http://prefect-server/v1/auth/login, path would be 'auth/login'. - server (str, optional): the server to send the GET request to; defaults to `self.api_server` - headers (dict, optional): Headers to pass with the request - params (dict): GET parameters - token (str): an auth token. If not supplied, the `client.access_token` is used. - retry_on_api_error (bool): whether the operation should be retried if the API returns an API_ERROR code Returns: - dict: Dictionary representation of the request made
src/prefect/client/client.py
get
zmac12/prefect
python
def get(self, path: str, server: str=None, headers: dict=None, params: Dict[(str, JSONLike)]=None, token: str=None, retry_on_api_error: bool=True) -> dict: "\n Convenience function for calling the Prefect API with token auth and GET request\n\n Args:\n - path (str): the path of the API url. For example, to GET\n http://prefect-server/v1/auth/login, path would be 'auth/login'.\n - server (str, optional): the server to send the GET request to;\n defaults to `self.api_server`\n - headers (dict, optional): Headers to pass with the request\n - params (dict): GET parameters\n - token (str): an auth token. If not supplied, the `client.access_token` is used.\n - retry_on_api_error (bool): whether the operation should be retried if the API returns\n an API_ERROR code\n\n Returns:\n - dict: Dictionary representation of the request made\n " response = self._request(method='GET', path=path, params=params, server=server, headers=headers, token=token, retry_on_api_error=retry_on_api_error) if response.text: return response.json() else: return {}
def post(self, path: str, server: str=None, headers: dict=None, params: Dict[(str, JSONLike)]=None, token: str=None, retry_on_api_error: bool=True) -> dict: "\n Convenience function for calling the Prefect API with token auth and POST request\n\n Args:\n - path (str): the path of the API url. For example, to POST\n http://prefect-server/v1/auth/login, path would be 'auth/login'.\n - server (str, optional): the server to send the POST request to;\n defaults to `self.api_server`\n - headers(dict): headers to pass with the request\n - params (dict): POST parameters\n - token (str): an auth token. If not supplied, the `client.access_token` is used.\n - retry_on_api_error (bool): whether the operation should be retried if the API returns\n an API_ERROR code\n\n Returns:\n - dict: Dictionary representation of the request made\n " response = self._request(method='POST', path=path, params=params, server=server, headers=headers, token=token, retry_on_api_error=retry_on_api_error) if response.text: return response.json() else: return {}
-5,386,446,069,364,894,000
Convenience function for calling the Prefect API with token auth and POST request Args: - path (str): the path of the API url. For example, to POST http://prefect-server/v1/auth/login, path would be 'auth/login'. - server (str, optional): the server to send the POST request to; defaults to `self.api_server` - headers(dict): headers to pass with the request - params (dict): POST parameters - token (str): an auth token. If not supplied, the `client.access_token` is used. - retry_on_api_error (bool): whether the operation should be retried if the API returns an API_ERROR code Returns: - dict: Dictionary representation of the request made
src/prefect/client/client.py
post
zmac12/prefect
python
def post(self, path: str, server: str=None, headers: dict=None, params: Dict[(str, JSONLike)]=None, token: str=None, retry_on_api_error: bool=True) -> dict: "\n Convenience function for calling the Prefect API with token auth and POST request\n\n Args:\n - path (str): the path of the API url. For example, to POST\n http://prefect-server/v1/auth/login, path would be 'auth/login'.\n - server (str, optional): the server to send the POST request to;\n defaults to `self.api_server`\n - headers(dict): headers to pass with the request\n - params (dict): POST parameters\n - token (str): an auth token. If not supplied, the `client.access_token` is used.\n - retry_on_api_error (bool): whether the operation should be retried if the API returns\n an API_ERROR code\n\n Returns:\n - dict: Dictionary representation of the request made\n " response = self._request(method='POST', path=path, params=params, server=server, headers=headers, token=token, retry_on_api_error=retry_on_api_error) if response.text: return response.json() else: return {}
def graphql(self, query: Any, raise_on_error: bool=True, headers: Dict[(str, str)]=None, variables: Dict[(str, JSONLike)]=None, token: str=None, retry_on_api_error: bool=True) -> GraphQLResult: '\n Convenience function for running queries against the Prefect GraphQL API\n\n Args:\n - query (Any): A representation of a graphql query to be executed. It will be\n parsed by prefect.utilities.graphql.parse_graphql().\n - raise_on_error (bool): if True, a `ClientError` will be raised if the GraphQL\n returns any `errors`.\n - headers (dict): any additional headers that should be passed as part of the\n request\n - variables (dict): Variables to be filled into a query with the key being\n equivalent to the variables that are accepted by the query\n - token (str): an auth token. If not supplied, the `client.access_token` is used.\n - retry_on_api_error (bool): whether the operation should be retried if the API returns\n an API_ERROR code\n\n Returns:\n - dict: Data returned from the GraphQL query\n\n Raises:\n - ClientError if there are errors raised by the GraphQL mutation\n ' result = self.post(path='', server=self.api_server, headers=headers, params=dict(query=parse_graphql(query), variables=json.dumps(variables)), token=token, retry_on_api_error=retry_on_api_error) if (raise_on_error and ('errors' in result)): if ('UNAUTHENTICATED' in str(result['errors'])): raise AuthorizationError(result['errors']) elif ('Malformed Authorization header' in str(result['errors'])): raise AuthorizationError(result['errors']) elif (result['errors'][0].get('extensions', {}).get('code') == 'VERSION_LOCKING_ERROR'): raise VersionLockError(result['errors']) raise ClientError(result['errors']) else: return GraphQLResult(result)
6,395,111,916,919,576,000
Convenience function for running queries against the Prefect GraphQL API Args: - query (Any): A representation of a graphql query to be executed. It will be parsed by prefect.utilities.graphql.parse_graphql(). - raise_on_error (bool): if True, a `ClientError` will be raised if the GraphQL returns any `errors`. - headers (dict): any additional headers that should be passed as part of the request - variables (dict): Variables to be filled into a query with the key being equivalent to the variables that are accepted by the query - token (str): an auth token. If not supplied, the `client.access_token` is used. - retry_on_api_error (bool): whether the operation should be retried if the API returns an API_ERROR code Returns: - dict: Data returned from the GraphQL query Raises: - ClientError if there are errors raised by the GraphQL mutation
src/prefect/client/client.py
graphql
zmac12/prefect
python
def graphql(self, query: Any, raise_on_error: bool=True, headers: Dict[(str, str)]=None, variables: Dict[(str, JSONLike)]=None, token: str=None, retry_on_api_error: bool=True) -> GraphQLResult: '\n Convenience function for running queries against the Prefect GraphQL API\n\n Args:\n - query (Any): A representation of a graphql query to be executed. It will be\n parsed by prefect.utilities.graphql.parse_graphql().\n - raise_on_error (bool): if True, a `ClientError` will be raised if the GraphQL\n returns any `errors`.\n - headers (dict): any additional headers that should be passed as part of the\n request\n - variables (dict): Variables to be filled into a query with the key being\n equivalent to the variables that are accepted by the query\n - token (str): an auth token. If not supplied, the `client.access_token` is used.\n - retry_on_api_error (bool): whether the operation should be retried if the API returns\n an API_ERROR code\n\n Returns:\n - dict: Data returned from the GraphQL query\n\n Raises:\n - ClientError if there are errors raised by the GraphQL mutation\n ' result = self.post(path=, server=self.api_server, headers=headers, params=dict(query=parse_graphql(query), variables=json.dumps(variables)), token=token, retry_on_api_error=retry_on_api_error) if (raise_on_error and ('errors' in result)): if ('UNAUTHENTICATED' in str(result['errors'])): raise AuthorizationError(result['errors']) elif ('Malformed Authorization header' in str(result['errors'])): raise AuthorizationError(result['errors']) elif (result['errors'][0].get('extensions', {}).get('code') == 'VERSION_LOCKING_ERROR'): raise VersionLockError(result['errors']) raise ClientError(result['errors']) else: return GraphQLResult(result)
def _request(self, method: str, path: str, params: Dict[(str, JSONLike)]=None, server: str=None, headers: dict=None, token: str=None, retry_on_api_error: bool=True) -> 'requests.models.Response': '\n Runs any specified request (GET, POST, DELETE) against the server\n\n Args:\n - method (str): The type of request to be made (GET, POST, DELETE)\n - path (str): Path of the API URL\n - params (dict, optional): Parameters used for the request\n - server (str, optional): The server to make requests against, base API\n server is used if not specified\n - headers (dict, optional): Headers to pass with the request\n - token (str): an auth token. If not supplied, the `client.access_token` is used.\n - retry_on_api_error (bool): whether the operation should be retried if the API returns\n an API_ERROR code\n\n Returns:\n - requests.models.Response: The response returned from the request\n\n Raises:\n - ClientError: if the client token is not in the context (due to not being logged in)\n - ValueError: if a method is specified outside of the accepted GET, POST, DELETE\n - requests.HTTPError: if a status code is returned that is not `200` or `401`\n ' if (server is None): server = self.api_server assert isinstance(server, str) if (token is None): token = self.get_auth_token() import requests url = urljoin(server, path.lstrip('/')).rstrip('/') params = (params or {}) headers = (headers or {}) if token: headers['Authorization'] = 'Bearer {}'.format(token) headers['X-PREFECT-CORE-VERSION'] = str(prefect.__version__) if self._attached_headers: headers.update(self._attached_headers) session = requests.Session() retry_total = (6 if (prefect.config.backend == 'cloud') else 1) retries = requests.packages.urllib3.util.retry.Retry(total=retry_total, backoff_factor=1, status_forcelist=[500, 502, 503, 504], method_whitelist=['DELETE', 'GET', 'POST']) session.mount('https://', requests.adapters.HTTPAdapter(max_retries=retries)) response = self._send_request(session=session, method=method, url=url, params=params, headers=headers) try: json_resp = response.json() except JSONDecodeError as exc: if ((prefect.config.backend == 'cloud') and ('Authorization' not in headers)): raise ClientError('Malformed response received from Cloud - please ensure that you have an API token properly configured.') from exc else: raise ClientError('Malformed response received from API.') from exc if (('API_ERROR' in str(json_resp.get('errors'))) and retry_on_api_error): (success, retry_count) = (False, 0) while ((success is False) and (retry_count < 6)): response = self._send_request(session=session, method=method, url=url, params=params, headers=headers) if ('API_ERROR' in str(response.json().get('errors'))): retry_count += 1 time.sleep((0.25 * (2 ** (retry_count - 1)))) else: success = True return response
-4,203,393,476,046,338,000
Runs any specified request (GET, POST, DELETE) against the server Args: - method (str): The type of request to be made (GET, POST, DELETE) - path (str): Path of the API URL - params (dict, optional): Parameters used for the request - server (str, optional): The server to make requests against, base API server is used if not specified - headers (dict, optional): Headers to pass with the request - token (str): an auth token. If not supplied, the `client.access_token` is used. - retry_on_api_error (bool): whether the operation should be retried if the API returns an API_ERROR code Returns: - requests.models.Response: The response returned from the request Raises: - ClientError: if the client token is not in the context (due to not being logged in) - ValueError: if a method is specified outside of the accepted GET, POST, DELETE - requests.HTTPError: if a status code is returned that is not `200` or `401`
src/prefect/client/client.py
_request
zmac12/prefect
python
def _request(self, method: str, path: str, params: Dict[(str, JSONLike)]=None, server: str=None, headers: dict=None, token: str=None, retry_on_api_error: bool=True) -> 'requests.models.Response': '\n Runs any specified request (GET, POST, DELETE) against the server\n\n Args:\n - method (str): The type of request to be made (GET, POST, DELETE)\n - path (str): Path of the API URL\n - params (dict, optional): Parameters used for the request\n - server (str, optional): The server to make requests against, base API\n server is used if not specified\n - headers (dict, optional): Headers to pass with the request\n - token (str): an auth token. If not supplied, the `client.access_token` is used.\n - retry_on_api_error (bool): whether the operation should be retried if the API returns\n an API_ERROR code\n\n Returns:\n - requests.models.Response: The response returned from the request\n\n Raises:\n - ClientError: if the client token is not in the context (due to not being logged in)\n - ValueError: if a method is specified outside of the accepted GET, POST, DELETE\n - requests.HTTPError: if a status code is returned that is not `200` or `401`\n ' if (server is None): server = self.api_server assert isinstance(server, str) if (token is None): token = self.get_auth_token() import requests url = urljoin(server, path.lstrip('/')).rstrip('/') params = (params or {}) headers = (headers or {}) if token: headers['Authorization'] = 'Bearer {}'.format(token) headers['X-PREFECT-CORE-VERSION'] = str(prefect.__version__) if self._attached_headers: headers.update(self._attached_headers) session = requests.Session() retry_total = (6 if (prefect.config.backend == 'cloud') else 1) retries = requests.packages.urllib3.util.retry.Retry(total=retry_total, backoff_factor=1, status_forcelist=[500, 502, 503, 504], method_whitelist=['DELETE', 'GET', 'POST']) session.mount('https://', requests.adapters.HTTPAdapter(max_retries=retries)) response = self._send_request(session=session, method=method, url=url, params=params, headers=headers) try: json_resp = response.json() except JSONDecodeError as exc: if ((prefect.config.backend == 'cloud') and ('Authorization' not in headers)): raise ClientError('Malformed response received from Cloud - please ensure that you have an API token properly configured.') from exc else: raise ClientError('Malformed response received from API.') from exc if (('API_ERROR' in str(json_resp.get('errors'))) and retry_on_api_error): (success, retry_count) = (False, 0) while ((success is False) and (retry_count < 6)): response = self._send_request(session=session, method=method, url=url, params=params, headers=headers) if ('API_ERROR' in str(response.json().get('errors'))): retry_count += 1 time.sleep((0.25 * (2 ** (retry_count - 1)))) else: success = True return response
def attach_headers(self, headers: dict) -> None: '\n Set headers to be attached to this Client\n\n Args:\n - headers (dict): A dictionary of headers to attach to this client. These headers\n get added on to the existing dictionary of headers.\n ' self._attached_headers.update(headers)
-7,213,665,426,098,937,000
Set headers to be attached to this Client Args: - headers (dict): A dictionary of headers to attach to this client. These headers get added on to the existing dictionary of headers.
src/prefect/client/client.py
attach_headers
zmac12/prefect
python
def attach_headers(self, headers: dict) -> None: '\n Set headers to be attached to this Client\n\n Args:\n - headers (dict): A dictionary of headers to attach to this client. These headers\n get added on to the existing dictionary of headers.\n ' self._attached_headers.update(headers)
@property def _local_settings_path(self) -> Path: '\n Returns the local settings directory corresponding to the current API servers\n ' path = '{home}/client/{server}'.format(home=prefect.context.config.home_dir, server=slugify(self.api_server, regex_pattern='[^-\\.a-z0-9]+')) return (Path(os.path.expanduser(path)) / 'settings.toml')
-4,684,211,161,303,825,000
Returns the local settings directory corresponding to the current API servers
src/prefect/client/client.py
_local_settings_path
zmac12/prefect
python
@property def _local_settings_path(self) -> Path: '\n \n ' path = '{home}/client/{server}'.format(home=prefect.context.config.home_dir, server=slugify(self.api_server, regex_pattern='[^-\\.a-z0-9]+')) return (Path(os.path.expanduser(path)) / 'settings.toml')
def _save_local_settings(self, settings: dict) -> None: '\n Writes settings to local storage\n ' self._local_settings_path.parent.mkdir(exist_ok=True, parents=True) with self._local_settings_path.open('w+') as f: toml.dump(settings, f)
7,160,887,922,359,211,000
Writes settings to local storage
src/prefect/client/client.py
_save_local_settings
zmac12/prefect
python
def _save_local_settings(self, settings: dict) -> None: '\n \n ' self._local_settings_path.parent.mkdir(exist_ok=True, parents=True) with self._local_settings_path.open('w+') as f: toml.dump(settings, f)
def _load_local_settings(self) -> dict: '\n Loads settings from local storage\n ' if self._local_settings_path.exists(): with self._local_settings_path.open('r') as f: return toml.load(f) return {}
-4,027,457,190,338,211,000
Loads settings from local storage
src/prefect/client/client.py
_load_local_settings
zmac12/prefect
python
def _load_local_settings(self) -> dict: '\n \n ' if self._local_settings_path.exists(): with self._local_settings_path.open('r') as f: return toml.load(f) return {}
def save_api_token(self) -> None: '\n Saves the API token in local storage.\n ' settings = self._load_local_settings() settings['api_token'] = self._api_token self._save_local_settings(settings)
-1,917,627,436,893,828,400
Saves the API token in local storage.
src/prefect/client/client.py
save_api_token
zmac12/prefect
python
def save_api_token(self) -> None: '\n \n ' settings = self._load_local_settings() settings['api_token'] = self._api_token self._save_local_settings(settings)
def get_auth_token(self) -> str: "\n Returns an auth token:\n - if no explicit access token is stored, returns the api token\n - if there is an access token:\n - if there's a refresh token and the access token expires in the next 30 seconds,\n then we refresh the access token and store the result\n - return the access token\n\n Returns:\n - str: the access token\n " if (not self._access_token): return self._api_token expiration = (self._access_token_expires_at or pendulum.now()) if (self._refresh_token and (pendulum.now().add(seconds=30) > expiration)): self._refresh_access_token() return self._access_token
-1,884,620,996,661,254,100
Returns an auth token: - if no explicit access token is stored, returns the api token - if there is an access token: - if there's a refresh token and the access token expires in the next 30 seconds, then we refresh the access token and store the result - return the access token Returns: - str: the access token
src/prefect/client/client.py
get_auth_token
zmac12/prefect
python
def get_auth_token(self) -> str: "\n Returns an auth token:\n - if no explicit access token is stored, returns the api token\n - if there is an access token:\n - if there's a refresh token and the access token expires in the next 30 seconds,\n then we refresh the access token and store the result\n - return the access token\n\n Returns:\n - str: the access token\n " if (not self._access_token): return self._api_token expiration = (self._access_token_expires_at or pendulum.now()) if (self._refresh_token and (pendulum.now().add(seconds=30) > expiration)): self._refresh_access_token() return self._access_token
def get_available_tenants(self) -> List[Dict]: '\n Returns a list of available tenants.\n\n NOTE: this should only be called by users who have provided a USER-scoped API token.\n\n Returns:\n - List[Dict]: a list of dictionaries containing the id, slug, and name of\n available tenants\n ' result = self.graphql({'query': {'tenant(order_by: {slug: asc})': {'id', 'slug', 'name'}}}, token=self._api_token) return result.data.tenant
-4,935,558,625,172,033,000
Returns a list of available tenants. NOTE: this should only be called by users who have provided a USER-scoped API token. Returns: - List[Dict]: a list of dictionaries containing the id, slug, and name of available tenants
src/prefect/client/client.py
get_available_tenants
zmac12/prefect
python
def get_available_tenants(self) -> List[Dict]: '\n Returns a list of available tenants.\n\n NOTE: this should only be called by users who have provided a USER-scoped API token.\n\n Returns:\n - List[Dict]: a list of dictionaries containing the id, slug, and name of\n available tenants\n ' result = self.graphql({'query': {'tenant(order_by: {slug: asc})': {'id', 'slug', 'name'}}}, token=self._api_token) return result.data.tenant
def login_to_tenant(self, tenant_slug: str=None, tenant_id: str=None) -> bool: "\n Log in to a specific tenant\n\n NOTE: this should only be called by users who have provided a USER-scoped API token.\n\n Args:\n - tenant_slug (str): the tenant's slug\n - tenant_id (str): the tenant's id\n\n Returns:\n - bool: True if the login was successful\n\n Raises:\n - ValueError: if at least one of `tenant_slug` or `tenant_id` isn't provided\n - ValueError: if the `tenant_id` is not a valid UUID\n - ValueError: if no matching tenants are found\n\n " if ((tenant_slug is None) and (tenant_id is None)): raise ValueError('At least one of `tenant_slug` or `tenant_id` must be provided.') elif tenant_id: try: uuid.UUID(tenant_id) except ValueError as exc: raise ValueError('The `tenant_id` must be a valid UUID.') from exc tenant = self.graphql({'query($slug: String, $id: uuid)': {'tenant(where: {slug: { _eq: $slug }, id: { _eq: $id } })': {'id'}}}, variables=dict(slug=tenant_slug, id=tenant_id), token=self._api_token) if (not tenant.data.tenant): raise ValueError('No matching tenants found.') tenant_id = tenant.data.tenant[0].id if (prefect.config.backend == 'cloud'): payload = self.graphql({'mutation($input: switch_tenant_input!)': {'switch_tenant(input: $input)': {'access_token', 'expires_at', 'refresh_token'}}}, variables=dict(input=dict(tenant_id=tenant_id)), token=self._api_token) self._access_token = payload.data.switch_tenant.access_token self._access_token_expires_at = pendulum.parse(payload.data.switch_tenant.expires_at) self._refresh_token = payload.data.switch_tenant.refresh_token self._active_tenant_id = tenant_id settings = self._load_local_settings() settings['active_tenant_id'] = self._active_tenant_id self._save_local_settings(settings) return True
-1,303,885,025,766,660,600
Log in to a specific tenant NOTE: this should only be called by users who have provided a USER-scoped API token. Args: - tenant_slug (str): the tenant's slug - tenant_id (str): the tenant's id Returns: - bool: True if the login was successful Raises: - ValueError: if at least one of `tenant_slug` or `tenant_id` isn't provided - ValueError: if the `tenant_id` is not a valid UUID - ValueError: if no matching tenants are found
src/prefect/client/client.py
login_to_tenant
zmac12/prefect
python
def login_to_tenant(self, tenant_slug: str=None, tenant_id: str=None) -> bool: "\n Log in to a specific tenant\n\n NOTE: this should only be called by users who have provided a USER-scoped API token.\n\n Args:\n - tenant_slug (str): the tenant's slug\n - tenant_id (str): the tenant's id\n\n Returns:\n - bool: True if the login was successful\n\n Raises:\n - ValueError: if at least one of `tenant_slug` or `tenant_id` isn't provided\n - ValueError: if the `tenant_id` is not a valid UUID\n - ValueError: if no matching tenants are found\n\n " if ((tenant_slug is None) and (tenant_id is None)): raise ValueError('At least one of `tenant_slug` or `tenant_id` must be provided.') elif tenant_id: try: uuid.UUID(tenant_id) except ValueError as exc: raise ValueError('The `tenant_id` must be a valid UUID.') from exc tenant = self.graphql({'query($slug: String, $id: uuid)': {'tenant(where: {slug: { _eq: $slug }, id: { _eq: $id } })': {'id'}}}, variables=dict(slug=tenant_slug, id=tenant_id), token=self._api_token) if (not tenant.data.tenant): raise ValueError('No matching tenants found.') tenant_id = tenant.data.tenant[0].id if (prefect.config.backend == 'cloud'): payload = self.graphql({'mutation($input: switch_tenant_input!)': {'switch_tenant(input: $input)': {'access_token', 'expires_at', 'refresh_token'}}}, variables=dict(input=dict(tenant_id=tenant_id)), token=self._api_token) self._access_token = payload.data.switch_tenant.access_token self._access_token_expires_at = pendulum.parse(payload.data.switch_tenant.expires_at) self._refresh_token = payload.data.switch_tenant.refresh_token self._active_tenant_id = tenant_id settings = self._load_local_settings() settings['active_tenant_id'] = self._active_tenant_id self._save_local_settings(settings) return True
def _refresh_access_token(self) -> bool: "\n Refresh the client's JWT access token.\n\n NOTE: this should only be called by users who have provided a USER-scoped API token.\n\n Returns:\n - bool: True if the refresh succeeds\n " payload = self.graphql({'mutation($input: refresh_token_input!)': {'refresh_token(input: $input)': {'access_token', 'expires_at', 'refresh_token'}}}, variables=dict(input=dict(access_token=self._access_token)), token=self._refresh_token) self._access_token = payload.data.refresh_token.access_token self._access_token_expires_at = pendulum.parse(payload.data.refresh_token.expires_at) self._refresh_token = payload.data.refresh_token.refresh_token return True
674,399,932,671,175,400
Refresh the client's JWT access token. NOTE: this should only be called by users who have provided a USER-scoped API token. Returns: - bool: True if the refresh succeeds
src/prefect/client/client.py
_refresh_access_token
zmac12/prefect
python
def _refresh_access_token(self) -> bool: "\n Refresh the client's JWT access token.\n\n NOTE: this should only be called by users who have provided a USER-scoped API token.\n\n Returns:\n - bool: True if the refresh succeeds\n " payload = self.graphql({'mutation($input: refresh_token_input!)': {'refresh_token(input: $input)': {'access_token', 'expires_at', 'refresh_token'}}}, variables=dict(input=dict(access_token=self._access_token)), token=self._refresh_token) self._access_token = payload.data.refresh_token.access_token self._access_token_expires_at = pendulum.parse(payload.data.refresh_token.expires_at) self._refresh_token = payload.data.refresh_token.refresh_token return True
def register(self, flow: 'Flow', project_name: str=None, build: bool=True, set_schedule_active: bool=True, version_group_id: str=None, compressed: bool=True, no_url: bool=False) -> str: "\n Push a new flow to Prefect Cloud\n\n Args:\n - flow (Flow): a flow to register\n - project_name (str, optional): the project that should contain this flow.\n - build (bool, optional): if `True`, the flow's environment is built\n prior to serialization; defaults to `True`\n - set_schedule_active (bool, optional): if `False`, will set the schedule to\n inactive in the database to prevent auto-scheduling runs (if the Flow has a\n schedule). Defaults to `True`. This can be changed later.\n - version_group_id (str, optional): the UUID version group ID to use for versioning\n this Flow in Cloud; if not provided, the version group ID associated with this\n Flow's project and name will be used.\n - compressed (bool, optional): if `True`, the serialized flow will be; defaults to\n `True` compressed\n - no_url (bool, optional): if `True`, the stdout from this function will not\n contain the URL link to the newly-registered flow in the Cloud UI\n\n Returns:\n - str: the ID of the newly-registered flow\n\n Raises:\n - ClientError: if the register failed\n " required_parameters = {p for p in flow.parameters() if p.required} if ((flow.schedule is not None) and required_parameters): required_names = {p.name for p in required_parameters} if (not all([(required_names <= set(c.parameter_defaults.keys())) for c in flow.schedule.clocks])): raise ClientError('Flows with required parameters can not be scheduled automatically.') if (any((e.key for e in flow.edges)) and (flow.result is None)): warnings.warn('No result handler was specified on your Flow. Cloud features such as input caching and resuming task runs from failure may not work properly.', stacklevel=2) if compressed: create_mutation = {'mutation($input: create_flow_from_compressed_string_input!)': {'create_flow_from_compressed_string(input: $input)': {'id'}}} else: create_mutation = {'mutation($input: create_flow_input!)': {'create_flow(input: $input)': {'id'}}} project = None if (project_name is None): raise TypeError("'project_name' is a required field when registering a flow.") query_project = {'query': {with_args('project', {'where': {'name': {'_eq': project_name}}}): {'id': True}}} project = self.graphql(query_project).data.project if (not project): raise ValueError("Project {} not found. Run `prefect create project '{}'` to create it.".format(project_name, project_name)) serialized_flow = flow.serialize(build=build) if isinstance(flow.storage, prefect.environments.storage.Docker): flow.environment.metadata['image'] = flow.storage.name serialized_flow = flow.serialize(build=False) if (not flow.environment.metadata.get('image')): version = prefect.__version__.split('+')[0] flow.environment.metadata['image'] = f'prefecthq/prefect:all_extras-{version}' serialized_flow = flow.serialize(build=False) try: prefect.serialization.flow.FlowSchema().load(serialized_flow) except Exception as exc: raise ValueError('Flow could not be deserialized successfully. Error was: {}'.format(repr(exc))) from exc if compressed: serialized_flow = compress(serialized_flow) res = self.graphql(create_mutation, variables=dict(input=dict(project_id=(project[0].id if project else None), serialized_flow=serialized_flow, set_schedule_active=set_schedule_active, version_group_id=version_group_id)), retry_on_api_error=False) flow_id = (res.data.create_flow_from_compressed_string.id if compressed else res.data.create_flow.id) if (not no_url): flow_url = self.get_cloud_url('flow', flow_id) prefix = '└── ' print('Flow URL: {}'.format(flow_url)) msg = f''' {prefix}ID: {flow_id} {prefix}Project: {project_name} {prefix}Labels: {list(flow.environment.labels)}''' print(msg) return flow_id
-6,778,166,901,766,833,000
Push a new flow to Prefect Cloud Args: - flow (Flow): a flow to register - project_name (str, optional): the project that should contain this flow. - build (bool, optional): if `True`, the flow's environment is built prior to serialization; defaults to `True` - set_schedule_active (bool, optional): if `False`, will set the schedule to inactive in the database to prevent auto-scheduling runs (if the Flow has a schedule). Defaults to `True`. This can be changed later. - version_group_id (str, optional): the UUID version group ID to use for versioning this Flow in Cloud; if not provided, the version group ID associated with this Flow's project and name will be used. - compressed (bool, optional): if `True`, the serialized flow will be; defaults to `True` compressed - no_url (bool, optional): if `True`, the stdout from this function will not contain the URL link to the newly-registered flow in the Cloud UI Returns: - str: the ID of the newly-registered flow Raises: - ClientError: if the register failed
src/prefect/client/client.py
register
zmac12/prefect
python
def register(self, flow: 'Flow', project_name: str=None, build: bool=True, set_schedule_active: bool=True, version_group_id: str=None, compressed: bool=True, no_url: bool=False) -> str: "\n Push a new flow to Prefect Cloud\n\n Args:\n - flow (Flow): a flow to register\n - project_name (str, optional): the project that should contain this flow.\n - build (bool, optional): if `True`, the flow's environment is built\n prior to serialization; defaults to `True`\n - set_schedule_active (bool, optional): if `False`, will set the schedule to\n inactive in the database to prevent auto-scheduling runs (if the Flow has a\n schedule). Defaults to `True`. This can be changed later.\n - version_group_id (str, optional): the UUID version group ID to use for versioning\n this Flow in Cloud; if not provided, the version group ID associated with this\n Flow's project and name will be used.\n - compressed (bool, optional): if `True`, the serialized flow will be; defaults to\n `True` compressed\n - no_url (bool, optional): if `True`, the stdout from this function will not\n contain the URL link to the newly-registered flow in the Cloud UI\n\n Returns:\n - str: the ID of the newly-registered flow\n\n Raises:\n - ClientError: if the register failed\n " required_parameters = {p for p in flow.parameters() if p.required} if ((flow.schedule is not None) and required_parameters): required_names = {p.name for p in required_parameters} if (not all([(required_names <= set(c.parameter_defaults.keys())) for c in flow.schedule.clocks])): raise ClientError('Flows with required parameters can not be scheduled automatically.') if (any((e.key for e in flow.edges)) and (flow.result is None)): warnings.warn('No result handler was specified on your Flow. Cloud features such as input caching and resuming task runs from failure may not work properly.', stacklevel=2) if compressed: create_mutation = {'mutation($input: create_flow_from_compressed_string_input!)': {'create_flow_from_compressed_string(input: $input)': {'id'}}} else: create_mutation = {'mutation($input: create_flow_input!)': {'create_flow(input: $input)': {'id'}}} project = None if (project_name is None): raise TypeError("'project_name' is a required field when registering a flow.") query_project = {'query': {with_args('project', {'where': {'name': {'_eq': project_name}}}): {'id': True}}} project = self.graphql(query_project).data.project if (not project): raise ValueError("Project {} not found. Run `prefect create project '{}'` to create it.".format(project_name, project_name)) serialized_flow = flow.serialize(build=build) if isinstance(flow.storage, prefect.environments.storage.Docker): flow.environment.metadata['image'] = flow.storage.name serialized_flow = flow.serialize(build=False) if (not flow.environment.metadata.get('image')): version = prefect.__version__.split('+')[0] flow.environment.metadata['image'] = f'prefecthq/prefect:all_extras-{version}' serialized_flow = flow.serialize(build=False) try: prefect.serialization.flow.FlowSchema().load(serialized_flow) except Exception as exc: raise ValueError('Flow could not be deserialized successfully. Error was: {}'.format(repr(exc))) from exc if compressed: serialized_flow = compress(serialized_flow) res = self.graphql(create_mutation, variables=dict(input=dict(project_id=(project[0].id if project else None), serialized_flow=serialized_flow, set_schedule_active=set_schedule_active, version_group_id=version_group_id)), retry_on_api_error=False) flow_id = (res.data.create_flow_from_compressed_string.id if compressed else res.data.create_flow.id) if (not no_url): flow_url = self.get_cloud_url('flow', flow_id) prefix = '└── ' print('Flow URL: {}'.format(flow_url)) msg = f' {prefix}ID: {flow_id} {prefix}Project: {project_name} {prefix}Labels: {list(flow.environment.labels)}' print(msg) return flow_id
def get_cloud_url(self, subdirectory: str, id: str, as_user: bool=True) -> str: '\n Convenience method for creating Prefect Cloud URLs for a given subdirectory.\n\n Args:\n - subdirectory (str): the subdirectory to use (e.g., `"flow-run"`)\n - id (str): the ID of the page\n - as_user (bool, optional): whether this query is being made from a USER scoped token;\n defaults to `True`. Only used internally for queries made from RUNNERs\n\n Returns:\n - str: the URL corresponding to the appropriate base URL, tenant slug, subdirectory\n and ID\n\n Example:\n\n ```python\n from prefect import Client\n\n client = Client()\n client.get_cloud_url("flow-run", "424242-ca-94611-111-55")\n # returns "https://cloud.prefect.io/my-tenant-slug/flow-run/424242-ca-94611-111-55"\n ```\n ' if (prefect.config.backend == 'cloud'): tenant_slug = self.get_default_tenant_slug(as_user=as_user) else: tenant_slug = '' base_url = (re.sub('api-', '', prefect.config.cloud.api) if re.search('api-', prefect.config.cloud.api) else re.sub('api', 'cloud', prefect.config.cloud.api)) full_url = prefect.config.cloud.api if tenant_slug: full_url = '/'.join([base_url.rstrip('/'), tenant_slug, subdirectory, id]) elif (prefect.config.backend == 'server'): full_url = '/'.join([prefect.config.server.ui.endpoint, subdirectory, id]) return full_url
-3,544,279,537,556,646,000
Convenience method for creating Prefect Cloud URLs for a given subdirectory. Args: - subdirectory (str): the subdirectory to use (e.g., `"flow-run"`) - id (str): the ID of the page - as_user (bool, optional): whether this query is being made from a USER scoped token; defaults to `True`. Only used internally for queries made from RUNNERs Returns: - str: the URL corresponding to the appropriate base URL, tenant slug, subdirectory and ID Example: ```python from prefect import Client client = Client() client.get_cloud_url("flow-run", "424242-ca-94611-111-55") # returns "https://cloud.prefect.io/my-tenant-slug/flow-run/424242-ca-94611-111-55" ```
src/prefect/client/client.py
get_cloud_url
zmac12/prefect
python
def get_cloud_url(self, subdirectory: str, id: str, as_user: bool=True) -> str: '\n Convenience method for creating Prefect Cloud URLs for a given subdirectory.\n\n Args:\n - subdirectory (str): the subdirectory to use (e.g., `"flow-run"`)\n - id (str): the ID of the page\n - as_user (bool, optional): whether this query is being made from a USER scoped token;\n defaults to `True`. Only used internally for queries made from RUNNERs\n\n Returns:\n - str: the URL corresponding to the appropriate base URL, tenant slug, subdirectory\n and ID\n\n Example:\n\n ```python\n from prefect import Client\n\n client = Client()\n client.get_cloud_url("flow-run", "424242-ca-94611-111-55")\n # returns "https://cloud.prefect.io/my-tenant-slug/flow-run/424242-ca-94611-111-55"\n ```\n ' if (prefect.config.backend == 'cloud'): tenant_slug = self.get_default_tenant_slug(as_user=as_user) else: tenant_slug = base_url = (re.sub('api-', , prefect.config.cloud.api) if re.search('api-', prefect.config.cloud.api) else re.sub('api', 'cloud', prefect.config.cloud.api)) full_url = prefect.config.cloud.api if tenant_slug: full_url = '/'.join([base_url.rstrip('/'), tenant_slug, subdirectory, id]) elif (prefect.config.backend == 'server'): full_url = '/'.join([prefect.config.server.ui.endpoint, subdirectory, id]) return full_url
def get_default_tenant_slug(self, as_user: bool=True) -> str: '\n Get the default tenant slug for the currently authenticated user\n\n Args:\n - as_user (bool, optional): whether this query is being made from a USER scoped token;\n defaults to `True`. Only used internally for queries made from RUNNERs\n\n Returns:\n - str: the slug of the current default tenant for this user\n ' if as_user: query = {'query': {'user': {'default_membership': {'tenant': 'slug'}}}} else: query = {'query': {'tenant': {'slug'}}} res = self.graphql(query) if as_user: user = res.get('data').user[0] slug = user.default_membership.tenant.slug else: slug = res.get('data').tenant[0].slug return slug
-8,470,113,905,930,942,000
Get the default tenant slug for the currently authenticated user Args: - as_user (bool, optional): whether this query is being made from a USER scoped token; defaults to `True`. Only used internally for queries made from RUNNERs Returns: - str: the slug of the current default tenant for this user
src/prefect/client/client.py
get_default_tenant_slug
zmac12/prefect
python
def get_default_tenant_slug(self, as_user: bool=True) -> str: '\n Get the default tenant slug for the currently authenticated user\n\n Args:\n - as_user (bool, optional): whether this query is being made from a USER scoped token;\n defaults to `True`. Only used internally for queries made from RUNNERs\n\n Returns:\n - str: the slug of the current default tenant for this user\n ' if as_user: query = {'query': {'user': {'default_membership': {'tenant': 'slug'}}}} else: query = {'query': {'tenant': {'slug'}}} res = self.graphql(query) if as_user: user = res.get('data').user[0] slug = user.default_membership.tenant.slug else: slug = res.get('data').tenant[0].slug return slug
def create_project(self, project_name: str, project_description: str=None) -> str: '\n Create a new Project\n\n Args:\n - project_name (str): the project that should contain this flow\n - project_description (str, optional): the project description\n\n Returns:\n - str: the ID of the newly-created project\n\n Raises:\n - ClientError: if the project creation failed\n ' project_mutation = {'mutation($input: create_project_input!)': {'create_project(input: $input)': {'id'}}} res = self.graphql(project_mutation, variables=dict(input=dict(name=project_name, description=project_description, tenant_id=self._active_tenant_id))) return res.data.create_project.id
8,238,271,992,302,800,000
Create a new Project Args: - project_name (str): the project that should contain this flow - project_description (str, optional): the project description Returns: - str: the ID of the newly-created project Raises: - ClientError: if the project creation failed
src/prefect/client/client.py
create_project
zmac12/prefect
python
def create_project(self, project_name: str, project_description: str=None) -> str: '\n Create a new Project\n\n Args:\n - project_name (str): the project that should contain this flow\n - project_description (str, optional): the project description\n\n Returns:\n - str: the ID of the newly-created project\n\n Raises:\n - ClientError: if the project creation failed\n ' project_mutation = {'mutation($input: create_project_input!)': {'create_project(input: $input)': {'id'}}} res = self.graphql(project_mutation, variables=dict(input=dict(name=project_name, description=project_description, tenant_id=self._active_tenant_id))) return res.data.create_project.id
def create_flow_run(self, flow_id: str=None, context: dict=None, parameters: dict=None, scheduled_start_time: datetime.datetime=None, idempotency_key: str=None, run_name: str=None, version_group_id: str=None) -> str: "\n Create a new flow run for the given flow id. If `start_time` is not provided, the flow\n run will be scheduled to start immediately. If both `flow_id` and `version_group_id`\n are provided, only the `flow_id` will be used.\n\n Args:\n - flow_id (str, optional): the id of the Flow you wish to schedule\n - context (dict, optional): the run context\n - parameters (dict, optional): a dictionary of parameter values to pass to the flow run\n - scheduled_start_time (datetime, optional): the time to schedule the execution\n for; if not provided, defaults to now\n - idempotency_key (str, optional): an idempotency key; if provided, this run will\n be cached for 24 hours. Any subsequent attempts to create a run with the same\n idempotency key will return the ID of the originally created run (no new run\n will be created after the first). An error will be raised if parameters or\n context are provided and don't match the original. Each subsequent request\n will reset the TTL for 24 hours.\n - run_name (str, optional): The name assigned to this flow run\n - version_group_id (str, optional): if provided, the unique unarchived flow within\n this version group will be scheduled to run. This input can be used as a\n stable API for running flows which are regularly updated.\n\n Returns:\n - str: the ID of the newly-created flow run\n\n Raises:\n - ClientError: if the GraphQL query is bad for any reason\n " create_mutation = {'mutation($input: create_flow_run_input!)': {'create_flow_run(input: $input)': {'id': True}}} if ((not flow_id) and (not version_group_id)): raise ValueError('One of flow_id or version_group_id must be provided') if flow_id: inputs = dict(flow_id=flow_id) else: inputs = dict(version_group_id=version_group_id) if (parameters is not None): inputs.update(parameters=parameters) if (context is not None): inputs.update(context=context) if (idempotency_key is not None): inputs.update(idempotency_key=idempotency_key) if (scheduled_start_time is not None): inputs.update(scheduled_start_time=scheduled_start_time.isoformat()) if (run_name is not None): inputs.update(flow_run_name=run_name) res = self.graphql(create_mutation, variables=dict(input=inputs)) return res.data.create_flow_run.id
2,886,062,023,428,716,000
Create a new flow run for the given flow id. If `start_time` is not provided, the flow run will be scheduled to start immediately. If both `flow_id` and `version_group_id` are provided, only the `flow_id` will be used. Args: - flow_id (str, optional): the id of the Flow you wish to schedule - context (dict, optional): the run context - parameters (dict, optional): a dictionary of parameter values to pass to the flow run - scheduled_start_time (datetime, optional): the time to schedule the execution for; if not provided, defaults to now - idempotency_key (str, optional): an idempotency key; if provided, this run will be cached for 24 hours. Any subsequent attempts to create a run with the same idempotency key will return the ID of the originally created run (no new run will be created after the first). An error will be raised if parameters or context are provided and don't match the original. Each subsequent request will reset the TTL for 24 hours. - run_name (str, optional): The name assigned to this flow run - version_group_id (str, optional): if provided, the unique unarchived flow within this version group will be scheduled to run. This input can be used as a stable API for running flows which are regularly updated. Returns: - str: the ID of the newly-created flow run Raises: - ClientError: if the GraphQL query is bad for any reason
src/prefect/client/client.py
create_flow_run
zmac12/prefect
python
def create_flow_run(self, flow_id: str=None, context: dict=None, parameters: dict=None, scheduled_start_time: datetime.datetime=None, idempotency_key: str=None, run_name: str=None, version_group_id: str=None) -> str: "\n Create a new flow run for the given flow id. If `start_time` is not provided, the flow\n run will be scheduled to start immediately. If both `flow_id` and `version_group_id`\n are provided, only the `flow_id` will be used.\n\n Args:\n - flow_id (str, optional): the id of the Flow you wish to schedule\n - context (dict, optional): the run context\n - parameters (dict, optional): a dictionary of parameter values to pass to the flow run\n - scheduled_start_time (datetime, optional): the time to schedule the execution\n for; if not provided, defaults to now\n - idempotency_key (str, optional): an idempotency key; if provided, this run will\n be cached for 24 hours. Any subsequent attempts to create a run with the same\n idempotency key will return the ID of the originally created run (no new run\n will be created after the first). An error will be raised if parameters or\n context are provided and don't match the original. Each subsequent request\n will reset the TTL for 24 hours.\n - run_name (str, optional): The name assigned to this flow run\n - version_group_id (str, optional): if provided, the unique unarchived flow within\n this version group will be scheduled to run. This input can be used as a\n stable API for running flows which are regularly updated.\n\n Returns:\n - str: the ID of the newly-created flow run\n\n Raises:\n - ClientError: if the GraphQL query is bad for any reason\n " create_mutation = {'mutation($input: create_flow_run_input!)': {'create_flow_run(input: $input)': {'id': True}}} if ((not flow_id) and (not version_group_id)): raise ValueError('One of flow_id or version_group_id must be provided') if flow_id: inputs = dict(flow_id=flow_id) else: inputs = dict(version_group_id=version_group_id) if (parameters is not None): inputs.update(parameters=parameters) if (context is not None): inputs.update(context=context) if (idempotency_key is not None): inputs.update(idempotency_key=idempotency_key) if (scheduled_start_time is not None): inputs.update(scheduled_start_time=scheduled_start_time.isoformat()) if (run_name is not None): inputs.update(flow_run_name=run_name) res = self.graphql(create_mutation, variables=dict(input=inputs)) return res.data.create_flow_run.id
def get_flow_run_info(self, flow_run_id: str) -> FlowRunInfoResult: '\n Retrieves version and current state information for the given flow run.\n\n Args:\n - flow_run_id (str): the id of the flow run to get information for\n\n Returns:\n - GraphQLResult: an object representing information about the flow run\n\n Raises:\n - ClientError: if the GraphQL mutation is bad for any reason\n ' query = {'query': {with_args('flow_run_by_pk', {'id': flow_run_id}): {'id': True, 'name': True, 'flow_id': True, 'parameters': True, 'context': True, 'version': True, 'scheduled_start_time': True, 'serialized_state': True, with_args('task_runs', {'where': {'map_index': {'_eq': (- 1)}}}): {'id': True, 'task': {'id': True, 'slug': True}, 'version': True, 'serialized_state': True}}}} result = self.graphql(query).data.flow_run_by_pk if (result is None): raise ClientError('Flow run ID not found: "{}"'.format(flow_run_id)) result.scheduled_start_time = pendulum.parse(result.scheduled_start_time) result.state = prefect.engine.state.State.deserialize(result.pop('serialized_state')) task_runs = [] for tr in result.task_runs: tr.state = prefect.engine.state.State.deserialize(tr.pop('serialized_state')) task_info = tr.pop('task') tr.task_id = task_info['id'] tr.task_slug = task_info['slug'] task_runs.append(TaskRunInfoResult(**tr)) result.task_runs = task_runs result.context = (result.context.to_dict() if (result.context is not None) else None) result.parameters = (result.parameters.to_dict() if (result.parameters is not None) else None) return FlowRunInfoResult(**result)
-7,162,629,357,981,999,000
Retrieves version and current state information for the given flow run. Args: - flow_run_id (str): the id of the flow run to get information for Returns: - GraphQLResult: an object representing information about the flow run Raises: - ClientError: if the GraphQL mutation is bad for any reason
src/prefect/client/client.py
get_flow_run_info
zmac12/prefect
python
def get_flow_run_info(self, flow_run_id: str) -> FlowRunInfoResult: '\n Retrieves version and current state information for the given flow run.\n\n Args:\n - flow_run_id (str): the id of the flow run to get information for\n\n Returns:\n - GraphQLResult: an object representing information about the flow run\n\n Raises:\n - ClientError: if the GraphQL mutation is bad for any reason\n ' query = {'query': {with_args('flow_run_by_pk', {'id': flow_run_id}): {'id': True, 'name': True, 'flow_id': True, 'parameters': True, 'context': True, 'version': True, 'scheduled_start_time': True, 'serialized_state': True, with_args('task_runs', {'where': {'map_index': {'_eq': (- 1)}}}): {'id': True, 'task': {'id': True, 'slug': True}, 'version': True, 'serialized_state': True}}}} result = self.graphql(query).data.flow_run_by_pk if (result is None): raise ClientError('Flow run ID not found: "{}"'.format(flow_run_id)) result.scheduled_start_time = pendulum.parse(result.scheduled_start_time) result.state = prefect.engine.state.State.deserialize(result.pop('serialized_state')) task_runs = [] for tr in result.task_runs: tr.state = prefect.engine.state.State.deserialize(tr.pop('serialized_state')) task_info = tr.pop('task') tr.task_id = task_info['id'] tr.task_slug = task_info['slug'] task_runs.append(TaskRunInfoResult(**tr)) result.task_runs = task_runs result.context = (result.context.to_dict() if (result.context is not None) else None) result.parameters = (result.parameters.to_dict() if (result.parameters is not None) else None) return FlowRunInfoResult(**result)
def update_flow_run_heartbeat(self, flow_run_id: str) -> None: '\n Convenience method for heartbeating a flow run.\n\n Does NOT raise an error if the update fails.\n\n Args:\n - flow_run_id (str): the flow run ID to heartbeat\n\n ' mutation = {'mutation': {with_args('update_flow_run_heartbeat', {'input': {'flow_run_id': flow_run_id}}): {'success'}}} self.graphql(mutation, raise_on_error=True)
6,089,364,651,048,748,000
Convenience method for heartbeating a flow run. Does NOT raise an error if the update fails. Args: - flow_run_id (str): the flow run ID to heartbeat
src/prefect/client/client.py
update_flow_run_heartbeat
zmac12/prefect
python
def update_flow_run_heartbeat(self, flow_run_id: str) -> None: '\n Convenience method for heartbeating a flow run.\n\n Does NOT raise an error if the update fails.\n\n Args:\n - flow_run_id (str): the flow run ID to heartbeat\n\n ' mutation = {'mutation': {with_args('update_flow_run_heartbeat', {'input': {'flow_run_id': flow_run_id}}): {'success'}}} self.graphql(mutation, raise_on_error=True)
def update_task_run_heartbeat(self, task_run_id: str) -> None: '\n Convenience method for heartbeating a task run.\n\n Does NOT raise an error if the update fails.\n\n Args:\n - task_run_id (str): the task run ID to heartbeat\n\n ' mutation = {'mutation': {with_args('update_task_run_heartbeat', {'input': {'task_run_id': task_run_id}}): {'success'}}} self.graphql(mutation, raise_on_error=True)
7,843,818,405,197,987,000
Convenience method for heartbeating a task run. Does NOT raise an error if the update fails. Args: - task_run_id (str): the task run ID to heartbeat
src/prefect/client/client.py
update_task_run_heartbeat
zmac12/prefect
python
def update_task_run_heartbeat(self, task_run_id: str) -> None: '\n Convenience method for heartbeating a task run.\n\n Does NOT raise an error if the update fails.\n\n Args:\n - task_run_id (str): the task run ID to heartbeat\n\n ' mutation = {'mutation': {with_args('update_task_run_heartbeat', {'input': {'task_run_id': task_run_id}}): {'success'}}} self.graphql(mutation, raise_on_error=True)
def get_flow_run_state(self, flow_run_id: str) -> 'prefect.engine.state.State': '\n Retrieves the current state for a flow run.\n\n Args:\n - flow_run_id (str): the id for this flow run\n\n Returns:\n - State: a Prefect State object\n ' query = {'query': {with_args('flow_run_by_pk', {'id': flow_run_id}): {'serialized_state': True}}} flow_run = self.graphql(query).data.flow_run_by_pk return prefect.engine.state.State.deserialize(flow_run.serialized_state)
-7,446,695,253,653,859,000
Retrieves the current state for a flow run. Args: - flow_run_id (str): the id for this flow run Returns: - State: a Prefect State object
src/prefect/client/client.py
get_flow_run_state
zmac12/prefect
python
def get_flow_run_state(self, flow_run_id: str) -> 'prefect.engine.state.State': '\n Retrieves the current state for a flow run.\n\n Args:\n - flow_run_id (str): the id for this flow run\n\n Returns:\n - State: a Prefect State object\n ' query = {'query': {with_args('flow_run_by_pk', {'id': flow_run_id}): {'serialized_state': True}}} flow_run = self.graphql(query).data.flow_run_by_pk return prefect.engine.state.State.deserialize(flow_run.serialized_state)
def set_flow_run_state(self, flow_run_id: str, state: 'prefect.engine.state.State', version: int=None) -> 'prefect.engine.state.State': '\n Sets new state for a flow run in the database.\n\n Args:\n - flow_run_id (str): the id of the flow run to set state for\n - state (State): the new state for this flow run\n - version (int, optional): the current version of the flow run state. This is optional\n but it can be supplied to enforce version-locking.\n\n Returns:\n - State: the state the current flow run should be considered in\n\n Raises:\n - ClientError: if the GraphQL mutation is bad for any reason\n ' mutation = {'mutation($input: set_flow_run_states_input!)': {'set_flow_run_states(input: $input)': {'states': {'id', 'status', 'message'}}}} serialized_state = state.serialize() result = self.graphql(mutation, variables=dict(input=dict(states=[dict(state=serialized_state, flow_run_id=flow_run_id, version=version)]))) state_payload = result.data.set_flow_run_states.states[0] if (state_payload.status == 'QUEUED'): return prefect.engine.state.Queued(message=state_payload.get('message'), start_time=pendulum.now('UTC').add(seconds=prefect.context.config.cloud.queue_interval)) return state
-6,250,182,351,231,868,000
Sets new state for a flow run in the database. Args: - flow_run_id (str): the id of the flow run to set state for - state (State): the new state for this flow run - version (int, optional): the current version of the flow run state. This is optional but it can be supplied to enforce version-locking. Returns: - State: the state the current flow run should be considered in Raises: - ClientError: if the GraphQL mutation is bad for any reason
src/prefect/client/client.py
set_flow_run_state
zmac12/prefect
python
def set_flow_run_state(self, flow_run_id: str, state: 'prefect.engine.state.State', version: int=None) -> 'prefect.engine.state.State': '\n Sets new state for a flow run in the database.\n\n Args:\n - flow_run_id (str): the id of the flow run to set state for\n - state (State): the new state for this flow run\n - version (int, optional): the current version of the flow run state. This is optional\n but it can be supplied to enforce version-locking.\n\n Returns:\n - State: the state the current flow run should be considered in\n\n Raises:\n - ClientError: if the GraphQL mutation is bad for any reason\n ' mutation = {'mutation($input: set_flow_run_states_input!)': {'set_flow_run_states(input: $input)': {'states': {'id', 'status', 'message'}}}} serialized_state = state.serialize() result = self.graphql(mutation, variables=dict(input=dict(states=[dict(state=serialized_state, flow_run_id=flow_run_id, version=version)]))) state_payload = result.data.set_flow_run_states.states[0] if (state_payload.status == 'QUEUED'): return prefect.engine.state.Queued(message=state_payload.get('message'), start_time=pendulum.now('UTC').add(seconds=prefect.context.config.cloud.queue_interval)) return state
def get_latest_cached_states(self, task_id: str, cache_key: Optional[str], created_after: datetime.datetime) -> List['prefect.engine.state.State']: "\n Pulls all Cached states for the given task that were created after the provided date.\n\n Args:\n - task_id (str): the task id for this task run\n - cache_key (Optional[str]): the cache key for this Task's cache; if `None`, the\n task id alone will be used\n - created_after (datetime.datetime): the earliest date the state should have been\n created at\n\n Returns:\n - List[State]: a list of Cached states created after the given date\n " args = {'where': {'state': {'_eq': 'Cached'}, 'state_timestamp': {'_gte': created_after.isoformat()}}, 'order_by': {'state_timestamp': EnumValue('desc')}, 'limit': 100} if (cache_key is not None): args['where'].update({'cache_key': {'_eq': cache_key}}) else: args['where'].update({'task_id': {'_eq': task_id}}) query = {'query': {with_args('task_run', args): 'serialized_state'}} result = self.graphql(query) deserializer = prefect.engine.state.State.deserialize valid_states = [deserializer(res.serialized_state) for res in result.data.task_run] return valid_states
-683,146,956,107,417,100
Pulls all Cached states for the given task that were created after the provided date. Args: - task_id (str): the task id for this task run - cache_key (Optional[str]): the cache key for this Task's cache; if `None`, the task id alone will be used - created_after (datetime.datetime): the earliest date the state should have been created at Returns: - List[State]: a list of Cached states created after the given date
src/prefect/client/client.py
get_latest_cached_states
zmac12/prefect
python
def get_latest_cached_states(self, task_id: str, cache_key: Optional[str], created_after: datetime.datetime) -> List['prefect.engine.state.State']: "\n Pulls all Cached states for the given task that were created after the provided date.\n\n Args:\n - task_id (str): the task id for this task run\n - cache_key (Optional[str]): the cache key for this Task's cache; if `None`, the\n task id alone will be used\n - created_after (datetime.datetime): the earliest date the state should have been\n created at\n\n Returns:\n - List[State]: a list of Cached states created after the given date\n " args = {'where': {'state': {'_eq': 'Cached'}, 'state_timestamp': {'_gte': created_after.isoformat()}}, 'order_by': {'state_timestamp': EnumValue('desc')}, 'limit': 100} if (cache_key is not None): args['where'].update({'cache_key': {'_eq': cache_key}}) else: args['where'].update({'task_id': {'_eq': task_id}}) query = {'query': {with_args('task_run', args): 'serialized_state'}} result = self.graphql(query) deserializer = prefect.engine.state.State.deserialize valid_states = [deserializer(res.serialized_state) for res in result.data.task_run] return valid_states
def get_task_run_info(self, flow_run_id: str, task_id: str, map_index: Optional[int]=None) -> TaskRunInfoResult: '\n Retrieves version and current state information for the given task run.\n\n Args:\n - flow_run_id (str): the id of the flow run that this task run lives in\n - task_id (str): the task id for this task run\n - map_index (int, optional): the mapping index for this task run; if\n `None`, it is assumed this task is _not_ mapped\n\n Returns:\n - NamedTuple: a tuple containing `id, task_id, version, state`\n\n Raises:\n - ClientError: if the GraphQL mutation is bad for any reason\n ' mutation = {'mutation': {with_args('get_or_create_task_run', {'input': {'flow_run_id': flow_run_id, 'task_id': task_id, 'map_index': ((- 1) if (map_index is None) else map_index)}}): {'id': True}}} result = self.graphql(mutation) if (result is None): raise ClientError('Failed to create task run.') task_run_id = result.data.get_or_create_task_run.id query = {'query': {with_args('task_run_by_pk', {'id': task_run_id}): {'version': True, 'serialized_state': True, 'task': {'slug': True}}}} task_run = self.graphql(query).data.task_run_by_pk if (task_run is None): raise ClientError('Task run ID not found: "{}"'.format(task_run_id)) state = prefect.engine.state.State.deserialize(task_run.serialized_state) return TaskRunInfoResult(id=task_run_id, task_id=task_id, task_slug=task_run.task.slug, version=task_run.version, state=state)
5,572,389,203,775,407,000
Retrieves version and current state information for the given task run. Args: - flow_run_id (str): the id of the flow run that this task run lives in - task_id (str): the task id for this task run - map_index (int, optional): the mapping index for this task run; if `None`, it is assumed this task is _not_ mapped Returns: - NamedTuple: a tuple containing `id, task_id, version, state` Raises: - ClientError: if the GraphQL mutation is bad for any reason
src/prefect/client/client.py
get_task_run_info
zmac12/prefect
python
def get_task_run_info(self, flow_run_id: str, task_id: str, map_index: Optional[int]=None) -> TaskRunInfoResult: '\n Retrieves version and current state information for the given task run.\n\n Args:\n - flow_run_id (str): the id of the flow run that this task run lives in\n - task_id (str): the task id for this task run\n - map_index (int, optional): the mapping index for this task run; if\n `None`, it is assumed this task is _not_ mapped\n\n Returns:\n - NamedTuple: a tuple containing `id, task_id, version, state`\n\n Raises:\n - ClientError: if the GraphQL mutation is bad for any reason\n ' mutation = {'mutation': {with_args('get_or_create_task_run', {'input': {'flow_run_id': flow_run_id, 'task_id': task_id, 'map_index': ((- 1) if (map_index is None) else map_index)}}): {'id': True}}} result = self.graphql(mutation) if (result is None): raise ClientError('Failed to create task run.') task_run_id = result.data.get_or_create_task_run.id query = {'query': {with_args('task_run_by_pk', {'id': task_run_id}): {'version': True, 'serialized_state': True, 'task': {'slug': True}}}} task_run = self.graphql(query).data.task_run_by_pk if (task_run is None): raise ClientError('Task run ID not found: "{}"'.format(task_run_id)) state = prefect.engine.state.State.deserialize(task_run.serialized_state) return TaskRunInfoResult(id=task_run_id, task_id=task_id, task_slug=task_run.task.slug, version=task_run.version, state=state)
def set_task_run_name(self, task_run_id: str, name: str) -> bool: '\n Set the name of a task run\n\n Args:\n - task_run_id (str): the id of a task run\n - name (str): a name for this task run\n\n Returns:\n - bool: whether or not the task run name was updated\n ' mutation = {'mutation($input: set_task_run_name_input!)': {'set_task_run_name(input: $input)': {'success': True}}} result = self.graphql(mutation, variables=dict(input=dict(task_run_id=task_run_id, name=name))) return result.data.set_task_run_name.success
-5,408,736,090,355,613,000
Set the name of a task run Args: - task_run_id (str): the id of a task run - name (str): a name for this task run Returns: - bool: whether or not the task run name was updated
src/prefect/client/client.py
set_task_run_name
zmac12/prefect
python
def set_task_run_name(self, task_run_id: str, name: str) -> bool: '\n Set the name of a task run\n\n Args:\n - task_run_id (str): the id of a task run\n - name (str): a name for this task run\n\n Returns:\n - bool: whether or not the task run name was updated\n ' mutation = {'mutation($input: set_task_run_name_input!)': {'set_task_run_name(input: $input)': {'success': True}}} result = self.graphql(mutation, variables=dict(input=dict(task_run_id=task_run_id, name=name))) return result.data.set_task_run_name.success
def get_task_run_state(self, task_run_id: str) -> 'prefect.engine.state.State': '\n Retrieves the current state for a task run.\n\n Args:\n - task_run_id (str): the id for this task run\n\n Returns:\n - State: a Prefect State object\n ' query = {'query': {with_args('task_run_by_pk', {'id': task_run_id}): {'serialized_state': True}}} task_run = self.graphql(query).data.task_run_by_pk return prefect.engine.state.State.deserialize(task_run.serialized_state)
-7,783,051,125,377,341,000
Retrieves the current state for a task run. Args: - task_run_id (str): the id for this task run Returns: - State: a Prefect State object
src/prefect/client/client.py
get_task_run_state
zmac12/prefect
python
def get_task_run_state(self, task_run_id: str) -> 'prefect.engine.state.State': '\n Retrieves the current state for a task run.\n\n Args:\n - task_run_id (str): the id for this task run\n\n Returns:\n - State: a Prefect State object\n ' query = {'query': {with_args('task_run_by_pk', {'id': task_run_id}): {'serialized_state': True}}} task_run = self.graphql(query).data.task_run_by_pk return prefect.engine.state.State.deserialize(task_run.serialized_state)
def set_task_run_state(self, task_run_id: str, state: 'prefect.engine.state.State', version: int=None, cache_for: datetime.timedelta=None) -> 'prefect.engine.state.State': '\n Sets new state for a task run.\n\n Args:\n - task_run_id (str): the id of the task run to set state for\n - state (State): the new state for this task run\n - version (int, optional): the current version of the task run state. This is optional\n but it can be supplied to enforce version-locking.\n - cache_for (timedelta, optional): how long to store the result of this task for,\n using the serializer set in config; if not provided, no caching occurs\n\n Raises:\n - ClientError: if the GraphQL mutation is bad for any reason\n\n Returns:\n - State: the state the current task run should be considered in\n ' mutation = {'mutation($input: set_task_run_states_input!)': {'set_task_run_states(input: $input)': {'states': {'id', 'status', 'message'}}}} serialized_state = state.serialize() result = self.graphql(mutation, variables=dict(input=dict(states=[dict(state=serialized_state, task_run_id=task_run_id, version=version)]))) state_payload = result.data.set_task_run_states.states[0] if (state_payload.status == 'QUEUED'): return prefect.engine.state.Queued(message=state_payload.get('message'), start_time=pendulum.now('UTC').add(seconds=prefect.context.config.cloud.queue_interval)) return state
7,802,373,459,408,090,000
Sets new state for a task run. Args: - task_run_id (str): the id of the task run to set state for - state (State): the new state for this task run - version (int, optional): the current version of the task run state. This is optional but it can be supplied to enforce version-locking. - cache_for (timedelta, optional): how long to store the result of this task for, using the serializer set in config; if not provided, no caching occurs Raises: - ClientError: if the GraphQL mutation is bad for any reason Returns: - State: the state the current task run should be considered in
src/prefect/client/client.py
set_task_run_state
zmac12/prefect
python
def set_task_run_state(self, task_run_id: str, state: 'prefect.engine.state.State', version: int=None, cache_for: datetime.timedelta=None) -> 'prefect.engine.state.State': '\n Sets new state for a task run.\n\n Args:\n - task_run_id (str): the id of the task run to set state for\n - state (State): the new state for this task run\n - version (int, optional): the current version of the task run state. This is optional\n but it can be supplied to enforce version-locking.\n - cache_for (timedelta, optional): how long to store the result of this task for,\n using the serializer set in config; if not provided, no caching occurs\n\n Raises:\n - ClientError: if the GraphQL mutation is bad for any reason\n\n Returns:\n - State: the state the current task run should be considered in\n ' mutation = {'mutation($input: set_task_run_states_input!)': {'set_task_run_states(input: $input)': {'states': {'id', 'status', 'message'}}}} serialized_state = state.serialize() result = self.graphql(mutation, variables=dict(input=dict(states=[dict(state=serialized_state, task_run_id=task_run_id, version=version)]))) state_payload = result.data.set_task_run_states.states[0] if (state_payload.status == 'QUEUED'): return prefect.engine.state.Queued(message=state_payload.get('message'), start_time=pendulum.now('UTC').add(seconds=prefect.context.config.cloud.queue_interval)) return state
def set_secret(self, name: str, value: Any) -> None: '\n Set a secret with the given name and value.\n\n Args:\n - name (str): the name of the secret; used for retrieving the secret\n during task runs\n - value (Any): the value of the secret\n\n Raises:\n - ClientError: if the GraphQL mutation is bad for any reason\n - ValueError: if the secret-setting was unsuccessful\n ' mutation = {'mutation($input: set_secret_input!)': {'set_secret(input: $input)': {'success'}}} result = self.graphql(mutation, variables=dict(input=dict(name=name, value=value))) if (not result.data.set_secret.success): raise ValueError('Setting secret failed.')
-493,880,310,508,623,550
Set a secret with the given name and value. Args: - name (str): the name of the secret; used for retrieving the secret during task runs - value (Any): the value of the secret Raises: - ClientError: if the GraphQL mutation is bad for any reason - ValueError: if the secret-setting was unsuccessful
src/prefect/client/client.py
set_secret
zmac12/prefect
python
def set_secret(self, name: str, value: Any) -> None: '\n Set a secret with the given name and value.\n\n Args:\n - name (str): the name of the secret; used for retrieving the secret\n during task runs\n - value (Any): the value of the secret\n\n Raises:\n - ClientError: if the GraphQL mutation is bad for any reason\n - ValueError: if the secret-setting was unsuccessful\n ' mutation = {'mutation($input: set_secret_input!)': {'set_secret(input: $input)': {'success'}}} result = self.graphql(mutation, variables=dict(input=dict(name=name, value=value))) if (not result.data.set_secret.success): raise ValueError('Setting secret failed.')
def get_task_tag_limit(self, tag: str) -> Optional[int]: '\n Retrieve the current task tag concurrency limit for a given tag.\n\n Args:\n - tag (str): the tag to update\n\n Raises:\n - ClientError: if the GraphQL query fails\n ' query = {'query': {with_args('task_tag_limit', {'where': {'tag': {'_eq': tag}}}): {'limit': True}}} result = self.graphql(query) if result.data.task_tag_limit: return result.data.task_tag_limit[0].limit else: return None
-1,634,685,958,949,177,300
Retrieve the current task tag concurrency limit for a given tag. Args: - tag (str): the tag to update Raises: - ClientError: if the GraphQL query fails
src/prefect/client/client.py
get_task_tag_limit
zmac12/prefect
python
def get_task_tag_limit(self, tag: str) -> Optional[int]: '\n Retrieve the current task tag concurrency limit for a given tag.\n\n Args:\n - tag (str): the tag to update\n\n Raises:\n - ClientError: if the GraphQL query fails\n ' query = {'query': {with_args('task_tag_limit', {'where': {'tag': {'_eq': tag}}}): {'limit': True}}} result = self.graphql(query) if result.data.task_tag_limit: return result.data.task_tag_limit[0].limit else: return None
def update_task_tag_limit(self, tag: str, limit: int) -> None: '\n Update the task tag concurrency limit for a given tag; requires tenant admin permissions.\n\n Args:\n - tag (str): the tag to update\n - limit (int): the concurrency limit to enforce on the tag; should be a value >= 0\n\n Raises:\n - ClientError: if the GraphQL mutation is bad for any reason\n - ValueError: if the tag limit-setting was unsuccessful, or if a bad limit was provided\n ' if (limit < 0): raise ValueError('Concurrency limits must be >= 0') mutation = {'mutation($input: update_task_tag_limit_input!)': {'update_task_tag_limit(input: $input)': {'id'}}} result = self.graphql(mutation, variables=dict(input=dict(tag=tag, limit=limit))) if (not result.data.update_task_tag_limit.id): raise ValueError('Updating the task tag concurrency limit failed.')
5,336,804,441,202,090,000
Update the task tag concurrency limit for a given tag; requires tenant admin permissions. Args: - tag (str): the tag to update - limit (int): the concurrency limit to enforce on the tag; should be a value >= 0 Raises: - ClientError: if the GraphQL mutation is bad for any reason - ValueError: if the tag limit-setting was unsuccessful, or if a bad limit was provided
src/prefect/client/client.py
update_task_tag_limit
zmac12/prefect
python
def update_task_tag_limit(self, tag: str, limit: int) -> None: '\n Update the task tag concurrency limit for a given tag; requires tenant admin permissions.\n\n Args:\n - tag (str): the tag to update\n - limit (int): the concurrency limit to enforce on the tag; should be a value >= 0\n\n Raises:\n - ClientError: if the GraphQL mutation is bad for any reason\n - ValueError: if the tag limit-setting was unsuccessful, or if a bad limit was provided\n ' if (limit < 0): raise ValueError('Concurrency limits must be >= 0') mutation = {'mutation($input: update_task_tag_limit_input!)': {'update_task_tag_limit(input: $input)': {'id'}}} result = self.graphql(mutation, variables=dict(input=dict(tag=tag, limit=limit))) if (not result.data.update_task_tag_limit.id): raise ValueError('Updating the task tag concurrency limit failed.')
def delete_task_tag_limit(self, limit_id: str) -> None: '\n Deletes a given task tag concurrency limit; requires tenant admin permissions.\n\n Args:\n - limit_id (str): the ID of the tag to delete\n\n Raises:\n - ClientError: if the GraphQL mutation is bad for any reason\n - ValueError: if the tag deletion was unsuccessful, or if a bad tag ID was provided\n ' mutation = {'mutation($input: delete_task_tag_limit_input!)': {'delete_task_tag_limit(input: $input)': {'success'}}} result = self.graphql(mutation, variables=dict(input=dict(limit_id=limit_id))) if (not result.data.delete_task_tag_limit.success): raise ValueError('Deleting the task tag concurrency limit failed.')
-925,700,551,522,546,800
Deletes a given task tag concurrency limit; requires tenant admin permissions. Args: - limit_id (str): the ID of the tag to delete Raises: - ClientError: if the GraphQL mutation is bad for any reason - ValueError: if the tag deletion was unsuccessful, or if a bad tag ID was provided
src/prefect/client/client.py
delete_task_tag_limit
zmac12/prefect
python
def delete_task_tag_limit(self, limit_id: str) -> None: '\n Deletes a given task tag concurrency limit; requires tenant admin permissions.\n\n Args:\n - limit_id (str): the ID of the tag to delete\n\n Raises:\n - ClientError: if the GraphQL mutation is bad for any reason\n - ValueError: if the tag deletion was unsuccessful, or if a bad tag ID was provided\n ' mutation = {'mutation($input: delete_task_tag_limit_input!)': {'delete_task_tag_limit(input: $input)': {'success'}}} result = self.graphql(mutation, variables=dict(input=dict(limit_id=limit_id))) if (not result.data.delete_task_tag_limit.success): raise ValueError('Deleting the task tag concurrency limit failed.')
def write_run_logs(self, logs: List[Dict]) -> None: '\n Uploads a collection of logs to Cloud.\n\n Args:\n - logs (List[Dict]): a list of log entries to add\n\n Raises:\n - ValueError: if uploading the logs fail\n ' mutation = {'mutation($input: write_run_logs_input!)': {'write_run_logs(input: $input)': {'success'}}} result = self.graphql(mutation, variables=dict(input=dict(logs=logs))) if (not result.data.write_run_logs.success): raise ValueError('Writing logs failed.')
5,444,238,842,283,366,000
Uploads a collection of logs to Cloud. Args: - logs (List[Dict]): a list of log entries to add Raises: - ValueError: if uploading the logs fail
src/prefect/client/client.py
write_run_logs
zmac12/prefect
python
def write_run_logs(self, logs: List[Dict]) -> None: '\n Uploads a collection of logs to Cloud.\n\n Args:\n - logs (List[Dict]): a list of log entries to add\n\n Raises:\n - ValueError: if uploading the logs fail\n ' mutation = {'mutation($input: write_run_logs_input!)': {'write_run_logs(input: $input)': {'success'}}} result = self.graphql(mutation, variables=dict(input=dict(logs=logs))) if (not result.data.write_run_logs.success): raise ValueError('Writing logs failed.')
def register_agent(self, agent_type: str, name: str=None, labels: List[str]=None, agent_config_id: str=None) -> str: '\n Register an agent with a backend API\n\n Args:\n - agent_type (str): The type of agent being registered\n - name: (str, optional): The name of the agent being registered\n - labels (List[str], optional): A list of any present labels on the agent\n being registered\n - agent_config_id (str, optional): The ID of an agent configuration to register with\n\n Returns:\n - The agent ID as a string\n ' mutation = {'mutation($input: register_agent_input!)': {'register_agent(input: $input)': {'id'}}} result = self.graphql(mutation, variables=dict(input=dict(type=agent_type, name=name, labels=(labels or []), tenant_id=self._active_tenant_id, agent_config_id=agent_config_id))) if (not result.data.register_agent.id): raise ValueError('Error registering agent') return result.data.register_agent.id
-199,111,105,601,504,480
Register an agent with a backend API Args: - agent_type (str): The type of agent being registered - name: (str, optional): The name of the agent being registered - labels (List[str], optional): A list of any present labels on the agent being registered - agent_config_id (str, optional): The ID of an agent configuration to register with Returns: - The agent ID as a string
src/prefect/client/client.py
register_agent
zmac12/prefect
python
def register_agent(self, agent_type: str, name: str=None, labels: List[str]=None, agent_config_id: str=None) -> str: '\n Register an agent with a backend API\n\n Args:\n - agent_type (str): The type of agent being registered\n - name: (str, optional): The name of the agent being registered\n - labels (List[str], optional): A list of any present labels on the agent\n being registered\n - agent_config_id (str, optional): The ID of an agent configuration to register with\n\n Returns:\n - The agent ID as a string\n ' mutation = {'mutation($input: register_agent_input!)': {'register_agent(input: $input)': {'id'}}} result = self.graphql(mutation, variables=dict(input=dict(type=agent_type, name=name, labels=(labels or []), tenant_id=self._active_tenant_id, agent_config_id=agent_config_id))) if (not result.data.register_agent.id): raise ValueError('Error registering agent') return result.data.register_agent.id
def get_agent_config(self, agent_config_id: str) -> dict: "\n Get agent config settings\n\n Args:\n - agent_config_id (str): The ID of an agent configuration to retrieve\n\n Returns:\n - dict: the agent configuration's `settings`\n " query = {'query': {with_args('agent_config', {'where': {'id': {'_eq': agent_config_id}}}): {'settings': True}}} result = self.graphql(query) return result.data.agent_config[0].settings
209,077,097,488,946,200
Get agent config settings Args: - agent_config_id (str): The ID of an agent configuration to retrieve Returns: - dict: the agent configuration's `settings`
src/prefect/client/client.py
get_agent_config
zmac12/prefect
python
def get_agent_config(self, agent_config_id: str) -> dict: "\n Get agent config settings\n\n Args:\n - agent_config_id (str): The ID of an agent configuration to retrieve\n\n Returns:\n - dict: the agent configuration's `settings`\n " query = {'query': {with_args('agent_config', {'where': {'id': {'_eq': agent_config_id}}}): {'settings': True}}} result = self.graphql(query) return result.data.agent_config[0].settings
def initialize(self, tank_capacity, inputs, outputs, water_level): '\n Initializes the simulation with the specified data.\n @param tank_capacity Capacity of the water tank, in liters.\n @param Array containing the flow volume of the inputs (such as water pumps), in liters per second. \n The flow can be modified dynamically, but no inputs can be added. \n @param Array containing the outputs (such as a water hose or evaporation), in liters per second. \n The flow can be modified dynamically, but no inputs can be added.\n @param water_level The starting water level. Value from 0 to 1.\n ' self.tank_capacity = tank_capacity self.inputs = inputs self.outputs = outputs self.current_volume = (water_level * tank_capacity) self.firstPumpTemperature = 20 self.secondPumpTemperature = 20 self.firstPumpWorkRange = [20, 200] self.secondPumpWorkRange = [20, 200] self.pumpTemperatureVariationPerSeconds = 6 self.simlock = threading.RLock() self._thread = None self._autoupdating = False self._autoupdating_interval = 1000
5,134,381,525,889,772,000
Initializes the simulation with the specified data. @param tank_capacity Capacity of the water tank, in liters. @param Array containing the flow volume of the inputs (such as water pumps), in liters per second. The flow can be modified dynamically, but no inputs can be added. @param Array containing the outputs (such as a water hose or evaporation), in liters per second. The flow can be modified dynamically, but no inputs can be added. @param water_level The starting water level. Value from 0 to 1.
server/src/experiments/ud_xilinx/watertank_simulation.py
initialize
LR-FGMM/weblabdeusto
python
def initialize(self, tank_capacity, inputs, outputs, water_level): '\n Initializes the simulation with the specified data.\n @param tank_capacity Capacity of the water tank, in liters.\n @param Array containing the flow volume of the inputs (such as water pumps), in liters per second. \n The flow can be modified dynamically, but no inputs can be added. \n @param Array containing the outputs (such as a water hose or evaporation), in liters per second. \n The flow can be modified dynamically, but no inputs can be added.\n @param water_level The starting water level. Value from 0 to 1.\n ' self.tank_capacity = tank_capacity self.inputs = inputs self.outputs = outputs self.current_volume = (water_level * tank_capacity) self.firstPumpTemperature = 20 self.secondPumpTemperature = 20 self.firstPumpWorkRange = [20, 200] self.secondPumpWorkRange = [20, 200] self.pumpTemperatureVariationPerSeconds = 6 self.simlock = threading.RLock() self._thread = None self._autoupdating = False self._autoupdating_interval = 1000
def update(self, delta): '\n Updates the simulation. Can be done automatically if the autoupdater is used.\n @param delta Delta in seconds.\n @see autoupdater_start\n ' total_output = 0 for out in self.outputs: total_output += (out * delta) total_input = 0 (pump1, pump2) = self.inputs if (pump1 > 0): self.firstPumpTemperature += ((delta * self.pumpTemperatureVariationPerSeconds) * 1.1) total_input += (pump1 * delta) else: self.firstPumpTemperature -= (delta * self.pumpTemperatureVariationPerSeconds) self.firstPumpTemperature = max(20, self.firstPumpTemperature) total_input -= (pump1 * delta) if (pump2 > 0): self.secondPumpTemperature += (delta * self.pumpTemperatureVariationPerSeconds) total_input += (pump2 * delta) else: self.secondPumpTemperature -= (delta * self.pumpTemperatureVariationPerSeconds) self.secondPumpTemperature = max(20, self.secondPumpTemperature) total_input -= (pump2 * delta) increment = (total_input - total_output) with self.simlock: self.current_volume += increment if (self.current_volume >= self.tank_capacity): self.current_volume = self.tank_capacity elif (self.current_volume < 0): self.current_volume = 0.0
7,955,144,620,373,460,000
Updates the simulation. Can be done automatically if the autoupdater is used. @param delta Delta in seconds. @see autoupdater_start
server/src/experiments/ud_xilinx/watertank_simulation.py
update
LR-FGMM/weblabdeusto
python
def update(self, delta): '\n Updates the simulation. Can be done automatically if the autoupdater is used.\n @param delta Delta in seconds.\n @see autoupdater_start\n ' total_output = 0 for out in self.outputs: total_output += (out * delta) total_input = 0 (pump1, pump2) = self.inputs if (pump1 > 0): self.firstPumpTemperature += ((delta * self.pumpTemperatureVariationPerSeconds) * 1.1) total_input += (pump1 * delta) else: self.firstPumpTemperature -= (delta * self.pumpTemperatureVariationPerSeconds) self.firstPumpTemperature = max(20, self.firstPumpTemperature) total_input -= (pump1 * delta) if (pump2 > 0): self.secondPumpTemperature += (delta * self.pumpTemperatureVariationPerSeconds) total_input += (pump2 * delta) else: self.secondPumpTemperature -= (delta * self.pumpTemperatureVariationPerSeconds) self.secondPumpTemperature = max(20, self.secondPumpTemperature) total_input -= (pump2 * delta) increment = (total_input - total_output) with self.simlock: self.current_volume += increment if (self.current_volume >= self.tank_capacity): self.current_volume = self.tank_capacity elif (self.current_volume < 0): self.current_volume = 0.0
def t_updater(self): '\n This internal method is used by the autoupdating thread to update\n the simulation every few seconds (specified as the autoupdater interval).\n ' while self._autoupdating: time.sleep(self._autoupdating_interval) self.update(self._autoupdating_interval)
-6,640,372,441,248,582,000
This internal method is used by the autoupdating thread to update the simulation every few seconds (specified as the autoupdater interval).
server/src/experiments/ud_xilinx/watertank_simulation.py
t_updater
LR-FGMM/weblabdeusto
python
def t_updater(self): '\n This internal method is used by the autoupdating thread to update\n the simulation every few seconds (specified as the autoupdater interval).\n ' while self._autoupdating: time.sleep(self._autoupdating_interval) self.update(self._autoupdating_interval)
def autoupdater_start(self, interval): '\n Starts the autoupdating thread. That is, a thread that will call update\n every so often. If started, it should eventually be stopped. Otherwise,\n it will run forever in the background.\n @param interval Interval between updates, in seconds.\n @see autoupdater_stop\n ' self._autoupdating = True self._autoupdating_interval = interval self._thread = threading.Thread(None, self.t_updater) self._thread.start()
-5,620,668,677,739,745,000
Starts the autoupdating thread. That is, a thread that will call update every so often. If started, it should eventually be stopped. Otherwise, it will run forever in the background. @param interval Interval between updates, in seconds. @see autoupdater_stop
server/src/experiments/ud_xilinx/watertank_simulation.py
autoupdater_start
LR-FGMM/weblabdeusto
python
def autoupdater_start(self, interval): '\n Starts the autoupdating thread. That is, a thread that will call update\n every so often. If started, it should eventually be stopped. Otherwise,\n it will run forever in the background.\n @param interval Interval between updates, in seconds.\n @see autoupdater_stop\n ' self._autoupdating = True self._autoupdating_interval = interval self._thread = threading.Thread(None, self.t_updater) self._thread.start()
def autoupdater_stop(self): '\n Stops the autoupdating thread. This method is non-blocking. It will signal\n the thread to stop, but may take a while before it *really* does stop.\n There is a blocking version of this method.\n @see autoupdater_join\n ' self._autoupdating = False
-3,828,925,256,979,739,000
Stops the autoupdating thread. This method is non-blocking. It will signal the thread to stop, but may take a while before it *really* does stop. There is a blocking version of this method. @see autoupdater_join
server/src/experiments/ud_xilinx/watertank_simulation.py
autoupdater_stop
LR-FGMM/weblabdeusto
python
def autoupdater_stop(self): '\n Stops the autoupdating thread. This method is non-blocking. It will signal\n the thread to stop, but may take a while before it *really* does stop.\n There is a blocking version of this method.\n @see autoupdater_join\n ' self._autoupdating = False
def autoupdater_join(self): "\n Stops the autoupdating thread, and joins that thread until it really does stop.\n May block forever if for some reason the thread won't stop, but that\n should not happen.\n " self._autoupdating = False self._thread.join(0)
-1,852,508,963,353,255,200
Stops the autoupdating thread, and joins that thread until it really does stop. May block forever if for some reason the thread won't stop, but that should not happen.
server/src/experiments/ud_xilinx/watertank_simulation.py
autoupdater_join
LR-FGMM/weblabdeusto
python
def autoupdater_join(self): "\n Stops the autoupdating thread, and joins that thread until it really does stop.\n May block forever if for some reason the thread won't stop, but that\n should not happen.\n " self._autoupdating = False self._thread.join(0)
def set_input(self, input_number, input_flow): '\n Sets the value for an input in the simulation. \n @param input_number Number identifying the input. The input should exist.\n @param input_flow New flow of the input, in liters per second.\n ' with self.simlock: self.inputs[input_number] = input_flow
-6,037,607,105,013,283,000
Sets the value for an input in the simulation. @param input_number Number identifying the input. The input should exist. @param input_flow New flow of the input, in liters per second.
server/src/experiments/ud_xilinx/watertank_simulation.py
set_input
LR-FGMM/weblabdeusto
python
def set_input(self, input_number, input_flow): '\n Sets the value for an input in the simulation. \n @param input_number Number identifying the input. The input should exist.\n @param input_flow New flow of the input, in liters per second.\n ' with self.simlock: self.inputs[input_number] = input_flow
def set_output(self, output_number, output_flow): '\n Sets the value for an output in the simulation.\n @param output_number Number identifying the output. The output should exist.\n @param output_flow New flow of the output, in liters per second.\n ' with self.simlock: self.outputs[output_number] = output_flow
8,023,729,128,761,339,000
Sets the value for an output in the simulation. @param output_number Number identifying the output. The output should exist. @param output_flow New flow of the output, in liters per second.
server/src/experiments/ud_xilinx/watertank_simulation.py
set_output
LR-FGMM/weblabdeusto
python
def set_output(self, output_number, output_flow): '\n Sets the value for an output in the simulation.\n @param output_number Number identifying the output. The output should exist.\n @param output_flow New flow of the output, in liters per second.\n ' with self.simlock: self.outputs[output_number] = output_flow
def set_inputs(self, inputs): '\n Redefines the whole array of inputs.\n @param inputs Array containing the flow of every input.\n ' with self.simlock: self.inputs = inputs
-5,571,642,313,052,897,000
Redefines the whole array of inputs. @param inputs Array containing the flow of every input.
server/src/experiments/ud_xilinx/watertank_simulation.py
set_inputs
LR-FGMM/weblabdeusto
python
def set_inputs(self, inputs): '\n Redefines the whole array of inputs.\n @param inputs Array containing the flow of every input.\n ' with self.simlock: self.inputs = inputs
def set_outputs(self, outputs): '\n Redefines the whole array of outputs.\n @param outputs Array containing the flow of every output.\n ' with self.simlock: self.outputs = outputs
-8,458,866,352,859,930,000
Redefines the whole array of outputs. @param outputs Array containing the flow of every output.
server/src/experiments/ud_xilinx/watertank_simulation.py
set_outputs
LR-FGMM/weblabdeusto
python
def set_outputs(self, outputs): '\n Redefines the whole array of outputs.\n @param outputs Array containing the flow of every output.\n ' with self.simlock: self.outputs = outputs
def get_temperatures(self): '\n Get temperatures.\n :return:\n ' return [self.firstPumpTemperature, self.secondPumpTemperature]
-5,976,381,320,454,369,000
Get temperatures. :return:
server/src/experiments/ud_xilinx/watertank_simulation.py
get_temperatures
LR-FGMM/weblabdeusto
python
def get_temperatures(self): '\n Get temperatures.\n :return:\n ' return [self.firstPumpTemperature, self.secondPumpTemperature]
def get_water_volume(self): "\n Gets the current water volume in liters. It will vary dynamically according to the \n simulation's state.\n " with self.simlock: return self.current_volume
-3,104,628,016,230,668,300
Gets the current water volume in liters. It will vary dynamically according to the simulation's state.
server/src/experiments/ud_xilinx/watertank_simulation.py
get_water_volume
LR-FGMM/weblabdeusto
python
def get_water_volume(self): "\n Gets the current water volume in liters. It will vary dynamically according to the \n simulation's state.\n " with self.simlock: return self.current_volume
def get_water_level(self): "\n Gets the current water level, as a number from 0 to 1 (empty to full). It will vary dynamically\n according to the simulation's state.\n " with self.simlock: return ((1.0 * self.current_volume) / self.tank_capacity)
964,212,182,402,237,200
Gets the current water level, as a number from 0 to 1 (empty to full). It will vary dynamically according to the simulation's state.
server/src/experiments/ud_xilinx/watertank_simulation.py
get_water_level
LR-FGMM/weblabdeusto
python
def get_water_level(self): "\n Gets the current water level, as a number from 0 to 1 (empty to full). It will vary dynamically\n according to the simulation's state.\n " with self.simlock: return ((1.0 * self.current_volume) / self.tank_capacity)
def get_json_state(self, input_capacities, output_capacities): "\n Gets a json-encoded description of the simulation's state. \n As of now, it takes output and input capacities as arguments because the JSON state\n is described through relative values. (For instance, first output at 0.3 capacity).\n \n @param input_capacities An array containing the maximum capacities of the input.\n @param output_capacities An array containing the maximum capacities of the output.\n " if (len(self.inputs) != len(input_capacities)): return '{}' inputs = [] for (inp, cap) in zip(self.inputs, input_capacities): inputs.append(((1.0 * inp) / cap)) outputs = [] for (inp, cap) in zip(self.outputs, output_capacities): outputs.append(((1.0 * inp) / cap)) state = {'water': self.get_water_level(), 'inputs': inputs, 'outputs': outputs} temperatures = [0, 0] temperatures[0] = self.firstPumpTemperature temperatures[1] = self.secondPumpTemperature state['temperatures'] = temperatures return json.dumps(state)
-4,236,027,061,501,498,000
Gets a json-encoded description of the simulation's state. As of now, it takes output and input capacities as arguments because the JSON state is described through relative values. (For instance, first output at 0.3 capacity). @param input_capacities An array containing the maximum capacities of the input. @param output_capacities An array containing the maximum capacities of the output.
server/src/experiments/ud_xilinx/watertank_simulation.py
get_json_state
LR-FGMM/weblabdeusto
python
def get_json_state(self, input_capacities, output_capacities): "\n Gets a json-encoded description of the simulation's state. \n As of now, it takes output and input capacities as arguments because the JSON state\n is described through relative values. (For instance, first output at 0.3 capacity).\n \n @param input_capacities An array containing the maximum capacities of the input.\n @param output_capacities An array containing the maximum capacities of the output.\n " if (len(self.inputs) != len(input_capacities)): return '{}' inputs = [] for (inp, cap) in zip(self.inputs, input_capacities): inputs.append(((1.0 * inp) / cap)) outputs = [] for (inp, cap) in zip(self.outputs, output_capacities): outputs.append(((1.0 * inp) / cap)) state = {'water': self.get_water_level(), 'inputs': inputs, 'outputs': outputs} temperatures = [0, 0] temperatures[0] = self.firstPumpTemperature temperatures[1] = self.secondPumpTemperature state['temperatures'] = temperatures return json.dumps(state)
def add_new_user_history(user_profile: UserProfile, streams: Iterable[Stream]) -> None: 'Give you the last ONBOARDING_TOTAL_MESSAGES messages on your public\n streams, so you have something to look at in your home view once\n you finish the tutorial. The most recent ONBOARDING_UNREAD_MESSAGES\n are marked unread.\n ' one_week_ago = (timezone_now() - datetime.timedelta(weeks=1)) recipient_ids = [stream.recipient_id for stream in streams if (not stream.invite_only)] recent_messages = Message.objects.filter(recipient_id__in=recipient_ids, date_sent__gt=one_week_ago).order_by('-id') message_ids_to_use = list(reversed(recent_messages.values_list('id', flat=True)[0:ONBOARDING_TOTAL_MESSAGES])) if (len(message_ids_to_use) == 0): return already_ids = set(UserMessage.objects.filter(message_id__in=message_ids_to_use, user_profile=user_profile).values_list('message_id', flat=True)) marked_unread = 0 ums_to_create = [] for message_id in reversed(message_ids_to_use): if (message_id in already_ids): continue um = UserMessage(user_profile=user_profile, message_id=message_id) if (marked_unread < ONBOARDING_UNREAD_MESSAGES): marked_unread += 1 else: um.flags = UserMessage.flags.read ums_to_create.append(um) UserMessage.objects.bulk_create(reversed(ums_to_create))
4,170,579,497,540,251,000
Give you the last ONBOARDING_TOTAL_MESSAGES messages on your public streams, so you have something to look at in your home view once you finish the tutorial. The most recent ONBOARDING_UNREAD_MESSAGES are marked unread.
zerver/lib/actions.py
add_new_user_history
gutalavijay1111/zulip-vijay
python
def add_new_user_history(user_profile: UserProfile, streams: Iterable[Stream]) -> None: 'Give you the last ONBOARDING_TOTAL_MESSAGES messages on your public\n streams, so you have something to look at in your home view once\n you finish the tutorial. The most recent ONBOARDING_UNREAD_MESSAGES\n are marked unread.\n ' one_week_ago = (timezone_now() - datetime.timedelta(weeks=1)) recipient_ids = [stream.recipient_id for stream in streams if (not stream.invite_only)] recent_messages = Message.objects.filter(recipient_id__in=recipient_ids, date_sent__gt=one_week_ago).order_by('-id') message_ids_to_use = list(reversed(recent_messages.values_list('id', flat=True)[0:ONBOARDING_TOTAL_MESSAGES])) if (len(message_ids_to_use) == 0): return already_ids = set(UserMessage.objects.filter(message_id__in=message_ids_to_use, user_profile=user_profile).values_list('message_id', flat=True)) marked_unread = 0 ums_to_create = [] for message_id in reversed(message_ids_to_use): if (message_id in already_ids): continue um = UserMessage(user_profile=user_profile, message_id=message_id) if (marked_unread < ONBOARDING_UNREAD_MESSAGES): marked_unread += 1 else: um.flags = UserMessage.flags.read ums_to_create.append(um) UserMessage.objects.bulk_create(reversed(ums_to_create))
def do_set_realm_property(realm: Realm, name: str, value: Any, acting_user: Optional[UserProfile]=None) -> None: 'Takes in a realm object, the name of an attribute to update, the\n value to update and and the user who initiated the update.\n ' property_type = Realm.property_types[name] assert isinstance(value, property_type), f'Cannot update {name}: {value} is not an instance of {property_type}' old_value = getattr(realm, name) setattr(realm, name, value) realm.save(update_fields=[name]) event = dict(type='realm', op='update', property=name, value=value) send_event(realm, event, active_user_ids(realm.id)) event_time = timezone_now() RealmAuditLog.objects.create(realm=realm, event_type=RealmAuditLog.REALM_PROPERTY_CHANGED, event_time=event_time, acting_user=acting_user, extra_data=ujson.dumps({RealmAuditLog.OLD_VALUE: {'property': name, 'value': old_value}, RealmAuditLog.NEW_VALUE: {'property': name, 'value': value}})) if (name == 'email_address_visibility'): if (Realm.EMAIL_ADDRESS_VISIBILITY_EVERYONE not in [old_value, value]): return user_profiles = UserProfile.objects.filter(realm=realm, is_bot=False) for user_profile in user_profiles: user_profile.email = get_display_email_address(user_profile, realm) send_user_email_update_event(user_profile) UserProfile.objects.bulk_update(user_profiles, ['email']) for user_profile in user_profiles: flush_user_profile(sender=UserProfile, instance=user_profile)
7,533,641,336,225,873,000
Takes in a realm object, the name of an attribute to update, the value to update and and the user who initiated the update.
zerver/lib/actions.py
do_set_realm_property
gutalavijay1111/zulip-vijay
python
def do_set_realm_property(realm: Realm, name: str, value: Any, acting_user: Optional[UserProfile]=None) -> None: 'Takes in a realm object, the name of an attribute to update, the\n value to update and and the user who initiated the update.\n ' property_type = Realm.property_types[name] assert isinstance(value, property_type), f'Cannot update {name}: {value} is not an instance of {property_type}' old_value = getattr(realm, name) setattr(realm, name, value) realm.save(update_fields=[name]) event = dict(type='realm', op='update', property=name, value=value) send_event(realm, event, active_user_ids(realm.id)) event_time = timezone_now() RealmAuditLog.objects.create(realm=realm, event_type=RealmAuditLog.REALM_PROPERTY_CHANGED, event_time=event_time, acting_user=acting_user, extra_data=ujson.dumps({RealmAuditLog.OLD_VALUE: {'property': name, 'value': old_value}, RealmAuditLog.NEW_VALUE: {'property': name, 'value': value}})) if (name == 'email_address_visibility'): if (Realm.EMAIL_ADDRESS_VISIBILITY_EVERYONE not in [old_value, value]): return user_profiles = UserProfile.objects.filter(realm=realm, is_bot=False) for user_profile in user_profiles: user_profile.email = get_display_email_address(user_profile, realm) send_user_email_update_event(user_profile) UserProfile.objects.bulk_update(user_profiles, ['email']) for user_profile in user_profiles: flush_user_profile(sender=UserProfile, instance=user_profile)
def do_deactivate_realm(realm: Realm, acting_user: Optional[UserProfile]=None) -> None: "\n Deactivate this realm. Do NOT deactivate the users -- we need to be able to\n tell the difference between users that were intentionally deactivated,\n e.g. by a realm admin, and users who can't currently use Zulip because their\n realm has been deactivated.\n " if realm.deactivated: return realm.deactivated = True realm.save(update_fields=['deactivated']) if settings.BILLING_ENABLED: downgrade_now(realm) event_time = timezone_now() RealmAuditLog.objects.create(realm=realm, event_type=RealmAuditLog.REALM_DEACTIVATED, event_time=event_time, acting_user=acting_user, extra_data=ujson.dumps({RealmAuditLog.ROLE_COUNT: realm_user_count_by_role(realm)})) ScheduledEmail.objects.filter(realm=realm).delete() for user in active_humans_in_realm(realm): delete_user_sessions(user) event = dict(type='realm', op='deactivated', realm_id=realm.id) send_event(realm, event, active_user_ids(realm.id))
-3,333,272,059,511,270,000
Deactivate this realm. Do NOT deactivate the users -- we need to be able to tell the difference between users that were intentionally deactivated, e.g. by a realm admin, and users who can't currently use Zulip because their realm has been deactivated.
zerver/lib/actions.py
do_deactivate_realm
gutalavijay1111/zulip-vijay
python
def do_deactivate_realm(realm: Realm, acting_user: Optional[UserProfile]=None) -> None: "\n Deactivate this realm. Do NOT deactivate the users -- we need to be able to\n tell the difference between users that were intentionally deactivated,\n e.g. by a realm admin, and users who can't currently use Zulip because their\n realm has been deactivated.\n " if realm.deactivated: return realm.deactivated = True realm.save(update_fields=['deactivated']) if settings.BILLING_ENABLED: downgrade_now(realm) event_time = timezone_now() RealmAuditLog.objects.create(realm=realm, event_type=RealmAuditLog.REALM_DEACTIVATED, event_time=event_time, acting_user=acting_user, extra_data=ujson.dumps({RealmAuditLog.ROLE_COUNT: realm_user_count_by_role(realm)})) ScheduledEmail.objects.filter(realm=realm).delete() for user in active_humans_in_realm(realm): delete_user_sessions(user) event = dict(type='realm', op='deactivated', realm_id=realm.id) send_event(realm, event, active_user_ids(realm.id))
def do_send_messages(messages_maybe_none: Sequence[Optional[MutableMapping[(str, Any)]]], email_gateway: bool=False, mark_as_read: Sequence[int]=[]) -> List[int]: 'See\n https://zulip.readthedocs.io/en/latest/subsystems/sending-messages.html\n for high-level documentation on this subsystem.\n ' messages = [message for message in messages_maybe_none if (message is not None)] already_sent_ids: List[int] = [] new_messages: List[MutableMapping[(str, Any)]] = [] for message in messages: if isinstance(message['message'], int): already_sent_ids.append(message['message']) else: new_messages.append(message) messages = new_messages links_for_embed: Set[str] = set() for message in messages: message['rendered_content'] = message.get('rendered_content', None) message['stream'] = message.get('stream', None) message['local_id'] = message.get('local_id', None) message['sender_queue_id'] = message.get('sender_queue_id', None) message['realm'] = message.get('realm', message['message'].sender.realm) mention_data = MentionData(realm_id=message['realm'].id, content=message['message'].content) message['mention_data'] = mention_data if message['message'].is_stream_message(): stream_id = message['message'].recipient.type_id stream_topic: Optional[StreamTopicTarget] = StreamTopicTarget(stream_id=stream_id, topic_name=message['message'].topic_name()) else: stream_topic = None info = get_recipient_info(recipient=message['message'].recipient, sender_id=message['message'].sender_id, stream_topic=stream_topic, possibly_mentioned_user_ids=mention_data.get_user_ids(), possible_wildcard_mention=mention_data.message_has_wildcards()) message['active_user_ids'] = info['active_user_ids'] message['push_notify_user_ids'] = info['push_notify_user_ids'] message['stream_push_user_ids'] = info['stream_push_user_ids'] message['stream_email_user_ids'] = info['stream_email_user_ids'] message['um_eligible_user_ids'] = info['um_eligible_user_ids'] message['long_term_idle_user_ids'] = info['long_term_idle_user_ids'] message['default_bot_user_ids'] = info['default_bot_user_ids'] message['service_bot_tuples'] = info['service_bot_tuples'] assert (message['message'].rendered_content is None) rendered_content = render_incoming_message(message['message'], message['message'].content, message['active_user_ids'], message['realm'], mention_data=message['mention_data'], email_gateway=email_gateway) message['message'].rendered_content = rendered_content message['message'].rendered_content_version = markdown_version links_for_embed |= message['message'].links_for_preview for group_id in message['message'].mentions_user_group_ids: members = message['mention_data'].get_group_members(group_id) message['message'].mentions_user_ids.update(members) if message['message'].mentions_wildcard: message['wildcard_mention_user_ids'] = info['wildcard_mention_user_ids'] else: message['wildcard_mention_user_ids'] = [] '\n Once we have the actual list of mentioned ids from message\n rendering, we can patch in "default bots" (aka normal bots)\n who were directly mentioned in this message as eligible to\n get UserMessage rows.\n ' mentioned_user_ids = message['message'].mentions_user_ids default_bot_user_ids = message['default_bot_user_ids'] mentioned_bot_user_ids = (default_bot_user_ids & mentioned_user_ids) message['um_eligible_user_ids'] |= mentioned_bot_user_ids user_message_flags: Dict[(int, Dict[(int, List[str])])] = defaultdict(dict) with transaction.atomic(): Message.objects.bulk_create([message['message'] for message in messages]) for message in messages: if do_claim_attachments(message['message'], message['message'].potential_attachment_path_ids): message['message'].has_attachment = True message['message'].save(update_fields=['has_attachment']) ums: List[UserMessageLite] = [] for message in messages: mentioned_user_ids = message['message'].mentions_user_ids user_messages = create_user_messages(message=message['message'], um_eligible_user_ids=message['um_eligible_user_ids'], long_term_idle_user_ids=message['long_term_idle_user_ids'], stream_push_user_ids=message['stream_push_user_ids'], stream_email_user_ids=message['stream_email_user_ids'], mentioned_user_ids=mentioned_user_ids, mark_as_read=mark_as_read) for um in user_messages: user_message_flags[message['message'].id][um.user_profile_id] = um.flags_list() ums.extend(user_messages) message['message'].service_queue_events = get_service_bot_events(sender=message['message'].sender, service_bot_tuples=message['service_bot_tuples'], mentioned_user_ids=mentioned_user_ids, active_user_ids=message['active_user_ids'], recipient_type=message['message'].recipient.type) bulk_insert_ums(ums) for message in messages: do_widget_post_save_actions(message) for message in messages: realm_id: Optional[int] = None if message['message'].is_stream_message(): if (message['stream'] is None): stream_id = message['message'].recipient.type_id message['stream'] = Stream.objects.select_related().get(id=stream_id) assert (message['stream'] is not None) realm_id = message['stream'].realm_id wide_message_dict = MessageDict.wide_dict(message['message'], realm_id) user_flags = user_message_flags.get(message['message'].id, {}) sender = message['message'].sender message_type = wide_message_dict['type'] presence_idle_user_ids = get_active_presence_idle_user_ids(realm=sender.realm, sender_id=sender.id, message_type=message_type, active_user_ids=message['active_user_ids'], user_flags=user_flags) event = dict(type='message', message=message['message'].id, message_dict=wide_message_dict, presence_idle_user_ids=presence_idle_user_ids) "\n TODO: We may want to limit user_ids to only those users who have\n UserMessage rows, if only for minor performance reasons.\n\n For now we queue events for all subscribers/sendees of the\n message, since downstream code may still do notifications\n that don't require UserMessage rows.\n\n Our automated tests have gotten better on this codepath,\n but we may have coverage gaps, so we should be careful\n about changing the next line.\n " user_ids = (message['active_user_ids'] | set(user_flags.keys())) users = [dict(id=user_id, flags=user_flags.get(user_id, []), always_push_notify=(user_id in message['push_notify_user_ids']), stream_push_notify=(user_id in message['stream_push_user_ids']), stream_email_notify=(user_id in message['stream_email_user_ids']), wildcard_mention_notify=(user_id in message['wildcard_mention_user_ids'])) for user_id in user_ids] if message['message'].is_stream_message(): assert (message['stream'] is not None) if message['stream'].is_public(): event['realm_id'] = message['stream'].realm_id event['stream_name'] = message['stream'].name if message['stream'].invite_only: event['invite_only'] = True if (message['stream'].first_message_id is None): message['stream'].first_message_id = message['message'].id message['stream'].save(update_fields=['first_message_id']) if (message['local_id'] is not None): event['local_id'] = message['local_id'] if (message['sender_queue_id'] is not None): event['sender_queue_id'] = message['sender_queue_id'] send_event(message['realm'], event, users) if links_for_embed: event_data = {'message_id': message['message'].id, 'message_content': message['message'].content, 'message_realm_id': message['realm'].id, 'urls': links_for_embed} queue_json_publish('embed_links', event_data) if (message['message'].recipient.type == Recipient.PERSONAL): welcome_bot_id = get_system_bot(settings.WELCOME_BOT).id if ((welcome_bot_id in message['active_user_ids']) and (welcome_bot_id != message['message'].sender_id)): send_welcome_bot_response(message) for (queue_name, events) in message['message'].service_queue_events.items(): for event in events: queue_json_publish(queue_name, {'message': wide_message_dict, 'trigger': event['trigger'], 'user_profile_id': event['user_profile_id']}) return (already_sent_ids + [message['message'].id for message in messages])
1,167,765,137,967,222,500
See https://zulip.readthedocs.io/en/latest/subsystems/sending-messages.html for high-level documentation on this subsystem.
zerver/lib/actions.py
do_send_messages
gutalavijay1111/zulip-vijay
python
def do_send_messages(messages_maybe_none: Sequence[Optional[MutableMapping[(str, Any)]]], email_gateway: bool=False, mark_as_read: Sequence[int]=[]) -> List[int]: 'See\n https://zulip.readthedocs.io/en/latest/subsystems/sending-messages.html\n for high-level documentation on this subsystem.\n ' messages = [message for message in messages_maybe_none if (message is not None)] already_sent_ids: List[int] = [] new_messages: List[MutableMapping[(str, Any)]] = [] for message in messages: if isinstance(message['message'], int): already_sent_ids.append(message['message']) else: new_messages.append(message) messages = new_messages links_for_embed: Set[str] = set() for message in messages: message['rendered_content'] = message.get('rendered_content', None) message['stream'] = message.get('stream', None) message['local_id'] = message.get('local_id', None) message['sender_queue_id'] = message.get('sender_queue_id', None) message['realm'] = message.get('realm', message['message'].sender.realm) mention_data = MentionData(realm_id=message['realm'].id, content=message['message'].content) message['mention_data'] = mention_data if message['message'].is_stream_message(): stream_id = message['message'].recipient.type_id stream_topic: Optional[StreamTopicTarget] = StreamTopicTarget(stream_id=stream_id, topic_name=message['message'].topic_name()) else: stream_topic = None info = get_recipient_info(recipient=message['message'].recipient, sender_id=message['message'].sender_id, stream_topic=stream_topic, possibly_mentioned_user_ids=mention_data.get_user_ids(), possible_wildcard_mention=mention_data.message_has_wildcards()) message['active_user_ids'] = info['active_user_ids'] message['push_notify_user_ids'] = info['push_notify_user_ids'] message['stream_push_user_ids'] = info['stream_push_user_ids'] message['stream_email_user_ids'] = info['stream_email_user_ids'] message['um_eligible_user_ids'] = info['um_eligible_user_ids'] message['long_term_idle_user_ids'] = info['long_term_idle_user_ids'] message['default_bot_user_ids'] = info['default_bot_user_ids'] message['service_bot_tuples'] = info['service_bot_tuples'] assert (message['message'].rendered_content is None) rendered_content = render_incoming_message(message['message'], message['message'].content, message['active_user_ids'], message['realm'], mention_data=message['mention_data'], email_gateway=email_gateway) message['message'].rendered_content = rendered_content message['message'].rendered_content_version = markdown_version links_for_embed |= message['message'].links_for_preview for group_id in message['message'].mentions_user_group_ids: members = message['mention_data'].get_group_members(group_id) message['message'].mentions_user_ids.update(members) if message['message'].mentions_wildcard: message['wildcard_mention_user_ids'] = info['wildcard_mention_user_ids'] else: message['wildcard_mention_user_ids'] = [] '\n Once we have the actual list of mentioned ids from message\n rendering, we can patch in "default bots" (aka normal bots)\n who were directly mentioned in this message as eligible to\n get UserMessage rows.\n ' mentioned_user_ids = message['message'].mentions_user_ids default_bot_user_ids = message['default_bot_user_ids'] mentioned_bot_user_ids = (default_bot_user_ids & mentioned_user_ids) message['um_eligible_user_ids'] |= mentioned_bot_user_ids user_message_flags: Dict[(int, Dict[(int, List[str])])] = defaultdict(dict) with transaction.atomic(): Message.objects.bulk_create([message['message'] for message in messages]) for message in messages: if do_claim_attachments(message['message'], message['message'].potential_attachment_path_ids): message['message'].has_attachment = True message['message'].save(update_fields=['has_attachment']) ums: List[UserMessageLite] = [] for message in messages: mentioned_user_ids = message['message'].mentions_user_ids user_messages = create_user_messages(message=message['message'], um_eligible_user_ids=message['um_eligible_user_ids'], long_term_idle_user_ids=message['long_term_idle_user_ids'], stream_push_user_ids=message['stream_push_user_ids'], stream_email_user_ids=message['stream_email_user_ids'], mentioned_user_ids=mentioned_user_ids, mark_as_read=mark_as_read) for um in user_messages: user_message_flags[message['message'].id][um.user_profile_id] = um.flags_list() ums.extend(user_messages) message['message'].service_queue_events = get_service_bot_events(sender=message['message'].sender, service_bot_tuples=message['service_bot_tuples'], mentioned_user_ids=mentioned_user_ids, active_user_ids=message['active_user_ids'], recipient_type=message['message'].recipient.type) bulk_insert_ums(ums) for message in messages: do_widget_post_save_actions(message) for message in messages: realm_id: Optional[int] = None if message['message'].is_stream_message(): if (message['stream'] is None): stream_id = message['message'].recipient.type_id message['stream'] = Stream.objects.select_related().get(id=stream_id) assert (message['stream'] is not None) realm_id = message['stream'].realm_id wide_message_dict = MessageDict.wide_dict(message['message'], realm_id) user_flags = user_message_flags.get(message['message'].id, {}) sender = message['message'].sender message_type = wide_message_dict['type'] presence_idle_user_ids = get_active_presence_idle_user_ids(realm=sender.realm, sender_id=sender.id, message_type=message_type, active_user_ids=message['active_user_ids'], user_flags=user_flags) event = dict(type='message', message=message['message'].id, message_dict=wide_message_dict, presence_idle_user_ids=presence_idle_user_ids) "\n TODO: We may want to limit user_ids to only those users who have\n UserMessage rows, if only for minor performance reasons.\n\n For now we queue events for all subscribers/sendees of the\n message, since downstream code may still do notifications\n that don't require UserMessage rows.\n\n Our automated tests have gotten better on this codepath,\n but we may have coverage gaps, so we should be careful\n about changing the next line.\n " user_ids = (message['active_user_ids'] | set(user_flags.keys())) users = [dict(id=user_id, flags=user_flags.get(user_id, []), always_push_notify=(user_id in message['push_notify_user_ids']), stream_push_notify=(user_id in message['stream_push_user_ids']), stream_email_notify=(user_id in message['stream_email_user_ids']), wildcard_mention_notify=(user_id in message['wildcard_mention_user_ids'])) for user_id in user_ids] if message['message'].is_stream_message(): assert (message['stream'] is not None) if message['stream'].is_public(): event['realm_id'] = message['stream'].realm_id event['stream_name'] = message['stream'].name if message['stream'].invite_only: event['invite_only'] = True if (message['stream'].first_message_id is None): message['stream'].first_message_id = message['message'].id message['stream'].save(update_fields=['first_message_id']) if (message['local_id'] is not None): event['local_id'] = message['local_id'] if (message['sender_queue_id'] is not None): event['sender_queue_id'] = message['sender_queue_id'] send_event(message['realm'], event, users) if links_for_embed: event_data = {'message_id': message['message'].id, 'message_content': message['message'].content, 'message_realm_id': message['realm'].id, 'urls': links_for_embed} queue_json_publish('embed_links', event_data) if (message['message'].recipient.type == Recipient.PERSONAL): welcome_bot_id = get_system_bot(settings.WELCOME_BOT).id if ((welcome_bot_id in message['active_user_ids']) and (welcome_bot_id != message['message'].sender_id)): send_welcome_bot_response(message) for (queue_name, events) in message['message'].service_queue_events.items(): for event in events: queue_json_publish(queue_name, {'message': wide_message_dict, 'trigger': event['trigger'], 'user_profile_id': event['user_profile_id']}) return (already_sent_ids + [message['message'].id for message in messages])
def bulk_insert_ums(ums: List[UserMessageLite]) -> None: "\n Doing bulk inserts this way is much faster than using Django,\n since we don't have any ORM overhead. Profiling with 1000\n users shows a speedup of 0.436 -> 0.027 seconds, so we're\n talking about a 15x speedup.\n " if (not ums): return vals = [(um.user_profile_id, um.message_id, um.flags) for um in ums] query = SQL('\n INSERT into\n zerver_usermessage (user_profile_id, message_id, flags)\n VALUES %s\n ') with connection.cursor() as cursor: execute_values(cursor.cursor, query, vals)
-8,615,920,368,105,321,000
Doing bulk inserts this way is much faster than using Django, since we don't have any ORM overhead. Profiling with 1000 users shows a speedup of 0.436 -> 0.027 seconds, so we're talking about a 15x speedup.
zerver/lib/actions.py
bulk_insert_ums
gutalavijay1111/zulip-vijay
python
def bulk_insert_ums(ums: List[UserMessageLite]) -> None: "\n Doing bulk inserts this way is much faster than using Django,\n since we don't have any ORM overhead. Profiling with 1000\n users shows a speedup of 0.436 -> 0.027 seconds, so we're\n talking about a 15x speedup.\n " if (not ums): return vals = [(um.user_profile_id, um.message_id, um.flags) for um in ums] query = SQL('\n INSERT into\n zerver_usermessage (user_profile_id, message_id, flags)\n VALUES %s\n ') with connection.cursor() as cursor: execute_values(cursor.cursor, query, vals)
def send_rate_limited_pm_notification_to_bot_owner(sender: UserProfile, realm: Realm, content: str) -> None: "\n Sends a PM error notification to a bot's owner if one hasn't already\n been sent in the last 5 minutes.\n " if (sender.realm.is_zephyr_mirror_realm or sender.realm.deactivated): return if ((not sender.is_bot) or (sender.bot_owner is None)): return if (sender.realm != realm): return last_reminder = sender.last_reminder waitperiod = datetime.timedelta(minutes=UserProfile.BOT_OWNER_STREAM_ALERT_WAITPERIOD) if (last_reminder and ((timezone_now() - last_reminder) <= waitperiod)): return internal_send_private_message(realm, get_system_bot(settings.NOTIFICATION_BOT), sender.bot_owner, content) sender.last_reminder = timezone_now() sender.save(update_fields=['last_reminder'])
-3,291,042,250,313,544,000
Sends a PM error notification to a bot's owner if one hasn't already been sent in the last 5 minutes.
zerver/lib/actions.py
send_rate_limited_pm_notification_to_bot_owner
gutalavijay1111/zulip-vijay
python
def send_rate_limited_pm_notification_to_bot_owner(sender: UserProfile, realm: Realm, content: str) -> None: "\n Sends a PM error notification to a bot's owner if one hasn't already\n been sent in the last 5 minutes.\n " if (sender.realm.is_zephyr_mirror_realm or sender.realm.deactivated): return if ((not sender.is_bot) or (sender.bot_owner is None)): return if (sender.realm != realm): return last_reminder = sender.last_reminder waitperiod = datetime.timedelta(minutes=UserProfile.BOT_OWNER_STREAM_ALERT_WAITPERIOD) if (last_reminder and ((timezone_now() - last_reminder) <= waitperiod)): return internal_send_private_message(realm, get_system_bot(settings.NOTIFICATION_BOT), sender.bot_owner, content) sender.last_reminder = timezone_now() sender.save(update_fields=['last_reminder'])
def send_pm_if_empty_stream(stream: Optional[Stream], realm: Realm, sender: UserProfile, stream_name: Optional[str]=None, stream_id: Optional[int]=None) -> None: "If a bot sends a message to a stream that doesn't exist or has no\n subscribers, sends a notification to the bot owner (if not a\n cross-realm bot) so that the owner can correct the issue." if ((not sender.is_bot) or (sender.bot_owner is None)): return arg_dict = {'bot_identity': f'`{sender.delivery_email}`', 'stream_id': stream_id, 'stream_name': f'#**{stream_name}**', 'new_stream_link': '#streams/new'} if (sender.bot_owner is not None): with override_language(sender.bot_owner.default_language): if (stream is None): if (stream_id is not None): content = _('Your bot {bot_identity} tried to send a message to stream ID {stream_id}, but there is no stream with that ID.').format(**arg_dict) else: assert (stream_name is not None) content = _('Your bot {bot_identity} tried to send a message to stream {stream_name}, but that stream does not exist. Click [here]({new_stream_link}) to create it.').format(**arg_dict) else: if (num_subscribers_for_stream_id(stream.id) > 0): return content = _('Your bot {bot_identity} tried to send a message to stream {stream_name}. The stream exists but does not have any subscribers.').format(**arg_dict) send_rate_limited_pm_notification_to_bot_owner(sender, realm, content)
-8,537,584,179,513,448,000
If a bot sends a message to a stream that doesn't exist or has no subscribers, sends a notification to the bot owner (if not a cross-realm bot) so that the owner can correct the issue.
zerver/lib/actions.py
send_pm_if_empty_stream
gutalavijay1111/zulip-vijay
python
def send_pm_if_empty_stream(stream: Optional[Stream], realm: Realm, sender: UserProfile, stream_name: Optional[str]=None, stream_id: Optional[int]=None) -> None: "If a bot sends a message to a stream that doesn't exist or has no\n subscribers, sends a notification to the bot owner (if not a\n cross-realm bot) so that the owner can correct the issue." if ((not sender.is_bot) or (sender.bot_owner is None)): return arg_dict = {'bot_identity': f'`{sender.delivery_email}`', 'stream_id': stream_id, 'stream_name': f'#**{stream_name}**', 'new_stream_link': '#streams/new'} if (sender.bot_owner is not None): with override_language(sender.bot_owner.default_language): if (stream is None): if (stream_id is not None): content = _('Your bot {bot_identity} tried to send a message to stream ID {stream_id}, but there is no stream with that ID.').format(**arg_dict) else: assert (stream_name is not None) content = _('Your bot {bot_identity} tried to send a message to stream {stream_name}, but that stream does not exist. Click [here]({new_stream_link}) to create it.').format(**arg_dict) else: if (num_subscribers_for_stream_id(stream.id) > 0): return content = _('Your bot {bot_identity} tried to send a message to stream {stream_name}. The stream exists but does not have any subscribers.').format(**arg_dict) send_rate_limited_pm_notification_to_bot_owner(sender, realm, content)
def check_message(sender: UserProfile, client: Client, addressee: Addressee, message_content_raw: str, realm: Optional[Realm]=None, forged: bool=False, forged_timestamp: Optional[float]=None, forwarder_user_profile: Optional[UserProfile]=None, local_id: Optional[str]=None, sender_queue_id: Optional[str]=None, widget_content: Optional[str]=None) -> Dict[(str, Any)]: 'See\n https://zulip.readthedocs.io/en/latest/subsystems/sending-messages.html\n for high-level documentation on this subsystem.\n ' stream = None message_content = message_content_raw.rstrip() if (len(message_content) == 0): raise JsonableError(_('Message must not be empty')) if ('\x00' in message_content): raise JsonableError(_('Message must not contain null bytes')) message_content = truncate_body(message_content) if (realm is None): realm = sender.realm if addressee.is_stream(): topic_name = addressee.topic() topic_name = truncate_topic(topic_name) stream_name = addressee.stream_name() stream_id = addressee.stream_id() if (stream_name is not None): stream = validate_stream_name_with_pm_notification(stream_name, realm, sender) elif (stream_id is not None): stream = validate_stream_id_with_pm_notification(stream_id, realm, sender) else: stream = addressee.stream() assert (stream is not None) recipient = stream.recipient if (sender.bot_type != sender.OUTGOING_WEBHOOK_BOT): access_stream_for_send_message(sender=sender, stream=stream, forwarder_user_profile=forwarder_user_profile) elif addressee.is_private(): user_profiles = addressee.user_profiles() mirror_message = (client and (client.name in ['zephyr_mirror', 'irc_mirror', 'jabber_mirror', 'JabberMirror'])) check_private_message_policy(realm, sender, user_profiles) forwarded_mirror_message = (mirror_message and (not forged)) try: recipient = recipient_for_user_profiles(user_profiles, forwarded_mirror_message, forwarder_user_profile, sender) except ValidationError as e: assert isinstance(e.messages[0], str) raise JsonableError(e.messages[0]) else: raise AssertionError('Invalid message type') message = Message() message.sender = sender message.content = message_content message.recipient = recipient if addressee.is_stream(): message.set_topic_name(topic_name) if (forged and (forged_timestamp is not None)): message.date_sent = timestamp_to_datetime(forged_timestamp) else: message.date_sent = timezone_now() message.sending_client = client assert (message.rendered_content is None) if (client.name == 'zephyr_mirror'): id = already_sent_mirrored_message_id(message) if (id is not None): return {'message': id} if (widget_content is not None): try: widget_content = ujson.loads(widget_content) except Exception: raise JsonableError(_('Widgets: API programmer sent invalid JSON content')) try: check_widget_content(widget_content) except ValidationError as error: raise JsonableError(_('Widgets: {error_msg}').format(error_msg=error.message)) return {'message': message, 'stream': stream, 'local_id': local_id, 'sender_queue_id': sender_queue_id, 'realm': realm, 'widget_content': widget_content}
-1,645,878,623,583,306,000
See https://zulip.readthedocs.io/en/latest/subsystems/sending-messages.html for high-level documentation on this subsystem.
zerver/lib/actions.py
check_message
gutalavijay1111/zulip-vijay
python
def check_message(sender: UserProfile, client: Client, addressee: Addressee, message_content_raw: str, realm: Optional[Realm]=None, forged: bool=False, forged_timestamp: Optional[float]=None, forwarder_user_profile: Optional[UserProfile]=None, local_id: Optional[str]=None, sender_queue_id: Optional[str]=None, widget_content: Optional[str]=None) -> Dict[(str, Any)]: 'See\n https://zulip.readthedocs.io/en/latest/subsystems/sending-messages.html\n for high-level documentation on this subsystem.\n ' stream = None message_content = message_content_raw.rstrip() if (len(message_content) == 0): raise JsonableError(_('Message must not be empty')) if ('\x00' in message_content): raise JsonableError(_('Message must not contain null bytes')) message_content = truncate_body(message_content) if (realm is None): realm = sender.realm if addressee.is_stream(): topic_name = addressee.topic() topic_name = truncate_topic(topic_name) stream_name = addressee.stream_name() stream_id = addressee.stream_id() if (stream_name is not None): stream = validate_stream_name_with_pm_notification(stream_name, realm, sender) elif (stream_id is not None): stream = validate_stream_id_with_pm_notification(stream_id, realm, sender) else: stream = addressee.stream() assert (stream is not None) recipient = stream.recipient if (sender.bot_type != sender.OUTGOING_WEBHOOK_BOT): access_stream_for_send_message(sender=sender, stream=stream, forwarder_user_profile=forwarder_user_profile) elif addressee.is_private(): user_profiles = addressee.user_profiles() mirror_message = (client and (client.name in ['zephyr_mirror', 'irc_mirror', 'jabber_mirror', 'JabberMirror'])) check_private_message_policy(realm, sender, user_profiles) forwarded_mirror_message = (mirror_message and (not forged)) try: recipient = recipient_for_user_profiles(user_profiles, forwarded_mirror_message, forwarder_user_profile, sender) except ValidationError as e: assert isinstance(e.messages[0], str) raise JsonableError(e.messages[0]) else: raise AssertionError('Invalid message type') message = Message() message.sender = sender message.content = message_content message.recipient = recipient if addressee.is_stream(): message.set_topic_name(topic_name) if (forged and (forged_timestamp is not None)): message.date_sent = timestamp_to_datetime(forged_timestamp) else: message.date_sent = timezone_now() message.sending_client = client assert (message.rendered_content is None) if (client.name == 'zephyr_mirror'): id = already_sent_mirrored_message_id(message) if (id is not None): return {'message': id} if (widget_content is not None): try: widget_content = ujson.loads(widget_content) except Exception: raise JsonableError(_('Widgets: API programmer sent invalid JSON content')) try: check_widget_content(widget_content) except ValidationError as error: raise JsonableError(_('Widgets: {error_msg}').format(error_msg=error.message)) return {'message': message, 'stream': stream, 'local_id': local_id, 'sender_queue_id': sender_queue_id, 'realm': realm, 'widget_content': widget_content}
def _internal_prep_message(realm: Realm, sender: UserProfile, addressee: Addressee, content: str) -> Optional[Dict[(str, Any)]]: "\n Create a message object and checks it, but doesn't send it or save it to the database.\n The internal function that calls this can therefore batch send a bunch of created\n messages together as one database query.\n Call do_send_messages with a list of the return values of this method.\n " if (len(content) > MAX_MESSAGE_LENGTH): content = (content[0:3900] + '\n\n[message was too long and has been truncated]') if addressee.is_stream(): stream_name = addressee.stream_name() if (stream_name is not None): ensure_stream(realm, stream_name, acting_user=sender) try: return check_message(sender, get_client('Internal'), addressee, content, realm=realm) except JsonableError as e: logging.exception('Error queueing internal message by %s: %s', sender.delivery_email, e.msg) return None
-3,711,186,963,448,017,400
Create a message object and checks it, but doesn't send it or save it to the database. The internal function that calls this can therefore batch send a bunch of created messages together as one database query. Call do_send_messages with a list of the return values of this method.
zerver/lib/actions.py
_internal_prep_message
gutalavijay1111/zulip-vijay
python
def _internal_prep_message(realm: Realm, sender: UserProfile, addressee: Addressee, content: str) -> Optional[Dict[(str, Any)]]: "\n Create a message object and checks it, but doesn't send it or save it to the database.\n The internal function that calls this can therefore batch send a bunch of created\n messages together as one database query.\n Call do_send_messages with a list of the return values of this method.\n " if (len(content) > MAX_MESSAGE_LENGTH): content = (content[0:3900] + '\n\n[message was too long and has been truncated]') if addressee.is_stream(): stream_name = addressee.stream_name() if (stream_name is not None): ensure_stream(realm, stream_name, acting_user=sender) try: return check_message(sender, get_client('Internal'), addressee, content, realm=realm) except JsonableError as e: logging.exception('Error queueing internal message by %s: %s', sender.delivery_email, e.msg) return None
def internal_prep_stream_message(realm: Realm, sender: UserProfile, stream: Stream, topic: str, content: str) -> Optional[Dict[(str, Any)]]: '\n See _internal_prep_message for details of how this works.\n ' addressee = Addressee.for_stream(stream, topic) return _internal_prep_message(realm=realm, sender=sender, addressee=addressee, content=content)
-3,348,404,627,655,703,000
See _internal_prep_message for details of how this works.
zerver/lib/actions.py
internal_prep_stream_message
gutalavijay1111/zulip-vijay
python
def internal_prep_stream_message(realm: Realm, sender: UserProfile, stream: Stream, topic: str, content: str) -> Optional[Dict[(str, Any)]]: '\n \n ' addressee = Addressee.for_stream(stream, topic) return _internal_prep_message(realm=realm, sender=sender, addressee=addressee, content=content)
def internal_prep_stream_message_by_name(realm: Realm, sender: UserProfile, stream_name: str, topic: str, content: str) -> Optional[Dict[(str, Any)]]: '\n See _internal_prep_message for details of how this works.\n ' addressee = Addressee.for_stream_name(stream_name, topic) return _internal_prep_message(realm=realm, sender=sender, addressee=addressee, content=content)
1,024,521,372,594,651,600
See _internal_prep_message for details of how this works.
zerver/lib/actions.py
internal_prep_stream_message_by_name
gutalavijay1111/zulip-vijay
python
def internal_prep_stream_message_by_name(realm: Realm, sender: UserProfile, stream_name: str, topic: str, content: str) -> Optional[Dict[(str, Any)]]: '\n \n ' addressee = Addressee.for_stream_name(stream_name, topic) return _internal_prep_message(realm=realm, sender=sender, addressee=addressee, content=content)
def internal_prep_private_message(realm: Realm, sender: UserProfile, recipient_user: UserProfile, content: str) -> Optional[Dict[(str, Any)]]: '\n See _internal_prep_message for details of how this works.\n ' addressee = Addressee.for_user_profile(recipient_user) return _internal_prep_message(realm=realm, sender=sender, addressee=addressee, content=content)
-2,965,441,005,731,838,500
See _internal_prep_message for details of how this works.
zerver/lib/actions.py
internal_prep_private_message
gutalavijay1111/zulip-vijay
python
def internal_prep_private_message(realm: Realm, sender: UserProfile, recipient_user: UserProfile, content: str) -> Optional[Dict[(str, Any)]]: '\n \n ' addressee = Addressee.for_user_profile(recipient_user) return _internal_prep_message(realm=realm, sender=sender, addressee=addressee, content=content)
def validate_user_access_to_subscribers(user_profile: Optional[UserProfile], stream: Stream) -> None: ' Validates whether the user can view the subscribers of a stream. Raises a JsonableError if:\n * The user and the stream are in different realms\n * The realm is MIT and the stream is not invite only.\n * The stream is invite only, requesting_user is passed, and that user\n does not subscribe to the stream.\n ' validate_user_access_to_subscribers_helper(user_profile, {'realm_id': stream.realm_id, 'invite_only': stream.invite_only}, (lambda user_profile: subscribed_to_stream(user_profile, stream.id)))
-7,392,364,703,648,287,000
Validates whether the user can view the subscribers of a stream. Raises a JsonableError if: * The user and the stream are in different realms * The realm is MIT and the stream is not invite only. * The stream is invite only, requesting_user is passed, and that user does not subscribe to the stream.
zerver/lib/actions.py
validate_user_access_to_subscribers
gutalavijay1111/zulip-vijay
python
def validate_user_access_to_subscribers(user_profile: Optional[UserProfile], stream: Stream) -> None: ' Validates whether the user can view the subscribers of a stream. Raises a JsonableError if:\n * The user and the stream are in different realms\n * The realm is MIT and the stream is not invite only.\n * The stream is invite only, requesting_user is passed, and that user\n does not subscribe to the stream.\n ' validate_user_access_to_subscribers_helper(user_profile, {'realm_id': stream.realm_id, 'invite_only': stream.invite_only}, (lambda user_profile: subscribed_to_stream(user_profile, stream.id)))
def validate_user_access_to_subscribers_helper(user_profile: Optional[UserProfile], stream_dict: Mapping[(str, Any)], check_user_subscribed: Callable[([UserProfile], bool)]) -> None: "Helper for validate_user_access_to_subscribers that doesn't require\n a full stream object. This function is a bit hard to read,\n because it is carefully optimized for performance in the two code\n paths we call it from:\n\n * In `bulk_get_subscriber_user_ids`, we already know whether the\n user was subscribed via `sub_dict`, and so we want to avoid a\n database query at all (especially since it calls this in a loop);\n * In `validate_user_access_to_subscribers`, we want to only check\n if the user is subscribed when we absolutely have to, since it\n costs a database query.\n\n The `check_user_subscribed` argument is a function that reports\n whether the user is subscribed to the stream.\n\n Note also that we raise a ValidationError in cases where the\n caller is doing the wrong thing (maybe these should be\n AssertionErrors), and JsonableError for 400 type errors.\n " if (user_profile is None): raise ValidationError('Missing user to validate access for') if (user_profile.realm_id != stream_dict['realm_id']): raise ValidationError('Requesting user not in given realm') if user_profile.is_guest: if check_user_subscribed(user_profile): return if ((not user_profile.can_access_public_streams()) and (not stream_dict['invite_only'])): raise JsonableError(_('Subscriber data is not available for this stream')) if user_profile.is_realm_admin: return if (stream_dict['invite_only'] and (not check_user_subscribed(user_profile))): raise JsonableError(_('Unable to retrieve subscribers for private stream'))
5,070,930,250,182,283,000
Helper for validate_user_access_to_subscribers that doesn't require a full stream object. This function is a bit hard to read, because it is carefully optimized for performance in the two code paths we call it from: * In `bulk_get_subscriber_user_ids`, we already know whether the user was subscribed via `sub_dict`, and so we want to avoid a database query at all (especially since it calls this in a loop); * In `validate_user_access_to_subscribers`, we want to only check if the user is subscribed when we absolutely have to, since it costs a database query. The `check_user_subscribed` argument is a function that reports whether the user is subscribed to the stream. Note also that we raise a ValidationError in cases where the caller is doing the wrong thing (maybe these should be AssertionErrors), and JsonableError for 400 type errors.
zerver/lib/actions.py
validate_user_access_to_subscribers_helper
gutalavijay1111/zulip-vijay
python
def validate_user_access_to_subscribers_helper(user_profile: Optional[UserProfile], stream_dict: Mapping[(str, Any)], check_user_subscribed: Callable[([UserProfile], bool)]) -> None: "Helper for validate_user_access_to_subscribers that doesn't require\n a full stream object. This function is a bit hard to read,\n because it is carefully optimized for performance in the two code\n paths we call it from:\n\n * In `bulk_get_subscriber_user_ids`, we already know whether the\n user was subscribed via `sub_dict`, and so we want to avoid a\n database query at all (especially since it calls this in a loop);\n * In `validate_user_access_to_subscribers`, we want to only check\n if the user is subscribed when we absolutely have to, since it\n costs a database query.\n\n The `check_user_subscribed` argument is a function that reports\n whether the user is subscribed to the stream.\n\n Note also that we raise a ValidationError in cases where the\n caller is doing the wrong thing (maybe these should be\n AssertionErrors), and JsonableError for 400 type errors.\n " if (user_profile is None): raise ValidationError('Missing user to validate access for') if (user_profile.realm_id != stream_dict['realm_id']): raise ValidationError('Requesting user not in given realm') if user_profile.is_guest: if check_user_subscribed(user_profile): return if ((not user_profile.can_access_public_streams()) and (not stream_dict['invite_only'])): raise JsonableError(_('Subscriber data is not available for this stream')) if user_profile.is_realm_admin: return if (stream_dict['invite_only'] and (not check_user_subscribed(user_profile))): raise JsonableError(_('Unable to retrieve subscribers for private stream'))
def bulk_get_subscriber_user_ids(stream_dicts: Iterable[Mapping[(str, Any)]], user_profile: UserProfile, sub_dict: Mapping[(int, bool)], stream_recipient: StreamRecipientMap) -> Dict[(int, List[int])]: 'sub_dict maps stream_id => whether the user is subscribed to that stream.' target_stream_dicts = [] for stream_dict in stream_dicts: stream_recipient.populate_with(stream_id=stream_dict['id'], recipient_id=stream_dict['recipient_id']) try: validate_user_access_to_subscribers_helper(user_profile, stream_dict, (lambda user_profile: sub_dict[stream_dict['id']])) except JsonableError: continue target_stream_dicts.append(stream_dict) stream_ids = [stream['id'] for stream in target_stream_dicts] recipient_ids = sorted([stream_recipient.recipient_id_for(stream_id) for stream_id in stream_ids]) result: Dict[(int, List[int])] = {stream['id']: [] for stream in stream_dicts} if (not recipient_ids): return result '\n The raw SQL below leads to more than a 2x speedup when tested with\n 20k+ total subscribers. (For large realms with lots of default\n streams, this function deals with LOTS of data, so it is important\n to optimize.)\n ' query = SQL('\n SELECT\n zerver_subscription.recipient_id,\n zerver_subscription.user_profile_id\n FROM\n zerver_subscription\n INNER JOIN zerver_userprofile ON\n zerver_userprofile.id = zerver_subscription.user_profile_id\n WHERE\n zerver_subscription.recipient_id in %(recipient_ids)s AND\n zerver_subscription.active AND\n zerver_userprofile.is_active\n ORDER BY\n zerver_subscription.recipient_id,\n zerver_subscription.user_profile_id\n ') cursor = connection.cursor() cursor.execute(query, {'recipient_ids': tuple(recipient_ids)}) rows = cursor.fetchall() cursor.close() recip_to_stream_id = stream_recipient.recipient_to_stream_id_dict() '\n Using groupby/itemgetter here is important for performance, at scale.\n It makes it so that all interpreter overhead is just O(N) in nature.\n ' for (recip_id, recip_rows) in itertools.groupby(rows, itemgetter(0)): user_profile_ids = [r[1] for r in recip_rows] stream_id = recip_to_stream_id[recip_id] result[stream_id] = list(user_profile_ids) return result
-7,196,757,676,079,950,000
sub_dict maps stream_id => whether the user is subscribed to that stream.
zerver/lib/actions.py
bulk_get_subscriber_user_ids
gutalavijay1111/zulip-vijay
python
def bulk_get_subscriber_user_ids(stream_dicts: Iterable[Mapping[(str, Any)]], user_profile: UserProfile, sub_dict: Mapping[(int, bool)], stream_recipient: StreamRecipientMap) -> Dict[(int, List[int])]: target_stream_dicts = [] for stream_dict in stream_dicts: stream_recipient.populate_with(stream_id=stream_dict['id'], recipient_id=stream_dict['recipient_id']) try: validate_user_access_to_subscribers_helper(user_profile, stream_dict, (lambda user_profile: sub_dict[stream_dict['id']])) except JsonableError: continue target_stream_dicts.append(stream_dict) stream_ids = [stream['id'] for stream in target_stream_dicts] recipient_ids = sorted([stream_recipient.recipient_id_for(stream_id) for stream_id in stream_ids]) result: Dict[(int, List[int])] = {stream['id']: [] for stream in stream_dicts} if (not recipient_ids): return result '\n The raw SQL below leads to more than a 2x speedup when tested with\n 20k+ total subscribers. (For large realms with lots of default\n streams, this function deals with LOTS of data, so it is important\n to optimize.)\n ' query = SQL('\n SELECT\n zerver_subscription.recipient_id,\n zerver_subscription.user_profile_id\n FROM\n zerver_subscription\n INNER JOIN zerver_userprofile ON\n zerver_userprofile.id = zerver_subscription.user_profile_id\n WHERE\n zerver_subscription.recipient_id in %(recipient_ids)s AND\n zerver_subscription.active AND\n zerver_userprofile.is_active\n ORDER BY\n zerver_subscription.recipient_id,\n zerver_subscription.user_profile_id\n ') cursor = connection.cursor() cursor.execute(query, {'recipient_ids': tuple(recipient_ids)}) rows = cursor.fetchall() cursor.close() recip_to_stream_id = stream_recipient.recipient_to_stream_id_dict() '\n Using groupby/itemgetter here is important for performance, at scale.\n It makes it so that all interpreter overhead is just O(N) in nature.\n ' for (recip_id, recip_rows) in itertools.groupby(rows, itemgetter(0)): user_profile_ids = [r[1] for r in recip_rows] stream_id = recip_to_stream_id[recip_id] result[stream_id] = list(user_profile_ids) return result
def get_subscribers_query(stream: Stream, requesting_user: Optional[UserProfile]) -> QuerySet: " Build a query to get the subscribers list for a stream, raising a JsonableError if:\n\n 'realm' is optional in stream.\n\n The caller can refine this query with select_related(), values(), etc. depending\n on whether it wants objects or just certain fields\n " validate_user_access_to_subscribers(requesting_user, stream) subscriptions = get_active_subscriptions_for_stream_id(stream.id).filter(user_profile__is_active=True) return subscriptions
-4,328,253,176,587,639,300
Build a query to get the subscribers list for a stream, raising a JsonableError if: 'realm' is optional in stream. The caller can refine this query with select_related(), values(), etc. depending on whether it wants objects or just certain fields
zerver/lib/actions.py
get_subscribers_query
gutalavijay1111/zulip-vijay
python
def get_subscribers_query(stream: Stream, requesting_user: Optional[UserProfile]) -> QuerySet: " Build a query to get the subscribers list for a stream, raising a JsonableError if:\n\n 'realm' is optional in stream.\n\n The caller can refine this query with select_related(), values(), etc. depending\n on whether it wants objects or just certain fields\n " validate_user_access_to_subscribers(requesting_user, stream) subscriptions = get_active_subscriptions_for_stream_id(stream.id).filter(user_profile__is_active=True) return subscriptions
def get_peer_user_ids_for_stream_change(stream: Stream, altered_user_ids: Iterable[int], subscribed_user_ids: Iterable[int]) -> Set[int]: '\n altered_user_ids is the user_ids that we are adding/removing\n subscribed_user_ids is the already-subscribed user_ids\n\n Based on stream policy, we notify the correct bystanders, while\n not notifying altered_users (who get subscribers via another event)\n ' if stream.invite_only: realm_admin_ids = [user.id for user in stream.realm.get_admin_users_and_bots()] user_ids_to_notify = [] user_ids_to_notify.extend(realm_admin_ids) user_ids_to_notify.extend(subscribed_user_ids) return (set(user_ids_to_notify) - set(altered_user_ids)) else: return (set(active_non_guest_user_ids(stream.realm_id)) - set(altered_user_ids))
-4,022,933,929,084,802,600
altered_user_ids is the user_ids that we are adding/removing subscribed_user_ids is the already-subscribed user_ids Based on stream policy, we notify the correct bystanders, while not notifying altered_users (who get subscribers via another event)
zerver/lib/actions.py
get_peer_user_ids_for_stream_change
gutalavijay1111/zulip-vijay
python
def get_peer_user_ids_for_stream_change(stream: Stream, altered_user_ids: Iterable[int], subscribed_user_ids: Iterable[int]) -> Set[int]: '\n altered_user_ids is the user_ids that we are adding/removing\n subscribed_user_ids is the already-subscribed user_ids\n\n Based on stream policy, we notify the correct bystanders, while\n not notifying altered_users (who get subscribers via another event)\n ' if stream.invite_only: realm_admin_ids = [user.id for user in stream.realm.get_admin_users_and_bots()] user_ids_to_notify = [] user_ids_to_notify.extend(realm_admin_ids) user_ids_to_notify.extend(subscribed_user_ids) return (set(user_ids_to_notify) - set(altered_user_ids)) else: return (set(active_non_guest_user_ids(stream.realm_id)) - set(altered_user_ids))
def check_change_full_name(user_profile: UserProfile, full_name_raw: str, acting_user: UserProfile) -> str: "Verifies that the user's proposed full name is valid. The caller\n is responsible for checking check permissions. Returns the new\n full name, which may differ from what was passed in (because this\n function strips whitespace)." new_full_name = check_full_name(full_name_raw) do_change_full_name(user_profile, new_full_name, acting_user) return new_full_name
-3,665,740,692,360,973,000
Verifies that the user's proposed full name is valid. The caller is responsible for checking check permissions. Returns the new full name, which may differ from what was passed in (because this function strips whitespace).
zerver/lib/actions.py
check_change_full_name
gutalavijay1111/zulip-vijay
python
def check_change_full_name(user_profile: UserProfile, full_name_raw: str, acting_user: UserProfile) -> str: "Verifies that the user's proposed full name is valid. The caller\n is responsible for checking check permissions. Returns the new\n full name, which may differ from what was passed in (because this\n function strips whitespace)." new_full_name = check_full_name(full_name_raw) do_change_full_name(user_profile, new_full_name, acting_user) return new_full_name
def do_change_notification_settings(user_profile: UserProfile, name: str, value: Union[(bool, int, str)], log: bool=True) -> None: 'Takes in a UserProfile object, the name of a global notification\n preference to update, and the value to update to\n ' notification_setting_type = UserProfile.notification_setting_types[name] assert isinstance(value, notification_setting_type), f'Cannot update {name}: {value} is not an instance of {notification_setting_type}' setattr(user_profile, name, value) if ((name == 'enable_digest_emails') and (not value)): clear_scheduled_emails([user_profile.id], ScheduledEmail.DIGEST) user_profile.save(update_fields=[name]) event = {'type': 'update_global_notifications', 'user': user_profile.email, 'notification_name': name, 'setting': value} if log: log_event(event) send_event(user_profile.realm, event, [user_profile.id])
2,400,474,181,266,589,700
Takes in a UserProfile object, the name of a global notification preference to update, and the value to update to
zerver/lib/actions.py
do_change_notification_settings
gutalavijay1111/zulip-vijay
python
def do_change_notification_settings(user_profile: UserProfile, name: str, value: Union[(bool, int, str)], log: bool=True) -> None: 'Takes in a UserProfile object, the name of a global notification\n preference to update, and the value to update to\n ' notification_setting_type = UserProfile.notification_setting_types[name] assert isinstance(value, notification_setting_type), f'Cannot update {name}: {value} is not an instance of {notification_setting_type}' setattr(user_profile, name, value) if ((name == 'enable_digest_emails') and (not value)): clear_scheduled_emails([user_profile.id], ScheduledEmail.DIGEST) user_profile.save(update_fields=[name]) event = {'type': 'update_global_notifications', 'user': user_profile.email, 'notification_name': name, 'setting': value} if log: log_event(event) send_event(user_profile.realm, event, [user_profile.id])
def update_to_dict_cache(changed_messages: List[Message], realm_id: Optional[int]=None) -> List[int]: 'Updates the message as stored in the to_dict cache (for serving\n messages).' items_for_remote_cache = {} message_ids = [] changed_messages_to_dict = MessageDict.to_dict_uncached(changed_messages, realm_id) for (msg_id, msg) in changed_messages_to_dict.items(): message_ids.append(msg_id) key = to_dict_cache_key_id(msg_id) items_for_remote_cache[key] = (msg,) cache_set_many(items_for_remote_cache) return message_ids
-8,672,592,399,726,761,000
Updates the message as stored in the to_dict cache (for serving messages).
zerver/lib/actions.py
update_to_dict_cache
gutalavijay1111/zulip-vijay
python
def update_to_dict_cache(changed_messages: List[Message], realm_id: Optional[int]=None) -> List[int]: 'Updates the message as stored in the to_dict cache (for serving\n messages).' items_for_remote_cache = {} message_ids = [] changed_messages_to_dict = MessageDict.to_dict_uncached(changed_messages, realm_id) for (msg_id, msg) in changed_messages_to_dict.items(): message_ids.append(msg_id) key = to_dict_cache_key_id(msg_id) items_for_remote_cache[key] = (msg,) cache_set_many(items_for_remote_cache) return message_ids
@transaction.atomic def do_update_message(user_profile: UserProfile, message: Message, new_stream: Optional[Stream], topic_name: Optional[str], propagate_mode: str, send_notification_to_old_thread: bool, send_notification_to_new_thread: bool, content: Optional[str], rendered_content: Optional[str], prior_mention_user_ids: Set[int], mention_user_ids: Set[int], mention_data: Optional[MentionData]=None) -> int: "\n The main function for message editing. A message edit event can\n modify:\n * the message's content (in which case the caller will have\n set both content and rendered_content),\n * the topic, in which case the caller will have set topic_name\n * or both\n\n With topic edits, propagate_mode determines whether other message\n also have their topics edited.\n " timestamp = timezone_now() message.last_edit_time = timestamp event: Dict[(str, Any)] = {'type': 'update_message', 'user_id': user_profile.id, 'edit_timestamp': datetime_to_timestamp(timestamp), 'message_id': message.id} edit_history_event: Dict[(str, Any)] = {'user_id': user_profile.id, 'timestamp': event['edit_timestamp']} changed_messages = [message] stream_being_edited = None if message.is_stream_message(): stream_id = message.recipient.type_id stream_being_edited = get_stream_by_id_in_realm(stream_id, user_profile.realm) event['stream_name'] = stream_being_edited.name ums = UserMessage.objects.filter(message=message.id) if (content is not None): assert (rendered_content is not None) assert (mention_data is not None) for group_id in message.mentions_user_group_ids: members = mention_data.get_group_members(group_id) message.mentions_user_ids.update(members) update_user_message_flags(message, ums) event['orig_content'] = message.content event['orig_rendered_content'] = message.rendered_content edit_history_event['prev_content'] = message.content edit_history_event['prev_rendered_content'] = message.rendered_content edit_history_event['prev_rendered_content_version'] = message.rendered_content_version message.content = content message.rendered_content = rendered_content message.rendered_content_version = markdown_version event['content'] = content event['rendered_content'] = rendered_content event['prev_rendered_content_version'] = message.rendered_content_version event['is_me_message'] = Message.is_status_message(content, rendered_content) message.has_attachment = check_attachment_reference_change(message) if message.is_stream_message(): if (topic_name is not None): new_topic_name = topic_name else: new_topic_name = message.topic_name() stream_topic: Optional[StreamTopicTarget] = StreamTopicTarget(stream_id=stream_id, topic_name=new_topic_name) else: stream_topic = None info = get_recipient_info(recipient=message.recipient, sender_id=message.sender_id, stream_topic=stream_topic, possible_wildcard_mention=mention_data.message_has_wildcards()) event['push_notify_user_ids'] = list(info['push_notify_user_ids']) event['stream_push_user_ids'] = list(info['stream_push_user_ids']) event['stream_email_user_ids'] = list(info['stream_email_user_ids']) event['prior_mention_user_ids'] = list(prior_mention_user_ids) event['mention_user_ids'] = list(mention_user_ids) event['presence_idle_user_ids'] = filter_presence_idle_user_ids(info['active_user_ids']) if message.mentions_wildcard: event['wildcard_mention_user_ids'] = list(info['wildcard_mention_user_ids']) else: event['wildcard_mention_user_ids'] = [] do_update_mobile_push_notification(message, prior_mention_user_ids, info['stream_push_user_ids']) if ((topic_name is not None) or (new_stream is not None)): orig_topic_name = message.topic_name() event['propagate_mode'] = propagate_mode event['stream_id'] = message.recipient.type_id if (new_stream is not None): assert (content is None) assert message.is_stream_message() assert (stream_being_edited is not None) edit_history_event['prev_stream'] = stream_being_edited.id event[ORIG_TOPIC] = orig_topic_name message.recipient_id = new_stream.recipient_id event['new_stream_id'] = new_stream.id event['propagate_mode'] = propagate_mode subscribers = get_active_subscriptions_for_stream_id(stream_id).select_related('user_profile') subs_to_new_stream = list(get_active_subscriptions_for_stream_id(new_stream.id).select_related('user_profile')) new_stream_sub_ids = [user.user_profile_id for user in subs_to_new_stream] subs_losing_usermessages = [sub for sub in subscribers if (sub.user_profile_id not in new_stream_sub_ids)] subs_losing_access = [sub for sub in subs_losing_usermessages if sub.user_profile.is_guest] ums = ums.exclude(user_profile_id__in=[sub.user_profile_id for sub in subs_losing_usermessages]) if (topic_name is not None): topic_name = truncate_topic(topic_name) message.set_topic_name(topic_name) event[ORIG_TOPIC] = orig_topic_name event[TOPIC_NAME] = topic_name event[TOPIC_LINKS] = topic_links(message.sender.realm_id, topic_name) edit_history_event[LEGACY_PREV_TOPIC] = orig_topic_name delete_event_notify_user_ids: List[int] = [] if (propagate_mode in ['change_later', 'change_all']): assert ((topic_name is not None) or (new_stream is not None)) messages_list = update_messages_for_topic_edit(message=message, propagate_mode=propagate_mode, orig_topic_name=orig_topic_name, topic_name=topic_name, new_stream=new_stream) changed_messages += messages_list if (new_stream is not None): assert (stream_being_edited is not None) message_ids = [msg.id for msg in changed_messages] UserMessage.objects.filter(user_profile_id__in=[sub.user_profile_id for sub in subs_losing_usermessages], message_id__in=message_ids).delete() delete_event: DeleteMessagesEvent = {'type': 'delete_message', 'message_ids': message_ids, 'message_type': 'stream', 'stream_id': stream_being_edited.id, 'topic': orig_topic_name} delete_event_notify_user_ids = [sub.user_profile_id for sub in subs_losing_access] send_event(user_profile.realm, delete_event, delete_event_notify_user_ids) if (message.edit_history is not None): edit_history = ujson.loads(message.edit_history) edit_history.insert(0, edit_history_event) else: edit_history = [edit_history_event] message.edit_history = ujson.dumps(edit_history) save_message_for_edit_use_case(message=message) realm_id: Optional[int] = None if (stream_being_edited is not None): realm_id = stream_being_edited.realm_id event['message_ids'] = update_to_dict_cache(changed_messages, realm_id) def user_info(um: UserMessage) -> Dict[(str, Any)]: return {'id': um.user_profile_id, 'flags': um.flags_list()} users_to_be_notified = list(map(user_info, ums)) if (stream_being_edited is not None): if stream_being_edited.is_history_public_to_subscribers: subscribers = get_active_subscriptions_for_stream_id(stream_id) subscribers = subscribers.exclude(user_profile__long_term_idle=True) subscribers = subscribers.exclude(user_profile_id__in=[um.user_profile_id for um in ums]) if (new_stream is not None): assert (delete_event_notify_user_ids is not None) subscribers = subscribers.exclude(user_profile_id__in=delete_event_notify_user_ids) subscriber_ids = [user.user_profile_id for user in subscribers] if (new_stream is not None): old_stream_unsubbed_guests = [sub for sub in subs_to_new_stream if (sub.user_profile.is_guest and (sub.user_profile_id not in subscriber_ids))] subscribers = subscribers.exclude(user_profile_id__in=[sub.user_profile_id for sub in old_stream_unsubbed_guests]) subscriber_ids = [user.user_profile_id for user in subscribers] users_to_be_notified += list(map(subscriber_info, subscriber_ids)) send_event(user_profile.realm, event, users_to_be_notified) if ((len(changed_messages) > 0) and (new_stream is not None) and (stream_being_edited is not None)): notify_topic_moved_streams(user_profile, stream_being_edited, orig_topic_name, new_stream, topic_name, send_notification_to_old_thread, send_notification_to_new_thread) return len(changed_messages)
-8,048,410,790,288,677,000
The main function for message editing. A message edit event can modify: * the message's content (in which case the caller will have set both content and rendered_content), * the topic, in which case the caller will have set topic_name * or both With topic edits, propagate_mode determines whether other message also have their topics edited.
zerver/lib/actions.py
do_update_message
gutalavijay1111/zulip-vijay
python
@transaction.atomic def do_update_message(user_profile: UserProfile, message: Message, new_stream: Optional[Stream], topic_name: Optional[str], propagate_mode: str, send_notification_to_old_thread: bool, send_notification_to_new_thread: bool, content: Optional[str], rendered_content: Optional[str], prior_mention_user_ids: Set[int], mention_user_ids: Set[int], mention_data: Optional[MentionData]=None) -> int: "\n The main function for message editing. A message edit event can\n modify:\n * the message's content (in which case the caller will have\n set both content and rendered_content),\n * the topic, in which case the caller will have set topic_name\n * or both\n\n With topic edits, propagate_mode determines whether other message\n also have their topics edited.\n " timestamp = timezone_now() message.last_edit_time = timestamp event: Dict[(str, Any)] = {'type': 'update_message', 'user_id': user_profile.id, 'edit_timestamp': datetime_to_timestamp(timestamp), 'message_id': message.id} edit_history_event: Dict[(str, Any)] = {'user_id': user_profile.id, 'timestamp': event['edit_timestamp']} changed_messages = [message] stream_being_edited = None if message.is_stream_message(): stream_id = message.recipient.type_id stream_being_edited = get_stream_by_id_in_realm(stream_id, user_profile.realm) event['stream_name'] = stream_being_edited.name ums = UserMessage.objects.filter(message=message.id) if (content is not None): assert (rendered_content is not None) assert (mention_data is not None) for group_id in message.mentions_user_group_ids: members = mention_data.get_group_members(group_id) message.mentions_user_ids.update(members) update_user_message_flags(message, ums) event['orig_content'] = message.content event['orig_rendered_content'] = message.rendered_content edit_history_event['prev_content'] = message.content edit_history_event['prev_rendered_content'] = message.rendered_content edit_history_event['prev_rendered_content_version'] = message.rendered_content_version message.content = content message.rendered_content = rendered_content message.rendered_content_version = markdown_version event['content'] = content event['rendered_content'] = rendered_content event['prev_rendered_content_version'] = message.rendered_content_version event['is_me_message'] = Message.is_status_message(content, rendered_content) message.has_attachment = check_attachment_reference_change(message) if message.is_stream_message(): if (topic_name is not None): new_topic_name = topic_name else: new_topic_name = message.topic_name() stream_topic: Optional[StreamTopicTarget] = StreamTopicTarget(stream_id=stream_id, topic_name=new_topic_name) else: stream_topic = None info = get_recipient_info(recipient=message.recipient, sender_id=message.sender_id, stream_topic=stream_topic, possible_wildcard_mention=mention_data.message_has_wildcards()) event['push_notify_user_ids'] = list(info['push_notify_user_ids']) event['stream_push_user_ids'] = list(info['stream_push_user_ids']) event['stream_email_user_ids'] = list(info['stream_email_user_ids']) event['prior_mention_user_ids'] = list(prior_mention_user_ids) event['mention_user_ids'] = list(mention_user_ids) event['presence_idle_user_ids'] = filter_presence_idle_user_ids(info['active_user_ids']) if message.mentions_wildcard: event['wildcard_mention_user_ids'] = list(info['wildcard_mention_user_ids']) else: event['wildcard_mention_user_ids'] = [] do_update_mobile_push_notification(message, prior_mention_user_ids, info['stream_push_user_ids']) if ((topic_name is not None) or (new_stream is not None)): orig_topic_name = message.topic_name() event['propagate_mode'] = propagate_mode event['stream_id'] = message.recipient.type_id if (new_stream is not None): assert (content is None) assert message.is_stream_message() assert (stream_being_edited is not None) edit_history_event['prev_stream'] = stream_being_edited.id event[ORIG_TOPIC] = orig_topic_name message.recipient_id = new_stream.recipient_id event['new_stream_id'] = new_stream.id event['propagate_mode'] = propagate_mode subscribers = get_active_subscriptions_for_stream_id(stream_id).select_related('user_profile') subs_to_new_stream = list(get_active_subscriptions_for_stream_id(new_stream.id).select_related('user_profile')) new_stream_sub_ids = [user.user_profile_id for user in subs_to_new_stream] subs_losing_usermessages = [sub for sub in subscribers if (sub.user_profile_id not in new_stream_sub_ids)] subs_losing_access = [sub for sub in subs_losing_usermessages if sub.user_profile.is_guest] ums = ums.exclude(user_profile_id__in=[sub.user_profile_id for sub in subs_losing_usermessages]) if (topic_name is not None): topic_name = truncate_topic(topic_name) message.set_topic_name(topic_name) event[ORIG_TOPIC] = orig_topic_name event[TOPIC_NAME] = topic_name event[TOPIC_LINKS] = topic_links(message.sender.realm_id, topic_name) edit_history_event[LEGACY_PREV_TOPIC] = orig_topic_name delete_event_notify_user_ids: List[int] = [] if (propagate_mode in ['change_later', 'change_all']): assert ((topic_name is not None) or (new_stream is not None)) messages_list = update_messages_for_topic_edit(message=message, propagate_mode=propagate_mode, orig_topic_name=orig_topic_name, topic_name=topic_name, new_stream=new_stream) changed_messages += messages_list if (new_stream is not None): assert (stream_being_edited is not None) message_ids = [msg.id for msg in changed_messages] UserMessage.objects.filter(user_profile_id__in=[sub.user_profile_id for sub in subs_losing_usermessages], message_id__in=message_ids).delete() delete_event: DeleteMessagesEvent = {'type': 'delete_message', 'message_ids': message_ids, 'message_type': 'stream', 'stream_id': stream_being_edited.id, 'topic': orig_topic_name} delete_event_notify_user_ids = [sub.user_profile_id for sub in subs_losing_access] send_event(user_profile.realm, delete_event, delete_event_notify_user_ids) if (message.edit_history is not None): edit_history = ujson.loads(message.edit_history) edit_history.insert(0, edit_history_event) else: edit_history = [edit_history_event] message.edit_history = ujson.dumps(edit_history) save_message_for_edit_use_case(message=message) realm_id: Optional[int] = None if (stream_being_edited is not None): realm_id = stream_being_edited.realm_id event['message_ids'] = update_to_dict_cache(changed_messages, realm_id) def user_info(um: UserMessage) -> Dict[(str, Any)]: return {'id': um.user_profile_id, 'flags': um.flags_list()} users_to_be_notified = list(map(user_info, ums)) if (stream_being_edited is not None): if stream_being_edited.is_history_public_to_subscribers: subscribers = get_active_subscriptions_for_stream_id(stream_id) subscribers = subscribers.exclude(user_profile__long_term_idle=True) subscribers = subscribers.exclude(user_profile_id__in=[um.user_profile_id for um in ums]) if (new_stream is not None): assert (delete_event_notify_user_ids is not None) subscribers = subscribers.exclude(user_profile_id__in=delete_event_notify_user_ids) subscriber_ids = [user.user_profile_id for user in subscribers] if (new_stream is not None): old_stream_unsubbed_guests = [sub for sub in subs_to_new_stream if (sub.user_profile.is_guest and (sub.user_profile_id not in subscriber_ids))] subscribers = subscribers.exclude(user_profile_id__in=[sub.user_profile_id for sub in old_stream_unsubbed_guests]) subscriber_ids = [user.user_profile_id for user in subscribers] users_to_be_notified += list(map(subscriber_info, subscriber_ids)) send_event(user_profile.realm, event, users_to_be_notified) if ((len(changed_messages) > 0) and (new_stream is not None) and (stream_being_edited is not None)): notify_topic_moved_streams(user_profile, stream_being_edited, orig_topic_name, new_stream, topic_name, send_notification_to_old_thread, send_notification_to_new_thread) return len(changed_messages)
def get_active_presence_idle_user_ids(realm: Realm, sender_id: int, message_type: str, active_user_ids: Set[int], user_flags: Dict[(int, List[str])]) -> List[int]: '\n Given a list of active_user_ids, we build up a subset\n of those users who fit these criteria:\n\n * They are likely to need notifications (either due\n to mentions, alert words, or being PM\'ed).\n * They are no longer "present" according to the\n UserPresence table.\n ' if realm.presence_disabled: return [] is_pm = (message_type == 'private') user_ids = set() for user_id in active_user_ids: flags: Iterable[str] = user_flags.get(user_id, []) mentioned = (('mentioned' in flags) or ('wildcard_mentioned' in flags)) private_message = (is_pm and (user_id != sender_id)) alerted = ('has_alert_word' in flags) if (mentioned or private_message or alerted): user_ids.add(user_id) return filter_presence_idle_user_ids(user_ids)
8,566,640,318,382,904,000
Given a list of active_user_ids, we build up a subset of those users who fit these criteria: * They are likely to need notifications (either due to mentions, alert words, or being PM'ed). * They are no longer "present" according to the UserPresence table.
zerver/lib/actions.py
get_active_presence_idle_user_ids
gutalavijay1111/zulip-vijay
python
def get_active_presence_idle_user_ids(realm: Realm, sender_id: int, message_type: str, active_user_ids: Set[int], user_flags: Dict[(int, List[str])]) -> List[int]: '\n Given a list of active_user_ids, we build up a subset\n of those users who fit these criteria:\n\n * They are likely to need notifications (either due\n to mentions, alert words, or being PM\'ed).\n * They are no longer "present" according to the\n UserPresence table.\n ' if realm.presence_disabled: return [] is_pm = (message_type == 'private') user_ids = set() for user_id in active_user_ids: flags: Iterable[str] = user_flags.get(user_id, []) mentioned = (('mentioned' in flags) or ('wildcard_mentioned' in flags)) private_message = (is_pm and (user_id != sender_id)) alerted = ('has_alert_word' in flags) if (mentioned or private_message or alerted): user_ids.add(user_id) return filter_presence_idle_user_ids(user_ids)
def do_send_confirmation_email(invitee: PreregistrationUser, referrer: UserProfile) -> str: '\n Send the confirmation/welcome e-mail to an invited user.\n ' activation_url = create_confirmation_link(invitee, Confirmation.INVITATION) context = {'referrer_full_name': referrer.full_name, 'referrer_email': referrer.delivery_email, 'activate_url': activation_url, 'referrer_realm_name': referrer.realm.name} from_name = f'{referrer.full_name} (via Zulip)' send_email('zerver/emails/invitation', to_emails=[invitee.email], from_name=from_name, from_address=FromAddress.tokenized_no_reply_address(), language=referrer.realm.default_language, context=context, realm=referrer.realm) return activation_url
-1,069,681,938,076,176,300
Send the confirmation/welcome e-mail to an invited user.
zerver/lib/actions.py
do_send_confirmation_email
gutalavijay1111/zulip-vijay
python
def do_send_confirmation_email(invitee: PreregistrationUser, referrer: UserProfile) -> str: '\n \n ' activation_url = create_confirmation_link(invitee, Confirmation.INVITATION) context = {'referrer_full_name': referrer.full_name, 'referrer_email': referrer.delivery_email, 'activate_url': activation_url, 'referrer_realm_name': referrer.realm.name} from_name = f'{referrer.full_name} (via Zulip)' send_email('zerver/emails/invitation', to_emails=[invitee.email], from_name=from_name, from_address=FromAddress.tokenized_no_reply_address(), language=referrer.realm.default_language, context=context, realm=referrer.realm) return activation_url
def estimate_recent_invites(realms: Iterable[Realm], *, days: int) -> int: 'An upper bound on the number of invites sent in the last `days` days' recent_invites = RealmCount.objects.filter(realm__in=realms, property='invites_sent::day', end_time__gte=(timezone_now() - datetime.timedelta(days=days))).aggregate(Sum('value'))['value__sum'] if (recent_invites is None): return 0 return recent_invites
8,210,028,317,846,155,000
An upper bound on the number of invites sent in the last `days` days
zerver/lib/actions.py
estimate_recent_invites
gutalavijay1111/zulip-vijay
python
def estimate_recent_invites(realms: Iterable[Realm], *, days: int) -> int: recent_invites = RealmCount.objects.filter(realm__in=realms, property='invites_sent::day', end_time__gte=(timezone_now() - datetime.timedelta(days=days))).aggregate(Sum('value'))['value__sum'] if (recent_invites is None): return 0 return recent_invites
def check_invite_limit(realm: Realm, num_invitees: int) -> None: 'Discourage using invitation emails as a vector for carrying spam.' msg = _('You do not have enough remaining invites. Please contact {email} to have your limit raised. No invitations were sent.').format(email=settings.ZULIP_ADMINISTRATOR) if (not settings.OPEN_REALM_CREATION): return recent_invites = estimate_recent_invites([realm], days=1) if ((num_invitees + recent_invites) > realm.max_invites): raise InvitationError(msg, [], sent_invitations=False) default_max = settings.INVITES_DEFAULT_REALM_DAILY_MAX newrealm_age = datetime.timedelta(days=settings.INVITES_NEW_REALM_DAYS) if (realm.date_created <= (timezone_now() - newrealm_age)): return if (realm.max_invites > default_max): return new_realms = Realm.objects.filter(date_created__gte=(timezone_now() - newrealm_age), _max_invites__lte=default_max).all() for (days, count) in settings.INVITES_NEW_REALM_LIMIT_DAYS: recent_invites = estimate_recent_invites(new_realms, days=days) if ((num_invitees + recent_invites) > count): raise InvitationError(msg, [], sent_invitations=False)
2,595,359,616,693,616,600
Discourage using invitation emails as a vector for carrying spam.
zerver/lib/actions.py
check_invite_limit
gutalavijay1111/zulip-vijay
python
def check_invite_limit(realm: Realm, num_invitees: int) -> None: msg = _('You do not have enough remaining invites. Please contact {email} to have your limit raised. No invitations were sent.').format(email=settings.ZULIP_ADMINISTRATOR) if (not settings.OPEN_REALM_CREATION): return recent_invites = estimate_recent_invites([realm], days=1) if ((num_invitees + recent_invites) > realm.max_invites): raise InvitationError(msg, [], sent_invitations=False) default_max = settings.INVITES_DEFAULT_REALM_DAILY_MAX newrealm_age = datetime.timedelta(days=settings.INVITES_NEW_REALM_DAYS) if (realm.date_created <= (timezone_now() - newrealm_age)): return if (realm.max_invites > default_max): return new_realms = Realm.objects.filter(date_created__gte=(timezone_now() - newrealm_age), _max_invites__lte=default_max).all() for (days, count) in settings.INVITES_NEW_REALM_LIMIT_DAYS: recent_invites = estimate_recent_invites(new_realms, days=days) if ((num_invitees + recent_invites) > count): raise InvitationError(msg, [], sent_invitations=False)
def get_occupied_streams(realm: Realm) -> QuerySet: ' Get streams with subscribers ' exists_expression = Exists(Subscription.objects.filter(active=True, user_profile__is_active=True, user_profile__realm=realm, recipient_id=OuterRef('recipient_id'))) occupied_streams = Stream.objects.filter(realm=realm, deactivated=False).annotate(occupied=exists_expression).filter(occupied=True) return occupied_streams
5,858,783,591,674,588,000
Get streams with subscribers
zerver/lib/actions.py
get_occupied_streams
gutalavijay1111/zulip-vijay
python
def get_occupied_streams(realm: Realm) -> QuerySet: ' ' exists_expression = Exists(Subscription.objects.filter(active=True, user_profile__is_active=True, user_profile__realm=realm, recipient_id=OuterRef('recipient_id'))) occupied_streams = Stream.objects.filter(realm=realm, deactivated=False).annotate(occupied=exists_expression).filter(occupied=True) return occupied_streams
def do_remove_realm_custom_profile_field(realm: Realm, field: CustomProfileField) -> None: '\n Deleting a field will also delete the user profile data\n associated with it in CustomProfileFieldValue model.\n ' field.delete() notify_realm_custom_profile_fields(realm, 'delete')
-8,935,250,695,324,977,000
Deleting a field will also delete the user profile data associated with it in CustomProfileFieldValue model.
zerver/lib/actions.py
do_remove_realm_custom_profile_field
gutalavijay1111/zulip-vijay
python
def do_remove_realm_custom_profile_field(realm: Realm, field: CustomProfileField) -> None: '\n Deleting a field will also delete the user profile data\n associated with it in CustomProfileFieldValue model.\n ' field.delete() notify_realm_custom_profile_fields(realm, 'delete')
def get_ids_for(f: Callable[([Dict[(str, Any)]], bool)]) -> Set[int]: 'Only includes users on the explicit message to line' return ({row['id'] for row in rows if f(row)} & message_to_user_id_set)
-8,346,664,401,585,981,000
Only includes users on the explicit message to line
zerver/lib/actions.py
get_ids_for
gutalavijay1111/zulip-vijay
python
def get_ids_for(f: Callable[([Dict[(str, Any)]], bool)]) -> Set[int]: return ({row['id'] for row in rows if f(row)} & message_to_user_id_set)
def train(self, mode=True): 'Populate label similarity map based on cosine similarity before running epoch\n\n If the `num_negative_labels_to_sample` is set to an integer value then before starting\n each epoch the model would create a similarity measure between the label names based\n on cosine distances between their BERT encoded embeddings.\n ' if (mode and (self.num_negative_labels_to_sample is not None)): self._compute_label_similarity_for_current_epoch() super().train(mode) super().train(mode)
-4,809,101,940,404,317,000
Populate label similarity map based on cosine similarity before running epoch If the `num_negative_labels_to_sample` is set to an integer value then before starting each epoch the model would create a similarity measure between the label names based on cosine distances between their BERT encoded embeddings.
flair/models/tars_model.py
train
garciaeduardo7143/flair
python
def train(self, mode=True): 'Populate label similarity map based on cosine similarity before running epoch\n\n If the `num_negative_labels_to_sample` is set to an integer value then before starting\n each epoch the model would create a similarity measure between the label names based\n on cosine distances between their BERT encoded embeddings.\n ' if (mode and (self.num_negative_labels_to_sample is not None)): self._compute_label_similarity_for_current_epoch() super().train(mode) super().train(mode)
def _compute_label_similarity_for_current_epoch(self): '\n Compute the similarity between all labels for better sampling of negatives\n ' all_labels = [label.decode('utf-8') for label in self.get_current_label_dictionary().idx2item] label_sentences = [Sentence(label) for label in all_labels] self.tars_embeddings.eval() self.tars_embeddings.embed(label_sentences) self.tars_embeddings.train() if isinstance(self.tars_embeddings, TokenEmbeddings): encodings_np = [sentence[0].get_embedding().cpu().detach().numpy() for sentence in label_sentences] else: encodings_np = [sentence.get_embedding().cpu().detach().numpy() for sentence in label_sentences] normalized_encoding = minmax_scale(encodings_np) similarity_matrix = cosine_similarity(normalized_encoding) negative_label_probabilities = {} for (row_index, label) in enumerate(all_labels): negative_label_probabilities[label] = {} for (column_index, other_label) in enumerate(all_labels): if (label != other_label): negative_label_probabilities[label][other_label] = similarity_matrix[row_index][column_index] self.label_nearest_map = negative_label_probabilities
-4,897,460,015,375,832,000
Compute the similarity between all labels for better sampling of negatives
flair/models/tars_model.py
_compute_label_similarity_for_current_epoch
garciaeduardo7143/flair
python
def _compute_label_similarity_for_current_epoch(self): '\n \n ' all_labels = [label.decode('utf-8') for label in self.get_current_label_dictionary().idx2item] label_sentences = [Sentence(label) for label in all_labels] self.tars_embeddings.eval() self.tars_embeddings.embed(label_sentences) self.tars_embeddings.train() if isinstance(self.tars_embeddings, TokenEmbeddings): encodings_np = [sentence[0].get_embedding().cpu().detach().numpy() for sentence in label_sentences] else: encodings_np = [sentence.get_embedding().cpu().detach().numpy() for sentence in label_sentences] normalized_encoding = minmax_scale(encodings_np) similarity_matrix = cosine_similarity(normalized_encoding) negative_label_probabilities = {} for (row_index, label) in enumerate(all_labels): negative_label_probabilities[label] = {} for (column_index, other_label) in enumerate(all_labels): if (label != other_label): negative_label_probabilities[label][other_label] = similarity_matrix[row_index][column_index] self.label_nearest_map = negative_label_probabilities
def add_and_switch_to_new_task(self, task_name, label_dictionary: Union[(List, Set, Dictionary, str)], label_type: str, multi_label: bool=True, force_switch: bool=False): "\n Adds a new task to an existing TARS model. Sets necessary attributes and finally 'switches'\n to the new task. Parameters are similar to the constructor except for model choice, batch\n size and negative sampling. This method does not store the resultant model onto disk.\n :param task_name: a string depicting the name of the task\n :param label_dictionary: dictionary of the labels you want to predict\n :param label_type: string to identify the label type ('ner', 'sentiment', etc.)\n :param multi_label: whether this task is a multi-label prediction problem\n :param force_switch: if True, will overwrite existing task with same name\n " if ((task_name in self._task_specific_attributes) and (not force_switch)): log.warning('Task `%s` already exists in TARS model. Switching to it.', task_name) else: if isinstance(label_dictionary, Dictionary): label_dictionary = label_dictionary.get_items() if (type(label_dictionary) == str): label_dictionary = [label_dictionary] tag_dictionary = Dictionary(add_unk=False) for tag in label_dictionary: if ((tag == '<unk>') or (tag == 'O')): continue if (tag[1] == '-'): tag = tag[2:] tag_dictionary.add_item(tag) else: tag_dictionary.add_item(tag) self._task_specific_attributes[task_name] = {'label_dictionary': tag_dictionary, 'label_type': label_type, 'multi_label': multi_label} self.switch_to_task(task_name)
-2,168,035,682,850,008,600
Adds a new task to an existing TARS model. Sets necessary attributes and finally 'switches' to the new task. Parameters are similar to the constructor except for model choice, batch size and negative sampling. This method does not store the resultant model onto disk. :param task_name: a string depicting the name of the task :param label_dictionary: dictionary of the labels you want to predict :param label_type: string to identify the label type ('ner', 'sentiment', etc.) :param multi_label: whether this task is a multi-label prediction problem :param force_switch: if True, will overwrite existing task with same name
flair/models/tars_model.py
add_and_switch_to_new_task
garciaeduardo7143/flair
python
def add_and_switch_to_new_task(self, task_name, label_dictionary: Union[(List, Set, Dictionary, str)], label_type: str, multi_label: bool=True, force_switch: bool=False): "\n Adds a new task to an existing TARS model. Sets necessary attributes and finally 'switches'\n to the new task. Parameters are similar to the constructor except for model choice, batch\n size and negative sampling. This method does not store the resultant model onto disk.\n :param task_name: a string depicting the name of the task\n :param label_dictionary: dictionary of the labels you want to predict\n :param label_type: string to identify the label type ('ner', 'sentiment', etc.)\n :param multi_label: whether this task is a multi-label prediction problem\n :param force_switch: if True, will overwrite existing task with same name\n " if ((task_name in self._task_specific_attributes) and (not force_switch)): log.warning('Task `%s` already exists in TARS model. Switching to it.', task_name) else: if isinstance(label_dictionary, Dictionary): label_dictionary = label_dictionary.get_items() if (type(label_dictionary) == str): label_dictionary = [label_dictionary] tag_dictionary = Dictionary(add_unk=False) for tag in label_dictionary: if ((tag == '<unk>') or (tag == 'O')): continue if (tag[1] == '-'): tag = tag[2:] tag_dictionary.add_item(tag) else: tag_dictionary.add_item(tag) self._task_specific_attributes[task_name] = {'label_dictionary': tag_dictionary, 'label_type': label_type, 'multi_label': multi_label} self.switch_to_task(task_name)
def list_existing_tasks(self) -> Set[str]: '\n Lists existing tasks in the loaded TARS model on the console.\n ' return set(self._task_specific_attributes.keys())
6,965,795,004,101,275,000
Lists existing tasks in the loaded TARS model on the console.
flair/models/tars_model.py
list_existing_tasks
garciaeduardo7143/flair
python
def list_existing_tasks(self) -> Set[str]: '\n \n ' return set(self._task_specific_attributes.keys())
def switch_to_task(self, task_name): '\n Switches to a task which was previously added.\n ' if (task_name not in self._task_specific_attributes): log.error('Provided `%s` does not exist in the model. Consider calling `add_and_switch_to_new_task` first.', task_name) else: self._current_task = task_name
-3,186,966,254,722,553,300
Switches to a task which was previously added.
flair/models/tars_model.py
switch_to_task
garciaeduardo7143/flair
python
def switch_to_task(self, task_name): '\n \n ' if (task_name not in self._task_specific_attributes): log.error('Provided `%s` does not exist in the model. Consider calling `add_and_switch_to_new_task` first.', task_name) else: self._current_task = task_name
def predict_zero_shot(self, sentences: Union[(List[Sentence], Sentence)], candidate_label_set: Union[(List[str], Set[str], str)], multi_label: bool=True): '\n Method to make zero shot predictions from the TARS model\n :param sentences: input sentence objects to classify\n :param candidate_label_set: set of candidate labels\n :param multi_label: indicates whether multi-label or single class prediction. Defaults to True.\n ' if ((candidate_label_set is None) or (len(candidate_label_set) == 0)): log.warning('Provided candidate_label_set is empty') return if isinstance(candidate_label_set, str): candidate_label_set = {candidate_label_set} label_dictionary = Dictionary(add_unk=False) for label in candidate_label_set: label_dictionary.add_item(label) existing_current_task = self._current_task self.add_and_switch_to_new_task(task_name='ZeroShot', label_dictionary=label_dictionary, label_type='-'.join(label_dictionary.get_items()), multi_label=multi_label) try: self.predict(sentences) finally: self.switch_to_task(existing_current_task) self._drop_task('ZeroShot') return
-1,446,347,997,733,357,300
Method to make zero shot predictions from the TARS model :param sentences: input sentence objects to classify :param candidate_label_set: set of candidate labels :param multi_label: indicates whether multi-label or single class prediction. Defaults to True.
flair/models/tars_model.py
predict_zero_shot
garciaeduardo7143/flair
python
def predict_zero_shot(self, sentences: Union[(List[Sentence], Sentence)], candidate_label_set: Union[(List[str], Set[str], str)], multi_label: bool=True): '\n Method to make zero shot predictions from the TARS model\n :param sentences: input sentence objects to classify\n :param candidate_label_set: set of candidate labels\n :param multi_label: indicates whether multi-label or single class prediction. Defaults to True.\n ' if ((candidate_label_set is None) or (len(candidate_label_set) == 0)): log.warning('Provided candidate_label_set is empty') return if isinstance(candidate_label_set, str): candidate_label_set = {candidate_label_set} label_dictionary = Dictionary(add_unk=False) for label in candidate_label_set: label_dictionary.add_item(label) existing_current_task = self._current_task self.add_and_switch_to_new_task(task_name='ZeroShot', label_dictionary=label_dictionary, label_type='-'.join(label_dictionary.get_items()), multi_label=multi_label) try: self.predict(sentences) finally: self.switch_to_task(existing_current_task) self._drop_task('ZeroShot') return
def __init__(self, task_name: Optional[str]=None, label_dictionary: Optional[Dictionary]=None, label_type: Optional[str]=None, embeddings: Union[(TransformerWordEmbeddings, str)]='bert-base-uncased', num_negative_labels_to_sample: int=2, prefix: bool=True, **tagger_args): "\n Initializes a TextClassifier\n :param task_name: a string depicting the name of the task\n :param label_dictionary: dictionary of labels you want to predict\n :param embeddings: name of the pre-trained transformer model e.g.,\n 'bert-base-uncased' etc\n :param num_negative_labels_to_sample: number of negative labels to sample for each\n positive labels against a sentence during training. Defaults to 2 negative\n labels for each positive label. The model would sample all the negative labels\n if None is passed. That slows down the training considerably.\n " super(TARSTagger, self).__init__() if isinstance(embeddings, str): embeddings = TransformerWordEmbeddings(model=embeddings, fine_tune=True, layers='-1', layer_mean=False) tars_dictionary = Dictionary(add_unk=False) tars_dictionary.add_item('entity') tars_dictionary.span_labels = True self.tars_model: SequenceTagger = SequenceTagger(hidden_size=123, embeddings=embeddings, tag_dictionary=tars_dictionary, tag_type=self.static_label_type, use_crf=False, use_rnn=False, reproject_embeddings=False, **tagger_args) self.separator = str(self.tars_embeddings.tokenizer.sep_token) if self.tars_embeddings.tokenizer._bos_token: self.separator += str(self.tars_embeddings.tokenizer.bos_token) self.prefix = prefix self.num_negative_labels_to_sample = num_negative_labels_to_sample if (task_name and label_dictionary and label_type): self.add_and_switch_to_new_task(task_name, label_dictionary, label_type) else: log.info('TARS initialized without a task. You need to call .add_and_switch_to_new_task() before training this model')
-356,820,534,521,518,200
Initializes a TextClassifier :param task_name: a string depicting the name of the task :param label_dictionary: dictionary of labels you want to predict :param embeddings: name of the pre-trained transformer model e.g., 'bert-base-uncased' etc :param num_negative_labels_to_sample: number of negative labels to sample for each positive labels against a sentence during training. Defaults to 2 negative labels for each positive label. The model would sample all the negative labels if None is passed. That slows down the training considerably.
flair/models/tars_model.py
__init__
garciaeduardo7143/flair
python
def __init__(self, task_name: Optional[str]=None, label_dictionary: Optional[Dictionary]=None, label_type: Optional[str]=None, embeddings: Union[(TransformerWordEmbeddings, str)]='bert-base-uncased', num_negative_labels_to_sample: int=2, prefix: bool=True, **tagger_args): "\n Initializes a TextClassifier\n :param task_name: a string depicting the name of the task\n :param label_dictionary: dictionary of labels you want to predict\n :param embeddings: name of the pre-trained transformer model e.g.,\n 'bert-base-uncased' etc\n :param num_negative_labels_to_sample: number of negative labels to sample for each\n positive labels against a sentence during training. Defaults to 2 negative\n labels for each positive label. The model would sample all the negative labels\n if None is passed. That slows down the training considerably.\n " super(TARSTagger, self).__init__() if isinstance(embeddings, str): embeddings = TransformerWordEmbeddings(model=embeddings, fine_tune=True, layers='-1', layer_mean=False) tars_dictionary = Dictionary(add_unk=False) tars_dictionary.add_item('entity') tars_dictionary.span_labels = True self.tars_model: SequenceTagger = SequenceTagger(hidden_size=123, embeddings=embeddings, tag_dictionary=tars_dictionary, tag_type=self.static_label_type, use_crf=False, use_rnn=False, reproject_embeddings=False, **tagger_args) self.separator = str(self.tars_embeddings.tokenizer.sep_token) if self.tars_embeddings.tokenizer._bos_token: self.separator += str(self.tars_embeddings.tokenizer.bos_token) self.prefix = prefix self.num_negative_labels_to_sample = num_negative_labels_to_sample if (task_name and label_dictionary and label_type): self.add_and_switch_to_new_task(task_name, label_dictionary, label_type) else: log.info('TARS initialized without a task. You need to call .add_and_switch_to_new_task() before training this model')
def predict(self, sentences: Union[(List[Sentence], Sentence)], mini_batch_size=32, return_probabilities_for_all_classes: bool=False, verbose: bool=False, label_name: Optional[str]=None, return_loss=False, embedding_storage_mode='none', most_probable_first: bool=True): "\n Predict sequence tags for Named Entity Recognition task\n :param sentences: a Sentence or a List of Sentence\n :param mini_batch_size: size of the minibatch, usually bigger is more rapid but consume more memory,\n up to a point when it has no more effect.\n :param all_tag_prob: True to compute the score for each tag on each token,\n otherwise only the score of the best tag is returned\n :param verbose: set to True to display a progress bar\n :param return_loss: set to True to return loss\n :param label_name: set this to change the name of the label type that is predicted\n :param embedding_storage_mode: default is 'none' which is always best. Only set to 'cpu' or 'gpu' if\n you wish to not only predict, but also keep the generated embeddings in CPU or GPU memory respectively.\n 'gpu' to store embeddings in GPU memory.\n " if (label_name is None): label_name = self.get_current_label_type() if (not sentences): return sentences if (not isinstance(sentences, list)): sentences = [sentences] reordered_sentences = sorted(sentences, key=(lambda s: len(s)), reverse=True) dataloader = DataLoader(dataset=FlairDatapointDataset(reordered_sentences), batch_size=mini_batch_size) if verbose: dataloader = tqdm(dataloader) overall_loss = 0 overall_count = 0 with torch.no_grad(): for batch in dataloader: batch = self._filter_empty_sentences(batch) if (not batch): continue for sentence in batch: sentence.remove_labels(label_name) all_labels = [label.decode('utf-8') for label in self.get_current_label_dictionary().idx2item] all_detected = {} for label in all_labels: tars_sentence = self._get_tars_formatted_sentence(label, sentence) loss_and_count = self.tars_model.predict(tars_sentence, label_name=label_name, return_loss=True) overall_loss += loss_and_count[0].item() overall_count += loss_and_count[1] for predicted in tars_sentence.get_labels(label_name): predicted.value = label all_detected[predicted] = predicted.score if most_probable_first: import operator already_set_indices: List[int] = [] sorted_x = sorted(all_detected.items(), key=operator.itemgetter(1)) sorted_x.reverse() for tuple in sorted_x: label = tuple[0] label_length = (0 if (not self.prefix) else (len(label.value.split(' ')) + len(self.separator.split(' ')))) tag_this = True for token in label.span: corresponding_token = sentence.get_token((token.idx - label_length)) if (corresponding_token is None): tag_this = False continue if (token.idx in already_set_indices): tag_this = False continue if tag_this: already_set_indices.extend((token.idx for token in label.span)) predicted_span = [sentence.get_token((token.idx - label_length)) for token in label.span] sentence.add_complex_label(label_name, label=SpanLabel(Span(predicted_span), value=label.value, score=label.score)) store_embeddings(batch, storage_mode=embedding_storage_mode) if return_loss: return (overall_loss, overall_count)
-2,638,801,726,960,084,000
Predict sequence tags for Named Entity Recognition task :param sentences: a Sentence or a List of Sentence :param mini_batch_size: size of the minibatch, usually bigger is more rapid but consume more memory, up to a point when it has no more effect. :param all_tag_prob: True to compute the score for each tag on each token, otherwise only the score of the best tag is returned :param verbose: set to True to display a progress bar :param return_loss: set to True to return loss :param label_name: set this to change the name of the label type that is predicted :param embedding_storage_mode: default is 'none' which is always best. Only set to 'cpu' or 'gpu' if you wish to not only predict, but also keep the generated embeddings in CPU or GPU memory respectively. 'gpu' to store embeddings in GPU memory.
flair/models/tars_model.py
predict
garciaeduardo7143/flair
python
def predict(self, sentences: Union[(List[Sentence], Sentence)], mini_batch_size=32, return_probabilities_for_all_classes: bool=False, verbose: bool=False, label_name: Optional[str]=None, return_loss=False, embedding_storage_mode='none', most_probable_first: bool=True): "\n Predict sequence tags for Named Entity Recognition task\n :param sentences: a Sentence or a List of Sentence\n :param mini_batch_size: size of the minibatch, usually bigger is more rapid but consume more memory,\n up to a point when it has no more effect.\n :param all_tag_prob: True to compute the score for each tag on each token,\n otherwise only the score of the best tag is returned\n :param verbose: set to True to display a progress bar\n :param return_loss: set to True to return loss\n :param label_name: set this to change the name of the label type that is predicted\n :param embedding_storage_mode: default is 'none' which is always best. Only set to 'cpu' or 'gpu' if\n you wish to not only predict, but also keep the generated embeddings in CPU or GPU memory respectively.\n 'gpu' to store embeddings in GPU memory.\n " if (label_name is None): label_name = self.get_current_label_type() if (not sentences): return sentences if (not isinstance(sentences, list)): sentences = [sentences] reordered_sentences = sorted(sentences, key=(lambda s: len(s)), reverse=True) dataloader = DataLoader(dataset=FlairDatapointDataset(reordered_sentences), batch_size=mini_batch_size) if verbose: dataloader = tqdm(dataloader) overall_loss = 0 overall_count = 0 with torch.no_grad(): for batch in dataloader: batch = self._filter_empty_sentences(batch) if (not batch): continue for sentence in batch: sentence.remove_labels(label_name) all_labels = [label.decode('utf-8') for label in self.get_current_label_dictionary().idx2item] all_detected = {} for label in all_labels: tars_sentence = self._get_tars_formatted_sentence(label, sentence) loss_and_count = self.tars_model.predict(tars_sentence, label_name=label_name, return_loss=True) overall_loss += loss_and_count[0].item() overall_count += loss_and_count[1] for predicted in tars_sentence.get_labels(label_name): predicted.value = label all_detected[predicted] = predicted.score if most_probable_first: import operator already_set_indices: List[int] = [] sorted_x = sorted(all_detected.items(), key=operator.itemgetter(1)) sorted_x.reverse() for tuple in sorted_x: label = tuple[0] label_length = (0 if (not self.prefix) else (len(label.value.split(' ')) + len(self.separator.split(' ')))) tag_this = True for token in label.span: corresponding_token = sentence.get_token((token.idx - label_length)) if (corresponding_token is None): tag_this = False continue if (token.idx in already_set_indices): tag_this = False continue if tag_this: already_set_indices.extend((token.idx for token in label.span)) predicted_span = [sentence.get_token((token.idx - label_length)) for token in label.span] sentence.add_complex_label(label_name, label=SpanLabel(Span(predicted_span), value=label.value, score=label.score)) store_embeddings(batch, storage_mode=embedding_storage_mode) if return_loss: return (overall_loss, overall_count)
def __init__(self, task_name: Optional[str]=None, label_dictionary: Optional[Dictionary]=None, label_type: Optional[str]=None, embeddings: Union[(TransformerDocumentEmbeddings, str)]='bert-base-uncased', num_negative_labels_to_sample: int=2, prefix: bool=True, **tagger_args): "\n Initializes a TextClassifier\n :param task_name: a string depicting the name of the task\n :param label_dictionary: dictionary of labels you want to predict\n :param embeddings: name of the pre-trained transformer model e.g.,\n 'bert-base-uncased' etc\n :param num_negative_labels_to_sample: number of negative labels to sample for each\n positive labels against a sentence during training. Defaults to 2 negative\n labels for each positive label. The model would sample all the negative labels\n if None is passed. That slows down the training considerably.\n :param multi_label: auto-detected by default, but you can set this to True\n to force multi-label predictionor False to force single-label prediction\n :param multi_label_threshold: If multi-label you can set the threshold to make predictions\n :param beta: Parameter for F-beta score for evaluation and training annealing\n " super(TARSClassifier, self).__init__() if isinstance(embeddings, str): embeddings = TransformerDocumentEmbeddings(model=embeddings, fine_tune=True, layers='-1', layer_mean=False) tars_dictionary = Dictionary(add_unk=False) tars_dictionary.add_item(self.LABEL_NO_MATCH) tars_dictionary.add_item(self.LABEL_MATCH) self.tars_model = TextClassifier(document_embeddings=embeddings, label_dictionary=tars_dictionary, label_type=self.static_label_type, **tagger_args) self.separator = str(self.tars_embeddings.tokenizer.sep_token) if self.tars_embeddings.tokenizer._bos_token: self.separator += str(self.tars_embeddings.tokenizer.bos_token) self.prefix = prefix self.num_negative_labels_to_sample = num_negative_labels_to_sample if (task_name and label_dictionary and label_type): self.add_and_switch_to_new_task(task_name, label_dictionary, label_type) else: log.info('TARS initialized without a task. You need to call .add_and_switch_to_new_task() before training this model') self.clean_up_labels = True
1,821,094,420,257,161,000
Initializes a TextClassifier :param task_name: a string depicting the name of the task :param label_dictionary: dictionary of labels you want to predict :param embeddings: name of the pre-trained transformer model e.g., 'bert-base-uncased' etc :param num_negative_labels_to_sample: number of negative labels to sample for each positive labels against a sentence during training. Defaults to 2 negative labels for each positive label. The model would sample all the negative labels if None is passed. That slows down the training considerably. :param multi_label: auto-detected by default, but you can set this to True to force multi-label predictionor False to force single-label prediction :param multi_label_threshold: If multi-label you can set the threshold to make predictions :param beta: Parameter for F-beta score for evaluation and training annealing
flair/models/tars_model.py
__init__
garciaeduardo7143/flair
python
def __init__(self, task_name: Optional[str]=None, label_dictionary: Optional[Dictionary]=None, label_type: Optional[str]=None, embeddings: Union[(TransformerDocumentEmbeddings, str)]='bert-base-uncased', num_negative_labels_to_sample: int=2, prefix: bool=True, **tagger_args): "\n Initializes a TextClassifier\n :param task_name: a string depicting the name of the task\n :param label_dictionary: dictionary of labels you want to predict\n :param embeddings: name of the pre-trained transformer model e.g.,\n 'bert-base-uncased' etc\n :param num_negative_labels_to_sample: number of negative labels to sample for each\n positive labels against a sentence during training. Defaults to 2 negative\n labels for each positive label. The model would sample all the negative labels\n if None is passed. That slows down the training considerably.\n :param multi_label: auto-detected by default, but you can set this to True\n to force multi-label predictionor False to force single-label prediction\n :param multi_label_threshold: If multi-label you can set the threshold to make predictions\n :param beta: Parameter for F-beta score for evaluation and training annealing\n " super(TARSClassifier, self).__init__() if isinstance(embeddings, str): embeddings = TransformerDocumentEmbeddings(model=embeddings, fine_tune=True, layers='-1', layer_mean=False) tars_dictionary = Dictionary(add_unk=False) tars_dictionary.add_item(self.LABEL_NO_MATCH) tars_dictionary.add_item(self.LABEL_MATCH) self.tars_model = TextClassifier(document_embeddings=embeddings, label_dictionary=tars_dictionary, label_type=self.static_label_type, **tagger_args) self.separator = str(self.tars_embeddings.tokenizer.sep_token) if self.tars_embeddings.tokenizer._bos_token: self.separator += str(self.tars_embeddings.tokenizer.bos_token) self.prefix = prefix self.num_negative_labels_to_sample = num_negative_labels_to_sample if (task_name and label_dictionary and label_type): self.add_and_switch_to_new_task(task_name, label_dictionary, label_type) else: log.info('TARS initialized without a task. You need to call .add_and_switch_to_new_task() before training this model') self.clean_up_labels = True
def predict(self, sentences: Union[(List[Sentence], Sentence)], mini_batch_size=32, return_probabilities_for_all_classes: bool=False, verbose: bool=False, label_name: Optional[str]=None, return_loss=False, embedding_storage_mode='none', label_threshold: float=0.5, multi_label: Optional[bool]=None): "\n Predict sequence tags for Named Entity Recognition task\n :param sentences: a Sentence or a List of Sentence\n :param mini_batch_size: size of the minibatch, usually bigger is more rapid but consume more memory,\n up to a point when it has no more effect.\n :param all_tag_prob: True to compute the score for each tag on each token,\n otherwise only the score of the best tag is returned\n :param verbose: set to True to display a progress bar\n :param return_loss: set to True to return loss\n :param label_name: set this to change the name of the label type that is predicted\n :param embedding_storage_mode: default is 'none' which is always best. Only set to 'cpu' or 'gpu' if\n you wish to not only predict, but also keep the generated embeddings in CPU or GPU memory respectively.\n 'gpu' to store embeddings in GPU memory.\n " if (label_name is None): label_name = self.get_current_label_type() if (multi_label is None): multi_label = self.is_current_task_multi_label() if (not sentences): return sentences if isinstance(sentences, Sentence): sentences = [sentences] previous_sentence = None for sentence in sentences: if sentence.is_context_set(): continue sentence._previous_sentence = previous_sentence sentence._next_sentence = None if previous_sentence: previous_sentence._next_sentence = sentence previous_sentence = sentence reordered_sentences = sorted(sentences, key=(lambda s: len(s)), reverse=True) dataloader = DataLoader(dataset=FlairDatapointDataset(reordered_sentences), batch_size=mini_batch_size) if verbose: progressbar = tqdm(dataloader) progressbar.set_description('Batch inference') dataloader = progressbar overall_loss = 0 overall_count = 0 batch_no = 0 with torch.no_grad(): for batch in dataloader: batch_no += 1 batch = self._filter_empty_sentences(batch) if (not batch): continue for sentence in batch: sentence.remove_labels(label_name) all_labels = [label.decode('utf-8') for label in self.get_current_label_dictionary().idx2item] best_label = None for label in all_labels: tars_sentence = self._get_tars_formatted_sentence(label, sentence) loss_and_count = self.tars_model.predict(tars_sentence, label_name=label_name, return_loss=True, return_probabilities_for_all_classes=(True if (label_threshold < 0.5) else False)) overall_loss += loss_and_count[0].item() overall_count += loss_and_count[1] for predicted_tars_label in tars_sentence.get_labels(label_name): if ((predicted_tars_label.value == self.LABEL_MATCH) and (predicted_tars_label.score > label_threshold)): sentence.add_label(label_name, label, predicted_tars_label.score) if (not multi_label): if (len(sentence.get_labels(label_name)) > 0): label_scores = torch.tensor([label.score for label in sentence.get_labels(label_name)], dtype=torch.float) best_label = sentence.get_labels(label_name)[torch.argmax(label_scores)] sentence.remove_labels(label_name) sentence.add_label(typename=label_name, value=best_label.value, score=best_label.score) store_embeddings(batch, storage_mode=embedding_storage_mode) if return_loss: return (overall_loss, overall_count)
-6,983,995,804,185,518,000
Predict sequence tags for Named Entity Recognition task :param sentences: a Sentence or a List of Sentence :param mini_batch_size: size of the minibatch, usually bigger is more rapid but consume more memory, up to a point when it has no more effect. :param all_tag_prob: True to compute the score for each tag on each token, otherwise only the score of the best tag is returned :param verbose: set to True to display a progress bar :param return_loss: set to True to return loss :param label_name: set this to change the name of the label type that is predicted :param embedding_storage_mode: default is 'none' which is always best. Only set to 'cpu' or 'gpu' if you wish to not only predict, but also keep the generated embeddings in CPU or GPU memory respectively. 'gpu' to store embeddings in GPU memory.
flair/models/tars_model.py
predict
garciaeduardo7143/flair
python
def predict(self, sentences: Union[(List[Sentence], Sentence)], mini_batch_size=32, return_probabilities_for_all_classes: bool=False, verbose: bool=False, label_name: Optional[str]=None, return_loss=False, embedding_storage_mode='none', label_threshold: float=0.5, multi_label: Optional[bool]=None): "\n Predict sequence tags for Named Entity Recognition task\n :param sentences: a Sentence or a List of Sentence\n :param mini_batch_size: size of the minibatch, usually bigger is more rapid but consume more memory,\n up to a point when it has no more effect.\n :param all_tag_prob: True to compute the score for each tag on each token,\n otherwise only the score of the best tag is returned\n :param verbose: set to True to display a progress bar\n :param return_loss: set to True to return loss\n :param label_name: set this to change the name of the label type that is predicted\n :param embedding_storage_mode: default is 'none' which is always best. Only set to 'cpu' or 'gpu' if\n you wish to not only predict, but also keep the generated embeddings in CPU or GPU memory respectively.\n 'gpu' to store embeddings in GPU memory.\n " if (label_name is None): label_name = self.get_current_label_type() if (multi_label is None): multi_label = self.is_current_task_multi_label() if (not sentences): return sentences if isinstance(sentences, Sentence): sentences = [sentences] previous_sentence = None for sentence in sentences: if sentence.is_context_set(): continue sentence._previous_sentence = previous_sentence sentence._next_sentence = None if previous_sentence: previous_sentence._next_sentence = sentence previous_sentence = sentence reordered_sentences = sorted(sentences, key=(lambda s: len(s)), reverse=True) dataloader = DataLoader(dataset=FlairDatapointDataset(reordered_sentences), batch_size=mini_batch_size) if verbose: progressbar = tqdm(dataloader) progressbar.set_description('Batch inference') dataloader = progressbar overall_loss = 0 overall_count = 0 batch_no = 0 with torch.no_grad(): for batch in dataloader: batch_no += 1 batch = self._filter_empty_sentences(batch) if (not batch): continue for sentence in batch: sentence.remove_labels(label_name) all_labels = [label.decode('utf-8') for label in self.get_current_label_dictionary().idx2item] best_label = None for label in all_labels: tars_sentence = self._get_tars_formatted_sentence(label, sentence) loss_and_count = self.tars_model.predict(tars_sentence, label_name=label_name, return_loss=True, return_probabilities_for_all_classes=(True if (label_threshold < 0.5) else False)) overall_loss += loss_and_count[0].item() overall_count += loss_and_count[1] for predicted_tars_label in tars_sentence.get_labels(label_name): if ((predicted_tars_label.value == self.LABEL_MATCH) and (predicted_tars_label.score > label_threshold)): sentence.add_label(label_name, label, predicted_tars_label.score) if (not multi_label): if (len(sentence.get_labels(label_name)) > 0): label_scores = torch.tensor([label.score for label in sentence.get_labels(label_name)], dtype=torch.float) best_label = sentence.get_labels(label_name)[torch.argmax(label_scores)] sentence.remove_labels(label_name) sentence.add_label(typename=label_name, value=best_label.value, score=best_label.score) store_embeddings(batch, storage_mode=embedding_storage_mode) if return_loss: return (overall_loss, overall_count)
@click.command() def main(args=None): 'Console script for python_learn.' click.echo('Replace this message by putting your code into python_learn.cli.main') click.echo('See click documentation at http://click.pocoo.org/') return 0
-3,725,427,754,268,343,300
Console script for python_learn.
python_learn/cli.py
main
Zhazhanan/python_learn
python
@click.command() def main(args=None): click.echo('Replace this message by putting your code into python_learn.cli.main') click.echo('See click documentation at http://click.pocoo.org/') return 0
@classmethod def from_artifact(cls, artifact): 'Upsert logic to generate an ArtifactReference object from an artifact' obj = cls.query.get(_id=artifact.index_id()) if (obj is not None): return obj try: obj = cls(_id=artifact.index_id(), artifact_reference=dict(cls=bson.Binary(dumps(artifact.__class__, protocol=2)), project_id=artifact.app_config.project_id, app_config_id=artifact.app_config._id, artifact_id=artifact._id)) session(obj).flush(obj) return obj except pymongo.errors.DuplicateKeyError: session(obj).expunge(obj) return cls.query.get(_id=artifact.index_id())
4,642,030,310,060,067,000
Upsert logic to generate an ArtifactReference object from an artifact
Allura/allura/model/index.py
from_artifact
brondsem/allura
python
@classmethod def from_artifact(cls, artifact): obj = cls.query.get(_id=artifact.index_id()) if (obj is not None): return obj try: obj = cls(_id=artifact.index_id(), artifact_reference=dict(cls=bson.Binary(dumps(artifact.__class__, protocol=2)), project_id=artifact.app_config.project_id, app_config_id=artifact.app_config._id, artifact_id=artifact._id)) session(obj).flush(obj) return obj except pymongo.errors.DuplicateKeyError: session(obj).expunge(obj) return cls.query.get(_id=artifact.index_id())
@LazyProperty def artifact(self): 'Look up the artifact referenced' aref = self.artifact_reference try: cls = loads(six.binary_type(aref.cls)) with h.push_context(aref.project_id): return cls.query.get(_id=aref.artifact_id) except Exception: log.exception('Error loading artifact for %s: %r', self._id, aref)
-8,850,843,363,701,119,000
Look up the artifact referenced
Allura/allura/model/index.py
artifact
brondsem/allura
python
@LazyProperty def artifact(self): aref = self.artifact_reference try: cls = loads(six.binary_type(aref.cls)) with h.push_context(aref.project_id): return cls.query.get(_id=aref.artifact_id) except Exception: log.exception('Error loading artifact for %s: %r', self._id, aref)
@classmethod def from_links(cls, *links): 'Convert a sequence of shortlinks to the matching Shortlink objects' if len(links): result = {} parsed_links = dict(((link, cls._parse_link(link)) for link in links)) links_by_artifact = defaultdict(list) project_ids = set() for (link, d) in list(parsed_links.items()): if d: project_ids.add(d['project_id']) links_by_artifact[unquote(d['artifact'])].append(d) else: result[link] = parsed_links.pop(link) q = cls.query.find(dict(link={'$in': list(links_by_artifact.keys())}, project_id={'$in': list(project_ids)}), validate=False, sort=[('_id', pymongo.DESCENDING)]) matches_by_artifact = dict(((link, list(matches)) for (link, matches) in groupby(q, key=(lambda s: unquote(s.link))))) for (link, d) in six.iteritems(parsed_links): matches = matches_by_artifact.get(unquote(d['artifact']), []) matches = (m for m in matches if ((m.project.shortname == d['project']) and (m.project.neighborhood_id == d['nbhd']) and (m.app_config is not None) and m.project.app_instance(m.app_config.options.mount_point))) if d['app']: matches = (m for m in matches if (m.app_config.options.mount_point == d['app'])) result[link] = cls._get_correct_match(link, list(matches)) return result else: return {}
-9,188,563,132,522,894,000
Convert a sequence of shortlinks to the matching Shortlink objects
Allura/allura/model/index.py
from_links
brondsem/allura
python
@classmethod def from_links(cls, *links): if len(links): result = {} parsed_links = dict(((link, cls._parse_link(link)) for link in links)) links_by_artifact = defaultdict(list) project_ids = set() for (link, d) in list(parsed_links.items()): if d: project_ids.add(d['project_id']) links_by_artifact[unquote(d['artifact'])].append(d) else: result[link] = parsed_links.pop(link) q = cls.query.find(dict(link={'$in': list(links_by_artifact.keys())}, project_id={'$in': list(project_ids)}), validate=False, sort=[('_id', pymongo.DESCENDING)]) matches_by_artifact = dict(((link, list(matches)) for (link, matches) in groupby(q, key=(lambda s: unquote(s.link))))) for (link, d) in six.iteritems(parsed_links): matches = matches_by_artifact.get(unquote(d['artifact']), []) matches = (m for m in matches if ((m.project.shortname == d['project']) and (m.project.neighborhood_id == d['nbhd']) and (m.app_config is not None) and m.project.app_instance(m.app_config.options.mount_point))) if d['app']: matches = (m for m in matches if (m.app_config.options.mount_point == d['app'])) result[link] = cls._get_correct_match(link, list(matches)) return result else: return {}
@classmethod def _parse_link(cls, s): 'Parse a shortlink into its nbhd/project/app/artifact parts' s = s.strip() if s.startswith('['): s = s[1:] if s.endswith(']'): s = s[:(- 1)] parts = s.split(':') p_shortname = None p_id = None p_nbhd = None if getattr(c, 'project', None): p_shortname = getattr(c.project, 'shortname', None) p_id = getattr(c.project, '_id', None) p_nbhd = c.project.neighborhood_id if (len(parts) == 3): p = Project.query.get(shortname=parts[0], neighborhood_id=p_nbhd) if p: p_id = p._id return dict(nbhd=p_nbhd, project=parts[0], project_id=p_id, app=parts[1], artifact=parts[2]) elif (len(parts) == 2): return dict(nbhd=p_nbhd, project=p_shortname, project_id=p_id, app=parts[0], artifact=parts[1]) elif (len(parts) == 1): return dict(nbhd=p_nbhd, project=p_shortname, project_id=p_id, app=None, artifact=parts[0]) else: return None
-1,522,056,454,869,889,800
Parse a shortlink into its nbhd/project/app/artifact parts
Allura/allura/model/index.py
_parse_link
brondsem/allura
python
@classmethod def _parse_link(cls, s): s = s.strip() if s.startswith('['): s = s[1:] if s.endswith(']'): s = s[:(- 1)] parts = s.split(':') p_shortname = None p_id = None p_nbhd = None if getattr(c, 'project', None): p_shortname = getattr(c.project, 'shortname', None) p_id = getattr(c.project, '_id', None) p_nbhd = c.project.neighborhood_id if (len(parts) == 3): p = Project.query.get(shortname=parts[0], neighborhood_id=p_nbhd) if p: p_id = p._id return dict(nbhd=p_nbhd, project=parts[0], project_id=p_id, app=parts[1], artifact=parts[2]) elif (len(parts) == 2): return dict(nbhd=p_nbhd, project=p_shortname, project_id=p_id, app=parts[0], artifact=parts[1]) elif (len(parts) == 1): return dict(nbhd=p_nbhd, project=p_shortname, project_id=p_id, app=None, artifact=parts[0]) else: return None
def grow(plant=[], branch=0.01): ' Updates each root in the given list to a new position.\n Roots can branch and will disappear over time.\n Returns the updated list.\n ' new = [] for root in plant: root.update() if (root.time > 0.05): new.append(root) elif (len(plant) < 50): (x, y, angle) = choice((((200 + random(50)), (- 50), (90 + random((- 10), 10))),)) new.append(Root(x, y, angle=angle, color=CLR, time=random(0.5, 3.5, bias=0.3))) if (random() < branch): new.append(root.copy()) return new
-5,876,942,146,591,880,000
Updates each root in the given list to a new position. Roots can branch and will disappear over time. Returns the updated list.
examples/07-filter/09-buffer.py
grow
pepsipepsi/nodebox_opengl_python3
python
def grow(plant=[], branch=0.01): ' Updates each root in the given list to a new position.\n Roots can branch and will disappear over time.\n Returns the updated list.\n ' new = [] for root in plant: root.update() if (root.time > 0.05): new.append(root) elif (len(plant) < 50): (x, y, angle) = choice((((200 + random(50)), (- 50), (90 + random((- 10), 10))),)) new.append(Root(x, y, angle=angle, color=CLR, time=random(0.5, 3.5, bias=0.3))) if (random() < branch): new.append(root.copy()) return new
def __init__(self, master: object, shape: object, value=0, maximum=100, bg='#231303', trough_color='#8a7852', bar_color='#f7f4bf'): 'Creating the alpha mask and creating a custom widget of the given shape and dimensions.' im_shape_alpha = Image.open(shape).convert('L') im_shape = Image.new('RGBA', im_shape_alpha.size, bg) im_shape.putalpha(im_shape_alpha) (width, height) = im_shape_alpha.size tk.Canvas.__init__(self, master, bg=trough_color, width=width, height=height, highlightthickness=0) self._value = value self.maximum = maximum self.height = height self.width = width self.img_trough = ImageTk.PhotoImage(im_shape, master=self) self.create_rectangle(0, height, width, (height * (1 - (value / self.maximum))), width=0, fill=bar_color, tags='pbar') self.create_image(0, 0, anchor='nw', image=self.img_trough)
-57,122,219,250,956,210
Creating the alpha mask and creating a custom widget of the given shape and dimensions.
Scripts/mybar.py
__init__
1337-inc/Captain
python
def __init__(self, master: object, shape: object, value=0, maximum=100, bg='#231303', trough_color='#8a7852', bar_color='#f7f4bf'): im_shape_alpha = Image.open(shape).convert('L') im_shape = Image.new('RGBA', im_shape_alpha.size, bg) im_shape.putalpha(im_shape_alpha) (width, height) = im_shape_alpha.size tk.Canvas.__init__(self, master, bg=trough_color, width=width, height=height, highlightthickness=0) self._value = value self.maximum = maximum self.height = height self.width = width self.img_trough = ImageTk.PhotoImage(im_shape, master=self) self.create_rectangle(0, height, width, (height * (1 - (value / self.maximum))), width=0, fill=bar_color, tags='pbar') self.create_image(0, 0, anchor='nw', image=self.img_trough)
@property def value(self): "Return bar's value." return self._value
6,355,790,876,013,271,000
Return bar's value.
Scripts/mybar.py
value
1337-inc/Captain
python
@property def value(self): return self._value
@value.setter def value(self, value: int): "Set bar's value." self._value = value self.coords('pbar', 0, self.height, self.width, (self.height * (1 - (value / self.maximum))))
-8,252,413,346,168,670,000
Set bar's value.
Scripts/mybar.py
value
1337-inc/Captain
python
@value.setter def value(self, value: int): self._value = value self.coords('pbar', 0, self.height, self.width, (self.height * (1 - (value / self.maximum))))
def _common_args(): 'ArgumentParser setup for all CLI commands.' parser = argparse.ArgumentParser(description='Start a new profiler process.') parser.add_argument('--config', required=True, help='The Python configuration file for the process.') return parser
3,170,931,945,910,749,000
ArgumentParser setup for all CLI commands.
pyperf/cmd/daemons.py
_common_args
kevinconway/PyPerf
python
def _common_args(): parser = argparse.ArgumentParser(description='Start a new profiler process.') parser.add_argument('--config', required=True, help='The Python configuration file for the process.') return parser