body
stringlengths
26
98.2k
body_hash
int64
-9,222,864,604,528,158,000
9,221,803,474B
docstring
stringlengths
1
16.8k
path
stringlengths
5
230
name
stringlengths
1
96
repository_name
stringlengths
7
89
lang
stringclasses
1 value
body_without_docstring
stringlengths
20
98.2k
def build_model(self, norm=True, act='relu'): 'Build DCE using the initialized attributes\n\n Args:\n norm: boolean, wheher to add a normalization layer at the begining\n of the autoencoder\n act: string, keras activation function name for autoencoder\n ' autoencoder = DeepAutoEncoder(self.autoencoder_dims, act) autoencoder.build_model(norm=norm) embeding = autoencoder.model.get_layer(name='embedding_layer').output clustering = KMeansLayer(self.n_clusters, alpha=self.alpha, name='clustering')(embeding) self.model = Model(inputs=autoencoder.model.input, outputs=[clustering, autoencoder.model.output]) return
-1,438,000,602,470,540,500
Build DCE using the initialized attributes Args: norm: boolean, wheher to add a normalization layer at the begining of the autoencoder act: string, keras activation function name for autoencoder
deepchembed/dce.py
build_model
chembed/DeepChEmbed
python
def build_model(self, norm=True, act='relu'): 'Build DCE using the initialized attributes\n\n Args:\n norm: boolean, wheher to add a normalization layer at the begining\n of the autoencoder\n act: string, keras activation function name for autoencoder\n ' autoencoder = DeepAutoEncoder(self.autoencoder_dims, act) autoencoder.build_model(norm=norm) embeding = autoencoder.model.get_layer(name='embedding_layer').output clustering = KMeansLayer(self.n_clusters, alpha=self.alpha, name='clustering')(embeding) self.model = Model(inputs=autoencoder.model.input, outputs=[clustering, autoencoder.model.output]) return
def train_model(self, data_train, labels_train=None, data_test=None, labels_test=None, verbose=1, compiled=False, clustering_loss='kld', decoder_loss='mse', clustering_loss_weight=0.5, hardening_order=1, hardening_strength=2.0, compiled=False, optimizer='adam', lr=0.001, decay=0.0): 'Train DCE Model:\n\n If labels_train are not present, train DCE model in a unsupervised\n learning process; otherwise, train DCE model in a supervised learning\n process.\n\n Args:\n data_train: input training data\n labels_train: true labels of traning data\n data_test: input test data\n labels_test: true lables of testing data\n verbose: 0, turn off the screen prints\n clustering_loss: string, clustering layer loss function\n decoder_loss:, string, decoder loss function\n clustering_loss_weight: float in [0,1], w_c,\n harderning_order: odd int, the order of hardening function\n harderning_strength: float >=1.0, the streng of the harderning\n compiled: boolean, indicating if the model is compiled or not\n optmizer: string, keras optimizers\n lr: learning rate\n dacay: learning rate dacay\n\n Returns:\n train_loss: training loss\n test_loss: only if data_test and labels_test are not None in\n supervised learning process\n ' if (not compiled): assert ((clustering_loss_weight <= 1) and (clustering_loss_weight >= 0)) if (optimizer == 'adam'): dce_optimizer = optimizers.Adam(lr=lr, decay=decay) elif (optimizer == 'sgd'): dce_optimizer = optimizers.sgd(lr=lr, decay=decay) else: raise Exception('Input optimizer was not found') self.model.compile(loss={'clustering': clustering_loss, 'decoder_output': decoder_loss}, loss_weights=[clustering_loss_weight, (1 - clustering_loss_weight)], optimizer=dce_optimizer) if (labels_train is not None): supervised_learning = True if (verbose >= 1): print('Starting supervised learning') else: supervised_learning = False if (verbose >= 1): print('Starting unsupervised learning') kmeans_init = KMeans(n_clusters=self.n_clusters) kmeans_init.build_model() encoder = Model(inputs=self.model.input, outputs=self.model.get_layer(name='embedding_layer').output) kmeans_init.model.fit(encoder.predict(data_train)) y_pred_last = kmeans_init.model.labels_ self.model.get_layer(name='clustering').set_weights([kmeans_init.model.cluster_centers_]) if (not supervised_learning): assert (hardening_order in DCE.HARDENING_FUNCS.keys()) assert (hardening_strength >= 1.0) h_func = DCE.HARDENING_FUNCS[hardening_order] else: assert (len(labels_train) == len(data_train)) assert (len(np.unique(labels_train)) == self.n_clusters) p = np.zeros(shape=(len(labels_train), self.n_clusters)) for i in range(len(labels_train)): p[i][labels_train[i]] = 1.0 if (data_test is not None): assert (len(labels_test) == len(data_test)) assert (len(np.unique(labels_test)) == self.n_clusters) p_test = np.zeros(shape=(len(labels_test), self.n_clusters)) for i in range(len(labels_test)): p_test[i][labels_test[i]] = 1.0 validation_loss = [] loss = [] for iteration in range(int(self.max_iteration)): if ((iteration % self.update_interval) == 0): (q, _) = self.model.predict(data_train) if (not supervised_learning): p = DCE.hardening(q, h_func, hardening_strength) y_pred = q.argmax(1) delta_label_i = (np.sum((y_pred != y_pred_last)).astype(np.float32) / y_pred.shape[0]) y_pred_last = y_pred if ((iteration > 0) and (delta_label_i < self.clustering_tol)): print(((str(delta_label_i) + ' < ') + str(self.clustering_tol))) print('Reached tolerance threshold. Stopping training.') break loss.append(self.model.train_on_batch(x=data_train, y=[p, data_train])) if (supervised_learning and (data_test is not None)): validation_loss.append(self.model.test_on_batch(x=data_test, y=[p_test, data_test])) if ((verbose > 0) and ((iteration % self.update_interval) == 0)): print(('Epoch: ' + str(iteration))) if (verbose == 1): print((((' Total_loss = ' + str(loss[iteration][0])) + ';Delta_label = ') + str(delta_label_i))) print((((' Clustering_loss = ' + str(loss[iteration][1])) + '; Decoder_loss = ') + str(loss[iteration][2]))) if (iteration == (self.max_iteration - 1)): print('Reached maximum iteration. Stopping training.') if (data_test is None): return np.array(loss).T else: return [np.array(loss).T, np.array(validation_loss).T]
-9,053,447,958,165,298,000
Train DCE Model: If labels_train are not present, train DCE model in a unsupervised learning process; otherwise, train DCE model in a supervised learning process. Args: data_train: input training data labels_train: true labels of traning data data_test: input test data labels_test: true lables of testing data verbose: 0, turn off the screen prints clustering_loss: string, clustering layer loss function decoder_loss:, string, decoder loss function clustering_loss_weight: float in [0,1], w_c, harderning_order: odd int, the order of hardening function harderning_strength: float >=1.0, the streng of the harderning compiled: boolean, indicating if the model is compiled or not optmizer: string, keras optimizers lr: learning rate dacay: learning rate dacay Returns: train_loss: training loss test_loss: only if data_test and labels_test are not None in supervised learning process
deepchembed/dce.py
train_model
chembed/DeepChEmbed
python
def train_model(self, data_train, labels_train=None, data_test=None, labels_test=None, verbose=1, compiled=False, clustering_loss='kld', decoder_loss='mse', clustering_loss_weight=0.5, hardening_order=1, hardening_strength=2.0, compiled=False, optimizer='adam', lr=0.001, decay=0.0): 'Train DCE Model:\n\n If labels_train are not present, train DCE model in a unsupervised\n learning process; otherwise, train DCE model in a supervised learning\n process.\n\n Args:\n data_train: input training data\n labels_train: true labels of traning data\n data_test: input test data\n labels_test: true lables of testing data\n verbose: 0, turn off the screen prints\n clustering_loss: string, clustering layer loss function\n decoder_loss:, string, decoder loss function\n clustering_loss_weight: float in [0,1], w_c,\n harderning_order: odd int, the order of hardening function\n harderning_strength: float >=1.0, the streng of the harderning\n compiled: boolean, indicating if the model is compiled or not\n optmizer: string, keras optimizers\n lr: learning rate\n dacay: learning rate dacay\n\n Returns:\n train_loss: training loss\n test_loss: only if data_test and labels_test are not None in\n supervised learning process\n ' if (not compiled): assert ((clustering_loss_weight <= 1) and (clustering_loss_weight >= 0)) if (optimizer == 'adam'): dce_optimizer = optimizers.Adam(lr=lr, decay=decay) elif (optimizer == 'sgd'): dce_optimizer = optimizers.sgd(lr=lr, decay=decay) else: raise Exception('Input optimizer was not found') self.model.compile(loss={'clustering': clustering_loss, 'decoder_output': decoder_loss}, loss_weights=[clustering_loss_weight, (1 - clustering_loss_weight)], optimizer=dce_optimizer) if (labels_train is not None): supervised_learning = True if (verbose >= 1): print('Starting supervised learning') else: supervised_learning = False if (verbose >= 1): print('Starting unsupervised learning') kmeans_init = KMeans(n_clusters=self.n_clusters) kmeans_init.build_model() encoder = Model(inputs=self.model.input, outputs=self.model.get_layer(name='embedding_layer').output) kmeans_init.model.fit(encoder.predict(data_train)) y_pred_last = kmeans_init.model.labels_ self.model.get_layer(name='clustering').set_weights([kmeans_init.model.cluster_centers_]) if (not supervised_learning): assert (hardening_order in DCE.HARDENING_FUNCS.keys()) assert (hardening_strength >= 1.0) h_func = DCE.HARDENING_FUNCS[hardening_order] else: assert (len(labels_train) == len(data_train)) assert (len(np.unique(labels_train)) == self.n_clusters) p = np.zeros(shape=(len(labels_train), self.n_clusters)) for i in range(len(labels_train)): p[i][labels_train[i]] = 1.0 if (data_test is not None): assert (len(labels_test) == len(data_test)) assert (len(np.unique(labels_test)) == self.n_clusters) p_test = np.zeros(shape=(len(labels_test), self.n_clusters)) for i in range(len(labels_test)): p_test[i][labels_test[i]] = 1.0 validation_loss = [] loss = [] for iteration in range(int(self.max_iteration)): if ((iteration % self.update_interval) == 0): (q, _) = self.model.predict(data_train) if (not supervised_learning): p = DCE.hardening(q, h_func, hardening_strength) y_pred = q.argmax(1) delta_label_i = (np.sum((y_pred != y_pred_last)).astype(np.float32) / y_pred.shape[0]) y_pred_last = y_pred if ((iteration > 0) and (delta_label_i < self.clustering_tol)): print(((str(delta_label_i) + ' < ') + str(self.clustering_tol))) print('Reached tolerance threshold. Stopping training.') break loss.append(self.model.train_on_batch(x=data_train, y=[p, data_train])) if (supervised_learning and (data_test is not None)): validation_loss.append(self.model.test_on_batch(x=data_test, y=[p_test, data_test])) if ((verbose > 0) and ((iteration % self.update_interval) == 0)): print(('Epoch: ' + str(iteration))) if (verbose == 1): print((((' Total_loss = ' + str(loss[iteration][0])) + ';Delta_label = ') + str(delta_label_i))) print((((' Clustering_loss = ' + str(loss[iteration][1])) + '; Decoder_loss = ') + str(loss[iteration][2]))) if (iteration == (self.max_iteration - 1)): print('Reached maximum iteration. Stopping training.') if (data_test is None): return np.array(loss).T else: return [np.array(loss).T, np.array(validation_loss).T]
@staticmethod def hardening(q, h_func, stength): 'hardening distribution P and return Q\n\n Args:\n q: input distributions.\n h_func: input harderning function.\n strength: hardening strength.\n\n returns:\n p: hardened and normatlized distributions.\n\n ' q = h_func(q) weight = ((q ** stength) / q.sum(0)) return (weight.T / weight.sum(1)).T
4,162,263,595,985,963,500
hardening distribution P and return Q Args: q: input distributions. h_func: input harderning function. strength: hardening strength. returns: p: hardened and normatlized distributions.
deepchembed/dce.py
hardening
chembed/DeepChEmbed
python
@staticmethod def hardening(q, h_func, stength): 'hardening distribution P and return Q\n\n Args:\n q: input distributions.\n h_func: input harderning function.\n strength: hardening strength.\n\n returns:\n p: hardened and normatlized distributions.\n\n ' q = h_func(q) weight = ((q ** stength) / q.sum(0)) return (weight.T / weight.sum(1)).T
def authenticate_active(self, request, principal, auth, life=None, sign=True, skip_handling_check=False, *args, **kwargs): "Generate a WLS 'success' response based on interaction with the user\n\n This function creates a WLS response specifying that the principal was\n authenticated based on 'fresh' interaction with the user (e.g. input of\n a username and password).\n\n Args:\n request (AuthRequest): the original WAA request\n principal (AuthPrincipal): the principal authenticated by the WLS\n auth (str): the authentication method used by the principal.\n life (int): if specified, the validity (in seconds) of the\n principal's session with the WLS.\n sign (bool): whether to sign the response or not. Recommended to\n leave this at the default value of `True` (see warning below).\n\n *args: passed to `AuthResponse.respond_to_request`\n **kwargs: passed to `AuthResponse.respond_to_request`\n\n Returns:\n An `AuthResponse` instance matching the given arguments.\n\n Warning:\n Responses indicating successful authentication *MUST* be signed by\n the WLS. It is recommended that you leave `sign` set to `True`, or\n make sure to sign the response manually afterwards.\n " self._pre_response(request, skip_handling_check) if (request.iact == False): raise ValueError("WAA demanded passive authentication (iact == 'no')") if ((life is None) and (principal.session_expiry is not None)): life = int((principal.session_expiry - datetime.datetime.utcnow()).total_seconds()) response = AuthResponse.respond_to_request(*args, request=request, code=status.SUCCESS, principal=principal.userid, auth=auth, ptags=principal.ptags, life=life, **kwargs) return self._finish_response(response=response, sign=sign)
8,779,146,282,649,714,000
Generate a WLS 'success' response based on interaction with the user This function creates a WLS response specifying that the principal was authenticated based on 'fresh' interaction with the user (e.g. input of a username and password). Args: request (AuthRequest): the original WAA request principal (AuthPrincipal): the principal authenticated by the WLS auth (str): the authentication method used by the principal. life (int): if specified, the validity (in seconds) of the principal's session with the WLS. sign (bool): whether to sign the response or not. Recommended to leave this at the default value of `True` (see warning below). *args: passed to `AuthResponse.respond_to_request` **kwargs: passed to `AuthResponse.respond_to_request` Returns: An `AuthResponse` instance matching the given arguments. Warning: Responses indicating successful authentication *MUST* be signed by the WLS. It is recommended that you leave `sign` set to `True`, or make sure to sign the response manually afterwards.
ucam_wls/context.py
authenticate_active
edwinbalani/ucam-wls
python
def authenticate_active(self, request, principal, auth, life=None, sign=True, skip_handling_check=False, *args, **kwargs): "Generate a WLS 'success' response based on interaction with the user\n\n This function creates a WLS response specifying that the principal was\n authenticated based on 'fresh' interaction with the user (e.g. input of\n a username and password).\n\n Args:\n request (AuthRequest): the original WAA request\n principal (AuthPrincipal): the principal authenticated by the WLS\n auth (str): the authentication method used by the principal.\n life (int): if specified, the validity (in seconds) of the\n principal's session with the WLS.\n sign (bool): whether to sign the response or not. Recommended to\n leave this at the default value of `True` (see warning below).\n\n *args: passed to `AuthResponse.respond_to_request`\n **kwargs: passed to `AuthResponse.respond_to_request`\n\n Returns:\n An `AuthResponse` instance matching the given arguments.\n\n Warning:\n Responses indicating successful authentication *MUST* be signed by\n the WLS. It is recommended that you leave `sign` set to `True`, or\n make sure to sign the response manually afterwards.\n " self._pre_response(request, skip_handling_check) if (request.iact == False): raise ValueError("WAA demanded passive authentication (iact == 'no')") if ((life is None) and (principal.session_expiry is not None)): life = int((principal.session_expiry - datetime.datetime.utcnow()).total_seconds()) response = AuthResponse.respond_to_request(*args, request=request, code=status.SUCCESS, principal=principal.userid, auth=auth, ptags=principal.ptags, life=life, **kwargs) return self._finish_response(response=response, sign=sign)
def authenticate_passive(self, request, principal, sso=[], sign=True, skip_handling_check=False, *args, **kwargs): "Generate a WLS 'success' response based on a pre-existing identity\n\n This function creates a WLS response specifying that the principal was\n authenticated based on previous successful authentication (e.g. an\n existing WLS session cookie).\n\n Args:\n request (AuthRequest): the original WAA request\n principal (AuthPrincipal): the principal authenticated by the WLS\n sso (list): a list of strings indicating the authentication methods\n previously used for authentication by the principal. If an\n empty list is passed, `principal.auth_methods` will be used.\n sign (bool): whether to sign the response or not. Recommended to\n leave this at the default value of `True` (see warning below).\n\n *args: passed to `AuthResponse.respond_to_request`\n **kwargs: passed to `AuthResponse.respond_to_request`\n\n Returns:\n An `AuthResponse` instance matching the given arguments.\n\n Warning:\n Responses indicating successful authentication *MUST* be signed by\n the WLS. It is recommended that you leave `sign` set to `True`, or\n make sure to sign the response manually afterwards.\n " self._pre_response(request, skip_handling_check) if (request.iact == True): raise ValueError("WAA demanded active authentication (iact == 'yes')") if (len(sso) == 0): sso = principal.auth_methods if (len(sso) == 0): raise ValueError('no authentication methods specified for `sso`') if (principal.session_expiry is not None): life = int((principal.session_expiry - datetime.datetime.utcnow()).total_seconds()) else: life = None response = AuthResponse.respond_to_request(*args, request=request, code=status.SUCCESS, principal=principal.userid, sso=sso, ptags=principal.ptags, life=life, **kwargs) return self._finish_response(response=response, sign=sign)
1,335,896,058,374,553,300
Generate a WLS 'success' response based on a pre-existing identity This function creates a WLS response specifying that the principal was authenticated based on previous successful authentication (e.g. an existing WLS session cookie). Args: request (AuthRequest): the original WAA request principal (AuthPrincipal): the principal authenticated by the WLS sso (list): a list of strings indicating the authentication methods previously used for authentication by the principal. If an empty list is passed, `principal.auth_methods` will be used. sign (bool): whether to sign the response or not. Recommended to leave this at the default value of `True` (see warning below). *args: passed to `AuthResponse.respond_to_request` **kwargs: passed to `AuthResponse.respond_to_request` Returns: An `AuthResponse` instance matching the given arguments. Warning: Responses indicating successful authentication *MUST* be signed by the WLS. It is recommended that you leave `sign` set to `True`, or make sure to sign the response manually afterwards.
ucam_wls/context.py
authenticate_passive
edwinbalani/ucam-wls
python
def authenticate_passive(self, request, principal, sso=[], sign=True, skip_handling_check=False, *args, **kwargs): "Generate a WLS 'success' response based on a pre-existing identity\n\n This function creates a WLS response specifying that the principal was\n authenticated based on previous successful authentication (e.g. an\n existing WLS session cookie).\n\n Args:\n request (AuthRequest): the original WAA request\n principal (AuthPrincipal): the principal authenticated by the WLS\n sso (list): a list of strings indicating the authentication methods\n previously used for authentication by the principal. If an\n empty list is passed, `principal.auth_methods` will be used.\n sign (bool): whether to sign the response or not. Recommended to\n leave this at the default value of `True` (see warning below).\n\n *args: passed to `AuthResponse.respond_to_request`\n **kwargs: passed to `AuthResponse.respond_to_request`\n\n Returns:\n An `AuthResponse` instance matching the given arguments.\n\n Warning:\n Responses indicating successful authentication *MUST* be signed by\n the WLS. It is recommended that you leave `sign` set to `True`, or\n make sure to sign the response manually afterwards.\n " self._pre_response(request, skip_handling_check) if (request.iact == True): raise ValueError("WAA demanded active authentication (iact == 'yes')") if (len(sso) == 0): sso = principal.auth_methods if (len(sso) == 0): raise ValueError('no authentication methods specified for `sso`') if (principal.session_expiry is not None): life = int((principal.session_expiry - datetime.datetime.utcnow()).total_seconds()) else: life = None response = AuthResponse.respond_to_request(*args, request=request, code=status.SUCCESS, principal=principal.userid, sso=sso, ptags=principal.ptags, life=life, **kwargs) return self._finish_response(response=response, sign=sign)
def generate_failure(self, code, request, msg='', sign=True, skip_handling_check=False, *args, **kwargs): "Generate a response indicating failure.\n\n This is to be used in all cases where the outcome of user interaction\n is not success. This function will refuse to handle a request where\n the 'fail' parameter is 'yes' (in which case the WLS must not redirect\n back to the WAA).\n\n Args:\n code (int): the response status code. Values specified in the\n protocol are available as constants under `ucam_wls.status`.\n request (AuthRequest): the original WAA request\n msg (str): an optional message that could be shown to the end user\n by the WAA\n sign (bool): whether to sign the response or not.\n\n *args: passed to `AuthResponse.respond_to_request`\n **kwargs: passed to `AuthResponse.respond_to_request`\n\n Returns:\n An `AuthResponse` instance matching the given arguments.\n\n Note:\n Signatures on WLS responses indicating a non-success can optionally\n be signed. In the interests of security, the default in this\n function is to go ahead and sign anyway, but this can be turned off\n if really desired.\n " self._pre_response(request, skip_handling_check, check_auth_types=False) if request.fail: raise ValueError('WAA specified that WLS must not redirect back to it on failure') if (code == status.SUCCESS): raise ValueError('Failure responses must not have success status') response = AuthResponse.respond_to_request(*args, request=request, code=code, **kwargs) return self._finish_response(response=response, sign=sign)
-3,337,601,949,590,731,300
Generate a response indicating failure. This is to be used in all cases where the outcome of user interaction is not success. This function will refuse to handle a request where the 'fail' parameter is 'yes' (in which case the WLS must not redirect back to the WAA). Args: code (int): the response status code. Values specified in the protocol are available as constants under `ucam_wls.status`. request (AuthRequest): the original WAA request msg (str): an optional message that could be shown to the end user by the WAA sign (bool): whether to sign the response or not. *args: passed to `AuthResponse.respond_to_request` **kwargs: passed to `AuthResponse.respond_to_request` Returns: An `AuthResponse` instance matching the given arguments. Note: Signatures on WLS responses indicating a non-success can optionally be signed. In the interests of security, the default in this function is to go ahead and sign anyway, but this can be turned off if really desired.
ucam_wls/context.py
generate_failure
edwinbalani/ucam-wls
python
def generate_failure(self, code, request, msg=, sign=True, skip_handling_check=False, *args, **kwargs): "Generate a response indicating failure.\n\n This is to be used in all cases where the outcome of user interaction\n is not success. This function will refuse to handle a request where\n the 'fail' parameter is 'yes' (in which case the WLS must not redirect\n back to the WAA).\n\n Args:\n code (int): the response status code. Values specified in the\n protocol are available as constants under `ucam_wls.status`.\n request (AuthRequest): the original WAA request\n msg (str): an optional message that could be shown to the end user\n by the WAA\n sign (bool): whether to sign the response or not.\n\n *args: passed to `AuthResponse.respond_to_request`\n **kwargs: passed to `AuthResponse.respond_to_request`\n\n Returns:\n An `AuthResponse` instance matching the given arguments.\n\n Note:\n Signatures on WLS responses indicating a non-success can optionally\n be signed. In the interests of security, the default in this\n function is to go ahead and sign anyway, but this can be turned off\n if really desired.\n " self._pre_response(request, skip_handling_check, check_auth_types=False) if request.fail: raise ValueError('WAA specified that WLS must not redirect back to it on failure') if (code == status.SUCCESS): raise ValueError('Failure responses must not have success status') response = AuthResponse.respond_to_request(*args, request=request, code=code, **kwargs) return self._finish_response(response=response, sign=sign)
def __init__(__self__, *, enable_magnetic_store_writes: Optional[bool]=None, magnetic_store_rejected_data_location: Optional['outputs.TableMagneticStoreWritePropertiesMagneticStoreRejectedDataLocation']=None): "\n :param bool enable_magnetic_store_writes: A flag to enable magnetic store writes.\n :param 'TableMagneticStoreWritePropertiesMagneticStoreRejectedDataLocationArgs' magnetic_store_rejected_data_location: The location to write error reports for records rejected asynchronously during magnetic store writes. See Magnetic Store Rejected Data Location below for more details.\n " if (enable_magnetic_store_writes is not None): pulumi.set(__self__, 'enable_magnetic_store_writes', enable_magnetic_store_writes) if (magnetic_store_rejected_data_location is not None): pulumi.set(__self__, 'magnetic_store_rejected_data_location', magnetic_store_rejected_data_location)
2,888,393,677,886,899,000
:param bool enable_magnetic_store_writes: A flag to enable magnetic store writes. :param 'TableMagneticStoreWritePropertiesMagneticStoreRejectedDataLocationArgs' magnetic_store_rejected_data_location: The location to write error reports for records rejected asynchronously during magnetic store writes. See Magnetic Store Rejected Data Location below for more details.
sdk/python/pulumi_aws/timestreamwrite/outputs.py
__init__
chivandikwa/pulumi-aws
python
def __init__(__self__, *, enable_magnetic_store_writes: Optional[bool]=None, magnetic_store_rejected_data_location: Optional['outputs.TableMagneticStoreWritePropertiesMagneticStoreRejectedDataLocation']=None): "\n :param bool enable_magnetic_store_writes: A flag to enable magnetic store writes.\n :param 'TableMagneticStoreWritePropertiesMagneticStoreRejectedDataLocationArgs' magnetic_store_rejected_data_location: The location to write error reports for records rejected asynchronously during magnetic store writes. See Magnetic Store Rejected Data Location below for more details.\n " if (enable_magnetic_store_writes is not None): pulumi.set(__self__, 'enable_magnetic_store_writes', enable_magnetic_store_writes) if (magnetic_store_rejected_data_location is not None): pulumi.set(__self__, 'magnetic_store_rejected_data_location', magnetic_store_rejected_data_location)
@property @pulumi.getter(name='enableMagneticStoreWrites') def enable_magnetic_store_writes(self) -> Optional[bool]: '\n A flag to enable magnetic store writes.\n ' return pulumi.get(self, 'enable_magnetic_store_writes')
-2,718,757,825,877,902,300
A flag to enable magnetic store writes.
sdk/python/pulumi_aws/timestreamwrite/outputs.py
enable_magnetic_store_writes
chivandikwa/pulumi-aws
python
@property @pulumi.getter(name='enableMagneticStoreWrites') def enable_magnetic_store_writes(self) -> Optional[bool]: '\n \n ' return pulumi.get(self, 'enable_magnetic_store_writes')
@property @pulumi.getter(name='magneticStoreRejectedDataLocation') def magnetic_store_rejected_data_location(self) -> Optional['outputs.TableMagneticStoreWritePropertiesMagneticStoreRejectedDataLocation']: '\n The location to write error reports for records rejected asynchronously during magnetic store writes. See Magnetic Store Rejected Data Location below for more details.\n ' return pulumi.get(self, 'magnetic_store_rejected_data_location')
7,316,370,310,385,799,000
The location to write error reports for records rejected asynchronously during magnetic store writes. See Magnetic Store Rejected Data Location below for more details.
sdk/python/pulumi_aws/timestreamwrite/outputs.py
magnetic_store_rejected_data_location
chivandikwa/pulumi-aws
python
@property @pulumi.getter(name='magneticStoreRejectedDataLocation') def magnetic_store_rejected_data_location(self) -> Optional['outputs.TableMagneticStoreWritePropertiesMagneticStoreRejectedDataLocation']: '\n \n ' return pulumi.get(self, 'magnetic_store_rejected_data_location')
def __init__(__self__, *, s3_configuration: Optional['outputs.TableMagneticStoreWritePropertiesMagneticStoreRejectedDataLocationS3Configuration']=None): "\n :param 'TableMagneticStoreWritePropertiesMagneticStoreRejectedDataLocationS3ConfigurationArgs' s3_configuration: Configuration of an S3 location to write error reports for records rejected, asynchronously, during magnetic store writes. See S3 Configuration below for more details.\n " if (s3_configuration is not None): pulumi.set(__self__, 's3_configuration', s3_configuration)
-6,933,671,522,388,319,000
:param 'TableMagneticStoreWritePropertiesMagneticStoreRejectedDataLocationS3ConfigurationArgs' s3_configuration: Configuration of an S3 location to write error reports for records rejected, asynchronously, during magnetic store writes. See S3 Configuration below for more details.
sdk/python/pulumi_aws/timestreamwrite/outputs.py
__init__
chivandikwa/pulumi-aws
python
def __init__(__self__, *, s3_configuration: Optional['outputs.TableMagneticStoreWritePropertiesMagneticStoreRejectedDataLocationS3Configuration']=None): "\n \n " if (s3_configuration is not None): pulumi.set(__self__, 's3_configuration', s3_configuration)
@property @pulumi.getter(name='s3Configuration') def s3_configuration(self) -> Optional['outputs.TableMagneticStoreWritePropertiesMagneticStoreRejectedDataLocationS3Configuration']: '\n Configuration of an S3 location to write error reports for records rejected, asynchronously, during magnetic store writes. See S3 Configuration below for more details.\n ' return pulumi.get(self, 's3_configuration')
8,736,312,081,624,449,000
Configuration of an S3 location to write error reports for records rejected, asynchronously, during magnetic store writes. See S3 Configuration below for more details.
sdk/python/pulumi_aws/timestreamwrite/outputs.py
s3_configuration
chivandikwa/pulumi-aws
python
@property @pulumi.getter(name='s3Configuration') def s3_configuration(self) -> Optional['outputs.TableMagneticStoreWritePropertiesMagneticStoreRejectedDataLocationS3Configuration']: '\n \n ' return pulumi.get(self, 's3_configuration')
def __init__(__self__, *, bucket_name: Optional[str]=None, encryption_option: Optional[str]=None, kms_key_id: Optional[str]=None, object_key_prefix: Optional[str]=None): '\n :param str bucket_name: Bucket name of the customer S3 bucket.\n :param str encryption_option: Encryption option for the customer s3 location. Options are S3 server side encryption with an S3-managed key or KMS managed key. Valid values are `SSE_KMS` and `SSE_S3`.\n :param str kms_key_id: KMS key arn for the customer s3 location when encrypting with a KMS managed key.\n :param str object_key_prefix: Object key prefix for the customer S3 location.\n ' if (bucket_name is not None): pulumi.set(__self__, 'bucket_name', bucket_name) if (encryption_option is not None): pulumi.set(__self__, 'encryption_option', encryption_option) if (kms_key_id is not None): pulumi.set(__self__, 'kms_key_id', kms_key_id) if (object_key_prefix is not None): pulumi.set(__self__, 'object_key_prefix', object_key_prefix)
-8,271,482,238,891,445,000
:param str bucket_name: Bucket name of the customer S3 bucket. :param str encryption_option: Encryption option for the customer s3 location. Options are S3 server side encryption with an S3-managed key or KMS managed key. Valid values are `SSE_KMS` and `SSE_S3`. :param str kms_key_id: KMS key arn for the customer s3 location when encrypting with a KMS managed key. :param str object_key_prefix: Object key prefix for the customer S3 location.
sdk/python/pulumi_aws/timestreamwrite/outputs.py
__init__
chivandikwa/pulumi-aws
python
def __init__(__self__, *, bucket_name: Optional[str]=None, encryption_option: Optional[str]=None, kms_key_id: Optional[str]=None, object_key_prefix: Optional[str]=None): '\n :param str bucket_name: Bucket name of the customer S3 bucket.\n :param str encryption_option: Encryption option for the customer s3 location. Options are S3 server side encryption with an S3-managed key or KMS managed key. Valid values are `SSE_KMS` and `SSE_S3`.\n :param str kms_key_id: KMS key arn for the customer s3 location when encrypting with a KMS managed key.\n :param str object_key_prefix: Object key prefix for the customer S3 location.\n ' if (bucket_name is not None): pulumi.set(__self__, 'bucket_name', bucket_name) if (encryption_option is not None): pulumi.set(__self__, 'encryption_option', encryption_option) if (kms_key_id is not None): pulumi.set(__self__, 'kms_key_id', kms_key_id) if (object_key_prefix is not None): pulumi.set(__self__, 'object_key_prefix', object_key_prefix)
@property @pulumi.getter(name='bucketName') def bucket_name(self) -> Optional[str]: '\n Bucket name of the customer S3 bucket.\n ' return pulumi.get(self, 'bucket_name')
4,003,761,450,091,991
Bucket name of the customer S3 bucket.
sdk/python/pulumi_aws/timestreamwrite/outputs.py
bucket_name
chivandikwa/pulumi-aws
python
@property @pulumi.getter(name='bucketName') def bucket_name(self) -> Optional[str]: '\n \n ' return pulumi.get(self, 'bucket_name')
@property @pulumi.getter(name='encryptionOption') def encryption_option(self) -> Optional[str]: '\n Encryption option for the customer s3 location. Options are S3 server side encryption with an S3-managed key or KMS managed key. Valid values are `SSE_KMS` and `SSE_S3`.\n ' return pulumi.get(self, 'encryption_option')
9,216,246,817,732,302,000
Encryption option for the customer s3 location. Options are S3 server side encryption with an S3-managed key or KMS managed key. Valid values are `SSE_KMS` and `SSE_S3`.
sdk/python/pulumi_aws/timestreamwrite/outputs.py
encryption_option
chivandikwa/pulumi-aws
python
@property @pulumi.getter(name='encryptionOption') def encryption_option(self) -> Optional[str]: '\n \n ' return pulumi.get(self, 'encryption_option')
@property @pulumi.getter(name='kmsKeyId') def kms_key_id(self) -> Optional[str]: '\n KMS key arn for the customer s3 location when encrypting with a KMS managed key.\n ' return pulumi.get(self, 'kms_key_id')
-4,133,450,127,578,844,700
KMS key arn for the customer s3 location when encrypting with a KMS managed key.
sdk/python/pulumi_aws/timestreamwrite/outputs.py
kms_key_id
chivandikwa/pulumi-aws
python
@property @pulumi.getter(name='kmsKeyId') def kms_key_id(self) -> Optional[str]: '\n \n ' return pulumi.get(self, 'kms_key_id')
@property @pulumi.getter(name='objectKeyPrefix') def object_key_prefix(self) -> Optional[str]: '\n Object key prefix for the customer S3 location.\n ' return pulumi.get(self, 'object_key_prefix')
-596,909,029,895,640,700
Object key prefix for the customer S3 location.
sdk/python/pulumi_aws/timestreamwrite/outputs.py
object_key_prefix
chivandikwa/pulumi-aws
python
@property @pulumi.getter(name='objectKeyPrefix') def object_key_prefix(self) -> Optional[str]: '\n \n ' return pulumi.get(self, 'object_key_prefix')
def __init__(__self__, *, magnetic_store_retention_period_in_days: int, memory_store_retention_period_in_hours: int): '\n :param int magnetic_store_retention_period_in_days: The duration for which data must be stored in the magnetic store. Minimum value of 1. Maximum value of 73000.\n :param int memory_store_retention_period_in_hours: The duration for which data must be stored in the memory store. Minimum value of 1. Maximum value of 8766.\n ' pulumi.set(__self__, 'magnetic_store_retention_period_in_days', magnetic_store_retention_period_in_days) pulumi.set(__self__, 'memory_store_retention_period_in_hours', memory_store_retention_period_in_hours)
1,808,947,756,490,085,000
:param int magnetic_store_retention_period_in_days: The duration for which data must be stored in the magnetic store. Minimum value of 1. Maximum value of 73000. :param int memory_store_retention_period_in_hours: The duration for which data must be stored in the memory store. Minimum value of 1. Maximum value of 8766.
sdk/python/pulumi_aws/timestreamwrite/outputs.py
__init__
chivandikwa/pulumi-aws
python
def __init__(__self__, *, magnetic_store_retention_period_in_days: int, memory_store_retention_period_in_hours: int): '\n :param int magnetic_store_retention_period_in_days: The duration for which data must be stored in the magnetic store. Minimum value of 1. Maximum value of 73000.\n :param int memory_store_retention_period_in_hours: The duration for which data must be stored in the memory store. Minimum value of 1. Maximum value of 8766.\n ' pulumi.set(__self__, 'magnetic_store_retention_period_in_days', magnetic_store_retention_period_in_days) pulumi.set(__self__, 'memory_store_retention_period_in_hours', memory_store_retention_period_in_hours)
@property @pulumi.getter(name='magneticStoreRetentionPeriodInDays') def magnetic_store_retention_period_in_days(self) -> int: '\n The duration for which data must be stored in the magnetic store. Minimum value of 1. Maximum value of 73000.\n ' return pulumi.get(self, 'magnetic_store_retention_period_in_days')
-3,694,460,775,966,215,000
The duration for which data must be stored in the magnetic store. Minimum value of 1. Maximum value of 73000.
sdk/python/pulumi_aws/timestreamwrite/outputs.py
magnetic_store_retention_period_in_days
chivandikwa/pulumi-aws
python
@property @pulumi.getter(name='magneticStoreRetentionPeriodInDays') def magnetic_store_retention_period_in_days(self) -> int: '\n \n ' return pulumi.get(self, 'magnetic_store_retention_period_in_days')
@property @pulumi.getter(name='memoryStoreRetentionPeriodInHours') def memory_store_retention_period_in_hours(self) -> int: '\n The duration for which data must be stored in the memory store. Minimum value of 1. Maximum value of 8766.\n ' return pulumi.get(self, 'memory_store_retention_period_in_hours')
-7,752,533,847,161,990,000
The duration for which data must be stored in the memory store. Minimum value of 1. Maximum value of 8766.
sdk/python/pulumi_aws/timestreamwrite/outputs.py
memory_store_retention_period_in_hours
chivandikwa/pulumi-aws
python
@property @pulumi.getter(name='memoryStoreRetentionPeriodInHours') def memory_store_retention_period_in_hours(self) -> int: '\n \n ' return pulumi.get(self, 'memory_store_retention_period_in_hours')
def __default_grid__(ax): 'This is a temporary function' ax.grid(b=True, which='major', color='#000000', alpha=0.2, linestyle='-', linewidth=0.5) ax.grid(b=True, which='minor', color='#000000', alpha=0.1, linestyle='-', linewidth=0.25) ax.minorticks_on()
-2,463,206,208,069,694,000
This is a temporary function
nicenquickplotlib/config_types.py
__default_grid__
SengerM/nicenquickplotlib
python
def __default_grid__(ax): ax.grid(b=True, which='major', color='#000000', alpha=0.2, linestyle='-', linewidth=0.5) ax.grid(b=True, which='minor', color='#000000', alpha=0.1, linestyle='-', linewidth=0.25) ax.minorticks_on()
def load_data(filename: str) -> pd.DataFrame: '\n Load city daily temperature dataset and preprocess data.\n Parameters\n ----------\n filename: str\n Path to house prices dataset\n\n Returns\n -------\n Design matrix and response vector (Temp)\n ' data = pd.read_csv(filename, parse_dates=['Date']).drop_duplicates() data = data.drop(data[(data['Temp'] < (- 70))].index) data['DayOfYear'] = data['Date'].dt.dayofyear return data
9,173,056,866,655,160,000
Load city daily temperature dataset and preprocess data. Parameters ---------- filename: str Path to house prices dataset Returns ------- Design matrix and response vector (Temp)
exercises/city_temperature_prediction.py
load_data
noamwino/IML.HUJI
python
def load_data(filename: str) -> pd.DataFrame: '\n Load city daily temperature dataset and preprocess data.\n Parameters\n ----------\n filename: str\n Path to house prices dataset\n\n Returns\n -------\n Design matrix and response vector (Temp)\n ' data = pd.read_csv(filename, parse_dates=['Date']).drop_duplicates() data = data.drop(data[(data['Temp'] < (- 70))].index) data['DayOfYear'] = data['Date'].dt.dayofyear return data
def question_2(data): ' Exploring data specifically in Israel ' data = data.copy() data = data[(data['Country'] == 'Israel')] data['Year'] = data['Year'].astype(str) fig = px.scatter(data, x='DayOfYear', y='Temp', color='Year', width=1500, height=700, labels={'DayOfYear': 'Day of Year', 'Temp': 'Temperature'}, title='Q2(1) The relation between the day in the year and the temperature in Israel') fig.update_xaxes(range=[0, 365], tick0=0, dtick=20) fig.show() std_by_month = data.groupby('Month').std().reset_index() fig = px.bar(std_by_month, x='Month', y='Temp', width=1500, height=700, labels={'Temp': 'Std of the daily temperatures'}, title='Q2(2) The Standard Deviation of the Daily Temperatures Per Month in Israel') fig.data[(- 1)].text = np.round(std_by_month['Temp'], 3) fig.update_xaxes(tick0=1, dtick=1) fig.update_traces(textposition='outside') fig.show()
543,939,310,610,351,000
Exploring data specifically in Israel
exercises/city_temperature_prediction.py
question_2
noamwino/IML.HUJI
python
def question_2(data): ' ' data = data.copy() data = data[(data['Country'] == 'Israel')] data['Year'] = data['Year'].astype(str) fig = px.scatter(data, x='DayOfYear', y='Temp', color='Year', width=1500, height=700, labels={'DayOfYear': 'Day of Year', 'Temp': 'Temperature'}, title='Q2(1) The relation between the day in the year and the temperature in Israel') fig.update_xaxes(range=[0, 365], tick0=0, dtick=20) fig.show() std_by_month = data.groupby('Month').std().reset_index() fig = px.bar(std_by_month, x='Month', y='Temp', width=1500, height=700, labels={'Temp': 'Std of the daily temperatures'}, title='Q2(2) The Standard Deviation of the Daily Temperatures Per Month in Israel') fig.data[(- 1)].text = np.round(std_by_month['Temp'], 3) fig.update_xaxes(tick0=1, dtick=1) fig.update_traces(textposition='outside') fig.show()
def question_3(data): ' Exploring differences between countries' agg_data_mean = data.groupby(['Country', 'Month']).mean().reset_index() agg_data_std = data.groupby(['Country', 'Month']).std().reset_index() fig = px.line(agg_data_mean, x='Month', y='Temp', color='Country', error_y=agg_data_std['Temp'], width=1500, height=700, labels={'Temp': 'Averaged Temperature'}, title='Q3 The Average Monthly Temperatures in Different Countries') fig.update_xaxes(tick0=1, dtick=1) fig.show()
-5,551,659,980,031,403,000
Exploring differences between countries
exercises/city_temperature_prediction.py
question_3
noamwino/IML.HUJI
python
def question_3(data): ' ' agg_data_mean = data.groupby(['Country', 'Month']).mean().reset_index() agg_data_std = data.groupby(['Country', 'Month']).std().reset_index() fig = px.line(agg_data_mean, x='Month', y='Temp', color='Country', error_y=agg_data_std['Temp'], width=1500, height=700, labels={'Temp': 'Averaged Temperature'}, title='Q3 The Average Monthly Temperatures in Different Countries') fig.update_xaxes(tick0=1, dtick=1) fig.show()
def question_4(data): ' Fitting model for different values of `k` ' data = data[(data['Country'] == 'Israel')] (train_X, train_y, test_X, test_y) = split_train_test(data['DayOfYear'], data['Temp']) losses = np.array([]) for k in range(1, 11): poly_fit = PolynomialFitting(k) poly_fit.fit(train_X.to_numpy(), train_y.to_numpy()) loss = poly_fit.loss(test_X.to_numpy(), test_y.to_numpy()) losses = np.append(losses, round(loss, 2)) print(k, loss) fig = px.bar(x=range(1, 11), y=losses, width=1500, height=700, labels={'x': 'Polynomials Degrees (k)', 'y': 'Test Error (MSE)'}, title='Q4 Test Errors for Different Polynomials Degrees (k)') fig.data[(- 1)].text = losses fig.update_xaxes(tick0=1, dtick=1) fig.update_traces(textposition='outside') fig.show()
5,774,251,136,083,118,000
Fitting model for different values of `k`
exercises/city_temperature_prediction.py
question_4
noamwino/IML.HUJI
python
def question_4(data): ' ' data = data[(data['Country'] == 'Israel')] (train_X, train_y, test_X, test_y) = split_train_test(data['DayOfYear'], data['Temp']) losses = np.array([]) for k in range(1, 11): poly_fit = PolynomialFitting(k) poly_fit.fit(train_X.to_numpy(), train_y.to_numpy()) loss = poly_fit.loss(test_X.to_numpy(), test_y.to_numpy()) losses = np.append(losses, round(loss, 2)) print(k, loss) fig = px.bar(x=range(1, 11), y=losses, width=1500, height=700, labels={'x': 'Polynomials Degrees (k)', 'y': 'Test Error (MSE)'}, title='Q4 Test Errors for Different Polynomials Degrees (k)') fig.data[(- 1)].text = losses fig.update_xaxes(tick0=1, dtick=1) fig.update_traces(textposition='outside') fig.show()
def question_5(data): ' Evaluating fitted model on different countries ' data_israel = data[(data['Country'] == 'Israel')] poly_fit = PolynomialFitting(k=5) poly_fit.fit(data_israel['DayOfYear'], data_israel['Temp']) other_countries = ['Jordan', 'South Africa', 'The Netherlands'] losses = np.array([]) for country in other_countries: country_data = data[(data['Country'] == country)] loss = poly_fit.loss(country_data['DayOfYear'], country_data['Temp']) losses = np.append(losses, loss) fig = px.bar(x=np.array(other_countries), y=losses, width=700, height=700, labels={'x': 'Country', 'y': 'Losses (MSE)'}, title='Q5 Losses (MSE) per Country With k=5') fig.data[(- 1)].text = np.round(losses, 3) fig.update_traces(textposition='outside') fig.show()
3,931,820,151,589,127,700
Evaluating fitted model on different countries
exercises/city_temperature_prediction.py
question_5
noamwino/IML.HUJI
python
def question_5(data): ' ' data_israel = data[(data['Country'] == 'Israel')] poly_fit = PolynomialFitting(k=5) poly_fit.fit(data_israel['DayOfYear'], data_israel['Temp']) other_countries = ['Jordan', 'South Africa', 'The Netherlands'] losses = np.array([]) for country in other_countries: country_data = data[(data['Country'] == country)] loss = poly_fit.loss(country_data['DayOfYear'], country_data['Temp']) losses = np.append(losses, loss) fig = px.bar(x=np.array(other_countries), y=losses, width=700, height=700, labels={'x': 'Country', 'y': 'Losses (MSE)'}, title='Q5 Losses (MSE) per Country With k=5') fig.data[(- 1)].text = np.round(losses, 3) fig.update_traces(textposition='outside') fig.show()
async def test_subquery_access(self): 'This test ensures that accessing a query does not modify it (#780)' tournament_1 = (await Tournament.create(name='1')) event_1 = (await Event.create(event_id=1, name='event 1', tournament=tournament_1)) event_2 = (await Event.create(event_id=2, name='event 2', tournament=tournament_1)) team_1 = (await Team.create(id=1, name='team 1')) team_2 = (await Team.create(id=2, name='team 2')) (await event_1.participants.add(team_1)) (await event_2.participants.add(team_1, team_2)) self.assertEqual((await event_1.participants.all()), [team_1]) self.assertEqual((await event_2.participants.all()), [team_1, team_2]) sub_query_team_1 = Subquery(Event.filter(participants__id=1).values('event_id')) sub_query_team_2 = Subquery(Event.filter(participants__id=2).values('event_id')) query = Event.filter(pk__in=sub_query_team_1) query = query.filter(pk__in=sub_query_team_2) self.assertEqual(query.sql(), query.sql()) self.assertEqual((await query.count()), (await query.count())) self.assertEqual((await query.count()), 1) self.assertEqual((await query.all()), [event_2])
613,092,107,671,665,800
This test ensures that accessing a query does not modify it (#780)
tests/test_queryset.py
test_subquery_access
spacemanspiff2007/tortoise-orm
python
async def test_subquery_access(self): tournament_1 = (await Tournament.create(name='1')) event_1 = (await Event.create(event_id=1, name='event 1', tournament=tournament_1)) event_2 = (await Event.create(event_id=2, name='event 2', tournament=tournament_1)) team_1 = (await Team.create(id=1, name='team 1')) team_2 = (await Team.create(id=2, name='team 2')) (await event_1.participants.add(team_1)) (await event_2.participants.add(team_1, team_2)) self.assertEqual((await event_1.participants.all()), [team_1]) self.assertEqual((await event_2.participants.all()), [team_1, team_2]) sub_query_team_1 = Subquery(Event.filter(participants__id=1).values('event_id')) sub_query_team_2 = Subquery(Event.filter(participants__id=2).values('event_id')) query = Event.filter(pk__in=sub_query_team_1) query = query.filter(pk__in=sub_query_team_2) self.assertEqual(query.sql(), query.sql()) self.assertEqual((await query.count()), (await query.count())) self.assertEqual((await query.count()), 1) self.assertEqual((await query.all()), [event_2])
def t(eng, chinese): "return English or Chinese text according to the user's browser language" return (chinese if ('zh' in get_info().user_language) else eng)
5,158,654,429,831,208,000
return English or Chinese text according to the user's browser language
demos/output_usage.py
t
songshanyuwu/PyWebIO
python
def t(eng, chinese): return (chinese if ('zh' in get_info().user_language) else eng)
async def main(): 'PyWebIO Output demo\n\n Demonstrate various output usage supported by PyWebIO.\n 演示PyWebIO输出模块的使用\n ' put_markdown(t('# PyWebIO Output demo\n \n You can get the source code of this demo in [here](https://github.com/wang0618/PyWebIO/blob/dev/demos/output_usage.py)\n \n This demo only introduces part of the functions of the PyWebIO output module. For the complete features, please refer to the [User Guide](https://pywebio.readthedocs.io/zh_CN/latest/guide.html).\n \n The output functions are all defined in the `pywebio.output` module and can be imported using `from pywebio.output import *`.\n \n ', '# PyWebIO 输出演示\n \n 在[这里](https://github.com/wang0618/PyWebIO/blob/dev/demos/output_usage.py)可以获取本Demo的源码。\n \n 本Demo仅提供了PyWebIO输出模块的部分功能的演示,完整特性请参阅[用户指南](https://pywebio.readthedocs.io/zh_CN/latest/guide.html)。\n \n PyWebIO的输出函数都定义在 `pywebio.output` 模块中,可以使用 `from pywebio.output import *` 引入。\n\n ### 基本输出\n PyWebIO提供了一些便捷函数来输出表格、链接等格式:\n '), strip_indent=4) code_block(t('\n # Text Output\n put_text("Hello world!")\n\n # Table Output\n put_table([\n [\'Commodity\', \'Price\'],\n [\'Apple\', \'5.5\'],\n [\'Banana\', \'7\'],\n ])\n \n # Markdown Output\n put_markdown(\'~~Strikethrough~~\')\n \n # File Output\n put_file(\'hello_word.txt\', b\'hello word!\')\n ', '\n # 文本输出\n put_text("Hello world!")\n\n # 表格输出\n put_table([\n [\'商品\', \'价格\'],\n [\'苹果\', \'5.5\'],\n [\'香蕉\', \'7\'],\n ])\n\n # Markdown输出\n put_markdown(\'~~删除线~~\')\n\n # 文件输出\n put_file(\'hello_word.txt\', b\'hello word!\')\n ')) put_markdown(t('For all output functions provided by PyWebIO, please refer to the document.\n \n ### Combined Output\n The output functions whose name starts with put_ can be combined with some output functions as part of the final output:\n\n You can pass `put_xxx()` calls to `put_table()` as cell content:\n ', 'PyWebIO提供的全部输出函数请参考PyWebIO文档\n \n ### 组合输出\n \n 函数名以 `put_` 开始的输出函数,可以与一些输出函数组合使用,作为最终输出的一部分。\n\n 比如`put_table()`支持以`put_xxx()`调用作为单元格内容:\n '), strip_indent=4) code_block("\n put_table([\n ['Type', 'Content'],\n ['html', put_html('X<sup>2</sup>')],\n ['text', '<hr/>'], # equal to ['text', put_text('<hr/>')]\n ['buttons', put_buttons(['A', 'B'], onclick=toast)], \n ['markdown', put_markdown('`Awesome PyWebIO!`')],\n ['file', put_file('hello.text', b'hello world')],\n ['table', put_table([['A', 'B'], ['C', 'D']])]\n ])\n ") put_markdown(t('Similarly, you can pass `put_xxx()` calls to `popup()` as the popup content:', '类似地,`popup()`也可以将`put_xxx()`调用作为弹窗内容:'), strip_indent=4) code_block("\n popup('Popup title', [\n put_html('<h3>Popup Content</h3>'),\n 'plain html: <br/>', # equal to put_text('plain html: <br/>')\n put_table([['A', 'B'], ['C', 'D']]),\n put_buttons(['close_popup()'], onclick=lambda _: close_popup())\n ])\n ") put_markdown(t('For more output functions that accept `put_xxx()` calls as parameters, please refer to corresponding function documentation.', '更多接受`put_xxx()`作为参数的输出函数请参考函数文档。')) put_markdown((t('### Callback\n PyWebIO allows you to output some buttons, and the provided callback function will be executed when the button is clicked.\n \n This is an example:%s\n The call to `put_table()` will not block. When user clicks a button, the corresponding callback function will be invoked:\n ', '### 事件回调\n PyWebIO允许你输出一些控件,当控件被点击时执行提供的回调函数,就像编写GUI程序一样。\n \n 下面是一个例子:%s\n `put_table()`的调用不会阻塞。当用户点击了某行中的按钮时,PyWebIO会自动调用相应的回调函数:\n ') % '\n ```python\n from functools import partial\n\n def edit_row(choice, row):\n put_markdown("> You click`%s` button ar row `%s`" % (choice, row))\n\n put_table([\n [\'Idx\', \'Actions\'],\n [1, put_buttons([\'edit\', \'delete\'], onclick=partial(edit_row, row=1))],\n [2, put_buttons([\'edit\', \'delete\'], onclick=partial(edit_row, row=2))],\n [3, put_buttons([\'edit\', \'delete\'], onclick=partial(edit_row, row=3))],\n ])\n ```\n '), strip_indent=4) from functools import partial @use_scope('table-callback') def edit_row(choice, row): put_markdown(('> You click `%s` button ar row `%s`' % (choice, row))) put_table([['Idx', 'Actions'], [1, put_buttons(['edit', 'delete'], onclick=partial(edit_row, row=1))], [2, put_buttons(['edit', 'delete'], onclick=partial(edit_row, row=2))], [3, put_buttons(['edit', 'delete'], onclick=partial(edit_row, row=3))]]) set_scope('table-callback') put_markdown((t('Of course, PyWebIO also supports outputting individual button:', '当然,PyWebIO还支持单独的按钮控件:') + '\n ```python\n def btn_click(btn_val):\n put_markdown("> You click `%s` button" % btn_val)\n\n put_buttons([\'A\', \'B\', \'C\'], onclick=btn_click)\n ```\n '), strip_indent=4) @use_scope('button-callback') def btn_click(btn_val): put_markdown(('> You click `%s` button' % btn_val)) put_buttons(['A', 'B', 'C'], onclick=btn_click) set_scope('button-callback') put_markdown((t('### Output Scope\n \n PyWebIO uses the scope model to give more control to the location of content output. The output area of PyWebIO can be divided into different output domains. The output domain is called Scope in PyWebIO.\n\n The output domain is a container of output content, and each output domain is arranged vertically, and the output domains can also be nested.\n\n Each output function (function name like `put_xxx()`) will output its content to a scope, the default is "current scope". "current scope" is determined by the runtime context. The output function can also manually specify the scope to output. The scope name is unique within the session.\n \n You can use `use_scope()` to open and enter a new output scope, or enter an existing output scope: %s\n The above code will generate the following Scope layout:\n ', '### 输出域Scope\n\n PyWebIO使用Scope模型来对内容输出的位置进行灵活地控制,PyWebIO的内容输出区可以划分出不同的输出域,PyWebIO将输出域称作`Scope`。\n \n 输出域为输出内容的容器,各个输出域之间上下排列,输出域也可以进行嵌套。\n \n 每个输出函数(函数名形如 `put_xxx()` )都会将内容输出到一个Scope,默认为”当前Scope”,”当前Scope”由运行时上下文确定,输出函数也可以手动指定输出到的Scope。Scope名在会话内唯一。\n \n 可以使用 `use_scope()` 开启并进入一个新的输出域,或进入一个已经存在的输出域: %s\n 以上代码将会产生如下Scope布局:\n ') % "\n ```python\n with use_scope('A'):\n put_text('Text in scope A')\n \n with use_scope('B'):\n put_text('Text in scope B')\n \n with use_scope('C'):\n put_text('Text in scope C')\n ```\n "), strip_indent=4) with use_scope('A'): put_text('Text in scope A') with use_scope('B'): put_text('Text in scope B') with use_scope('C'): put_text('Text in scope C') put_html('<style> \n #pywebio-scope-A {border: 1px solid red;} \n #pywebio-scope-B {border: 1px solid blue;margin:2px} \n #pywebio-scope-C {border: 1px solid green;margin-top:2px} \n </style><br/>') put_markdown(t('The output function (function name like `put_xxx()`) will output the content to the "current scope" by default, and the "current scope" of the runtime context can be set by `use_scope()`.\n \n In addition, you can use the `scope` parameter of the output function to specify the destination scope to output:\n ', '\n 输出函数(函数名形如 `put_xxx()` )在默认情况下,会将内容输出到”当前Scope”,可以通过 `use_scope()` 设置运行时上下文的”当前Scope”。\n \n 此外,也可以通过输出函数的 scope 参数指定输出的目的Scope:\n '), strip_indent=4) put_grid([[put_code("put_text('A', scope='A')", 'python'), None, put_buttons([t('Run', '运行')], [(lambda : put_text('A', scope='A'))])], [put_code("put_text('B', scope='B')", 'python'), None, put_buttons([t('Run', '运行')], [(lambda : put_text('B', scope='B'))])], [put_code("put_text('C', scope='C')", 'python'), None, put_buttons([t('Run', '运行')], [(lambda : put_text('C', scope='C'))])]], cell_widths='1fr 10px auto') put_markdown((t('The output content can be inserted into any positions of the target scope by using the `position` parameter of the output function.', '输出函数可以使用`position`参数指定内容在Scope中输出的位置') + "\n ```python\n put_text(now(), scope='A', position=...)\n ```\n "), strip_indent=4) import datetime put_buttons([(('position=%s' % i), i) for i in [1, 2, 3, (- 1), (- 2), (- 3)]], (lambda i: put_text(datetime.datetime.now(), position=i, scope='A')), small=True) put_markdown(t('In addition to `use_scope()`, PyWebIO also provides the following scope control functions:', '除了 `use_scope()` , PyWebIO同样提供了以下scope控制函数: ')) put_grid([[put_code("clear('B') # Clear content of Scope B", 'python'), None, put_buttons(['运行'], [(lambda : clear('B'))])], [put_code("remove('C') # Remove Scope C", 'python'), None, put_buttons(['运行'], [(lambda : remove('C'))])], [put_code("scroll_to('A') # Scroll the page to position of Scope A", 'python'), None, put_buttons(['运行'], [(lambda : scroll_to('A'))])]], cell_widths='1fr 10px auto') put_markdown(t('### Layout\n \n In general, using the various output functions introduced above is enough to output what you want, but these outputs are arranged vertically. If you want to make a more complex layout (such as displaying a code block on the left side of the page and an image on the right), you need to use layout functions.\n \n The `pywebio.output` module provides 3 layout functions, and you can create complex layouts by combining them:\n \n - `put_row()` : Use row layout to output content. The content is arranged horizontally\n - `put_column()` : Use column layout to output content. The content is arranged vertically\n - `put_grid()` : Output content using grid layout\n \n Here is an example by combining `put_row()` and `put_column()`:\n ', '### 布局\n 一般情况下,使用上文介绍的各种输出函数足以完成各种内容的展示,但直接调用输出函数产生的输出之间都是竖直排列的,如果想实现更复杂的布局(比如在页 面左侧显示一个代码块,在右侧显示一个图像),就需要借助布局函数。\n\n `pywebio.output` 模块提供了3个布局函数,通过对他们进行组合可以完成各种复杂的布局:\n \n - `put_row()` : 使用行布局输出内容. 内容在水平方向上排列\n - `put_column()` : 使用列布局输出内容. 内容在竖直方向上排列\n - `put_grid()` : 使用网格布局输出内容\n\n 比如,通过通过组合 `put_row()` 和 `put_column()` 实现的布局:\n '), strip_indent=4) code_block(("\n put_row([\n put_column([\n put_code('A'),\n put_row([\n put_code('B1'), None, # %s\n put_code('B2'), None,\n put_code('B3'),\n ]),\n put_code('C'),\n ]), None,\n put_code('D'), None,\n put_code('E')\n ])\n " % t('None represents the space between the output', 'None 表示输出之间的空白'))) put_markdown(t('### Style\n If you are familiar with CSS styles, you can use the `style()` function to set a custom style for the output.\n\n You can set the CSS style for a single `put_xxx()` output:\n ', '### 样式\n \n 如果你熟悉 CSS样式 ,你还可以使用 `style()` 函数给输出设定自定义样式。\n\n 可以给单个的 `put_xxx()` 输出设定CSS样式,也可以配合组合输出使用:\n '), strip_indent=4) code_block("\n style(put_text('Red'), 'color: red')\n \n put_table([\n ['A', 'B'],\n ['C', style(put_text('Red'), 'color: red')],\n ])\n ", strip_indent=4) put_markdown(t('`style()` also accepts a list of output calls:', '`style()` 也接受列表作为输入:')) code_block("\n style([\n put_text('Red'),\n put_markdown('~~del~~')\n ], 'color: red')\n \n put_collapse('title', style([\n put_text('text'),\n put_markdown('~~del~~'),\n ], 'margin-left: 20px'))\n\n ", strip_indent=4) put_markdown(t('----\n For more information about output of PyWebIO, please visit PyWebIO [User Guide](https://pywebio.readthedocs.io/zh_CN/latest/guide.html) and [output module documentation](https://pywebio.readthedocs.io/zh_CN/latest/output.html).\n ', '----\n PyWebIO的输出演示到这里就结束了,更多内容请访问PyWebIO[用户指南](https://pywebio.readthedocs.io/zh_CN/latest/guide.html)和[output模块文档](https://pywebio.readthedocs.io/zh_CN/latest/output.html)。\n '), lstrip=True) (await hold())
3,378,511,886,882,203,600
PyWebIO Output demo Demonstrate various output usage supported by PyWebIO. 演示PyWebIO输出模块的使用
demos/output_usage.py
main
songshanyuwu/PyWebIO
python
async def main(): 'PyWebIO Output demo\n\n Demonstrate various output usage supported by PyWebIO.\n 演示PyWebIO输出模块的使用\n ' put_markdown(t('# PyWebIO Output demo\n \n You can get the source code of this demo in [here](https://github.com/wang0618/PyWebIO/blob/dev/demos/output_usage.py)\n \n This demo only introduces part of the functions of the PyWebIO output module. For the complete features, please refer to the [User Guide](https://pywebio.readthedocs.io/zh_CN/latest/guide.html).\n \n The output functions are all defined in the `pywebio.output` module and can be imported using `from pywebio.output import *`.\n \n ', '# PyWebIO 输出演示\n \n 在[这里](https://github.com/wang0618/PyWebIO/blob/dev/demos/output_usage.py)可以获取本Demo的源码。\n \n 本Demo仅提供了PyWebIO输出模块的部分功能的演示,完整特性请参阅[用户指南](https://pywebio.readthedocs.io/zh_CN/latest/guide.html)。\n \n PyWebIO的输出函数都定义在 `pywebio.output` 模块中,可以使用 `from pywebio.output import *` 引入。\n\n ### 基本输出\n PyWebIO提供了一些便捷函数来输出表格、链接等格式:\n '), strip_indent=4) code_block(t('\n # Text Output\n put_text("Hello world!")\n\n # Table Output\n put_table([\n [\'Commodity\', \'Price\'],\n [\'Apple\', \'5.5\'],\n [\'Banana\', \'7\'],\n ])\n \n # Markdown Output\n put_markdown(\'~~Strikethrough~~\')\n \n # File Output\n put_file(\'hello_word.txt\', b\'hello word!\')\n ', '\n # 文本输出\n put_text("Hello world!")\n\n # 表格输出\n put_table([\n [\'商品\', \'价格\'],\n [\'苹果\', \'5.5\'],\n [\'香蕉\', \'7\'],\n ])\n\n # Markdown输出\n put_markdown(\'~~删除线~~\')\n\n # 文件输出\n put_file(\'hello_word.txt\', b\'hello word!\')\n ')) put_markdown(t('For all output functions provided by PyWebIO, please refer to the document.\n \n ### Combined Output\n The output functions whose name starts with put_ can be combined with some output functions as part of the final output:\n\n You can pass `put_xxx()` calls to `put_table()` as cell content:\n ', 'PyWebIO提供的全部输出函数请参考PyWebIO文档\n \n ### 组合输出\n \n 函数名以 `put_` 开始的输出函数,可以与一些输出函数组合使用,作为最终输出的一部分。\n\n 比如`put_table()`支持以`put_xxx()`调用作为单元格内容:\n '), strip_indent=4) code_block("\n put_table([\n ['Type', 'Content'],\n ['html', put_html('X<sup>2</sup>')],\n ['text', '<hr/>'], # equal to ['text', put_text('<hr/>')]\n ['buttons', put_buttons(['A', 'B'], onclick=toast)], \n ['markdown', put_markdown('`Awesome PyWebIO!`')],\n ['file', put_file('hello.text', b'hello world')],\n ['table', put_table([['A', 'B'], ['C', 'D']])]\n ])\n ") put_markdown(t('Similarly, you can pass `put_xxx()` calls to `popup()` as the popup content:', '类似地,`popup()`也可以将`put_xxx()`调用作为弹窗内容:'), strip_indent=4) code_block("\n popup('Popup title', [\n put_html('<h3>Popup Content</h3>'),\n 'plain html: <br/>', # equal to put_text('plain html: <br/>')\n put_table([['A', 'B'], ['C', 'D']]),\n put_buttons(['close_popup()'], onclick=lambda _: close_popup())\n ])\n ") put_markdown(t('For more output functions that accept `put_xxx()` calls as parameters, please refer to corresponding function documentation.', '更多接受`put_xxx()`作为参数的输出函数请参考函数文档。')) put_markdown((t('### Callback\n PyWebIO allows you to output some buttons, and the provided callback function will be executed when the button is clicked.\n \n This is an example:%s\n The call to `put_table()` will not block. When user clicks a button, the corresponding callback function will be invoked:\n ', '### 事件回调\n PyWebIO允许你输出一些控件,当控件被点击时执行提供的回调函数,就像编写GUI程序一样。\n \n 下面是一个例子:%s\n `put_table()`的调用不会阻塞。当用户点击了某行中的按钮时,PyWebIO会自动调用相应的回调函数:\n ') % '\n ```python\n from functools import partial\n\n def edit_row(choice, row):\n put_markdown("> You click`%s` button ar row `%s`" % (choice, row))\n\n put_table([\n [\'Idx\', \'Actions\'],\n [1, put_buttons([\'edit\', \'delete\'], onclick=partial(edit_row, row=1))],\n [2, put_buttons([\'edit\', \'delete\'], onclick=partial(edit_row, row=2))],\n [3, put_buttons([\'edit\', \'delete\'], onclick=partial(edit_row, row=3))],\n ])\n ```\n '), strip_indent=4) from functools import partial @use_scope('table-callback') def edit_row(choice, row): put_markdown(('> You click `%s` button ar row `%s`' % (choice, row))) put_table([['Idx', 'Actions'], [1, put_buttons(['edit', 'delete'], onclick=partial(edit_row, row=1))], [2, put_buttons(['edit', 'delete'], onclick=partial(edit_row, row=2))], [3, put_buttons(['edit', 'delete'], onclick=partial(edit_row, row=3))]]) set_scope('table-callback') put_markdown((t('Of course, PyWebIO also supports outputting individual button:', '当然,PyWebIO还支持单独的按钮控件:') + '\n ```python\n def btn_click(btn_val):\n put_markdown("> You click `%s` button" % btn_val)\n\n put_buttons([\'A\', \'B\', \'C\'], onclick=btn_click)\n ```\n '), strip_indent=4) @use_scope('button-callback') def btn_click(btn_val): put_markdown(('> You click `%s` button' % btn_val)) put_buttons(['A', 'B', 'C'], onclick=btn_click) set_scope('button-callback') put_markdown((t('### Output Scope\n \n PyWebIO uses the scope model to give more control to the location of content output. The output area of PyWebIO can be divided into different output domains. The output domain is called Scope in PyWebIO.\n\n The output domain is a container of output content, and each output domain is arranged vertically, and the output domains can also be nested.\n\n Each output function (function name like `put_xxx()`) will output its content to a scope, the default is "current scope". "current scope" is determined by the runtime context. The output function can also manually specify the scope to output. The scope name is unique within the session.\n \n You can use `use_scope()` to open and enter a new output scope, or enter an existing output scope: %s\n The above code will generate the following Scope layout:\n ', '### 输出域Scope\n\n PyWebIO使用Scope模型来对内容输出的位置进行灵活地控制,PyWebIO的内容输出区可以划分出不同的输出域,PyWebIO将输出域称作`Scope`。\n \n 输出域为输出内容的容器,各个输出域之间上下排列,输出域也可以进行嵌套。\n \n 每个输出函数(函数名形如 `put_xxx()` )都会将内容输出到一个Scope,默认为”当前Scope”,”当前Scope”由运行时上下文确定,输出函数也可以手动指定输出到的Scope。Scope名在会话内唯一。\n \n 可以使用 `use_scope()` 开启并进入一个新的输出域,或进入一个已经存在的输出域: %s\n 以上代码将会产生如下Scope布局:\n ') % "\n ```python\n with use_scope('A'):\n put_text('Text in scope A')\n \n with use_scope('B'):\n put_text('Text in scope B')\n \n with use_scope('C'):\n put_text('Text in scope C')\n ```\n "), strip_indent=4) with use_scope('A'): put_text('Text in scope A') with use_scope('B'): put_text('Text in scope B') with use_scope('C'): put_text('Text in scope C') put_html('<style> \n #pywebio-scope-A {border: 1px solid red;} \n #pywebio-scope-B {border: 1px solid blue;margin:2px} \n #pywebio-scope-C {border: 1px solid green;margin-top:2px} \n </style><br/>') put_markdown(t('The output function (function name like `put_xxx()`) will output the content to the "current scope" by default, and the "current scope" of the runtime context can be set by `use_scope()`.\n \n In addition, you can use the `scope` parameter of the output function to specify the destination scope to output:\n ', '\n 输出函数(函数名形如 `put_xxx()` )在默认情况下,会将内容输出到”当前Scope”,可以通过 `use_scope()` 设置运行时上下文的”当前Scope”。\n \n 此外,也可以通过输出函数的 scope 参数指定输出的目的Scope:\n '), strip_indent=4) put_grid([[put_code("put_text('A', scope='A')", 'python'), None, put_buttons([t('Run', '运行')], [(lambda : put_text('A', scope='A'))])], [put_code("put_text('B', scope='B')", 'python'), None, put_buttons([t('Run', '运行')], [(lambda : put_text('B', scope='B'))])], [put_code("put_text('C', scope='C')", 'python'), None, put_buttons([t('Run', '运行')], [(lambda : put_text('C', scope='C'))])]], cell_widths='1fr 10px auto') put_markdown((t('The output content can be inserted into any positions of the target scope by using the `position` parameter of the output function.', '输出函数可以使用`position`参数指定内容在Scope中输出的位置') + "\n ```python\n put_text(now(), scope='A', position=...)\n ```\n "), strip_indent=4) import datetime put_buttons([(('position=%s' % i), i) for i in [1, 2, 3, (- 1), (- 2), (- 3)]], (lambda i: put_text(datetime.datetime.now(), position=i, scope='A')), small=True) put_markdown(t('In addition to `use_scope()`, PyWebIO also provides the following scope control functions:', '除了 `use_scope()` , PyWebIO同样提供了以下scope控制函数: ')) put_grid([[put_code("clear('B') # Clear content of Scope B", 'python'), None, put_buttons(['运行'], [(lambda : clear('B'))])], [put_code("remove('C') # Remove Scope C", 'python'), None, put_buttons(['运行'], [(lambda : remove('C'))])], [put_code("scroll_to('A') # Scroll the page to position of Scope A", 'python'), None, put_buttons(['运行'], [(lambda : scroll_to('A'))])]], cell_widths='1fr 10px auto') put_markdown(t('### Layout\n \n In general, using the various output functions introduced above is enough to output what you want, but these outputs are arranged vertically. If you want to make a more complex layout (such as displaying a code block on the left side of the page and an image on the right), you need to use layout functions.\n \n The `pywebio.output` module provides 3 layout functions, and you can create complex layouts by combining them:\n \n - `put_row()` : Use row layout to output content. The content is arranged horizontally\n - `put_column()` : Use column layout to output content. The content is arranged vertically\n - `put_grid()` : Output content using grid layout\n \n Here is an example by combining `put_row()` and `put_column()`:\n ', '### 布局\n 一般情况下,使用上文介绍的各种输出函数足以完成各种内容的展示,但直接调用输出函数产生的输出之间都是竖直排列的,如果想实现更复杂的布局(比如在页 面左侧显示一个代码块,在右侧显示一个图像),就需要借助布局函数。\n\n `pywebio.output` 模块提供了3个布局函数,通过对他们进行组合可以完成各种复杂的布局:\n \n - `put_row()` : 使用行布局输出内容. 内容在水平方向上排列\n - `put_column()` : 使用列布局输出内容. 内容在竖直方向上排列\n - `put_grid()` : 使用网格布局输出内容\n\n 比如,通过通过组合 `put_row()` 和 `put_column()` 实现的布局:\n '), strip_indent=4) code_block(("\n put_row([\n put_column([\n put_code('A'),\n put_row([\n put_code('B1'), None, # %s\n put_code('B2'), None,\n put_code('B3'),\n ]),\n put_code('C'),\n ]), None,\n put_code('D'), None,\n put_code('E')\n ])\n " % t('None represents the space between the output', 'None 表示输出之间的空白'))) put_markdown(t('### Style\n If you are familiar with CSS styles, you can use the `style()` function to set a custom style for the output.\n\n You can set the CSS style for a single `put_xxx()` output:\n ', '### 样式\n \n 如果你熟悉 CSS样式 ,你还可以使用 `style()` 函数给输出设定自定义样式。\n\n 可以给单个的 `put_xxx()` 输出设定CSS样式,也可以配合组合输出使用:\n '), strip_indent=4) code_block("\n style(put_text('Red'), 'color: red')\n \n put_table([\n ['A', 'B'],\n ['C', style(put_text('Red'), 'color: red')],\n ])\n ", strip_indent=4) put_markdown(t('`style()` also accepts a list of output calls:', '`style()` 也接受列表作为输入:')) code_block("\n style([\n put_text('Red'),\n put_markdown('~~del~~')\n ], 'color: red')\n \n put_collapse('title', style([\n put_text('text'),\n put_markdown('~~del~~'),\n ], 'margin-left: 20px'))\n\n ", strip_indent=4) put_markdown(t('----\n For more information about output of PyWebIO, please visit PyWebIO [User Guide](https://pywebio.readthedocs.io/zh_CN/latest/guide.html) and [output module documentation](https://pywebio.readthedocs.io/zh_CN/latest/output.html).\n ', '----\n PyWebIO的输出演示到这里就结束了,更多内容请访问PyWebIO[用户指南](https://pywebio.readthedocs.io/zh_CN/latest/guide.html)和[output模块文档](https://pywebio.readthedocs.io/zh_CN/latest/output.html)。\n '), lstrip=True) (await hold())
def __call__(self, shape, dtype=None, **kwargs): 'Returns a tensor object initialized as specified by the initializer.\n\n Args:\n shape: Shape of the tensor.\n dtype: Optional dtype of the tensor.\n **kwargs: Additional keyword arguments.\n ' raise NotImplementedError
7,005,630,701,422,536,000
Returns a tensor object initialized as specified by the initializer. Args: shape: Shape of the tensor. dtype: Optional dtype of the tensor. **kwargs: Additional keyword arguments.
keras/initializers/initializers_v2.py
__call__
StanislavParovoy/Keras
python
def __call__(self, shape, dtype=None, **kwargs): 'Returns a tensor object initialized as specified by the initializer.\n\n Args:\n shape: Shape of the tensor.\n dtype: Optional dtype of the tensor.\n **kwargs: Additional keyword arguments.\n ' raise NotImplementedError
def get_config(self): 'Returns the configuration of the initializer as a JSON-serializable dict.\n\n Returns:\n A JSON-serializable Python dict.\n ' return {}
6,964,281,744,853,564,000
Returns the configuration of the initializer as a JSON-serializable dict. Returns: A JSON-serializable Python dict.
keras/initializers/initializers_v2.py
get_config
StanislavParovoy/Keras
python
def get_config(self): 'Returns the configuration of the initializer as a JSON-serializable dict.\n\n Returns:\n A JSON-serializable Python dict.\n ' return {}
@classmethod def from_config(cls, config): 'Instantiates an initializer from a configuration dictionary.\n\n Example:\n\n ```python\n initializer = RandomUniform(-1, 1)\n config = initializer.get_config()\n initializer = RandomUniform.from_config(config)\n ```\n\n Args:\n config: A Python dictionary, the output of `get_config`.\n\n Returns:\n A `tf.keras.initializers.Initializer` instance.\n ' config.pop('dtype', None) return cls(**config)
-3,684,884,346,167,467,500
Instantiates an initializer from a configuration dictionary. Example: ```python initializer = RandomUniform(-1, 1) config = initializer.get_config() initializer = RandomUniform.from_config(config) ``` Args: config: A Python dictionary, the output of `get_config`. Returns: A `tf.keras.initializers.Initializer` instance.
keras/initializers/initializers_v2.py
from_config
StanislavParovoy/Keras
python
@classmethod def from_config(cls, config): 'Instantiates an initializer from a configuration dictionary.\n\n Example:\n\n ```python\n initializer = RandomUniform(-1, 1)\n config = initializer.get_config()\n initializer = RandomUniform.from_config(config)\n ```\n\n Args:\n config: A Python dictionary, the output of `get_config`.\n\n Returns:\n A `tf.keras.initializers.Initializer` instance.\n ' config.pop('dtype', None) return cls(**config)
def __call__(self, shape, dtype=None, **kwargs): 'Returns a tensor object initialized as specified by the initializer.\n\n Args:\n shape: Shape of the tensor.\n dtype: Optional dtype of the tensor. Only numeric or boolean dtypes are\n supported. If not specified, `tf.keras.backend.floatx()` is used,\n which default to `float32` unless you configured it otherwise\n (via `tf.keras.backend.set_floatx(float_dtype)`).\n **kwargs: Additional keyword arguments.\n ' return super(Zeros, self).__call__(shape, dtype=_get_dtype(dtype), **kwargs)
933,338,983,785,517,400
Returns a tensor object initialized as specified by the initializer. Args: shape: Shape of the tensor. dtype: Optional dtype of the tensor. Only numeric or boolean dtypes are supported. If not specified, `tf.keras.backend.floatx()` is used, which default to `float32` unless you configured it otherwise (via `tf.keras.backend.set_floatx(float_dtype)`). **kwargs: Additional keyword arguments.
keras/initializers/initializers_v2.py
__call__
StanislavParovoy/Keras
python
def __call__(self, shape, dtype=None, **kwargs): 'Returns a tensor object initialized as specified by the initializer.\n\n Args:\n shape: Shape of the tensor.\n dtype: Optional dtype of the tensor. Only numeric or boolean dtypes are\n supported. If not specified, `tf.keras.backend.floatx()` is used,\n which default to `float32` unless you configured it otherwise\n (via `tf.keras.backend.set_floatx(float_dtype)`).\n **kwargs: Additional keyword arguments.\n ' return super(Zeros, self).__call__(shape, dtype=_get_dtype(dtype), **kwargs)
def __call__(self, shape, dtype=None, **kwargs): 'Returns a tensor object initialized as specified by the initializer.\n\n Args:\n shape: Shape of the tensor.\n dtype: Optional dtype of the tensor. Only numeric or boolean dtypes are\n supported. If not specified, `tf.keras.backend.floatx()` is used,\n which default to `float32` unless you configured it otherwise\n (via `tf.keras.backend.set_floatx(float_dtype)`).\n **kwargs: Additional keyword arguments.\n ' return super(Ones, self).__call__(shape, dtype=_get_dtype(dtype), **kwargs)
3,836,736,980,779,496,400
Returns a tensor object initialized as specified by the initializer. Args: shape: Shape of the tensor. dtype: Optional dtype of the tensor. Only numeric or boolean dtypes are supported. If not specified, `tf.keras.backend.floatx()` is used, which default to `float32` unless you configured it otherwise (via `tf.keras.backend.set_floatx(float_dtype)`). **kwargs: Additional keyword arguments.
keras/initializers/initializers_v2.py
__call__
StanislavParovoy/Keras
python
def __call__(self, shape, dtype=None, **kwargs): 'Returns a tensor object initialized as specified by the initializer.\n\n Args:\n shape: Shape of the tensor.\n dtype: Optional dtype of the tensor. Only numeric or boolean dtypes are\n supported. If not specified, `tf.keras.backend.floatx()` is used,\n which default to `float32` unless you configured it otherwise\n (via `tf.keras.backend.set_floatx(float_dtype)`).\n **kwargs: Additional keyword arguments.\n ' return super(Ones, self).__call__(shape, dtype=_get_dtype(dtype), **kwargs)
def __call__(self, shape, dtype=None, **kwargs): 'Returns a tensor object initialized to `self.value`.\n\n Args:\n shape: Shape of the tensor.\n dtype: Optional dtype of the tensor. If not specified,\n `tf.keras.backend.floatx()` is used,\n which default to `float32` unless you configured it otherwise\n (via `tf.keras.backend.set_floatx(float_dtype)`).\n **kwargs: Additional keyword arguments.\n ' del kwargs return tf.constant(self.value, dtype=_get_dtype(dtype), shape=shape)
-4,842,611,882,655,564,000
Returns a tensor object initialized to `self.value`. Args: shape: Shape of the tensor. dtype: Optional dtype of the tensor. If not specified, `tf.keras.backend.floatx()` is used, which default to `float32` unless you configured it otherwise (via `tf.keras.backend.set_floatx(float_dtype)`). **kwargs: Additional keyword arguments.
keras/initializers/initializers_v2.py
__call__
StanislavParovoy/Keras
python
def __call__(self, shape, dtype=None, **kwargs): 'Returns a tensor object initialized to `self.value`.\n\n Args:\n shape: Shape of the tensor.\n dtype: Optional dtype of the tensor. If not specified,\n `tf.keras.backend.floatx()` is used,\n which default to `float32` unless you configured it otherwise\n (via `tf.keras.backend.set_floatx(float_dtype)`).\n **kwargs: Additional keyword arguments.\n ' del kwargs return tf.constant(self.value, dtype=_get_dtype(dtype), shape=shape)
def __call__(self, shape, dtype=None, **kwargs): 'Returns a tensor object initialized as specified by the initializer.\n\n Args:\n shape: Shape of the tensor.\n dtype: Optional dtype of the tensor. Only floating point and integer\n types are supported. If not specified,\n `tf.keras.backend.floatx()` is used,\n which default to `float32` unless you configured it otherwise\n (via `tf.keras.backend.set_floatx(float_dtype)`).\n **kwargs: Additional keyword arguments.\n ' return super(RandomUniform, self).__call__(shape, dtype=_get_dtype(dtype), **kwargs)
3,468,556,579,783,864,300
Returns a tensor object initialized as specified by the initializer. Args: shape: Shape of the tensor. dtype: Optional dtype of the tensor. Only floating point and integer types are supported. If not specified, `tf.keras.backend.floatx()` is used, which default to `float32` unless you configured it otherwise (via `tf.keras.backend.set_floatx(float_dtype)`). **kwargs: Additional keyword arguments.
keras/initializers/initializers_v2.py
__call__
StanislavParovoy/Keras
python
def __call__(self, shape, dtype=None, **kwargs): 'Returns a tensor object initialized as specified by the initializer.\n\n Args:\n shape: Shape of the tensor.\n dtype: Optional dtype of the tensor. Only floating point and integer\n types are supported. If not specified,\n `tf.keras.backend.floatx()` is used,\n which default to `float32` unless you configured it otherwise\n (via `tf.keras.backend.set_floatx(float_dtype)`).\n **kwargs: Additional keyword arguments.\n ' return super(RandomUniform, self).__call__(shape, dtype=_get_dtype(dtype), **kwargs)
def __call__(self, shape, dtype=None, **kwargs): 'Returns a tensor object initialized to random normal values.\n\n Args:\n shape: Shape of the tensor.\n dtype: Optional dtype of the tensor. Only floating point types are\n supported. If not specified, `tf.keras.backend.floatx()` is used, which\n default to `float32` unless you configured it otherwise (via\n `tf.keras.backend.set_floatx(float_dtype)`)\n **kwargs: Additional keyword arguments.\n ' return super(RandomNormal, self).__call__(shape, dtype=_get_dtype(dtype), **kwargs)
757,155,504,251,613,600
Returns a tensor object initialized to random normal values. Args: shape: Shape of the tensor. dtype: Optional dtype of the tensor. Only floating point types are supported. If not specified, `tf.keras.backend.floatx()` is used, which default to `float32` unless you configured it otherwise (via `tf.keras.backend.set_floatx(float_dtype)`) **kwargs: Additional keyword arguments.
keras/initializers/initializers_v2.py
__call__
StanislavParovoy/Keras
python
def __call__(self, shape, dtype=None, **kwargs): 'Returns a tensor object initialized to random normal values.\n\n Args:\n shape: Shape of the tensor.\n dtype: Optional dtype of the tensor. Only floating point types are\n supported. If not specified, `tf.keras.backend.floatx()` is used, which\n default to `float32` unless you configured it otherwise (via\n `tf.keras.backend.set_floatx(float_dtype)`)\n **kwargs: Additional keyword arguments.\n ' return super(RandomNormal, self).__call__(shape, dtype=_get_dtype(dtype), **kwargs)
def __call__(self, shape, dtype=None, **kwargs): 'Returns a tensor object initialized to random normal values (truncated).\n\n Args:\n shape: Shape of the tensor.\n dtype: Optional dtype of the tensor. Only floating point types are\n supported. If not specified, `tf.keras.backend.floatx()` is used, which\n default to `float32` unless you configured it otherwise (via\n `tf.keras.backend.set_floatx(float_dtype)`)\n **kwargs: Additional keyword arguments.\n ' return super(TruncatedNormal, self).__call__(shape, dtype=_get_dtype(dtype), **kwargs)
3,453,308,935,921,840,600
Returns a tensor object initialized to random normal values (truncated). Args: shape: Shape of the tensor. dtype: Optional dtype of the tensor. Only floating point types are supported. If not specified, `tf.keras.backend.floatx()` is used, which default to `float32` unless you configured it otherwise (via `tf.keras.backend.set_floatx(float_dtype)`) **kwargs: Additional keyword arguments.
keras/initializers/initializers_v2.py
__call__
StanislavParovoy/Keras
python
def __call__(self, shape, dtype=None, **kwargs): 'Returns a tensor object initialized to random normal values (truncated).\n\n Args:\n shape: Shape of the tensor.\n dtype: Optional dtype of the tensor. Only floating point types are\n supported. If not specified, `tf.keras.backend.floatx()` is used, which\n default to `float32` unless you configured it otherwise (via\n `tf.keras.backend.set_floatx(float_dtype)`)\n **kwargs: Additional keyword arguments.\n ' return super(TruncatedNormal, self).__call__(shape, dtype=_get_dtype(dtype), **kwargs)
def __call__(self, shape, dtype=None, **kwargs): 'Returns a tensor object initialized as specified by the initializer.\n\n Args:\n shape: Shape of the tensor.\n dtype: Optional dtype of the tensor. Only floating point types are\n supported. If not specified, `tf.keras.backend.floatx()` is used, which\n default to `float32` unless you configured it otherwise (via\n `tf.keras.backend.set_floatx(float_dtype)`)\n **kwargs: Additional keyword arguments.\n ' return super(VarianceScaling, self).__call__(shape, dtype=_get_dtype(dtype), **kwargs)
8,955,783,661,739,036,000
Returns a tensor object initialized as specified by the initializer. Args: shape: Shape of the tensor. dtype: Optional dtype of the tensor. Only floating point types are supported. If not specified, `tf.keras.backend.floatx()` is used, which default to `float32` unless you configured it otherwise (via `tf.keras.backend.set_floatx(float_dtype)`) **kwargs: Additional keyword arguments.
keras/initializers/initializers_v2.py
__call__
StanislavParovoy/Keras
python
def __call__(self, shape, dtype=None, **kwargs): 'Returns a tensor object initialized as specified by the initializer.\n\n Args:\n shape: Shape of the tensor.\n dtype: Optional dtype of the tensor. Only floating point types are\n supported. If not specified, `tf.keras.backend.floatx()` is used, which\n default to `float32` unless you configured it otherwise (via\n `tf.keras.backend.set_floatx(float_dtype)`)\n **kwargs: Additional keyword arguments.\n ' return super(VarianceScaling, self).__call__(shape, dtype=_get_dtype(dtype), **kwargs)
def __call__(self, shape, dtype=None, **kwargs): 'Returns a tensor object initialized to an orthogonal matrix.\n\n Args:\n shape: Shape of the tensor.\n dtype: Optional dtype of the tensor. Only floating point types are\n supported. If not specified, `tf.keras.backend.floatx()` is used,\n which default to `float32` unless you configured it otherwise\n (via `tf.keras.backend.set_floatx(float_dtype)`)\n **kwargs: Additional keyword arguments.\n ' return super(Orthogonal, self).__call__(shape, dtype=_get_dtype(dtype), **kwargs)
4,775,635,297,769,653,000
Returns a tensor object initialized to an orthogonal matrix. Args: shape: Shape of the tensor. dtype: Optional dtype of the tensor. Only floating point types are supported. If not specified, `tf.keras.backend.floatx()` is used, which default to `float32` unless you configured it otherwise (via `tf.keras.backend.set_floatx(float_dtype)`) **kwargs: Additional keyword arguments.
keras/initializers/initializers_v2.py
__call__
StanislavParovoy/Keras
python
def __call__(self, shape, dtype=None, **kwargs): 'Returns a tensor object initialized to an orthogonal matrix.\n\n Args:\n shape: Shape of the tensor.\n dtype: Optional dtype of the tensor. Only floating point types are\n supported. If not specified, `tf.keras.backend.floatx()` is used,\n which default to `float32` unless you configured it otherwise\n (via `tf.keras.backend.set_floatx(float_dtype)`)\n **kwargs: Additional keyword arguments.\n ' return super(Orthogonal, self).__call__(shape, dtype=_get_dtype(dtype), **kwargs)
def __call__(self, shape, dtype=None, **kwargs): 'Returns a tensor object initialized to a 2D identity matrix.\n\n Args:\n shape: Shape of the tensor. It should have exactly rank 2.\n dtype: Optional dtype of the tensor. Only floating point types are\n supported. If not specified, `tf.keras.backend.floatx()` is used,\n which default to `float32` unless you configured it otherwise\n (via `tf.keras.backend.set_floatx(float_dtype)`)\n **kwargs: Additional keyword arguments.\n ' return super(Identity, self).__call__(shape, dtype=_get_dtype(dtype), **kwargs)
-860,620,525,179,975,700
Returns a tensor object initialized to a 2D identity matrix. Args: shape: Shape of the tensor. It should have exactly rank 2. dtype: Optional dtype of the tensor. Only floating point types are supported. If not specified, `tf.keras.backend.floatx()` is used, which default to `float32` unless you configured it otherwise (via `tf.keras.backend.set_floatx(float_dtype)`) **kwargs: Additional keyword arguments.
keras/initializers/initializers_v2.py
__call__
StanislavParovoy/Keras
python
def __call__(self, shape, dtype=None, **kwargs): 'Returns a tensor object initialized to a 2D identity matrix.\n\n Args:\n shape: Shape of the tensor. It should have exactly rank 2.\n dtype: Optional dtype of the tensor. Only floating point types are\n supported. If not specified, `tf.keras.backend.floatx()` is used,\n which default to `float32` unless you configured it otherwise\n (via `tf.keras.backend.set_floatx(float_dtype)`)\n **kwargs: Additional keyword arguments.\n ' return super(Identity, self).__call__(shape, dtype=_get_dtype(dtype), **kwargs)
def _get_vlan(self): '\n Getter method for vlan, mapped from YANG variable /interface/hundredgigabitethernet/switchport/access_mac_group_rspan_vlan_classification/access/vlan (list)\n ' return self.__vlan
7,771,124,431,135,386,000
Getter method for vlan, mapped from YANG variable /interface/hundredgigabitethernet/switchport/access_mac_group_rspan_vlan_classification/access/vlan (list)
pybind/nos/v6_0_2f/interface/hundredgigabitethernet/switchport/access_mac_group_rspan_vlan_classification/access/__init__.py
_get_vlan
extremenetworks/pybind
python
def _get_vlan(self): '\n \n ' return self.__vlan
def _set_vlan(self, v, load=False): '\n Setter method for vlan, mapped from YANG variable /interface/hundredgigabitethernet/switchport/access_mac_group_rspan_vlan_classification/access/vlan (list)\n If this variable is read-only (config: false) in the\n source YANG file, then _set_vlan is considered as a private\n method. Backends looking to populate this variable should\n do so via calling thisObj._set_vlan() directly.\n ' if hasattr(v, '_utype'): v = v._utype(v) try: t = YANGDynClass(v, base=YANGListType('access_vlan_id access_mac_group', vlan.vlan, yang_name='vlan', rest_name='rspan-vlan', parent=self, is_container='list', user_ordered=False, path_helper=self._path_helper, yang_keys='access-vlan-id access-mac-group', extensions={u'tailf-common': {u'callpoint': u'rspan-mac-group-vlan-classification-config-phy', u'cli-suppress-list-no': None, u'cli-no-key-completion': None, u'cli-suppress-mode': None, u'alt-name': u'rspan-vlan'}}), is_container='list', yang_name='vlan', rest_name='rspan-vlan', parent=self, path_helper=self._path_helper, extmethods=self._extmethods, register_paths=True, extensions={u'tailf-common': {u'callpoint': u'rspan-mac-group-vlan-classification-config-phy', u'cli-suppress-list-no': None, u'cli-no-key-completion': None, u'cli-suppress-mode': None, u'alt-name': u'rspan-vlan'}}, namespace='urn:brocade.com:mgmt:brocade-interface', defining_module='brocade-interface', yang_type='list', is_config=True) except (TypeError, ValueError): raise ValueError({'error-string': 'vlan must be of a type compatible with list', 'defined-type': 'list', 'generated-type': 'YANGDynClass(base=YANGListType("access_vlan_id access_mac_group",vlan.vlan, yang_name="vlan", rest_name="rspan-vlan", parent=self, is_container=\'list\', user_ordered=False, path_helper=self._path_helper, yang_keys=\'access-vlan-id access-mac-group\', extensions={u\'tailf-common\': {u\'callpoint\': u\'rspan-mac-group-vlan-classification-config-phy\', u\'cli-suppress-list-no\': None, u\'cli-no-key-completion\': None, u\'cli-suppress-mode\': None, u\'alt-name\': u\'rspan-vlan\'}}), is_container=\'list\', yang_name="vlan", rest_name="rspan-vlan", parent=self, path_helper=self._path_helper, extmethods=self._extmethods, register_paths=True, extensions={u\'tailf-common\': {u\'callpoint\': u\'rspan-mac-group-vlan-classification-config-phy\', u\'cli-suppress-list-no\': None, u\'cli-no-key-completion\': None, u\'cli-suppress-mode\': None, u\'alt-name\': u\'rspan-vlan\'}}, namespace=\'urn:brocade.com:mgmt:brocade-interface\', defining_module=\'brocade-interface\', yang_type=\'list\', is_config=True)'}) self.__vlan = t if hasattr(self, '_set'): self._set()
-3,941,033,711,324,643,300
Setter method for vlan, mapped from YANG variable /interface/hundredgigabitethernet/switchport/access_mac_group_rspan_vlan_classification/access/vlan (list) If this variable is read-only (config: false) in the source YANG file, then _set_vlan is considered as a private method. Backends looking to populate this variable should do so via calling thisObj._set_vlan() directly.
pybind/nos/v6_0_2f/interface/hundredgigabitethernet/switchport/access_mac_group_rspan_vlan_classification/access/__init__.py
_set_vlan
extremenetworks/pybind
python
def _set_vlan(self, v, load=False): '\n Setter method for vlan, mapped from YANG variable /interface/hundredgigabitethernet/switchport/access_mac_group_rspan_vlan_classification/access/vlan (list)\n If this variable is read-only (config: false) in the\n source YANG file, then _set_vlan is considered as a private\n method. Backends looking to populate this variable should\n do so via calling thisObj._set_vlan() directly.\n ' if hasattr(v, '_utype'): v = v._utype(v) try: t = YANGDynClass(v, base=YANGListType('access_vlan_id access_mac_group', vlan.vlan, yang_name='vlan', rest_name='rspan-vlan', parent=self, is_container='list', user_ordered=False, path_helper=self._path_helper, yang_keys='access-vlan-id access-mac-group', extensions={u'tailf-common': {u'callpoint': u'rspan-mac-group-vlan-classification-config-phy', u'cli-suppress-list-no': None, u'cli-no-key-completion': None, u'cli-suppress-mode': None, u'alt-name': u'rspan-vlan'}}), is_container='list', yang_name='vlan', rest_name='rspan-vlan', parent=self, path_helper=self._path_helper, extmethods=self._extmethods, register_paths=True, extensions={u'tailf-common': {u'callpoint': u'rspan-mac-group-vlan-classification-config-phy', u'cli-suppress-list-no': None, u'cli-no-key-completion': None, u'cli-suppress-mode': None, u'alt-name': u'rspan-vlan'}}, namespace='urn:brocade.com:mgmt:brocade-interface', defining_module='brocade-interface', yang_type='list', is_config=True) except (TypeError, ValueError): raise ValueError({'error-string': 'vlan must be of a type compatible with list', 'defined-type': 'list', 'generated-type': 'YANGDynClass(base=YANGListType("access_vlan_id access_mac_group",vlan.vlan, yang_name="vlan", rest_name="rspan-vlan", parent=self, is_container=\'list\', user_ordered=False, path_helper=self._path_helper, yang_keys=\'access-vlan-id access-mac-group\', extensions={u\'tailf-common\': {u\'callpoint\': u\'rspan-mac-group-vlan-classification-config-phy\', u\'cli-suppress-list-no\': None, u\'cli-no-key-completion\': None, u\'cli-suppress-mode\': None, u\'alt-name\': u\'rspan-vlan\'}}), is_container=\'list\', yang_name="vlan", rest_name="rspan-vlan", parent=self, path_helper=self._path_helper, extmethods=self._extmethods, register_paths=True, extensions={u\'tailf-common\': {u\'callpoint\': u\'rspan-mac-group-vlan-classification-config-phy\', u\'cli-suppress-list-no\': None, u\'cli-no-key-completion\': None, u\'cli-suppress-mode\': None, u\'alt-name\': u\'rspan-vlan\'}}, namespace=\'urn:brocade.com:mgmt:brocade-interface\', defining_module=\'brocade-interface\', yang_type=\'list\', is_config=True)'}) self.__vlan = t if hasattr(self, '_set'): self._set()
def item_count(self): 'get the number of items in the list' return GroceryItem.objects.filter(list=self).count()
-8,491,763,321,385,804,000
get the number of items in the list
v1/list/models.py
item_count
BitFis/openeats-api
python
def item_count(self): return GroceryItem.objects.filter(list=self).count()
def _get_error_message_from_exception(self, e): ' This method is used to get appropriate error message from the exception.\n :param e: Exception object\n :return: error message\n ' try: if e.args: if (len(e.args) > 1): error_code = e.args[0] error_msg = e.args[1] elif (len(e.args) == 1): error_code = 'Error code unavailable' error_msg = e.args[0] else: error_code = 'Error code unavailable' error_msg = 'Error message unavailable. Please check the asset configuration and|or action parameters.' except Exception: error_code = 'Error code unavailable' error_msg = 'Error message unavailable. Please check the asset configuration and|or action parameters.' return (error_code, error_msg)
-1,006,598,289,810,020,500
This method is used to get appropriate error message from the exception. :param e: Exception object :return: error message
Apps/phgsgmail/gsgmail_process_email.py
_get_error_message_from_exception
chunmanjimmyf/phantom-apps
python
def _get_error_message_from_exception(self, e): ' This method is used to get appropriate error message from the exception.\n :param e: Exception object\n :return: error message\n ' try: if e.args: if (len(e.args) > 1): error_code = e.args[0] error_msg = e.args[1] elif (len(e.args) == 1): error_code = 'Error code unavailable' error_msg = e.args[0] else: error_code = 'Error code unavailable' error_msg = 'Error message unavailable. Please check the asset configuration and|or action parameters.' except Exception: error_code = 'Error code unavailable' error_msg = 'Error message unavailable. Please check the asset configuration and|or action parameters.' return (error_code, error_msg)
def load_data(folder, input_path='user_item', cut=40, high_cut=1000000, seed=None): '\n loads the training,validation,test set from the folder, restricts the users with at least "cut" read articles and\n returns the sets. The Format of the sets is pd.Series with index the UserID and value a list of ArticleIDs\n :param folder/input_path: {folder}/{input_path} is the path to look for the *_train.pkl files\n :param cut: value to cut off users with less than "cut" read articles\n :return: three pd.Series. Index of each series is the UserID. The value is a list of ArticleIDs.\n (look in create_split to see how the split is defines)\n ' (user_item_train, user_item_test, user_item_validation) = (pd.read_pickle(f'{folder}/{input_path}_train.pkl'), pd.read_pickle(f'{folder}/{input_path}_test.pkl'), pd.read_pickle(f'{folder}/{input_path}_validation.pkl')) user_item_train = user_item_train[(user_item_train.str.len() > (cut * 0.7))] user_item_train = user_item_train[(user_item_train.str.len() < (high_cut * 0.7))] user_item_test = user_item_test.loc[user_item_train.index] user_item_validation = user_item_validation.loc[user_item_train.index] return (user_item_train, user_item_test, user_item_validation)
-7,876,844,019,875,978,000
loads the training,validation,test set from the folder, restricts the users with at least "cut" read articles and returns the sets. The Format of the sets is pd.Series with index the UserID and value a list of ArticleIDs :param folder/input_path: {folder}/{input_path} is the path to look for the *_train.pkl files :param cut: value to cut off users with less than "cut" read articles :return: three pd.Series. Index of each series is the UserID. The value is a list of ArticleIDs. (look in create_split to see how the split is defines)
preprocessing.py
load_data
MTC-ETH/RecommenderSystems
python
def load_data(folder, input_path='user_item', cut=40, high_cut=1000000, seed=None): '\n loads the training,validation,test set from the folder, restricts the users with at least "cut" read articles and\n returns the sets. The Format of the sets is pd.Series with index the UserID and value a list of ArticleIDs\n :param folder/input_path: {folder}/{input_path} is the path to look for the *_train.pkl files\n :param cut: value to cut off users with less than "cut" read articles\n :return: three pd.Series. Index of each series is the UserID. The value is a list of ArticleIDs.\n (look in create_split to see how the split is defines)\n ' (user_item_train, user_item_test, user_item_validation) = (pd.read_pickle(f'{folder}/{input_path}_train.pkl'), pd.read_pickle(f'{folder}/{input_path}_test.pkl'), pd.read_pickle(f'{folder}/{input_path}_validation.pkl')) user_item_train = user_item_train[(user_item_train.str.len() > (cut * 0.7))] user_item_train = user_item_train[(user_item_train.str.len() < (high_cut * 0.7))] user_item_test = user_item_test.loc[user_item_train.index] user_item_validation = user_item_validation.loc[user_item_train.index] return (user_item_train, user_item_test, user_item_validation)
def load_data_vertical(folder, input_path='user_item_vertical', cut=40): '\n loads the training,validation,test set from the folder, restricts the users with at least "cut" read articles and\n returns the sets. The Format of the sets is pd.Series with index the UserID and value a list of ArticleIDs\n :param folder/input_path: {folder}/{input_path} is the path to look for the *_train.pkl files\n :param cut: value to cut off users with less than "cut" read articles\n :return: three pd.Series. Index of each series is the UserID. The value is a list of ArticleIDs.\n (look in create_split to see how the split is defines)\n ' (user_item_train, user_item_test, user_item_validation) = (pd.read_parquet(f'{folder}/{input_path}_train.pq'), pd.read_parquet(f'{folder}/{input_path}_test.pq'), pd.read_parquet(f'{folder}/{input_path}_validation.pq')) user_item_train = user_item_train[(user_item_train['count'] > cut)] user_item_test = user_item_test[(user_item_test['count'] > cut)] user_item_validation = user_item_validation[(user_item_validation['count'] > cut)] user_item_train['resource_id'] = user_item_train['article_id'] user_item_test['resource_id'] = user_item_test['article_id'] user_item_validation['resource_id'] = user_item_validation['article_id'] return (user_item_train, user_item_test, user_item_validation)
1,800,058,400,881,477,000
loads the training,validation,test set from the folder, restricts the users with at least "cut" read articles and returns the sets. The Format of the sets is pd.Series with index the UserID and value a list of ArticleIDs :param folder/input_path: {folder}/{input_path} is the path to look for the *_train.pkl files :param cut: value to cut off users with less than "cut" read articles :return: three pd.Series. Index of each series is the UserID. The value is a list of ArticleIDs. (look in create_split to see how the split is defines)
preprocessing.py
load_data_vertical
MTC-ETH/RecommenderSystems
python
def load_data_vertical(folder, input_path='user_item_vertical', cut=40): '\n loads the training,validation,test set from the folder, restricts the users with at least "cut" read articles and\n returns the sets. The Format of the sets is pd.Series with index the UserID and value a list of ArticleIDs\n :param folder/input_path: {folder}/{input_path} is the path to look for the *_train.pkl files\n :param cut: value to cut off users with less than "cut" read articles\n :return: three pd.Series. Index of each series is the UserID. The value is a list of ArticleIDs.\n (look in create_split to see how the split is defines)\n ' (user_item_train, user_item_test, user_item_validation) = (pd.read_parquet(f'{folder}/{input_path}_train.pq'), pd.read_parquet(f'{folder}/{input_path}_test.pq'), pd.read_parquet(f'{folder}/{input_path}_validation.pq')) user_item_train = user_item_train[(user_item_train['count'] > cut)] user_item_test = user_item_test[(user_item_test['count'] > cut)] user_item_validation = user_item_validation[(user_item_validation['count'] > cut)] user_item_train['resource_id'] = user_item_train['article_id'] user_item_test['resource_id'] = user_item_test['article_id'] user_item_validation['resource_id'] = user_item_validation['article_id'] return (user_item_train, user_item_test, user_item_validation)
def load_data_cv(folder, input_path='user_item', cut=40, high_cut=100000, seed=1): '\n Same as load_data but only returns random 80% of the training set\n ' (user_item_train, user_item_test, user_item_validation) = load_data(folder, input_path=input_path, cut=cut, high_cut=high_cut) user_item_train = user_item_train.sample(frac=0.8, random_state=seed) user_item_test = user_item_test.sample(frac=1, random_state=seed) return (user_item_train, user_item_test, user_item_validation)
1,705,447,626,688,921,600
Same as load_data but only returns random 80% of the training set
preprocessing.py
load_data_cv
MTC-ETH/RecommenderSystems
python
def load_data_cv(folder, input_path='user_item', cut=40, high_cut=100000, seed=1): '\n \n ' (user_item_train, user_item_test, user_item_validation) = load_data(folder, input_path=input_path, cut=cut, high_cut=high_cut) user_item_train = user_item_train.sample(frac=0.8, random_state=seed) user_item_test = user_item_test.sample(frac=1, random_state=seed) return (user_item_train, user_item_test, user_item_validation)
def load_data_vertical_cv(folder, input_path='user_item_vertical', cut=40, high_cut=100000, seed=1): '\n Same as load_data but only returns random 80% of the training set\n ' (user_item_train, user_item_test, user_item_validation) = load_data_vertical(folder, input_path=input_path, cut=cut) user_item_train = user_item_train.sample(frac=0.8, random_state=seed) user_item_test = user_item_test.sample(frac=1, random_state=seed) return (user_item_train, user_item_test, user_item_validation)
-1,286,343,011,307,267,600
Same as load_data but only returns random 80% of the training set
preprocessing.py
load_data_vertical_cv
MTC-ETH/RecommenderSystems
python
def load_data_vertical_cv(folder, input_path='user_item_vertical', cut=40, high_cut=100000, seed=1): '\n \n ' (user_item_train, user_item_test, user_item_validation) = load_data_vertical(folder, input_path=input_path, cut=cut) user_item_train = user_item_train.sample(frac=0.8, random_state=seed) user_item_test = user_item_test.sample(frac=1, random_state=seed) return (user_item_train, user_item_test, user_item_validation)
def get_metadata(folder, usecols=[]): '\n Loads and returns the article metadata.\n The algorithms expect the format to be a Dataframe with two columns:\n - "resource_id": unique id for the article\n - "text": full text of the article (without html tags)\n ' if (not usecols): usecols = ['text', 'resource_id'] metadata = pd.read_csv(f'{folder}/meta.csv', usecols=usecols) return metadata.dropna(subset=['text'])
8,553,378,981,365,157,000
Loads and returns the article metadata. The algorithms expect the format to be a Dataframe with two columns: - "resource_id": unique id for the article - "text": full text of the article (without html tags)
preprocessing.py
get_metadata
MTC-ETH/RecommenderSystems
python
def get_metadata(folder, usecols=[]): '\n Loads and returns the article metadata.\n The algorithms expect the format to be a Dataframe with two columns:\n - "resource_id": unique id for the article\n - "text": full text of the article (without html tags)\n ' if (not usecols): usecols = ['text', 'resource_id'] metadata = pd.read_csv(f'{folder}/meta.csv', usecols=usecols) return metadata.dropna(subset=['text'])
def transform_item_matrix_to_horizontal_format(folder, output_path='user_item_matrix.pkl', input_path='user_item_matrix_vertical.pq', sortby='ts'): '\n Transforms vertical User-Item matrix where ich row is one click into a horizontal User-item matrix where we have\n one row for each user and each row contains a (sorted) list of articles she/he clicked on.\n :param folder: Input folder\n :param output_path: Filename/path for outputfile\n :param input_path: Filename/path for inputfile. This pickled file contains a DataFrame with three columns:\n "user_ix": the UserID and "article_id" the ArticleID and "<sortby>" which should be timestamp\n to sort by. Each UserID ArticleID pair indicates a click of the user on the article at a time.\n :param sortby: Columnname of the timestamp column to sort by\n :return: returns a Series where the index is the UserID and values is the by timestamp\n sorted list of clicked ArticleIDs\n ' now = datetime.datetime.now() matrices = pd.read_parquet(f'{folder}/{input_path}') grouped = matrices.sort_values(sortby).groupby(['user_ix']).apply((lambda x: list(x['article_id']))) grouped.to_pickle(f'{folder}/{output_path}') print(f'Data transformed {(datetime.datetime.now() - now)}')
7,652,603,608,182,917,000
Transforms vertical User-Item matrix where ich row is one click into a horizontal User-item matrix where we have one row for each user and each row contains a (sorted) list of articles she/he clicked on. :param folder: Input folder :param output_path: Filename/path for outputfile :param input_path: Filename/path for inputfile. This pickled file contains a DataFrame with three columns: "user_ix": the UserID and "article_id" the ArticleID and "<sortby>" which should be timestamp to sort by. Each UserID ArticleID pair indicates a click of the user on the article at a time. :param sortby: Columnname of the timestamp column to sort by :return: returns a Series where the index is the UserID and values is the by timestamp sorted list of clicked ArticleIDs
preprocessing.py
transform_item_matrix_to_horizontal_format
MTC-ETH/RecommenderSystems
python
def transform_item_matrix_to_horizontal_format(folder, output_path='user_item_matrix.pkl', input_path='user_item_matrix_vertical.pq', sortby='ts'): '\n Transforms vertical User-Item matrix where ich row is one click into a horizontal User-item matrix where we have\n one row for each user and each row contains a (sorted) list of articles she/he clicked on.\n :param folder: Input folder\n :param output_path: Filename/path for outputfile\n :param input_path: Filename/path for inputfile. This pickled file contains a DataFrame with three columns:\n "user_ix": the UserID and "article_id" the ArticleID and "<sortby>" which should be timestamp\n to sort by. Each UserID ArticleID pair indicates a click of the user on the article at a time.\n :param sortby: Columnname of the timestamp column to sort by\n :return: returns a Series where the index is the UserID and values is the by timestamp\n sorted list of clicked ArticleIDs\n ' now = datetime.datetime.now() matrices = pd.read_parquet(f'{folder}/{input_path}') grouped = matrices.sort_values(sortby).groupby(['user_ix']).apply((lambda x: list(x['article_id']))) grouped.to_pickle(f'{folder}/{output_path}') print(f'Data transformed {(datetime.datetime.now() - now)}')
def create_split(folder, input_path='user_item_matrix.pkl', ouput_path='user_item', cut_dump=10): '\n Loads the horizontal user item data from folder and creates a user-wise a 70% train, 20% validation, 10% test split.\n This means for each user the first 70% read articles are in the train the next 20% in validation and the last 10%\n read articles in the test set. We remove users with less than 10 clicked articles.\n This is the data that is loaded to train/test the models in the end.\n ' now = datetime.datetime.now() user_item = pd.read_pickle(f'{folder}/{input_path}') user_item = user_item[(user_item.str.len() > cut_dump)] user_item_train = user_item.apply((lambda x: x[:int((len(x) * 0.7))])) user_item_test = user_item.apply((lambda x: x[int((len(x) * 0.7)):int((len(x) * 0.9))])) user_item_validation = user_item.apply((lambda x: x[int((len(x) * 0.9)):])) user_item_train.name = 'article_id' user_item_test.name = 'article_id' user_item_validation.name = 'article_id' user_item_train.to_pickle(f'{folder}/{ouput_path}_train.pkl') user_item_test.to_pickle(f'{folder}/{ouput_path}_test.pkl') user_item_validation.to_pickle(f'{folder}/{ouput_path}_validation.pkl') print(f'Split created {(datetime.datetime.now() - now)}')
2,414,461,517,074,541,600
Loads the horizontal user item data from folder and creates a user-wise a 70% train, 20% validation, 10% test split. This means for each user the first 70% read articles are in the train the next 20% in validation and the last 10% read articles in the test set. We remove users with less than 10 clicked articles. This is the data that is loaded to train/test the models in the end.
preprocessing.py
create_split
MTC-ETH/RecommenderSystems
python
def create_split(folder, input_path='user_item_matrix.pkl', ouput_path='user_item', cut_dump=10): '\n Loads the horizontal user item data from folder and creates a user-wise a 70% train, 20% validation, 10% test split.\n This means for each user the first 70% read articles are in the train the next 20% in validation and the last 10%\n read articles in the test set. We remove users with less than 10 clicked articles.\n This is the data that is loaded to train/test the models in the end.\n ' now = datetime.datetime.now() user_item = pd.read_pickle(f'{folder}/{input_path}') user_item = user_item[(user_item.str.len() > cut_dump)] user_item_train = user_item.apply((lambda x: x[:int((len(x) * 0.7))])) user_item_test = user_item.apply((lambda x: x[int((len(x) * 0.7)):int((len(x) * 0.9))])) user_item_validation = user_item.apply((lambda x: x[int((len(x) * 0.9)):])) user_item_train.name = 'article_id' user_item_test.name = 'article_id' user_item_validation.name = 'article_id' user_item_train.to_pickle(f'{folder}/{ouput_path}_train.pkl') user_item_test.to_pickle(f'{folder}/{ouput_path}_test.pkl') user_item_validation.to_pickle(f'{folder}/{ouput_path}_validation.pkl') print(f'Split created {(datetime.datetime.now() - now)}')
def create_split_vertical(folder, input_path='user_item_matrix_vertical.pq', ouput_path='user_item_vertical', cut_dump=10, time_column='ts'): '\n Loads the horizontal user item data from folder and creates a user-wise a 70% train, 20% validation, 10% test split.\n This means for each user the first 70% read articles are in the train the next 20% in validation and the last 10%\n read articles in the test set. We remove users with less than 10 clicked articles.\n This is the data that is loaded to train/test the models in the end.\n ' now = datetime.datetime.now() user_item = pd.read_parquet(f'{folder}/{input_path}').sort_values(time_column) user_item['count'] = user_item.groupby(['user_ix']).article_id.transform('count') user_item = user_item[(user_item['count'] > cut_dump)] grouped = user_item.groupby(['user_ix']) user_item['percentile'] = ((grouped.article_id.cumcount() + 1) / grouped.article_id.transform('count')) user_item_train = user_item[(user_item['percentile'] <= 0.7)] user_item_test = user_item[((user_item['percentile'] > 0.7) & (user_item['percentile'] < 0.9))] user_item_validation = user_item[(user_item['percentile'] > 0.9)] user_item_train.to_parquet(f'{folder}/{ouput_path}_train.pq') user_item_test.to_parquet(f'{folder}/{ouput_path}_test.pq') user_item_validation.to_parquet(f'{folder}/{ouput_path}_validation.pq') print(f'Split created {(datetime.datetime.now() - now)}')
7,071,494,411,561,606,000
Loads the horizontal user item data from folder and creates a user-wise a 70% train, 20% validation, 10% test split. This means for each user the first 70% read articles are in the train the next 20% in validation and the last 10% read articles in the test set. We remove users with less than 10 clicked articles. This is the data that is loaded to train/test the models in the end.
preprocessing.py
create_split_vertical
MTC-ETH/RecommenderSystems
python
def create_split_vertical(folder, input_path='user_item_matrix_vertical.pq', ouput_path='user_item_vertical', cut_dump=10, time_column='ts'): '\n Loads the horizontal user item data from folder and creates a user-wise a 70% train, 20% validation, 10% test split.\n This means for each user the first 70% read articles are in the train the next 20% in validation and the last 10%\n read articles in the test set. We remove users with less than 10 clicked articles.\n This is the data that is loaded to train/test the models in the end.\n ' now = datetime.datetime.now() user_item = pd.read_parquet(f'{folder}/{input_path}').sort_values(time_column) user_item['count'] = user_item.groupby(['user_ix']).article_id.transform('count') user_item = user_item[(user_item['count'] > cut_dump)] grouped = user_item.groupby(['user_ix']) user_item['percentile'] = ((grouped.article_id.cumcount() + 1) / grouped.article_id.transform('count')) user_item_train = user_item[(user_item['percentile'] <= 0.7)] user_item_test = user_item[((user_item['percentile'] > 0.7) & (user_item['percentile'] < 0.9))] user_item_validation = user_item[(user_item['percentile'] > 0.9)] user_item_train.to_parquet(f'{folder}/{ouput_path}_train.pq') user_item_test.to_parquet(f'{folder}/{ouput_path}_test.pq') user_item_validation.to_parquet(f'{folder}/{ouput_path}_validation.pq') print(f'Split created {(datetime.datetime.now() - now)}')
def transform_horizontal_to_vertical(df): '\n Transforms the horizontal format into vertical format\n :param df:\n :return:\n ' return df.explode().reset_index()
-6,143,747,669,144,615,000
Transforms the horizontal format into vertical format :param df: :return:
preprocessing.py
transform_horizontal_to_vertical
MTC-ETH/RecommenderSystems
python
def transform_horizontal_to_vertical(df): '\n Transforms the horizontal format into vertical format\n :param df:\n :return:\n ' return df.explode().reset_index()
@auth.optional def get(self): '\n Show register form\n\n Returns:\n Register template with form\n ' return render_template('auth/register.html', form=RegisterForm())
1,752,371,931,808,680,400
Show register form Returns: Register template with form
app/controllers/auth/register.py
get
TheSynt4x/flask-blog
python
@auth.optional def get(self): '\n Show register form\n\n Returns:\n Register template with form\n ' return render_template('auth/register.html', form=RegisterForm())
@auth.optional def post(self): '\n Handle the POST request and sign up the user if form validation passes\n\n Returns:\n A redirect or a template with the validation errors\n ' form = RegisterForm() if form.validate_on_submit(): form.validate_username(form.username) avatar = 'no-image.png' if (('avatar' in request.files) and request.files['avatar']): avatar = avatar_service.save(form.avatar.data) User.create(form.username.data, form.password.data, avatar) flash('Your account has been created. You may now login.', 'info') return redirect(url_for('login')) return render_template('auth/register.html', form=form)
-7,568,100,965,139,478,000
Handle the POST request and sign up the user if form validation passes Returns: A redirect or a template with the validation errors
app/controllers/auth/register.py
post
TheSynt4x/flask-blog
python
@auth.optional def post(self): '\n Handle the POST request and sign up the user if form validation passes\n\n Returns:\n A redirect or a template with the validation errors\n ' form = RegisterForm() if form.validate_on_submit(): form.validate_username(form.username) avatar = 'no-image.png' if (('avatar' in request.files) and request.files['avatar']): avatar = avatar_service.save(form.avatar.data) User.create(form.username.data, form.password.data, avatar) flash('Your account has been created. You may now login.', 'info') return redirect(url_for('login')) return render_template('auth/register.html', form=form)
def get(self, request): ' Returns a list of wiki pages. ' pages = Page.objects.all() context = {'pages': pages} return render(request, 'list.html', context=context)
-2,116,179,919,993,262,300
Returns a list of wiki pages.
wiki/views.py
get
ebonnecab/makewiki
python
def get(self, request): ' ' pages = Page.objects.all() context = {'pages': pages} return render(request, 'list.html', context=context)
def __init__(self, num_inputs, num_hidden_layers, num_inner_features): 'Initializer for linear model.\n\n Args:\n num_inputs: the dimension of input data.\n num_hidden_layers: the number of hidden layers.\n num_inner_features: the number of features in the hidden layers\n ' super(NNModel, self).__init__() self.input_layer = nn.Linear(num_inputs, num_inner_features) hidden_layers = [] for _ in range(num_hidden_layers): hidden_layers.append(nn.Linear(num_inner_features, num_inner_features)) hidden_layers.append(nn.ReLU()) self.hidden_layers = nn.Sequential(*hidden_layers) self.output_layer = nn.Linear(num_inner_features, 1)
5,918,843,681,598,149,000
Initializer for linear model. Args: num_inputs: the dimension of input data. num_hidden_layers: the number of hidden layers. num_inner_features: the number of features in the hidden layers
stock_trading_backend/agent/neural_network_model.py
__init__
iryzhkov/stock-trading-backend
python
def __init__(self, num_inputs, num_hidden_layers, num_inner_features): 'Initializer for linear model.\n\n Args:\n num_inputs: the dimension of input data.\n num_hidden_layers: the number of hidden layers.\n num_inner_features: the number of features in the hidden layers\n ' super(NNModel, self).__init__() self.input_layer = nn.Linear(num_inputs, num_inner_features) hidden_layers = [] for _ in range(num_hidden_layers): hidden_layers.append(nn.Linear(num_inner_features, num_inner_features)) hidden_layers.append(nn.ReLU()) self.hidden_layers = nn.Sequential(*hidden_layers) self.output_layer = nn.Linear(num_inner_features, 1)
def forward(self, input_tensor): 'Forward pass on the neural network model.\n\n Args:\n input_tensor: the input tensor.\n\n Returns:\n Tensor with model results.\n ' output = F.relu(self.input_layer(input_tensor)) output = self.hidden_layers(output) output = self.output_layer(output) return output
-7,529,039,952,037,276,000
Forward pass on the neural network model. Args: input_tensor: the input tensor. Returns: Tensor with model results.
stock_trading_backend/agent/neural_network_model.py
forward
iryzhkov/stock-trading-backend
python
def forward(self, input_tensor): 'Forward pass on the neural network model.\n\n Args:\n input_tensor: the input tensor.\n\n Returns:\n Tensor with model results.\n ' output = F.relu(self.input_layer(input_tensor)) output = self.hidden_layers(output) output = self.output_layer(output) return output
def __init__(self, learning_rate=0.001, num_hidden_layers=1, num_inner_features=100): 'Initializer for model class.\n\n Args:\n learning_rate: the learning rate of the model.\n num_hidden_layers: number of hidden layers in the network.\n num_inner_features: number of features in the hidden layers.\n ' super(NeuralNetworkModel, self).__init__() self.model = None self.optimizer = None self.criterion = nn.MSELoss() self.learning_rate = learning_rate self.num_hidden_layers = num_hidden_layers self.num_inner_features = num_inner_features self.id_str = '{}_{}_{}_{}'.format(self.name, learning_rate, num_hidden_layers, num_inner_features)
-1,580,914,347,267,366,100
Initializer for model class. Args: learning_rate: the learning rate of the model. num_hidden_layers: number of hidden layers in the network. num_inner_features: number of features in the hidden layers.
stock_trading_backend/agent/neural_network_model.py
__init__
iryzhkov/stock-trading-backend
python
def __init__(self, learning_rate=0.001, num_hidden_layers=1, num_inner_features=100): 'Initializer for model class.\n\n Args:\n learning_rate: the learning rate of the model.\n num_hidden_layers: number of hidden layers in the network.\n num_inner_features: number of features in the hidden layers.\n ' super(NeuralNetworkModel, self).__init__() self.model = None self.optimizer = None self.criterion = nn.MSELoss() self.learning_rate = learning_rate self.num_hidden_layers = num_hidden_layers self.num_inner_features = num_inner_features self.id_str = '{}_{}_{}_{}'.format(self.name, learning_rate, num_hidden_layers, num_inner_features)
def _init_model(self, num_inputs): 'Initializes internal linear model.\n\n Args:\n num_inputs: number of inputs that model will have.\n ' self.model = NNModel(num_inputs, self.num_hidden_layers, self.num_inner_features) self.optimizer = optim.Adam(self.model.parameters(), lr=self.learning_rate)
-7,363,408,784,865,279,000
Initializes internal linear model. Args: num_inputs: number of inputs that model will have.
stock_trading_backend/agent/neural_network_model.py
_init_model
iryzhkov/stock-trading-backend
python
def _init_model(self, num_inputs): 'Initializes internal linear model.\n\n Args:\n num_inputs: number of inputs that model will have.\n ' self.model = NNModel(num_inputs, self.num_hidden_layers, self.num_inner_features) self.optimizer = optim.Adam(self.model.parameters(), lr=self.learning_rate)
def _predict(self, state_action_tensor): 'Use provided information to make a prediction.\n\n Args:\n state_action_tensor: pytorch tensor with state-action values.\n\n Returns:\n Predicted values for observation-action tensors.\n ' if (self.model is None): self._init_model(state_action_tensor.shape[1]) return self.model(state_action_tensor).detach().reshape((- 1))
-3,101,276,370,257,911,000
Use provided information to make a prediction. Args: state_action_tensor: pytorch tensor with state-action values. Returns: Predicted values for observation-action tensors.
stock_trading_backend/agent/neural_network_model.py
_predict
iryzhkov/stock-trading-backend
python
def _predict(self, state_action_tensor): 'Use provided information to make a prediction.\n\n Args:\n state_action_tensor: pytorch tensor with state-action values.\n\n Returns:\n Predicted values for observation-action tensors.\n ' if (self.model is None): self._init_model(state_action_tensor.shape[1]) return self.model(state_action_tensor).detach().reshape((- 1))
def _train(self, state_action_tensor, expected_values_tensor): 'Train the model for 1 epoch.\n\n Args:\n state_action_tensor: pytorch tensor with state-action expected_values.\n expected_values: pytorch tensor with expected values for each state-action.\n\n Returns:\n The loss before trainig.\n ' if (self.model is None): self._init_model(state_action_tensor.shape[1]) self.optimizer.zero_grad() output = self.model(state_action_tensor) loss = self.criterion(output, expected_values_tensor) loss_value = loss.data.item() loss.backward() self.optimizer.step() return loss_value
-8,040,501,734,331,822,000
Train the model for 1 epoch. Args: state_action_tensor: pytorch tensor with state-action expected_values. expected_values: pytorch tensor with expected values for each state-action. Returns: The loss before trainig.
stock_trading_backend/agent/neural_network_model.py
_train
iryzhkov/stock-trading-backend
python
def _train(self, state_action_tensor, expected_values_tensor): 'Train the model for 1 epoch.\n\n Args:\n state_action_tensor: pytorch tensor with state-action expected_values.\n expected_values: pytorch tensor with expected values for each state-action.\n\n Returns:\n The loss before trainig.\n ' if (self.model is None): self._init_model(state_action_tensor.shape[1]) self.optimizer.zero_grad() output = self.model(state_action_tensor) loss = self.criterion(output, expected_values_tensor) loss_value = loss.data.item() loss.backward() self.optimizer.step() return loss_value
@property def distributions(self): 'Return the distributions for this trial.\n\n Returns:\n The distributions.\n ' return self._distributions
8,992,952,435,542,309,000
Return the distributions for this trial. Returns: The distributions.
optuna/structs.py
distributions
VladSkripniuk/optuna
python
@property def distributions(self): 'Return the distributions for this trial.\n\n Returns:\n The distributions.\n ' return self._distributions
@distributions.setter def distributions(self, value): 'Set the distributions for this trial.\n\n Args:\n value: The distributions.\n ' self._distributions = value
-5,502,361,171,038,914,000
Set the distributions for this trial. Args: value: The distributions.
optuna/structs.py
distributions
VladSkripniuk/optuna
python
@distributions.setter def distributions(self, value): 'Set the distributions for this trial.\n\n Args:\n value: The distributions.\n ' self._distributions = value
@property def trial_id(self): 'Return the trial ID.\n\n .. deprecated:: 0.19.0\n The direct use of this attribute is deprecated and it is recommended that you use\n :attr:`~optuna.trial.FrozenTrial.number` instead.\n\n Returns:\n The trial ID.\n ' warnings.warn('The use of `FrozenTrial.trial_id` is deprecated. Please use `FrozenTrial.number` instead.', DeprecationWarning) logger = logging.get_logger(__name__) logger.warning('The use of `FrozenTrial.trial_id` is deprecated. Please use `FrozenTrial.number` instead.') return self._trial_id
7,157,514,691,564,256,000
Return the trial ID. .. deprecated:: 0.19.0 The direct use of this attribute is deprecated and it is recommended that you use :attr:`~optuna.trial.FrozenTrial.number` instead. Returns: The trial ID.
optuna/structs.py
trial_id
VladSkripniuk/optuna
python
@property def trial_id(self): 'Return the trial ID.\n\n .. deprecated:: 0.19.0\n The direct use of this attribute is deprecated and it is recommended that you use\n :attr:`~optuna.trial.FrozenTrial.number` instead.\n\n Returns:\n The trial ID.\n ' warnings.warn('The use of `FrozenTrial.trial_id` is deprecated. Please use `FrozenTrial.number` instead.', DeprecationWarning) logger = logging.get_logger(__name__) logger.warning('The use of `FrozenTrial.trial_id` is deprecated. Please use `FrozenTrial.number` instead.') return self._trial_id
@property def study_id(self): 'Return the study ID.\n\n .. deprecated:: 0.20.0\n The direct use of this attribute is deprecated and it is recommended that you use\n :attr:`~optuna.structs.StudySummary.study_name` instead.\n\n Returns:\n The study ID.\n ' message = 'The use of `StudySummary.study_id` is deprecated. Please use `StudySummary.study_name` instead.' warnings.warn(message, DeprecationWarning) logger = logging.get_logger(__name__) logger.warning(message) return self._study_id
4,847,127,753,446,662,000
Return the study ID. .. deprecated:: 0.20.0 The direct use of this attribute is deprecated and it is recommended that you use :attr:`~optuna.structs.StudySummary.study_name` instead. Returns: The study ID.
optuna/structs.py
study_id
VladSkripniuk/optuna
python
@property def study_id(self): 'Return the study ID.\n\n .. deprecated:: 0.20.0\n The direct use of this attribute is deprecated and it is recommended that you use\n :attr:`~optuna.structs.StudySummary.study_name` instead.\n\n Returns:\n The study ID.\n ' message = 'The use of `StudySummary.study_id` is deprecated. Please use `StudySummary.study_name` instead.' warnings.warn(message, DeprecationWarning) logger = logging.get_logger(__name__) logger.warning(message) return self._study_id
def __init__(__self__, resource_name, opts=None, api_stages=None, description=None, name=None, product_code=None, quota_settings=None, tags=None, throttle_settings=None, __props__=None, __name__=None, __opts__=None): '\n Provides an API Gateway Usage Plan.\n\n ## Example Usage\n\n\n\n ```python\n import pulumi\n import pulumi_aws as aws\n\n myapi = aws.apigateway.RestApi("myapi")\n dev = aws.apigateway.Deployment("dev",\n rest_api=myapi.id,\n stage_name="dev")\n prod = aws.apigateway.Deployment("prod",\n rest_api=myapi.id,\n stage_name="prod")\n my_usage_plan = aws.apigateway.UsagePlan("myUsagePlan",\n api_stages=[\n {\n "api_id": myapi.id,\n "stage": dev.stage_name,\n },\n {\n "api_id": myapi.id,\n "stage": prod.stage_name,\n },\n ],\n description="my description",\n product_code="MYCODE",\n quota_settings={\n "limit": 20,\n "offset": 2,\n "period": "WEEK",\n },\n throttle_settings={\n "burstLimit": 5,\n "rate_limit": 10,\n })\n ```\n\n :param str resource_name: The name of the resource.\n :param pulumi.ResourceOptions opts: Options for the resource.\n :param pulumi.Input[list] api_stages: The associated API stages of the usage plan.\n :param pulumi.Input[str] description: The description of a usage plan.\n :param pulumi.Input[str] name: The name of the usage plan.\n :param pulumi.Input[str] product_code: The AWS Markeplace product identifier to associate with the usage plan as a SaaS product on AWS Marketplace.\n :param pulumi.Input[dict] quota_settings: The quota settings of the usage plan.\n :param pulumi.Input[dict] tags: Key-value map of resource tags\n :param pulumi.Input[dict] throttle_settings: The throttling limits of the usage plan.\n\n The **api_stages** object supports the following:\n\n * `api_id` (`pulumi.Input[str]`) - API Id of the associated API stage in a usage plan.\n * `stage` (`pulumi.Input[str]`) - API stage name of the associated API stage in a usage plan.\n\n The **quota_settings** object supports the following:\n\n * `limit` (`pulumi.Input[float]`) - The maximum number of requests that can be made in a given time period.\n * `offset` (`pulumi.Input[float]`) - The number of requests subtracted from the given limit in the initial time period.\n * `period` (`pulumi.Input[str]`) - The time period in which the limit applies. Valid values are "DAY", "WEEK" or "MONTH".\n\n The **throttle_settings** object supports the following:\n\n * `burstLimit` (`pulumi.Input[float]`) - The API request burst limit, the maximum rate limit over a time ranging from one to a few seconds, depending upon whether the underlying token bucket is at its full capacity.\n * `rate_limit` (`pulumi.Input[float]`) - The API request steady-state rate limit.\n ' if (__name__ is not None): warnings.warn('explicit use of __name__ is deprecated', DeprecationWarning) resource_name = __name__ if (__opts__ is not None): warnings.warn("explicit use of __opts__ is deprecated, use 'opts' instead", DeprecationWarning) opts = __opts__ if (opts is None): opts = pulumi.ResourceOptions() if (not isinstance(opts, pulumi.ResourceOptions)): raise TypeError('Expected resource options to be a ResourceOptions instance') if (opts.version is None): opts.version = utilities.get_version() if (opts.id is None): if (__props__ is not None): raise TypeError('__props__ is only valid when passed in combination with a valid opts.id to get an existing resource') __props__ = dict() __props__['api_stages'] = api_stages __props__['description'] = description __props__['name'] = name __props__['product_code'] = product_code __props__['quota_settings'] = quota_settings __props__['tags'] = tags __props__['throttle_settings'] = throttle_settings __props__['arn'] = None super(UsagePlan, __self__).__init__('aws:apigateway/usagePlan:UsagePlan', resource_name, __props__, opts)
3,021,579,052,692,282,400
Provides an API Gateway Usage Plan. ## Example Usage ```python import pulumi import pulumi_aws as aws myapi = aws.apigateway.RestApi("myapi") dev = aws.apigateway.Deployment("dev", rest_api=myapi.id, stage_name="dev") prod = aws.apigateway.Deployment("prod", rest_api=myapi.id, stage_name="prod") my_usage_plan = aws.apigateway.UsagePlan("myUsagePlan", api_stages=[ { "api_id": myapi.id, "stage": dev.stage_name, }, { "api_id": myapi.id, "stage": prod.stage_name, }, ], description="my description", product_code="MYCODE", quota_settings={ "limit": 20, "offset": 2, "period": "WEEK", }, throttle_settings={ "burstLimit": 5, "rate_limit": 10, }) ``` :param str resource_name: The name of the resource. :param pulumi.ResourceOptions opts: Options for the resource. :param pulumi.Input[list] api_stages: The associated API stages of the usage plan. :param pulumi.Input[str] description: The description of a usage plan. :param pulumi.Input[str] name: The name of the usage plan. :param pulumi.Input[str] product_code: The AWS Markeplace product identifier to associate with the usage plan as a SaaS product on AWS Marketplace. :param pulumi.Input[dict] quota_settings: The quota settings of the usage plan. :param pulumi.Input[dict] tags: Key-value map of resource tags :param pulumi.Input[dict] throttle_settings: The throttling limits of the usage plan. The **api_stages** object supports the following: * `api_id` (`pulumi.Input[str]`) - API Id of the associated API stage in a usage plan. * `stage` (`pulumi.Input[str]`) - API stage name of the associated API stage in a usage plan. The **quota_settings** object supports the following: * `limit` (`pulumi.Input[float]`) - The maximum number of requests that can be made in a given time period. * `offset` (`pulumi.Input[float]`) - The number of requests subtracted from the given limit in the initial time period. * `period` (`pulumi.Input[str]`) - The time period in which the limit applies. Valid values are "DAY", "WEEK" or "MONTH". The **throttle_settings** object supports the following: * `burstLimit` (`pulumi.Input[float]`) - The API request burst limit, the maximum rate limit over a time ranging from one to a few seconds, depending upon whether the underlying token bucket is at its full capacity. * `rate_limit` (`pulumi.Input[float]`) - The API request steady-state rate limit.
sdk/python/pulumi_aws/apigateway/usage_plan.py
__init__
JakeGinnivan/pulumi-aws
python
def __init__(__self__, resource_name, opts=None, api_stages=None, description=None, name=None, product_code=None, quota_settings=None, tags=None, throttle_settings=None, __props__=None, __name__=None, __opts__=None): '\n Provides an API Gateway Usage Plan.\n\n ## Example Usage\n\n\n\n ```python\n import pulumi\n import pulumi_aws as aws\n\n myapi = aws.apigateway.RestApi("myapi")\n dev = aws.apigateway.Deployment("dev",\n rest_api=myapi.id,\n stage_name="dev")\n prod = aws.apigateway.Deployment("prod",\n rest_api=myapi.id,\n stage_name="prod")\n my_usage_plan = aws.apigateway.UsagePlan("myUsagePlan",\n api_stages=[\n {\n "api_id": myapi.id,\n "stage": dev.stage_name,\n },\n {\n "api_id": myapi.id,\n "stage": prod.stage_name,\n },\n ],\n description="my description",\n product_code="MYCODE",\n quota_settings={\n "limit": 20,\n "offset": 2,\n "period": "WEEK",\n },\n throttle_settings={\n "burstLimit": 5,\n "rate_limit": 10,\n })\n ```\n\n :param str resource_name: The name of the resource.\n :param pulumi.ResourceOptions opts: Options for the resource.\n :param pulumi.Input[list] api_stages: The associated API stages of the usage plan.\n :param pulumi.Input[str] description: The description of a usage plan.\n :param pulumi.Input[str] name: The name of the usage plan.\n :param pulumi.Input[str] product_code: The AWS Markeplace product identifier to associate with the usage plan as a SaaS product on AWS Marketplace.\n :param pulumi.Input[dict] quota_settings: The quota settings of the usage plan.\n :param pulumi.Input[dict] tags: Key-value map of resource tags\n :param pulumi.Input[dict] throttle_settings: The throttling limits of the usage plan.\n\n The **api_stages** object supports the following:\n\n * `api_id` (`pulumi.Input[str]`) - API Id of the associated API stage in a usage plan.\n * `stage` (`pulumi.Input[str]`) - API stage name of the associated API stage in a usage plan.\n\n The **quota_settings** object supports the following:\n\n * `limit` (`pulumi.Input[float]`) - The maximum number of requests that can be made in a given time period.\n * `offset` (`pulumi.Input[float]`) - The number of requests subtracted from the given limit in the initial time period.\n * `period` (`pulumi.Input[str]`) - The time period in which the limit applies. Valid values are "DAY", "WEEK" or "MONTH".\n\n The **throttle_settings** object supports the following:\n\n * `burstLimit` (`pulumi.Input[float]`) - The API request burst limit, the maximum rate limit over a time ranging from one to a few seconds, depending upon whether the underlying token bucket is at its full capacity.\n * `rate_limit` (`pulumi.Input[float]`) - The API request steady-state rate limit.\n ' if (__name__ is not None): warnings.warn('explicit use of __name__ is deprecated', DeprecationWarning) resource_name = __name__ if (__opts__ is not None): warnings.warn("explicit use of __opts__ is deprecated, use 'opts' instead", DeprecationWarning) opts = __opts__ if (opts is None): opts = pulumi.ResourceOptions() if (not isinstance(opts, pulumi.ResourceOptions)): raise TypeError('Expected resource options to be a ResourceOptions instance') if (opts.version is None): opts.version = utilities.get_version() if (opts.id is None): if (__props__ is not None): raise TypeError('__props__ is only valid when passed in combination with a valid opts.id to get an existing resource') __props__ = dict() __props__['api_stages'] = api_stages __props__['description'] = description __props__['name'] = name __props__['product_code'] = product_code __props__['quota_settings'] = quota_settings __props__['tags'] = tags __props__['throttle_settings'] = throttle_settings __props__['arn'] = None super(UsagePlan, __self__).__init__('aws:apigateway/usagePlan:UsagePlan', resource_name, __props__, opts)
@staticmethod def get(resource_name, id, opts=None, api_stages=None, arn=None, description=None, name=None, product_code=None, quota_settings=None, tags=None, throttle_settings=None): '\n Get an existing UsagePlan resource\'s state with the given name, id, and optional extra\n properties used to qualify the lookup.\n\n :param str resource_name: The unique name of the resulting resource.\n :param str id: The unique provider ID of the resource to lookup.\n :param pulumi.ResourceOptions opts: Options for the resource.\n :param pulumi.Input[list] api_stages: The associated API stages of the usage plan.\n :param pulumi.Input[str] arn: Amazon Resource Name (ARN)\n :param pulumi.Input[str] description: The description of a usage plan.\n :param pulumi.Input[str] name: The name of the usage plan.\n :param pulumi.Input[str] product_code: The AWS Markeplace product identifier to associate with the usage plan as a SaaS product on AWS Marketplace.\n :param pulumi.Input[dict] quota_settings: The quota settings of the usage plan.\n :param pulumi.Input[dict] tags: Key-value map of resource tags\n :param pulumi.Input[dict] throttle_settings: The throttling limits of the usage plan.\n\n The **api_stages** object supports the following:\n\n * `api_id` (`pulumi.Input[str]`) - API Id of the associated API stage in a usage plan.\n * `stage` (`pulumi.Input[str]`) - API stage name of the associated API stage in a usage plan.\n\n The **quota_settings** object supports the following:\n\n * `limit` (`pulumi.Input[float]`) - The maximum number of requests that can be made in a given time period.\n * `offset` (`pulumi.Input[float]`) - The number of requests subtracted from the given limit in the initial time period.\n * `period` (`pulumi.Input[str]`) - The time period in which the limit applies. Valid values are "DAY", "WEEK" or "MONTH".\n\n The **throttle_settings** object supports the following:\n\n * `burstLimit` (`pulumi.Input[float]`) - The API request burst limit, the maximum rate limit over a time ranging from one to a few seconds, depending upon whether the underlying token bucket is at its full capacity.\n * `rate_limit` (`pulumi.Input[float]`) - The API request steady-state rate limit.\n ' opts = pulumi.ResourceOptions.merge(opts, pulumi.ResourceOptions(id=id)) __props__ = dict() __props__['api_stages'] = api_stages __props__['arn'] = arn __props__['description'] = description __props__['name'] = name __props__['product_code'] = product_code __props__['quota_settings'] = quota_settings __props__['tags'] = tags __props__['throttle_settings'] = throttle_settings return UsagePlan(resource_name, opts=opts, __props__=__props__)
-8,477,662,931,629,256,000
Get an existing UsagePlan resource's state with the given name, id, and optional extra properties used to qualify the lookup. :param str resource_name: The unique name of the resulting resource. :param str id: The unique provider ID of the resource to lookup. :param pulumi.ResourceOptions opts: Options for the resource. :param pulumi.Input[list] api_stages: The associated API stages of the usage plan. :param pulumi.Input[str] arn: Amazon Resource Name (ARN) :param pulumi.Input[str] description: The description of a usage plan. :param pulumi.Input[str] name: The name of the usage plan. :param pulumi.Input[str] product_code: The AWS Markeplace product identifier to associate with the usage plan as a SaaS product on AWS Marketplace. :param pulumi.Input[dict] quota_settings: The quota settings of the usage plan. :param pulumi.Input[dict] tags: Key-value map of resource tags :param pulumi.Input[dict] throttle_settings: The throttling limits of the usage plan. The **api_stages** object supports the following: * `api_id` (`pulumi.Input[str]`) - API Id of the associated API stage in a usage plan. * `stage` (`pulumi.Input[str]`) - API stage name of the associated API stage in a usage plan. The **quota_settings** object supports the following: * `limit` (`pulumi.Input[float]`) - The maximum number of requests that can be made in a given time period. * `offset` (`pulumi.Input[float]`) - The number of requests subtracted from the given limit in the initial time period. * `period` (`pulumi.Input[str]`) - The time period in which the limit applies. Valid values are "DAY", "WEEK" or "MONTH". The **throttle_settings** object supports the following: * `burstLimit` (`pulumi.Input[float]`) - The API request burst limit, the maximum rate limit over a time ranging from one to a few seconds, depending upon whether the underlying token bucket is at its full capacity. * `rate_limit` (`pulumi.Input[float]`) - The API request steady-state rate limit.
sdk/python/pulumi_aws/apigateway/usage_plan.py
get
JakeGinnivan/pulumi-aws
python
@staticmethod def get(resource_name, id, opts=None, api_stages=None, arn=None, description=None, name=None, product_code=None, quota_settings=None, tags=None, throttle_settings=None): '\n Get an existing UsagePlan resource\'s state with the given name, id, and optional extra\n properties used to qualify the lookup.\n\n :param str resource_name: The unique name of the resulting resource.\n :param str id: The unique provider ID of the resource to lookup.\n :param pulumi.ResourceOptions opts: Options for the resource.\n :param pulumi.Input[list] api_stages: The associated API stages of the usage plan.\n :param pulumi.Input[str] arn: Amazon Resource Name (ARN)\n :param pulumi.Input[str] description: The description of a usage plan.\n :param pulumi.Input[str] name: The name of the usage plan.\n :param pulumi.Input[str] product_code: The AWS Markeplace product identifier to associate with the usage plan as a SaaS product on AWS Marketplace.\n :param pulumi.Input[dict] quota_settings: The quota settings of the usage plan.\n :param pulumi.Input[dict] tags: Key-value map of resource tags\n :param pulumi.Input[dict] throttle_settings: The throttling limits of the usage plan.\n\n The **api_stages** object supports the following:\n\n * `api_id` (`pulumi.Input[str]`) - API Id of the associated API stage in a usage plan.\n * `stage` (`pulumi.Input[str]`) - API stage name of the associated API stage in a usage plan.\n\n The **quota_settings** object supports the following:\n\n * `limit` (`pulumi.Input[float]`) - The maximum number of requests that can be made in a given time period.\n * `offset` (`pulumi.Input[float]`) - The number of requests subtracted from the given limit in the initial time period.\n * `period` (`pulumi.Input[str]`) - The time period in which the limit applies. Valid values are "DAY", "WEEK" or "MONTH".\n\n The **throttle_settings** object supports the following:\n\n * `burstLimit` (`pulumi.Input[float]`) - The API request burst limit, the maximum rate limit over a time ranging from one to a few seconds, depending upon whether the underlying token bucket is at its full capacity.\n * `rate_limit` (`pulumi.Input[float]`) - The API request steady-state rate limit.\n ' opts = pulumi.ResourceOptions.merge(opts, pulumi.ResourceOptions(id=id)) __props__ = dict() __props__['api_stages'] = api_stages __props__['arn'] = arn __props__['description'] = description __props__['name'] = name __props__['product_code'] = product_code __props__['quota_settings'] = quota_settings __props__['tags'] = tags __props__['throttle_settings'] = throttle_settings return UsagePlan(resource_name, opts=opts, __props__=__props__)
@property def color(self): "\n The 'color' property is a color and may be specified as:\n - A hex string (e.g. '#ff0000')\n - An rgb/rgba string (e.g. 'rgb(255,0,0)')\n - An hsl/hsla string (e.g. 'hsl(0,100%,50%)')\n - An hsv/hsva string (e.g. 'hsv(0,100%,100%)')\n - A named CSS color:\n aliceblue, antiquewhite, aqua, aquamarine, azure,\n beige, bisque, black, blanchedalmond, blue,\n blueviolet, brown, burlywood, cadetblue,\n chartreuse, chocolate, coral, cornflowerblue,\n cornsilk, crimson, cyan, darkblue, darkcyan,\n darkgoldenrod, darkgray, darkgrey, darkgreen,\n darkkhaki, darkmagenta, darkolivegreen, darkorange,\n darkorchid, darkred, darksalmon, darkseagreen,\n darkslateblue, darkslategray, darkslategrey,\n darkturquoise, darkviolet, deeppink, deepskyblue,\n dimgray, dimgrey, dodgerblue, firebrick,\n floralwhite, forestgreen, fuchsia, gainsboro,\n ghostwhite, gold, goldenrod, gray, grey, green,\n greenyellow, honeydew, hotpink, indianred, indigo,\n ivory, khaki, lavender, lavenderblush, lawngreen,\n lemonchiffon, lightblue, lightcoral, lightcyan,\n lightgoldenrodyellow, lightgray, lightgrey,\n lightgreen, lightpink, lightsalmon, lightseagreen,\n lightskyblue, lightslategray, lightslategrey,\n lightsteelblue, lightyellow, lime, limegreen,\n linen, magenta, maroon, mediumaquamarine,\n mediumblue, mediumorchid, mediumpurple,\n mediumseagreen, mediumslateblue, mediumspringgreen,\n mediumturquoise, mediumvioletred, midnightblue,\n mintcream, mistyrose, moccasin, navajowhite, navy,\n oldlace, olive, olivedrab, orange, orangered,\n orchid, palegoldenrod, palegreen, paleturquoise,\n palevioletred, papayawhip, peachpuff, peru, pink,\n plum, powderblue, purple, red, rosybrown,\n royalblue, rebeccapurple, saddlebrown, salmon,\n sandybrown, seagreen, seashell, sienna, silver,\n skyblue, slateblue, slategray, slategrey, snow,\n springgreen, steelblue, tan, teal, thistle, tomato,\n turquoise, violet, wheat, white, whitesmoke,\n yellow, yellowgreen\n - A list or array of any of the above\n\n Returns\n -------\n str|numpy.ndarray\n " return self['color']
-9,075,663,790,309,021,000
The 'color' property is a color and may be specified as: - A hex string (e.g. '#ff0000') - An rgb/rgba string (e.g. 'rgb(255,0,0)') - An hsl/hsla string (e.g. 'hsl(0,100%,50%)') - An hsv/hsva string (e.g. 'hsv(0,100%,100%)') - A named CSS color: aliceblue, antiquewhite, aqua, aquamarine, azure, beige, bisque, black, blanchedalmond, blue, blueviolet, brown, burlywood, cadetblue, chartreuse, chocolate, coral, cornflowerblue, cornsilk, crimson, cyan, darkblue, darkcyan, darkgoldenrod, darkgray, darkgrey, darkgreen, darkkhaki, darkmagenta, darkolivegreen, darkorange, darkorchid, darkred, darksalmon, darkseagreen, darkslateblue, darkslategray, darkslategrey, darkturquoise, darkviolet, deeppink, deepskyblue, dimgray, dimgrey, dodgerblue, firebrick, floralwhite, forestgreen, fuchsia, gainsboro, ghostwhite, gold, goldenrod, gray, grey, green, greenyellow, honeydew, hotpink, indianred, indigo, ivory, khaki, lavender, lavenderblush, lawngreen, lemonchiffon, lightblue, lightcoral, lightcyan, lightgoldenrodyellow, lightgray, lightgrey, lightgreen, lightpink, lightsalmon, lightseagreen, lightskyblue, lightslategray, lightslategrey, lightsteelblue, lightyellow, lime, limegreen, linen, magenta, maroon, mediumaquamarine, mediumblue, mediumorchid, mediumpurple, mediumseagreen, mediumslateblue, mediumspringgreen, mediumturquoise, mediumvioletred, midnightblue, mintcream, mistyrose, moccasin, navajowhite, navy, oldlace, olive, olivedrab, orange, orangered, orchid, palegoldenrod, palegreen, paleturquoise, palevioletred, papayawhip, peachpuff, peru, pink, plum, powderblue, purple, red, rosybrown, royalblue, rebeccapurple, saddlebrown, salmon, sandybrown, seagreen, seashell, sienna, silver, skyblue, slateblue, slategray, slategrey, snow, springgreen, steelblue, tan, teal, thistle, tomato, turquoise, violet, wheat, white, whitesmoke, yellow, yellowgreen - A list or array of any of the above Returns ------- str|numpy.ndarray
plotly_study/graph_objs/streamtube/hoverlabel/__init__.py
color
lucasiscovici/plotly_py
python
@property def color(self): "\n The 'color' property is a color and may be specified as:\n - A hex string (e.g. '#ff0000')\n - An rgb/rgba string (e.g. 'rgb(255,0,0)')\n - An hsl/hsla string (e.g. 'hsl(0,100%,50%)')\n - An hsv/hsva string (e.g. 'hsv(0,100%,100%)')\n - A named CSS color:\n aliceblue, antiquewhite, aqua, aquamarine, azure,\n beige, bisque, black, blanchedalmond, blue,\n blueviolet, brown, burlywood, cadetblue,\n chartreuse, chocolate, coral, cornflowerblue,\n cornsilk, crimson, cyan, darkblue, darkcyan,\n darkgoldenrod, darkgray, darkgrey, darkgreen,\n darkkhaki, darkmagenta, darkolivegreen, darkorange,\n darkorchid, darkred, darksalmon, darkseagreen,\n darkslateblue, darkslategray, darkslategrey,\n darkturquoise, darkviolet, deeppink, deepskyblue,\n dimgray, dimgrey, dodgerblue, firebrick,\n floralwhite, forestgreen, fuchsia, gainsboro,\n ghostwhite, gold, goldenrod, gray, grey, green,\n greenyellow, honeydew, hotpink, indianred, indigo,\n ivory, khaki, lavender, lavenderblush, lawngreen,\n lemonchiffon, lightblue, lightcoral, lightcyan,\n lightgoldenrodyellow, lightgray, lightgrey,\n lightgreen, lightpink, lightsalmon, lightseagreen,\n lightskyblue, lightslategray, lightslategrey,\n lightsteelblue, lightyellow, lime, limegreen,\n linen, magenta, maroon, mediumaquamarine,\n mediumblue, mediumorchid, mediumpurple,\n mediumseagreen, mediumslateblue, mediumspringgreen,\n mediumturquoise, mediumvioletred, midnightblue,\n mintcream, mistyrose, moccasin, navajowhite, navy,\n oldlace, olive, olivedrab, orange, orangered,\n orchid, palegoldenrod, palegreen, paleturquoise,\n palevioletred, papayawhip, peachpuff, peru, pink,\n plum, powderblue, purple, red, rosybrown,\n royalblue, rebeccapurple, saddlebrown, salmon,\n sandybrown, seagreen, seashell, sienna, silver,\n skyblue, slateblue, slategray, slategrey, snow,\n springgreen, steelblue, tan, teal, thistle, tomato,\n turquoise, violet, wheat, white, whitesmoke,\n yellow, yellowgreen\n - A list or array of any of the above\n\n Returns\n -------\n str|numpy.ndarray\n " return self['color']
@property def colorsrc(self): "\n Sets the source reference on plot.ly for color .\n \n The 'colorsrc' property must be specified as a string or\n as a plotly_study.grid_objs.Column object\n\n Returns\n -------\n str\n " return self['colorsrc']
2,247,104,057,059,088,600
Sets the source reference on plot.ly for color . The 'colorsrc' property must be specified as a string or as a plotly_study.grid_objs.Column object Returns ------- str
plotly_study/graph_objs/streamtube/hoverlabel/__init__.py
colorsrc
lucasiscovici/plotly_py
python
@property def colorsrc(self): "\n Sets the source reference on plot.ly for color .\n \n The 'colorsrc' property must be specified as a string or\n as a plotly_study.grid_objs.Column object\n\n Returns\n -------\n str\n " return self['colorsrc']
@property def family(self): '\n HTML font family - the typeface that will be applied by the web\n browser. The web browser will only be able to apply a font if\n it is available on the system which it operates. Provide\n multiple font families, separated by commas, to indicate the\n preference in which to apply fonts if they aren\'t available on\n the system. The plotly service (at https://plot.ly or on-\n premise) generates images on a server, where only a select\n number of fonts are installed and supported. These include\n "Arial", "Balto", "Courier New", "Droid Sans",, "Droid Serif",\n "Droid Sans Mono", "Gravitas One", "Old Standard TT", "Open\n Sans", "Overpass", "PT Sans Narrow", "Raleway", "Times New\n Roman".\n \n The \'family\' property is a string and must be specified as:\n - A non-empty string\n - A tuple, list, or one-dimensional numpy array of the above\n\n Returns\n -------\n str|numpy.ndarray\n ' return self['family']
-3,524,569,398,637,699,600
HTML font family - the typeface that will be applied by the web browser. The web browser will only be able to apply a font if it is available on the system which it operates. Provide multiple font families, separated by commas, to indicate the preference in which to apply fonts if they aren't available on the system. The plotly service (at https://plot.ly or on- premise) generates images on a server, where only a select number of fonts are installed and supported. These include "Arial", "Balto", "Courier New", "Droid Sans",, "Droid Serif", "Droid Sans Mono", "Gravitas One", "Old Standard TT", "Open Sans", "Overpass", "PT Sans Narrow", "Raleway", "Times New Roman". The 'family' property is a string and must be specified as: - A non-empty string - A tuple, list, or one-dimensional numpy array of the above Returns ------- str|numpy.ndarray
plotly_study/graph_objs/streamtube/hoverlabel/__init__.py
family
lucasiscovici/plotly_py
python
@property def family(self): '\n HTML font family - the typeface that will be applied by the web\n browser. The web browser will only be able to apply a font if\n it is available on the system which it operates. Provide\n multiple font families, separated by commas, to indicate the\n preference in which to apply fonts if they aren\'t available on\n the system. The plotly service (at https://plot.ly or on-\n premise) generates images on a server, where only a select\n number of fonts are installed and supported. These include\n "Arial", "Balto", "Courier New", "Droid Sans",, "Droid Serif",\n "Droid Sans Mono", "Gravitas One", "Old Standard TT", "Open\n Sans", "Overpass", "PT Sans Narrow", "Raleway", "Times New\n Roman".\n \n The \'family\' property is a string and must be specified as:\n - A non-empty string\n - A tuple, list, or one-dimensional numpy array of the above\n\n Returns\n -------\n str|numpy.ndarray\n ' return self['family']
@property def familysrc(self): "\n Sets the source reference on plot.ly for family .\n \n The 'familysrc' property must be specified as a string or\n as a plotly_study.grid_objs.Column object\n\n Returns\n -------\n str\n " return self['familysrc']
2,851,453,137,557,342,000
Sets the source reference on plot.ly for family . The 'familysrc' property must be specified as a string or as a plotly_study.grid_objs.Column object Returns ------- str
plotly_study/graph_objs/streamtube/hoverlabel/__init__.py
familysrc
lucasiscovici/plotly_py
python
@property def familysrc(self): "\n Sets the source reference on plot.ly for family .\n \n The 'familysrc' property must be specified as a string or\n as a plotly_study.grid_objs.Column object\n\n Returns\n -------\n str\n " return self['familysrc']
@property def size(self): "\n The 'size' property is a number and may be specified as:\n - An int or float in the interval [1, inf]\n - A tuple, list, or one-dimensional numpy array of the above\n\n Returns\n -------\n int|float|numpy.ndarray\n " return self['size']
6,887,128,696,685,480,000
The 'size' property is a number and may be specified as: - An int or float in the interval [1, inf] - A tuple, list, or one-dimensional numpy array of the above Returns ------- int|float|numpy.ndarray
plotly_study/graph_objs/streamtube/hoverlabel/__init__.py
size
lucasiscovici/plotly_py
python
@property def size(self): "\n The 'size' property is a number and may be specified as:\n - An int or float in the interval [1, inf]\n - A tuple, list, or one-dimensional numpy array of the above\n\n Returns\n -------\n int|float|numpy.ndarray\n " return self['size']
@property def sizesrc(self): "\n Sets the source reference on plot.ly for size .\n \n The 'sizesrc' property must be specified as a string or\n as a plotly_study.grid_objs.Column object\n\n Returns\n -------\n str\n " return self['sizesrc']
-2,197,100,178,794,376,400
Sets the source reference on plot.ly for size . The 'sizesrc' property must be specified as a string or as a plotly_study.grid_objs.Column object Returns ------- str
plotly_study/graph_objs/streamtube/hoverlabel/__init__.py
sizesrc
lucasiscovici/plotly_py
python
@property def sizesrc(self): "\n Sets the source reference on plot.ly for size .\n \n The 'sizesrc' property must be specified as a string or\n as a plotly_study.grid_objs.Column object\n\n Returns\n -------\n str\n " return self['sizesrc']
def __init__(self, arg=None, color=None, colorsrc=None, family=None, familysrc=None, size=None, sizesrc=None, **kwargs): '\n Construct a new Font object\n \n Sets the font used in hover labels.\n\n Parameters\n ----------\n arg\n dict of properties compatible with this constructor or\n an instance of\n plotly_study.graph_objs.streamtube.hoverlabel.Font\n color\n\n colorsrc\n Sets the source reference on plot.ly for color .\n family\n HTML font family - the typeface that will be applied by\n the web browser. The web browser will only be able to\n apply a font if it is available on the system which it\n operates. Provide multiple font families, separated by\n commas, to indicate the preference in which to apply\n fonts if they aren\'t available on the system. The\n plotly service (at https://plot.ly or on-premise)\n generates images on a server, where only a select\n number of fonts are installed and supported. These\n include "Arial", "Balto", "Courier New", "Droid Sans",,\n "Droid Serif", "Droid Sans Mono", "Gravitas One", "Old\n Standard TT", "Open Sans", "Overpass", "PT Sans\n Narrow", "Raleway", "Times New Roman".\n familysrc\n Sets the source reference on plot.ly for family .\n size\n\n sizesrc\n Sets the source reference on plot.ly for size .\n\n Returns\n -------\n Font\n ' super(Font, self).__init__('font') if (arg is None): arg = {} elif isinstance(arg, self.__class__): arg = arg.to_plotly_json() elif isinstance(arg, dict): arg = _copy.copy(arg) else: raise ValueError('The first argument to the plotly_study.graph_objs.streamtube.hoverlabel.Font \nconstructor must be a dict or \nan instance of plotly_study.graph_objs.streamtube.hoverlabel.Font') self._skip_invalid = kwargs.pop('skip_invalid', False) from plotly_study.validators.streamtube.hoverlabel import font as v_font self._validators['color'] = v_font.ColorValidator() self._validators['colorsrc'] = v_font.ColorsrcValidator() self._validators['family'] = v_font.FamilyValidator() self._validators['familysrc'] = v_font.FamilysrcValidator() self._validators['size'] = v_font.SizeValidator() self._validators['sizesrc'] = v_font.SizesrcValidator() _v = arg.pop('color', None) self['color'] = (color if (color is not None) else _v) _v = arg.pop('colorsrc', None) self['colorsrc'] = (colorsrc if (colorsrc is not None) else _v) _v = arg.pop('family', None) self['family'] = (family if (family is not None) else _v) _v = arg.pop('familysrc', None) self['familysrc'] = (familysrc if (familysrc is not None) else _v) _v = arg.pop('size', None) self['size'] = (size if (size is not None) else _v) _v = arg.pop('sizesrc', None) self['sizesrc'] = (sizesrc if (sizesrc is not None) else _v) self._process_kwargs(**dict(arg, **kwargs)) self._skip_invalid = False
4,897,156,161,566,623,000
Construct a new Font object Sets the font used in hover labels. Parameters ---------- arg dict of properties compatible with this constructor or an instance of plotly_study.graph_objs.streamtube.hoverlabel.Font color colorsrc Sets the source reference on plot.ly for color . family HTML font family - the typeface that will be applied by the web browser. The web browser will only be able to apply a font if it is available on the system which it operates. Provide multiple font families, separated by commas, to indicate the preference in which to apply fonts if they aren't available on the system. The plotly service (at https://plot.ly or on-premise) generates images on a server, where only a select number of fonts are installed and supported. These include "Arial", "Balto", "Courier New", "Droid Sans",, "Droid Serif", "Droid Sans Mono", "Gravitas One", "Old Standard TT", "Open Sans", "Overpass", "PT Sans Narrow", "Raleway", "Times New Roman". familysrc Sets the source reference on plot.ly for family . size sizesrc Sets the source reference on plot.ly for size . Returns ------- Font
plotly_study/graph_objs/streamtube/hoverlabel/__init__.py
__init__
lucasiscovici/plotly_py
python
def __init__(self, arg=None, color=None, colorsrc=None, family=None, familysrc=None, size=None, sizesrc=None, **kwargs): '\n Construct a new Font object\n \n Sets the font used in hover labels.\n\n Parameters\n ----------\n arg\n dict of properties compatible with this constructor or\n an instance of\n plotly_study.graph_objs.streamtube.hoverlabel.Font\n color\n\n colorsrc\n Sets the source reference on plot.ly for color .\n family\n HTML font family - the typeface that will be applied by\n the web browser. The web browser will only be able to\n apply a font if it is available on the system which it\n operates. Provide multiple font families, separated by\n commas, to indicate the preference in which to apply\n fonts if they aren\'t available on the system. The\n plotly service (at https://plot.ly or on-premise)\n generates images on a server, where only a select\n number of fonts are installed and supported. These\n include "Arial", "Balto", "Courier New", "Droid Sans",,\n "Droid Serif", "Droid Sans Mono", "Gravitas One", "Old\n Standard TT", "Open Sans", "Overpass", "PT Sans\n Narrow", "Raleway", "Times New Roman".\n familysrc\n Sets the source reference on plot.ly for family .\n size\n\n sizesrc\n Sets the source reference on plot.ly for size .\n\n Returns\n -------\n Font\n ' super(Font, self).__init__('font') if (arg is None): arg = {} elif isinstance(arg, self.__class__): arg = arg.to_plotly_json() elif isinstance(arg, dict): arg = _copy.copy(arg) else: raise ValueError('The first argument to the plotly_study.graph_objs.streamtube.hoverlabel.Font \nconstructor must be a dict or \nan instance of plotly_study.graph_objs.streamtube.hoverlabel.Font') self._skip_invalid = kwargs.pop('skip_invalid', False) from plotly_study.validators.streamtube.hoverlabel import font as v_font self._validators['color'] = v_font.ColorValidator() self._validators['colorsrc'] = v_font.ColorsrcValidator() self._validators['family'] = v_font.FamilyValidator() self._validators['familysrc'] = v_font.FamilysrcValidator() self._validators['size'] = v_font.SizeValidator() self._validators['sizesrc'] = v_font.SizesrcValidator() _v = arg.pop('color', None) self['color'] = (color if (color is not None) else _v) _v = arg.pop('colorsrc', None) self['colorsrc'] = (colorsrc if (colorsrc is not None) else _v) _v = arg.pop('family', None) self['family'] = (family if (family is not None) else _v) _v = arg.pop('familysrc', None) self['familysrc'] = (familysrc if (familysrc is not None) else _v) _v = arg.pop('size', None) self['size'] = (size if (size is not None) else _v) _v = arg.pop('sizesrc', None) self['sizesrc'] = (sizesrc if (sizesrc is not None) else _v) self._process_kwargs(**dict(arg, **kwargs)) self._skip_invalid = False
def getNetworkCellularGatewaySettingsDhcp(self, networkId: str): '\n **List common DHCP settings of MGs**\n https://developer.cisco.com/meraki/api/#!get-network-cellular-gateway-settings-dhcp\n \n - networkId (string)\n ' metadata = {'tags': ['MG DHCP settings'], 'operation': 'getNetworkCellularGatewaySettingsDhcp'} resource = f'/networks/{networkId}/cellularGateway/settings/dhcp' return self._session.get(metadata, resource)
-1,668,987,376,588,538,000
**List common DHCP settings of MGs** https://developer.cisco.com/meraki/api/#!get-network-cellular-gateway-settings-dhcp - networkId (string)
meraki/api/mg_dhcp_settings.py
getNetworkCellularGatewaySettingsDhcp
NoFliesOnYou/dashboard-api-python
python
def getNetworkCellularGatewaySettingsDhcp(self, networkId: str): '\n **List common DHCP settings of MGs**\n https://developer.cisco.com/meraki/api/#!get-network-cellular-gateway-settings-dhcp\n \n - networkId (string)\n ' metadata = {'tags': ['MG DHCP settings'], 'operation': 'getNetworkCellularGatewaySettingsDhcp'} resource = f'/networks/{networkId}/cellularGateway/settings/dhcp' return self._session.get(metadata, resource)
def updateNetworkCellularGatewaySettingsDhcp(self, networkId: str, **kwargs): "\n **Update common DHCP settings of MGs**\n https://developer.cisco.com/meraki/api/#!update-network-cellular-gateway-settings-dhcp\n \n - networkId (string)\n - dhcpLeaseTime (string): DHCP Lease time for all MG of the network. It can be '30 minutes', '1 hour', '4 hours', '12 hours', '1 day' or '1 week'.\n - dnsNameservers (string): DNS name servers mode for all MG of the network. It can take 4 different values: 'upstream_dns', 'google_dns', 'opendns', 'custom'.\n - dnsCustomNameservers (array): list of fixed IP representing the the DNS Name servers when the mode is 'custom'\n " kwargs.update(locals()) metadata = {'tags': ['MG DHCP settings'], 'operation': 'updateNetworkCellularGatewaySettingsDhcp'} resource = f'/networks/{networkId}/cellularGateway/settings/dhcp' body_params = ['dhcpLeaseTime', 'dnsNameservers', 'dnsCustomNameservers'] payload = {k: v for (k, v) in kwargs.items() if (k in body_params)} return self._session.put(metadata, resource, payload)
6,057,655,295,595,497,000
**Update common DHCP settings of MGs** https://developer.cisco.com/meraki/api/#!update-network-cellular-gateway-settings-dhcp - networkId (string) - dhcpLeaseTime (string): DHCP Lease time for all MG of the network. It can be '30 minutes', '1 hour', '4 hours', '12 hours', '1 day' or '1 week'. - dnsNameservers (string): DNS name servers mode for all MG of the network. It can take 4 different values: 'upstream_dns', 'google_dns', 'opendns', 'custom'. - dnsCustomNameservers (array): list of fixed IP representing the the DNS Name servers when the mode is 'custom'
meraki/api/mg_dhcp_settings.py
updateNetworkCellularGatewaySettingsDhcp
NoFliesOnYou/dashboard-api-python
python
def updateNetworkCellularGatewaySettingsDhcp(self, networkId: str, **kwargs): "\n **Update common DHCP settings of MGs**\n https://developer.cisco.com/meraki/api/#!update-network-cellular-gateway-settings-dhcp\n \n - networkId (string)\n - dhcpLeaseTime (string): DHCP Lease time for all MG of the network. It can be '30 minutes', '1 hour', '4 hours', '12 hours', '1 day' or '1 week'.\n - dnsNameservers (string): DNS name servers mode for all MG of the network. It can take 4 different values: 'upstream_dns', 'google_dns', 'opendns', 'custom'.\n - dnsCustomNameservers (array): list of fixed IP representing the the DNS Name servers when the mode is 'custom'\n " kwargs.update(locals()) metadata = {'tags': ['MG DHCP settings'], 'operation': 'updateNetworkCellularGatewaySettingsDhcp'} resource = f'/networks/{networkId}/cellularGateway/settings/dhcp' body_params = ['dhcpLeaseTime', 'dnsNameservers', 'dnsCustomNameservers'] payload = {k: v for (k, v) in kwargs.items() if (k in body_params)} return self._session.put(metadata, resource, payload)
@classmethod def setUpClass(cls): 'Configure raw file and its object in parent class (TestDump).' super().setUpClass() super().set_raw_dump_file('v0x04', 'ofpt_port_stats') super().set_raw_dump_object(PortStats) super().set_minimum_size(112)
-3,124,006,365,885,124,000
Configure raw file and its object in parent class (TestDump).
build/lib/tests/v0x04/test_controller2switch/test_port_stats.py
setUpClass
smythtech/python-openflow-legacy
python
@classmethod def setUpClass(cls): super().setUpClass() super().set_raw_dump_file('v0x04', 'ofpt_port_stats') super().set_raw_dump_object(PortStats) super().set_minimum_size(112)
@bottle.post('/api/v3/report/import') def post_report_import(database: Database): 'Import a preconfigured report into the database.' report = dict(bottle.request.json) result = import_json_report(database, report) result['new_report_uuid'] = report['report_uuid'] return result
4,125,415,011,259,234,300
Import a preconfigured report into the database.
components/server/src/routes/report.py
post_report_import
Gamer1120/quality-time
python
@bottle.post('/api/v3/report/import') def post_report_import(database: Database): report = dict(bottle.request.json) result = import_json_report(database, report) result['new_report_uuid'] = report['report_uuid'] return result
@bottle.post('/api/v3/report/new') def post_report_new(database: Database): 'Add a new report.' report_uuid = uuid() user = sessions.user(database) report = dict(report_uuid=report_uuid, title='New report', subjects={}, delta=dict(uuids=[report_uuid], email=user['email'], description=f"{user['user']} created a new report.")) result = insert_new_report(database, report) result['new_report_uuid'] = report_uuid return result
-8,755,332,867,516,317,000
Add a new report.
components/server/src/routes/report.py
post_report_new
Gamer1120/quality-time
python
@bottle.post('/api/v3/report/new') def post_report_new(database: Database): report_uuid = uuid() user = sessions.user(database) report = dict(report_uuid=report_uuid, title='New report', subjects={}, delta=dict(uuids=[report_uuid], email=user['email'], description=f"{user['user']} created a new report.")) result = insert_new_report(database, report) result['new_report_uuid'] = report_uuid return result
@bottle.post('/api/v3/report/<report_uuid>/copy') def post_report_copy(report_uuid: ReportId, database: Database): 'Copy a report.' data_model = latest_datamodel(database) reports = latest_reports(database) data = ReportData(data_model, reports, report_uuid) report_copy = copy_report(data.report, data.datamodel) user = sessions.user(database) report_copy['delta'] = dict(uuids=[report_uuid, report_copy['report_uuid']], email=user['email'], description=f"{user['user']} copied the report '{data.report_name}'.") result = insert_new_report(database, report_copy) result['new_report_uuid'] = report_copy['report_uuid'] return result
501,560,276,536,554,100
Copy a report.
components/server/src/routes/report.py
post_report_copy
Gamer1120/quality-time
python
@bottle.post('/api/v3/report/<report_uuid>/copy') def post_report_copy(report_uuid: ReportId, database: Database): data_model = latest_datamodel(database) reports = latest_reports(database) data = ReportData(data_model, reports, report_uuid) report_copy = copy_report(data.report, data.datamodel) user = sessions.user(database) report_copy['delta'] = dict(uuids=[report_uuid, report_copy['report_uuid']], email=user['email'], description=f"{user['user']} copied the report '{data.report_name}'.") result = insert_new_report(database, report_copy) result['new_report_uuid'] = report_copy['report_uuid'] return result
@bottle.get('/api/v3/report/<report_uuid>/pdf') def export_report_as_pdf(report_uuid: ReportId): 'Download the report as pdf.' renderer_host = os.environ.get('RENDERER_HOST', 'renderer') renderer_port = os.environ.get('RENDERER_PORT', '9000') render_url = f'http://{renderer_host}:{renderer_port}/api/render' proxy_host = os.environ.get('PROXY_HOST', 'www') proxy_port = os.environ.get('PROXY_PORT', '80') query_string = (f'?{bottle.request.query_string}' if bottle.request.query_string else '') report_url = parse.quote(f'http://{proxy_host}:{proxy_port}/{report_uuid}{query_string}') margins = '&'.join([f'pdf.margin.{side}=25' for side in ('top', 'bottom', 'left', 'right')]) options = f'emulateScreenMedia=false&goto.timeout=60000&pdf.scale=0.7&{margins}' response = requests.get(f'{render_url}?url={report_url}&{options}') response.raise_for_status() bottle.response.content_type = 'application/pdf' return response.content
-3,540,804,449,831,905,000
Download the report as pdf.
components/server/src/routes/report.py
export_report_as_pdf
Gamer1120/quality-time
python
@bottle.get('/api/v3/report/<report_uuid>/pdf') def export_report_as_pdf(report_uuid: ReportId): renderer_host = os.environ.get('RENDERER_HOST', 'renderer') renderer_port = os.environ.get('RENDERER_PORT', '9000') render_url = f'http://{renderer_host}:{renderer_port}/api/render' proxy_host = os.environ.get('PROXY_HOST', 'www') proxy_port = os.environ.get('PROXY_PORT', '80') query_string = (f'?{bottle.request.query_string}' if bottle.request.query_string else ) report_url = parse.quote(f'http://{proxy_host}:{proxy_port}/{report_uuid}{query_string}') margins = '&'.join([f'pdf.margin.{side}=25' for side in ('top', 'bottom', 'left', 'right')]) options = f'emulateScreenMedia=false&goto.timeout=60000&pdf.scale=0.7&{margins}' response = requests.get(f'{render_url}?url={report_url}&{options}') response.raise_for_status() bottle.response.content_type = 'application/pdf' return response.content
@bottle.delete('/api/v3/report/<report_uuid>') def delete_report(report_uuid: ReportId, database: Database): 'Delete a report.' data_model = latest_datamodel(database) reports = latest_reports(database) data = ReportData(data_model, reports, report_uuid) data.report['deleted'] = 'true' user = sessions.user(database) data.report['delta'] = dict(uuids=[report_uuid], email=user['email'], description=f"{user['user']} deleted the report '{data.report_name}'.") return insert_new_report(database, data.report)
-6,304,560,776,285,529,000
Delete a report.
components/server/src/routes/report.py
delete_report
Gamer1120/quality-time
python
@bottle.delete('/api/v3/report/<report_uuid>') def delete_report(report_uuid: ReportId, database: Database): data_model = latest_datamodel(database) reports = latest_reports(database) data = ReportData(data_model, reports, report_uuid) data.report['deleted'] = 'true' user = sessions.user(database) data.report['delta'] = dict(uuids=[report_uuid], email=user['email'], description=f"{user['user']} deleted the report '{data.report_name}'.") return insert_new_report(database, data.report)
@bottle.post('/api/v3/report/<report_uuid>/attribute/<report_attribute>') def post_report_attribute(report_uuid: ReportId, report_attribute: str, database: Database): 'Set a report attribute.' data_model = latest_datamodel(database) reports = latest_reports(database) data = ReportData(data_model, reports, report_uuid) value = dict(bottle.request.json)[report_attribute] old_value = (data.report.get(report_attribute) or '') data.report[report_attribute] = value value_change_description = ('' if (report_attribute == 'layout') else f" from '{old_value}' to '{value}'") user = sessions.user(database) data.report['delta'] = dict(uuids=[report_uuid], email=user['email'], description=f"{user['user']} changed the {report_attribute} of report '{data.report_name}'{value_change_description}.") return insert_new_report(database, data.report)
-7,890,409,386,999,294,000
Set a report attribute.
components/server/src/routes/report.py
post_report_attribute
Gamer1120/quality-time
python
@bottle.post('/api/v3/report/<report_uuid>/attribute/<report_attribute>') def post_report_attribute(report_uuid: ReportId, report_attribute: str, database: Database): data_model = latest_datamodel(database) reports = latest_reports(database) data = ReportData(data_model, reports, report_uuid) value = dict(bottle.request.json)[report_attribute] old_value = (data.report.get(report_attribute) or ) data.report[report_attribute] = value value_change_description = ( if (report_attribute == 'layout') else f" from '{old_value}' to '{value}'") user = sessions.user(database) data.report['delta'] = dict(uuids=[report_uuid], email=user['email'], description=f"{user['user']} changed the {report_attribute} of report '{data.report_name}'{value_change_description}.") return insert_new_report(database, data.report)
@bottle.get('/api/v3/tagreport/<tag>') def get_tag_report(tag: str, database: Database): 'Get a report with all metrics that have the specified tag.' date_time = report_date_time() reports = latest_reports(database, date_time) data_model = latest_datamodel(database, date_time) subjects = _get_subjects_and_metrics_by_tag(data_model, reports, tag) tag_report = dict(title=f'Report for tag "{tag}"', subtitle='Note: tag reports are read-only', report_uuid=f'tag-{tag}', timestamp=date_time, subjects=subjects) hide_credentials(data_model, tag_report) summarize_report(tag_report, recent_measurements_by_metric_uuid(database, date_time), data_model) return tag_report
2,397,682,409,466,062,000
Get a report with all metrics that have the specified tag.
components/server/src/routes/report.py
get_tag_report
Gamer1120/quality-time
python
@bottle.get('/api/v3/tagreport/<tag>') def get_tag_report(tag: str, database: Database): date_time = report_date_time() reports = latest_reports(database, date_time) data_model = latest_datamodel(database, date_time) subjects = _get_subjects_and_metrics_by_tag(data_model, reports, tag) tag_report = dict(title=f'Report for tag "{tag}"', subtitle='Note: tag reports are read-only', report_uuid=f'tag-{tag}', timestamp=date_time, subjects=subjects) hide_credentials(data_model, tag_report) summarize_report(tag_report, recent_measurements_by_metric_uuid(database, date_time), data_model) return tag_report
def _get_subjects_and_metrics_by_tag(data_model, reports, tag: str): 'Return all subjects and metrics that have the tag.' subjects = {} for report in reports: for (subject_uuid, subject) in list(report.get('subjects', {}).items()): for (metric_uuid, metric) in list(subject.get('metrics', {}).items()): if (tag not in metric.get('tags', [])): del subject['metrics'][metric_uuid] if subject.get('metrics', {}): subject_name = (subject.get('name') or data_model['subjects'][subject['type']]['name']) subject['name'] = ((report['title'] + ' / ') + subject_name) subjects[subject_uuid] = subject return subjects
3,139,816,455,561,467,400
Return all subjects and metrics that have the tag.
components/server/src/routes/report.py
_get_subjects_and_metrics_by_tag
Gamer1120/quality-time
python
def _get_subjects_and_metrics_by_tag(data_model, reports, tag: str): subjects = {} for report in reports: for (subject_uuid, subject) in list(report.get('subjects', {}).items()): for (metric_uuid, metric) in list(subject.get('metrics', {}).items()): if (tag not in metric.get('tags', [])): del subject['metrics'][metric_uuid] if subject.get('metrics', {}): subject_name = (subject.get('name') or data_model['subjects'][subject['type']]['name']) subject['name'] = ((report['title'] + ' / ') + subject_name) subjects[subject_uuid] = subject return subjects
def blend(image1, image2, factor): 'Blend image1 and image2 using \'factor\'.\n\n A value of factor 0.0 means only image1 is used.\n A value of 1.0 means only image2 is used. A value between 0.0 and\n 1.0 means we linearly interpolate the pixel values between the two\n images. A value greater than 1.0 "extrapolates" the difference\n between the two pixel values, and we clip the results to values\n between 0 and 255.\n\n Args:\n image1: An image Tensor.\n image2: An image Tensor.\n factor: A floating point value above 0.0.\n\n Returns:\n A blended image Tensor.\n ' image1 = tf.cast(image1, tf.float32) image2 = tf.cast(image2, tf.float32) return tf.saturate_cast((image1 + (factor * (image2 - image1))), tf.uint8)
-5,146,605,963,756,331,000
Blend image1 and image2 using 'factor'. A value of factor 0.0 means only image1 is used. A value of 1.0 means only image2 is used. A value between 0.0 and 1.0 means we linearly interpolate the pixel values between the two images. A value greater than 1.0 "extrapolates" the difference between the two pixel values, and we clip the results to values between 0 and 255. Args: image1: An image Tensor. image2: An image Tensor. factor: A floating point value above 0.0. Returns: A blended image Tensor.
third_party/augment_ops.py
blend
google-research/crest
python
def blend(image1, image2, factor): 'Blend image1 and image2 using \'factor\'.\n\n A value of factor 0.0 means only image1 is used.\n A value of 1.0 means only image2 is used. A value between 0.0 and\n 1.0 means we linearly interpolate the pixel values between the two\n images. A value greater than 1.0 "extrapolates" the difference\n between the two pixel values, and we clip the results to values\n between 0 and 255.\n\n Args:\n image1: An image Tensor.\n image2: An image Tensor.\n factor: A floating point value above 0.0.\n\n Returns:\n A blended image Tensor.\n ' image1 = tf.cast(image1, tf.float32) image2 = tf.cast(image2, tf.float32) return tf.saturate_cast((image1 + (factor * (image2 - image1))), tf.uint8)
def wrap(image): "Returns 'image' with an extra channel set to all 1s." shape = tf.shape(image) extended_channel = tf.ones([shape[0], shape[1], 1], image.dtype) extended = tf.concat([image, extended_channel], 2) return extended
-2,054,740,842,410,237,000
Returns 'image' with an extra channel set to all 1s.
third_party/augment_ops.py
wrap
google-research/crest
python
def wrap(image): shape = tf.shape(image) extended_channel = tf.ones([shape[0], shape[1], 1], image.dtype) extended = tf.concat([image, extended_channel], 2) return extended
def unwrap(image): "Unwraps an image produced by wrap.\n\n Where there is a 0 in the last channel for every spatial position,\n the rest of the three channels in that spatial dimension are grayed\n (set to 128). Operations like translate and shear on a wrapped\n Tensor will leave 0s in empty locations. Some transformations look\n at the intensity of values to do preprocessing, and we want these\n empty pixels to assume the 'average' value, rather than pure black.\n\n\n Args:\n image: A 3D Image Tensor with 4 channels.\n\n Returns:\n image: A 3D image Tensor with 3 channels.\n " image_shape = tf.shape(image) flattened_image = tf.reshape(image, [(- 1), image_shape[2]]) alpha_channel = tf.expand_dims(flattened_image[:, (image_shape[2] - 1)], 1) replace = tf.constant([REPLACE_VALUE, REPLACE_VALUE, REPLACE_VALUE, 1], image.dtype) flattened_image = tf.where(tf.equal(alpha_channel, 0), (tf.ones_like(flattened_image, dtype=image.dtype) * replace), flattened_image) image = tf.reshape(flattened_image, image_shape) image = tf.slice(image, [0, 0, 0], [image_shape[0], image_shape[1], (image_shape[2] - 1)]) return image
596,681,917,176,061,000
Unwraps an image produced by wrap. Where there is a 0 in the last channel for every spatial position, the rest of the three channels in that spatial dimension are grayed (set to 128). Operations like translate and shear on a wrapped Tensor will leave 0s in empty locations. Some transformations look at the intensity of values to do preprocessing, and we want these empty pixels to assume the 'average' value, rather than pure black. Args: image: A 3D Image Tensor with 4 channels. Returns: image: A 3D image Tensor with 3 channels.
third_party/augment_ops.py
unwrap
google-research/crest
python
def unwrap(image): "Unwraps an image produced by wrap.\n\n Where there is a 0 in the last channel for every spatial position,\n the rest of the three channels in that spatial dimension are grayed\n (set to 128). Operations like translate and shear on a wrapped\n Tensor will leave 0s in empty locations. Some transformations look\n at the intensity of values to do preprocessing, and we want these\n empty pixels to assume the 'average' value, rather than pure black.\n\n\n Args:\n image: A 3D Image Tensor with 4 channels.\n\n Returns:\n image: A 3D image Tensor with 3 channels.\n " image_shape = tf.shape(image) flattened_image = tf.reshape(image, [(- 1), image_shape[2]]) alpha_channel = tf.expand_dims(flattened_image[:, (image_shape[2] - 1)], 1) replace = tf.constant([REPLACE_VALUE, REPLACE_VALUE, REPLACE_VALUE, 1], image.dtype) flattened_image = tf.where(tf.equal(alpha_channel, 0), (tf.ones_like(flattened_image, dtype=image.dtype) * replace), flattened_image) image = tf.reshape(flattened_image, image_shape) image = tf.slice(image, [0, 0, 0], [image_shape[0], image_shape[1], (image_shape[2] - 1)]) return image
def invert(image): 'Inverts the image pixels.' return (255 - tf.convert_to_tensor(image))
-8,700,322,171,604,700,000
Inverts the image pixels.
third_party/augment_ops.py
invert
google-research/crest
python
def invert(image): return (255 - tf.convert_to_tensor(image))
def invert_blend(image, factor): 'Implements blend of invert with original image.' return blend(invert(image), image, factor)
-4,616,882,108,785,448,000
Implements blend of invert with original image.
third_party/augment_ops.py
invert_blend
google-research/crest
python
def invert_blend(image, factor): return blend(invert(image), image, factor)
def color(image, factor): 'Equivalent of PIL Color.' degenerate = tf.image.grayscale_to_rgb(tf.image.rgb_to_grayscale(image)) return blend(degenerate, image, factor)
2,872,861,326,192,433,000
Equivalent of PIL Color.
third_party/augment_ops.py
color
google-research/crest
python
def color(image, factor): degenerate = tf.image.grayscale_to_rgb(tf.image.rgb_to_grayscale(image)) return blend(degenerate, image, factor)
def contrast(image, factor): 'Equivalent of PIL Contrast.' grayscale_im = tf.image.rgb_to_grayscale(image) mean = tf.reduce_mean(tf.cast(grayscale_im, tf.float32)) mean = tf.saturate_cast((mean + 0.5), tf.uint8) degenerate = (tf.ones_like(grayscale_im, dtype=tf.uint8) * mean) degenerate = tf.image.grayscale_to_rgb(degenerate) return blend(degenerate, image, factor)
-3,693,930,040,758,899,000
Equivalent of PIL Contrast.
third_party/augment_ops.py
contrast
google-research/crest
python
def contrast(image, factor): grayscale_im = tf.image.rgb_to_grayscale(image) mean = tf.reduce_mean(tf.cast(grayscale_im, tf.float32)) mean = tf.saturate_cast((mean + 0.5), tf.uint8) degenerate = (tf.ones_like(grayscale_im, dtype=tf.uint8) * mean) degenerate = tf.image.grayscale_to_rgb(degenerate) return blend(degenerate, image, factor)
def brightness(image, factor): 'Equivalent of PIL Brightness.' degenerate = tf.zeros_like(image) return blend(degenerate, image, factor)
-5,514,793,971,791,669,000
Equivalent of PIL Brightness.
third_party/augment_ops.py
brightness
google-research/crest
python
def brightness(image, factor): degenerate = tf.zeros_like(image) return blend(degenerate, image, factor)
def posterize(image, bits): 'Equivalent of PIL Posterize.' shift = tf.cast((8 - bits), image.dtype) return tf.bitwise.left_shift(tf.bitwise.right_shift(image, shift), shift)
7,847,657,482,698,043,000
Equivalent of PIL Posterize.
third_party/augment_ops.py
posterize
google-research/crest
python
def posterize(image, bits): shift = tf.cast((8 - bits), image.dtype) return tf.bitwise.left_shift(tf.bitwise.right_shift(image, shift), shift)
def rotate(image, degrees): 'Equivalent of PIL Rotation.' degrees_to_radians = (math.pi / 180.0) radians = (degrees * degrees_to_radians) image = tfa_image.transform_ops.rotate(wrap(image), radians) return unwrap(image)
-6,439,018,474,791,032,000
Equivalent of PIL Rotation.
third_party/augment_ops.py
rotate
google-research/crest
python
def rotate(image, degrees): degrees_to_radians = (math.pi / 180.0) radians = (degrees * degrees_to_radians) image = tfa_image.transform_ops.rotate(wrap(image), radians) return unwrap(image)
def translate_x(image, pixels): 'Equivalent of PIL Translate in X dimension.' image = tfa_image.translate_ops.translate(wrap(image), [(- pixels), 0]) return unwrap(image)
-5,187,543,649,634,846,000
Equivalent of PIL Translate in X dimension.
third_party/augment_ops.py
translate_x
google-research/crest
python
def translate_x(image, pixels): image = tfa_image.translate_ops.translate(wrap(image), [(- pixels), 0]) return unwrap(image)
def translate_y(image, pixels): 'Equivalent of PIL Translate in Y dimension.' image = tfa_image.translate_ops.translate(wrap(image), [0, (- pixels)]) return unwrap(image)
-3,589,578,885,919,435,000
Equivalent of PIL Translate in Y dimension.
third_party/augment_ops.py
translate_y
google-research/crest
python
def translate_y(image, pixels): image = tfa_image.translate_ops.translate(wrap(image), [0, (- pixels)]) return unwrap(image)
def shear_x(image, level): 'Equivalent of PIL Shearing in X dimension.' image = tfa_image.transform_ops.transform(wrap(image), [1.0, level, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0]) return unwrap(image)
-1,900,459,595,508,388,400
Equivalent of PIL Shearing in X dimension.
third_party/augment_ops.py
shear_x
google-research/crest
python
def shear_x(image, level): image = tfa_image.transform_ops.transform(wrap(image), [1.0, level, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0]) return unwrap(image)
def shear_y(image, level): 'Equivalent of PIL Shearing in Y dimension.' image = tfa_image.transform_ops.transform(wrap(image), [1.0, 0.0, 0.0, level, 1.0, 0.0, 0.0, 0.0]) return unwrap(image)
-8,037,771,224,047,471,000
Equivalent of PIL Shearing in Y dimension.
third_party/augment_ops.py
shear_y
google-research/crest
python
def shear_y(image, level): image = tfa_image.transform_ops.transform(wrap(image), [1.0, 0.0, 0.0, level, 1.0, 0.0, 0.0, 0.0]) return unwrap(image)