body
stringlengths
26
98.2k
body_hash
int64
-9,222,864,604,528,158,000
9,221,803,474B
docstring
stringlengths
1
16.8k
path
stringlengths
5
230
name
stringlengths
1
96
repository_name
stringlengths
7
89
lang
stringclasses
1 value
body_without_docstring
stringlengths
20
98.2k
def __init__(self, F, poly): 'Define the Extension Field and the representative polynomial\n ' self.F = F self.poly = poly self.siz = len(poly.coef) self.deg = self.siz
7,119,987,552,794,296,000
Define the Extension Field and the representative polynomial
mathTools/field.py
__init__
ecuvelier/PPAT
python
def __init__(self, F, poly): '\n ' self.F = F self.poly = poly self.siz = len(poly.coef) self.deg = self.siz
def iszero(self): 'Return True if it is a zero polynomial (each coefficient is zero)\n This does not return True if the polynomial is the polynomial that generates the extension field\n ' cond = True for i in self.coef: pcond = i.iszero() cond = (pcond * cond) return cond
3,512,125,350,708,358,700
Return True if it is a zero polynomial (each coefficient is zero) This does not return True if the polynomial is the polynomial that generates the extension field
mathTools/field.py
iszero
ecuvelier/PPAT
python
def iszero(self): 'Return True if it is a zero polynomial (each coefficient is zero)\n This does not return True if the polynomial is the polynomial that generates the extension field\n ' cond = True for i in self.coef: pcond = i.iszero() cond = (pcond * cond) return cond
def truedeg(self): 'Return the position of the first non zero coefficient and the actual degree of the polynomial\n ' if self.iszero(): return (0, 0) n = 0 while (self.coef[n] == self.F.zero()): n = (n + 1) return (n, (self.deg - n))
-7,869,618,672,398,647,000
Return the position of the first non zero coefficient and the actual degree of the polynomial
mathTools/field.py
truedeg
ecuvelier/PPAT
python
def truedeg(self): '\n ' if self.iszero(): return (0, 0) n = 0 while (self.coef[n] == self.F.zero()): n = (n + 1) return (n, (self.deg - n))
def mdot(*args): 'chained matrix product: mdot(A,B,C,..) = A*B*C*...\n No attempt is made to optimize the contraction order.' r = args[0] for a in args[1:]: r = dot(r, a) return r
8,142,903,852,845,072,000
chained matrix product: mdot(A,B,C,..) = A*B*C*... No attempt is made to optimize the contraction order.
pyscf/tools/Molpro2Pyscf/wmme.py
mdot
JFurness1/pyscf
python
def mdot(*args): 'chained matrix product: mdot(A,B,C,..) = A*B*C*...\n No attempt is made to optimize the contraction order.' r = args[0] for a in args[1:]: r = dot(r, a) return r
def _InvokeBfint(Atoms, Bases, BasisLibs, BaseArgs, Outputs, Inputs=None): 'Outputs: an array of tuples (cmdline-arguments,filename-base).\n We will generate arguments for each of them and try to read the\n corresponding files as numpy arrays and return them in order.' from tempfile import mkdtemp from shutil import rmtree from subprocess import check_output, CalledProcessError BasePath = mkdtemp(prefix='wmme.', dir=_TmpDir) def Cleanup(): rmtree(BasePath) pass BfIntDir = _WmmeDir if (BfIntDir is None): BfIntDir = GetModulePath() BasisLibDir = _BasisLibDir if (BasisLibDir is None): BasisLibDir = path.join(BfIntDir, 'bases') MakeIntegralsExecutable = path.join(BfIntDir, 'wmme') FileNameXyz = path.join(BasePath, 'ATOMS') Args = [o for o in BaseArgs] Args.append('--matrix-format=npy') for BasisLib in BasisLibs: Args.append(('--basis-lib=%s' % path.join(BasisLibDir, BasisLib))) Args.append(('--atoms-au=%s' % FileNameXyz)) iWrittenBasis = 0 for (ParamName, BasisObj) in Bases.items(): if (BasisObj is None): continue if isinstance(BasisObj, FBasisSet): BasisFile = path.join(BasePath, ('BASIS%i' % iWrittenBasis)) iWrittenBasis += 1 with open(BasisFile, 'w') as File: File.write(BasisObj.FmtCr()) Args.append(("%s='!%s'" % (ParamName, BasisFile))) else: assert isinstance(BasisObj, str) Args.append(('%s=%s' % (ParamName, BasisObj))) pass FileNameOutputs = [] for (ArgName, FileNameBase) in Outputs: FileName = path.join(BasePath, FileNameBase) FileNameOutputs.append(FileName) Args.append(("%s='%s'" % (ArgName, FileName))) XyzLines = ('%i\n\n%s\n' % (len(Atoms), Atoms.MakeXyz('%24.16f'))) try: with open(FileNameXyz, 'w') as File: File.write(XyzLines) if Inputs: for (ArgName, FileNameBase, Array) in Inputs: FileName = path.join(BasePath, FileNameBase) np.save(FileName, Array) Args.append(("%s='%s'" % (ArgName, FileName))) Cmd = ('%s %s' % (MakeIntegralsExecutable, ' '.join(Args))) try: Output = check_output(Cmd, shell=True) if (version_info >= (3, 0)): Output = Output.decode('utf-8') except CalledProcessError as e: raise Exception(('Integral calculation failed. Output was:\n%s\nException was: %s' % (e.output, str(e)))) OutputArrays = [] for FileName in FileNameOutputs: OutputArrays.append(np.load(FileName)) except: Cleanup() raise Cleanup() return tuple(OutputArrays)
7,459,019,133,808,410,000
Outputs: an array of tuples (cmdline-arguments,filename-base). We will generate arguments for each of them and try to read the corresponding files as numpy arrays and return them in order.
pyscf/tools/Molpro2Pyscf/wmme.py
_InvokeBfint
JFurness1/pyscf
python
def _InvokeBfint(Atoms, Bases, BasisLibs, BaseArgs, Outputs, Inputs=None): 'Outputs: an array of tuples (cmdline-arguments,filename-base).\n We will generate arguments for each of them and try to read the\n corresponding files as numpy arrays and return them in order.' from tempfile import mkdtemp from shutil import rmtree from subprocess import check_output, CalledProcessError BasePath = mkdtemp(prefix='wmme.', dir=_TmpDir) def Cleanup(): rmtree(BasePath) pass BfIntDir = _WmmeDir if (BfIntDir is None): BfIntDir = GetModulePath() BasisLibDir = _BasisLibDir if (BasisLibDir is None): BasisLibDir = path.join(BfIntDir, 'bases') MakeIntegralsExecutable = path.join(BfIntDir, 'wmme') FileNameXyz = path.join(BasePath, 'ATOMS') Args = [o for o in BaseArgs] Args.append('--matrix-format=npy') for BasisLib in BasisLibs: Args.append(('--basis-lib=%s' % path.join(BasisLibDir, BasisLib))) Args.append(('--atoms-au=%s' % FileNameXyz)) iWrittenBasis = 0 for (ParamName, BasisObj) in Bases.items(): if (BasisObj is None): continue if isinstance(BasisObj, FBasisSet): BasisFile = path.join(BasePath, ('BASIS%i' % iWrittenBasis)) iWrittenBasis += 1 with open(BasisFile, 'w') as File: File.write(BasisObj.FmtCr()) Args.append(("%s='!%s'" % (ParamName, BasisFile))) else: assert isinstance(BasisObj, str) Args.append(('%s=%s' % (ParamName, BasisObj))) pass FileNameOutputs = [] for (ArgName, FileNameBase) in Outputs: FileName = path.join(BasePath, FileNameBase) FileNameOutputs.append(FileName) Args.append(("%s='%s'" % (ArgName, FileName))) XyzLines = ('%i\n\n%s\n' % (len(Atoms), Atoms.MakeXyz('%24.16f'))) try: with open(FileNameXyz, 'w') as File: File.write(XyzLines) if Inputs: for (ArgName, FileNameBase, Array) in Inputs: FileName = path.join(BasePath, FileNameBase) np.save(FileName, Array) Args.append(("%s='%s'" % (ArgName, FileName))) Cmd = ('%s %s' % (MakeIntegralsExecutable, ' '.join(Args))) try: Output = check_output(Cmd, shell=True) if (version_info >= (3, 0)): Output = Output.decode('utf-8') except CalledProcessError as e: raise Exception(('Integral calculation failed. Output was:\n%s\nException was: %s' % (e.output, str(e)))) OutputArrays = [] for FileName in FileNameOutputs: OutputArrays.append(np.load(FileName)) except: Cleanup() raise Cleanup() return tuple(OutputArrays)
def __init__(self, Positions, Elements, Orientations=None, Name=None): 'Positions: 3 x nAtom matrix. Given in atomic units (ABohr).\n Elements: element name (e.g., H) for each of the positions.\n Orientations: If given, a [3,3,N] array encoding the standard\n orientation of the given atoms (for replicating potentials!). For\n each atom there is a orthogonal 3x3 matrix denoting the ex,ey,ez\n directions.' self.Pos = Positions assert ((self.Pos.shape[0] == 3) and (self.Pos.shape[1] == len(Elements))) self.Elements = Elements self.Orientations = Orientations self.Name = Name
-7,393,387,328,684,770,000
Positions: 3 x nAtom matrix. Given in atomic units (ABohr). Elements: element name (e.g., H) for each of the positions. Orientations: If given, a [3,3,N] array encoding the standard orientation of the given atoms (for replicating potentials!). For each atom there is a orthogonal 3x3 matrix denoting the ex,ey,ez directions.
pyscf/tools/Molpro2Pyscf/wmme.py
__init__
JFurness1/pyscf
python
def __init__(self, Positions, Elements, Orientations=None, Name=None): 'Positions: 3 x nAtom matrix. Given in atomic units (ABohr).\n Elements: element name (e.g., H) for each of the positions.\n Orientations: If given, a [3,3,N] array encoding the standard\n orientation of the given atoms (for replicating potentials!). For\n each atom there is a orthogonal 3x3 matrix denoting the ex,ey,ez\n directions.' self.Pos = Positions assert ((self.Pos.shape[0] == 3) and (self.Pos.shape[1] == len(Elements))) self.Elements = Elements self.Orientations = Orientations self.Name = Name
def nElecNeutral(self): 'return number of electrons present in the total system if neutral.' return sum([ElementNumbers[o] for o in self.Elements])
4,413,039,619,599,940,000
return number of electrons present in the total system if neutral.
pyscf/tools/Molpro2Pyscf/wmme.py
nElecNeutral
JFurness1/pyscf
python
def nElecNeutral(self): return sum([ElementNumbers[o] for o in self.Elements])
def MakeBaseIntegrals(self, Smh=True, MakeS=False): 'Invoke bfint to calculate CoreEnergy (scalar), CoreH (nOrb x nOrb),\n Int2e_Frs (nFit x nOrb x nOrb), and overlap matrix (nOrb x nOrb)' Args = [] if Smh: Args.append('--orb-trafo=Smh') Outputs = [] Outputs.append(('--save-coreh', 'INT1E')) Outputs.append(('--save-fint2e', 'INT2E')) Outputs.append(('--save-overlap', 'OVERLAP')) (CoreH, Int2e, Overlap) = self._InvokeBfint(Args, Outputs) nOrb = CoreH.shape[0] Int2e = Int2e.reshape((Int2e.shape[0], nOrb, nOrb)) CoreEnergy = self.Atoms.fCoreRepulsion() if MakeS: return (CoreEnergy, CoreH, Int2e, Overlap) else: return (CoreEnergy, CoreH, Int2e)
1,153,435,770,864,813,000
Invoke bfint to calculate CoreEnergy (scalar), CoreH (nOrb x nOrb), Int2e_Frs (nFit x nOrb x nOrb), and overlap matrix (nOrb x nOrb)
pyscf/tools/Molpro2Pyscf/wmme.py
MakeBaseIntegrals
JFurness1/pyscf
python
def MakeBaseIntegrals(self, Smh=True, MakeS=False): 'Invoke bfint to calculate CoreEnergy (scalar), CoreH (nOrb x nOrb),\n Int2e_Frs (nFit x nOrb x nOrb), and overlap matrix (nOrb x nOrb)' Args = [] if Smh: Args.append('--orb-trafo=Smh') Outputs = [] Outputs.append(('--save-coreh', 'INT1E')) Outputs.append(('--save-fint2e', 'INT2E')) Outputs.append(('--save-overlap', 'OVERLAP')) (CoreH, Int2e, Overlap) = self._InvokeBfint(Args, Outputs) nOrb = CoreH.shape[0] Int2e = Int2e.reshape((Int2e.shape[0], nOrb, nOrb)) CoreEnergy = self.Atoms.fCoreRepulsion() if MakeS: return (CoreEnergy, CoreH, Int2e, Overlap) else: return (CoreEnergy, CoreH, Int2e)
def MakeOverlaps2(self, OrbBasis2): 'calculate overlap between current basis and a second basis, as\n described in OrbBasis2. Returns <1|2> and <2|2> matrices.' Args = [] MoreBases = {'--basis-orb-2': OrbBasis2} Outputs = [] Outputs.append(('--save-overlap-2', 'OVERLAP_2')) Outputs.append(('--save-overlap-12', 'OVERLAP_12')) (Overlap2, Overlap12) = self._InvokeBfint(Args, Outputs, MoreBases=MoreBases) return (Overlap2, Overlap12)
-8,342,458,476,742,344,000
calculate overlap between current basis and a second basis, as described in OrbBasis2. Returns <1|2> and <2|2> matrices.
pyscf/tools/Molpro2Pyscf/wmme.py
MakeOverlaps2
JFurness1/pyscf
python
def MakeOverlaps2(self, OrbBasis2): 'calculate overlap between current basis and a second basis, as\n described in OrbBasis2. Returns <1|2> and <2|2> matrices.' Args = [] MoreBases = {'--basis-orb-2': OrbBasis2} Outputs = [] Outputs.append(('--save-overlap-2', 'OVERLAP_2')) Outputs.append(('--save-overlap-12', 'OVERLAP_12')) (Overlap2, Overlap12) = self._InvokeBfint(Args, Outputs, MoreBases=MoreBases) return (Overlap2, Overlap12)
def MakeOverlap(self, OrbBasis2=None): 'calculate overlap within main orbital basis, and, optionally, between main\n orbital basis and a second basis, as described in OrbBasis2.\n Returns <1|1>, <1|2>, and <2|2> matrices.' Args = [] Outputs = [] Outputs.append(('--save-overlap', 'OVERLAP_1')) if (OrbBasis2 is not None): MoreBases = {'--basis-orb-2': OrbBasis2} Outputs.append(('--save-overlap-12', 'OVERLAP_12')) Outputs.append(('--save-overlap-2', 'OVERLAP_2')) return self._InvokeBfint(Args, Outputs, MoreBases=MoreBases) else: MoreBases = None (Overlap,) = self._InvokeBfint(Args, Outputs, MoreBases=MoreBases) return Overlap
-2,965,824,893,769,018,400
calculate overlap within main orbital basis, and, optionally, between main orbital basis and a second basis, as described in OrbBasis2. Returns <1|1>, <1|2>, and <2|2> matrices.
pyscf/tools/Molpro2Pyscf/wmme.py
MakeOverlap
JFurness1/pyscf
python
def MakeOverlap(self, OrbBasis2=None): 'calculate overlap within main orbital basis, and, optionally, between main\n orbital basis and a second basis, as described in OrbBasis2.\n Returns <1|1>, <1|2>, and <2|2> matrices.' Args = [] Outputs = [] Outputs.append(('--save-overlap', 'OVERLAP_1')) if (OrbBasis2 is not None): MoreBases = {'--basis-orb-2': OrbBasis2} Outputs.append(('--save-overlap-12', 'OVERLAP_12')) Outputs.append(('--save-overlap-2', 'OVERLAP_2')) return self._InvokeBfint(Args, Outputs, MoreBases=MoreBases) else: MoreBases = None (Overlap,) = self._InvokeBfint(Args, Outputs, MoreBases=MoreBases) return Overlap
def MakeNuclearAttractionIntegrals(self, Smh=True): 'calculate nuclear attraction integrals in main basis, for each individual atomic core.\n Returns nAo x nAo x nAtoms array.' Args = [] if Smh: Args.append('--orb-trafo=Smh') Outputs = [] Outputs.append(('--save-vnucN', 'VNUC_N')) VNucN = self._InvokeBfint(Args, Outputs)[0] nOrb = int(((VNucN.shape[0] ** 0.5) + 0.5)) assert ((nOrb ** 2) == VNucN.shape[0]) assert (VNucN.shape[1] == len(self.Atoms)) return VNucN.reshape(nOrb, nOrb, VNucN.shape[1])
-7,974,952,442,303,949,000
calculate nuclear attraction integrals in main basis, for each individual atomic core. Returns nAo x nAo x nAtoms array.
pyscf/tools/Molpro2Pyscf/wmme.py
MakeNuclearAttractionIntegrals
JFurness1/pyscf
python
def MakeNuclearAttractionIntegrals(self, Smh=True): 'calculate nuclear attraction integrals in main basis, for each individual atomic core.\n Returns nAo x nAo x nAtoms array.' Args = [] if Smh: Args.append('--orb-trafo=Smh') Outputs = [] Outputs.append(('--save-vnucN', 'VNUC_N')) VNucN = self._InvokeBfint(Args, Outputs)[0] nOrb = int(((VNucN.shape[0] ** 0.5) + 0.5)) assert ((nOrb ** 2) == VNucN.shape[0]) assert (VNucN.shape[1] == len(self.Atoms)) return VNucN.reshape(nOrb, nOrb, VNucN.shape[1])
def MakeNuclearSqDistanceIntegrals(self, Smh=True): 'calculate <mu|(r-rA)^2|nu> integrals in main basis, for each individual atomic core.\n Returns nAo x nAo x nAtoms array.' Args = [] if Smh: Args.append('--orb-trafo=Smh') Outputs = [] Outputs.append(('--save-rsqN', 'RSQ_N')) RsqN = self._InvokeBfint(Args, Outputs)[0] nOrb = int(((RsqN.shape[0] ** 0.5) + 0.5)) assert ((nOrb ** 2) == RsqN.shape[0]) assert (RsqN.shape[1] == len(self.Atoms)) return RsqN.reshape(nOrb, nOrb, RsqN.shape[1])
441,603,403,193,922,800
calculate <mu|(r-rA)^2|nu> integrals in main basis, for each individual atomic core. Returns nAo x nAo x nAtoms array.
pyscf/tools/Molpro2Pyscf/wmme.py
MakeNuclearSqDistanceIntegrals
JFurness1/pyscf
python
def MakeNuclearSqDistanceIntegrals(self, Smh=True): 'calculate <mu|(r-rA)^2|nu> integrals in main basis, for each individual atomic core.\n Returns nAo x nAo x nAtoms array.' Args = [] if Smh: Args.append('--orb-trafo=Smh') Outputs = [] Outputs.append(('--save-rsqN', 'RSQ_N')) RsqN = self._InvokeBfint(Args, Outputs)[0] nOrb = int(((RsqN.shape[0] ** 0.5) + 0.5)) assert ((nOrb ** 2) == RsqN.shape[0]) assert (RsqN.shape[1] == len(self.Atoms)) return RsqN.reshape(nOrb, nOrb, RsqN.shape[1])
def MakeKineticIntegrals(self, Smh=True): 'calculate <mu|-1/2 Laplace|nu> integrals in main basis, for each individual atomic core.\n Returns nAo x nAo x nAtoms array.' Args = [] if Smh: Args.append('--orb-trafo=Smh') Outputs = [] Outputs.append(('--save-kinetic', 'EKIN')) Op = self._InvokeBfint(Args, Outputs)[0] return Op
-8,121,335,166,548,213,000
calculate <mu|-1/2 Laplace|nu> integrals in main basis, for each individual atomic core. Returns nAo x nAo x nAtoms array.
pyscf/tools/Molpro2Pyscf/wmme.py
MakeKineticIntegrals
JFurness1/pyscf
python
def MakeKineticIntegrals(self, Smh=True): 'calculate <mu|-1/2 Laplace|nu> integrals in main basis, for each individual atomic core.\n Returns nAo x nAo x nAtoms array.' Args = [] if Smh: Args.append('--orb-trafo=Smh') Outputs = [] Outputs.append(('--save-kinetic', 'EKIN')) Op = self._InvokeBfint(Args, Outputs)[0] return Op
def MakeDipoleIntegrals(self, Smh=True): 'calculate dipole operator matrices <\\mu|w|\\nu> (w=x,y,z) in\n main basis, for each direction. Returns nAo x nAo x 3 array.' Args = [] if Smh: Args.append('--orb-trafo=Smh') Outputs = [] Outputs.append(('--save-dipole', 'DIPN')) DipN = self._InvokeBfint(Args, Outputs)[0] nOrb = int(((DipN.shape[0] ** 0.5) + 0.5)) assert ((nOrb ** 2) == DipN.shape[0]) assert (DipN.shape[1] == 3) return DipN.reshape(nOrb, nOrb, 3)
3,350,475,485,117,086,700
calculate dipole operator matrices <\mu|w|\nu> (w=x,y,z) in main basis, for each direction. Returns nAo x nAo x 3 array.
pyscf/tools/Molpro2Pyscf/wmme.py
MakeDipoleIntegrals
JFurness1/pyscf
python
def MakeDipoleIntegrals(self, Smh=True): 'calculate dipole operator matrices <\\mu|w|\\nu> (w=x,y,z) in\n main basis, for each direction. Returns nAo x nAo x 3 array.' Args = [] if Smh: Args.append('--orb-trafo=Smh') Outputs = [] Outputs.append(('--save-dipole', 'DIPN')) DipN = self._InvokeBfint(Args, Outputs)[0] nOrb = int(((DipN.shape[0] ** 0.5) + 0.5)) assert ((nOrb ** 2) == DipN.shape[0]) assert (DipN.shape[1] == 3) return DipN.reshape(nOrb, nOrb, 3)
def MakeOrbitalsOnGrid(self, Orbitals, Grid, DerivativeOrder=0): 'calculate values of molecular orbitals on a grid of 3d points in space.\n Input:\n - Orbitals: nAo x nOrb matrix, where nAo must be compatible with\n self.OrbBasis. The AO dimension must be contravariant AO (i.e., not SMH).\n - Grid: 3 x nGrid array giving the coordinates of the grid points.\n - DerivativeOrder: 0: only orbital values,\n 1: orbital values and 1st derivatives,\n 2: orbital values and up to 2nd derivatives.\n Returns:\n - nGrid x nDerivComp x nOrb array. If DerivativeOrder is 0, the\n DerivComp dimension is omitted.\n ' Args = [('--eval-orbitals-dx=%s' % DerivativeOrder)] Inputs = ([('--eval-orbitals', 'ORBITALS.npy', Orbitals)] + [('--grid-coords', 'GRID.npy', Grid)]) Outputs = [('--save-grid-values', 'ORBS_ON_GRID')] (ValuesOnGrid,) = self._InvokeBfint(Args, Outputs, Inputs) nComp = [1, 4, 10][DerivativeOrder] if (nComp != 1): ValuesOnGrid = ValuesOnGrid.reshape((Grid.shape[1], nComp, Orbitals.shape[1])) return ValuesOnGrid
-8,708,707,247,343,573,000
calculate values of molecular orbitals on a grid of 3d points in space. Input: - Orbitals: nAo x nOrb matrix, where nAo must be compatible with self.OrbBasis. The AO dimension must be contravariant AO (i.e., not SMH). - Grid: 3 x nGrid array giving the coordinates of the grid points. - DerivativeOrder: 0: only orbital values, 1: orbital values and 1st derivatives, 2: orbital values and up to 2nd derivatives. Returns: - nGrid x nDerivComp x nOrb array. If DerivativeOrder is 0, the DerivComp dimension is omitted.
pyscf/tools/Molpro2Pyscf/wmme.py
MakeOrbitalsOnGrid
JFurness1/pyscf
python
def MakeOrbitalsOnGrid(self, Orbitals, Grid, DerivativeOrder=0): 'calculate values of molecular orbitals on a grid of 3d points in space.\n Input:\n - Orbitals: nAo x nOrb matrix, where nAo must be compatible with\n self.OrbBasis. The AO dimension must be contravariant AO (i.e., not SMH).\n - Grid: 3 x nGrid array giving the coordinates of the grid points.\n - DerivativeOrder: 0: only orbital values,\n 1: orbital values and 1st derivatives,\n 2: orbital values and up to 2nd derivatives.\n Returns:\n - nGrid x nDerivComp x nOrb array. If DerivativeOrder is 0, the\n DerivComp dimension is omitted.\n ' Args = [('--eval-orbitals-dx=%s' % DerivativeOrder)] Inputs = ([('--eval-orbitals', 'ORBITALS.npy', Orbitals)] + [('--grid-coords', 'GRID.npy', Grid)]) Outputs = [('--save-grid-values', 'ORBS_ON_GRID')] (ValuesOnGrid,) = self._InvokeBfint(Args, Outputs, Inputs) nComp = [1, 4, 10][DerivativeOrder] if (nComp != 1): ValuesOnGrid = ValuesOnGrid.reshape((Grid.shape[1], nComp, Orbitals.shape[1])) return ValuesOnGrid
def MakeRaw2eIntegrals(self, Smh=True, Kernel2e='coulomb'): 'compute Int2e_Frs (nFit x nOrb x nOrb) and fitting metric Int2e_FG (nFit x nFit),\n where the fitting metric is *not* absorbed into the 2e integrals.' Args = [] if Smh: Args.append('--orb-trafo=Smh') Args.append(("--kernel2e='%s'" % Kernel2e)) Args.append('--solve-fitting-eq=false') Outputs = [] Outputs.append(('--save-fint2e', 'INT2E_3IX')) Outputs.append(('--save-fitting-metric', 'INT2E_METRIC')) (Int2e_Frs, Int2e_FG) = self._InvokeBfint(Args, Outputs) nOrb = int(((Int2e_Frs.shape[1] ** 0.5) + 0.5)) assert ((nOrb ** 2) == Int2e_Frs.shape[1]) Int2e_Frs = Int2e_Frs.reshape((Int2e_Frs.shape[0], nOrb, nOrb)) assert (Int2e_Frs.shape[0] == Int2e_FG.shape[0]) assert (Int2e_FG.shape[0] == Int2e_FG.shape[1]) return (Int2e_FG, Int2e_Frs)
2,896,667,907,041,322,000
compute Int2e_Frs (nFit x nOrb x nOrb) and fitting metric Int2e_FG (nFit x nFit), where the fitting metric is *not* absorbed into the 2e integrals.
pyscf/tools/Molpro2Pyscf/wmme.py
MakeRaw2eIntegrals
JFurness1/pyscf
python
def MakeRaw2eIntegrals(self, Smh=True, Kernel2e='coulomb'): 'compute Int2e_Frs (nFit x nOrb x nOrb) and fitting metric Int2e_FG (nFit x nFit),\n where the fitting metric is *not* absorbed into the 2e integrals.' Args = [] if Smh: Args.append('--orb-trafo=Smh') Args.append(("--kernel2e='%s'" % Kernel2e)) Args.append('--solve-fitting-eq=false') Outputs = [] Outputs.append(('--save-fint2e', 'INT2E_3IX')) Outputs.append(('--save-fitting-metric', 'INT2E_METRIC')) (Int2e_Frs, Int2e_FG) = self._InvokeBfint(Args, Outputs) nOrb = int(((Int2e_Frs.shape[1] ** 0.5) + 0.5)) assert ((nOrb ** 2) == Int2e_Frs.shape[1]) Int2e_Frs = Int2e_Frs.reshape((Int2e_Frs.shape[0], nOrb, nOrb)) assert (Int2e_Frs.shape[0] == Int2e_FG.shape[0]) assert (Int2e_FG.shape[0] == Int2e_FG.shape[1]) return (Int2e_FG, Int2e_Frs)
def service_cidr(): " Return the charm's service-cidr config " db = unitdata.kv() frozen_cidr = db.get('kubernetes-master.service-cidr') return (frozen_cidr or hookenv.config('service-cidr'))
2,082,332,788,383,550,500
Return the charm's service-cidr config
vendor/k8s.io/kubernetes/cluster/juju/layers/kubernetes-master/reactive/kubernetes_master.py
service_cidr
BaiHuoYu/nbp
python
def service_cidr(): " " db = unitdata.kv() frozen_cidr = db.get('kubernetes-master.service-cidr') return (frozen_cidr or hookenv.config('service-cidr'))
def freeze_service_cidr(): ' Freeze the service CIDR. Once the apiserver has started, we can no\n longer safely change this value. ' db = unitdata.kv() db.set('kubernetes-master.service-cidr', service_cidr())
-8,319,294,074,560,905,000
Freeze the service CIDR. Once the apiserver has started, we can no longer safely change this value.
vendor/k8s.io/kubernetes/cluster/juju/layers/kubernetes-master/reactive/kubernetes_master.py
freeze_service_cidr
BaiHuoYu/nbp
python
def freeze_service_cidr(): ' Freeze the service CIDR. Once the apiserver has started, we can no\n longer safely change this value. ' db = unitdata.kv() db.set('kubernetes-master.service-cidr', service_cidr())
@hook('upgrade-charm') def reset_states_for_delivery(): 'An upgrade charm event was triggered by Juju, react to that here.' migrate_from_pre_snaps() install_snaps() set_state('reconfigure.authentication.setup') remove_state('authentication.setup')
-2,834,097,775,026,214,400
An upgrade charm event was triggered by Juju, react to that here.
vendor/k8s.io/kubernetes/cluster/juju/layers/kubernetes-master/reactive/kubernetes_master.py
reset_states_for_delivery
BaiHuoYu/nbp
python
@hook('upgrade-charm') def reset_states_for_delivery(): migrate_from_pre_snaps() install_snaps() set_state('reconfigure.authentication.setup') remove_state('authentication.setup')
@when('config.changed.client_password', 'leadership.is_leader') def password_changed(): 'Handle password change via the charms config.' password = hookenv.config('client_password') if ((password == '') and is_state('client.password.initialised')): return elif (password == ''): password = token_generator() setup_basic_auth(password, 'admin', 'admin') set_state('reconfigure.authentication.setup') remove_state('authentication.setup') set_state('client.password.initialised')
-6,696,244,841,314,084,000
Handle password change via the charms config.
vendor/k8s.io/kubernetes/cluster/juju/layers/kubernetes-master/reactive/kubernetes_master.py
password_changed
BaiHuoYu/nbp
python
@when('config.changed.client_password', 'leadership.is_leader') def password_changed(): password = hookenv.config('client_password') if ((password == ) and is_state('client.password.initialised')): return elif (password == ): password = token_generator() setup_basic_auth(password, 'admin', 'admin') set_state('reconfigure.authentication.setup') remove_state('authentication.setup') set_state('client.password.initialised')
@when('cni.connected') @when_not('cni.configured') def configure_cni(cni): " Set master configuration on the CNI relation. This lets the CNI\n subordinate know that we're the master so it can respond accordingly. " cni.set_config(is_master=True, kubeconfig_path='')
8,362,492,290,030,831,000
Set master configuration on the CNI relation. This lets the CNI subordinate know that we're the master so it can respond accordingly.
vendor/k8s.io/kubernetes/cluster/juju/layers/kubernetes-master/reactive/kubernetes_master.py
configure_cni
BaiHuoYu/nbp
python
@when('cni.connected') @when_not('cni.configured') def configure_cni(cni): " Set master configuration on the CNI relation. This lets the CNI\n subordinate know that we're the master so it can respond accordingly. " cni.set_config(is_master=True, kubeconfig_path=)
@when('leadership.is_leader') @when_not('authentication.setup') def setup_leader_authentication(): 'Setup basic authentication and token access for the cluster.' api_opts = FlagManager('kube-apiserver') controller_opts = FlagManager('kube-controller-manager') service_key = '/root/cdk/serviceaccount.key' basic_auth = '/root/cdk/basic_auth.csv' known_tokens = '/root/cdk/known_tokens.csv' api_opts.add('basic-auth-file', basic_auth) api_opts.add('token-auth-file', known_tokens) hookenv.status_set('maintenance', 'Rendering authentication templates.') keys = [service_key, basic_auth, known_tokens] if ((not get_keys_from_leader(keys)) or is_state('reconfigure.authentication.setup')): last_pass = get_password('basic_auth.csv', 'admin') setup_basic_auth(last_pass, 'admin', 'admin') if (not os.path.isfile(known_tokens)): setup_tokens(None, 'admin', 'admin') setup_tokens(None, 'kubelet', 'kubelet') setup_tokens(None, 'kube_proxy', 'kube_proxy') os.makedirs('/root/cdk', exist_ok=True) if (not os.path.isfile(service_key)): cmd = ['openssl', 'genrsa', '-out', service_key, '2048'] check_call(cmd) remove_state('reconfigure.authentication.setup') api_opts.add('service-account-key-file', service_key) controller_opts.add('service-account-private-key-file', service_key) leader_data = {} for f in [known_tokens, basic_auth, service_key]: with open(f, 'r') as fp: leader_data[f] = fp.read() charms.leadership.leader_set(leader_data) remove_state('kubernetes-master.components.started') set_state('authentication.setup')
7,515,041,697,489,415,000
Setup basic authentication and token access for the cluster.
vendor/k8s.io/kubernetes/cluster/juju/layers/kubernetes-master/reactive/kubernetes_master.py
setup_leader_authentication
BaiHuoYu/nbp
python
@when('leadership.is_leader') @when_not('authentication.setup') def setup_leader_authentication(): api_opts = FlagManager('kube-apiserver') controller_opts = FlagManager('kube-controller-manager') service_key = '/root/cdk/serviceaccount.key' basic_auth = '/root/cdk/basic_auth.csv' known_tokens = '/root/cdk/known_tokens.csv' api_opts.add('basic-auth-file', basic_auth) api_opts.add('token-auth-file', known_tokens) hookenv.status_set('maintenance', 'Rendering authentication templates.') keys = [service_key, basic_auth, known_tokens] if ((not get_keys_from_leader(keys)) or is_state('reconfigure.authentication.setup')): last_pass = get_password('basic_auth.csv', 'admin') setup_basic_auth(last_pass, 'admin', 'admin') if (not os.path.isfile(known_tokens)): setup_tokens(None, 'admin', 'admin') setup_tokens(None, 'kubelet', 'kubelet') setup_tokens(None, 'kube_proxy', 'kube_proxy') os.makedirs('/root/cdk', exist_ok=True) if (not os.path.isfile(service_key)): cmd = ['openssl', 'genrsa', '-out', service_key, '2048'] check_call(cmd) remove_state('reconfigure.authentication.setup') api_opts.add('service-account-key-file', service_key) controller_opts.add('service-account-private-key-file', service_key) leader_data = {} for f in [known_tokens, basic_auth, service_key]: with open(f, 'r') as fp: leader_data[f] = fp.read() charms.leadership.leader_set(leader_data) remove_state('kubernetes-master.components.started') set_state('authentication.setup')
def get_keys_from_leader(keys, overwrite_local=False): '\n Gets the broadcasted keys from the leader and stores them in\n the corresponding files.\n\n Args:\n keys: list of keys. Keys are actually files on the FS.\n\n Returns: True if all key were fetched, False if not.\n\n ' os.makedirs('/root/cdk', exist_ok=True) for k in keys: if ((not os.path.exists(k)) or overwrite_local): contents = charms.leadership.leader_get(k) if (contents is None): msg = 'Waiting on leaders crypto keys.' hookenv.status_set('waiting', msg) hookenv.log('Missing content for file {}'.format(k)) return False with open(k, 'w+') as fp: fp.write(contents) return True
5,011,326,847,538,366,000
Gets the broadcasted keys from the leader and stores them in the corresponding files. Args: keys: list of keys. Keys are actually files on the FS. Returns: True if all key were fetched, False if not.
vendor/k8s.io/kubernetes/cluster/juju/layers/kubernetes-master/reactive/kubernetes_master.py
get_keys_from_leader
BaiHuoYu/nbp
python
def get_keys_from_leader(keys, overwrite_local=False): '\n Gets the broadcasted keys from the leader and stores them in\n the corresponding files.\n\n Args:\n keys: list of keys. Keys are actually files on the FS.\n\n Returns: True if all key were fetched, False if not.\n\n ' os.makedirs('/root/cdk', exist_ok=True) for k in keys: if ((not os.path.exists(k)) or overwrite_local): contents = charms.leadership.leader_get(k) if (contents is None): msg = 'Waiting on leaders crypto keys.' hookenv.status_set('waiting', msg) hookenv.log('Missing content for file {}'.format(k)) return False with open(k, 'w+') as fp: fp.write(contents) return True
@when('kubernetes-master.snaps.installed') def set_app_version(): ' Declare the application version to juju ' version = check_output(['kube-apiserver', '--version']) hookenv.application_version_set(version.split(b' v')[(- 1)].rstrip())
-7,837,022,965,875,794,000
Declare the application version to juju
vendor/k8s.io/kubernetes/cluster/juju/layers/kubernetes-master/reactive/kubernetes_master.py
set_app_version
BaiHuoYu/nbp
python
@when('kubernetes-master.snaps.installed') def set_app_version(): ' ' version = check_output(['kube-apiserver', '--version']) hookenv.application_version_set(version.split(b' v')[(- 1)].rstrip())
@when('cdk-addons.configured', 'kube-api-endpoint.available', 'kube-control.connected') def idle_status(kube_api, kube_control): ' Signal at the end of the run that we are running. ' if (not all_kube_system_pods_running()): hookenv.status_set('waiting', 'Waiting for kube-system pods to start') elif (hookenv.config('service-cidr') != service_cidr()): msg = ('WARN: cannot change service-cidr, still using ' + service_cidr()) hookenv.status_set('active', msg) else: failing_services = master_services_down() if (len(failing_services) == 0): hookenv.status_set('active', 'Kubernetes master running.') else: msg = 'Stopped services: {}'.format(','.join(failing_services)) hookenv.status_set('blocked', msg)
-87,910,655,510,297,980
Signal at the end of the run that we are running.
vendor/k8s.io/kubernetes/cluster/juju/layers/kubernetes-master/reactive/kubernetes_master.py
idle_status
BaiHuoYu/nbp
python
@when('cdk-addons.configured', 'kube-api-endpoint.available', 'kube-control.connected') def idle_status(kube_api, kube_control): ' ' if (not all_kube_system_pods_running()): hookenv.status_set('waiting', 'Waiting for kube-system pods to start') elif (hookenv.config('service-cidr') != service_cidr()): msg = ('WARN: cannot change service-cidr, still using ' + service_cidr()) hookenv.status_set('active', msg) else: failing_services = master_services_down() if (len(failing_services) == 0): hookenv.status_set('active', 'Kubernetes master running.') else: msg = 'Stopped services: {}'.format(','.join(failing_services)) hookenv.status_set('blocked', msg)
def master_services_down(): 'Ensure master services are up and running.\n\n Return: list of failing services' services = ['kube-apiserver', 'kube-controller-manager', 'kube-scheduler'] failing_services = [] for service in services: daemon = 'snap.{}.daemon'.format(service) if (not host.service_running(daemon)): failing_services.append(service) return failing_services
5,637,071,088,973,993,000
Ensure master services are up and running. Return: list of failing services
vendor/k8s.io/kubernetes/cluster/juju/layers/kubernetes-master/reactive/kubernetes_master.py
master_services_down
BaiHuoYu/nbp
python
def master_services_down(): 'Ensure master services are up and running.\n\n Return: list of failing services' services = ['kube-apiserver', 'kube-controller-manager', 'kube-scheduler'] failing_services = [] for service in services: daemon = 'snap.{}.daemon'.format(service) if (not host.service_running(daemon)): failing_services.append(service) return failing_services
@when('etcd.available', 'tls_client.server.certificate.saved', 'authentication.setup') @when_not('kubernetes-master.components.started') def start_master(etcd): 'Run the Kubernetes master components.' hookenv.status_set('maintenance', 'Configuring the Kubernetes master services.') freeze_service_cidr() if (not etcd.get_connection_string()): return handle_etcd_relation(etcd) configure_master_services() hookenv.status_set('maintenance', 'Starting the Kubernetes master services.') services = ['kube-apiserver', 'kube-controller-manager', 'kube-scheduler'] for service in services: host.service_restart(('snap.%s.daemon' % service)) hookenv.open_port(6443) set_state('kubernetes-master.components.started')
704,572,935,404,919,700
Run the Kubernetes master components.
vendor/k8s.io/kubernetes/cluster/juju/layers/kubernetes-master/reactive/kubernetes_master.py
start_master
BaiHuoYu/nbp
python
@when('etcd.available', 'tls_client.server.certificate.saved', 'authentication.setup') @when_not('kubernetes-master.components.started') def start_master(etcd): hookenv.status_set('maintenance', 'Configuring the Kubernetes master services.') freeze_service_cidr() if (not etcd.get_connection_string()): return handle_etcd_relation(etcd) configure_master_services() hookenv.status_set('maintenance', 'Starting the Kubernetes master services.') services = ['kube-apiserver', 'kube-controller-manager', 'kube-scheduler'] for service in services: host.service_restart(('snap.%s.daemon' % service)) hookenv.open_port(6443) set_state('kubernetes-master.components.started')
@when('etcd.available') def etcd_data_change(etcd): ' Etcd scale events block master reconfiguration due to the\n kubernetes-master.components.started state. We need a way to\n handle these events consistenly only when the number of etcd\n units has actually changed ' connection_string = etcd.get_connection_string() if data_changed('etcd-connect', connection_string): remove_state('kubernetes-master.components.started')
138,625,547,488,238,990
Etcd scale events block master reconfiguration due to the kubernetes-master.components.started state. We need a way to handle these events consistenly only when the number of etcd units has actually changed
vendor/k8s.io/kubernetes/cluster/juju/layers/kubernetes-master/reactive/kubernetes_master.py
etcd_data_change
BaiHuoYu/nbp
python
@when('etcd.available') def etcd_data_change(etcd): ' Etcd scale events block master reconfiguration due to the\n kubernetes-master.components.started state. We need a way to\n handle these events consistenly only when the number of etcd\n units has actually changed ' connection_string = etcd.get_connection_string() if data_changed('etcd-connect', connection_string): remove_state('kubernetes-master.components.started')
@when('kube-control.connected') @when('cdk-addons.configured') def send_cluster_dns_detail(kube_control): ' Send cluster DNS info ' dns_ip = get_dns_ip() kube_control.set_dns(53, hookenv.config('dns_domain'), dns_ip)
-5,709,654,663,551,629,000
Send cluster DNS info
vendor/k8s.io/kubernetes/cluster/juju/layers/kubernetes-master/reactive/kubernetes_master.py
send_cluster_dns_detail
BaiHuoYu/nbp
python
@when('kube-control.connected') @when('cdk-addons.configured') def send_cluster_dns_detail(kube_control): ' ' dns_ip = get_dns_ip() kube_control.set_dns(53, hookenv.config('dns_domain'), dns_ip)
@when('kube-control.auth.requested') @when('authentication.setup') @when('leadership.is_leader') def send_tokens(kube_control): 'Send the tokens to the workers.' kubelet_token = get_token('kubelet') proxy_token = get_token('kube_proxy') admin_token = get_token('admin') requests = kube_control.auth_user() for request in requests: kube_control.sign_auth_request(request[0], kubelet_token, proxy_token, admin_token)
-4,402,742,211,720,884,700
Send the tokens to the workers.
vendor/k8s.io/kubernetes/cluster/juju/layers/kubernetes-master/reactive/kubernetes_master.py
send_tokens
BaiHuoYu/nbp
python
@when('kube-control.auth.requested') @when('authentication.setup') @when('leadership.is_leader') def send_tokens(kube_control): kubelet_token = get_token('kubelet') proxy_token = get_token('kube_proxy') admin_token = get_token('admin') requests = kube_control.auth_user() for request in requests: kube_control.sign_auth_request(request[0], kubelet_token, proxy_token, admin_token)
@when_not('kube-control.connected') def missing_kube_control(): "Inform the operator master is waiting for a relation to workers.\n\n If deploying via bundle this won't happen, but if operator is upgrading a\n a charm in a deployment that pre-dates the kube-control relation, it'll be\n missing.\n\n " hookenv.status_set('blocked', 'Waiting for workers.')
1,777,728,462,669,904,100
Inform the operator master is waiting for a relation to workers. If deploying via bundle this won't happen, but if operator is upgrading a a charm in a deployment that pre-dates the kube-control relation, it'll be missing.
vendor/k8s.io/kubernetes/cluster/juju/layers/kubernetes-master/reactive/kubernetes_master.py
missing_kube_control
BaiHuoYu/nbp
python
@when_not('kube-control.connected') def missing_kube_control(): "Inform the operator master is waiting for a relation to workers.\n\n If deploying via bundle this won't happen, but if operator is upgrading a\n a charm in a deployment that pre-dates the kube-control relation, it'll be\n missing.\n\n " hookenv.status_set('blocked', 'Waiting for workers.')
@when('kube-api-endpoint.available') def push_service_data(kube_api): ' Send configuration to the load balancer, and close access to the\n public interface ' kube_api.configure(port=6443)
5,358,579,529,708,485,000
Send configuration to the load balancer, and close access to the public interface
vendor/k8s.io/kubernetes/cluster/juju/layers/kubernetes-master/reactive/kubernetes_master.py
push_service_data
BaiHuoYu/nbp
python
@when('kube-api-endpoint.available') def push_service_data(kube_api): ' Send configuration to the load balancer, and close access to the\n public interface ' kube_api.configure(port=6443)
@when('certificates.available') def send_data(tls): 'Send the data that is required to create a server certificate for\n this server.' common_name = hookenv.unit_public_ip() kubernetes_service_ip = get_kubernetes_service_ip() domain = hookenv.config('dns_domain') sans = [hookenv.unit_public_ip(), hookenv.unit_private_ip(), socket.gethostname(), kubernetes_service_ip, 'kubernetes', 'kubernetes.{0}'.format(domain), 'kubernetes.default', 'kubernetes.default.svc', 'kubernetes.default.svc.{0}'.format(domain)] certificate_name = hookenv.local_unit().replace('/', '_') tls.request_server_cert(common_name, sans, certificate_name)
4,849,997,581,079,090,000
Send the data that is required to create a server certificate for this server.
vendor/k8s.io/kubernetes/cluster/juju/layers/kubernetes-master/reactive/kubernetes_master.py
send_data
BaiHuoYu/nbp
python
@when('certificates.available') def send_data(tls): 'Send the data that is required to create a server certificate for\n this server.' common_name = hookenv.unit_public_ip() kubernetes_service_ip = get_kubernetes_service_ip() domain = hookenv.config('dns_domain') sans = [hookenv.unit_public_ip(), hookenv.unit_private_ip(), socket.gethostname(), kubernetes_service_ip, 'kubernetes', 'kubernetes.{0}'.format(domain), 'kubernetes.default', 'kubernetes.default.svc', 'kubernetes.default.svc.{0}'.format(domain)] certificate_name = hookenv.local_unit().replace('/', '_') tls.request_server_cert(common_name, sans, certificate_name)
@when('kubernetes-master.components.started') def configure_cdk_addons(): ' Configure CDK addons ' remove_state('cdk-addons.configured') dbEnabled = str(hookenv.config('enable-dashboard-addons')).lower() args = [('arch=' + arch()), ('dns-ip=' + get_dns_ip()), ('dns-domain=' + hookenv.config('dns_domain')), ('enable-dashboard=' + dbEnabled)] check_call((['snap', 'set', 'cdk-addons'] + args)) if (not addons_ready()): hookenv.status_set('waiting', 'Waiting to retry addon deployment') remove_state('cdk-addons.configured') return set_state('cdk-addons.configured')
-2,867,987,770,483,336,000
Configure CDK addons
vendor/k8s.io/kubernetes/cluster/juju/layers/kubernetes-master/reactive/kubernetes_master.py
configure_cdk_addons
BaiHuoYu/nbp
python
@when('kubernetes-master.components.started') def configure_cdk_addons(): ' ' remove_state('cdk-addons.configured') dbEnabled = str(hookenv.config('enable-dashboard-addons')).lower() args = [('arch=' + arch()), ('dns-ip=' + get_dns_ip()), ('dns-domain=' + hookenv.config('dns_domain')), ('enable-dashboard=' + dbEnabled)] check_call((['snap', 'set', 'cdk-addons'] + args)) if (not addons_ready()): hookenv.status_set('waiting', 'Waiting to retry addon deployment') remove_state('cdk-addons.configured') return set_state('cdk-addons.configured')
@retry(times=3, delay_secs=20) def addons_ready(): '\n Test if the add ons got installed\n\n Returns: True is the addons got applied\n\n ' try: check_call(['cdk-addons.apply']) return True except CalledProcessError: hookenv.log('Addons are not ready yet.') return False
-7,442,323,682,676,021,000
Test if the add ons got installed Returns: True is the addons got applied
vendor/k8s.io/kubernetes/cluster/juju/layers/kubernetes-master/reactive/kubernetes_master.py
addons_ready
BaiHuoYu/nbp
python
@retry(times=3, delay_secs=20) def addons_ready(): '\n Test if the add ons got installed\n\n Returns: True is the addons got applied\n\n ' try: check_call(['cdk-addons.apply']) return True except CalledProcessError: hookenv.log('Addons are not ready yet.') return False
@when('certificates.ca.available', 'certificates.client.cert.available', 'authentication.setup') @when_not('loadbalancer.available') def create_self_config(ca, client): 'Create a kubernetes configuration for the master unit.' server = 'https://{0}:{1}'.format(hookenv.unit_get('public-address'), 6443) build_kubeconfig(server)
6,422,452,282,395,083,000
Create a kubernetes configuration for the master unit.
vendor/k8s.io/kubernetes/cluster/juju/layers/kubernetes-master/reactive/kubernetes_master.py
create_self_config
BaiHuoYu/nbp
python
@when('certificates.ca.available', 'certificates.client.cert.available', 'authentication.setup') @when_not('loadbalancer.available') def create_self_config(ca, client): server = 'https://{0}:{1}'.format(hookenv.unit_get('public-address'), 6443) build_kubeconfig(server)
@when('ceph-storage.available') def ceph_state_control(ceph_admin): ' Determine if we should remove the state that controls the re-render\n and execution of the ceph-relation-changed event because there\n are changes in the relationship data, and we should re-render any\n configs, keys, and/or service pre-reqs ' ceph_relation_data = {'mon_hosts': ceph_admin.mon_hosts(), 'fsid': ceph_admin.fsid(), 'auth_supported': ceph_admin.auth(), 'hostname': socket.gethostname(), 'key': ceph_admin.key()} if data_changed('ceph-config', ceph_relation_data): remove_state('ceph-storage.configured')
4,012,998,128,674,763,300
Determine if we should remove the state that controls the re-render and execution of the ceph-relation-changed event because there are changes in the relationship data, and we should re-render any configs, keys, and/or service pre-reqs
vendor/k8s.io/kubernetes/cluster/juju/layers/kubernetes-master/reactive/kubernetes_master.py
ceph_state_control
BaiHuoYu/nbp
python
@when('ceph-storage.available') def ceph_state_control(ceph_admin): ' Determine if we should remove the state that controls the re-render\n and execution of the ceph-relation-changed event because there\n are changes in the relationship data, and we should re-render any\n configs, keys, and/or service pre-reqs ' ceph_relation_data = {'mon_hosts': ceph_admin.mon_hosts(), 'fsid': ceph_admin.fsid(), 'auth_supported': ceph_admin.auth(), 'hostname': socket.gethostname(), 'key': ceph_admin.key()} if data_changed('ceph-config', ceph_relation_data): remove_state('ceph-storage.configured')
@when('ceph-storage.available') @when_not('ceph-storage.configured') def ceph_storage(ceph_admin): 'Ceph on kubernetes will require a few things - namely a ceph\n configuration, and the ceph secret key file used for authentication.\n This method will install the client package, and render the requisit files\n in order to consume the ceph-storage relation.' ceph_context = {'mon_hosts': ceph_admin.mon_hosts(), 'fsid': ceph_admin.fsid(), 'auth_supported': ceph_admin.auth(), 'use_syslog': 'true', 'ceph_public_network': '', 'ceph_cluster_network': '', 'loglevel': 1, 'hostname': socket.gethostname()} apt_install(['ceph-common'], fatal=True) etc_ceph_directory = '/etc/ceph' if (not os.path.isdir(etc_ceph_directory)): os.makedirs(etc_ceph_directory) charm_ceph_conf = os.path.join(etc_ceph_directory, 'ceph.conf') render('ceph.conf', charm_ceph_conf, ceph_context) admin_key = os.path.join(etc_ceph_directory, 'ceph.client.admin.keyring') try: with open(admin_key, 'w') as key_file: key_file.write('[client.admin]\n\tkey = {}\n'.format(ceph_admin.key())) except IOError as err: hookenv.log('IOError writing admin.keyring: {}'.format(err)) if ceph_admin.key(): encoded_key = base64.b64encode(ceph_admin.key().encode('utf-8')) else: return context = {'secret': encoded_key.decode('ascii')} render('ceph-secret.yaml', '/tmp/ceph-secret.yaml', context) try: cmd = ['kubectl', 'apply', '-f', '/tmp/ceph-secret.yaml'] check_call(cmd) os.remove('/tmp/ceph-secret.yaml') except: return set_state('ceph-storage.configured')
-2,433,001,908,601,862,700
Ceph on kubernetes will require a few things - namely a ceph configuration, and the ceph secret key file used for authentication. This method will install the client package, and render the requisit files in order to consume the ceph-storage relation.
vendor/k8s.io/kubernetes/cluster/juju/layers/kubernetes-master/reactive/kubernetes_master.py
ceph_storage
BaiHuoYu/nbp
python
@when('ceph-storage.available') @when_not('ceph-storage.configured') def ceph_storage(ceph_admin): 'Ceph on kubernetes will require a few things - namely a ceph\n configuration, and the ceph secret key file used for authentication.\n This method will install the client package, and render the requisit files\n in order to consume the ceph-storage relation.' ceph_context = {'mon_hosts': ceph_admin.mon_hosts(), 'fsid': ceph_admin.fsid(), 'auth_supported': ceph_admin.auth(), 'use_syslog': 'true', 'ceph_public_network': , 'ceph_cluster_network': , 'loglevel': 1, 'hostname': socket.gethostname()} apt_install(['ceph-common'], fatal=True) etc_ceph_directory = '/etc/ceph' if (not os.path.isdir(etc_ceph_directory)): os.makedirs(etc_ceph_directory) charm_ceph_conf = os.path.join(etc_ceph_directory, 'ceph.conf') render('ceph.conf', charm_ceph_conf, ceph_context) admin_key = os.path.join(etc_ceph_directory, 'ceph.client.admin.keyring') try: with open(admin_key, 'w') as key_file: key_file.write('[client.admin]\n\tkey = {}\n'.format(ceph_admin.key())) except IOError as err: hookenv.log('IOError writing admin.keyring: {}'.format(err)) if ceph_admin.key(): encoded_key = base64.b64encode(ceph_admin.key().encode('utf-8')) else: return context = {'secret': encoded_key.decode('ascii')} render('ceph-secret.yaml', '/tmp/ceph-secret.yaml', context) try: cmd = ['kubectl', 'apply', '-f', '/tmp/ceph-secret.yaml'] check_call(cmd) os.remove('/tmp/ceph-secret.yaml') except: return set_state('ceph-storage.configured')
def is_privileged(): 'Return boolean indicating whether or not to set allow-privileged=true.\n\n ' privileged = hookenv.config('allow-privileged') if (privileged == 'auto'): return is_state('kubernetes-master.gpu.enabled') else: return (privileged == 'true')
-780,240,340,701,585,900
Return boolean indicating whether or not to set allow-privileged=true.
vendor/k8s.io/kubernetes/cluster/juju/layers/kubernetes-master/reactive/kubernetes_master.py
is_privileged
BaiHuoYu/nbp
python
def is_privileged(): '\n\n ' privileged = hookenv.config('allow-privileged') if (privileged == 'auto'): return is_state('kubernetes-master.gpu.enabled') else: return (privileged == 'true')
@when('config.changed.allow-privileged') @when('kubernetes-master.components.started') def on_config_allow_privileged_change(): "React to changed 'allow-privileged' config value.\n\n " remove_state('kubernetes-master.components.started') remove_state('config.changed.allow-privileged')
4,813,052,077,131,673,000
React to changed 'allow-privileged' config value.
vendor/k8s.io/kubernetes/cluster/juju/layers/kubernetes-master/reactive/kubernetes_master.py
on_config_allow_privileged_change
BaiHuoYu/nbp
python
@when('config.changed.allow-privileged') @when('kubernetes-master.components.started') def on_config_allow_privileged_change(): "\n\n " remove_state('kubernetes-master.components.started') remove_state('config.changed.allow-privileged')
@when('kube-control.gpu.available') @when('kubernetes-master.components.started') @when_not('kubernetes-master.gpu.enabled') def on_gpu_available(kube_control): 'The remote side (kubernetes-worker) is gpu-enabled.\n\n We need to run in privileged mode.\n\n ' config = hookenv.config() if (config['allow-privileged'] == 'false'): hookenv.status_set('active', 'GPUs available. Set allow-privileged="auto" to enable.') return remove_state('kubernetes-master.components.started') set_state('kubernetes-master.gpu.enabled')
4,215,349,961,622,603,300
The remote side (kubernetes-worker) is gpu-enabled. We need to run in privileged mode.
vendor/k8s.io/kubernetes/cluster/juju/layers/kubernetes-master/reactive/kubernetes_master.py
on_gpu_available
BaiHuoYu/nbp
python
@when('kube-control.gpu.available') @when('kubernetes-master.components.started') @when_not('kubernetes-master.gpu.enabled') def on_gpu_available(kube_control): 'The remote side (kubernetes-worker) is gpu-enabled.\n\n We need to run in privileged mode.\n\n ' config = hookenv.config() if (config['allow-privileged'] == 'false'): hookenv.status_set('active', 'GPUs available. Set allow-privileged="auto" to enable.') return remove_state('kubernetes-master.components.started') set_state('kubernetes-master.gpu.enabled')
@when('kubernetes-master.gpu.enabled') @when_not('kubernetes-master.privileged') def disable_gpu_mode(): 'We were in gpu mode, but the operator has set allow-privileged="false",\n so we can\'t run in gpu mode anymore.\n\n ' remove_state('kubernetes-master.gpu.enabled')
7,250,460,879,740,247,000
We were in gpu mode, but the operator has set allow-privileged="false", so we can't run in gpu mode anymore.
vendor/k8s.io/kubernetes/cluster/juju/layers/kubernetes-master/reactive/kubernetes_master.py
disable_gpu_mode
BaiHuoYu/nbp
python
@when('kubernetes-master.gpu.enabled') @when_not('kubernetes-master.privileged') def disable_gpu_mode(): 'We were in gpu mode, but the operator has set allow-privileged="false",\n so we can\'t run in gpu mode anymore.\n\n ' remove_state('kubernetes-master.gpu.enabled')
@hook('stop') def shutdown(): ' Stop the kubernetes master services\n\n ' service_stop('snap.kube-apiserver.daemon') service_stop('snap.kube-controller-manager.daemon') service_stop('snap.kube-scheduler.daemon')
-1,049,840,848,278,248,600
Stop the kubernetes master services
vendor/k8s.io/kubernetes/cluster/juju/layers/kubernetes-master/reactive/kubernetes_master.py
shutdown
BaiHuoYu/nbp
python
@hook('stop') def shutdown(): ' \n\n ' service_stop('snap.kube-apiserver.daemon') service_stop('snap.kube-controller-manager.daemon') service_stop('snap.kube-scheduler.daemon')
def arch(): 'Return the package architecture as a string. Raise an exception if the\n architecture is not supported by kubernetes.' architecture = check_output(['dpkg', '--print-architecture']).rstrip() architecture = architecture.decode('utf-8') return architecture
7,777,717,789,895,950,000
Return the package architecture as a string. Raise an exception if the architecture is not supported by kubernetes.
vendor/k8s.io/kubernetes/cluster/juju/layers/kubernetes-master/reactive/kubernetes_master.py
arch
BaiHuoYu/nbp
python
def arch(): 'Return the package architecture as a string. Raise an exception if the\n architecture is not supported by kubernetes.' architecture = check_output(['dpkg', '--print-architecture']).rstrip() architecture = architecture.decode('utf-8') return architecture
def build_kubeconfig(server): 'Gather the relevant data for Kubernetes configuration objects and create\n a config object with that information.' layer_options = layer.options('tls-client') ca = layer_options.get('ca_certificate_path') ca_exists = (ca and os.path.isfile(ca)) client_pass = get_password('basic_auth.csv', 'admin') if (ca_exists and client_pass): kubeconfig_path = os.path.join(os.sep, 'home', 'ubuntu', 'config') create_kubeconfig(kubeconfig_path, server, ca, user='admin', password=client_pass) cmd = ['chown', 'ubuntu:ubuntu', kubeconfig_path] check_call(cmd)
-2,934,579,074,449,449,000
Gather the relevant data for Kubernetes configuration objects and create a config object with that information.
vendor/k8s.io/kubernetes/cluster/juju/layers/kubernetes-master/reactive/kubernetes_master.py
build_kubeconfig
BaiHuoYu/nbp
python
def build_kubeconfig(server): 'Gather the relevant data for Kubernetes configuration objects and create\n a config object with that information.' layer_options = layer.options('tls-client') ca = layer_options.get('ca_certificate_path') ca_exists = (ca and os.path.isfile(ca)) client_pass = get_password('basic_auth.csv', 'admin') if (ca_exists and client_pass): kubeconfig_path = os.path.join(os.sep, 'home', 'ubuntu', 'config') create_kubeconfig(kubeconfig_path, server, ca, user='admin', password=client_pass) cmd = ['chown', 'ubuntu:ubuntu', kubeconfig_path] check_call(cmd)
def create_kubeconfig(kubeconfig, server, ca, key=None, certificate=None, user='ubuntu', context='juju-context', cluster='juju-cluster', password=None, token=None): 'Create a configuration for Kubernetes based on path using the supplied\n arguments for values of the Kubernetes server, CA, key, certificate, user\n context and cluster.' if ((not key) and (not certificate) and (not password) and (not token)): raise ValueError('Missing authentication mechanism.') if (token and password): raise ValueError('Token and Password are mutually exclusive.') cmd = 'kubectl config --kubeconfig={0} set-cluster {1} --server={2} --certificate-authority={3} --embed-certs=true' check_call(split(cmd.format(kubeconfig, cluster, server, ca))) cmd = 'kubectl config --kubeconfig={0} unset users' check_call(split(cmd.format(kubeconfig))) cmd = 'kubectl config --kubeconfig={0} set-credentials {1} '.format(kubeconfig, user) if (key and certificate): cmd = '{0} --client-key={1} --client-certificate={2} --embed-certs=true'.format(cmd, key, certificate) if password: cmd = '{0} --username={1} --password={2}'.format(cmd, user, password) if token: cmd = '{0} --token={1}'.format(cmd, token) check_call(split(cmd)) cmd = 'kubectl config --kubeconfig={0} set-context {1} --cluster={2} --user={3}' check_call(split(cmd.format(kubeconfig, context, cluster, user))) cmd = 'kubectl config --kubeconfig={0} use-context {1}' check_call(split(cmd.format(kubeconfig, context)))
-2,665,510,102,998,262,000
Create a configuration for Kubernetes based on path using the supplied arguments for values of the Kubernetes server, CA, key, certificate, user context and cluster.
vendor/k8s.io/kubernetes/cluster/juju/layers/kubernetes-master/reactive/kubernetes_master.py
create_kubeconfig
BaiHuoYu/nbp
python
def create_kubeconfig(kubeconfig, server, ca, key=None, certificate=None, user='ubuntu', context='juju-context', cluster='juju-cluster', password=None, token=None): 'Create a configuration for Kubernetes based on path using the supplied\n arguments for values of the Kubernetes server, CA, key, certificate, user\n context and cluster.' if ((not key) and (not certificate) and (not password) and (not token)): raise ValueError('Missing authentication mechanism.') if (token and password): raise ValueError('Token and Password are mutually exclusive.') cmd = 'kubectl config --kubeconfig={0} set-cluster {1} --server={2} --certificate-authority={3} --embed-certs=true' check_call(split(cmd.format(kubeconfig, cluster, server, ca))) cmd = 'kubectl config --kubeconfig={0} unset users' check_call(split(cmd.format(kubeconfig))) cmd = 'kubectl config --kubeconfig={0} set-credentials {1} '.format(kubeconfig, user) if (key and certificate): cmd = '{0} --client-key={1} --client-certificate={2} --embed-certs=true'.format(cmd, key, certificate) if password: cmd = '{0} --username={1} --password={2}'.format(cmd, user, password) if token: cmd = '{0} --token={1}'.format(cmd, token) check_call(split(cmd)) cmd = 'kubectl config --kubeconfig={0} set-context {1} --cluster={2} --user={3}' check_call(split(cmd.format(kubeconfig, context, cluster, user))) cmd = 'kubectl config --kubeconfig={0} use-context {1}' check_call(split(cmd.format(kubeconfig, context)))
def get_dns_ip(): 'Get an IP address for the DNS server on the provided cidr.' interface = ipaddress.IPv4Interface(service_cidr()) ip = (interface.network.network_address + 10) return ip.exploded
5,212,188,719,946,503,000
Get an IP address for the DNS server on the provided cidr.
vendor/k8s.io/kubernetes/cluster/juju/layers/kubernetes-master/reactive/kubernetes_master.py
get_dns_ip
BaiHuoYu/nbp
python
def get_dns_ip(): interface = ipaddress.IPv4Interface(service_cidr()) ip = (interface.network.network_address + 10) return ip.exploded
def get_kubernetes_service_ip(): 'Get the IP address for the kubernetes service based on the cidr.' interface = ipaddress.IPv4Interface(service_cidr()) ip = (interface.network.network_address + 1) return ip.exploded
4,044,658,461,190,373,000
Get the IP address for the kubernetes service based on the cidr.
vendor/k8s.io/kubernetes/cluster/juju/layers/kubernetes-master/reactive/kubernetes_master.py
get_kubernetes_service_ip
BaiHuoYu/nbp
python
def get_kubernetes_service_ip(): interface = ipaddress.IPv4Interface(service_cidr()) ip = (interface.network.network_address + 1) return ip.exploded
def handle_etcd_relation(reldata): ' Save the client credentials and set appropriate daemon flags when\n etcd declares itself as available' connection_string = reldata.get_connection_string() etcd_dir = '/root/cdk/etcd' ca = os.path.join(etcd_dir, 'client-ca.pem') key = os.path.join(etcd_dir, 'client-key.pem') cert = os.path.join(etcd_dir, 'client-cert.pem') reldata.save_client_credentials(key, cert, ca) api_opts = FlagManager('kube-apiserver') data = api_opts.data if (data.get('etcd-servers-strict') or data.get('etcd-servers')): api_opts.destroy('etcd-cafile') api_opts.destroy('etcd-keyfile') api_opts.destroy('etcd-certfile') api_opts.destroy('etcd-servers', strict=True) api_opts.destroy('etcd-servers') api_opts.add('etcd-cafile', ca) api_opts.add('etcd-keyfile', key) api_opts.add('etcd-certfile', cert) api_opts.add('etcd-servers', connection_string, strict=True)
-8,894,728,876,959,341,000
Save the client credentials and set appropriate daemon flags when etcd declares itself as available
vendor/k8s.io/kubernetes/cluster/juju/layers/kubernetes-master/reactive/kubernetes_master.py
handle_etcd_relation
BaiHuoYu/nbp
python
def handle_etcd_relation(reldata): ' Save the client credentials and set appropriate daemon flags when\n etcd declares itself as available' connection_string = reldata.get_connection_string() etcd_dir = '/root/cdk/etcd' ca = os.path.join(etcd_dir, 'client-ca.pem') key = os.path.join(etcd_dir, 'client-key.pem') cert = os.path.join(etcd_dir, 'client-cert.pem') reldata.save_client_credentials(key, cert, ca) api_opts = FlagManager('kube-apiserver') data = api_opts.data if (data.get('etcd-servers-strict') or data.get('etcd-servers')): api_opts.destroy('etcd-cafile') api_opts.destroy('etcd-keyfile') api_opts.destroy('etcd-certfile') api_opts.destroy('etcd-servers', strict=True) api_opts.destroy('etcd-servers') api_opts.add('etcd-cafile', ca) api_opts.add('etcd-keyfile', key) api_opts.add('etcd-certfile', cert) api_opts.add('etcd-servers', connection_string, strict=True)
def configure_master_services(): ' Add remaining flags for the master services and configure snaps to use\n them ' api_opts = FlagManager('kube-apiserver') controller_opts = FlagManager('kube-controller-manager') scheduler_opts = FlagManager('kube-scheduler') scheduler_opts.add('v', '2') layer_options = layer.options('tls-client') ca_cert_path = layer_options.get('ca_certificate_path') client_cert_path = layer_options.get('client_certificate_path') client_key_path = layer_options.get('client_key_path') server_cert_path = layer_options.get('server_certificate_path') server_key_path = layer_options.get('server_key_path') if is_privileged(): api_opts.add('allow-privileged', 'true', strict=True) set_state('kubernetes-master.privileged') else: api_opts.add('allow-privileged', 'false', strict=True) remove_state('kubernetes-master.privileged') api_opts.add('service-cluster-ip-range', service_cidr()) api_opts.add('min-request-timeout', '300') api_opts.add('v', '4') api_opts.add('tls-cert-file', server_cert_path) api_opts.add('tls-private-key-file', server_key_path) api_opts.add('kubelet-certificate-authority', ca_cert_path) api_opts.add('kubelet-client-certificate', client_cert_path) api_opts.add('kubelet-client-key', client_key_path) api_opts.add('logtostderr', 'true') api_opts.add('insecure-bind-address', '127.0.0.1') api_opts.add('insecure-port', '8080') api_opts.add('storage-backend', 'etcd2') admission_control = ['Initializers', 'NamespaceLifecycle', 'LimitRanger', 'ServiceAccount', 'ResourceQuota', 'DefaultTolerationSeconds'] if (get_version('kube-apiserver') < (1, 6)): hookenv.log('Removing DefaultTolerationSeconds from admission-control') admission_control.remove('DefaultTolerationSeconds') if (get_version('kube-apiserver') < (1, 7)): hookenv.log('Removing Initializers from admission-control') admission_control.remove('Initializers') api_opts.add('admission-control', ','.join(admission_control), strict=True) controller_opts.add('min-resync-period', '3m') controller_opts.add('v', '2') controller_opts.add('root-ca-file', ca_cert_path) controller_opts.add('logtostderr', 'true') controller_opts.add('master', 'http://127.0.0.1:8080') scheduler_opts.add('v', '2') scheduler_opts.add('logtostderr', 'true') scheduler_opts.add('master', 'http://127.0.0.1:8080') cmd = (['snap', 'set', 'kube-apiserver'] + api_opts.to_s().split(' ')) check_call(cmd) cmd = (['snap', 'set', 'kube-controller-manager'] + controller_opts.to_s().split(' ')) check_call(cmd) cmd = (['snap', 'set', 'kube-scheduler'] + scheduler_opts.to_s().split(' ')) check_call(cmd)
1,320,986,970,023,214,800
Add remaining flags for the master services and configure snaps to use them
vendor/k8s.io/kubernetes/cluster/juju/layers/kubernetes-master/reactive/kubernetes_master.py
configure_master_services
BaiHuoYu/nbp
python
def configure_master_services(): ' Add remaining flags for the master services and configure snaps to use\n them ' api_opts = FlagManager('kube-apiserver') controller_opts = FlagManager('kube-controller-manager') scheduler_opts = FlagManager('kube-scheduler') scheduler_opts.add('v', '2') layer_options = layer.options('tls-client') ca_cert_path = layer_options.get('ca_certificate_path') client_cert_path = layer_options.get('client_certificate_path') client_key_path = layer_options.get('client_key_path') server_cert_path = layer_options.get('server_certificate_path') server_key_path = layer_options.get('server_key_path') if is_privileged(): api_opts.add('allow-privileged', 'true', strict=True) set_state('kubernetes-master.privileged') else: api_opts.add('allow-privileged', 'false', strict=True) remove_state('kubernetes-master.privileged') api_opts.add('service-cluster-ip-range', service_cidr()) api_opts.add('min-request-timeout', '300') api_opts.add('v', '4') api_opts.add('tls-cert-file', server_cert_path) api_opts.add('tls-private-key-file', server_key_path) api_opts.add('kubelet-certificate-authority', ca_cert_path) api_opts.add('kubelet-client-certificate', client_cert_path) api_opts.add('kubelet-client-key', client_key_path) api_opts.add('logtostderr', 'true') api_opts.add('insecure-bind-address', '127.0.0.1') api_opts.add('insecure-port', '8080') api_opts.add('storage-backend', 'etcd2') admission_control = ['Initializers', 'NamespaceLifecycle', 'LimitRanger', 'ServiceAccount', 'ResourceQuota', 'DefaultTolerationSeconds'] if (get_version('kube-apiserver') < (1, 6)): hookenv.log('Removing DefaultTolerationSeconds from admission-control') admission_control.remove('DefaultTolerationSeconds') if (get_version('kube-apiserver') < (1, 7)): hookenv.log('Removing Initializers from admission-control') admission_control.remove('Initializers') api_opts.add('admission-control', ','.join(admission_control), strict=True) controller_opts.add('min-resync-period', '3m') controller_opts.add('v', '2') controller_opts.add('root-ca-file', ca_cert_path) controller_opts.add('logtostderr', 'true') controller_opts.add('master', 'http://127.0.0.1:8080') scheduler_opts.add('v', '2') scheduler_opts.add('logtostderr', 'true') scheduler_opts.add('master', 'http://127.0.0.1:8080') cmd = (['snap', 'set', 'kube-apiserver'] + api_opts.to_s().split(' ')) check_call(cmd) cmd = (['snap', 'set', 'kube-controller-manager'] + controller_opts.to_s().split(' ')) check_call(cmd) cmd = (['snap', 'set', 'kube-scheduler'] + scheduler_opts.to_s().split(' ')) check_call(cmd)
def setup_basic_auth(password=None, username='admin', uid='admin'): 'Create the htacces file and the tokens.' root_cdk = '/root/cdk' if (not os.path.isdir(root_cdk)): os.makedirs(root_cdk) htaccess = os.path.join(root_cdk, 'basic_auth.csv') if (not password): password = token_generator() with open(htaccess, 'w') as stream: stream.write('{0},{1},{2}'.format(password, username, uid))
3,896,753,039,689,212,000
Create the htacces file and the tokens.
vendor/k8s.io/kubernetes/cluster/juju/layers/kubernetes-master/reactive/kubernetes_master.py
setup_basic_auth
BaiHuoYu/nbp
python
def setup_basic_auth(password=None, username='admin', uid='admin'): root_cdk = '/root/cdk' if (not os.path.isdir(root_cdk)): os.makedirs(root_cdk) htaccess = os.path.join(root_cdk, 'basic_auth.csv') if (not password): password = token_generator() with open(htaccess, 'w') as stream: stream.write('{0},{1},{2}'.format(password, username, uid))
def setup_tokens(token, username, user): 'Create a token file for kubernetes authentication.' root_cdk = '/root/cdk' if (not os.path.isdir(root_cdk)): os.makedirs(root_cdk) known_tokens = os.path.join(root_cdk, 'known_tokens.csv') if (not token): token = token_generator() with open(known_tokens, 'a') as stream: stream.write('{0},{1},{2}\n'.format(token, username, user))
-5,288,888,162,399,618,000
Create a token file for kubernetes authentication.
vendor/k8s.io/kubernetes/cluster/juju/layers/kubernetes-master/reactive/kubernetes_master.py
setup_tokens
BaiHuoYu/nbp
python
def setup_tokens(token, username, user): root_cdk = '/root/cdk' if (not os.path.isdir(root_cdk)): os.makedirs(root_cdk) known_tokens = os.path.join(root_cdk, 'known_tokens.csv') if (not token): token = token_generator() with open(known_tokens, 'a') as stream: stream.write('{0},{1},{2}\n'.format(token, username, user))
def get_password(csv_fname, user): 'Get the password of user within the csv file provided.' root_cdk = '/root/cdk' tokens_fname = os.path.join(root_cdk, csv_fname) if (not os.path.isfile(tokens_fname)): return None with open(tokens_fname, 'r') as stream: for line in stream: record = line.split(',') if (record[1] == user): return record[0] return None
1,101,407,316,263,802,400
Get the password of user within the csv file provided.
vendor/k8s.io/kubernetes/cluster/juju/layers/kubernetes-master/reactive/kubernetes_master.py
get_password
BaiHuoYu/nbp
python
def get_password(csv_fname, user): root_cdk = '/root/cdk' tokens_fname = os.path.join(root_cdk, csv_fname) if (not os.path.isfile(tokens_fname)): return None with open(tokens_fname, 'r') as stream: for line in stream: record = line.split(',') if (record[1] == user): return record[0] return None
def get_token(username): 'Grab a token from the static file if present. ' return get_password('known_tokens.csv', username)
2,882,756,315,456,273,400
Grab a token from the static file if present.
vendor/k8s.io/kubernetes/cluster/juju/layers/kubernetes-master/reactive/kubernetes_master.py
get_token
BaiHuoYu/nbp
python
def get_token(username): ' ' return get_password('known_tokens.csv', username)
def set_token(password, save_salt): ' Store a token so it can be recalled later by token_generator.\n\n param: password - the password to be stored\n param: save_salt - the key to store the value of the token.' db = unitdata.kv() db.set(save_salt, password) return db.get(save_salt)
7,914,817,382,534,536,000
Store a token so it can be recalled later by token_generator. param: password - the password to be stored param: save_salt - the key to store the value of the token.
vendor/k8s.io/kubernetes/cluster/juju/layers/kubernetes-master/reactive/kubernetes_master.py
set_token
BaiHuoYu/nbp
python
def set_token(password, save_salt): ' Store a token so it can be recalled later by token_generator.\n\n param: password - the password to be stored\n param: save_salt - the key to store the value of the token.' db = unitdata.kv() db.set(save_salt, password) return db.get(save_salt)
def token_generator(length=32): ' Generate a random token for use in passwords and account tokens.\n\n param: length - the length of the token to generate' alpha = (string.ascii_letters + string.digits) token = ''.join((random.SystemRandom().choice(alpha) for _ in range(length))) return token
4,775,048,515,420,518,000
Generate a random token for use in passwords and account tokens. param: length - the length of the token to generate
vendor/k8s.io/kubernetes/cluster/juju/layers/kubernetes-master/reactive/kubernetes_master.py
token_generator
BaiHuoYu/nbp
python
def token_generator(length=32): ' Generate a random token for use in passwords and account tokens.\n\n param: length - the length of the token to generate' alpha = (string.ascii_letters + string.digits) token = .join((random.SystemRandom().choice(alpha) for _ in range(length))) return token
@retry(times=3, delay_secs=10) def all_kube_system_pods_running(): ' Check pod status in the kube-system namespace. Returns True if all\n pods are running, False otherwise. ' cmd = ['kubectl', 'get', 'po', '-n', 'kube-system', '-o', 'json'] try: output = check_output(cmd).decode('utf-8') except CalledProcessError: hookenv.log('failed to get kube-system pod status') return False result = json.loads(output) for pod in result['items']: status = pod['status']['phase'] if (status != 'Running'): return False return True
-5,931,451,774,860,304,000
Check pod status in the kube-system namespace. Returns True if all pods are running, False otherwise.
vendor/k8s.io/kubernetes/cluster/juju/layers/kubernetes-master/reactive/kubernetes_master.py
all_kube_system_pods_running
BaiHuoYu/nbp
python
@retry(times=3, delay_secs=10) def all_kube_system_pods_running(): ' Check pod status in the kube-system namespace. Returns True if all\n pods are running, False otherwise. ' cmd = ['kubectl', 'get', 'po', '-n', 'kube-system', '-o', 'json'] try: output = check_output(cmd).decode('utf-8') except CalledProcessError: hookenv.log('failed to get kube-system pod status') return False result = json.loads(output) for pod in result['items']: status = pod['status']['phase'] if (status != 'Running'): return False return True
@maybe_login_required def get(self): '\n ---\n description: Get a list of commits.\n responses:\n "200": "CommitList"\n "401": "401"\n tags:\n - Commits\n ' commits = Commit.all(order_by=Commit.timestamp.desc(), limit=500) return self.serializer.many.dump(commits)
2,398,455,464,862,368,000
--- description: Get a list of commits. responses: "200": "CommitList" "401": "401" tags: - Commits
conbench/api/commits.py
get
Christian8491/conbench
python
@maybe_login_required def get(self): '\n ---\n description: Get a list of commits.\n responses:\n "200": "CommitList"\n "401": "401"\n tags:\n - Commits\n ' commits = Commit.all(order_by=Commit.timestamp.desc(), limit=500) return self.serializer.many.dump(commits)
@maybe_login_required def get(self, commit_id): '\n ---\n description: Get a commit.\n responses:\n "200": "CommitEntity"\n "401": "401"\n "404": "404"\n parameters:\n - name: commit_id\n in: path\n schema:\n type: string\n tags:\n - Commits\n ' commit = self._get(commit_id) return self.serializer.one.dump(commit)
-4,298,231,717,111,611,400
--- description: Get a commit. responses: "200": "CommitEntity" "401": "401" "404": "404" parameters: - name: commit_id in: path schema: type: string tags: - Commits
conbench/api/commits.py
get
Christian8491/conbench
python
@maybe_login_required def get(self, commit_id): '\n ---\n description: Get a commit.\n responses:\n "200": "CommitEntity"\n "401": "401"\n "404": "404"\n parameters:\n - name: commit_id\n in: path\n schema:\n type: string\n tags:\n - Commits\n ' commit = self._get(commit_id) return self.serializer.one.dump(commit)
def __init__(self, basedir=None, **kwargs): ' Constructor ' self.basedir = basedir
4,008,232,155,774,888,000
Constructor
lookup_plugins/oo_option.py
__init__
Acidburn0zzz/openshift-ansible
python
def __init__(self, basedir=None, **kwargs): ' ' self.basedir = basedir
def run(self, terms, variables, **kwargs): ' Main execution path ' ret = [] for term in terms: option_name = term.split()[0] cli_key = ('cli_' + option_name) if (('vars' in variables) and (cli_key in variables['vars'])): ret.append(variables['vars'][cli_key]) elif (option_name in os.environ): ret.append(os.environ[option_name]) else: ret.append('') return ret
-6,311,369,496,282,909,000
Main execution path
lookup_plugins/oo_option.py
run
Acidburn0zzz/openshift-ansible
python
def run(self, terms, variables, **kwargs): ' ' ret = [] for term in terms: option_name = term.split()[0] cli_key = ('cli_' + option_name) if (('vars' in variables) and (cli_key in variables['vars'])): ret.append(variables['vars'][cli_key]) elif (option_name in os.environ): ret.append(os.environ[option_name]) else: ret.append() return ret
def download_file(url, data_path='.', filename=None, size=None, chunk_size=4096, verbose=True): 'Uses stream=True and a reasonable chunk size to be able to download large (GB) files over https' if (filename is None): filename = dropbox_basename(url) file_path = os.path.join(data_path, filename) if url.endswith('?dl=0'): url = (url[:(- 1)] + '1') if verbose: tqdm_prog = tqdm print('requesting URL: {}'.format(url)) else: tqdm_prog = no_tqdm r = requests.get(url, stream=True, allow_redirects=True) size = (r.headers.get('Content-Length', None) if (size is None) else size) print('remote size: {}'.format(size)) stat = path_status(file_path) print('local size: {}'.format(stat.get('size', None))) if ((stat['type'] == 'file') and (stat['size'] == size)): r.close() return file_path print('Downloading to {}'.format(file_path)) with open(file_path, 'wb') as f: for chunk in r.iter_content(chunk_size=chunk_size): if chunk: f.write(chunk) r.close() return file_path
2,216,735,184,912,804,000
Uses stream=True and a reasonable chunk size to be able to download large (GB) files over https
nlpia/book/examples/ch09.py
download_file
brusic/nlpia
python
def download_file(url, data_path='.', filename=None, size=None, chunk_size=4096, verbose=True): if (filename is None): filename = dropbox_basename(url) file_path = os.path.join(data_path, filename) if url.endswith('?dl=0'): url = (url[:(- 1)] + '1') if verbose: tqdm_prog = tqdm print('requesting URL: {}'.format(url)) else: tqdm_prog = no_tqdm r = requests.get(url, stream=True, allow_redirects=True) size = (r.headers.get('Content-Length', None) if (size is None) else size) print('remote size: {}'.format(size)) stat = path_status(file_path) print('local size: {}'.format(stat.get('size', None))) if ((stat['type'] == 'file') and (stat['size'] == size)): r.close() return file_path print('Downloading to {}'.format(file_path)) with open(file_path, 'wb') as f: for chunk in r.iter_content(chunk_size=chunk_size): if chunk: f.write(chunk) r.close() return file_path
def pre_process_data(filepath): '\n This is dependent on your training data source but we will try to generalize it as best as possible.\n ' positive_path = os.path.join(filepath, 'pos') negative_path = os.path.join(filepath, 'neg') pos_label = 1 neg_label = 0 dataset = [] for filename in glob.glob(os.path.join(positive_path, '*.txt')): with open(filename, 'r') as f: dataset.append((pos_label, f.read())) for filename in glob.glob(os.path.join(negative_path, '*.txt')): with open(filename, 'r') as f: dataset.append((neg_label, f.read())) shuffle(dataset) return dataset
-6,618,729,490,272,597,000
This is dependent on your training data source but we will try to generalize it as best as possible.
nlpia/book/examples/ch09.py
pre_process_data
brusic/nlpia
python
def pre_process_data(filepath): '\n \n ' positive_path = os.path.join(filepath, 'pos') negative_path = os.path.join(filepath, 'neg') pos_label = 1 neg_label = 0 dataset = [] for filename in glob.glob(os.path.join(positive_path, '*.txt')): with open(filename, 'r') as f: dataset.append((pos_label, f.read())) for filename in glob.glob(os.path.join(negative_path, '*.txt')): with open(filename, 'r') as f: dataset.append((neg_label, f.read())) shuffle(dataset) return dataset
def collect_expected(dataset): ' Peel of the target values from the dataset ' expected = [] for sample in dataset: expected.append(sample[0]) return expected
-2,978,209,738,048,376,000
Peel of the target values from the dataset
nlpia/book/examples/ch09.py
collect_expected
brusic/nlpia
python
def collect_expected(dataset): ' ' expected = [] for sample in dataset: expected.append(sample[0]) return expected
def pad_trunc(data, maxlen): ' For a given dataset pad with zero vectors or truncate to maxlen ' new_data = [] zero_vector = [] for _ in range(len(data[0][0])): zero_vector.append(0.0) for sample in data: if (len(sample) > maxlen): temp = sample[:maxlen] elif (len(sample) < maxlen): temp = sample additional_elems = (maxlen - len(sample)) for _ in range(additional_elems): temp.append(zero_vector) else: temp = sample new_data.append(temp) return new_data
-2,545,233,103,941,332,500
For a given dataset pad with zero vectors or truncate to maxlen
nlpia/book/examples/ch09.py
pad_trunc
brusic/nlpia
python
def pad_trunc(data, maxlen): ' ' new_data = [] zero_vector = [] for _ in range(len(data[0][0])): zero_vector.append(0.0) for sample in data: if (len(sample) > maxlen): temp = sample[:maxlen] elif (len(sample) < maxlen): temp = sample additional_elems = (maxlen - len(sample)) for _ in range(additional_elems): temp.append(zero_vector) else: temp = sample new_data.append(temp) return new_data
def clean_data(data): ' Shift to lower case, replace unknowns with UNK, and listify ' new_data = [] VALID = 'abcdefghijklmnopqrstuvwxyz123456789"\'?!.,:; ' for sample in data: new_sample = [] for char in sample[1].lower(): if (char in VALID): new_sample.append(char) else: new_sample.append('UNK') new_data.append(new_sample) return new_data
-5,663,162,335,939,279,000
Shift to lower case, replace unknowns with UNK, and listify
nlpia/book/examples/ch09.py
clean_data
brusic/nlpia
python
def clean_data(data): ' ' new_data = [] VALID = 'abcdefghijklmnopqrstuvwxyz123456789"\'?!.,:; ' for sample in data: new_sample = [] for char in sample[1].lower(): if (char in VALID): new_sample.append(char) else: new_sample.append('UNK') new_data.append(new_sample) return new_data
def char_pad_trunc(data, maxlen): ' We truncate to maxlen or add in PAD tokens ' new_dataset = [] for sample in data: if (len(sample) > maxlen): new_data = sample[:maxlen] elif (len(sample) < maxlen): pads = (maxlen - len(sample)) new_data = (sample + (['PAD'] * pads)) else: new_data = sample new_dataset.append(new_data) return new_dataset
-6,277,311,333,360,395,000
We truncate to maxlen or add in PAD tokens
nlpia/book/examples/ch09.py
char_pad_trunc
brusic/nlpia
python
def char_pad_trunc(data, maxlen): ' ' new_dataset = [] for sample in data: if (len(sample) > maxlen): new_data = sample[:maxlen] elif (len(sample) < maxlen): pads = (maxlen - len(sample)) new_data = (sample + (['PAD'] * pads)) else: new_data = sample new_dataset.append(new_data) return new_dataset
def create_dicts(data): ' Modified from Keras LSTM example' chars = set() for sample in data: chars.update(set(sample)) char_indices = dict(((c, i) for (i, c) in enumerate(chars))) indices_char = dict(((i, c) for (i, c) in enumerate(chars))) return (char_indices, indices_char)
89,649,798,061,459,300
Modified from Keras LSTM example
nlpia/book/examples/ch09.py
create_dicts
brusic/nlpia
python
def create_dicts(data): ' ' chars = set() for sample in data: chars.update(set(sample)) char_indices = dict(((c, i) for (i, c) in enumerate(chars))) indices_char = dict(((i, c) for (i, c) in enumerate(chars))) return (char_indices, indices_char)
def onehot_encode(dataset, char_indices, maxlen): ' \n One hot encode the tokens\n \n Args:\n dataset list of lists of tokens\n char_indices dictionary of {key=character, value=index to use encoding vector}\n maxlen int Length of each sample\n Return:\n np array of shape (samples, tokens, encoding length)\n ' X = np.zeros((len(dataset), maxlen, len(char_indices.keys()))) for (i, sentence) in enumerate(dataset): for (t, char) in enumerate(sentence): X[(i, t, char_indices[char])] = 1 return X
1,302,900,060,204,858,600
One hot encode the tokens Args: dataset list of lists of tokens char_indices dictionary of {key=character, value=index to use encoding vector} maxlen int Length of each sample Return: np array of shape (samples, tokens, encoding length)
nlpia/book/examples/ch09.py
onehot_encode
brusic/nlpia
python
def onehot_encode(dataset, char_indices, maxlen): ' \n One hot encode the tokens\n \n Args:\n dataset list of lists of tokens\n char_indices dictionary of {key=character, value=index to use encoding vector}\n maxlen int Length of each sample\n Return:\n np array of shape (samples, tokens, encoding length)\n ' X = np.zeros((len(dataset), maxlen, len(char_indices.keys()))) for (i, sentence) in enumerate(dataset): for (t, char) in enumerate(sentence): X[(i, t, char_indices[char])] = 1 return X
def encode(iterator, method='xml', encoding=None, out=None): 'Encode serializer output into a string.\n \n :param iterator: the iterator returned from serializing a stream (basically\n any iterator that yields unicode objects)\n :param method: the serialization method; determines how characters not\n representable in the specified encoding are treated\n :param encoding: how the output string should be encoded; if set to `None`,\n this method returns a `unicode` object\n :param out: a file-like object that the output should be written to\n instead of being returned as one big string; note that if\n this is a file or socket (or similar), the `encoding` must\n not be `None` (that is, the output must be encoded)\n :return: a `str` or `unicode` object (depending on the `encoding`\n parameter), or `None` if the `out` parameter is provided\n \n :since: version 0.4.1\n :note: Changed in 0.5: added the `out` parameter\n ' if (encoding is not None): errors = 'replace' if ((method != 'text') and (not isinstance(method, TextSerializer))): errors = 'xmlcharrefreplace' _encode = (lambda string: string.encode(encoding, errors)) else: _encode = (lambda string: string) if (out is None): return _encode(''.join(list(iterator))) for chunk in iterator: out.write(_encode(chunk))
4,164,344,655,488,987,000
Encode serializer output into a string. :param iterator: the iterator returned from serializing a stream (basically any iterator that yields unicode objects) :param method: the serialization method; determines how characters not representable in the specified encoding are treated :param encoding: how the output string should be encoded; if set to `None`, this method returns a `unicode` object :param out: a file-like object that the output should be written to instead of being returned as one big string; note that if this is a file or socket (or similar), the `encoding` must not be `None` (that is, the output must be encoded) :return: a `str` or `unicode` object (depending on the `encoding` parameter), or `None` if the `out` parameter is provided :since: version 0.4.1 :note: Changed in 0.5: added the `out` parameter
Packages/OmniMarkupPreviewer/OmniMarkupLib/Renderers/libs/python2/genshi/output.py
encode
262877348/Data
python
def encode(iterator, method='xml', encoding=None, out=None): 'Encode serializer output into a string.\n \n :param iterator: the iterator returned from serializing a stream (basically\n any iterator that yields unicode objects)\n :param method: the serialization method; determines how characters not\n representable in the specified encoding are treated\n :param encoding: how the output string should be encoded; if set to `None`,\n this method returns a `unicode` object\n :param out: a file-like object that the output should be written to\n instead of being returned as one big string; note that if\n this is a file or socket (or similar), the `encoding` must\n not be `None` (that is, the output must be encoded)\n :return: a `str` or `unicode` object (depending on the `encoding`\n parameter), or `None` if the `out` parameter is provided\n \n :since: version 0.4.1\n :note: Changed in 0.5: added the `out` parameter\n ' if (encoding is not None): errors = 'replace' if ((method != 'text') and (not isinstance(method, TextSerializer))): errors = 'xmlcharrefreplace' _encode = (lambda string: string.encode(encoding, errors)) else: _encode = (lambda string: string) if (out is None): return _encode(.join(list(iterator))) for chunk in iterator: out.write(_encode(chunk))
def get_serializer(method='xml', **kwargs): 'Return a serializer object for the given method.\n \n :param method: the serialization method; can be either "xml", "xhtml",\n "html", "text", or a custom serializer class\n\n Any additional keyword arguments are passed to the serializer, and thus\n depend on the `method` parameter value.\n \n :see: `XMLSerializer`, `XHTMLSerializer`, `HTMLSerializer`, `TextSerializer`\n :since: version 0.4.1\n ' if isinstance(method, basestring): method = {'xml': XMLSerializer, 'xhtml': XHTMLSerializer, 'html': HTMLSerializer, 'text': TextSerializer}[method.lower()] return method(**kwargs)
1,971,087,575,448,008,400
Return a serializer object for the given method. :param method: the serialization method; can be either "xml", "xhtml", "html", "text", or a custom serializer class Any additional keyword arguments are passed to the serializer, and thus depend on the `method` parameter value. :see: `XMLSerializer`, `XHTMLSerializer`, `HTMLSerializer`, `TextSerializer` :since: version 0.4.1
Packages/OmniMarkupPreviewer/OmniMarkupLib/Renderers/libs/python2/genshi/output.py
get_serializer
262877348/Data
python
def get_serializer(method='xml', **kwargs): 'Return a serializer object for the given method.\n \n :param method: the serialization method; can be either "xml", "xhtml",\n "html", "text", or a custom serializer class\n\n Any additional keyword arguments are passed to the serializer, and thus\n depend on the `method` parameter value.\n \n :see: `XMLSerializer`, `XHTMLSerializer`, `HTMLSerializer`, `TextSerializer`\n :since: version 0.4.1\n ' if isinstance(method, basestring): method = {'xml': XMLSerializer, 'xhtml': XHTMLSerializer, 'html': HTMLSerializer, 'text': TextSerializer}[method.lower()] return method(**kwargs)
def _prepare_cache(use_cache=True): 'Prepare a private token serialization cache.\n\n :param use_cache: boolean indicating whether a real cache should\n be used or not. If not, the returned functions\n are no-ops.\n\n :return: emit and get functions, for storing and retrieving\n serialized values from the cache.\n ' cache = {} if use_cache: def _emit(kind, input, output): cache[(kind, input)] = output return output _get = cache.get else: def _emit(kind, input, output): return output def _get(key): pass return (_emit, _get, cache)
5,364,588,915,978,782,000
Prepare a private token serialization cache. :param use_cache: boolean indicating whether a real cache should be used or not. If not, the returned functions are no-ops. :return: emit and get functions, for storing and retrieving serialized values from the cache.
Packages/OmniMarkupPreviewer/OmniMarkupLib/Renderers/libs/python2/genshi/output.py
_prepare_cache
262877348/Data
python
def _prepare_cache(use_cache=True): 'Prepare a private token serialization cache.\n\n :param use_cache: boolean indicating whether a real cache should\n be used or not. If not, the returned functions\n are no-ops.\n\n :return: emit and get functions, for storing and retrieving\n serialized values from the cache.\n ' cache = {} if use_cache: def _emit(kind, input, output): cache[(kind, input)] = output return output _get = cache.get else: def _emit(kind, input, output): return output def _get(key): pass return (_emit, _get, cache)
@classmethod def get(cls, name): 'Return the ``(name, pubid, sysid)`` tuple of the ``DOCTYPE``\n declaration for the specified name.\n \n The following names are recognized in this version:\n * "html" or "html-strict" for the HTML 4.01 strict DTD\n * "html-transitional" for the HTML 4.01 transitional DTD\n * "html-frameset" for the HTML 4.01 frameset DTD\n * "html5" for the ``DOCTYPE`` proposed for HTML5\n * "xhtml" or "xhtml-strict" for the XHTML 1.0 strict DTD\n * "xhtml-transitional" for the XHTML 1.0 transitional DTD\n * "xhtml-frameset" for the XHTML 1.0 frameset DTD\n * "xhtml11" for the XHTML 1.1 DTD\n * "svg" or "svg-full" for the SVG 1.1 DTD\n * "svg-basic" for the SVG Basic 1.1 DTD\n * "svg-tiny" for the SVG Tiny 1.1 DTD\n \n :param name: the name of the ``DOCTYPE``\n :return: the ``(name, pubid, sysid)`` tuple for the requested\n ``DOCTYPE``, or ``None`` if the name is not recognized\n :since: version 0.4.1\n ' return {'html': cls.HTML, 'html-strict': cls.HTML_STRICT, 'html-transitional': DocType.HTML_TRANSITIONAL, 'html-frameset': DocType.HTML_FRAMESET, 'html5': cls.HTML5, 'xhtml': cls.XHTML, 'xhtml-strict': cls.XHTML_STRICT, 'xhtml-transitional': cls.XHTML_TRANSITIONAL, 'xhtml-frameset': cls.XHTML_FRAMESET, 'xhtml11': cls.XHTML11, 'svg': cls.SVG, 'svg-full': cls.SVG_FULL, 'svg-basic': cls.SVG_BASIC, 'svg-tiny': cls.SVG_TINY}.get(name.lower())
2,591,025,277,008,289,000
Return the ``(name, pubid, sysid)`` tuple of the ``DOCTYPE`` declaration for the specified name. The following names are recognized in this version: * "html" or "html-strict" for the HTML 4.01 strict DTD * "html-transitional" for the HTML 4.01 transitional DTD * "html-frameset" for the HTML 4.01 frameset DTD * "html5" for the ``DOCTYPE`` proposed for HTML5 * "xhtml" or "xhtml-strict" for the XHTML 1.0 strict DTD * "xhtml-transitional" for the XHTML 1.0 transitional DTD * "xhtml-frameset" for the XHTML 1.0 frameset DTD * "xhtml11" for the XHTML 1.1 DTD * "svg" or "svg-full" for the SVG 1.1 DTD * "svg-basic" for the SVG Basic 1.1 DTD * "svg-tiny" for the SVG Tiny 1.1 DTD :param name: the name of the ``DOCTYPE`` :return: the ``(name, pubid, sysid)`` tuple for the requested ``DOCTYPE``, or ``None`` if the name is not recognized :since: version 0.4.1
Packages/OmniMarkupPreviewer/OmniMarkupLib/Renderers/libs/python2/genshi/output.py
get
262877348/Data
python
@classmethod def get(cls, name): 'Return the ``(name, pubid, sysid)`` tuple of the ``DOCTYPE``\n declaration for the specified name.\n \n The following names are recognized in this version:\n * "html" or "html-strict" for the HTML 4.01 strict DTD\n * "html-transitional" for the HTML 4.01 transitional DTD\n * "html-frameset" for the HTML 4.01 frameset DTD\n * "html5" for the ``DOCTYPE`` proposed for HTML5\n * "xhtml" or "xhtml-strict" for the XHTML 1.0 strict DTD\n * "xhtml-transitional" for the XHTML 1.0 transitional DTD\n * "xhtml-frameset" for the XHTML 1.0 frameset DTD\n * "xhtml11" for the XHTML 1.1 DTD\n * "svg" or "svg-full" for the SVG 1.1 DTD\n * "svg-basic" for the SVG Basic 1.1 DTD\n * "svg-tiny" for the SVG Tiny 1.1 DTD\n \n :param name: the name of the ``DOCTYPE``\n :return: the ``(name, pubid, sysid)`` tuple for the requested\n ``DOCTYPE``, or ``None`` if the name is not recognized\n :since: version 0.4.1\n ' return {'html': cls.HTML, 'html-strict': cls.HTML_STRICT, 'html-transitional': DocType.HTML_TRANSITIONAL, 'html-frameset': DocType.HTML_FRAMESET, 'html5': cls.HTML5, 'xhtml': cls.XHTML, 'xhtml-strict': cls.XHTML_STRICT, 'xhtml-transitional': cls.XHTML_TRANSITIONAL, 'xhtml-frameset': cls.XHTML_FRAMESET, 'xhtml11': cls.XHTML11, 'svg': cls.SVG, 'svg-full': cls.SVG_FULL, 'svg-basic': cls.SVG_BASIC, 'svg-tiny': cls.SVG_TINY}.get(name.lower())
def __init__(self, doctype=None, strip_whitespace=True, namespace_prefixes=None, cache=True): 'Initialize the XML serializer.\n \n :param doctype: a ``(name, pubid, sysid)`` tuple that represents the\n DOCTYPE declaration that should be included at the top\n of the generated output, or the name of a DOCTYPE as\n defined in `DocType.get`\n :param strip_whitespace: whether extraneous whitespace should be\n stripped from the output\n :param cache: whether to cache the text output per event, which\n improves performance for repetitive markup\n :note: Changed in 0.4.2: The `doctype` parameter can now be a string.\n :note: Changed in 0.6: The `cache` parameter was added\n ' self.filters = [EmptyTagFilter()] if strip_whitespace: self.filters.append(WhitespaceFilter(self._PRESERVE_SPACE)) self.filters.append(NamespaceFlattener(prefixes=namespace_prefixes, cache=cache)) if doctype: self.filters.append(DocTypeInserter(doctype)) self.cache = cache
-4,096,005,298,788,750,000
Initialize the XML serializer. :param doctype: a ``(name, pubid, sysid)`` tuple that represents the DOCTYPE declaration that should be included at the top of the generated output, or the name of a DOCTYPE as defined in `DocType.get` :param strip_whitespace: whether extraneous whitespace should be stripped from the output :param cache: whether to cache the text output per event, which improves performance for repetitive markup :note: Changed in 0.4.2: The `doctype` parameter can now be a string. :note: Changed in 0.6: The `cache` parameter was added
Packages/OmniMarkupPreviewer/OmniMarkupLib/Renderers/libs/python2/genshi/output.py
__init__
262877348/Data
python
def __init__(self, doctype=None, strip_whitespace=True, namespace_prefixes=None, cache=True): 'Initialize the XML serializer.\n \n :param doctype: a ``(name, pubid, sysid)`` tuple that represents the\n DOCTYPE declaration that should be included at the top\n of the generated output, or the name of a DOCTYPE as\n defined in `DocType.get`\n :param strip_whitespace: whether extraneous whitespace should be\n stripped from the output\n :param cache: whether to cache the text output per event, which\n improves performance for repetitive markup\n :note: Changed in 0.4.2: The `doctype` parameter can now be a string.\n :note: Changed in 0.6: The `cache` parameter was added\n ' self.filters = [EmptyTagFilter()] if strip_whitespace: self.filters.append(WhitespaceFilter(self._PRESERVE_SPACE)) self.filters.append(NamespaceFlattener(prefixes=namespace_prefixes, cache=cache)) if doctype: self.filters.append(DocTypeInserter(doctype)) self.cache = cache
def __init__(self, doctype=None, strip_whitespace=True, cache=True): 'Initialize the HTML serializer.\n \n :param doctype: a ``(name, pubid, sysid)`` tuple that represents the\n DOCTYPE declaration that should be included at the top\n of the generated output\n :param strip_whitespace: whether extraneous whitespace should be\n stripped from the output\n :param cache: whether to cache the text output per event, which\n improves performance for repetitive markup\n :note: Changed in 0.6: The `cache` parameter was added\n ' super(HTMLSerializer, self).__init__(doctype, False) self.filters = [EmptyTagFilter()] if strip_whitespace: self.filters.append(WhitespaceFilter(self._PRESERVE_SPACE, self._NOESCAPE_ELEMS)) self.filters.append(NamespaceFlattener(prefixes={'http://www.w3.org/1999/xhtml': ''}, cache=cache)) if doctype: self.filters.append(DocTypeInserter(doctype)) self.cache = True
8,366,487,007,270,063,000
Initialize the HTML serializer. :param doctype: a ``(name, pubid, sysid)`` tuple that represents the DOCTYPE declaration that should be included at the top of the generated output :param strip_whitespace: whether extraneous whitespace should be stripped from the output :param cache: whether to cache the text output per event, which improves performance for repetitive markup :note: Changed in 0.6: The `cache` parameter was added
Packages/OmniMarkupPreviewer/OmniMarkupLib/Renderers/libs/python2/genshi/output.py
__init__
262877348/Data
python
def __init__(self, doctype=None, strip_whitespace=True, cache=True): 'Initialize the HTML serializer.\n \n :param doctype: a ``(name, pubid, sysid)`` tuple that represents the\n DOCTYPE declaration that should be included at the top\n of the generated output\n :param strip_whitespace: whether extraneous whitespace should be\n stripped from the output\n :param cache: whether to cache the text output per event, which\n improves performance for repetitive markup\n :note: Changed in 0.6: The `cache` parameter was added\n ' super(HTMLSerializer, self).__init__(doctype, False) self.filters = [EmptyTagFilter()] if strip_whitespace: self.filters.append(WhitespaceFilter(self._PRESERVE_SPACE, self._NOESCAPE_ELEMS)) self.filters.append(NamespaceFlattener(prefixes={'http://www.w3.org/1999/xhtml': }, cache=cache)) if doctype: self.filters.append(DocTypeInserter(doctype)) self.cache = True
def __init__(self, strip_markup=False): 'Create the serializer.\n \n :param strip_markup: whether markup (tags and encoded characters) found\n in the text should be removed\n ' self.strip_markup = strip_markup
4,920,285,809,569,111,000
Create the serializer. :param strip_markup: whether markup (tags and encoded characters) found in the text should be removed
Packages/OmniMarkupPreviewer/OmniMarkupLib/Renderers/libs/python2/genshi/output.py
__init__
262877348/Data
python
def __init__(self, strip_markup=False): 'Create the serializer.\n \n :param strip_markup: whether markup (tags and encoded characters) found\n in the text should be removed\n ' self.strip_markup = strip_markup
def __init__(self, preserve=None, noescape=None): 'Initialize the filter.\n \n :param preserve: a set or sequence of tag names for which white-space\n should be preserved\n :param noescape: a set or sequence of tag names for which text content\n should not be escaped\n \n The `noescape` set is expected to refer to elements that cannot contain\n further child elements (such as ``<style>`` or ``<script>`` in HTML\n documents).\n ' if (preserve is None): preserve = [] self.preserve = frozenset(preserve) if (noescape is None): noescape = [] self.noescape = frozenset(noescape)
-8,983,873,959,590,232,000
Initialize the filter. :param preserve: a set or sequence of tag names for which white-space should be preserved :param noescape: a set or sequence of tag names for which text content should not be escaped The `noescape` set is expected to refer to elements that cannot contain further child elements (such as ``<style>`` or ``<script>`` in HTML documents).
Packages/OmniMarkupPreviewer/OmniMarkupLib/Renderers/libs/python2/genshi/output.py
__init__
262877348/Data
python
def __init__(self, preserve=None, noescape=None): 'Initialize the filter.\n \n :param preserve: a set or sequence of tag names for which white-space\n should be preserved\n :param noescape: a set or sequence of tag names for which text content\n should not be escaped\n \n The `noescape` set is expected to refer to elements that cannot contain\n further child elements (such as ``<style>`` or ``<script>`` in HTML\n documents).\n ' if (preserve is None): preserve = [] self.preserve = frozenset(preserve) if (noescape is None): noescape = [] self.noescape = frozenset(noescape)
def __init__(self, doctype): 'Initialize the filter.\n\n :param doctype: DOCTYPE as a string or DocType object.\n ' if isinstance(doctype, basestring): doctype = DocType.get(doctype) self.doctype_event = (DOCTYPE, doctype, (None, (- 1), (- 1)))
-3,173,367,274,843,465,000
Initialize the filter. :param doctype: DOCTYPE as a string or DocType object.
Packages/OmniMarkupPreviewer/OmniMarkupLib/Renderers/libs/python2/genshi/output.py
__init__
262877348/Data
python
def __init__(self, doctype): 'Initialize the filter.\n\n :param doctype: DOCTYPE as a string or DocType object.\n ' if isinstance(doctype, basestring): doctype = DocType.get(doctype) self.doctype_event = (DOCTYPE, doctype, (None, (- 1), (- 1)))
def correlation_columns(dataset: pd.DataFrame, target_column: str, k: float=0.5): '\n Columns that are correlated to the target point\n\n Parameters\n ----------\n\n dataset: pd.DataFrame\n The pandas dataframe\n \n target_column: str\n The target column to calculate correlation against\n\n k: float\n The correlation cuttoff point; defaults to -0.5 and 0.5.\n The values passed in represents the negative and positive cutofff\n\n Returns\n -------\n\n columns: list\n A list of columns that are correlated to the target column based on the cutoff point\n ' corr = np.abs(dataset.corr()[target_column]) corr_sorted = corr.sort_values(ascending=False) columns = [col for (col, value) in zip(corr_sorted.index, corr_sorted.values) if ((value >= k) and (col != target_column))] return columns
1,533,437,794,607,541,500
Columns that are correlated to the target point Parameters ---------- dataset: pd.DataFrame The pandas dataframe target_column: str The target column to calculate correlation against k: float The correlation cuttoff point; defaults to -0.5 and 0.5. The values passed in represents the negative and positive cutofff Returns ------- columns: list A list of columns that are correlated to the target column based on the cutoff point
credit-card-fraud/src/features/build_features.py
correlation_columns
samie-hash/data-science-repo
python
def correlation_columns(dataset: pd.DataFrame, target_column: str, k: float=0.5): '\n Columns that are correlated to the target point\n\n Parameters\n ----------\n\n dataset: pd.DataFrame\n The pandas dataframe\n \n target_column: str\n The target column to calculate correlation against\n\n k: float\n The correlation cuttoff point; defaults to -0.5 and 0.5.\n The values passed in represents the negative and positive cutofff\n\n Returns\n -------\n\n columns: list\n A list of columns that are correlated to the target column based on the cutoff point\n ' corr = np.abs(dataset.corr()[target_column]) corr_sorted = corr.sort_values(ascending=False) columns = [col for (col, value) in zip(corr_sorted.index, corr_sorted.values) if ((value >= k) and (col != target_column))] return columns
def cummin(self: FrameLike, skipna: bool=True) -> FrameLike: "\n Return cumulative minimum over a DataFrame or Series axis.\n\n Returns a DataFrame or Series of the same size containing the cumulative minimum.\n\n .. note:: the current implementation of cummin uses Spark's Window without\n specifying partition specification. This leads to move all data into\n single partition in single machine and could cause serious\n performance degradation. Avoid this method against very large dataset.\n\n Parameters\n ----------\n skipna : boolean, default True\n Exclude NA/null values. If an entire row/column is NA, the result will be NA.\n\n Returns\n -------\n DataFrame or Series\n\n See Also\n --------\n DataFrame.min : Return the minimum over DataFrame axis.\n DataFrame.cummax : Return cumulative maximum over DataFrame axis.\n DataFrame.cummin : Return cumulative minimum over DataFrame axis.\n DataFrame.cumsum : Return cumulative sum over DataFrame axis.\n Series.min : Return the minimum over Series axis.\n Series.cummax : Return cumulative maximum over Series axis.\n Series.cummin : Return cumulative minimum over Series axis.\n Series.cumsum : Return cumulative sum over Series axis.\n Series.cumprod : Return cumulative product over Series axis.\n\n Examples\n --------\n >>> df = ps.DataFrame([[2.0, 1.0], [3.0, None], [1.0, 0.0]], columns=list('AB'))\n >>> df\n A B\n 0 2.0 1.0\n 1 3.0 NaN\n 2 1.0 0.0\n\n By default, iterates over rows and finds the minimum in each column.\n\n >>> df.cummin()\n A B\n 0 2.0 1.0\n 1 2.0 NaN\n 2 1.0 0.0\n\n It works identically in Series.\n\n >>> df.A.cummin()\n 0 2.0\n 1 2.0\n 2 1.0\n Name: A, dtype: float64\n " return self._apply_series_op((lambda psser: psser._cum(F.min, skipna)), should_resolve=True)
-2,685,636,878,631,528,400
Return cumulative minimum over a DataFrame or Series axis. Returns a DataFrame or Series of the same size containing the cumulative minimum. .. note:: the current implementation of cummin uses Spark's Window without specifying partition specification. This leads to move all data into single partition in single machine and could cause serious performance degradation. Avoid this method against very large dataset. Parameters ---------- skipna : boolean, default True Exclude NA/null values. If an entire row/column is NA, the result will be NA. Returns ------- DataFrame or Series See Also -------- DataFrame.min : Return the minimum over DataFrame axis. DataFrame.cummax : Return cumulative maximum over DataFrame axis. DataFrame.cummin : Return cumulative minimum over DataFrame axis. DataFrame.cumsum : Return cumulative sum over DataFrame axis. Series.min : Return the minimum over Series axis. Series.cummax : Return cumulative maximum over Series axis. Series.cummin : Return cumulative minimum over Series axis. Series.cumsum : Return cumulative sum over Series axis. Series.cumprod : Return cumulative product over Series axis. Examples -------- >>> df = ps.DataFrame([[2.0, 1.0], [3.0, None], [1.0, 0.0]], columns=list('AB')) >>> df A B 0 2.0 1.0 1 3.0 NaN 2 1.0 0.0 By default, iterates over rows and finds the minimum in each column. >>> df.cummin() A B 0 2.0 1.0 1 2.0 NaN 2 1.0 0.0 It works identically in Series. >>> df.A.cummin() 0 2.0 1 2.0 2 1.0 Name: A, dtype: float64
python/pyspark/pandas/generic.py
cummin
XpressAI/spark
python
def cummin(self: FrameLike, skipna: bool=True) -> FrameLike: "\n Return cumulative minimum over a DataFrame or Series axis.\n\n Returns a DataFrame or Series of the same size containing the cumulative minimum.\n\n .. note:: the current implementation of cummin uses Spark's Window without\n specifying partition specification. This leads to move all data into\n single partition in single machine and could cause serious\n performance degradation. Avoid this method against very large dataset.\n\n Parameters\n ----------\n skipna : boolean, default True\n Exclude NA/null values. If an entire row/column is NA, the result will be NA.\n\n Returns\n -------\n DataFrame or Series\n\n See Also\n --------\n DataFrame.min : Return the minimum over DataFrame axis.\n DataFrame.cummax : Return cumulative maximum over DataFrame axis.\n DataFrame.cummin : Return cumulative minimum over DataFrame axis.\n DataFrame.cumsum : Return cumulative sum over DataFrame axis.\n Series.min : Return the minimum over Series axis.\n Series.cummax : Return cumulative maximum over Series axis.\n Series.cummin : Return cumulative minimum over Series axis.\n Series.cumsum : Return cumulative sum over Series axis.\n Series.cumprod : Return cumulative product over Series axis.\n\n Examples\n --------\n >>> df = ps.DataFrame([[2.0, 1.0], [3.0, None], [1.0, 0.0]], columns=list('AB'))\n >>> df\n A B\n 0 2.0 1.0\n 1 3.0 NaN\n 2 1.0 0.0\n\n By default, iterates over rows and finds the minimum in each column.\n\n >>> df.cummin()\n A B\n 0 2.0 1.0\n 1 2.0 NaN\n 2 1.0 0.0\n\n It works identically in Series.\n\n >>> df.A.cummin()\n 0 2.0\n 1 2.0\n 2 1.0\n Name: A, dtype: float64\n " return self._apply_series_op((lambda psser: psser._cum(F.min, skipna)), should_resolve=True)
def cummax(self: FrameLike, skipna: bool=True) -> FrameLike: "\n Return cumulative maximum over a DataFrame or Series axis.\n\n Returns a DataFrame or Series of the same size containing the cumulative maximum.\n\n .. note:: the current implementation of cummax uses Spark's Window without\n specifying partition specification. This leads to move all data into\n single partition in single machine and could cause serious\n performance degradation. Avoid this method against very large dataset.\n\n Parameters\n ----------\n skipna : boolean, default True\n Exclude NA/null values. If an entire row/column is NA, the result will be NA.\n\n Returns\n -------\n DataFrame or Series\n\n See Also\n --------\n DataFrame.max : Return the maximum over DataFrame axis.\n DataFrame.cummax : Return cumulative maximum over DataFrame axis.\n DataFrame.cummin : Return cumulative minimum over DataFrame axis.\n DataFrame.cumsum : Return cumulative sum over DataFrame axis.\n DataFrame.cumprod : Return cumulative product over DataFrame axis.\n Series.max : Return the maximum over Series axis.\n Series.cummax : Return cumulative maximum over Series axis.\n Series.cummin : Return cumulative minimum over Series axis.\n Series.cumsum : Return cumulative sum over Series axis.\n Series.cumprod : Return cumulative product over Series axis.\n\n Examples\n --------\n >>> df = ps.DataFrame([[2.0, 1.0], [3.0, None], [1.0, 0.0]], columns=list('AB'))\n >>> df\n A B\n 0 2.0 1.0\n 1 3.0 NaN\n 2 1.0 0.0\n\n By default, iterates over rows and finds the maximum in each column.\n\n >>> df.cummax()\n A B\n 0 2.0 1.0\n 1 3.0 NaN\n 2 3.0 1.0\n\n It works identically in Series.\n\n >>> df.B.cummax()\n 0 1.0\n 1 NaN\n 2 1.0\n Name: B, dtype: float64\n " return self._apply_series_op((lambda psser: psser._cum(F.max, skipna)), should_resolve=True)
-3,348,748,663,714,688,000
Return cumulative maximum over a DataFrame or Series axis. Returns a DataFrame or Series of the same size containing the cumulative maximum. .. note:: the current implementation of cummax uses Spark's Window without specifying partition specification. This leads to move all data into single partition in single machine and could cause serious performance degradation. Avoid this method against very large dataset. Parameters ---------- skipna : boolean, default True Exclude NA/null values. If an entire row/column is NA, the result will be NA. Returns ------- DataFrame or Series See Also -------- DataFrame.max : Return the maximum over DataFrame axis. DataFrame.cummax : Return cumulative maximum over DataFrame axis. DataFrame.cummin : Return cumulative minimum over DataFrame axis. DataFrame.cumsum : Return cumulative sum over DataFrame axis. DataFrame.cumprod : Return cumulative product over DataFrame axis. Series.max : Return the maximum over Series axis. Series.cummax : Return cumulative maximum over Series axis. Series.cummin : Return cumulative minimum over Series axis. Series.cumsum : Return cumulative sum over Series axis. Series.cumprod : Return cumulative product over Series axis. Examples -------- >>> df = ps.DataFrame([[2.0, 1.0], [3.0, None], [1.0, 0.0]], columns=list('AB')) >>> df A B 0 2.0 1.0 1 3.0 NaN 2 1.0 0.0 By default, iterates over rows and finds the maximum in each column. >>> df.cummax() A B 0 2.0 1.0 1 3.0 NaN 2 3.0 1.0 It works identically in Series. >>> df.B.cummax() 0 1.0 1 NaN 2 1.0 Name: B, dtype: float64
python/pyspark/pandas/generic.py
cummax
XpressAI/spark
python
def cummax(self: FrameLike, skipna: bool=True) -> FrameLike: "\n Return cumulative maximum over a DataFrame or Series axis.\n\n Returns a DataFrame or Series of the same size containing the cumulative maximum.\n\n .. note:: the current implementation of cummax uses Spark's Window without\n specifying partition specification. This leads to move all data into\n single partition in single machine and could cause serious\n performance degradation. Avoid this method against very large dataset.\n\n Parameters\n ----------\n skipna : boolean, default True\n Exclude NA/null values. If an entire row/column is NA, the result will be NA.\n\n Returns\n -------\n DataFrame or Series\n\n See Also\n --------\n DataFrame.max : Return the maximum over DataFrame axis.\n DataFrame.cummax : Return cumulative maximum over DataFrame axis.\n DataFrame.cummin : Return cumulative minimum over DataFrame axis.\n DataFrame.cumsum : Return cumulative sum over DataFrame axis.\n DataFrame.cumprod : Return cumulative product over DataFrame axis.\n Series.max : Return the maximum over Series axis.\n Series.cummax : Return cumulative maximum over Series axis.\n Series.cummin : Return cumulative minimum over Series axis.\n Series.cumsum : Return cumulative sum over Series axis.\n Series.cumprod : Return cumulative product over Series axis.\n\n Examples\n --------\n >>> df = ps.DataFrame([[2.0, 1.0], [3.0, None], [1.0, 0.0]], columns=list('AB'))\n >>> df\n A B\n 0 2.0 1.0\n 1 3.0 NaN\n 2 1.0 0.0\n\n By default, iterates over rows and finds the maximum in each column.\n\n >>> df.cummax()\n A B\n 0 2.0 1.0\n 1 3.0 NaN\n 2 3.0 1.0\n\n It works identically in Series.\n\n >>> df.B.cummax()\n 0 1.0\n 1 NaN\n 2 1.0\n Name: B, dtype: float64\n " return self._apply_series_op((lambda psser: psser._cum(F.max, skipna)), should_resolve=True)
def cumsum(self: FrameLike, skipna: bool=True) -> FrameLike: "\n Return cumulative sum over a DataFrame or Series axis.\n\n Returns a DataFrame or Series of the same size containing the cumulative sum.\n\n .. note:: the current implementation of cumsum uses Spark's Window without\n specifying partition specification. This leads to move all data into\n single partition in single machine and could cause serious\n performance degradation. Avoid this method against very large dataset.\n\n Parameters\n ----------\n skipna : boolean, default True\n Exclude NA/null values. If an entire row/column is NA, the result will be NA.\n\n Returns\n -------\n DataFrame or Series\n\n See Also\n --------\n DataFrame.sum : Return the sum over DataFrame axis.\n DataFrame.cummax : Return cumulative maximum over DataFrame axis.\n DataFrame.cummin : Return cumulative minimum over DataFrame axis.\n DataFrame.cumsum : Return cumulative sum over DataFrame axis.\n DataFrame.cumprod : Return cumulative product over DataFrame axis.\n Series.sum : Return the sum over Series axis.\n Series.cummax : Return cumulative maximum over Series axis.\n Series.cummin : Return cumulative minimum over Series axis.\n Series.cumsum : Return cumulative sum over Series axis.\n Series.cumprod : Return cumulative product over Series axis.\n\n Examples\n --------\n >>> df = ps.DataFrame([[2.0, 1.0], [3.0, None], [1.0, 0.0]], columns=list('AB'))\n >>> df\n A B\n 0 2.0 1.0\n 1 3.0 NaN\n 2 1.0 0.0\n\n By default, iterates over rows and finds the sum in each column.\n\n >>> df.cumsum()\n A B\n 0 2.0 1.0\n 1 5.0 NaN\n 2 6.0 1.0\n\n It works identically in Series.\n\n >>> df.A.cumsum()\n 0 2.0\n 1 5.0\n 2 6.0\n Name: A, dtype: float64\n " return self._apply_series_op((lambda psser: psser._cumsum(skipna)), should_resolve=True)
-8,141,575,604,497,648,000
Return cumulative sum over a DataFrame or Series axis. Returns a DataFrame or Series of the same size containing the cumulative sum. .. note:: the current implementation of cumsum uses Spark's Window without specifying partition specification. This leads to move all data into single partition in single machine and could cause serious performance degradation. Avoid this method against very large dataset. Parameters ---------- skipna : boolean, default True Exclude NA/null values. If an entire row/column is NA, the result will be NA. Returns ------- DataFrame or Series See Also -------- DataFrame.sum : Return the sum over DataFrame axis. DataFrame.cummax : Return cumulative maximum over DataFrame axis. DataFrame.cummin : Return cumulative minimum over DataFrame axis. DataFrame.cumsum : Return cumulative sum over DataFrame axis. DataFrame.cumprod : Return cumulative product over DataFrame axis. Series.sum : Return the sum over Series axis. Series.cummax : Return cumulative maximum over Series axis. Series.cummin : Return cumulative minimum over Series axis. Series.cumsum : Return cumulative sum over Series axis. Series.cumprod : Return cumulative product over Series axis. Examples -------- >>> df = ps.DataFrame([[2.0, 1.0], [3.0, None], [1.0, 0.0]], columns=list('AB')) >>> df A B 0 2.0 1.0 1 3.0 NaN 2 1.0 0.0 By default, iterates over rows and finds the sum in each column. >>> df.cumsum() A B 0 2.0 1.0 1 5.0 NaN 2 6.0 1.0 It works identically in Series. >>> df.A.cumsum() 0 2.0 1 5.0 2 6.0 Name: A, dtype: float64
python/pyspark/pandas/generic.py
cumsum
XpressAI/spark
python
def cumsum(self: FrameLike, skipna: bool=True) -> FrameLike: "\n Return cumulative sum over a DataFrame or Series axis.\n\n Returns a DataFrame or Series of the same size containing the cumulative sum.\n\n .. note:: the current implementation of cumsum uses Spark's Window without\n specifying partition specification. This leads to move all data into\n single partition in single machine and could cause serious\n performance degradation. Avoid this method against very large dataset.\n\n Parameters\n ----------\n skipna : boolean, default True\n Exclude NA/null values. If an entire row/column is NA, the result will be NA.\n\n Returns\n -------\n DataFrame or Series\n\n See Also\n --------\n DataFrame.sum : Return the sum over DataFrame axis.\n DataFrame.cummax : Return cumulative maximum over DataFrame axis.\n DataFrame.cummin : Return cumulative minimum over DataFrame axis.\n DataFrame.cumsum : Return cumulative sum over DataFrame axis.\n DataFrame.cumprod : Return cumulative product over DataFrame axis.\n Series.sum : Return the sum over Series axis.\n Series.cummax : Return cumulative maximum over Series axis.\n Series.cummin : Return cumulative minimum over Series axis.\n Series.cumsum : Return cumulative sum over Series axis.\n Series.cumprod : Return cumulative product over Series axis.\n\n Examples\n --------\n >>> df = ps.DataFrame([[2.0, 1.0], [3.0, None], [1.0, 0.0]], columns=list('AB'))\n >>> df\n A B\n 0 2.0 1.0\n 1 3.0 NaN\n 2 1.0 0.0\n\n By default, iterates over rows and finds the sum in each column.\n\n >>> df.cumsum()\n A B\n 0 2.0 1.0\n 1 5.0 NaN\n 2 6.0 1.0\n\n It works identically in Series.\n\n >>> df.A.cumsum()\n 0 2.0\n 1 5.0\n 2 6.0\n Name: A, dtype: float64\n " return self._apply_series_op((lambda psser: psser._cumsum(skipna)), should_resolve=True)
def cumprod(self: FrameLike, skipna: bool=True) -> FrameLike: "\n Return cumulative product over a DataFrame or Series axis.\n\n Returns a DataFrame or Series of the same size containing the cumulative product.\n\n .. note:: the current implementation of cumprod uses Spark's Window without\n specifying partition specification. This leads to move all data into\n single partition in single machine and could cause serious\n performance degradation. Avoid this method against very large dataset.\n\n .. note:: unlike pandas', pandas-on-Spark's emulates cumulative product by\n ``exp(sum(log(...)))`` trick. Therefore, it only works for positive numbers.\n\n Parameters\n ----------\n skipna : boolean, default True\n Exclude NA/null values. If an entire row/column is NA, the result will be NA.\n\n Returns\n -------\n DataFrame or Series\n\n See Also\n --------\n DataFrame.cummax : Return cumulative maximum over DataFrame axis.\n DataFrame.cummin : Return cumulative minimum over DataFrame axis.\n DataFrame.cumsum : Return cumulative sum over DataFrame axis.\n DataFrame.cumprod : Return cumulative product over DataFrame axis.\n Series.cummax : Return cumulative maximum over Series axis.\n Series.cummin : Return cumulative minimum over Series axis.\n Series.cumsum : Return cumulative sum over Series axis.\n Series.cumprod : Return cumulative product over Series axis.\n\n Raises\n ------\n Exception : If the values is equal to or lower than 0.\n\n Examples\n --------\n >>> df = ps.DataFrame([[2.0, 1.0], [3.0, None], [4.0, 10.0]], columns=list('AB'))\n >>> df\n A B\n 0 2.0 1.0\n 1 3.0 NaN\n 2 4.0 10.0\n\n By default, iterates over rows and finds the sum in each column.\n\n >>> df.cumprod()\n A B\n 0 2.0 1.0\n 1 6.0 NaN\n 2 24.0 10.0\n\n It works identically in Series.\n\n >>> df.A.cumprod()\n 0 2.0\n 1 6.0\n 2 24.0\n Name: A, dtype: float64\n " return self._apply_series_op((lambda psser: psser._cumprod(skipna)), should_resolve=True)
1,569,474,608,944,173,600
Return cumulative product over a DataFrame or Series axis. Returns a DataFrame or Series of the same size containing the cumulative product. .. note:: the current implementation of cumprod uses Spark's Window without specifying partition specification. This leads to move all data into single partition in single machine and could cause serious performance degradation. Avoid this method against very large dataset. .. note:: unlike pandas', pandas-on-Spark's emulates cumulative product by ``exp(sum(log(...)))`` trick. Therefore, it only works for positive numbers. Parameters ---------- skipna : boolean, default True Exclude NA/null values. If an entire row/column is NA, the result will be NA. Returns ------- DataFrame or Series See Also -------- DataFrame.cummax : Return cumulative maximum over DataFrame axis. DataFrame.cummin : Return cumulative minimum over DataFrame axis. DataFrame.cumsum : Return cumulative sum over DataFrame axis. DataFrame.cumprod : Return cumulative product over DataFrame axis. Series.cummax : Return cumulative maximum over Series axis. Series.cummin : Return cumulative minimum over Series axis. Series.cumsum : Return cumulative sum over Series axis. Series.cumprod : Return cumulative product over Series axis. Raises ------ Exception : If the values is equal to or lower than 0. Examples -------- >>> df = ps.DataFrame([[2.0, 1.0], [3.0, None], [4.0, 10.0]], columns=list('AB')) >>> df A B 0 2.0 1.0 1 3.0 NaN 2 4.0 10.0 By default, iterates over rows and finds the sum in each column. >>> df.cumprod() A B 0 2.0 1.0 1 6.0 NaN 2 24.0 10.0 It works identically in Series. >>> df.A.cumprod() 0 2.0 1 6.0 2 24.0 Name: A, dtype: float64
python/pyspark/pandas/generic.py
cumprod
XpressAI/spark
python
def cumprod(self: FrameLike, skipna: bool=True) -> FrameLike: "\n Return cumulative product over a DataFrame or Series axis.\n\n Returns a DataFrame or Series of the same size containing the cumulative product.\n\n .. note:: the current implementation of cumprod uses Spark's Window without\n specifying partition specification. This leads to move all data into\n single partition in single machine and could cause serious\n performance degradation. Avoid this method against very large dataset.\n\n .. note:: unlike pandas', pandas-on-Spark's emulates cumulative product by\n ``exp(sum(log(...)))`` trick. Therefore, it only works for positive numbers.\n\n Parameters\n ----------\n skipna : boolean, default True\n Exclude NA/null values. If an entire row/column is NA, the result will be NA.\n\n Returns\n -------\n DataFrame or Series\n\n See Also\n --------\n DataFrame.cummax : Return cumulative maximum over DataFrame axis.\n DataFrame.cummin : Return cumulative minimum over DataFrame axis.\n DataFrame.cumsum : Return cumulative sum over DataFrame axis.\n DataFrame.cumprod : Return cumulative product over DataFrame axis.\n Series.cummax : Return cumulative maximum over Series axis.\n Series.cummin : Return cumulative minimum over Series axis.\n Series.cumsum : Return cumulative sum over Series axis.\n Series.cumprod : Return cumulative product over Series axis.\n\n Raises\n ------\n Exception : If the values is equal to or lower than 0.\n\n Examples\n --------\n >>> df = ps.DataFrame([[2.0, 1.0], [3.0, None], [4.0, 10.0]], columns=list('AB'))\n >>> df\n A B\n 0 2.0 1.0\n 1 3.0 NaN\n 2 4.0 10.0\n\n By default, iterates over rows and finds the sum in each column.\n\n >>> df.cumprod()\n A B\n 0 2.0 1.0\n 1 6.0 NaN\n 2 24.0 10.0\n\n It works identically in Series.\n\n >>> df.A.cumprod()\n 0 2.0\n 1 6.0\n 2 24.0\n Name: A, dtype: float64\n " return self._apply_series_op((lambda psser: psser._cumprod(skipna)), should_resolve=True)
def get_dtype_counts(self) -> pd.Series: "\n Return counts of unique dtypes in this object.\n\n .. deprecated:: 0.14.0\n\n Returns\n -------\n dtype : pd.Series\n Series with the count of columns with each dtype.\n\n See Also\n --------\n dtypes : Return the dtypes in this object.\n\n Examples\n --------\n >>> a = [['a', 1, 1], ['b', 2, 2], ['c', 3, 3]]\n >>> df = ps.DataFrame(a, columns=['str', 'int1', 'int2'])\n >>> df\n str int1 int2\n 0 a 1 1\n 1 b 2 2\n 2 c 3 3\n\n >>> df.get_dtype_counts().sort_values()\n object 1\n int64 2\n dtype: int64\n\n >>> df.str.get_dtype_counts().sort_values()\n object 1\n dtype: int64\n " warnings.warn('`get_dtype_counts` has been deprecated and will be removed in a future version. For DataFrames use `.dtypes.value_counts()', FutureWarning) if (not isinstance(self.dtypes, Iterable)): dtypes = [self.dtypes] else: dtypes = list(self.dtypes) return pd.Series(dict(Counter([d.name for d in dtypes])))
9,206,764,287,967,669,000
Return counts of unique dtypes in this object. .. deprecated:: 0.14.0 Returns ------- dtype : pd.Series Series with the count of columns with each dtype. See Also -------- dtypes : Return the dtypes in this object. Examples -------- >>> a = [['a', 1, 1], ['b', 2, 2], ['c', 3, 3]] >>> df = ps.DataFrame(a, columns=['str', 'int1', 'int2']) >>> df str int1 int2 0 a 1 1 1 b 2 2 2 c 3 3 >>> df.get_dtype_counts().sort_values() object 1 int64 2 dtype: int64 >>> df.str.get_dtype_counts().sort_values() object 1 dtype: int64
python/pyspark/pandas/generic.py
get_dtype_counts
XpressAI/spark
python
def get_dtype_counts(self) -> pd.Series: "\n Return counts of unique dtypes in this object.\n\n .. deprecated:: 0.14.0\n\n Returns\n -------\n dtype : pd.Series\n Series with the count of columns with each dtype.\n\n See Also\n --------\n dtypes : Return the dtypes in this object.\n\n Examples\n --------\n >>> a = [['a', 1, 1], ['b', 2, 2], ['c', 3, 3]]\n >>> df = ps.DataFrame(a, columns=['str', 'int1', 'int2'])\n >>> df\n str int1 int2\n 0 a 1 1\n 1 b 2 2\n 2 c 3 3\n\n >>> df.get_dtype_counts().sort_values()\n object 1\n int64 2\n dtype: int64\n\n >>> df.str.get_dtype_counts().sort_values()\n object 1\n dtype: int64\n " warnings.warn('`get_dtype_counts` has been deprecated and will be removed in a future version. For DataFrames use `.dtypes.value_counts()', FutureWarning) if (not isinstance(self.dtypes, Iterable)): dtypes = [self.dtypes] else: dtypes = list(self.dtypes) return pd.Series(dict(Counter([d.name for d in dtypes])))
def pipe(self, func: Callable[(..., Any)], *args: Any, **kwargs: Any) -> Any: '\n Apply func(self, \\*args, \\*\\*kwargs).\n\n Parameters\n ----------\n func : function\n function to apply to the DataFrame.\n ``args``, and ``kwargs`` are passed into ``func``.\n Alternatively a ``(callable, data_keyword)`` tuple where\n ``data_keyword`` is a string indicating the keyword of\n ``callable`` that expects the DataFrames.\n args : iterable, optional\n positional arguments passed into ``func``.\n kwargs : mapping, optional\n a dictionary of keyword arguments passed into ``func``.\n\n Returns\n -------\n object : the return type of ``func``.\n\n Notes\n -----\n Use ``.pipe`` when chaining together functions that expect\n Series, DataFrames or GroupBy objects. For example, given\n\n >>> df = ps.DataFrame({\'category\': [\'A\', \'A\', \'B\'],\n ... \'col1\': [1, 2, 3],\n ... \'col2\': [4, 5, 6]},\n ... columns=[\'category\', \'col1\', \'col2\'])\n >>> def keep_category_a(df):\n ... return df[df[\'category\'] == \'A\']\n >>> def add_one(df, column):\n ... return df.assign(col3=df[column] + 1)\n >>> def multiply(df, column1, column2):\n ... return df.assign(col4=df[column1] * df[column2])\n\n\n instead of writing\n\n >>> multiply(add_one(keep_category_a(df), column="col1"), column1="col2", column2="col3")\n category col1 col2 col3 col4\n 0 A 1 4 2 8\n 1 A 2 5 3 15\n\n\n You can write\n\n >>> (df.pipe(keep_category_a)\n ... .pipe(add_one, column="col1")\n ... .pipe(multiply, column1="col2", column2="col3")\n ... )\n category col1 col2 col3 col4\n 0 A 1 4 2 8\n 1 A 2 5 3 15\n\n\n If you have a function that takes the data as (say) the second\n argument, pass a tuple indicating which keyword expects the\n data. For example, suppose ``f`` takes its data as ``df``:\n\n >>> def multiply_2(column1, df, column2):\n ... return df.assign(col4=df[column1] * df[column2])\n\n\n Then you can write\n\n >>> (df.pipe(keep_category_a)\n ... .pipe(add_one, column="col1")\n ... .pipe((multiply_2, \'df\'), column1="col2", column2="col3")\n ... )\n category col1 col2 col3 col4\n 0 A 1 4 2 8\n 1 A 2 5 3 15\n\n You can use lambda as wel\n\n >>> ps.Series([1, 2, 3]).pipe(lambda x: (x + 1).rename("value"))\n 0 2\n 1 3\n 2 4\n Name: value, dtype: int64\n ' if isinstance(func, tuple): (func, target) = func if (target in kwargs): raise ValueError(('%s is both the pipe target and a keyword argument' % target)) kwargs[target] = self return func(*args, **kwargs) else: return func(self, *args, **kwargs)
-5,945,533,546,538,242,000
Apply func(self, \*args, \*\*kwargs). Parameters ---------- func : function function to apply to the DataFrame. ``args``, and ``kwargs`` are passed into ``func``. Alternatively a ``(callable, data_keyword)`` tuple where ``data_keyword`` is a string indicating the keyword of ``callable`` that expects the DataFrames. args : iterable, optional positional arguments passed into ``func``. kwargs : mapping, optional a dictionary of keyword arguments passed into ``func``. Returns ------- object : the return type of ``func``. Notes ----- Use ``.pipe`` when chaining together functions that expect Series, DataFrames or GroupBy objects. For example, given >>> df = ps.DataFrame({'category': ['A', 'A', 'B'], ... 'col1': [1, 2, 3], ... 'col2': [4, 5, 6]}, ... columns=['category', 'col1', 'col2']) >>> def keep_category_a(df): ... return df[df['category'] == 'A'] >>> def add_one(df, column): ... return df.assign(col3=df[column] + 1) >>> def multiply(df, column1, column2): ... return df.assign(col4=df[column1] * df[column2]) instead of writing >>> multiply(add_one(keep_category_a(df), column="col1"), column1="col2", column2="col3") category col1 col2 col3 col4 0 A 1 4 2 8 1 A 2 5 3 15 You can write >>> (df.pipe(keep_category_a) ... .pipe(add_one, column="col1") ... .pipe(multiply, column1="col2", column2="col3") ... ) category col1 col2 col3 col4 0 A 1 4 2 8 1 A 2 5 3 15 If you have a function that takes the data as (say) the second argument, pass a tuple indicating which keyword expects the data. For example, suppose ``f`` takes its data as ``df``: >>> def multiply_2(column1, df, column2): ... return df.assign(col4=df[column1] * df[column2]) Then you can write >>> (df.pipe(keep_category_a) ... .pipe(add_one, column="col1") ... .pipe((multiply_2, 'df'), column1="col2", column2="col3") ... ) category col1 col2 col3 col4 0 A 1 4 2 8 1 A 2 5 3 15 You can use lambda as wel >>> ps.Series([1, 2, 3]).pipe(lambda x: (x + 1).rename("value")) 0 2 1 3 2 4 Name: value, dtype: int64
python/pyspark/pandas/generic.py
pipe
XpressAI/spark
python
def pipe(self, func: Callable[(..., Any)], *args: Any, **kwargs: Any) -> Any: '\n Apply func(self, \\*args, \\*\\*kwargs).\n\n Parameters\n ----------\n func : function\n function to apply to the DataFrame.\n ``args``, and ``kwargs`` are passed into ``func``.\n Alternatively a ``(callable, data_keyword)`` tuple where\n ``data_keyword`` is a string indicating the keyword of\n ``callable`` that expects the DataFrames.\n args : iterable, optional\n positional arguments passed into ``func``.\n kwargs : mapping, optional\n a dictionary of keyword arguments passed into ``func``.\n\n Returns\n -------\n object : the return type of ``func``.\n\n Notes\n -----\n Use ``.pipe`` when chaining together functions that expect\n Series, DataFrames or GroupBy objects. For example, given\n\n >>> df = ps.DataFrame({\'category\': [\'A\', \'A\', \'B\'],\n ... \'col1\': [1, 2, 3],\n ... \'col2\': [4, 5, 6]},\n ... columns=[\'category\', \'col1\', \'col2\'])\n >>> def keep_category_a(df):\n ... return df[df[\'category\'] == \'A\']\n >>> def add_one(df, column):\n ... return df.assign(col3=df[column] + 1)\n >>> def multiply(df, column1, column2):\n ... return df.assign(col4=df[column1] * df[column2])\n\n\n instead of writing\n\n >>> multiply(add_one(keep_category_a(df), column="col1"), column1="col2", column2="col3")\n category col1 col2 col3 col4\n 0 A 1 4 2 8\n 1 A 2 5 3 15\n\n\n You can write\n\n >>> (df.pipe(keep_category_a)\n ... .pipe(add_one, column="col1")\n ... .pipe(multiply, column1="col2", column2="col3")\n ... )\n category col1 col2 col3 col4\n 0 A 1 4 2 8\n 1 A 2 5 3 15\n\n\n If you have a function that takes the data as (say) the second\n argument, pass a tuple indicating which keyword expects the\n data. For example, suppose ``f`` takes its data as ``df``:\n\n >>> def multiply_2(column1, df, column2):\n ... return df.assign(col4=df[column1] * df[column2])\n\n\n Then you can write\n\n >>> (df.pipe(keep_category_a)\n ... .pipe(add_one, column="col1")\n ... .pipe((multiply_2, \'df\'), column1="col2", column2="col3")\n ... )\n category col1 col2 col3 col4\n 0 A 1 4 2 8\n 1 A 2 5 3 15\n\n You can use lambda as wel\n\n >>> ps.Series([1, 2, 3]).pipe(lambda x: (x + 1).rename("value"))\n 0 2\n 1 3\n 2 4\n Name: value, dtype: int64\n ' if isinstance(func, tuple): (func, target) = func if (target in kwargs): raise ValueError(('%s is both the pipe target and a keyword argument' % target)) kwargs[target] = self return func(*args, **kwargs) else: return func(self, *args, **kwargs)
def to_numpy(self) -> np.ndarray: '\n A NumPy ndarray representing the values in this DataFrame or Series.\n\n .. note:: This method should only be used if the resulting NumPy ndarray is expected\n to be small, as all the data is loaded into the driver\'s memory.\n\n Returns\n -------\n numpy.ndarray\n\n Examples\n --------\n >>> ps.DataFrame({"A": [1, 2], "B": [3, 4]}).to_numpy()\n array([[1, 3],\n [2, 4]])\n\n With heterogeneous data, the lowest common type will have to be used.\n\n >>> ps.DataFrame({"A": [1, 2], "B": [3.0, 4.5]}).to_numpy()\n array([[1. , 3. ],\n [2. , 4.5]])\n\n For a mix of numeric and non-numeric types, the output array will have object dtype.\n\n >>> df = ps.DataFrame({"A": [1, 2], "B": [3.0, 4.5], "C": pd.date_range(\'2000\', periods=2)})\n >>> df.to_numpy()\n array([[1, 3.0, Timestamp(\'2000-01-01 00:00:00\')],\n [2, 4.5, Timestamp(\'2000-01-02 00:00:00\')]], dtype=object)\n\n For Series,\n\n >>> ps.Series([\'a\', \'b\', \'a\']).to_numpy()\n array([\'a\', \'b\', \'a\'], dtype=object)\n ' return self.to_pandas().values
3,172,926,021,327,149,600
A NumPy ndarray representing the values in this DataFrame or Series. .. note:: This method should only be used if the resulting NumPy ndarray is expected to be small, as all the data is loaded into the driver's memory. Returns ------- numpy.ndarray Examples -------- >>> ps.DataFrame({"A": [1, 2], "B": [3, 4]}).to_numpy() array([[1, 3], [2, 4]]) With heterogeneous data, the lowest common type will have to be used. >>> ps.DataFrame({"A": [1, 2], "B": [3.0, 4.5]}).to_numpy() array([[1. , 3. ], [2. , 4.5]]) For a mix of numeric and non-numeric types, the output array will have object dtype. >>> df = ps.DataFrame({"A": [1, 2], "B": [3.0, 4.5], "C": pd.date_range('2000', periods=2)}) >>> df.to_numpy() array([[1, 3.0, Timestamp('2000-01-01 00:00:00')], [2, 4.5, Timestamp('2000-01-02 00:00:00')]], dtype=object) For Series, >>> ps.Series(['a', 'b', 'a']).to_numpy() array(['a', 'b', 'a'], dtype=object)
python/pyspark/pandas/generic.py
to_numpy
XpressAI/spark
python
def to_numpy(self) -> np.ndarray: '\n A NumPy ndarray representing the values in this DataFrame or Series.\n\n .. note:: This method should only be used if the resulting NumPy ndarray is expected\n to be small, as all the data is loaded into the driver\'s memory.\n\n Returns\n -------\n numpy.ndarray\n\n Examples\n --------\n >>> ps.DataFrame({"A": [1, 2], "B": [3, 4]}).to_numpy()\n array([[1, 3],\n [2, 4]])\n\n With heterogeneous data, the lowest common type will have to be used.\n\n >>> ps.DataFrame({"A": [1, 2], "B": [3.0, 4.5]}).to_numpy()\n array([[1. , 3. ],\n [2. , 4.5]])\n\n For a mix of numeric and non-numeric types, the output array will have object dtype.\n\n >>> df = ps.DataFrame({"A": [1, 2], "B": [3.0, 4.5], "C": pd.date_range(\'2000\', periods=2)})\n >>> df.to_numpy()\n array([[1, 3.0, Timestamp(\'2000-01-01 00:00:00\')],\n [2, 4.5, Timestamp(\'2000-01-02 00:00:00\')]], dtype=object)\n\n For Series,\n\n >>> ps.Series([\'a\', \'b\', \'a\']).to_numpy()\n array([\'a\', \'b\', \'a\'], dtype=object)\n ' return self.to_pandas().values
@property def values(self) -> np.ndarray: "\n Return a Numpy representation of the DataFrame or the Series.\n\n .. warning:: We recommend using `DataFrame.to_numpy()` or `Series.to_numpy()` instead.\n\n .. note:: This method should only be used if the resulting NumPy ndarray is expected\n to be small, as all the data is loaded into the driver's memory.\n\n Returns\n -------\n numpy.ndarray\n\n Examples\n --------\n A DataFrame where all columns are the same type (e.g., int64) results in an array of\n the same type.\n\n >>> df = ps.DataFrame({'age': [ 3, 29],\n ... 'height': [94, 170],\n ... 'weight': [31, 115]})\n >>> df\n age height weight\n 0 3 94 31\n 1 29 170 115\n >>> df.dtypes\n age int64\n height int64\n weight int64\n dtype: object\n >>> df.values\n array([[ 3, 94, 31],\n [ 29, 170, 115]])\n\n A DataFrame with mixed type columns(e.g., str/object, int64, float32) results in an ndarray\n of the broadest type that accommodates these mixed types (e.g., object).\n\n >>> df2 = ps.DataFrame([('parrot', 24.0, 'second'),\n ... ('lion', 80.5, 'first'),\n ... ('monkey', np.nan, None)],\n ... columns=('name', 'max_speed', 'rank'))\n >>> df2.dtypes\n name object\n max_speed float64\n rank object\n dtype: object\n >>> df2.values\n array([['parrot', 24.0, 'second'],\n ['lion', 80.5, 'first'],\n ['monkey', nan, None]], dtype=object)\n\n For Series,\n\n >>> ps.Series([1, 2, 3]).values\n array([1, 2, 3])\n\n >>> ps.Series(list('aabc')).values\n array(['a', 'a', 'b', 'c'], dtype=object)\n " warnings.warn('We recommend using `{}.to_numpy()` instead.'.format(type(self).__name__)) return self.to_numpy()
-1,081,172,129,595,538,400
Return a Numpy representation of the DataFrame or the Series. .. warning:: We recommend using `DataFrame.to_numpy()` or `Series.to_numpy()` instead. .. note:: This method should only be used if the resulting NumPy ndarray is expected to be small, as all the data is loaded into the driver's memory. Returns ------- numpy.ndarray Examples -------- A DataFrame where all columns are the same type (e.g., int64) results in an array of the same type. >>> df = ps.DataFrame({'age': [ 3, 29], ... 'height': [94, 170], ... 'weight': [31, 115]}) >>> df age height weight 0 3 94 31 1 29 170 115 >>> df.dtypes age int64 height int64 weight int64 dtype: object >>> df.values array([[ 3, 94, 31], [ 29, 170, 115]]) A DataFrame with mixed type columns(e.g., str/object, int64, float32) results in an ndarray of the broadest type that accommodates these mixed types (e.g., object). >>> df2 = ps.DataFrame([('parrot', 24.0, 'second'), ... ('lion', 80.5, 'first'), ... ('monkey', np.nan, None)], ... columns=('name', 'max_speed', 'rank')) >>> df2.dtypes name object max_speed float64 rank object dtype: object >>> df2.values array([['parrot', 24.0, 'second'], ['lion', 80.5, 'first'], ['monkey', nan, None]], dtype=object) For Series, >>> ps.Series([1, 2, 3]).values array([1, 2, 3]) >>> ps.Series(list('aabc')).values array(['a', 'a', 'b', 'c'], dtype=object)
python/pyspark/pandas/generic.py
values
XpressAI/spark
python
@property def values(self) -> np.ndarray: "\n Return a Numpy representation of the DataFrame or the Series.\n\n .. warning:: We recommend using `DataFrame.to_numpy()` or `Series.to_numpy()` instead.\n\n .. note:: This method should only be used if the resulting NumPy ndarray is expected\n to be small, as all the data is loaded into the driver's memory.\n\n Returns\n -------\n numpy.ndarray\n\n Examples\n --------\n A DataFrame where all columns are the same type (e.g., int64) results in an array of\n the same type.\n\n >>> df = ps.DataFrame({'age': [ 3, 29],\n ... 'height': [94, 170],\n ... 'weight': [31, 115]})\n >>> df\n age height weight\n 0 3 94 31\n 1 29 170 115\n >>> df.dtypes\n age int64\n height int64\n weight int64\n dtype: object\n >>> df.values\n array([[ 3, 94, 31],\n [ 29, 170, 115]])\n\n A DataFrame with mixed type columns(e.g., str/object, int64, float32) results in an ndarray\n of the broadest type that accommodates these mixed types (e.g., object).\n\n >>> df2 = ps.DataFrame([('parrot', 24.0, 'second'),\n ... ('lion', 80.5, 'first'),\n ... ('monkey', np.nan, None)],\n ... columns=('name', 'max_speed', 'rank'))\n >>> df2.dtypes\n name object\n max_speed float64\n rank object\n dtype: object\n >>> df2.values\n array([['parrot', 24.0, 'second'],\n ['lion', 80.5, 'first'],\n ['monkey', nan, None]], dtype=object)\n\n For Series,\n\n >>> ps.Series([1, 2, 3]).values\n array([1, 2, 3])\n\n >>> ps.Series(list('aabc')).values\n array(['a', 'a', 'b', 'c'], dtype=object)\n " warnings.warn('We recommend using `{}.to_numpy()` instead.'.format(type(self).__name__)) return self.to_numpy()
def to_csv(self, path: Optional[str]=None, sep: str=',', na_rep: str='', columns: Optional[List[Union[(Any, Tuple)]]]=None, header: bool=True, quotechar: str='"', date_format: Optional[str]=None, escapechar: Optional[str]=None, num_files: Optional[int]=None, mode: str='overwrite', partition_cols: Optional[Union[(str, List[str])]]=None, index_col: Optional[Union[(str, List[str])]]=None, **options: Any) -> Optional[str]: '\n Write object to a comma-separated values (csv) file.\n\n .. note:: pandas-on-Spark `to_csv` writes files to a path or URI. Unlike pandas\',\n pandas-on-Spark respects HDFS\'s property such as \'fs.default.name\'.\n\n .. note:: pandas-on-Spark writes CSV files into the directory, `path`, and writes\n multiple `part-...` files in the directory when `path` is specified.\n This behaviour was inherited from Apache Spark. The number of files can\n be controlled by `num_files`.\n\n Parameters\n ----------\n path : str, default None\n File path. If None is provided the result is returned as a string.\n sep : str, default \',\'\n String of length 1. Field delimiter for the output file.\n na_rep : str, default \'\'\n Missing data representation.\n columns : sequence, optional\n Columns to write.\n header : bool or list of str, default True\n Write out the column names. If a list of strings is given it is\n assumed to be aliases for the column names.\n quotechar : str, default \'\\"\'\n String of length 1. Character used to quote fields.\n date_format : str, default None\n Format string for datetime objects.\n escapechar : str, default None\n String of length 1. Character used to escape `sep` and `quotechar`\n when appropriate.\n num_files : the number of files to be written in `path` directory when\n this is a path.\n mode : str {\'append\', \'overwrite\', \'ignore\', \'error\', \'errorifexists\'},\n default \'overwrite\'. Specifies the behavior of the save operation when the\n destination exists already.\n\n - \'append\': Append the new data to existing data.\n - \'overwrite\': Overwrite existing data.\n - \'ignore\': Silently ignore this operation if data already exists.\n - \'error\' or \'errorifexists\': Throw an exception if data already exists.\n\n partition_cols : str or list of str, optional, default None\n Names of partitioning columns\n index_col: str or list of str, optional, default: None\n Column names to be used in Spark to represent pandas-on-Spark\'s index. The index name\n in pandas-on-Spark is ignored. By default, the index is always lost.\n options: keyword arguments for additional options specific to PySpark.\n This kwargs are specific to PySpark\'s CSV options to pass. Check\n the options in PySpark\'s API documentation for spark.write.csv(...).\n It has higher priority and overwrites all other options.\n This parameter only works when `path` is specified.\n\n Returns\n -------\n str or None\n\n See Also\n --------\n read_csv\n DataFrame.to_delta\n DataFrame.to_table\n DataFrame.to_parquet\n DataFrame.to_spark_io\n\n Examples\n --------\n >>> df = ps.DataFrame(dict(\n ... date=list(pd.date_range(\'2012-1-1 12:00:00\', periods=3, freq=\'M\')),\n ... country=[\'KR\', \'US\', \'JP\'],\n ... code=[1, 2 ,3]), columns=[\'date\', \'country\', \'code\'])\n >>> df.sort_values(by="date") # doctest: +ELLIPSIS, +NORMALIZE_WHITESPACE\n date country code\n ... 2012-01-31 12:00:00 KR 1\n ... 2012-02-29 12:00:00 US 2\n ... 2012-03-31 12:00:00 JP 3\n\n >>> print(df.to_csv()) # doctest: +NORMALIZE_WHITESPACE\n date,country,code\n 2012-01-31 12:00:00,KR,1\n 2012-02-29 12:00:00,US,2\n 2012-03-31 12:00:00,JP,3\n\n >>> df.cummax().to_csv(path=r\'%s/to_csv/foo.csv\' % path, num_files=1)\n >>> ps.read_csv(\n ... path=r\'%s/to_csv/foo.csv\' % path\n ... ).sort_values(by="date") # doctest: +ELLIPSIS, +NORMALIZE_WHITESPACE\n date country code\n ... 2012-01-31 12:00:00 KR 1\n ... 2012-02-29 12:00:00 US 2\n ... 2012-03-31 12:00:00 US 3\n\n In case of Series,\n\n >>> print(df.date.to_csv()) # doctest: +NORMALIZE_WHITESPACE\n date\n 2012-01-31 12:00:00\n 2012-02-29 12:00:00\n 2012-03-31 12:00:00\n\n >>> df.date.to_csv(path=r\'%s/to_csv/foo.csv\' % path, num_files=1)\n >>> ps.read_csv(\n ... path=r\'%s/to_csv/foo.csv\' % path\n ... ).sort_values(by="date") # doctest: +ELLIPSIS, +NORMALIZE_WHITESPACE\n date\n ... 2012-01-31 12:00:00\n ... 2012-02-29 12:00:00\n ... 2012-03-31 12:00:00\n\n You can preserve the index in the roundtrip as below.\n\n >>> df.set_index("country", append=True, inplace=True)\n >>> df.date.to_csv(\n ... path=r\'%s/to_csv/bar.csv\' % path,\n ... num_files=1,\n ... index_col=["index1", "index2"])\n >>> ps.read_csv(\n ... path=r\'%s/to_csv/bar.csv\' % path, index_col=["index1", "index2"]\n ... ).sort_values(by="date") # doctest: +ELLIPSIS, +NORMALIZE_WHITESPACE\n date\n index1 index2\n ... ... 2012-01-31 12:00:00\n ... ... 2012-02-29 12:00:00\n ... ... 2012-03-31 12:00:00\n ' if (('options' in options) and isinstance(options.get('options'), dict) and (len(options) == 1)): options = options.get('options') if (path is None): psdf_or_ser = self if ((LooseVersion('0.24') > LooseVersion(pd.__version__)) and isinstance(self, ps.Series)): return psdf_or_ser.to_pandas().to_csv(None, sep=sep, na_rep=na_rep, header=header, date_format=date_format, index=False) else: return psdf_or_ser.to_pandas().to_csv(None, sep=sep, na_rep=na_rep, columns=columns, header=header, quotechar=quotechar, date_format=date_format, escapechar=escapechar, index=False) psdf = self if isinstance(self, ps.Series): psdf = self.to_frame() if (columns is None): column_labels = psdf._internal.column_labels else: column_labels = [] for label in columns: if (not is_name_like_tuple(label)): label = (label,) if (label not in psdf._internal.column_labels): raise KeyError(name_like_string(label)) column_labels.append(label) if isinstance(index_col, str): index_cols = [index_col] elif (index_col is None): index_cols = [] else: index_cols = index_col if ((header is True) and (psdf._internal.column_labels_level > 1)): raise ValueError('to_csv only support one-level index column now') elif isinstance(header, list): sdf = psdf.to_spark(index_col) sdf = sdf.select(([scol_for(sdf, name_like_string(label)) for label in index_cols] + [scol_for(sdf, (str(i) if (label is None) else name_like_string(label))).alias(new_name) for (i, (label, new_name)) in enumerate(zip(column_labels, header))])) header = True else: sdf = psdf.to_spark(index_col) sdf = sdf.select(([scol_for(sdf, name_like_string(label)) for label in index_cols] + [scol_for(sdf, (str(i) if (label is None) else name_like_string(label))) for (i, label) in enumerate(column_labels)])) if (num_files is not None): sdf = sdf.repartition(num_files) builder = sdf.write.mode(mode) if (partition_cols is not None): builder.partitionBy(partition_cols) builder._set_opts(sep=sep, nullValue=na_rep, header=header, quote=quotechar, dateFormat=date_format, charToEscapeQuoteEscaping=escapechar) builder.options(**options).format('csv').save(path) return None
4,511,092,456,395,762,000
Write object to a comma-separated values (csv) file. .. note:: pandas-on-Spark `to_csv` writes files to a path or URI. Unlike pandas', pandas-on-Spark respects HDFS's property such as 'fs.default.name'. .. note:: pandas-on-Spark writes CSV files into the directory, `path`, and writes multiple `part-...` files in the directory when `path` is specified. This behaviour was inherited from Apache Spark. The number of files can be controlled by `num_files`. Parameters ---------- path : str, default None File path. If None is provided the result is returned as a string. sep : str, default ',' String of length 1. Field delimiter for the output file. na_rep : str, default '' Missing data representation. columns : sequence, optional Columns to write. header : bool or list of str, default True Write out the column names. If a list of strings is given it is assumed to be aliases for the column names. quotechar : str, default '\"' String of length 1. Character used to quote fields. date_format : str, default None Format string for datetime objects. escapechar : str, default None String of length 1. Character used to escape `sep` and `quotechar` when appropriate. num_files : the number of files to be written in `path` directory when this is a path. mode : str {'append', 'overwrite', 'ignore', 'error', 'errorifexists'}, default 'overwrite'. Specifies the behavior of the save operation when the destination exists already. - 'append': Append the new data to existing data. - 'overwrite': Overwrite existing data. - 'ignore': Silently ignore this operation if data already exists. - 'error' or 'errorifexists': Throw an exception if data already exists. partition_cols : str or list of str, optional, default None Names of partitioning columns index_col: str or list of str, optional, default: None Column names to be used in Spark to represent pandas-on-Spark's index. The index name in pandas-on-Spark is ignored. By default, the index is always lost. options: keyword arguments for additional options specific to PySpark. This kwargs are specific to PySpark's CSV options to pass. Check the options in PySpark's API documentation for spark.write.csv(...). It has higher priority and overwrites all other options. This parameter only works when `path` is specified. Returns ------- str or None See Also -------- read_csv DataFrame.to_delta DataFrame.to_table DataFrame.to_parquet DataFrame.to_spark_io Examples -------- >>> df = ps.DataFrame(dict( ... date=list(pd.date_range('2012-1-1 12:00:00', periods=3, freq='M')), ... country=['KR', 'US', 'JP'], ... code=[1, 2 ,3]), columns=['date', 'country', 'code']) >>> df.sort_values(by="date") # doctest: +ELLIPSIS, +NORMALIZE_WHITESPACE date country code ... 2012-01-31 12:00:00 KR 1 ... 2012-02-29 12:00:00 US 2 ... 2012-03-31 12:00:00 JP 3 >>> print(df.to_csv()) # doctest: +NORMALIZE_WHITESPACE date,country,code 2012-01-31 12:00:00,KR,1 2012-02-29 12:00:00,US,2 2012-03-31 12:00:00,JP,3 >>> df.cummax().to_csv(path=r'%s/to_csv/foo.csv' % path, num_files=1) >>> ps.read_csv( ... path=r'%s/to_csv/foo.csv' % path ... ).sort_values(by="date") # doctest: +ELLIPSIS, +NORMALIZE_WHITESPACE date country code ... 2012-01-31 12:00:00 KR 1 ... 2012-02-29 12:00:00 US 2 ... 2012-03-31 12:00:00 US 3 In case of Series, >>> print(df.date.to_csv()) # doctest: +NORMALIZE_WHITESPACE date 2012-01-31 12:00:00 2012-02-29 12:00:00 2012-03-31 12:00:00 >>> df.date.to_csv(path=r'%s/to_csv/foo.csv' % path, num_files=1) >>> ps.read_csv( ... path=r'%s/to_csv/foo.csv' % path ... ).sort_values(by="date") # doctest: +ELLIPSIS, +NORMALIZE_WHITESPACE date ... 2012-01-31 12:00:00 ... 2012-02-29 12:00:00 ... 2012-03-31 12:00:00 You can preserve the index in the roundtrip as below. >>> df.set_index("country", append=True, inplace=True) >>> df.date.to_csv( ... path=r'%s/to_csv/bar.csv' % path, ... num_files=1, ... index_col=["index1", "index2"]) >>> ps.read_csv( ... path=r'%s/to_csv/bar.csv' % path, index_col=["index1", "index2"] ... ).sort_values(by="date") # doctest: +ELLIPSIS, +NORMALIZE_WHITESPACE date index1 index2 ... ... 2012-01-31 12:00:00 ... ... 2012-02-29 12:00:00 ... ... 2012-03-31 12:00:00
python/pyspark/pandas/generic.py
to_csv
XpressAI/spark
python
def to_csv(self, path: Optional[str]=None, sep: str=',', na_rep: str=, columns: Optional[List[Union[(Any, Tuple)]]]=None, header: bool=True, quotechar: str='"', date_format: Optional[str]=None, escapechar: Optional[str]=None, num_files: Optional[int]=None, mode: str='overwrite', partition_cols: Optional[Union[(str, List[str])]]=None, index_col: Optional[Union[(str, List[str])]]=None, **options: Any) -> Optional[str]: '\n Write object to a comma-separated values (csv) file.\n\n .. note:: pandas-on-Spark `to_csv` writes files to a path or URI. Unlike pandas\',\n pandas-on-Spark respects HDFS\'s property such as \'fs.default.name\'.\n\n .. note:: pandas-on-Spark writes CSV files into the directory, `path`, and writes\n multiple `part-...` files in the directory when `path` is specified.\n This behaviour was inherited from Apache Spark. The number of files can\n be controlled by `num_files`.\n\n Parameters\n ----------\n path : str, default None\n File path. If None is provided the result is returned as a string.\n sep : str, default \',\'\n String of length 1. Field delimiter for the output file.\n na_rep : str, default \'\'\n Missing data representation.\n columns : sequence, optional\n Columns to write.\n header : bool or list of str, default True\n Write out the column names. If a list of strings is given it is\n assumed to be aliases for the column names.\n quotechar : str, default \'\\"\'\n String of length 1. Character used to quote fields.\n date_format : str, default None\n Format string for datetime objects.\n escapechar : str, default None\n String of length 1. Character used to escape `sep` and `quotechar`\n when appropriate.\n num_files : the number of files to be written in `path` directory when\n this is a path.\n mode : str {\'append\', \'overwrite\', \'ignore\', \'error\', \'errorifexists\'},\n default \'overwrite\'. Specifies the behavior of the save operation when the\n destination exists already.\n\n - \'append\': Append the new data to existing data.\n - \'overwrite\': Overwrite existing data.\n - \'ignore\': Silently ignore this operation if data already exists.\n - \'error\' or \'errorifexists\': Throw an exception if data already exists.\n\n partition_cols : str or list of str, optional, default None\n Names of partitioning columns\n index_col: str or list of str, optional, default: None\n Column names to be used in Spark to represent pandas-on-Spark\'s index. The index name\n in pandas-on-Spark is ignored. By default, the index is always lost.\n options: keyword arguments for additional options specific to PySpark.\n This kwargs are specific to PySpark\'s CSV options to pass. Check\n the options in PySpark\'s API documentation for spark.write.csv(...).\n It has higher priority and overwrites all other options.\n This parameter only works when `path` is specified.\n\n Returns\n -------\n str or None\n\n See Also\n --------\n read_csv\n DataFrame.to_delta\n DataFrame.to_table\n DataFrame.to_parquet\n DataFrame.to_spark_io\n\n Examples\n --------\n >>> df = ps.DataFrame(dict(\n ... date=list(pd.date_range(\'2012-1-1 12:00:00\', periods=3, freq=\'M\')),\n ... country=[\'KR\', \'US\', \'JP\'],\n ... code=[1, 2 ,3]), columns=[\'date\', \'country\', \'code\'])\n >>> df.sort_values(by="date") # doctest: +ELLIPSIS, +NORMALIZE_WHITESPACE\n date country code\n ... 2012-01-31 12:00:00 KR 1\n ... 2012-02-29 12:00:00 US 2\n ... 2012-03-31 12:00:00 JP 3\n\n >>> print(df.to_csv()) # doctest: +NORMALIZE_WHITESPACE\n date,country,code\n 2012-01-31 12:00:00,KR,1\n 2012-02-29 12:00:00,US,2\n 2012-03-31 12:00:00,JP,3\n\n >>> df.cummax().to_csv(path=r\'%s/to_csv/foo.csv\' % path, num_files=1)\n >>> ps.read_csv(\n ... path=r\'%s/to_csv/foo.csv\' % path\n ... ).sort_values(by="date") # doctest: +ELLIPSIS, +NORMALIZE_WHITESPACE\n date country code\n ... 2012-01-31 12:00:00 KR 1\n ... 2012-02-29 12:00:00 US 2\n ... 2012-03-31 12:00:00 US 3\n\n In case of Series,\n\n >>> print(df.date.to_csv()) # doctest: +NORMALIZE_WHITESPACE\n date\n 2012-01-31 12:00:00\n 2012-02-29 12:00:00\n 2012-03-31 12:00:00\n\n >>> df.date.to_csv(path=r\'%s/to_csv/foo.csv\' % path, num_files=1)\n >>> ps.read_csv(\n ... path=r\'%s/to_csv/foo.csv\' % path\n ... ).sort_values(by="date") # doctest: +ELLIPSIS, +NORMALIZE_WHITESPACE\n date\n ... 2012-01-31 12:00:00\n ... 2012-02-29 12:00:00\n ... 2012-03-31 12:00:00\n\n You can preserve the index in the roundtrip as below.\n\n >>> df.set_index("country", append=True, inplace=True)\n >>> df.date.to_csv(\n ... path=r\'%s/to_csv/bar.csv\' % path,\n ... num_files=1,\n ... index_col=["index1", "index2"])\n >>> ps.read_csv(\n ... path=r\'%s/to_csv/bar.csv\' % path, index_col=["index1", "index2"]\n ... ).sort_values(by="date") # doctest: +ELLIPSIS, +NORMALIZE_WHITESPACE\n date\n index1 index2\n ... ... 2012-01-31 12:00:00\n ... ... 2012-02-29 12:00:00\n ... ... 2012-03-31 12:00:00\n ' if (('options' in options) and isinstance(options.get('options'), dict) and (len(options) == 1)): options = options.get('options') if (path is None): psdf_or_ser = self if ((LooseVersion('0.24') > LooseVersion(pd.__version__)) and isinstance(self, ps.Series)): return psdf_or_ser.to_pandas().to_csv(None, sep=sep, na_rep=na_rep, header=header, date_format=date_format, index=False) else: return psdf_or_ser.to_pandas().to_csv(None, sep=sep, na_rep=na_rep, columns=columns, header=header, quotechar=quotechar, date_format=date_format, escapechar=escapechar, index=False) psdf = self if isinstance(self, ps.Series): psdf = self.to_frame() if (columns is None): column_labels = psdf._internal.column_labels else: column_labels = [] for label in columns: if (not is_name_like_tuple(label)): label = (label,) if (label not in psdf._internal.column_labels): raise KeyError(name_like_string(label)) column_labels.append(label) if isinstance(index_col, str): index_cols = [index_col] elif (index_col is None): index_cols = [] else: index_cols = index_col if ((header is True) and (psdf._internal.column_labels_level > 1)): raise ValueError('to_csv only support one-level index column now') elif isinstance(header, list): sdf = psdf.to_spark(index_col) sdf = sdf.select(([scol_for(sdf, name_like_string(label)) for label in index_cols] + [scol_for(sdf, (str(i) if (label is None) else name_like_string(label))).alias(new_name) for (i, (label, new_name)) in enumerate(zip(column_labels, header))])) header = True else: sdf = psdf.to_spark(index_col) sdf = sdf.select(([scol_for(sdf, name_like_string(label)) for label in index_cols] + [scol_for(sdf, (str(i) if (label is None) else name_like_string(label))) for (i, label) in enumerate(column_labels)])) if (num_files is not None): sdf = sdf.repartition(num_files) builder = sdf.write.mode(mode) if (partition_cols is not None): builder.partitionBy(partition_cols) builder._set_opts(sep=sep, nullValue=na_rep, header=header, quote=quotechar, dateFormat=date_format, charToEscapeQuoteEscaping=escapechar) builder.options(**options).format('csv').save(path) return None
def to_json(self, path: Optional[str]=None, compression: str='uncompressed', num_files: Optional[int]=None, mode: str='overwrite', orient: str='records', lines: bool=True, partition_cols: Optional[Union[(str, List[str])]]=None, index_col: Optional[Union[(str, List[str])]]=None, **options: Any) -> Optional[str]: '\n Convert the object to a JSON string.\n\n .. note:: pandas-on-Spark `to_json` writes files to a path or URI. Unlike pandas\',\n pandas-on-Spark respects HDFS\'s property such as \'fs.default.name\'.\n\n .. note:: pandas-on-Spark writes JSON files into the directory, `path`, and writes\n multiple `part-...` files in the directory when `path` is specified.\n This behaviour was inherited from Apache Spark. The number of files can\n be controlled by `num_files`.\n\n .. note:: output JSON format is different from pandas\'. It always use `orient=\'records\'`\n for its output. This behaviour might have to change in the near future.\n\n Note NaN\'s and None will be converted to null and datetime objects\n will be converted to UNIX timestamps.\n\n Parameters\n ----------\n path : string, optional\n File path. If not specified, the result is returned as\n a string.\n lines : bool, default True\n If ‘orient’ is ‘records’ write out line delimited json format.\n Will throw ValueError if incorrect ‘orient’ since others are not\n list like. It should be always True for now.\n orient : str, default \'records\'\n It should be always \'records\' for now.\n compression : {\'gzip\', \'bz2\', \'xz\', None}\n A string representing the compression to use in the output file,\n only used when the first argument is a filename. By default, the\n compression is inferred from the filename.\n num_files : the number of files to be written in `path` directory when\n this is a path.\n mode : str {\'append\', \'overwrite\', \'ignore\', \'error\', \'errorifexists\'},\n default \'overwrite\'. Specifies the behavior of the save operation when the\n destination exists already.\n\n - \'append\': Append the new data to existing data.\n - \'overwrite\': Overwrite existing data.\n - \'ignore\': Silently ignore this operation if data already exists.\n - \'error\' or \'errorifexists\': Throw an exception if data already exists.\n\n partition_cols : str or list of str, optional, default None\n Names of partitioning columns\n index_col: str or list of str, optional, default: None\n Column names to be used in Spark to represent pandas-on-Spark\'s index. The index name\n in pandas-on-Spark is ignored. By default, the index is always lost.\n options: keyword arguments for additional options specific to PySpark.\n It is specific to PySpark\'s JSON options to pass. Check\n the options in PySpark\'s API documentation for `spark.write.json(...)`.\n It has a higher priority and overwrites all other options.\n This parameter only works when `path` is specified.\n\n Returns\n --------\n str or None\n\n Examples\n --------\n >>> df = ps.DataFrame([[\'a\', \'b\'], [\'c\', \'d\']],\n ... columns=[\'col 1\', \'col 2\'])\n >>> df.to_json()\n \'[{"col 1":"a","col 2":"b"},{"col 1":"c","col 2":"d"}]\'\n\n >>> df[\'col 1\'].to_json()\n \'[{"col 1":"a"},{"col 1":"c"}]\'\n\n >>> df.to_json(path=r\'%s/to_json/foo.json\' % path, num_files=1)\n >>> ps.read_json(\n ... path=r\'%s/to_json/foo.json\' % path\n ... ).sort_values(by="col 1")\n col 1 col 2\n 0 a b\n 1 c d\n\n >>> df[\'col 1\'].to_json(path=r\'%s/to_json/foo.json\' % path, num_files=1, index_col="index")\n >>> ps.read_json(\n ... path=r\'%s/to_json/foo.json\' % path, index_col="index"\n ... ).sort_values(by="col 1") # doctest: +NORMALIZE_WHITESPACE\n col 1\n index\n 0 a\n 1 c\n ' if (('options' in options) and isinstance(options.get('options'), dict) and (len(options) == 1)): options = options.get('options') if (not lines): raise NotImplementedError('lines=False is not implemented yet.') if (orient != 'records'): raise NotImplementedError("orient='records' is supported only for now.") if (path is None): psdf_or_ser = self pdf = psdf_or_ser.to_pandas() if isinstance(self, ps.Series): pdf = pdf.to_frame() return pdf.to_json(orient='records') psdf = self if isinstance(self, ps.Series): psdf = self.to_frame() sdf = psdf.to_spark(index_col=index_col) if (num_files is not None): sdf = sdf.repartition(num_files) builder = sdf.write.mode(mode) if (partition_cols is not None): builder.partitionBy(partition_cols) builder._set_opts(compression=compression) builder.options(**options).format('json').save(path) return None
4,444,707,189,741,475,000
Convert the object to a JSON string. .. note:: pandas-on-Spark `to_json` writes files to a path or URI. Unlike pandas', pandas-on-Spark respects HDFS's property such as 'fs.default.name'. .. note:: pandas-on-Spark writes JSON files into the directory, `path`, and writes multiple `part-...` files in the directory when `path` is specified. This behaviour was inherited from Apache Spark. The number of files can be controlled by `num_files`. .. note:: output JSON format is different from pandas'. It always use `orient='records'` for its output. This behaviour might have to change in the near future. Note NaN's and None will be converted to null and datetime objects will be converted to UNIX timestamps. Parameters ---------- path : string, optional File path. If not specified, the result is returned as a string. lines : bool, default True If ‘orient’ is ‘records’ write out line delimited json format. Will throw ValueError if incorrect ‘orient’ since others are not list like. It should be always True for now. orient : str, default 'records' It should be always 'records' for now. compression : {'gzip', 'bz2', 'xz', None} A string representing the compression to use in the output file, only used when the first argument is a filename. By default, the compression is inferred from the filename. num_files : the number of files to be written in `path` directory when this is a path. mode : str {'append', 'overwrite', 'ignore', 'error', 'errorifexists'}, default 'overwrite'. Specifies the behavior of the save operation when the destination exists already. - 'append': Append the new data to existing data. - 'overwrite': Overwrite existing data. - 'ignore': Silently ignore this operation if data already exists. - 'error' or 'errorifexists': Throw an exception if data already exists. partition_cols : str or list of str, optional, default None Names of partitioning columns index_col: str or list of str, optional, default: None Column names to be used in Spark to represent pandas-on-Spark's index. The index name in pandas-on-Spark is ignored. By default, the index is always lost. options: keyword arguments for additional options specific to PySpark. It is specific to PySpark's JSON options to pass. Check the options in PySpark's API documentation for `spark.write.json(...)`. It has a higher priority and overwrites all other options. This parameter only works when `path` is specified. Returns -------- str or None Examples -------- >>> df = ps.DataFrame([['a', 'b'], ['c', 'd']], ... columns=['col 1', 'col 2']) >>> df.to_json() '[{"col 1":"a","col 2":"b"},{"col 1":"c","col 2":"d"}]' >>> df['col 1'].to_json() '[{"col 1":"a"},{"col 1":"c"}]' >>> df.to_json(path=r'%s/to_json/foo.json' % path, num_files=1) >>> ps.read_json( ... path=r'%s/to_json/foo.json' % path ... ).sort_values(by="col 1") col 1 col 2 0 a b 1 c d >>> df['col 1'].to_json(path=r'%s/to_json/foo.json' % path, num_files=1, index_col="index") >>> ps.read_json( ... path=r'%s/to_json/foo.json' % path, index_col="index" ... ).sort_values(by="col 1") # doctest: +NORMALIZE_WHITESPACE col 1 index 0 a 1 c
python/pyspark/pandas/generic.py
to_json
XpressAI/spark
python
def to_json(self, path: Optional[str]=None, compression: str='uncompressed', num_files: Optional[int]=None, mode: str='overwrite', orient: str='records', lines: bool=True, partition_cols: Optional[Union[(str, List[str])]]=None, index_col: Optional[Union[(str, List[str])]]=None, **options: Any) -> Optional[str]: '\n Convert the object to a JSON string.\n\n .. note:: pandas-on-Spark `to_json` writes files to a path or URI. Unlike pandas\',\n pandas-on-Spark respects HDFS\'s property such as \'fs.default.name\'.\n\n .. note:: pandas-on-Spark writes JSON files into the directory, `path`, and writes\n multiple `part-...` files in the directory when `path` is specified.\n This behaviour was inherited from Apache Spark. The number of files can\n be controlled by `num_files`.\n\n .. note:: output JSON format is different from pandas\'. It always use `orient=\'records\'`\n for its output. This behaviour might have to change in the near future.\n\n Note NaN\'s and None will be converted to null and datetime objects\n will be converted to UNIX timestamps.\n\n Parameters\n ----------\n path : string, optional\n File path. If not specified, the result is returned as\n a string.\n lines : bool, default True\n If ‘orient’ is ‘records’ write out line delimited json format.\n Will throw ValueError if incorrect ‘orient’ since others are not\n list like. It should be always True for now.\n orient : str, default \'records\'\n It should be always \'records\' for now.\n compression : {\'gzip\', \'bz2\', \'xz\', None}\n A string representing the compression to use in the output file,\n only used when the first argument is a filename. By default, the\n compression is inferred from the filename.\n num_files : the number of files to be written in `path` directory when\n this is a path.\n mode : str {\'append\', \'overwrite\', \'ignore\', \'error\', \'errorifexists\'},\n default \'overwrite\'. Specifies the behavior of the save operation when the\n destination exists already.\n\n - \'append\': Append the new data to existing data.\n - \'overwrite\': Overwrite existing data.\n - \'ignore\': Silently ignore this operation if data already exists.\n - \'error\' or \'errorifexists\': Throw an exception if data already exists.\n\n partition_cols : str or list of str, optional, default None\n Names of partitioning columns\n index_col: str or list of str, optional, default: None\n Column names to be used in Spark to represent pandas-on-Spark\'s index. The index name\n in pandas-on-Spark is ignored. By default, the index is always lost.\n options: keyword arguments for additional options specific to PySpark.\n It is specific to PySpark\'s JSON options to pass. Check\n the options in PySpark\'s API documentation for `spark.write.json(...)`.\n It has a higher priority and overwrites all other options.\n This parameter only works when `path` is specified.\n\n Returns\n --------\n str or None\n\n Examples\n --------\n >>> df = ps.DataFrame([[\'a\', \'b\'], [\'c\', \'d\']],\n ... columns=[\'col 1\', \'col 2\'])\n >>> df.to_json()\n \'[{"col 1":"a","col 2":"b"},{"col 1":"c","col 2":"d"}]\'\n\n >>> df[\'col 1\'].to_json()\n \'[{"col 1":"a"},{"col 1":"c"}]\'\n\n >>> df.to_json(path=r\'%s/to_json/foo.json\' % path, num_files=1)\n >>> ps.read_json(\n ... path=r\'%s/to_json/foo.json\' % path\n ... ).sort_values(by="col 1")\n col 1 col 2\n 0 a b\n 1 c d\n\n >>> df[\'col 1\'].to_json(path=r\'%s/to_json/foo.json\' % path, num_files=1, index_col="index")\n >>> ps.read_json(\n ... path=r\'%s/to_json/foo.json\' % path, index_col="index"\n ... ).sort_values(by="col 1") # doctest: +NORMALIZE_WHITESPACE\n col 1\n index\n 0 a\n 1 c\n ' if (('options' in options) and isinstance(options.get('options'), dict) and (len(options) == 1)): options = options.get('options') if (not lines): raise NotImplementedError('lines=False is not implemented yet.') if (orient != 'records'): raise NotImplementedError("orient='records' is supported only for now.") if (path is None): psdf_or_ser = self pdf = psdf_or_ser.to_pandas() if isinstance(self, ps.Series): pdf = pdf.to_frame() return pdf.to_json(orient='records') psdf = self if isinstance(self, ps.Series): psdf = self.to_frame() sdf = psdf.to_spark(index_col=index_col) if (num_files is not None): sdf = sdf.repartition(num_files) builder = sdf.write.mode(mode) if (partition_cols is not None): builder.partitionBy(partition_cols) builder._set_opts(compression=compression) builder.options(**options).format('json').save(path) return None
def to_excel(self, excel_writer: Union[(str, pd.ExcelWriter)], sheet_name: str='Sheet1', na_rep: str='', float_format: Optional[str]=None, columns: Optional[Union[(str, List[str])]]=None, header: bool=True, index: bool=True, index_label: Optional[Union[(str, List[str])]]=None, startrow: int=0, startcol: int=0, engine: Optional[str]=None, merge_cells: bool=True, encoding: Optional[str]=None, inf_rep: str='inf', verbose: bool=True, freeze_panes: Optional[Tuple[(int, int)]]=None) -> None: '\n Write object to an Excel sheet.\n\n .. note:: This method should only be used if the resulting DataFrame is expected\n to be small, as all the data is loaded into the driver\'s memory.\n\n To write a single object to an Excel .xlsx file it is only necessary to\n specify a target file name. To write to multiple sheets it is necessary to\n create an `ExcelWriter` object with a target file name, and specify a sheet\n in the file to write to.\n\n Multiple sheets may be written to by specifying unique `sheet_name`.\n With all data written to the file it is necessary to save the changes.\n Note that creating an `ExcelWriter` object with a file name that already\n exists will result in the contents of the existing file being erased.\n\n Parameters\n ----------\n excel_writer : str or ExcelWriter object\n File path or existing ExcelWriter.\n sheet_name : str, default \'Sheet1\'\n Name of sheet which will contain DataFrame.\n na_rep : str, default \'\'\n Missing data representation.\n float_format : str, optional\n Format string for floating point numbers. For example\n ``float_format="%%.2f"`` will format 0.1234 to 0.12.\n columns : sequence or list of str, optional\n Columns to write.\n header : bool or list of str, default True\n Write out the column names. If a list of string is given it is\n assumed to be aliases for the column names.\n index : bool, default True\n Write row names (index).\n index_label : str or sequence, optional\n Column label for index column(s) if desired. If not specified, and\n `header` and `index` are True, then the index names are used. A\n sequence should be given if the DataFrame uses MultiIndex.\n startrow : int, default 0\n Upper left cell row to dump data frame.\n startcol : int, default 0\n Upper left cell column to dump data frame.\n engine : str, optional\n Write engine to use, \'openpyxl\' or \'xlsxwriter\'. You can also set this\n via the options ``io.excel.xlsx.writer``, ``io.excel.xls.writer``, and\n ``io.excel.xlsm.writer``.\n merge_cells : bool, default True\n Write MultiIndex and Hierarchical Rows as merged cells.\n encoding : str, optional\n Encoding of the resulting excel file. Only necessary for xlwt,\n other writers support unicode natively.\n inf_rep : str, default \'inf\'\n Representation for infinity (there is no native representation for\n infinity in Excel).\n verbose : bool, default True\n Display more information in the error logs.\n freeze_panes : tuple of int (length 2), optional\n Specifies the one-based bottommost row and rightmost column that\n is to be frozen.\n\n Notes\n -----\n Once a workbook has been saved it is not possible write further data\n without rewriting the whole workbook.\n\n See Also\n --------\n read_excel : Read Excel file.\n\n Examples\n --------\n Create, write to and save a workbook:\n\n >>> df1 = ps.DataFrame([[\'a\', \'b\'], [\'c\', \'d\']],\n ... index=[\'row 1\', \'row 2\'],\n ... columns=[\'col 1\', \'col 2\'])\n >>> df1.to_excel("output.xlsx") # doctest: +SKIP\n\n To specify the sheet name:\n\n >>> df1.to_excel("output.xlsx") # doctest: +SKIP\n >>> df1.to_excel("output.xlsx",\n ... sheet_name=\'Sheet_name_1\') # doctest: +SKIP\n\n If you wish to write to more than one sheet in the workbook, it is\n necessary to specify an ExcelWriter object:\n\n >>> with pd.ExcelWriter(\'output.xlsx\') as writer: # doctest: +SKIP\n ... df1.to_excel(writer, sheet_name=\'Sheet_name_1\')\n ... df2.to_excel(writer, sheet_name=\'Sheet_name_2\')\n\n To set the library that is used to write the Excel file,\n you can pass the `engine` keyword (the default engine is\n automatically chosen depending on the file extension):\n\n >>> df1.to_excel(\'output1.xlsx\', engine=\'xlsxwriter\') # doctest: +SKIP\n ' args = locals() psdf = self if isinstance(self, ps.DataFrame): f = pd.DataFrame.to_excel elif isinstance(self, ps.Series): f = pd.Series.to_excel else: raise TypeError(('Constructor expects DataFrame or Series; however, got [%s]' % (self,))) return validate_arguments_and_invoke_function(psdf._to_internal_pandas(), self.to_excel, f, args)
1,914,719,261,915,198,700
Write object to an Excel sheet. .. note:: This method should only be used if the resulting DataFrame is expected to be small, as all the data is loaded into the driver's memory. To write a single object to an Excel .xlsx file it is only necessary to specify a target file name. To write to multiple sheets it is necessary to create an `ExcelWriter` object with a target file name, and specify a sheet in the file to write to. Multiple sheets may be written to by specifying unique `sheet_name`. With all data written to the file it is necessary to save the changes. Note that creating an `ExcelWriter` object with a file name that already exists will result in the contents of the existing file being erased. Parameters ---------- excel_writer : str or ExcelWriter object File path or existing ExcelWriter. sheet_name : str, default 'Sheet1' Name of sheet which will contain DataFrame. na_rep : str, default '' Missing data representation. float_format : str, optional Format string for floating point numbers. For example ``float_format="%%.2f"`` will format 0.1234 to 0.12. columns : sequence or list of str, optional Columns to write. header : bool or list of str, default True Write out the column names. If a list of string is given it is assumed to be aliases for the column names. index : bool, default True Write row names (index). index_label : str or sequence, optional Column label for index column(s) if desired. If not specified, and `header` and `index` are True, then the index names are used. A sequence should be given if the DataFrame uses MultiIndex. startrow : int, default 0 Upper left cell row to dump data frame. startcol : int, default 0 Upper left cell column to dump data frame. engine : str, optional Write engine to use, 'openpyxl' or 'xlsxwriter'. You can also set this via the options ``io.excel.xlsx.writer``, ``io.excel.xls.writer``, and ``io.excel.xlsm.writer``. merge_cells : bool, default True Write MultiIndex and Hierarchical Rows as merged cells. encoding : str, optional Encoding of the resulting excel file. Only necessary for xlwt, other writers support unicode natively. inf_rep : str, default 'inf' Representation for infinity (there is no native representation for infinity in Excel). verbose : bool, default True Display more information in the error logs. freeze_panes : tuple of int (length 2), optional Specifies the one-based bottommost row and rightmost column that is to be frozen. Notes ----- Once a workbook has been saved it is not possible write further data without rewriting the whole workbook. See Also -------- read_excel : Read Excel file. Examples -------- Create, write to and save a workbook: >>> df1 = ps.DataFrame([['a', 'b'], ['c', 'd']], ... index=['row 1', 'row 2'], ... columns=['col 1', 'col 2']) >>> df1.to_excel("output.xlsx") # doctest: +SKIP To specify the sheet name: >>> df1.to_excel("output.xlsx") # doctest: +SKIP >>> df1.to_excel("output.xlsx", ... sheet_name='Sheet_name_1') # doctest: +SKIP If you wish to write to more than one sheet in the workbook, it is necessary to specify an ExcelWriter object: >>> with pd.ExcelWriter('output.xlsx') as writer: # doctest: +SKIP ... df1.to_excel(writer, sheet_name='Sheet_name_1') ... df2.to_excel(writer, sheet_name='Sheet_name_2') To set the library that is used to write the Excel file, you can pass the `engine` keyword (the default engine is automatically chosen depending on the file extension): >>> df1.to_excel('output1.xlsx', engine='xlsxwriter') # doctest: +SKIP
python/pyspark/pandas/generic.py
to_excel
XpressAI/spark
python
def to_excel(self, excel_writer: Union[(str, pd.ExcelWriter)], sheet_name: str='Sheet1', na_rep: str=, float_format: Optional[str]=None, columns: Optional[Union[(str, List[str])]]=None, header: bool=True, index: bool=True, index_label: Optional[Union[(str, List[str])]]=None, startrow: int=0, startcol: int=0, engine: Optional[str]=None, merge_cells: bool=True, encoding: Optional[str]=None, inf_rep: str='inf', verbose: bool=True, freeze_panes: Optional[Tuple[(int, int)]]=None) -> None: '\n Write object to an Excel sheet.\n\n .. note:: This method should only be used if the resulting DataFrame is expected\n to be small, as all the data is loaded into the driver\'s memory.\n\n To write a single object to an Excel .xlsx file it is only necessary to\n specify a target file name. To write to multiple sheets it is necessary to\n create an `ExcelWriter` object with a target file name, and specify a sheet\n in the file to write to.\n\n Multiple sheets may be written to by specifying unique `sheet_name`.\n With all data written to the file it is necessary to save the changes.\n Note that creating an `ExcelWriter` object with a file name that already\n exists will result in the contents of the existing file being erased.\n\n Parameters\n ----------\n excel_writer : str or ExcelWriter object\n File path or existing ExcelWriter.\n sheet_name : str, default \'Sheet1\'\n Name of sheet which will contain DataFrame.\n na_rep : str, default \'\'\n Missing data representation.\n float_format : str, optional\n Format string for floating point numbers. For example\n ``float_format="%%.2f"`` will format 0.1234 to 0.12.\n columns : sequence or list of str, optional\n Columns to write.\n header : bool or list of str, default True\n Write out the column names. If a list of string is given it is\n assumed to be aliases for the column names.\n index : bool, default True\n Write row names (index).\n index_label : str or sequence, optional\n Column label for index column(s) if desired. If not specified, and\n `header` and `index` are True, then the index names are used. A\n sequence should be given if the DataFrame uses MultiIndex.\n startrow : int, default 0\n Upper left cell row to dump data frame.\n startcol : int, default 0\n Upper left cell column to dump data frame.\n engine : str, optional\n Write engine to use, \'openpyxl\' or \'xlsxwriter\'. You can also set this\n via the options ``io.excel.xlsx.writer``, ``io.excel.xls.writer``, and\n ``io.excel.xlsm.writer``.\n merge_cells : bool, default True\n Write MultiIndex and Hierarchical Rows as merged cells.\n encoding : str, optional\n Encoding of the resulting excel file. Only necessary for xlwt,\n other writers support unicode natively.\n inf_rep : str, default \'inf\'\n Representation for infinity (there is no native representation for\n infinity in Excel).\n verbose : bool, default True\n Display more information in the error logs.\n freeze_panes : tuple of int (length 2), optional\n Specifies the one-based bottommost row and rightmost column that\n is to be frozen.\n\n Notes\n -----\n Once a workbook has been saved it is not possible write further data\n without rewriting the whole workbook.\n\n See Also\n --------\n read_excel : Read Excel file.\n\n Examples\n --------\n Create, write to and save a workbook:\n\n >>> df1 = ps.DataFrame([[\'a\', \'b\'], [\'c\', \'d\']],\n ... index=[\'row 1\', \'row 2\'],\n ... columns=[\'col 1\', \'col 2\'])\n >>> df1.to_excel("output.xlsx") # doctest: +SKIP\n\n To specify the sheet name:\n\n >>> df1.to_excel("output.xlsx") # doctest: +SKIP\n >>> df1.to_excel("output.xlsx",\n ... sheet_name=\'Sheet_name_1\') # doctest: +SKIP\n\n If you wish to write to more than one sheet in the workbook, it is\n necessary to specify an ExcelWriter object:\n\n >>> with pd.ExcelWriter(\'output.xlsx\') as writer: # doctest: +SKIP\n ... df1.to_excel(writer, sheet_name=\'Sheet_name_1\')\n ... df2.to_excel(writer, sheet_name=\'Sheet_name_2\')\n\n To set the library that is used to write the Excel file,\n you can pass the `engine` keyword (the default engine is\n automatically chosen depending on the file extension):\n\n >>> df1.to_excel(\'output1.xlsx\', engine=\'xlsxwriter\') # doctest: +SKIP\n ' args = locals() psdf = self if isinstance(self, ps.DataFrame): f = pd.DataFrame.to_excel elif isinstance(self, ps.Series): f = pd.Series.to_excel else: raise TypeError(('Constructor expects DataFrame or Series; however, got [%s]' % (self,))) return validate_arguments_and_invoke_function(psdf._to_internal_pandas(), self.to_excel, f, args)
def mean(self, axis: Optional[Axis]=None, numeric_only: bool=None) -> Union[(Scalar, 'Series')]: "\n Return the mean of the values.\n\n Parameters\n ----------\n axis : {index (0), columns (1)}\n Axis for the function to be applied on.\n numeric_only : bool, default None\n Include only float, int, boolean columns. False is not supported. This parameter\n is mainly for pandas compatibility.\n\n Returns\n -------\n mean : scalar for a Series, and a Series for a DataFrame.\n\n Examples\n --------\n\n >>> df = ps.DataFrame({'a': [1, 2, 3, np.nan], 'b': [0.1, 0.2, 0.3, np.nan]},\n ... columns=['a', 'b'])\n\n On a DataFrame:\n\n >>> df.mean()\n a 2.0\n b 0.2\n dtype: float64\n\n >>> df.mean(axis=1)\n 0 0.55\n 1 1.10\n 2 1.65\n 3 NaN\n dtype: float64\n\n On a Series:\n\n >>> df['a'].mean()\n 2.0\n " axis = validate_axis(axis) if ((numeric_only is None) and (axis == 0)): numeric_only = True def mean(spark_column: Column, spark_type: DataType) -> Column: if isinstance(spark_type, BooleanType): spark_column = spark_column.cast(LongType()) elif (not isinstance(spark_type, NumericType)): raise TypeError('Could not convert {} ({}) to numeric'.format(spark_type_to_pandas_dtype(spark_type), spark_type.simpleString())) return F.mean(spark_column) return self._reduce_for_stat_function(mean, name='mean', axis=axis, numeric_only=numeric_only)
-7,254,371,689,763,669,000
Return the mean of the values. Parameters ---------- axis : {index (0), columns (1)} Axis for the function to be applied on. numeric_only : bool, default None Include only float, int, boolean columns. False is not supported. This parameter is mainly for pandas compatibility. Returns ------- mean : scalar for a Series, and a Series for a DataFrame. Examples -------- >>> df = ps.DataFrame({'a': [1, 2, 3, np.nan], 'b': [0.1, 0.2, 0.3, np.nan]}, ... columns=['a', 'b']) On a DataFrame: >>> df.mean() a 2.0 b 0.2 dtype: float64 >>> df.mean(axis=1) 0 0.55 1 1.10 2 1.65 3 NaN dtype: float64 On a Series: >>> df['a'].mean() 2.0
python/pyspark/pandas/generic.py
mean
XpressAI/spark
python
def mean(self, axis: Optional[Axis]=None, numeric_only: bool=None) -> Union[(Scalar, 'Series')]: "\n Return the mean of the values.\n\n Parameters\n ----------\n axis : {index (0), columns (1)}\n Axis for the function to be applied on.\n numeric_only : bool, default None\n Include only float, int, boolean columns. False is not supported. This parameter\n is mainly for pandas compatibility.\n\n Returns\n -------\n mean : scalar for a Series, and a Series for a DataFrame.\n\n Examples\n --------\n\n >>> df = ps.DataFrame({'a': [1, 2, 3, np.nan], 'b': [0.1, 0.2, 0.3, np.nan]},\n ... columns=['a', 'b'])\n\n On a DataFrame:\n\n >>> df.mean()\n a 2.0\n b 0.2\n dtype: float64\n\n >>> df.mean(axis=1)\n 0 0.55\n 1 1.10\n 2 1.65\n 3 NaN\n dtype: float64\n\n On a Series:\n\n >>> df['a'].mean()\n 2.0\n " axis = validate_axis(axis) if ((numeric_only is None) and (axis == 0)): numeric_only = True def mean(spark_column: Column, spark_type: DataType) -> Column: if isinstance(spark_type, BooleanType): spark_column = spark_column.cast(LongType()) elif (not isinstance(spark_type, NumericType)): raise TypeError('Could not convert {} ({}) to numeric'.format(spark_type_to_pandas_dtype(spark_type), spark_type.simpleString())) return F.mean(spark_column) return self._reduce_for_stat_function(mean, name='mean', axis=axis, numeric_only=numeric_only)
def sum(self, axis: Optional[Axis]=None, numeric_only: bool=None, min_count: int=0) -> Union[(Scalar, 'Series')]: "\n Return the sum of the values.\n\n Parameters\n ----------\n axis : {index (0), columns (1)}\n Axis for the function to be applied on.\n numeric_only : bool, default None\n Include only float, int, boolean columns. False is not supported. This parameter\n is mainly for pandas compatibility.\n min_count : int, default 0\n The required number of valid values to perform the operation. If fewer than\n ``min_count`` non-NA values are present the result will be NA.\n\n Returns\n -------\n sum : scalar for a Series, and a Series for a DataFrame.\n\n Examples\n --------\n\n >>> df = ps.DataFrame({'a': [1, 2, 3, np.nan], 'b': [0.1, np.nan, 0.3, np.nan]},\n ... columns=['a', 'b'])\n\n On a DataFrame:\n\n >>> df.sum()\n a 6.0\n b 0.4\n dtype: float64\n\n >>> df.sum(axis=1)\n 0 1.1\n 1 2.0\n 2 3.3\n 3 0.0\n dtype: float64\n\n >>> df.sum(min_count=3)\n a 6.0\n b NaN\n dtype: float64\n\n >>> df.sum(axis=1, min_count=1)\n 0 1.1\n 1 2.0\n 2 3.3\n 3 NaN\n dtype: float64\n\n On a Series:\n\n >>> df['a'].sum()\n 6.0\n\n >>> df['a'].sum(min_count=3)\n 6.0\n >>> df['b'].sum(min_count=3)\n nan\n " axis = validate_axis(axis) if ((numeric_only is None) and (axis == 0)): numeric_only = True elif ((numeric_only is True) and (axis == 1)): numeric_only = None def sum(spark_column: Column, spark_type: DataType) -> Column: if isinstance(spark_type, BooleanType): spark_column = spark_column.cast(LongType()) elif (not isinstance(spark_type, NumericType)): raise TypeError('Could not convert {} ({}) to numeric'.format(spark_type_to_pandas_dtype(spark_type), spark_type.simpleString())) return F.coalesce(F.sum(spark_column), SF.lit(0)) return self._reduce_for_stat_function(sum, name='sum', axis=axis, numeric_only=numeric_only, min_count=min_count)
4,394,613,206,444,410,000
Return the sum of the values. Parameters ---------- axis : {index (0), columns (1)} Axis for the function to be applied on. numeric_only : bool, default None Include only float, int, boolean columns. False is not supported. This parameter is mainly for pandas compatibility. min_count : int, default 0 The required number of valid values to perform the operation. If fewer than ``min_count`` non-NA values are present the result will be NA. Returns ------- sum : scalar for a Series, and a Series for a DataFrame. Examples -------- >>> df = ps.DataFrame({'a': [1, 2, 3, np.nan], 'b': [0.1, np.nan, 0.3, np.nan]}, ... columns=['a', 'b']) On a DataFrame: >>> df.sum() a 6.0 b 0.4 dtype: float64 >>> df.sum(axis=1) 0 1.1 1 2.0 2 3.3 3 0.0 dtype: float64 >>> df.sum(min_count=3) a 6.0 b NaN dtype: float64 >>> df.sum(axis=1, min_count=1) 0 1.1 1 2.0 2 3.3 3 NaN dtype: float64 On a Series: >>> df['a'].sum() 6.0 >>> df['a'].sum(min_count=3) 6.0 >>> df['b'].sum(min_count=3) nan
python/pyspark/pandas/generic.py
sum
XpressAI/spark
python
def sum(self, axis: Optional[Axis]=None, numeric_only: bool=None, min_count: int=0) -> Union[(Scalar, 'Series')]: "\n Return the sum of the values.\n\n Parameters\n ----------\n axis : {index (0), columns (1)}\n Axis for the function to be applied on.\n numeric_only : bool, default None\n Include only float, int, boolean columns. False is not supported. This parameter\n is mainly for pandas compatibility.\n min_count : int, default 0\n The required number of valid values to perform the operation. If fewer than\n ``min_count`` non-NA values are present the result will be NA.\n\n Returns\n -------\n sum : scalar for a Series, and a Series for a DataFrame.\n\n Examples\n --------\n\n >>> df = ps.DataFrame({'a': [1, 2, 3, np.nan], 'b': [0.1, np.nan, 0.3, np.nan]},\n ... columns=['a', 'b'])\n\n On a DataFrame:\n\n >>> df.sum()\n a 6.0\n b 0.4\n dtype: float64\n\n >>> df.sum(axis=1)\n 0 1.1\n 1 2.0\n 2 3.3\n 3 0.0\n dtype: float64\n\n >>> df.sum(min_count=3)\n a 6.0\n b NaN\n dtype: float64\n\n >>> df.sum(axis=1, min_count=1)\n 0 1.1\n 1 2.0\n 2 3.3\n 3 NaN\n dtype: float64\n\n On a Series:\n\n >>> df['a'].sum()\n 6.0\n\n >>> df['a'].sum(min_count=3)\n 6.0\n >>> df['b'].sum(min_count=3)\n nan\n " axis = validate_axis(axis) if ((numeric_only is None) and (axis == 0)): numeric_only = True elif ((numeric_only is True) and (axis == 1)): numeric_only = None def sum(spark_column: Column, spark_type: DataType) -> Column: if isinstance(spark_type, BooleanType): spark_column = spark_column.cast(LongType()) elif (not isinstance(spark_type, NumericType)): raise TypeError('Could not convert {} ({}) to numeric'.format(spark_type_to_pandas_dtype(spark_type), spark_type.simpleString())) return F.coalesce(F.sum(spark_column), SF.lit(0)) return self._reduce_for_stat_function(sum, name='sum', axis=axis, numeric_only=numeric_only, min_count=min_count)
def product(self, axis: Optional[Axis]=None, numeric_only: bool=None, min_count: int=0) -> Union[(Scalar, 'Series')]: '\n Return the product of the values.\n\n .. note:: unlike pandas\', pandas-on-Spark\'s emulates product by ``exp(sum(log(...)))``\n trick. Therefore, it only works for positive numbers.\n\n Parameters\n ----------\n axis : {index (0), columns (1)}\n Axis for the function to be applied on.\n numeric_only : bool, default None\n Include only float, int, boolean columns. False is not supported. This parameter\n is mainly for pandas compatibility.\n min_count : int, default 0\n The required number of valid values to perform the operation. If fewer than\n ``min_count`` non-NA values are present the result will be NA.\n\n Examples\n --------\n On a DataFrame:\n\n Non-numeric type column is not included to the result.\n\n >>> psdf = ps.DataFrame({\'A\': [1, 2, 3, 4, 5],\n ... \'B\': [10, 20, 30, 40, 50],\n ... \'C\': [\'a\', \'b\', \'c\', \'d\', \'e\']})\n >>> psdf\n A B C\n 0 1 10 a\n 1 2 20 b\n 2 3 30 c\n 3 4 40 d\n 4 5 50 e\n\n >>> psdf.prod()\n A 120\n B 12000000\n dtype: int64\n\n If there is no numeric type columns, returns empty Series.\n\n >>> ps.DataFrame({"key": [\'a\', \'b\', \'c\'], "val": [\'x\', \'y\', \'z\']}).prod()\n Series([], dtype: float64)\n\n On a Series:\n\n >>> ps.Series([1, 2, 3, 4, 5]).prod()\n 120\n\n By default, the product of an empty or all-NA Series is ``1``\n\n >>> ps.Series([]).prod()\n 1.0\n\n This can be controlled with the ``min_count`` parameter\n\n >>> ps.Series([]).prod(min_count=1)\n nan\n ' axis = validate_axis(axis) if ((numeric_only is None) and (axis == 0)): numeric_only = True elif ((numeric_only is True) and (axis == 1)): numeric_only = None def prod(spark_column: Column, spark_type: DataType) -> Column: if isinstance(spark_type, BooleanType): scol = F.min(F.coalesce(spark_column, SF.lit(True))).cast(LongType()) elif isinstance(spark_type, NumericType): num_zeros = F.sum(F.when((spark_column == 0), 1).otherwise(0)) sign = F.when(((F.sum(F.when((spark_column < 0), 1).otherwise(0)) % 2) == 0), 1).otherwise((- 1)) scol = F.when((num_zeros > 0), 0).otherwise((sign * F.exp(F.sum(F.log(F.abs(spark_column)))))) if isinstance(spark_type, IntegralType): scol = F.round(scol).cast(LongType()) else: raise TypeError('Could not convert {} ({}) to numeric'.format(spark_type_to_pandas_dtype(spark_type), spark_type.simpleString())) return F.coalesce(scol, SF.lit(1)) return self._reduce_for_stat_function(prod, name='prod', axis=axis, numeric_only=numeric_only, min_count=min_count)
4,500,819,481,037,292,500
Return the product of the values. .. note:: unlike pandas', pandas-on-Spark's emulates product by ``exp(sum(log(...)))`` trick. Therefore, it only works for positive numbers. Parameters ---------- axis : {index (0), columns (1)} Axis for the function to be applied on. numeric_only : bool, default None Include only float, int, boolean columns. False is not supported. This parameter is mainly for pandas compatibility. min_count : int, default 0 The required number of valid values to perform the operation. If fewer than ``min_count`` non-NA values are present the result will be NA. Examples -------- On a DataFrame: Non-numeric type column is not included to the result. >>> psdf = ps.DataFrame({'A': [1, 2, 3, 4, 5], ... 'B': [10, 20, 30, 40, 50], ... 'C': ['a', 'b', 'c', 'd', 'e']}) >>> psdf A B C 0 1 10 a 1 2 20 b 2 3 30 c 3 4 40 d 4 5 50 e >>> psdf.prod() A 120 B 12000000 dtype: int64 If there is no numeric type columns, returns empty Series. >>> ps.DataFrame({"key": ['a', 'b', 'c'], "val": ['x', 'y', 'z']}).prod() Series([], dtype: float64) On a Series: >>> ps.Series([1, 2, 3, 4, 5]).prod() 120 By default, the product of an empty or all-NA Series is ``1`` >>> ps.Series([]).prod() 1.0 This can be controlled with the ``min_count`` parameter >>> ps.Series([]).prod(min_count=1) nan
python/pyspark/pandas/generic.py
product
XpressAI/spark
python
def product(self, axis: Optional[Axis]=None, numeric_only: bool=None, min_count: int=0) -> Union[(Scalar, 'Series')]: '\n Return the product of the values.\n\n .. note:: unlike pandas\', pandas-on-Spark\'s emulates product by ``exp(sum(log(...)))``\n trick. Therefore, it only works for positive numbers.\n\n Parameters\n ----------\n axis : {index (0), columns (1)}\n Axis for the function to be applied on.\n numeric_only : bool, default None\n Include only float, int, boolean columns. False is not supported. This parameter\n is mainly for pandas compatibility.\n min_count : int, default 0\n The required number of valid values to perform the operation. If fewer than\n ``min_count`` non-NA values are present the result will be NA.\n\n Examples\n --------\n On a DataFrame:\n\n Non-numeric type column is not included to the result.\n\n >>> psdf = ps.DataFrame({\'A\': [1, 2, 3, 4, 5],\n ... \'B\': [10, 20, 30, 40, 50],\n ... \'C\': [\'a\', \'b\', \'c\', \'d\', \'e\']})\n >>> psdf\n A B C\n 0 1 10 a\n 1 2 20 b\n 2 3 30 c\n 3 4 40 d\n 4 5 50 e\n\n >>> psdf.prod()\n A 120\n B 12000000\n dtype: int64\n\n If there is no numeric type columns, returns empty Series.\n\n >>> ps.DataFrame({"key": [\'a\', \'b\', \'c\'], "val": [\'x\', \'y\', \'z\']}).prod()\n Series([], dtype: float64)\n\n On a Series:\n\n >>> ps.Series([1, 2, 3, 4, 5]).prod()\n 120\n\n By default, the product of an empty or all-NA Series is ``1``\n\n >>> ps.Series([]).prod()\n 1.0\n\n This can be controlled with the ``min_count`` parameter\n\n >>> ps.Series([]).prod(min_count=1)\n nan\n ' axis = validate_axis(axis) if ((numeric_only is None) and (axis == 0)): numeric_only = True elif ((numeric_only is True) and (axis == 1)): numeric_only = None def prod(spark_column: Column, spark_type: DataType) -> Column: if isinstance(spark_type, BooleanType): scol = F.min(F.coalesce(spark_column, SF.lit(True))).cast(LongType()) elif isinstance(spark_type, NumericType): num_zeros = F.sum(F.when((spark_column == 0), 1).otherwise(0)) sign = F.when(((F.sum(F.when((spark_column < 0), 1).otherwise(0)) % 2) == 0), 1).otherwise((- 1)) scol = F.when((num_zeros > 0), 0).otherwise((sign * F.exp(F.sum(F.log(F.abs(spark_column)))))) if isinstance(spark_type, IntegralType): scol = F.round(scol).cast(LongType()) else: raise TypeError('Could not convert {} ({}) to numeric'.format(spark_type_to_pandas_dtype(spark_type), spark_type.simpleString())) return F.coalesce(scol, SF.lit(1)) return self._reduce_for_stat_function(prod, name='prod', axis=axis, numeric_only=numeric_only, min_count=min_count)
def skew(self, axis: Optional[Axis]=None, numeric_only: bool=None) -> Union[(Scalar, 'Series')]: "\n Return unbiased skew normalized by N-1.\n\n Parameters\n ----------\n axis : {index (0), columns (1)}\n Axis for the function to be applied on.\n numeric_only : bool, default None\n Include only float, int, boolean columns. False is not supported. This parameter\n is mainly for pandas compatibility.\n\n Returns\n -------\n skew : scalar for a Series, and a Series for a DataFrame.\n\n Examples\n --------\n\n >>> df = ps.DataFrame({'a': [1, 2, 3, np.nan], 'b': [0.1, 0.2, 0.3, np.nan]},\n ... columns=['a', 'b'])\n\n On a DataFrame:\n\n >>> df.skew() # doctest: +SKIP\n a 0.000000e+00\n b -3.319678e-16\n dtype: float64\n\n On a Series:\n\n >>> df['a'].skew()\n 0.0\n " axis = validate_axis(axis) if ((numeric_only is None) and (axis == 0)): numeric_only = True def skew(spark_column: Column, spark_type: DataType) -> Column: if isinstance(spark_type, BooleanType): spark_column = spark_column.cast(LongType()) elif (not isinstance(spark_type, NumericType)): raise TypeError('Could not convert {} ({}) to numeric'.format(spark_type_to_pandas_dtype(spark_type), spark_type.simpleString())) return F.skewness(spark_column) return self._reduce_for_stat_function(skew, name='skew', axis=axis, numeric_only=numeric_only)
7,805,550,396,065,647,000
Return unbiased skew normalized by N-1. Parameters ---------- axis : {index (0), columns (1)} Axis for the function to be applied on. numeric_only : bool, default None Include only float, int, boolean columns. False is not supported. This parameter is mainly for pandas compatibility. Returns ------- skew : scalar for a Series, and a Series for a DataFrame. Examples -------- >>> df = ps.DataFrame({'a': [1, 2, 3, np.nan], 'b': [0.1, 0.2, 0.3, np.nan]}, ... columns=['a', 'b']) On a DataFrame: >>> df.skew() # doctest: +SKIP a 0.000000e+00 b -3.319678e-16 dtype: float64 On a Series: >>> df['a'].skew() 0.0
python/pyspark/pandas/generic.py
skew
XpressAI/spark
python
def skew(self, axis: Optional[Axis]=None, numeric_only: bool=None) -> Union[(Scalar, 'Series')]: "\n Return unbiased skew normalized by N-1.\n\n Parameters\n ----------\n axis : {index (0), columns (1)}\n Axis for the function to be applied on.\n numeric_only : bool, default None\n Include only float, int, boolean columns. False is not supported. This parameter\n is mainly for pandas compatibility.\n\n Returns\n -------\n skew : scalar for a Series, and a Series for a DataFrame.\n\n Examples\n --------\n\n >>> df = ps.DataFrame({'a': [1, 2, 3, np.nan], 'b': [0.1, 0.2, 0.3, np.nan]},\n ... columns=['a', 'b'])\n\n On a DataFrame:\n\n >>> df.skew() # doctest: +SKIP\n a 0.000000e+00\n b -3.319678e-16\n dtype: float64\n\n On a Series:\n\n >>> df['a'].skew()\n 0.0\n " axis = validate_axis(axis) if ((numeric_only is None) and (axis == 0)): numeric_only = True def skew(spark_column: Column, spark_type: DataType) -> Column: if isinstance(spark_type, BooleanType): spark_column = spark_column.cast(LongType()) elif (not isinstance(spark_type, NumericType)): raise TypeError('Could not convert {} ({}) to numeric'.format(spark_type_to_pandas_dtype(spark_type), spark_type.simpleString())) return F.skewness(spark_column) return self._reduce_for_stat_function(skew, name='skew', axis=axis, numeric_only=numeric_only)
def kurtosis(self, axis: Optional[Axis]=None, numeric_only: bool=None) -> Union[(Scalar, 'Series')]: "\n Return unbiased kurtosis using Fisher’s definition of kurtosis (kurtosis of normal == 0.0).\n Normalized by N-1.\n\n Parameters\n ----------\n axis : {index (0), columns (1)}\n Axis for the function to be applied on.\n numeric_only : bool, default None\n Include only float, int, boolean columns. False is not supported. This parameter\n is mainly for pandas compatibility.\n\n Returns\n -------\n kurt : scalar for a Series, and a Series for a DataFrame.\n\n Examples\n --------\n\n >>> df = ps.DataFrame({'a': [1, 2, 3, np.nan], 'b': [0.1, 0.2, 0.3, np.nan]},\n ... columns=['a', 'b'])\n\n On a DataFrame:\n\n >>> df.kurtosis()\n a -1.5\n b -1.5\n dtype: float64\n\n On a Series:\n\n >>> df['a'].kurtosis()\n -1.5\n " axis = validate_axis(axis) if ((numeric_only is None) and (axis == 0)): numeric_only = True def kurtosis(spark_column: Column, spark_type: DataType) -> Column: if isinstance(spark_type, BooleanType): spark_column = spark_column.cast(LongType()) elif (not isinstance(spark_type, NumericType)): raise TypeError('Could not convert {} ({}) to numeric'.format(spark_type_to_pandas_dtype(spark_type), spark_type.simpleString())) return F.kurtosis(spark_column) return self._reduce_for_stat_function(kurtosis, name='kurtosis', axis=axis, numeric_only=numeric_only)
-2,364,789,027,313,932,300
Return unbiased kurtosis using Fisher’s definition of kurtosis (kurtosis of normal == 0.0). Normalized by N-1. Parameters ---------- axis : {index (0), columns (1)} Axis for the function to be applied on. numeric_only : bool, default None Include only float, int, boolean columns. False is not supported. This parameter is mainly for pandas compatibility. Returns ------- kurt : scalar for a Series, and a Series for a DataFrame. Examples -------- >>> df = ps.DataFrame({'a': [1, 2, 3, np.nan], 'b': [0.1, 0.2, 0.3, np.nan]}, ... columns=['a', 'b']) On a DataFrame: >>> df.kurtosis() a -1.5 b -1.5 dtype: float64 On a Series: >>> df['a'].kurtosis() -1.5
python/pyspark/pandas/generic.py
kurtosis
XpressAI/spark
python
def kurtosis(self, axis: Optional[Axis]=None, numeric_only: bool=None) -> Union[(Scalar, 'Series')]: "\n Return unbiased kurtosis using Fisher’s definition of kurtosis (kurtosis of normal == 0.0).\n Normalized by N-1.\n\n Parameters\n ----------\n axis : {index (0), columns (1)}\n Axis for the function to be applied on.\n numeric_only : bool, default None\n Include only float, int, boolean columns. False is not supported. This parameter\n is mainly for pandas compatibility.\n\n Returns\n -------\n kurt : scalar for a Series, and a Series for a DataFrame.\n\n Examples\n --------\n\n >>> df = ps.DataFrame({'a': [1, 2, 3, np.nan], 'b': [0.1, 0.2, 0.3, np.nan]},\n ... columns=['a', 'b'])\n\n On a DataFrame:\n\n >>> df.kurtosis()\n a -1.5\n b -1.5\n dtype: float64\n\n On a Series:\n\n >>> df['a'].kurtosis()\n -1.5\n " axis = validate_axis(axis) if ((numeric_only is None) and (axis == 0)): numeric_only = True def kurtosis(spark_column: Column, spark_type: DataType) -> Column: if isinstance(spark_type, BooleanType): spark_column = spark_column.cast(LongType()) elif (not isinstance(spark_type, NumericType)): raise TypeError('Could not convert {} ({}) to numeric'.format(spark_type_to_pandas_dtype(spark_type), spark_type.simpleString())) return F.kurtosis(spark_column) return self._reduce_for_stat_function(kurtosis, name='kurtosis', axis=axis, numeric_only=numeric_only)
def min(self, axis: Optional[Axis]=None, numeric_only: bool=None) -> Union[(Scalar, 'Series')]: "\n Return the minimum of the values.\n\n Parameters\n ----------\n axis : {index (0), columns (1)}\n Axis for the function to be applied on.\n numeric_only : bool, default None\n If True, include only float, int, boolean columns. This parameter is mainly for\n pandas compatibility. False is supported; however, the columns should\n be all numeric or all non-numeric.\n\n Returns\n -------\n min : scalar for a Series, and a Series for a DataFrame.\n\n Examples\n --------\n\n >>> df = ps.DataFrame({'a': [1, 2, 3, np.nan], 'b': [0.1, 0.2, 0.3, np.nan]},\n ... columns=['a', 'b'])\n\n On a DataFrame:\n\n >>> df.min()\n a 1.0\n b 0.1\n dtype: float64\n\n >>> df.min(axis=1)\n 0 0.1\n 1 0.2\n 2 0.3\n 3 NaN\n dtype: float64\n\n On a Series:\n\n >>> df['a'].min()\n 1.0\n " axis = validate_axis(axis) if ((numeric_only is None) and (axis == 0)): numeric_only = True elif ((numeric_only is True) and (axis == 1)): numeric_only = None return self._reduce_for_stat_function(F.min, name='min', axis=axis, numeric_only=numeric_only)
398,092,958,807,587,700
Return the minimum of the values. Parameters ---------- axis : {index (0), columns (1)} Axis for the function to be applied on. numeric_only : bool, default None If True, include only float, int, boolean columns. This parameter is mainly for pandas compatibility. False is supported; however, the columns should be all numeric or all non-numeric. Returns ------- min : scalar for a Series, and a Series for a DataFrame. Examples -------- >>> df = ps.DataFrame({'a': [1, 2, 3, np.nan], 'b': [0.1, 0.2, 0.3, np.nan]}, ... columns=['a', 'b']) On a DataFrame: >>> df.min() a 1.0 b 0.1 dtype: float64 >>> df.min(axis=1) 0 0.1 1 0.2 2 0.3 3 NaN dtype: float64 On a Series: >>> df['a'].min() 1.0
python/pyspark/pandas/generic.py
min
XpressAI/spark
python
def min(self, axis: Optional[Axis]=None, numeric_only: bool=None) -> Union[(Scalar, 'Series')]: "\n Return the minimum of the values.\n\n Parameters\n ----------\n axis : {index (0), columns (1)}\n Axis for the function to be applied on.\n numeric_only : bool, default None\n If True, include only float, int, boolean columns. This parameter is mainly for\n pandas compatibility. False is supported; however, the columns should\n be all numeric or all non-numeric.\n\n Returns\n -------\n min : scalar for a Series, and a Series for a DataFrame.\n\n Examples\n --------\n\n >>> df = ps.DataFrame({'a': [1, 2, 3, np.nan], 'b': [0.1, 0.2, 0.3, np.nan]},\n ... columns=['a', 'b'])\n\n On a DataFrame:\n\n >>> df.min()\n a 1.0\n b 0.1\n dtype: float64\n\n >>> df.min(axis=1)\n 0 0.1\n 1 0.2\n 2 0.3\n 3 NaN\n dtype: float64\n\n On a Series:\n\n >>> df['a'].min()\n 1.0\n " axis = validate_axis(axis) if ((numeric_only is None) and (axis == 0)): numeric_only = True elif ((numeric_only is True) and (axis == 1)): numeric_only = None return self._reduce_for_stat_function(F.min, name='min', axis=axis, numeric_only=numeric_only)
def max(self, axis: Optional[Axis]=None, numeric_only: bool=None) -> Union[(Scalar, 'Series')]: "\n Return the maximum of the values.\n\n Parameters\n ----------\n axis : {index (0), columns (1)}\n Axis for the function to be applied on.\n numeric_only : bool, default None\n If True, include only float, int, boolean columns. This parameter is mainly for\n pandas compatibility. False is supported; however, the columns should\n be all numeric or all non-numeric.\n\n Returns\n -------\n max : scalar for a Series, and a Series for a DataFrame.\n\n Examples\n --------\n\n >>> df = ps.DataFrame({'a': [1, 2, 3, np.nan], 'b': [0.1, 0.2, 0.3, np.nan]},\n ... columns=['a', 'b'])\n\n On a DataFrame:\n\n >>> df.max()\n a 3.0\n b 0.3\n dtype: float64\n\n >>> df.max(axis=1)\n 0 1.0\n 1 2.0\n 2 3.0\n 3 NaN\n dtype: float64\n\n On a Series:\n\n >>> df['a'].max()\n 3.0\n " axis = validate_axis(axis) if ((numeric_only is None) and (axis == 0)): numeric_only = True elif ((numeric_only is True) and (axis == 1)): numeric_only = None return self._reduce_for_stat_function(F.max, name='max', axis=axis, numeric_only=numeric_only)
-8,641,553,948,083,875,000
Return the maximum of the values. Parameters ---------- axis : {index (0), columns (1)} Axis for the function to be applied on. numeric_only : bool, default None If True, include only float, int, boolean columns. This parameter is mainly for pandas compatibility. False is supported; however, the columns should be all numeric or all non-numeric. Returns ------- max : scalar for a Series, and a Series for a DataFrame. Examples -------- >>> df = ps.DataFrame({'a': [1, 2, 3, np.nan], 'b': [0.1, 0.2, 0.3, np.nan]}, ... columns=['a', 'b']) On a DataFrame: >>> df.max() a 3.0 b 0.3 dtype: float64 >>> df.max(axis=1) 0 1.0 1 2.0 2 3.0 3 NaN dtype: float64 On a Series: >>> df['a'].max() 3.0
python/pyspark/pandas/generic.py
max
XpressAI/spark
python
def max(self, axis: Optional[Axis]=None, numeric_only: bool=None) -> Union[(Scalar, 'Series')]: "\n Return the maximum of the values.\n\n Parameters\n ----------\n axis : {index (0), columns (1)}\n Axis for the function to be applied on.\n numeric_only : bool, default None\n If True, include only float, int, boolean columns. This parameter is mainly for\n pandas compatibility. False is supported; however, the columns should\n be all numeric or all non-numeric.\n\n Returns\n -------\n max : scalar for a Series, and a Series for a DataFrame.\n\n Examples\n --------\n\n >>> df = ps.DataFrame({'a': [1, 2, 3, np.nan], 'b': [0.1, 0.2, 0.3, np.nan]},\n ... columns=['a', 'b'])\n\n On a DataFrame:\n\n >>> df.max()\n a 3.0\n b 0.3\n dtype: float64\n\n >>> df.max(axis=1)\n 0 1.0\n 1 2.0\n 2 3.0\n 3 NaN\n dtype: float64\n\n On a Series:\n\n >>> df['a'].max()\n 3.0\n " axis = validate_axis(axis) if ((numeric_only is None) and (axis == 0)): numeric_only = True elif ((numeric_only is True) and (axis == 1)): numeric_only = None return self._reduce_for_stat_function(F.max, name='max', axis=axis, numeric_only=numeric_only)
def count(self, axis: Optional[Axis]=None, numeric_only: bool=False) -> Union[(Scalar, 'Series')]: '\n Count non-NA cells for each column.\n\n The values `None`, `NaN` are considered NA.\n\n Parameters\n ----------\n axis : {0 or ‘index’, 1 or ‘columns’}, default 0\n If 0 or ‘index’ counts are generated for each column. If 1 or ‘columns’ counts are\n generated for each row.\n numeric_only : bool, default False\n If True, include only float, int, boolean columns. This parameter is mainly for\n pandas compatibility.\n\n Returns\n -------\n max : scalar for a Series, and a Series for a DataFrame.\n\n See Also\n --------\n DataFrame.shape: Number of DataFrame rows and columns (including NA\n elements).\n DataFrame.isna: Boolean same-sized DataFrame showing places of NA\n elements.\n\n Examples\n --------\n Constructing DataFrame from a dictionary:\n\n >>> df = ps.DataFrame({"Person":\n ... ["John", "Myla", "Lewis", "John", "Myla"],\n ... "Age": [24., np.nan, 21., 33, 26],\n ... "Single": [False, True, True, True, False]},\n ... columns=["Person", "Age", "Single"])\n >>> df\n Person Age Single\n 0 John 24.0 False\n 1 Myla NaN True\n 2 Lewis 21.0 True\n 3 John 33.0 True\n 4 Myla 26.0 False\n\n Notice the uncounted NA values:\n\n >>> df.count()\n Person 5\n Age 4\n Single 5\n dtype: int64\n\n >>> df.count(axis=1)\n 0 3\n 1 2\n 2 3\n 3 3\n 4 3\n dtype: int64\n\n On a Series:\n\n >>> df[\'Person\'].count()\n 5\n\n >>> df[\'Age\'].count()\n 4\n ' return self._reduce_for_stat_function(Frame._count_expr, name='count', axis=axis, numeric_only=numeric_only)
7,315,654,646,070,643,000
Count non-NA cells for each column. The values `None`, `NaN` are considered NA. Parameters ---------- axis : {0 or ‘index’, 1 or ‘columns’}, default 0 If 0 or ‘index’ counts are generated for each column. If 1 or ‘columns’ counts are generated for each row. numeric_only : bool, default False If True, include only float, int, boolean columns. This parameter is mainly for pandas compatibility. Returns ------- max : scalar for a Series, and a Series for a DataFrame. See Also -------- DataFrame.shape: Number of DataFrame rows and columns (including NA elements). DataFrame.isna: Boolean same-sized DataFrame showing places of NA elements. Examples -------- Constructing DataFrame from a dictionary: >>> df = ps.DataFrame({"Person": ... ["John", "Myla", "Lewis", "John", "Myla"], ... "Age": [24., np.nan, 21., 33, 26], ... "Single": [False, True, True, True, False]}, ... columns=["Person", "Age", "Single"]) >>> df Person Age Single 0 John 24.0 False 1 Myla NaN True 2 Lewis 21.0 True 3 John 33.0 True 4 Myla 26.0 False Notice the uncounted NA values: >>> df.count() Person 5 Age 4 Single 5 dtype: int64 >>> df.count(axis=1) 0 3 1 2 2 3 3 3 4 3 dtype: int64 On a Series: >>> df['Person'].count() 5 >>> df['Age'].count() 4
python/pyspark/pandas/generic.py
count
XpressAI/spark
python
def count(self, axis: Optional[Axis]=None, numeric_only: bool=False) -> Union[(Scalar, 'Series')]: '\n Count non-NA cells for each column.\n\n The values `None`, `NaN` are considered NA.\n\n Parameters\n ----------\n axis : {0 or ‘index’, 1 or ‘columns’}, default 0\n If 0 or ‘index’ counts are generated for each column. If 1 or ‘columns’ counts are\n generated for each row.\n numeric_only : bool, default False\n If True, include only float, int, boolean columns. This parameter is mainly for\n pandas compatibility.\n\n Returns\n -------\n max : scalar for a Series, and a Series for a DataFrame.\n\n See Also\n --------\n DataFrame.shape: Number of DataFrame rows and columns (including NA\n elements).\n DataFrame.isna: Boolean same-sized DataFrame showing places of NA\n elements.\n\n Examples\n --------\n Constructing DataFrame from a dictionary:\n\n >>> df = ps.DataFrame({"Person":\n ... ["John", "Myla", "Lewis", "John", "Myla"],\n ... "Age": [24., np.nan, 21., 33, 26],\n ... "Single": [False, True, True, True, False]},\n ... columns=["Person", "Age", "Single"])\n >>> df\n Person Age Single\n 0 John 24.0 False\n 1 Myla NaN True\n 2 Lewis 21.0 True\n 3 John 33.0 True\n 4 Myla 26.0 False\n\n Notice the uncounted NA values:\n\n >>> df.count()\n Person 5\n Age 4\n Single 5\n dtype: int64\n\n >>> df.count(axis=1)\n 0 3\n 1 2\n 2 3\n 3 3\n 4 3\n dtype: int64\n\n On a Series:\n\n >>> df[\'Person\'].count()\n 5\n\n >>> df[\'Age\'].count()\n 4\n ' return self._reduce_for_stat_function(Frame._count_expr, name='count', axis=axis, numeric_only=numeric_only)
def std(self, axis: Optional[Axis]=None, ddof: int=1, numeric_only: bool=None) -> Union[(Scalar, 'Series')]: "\n Return sample standard deviation.\n\n Parameters\n ----------\n axis : {index (0), columns (1)}\n Axis for the function to be applied on.\n ddof : int, default 1\n Delta Degrees of Freedom. The divisor used in calculations is N - ddof,\n where N represents the number of elements.\n numeric_only : bool, default None\n Include only float, int, boolean columns. False is not supported. This parameter\n is mainly for pandas compatibility.\n\n Returns\n -------\n std : scalar for a Series, and a Series for a DataFrame.\n\n Examples\n --------\n\n >>> df = ps.DataFrame({'a': [1, 2, 3, np.nan], 'b': [0.1, 0.2, 0.3, np.nan]},\n ... columns=['a', 'b'])\n\n On a DataFrame:\n\n >>> df.std()\n a 1.0\n b 0.1\n dtype: float64\n\n >>> df.std(axis=1)\n 0 0.636396\n 1 1.272792\n 2 1.909188\n 3 NaN\n dtype: float64\n\n >>> df.std(ddof=0)\n a 0.816497\n b 0.081650\n dtype: float64\n\n On a Series:\n\n >>> df['a'].std()\n 1.0\n\n >>> df['a'].std(ddof=0)\n 0.816496580927726\n " assert (ddof in (0, 1)) axis = validate_axis(axis) if ((numeric_only is None) and (axis == 0)): numeric_only = True def std(spark_column: Column, spark_type: DataType) -> Column: if isinstance(spark_type, BooleanType): spark_column = spark_column.cast(LongType()) elif (not isinstance(spark_type, NumericType)): raise TypeError('Could not convert {} ({}) to numeric'.format(spark_type_to_pandas_dtype(spark_type), spark_type.simpleString())) if (ddof == 0): return F.stddev_pop(spark_column) else: return F.stddev_samp(spark_column) return self._reduce_for_stat_function(std, name='std', axis=axis, numeric_only=numeric_only, ddof=ddof)
8,972,190,425,281,151,000
Return sample standard deviation. Parameters ---------- axis : {index (0), columns (1)} Axis for the function to be applied on. ddof : int, default 1 Delta Degrees of Freedom. The divisor used in calculations is N - ddof, where N represents the number of elements. numeric_only : bool, default None Include only float, int, boolean columns. False is not supported. This parameter is mainly for pandas compatibility. Returns ------- std : scalar for a Series, and a Series for a DataFrame. Examples -------- >>> df = ps.DataFrame({'a': [1, 2, 3, np.nan], 'b': [0.1, 0.2, 0.3, np.nan]}, ... columns=['a', 'b']) On a DataFrame: >>> df.std() a 1.0 b 0.1 dtype: float64 >>> df.std(axis=1) 0 0.636396 1 1.272792 2 1.909188 3 NaN dtype: float64 >>> df.std(ddof=0) a 0.816497 b 0.081650 dtype: float64 On a Series: >>> df['a'].std() 1.0 >>> df['a'].std(ddof=0) 0.816496580927726
python/pyspark/pandas/generic.py
std
XpressAI/spark
python
def std(self, axis: Optional[Axis]=None, ddof: int=1, numeric_only: bool=None) -> Union[(Scalar, 'Series')]: "\n Return sample standard deviation.\n\n Parameters\n ----------\n axis : {index (0), columns (1)}\n Axis for the function to be applied on.\n ddof : int, default 1\n Delta Degrees of Freedom. The divisor used in calculations is N - ddof,\n where N represents the number of elements.\n numeric_only : bool, default None\n Include only float, int, boolean columns. False is not supported. This parameter\n is mainly for pandas compatibility.\n\n Returns\n -------\n std : scalar for a Series, and a Series for a DataFrame.\n\n Examples\n --------\n\n >>> df = ps.DataFrame({'a': [1, 2, 3, np.nan], 'b': [0.1, 0.2, 0.3, np.nan]},\n ... columns=['a', 'b'])\n\n On a DataFrame:\n\n >>> df.std()\n a 1.0\n b 0.1\n dtype: float64\n\n >>> df.std(axis=1)\n 0 0.636396\n 1 1.272792\n 2 1.909188\n 3 NaN\n dtype: float64\n\n >>> df.std(ddof=0)\n a 0.816497\n b 0.081650\n dtype: float64\n\n On a Series:\n\n >>> df['a'].std()\n 1.0\n\n >>> df['a'].std(ddof=0)\n 0.816496580927726\n " assert (ddof in (0, 1)) axis = validate_axis(axis) if ((numeric_only is None) and (axis == 0)): numeric_only = True def std(spark_column: Column, spark_type: DataType) -> Column: if isinstance(spark_type, BooleanType): spark_column = spark_column.cast(LongType()) elif (not isinstance(spark_type, NumericType)): raise TypeError('Could not convert {} ({}) to numeric'.format(spark_type_to_pandas_dtype(spark_type), spark_type.simpleString())) if (ddof == 0): return F.stddev_pop(spark_column) else: return F.stddev_samp(spark_column) return self._reduce_for_stat_function(std, name='std', axis=axis, numeric_only=numeric_only, ddof=ddof)
def var(self, axis: Optional[Axis]=None, ddof: int=1, numeric_only: bool=None) -> Union[(Scalar, 'Series')]: "\n Return unbiased variance.\n\n Parameters\n ----------\n axis : {index (0), columns (1)}\n Axis for the function to be applied on.\n ddof : int, default 1\n Delta Degrees of Freedom. The divisor used in calculations is N - ddof,\n where N represents the number of elements.\n numeric_only : bool, default None\n Include only float, int, boolean columns. False is not supported. This parameter\n is mainly for pandas compatibility.\n\n Returns\n -------\n var : scalar for a Series, and a Series for a DataFrame.\n\n Examples\n --------\n\n >>> df = ps.DataFrame({'a': [1, 2, 3, np.nan], 'b': [0.1, 0.2, 0.3, np.nan]},\n ... columns=['a', 'b'])\n\n On a DataFrame:\n\n >>> df.var()\n a 1.00\n b 0.01\n dtype: float64\n\n >>> df.var(axis=1)\n 0 0.405\n 1 1.620\n 2 3.645\n 3 NaN\n dtype: float64\n\n >>> df.var(ddof=0)\n a 0.666667\n b 0.006667\n dtype: float64\n\n On a Series:\n\n >>> df['a'].var()\n 1.0\n\n >>> df['a'].var(ddof=0)\n 0.6666666666666666\n " assert (ddof in (0, 1)) axis = validate_axis(axis) if ((numeric_only is None) and (axis == 0)): numeric_only = True def var(spark_column: Column, spark_type: DataType) -> Column: if isinstance(spark_type, BooleanType): spark_column = spark_column.cast(LongType()) elif (not isinstance(spark_type, NumericType)): raise TypeError('Could not convert {} ({}) to numeric'.format(spark_type_to_pandas_dtype(spark_type), spark_type.simpleString())) if (ddof == 0): return F.var_pop(spark_column) else: return F.var_samp(spark_column) return self._reduce_for_stat_function(var, name='var', axis=axis, numeric_only=numeric_only, ddof=ddof)
-3,360,667,890,068,724,000
Return unbiased variance. Parameters ---------- axis : {index (0), columns (1)} Axis for the function to be applied on. ddof : int, default 1 Delta Degrees of Freedom. The divisor used in calculations is N - ddof, where N represents the number of elements. numeric_only : bool, default None Include only float, int, boolean columns. False is not supported. This parameter is mainly for pandas compatibility. Returns ------- var : scalar for a Series, and a Series for a DataFrame. Examples -------- >>> df = ps.DataFrame({'a': [1, 2, 3, np.nan], 'b': [0.1, 0.2, 0.3, np.nan]}, ... columns=['a', 'b']) On a DataFrame: >>> df.var() a 1.00 b 0.01 dtype: float64 >>> df.var(axis=1) 0 0.405 1 1.620 2 3.645 3 NaN dtype: float64 >>> df.var(ddof=0) a 0.666667 b 0.006667 dtype: float64 On a Series: >>> df['a'].var() 1.0 >>> df['a'].var(ddof=0) 0.6666666666666666
python/pyspark/pandas/generic.py
var
XpressAI/spark
python
def var(self, axis: Optional[Axis]=None, ddof: int=1, numeric_only: bool=None) -> Union[(Scalar, 'Series')]: "\n Return unbiased variance.\n\n Parameters\n ----------\n axis : {index (0), columns (1)}\n Axis for the function to be applied on.\n ddof : int, default 1\n Delta Degrees of Freedom. The divisor used in calculations is N - ddof,\n where N represents the number of elements.\n numeric_only : bool, default None\n Include only float, int, boolean columns. False is not supported. This parameter\n is mainly for pandas compatibility.\n\n Returns\n -------\n var : scalar for a Series, and a Series for a DataFrame.\n\n Examples\n --------\n\n >>> df = ps.DataFrame({'a': [1, 2, 3, np.nan], 'b': [0.1, 0.2, 0.3, np.nan]},\n ... columns=['a', 'b'])\n\n On a DataFrame:\n\n >>> df.var()\n a 1.00\n b 0.01\n dtype: float64\n\n >>> df.var(axis=1)\n 0 0.405\n 1 1.620\n 2 3.645\n 3 NaN\n dtype: float64\n\n >>> df.var(ddof=0)\n a 0.666667\n b 0.006667\n dtype: float64\n\n On a Series:\n\n >>> df['a'].var()\n 1.0\n\n >>> df['a'].var(ddof=0)\n 0.6666666666666666\n " assert (ddof in (0, 1)) axis = validate_axis(axis) if ((numeric_only is None) and (axis == 0)): numeric_only = True def var(spark_column: Column, spark_type: DataType) -> Column: if isinstance(spark_type, BooleanType): spark_column = spark_column.cast(LongType()) elif (not isinstance(spark_type, NumericType)): raise TypeError('Could not convert {} ({}) to numeric'.format(spark_type_to_pandas_dtype(spark_type), spark_type.simpleString())) if (ddof == 0): return F.var_pop(spark_column) else: return F.var_samp(spark_column) return self._reduce_for_stat_function(var, name='var', axis=axis, numeric_only=numeric_only, ddof=ddof)