body
stringlengths 26
98.2k
| body_hash
int64 -9,222,864,604,528,158,000
9,221,803,474B
| docstring
stringlengths 1
16.8k
| path
stringlengths 5
230
| name
stringlengths 1
96
| repository_name
stringlengths 7
89
| lang
stringclasses 1
value | body_without_docstring
stringlengths 20
98.2k
|
---|---|---|---|---|---|---|---|
def pack_range(key, packing, grad_vars, rng):
'Form the concatenation of a specified range of gradient tensors.\n\n Args:\n key: Value under which to store meta-data in packing that will be used\n later to restore the grad_var list structure.\n packing: Dict holding data describing packed ranges of small tensors.\n grad_vars: List of (grad, var) pairs for one replica.\n rng: A pair of integers giving the first, last indices of a consecutive\n range of tensors to be packed.\n\n Returns:\n A tensor that is the concatenation of all the specified small tensors.\n '
to_pack = grad_vars[rng[0]:(rng[1] + 1)]
members = []
variables = []
restore_shapes = []
with ops.name_scope('pack'):
for (g, v) in to_pack:
variables.append(v)
restore_shapes.append(g.shape)
with ops.device(g.device):
members.append(array_ops.reshape(g, [(- 1)]))
packing[key] = GradPackTuple(indices=range(rng[0], (rng[1] + 1)), vars=variables, shapes=restore_shapes)
with ops.device(members[0].device):
return array_ops.concat(members, 0) | -8,537,589,089,792,121,000 | Form the concatenation of a specified range of gradient tensors.
Args:
key: Value under which to store meta-data in packing that will be used
later to restore the grad_var list structure.
packing: Dict holding data describing packed ranges of small tensors.
grad_vars: List of (grad, var) pairs for one replica.
rng: A pair of integers giving the first, last indices of a consecutive
range of tensors to be packed.
Returns:
A tensor that is the concatenation of all the specified small tensors. | tensorflow/python/distribute/cross_device_utils.py | pack_range | DeuroIO/Deuro-tensorflow | python | def pack_range(key, packing, grad_vars, rng):
'Form the concatenation of a specified range of gradient tensors.\n\n Args:\n key: Value under which to store meta-data in packing that will be used\n later to restore the grad_var list structure.\n packing: Dict holding data describing packed ranges of small tensors.\n grad_vars: List of (grad, var) pairs for one replica.\n rng: A pair of integers giving the first, last indices of a consecutive\n range of tensors to be packed.\n\n Returns:\n A tensor that is the concatenation of all the specified small tensors.\n '
to_pack = grad_vars[rng[0]:(rng[1] + 1)]
members = []
variables = []
restore_shapes = []
with ops.name_scope('pack'):
for (g, v) in to_pack:
variables.append(v)
restore_shapes.append(g.shape)
with ops.device(g.device):
members.append(array_ops.reshape(g, [(- 1)]))
packing[key] = GradPackTuple(indices=range(rng[0], (rng[1] + 1)), vars=variables, shapes=restore_shapes)
with ops.device(members[0].device):
return array_ops.concat(members, 0) |
def unpack_grad_tuple(gv, gpt):
'Unpack a previously packed collection of gradient tensors.\n\n Args:\n gv: A (grad, var) pair to be unpacked.\n gpt: A GradPackTuple describing the packing operation that produced gv.\n\n Returns:\n A list of (grad, var) pairs corresponding to the values that were\n originally packed into gv, maybe following subsequent operations like\n reduction.\n '
elt_widths = [x.num_elements() for x in gpt.shapes]
with ops.device(gv[0][0].device):
with ops.name_scope('unpack'):
splits = array_ops.split(gv[0], elt_widths)
unpacked_gv = []
for (idx, s) in enumerate(splits):
unpacked_gv.append((array_ops.reshape(s, gpt.shapes[idx]), gpt.vars[idx]))
return unpacked_gv | 588,470,004,200,064,300 | Unpack a previously packed collection of gradient tensors.
Args:
gv: A (grad, var) pair to be unpacked.
gpt: A GradPackTuple describing the packing operation that produced gv.
Returns:
A list of (grad, var) pairs corresponding to the values that were
originally packed into gv, maybe following subsequent operations like
reduction. | tensorflow/python/distribute/cross_device_utils.py | unpack_grad_tuple | DeuroIO/Deuro-tensorflow | python | def unpack_grad_tuple(gv, gpt):
'Unpack a previously packed collection of gradient tensors.\n\n Args:\n gv: A (grad, var) pair to be unpacked.\n gpt: A GradPackTuple describing the packing operation that produced gv.\n\n Returns:\n A list of (grad, var) pairs corresponding to the values that were\n originally packed into gv, maybe following subsequent operations like\n reduction.\n '
elt_widths = [x.num_elements() for x in gpt.shapes]
with ops.device(gv[0][0].device):
with ops.name_scope('unpack'):
splits = array_ops.split(gv[0], elt_widths)
unpacked_gv = []
for (idx, s) in enumerate(splits):
unpacked_gv.append((array_ops.reshape(s, gpt.shapes[idx]), gpt.vars[idx]))
return unpacked_gv |
def pack_small_tensors(replica_grads, max_bytes=0, max_group=0):
"Concatenate small gradient tensors together for reduction.\n\n Args:\n replica_grads: List of lists of (gradient, variable) tuples.\n max_bytes: Int giving max number of bytes in a tensor that\n may be considered small.\n max_group: Int giving max number of small tensors that may be\n concatenated into one new tensor.\n\n Returns:\n new_replica_grads, packing where new_replica_grads is identical to\n replica_grads except that all feasible small_tensors have been removed\n from their places and concatenated into larger tensors that are\n now in the front of the list for each replica, and packing contains\n the data necessary to restore the replica_grads structure.\n\n Look through the first replica for gradients of the same type (float),\n and small size, that are all sequential. For each such group,\n replace by a new tensor that is a flattened concatenation. Note\n that the corresponding variable will be absent, which doesn't matter\n because it isn't used during all-reduce.\n\n Requires:\n Every gv_list in replicas must have isomorphic structure including identical\n tensor sizes and types.\n "
small_indices = []
large_indices = []
for (idx, (g, _)) in enumerate(replica_grads[0]):
if ((g.dtype == dtypes.float32) and ((4 * g.shape.num_elements()) <= max_bytes)):
small_indices.append(idx)
else:
large_indices.append(idx)
(small_ranges, small_singles) = extract_ranges(small_indices, range_size_limit=max_group)
large_indices = sorted((large_indices + small_singles))
num_gv = len(replica_grads[0])
packing = {}
if small_ranges:
new_replica_grads = []
for (dev_idx, gv_list) in enumerate(replica_grads):
assert (len(gv_list) == num_gv)
new_gv_list = []
for r in small_ranges:
key = ('%d:%d' % (dev_idx, len(new_gv_list)))
new_gv_list.append((pack_range(key, packing, gv_list, r), 'packing_var_placeholder'))
for i in large_indices:
new_gv_list.append(gv_list[i])
new_replica_grads.append(new_gv_list)
return (new_replica_grads, packing)
else:
return (replica_grads, None) | -3,869,403,477,617,599,000 | Concatenate small gradient tensors together for reduction.
Args:
replica_grads: List of lists of (gradient, variable) tuples.
max_bytes: Int giving max number of bytes in a tensor that
may be considered small.
max_group: Int giving max number of small tensors that may be
concatenated into one new tensor.
Returns:
new_replica_grads, packing where new_replica_grads is identical to
replica_grads except that all feasible small_tensors have been removed
from their places and concatenated into larger tensors that are
now in the front of the list for each replica, and packing contains
the data necessary to restore the replica_grads structure.
Look through the first replica for gradients of the same type (float),
and small size, that are all sequential. For each such group,
replace by a new tensor that is a flattened concatenation. Note
that the corresponding variable will be absent, which doesn't matter
because it isn't used during all-reduce.
Requires:
Every gv_list in replicas must have isomorphic structure including identical
tensor sizes and types. | tensorflow/python/distribute/cross_device_utils.py | pack_small_tensors | DeuroIO/Deuro-tensorflow | python | def pack_small_tensors(replica_grads, max_bytes=0, max_group=0):
"Concatenate small gradient tensors together for reduction.\n\n Args:\n replica_grads: List of lists of (gradient, variable) tuples.\n max_bytes: Int giving max number of bytes in a tensor that\n may be considered small.\n max_group: Int giving max number of small tensors that may be\n concatenated into one new tensor.\n\n Returns:\n new_replica_grads, packing where new_replica_grads is identical to\n replica_grads except that all feasible small_tensors have been removed\n from their places and concatenated into larger tensors that are\n now in the front of the list for each replica, and packing contains\n the data necessary to restore the replica_grads structure.\n\n Look through the first replica for gradients of the same type (float),\n and small size, that are all sequential. For each such group,\n replace by a new tensor that is a flattened concatenation. Note\n that the corresponding variable will be absent, which doesn't matter\n because it isn't used during all-reduce.\n\n Requires:\n Every gv_list in replicas must have isomorphic structure including identical\n tensor sizes and types.\n "
small_indices = []
large_indices = []
for (idx, (g, _)) in enumerate(replica_grads[0]):
if ((g.dtype == dtypes.float32) and ((4 * g.shape.num_elements()) <= max_bytes)):
small_indices.append(idx)
else:
large_indices.append(idx)
(small_ranges, small_singles) = extract_ranges(small_indices, range_size_limit=max_group)
large_indices = sorted((large_indices + small_singles))
num_gv = len(replica_grads[0])
packing = {}
if small_ranges:
new_replica_grads = []
for (dev_idx, gv_list) in enumerate(replica_grads):
assert (len(gv_list) == num_gv)
new_gv_list = []
for r in small_ranges:
key = ('%d:%d' % (dev_idx, len(new_gv_list)))
new_gv_list.append((pack_range(key, packing, gv_list, r), 'packing_var_placeholder'))
for i in large_indices:
new_gv_list.append(gv_list[i])
new_replica_grads.append(new_gv_list)
return (new_replica_grads, packing)
else:
return (replica_grads, None) |
def unpack_small_tensors(replica_grads, packing):
'Undo the structure alterations to replica_grads done by pack_small_tensors.\n\n Args:\n replica_grads: List of List of (grad, var) tuples.\n packing: A dict generated by pack_small_tensors describing the changes\n it made to replica_grads.\n\n Returns:\n new_replica_grads: identical to replica_grads except that concatenations\n of small tensors have been split apart and returned to their original\n positions, paired with their original variables.\n '
if (not packing):
return replica_grads
new_replica_grads = []
num_devices = len(replica_grads)
num_packed = (len(packing.keys()) // num_devices)
for (dev_idx, gv_list) in enumerate(replica_grads):
gv_list = list(gv_list)
new_gv_list = gv_list[num_packed:]
for i in range(num_packed):
k = ('%d:%d' % (dev_idx, i))
gpt = packing[k]
gv = unpack_grad_tuple(gv_list[i], gpt)
for (gi, idx) in enumerate(gpt.indices):
assert (idx == gpt.indices[gi])
new_gv_list.insert(idx, gv[gi])
new_replica_grads.append(new_gv_list)
return new_replica_grads | 4,266,833,636,242,527,700 | Undo the structure alterations to replica_grads done by pack_small_tensors.
Args:
replica_grads: List of List of (grad, var) tuples.
packing: A dict generated by pack_small_tensors describing the changes
it made to replica_grads.
Returns:
new_replica_grads: identical to replica_grads except that concatenations
of small tensors have been split apart and returned to their original
positions, paired with their original variables. | tensorflow/python/distribute/cross_device_utils.py | unpack_small_tensors | DeuroIO/Deuro-tensorflow | python | def unpack_small_tensors(replica_grads, packing):
'Undo the structure alterations to replica_grads done by pack_small_tensors.\n\n Args:\n replica_grads: List of List of (grad, var) tuples.\n packing: A dict generated by pack_small_tensors describing the changes\n it made to replica_grads.\n\n Returns:\n new_replica_grads: identical to replica_grads except that concatenations\n of small tensors have been split apart and returned to their original\n positions, paired with their original variables.\n '
if (not packing):
return replica_grads
new_replica_grads = []
num_devices = len(replica_grads)
num_packed = (len(packing.keys()) // num_devices)
for (dev_idx, gv_list) in enumerate(replica_grads):
gv_list = list(gv_list)
new_gv_list = gv_list[num_packed:]
for i in range(num_packed):
k = ('%d:%d' % (dev_idx, i))
gpt = packing[k]
gv = unpack_grad_tuple(gv_list[i], gpt)
for (gi, idx) in enumerate(gpt.indices):
assert (idx == gpt.indices[gi])
new_gv_list.insert(idx, gv[gi])
new_replica_grads.append(new_gv_list)
return new_replica_grads |
def aggregate_tensors_or_indexed_slices(values, accumulation_fn=math_ops.add_n):
'Aggregate tensors using `accumulation_fn` and IndexedSlices via concat.'
if any((isinstance(v, ops.IndexedSlices) for v in values)):
return gradients_impl._AggregateIndexedSlicesGradients(values)
else:
return accumulation_fn(values) | -8,755,428,239,939,372,000 | Aggregate tensors using `accumulation_fn` and IndexedSlices via concat. | tensorflow/python/distribute/cross_device_utils.py | aggregate_tensors_or_indexed_slices | DeuroIO/Deuro-tensorflow | python | def aggregate_tensors_or_indexed_slices(values, accumulation_fn=math_ops.add_n):
if any((isinstance(v, ops.IndexedSlices) for v in values)):
return gradients_impl._AggregateIndexedSlicesGradients(values)
else:
return accumulation_fn(values) |
def contains_indexed_slices(value):
'Check whether the value is `IndexedSlices` or contains `IndexedSlices`.'
if isinstance(value, ops.IndexedSlices):
return True
elif (isinstance(value, (list, tuple)) and value):
return any((contains_indexed_slices(v) for v in value))
elif isinstance(value, value_lib.DistributedValues):
return contains_indexed_slices(list(value._index.values()))
else:
return False | 4,811,654,315,259,058,000 | Check whether the value is `IndexedSlices` or contains `IndexedSlices`. | tensorflow/python/distribute/cross_device_utils.py | contains_indexed_slices | DeuroIO/Deuro-tensorflow | python | def contains_indexed_slices(value):
if isinstance(value, ops.IndexedSlices):
return True
elif (isinstance(value, (list, tuple)) and value):
return any((contains_indexed_slices(v) for v in value))
elif isinstance(value, value_lib.DistributedValues):
return contains_indexed_slices(list(value._index.values()))
else:
return False |
def __init__(self, group_key_start=1, instance_key_start=100, instance_key_with_id_start=10000):
'Initializes the object.\n\n Args:\n group_key_start: the starting integer of group key.\n instance_key_start: the starting integer of instance key.\n instance_key_with_id_start: the starting integer of instance key that is\n recorded with an id.\n '
self._group_key = group_key_start
self._group_key_table = dict()
self._instance_key_id_to_key_table = dict()
self._instance_key_with_id_counter = instance_key_with_id_start
self._instance_key_start = instance_key_start | -8,157,370,672,428,255,000 | Initializes the object.
Args:
group_key_start: the starting integer of group key.
instance_key_start: the starting integer of instance key.
instance_key_with_id_start: the starting integer of instance key that is
recorded with an id. | tensorflow/python/distribute/cross_device_utils.py | __init__ | DeuroIO/Deuro-tensorflow | python | def __init__(self, group_key_start=1, instance_key_start=100, instance_key_with_id_start=10000):
'Initializes the object.\n\n Args:\n group_key_start: the starting integer of group key.\n instance_key_start: the starting integer of instance key.\n instance_key_with_id_start: the starting integer of instance key that is\n recorded with an id.\n '
self._group_key = group_key_start
self._group_key_table = dict()
self._instance_key_id_to_key_table = dict()
self._instance_key_with_id_counter = instance_key_with_id_start
self._instance_key_start = instance_key_start |
def get_group_key(self, devices):
'Returns a group key for the set of devices.\n\n Args:\n devices: list of strings naming devices in a collective group.\n\n Returns:\n int key uniquely identifying the set of device names.\n '
parsed = [pydev.DeviceSpec.from_string(d) for d in devices]
names = sorted([('%s:%d' % (d.device_type, d.device_index)) for d in parsed])
key_id = ','.join(names)
with _lock:
if (key_id not in self._group_key_table):
new_key = self._group_key
self._group_key += 1
self._group_key_table[key_id] = new_key
return self._group_key_table[key_id] | -1,122,532,047,166,860,800 | Returns a group key for the set of devices.
Args:
devices: list of strings naming devices in a collective group.
Returns:
int key uniquely identifying the set of device names. | tensorflow/python/distribute/cross_device_utils.py | get_group_key | DeuroIO/Deuro-tensorflow | python | def get_group_key(self, devices):
'Returns a group key for the set of devices.\n\n Args:\n devices: list of strings naming devices in a collective group.\n\n Returns:\n int key uniquely identifying the set of device names.\n '
parsed = [pydev.DeviceSpec.from_string(d) for d in devices]
names = sorted([('%s:%d' % (d.device_type, d.device_index)) for d in parsed])
key_id = ','.join(names)
with _lock:
if (key_id not in self._group_key_table):
new_key = self._group_key
self._group_key += 1
self._group_key_table[key_id] = new_key
return self._group_key_table[key_id] |
def get_instance_key(self, key_id=None):
'Returns a new instance key for use in defining a collective op.\n\n Args:\n key_id: optional string. If set, key will be recorded and the same key\n will be returned when the same key_id is provided. If not, an increasing\n instance key will be returned.\n '
if key_id:
with _lock:
if (key_id not in self._instance_key_id_to_key_table):
self._instance_key_with_id_counter += 1
self._instance_key_id_to_key_table[key_id] = self._instance_key_with_id_counter
return self._instance_key_id_to_key_table[key_id]
else:
v = self._get_thread_local_object().instance_key
self._get_thread_local_object().instance_key += 1
return v | 6,131,911,157,188,649,000 | Returns a new instance key for use in defining a collective op.
Args:
key_id: optional string. If set, key will be recorded and the same key
will be returned when the same key_id is provided. If not, an increasing
instance key will be returned. | tensorflow/python/distribute/cross_device_utils.py | get_instance_key | DeuroIO/Deuro-tensorflow | python | def get_instance_key(self, key_id=None):
'Returns a new instance key for use in defining a collective op.\n\n Args:\n key_id: optional string. If set, key will be recorded and the same key\n will be returned when the same key_id is provided. If not, an increasing\n instance key will be returned.\n '
if key_id:
with _lock:
if (key_id not in self._instance_key_id_to_key_table):
self._instance_key_with_id_counter += 1
self._instance_key_id_to_key_table[key_id] = self._instance_key_with_id_counter
return self._instance_key_id_to_key_table[key_id]
else:
v = self._get_thread_local_object().instance_key
self._get_thread_local_object().instance_key += 1
return v |
def test_user_commands():
'test all user commands.'
assert (__main__.main(['user', 'create', 'ec2mc_test_user', 'setup_users', '--default']) is not False)
sleep(5)
assert (__main__.main(['user', 'list']) is not False)
assert (__main__.main(['user', 'set_group', 'EC2MC_TEST_USER', 'basic_users']) is not False)
assert (__main__.main(['user', 'be', 'takingitcasual']) is not False)
assert (__main__.main(['user', 'rotate_key', 'Ec2Mc_TeSt_UsEr']) is not False)
assert (__main__.main(['user', 'delete', 'eC2mC_tEsT_uSeR']) is not False) | 1,676,041,740,222,803,000 | test all user commands. | tests/test_user_commands.py | test_user_commands | TakingItCasual/easymc | python | def test_user_commands():
assert (__main__.main(['user', 'create', 'ec2mc_test_user', 'setup_users', '--default']) is not False)
sleep(5)
assert (__main__.main(['user', 'list']) is not False)
assert (__main__.main(['user', 'set_group', 'EC2MC_TEST_USER', 'basic_users']) is not False)
assert (__main__.main(['user', 'be', 'takingitcasual']) is not False)
assert (__main__.main(['user', 'rotate_key', 'Ec2Mc_TeSt_UsEr']) is not False)
assert (__main__.main(['user', 'delete', 'eC2mC_tEsT_uSeR']) is not False) |
def coalesce(edge_index, edge_attr=None, num_nodes=None, reduce='add', is_sorted=False, sort_by_row=True):
'Row-wise sorts :obj:`edge_index` and removes its duplicated entries.\n Duplicate entries in :obj:`edge_attr` are merged by scattering them\n together according to the given :obj:`reduce` option.\n\n Args:\n edge_index (LongTensor): The edge indices.\n edge_attr (Tensor or List[Tensor], optional): Edge weights or multi-\n dimensional edge features.\n If given as a list, will re-shuffle and remove duplicates for all\n its entries. (default: :obj:`None`)\n num_nodes (int, optional): The number of nodes, *i.e.*\n :obj:`max_val + 1` of :attr:`edge_index`. (default: :obj:`None`)\n reduce (string, optional): The reduce operation to use for merging edge\n features (:obj:`"add"`, :obj:`"mean"`, :obj:`"min"`, :obj:`"max"`,\n :obj:`"mul"`). (default: :obj:`"add"`)\n is_sorted (bool, optional): If set to :obj:`True`, will expect\n :obj:`edge_index` to be already sorted row-wise.\n sort_by_row (bool, optional): If set to :obj:`False`, will sort\n :obj:`edge_index` column-wise.\n\n :rtype: :class:`LongTensor` if :attr:`edge_attr` is :obj:`None`, else\n (:class:`LongTensor`, :obj:`Tensor` or :obj:`List[Tensor]]`)\n '
if tlx.is_tensor(edge_index):
edge_index = tlx.convert_to_numpy(edge_index)
nnz = edge_index.shape[1]
num_nodes = maybe_num_nodes(edge_index, num_nodes)
idx = np.zeros((nnz + 1))
idx[0] = (- 1)
idx[1:] = edge_index[(1 - int(sort_by_row))]
idx[1:] = np.add(np.multiply(idx[1:], num_nodes), edge_index[int(sort_by_row)])
if (not is_sorted):
perm = np.argsort(idx[1:])
idx[1:] = np.sort(idx[1:])
edge_index = edge_index[:, perm]
if ((edge_attr is not None) and tlx.ops.is_tensor(edge_attr)):
edge_attr = tlx.gather(edge_attr, tlx.convert_to_tensor(perm), axis=0)
elif ((edge_attr is not None) and check_is_numpy(edge_attr)):
edge_attr = edge_attr[perm]
elif (edge_attr is not None):
edge_attr = [tlx.gather(e, perm, axis=0) for e in edge_attr]
mask = (idx[1:] > idx[:(- 1)])
if mask.all():
edge_index = tlx.convert_to_tensor(edge_index, dtype=tlx.int64)
return (edge_index if (edge_attr is None) else (edge_index, edge_attr))
edge_index = edge_index[:, mask]
edge_index = tlx.convert_to_tensor(edge_index, dtype=tlx.int64)
if (edge_attr is None):
return edge_index
idx = np.arange(0, nnz)
idx = tlx.convert_to_tensor((idx - (1 - mask).cumsum(axis=0)))
if tlx.ops.is_tensor(edge_attr):
edge_attr = mpops.segment_sum(edge_attr, idx)
return (edge_index, edge_attr) | -587,692,267,582,630,000 | Row-wise sorts :obj:`edge_index` and removes its duplicated entries.
Duplicate entries in :obj:`edge_attr` are merged by scattering them
together according to the given :obj:`reduce` option.
Args:
edge_index (LongTensor): The edge indices.
edge_attr (Tensor or List[Tensor], optional): Edge weights or multi-
dimensional edge features.
If given as a list, will re-shuffle and remove duplicates for all
its entries. (default: :obj:`None`)
num_nodes (int, optional): The number of nodes, *i.e.*
:obj:`max_val + 1` of :attr:`edge_index`. (default: :obj:`None`)
reduce (string, optional): The reduce operation to use for merging edge
features (:obj:`"add"`, :obj:`"mean"`, :obj:`"min"`, :obj:`"max"`,
:obj:`"mul"`). (default: :obj:`"add"`)
is_sorted (bool, optional): If set to :obj:`True`, will expect
:obj:`edge_index` to be already sorted row-wise.
sort_by_row (bool, optional): If set to :obj:`False`, will sort
:obj:`edge_index` column-wise.
:rtype: :class:`LongTensor` if :attr:`edge_attr` is :obj:`None`, else
(:class:`LongTensor`, :obj:`Tensor` or :obj:`List[Tensor]]`) | gammagl/utils/coalesce.py | coalesce | BUPT-GAMMA/GammaGL | python | def coalesce(edge_index, edge_attr=None, num_nodes=None, reduce='add', is_sorted=False, sort_by_row=True):
'Row-wise sorts :obj:`edge_index` and removes its duplicated entries.\n Duplicate entries in :obj:`edge_attr` are merged by scattering them\n together according to the given :obj:`reduce` option.\n\n Args:\n edge_index (LongTensor): The edge indices.\n edge_attr (Tensor or List[Tensor], optional): Edge weights or multi-\n dimensional edge features.\n If given as a list, will re-shuffle and remove duplicates for all\n its entries. (default: :obj:`None`)\n num_nodes (int, optional): The number of nodes, *i.e.*\n :obj:`max_val + 1` of :attr:`edge_index`. (default: :obj:`None`)\n reduce (string, optional): The reduce operation to use for merging edge\n features (:obj:`"add"`, :obj:`"mean"`, :obj:`"min"`, :obj:`"max"`,\n :obj:`"mul"`). (default: :obj:`"add"`)\n is_sorted (bool, optional): If set to :obj:`True`, will expect\n :obj:`edge_index` to be already sorted row-wise.\n sort_by_row (bool, optional): If set to :obj:`False`, will sort\n :obj:`edge_index` column-wise.\n\n :rtype: :class:`LongTensor` if :attr:`edge_attr` is :obj:`None`, else\n (:class:`LongTensor`, :obj:`Tensor` or :obj:`List[Tensor]]`)\n '
if tlx.is_tensor(edge_index):
edge_index = tlx.convert_to_numpy(edge_index)
nnz = edge_index.shape[1]
num_nodes = maybe_num_nodes(edge_index, num_nodes)
idx = np.zeros((nnz + 1))
idx[0] = (- 1)
idx[1:] = edge_index[(1 - int(sort_by_row))]
idx[1:] = np.add(np.multiply(idx[1:], num_nodes), edge_index[int(sort_by_row)])
if (not is_sorted):
perm = np.argsort(idx[1:])
idx[1:] = np.sort(idx[1:])
edge_index = edge_index[:, perm]
if ((edge_attr is not None) and tlx.ops.is_tensor(edge_attr)):
edge_attr = tlx.gather(edge_attr, tlx.convert_to_tensor(perm), axis=0)
elif ((edge_attr is not None) and check_is_numpy(edge_attr)):
edge_attr = edge_attr[perm]
elif (edge_attr is not None):
edge_attr = [tlx.gather(e, perm, axis=0) for e in edge_attr]
mask = (idx[1:] > idx[:(- 1)])
if mask.all():
edge_index = tlx.convert_to_tensor(edge_index, dtype=tlx.int64)
return (edge_index if (edge_attr is None) else (edge_index, edge_attr))
edge_index = edge_index[:, mask]
edge_index = tlx.convert_to_tensor(edge_index, dtype=tlx.int64)
if (edge_attr is None):
return edge_index
idx = np.arange(0, nnz)
idx = tlx.convert_to_tensor((idx - (1 - mask).cumsum(axis=0)))
if tlx.ops.is_tensor(edge_attr):
edge_attr = mpops.segment_sum(edge_attr, idx)
return (edge_index, edge_attr) |
def __init__(self, force=False):
'\n Creates an exporter instance. If force flag is set, all data already\n present in a destination folder are overwritten on export.\n\n @param force: If True, force flag is set. It is not otherwise.\n @type force: bool\n '
self._force = force | -4,257,012,996,661,849,600 | Creates an exporter instance. If force flag is set, all data already
present in a destination folder are overwritten on export.
@param force: If True, force flag is set. It is not otherwise.
@type force: bool | comodit_client/api/exporter.py | __init__ | geoco84/comodit-client | python | def __init__(self, force=False):
'\n Creates an exporter instance. If force flag is set, all data already\n present in a destination folder are overwritten on export.\n\n @param force: If True, force flag is set. It is not otherwise.\n @type force: bool\n '
self._force = force |
def export_application(self, app, path, backup=False):
'\n Exports an application to a local folder.\n\n @param app: The application to export.\n @type app: L{Application}\n @param path: Path to local directory.\n @type path: string\n @param backup: indicate is a backup.\n @type path: bool\n '
self._export_entity(app, path, True, True, backup) | -2,885,658,103,454,825,000 | Exports an application to a local folder.
@param app: The application to export.
@type app: L{Application}
@param path: Path to local directory.
@type path: string
@param backup: indicate is a backup.
@type path: bool | comodit_client/api/exporter.py | export_application | geoco84/comodit-client | python | def export_application(self, app, path, backup=False):
'\n Exports an application to a local folder.\n\n @param app: The application to export.\n @type app: L{Application}\n @param path: Path to local directory.\n @type path: string\n @param backup: indicate is a backup.\n @type path: bool\n '
self._export_entity(app, path, True, True, backup) |
def export_distribution(self, dist, path, backup=False):
'\n Exports a distribution to a local folder.\n\n @param dist: The distribution to export.\n @type dist: L{Distribution}\n @param path: Path to local directory.\n @type path: string\n @param backup: indicate is a backup.\n @type path: bool\n '
self._export_entity(dist, path, True, True, backup) | -7,077,236,834,681,137,000 | Exports a distribution to a local folder.
@param dist: The distribution to export.
@type dist: L{Distribution}
@param path: Path to local directory.
@type path: string
@param backup: indicate is a backup.
@type path: bool | comodit_client/api/exporter.py | export_distribution | geoco84/comodit-client | python | def export_distribution(self, dist, path, backup=False):
'\n Exports a distribution to a local folder.\n\n @param dist: The distribution to export.\n @type dist: L{Distribution}\n @param path: Path to local directory.\n @type path: string\n @param backup: indicate is a backup.\n @type path: bool\n '
self._export_entity(dist, path, True, True, backup) |
def export_platform(self, plat, path, backup=False):
'\n Exports a platform to a local folder.\n\n @param plat: The platform to export.\n @type plat: L{Platform}\n @param path: Path to local directory.\n @type path: string\n @param backup: indicate is a backup.\n @type path: bool\n '
self._export_entity(plat, path, True, backup=backup) | 5,090,413,098,656,828,000 | Exports a platform to a local folder.
@param plat: The platform to export.
@type plat: L{Platform}
@param path: Path to local directory.
@type path: string
@param backup: indicate is a backup.
@type path: bool | comodit_client/api/exporter.py | export_platform | geoco84/comodit-client | python | def export_platform(self, plat, path, backup=False):
'\n Exports a platform to a local folder.\n\n @param plat: The platform to export.\n @type plat: L{Platform}\n @param path: Path to local directory.\n @type path: string\n @param backup: indicate is a backup.\n @type path: bool\n '
self._export_entity(plat, path, True, backup=backup) |
def export_environment(self, env, path):
'\n Exports an environment to a local folder. Hosts of the environment\n are exported also.\n\n @param env: The environment to export.\n @type env: L{Environment}\n @param path: Path to local directory.\n @type path: string\n '
self._export_entity(env, path)
hosts_folder = os.path.join(path, 'hosts')
for host in env.hosts():
self.export_host(host, os.path.join(hosts_folder, host.name)) | -7,664,905,090,788,252,000 | Exports an environment to a local folder. Hosts of the environment
are exported also.
@param env: The environment to export.
@type env: L{Environment}
@param path: Path to local directory.
@type path: string | comodit_client/api/exporter.py | export_environment | geoco84/comodit-client | python | def export_environment(self, env, path):
'\n Exports an environment to a local folder. Hosts of the environment\n are exported also.\n\n @param env: The environment to export.\n @type env: L{Environment}\n @param path: Path to local directory.\n @type path: string\n '
self._export_entity(env, path)
hosts_folder = os.path.join(path, 'hosts')
for host in env.hosts():
self.export_host(host, os.path.join(hosts_folder, host.name)) |
def export_job(self, job, path):
'\n Exports a job to a local folder.\n\n @param job: The job to export.\n @type job: L{Job}\n @param path: Path to local directory.\n @type path: string\n '
self._export_entity(job, path) | -6,253,046,233,192,386,000 | Exports a job to a local folder.
@param job: The job to export.
@type job: L{Job}
@param path: Path to local directory.
@type path: string | comodit_client/api/exporter.py | export_job | geoco84/comodit-client | python | def export_job(self, job, path):
'\n Exports a job to a local folder.\n\n @param job: The job to export.\n @type job: L{Job}\n @param path: Path to local directory.\n @type path: string\n '
self._export_entity(job, path) |
def export_orchestration(self, orchestration, path):
'\n Exports a orchestration to a local folder.\n\n @param job: The orchestration to export.\n @type orchestration: L{Orchestration}\n @param path: Path to local directory.\n @type path: string\n '
self._export_entity(orchestration, path) | -5,400,655,714,325,233,000 | Exports a orchestration to a local folder.
@param job: The orchestration to export.
@type orchestration: L{Orchestration}
@param path: Path to local directory.
@type path: string | comodit_client/api/exporter.py | export_orchestration | geoco84/comodit-client | python | def export_orchestration(self, orchestration, path):
'\n Exports a orchestration to a local folder.\n\n @param job: The orchestration to export.\n @type orchestration: L{Orchestration}\n @param path: Path to local directory.\n @type path: string\n '
self._export_entity(orchestration, path) |
def export_notification(self, notification, path):
'\n Exports a jobnotificationto a local folder.\n\n @param notification: The notification to export.\n @type notification: L{Notification}\n @param path: Path to local directory.\n @type path: string\n '
self._export_entity(notification, path) | -3,760,152,571,254,754,000 | Exports a jobnotificationto a local folder.
@param notification: The notification to export.
@type notification: L{Notification}
@param path: Path to local directory.
@type path: string | comodit_client/api/exporter.py | export_notification | geoco84/comodit-client | python | def export_notification(self, notification, path):
'\n Exports a jobnotificationto a local folder.\n\n @param notification: The notification to export.\n @type notification: L{Notification}\n @param path: Path to local directory.\n @type path: string\n '
self._export_entity(notification, path) |
def export_host(self, host, path):
'\n Exports a host to a local folder. Contexts and instance are exported\n also.\n\n @param host: The host to export.\n @type host: L{Host}\n @param path: Path to local directory.\n @type path: string\n '
self._export_entity(host, path)
if (host.state != Host.State.DEFINED):
try:
instance = host.get_instance()
instance.dump_json(os.path.join(path, 'instance.json'))
except PythonApiException:
pass
app_folder = os.path.join(path, 'applications')
ensure(app_folder)
for context in host.applications():
context.dump_json(os.path.join(app_folder, (context.application + '.json')))
try:
host.get_platform().dump_json(os.path.join(path, 'platform.json'))
except EntityNotFoundException:
pass
try:
host.get_distribution().dump_json(os.path.join(path, 'distribution.json'))
except EntityNotFoundException:
pass | -7,571,313,200,186,343,000 | Exports a host to a local folder. Contexts and instance are exported
also.
@param host: The host to export.
@type host: L{Host}
@param path: Path to local directory.
@type path: string | comodit_client/api/exporter.py | export_host | geoco84/comodit-client | python | def export_host(self, host, path):
'\n Exports a host to a local folder. Contexts and instance are exported\n also.\n\n @param host: The host to export.\n @type host: L{Host}\n @param path: Path to local directory.\n @type path: string\n '
self._export_entity(host, path)
if (host.state != Host.State.DEFINED):
try:
instance = host.get_instance()
instance.dump_json(os.path.join(path, 'instance.json'))
except PythonApiException:
pass
app_folder = os.path.join(path, 'applications')
ensure(app_folder)
for context in host.applications():
context.dump_json(os.path.join(app_folder, (context.application + '.json')))
try:
host.get_platform().dump_json(os.path.join(path, 'platform.json'))
except EntityNotFoundException:
pass
try:
host.get_distribution().dump_json(os.path.join(path, 'distribution.json'))
except EntityNotFoundException:
pass |
def export_organization(self, org, path):
'\n Exports an organization to a local folder. Environments, applications,\n distributions and platforms are exported also.\n\n @param org: The organization to export.\n @type org: L{Organization}\n @param path: Path to local directory.\n @type path: string\n '
self._export_entity(org, path)
for app in org.applications():
self.export_application(app, os.path.join(path, 'applications', app.name))
for dist in org.distributions():
self.export_distribution(dist, os.path.join(path, 'distributions', dist.name))
for plat in org.platforms():
self.export_platform(plat, os.path.join(path, 'platforms', plat.name))
for job in org.jobs():
self.export_job(job, os.path.join(path, 'jobs', job.name))
for orch in org.orchestrations():
self.export_orchestration(orch, os.path.join(path, 'orchestrations', orch.name))
for env in org.environments():
self.export_environment(env, os.path.join(path, 'environments', env.name)) | 3,655,422,668,646,644,000 | Exports an organization to a local folder. Environments, applications,
distributions and platforms are exported also.
@param org: The organization to export.
@type org: L{Organization}
@param path: Path to local directory.
@type path: string | comodit_client/api/exporter.py | export_organization | geoco84/comodit-client | python | def export_organization(self, org, path):
'\n Exports an organization to a local folder. Environments, applications,\n distributions and platforms are exported also.\n\n @param org: The organization to export.\n @type org: L{Organization}\n @param path: Path to local directory.\n @type path: string\n '
self._export_entity(org, path)
for app in org.applications():
self.export_application(app, os.path.join(path, 'applications', app.name))
for dist in org.distributions():
self.export_distribution(dist, os.path.join(path, 'distributions', dist.name))
for plat in org.platforms():
self.export_platform(plat, os.path.join(path, 'platforms', plat.name))
for job in org.jobs():
self.export_job(job, os.path.join(path, 'jobs', job.name))
for orch in org.orchestrations():
self.export_orchestration(orch, os.path.join(path, 'orchestrations', orch.name))
for env in org.environments():
self.export_environment(env, os.path.join(path, 'environments', env.name)) |
def test_multiple_metavar_help(self, parser):
'\n Help text for options with a metavar tuple should display help\n in the form "--preferences=value1 value2 value3" (#2004).\n '
group = parser.getgroup('general')
group.addoption('--preferences', metavar=('value1', 'value2', 'value3'), nargs=3)
group._addoption('-h', '--help', action='store_true', dest='help')
parser.parse(['-h'])
help = parser.optparser.format_help()
assert ('--preferences=value1 value2 value3' in help) | 2,200,379,206,769,270,800 | Help text for options with a metavar tuple should display help
in the form "--preferences=value1 value2 value3" (#2004). | tools/third_party/pytest/testing/test_parseopt.py | test_multiple_metavar_help | 2-GARIK20/wpt | python | def test_multiple_metavar_help(self, parser):
'\n Help text for options with a metavar tuple should display help\n in the form "--preferences=value1 value2 value3" (#2004).\n '
group = parser.getgroup('general')
group.addoption('--preferences', metavar=('value1', 'value2', 'value3'), nargs=3)
group._addoption('-h', '--help', action='store_true', dest='help')
parser.parse(['-h'])
help = parser.optparser.format_help()
assert ('--preferences=value1 value2 value3' in help) |
@classmethod
def from_string(cls, permission):
'Create a FileSystemSasPermissions from a string.\n\n To specify read, write, or delete permissions you need only to\n include the first letter of the word in the string. E.g. For read and\n write permissions, you would provide a string "rw".\n\n :param str permission: The string which dictates the read, add, create,\n write, or delete permissions.\n :return: A FileSystemSasPermissions object\n :rtype: ~azure.storage.fildatalake.FileSystemSasPermissions\n '
p_read = ('r' in permission)
p_write = ('w' in permission)
p_delete = ('d' in permission)
p_list = ('l' in permission)
p_move = ('m' in permission)
p_execute = ('e' in permission)
p_manage_ownership = ('o' in permission)
p_manage_access_control = ('p' in permission)
parsed = cls(read=p_read, write=p_write, delete=p_delete, list=p_list, move=p_move, execute=p_execute, manage_ownership=p_manage_ownership, manage_access_control=p_manage_access_control)
return parsed | -2,302,456,270,963,383,800 | Create a FileSystemSasPermissions from a string.
To specify read, write, or delete permissions you need only to
include the first letter of the word in the string. E.g. For read and
write permissions, you would provide a string "rw".
:param str permission: The string which dictates the read, add, create,
write, or delete permissions.
:return: A FileSystemSasPermissions object
:rtype: ~azure.storage.fildatalake.FileSystemSasPermissions | sdk/storage/azure-storage-file-datalake/azure/storage/filedatalake/_models.py | from_string | Co0olboi/azure-sdk-for-python | python | @classmethod
def from_string(cls, permission):
'Create a FileSystemSasPermissions from a string.\n\n To specify read, write, or delete permissions you need only to\n include the first letter of the word in the string. E.g. For read and\n write permissions, you would provide a string "rw".\n\n :param str permission: The string which dictates the read, add, create,\n write, or delete permissions.\n :return: A FileSystemSasPermissions object\n :rtype: ~azure.storage.fildatalake.FileSystemSasPermissions\n '
p_read = ('r' in permission)
p_write = ('w' in permission)
p_delete = ('d' in permission)
p_list = ('l' in permission)
p_move = ('m' in permission)
p_execute = ('e' in permission)
p_manage_ownership = ('o' in permission)
p_manage_access_control = ('p' in permission)
parsed = cls(read=p_read, write=p_write, delete=p_delete, list=p_list, move=p_move, execute=p_execute, manage_ownership=p_manage_ownership, manage_access_control=p_manage_access_control)
return parsed |
@classmethod
def from_string(cls, permission):
'Create a DirectorySasPermissions from a string.\n\n To specify read, create, write, or delete permissions you need only to\n include the first letter of the word in the string. E.g. For read and\n write permissions, you would provide a string "rw".\n\n :param str permission: The string which dictates the read, add, create,\n write, or delete permissions.\n :return: A DirectorySasPermissions object\n :rtype: ~azure.storage.filedatalake.DirectorySasPermissions\n '
p_read = ('r' in permission)
p_create = ('c' in permission)
p_write = ('w' in permission)
p_delete = ('d' in permission)
p_list = ('l' in permission)
p_move = ('m' in permission)
p_execute = ('e' in permission)
p_manage_ownership = ('o' in permission)
p_manage_access_control = ('p' in permission)
parsed = cls(read=p_read, create=p_create, write=p_write, delete=p_delete, list=p_list, move=p_move, execute=p_execute, manage_ownership=p_manage_ownership, manage_access_control=p_manage_access_control)
return parsed | 656,015,843,620,330,800 | Create a DirectorySasPermissions from a string.
To specify read, create, write, or delete permissions you need only to
include the first letter of the word in the string. E.g. For read and
write permissions, you would provide a string "rw".
:param str permission: The string which dictates the read, add, create,
write, or delete permissions.
:return: A DirectorySasPermissions object
:rtype: ~azure.storage.filedatalake.DirectorySasPermissions | sdk/storage/azure-storage-file-datalake/azure/storage/filedatalake/_models.py | from_string | Co0olboi/azure-sdk-for-python | python | @classmethod
def from_string(cls, permission):
'Create a DirectorySasPermissions from a string.\n\n To specify read, create, write, or delete permissions you need only to\n include the first letter of the word in the string. E.g. For read and\n write permissions, you would provide a string "rw".\n\n :param str permission: The string which dictates the read, add, create,\n write, or delete permissions.\n :return: A DirectorySasPermissions object\n :rtype: ~azure.storage.filedatalake.DirectorySasPermissions\n '
p_read = ('r' in permission)
p_create = ('c' in permission)
p_write = ('w' in permission)
p_delete = ('d' in permission)
p_list = ('l' in permission)
p_move = ('m' in permission)
p_execute = ('e' in permission)
p_manage_ownership = ('o' in permission)
p_manage_access_control = ('p' in permission)
parsed = cls(read=p_read, create=p_create, write=p_write, delete=p_delete, list=p_list, move=p_move, execute=p_execute, manage_ownership=p_manage_ownership, manage_access_control=p_manage_access_control)
return parsed |
@classmethod
def from_string(cls, permission):
'Create a FileSasPermissions from a string.\n\n To specify read, write, or delete permissions you need only to\n include the first letter of the word in the string. E.g. For read and\n write permissions, you would provide a string "rw".\n\n :param str permission: The string which dictates the read, add, create,\n write, or delete permissions.\n :return: A FileSasPermissions object\n :rtype: ~azure.storage.fildatalake.FileSasPermissions\n '
p_read = ('r' in permission)
p_create = ('c' in permission)
p_write = ('w' in permission)
p_delete = ('d' in permission)
p_move = ('m' in permission)
p_execute = ('e' in permission)
p_manage_ownership = ('o' in permission)
p_manage_access_control = ('p' in permission)
parsed = cls(read=p_read, create=p_create, write=p_write, delete=p_delete, move=p_move, execute=p_execute, manage_ownership=p_manage_ownership, manage_access_control=p_manage_access_control)
return parsed | 6,598,723,634,432,000,000 | Create a FileSasPermissions from a string.
To specify read, write, or delete permissions you need only to
include the first letter of the word in the string. E.g. For read and
write permissions, you would provide a string "rw".
:param str permission: The string which dictates the read, add, create,
write, or delete permissions.
:return: A FileSasPermissions object
:rtype: ~azure.storage.fildatalake.FileSasPermissions | sdk/storage/azure-storage-file-datalake/azure/storage/filedatalake/_models.py | from_string | Co0olboi/azure-sdk-for-python | python | @classmethod
def from_string(cls, permission):
'Create a FileSasPermissions from a string.\n\n To specify read, write, or delete permissions you need only to\n include the first letter of the word in the string. E.g. For read and\n write permissions, you would provide a string "rw".\n\n :param str permission: The string which dictates the read, add, create,\n write, or delete permissions.\n :return: A FileSasPermissions object\n :rtype: ~azure.storage.fildatalake.FileSasPermissions\n '
p_read = ('r' in permission)
p_create = ('c' in permission)
p_write = ('w' in permission)
p_delete = ('d' in permission)
p_move = ('m' in permission)
p_execute = ('e' in permission)
p_manage_ownership = ('o' in permission)
p_manage_access_control = ('p' in permission)
parsed = cls(read=p_read, create=p_create, write=p_write, delete=p_delete, move=p_move, execute=p_execute, manage_ownership=p_manage_ownership, manage_access_control=p_manage_access_control)
return parsed |
def _ensure_tf_install():
'Attempt to import tensorflow, and ensure its version is sufficient.\n\n Raises:\n ImportError: if either tensorflow is not importable or its version is\n inadequate.\n '
try:
import tensorflow as tf
except ImportError:
print('\n\nFailed to import TensorFlow. Please note that TensorFlow is not installed by default when you install TensorFlow Model Optimization. This is so that users can decide whether to install the GPU-enabled TensorFlow package. To use TensorFlow Model Optimization, please install the most recent version of TensorFlow, by following instructions at https://tensorflow.org/install.\n\n')
raise
import distutils.version
required_tensorflow_version = '1.14.0'
if (distutils.version.LooseVersion(tf.version.VERSION) < distutils.version.LooseVersion(required_tensorflow_version)):
raise ImportError('This version of TensorFlow Model Optimization requires TensorFlow version >= {required}; Detected an installation of version {present}. Please upgrade TensorFlow to proceed.'.format(required=required_tensorflow_version, present=tf.__version__)) | -1,946,075,856,956,076,000 | Attempt to import tensorflow, and ensure its version is sufficient.
Raises:
ImportError: if either tensorflow is not importable or its version is
inadequate. | tensorflow_model_optimization/__init__.py | _ensure_tf_install | 13957166977/model-optimization | python | def _ensure_tf_install():
'Attempt to import tensorflow, and ensure its version is sufficient.\n\n Raises:\n ImportError: if either tensorflow is not importable or its version is\n inadequate.\n '
try:
import tensorflow as tf
except ImportError:
print('\n\nFailed to import TensorFlow. Please note that TensorFlow is not installed by default when you install TensorFlow Model Optimization. This is so that users can decide whether to install the GPU-enabled TensorFlow package. To use TensorFlow Model Optimization, please install the most recent version of TensorFlow, by following instructions at https://tensorflow.org/install.\n\n')
raise
import distutils.version
required_tensorflow_version = '1.14.0'
if (distutils.version.LooseVersion(tf.version.VERSION) < distutils.version.LooseVersion(required_tensorflow_version)):
raise ImportError('This version of TensorFlow Model Optimization requires TensorFlow version >= {required}; Detected an installation of version {present}. Please upgrade TensorFlow to proceed.'.format(required=required_tensorflow_version, present=tf.__version__)) |
def array(data: Union[(Sequence[object], AnyArrayLike)], dtype: Optional[Dtype]=None, copy: bool=True) -> ExtensionArray:
'\n Create an array.\n\n .. versionadded:: 0.24.0\n\n Parameters\n ----------\n data : Sequence of objects\n The scalars inside `data` should be instances of the\n scalar type for `dtype`. It\'s expected that `data`\n represents a 1-dimensional array of data.\n\n When `data` is an Index or Series, the underlying array\n will be extracted from `data`.\n\n dtype : str, np.dtype, or ExtensionDtype, optional\n The dtype to use for the array. This may be a NumPy\n dtype or an extension type registered with pandas using\n :meth:`pandas.api.extensions.register_extension_dtype`.\n\n If not specified, there are two possibilities:\n\n 1. When `data` is a :class:`Series`, :class:`Index`, or\n :class:`ExtensionArray`, the `dtype` will be taken\n from the data.\n 2. Otherwise, pandas will attempt to infer the `dtype`\n from the data.\n\n Note that when `data` is a NumPy array, ``data.dtype`` is\n *not* used for inferring the array type. This is because\n NumPy cannot represent all the types of data that can be\n held in extension arrays.\n\n Currently, pandas will infer an extension dtype for sequences of\n\n ============================== =====================================\n Scalar Type Array Type\n ============================== =====================================\n :class:`pandas.Interval` :class:`pandas.arrays.IntervalArray`\n :class:`pandas.Period` :class:`pandas.arrays.PeriodArray`\n :class:`datetime.datetime` :class:`pandas.arrays.DatetimeArray`\n :class:`datetime.timedelta` :class:`pandas.arrays.TimedeltaArray`\n :class:`int` :class:`pandas.arrays.IntegerArray`\n :class:`float` :class:`pandas.arrays.FloatingArray`\n :class:`str` :class:`pandas.arrays.StringArray`\n :class:`bool` :class:`pandas.arrays.BooleanArray`\n ============================== =====================================\n\n For all other cases, NumPy\'s usual inference rules will be used.\n\n .. versionchanged:: 1.0.0\n\n Pandas infers nullable-integer dtype for integer data,\n string dtype for string data, and nullable-boolean dtype\n for boolean data.\n\n .. versionchanged:: 1.2.0\n\n Pandas now also infers nullable-floating dtype for float-like\n input data\n\n copy : bool, default True\n Whether to copy the data, even if not necessary. Depending\n on the type of `data`, creating the new array may require\n copying data, even if ``copy=False``.\n\n Returns\n -------\n ExtensionArray\n The newly created array.\n\n Raises\n ------\n ValueError\n When `data` is not 1-dimensional.\n\n See Also\n --------\n numpy.array : Construct a NumPy array.\n Series : Construct a pandas Series.\n Index : Construct a pandas Index.\n arrays.PandasArray : ExtensionArray wrapping a NumPy array.\n Series.array : Extract the array stored within a Series.\n\n Notes\n -----\n Omitting the `dtype` argument means pandas will attempt to infer the\n best array type from the values in the data. As new array types are\n added by pandas and 3rd party libraries, the "best" array type may\n change. We recommend specifying `dtype` to ensure that\n\n 1. the correct array type for the data is returned\n 2. the returned array type doesn\'t change as new extension types\n are added by pandas and third-party libraries\n\n Additionally, if the underlying memory representation of the returned\n array matters, we recommend specifying the `dtype` as a concrete object\n rather than a string alias or allowing it to be inferred. For example,\n a future version of pandas or a 3rd-party library may include a\n dedicated ExtensionArray for string data. In this event, the following\n would no longer return a :class:`arrays.PandasArray` backed by a NumPy\n array.\n\n >>> pd.array([\'a\', \'b\'], dtype=str)\n <PandasArray>\n [\'a\', \'b\']\n Length: 2, dtype: str32\n\n This would instead return the new ExtensionArray dedicated for string\n data. If you really need the new array to be backed by a NumPy array,\n specify that in the dtype.\n\n >>> pd.array([\'a\', \'b\'], dtype=np.dtype("<U1"))\n <PandasArray>\n [\'a\', \'b\']\n Length: 2, dtype: str32\n\n Finally, Pandas has arrays that mostly overlap with NumPy\n\n * :class:`arrays.DatetimeArray`\n * :class:`arrays.TimedeltaArray`\n\n When data with a ``datetime64[ns]`` or ``timedelta64[ns]`` dtype is\n passed, pandas will always return a ``DatetimeArray`` or ``TimedeltaArray``\n rather than a ``PandasArray``. This is for symmetry with the case of\n timezone-aware data, which NumPy does not natively support.\n\n >>> pd.array([\'2015\', \'2016\'], dtype=\'datetime64[ns]\')\n <DatetimeArray>\n [\'2015-01-01 00:00:00\', \'2016-01-01 00:00:00\']\n Length: 2, dtype: datetime64[ns]\n\n >>> pd.array(["1H", "2H"], dtype=\'timedelta64[ns]\')\n <TimedeltaArray>\n [\'0 days 01:00:00\', \'0 days 02:00:00\']\n Length: 2, dtype: timedelta64[ns]\n\n Examples\n --------\n If a dtype is not specified, pandas will infer the best dtype from the values.\n See the description of `dtype` for the types pandas infers for.\n\n >>> pd.array([1, 2])\n <IntegerArray>\n [1, 2]\n Length: 2, dtype: Int64\n\n >>> pd.array([1, 2, np.nan])\n <IntegerArray>\n [1, 2, <NA>]\n Length: 3, dtype: Int64\n\n >>> pd.array([1.1, 2.2])\n <FloatingArray>\n [1.1, 2.2]\n Length: 2, dtype: Float64\n\n >>> pd.array(["a", None, "c"])\n <StringArray>\n [\'a\', <NA>, \'c\']\n Length: 3, dtype: string\n\n >>> pd.array([pd.Period(\'2000\', freq="D"), pd.Period("2000", freq="D")])\n <PeriodArray>\n [\'2000-01-01\', \'2000-01-01\']\n Length: 2, dtype: period[D]\n\n You can use the string alias for `dtype`\n\n >>> pd.array([\'a\', \'b\', \'a\'], dtype=\'category\')\n [\'a\', \'b\', \'a\']\n Categories (2, object): [\'a\', \'b\']\n\n Or specify the actual dtype\n\n >>> pd.array([\'a\', \'b\', \'a\'],\n ... dtype=pd.CategoricalDtype([\'a\', \'b\', \'c\'], ordered=True))\n [\'a\', \'b\', \'a\']\n Categories (3, object): [\'a\' < \'b\' < \'c\']\n\n If pandas does not infer a dedicated extension type a\n :class:`arrays.PandasArray` is returned.\n\n >>> pd.array([1 + 1j, 3 + 2j])\n <PandasArray>\n [(1+1j), (3+2j)]\n Length: 2, dtype: complex128\n\n As mentioned in the "Notes" section, new extension types may be added\n in the future (by pandas or 3rd party libraries), causing the return\n value to no longer be a :class:`arrays.PandasArray`. Specify the `dtype`\n as a NumPy dtype if you need to ensure there\'s no future change in\n behavior.\n\n >>> pd.array([1, 2], dtype=np.dtype("int32"))\n <PandasArray>\n [1, 2]\n Length: 2, dtype: int32\n\n `data` must be 1-dimensional. A ValueError is raised when the input\n has the wrong dimensionality.\n\n >>> pd.array(1)\n Traceback (most recent call last):\n ...\n ValueError: Cannot pass scalar \'1\' to \'pandas.array\'.\n '
from pandas.core.arrays import BooleanArray, DatetimeArray, FloatingArray, IntegerArray, IntervalArray, PandasArray, StringArray, TimedeltaArray, period_array
if lib.is_scalar(data):
msg = f"Cannot pass scalar '{data}' to 'pandas.array'."
raise ValueError(msg)
if ((dtype is None) and isinstance(data, (ABCSeries, ABCIndexClass, ABCExtensionArray))):
dtype = data.dtype
data = extract_array(data, extract_numpy=True)
if isinstance(dtype, str):
dtype = (registry.find(dtype) or dtype)
if is_extension_array_dtype(dtype):
cls = cast(ExtensionDtype, dtype).construct_array_type()
return cls._from_sequence(data, dtype=dtype, copy=copy)
if (dtype is None):
inferred_dtype = lib.infer_dtype(data, skipna=True)
if (inferred_dtype == 'period'):
try:
return period_array(data, copy=copy)
except IncompatibleFrequency:
pass
elif (inferred_dtype == 'interval'):
try:
return IntervalArray(data, copy=copy)
except ValueError:
pass
elif inferred_dtype.startswith('datetime'):
try:
return DatetimeArray._from_sequence(data, copy=copy)
except ValueError:
pass
elif inferred_dtype.startswith('timedelta'):
return TimedeltaArray._from_sequence(data, copy=copy)
elif (inferred_dtype == 'string'):
return StringArray._from_sequence(data, copy=copy)
elif (inferred_dtype == 'integer'):
return IntegerArray._from_sequence(data, copy=copy)
elif (inferred_dtype in ('floating', 'mixed-integer-float')):
return FloatingArray._from_sequence(data, copy=copy)
elif (inferred_dtype == 'boolean'):
return BooleanArray._from_sequence(data, copy=copy)
if is_datetime64_ns_dtype(dtype):
return DatetimeArray._from_sequence(data, dtype=dtype, copy=copy)
elif is_timedelta64_ns_dtype(dtype):
return TimedeltaArray._from_sequence(data, dtype=dtype, copy=copy)
result = PandasArray._from_sequence(data, dtype=dtype, copy=copy)
return result | -2,947,146,966,493,969,400 | Create an array.
.. versionadded:: 0.24.0
Parameters
----------
data : Sequence of objects
The scalars inside `data` should be instances of the
scalar type for `dtype`. It's expected that `data`
represents a 1-dimensional array of data.
When `data` is an Index or Series, the underlying array
will be extracted from `data`.
dtype : str, np.dtype, or ExtensionDtype, optional
The dtype to use for the array. This may be a NumPy
dtype or an extension type registered with pandas using
:meth:`pandas.api.extensions.register_extension_dtype`.
If not specified, there are two possibilities:
1. When `data` is a :class:`Series`, :class:`Index`, or
:class:`ExtensionArray`, the `dtype` will be taken
from the data.
2. Otherwise, pandas will attempt to infer the `dtype`
from the data.
Note that when `data` is a NumPy array, ``data.dtype`` is
*not* used for inferring the array type. This is because
NumPy cannot represent all the types of data that can be
held in extension arrays.
Currently, pandas will infer an extension dtype for sequences of
============================== =====================================
Scalar Type Array Type
============================== =====================================
:class:`pandas.Interval` :class:`pandas.arrays.IntervalArray`
:class:`pandas.Period` :class:`pandas.arrays.PeriodArray`
:class:`datetime.datetime` :class:`pandas.arrays.DatetimeArray`
:class:`datetime.timedelta` :class:`pandas.arrays.TimedeltaArray`
:class:`int` :class:`pandas.arrays.IntegerArray`
:class:`float` :class:`pandas.arrays.FloatingArray`
:class:`str` :class:`pandas.arrays.StringArray`
:class:`bool` :class:`pandas.arrays.BooleanArray`
============================== =====================================
For all other cases, NumPy's usual inference rules will be used.
.. versionchanged:: 1.0.0
Pandas infers nullable-integer dtype for integer data,
string dtype for string data, and nullable-boolean dtype
for boolean data.
.. versionchanged:: 1.2.0
Pandas now also infers nullable-floating dtype for float-like
input data
copy : bool, default True
Whether to copy the data, even if not necessary. Depending
on the type of `data`, creating the new array may require
copying data, even if ``copy=False``.
Returns
-------
ExtensionArray
The newly created array.
Raises
------
ValueError
When `data` is not 1-dimensional.
See Also
--------
numpy.array : Construct a NumPy array.
Series : Construct a pandas Series.
Index : Construct a pandas Index.
arrays.PandasArray : ExtensionArray wrapping a NumPy array.
Series.array : Extract the array stored within a Series.
Notes
-----
Omitting the `dtype` argument means pandas will attempt to infer the
best array type from the values in the data. As new array types are
added by pandas and 3rd party libraries, the "best" array type may
change. We recommend specifying `dtype` to ensure that
1. the correct array type for the data is returned
2. the returned array type doesn't change as new extension types
are added by pandas and third-party libraries
Additionally, if the underlying memory representation of the returned
array matters, we recommend specifying the `dtype` as a concrete object
rather than a string alias or allowing it to be inferred. For example,
a future version of pandas or a 3rd-party library may include a
dedicated ExtensionArray for string data. In this event, the following
would no longer return a :class:`arrays.PandasArray` backed by a NumPy
array.
>>> pd.array(['a', 'b'], dtype=str)
<PandasArray>
['a', 'b']
Length: 2, dtype: str32
This would instead return the new ExtensionArray dedicated for string
data. If you really need the new array to be backed by a NumPy array,
specify that in the dtype.
>>> pd.array(['a', 'b'], dtype=np.dtype("<U1"))
<PandasArray>
['a', 'b']
Length: 2, dtype: str32
Finally, Pandas has arrays that mostly overlap with NumPy
* :class:`arrays.DatetimeArray`
* :class:`arrays.TimedeltaArray`
When data with a ``datetime64[ns]`` or ``timedelta64[ns]`` dtype is
passed, pandas will always return a ``DatetimeArray`` or ``TimedeltaArray``
rather than a ``PandasArray``. This is for symmetry with the case of
timezone-aware data, which NumPy does not natively support.
>>> pd.array(['2015', '2016'], dtype='datetime64[ns]')
<DatetimeArray>
['2015-01-01 00:00:00', '2016-01-01 00:00:00']
Length: 2, dtype: datetime64[ns]
>>> pd.array(["1H", "2H"], dtype='timedelta64[ns]')
<TimedeltaArray>
['0 days 01:00:00', '0 days 02:00:00']
Length: 2, dtype: timedelta64[ns]
Examples
--------
If a dtype is not specified, pandas will infer the best dtype from the values.
See the description of `dtype` for the types pandas infers for.
>>> pd.array([1, 2])
<IntegerArray>
[1, 2]
Length: 2, dtype: Int64
>>> pd.array([1, 2, np.nan])
<IntegerArray>
[1, 2, <NA>]
Length: 3, dtype: Int64
>>> pd.array([1.1, 2.2])
<FloatingArray>
[1.1, 2.2]
Length: 2, dtype: Float64
>>> pd.array(["a", None, "c"])
<StringArray>
['a', <NA>, 'c']
Length: 3, dtype: string
>>> pd.array([pd.Period('2000', freq="D"), pd.Period("2000", freq="D")])
<PeriodArray>
['2000-01-01', '2000-01-01']
Length: 2, dtype: period[D]
You can use the string alias for `dtype`
>>> pd.array(['a', 'b', 'a'], dtype='category')
['a', 'b', 'a']
Categories (2, object): ['a', 'b']
Or specify the actual dtype
>>> pd.array(['a', 'b', 'a'],
... dtype=pd.CategoricalDtype(['a', 'b', 'c'], ordered=True))
['a', 'b', 'a']
Categories (3, object): ['a' < 'b' < 'c']
If pandas does not infer a dedicated extension type a
:class:`arrays.PandasArray` is returned.
>>> pd.array([1 + 1j, 3 + 2j])
<PandasArray>
[(1+1j), (3+2j)]
Length: 2, dtype: complex128
As mentioned in the "Notes" section, new extension types may be added
in the future (by pandas or 3rd party libraries), causing the return
value to no longer be a :class:`arrays.PandasArray`. Specify the `dtype`
as a NumPy dtype if you need to ensure there's no future change in
behavior.
>>> pd.array([1, 2], dtype=np.dtype("int32"))
<PandasArray>
[1, 2]
Length: 2, dtype: int32
`data` must be 1-dimensional. A ValueError is raised when the input
has the wrong dimensionality.
>>> pd.array(1)
Traceback (most recent call last):
...
ValueError: Cannot pass scalar '1' to 'pandas.array'. | pandas/core/construction.py | array | BhavarthShah/pandas | python | def array(data: Union[(Sequence[object], AnyArrayLike)], dtype: Optional[Dtype]=None, copy: bool=True) -> ExtensionArray:
'\n Create an array.\n\n .. versionadded:: 0.24.0\n\n Parameters\n ----------\n data : Sequence of objects\n The scalars inside `data` should be instances of the\n scalar type for `dtype`. It\'s expected that `data`\n represents a 1-dimensional array of data.\n\n When `data` is an Index or Series, the underlying array\n will be extracted from `data`.\n\n dtype : str, np.dtype, or ExtensionDtype, optional\n The dtype to use for the array. This may be a NumPy\n dtype or an extension type registered with pandas using\n :meth:`pandas.api.extensions.register_extension_dtype`.\n\n If not specified, there are two possibilities:\n\n 1. When `data` is a :class:`Series`, :class:`Index`, or\n :class:`ExtensionArray`, the `dtype` will be taken\n from the data.\n 2. Otherwise, pandas will attempt to infer the `dtype`\n from the data.\n\n Note that when `data` is a NumPy array, ``data.dtype`` is\n *not* used for inferring the array type. This is because\n NumPy cannot represent all the types of data that can be\n held in extension arrays.\n\n Currently, pandas will infer an extension dtype for sequences of\n\n ============================== =====================================\n Scalar Type Array Type\n ============================== =====================================\n :class:`pandas.Interval` :class:`pandas.arrays.IntervalArray`\n :class:`pandas.Period` :class:`pandas.arrays.PeriodArray`\n :class:`datetime.datetime` :class:`pandas.arrays.DatetimeArray`\n :class:`datetime.timedelta` :class:`pandas.arrays.TimedeltaArray`\n :class:`int` :class:`pandas.arrays.IntegerArray`\n :class:`float` :class:`pandas.arrays.FloatingArray`\n :class:`str` :class:`pandas.arrays.StringArray`\n :class:`bool` :class:`pandas.arrays.BooleanArray`\n ============================== =====================================\n\n For all other cases, NumPy\'s usual inference rules will be used.\n\n .. versionchanged:: 1.0.0\n\n Pandas infers nullable-integer dtype for integer data,\n string dtype for string data, and nullable-boolean dtype\n for boolean data.\n\n .. versionchanged:: 1.2.0\n\n Pandas now also infers nullable-floating dtype for float-like\n input data\n\n copy : bool, default True\n Whether to copy the data, even if not necessary. Depending\n on the type of `data`, creating the new array may require\n copying data, even if ``copy=False``.\n\n Returns\n -------\n ExtensionArray\n The newly created array.\n\n Raises\n ------\n ValueError\n When `data` is not 1-dimensional.\n\n See Also\n --------\n numpy.array : Construct a NumPy array.\n Series : Construct a pandas Series.\n Index : Construct a pandas Index.\n arrays.PandasArray : ExtensionArray wrapping a NumPy array.\n Series.array : Extract the array stored within a Series.\n\n Notes\n -----\n Omitting the `dtype` argument means pandas will attempt to infer the\n best array type from the values in the data. As new array types are\n added by pandas and 3rd party libraries, the "best" array type may\n change. We recommend specifying `dtype` to ensure that\n\n 1. the correct array type for the data is returned\n 2. the returned array type doesn\'t change as new extension types\n are added by pandas and third-party libraries\n\n Additionally, if the underlying memory representation of the returned\n array matters, we recommend specifying the `dtype` as a concrete object\n rather than a string alias or allowing it to be inferred. For example,\n a future version of pandas or a 3rd-party library may include a\n dedicated ExtensionArray for string data. In this event, the following\n would no longer return a :class:`arrays.PandasArray` backed by a NumPy\n array.\n\n >>> pd.array([\'a\', \'b\'], dtype=str)\n <PandasArray>\n [\'a\', \'b\']\n Length: 2, dtype: str32\n\n This would instead return the new ExtensionArray dedicated for string\n data. If you really need the new array to be backed by a NumPy array,\n specify that in the dtype.\n\n >>> pd.array([\'a\', \'b\'], dtype=np.dtype("<U1"))\n <PandasArray>\n [\'a\', \'b\']\n Length: 2, dtype: str32\n\n Finally, Pandas has arrays that mostly overlap with NumPy\n\n * :class:`arrays.DatetimeArray`\n * :class:`arrays.TimedeltaArray`\n\n When data with a ``datetime64[ns]`` or ``timedelta64[ns]`` dtype is\n passed, pandas will always return a ``DatetimeArray`` or ``TimedeltaArray``\n rather than a ``PandasArray``. This is for symmetry with the case of\n timezone-aware data, which NumPy does not natively support.\n\n >>> pd.array([\'2015\', \'2016\'], dtype=\'datetime64[ns]\')\n <DatetimeArray>\n [\'2015-01-01 00:00:00\', \'2016-01-01 00:00:00\']\n Length: 2, dtype: datetime64[ns]\n\n >>> pd.array(["1H", "2H"], dtype=\'timedelta64[ns]\')\n <TimedeltaArray>\n [\'0 days 01:00:00\', \'0 days 02:00:00\']\n Length: 2, dtype: timedelta64[ns]\n\n Examples\n --------\n If a dtype is not specified, pandas will infer the best dtype from the values.\n See the description of `dtype` for the types pandas infers for.\n\n >>> pd.array([1, 2])\n <IntegerArray>\n [1, 2]\n Length: 2, dtype: Int64\n\n >>> pd.array([1, 2, np.nan])\n <IntegerArray>\n [1, 2, <NA>]\n Length: 3, dtype: Int64\n\n >>> pd.array([1.1, 2.2])\n <FloatingArray>\n [1.1, 2.2]\n Length: 2, dtype: Float64\n\n >>> pd.array(["a", None, "c"])\n <StringArray>\n [\'a\', <NA>, \'c\']\n Length: 3, dtype: string\n\n >>> pd.array([pd.Period(\'2000\', freq="D"), pd.Period("2000", freq="D")])\n <PeriodArray>\n [\'2000-01-01\', \'2000-01-01\']\n Length: 2, dtype: period[D]\n\n You can use the string alias for `dtype`\n\n >>> pd.array([\'a\', \'b\', \'a\'], dtype=\'category\')\n [\'a\', \'b\', \'a\']\n Categories (2, object): [\'a\', \'b\']\n\n Or specify the actual dtype\n\n >>> pd.array([\'a\', \'b\', \'a\'],\n ... dtype=pd.CategoricalDtype([\'a\', \'b\', \'c\'], ordered=True))\n [\'a\', \'b\', \'a\']\n Categories (3, object): [\'a\' < \'b\' < \'c\']\n\n If pandas does not infer a dedicated extension type a\n :class:`arrays.PandasArray` is returned.\n\n >>> pd.array([1 + 1j, 3 + 2j])\n <PandasArray>\n [(1+1j), (3+2j)]\n Length: 2, dtype: complex128\n\n As mentioned in the "Notes" section, new extension types may be added\n in the future (by pandas or 3rd party libraries), causing the return\n value to no longer be a :class:`arrays.PandasArray`. Specify the `dtype`\n as a NumPy dtype if you need to ensure there\'s no future change in\n behavior.\n\n >>> pd.array([1, 2], dtype=np.dtype("int32"))\n <PandasArray>\n [1, 2]\n Length: 2, dtype: int32\n\n `data` must be 1-dimensional. A ValueError is raised when the input\n has the wrong dimensionality.\n\n >>> pd.array(1)\n Traceback (most recent call last):\n ...\n ValueError: Cannot pass scalar \'1\' to \'pandas.array\'.\n '
from pandas.core.arrays import BooleanArray, DatetimeArray, FloatingArray, IntegerArray, IntervalArray, PandasArray, StringArray, TimedeltaArray, period_array
if lib.is_scalar(data):
msg = f"Cannot pass scalar '{data}' to 'pandas.array'."
raise ValueError(msg)
if ((dtype is None) and isinstance(data, (ABCSeries, ABCIndexClass, ABCExtensionArray))):
dtype = data.dtype
data = extract_array(data, extract_numpy=True)
if isinstance(dtype, str):
dtype = (registry.find(dtype) or dtype)
if is_extension_array_dtype(dtype):
cls = cast(ExtensionDtype, dtype).construct_array_type()
return cls._from_sequence(data, dtype=dtype, copy=copy)
if (dtype is None):
inferred_dtype = lib.infer_dtype(data, skipna=True)
if (inferred_dtype == 'period'):
try:
return period_array(data, copy=copy)
except IncompatibleFrequency:
pass
elif (inferred_dtype == 'interval'):
try:
return IntervalArray(data, copy=copy)
except ValueError:
pass
elif inferred_dtype.startswith('datetime'):
try:
return DatetimeArray._from_sequence(data, copy=copy)
except ValueError:
pass
elif inferred_dtype.startswith('timedelta'):
return TimedeltaArray._from_sequence(data, copy=copy)
elif (inferred_dtype == 'string'):
return StringArray._from_sequence(data, copy=copy)
elif (inferred_dtype == 'integer'):
return IntegerArray._from_sequence(data, copy=copy)
elif (inferred_dtype in ('floating', 'mixed-integer-float')):
return FloatingArray._from_sequence(data, copy=copy)
elif (inferred_dtype == 'boolean'):
return BooleanArray._from_sequence(data, copy=copy)
if is_datetime64_ns_dtype(dtype):
return DatetimeArray._from_sequence(data, dtype=dtype, copy=copy)
elif is_timedelta64_ns_dtype(dtype):
return TimedeltaArray._from_sequence(data, dtype=dtype, copy=copy)
result = PandasArray._from_sequence(data, dtype=dtype, copy=copy)
return result |
def extract_array(obj: AnyArrayLike, extract_numpy: bool=False) -> ArrayLike:
"\n Extract the ndarray or ExtensionArray from a Series or Index.\n\n For all other types, `obj` is just returned as is.\n\n Parameters\n ----------\n obj : object\n For Series / Index, the underlying ExtensionArray is unboxed.\n For Numpy-backed ExtensionArrays, the ndarray is extracted.\n\n extract_numpy : bool, default False\n Whether to extract the ndarray from a PandasArray\n\n Returns\n -------\n arr : object\n\n Examples\n --------\n >>> extract_array(pd.Series(['a', 'b', 'c'], dtype='category'))\n ['a', 'b', 'c']\n Categories (3, object): ['a', 'b', 'c']\n\n Other objects like lists, arrays, and DataFrames are just passed through.\n\n >>> extract_array([1, 2, 3])\n [1, 2, 3]\n\n For an ndarray-backed Series / Index a PandasArray is returned.\n\n >>> extract_array(pd.Series([1, 2, 3]))\n <PandasArray>\n [1, 2, 3]\n Length: 3, dtype: int64\n\n To extract all the way down to the ndarray, pass ``extract_numpy=True``.\n\n >>> extract_array(pd.Series([1, 2, 3]), extract_numpy=True)\n array([1, 2, 3])\n "
if isinstance(obj, (ABCIndexClass, ABCSeries)):
obj = obj.array
if (extract_numpy and isinstance(obj, ABCPandasArray)):
obj = obj.to_numpy()
return obj | 7,053,903,833,595,036,000 | Extract the ndarray or ExtensionArray from a Series or Index.
For all other types, `obj` is just returned as is.
Parameters
----------
obj : object
For Series / Index, the underlying ExtensionArray is unboxed.
For Numpy-backed ExtensionArrays, the ndarray is extracted.
extract_numpy : bool, default False
Whether to extract the ndarray from a PandasArray
Returns
-------
arr : object
Examples
--------
>>> extract_array(pd.Series(['a', 'b', 'c'], dtype='category'))
['a', 'b', 'c']
Categories (3, object): ['a', 'b', 'c']
Other objects like lists, arrays, and DataFrames are just passed through.
>>> extract_array([1, 2, 3])
[1, 2, 3]
For an ndarray-backed Series / Index a PandasArray is returned.
>>> extract_array(pd.Series([1, 2, 3]))
<PandasArray>
[1, 2, 3]
Length: 3, dtype: int64
To extract all the way down to the ndarray, pass ``extract_numpy=True``.
>>> extract_array(pd.Series([1, 2, 3]), extract_numpy=True)
array([1, 2, 3]) | pandas/core/construction.py | extract_array | BhavarthShah/pandas | python | def extract_array(obj: AnyArrayLike, extract_numpy: bool=False) -> ArrayLike:
"\n Extract the ndarray or ExtensionArray from a Series or Index.\n\n For all other types, `obj` is just returned as is.\n\n Parameters\n ----------\n obj : object\n For Series / Index, the underlying ExtensionArray is unboxed.\n For Numpy-backed ExtensionArrays, the ndarray is extracted.\n\n extract_numpy : bool, default False\n Whether to extract the ndarray from a PandasArray\n\n Returns\n -------\n arr : object\n\n Examples\n --------\n >>> extract_array(pd.Series(['a', 'b', 'c'], dtype='category'))\n ['a', 'b', 'c']\n Categories (3, object): ['a', 'b', 'c']\n\n Other objects like lists, arrays, and DataFrames are just passed through.\n\n >>> extract_array([1, 2, 3])\n [1, 2, 3]\n\n For an ndarray-backed Series / Index a PandasArray is returned.\n\n >>> extract_array(pd.Series([1, 2, 3]))\n <PandasArray>\n [1, 2, 3]\n Length: 3, dtype: int64\n\n To extract all the way down to the ndarray, pass ``extract_numpy=True``.\n\n >>> extract_array(pd.Series([1, 2, 3]), extract_numpy=True)\n array([1, 2, 3])\n "
if isinstance(obj, (ABCIndexClass, ABCSeries)):
obj = obj.array
if (extract_numpy and isinstance(obj, ABCPandasArray)):
obj = obj.to_numpy()
return obj |
def sanitize_array(data, index: Optional[Index], dtype: Optional[DtypeObj]=None, copy: bool=False, raise_cast_failure: bool=False) -> ArrayLike:
'\n Sanitize input data to an ndarray or ExtensionArray, copy if specified,\n coerce to the dtype if specified.\n '
if isinstance(data, ma.MaskedArray):
mask = ma.getmaskarray(data)
if mask.any():
(data, fill_value) = maybe_upcast(data, copy=True)
data.soften_mask()
data[mask] = fill_value
else:
data = data.copy()
data = extract_array(data, extract_numpy=True)
if isinstance(data, np.ndarray):
if ((dtype is not None) and is_float_dtype(data.dtype) and is_integer_dtype(dtype)):
try:
subarr = _try_cast(data, dtype, copy, True)
except ValueError:
if copy:
subarr = data.copy()
else:
subarr = np.array(data, copy=False)
else:
subarr = _try_cast(data, dtype, copy, raise_cast_failure)
elif isinstance(data, ABCExtensionArray):
subarr = data
if (dtype is not None):
subarr = subarr.astype(dtype, copy=copy)
elif copy:
subarr = subarr.copy()
return subarr
elif (isinstance(data, (list, tuple, abc.Set, abc.ValuesView)) and (len(data) > 0)):
if isinstance(data, set):
raise TypeError('Set type is unordered')
data = list(data)
if (dtype is not None):
subarr = _try_cast(data, dtype, copy, raise_cast_failure)
else:
subarr = maybe_convert_platform(data)
subarr = maybe_cast_to_datetime(subarr, dtype)
elif isinstance(data, range):
arr = np.arange(data.start, data.stop, data.step, dtype='int64')
subarr = _try_cast(arr, dtype, copy, raise_cast_failure)
elif (lib.is_scalar(data) and (index is not None) and (dtype is not None)):
data = maybe_cast_to_datetime(data, dtype)
if (not lib.is_scalar(data)):
data = data[0]
subarr = construct_1d_arraylike_from_scalar(data, len(index), dtype)
else:
subarr = _try_cast(data, dtype, copy, raise_cast_failure)
if (getattr(subarr, 'ndim', 0) == 0):
if isinstance(data, list):
subarr = np.array(data, dtype=object)
elif (index is not None):
value = data
if (dtype is None):
(dtype, value) = infer_dtype_from_scalar(value, pandas_dtype=True)
else:
value = maybe_cast_to_datetime(value, dtype)
subarr = construct_1d_arraylike_from_scalar(value, len(index), dtype)
else:
return subarr.item()
elif (subarr.ndim == 1):
if (index is not None):
if ((len(subarr) != len(index)) and (len(subarr) == 1)):
subarr = construct_1d_arraylike_from_scalar(subarr[0], len(index), subarr.dtype)
elif (subarr.ndim > 1):
if isinstance(data, np.ndarray):
raise ValueError('Data must be 1-dimensional')
else:
subarr = com.asarray_tuplesafe(data, dtype=dtype)
if (not (is_extension_array_dtype(subarr.dtype) or is_extension_array_dtype(dtype))):
if issubclass(subarr.dtype.type, str):
if (not lib.is_scalar(data)):
if (not np.all(isna(data))):
data = np.array(data, dtype=dtype, copy=False)
subarr = np.array(data, dtype=object, copy=copy)
is_object_or_str_dtype = (is_object_dtype(dtype) or is_string_dtype(dtype))
if (is_object_dtype(subarr.dtype) and (not is_object_or_str_dtype)):
inferred = lib.infer_dtype(subarr, skipna=False)
if (inferred in {'interval', 'period'}):
subarr = array(subarr)
return subarr | -8,508,708,360,423,698,000 | Sanitize input data to an ndarray or ExtensionArray, copy if specified,
coerce to the dtype if specified. | pandas/core/construction.py | sanitize_array | BhavarthShah/pandas | python | def sanitize_array(data, index: Optional[Index], dtype: Optional[DtypeObj]=None, copy: bool=False, raise_cast_failure: bool=False) -> ArrayLike:
'\n Sanitize input data to an ndarray or ExtensionArray, copy if specified,\n coerce to the dtype if specified.\n '
if isinstance(data, ma.MaskedArray):
mask = ma.getmaskarray(data)
if mask.any():
(data, fill_value) = maybe_upcast(data, copy=True)
data.soften_mask()
data[mask] = fill_value
else:
data = data.copy()
data = extract_array(data, extract_numpy=True)
if isinstance(data, np.ndarray):
if ((dtype is not None) and is_float_dtype(data.dtype) and is_integer_dtype(dtype)):
try:
subarr = _try_cast(data, dtype, copy, True)
except ValueError:
if copy:
subarr = data.copy()
else:
subarr = np.array(data, copy=False)
else:
subarr = _try_cast(data, dtype, copy, raise_cast_failure)
elif isinstance(data, ABCExtensionArray):
subarr = data
if (dtype is not None):
subarr = subarr.astype(dtype, copy=copy)
elif copy:
subarr = subarr.copy()
return subarr
elif (isinstance(data, (list, tuple, abc.Set, abc.ValuesView)) and (len(data) > 0)):
if isinstance(data, set):
raise TypeError('Set type is unordered')
data = list(data)
if (dtype is not None):
subarr = _try_cast(data, dtype, copy, raise_cast_failure)
else:
subarr = maybe_convert_platform(data)
subarr = maybe_cast_to_datetime(subarr, dtype)
elif isinstance(data, range):
arr = np.arange(data.start, data.stop, data.step, dtype='int64')
subarr = _try_cast(arr, dtype, copy, raise_cast_failure)
elif (lib.is_scalar(data) and (index is not None) and (dtype is not None)):
data = maybe_cast_to_datetime(data, dtype)
if (not lib.is_scalar(data)):
data = data[0]
subarr = construct_1d_arraylike_from_scalar(data, len(index), dtype)
else:
subarr = _try_cast(data, dtype, copy, raise_cast_failure)
if (getattr(subarr, 'ndim', 0) == 0):
if isinstance(data, list):
subarr = np.array(data, dtype=object)
elif (index is not None):
value = data
if (dtype is None):
(dtype, value) = infer_dtype_from_scalar(value, pandas_dtype=True)
else:
value = maybe_cast_to_datetime(value, dtype)
subarr = construct_1d_arraylike_from_scalar(value, len(index), dtype)
else:
return subarr.item()
elif (subarr.ndim == 1):
if (index is not None):
if ((len(subarr) != len(index)) and (len(subarr) == 1)):
subarr = construct_1d_arraylike_from_scalar(subarr[0], len(index), subarr.dtype)
elif (subarr.ndim > 1):
if isinstance(data, np.ndarray):
raise ValueError('Data must be 1-dimensional')
else:
subarr = com.asarray_tuplesafe(data, dtype=dtype)
if (not (is_extension_array_dtype(subarr.dtype) or is_extension_array_dtype(dtype))):
if issubclass(subarr.dtype.type, str):
if (not lib.is_scalar(data)):
if (not np.all(isna(data))):
data = np.array(data, dtype=dtype, copy=False)
subarr = np.array(data, dtype=object, copy=copy)
is_object_or_str_dtype = (is_object_dtype(dtype) or is_string_dtype(dtype))
if (is_object_dtype(subarr.dtype) and (not is_object_or_str_dtype)):
inferred = lib.infer_dtype(subarr, skipna=False)
if (inferred in {'interval', 'period'}):
subarr = array(subarr)
return subarr |
def _try_cast(arr, dtype: Optional[DtypeObj], copy: bool, raise_cast_failure: bool):
"\n Convert input to numpy ndarray and optionally cast to a given dtype.\n\n Parameters\n ----------\n arr : ndarray, scalar, list, tuple, iterator (catchall)\n Excludes: ExtensionArray, Series, Index.\n dtype : np.dtype, ExtensionDtype or None\n copy : bool\n If False, don't copy the data if not needed.\n raise_cast_failure : bool\n If True, and if a dtype is specified, raise errors during casting.\n Otherwise an object array is returned.\n "
if isinstance(arr, np.ndarray):
if (maybe_castable(arr) and (not copy) and (dtype is None)):
return arr
if (isinstance(dtype, ExtensionDtype) and ((dtype.kind != 'M') or is_sparse(dtype))):
array_type = dtype.construct_array_type()._from_sequence
subarr = array_type(arr, dtype=dtype, copy=copy)
return subarr
try:
if is_integer_dtype(dtype):
maybe_cast_to_integer_array(arr, dtype)
subarr = arr
else:
subarr = maybe_cast_to_datetime(arr, dtype)
if (is_object_dtype(dtype) and (is_list_like(subarr) and (not (is_iterator(subarr) or isinstance(subarr, np.ndarray))))):
subarr = construct_1d_object_array_from_listlike(subarr)
elif (not is_extension_array_dtype(subarr)):
subarr = construct_1d_ndarray_preserving_na(subarr, dtype, copy=copy)
except OutOfBoundsDatetime:
raise
except (ValueError, TypeError):
if ((dtype is not None) and raise_cast_failure):
raise
else:
subarr = np.array(arr, dtype=object, copy=copy)
return subarr | 2,792,998,909,573,878,300 | Convert input to numpy ndarray and optionally cast to a given dtype.
Parameters
----------
arr : ndarray, scalar, list, tuple, iterator (catchall)
Excludes: ExtensionArray, Series, Index.
dtype : np.dtype, ExtensionDtype or None
copy : bool
If False, don't copy the data if not needed.
raise_cast_failure : bool
If True, and if a dtype is specified, raise errors during casting.
Otherwise an object array is returned. | pandas/core/construction.py | _try_cast | BhavarthShah/pandas | python | def _try_cast(arr, dtype: Optional[DtypeObj], copy: bool, raise_cast_failure: bool):
"\n Convert input to numpy ndarray and optionally cast to a given dtype.\n\n Parameters\n ----------\n arr : ndarray, scalar, list, tuple, iterator (catchall)\n Excludes: ExtensionArray, Series, Index.\n dtype : np.dtype, ExtensionDtype or None\n copy : bool\n If False, don't copy the data if not needed.\n raise_cast_failure : bool\n If True, and if a dtype is specified, raise errors during casting.\n Otherwise an object array is returned.\n "
if isinstance(arr, np.ndarray):
if (maybe_castable(arr) and (not copy) and (dtype is None)):
return arr
if (isinstance(dtype, ExtensionDtype) and ((dtype.kind != 'M') or is_sparse(dtype))):
array_type = dtype.construct_array_type()._from_sequence
subarr = array_type(arr, dtype=dtype, copy=copy)
return subarr
try:
if is_integer_dtype(dtype):
maybe_cast_to_integer_array(arr, dtype)
subarr = arr
else:
subarr = maybe_cast_to_datetime(arr, dtype)
if (is_object_dtype(dtype) and (is_list_like(subarr) and (not (is_iterator(subarr) or isinstance(subarr, np.ndarray))))):
subarr = construct_1d_object_array_from_listlike(subarr)
elif (not is_extension_array_dtype(subarr)):
subarr = construct_1d_ndarray_preserving_na(subarr, dtype, copy=copy)
except OutOfBoundsDatetime:
raise
except (ValueError, TypeError):
if ((dtype is not None) and raise_cast_failure):
raise
else:
subarr = np.array(arr, dtype=object, copy=copy)
return subarr |
def is_empty_data(data: Any) -> bool:
'\n Utility to check if a Series is instantiated with empty data,\n which does not contain dtype information.\n\n Parameters\n ----------\n data : array-like, Iterable, dict, or scalar value\n Contains data stored in Series.\n\n Returns\n -------\n bool\n '
is_none = (data is None)
is_list_like_without_dtype = (is_list_like(data) and (not hasattr(data, 'dtype')))
is_simple_empty = (is_list_like_without_dtype and (not data))
return (is_none or is_simple_empty) | 6,240,236,482,168,920,000 | Utility to check if a Series is instantiated with empty data,
which does not contain dtype information.
Parameters
----------
data : array-like, Iterable, dict, or scalar value
Contains data stored in Series.
Returns
-------
bool | pandas/core/construction.py | is_empty_data | BhavarthShah/pandas | python | def is_empty_data(data: Any) -> bool:
'\n Utility to check if a Series is instantiated with empty data,\n which does not contain dtype information.\n\n Parameters\n ----------\n data : array-like, Iterable, dict, or scalar value\n Contains data stored in Series.\n\n Returns\n -------\n bool\n '
is_none = (data is None)
is_list_like_without_dtype = (is_list_like(data) and (not hasattr(data, 'dtype')))
is_simple_empty = (is_list_like_without_dtype and (not data))
return (is_none or is_simple_empty) |
def create_series_with_explicit_dtype(data: Any=None, index: Optional[Union[(ArrayLike, Index)]]=None, dtype: Optional[Dtype]=None, name: Optional[str]=None, copy: bool=False, fastpath: bool=False, dtype_if_empty: Dtype=object) -> Series:
'\n Helper to pass an explicit dtype when instantiating an empty Series.\n\n This silences a DeprecationWarning described in GitHub-17261.\n\n Parameters\n ----------\n data : Mirrored from Series.__init__\n index : Mirrored from Series.__init__\n dtype : Mirrored from Series.__init__\n name : Mirrored from Series.__init__\n copy : Mirrored from Series.__init__\n fastpath : Mirrored from Series.__init__\n dtype_if_empty : str, numpy.dtype, or ExtensionDtype\n This dtype will be passed explicitly if an empty Series will\n be instantiated.\n\n Returns\n -------\n Series\n '
from pandas.core.series import Series
if (is_empty_data(data) and (dtype is None)):
dtype = dtype_if_empty
return Series(data=data, index=index, dtype=dtype, name=name, copy=copy, fastpath=fastpath) | 6,999,774,149,489,639,000 | Helper to pass an explicit dtype when instantiating an empty Series.
This silences a DeprecationWarning described in GitHub-17261.
Parameters
----------
data : Mirrored from Series.__init__
index : Mirrored from Series.__init__
dtype : Mirrored from Series.__init__
name : Mirrored from Series.__init__
copy : Mirrored from Series.__init__
fastpath : Mirrored from Series.__init__
dtype_if_empty : str, numpy.dtype, or ExtensionDtype
This dtype will be passed explicitly if an empty Series will
be instantiated.
Returns
-------
Series | pandas/core/construction.py | create_series_with_explicit_dtype | BhavarthShah/pandas | python | def create_series_with_explicit_dtype(data: Any=None, index: Optional[Union[(ArrayLike, Index)]]=None, dtype: Optional[Dtype]=None, name: Optional[str]=None, copy: bool=False, fastpath: bool=False, dtype_if_empty: Dtype=object) -> Series:
'\n Helper to pass an explicit dtype when instantiating an empty Series.\n\n This silences a DeprecationWarning described in GitHub-17261.\n\n Parameters\n ----------\n data : Mirrored from Series.__init__\n index : Mirrored from Series.__init__\n dtype : Mirrored from Series.__init__\n name : Mirrored from Series.__init__\n copy : Mirrored from Series.__init__\n fastpath : Mirrored from Series.__init__\n dtype_if_empty : str, numpy.dtype, or ExtensionDtype\n This dtype will be passed explicitly if an empty Series will\n be instantiated.\n\n Returns\n -------\n Series\n '
from pandas.core.series import Series
if (is_empty_data(data) and (dtype is None)):
dtype = dtype_if_empty
return Series(data=data, index=index, dtype=dtype, name=name, copy=copy, fastpath=fastpath) |
def cli_endpoint(fn):
'\n Decorator for command line endpoints that execute dags or tasks. It runs\n the decorated function, captures exception (if any), sends a colored\n traceback to standard error and exits with code 1.\n\n Notes\n -----\n Functions decorated with this must be called with keyword arguments\n\n Call some_endpoint(catch_exception=False) to disable this behavior (e.g.\n for testing)\n '
@wraps(fn)
def wrapper(catch_exception=True, **kwargs):
if catch_exception:
try:
fn(**kwargs)
except (DAGBuildError, DAGRenderError):
error = traceback.format_exc()
color = False
except Exception:
error = traceback.format_exc()
color = True
else:
error = None
if error:
if color:
tw = TerminalWriter(file=sys.stderr)
tw._write_source(error.splitlines())
else:
print(error, file=sys.stderr)
sys.exit(1)
else:
fn(**kwargs)
return wrapper | -2,612,740,748,282,923,500 | Decorator for command line endpoints that execute dags or tasks. It runs
the decorated function, captures exception (if any), sends a colored
traceback to standard error and exits with code 1.
Notes
-----
Functions decorated with this must be called with keyword arguments
Call some_endpoint(catch_exception=False) to disable this behavior (e.g.
for testing) | src/ploomber/cli/io.py | cli_endpoint | abhishak3/ploomber | python | def cli_endpoint(fn):
'\n Decorator for command line endpoints that execute dags or tasks. It runs\n the decorated function, captures exception (if any), sends a colored\n traceback to standard error and exits with code 1.\n\n Notes\n -----\n Functions decorated with this must be called with keyword arguments\n\n Call some_endpoint(catch_exception=False) to disable this behavior (e.g.\n for testing)\n '
@wraps(fn)
def wrapper(catch_exception=True, **kwargs):
if catch_exception:
try:
fn(**kwargs)
except (DAGBuildError, DAGRenderError):
error = traceback.format_exc()
color = False
except Exception:
error = traceback.format_exc()
color = True
else:
error = None
if error:
if color:
tw = TerminalWriter(file=sys.stderr)
tw._write_source(error.splitlines())
else:
print(error, file=sys.stderr)
sys.exit(1)
else:
fn(**kwargs)
return wrapper |
def command_endpoint(fn):
'\n Decorator for command line endpoints that only parse dags or tasks but do\n not execute them. If it tails, it prints error message to stderror, then\n calls with exit code 1.\n '
@wraps(fn)
def wrapper(**kwargs):
try:
fn(**kwargs)
except Exception as e:
print(f'Error: {e}', file=sys.stderr)
sys.exit(1)
return wrapper | -1,015,329,598,697,073,800 | Decorator for command line endpoints that only parse dags or tasks but do
not execute them. If it tails, it prints error message to stderror, then
calls with exit code 1. | src/ploomber/cli/io.py | command_endpoint | abhishak3/ploomber | python | def command_endpoint(fn):
'\n Decorator for command line endpoints that only parse dags or tasks but do\n not execute them. If it tails, it prints error message to stderror, then\n calls with exit code 1.\n '
@wraps(fn)
def wrapper(**kwargs):
try:
fn(**kwargs)
except Exception as e:
print(f'Error: {e}', file=sys.stderr)
sys.exit(1)
return wrapper |
def assert_flash(self, text):
'asserts that message exists in flashes'
for flash_dom in self.find_elements('.flash'):
if (flash_dom.text == text):
return
print(flash_dom.text)
raise AssertionError(f'Flash not found for text "{text}"') | -740,493,910,525,271,300 | asserts that message exists in flashes | qa327_test/frontend/geek_base.py | assert_flash | nicoleooi/cmpe327 | python | def assert_flash(self, text):
for flash_dom in self.find_elements('.flash'):
if (flash_dom.text == text):
return
print(flash_dom.text)
raise AssertionError(f'Flash not found for text "{text}"') |
def login_test_user(self, email=TEST_USER.email, password='test_frontend'):
'login our test user'
self.open((base_url + '/login'))
self.input('#email', email)
self.input('#password', password)
self.click('#btn-submit') | 214,767,214,298,577,860 | login our test user | qa327_test/frontend/geek_base.py | login_test_user | nicoleooi/cmpe327 | python | def login_test_user(self, email=TEST_USER.email, password='test_frontend'):
self.open((base_url + '/login'))
self.input('#email', email)
self.input('#password', password)
self.click('#btn-submit') |
def reject_outliers(y, x=None, m=2.0, replaceNaN=True):
' Reject outliers:\n If replaceNaN is true: they are replaced by NaN \n Otherwise they are removed\n '
if (m == 0):
pass
else:
dd = np.abs((y - np.nanmedian(y)))
mdev = np.nanmedian(dd)
if mdev:
ss = (dd / mdev)
b = (ss < m)
if replaceNaN:
y = y.copy()
y[(~ b)] = np.nan
else:
y = y[b]
if (x is not None):
x = x[b]
if (x is None):
return y
else:
return (x, y) | 2,903,634,235,489,495,000 | Reject outliers:
If replaceNaN is true: they are replaced by NaN
Otherwise they are removed | pydatview/tools/signal.py | reject_outliers | cdrtm/pyDatView | python | def reject_outliers(y, x=None, m=2.0, replaceNaN=True):
' Reject outliers:\n If replaceNaN is true: they are replaced by NaN \n Otherwise they are removed\n '
if (m == 0):
pass
else:
dd = np.abs((y - np.nanmedian(y)))
mdev = np.nanmedian(dd)
if mdev:
ss = (dd / mdev)
b = (ss < m)
if replaceNaN:
y = y.copy()
y[(~ b)] = np.nan
else:
y = y[b]
if (x is not None):
x = x[b]
if (x is None):
return y
else:
return (x, y) |
def moving_average(a, n=3):
' \n perform moving average, return a vector of same length as input\n\n NOTE: also in kalman.filters\n '
a = a.ravel()
a = np.concatenate((([a[0]] * (n - 1)), a))
ret = np.cumsum(a, dtype=float)
ret[n:] = (ret[n:] - ret[:(- n)])
ret = (ret[(n - 1):] / n)
return ret | -1,125,062,380,859,889,400 | perform moving average, return a vector of same length as input
NOTE: also in kalman.filters | pydatview/tools/signal.py | moving_average | cdrtm/pyDatView | python | def moving_average(a, n=3):
' \n perform moving average, return a vector of same length as input\n\n NOTE: also in kalman.filters\n '
a = a.ravel()
a = np.concatenate((([a[0]] * (n - 1)), a))
ret = np.cumsum(a, dtype=float)
ret[n:] = (ret[n:] - ret[:(- n)])
ret = (ret[(n - 1):] / n)
return ret |
def lowpass1(y, dt, fc=3):
' \n 1st order low pass filter\n '
tau = (1 / ((2 * np.pi) * fc))
alpha = (dt / (tau + dt))
y_filt = np.zeros(y.shape)
y_filt[0] = y[0]
for i in np.arange(1, len(y)):
y_filt[i] = ((alpha * y[i]) + ((1 - alpha) * y_filt[(i - 1)]))
return y_filt | 7,886,073,476,410,002,000 | 1st order low pass filter | pydatview/tools/signal.py | lowpass1 | cdrtm/pyDatView | python | def lowpass1(y, dt, fc=3):
' \n \n '
tau = (1 / ((2 * np.pi) * fc))
alpha = (dt / (tau + dt))
y_filt = np.zeros(y.shape)
y_filt[0] = y[0]
for i in np.arange(1, len(y)):
y_filt[i] = ((alpha * y[i]) + ((1 - alpha) * y_filt[(i - 1)]))
return y_filt |
def highpass1(y, dt, fc=3):
' \n 1st order high pass filter\n '
tau = (1 / ((2 * np.pi) * fc))
alpha = (tau / (tau + dt))
y_filt = np.zeros(y.shape)
y_filt[0] = 0
for i in np.arange(1, len(y)):
y_filt[i] = ((alpha * y_filt[(i - 1)]) + (alpha * (y[i] - y[(i - 1)])))
m0 = np.mean(y)
m1 = np.mean(y_filt)
y_filt += (m0 - m1)
return y_filt | -2,147,949,212,982,904,600 | 1st order high pass filter | pydatview/tools/signal.py | highpass1 | cdrtm/pyDatView | python | def highpass1(y, dt, fc=3):
' \n \n '
tau = (1 / ((2 * np.pi) * fc))
alpha = (tau / (tau + dt))
y_filt = np.zeros(y.shape)
y_filt[0] = 0
for i in np.arange(1, len(y)):
y_filt[i] = ((alpha * y_filt[(i - 1)]) + (alpha * (y[i] - y[(i - 1)])))
m0 = np.mean(y)
m1 = np.mean(y_filt)
y_filt += (m0 - m1)
return y_filt |
def zero_crossings(y, x=None, direction=None):
"\n Find zero-crossing points in a discrete vector, using linear interpolation.\n\n direction: 'up' or 'down', to select only up-crossings or down-crossings\n\n returns: \n x values xzc such that y(yzc)==0\n indexes izc, such that the zero is between y[izc] (excluded) and y[izc+1] (included)\n\n if direction is not provided, also returns:\n sign, equal to 1 for up crossing\n "
if (x is None):
x = np.arange(len(y))
if np.any(((x[1:] - x[0:(- 1)]) <= 0.0)):
raise Exception('x values need to be in ascending order')
iBef = np.where(((y[1:] * y[0:(- 1)]) < 0.0))[0]
xzc = (x[iBef] - ((y[iBef] * (x[(iBef + 1)] - x[iBef])) / (y[(iBef + 1)] - y[iBef])))
iZero = np.where((y == 0.0))[0]
iZero = iZero[np.where(((iZero > 0) & (iZero < (x.size - 1))))]
iZero = iZero[np.where(((y[(iZero - 1)] * y[(iZero + 1)]) < 0.0))]
xzc = np.concatenate((xzc, x[iZero]))
iBef = np.concatenate((iBef, iZero))
iSort = np.argsort(xzc)
(xzc, iBef) = (xzc[iSort], iBef[iSort])
sign = np.sign((y[(iBef + 1)] - y[iBef]))
if (direction == 'up'):
I = np.where((sign == 1))[0]
return (xzc[I], iBef[I])
elif (direction == 'down'):
I = np.where((sign == (- 1)))[0]
return (xzc[I], iBef[I])
elif (direction is not None):
raise Exception('Direction should be either `up` or `down`')
return (xzc, iBef, sign) | 4,096,691,605,760,065,000 | Find zero-crossing points in a discrete vector, using linear interpolation.
direction: 'up' or 'down', to select only up-crossings or down-crossings
returns:
x values xzc such that y(yzc)==0
indexes izc, such that the zero is between y[izc] (excluded) and y[izc+1] (included)
if direction is not provided, also returns:
sign, equal to 1 for up crossing | pydatview/tools/signal.py | zero_crossings | cdrtm/pyDatView | python | def zero_crossings(y, x=None, direction=None):
"\n Find zero-crossing points in a discrete vector, using linear interpolation.\n\n direction: 'up' or 'down', to select only up-crossings or down-crossings\n\n returns: \n x values xzc such that y(yzc)==0\n indexes izc, such that the zero is between y[izc] (excluded) and y[izc+1] (included)\n\n if direction is not provided, also returns:\n sign, equal to 1 for up crossing\n "
if (x is None):
x = np.arange(len(y))
if np.any(((x[1:] - x[0:(- 1)]) <= 0.0)):
raise Exception('x values need to be in ascending order')
iBef = np.where(((y[1:] * y[0:(- 1)]) < 0.0))[0]
xzc = (x[iBef] - ((y[iBef] * (x[(iBef + 1)] - x[iBef])) / (y[(iBef + 1)] - y[iBef])))
iZero = np.where((y == 0.0))[0]
iZero = iZero[np.where(((iZero > 0) & (iZero < (x.size - 1))))]
iZero = iZero[np.where(((y[(iZero - 1)] * y[(iZero + 1)]) < 0.0))]
xzc = np.concatenate((xzc, x[iZero]))
iBef = np.concatenate((iBef, iZero))
iSort = np.argsort(xzc)
(xzc, iBef) = (xzc[iSort], iBef[iSort])
sign = np.sign((y[(iBef + 1)] - y[iBef]))
if (direction == 'up'):
I = np.where((sign == 1))[0]
return (xzc[I], iBef[I])
elif (direction == 'down'):
I = np.where((sign == (- 1)))[0]
return (xzc[I], iBef[I])
elif (direction is not None):
raise Exception('Direction should be either `up` or `down`')
return (xzc, iBef, sign) |
def correlation(x, nMax=80, dt=1, method='manual'):
' \n Compute auto correlation of a signal\n '
nvec = np.arange(0, nMax)
sigma2 = np.var(x)
R = np.zeros(nMax)
R[0] = 1
for (i, nDelay) in enumerate(nvec[1:]):
R[(i + 1)] = (np.mean((x[0:(- nDelay)] * x[nDelay:])) / sigma2)
tau = (nvec * dt)
return (R, tau) | -753,259,868,257,545,100 | Compute auto correlation of a signal | pydatview/tools/signal.py | correlation | cdrtm/pyDatView | python | def correlation(x, nMax=80, dt=1, method='manual'):
' \n \n '
nvec = np.arange(0, nMax)
sigma2 = np.var(x)
R = np.zeros(nMax)
R[0] = 1
for (i, nDelay) in enumerate(nvec[1:]):
R[(i + 1)] = (np.mean((x[0:(- nDelay)] * x[nDelay:])) / sigma2)
tau = (nvec * dt)
return (R, tau) |
def correlated_signal(coeff, n=1000):
'\n Create a correlated random signal of length `n` based on the correlation coefficient `coeff`\n value[t] = coeff * value[t-1] + (1-coeff) * random\n '
if ((coeff < 0) or (coeff > 1)):
raise Exception('Correlation coefficient should be between 0 and 1')
x = np.zeros(n)
rvec = rand(n)
x[0] = rvec[0]
for m in np.arange(1, n):
x[m] = ((coeff * x[(m - 1)]) + ((1 - coeff) * rvec[m]))
x -= np.mean(x)
return x | 734,792,984,720,503,700 | Create a correlated random signal of length `n` based on the correlation coefficient `coeff`
value[t] = coeff * value[t-1] + (1-coeff) * random | pydatview/tools/signal.py | correlated_signal | cdrtm/pyDatView | python | def correlated_signal(coeff, n=1000):
'\n Create a correlated random signal of length `n` based on the correlation coefficient `coeff`\n value[t] = coeff * value[t-1] + (1-coeff) * random\n '
if ((coeff < 0) or (coeff > 1)):
raise Exception('Correlation coefficient should be between 0 and 1')
x = np.zeros(n)
rvec = rand(n)
x[0] = rvec[0]
for m in np.arange(1, n):
x[m] = ((coeff * x[(m - 1)]) + ((1 - coeff) * rvec[m]))
x -= np.mean(x)
return x |
def build_colormap2label():
'Build a RGB color to label mapping for segmentation.'
colormap2label = np.zeros((256 ** 3))
for (i, colormap) in enumerate(VOC_COLORMAP):
colormap2label[((((colormap[0] * 256) + colormap[1]) * 256) + colormap[2])] = i
return colormap2label | 2,136,949,172,295,368,700 | Build a RGB color to label mapping for segmentation. | tools/convet_voc2coco/voc2coco.py | build_colormap2label | yhpengtu/CenterIMask | python | def build_colormap2label():
colormap2label = np.zeros((256 ** 3))
for (i, colormap) in enumerate(VOC_COLORMAP):
colormap2label[((((colormap[0] * 256) + colormap[1]) * 256) + colormap[2])] = i
return colormap2label |
def voc_label_indices(colormap, colormap2label):
'Map a RGB color to a label.'
colormap = colormap.astype('int32')
idx = ((((colormap[:, :, 0] * 256) + colormap[:, :, 1]) * 256) + colormap[:, :, 2])
return colormap2label[idx] | -3,168,059,356,542,787,600 | Map a RGB color to a label. | tools/convet_voc2coco/voc2coco.py | voc_label_indices | yhpengtu/CenterIMask | python | def voc_label_indices(colormap, colormap2label):
colormap = colormap.astype('int32')
idx = ((((colormap[:, :, 0] * 256) + colormap[:, :, 1]) * 256) + colormap[:, :, 2])
return colormap2label[idx] |
def inference(model, dataset, limit):
'Run detection on images in the given directory.'
if (not os.path.exists(RESULTS_DIR)):
os.makedirs(RESULTS_DIR)
time_dir = '{:%Y%m%dT%H%M%S}'.format(datetime.datetime.now())
time_dir = os.path.join(RESULTS_DIR, time_dir)
os.makedirs(time_dir)
for image_id in dataset.image_ids[:limit]:
image = dataset.load_image(image_id)
r = model.detect([image], verbose=0)[0]
source_id = dataset.image_info[image_id]['id']
if (len(r['class_ids']) > 0):
print('[*] {}th image has {} instance(s).'.format(image_id, len(r['class_ids'])))
visualize.display_instances(image, r['rois'], r['masks'], r['class_ids'], dataset.class_names, r['scores'], show_bbox=True, show_mask=True, title='Predictions')
plt.savefig('{}/{}'.format(time_dir, dataset.image_info[image_id]['id']))
plt.close()
else:
plt.imshow(image)
plt.savefig('{}/noinstance_{}'.format(time_dir, dataset.image_info[image_id]['id']))
print('[*] {}th image have no instance.'.format(image_id))
plt.close() | -6,147,800,993,385,219,000 | Run detection on images in the given directory. | tools/convet_voc2coco/voc2coco.py | inference | yhpengtu/CenterIMask | python | def inference(model, dataset, limit):
if (not os.path.exists(RESULTS_DIR)):
os.makedirs(RESULTS_DIR)
time_dir = '{:%Y%m%dT%H%M%S}'.format(datetime.datetime.now())
time_dir = os.path.join(RESULTS_DIR, time_dir)
os.makedirs(time_dir)
for image_id in dataset.image_ids[:limit]:
image = dataset.load_image(image_id)
r = model.detect([image], verbose=0)[0]
source_id = dataset.image_info[image_id]['id']
if (len(r['class_ids']) > 0):
print('[*] {}th image has {} instance(s).'.format(image_id, len(r['class_ids'])))
visualize.display_instances(image, r['rois'], r['masks'], r['class_ids'], dataset.class_names, r['scores'], show_bbox=True, show_mask=True, title='Predictions')
plt.savefig('{}/{}'.format(time_dir, dataset.image_info[image_id]['id']))
plt.close()
else:
plt.imshow(image)
plt.savefig('{}/noinstance_{}'.format(time_dir, dataset.image_info[image_id]['id']))
print('[*] {}th image have no instance.'.format(image_id))
plt.close() |
def load_voc(self, dataset_dir, trainval, year='2012'):
"Load a voc_year of the VOC dataset.\n dataset_dir: The root directory of the VOC dataset, example: '/mnt/disk1/VOCdevkit'\n trainval: 'train' or 'val' for Training or Validation\n year: '2007' or '2012' for VOC dataset\n "
voc_year = ('VOC' + year)
Segmentation = os.path.join(dataset_dir, voc_year, 'ImageSets', 'Segmentation')
JPEGImages = os.path.join(dataset_dir, voc_year, 'JPEGImages')
Annotations = os.path.join(dataset_dir, voc_year, 'Annotations')
SegmentationClass = os.path.join(dataset_dir, voc_year, 'SegmentationClass')
SegmentationObject = os.path.join(dataset_dir, voc_year, 'SegmentationObject')
for (idx, class_name) in enumerate(VOC_CLASSES[1:]):
self.add_class('voc', (idx + 1), class_name)
assert (trainval in ['train', 'val'])
annotation_file = os.path.join(Segmentation, (trainval + '.txt'))
image_ids = []
with open(annotation_file) as f:
image_id_list = [line.strip() for line in f]
image_ids += image_id_list
for image_id in image_ids:
image_file_name = '{}.jpg'.format(image_id)
mask_file_name = '{}.png'.format(image_id)
xml_file_name = '{}.xml'.format(image_id)
image_path = os.path.join(JPEGImages, image_file_name)
with open(os.path.join(Annotations, xml_file_name)) as f:
soup = bs(f, 'lxml')
objects = soup.find_all('object')
image_contains_class_flag = False
for obj in objects:
class_name = obj.find('name').text
if (class_name in VOC_CLASSES):
image_contains_class_flag = True
continue
if image_contains_class_flag:
class_mask_path = os.path.join(SegmentationClass, mask_file_name)
object_mask_path = os.path.join(SegmentationObject, mask_file_name)
self.add_image('voc', image_id=image_file_name, path=image_path, class_mask_path=class_mask_path, object_mask_path=object_mask_path) | -2,206,683,044,585,229,000 | Load a voc_year of the VOC dataset.
dataset_dir: The root directory of the VOC dataset, example: '/mnt/disk1/VOCdevkit'
trainval: 'train' or 'val' for Training or Validation
year: '2007' or '2012' for VOC dataset | tools/convet_voc2coco/voc2coco.py | load_voc | yhpengtu/CenterIMask | python | def load_voc(self, dataset_dir, trainval, year='2012'):
"Load a voc_year of the VOC dataset.\n dataset_dir: The root directory of the VOC dataset, example: '/mnt/disk1/VOCdevkit'\n trainval: 'train' or 'val' for Training or Validation\n year: '2007' or '2012' for VOC dataset\n "
voc_year = ('VOC' + year)
Segmentation = os.path.join(dataset_dir, voc_year, 'ImageSets', 'Segmentation')
JPEGImages = os.path.join(dataset_dir, voc_year, 'JPEGImages')
Annotations = os.path.join(dataset_dir, voc_year, 'Annotations')
SegmentationClass = os.path.join(dataset_dir, voc_year, 'SegmentationClass')
SegmentationObject = os.path.join(dataset_dir, voc_year, 'SegmentationObject')
for (idx, class_name) in enumerate(VOC_CLASSES[1:]):
self.add_class('voc', (idx + 1), class_name)
assert (trainval in ['train', 'val'])
annotation_file = os.path.join(Segmentation, (trainval + '.txt'))
image_ids = []
with open(annotation_file) as f:
image_id_list = [line.strip() for line in f]
image_ids += image_id_list
for image_id in image_ids:
image_file_name = '{}.jpg'.format(image_id)
mask_file_name = '{}.png'.format(image_id)
xml_file_name = '{}.xml'.format(image_id)
image_path = os.path.join(JPEGImages, image_file_name)
with open(os.path.join(Annotations, xml_file_name)) as f:
soup = bs(f, 'lxml')
objects = soup.find_all('object')
image_contains_class_flag = False
for obj in objects:
class_name = obj.find('name').text
if (class_name in VOC_CLASSES):
image_contains_class_flag = True
continue
if image_contains_class_flag:
class_mask_path = os.path.join(SegmentationClass, mask_file_name)
object_mask_path = os.path.join(SegmentationObject, mask_file_name)
self.add_image('voc', image_id=image_file_name, path=image_path, class_mask_path=class_mask_path, object_mask_path=object_mask_path) |
def load_raw_mask(self, image_id, class_or_object):
"load two kinds of mask of VOC dataset.\n image_id: id of mask\n class_or_object: 'class_mask' or 'object_mask' for SegmentationClass or SegmentationObject\n Returns:\n image: numpy of mask image.\n "
assert (class_or_object in ['class_mask', 'object_mask'])
image = skimage.io.imread(self.image_info[image_id][(class_or_object + '_path')])
if (image.ndim != 3):
image = skimage.color.gray2rgb(image)
if (image.shape[(- 1)] == 4):
image = image[..., :3]
return image | 2,401,107,649,179,283,500 | load two kinds of mask of VOC dataset.
image_id: id of mask
class_or_object: 'class_mask' or 'object_mask' for SegmentationClass or SegmentationObject
Returns:
image: numpy of mask image. | tools/convet_voc2coco/voc2coco.py | load_raw_mask | yhpengtu/CenterIMask | python | def load_raw_mask(self, image_id, class_or_object):
"load two kinds of mask of VOC dataset.\n image_id: id of mask\n class_or_object: 'class_mask' or 'object_mask' for SegmentationClass or SegmentationObject\n Returns:\n image: numpy of mask image.\n "
assert (class_or_object in ['class_mask', 'object_mask'])
image = skimage.io.imread(self.image_info[image_id][(class_or_object + '_path')])
if (image.ndim != 3):
image = skimage.color.gray2rgb(image)
if (image.shape[(- 1)] == 4):
image = image[..., :3]
return image |
def load_class_label(self, image_id):
"Mapping SegmentationClass image's color to indice of ground truth \n image_id: id of mask\n Return:\n class_label: [height, width] matrix contains values form 0 to 20\n "
raw_mask = self.load_raw_mask(image_id, 'class_mask')
class_label = voc_label_indices(raw_mask, build_colormap2label())
return class_label | 8,214,092,490,726,870,000 | Mapping SegmentationClass image's color to indice of ground truth
image_id: id of mask
Return:
class_label: [height, width] matrix contains values form 0 to 20 | tools/convet_voc2coco/voc2coco.py | load_class_label | yhpengtu/CenterIMask | python | def load_class_label(self, image_id):
"Mapping SegmentationClass image's color to indice of ground truth \n image_id: id of mask\n Return:\n class_label: [height, width] matrix contains values form 0 to 20\n "
raw_mask = self.load_raw_mask(image_id, 'class_mask')
class_label = voc_label_indices(raw_mask, build_colormap2label())
return class_label |
def load_mask(self, image_id):
'Mapping annotation images to real Masks(MRCNN needed)\n image_id: id of mask\n Returns:\n masks: A bool array of shape [height, width, instance count] with\n one mask per instance.\n class_ids: a 1D array of class IDs of the instance masks.\n '
class_label = self.load_class_label(image_id)
instance_mask = self.load_raw_mask(image_id, 'object_mask')
max_indice = int(np.max(class_label))
instance_label = []
instance_class = []
for i in range(1, (max_indice + 1)):
if (not np.any((class_label == i))):
continue
gt_indice = i
object_filter = (class_label == i)
object_filter = object_filter.astype(np.uint8)
object_filter = np.dstack((object_filter, object_filter, object_filter))
filtered = np.multiply(object_filter, instance_mask)
gray = cv2.cvtColor(filtered, cv2.COLOR_RGB2GRAY)
max_gray = np.max(gray)
for sub_index in range(1, (max_gray + 1)):
if (not np.any((gray == sub_index))):
continue
instance_filter = (gray == sub_index)
instance_label += [instance_filter]
instance_class += [gt_indice]
masks = np.asarray(instance_label).transpose((1, 2, 0))
classes_ids = np.asarray(instance_class)
return (masks, classes_ids) | -5,372,344,417,436,508,000 | Mapping annotation images to real Masks(MRCNN needed)
image_id: id of mask
Returns:
masks: A bool array of shape [height, width, instance count] with
one mask per instance.
class_ids: a 1D array of class IDs of the instance masks. | tools/convet_voc2coco/voc2coco.py | load_mask | yhpengtu/CenterIMask | python | def load_mask(self, image_id):
'Mapping annotation images to real Masks(MRCNN needed)\n image_id: id of mask\n Returns:\n masks: A bool array of shape [height, width, instance count] with\n one mask per instance.\n class_ids: a 1D array of class IDs of the instance masks.\n '
class_label = self.load_class_label(image_id)
instance_mask = self.load_raw_mask(image_id, 'object_mask')
max_indice = int(np.max(class_label))
instance_label = []
instance_class = []
for i in range(1, (max_indice + 1)):
if (not np.any((class_label == i))):
continue
gt_indice = i
object_filter = (class_label == i)
object_filter = object_filter.astype(np.uint8)
object_filter = np.dstack((object_filter, object_filter, object_filter))
filtered = np.multiply(object_filter, instance_mask)
gray = cv2.cvtColor(filtered, cv2.COLOR_RGB2GRAY)
max_gray = np.max(gray)
for sub_index in range(1, (max_gray + 1)):
if (not np.any((gray == sub_index))):
continue
instance_filter = (gray == sub_index)
instance_label += [instance_filter]
instance_class += [gt_indice]
masks = np.asarray(instance_label).transpose((1, 2, 0))
classes_ids = np.asarray(instance_class)
return (masks, classes_ids) |
def getKeyId(self):
"\n Get the keyId used by this peer (this peer's identifier).\n\n This is stored in the key store.\n "
return self.keyStore.getKeyId() | -688,107,004,979,895,800 | Get the keyId used by this peer (this peer's identifier).
This is stored in the key store. | tint/peer.py | getKeyId | 8468/tint | python | def getKeyId(self):
"\n Get the keyId used by this peer (this peer's identifier).\n\n This is stored in the key store.\n "
return self.keyStore.getKeyId() |
def getPublicKey(self):
"\n Get the keyId used by this peer (this peer's identifier).\n\n This is stored in the key store.\n "
return self.keyStore.getPublicKey() | -1,210,259,793,139,717,600 | Get the keyId used by this peer (this peer's identifier).
This is stored in the key store. | tint/peer.py | getPublicKey | 8468/tint | python | def getPublicKey(self):
"\n Get the keyId used by this peer (this peer's identifier).\n\n This is stored in the key store.\n "
return self.keyStore.getPublicKey() |
def set(self, hostKeyId, storagePath, storageValue):
"\n Set a value on a host.\n\n @param hostKeyId: The key id for the destination host to set the\n given key. This could be the local host, in which case the hostKey\n will be the same as this C{Peer}'s keyStore keyId.\n\n @param storagePath: The path to the key to set. For instance, this\n could be something like /chat/<somekey>/inbox.\n\n @param storageValue: The value to set.\n "
if (hostKeyId == self.getKeyId()):
return self.storage.set(hostKeyId, storagePath, storageValue)
return self.pool.send(hostKeyId, 'set', storagePath, storageValue) | 6,969,237,322,244,427,000 | Set a value on a host.
@param hostKeyId: The key id for the destination host to set the
given key. This could be the local host, in which case the hostKey
will be the same as this C{Peer}'s keyStore keyId.
@param storagePath: The path to the key to set. For instance, this
could be something like /chat/<somekey>/inbox.
@param storageValue: The value to set. | tint/peer.py | set | 8468/tint | python | def set(self, hostKeyId, storagePath, storageValue):
"\n Set a value on a host.\n\n @param hostKeyId: The key id for the destination host to set the\n given key. This could be the local host, in which case the hostKey\n will be the same as this C{Peer}'s keyStore keyId.\n\n @param storagePath: The path to the key to set. For instance, this\n could be something like /chat/<somekey>/inbox.\n\n @param storageValue: The value to set.\n "
if (hostKeyId == self.getKeyId()):
return self.storage.set(hostKeyId, storagePath, storageValue)
return self.pool.send(hostKeyId, 'set', storagePath, storageValue) |
def get(self, hostKeyId, storagePath):
"\n Get a value from a host.\n\n @param hostKeyId: The key id for the destination host to get the\n given key. This could be the local host, in which case the hostKey\n will be the same as this C{Peer}'s keyStore keyId.\n\n @param storagePath: The path to the key to get. For instance, this\n could be something like /chat/<somekey>/inbox.\n "
if (hostKeyId == self.getKeyId()):
self.log.debug(('getting storagePath %s on self' % storagePath))
return self.storage.get(hostKeyId, storagePath)
self.log.debug(('getting storagePath %s on %s' % (storagePath, hostKeyId)))
return self.pool.send(hostKeyId, 'get', storagePath) | 1,392,539,997,521,182,500 | Get a value from a host.
@param hostKeyId: The key id for the destination host to get the
given key. This could be the local host, in which case the hostKey
will be the same as this C{Peer}'s keyStore keyId.
@param storagePath: The path to the key to get. For instance, this
could be something like /chat/<somekey>/inbox. | tint/peer.py | get | 8468/tint | python | def get(self, hostKeyId, storagePath):
"\n Get a value from a host.\n\n @param hostKeyId: The key id for the destination host to get the\n given key. This could be the local host, in which case the hostKey\n will be the same as this C{Peer}'s keyStore keyId.\n\n @param storagePath: The path to the key to get. For instance, this\n could be something like /chat/<somekey>/inbox.\n "
if (hostKeyId == self.getKeyId()):
self.log.debug(('getting storagePath %s on self' % storagePath))
return self.storage.get(hostKeyId, storagePath)
self.log.debug(('getting storagePath %s on %s' % (storagePath, hostKeyId)))
return self.pool.send(hostKeyId, 'get', storagePath) |
def push(self, hostKeyId, storagePath, storageValue):
'\n Given key, create a new key at <key>/<id> with the given value, where <id>\n is an auto-incrementing integer value starting at 0.\n '
if (hostKeyId == self.getKeyId()):
return self.storage.push(hostKeyId, storagePath, storageValue)
return self.pool.send(hostKeyId, 'push', storagePath, storageValue) | 7,086,835,767,524,889,000 | Given key, create a new key at <key>/<id> with the given value, where <id>
is an auto-incrementing integer value starting at 0. | tint/peer.py | push | 8468/tint | python | def push(self, hostKeyId, storagePath, storageValue):
'\n Given key, create a new key at <key>/<id> with the given value, where <id>\n is an auto-incrementing integer value starting at 0.\n '
if (hostKeyId == self.getKeyId()):
return self.storage.push(hostKeyId, storagePath, storageValue)
return self.pool.send(hostKeyId, 'push', storagePath, storageValue) |
def ls(self, hostKeyId, storagePath, offset, length):
'\n Given key, get all children keys (with the given offset and length). Length cannot\n be more than 1000.\n '
if (hostKeyId == self.getKeyId()):
return self.storage.ls(hostKeyId, storagePath, offset, length)
return self.pool.send(hostKeyId, 'ls', storagePath, offset, length) | 4,173,619,235,199,410,000 | Given key, get all children keys (with the given offset and length). Length cannot
be more than 1000. | tint/peer.py | ls | 8468/tint | python | def ls(self, hostKeyId, storagePath, offset, length):
'\n Given key, get all children keys (with the given offset and length). Length cannot\n be more than 1000.\n '
if (hostKeyId == self.getKeyId()):
return self.storage.ls(hostKeyId, storagePath, offset, length)
return self.pool.send(hostKeyId, 'ls', storagePath, offset, length) |
def __init__(self, verbose=0, cols=None, drop_invariant=False, return_df=True, handle_unknown=None, handle_missing='count', min_group_size=None, combine_min_nan_groups=True, min_group_name=None, normalize=False):
'Count encoding for categorical features.\n\n For a given categorical feature, replace the names of the groups\n with the group counts.\n\n Parameters\n ----------\n\n verbose: int\n integer indicating verbosity of output. 0 for none.\n cols: list\n a list of columns to encode, if None, all string and categorical columns\n will be encoded.\n drop_invariant: bool\n boolean for whether or not to drop columns with 0 variance.\n return_df: bool\n boolean for whether to return a pandas DataFrame from transform\n (otherwise it will be a numpy array).\n handle_missing: str\n how to handle missing values at fit time. Options are \'error\', \'return_nan\',\n and \'count\'. Default \'count\', which treat NaNs as a countable category at\n fit time.\n handle_unknown: str, int or dict of.\n how to handle unknown labels at transform time. Options are \'error\'\n \'return_nan\' and an int. Defaults to None which uses NaN behaviour\n specified at fit time. Passing an int will fill with this int value.\n normalize: bool or dict of.\n whether to normalize the counts to the range (0, 1). See Pandas `value_counts`\n for more details.\n min_group_size: int, float or dict of.\n the minimal count threshold of a group needed to ensure it is not\n combined into a "leftovers" group. If float in the range (0, 1),\n `min_group_size` is calculated as int(X.shape[0] * min_group_size).\n Note: This value may change type based on the `normalize` variable. If True\n this will become a float. If False, it will be an int.\n min_group_name: None, str or dict of.\n Set the name of the combined minimum groups when the defaults become\n too long. Default None. In this case the category names will be joined\n alphabetically with a `_` delimiter.\n Note: The default name can be long ae may keep changing, for example, \n in cross-validation.\n combine_min_nan_groups: bool or dict of.\n whether to combine the leftovers group with NaN group. Default True. Can\n also be forced to combine with \'force\' meaning small groups are effectively\n counted as NaNs. Force can only used when \'handle_missing\' is \'count\' or \'error\'.\n\n\n Example\n -------\n >>> import pandas as pd\n >>> from sklearn.datasets import load_boston\n >>> from category_encoders import CountEncoder\n\n >>> bunch = load_boston()\n >>> y = bunch.target\n >>> X = pd.DataFrame(bunch.data, columns=bunch.feature_names)\n >>> enc = CountEncoder(cols=[\'CHAS\', \'RAD\']).fit(X, y)\n >>> numeric_dataset = enc.transform(X)\n\n >>> print(numeric_dataset.info())\n <class \'pandas.core.frame.DataFrame\'>\n RangeIndex: 506 entries, 0 to 505\n Data columns (total 13 columns):\n CRIM 506 non-null float64\n ZN 506 non-null float64\n INDUS 506 non-null float64\n CHAS 506 non-null int64\n NOX 506 non-null float64\n RM 506 non-null float64\n AGE 506 non-null float64\n DIS 506 non-null float64\n RAD 506 non-null int64\n TAX 506 non-null float64\n PTRATIO 506 non-null float64\n B 506 non-null float64\n LSTAT 506 non-null float64\n dtypes: float64(11), int64(2)\n memory usage: 51.5 KB\n None\n\n References\n ----------\n\n '
self.return_df = return_df
self.drop_invariant = drop_invariant
self.drop_cols = []
self.verbose = verbose
self.cols = cols
self._dim = None
self.mapping = None
self.handle_unknown = handle_unknown
self.handle_missing = handle_missing
self.normalize = normalize
self.min_group_size = min_group_size
self.min_group_name = min_group_name
self.combine_min_nan_groups = combine_min_nan_groups
self._min_group_categories = {}
self._normalize = {}
self._min_group_name = {}
self._combine_min_nan_groups = {}
self._min_group_size = {}
self._handle_unknown = {}
self._handle_missing = {} | 4,560,433,223,553,619,000 | Count encoding for categorical features.
For a given categorical feature, replace the names of the groups
with the group counts.
Parameters
----------
verbose: int
integer indicating verbosity of output. 0 for none.
cols: list
a list of columns to encode, if None, all string and categorical columns
will be encoded.
drop_invariant: bool
boolean for whether or not to drop columns with 0 variance.
return_df: bool
boolean for whether to return a pandas DataFrame from transform
(otherwise it will be a numpy array).
handle_missing: str
how to handle missing values at fit time. Options are 'error', 'return_nan',
and 'count'. Default 'count', which treat NaNs as a countable category at
fit time.
handle_unknown: str, int or dict of.
how to handle unknown labels at transform time. Options are 'error'
'return_nan' and an int. Defaults to None which uses NaN behaviour
specified at fit time. Passing an int will fill with this int value.
normalize: bool or dict of.
whether to normalize the counts to the range (0, 1). See Pandas `value_counts`
for more details.
min_group_size: int, float or dict of.
the minimal count threshold of a group needed to ensure it is not
combined into a "leftovers" group. If float in the range (0, 1),
`min_group_size` is calculated as int(X.shape[0] * min_group_size).
Note: This value may change type based on the `normalize` variable. If True
this will become a float. If False, it will be an int.
min_group_name: None, str or dict of.
Set the name of the combined minimum groups when the defaults become
too long. Default None. In this case the category names will be joined
alphabetically with a `_` delimiter.
Note: The default name can be long ae may keep changing, for example,
in cross-validation.
combine_min_nan_groups: bool or dict of.
whether to combine the leftovers group with NaN group. Default True. Can
also be forced to combine with 'force' meaning small groups are effectively
counted as NaNs. Force can only used when 'handle_missing' is 'count' or 'error'.
Example
-------
>>> import pandas as pd
>>> from sklearn.datasets import load_boston
>>> from category_encoders import CountEncoder
>>> bunch = load_boston()
>>> y = bunch.target
>>> X = pd.DataFrame(bunch.data, columns=bunch.feature_names)
>>> enc = CountEncoder(cols=['CHAS', 'RAD']).fit(X, y)
>>> numeric_dataset = enc.transform(X)
>>> print(numeric_dataset.info())
<class 'pandas.core.frame.DataFrame'>
RangeIndex: 506 entries, 0 to 505
Data columns (total 13 columns):
CRIM 506 non-null float64
ZN 506 non-null float64
INDUS 506 non-null float64
CHAS 506 non-null int64
NOX 506 non-null float64
RM 506 non-null float64
AGE 506 non-null float64
DIS 506 non-null float64
RAD 506 non-null int64
TAX 506 non-null float64
PTRATIO 506 non-null float64
B 506 non-null float64
LSTAT 506 non-null float64
dtypes: float64(11), int64(2)
memory usage: 51.5 KB
None
References
---------- | category_encoders/count.py | __init__ | JoshuaC3/categorical-encoding | python | def __init__(self, verbose=0, cols=None, drop_invariant=False, return_df=True, handle_unknown=None, handle_missing='count', min_group_size=None, combine_min_nan_groups=True, min_group_name=None, normalize=False):
'Count encoding for categorical features.\n\n For a given categorical feature, replace the names of the groups\n with the group counts.\n\n Parameters\n ----------\n\n verbose: int\n integer indicating verbosity of output. 0 for none.\n cols: list\n a list of columns to encode, if None, all string and categorical columns\n will be encoded.\n drop_invariant: bool\n boolean for whether or not to drop columns with 0 variance.\n return_df: bool\n boolean for whether to return a pandas DataFrame from transform\n (otherwise it will be a numpy array).\n handle_missing: str\n how to handle missing values at fit time. Options are \'error\', \'return_nan\',\n and \'count\'. Default \'count\', which treat NaNs as a countable category at\n fit time.\n handle_unknown: str, int or dict of.\n how to handle unknown labels at transform time. Options are \'error\'\n \'return_nan\' and an int. Defaults to None which uses NaN behaviour\n specified at fit time. Passing an int will fill with this int value.\n normalize: bool or dict of.\n whether to normalize the counts to the range (0, 1). See Pandas `value_counts`\n for more details.\n min_group_size: int, float or dict of.\n the minimal count threshold of a group needed to ensure it is not\n combined into a "leftovers" group. If float in the range (0, 1),\n `min_group_size` is calculated as int(X.shape[0] * min_group_size).\n Note: This value may change type based on the `normalize` variable. If True\n this will become a float. If False, it will be an int.\n min_group_name: None, str or dict of.\n Set the name of the combined minimum groups when the defaults become\n too long. Default None. In this case the category names will be joined\n alphabetically with a `_` delimiter.\n Note: The default name can be long ae may keep changing, for example, \n in cross-validation.\n combine_min_nan_groups: bool or dict of.\n whether to combine the leftovers group with NaN group. Default True. Can\n also be forced to combine with \'force\' meaning small groups are effectively\n counted as NaNs. Force can only used when \'handle_missing\' is \'count\' or \'error\'.\n\n\n Example\n -------\n >>> import pandas as pd\n >>> from sklearn.datasets import load_boston\n >>> from category_encoders import CountEncoder\n\n >>> bunch = load_boston()\n >>> y = bunch.target\n >>> X = pd.DataFrame(bunch.data, columns=bunch.feature_names)\n >>> enc = CountEncoder(cols=[\'CHAS\', \'RAD\']).fit(X, y)\n >>> numeric_dataset = enc.transform(X)\n\n >>> print(numeric_dataset.info())\n <class \'pandas.core.frame.DataFrame\'>\n RangeIndex: 506 entries, 0 to 505\n Data columns (total 13 columns):\n CRIM 506 non-null float64\n ZN 506 non-null float64\n INDUS 506 non-null float64\n CHAS 506 non-null int64\n NOX 506 non-null float64\n RM 506 non-null float64\n AGE 506 non-null float64\n DIS 506 non-null float64\n RAD 506 non-null int64\n TAX 506 non-null float64\n PTRATIO 506 non-null float64\n B 506 non-null float64\n LSTAT 506 non-null float64\n dtypes: float64(11), int64(2)\n memory usage: 51.5 KB\n None\n\n References\n ----------\n\n '
self.return_df = return_df
self.drop_invariant = drop_invariant
self.drop_cols = []
self.verbose = verbose
self.cols = cols
self._dim = None
self.mapping = None
self.handle_unknown = handle_unknown
self.handle_missing = handle_missing
self.normalize = normalize
self.min_group_size = min_group_size
self.min_group_name = min_group_name
self.combine_min_nan_groups = combine_min_nan_groups
self._min_group_categories = {}
self._normalize = {}
self._min_group_name = {}
self._combine_min_nan_groups = {}
self._min_group_size = {}
self._handle_unknown = {}
self._handle_missing = {} |
def fit(self, X, y=None, **kwargs):
'Fit encoder according to X.\n\n Parameters\n ----------\n X : array-like, shape = [n_samples, n_features]\n Training vectors, where n_samples is the number of samples\n and n_features is the number of features.\n y : array-like, shape = [n_samples]\n Target values.\n\n Returns\n -------\n self : encoder\n Returns self.\n '
X = util.convert_input(X)
self._dim = X.shape[1]
if (self.cols is None):
self.cols = util.get_obj_cols(X)
else:
self.cols = util.convert_cols_to_list(self.cols)
self._check_set_create_dict_attrs()
self._fit_count_encode(X, y)
if self.drop_invariant:
self.drop_cols = []
X_temp = self.transform(X)
generated_cols = util.get_generated_cols(X, X_temp, self.cols)
self.drop_cols = [x for x in generated_cols if (X_temp[x].var() <= 0.0001)]
return self | 8,885,542,150,674,907,000 | Fit encoder according to X.
Parameters
----------
X : array-like, shape = [n_samples, n_features]
Training vectors, where n_samples is the number of samples
and n_features is the number of features.
y : array-like, shape = [n_samples]
Target values.
Returns
-------
self : encoder
Returns self. | category_encoders/count.py | fit | JoshuaC3/categorical-encoding | python | def fit(self, X, y=None, **kwargs):
'Fit encoder according to X.\n\n Parameters\n ----------\n X : array-like, shape = [n_samples, n_features]\n Training vectors, where n_samples is the number of samples\n and n_features is the number of features.\n y : array-like, shape = [n_samples]\n Target values.\n\n Returns\n -------\n self : encoder\n Returns self.\n '
X = util.convert_input(X)
self._dim = X.shape[1]
if (self.cols is None):
self.cols = util.get_obj_cols(X)
else:
self.cols = util.convert_cols_to_list(self.cols)
self._check_set_create_dict_attrs()
self._fit_count_encode(X, y)
if self.drop_invariant:
self.drop_cols = []
X_temp = self.transform(X)
generated_cols = util.get_generated_cols(X, X_temp, self.cols)
self.drop_cols = [x for x in generated_cols if (X_temp[x].var() <= 0.0001)]
return self |
def transform(self, X, y=None):
'Perform the transformation to new categorical data.\n\n Parameters\n ----------\n X : array-like, shape = [n_samples, n_features]\n y : array-like, shape = [n_samples]\n \n Returns\n -------\n p : array, shape = [n_samples, n_numeric + N]\n Transformed values with encoding applied.\n '
if (self._dim is None):
raise ValueError('Must train encoder before it can be used to transform data.')
X = util.convert_input(X)
if (X.shape[1] != self._dim):
raise ValueError(('Unexpected input dimension %d, expected %d' % (X.shape[1], self._dim)))
if (not self.cols):
return X
(X, _) = self._transform_count_encode(X, y)
if self.drop_invariant:
for col in self.drop_cols:
X.drop(col, 1, inplace=True)
if self.return_df:
return X
else:
return X.values | -7,646,785,548,588,537,000 | Perform the transformation to new categorical data.
Parameters
----------
X : array-like, shape = [n_samples, n_features]
y : array-like, shape = [n_samples]
Returns
-------
p : array, shape = [n_samples, n_numeric + N]
Transformed values with encoding applied. | category_encoders/count.py | transform | JoshuaC3/categorical-encoding | python | def transform(self, X, y=None):
'Perform the transformation to new categorical data.\n\n Parameters\n ----------\n X : array-like, shape = [n_samples, n_features]\n y : array-like, shape = [n_samples]\n \n Returns\n -------\n p : array, shape = [n_samples, n_numeric + N]\n Transformed values with encoding applied.\n '
if (self._dim is None):
raise ValueError('Must train encoder before it can be used to transform data.')
X = util.convert_input(X)
if (X.shape[1] != self._dim):
raise ValueError(('Unexpected input dimension %d, expected %d' % (X.shape[1], self._dim)))
if (not self.cols):
return X
(X, _) = self._transform_count_encode(X, y)
if self.drop_invariant:
for col in self.drop_cols:
X.drop(col, 1, inplace=True)
if self.return_df:
return X
else:
return X.values |
def _fit_count_encode(self, X_in, y):
'Perform the count encoding.'
X = X_in.copy(deep=True)
if (self.cols is None):
self.cols = X.columns.values
self.mapping = {}
for col in self.cols:
if X[col].isna().any():
if (self._handle_missing[col] == 'error'):
raise ValueError(('Missing data found in column %s at fit time.' % (col,)))
elif (self._handle_missing[col] not in ['count', 'return_nan', 'error']):
raise ValueError(('%s key in `handle_missing` should be one of: `value`, `return_nan` and `error`.' % (col,)))
self.mapping[col] = X[col].value_counts(normalize=self._normalize[col], dropna=False)
if (self._handle_missing[col] == 'return_nan'):
self.mapping[col][np.NaN] = np.NaN
if any([(val is not None) for val in self._min_group_size.values()]):
self.combine_min_categories(X) | -7,622,429,411,437,038,000 | Perform the count encoding. | category_encoders/count.py | _fit_count_encode | JoshuaC3/categorical-encoding | python | def _fit_count_encode(self, X_in, y):
X = X_in.copy(deep=True)
if (self.cols is None):
self.cols = X.columns.values
self.mapping = {}
for col in self.cols:
if X[col].isna().any():
if (self._handle_missing[col] == 'error'):
raise ValueError(('Missing data found in column %s at fit time.' % (col,)))
elif (self._handle_missing[col] not in ['count', 'return_nan', 'error']):
raise ValueError(('%s key in `handle_missing` should be one of: `value`, `return_nan` and `error`.' % (col,)))
self.mapping[col] = X[col].value_counts(normalize=self._normalize[col], dropna=False)
if (self._handle_missing[col] == 'return_nan'):
self.mapping[col][np.NaN] = np.NaN
if any([(val is not None) for val in self._min_group_size.values()]):
self.combine_min_categories(X) |
def _transform_count_encode(self, X_in, y):
'Perform the transform count encoding.'
X = X_in.copy(deep=True)
for col in self.cols:
if (self._min_group_size is not None):
if (col in self._min_group_categories.keys()):
X[col] = X[col].map(self._min_group_categories[col]).fillna(X[col])
X[col] = X[col].map(self.mapping[col])
if isinstance(self._handle_unknown[col], np.integer):
X[col] = X[col].fillna(self._handle_unknown[col])
elif ((self._handle_unknown[col] == 'error') and X[col].isna().any()):
raise ValueError(('Missing data found in column %s at transform time.' % (col,)))
return (X, self.mapping) | -5,871,763,005,789,190,000 | Perform the transform count encoding. | category_encoders/count.py | _transform_count_encode | JoshuaC3/categorical-encoding | python | def _transform_count_encode(self, X_in, y):
X = X_in.copy(deep=True)
for col in self.cols:
if (self._min_group_size is not None):
if (col in self._min_group_categories.keys()):
X[col] = X[col].map(self._min_group_categories[col]).fillna(X[col])
X[col] = X[col].map(self.mapping[col])
if isinstance(self._handle_unknown[col], np.integer):
X[col] = X[col].fillna(self._handle_unknown[col])
elif ((self._handle_unknown[col] == 'error') and X[col].isna().any()):
raise ValueError(('Missing data found in column %s at transform time.' % (col,)))
return (X, self.mapping) |
def combine_min_categories(self, X):
'Combine small categories into a single category.'
for (col, mapper) in self.mapping.items():
if (self._normalize[col] and isinstance(self._min_group_size[col], int)):
self._min_group_size[col] = (self._min_group_size[col] / X.shape[0])
elif ((not self._normalize) and isinstance(self._min_group_size[col], float)):
self._min_group_size[col] = (self._min_group_size[col] * X.shape[0])
if (self._combine_min_nan_groups[col] is True):
min_groups_idx = (mapper < self._min_group_size[col])
elif (self._combine_min_nan_groups[col] == 'force'):
min_groups_idx = ((mapper < self._min_group_size[col]) | mapper.index.isna())
else:
min_groups_idx = ((mapper < self._min_group_size[col]) & (~ mapper.index.isna()))
min_groups_sum = mapper.loc[min_groups_idx].sum()
if ((min_groups_sum > 0) and (min_groups_idx.sum() > 1)):
if isinstance(self._min_group_name[col], str):
min_group_mapper_name = self._min_group_name
else:
min_group_mapper_name = '_'.join([str(idx) for idx in mapper.loc[min_groups_idx].index.astype(str).sort_values()])
self._min_group_categories[col] = {cat: min_group_mapper_name for cat in mapper.loc[min_groups_idx].index.tolist()}
if (not min_groups_idx.all()):
mapper = mapper.loc[(~ min_groups_idx)]
if mapper.index.is_categorical():
mapper.index = mapper.index.add_categories(min_group_mapper_name)
mapper[min_group_mapper_name] = min_groups_sum
self.mapping[col] = mapper | 6,089,501,862,832,393,000 | Combine small categories into a single category. | category_encoders/count.py | combine_min_categories | JoshuaC3/categorical-encoding | python | def combine_min_categories(self, X):
for (col, mapper) in self.mapping.items():
if (self._normalize[col] and isinstance(self._min_group_size[col], int)):
self._min_group_size[col] = (self._min_group_size[col] / X.shape[0])
elif ((not self._normalize) and isinstance(self._min_group_size[col], float)):
self._min_group_size[col] = (self._min_group_size[col] * X.shape[0])
if (self._combine_min_nan_groups[col] is True):
min_groups_idx = (mapper < self._min_group_size[col])
elif (self._combine_min_nan_groups[col] == 'force'):
min_groups_idx = ((mapper < self._min_group_size[col]) | mapper.index.isna())
else:
min_groups_idx = ((mapper < self._min_group_size[col]) & (~ mapper.index.isna()))
min_groups_sum = mapper.loc[min_groups_idx].sum()
if ((min_groups_sum > 0) and (min_groups_idx.sum() > 1)):
if isinstance(self._min_group_name[col], str):
min_group_mapper_name = self._min_group_name
else:
min_group_mapper_name = '_'.join([str(idx) for idx in mapper.loc[min_groups_idx].index.astype(str).sort_values()])
self._min_group_categories[col] = {cat: min_group_mapper_name for cat in mapper.loc[min_groups_idx].index.tolist()}
if (not min_groups_idx.all()):
mapper = mapper.loc[(~ min_groups_idx)]
if mapper.index.is_categorical():
mapper.index = mapper.index.add_categories(min_group_mapper_name)
mapper[min_group_mapper_name] = min_groups_sum
self.mapping[col] = mapper |
def _check_set_create_dict_attrs(self):
'Check attributes that can be dicts and format for all self.cols.'
dict_attrs = {'normalize': False, 'min_group_name': None, 'combine_min_nan_groups': True, 'min_group_size': None, 'handle_unknown': 'value', 'handle_missing': 'value'}
for (attr_name, attr_default) in dict_attrs.items():
attr = copy(getattr(self, attr_name))
if isinstance(attr, dict):
for col in self.cols:
if (col not in attr):
attr[col] = attr_default
setattr(self, ('_' + attr_name), attr)
else:
attr_dict = {}
for col in self.cols:
attr_dict[col] = attr
setattr(self, ('_' + attr_name), attr_dict)
for col in self.cols:
if ((self._handle_missing[col] == 'return_nan') and (self._combine_min_nan_groups[col] == 'force')):
raise ValueError(("Cannot have `handle_missing` == 'return_nan' and 'combine_min_nan_groups' == 'force' for columns `%s`." % (col,))) | -5,527,060,141,706,155,000 | Check attributes that can be dicts and format for all self.cols. | category_encoders/count.py | _check_set_create_dict_attrs | JoshuaC3/categorical-encoding | python | def _check_set_create_dict_attrs(self):
dict_attrs = {'normalize': False, 'min_group_name': None, 'combine_min_nan_groups': True, 'min_group_size': None, 'handle_unknown': 'value', 'handle_missing': 'value'}
for (attr_name, attr_default) in dict_attrs.items():
attr = copy(getattr(self, attr_name))
if isinstance(attr, dict):
for col in self.cols:
if (col not in attr):
attr[col] = attr_default
setattr(self, ('_' + attr_name), attr)
else:
attr_dict = {}
for col in self.cols:
attr_dict[col] = attr
setattr(self, ('_' + attr_name), attr_dict)
for col in self.cols:
if ((self._handle_missing[col] == 'return_nan') and (self._combine_min_nan_groups[col] == 'force')):
raise ValueError(("Cannot have `handle_missing` == 'return_nan' and 'combine_min_nan_groups' == 'force' for columns `%s`." % (col,))) |
def _test_null_distribution_basic(self, test: str, lazy: bool, quick_scale: bool=False, n_cells: int=3000, n_genes: int=200, n_groups: int=3):
'\n Test if de.wald() generates a uniform p-value distribution\n if it is given data simulated based on the null model. Returns the p-value\n of the two-side Kolmgorov-Smirnov test for equality of the observed \n p-value distriubution and a uniform distribution.\n\n :param n_cells: Number of cells to simulate (number of observations per test).\n :param n_genes: Number of genes to simulate (number of tests).\n '
(sim, sample_description) = self._prepate_data(n_cells=n_cells, n_genes=n_genes, n_groups=n_groups)
test = de.test.pairwise(data=sim.input_data, sample_description=sample_description, grouping='condition', test=test, lazy=lazy, quick_scale=quick_scale, noise_model=self.noise_model)
_ = test.summary()
if lazy:
pval_h0 = stats.kstest(test.pval_pairs(groups0=0, groups1=1).flatten(), 'uniform').pvalue
else:
pval_h0 = stats.kstest(test.pval[0, 1, :].flatten(), 'uniform').pvalue
logging.getLogger('diffxpy').info(('KS-test pvalue for null model match of wald(): %f' % pval_h0))
assert (pval_h0 > 0.05), ('KS-Test failed: pval_h0=%f is <= 0.05!' % np.round(pval_h0, 5))
return True | -1,909,257,724,457,016,800 | Test if de.wald() generates a uniform p-value distribution
if it is given data simulated based on the null model. Returns the p-value
of the two-side Kolmgorov-Smirnov test for equality of the observed
p-value distriubution and a uniform distribution.
:param n_cells: Number of cells to simulate (number of observations per test).
:param n_genes: Number of genes to simulate (number of tests). | diffxpy/unit_test/test_pairwise.py | _test_null_distribution_basic | gokceneraslan/diffxpy | python | def _test_null_distribution_basic(self, test: str, lazy: bool, quick_scale: bool=False, n_cells: int=3000, n_genes: int=200, n_groups: int=3):
'\n Test if de.wald() generates a uniform p-value distribution\n if it is given data simulated based on the null model. Returns the p-value\n of the two-side Kolmgorov-Smirnov test for equality of the observed \n p-value distriubution and a uniform distribution.\n\n :param n_cells: Number of cells to simulate (number of observations per test).\n :param n_genes: Number of genes to simulate (number of tests).\n '
(sim, sample_description) = self._prepate_data(n_cells=n_cells, n_genes=n_genes, n_groups=n_groups)
test = de.test.pairwise(data=sim.input_data, sample_description=sample_description, grouping='condition', test=test, lazy=lazy, quick_scale=quick_scale, noise_model=self.noise_model)
_ = test.summary()
if lazy:
pval_h0 = stats.kstest(test.pval_pairs(groups0=0, groups1=1).flatten(), 'uniform').pvalue
else:
pval_h0 = stats.kstest(test.pval[0, 1, :].flatten(), 'uniform').pvalue
logging.getLogger('diffxpy').info(('KS-test pvalue for null model match of wald(): %f' % pval_h0))
assert (pval_h0 > 0.05), ('KS-Test failed: pval_h0=%f is <= 0.05!' % np.round(pval_h0, 5))
return True |
def info(self):
'Print info about this unit, overrides superclass method.'
print('Grrr, I am the Orc Figher!') | -3,397,929,164,373,522,400 | Print info about this unit, overrides superclass method. | wargame/designpatterns/pythonic_orcfighter.py | info | jeantardelli/wargameRepo | python | def info(self):
print('Grrr, I am the Orc Figher!') |
def all_equal(left, right, cache=None):
'Check whether two objects `left` and `right` are equal.\n\n Parameters\n ----------\n left : Union[object, Expr, Node]\n right : Union[object, Expr, Node]\n cache : Optional[Dict[Tuple[Node, Node], bool]]\n A dictionary indicating whether two Nodes are equal\n '
if (cache is None):
cache = {}
if util.is_iterable(left):
return (util.is_iterable(right) and (len(left) == len(right)) and all(itertools.starmap(functools.partial(all_equal, cache=cache), zip(left, right))))
if hasattr(left, 'equals'):
return left.equals(right, cache=cache)
return (left == right) | -8,700,499,191,523,920,000 | Check whether two objects `left` and `right` are equal.
Parameters
----------
left : Union[object, Expr, Node]
right : Union[object, Expr, Node]
cache : Optional[Dict[Tuple[Node, Node], bool]]
A dictionary indicating whether two Nodes are equal | ibis/expr/operations.py | all_equal | odidev/ibis | python | def all_equal(left, right, cache=None):
'Check whether two objects `left` and `right` are equal.\n\n Parameters\n ----------\n left : Union[object, Expr, Node]\n right : Union[object, Expr, Node]\n cache : Optional[Dict[Tuple[Node, Node], bool]]\n A dictionary indicating whether two Nodes are equal\n '
if (cache is None):
cache = {}
if util.is_iterable(left):
return (util.is_iterable(right) and (len(left) == len(right)) and all(itertools.starmap(functools.partial(all_equal, cache=cache), zip(left, right))))
if hasattr(left, 'equals'):
return left.equals(right, cache=cache)
return (left == right) |
def __getstate__(self) -> Dict[(str, Any)]:
'The attributes _expr_cached and _hash are\n used as caches; they can be excluded from\n serialization without affecting correctness.\n\n Excluding _expr_cached and _hash from serialization\n will allow the serialized bytes to be the same for\n equivalent Node objets.\n\n Returns\n -------\n Dict[str, Any]\n A dictionary storing the objects attributes.\n '
excluded_slots = {'_expr_cached', '_hash'}
return {slot: getattr(self, slot) for slot in self.__slots__ if (slot not in excluded_slots)} | 5,526,020,258,835,681,000 | The attributes _expr_cached and _hash are
used as caches; they can be excluded from
serialization without affecting correctness.
Excluding _expr_cached and _hash from serialization
will allow the serialized bytes to be the same for
equivalent Node objets.
Returns
-------
Dict[str, Any]
A dictionary storing the objects attributes. | ibis/expr/operations.py | __getstate__ | odidev/ibis | python | def __getstate__(self) -> Dict[(str, Any)]:
'The attributes _expr_cached and _hash are\n used as caches; they can be excluded from\n serialization without affecting correctness.\n\n Excluding _expr_cached and _hash from serialization\n will allow the serialized bytes to be the same for\n equivalent Node objets.\n\n Returns\n -------\n Dict[str, Any]\n A dictionary storing the objects attributes.\n '
excluded_slots = {'_expr_cached', '_hash'}
return {slot: getattr(self, slot) for slot in self.__slots__ if (slot not in excluded_slots)} |
def __setstate__(self, state: Dict[(str, Any)]) -> None:
'\n Parameters\n ----------\n state: Dict[str, Any]\n A dictionary storing the objects attributes.\n '
for slot in state:
setattr(self, slot, state[slot]) | 5,854,483,499,252,395,000 | Parameters
----------
state: Dict[str, Any]
A dictionary storing the objects attributes. | ibis/expr/operations.py | __setstate__ | odidev/ibis | python | def __setstate__(self, state: Dict[(str, Any)]) -> None:
'\n Parameters\n ----------\n state: Dict[str, Any]\n A dictionary storing the objects attributes.\n '
for slot in state:
setattr(self, slot, state[slot]) |
def output_type(self):
'\n This function must resolve the output type of the expression and return\n the node wrapped in the appropriate ValueExpr type.\n '
raise NotImplementedError | 5,740,557,941,522,150,000 | This function must resolve the output type of the expression and return
the node wrapped in the appropriate ValueExpr type. | ibis/expr/operations.py | output_type | odidev/ibis | python | def output_type(self):
'\n This function must resolve the output type of the expression and return\n the node wrapped in the appropriate ValueExpr type.\n '
raise NotImplementedError |
def count(self):
'Only valid if the distinct contains a single column'
return CountDistinct(self.arg) | 3,605,110,978,898,989,600 | Only valid if the distinct contains a single column | ibis/expr/operations.py | count | odidev/ibis | python | def count(self):
return CountDistinct(self.arg) |
def else_(self, result_expr):
'\n Specify\n\n Returns\n -------\n builder : CaseBuilder\n '
kwargs = {slot: getattr(self, slot) for slot in self.__slots__ if (slot != 'default')}
result_expr = ir.as_value_expr(result_expr)
kwargs['default'] = result_expr
return type(self)(**kwargs) | -5,472,837,417,554,490,000 | Specify
Returns
-------
builder : CaseBuilder | ibis/expr/operations.py | else_ | odidev/ibis | python | def else_(self, result_expr):
'\n Specify\n\n Returns\n -------\n builder : CaseBuilder\n '
kwargs = {slot: getattr(self, slot) for slot in self.__slots__ if (slot != 'default')}
result_expr = ir.as_value_expr(result_expr)
kwargs['default'] = result_expr
return type(self)(**kwargs) |
def when(self, case_expr, result_expr):
'\n Add a new case-result pair.\n\n Parameters\n ----------\n case : Expr\n Expression to equality-compare with base expression. Must be\n comparable with the base.\n result : Expr\n Value when the case predicate evaluates to true.\n\n Returns\n -------\n builder : CaseBuilder\n '
case_expr = ir.as_value_expr(case_expr)
result_expr = ir.as_value_expr(result_expr)
if (not rlz.comparable(self.base, case_expr)):
raise TypeError('Base expression and passed case are not comparable')
cases = list(self.cases)
cases.append(case_expr)
results = list(self.results)
results.append(result_expr)
return type(self)(self.base, cases, results, self.default) | -23,041,507,715,912,564 | Add a new case-result pair.
Parameters
----------
case : Expr
Expression to equality-compare with base expression. Must be
comparable with the base.
result : Expr
Value when the case predicate evaluates to true.
Returns
-------
builder : CaseBuilder | ibis/expr/operations.py | when | odidev/ibis | python | def when(self, case_expr, result_expr):
'\n Add a new case-result pair.\n\n Parameters\n ----------\n case : Expr\n Expression to equality-compare with base expression. Must be\n comparable with the base.\n result : Expr\n Value when the case predicate evaluates to true.\n\n Returns\n -------\n builder : CaseBuilder\n '
case_expr = ir.as_value_expr(case_expr)
result_expr = ir.as_value_expr(result_expr)
if (not rlz.comparable(self.base, case_expr)):
raise TypeError('Base expression and passed case are not comparable')
cases = list(self.cases)
cases.append(case_expr)
results = list(self.results)
results.append(result_expr)
return type(self)(self.base, cases, results, self.default) |
def when(self, case_expr, result_expr):
'\n Add a new case-result pair.\n\n Parameters\n ----------\n case : Expr\n Expression to equality-compare with base expression. Must be\n comparable with the base.\n result : Expr\n Value when the case predicate evaluates to true.\n\n Returns\n -------\n builder : CaseBuilder\n '
case_expr = ir.as_value_expr(case_expr)
result_expr = ir.as_value_expr(result_expr)
if (not isinstance(case_expr, ir.BooleanValue)):
raise TypeError(case_expr)
cases = list(self.cases)
cases.append(case_expr)
results = list(self.results)
results.append(result_expr)
return type(self)(cases, results, self.default) | 7,831,332,286,804,111,000 | Add a new case-result pair.
Parameters
----------
case : Expr
Expression to equality-compare with base expression. Must be
comparable with the base.
result : Expr
Value when the case predicate evaluates to true.
Returns
-------
builder : CaseBuilder | ibis/expr/operations.py | when | odidev/ibis | python | def when(self, case_expr, result_expr):
'\n Add a new case-result pair.\n\n Parameters\n ----------\n case : Expr\n Expression to equality-compare with base expression. Must be\n comparable with the base.\n result : Expr\n Value when the case predicate evaluates to true.\n\n Returns\n -------\n builder : CaseBuilder\n '
case_expr = ir.as_value_expr(case_expr)
result_expr = ir.as_value_expr(result_expr)
if (not isinstance(case_expr, ir.BooleanValue)):
raise TypeError(case_expr)
cases = list(self.cases)
cases.append(case_expr)
results = list(self.results)
results.append(result_expr)
return type(self)(cases, results, self.default) |
def __init__(self, left, right):
'\n Casting rules for type promotions (for resolving the output type) may\n depend in some cases on the target backend.\n\n TODO: how will overflows be handled? Can we provide anything useful in\n Ibis to help the user avoid them?\n\n :param left:\n :param right:\n '
super().__init__(*self._maybe_cast_args(left, right)) | 4,501,114,707,235,070,000 | Casting rules for type promotions (for resolving the output type) may
depend in some cases on the target backend.
TODO: how will overflows be handled? Can we provide anything useful in
Ibis to help the user avoid them?
:param left:
:param right: | ibis/expr/operations.py | __init__ | odidev/ibis | python | def __init__(self, left, right):
'\n Casting rules for type promotions (for resolving the output type) may\n depend in some cases on the target backend.\n\n TODO: how will overflows be handled? Can we provide anything useful in\n Ibis to help the user avoid them?\n\n :param left:\n :param right:\n '
super().__init__(*self._maybe_cast_args(left, right)) |
def __hash__(self) -> int:
"Return the hash of a literal value.\n\n We override this method to make sure that we can handle things that\n aren't eminently hashable like an ``array<array<int64>>``.\n\n "
return hash(self.dtype._literal_value_hash_key(self.value)) | -8,880,341,266,466,899,000 | Return the hash of a literal value.
We override this method to make sure that we can handle things that
aren't eminently hashable like an ``array<array<int64>>``. | ibis/expr/operations.py | __hash__ | odidev/ibis | python | def __hash__(self) -> int:
"Return the hash of a literal value.\n\n We override this method to make sure that we can handle things that\n aren't eminently hashable like an ``array<array<int64>>``.\n\n "
return hash(self.dtype._literal_value_hash_key(self.value)) |
def __init__(__self__, resource_name: str, opts: Optional[pulumi.ResourceOptions]=None, daily_recurrence: Optional[pulumi.Input[pulumi.InputType['DayDetailsArgs']]]=None, hourly_recurrence: Optional[pulumi.Input[pulumi.InputType['HourDetailsArgs']]]=None, lab_name: Optional[pulumi.Input[str]]=None, location: Optional[pulumi.Input[str]]=None, name: Optional[pulumi.Input[str]]=None, notification_settings: Optional[pulumi.Input[pulumi.InputType['NotificationSettingsArgs']]]=None, resource_group_name: Optional[pulumi.Input[str]]=None, status: Optional[pulumi.Input[Union[(str, 'EnableStatus')]]]=None, tags: Optional[pulumi.Input[Mapping[(str, pulumi.Input[str])]]]=None, target_resource_id: Optional[pulumi.Input[str]]=None, task_type: Optional[pulumi.Input[str]]=None, time_zone_id: Optional[pulumi.Input[str]]=None, weekly_recurrence: Optional[pulumi.Input[pulumi.InputType['WeekDetailsArgs']]]=None, __props__=None, __name__=None, __opts__=None):
"\n A schedule.\n API Version: 2018-09-15.\n\n :param str resource_name: The name of the resource.\n :param pulumi.ResourceOptions opts: Options for the resource.\n :param pulumi.Input[pulumi.InputType['DayDetailsArgs']] daily_recurrence: If the schedule will occur once each day of the week, specify the daily recurrence.\n :param pulumi.Input[pulumi.InputType['HourDetailsArgs']] hourly_recurrence: If the schedule will occur multiple times a day, specify the hourly recurrence.\n :param pulumi.Input[str] lab_name: The name of the lab.\n :param pulumi.Input[str] location: The location of the resource.\n :param pulumi.Input[str] name: The name of the schedule.\n :param pulumi.Input[pulumi.InputType['NotificationSettingsArgs']] notification_settings: Notification settings.\n :param pulumi.Input[str] resource_group_name: The name of the resource group.\n :param pulumi.Input[Union[str, 'EnableStatus']] status: The status of the schedule (i.e. Enabled, Disabled)\n :param pulumi.Input[Mapping[str, pulumi.Input[str]]] tags: The tags of the resource.\n :param pulumi.Input[str] target_resource_id: The resource ID to which the schedule belongs\n :param pulumi.Input[str] task_type: The task type of the schedule (e.g. LabVmsShutdownTask, LabVmAutoStart).\n :param pulumi.Input[str] time_zone_id: The time zone ID (e.g. Pacific Standard time).\n :param pulumi.Input[pulumi.InputType['WeekDetailsArgs']] weekly_recurrence: If the schedule will occur only some days of the week, specify the weekly recurrence.\n "
if (__name__ is not None):
warnings.warn('explicit use of __name__ is deprecated', DeprecationWarning)
resource_name = __name__
if (__opts__ is not None):
warnings.warn("explicit use of __opts__ is deprecated, use 'opts' instead", DeprecationWarning)
opts = __opts__
if (opts is None):
opts = pulumi.ResourceOptions()
if (not isinstance(opts, pulumi.ResourceOptions)):
raise TypeError('Expected resource options to be a ResourceOptions instance')
if (opts.version is None):
opts.version = _utilities.get_version()
if (opts.id is None):
if (__props__ is not None):
raise TypeError('__props__ is only valid when passed in combination with a valid opts.id to get an existing resource')
__props__ = dict()
__props__['daily_recurrence'] = daily_recurrence
__props__['hourly_recurrence'] = hourly_recurrence
if ((lab_name is None) and (not opts.urn)):
raise TypeError("Missing required property 'lab_name'")
__props__['lab_name'] = lab_name
__props__['location'] = location
__props__['name'] = name
__props__['notification_settings'] = notification_settings
if ((resource_group_name is None) and (not opts.urn)):
raise TypeError("Missing required property 'resource_group_name'")
__props__['resource_group_name'] = resource_group_name
__props__['status'] = status
__props__['tags'] = tags
__props__['target_resource_id'] = target_resource_id
__props__['task_type'] = task_type
__props__['time_zone_id'] = time_zone_id
__props__['weekly_recurrence'] = weekly_recurrence
__props__['created_date'] = None
__props__['provisioning_state'] = None
__props__['type'] = None
__props__['unique_identifier'] = None
alias_opts = pulumi.ResourceOptions(aliases=[pulumi.Alias(type_='azure-nextgen:devtestlab/latest:Schedule'), pulumi.Alias(type_='azure-nextgen:devtestlab/v20150521preview:Schedule'), pulumi.Alias(type_='azure-nextgen:devtestlab/v20160515:Schedule'), pulumi.Alias(type_='azure-nextgen:devtestlab/v20180915:Schedule')])
opts = pulumi.ResourceOptions.merge(opts, alias_opts)
super(Schedule, __self__).__init__('azure-nextgen:devtestlab:Schedule', resource_name, __props__, opts) | 6,186,674,530,000,249,000 | A schedule.
API Version: 2018-09-15.
:param str resource_name: The name of the resource.
:param pulumi.ResourceOptions opts: Options for the resource.
:param pulumi.Input[pulumi.InputType['DayDetailsArgs']] daily_recurrence: If the schedule will occur once each day of the week, specify the daily recurrence.
:param pulumi.Input[pulumi.InputType['HourDetailsArgs']] hourly_recurrence: If the schedule will occur multiple times a day, specify the hourly recurrence.
:param pulumi.Input[str] lab_name: The name of the lab.
:param pulumi.Input[str] location: The location of the resource.
:param pulumi.Input[str] name: The name of the schedule.
:param pulumi.Input[pulumi.InputType['NotificationSettingsArgs']] notification_settings: Notification settings.
:param pulumi.Input[str] resource_group_name: The name of the resource group.
:param pulumi.Input[Union[str, 'EnableStatus']] status: The status of the schedule (i.e. Enabled, Disabled)
:param pulumi.Input[Mapping[str, pulumi.Input[str]]] tags: The tags of the resource.
:param pulumi.Input[str] target_resource_id: The resource ID to which the schedule belongs
:param pulumi.Input[str] task_type: The task type of the schedule (e.g. LabVmsShutdownTask, LabVmAutoStart).
:param pulumi.Input[str] time_zone_id: The time zone ID (e.g. Pacific Standard time).
:param pulumi.Input[pulumi.InputType['WeekDetailsArgs']] weekly_recurrence: If the schedule will occur only some days of the week, specify the weekly recurrence. | sdk/python/pulumi_azure_nextgen/devtestlab/schedule.py | __init__ | pulumi/pulumi-azure-nextgen | python | def __init__(__self__, resource_name: str, opts: Optional[pulumi.ResourceOptions]=None, daily_recurrence: Optional[pulumi.Input[pulumi.InputType['DayDetailsArgs']]]=None, hourly_recurrence: Optional[pulumi.Input[pulumi.InputType['HourDetailsArgs']]]=None, lab_name: Optional[pulumi.Input[str]]=None, location: Optional[pulumi.Input[str]]=None, name: Optional[pulumi.Input[str]]=None, notification_settings: Optional[pulumi.Input[pulumi.InputType['NotificationSettingsArgs']]]=None, resource_group_name: Optional[pulumi.Input[str]]=None, status: Optional[pulumi.Input[Union[(str, 'EnableStatus')]]]=None, tags: Optional[pulumi.Input[Mapping[(str, pulumi.Input[str])]]]=None, target_resource_id: Optional[pulumi.Input[str]]=None, task_type: Optional[pulumi.Input[str]]=None, time_zone_id: Optional[pulumi.Input[str]]=None, weekly_recurrence: Optional[pulumi.Input[pulumi.InputType['WeekDetailsArgs']]]=None, __props__=None, __name__=None, __opts__=None):
"\n A schedule.\n API Version: 2018-09-15.\n\n :param str resource_name: The name of the resource.\n :param pulumi.ResourceOptions opts: Options for the resource.\n :param pulumi.Input[pulumi.InputType['DayDetailsArgs']] daily_recurrence: If the schedule will occur once each day of the week, specify the daily recurrence.\n :param pulumi.Input[pulumi.InputType['HourDetailsArgs']] hourly_recurrence: If the schedule will occur multiple times a day, specify the hourly recurrence.\n :param pulumi.Input[str] lab_name: The name of the lab.\n :param pulumi.Input[str] location: The location of the resource.\n :param pulumi.Input[str] name: The name of the schedule.\n :param pulumi.Input[pulumi.InputType['NotificationSettingsArgs']] notification_settings: Notification settings.\n :param pulumi.Input[str] resource_group_name: The name of the resource group.\n :param pulumi.Input[Union[str, 'EnableStatus']] status: The status of the schedule (i.e. Enabled, Disabled)\n :param pulumi.Input[Mapping[str, pulumi.Input[str]]] tags: The tags of the resource.\n :param pulumi.Input[str] target_resource_id: The resource ID to which the schedule belongs\n :param pulumi.Input[str] task_type: The task type of the schedule (e.g. LabVmsShutdownTask, LabVmAutoStart).\n :param pulumi.Input[str] time_zone_id: The time zone ID (e.g. Pacific Standard time).\n :param pulumi.Input[pulumi.InputType['WeekDetailsArgs']] weekly_recurrence: If the schedule will occur only some days of the week, specify the weekly recurrence.\n "
if (__name__ is not None):
warnings.warn('explicit use of __name__ is deprecated', DeprecationWarning)
resource_name = __name__
if (__opts__ is not None):
warnings.warn("explicit use of __opts__ is deprecated, use 'opts' instead", DeprecationWarning)
opts = __opts__
if (opts is None):
opts = pulumi.ResourceOptions()
if (not isinstance(opts, pulumi.ResourceOptions)):
raise TypeError('Expected resource options to be a ResourceOptions instance')
if (opts.version is None):
opts.version = _utilities.get_version()
if (opts.id is None):
if (__props__ is not None):
raise TypeError('__props__ is only valid when passed in combination with a valid opts.id to get an existing resource')
__props__ = dict()
__props__['daily_recurrence'] = daily_recurrence
__props__['hourly_recurrence'] = hourly_recurrence
if ((lab_name is None) and (not opts.urn)):
raise TypeError("Missing required property 'lab_name'")
__props__['lab_name'] = lab_name
__props__['location'] = location
__props__['name'] = name
__props__['notification_settings'] = notification_settings
if ((resource_group_name is None) and (not opts.urn)):
raise TypeError("Missing required property 'resource_group_name'")
__props__['resource_group_name'] = resource_group_name
__props__['status'] = status
__props__['tags'] = tags
__props__['target_resource_id'] = target_resource_id
__props__['task_type'] = task_type
__props__['time_zone_id'] = time_zone_id
__props__['weekly_recurrence'] = weekly_recurrence
__props__['created_date'] = None
__props__['provisioning_state'] = None
__props__['type'] = None
__props__['unique_identifier'] = None
alias_opts = pulumi.ResourceOptions(aliases=[pulumi.Alias(type_='azure-nextgen:devtestlab/latest:Schedule'), pulumi.Alias(type_='azure-nextgen:devtestlab/v20150521preview:Schedule'), pulumi.Alias(type_='azure-nextgen:devtestlab/v20160515:Schedule'), pulumi.Alias(type_='azure-nextgen:devtestlab/v20180915:Schedule')])
opts = pulumi.ResourceOptions.merge(opts, alias_opts)
super(Schedule, __self__).__init__('azure-nextgen:devtestlab:Schedule', resource_name, __props__, opts) |
@staticmethod
def get(resource_name: str, id: pulumi.Input[str], opts: Optional[pulumi.ResourceOptions]=None) -> 'Schedule':
"\n Get an existing Schedule resource's state with the given name, id, and optional extra\n properties used to qualify the lookup.\n\n :param str resource_name: The unique name of the resulting resource.\n :param pulumi.Input[str] id: The unique provider ID of the resource to lookup.\n :param pulumi.ResourceOptions opts: Options for the resource.\n "
opts = pulumi.ResourceOptions.merge(opts, pulumi.ResourceOptions(id=id))
__props__ = dict()
return Schedule(resource_name, opts=opts, __props__=__props__) | 8,867,794,031,495,096,000 | Get an existing Schedule resource's state with the given name, id, and optional extra
properties used to qualify the lookup.
:param str resource_name: The unique name of the resulting resource.
:param pulumi.Input[str] id: The unique provider ID of the resource to lookup.
:param pulumi.ResourceOptions opts: Options for the resource. | sdk/python/pulumi_azure_nextgen/devtestlab/schedule.py | get | pulumi/pulumi-azure-nextgen | python | @staticmethod
def get(resource_name: str, id: pulumi.Input[str], opts: Optional[pulumi.ResourceOptions]=None) -> 'Schedule':
"\n Get an existing Schedule resource's state with the given name, id, and optional extra\n properties used to qualify the lookup.\n\n :param str resource_name: The unique name of the resulting resource.\n :param pulumi.Input[str] id: The unique provider ID of the resource to lookup.\n :param pulumi.ResourceOptions opts: Options for the resource.\n "
opts = pulumi.ResourceOptions.merge(opts, pulumi.ResourceOptions(id=id))
__props__ = dict()
return Schedule(resource_name, opts=opts, __props__=__props__) |
@property
@pulumi.getter(name='createdDate')
def created_date(self) -> pulumi.Output[str]:
'\n The creation date of the schedule.\n '
return pulumi.get(self, 'created_date') | -4,870,187,973,321,437,000 | The creation date of the schedule. | sdk/python/pulumi_azure_nextgen/devtestlab/schedule.py | created_date | pulumi/pulumi-azure-nextgen | python | @property
@pulumi.getter(name='createdDate')
def created_date(self) -> pulumi.Output[str]:
'\n \n '
return pulumi.get(self, 'created_date') |
@property
@pulumi.getter(name='dailyRecurrence')
def daily_recurrence(self) -> pulumi.Output[Optional['outputs.DayDetailsResponse']]:
'\n If the schedule will occur once each day of the week, specify the daily recurrence.\n '
return pulumi.get(self, 'daily_recurrence') | 6,480,351,104,012,898,000 | If the schedule will occur once each day of the week, specify the daily recurrence. | sdk/python/pulumi_azure_nextgen/devtestlab/schedule.py | daily_recurrence | pulumi/pulumi-azure-nextgen | python | @property
@pulumi.getter(name='dailyRecurrence')
def daily_recurrence(self) -> pulumi.Output[Optional['outputs.DayDetailsResponse']]:
'\n \n '
return pulumi.get(self, 'daily_recurrence') |
@property
@pulumi.getter(name='hourlyRecurrence')
def hourly_recurrence(self) -> pulumi.Output[Optional['outputs.HourDetailsResponse']]:
'\n If the schedule will occur multiple times a day, specify the hourly recurrence.\n '
return pulumi.get(self, 'hourly_recurrence') | -210,472,516,599,062,460 | If the schedule will occur multiple times a day, specify the hourly recurrence. | sdk/python/pulumi_azure_nextgen/devtestlab/schedule.py | hourly_recurrence | pulumi/pulumi-azure-nextgen | python | @property
@pulumi.getter(name='hourlyRecurrence')
def hourly_recurrence(self) -> pulumi.Output[Optional['outputs.HourDetailsResponse']]:
'\n \n '
return pulumi.get(self, 'hourly_recurrence') |
@property
@pulumi.getter
def location(self) -> pulumi.Output[Optional[str]]:
'\n The location of the resource.\n '
return pulumi.get(self, 'location') | -6,989,812,945,498,137,000 | The location of the resource. | sdk/python/pulumi_azure_nextgen/devtestlab/schedule.py | location | pulumi/pulumi-azure-nextgen | python | @property
@pulumi.getter
def location(self) -> pulumi.Output[Optional[str]]:
'\n \n '
return pulumi.get(self, 'location') |
@property
@pulumi.getter
def name(self) -> pulumi.Output[str]:
'\n The name of the resource.\n '
return pulumi.get(self, 'name') | 7,945,008,266,317,837,000 | The name of the resource. | sdk/python/pulumi_azure_nextgen/devtestlab/schedule.py | name | pulumi/pulumi-azure-nextgen | python | @property
@pulumi.getter
def name(self) -> pulumi.Output[str]:
'\n \n '
return pulumi.get(self, 'name') |
@property
@pulumi.getter(name='notificationSettings')
def notification_settings(self) -> pulumi.Output[Optional['outputs.NotificationSettingsResponse']]:
'\n Notification settings.\n '
return pulumi.get(self, 'notification_settings') | 873,310,138,035,010,600 | Notification settings. | sdk/python/pulumi_azure_nextgen/devtestlab/schedule.py | notification_settings | pulumi/pulumi-azure-nextgen | python | @property
@pulumi.getter(name='notificationSettings')
def notification_settings(self) -> pulumi.Output[Optional['outputs.NotificationSettingsResponse']]:
'\n \n '
return pulumi.get(self, 'notification_settings') |
@property
@pulumi.getter(name='provisioningState')
def provisioning_state(self) -> pulumi.Output[str]:
'\n The provisioning status of the resource.\n '
return pulumi.get(self, 'provisioning_state') | -5,777,047,059,194,198,000 | The provisioning status of the resource. | sdk/python/pulumi_azure_nextgen/devtestlab/schedule.py | provisioning_state | pulumi/pulumi-azure-nextgen | python | @property
@pulumi.getter(name='provisioningState')
def provisioning_state(self) -> pulumi.Output[str]:
'\n \n '
return pulumi.get(self, 'provisioning_state') |
@property
@pulumi.getter
def status(self) -> pulumi.Output[Optional[str]]:
'\n The status of the schedule (i.e. Enabled, Disabled)\n '
return pulumi.get(self, 'status') | 1,623,179,802,714,244,400 | The status of the schedule (i.e. Enabled, Disabled) | sdk/python/pulumi_azure_nextgen/devtestlab/schedule.py | status | pulumi/pulumi-azure-nextgen | python | @property
@pulumi.getter
def status(self) -> pulumi.Output[Optional[str]]:
'\n \n '
return pulumi.get(self, 'status') |
@property
@pulumi.getter
def tags(self) -> pulumi.Output[Optional[Mapping[(str, str)]]]:
'\n The tags of the resource.\n '
return pulumi.get(self, 'tags') | 4,713,149,495,578,682,000 | The tags of the resource. | sdk/python/pulumi_azure_nextgen/devtestlab/schedule.py | tags | pulumi/pulumi-azure-nextgen | python | @property
@pulumi.getter
def tags(self) -> pulumi.Output[Optional[Mapping[(str, str)]]]:
'\n \n '
return pulumi.get(self, 'tags') |
@property
@pulumi.getter(name='targetResourceId')
def target_resource_id(self) -> pulumi.Output[Optional[str]]:
'\n The resource ID to which the schedule belongs\n '
return pulumi.get(self, 'target_resource_id') | 1,420,396,896,255,958,500 | The resource ID to which the schedule belongs | sdk/python/pulumi_azure_nextgen/devtestlab/schedule.py | target_resource_id | pulumi/pulumi-azure-nextgen | python | @property
@pulumi.getter(name='targetResourceId')
def target_resource_id(self) -> pulumi.Output[Optional[str]]:
'\n \n '
return pulumi.get(self, 'target_resource_id') |
@property
@pulumi.getter(name='taskType')
def task_type(self) -> pulumi.Output[Optional[str]]:
'\n The task type of the schedule (e.g. LabVmsShutdownTask, LabVmAutoStart).\n '
return pulumi.get(self, 'task_type') | 5,791,849,811,834,436,000 | The task type of the schedule (e.g. LabVmsShutdownTask, LabVmAutoStart). | sdk/python/pulumi_azure_nextgen/devtestlab/schedule.py | task_type | pulumi/pulumi-azure-nextgen | python | @property
@pulumi.getter(name='taskType')
def task_type(self) -> pulumi.Output[Optional[str]]:
'\n \n '
return pulumi.get(self, 'task_type') |
@property
@pulumi.getter(name='timeZoneId')
def time_zone_id(self) -> pulumi.Output[Optional[str]]:
'\n The time zone ID (e.g. Pacific Standard time).\n '
return pulumi.get(self, 'time_zone_id') | 4,756,117,501,304,452,000 | The time zone ID (e.g. Pacific Standard time). | sdk/python/pulumi_azure_nextgen/devtestlab/schedule.py | time_zone_id | pulumi/pulumi-azure-nextgen | python | @property
@pulumi.getter(name='timeZoneId')
def time_zone_id(self) -> pulumi.Output[Optional[str]]:
'\n \n '
return pulumi.get(self, 'time_zone_id') |
@property
@pulumi.getter
def type(self) -> pulumi.Output[str]:
'\n The type of the resource.\n '
return pulumi.get(self, 'type') | 3,589,901,220,239,403,500 | The type of the resource. | sdk/python/pulumi_azure_nextgen/devtestlab/schedule.py | type | pulumi/pulumi-azure-nextgen | python | @property
@pulumi.getter
def type(self) -> pulumi.Output[str]:
'\n \n '
return pulumi.get(self, 'type') |
@property
@pulumi.getter(name='uniqueIdentifier')
def unique_identifier(self) -> pulumi.Output[str]:
'\n The unique immutable identifier of a resource (Guid).\n '
return pulumi.get(self, 'unique_identifier') | 2,468,897,841,730,923,500 | The unique immutable identifier of a resource (Guid). | sdk/python/pulumi_azure_nextgen/devtestlab/schedule.py | unique_identifier | pulumi/pulumi-azure-nextgen | python | @property
@pulumi.getter(name='uniqueIdentifier')
def unique_identifier(self) -> pulumi.Output[str]:
'\n \n '
return pulumi.get(self, 'unique_identifier') |
@property
@pulumi.getter(name='weeklyRecurrence')
def weekly_recurrence(self) -> pulumi.Output[Optional['outputs.WeekDetailsResponse']]:
'\n If the schedule will occur only some days of the week, specify the weekly recurrence.\n '
return pulumi.get(self, 'weekly_recurrence') | -1,530,063,684,734,173,200 | If the schedule will occur only some days of the week, specify the weekly recurrence. | sdk/python/pulumi_azure_nextgen/devtestlab/schedule.py | weekly_recurrence | pulumi/pulumi-azure-nextgen | python | @property
@pulumi.getter(name='weeklyRecurrence')
def weekly_recurrence(self) -> pulumi.Output[Optional['outputs.WeekDetailsResponse']]:
'\n \n '
return pulumi.get(self, 'weekly_recurrence') |
def run(self, document, number_sentences):
'\n :param: number_sentences, starts with 0 for the fist sentence\n '
boundaries = (document.sentences_boundaries[0][0], document.sentences_boundaries[:(number_sentences + 1)][(- 1)][1])
document.text = document.text[boundaries[0]:boundaries[1]]
document.sentences_boundaries = self._limitSenteceBoundaries(document.sentences_boundaries, boundaries[1])
document.words_boundaries = self._limitWordBoundaries(document.words_boundaries, boundaries[1])
document.entities = self._limitEntities(document.entities, boundaries[1])
document.triples = self._limitTriples(document.triples, boundaries[1])
return document | 3,765,172,281,749,577,000 | :param: number_sentences, starts with 0 for the fist sentence | pipeline/filter.py | run | hadyelsahar/RE-NLG-Dataset | python | def run(self, document, number_sentences):
'\n \n '
boundaries = (document.sentences_boundaries[0][0], document.sentences_boundaries[:(number_sentences + 1)][(- 1)][1])
document.text = document.text[boundaries[0]:boundaries[1]]
document.sentences_boundaries = self._limitSenteceBoundaries(document.sentences_boundaries, boundaries[1])
document.words_boundaries = self._limitWordBoundaries(document.words_boundaries, boundaries[1])
document.entities = self._limitEntities(document.entities, boundaries[1])
document.triples = self._limitTriples(document.triples, boundaries[1])
return document |
def __init__(self, all_triples, entities):
'\n :param: input TripleReaderTriples object\n :param: a list of entity that should be filtered\n '
self.wikidata_triples = all_triples
self.entities = entities | -2,811,689,684,874,151,400 | :param: input TripleReaderTriples object
:param: a list of entity that should be filtered | pipeline/filter.py | __init__ | hadyelsahar/RE-NLG-Dataset | python | def __init__(self, all_triples, entities):
'\n :param: input TripleReaderTriples object\n :param: a list of entity that should be filtered\n '
self.wikidata_triples = all_triples
self.entities = entities |
def grabArtifactFromJenkins(**context):
"\n Grab an artifact from the previous job\n The python-jenkins library doesn't expose a method for that\n But it's totally possible to build manually the request for that\n "
hook = JenkinsHook('jenkins_nqa')
jenkins_server = hook.get_jenkins_server()
url = context['task_instance'].xcom_pull(task_ids='trigger_job')
url = (url + 'artifact/myartifact.xml')
self.log.info('url : %s', url)
request = Request(url)
response = jenkins_server.jenkins_open(request)
self.log.info('response: %s', response)
return response | 2,763,114,726,950,187,500 | Grab an artifact from the previous job
The python-jenkins library doesn't expose a method for that
But it's totally possible to build manually the request for that | dags/jenkins_dag.py | grabArtifactFromJenkins | shameerb/incubator-airflow | python | def grabArtifactFromJenkins(**context):
"\n Grab an artifact from the previous job\n The python-jenkins library doesn't expose a method for that\n But it's totally possible to build manually the request for that\n "
hook = JenkinsHook('jenkins_nqa')
jenkins_server = hook.get_jenkins_server()
url = context['task_instance'].xcom_pull(task_ids='trigger_job')
url = (url + 'artifact/myartifact.xml')
self.log.info('url : %s', url)
request = Request(url)
response = jenkins_server.jenkins_open(request)
self.log.info('response: %s', response)
return response |
def api23_link_aggregation_groups_delete_with_http_info(self, ids=None, names=None, async_req=False, _return_http_data_only=False, _preload_content=True, _request_timeout=None):
'DELETE link-aggregation-groups\n\n Remove a link aggregation group to unbind the ports.\n This method makes a synchronous HTTP request by default. To make an\n asynchronous HTTP request, please pass async_req=True\n >>> thread = api.api23_link_aggregation_groups_delete_with_http_info(async_req=True)\n >>> result = thread.get()\n\n :param list[str] ids: A comma-separated list of resource IDs. If after filtering, there is not at least one resource that matches each of the elements of `ids`, then an error is returned. This cannot be provided together with the `name` or `names` query parameters.\n :param list[str] names: A comma-separated list of resource names. If there is not at least one resource that matches each of the elements of `names`, then an error is returned.\n :param bool async_req: Request runs in separate thread and method returns multiprocessing.pool.ApplyResult.\n :param bool _return_http_data_only: Returns only data field.\n :param bool _preload_content: Response is converted into objects.\n :param int _request_timeout: Total request timeout in seconds.\n It can also be a tuple of (connection time, read time) timeouts.\n :return: None\n If the method is called asynchronously,\n returns the request thread.\n '
if (ids is not None):
if (not isinstance(ids, list)):
ids = [ids]
if (names is not None):
if (not isinstance(names, list)):
names = [names]
params = {k: v for (k, v) in six.iteritems(locals()) if (v is not None)}
if params.get('filter'):
params['filter'] = str(params['filter'])
if params.get('sort'):
params['sort'] = [str(_x) for _x in params['sort']]
collection_formats = {}
path_params = {}
query_params = []
if ('ids' in params):
query_params.append(('ids', params['ids']))
collection_formats['ids'] = 'csv'
if ('names' in params):
query_params.append(('names', params['names']))
collection_formats['names'] = 'csv'
header_params = {}
form_params = []
local_var_files = {}
body_params = None
header_params['Accept'] = self.api_client.select_header_accept(['application/json'])
header_params['Content-Type'] = self.api_client.select_header_content_type(['application/json'])
auth_settings = ['AuthorizationHeader']
return self.api_client.call_api('/api/2.3/link-aggregation-groups', 'DELETE', path_params, query_params, header_params, body=body_params, post_params=form_params, files=local_var_files, response_type=None, auth_settings=auth_settings, async_req=async_req, _return_http_data_only=_return_http_data_only, _preload_content=_preload_content, _request_timeout=_request_timeout, collection_formats=collection_formats) | -3,378,384,162,495,183,400 | DELETE link-aggregation-groups
Remove a link aggregation group to unbind the ports.
This method makes a synchronous HTTP request by default. To make an
asynchronous HTTP request, please pass async_req=True
>>> thread = api.api23_link_aggregation_groups_delete_with_http_info(async_req=True)
>>> result = thread.get()
:param list[str] ids: A comma-separated list of resource IDs. If after filtering, there is not at least one resource that matches each of the elements of `ids`, then an error is returned. This cannot be provided together with the `name` or `names` query parameters.
:param list[str] names: A comma-separated list of resource names. If there is not at least one resource that matches each of the elements of `names`, then an error is returned.
:param bool async_req: Request runs in separate thread and method returns multiprocessing.pool.ApplyResult.
:param bool _return_http_data_only: Returns only data field.
:param bool _preload_content: Response is converted into objects.
:param int _request_timeout: Total request timeout in seconds.
It can also be a tuple of (connection time, read time) timeouts.
:return: None
If the method is called asynchronously,
returns the request thread. | pypureclient/flashblade/FB_2_3/api/link_aggregation_groups_api.py | api23_link_aggregation_groups_delete_with_http_info | Flav-STOR-WL/py-pure-client | python | def api23_link_aggregation_groups_delete_with_http_info(self, ids=None, names=None, async_req=False, _return_http_data_only=False, _preload_content=True, _request_timeout=None):
'DELETE link-aggregation-groups\n\n Remove a link aggregation group to unbind the ports.\n This method makes a synchronous HTTP request by default. To make an\n asynchronous HTTP request, please pass async_req=True\n >>> thread = api.api23_link_aggregation_groups_delete_with_http_info(async_req=True)\n >>> result = thread.get()\n\n :param list[str] ids: A comma-separated list of resource IDs. If after filtering, there is not at least one resource that matches each of the elements of `ids`, then an error is returned. This cannot be provided together with the `name` or `names` query parameters.\n :param list[str] names: A comma-separated list of resource names. If there is not at least one resource that matches each of the elements of `names`, then an error is returned.\n :param bool async_req: Request runs in separate thread and method returns multiprocessing.pool.ApplyResult.\n :param bool _return_http_data_only: Returns only data field.\n :param bool _preload_content: Response is converted into objects.\n :param int _request_timeout: Total request timeout in seconds.\n It can also be a tuple of (connection time, read time) timeouts.\n :return: None\n If the method is called asynchronously,\n returns the request thread.\n '
if (ids is not None):
if (not isinstance(ids, list)):
ids = [ids]
if (names is not None):
if (not isinstance(names, list)):
names = [names]
params = {k: v for (k, v) in six.iteritems(locals()) if (v is not None)}
if params.get('filter'):
params['filter'] = str(params['filter'])
if params.get('sort'):
params['sort'] = [str(_x) for _x in params['sort']]
collection_formats = {}
path_params = {}
query_params = []
if ('ids' in params):
query_params.append(('ids', params['ids']))
collection_formats['ids'] = 'csv'
if ('names' in params):
query_params.append(('names', params['names']))
collection_formats['names'] = 'csv'
header_params = {}
form_params = []
local_var_files = {}
body_params = None
header_params['Accept'] = self.api_client.select_header_accept(['application/json'])
header_params['Content-Type'] = self.api_client.select_header_content_type(['application/json'])
auth_settings = ['AuthorizationHeader']
return self.api_client.call_api('/api/2.3/link-aggregation-groups', 'DELETE', path_params, query_params, header_params, body=body_params, post_params=form_params, files=local_var_files, response_type=None, auth_settings=auth_settings, async_req=async_req, _return_http_data_only=_return_http_data_only, _preload_content=_preload_content, _request_timeout=_request_timeout, collection_formats=collection_formats) |
def api23_link_aggregation_groups_get_with_http_info(self, continuation_token=None, filter=None, ids=None, limit=None, names=None, offset=None, sort=None, async_req=False, _return_http_data_only=False, _preload_content=True, _request_timeout=None):
"GET link-aggregation-groups\n\n List the status and attributes of the Ethernet ports in the configured link aggregation groups.\n This method makes a synchronous HTTP request by default. To make an\n asynchronous HTTP request, please pass async_req=True\n >>> thread = api.api23_link_aggregation_groups_get_with_http_info(async_req=True)\n >>> result = thread.get()\n\n :param str continuation_token: An opaque token used to iterate over a collection. The token to use on the next request is returned in the `continuation_token` field of the result.\n :param str filter: Exclude resources that don't match the specified criteria.\n :param list[str] ids: A comma-separated list of resource IDs. If after filtering, there is not at least one resource that matches each of the elements of `ids`, then an error is returned. This cannot be provided together with the `name` or `names` query parameters.\n :param int limit: Limit the size of the response to the specified number of resources. A `limit` of `0` can be used to get the number of resources without getting all of the resources. It will be returned in the `total_item_count` field. If a client asks for a page size larger than the maximum number, the request is still valid. In that case the server just returns the maximum number of items, disregarding the client's page size request.\n :param list[str] names: A comma-separated list of resource names. If there is not at least one resource that matches each of the elements of `names`, then an error is returned.\n :param int offset: The offset of the first resource to return from a collection.\n :param list[str] sort: Sort the response by the specified fields (in descending order if '-' is appended to the field name). NOTE: If you provide a sort you will not get a `continuation_token` in the response.\n :param bool async_req: Request runs in separate thread and method returns multiprocessing.pool.ApplyResult.\n :param bool _return_http_data_only: Returns only data field.\n :param bool _preload_content: Response is converted into objects.\n :param int _request_timeout: Total request timeout in seconds.\n It can also be a tuple of (connection time, read time) timeouts.\n :return: LinkAggregationGroupGetResponse\n If the method is called asynchronously,\n returns the request thread.\n "
if (ids is not None):
if (not isinstance(ids, list)):
ids = [ids]
if (names is not None):
if (not isinstance(names, list)):
names = [names]
if (sort is not None):
if (not isinstance(sort, list)):
sort = [sort]
params = {k: v for (k, v) in six.iteritems(locals()) if (v is not None)}
if params.get('filter'):
params['filter'] = str(params['filter'])
if params.get('sort'):
params['sort'] = [str(_x) for _x in params['sort']]
if (('limit' in params) and (params['limit'] < 1)):
raise ValueError('Invalid value for parameter `limit` when calling `api23_link_aggregation_groups_get`, must be a value greater than or equal to `1`')
if (('offset' in params) and (params['offset'] < 0)):
raise ValueError('Invalid value for parameter `offset` when calling `api23_link_aggregation_groups_get`, must be a value greater than or equal to `0`')
collection_formats = {}
path_params = {}
query_params = []
if ('continuation_token' in params):
query_params.append(('continuation_token', params['continuation_token']))
if ('filter' in params):
query_params.append(('filter', params['filter']))
if ('ids' in params):
query_params.append(('ids', params['ids']))
collection_formats['ids'] = 'csv'
if ('limit' in params):
query_params.append(('limit', params['limit']))
if ('names' in params):
query_params.append(('names', params['names']))
collection_formats['names'] = 'csv'
if ('offset' in params):
query_params.append(('offset', params['offset']))
if ('sort' in params):
query_params.append(('sort', params['sort']))
collection_formats['sort'] = 'csv'
header_params = {}
form_params = []
local_var_files = {}
body_params = None
header_params['Accept'] = self.api_client.select_header_accept(['application/json'])
header_params['Content-Type'] = self.api_client.select_header_content_type(['application/json'])
auth_settings = ['AuthorizationHeader']
return self.api_client.call_api('/api/2.3/link-aggregation-groups', 'GET', path_params, query_params, header_params, body=body_params, post_params=form_params, files=local_var_files, response_type='LinkAggregationGroupGetResponse', auth_settings=auth_settings, async_req=async_req, _return_http_data_only=_return_http_data_only, _preload_content=_preload_content, _request_timeout=_request_timeout, collection_formats=collection_formats) | -7,130,267,852,678,943,000 | GET link-aggregation-groups
List the status and attributes of the Ethernet ports in the configured link aggregation groups.
This method makes a synchronous HTTP request by default. To make an
asynchronous HTTP request, please pass async_req=True
>>> thread = api.api23_link_aggregation_groups_get_with_http_info(async_req=True)
>>> result = thread.get()
:param str continuation_token: An opaque token used to iterate over a collection. The token to use on the next request is returned in the `continuation_token` field of the result.
:param str filter: Exclude resources that don't match the specified criteria.
:param list[str] ids: A comma-separated list of resource IDs. If after filtering, there is not at least one resource that matches each of the elements of `ids`, then an error is returned. This cannot be provided together with the `name` or `names` query parameters.
:param int limit: Limit the size of the response to the specified number of resources. A `limit` of `0` can be used to get the number of resources without getting all of the resources. It will be returned in the `total_item_count` field. If a client asks for a page size larger than the maximum number, the request is still valid. In that case the server just returns the maximum number of items, disregarding the client's page size request.
:param list[str] names: A comma-separated list of resource names. If there is not at least one resource that matches each of the elements of `names`, then an error is returned.
:param int offset: The offset of the first resource to return from a collection.
:param list[str] sort: Sort the response by the specified fields (in descending order if '-' is appended to the field name). NOTE: If you provide a sort you will not get a `continuation_token` in the response.
:param bool async_req: Request runs in separate thread and method returns multiprocessing.pool.ApplyResult.
:param bool _return_http_data_only: Returns only data field.
:param bool _preload_content: Response is converted into objects.
:param int _request_timeout: Total request timeout in seconds.
It can also be a tuple of (connection time, read time) timeouts.
:return: LinkAggregationGroupGetResponse
If the method is called asynchronously,
returns the request thread. | pypureclient/flashblade/FB_2_3/api/link_aggregation_groups_api.py | api23_link_aggregation_groups_get_with_http_info | Flav-STOR-WL/py-pure-client | python | def api23_link_aggregation_groups_get_with_http_info(self, continuation_token=None, filter=None, ids=None, limit=None, names=None, offset=None, sort=None, async_req=False, _return_http_data_only=False, _preload_content=True, _request_timeout=None):
"GET link-aggregation-groups\n\n List the status and attributes of the Ethernet ports in the configured link aggregation groups.\n This method makes a synchronous HTTP request by default. To make an\n asynchronous HTTP request, please pass async_req=True\n >>> thread = api.api23_link_aggregation_groups_get_with_http_info(async_req=True)\n >>> result = thread.get()\n\n :param str continuation_token: An opaque token used to iterate over a collection. The token to use on the next request is returned in the `continuation_token` field of the result.\n :param str filter: Exclude resources that don't match the specified criteria.\n :param list[str] ids: A comma-separated list of resource IDs. If after filtering, there is not at least one resource that matches each of the elements of `ids`, then an error is returned. This cannot be provided together with the `name` or `names` query parameters.\n :param int limit: Limit the size of the response to the specified number of resources. A `limit` of `0` can be used to get the number of resources without getting all of the resources. It will be returned in the `total_item_count` field. If a client asks for a page size larger than the maximum number, the request is still valid. In that case the server just returns the maximum number of items, disregarding the client's page size request.\n :param list[str] names: A comma-separated list of resource names. If there is not at least one resource that matches each of the elements of `names`, then an error is returned.\n :param int offset: The offset of the first resource to return from a collection.\n :param list[str] sort: Sort the response by the specified fields (in descending order if '-' is appended to the field name). NOTE: If you provide a sort you will not get a `continuation_token` in the response.\n :param bool async_req: Request runs in separate thread and method returns multiprocessing.pool.ApplyResult.\n :param bool _return_http_data_only: Returns only data field.\n :param bool _preload_content: Response is converted into objects.\n :param int _request_timeout: Total request timeout in seconds.\n It can also be a tuple of (connection time, read time) timeouts.\n :return: LinkAggregationGroupGetResponse\n If the method is called asynchronously,\n returns the request thread.\n "
if (ids is not None):
if (not isinstance(ids, list)):
ids = [ids]
if (names is not None):
if (not isinstance(names, list)):
names = [names]
if (sort is not None):
if (not isinstance(sort, list)):
sort = [sort]
params = {k: v for (k, v) in six.iteritems(locals()) if (v is not None)}
if params.get('filter'):
params['filter'] = str(params['filter'])
if params.get('sort'):
params['sort'] = [str(_x) for _x in params['sort']]
if (('limit' in params) and (params['limit'] < 1)):
raise ValueError('Invalid value for parameter `limit` when calling `api23_link_aggregation_groups_get`, must be a value greater than or equal to `1`')
if (('offset' in params) and (params['offset'] < 0)):
raise ValueError('Invalid value for parameter `offset` when calling `api23_link_aggregation_groups_get`, must be a value greater than or equal to `0`')
collection_formats = {}
path_params = {}
query_params = []
if ('continuation_token' in params):
query_params.append(('continuation_token', params['continuation_token']))
if ('filter' in params):
query_params.append(('filter', params['filter']))
if ('ids' in params):
query_params.append(('ids', params['ids']))
collection_formats['ids'] = 'csv'
if ('limit' in params):
query_params.append(('limit', params['limit']))
if ('names' in params):
query_params.append(('names', params['names']))
collection_formats['names'] = 'csv'
if ('offset' in params):
query_params.append(('offset', params['offset']))
if ('sort' in params):
query_params.append(('sort', params['sort']))
collection_formats['sort'] = 'csv'
header_params = {}
form_params = []
local_var_files = {}
body_params = None
header_params['Accept'] = self.api_client.select_header_accept(['application/json'])
header_params['Content-Type'] = self.api_client.select_header_content_type(['application/json'])
auth_settings = ['AuthorizationHeader']
return self.api_client.call_api('/api/2.3/link-aggregation-groups', 'GET', path_params, query_params, header_params, body=body_params, post_params=form_params, files=local_var_files, response_type='LinkAggregationGroupGetResponse', auth_settings=auth_settings, async_req=async_req, _return_http_data_only=_return_http_data_only, _preload_content=_preload_content, _request_timeout=_request_timeout, collection_formats=collection_formats) |
def api23_link_aggregation_groups_patch_with_http_info(self, link_aggregation_group=None, ids=None, names=None, async_req=False, _return_http_data_only=False, _preload_content=True, _request_timeout=None):
'PATCH link-aggregation-groups\n\n Modify link aggregation groups by adding and removing Ethernet ports.\n This method makes a synchronous HTTP request by default. To make an\n asynchronous HTTP request, please pass async_req=True\n >>> thread = api.api23_link_aggregation_groups_patch_with_http_info(link_aggregation_group, async_req=True)\n >>> result = thread.get()\n\n :param Linkaggregationgroup link_aggregation_group: (required)\n :param list[str] ids: A comma-separated list of resource IDs. If after filtering, there is not at least one resource that matches each of the elements of `ids`, then an error is returned. This cannot be provided together with the `name` or `names` query parameters.\n :param list[str] names: A comma-separated list of resource names. If there is not at least one resource that matches each of the elements of `names`, then an error is returned.\n :param bool async_req: Request runs in separate thread and method returns multiprocessing.pool.ApplyResult.\n :param bool _return_http_data_only: Returns only data field.\n :param bool _preload_content: Response is converted into objects.\n :param int _request_timeout: Total request timeout in seconds.\n It can also be a tuple of (connection time, read time) timeouts.\n :return: LinkAggregationGroupResponse\n If the method is called asynchronously,\n returns the request thread.\n '
if (ids is not None):
if (not isinstance(ids, list)):
ids = [ids]
if (names is not None):
if (not isinstance(names, list)):
names = [names]
params = {k: v for (k, v) in six.iteritems(locals()) if (v is not None)}
if params.get('filter'):
params['filter'] = str(params['filter'])
if params.get('sort'):
params['sort'] = [str(_x) for _x in params['sort']]
if (link_aggregation_group is None):
raise TypeError('Missing the required parameter `link_aggregation_group` when calling `api23_link_aggregation_groups_patch`')
collection_formats = {}
path_params = {}
query_params = []
if ('ids' in params):
query_params.append(('ids', params['ids']))
collection_formats['ids'] = 'csv'
if ('names' in params):
query_params.append(('names', params['names']))
collection_formats['names'] = 'csv'
header_params = {}
form_params = []
local_var_files = {}
body_params = None
if ('link_aggregation_group' in params):
body_params = params['link_aggregation_group']
header_params['Accept'] = self.api_client.select_header_accept(['application/json'])
header_params['Content-Type'] = self.api_client.select_header_content_type(['application/json'])
auth_settings = ['AuthorizationHeader']
return self.api_client.call_api('/api/2.3/link-aggregation-groups', 'PATCH', path_params, query_params, header_params, body=body_params, post_params=form_params, files=local_var_files, response_type='LinkAggregationGroupResponse', auth_settings=auth_settings, async_req=async_req, _return_http_data_only=_return_http_data_only, _preload_content=_preload_content, _request_timeout=_request_timeout, collection_formats=collection_formats) | 916,694,224,354,934,500 | PATCH link-aggregation-groups
Modify link aggregation groups by adding and removing Ethernet ports.
This method makes a synchronous HTTP request by default. To make an
asynchronous HTTP request, please pass async_req=True
>>> thread = api.api23_link_aggregation_groups_patch_with_http_info(link_aggregation_group, async_req=True)
>>> result = thread.get()
:param Linkaggregationgroup link_aggregation_group: (required)
:param list[str] ids: A comma-separated list of resource IDs. If after filtering, there is not at least one resource that matches each of the elements of `ids`, then an error is returned. This cannot be provided together with the `name` or `names` query parameters.
:param list[str] names: A comma-separated list of resource names. If there is not at least one resource that matches each of the elements of `names`, then an error is returned.
:param bool async_req: Request runs in separate thread and method returns multiprocessing.pool.ApplyResult.
:param bool _return_http_data_only: Returns only data field.
:param bool _preload_content: Response is converted into objects.
:param int _request_timeout: Total request timeout in seconds.
It can also be a tuple of (connection time, read time) timeouts.
:return: LinkAggregationGroupResponse
If the method is called asynchronously,
returns the request thread. | pypureclient/flashblade/FB_2_3/api/link_aggregation_groups_api.py | api23_link_aggregation_groups_patch_with_http_info | Flav-STOR-WL/py-pure-client | python | def api23_link_aggregation_groups_patch_with_http_info(self, link_aggregation_group=None, ids=None, names=None, async_req=False, _return_http_data_only=False, _preload_content=True, _request_timeout=None):
'PATCH link-aggregation-groups\n\n Modify link aggregation groups by adding and removing Ethernet ports.\n This method makes a synchronous HTTP request by default. To make an\n asynchronous HTTP request, please pass async_req=True\n >>> thread = api.api23_link_aggregation_groups_patch_with_http_info(link_aggregation_group, async_req=True)\n >>> result = thread.get()\n\n :param Linkaggregationgroup link_aggregation_group: (required)\n :param list[str] ids: A comma-separated list of resource IDs. If after filtering, there is not at least one resource that matches each of the elements of `ids`, then an error is returned. This cannot be provided together with the `name` or `names` query parameters.\n :param list[str] names: A comma-separated list of resource names. If there is not at least one resource that matches each of the elements of `names`, then an error is returned.\n :param bool async_req: Request runs in separate thread and method returns multiprocessing.pool.ApplyResult.\n :param bool _return_http_data_only: Returns only data field.\n :param bool _preload_content: Response is converted into objects.\n :param int _request_timeout: Total request timeout in seconds.\n It can also be a tuple of (connection time, read time) timeouts.\n :return: LinkAggregationGroupResponse\n If the method is called asynchronously,\n returns the request thread.\n '
if (ids is not None):
if (not isinstance(ids, list)):
ids = [ids]
if (names is not None):
if (not isinstance(names, list)):
names = [names]
params = {k: v for (k, v) in six.iteritems(locals()) if (v is not None)}
if params.get('filter'):
params['filter'] = str(params['filter'])
if params.get('sort'):
params['sort'] = [str(_x) for _x in params['sort']]
if (link_aggregation_group is None):
raise TypeError('Missing the required parameter `link_aggregation_group` when calling `api23_link_aggregation_groups_patch`')
collection_formats = {}
path_params = {}
query_params = []
if ('ids' in params):
query_params.append(('ids', params['ids']))
collection_formats['ids'] = 'csv'
if ('names' in params):
query_params.append(('names', params['names']))
collection_formats['names'] = 'csv'
header_params = {}
form_params = []
local_var_files = {}
body_params = None
if ('link_aggregation_group' in params):
body_params = params['link_aggregation_group']
header_params['Accept'] = self.api_client.select_header_accept(['application/json'])
header_params['Content-Type'] = self.api_client.select_header_content_type(['application/json'])
auth_settings = ['AuthorizationHeader']
return self.api_client.call_api('/api/2.3/link-aggregation-groups', 'PATCH', path_params, query_params, header_params, body=body_params, post_params=form_params, files=local_var_files, response_type='LinkAggregationGroupResponse', auth_settings=auth_settings, async_req=async_req, _return_http_data_only=_return_http_data_only, _preload_content=_preload_content, _request_timeout=_request_timeout, collection_formats=collection_formats) |
def api23_link_aggregation_groups_post_with_http_info(self, link_aggregation_group=None, names=None, async_req=False, _return_http_data_only=False, _preload_content=True, _request_timeout=None):
'POST link-aggregation-groups\n\n Create a link aggregation group of Ethernet ports on the array.\n This method makes a synchronous HTTP request by default. To make an\n asynchronous HTTP request, please pass async_req=True\n >>> thread = api.api23_link_aggregation_groups_post_with_http_info(link_aggregation_group, names, async_req=True)\n >>> result = thread.get()\n\n :param LinkAggregationGroup link_aggregation_group: (required)\n :param list[str] names: A comma-separated list of resource names. (required)\n :param bool async_req: Request runs in separate thread and method returns multiprocessing.pool.ApplyResult.\n :param bool _return_http_data_only: Returns only data field.\n :param bool _preload_content: Response is converted into objects.\n :param int _request_timeout: Total request timeout in seconds.\n It can also be a tuple of (connection time, read time) timeouts.\n :return: LinkAggregationGroupResponse\n If the method is called asynchronously,\n returns the request thread.\n '
if (names is not None):
if (not isinstance(names, list)):
names = [names]
params = {k: v for (k, v) in six.iteritems(locals()) if (v is not None)}
if params.get('filter'):
params['filter'] = str(params['filter'])
if params.get('sort'):
params['sort'] = [str(_x) for _x in params['sort']]
if (link_aggregation_group is None):
raise TypeError('Missing the required parameter `link_aggregation_group` when calling `api23_link_aggregation_groups_post`')
if (names is None):
raise TypeError('Missing the required parameter `names` when calling `api23_link_aggregation_groups_post`')
collection_formats = {}
path_params = {}
query_params = []
if ('names' in params):
query_params.append(('names', params['names']))
collection_formats['names'] = 'csv'
header_params = {}
form_params = []
local_var_files = {}
body_params = None
if ('link_aggregation_group' in params):
body_params = params['link_aggregation_group']
header_params['Accept'] = self.api_client.select_header_accept(['application/json'])
header_params['Content-Type'] = self.api_client.select_header_content_type(['application/json'])
auth_settings = ['AuthorizationHeader']
return self.api_client.call_api('/api/2.3/link-aggregation-groups', 'POST', path_params, query_params, header_params, body=body_params, post_params=form_params, files=local_var_files, response_type='LinkAggregationGroupResponse', auth_settings=auth_settings, async_req=async_req, _return_http_data_only=_return_http_data_only, _preload_content=_preload_content, _request_timeout=_request_timeout, collection_formats=collection_formats) | 5,937,333,888,890,664,000 | POST link-aggregation-groups
Create a link aggregation group of Ethernet ports on the array.
This method makes a synchronous HTTP request by default. To make an
asynchronous HTTP request, please pass async_req=True
>>> thread = api.api23_link_aggregation_groups_post_with_http_info(link_aggregation_group, names, async_req=True)
>>> result = thread.get()
:param LinkAggregationGroup link_aggregation_group: (required)
:param list[str] names: A comma-separated list of resource names. (required)
:param bool async_req: Request runs in separate thread and method returns multiprocessing.pool.ApplyResult.
:param bool _return_http_data_only: Returns only data field.
:param bool _preload_content: Response is converted into objects.
:param int _request_timeout: Total request timeout in seconds.
It can also be a tuple of (connection time, read time) timeouts.
:return: LinkAggregationGroupResponse
If the method is called asynchronously,
returns the request thread. | pypureclient/flashblade/FB_2_3/api/link_aggregation_groups_api.py | api23_link_aggregation_groups_post_with_http_info | Flav-STOR-WL/py-pure-client | python | def api23_link_aggregation_groups_post_with_http_info(self, link_aggregation_group=None, names=None, async_req=False, _return_http_data_only=False, _preload_content=True, _request_timeout=None):
'POST link-aggregation-groups\n\n Create a link aggregation group of Ethernet ports on the array.\n This method makes a synchronous HTTP request by default. To make an\n asynchronous HTTP request, please pass async_req=True\n >>> thread = api.api23_link_aggregation_groups_post_with_http_info(link_aggregation_group, names, async_req=True)\n >>> result = thread.get()\n\n :param LinkAggregationGroup link_aggregation_group: (required)\n :param list[str] names: A comma-separated list of resource names. (required)\n :param bool async_req: Request runs in separate thread and method returns multiprocessing.pool.ApplyResult.\n :param bool _return_http_data_only: Returns only data field.\n :param bool _preload_content: Response is converted into objects.\n :param int _request_timeout: Total request timeout in seconds.\n It can also be a tuple of (connection time, read time) timeouts.\n :return: LinkAggregationGroupResponse\n If the method is called asynchronously,\n returns the request thread.\n '
if (names is not None):
if (not isinstance(names, list)):
names = [names]
params = {k: v for (k, v) in six.iteritems(locals()) if (v is not None)}
if params.get('filter'):
params['filter'] = str(params['filter'])
if params.get('sort'):
params['sort'] = [str(_x) for _x in params['sort']]
if (link_aggregation_group is None):
raise TypeError('Missing the required parameter `link_aggregation_group` when calling `api23_link_aggregation_groups_post`')
if (names is None):
raise TypeError('Missing the required parameter `names` when calling `api23_link_aggregation_groups_post`')
collection_formats = {}
path_params = {}
query_params = []
if ('names' in params):
query_params.append(('names', params['names']))
collection_formats['names'] = 'csv'
header_params = {}
form_params = []
local_var_files = {}
body_params = None
if ('link_aggregation_group' in params):
body_params = params['link_aggregation_group']
header_params['Accept'] = self.api_client.select_header_accept(['application/json'])
header_params['Content-Type'] = self.api_client.select_header_content_type(['application/json'])
auth_settings = ['AuthorizationHeader']
return self.api_client.call_api('/api/2.3/link-aggregation-groups', 'POST', path_params, query_params, header_params, body=body_params, post_params=form_params, files=local_var_files, response_type='LinkAggregationGroupResponse', auth_settings=auth_settings, async_req=async_req, _return_http_data_only=_return_http_data_only, _preload_content=_preload_content, _request_timeout=_request_timeout, collection_formats=collection_formats) |
def onnxifi_caffe2_net(pred_net, input_shapes, max_batch_size=1, max_seq_size=1, debug=False, use_onnx=True, merge_fp32_inputs_into_fp16=False, adjust_batch=True, black_list=None, weight_names=None):
'\n Transform the caffe2_net by collapsing ONNXIFI-runnable nodes into Onnxifi c2 ops\n '
shape_hints = {}
for (k, v) in input_shapes.items():
shape_hints[k] = v
pred_net_str = C.onnxifi(pred_net.SerializeToString(), shape_hints, (black_list if black_list else []), (weight_names if (weight_names is not None) else []), max_batch_size, max_seq_size, adjust_batch, debug, merge_fp32_inputs_into_fp16, use_onnx)
pred_net_cut = caffe2_pb2.NetDef()
pred_net_cut.ParseFromString(pred_net_str)
return pred_net_cut | 383,177,673,734,143,000 | Transform the caffe2_net by collapsing ONNXIFI-runnable nodes into Onnxifi c2 ops | detectron/lib/python3.6/site-packages/caffe2/python/onnx/onnxifi.py | onnxifi_caffe2_net | JustinBear99/Mask_RCNN | python | def onnxifi_caffe2_net(pred_net, input_shapes, max_batch_size=1, max_seq_size=1, debug=False, use_onnx=True, merge_fp32_inputs_into_fp16=False, adjust_batch=True, black_list=None, weight_names=None):
'\n \n '
shape_hints = {}
for (k, v) in input_shapes.items():
shape_hints[k] = v
pred_net_str = C.onnxifi(pred_net.SerializeToString(), shape_hints, (black_list if black_list else []), (weight_names if (weight_names is not None) else []), max_batch_size, max_seq_size, adjust_batch, debug, merge_fp32_inputs_into_fp16, use_onnx)
pred_net_cut = caffe2_pb2.NetDef()
pred_net_cut.ParseFromString(pred_net_str)
return pred_net_cut |
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.