body
stringlengths
26
98.2k
body_hash
int64
-9,222,864,604,528,158,000
9,221,803,474B
docstring
stringlengths
1
16.8k
path
stringlengths
5
230
name
stringlengths
1
96
repository_name
stringlengths
7
89
lang
stringclasses
1 value
body_without_docstring
stringlengths
20
98.2k
@classmethod def get_name(cls): " Default implementation of a function that returns a class's name. " if cls.ACCESSORY_NAME: return cls.ACCESSORY_NAME return cls.__name__
6,766,631,347,145,509,000
Default implementation of a function that returns a class's name.
binho/accessory.py
get_name
binhollc/binho-python-package
python
@classmethod def get_name(cls): " " if cls.ACCESSORY_NAME: return cls.ACCESSORY_NAME return cls.__name__
@classmethod def available_accessories(cls): ' Returns a list of available neighbors. ' return [accessory.get_name() for accessory in cls.__subclasses__()]
6,202,222,336,773,028,000
Returns a list of available neighbors.
binho/accessory.py
available_accessories
binhollc/binho-python-package
python
@classmethod def available_accessories(cls): ' ' return [accessory.get_name() for accessory in cls.__subclasses__()]
@classmethod def from_name(cls, name, board, *args, **kwargs): ' Creates a new binhoAccessory object from its name. ' target_name = name.lower() for subclass in cls.__subclasses__(): subclass_name = subclass.get_name() if (target_name == subclass_name.lower()): return subclass(board, *args, **kwargs) raise DriverCapabilityError("No known driver for accessory '{}'.".format(name))
298,761,833,693,009,300
Creates a new binhoAccessory object from its name.
binho/accessory.py
from_name
binhollc/binho-python-package
python
@classmethod def from_name(cls, name, board, *args, **kwargs): ' ' target_name = name.lower() for subclass in cls.__subclasses__(): subclass_name = subclass.get_name() if (target_name == subclass_name.lower()): return subclass(board, *args, **kwargs) raise DriverCapabilityError("No known driver for accessory '{}'.".format(name))
def testAdminPagerDutyNotification(self): 'Test AdminPagerDutyNotification' pass
682,979,602,889,604,600
Test AdminPagerDutyNotification
gen/pb_python/flyteidl/service/flyteadmin/test/test_admin_pager_duty_notification.py
testAdminPagerDutyNotification
EngHabu/flyteidl
python
def testAdminPagerDutyNotification(self): pass
def update(self, surface): 'Controla los eventos y coliciones de los sprites Palabras' if ((not self.getClick()) and (not self.collide)): self.rect.center = (self.posX, self.posY) if self.getClick(): self.rect.center = pygame.mouse.get_pos() if self.collide: x = self.image.get_rect().size[0] y = self.image.get_rect().size[1] self.colli(x, y) if (self.image.get_rect().size[0] <= 20): self.rect.center = (0, 0) surface.blit(self.getPalabraImagen(), self.getRect())
8,761,424,404,736,994,000
Controla los eventos y coliciones de los sprites Palabras
Clases/Palabras.py
update
JorgeSchelotto/TrabajoFinalSeminarioPython
python
def update(self, surface): if ((not self.getClick()) and (not self.collide)): self.rect.center = (self.posX, self.posY) if self.getClick(): self.rect.center = pygame.mouse.get_pos() if self.collide: x = self.image.get_rect().size[0] y = self.image.get_rect().size[1] self.colli(x, y) if (self.image.get_rect().size[0] <= 20): self.rect.center = (0, 0) surface.blit(self.getPalabraImagen(), self.getRect())
def _set_axes_aspect_ratio(self, value): "\n Set the aspect ratio of the axes in which the visualization is shown.\n This is a private method that is intended only for internal use, and it\n allows this viewer state class to adjust the limits accordingly when\n the aspect callback property is set to 'equal'\n " self._axes_aspect_ratio = value self._adjust_limits_aspect(aspect_adjustable='both')
929,469,976,190,285,800
Set the aspect ratio of the axes in which the visualization is shown. This is a private method that is intended only for internal use, and it allows this viewer state class to adjust the limits accordingly when the aspect callback property is set to 'equal'
glue/viewers/matplotlib/state.py
_set_axes_aspect_ratio
cnheider/glue
python
def _set_axes_aspect_ratio(self, value): "\n Set the aspect ratio of the axes in which the visualization is shown.\n This is a private method that is intended only for internal use, and it\n allows this viewer state class to adjust the limits accordingly when\n the aspect callback property is set to 'equal'\n " self._axes_aspect_ratio = value self._adjust_limits_aspect(aspect_adjustable='both')
@avoid_circular def _adjust_limits_aspect(self, *args, **kwargs): '\n Adjust the limits of the visualization to take into account the aspect\n ratio. This only works if `_set_axes_aspect_ratio` has been called\n previously.\n ' if ((self.aspect == 'auto') or (self._axes_aspect_ratio is None)): return if ((self.x_min is None) or (self.x_max is None) or (self.y_min is None) or (self.y_max is None)): return aspect_adjustable = kwargs.pop('aspect_adjustable', 'auto') changed = None axes_ratio = self._axes_aspect_ratio (x_min, x_max) = (self.x_min, self.x_max) (y_min, y_max) = (self.y_min, self.y_max) data_ratio = (abs((y_max - y_min)) / abs((x_max - x_min))) if ((abs((data_ratio - axes_ratio)) / (0.5 * (data_ratio + axes_ratio))) > 0.01): if (aspect_adjustable == 'both'): x_mid = (0.5 * (x_min + x_max)) x_width = (abs((x_max - x_min)) * ((data_ratio / axes_ratio) ** 0.5)) y_mid = (0.5 * (y_min + y_max)) y_width = (abs((y_max - y_min)) / ((data_ratio / axes_ratio) ** 0.5)) x_min = (x_mid - (x_width / 2.0)) x_max = (x_mid + (x_width / 2.0)) y_min = (y_mid - (y_width / 2.0)) y_max = (y_mid + (y_width / 2.0)) elif (((aspect_adjustable == 'auto') and (data_ratio > axes_ratio)) or (aspect_adjustable == 'x')): x_mid = (0.5 * (x_min + x_max)) x_width = (abs((y_max - y_min)) / axes_ratio) x_min = (x_mid - (x_width / 2.0)) x_max = (x_mid + (x_width / 2.0)) else: y_mid = (0.5 * (y_min + y_max)) y_width = (abs((x_max - x_min)) * axes_ratio) y_min = (y_mid - (y_width / 2.0)) y_max = (y_mid + (y_width / 2.0)) with delay_callback(self, 'x_min', 'x_max', 'y_min', 'y_max'): self.x_min = x_min self.x_max = x_max self.y_min = y_min self.y_max = y_max
-8,841,196,313,293,820,000
Adjust the limits of the visualization to take into account the aspect ratio. This only works if `_set_axes_aspect_ratio` has been called previously.
glue/viewers/matplotlib/state.py
_adjust_limits_aspect
cnheider/glue
python
@avoid_circular def _adjust_limits_aspect(self, *args, **kwargs): '\n Adjust the limits of the visualization to take into account the aspect\n ratio. This only works if `_set_axes_aspect_ratio` has been called\n previously.\n ' if ((self.aspect == 'auto') or (self._axes_aspect_ratio is None)): return if ((self.x_min is None) or (self.x_max is None) or (self.y_min is None) or (self.y_max is None)): return aspect_adjustable = kwargs.pop('aspect_adjustable', 'auto') changed = None axes_ratio = self._axes_aspect_ratio (x_min, x_max) = (self.x_min, self.x_max) (y_min, y_max) = (self.y_min, self.y_max) data_ratio = (abs((y_max - y_min)) / abs((x_max - x_min))) if ((abs((data_ratio - axes_ratio)) / (0.5 * (data_ratio + axes_ratio))) > 0.01): if (aspect_adjustable == 'both'): x_mid = (0.5 * (x_min + x_max)) x_width = (abs((x_max - x_min)) * ((data_ratio / axes_ratio) ** 0.5)) y_mid = (0.5 * (y_min + y_max)) y_width = (abs((y_max - y_min)) / ((data_ratio / axes_ratio) ** 0.5)) x_min = (x_mid - (x_width / 2.0)) x_max = (x_mid + (x_width / 2.0)) y_min = (y_mid - (y_width / 2.0)) y_max = (y_mid + (y_width / 2.0)) elif (((aspect_adjustable == 'auto') and (data_ratio > axes_ratio)) or (aspect_adjustable == 'x')): x_mid = (0.5 * (x_min + x_max)) x_width = (abs((y_max - y_min)) / axes_ratio) x_min = (x_mid - (x_width / 2.0)) x_max = (x_mid + (x_width / 2.0)) else: y_mid = (0.5 * (y_min + y_max)) y_width = (abs((x_max - x_min)) * axes_ratio) y_min = (y_mid - (y_width / 2.0)) y_max = (y_mid + (y_width / 2.0)) with delay_callback(self, 'x_min', 'x_max', 'y_min', 'y_max'): self.x_min = x_min self.x_max = x_max self.y_min = y_min self.y_max = y_max
def _swap_endian(val, length): '\n Swap the endianness of a number\n ' if (length <= 8): return val if (length <= 16): return (((val & 65280) >> 8) | ((val & 255) << 8)) if (length <= 32): return (((((val & 4278190080) >> 24) | ((val & 16711680) >> 8)) | ((val & 65280) << 8)) | ((val & 255) << 24)) raise Exception(('Cannot swap endianness for length ' + length))
554,214,614,013,435,900
Swap the endianness of a number
test/sampleData/micropython/MCP4725.py
_swap_endian
google/cyanobyte
python
def _swap_endian(val, length): '\n \n ' if (length <= 8): return val if (length <= 16): return (((val & 65280) >> 8) | ((val & 255) << 8)) if (length <= 32): return (((((val & 4278190080) >> 24) | ((val & 16711680) >> 8)) | ((val & 65280) << 8)) | ((val & 255) << 24)) raise Exception(('Cannot swap endianness for length ' + length))
def get_eeprom(self): '\n If EEPROM is set, the saved voltage output will\n be loaded from power-on.\n\n ' byte_list = self.i2c.readfrom_mem(self.device_address, self.REGISTER_EEPROM, 1, addrsize=12) val = 0 val = ((val << 8) | byte_list[0]) val = _swap_endian(val, 12) return val
-7,357,650,423,980,757,000
If EEPROM is set, the saved voltage output will be loaded from power-on.
test/sampleData/micropython/MCP4725.py
get_eeprom
google/cyanobyte
python
def get_eeprom(self): '\n If EEPROM is set, the saved voltage output will\n be loaded from power-on.\n\n ' byte_list = self.i2c.readfrom_mem(self.device_address, self.REGISTER_EEPROM, 1, addrsize=12) val = 0 val = ((val << 8) | byte_list[0]) val = _swap_endian(val, 12) return val
def set_eeprom(self, data): '\n If EEPROM is set, the saved voltage output will\n be loaded from power-on.\n\n ' data = _swap_endian(data, 12) buffer = [] buffer[0] = ((data >> 0) & 255) self.i2c.writeto_mem(self.device_address, self.REGISTER_EEPROM, buffer, addrsize=12)
5,185,610,049,418,069,000
If EEPROM is set, the saved voltage output will be loaded from power-on.
test/sampleData/micropython/MCP4725.py
set_eeprom
google/cyanobyte
python
def set_eeprom(self, data): '\n If EEPROM is set, the saved voltage output will\n be loaded from power-on.\n\n ' data = _swap_endian(data, 12) buffer = [] buffer[0] = ((data >> 0) & 255) self.i2c.writeto_mem(self.device_address, self.REGISTER_EEPROM, buffer, addrsize=12)
def get_vout(self): '\n VOut = (Vcc * value) / 4096\n The output is a range between 0 and Vcc with\n steps of Vcc/4096.\n In a 3.3v system, each step is 800 microvolts.\n\n ' byte_list = self.i2c.readfrom_mem(self.device_address, self.REGISTER_VOUT, 1, addrsize=12) val = 0 val = ((val << 8) | byte_list[0]) val = _swap_endian(val, 12) return val
-4,110,287,919,438,414,000
VOut = (Vcc * value) / 4096 The output is a range between 0 and Vcc with steps of Vcc/4096. In a 3.3v system, each step is 800 microvolts.
test/sampleData/micropython/MCP4725.py
get_vout
google/cyanobyte
python
def get_vout(self): '\n VOut = (Vcc * value) / 4096\n The output is a range between 0 and Vcc with\n steps of Vcc/4096.\n In a 3.3v system, each step is 800 microvolts.\n\n ' byte_list = self.i2c.readfrom_mem(self.device_address, self.REGISTER_VOUT, 1, addrsize=12) val = 0 val = ((val << 8) | byte_list[0]) val = _swap_endian(val, 12) return val
def set_vout(self, data): '\n VOut = (Vcc * value) / 4096\n The output is a range between 0 and Vcc with\n steps of Vcc/4096.\n In a 3.3v system, each step is 800 microvolts.\n\n ' data = _swap_endian(data, 12) buffer = [] buffer[0] = ((data >> 0) & 255) self.i2c.writeto_mem(self.device_address, self.REGISTER_VOUT, buffer, addrsize=12)
1,188,569,324,987,678,500
VOut = (Vcc * value) / 4096 The output is a range between 0 and Vcc with steps of Vcc/4096. In a 3.3v system, each step is 800 microvolts.
test/sampleData/micropython/MCP4725.py
set_vout
google/cyanobyte
python
def set_vout(self, data): '\n VOut = (Vcc * value) / 4096\n The output is a range between 0 and Vcc with\n steps of Vcc/4096.\n In a 3.3v system, each step is 800 microvolts.\n\n ' data = _swap_endian(data, 12) buffer = [] buffer[0] = ((data >> 0) & 255) self.i2c.writeto_mem(self.device_address, self.REGISTER_VOUT, buffer, addrsize=12)
def get_digitalout(self): '\n Only allows you to send fully on or off\n\n ' val = self.get_eeprom() val = (val & 8191) return val
-3,150,044,481,258,214,400
Only allows you to send fully on or off
test/sampleData/micropython/MCP4725.py
get_digitalout
google/cyanobyte
python
def get_digitalout(self): '\n \n\n ' val = self.get_eeprom() val = (val & 8191) return val
def set_digitalout(self, data): '\n Only allows you to send fully on or off\n\n ' register_data = self.get_eeprom() register_data = (register_data | data) self.set_eeprom(register_data)
-634,805,178,311,054,800
Only allows you to send fully on or off
test/sampleData/micropython/MCP4725.py
set_digitalout
google/cyanobyte
python
def set_digitalout(self, data): '\n \n\n ' register_data = self.get_eeprom() register_data = (register_data | data) self.set_eeprom(register_data)
def getvout_asvoltage(self, vcc): '\n get vout\n\n ' voltage = None value = self.get_eeprom() voltage = ((value / 4096) * vcc) return voltage
8,789,105,480,186,073,000
get vout
test/sampleData/micropython/MCP4725.py
getvout_asvoltage
google/cyanobyte
python
def getvout_asvoltage(self, vcc): '\n \n\n ' voltage = None value = self.get_eeprom() voltage = ((value / 4096) * vcc) return voltage
def setvout_asvoltage(self, output, vcc): '\n set vout\n\n ' output = ((output / vcc) * 4096) self.set_eeprom(output)
-534,523,613,088,087,300
set vout
test/sampleData/micropython/MCP4725.py
setvout_asvoltage
google/cyanobyte
python
def setvout_asvoltage(self, output, vcc): '\n \n\n ' output = ((output / vcc) * 4096) self.set_eeprom(output)
def entropy_distribution(signal=None, delay=1, dimension=3, bins='Sturges', base=2): '**Distribution Entropy (DistrEn)**\n\n Distribution Entropy (**DistrEn**, more commonly known as **DistEn**).\n\n Parameters\n ----------\n signal : Union[list, np.array, pd.Series]\n The signal (i.e., a time series) in the form of a vector of values.\n delay : int\n Time delay (often denoted *Tau* :math:`\\tau`, sometimes referred to as *lag*) in samples.\n See :func:`complexity_delay` to estimate the optimal value for this parameter.\n dimension : int\n Embedding Dimension (*m*, sometimes referred to as *d* or *order*). See\n :func:`complexity_dimension` to estimate the optimal value for this parameter.\n bins : int or str\n Method to find the number of bins. Can be a number, or one of ``"Sturges"``, ``"Rice"``,\n ``"Doane"``, or ``"sqrt"``.\n base : int\n The logarithmic base to use for :func:`entropy_shannon`.\n\n Returns\n --------\n distren : float\n The Distance Entropy entropy of the signal.\n info : dict\n A dictionary containing additional information regarding the parameters used.\n\n See Also\n --------\n entropy_shannon\n\n Examples\n ----------\n .. ipython:: python\n\n import neurokit2 as nk\n\n signal = nk.signal_simulate(duration=2, frequency=5)\n\n distren, info = nk.entropy_distribution(signal)\n distren\n\n References\n -----------\n * Li, P., Liu, C., Li, K., Zheng, D., Liu, C., & Hou, Y. (2015). Assessing the complexity of\n short-term heartbeat interval series by distribution entropy. Medical & biological\n engineering & computing, 53(1), 77-87.\n\n ' if (isinstance(signal, (np.ndarray, pd.DataFrame)) and (signal.ndim > 1)): raise ValueError('Multidimensional inputs (e.g., matrices or multichannel data) are not supported yet.') info = {'Dimension': dimension, 'Delay': delay, 'Bins': bins} embedded = complexity_embedding(signal, delay=delay, dimension=dimension) n = len(embedded) d = np.zeros(round(((n * (n - 1)) / 2))) for k in range(1, n): Ix = (int(((k - 1) * (n - (k / 2)))), int((k * (n - ((k + 1) / 2))))) d[Ix[0]:Ix[1]] = np.max(abs((np.tile(embedded[(k - 1), :], ((n - k), 1)) - embedded[k:, :])), axis=1) n_d = len(d) if isinstance(bins, str): bins = bins.lower() if (bins == 'sturges'): n_bins = np.ceil((np.log2(n_d) + 1)) elif (bins == 'rice'): n_bins = np.ceil((2 * (n_d ** (1 / 3)))) elif (bins == 'sqrt'): n_bins = np.ceil(np.sqrt(n_d)) elif (bins == 'doanes'): sigma = np.sqrt(((6 * (n_d - 2)) / ((n_d + 1) * (n_d + 3)))) n_bins = np.ceil(((1 + np.log2(n_d)) + np.log2((1 + abs((scipy.stats.skew(d) / sigma)))))) else: raise Exception('Please enter a valid binning method') else: n_bins = bins (freq, _) = np.histogram(d, int(n_bins)) freq = (freq / freq.sum()) (distren, _) = entropy_shannon(freq=freq, base=base) distren = (distren / (np.log(n_bins) / np.log(base))) return (distren, info)
3,542,943,845,490,031,600
**Distribution Entropy (DistrEn)** Distribution Entropy (**DistrEn**, more commonly known as **DistEn**). Parameters ---------- signal : Union[list, np.array, pd.Series] The signal (i.e., a time series) in the form of a vector of values. delay : int Time delay (often denoted *Tau* :math:`\tau`, sometimes referred to as *lag*) in samples. See :func:`complexity_delay` to estimate the optimal value for this parameter. dimension : int Embedding Dimension (*m*, sometimes referred to as *d* or *order*). See :func:`complexity_dimension` to estimate the optimal value for this parameter. bins : int or str Method to find the number of bins. Can be a number, or one of ``"Sturges"``, ``"Rice"``, ``"Doane"``, or ``"sqrt"``. base : int The logarithmic base to use for :func:`entropy_shannon`. Returns -------- distren : float The Distance Entropy entropy of the signal. info : dict A dictionary containing additional information regarding the parameters used. See Also -------- entropy_shannon Examples ---------- .. ipython:: python import neurokit2 as nk signal = nk.signal_simulate(duration=2, frequency=5) distren, info = nk.entropy_distribution(signal) distren References ----------- * Li, P., Liu, C., Li, K., Zheng, D., Liu, C., & Hou, Y. (2015). Assessing the complexity of short-term heartbeat interval series by distribution entropy. Medical & biological engineering & computing, 53(1), 77-87.
neurokit2/complexity/entropy_distribution.py
entropy_distribution
danibene/NeuroKit
python
def entropy_distribution(signal=None, delay=1, dimension=3, bins='Sturges', base=2): '**Distribution Entropy (DistrEn)**\n\n Distribution Entropy (**DistrEn**, more commonly known as **DistEn**).\n\n Parameters\n ----------\n signal : Union[list, np.array, pd.Series]\n The signal (i.e., a time series) in the form of a vector of values.\n delay : int\n Time delay (often denoted *Tau* :math:`\\tau`, sometimes referred to as *lag*) in samples.\n See :func:`complexity_delay` to estimate the optimal value for this parameter.\n dimension : int\n Embedding Dimension (*m*, sometimes referred to as *d* or *order*). See\n :func:`complexity_dimension` to estimate the optimal value for this parameter.\n bins : int or str\n Method to find the number of bins. Can be a number, or one of ``"Sturges"``, ``"Rice"``,\n ``"Doane"``, or ``"sqrt"``.\n base : int\n The logarithmic base to use for :func:`entropy_shannon`.\n\n Returns\n --------\n distren : float\n The Distance Entropy entropy of the signal.\n info : dict\n A dictionary containing additional information regarding the parameters used.\n\n See Also\n --------\n entropy_shannon\n\n Examples\n ----------\n .. ipython:: python\n\n import neurokit2 as nk\n\n signal = nk.signal_simulate(duration=2, frequency=5)\n\n distren, info = nk.entropy_distribution(signal)\n distren\n\n References\n -----------\n * Li, P., Liu, C., Li, K., Zheng, D., Liu, C., & Hou, Y. (2015). Assessing the complexity of\n short-term heartbeat interval series by distribution entropy. Medical & biological\n engineering & computing, 53(1), 77-87.\n\n ' if (isinstance(signal, (np.ndarray, pd.DataFrame)) and (signal.ndim > 1)): raise ValueError('Multidimensional inputs (e.g., matrices or multichannel data) are not supported yet.') info = {'Dimension': dimension, 'Delay': delay, 'Bins': bins} embedded = complexity_embedding(signal, delay=delay, dimension=dimension) n = len(embedded) d = np.zeros(round(((n * (n - 1)) / 2))) for k in range(1, n): Ix = (int(((k - 1) * (n - (k / 2)))), int((k * (n - ((k + 1) / 2))))) d[Ix[0]:Ix[1]] = np.max(abs((np.tile(embedded[(k - 1), :], ((n - k), 1)) - embedded[k:, :])), axis=1) n_d = len(d) if isinstance(bins, str): bins = bins.lower() if (bins == 'sturges'): n_bins = np.ceil((np.log2(n_d) + 1)) elif (bins == 'rice'): n_bins = np.ceil((2 * (n_d ** (1 / 3)))) elif (bins == 'sqrt'): n_bins = np.ceil(np.sqrt(n_d)) elif (bins == 'doanes'): sigma = np.sqrt(((6 * (n_d - 2)) / ((n_d + 1) * (n_d + 3)))) n_bins = np.ceil(((1 + np.log2(n_d)) + np.log2((1 + abs((scipy.stats.skew(d) / sigma)))))) else: raise Exception('Please enter a valid binning method') else: n_bins = bins (freq, _) = np.histogram(d, int(n_bins)) freq = (freq / freq.sum()) (distren, _) = entropy_shannon(freq=freq, base=base) distren = (distren / (np.log(n_bins) / np.log(base))) return (distren, info)
def get_db(): 'Opens a new database connection if there is none yet for the\n current application context.\n ' if (not hasattr(g, 'db')): g.db = DatabaseConnection(os.getenv('TOBY_DB_USER', 'toby'), os.environ['TOBY_DB_PASSWORD']) return g.db
2,712,110,794,052,895,000
Opens a new database connection if there is none yet for the current application context.
toby.py
get_db
axxiao/toby
python
def get_db(): 'Opens a new database connection if there is none yet for the\n current application context.\n ' if (not hasattr(g, 'db')): g.db = DatabaseConnection(os.getenv('TOBY_DB_USER', 'toby'), os.environ['TOBY_DB_PASSWORD']) return g.db
@app.teardown_appcontext def close_db(error): 'Closes the database again at the end of the request.' if hasattr(g, 'db'): g.db.disconnect() if error: logger.error(('Database connection closed because of :' + str(error)))
-4,155,511,414,969,864,000
Closes the database again at the end of the request.
toby.py
close_db
axxiao/toby
python
@app.teardown_appcontext def close_db(error): if hasattr(g, 'db'): g.db.disconnect() if error: logger.error(('Database connection closed because of :' + str(error)))
def get_transport_class(cls, label: str=None) -> Type[FeedServiceTransport]: 'Returns an appropriate transport class.\n\n Args:\n label: The name of the desired transport. If none is\n provided, then the first transport in the registry is used.\n\n Returns:\n The transport class to use.\n ' if label: return cls._transport_registry[label] return next(iter(cls._transport_registry.values()))
3,256,379,998,317,467,000
Returns an appropriate transport class. Args: label: The name of the desired transport. If none is provided, then the first transport in the registry is used. Returns: The transport class to use.
google/ads/googleads/v10/services/services/feed_service/client.py
get_transport_class
JakobSteixner/google-ads-python
python
def get_transport_class(cls, label: str=None) -> Type[FeedServiceTransport]: 'Returns an appropriate transport class.\n\n Args:\n label: The name of the desired transport. If none is\n provided, then the first transport in the registry is used.\n\n Returns:\n The transport class to use.\n ' if label: return cls._transport_registry[label] return next(iter(cls._transport_registry.values()))
@staticmethod def _get_default_mtls_endpoint(api_endpoint): 'Converts api endpoint to mTLS endpoint.\n\n Convert "*.sandbox.googleapis.com" and "*.googleapis.com" to\n "*.mtls.sandbox.googleapis.com" and "*.mtls.googleapis.com" respectively.\n Args:\n api_endpoint (Optional[str]): the api endpoint to convert.\n Returns:\n str: converted mTLS api endpoint.\n ' if (not api_endpoint): return api_endpoint mtls_endpoint_re = re.compile('(?P<name>[^.]+)(?P<mtls>\\.mtls)?(?P<sandbox>\\.sandbox)?(?P<googledomain>\\.googleapis\\.com)?') m = mtls_endpoint_re.match(api_endpoint) (name, mtls, sandbox, googledomain) = m.groups() if (mtls or (not googledomain)): return api_endpoint if sandbox: return api_endpoint.replace('sandbox.googleapis.com', 'mtls.sandbox.googleapis.com') return api_endpoint.replace('.googleapis.com', '.mtls.googleapis.com')
7,533,698,565,164,944,000
Converts api endpoint to mTLS endpoint. Convert "*.sandbox.googleapis.com" and "*.googleapis.com" to "*.mtls.sandbox.googleapis.com" and "*.mtls.googleapis.com" respectively. Args: api_endpoint (Optional[str]): the api endpoint to convert. Returns: str: converted mTLS api endpoint.
google/ads/googleads/v10/services/services/feed_service/client.py
_get_default_mtls_endpoint
JakobSteixner/google-ads-python
python
@staticmethod def _get_default_mtls_endpoint(api_endpoint): 'Converts api endpoint to mTLS endpoint.\n\n Convert "*.sandbox.googleapis.com" and "*.googleapis.com" to\n "*.mtls.sandbox.googleapis.com" and "*.mtls.googleapis.com" respectively.\n Args:\n api_endpoint (Optional[str]): the api endpoint to convert.\n Returns:\n str: converted mTLS api endpoint.\n ' if (not api_endpoint): return api_endpoint mtls_endpoint_re = re.compile('(?P<name>[^.]+)(?P<mtls>\\.mtls)?(?P<sandbox>\\.sandbox)?(?P<googledomain>\\.googleapis\\.com)?') m = mtls_endpoint_re.match(api_endpoint) (name, mtls, sandbox, googledomain) = m.groups() if (mtls or (not googledomain)): return api_endpoint if sandbox: return api_endpoint.replace('sandbox.googleapis.com', 'mtls.sandbox.googleapis.com') return api_endpoint.replace('.googleapis.com', '.mtls.googleapis.com')
@classmethod def from_service_account_info(cls, info: dict, *args, **kwargs): 'Creates an instance of this client using the provided credentials\n info.\n\n Args:\n info (dict): The service account private key info.\n args: Additional arguments to pass to the constructor.\n kwargs: Additional arguments to pass to the constructor.\n\n Returns:\n FeedServiceClient: The constructed client.\n ' credentials = service_account.Credentials.from_service_account_info(info) kwargs['credentials'] = credentials return cls(*args, **kwargs)
7,061,353,587,626,594,000
Creates an instance of this client using the provided credentials info. Args: info (dict): The service account private key info. args: Additional arguments to pass to the constructor. kwargs: Additional arguments to pass to the constructor. Returns: FeedServiceClient: The constructed client.
google/ads/googleads/v10/services/services/feed_service/client.py
from_service_account_info
JakobSteixner/google-ads-python
python
@classmethod def from_service_account_info(cls, info: dict, *args, **kwargs): 'Creates an instance of this client using the provided credentials\n info.\n\n Args:\n info (dict): The service account private key info.\n args: Additional arguments to pass to the constructor.\n kwargs: Additional arguments to pass to the constructor.\n\n Returns:\n FeedServiceClient: The constructed client.\n ' credentials = service_account.Credentials.from_service_account_info(info) kwargs['credentials'] = credentials return cls(*args, **kwargs)
@classmethod def from_service_account_file(cls, filename: str, *args, **kwargs): 'Creates an instance of this client using the provided credentials\n file.\n\n Args:\n filename (str): The path to the service account private key json\n file.\n args: Additional arguments to pass to the constructor.\n kwargs: Additional arguments to pass to the constructor.\n\n Returns:\n FeedServiceClient: The constructed client.\n ' credentials = service_account.Credentials.from_service_account_file(filename) kwargs['credentials'] = credentials return cls(*args, **kwargs)
7,600,690,789,200,093,000
Creates an instance of this client using the provided credentials file. Args: filename (str): The path to the service account private key json file. args: Additional arguments to pass to the constructor. kwargs: Additional arguments to pass to the constructor. Returns: FeedServiceClient: The constructed client.
google/ads/googleads/v10/services/services/feed_service/client.py
from_service_account_file
JakobSteixner/google-ads-python
python
@classmethod def from_service_account_file(cls, filename: str, *args, **kwargs): 'Creates an instance of this client using the provided credentials\n file.\n\n Args:\n filename (str): The path to the service account private key json\n file.\n args: Additional arguments to pass to the constructor.\n kwargs: Additional arguments to pass to the constructor.\n\n Returns:\n FeedServiceClient: The constructed client.\n ' credentials = service_account.Credentials.from_service_account_file(filename) kwargs['credentials'] = credentials return cls(*args, **kwargs)
@property def transport(self) -> FeedServiceTransport: 'Returns the transport used by the client instance.\n\n Returns:\n FeedServiceTransport: The transport used by the client\n instance.\n ' return self._transport
4,740,376,337,738,445,000
Returns the transport used by the client instance. Returns: FeedServiceTransport: The transport used by the client instance.
google/ads/googleads/v10/services/services/feed_service/client.py
transport
JakobSteixner/google-ads-python
python
@property def transport(self) -> FeedServiceTransport: 'Returns the transport used by the client instance.\n\n Returns:\n FeedServiceTransport: The transport used by the client\n instance.\n ' return self._transport
def __exit__(self, type, value, traceback): "Releases underlying transport's resources.\n\n .. warning::\n ONLY use as a context manager if the transport is NOT shared\n with other clients! Exiting the with block will CLOSE the transport\n and may cause errors in other clients!\n " self.transport.close()
7,840,855,355,632,227,000
Releases underlying transport's resources. .. warning:: ONLY use as a context manager if the transport is NOT shared with other clients! Exiting the with block will CLOSE the transport and may cause errors in other clients!
google/ads/googleads/v10/services/services/feed_service/client.py
__exit__
JakobSteixner/google-ads-python
python
def __exit__(self, type, value, traceback): "Releases underlying transport's resources.\n\n .. warning::\n ONLY use as a context manager if the transport is NOT shared\n with other clients! Exiting the with block will CLOSE the transport\n and may cause errors in other clients!\n " self.transport.close()
@staticmethod def feed_path(customer_id: str, feed_id: str) -> str: 'Returns a fully-qualified feed string.' return 'customers/{customer_id}/feeds/{feed_id}'.format(customer_id=customer_id, feed_id=feed_id)
-1,869,738,995,331,725,300
Returns a fully-qualified feed string.
google/ads/googleads/v10/services/services/feed_service/client.py
feed_path
JakobSteixner/google-ads-python
python
@staticmethod def feed_path(customer_id: str, feed_id: str) -> str: return 'customers/{customer_id}/feeds/{feed_id}'.format(customer_id=customer_id, feed_id=feed_id)
@staticmethod def parse_feed_path(path: str) -> Dict[(str, str)]: 'Parses a feed path into its component segments.' m = re.match('^customers/(?P<customer_id>.+?)/feeds/(?P<feed_id>.+?)$', path) return (m.groupdict() if m else {})
4,855,498,160,379,343,000
Parses a feed path into its component segments.
google/ads/googleads/v10/services/services/feed_service/client.py
parse_feed_path
JakobSteixner/google-ads-python
python
@staticmethod def parse_feed_path(path: str) -> Dict[(str, str)]: m = re.match('^customers/(?P<customer_id>.+?)/feeds/(?P<feed_id>.+?)$', path) return (m.groupdict() if m else {})
@staticmethod def common_billing_account_path(billing_account: str) -> str: 'Returns a fully-qualified billing_account string.' return 'billingAccounts/{billing_account}'.format(billing_account=billing_account)
5,123,899,605,328,763,000
Returns a fully-qualified billing_account string.
google/ads/googleads/v10/services/services/feed_service/client.py
common_billing_account_path
JakobSteixner/google-ads-python
python
@staticmethod def common_billing_account_path(billing_account: str) -> str: return 'billingAccounts/{billing_account}'.format(billing_account=billing_account)
@staticmethod def parse_common_billing_account_path(path: str) -> Dict[(str, str)]: 'Parse a billing_account path into its component segments.' m = re.match('^billingAccounts/(?P<billing_account>.+?)$', path) return (m.groupdict() if m else {})
3,539,036,522,285,068,000
Parse a billing_account path into its component segments.
google/ads/googleads/v10/services/services/feed_service/client.py
parse_common_billing_account_path
JakobSteixner/google-ads-python
python
@staticmethod def parse_common_billing_account_path(path: str) -> Dict[(str, str)]: m = re.match('^billingAccounts/(?P<billing_account>.+?)$', path) return (m.groupdict() if m else {})
@staticmethod def common_folder_path(folder: str) -> str: 'Returns a fully-qualified folder string.' return 'folders/{folder}'.format(folder=folder)
-6,142,497,583,881,718,000
Returns a fully-qualified folder string.
google/ads/googleads/v10/services/services/feed_service/client.py
common_folder_path
JakobSteixner/google-ads-python
python
@staticmethod def common_folder_path(folder: str) -> str: return 'folders/{folder}'.format(folder=folder)
@staticmethod def parse_common_folder_path(path: str) -> Dict[(str, str)]: 'Parse a folder path into its component segments.' m = re.match('^folders/(?P<folder>.+?)$', path) return (m.groupdict() if m else {})
7,731,323,619,502,445,000
Parse a folder path into its component segments.
google/ads/googleads/v10/services/services/feed_service/client.py
parse_common_folder_path
JakobSteixner/google-ads-python
python
@staticmethod def parse_common_folder_path(path: str) -> Dict[(str, str)]: m = re.match('^folders/(?P<folder>.+?)$', path) return (m.groupdict() if m else {})
@staticmethod def common_organization_path(organization: str) -> str: 'Returns a fully-qualified organization string.' return 'organizations/{organization}'.format(organization=organization)
-1,733,580,681,013,462,000
Returns a fully-qualified organization string.
google/ads/googleads/v10/services/services/feed_service/client.py
common_organization_path
JakobSteixner/google-ads-python
python
@staticmethod def common_organization_path(organization: str) -> str: return 'organizations/{organization}'.format(organization=organization)
@staticmethod def parse_common_organization_path(path: str) -> Dict[(str, str)]: 'Parse a organization path into its component segments.' m = re.match('^organizations/(?P<organization>.+?)$', path) return (m.groupdict() if m else {})
6,176,747,584,094,183,000
Parse a organization path into its component segments.
google/ads/googleads/v10/services/services/feed_service/client.py
parse_common_organization_path
JakobSteixner/google-ads-python
python
@staticmethod def parse_common_organization_path(path: str) -> Dict[(str, str)]: m = re.match('^organizations/(?P<organization>.+?)$', path) return (m.groupdict() if m else {})
@staticmethod def common_project_path(project: str) -> str: 'Returns a fully-qualified project string.' return 'projects/{project}'.format(project=project)
-124,327,816,620,303,040
Returns a fully-qualified project string.
google/ads/googleads/v10/services/services/feed_service/client.py
common_project_path
JakobSteixner/google-ads-python
python
@staticmethod def common_project_path(project: str) -> str: return 'projects/{project}'.format(project=project)
@staticmethod def parse_common_project_path(path: str) -> Dict[(str, str)]: 'Parse a project path into its component segments.' m = re.match('^projects/(?P<project>.+?)$', path) return (m.groupdict() if m else {})
-6,609,324,249,468,844,000
Parse a project path into its component segments.
google/ads/googleads/v10/services/services/feed_service/client.py
parse_common_project_path
JakobSteixner/google-ads-python
python
@staticmethod def parse_common_project_path(path: str) -> Dict[(str, str)]: m = re.match('^projects/(?P<project>.+?)$', path) return (m.groupdict() if m else {})
@staticmethod def common_location_path(project: str, location: str) -> str: 'Returns a fully-qualified location string.' return 'projects/{project}/locations/{location}'.format(project=project, location=location)
8,215,176,652,370,049,000
Returns a fully-qualified location string.
google/ads/googleads/v10/services/services/feed_service/client.py
common_location_path
JakobSteixner/google-ads-python
python
@staticmethod def common_location_path(project: str, location: str) -> str: return 'projects/{project}/locations/{location}'.format(project=project, location=location)
@staticmethod def parse_common_location_path(path: str) -> Dict[(str, str)]: 'Parse a location path into its component segments.' m = re.match('^projects/(?P<project>.+?)/locations/(?P<location>.+?)$', path) return (m.groupdict() if m else {})
1,703,235,435,027,079,400
Parse a location path into its component segments.
google/ads/googleads/v10/services/services/feed_service/client.py
parse_common_location_path
JakobSteixner/google-ads-python
python
@staticmethod def parse_common_location_path(path: str) -> Dict[(str, str)]: m = re.match('^projects/(?P<project>.+?)/locations/(?P<location>.+?)$', path) return (m.groupdict() if m else {})
def __init__(self, *, credentials: Optional[ga_credentials.Credentials]=None, transport: Union[(str, FeedServiceTransport, None)]=None, client_options: Optional[client_options_lib.ClientOptions]=None, client_info: gapic_v1.client_info.ClientInfo=DEFAULT_CLIENT_INFO) -> None: 'Instantiates the feed service client.\n\n Args:\n credentials (Optional[google.auth.credentials.Credentials]): The\n authorization credentials to attach to requests. These\n credentials identify the application to the service; if none\n are specified, the client will attempt to ascertain the\n credentials from the environment.\n transport (Union[str, FeedServiceTransport]): The\n transport to use. If set to None, a transport is chosen\n automatically.\n client_options (google.api_core.client_options.ClientOptions): Custom options for the\n client. It won\'t take effect if a ``transport`` instance is provided.\n (1) The ``api_endpoint`` property can be used to override the\n default endpoint provided by the client. GOOGLE_API_USE_MTLS_ENDPOINT\n environment variable can also be used to override the endpoint:\n "always" (always use the default mTLS endpoint), "never" (always\n use the default regular endpoint) and "auto" (auto switch to the\n default mTLS endpoint if client certificate is present, this is\n the default value). However, the ``api_endpoint`` property takes\n precedence if provided.\n (2) If GOOGLE_API_USE_CLIENT_CERTIFICATE environment variable\n is "true", then the ``client_cert_source`` property can be used\n to provide client certificate for mutual TLS transport. If\n not provided, the default SSL client certificate will be used if\n present. If GOOGLE_API_USE_CLIENT_CERTIFICATE is "false" or not\n set, no client certificate will be used.\n client_info (google.api_core.gapic_v1.client_info.ClientInfo):\n The client info used to send a user-agent string along with\n API requests. If ``None``, then default info will be used.\n Generally, you only need to set this if you\'re developing\n your own client library.\n\n Raises:\n google.auth.exceptions.MutualTLSChannelError: If mutual TLS transport\n creation failed for any reason.\n ' if isinstance(client_options, dict): client_options = client_options_lib.from_dict(client_options) if (client_options is None): client_options = client_options_lib.ClientOptions() if (os.getenv('GOOGLE_API_USE_CLIENT_CERTIFICATE', 'false') not in ('true', 'false')): raise ValueError('Environment variable `GOOGLE_API_USE_CLIENT_CERTIFICATE` must be either `true` or `false`') use_client_cert = (os.getenv('GOOGLE_API_USE_CLIENT_CERTIFICATE', 'false') == 'true') client_cert_source_func = None is_mtls = False if use_client_cert: if client_options.client_cert_source: is_mtls = True client_cert_source_func = client_options.client_cert_source else: is_mtls = mtls.has_default_client_cert_source() if is_mtls: client_cert_source_func = mtls.default_client_cert_source() else: client_cert_source_func = None if (client_options.api_endpoint is not None): api_endpoint = client_options.api_endpoint else: use_mtls_env = os.getenv('GOOGLE_API_USE_MTLS_ENDPOINT', 'auto') if (use_mtls_env == 'never'): api_endpoint = self.DEFAULT_ENDPOINT elif (use_mtls_env == 'always'): api_endpoint = self.DEFAULT_MTLS_ENDPOINT elif (use_mtls_env == 'auto'): api_endpoint = (self.DEFAULT_MTLS_ENDPOINT if is_mtls else self.DEFAULT_ENDPOINT) else: raise MutualTLSChannelError('Unsupported GOOGLE_API_USE_MTLS_ENDPOINT value. Accepted values: never, auto, always') if isinstance(transport, FeedServiceTransport): if (credentials or client_options.credentials_file): raise ValueError('When providing a transport instance, provide its credentials directly.') if client_options.scopes: raise ValueError('When providing a transport instance, provide its scopes directly.') self._transport = transport else: Transport = type(self).get_transport_class(transport) self._transport = Transport(credentials=credentials, credentials_file=client_options.credentials_file, host=api_endpoint, scopes=client_options.scopes, client_cert_source_for_mtls=client_cert_source_func, quota_project_id=client_options.quota_project_id, client_info=client_info, always_use_jwt_access=True)
6,203,537,695,892,571,000
Instantiates the feed service client. Args: credentials (Optional[google.auth.credentials.Credentials]): The authorization credentials to attach to requests. These credentials identify the application to the service; if none are specified, the client will attempt to ascertain the credentials from the environment. transport (Union[str, FeedServiceTransport]): The transport to use. If set to None, a transport is chosen automatically. client_options (google.api_core.client_options.ClientOptions): Custom options for the client. It won't take effect if a ``transport`` instance is provided. (1) The ``api_endpoint`` property can be used to override the default endpoint provided by the client. GOOGLE_API_USE_MTLS_ENDPOINT environment variable can also be used to override the endpoint: "always" (always use the default mTLS endpoint), "never" (always use the default regular endpoint) and "auto" (auto switch to the default mTLS endpoint if client certificate is present, this is the default value). However, the ``api_endpoint`` property takes precedence if provided. (2) If GOOGLE_API_USE_CLIENT_CERTIFICATE environment variable is "true", then the ``client_cert_source`` property can be used to provide client certificate for mutual TLS transport. If not provided, the default SSL client certificate will be used if present. If GOOGLE_API_USE_CLIENT_CERTIFICATE is "false" or not set, no client certificate will be used. client_info (google.api_core.gapic_v1.client_info.ClientInfo): The client info used to send a user-agent string along with API requests. If ``None``, then default info will be used. Generally, you only need to set this if you're developing your own client library. Raises: google.auth.exceptions.MutualTLSChannelError: If mutual TLS transport creation failed for any reason.
google/ads/googleads/v10/services/services/feed_service/client.py
__init__
JakobSteixner/google-ads-python
python
def __init__(self, *, credentials: Optional[ga_credentials.Credentials]=None, transport: Union[(str, FeedServiceTransport, None)]=None, client_options: Optional[client_options_lib.ClientOptions]=None, client_info: gapic_v1.client_info.ClientInfo=DEFAULT_CLIENT_INFO) -> None: 'Instantiates the feed service client.\n\n Args:\n credentials (Optional[google.auth.credentials.Credentials]): The\n authorization credentials to attach to requests. These\n credentials identify the application to the service; if none\n are specified, the client will attempt to ascertain the\n credentials from the environment.\n transport (Union[str, FeedServiceTransport]): The\n transport to use. If set to None, a transport is chosen\n automatically.\n client_options (google.api_core.client_options.ClientOptions): Custom options for the\n client. It won\'t take effect if a ``transport`` instance is provided.\n (1) The ``api_endpoint`` property can be used to override the\n default endpoint provided by the client. GOOGLE_API_USE_MTLS_ENDPOINT\n environment variable can also be used to override the endpoint:\n "always" (always use the default mTLS endpoint), "never" (always\n use the default regular endpoint) and "auto" (auto switch to the\n default mTLS endpoint if client certificate is present, this is\n the default value). However, the ``api_endpoint`` property takes\n precedence if provided.\n (2) If GOOGLE_API_USE_CLIENT_CERTIFICATE environment variable\n is "true", then the ``client_cert_source`` property can be used\n to provide client certificate for mutual TLS transport. If\n not provided, the default SSL client certificate will be used if\n present. If GOOGLE_API_USE_CLIENT_CERTIFICATE is "false" or not\n set, no client certificate will be used.\n client_info (google.api_core.gapic_v1.client_info.ClientInfo):\n The client info used to send a user-agent string along with\n API requests. If ``None``, then default info will be used.\n Generally, you only need to set this if you\'re developing\n your own client library.\n\n Raises:\n google.auth.exceptions.MutualTLSChannelError: If mutual TLS transport\n creation failed for any reason.\n ' if isinstance(client_options, dict): client_options = client_options_lib.from_dict(client_options) if (client_options is None): client_options = client_options_lib.ClientOptions() if (os.getenv('GOOGLE_API_USE_CLIENT_CERTIFICATE', 'false') not in ('true', 'false')): raise ValueError('Environment variable `GOOGLE_API_USE_CLIENT_CERTIFICATE` must be either `true` or `false`') use_client_cert = (os.getenv('GOOGLE_API_USE_CLIENT_CERTIFICATE', 'false') == 'true') client_cert_source_func = None is_mtls = False if use_client_cert: if client_options.client_cert_source: is_mtls = True client_cert_source_func = client_options.client_cert_source else: is_mtls = mtls.has_default_client_cert_source() if is_mtls: client_cert_source_func = mtls.default_client_cert_source() else: client_cert_source_func = None if (client_options.api_endpoint is not None): api_endpoint = client_options.api_endpoint else: use_mtls_env = os.getenv('GOOGLE_API_USE_MTLS_ENDPOINT', 'auto') if (use_mtls_env == 'never'): api_endpoint = self.DEFAULT_ENDPOINT elif (use_mtls_env == 'always'): api_endpoint = self.DEFAULT_MTLS_ENDPOINT elif (use_mtls_env == 'auto'): api_endpoint = (self.DEFAULT_MTLS_ENDPOINT if is_mtls else self.DEFAULT_ENDPOINT) else: raise MutualTLSChannelError('Unsupported GOOGLE_API_USE_MTLS_ENDPOINT value. Accepted values: never, auto, always') if isinstance(transport, FeedServiceTransport): if (credentials or client_options.credentials_file): raise ValueError('When providing a transport instance, provide its credentials directly.') if client_options.scopes: raise ValueError('When providing a transport instance, provide its scopes directly.') self._transport = transport else: Transport = type(self).get_transport_class(transport) self._transport = Transport(credentials=credentials, credentials_file=client_options.credentials_file, host=api_endpoint, scopes=client_options.scopes, client_cert_source_for_mtls=client_cert_source_func, quota_project_id=client_options.quota_project_id, client_info=client_info, always_use_jwt_access=True)
def mutate_feeds(self, request: Union[(feed_service.MutateFeedsRequest, dict)]=None, *, customer_id: str=None, operations: Sequence[feed_service.FeedOperation]=None, retry: OptionalRetry=gapic_v1.method.DEFAULT, timeout: float=None, metadata: Sequence[Tuple[(str, str)]]=()) -> feed_service.MutateFeedsResponse: 'Creates, updates, or removes feeds. Operation statuses are\n returned.\n\n List of thrown errors: `AuthenticationError <>`__\n `AuthorizationError <>`__ `CollectionSizeError <>`__\n `DatabaseError <>`__ `DistinctError <>`__ `FeedError <>`__\n `FieldError <>`__ `FieldMaskError <>`__ `HeaderError <>`__\n `IdError <>`__ `InternalError <>`__ `ListOperationError <>`__\n `MutateError <>`__ `NewResourceCreationError <>`__\n `NotEmptyError <>`__ `NullError <>`__ `OperatorError <>`__\n `QuotaError <>`__ `RangeError <>`__ `RequestError <>`__\n `ResourceCountLimitExceededError <>`__ `SizeLimitError <>`__\n `StringFormatError <>`__ `StringLengthError <>`__\n\n Args:\n request (Union[google.ads.googleads.v10.services.types.MutateFeedsRequest, dict]):\n The request object. Request message for\n [FeedService.MutateFeeds][google.ads.googleads.v10.services.FeedService.MutateFeeds].\n customer_id (str):\n Required. The ID of the customer\n whose feeds are being modified.\n\n This corresponds to the ``customer_id`` field\n on the ``request`` instance; if ``request`` is provided, this\n should not be set.\n operations (Sequence[google.ads.googleads.v10.services.types.FeedOperation]):\n Required. The list of operations to\n perform on individual feeds.\n\n This corresponds to the ``operations`` field\n on the ``request`` instance; if ``request`` is provided, this\n should not be set.\n retry (google.api_core.retry.Retry): Designation of what errors, if any,\n should be retried.\n timeout (float): The timeout for this request.\n metadata (Sequence[Tuple[str, str]]): Strings which should be\n sent along with the request as metadata.\n\n Returns:\n google.ads.googleads.v10.services.types.MutateFeedsResponse:\n Response message for an feed mutate.\n ' has_flattened_params = any([customer_id, operations]) if ((request is not None) and has_flattened_params): raise ValueError('If the `request` argument is set, then none of the individual field arguments should be set.') if (not isinstance(request, feed_service.MutateFeedsRequest)): request = feed_service.MutateFeedsRequest(request) if (customer_id is not None): request.customer_id = customer_id if (operations is not None): request.operations = operations rpc = self._transport._wrapped_methods[self._transport.mutate_feeds] metadata = (tuple(metadata) + (gapic_v1.routing_header.to_grpc_metadata((('customer_id', request.customer_id),)),)) response = rpc(request, retry=retry, timeout=timeout, metadata=metadata) return response
-6,531,921,536,767,129,000
Creates, updates, or removes feeds. Operation statuses are returned. List of thrown errors: `AuthenticationError <>`__ `AuthorizationError <>`__ `CollectionSizeError <>`__ `DatabaseError <>`__ `DistinctError <>`__ `FeedError <>`__ `FieldError <>`__ `FieldMaskError <>`__ `HeaderError <>`__ `IdError <>`__ `InternalError <>`__ `ListOperationError <>`__ `MutateError <>`__ `NewResourceCreationError <>`__ `NotEmptyError <>`__ `NullError <>`__ `OperatorError <>`__ `QuotaError <>`__ `RangeError <>`__ `RequestError <>`__ `ResourceCountLimitExceededError <>`__ `SizeLimitError <>`__ `StringFormatError <>`__ `StringLengthError <>`__ Args: request (Union[google.ads.googleads.v10.services.types.MutateFeedsRequest, dict]): The request object. Request message for [FeedService.MutateFeeds][google.ads.googleads.v10.services.FeedService.MutateFeeds]. customer_id (str): Required. The ID of the customer whose feeds are being modified. This corresponds to the ``customer_id`` field on the ``request`` instance; if ``request`` is provided, this should not be set. operations (Sequence[google.ads.googleads.v10.services.types.FeedOperation]): Required. The list of operations to perform on individual feeds. This corresponds to the ``operations`` field on the ``request`` instance; if ``request`` is provided, this should not be set. retry (google.api_core.retry.Retry): Designation of what errors, if any, should be retried. timeout (float): The timeout for this request. metadata (Sequence[Tuple[str, str]]): Strings which should be sent along with the request as metadata. Returns: google.ads.googleads.v10.services.types.MutateFeedsResponse: Response message for an feed mutate.
google/ads/googleads/v10/services/services/feed_service/client.py
mutate_feeds
JakobSteixner/google-ads-python
python
def mutate_feeds(self, request: Union[(feed_service.MutateFeedsRequest, dict)]=None, *, customer_id: str=None, operations: Sequence[feed_service.FeedOperation]=None, retry: OptionalRetry=gapic_v1.method.DEFAULT, timeout: float=None, metadata: Sequence[Tuple[(str, str)]]=()) -> feed_service.MutateFeedsResponse: 'Creates, updates, or removes feeds. Operation statuses are\n returned.\n\n List of thrown errors: `AuthenticationError <>`__\n `AuthorizationError <>`__ `CollectionSizeError <>`__\n `DatabaseError <>`__ `DistinctError <>`__ `FeedError <>`__\n `FieldError <>`__ `FieldMaskError <>`__ `HeaderError <>`__\n `IdError <>`__ `InternalError <>`__ `ListOperationError <>`__\n `MutateError <>`__ `NewResourceCreationError <>`__\n `NotEmptyError <>`__ `NullError <>`__ `OperatorError <>`__\n `QuotaError <>`__ `RangeError <>`__ `RequestError <>`__\n `ResourceCountLimitExceededError <>`__ `SizeLimitError <>`__\n `StringFormatError <>`__ `StringLengthError <>`__\n\n Args:\n request (Union[google.ads.googleads.v10.services.types.MutateFeedsRequest, dict]):\n The request object. Request message for\n [FeedService.MutateFeeds][google.ads.googleads.v10.services.FeedService.MutateFeeds].\n customer_id (str):\n Required. The ID of the customer\n whose feeds are being modified.\n\n This corresponds to the ``customer_id`` field\n on the ``request`` instance; if ``request`` is provided, this\n should not be set.\n operations (Sequence[google.ads.googleads.v10.services.types.FeedOperation]):\n Required. The list of operations to\n perform on individual feeds.\n\n This corresponds to the ``operations`` field\n on the ``request`` instance; if ``request`` is provided, this\n should not be set.\n retry (google.api_core.retry.Retry): Designation of what errors, if any,\n should be retried.\n timeout (float): The timeout for this request.\n metadata (Sequence[Tuple[str, str]]): Strings which should be\n sent along with the request as metadata.\n\n Returns:\n google.ads.googleads.v10.services.types.MutateFeedsResponse:\n Response message for an feed mutate.\n ' has_flattened_params = any([customer_id, operations]) if ((request is not None) and has_flattened_params): raise ValueError('If the `request` argument is set, then none of the individual field arguments should be set.') if (not isinstance(request, feed_service.MutateFeedsRequest)): request = feed_service.MutateFeedsRequest(request) if (customer_id is not None): request.customer_id = customer_id if (operations is not None): request.operations = operations rpc = self._transport._wrapped_methods[self._transport.mutate_feeds] metadata = (tuple(metadata) + (gapic_v1.routing_header.to_grpc_metadata((('customer_id', request.customer_id),)),)) response = rpc(request, retry=retry, timeout=timeout, metadata=metadata) return response
def get_dataset_example_mnist(path_dataset, name_dataset, using_test_dataset): "\n read input images (vector), dump into \n '.pickle' format for next load, and return it as a numpy array.\n " flag_dataloaded = 0 if ((name_dataset != 'mnist_test_example') and (name_dataset != 'mnist_train_example')): raise Exception('You have provide the wrong dataset name or path, please check carefully') else: dataset_path_name = (path_dataset + name_dataset) if os.path.isfile(('%s.pickle' % dataset_path_name)): example = pickle.load(open(('%s.pickle' % dataset_path_name))) flag_dataloaded = 1 else: flag_datasetsource = (((os.path.isfile((path_dataset + 'train-images.idx3-ubyte')) & os.path.isfile((path_dataset + 'train-labels.idx1-ubyte'))) & os.path.isfile((path_dataset + 't10k-images.idx3-ubyte'))) & os.path.isfile((path_dataset + 't10k-labels.idx1-ubyte'))) if (flag_datasetsource == False): raise Exception(("You haven't downloaded the dataset into the %s!" % path_dataset)) else: if using_test_dataset: image = open((path_dataset + 't10k-images.idx3-ubyte'), 'rb') else: image = open((path_dataset + 'train-images.idx3-ubyte'), 'rb') image.read(4) num_image = unpack('>I', image.read(4))[0] height_image = unpack('>I', image.read(4))[0] length_image = unpack('>I', image.read(4))[0] example = np.zeros((num_image, height_image, length_image), dtype=np.uint8) for i in xrange(num_image): example[i] = [[unpack('>B', image.read(1))[0] for m in xrange(length_image)] for n in xrange(height_image)] pickle.dump(example, open(('%s.pickle' % dataset_path_name), 'wb')) flag_dataloaded = 1 if (flag_dataloaded == 0): raise Exception('Failed to load the required dataset, please check the name_dataset and other printed information!') else: return example
1,705,901,212,704,732,700
read input images (vector), dump into '.pickle' format for next load, and return it as a numpy array.
Spike generation/spike_recorder_focal.py
get_dataset_example_mnist
Mary-Shi/Three-SNN-learning-algorithms-in-Brian2
python
def get_dataset_example_mnist(path_dataset, name_dataset, using_test_dataset): "\n read input images (vector), dump into \n '.pickle' format for next load, and return it as a numpy array.\n " flag_dataloaded = 0 if ((name_dataset != 'mnist_test_example') and (name_dataset != 'mnist_train_example')): raise Exception('You have provide the wrong dataset name or path, please check carefully') else: dataset_path_name = (path_dataset + name_dataset) if os.path.isfile(('%s.pickle' % dataset_path_name)): example = pickle.load(open(('%s.pickle' % dataset_path_name))) flag_dataloaded = 1 else: flag_datasetsource = (((os.path.isfile((path_dataset + 'train-images.idx3-ubyte')) & os.path.isfile((path_dataset + 'train-labels.idx1-ubyte'))) & os.path.isfile((path_dataset + 't10k-images.idx3-ubyte'))) & os.path.isfile((path_dataset + 't10k-labels.idx1-ubyte'))) if (flag_datasetsource == False): raise Exception(("You haven't downloaded the dataset into the %s!" % path_dataset)) else: if using_test_dataset: image = open((path_dataset + 't10k-images.idx3-ubyte'), 'rb') else: image = open((path_dataset + 'train-images.idx3-ubyte'), 'rb') image.read(4) num_image = unpack('>I', image.read(4))[0] height_image = unpack('>I', image.read(4))[0] length_image = unpack('>I', image.read(4))[0] example = np.zeros((num_image, height_image, length_image), dtype=np.uint8) for i in xrange(num_image): example[i] = [[unpack('>B', image.read(1))[0] for m in xrange(length_image)] for n in xrange(height_image)] pickle.dump(example, open(('%s.pickle' % dataset_path_name), 'wb')) flag_dataloaded = 1 if (flag_dataloaded == 0): raise Exception('Failed to load the required dataset, please check the name_dataset and other printed information!') else: return example
def __init__(self, ids=None, all=None): 'ReopenChatsBulkInputObject - a model defined in Swagger' self._ids = None self._all = None self.discriminator = None if (ids is not None): self.ids = ids if (all is not None): self.all = all
-6,425,159,068,889,383,000
ReopenChatsBulkInputObject - a model defined in Swagger
TextMagic/models/reopen_chats_bulk_input_object.py
__init__
imissyouso/textmagic-rest-python
python
def __init__(self, ids=None, all=None): self._ids = None self._all = None self.discriminator = None if (ids is not None): self.ids = ids if (all is not None): self.all = all
@property def ids(self): 'Gets the ids of this ReopenChatsBulkInputObject. # noqa: E501\n\n Entity ID(s), separated by comma # noqa: E501\n\n :return: The ids of this ReopenChatsBulkInputObject. # noqa: E501\n :rtype: str\n ' return self._ids
2,342,970,719,951,745,500
Gets the ids of this ReopenChatsBulkInputObject. # noqa: E501 Entity ID(s), separated by comma # noqa: E501 :return: The ids of this ReopenChatsBulkInputObject. # noqa: E501 :rtype: str
TextMagic/models/reopen_chats_bulk_input_object.py
ids
imissyouso/textmagic-rest-python
python
@property def ids(self): 'Gets the ids of this ReopenChatsBulkInputObject. # noqa: E501\n\n Entity ID(s), separated by comma # noqa: E501\n\n :return: The ids of this ReopenChatsBulkInputObject. # noqa: E501\n :rtype: str\n ' return self._ids
@ids.setter def ids(self, ids): 'Sets the ids of this ReopenChatsBulkInputObject.\n\n Entity ID(s), separated by comma # noqa: E501\n\n :param ids: The ids of this ReopenChatsBulkInputObject. # noqa: E501\n :type: str\n ' self._ids = ids
2,659,760,497,009,166,300
Sets the ids of this ReopenChatsBulkInputObject. Entity ID(s), separated by comma # noqa: E501 :param ids: The ids of this ReopenChatsBulkInputObject. # noqa: E501 :type: str
TextMagic/models/reopen_chats_bulk_input_object.py
ids
imissyouso/textmagic-rest-python
python
@ids.setter def ids(self, ids): 'Sets the ids of this ReopenChatsBulkInputObject.\n\n Entity ID(s), separated by comma # noqa: E501\n\n :param ids: The ids of this ReopenChatsBulkInputObject. # noqa: E501\n :type: str\n ' self._ids = ids
@property def all(self): 'Gets the all of this ReopenChatsBulkInputObject. # noqa: E501\n\n Entity ID(s), separated by comma # noqa: E501\n\n :return: The all of this ReopenChatsBulkInputObject. # noqa: E501\n :rtype: bool\n ' return self._all
-6,900,661,991,682,295,000
Gets the all of this ReopenChatsBulkInputObject. # noqa: E501 Entity ID(s), separated by comma # noqa: E501 :return: The all of this ReopenChatsBulkInputObject. # noqa: E501 :rtype: bool
TextMagic/models/reopen_chats_bulk_input_object.py
all
imissyouso/textmagic-rest-python
python
@property def all(self): 'Gets the all of this ReopenChatsBulkInputObject. # noqa: E501\n\n Entity ID(s), separated by comma # noqa: E501\n\n :return: The all of this ReopenChatsBulkInputObject. # noqa: E501\n :rtype: bool\n ' return self._all
@all.setter def all(self, all): 'Sets the all of this ReopenChatsBulkInputObject.\n\n Entity ID(s), separated by comma # noqa: E501\n\n :param all: The all of this ReopenChatsBulkInputObject. # noqa: E501\n :type: bool\n ' self._all = all
-2,739,928,420,086,622,700
Sets the all of this ReopenChatsBulkInputObject. Entity ID(s), separated by comma # noqa: E501 :param all: The all of this ReopenChatsBulkInputObject. # noqa: E501 :type: bool
TextMagic/models/reopen_chats_bulk_input_object.py
all
imissyouso/textmagic-rest-python
python
@all.setter def all(self, all): 'Sets the all of this ReopenChatsBulkInputObject.\n\n Entity ID(s), separated by comma # noqa: E501\n\n :param all: The all of this ReopenChatsBulkInputObject. # noqa: E501\n :type: bool\n ' self._all = all
def to_dict(self): 'Returns the model properties as a dict' result = {} for (attr, _) in six.iteritems(self.swagger_types): value = getattr(self, attr) if isinstance(value, list): result[attr] = list(map((lambda x: (x.to_dict() if hasattr(x, 'to_dict') else x)), value)) elif hasattr(value, 'to_dict'): result[attr] = value.to_dict() elif isinstance(value, dict): result[attr] = dict(map((lambda item: ((item[0], item[1].to_dict()) if hasattr(item[1], 'to_dict') else item)), value.items())) else: result[attr] = value if issubclass(ReopenChatsBulkInputObject, dict): for (key, value) in self.items(): result[key] = value return result
-7,274,731,641,055,568,000
Returns the model properties as a dict
TextMagic/models/reopen_chats_bulk_input_object.py
to_dict
imissyouso/textmagic-rest-python
python
def to_dict(self): result = {} for (attr, _) in six.iteritems(self.swagger_types): value = getattr(self, attr) if isinstance(value, list): result[attr] = list(map((lambda x: (x.to_dict() if hasattr(x, 'to_dict') else x)), value)) elif hasattr(value, 'to_dict'): result[attr] = value.to_dict() elif isinstance(value, dict): result[attr] = dict(map((lambda item: ((item[0], item[1].to_dict()) if hasattr(item[1], 'to_dict') else item)), value.items())) else: result[attr] = value if issubclass(ReopenChatsBulkInputObject, dict): for (key, value) in self.items(): result[key] = value return result
def to_str(self): 'Returns the string representation of the model' return pprint.pformat(self.to_dict())
5,849,158,643,760,736,000
Returns the string representation of the model
TextMagic/models/reopen_chats_bulk_input_object.py
to_str
imissyouso/textmagic-rest-python
python
def to_str(self): return pprint.pformat(self.to_dict())
def __repr__(self): 'For `print` and `pprint`' return self.to_str()
-8,960,031,694,814,905,000
For `print` and `pprint`
TextMagic/models/reopen_chats_bulk_input_object.py
__repr__
imissyouso/textmagic-rest-python
python
def __repr__(self): return self.to_str()
def __eq__(self, other): 'Returns true if both objects are equal' if (not isinstance(other, ReopenChatsBulkInputObject)): return False return (self.__dict__ == other.__dict__)
2,073,027,835,143,942,100
Returns true if both objects are equal
TextMagic/models/reopen_chats_bulk_input_object.py
__eq__
imissyouso/textmagic-rest-python
python
def __eq__(self, other): if (not isinstance(other, ReopenChatsBulkInputObject)): return False return (self.__dict__ == other.__dict__)
def __ne__(self, other): 'Returns true if both objects are not equal' return (not (self == other))
7,764,124,047,908,058,000
Returns true if both objects are not equal
TextMagic/models/reopen_chats_bulk_input_object.py
__ne__
imissyouso/textmagic-rest-python
python
def __ne__(self, other): return (not (self == other))
def test_existingfile(self): 'Test the value-type interface for existing files.' self.assertTrue(isinstance(test_init_file, ExistingFile)) self.assertFalse(isinstance(example_dir, ExistingFile)) self.assertTrue((ExistingFile(test_init_file) == test_init_file)) self.assertRaises(TypeError, ExistingFile, 12) self.assertRaises(IOError, ExistingFile, 'wargarbl') self.assertRaises(IOError, ExistingFile, nonexistant_dir)
8,421,076,213,231,692,000
Test the value-type interface for existing files.
funkyvalidate/tests/test_interfaces.py
test_existingfile
OaklandPeters/funkyvalidate
python
def test_existingfile(self): self.assertTrue(isinstance(test_init_file, ExistingFile)) self.assertFalse(isinstance(example_dir, ExistingFile)) self.assertTrue((ExistingFile(test_init_file) == test_init_file)) self.assertRaises(TypeError, ExistingFile, 12) self.assertRaises(IOError, ExistingFile, 'wargarbl') self.assertRaises(IOError, ExistingFile, nonexistant_dir)
def test_also_class(self): '\n AlsoClass does not meet the interface as a class, but does once instantiated.\n ' self.assertFalse(meets(AlsoClass, MyInterface)) self.assertTrue(meets(also, MyInterface)) self.assertTrue(isinstance(also, MyInterface)) self.assertFalse(issubclass(AlsoClass, MyInterface))
-6,897,244,198,216,044,000
AlsoClass does not meet the interface as a class, but does once instantiated.
funkyvalidate/tests/test_interfaces.py
test_also_class
OaklandPeters/funkyvalidate
python
def test_also_class(self): '\n \n ' self.assertFalse(meets(AlsoClass, MyInterface)) self.assertTrue(meets(also, MyInterface)) self.assertTrue(isinstance(also, MyInterface)) self.assertFalse(issubclass(AlsoClass, MyInterface))
def test_yes_class(self): 'Meets interface' self.assertTrue(meets(YesClass, MyInterface)) self.assertTrue(meets(yes, MyInterface)) self.assertTrue(isinstance(yes, MyInterface)) self.assertTrue(issubclass(YesClass, MyInterface))
2,077,394,470,763,701,800
Meets interface
funkyvalidate/tests/test_interfaces.py
test_yes_class
OaklandPeters/funkyvalidate
python
def test_yes_class(self): self.assertTrue(meets(YesClass, MyInterface)) self.assertTrue(meets(yes, MyInterface)) self.assertTrue(isinstance(yes, MyInterface)) self.assertTrue(issubclass(YesClass, MyInterface))
def test_no_class(self): 'Does not meet interface.' self.assertFalse(meets(NoClass, MyInterface)) self.assertFalse(meets(no, MyInterface)) self.assertFalse(isinstance(no, MyInterface)) self.assertFalse(issubclass(NoClass, MyInterface))
-2,814,324,874,312,452,600
Does not meet interface.
funkyvalidate/tests/test_interfaces.py
test_no_class
OaklandPeters/funkyvalidate
python
def test_no_class(self): self.assertFalse(meets(NoClass, MyInterface)) self.assertFalse(meets(no, MyInterface)) self.assertFalse(isinstance(no, MyInterface)) self.assertFalse(issubclass(NoClass, MyInterface))
def test_weird_class(self): 'Meets interface as class, but not as instance.\n This is strange - not something that would normally ever happen.' self.assertTrue(meets(WeirdClass, MyInterface)) self.assertFalse(meets(weird, MyInterface)) self.assertFalse(isinstance(weird, MyInterface)) self.assertTrue(issubclass(WeirdClass, MyInterface))
2,899,825,016,811,275,000
Meets interface as class, but not as instance. This is strange - not something that would normally ever happen.
funkyvalidate/tests/test_interfaces.py
test_weird_class
OaklandPeters/funkyvalidate
python
def test_weird_class(self): 'Meets interface as class, but not as instance.\n This is strange - not something that would normally ever happen.' self.assertTrue(meets(WeirdClass, MyInterface)) self.assertFalse(meets(weird, MyInterface)) self.assertFalse(isinstance(weird, MyInterface)) self.assertTrue(issubclass(WeirdClass, MyInterface))
def test_first_child_class(self): "First child inherits MyInterface, but does not implement\n it at all - so it can't be implemented." self.assertFalse(meets(FirstChild, MyInterface)) self.assertFalse(issubclass(FirstChild, MyInterface)) self.assertRaises(TypeError, FirstChild)
-8,241,776,168,538,306,000
First child inherits MyInterface, but does not implement it at all - so it can't be implemented.
funkyvalidate/tests/test_interfaces.py
test_first_child_class
OaklandPeters/funkyvalidate
python
def test_first_child_class(self): "First child inherits MyInterface, but does not implement\n it at all - so it can't be implemented." self.assertFalse(meets(FirstChild, MyInterface)) self.assertFalse(issubclass(FirstChild, MyInterface)) self.assertRaises(TypeError, FirstChild)
def test_second_child_class(self): 'Meets the interface inherited from its parent.' self.assertTrue(meets(SecondChild, MyInterface)) self.assertTrue(meets(second_child, MyInterface)) self.assertTrue(isinstance(second_child, MyInterface)) self.assertTrue(issubclass(SecondChild, MyInterface))
8,394,721,034,577,703,000
Meets the interface inherited from its parent.
funkyvalidate/tests/test_interfaces.py
test_second_child_class
OaklandPeters/funkyvalidate
python
def test_second_child_class(self): self.assertTrue(meets(SecondChild, MyInterface)) self.assertTrue(meets(second_child, MyInterface)) self.assertTrue(isinstance(second_child, MyInterface)) self.assertTrue(issubclass(SecondChild, MyInterface))
def test_commutative(self): '\n AlsoClass does not meet the interface as a class, but does once instantiated.\n ' self.assertFalse(meets(CommutativeFirst, MyInterface)) self.assertTrue(meets(CommutativeSecond, MyInterface)) self.assertTrue(meets(commutative, MyInterface)) self.assertTrue(isinstance(commutative, MyInterface)) self.assertFalse(issubclass(CommutativeFirst, MyInterface)) self.assertTrue(issubclass(CommutativeSecond, MyInterface)) self.assertRaises(TypeError, CommutativeFails)
-284,991,011,918,751,420
AlsoClass does not meet the interface as a class, but does once instantiated.
funkyvalidate/tests/test_interfaces.py
test_commutative
OaklandPeters/funkyvalidate
python
def test_commutative(self): '\n \n ' self.assertFalse(meets(CommutativeFirst, MyInterface)) self.assertTrue(meets(CommutativeSecond, MyInterface)) self.assertTrue(meets(commutative, MyInterface)) self.assertTrue(isinstance(commutative, MyInterface)) self.assertFalse(issubclass(CommutativeFirst, MyInterface)) self.assertTrue(issubclass(CommutativeSecond, MyInterface)) self.assertRaises(TypeError, CommutativeFails)
def _check_lb_service_on_router(self, resource, event, trigger, payload=None): 'Prevent removing a router GW or deleting a router used by LB' router_id = payload.resource_id context = payload.context nsx_router_id = nsx_db.get_nsx_router_id(context.session, router_id) if (not nsx_router_id): return nsxlib = self.loadbalancer.core_plugin.nsxlib service_client = nsxlib.load_balancer.service lb_service = service_client.get_router_lb_service(nsx_router_id) if lb_service: msg = (_('Cannot delete a %s as it still has lb service attachment') % resource) raise n_exc.BadRequest(resource='lbaas-lb', msg=msg) core_plugin = self.loadbalancer.core_plugin router_subnets = core_plugin._load_router_subnet_cidrs_from_db(context.elevated(), router_id) subnet_ids = [subnet['id'] for subnet in router_subnets] if (subnet_ids and self._get_lb_ports(context.elevated(), subnet_ids)): msg = (_('Cannot delete a %s as it used by a loadbalancer') % resource) raise n_exc.BadRequest(resource='lbaas-lb', msg=msg)
4,377,462,731,415,190,500
Prevent removing a router GW or deleting a router used by LB
vmware_nsx/services/lbaas/nsx_v3/v2/lb_driver_v2.py
_check_lb_service_on_router
yebinama/vmware-nsx
python
def _check_lb_service_on_router(self, resource, event, trigger, payload=None): router_id = payload.resource_id context = payload.context nsx_router_id = nsx_db.get_nsx_router_id(context.session, router_id) if (not nsx_router_id): return nsxlib = self.loadbalancer.core_plugin.nsxlib service_client = nsxlib.load_balancer.service lb_service = service_client.get_router_lb_service(nsx_router_id) if lb_service: msg = (_('Cannot delete a %s as it still has lb service attachment') % resource) raise n_exc.BadRequest(resource='lbaas-lb', msg=msg) core_plugin = self.loadbalancer.core_plugin router_subnets = core_plugin._load_router_subnet_cidrs_from_db(context.elevated(), router_id) subnet_ids = [subnet['id'] for subnet in router_subnets] if (subnet_ids and self._get_lb_ports(context.elevated(), subnet_ids)): msg = (_('Cannot delete a %s as it used by a loadbalancer') % resource) raise n_exc.BadRequest(resource='lbaas-lb', msg=msg)
@staticmethod def add_args(parser): 'Add task-specific arguments to the parser.' parser.add_argument('data', help='colon separated path to data directories list, will be iterated upon during epochs in round-robin manner; however, valid and test data are always in the first directory to avoid the need for repeating them in all directories') parser.add_argument('-s', '--source-lang', default=None, metavar='SRC', help='source language') parser.add_argument('-t', '--target-lang', default=None, metavar='TARGET', help='target language') parser.add_argument('--load-alignments', action='store_true', help='load the binarized alignments') parser.add_argument('--left-pad-source', default='True', type=str, metavar='BOOL', help='pad the source on the left') parser.add_argument('--left-pad-target', default='False', type=str, metavar='BOOL', help='pad the target on the left') parser.add_argument('--max-source-positions', default=1024, type=int, metavar='N', help='max number of tokens in the source sequence') parser.add_argument('--max-target-positions', default=1024, type=int, metavar='N', help='max number of tokens in the target sequence') parser.add_argument('--upsample-primary', default=1, type=int, help='amount to upsample primary dataset') parser.add_argument('--truncate-source', action='store_true', default=False, help='truncate source to max-source-positions') parser.add_argument('--num-batch-buckets', default=0, type=int, metavar='N', help='if >0, then bucket source and target lengths into N buckets and pad accordingly; this is useful on TPUs to minimize the number of compilations') parser.add_argument('--eval-bleu', action='store_true', help='evaluation with BLEU scores') parser.add_argument('--eval-bleu-detok', type=str, default='space', help='detokenize before computing BLEU (e.g., "moses"); required if using --eval-bleu; use "space" to disable detokenization; see fairseq.data.encoders for other options') parser.add_argument('--eval-bleu-detok-args', type=str, metavar='JSON', help='args for building the tokenizer, if needed') parser.add_argument('--eval-tokenized-bleu', action='store_true', default=False, help='compute tokenized BLEU instead of sacrebleu') parser.add_argument('--eval-bleu-remove-bpe', nargs='?', const='@@ ', default=None, help='remove BPE before computing BLEU') parser.add_argument('--eval-bleu-args', type=str, metavar='JSON', help='generation args for BLUE scoring, e.g., \'{"beam": 4, "lenpen": 0.6}\'') parser.add_argument('--eval-bleu-print-samples', action='store_true', help='print sample generations during validation')
-838,882,436,355,435,300
Add task-specific arguments to the parser.
fairseq/tasks/translation.py
add_args
227514/Supervised-Simultaneous-MT
python
@staticmethod def add_args(parser): parser.add_argument('data', help='colon separated path to data directories list, will be iterated upon during epochs in round-robin manner; however, valid and test data are always in the first directory to avoid the need for repeating them in all directories') parser.add_argument('-s', '--source-lang', default=None, metavar='SRC', help='source language') parser.add_argument('-t', '--target-lang', default=None, metavar='TARGET', help='target language') parser.add_argument('--load-alignments', action='store_true', help='load the binarized alignments') parser.add_argument('--left-pad-source', default='True', type=str, metavar='BOOL', help='pad the source on the left') parser.add_argument('--left-pad-target', default='False', type=str, metavar='BOOL', help='pad the target on the left') parser.add_argument('--max-source-positions', default=1024, type=int, metavar='N', help='max number of tokens in the source sequence') parser.add_argument('--max-target-positions', default=1024, type=int, metavar='N', help='max number of tokens in the target sequence') parser.add_argument('--upsample-primary', default=1, type=int, help='amount to upsample primary dataset') parser.add_argument('--truncate-source', action='store_true', default=False, help='truncate source to max-source-positions') parser.add_argument('--num-batch-buckets', default=0, type=int, metavar='N', help='if >0, then bucket source and target lengths into N buckets and pad accordingly; this is useful on TPUs to minimize the number of compilations') parser.add_argument('--eval-bleu', action='store_true', help='evaluation with BLEU scores') parser.add_argument('--eval-bleu-detok', type=str, default='space', help='detokenize before computing BLEU (e.g., "moses"); required if using --eval-bleu; use "space" to disable detokenization; see fairseq.data.encoders for other options') parser.add_argument('--eval-bleu-detok-args', type=str, metavar='JSON', help='args for building the tokenizer, if needed') parser.add_argument('--eval-tokenized-bleu', action='store_true', default=False, help='compute tokenized BLEU instead of sacrebleu') parser.add_argument('--eval-bleu-remove-bpe', nargs='?', const='@@ ', default=None, help='remove BPE before computing BLEU') parser.add_argument('--eval-bleu-args', type=str, metavar='JSON', help='generation args for BLUE scoring, e.g., \'{"beam": 4, "lenpen": 0.6}\) parser.add_argument('--eval-bleu-print-samples', action='store_true', help='print sample generations during validation')
@classmethod def setup_task(cls, args, **kwargs): 'Setup the task (e.g., load dictionaries).\n\n Args:\n args (argparse.Namespace): parsed command-line arguments\n ' args.left_pad_source = utils.eval_bool(args.left_pad_source) args.left_pad_target = utils.eval_bool(args.left_pad_target) paths = utils.split_paths(args.data) assert (len(paths) > 0) if ((args.source_lang is None) or (args.target_lang is None)): (args.source_lang, args.target_lang) = data_utils.infer_language_pair(paths[0]) if ((args.source_lang is None) or (args.target_lang is None)): raise Exception('Could not infer language pair, please provide it explicitly') src_dict = cls.load_dictionary(os.path.join(paths[0], 'dict.{}.txt'.format(args.source_lang))) tgt_dict = cls.load_dictionary(os.path.join(paths[0], 'dict.{}.txt'.format(args.target_lang))) assert (src_dict.pad() == tgt_dict.pad()) assert (src_dict.eos() == tgt_dict.eos()) assert (src_dict.unk() == tgt_dict.unk()) logger.info('[{}] dictionary: {} types'.format(args.source_lang, len(src_dict))) logger.info('[{}] dictionary: {} types'.format(args.target_lang, len(tgt_dict))) return cls(args, src_dict, tgt_dict)
3,263,692,343,001,087,500
Setup the task (e.g., load dictionaries). Args: args (argparse.Namespace): parsed command-line arguments
fairseq/tasks/translation.py
setup_task
227514/Supervised-Simultaneous-MT
python
@classmethod def setup_task(cls, args, **kwargs): 'Setup the task (e.g., load dictionaries).\n\n Args:\n args (argparse.Namespace): parsed command-line arguments\n ' args.left_pad_source = utils.eval_bool(args.left_pad_source) args.left_pad_target = utils.eval_bool(args.left_pad_target) paths = utils.split_paths(args.data) assert (len(paths) > 0) if ((args.source_lang is None) or (args.target_lang is None)): (args.source_lang, args.target_lang) = data_utils.infer_language_pair(paths[0]) if ((args.source_lang is None) or (args.target_lang is None)): raise Exception('Could not infer language pair, please provide it explicitly') src_dict = cls.load_dictionary(os.path.join(paths[0], 'dict.{}.txt'.format(args.source_lang))) tgt_dict = cls.load_dictionary(os.path.join(paths[0], 'dict.{}.txt'.format(args.target_lang))) assert (src_dict.pad() == tgt_dict.pad()) assert (src_dict.eos() == tgt_dict.eos()) assert (src_dict.unk() == tgt_dict.unk()) logger.info('[{}] dictionary: {} types'.format(args.source_lang, len(src_dict))) logger.info('[{}] dictionary: {} types'.format(args.target_lang, len(tgt_dict))) return cls(args, src_dict, tgt_dict)
def load_dataset(self, split, epoch=1, combine=False, **kwargs): 'Load a given dataset split.\n\n Args:\n split (str): name of the split (e.g., train, valid, test)\n ' paths = utils.split_paths(self.args.data) assert (len(paths) > 0) if (split != getattr(self.args, 'train_subset', None)): paths = paths[:1] data_path = paths[((epoch - 1) % len(paths))] (src, tgt) = (self.args.source_lang, self.args.target_lang) self.datasets[split] = load_langpair_dataset(data_path, split, src, self.src_dict, tgt, self.tgt_dict, combine=combine, dataset_impl=self.args.dataset_impl, upsample_primary=self.args.upsample_primary, left_pad_source=self.args.left_pad_source, left_pad_target=self.args.left_pad_target, max_source_positions=self.args.max_source_positions, max_target_positions=self.args.max_target_positions, load_alignments=self.args.load_alignments, truncate_source=self.args.truncate_source, num_buckets=self.args.num_batch_buckets, shuffle=(split != 'test'), pad_to_multiple=self.args.required_seq_len_multiple)
-2,398,614,466,079,708,700
Load a given dataset split. Args: split (str): name of the split (e.g., train, valid, test)
fairseq/tasks/translation.py
load_dataset
227514/Supervised-Simultaneous-MT
python
def load_dataset(self, split, epoch=1, combine=False, **kwargs): 'Load a given dataset split.\n\n Args:\n split (str): name of the split (e.g., train, valid, test)\n ' paths = utils.split_paths(self.args.data) assert (len(paths) > 0) if (split != getattr(self.args, 'train_subset', None)): paths = paths[:1] data_path = paths[((epoch - 1) % len(paths))] (src, tgt) = (self.args.source_lang, self.args.target_lang) self.datasets[split] = load_langpair_dataset(data_path, split, src, self.src_dict, tgt, self.tgt_dict, combine=combine, dataset_impl=self.args.dataset_impl, upsample_primary=self.args.upsample_primary, left_pad_source=self.args.left_pad_source, left_pad_target=self.args.left_pad_target, max_source_positions=self.args.max_source_positions, max_target_positions=self.args.max_target_positions, load_alignments=self.args.load_alignments, truncate_source=self.args.truncate_source, num_buckets=self.args.num_batch_buckets, shuffle=(split != 'test'), pad_to_multiple=self.args.required_seq_len_multiple)
def max_positions(self): 'Return the max sentence length allowed by the task.' return (self.args.max_source_positions, self.args.max_target_positions)
-4,071,174,841,505,560,600
Return the max sentence length allowed by the task.
fairseq/tasks/translation.py
max_positions
227514/Supervised-Simultaneous-MT
python
def max_positions(self): return (self.args.max_source_positions, self.args.max_target_positions)
@property def source_dictionary(self): 'Return the source :class:`~fairseq.data.Dictionary`.' return self.src_dict
-1,949,164,681,595,292,000
Return the source :class:`~fairseq.data.Dictionary`.
fairseq/tasks/translation.py
source_dictionary
227514/Supervised-Simultaneous-MT
python
@property def source_dictionary(self): return self.src_dict
@property def target_dictionary(self): 'Return the target :class:`~fairseq.data.Dictionary`.' return self.tgt_dict
6,649,002,282,696,208,000
Return the target :class:`~fairseq.data.Dictionary`.
fairseq/tasks/translation.py
target_dictionary
227514/Supervised-Simultaneous-MT
python
@property def target_dictionary(self): return self.tgt_dict
def fix_data(self, string): '\n fix wrong tabs, spaces and backslashes\n fix @ in email addresses\n ' if (string is None): return None string = ' '.join(string.split()) return string.replace('\\', '').replace('|at|', '@').strip()
-2,851,419,339,054,188,000
fix wrong tabs, spaces and backslashes fix @ in email addresses
jedeschule/spiders/brandenburg.py
fix_data
MartinGer/jedeschule-scraper
python
def fix_data(self, string): '\n fix wrong tabs, spaces and backslashes\n fix @ in email addresses\n ' if (string is None): return None string = ' '.join(string.split()) return string.replace('\\', ).replace('|at|', '@').strip()
def _ParseJSON(self, json_str): 'Parses response JSON.' xssi_prefix = ")]}'\n" if json_str.startswith(xssi_prefix): json_str = json_str[len(xssi_prefix):] return json.loads(json_str)
-2,425,086,583,284,833,000
Parses response JSON.
grr/gui/api_regression_http.py
_ParseJSON
nickamon/grr
python
def _ParseJSON(self, json_str): xssi_prefix = ")]}'\n" if json_str.startswith(xssi_prefix): json_str = json_str[len(xssi_prefix):] return json.loads(json_str)
def _PrepareV1Request(self, method, args=None): 'Prepares API v1 request for a given method and args.' args_proto = None if args: args_proto = args.AsPrimitiveProto() request = self.connector.BuildRequest(method, args_proto) request.url = request.url.replace('/api/v2/', '/api/') if (args and request.data): body_proto = args.__class__().AsPrimitiveProto() json_format.Parse(request.data, body_proto) body_args = args.__class__() body_args.ParseFromString(body_proto.SerializeToString()) request.data = json.dumps(api_value_renderers.StripTypeInfo(api_value_renderers.RenderValue(body_args)), cls=http_api.JSONEncoderWithRDFPrimitivesSupport) prepped_request = request.prepare() return (request, prepped_request)
9,050,258,339,682,464,000
Prepares API v1 request for a given method and args.
grr/gui/api_regression_http.py
_PrepareV1Request
nickamon/grr
python
def _PrepareV1Request(self, method, args=None): args_proto = None if args: args_proto = args.AsPrimitiveProto() request = self.connector.BuildRequest(method, args_proto) request.url = request.url.replace('/api/v2/', '/api/') if (args and request.data): body_proto = args.__class__().AsPrimitiveProto() json_format.Parse(request.data, body_proto) body_args = args.__class__() body_args.ParseFromString(body_proto.SerializeToString()) request.data = json.dumps(api_value_renderers.StripTypeInfo(api_value_renderers.RenderValue(body_args)), cls=http_api.JSONEncoderWithRDFPrimitivesSupport) prepped_request = request.prepare() return (request, prepped_request)
def _PrepareV2Request(self, method, args=None): 'Prepares API v2 request for a given method and args.' args_proto = None if args: args_proto = args.AsPrimitiveProto() request = self.connector.BuildRequest(method, args_proto) prepped_request = request.prepare() return (request, prepped_request)
468,907,928,239,583,740
Prepares API v2 request for a given method and args.
grr/gui/api_regression_http.py
_PrepareV2Request
nickamon/grr
python
def _PrepareV2Request(self, method, args=None): args_proto = None if args: args_proto = args.AsPrimitiveProto() request = self.connector.BuildRequest(method, args_proto) prepped_request = request.prepare() return (request, prepped_request)
def HandleCheck(self, method_metadata, args=None, replace=None): 'Does regression check for given method, args and a replace function.' if (not replace): raise ValueError("replace can't be None") if (self.__class__.api_version == 1): (request, prepped_request) = self._PrepareV1Request(method_metadata.name, args=args) elif (self.__class__.api_version == 2): (request, prepped_request) = self._PrepareV2Request(method_metadata.name, args=args) else: raise ValueError('api_version may be only 1 or 2, not %d', flags.FLAGS.api_version) session = requests.Session() response = session.send(prepped_request) check_result = {'url': replace(prepped_request.path_url), 'method': request.method} if request.data: request_payload = self._ParseJSON(replace(request.data)) if request_payload: check_result['request_payload'] = request_payload if (method_metadata.result_type == api_call_router.RouterMethodMetadata.BINARY_STREAM_RESULT_TYPE): check_result['response'] = replace(utils.SmartUnicode(response.content)) else: check_result['response'] = self._ParseJSON(replace(response.content)) if (self.__class__.api_version == 1): stripped_response = api_value_renderers.StripTypeInfo(check_result['response']) if (stripped_response != check_result['response']): check_result['type_stripped_response'] = stripped_response return check_result
-4,304,341,262,135,034,400
Does regression check for given method, args and a replace function.
grr/gui/api_regression_http.py
HandleCheck
nickamon/grr
python
def HandleCheck(self, method_metadata, args=None, replace=None): if (not replace): raise ValueError("replace can't be None") if (self.__class__.api_version == 1): (request, prepped_request) = self._PrepareV1Request(method_metadata.name, args=args) elif (self.__class__.api_version == 2): (request, prepped_request) = self._PrepareV2Request(method_metadata.name, args=args) else: raise ValueError('api_version may be only 1 or 2, not %d', flags.FLAGS.api_version) session = requests.Session() response = session.send(prepped_request) check_result = {'url': replace(prepped_request.path_url), 'method': request.method} if request.data: request_payload = self._ParseJSON(replace(request.data)) if request_payload: check_result['request_payload'] = request_payload if (method_metadata.result_type == api_call_router.RouterMethodMetadata.BINARY_STREAM_RESULT_TYPE): check_result['response'] = replace(utils.SmartUnicode(response.content)) else: check_result['response'] = self._ParseJSON(replace(response.content)) if (self.__class__.api_version == 1): stripped_response = api_value_renderers.StripTypeInfo(check_result['response']) if (stripped_response != check_result['response']): check_result['type_stripped_response'] = stripped_response return check_result
def build_custom_pipeline(): 'Builds augmentation pipelines for custom data.\n If you want to do exoteric augmentations, you can just re-write this function.\n Needs to return a dict with the same structure.\n ' pipeline = {'T_train': transforms.Compose([transforms.RandomResizedCrop(size=224, scale=(0.08, 1.0)), transforms.RandomHorizontalFlip(), transforms.ToTensor(), transforms.Normalize(mean=(0.485, 0.456, 0.406), std=(0.228, 0.224, 0.225))]), 'T_val': transforms.Compose([transforms.Resize(256), transforms.CenterCrop(224), transforms.ToTensor(), transforms.Normalize(mean=(0.485, 0.456, 0.406), std=(0.228, 0.224, 0.225))])} return pipeline
7,593,910,056,718,802,000
Builds augmentation pipelines for custom data. If you want to do exoteric augmentations, you can just re-write this function. Needs to return a dict with the same structure.
solo/utils/classification_dataloader.py
build_custom_pipeline
fariasfc/solo-learn
python
def build_custom_pipeline(): 'Builds augmentation pipelines for custom data.\n If you want to do exoteric augmentations, you can just re-write this function.\n Needs to return a dict with the same structure.\n ' pipeline = {'T_train': transforms.Compose([transforms.RandomResizedCrop(size=224, scale=(0.08, 1.0)), transforms.RandomHorizontalFlip(), transforms.ToTensor(), transforms.Normalize(mean=(0.485, 0.456, 0.406), std=(0.228, 0.224, 0.225))]), 'T_val': transforms.Compose([transforms.Resize(256), transforms.CenterCrop(224), transforms.ToTensor(), transforms.Normalize(mean=(0.485, 0.456, 0.406), std=(0.228, 0.224, 0.225))])} return pipeline
def prepare_transforms(dataset: str) -> Tuple[(nn.Module, nn.Module)]: 'Prepares pre-defined train and test transformation pipelines for some datasets.\n\n Args:\n dataset (str): dataset name.\n\n Returns:\n Tuple[nn.Module, nn.Module]: training and validation transformation pipelines.\n ' cifar_pipeline = {'T_train': transforms.Compose([transforms.RandomResizedCrop(size=32, scale=(0.08, 1.0)), transforms.RandomHorizontalFlip(), transforms.ToTensor(), transforms.Normalize((0.4914, 0.4822, 0.4465), (0.247, 0.243, 0.261))]), 'T_val': transforms.Compose([transforms.ToTensor(), transforms.Normalize((0.4914, 0.4822, 0.4465), (0.247, 0.243, 0.261))])} stl_pipeline = {'T_train': transforms.Compose([transforms.RandomResizedCrop(size=96, scale=(0.08, 1.0)), transforms.RandomHorizontalFlip(), transforms.ToTensor(), transforms.Normalize((0.4914, 0.4823, 0.4466), (0.247, 0.243, 0.261))]), 'T_val': transforms.Compose([transforms.Resize((96, 96)), transforms.ToTensor(), transforms.Normalize((0.4914, 0.4823, 0.4466), (0.247, 0.243, 0.261))])} imagenet_pipeline = {'T_train': transforms.Compose([transforms.RandomResizedCrop(size=224, scale=(0.08, 1.0)), transforms.RandomHorizontalFlip(), transforms.ToTensor(), transforms.Normalize(mean=(0.485, 0.456, 0.406), std=(0.228, 0.224, 0.225))]), 'T_val': transforms.Compose([transforms.Resize(256), transforms.CenterCrop(224), transforms.ToTensor(), transforms.Normalize(mean=(0.485, 0.456, 0.406), std=(0.228, 0.224, 0.225))])} custom_pipeline = build_custom_pipeline() pipelines = {'cifar10': cifar_pipeline, 'cifar100': cifar_pipeline, 'stl10': stl_pipeline, 'imagenet100': imagenet_pipeline, 'imagenet': imagenet_pipeline, 'custom': custom_pipeline} assert (dataset in pipelines) pipeline = pipelines[dataset] T_train = pipeline['T_train'] T_val = pipeline['T_val'] return (T_train, T_val)
3,955,566,528,712,637,000
Prepares pre-defined train and test transformation pipelines for some datasets. Args: dataset (str): dataset name. Returns: Tuple[nn.Module, nn.Module]: training and validation transformation pipelines.
solo/utils/classification_dataloader.py
prepare_transforms
fariasfc/solo-learn
python
def prepare_transforms(dataset: str) -> Tuple[(nn.Module, nn.Module)]: 'Prepares pre-defined train and test transformation pipelines for some datasets.\n\n Args:\n dataset (str): dataset name.\n\n Returns:\n Tuple[nn.Module, nn.Module]: training and validation transformation pipelines.\n ' cifar_pipeline = {'T_train': transforms.Compose([transforms.RandomResizedCrop(size=32, scale=(0.08, 1.0)), transforms.RandomHorizontalFlip(), transforms.ToTensor(), transforms.Normalize((0.4914, 0.4822, 0.4465), (0.247, 0.243, 0.261))]), 'T_val': transforms.Compose([transforms.ToTensor(), transforms.Normalize((0.4914, 0.4822, 0.4465), (0.247, 0.243, 0.261))])} stl_pipeline = {'T_train': transforms.Compose([transforms.RandomResizedCrop(size=96, scale=(0.08, 1.0)), transforms.RandomHorizontalFlip(), transforms.ToTensor(), transforms.Normalize((0.4914, 0.4823, 0.4466), (0.247, 0.243, 0.261))]), 'T_val': transforms.Compose([transforms.Resize((96, 96)), transforms.ToTensor(), transforms.Normalize((0.4914, 0.4823, 0.4466), (0.247, 0.243, 0.261))])} imagenet_pipeline = {'T_train': transforms.Compose([transforms.RandomResizedCrop(size=224, scale=(0.08, 1.0)), transforms.RandomHorizontalFlip(), transforms.ToTensor(), transforms.Normalize(mean=(0.485, 0.456, 0.406), std=(0.228, 0.224, 0.225))]), 'T_val': transforms.Compose([transforms.Resize(256), transforms.CenterCrop(224), transforms.ToTensor(), transforms.Normalize(mean=(0.485, 0.456, 0.406), std=(0.228, 0.224, 0.225))])} custom_pipeline = build_custom_pipeline() pipelines = {'cifar10': cifar_pipeline, 'cifar100': cifar_pipeline, 'stl10': stl_pipeline, 'imagenet100': imagenet_pipeline, 'imagenet': imagenet_pipeline, 'custom': custom_pipeline} assert (dataset in pipelines) pipeline = pipelines[dataset] T_train = pipeline['T_train'] T_val = pipeline['T_val'] return (T_train, T_val)
def prepare_datasets(dataset: str, T_train: Callable, T_val: Callable, data_dir: Optional[Union[(str, Path)]]=None, train_dir: Optional[Union[(str, Path)]]=None, val_dir: Optional[Union[(str, Path)]]=None) -> Tuple[(Dataset, Dataset)]: 'Prepares train and val datasets.\n\n Args:\n dataset (str): dataset name.\n T_train (Callable): pipeline of transformations for training dataset.\n T_val (Callable): pipeline of transformations for validation dataset.\n data_dir Optional[Union[str, Path]]: path where to download/locate the dataset.\n train_dir Optional[Union[str, Path]]: subpath where the training data is located.\n val_dir Optional[Union[str, Path]]: subpath where the validation data is located.\n\n Returns:\n Tuple[Dataset, Dataset]: training dataset and validation dataset.\n ' if (data_dir is None): sandbox_dir = Path(os.path.dirname(os.path.dirname(os.path.realpath(__file__)))) data_dir = (sandbox_dir / 'datasets') else: data_dir = Path(data_dir) if (train_dir is None): train_dir = Path(f'{dataset}/train') else: train_dir = Path(train_dir) if (val_dir is None): val_dir = Path(f'{dataset}/val') else: val_dir = Path(val_dir) assert (dataset in ['cifar10', 'cifar100', 'stl10', 'imagenet', 'imagenet100', 'custom']) if (dataset in ['cifar10', 'cifar100']): DatasetClass = vars(torchvision.datasets)[dataset.upper()] train_dataset = DatasetClass((data_dir / train_dir), train=True, download=True, transform=T_train) val_dataset = DatasetClass((data_dir / val_dir), train=False, download=True, transform=T_val) elif (dataset == 'stl10'): train_dataset = STL10((data_dir / train_dir), split='train', download=True, transform=T_train) val_dataset = STL10((data_dir / val_dir), split='test', download=True, transform=T_val) elif (dataset in ['imagenet', 'imagenet100', 'custom']): train_dir = (data_dir / train_dir) val_dir = (data_dir / val_dir) train_dataset = ImageFolder(train_dir, T_train) val_dataset = ImageFolder(val_dir, T_val) return (train_dataset, val_dataset)
-3,492,522,221,009,874,000
Prepares train and val datasets. Args: dataset (str): dataset name. T_train (Callable): pipeline of transformations for training dataset. T_val (Callable): pipeline of transformations for validation dataset. data_dir Optional[Union[str, Path]]: path where to download/locate the dataset. train_dir Optional[Union[str, Path]]: subpath where the training data is located. val_dir Optional[Union[str, Path]]: subpath where the validation data is located. Returns: Tuple[Dataset, Dataset]: training dataset and validation dataset.
solo/utils/classification_dataloader.py
prepare_datasets
fariasfc/solo-learn
python
def prepare_datasets(dataset: str, T_train: Callable, T_val: Callable, data_dir: Optional[Union[(str, Path)]]=None, train_dir: Optional[Union[(str, Path)]]=None, val_dir: Optional[Union[(str, Path)]]=None) -> Tuple[(Dataset, Dataset)]: 'Prepares train and val datasets.\n\n Args:\n dataset (str): dataset name.\n T_train (Callable): pipeline of transformations for training dataset.\n T_val (Callable): pipeline of transformations for validation dataset.\n data_dir Optional[Union[str, Path]]: path where to download/locate the dataset.\n train_dir Optional[Union[str, Path]]: subpath where the training data is located.\n val_dir Optional[Union[str, Path]]: subpath where the validation data is located.\n\n Returns:\n Tuple[Dataset, Dataset]: training dataset and validation dataset.\n ' if (data_dir is None): sandbox_dir = Path(os.path.dirname(os.path.dirname(os.path.realpath(__file__)))) data_dir = (sandbox_dir / 'datasets') else: data_dir = Path(data_dir) if (train_dir is None): train_dir = Path(f'{dataset}/train') else: train_dir = Path(train_dir) if (val_dir is None): val_dir = Path(f'{dataset}/val') else: val_dir = Path(val_dir) assert (dataset in ['cifar10', 'cifar100', 'stl10', 'imagenet', 'imagenet100', 'custom']) if (dataset in ['cifar10', 'cifar100']): DatasetClass = vars(torchvision.datasets)[dataset.upper()] train_dataset = DatasetClass((data_dir / train_dir), train=True, download=True, transform=T_train) val_dataset = DatasetClass((data_dir / val_dir), train=False, download=True, transform=T_val) elif (dataset == 'stl10'): train_dataset = STL10((data_dir / train_dir), split='train', download=True, transform=T_train) val_dataset = STL10((data_dir / val_dir), split='test', download=True, transform=T_val) elif (dataset in ['imagenet', 'imagenet100', 'custom']): train_dir = (data_dir / train_dir) val_dir = (data_dir / val_dir) train_dataset = ImageFolder(train_dir, T_train) val_dataset = ImageFolder(val_dir, T_val) return (train_dataset, val_dataset)
def prepare_dataloaders(train_dataset: Dataset, val_dataset: Dataset, batch_size: int=64, num_workers: int=4) -> Tuple[(DataLoader, DataLoader)]: 'Wraps a train and a validation dataset with a DataLoader.\n\n Args:\n train_dataset (Dataset): object containing training data.\n val_dataset (Dataset): object containing validation data.\n batch_size (int): batch size.\n num_workers (int): number of parallel workers.\n Returns:\n Tuple[DataLoader, DataLoader]: training dataloader and validation dataloader.\n ' train_loader = DataLoader(train_dataset, batch_size=batch_size, shuffle=True, num_workers=num_workers, pin_memory=True, drop_last=True) val_loader = DataLoader(val_dataset, batch_size=batch_size, num_workers=num_workers, pin_memory=True, drop_last=False) return (train_loader, val_loader)
3,297,220,022,688,808,000
Wraps a train and a validation dataset with a DataLoader. Args: train_dataset (Dataset): object containing training data. val_dataset (Dataset): object containing validation data. batch_size (int): batch size. num_workers (int): number of parallel workers. Returns: Tuple[DataLoader, DataLoader]: training dataloader and validation dataloader.
solo/utils/classification_dataloader.py
prepare_dataloaders
fariasfc/solo-learn
python
def prepare_dataloaders(train_dataset: Dataset, val_dataset: Dataset, batch_size: int=64, num_workers: int=4) -> Tuple[(DataLoader, DataLoader)]: 'Wraps a train and a validation dataset with a DataLoader.\n\n Args:\n train_dataset (Dataset): object containing training data.\n val_dataset (Dataset): object containing validation data.\n batch_size (int): batch size.\n num_workers (int): number of parallel workers.\n Returns:\n Tuple[DataLoader, DataLoader]: training dataloader and validation dataloader.\n ' train_loader = DataLoader(train_dataset, batch_size=batch_size, shuffle=True, num_workers=num_workers, pin_memory=True, drop_last=True) val_loader = DataLoader(val_dataset, batch_size=batch_size, num_workers=num_workers, pin_memory=True, drop_last=False) return (train_loader, val_loader)
def prepare_data(dataset: str, transform: Optional[Callable]=None, data_dir: Optional[Union[(str, Path)]]=None, train_dir: Optional[Union[(str, Path)]]=None, val_dir: Optional[Union[(str, Path)]]=None, batch_size: int=64, num_workers: int=4) -> Tuple[(DataLoader, DataLoader)]: 'Prepares transformations, creates dataset objects and wraps them in dataloaders.\n\n Args:\n dataset (str): dataset name.\n data_dir (Optional[Union[str, Path]], optional): path where to download/locate the dataset.\n Defaults to None.\n train_dir (Optional[Union[str, Path]], optional): subpath where the\n training data is located. Defaults to None.\n val_dir (Optional[Union[str, Path]], optional): subpath where the\n validation data is located. Defaults to None.\n batch_size (int, optional): batch size. Defaults to 64.\n num_workers (int, optional): number of parallel workers. Defaults to 4.\n\n Returns:\n Tuple[DataLoader, DataLoader]: prepared training and validation dataloader;.\n ' if (transform is None): (T_train, T_val) = prepare_transforms(dataset) else: T_train = transform T_val = transform (train_dataset, val_dataset) = prepare_datasets(dataset, T_train, T_val, data_dir=data_dir, train_dir=train_dir, val_dir=val_dir) (train_loader, val_loader) = prepare_dataloaders(train_dataset, val_dataset, batch_size=batch_size, num_workers=num_workers) return (train_loader, val_loader)
6,450,852,906,138,120,000
Prepares transformations, creates dataset objects and wraps them in dataloaders. Args: dataset (str): dataset name. data_dir (Optional[Union[str, Path]], optional): path where to download/locate the dataset. Defaults to None. train_dir (Optional[Union[str, Path]], optional): subpath where the training data is located. Defaults to None. val_dir (Optional[Union[str, Path]], optional): subpath where the validation data is located. Defaults to None. batch_size (int, optional): batch size. Defaults to 64. num_workers (int, optional): number of parallel workers. Defaults to 4. Returns: Tuple[DataLoader, DataLoader]: prepared training and validation dataloader;.
solo/utils/classification_dataloader.py
prepare_data
fariasfc/solo-learn
python
def prepare_data(dataset: str, transform: Optional[Callable]=None, data_dir: Optional[Union[(str, Path)]]=None, train_dir: Optional[Union[(str, Path)]]=None, val_dir: Optional[Union[(str, Path)]]=None, batch_size: int=64, num_workers: int=4) -> Tuple[(DataLoader, DataLoader)]: 'Prepares transformations, creates dataset objects and wraps them in dataloaders.\n\n Args:\n dataset (str): dataset name.\n data_dir (Optional[Union[str, Path]], optional): path where to download/locate the dataset.\n Defaults to None.\n train_dir (Optional[Union[str, Path]], optional): subpath where the\n training data is located. Defaults to None.\n val_dir (Optional[Union[str, Path]], optional): subpath where the\n validation data is located. Defaults to None.\n batch_size (int, optional): batch size. Defaults to 64.\n num_workers (int, optional): number of parallel workers. Defaults to 4.\n\n Returns:\n Tuple[DataLoader, DataLoader]: prepared training and validation dataloader;.\n ' if (transform is None): (T_train, T_val) = prepare_transforms(dataset) else: T_train = transform T_val = transform (train_dataset, val_dataset) = prepare_datasets(dataset, T_train, T_val, data_dir=data_dir, train_dir=train_dir, val_dir=val_dir) (train_loader, val_loader) = prepare_dataloaders(train_dataset, val_dataset, batch_size=batch_size, num_workers=num_workers) return (train_loader, val_loader)
@bot.slash() async def counter(ctx: commands.Context): 'Starts a counter for pressing.' (await ctx.send('Press!', view=EphemeralCounter()))
-4,987,862,953,905,894,000
Starts a counter for pressing.
examples/views/ephemeral.py
counter
NextChai/discord.py
python
@bot.slash() async def counter(ctx: commands.Context): (await ctx.send('Press!', view=EphemeralCounter()))
def build_fsm_spec_4_state(direction_logic_value): 'Build an FSM spec with 4 states.\n\n The FSM built has 2 inputs, 1 output, and 4 states. It acts like a \n 2-bit counter, where the output goes to high only if the FSM is in the \n final state.\n\n When the direction pin is low, the counter counts up; if it is high, the\n counter counts down.\n\n Parameters\n ----------\n direction_logic_value : int\n The logic value of the direction pin.\n Returns\n -------\n dict\n The FSM spec that can be consumed by the FSM generator.\n list\n The output pattern corresponding to the direction value.\n list\n The state bit0 pattern corresponding to the direction value.\n list\n The state bit1 pattern corresponding to the direction value.\n\n ' (out, rst, direction) = list(pin_dict.keys())[0:3] fsm_spec_4_state = {'inputs': [('rst', rst), ('direction', direction)], 'outputs': [('test', out)], 'states': ['S0', 'S1', 'S2', 'S3'], 'transitions': [['00', 'S0', 'S1', '0'], ['01', 'S0', 'S3', '0'], ['00', 'S1', 'S2', '0'], ['01', 'S1', 'S0', '0'], ['00', 'S2', 'S3', '0'], ['01', 'S2', 'S1', '0'], ['00', 'S3', 'S0', '1'], ['01', 'S3', 'S2', '1'], ['1-', '*', 'S0', '']]} if (not direction_logic_value): output_pattern = [0, 0, 0, 1] state_bit0_pattern = [0, 1, 0, 1] state_bit1_pattern = [0, 0, 1, 1] else: output_pattern = [0, 1, 0, 0] state_bit0_pattern = [0, 1, 0, 1] state_bit1_pattern = [0, 1, 1, 0] return (fsm_spec_4_state, output_pattern, state_bit0_pattern, state_bit1_pattern)
-1,682,010,598,897,035,800
Build an FSM spec with 4 states. The FSM built has 2 inputs, 1 output, and 4 states. It acts like a 2-bit counter, where the output goes to high only if the FSM is in the final state. When the direction pin is low, the counter counts up; if it is high, the counter counts down. Parameters ---------- direction_logic_value : int The logic value of the direction pin. Returns ------- dict The FSM spec that can be consumed by the FSM generator. list The output pattern corresponding to the direction value. list The state bit0 pattern corresponding to the direction value. list The state bit1 pattern corresponding to the direction value.
pynq/lib/logictools/tests/test_fsm_generator.py
build_fsm_spec_4_state
AbinMM/PYNQ
python
def build_fsm_spec_4_state(direction_logic_value): 'Build an FSM spec with 4 states.\n\n The FSM built has 2 inputs, 1 output, and 4 states. It acts like a \n 2-bit counter, where the output goes to high only if the FSM is in the \n final state.\n\n When the direction pin is low, the counter counts up; if it is high, the\n counter counts down.\n\n Parameters\n ----------\n direction_logic_value : int\n The logic value of the direction pin.\n Returns\n -------\n dict\n The FSM spec that can be consumed by the FSM generator.\n list\n The output pattern corresponding to the direction value.\n list\n The state bit0 pattern corresponding to the direction value.\n list\n The state bit1 pattern corresponding to the direction value.\n\n ' (out, rst, direction) = list(pin_dict.keys())[0:3] fsm_spec_4_state = {'inputs': [('rst', rst), ('direction', direction)], 'outputs': [('test', out)], 'states': ['S0', 'S1', 'S2', 'S3'], 'transitions': [['00', 'S0', 'S1', '0'], ['01', 'S0', 'S3', '0'], ['00', 'S1', 'S2', '0'], ['01', 'S1', 'S0', '0'], ['00', 'S2', 'S3', '0'], ['01', 'S2', 'S1', '0'], ['00', 'S3', 'S0', '1'], ['01', 'S3', 'S2', '1'], ['1-', '*', 'S0', ]]} if (not direction_logic_value): output_pattern = [0, 0, 0, 1] state_bit0_pattern = [0, 1, 0, 1] state_bit1_pattern = [0, 0, 1, 1] else: output_pattern = [0, 1, 0, 0] state_bit0_pattern = [0, 1, 0, 1] state_bit1_pattern = [0, 1, 1, 0] return (fsm_spec_4_state, output_pattern, state_bit0_pattern, state_bit1_pattern)
def build_fsm_spec_random(num_states): 'Build an FSM spec with the specified number of states.\n\n The FSM spec exploits only single input and single output. As a side \n product, a list of output patterns are also returned.\n\n Parameters\n ----------\n num_states : int\n The number of states of the FSM.\n\n Returns\n -------\n dict\n The FSM spec that can be consumed by the FSM generator.\n list\n The output patterns associated with this FSM spec.\n\n ' (input_pin, output_pin) = list(pin_dict.keys())[0:2] if (num_states == 1): return ({'inputs': [('rst', input_pin)], 'outputs': [('test', output_pin)], 'states': ['S0'], 'transitions': [['1', '*', 'S0', '']]}, None) else: fsm_spec_state = {'inputs': [('rst', input_pin)], 'outputs': [('test', output_pin)], 'states': [], 'transitions': [['1', '*', 'S0', '']]} output_pattern_list = list() for i in range(num_states): current_state = 'S{}'.format(i) next_state = 'S{}'.format(((i + 1) % num_states)) fsm_spec_state['states'] += [current_state] output_pattern = '{}'.format(randint(0, 1)) transition = ['0', current_state, next_state, output_pattern] fsm_spec_state['transitions'] += [transition] output_pattern_list.append(int(output_pattern)) return (fsm_spec_state, output_pattern_list)
-6,833,447,999,151,086,000
Build an FSM spec with the specified number of states. The FSM spec exploits only single input and single output. As a side product, a list of output patterns are also returned. Parameters ---------- num_states : int The number of states of the FSM. Returns ------- dict The FSM spec that can be consumed by the FSM generator. list The output patterns associated with this FSM spec.
pynq/lib/logictools/tests/test_fsm_generator.py
build_fsm_spec_random
AbinMM/PYNQ
python
def build_fsm_spec_random(num_states): 'Build an FSM spec with the specified number of states.\n\n The FSM spec exploits only single input and single output. As a side \n product, a list of output patterns are also returned.\n\n Parameters\n ----------\n num_states : int\n The number of states of the FSM.\n\n Returns\n -------\n dict\n The FSM spec that can be consumed by the FSM generator.\n list\n The output patterns associated with this FSM spec.\n\n ' (input_pin, output_pin) = list(pin_dict.keys())[0:2] if (num_states == 1): return ({'inputs': [('rst', input_pin)], 'outputs': [('test', output_pin)], 'states': ['S0'], 'transitions': [['1', '*', 'S0', ]]}, None) else: fsm_spec_state = {'inputs': [('rst', input_pin)], 'outputs': [('test', output_pin)], 'states': [], 'transitions': [['1', '*', 'S0', ]]} output_pattern_list = list() for i in range(num_states): current_state = 'S{}'.format(i) next_state = 'S{}'.format(((i + 1) % num_states)) fsm_spec_state['states'] += [current_state] output_pattern = '{}'.format(randint(0, 1)) transition = ['0', current_state, next_state, output_pattern] fsm_spec_state['transitions'] += [transition] output_pattern_list.append(int(output_pattern)) return (fsm_spec_state, output_pattern_list)
def build_fsm_spec_max_in_out(): 'Build an FSM spec using a maximum number of inputs and outputs.\n\n The returned FSM spec has a maximum number of inputs and \n outputs. At the same time, the largest available number of \n states will be implemented. For example, on PYNQ-Z1, if \n FSM_MAX_INPUT_BITS = 8, and FSM_MAX_STATE_INPUT_BITS = 13, we will \n implement 2**(13-8)-1 = 31 states. This is the largest number of states \n available for this setup, since there is always 1 dummy state that has\n to be reserved.\n\n Returns\n -------\n dict\n The FSM spec that can be consumed by the FSM generator.\n list\n The output patterns associated with this FSM spec.\n\n ' input_pins = list(pin_dict.keys())[:FSM_MAX_INPUT_BITS] output_pins = list(pin_dict.keys())[FSM_MAX_INPUT_BITS:interface_width] fsm_spec_inout = {'inputs': [], 'outputs': [], 'states': [], 'transitions': [[('1' * len(input_pins)), '*', 'S0', '']]} test_lanes = [[] for _ in range(len(output_pins))] num_states = ((2 ** (FSM_MAX_STATE_INPUT_BITS - FSM_MAX_INPUT_BITS)) - 1) for i in range(len(input_pins)): fsm_spec_inout['inputs'].append(('input{}'.format(i), input_pins[i])) for i in range(len(output_pins)): fsm_spec_inout['outputs'].append(('output{}'.format(i), output_pins[i])) for i in range(num_states): current_state = 'S{}'.format(i) next_state = 'S{}'.format(((i + 1) % num_states)) fsm_spec_inout['states'].append(current_state) output_pattern = '' for test_lane in test_lanes: random_1bit = '{}'.format(randint(0, 1)) output_pattern += random_1bit test_lane += random_1bit transition = [('0' * len(input_pins)), current_state, next_state, output_pattern] fsm_spec_inout['transitions'].append(transition) test_patterns = [] for i in range(len(output_pins)): temp_string = ''.join(test_lanes[i]) test_patterns.append(np.array(bitstring_to_int(wave_to_bitstring(temp_string)))) return (fsm_spec_inout, test_patterns)
-3,612,341,223,182,315,500
Build an FSM spec using a maximum number of inputs and outputs. The returned FSM spec has a maximum number of inputs and outputs. At the same time, the largest available number of states will be implemented. For example, on PYNQ-Z1, if FSM_MAX_INPUT_BITS = 8, and FSM_MAX_STATE_INPUT_BITS = 13, we will implement 2**(13-8)-1 = 31 states. This is the largest number of states available for this setup, since there is always 1 dummy state that has to be reserved. Returns ------- dict The FSM spec that can be consumed by the FSM generator. list The output patterns associated with this FSM spec.
pynq/lib/logictools/tests/test_fsm_generator.py
build_fsm_spec_max_in_out
AbinMM/PYNQ
python
def build_fsm_spec_max_in_out(): 'Build an FSM spec using a maximum number of inputs and outputs.\n\n The returned FSM spec has a maximum number of inputs and \n outputs. At the same time, the largest available number of \n states will be implemented. For example, on PYNQ-Z1, if \n FSM_MAX_INPUT_BITS = 8, and FSM_MAX_STATE_INPUT_BITS = 13, we will \n implement 2**(13-8)-1 = 31 states. This is the largest number of states \n available for this setup, since there is always 1 dummy state that has\n to be reserved.\n\n Returns\n -------\n dict\n The FSM spec that can be consumed by the FSM generator.\n list\n The output patterns associated with this FSM spec.\n\n ' input_pins = list(pin_dict.keys())[:FSM_MAX_INPUT_BITS] output_pins = list(pin_dict.keys())[FSM_MAX_INPUT_BITS:interface_width] fsm_spec_inout = {'inputs': [], 'outputs': [], 'states': [], 'transitions': [[('1' * len(input_pins)), '*', 'S0', ]]} test_lanes = [[] for _ in range(len(output_pins))] num_states = ((2 ** (FSM_MAX_STATE_INPUT_BITS - FSM_MAX_INPUT_BITS)) - 1) for i in range(len(input_pins)): fsm_spec_inout['inputs'].append(('input{}'.format(i), input_pins[i])) for i in range(len(output_pins)): fsm_spec_inout['outputs'].append(('output{}'.format(i), output_pins[i])) for i in range(num_states): current_state = 'S{}'.format(i) next_state = 'S{}'.format(((i + 1) % num_states)) fsm_spec_inout['states'].append(current_state) output_pattern = for test_lane in test_lanes: random_1bit = '{}'.format(randint(0, 1)) output_pattern += random_1bit test_lane += random_1bit transition = [('0' * len(input_pins)), current_state, next_state, output_pattern] fsm_spec_inout['transitions'].append(transition) test_patterns = [] for i in range(len(output_pins)): temp_string = .join(test_lanes[i]) test_patterns.append(np.array(bitstring_to_int(wave_to_bitstring(temp_string)))) return (fsm_spec_inout, test_patterns)
def build_fsm_spec_free_run(): 'Build a spec that results in a free-running FSM.\n\n This will return an FSM spec with no given inputs.\n In this case, the FSM is a free running state machine. \n A maximum number of states are deployed.\n\n Returns\n -------\n dict\n The FSM spec that can be consumed by the FSM generator.\n list\n The output patterns associated with this FSM spec.\n\n ' input_pin = list(pin_dict.keys())[0] output_pins = list(pin_dict.keys())[1:interface_width] fsm_spec_inout = {'inputs': [], 'outputs': [], 'states': [], 'transitions': []} test_lanes = [[] for _ in range(len(output_pins))] num_states = FSM_MAX_NUM_STATES fsm_spec_inout['inputs'].append(('input0', input_pin)) for i in range(len(output_pins)): fsm_spec_inout['outputs'].append(('output{}'.format(i), output_pins[i])) for i in range(num_states): current_state = 'S{}'.format(i) next_state = 'S{}'.format(((i + 1) % num_states)) fsm_spec_inout['states'].append(current_state) output_pattern = '' for test_lane in test_lanes: random_1bit = '{}'.format(randint(0, 1)) output_pattern += random_1bit test_lane += random_1bit transition = ['-', current_state, next_state, output_pattern] fsm_spec_inout['transitions'].append(transition) test_patterns = [] for i in range(len(output_pins)): temp_string = ''.join(test_lanes[i]) test_patterns.append(np.array(bitstring_to_int(wave_to_bitstring(temp_string)))) return (fsm_spec_inout, test_patterns)
6,033,142,832,981,971,000
Build a spec that results in a free-running FSM. This will return an FSM spec with no given inputs. In this case, the FSM is a free running state machine. A maximum number of states are deployed. Returns ------- dict The FSM spec that can be consumed by the FSM generator. list The output patterns associated with this FSM spec.
pynq/lib/logictools/tests/test_fsm_generator.py
build_fsm_spec_free_run
AbinMM/PYNQ
python
def build_fsm_spec_free_run(): 'Build a spec that results in a free-running FSM.\n\n This will return an FSM spec with no given inputs.\n In this case, the FSM is a free running state machine. \n A maximum number of states are deployed.\n\n Returns\n -------\n dict\n The FSM spec that can be consumed by the FSM generator.\n list\n The output patterns associated with this FSM spec.\n\n ' input_pin = list(pin_dict.keys())[0] output_pins = list(pin_dict.keys())[1:interface_width] fsm_spec_inout = {'inputs': [], 'outputs': [], 'states': [], 'transitions': []} test_lanes = [[] for _ in range(len(output_pins))] num_states = FSM_MAX_NUM_STATES fsm_spec_inout['inputs'].append(('input0', input_pin)) for i in range(len(output_pins)): fsm_spec_inout['outputs'].append(('output{}'.format(i), output_pins[i])) for i in range(num_states): current_state = 'S{}'.format(i) next_state = 'S{}'.format(((i + 1) % num_states)) fsm_spec_inout['states'].append(current_state) output_pattern = for test_lane in test_lanes: random_1bit = '{}'.format(randint(0, 1)) output_pattern += random_1bit test_lane += random_1bit transition = ['-', current_state, next_state, output_pattern] fsm_spec_inout['transitions'].append(transition) test_patterns = [] for i in range(len(output_pins)): temp_string = .join(test_lanes[i]) test_patterns.append(np.array(bitstring_to_int(wave_to_bitstring(temp_string)))) return (fsm_spec_inout, test_patterns)
@pytest.mark.skipif((not flag), reason='need correct overlay to run') def test_fsm_num_samples(): 'Test for the Finite State Machine Generator class.\n\n In this test, the pattern generated by the FSM will be compared with the \n one specified. We will test a minimum number of (FSM period + 1) samples,\n and a maximum number of samples. 10MHz and 100MHz clocks are tested\n for each case.\n\n ' ol.download() (rst, direction) = list(pin_dict.keys())[1:3] print('\nConnect {} to GND, and {} to VCC.'.format(rst, direction)) input('Hit enter after done ...') (fsm_spec_4_state, output_pattern, _, _) = build_fsm_spec_4_state(1) fsm_period = len(fsm_spec_4_state['states']) for num_samples in [fsm_period, MAX_NUM_TRACE_SAMPLES]: test_tile = np.array(output_pattern) golden_test_array = np.tile(test_tile, ceil((num_samples / 4))) for fsm_frequency_mhz in [10, 100]: fsm_generator = FSMGenerator(mb_info) assert (fsm_generator.status == 'RESET') fsm_generator.trace(use_analyzer=True, num_analyzer_samples=num_samples) fsm_generator.setup(fsm_spec_4_state, frequency_mhz=fsm_frequency_mhz) assert (fsm_generator.status == 'READY') assert ('bram_data_buf' not in fsm_generator.logictools_controller.buffers), 'bram_data_buf is not freed after use.' fsm_generator.run() assert (fsm_generator.status == 'RUNNING') test_string = '' for wavegroup in fsm_generator.waveform.waveform_dict['signal']: if (wavegroup and (wavegroup[0] == 'analysis')): for wavelane in wavegroup[1:]: if (wavelane['name'] == 'test'): test_string = wavelane['wave'] test_array = np.array(bitstring_to_int(wave_to_bitstring(test_string))) assert np.array_equal(test_array, golden_test_array[:num_samples]), 'Data pattern not correct when running at {}MHz.'.format(fsm_frequency_mhz) fsm_generator.stop() assert (fsm_generator.status == 'READY') fsm_generator.reset() assert (fsm_generator.status == 'RESET') del fsm_generator
-4,553,244,922,994,970,600
Test for the Finite State Machine Generator class. In this test, the pattern generated by the FSM will be compared with the one specified. We will test a minimum number of (FSM period + 1) samples, and a maximum number of samples. 10MHz and 100MHz clocks are tested for each case.
pynq/lib/logictools/tests/test_fsm_generator.py
test_fsm_num_samples
AbinMM/PYNQ
python
@pytest.mark.skipif((not flag), reason='need correct overlay to run') def test_fsm_num_samples(): 'Test for the Finite State Machine Generator class.\n\n In this test, the pattern generated by the FSM will be compared with the \n one specified. We will test a minimum number of (FSM period + 1) samples,\n and a maximum number of samples. 10MHz and 100MHz clocks are tested\n for each case.\n\n ' ol.download() (rst, direction) = list(pin_dict.keys())[1:3] print('\nConnect {} to GND, and {} to VCC.'.format(rst, direction)) input('Hit enter after done ...') (fsm_spec_4_state, output_pattern, _, _) = build_fsm_spec_4_state(1) fsm_period = len(fsm_spec_4_state['states']) for num_samples in [fsm_period, MAX_NUM_TRACE_SAMPLES]: test_tile = np.array(output_pattern) golden_test_array = np.tile(test_tile, ceil((num_samples / 4))) for fsm_frequency_mhz in [10, 100]: fsm_generator = FSMGenerator(mb_info) assert (fsm_generator.status == 'RESET') fsm_generator.trace(use_analyzer=True, num_analyzer_samples=num_samples) fsm_generator.setup(fsm_spec_4_state, frequency_mhz=fsm_frequency_mhz) assert (fsm_generator.status == 'READY') assert ('bram_data_buf' not in fsm_generator.logictools_controller.buffers), 'bram_data_buf is not freed after use.' fsm_generator.run() assert (fsm_generator.status == 'RUNNING') test_string = for wavegroup in fsm_generator.waveform.waveform_dict['signal']: if (wavegroup and (wavegroup[0] == 'analysis')): for wavelane in wavegroup[1:]: if (wavelane['name'] == 'test'): test_string = wavelane['wave'] test_array = np.array(bitstring_to_int(wave_to_bitstring(test_string))) assert np.array_equal(test_array, golden_test_array[:num_samples]), 'Data pattern not correct when running at {}MHz.'.format(fsm_frequency_mhz) fsm_generator.stop() assert (fsm_generator.status == 'READY') fsm_generator.reset() assert (fsm_generator.status == 'RESET') del fsm_generator
@pytest.mark.skipif((not flag), reason='need correct overlay to run') def test_fsm_state_bits(): 'Test for the Finite State Machine Generator class.\n\n This test is similar to the first test, but in this test,\n we will test the case when the state bits are also used as outputs.\n\n ' ol.download() (rst, direction) = list(pin_dict.keys())[1:3] print('\nConnect both {} and {} to GND.'.format(rst, direction)) input('Hit enter after done ...') (fsm_spec_4_state, output_pattern, state_bit0_pattern, state_bit1_pattern) = build_fsm_spec_4_state(0) fsm_period = len(fsm_spec_4_state['states']) golden_test_array = np.array(output_pattern) golden_state_bit0_array = np.array(state_bit0_pattern) golden_state_bit1_array = np.array(state_bit1_pattern) for fsm_frequency_mhz in [10, 100]: fsm_generator = FSMGenerator(mb_info) fsm_generator.trace(use_analyzer=True, num_analyzer_samples=fsm_period) fsm_generator.setup(fsm_spec_4_state, use_state_bits=True, frequency_mhz=fsm_frequency_mhz) fsm_generator.run() test_string = state_bit0_string = state_bit1_string = '' for wavegroup in fsm_generator.waveform.waveform_dict['signal']: if (wavegroup and (wavegroup[0] == 'analysis')): for wavelane in wavegroup[1:]: if (wavelane['name'] == 'test'): test_string = wavelane['wave'] if (wavelane['name'] == 'state_bit0'): state_bit0_string = wavelane['wave'] if (wavelane['name'] == 'state_bit1'): state_bit1_string = wavelane['wave'] test_array = np.array(bitstring_to_int(wave_to_bitstring(test_string))) state_bit0_array = np.array(bitstring_to_int(wave_to_bitstring(state_bit0_string))) state_bit1_array = np.array(bitstring_to_int(wave_to_bitstring(state_bit1_string))) assert np.array_equal(golden_test_array, test_array), 'Data pattern not correct when running at {}MHz.'.format(fsm_frequency_mhz) assert np.array_equal(golden_state_bit0_array, state_bit0_array), 'State bit0 not correct when running at {}MHz.'.format(fsm_frequency_mhz) assert np.array_equal(golden_state_bit1_array, state_bit1_array), 'State bit1 not correct when running at {}MHz.'.format(fsm_frequency_mhz) fsm_generator.stop() fsm_generator.reset() del fsm_generator
6,340,016,362,553,178,000
Test for the Finite State Machine Generator class. This test is similar to the first test, but in this test, we will test the case when the state bits are also used as outputs.
pynq/lib/logictools/tests/test_fsm_generator.py
test_fsm_state_bits
AbinMM/PYNQ
python
@pytest.mark.skipif((not flag), reason='need correct overlay to run') def test_fsm_state_bits(): 'Test for the Finite State Machine Generator class.\n\n This test is similar to the first test, but in this test,\n we will test the case when the state bits are also used as outputs.\n\n ' ol.download() (rst, direction) = list(pin_dict.keys())[1:3] print('\nConnect both {} and {} to GND.'.format(rst, direction)) input('Hit enter after done ...') (fsm_spec_4_state, output_pattern, state_bit0_pattern, state_bit1_pattern) = build_fsm_spec_4_state(0) fsm_period = len(fsm_spec_4_state['states']) golden_test_array = np.array(output_pattern) golden_state_bit0_array = np.array(state_bit0_pattern) golden_state_bit1_array = np.array(state_bit1_pattern) for fsm_frequency_mhz in [10, 100]: fsm_generator = FSMGenerator(mb_info) fsm_generator.trace(use_analyzer=True, num_analyzer_samples=fsm_period) fsm_generator.setup(fsm_spec_4_state, use_state_bits=True, frequency_mhz=fsm_frequency_mhz) fsm_generator.run() test_string = state_bit0_string = state_bit1_string = for wavegroup in fsm_generator.waveform.waveform_dict['signal']: if (wavegroup and (wavegroup[0] == 'analysis')): for wavelane in wavegroup[1:]: if (wavelane['name'] == 'test'): test_string = wavelane['wave'] if (wavelane['name'] == 'state_bit0'): state_bit0_string = wavelane['wave'] if (wavelane['name'] == 'state_bit1'): state_bit1_string = wavelane['wave'] test_array = np.array(bitstring_to_int(wave_to_bitstring(test_string))) state_bit0_array = np.array(bitstring_to_int(wave_to_bitstring(state_bit0_string))) state_bit1_array = np.array(bitstring_to_int(wave_to_bitstring(state_bit1_string))) assert np.array_equal(golden_test_array, test_array), 'Data pattern not correct when running at {}MHz.'.format(fsm_frequency_mhz) assert np.array_equal(golden_state_bit0_array, state_bit0_array), 'State bit0 not correct when running at {}MHz.'.format(fsm_frequency_mhz) assert np.array_equal(golden_state_bit1_array, state_bit1_array), 'State bit1 not correct when running at {}MHz.'.format(fsm_frequency_mhz) fsm_generator.stop() fsm_generator.reset() del fsm_generator
@pytest.mark.skipif((not flag), reason='need correct overlay to run') def test_fsm_step(): 'Test for the Finite State Machine Generator class.\n\n This test is similar to the above test, but in this test,\n we will test the `step()` method, and ask users to change the input\n logic values in the middle of the test.\n\n ' ol.download() (rst, direction) = list(pin_dict.keys())[1:3] print('') (fsm_spec_4_state, output_pattern_up, state_bit0_pattern_up, state_bit1_pattern_up) = build_fsm_spec_4_state(0) (_, output_pattern_down, state_bit0_pattern_down, state_bit1_pattern_down) = build_fsm_spec_4_state(1) output_pattern_down.append(output_pattern_down.pop(0)) state_bit0_pattern_down.append(state_bit0_pattern_down.pop(0)) state_bit1_pattern_down.append(state_bit1_pattern_down.pop(0)) fsm_period = len(fsm_spec_4_state['states']) golden_test_array = np.array((output_pattern_up + output_pattern_down[1:])) golden_state_bit0_array = np.array((state_bit0_pattern_up + state_bit0_pattern_down[1:])) golden_state_bit1_array = np.array((state_bit1_pattern_up + state_bit1_pattern_down[1:])) for fsm_frequency_mhz in [10, 100]: fsm_generator = FSMGenerator(mb_info) fsm_generator.trace(use_analyzer=True, num_analyzer_samples=fsm_period) fsm_generator.setup(fsm_spec_4_state, use_state_bits=True, frequency_mhz=fsm_frequency_mhz) print('Connect both {} and {} to GND.'.format(rst, direction)) input('Hit enter after done ...') for _ in range((len(output_pattern_up) - 1)): fsm_generator.step() print('Connect {} to GND, and {} to VCC.'.format(rst, direction)) input('Hit enter after done ...') for _ in range(len(output_pattern_down)): fsm_generator.step() test_string = state_bit0_string = state_bit1_string = '' for wavegroup in fsm_generator.waveform.waveform_dict['signal']: if (wavegroup and (wavegroup[0] == 'analysis')): for wavelane in wavegroup[1:]: if (wavelane['name'] == 'test'): test_string = wavelane['wave'] if (wavelane['name'] == 'state_bit0'): state_bit0_string = wavelane['wave'] if (wavelane['name'] == 'state_bit1'): state_bit1_string = wavelane['wave'] test_array = np.array(bitstring_to_int(wave_to_bitstring(test_string))) state_bit0_array = np.array(bitstring_to_int(wave_to_bitstring(state_bit0_string))) state_bit1_array = np.array(bitstring_to_int(wave_to_bitstring(state_bit1_string))) assert np.array_equal(golden_test_array, test_array), 'Data pattern not correct when stepping at {}MHz.'.format(fsm_frequency_mhz) assert np.array_equal(golden_state_bit0_array, state_bit0_array), 'State bit0 not correct when stepping at {}MHz.'.format(fsm_frequency_mhz) assert np.array_equal(golden_state_bit1_array, state_bit1_array), 'State bit1 not correct when stepping at {}MHz.'.format(fsm_frequency_mhz) fsm_generator.stop() fsm_generator.reset() del fsm_generator
3,564,277,518,620,787,700
Test for the Finite State Machine Generator class. This test is similar to the above test, but in this test, we will test the `step()` method, and ask users to change the input logic values in the middle of the test.
pynq/lib/logictools/tests/test_fsm_generator.py
test_fsm_step
AbinMM/PYNQ
python
@pytest.mark.skipif((not flag), reason='need correct overlay to run') def test_fsm_step(): 'Test for the Finite State Machine Generator class.\n\n This test is similar to the above test, but in this test,\n we will test the `step()` method, and ask users to change the input\n logic values in the middle of the test.\n\n ' ol.download() (rst, direction) = list(pin_dict.keys())[1:3] print() (fsm_spec_4_state, output_pattern_up, state_bit0_pattern_up, state_bit1_pattern_up) = build_fsm_spec_4_state(0) (_, output_pattern_down, state_bit0_pattern_down, state_bit1_pattern_down) = build_fsm_spec_4_state(1) output_pattern_down.append(output_pattern_down.pop(0)) state_bit0_pattern_down.append(state_bit0_pattern_down.pop(0)) state_bit1_pattern_down.append(state_bit1_pattern_down.pop(0)) fsm_period = len(fsm_spec_4_state['states']) golden_test_array = np.array((output_pattern_up + output_pattern_down[1:])) golden_state_bit0_array = np.array((state_bit0_pattern_up + state_bit0_pattern_down[1:])) golden_state_bit1_array = np.array((state_bit1_pattern_up + state_bit1_pattern_down[1:])) for fsm_frequency_mhz in [10, 100]: fsm_generator = FSMGenerator(mb_info) fsm_generator.trace(use_analyzer=True, num_analyzer_samples=fsm_period) fsm_generator.setup(fsm_spec_4_state, use_state_bits=True, frequency_mhz=fsm_frequency_mhz) print('Connect both {} and {} to GND.'.format(rst, direction)) input('Hit enter after done ...') for _ in range((len(output_pattern_up) - 1)): fsm_generator.step() print('Connect {} to GND, and {} to VCC.'.format(rst, direction)) input('Hit enter after done ...') for _ in range(len(output_pattern_down)): fsm_generator.step() test_string = state_bit0_string = state_bit1_string = for wavegroup in fsm_generator.waveform.waveform_dict['signal']: if (wavegroup and (wavegroup[0] == 'analysis')): for wavelane in wavegroup[1:]: if (wavelane['name'] == 'test'): test_string = wavelane['wave'] if (wavelane['name'] == 'state_bit0'): state_bit0_string = wavelane['wave'] if (wavelane['name'] == 'state_bit1'): state_bit1_string = wavelane['wave'] test_array = np.array(bitstring_to_int(wave_to_bitstring(test_string))) state_bit0_array = np.array(bitstring_to_int(wave_to_bitstring(state_bit0_string))) state_bit1_array = np.array(bitstring_to_int(wave_to_bitstring(state_bit1_string))) assert np.array_equal(golden_test_array, test_array), 'Data pattern not correct when stepping at {}MHz.'.format(fsm_frequency_mhz) assert np.array_equal(golden_state_bit0_array, state_bit0_array), 'State bit0 not correct when stepping at {}MHz.'.format(fsm_frequency_mhz) assert np.array_equal(golden_state_bit1_array, state_bit1_array), 'State bit1 not correct when stepping at {}MHz.'.format(fsm_frequency_mhz) fsm_generator.stop() fsm_generator.reset() del fsm_generator
@pytest.mark.skipif((not flag), reason='need correct overlay to run') def test_fsm_no_trace(): 'Test for the Finite State Machine Generator class.\n\n This is similar to the first test, but in this test,\n we will test the case when no analyzer is specified.\n\n ' ol.download() (fsm_spec_4_state, _, _, _) = build_fsm_spec_4_state(0) fsm_generator = FSMGenerator(mb_info) fsm_generator.trace(use_analyzer=False) fsm_generator.setup(fsm_spec_4_state) fsm_generator.run() exception_raised = False try: fsm_generator.show_waveform() except ValueError: exception_raised = True assert exception_raised, 'Should raise exception for show_waveform().' fsm_generator.reset() del fsm_generator
-8,809,294,722,410,691,000
Test for the Finite State Machine Generator class. This is similar to the first test, but in this test, we will test the case when no analyzer is specified.
pynq/lib/logictools/tests/test_fsm_generator.py
test_fsm_no_trace
AbinMM/PYNQ
python
@pytest.mark.skipif((not flag), reason='need correct overlay to run') def test_fsm_no_trace(): 'Test for the Finite State Machine Generator class.\n\n This is similar to the first test, but in this test,\n we will test the case when no analyzer is specified.\n\n ' ol.download() (fsm_spec_4_state, _, _, _) = build_fsm_spec_4_state(0) fsm_generator = FSMGenerator(mb_info) fsm_generator.trace(use_analyzer=False) fsm_generator.setup(fsm_spec_4_state) fsm_generator.run() exception_raised = False try: fsm_generator.show_waveform() except ValueError: exception_raised = True assert exception_raised, 'Should raise exception for show_waveform().' fsm_generator.reset() del fsm_generator
@pytest.mark.skipif((not flag), reason='need correct overlay to run') def test_fsm_num_states1(): 'Test for the Finite State Machine Generator class.\n\n The 4th test will check 1 and (MAX_NUM_STATES + 1) states. \n These cases should raise exceptions. For these tests, we use the minimum \n number of input and output pins.\n\n ' ol.download() fsm_generator = None exception_raised = False (fsm_spec_less_than_min_state, _) = build_fsm_spec_random((FSM_MIN_NUM_STATES - 1)) (fsm_spec_more_than_max_state, _) = build_fsm_spec_random((FSM_MAX_NUM_STATES + 1)) for fsm_spec in [fsm_spec_less_than_min_state, fsm_spec_more_than_max_state]: num_states = len(fsm_spec['states']) try: fsm_generator = FSMGenerator(mb_info) fsm_generator.trace(use_analyzer=True, num_analyzer_samples=MAX_NUM_TRACE_SAMPLES) fsm_generator.setup(fsm_spec) except ValueError: exception_raised = True assert exception_raised, 'Should raise exception when there are {} states in the FSM.'.format(num_states) fsm_generator.reset() del fsm_generator
-8,275,885,558,516,988,000
Test for the Finite State Machine Generator class. The 4th test will check 1 and (MAX_NUM_STATES + 1) states. These cases should raise exceptions. For these tests, we use the minimum number of input and output pins.
pynq/lib/logictools/tests/test_fsm_generator.py
test_fsm_num_states1
AbinMM/PYNQ
python
@pytest.mark.skipif((not flag), reason='need correct overlay to run') def test_fsm_num_states1(): 'Test for the Finite State Machine Generator class.\n\n The 4th test will check 1 and (MAX_NUM_STATES + 1) states. \n These cases should raise exceptions. For these tests, we use the minimum \n number of input and output pins.\n\n ' ol.download() fsm_generator = None exception_raised = False (fsm_spec_less_than_min_state, _) = build_fsm_spec_random((FSM_MIN_NUM_STATES - 1)) (fsm_spec_more_than_max_state, _) = build_fsm_spec_random((FSM_MAX_NUM_STATES + 1)) for fsm_spec in [fsm_spec_less_than_min_state, fsm_spec_more_than_max_state]: num_states = len(fsm_spec['states']) try: fsm_generator = FSMGenerator(mb_info) fsm_generator.trace(use_analyzer=True, num_analyzer_samples=MAX_NUM_TRACE_SAMPLES) fsm_generator.setup(fsm_spec) except ValueError: exception_raised = True assert exception_raised, 'Should raise exception when there are {} states in the FSM.'.format(num_states) fsm_generator.reset() del fsm_generator
@pytest.mark.skipif((not flag), reason='need correct overlay to run') def test_fsm_num_states2(): 'Test for the Finite State Machine Generator class.\n\n This test will check 2 and MAX_NUM_STATES states. \n These cases should be able to pass random tests. \n For these tests, we use the minimum number of input and output pins.\n\n ' ol.download() input_pin = list(pin_dict.keys())[0] print('\nConnect {} to GND, and disconnect other pins.'.format(input_pin)) input('Hit enter after done ...') for num_states in [2, FSM_MAX_NUM_STATES]: (fsm_spec, test_pattern) = build_fsm_spec_random(num_states) fsm_generator = FSMGenerator(mb_info) fsm_generator.trace(use_analyzer=True, num_analyzer_samples=MAX_NUM_TRACE_SAMPLES) fsm_generator.setup(fsm_spec, frequency_mhz=100) fsm_generator.run() test_string = '' for wavegroup in fsm_generator.waveform.waveform_dict['signal']: if (wavegroup and (wavegroup[0] == 'analysis')): for wavelane in wavegroup[1:]: if (wavelane['name'] == 'test'): test_string = wavelane['wave'] test_array = np.array(bitstring_to_int(wave_to_bitstring(test_string))) period = num_states test_tile = np.array(test_pattern) golden_test_array = np.tile(test_tile, ceil((MAX_NUM_TRACE_SAMPLES / period))) assert np.array_equal(test_array, golden_test_array[:MAX_NUM_TRACE_SAMPLES]), 'Analysis not matching the generated pattern.' fsm_generator.stop() fsm_generator.reset() del fsm_generator
-5,891,241,888,667,011,000
Test for the Finite State Machine Generator class. This test will check 2 and MAX_NUM_STATES states. These cases should be able to pass random tests. For these tests, we use the minimum number of input and output pins.
pynq/lib/logictools/tests/test_fsm_generator.py
test_fsm_num_states2
AbinMM/PYNQ
python
@pytest.mark.skipif((not flag), reason='need correct overlay to run') def test_fsm_num_states2(): 'Test for the Finite State Machine Generator class.\n\n This test will check 2 and MAX_NUM_STATES states. \n These cases should be able to pass random tests. \n For these tests, we use the minimum number of input and output pins.\n\n ' ol.download() input_pin = list(pin_dict.keys())[0] print('\nConnect {} to GND, and disconnect other pins.'.format(input_pin)) input('Hit enter after done ...') for num_states in [2, FSM_MAX_NUM_STATES]: (fsm_spec, test_pattern) = build_fsm_spec_random(num_states) fsm_generator = FSMGenerator(mb_info) fsm_generator.trace(use_analyzer=True, num_analyzer_samples=MAX_NUM_TRACE_SAMPLES) fsm_generator.setup(fsm_spec, frequency_mhz=100) fsm_generator.run() test_string = for wavegroup in fsm_generator.waveform.waveform_dict['signal']: if (wavegroup and (wavegroup[0] == 'analysis')): for wavelane in wavegroup[1:]: if (wavelane['name'] == 'test'): test_string = wavelane['wave'] test_array = np.array(bitstring_to_int(wave_to_bitstring(test_string))) period = num_states test_tile = np.array(test_pattern) golden_test_array = np.tile(test_tile, ceil((MAX_NUM_TRACE_SAMPLES / period))) assert np.array_equal(test_array, golden_test_array[:MAX_NUM_TRACE_SAMPLES]), 'Analysis not matching the generated pattern.' fsm_generator.stop() fsm_generator.reset() del fsm_generator
@pytest.mark.skipif((not flag), reason='need correct overlay to run') def test_fsm_max_in_out(): 'Test for the Finite State Machine Generator class.\n\n This test will test when maximum number of inputs and \n outputs are used. At the same time, the largest available number of \n states will be implemented.\n\n ' ol.download() input_pins = list(pin_dict.keys())[:FSM_MAX_INPUT_BITS] print('\nConnect {} to GND.'.format(input_pins)) print('Disconnect all other pins.') input('Hit enter after done ...') (fsm_spec_inout, test_patterns) = build_fsm_spec_max_in_out() period = ((2 ** (FSM_MAX_STATE_INPUT_BITS - FSM_MAX_INPUT_BITS)) - 1) num_output_pins = (interface_width - FSM_MAX_INPUT_BITS) fsm_generator = FSMGenerator(mb_info) fsm_generator.trace(use_analyzer=True, num_analyzer_samples=MAX_NUM_TRACE_SAMPLES) fsm_generator.setup(fsm_spec_inout, frequency_mhz=100) fsm_generator.run() test_strings = ['' for _ in range(num_output_pins)] test_arrays = [[] for _ in range(num_output_pins)] for wavegroup in fsm_generator.waveform.waveform_dict['signal']: if (wavegroup and (wavegroup[0] == 'analysis')): for wavelane in wavegroup[1:]: for j in range(num_output_pins): if (wavelane['name'] == 'output{}'.format(j)): test_strings[j] = wavelane['wave'] test_arrays[j] = np.array(bitstring_to_int(wave_to_bitstring(test_strings[j]))) break golden_arrays = [[] for _ in range(num_output_pins)] for i in range(num_output_pins): golden_arrays[i] = np.tile(test_patterns[i], ceil((MAX_NUM_TRACE_SAMPLES / period))) assert np.array_equal(test_arrays[i], golden_arrays[i][:MAX_NUM_TRACE_SAMPLES]), 'Output{} not matching the generated pattern.'.format(i) fsm_generator.stop() fsm_generator.reset() del fsm_generator
6,678,319,828,326,196,000
Test for the Finite State Machine Generator class. This test will test when maximum number of inputs and outputs are used. At the same time, the largest available number of states will be implemented.
pynq/lib/logictools/tests/test_fsm_generator.py
test_fsm_max_in_out
AbinMM/PYNQ
python
@pytest.mark.skipif((not flag), reason='need correct overlay to run') def test_fsm_max_in_out(): 'Test for the Finite State Machine Generator class.\n\n This test will test when maximum number of inputs and \n outputs are used. At the same time, the largest available number of \n states will be implemented.\n\n ' ol.download() input_pins = list(pin_dict.keys())[:FSM_MAX_INPUT_BITS] print('\nConnect {} to GND.'.format(input_pins)) print('Disconnect all other pins.') input('Hit enter after done ...') (fsm_spec_inout, test_patterns) = build_fsm_spec_max_in_out() period = ((2 ** (FSM_MAX_STATE_INPUT_BITS - FSM_MAX_INPUT_BITS)) - 1) num_output_pins = (interface_width - FSM_MAX_INPUT_BITS) fsm_generator = FSMGenerator(mb_info) fsm_generator.trace(use_analyzer=True, num_analyzer_samples=MAX_NUM_TRACE_SAMPLES) fsm_generator.setup(fsm_spec_inout, frequency_mhz=100) fsm_generator.run() test_strings = [ for _ in range(num_output_pins)] test_arrays = [[] for _ in range(num_output_pins)] for wavegroup in fsm_generator.waveform.waveform_dict['signal']: if (wavegroup and (wavegroup[0] == 'analysis')): for wavelane in wavegroup[1:]: for j in range(num_output_pins): if (wavelane['name'] == 'output{}'.format(j)): test_strings[j] = wavelane['wave'] test_arrays[j] = np.array(bitstring_to_int(wave_to_bitstring(test_strings[j]))) break golden_arrays = [[] for _ in range(num_output_pins)] for i in range(num_output_pins): golden_arrays[i] = np.tile(test_patterns[i], ceil((MAX_NUM_TRACE_SAMPLES / period))) assert np.array_equal(test_arrays[i], golden_arrays[i][:MAX_NUM_TRACE_SAMPLES]), 'Output{} not matching the generated pattern.'.format(i) fsm_generator.stop() fsm_generator.reset() del fsm_generator
@pytest.mark.skipif((not flag), reason='need correct overlay to run') def test_fsm_free_run(): "Test for the Finite State Machine Generator class.\n\n This will examine a special scenario where no inputs are given.\n In this case, the FSM is a free running state machine. Since the FSM \n specification requires at least 1 input pin to be specified, 1 pin can \n be used as `don't care` input, while all the other pins are used as \n outputs. A maximum number of states are deployed.\n\n " ol.download() print('\nDisconnect all the pins.') input('Hit enter after done ...') (fsm_spec_inout, test_patterns) = build_fsm_spec_free_run() period = FSM_MAX_NUM_STATES num_output_pins = (interface_width - 1) fsm_generator = FSMGenerator(mb_info) fsm_generator.trace(use_analyzer=True, num_analyzer_samples=period) fsm_generator.setup(fsm_spec_inout, frequency_mhz=100) fsm_generator.run() test_strings = ['' for _ in range(num_output_pins)] test_arrays = [[] for _ in range(num_output_pins)] for wavegroup in fsm_generator.waveform.waveform_dict['signal']: if (wavegroup and (wavegroup[0] == 'analysis')): for wavelane in wavegroup[1:]: for j in range(num_output_pins): if (wavelane['name'] == 'output{}'.format(j)): test_strings[j] = wavelane['wave'] test_arrays[j] = np.array(bitstring_to_int(wave_to_bitstring(test_strings[j]))) break golden_arrays = test_patterns for i in range(num_output_pins): assert np.array_equal(test_arrays[i], golden_arrays[i]), 'Output{} not matching the generated pattern.'.format(i) fsm_generator.stop() fsm_generator.reset() del fsm_generator
-6,702,892,957,634,023,000
Test for the Finite State Machine Generator class. This will examine a special scenario where no inputs are given. In this case, the FSM is a free running state machine. Since the FSM specification requires at least 1 input pin to be specified, 1 pin can be used as `don't care` input, while all the other pins are used as outputs. A maximum number of states are deployed.
pynq/lib/logictools/tests/test_fsm_generator.py
test_fsm_free_run
AbinMM/PYNQ
python
@pytest.mark.skipif((not flag), reason='need correct overlay to run') def test_fsm_free_run(): "Test for the Finite State Machine Generator class.\n\n This will examine a special scenario where no inputs are given.\n In this case, the FSM is a free running state machine. Since the FSM \n specification requires at least 1 input pin to be specified, 1 pin can \n be used as `don't care` input, while all the other pins are used as \n outputs. A maximum number of states are deployed.\n\n " ol.download() print('\nDisconnect all the pins.') input('Hit enter after done ...') (fsm_spec_inout, test_patterns) = build_fsm_spec_free_run() period = FSM_MAX_NUM_STATES num_output_pins = (interface_width - 1) fsm_generator = FSMGenerator(mb_info) fsm_generator.trace(use_analyzer=True, num_analyzer_samples=period) fsm_generator.setup(fsm_spec_inout, frequency_mhz=100) fsm_generator.run() test_strings = [ for _ in range(num_output_pins)] test_arrays = [[] for _ in range(num_output_pins)] for wavegroup in fsm_generator.waveform.waveform_dict['signal']: if (wavegroup and (wavegroup[0] == 'analysis')): for wavelane in wavegroup[1:]: for j in range(num_output_pins): if (wavelane['name'] == 'output{}'.format(j)): test_strings[j] = wavelane['wave'] test_arrays[j] = np.array(bitstring_to_int(wave_to_bitstring(test_strings[j]))) break golden_arrays = test_patterns for i in range(num_output_pins): assert np.array_equal(test_arrays[i], golden_arrays[i]), 'Output{} not matching the generated pattern.'.format(i) fsm_generator.stop() fsm_generator.reset() del fsm_generator
def maxProduct(self, words): '\n :type words: List[str]\n :rtype: int\n ' wordsDict = {} for word in words: wordsDict[word] = set(word) output = 0 for i in range(len(words)): for j in range((i + 1), len(words)): if (not (wordsDict[words[i]] & wordsDict[words[j]])): output = max(output, (len(words[i]) * len(words[j]))) return output
-701,283,042,098,699,100
:type words: List[str] :rtype: int
LeetCode/318 Maximum Product of Word Lengths.py
maxProduct
gesuwen/Algorithms
python
def maxProduct(self, words): '\n :type words: List[str]\n :rtype: int\n ' wordsDict = {} for word in words: wordsDict[word] = set(word) output = 0 for i in range(len(words)): for j in range((i + 1), len(words)): if (not (wordsDict[words[i]] & wordsDict[words[j]])): output = max(output, (len(words[i]) * len(words[j]))) return output
def setUp(self): 'Set up gateway.' self.mock_pub = mock.Mock() self.mock_sub = mock.Mock() self.gateway = MQTTGateway(self.mock_pub, self.mock_sub)
2,470,955,238,168,311,000
Set up gateway.
tests/test_gateway_mqtt.py
setUp
jslove/pymysensors
python
def setUp(self): self.mock_pub = mock.Mock() self.mock_sub = mock.Mock() self.gateway = MQTTGateway(self.mock_pub, self.mock_sub)
def tearDown(self): 'Stop MQTTGateway if alive.' if self.gateway.is_alive(): self.gateway.stop()
-5,073,377,274,422,349,000
Stop MQTTGateway if alive.
tests/test_gateway_mqtt.py
tearDown
jslove/pymysensors
python
def tearDown(self): if self.gateway.is_alive(): self.gateway.stop()
def _add_sensor(self, sensorid): 'Add sensor node. Return sensor node instance.' self.gateway.sensors[sensorid] = Sensor(sensorid) return self.gateway.sensors[sensorid]
8,655,351,742,864,993,000
Add sensor node. Return sensor node instance.
tests/test_gateway_mqtt.py
_add_sensor
jslove/pymysensors
python
def _add_sensor(self, sensorid): self.gateway.sensors[sensorid] = Sensor(sensorid) return self.gateway.sensors[sensorid]
def test_send(self): 'Test send method.' self.gateway.send('1;1;1;0;1;20\n') self.mock_pub.assert_called_with('/1/1/1/0/1', '20', 0, True)
7,165,929,488,064,309,000
Test send method.
tests/test_gateway_mqtt.py
test_send
jslove/pymysensors
python
def test_send(self): self.gateway.send('1;1;1;0;1;20\n') self.mock_pub.assert_called_with('/1/1/1/0/1', '20', 0, True)
def test_send_empty_string(self): 'Test send method with empty string.' self.gateway.send('') self.assertFalse(self.mock_pub.called)
7,797,458,741,899,858,000
Test send method with empty string.
tests/test_gateway_mqtt.py
test_send_empty_string
jslove/pymysensors
python
def test_send_empty_string(self): self.gateway.send() self.assertFalse(self.mock_pub.called)
def test_send_error(self): 'Test send method with error on publish.' self.mock_pub.side_effect = ValueError('Publish topic cannot contain wildcards.') with self.assertLogs(level='ERROR') as test_handle: self.gateway.send('1;1;1;0;1;20\n') self.mock_pub.assert_called_with('/1/1/1/0/1', '20', 0, True) self.assertEqual(test_handle.output[0].split('\n', 1)[0], 'ERROR:mysensors.gateway_mqtt:Publish to /1/1/1/0/1 failed: Publish topic cannot contain wildcards.')
-2,151,185,760,036,063,200
Test send method with error on publish.
tests/test_gateway_mqtt.py
test_send_error
jslove/pymysensors
python
def test_send_error(self): self.mock_pub.side_effect = ValueError('Publish topic cannot contain wildcards.') with self.assertLogs(level='ERROR') as test_handle: self.gateway.send('1;1;1;0;1;20\n') self.mock_pub.assert_called_with('/1/1/1/0/1', '20', 0, True) self.assertEqual(test_handle.output[0].split('\n', 1)[0], 'ERROR:mysensors.gateway_mqtt:Publish to /1/1/1/0/1 failed: Publish topic cannot contain wildcards.')
def test_recv(self): 'Test recv method.' sensor = self._add_sensor(1) sensor.children[1] = ChildSensor(1, self.gateway.const.Presentation.S_HUM) sensor.children[1].values[self.gateway.const.SetReq.V_HUM] = '20' self.gateway.recv('/1/1/2/0/1', '', 0) ret = self.gateway.handle_queue() self.assertEqual(ret, '1;1;1;0;1;20\n') self.gateway.recv('/1/1/2/0/1', '', 1) ret = self.gateway.handle_queue() self.assertEqual(ret, '1;1;1;1;1;20\n')
-1,142,446,973,514,419,600
Test recv method.
tests/test_gateway_mqtt.py
test_recv
jslove/pymysensors
python
def test_recv(self): sensor = self._add_sensor(1) sensor.children[1] = ChildSensor(1, self.gateway.const.Presentation.S_HUM) sensor.children[1].values[self.gateway.const.SetReq.V_HUM] = '20' self.gateway.recv('/1/1/2/0/1', , 0) ret = self.gateway.handle_queue() self.assertEqual(ret, '1;1;1;0;1;20\n') self.gateway.recv('/1/1/2/0/1', , 1) ret = self.gateway.handle_queue() self.assertEqual(ret, '1;1;1;1;1;20\n')
def test_recv_wrong_prefix(self): 'Test recv method with wrong topic prefix.' sensor = self._add_sensor(1) sensor.children[1] = ChildSensor(1, self.gateway.const.Presentation.S_HUM) sensor.children[1].values[self.gateway.const.SetReq.V_HUM] = '20' self.gateway.recv('wrong/1/1/2/0/1', '', 0) ret = self.gateway.handle_queue() self.assertEqual(ret, None)
-589,491,616,878,513,800
Test recv method with wrong topic prefix.
tests/test_gateway_mqtt.py
test_recv_wrong_prefix
jslove/pymysensors
python
def test_recv_wrong_prefix(self): sensor = self._add_sensor(1) sensor.children[1] = ChildSensor(1, self.gateway.const.Presentation.S_HUM) sensor.children[1].values[self.gateway.const.SetReq.V_HUM] = '20' self.gateway.recv('wrong/1/1/2/0/1', , 0) ret = self.gateway.handle_queue() self.assertEqual(ret, None)
def test_presentation(self): 'Test handle presentation message.' self._add_sensor(1) self.gateway.logic('1;1;0;0;7;Humidity Sensor\n') calls = [mock.call('/1/1/1/+/+', self.gateway.recv, 0), mock.call('/1/1/2/+/+', self.gateway.recv, 0), mock.call('/1/+/4/+/+', self.gateway.recv, 0)] self.mock_sub.assert_has_calls(calls)
5,016,948,576,630,798,000
Test handle presentation message.
tests/test_gateway_mqtt.py
test_presentation
jslove/pymysensors
python
def test_presentation(self): self._add_sensor(1) self.gateway.logic('1;1;0;0;7;Humidity Sensor\n') calls = [mock.call('/1/1/1/+/+', self.gateway.recv, 0), mock.call('/1/1/2/+/+', self.gateway.recv, 0), mock.call('/1/+/4/+/+', self.gateway.recv, 0)] self.mock_sub.assert_has_calls(calls)
def test_presentation_no_sensor(self): 'Test handle presentation message without sensor.' self.gateway.logic('1;1;0;0;7;Humidity Sensor\n') self.assertFalse(self.mock_sub.called)
8,553,117,162,865,047,000
Test handle presentation message without sensor.
tests/test_gateway_mqtt.py
test_presentation_no_sensor
jslove/pymysensors
python
def test_presentation_no_sensor(self): self.gateway.logic('1;1;0;0;7;Humidity Sensor\n') self.assertFalse(self.mock_sub.called)
def test_subscribe_error(self): 'Test subscribe throws error.' self._add_sensor(1) self.mock_sub.side_effect = ValueError('No topic specified, or incorrect topic type.') with self.assertLogs(level='ERROR') as test_handle: self.gateway.logic('1;1;0;0;7;Humidity Sensor\n') calls = [mock.call('/1/1/1/+/+', self.gateway.recv, 0), mock.call('/1/1/2/+/+', self.gateway.recv, 0)] self.mock_sub.assert_has_calls(calls) self.assertEqual(test_handle.output[0].split('\n', 1)[0], 'ERROR:mysensors.gateway_mqtt:Subscribe to /1/1/1/+/+ failed: No topic specified, or incorrect topic type.')
-7,662,311,185,010,614,000
Test subscribe throws error.
tests/test_gateway_mqtt.py
test_subscribe_error
jslove/pymysensors
python
def test_subscribe_error(self): self._add_sensor(1) self.mock_sub.side_effect = ValueError('No topic specified, or incorrect topic type.') with self.assertLogs(level='ERROR') as test_handle: self.gateway.logic('1;1;0;0;7;Humidity Sensor\n') calls = [mock.call('/1/1/1/+/+', self.gateway.recv, 0), mock.call('/1/1/2/+/+', self.gateway.recv, 0)] self.mock_sub.assert_has_calls(calls) self.assertEqual(test_handle.output[0].split('\n', 1)[0], 'ERROR:mysensors.gateway_mqtt:Subscribe to /1/1/1/+/+ failed: No topic specified, or incorrect topic type.')