body
stringlengths
26
98.2k
body_hash
int64
-9,222,864,604,528,158,000
9,221,803,474B
docstring
stringlengths
1
16.8k
path
stringlengths
5
230
name
stringlengths
1
96
repository_name
stringlengths
7
89
lang
stringclasses
1 value
body_without_docstring
stringlengths
20
98.2k
def download_file(url, filename, sourceiss3bucket=None): '\nDownload the file from `url` and save it locally under `filename`.\n :rtype : bool\n :param url:\n :param filename:\n :param sourceiss3bucket:\n ' conn = None if sourceiss3bucket: bucket_name = url.split('/')[3] key_name = '/'.join(url.split('/')[4:]) try: conn = boto.connect_s3() bucket = conn.get_bucket(bucket_name) key = bucket.get_key(key_name) key.get_contents_to_filename(filename=filename) except (NameError, BotoClientError): try: bucket_name = url.split('/')[2].split('.')[0] key_name = '/'.join(url.split('/')[3:]) bucket = conn.get_bucket(bucket_name) key = bucket.get_key(key_name) key.get_contents_to_filename(filename=filename) except Exception as exc: raise SystemError('Unable to download file from S3 bucket.\nurl = {0}\nbucket = {1}\nkey = {2}\nfile = {3}\nException: {4}'.format(url, bucket_name, key_name, filename, exc)) except Exception as exc: raise SystemError('Unable to download file from S3 bucket.\nurl = {0}\nbucket = {1}\nkey = {2}\nfile = {3}\nException: {4}'.format(url, bucket_name, key_name, filename, exc)) print('Downloaded file from S3 bucket -- \n url = {0}\n filename = {1}'.format(url, filename)) else: try: response = urllib2.urlopen(url) with open(filename, 'wb') as outfile: shutil.copyfileobj(response, outfile) except Exception as exc: raise SystemError('Unable to download file from web server.\nurl = {0}\nfilename = {1}\nException: {2}'.format(url, filename, exc)) print('Downloaded file from web server -- \n url = {0}\n filename = {1}'.format(url, filename)) return True
-3,808,279,429,678,038,000
Download the file from `url` and save it locally under `filename`. :rtype : bool :param url: :param filename: :param sourceiss3bucket:
MasterScripts/systemprep-linuxmaster.py
download_file
plus3it/SystemPrep
python
def download_file(url, filename, sourceiss3bucket=None): '\nDownload the file from `url` and save it locally under `filename`.\n :rtype : bool\n :param url:\n :param filename:\n :param sourceiss3bucket:\n ' conn = None if sourceiss3bucket: bucket_name = url.split('/')[3] key_name = '/'.join(url.split('/')[4:]) try: conn = boto.connect_s3() bucket = conn.get_bucket(bucket_name) key = bucket.get_key(key_name) key.get_contents_to_filename(filename=filename) except (NameError, BotoClientError): try: bucket_name = url.split('/')[2].split('.')[0] key_name = '/'.join(url.split('/')[3:]) bucket = conn.get_bucket(bucket_name) key = bucket.get_key(key_name) key.get_contents_to_filename(filename=filename) except Exception as exc: raise SystemError('Unable to download file from S3 bucket.\nurl = {0}\nbucket = {1}\nkey = {2}\nfile = {3}\nException: {4}'.format(url, bucket_name, key_name, filename, exc)) except Exception as exc: raise SystemError('Unable to download file from S3 bucket.\nurl = {0}\nbucket = {1}\nkey = {2}\nfile = {3}\nException: {4}'.format(url, bucket_name, key_name, filename, exc)) print('Downloaded file from S3 bucket -- \n url = {0}\n filename = {1}'.format(url, filename)) else: try: response = urllib2.urlopen(url) with open(filename, 'wb') as outfile: shutil.copyfileobj(response, outfile) except Exception as exc: raise SystemError('Unable to download file from web server.\nurl = {0}\nfilename = {1}\nException: {2}'.format(url, filename, exc)) print('Downloaded file from web server -- \n url = {0}\n filename = {1}'.format(url, filename)) return True
def cleanup(workingdir): '\n Removes temporary files loaded to the system.\n :param workingdir: str, Path to the working directory\n :return: bool\n ' print(('+-' * 40)) print('Cleanup Time...') try: shutil.rmtree(workingdir) except Exception as exc: raise SystemError('Cleanup Failed!\nException: {0}'.format(exc)) print(('Removed temporary data in working directory -- ' + workingdir)) print('Exiting cleanup routine...') print(('-+' * 40)) return True
3,193,561,795,270,635,500
Removes temporary files loaded to the system. :param workingdir: str, Path to the working directory :return: bool
MasterScripts/systemprep-linuxmaster.py
cleanup
plus3it/SystemPrep
python
def cleanup(workingdir): '\n Removes temporary files loaded to the system.\n :param workingdir: str, Path to the working directory\n :return: bool\n ' print(('+-' * 40)) print('Cleanup Time...') try: shutil.rmtree(workingdir) except Exception as exc: raise SystemError('Cleanup Failed!\nException: {0}'.format(exc)) print(('Removed temporary data in working directory -- ' + workingdir)) print('Exiting cleanup routine...') print(('-+' * 40)) return True
def main(noreboot='false', **kwargs): '\n Master script that calls content scripts to be deployed when provisioning systems\n ' scriptname = '' if ('__file__' in dir()): scriptname = os.path.abspath(__file__) else: scriptname = os.path.abspath(sys.argv[0]) noreboot = ('true' == noreboot.lower()) sourceiss3bucket = ('true' == kwargs.get('sourceiss3bucket', 'false').lower()) print(('+' * 80)) print('Entering script -- {0}'.format(scriptname)) print('Printing parameters --') print(' noreboot = {0}'.format(noreboot)) for (key, value) in kwargs.items(): print(' {0} = {1}'.format(key, value)) system = platform.system() systemparams = get_system_params(system) scriptstoexecute = get_scripts_to_execute(system, systemparams['workingdir'], **kwargs) for script in scriptstoexecute: url = script['ScriptSource'] filename = url.split('/')[(- 1)] fullfilepath = ((systemparams['workingdir'] + systemparams['pathseparator']) + filename) download_file(url, fullfilepath, sourceiss3bucket) print(('Running script -- ' + script['ScriptSource'])) print('Sending parameters --') for (key, value) in script['Parameters'].items(): print(' {0} = {1}'.format(key, value)) paramstring = ' '.join((("%s='%s'" % (key, val)) for (key, val) in script['Parameters'].iteritems())) fullcommand = 'python {0} {1}'.format(fullfilepath, paramstring) result = os.system(fullcommand) if (result is not 0): message = 'Encountered an unrecoverable error executing a content script. Exiting with failure.\nCommand executed: {0}'.format(fullcommand) raise SystemError(message) cleanup(systemparams['workingdir']) if noreboot: print('Detected `noreboot` switch. System will not be rebooted.') else: print('Reboot scheduled. System will reboot after the script exits.') os.system(systemparams['restart']) print('{0} complete!'.format(scriptname)) print(('-' * 80))
4,525,279,070,260,258,300
Master script that calls content scripts to be deployed when provisioning systems
MasterScripts/systemprep-linuxmaster.py
main
plus3it/SystemPrep
python
def main(noreboot='false', **kwargs): '\n \n ' scriptname = if ('__file__' in dir()): scriptname = os.path.abspath(__file__) else: scriptname = os.path.abspath(sys.argv[0]) noreboot = ('true' == noreboot.lower()) sourceiss3bucket = ('true' == kwargs.get('sourceiss3bucket', 'false').lower()) print(('+' * 80)) print('Entering script -- {0}'.format(scriptname)) print('Printing parameters --') print(' noreboot = {0}'.format(noreboot)) for (key, value) in kwargs.items(): print(' {0} = {1}'.format(key, value)) system = platform.system() systemparams = get_system_params(system) scriptstoexecute = get_scripts_to_execute(system, systemparams['workingdir'], **kwargs) for script in scriptstoexecute: url = script['ScriptSource'] filename = url.split('/')[(- 1)] fullfilepath = ((systemparams['workingdir'] + systemparams['pathseparator']) + filename) download_file(url, fullfilepath, sourceiss3bucket) print(('Running script -- ' + script['ScriptSource'])) print('Sending parameters --') for (key, value) in script['Parameters'].items(): print(' {0} = {1}'.format(key, value)) paramstring = ' '.join((("%s='%s'" % (key, val)) for (key, val) in script['Parameters'].iteritems())) fullcommand = 'python {0} {1}'.format(fullfilepath, paramstring) result = os.system(fullcommand) if (result is not 0): message = 'Encountered an unrecoverable error executing a content script. Exiting with failure.\nCommand executed: {0}'.format(fullcommand) raise SystemError(message) cleanup(systemparams['workingdir']) if noreboot: print('Detected `noreboot` switch. System will not be rebooted.') else: print('Reboot scheduled. System will reboot after the script exits.') os.system(systemparams['restart']) print('{0} complete!'.format(scriptname)) print(('-' * 80))
def score(self, x, startprob, transmat): 'Log probability for a given data `x`.\n\n Attributes\n ----------\n x : ndarray\n Data to evaluate.\n %(_doc_default_callparams)s\n\n Returns\n -------\n log_prob : float\n The log probability of the data.\n\n ' log_transmat = np.log((transmat + np.finfo(float).eps)) log_startprob = np.log((startprob + np.finfo(float).eps)) log_prior = log_startprob[x[:, 0]] n = x.shape[0] nstates = log_startprob.shape[0] logp = np.zeros(n) for i in range(n): njk = accum(np.vstack([x[i, 0:(- 1)], x[i, 1:]]).T, 1, size=(nstates, nstates), dtype=np.int32) logp[i] = np.sum((njk * log_transmat)) return (logp + log_prior)
-3,877,954,204,768,832,500
Log probability for a given data `x`. Attributes ---------- x : ndarray Data to evaluate. %(_doc_default_callparams)s Returns ------- log_prob : float The log probability of the data.
mlpy/stats/models/_basic.py
score
evenmarbles/mlpy
python
def score(self, x, startprob, transmat): 'Log probability for a given data `x`.\n\n Attributes\n ----------\n x : ndarray\n Data to evaluate.\n %(_doc_default_callparams)s\n\n Returns\n -------\n log_prob : float\n The log probability of the data.\n\n ' log_transmat = np.log((transmat + np.finfo(float).eps)) log_startprob = np.log((startprob + np.finfo(float).eps)) log_prior = log_startprob[x[:, 0]] n = x.shape[0] nstates = log_startprob.shape[0] logp = np.zeros(n) for i in range(n): njk = accum(np.vstack([x[i, 0:(- 1)], x[i, 1:]]).T, 1, size=(nstates, nstates), dtype=np.int32) logp[i] = np.sum((njk * log_transmat)) return (logp + log_prior)
def sample(self, startprob, transmat, size=1): 'Sample from a Markov model.\n\n Attributes\n ----------\n size: int\n Defining number of sampled variates. Defaults to `1`.\n\n Returns\n -------\n vals: ndarray\n The sampled sequences of size (nseq, seqlen).\n\n ' if np.isscalar(size): size = (1, size) vals = np.zeros(size, dtype=np.int32) (nseq, seqlen) = size for i in range(nseq): vals[i][0] = nonuniform.rvs(startprob) for t in range(1, seqlen): vals[i][t] = nonuniform.rvs(transmat[vals[i][(t - 1)]]) return vals
4,241,172,080,405,026,000
Sample from a Markov model. Attributes ---------- size: int Defining number of sampled variates. Defaults to `1`. Returns ------- vals: ndarray The sampled sequences of size (nseq, seqlen).
mlpy/stats/models/_basic.py
sample
evenmarbles/mlpy
python
def sample(self, startprob, transmat, size=1): 'Sample from a Markov model.\n\n Attributes\n ----------\n size: int\n Defining number of sampled variates. Defaults to `1`.\n\n Returns\n -------\n vals: ndarray\n The sampled sequences of size (nseq, seqlen).\n\n ' if np.isscalar(size): size = (1, size) vals = np.zeros(size, dtype=np.int32) (nseq, seqlen) = size for i in range(nseq): vals[i][0] = nonuniform.rvs(startprob) for t in range(1, seqlen): vals[i][t] = nonuniform.rvs(transmat[vals[i][(t - 1)]]) return vals
def fit(self, x): 'Fit a Markov model from data via MLE or MAP.\n\n Attributes\n ----------\n x : ndarray[int]\n Observed data\n\n Returns\n -------\n %(_doc_default_callparams)s\n\n ' nstates = nunique(x.ravel()) pi_pseudo_counts = np.ones(nstates) transmat_pseudo_counts = np.ones((nstates, nstates)) n = x.shape[0] startprob = ((normalize(np.bincount(x[:, 0])) + pi_pseudo_counts) - 1) counts = np.zeros((nstates, nstates)) for i in range(n): counts += accum(np.vstack([x[i, 0:(- 1)], x[i, 1:]]).T, 1, size=(nstates, nstates)) transmat = normalize(((counts + transmat_pseudo_counts) - 1), 1) return (startprob, transmat)
-6,525,996,465,640,089,000
Fit a Markov model from data via MLE or MAP. Attributes ---------- x : ndarray[int] Observed data Returns ------- %(_doc_default_callparams)s
mlpy/stats/models/_basic.py
fit
evenmarbles/mlpy
python
def fit(self, x): 'Fit a Markov model from data via MLE or MAP.\n\n Attributes\n ----------\n x : ndarray[int]\n Observed data\n\n Returns\n -------\n %(_doc_default_callparams)s\n\n ' nstates = nunique(x.ravel()) pi_pseudo_counts = np.ones(nstates) transmat_pseudo_counts = np.ones((nstates, nstates)) n = x.shape[0] startprob = ((normalize(np.bincount(x[:, 0])) + pi_pseudo_counts) - 1) counts = np.zeros((nstates, nstates)) for i in range(n): counts += accum(np.vstack([x[i, 0:(- 1)], x[i, 1:]]).T, 1, size=(nstates, nstates)) transmat = normalize(((counts + transmat_pseudo_counts) - 1), 1) return (startprob, transmat)
def __init__(self, startprob, transmat): 'Create a "frozen" Markov model.\n\n Parameters\n ----------\n startprob : array_like\n Start probabilities\n transmat : array_like\n Transition matrix\n\n ' self._model = markov_gen() self.startprob = startprob self.transmat = transmat
2,096,330,718,006,145,000
Create a "frozen" Markov model. Parameters ---------- startprob : array_like Start probabilities transmat : array_like Transition matrix
mlpy/stats/models/_basic.py
__init__
evenmarbles/mlpy
python
def __init__(self, startprob, transmat): 'Create a "frozen" Markov model.\n\n Parameters\n ----------\n startprob : array_like\n Start probabilities\n transmat : array_like\n Transition matrix\n\n ' self._model = markov_gen() self.startprob = startprob self.transmat = transmat
@classmethod def getInputSpecification(cls): '\n Method to get a reference to a class that specifies the input data for\n class cls.\n @ Out, inputSpecification, InputData.ParameterInput, class to use for\n specifying input of cls.\n ' specs = super(PolynomialRegression, cls).getInputSpecification() specs.name = 'PolynomialRegression' specs.description = 'TimeSeriesAnalysis algorithm for fitting data of degree one or greater.' specs.addSub(InputData.parameterInputFactory('degree', contentType=InputTypes.IntegerType, descr='Specifies the degree polynomial to fit the data with.')) return specs
6,709,305,341,692,526,000
Method to get a reference to a class that specifies the input data for class cls. @ Out, inputSpecification, InputData.ParameterInput, class to use for specifying input of cls.
framework/TSA/PolynomialRegression.py
getInputSpecification
archmagethanos/raven
python
@classmethod def getInputSpecification(cls): '\n Method to get a reference to a class that specifies the input data for\n class cls.\n @ Out, inputSpecification, InputData.ParameterInput, class to use for\n specifying input of cls.\n ' specs = super(PolynomialRegression, cls).getInputSpecification() specs.name = 'PolynomialRegression' specs.description = 'TimeSeriesAnalysis algorithm for fitting data of degree one or greater.' specs.addSub(InputData.parameterInputFactory('degree', contentType=InputTypes.IntegerType, descr='Specifies the degree polynomial to fit the data with.')) return specs
def __init__(self, *args, **kwargs): '\n A constructor that will appropriately intialize a supervised learning object\n @ In, args, list, an arbitrary list of positional values\n @ In, kwargs, dict, an arbitrary dictionary of keywords and values\n @ Out, None\n ' super().__init__(*args, **kwargs)
1,282,056,979,279,828,700
A constructor that will appropriately intialize a supervised learning object @ In, args, list, an arbitrary list of positional values @ In, kwargs, dict, an arbitrary dictionary of keywords and values @ Out, None
framework/TSA/PolynomialRegression.py
__init__
archmagethanos/raven
python
def __init__(self, *args, **kwargs): '\n A constructor that will appropriately intialize a supervised learning object\n @ In, args, list, an arbitrary list of positional values\n @ In, kwargs, dict, an arbitrary dictionary of keywords and values\n @ Out, None\n ' super().__init__(*args, **kwargs)
def handleInput(self, spec): '\n Reads user inputs into this object.\n @ In, inp, InputData.InputParams, input specifications\n @ Out, settings, dict, initialization settings for this algorithm\n ' settings = super().handleInput(spec) settings['degree'] = spec.findFirst('degree').value return settings
3,221,797,229,476,569,000
Reads user inputs into this object. @ In, inp, InputData.InputParams, input specifications @ Out, settings, dict, initialization settings for this algorithm
framework/TSA/PolynomialRegression.py
handleInput
archmagethanos/raven
python
def handleInput(self, spec): '\n Reads user inputs into this object.\n @ In, inp, InputData.InputParams, input specifications\n @ Out, settings, dict, initialization settings for this algorithm\n ' settings = super().handleInput(spec) settings['degree'] = spec.findFirst('degree').value return settings
def characterize(self, signal, pivot, targets, settings): '\n Determines the charactistics of the signal based on this algorithm.\n @ In, signal, np.ndarray, time series with dims [time, target]\n @ In, pivot, np.1darray, time-like parameter values\n @ In, targets, list(str), names of targets in same order as signal\n @ In, settings, dict, additional settings specific to this algorithm\n @ Out, params, dict, characteristic parameters\n ' from sklearn.preprocessing import PolynomialFeatures import statsmodels.api as sm params = {target: {'model': {}} for target in targets} degree = settings['degree'] features = PolynomialFeatures(degree=degree) xp = features.fit_transform(pivot.reshape((- 1), 1)) for target in targets: results = sm.OLS(signal, xp).fit() params[target]['model']['intercept'] = results.params[0] for (i, value) in enumerate(results.params[1:]): params[target]['model'][f'coef{(i + 1)}'] = value params[target]['model']['object'] = results return params
-1,975,003,618,679,932,400
Determines the charactistics of the signal based on this algorithm. @ In, signal, np.ndarray, time series with dims [time, target] @ In, pivot, np.1darray, time-like parameter values @ In, targets, list(str), names of targets in same order as signal @ In, settings, dict, additional settings specific to this algorithm @ Out, params, dict, characteristic parameters
framework/TSA/PolynomialRegression.py
characterize
archmagethanos/raven
python
def characterize(self, signal, pivot, targets, settings): '\n Determines the charactistics of the signal based on this algorithm.\n @ In, signal, np.ndarray, time series with dims [time, target]\n @ In, pivot, np.1darray, time-like parameter values\n @ In, targets, list(str), names of targets in same order as signal\n @ In, settings, dict, additional settings specific to this algorithm\n @ Out, params, dict, characteristic parameters\n ' from sklearn.preprocessing import PolynomialFeatures import statsmodels.api as sm params = {target: {'model': {}} for target in targets} degree = settings['degree'] features = PolynomialFeatures(degree=degree) xp = features.fit_transform(pivot.reshape((- 1), 1)) for target in targets: results = sm.OLS(signal, xp).fit() params[target]['model']['intercept'] = results.params[0] for (i, value) in enumerate(results.params[1:]): params[target]['model'][f'coef{(i + 1)}'] = value params[target]['model']['object'] = results return params
def getParamNames(self, settings): '\n Return list of expected variable names based on the parameters\n @ In, settings, dict, training parameters for this algorithm\n @ Out, names, list, string list of names\n ' names = [] for target in settings['target']: base = f'{self.name}__{target}' names.append(f'{base}__intercept') for i in range(1, settings['degree']): names.append(f'{base}__coef{i}') return names
1,502,671,060,607,642,000
Return list of expected variable names based on the parameters @ In, settings, dict, training parameters for this algorithm @ Out, names, list, string list of names
framework/TSA/PolynomialRegression.py
getParamNames
archmagethanos/raven
python
def getParamNames(self, settings): '\n Return list of expected variable names based on the parameters\n @ In, settings, dict, training parameters for this algorithm\n @ Out, names, list, string list of names\n ' names = [] for target in settings['target']: base = f'{self.name}__{target}' names.append(f'{base}__intercept') for i in range(1, settings['degree']): names.append(f'{base}__coef{i}') return names
def getParamsAsVars(self, params): '\n Map characterization parameters into flattened variable format\n @ In, params, dict, trained parameters (as from characterize)\n @ Out, rlz, dict, realization-style response\n ' rlz = {} for (target, info) in params.items(): base = f'{self.name}__{target}' for (name, value) in info['model'].items(): if (name == 'object'): continue rlz[f'{base}__{name}'] = value return rlz
5,117,106,150,454,316,000
Map characterization parameters into flattened variable format @ In, params, dict, trained parameters (as from characterize) @ Out, rlz, dict, realization-style response
framework/TSA/PolynomialRegression.py
getParamsAsVars
archmagethanos/raven
python
def getParamsAsVars(self, params): '\n Map characterization parameters into flattened variable format\n @ In, params, dict, trained parameters (as from characterize)\n @ Out, rlz, dict, realization-style response\n ' rlz = {} for (target, info) in params.items(): base = f'{self.name}__{target}' for (name, value) in info['model'].items(): if (name == 'object'): continue rlz[f'{base}__{name}'] = value return rlz
def generate(self, params, pivot, settings): '\n Generates a synthetic history from fitted parameters.\n @ In, params, dict, characterization such as otained from self.characterize()\n @ In, pivot, np.array(float), pivot parameter values\n @ In, settings, dict, additional settings specific to algorithm\n @ Out, synthetic, np.array(float), synthetic estimated model signal\n ' from sklearn.preprocessing import PolynomialFeatures synthetic = np.zeros((len(pivot), len(params))) degree = settings['degree'] features = PolynomialFeatures(degree=degree) xp = features.fit_transform(pivot.reshape((- 1), 1)) for (t, (target, _)) in enumerate(params.items()): model = params[target]['model']['object'] synthetic[:, t] = model.predict(xp) return synthetic
1,532,766,129,109,472,000
Generates a synthetic history from fitted parameters. @ In, params, dict, characterization such as otained from self.characterize() @ In, pivot, np.array(float), pivot parameter values @ In, settings, dict, additional settings specific to algorithm @ Out, synthetic, np.array(float), synthetic estimated model signal
framework/TSA/PolynomialRegression.py
generate
archmagethanos/raven
python
def generate(self, params, pivot, settings): '\n Generates a synthetic history from fitted parameters.\n @ In, params, dict, characterization such as otained from self.characterize()\n @ In, pivot, np.array(float), pivot parameter values\n @ In, settings, dict, additional settings specific to algorithm\n @ Out, synthetic, np.array(float), synthetic estimated model signal\n ' from sklearn.preprocessing import PolynomialFeatures synthetic = np.zeros((len(pivot), len(params))) degree = settings['degree'] features = PolynomialFeatures(degree=degree) xp = features.fit_transform(pivot.reshape((- 1), 1)) for (t, (target, _)) in enumerate(params.items()): model = params[target]['model']['object'] synthetic[:, t] = model.predict(xp) return synthetic
def writeXML(self, writeTo, params): '\n Allows the engine to put whatever it wants into an XML to print to file.\n @ In, writeTo, xmlUtils.StaticXmlElement, entity to write to\n @ In, params, dict, trained parameters as from self.characterize\n @ Out, None\n ' for (target, info) in params.items(): base = xmlUtils.newNode(target) writeTo.append(base) for (name, value) in info['model'].items(): if (name == 'object'): continue base.append(xmlUtils.newNode(name, text=f'{float(value):1.9e}'))
1,898,250,700,010,009,300
Allows the engine to put whatever it wants into an XML to print to file. @ In, writeTo, xmlUtils.StaticXmlElement, entity to write to @ In, params, dict, trained parameters as from self.characterize @ Out, None
framework/TSA/PolynomialRegression.py
writeXML
archmagethanos/raven
python
def writeXML(self, writeTo, params): '\n Allows the engine to put whatever it wants into an XML to print to file.\n @ In, writeTo, xmlUtils.StaticXmlElement, entity to write to\n @ In, params, dict, trained parameters as from self.characterize\n @ Out, None\n ' for (target, info) in params.items(): base = xmlUtils.newNode(target) writeTo.append(base) for (name, value) in info['model'].items(): if (name == 'object'): continue base.append(xmlUtils.newNode(name, text=f'{float(value):1.9e}'))
@pytest.fixture def client(request): '\n Definges the client object to make requests against\n ' (db_fd, app.APP.config['DATABASE']) = tempfile.mkstemp() app.APP.config['TESTING'] = True client = app.APP.test_client() def teardown(): '\n Close the client once testing has completed\n ' os.close(db_fd) os.unlink(app.APP.config['DATABASE']) request.addfinalizer(teardown) return client
-2,865,272,458,671,341,000
Definges the client object to make requests against
tests/test_rest_file_region.py
client
Multiscale-Genomics/mg-rest-file
python
@pytest.fixture def client(request): '\n \n ' (db_fd, app.APP.config['DATABASE']) = tempfile.mkstemp() app.APP.config['TESTING'] = True client = app.APP.test_client() def teardown(): '\n Close the client once testing has completed\n ' os.close(db_fd) os.unlink(app.APP.config['DATABASE']) request.addfinalizer(teardown) return client
def test_region_meta(client): '\n Test that the track endpoint is returning the usage paramerts\n ' rest_value = client.get('/mug/api/dmp/file/whole', headers=dict(Authorization='Authorization: Bearer teststring')) details = json.loads(rest_value.data) assert ('usage' in details)
3,116,075,016,171,612,700
Test that the track endpoint is returning the usage paramerts
tests/test_rest_file_region.py
test_region_meta
Multiscale-Genomics/mg-rest-file
python
def test_region_meta(client): '\n \n ' rest_value = client.get('/mug/api/dmp/file/whole', headers=dict(Authorization='Authorization: Bearer teststring')) details = json.loads(rest_value.data) assert ('usage' in details)
def test_region_file(client): '\n Test that the track endpoint is returning the usage paramerts\n ' rest_value = client.get('/mug/api/dmp/file/region?file_id=testtest0000&chrom=19&start=3000000&end=3100000', headers=dict(Authorization='Authorization: Bearer teststring')) assert (len(rest_value.data) > 0)
5,789,364,442,130,801,000
Test that the track endpoint is returning the usage paramerts
tests/test_rest_file_region.py
test_region_file
Multiscale-Genomics/mg-rest-file
python
def test_region_file(client): '\n \n ' rest_value = client.get('/mug/api/dmp/file/region?file_id=testtest0000&chrom=19&start=3000000&end=3100000', headers=dict(Authorization='Authorization: Bearer teststring')) assert (len(rest_value.data) > 0)
def teardown(): '\n Close the client once testing has completed\n ' os.close(db_fd) os.unlink(app.APP.config['DATABASE'])
-8,832,247,154,748,192,000
Close the client once testing has completed
tests/test_rest_file_region.py
teardown
Multiscale-Genomics/mg-rest-file
python
def teardown(): '\n \n ' os.close(db_fd) os.unlink(app.APP.config['DATABASE'])
def build_model(model_name, num_features, num_classes): 'Hyper-parameters are determined by auto training, refer to grb.utils.trainer.AutoTrainer.' if (model_name in ['gcn', 'gcn_ln', 'gcn_at', 'gcn_ln_at']): from grb.model.torch import GCN model = GCN(in_features=num_features, out_features=num_classes, hidden_features=128, n_layers=3, layer_norm=(True if ('ln' in model_name) else False), dropout=0.7) train_params = {'lr': 0.001, 'n_epoch': 5000, 'early_stop': True, 'early_stop_patience': 500, 'train_mode': 'inductive'} return (model, train_params) if (model_name in ['graphsage', 'graphsage_ln', 'graphsage_at', 'graphsage_ln_at']): from grb.model.torch import GraphSAGE model = GraphSAGE(in_features=num_features, out_features=num_classes, hidden_features=256, n_layers=5, layer_norm=(True if ('ln' in model_name) else False), dropout=0.5) train_params = {'lr': 0.0001, 'n_epoch': 5000, 'early_stop': True, 'early_stop_patience': 500, 'train_mode': 'inductive'} return (model, train_params) if (model_name in ['sgcn', 'sgcn_ln', 'sgcn_at', 'sgcn_ln_at']): from grb.model.torch import SGCN model = SGCN(in_features=num_features, out_features=num_classes, hidden_features=256, n_layers=4, k=4, layer_norm=(True if ('ln' in model_name) else False), dropout=0.5) train_params = {'lr': 0.01, 'n_epoch': 5000, 'early_stop': True, 'early_stop_patience': 500, 'train_mode': 'inductive'} return (model, train_params) if (model_name in ['tagcn', 'tagcn_ln', 'tagcn_at', 'tagcn_ln_at']): from grb.model.torch import TAGCN model = TAGCN(in_features=num_features, out_features=num_classes, hidden_features=256, n_layers=3, k=2, layer_norm=(True if ('ln' in model_name) else False), dropout=0.5) train_params = {'lr': 0.005, 'n_epoch': 5000, 'early_stop': True, 'early_stop_patience': 500, 'train_mode': 'inductive'} return (model, train_params) if (model_name in ['appnp', 'appnp_ln', 'appnp_at', 'appnp_ln_at']): from grb.model.torch import APPNP model = APPNP(in_features=num_features, out_features=num_classes, hidden_features=128, n_layers=3, k=3, layer_norm=(True if ('ln' in model_name) else False), dropout=0.5) train_params = {'lr': 0.001, 'n_epoch': 5000, 'early_stop': True, 'early_stop_patience': 500, 'train_mode': 'inductive'} return (model, train_params) if (model_name in ['gin', 'gin_ln', 'gin_at', 'gin_ln_at']): from grb.model.torch import GIN model = GIN(in_features=num_features, out_features=num_classes, hidden_features=256, n_layers=2, layer_norm=(True if ('ln' in model_name) else False), dropout=0.6) train_params = {'lr': 0.0001, 'n_epoch': 5000, 'early_stop': True, 'early_stop_patience': 500, 'train_mode': 'inductive'} return (model, train_params) if (model_name in ['gat', 'gat_ln', 'gat_at', 'gat_ln_at']): from grb.model.dgl import GAT model = GAT(in_features=num_features, out_features=num_classes, hidden_features=64, n_layers=3, n_heads=6, layer_norm=(True if ('ln' in model_name) else False), dropout=0.6) train_params = {'lr': 0.005, 'n_epoch': 5000, 'early_stop': True, 'early_stop_patience': 500, 'train_mode': 'inductive'} return (model, train_params) if (model_name in ['robustgcn', 'robustgcn_at']): from grb.defense import RobustGCN model = RobustGCN(in_features=num_features, out_features=num_classes, hidden_features=128, n_layers=3, dropout=0.5) train_params = {'lr': 0.001, 'n_epoch': 5000, 'early_stop': True, 'early_stop_patience': 500, 'train_mode': 'inductive'} return (model, train_params) if (model_name in ['gcnsvd', 'gcnsvd_ln']): from grb.defense.gcnsvd import GCNSVD model = GCNSVD(in_features=num_features, out_features=num_classes, hidden_features=128, n_layers=3, dropout=0.5) train_params = {'lr': 0.001, 'n_epoch': 5000, 'early_stop': True, 'early_stop_patience': 500, 'train_mode': 'inductive'} return (model, train_params) if (model_name in ['gcnguard']): from grb.defense import GCNGuard model = GCNGuard(in_features=num_features, out_features=num_classes, hidden_features=128, n_layers=3, dropout=0.5) train_params = {'lr': 0.001, 'n_epoch': 5000, 'early_stop': True, 'early_stop_patience': 500, 'train_mode': 'inductive'} return (model, train_params) if (model_name in ['gatguard']): from grb.defense import GATGuard model = GATGuard(in_features=num_features, out_features=num_classes, hidden_features=64, n_heads=6, n_layers=3, dropout=0.5) train_params = {'lr': 0.001, 'n_epoch': 5000, 'early_stop': True, 'early_stop_patience': 500, 'train_mode': 'inductive'} return (model, train_params)
6,690,898,841,103,739,000
Hyper-parameters are determined by auto training, refer to grb.utils.trainer.AutoTrainer.
pipeline/configs/grb-citeseer/config.py
build_model
sigeisler/grb
python
def build_model(model_name, num_features, num_classes): if (model_name in ['gcn', 'gcn_ln', 'gcn_at', 'gcn_ln_at']): from grb.model.torch import GCN model = GCN(in_features=num_features, out_features=num_classes, hidden_features=128, n_layers=3, layer_norm=(True if ('ln' in model_name) else False), dropout=0.7) train_params = {'lr': 0.001, 'n_epoch': 5000, 'early_stop': True, 'early_stop_patience': 500, 'train_mode': 'inductive'} return (model, train_params) if (model_name in ['graphsage', 'graphsage_ln', 'graphsage_at', 'graphsage_ln_at']): from grb.model.torch import GraphSAGE model = GraphSAGE(in_features=num_features, out_features=num_classes, hidden_features=256, n_layers=5, layer_norm=(True if ('ln' in model_name) else False), dropout=0.5) train_params = {'lr': 0.0001, 'n_epoch': 5000, 'early_stop': True, 'early_stop_patience': 500, 'train_mode': 'inductive'} return (model, train_params) if (model_name in ['sgcn', 'sgcn_ln', 'sgcn_at', 'sgcn_ln_at']): from grb.model.torch import SGCN model = SGCN(in_features=num_features, out_features=num_classes, hidden_features=256, n_layers=4, k=4, layer_norm=(True if ('ln' in model_name) else False), dropout=0.5) train_params = {'lr': 0.01, 'n_epoch': 5000, 'early_stop': True, 'early_stop_patience': 500, 'train_mode': 'inductive'} return (model, train_params) if (model_name in ['tagcn', 'tagcn_ln', 'tagcn_at', 'tagcn_ln_at']): from grb.model.torch import TAGCN model = TAGCN(in_features=num_features, out_features=num_classes, hidden_features=256, n_layers=3, k=2, layer_norm=(True if ('ln' in model_name) else False), dropout=0.5) train_params = {'lr': 0.005, 'n_epoch': 5000, 'early_stop': True, 'early_stop_patience': 500, 'train_mode': 'inductive'} return (model, train_params) if (model_name in ['appnp', 'appnp_ln', 'appnp_at', 'appnp_ln_at']): from grb.model.torch import APPNP model = APPNP(in_features=num_features, out_features=num_classes, hidden_features=128, n_layers=3, k=3, layer_norm=(True if ('ln' in model_name) else False), dropout=0.5) train_params = {'lr': 0.001, 'n_epoch': 5000, 'early_stop': True, 'early_stop_patience': 500, 'train_mode': 'inductive'} return (model, train_params) if (model_name in ['gin', 'gin_ln', 'gin_at', 'gin_ln_at']): from grb.model.torch import GIN model = GIN(in_features=num_features, out_features=num_classes, hidden_features=256, n_layers=2, layer_norm=(True if ('ln' in model_name) else False), dropout=0.6) train_params = {'lr': 0.0001, 'n_epoch': 5000, 'early_stop': True, 'early_stop_patience': 500, 'train_mode': 'inductive'} return (model, train_params) if (model_name in ['gat', 'gat_ln', 'gat_at', 'gat_ln_at']): from grb.model.dgl import GAT model = GAT(in_features=num_features, out_features=num_classes, hidden_features=64, n_layers=3, n_heads=6, layer_norm=(True if ('ln' in model_name) else False), dropout=0.6) train_params = {'lr': 0.005, 'n_epoch': 5000, 'early_stop': True, 'early_stop_patience': 500, 'train_mode': 'inductive'} return (model, train_params) if (model_name in ['robustgcn', 'robustgcn_at']): from grb.defense import RobustGCN model = RobustGCN(in_features=num_features, out_features=num_classes, hidden_features=128, n_layers=3, dropout=0.5) train_params = {'lr': 0.001, 'n_epoch': 5000, 'early_stop': True, 'early_stop_patience': 500, 'train_mode': 'inductive'} return (model, train_params) if (model_name in ['gcnsvd', 'gcnsvd_ln']): from grb.defense.gcnsvd import GCNSVD model = GCNSVD(in_features=num_features, out_features=num_classes, hidden_features=128, n_layers=3, dropout=0.5) train_params = {'lr': 0.001, 'n_epoch': 5000, 'early_stop': True, 'early_stop_patience': 500, 'train_mode': 'inductive'} return (model, train_params) if (model_name in ['gcnguard']): from grb.defense import GCNGuard model = GCNGuard(in_features=num_features, out_features=num_classes, hidden_features=128, n_layers=3, dropout=0.5) train_params = {'lr': 0.001, 'n_epoch': 5000, 'early_stop': True, 'early_stop_patience': 500, 'train_mode': 'inductive'} return (model, train_params) if (model_name in ['gatguard']): from grb.defense import GATGuard model = GATGuard(in_features=num_features, out_features=num_classes, hidden_features=64, n_heads=6, n_layers=3, dropout=0.5) train_params = {'lr': 0.001, 'n_epoch': 5000, 'early_stop': True, 'early_stop_patience': 500, 'train_mode': 'inductive'} return (model, train_params)
def wrap(lower, upper, x): '\n Circularly alias the numeric value x into the range [lower,upper).\n\n Valid for cyclic quantities like orientations or hues.\n ' axis_range = (upper - lower) return (lower + (((x - lower) + ((2.0 * axis_range) * (1.0 - math.floor((x / (2.0 * axis_range)))))) % axis_range))
630,713,999,419,601,900
Circularly alias the numeric value x into the range [lower,upper). Valid for cyclic quantities like orientations or hues.
featuremapper/distribution.py
wrap
fcr/featuremapper
python
def wrap(lower, upper, x): '\n Circularly alias the numeric value x into the range [lower,upper).\n\n Valid for cyclic quantities like orientations or hues.\n ' axis_range = (upper - lower) return (lower + (((x - lower) + ((2.0 * axis_range) * (1.0 - math.floor((x / (2.0 * axis_range)))))) % axis_range))
def calc_theta(bins, axis_range): '\n Convert a bin number to a direction in radians.\n\n Works for NumPy arrays of bin numbers, returning\n an array of directions.\n ' return np.exp(((((2.0 * np.pi) * bins) / axis_range) * 1j))
4,120,604,362,412,400,000
Convert a bin number to a direction in radians. Works for NumPy arrays of bin numbers, returning an array of directions.
featuremapper/distribution.py
calc_theta
fcr/featuremapper
python
def calc_theta(bins, axis_range): '\n Convert a bin number to a direction in radians.\n\n Works for NumPy arrays of bin numbers, returning\n an array of directions.\n ' return np.exp(((((2.0 * np.pi) * bins) / axis_range) * 1j))
def data(self): '\n Answer a dictionary with bins as keys.\n ' return self._data
-4,481,491,216,808,856,600
Answer a dictionary with bins as keys.
featuremapper/distribution.py
data
fcr/featuremapper
python
def data(self): '\n \n ' return self._data
def pop(self, feature_bin): '\n Remove the entry with bin from the distribution.\n ' if (self._pop_store is not None): raise Exception('Distribution: attempt to pop value before outstanding restore') self._pop_store = self._data.pop(feature_bin) self._keys = list(self._data.keys()) self._values = list(self._data.values())
-4,856,610,280,572,698,000
Remove the entry with bin from the distribution.
featuremapper/distribution.py
pop
fcr/featuremapper
python
def pop(self, feature_bin): '\n \n ' if (self._pop_store is not None): raise Exception('Distribution: attempt to pop value before outstanding restore') self._pop_store = self._data.pop(feature_bin) self._keys = list(self._data.keys()) self._values = list(self._data.values())
def restore(self, feature_bin): '\n Restore the entry with bin from the distribution.\n Only valid if called after a pop.\n ' if (self._pop_store is None): raise Exception('Distribution: attempt to restore value before pop') self._data[feature_bin] = self._pop_store self._pop_store = None self._keys = list(self._data.keys()) self._values = list(self._data.values())
1,775,950,284,836,956,400
Restore the entry with bin from the distribution. Only valid if called after a pop.
featuremapper/distribution.py
restore
fcr/featuremapper
python
def restore(self, feature_bin): '\n Restore the entry with bin from the distribution.\n Only valid if called after a pop.\n ' if (self._pop_store is None): raise Exception('Distribution: attempt to restore value before pop') self._data[feature_bin] = self._pop_store self._pop_store = None self._keys = list(self._data.keys()) self._values = list(self._data.values())
def vector_sum(self): '\n Return the vector sum of the distribution as a tuple (magnitude, avgbinnum).\n\n Each feature_bin contributes a vector of length equal to its value, at\n a direction corresponding to the feature_bin number. Specifically,\n the total feature_bin number range is mapped into a direction range\n [0,2pi].\n\n For a cyclic distribution, the avgbinnum will be a continuous\n measure analogous to the max_value_bin() of the distribution.\n But this quantity has more precision than max_value_bin()\n because it is computed from the entire distribution instead of\n just the peak feature_bin. However, it is likely to be useful only\n for uniform or very dense sampling; with sparse, non-uniform\n sampling the estimates will be biased significantly by the\n particular samples chosen.\n\n The avgbinnum is not meaningful when the magnitude is 0,\n because a zero-length vector has no direction. To find out\n whether such cases occurred, you can compare the value of\n undefined_vals before and after a series of calls to this\n function.\n \n This tries to use cached values of this.\n\n ' if (self._vector_sum is None): if (self._theta is None): self._theta = calc_theta(np.array(self._keys), self.axis_range) self._vector_sum = self._fast_vector_sum(self._values, self._theta) return self._vector_sum
6,490,668,294,525,124,000
Return the vector sum of the distribution as a tuple (magnitude, avgbinnum). Each feature_bin contributes a vector of length equal to its value, at a direction corresponding to the feature_bin number. Specifically, the total feature_bin number range is mapped into a direction range [0,2pi]. For a cyclic distribution, the avgbinnum will be a continuous measure analogous to the max_value_bin() of the distribution. But this quantity has more precision than max_value_bin() because it is computed from the entire distribution instead of just the peak feature_bin. However, it is likely to be useful only for uniform or very dense sampling; with sparse, non-uniform sampling the estimates will be biased significantly by the particular samples chosen. The avgbinnum is not meaningful when the magnitude is 0, because a zero-length vector has no direction. To find out whether such cases occurred, you can compare the value of undefined_vals before and after a series of calls to this function. This tries to use cached values of this.
featuremapper/distribution.py
vector_sum
fcr/featuremapper
python
def vector_sum(self): '\n Return the vector sum of the distribution as a tuple (magnitude, avgbinnum).\n\n Each feature_bin contributes a vector of length equal to its value, at\n a direction corresponding to the feature_bin number. Specifically,\n the total feature_bin number range is mapped into a direction range\n [0,2pi].\n\n For a cyclic distribution, the avgbinnum will be a continuous\n measure analogous to the max_value_bin() of the distribution.\n But this quantity has more precision than max_value_bin()\n because it is computed from the entire distribution instead of\n just the peak feature_bin. However, it is likely to be useful only\n for uniform or very dense sampling; with sparse, non-uniform\n sampling the estimates will be biased significantly by the\n particular samples chosen.\n\n The avgbinnum is not meaningful when the magnitude is 0,\n because a zero-length vector has no direction. To find out\n whether such cases occurred, you can compare the value of\n undefined_vals before and after a series of calls to this\n function.\n \n This tries to use cached values of this.\n\n ' if (self._vector_sum is None): if (self._theta is None): self._theta = calc_theta(np.array(self._keys), self.axis_range) self._vector_sum = self._fast_vector_sum(self._values, self._theta) return self._vector_sum
def _fast_vector_sum(self, values, theta): '\n Return the vector sum of the distribution as a tuple (magnitude, avgbinnum).\n \n This implementation assumes that the values of the distribution needed for the \n vector sum will not be changed and depends on cached values.\n \n ' v_sum = np.inner(values, theta) magnitude = abs(v_sum) direction = cmath.phase(v_sum) if (v_sum == 0): self.undefined_vals += 1 direction_radians = self._radians_to_bins(direction) wrapped_direction = wrap(self.axis_bounds[0], self.axis_bounds[1], direction_radians) return (magnitude, wrapped_direction)
-1,804,977,039,230,122,000
Return the vector sum of the distribution as a tuple (magnitude, avgbinnum). This implementation assumes that the values of the distribution needed for the vector sum will not be changed and depends on cached values.
featuremapper/distribution.py
_fast_vector_sum
fcr/featuremapper
python
def _fast_vector_sum(self, values, theta): '\n Return the vector sum of the distribution as a tuple (magnitude, avgbinnum).\n \n This implementation assumes that the values of the distribution needed for the \n vector sum will not be changed and depends on cached values.\n \n ' v_sum = np.inner(values, theta) magnitude = abs(v_sum) direction = cmath.phase(v_sum) if (v_sum == 0): self.undefined_vals += 1 direction_radians = self._radians_to_bins(direction) wrapped_direction = wrap(self.axis_bounds[0], self.axis_bounds[1], direction_radians) return (magnitude, wrapped_direction)
def get_value(self, feature_bin): '\n Return the value of the specified feature_bin.\n\n (Return None if there is no such feature_bin.)\n ' return self._data.get(feature_bin)
-3,871,729,423,209,276,400
Return the value of the specified feature_bin. (Return None if there is no such feature_bin.)
featuremapper/distribution.py
get_value
fcr/featuremapper
python
def get_value(self, feature_bin): '\n Return the value of the specified feature_bin.\n\n (Return None if there is no such feature_bin.)\n ' return self._data.get(feature_bin)
def get_count(self, feature_bin): '\n Return the count from the specified feature_bin.\n\n (Return None if there is no such feature_bin.)\n ' return self._counts.get(feature_bin)
3,929,430,799,493,367,000
Return the count from the specified feature_bin. (Return None if there is no such feature_bin.)
featuremapper/distribution.py
get_count
fcr/featuremapper
python
def get_count(self, feature_bin): '\n Return the count from the specified feature_bin.\n\n (Return None if there is no such feature_bin.)\n ' return self._counts.get(feature_bin)
def values(self): '\n Return a list of values.\n\n Various statistics can then be calculated if desired:\n\n sum(vals) (total of all values)\n max(vals) (highest value in any feature_bin)\n\n Note that the feature_bin-order of values returned does not necessarily\n match that returned by counts().\n ' return self._values
7,122,961,979,136,912,000
Return a list of values. Various statistics can then be calculated if desired: sum(vals) (total of all values) max(vals) (highest value in any feature_bin) Note that the feature_bin-order of values returned does not necessarily match that returned by counts().
featuremapper/distribution.py
values
fcr/featuremapper
python
def values(self): '\n Return a list of values.\n\n Various statistics can then be calculated if desired:\n\n sum(vals) (total of all values)\n max(vals) (highest value in any feature_bin)\n\n Note that the feature_bin-order of values returned does not necessarily\n match that returned by counts().\n ' return self._values
def counts(self): '\n Return a list of values.\n\n Various statistics can then be calculated if desired:\n\n sum(counts) (total of all counts)\n max(counts) (highest count in any feature_bin)\n\n Note that the feature_bin-order of values returned does not necessarily\n match that returned by values().\n ' return list(self._counts.values())
-577,602,815,931,901,200
Return a list of values. Various statistics can then be calculated if desired: sum(counts) (total of all counts) max(counts) (highest count in any feature_bin) Note that the feature_bin-order of values returned does not necessarily match that returned by values().
featuremapper/distribution.py
counts
fcr/featuremapper
python
def counts(self): '\n Return a list of values.\n\n Various statistics can then be calculated if desired:\n\n sum(counts) (total of all counts)\n max(counts) (highest count in any feature_bin)\n\n Note that the feature_bin-order of values returned does not necessarily\n match that returned by values().\n ' return list(self._counts.values())
def bins(self): '\n Return a list of bins that have been populated.\n ' return self._keys
8,935,579,620,609,360,000
Return a list of bins that have been populated.
featuremapper/distribution.py
bins
fcr/featuremapper
python
def bins(self): '\n \n ' return self._keys
def sub_distr(self, distr): '\n Subtract the given distribution from the current one.\n Only existing bins are modified, new bins in the given\n distribution are discarded without raising errors.\n\n Note that total_value and total_count are not affected, and\n keep_peak is ignored, therefore analysis relying on these\n values should not call this method.\n ' for b in distr.bins(): if (b in self.bins()): v = distr._data.get(b) if (v is not None): self._data[b] -= v
786,399,384,776,559,700
Subtract the given distribution from the current one. Only existing bins are modified, new bins in the given distribution are discarded without raising errors. Note that total_value and total_count are not affected, and keep_peak is ignored, therefore analysis relying on these values should not call this method.
featuremapper/distribution.py
sub_distr
fcr/featuremapper
python
def sub_distr(self, distr): '\n Subtract the given distribution from the current one.\n Only existing bins are modified, new bins in the given\n distribution are discarded without raising errors.\n\n Note that total_value and total_count are not affected, and\n keep_peak is ignored, therefore analysis relying on these\n values should not call this method.\n ' for b in distr.bins(): if (b in self.bins()): v = distr._data.get(b) if (v is not None): self._data[b] -= v
def max_value_bin(self): '\n Return the feature_bin with the largest value.\n \n Note that uses cached values so that pop and restore\n need to be used if want with altered distribution.\n ' return self._keys[np.argmax(self._values)]
6,829,382,467,599,951,000
Return the feature_bin with the largest value. Note that uses cached values so that pop and restore need to be used if want with altered distribution.
featuremapper/distribution.py
max_value_bin
fcr/featuremapper
python
def max_value_bin(self): '\n Return the feature_bin with the largest value.\n \n Note that uses cached values so that pop and restore\n need to be used if want with altered distribution.\n ' return self._keys[np.argmax(self._values)]
def weighted_sum(self): 'Return the sum of each value times its feature_bin.' return np.inner(self._keys, self._values)
3,106,585,788,290,091,500
Return the sum of each value times its feature_bin.
featuremapper/distribution.py
weighted_sum
fcr/featuremapper
python
def weighted_sum(self): return np.inner(self._keys, self._values)
def value_mag(self, feature_bin): 'Return the value of a single feature_bin as a proportion of total_value.' return self._safe_divide(self._data.get(feature_bin), self.total_value)
3,479,951,534,854,595,600
Return the value of a single feature_bin as a proportion of total_value.
featuremapper/distribution.py
value_mag
fcr/featuremapper
python
def value_mag(self, feature_bin): return self._safe_divide(self._data.get(feature_bin), self.total_value)
def count_mag(self, feature_bin): 'Return the count of a single feature_bin as a proportion of total_count.' return self._safe_divide(float(self._counts.get(feature_bin)), float(self.total_count))
-1,181,326,390,964,662,500
Return the count of a single feature_bin as a proportion of total_count.
featuremapper/distribution.py
count_mag
fcr/featuremapper
python
def count_mag(self, feature_bin): return self._safe_divide(float(self._counts.get(feature_bin)), float(self.total_count))
def _bins_to_radians(self, bin): '\n Convert a bin number to a direction in radians.\n\n Works for NumPy arrays of bin numbers, returning\n an array of directions.\n ' return (((2 * np.pi) * bin) / self.axis_range)
2,133,827,564,899,951,900
Convert a bin number to a direction in radians. Works for NumPy arrays of bin numbers, returning an array of directions.
featuremapper/distribution.py
_bins_to_radians
fcr/featuremapper
python
def _bins_to_radians(self, bin): '\n Convert a bin number to a direction in radians.\n\n Works for NumPy arrays of bin numbers, returning\n an array of directions.\n ' return (((2 * np.pi) * bin) / self.axis_range)
def _radians_to_bins(self, direction): '\n Convert a direction in radians into a feature_bin number.\n\n Works for NumPy arrays of direction, returning\n an array of feature_bin numbers.\n ' return ((direction * self.axis_range) / (2 * np.pi))
-3,051,043,271,045,395,500
Convert a direction in radians into a feature_bin number. Works for NumPy arrays of direction, returning an array of feature_bin numbers.
featuremapper/distribution.py
_radians_to_bins
fcr/featuremapper
python
def _radians_to_bins(self, direction): '\n Convert a direction in radians into a feature_bin number.\n\n Works for NumPy arrays of direction, returning\n an array of feature_bin numbers.\n ' return ((direction * self.axis_range) / (2 * np.pi))
def _safe_divide(self, numerator, denominator): '\n Division routine that avoids division-by-zero errors\n (returning zero in such cases) but keeps track of them\n for undefined_values().\n ' if (denominator == 0): self.undefined_vals += 1 return 0 else: return (numerator / denominator)
-4,667,346,801,391,625,000
Division routine that avoids division-by-zero errors (returning zero in such cases) but keeps track of them for undefined_values().
featuremapper/distribution.py
_safe_divide
fcr/featuremapper
python
def _safe_divide(self, numerator, denominator): '\n Division routine that avoids division-by-zero errors\n (returning zero in such cases) but keeps track of them\n for undefined_values().\n ' if (denominator == 0): self.undefined_vals += 1 return 0 else: return (numerator / denominator)
def __call__(self, distribution): '\n Apply the distribution statistic function; must be implemented by subclasses.\n\n Subclasses sould be called with a Distribution as argument, return will be a\n dictionary, with Pref objects as values\n ' raise NotImplementedError
-1,237,814,911,082,698,200
Apply the distribution statistic function; must be implemented by subclasses. Subclasses sould be called with a Distribution as argument, return will be a dictionary, with Pref objects as values
featuremapper/distribution.py
__call__
fcr/featuremapper
python
def __call__(self, distribution): '\n Apply the distribution statistic function; must be implemented by subclasses.\n\n Subclasses sould be called with a Distribution as argument, return will be a\n dictionary, with Pref objects as values\n ' raise NotImplementedError
def vector_sum(self, d): '\n Return the vector sum of the distribution as a tuple (magnitude, avgbinnum).\n\n Each bin contributes a vector of length equal to its value, at\n a direction corresponding to the bin number. Specifically,\n the total bin number range is mapped into a direction range\n [0,2pi].\n\n For a cyclic distribution, the avgbinnum will be a continuous\n measure analogous to the max_value_bin() of the distribution.\n But this quantity has more precision than max_value_bin()\n because it is computed from the entire distribution instead of\n just the peak bin. However, it is likely to be useful only\n for uniform or very dense sampling; with sparse, non-uniform\n sampling the estimates will be biased significantly by the\n particular samples chosen.\n\n The avgbinnum is not meaningful when the magnitude is 0,\n because a zero-length vector has no direction. To find out\n whether such cases occurred, you can compare the value of\n undefined_vals before and after a series of calls to this\n function.\n \n This is a slow algorithm and should only be used if the\n contents of the distribution have been changed by the statistical \n function.\n If not, then the cached value in the distribution should be used.\n\n ' h = d.data() theta = calc_theta(np.array(list(h.keys())), d.axis_range) return d._fast_vector_sum(list(h.values()), theta)
6,010,283,714,036,825,000
Return the vector sum of the distribution as a tuple (magnitude, avgbinnum). Each bin contributes a vector of length equal to its value, at a direction corresponding to the bin number. Specifically, the total bin number range is mapped into a direction range [0,2pi]. For a cyclic distribution, the avgbinnum will be a continuous measure analogous to the max_value_bin() of the distribution. But this quantity has more precision than max_value_bin() because it is computed from the entire distribution instead of just the peak bin. However, it is likely to be useful only for uniform or very dense sampling; with sparse, non-uniform sampling the estimates will be biased significantly by the particular samples chosen. The avgbinnum is not meaningful when the magnitude is 0, because a zero-length vector has no direction. To find out whether such cases occurred, you can compare the value of undefined_vals before and after a series of calls to this function. This is a slow algorithm and should only be used if the contents of the distribution have been changed by the statistical function. If not, then the cached value in the distribution should be used.
featuremapper/distribution.py
vector_sum
fcr/featuremapper
python
def vector_sum(self, d): '\n Return the vector sum of the distribution as a tuple (magnitude, avgbinnum).\n\n Each bin contributes a vector of length equal to its value, at\n a direction corresponding to the bin number. Specifically,\n the total bin number range is mapped into a direction range\n [0,2pi].\n\n For a cyclic distribution, the avgbinnum will be a continuous\n measure analogous to the max_value_bin() of the distribution.\n But this quantity has more precision than max_value_bin()\n because it is computed from the entire distribution instead of\n just the peak bin. However, it is likely to be useful only\n for uniform or very dense sampling; with sparse, non-uniform\n sampling the estimates will be biased significantly by the\n particular samples chosen.\n\n The avgbinnum is not meaningful when the magnitude is 0,\n because a zero-length vector has no direction. To find out\n whether such cases occurred, you can compare the value of\n undefined_vals before and after a series of calls to this\n function.\n \n This is a slow algorithm and should only be used if the\n contents of the distribution have been changed by the statistical \n function.\n If not, then the cached value in the distribution should be used.\n\n ' h = d.data() theta = calc_theta(np.array(list(h.keys())), d.axis_range) return d._fast_vector_sum(list(h.values()), theta)
def _weighted_average(self, d): '\n Return the weighted_sum divided by the sum of the values\n ' return d._safe_divide(d.weighted_sum(), sum(d.values()))
-7,139,313,861,122,571,000
Return the weighted_sum divided by the sum of the values
featuremapper/distribution.py
_weighted_average
fcr/featuremapper
python
def _weighted_average(self, d): '\n \n ' return d._safe_divide(d.weighted_sum(), sum(d.values()))
def selectivity(self, d): '\n Return a measure of the peakedness of the distribution. The\n calculation differs depending on whether this is a cyclic\n variable. For a cyclic variable, returns the magnitude of the\n vector_sum() divided by the sum_value() (see\n _vector_selectivity for more details). For a non-cyclic\n variable, returns the max_value_bin()) as a proportion of the\n sum_value() (see _relative_selectivity for more details).\n ' if (d.cyclic == True): return self._vector_selectivity(d) else: return self._relative_selectivity(d)
2,468,232,232,889,291,300
Return a measure of the peakedness of the distribution. The calculation differs depending on whether this is a cyclic variable. For a cyclic variable, returns the magnitude of the vector_sum() divided by the sum_value() (see _vector_selectivity for more details). For a non-cyclic variable, returns the max_value_bin()) as a proportion of the sum_value() (see _relative_selectivity for more details).
featuremapper/distribution.py
selectivity
fcr/featuremapper
python
def selectivity(self, d): '\n Return a measure of the peakedness of the distribution. The\n calculation differs depending on whether this is a cyclic\n variable. For a cyclic variable, returns the magnitude of the\n vector_sum() divided by the sum_value() (see\n _vector_selectivity for more details). For a non-cyclic\n variable, returns the max_value_bin()) as a proportion of the\n sum_value() (see _relative_selectivity for more details).\n ' if (d.cyclic == True): return self._vector_selectivity(d) else: return self._relative_selectivity(d)
def _relative_selectivity(self, d): '\n Return max_value_bin()) as a proportion of the sum_value().\n\n This quantity is a measure of how strongly the distribution is\n biased towards the max_value_bin(). For a smooth,\n single-lobed distribution with an inclusive, non-cyclic range,\n this quantity is an analog to vector_selectivity. To be a\n precise analog for arbitrary distributions, it would need to\n compute some measure of the selectivity that works like the\n weighted_average() instead of the max_value_bin(). The result\n is scaled such that if all bins are identical, the selectivity\n is 0.0, and if all bins but one are zero, the selectivity is\n 1.0.\n ' if (len(d.data()) <= 1): return 1.0 proportion = d._safe_divide(max(d.values()), sum(d.values())) offset = (1.0 / len(d.values())) scaled = ((proportion - offset) / (1.0 - offset)) if (scaled >= 0.0): return scaled else: return 0.0
-3,182,837,868,106,845,000
Return max_value_bin()) as a proportion of the sum_value(). This quantity is a measure of how strongly the distribution is biased towards the max_value_bin(). For a smooth, single-lobed distribution with an inclusive, non-cyclic range, this quantity is an analog to vector_selectivity. To be a precise analog for arbitrary distributions, it would need to compute some measure of the selectivity that works like the weighted_average() instead of the max_value_bin(). The result is scaled such that if all bins are identical, the selectivity is 0.0, and if all bins but one are zero, the selectivity is 1.0.
featuremapper/distribution.py
_relative_selectivity
fcr/featuremapper
python
def _relative_selectivity(self, d): '\n Return max_value_bin()) as a proportion of the sum_value().\n\n This quantity is a measure of how strongly the distribution is\n biased towards the max_value_bin(). For a smooth,\n single-lobed distribution with an inclusive, non-cyclic range,\n this quantity is an analog to vector_selectivity. To be a\n precise analog for arbitrary distributions, it would need to\n compute some measure of the selectivity that works like the\n weighted_average() instead of the max_value_bin(). The result\n is scaled such that if all bins are identical, the selectivity\n is 0.0, and if all bins but one are zero, the selectivity is\n 1.0.\n ' if (len(d.data()) <= 1): return 1.0 proportion = d._safe_divide(max(d.values()), sum(d.values())) offset = (1.0 / len(d.values())) scaled = ((proportion - offset) / (1.0 - offset)) if (scaled >= 0.0): return scaled else: return 0.0
def _vector_selectivity(self, d): '\n Return the magnitude of the vector_sum() divided by the sum_value().\n\n This quantity is a vector-based measure of the peakedness of\n the distribution. If only a single feature_bin has a non-zero value(),\n the selectivity will be 1.0, and if all bins have the same\n value() then the selectivity will be 0.0. Other distributions\n will result in intermediate values.\n\n For a distribution with a sum_value() of zero (i.e. all bins\n empty), the selectivity is undefined. Assuming that one will\n usually be looking for high selectivity, we return zero in such\n a case so that high selectivity will not mistakenly be claimed.\n To find out whether such cases occurred, you can compare the\n value of undefined_values() before and after a series of\n calls to this function.\n ' return d._safe_divide(d.vector_sum()[0], sum(d.values()))
-1,075,925,606,402,771,200
Return the magnitude of the vector_sum() divided by the sum_value(). This quantity is a vector-based measure of the peakedness of the distribution. If only a single feature_bin has a non-zero value(), the selectivity will be 1.0, and if all bins have the same value() then the selectivity will be 0.0. Other distributions will result in intermediate values. For a distribution with a sum_value() of zero (i.e. all bins empty), the selectivity is undefined. Assuming that one will usually be looking for high selectivity, we return zero in such a case so that high selectivity will not mistakenly be claimed. To find out whether such cases occurred, you can compare the value of undefined_values() before and after a series of calls to this function.
featuremapper/distribution.py
_vector_selectivity
fcr/featuremapper
python
def _vector_selectivity(self, d): '\n Return the magnitude of the vector_sum() divided by the sum_value().\n\n This quantity is a vector-based measure of the peakedness of\n the distribution. If only a single feature_bin has a non-zero value(),\n the selectivity will be 1.0, and if all bins have the same\n value() then the selectivity will be 0.0. Other distributions\n will result in intermediate values.\n\n For a distribution with a sum_value() of zero (i.e. all bins\n empty), the selectivity is undefined. Assuming that one will\n usually be looking for high selectivity, we return zero in such\n a case so that high selectivity will not mistakenly be claimed.\n To find out whether such cases occurred, you can compare the\n value of undefined_values() before and after a series of\n calls to this function.\n ' return d._safe_divide(d.vector_sum()[0], sum(d.values()))
def second_max_value_bin(self, d): '\n Return the feature_bin with the second largest value.\n If there is one feature_bin only, return it. This is not a correct result,\n however it is practical for plotting compatibility, and it will not\n mistakenly be claimed as secondary maximum, by forcing its selectivity\n to 0.0\n ' if (len(d.bins()) <= 1): return d.bins()[0] k = d.max_value_bin() d.pop(k) m = d.max_value_bin() d.restore(k) return m
5,669,550,611,112,714,000
Return the feature_bin with the second largest value. If there is one feature_bin only, return it. This is not a correct result, however it is practical for plotting compatibility, and it will not mistakenly be claimed as secondary maximum, by forcing its selectivity to 0.0
featuremapper/distribution.py
second_max_value_bin
fcr/featuremapper
python
def second_max_value_bin(self, d): '\n Return the feature_bin with the second largest value.\n If there is one feature_bin only, return it. This is not a correct result,\n however it is practical for plotting compatibility, and it will not\n mistakenly be claimed as secondary maximum, by forcing its selectivity\n to 0.0\n ' if (len(d.bins()) <= 1): return d.bins()[0] k = d.max_value_bin() d.pop(k) m = d.max_value_bin() d.restore(k) return m
def second_selectivity(self, d): '\n Return the selectivity of the second largest value in the distribution.\n If there is one feature_bin only, the selectivity is 0, since there is no second\n peack at all, and this value is also used to discriminate the validity\n of second_max_value_bin()\n Selectivity is computed in two ways depending on whether the variable is\n a cyclic, as in selectivity()\n ' if (len(d._data) <= 1): return 0.0 if (d.cyclic == True): return self._vector_second_selectivity(d) else: return self._relative_second_selectivity(d)
-4,364,512,480,252,476,000
Return the selectivity of the second largest value in the distribution. If there is one feature_bin only, the selectivity is 0, since there is no second peack at all, and this value is also used to discriminate the validity of second_max_value_bin() Selectivity is computed in two ways depending on whether the variable is a cyclic, as in selectivity()
featuremapper/distribution.py
second_selectivity
fcr/featuremapper
python
def second_selectivity(self, d): '\n Return the selectivity of the second largest value in the distribution.\n If there is one feature_bin only, the selectivity is 0, since there is no second\n peack at all, and this value is also used to discriminate the validity\n of second_max_value_bin()\n Selectivity is computed in two ways depending on whether the variable is\n a cyclic, as in selectivity()\n ' if (len(d._data) <= 1): return 0.0 if (d.cyclic == True): return self._vector_second_selectivity(d) else: return self._relative_second_selectivity(d)
def _relative_second_selectivity(self, d): '\n Return the value of the second maximum as a proportion of the sum_value()\n see _relative_selectivity() for further details\n ' k = d.max_value_bin() d.pop(k) m = max(d.values()) d.restore(k) proportion = d._safe_divide(m, sum(d.values())) offset = (1.0 / len(d.data())) scaled = ((proportion - offset) / (1.0 - offset)) return max(scaled, 0.0)
-8,135,196,164,067,553,000
Return the value of the second maximum as a proportion of the sum_value() see _relative_selectivity() for further details
featuremapper/distribution.py
_relative_second_selectivity
fcr/featuremapper
python
def _relative_second_selectivity(self, d): '\n Return the value of the second maximum as a proportion of the sum_value()\n see _relative_selectivity() for further details\n ' k = d.max_value_bin() d.pop(k) m = max(d.values()) d.restore(k) proportion = d._safe_divide(m, sum(d.values())) offset = (1.0 / len(d.data())) scaled = ((proportion - offset) / (1.0 - offset)) return max(scaled, 0.0)
def _vector_second_selectivity(self, d): '\n Return the magnitude of the vector_sum() of all bins excluding the\n maximum one, divided by the sum_value().\n see _vector_selectivity() for further details\n ' k = d.max_value_bin() d.pop(k) s = self.vector_sum(d)[0] d.restore(k) return self._safe_divide(s, sum(d.values()))
-8,547,644,693,540,583,000
Return the magnitude of the vector_sum() of all bins excluding the maximum one, divided by the sum_value(). see _vector_selectivity() for further details
featuremapper/distribution.py
_vector_second_selectivity
fcr/featuremapper
python
def _vector_second_selectivity(self, d): '\n Return the magnitude of the vector_sum() of all bins excluding the\n maximum one, divided by the sum_value().\n see _vector_selectivity() for further details\n ' k = d.max_value_bin() d.pop(k) s = self.vector_sum(d)[0] d.restore(k) return self._safe_divide(s, sum(d.values()))
def second_peak_bin(self, d): "\n Return the feature_bin with the second peak in the distribution.\n Unlike second_max_value_bin(), it does not return a feature_bin which is the\n second largest value, if laying on a wing of the first peak, the second\n peak is returned only if the distribution is truly multimodal. If it isn't,\n return the first peak (for compatibility with numpy array type, and\n plotting compatibility), however the corresponding selectivity will be\n forced to 0.0\n " h = d.data() l = len(h) if (l <= 1): return d.keys()[0] ks = list(h.keys()) ks.sort() ik0 = ks.index(d.keys()[np.argmax(d.values())]) k0 = ks[ik0] v0 = h[k0] v = v0 k = k0 ik = ik0 while (h[k] <= v): ik += 1 if (ik >= l): ik = 0 if (ik == ik0): return k0 v = h[k] k = ks[ik] ik1 = ik v = v0 k = k0 ik = ik0 while (h[k] <= v): ik -= 1 if (ik < 0): ik = (l - 1) if (ik == ik0): return k0 v = h[k] k = ks[ik] ik2 = ik if (ik1 == ik2): return ks[ik1] ik = ik1 m = 0 while (ik != ik2): k = ks[ik] if (h[k] > m): m = h[k] im = ik ik += 1 if (ik >= l): ik = 0 return ks[im]
3,829,011,528,027,905,000
Return the feature_bin with the second peak in the distribution. Unlike second_max_value_bin(), it does not return a feature_bin which is the second largest value, if laying on a wing of the first peak, the second peak is returned only if the distribution is truly multimodal. If it isn't, return the first peak (for compatibility with numpy array type, and plotting compatibility), however the corresponding selectivity will be forced to 0.0
featuremapper/distribution.py
second_peak_bin
fcr/featuremapper
python
def second_peak_bin(self, d): "\n Return the feature_bin with the second peak in the distribution.\n Unlike second_max_value_bin(), it does not return a feature_bin which is the\n second largest value, if laying on a wing of the first peak, the second\n peak is returned only if the distribution is truly multimodal. If it isn't,\n return the first peak (for compatibility with numpy array type, and\n plotting compatibility), however the corresponding selectivity will be\n forced to 0.0\n " h = d.data() l = len(h) if (l <= 1): return d.keys()[0] ks = list(h.keys()) ks.sort() ik0 = ks.index(d.keys()[np.argmax(d.values())]) k0 = ks[ik0] v0 = h[k0] v = v0 k = k0 ik = ik0 while (h[k] <= v): ik += 1 if (ik >= l): ik = 0 if (ik == ik0): return k0 v = h[k] k = ks[ik] ik1 = ik v = v0 k = k0 ik = ik0 while (h[k] <= v): ik -= 1 if (ik < 0): ik = (l - 1) if (ik == ik0): return k0 v = h[k] k = ks[ik] ik2 = ik if (ik1 == ik2): return ks[ik1] ik = ik1 m = 0 while (ik != ik2): k = ks[ik] if (h[k] > m): m = h[k] im = ik ik += 1 if (ik >= l): ik = 0 return ks[im]
def second_peak_selectivity(self, d): '\n Return the selectivity of the second peak in the distribution.\n\n If the distribution has only one peak, return 0.0, and this value is\n also usefl to discriminate the validity of second_peak_bin()\n ' l = len(d.keys()) if (l <= 1): return 0.0 p1 = d.max_value_bin() p2 = self.second_peak_bin(d) if (p1 == p2): return 0.0 m = d.get_value(p2) proportion = d._safe_divide(m, sum(d.values())) offset = (1.0 / l) scaled = ((proportion - offset) / (1.0 - offset)) return max(scaled, 0.0)
248,254,795,784,561,150
Return the selectivity of the second peak in the distribution. If the distribution has only one peak, return 0.0, and this value is also usefl to discriminate the validity of second_peak_bin()
featuremapper/distribution.py
second_peak_selectivity
fcr/featuremapper
python
def second_peak_selectivity(self, d): '\n Return the selectivity of the second peak in the distribution.\n\n If the distribution has only one peak, return 0.0, and this value is\n also usefl to discriminate the validity of second_peak_bin()\n ' l = len(d.keys()) if (l <= 1): return 0.0 p1 = d.max_value_bin() p2 = self.second_peak_bin(d) if (p1 == p2): return 0.0 m = d.get_value(p2) proportion = d._safe_divide(m, sum(d.values())) offset = (1.0 / l) scaled = ((proportion - offset) / (1.0 - offset)) return max(scaled, 0.0)
def second_peak(self, d): '\n Return preference and selectivity of the second peak in the distribution.\n\n It is just the combination of second_peak_bin() and\n second_peak_selectivity(), with the advantage of avoiding a duplicate\n call of second_peak_bin(), if the user is interested in both preference\n and selectivity, as often is the case.\n ' l = len(d.keys()) if (l <= 1): return (d.keys()[0], 0.0) p1 = d.max_value_bin() p2 = self.second_peak_bin(d) if (p1 == p2): return (p1, 0.0) m = d.get_value(p2) proportion = d._safe_divide(m, sum(d.values())) offset = (1.0 / l) scaled = ((proportion - offset) / (1.0 - offset)) return (p2, max(scaled, 0.0))
2,059,865,115,646,842,600
Return preference and selectivity of the second peak in the distribution. It is just the combination of second_peak_bin() and second_peak_selectivity(), with the advantage of avoiding a duplicate call of second_peak_bin(), if the user is interested in both preference and selectivity, as often is the case.
featuremapper/distribution.py
second_peak
fcr/featuremapper
python
def second_peak(self, d): '\n Return preference and selectivity of the second peak in the distribution.\n\n It is just the combination of second_peak_bin() and\n second_peak_selectivity(), with the advantage of avoiding a duplicate\n call of second_peak_bin(), if the user is interested in both preference\n and selectivity, as often is the case.\n ' l = len(d.keys()) if (l <= 1): return (d.keys()[0], 0.0) p1 = d.max_value_bin() p2 = self.second_peak_bin(d) if (p1 == p2): return (p1, 0.0) m = d.get_value(p2) proportion = d._safe_divide(m, sum(d.values())) offset = (1.0 / l) scaled = ((proportion - offset) / (1.0 - offset)) return (p2, max(scaled, 0.0))
def _orth(self, t): '\n Return the orthogonal orientation\n ' if (t < (0.5 * np.pi)): return (t + (0.5 * np.pi)) return (t - (0.5 * np.pi))
3,040,861,717,531,347,500
Return the orthogonal orientation
featuremapper/distribution.py
_orth
fcr/featuremapper
python
def _orth(self, t): '\n \n ' if (t < (0.5 * np.pi)): return (t + (0.5 * np.pi)) return (t - (0.5 * np.pi))
def _in_pi(self, t): '\n Reduce orientation from -pi..2pi to 0..pi\n ' if (t > np.pi): return (t - np.pi) if (t < 0): return (t + np.pi) return t
2,151,608,601,211,757,800
Reduce orientation from -pi..2pi to 0..pi
featuremapper/distribution.py
_in_pi
fcr/featuremapper
python
def _in_pi(self, t): '\n \n ' if (t > np.pi): return (t - np.pi) if (t < 0): return (t + np.pi) return t
def von_mises(self, pars, x): '\n Compute a simplified von Mises function.\n\n Original formulation in Richard von Mises, "Wahrscheinlichkeitsrechnung\n und ihre Anwendungen in der Statistik und theoretischen Physik", 1931,\n Deuticke, Leipzig; see also Mardia, K.V. and Jupp, P.E., " Directional\n Statistics", 1999, J. Wiley, p.36;\n http://en.wikipedia.org/wiki/Von_Mises_distribution\n The two differences are that this function is a continuous probability\n distribution on a semi-circle, while von Mises is on the full circle,\n and that the normalization factor, which is the inverse of the modified\n Bessel function of first kind and 0 degree in the original, is here a fit parameter.\n ' (a, k, t) = pars return (a * np.exp((k * (np.cos((2 * (x - t))) - 1))))
803,809,184,716,551,800
Compute a simplified von Mises function. Original formulation in Richard von Mises, "Wahrscheinlichkeitsrechnung und ihre Anwendungen in der Statistik und theoretischen Physik", 1931, Deuticke, Leipzig; see also Mardia, K.V. and Jupp, P.E., " Directional Statistics", 1999, J. Wiley, p.36; http://en.wikipedia.org/wiki/Von_Mises_distribution The two differences are that this function is a continuous probability distribution on a semi-circle, while von Mises is on the full circle, and that the normalization factor, which is the inverse of the modified Bessel function of first kind and 0 degree in the original, is here a fit parameter.
featuremapper/distribution.py
von_mises
fcr/featuremapper
python
def von_mises(self, pars, x): '\n Compute a simplified von Mises function.\n\n Original formulation in Richard von Mises, "Wahrscheinlichkeitsrechnung\n und ihre Anwendungen in der Statistik und theoretischen Physik", 1931,\n Deuticke, Leipzig; see also Mardia, K.V. and Jupp, P.E., " Directional\n Statistics", 1999, J. Wiley, p.36;\n http://en.wikipedia.org/wiki/Von_Mises_distribution\n The two differences are that this function is a continuous probability\n distribution on a semi-circle, while von Mises is on the full circle,\n and that the normalization factor, which is the inverse of the modified\n Bessel function of first kind and 0 degree in the original, is here a fit parameter.\n ' (a, k, t) = pars return (a * np.exp((k * (np.cos((2 * (x - t))) - 1))))
def von2_mises(self, pars, x): '\n Compute a simplified bimodal von Mises function\n\n Two superposed von Mises functions, with different peak and bandwith values\n ' p1 = pars[:3] p2 = pars[3:] return (self.von_mises(p1, x) + self.von_mises(p2, x))
-2,769,227,981,127,466,500
Compute a simplified bimodal von Mises function Two superposed von Mises functions, with different peak and bandwith values
featuremapper/distribution.py
von2_mises
fcr/featuremapper
python
def von2_mises(self, pars, x): '\n Compute a simplified bimodal von Mises function\n\n Two superposed von Mises functions, with different peak and bandwith values\n ' p1 = pars[:3] p2 = pars[3:] return (self.von_mises(p1, x) + self.von_mises(p2, x))
def fit_vm(self, distribution): '\n computes the best fit of the monovariate von Mises function in the\n semi-circle.\n Return a tuple with the orientation preference, in the same range of\n axis_bounds, the orientation selectivity, and an estimate of the\n goodness-of-fit, as the variance of the predicted orientation\n preference. The selectivity is given by the bandwith parameter of the\n von Mises function, modified for compatibility with other selectivity\n computations in this class. The bandwith parameter is transposed in\n logaritmic scale, and is normalized by the maximum value for the number\n of bins in the distribution, in order to give roughly 1.0 for a\n distribution with one feature_bin at 1.0 an all the other at 0.0, and 0.0 for\n uniform distributions. The normalizing factor of the selectivity is fit\n for the total number of bins, using fit parameters computed offline.\n There are conditions that prevents apriori the possibility to fit the\n distribution:\n * not enough bins, at least 4 are necessary\n * the distribution is too flat, below the noise level\n and conditions of aposteriori failures:\n * "ier" flag returned by leastsq out of ( 1, 2, 3, 4 )\n * no estimated Jacobian around the solution\n * negative bandwith (the peak of the distribution is convex)\n Note that these are the minimal conditions, their fulfillment does not\n warrant unimodality, is up to the user to check the goodness-of-fit value\n for an accurate acceptance of the fit.\n ' if unavailable_scipy_optimize: if (not VonMisesStatisticFn.user_warned_if_unavailable): param.Parameterized().warning('scipy.optimize not available, dummy von Mises fit') VonMisesStatisticFn.user_warned_if_unavailable = True self.fit_exit_code = 3 return (0, 0, 0) to_pi = (np.pi / distribution.axis_range) x = (to_pi * np.array(distribution.bins())) n = len(x) if (n < 5): param.Parameterized().warning('No von Mises fit possible with less than 4 bins') self.fit_exit_code = (- 1) return (0, 0, 0) y = np.array(distribution.values()) if (y.std() < self.noise_level): self.fit_exit_code = 1 return (0, 0, 0) rn = (self.noise_level * np.random.random_sample(y.shape)) p0 = (1.0, 1.0, distribution.max_value_bin()) r = optimize.leastsq(self.von_mises_res, p0, args=(x, (y + rn)), full_output=True) if (not (r[(- 1)] in (1, 2, 3, 4))): self.fit_exit_code = (100 + r[(- 1)]) return (0, 0, 0) residuals = r[2]['fvec'] jacobian = r[1] bandwith = r[0][1] tuning = r[0][2] if (bandwith < 0): self.fit_exit_code = 1 return (0, 0, 0) if (jacobian is None): self.fit_exit_code = 2 return (0, 0, 0) error = ((residuals ** 2).sum() / (n - len(p0))) covariance = (jacobian * error) g = covariance[(2, 2)] p = (self._in_pi(tuning) / to_pi) s = self.norm_sel(bandwith, n) self.fit_exit_code = 0 return (p, s, g)
-6,745,883,549,451,692,000
computes the best fit of the monovariate von Mises function in the semi-circle. Return a tuple with the orientation preference, in the same range of axis_bounds, the orientation selectivity, and an estimate of the goodness-of-fit, as the variance of the predicted orientation preference. The selectivity is given by the bandwith parameter of the von Mises function, modified for compatibility with other selectivity computations in this class. The bandwith parameter is transposed in logaritmic scale, and is normalized by the maximum value for the number of bins in the distribution, in order to give roughly 1.0 for a distribution with one feature_bin at 1.0 an all the other at 0.0, and 0.0 for uniform distributions. The normalizing factor of the selectivity is fit for the total number of bins, using fit parameters computed offline. There are conditions that prevents apriori the possibility to fit the distribution: * not enough bins, at least 4 are necessary * the distribution is too flat, below the noise level and conditions of aposteriori failures: * "ier" flag returned by leastsq out of ( 1, 2, 3, 4 ) * no estimated Jacobian around the solution * negative bandwith (the peak of the distribution is convex) Note that these are the minimal conditions, their fulfillment does not warrant unimodality, is up to the user to check the goodness-of-fit value for an accurate acceptance of the fit.
featuremapper/distribution.py
fit_vm
fcr/featuremapper
python
def fit_vm(self, distribution): '\n computes the best fit of the monovariate von Mises function in the\n semi-circle.\n Return a tuple with the orientation preference, in the same range of\n axis_bounds, the orientation selectivity, and an estimate of the\n goodness-of-fit, as the variance of the predicted orientation\n preference. The selectivity is given by the bandwith parameter of the\n von Mises function, modified for compatibility with other selectivity\n computations in this class. The bandwith parameter is transposed in\n logaritmic scale, and is normalized by the maximum value for the number\n of bins in the distribution, in order to give roughly 1.0 for a\n distribution with one feature_bin at 1.0 an all the other at 0.0, and 0.0 for\n uniform distributions. The normalizing factor of the selectivity is fit\n for the total number of bins, using fit parameters computed offline.\n There are conditions that prevents apriori the possibility to fit the\n distribution:\n * not enough bins, at least 4 are necessary\n * the distribution is too flat, below the noise level\n and conditions of aposteriori failures:\n * "ier" flag returned by leastsq out of ( 1, 2, 3, 4 )\n * no estimated Jacobian around the solution\n * negative bandwith (the peak of the distribution is convex)\n Note that these are the minimal conditions, their fulfillment does not\n warrant unimodality, is up to the user to check the goodness-of-fit value\n for an accurate acceptance of the fit.\n ' if unavailable_scipy_optimize: if (not VonMisesStatisticFn.user_warned_if_unavailable): param.Parameterized().warning('scipy.optimize not available, dummy von Mises fit') VonMisesStatisticFn.user_warned_if_unavailable = True self.fit_exit_code = 3 return (0, 0, 0) to_pi = (np.pi / distribution.axis_range) x = (to_pi * np.array(distribution.bins())) n = len(x) if (n < 5): param.Parameterized().warning('No von Mises fit possible with less than 4 bins') self.fit_exit_code = (- 1) return (0, 0, 0) y = np.array(distribution.values()) if (y.std() < self.noise_level): self.fit_exit_code = 1 return (0, 0, 0) rn = (self.noise_level * np.random.random_sample(y.shape)) p0 = (1.0, 1.0, distribution.max_value_bin()) r = optimize.leastsq(self.von_mises_res, p0, args=(x, (y + rn)), full_output=True) if (not (r[(- 1)] in (1, 2, 3, 4))): self.fit_exit_code = (100 + r[(- 1)]) return (0, 0, 0) residuals = r[2]['fvec'] jacobian = r[1] bandwith = r[0][1] tuning = r[0][2] if (bandwith < 0): self.fit_exit_code = 1 return (0, 0, 0) if (jacobian is None): self.fit_exit_code = 2 return (0, 0, 0) error = ((residuals ** 2).sum() / (n - len(p0))) covariance = (jacobian * error) g = covariance[(2, 2)] p = (self._in_pi(tuning) / to_pi) s = self.norm_sel(bandwith, n) self.fit_exit_code = 0 return (p, s, g)
def fit_v2m(self, distribution): '\n computes the best fit of the bivariate von Mises function in the\n semi-circle.\n Return the tuple:\n (\n orientation1_preference, orientation1_selectivity, goodness_of_fit1,\n orientation2_preference, orientation2_selectivity, goodness_of_fit2\n )\n See fit_vm() for considerations about selectivity and goodness_of_fit\n ' null = (0, 0, 0, 0, 0, 0) if unavailable_scipy_optimize: if (not VonMisesStatisticFn.user_warned_if_unavailable): param.Parameterized().warning('scipy.optimize not available, dummy von Mises fit') VonMisesStatisticFn.user_warned_if_unavailable = True self.fit_exit_code = 3 return null to_pi = (np.pi / distribution.axis_range) x = (to_pi * np.array(distribution.bins())) n = len(x) if (n < 9): param.Parameterized().warning('no bimodal von Mises fit possible with less than 8 bins') self.fit_exit_code = (- 1) return null y = np.array(distribution.values()) if (y.std() < self.noise_level): self.fit_exit_code = 1 return null rn = (self.noise_level * np.random.random_sample(y.shape)) t0 = distribution.max_value_bin() p0 = (1.0, 1.0, t0, 1.0, 1.0, self._orth(t0)) r = optimize.leastsq(self.von2_mises_res, p0, args=(x, (y + rn)), full_output=True) if (not (r[(- 1)] in (1, 2, 3, 4))): self.fit_exit_code = (100 + r[(- 1)]) return null residuals = r[2]['fvec'] jacobian = r[1] bandwith_1 = r[0][1] tuning_1 = r[0][2] bandwith_2 = r[0][4] tuning_2 = r[0][5] if (jacobian is None): self.fit_exit_code = 2 return null if (bandwith_1 < 0): self.fit_exit_code = 1 return null if (bandwith_2 < 0): self.fit_exit_code = 1 return null error = ((residuals ** 2).sum() / (n - len(p0))) covariance = (jacobian * error) g1 = covariance[(2, 2)] g2 = covariance[(5, 5)] p1 = (self._in_pi(tuning_1) / to_pi) p2 = (self._in_pi(tuning_2) / to_pi) s1 = self.norm_sel(bandwith_1, n) s2 = self.norm_sel(bandwith_2, n) self.fit_exit_code = 0 return (p1, s1, g1, p2, s2, g2)
2,784,568,525,277,119,500
computes the best fit of the bivariate von Mises function in the semi-circle. Return the tuple: ( orientation1_preference, orientation1_selectivity, goodness_of_fit1, orientation2_preference, orientation2_selectivity, goodness_of_fit2 ) See fit_vm() for considerations about selectivity and goodness_of_fit
featuremapper/distribution.py
fit_v2m
fcr/featuremapper
python
def fit_v2m(self, distribution): '\n computes the best fit of the bivariate von Mises function in the\n semi-circle.\n Return the tuple:\n (\n orientation1_preference, orientation1_selectivity, goodness_of_fit1,\n orientation2_preference, orientation2_selectivity, goodness_of_fit2\n )\n See fit_vm() for considerations about selectivity and goodness_of_fit\n ' null = (0, 0, 0, 0, 0, 0) if unavailable_scipy_optimize: if (not VonMisesStatisticFn.user_warned_if_unavailable): param.Parameterized().warning('scipy.optimize not available, dummy von Mises fit') VonMisesStatisticFn.user_warned_if_unavailable = True self.fit_exit_code = 3 return null to_pi = (np.pi / distribution.axis_range) x = (to_pi * np.array(distribution.bins())) n = len(x) if (n < 9): param.Parameterized().warning('no bimodal von Mises fit possible with less than 8 bins') self.fit_exit_code = (- 1) return null y = np.array(distribution.values()) if (y.std() < self.noise_level): self.fit_exit_code = 1 return null rn = (self.noise_level * np.random.random_sample(y.shape)) t0 = distribution.max_value_bin() p0 = (1.0, 1.0, t0, 1.0, 1.0, self._orth(t0)) r = optimize.leastsq(self.von2_mises_res, p0, args=(x, (y + rn)), full_output=True) if (not (r[(- 1)] in (1, 2, 3, 4))): self.fit_exit_code = (100 + r[(- 1)]) return null residuals = r[2]['fvec'] jacobian = r[1] bandwith_1 = r[0][1] tuning_1 = r[0][2] bandwith_2 = r[0][4] tuning_2 = r[0][5] if (jacobian is None): self.fit_exit_code = 2 return null if (bandwith_1 < 0): self.fit_exit_code = 1 return null if (bandwith_2 < 0): self.fit_exit_code = 1 return null error = ((residuals ** 2).sum() / (n - len(p0))) covariance = (jacobian * error) g1 = covariance[(2, 2)] g2 = covariance[(5, 5)] p1 = (self._in_pi(tuning_1) / to_pi) p2 = (self._in_pi(tuning_2) / to_pi) s1 = self.norm_sel(bandwith_1, n) s2 = self.norm_sel(bandwith_2, n) self.fit_exit_code = 0 return (p1, s1, g1, p2, s2, g2)
def __call__(self, distribution): '\n Apply the distribution statistic function; must be implemented by subclasses.\n\n ' raise NotImplementedError
195,079,524,237,858,200
Apply the distribution statistic function; must be implemented by subclasses.
featuremapper/distribution.py
__call__
fcr/featuremapper
python
def __call__(self, distribution): '\n \n\n ' raise NotImplementedError
def _analyze_distr(self, d): '\n Analyze the given distribution with von Mises bimodal fit.\n\n The distribution is analyzed with both unimodal and bimodal fits, and a\n decision about the number of modes is made by comparing the goodness of\n fit. It is a quick but inaccurate way of estimating the number of modes.\n Return preference, selectivity, goodness of fit for both modes, and the\n estimated numer of modes, None if even the unimodal fit failed. If the\n distribution is unimodal, values of the second mode are set to 0. The main\n mode is always the one with the largest selectivity (von Mises bandwith).\n ' no1 = False f = self.fit_vm(d) if (self.fit_exit_code != 0): no1 = True (p, s, g) = f f2 = self.fit_v2m(d) if ((self.fit_exit_code != 0) or (f2[2] > self.worst_fit)): if (no1 or (f[(- 1)] > self.worst_fit)): return None return (p, s, g, 0, 0, 0, 1) (p1, s1, g1, p2, s2, g2) = f2 if (g1 > g): return (p, s, g, 0, 0, 0, 1) if (s2 > s1): return (p2, s2, g2, p1, s1, g1, 2) return (p1, s1, g1, p2, s2, g2, 2)
-6,726,496,357,450,420,000
Analyze the given distribution with von Mises bimodal fit. The distribution is analyzed with both unimodal and bimodal fits, and a decision about the number of modes is made by comparing the goodness of fit. It is a quick but inaccurate way of estimating the number of modes. Return preference, selectivity, goodness of fit for both modes, and the estimated numer of modes, None if even the unimodal fit failed. If the distribution is unimodal, values of the second mode are set to 0. The main mode is always the one with the largest selectivity (von Mises bandwith).
featuremapper/distribution.py
_analyze_distr
fcr/featuremapper
python
def _analyze_distr(self, d): '\n Analyze the given distribution with von Mises bimodal fit.\n\n The distribution is analyzed with both unimodal and bimodal fits, and a\n decision about the number of modes is made by comparing the goodness of\n fit. It is a quick but inaccurate way of estimating the number of modes.\n Return preference, selectivity, goodness of fit for both modes, and the\n estimated numer of modes, None if even the unimodal fit failed. If the\n distribution is unimodal, values of the second mode are set to 0. The main\n mode is always the one with the largest selectivity (von Mises bandwith).\n ' no1 = False f = self.fit_vm(d) if (self.fit_exit_code != 0): no1 = True (p, s, g) = f f2 = self.fit_v2m(d) if ((self.fit_exit_code != 0) or (f2[2] > self.worst_fit)): if (no1 or (f[(- 1)] > self.worst_fit)): return None return (p, s, g, 0, 0, 0, 1) (p1, s1, g1, p2, s2, g2) = f2 if (g1 > g): return (p, s, g, 0, 0, 0, 1) if (s2 > s1): return (p2, s2, g2, p1, s1, g1, 2) return (p1, s1, g1, p2, s2, g2, 2)
def process_lengths(input): '\n Computing the lengths of sentences in current batchs\n ' max_length = input.size(1) lengths = list((max_length - input.data.eq(0).sum(1).squeeze())) return lengths
-2,427,997,533,236,584,400
Computing the lengths of sentences in current batchs
AiR-M/ban/base_model.py
process_lengths
szzexpoi/AiR
python
def process_lengths(input): '\n \n ' max_length = input.size(1) lengths = list((max_length - input.data.eq(0).sum(1).squeeze())) return lengths
def select_last(x, lengths): '\n Adaptively select the hidden state at the end of sentences\n ' batch_size = x.size(0) seq_length = x.size(1) mask = x.data.new().resize_as_(x.data).fill_(0) for i in range(batch_size): mask[i][(lengths[i] - 1)].fill_(1) mask = Variable(mask) x = x.mul(mask) x = x.sum(1).view(batch_size, x.size(2), x.size(3)) return x
-8,111,296,031,895,657,000
Adaptively select the hidden state at the end of sentences
AiR-M/ban/base_model.py
select_last
szzexpoi/AiR
python
def select_last(x, lengths): '\n \n ' batch_size = x.size(0) seq_length = x.size(1) mask = x.data.new().resize_as_(x.data).fill_(0) for i in range(batch_size): mask[i][(lengths[i] - 1)].fill_(1) mask = Variable(mask) x = x.mul(mask) x = x.sum(1).view(batch_size, x.size(2), x.size(3)) return x
def forward(self, v, b, q): 'Forward\n\n v: [batch, num_objs, obj_dim]\n b: [batch, num_objs, b_dim]\n q: [batch_size, seq_length]\n\n return: logits, not probs\n ' w_emb = self.w_emb(q) q_emb = self.q_emb.forward_all(w_emb) boxes = b[:, :, :4].transpose(1, 2) b_emb = ([0] * self.glimpse) (att, logits) = self.v_att.forward_all(v, q_emb) for g in range(self.glimpse): b_emb[g] = self.b_net[g].forward_with_weights(v, q_emb, att[:, g, :, :]) (atten, _) = logits[:, g, :, :].max(2) embed = self.counter(boxes, atten) q_emb = (self.q_prj[g](b_emb[g].unsqueeze(1)) + q_emb) q_emb = (q_emb + self.c_prj[g](embed).unsqueeze(1)) logits = self.classifier(q_emb.sum(1)) return (F.softmax(logits, dim=(- 1)), att)
8,726,120,948,886,197,000
Forward v: [batch, num_objs, obj_dim] b: [batch, num_objs, b_dim] q: [batch_size, seq_length] return: logits, not probs
AiR-M/ban/base_model.py
forward
szzexpoi/AiR
python
def forward(self, v, b, q): 'Forward\n\n v: [batch, num_objs, obj_dim]\n b: [batch, num_objs, b_dim]\n q: [batch_size, seq_length]\n\n return: logits, not probs\n ' w_emb = self.w_emb(q) q_emb = self.q_emb.forward_all(w_emb) boxes = b[:, :, :4].transpose(1, 2) b_emb = ([0] * self.glimpse) (att, logits) = self.v_att.forward_all(v, q_emb) for g in range(self.glimpse): b_emb[g] = self.b_net[g].forward_with_weights(v, q_emb, att[:, g, :, :]) (atten, _) = logits[:, g, :, :].max(2) embed = self.counter(boxes, atten) q_emb = (self.q_prj[g](b_emb[g].unsqueeze(1)) + q_emb) q_emb = (q_emb + self.c_prj[g](embed).unsqueeze(1)) logits = self.classifier(q_emb.sum(1)) return (F.softmax(logits, dim=(- 1)), att)
def forward(self, v, b, q): 'Forward\n\n v: [batch, num_objs, obj_dim]\n b: [batch, num_objs, b_dim]\n q: [batch_size, seq_length]\n\n return: logits, not probs\n ' w_emb = self.w_emb(q) q_emb = self.q_emb.forward_all(w_emb) ori_q_emb = q_emb boxes = b[:, :, :4].transpose(1, 2) b_emb = ([0] * self.glimpse) s_x = self.init_hidden_state(len(q), 256) s_h = torch.tanh(self.semantic_q(ori_q_emb.mean(1))) v_att = torch.tanh(self.att_v(F.dropout(v, 0.25))) op = [] att_mask = [] q_emb_pool = [] for g in range(self.glimpse): s_h = self.semantic_rnn(s_x, s_h) s_x = F.softmax(self.semantic_pred(s_h), dim=(- 1)) op.append(s_x) s_x = torch.max(s_x, dim=(- 1))[1] s_x = self.semantic_embed(s_x) s_att = torch.tanh(self.att_s(s_h)).unsqueeze(1).expand_as(v_att) fuse_feat = torch.tanh(self.att_p(torch.mul(s_att, v_att))) reason_att = self.att(fuse_feat) reason_att = F.softmax(reason_att.view(reason_att.size(0), (- 1)), dim=(- 1)) cur_v = torch.mul(v, reason_att.unsqueeze((- 1)).expand_as(v)) (att, logits) = self.v_att(cur_v, ori_q_emb) (att, logits) = (att.squeeze(), logits.squeeze()) b_emb[g] = self.b_net[g].forward_with_weights(v, q_emb, att) (atten, _) = logits.max(2) embed = self.counter(boxes, atten) q_emb = (self.q_prj[g](b_emb[g].unsqueeze(1)) + q_emb) q_emb = (q_emb + self.c_prj[g](embed).unsqueeze(1)) q_emb_pool.append(q_emb) att_mask.append(reason_att) op = torch.cat([_.unsqueeze(1) for _ in op], dim=1) att_mask = torch.cat([_.unsqueeze(1) for _ in att_mask], dim=1) valid_op = process_lengths(torch.max(op, dim=(- 1))[1]) q_emb_pool = torch.cat([_.unsqueeze(1) for _ in q_emb_pool], dim=1) q_emb = select_last(q_emb_pool, valid_op) logits = self.classifier(q_emb.sum(1)) return (F.softmax(logits, dim=(- 1)), op, att_mask)
-7,458,918,011,432,265,000
Forward v: [batch, num_objs, obj_dim] b: [batch, num_objs, b_dim] q: [batch_size, seq_length] return: logits, not probs
AiR-M/ban/base_model.py
forward
szzexpoi/AiR
python
def forward(self, v, b, q): 'Forward\n\n v: [batch, num_objs, obj_dim]\n b: [batch, num_objs, b_dim]\n q: [batch_size, seq_length]\n\n return: logits, not probs\n ' w_emb = self.w_emb(q) q_emb = self.q_emb.forward_all(w_emb) ori_q_emb = q_emb boxes = b[:, :, :4].transpose(1, 2) b_emb = ([0] * self.glimpse) s_x = self.init_hidden_state(len(q), 256) s_h = torch.tanh(self.semantic_q(ori_q_emb.mean(1))) v_att = torch.tanh(self.att_v(F.dropout(v, 0.25))) op = [] att_mask = [] q_emb_pool = [] for g in range(self.glimpse): s_h = self.semantic_rnn(s_x, s_h) s_x = F.softmax(self.semantic_pred(s_h), dim=(- 1)) op.append(s_x) s_x = torch.max(s_x, dim=(- 1))[1] s_x = self.semantic_embed(s_x) s_att = torch.tanh(self.att_s(s_h)).unsqueeze(1).expand_as(v_att) fuse_feat = torch.tanh(self.att_p(torch.mul(s_att, v_att))) reason_att = self.att(fuse_feat) reason_att = F.softmax(reason_att.view(reason_att.size(0), (- 1)), dim=(- 1)) cur_v = torch.mul(v, reason_att.unsqueeze((- 1)).expand_as(v)) (att, logits) = self.v_att(cur_v, ori_q_emb) (att, logits) = (att.squeeze(), logits.squeeze()) b_emb[g] = self.b_net[g].forward_with_weights(v, q_emb, att) (atten, _) = logits.max(2) embed = self.counter(boxes, atten) q_emb = (self.q_prj[g](b_emb[g].unsqueeze(1)) + q_emb) q_emb = (q_emb + self.c_prj[g](embed).unsqueeze(1)) q_emb_pool.append(q_emb) att_mask.append(reason_att) op = torch.cat([_.unsqueeze(1) for _ in op], dim=1) att_mask = torch.cat([_.unsqueeze(1) for _ in att_mask], dim=1) valid_op = process_lengths(torch.max(op, dim=(- 1))[1]) q_emb_pool = torch.cat([_.unsqueeze(1) for _ in q_emb_pool], dim=1) q_emb = select_last(q_emb_pool, valid_op) logits = self.classifier(q_emb.sum(1)) return (F.softmax(logits, dim=(- 1)), op, att_mask)
def update_twitter_banner(api: tweepy.API) -> None: 'Update the twitter banner of the current profile using the image specified in config.' api.update_profile_banner(Config.IMAGE_PATH)
4,279,449,391,939,052,000
Update the twitter banner of the current profile using the image specified in config.
app/twitter.py
update_twitter_banner
janaSunrise/Spotify-Twitter-Banner
python
def update_twitter_banner(api: tweepy.API) -> None: api.update_profile_banner(Config.IMAGE_PATH)
def __init__(__self__, *, account_name: pulumi.Input[str], resource_group_name: pulumi.Input[str], group_id: Optional[pulumi.Input[str]]=None, private_endpoint: Optional[pulumi.Input['PrivateEndpointPropertyArgs']]=None, private_endpoint_connection_name: Optional[pulumi.Input[str]]=None, private_link_service_connection_state: Optional[pulumi.Input['PrivateLinkServiceConnectionStatePropertyArgs']]=None, provisioning_state: Optional[pulumi.Input[str]]=None): "\n The set of arguments for constructing a PrivateEndpointConnection resource.\n :param pulumi.Input[str] account_name: Cosmos DB database account name.\n :param pulumi.Input[str] resource_group_name: The name of the resource group. The name is case insensitive.\n :param pulumi.Input[str] group_id: Group id of the private endpoint.\n :param pulumi.Input['PrivateEndpointPropertyArgs'] private_endpoint: Private endpoint which the connection belongs to.\n :param pulumi.Input[str] private_endpoint_connection_name: The name of the private endpoint connection.\n :param pulumi.Input['PrivateLinkServiceConnectionStatePropertyArgs'] private_link_service_connection_state: Connection State of the Private Endpoint Connection.\n :param pulumi.Input[str] provisioning_state: Provisioning state of the private endpoint.\n " pulumi.set(__self__, 'account_name', account_name) pulumi.set(__self__, 'resource_group_name', resource_group_name) if (group_id is not None): pulumi.set(__self__, 'group_id', group_id) if (private_endpoint is not None): pulumi.set(__self__, 'private_endpoint', private_endpoint) if (private_endpoint_connection_name is not None): pulumi.set(__self__, 'private_endpoint_connection_name', private_endpoint_connection_name) if (private_link_service_connection_state is not None): pulumi.set(__self__, 'private_link_service_connection_state', private_link_service_connection_state) if (provisioning_state is not None): pulumi.set(__self__, 'provisioning_state', provisioning_state)
-4,943,972,685,862,324,000
The set of arguments for constructing a PrivateEndpointConnection resource. :param pulumi.Input[str] account_name: Cosmos DB database account name. :param pulumi.Input[str] resource_group_name: The name of the resource group. The name is case insensitive. :param pulumi.Input[str] group_id: Group id of the private endpoint. :param pulumi.Input['PrivateEndpointPropertyArgs'] private_endpoint: Private endpoint which the connection belongs to. :param pulumi.Input[str] private_endpoint_connection_name: The name of the private endpoint connection. :param pulumi.Input['PrivateLinkServiceConnectionStatePropertyArgs'] private_link_service_connection_state: Connection State of the Private Endpoint Connection. :param pulumi.Input[str] provisioning_state: Provisioning state of the private endpoint.
sdk/python/pulumi_azure_native/documentdb/v20210615/private_endpoint_connection.py
__init__
polivbr/pulumi-azure-native
python
def __init__(__self__, *, account_name: pulumi.Input[str], resource_group_name: pulumi.Input[str], group_id: Optional[pulumi.Input[str]]=None, private_endpoint: Optional[pulumi.Input['PrivateEndpointPropertyArgs']]=None, private_endpoint_connection_name: Optional[pulumi.Input[str]]=None, private_link_service_connection_state: Optional[pulumi.Input['PrivateLinkServiceConnectionStatePropertyArgs']]=None, provisioning_state: Optional[pulumi.Input[str]]=None): "\n The set of arguments for constructing a PrivateEndpointConnection resource.\n :param pulumi.Input[str] account_name: Cosmos DB database account name.\n :param pulumi.Input[str] resource_group_name: The name of the resource group. The name is case insensitive.\n :param pulumi.Input[str] group_id: Group id of the private endpoint.\n :param pulumi.Input['PrivateEndpointPropertyArgs'] private_endpoint: Private endpoint which the connection belongs to.\n :param pulumi.Input[str] private_endpoint_connection_name: The name of the private endpoint connection.\n :param pulumi.Input['PrivateLinkServiceConnectionStatePropertyArgs'] private_link_service_connection_state: Connection State of the Private Endpoint Connection.\n :param pulumi.Input[str] provisioning_state: Provisioning state of the private endpoint.\n " pulumi.set(__self__, 'account_name', account_name) pulumi.set(__self__, 'resource_group_name', resource_group_name) if (group_id is not None): pulumi.set(__self__, 'group_id', group_id) if (private_endpoint is not None): pulumi.set(__self__, 'private_endpoint', private_endpoint) if (private_endpoint_connection_name is not None): pulumi.set(__self__, 'private_endpoint_connection_name', private_endpoint_connection_name) if (private_link_service_connection_state is not None): pulumi.set(__self__, 'private_link_service_connection_state', private_link_service_connection_state) if (provisioning_state is not None): pulumi.set(__self__, 'provisioning_state', provisioning_state)
@property @pulumi.getter(name='accountName') def account_name(self) -> pulumi.Input[str]: '\n Cosmos DB database account name.\n ' return pulumi.get(self, 'account_name')
502,045,046,113,578,100
Cosmos DB database account name.
sdk/python/pulumi_azure_native/documentdb/v20210615/private_endpoint_connection.py
account_name
polivbr/pulumi-azure-native
python
@property @pulumi.getter(name='accountName') def account_name(self) -> pulumi.Input[str]: '\n \n ' return pulumi.get(self, 'account_name')
@property @pulumi.getter(name='resourceGroupName') def resource_group_name(self) -> pulumi.Input[str]: '\n The name of the resource group. The name is case insensitive.\n ' return pulumi.get(self, 'resource_group_name')
9,099,428,823,929,783,000
The name of the resource group. The name is case insensitive.
sdk/python/pulumi_azure_native/documentdb/v20210615/private_endpoint_connection.py
resource_group_name
polivbr/pulumi-azure-native
python
@property @pulumi.getter(name='resourceGroupName') def resource_group_name(self) -> pulumi.Input[str]: '\n \n ' return pulumi.get(self, 'resource_group_name')
@property @pulumi.getter(name='groupId') def group_id(self) -> Optional[pulumi.Input[str]]: '\n Group id of the private endpoint.\n ' return pulumi.get(self, 'group_id')
6,219,630,646,862,960,000
Group id of the private endpoint.
sdk/python/pulumi_azure_native/documentdb/v20210615/private_endpoint_connection.py
group_id
polivbr/pulumi-azure-native
python
@property @pulumi.getter(name='groupId') def group_id(self) -> Optional[pulumi.Input[str]]: '\n \n ' return pulumi.get(self, 'group_id')
@property @pulumi.getter(name='privateEndpoint') def private_endpoint(self) -> Optional[pulumi.Input['PrivateEndpointPropertyArgs']]: '\n Private endpoint which the connection belongs to.\n ' return pulumi.get(self, 'private_endpoint')
5,022,729,442,492,625,000
Private endpoint which the connection belongs to.
sdk/python/pulumi_azure_native/documentdb/v20210615/private_endpoint_connection.py
private_endpoint
polivbr/pulumi-azure-native
python
@property @pulumi.getter(name='privateEndpoint') def private_endpoint(self) -> Optional[pulumi.Input['PrivateEndpointPropertyArgs']]: '\n \n ' return pulumi.get(self, 'private_endpoint')
@property @pulumi.getter(name='privateEndpointConnectionName') def private_endpoint_connection_name(self) -> Optional[pulumi.Input[str]]: '\n The name of the private endpoint connection.\n ' return pulumi.get(self, 'private_endpoint_connection_name')
9,106,011,365,118,251,000
The name of the private endpoint connection.
sdk/python/pulumi_azure_native/documentdb/v20210615/private_endpoint_connection.py
private_endpoint_connection_name
polivbr/pulumi-azure-native
python
@property @pulumi.getter(name='privateEndpointConnectionName') def private_endpoint_connection_name(self) -> Optional[pulumi.Input[str]]: '\n \n ' return pulumi.get(self, 'private_endpoint_connection_name')
@property @pulumi.getter(name='privateLinkServiceConnectionState') def private_link_service_connection_state(self) -> Optional[pulumi.Input['PrivateLinkServiceConnectionStatePropertyArgs']]: '\n Connection State of the Private Endpoint Connection.\n ' return pulumi.get(self, 'private_link_service_connection_state')
-6,430,009,499,459,862,000
Connection State of the Private Endpoint Connection.
sdk/python/pulumi_azure_native/documentdb/v20210615/private_endpoint_connection.py
private_link_service_connection_state
polivbr/pulumi-azure-native
python
@property @pulumi.getter(name='privateLinkServiceConnectionState') def private_link_service_connection_state(self) -> Optional[pulumi.Input['PrivateLinkServiceConnectionStatePropertyArgs']]: '\n \n ' return pulumi.get(self, 'private_link_service_connection_state')
@property @pulumi.getter(name='provisioningState') def provisioning_state(self) -> Optional[pulumi.Input[str]]: '\n Provisioning state of the private endpoint.\n ' return pulumi.get(self, 'provisioning_state')
-7,459,372,872,054,955,000
Provisioning state of the private endpoint.
sdk/python/pulumi_azure_native/documentdb/v20210615/private_endpoint_connection.py
provisioning_state
polivbr/pulumi-azure-native
python
@property @pulumi.getter(name='provisioningState') def provisioning_state(self) -> Optional[pulumi.Input[str]]: '\n \n ' return pulumi.get(self, 'provisioning_state')
@overload def __init__(__self__, resource_name: str, opts: Optional[pulumi.ResourceOptions]=None, account_name: Optional[pulumi.Input[str]]=None, group_id: Optional[pulumi.Input[str]]=None, private_endpoint: Optional[pulumi.Input[pulumi.InputType['PrivateEndpointPropertyArgs']]]=None, private_endpoint_connection_name: Optional[pulumi.Input[str]]=None, private_link_service_connection_state: Optional[pulumi.Input[pulumi.InputType['PrivateLinkServiceConnectionStatePropertyArgs']]]=None, provisioning_state: Optional[pulumi.Input[str]]=None, resource_group_name: Optional[pulumi.Input[str]]=None, __props__=None): "\n A private endpoint connection\n\n :param str resource_name: The name of the resource.\n :param pulumi.ResourceOptions opts: Options for the resource.\n :param pulumi.Input[str] account_name: Cosmos DB database account name.\n :param pulumi.Input[str] group_id: Group id of the private endpoint.\n :param pulumi.Input[pulumi.InputType['PrivateEndpointPropertyArgs']] private_endpoint: Private endpoint which the connection belongs to.\n :param pulumi.Input[str] private_endpoint_connection_name: The name of the private endpoint connection.\n :param pulumi.Input[pulumi.InputType['PrivateLinkServiceConnectionStatePropertyArgs']] private_link_service_connection_state: Connection State of the Private Endpoint Connection.\n :param pulumi.Input[str] provisioning_state: Provisioning state of the private endpoint.\n :param pulumi.Input[str] resource_group_name: The name of the resource group. The name is case insensitive.\n " ...
2,332,089,667,209,762,000
A private endpoint connection :param str resource_name: The name of the resource. :param pulumi.ResourceOptions opts: Options for the resource. :param pulumi.Input[str] account_name: Cosmos DB database account name. :param pulumi.Input[str] group_id: Group id of the private endpoint. :param pulumi.Input[pulumi.InputType['PrivateEndpointPropertyArgs']] private_endpoint: Private endpoint which the connection belongs to. :param pulumi.Input[str] private_endpoint_connection_name: The name of the private endpoint connection. :param pulumi.Input[pulumi.InputType['PrivateLinkServiceConnectionStatePropertyArgs']] private_link_service_connection_state: Connection State of the Private Endpoint Connection. :param pulumi.Input[str] provisioning_state: Provisioning state of the private endpoint. :param pulumi.Input[str] resource_group_name: The name of the resource group. The name is case insensitive.
sdk/python/pulumi_azure_native/documentdb/v20210615/private_endpoint_connection.py
__init__
polivbr/pulumi-azure-native
python
@overload def __init__(__self__, resource_name: str, opts: Optional[pulumi.ResourceOptions]=None, account_name: Optional[pulumi.Input[str]]=None, group_id: Optional[pulumi.Input[str]]=None, private_endpoint: Optional[pulumi.Input[pulumi.InputType['PrivateEndpointPropertyArgs']]]=None, private_endpoint_connection_name: Optional[pulumi.Input[str]]=None, private_link_service_connection_state: Optional[pulumi.Input[pulumi.InputType['PrivateLinkServiceConnectionStatePropertyArgs']]]=None, provisioning_state: Optional[pulumi.Input[str]]=None, resource_group_name: Optional[pulumi.Input[str]]=None, __props__=None): "\n A private endpoint connection\n\n :param str resource_name: The name of the resource.\n :param pulumi.ResourceOptions opts: Options for the resource.\n :param pulumi.Input[str] account_name: Cosmos DB database account name.\n :param pulumi.Input[str] group_id: Group id of the private endpoint.\n :param pulumi.Input[pulumi.InputType['PrivateEndpointPropertyArgs']] private_endpoint: Private endpoint which the connection belongs to.\n :param pulumi.Input[str] private_endpoint_connection_name: The name of the private endpoint connection.\n :param pulumi.Input[pulumi.InputType['PrivateLinkServiceConnectionStatePropertyArgs']] private_link_service_connection_state: Connection State of the Private Endpoint Connection.\n :param pulumi.Input[str] provisioning_state: Provisioning state of the private endpoint.\n :param pulumi.Input[str] resource_group_name: The name of the resource group. The name is case insensitive.\n " ...
@overload def __init__(__self__, resource_name: str, args: PrivateEndpointConnectionArgs, opts: Optional[pulumi.ResourceOptions]=None): "\n A private endpoint connection\n\n :param str resource_name: The name of the resource.\n :param PrivateEndpointConnectionArgs args: The arguments to use to populate this resource's properties.\n :param pulumi.ResourceOptions opts: Options for the resource.\n " ...
1,086,483,198,058,566,000
A private endpoint connection :param str resource_name: The name of the resource. :param PrivateEndpointConnectionArgs args: The arguments to use to populate this resource's properties. :param pulumi.ResourceOptions opts: Options for the resource.
sdk/python/pulumi_azure_native/documentdb/v20210615/private_endpoint_connection.py
__init__
polivbr/pulumi-azure-native
python
@overload def __init__(__self__, resource_name: str, args: PrivateEndpointConnectionArgs, opts: Optional[pulumi.ResourceOptions]=None): "\n A private endpoint connection\n\n :param str resource_name: The name of the resource.\n :param PrivateEndpointConnectionArgs args: The arguments to use to populate this resource's properties.\n :param pulumi.ResourceOptions opts: Options for the resource.\n " ...
@staticmethod def get(resource_name: str, id: pulumi.Input[str], opts: Optional[pulumi.ResourceOptions]=None) -> 'PrivateEndpointConnection': "\n Get an existing PrivateEndpointConnection resource's state with the given name, id, and optional extra\n properties used to qualify the lookup.\n\n :param str resource_name: The unique name of the resulting resource.\n :param pulumi.Input[str] id: The unique provider ID of the resource to lookup.\n :param pulumi.ResourceOptions opts: Options for the resource.\n " opts = pulumi.ResourceOptions.merge(opts, pulumi.ResourceOptions(id=id)) __props__ = PrivateEndpointConnectionArgs.__new__(PrivateEndpointConnectionArgs) __props__.__dict__['group_id'] = None __props__.__dict__['name'] = None __props__.__dict__['private_endpoint'] = None __props__.__dict__['private_link_service_connection_state'] = None __props__.__dict__['provisioning_state'] = None __props__.__dict__['type'] = None return PrivateEndpointConnection(resource_name, opts=opts, __props__=__props__)
1,281,849,848,306,374,700
Get an existing PrivateEndpointConnection resource's state with the given name, id, and optional extra properties used to qualify the lookup. :param str resource_name: The unique name of the resulting resource. :param pulumi.Input[str] id: The unique provider ID of the resource to lookup. :param pulumi.ResourceOptions opts: Options for the resource.
sdk/python/pulumi_azure_native/documentdb/v20210615/private_endpoint_connection.py
get
polivbr/pulumi-azure-native
python
@staticmethod def get(resource_name: str, id: pulumi.Input[str], opts: Optional[pulumi.ResourceOptions]=None) -> 'PrivateEndpointConnection': "\n Get an existing PrivateEndpointConnection resource's state with the given name, id, and optional extra\n properties used to qualify the lookup.\n\n :param str resource_name: The unique name of the resulting resource.\n :param pulumi.Input[str] id: The unique provider ID of the resource to lookup.\n :param pulumi.ResourceOptions opts: Options for the resource.\n " opts = pulumi.ResourceOptions.merge(opts, pulumi.ResourceOptions(id=id)) __props__ = PrivateEndpointConnectionArgs.__new__(PrivateEndpointConnectionArgs) __props__.__dict__['group_id'] = None __props__.__dict__['name'] = None __props__.__dict__['private_endpoint'] = None __props__.__dict__['private_link_service_connection_state'] = None __props__.__dict__['provisioning_state'] = None __props__.__dict__['type'] = None return PrivateEndpointConnection(resource_name, opts=opts, __props__=__props__)
@property @pulumi.getter(name='groupId') def group_id(self) -> pulumi.Output[Optional[str]]: '\n Group id of the private endpoint.\n ' return pulumi.get(self, 'group_id')
1,222,296,214,502,759,200
Group id of the private endpoint.
sdk/python/pulumi_azure_native/documentdb/v20210615/private_endpoint_connection.py
group_id
polivbr/pulumi-azure-native
python
@property @pulumi.getter(name='groupId') def group_id(self) -> pulumi.Output[Optional[str]]: '\n \n ' return pulumi.get(self, 'group_id')
@property @pulumi.getter def name(self) -> pulumi.Output[str]: '\n The name of the resource\n ' return pulumi.get(self, 'name')
2,231,345,607,626,165,800
The name of the resource
sdk/python/pulumi_azure_native/documentdb/v20210615/private_endpoint_connection.py
name
polivbr/pulumi-azure-native
python
@property @pulumi.getter def name(self) -> pulumi.Output[str]: '\n \n ' return pulumi.get(self, 'name')
@property @pulumi.getter(name='privateEndpoint') def private_endpoint(self) -> pulumi.Output[Optional['outputs.PrivateEndpointPropertyResponse']]: '\n Private endpoint which the connection belongs to.\n ' return pulumi.get(self, 'private_endpoint')
5,557,291,932,331,128,000
Private endpoint which the connection belongs to.
sdk/python/pulumi_azure_native/documentdb/v20210615/private_endpoint_connection.py
private_endpoint
polivbr/pulumi-azure-native
python
@property @pulumi.getter(name='privateEndpoint') def private_endpoint(self) -> pulumi.Output[Optional['outputs.PrivateEndpointPropertyResponse']]: '\n \n ' return pulumi.get(self, 'private_endpoint')
@property @pulumi.getter(name='privateLinkServiceConnectionState') def private_link_service_connection_state(self) -> pulumi.Output[Optional['outputs.PrivateLinkServiceConnectionStatePropertyResponse']]: '\n Connection State of the Private Endpoint Connection.\n ' return pulumi.get(self, 'private_link_service_connection_state')
4,314,061,072,508,133,000
Connection State of the Private Endpoint Connection.
sdk/python/pulumi_azure_native/documentdb/v20210615/private_endpoint_connection.py
private_link_service_connection_state
polivbr/pulumi-azure-native
python
@property @pulumi.getter(name='privateLinkServiceConnectionState') def private_link_service_connection_state(self) -> pulumi.Output[Optional['outputs.PrivateLinkServiceConnectionStatePropertyResponse']]: '\n \n ' return pulumi.get(self, 'private_link_service_connection_state')
@property @pulumi.getter(name='provisioningState') def provisioning_state(self) -> pulumi.Output[Optional[str]]: '\n Provisioning state of the private endpoint.\n ' return pulumi.get(self, 'provisioning_state')
-2,609,549,406,412,615,000
Provisioning state of the private endpoint.
sdk/python/pulumi_azure_native/documentdb/v20210615/private_endpoint_connection.py
provisioning_state
polivbr/pulumi-azure-native
python
@property @pulumi.getter(name='provisioningState') def provisioning_state(self) -> pulumi.Output[Optional[str]]: '\n \n ' return pulumi.get(self, 'provisioning_state')
@property @pulumi.getter def type(self) -> pulumi.Output[str]: '\n The type of the resource. E.g. "Microsoft.Compute/virtualMachines" or "Microsoft.Storage/storageAccounts"\n ' return pulumi.get(self, 'type')
-5,449,551,391,296,740,000
The type of the resource. E.g. "Microsoft.Compute/virtualMachines" or "Microsoft.Storage/storageAccounts"
sdk/python/pulumi_azure_native/documentdb/v20210615/private_endpoint_connection.py
type
polivbr/pulumi-azure-native
python
@property @pulumi.getter def type(self) -> pulumi.Output[str]: '\n \n ' return pulumi.get(self, 'type')
def p_bp_location(self, args): '\n bp_start ::= opt_space location_if opt_space\n '
-6,279,436,233,502,354,000
bp_start ::= opt_space location_if opt_space
example/gdb-loc/gdbloc/parser.py
p_bp_location
rocky/python-spark
python
def p_bp_location(self, args): '\n \n '
def p_asm_range(self, args): "\n arange_start ::= opt_space arange\n arange ::= range\n arange ::= addr_location opt_space COMMA opt_space NUMBER\n arange ::= addr_location opt_space COMMA opt_space OFFSET\n arange ::= addr_location opt_space COMMA opt_space ADDRESS\n arange ::= location opt_space COMMA opt_space ADDRESS\n arange ::= addr_location opt_space COMMA\n arange ::= addr_location\n\n # Unlike ranges, We don't allow ending at an address\n # arange ::= COMMA opt_space addr_location\n\n addr_location ::= location\n addr_location ::= ADDRESS\n "
6,546,008,999,439,895,000
arange_start ::= opt_space arange arange ::= range arange ::= addr_location opt_space COMMA opt_space NUMBER arange ::= addr_location opt_space COMMA opt_space OFFSET arange ::= addr_location opt_space COMMA opt_space ADDRESS arange ::= location opt_space COMMA opt_space ADDRESS arange ::= addr_location opt_space COMMA arange ::= addr_location # Unlike ranges, We don't allow ending at an address # arange ::= COMMA opt_space addr_location addr_location ::= location addr_location ::= ADDRESS
example/gdb-loc/gdbloc/parser.py
p_asm_range
rocky/python-spark
python
def p_asm_range(self, args): "\n arange_start ::= opt_space arange\n arange ::= range\n arange ::= addr_location opt_space COMMA opt_space NUMBER\n arange ::= addr_location opt_space COMMA opt_space OFFSET\n arange ::= addr_location opt_space COMMA opt_space ADDRESS\n arange ::= location opt_space COMMA opt_space ADDRESS\n arange ::= addr_location opt_space COMMA\n arange ::= addr_location\n\n # Unlike ranges, We don't allow ending at an address\n # arange ::= COMMA opt_space addr_location\n\n addr_location ::= location\n addr_location ::= ADDRESS\n "
def p_list_range(self, args): '\n range_start ::= opt_space range\n\n range ::= location opt_space COMMA opt_space NUMBER\n range ::= location opt_space COMMA opt_space OFFSET\n range ::= COMMA opt_space location\n range ::= location opt_space COMMA\n range ::= location\n range ::= DIRECTION\n '
-2,263,275,189,617,537,000
range_start ::= opt_space range range ::= location opt_space COMMA opt_space NUMBER range ::= location opt_space COMMA opt_space OFFSET range ::= COMMA opt_space location range ::= location opt_space COMMA range ::= location range ::= DIRECTION
example/gdb-loc/gdbloc/parser.py
p_list_range
rocky/python-spark
python
def p_list_range(self, args): '\n range_start ::= opt_space range\n\n range ::= location opt_space COMMA opt_space NUMBER\n range ::= location opt_space COMMA opt_space OFFSET\n range ::= COMMA opt_space location\n range ::= location opt_space COMMA\n range ::= location\n range ::= DIRECTION\n '
def p_location(self, args): '\n opt_space ::= SPACE?\n\n location_if ::= location\n location_if ::= location SPACE IF tokens\n\n # Note no space is allowed between FILENAME and NUMBER\n location ::= FILENAME COLON NUMBER\n location ::= FUNCNAME\n\n # If just a number is given, the the filename is implied\n location ::= NUMBER\n location ::= METHOD\n location ::= OFFSET\n\n # For tokens we accept anything. Were really just\n # going to use the underlying string from the part\n # after "if". So below we all of the possible tokens\n\n tokens ::= token+\n token ::= COLON\n token ::= COMMA\n token ::= DIRECTION\n token ::= FILENAME\n token ::= FUNCNAME\n token ::= NUMBER\n token ::= OFFSET\n token ::= SPACE\n '
857,460,103,374,779,500
opt_space ::= SPACE? location_if ::= location location_if ::= location SPACE IF tokens # Note no space is allowed between FILENAME and NUMBER location ::= FILENAME COLON NUMBER location ::= FUNCNAME # If just a number is given, the the filename is implied location ::= NUMBER location ::= METHOD location ::= OFFSET # For tokens we accept anything. Were really just # going to use the underlying string from the part # after "if". So below we all of the possible tokens tokens ::= token+ token ::= COLON token ::= COMMA token ::= DIRECTION token ::= FILENAME token ::= FUNCNAME token ::= NUMBER token ::= OFFSET token ::= SPACE
example/gdb-loc/gdbloc/parser.py
p_location
rocky/python-spark
python
def p_location(self, args): '\n opt_space ::= SPACE?\n\n location_if ::= location\n location_if ::= location SPACE IF tokens\n\n # Note no space is allowed between FILENAME and NUMBER\n location ::= FILENAME COLON NUMBER\n location ::= FUNCNAME\n\n # If just a number is given, the the filename is implied\n location ::= NUMBER\n location ::= METHOD\n location ::= OFFSET\n\n # For tokens we accept anything. Were really just\n # going to use the underlying string from the part\n # after "if". So below we all of the possible tokens\n\n tokens ::= token+\n token ::= COLON\n token ::= COMMA\n token ::= DIRECTION\n token ::= FILENAME\n token ::= FUNCNAME\n token ::= NUMBER\n token ::= OFFSET\n token ::= SPACE\n '
def __init__(self, server_url: str, **kwargs) -> None: 'The WOQLClient constructor.\n\n Parameters\n ----------\n server_url : str\n URL of the server that this client will connect to.\n \\**kwargs\n Extra configuration options\n\n ' self.server_url = server_url.strip('/') self.api = f'{self.server_url}/api' self._connected = False self._team = None self._db = None self._user = None self._branch = None self._ref = None self._repo = None
-1,364,098,096,190,279,400
The WOQLClient constructor. Parameters ---------- server_url : str URL of the server that this client will connect to. \**kwargs Extra configuration options
terminusdb_client/woqlclient/woqlClient.py
__init__
terminusdb/woql-client-p
python
def __init__(self, server_url: str, **kwargs) -> None: 'The WOQLClient constructor.\n\n Parameters\n ----------\n server_url : str\n URL of the server that this client will connect to.\n \\**kwargs\n Extra configuration options\n\n ' self.server_url = server_url.strip('/') self.api = f'{self.server_url}/api' self._connected = False self._team = None self._db = None self._user = None self._branch = None self._ref = None self._repo = None
def connect(self, team: str='admin', db: Optional[str]=None, remote_auth: str=None, use_token: bool=False, jwt_token: Optional[str]=None, api_token: Optional[str]=None, key: str='root', user: str='admin', branch: str='main', ref: Optional[str]=None, repo: str='local', **kwargs) -> None: 'Connect to a Terminus server at the given URI with an API key.\n\n Stores the connection settings and necessary meta-data for the connected server. You need to connect before most database operations.\n\n Parameters\n ----------\n team: str\n Name of the team, default to be "admin"\n db: optional, str\n Name of the database connected\n remote_auth: optional, str\n Remote Auth setting\n key: optional, str\n API key for connecting, default to be "root"\n user: optional, str\n Name of the user, default to be "admin"\n use_token: bool\n Use token to connect. If both `jwt_token` and `api_token` is not provided (None), then it will use the ENV variable TERMINUSDB_ACCESS_TOKEN to connect as the API token\n jwt_token: optional, str\n The Bearer JWT token to connect. Default to be None.\n api_token: optional, strs\n The API token to connect. Default to be None.\n branch: optional, str\n Branch to be connected, default to be "main"\n ref: optional, str\n Ref setting\n repo: optional, str\n Local or remote repo, default to be "local"\n \\**kwargs\n Extra configuration options.\n\n Examples\n -------\n >>> client = WOQLClient("https://127.0.0.1:6363")\n >>> client.connect(key="root", team="admin", user="admin", db="example_db")\n ' self.team = team self.db = db self._remote_auth = remote_auth self._key = key self.user = user self._use_token = use_token self._jwt_token = jwt_token self._api_token = api_token self.branch = branch self.ref = ref self.repo = repo self._connected = True try: self._db_info = json.loads(_finish_response(requests.get((self.api + '/info'), headers={'user-agent': f'terminusdb-client-python/{__version__}'}, auth=self._auth()))) except Exception as error: raise InterfaceError(f'Cannot connect to server, please make sure TerminusDB is running at {self.server_url} and the authentication details are correct. Details: {str(error)}') from None if (self.db is not None): try: _finish_response(requests.head(self._db_url(), headers={'user-agent': f'terminusdb-client-python/{__version__}'}, params={'exists': 'true'}, auth=self._auth())) except DatabaseError: raise InterfaceError(f'Connection fail, {self.db} does not exist.') self._author = self.user
8,423,099,675,081,320,000
Connect to a Terminus server at the given URI with an API key. Stores the connection settings and necessary meta-data for the connected server. You need to connect before most database operations. Parameters ---------- team: str Name of the team, default to be "admin" db: optional, str Name of the database connected remote_auth: optional, str Remote Auth setting key: optional, str API key for connecting, default to be "root" user: optional, str Name of the user, default to be "admin" use_token: bool Use token to connect. If both `jwt_token` and `api_token` is not provided (None), then it will use the ENV variable TERMINUSDB_ACCESS_TOKEN to connect as the API token jwt_token: optional, str The Bearer JWT token to connect. Default to be None. api_token: optional, strs The API token to connect. Default to be None. branch: optional, str Branch to be connected, default to be "main" ref: optional, str Ref setting repo: optional, str Local or remote repo, default to be "local" \**kwargs Extra configuration options. Examples ------- >>> client = WOQLClient("https://127.0.0.1:6363") >>> client.connect(key="root", team="admin", user="admin", db="example_db")
terminusdb_client/woqlclient/woqlClient.py
connect
terminusdb/woql-client-p
python
def connect(self, team: str='admin', db: Optional[str]=None, remote_auth: str=None, use_token: bool=False, jwt_token: Optional[str]=None, api_token: Optional[str]=None, key: str='root', user: str='admin', branch: str='main', ref: Optional[str]=None, repo: str='local', **kwargs) -> None: 'Connect to a Terminus server at the given URI with an API key.\n\n Stores the connection settings and necessary meta-data for the connected server. You need to connect before most database operations.\n\n Parameters\n ----------\n team: str\n Name of the team, default to be "admin"\n db: optional, str\n Name of the database connected\n remote_auth: optional, str\n Remote Auth setting\n key: optional, str\n API key for connecting, default to be "root"\n user: optional, str\n Name of the user, default to be "admin"\n use_token: bool\n Use token to connect. If both `jwt_token` and `api_token` is not provided (None), then it will use the ENV variable TERMINUSDB_ACCESS_TOKEN to connect as the API token\n jwt_token: optional, str\n The Bearer JWT token to connect. Default to be None.\n api_token: optional, strs\n The API token to connect. Default to be None.\n branch: optional, str\n Branch to be connected, default to be "main"\n ref: optional, str\n Ref setting\n repo: optional, str\n Local or remote repo, default to be "local"\n \\**kwargs\n Extra configuration options.\n\n Examples\n -------\n >>> client = WOQLClient("https://127.0.0.1:6363")\n >>> client.connect(key="root", team="admin", user="admin", db="example_db")\n ' self.team = team self.db = db self._remote_auth = remote_auth self._key = key self.user = user self._use_token = use_token self._jwt_token = jwt_token self._api_token = api_token self.branch = branch self.ref = ref self.repo = repo self._connected = True try: self._db_info = json.loads(_finish_response(requests.get((self.api + '/info'), headers={'user-agent': f'terminusdb-client-python/{__version__}'}, auth=self._auth()))) except Exception as error: raise InterfaceError(f'Cannot connect to server, please make sure TerminusDB is running at {self.server_url} and the authentication details are correct. Details: {str(error)}') from None if (self.db is not None): try: _finish_response(requests.head(self._db_url(), headers={'user-agent': f'terminusdb-client-python/{__version__}'}, params={'exists': 'true'}, auth=self._auth())) except DatabaseError: raise InterfaceError(f'Connection fail, {self.db} does not exist.') self._author = self.user
def close(self) -> None: 'Undo connect and close the connection.\n\n The connection will be unusable from this point forward; an Error (or subclass) exception will be raised if any operation is attempted with the connection, unless connect is call again.' self._connected = False
-6,189,939,517,125,445,000
Undo connect and close the connection. The connection will be unusable from this point forward; an Error (or subclass) exception will be raised if any operation is attempted with the connection, unless connect is call again.
terminusdb_client/woqlclient/woqlClient.py
close
terminusdb/woql-client-p
python
def close(self) -> None: 'Undo connect and close the connection.\n\n The connection will be unusable from this point forward; an Error (or subclass) exception will be raised if any operation is attempted with the connection, unless connect is call again.' self._connected = False
def _check_connection(self, check_db=True) -> None: 'Raise connection InterfaceError if not connected\n Defaults to check if a db is connected' if (not self._connected): raise InterfaceError('Client is not connected to a TerminusDB server.') if (check_db and (self.db is None)): raise InterfaceError('No database is connected. Please either connect to a database or create a new database.')
4,379,756,186,759,730,700
Raise connection InterfaceError if not connected Defaults to check if a db is connected
terminusdb_client/woqlclient/woqlClient.py
_check_connection
terminusdb/woql-client-p
python
def _check_connection(self, check_db=True) -> None: 'Raise connection InterfaceError if not connected\n Defaults to check if a db is connected' if (not self._connected): raise InterfaceError('Client is not connected to a TerminusDB server.') if (check_db and (self.db is None)): raise InterfaceError('No database is connected. Please either connect to a database or create a new database.')
def get_commit_history(self, max_history: int=500) -> list: 'Get the whole commit history.\n Commit history - Commit id, author of the commit, commit message and the commit time, in the current branch from the current commit, ordered backwards in time, will be returned in a dictionary in the follow format:\n {"commit_id":\n {"author": "commit_author",\n "message": "commit_message",\n "timestamp: <datetime object of the timestamp>" }\n }\n\n Parameters\n ----------\n max_history: int, optional\n maximum number of commit that would return, counting backwards from your current commit. Default is set to 500. It need to be nop-negitive, if input is 0 it will still give the last commit.\n\n Example\n -------\n >>> from terminusdb_client import WOQLClient\n >>> client = WOQLClient("https://127.0.0.1:6363"\n >>> client.connect(db="bank_balance_example")\n >>> client.get_commit_history()\n [{\'commit\': \'s90wike9v5xibmrb661emxjs8k7ynwc\', \'author\': \'admin\', \'message\': \'Adding Jane\', \'timestamp\': datetime.da\n tetime(2020, 9, 3, 15, 29, 34)}, {\'commit\': \'1qhge8qlodajx93ovj67kvkrkxsw3pg\', \'author\': \'[email protected]\', \'m\n essage\': \'Adding Jim\', \'timestamp\': datetime.datetime(2020, 9, 3, 15, 29, 33)}, {\'commit\': \'rciy1rfu5foj67ch00ow6f6n\n njjxe3i\', \'author\': \'[email protected]\', \'message\': \'Update mike\', \'timestamp\': datetime.datetime(2020, 9, 3, 15,\n 29, 33)}, {\'commit\': \'n4d86u8juzx852r2ekrega5hl838ovh\', \'author\': \'[email protected]\', \'message\': \'Add mike\', \'\n timestamp\': datetime.datetime(2020, 9, 3, 15, 29, 33)}, {\'commit\': \'1vk2i8k8xce26p9jpi4zmq1h5vdqyuj\', \'author\': \'gav\n [email protected]\', \'message\': \'Label for balance was wrong\', \'timestamp\': datetime.datetime(2020, 9, 3, 15, 29, 33)\n }, {\'commit\': \'9si4na9zv2qol9b189y92fia7ac3hbg\', \'author\': \'[email protected]\', \'message\': \'Adding bank account\n object to schema\', \'timestamp\': datetime.datetime(2020, 9, 3, 15, 29, 33)}, {\'commit\': \'9egc4h0m36l5rbq1alr1fki6jbfu\n kuv\', \'author\': \'TerminusDB\', \'message\': \'internal system operation\', \'timstamp\': datetime.datetime(2020, 9, 3, 15,\n 29, 33)}]\n\n Returns\n -------\n list\n ' if (max_history < 0): raise ValueError('max_history needs to be non-negative.') if (max_history > 1): limit_history = (max_history - 1) else: limit_history = 1 woql_query = WOQLQuery().using('_commits').limit(limit_history).triple('v:branch', 'name', WOQLQuery().string(self.branch)).triple('v:branch', 'head', 'v:commit').path('v:commit', 'parent*', 'v:target_commit').triple('v:target_commit', 'identifier', 'v:cid').triple('v:target_commit', 'author', 'v:author').triple('v:target_commit', 'message', 'v:message').triple('v:target_commit', 'timestamp', 'v:timestamp') result = self.query(woql_query).get('bindings') if (not result): return result else: result_list = [] for result_item in result: result_list.append({'commit': result_item['cid']['@value'], 'author': result_item['author']['@value'], 'message': result_item['message']['@value'], 'timestamp': datetime.fromtimestamp(int(result_item['timestamp']['@value']))}) return result_list
1,425,721,135,152,934,100
Get the whole commit history. Commit history - Commit id, author of the commit, commit message and the commit time, in the current branch from the current commit, ordered backwards in time, will be returned in a dictionary in the follow format: {"commit_id": {"author": "commit_author", "message": "commit_message", "timestamp: <datetime object of the timestamp>" } } Parameters ---------- max_history: int, optional maximum number of commit that would return, counting backwards from your current commit. Default is set to 500. It need to be nop-negitive, if input is 0 it will still give the last commit. Example ------- >>> from terminusdb_client import WOQLClient >>> client = WOQLClient("https://127.0.0.1:6363" >>> client.connect(db="bank_balance_example") >>> client.get_commit_history() [{'commit': 's90wike9v5xibmrb661emxjs8k7ynwc', 'author': 'admin', 'message': 'Adding Jane', 'timestamp': datetime.da tetime(2020, 9, 3, 15, 29, 34)}, {'commit': '1qhge8qlodajx93ovj67kvkrkxsw3pg', 'author': '[email protected]', 'm essage': 'Adding Jim', 'timestamp': datetime.datetime(2020, 9, 3, 15, 29, 33)}, {'commit': 'rciy1rfu5foj67ch00ow6f6n njjxe3i', 'author': '[email protected]', 'message': 'Update mike', 'timestamp': datetime.datetime(2020, 9, 3, 15, 29, 33)}, {'commit': 'n4d86u8juzx852r2ekrega5hl838ovh', 'author': '[email protected]', 'message': 'Add mike', ' timestamp': datetime.datetime(2020, 9, 3, 15, 29, 33)}, {'commit': '1vk2i8k8xce26p9jpi4zmq1h5vdqyuj', 'author': 'gav [email protected]', 'message': 'Label for balance was wrong', 'timestamp': datetime.datetime(2020, 9, 3, 15, 29, 33) }, {'commit': '9si4na9zv2qol9b189y92fia7ac3hbg', 'author': '[email protected]', 'message': 'Adding bank account object to schema', 'timestamp': datetime.datetime(2020, 9, 3, 15, 29, 33)}, {'commit': '9egc4h0m36l5rbq1alr1fki6jbfu kuv', 'author': 'TerminusDB', 'message': 'internal system operation', 'timstamp': datetime.datetime(2020, 9, 3, 15, 29, 33)}] Returns ------- list
terminusdb_client/woqlclient/woqlClient.py
get_commit_history
terminusdb/woql-client-p
python
def get_commit_history(self, max_history: int=500) -> list: 'Get the whole commit history.\n Commit history - Commit id, author of the commit, commit message and the commit time, in the current branch from the current commit, ordered backwards in time, will be returned in a dictionary in the follow format:\n {"commit_id":\n {"author": "commit_author",\n "message": "commit_message",\n "timestamp: <datetime object of the timestamp>" }\n }\n\n Parameters\n ----------\n max_history: int, optional\n maximum number of commit that would return, counting backwards from your current commit. Default is set to 500. It need to be nop-negitive, if input is 0 it will still give the last commit.\n\n Example\n -------\n >>> from terminusdb_client import WOQLClient\n >>> client = WOQLClient("https://127.0.0.1:6363"\n >>> client.connect(db="bank_balance_example")\n >>> client.get_commit_history()\n [{\'commit\': \'s90wike9v5xibmrb661emxjs8k7ynwc\', \'author\': \'admin\', \'message\': \'Adding Jane\', \'timestamp\': datetime.da\n tetime(2020, 9, 3, 15, 29, 34)}, {\'commit\': \'1qhge8qlodajx93ovj67kvkrkxsw3pg\', \'author\': \'[email protected]\', \'m\n essage\': \'Adding Jim\', \'timestamp\': datetime.datetime(2020, 9, 3, 15, 29, 33)}, {\'commit\': \'rciy1rfu5foj67ch00ow6f6n\n njjxe3i\', \'author\': \'[email protected]\', \'message\': \'Update mike\', \'timestamp\': datetime.datetime(2020, 9, 3, 15,\n 29, 33)}, {\'commit\': \'n4d86u8juzx852r2ekrega5hl838ovh\', \'author\': \'[email protected]\', \'message\': \'Add mike\', \'\n timestamp\': datetime.datetime(2020, 9, 3, 15, 29, 33)}, {\'commit\': \'1vk2i8k8xce26p9jpi4zmq1h5vdqyuj\', \'author\': \'gav\n [email protected]\', \'message\': \'Label for balance was wrong\', \'timestamp\': datetime.datetime(2020, 9, 3, 15, 29, 33)\n }, {\'commit\': \'9si4na9zv2qol9b189y92fia7ac3hbg\', \'author\': \'[email protected]\', \'message\': \'Adding bank account\n object to schema\', \'timestamp\': datetime.datetime(2020, 9, 3, 15, 29, 33)}, {\'commit\': \'9egc4h0m36l5rbq1alr1fki6jbfu\n kuv\', \'author\': \'TerminusDB\', \'message\': \'internal system operation\', \'timstamp\': datetime.datetime(2020, 9, 3, 15,\n 29, 33)}]\n\n Returns\n -------\n list\n ' if (max_history < 0): raise ValueError('max_history needs to be non-negative.') if (max_history > 1): limit_history = (max_history - 1) else: limit_history = 1 woql_query = WOQLQuery().using('_commits').limit(limit_history).triple('v:branch', 'name', WOQLQuery().string(self.branch)).triple('v:branch', 'head', 'v:commit').path('v:commit', 'parent*', 'v:target_commit').triple('v:target_commit', 'identifier', 'v:cid').triple('v:target_commit', 'author', 'v:author').triple('v:target_commit', 'message', 'v:message').triple('v:target_commit', 'timestamp', 'v:timestamp') result = self.query(woql_query).get('bindings') if (not result): return result else: result_list = [] for result_item in result: result_list.append({'commit': result_item['cid']['@value'], 'author': result_item['author']['@value'], 'message': result_item['message']['@value'], 'timestamp': datetime.fromtimestamp(int(result_item['timestamp']['@value']))}) return result_list
def get_all_branches(self, get_data_version=False): 'Get all the branches available in the database.' self._check_connection() api_url = self._documents_url().split('/') api_url = api_url[:(- 2)] api_url = ('/'.join(api_url) + '/_commits') result = requests.get(api_url, headers={'user-agent': f'terminusdb-client-python/{__version__}'}, params={'type': 'Branch'}, auth=self._auth()) if get_data_version: (result, version) = _finish_response(result, get_data_version) return (list(_result2stream(result)), version) return list(_result2stream(_finish_response(result)))
-2,184,391,910,578,389,500
Get all the branches available in the database.
terminusdb_client/woqlclient/woqlClient.py
get_all_branches
terminusdb/woql-client-p
python
def get_all_branches(self, get_data_version=False): self._check_connection() api_url = self._documents_url().split('/') api_url = api_url[:(- 2)] api_url = ('/'.join(api_url) + '/_commits') result = requests.get(api_url, headers={'user-agent': f'terminusdb-client-python/{__version__}'}, params={'type': 'Branch'}, auth=self._auth()) if get_data_version: (result, version) = _finish_response(result, get_data_version) return (list(_result2stream(result)), version) return list(_result2stream(_finish_response(result)))
def rollback(self, steps=1) -> None: "Curently not implementated. Please check back later.\n\n Raises\n ----------\n NotImplementedError\n Since TerminusDB currently does not support open transactions. This method is not applicable to it's usage. To reset commit head, use WOQLClient.reset\n\n " raise NotImplementedError('Open transactions are currently not supported. To reset commit head, check WOQLClient.reset')
-2,812,794,403,207,086,000
Curently not implementated. Please check back later. Raises ---------- NotImplementedError Since TerminusDB currently does not support open transactions. This method is not applicable to it's usage. To reset commit head, use WOQLClient.reset
terminusdb_client/woqlclient/woqlClient.py
rollback
terminusdb/woql-client-p
python
def rollback(self, steps=1) -> None: "Curently not implementated. Please check back later.\n\n Raises\n ----------\n NotImplementedError\n Since TerminusDB currently does not support open transactions. This method is not applicable to it's usage. To reset commit head, use WOQLClient.reset\n\n " raise NotImplementedError('Open transactions are currently not supported. To reset commit head, check WOQLClient.reset')
def copy(self) -> 'WOQLClient': 'Create a deep copy of this client.\n\n Returns\n -------\n WOQLClient\n The copied client instance.\n\n Examples\n --------\n >>> client = WOQLClient("https://127.0.0.1:6363/")\n >>> clone = client.copy()\n >>> assert client is not clone\n ' return copy.deepcopy(self)
-5,851,508,991,514,087,000
Create a deep copy of this client. Returns ------- WOQLClient The copied client instance. Examples -------- >>> client = WOQLClient("https://127.0.0.1:6363/") >>> clone = client.copy() >>> assert client is not clone
terminusdb_client/woqlclient/woqlClient.py
copy
terminusdb/woql-client-p
python
def copy(self) -> 'WOQLClient': 'Create a deep copy of this client.\n\n Returns\n -------\n WOQLClient\n The copied client instance.\n\n Examples\n --------\n >>> client = WOQLClient("https://127.0.0.1:6363/")\n >>> clone = client.copy()\n >>> assert client is not clone\n ' return copy.deepcopy(self)
def set_db(self, dbid: str, team: Optional[str]=None) -> str: 'Set the connection to another database. This will reset the connection.\n\n Parameters\n ----------\n dbid : str\n Database identifer to set in the config.\n team : str\n Team identifer to set in the config. If not passed in, it will use the current one.\n\n Returns\n -------\n str\n The current database identifier.\n\n Examples\n --------\n >>> client = WOQLClient("https://127.0.0.1:6363")\n >>> client.set_db("database1")\n \'database1\'\n ' self._check_connection(check_db=False) if (team is None): team = self.team return self.connect(team=team, db=dbid, remote_auth=self._remote_auth, key=self._key, user=self.user, branch=self.branch, ref=self.ref, repo=self.repo)
6,096,587,200,381,540,000
Set the connection to another database. This will reset the connection. Parameters ---------- dbid : str Database identifer to set in the config. team : str Team identifer to set in the config. If not passed in, it will use the current one. Returns ------- str The current database identifier. Examples -------- >>> client = WOQLClient("https://127.0.0.1:6363") >>> client.set_db("database1") 'database1'
terminusdb_client/woqlclient/woqlClient.py
set_db
terminusdb/woql-client-p
python
def set_db(self, dbid: str, team: Optional[str]=None) -> str: 'Set the connection to another database. This will reset the connection.\n\n Parameters\n ----------\n dbid : str\n Database identifer to set in the config.\n team : str\n Team identifer to set in the config. If not passed in, it will use the current one.\n\n Returns\n -------\n str\n The current database identifier.\n\n Examples\n --------\n >>> client = WOQLClient("https://127.0.0.1:6363")\n >>> client.set_db("database1")\n \'database1\'\n ' self._check_connection(check_db=False) if (team is None): team = self.team return self.connect(team=team, db=dbid, remote_auth=self._remote_auth, key=self._key, user=self.user, branch=self.branch, ref=self.ref, repo=self.repo)
def resource(self, ttype: ResourceType, val: Optional[str]=None) -> str: 'Create a resource identifier string based on the current config.\n\n Parameters\n ----------\n ttype : ResourceType\n Type of resource.\n val : str, optional\n Branch or commit identifier.\n\n Returns\n -------\n str\n The constructed resource string.\n\n Examples\n --------\n >>> client = WOQLClient("https://127.0.0.1:6363")\n >>> client.resource(ResourceType.DB)\n \'<team>/<db>/\'\n >>> client.resource(ResourceType.META)\n \'<team>/<db>/_meta\'\n >>> client.resource(ResourceType.COMMITS)\n \'<team>/<db>/<repo>/_commits\'\n >>> client.resource(ResourceType.REF, "<reference>")\n \'<team>/<db>/<repo>/commit/<reference>\'\n >>> client.resource(ResourceType.BRANCH, "<branch>")\n \'<team>/<db>/<repo>/branch/<branch>\'\n ' base = (((self.team + '/') + self.db) + '/') ref_value = (val if val else self.ref) branch_value = (val if val else self.branch) urls = {ResourceType.DB: base, ResourceType.META: f'{base}_meta', ResourceType.REPO: f'{base}{self.repo}/_meta', ResourceType.COMMITS: f'{base}{self.repo}/_commits', ResourceType.REF: f'{base}{self.repo}/commit/{ref_value}', ResourceType.BRANCH: f'{base}{self.repo}/{branch_value}'} return urls[ttype]
930,136,883,031,564,500
Create a resource identifier string based on the current config. Parameters ---------- ttype : ResourceType Type of resource. val : str, optional Branch or commit identifier. Returns ------- str The constructed resource string. Examples -------- >>> client = WOQLClient("https://127.0.0.1:6363") >>> client.resource(ResourceType.DB) '<team>/<db>/' >>> client.resource(ResourceType.META) '<team>/<db>/_meta' >>> client.resource(ResourceType.COMMITS) '<team>/<db>/<repo>/_commits' >>> client.resource(ResourceType.REF, "<reference>") '<team>/<db>/<repo>/commit/<reference>' >>> client.resource(ResourceType.BRANCH, "<branch>") '<team>/<db>/<repo>/branch/<branch>'
terminusdb_client/woqlclient/woqlClient.py
resource
terminusdb/woql-client-p
python
def resource(self, ttype: ResourceType, val: Optional[str]=None) -> str: 'Create a resource identifier string based on the current config.\n\n Parameters\n ----------\n ttype : ResourceType\n Type of resource.\n val : str, optional\n Branch or commit identifier.\n\n Returns\n -------\n str\n The constructed resource string.\n\n Examples\n --------\n >>> client = WOQLClient("https://127.0.0.1:6363")\n >>> client.resource(ResourceType.DB)\n \'<team>/<db>/\'\n >>> client.resource(ResourceType.META)\n \'<team>/<db>/_meta\'\n >>> client.resource(ResourceType.COMMITS)\n \'<team>/<db>/<repo>/_commits\'\n >>> client.resource(ResourceType.REF, "<reference>")\n \'<team>/<db>/<repo>/commit/<reference>\'\n >>> client.resource(ResourceType.BRANCH, "<branch>")\n \'<team>/<db>/<repo>/branch/<branch>\'\n ' base = (((self.team + '/') + self.db) + '/') ref_value = (val if val else self.ref) branch_value = (val if val else self.branch) urls = {ResourceType.DB: base, ResourceType.META: f'{base}_meta', ResourceType.REPO: f'{base}{self.repo}/_meta', ResourceType.COMMITS: f'{base}{self.repo}/_commits', ResourceType.REF: f'{base}{self.repo}/commit/{ref_value}', ResourceType.BRANCH: f'{base}{self.repo}/{branch_value}'} return urls[ttype]
def _get_prefixes(self): 'Get the prefixes for a given database' self._check_connection() result = requests.get(self._db_base('prefixes'), headers={'user-agent': f'terminusdb-client-python/{__version__}'}, auth=self._auth()) return json.loads(_finish_response(result))
5,538,847,128,667,846,000
Get the prefixes for a given database
terminusdb_client/woqlclient/woqlClient.py
_get_prefixes
terminusdb/woql-client-p
python
def _get_prefixes(self): self._check_connection() result = requests.get(self._db_base('prefixes'), headers={'user-agent': f'terminusdb-client-python/{__version__}'}, auth=self._auth()) return json.loads(_finish_response(result))
def create_database(self, dbid: str, team: Optional[str]=None, label: Optional[str]=None, description: Optional[str]=None, prefixes: Optional[dict]=None, include_schema: bool=True) -> None: 'Create a TerminusDB database by posting\n a terminus:Database document to the Terminus Server.\n\n Parameters\n ----------\n dbid : str\n Unique identifier of the database.\n team : str, optional\n ID of the Team in which to create the DB (defaults to \'admin\')\n label : str, optional\n Database name.\n description : str, optional\n Database description.\n prefixes : dict, optional\n Optional dict containing ``"@base"`` and ``"@schema"`` keys.\n\n @base (str)\n IRI to use when ``doc:`` prefixes are expanded. Defaults to ``terminusdb:///data``.\n @schema (str)\n IRI to use when ``scm:`` prefixes are expanded. Defaults to ``terminusdb:///schema``.\n include_schema : bool\n If ``True``, a main schema graph will be created, otherwise only a main instance graph will be created.\n\n Raises\n ------\n InterfaceError\n if the client does not connect to a server\n\n Examples\n --------\n >>> client = WOQLClient("https://127.0.0.1:6363/")\n >>> client.create_database("someDB", "admin", "Database Label", "My Description")\n ' self._check_connection(check_db=False) details: Dict[(str, Any)] = {} if label: details['label'] = label else: details['label'] = dbid if description: details['comment'] = description else: details['comment'] = '' if include_schema: details['schema'] = True if prefixes: details['prefixes'] = prefixes if (team is None): team = self.team self.team = team self._connected = True self.db = dbid _finish_response(requests.post(self._db_url(), headers={'user-agent': f'terminusdb-client-python/{__version__}'}, json=details, auth=self._auth()))
3,640,779,118,710,737,000
Create a TerminusDB database by posting a terminus:Database document to the Terminus Server. Parameters ---------- dbid : str Unique identifier of the database. team : str, optional ID of the Team in which to create the DB (defaults to 'admin') label : str, optional Database name. description : str, optional Database description. prefixes : dict, optional Optional dict containing ``"@base"`` and ``"@schema"`` keys. @base (str) IRI to use when ``doc:`` prefixes are expanded. Defaults to ``terminusdb:///data``. @schema (str) IRI to use when ``scm:`` prefixes are expanded. Defaults to ``terminusdb:///schema``. include_schema : bool If ``True``, a main schema graph will be created, otherwise only a main instance graph will be created. Raises ------ InterfaceError if the client does not connect to a server Examples -------- >>> client = WOQLClient("https://127.0.0.1:6363/") >>> client.create_database("someDB", "admin", "Database Label", "My Description")
terminusdb_client/woqlclient/woqlClient.py
create_database
terminusdb/woql-client-p
python
def create_database(self, dbid: str, team: Optional[str]=None, label: Optional[str]=None, description: Optional[str]=None, prefixes: Optional[dict]=None, include_schema: bool=True) -> None: 'Create a TerminusDB database by posting\n a terminus:Database document to the Terminus Server.\n\n Parameters\n ----------\n dbid : str\n Unique identifier of the database.\n team : str, optional\n ID of the Team in which to create the DB (defaults to \'admin\')\n label : str, optional\n Database name.\n description : str, optional\n Database description.\n prefixes : dict, optional\n Optional dict containing ``"@base"`` and ``"@schema"`` keys.\n\n @base (str)\n IRI to use when ``doc:`` prefixes are expanded. Defaults to ``terminusdb:///data``.\n @schema (str)\n IRI to use when ``scm:`` prefixes are expanded. Defaults to ``terminusdb:///schema``.\n include_schema : bool\n If ``True``, a main schema graph will be created, otherwise only a main instance graph will be created.\n\n Raises\n ------\n InterfaceError\n if the client does not connect to a server\n\n Examples\n --------\n >>> client = WOQLClient("https://127.0.0.1:6363/")\n >>> client.create_database("someDB", "admin", "Database Label", "My Description")\n ' self._check_connection(check_db=False) details: Dict[(str, Any)] = {} if label: details['label'] = label else: details['label'] = dbid if description: details['comment'] = description else: details['comment'] = if include_schema: details['schema'] = True if prefixes: details['prefixes'] = prefixes if (team is None): team = self.team self.team = team self._connected = True self.db = dbid _finish_response(requests.post(self._db_url(), headers={'user-agent': f'terminusdb-client-python/{__version__}'}, json=details, auth=self._auth()))
def delete_database(self, dbid: Optional[str]=None, team: Optional[str]=None, force: bool=False) -> None: 'Delete a TerminusDB database.\n\n If ``team`` is provided, then the team in the config will be updated\n and the new value will be used in future requests to the server.\n\n Parameters\n ----------\n dbid : str\n ID of the database to delete\n team : str, optional\n the team in which the database resides (defaults to "admin")\n force: bool\n\n Raises\n ------\n UserWarning\n If the value of dbid is None.\n InterfaceError\n if the client does not connect to a server.\n\n Examples\n -------\n >>> client = WOQLClient("https://127.0.0.1:6363/")\n >>> client.delete_database("<database>", "<team>")\n ' self._check_connection(check_db=False) if (dbid is None): raise UserWarning(f"You are currently using the database: {self.team}/{self.db}. If you want to delete it, please do 'delete_database({self.db},{self.team})' instead.") self.db = dbid if (team is None): warnings.warn(f'Delete Database Warning: You have not specify the team, assuming {self.team}/{self.db}') else: self.team = team payload = {'force': force} _finish_response(requests.delete(self._db_url(), headers={'user-agent': f'terminusdb-client-python/{__version__}'}, auth=self._auth(), params=payload)) self.db = None
-4,838,731,874,326,968,000
Delete a TerminusDB database. If ``team`` is provided, then the team in the config will be updated and the new value will be used in future requests to the server. Parameters ---------- dbid : str ID of the database to delete team : str, optional the team in which the database resides (defaults to "admin") force: bool Raises ------ UserWarning If the value of dbid is None. InterfaceError if the client does not connect to a server. Examples ------- >>> client = WOQLClient("https://127.0.0.1:6363/") >>> client.delete_database("<database>", "<team>")
terminusdb_client/woqlclient/woqlClient.py
delete_database
terminusdb/woql-client-p
python
def delete_database(self, dbid: Optional[str]=None, team: Optional[str]=None, force: bool=False) -> None: 'Delete a TerminusDB database.\n\n If ``team`` is provided, then the team in the config will be updated\n and the new value will be used in future requests to the server.\n\n Parameters\n ----------\n dbid : str\n ID of the database to delete\n team : str, optional\n the team in which the database resides (defaults to "admin")\n force: bool\n\n Raises\n ------\n UserWarning\n If the value of dbid is None.\n InterfaceError\n if the client does not connect to a server.\n\n Examples\n -------\n >>> client = WOQLClient("https://127.0.0.1:6363/")\n >>> client.delete_database("<database>", "<team>")\n ' self._check_connection(check_db=False) if (dbid is None): raise UserWarning(f"You are currently using the database: {self.team}/{self.db}. If you want to delete it, please do 'delete_database({self.db},{self.team})' instead.") self.db = dbid if (team is None): warnings.warn(f'Delete Database Warning: You have not specify the team, assuming {self.team}/{self.db}') else: self.team = team payload = {'force': force} _finish_response(requests.delete(self._db_url(), headers={'user-agent': f'terminusdb-client-python/{__version__}'}, auth=self._auth(), params=payload)) self.db = None