File size: 6,264 Bytes
a2b8dee
 
 
 
 
 
 
800e5b0
a2b8dee
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
800e5b0
a2b8dee
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
import collections
import json
import os

import datasets


_HOMEPAGE = "https://universe.roboflow.com/bortle/astrophotographyobectdetection/dataset/3"
_LICENSE = "CC BY 4.0"
_CITATION = """\

@misc{

                            astrophotographyobectdetection_dataset,

                            title = { AstrophotographyObectDetection Dataset },

                            type = { Open Source Dataset },

                            author = { Bortle },

                            howpublished = { \\url{ https://universe.roboflow.com/bortle/astrophotographyobectdetection } },

                            url = { https://universe.roboflow.com/bortle/astrophotographyobectdetection },

                            journal = { Roboflow Universe },

                            publisher = { Roboflow },

                            year = { 2025 },

                            month = { apr },

                            note = { visited on 2025-04-08 },

                            }

"""
_CATEGORIES = ['comet', 'galaxy', 'moon', 'nebula', 'saturn', 'snr', 'star cluster']
_ANNOTATION_FILENAME = "_annotations.coco.json"


class AP_OBJ_DATASETConfig(datasets.BuilderConfig):
    """Builder Config for ap_obj_dataset"""

    def __init__(self, data_urls, **kwargs):
        """

        BuilderConfig for ap_obj_dataset.



        Args:

          data_urls: `dict`, name to url to download the zip file from.

          **kwargs: keyword arguments forwarded to super.

        """
        super(AP_OBJ_DATASETConfig, self).__init__(version=datasets.Version("1.0.0"), **kwargs)
        self.data_urls = data_urls


class AP_OBJ_DATASET(datasets.GeneratorBasedBuilder):
    """ap_obj_dataset object detection dataset"""

    VERSION = datasets.Version("1.0.0")
    BUILDER_CONFIGS = [
        AP_OBJ_DATASETConfig(
            name="full",
            description="Full version of ap_obj_dataset dataset.",
            data_urls={
                "train": "https://huggingface.co/datasets/bortle/ap_obj_dataset/resolve/main/data/train.zip",
                "validation": "https://huggingface.co/datasets/bortle/ap_obj_dataset/resolve/main/data/valid.zip",
                "test": "https://huggingface.co/datasets/bortle/ap_obj_dataset/resolve/main/data/test.zip",
            },
        ),
        AP_OBJ_DATASETConfig(
            name="mini",
            description="Mini version of ap_obj_dataset dataset.",
            data_urls={
                "train": "https://huggingface.co/datasets/bortle/ap_obj_dataset/resolve/main/data/valid-mini.zip",
                "validation": "https://huggingface.co/datasets/bortle/ap_obj_dataset/resolve/main/data/valid-mini.zip",
                "test": "https://huggingface.co/datasets/bortle/ap_obj_dataset/resolve/main/data/valid-mini.zip",
            },
        )
    ]

    def _info(self):
        features = datasets.Features(
            {
                "image_id": datasets.Value("int64"),
                "image": datasets.Image(),
                "width": datasets.Value("int32"),
                "height": datasets.Value("int32"),
                "objects": datasets.Sequence(
                    {
                        "id": datasets.Value("int64"),
                        "area": datasets.Value("int64"),
                        "bbox": datasets.Sequence(datasets.Value("float32"), length=4),
                        "category": datasets.ClassLabel(names=_CATEGORIES),
                    }
                ),
            }
        )
        return datasets.DatasetInfo(
            features=features,
            homepage=_HOMEPAGE,
            citation=_CITATION,
            license=_LICENSE,
        )

    def _split_generators(self, dl_manager):
        data_files = dl_manager.download_and_extract(self.config.data_urls)
        return [
            datasets.SplitGenerator(
                name=datasets.Split.TRAIN,
                gen_kwargs={
                    "folder_dir": data_files["train"],
                },
            ),
            datasets.SplitGenerator(
                name=datasets.Split.VALIDATION,
                gen_kwargs={
                    "folder_dir": data_files["validation"],
                },
            ),
            datasets.SplitGenerator(
                name=datasets.Split.TEST,
                gen_kwargs={
                    "folder_dir": data_files["test"],
                },
            ),
]

    def _generate_examples(self, folder_dir):
        def process_annot(annot, category_id_to_category):
            return {
                "id": annot["id"],
                "area": annot["area"],
                "bbox": annot["bbox"],
                "category": category_id_to_category[annot["category_id"]],
            }

        image_id_to_image = {}
        idx = 0

        annotation_filepath = os.path.join(folder_dir, _ANNOTATION_FILENAME)
        with open(annotation_filepath, "r") as f:
            annotations = json.load(f)
        category_id_to_category = {category["id"]: category["name"] for category in annotations["categories"]}
        image_id_to_annotations = collections.defaultdict(list)
        for annot in annotations["annotations"]:
            image_id_to_annotations[annot["image_id"]].append(annot)
        filename_to_image = {image["file_name"]: image for image in annotations["images"]}

        for filename in os.listdir(folder_dir):
            filepath = os.path.join(folder_dir, filename)
            if filename in filename_to_image:
                image = filename_to_image[filename]
                objects = [
                    process_annot(annot, category_id_to_category) for annot in image_id_to_annotations[image["id"]]
                ]
                with open(filepath, "rb") as f:
                    image_bytes = f.read()
                yield idx, {
                    "image_id": image["id"],
                    "image": {"path": filepath, "bytes": image_bytes},
                    "width": image["width"],
                    "height": image["height"],
                    "objects": objects,
                }
                idx += 1