ppicazo commited on
Commit
a2b8dee
·
verified ·
1 Parent(s): dfd4a60

dataset uploaded by roboflow2huggingface package

Browse files
README.dataset.txt ADDED
@@ -0,0 +1,6 @@
 
 
 
 
 
 
 
1
+ # AstrophotographyObectDetection > 2025-04-08 12:24am
2
+ https://universe.roboflow.com/bortle/astrophotographyobectdetection
3
+
4
+ Provided by a Roboflow user
5
+ License: CC BY 4.0
6
+
README.md ADDED
@@ -0,0 +1,95 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ task_categories:
3
+ - object-detection
4
+ tags:
5
+ - roboflow
6
+ - roboflow2huggingface
7
+
8
+ ---
9
+
10
+ <div align="center">
11
+ <img width="640" alt="bortle/ap_obj_dataset" src="https://huggingface.co/datasets/bortle/ap_obj_dataset/resolve/main/thumbnail.jpg">
12
+ </div>
13
+
14
+ ### Dataset Labels
15
+
16
+ ```
17
+ ['comet', 'galaxy', 'moon', 'nebula', 'saturn', 'star cluster']
18
+ ```
19
+
20
+
21
+ ### Number of Images
22
+
23
+ ```json
24
+ {'valid': 5, 'test': 3, 'train': 11}
25
+ ```
26
+
27
+
28
+ ### How to Use
29
+
30
+ - Install [datasets](https://pypi.org/project/datasets/):
31
+
32
+ ```bash
33
+ pip install datasets
34
+ ```
35
+
36
+ - Load the dataset:
37
+
38
+ ```python
39
+ from datasets import load_dataset
40
+
41
+ ds = load_dataset("bortle/ap_obj_dataset", name="full")
42
+ example = ds['train'][0]
43
+ ```
44
+
45
+ ### Roboflow Dataset Page
46
+ [https://universe.roboflow.com/bortle/astrophotographyobectdetection/dataset/2](https://universe.roboflow.com/bortle/astrophotographyobectdetection/dataset/2?ref=roboflow2huggingface)
47
+
48
+ ### Citation
49
+
50
+ ```
51
+ @misc{
52
+ astrophotographyobectdetection_dataset,
53
+ title = { AstrophotographyObectDetection Dataset },
54
+ type = { Open Source Dataset },
55
+ author = { Bortle },
56
+ howpublished = { \\url{ https://universe.roboflow.com/bortle/astrophotographyobectdetection } },
57
+ url = { https://universe.roboflow.com/bortle/astrophotographyobectdetection },
58
+ journal = { Roboflow Universe },
59
+ publisher = { Roboflow },
60
+ year = { 2025 },
61
+ month = { apr },
62
+ note = { visited on 2025-04-08 },
63
+ }
64
+ ```
65
+
66
+ ### License
67
+ CC BY 4.0
68
+
69
+ ### Dataset Summary
70
+ This dataset was exported via roboflow.com on April 8, 2025 at 7:28 AM GMT
71
+
72
+ Roboflow is an end-to-end computer vision platform that helps you
73
+ * collaborate with your team on computer vision projects
74
+ * collect & organize images
75
+ * understand and search unstructured image data
76
+ * annotate, and create datasets
77
+ * export, train, and deploy computer vision models
78
+ * use active learning to improve your dataset over time
79
+
80
+ For state of the art Computer Vision training notebooks you can use with this dataset,
81
+ visit https://github.com/roboflow/notebooks
82
+
83
+ To find over 100k other datasets and pre-trained models, visit https://universe.roboflow.com
84
+
85
+ The dataset includes 19 images.
86
+ Objects are annotated in COCO format.
87
+
88
+ The following pre-processing was applied to each image:
89
+ * Auto-orientation of pixel data (with EXIF-orientation stripping)
90
+ * Resize to 640x640 (Stretch)
91
+
92
+ No image augmentation techniques were applied.
93
+
94
+
95
+
README.roboflow.txt ADDED
@@ -0,0 +1,29 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+
2
+ AstrophotographyObectDetection - v2 2025-04-08 12:24am
3
+ ==============================
4
+
5
+ This dataset was exported via roboflow.com on April 8, 2025 at 7:28 AM GMT
6
+
7
+ Roboflow is an end-to-end computer vision platform that helps you
8
+ * collaborate with your team on computer vision projects
9
+ * collect & organize images
10
+ * understand and search unstructured image data
11
+ * annotate, and create datasets
12
+ * export, train, and deploy computer vision models
13
+ * use active learning to improve your dataset over time
14
+
15
+ For state of the art Computer Vision training notebooks you can use with this dataset,
16
+ visit https://github.com/roboflow/notebooks
17
+
18
+ To find over 100k other datasets and pre-trained models, visit https://universe.roboflow.com
19
+
20
+ The dataset includes 19 images.
21
+ Objects are annotated in COCO format.
22
+
23
+ The following pre-processing was applied to each image:
24
+ * Auto-orientation of pixel data (with EXIF-orientation stripping)
25
+ * Resize to 640x640 (Stretch)
26
+
27
+ No image augmentation techniques were applied.
28
+
29
+
ap_obj_dataset.py ADDED
@@ -0,0 +1,153 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import collections
2
+ import json
3
+ import os
4
+
5
+ import datasets
6
+
7
+
8
+ _HOMEPAGE = "https://universe.roboflow.com/bortle/astrophotographyobectdetection/dataset/2"
9
+ _LICENSE = "CC BY 4.0"
10
+ _CITATION = """\
11
+ @misc{
12
+ astrophotographyobectdetection_dataset,
13
+ title = { AstrophotographyObectDetection Dataset },
14
+ type = { Open Source Dataset },
15
+ author = { Bortle },
16
+ howpublished = { \\url{ https://universe.roboflow.com/bortle/astrophotographyobectdetection } },
17
+ url = { https://universe.roboflow.com/bortle/astrophotographyobectdetection },
18
+ journal = { Roboflow Universe },
19
+ publisher = { Roboflow },
20
+ year = { 2025 },
21
+ month = { apr },
22
+ note = { visited on 2025-04-08 },
23
+ }
24
+ """
25
+ _CATEGORIES = ['comet', 'galaxy', 'moon', 'nebula', 'saturn', 'star cluster']
26
+ _ANNOTATION_FILENAME = "_annotations.coco.json"
27
+
28
+
29
+ class AP_OBJ_DATASETConfig(datasets.BuilderConfig):
30
+ """Builder Config for ap_obj_dataset"""
31
+
32
+ def __init__(self, data_urls, **kwargs):
33
+ """
34
+ BuilderConfig for ap_obj_dataset.
35
+
36
+ Args:
37
+ data_urls: `dict`, name to url to download the zip file from.
38
+ **kwargs: keyword arguments forwarded to super.
39
+ """
40
+ super(AP_OBJ_DATASETConfig, self).__init__(version=datasets.Version("1.0.0"), **kwargs)
41
+ self.data_urls = data_urls
42
+
43
+
44
+ class AP_OBJ_DATASET(datasets.GeneratorBasedBuilder):
45
+ """ap_obj_dataset object detection dataset"""
46
+
47
+ VERSION = datasets.Version("1.0.0")
48
+ BUILDER_CONFIGS = [
49
+ AP_OBJ_DATASETConfig(
50
+ name="full",
51
+ description="Full version of ap_obj_dataset dataset.",
52
+ data_urls={
53
+ "train": "https://huggingface.co/datasets/bortle/ap_obj_dataset/resolve/main/data/train.zip",
54
+ "validation": "https://huggingface.co/datasets/bortle/ap_obj_dataset/resolve/main/data/valid.zip",
55
+ "test": "https://huggingface.co/datasets/bortle/ap_obj_dataset/resolve/main/data/test.zip",
56
+ },
57
+ ),
58
+ AP_OBJ_DATASETConfig(
59
+ name="mini",
60
+ description="Mini version of ap_obj_dataset dataset.",
61
+ data_urls={
62
+ "train": "https://huggingface.co/datasets/bortle/ap_obj_dataset/resolve/main/data/valid-mini.zip",
63
+ "validation": "https://huggingface.co/datasets/bortle/ap_obj_dataset/resolve/main/data/valid-mini.zip",
64
+ "test": "https://huggingface.co/datasets/bortle/ap_obj_dataset/resolve/main/data/valid-mini.zip",
65
+ },
66
+ )
67
+ ]
68
+
69
+ def _info(self):
70
+ features = datasets.Features(
71
+ {
72
+ "image_id": datasets.Value("int64"),
73
+ "image": datasets.Image(),
74
+ "width": datasets.Value("int32"),
75
+ "height": datasets.Value("int32"),
76
+ "objects": datasets.Sequence(
77
+ {
78
+ "id": datasets.Value("int64"),
79
+ "area": datasets.Value("int64"),
80
+ "bbox": datasets.Sequence(datasets.Value("float32"), length=4),
81
+ "category": datasets.ClassLabel(names=_CATEGORIES),
82
+ }
83
+ ),
84
+ }
85
+ )
86
+ return datasets.DatasetInfo(
87
+ features=features,
88
+ homepage=_HOMEPAGE,
89
+ citation=_CITATION,
90
+ license=_LICENSE,
91
+ )
92
+
93
+ def _split_generators(self, dl_manager):
94
+ data_files = dl_manager.download_and_extract(self.config.data_urls)
95
+ return [
96
+ datasets.SplitGenerator(
97
+ name=datasets.Split.TRAIN,
98
+ gen_kwargs={
99
+ "folder_dir": data_files["train"],
100
+ },
101
+ ),
102
+ datasets.SplitGenerator(
103
+ name=datasets.Split.VALIDATION,
104
+ gen_kwargs={
105
+ "folder_dir": data_files["validation"],
106
+ },
107
+ ),
108
+ datasets.SplitGenerator(
109
+ name=datasets.Split.TEST,
110
+ gen_kwargs={
111
+ "folder_dir": data_files["test"],
112
+ },
113
+ ),
114
+ ]
115
+
116
+ def _generate_examples(self, folder_dir):
117
+ def process_annot(annot, category_id_to_category):
118
+ return {
119
+ "id": annot["id"],
120
+ "area": annot["area"],
121
+ "bbox": annot["bbox"],
122
+ "category": category_id_to_category[annot["category_id"]],
123
+ }
124
+
125
+ image_id_to_image = {}
126
+ idx = 0
127
+
128
+ annotation_filepath = os.path.join(folder_dir, _ANNOTATION_FILENAME)
129
+ with open(annotation_filepath, "r") as f:
130
+ annotations = json.load(f)
131
+ category_id_to_category = {category["id"]: category["name"] for category in annotations["categories"]}
132
+ image_id_to_annotations = collections.defaultdict(list)
133
+ for annot in annotations["annotations"]:
134
+ image_id_to_annotations[annot["image_id"]].append(annot)
135
+ filename_to_image = {image["file_name"]: image for image in annotations["images"]}
136
+
137
+ for filename in os.listdir(folder_dir):
138
+ filepath = os.path.join(folder_dir, filename)
139
+ if filename in filename_to_image:
140
+ image = filename_to_image[filename]
141
+ objects = [
142
+ process_annot(annot, category_id_to_category) for annot in image_id_to_annotations[image["id"]]
143
+ ]
144
+ with open(filepath, "rb") as f:
145
+ image_bytes = f.read()
146
+ yield idx, {
147
+ "image_id": image["id"],
148
+ "image": {"path": filepath, "bytes": image_bytes},
149
+ "width": image["width"],
150
+ "height": image["height"],
151
+ "objects": objects,
152
+ }
153
+ idx += 1
data/test.zip ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:6c434992f74bd46dacfca67ee7975bcf6c8f90003156c3f1b5238c09f1be5a2a
3
+ size 149094
data/train.zip ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:42771e85ee798d511658e34c7ef71f4b46a2c38a0790e1423bda20fe27b824b7
3
+ size 458835
data/valid-mini.zip ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:f70a984436c43012430280d1a3c9f368c7a33a9c846f427f5afc1a87ed8da90b
3
+ size 162217
data/valid.zip ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:2b603cb9a2e510f5943536a177bb8e2ad9b6f8d82ac00198dc7488ea10cc192e
3
+ size 194781
split_name_to_num_samples.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"valid": 5, "test": 3, "train": 11}
thumbnail.jpg ADDED

Git LFS Details

  • SHA256: b9be96dd2f2c99996750c152f752580c5f93257ba4c6d39b634a223e88451228
  • Pointer size: 131 Bytes
  • Size of remote file: 163 kB