code
string
signature
string
docstring
string
loss_without_docstring
float64
loss_with_docstring
float64
factor
float64
netin, netinfo = process_input(netin, ['C', 'G', 'TO']) # Set diagonal to 0 netin = set_diagonal(netin, 0) if axis == 'graphlet' and netinfo['nettype'][-1] == 'u': triu = np.triu_indices(netinfo['netshape'][0], k=1) netin = netin[triu[0], triu[1], :] netin = netin.transpose() if sign == 'both': net_sorted = np.argsort(np.abs(netin), axis=-1) elif sign == 'pos': net_sorted = np.argsort(netin, axis=-1) elif sign == 'neg': net_sorted = np.argsort(-1*netin, axis=-1) else: raise ValueError('Unknown value for parameter: sign') # Predefine netout = np.zeros(netinfo['netshape']) if axis == 'time': # These for loops can probabaly be removed for speed for i in range(netinfo['netshape'][0]): for j in range(netinfo['netshape'][1]): netout[i, j, net_sorted[i, j, - int(round(net_sorted.shape[-1])*level):]] = 1 elif axis == 'graphlet': netout_tmp = np.zeros(netin.shape) for i in range(netout_tmp.shape[0]): netout_tmp[i, net_sorted[i, - int(round(net_sorted.shape[-1])*level):]] = 1 netout_tmp = netout_tmp.transpose() netout[triu[0], triu[1], :] = netout_tmp netout[triu[1], triu[0], :] = netout_tmp netout = set_diagonal(netout, 0) # If input is contact, output contact if netinfo['inputtype'] == 'C': netinfo['nettype'] = 'b' + netinfo['nettype'][1] netout = graphlet2contact(netout, netinfo) netout.pop('inputtype') netout.pop('values') netout['diagonal'] = 0 return netout
def binarize_percent(netin, level, sign='pos', axis='time')
Binarizes a network proprtionally. When axis='time' (only one available at the moment) then the top values for each edge time series are considered. Parameters ---------- netin : array or dict network (graphlet or contact representation), level : float Percent to keep (expressed as decimal, e.g. 0.1 = top 10%) sign : str, default='pos' States the sign of the thresholding. Can be 'pos', 'neg' or 'both'. If "neg", only negative values are thresholded and vice versa. axis : str, default='time' Specify which dimension thresholding is applied against. Can be 'time' (takes top % for each edge time-series) or 'graphlet' (takes top % for each graphlet) Returns ------- netout : array or dict (depending on input) Binarized network
2.999741
2.840442
1.056082
netin, netinfo = process_input(netin, ['C', 'G', 'TO']) trajectory = rdp(netin, level) contacts = [] # Use the trajectory points as threshold for n in range(trajectory['index'].shape[0]): if sign == 'pos': sel = trajectory['trajectory_points'][n][trajectory['trajectory'] [n][trajectory['trajectory_points'][n]] > 0] elif sign == 'neg': sel = trajectory['trajectory_points'][n][trajectory['trajectory'] [n][trajectory['trajectory_points'][n]] < 0] else: sel = trajectory['trajectory_points'] i_ind = np.repeat(trajectory['index'][n, 0], len(sel)) j_ind = np.repeat(trajectory['index'][n, 1], len(sel)) contacts.append(np.array([i_ind, j_ind, sel]).transpose()) contacts = np.concatenate(contacts) # Create output dictionary netout = dict(netinfo) netout['contacts'] = contacts netout['nettype'] = 'b' + netout['nettype'][1] netout['dimord'] = 'node,node,time' netout['timetype'] = 'discrete' netout['diagonal'] = 0 # If input is graphlet, output graphlet if netinfo['inputtype'] == 'G': netout = contact2graphlet(netout) else: netout.pop('inputtype') return netout
def binarize_rdp(netin, level, sign='pos', axis='time')
Binarizes a network based on RDP compression. Parameters ---------- netin : array or dict Network (graphlet or contact representation), level : float Delta parameter which is the tolorated error in RDP compression. sign : str, default='pos' States the sign of the thresholding. Can be 'pos', 'neg' or 'both'. If "neg", only negative values are thresholded and vice versa. Returns ------- netout : array or dict (dependning on input) Binarized network
3.885113
3.87973
1.001388
if threshold_type == 'percent': netout = binarize_percent(netin, threshold_level, sign, axis) elif threshold_type == 'magnitude': netout = binarize_magnitude(netin, threshold_level, sign) elif threshold_type == 'rdp': netout = binarize_rdp(netin, threshold_level, sign, axis) else: raise ValueError('Unknown value to parameter: threshold_type.') return netout
def binarize(netin, threshold_type, threshold_level, sign='pos', axis='time')
Binarizes a network, returning the network. General wrapper function for different binarization functions. Parameters ---------- netin : array or dict Network (graphlet or contact representation), threshold_type : str What type of thresholds to make binarization. Options: 'rdp', 'percent', 'magnitude'. threshold_level : str Paramter dependent on threshold type. If 'rdp', it is the delta (i.e. error allowed in compression). If 'percent', it is the percentage to keep (e.g. 0.1, means keep 10% of signal). If 'magnitude', it is the amplitude of signal to keep. sign : str, default='pos' States the sign of the thresholding. Can be 'pos', 'neg' or 'both'. If "neg", only negative values are thresholded and vice versa. axis : str Threshold over specfied axis. Valid for percent and rdp. Can be time or graphlet. Returns ------- netout : array or dict (depending on input) Binarized network
2.25078
2.055175
1.095177
inputtype = checkInput(netIn) # Convert TN to G representation if inputtype == 'TN' and 'TN' in allowedformats and outputformat != 'TN': G = netIn.df_to_array() netInfo = {'nettype': netIn.nettype, 'netshape': netIn.netshape} elif inputtype == 'TN' and 'TN' in allowedformats and outputformat == 'TN': TN = netIn elif inputtype == 'C' and 'C' in allowedformats and outputformat == 'G': G = contact2graphlet(netIn) netInfo = dict(netIn) netInfo.pop('contacts') elif inputtype == 'C' and 'C' in allowedformats and outputformat == 'TN': TN = TemporalNetwork(from_dict=netIn) elif inputtype == 'G' and 'G' in allowedformats and outputformat == 'TN': TN = TemporalNetwork(from_array=netIn) # Get network type if not set yet elif inputtype == 'G' and 'G' in allowedformats: netInfo = {} netInfo['netshape'] = netIn.shape netInfo['nettype'] = gen_nettype(netIn) G = netIn elif inputtype == 'C' and outputformat == 'C': pass else: raise ValueError('Input invalid.') if outputformat == 'TN' and not isinstance(TN.network, str): TN.network['i'] = TN.network['i'].astype(int) TN.network['j'] = TN.network['j'].astype(int) TN.network['t'] = TN.network['t'].astype(int) if outputformat == 'C' or outputformat == 'G': netInfo['inputtype'] = inputtype if inputtype != 'C' and outputformat == 'C': C = graphlet2contact(G, netInfo) if outputformat == 'G': return G, netInfo elif outputformat == 'C': return C elif outputformat == 'TN': return TN
def process_input(netIn, allowedformats, outputformat='G')
Takes input network and checks what the input is. Parameters ---------- netIn : array, dict, or TemporalNetwork Network (graphlet, contact or object) allowedformats : str Which format of network objects that are allowed. Options: 'C', 'TN', 'G'. outputformat: str, default=G Target output format. Options: 'C' or 'G'. Returns ------- C : dict OR G : array Graphlet representation. netInfo : dict Metainformation about network. OR tnet : object object of TemporalNetwork class
2.646709
2.436064
1.086469
communityID = np.array(communityID) cid_shape = communityID.shape if len(cid_shape) > 1: communityID = communityID.flatten() new_communityID = np.zeros(len(communityID)) for i, n in enumerate(np.unique(communityID)): new_communityID[communityID == n] = i if len(cid_shape) > 1: new_communityID = new_communityID.reshape(cid_shape) return new_communityID
def clean_community_indexes(communityID)
Takes input of community assignments. Returns reindexed community assignment by using smallest numbers possible. Parameters ---------- communityID : array-like list or array of integers. Output from community detection algorithems. Returns ------- new_communityID : array cleaned list going from 0 to len(np.unique(communityID))-1 Note ----- Behaviour of funciton entails that the lowest community integer in communityID will recieve the lowest integer in new_communityID.
2.007231
2.093854
0.95863
d = collections.OrderedDict() for c in C['contacts']: ct = tuple(c) if ct in d: d[ct] += 1 else: d[ct] = 1 new_contacts = [] new_values = [] for (key, value) in d.items(): new_values.append(value) new_contacts.append(key) C_out = C C_out['contacts'] = new_contacts C_out['values'] = new_values return C_out
def multiple_contacts_get_values(C)
Given an contact representation with repeated contacts, this function removes duplicates and creates a value Parameters ---------- C : dict contact representation with multiple repeated contacts. Returns ------- :C_out: dict Contact representation with duplicate contacts removed and the number of duplicates is now in the 'values' field.
2.388001
2.190151
1.090336
if len(df) > 0: idx = np.array(list(map(list, df.values))) G = np.zeros([netshape[0], netshape[0], netshape[1]]) if idx.shape[1] == 3: if nettype[-1] == 'u': idx = np.vstack([idx, idx[:, [1, 0, 2]]]) idx = idx.astype(int) G[idx[:, 0], idx[:, 1], idx[:, 2]] = 1 elif idx.shape[1] == 4: if nettype[-1] == 'u': idx = np.vstack([idx, idx[:, [1, 0, 2, 3]]]) weights = idx[:, 3] idx = np.array(idx[:, :3], dtype=int) G[idx[:, 0], idx[:, 1], idx[:, 2]] = weights else: G = np.zeros([netshape[0], netshape[0], netshape[1]]) return G
def df_to_array(df, netshape, nettype)
Returns a numpy array (snapshot representation) from thedataframe contact list Parameters: df : pandas df pandas df with columns, i,j,t. netshape : tuple network shape, format: (node, time) nettype : str 'wu', 'wd', 'bu', 'bd' Returns: -------- G : array (node,node,time) array for the network
1.946345
1.890199
1.029704
if distance_func_name == 'default' and netinfo['nettype'][0] == 'b': print('Default distance funciton specified. As network is binary, using Hamming') distance_func_name = 'hamming' elif distance_func_name == 'default' and netinfo['nettype'][0] == 'w': distance_func_name = 'euclidean' print( 'Default distance funciton specified. ' 'As network is weighted, using Euclidean') return distance_func_name
def check_distance_funciton_input(distance_func_name, netinfo)
Funciton checks distance_func_name, if it is specified as 'default'. Then given the type of the network selects a default distance function. Parameters ---------- distance_func_name : str distance function name. netinfo : dict the output of utils.process_input Returns ------- distance_func_name : str distance function name.
3.215411
3.008744
1.068689
path = tenetopath[0] + '/data/parcellation/' + parcellation_name + '.csv' parc = np.loadtxt(path, skiprows=1, delimiter=',', usecols=[1, 2, 3]) return parc
def load_parcellation_coords(parcellation_name)
Loads coordinates of included parcellations. Parameters ---------- parcellation_name : str options: 'gordon2014_333', 'power2012_264', 'shen2013_278'. Returns ------- parc : array parcellation cordinates
4.322772
5.015762
0.861837
if isinstance(parcellation, str): parcin = '' if '+' in parcellation: parcin = parcellation parcellation = parcellation.split('+')[0] if '+OH' in parcin: subcortical = True else: subcortical = None if '+SUIT' in parcin: cerebellar = True else: cerebellar = None if not parc_type or not parc_params: path = tenetopath[0] + '/data/parcellation_defaults/defaults.json' with open(path) as data_file: defaults = json.load(data_file) if not parc_type: parc_type = defaults[parcellation]['type'] print('Using default parcellation type') if not parc_params: parc_params = defaults[parcellation]['params'] print('Using default parameters') if parc_type == 'sphere': parcellation = load_parcellation_coords(parcellation) seed = NiftiSpheresMasker(np.array(parcellation), **parc_params) data = seed.fit_transform(data_path) elif parc_type == 'region': path = tenetopath[0] + '/data/parcellation/' + parcellation + '.nii.gz' region = NiftiLabelsMasker(path, **parc_params) data = region.fit_transform(data_path) else: raise ValueError('Unknown parc_type specified') if subcortical: subatlas = fetch_atlas_harvard_oxford('sub-maxprob-thr0-2mm')['maps'] region = NiftiLabelsMasker(subatlas, **parc_params) data_sub = region.fit_transform(data_path) data = np.hstack([data, data_sub]) if cerebellar: path = tenetopath[0] + '/data/parcellation/Cerebellum-SUIT_space-MNI152NLin2009cAsym.nii.gz' region = NiftiLabelsMasker(path, **parc_params) data_cerebellar = region.fit_transform(data_path) data = np.hstack([data, data_cerebellar]) return data
def make_parcellation(data_path, parcellation, parc_type=None, parc_params=None)
Performs a parcellation which reduces voxel space to regions of interest (brain data). Parameters ---------- data_path : str Path to .nii image. parcellation : str Specify which parcellation that you would like to use. For MNI: 'gordon2014_333', 'power2012_264', For TAL: 'shen2013_278'. It is possible to add the OH subcotical atlas on top of a cortical atlas (e.g. gordon) by adding: '+OH' (for oxford harvard subcortical atlas) and '+SUIT' for SUIT cerebellar atlas. e.g.: gordon2014_333+OH+SUIT' parc_type : str Can be 'sphere' or 'region'. If nothing is specified, the default for that parcellation will be used. parc_params : dict **kwargs for nilearn functions Returns ------- data : array Data after the parcellation. NOTE ---- These functions make use of nilearn. Please cite nilearn if used in a publicaiton.
2.531412
2.223121
1.138675
steps = (1.0/(N-1)) * (stop - start) if np.isscalar(steps): return steps*np.arange(N) + start else: return steps[:, None]*np.arange(N) + start[:, None]
def create_traj_ranges(start, stop, N)
Fills in the trajectory range. # Adapted from https://stackoverflow.com/a/40624614
3.039685
2.983643
1.018783
if not calc: calc = '' else: calc = '_' + calc if not community: community = '' else: community = 'community' if 'community' in calc and 'community' in community: community = '' if calc == 'community_avg' or calc == 'community_pairs': community = '' dimord_dict = { 'temporal_closeness_centrality': 'node', 'temporal_degree_centrality': 'node', 'temporal_degree_centralit_avg': 'node', 'temporal_degree_centrality_time': 'node,time', 'temporal_efficiency': 'global', 'temporal_efficiency_global': 'global', 'temporal_efficiency_node': 'node', 'temporal_efficiency_to': 'node', 'sid_global': 'global,time', 'community_pairs': 'community,community,time', 'community_avg': 'community,time', 'sid': 'community,community,time', 'reachability_latency_global': 'global', 'reachability_latency': 'global', 'reachability_latency_node': 'node', 'fluctuability': 'node', 'fluctuability_global': 'global', 'bursty_coeff': 'edge,edge', 'bursty_coeff_edge': 'edge,edge', 'bursty_coeff_node': 'node', 'bursty_coeff_meanEdgePerNode': 'node', 'volatility_global': 'time', } if measure + calc + community in dimord_dict: return dimord_dict[measure + calc + community] else: print('WARNINGL: get_dimord() returned unknown dimension labels') return 'unknown'
def get_dimord(measure, calc=None, community=None)
Get the dimension order of a network measure. Parameters ---------- measure : str Name of funciton in teneto.networkmeasures. calc : str, default=None Calc parameter for the function community : bool, default=None If not null, then community property is assumed to be believed. Returns ------- dimord : str Dimension order. So "node,node,time" would define the dimensions of the network measure.
3.66602
3.49872
1.047818
newnetwork = tnet.network.copy() newnetwork['i'] = (tnet.network['i']) + \ ((tnet.netshape[0]) * (tnet.network['t'])) newnetwork['j'] = (tnet.network['j']) + \ ((tnet.netshape[0]) * (tnet.network['t'])) if 'weight' not in newnetwork.columns: newnetwork['weight'] = 1 newnetwork.drop('t', axis=1, inplace=True) timepointconns = pd.DataFrame() timepointconns['i'] = np.arange(0, (tnet.N*tnet.T)-tnet.N) timepointconns['j'] = np.arange(tnet.N, (tnet.N*tnet.T)) timepointconns['weight'] = intersliceweight supranet = pd.concat([newnetwork, timepointconns]).reset_index(drop=True) return supranet
def create_supraadjacency_matrix(tnet, intersliceweight=1)
Returns a supraadjacency matrix from a temporal network structure Parameters -------- tnet : TemporalNetwork Temporal network (any network type) intersliceweight : int Weight that links the same node from adjacent time-points Returns -------- supranet : dataframe Supraadjacency matrix
2.527046
2.362498
1.06965
if t is not None: df = get_network_when(df, t=t) if 'weight' in df.columns: nxobj = nx.from_pandas_edgelist( df, source='i', target='j', edge_attr='weight') else: nxobj = nx.from_pandas_edgelist(df, source='i', target='j') return nxobj
def tnet_to_nx(df, t=None)
Creates undirected networkx object
2.394759
2.319137
1.032608
r tnet = process_input(tnet, ['C', 'G', 'TN'], 'TN') # Divide resolution by the number of timepoints resolution = resolution / tnet.T supranet = create_supraadjacency_matrix( tnet, intersliceweight=intersliceweight) if negativeedge == 'ignore': supranet = supranet[supranet['weight'] > 0] nxsupra = tnet_to_nx(supranet) np.random.seed(randomseed) while True: comtmp = [] with ProcessPoolExecutor(max_workers=njobs) as executor: job = {executor.submit(_run_louvain, nxsupra, resolution, tnet.N, tnet.T) for n in range(n_iter)} for j in as_completed(job): comtmp.append(j.result()) comtmp = np.stack(comtmp) comtmp = comtmp.transpose() comtmp = np.reshape(comtmp, [tnet.N, tnet.T, n_iter], order='F') if n_iter == 1: break nxsupra_old = nxsupra nxsupra = make_consensus_matrix(comtmp, consensus_threshold) # If there was no consensus, there are no communities possible, return if nxsupra is None: break if (nx.to_numpy_array(nxsupra, nodelist=np.arange(tnet.N*tnet.T)) == nx.to_numpy_array(nxsupra_old, nodelist=np.arange(tnet.N*tnet.T))).all(): break communities = comtmp[:, :, 0] if temporal_consensus == True: communities = make_temporal_consensus(communities) return communities
def temporal_louvain(tnet, resolution=1, intersliceweight=1, n_iter=100, negativeedge='ignore', randomseed=None, consensus_threshold=0.5, temporal_consensus=True, njobs=1)
r""" Louvain clustering for a temporal network. Parameters ----------- tnet : array, dict, TemporalNetwork Input network resolution : int resolution of Louvain clustering ($\gamma$) intersliceweight : int interslice weight of multilayer clustering ($\omega$). Must be positive. n_iter : int Number of iterations to run louvain for randomseed : int Set for reproduceability negativeedge : str If there are negative edges, what should be done with them. Options: 'ignore' (i.e. set to 0). More options to be added. consensus : float (0.5 default) When creating consensus matrix to average over number of iterations, keep values when the consensus is this amount. Returns ------- communities : array (node,time) node,time array of community assignment Notes ------- References ----------
3.314098
3.313821
1.000083
r com_membership = np.array(com_membership) D = [] for i in range(com_membership.shape[0]): for j in range(i+1, com_membership.shape[0]): con = np.sum((com_membership[i, :] - com_membership[j, :]) == 0, axis=-1) / com_membership.shape[-1] twhere = np.where(con > th)[0] D += list(zip(*[np.repeat(i, len(twhere)).tolist(), np.repeat(j, len(twhere)).tolist(), twhere.tolist(), con[twhere].tolist()])) if len(D) > 0: D = pd.DataFrame(D, columns=['i', 'j', 't', 'weight']) D = TemporalNetwork(from_df=D) D = create_supraadjacency_matrix(D, intersliceweight=0) Dnx = tnet_to_nx(D) else: Dnx = None return Dnx
def make_consensus_matrix(com_membership, th=0.5)
r""" Makes the consensus matrix . Parameters ---------- com_membership : array Shape should be node, time, iteration. th : float threshold to cancel noisey edges Returns ------- D : array consensus matrix
3.630805
3.608872
1.006077
r com_membership = np.array(com_membership) # make first indicies be between 0 and 1. com_membership[:, 0] = clean_community_indexes(com_membership[:, 0]) # loop over all timepoints, get jacccard distance in greedy manner for largest community to time period before for t in range(1, com_membership.shape[1]): ct, counts_t = np.unique(com_membership[:, t], return_counts=True) ct = ct[np.argsort(counts_t)[::-1]] c1back = np.unique(com_membership[:, t-1]) new_index = np.zeros(com_membership.shape[0]) for n in ct: if len(c1back) > 0: d = np.ones(int(c1back.max())+1) for m in c1back: v1 = np.zeros(com_membership.shape[0]) v2 = np.zeros(com_membership.shape[0]) v1[com_membership[:, t] == n] = 1 v2[com_membership[:, t-1] == m] = 1 d[int(m)] = jaccard(v1, v2) bestval = np.argmin(d) else: bestval = new_index.max() + 1 new_index[com_membership[:, t] == n] = bestval c1back = np.array(np.delete(c1back, np.where(c1back == bestval))) com_membership[:, t] = new_index return com_membership
def make_temporal_consensus(com_membership)
r""" Matches community labels accross time-points Jaccard matching is in a greedy fashiong. Matching the largest community at t with the community at t-1. Parameters ---------- com_membership : array Shape should be node, time. Returns ------- D : array temporal consensus matrix using Jaccard distance
3.279249
3.015183
1.087579
# Preallocate flex = np.zeros(communities.shape[0]) # Go from the second time point to last, compare with time-point before for t in range(1, communities.shape[1]): flex[communities[:, t] != communities[:, t-1]] += 1 # Normalize flex = flex / (communities.shape[1] - 1) return flex
def flexibility(communities)
Amount a node changes community Parameters ---------- communities : array Community array of shape (node,time) Returns -------- flex : array Size with the flexibility of each node. Notes ----- Flexbility calculates the number of times a node switches its community label during a time series. It is normalized by the number of possible changes which could occur. It is important to make sure that the different community labels accross time points are not artbirary. References ----------- Bassett, DS, Wymbs N, Porter MA, Mucha P, Carlson JM, Grafton ST. Dynamic reconfiguration of human brain networks during learning. PNAS, 2011, 108(18):7641-6.
4.733977
3.730659
1.268938
if '/' in fname: split = fname.split('/') dirnames = '/'.join(split[:-1]) + '/' fname = split[-1] else: dirnames = '' tags = [tag for tag in fname.split('_') if '-' in tag] fname_head = '_'.join(tags) fileformat = '.' + '.'.join(fname.split('.')[1:]) return dirnames + fname_head, fileformat
def drop_bids_suffix(fname)
Given a filename sub-01_run-01_preproc.nii.gz, it will return ['sub-01_run-01', '.nii.gz'] Parameters ---------- fname : str BIDS filename with suffice. Directories should not be included. Returns ------- fname_head : str BIDS filename with fileformat : str The file format (text after suffix) Note ------ This assumes that there are no periods in the filename
3.282015
3.044714
1.077939
if index_col: index_col = 0 else: index_col = None if header: header = 0 else: header = None df = pd.read_csv(fname, header=header, index_col=index_col, sep='\t') if return_meta: json_fname = fname.replace('tsv', 'json') meta = pd.read_json(json_fname) return df, meta else: return df
def load_tabular_file(fname, return_meta=False, header=True, index_col=True)
Given a file name loads as a pandas data frame Parameters ---------- fname : str file name and path. Must be tsv. return_meta : header : bool (default True) if there is a header in the tsv file, true will use first row in file. index_col : bool (default None) if there is an index column in the csv or tsv file, true will use first row in file. Returns ------- df : pandas The loaded file info : pandas, if return_meta=True Meta infomration in json file (if specified)
1.917804
1.945934
0.985544
if allowedfileformats == 'default': allowedfileformats = ['.tsv', '.nii.gz'] for f in allowedfileformats: fname = fname.split(f)[0] fname += '.json' if os.path.exists(fname): with open(fname) as fs: sidecar = json.load(fs) else: sidecar = {} if 'filestatus' not in sidecar: sidecar['filestatus'] = {} sidecar['filestatus']['reject'] = False sidecar['filestatus']['reason'] = [] return sidecar
def get_sidecar(fname, allowedfileformats='default')
Loads sidecar or creates one
2.457534
2.412616
1.018618
relfun = [] threshold = [] for ec in exclusion_criteria: if ec[0:2] == '>=': relfun.append(np.greater_equal) threshold.append(float(ec[2:])) elif ec[0:2] == '<=': relfun.append(np.less_equal) threshold.append(float(ec[2:])) elif ec[0] == '>': relfun.append(np.greater) threshold.append(float(ec[1:])) elif ec[0] == '<': relfun.append(np.less) threshold.append(float(ec[1:])) else: raise ValueError('exclusion crieria must being with >,<,>= or <=') return relfun, threshold
def process_exclusion_criteria(exclusion_criteria)
Parses an exclusion critera string to get the function and threshold. Parameters ---------- exclusion_criteria : list list of strings where each string is of the format [relation][threshold]. E.g. \'<0.5\' or \'>=1\' Returns ------- relfun : list list of numpy functions for the exclusion criteria threshold : list list of floats for threshold for each relfun
2.13075
1.827252
1.166095
if tnet is not None and paths is not None: raise ValueError('Only network or path input allowed.') if tnet is None and paths is None: raise ValueError('No input.') # if shortest paths are not calculated, calculate them if tnet is not None: paths = shortest_temporal_path(tnet) pathmat = np.zeros([paths[['from', 'to']].max().max( )+1, paths[['from', 'to']].max().max()+1, paths[['t_start']].max().max()+1]) * np.nan pathmat[paths['from'].values, paths['to'].values, paths['t_start'].values] = paths['temporal-distance'] netshape = pathmat.shape edges_to_reach = netshape[0] - np.round(netshape[0] * rratio) reach_lat = np.zeros([netshape[1], netshape[2]]) * np.nan for t_ind in range(0, netshape[2]): paths_sort = -np.sort(-pathmat[:, :, t_ind], axis=1) reach_lat[:, t_ind] = paths_sort[:, edges_to_reach] if calc == 'global': reach_lat = np.nansum(reach_lat) reach_lat = reach_lat / ((netshape[0]) * netshape[2]) elif calc == 'nodes': reach_lat = np.nansum(reach_lat, axis=1) reach_lat = reach_lat / (netshape[2]) return reach_lat
def reachability_latency(tnet=None, paths=None, rratio=1, calc='global')
Reachability latency. This is the r-th longest temporal path. Parameters --------- data : array or dict Can either be a network (graphlet or contact), binary unidrected only. Alternative can be a paths dictionary (output of teneto.networkmeasure.shortest_temporal_path) rratio: float (default: 1) reachability ratio that the latency is calculated in relation to. Value must be over 0 and up to 1. 1 (default) - all nodes must be reached. Other values (e.g. .5 imply that 50% of nodes are reached) This is rounded to the nearest node inter. E.g. if there are 6 nodes [1,2,3,4,5,6], it will be node 4 (due to round upwards) calc : str what to calculate. Alternatives: 'global' entire network; 'nodes': for each node. Returns -------- reach_lat : array Reachability latency Notes ------ Reachability latency calculates the time it takes for the paths.
3.028404
2.779521
1.089542
# make sure the static and temporal communities have the same number of nodes if staticcommunities.shape[0] != temporalcommunities.shape[0]: raise ValueError( 'Temporal and static communities have different dimensions') alleg = allegiance(temporalcommunities) Rcoeff = np.zeros(len(staticcommunities)) for i, statcom in enumerate(staticcommunities): Rcoeff[i] = np.mean(alleg[i, staticcommunities == statcom]) return Rcoeff
def recruitment(temporalcommunities, staticcommunities)
Calculates recruitment coefficient for each node. Recruitment coefficient is the average probability of nodes from the same static communities being in the same temporal communities at other time-points or during different tasks. Parameters: ------------ temporalcommunities : array temporal communities vector (node,time) staticcommunities : array Static communities vector for each node Returns: ------- Rcoeff : array recruitment coefficient for each node References: ----------- Danielle S. Bassett, Muzhi Yang, Nicholas F. Wymbs, Scott T. Grafton. Learning-Induced Autonomy of Sensorimotor Systems. Nat Neurosci. 2015 May;18(5):744-51. Marcelo Mattar, Michael W. Cole, Sharon Thompson-Schill, Danielle S. Bassett. A Functional Cartography of Cognitive Systems. PLoS Comput Biol. 2015 Dec 2;11(12):e1004533.
3.982296
3.488743
1.14147
# make sure the static and temporal communities have the same number of nodes if staticcommunities.shape[0] != temporalcommunities.shape[0]: raise ValueError( 'Temporal and static communities have different dimensions') alleg = allegiance(temporalcommunities) Icoeff = np.zeros(len(staticcommunities)) # calc integration for each node for i, statcom in enumerate(len(staticcommunities)): Icoeff[i] = np.mean(alleg[i, staticcommunities != statcom]) return Icoeff
def integration(temporalcommunities, staticcommunities)
Calculates the integration coefficient for each node. Measures the average probability that a node is in the same community as nodes from other systems. Parameters: ------------ temporalcommunities : array temporal communities vector (node,time) staticcommunities : array Static communities vector for each node Returns: ------- Icoeff : array integration coefficient for each node References: ---------- Danielle S. Bassett, Muzhi Yang, Nicholas F. Wymbs, Scott T. Grafton. Learning-Induced Autonomy of Sensorimotor Systems. Nat Neurosci. 2015 May;18(5):744-51. Marcelo Mattar, Michael W. Cole, Sharon Thompson-Schill, Danielle S. Bassett. A Functional Cartography of Cognitive Systems. PLoS Comput Biol. 2015 Dec 2;11(12):e1004533.
4.464949
3.614507
1.235286
# Process input tnet = process_input(tnet, ['C', 'G', 'TN'], 'TN') if tnet.nettype[0] == 'w': print('WARNING: assuming connections to be binary when computing intercontacttimes') # Each time series is padded with a 0 at the start and end. Then t[0:-1]-[t:]. # Then discard the noninformative ones (done automatically) # Finally return back as np array contacts = np.array([[None] * tnet.netshape[0]] * tnet.netshape[0]) if tnet.nettype[1] == 'u': for i in range(0, tnet.netshape[0]): for j in range(i + 1, tnet.netshape[0]): edge_on = tnet.get_network_when(i=i, j=j)['t'].values if len(edge_on) > 0: edge_on_diff = edge_on[1:] - edge_on[:-1] contacts[i, j] = np.array(edge_on_diff) contacts[j, i] = np.array(edge_on_diff) else: contacts[i, j] = [] contacts[j, i] = [] elif tnet.nettype[1] == 'd': for i in range(0, tnet.netshape[0]): for j in range(0, tnet.netshape[0]): edge_on = tnet.get_network_when(i=i, j=j)['t'].values if len(edge_on) > 0: edge_on_diff = edge_on[1:] - edge_on[:-1] contacts[i, j] = np.array(edge_on_diff) else: contacts[i, j] = [] out = {} out['intercontacttimes'] = contacts out['nettype'] = tnet.nettype return out
def intercontacttimes(tnet)
Calculates the intercontacttimes of each edge in a network. Parameters ----------- tnet : array, dict Temporal network (craphlet or contact). Nettype: 'bu', 'bd' Returns --------- contacts : dict Intercontact times as numpy array in dictionary. contacts['intercontacttimes'] Notes ------ The inter-contact times is calculated by the time between consequecutive "active" edges (where active means that the value is 1 in a binary network). Examples -------- This example goes through how inter-contact times are calculated. >>> import teneto >>> import numpy as np Make a network with 2 nodes and 4 time-points with 4 edges spaced out. >>> G = np.zeros([2,2,10]) >>> edge_on = [1,3,5,9] >>> G[0,1,edge_on] = 1 The network visualised below make it clear what the inter-contact times are between the two nodes: .. plot:: import teneto import numpy as np import matplotlib.pyplot as plt G = np.zeros([2,2,10]) edge_on = [1,3,5,9] G[0,1,edge_on] = 1 fig, ax = plt.subplots(1, figsize=(4,2)) teneto.plot.slice_plot(G, ax=ax, cmap='Pastel2') ax.set_ylim(-0.25, 1.25) plt.tight_layout() fig.show() Calculating the inter-contact times of these edges becomes: 2,2,4 between nodes 0 and 1. >>> ict = teneto.networkmeasures.intercontacttimes(G) The function returns a dictionary with the icts in the key: intercontacttimes. This is of the size NxN. So the icts between nodes 0 and 1 are found by: >>> ict['intercontacttimes'][0,1] array([2, 2, 4])
3.052711
2.980393
1.024264
# Create report directory if not os.path.exists(sdir): os.makedirs(sdir) # Add a slash to file directory if not included to avoid DirNameFleName # instead of DirName/FileName being creaated if sdir[-1] != '/': sdir += '/' report_html = '<html><body>' if 'method' in report.keys(): report_html += "<h1>Method: " + report['method'] + "</h1><p>" for i in report[report['method']]: if i == 'taper_window': fig, ax = plt.subplots(1) ax.plot(report[report['method']]['taper_window'], report[report['method']]['taper']) ax.set_xlabel('Window (time). 0 in middle of window.') ax.set_title( 'Taper from ' + report[report['method']]['distribution'] + ' distribution (PDF).') fig.savefig(sdir + 'taper.png') report_html += "<img src='./taper.png' width=500>" + "<p>" else: report_html += "- <b>" + i + "</b>: " + \ str(report[report['method']][i]) + "<br>" if 'postprocess' in report.keys(): report_html += "<p><h2>Postprocessing:</h2><p>" report_html += "<b>Pipeline: </b>" for i in report['postprocess']: report_html += " " + i + "," for i in report['postprocess']: report_html += "<p><h3>" + i + "</h3><p>" for j in report[i]: if j == 'lambda': report_html += "- <b>" + j + "</b>: " + "<br>" lambda_val = np.array(report['boxcox']['lambda']) fig, ax = plt.subplots(1) ax.hist(lambda_val[:, -1]) ax.set_xlabel('lambda') ax.set_ylabel('frequency') ax.set_title('Histogram of lambda parameter') fig.savefig(sdir + 'boxcox_lambda.png') report_html += "<img src='./boxcox_lambda.png' width=500>" + "<p>" report_html += "Data located in " + sdir + "boxcox_lambda.csv <p>" np.savetxt(sdir + "boxcox_lambda.csv", lambda_val, delimiter=",") else: report_html += "- <b>" + j + "</b>: " + \ str(report[i][j]) + "<br>" report_html += '</body></html>' with open(sdir + report_name, 'w') as file: file.write(report_html) file.close()
def gen_report(report, sdir='./', report_name='report.html')
Generates report of derivation and postprocess steps in teneto.derive
2.728611
2.705617
1.008499
if init == 1: self.history = [] self.history.append([fname, fargs])
def add_history(self, fname, fargs, init=0)
Adds a processing step to TenetoBIDS.history.
3.481344
3.045114
1.143256
mods = [(m.__name__, m.__version__) for m in sys.modules.values() if m if hasattr(m, '__version__')] with open(dirname + '/requirements.txt', 'w') as f: for m in mods: m = list(m) if not isinstance(m[1], str): m[1] = m[1].decode("utf-8") f.writelines(m[0] + ' == ' + m[1] + '\n') with open(dirname + '/TenetoBIDShistory.py', 'w') as f: f.writelines('import teneto\n') for func, args in self.history: f.writelines(func + '(**' + str(args) + ')\n') with open(dirname + '/tenetoinfo.json', 'w') as f: json.dump(self.tenetoinfo, f)
def export_history(self, dirname)
Exports TenetoBIDShistory.py, tenetoinfo.json, requirements.txt (modules currently imported) to dirname Parameters --------- dirname : str directory to export entire TenetoBIDS history.
3.08671
2.335047
1.321905
if not njobs: njobs = self.njobs self.add_history(inspect.stack()[0][3], locals(), 1) files = self.get_selected_files(quiet=1) confound_files = self.get_selected_files(quiet=1, pipeline='confound') if confound_files: confounds_exist = True else: confounds_exist = False if not confound_corr_report: confounds_exist = False if not tag: tag = '' else: tag = 'desc-' + tag with ProcessPoolExecutor(max_workers=njobs) as executor: job = {executor.submit(self._derive_temporalnetwork, f, i, tag, params, confounds_exist, confound_files) for i, f in enumerate(files) if f} for j in as_completed(job): j.result() if update_pipeline == True: if not self.confound_pipeline and len(self.get_selected_files(quiet=1, pipeline='confound')) > 0: self.set_confound_pipeline = self.pipeline self.set_pipeline('teneto_' + teneto.__version__) self.set_pipeline_subdir('tvc') self.set_bids_suffix('tvcconn')
def derive_temporalnetwork(self, params, update_pipeline=True, tag=None, njobs=1, confound_corr_report=True)
Derive time-varying connectivity on the selected files. Parameters ---------- params : dict. See teneto.timeseries.derive_temporalnetwork for the structure of the param dictionary. Assumes dimord is time,node (output of other TenetoBIDS funcitons) update_pipeline : bool If true, the object updates the selected files with those derived here. njobs : int How many parallel jobs to run confound_corr_report : bool If true, histograms and summary statistics of TVC and confounds are plotted in a report directory. tag : str any additional tag that will be placed in the saved file name. Will be placed as 'desc-[tag]' Returns ------- dfc : files saved in .../derivatives/teneto/sub-xxx/tvc/..._tvc.npy
3.936603
3.678212
1.070249
if not njobs: njobs = self.njobs self.add_history(inspect.stack()[0][3], locals(), 1) files = self.get_selected_files(quiet=1) R_group = [] with ProcessPoolExecutor(max_workers=njobs) as executor: job = {executor.submit( self._run_make_functional_connectivity, f, file_hdr, file_idx) for f in files} for j in as_completed(job): R_group.append(j.result()) if returngroup: # Fisher tranform -> mean -> inverse fisher tranform R_group = np.tanh(np.mean(np.arctanh(np.array(R_group)), axis=0)) return np.array(R_group)
def make_functional_connectivity(self, njobs=None, returngroup=False, file_hdr=None, file_idx=None)
Makes connectivity matrix for each of the subjects. Parameters ---------- returngroup : bool, default=False If true, returns the group average connectivity matrix. njobs : int How many parallel jobs to run file_idx : bool Default False, true if to ignore index column in loaded file. file_hdr : bool Default False, true if to ignore header row in loaded file. Returns ------- Saves data in derivatives/teneto_<version>/.../fc/ R_group : array if returngroup is true, the average connectivity matrix is returned.
3.989188
4.038682
0.987745
file_name = f.split('/')[-1].split('.')[0] if tag != '': tag = '_' + tag if suffix: file_name, _ = drop_bids_suffix(file_name) save_name = file_name + tag save_name += '_' + suffix else: save_name = file_name + tag paths_post_pipeline = f.split(self.pipeline) if self.pipeline_subdir: paths_post_pipeline = paths_post_pipeline[1].split(self.pipeline_subdir)[ 0] else: paths_post_pipeline = paths_post_pipeline[1].split(file_name)[0] base_dir = self.BIDS_dir + '/derivatives/' + 'teneto_' + \ teneto.__version__ + '/' + paths_post_pipeline + '/' save_dir = base_dir + '/' + save_directory + '/' if not os.path.exists(save_dir): # A case has happened where this has been done in parallel and an error was raised. So do try/except try: os.makedirs(save_dir) except: # Wait 2 seconds so that the error does not try and save something in the directory before it is created time.sleep(2) if not os.path.exists(self.BIDS_dir + '/derivatives/' + 'teneto_' + teneto.__version__ + '/dataset_description.json'): try: with open(self.BIDS_dir + '/derivatives/' + 'teneto_' + teneto.__version__ + '/dataset_description.json', 'w') as fs: json.dump(self.tenetoinfo, fs) except: # Same as above, just in case parallel does duplicaiton time.sleep(2) return save_name, save_dir, base_dir
def _save_namepaths_bids_derivatives(self, f, tag, save_directory, suffix=None)
Creates output directory and output name Paramters --------- f : str input files, includes the file bids_suffix tag : str what should be added to f in the output file. save_directory : str additional directory that the output file should go in suffix : str add new suffix to data Returns ------- save_name : str previous filename with new tag save_dir : str directory where it will be saved base_dir : str subjective base directory (i.e. derivatives/teneto/func[/anythingelse/])
3.698952
3.384067
1.093049
if not self.pipeline: print('Please set pipeline first.') self.get_pipeline_alternatives(quiet) else: if tag == 'sub': datapath = self.BIDS_dir + '/derivatives/' + self.pipeline + '/' tag_alternatives = [ f.split('sub-')[1] for f in os.listdir(datapath) if os.path.isdir(datapath + f) and 'sub-' in f] elif tag == 'ses': tag_alternatives = [] for sub in self.bids_tags['sub']: tag_alternatives += [f.split('ses-')[1] for f in os.listdir( self.BIDS_dir + '/derivatives/' + self.pipeline + '/' + 'sub-' + sub) if 'ses' in f] tag_alternatives = set(tag_alternatives) else: files = self.get_selected_files(quiet=1) tag_alternatives = [] for f in files: f = f.split('.')[0] f = f.split('/')[-1] tag_alternatives += [t.split('-')[1] for t in f.split('_') if t.split('-')[0] == tag] tag_alternatives = set(tag_alternatives) if quiet == 0: print(tag + ' alternatives: ' + ', '.join(tag_alternatives)) return list(tag_alternatives)
def get_tags(self, tag, quiet=1)
Returns which tag alternatives can be identified in the BIDS derivatives structure.
2.570588
2.368181
1.085469
if not os.path.exists(self.BIDS_dir + '/derivatives/'): print('Derivative directory not found. Is the data preprocessed?') else: pipeline_alternatives = os.listdir(self.BIDS_dir + '/derivatives/') if quiet == 0: print('Derivative alternatives: ' + ', '.join(pipeline_alternatives)) return list(pipeline_alternatives)
def get_pipeline_alternatives(self, quiet=0)
The pipeline are the different outputs that are placed in the ./derivatives directory. get_pipeline_alternatives gets those which are found in the specified BIDS directory structure.
3.615895
3.293552
1.097871
if not self.pipeline: print('Please set pipeline first.') self.get_pipeline_alternatives() else: pipeline_subdir_alternatives = [] for s in self.bids_tags['sub']: derdir_files = os.listdir( self.BIDS_dir + '/derivatives/' + self.pipeline + '/sub-' + s + '/func/') pipeline_subdir_alternatives += [ f for f in derdir_files if os.path.isdir(self.BIDS_dir + '/derivatives/' + self.pipeline + '/sub-' + s + '/func/' + f)] pipeline_subdir_alternatives = set(pipeline_subdir_alternatives) if quiet == 0: print('Pipeline_subdir alternatives: ' + ', '.join(pipeline_subdir_alternatives)) return list(pipeline_subdir_alternatives)
def get_pipeline_subdir_alternatives(self, quiet=0)
Note ----- This function currently returns the wrong folders and will be fixed in the future. This function should return ./derivatives/pipeline/sub-xx/[ses-yy/][func/]/pipeline_subdir But it does not care about ses-yy at the moment.
2.786347
2.677234
1.040756
self.add_history(inspect.stack()[0][3], locals(), 1) if isinstance(confound, str): confound = [confound] if isinstance(exclusion_criteria, str): exclusion_criteria = [exclusion_criteria] if isinstance(confound_stat, str): confound_stat = [confound_stat] if len(exclusion_criteria) != len(confound): raise ValueError( 'Same number of confound names and exclusion criteria must be given') if len(confound_stat) != len(confound): raise ValueError( 'Same number of confound names and confound stats must be given') relex, crit = process_exclusion_criteria(exclusion_criteria) files = sorted(self.get_selected_files(quiet=1)) confound_files = sorted( self.get_selected_files(quiet=1, pipeline='confound')) files, confound_files = confound_matching(files, confound_files) bad_files = [] bs = 0 foundconfound = [] foundreason = [] for s, cfile in enumerate(confound_files): df = load_tabular_file(cfile, index_col=None) found_bad_subject = False for i, _ in enumerate(confound): if confound_stat[i] == 'median': if relex[i](df[confound[i]].median(), crit[i]): found_bad_subject = True elif confound_stat[i] == 'mean': if relex[i](df[confound[i]].mean(), crit[i]): found_bad_subject = True elif confound_stat[i] == 'std': if relex[i](df[i][confound[i]].std(), crit[i]): found_bad_subject = True if found_bad_subject: foundconfound.append(confound[i]) foundreason.append(exclusion_criteria[i]) if found_bad_subject: bad_files.append(files[s]) bs += 1 self.set_bad_files( bad_files, reason='excluded file (confound over specfied stat threshold)') for i, f in enumerate(bad_files): sidecar = get_sidecar(f) sidecar['file_exclusion'] = {} sidecar['confound'] = foundconfound[i] sidecar['threshold'] = foundreason[i] for af in ['.tsv', '.nii.gz']: f = f.split(af)[0] f += '.json' with open(f, 'w') as fs: json.dump(sidecar, fs) print('Removed ' + str(bs) + ' files from inclusion.')
def set_exclusion_file(self, confound, exclusion_criteria, confound_stat='mean')
Excludes subjects given a certain exclusion criteria. Parameters ---------- confound : str or list string or list of confound name(s) from confound files exclusion_criteria : str or list for each confound, an exclusion_criteria should be expressed as a string. It starts with >,<,>= or <= then the numerical threshold. Ex. '>0.2' will entail every subject with the avg greater than 0.2 of confound will be rejected. confound_stat : str or list Can be median, mean, std. How the confound data is aggregated (so if there is a meaasure per time-point, this is averaged over all time points. If multiple confounds specified, this has to be a list.). Returns -------- calls TenetoBIDS.set_bad_files with the files meeting the exclusion criteria.
2.879331
2.792995
1.030912
if not njobs: njobs = self.njobs self.add_history(inspect.stack()[0][3], locals(), 1) parc_name = parcellation.split('_')[0].lower() # Check confounds have been specified if not self.confounds and removeconfounds: raise ValueError( 'Specified confounds are not found. Make sure that you have run self.set_confunds([\'Confound1\',\'Confound2\']) first.') # Check confounds have been specified if update_pipeline == False and removeconfounds: raise ValueError( 'Pipeline must be updated in order to remove confounds within this funciton.') # In theory these should be the same. So at the moment, it goes through each element and checks they are matched. # A matching algorithem may be needed if cases arise where this isnt the case files = self.get_selected_files(quiet=1) # Load network communities, if possible. self.set_network_communities(parcellation, netn=yeonetworkn) if not tag: tag = '' else: tag = 'desc-' + tag if not parc_params: parc_params = {} with ProcessPoolExecutor(max_workers=njobs) as executor: job = {executor.submit(self._run_make_parcellation, f, i, tag, parcellation, parc_name, parc_type, parc_params) for i, f in enumerate(files)} for j in as_completed(job): j.result() if update_pipeline == True: if not self.confound_pipeline and len(self.get_selected_files(quiet=1, pipeline='confound')) > 0: self.set_confound_pipeline(self.pipeline) self.set_pipeline('teneto_' + teneto.__version__) self.set_pipeline_subdir('parcellation') if tag: self.set_bids_tags({'desc': tag.split('-')[1]}) self.set_bids_suffix('roi') if removeconfounds: self.removeconfounds( clean_params=clean_params, transpose=None, njobs=njobs)
def make_parcellation(self, parcellation, parc_type=None, parc_params=None, network='defaults', update_pipeline=True, removeconfounds=False, tag=None, njobs=None, clean_params=None, yeonetworkn=None)
Reduces the data from voxel to parcellation space. Files get saved in a teneto folder in the derivatives with a roi tag at the end. Parameters ----------- parcellation : str specify which parcellation that you would like to use. For MNI: 'power2012_264', 'gordon2014_333'. TAL: 'shen2013_278' parc_type : str can be 'sphere' or 'region'. If nothing is specified, the default for that parcellation will be used. parc_params : dict **kwargs for nilearn functions network : str if "defaults", it selects static parcellation, _if available_ (other options will be made available soon). removeconfounds : bool if true, regresses out confounds that are specfied in self.set_confounds with linear regression. update_pipeline : bool TenetoBIDS gets updated with the parcellated files being selected. tag : str or list any additional tag that must be in file name. After the tag there must either be a underscore or period (following bids). clean_params : dict **kwargs for nilearn function nilearn.signal.clean yeonetworkn : int (7 or 17) Only relevant for when parcellation is schaeffer2018. Use 7 or 17 template networks njobs : n number of processes to run. Overrides TenetoBIDS.njobs Returns ------- Files are saved in ./BIDS_dir/derivatives/teneto_<version>/.../parcellation/. To load these files call TenetoBIDS.load_parcellation. NOTE ---- These functions make use of nilearn. Please cite nilearn if used in a publicaiton.
5.05477
4.756377
1.062735
if not njobs: njobs = self.njobs self.add_history(inspect.stack()[0][3], locals(), 1) if not tag: tag = '' else: tag = 'desc-' + tag if community_type == 'temporal': files = self.get_selected_files(quiet=True) # Run check to make sure files are tvc input for f in files: if 'tvc' not in f: raise ValueError( 'tvc tag not found in filename. TVC data must be used in communitydetection (perhaps run TenetoBIDS.derive first?).') elif community_type == 'static': files = self.get_selected_files( quiet=True, pipeline='functionalconnectivity') with ProcessPoolExecutor(max_workers=njobs) as executor: job = {executor.submit(self._run_communitydetection, f, community_detection_params, community_type, file_hdr, file_idx, tag) for i, f in enumerate(files) if all([t + '_' in f or t + '.' in f for t in tag])} for j in as_completed(job): j.result()
def communitydetection(self, community_detection_params, community_type='temporal', tag=None, file_hdr=False, file_idx=False, njobs=None)
Calls temporal_louvain_with_consensus on connectivity data Parameters ---------- community_detection_params : dict kwargs for detection. See teneto.communitydetection.louvain.temporal_louvain_with_consensus community_type : str Either 'temporal' or 'static'. If temporal, community is made per time-point for each timepoint. file_idx : bool (default false) if true, index column present in data and this will be ignored file_hdr : bool (default false) if true, header row present in data and this will be ignored njobs : int number of processes to run. Overrides TenetoBIDS.njobs Note ---- All non-positive edges are made to zero. Returns ------- List of communities for each subject. Saved in BIDS_dir/derivatives/teneto/communitydetection/
5.442759
5.180504
1.050623
if not njobs: njobs = self.njobs self.add_history(inspect.stack()[0][3], locals(), 1) if not self.confounds and not confounds: raise ValueError( 'Specified confounds are not found. Make sure that you have run self.set_confunds([\'Confound1\',\'Confound2\']) first or pass confounds as input to function.') if not tag: tag = '' else: tag = 'desc-' + tag if confounds: self.set_confounds(confounds) files = sorted(self.get_selected_files(quiet=1)) confound_files = sorted( self.get_selected_files(quiet=1, pipeline='confound')) files, confound_files = confound_matching(files, confound_files) if not clean_params: clean_params = {} with ProcessPoolExecutor(max_workers=njobs) as executor: job = {executor.submit( self._run_removeconfounds, f, confound_files[i], clean_params, transpose, overwrite, tag) for i, f in enumerate(files)} for j in as_completed(job): j.result() self.set_pipeline('teneto_' + teneto.__version__) self.set_bids_suffix('roi') if tag: self.set_bids_tags({'desc': tag.split('-')[1]})
def removeconfounds(self, confounds=None, clean_params=None, transpose=None, njobs=None, update_pipeline=True, overwrite=True, tag=None)
Removes specified confounds using nilearn.signal.clean Parameters ---------- confounds : list List of confounds. Can be prespecified in set_confounds clean_params : dict Dictionary of kawgs to pass to nilearn.signal.clean transpose : bool (default False) Default removeconfounds works on time,node dimensions. Pass transpose=True to transpose pre and post confound removal. njobs : int Number of jobs. Otherwise tenetoBIDS.njobs is run. update_pipeline : bool update pipeline with '_clean' tag for new files created overwrite : bool tag : str Returns ------- Says all TenetBIDS.get_selected_files with confounds removed with _rmconfounds at the end. Note ---- There may be some issues regarding loading non-cleaned data through the TenetoBIDS functions instead of the cleaned data. This depeneds on when you clean the data.
4.260266
3.968511
1.073518
if not njobs: njobs = self.njobs self.add_history(inspect.stack()[0][3], locals(), 1) # measure can be string or list if isinstance(measure, str): measure = [measure] # measure_params can be dictionaary or list of dictionaries if isinstance(measure_params, dict): measure_params = [measure_params] if measure_params and len(measure) != len(measure_params): raise ValueError('Number of identified measure_params (' + str(len(measure_params)) + ') differs from number of identified measures (' + str(len(measure)) + '). Leave black dictionary if default methods are wanted') files = self.get_selected_files(quiet=1) if not tag: tag = '' else: tag = 'desc-' + tag with ProcessPoolExecutor(max_workers=njobs) as executor: job = {executor.submit( self._run_networkmeasures, f, tag, measure, measure_params) for f in files} for j in as_completed(job): j.result()
def networkmeasures(self, measure=None, measure_params=None, tag=None, njobs=None)
Calculates a network measure For available funcitons see: teneto.networkmeasures Parameters ---------- measure : str or list Mame of function(s) from teneto.networkmeasures that will be run. measure_params : dict or list of dctionaries) Containing kwargs for the argument in measure. See note regarding Communities key. tag : str Add additional tag to saved filenames. Note ---- In measure_params, if communities can equal 'template', 'static', or 'temporal'. These options must be precalculated. If template, Teneto tries to load default for parcellation. If static, loads static communities in BIDS_dir/teneto_<version>/sub-.../func/communities/..._communitytype-static....npy. If temporal, loads static communities in BIDS_dir/teneto_<version>/sub-.../func/communities/..._communitytype-temporal....npy Returns ------- Saves in ./BIDS_dir/derivatives/teneto/sub-NAME/func//temporalnetwork/MEASURE/ Load the measure with tenetoBIDS.load_network_measure
3.711886
3.895005
0.952986
self.add_history(inspect.stack()[0][3], locals(), 1) if not os.path.exists(self.BIDS_dir + '/derivatives/' + confound_pipeline): print('Specified direvative directory not found.') self.get_pipeline_alternatives() else: # Todo: perform check that pipeline is valid self.confound_pipeline = confound_pipeline
def set_confound_pipeline(self, confound_pipeline)
There may be times when the pipeline is updated (e.g. teneto) but you want the confounds from the preprocessing pipieline (e.g. fmriprep). To do this, you set the confound_pipeline to be the preprocessing pipeline where the confound files are. Parameters ---------- confound_pipeline : str Directory in the BIDS_dir where the confounds file is.
8.540937
8.295675
1.029565
self.add_history(inspect.stack()[0][3], locals(), 1) self.bids_suffix = bids_suffix
def set_bids_suffix(self, bids_suffix)
The last analysis step is the final tag that is present in files.
6.845271
6.459279
1.059758
self.add_history(inspect.stack()[0][3], locals(), 1) if not os.path.exists(self.BIDS_dir + '/derivatives/' + pipeline): print('Specified direvative directory not found.') self.get_pipeline_alternatives() else: # Todo: perform check that pipeline is valid self.pipeline = pipeline
def set_pipeline(self, pipeline)
Specify the pipeline. See get_pipeline_alternatives to see what are avaialble. Input should be a string.
10.255918
7.598383
1.34975
print('--- DATASET INFORMATION ---') print('--- Subjects ---') if self.raw_data_exists: if self.BIDS.get_subjects(): print('Number of subjects (in dataset): ' + str(len(self.BIDS.get_subjects()))) print('Subjects (in dataset): ' + ', '.join(self.BIDS.get_subjects())) else: print('NO SUBJECTS FOUND (is the BIDS directory specified correctly?)') print('Number of subjects (selected): ' + str(len(self.bids_tags['sub']))) print('Subjects (selected): ' + ', '.join(self.bids_tags['sub'])) if isinstance(self.bad_subjects, list): print('Bad subjects: ' + ', '.join(self.bad_subjects)) else: print('Bad subjects: 0') print('--- Tasks ---') if self.raw_data_exists: if self.BIDS.get_tasks(): print('Number of tasks (in dataset): ' + str(len(self.BIDS.get_tasks()))) print('Tasks (in dataset): ' + ', '.join(self.BIDS.get_tasks())) if 'task' in self.bids_tags: print('Number of tasks (selected): ' + str(len(self.bids_tags['task']))) print('Tasks (selected): ' + ', '.join(self.bids_tags['task'])) else: print('No task names found') print('--- Runs ---') if self.raw_data_exists: if self.BIDS.get_runs(): print('Number of runs (in dataset): ' + str(len(self.BIDS.get_runs()))) print('Runs (in dataset): ' + ', '.join(self.BIDS.get_runs())) if 'run' in self.bids_tags: print('Number of runs (selected): ' + str(len(self.bids_tags['run']))) print('Rubs (selected): ' + ', '.join(self.bids_tags['run'])) else: print('No run names found') print('--- Sessions ---') if self.raw_data_exists: if self.BIDS.get_sessions(): print('Number of runs (in dataset): ' + str(len(self.BIDS.get_sessions()))) print('Sessions (in dataset): ' + ', '.join(self.BIDS.get_sessions())) if 'ses' in self.bids_tags: print('Number of sessions (selected): ' + str(len(self.bids_tags['ses']))) print('Sessions (selected): ' + ', '.join(self.bids_tags['ses'])) else: print('No session names found') print('--- PREPROCESSED DATA (Pipelines/Derivatives) ---') if not self.pipeline: print('Derivative pipeline not set. To set, run TN.set_pipeline()') else: print('Pipeline: ' + self.pipeline) if self.pipeline_subdir: print('Pipeline subdirectories: ' + self.pipeline_subdir) selected_files = self.get_selected_files(quiet=1) if selected_files: print('--- SELECTED DATA ---') print('Numnber of selected files: ' + str(len(selected_files))) print('\n - '.join(selected_files))
def print_dataset_summary(self)
Prints information about the the BIDS data and the files currently selected.
1.947178
1.886012
1.032431
if fname[-4:] != '.pkl': fname += '.pkl' with open(fname, 'rb') as f: tnet = pickle.load(f) if reload_object: reloadnet = teneto.TenetoBIDS(tnet.BIDS_dir, pipeline=tnet.pipeline, pipeline_subdir=tnet.pipeline_subdir, bids_tags=tnet.bids_tags, bids_suffix=tnet.bids_suffix, bad_subjects=tnet.bad_subjects, confound_pipeline=tnet.confound_pipeline, raw_data_exists=tnet.raw_data_exists, njobs=tnet.njobs) reloadnet.histroy = tnet.history tnet = reloadnet return tnet
def load_frompickle(cls, fname, reload_object=False)
Loaded saved instance of fname : str path to pickle object (output of TenetoBIDS.save_aspickle) reload_object : bool (default False) reloads object by calling teneto.TenetoBIDS (some information lost, for development) Returns ------- self : TenetoBIDS instance
4.056008
3.802735
1.066603
if datatype == 'temporalnetwork' and not measure: raise ValueError( 'When datatype is temporalnetwork, \'measure\' must also be specified.') self.add_history(inspect.stack()[0][3], locals(), 1) data_list = [] trialinfo_list = [] for s in self.bids_tags['sub']: # Define base folder base_path, file_list, datainfo = self._get_filelist( datatype, s, tag, measure=measure) if base_path: for f in file_list: # Include only if all analysis step tags are present # Get all BIDS tags. i.e. in 'sub-AAA', get 'sub' as key and 'AAA' as item. # Ignore if tsv file is empty try: filetags = get_bids_tag(f, 'all') data_list.append(load_tabular_file(base_path + f)) # Only return trialinfo if datatype is trlinfo if datainfo == 'trlinfo': trialinfo_list.append( pd.DataFrame(filetags, index=[0])) except pd.errors.EmptyDataError: pass # If group data and length of output is one, don't make it a list if datatype == 'group' and len(data_list) == 1: data_list = data_list[0] if measure: data_list = {measure: data_list} setattr(self, datatype + '_data_', data_list) if trialinfo_list: out_trialinfo = pd.concat(trialinfo_list) out_trialinfo.reset_index(inplace=True, drop=True) setattr(self, datatype + '_trialinfo_', out_trialinfo)
def load_data(self, datatype='tvc', tag=None, measure='')
Function loads time-varying connectivity estimates created by the TenetoBIDS.derive function. The default grabs all data (in numpy arrays) in the teneto/../func/tvc/ directory. Data is placed in teneto.tvc_data_ Parameters ---------- datatype : str \'tvc\', \'parcellation\', \'participant\', \'temporalnetwork\' tag : str or list any additional tag that must be in file name. After the tag there must either be a underscore or period (following bids). measure : str retquired when datatype is temporalnetwork. A networkmeasure that should be loaded. Returns ------- tvc_data_ : numpy array Containing the parcellation data. Each file is appended to the first dimension of the numpy array. tvc_trialinfo_ : pandas data frame Containing the subject info (all BIDS tags) in the numpy array.
5.143754
4.640587
1.108427
''' Returns temporal closeness centrality per node. Parameters ----------- Input should be *either* tnet or paths. data : array or dict Temporal network input (graphlet or contact). nettype: 'bu', 'bd'. paths : pandas dataframe Output of TenetoBIDS.networkmeasure.shortest_temporal_paths Returns -------- :close: array temporal closness centrality (nodal measure) ''' if tnet is not None and paths is not None: raise ValueError('Only network or path input allowed.') if tnet is None and paths is None: raise ValueError('No input.') # if shortest paths are not calculated, calculate them if tnet is not None: paths = shortest_temporal_path(tnet) pathmat = np.zeros([paths[['from', 'to']].max().max( )+1, paths[['from', 'to']].max().max()+1, paths[['t_start']].max().max()+1]) * np.nan pathmat[paths['from'].values, paths['to'].values, paths['t_start'].values] = paths['temporal-distance'] closeness = np.nansum(1 / np.nanmean(pathmat, axis=2), axis=1) / (pathmat.shape[1] - 1) return closeness
def temporal_closeness_centrality(tnet=None, paths=None)
Returns temporal closeness centrality per node. Parameters ----------- Input should be *either* tnet or paths. data : array or dict Temporal network input (graphlet or contact). nettype: 'bu', 'bd'. paths : pandas dataframe Output of TenetoBIDS.networkmeasure.shortest_temporal_paths Returns -------- :close: array temporal closness centrality (nodal measure)
6.580522
2.403835
2.73751
if isinstance(reducer, str): reducer = REDUCER_DICT[reducer] flat_dict = {} def _flatten(d, parent=None): for key, value in six.viewitems(d): flat_key = reducer(parent, key) if isinstance(value, Mapping): _flatten(value, flat_key) else: if inverse: flat_key, value = value, flat_key if flat_key in flat_dict: raise ValueError("duplicated key '{}'".format(flat_key)) flat_dict[flat_key] = value _flatten(d) return flat_dict
def flatten(d, reducer='tuple', inverse=False)
Flatten dict-like object. Parameters ---------- d: dict-like object The dict that will be flattened. reducer: {'tuple', 'path', function} (default: 'tuple') The key joining method. If a function is given, the function will be used to reduce. 'tuple': The resulting key will be tuple of the original keys 'path': Use ``os.path.join`` to join keys. inverse: bool (default: False) Whether you want invert the resulting key and value. Returns ------- flat_dict: dict
2.311543
2.538382
0.910636
assert keys key = keys[0] if len(keys) == 1: if key in d: raise ValueError("duplicated key '{}'".format(key)) d[key] = value return d = d.setdefault(key, {}) nested_set_dict(d, keys[1:], value)
def nested_set_dict(d, keys, value)
Set a value to a sequence of nested keys Parameters ---------- d: Mapping keys: Sequence[str] value: Any
2.346478
2.699527
0.869218
if isinstance(splitter, str): splitter = SPLITTER_DICT[splitter] unflattened_dict = {} for flat_key, value in six.viewitems(d): if inverse: flat_key, value = value, flat_key key_tuple = splitter(flat_key) nested_set_dict(unflattened_dict, key_tuple, value) return unflattened_dict
def unflatten(d, splitter='tuple', inverse=False)
Unflatten dict-like object. Parameters ---------- d: dict-like object The dict that will be unflattened. splitter: {'tuple', 'path', function} (default: 'tuple') The key splitting method. If a function is given, the function will be used to split. 'tuple': Use each element in the tuple key as the key of the unflattened dict. 'path': Use ``pathlib.Path.parts`` to split keys. inverse: bool (default: False) Whether you want to invert the key and value before flattening. Returns ------- unflattened_dict: dict
2.80591
3.133884
0.895346
if not HAS_MATPLOTLIB: raise ImportError("matplotlib package is required for plotting " "supports.") fig, ax = plt.subplots() plot_pianoroll(ax, track.pianoroll, track.is_drum, beat_resolution, downbeats, preset=preset, cmap=cmap, xtick=xtick, ytick=ytick, xticklabel=xticklabel, yticklabel=yticklabel, tick_loc=tick_loc, tick_direction=tick_direction, label=label, grid=grid, grid_linestyle=grid_linestyle, grid_linewidth=grid_linewidth) if filename is not None: plt.savefig(filename) return fig, ax
def plot_track(track, filename=None, beat_resolution=None, downbeats=None, preset='default', cmap='Blues', xtick='auto', ytick='octave', xticklabel=True, yticklabel='auto', tick_loc=None, tick_direction='in', label='both', grid='both', grid_linestyle=':', grid_linewidth=.5)
Plot the pianoroll or save a plot of the pianoroll. Parameters ---------- filename : The filename to which the plot is saved. If None, save nothing. beat_resolution : int The number of time steps used to represent a beat. Required and only effective when `xtick` is 'beat'. downbeats : list An array that indicates whether the time step contains a downbeat (i.e., the first time step of a bar). preset : {'default', 'plain', 'frame'} A string that indicates the preset theme to use. - In 'default' preset, the ticks, grid and labels are on. - In 'frame' preset, the ticks and grid are both off. - In 'plain' preset, the x- and y-axis are both off. cmap : `matplotlib.colors.Colormap` The colormap to use in :func:`matplotlib.pyplot.imshow`. Defaults to 'Blues'. Only effective when `pianoroll` is 2D. xtick : {'auto', 'beat', 'step', 'off'} A string that indicates what to use as ticks along the x-axis. If 'auto' is given, automatically set to 'beat' if `beat_resolution` is also given and set to 'step', otherwise. Defaults to 'auto'. ytick : {'octave', 'pitch', 'off'} A string that indicates what to use as ticks along the y-axis. Defaults to 'octave'. xticklabel : bool Whether to add tick labels along the x-axis. Only effective when `xtick` is not 'off'. yticklabel : {'auto', 'name', 'number', 'off'} If 'name', use octave name and pitch name (key name when `is_drum` is True) as tick labels along the y-axis. If 'number', use pitch number. If 'auto', set to 'name' when `ytick` is 'octave' and 'number' when `ytick` is 'pitch'. Defaults to 'auto'. Only effective when `ytick` is not 'off'. tick_loc : tuple or list The locations to put the ticks. Availables elements are 'bottom', 'top', 'left' and 'right'. Defaults to ('bottom', 'left'). tick_direction : {'in', 'out', 'inout'} A string that indicates where to put the ticks. Defaults to 'in'. Only effective when one of `xtick` and `ytick` is on. label : {'x', 'y', 'both', 'off'} A string that indicates whether to add labels to the x-axis and y-axis. Defaults to 'both'. grid : {'x', 'y', 'both', 'off'} A string that indicates whether to add grids to the x-axis, y-axis, both or neither. Defaults to 'both'. grid_linestyle : str Will be passed to :meth:`matplotlib.axes.Axes.grid` as 'linestyle' argument. grid_linewidth : float Will be passed to :meth:`matplotlib.axes.Axes.grid` as 'linewidth' argument. Returns ------- fig : `matplotlib.figure.Figure` object A :class:`matplotlib.figure.Figure` object. ax : `matplotlib.axes.Axes` object A :class:`matplotlib.axes.Axes` object.
1.866401
1.99786
0.9342
if track is not None: if not isinstance(track, Track): raise TypeError("`track` must be a pypianoroll.Track instance.") track.check_validity() else: track = Track(pianoroll, program, is_drum, name) self.tracks.append(track)
def append_track(self, track=None, pianoroll=None, program=0, is_drum=False, name='unknown')
Append a multitrack.Track instance to the track list or create a new multitrack.Track object and append it to the track list. Parameters ---------- track : pianoroll.Track A :class:`pypianoroll.Track` instance to be appended to the track list. pianoroll : np.ndarray, shape=(n_time_steps, 128) A pianoroll matrix. The first and second dimension represents time and pitch, respectively. Available datatypes are bool, int and float. Only effective when `track` is None. program: int A program number according to General MIDI specification [1]. Available values are 0 to 127. Defaults to 0 (Acoustic Grand Piano). Only effective when `track` is None. is_drum : bool A boolean number that indicates whether it is a percussion track. Defaults to False. Only effective when `track` is None. name : str The name of the track. Defaults to 'unknown'. Only effective when `track` is None. References ---------- [1] https://www.midi.org/specifications/item/gm-level-1-sound-set
2.723031
2.831453
0.961708
# tracks for track in self.tracks: if not isinstance(track, Track): raise TypeError("`tracks` must be a list of " "`pypianoroll.Track` instances.") track.check_validity() # tempo if not isinstance(self.tempo, np.ndarray): raise TypeError("`tempo` must be int or a numpy array.") elif not np.issubdtype(self.tempo.dtype, np.number): raise TypeError("Data type of `tempo` must be a subdtype of " "np.number.") elif self.tempo.ndim != 1: raise ValueError("`tempo` must be a 1D numpy array.") if np.any(self.tempo <= 0.0): raise ValueError("`tempo` should contain only positive numbers.") # downbeat if self.downbeat is not None: if not isinstance(self.downbeat, np.ndarray): raise TypeError("`downbeat` must be a numpy array.") if not np.issubdtype(self.downbeat.dtype, np.bool_): raise TypeError("Data type of `downbeat` must be bool.") if self.downbeat.ndim != 1: raise ValueError("`downbeat` must be a 1D numpy array.") # beat_resolution if not isinstance(self.beat_resolution, int): raise TypeError("`beat_resolution` must be int.") if self.beat_resolution < 1: raise ValueError("`beat_resolution` must be a positive integer.") # name if not isinstance(self.name, string_types): raise TypeError("`name` must be a string.")
def check_validity(self)
Raise an error if any invalid attribute found. Raises ------ TypeError If an attribute has an invalid type. ValueError If an attribute has an invalid value (of the correct type).
1.885514
1.867777
1.009497
for track in self.tracks: track.clip(lower, upper)
def clip(self, lower=0, upper=127)
Clip the pianorolls of all tracks by the given lower and upper bounds. Parameters ---------- lower : int or float The lower bound to clip the pianorolls. Defaults to 0. upper : int or float The upper bound to clip the pianorolls. Defaults to 127.
5.518245
4.178946
1.320487
active_length = 0 for track in self.tracks: now_length = track.get_active_length() if active_length < track.get_active_length(): active_length = now_length return active_length
def get_active_length(self)
Return the maximum active length (i.e., without trailing silence) among the pianorolls of all tracks. The unit is time step. Returns ------- active_length : int The maximum active length (i.e., without trailing silence) among the pianorolls of all tracks. The unit is time step.
3.03312
3.09052
0.981427
lowest, highest = self.tracks[0].get_active_pitch_range() if len(self.tracks) > 1: for track in self.tracks[1:]: low, high = track.get_active_pitch_range() if low < lowest: lowest = low if high > highest: highest = high return lowest, highest
def get_active_pitch_range(self)
Return the active pitch range of the pianorolls of all tracks as a tuple (lowest, highest). Returns ------- lowest : int The lowest active pitch among the pianorolls of all tracks. highest : int The lowest highest pitch among the pianorolls of all tracks.
1.955238
1.833228
1.066555
if self.downbeat is None: return [] downbeat_steps = np.nonzero(self.downbeat)[0].tolist() return downbeat_steps
def get_downbeat_steps(self)
Return the indices of time steps that contain downbeats. Returns ------- downbeat_steps : list The indices of time steps that contain downbeats.
3.369263
3.294505
1.022692
empty_track_indices = [idx for idx, track in enumerate(self.tracks) if not np.any(track.pianoroll)] return empty_track_indices
def get_empty_tracks(self)
Return the indices of tracks with empty pianorolls. Returns ------- empty_track_indices : list The indices of tracks with empty pianorolls.
4.312263
3.439944
1.253585
max_length = 0 for track in self.tracks: if max_length < track.pianoroll.shape[0]: max_length = track.pianoroll.shape[0] return max_length
def get_max_length(self)
Return the maximum length of the pianorolls along the time axis (in time step). Returns ------- max_length : int The maximum length of the pianorolls along the time axis (in time step).
2.647152
2.661066
0.994771
stacked = self.get_stacked_pianoroll() if mode == 'any': merged = np.any(stacked, axis=2) elif mode == 'sum': merged = np.sum(stacked, axis=2) elif mode == 'max': merged = np.max(stacked, axis=2) else: raise ValueError("`mode` must be one of {'max', 'sum', 'any'}.") return merged
def get_merged_pianoroll(self, mode='sum')
Return the merged pianoroll. Parameters ---------- mode : {'sum', 'max', 'any'} A string that indicates the merging strategy to apply along the track axis. Default to 'sum'. - In 'sum' mode, the merged pianoroll is the sum of all the pianorolls. Note that for binarized pianorolls, integer summation is performed. - In 'max' mode, for each pixel, the maximum value among all the pianorolls is assigned to the merged pianoroll. - In 'any' mode, the value of a pixel in the merged pianoroll is True if any of the pianorolls has nonzero value at that pixel; False if all pianorolls are inactive (zero-valued) at that pixel. Returns ------- merged : np.ndarray, shape=(n_time_steps, 128) The merged pianoroll.
2.118396
2.18024
0.971634
multitrack = deepcopy(self) multitrack.pad_to_same() stacked = np.stack([track.pianoroll for track in multitrack.tracks], -1) return stacked
def get_stacked_pianoroll(self)
Return a stacked multitrack pianoroll. The shape of the return array is (n_time_steps, 128, n_tracks). Returns ------- stacked : np.ndarray, shape=(n_time_steps, 128, n_tracks) The stacked pianoroll.
4.018862
4.567359
0.879909
def reconstruct_sparse(target_dict, name): return csc_matrix((target_dict[name+'_csc_data'], target_dict[name+'_csc_indices'], target_dict[name+'_csc_indptr']), shape=target_dict[name+'_csc_shape']).toarray() with np.load(filename) as loaded: if 'info.json' not in loaded: raise ValueError("Cannot find 'info.json' in the npz file.") info_dict = json.loads(loaded['info.json'].decode('utf-8')) self.name = info_dict['name'] self.beat_resolution = info_dict['beat_resolution'] self.tempo = loaded['tempo'] if 'downbeat' in loaded.files: self.downbeat = loaded['downbeat'] else: self.downbeat = None idx = 0 self.tracks = [] while str(idx) in info_dict: pianoroll = reconstruct_sparse( loaded, 'pianoroll_{}'.format(idx)) track = Track(pianoroll, info_dict[str(idx)]['program'], info_dict[str(idx)]['is_drum'], info_dict[str(idx)]['name']) self.tracks.append(track) idx += 1 self.check_validity()
def load(self, filename)
Load a npz file. Supports only files previously saved by :meth:`pypianoroll.Multitrack.save`. Notes ----- Attribute values will all be overwritten. Parameters ---------- filename : str The name of the npz file to be loaded.
2.775418
2.725425
1.018343
if mode not in ('max', 'sum', 'any'): raise ValueError("`mode` must be one of {'max', 'sum', 'any'}.") merged = self[track_indices].get_merged_pianoroll(mode) merged_track = Track(merged, program, is_drum, name) self.append_track(merged_track) if remove_merged: self.remove_tracks(track_indices)
def merge_tracks(self, track_indices=None, mode='sum', program=0, is_drum=False, name='merged', remove_merged=False)
Merge pianorolls of the tracks specified by `track_indices`. The merged track will have program number as given by `program` and drum indicator as given by `is_drum`. The merged track will be appended at the end of the track list. Parameters ---------- track_indices : list The indices of tracks to be merged. Defaults to all the tracks. mode : {'sum', 'max', 'any'} A string that indicates the merging strategy to apply along the track axis. Default to 'sum'. - In 'sum' mode, the merged pianoroll is the sum of the collected pianorolls. Note that for binarized pianorolls, integer summation is performed. - In 'max' mode, for each pixel, the maximum value among the collected pianorolls is assigned to the merged pianoroll. - In 'any' mode, the value of a pixel in the merged pianoroll is True if any of the collected pianorolls has nonzero value at that pixel; False if all the collected pianorolls are inactive (zero-valued) at that pixel. program: int A program number according to General MIDI specification [1]. Available values are 0 to 127. Defaults to 0 (Acoustic Grand Piano). is_drum : bool A boolean number that indicates whether it is a percussion track. Defaults to False. name : str A name to be assigned to the merged track. Defaults to 'merged'. remove_merged : bool True to remove the source tracks from the track list. False to keep them. Defaults to False. References ---------- [1] https://www.midi.org/specifications/item/gm-level-1-sound-set
2.741085
2.752048
0.996016
max_length = self.get_max_length() for track in self.tracks: if track.pianoroll.shape[0] < max_length: track.pad(max_length - track.pianoroll.shape[0])
def pad_to_same(self)
Pad shorter pianorolls with zeros at the end along the time axis to make the resulting pianoroll lengths the same as the maximum pianoroll length among all the tracks.
2.965192
2.088281
1.41992
pm = pretty_midi.PrettyMIDI(filename) self.parse_pretty_midi(pm, **kwargs)
def parse_midi(self, filename, **kwargs)
Parse a MIDI file. Parameters ---------- filename : str The name of the MIDI file to be parsed. **kwargs: See :meth:`pypianoroll.Multitrack.parse_pretty_midi` for full documentation.
3.80752
4.499307
0.846246
if isinstance(track_indices, int): track_indices = [track_indices] self.tracks = [track for idx, track in enumerate(self.tracks) if idx not in track_indices]
def remove_tracks(self, track_indices)
Remove tracks specified by `track_indices`. Parameters ---------- track_indices : list The indices of the tracks to be removed.
2.08517
2.51969
0.82755
def update_sparse(target_dict, sparse_matrix, name): csc = csc_matrix(sparse_matrix) target_dict[name+'_csc_data'] = csc.data target_dict[name+'_csc_indices'] = csc.indices target_dict[name+'_csc_indptr'] = csc.indptr target_dict[name+'_csc_shape'] = csc.shape self.check_validity() array_dict = {'tempo': self.tempo} info_dict = {'beat_resolution': self.beat_resolution, 'name': self.name} if self.downbeat is not None: array_dict['downbeat'] = self.downbeat for idx, track in enumerate(self.tracks): update_sparse(array_dict, track.pianoroll, 'pianoroll_{}'.format(idx)) info_dict[str(idx)] = {'program': track.program, 'is_drum': track.is_drum, 'name': track.name} if not filename.endswith('.npz'): filename += '.npz' if compressed: np.savez_compressed(filename, **array_dict) else: np.savez(filename, **array_dict) compression = zipfile.ZIP_DEFLATED if compressed else zipfile.ZIP_STORED with zipfile.ZipFile(filename, 'a') as zip_file: zip_file.writestr('info.json', json.dumps(info_dict), compression)
def save(self, filename, compressed=True)
Save the multitrack pianoroll to a (compressed) npz file, which can be later loaded by :meth:`pypianoroll.Multitrack.load`. Notes ----- To reduce the file size, the pianorolls are first converted to instances of scipy.sparse.csc_matrix, whose component arrays are then collected and saved to a npz file. Parameters ---------- filename : str The name of the npz file to which the mulitrack pianoroll is saved. compressed : bool True to save to a compressed npz file. False to save to an uncompressed npz file. Defaults to True.
2.42716
2.164958
1.121112
self.check_validity() pm = pretty_midi.PrettyMIDI(initial_tempo=self.tempo[0]) # TODO: Add downbeat support -> time signature change events # TODO: Add tempo support -> tempo change events if constant_tempo is None: constant_tempo = self.tempo[0] time_step_size = 60. / constant_tempo / self.beat_resolution for track in self.tracks: instrument = pretty_midi.Instrument( program=track.program, is_drum=track.is_drum, name=track.name) copied = track.copy() if copied.is_binarized(): copied.assign_constant(constant_velocity) copied.clip() clipped = copied.pianoroll.astype(np.uint8) binarized = (clipped > 0) padded = np.pad(binarized, ((1, 1), (0, 0)), 'constant') diff = np.diff(padded.astype(np.int8), axis=0) positives = np.nonzero((diff > 0).T) pitches = positives[0] note_ons = positives[1] note_on_times = time_step_size * note_ons note_offs = np.nonzero((diff < 0).T)[1] note_off_times = time_step_size * note_offs for idx, pitch in enumerate(pitches): velocity = np.mean(clipped[note_ons[idx]:note_offs[idx], pitch]) note = pretty_midi.Note( velocity=int(velocity), pitch=pitch, start=note_on_times[idx], end=note_off_times[idx]) instrument.notes.append(note) instrument.notes.sort(key=lambda x: x.start) pm.instruments.append(instrument) return pm
def to_pretty_midi(self, constant_tempo=None, constant_velocity=100)
Convert to a :class:`pretty_midi.PrettyMIDI` instance. Notes ----- - Only constant tempo is supported by now. - The velocities of the converted pianorolls are clipped to [0, 127], i.e. values below 0 and values beyond 127 are replaced by 127 and 0, respectively. - Adjacent nonzero values of the same pitch will be considered a single note with their mean as its velocity. Parameters ---------- constant_tempo : int The constant tempo value of the output object. Defaults to use the first element of `tempo`. constant_velocity : int The constant velocity to be assigned to binarized tracks. Defaults to 100. Returns ------- pm : `pretty_midi.PrettyMIDI` object The converted :class:`pretty_midi.PrettyMIDI` instance.
2.652399
2.666023
0.99489
for track in self.tracks: if not track.is_drum: track.transpose(semitone)
def transpose(self, semitone)
Transpose the pianorolls of all tracks by a number of semitones, where positive values are for higher key, while negative values are for lower key. The drum tracks are ignored. Parameters ---------- semitone : int The number of semitones to transpose the pianorolls.
4.447332
3.724059
1.194216
active_length = self.get_active_length() for track in self.tracks: track.pianoroll = track.pianoroll[:active_length]
def trim_trailing_silence(self)
Trim the trailing silences of the pianorolls of all tracks. Trailing silences are considered globally.
4.846605
3.522719
1.375813
if not filename.endswith(('.mid', '.midi', '.MID', '.MIDI')): filename = filename + '.mid' pm = self.to_pretty_midi() pm.write(filename)
def write(self, filename)
Write the multitrack pianoroll to a MIDI file. Parameters ---------- filename : str The name of the MIDI file to which the multitrack pianoroll is written.
4.215076
3.44287
1.224292
if not isinstance(arr, np.ndarray): raise TypeError("`arr` must be of np.ndarray type") if not (np.issubdtype(arr.dtype, np.bool_) or np.issubdtype(arr.dtype, np.number)): return False if arr.ndim != 2: return False if arr.shape[1] != 128: return False return True
def check_pianoroll(arr)
Return True if the array is a standard piano-roll matrix. Otherwise, return False. Raise TypeError if the input object is not a numpy array.
2.148167
2.172539
0.988782
_check_supported(obj) copied = deepcopy(obj) copied.binarize(threshold) return copied
def binarize(obj, threshold=0)
Return a copy of the object with binarized piano-roll(s). Parameters ---------- threshold : int or float Threshold to binarize the piano-roll(s). Default to zero.
7.253647
11.036232
0.657258
_check_supported(obj) copied = deepcopy(obj) copied.clip(lower, upper) return copied
def clip(obj, lower=0, upper=127)
Return a copy of the object with piano-roll(s) clipped by a lower bound and an upper bound specified by `lower` and `upper`, respectively. Parameters ---------- lower : int or float The lower bound to clip the piano-roll. Default to 0. upper : int or float The upper bound to clip the piano-roll. Default to 127.
6.137272
9.723185
0.6312
_check_supported(obj) copied = deepcopy(obj) copied.pad(pad_length) return copied
def pad(obj, pad_length)
Return a copy of the object with piano-roll padded with zeros at the end along the time axis. Parameters ---------- pad_length : int The length to pad along the time axis with zeros.
6.623208
10.187099
0.650156
_check_supported(obj) copied = deepcopy(obj) copied.pad_to_multiple(factor) return copied
def pad_to_multiple(obj, factor)
Return a copy of the object with its piano-roll padded with zeros at the end along the time axis with the minimal length that make the length of the resulting piano-roll a multiple of `factor`. Parameters ---------- factor : int The value which the length of the resulting piano-roll will be a multiple of.
6.376031
10.097955
0.631418
if not isinstance(obj, Multitrack): raise TypeError("Support only `pypianoroll.Multitrack` class objects") copied = deepcopy(obj) copied.pad_to_same() return copied
def pad_to_same(obj)
Return a copy of the object with shorter piano-rolls padded with zeros at the end along the time axis to the length of the piano-roll with the maximal length.
7.100032
5.867205
1.210122
if not filepath.endswith(('.mid', '.midi', '.MID', '.MIDI')): raise ValueError("Only MIDI files are supported") return Multitrack(filepath, beat_resolution=beat_resolution, name=name)
def parse(filepath, beat_resolution=24, name='unknown')
Return a :class:`pypianoroll.Multitrack` object loaded from a MIDI (.mid, .midi, .MID, .MIDI) file. Parameters ---------- filepath : str The file path to the MIDI file.
3.290745
2.869472
1.146812
if not isinstance(obj, Multitrack): raise TypeError("Support only `pypianoroll.Multitrack` class objects") obj.save(filepath, compressed)
def save(filepath, obj, compressed=True)
Save the object to a .npz file. Parameters ---------- filepath : str The path to save the file. obj: `pypianoroll.Multitrack` objects The object to be saved.
7.594944
5.497353
1.381564
_check_supported(obj) copied = deepcopy(obj) copied.transpose(semitone) return copied
def transpose(obj, semitone)
Return a copy of the object with piano-roll(s) transposed by `semitones` semitones. Parameters ---------- semitone : int Number of semitones to transpose the piano-roll(s).
6.022088
10.241092
0.588032
_check_supported(obj) copied = deepcopy(obj) length = copied.get_active_length() copied.pianoroll = copied.pianoroll[:length] return copied
def trim_trailing_silence(obj)
Return a copy of the object with trimmed trailing silence of the piano-roll(s).
7.972359
6.668567
1.195513
if not isinstance(obj, Multitrack): raise TypeError("Support only `pypianoroll.Multitrack` class objects") obj.write(filepath)
def write(obj, filepath)
Write the object to a MIDI file. Parameters ---------- filepath : str The path to write the MIDI file.
7.763184
7.183427
1.080707
if not isinstance(pianoroll, np.ndarray): raise TypeError("`pianoroll` must be of np.ndarray type.") if not (np.issubdtype(pianoroll.dtype, np.bool_) or np.issubdtype(pianoroll.dtype, np.number)): raise TypeError("The data type of `pianoroll` must be np.bool_ or a " "subdtype of np.number.") if pianoroll.ndim != 2: raise ValueError("`pianoroll` must have exactly two dimensions.") if pianoroll.shape[1] != 128: raise ValueError("The length of the second axis of `pianoroll` must be " "128.")
def _validate_pianoroll(pianoroll)
Raise an error if the input array is not a standard pianoroll.
1.910924
1.894665
1.008581
_validate_pianoroll(pianoroll) reshaped = pianoroll[:, :120].reshape(-1, 12, 10) reshaped[..., :8] += pianoroll[:, 120:].reshape(-1, 1, 8) return np.sum(reshaped, 1)
def _to_chroma(pianoroll)
Return the unnormalized chroma features of a pianoroll.
2.94459
2.857388
1.030518
_validate_pianoroll(pianoroll) reshaped = pianoroll.reshape(-1, beat_resolution * pianoroll.shape[1]) n_empty_beats = np.count_nonzero(reshaped.any(1)) return n_empty_beats / len(reshaped)
def empty_beat_rate(pianoroll, beat_resolution)
Return the ratio of empty beats to the total number of beats in a pianoroll.
2.961781
2.79248
1.060628
_validate_pianoroll(pianoroll) chroma = _to_chroma(pianoroll) return np.count_nonzero(np.any(chroma, 0))
def n_pitche_classes_used(pianoroll)
Return the number of unique pitch classes used in a pianoroll.
3.500182
3.410502
1.026295
_validate_pianoroll(pianoroll) if np.issubdtype(pianoroll.dtype, np.bool_): pianoroll = pianoroll.astype(np.uint8) padded = np.pad(pianoroll, ((1, 1), (0, 0)), 'constant') diff = np.diff(padded, axis=0).reshape(-1) onsets = (diff > 0).nonzero()[0] offsets = (diff < 0).nonzero()[0] n_qualified_notes = np.count_nonzero(offsets - onsets >= threshold) return n_qualified_notes / len(onsets)
def qualified_note_rate(pianoroll, threshold=2)
Return the ratio of the number of the qualified notes (notes longer than `threshold` (in time step)) to the total number of notes in a pianoroll.
2.257025
2.245966
1.004924
_validate_pianoroll(pianoroll) n_poly = np.count_nonzero(np.count_nonzero(pianoroll, 1) > threshold) return n_poly / len(pianoroll)
def polyphonic_rate(pianoroll, threshold=2)
Return the ratio of the number of time steps where the number of pitches being played is larger than `threshold` to the total number of time steps in a pianoroll.
2.696493
2.875043
0.937897
if beat_resolution not in (4, 6, 8, 9, 12, 16, 18, 24): raise ValueError("Unsupported beat resolution. Only 4, 6, 8 ,9, 12, " "16, 18, 42 are supported.") _validate_pianoroll(pianoroll) def _drum_pattern_mask(res, tol): if res == 24: drum_pattern_mask = np.tile([1., tol, 0., 0., 0., tol], 4) elif res == 12: drum_pattern_mask = np.tile([1., tol, tol], 4) elif res == 6: drum_pattern_mask = np.tile([1., tol, tol], 2) elif res == 18: drum_pattern_mask = np.tile([1., tol, 0., 0., 0., tol], 3) elif res == 9: drum_pattern_mask = np.tile([1., tol, tol], 3) elif res == 16: drum_pattern_mask = np.tile([1., tol, 0., tol], 4) elif res == 8: drum_pattern_mask = np.tile([1., tol], 4) elif res == 4: drum_pattern_mask = np.tile([1., tol], 2) return drum_pattern_mask drum_pattern_mask = _drum_pattern_mask(beat_resolution, tolerance) n_in_pattern = np.sum(drum_pattern_mask * np.count_nonzero(pianoroll, 1)) return n_in_pattern / np.count_nonzero(pianoroll)
def drum_in_pattern_rate(pianoroll, beat_resolution, tolerance=0.1)
Return the ratio of the number of drum notes that lie on the drum pattern (i.e., at certain time steps) to the total number of drum notes.
1.908838
1.893038
1.008347
if not isinstance(key, int): raise TypeError("`key` must an integer.") if key > 11 or key < 0: raise ValueError("`key` must be in an integer in between 0 and 11.") if kind not in ('major', 'minor'): raise ValueError("`kind` must be one of 'major' or 'minor'.") _validate_pianoroll(pianoroll) def _scale_mask(key, kind): if kind == 'major': a_scale_mask = np.array([0, 1, 1, 0, 1, 0, 1, 0, 1, 1, 0, 1], bool) else: a_scale_mask = np.array([1, 0, 1, 0, 1, 1, 0, 1, 0, 1, 0, 1], bool) return np.roll(a_scale_mask, key) chroma = _to_chroma(pianoroll) scale_mask = _scale_mask(key, kind) n_in_scale = np.sum(scale_mask.reshape(-1, 12) * chroma) return n_in_scale / np.count_nonzero(pianoroll)
def in_scale_rate(pianoroll, key=3, kind='major')
Return the ratio of the number of nonzero entries that lie in a specific scale to the total number of nonzero entries in a pianoroll. Default to C major scale.
2.141032
2.103438
1.017873
_validate_pianoroll(pianoroll_1) _validate_pianoroll(pianoroll_2) assert len(pianoroll_1) == len(pianoroll_2), ( "Input pianorolls must have the same length.") def _tonal_matrix(r1, r2, r3): tonal_matrix = np.empty((6, 12)) tonal_matrix[0] = r1 * np.sin(np.arange(12) * (7. / 6.) * np.pi) tonal_matrix[1] = r1 * np.cos(np.arange(12) * (7. / 6.) * np.pi) tonal_matrix[2] = r2 * np.sin(np.arange(12) * (3. / 2.) * np.pi) tonal_matrix[3] = r2 * np.cos(np.arange(12) * (3. / 2.) * np.pi) tonal_matrix[4] = r3 * np.sin(np.arange(12) * (2. / 3.) * np.pi) tonal_matrix[5] = r3 * np.cos(np.arange(12) * (2. / 3.) * np.pi) return tonal_matrix def _to_tonal_space(pianoroll, tonal_matrix): beat_chroma = _to_chroma(pianoroll).reshape(-1, beat_resolution, 12) beat_chroma = beat_chroma / np.sum(beat_chroma, 2, keepdims=True) return np.matmul(tonal_matrix, beat_chroma.T).T tonal_matrix = _tonal_matrix(r1, r2, r3) mapped_1 = _to_tonal_space(pianoroll_1, tonal_matrix) mapped_2 = _to_tonal_space(pianoroll_2, tonal_matrix) return np.linalg.norm(mapped_1 - mapped_2)
def tonal_distance(pianoroll_1, pianoroll_2, beat_resolution, r1=1.0, r2=1.0, r3=0.5)
Return the tonal distance [1] between the two input pianorolls. [1] Christopher Harte, Mark Sandler, and Martin Gasser. Detecting harmonic change in musical audio. In Proc. ACM Workshop on Audio and Music Computing Multimedia, 2006.
1.6112
1.627604
0.989921
if not self.is_binarized(): self.pianoroll[self.pianoroll.nonzero()] = value return if dtype is None: if isinstance(value, int): dtype = int elif isinstance(value, float): dtype = float nonzero = self.pianoroll.nonzero() self.pianoroll = np.zeros(self.pianoroll.shape, dtype) self.pianoroll[nonzero] = value
def assign_constant(self, value, dtype=None)
Assign a constant value to all nonzeros in the pianoroll. If the pianoroll is not binarized, its data type will be preserved. If the pianoroll is binarized, it will be casted to the type of `value`. Arguments --------- value : int or float The constant value to be assigned to all the nonzeros in the pianoroll.
2.642281
2.187109
1.208116
if not self.is_binarized(): self.pianoroll = (self.pianoroll > threshold)
def binarize(self, threshold=0)
Binarize the pianoroll. Parameters ---------- threshold : int or float A threshold used to binarize the pianorolls. Defaults to zero.
5.594303
5.025837
1.113109
# pianoroll if not isinstance(self.pianoroll, np.ndarray): raise TypeError("`pianoroll` must be a numpy array.") if not (np.issubdtype(self.pianoroll.dtype, np.bool_) or np.issubdtype(self.pianoroll.dtype, np.number)): raise TypeError("The data type of `pianoroll` must be np.bool_ or " "a subdtype of np.number.") if self.pianoroll.ndim != 2: raise ValueError("`pianoroll` must have exactly two dimensions.") if self.pianoroll.shape[1] != 128: raise ValueError("The length of the second axis of `pianoroll` " "must be 128.") # program if not isinstance(self.program, int): raise TypeError("`program` must be int.") if self.program < 0 or self.program > 127: raise ValueError("`program` must be in between 0 to 127.") # is_drum if not isinstance(self.is_drum, bool): raise TypeError("`is_drum` must be bool.") # name if not isinstance(self.name, string_types): raise TypeError("`name` must be a string.")
def check_validity(self)
Raise error if any invalid attribute found.
1.781616
1.74328
1.021991
self.pianoroll = self.pianoroll.clip(lower, upper)
def clip(self, lower=0, upper=127)
Clip the pianoroll by the given lower and upper bounds. Parameters ---------- lower : int or float The lower bound to clip the pianoroll. Defaults to 0. upper : int or float The upper bound to clip the pianoroll. Defaults to 127.
4.324906
3.536804
1.222829
nonzero_steps = np.any(self.pianoroll, axis=1) inv_last_nonzero_step = np.argmax(np.flip(nonzero_steps, axis=0)) active_length = self.pianoroll.shape[0] - inv_last_nonzero_step return active_length
def get_active_length(self)
Return the active length (i.e., without trailing silence) of the pianoroll. The unit is time step. Returns ------- active_length : int The active length (i.e., without trailing silence) of the pianoroll.
3.980884
3.492857
1.139721
if self.pianoroll.shape[1] < 1: raise ValueError("Cannot compute the active pitch range for an " "empty pianoroll") lowest = 0 highest = 127 while lowest < highest: if np.any(self.pianoroll[:, lowest]): break lowest += 1 if lowest == highest: raise ValueError("Cannot compute the active pitch range for an " "empty pianoroll") while not np.any(self.pianoroll[:, highest]): highest -= 1 return lowest, highest
def get_active_pitch_range(self)
Return the active pitch range as a tuple (lowest, highest). Returns ------- lowest : int The lowest active pitch in the pianoroll. highest : int The highest active pitch in the pianoroll.
2.558522
2.321702
1.102003
is_binarized = np.issubdtype(self.pianoroll.dtype, np.bool_) return is_binarized
def is_binarized(self)
Return True if the pianoroll is already binarized. Otherwise, return False. Returns ------- is_binarized : bool True if the pianoroll is already binarized; otherwise, False.
4.700046
3.541803
1.327021
self.pianoroll = np.pad( self.pianoroll, ((0, pad_length), (0, 0)), 'constant')
def pad(self, pad_length)
Pad the pianoroll with zeros at the end along the time axis. Parameters ---------- pad_length : int The length to pad with zeros along the time axis.
3.21232
2.930999
1.095982
remainder = self.pianoroll.shape[0] % factor if remainder: pad_width = ((0, (factor - remainder)), (0, 0)) self.pianoroll = np.pad(self.pianoroll, pad_width, 'constant')
def pad_to_multiple(self, factor)
Pad the pianoroll with zeros at the end along the time axis with the minimum length that makes the resulting pianoroll length a multiple of `factor`. Parameters ---------- factor : int The value which the length of the resulting pianoroll will be a multiple of.
2.626986
2.893454
0.907907