code
string | signature
string | docstring
string | loss_without_docstring
float64 | loss_with_docstring
float64 | factor
float64 |
---|---|---|---|---|---|
for obj in args:
if obj is not None and hasattr(obj, 'cleanup'):
try:
obj.cleanup()
except NotImplementedError:
pass
except Exception:
logger.exception("Unable to cleanup %s object", obj) | def cleanup(logger, *args) | Environment's cleanup routine. | 3.292773 | 3.094443 | 1.064092 |
self.logger.debug("Allocating environment.")
self._allocate()
self.logger.debug("Environment successfully allocated.") | def allocate(self) | Builds the context and the Hooks. | 6.433357 | 5.417366 | 1.187543 |
self.logger.debug("Deallocating environment.")
self._deallocate()
self.logger.debug("Environment successfully deallocated.") | def deallocate(self) | Cleans up the context and the Hooks. | 4.968068 | 4.524926 | 1.097934 |
domain = etree.fromstring(xml)
subelement(domain, './/name', 'name', identifier)
subelement(domain, './/uuid', 'uuid', identifier)
devices = subelement(domain, './/devices', 'devices', None)
for mount in mounts:
filesystem = etree.SubElement(devices, 'filesystem', type='mount')
etree.SubElement(filesystem, 'source', dir=mount[0])
etree.SubElement(filesystem, 'target', dir=mount[1])
if network_name is not None:
network = subelement(devices, './/interface[@type="network"]', 'interface', None, type='network')
subelement(network, './/source', 'source', None, network=network_name)
return etree.tostring(domain).decode('utf-8') | def domain_xml(identifier, xml, mounts, network_name=None) | Fills the XML file with the required fields.
@param identifier: (str) UUID of the Environment.
@param xml: (str) XML configuration of the domain.
@param filesystem: (tuple) ((source, target), (source, target))
* name
* uuid
* devices
* network
* filesystem | 2.437577 | 2.699233 | 0.903063 |
mounts = []
with open(configuration['configuration']) as config_file:
domain_config = config_file.read()
if 'filesystem' in configuration:
if isinstance(configuration['filesystem'], (list, tuple)):
for mount in configuration['filesystem']:
mounts.append(mountpoint(mount, identifier))
else:
mounts.append(mountpoint(configuration['filesystem'], identifier))
xml_config = domain_xml(identifier, domain_config, tuple(mounts), network_name=network_name)
return hypervisor.defineXML(xml_config) | def domain_create(hypervisor, identifier, configuration, network_name=None) | libvirt Domain definition.
@raise: ConfigError, IOError, libvirt.libvirtError. | 2.995647 | 2.996699 | 0.999649 |
if domain is not None:
try:
if domain.isActive():
domain.destroy()
except libvirt.libvirtError:
logger.exception("Unable to destroy the domain.")
try:
domain.undefine()
except libvirt.libvirtError:
logger.exception("Unable to undefine the domain.")
try:
if filesystem is not None and os.path.exists(filesystem):
shutil.rmtree(filesystem)
except Exception:
logger.exception("Unable to remove the shared folder.") | def domain_delete(domain, logger, filesystem) | libvirt domain undefinition.
@raise: libvirt.libvirtError. | 2.410115 | 2.204248 | 1.093395 |
network_name = None
self._hypervisor = libvirt.open(
self.configuration.get('hypervisor', 'lxc:///'))
if 'network' in self.configuration:
self._network = network.create(self._hypervisor, self.identifier,
self.configuration['network'])
network_name = self._network.name()
self._domain = domain_create(self._hypervisor, self.identifier,
self.configuration['domain'],
network_name=network_name)
if self._network is None:
self._network = network.lookup(self._domain) | def allocate(self) | Initializes libvirt resources. | 3.878826 | 3.407068 | 1.138465 |
if self._domain is not None:
self._domain_delete()
if self._network is not None and 'network' in self.configuration:
self._network_delete()
if self._hypervisor is not None:
self._hypervisor_delete() | def deallocate(self) | Releases all resources. | 4.152195 | 3.878409 | 1.070593 |
manager = HookManager(identifier, configuration)
manager.load_hooks(context)
return manager | def hooks_factory(identifier, configuration, context) | Returns the initialized hooks. | 5.521143 | 5.089566 | 1.084796 |
for hook in self.configuration.get('hooks', ()):
config = hook.get('configuration', {})
config.update(self.configuration.get('configuration', {}))
try:
self._load_hook(hook['name'], config, context)
except KeyError:
self.logger.exception('Provided hook has no name: %s.', hook) | def load_hooks(self, context) | Initializes the Hooks and loads them within the Environment. | 3.959594 | 3.817969 | 1.037094 |
subelm = element.find(xpath)
if subelm is None:
subelm = etree.SubElement(element, tag)
else:
subelm.tag = tag
subelm.text = text
for attr, value in kwargs.items():
subelm.set(attr, value)
return subelm | def subelement(element, xpath, tag, text, **kwargs) | Searches element matching the *xpath* in *parent* and replaces it's *tag*,
*text* and *kwargs* attributes.
If the element in *xpath* is not found a new child element is created
with *kwargs* attributes and added.
Returns the found/created element. | 2.003437 | 2.617007 | 0.765545 |
group = group if group else cmod.PairingGroup(PAIRING_GROUP)
h_challenge = sha256()
serialedArgs = [group.serialize(arg) if isGroupElement(arg)
else cmod.Conversion.IP2OS(arg)
for arg in args]
for arg in sorted(serialedArgs):
h_challenge.update(arg)
return bytes_to_int(h_challenge.digest()) | def get_hash_as_int(*args, group: cmod.PairingGroup = None) | Enumerate over the input tuple and generate a hash using the tuple values
:param args: sequence of either group or integer elements
:param group: pairing group if an element is a group element
:return: | 6.663049 | 5.95246 | 1.119377 |
return ''.join(sample(chars, size)) | def randomString(size: int = 20,
chars: str = string.ascii_letters + string.digits) -> str | Generate a random string of the specified size.
Ensure that the size is less than the length of chars as this function uses random.choice
which uses random sampling without replacement.
:param size: size of the random string to generate
:param chars: the set of characters to use to generate the random string. Uses alphanumerics by default.
:return: the random string generated | 15.234615 | 18.286118 | 0.833125 |
prime = cmod.randomPrime(LARGE_PRIME)
i = 0
while not cmod.isPrime(2 * prime + 1):
prime = cmod.randomPrime(LARGE_PRIME)
i += 1
return prime | def genPrime() | Generate 2 large primes `p_prime` and `q_prime` and use them
to generate another 2 primes `p` and `q` of 1024 bits | 3.618021 | 4.035852 | 0.89647 |
encoded = {}
for i in range(len(self.credType.names)):
self.credType.names[i]
attr_types = self.credType.attrTypes[i]
for at in attr_types:
attrName = at.name
if attrName in self._vals:
if at.encode:
encoded[attrName] = encodeAttr(self._vals[attrName])
else:
encoded[attrName] = self._vals[at.name]
return encoded | def encoded(self) | This function will encode all the attributes to 256 bit integers
:return: | 4.037981 | 3.917125 | 1.030853 |
schema = Schema(name, version, attrNames, self.issuerId)
return await self.wallet.submitSchema(schema) | async def genSchema(self, name, version, attrNames) -> Schema | Generates and submits Schema.
:param name: schema name
:param version: schema version
:param attrNames: a list of attributes the schema contains
:return: submitted Schema | 8.006314 | 8.859216 | 0.903727 |
pk, sk = await self._primaryIssuer.genKeys(schemaId, p_prime, q_prime)
pkR, skR = await self._nonRevocationIssuer.genRevocationKeys()
pk = await self.wallet.submitPublicKeys(schemaId=schemaId, pk=pk,
pkR=pkR)
pkR = await self.wallet.submitSecretKeys(schemaId=schemaId, sk=sk,
skR=skR)
return pk, pkR | async def genKeys(self, schemaId: ID, p_prime=None, q_prime=None) -> (
PublicKey, RevocationPublicKey) | Generates and submits keys (both public and secret, primary and
non-revocation).
:param schemaId: The schema ID (reference to claim
definition schema)
:param p_prime: optional p_prime parameter
:param q_prime: optional q_prime parameter
:return: Submitted Public keys (both primary and non-revocation) | 3.806715 | 3.126334 | 1.217629 |
accum, tails, accPK, accSK = await self._nonRevocationIssuer.issueAccumulator(
schemaId, iA, L)
accPK = await self.wallet.submitAccumPublic(schemaId=schemaId,
accumPK=accPK,
accum=accum, tails=tails)
await self.wallet.submitAccumSecret(schemaId=schemaId,
accumSK=accSK)
return accPK | async def issueAccumulator(self, schemaId: ID, iA,
L) -> AccumulatorPublicKey | Issues and submits an accumulator used for non-revocation proof.
:param schemaId: The schema ID (reference to claim
definition schema)
:param iA: accumulator ID
:param L: maximum number of claims within accumulator.
:return: Submitted accumulator public key | 5.371327 | 5.215873 | 1.029804 |
acc, ts = await self._nonRevocationIssuer.revoke(schemaId, i)
await self.wallet.submitAccumUpdate(schemaId=schemaId, accum=acc,
timestampMs=ts) | async def revoke(self, schemaId: ID, i) | Performs revocation of a Claim.
:param schemaId: The schema ID (reference to claim
definition schema)
:param i: claim's sequence number within accumulator | 17.687687 | 15.526985 | 1.139158 |
schemaKey = (await self.wallet.getSchema(schemaId)).getKey()
attributes = self._attrRepo.getAttributes(schemaKey,
claimRequest.userId)
# TODO re-enable when revocation registry is implemented
# iA = iA if iA else (await self.wallet.getAccumulator(schemaId)).iA
# TODO this has un-obvious side-effects
await self._genContxt(schemaId, iA, claimRequest.userId)
(c1, claim) = await self._issuePrimaryClaim(schemaId, attributes,
claimRequest.U)
# TODO re-enable when revocation registry is fully implemented
c2 = await self._issueNonRevocationClaim(schemaId, claimRequest.Ur,
iA,
i) if claimRequest.Ur else None
signature = Claims(primaryClaim=c1, nonRevocClaim=c2)
return (signature, claim) | async def issueClaim(self, schemaId: ID, claimRequest: ClaimRequest,
iA=None,
i=None) -> (Claims, Dict[str, ClaimAttributeValues]) | Issue a claim for the given user and schema.
:param schemaId: The schema ID (reference to claim
definition schema)
:param claimRequest: A claim request containing prover ID and
prover-generated values
:param iA: accumulator ID
:param i: claim's sequence number within accumulator
:return: The claim (both primary and non-revocation) | 6.670876 | 6.039009 | 1.104631 |
res = {}
for schemaId, claimReq in allClaimRequest.items():
res[schemaId] = await self.issueClaim(schemaId, claimReq)
return res | async def issueClaims(self, allClaimRequest: Dict[ID, ClaimRequest]) -> \
Dict[ID, Claims] | Issue claims for the given users and schemas.
:param allClaimRequest: a map of schema ID to a claim
request containing prover ID and prover-generated values
:return: The claims (both primary and non-revocation) | 2.996399 | 2.965393 | 1.010456 |
if proofRequest.verifiableAttributes.keys() != proof.requestedProof.revealed_attrs.keys():
raise ValueError('Received attributes ={} do not correspond to requested={}'.format(
proof.requestedProof.revealed_attrs.keys(), proofRequest.verifiableAttributes.keys()))
if proofRequest.predicates.keys() != proof.requestedProof.predicates.keys():
raise ValueError('Received predicates ={} do not correspond to requested={}'.format(
proof.requestedProof.predicates.keys(), proofRequest.predicates.keys()))
TauList = []
for (uuid, proofItem) in proof.proofs.items():
if proofItem.proof.nonRevocProof:
TauList += await self._nonRevocVerifier.verifyNonRevocation(
proofRequest, proofItem.schema_seq_no, proof.aggregatedProof.cHash,
proofItem.proof.nonRevocProof)
if proofItem.proof.primaryProof:
TauList += await self._primaryVerifier.verify(proofItem.schema_seq_no,
proof.aggregatedProof.cHash,
proofItem.proof.primaryProof)
CHver = self._get_hash(proof.aggregatedProof.CList, self._prepare_collection(TauList),
cmod.integer(proofRequest.nonce))
return CHver == proof.aggregatedProof.cHash | async def verify(self, proofRequest: ProofRequest, proof: FullProof) | Verifies a proof from the prover.
:param proofRequest: description of a proof to be presented (revealed
attributes, predicates, timestamps for non-revocation)
:param proof: a proof
:return: True if verified successfully and false otherwise. | 4.017373 | 3.728319 | 1.077529 |
await self._genMasterSecret(schemaId)
U = await self._genU(schemaId)
Ur = None if not reqNonRevoc else await self._genUr(schemaId)
proverId = proverId if proverId else self.proverId
return ClaimRequest(userId=proverId, U=U, Ur=Ur) | async def createClaimRequest(self, schemaId: ID, proverId=None,
reqNonRevoc=True) -> ClaimRequest | Creates a claim request to the issuer.
:param schemaId: The schema ID (reference to claim
definition schema)
:param proverId: a prover ID request a claim for (if None then
the current prover default ID is used)
:param reqNonRevoc: whether to request non-revocation claim
:return: Claim Request | 4.370374 | 4.301028 | 1.016123 |
res = {}
for schemaId in schemaIds:
res[schemaId] = await self.createClaimRequest(schemaId,
proverId,
reqNonRevoc)
return res | async def createClaimRequests(self, schemaIds: Sequence[ID],
proverId=None,
reqNonRevoc=True) -> Dict[ID, ClaimRequest] | Creates a claim request to the issuer.
:param schemaIds: The schema IDs (references to claim
definition schema)
:param proverId: a prover ID request a claim for (if None then
the current prover default ID is used)
:param reqNonRevoc: whether to request non-revocation claim
:return: a dictionary of Claim Requests for each Schema. | 2.164969 | 2.55313 | 0.847966 |
await self.wallet.submitContextAttr(schemaId, signature.primaryClaim.m2)
await self.wallet.submitClaimAttributes(schemaId, claimAttributes)
await self._initPrimaryClaim(schemaId, signature.primaryClaim)
if signature.nonRevocClaim:
await self._initNonRevocationClaim(schemaId, signature.nonRevocClaim) | async def processClaim(self, schemaId: ID, claimAttributes: Dict[str, ClaimAttributeValues], signature: Claims) | Processes and saves a received Claim for the given Schema.
:param schemaId: The schema ID (reference to claim
definition schema)
:param claims: claims to be processed and saved | 5.381391 | 5.631796 | 0.955537 |
res = []
for schemaId, (claim_signature, claim_attributes) in allClaims.items():
res.append(await self.processClaim(schemaId, claim_attributes, claim_signature))
return res | async def processClaims(self, allClaims: Dict[ID, Claims]) | Processes and saves received Claims.
:param claims: claims to be processed and saved for each claim
definition. | 5.527894 | 5.497355 | 1.005555 |
claims, requestedProof = await self._findClaims(proofRequest)
proof = await self._prepareProof(claims, proofRequest.nonce, requestedProof)
return proof | async def presentProof(self, proofRequest: ProofRequest) -> FullProof | Presents a proof to the verifier.
:param proofRequest: description of a proof to be presented (revealed
attributes, predicates, timestamps for non-revocation)
:return: a proof (both primary and non-revocation) and revealed attributes (initial non-encoded values) | 6.369228 | 7.991984 | 0.796952 |
v = struct.unpack(
'q', struct.pack('Q', int(hex_string, 16)))[0] # type: int
return v | def unsigned_hex_to_signed_int(hex_string: str) -> int | Converts a 64-bit hex string to a signed int value.
This is due to the fact that Apache Thrift only has signed values.
Examples:
'17133d482ba4f605' => 1662740067609015813
'b6dbb1c2b362bf51' => -5270423489115668655
:param hex_string: the string representation of a zipkin ID
:returns: signed int representation | 5.980719 | 5.950161 | 1.005136 |
hex_string = hex(struct.unpack('Q', struct.pack('q', signed_int))[0])[2:]
if hex_string.endswith('L'):
return hex_string[:-1]
return hex_string | def signed_int_to_unsigned_hex(signed_int: int) -> str | Converts a signed int value to a 64-bit hex string.
Examples:
1662740067609015813 => '17133d482ba4f605'
-5270423489115668655 => 'b6dbb1c2b362bf51'
:param signed_int: an int to convert
:returns: unsigned hex string | 3.067513 | 3.604851 | 0.85094 |
app[tracer_key] = tracer
m = middleware_maker(skip_routes=skip_routes,
tracer_key=tracer_key,
request_key=request_key)
app.middlewares.append(m)
# register cleanup signal to close zipkin transport connections
async def close_aiozipkin(app: Application) -> None:
await app[tracer_key].close()
app.on_cleanup.append(close_aiozipkin)
return app | def setup(app: Application,
tracer: Tracer, *,
skip_routes: Optional[AbstractRoute] = None,
tracer_key: str = APP_AIOZIPKIN_KEY,
request_key: str = REQUEST_AIOZIPKIN_KEY) -> Application | Sets required parameters in aiohttp applications for aiozipkin.
Tracer added into application context and cleaned after application
shutdown. You can provide custom tracer_key, if default name is not
suitable. | 3.136774 | 3.369557 | 0.930916 |
return cast(Tracer, app[tracer_key]) | def get_tracer(
app: Application, tracer_key: str = APP_AIOZIPKIN_KEY) -> Tracer | Returns tracer object from application context.
By default tracer has APP_AIOZIPKIN_KEY in aiohttp application context,
you can provide own key, if for some reason default one is not suitable. | 11.965389 | 12.937226 | 0.924881 |
return cast(SpanAbc, request[request_key]) | def request_span(request: Request,
request_key: str = REQUEST_AIOZIPKIN_KEY) -> SpanAbc | Returns span created by middleware from request context, you can use it
as parent on next child span. | 8.546787 | 8.985882 | 0.951135 |
trace_config = aiohttp.TraceConfig()
zipkin = ZipkinClientSignals(tracer)
trace_config.on_request_start.append(zipkin.on_request_start)
trace_config.on_request_end.append(zipkin.on_request_end)
trace_config.on_request_exception.append(zipkin.on_request_exception)
return trace_config | def make_trace_config(tracer: Tracer) -> aiohttp.TraceConfig | Creates aiohttp.TraceConfig with enabled aiozipking instrumentation
for aiohttp client. | 2.206369 | 1.974051 | 1.117686 |
return Endpoint(service_name, ipv4, ipv6, port) | def create_endpoint(service_name: str, *,
ipv4: OptStr = None,
ipv6: OptStr = None,
port: OptInt = None) -> Endpoint | Factory function to create Endpoint object. | 4.178916 | 3.892404 | 1.073608 |
ts = ts if ts is not None else time.time()
return int(ts * 1000 * 1000) | def make_timestamp(ts: OptTs = None) -> int | Create zipkin timestamp in microseconds, or convert available one
from second. Useful when user supplies ts from time.time() call. | 3.053584 | 2.226197 | 1.371659 |
headers = {
TRACE_ID_HEADER: context.trace_id,
SPAN_ID_HEADER: context.span_id,
FLAGS_HEADER: '0',
SAMPLED_ID_HEADER: '1' if context.sampled else '0',
}
if context.parent_id is not None:
headers[PARENT_ID_HEADER] = context.parent_id
return headers | def make_headers(context: TraceContext) -> Headers | Creates dict with zipkin headers from supplied trace context. | 2.115369 | 1.977107 | 1.069932 |
# b3={TraceId}-{SpanId}-{SamplingState}-{ParentSpanId}
c = context
# encode sampled flag
if c.debug:
sampled = 'd'
elif c.sampled:
sampled = '1'
else:
sampled = '0'
params = [c.trace_id, c.span_id, sampled] # type: List[str]
if c.parent_id is not None:
params.append(c.parent_id)
h = DELIMITER.join(params)
headers = {SINGLE_HEADER: h}
return headers | def make_single_header(context: TraceContext) -> Headers | Creates dict with zipkin single header format. | 4.188604 | 3.990451 | 1.049657 |
# TODO: add validation for trace_id/span_id/parent_id
# normalize header names just in case someone passed regular dict
# instead dict with case insensitive keys
headers = {k.lower(): v for k, v in headers.items()}
required = (TRACE_ID_HEADER.lower(), SPAN_ID_HEADER.lower())
has_b3 = all(h in headers for h in required)
has_b3_single = SINGLE_HEADER in headers
if not(has_b3_single or has_b3):
return None
if has_b3:
debug = parse_debug_header(headers)
sampled = debug if debug else parse_sampled_header(headers)
context = TraceContext(
trace_id=headers[TRACE_ID_HEADER.lower()],
parent_id=headers.get(PARENT_ID_HEADER.lower()),
span_id=headers[SPAN_ID_HEADER.lower()],
sampled=sampled,
debug=debug,
shared=False,
)
return context
return _parse_single_header(headers) | def make_context(headers: Headers) -> Optional[TraceContext] | Converts available headers to TraceContext, if headers mapping does
not contain zipkin headers, function returns None. | 3.053705 | 3.138375 | 0.973021 |
def limited_filter(k: str, v: Any) -> bool:
return k not in keys or v is not None # type: ignore
def full_filter(k: str, v: Any) -> bool:
return v is not None
f = limited_filter if keys is not None else full_filter
return {k: v for k, v in data.items() if f(k, v)} | def filter_none(data: Dict[str, Any],
keys: OptKeys = None) -> Dict[str, Any] | Filter keys from dict with None values.
Check occurs only on root level. If list of keys specified, filter
works only for selected keys | 2.696413 | 2.67354 | 1.008555 |
d = rhypo
d[d <= 15.0] = 15.0
return C['a3'] * np.log10(d) | def _compute_term_3(self, C, rhypo) | Compute term 3 in equation 2 page 462.
Distances are clipped at 15 km (as per Ezio Faccioli's personal
communication.) | 7.046542 | 4.836496 | 1.456952 |
# for rock values the site term is zero
site_term = np.zeros_like(vs30)
# hard soil
site_term[(vs30 >= 360) & (vs30 < 800)] = C['aB']
# medium soil
site_term[(vs30 >= 180) & (vs30 < 360)] = C['aC']
# soft soil
site_term[vs30 < 180] = C['aD']
return site_term | def _compute_site_term(self, C, vs30) | Compute site term as a function of vs30: 4th, 5th and 6th terms in
equation 2 page 462. | 2.911491 | 2.922841 | 0.996117 |
if rake > -120.0 and rake <= -60.0:
return C['aN']
elif rake > 30.0 and rake <= 150.0:
return C['aR']
else:
return C['aS'] | def _compute_faulting_style_term(self, C, rake) | Compute faulting style term as a function of rake angle value as given
in equation 5 page 465. | 3.686196 | 3.693901 | 0.997914 |
mean = (self._compute_term_1_2(C, mag) +
self._compute_term_3(C, dists.rhypo) +
self._compute_site_term(C, vs30) +
self._compute_faulting_style_term(C, rake))
# convert from cm/s**2 to g for SA and from m/s**2 to g for PGA (PGV
# is already in cm/s) and also convert from base 10 to base e.
if imt.name == "PGA":
mean = np.log((10 ** mean) / g)
elif imt.name == "SA":
mean = np.log((10 ** mean) * ((2 * np.pi / imt.period) ** 2) *
1e-2 / g)
else:
mean = np.log(10 ** mean)
return mean | def _compute_mean(self, C, mag, dists, vs30, rake, imt) | Compute mean value for PGV, PGA and Displacement responce spectrum,
as given in equation 2, page 462 with the addition of the faulting
style term as given in equation 5, page 465. Converts also
displacement responce spectrum values to SA. | 3.85306 | 3.586135 | 1.074433 |
stddevs = []
for stddev_type in stddev_types:
assert stddev_type in self.DEFINED_FOR_STANDARD_DEVIATION_TYPES
stddevs.append(np.log(10 ** C['sigma']) + np.zeros(num_sites))
return stddevs | def _get_stddevs(self, C, stddev_types, num_sites) | Return total standard deviation. | 3.235297 | 3.267241 | 0.990223 |
cmaker = ContextMaker(rupture.tectonic_region_type, [gsim])
gc = GmfComputer(rupture, sites, [str(imt) for imt in imts],
cmaker, truncation_level, correlation_model)
res, _sig, _eps = gc.compute(gsim, realizations, seed)
return {imt: res[imti] for imti, imt in enumerate(gc.imts)} | def ground_motion_fields(rupture, sites, imts, gsim, truncation_level,
realizations, correlation_model=None, seed=None) | Given an earthquake rupture, the ground motion field calculator computes
ground shaking over a set of sites, by randomly sampling a ground shaking
intensity model. A ground motion field represents a possible 'realization'
of the ground shaking due to an earthquake rupture.
.. note::
This calculator is using random numbers. In order to reproduce the
same results numpy random numbers generator needs to be seeded, see
http://docs.scipy.org/doc/numpy/reference/generated/numpy.random.seed.html
:param openquake.hazardlib.source.rupture.Rupture rupture:
Rupture to calculate ground motion fields radiated from.
:param openquake.hazardlib.site.SiteCollection sites:
Sites of interest to calculate GMFs.
:param imts:
List of intensity measure type objects (see
:mod:`openquake.hazardlib.imt`).
:param gsim:
Ground-shaking intensity model, instance of subclass of either
:class:`~openquake.hazardlib.gsim.base.GMPE` or
:class:`~openquake.hazardlib.gsim.base.IPE`.
:param truncation_level:
Float, number of standard deviations for truncation of the intensity
distribution, or ``None``.
:param realizations:
Integer number of GMF realizations to compute.
:param correlation_model:
Instance of correlation model object. See
:mod:`openquake.hazardlib.correlation`. Can be ``None``, in which case
non-correlated ground motion fields are calculated. Correlation model
is not used if ``truncation_level`` is zero.
:param int seed:
The seed used in the numpy random number generator
:returns:
Dictionary mapping intensity measure type objects (same
as in parameter ``imts``) to 2d numpy arrays of floats,
representing different realizations of ground shaking intensity
for all sites in the collection. First dimension represents
sites and second one is for realizations. | 5.306162 | 5.995108 | 0.885082 |
try: # read the seed from self.rupture.serial
seed = seed or self.rupture.serial
except AttributeError:
pass
if seed is not None:
numpy.random.seed(seed)
result = numpy.zeros((len(self.imts), len(self.sids), num_events), F32)
sig = numpy.zeros((len(self.imts), num_events), F32)
eps = numpy.zeros((len(self.imts), num_events), F32)
for imti, imt in enumerate(self.imts):
if isinstance(gsim, MultiGMPE):
gs = gsim[str(imt)] # MultiGMPE
else:
gs = gsim # regular GMPE
try:
result[imti], sig[imti], eps[imti] = self._compute(
None, gs, num_events, imt)
except Exception as exc:
raise exc.__class__(
'%s for %s, %s, srcidx=%s' % (exc, gs, imt, self.srcidx)
).with_traceback(exc.__traceback__)
return result, sig, eps | def compute(self, gsim, num_events, seed=None) | :param gsim: a GSIM instance
:param num_events: the number of seismic events
:param seed: a random seed or None
:returns:
a 32 bit array of shape (num_imts, num_sites, num_events) and
two arrays with shape (num_imts, num_events): sig for stddev_inter
and eps for the random part | 3.34285 | 2.946965 | 1.134337 |
rctx = getattr(self.rupture, 'rupture', self.rupture)
if seed is not None:
numpy.random.seed(seed)
dctx = self.dctx.roundup(gsim.minimum_distance)
if self.truncation_level == 0:
assert self.correlation_model is None
mean, _stddevs = gsim.get_mean_and_stddevs(
self.sctx, rctx, dctx, imt, stddev_types=[])
mean = gsim.to_imt_unit_values(mean)
mean.shape += (1, )
mean = mean.repeat(num_events, axis=1)
return (mean,
numpy.zeros(num_events, F32),
numpy.zeros(num_events, F32))
elif self.truncation_level is None:
distribution = scipy.stats.norm()
else:
assert self.truncation_level > 0
distribution = scipy.stats.truncnorm(
- self.truncation_level, self.truncation_level)
num_sids = len(self.sids)
if gsim.DEFINED_FOR_STANDARD_DEVIATION_TYPES == {StdDev.TOTAL}:
# If the GSIM provides only total standard deviation, we need
# to compute mean and total standard deviation at the sites
# of interest.
# In this case, we also assume no correlation model is used.
if self.correlation_model:
raise CorrelationButNoInterIntraStdDevs(
self.correlation_model, gsim)
mean, [stddev_total] = gsim.get_mean_and_stddevs(
self.sctx, rctx, dctx, imt, [StdDev.TOTAL])
stddev_total = stddev_total.reshape(stddev_total.shape + (1, ))
mean = mean.reshape(mean.shape + (1, ))
total_residual = stddev_total * rvs(
distribution, num_sids, num_events)
gmf = gsim.to_imt_unit_values(mean + total_residual)
stddev_inter = numpy.empty(num_events, F32)
stddev_inter.fill(numpy.nan)
epsilons = numpy.empty(num_events, F32)
epsilons.fill(numpy.nan)
else:
mean, [stddev_inter, stddev_intra] = gsim.get_mean_and_stddevs(
self.sctx, rctx, dctx, imt,
[StdDev.INTER_EVENT, StdDev.INTRA_EVENT])
stddev_intra = stddev_intra.reshape(stddev_intra.shape + (1, ))
stddev_inter = stddev_inter.reshape(stddev_inter.shape + (1, ))
mean = mean.reshape(mean.shape + (1, ))
intra_residual = stddev_intra * rvs(
distribution, num_sids, num_events)
if self.correlation_model is not None:
ir = self.correlation_model.apply_correlation(
self.sites, imt, intra_residual, stddev_intra)
# this fixes a mysterious bug: ir[row] is actually
# a matrix of shape (E, 1) and not a vector of size E
intra_residual = numpy.zeros(ir.shape)
for i, val in numpy.ndenumerate(ir):
intra_residual[i] = val
epsilons = rvs(distribution, num_events)
inter_residual = stddev_inter * epsilons
gmf = gsim.to_imt_unit_values(
mean + intra_residual + inter_residual)
return gmf, stddev_inter.max(axis=0), epsilons | def _compute(self, seed, gsim, num_events, imt) | :param seed: a random seed or None if the seed is already set
:param gsim: a GSIM instance
:param num_events: the number of seismic events
:param imt: an IMT instance
:returns: (gmf(num_sites, num_events), stddev_inter(num_events),
epsilons(num_events)) | 2.822967 | 2.692907 | 1.048297 |
if os.path.exists(oqdata):
sys.exit('%s exists already' % oqdata)
if '://' in archive:
# get the zip archive from an URL
resp = requests.get(archive)
_, archive = archive.rsplit('/', 1)
with open(archive, 'wb') as f:
f.write(resp.content)
if not os.path.exists(archive):
sys.exit('%s does not exist' % archive)
t0 = time.time()
oqdata = os.path.abspath(oqdata)
assert archive.endswith('.zip'), archive
os.mkdir(oqdata)
zipfile.ZipFile(archive).extractall(oqdata)
dbpath = os.path.join(oqdata, 'db.sqlite3')
db = Db(sqlite3.connect, dbpath, isolation_level=None,
detect_types=sqlite3.PARSE_DECLTYPES)
n = 0
for fname in os.listdir(oqdata):
mo = re.match('calc_(\d+)\.hdf5', fname)
if mo:
job_id = int(mo.group(1))
fullname = os.path.join(oqdata, fname)[:-5] # strip .hdf5
db("UPDATE job SET user_name=?x, ds_calc_dir=?x WHERE id=?x",
getpass.getuser(), fullname, job_id)
safeprint('Restoring ' + fname)
n += 1
dt = time.time() - t0
safeprint('Extracted %d calculations into %s in %d seconds'
% (n, oqdata, dt)) | def restore(archive, oqdata) | Build a new oqdata directory from the data contained in the zip archive | 3.225163 | 3.14822 | 1.02444 |
return (C["c2"] * rhypo) + (C["c3"] * np.log10(rhypo)) | def _compute_distance_term(self, C, rhypo) | Returns the distance scaling term | 5.40274 | 5.098066 | 1.059763 |
epsilon = rhypo - (4.853 + 1.347E-6 * (mag ** 8.163))
rjb = np.zeros_like(rhypo)
idx = epsilon >= 3.
rjb[idx] = np.sqrt((epsilon[idx] ** 2.) - 9.0)
rjb[rjb < 0.0] = 0.0
return rjb | def rhypo_to_rjb(rhypo, mag) | Converts hypocentral distance to an equivalent Joyner-Boore distance
dependent on the magnitude | 4.577103 | 4.881083 | 0.937723 |
# Convert rhypo to rrup
rrup = rhypo_to_rrup(dists.rhypo, rup.mag)
mean = (self._get_magnitude_scaling_term(C, rup.mag) +
self._get_distance_scaling_term(C, rup.mag, rrup) +
self._get_style_of_faulting_term(C, rup.rake) +
self._get_site_amplification_term(C, sites.vs30))
# convert from cm/s**2 to g for SA and from cm/s**2 to g for PGA (PGV
# is already in cm/s) and also convert from base 10 to base e.
if isinstance(imt, PGA):
mean = np.log((10 ** mean) * ((2 * np.pi / 0.01) ** 2) *
1e-2 / g)
elif isinstance(imt, SA):
mean = np.log((10 ** mean) * ((2 * np.pi / imt.period) ** 2) *
1e-2 / g)
else:
mean = np.log(10 ** mean)
return mean + self.adjustment_factor | def _compute_mean(self, C, rup, dists, sites, imt) | Returns the mean ground motion acceleration and velocity | 3.45773 | 3.499865 | 0.987961 |
# List must be in following order
p_n = []
# Rjb
# Note that Rjb must be clipped at 0.1 km
rjb = rhypo_to_rjb(dists.rhypo, rup.mag)
rjb[rjb < 0.1] = 0.1
p_n.append(self._get_normalised_term(np.log10(rjb),
self.CONSTANTS["logMaxR"],
self.CONSTANTS["logMinR"]))
# Magnitude
p_n.append(self._get_normalised_term(rup.mag,
self.CONSTANTS["maxMw"],
self.CONSTANTS["minMw"]))
# Vs30
p_n.append(self._get_normalised_term(np.log10(sites.vs30),
self.CONSTANTS["logMaxVs30"],
self.CONSTANTS["logMinVs30"]))
# Depth
p_n.append(self._get_normalised_term(rup.hypo_depth,
self.CONSTANTS["maxD"],
self.CONSTANTS["minD"]))
# Style of Faulting
p_n.append(self._get_normalised_term(sof,
self.CONSTANTS["maxFM"],
self.CONSTANTS["minFM"]))
return p_n | def get_pn(self, rup, sites, dists, sof) | Normalise the input parameters within their upper and lower
defined range | 2.643449 | 2.587291 | 1.021705 |
dtlist = [(imt, numpy.float32) for imt in sorted_imts]
imt_dt = numpy.dtype(dtlist)
return numpy.dtype([(str(gsim), imt_dt) for gsim in sorted_gsims]) | def gsim_imt_dt(sorted_gsims, sorted_imts) | Build a numpy dtype as a nested record with keys 'idx' and nested
(gsim, imt).
:param sorted_gsims: a list of GSIM instances, sorted lexicographically
:param sorted_imts: a list of intensity measure type strings | 2.992019 | 3.973702 | 0.752955 |
# notation from http://en.wikipedia.org/wiki/Truncated_normal_distribution.
# given that mu = 0 and sigma = 1, we have alpha = a and beta = b.
# "CDF" in comments refers to cumulative distribution function
# of non-truncated distribution with that mu and sigma values.
# assume symmetric truncation, that is ``a = - truncation_level``
# and ``b = + truncation_level``.
# calculate CDF of b
phi_b = ndtr(truncation_level)
# calculate Z as ``Z = CDF(b) - CDF(a)``, here we assume that
# ``CDF(a) == CDF(- truncation_level) == 1 - CDF(b)``
z = phi_b * 2 - 1
# calculate the result of survival function of ``values``,
# and restrict it to the interval where probability is defined --
# 0..1. here we use some transformations of the original formula
# that is ``SF(x) = 1 - (CDF(x) - CDF(a)) / Z`` in order to minimize
# number of arithmetic operations and function calls:
# ``SF(x) = (Z - CDF(x) + CDF(a)) / Z``,
# ``SF(x) = (CDF(b) - CDF(a) - CDF(x) + CDF(a)) / Z``,
# ``SF(x) = (CDF(b) - CDF(x)) / Z``.
return ((phi_b - ndtr(values)) / z).clip(0.0, 1.0) | def _truncnorm_sf(truncation_level, values) | Survival function for truncated normal distribution.
Assumes zero mean, standard deviation equal to one and symmetric
truncation.
:param truncation_level:
Positive float number representing the truncation on both sides
around the mean, in units of sigma.
:param values:
Numpy array of values as input to a survival function for the given
distribution.
:returns:
Numpy array of survival function results in a range between 0 and 1.
>>> from scipy.stats import truncnorm
>>> truncnorm(-3, 3).sf(0.12345) == _truncnorm_sf(3, 0.12345)
True | 5.294886 | 5.302577 | 0.998549 |
with warnings.catch_warnings():
warnings.simplefilter("ignore")
# avoid RuntimeWarning: divide by zero encountered in log
return numpy.log(values) | def to_distribution_values(self, values) | Returns numpy array of natural logarithms of ``values``. | 4.40253 | 3.576656 | 1.230907 |
for key in (ADMITTED_STR_PARAMETERS + ADMITTED_FLOAT_PARAMETERS +
ADMITTED_SET_PARAMETERS):
try:
val = getattr(self.gmpe, key)
except AttributeError:
pass
else:
setattr(self, key, val) | def set_parameters(self) | Combines the parameters of the GMPE provided at the construction level
with the ones originally assigned to the backbone modified GMPE. | 5.15016 | 4.331088 | 1.189115 |
table = table.strip().splitlines()
header = table.pop(0).split()
if not header[0].upper() == "IMT":
raise ValueError('first column in a table must be IMT')
coeff_names = header[1:]
for row in table:
row = row.split()
imt_name = row[0].upper()
if imt_name == 'SA':
raise ValueError('specify period as float value '
'to declare SA IMT')
imt_coeffs = dict(zip(coeff_names, map(float, row[1:])))
try:
sa_period = float(imt_name)
except Exception:
if imt_name not in imt_module.registry:
raise ValueError('unknown IMT %r' % imt_name)
imt = imt_module.registry[imt_name]()
self.non_sa_coeffs[imt] = imt_coeffs
else:
if sa_damping is None:
raise TypeError('attribute "sa_damping" is required '
'for tables defining SA')
imt = imt_module.SA(sa_period, sa_damping)
self.sa_coeffs[imt] = imt_coeffs | def _setup_table_from_str(self, table, sa_damping) | Builds the input tables from a string definition | 3.103283 | 3.08874 | 1.004708 |
return (C["r1"] + C["r2"] * mag) *\
np.log(np.sqrt(rrup ** 2. + C["h1"] ** 2.)) | def get_distance_term(self, C, rrup, mag) | Returns distance scaling term | 4.900184 | 4.884715 | 1.003167 |
stddevs = []
zeros_array = np.zeros(nsites)
for stddev in stddev_types:
assert stddev in self.DEFINED_FOR_STANDARD_DEVIATION_TYPES
if stddev == const.StdDev.TOTAL:
stddevs.append(np.sqrt(C["tau"] ** 2. + C["phi"] ** 2.) +
zeros_array)
elif stddev == const.StdDev.INTER_EVENT:
stddevs.append(C["tau"] + zeros_array)
elif stddev == const.StdDev.INTRA_EVENT:
stddevs.append(C["phi"] + zeros_array)
return stddevs | def get_stddevs(self, C, nsites, stddev_types) | Returns the standard deviations | 2.208638 | 2.244793 | 0.983894 |
if imt.period < 0.2:
return np.log(10**0.23)
elif imt.period > 1.0:
return np.log(10**0.27)
else:
return np.log(10**(0.23 + (imt.period - 0.2)/0.8 * 0.04)) | def get_sigma(imt) | Return the value of the total sigma
:param float imt:
An :class:`openquake.hazardlib.imt.IMT` instance
:returns:
A float representing the total sigma value | 2.899735 | 3.179808 | 0.911921 |
for field, type_info in fields_spec.items():
has_default = not isinstance(type_info, type)
if field not in config and not has_default:
raise RuntimeError(
"Configuration not complete. %s missing" % field) | def check_config(self, config, fields_spec) | Check that `config` has each field in `fields_spec` if a default
has not been provided. | 4.711301 | 4.303918 | 1.094654 |
defaults = dict([(f, d)
for f, d in fields_spec.items()
if not isinstance(d, type)])
for field, default_value in defaults.items():
if field not in config:
config[field] = default_value | def set_defaults(self, config, fields_spec) | Set default values got from `fields_spec` into the `config`
dictionary | 3.001233 | 3.015491 | 0.995272 |
def class_decorator(class_obj):
original_method = getattr(class_obj, method_name)
if sys.version[0] == '2': # Python 2
original_method = original_method.im_func
def caller(fn, obj, catalogue, config=None, *args, **kwargs):
config = config or {}
self.set_defaults(config, fields)
self.check_config(config, fields)
return fn(obj, catalogue, config, *args, **kwargs)
new_method = decorator(caller, original_method)
setattr(class_obj, method_name, new_method)
instance = class_obj()
func = functools.partial(new_method, instance)
func.fields = fields
func.model = instance
func.completeness = completeness
functools.update_wrapper(func, new_method)
self[class_obj.__name__] = func
return class_obj
return class_decorator | def add(self, method_name, completeness=False, **fields) | Class decorator.
Decorate `method_name` by adding a call to `set_defaults` and
`check_config`. Then, save into the registry a callable
function with the same signature of the original method.
:param str method_name:
the method to decorate
:param bool completeness:
True if the method accepts in input an optional parameter
for the completeness table
:param fields:
a dictionary of field spec corresponding to the
keys expected to be present in the config dictionary
for the decorated method, e.g.
time_bin=numpy.float,
b_value=1E-6 | 3.322329 | 3.111795 | 1.067657 |
def dec(fn):
if completeness:
def fn_with_config_and_c(
catalogue, config, completeness_table=None):
return fn(catalogue, completeness_table, **config)
fn_with_config = fn_with_config_and_c
else:
def fn_with_config_without_c(catalogue, config):
return fn(catalogue, **config)
fn_with_config = fn_with_config_without_c
fn_with_config.fields = fields
fn_with_config.completeness = completeness
fn.fields = fields
self[fn.__name__] = fn_with_config
return fn
return dec | def add_function(self, completeness=False, **fields) | Function decorator.
Decorate a function by adding a call to `set_defaults` and
`check_config`. Then, save into the registry a callable
function with the same signature of the original method
:param fields:
a dictionary of field spec, e.g.
time_bin=numpy.float,
b_value=1E-6 | 2.636609 | 2.695635 | 0.978103 |
C = self.COEFFS[imt]
mean = (np.log(self.get_magnitude_term(C, rup) +
self.get_distance_term(C, dists.rrup)) +
self.get_site_amplification(C, sites))
stddevs = self.get_stddevs(C, sites.vs30.shape, rup.mag, stddev_types)
return mean, stddevs | def get_mean_and_stddevs(self, sites, rup, dists, imt, stddev_types) | See :meth:`superclass method
<.base.GroundShakingIntensityModel.get_mean_and_stddevs>`
for spec of input and result values. | 3.139919 | 3.177233 | 0.988256 |
b0, stress_drop = self._get_sof_terms(C, rup.rake)
if rup.mag <= C["m1"]:
return b0
else:
# Calculate moment (equation 5)
m_0 = 10.0 ** (1.5 * rup.mag + 16.05)
# Get stress-drop scaling (equation 6)
if rup.mag > C["m2"]:
stress_drop += (C["b2"] * (C["m2"] - self.CONSTANTS["mstar"]) +
(C["b3"] * (rup.mag - C["m2"])))
else:
stress_drop += (C["b2"] * (rup.mag - self.CONSTANTS["mstar"]))
stress_drop = np.exp(stress_drop)
# Get corner frequency (equation 4)
f0 = 4.9 * 1.0E6 * 3.2 * ((stress_drop / m_0) ** (1. / 3.))
return 1. / f0 | def get_magnitude_term(self, C, rup) | Returns the magnitude scaling term in equation 3 | 4.569621 | 4.376541 | 1.044117 |
f_p = C["c1"] * rrup
idx = np.logical_and(rrup > self.CONSTANTS["r1"],
rrup <= self.CONSTANTS["r2"])
f_p[idx] = (C["c1"] * self.CONSTANTS["r1"]) +\
C["c2"] * (rrup[idx] - self.CONSTANTS["r1"])
idx = rrup > self.CONSTANTS["r2"]
f_p[idx] = C["c1"] * self.CONSTANTS["r1"] +\
C["c2"] * (self.CONSTANTS["r2"] - self.CONSTANTS["r1"]) +\
C["c3"] * (rrup[idx] - self.CONSTANTS["r2"])
return f_p | def get_distance_term(self, C, rrup) | Returns the distance scaling term in equation 7 | 2.016462 | 1.985432 | 1.015629 |
if rake >= 45.0 and rake <= 135.0:
# Reverse faulting
return C["b0R"], C["b1R"]
elif rake <= -45. and rake >= -135.0:
# Normal faulting
return C["b0N"], C["b1N"]
else:
# Strike slip
return C["b0SS"], C["b1SS"] | def _get_sof_terms(self, C, rake) | Returns the style-of-faulting scaling parameters | 3.212344 | 2.922731 | 1.09909 |
# Gets delta normalised z1
dz1 = sites.z1pt0 - np.exp(self._get_lnmu_z1(sites.vs30))
f_s = C["c5"] * dz1
# Calculates site amplification term
f_s[dz1 > self.CONSTANTS["dz1ref"]] = (C["c5"] *
self.CONSTANTS["dz1ref"])
idx = sites.vs30 > self.CONSTANTS["v1"]
f_s[idx] += (C["c4"] * np.log(self.CONSTANTS["v1"] / C["vref"]))
idx = np.logical_not(idx)
f_s[idx] += (C["c4"] * np.log(sites.vs30[idx] / C["vref"]))
return f_s | def get_site_amplification(self, C, sites) | Returns the site amplification term | 4.469441 | 4.34065 | 1.029671 |
tau = self._get_tau(C, mag) + np.zeros(nsites)
phi = self._get_phi(C, mag) + np.zeros(nsites)
stddevs = []
for stddev in stddev_types:
assert stddev in self.DEFINED_FOR_STANDARD_DEVIATION_TYPES
if stddev == const.StdDev.TOTAL:
stddevs.append(np.sqrt(tau ** 2. + phi ** 2.))
elif stddev == const.StdDev.INTER_EVENT:
stddevs.append(tau)
elif stddev == const.StdDev.INTRA_EVENT:
stddevs.append(phi)
return stddevs | def get_stddevs(self, C, nsites, mag, stddev_types) | Returns the standard deviations | 1.958251 | 1.97443 | 0.991806 |
if mag < 6.5:
return C["tau1"]
elif mag < 7.:
return C["tau1"] + (C["tau2"] - C["tau1"]) * ((mag - 6.5) / 0.5)
else:
return C["tau2"] | def _get_tau(self, C, mag) | Returns magnitude dependent inter-event standard deviation (tau)
(equation 14) | 2.42675 | 2.277428 | 1.065566 |
if mag < 5.5:
return C["phi1"]
elif mag < 5.75:
return C["phi1"] + (C["phi2"] - C["phi1"]) * ((mag - 5.5) / 0.25)
else:
return C["phi2"] | def _get_phi(self, C, mag) | Returns the magnitude dependent intra-event standard deviation (phi)
(equation 15) | 2.250347 | 2.155106 | 1.044193 |
delta = 0.00750 * 10 ** (0.507 * mag)
# computing R for different values of mag
if mag < 6.5:
R = np.sqrt(dists.rhypo ** 2 + delta ** 2)
else:
R = np.sqrt(dists.rrup ** 2 + delta ** 2)
mean = (
# 1st term
C['c1'] + C['c2'] * mag +
# 2nd term
C['c3'] * R -
# 3rd term
C['c4'] * np.log10(R) +
# 4th term
C['c5'] * hypo_depth
)
# convert from base 10 to base e
if imt == PGV():
mean = np.log(10 ** mean)
else:
# convert from cm/s**2 to g
mean = np.log((10 ** mean) * 1e-2 / g)
return mean | def _compute_mean(self, C, g, mag, hypo_depth, dists, imt) | Compute mean according to equation on Table 2, page 2275. | 3.378587 | 3.270968 | 1.032901 |
with tempfile.TemporaryFile(mode='w+') as stream:
ps = pstats.Stats(pstatfile, stream=stream)
ps.sort_stats('cumtime')
ps.print_stats(n)
stream.seek(0)
lines = list(stream)
for i, line in enumerate(lines):
if line.startswith(' ncalls'):
break
data = []
for line in lines[i + 2:]:
columns = line.split()
if len(columns) == 6:
data.append(PStatData(*columns))
rows = [(rec.ncalls, rec.cumtime, rec.path) for rec in data]
# here is an example of the expected output table:
# ====== ======= ========================================================
# ncalls cumtime path
# ====== ======= ========================================================
# 1 33.502 commands/run.py:77(_run)
# 1 33.483 calculators/base.py:110(run)
# 1 25.166 calculators/classical.py:115(execute)
# 1 25.104 baselib.parallel.py:249(apply_reduce)
# 1 25.099 calculators/classical.py:41(classical)
# 1 25.099 hazardlib/calc/hazard_curve.py:164(classical)
return views.rst_table(rows, header='ncalls cumtime path'.split()) | def get_pstats(pstatfile, n) | Return profiling information as an RST table.
:param pstatfile: path to a .pstat file
:param n: the maximum number of stats to retrieve | 4.277205 | 4.296143 | 0.995592 |
hcalc = base.calculators(readinput.get_oqparam(job_haz), calc_id)
hcalc.run(concurrent_tasks=concurrent_tasks, pdb=pdb,
exports=exports, **params)
hc_id = hcalc.datastore.calc_id
rcalc_id = logs.init(level=getattr(logging, loglevel.upper()))
oq = readinput.get_oqparam(job_risk, hc_id=hc_id)
rcalc = base.calculators(oq, rcalc_id)
rcalc.run(pdb=pdb, exports=exports, **params)
return rcalc | def run2(job_haz, job_risk, calc_id, concurrent_tasks, pdb, loglevel,
exports, params) | Run both hazard and risk, one after the other | 4.420427 | 4.192934 | 1.054256 |
dbserver.ensure_on()
if param:
params = oqvalidation.OqParam.check(
dict(p.split('=', 1) for p in param.split(',')))
else:
params = {}
if slowest:
prof = cProfile.Profile()
stmt = ('_run(job_ini, concurrent_tasks, pdb, loglevel, hc, '
'exports, params)')
prof.runctx(stmt, globals(), locals())
pstat = calc_path + '.pstat'
prof.dump_stats(pstat)
print('Saved profiling info in %s' % pstat)
print(get_pstats(pstat, slowest))
else:
_run(job_ini, concurrent_tasks, pdb, loglevel, hc, exports, params) | def run(job_ini, slowest=False, hc=None, param='', concurrent_tasks=None,
exports='', loglevel='info', pdb=None) | Run a calculation bypassing the database layer | 4.468775 | 4.507727 | 0.991359 |
'''
Return an ordered dictionary with the available classes in the
scalerel submodule with classes that derives from `base_class`,
keyed by class name.
'''
gsims = {}
for fname in os.listdir(os.path.dirname(__file__)):
if fname.endswith('.py'):
modname, _ext = os.path.splitext(fname)
mod = importlib.import_module(
'openquake.hazardlib.scalerel.' + modname)
for cls in mod.__dict__.values():
if inspect.isclass(cls) and issubclass(cls, base_class) \
and cls != base_class \
and not inspect.isabstract(cls):
gsims[cls.__name__] = cls
return dict((k, gsims[k]) for k in sorted(gsims)) | def _get_available_class(base_class) | Return an ordered dictionary with the available classes in the
scalerel submodule with classes that derives from `base_class`,
keyed by class name. | 3.17078 | 1.977244 | 1.603636 |
if host is None:
host_cores = self.host_cores
else:
host_cores = [hc for hc in self.host_cores if hc[0] == host]
lst = []
for host, _ in host_cores:
ready = general.socket_ready((host, self.ctrl_port))
lst.append((host, 'running' if ready else 'not-running'))
return lst | def status(self, host=None) | :returns: a list of pairs (hostname, 'running'|'not-running') | 4.331424 | 3.486223 | 1.24244 |
if streamer and not general.socket_ready(self.task_in_url): # started
self.streamer = multiprocessing.Process(
target=_streamer,
args=(self.master_host, self.task_in_port, self.task_out_port))
self.streamer.start()
starting = []
for host, cores in self.host_cores:
if self.status(host)[0][1] == 'running':
print('%s:%s already running' % (host, self.ctrl_port))
continue
ctrl_url = 'tcp://%s:%s' % (host, self.ctrl_port)
if host == '127.0.0.1': # localhost
args = [sys.executable]
else:
args = ['ssh', host, self.remote_python]
args += ['-m', 'openquake.baselib.workerpool',
ctrl_url, self.task_out_url, cores]
starting.append(' '.join(args))
po = subprocess.Popen(args)
self.pids.append(po.pid)
return 'starting %s' % starting | def start(self, streamer=False) | Start multiple workerpools, possibly on remote servers via ssh,
and possibly a streamer, depending on the `streamercls`.
:param streamer:
if True, starts a streamer with multiprocessing.Process | 4.401027 | 4.478606 | 0.982678 |
stopped = []
for host, _ in self.host_cores:
if self.status(host)[0][1] == 'not-running':
print('%s not running' % host)
continue
ctrl_url = 'tcp://%s:%s' % (host, self.ctrl_port)
with z.Socket(ctrl_url, z.zmq.REQ, 'connect') as sock:
sock.send('stop')
stopped.append(host)
if hasattr(self, 'streamer'):
self.streamer.terminate()
return 'stopped %s' % stopped | def stop(self) | Send a "stop" command to all worker pools | 5.24889 | 4.934224 | 1.063772 |
setproctitle('oq-zworker')
with sock:
for cmd, args, mon in sock:
parallel.safely_call(cmd, args, mon) | def worker(self, sock) | :param sock: a zeromq.Socket of kind PULL receiving (cmd, args) | 22.181215 | 17.620947 | 1.258798 |
setproctitle('oq-zworkerpool %s' % self.ctrl_url[6:]) # strip tcp://
# start workers
self.workers = []
for _ in range(self.num_workers):
sock = z.Socket(self.task_out_port, z.zmq.PULL, 'connect')
proc = multiprocessing.Process(target=self.worker, args=(sock,))
proc.start()
sock.pid = proc.pid
self.workers.append(sock)
# start control loop accepting the commands stop and kill
with z.Socket(self.ctrl_url, z.zmq.REP, 'bind') as ctrlsock:
for cmd in ctrlsock:
if cmd in ('stop', 'kill'):
msg = getattr(self, cmd)()
ctrlsock.send(msg)
break
elif cmd == 'getpid':
ctrlsock.send(self.pid)
elif cmd == 'get_num_workers':
ctrlsock.send(self.num_workers) | def start(self) | Start worker processes and a control loop | 4.592849 | 4.239015 | 1.083471 |
for sock in self.workers:
os.kill(sock.pid, signal.SIGTERM)
return 'WorkerPool %s stopped' % self.ctrl_url | def stop(self) | Send a SIGTERM to all worker processes | 9.125393 | 7.830828 | 1.165316 |
for sock in self.workers:
os.kill(sock.pid, signal.SIGKILL)
return 'WorkerPool %s killed' % self.ctrl_url | def kill(self) | Send a SIGKILL to all worker processes | 8.73343 | 7.444025 | 1.173213 |
address = address or (config.dbserver.host, DBSERVER_PORT)
return 'running' if socket_ready(address) else 'not-running' | def get_status(address=None) | Check if the DbServer is up.
:param address: pair (hostname, port)
:returns: 'running' or 'not-running' | 10.392028 | 7.95271 | 1.306728 |
if not config.dbserver.multi_user:
remote_server_path = logs.dbcmd('get_path')
if different_paths(server_path, remote_server_path):
return('You are trying to contact a DbServer from another'
' instance (got %s, expected %s)\n'
'Check the configuration or stop the foreign'
' DbServer instance') % (remote_server_path, server_path) | def check_foreign() | Check if we the DbServer is the right one | 10.174126 | 8.537409 | 1.191711 |
if get_status() == 'not-running':
if config.dbserver.multi_user:
sys.exit('Please start the DbServer: '
'see the documentation for details')
# otherwise start the DbServer automatically; NB: I tried to use
# multiprocessing.Process(target=run_server).start() and apparently
# it works, but then run-demos.sh hangs after the end of the first
# calculation, but only if the DbServer is started by oq engine (!?)
subprocess.Popen([sys.executable, '-m', 'openquake.server.dbserver',
'-l', 'INFO'])
# wait for the dbserver to start
waiting_seconds = 30
while get_status() == 'not-running':
if waiting_seconds == 0:
sys.exit('The DbServer cannot be started after 30 seconds. '
'Please check the configuration')
time.sleep(1)
waiting_seconds -= 1 | def ensure_on() | Start the DbServer if it is off | 7.379638 | 6.568725 | 1.123451 |
if dbhostport: # assume a string of the form "dbhost:port"
dbhost, port = dbhostport.split(':')
addr = (dbhost, int(port))
else:
addr = (config.dbserver.listen, DBSERVER_PORT)
# create the db directory if needed
dirname = os.path.dirname(dbpath)
if not os.path.exists(dirname):
os.makedirs(dirname)
# create and upgrade the db if needed
db('PRAGMA foreign_keys = ON') # honor ON DELETE CASCADE
actions.upgrade_db(db)
# the line below is needed to work around a very subtle bug of sqlite;
# we need new connections, see https://github.com/gem/oq-engine/pull/3002
db.close()
# reset any computation left in the 'executing' state
actions.reset_is_running(db)
# configure logging and start the server
logging.basicConfig(level=getattr(logging, loglevel))
DbServer(db, addr).start() | def run_server(dbpath=os.path.expanduser(config.dbserver.file),
dbhostport=None, loglevel='WARN') | Run the DbServer on the given database file and port. If not given,
use the settings in openquake.cfg. | 5.676618 | 5.706903 | 0.994693 |
# give a nice name to the process
w.setproctitle('oq-dbserver')
dworkers = []
for _ in range(self.num_workers):
sock = z.Socket(self.backend, z.zmq.REP, 'connect')
threading.Thread(target=self.dworker, args=(sock,)).start()
dworkers.append(sock)
logging.warning('DB server started with %s on %s, pid %d',
sys.executable, self.frontend, self.pid)
if ZMQ:
# start task_in->task_out streamer thread
c = config.zworkers
threading.Thread(
target=w._streamer,
args=(self.master_host, c.task_in_port, c.task_out_port)
).start()
logging.warning('Task streamer started from %s -> %s',
c.task_in_port, c.task_out_port)
# start zworkers and wait a bit for them
msg = self.master.start()
logging.warning(msg)
time.sleep(1)
# start frontend->backend proxy for the database workers
try:
z.zmq.proxy(z.bind(self.frontend, z.zmq.ROUTER),
z.bind(self.backend, z.zmq.DEALER))
except (KeyboardInterrupt, z.zmq.ZMQError):
for sock in dworkers:
sock.running = False
sock.zsocket.close()
logging.warning('DB server stopped')
finally:
self.stop() | def start(self) | Start database worker threads | 5.58385 | 5.494311 | 1.016297 |
if ZMQ:
logging.warning(self.master.stop())
z.context.term()
self.db.close() | def stop(self) | Stop the DbServer and the zworkers if any | 19.93317 | 14.152339 | 1.408472 |
mean = (C['c1'] +
self._compute_magnitude_term(C, rup) +
self._compute_distance_term(C, rup, rjb))
return mean | def _compute_mean(self, C, rup, rjb) | Compute mean value according to equation 30, page 1021. | 3.822392 | 3.587911 | 1.065353 |
return C['c2'] * (rup.mag - 8.0) + C['c3'] * (rup.mag - 8.0) ** 2 | def _compute_magnitude_term(self, C, rup) | This computes the term f1 equation 8 Drouet & Cotton (2015) | 3.634901 | 3.206273 | 1.133684 |
return (C['c4'] + C['c5'] * rup.mag) * np.log(
np.sqrt(rjb ** 2. + C['c6'] ** 2.)) + C['c7'] * rjb | def _compute_distance_term(self, C, rup, rjb) | This computes the term f2 equation 8 Drouet & Cotton (2015) | 3.206475 | 3.131918 | 1.023805 |
cutoff = 6.056877878
rhypo = dists.rhypo.copy()
rhypo[rhypo <= cutoff] = cutoff
return C['c3'] * np.log(rhypo) + C['c4'] * rhypo | def _compute_term_3_4(self, dists, C) | Compute term 3 and 4 in equation 1 page 1. | 6.203712 | 5.828004 | 1.064466 |
S = self._get_site_type_dummy_variables(sites)
return (C['c5'] * S) | def _get_site_amplification(self, sites, imt, C) | Compute the fith term of the equation (1), p. 1:
``c5 * S`` | 18.062935 | 9.11095 | 1.982552 |
S = np.zeros_like(sites.vs30)
# S=0 for rock sites, S=1 otherwise pag 1.
idxS = (sites.vs30 < 760.0)
S[idxS] = 1
return S | def _get_site_type_dummy_variables(self, sites) | Get site type dummy variables, ``S`` (for rock and soil sites) | 8.147133 | 6.186584 | 1.316903 |
mean = (self._compute_term_1_2(rup, C) +
self._compute_term_3_4(dists, C) +
self._get_site_amplification(sites, imt, C))
# convert from m/s**2 to g for PGA and from m/s to g for PSV
# and divided this value for the ratio(SA_larger/SA_geo_mean)
if imt.name == "PGA":
mean = (np.exp(mean) / g) / C['r_SA']
else:
W = (2. * np.pi)/imt.period
mean = ((np.exp(mean) * W) / g) / C['r_SA']
return np.log(mean) | def _compute_mean(self, C, rup, dists, sites, imt) | Compute mean value for PGA and pseudo-velocity response spectrum,
as given in equation 1. Converts also pseudo-velocity response
spectrum values to SA, using:
SA = (PSV * W)/ratio(SA_larger/SA_geo_mean)
W = (2 * pi / T)
T = period (sec) | 6.297293 | 4.357153 | 1.445277 |
return C["c"] * np.log10(np.sqrt((rhypo ** 2.) + (C["h"] ** 2.))) +\
(C["d"] * rhypo) | def _compute_distance_scaling(self, C, rhypo) | Returns the distance scaling term accounting for geometric and
anelastic attenuation | 5.363792 | 5.256295 | 1.020451 |
site_term = np.zeros(len(vs30), dtype=float)
# For soil sites add on the site coefficient
site_term[vs30 < 760.0] = C["e"]
return site_term | def _compute_site_scaling(self, C, vs30) | Returns the site scaling term as a simple coefficient | 6.409783 | 5.925246 | 1.081775 |
if param == 'rrup':
dist = rupture.surface.get_min_distance(mesh)
elif param == 'rx':
dist = rupture.surface.get_rx_distance(mesh)
elif param == 'ry0':
dist = rupture.surface.get_ry0_distance(mesh)
elif param == 'rjb':
dist = rupture.surface.get_joyner_boore_distance(mesh)
elif param == 'rhypo':
dist = rupture.hypocenter.distance_to_mesh(mesh)
elif param == 'repi':
dist = rupture.hypocenter.distance_to_mesh(mesh, with_depths=False)
elif param == 'rcdpp':
dist = rupture.get_cdppvalue(mesh)
elif param == 'azimuth':
dist = rupture.surface.get_azimuth(mesh)
elif param == "rvolc":
# Volcanic distance not yet supported, defaulting to zero
dist = numpy.zeros_like(mesh.lons)
else:
raise ValueError('Unknown distance measure %r' % param)
return dist | def get_distances(rupture, mesh, param) | :param rupture: a rupture
:param mesh: a mesh of points or a site collection
:param param: the kind of distance to compute (default rjb)
:returns: an array of distances from the given mesh | 2.634681 | 2.628232 | 1.002454 |
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.