code
string | signature
string | docstring
string | loss_without_docstring
float64 | loss_with_docstring
float64 | factor
float64 |
---|---|---|---|---|---|
iv = derive_key(hashlib.sha1, PURPOSE_IV_MATERIAL, password, salt, iteration_count, 16)
key = derive_key(hashlib.sha1, PURPOSE_KEY_MATERIAL, password, salt, iteration_count, 256//8)
encrypted_data = bytearray(encrypted_data)
encrypted_data_len = len(encrypted_data)
if encrypted_data_len % 16 != 0:
raise BadDataLengthException("encrypted data length is not a multiple of 16 bytes")
plaintext = bytearray()
# slow and dirty CBC decrypt
from twofish import Twofish
cipher = Twofish(key)
last_cipher_block = bytearray(iv)
for block_offset in range(0, encrypted_data_len, 16):
cipher_block = encrypted_data[block_offset:block_offset+16]
plaintext_block = xor_bytearrays(bytearray(cipher.decrypt(bytes(cipher_block))), last_cipher_block)
plaintext.extend(plaintext_block)
last_cipher_block = cipher_block
plaintext = strip_pkcs7_padding(plaintext, 16)
return bytes(plaintext) | def decrypt_PBEWithSHAAndTwofishCBC(encrypted_data, password, salt, iteration_count) | Decrypts PBEWithSHAAndTwofishCBC, assuming PKCS#12-generated PBE parameters.
(Not explicitly defined as an algorithm in RFC 7292, but defined here nevertheless because of the assumption of PKCS#12 parameters). | 2.798462 | 2.975789 | 0.94041 |
iv = derive_key(hashlib.sha1, PURPOSE_IV_MATERIAL, password, salt, iteration_count, 16)
key = derive_key(hashlib.sha1, PURPOSE_KEY_MATERIAL, password, salt, iteration_count, 256//8)
plaintext_data = add_pkcs7_padding(plaintext_data, 16)
plaintext_data = bytearray(plaintext_data)
plaintext_len = len(plaintext_data)
assert plaintext_len % 16 == 0
ciphertext = bytearray()
from twofish import Twofish
cipher = Twofish(key)
last_cipher_block = bytearray(iv)
for block_offset in range(0, plaintext_len, 16):
plaintext_block = plaintext_data[block_offset:block_offset+16]
cipher_block = bytearray(cipher.encrypt(bytes(xor_bytearrays(plaintext_block, last_cipher_block))))
ciphertext.extend(cipher_block)
last_cipher_block = cipher_block
return bytes(ciphertext) | def encrypt_PBEWithSHAAndTwofishCBC(plaintext_data, password, salt, iteration_count) | Encrypts a value with PBEWithSHAAndTwofishCBC, assuming PKCS#12-generated PBE parameters.
(Not explicitly defined as an algorithm in RFC 7292, but defined here nevertheless because of the assumption of PKCS#12 parameters). | 2.506671 | 2.705597 | 0.926476 |
password_bytes = password_str.encode('utf-16be') # Java chars are UTF-16BE code units
iv = os.urandom(20)
key = bytearray(key)
xoring = zip(key, _jks_keystream(iv, password_bytes))
data = bytearray([d^k for d,k in xoring])
check = hashlib.sha1(bytes(password_bytes + key)).digest()
return bytes(iv + data + check) | def jks_pkey_encrypt(key, password_str) | Encrypts the private key with password protection algorithm used by JKS keystores. | 5.438236 | 5.311666 | 1.023829 |
password_bytes = password_str.encode('utf-16be') # Java chars are UTF-16BE code units
data = bytearray(data)
iv, data, check = data[:20], data[20:-20], data[-20:]
xoring = zip(data, _jks_keystream(iv, password_bytes))
key = bytearray([d^k for d,k in xoring])
if hashlib.sha1(bytes(password_bytes + key)).digest() != check:
raise BadHashCheckException("Bad hash check on private key; wrong password?")
key = bytes(key)
return key | def jks_pkey_decrypt(data, password_str) | Decrypts the private key password protection algorithm used by JKS keystores.
The JDK sources state that 'the password is expected to be in printable ASCII', though this does not appear to be enforced;
the password is converted into bytes simply by taking each individual Java char and appending its raw 2-byte representation.
See sun/security/provider/KeyProtector.java in the JDK sources. | 5.800383 | 5.600222 | 1.035742 |
cur = iv
while 1:
xhash = hashlib.sha1(bytes(password + cur)) # hashlib.sha1 in python 2.6 does not accept a bytearray argument
cur = bytearray(xhash.digest()) # make sure we iterate over ints in both Py2 and Py3
for byte in cur:
yield byte | def _jks_keystream(iv, password) | Helper keystream generator for _jks_pkey_decrypt | 8.740587 | 8.335293 | 1.048624 |
key, iv = _jce_pbe_derive_key_and_iv(password, salt, iteration_count)
from Cryptodome.Cipher import DES3
des3 = DES3.new(key, DES3.MODE_CBC, IV=iv)
padded = des3.decrypt(data)
result = strip_pkcs5_padding(padded)
return result | def jce_pbe_decrypt(data, password, salt, iteration_count) | Decrypts Sun's custom PBEWithMD5AndTripleDES password-based encryption scheme.
It is based on password-based encryption as defined by the PKCS #5 standard, except that it uses triple DES instead of DES.
Here's how this algorithm works:
1. Create random salt and split it in two halves. If the two halves are identical, invert(*) the first half.
2. Concatenate password with each of the halves.
3. Digest each concatenation with c iterations, where c is the iterationCount. Concatenate the output from each digest round with the password,
and use the result as the input to the next digest operation. The digest algorithm is MD5.
4. After c iterations, use the 2 resulting digests as follows: The 16 bytes of the first digest and the 1st 8 bytes of the 2nd digest
form the triple DES key, and the last 8 bytes of the 2nd digest form the IV.
(*) Not actually an inversion operation due to an implementation bug in com.sun.crypto.provider.PBECipherCore. See _jce_invert_salt_half for details.
See http://grepcode.com/file/repository.grepcode.com/java/root/jdk/openjdk/6-b27/com/sun/crypto/provider/PBECipherCore.java#PBECipherCore.deriveCipherKey%28java.security.Key%29 | 2.543794 | 3.013757 | 0.844061 |
salt = bytearray(salt_half)
salt[2] = salt[1]
salt[1] = salt[0]
salt[0] = salt[3]
return bytes(salt) | def _jce_invert_salt_half(salt_half) | JCE's proprietary PBEWithMD5AndTripleDES algorithm as described in the OpenJDK sources calls for inverting the first salt half if the two halves are equal.
However, there appears to be a bug in the original JCE implementation of com.sun.crypto.provider.PBECipherCore causing it to perform a different operation:
for (i=0; i<2; i++) {
byte tmp = salt[i];
salt[i] = salt[3-i];
salt[3-1] = tmp; // <-- typo '1' instead of 'i'
}
The result is transforming [a,b,c,d] into [d,a,b,d] instead of [d,c,b,a] (verified going back to the original JCE 1.2.2 release for JDK 1.2).
See source (or bytecode) of com.sun.crypto.provider.PBECipherCore (JRE <= 7) and com.sun.crypto.provider.PBES1Core (JRE 8+): | 2.832021 | 3.25985 | 0.868758 |
bitlist = list(bitstr)
bits_missing = (8 - len(bitlist) % 8) % 8
bitlist = [0]*bits_missing + bitlist # pad with 0 bits to a multiple of 8
result = bytearray()
for i in range(0, len(bitlist), 8):
byte = 0
for j in range(8):
byte = (byte << 1) | bitlist[i+j]
result.append(byte)
return bytes(result) | def bitstring_to_bytes(bitstr) | Converts a pyasn1 univ.BitString instance to byte sequence of type 'bytes'.
The bit string is interpreted big-endian and is left-padded with 0 bits to form a multiple of 8. | 2.169989 | 2.081795 | 1.042364 |
if len(m) < block_size or len(m) % block_size != 0:
raise BadPaddingException("Unable to strip padding: invalid message length")
m = bytearray(m) # py2/3 compatibility: always returns individual indexed elements as ints
last_byte = m[-1]
# the <last_byte> bytes of m must all have value <last_byte>, otherwise something's wrong
if (last_byte <= 0 or last_byte > block_size) or (m[-last_byte:] != bytearray([last_byte])*last_byte):
raise BadPaddingException("Unable to strip padding: invalid padding found")
return bytes(m[:-last_byte]) | def strip_pkcs7_padding(m, block_size) | Same as PKCS#5 padding, except generalized to block sizes other than 8. | 4.544801 | 4.520961 | 1.005273 |
with open(filename, 'rb') as file:
input_bytes = file.read()
ret = cls.loads(input_bytes,
store_password,
try_decrypt_keys=try_decrypt_keys)
return ret | def load(cls, filename, store_password, try_decrypt_keys=True) | Convenience wrapper function; reads the contents of the given file
and passes it through to :func:`loads`. See :func:`loads`. | 2.828402 | 2.675895 | 1.056993 |
with open(filename, 'wb') as file:
keystore_bytes = self.saves(store_password)
file.write(keystore_bytes) | def save(self, filename, store_password) | Convenience wrapper function; calls the :func:`saves`
and saves the content to a file. | 4.42176 | 3.55075 | 1.245303 |
size = b2.unpack_from(data, pos)[0]
pos += 2
try:
return data[pos:pos+size].decode('utf-8'), pos+size
except (UnicodeEncodeError, UnicodeDecodeError) as e:
raise BadKeystoreFormatException(("Failed to read %s, contains bad UTF-8 data: %s" % (kind, str(e))) if kind else \
("Encountered bad UTF-8 data: %s" % str(e))) | def _read_utf(cls, data, pos, kind=None) | :param kind: Optional; a human-friendly identifier for the kind of UTF-8 data we're loading (e.g. is it a keystore alias? an algorithm identifier? something else?).
Used to construct more informative exception messages when a decoding error occurs. | 4.243786 | 3.890789 | 1.090726 |
return dict([(a, e) for a, e in self.entries.items()
if isinstance(e, BksSealedKeyEntry)]) | def sealed_keys(self) | A subset of the :attr:`entries` dictionary, filtered down to only
those entries of type :class:`BksSealedKeyEntry`. | 10.217973 | 3.942284 | 2.591892 |
return dict([(a, e) for a, e in self.entries.items()
if isinstance(e, BksKeyEntry)]) | def plain_keys(self) | A subset of the :attr:`entries` dictionary, filtered down to only
those entries of type :class:`BksKeyEntry`. | 10.875808 | 4.151372 | 2.61981 |
try:
pos = 0
version = b4.unpack_from(data, pos)[0]; pos += 4
if version not in [1,2]:
raise UnsupportedKeystoreVersionException("Unsupported BKS keystore version; only V1 and V2 supported, found v"+repr(version))
salt, pos = cls._read_data(data, pos)
iteration_count = b4.unpack_from(data, pos)[0]; pos += 4
store_type = "bks"
entries, size = cls._load_bks_entries(data[pos:], store_type, store_password, try_decrypt_keys=try_decrypt_keys)
hmac_fn = hashlib.sha1
hmac_digest_size = hmac_fn().digest_size
hmac_key_size = hmac_digest_size*8 if version != 1 else hmac_digest_size
hmac_key = rfc7292.derive_key(hmac_fn, rfc7292.PURPOSE_MAC_MATERIAL, store_password, salt, iteration_count, hmac_key_size//8)
store_data = data[pos:pos+size]
store_hmac = data[pos+size:pos+size+hmac_digest_size]
if len(store_hmac) != hmac_digest_size:
raise BadKeystoreFormatException("Bad HMAC size; found %d bytes, expected %d bytes" % (len(store_hmac), hmac_digest_size))
hmac = HMAC.new(hmac_key, digestmod=SHA)
hmac.update(store_data)
computed_hmac = hmac.digest()
if store_hmac != computed_hmac:
raise KeystoreSignatureException("Hash mismatch; incorrect keystore password?")
return cls(store_type, entries, version=version)
except struct.error as e:
raise BadKeystoreFormatException(e) | def loads(cls, data, store_password, try_decrypt_keys=True) | See :meth:`jks.jks.KeyStore.loads`.
:param bytes data: Byte string representation of the keystore to be loaded.
:param str password: Keystore password string
:param bool try_decrypt_keys: Whether to automatically try to decrypt any encountered key entries using the same password
as the keystore password.
:returns: A loaded :class:`BksKeyStore` instance, if the keystore could be successfully parsed and the supplied store password is correct.
If the ``try_decrypt_keys`` parameters was set to ``True``, any keys that could be successfully decrypted using the
store password have already been decrypted; otherwise, no atttempt to decrypt any key entries is made.
:raises BadKeystoreFormatException: If the keystore is malformed in some way
:raises UnsupportedKeystoreVersionException: If the keystore contains an unknown format version number
:raises KeystoreSignatureException: If the keystore signature could not be verified using the supplied store password
:raises DuplicateAliasException: If the keystore contains duplicate aliases | 3.266485 | 3.074871 | 1.062316 |
key_type = b1.unpack_from(data, pos)[0]; pos += 1
key_format, pos = BksKeyStore._read_utf(data, pos, kind="key format")
key_algorithm, pos = BksKeyStore._read_utf(data, pos, kind="key algorithm")
key_enc, pos = BksKeyStore._read_data(data, pos)
entry = BksKeyEntry(key_type, key_format, key_algorithm, key_enc, store_type=store_type)
return entry, pos | def _read_bks_key(cls, data, pos, store_type) | Given a data stream, attempt to parse a stored BKS key entry at the given position, and return it as a BksKeyEntry. | 3.207921 | 2.90851 | 1.102943 |
# Uber keystores contain the same entry data as BKS keystores, except they wrap it differently:
# BKS = BKS_store || HMAC-SHA1(BKS_store)
# UBER = PBEWithSHAAndTwofish-CBC(BKS_store || SHA1(BKS_store))
#
# where BKS_store represents the entry format shared by both keystore types.
#
# The Twofish key size is 256 bits, the PBE key derivation scheme is that as outlined by PKCS#12 (RFC 7292),
# and the padding scheme for the Twofish cipher is PKCS#7.
try:
pos = 0
version = b4.unpack_from(data, pos)[0]; pos += 4
if version != 1:
raise UnsupportedKeystoreVersionException('Unsupported UBER keystore version; only v1 supported, found v'+repr(version))
salt, pos = cls._read_data(data, pos)
iteration_count = b4.unpack_from(data, pos)[0]; pos += 4
encrypted_bks_store = data[pos:]
try:
decrypted = rfc7292.decrypt_PBEWithSHAAndTwofishCBC(encrypted_bks_store, store_password, salt, iteration_count)
except BadDataLengthException as e:
raise BadKeystoreFormatException("Bad UBER keystore format: %s" % str(e))
except BadPaddingException as e:
raise DecryptionFailureException("Failed to decrypt UBER keystore: bad password?")
# Note: we can assume that the hash must be present at the last 20 bytes of the decrypted data (i.e. without first
# parsing through to see where the entry data actually ends), because valid UBER keystores generators should not put
# any trailing bytes after the hash prior to encrypting.
hash_fn = hashlib.sha1
hash_digest_size = hash_fn().digest_size
bks_store = decrypted[:-hash_digest_size]
bks_hash = decrypted[-hash_digest_size:]
if len(bks_hash) != hash_digest_size:
raise BadKeystoreFormatException("Insufficient signature bytes; found %d bytes, expected %d bytes" % (len(bks_hash), hash_digest_size))
if hash_fn(bks_store).digest() != bks_hash:
raise KeystoreSignatureException("Hash mismatch; incorrect keystore password?")
store_type = "uber"
entries, size = cls._load_bks_entries(bks_store, store_type, store_password, try_decrypt_keys=try_decrypt_keys)
return cls(store_type, entries, version=version)
except struct.error as e:
raise BadKeystoreFormatException(e) | def loads(cls, data, store_password, try_decrypt_keys=True) | See :meth:`jks.jks.KeyStore.loads`.
:param bytes data: Byte string representation of the keystore to be loaded.
:param str password: Keystore password string
:param bool try_decrypt_keys: Whether to automatically try to decrypt any encountered key entries using the same password
as the keystore password.
:returns: A loaded :class:`UberKeyStore` instance, if the keystore could be successfully parsed and the supplied store password is correct.
If the ``try_decrypt_keys`` parameters was set to ``True``, any keys that could be successfully decrypted using the
store password have already been decrypted; otherwise, no atttempt to decrypt any key entries is made.
:raises BadKeystoreFormatException: If the keystore is malformed in some way
:raises UnsupportedKeystoreVersionException: If the keystore contains an unknown format version number
:raises KeystoreSignatureException: If the keystore signature could not be verified using the supplied store password
:raises DecryptionFailureException: If the keystore contents could not be decrypted using the supplied store password
:raises DuplicateAliasException: If the keystore contains duplicate aliases | 4.528519 | 4.357716 | 1.039196 |
num_columns = int(ceil(sqrt(n)))
num_rows = int(ceil(n / float(num_columns)))
return (num_columns, num_rows) | def calc_columns_rows(n) | Calculate the number of columns and rows required to divide an image
into ``n`` parts.
Return a tuple of integers in the format (num_columns, num_rows) | 2.188852 | 2.170128 | 1.008628 |
# TODO: Refactor calculating layout to avoid repetition.
columns, rows = calc_columns_rows(len(tiles))
tile_size = tiles[0].image.size
return (tile_size[0] * columns, tile_size[1] * rows) | def get_combined_size(tiles) | Calculate combined size of tiles. | 5.139082 | 4.598386 | 1.117584 |
TILE_LIMIT = 99 * 99
try:
number_tiles = int(number_tiles)
except:
raise ValueError('number_tiles could not be cast to integer.')
if number_tiles > TILE_LIMIT or number_tiles < 2:
raise ValueError('Number of tiles must be between 2 and {} (you \
asked for {}).'.format(TILE_LIMIT, number_tiles)) | def validate_image(image, number_tiles) | Basic sanity checks prior to performing a split. | 3.636979 | 3.474274 | 1.046831 |
SPLIT_LIMIT = 99
try:
col = int(col)
row = int(row)
except:
raise ValueError('columns and rows values could not be cast to integer.')
if col < 2:
raise ValueError('Number of columns must be between 2 and {} (you \
asked for {}).'.format(SPLIT_LIMIT, col))
if row < 2 :
raise ValueError('Number of rows must be between 2 and {} (you \
asked for {}).'.format(SPLIT_LIMIT, row)) | def validate_image_col_row(image , col , row) | Basic checks for columns and rows values | 3.477171 | 3.150446 | 1.103708 |
im = Image.open(filename)
im_w, im_h = im.size
columns = 0
rows = 0
if not number_tiles is None:
validate_image(im, number_tiles)
columns, rows = calc_columns_rows(number_tiles)
extras = (columns * rows) - number_tiles
else:
validate_image_col_row(im, col, row)
columns = col
rows = row
extras = (columns * rows) - number_tiles
tile_w, tile_h = int(floor(im_w / columns)), int(floor(im_h / rows))
tiles = []
number = 1
for pos_y in range(0, im_h - rows, tile_h): # -rows for rounding error.
for pos_x in range(0, im_w - columns, tile_w): # as above.
area = (pos_x, pos_y, pos_x + tile_w, pos_y + tile_h)
image = im.crop(area)
position = (int(floor(pos_x / tile_w)) + 1,
int(floor(pos_y / tile_h)) + 1)
coords = (pos_x, pos_y)
tile = Tile(image, number, position, coords)
tiles.append(tile)
number += 1
if save:
save_tiles(tiles,
prefix=get_basename(filename),
directory=os.path.dirname(filename))
return tuple(tiles) | def slice(filename, number_tiles=None, col=None, row=None, save=True) | Split an image into a specified number of tiles.
Args:
filename (str): The filename of the image to split.
number_tiles (int): The number of tiles required.
Kwargs:
save (bool): Whether or not to save tiles to disk.
Returns:
Tuple of :class:`Tile` instances. | 2.48473 | 2.516388 | 0.987419 |
# Causes problems in CLI script.
# if not os.path.exists(directory):
# os.makedirs(directory)
for tile in tiles:
tile.save(filename=tile.generate_filename(prefix=prefix,
directory=directory,
format=format),
format=format)
return tuple(tiles) | def save_tiles(tiles, prefix='', directory=os.getcwd(), format='png') | Write image files to disk. Create specified folder(s) if they
don't exist. Return list of :class:`Tile` instance.
Args:
tiles (list): List, tuple or set of :class:`Tile` objects to save.
prefix (str): Filename prefix of saved tiles.
Kwargs:
directory (str): Directory to save tiles. Created if non-existant.
Returns:
Tuple of :class:`Tile` instances. | 4.257836 | 4.692545 | 0.907362 |
filename = prefix + '_{col:02d}_{row:02d}.{ext}'.format(
col=self.column, row=self.row, ext=format.lower().replace('jpeg', 'jpg'))
if not path:
return filename
return os.path.join(directory, filename) | def generate_filename(self, directory=os.getcwd(), prefix='tile',
format='png', path=True) | Construct and return a filename for this tile. | 2.603615 | 2.464796 | 1.056321 |
tiles = []
for filename in filenames:
row, column = os.path.splitext(filename)[0][-5:].split('_')
tiles.append((int(row), int(column)))
rows = [pos[0] for pos in tiles]; columns = [pos[1] for pos in tiles]
num_rows = max(rows); num_columns = max(columns)
return (num_columns, num_rows) | def get_columns_rows(filenames) | Derive number of columns and rows from filenames. | 2.716922 | 2.576337 | 1.054568 |
initial_state.inspect.b('mem_read', when=angr.BP_AFTER, action=_read_consolidate)
initial_state.inspect.b('reg_read', when=angr.BP_AFTER, action=_read_consolidate) | def consolidate_reverse_exprs(initial_state) | Tries to simplify the Reverse(Extract(Reverse())) pattern in expressions.
NOTE: Experimental! Maybe not working correctly, use it with care! | 5.785494 | 6.02926 | 0.95957 |
size = expr.size()
umin = umax = smin = smax = None
if not sat_zero(se, expr):
try:
umin = se.min(expr, extra_constraints=[claripy.Extract(size-1,size-1,expr) == 0])
umax = se.max(expr, extra_constraints=[claripy.Extract(size-1,size-1,expr) == 0])
return (umin, umax)
except:
pass
try:
smin = -(1 << size) + se.min(expr, extra_constraints=[claripy.Extract(size-1,size-1,expr) == 1])
smax = -(1 << size) + se.max(expr, extra_constraints=[claripy.Extract(size-1,size-1,expr) == 1])
return (smin, smax)
except:
pass
return None
else:
try:
umax = se.max(expr, extra_constraints=[claripy.Extract(size-1,size-1,expr) == 0])
smin = 0
try:
smin = -(1 << size) + se.min(expr, extra_constraints=[claripy.Extract(size-1,size-1,expr) == 1])
except:
pass
return (smin, umax)
except:
pass
return None | def get_signed_range(se, expr) | Calculate the range of the expression with signed boundaries | 1.959705 | 1.961081 | 0.999298 |
status = True
if not os.path.isfile(fn):
status = False
else:
try:
open(fn)
except IOError:
status = False
return status | def fn_check_full(fn) | Check for file existence
Avoids race condition, but slower than os.path.exists.
Parameters
----------
fn : str
Input filename string.
Returns
-------
status
True if file exists, False otherwise. | 3.858099 | 4.34154 | 0.888648 |
ds = None
if fn_check(fn):
ds = gdal.Open(fn, gdal.GA_ReadOnly)
else:
print("Unable to find %s" % fn)
return ds | def fn_getds(fn) | Wrapper around gdal.Open() | 3.055671 | 2.92826 | 1.043511 |
#Add check for filename existence
ds = fn_getds(fn)
out = ds_getma(ds, bnum=bnum)
if return_ds:
out = (out, ds)
return out | def fn_getma(fn, bnum=1, return_ds=False) | Get masked array from input filename
Parameters
----------
fn : str
Input filename string
bnum : int, optional
Band number
Returns
-------
np.ma.array
Masked array containing raster values | 4.275695 | 4.857206 | 0.880279 |
b_ndv = get_ndv_b(b)
#bma = np.ma.masked_equal(b.ReadAsArray(), b_ndv)
#This is more appropriate for float, handles precision issues
bma = np.ma.masked_values(b.ReadAsArray(), b_ndv)
return bma | def b_getma(b) | Get masked array from input GDAL Band
Parameters
----------
b : gdal.Band
Input GDAL Band
Returns
-------
np.ma.array
Masked array containing raster values | 5.499128 | 4.761898 | 1.154818 |
ns = src_ds.RasterXSize
nl = src_ds.RasterYSize
maxdim = float(maxdim)
if scale is None:
scale_ns = ns/maxdim
scale_nl = nl/maxdim
scale = max(scale_ns, scale_nl)
#Need to check to make sure scale is positive real
if scale > 1:
ns = int(round(ns/scale))
nl = int(round(nl/scale))
return ns, nl, scale | def get_sub_dim(src_ds, scale=None, maxdim=1024) | Compute dimensions of subsampled dataset
Parameters
----------
ds : gdal.Dataset
Input GDAL Datset
scale : int, optional
Scaling factor
maxdim : int, optional
Maximum dimension along either axis, in pixels
Returns
-------
ns
Numper of samples in subsampled output
nl
Numper of lines in subsampled output
scale
Final scaling factor | 2.867009 | 2.925652 | 0.979956 |
dtype = src_ds.GetRasterBand(1).DataType
src_ds_sub = gdal.GetDriverByName('MEM').Create('', ns, nl, 1, dtype)
gt = np.array(src_ds.GetGeoTransform())
gt[[1,5]] = gt[[1,5]]*scale
src_ds_sub.SetGeoTransform(list(gt))
src_ds_sub.SetProjection(src_ds.GetProjection())
b = src_ds_sub.GetRasterBand(1)
b.WriteArray(bma)
b.SetNoDataValue(b_ndv)
out = (bma, src_ds_sub)
return out | def ds_getma_sub(src_ds, bnum=1, scale=None, maxdim=1024., return_ds=False):
#print src_ds.GetFileList()[0]
b = src_ds.GetRasterBand(bnum)
b_ndv = get_ndv_b(b)
ns, nl, scale = get_sub_dim(src_ds, scale, maxdim)
#The buf_size parameters determine the final array dimensions
b_array = b.ReadAsArray(buf_xsize=ns, buf_ysize=nl)
bma = np.ma.masked_values(b_array, b_ndv)
out = bma
if return_ds | Load a subsampled array, rather than full resolution
This is useful when working with large rasters
Uses buf_xsize and buf_ysize options from GDAL ReadAsArray method.
Parameters
----------
ds : gdal.Dataset
Input GDAL Datset
bnum : int, optional
Band number
scale : int, optional
Scaling factor
maxdim : int, optional
Maximum dimension along either axis, in pixels
Returns
-------
np.ma.array
Masked array containing raster values | 2.241666 | 2.512696 | 0.892136 |
out_vrt = os.path.splitext(out_csv)[0]+'.vrt'
out_csv = os.path.split(out_csv)[-1]
f = open(out_vrt, 'w')
f.write('<OGRVRTDataSource>\n')
f.write(' <OGRVRTLayer name="%s">\n' % os.path.splitext(out_csv)[0])
f.write(' <SrcDataSource>%s</SrcDataSource>\n' % out_csv)
f.write(' <GeometryType>wkbPoint</GeometryType>\n')
f.write(' <LayerSRS>%s</LayerSRS>\n' % srs)
f.write(' <GeometryField encoding="PointFromColumns" x="%s" y="%s"/>\n' % (x, y))
f.write(' </OGRVRTLayer>\n')
f.write('</OGRVRTDataSource>\n')
f.close() | def writevrt(out_csv,srs='EPSG:4326',x='field_1',y='field_2') | Write out a vrt to accompany a csv of points | 1.37793 | 1.36945 | 1.006192 |
dt_dict = gdal_array.codes
if isinstance(d, (np.ndarray, np.generic)):
d = d.dtype
#This creates dtype from another built-in type
#d = np.dtype(d)
if isinstance(d, np.dtype):
if d.name == 'int8':
gdal_dt = 1
elif d.name == 'bool':
#Write out as Byte
gdal_dt = 1
else:
gdal_dt = list(dt_dict.keys())[list(dt_dict.values()).index(d)]
else:
print("Input must be NumPy array or NumPy dtype")
gdal_dt = None
return gdal_dt | def np2gdal_dtype(d) | Get GDAL RasterBand datatype that corresponds with NumPy datatype
Input should be numpy array or numpy dtype | 4.049691 | 3.71173 | 1.091052 |
dt_dict = gdal_array.codes
if isinstance(b, str):
b = gdal.Open(b)
if isinstance(b, gdal.Dataset):
b = b.GetRasterBand(1)
if isinstance(b, gdal.Band):
b = b.DataType
if isinstance(b, int):
np_dtype = dt_dict[b]
else:
np_dtype = None
print("Input must be GDAL Dataset or RasterBand object")
return np_dtype | def gdal2np_dtype(b) | Get NumPy datatype that corresponds with GDAL RasterBand datatype
Input can be filename, GDAL Dataset, GDAL RasterBand, or GDAL integer dtype | 2.792116 | 2.318365 | 1.204347 |
b_ndv = b.GetNoDataValue()
if b_ndv is None:
#Check ul pixel for ndv
ns = b.XSize
nl = b.YSize
ul = float(b.ReadAsArray(0, 0, 1, 1))
#ur = float(b.ReadAsArray(ns-1, 0, 1, 1))
lr = float(b.ReadAsArray(ns-1, nl-1, 1, 1))
#ll = float(b.ReadAsArray(0, nl-1, 1, 1))
#Probably better to use 3/4 corner criterion
#if ul == ur == lr == ll:
if np.isnan(ul) or ul == lr:
b_ndv = ul
else:
#Assume ndv is 0
b_ndv = 0
elif np.isnan(b_ndv):
b_dt = gdal.GetDataTypeName(b.DataType)
if 'Float' in b_dt:
b_ndv = np.nan
else:
b_ndv = 0
return b_ndv | def get_ndv_b(b) | Get NoData value for GDAL band.
If NoDataValue is not set in the band,
extract upper left and lower right pixel values.
Otherwise assume NoDataValue is 0.
Parameters
----------
b : GDALRasterBand object
This is the input band.
Returns
-------
b_ndv : float
NoData value | 2.843138 | 2.579488 | 1.10221 |
if logical:
from multiprocessing import cpu_count
ncpu=cpu_count()
else:
import psutil
ncpu=psutil.cpu_count(logical=False)
return ncpu | def cpu_count(logical=True) | Return system CPU count | 2.532453 | 2.394395 | 1.057659 |
fn = os.path.split(url)[-1]
if outdir is not None:
fn = os.path.join(outdir, fn)
if not os.path.exists(fn):
#Find appropriate urlretrieve for Python 2 and 3
try:
from urllib.request import urlretrieve
except ImportError:
from urllib import urlretrieve
print("Retrieving: %s" % url)
#Add progress bar
urlretrieve(url, fn)
return fn | def getfile(url, outdir=None) | Function to fetch files using urllib
Works with ftp | 3.10568 | 3.31171 | 0.937788 |
import requests
print("Retrieving: %s" % url)
fn = os.path.split(url)[-1]
if outdir is not None:
fn = os.path.join(outdir, fn)
if auth is not None:
r = requests.get(url, stream=True, auth=auth)
else:
r = requests.get(url, stream=True)
chunk_size = 1000000
with open(fn, 'wb') as fd:
for chunk in r.iter_content(chunk_size):
fd.write(chunk) | def getfile2(url, auth=None, outdir=None) | Function to fetch files using requests
Works with https authentication | 1.748382 | 1.854755 | 0.942648 |
import getpass
from requests.auth import HTTPDigestAuth
#This binds raw_input to input for Python 2
input_func = input
try:
input_func = raw_input
except NameError:
pass
uname = input_func("MODSCAG Username:")
pw = getpass.getpass("MODSCAG Password:")
auth = HTTPDigestAuth(uname, pw)
#wget -A'h8v4*snow_fraction.tif' --user=uname --password=pw
return auth | def get_auth() | Get authorization token for https | 7.766786 | 7.535324 | 1.030717 |
import csv
#Check first line for header
with open(fn, 'r') as f:
reader = csv.DictReader(f)
hdr = reader.fieldnames
#Assume there is a header on first line, check
skiprows = 1
if np.all(f.isdigit() for f in hdr):
hdr = None
skiprows = 0
#Check header for lat/lon/z or x/y/z tags
#Should probably do genfromtxt here if header exists and dtype of cols is variable
pts = np.loadtxt(fn, delimiter=',', skiprows=skiprows, dtype=None)
return pts | def readcsv(fn) | Wrapper to read arbitrary csv, check for header
Needs some work to be more robust, quickly added for demcoreg sampling | 6.372752 | 6.050655 | 1.053233 |
print('Excluding values outside of range: {0:f} to {1:f}'.format(*rangelim))
out = np.ma.masked_outside(dem, *rangelim)
out.set_fill_value(dem.fill_value)
return out | def range_fltr(dem, rangelim) | Range filter (helper function) | 2.982636 | 2.968512 | 1.004758 |
out = range_fltr(np.ma.abs(dem), *rangelim)
#Apply mask to original input
out = np.ma.array(dem, mask=np.ma.getmaskarray(out))
out.set_fill_value(dem.fill_value)
return out | def absrange_fltr(dem, rangelim) | Absolute range filter | 3.932856 | 3.817033 | 1.030344 |
rangelim = malib.calcperc(dem, perc)
print('Excluding values outside of percentile range: {0:0.2f} to {1:0.2f}'.format(*perc))
out = range_fltr(dem, rangelim)
return out | def perc_fltr(dem, perc=(1.0, 99.0)) | Percentile filter | 5.725267 | 5.827129 | 0.982519 |
std = dem.std()
u = dem.mean()
print('Excluding values outside of range: {1:0.2f} +/- {0}*{2:0.2f}'.format(n, u, std))
rangelim = (u - n*std, u + n*std)
out = range_fltr(dem, rangelim)
return out | def sigma_fltr(dem, n=3) | sigma * factor filter
Useful for outlier removal
These are min/max percentile ranges for different sigma values:
1: 15.865, 84.135
2: 2.275, 97.725
3: 0.135, 99.865 | 5.300261 | 5.462986 | 0.970213 |
mad, med = malib.mad(dem, return_med=True)
print('Excluding values outside of range: {1:0.3f} +/- {0}*{2:0.3f}'.format(n, med, mad))
rangelim = (med - n*mad, med + n*mad)
out = range_fltr(dem, rangelim)
return out | def mad_fltr(dem, n=3) | Median absolute deviation * factor filter
Robust outlier removal | 4.85589 | 5.330053 | 0.91104 |
#import astropy.nddata
import astropy.convolution
dem = malib.checkma(dem)
#Generate 2D gaussian kernel for input sigma and size
#Default size is 8*sigma in x and y directions
#kernel = astropy.nddata.make_kernel([size, size], sigma, 'gaussian')
#Size must be odd
if size is not None:
size = int(np.floor(size/2)*2 + 1)
size = max(size, 3)
#Truncate the filter at this many standard deviations. Default is 4.0
truncate = 3.0
if size is not None and sigma is None:
sigma = (size - 1) / (2*truncate)
elif size is None and sigma is not None:
#Round up to nearest odd int
size = int(np.ceil((sigma * (2*truncate) + 1)/2)*2 - 1)
elif size is None and sigma is None:
#Use default parameters
sigma = 1
size = int(np.ceil((sigma * (2*truncate) + 1)/2)*2 - 1)
size = max(size, 3)
kernel = astropy.convolution.Gaussian2DKernel(sigma, x_size=size, y_size=size, mode='oversample')
print("Applying gaussian smoothing filter with size %i and sigma %0.3f (sum %0.3f)" % \
(size, sigma, kernel.array.sum()))
#This will fill holes
#np.nan is float
#dem_filt_gauss = astropy.nddata.convolve(dem.astype(float).filled(np.nan), kernel, boundary='fill', fill_value=np.nan)
#dem_filt_gauss = astropy.convolution.convolve(dem.astype(float).filled(np.nan), kernel, boundary='fill', fill_value=np.nan)
#Added normalization to ensure filtered values are not brightened/darkened if kernelsum != 1
dem_filt_gauss = astropy.convolution.convolve(dem.astype(float).filled(np.nan), kernel, boundary='fill', fill_value=np.nan, normalize_kernel=True)
#This will preserve original ndv pixels, applying original mask after filtering
if origmask:
print("Applying original mask")
#Allow filling of interior holes, but use original outer edge
if fill_interior:
mask = malib.maskfill(dem)
else:
mask = dem.mask
dem_filt_gauss = np.ma.array(dem_filt_gauss, mask=mask, fill_value=dem.fill_value)
out = np.ma.fix_invalid(dem_filt_gauss, copy=False, fill_value=dem.fill_value)
out.set_fill_value(dem.fill_value.astype(dem.dtype))
return out.astype(dem.dtype) | def gauss_fltr_astropy(dem, size=None, sigma=None, origmask=False, fill_interior=False) | Astropy gaussian filter properly handles convolution with NaN
http://stackoverflow.com/questions/23832852/by-which-measures-should-i-set-the-size-of-my-gaussian-filter-in-matlab
width1 = 3; sigma1 = (width1-1) / 6;
Specify width for smallest feature of interest and determine sigma appropriately
sigma is width of 1 std in pixels (not multiplier)
scipy and astropy both use cutoff of 4*sigma on either side of kernel - 99.994%
3*sigma on either side of kernel - 99.7%
If sigma is specified, filter width will be a multiple of 8 times sigma
Alternatively, specify filter size, then compute sigma: sigma = (size - 1) / 8.
If size is < the required width for 6-8 sigma, need to use different mode to create kernel
mode 'oversample' and 'center' are essentially identical for sigma 1, but very different for sigma 0.3
The sigma/size calculations below should work for non-integer sigma | 3.440786 | 3.461982 | 0.993878 |
dem = malib.checkma(dem)
levels = int(np.floor(np.log2(size)))
#print levels
dim = np.floor(np.array(dem.shape)/float(2**levels) + 1)*(2**levels)
#print dem.shape
#print dim
#Can do something with np.pad here
#np.pad(a_fp.filled(), 1, mode='constant', constant_values=(a_fp.fill_value,))
dem2 = np.full(dim, dem.fill_value)
offset = (dim - np.array(dem.shape))/2.0
#print offset
#dem2[0:dem.shape[0],0:dem.shape[1]] = dem.data
dem2[offset[0]:dem.shape[0]+offset[0],offset[1]:dem.shape[1]+offset[1]] = dem.data
dem2 = np.ma.masked_equal(dem2, dem.fill_value)
#dem2 = dem
for n in range(levels):
print(dem2.shape)
dim = (np.floor(np.array(dem2.shape)/2.0 + 1)*2).astype(int)
#dem2 = gauss_fltr_astropy(dem2, size=5, origmask=origmask)
#dem2 = gauss_fltr_astropy(dem2, size=5)
dem2 = gauss_fltr_astropy(dem2, size=5)
#Note: Should use zoom with same bilinear interpolation here for consistency
#However, this doesn't respect nan
#dem2 = zoom(dem2, 0.5, order=1, prefilter=False, cval=dem.fill_value)
dem2 = dem2[::2,::2]
if full:
print("Resizing to original input dimensions")
from scipy.ndimage import zoom
for n in range(levels):
print(dem2.shape)
#Note: order 1 is bilinear
dem2 = zoom(dem2, 2, order=1, prefilter=False, cval=dem.fill_value)
#dem2 = zoom(dem2, 2**levels, order=1, prefilter=False, cval=dem2.fill_value)
print(dem2.shape)
#This was for power of 2 offset
#offset = (2**levels)/2
#print offset
#dem2 = dem2[offset:dem.shape[0]+offset,offset:dem.shape[1]+offset]
#Use original offset
dem2 = dem2[offset[0]:dem.shape[0]+offset[0],offset[1]:dem.shape[1]+offset[1]]
if origmask:
print("Applying original mask")
#Allow filling of interior holes, but use original outer edge
maskfill = malib.maskfill(dem)
#dem2 = np.ma.array(dem2, mask=np.ma.getmaskarray(dem))
dem2 = np.ma.array(dem2, mask=maskfill, fill_value=dem.fill_value)
return dem2 | def gauss_fltr_pyramid(dem, size=None, full=False, origmask=False) | Pyaramidal downsampling approach for gaussian smoothing
Avoids the need for large kernels, very fast
Needs testing | 2.932641 | 2.944227 | 0.996065 |
import cv2
dem = malib.checkma(dem)
dem_cv = cv2.GaussianBlur(dem.filled(np.nan), (size, size), sigma)
out = np.ma.fix_invalid(dem_cv)
out.set_fill_value(dem.fill_value)
return out | def gauss_fltr_opencv(dem, size=3, sigma=1) | OpenCV Gaussian filter
Still propagates NaN values | 3.765524 | 3.367332 | 1.118252 |
smooth = gauss_fltr_astropy(dem, size=size)
smooth[~dem.mask] = dem[~dem.mask]
if newmask is not None:
smooth = np.ma.array(smooth, mask=newmask)
return smooth | def gaussfill(dem, size=3, newmask=None) | Gaussian filter with filling | 3.707384 | 3.668993 | 1.010464 |
print("Applying median filter with size %s" % fsize)
from scipy.ndimage.filters import median_filter
dem_filt_med = median_filter(dem.filled(np.nan), fsize)
#Now mask all nans
out = np.ma.fix_invalid(dem_filt_med, copy=False, fill_value=dem.fill_value)
if origmask:
out = np.ma.array(out, mask=dem.mask, fill_value=dem.fill_value)
out.set_fill_value(dem.fill_value)
return out | def median_fltr(dem, fsize=7, origmask=False) | Scipy.ndimage median filter
Does not properly handle NaN | 2.560878 | 2.656474 | 0.964014 |
import cv2
dem = malib.checkma(dem)
if size > 5:
print("Need to implement iteration")
n = 0
out = dem
while n <= iterations:
dem_cv = cv2.medianBlur(out.astype(np.float32).filled(np.nan), size)
out = np.ma.fix_invalid(dem_cv)
out.set_fill_value(dem.fill_value)
n += 1
return out | def median_fltr_opencv(dem, size=3, iterations=1) | OpenCV median filter | 4.550635 | 4.288352 | 1.061162 |
r = size/2
c = (r,r)
y,x = np.ogrid[-c[0]:size-c[0], -c[1]:size-c[1]]
mask = ~(x*x + y*y <= r*r)
return mask | def circular_mask(size) | Create a circular mask for an array
Useful when sampling rasters for a laser shot | 2.739406 | 2.471936 | 1.108203 |
print("Applying rolling filter: %s with size %s" % (f.__name__, size))
dem = malib.checkma(dem)
#Convert to float32 so we can fill with nan
dem = dem.astype(np.float32)
newshp = (dem.size, size*size)
#Force a step size of 1
t = malib.sliding_window_padded(dem.filled(np.nan), (size, size), (1, 1))
if circular:
if size > 3:
mask = circular_mask(size)
t[:,mask] = np.nan
t = t.reshape(newshp)
out = f(t, axis=1).reshape(dem.shape)
out = np.ma.fix_invalid(out).astype(dem.dtype)
out.set_fill_value(dem.fill_value)
if origmask:
out = np.ma.array(out, mask=np.ma.getmaskarray(dem))
return out | def rolling_fltr(dem, f=np.nanmedian, size=3, circular=True, origmask=False) | General rolling filter (default operator is median filter)
Can input any function f
Efficient for smaller arrays, correclty handles NaN, fills gaps | 3.527629 | 3.659809 | 0.963883 |
#Note, ndimage doesn't properly handle ma - convert to nan
dem = malib.checkma(dem)
dem = dem.astype(np.float64)
#Mask islands
if erode > 0:
print("Eroding islands smaller than %s pixels" % (erode * 2))
dem = malib.mask_islands(dem, iterations=erode)
print("Applying median filter with radius %s" % radius)
#Note: this funcitonality was present in scikit-image 0.9.3
import skimage.filter
dem_filt_med = skimage.filter.median_filter(dem, radius, mask=~dem.mask)
#Starting in version 0.10.0, this is the new filter
#This is the new filter, but only supports uint8 or unit16
#import skimage.filters
#import skimage.morphology
#dem_filt_med = skimage.filters.rank.median(dem, disk(radius), mask=~dem.mask)
#dem_filt_med = skimage.filters.median(dem, skimage.morphology.disk(radius), mask=~dem.mask)
#Now mask all nans
#skimage assigns the minimum value as nodata
#CHECK THIS, seems pretty hacky
#Also, looks like some valid values are masked at this stage, even though they should be above min
ndv = np.min(dem_filt_med)
#ndv = dem_filt_med.min() + 0.001
out = np.ma.masked_less_equal(dem_filt_med, ndv)
#Should probably replace the ndv with original ndv
out.set_fill_value(dem.fill_value)
if origmask:
print("Applying original mask")
#Allow filling of interior holes, but use original outer edge
#maskfill = malib.maskfill(dem, iterations=radius)
maskfill = malib.maskfill(dem)
#dem_filt_gauss = np.ma.array(dem_filt_gauss, mask=dem.mask, fill_value=dem.fill_value)
out = np.ma.array(out, mask=maskfill, fill_value=dem.fill_value)
return out | def median_fltr_skimage(dem, radius=3, erode=1, origmask=False) | Older skimage.filter.median_filter
This smooths, removes noise and fills in nodata areas with median of valid pixels! Effectively an inpainting routine | 4.843401 | 4.824182 | 1.003984 |
print("Applying uniform filter with size %s" % fsize)
#Note, ndimage doesn't properly handle ma - convert to nan
from scipy.ndimage.filters import unifiform_filter
dem_filt_med = uniform_filter(dem.filled(np.nan), fsize)
#Now mask all nans
out = np.ma.fix_invalid(dem_filt_med, copy=False, fill_value=dem.fill_value)
out.set_fill_value(dem.fill_value)
return out | def uniform_fltr(dem, fsize=7) | Uniform (mean) filter
Note: suffers from significant ringing | 5.7554 | 5.923364 | 0.971644 |
try:
open(refdem_fn)
except IOError:
sys.exit('Unable to open reference DEM: %s' % refdem_fn)
from pygeotools.lib import warplib
dem_ds, refdem_ds = warplib.memwarp_multi_fn([dem_fn, refdem_fn], res='first', extent='first', t_srs='first')
dem = iolib.ds_getma(dem_ds)
refdem = iolib.ds_getma(refdem_ds)
out = dz_fltr_ma(dem, refdem, perc, rangelim, smooth)
return out | def dz_fltr(dem_fn, refdem_fn, perc=None, rangelim=(0,30), smooth=False) | Absolute elevation difference range filter using values from a source raster file and a reference raster file | 2.878839 | 2.869643 | 1.003204 |
if smooth:
refdem = gauss_fltr_astropy(refdem)
dem = gauss_fltr_astropy(dem)
dz = refdem - dem
#This is True for invalid values in DEM, and should be masked
demmask = np.ma.getmaskarray(dem)
if perc:
dz_perc = malib.calcperc(dz, perc)
print("Applying dz percentile filter (%s%%, %s%%): (%0.1f, %0.1f)" % (perc[0], perc[1], dz_perc[0], dz_perc[1]))
#This is True for invalid values
perc_mask = ((dz < dz_perc[0]) | (dz > dz_perc[1])).filled(False)
demmask = (demmask | perc_mask)
if rangelim:
#This is True for invalid values
range_mask = ((np.abs(dz) < rangelim[0]) | (np.abs(dz) > rangelim[1])).filled(False)
if False:
cutoff = 150
rangelim = (0, 80)
low = (refdem < cutoff).data
range_mask[low] = ((np.abs(dz) < rangelim[0]) | (np.abs(dz) > rangelim[1])).filled(False)[low]
demmask = (demmask | range_mask)
out = np.ma.array(dem, mask=demmask, fill_value=dem.fill_value)
return out | def dz_fltr_ma(dem, refdem, perc=None, rangelim=(0,30), smooth=False) | Absolute elevation difference range filter using values from a source array and a reference array | 2.91877 | 2.942251 | 0.992019 |
import scipy.ndimage as ndimage
print('Eroding pixels near nodata: %i iterations' % iterations)
mask = np.ma.getmaskarray(dem)
mask_dilate = ndimage.morphology.binary_dilation(mask, iterations=iterations)
out = np.ma.array(dem, mask=mask_dilate)
return out | def erode_edge(dem, iterations=1) | Erode pixels near nodata | 3.670286 | 2.882302 | 1.273387 |
import scipy.signal
import matplotlib.pyplot as plt
#dt is 300 s, 5 min
dt_diff = np.diff(dt_list)
dt_diff = np.array([dt.total_seconds() for dt in dt_diff])
dt = malib.fast_median(dt_diff)
#f is 0.00333 Hz
#288 samples/day
fs = 1./dt
nyq = fs/2.
if False:
#psd, f = psd(z_msl, fs)
sp_f, sp_psd = scipy.signal.periodogram(val, fs, detrend='linear')
#sp_f, sp_psd = scipy.signal.welch(z_msl, fs, nperseg=2048)
sp_f_days = 1./sp_f/86400.
plt.figure()
plt.plot(sp_f, sp_psd)
plt.plot(sp_f_days, sp_psd)
plt.semilogy(sp_f_days, sp_psd)
plt.xlabel('Frequency')
plt.ylabel('Power')
print("Filtering tidal signal")
#Define bandpass filter
#f_min = dt/(86400*0.25)
f_max = (1./(86400*0.1)) / nyq
f_min = (1./(86400*1.8)) / nyq
order = 6
b, a = scipy.signal.butter(order, f_min, btype='highpass')
#b, a = sp.signal.butter(order, (f_min, f_max), btype='bandpass')
w, h = scipy.signal.freqz(b, a, worN=2000)
w_f = (nyq/np.pi)*w
w_f_days = 1/w_f/86400.
#plt.figure()
#plt.plot(w_f_days, np.abs(h))
val_f_tide = scipy.signal.filtfilt(b, a, val)
b, a = scipy.signal.butter(order, f_max, btype='lowpass')
#b, a = sp.signal.butter(order, (f_min, f_max), btype='bandstop')
w, h = scipy.signal.freqz(b, a, worN=2000)
w_f = (nyq/np.pi)*w
w_f_days = 1/w_f/86400.
#plt.plot(w_f_days, np.abs(h))
val_f_tide_denoise = scipy.signal.filtfilt(b, a, val_f_tide)
#val_f_notide = sp.signal.filtfilt(b, a, val)
val_f_notide = val - val_f_tide | def butter(dt_list, val, lowpass=1.0) | This is framework for a butterworth bandpass for 1D data
Needs to be cleaned up and generalized | 2.485751 | 2.470677 | 1.006101 |
#Fill ndv with random data
bf = malib.randomfill(bma)
import scipy.fftpack
f = scipy.fftpack.fft2(bf)
ff = scipy.fftpack.fftshift(f)
#Ben suggested a Hahn filter here, remove the low frequency, high amplitude information
#Then do a second fft?
#np.log(np.abs(ff))
#perc = malib.calcperc(np.real(ff), perc=(80, 95))
#malib.iv(numpy.real(ff), clim=perc)
#See http://scipy-lectures.github.io/advanced/image_processing/
#Starting at a,b, compute argmax along vertical axis for restricted range
#Fit line to the x and y argmax values
#Mask [argmax[y]-1:argmax[y]+1]
#Create radial mask
ff_dim = np.array(ff.shape)
a,b = ff_dim/2
n = ff_dim.max()
y,x = np.ogrid[-a:n-a, -b:n-b]
r1 = 40
r2 = 60
ff_mask = np.ma.make_mask(ff)
radial_mask = (r1**2 <= x**2 + y**2) & (x**2 + y**2 < r2**2)
#Note issues with rounding indices here
#Hacked in +1 for testing
ff_mask[:] = radial_mask[a-ff_dim[0]/2:a+ff_dim[0], b-ff_dim[1]/2:b+1+ff_dim[1]/2]
#Combine radial and line mask
#Convert mask to 0-1, then feather
fm = ff * ff_mask
#Inverse fft
bf_filt = scipy.fftpack.ifft2(scipy.fftpack.ifftshift(fm))
#Apply original mask
bf_filt = np.ma.masked_array(bf_filt, bma.mask) | def freq_filt(bma) | This is a framework for 2D FFT filtering. It has not be tested or finished - might be a dead end
See separate utility freq_analysis.py | 6.916913 | 6.875042 | 1.00609 |
from copy import deepcopy
from pygeotools.lib import filtlib
print("Copying original DEMStack")
s = deepcopy(s_orig)
s.stack_fn = os.path.splitext(s_orig.stack_fn)[0]+'_smooth%ipx.npz' % size
#Loop through each array and smooth
print("Smoothing all arrays in stack with %i px gaussian filter" % size)
for i in range(s.ma_stack.shape[0]):
print('%i of %i' % (i+1, s.ma_stack.shape[0]))
s.ma_stack[i] = filtlib.gauss_fltr_astropy(s.ma_stack[i], size=size)
if s.stats:
s.compute_stats()
if save:
s.write_stats()
#Update datestack
if s.datestack and s.date_list_o.count() > 1:
s.compute_dt_stats()
if save:
s.write_datestack()
#Update trend
if s.trend:
s.compute_trend()
if save:
s.write_trend()
if save:
s.savestack()
return s | def stack_smooth(s_orig, size=7, save=False) | Run Gaussian smoothing filter on exising stack object | 4.213803 | 4.022777 | 1.047486 |
#Should check for valid extent
#This is not memory efficient, but is much simpler
#To be safe, if we are saving out, create a copy to avoid overwriting
if copy or save:
from copy import deepcopy
print("Copying original DEMStack")
s = deepcopy(s_orig)
else:
#Want to be very careful here, as we could overwrite the original file
s = s_orig
from pygeotools.lib import geolib
gt = s.gt
s_shape = s.ma_stack.shape[1:3]
#Compute pixel bounds for input extent
min_x_px, max_y_px = geolib.mapToPixel(extent[0], extent[1], gt)
max_x_px, min_y_px = geolib.mapToPixel(extent[2], extent[3], gt)
#Clip to stack extent and round to whole integers
min_x_px = int(max(0, min_x_px)+0.5)
max_x_px = int(min(s_shape[1], max_x_px)+0.5)
min_y_px = int(max(0, min_y_px)+0.5)
max_y_px = int(min(s_shape[0], max_y_px)+0.5)
#Clip the stack
x_slice = slice(min_x_px,max_x_px)
y_slice = slice(min_y_px,max_y_px)
s.ma_stack = s.ma_stack[:, y_slice, x_slice]
#Now update geospatial info
#This returns the pixel center in map coordinates
#Want to remove 0.5 px offset for upper left corner in gt
out_ul = geolib.pixelToMap(min_x_px - 0.5, min_y_px - 0.5, gt)
#Update stack geotransform
s.gt[0] = out_ul[0]
s.gt[3] = out_ul[1]
#Update new stack extent
s.get_extent()
#Check for and discard emtpy arrays
#Might be faster to reshape then np.ma.count(s.ma_stack, axis=1)
count_list = np.array([i.count() for i in s.ma_stack])
idx = count_list > 0
#Output subset with valid data in next extent
#fn_list, source, error, error_dict_list, date_list, date_list_o
#Note: no need to copy again
s_sub = get_stack_subset(s, idx, out_stack_fn=out_stack_fn, copy=False, save=False)
print("Orig filename:", s_orig.stack_fn)
print("Orig extent:", s_orig.extent)
print("Orig dimensions:", s_orig.ma_stack.shape)
print("Input extent:", extent)
print("New filename:", s_sub.stack_fn)
print("New extent:", s_sub.extent)
print("New dimensions:", s_sub.ma_stack.shape)
if save:
if os.path.abspath(s_orig.stack_fn) == os.path.abspath(s_sub.stack_fn):
print("Original stack would be overwritten!")
print("Skipping save")
else:
s_sub.save = True
s_sub.savestack()
#The following should be unchanged by clip - it is more efficient to clip thes, but easier to regenerate
#if s.stats:
#stack_count, stack_mean, stack_min, stack_max, stack_std
#s.stack_min = s.stack_min[y_slice, x_slice]
#if s.datestack:
#dt_ptp, dt_min, dt_max, dt_center
#if s.med:
#stack_med
#if s.trend:
#trend, intercept, detrended_std
#Recompute stats/etc
return s_sub | def stack_clip(s_orig, extent, out_stack_fn=None, copy=True, save=False) | Create a new stack object with limited extent from an exising stack object | 4.115426 | 4.125713 | 0.997507 |
#This must be a numpy boolean array
idx = np.array(idx)
if np.any(idx):
#This is not memory efficient, but is much simpler
#To be safe, if we are saving out, create a copy to avoid overwriting
if copy or save:
from copy import deepcopy
print("Copying original DEMStack")
s = deepcopy(s_orig)
else:
#Want to be very careful here, as we could overwrite the original file
s = s_orig
#Update fn_list
#Note: need to change fn_list to np.array - object array, allows longer strings
#s.fn_list = s.fn_list[idx]
print("Original stack: %i" % len(s_orig.fn_list))
s.fn_list = (np.array(s.fn_list)[idx]).tolist()
print("Filtered stack: %i" % len(s.fn_list))
#Update date_lists
s.date_list = s.date_list[idx]
s.date_list_o = s.date_list_o[idx]
#Update ma
s.ma_stack = s.ma_stack[idx]
#Update source/error
#s.source = s.source[idx]
s.source = (np.array(s.source)[idx]).tolist()
s.error = s.error[idx]
s.error_dict_list = np.array(s.error_dict_list)[idx]
#Update stack_fn
#out_stack_fn should be full path, with npz
if out_stack_fn is None:
s.stack_fn = None
s.get_stack_fn()
else:
s.stack_fn = out_stack_fn
#Check to make sure we are not going to overwrite
if os.path.abspath(s_orig.stack_fn) == os.path.abspath(s.stack_fn):
print("Warning: new stack has identical filename: %s" % s.stack_fn)
print("As a precaution, new stack will not be saved")
save = False
s.save = save
#Update stats
if s.stats:
s.compute_stats()
if save:
s.write_stats()
#Update datestack
if s.datestack and s.date_list_o.count() > 1:
s.compute_dt_stats()
if save:
s.write_datestack()
#Update trend
if s.trend:
s.compute_trend()
if save:
s.write_trend()
if save:
s.savestack()
else:
print("No valid entries for input index array")
s = None
return s | def get_stack_subset(s_orig, idx, out_stack_fn=None, copy=True, save=False) | Create a new stack object as a subset of an exising stack object | 3.526267 | 3.539918 | 0.996144 |
from pygeotools.lib import geolib
from copy import deepcopy
#Assumes input stacks have identical extent, resolution, and projection
if s1.ma_stack.shape[1:3] != s2.ma_stack.shape[1:3]:
print(s1.ma_stack.shape)
print(s2.ma_stack.shape)
sys.exit('Input stacks must have identical array dimensions')
if not geolib.extent_compare(s1.extent, s2.extent):
print(s1.extent)
print(s2.extent)
sys.exit('Input stacks must have identical extent')
if not geolib.res_compare(s1.res, s2.res):
print(s1.res)
print(s2.res)
sys.exit('Input stacks must have identical res')
print("\nCombining fn_list and ma_stack")
fn_list = np.array(s1.fn_list + s2.fn_list)
if sort:
#Sort based on filenames (should be datesort)
sort_idx = np.argsort([os.path.split(x)[-1] for x in fn_list])
else:
sort_idx = Ellipsis
#Now pull out final, sorted order
fn_list = fn_list[sort_idx]
ma_stack = np.ma.vstack((s1.ma_stack, s2.ma_stack))[sort_idx]
#date_list = np.ma.dstack(s1.date_list, s2.date_list)
#date_list_o = np.ma.dstack(s1.date_list_o, s2.date_list_o)
source = np.array(s1.source + s2.source)[sort_idx]
error = np.ma.concatenate([s1.error, s2.error])[sort_idx]
#These are object arrays
error_dict_list = np.concatenate([s1.error_dict_list, s2.error_dict_list])[sort_idx]
print("Creating copy for new stack")
s = deepcopy(s1)
s.fn_list = list(fn_list)
s.ma_stack = ma_stack
s.source = list(source)
s.error = error
s.error_dict_list = error_dict_list
#This will use original stack outdir
if not out_stack_fn:
s.get_stack_fn()
else:
s.stack_fn = out_stack_fn
s.get_date_list()
#These will preserve trend from one stack if present in only one stack
#Useful when combining surface topo and bed topo
if s1.datestack and s2.datestack:
s.compute_dt_stats()
if save and s1.datestack:
s.write_datestack()
if s1.stats and s2.stats:
s.compute_stats()
if save and s1.stats:
s.write_stats()
if s1.trend and s2.trend:
s.compute_trend()
if save and s1.trend:
s.write_trend()
if save:
s.savestack()
return s | def stack_merge(s1, s2, out_stack_fn=None, sort=True, save=False) | Merge two stack objects | 2.862119 | 2.832797 | 1.010351 |
a = checkma(a)
#For data that have already been normalized,
#This provides a proper normal distribution with mean=0 and std=1
#a = (a - a.mean()) / a.std()
#noise = a.mask * (np.random.randn(*a.shape))
noise = a.mask * np.random.normal(a.mean(), a.std(), a.shape)
#Add the noise
b = a.filled(0) + noise
return b | def randomfill(a) | Fill masked areas with random noise
This is needed for any fft-based operations | 5.143744 | 4.931283 | 1.043084 |
a = checkma(a)
ndv = a.fill_value
#Note: The following fails for arrays that are not float (np.nan is float)
b = f_a(a.filled(np.nan), *args, **kwargs)
#the fix_invalid fill_value parameter doesn't seem to work
out = np.ma.fix_invalid(b, copy=False)
out.set_fill_value(ndv)
return out | def nanfill(a, f_a, *args, **kwargs) | Fill masked areas with np.nan
Wrapper for functions that can't handle ma (e.g. scipy.ndimage)
This will force filters to ignore nan, but causes adjacent pixels to be set to nan as well: http://projects.scipy.org/scipy/ticket/1155 | 5.881074 | 5.864095 | 1.002895 |
a = checkma(a)
#return scoreatpercentile(a.compressed(), 50)
if a.count() > 0:
out = np.percentile(a.compressed(), 50)
else:
out = np.ma.masked
return out | def fast_median(a) | Fast median operation for masked array using 50th-percentile | 4.558294 | 3.793472 | 1.201615 |
a = checkma(a)
#return np.ma.median(np.fabs(a - np.ma.median(a))) / c
if a.count() > 0:
if axis is None:
med = fast_median(a)
out = fast_median(np.fabs(a - med)) * c
else:
med = np.ma.median(a, axis=axis)
#This is necessary for broadcasting
med = np.expand_dims(med, axis=axis)
out = np.ma.median(np.ma.fabs(a - med), axis=axis) * c
else:
out = np.ma.masked
if return_med:
out = (out, med)
return out | def mad(a, axis=None, c=1.4826, return_med=False) | Compute normalized median absolute difference
Can also return median array, as this can be expensive, and often we want both med and nmad
Note: 1.4826 = 1/0.6745 | 2.684329 | 2.736522 | 0.980927 |
b = checkma(b)
if b.count() > 0:
#low = scoreatpercentile(b.compressed(), perc[0])
#high = scoreatpercentile(b.compressed(), perc[1])
low = np.percentile(b.compressed(), perc[0])
high = np.percentile(b.compressed(), perc[1])
else:
low = 0
high = 0
#low = scipy.stats.mstats.scoreatpercentile(b, perc[0])
#high = scipy.stats.mstats.scoreatpercentile(b, perc[1])
#This approach can be used for unmasked array, but values less than 0 are problematic
#bma_low = b.min()
#bma_high = b.max()
#low = scipy.stats.scoreatpercentile(b.data.flatten(), perc[0], (bma_low, bma_high))
#high = scipy.stats.scoreatpercentile(b.data.flatten(), perc[1], (bma_low, bma_high))
return low, high | def calcperc(b, perc=(0.1,99.9)) | Calculate values at specified percentiles | 2.502589 | 2.380762 | 1.051172 |
clim = np.max(np.abs(calcperc(b, perc)))
#clim = (-clim, clim)
return -clim, clim | def calcperc_sym(b, perc=(0.1,99.9)) | Get symmetrical percentile values
Useful for determining clim centered on 0 for difference maps | 6.909949 | 5.32976 | 1.296484 |
b = checkma(b)
low, high = calcperc(b, perc)
return low, high, high - low | def iqr(b, perc=(25, 75)) | Inter-quartile range | 9.264363 | 8.208624 | 1.128613 |
from scipy.stats.mstats import mode
a = checkma(a)
thresh = 4E6
if full or a.count() < thresh:
q = (iqr(a))
p16, p84, spread = robust_spread(a)
#There has to be a better way to compute the mode for a ma
#mstats.mode returns tuple of (array[mode], array[count])
a_mode = float(mode(a, axis=None)[0])
stats = (a.count(), a.min(), a.max(), a.mean(dtype='float64'), a.std(dtype='float64'), \
fast_median(a), mad(a), q[0], q[1], q[2], a_mode, p16, p84, spread)
else:
ac = a.compressed()
stride = int(np.around(ac.size / thresh))
ac = np.ma.array(ac[::stride])
#idx = np.random.permutation(ac.size)
#Note: need the ma cast here b/c of a.count() below
#ac = np.ma.array(ac[idx[::stride]])
q = (iqr(ac))
p16, p84, spread = robust_spread(ac)
ac_mode = float(mode(ac, axis=None)[0])
stats = (a.count(), a.min(), a.max(), a.mean(dtype='float64'), a.std(dtype='float64'), \
fast_median(ac), mad(ac), q[0], q[1], q[2], ac_mode, p16, p84, spread)
return stats | def get_stats(a, full=False) | Compute and print statistics for input array
Needs to be cleaned up, return a stats object | 3.723031 | 3.6597 | 1.017305 |
d = {}
a = checkma(a_in)
d['count'] = a.count()
thresh = 4E6
if not full and d['count'] > thresh:
a = a.compressed()
stride = int(np.around(a.size / thresh))
#a = np.ma.array(a[::stride])
a = a[::stride]
d['min'] = a.min()
d['max'] = a.max()
d['ptp'] = d['max'] - d['min']
d['mean'] = a.mean(dtype='float64')
d['std'] = a.std(dtype='float64')
d['nmad'], d['med'] = mad(a, return_med=True)
d['median'] = d['med']
d['p16'], d['p84'], d['spread'] = robust_spread(a)
from scipy.stats.mstats import mode
d['mode'] = mode(a, axis=None)[0]
for i in d:
d[i] = float(d[i])
d['count'] = int(d['count'])
return d | def get_stats_dict(a_in, full=True) | Compute and print statistics for input array | 3.184406 | 3.154944 | 1.009338 |
import matplotlib.pyplot as plt
import imview.imviewer as imview
b = checkma(b)
#if hasattr(kwargs,'imshow_kwargs'):
# kwargs['imshow_kwargs']['interpolation'] = 'bicubic'
#else:
# kwargs['imshow_kwargs'] = {'interpolation': 'bicubic'}
#bma_fig(fig, bma, cmap='gist_rainbow_r', clim=None, bg=None, n_subplt=1, subplt=1, label=None, **imshow_kwargs)
fig = plt.figure()
imview.bma_fig(fig, b, **kwargs)
plt.show()
return fig | def iv(b, **kwargs) | Quick access to imview for interactive sessions | 5.003089 | 4.519887 | 1.106906 |
from numpy.lib.stride_tricks import as_strided as ast
# simple shape and strides computations may seem at first strange
# unless one is able to recognize the 'tuple additions' involved ;-)
shape= (A.shape[0]/ block[0], A.shape[1]/ block[1])+ block
strides= (block[0]* A.strides[0], block[1]* A.strides[1])+ A.strides
return ast(A, shape= shape, strides= strides) | def block_view(A, block=(3, 3)) | Provide a 2D block view to 2D array. No error checking made.
Therefore meaningful (as implemented) only for blocks strictly
compatible with the shape of A. | 6.044739 | 5.970509 | 1.012433 |
from numpy.lib.stride_tricks import as_strided as ast
'''
Return a sliding window over a in any number of dimensions
Parameters:
a - an n-dimensional numpy array
ws - an int (a is 1D) or tuple (a is 2D or greater) representing the size
of each dimension of the window
ss - an int (a is 1D) or tuple (a is 2D or greater) representing the
amount to slide the window in each dimension. If not specified, it
defaults to ws.
flatten - if True, all slices are flattened, otherwise, there is an
extra dimension for each dimension of the input.
Returns
an array containing each n-dimensional window from a
'''
if None is ss:
# ss was not provided. the windows will not overlap in any direction.
ss = ws
ws = norm_shape(ws)
ss = norm_shape(ss)
# convert ws, ss, and a.shape to numpy arrays so that we can do math in every
# dimension at once.
ws = np.array(ws)
ss = np.array(ss)
shape = np.array(a.shape)
# ensure that ws, ss, and a.shape all have the same number of dimensions
ls = [len(shape),len(ws),len(ss)]
if 1 != len(set(ls)):
raise ValueError(\
'a.shape, ws and ss must all have the same length. They were %s' % str(ls))
# ensure that ws is smaller than a in every dimension
if np.any(ws > shape):
raise ValueError(\
'ws cannot be larger than a in any dimension.\
a.shape was %s and ws was %s' % (str(a.shape),str(ws)))
# how many slices will there be in each dimension?
newshape = norm_shape(((shape - ws) // ss) + 1)
# the shape of the strided array will be the number of slices in each dimension
# plus the shape of the window (tuple addition)
newshape += norm_shape(ws)
# the strides tuple will be the array's strides multiplied by step size, plus
# the array's strides (tuple addition)
newstrides = norm_shape(np.array(a.strides) * ss) + a.strides
strided = ast(a,shape = newshape,strides = newstrides)
if not flatten:
return strided
# Collapse strided so that it has one more dimension than the window. I.e.,
# the new array is a flat list of slices.
meat = len(ws) if ws.shape else 0
firstdim = (np.product(newshape[:-meat]),) if ws.shape else ()
dim = firstdim + (newshape[-meat:])
# remove any dimensions with size 1
dim = [i for i in dim if i != 1]
return strided.reshape(dim) | def sliding_window(a, ws, ss=None, flatten=True) | Return a sliding window over a in any number of dimensions
Parameters:
a - an n-dimensional numpy array
ws - an int (a is 1D) or tuple (a is 2D or greater) representing the size
of each dimension of the window
ss - an int (a is 1D) or tuple (a is 2D or greater) representing the
amount to slide the window in each dimension. If not specified, it
defaults to ws.
flatten - if True, all slices are flattened, otherwise, there is an
extra dimension for each dimension of the input.
Returns
an array containing each n-dimensional window from a | 3.49118 | 2.72681 | 1.280317 |
'''
Normalize numpy array shapes so they're always expressed as a tuple,
even for one-dimensional shapes.
Parameters
shape - an int, or a tuple of ints
Returns
a shape tuple
'''
try:
i = int(shape)
return (i,)
except TypeError:
# shape was not a number
pass
try:
t = tuple(shape)
return t
except TypeError:
# shape was not iterable
pass
raise TypeError('shape must be an int, or a tuple of ints') | def norm_shape(shape) | Normalize numpy array shapes so they're always expressed as a tuple,
even for one-dimensional shapes.
Parameters
shape - an int, or a tuple of ints
Returns
a shape tuple | 5.135561 | 2.338919 | 2.195699 |
local_srs = osr.SpatialReference()
local_proj = '+proj=ortho +lat_0=%0.7f +lon_0=%0.7f +datum=WGS84 +units=m +no_defs ' % (lat, lon)
local_srs.ImportFromProj4(local_proj)
return local_srs | def localortho(lon, lat) | Create srs for local orthographic projection centered at lat, lon | 2.19595 | 1.923092 | 1.141885 |
cx, cy = geom.Centroid().GetPoint_2D()
lon, lat, z = cT_helper(cx, cy, 0, geom.GetSpatialReference(), wgs_srs)
local_srs = localortho(lon,lat)
local_geom = geom_dup(geom)
geom_transform(local_geom, local_srs)
return local_geom | def geom2localortho(geom) | Convert existing geom to local orthographic projection
Useful for local cartesian distance/area calculations | 7.265897 | 7.491981 | 0.969823 |
lat = np.array(lat)
if np.any(lat > 0):
m70_t70 = 1.9332279
#Hack to deal with pole
lat[lat>=90.0] = 89.999999999
else:
# for 71 deg, southern PS -- checked BS 5/2012
m70_t70 = 1.93903005
lat[lat<=-90.0] = -89.999999999
#for WGS84, a=6378137, 1/f = 298.257223563 -> 1-sqrt(1-e^2) = f
#-> 1-(1-f)^2 = e2 = 0.006694379990141
#e2 = 0.006693883
e2 = 0.006694379990141 # BS calculated from WGS84 parameters 5/2012
e = np.sqrt(e2)
lat = np.abs(np.deg2rad(lat))
slat = np.sin(lat)
clat = np.cos(lat)
m = clat/np.sqrt(1. - e2*slat**2)
t = np.tan(np.pi/4 - lat/2)/((1. - e*slat)/(1. + e*slat))**(e/2)
k = m70_t70*t/m
scale=(1./k)
return scale | def scale_ps(lat) | This function calculates the scaling factor for a polar stereographic
projection (ie. SSM/I grid) to correct area calculations. The scaling
factor is defined (from Snyder, 1982, Map Projections used by the U.S.
Geological Survey) as:
k = (mc/m)*(t/tc), where:
m = cos(lat)/sqrt(1 - e2*sin(lat)^2)
t = tan(Pi/4 - lat/2)/((1 - e*sin(lat))/(1 + e*sin(lat)))^(e/2)
e2 = 0.006693883 is the earth eccentricity (Hughes ellipsoid)
e = sqrt(e2)
mc = m at the reference latitude (70 degrees)
tc = t at the reference latitude (70 degrees)
The ratio mc/tc is precalculated and stored in the variable m70_t70.
From Ben Smith PS scale m file (7/12/12) | 4.241032 | 3.442945 | 1.231803 |
if np.any(lon > 360.0) or np.any(lon < 0.0):
print("Warning: lon outside expected range")
lon = wraplon(lon)
#lon[lon > 180.0] -= 360.0
#lon180 = (lon+180) - np.floor((lon+180)/360)*360 - 180
lon = lon - (lon.astype(int)/180)*360.0
return lon | def lon360to180(lon) | Convert longitude from (0, 360) to (-180, 180) | 2.847189 | 2.803282 | 1.015663 |
if np.any(lon > 180.0) or np.any(lon < -180.0):
print("Warning: lon outside expected range")
lon = lon360to180(lon)
#lon[lon < 0.0] += 360.0
lon = (lon + 360.0) % 360.0
return lon | def lon180to360(lon) | Convert longitude from (-180, 180) to (0, 360) | 2.47852 | 2.363821 | 1.048523 |
n = dd < 0
dd = abs(dd)
m,s = divmod(dd*3600,60)
d,m = divmod(m,60)
if n:
d = -d
return d,m,s | def dd2dms(dd) | Convert decimal degrees to degrees, minutes, seconds | 2.301019 | 2.266172 | 1.015377 |
if d < 0:
sign = -1
else:
sign = 1
dd = sign * (int(abs(d)) + float(m) / 60 + float(s) / 3600)
return dd | def dms2dd(d,m,s) | Convert degrees, minutes, seconds to decimal degrees | 2.074818 | 2.105901 | 0.98524 |
d,m,s = dd2dms(dd)
m = m + float(s)/3600
return d,m,s | def dd2dm(dd) | Convert decimal to degrees, decimal minutes | 4.008577 | 3.880249 | 1.033072 |
mX = np.asarray(mX)
mY = np.asarray(mY)
if geoTransform[2] + geoTransform[4] == 0:
pX = ((mX - geoTransform[0]) / geoTransform[1]) - 0.5
pY = ((mY - geoTransform[3]) / geoTransform[5]) - 0.5
else:
pX, pY = applyGeoTransform(mX, mY, invertGeoTransform(geoTransform))
#return int(pX), int(pY)
return pX, pY | def mapToPixel(mX, mY, geoTransform) | Convert map coordinates to pixel coordinates based on geotransform
Accepts float or NumPy arrays
GDAL model used here - upper left corner of upper left pixel for mX, mY (and in GeoTransform) | 2.26269 | 2.379038 | 0.951094 |
pX = np.asarray(pX, dtype=float)
pY = np.asarray(pY, dtype=float)
pX += 0.5
pY += 0.5
mX, mY = applyGeoTransform(pX, pY, geoTransform)
return mX, mY | def pixelToMap(pX, pY, geoTransform) | Convert pixel coordinates to map coordinates based on geotransform
Accepts float or NumPy arrays
GDAL model used here - upper left corner of upper left pixel for mX, mY (and in GeoTransform) | 2.039641 | 2.369252 | 0.86088 |
import scipy.stats as stats
extent = ds_extent(ds)
#[[xmin, xmax], [ymin, ymax]]
range = [[extent[0], extent[2]], [extent[1], extent[3]]]
if bins is None:
bins = (ds.RasterXSize, ds.RasterYSize)
if stat == 'max':
stat = np.max
elif stat == 'min':
stat = np.min
#block_count, xedges, yedges, bin = stats.binned_statistic_2d(x,y,z,'count',bins,range)
block_stat, xedges, yedges, bin = stats.binned_statistic_2d(x,y,z,stat,bins,range)
#Get valid blocks
#if (stat == 'median') or (stat == 'mean'):
if stat in ('median', 'mean', np.max, np.min):
idx = ~np.isnan(block_stat)
else:
idx = (block_stat != 0)
idx_idx = idx.nonzero()
#Cell centers
res = [(xedges[1] - xedges[0]), (yedges[1] - yedges[0])]
out_x = xedges[:-1]+res[0]/2.0
out_y = yedges[:-1]+res[1]/2.0
out_x = out_x[idx_idx[0]]
out_y = out_y[idx_idx[1]]
out_z = block_stat[idx]
return out_x, out_y, out_z | def block_stats(x,y,z,ds,stat='median',bins=None) | Compute points on a regular grid (matching input GDAL Dataset) from scattered point data using specified statistic
Wrapper for scipy.stats.binned_statistic_2d
Note: this is very fast for mean, std, count, but bignificantly slower for median | 2.577686 | 2.453766 | 1.050502 |
mx, my, mz = block_stats(x,y,z,ds,stat)
gt = ds.GetGeoTransform()
pX, pY = mapToPixel(mx, my, gt)
shape = (ds.RasterYSize, ds.RasterXSize)
ndv = -9999.0
a = np.full(shape, ndv)
a[pY.astype('int'), pX.astype('int')] = mz
return np.ma.masked_equal(a, ndv) | def block_stats_grid(x,y,z,ds,stat='median') | Fill regular grid (matching input GDAL Dataset) from scattered point data using specified statistic | 2.977822 | 2.981023 | 0.998926 |
#These round down to int
#dst_ns = int((extent[2] - extent[0])/res)
#dst_nl = int((extent[3] - extent[1])/res)
#This should pad by 1 pixel, but not if extent and res were calculated together to give whole int
dst_ns = int((extent[2] - extent[0])/res + 0.99)
dst_nl = int((extent[3] - extent[1])/res + 0.99)
m_ds = gdal.GetDriverByName('MEM').Create('', dst_ns, dst_nl, 1, dtype)
m_gt = [extent[0], res, 0, extent[3], 0, -res]
m_ds.SetGeoTransform(m_gt)
if srs is not None:
m_ds.SetProjection(srs.ExportToWkt())
return m_ds | def mem_ds(res, extent, srs=None, dtype=gdal.GDT_Float32) | Create a new GDAL Dataset in memory
Useful for various applications that require a Dataset | 2.678838 | 2.785623 | 0.961665 |
src_ds = gdal.Open(src_fn, gdal.GA_ReadOnly)
dst_ds = gdal.Open(dst_fn, gdal.GA_Update)
dst_ds.SetProjection(src_ds.GetProjection())
if gt:
src_gt = np.array(src_ds.GetGeoTransform())
src_dim = np.array([src_ds.RasterXSize, src_ds.RasterYSize])
dst_dim = np.array([dst_ds.RasterXSize, dst_ds.RasterYSize])
#This preserves dst_fn resolution
if np.any(src_dim != dst_dim):
res_factor = src_dim/dst_dim.astype(float)
src_gt[[1, 5]] *= max(res_factor)
#src_gt[[1, 5]] *= min(res_factor)
#src_gt[[1, 5]] *= res_factor
dst_ds.SetGeoTransform(src_gt)
src_ds = None
dst_ds = None | def copyproj(src_fn, dst_fn, gt=True) | Copy projection and geotransform from one raster file to another | 2.076875 | 2.072164 | 1.002274 |
g = ogr.CreateGeometryFromWkt(geom.ExportToWkt())
g.AssignSpatialReference(geom.GetSpatialReference())
return g | def geom_dup(geom) | Create duplicate geometry
Needed to avoid segfault when passing geom around. See: http://trac.osgeo.org/gdal/wiki/PythonGotchas | 2.586447 | 2.101253 | 1.230907 |
s_srs = geom.GetSpatialReference()
if not s_srs.IsSame(t_srs):
ct = osr.CoordinateTransformation(s_srs, t_srs)
geom.Transform(ct)
geom.AssignSpatialReference(t_srs) | def geom_transform(geom, t_srs) | Transform a geometry in place | 2.034426 | 2.044029 | 0.995302 |
from pygeotools.lib import timelib
ds = ogr.Open(shp_fn)
lyr = ds.GetLayer()
nfeat = lyr.GetFeatureCount()
print('%i input features\n' % nfeat)
if fields is None:
fields = shp_fieldnames(lyr)
d_list = []
for n,feat in enumerate(lyr):
d = {}
if geom:
geom = feat.GetGeometryRef()
d['geom'] = geom
for f_name in fields:
i = str(feat.GetField(f_name))
if 'date' in f_name:
# date_f = f_name
#If d is float, clear off decimal
i = i.rsplit('.')[0]
i = timelib.strptime_fuzzy(str(i))
d[f_name] = i
d_list.append(d)
#d_list_sort = sorted(d_list, key=lambda k: k[date_f])
return d_list | def shp_dict(shp_fn, fields=None, geom=True) | Get a dictionary for all features in a shapefile
Optionally, specify fields | 3.227973 | 3.358415 | 0.961159 |
#Need to check t_srs
s_srs = lyr.GetSpatialRef()
cT = osr.CoordinateTransformation(s_srs, t_srs)
#Do everything in memory
drv = ogr.GetDriverByName('Memory')
#Might want to save clipped, warped shp to disk?
# create the output layer
#drv = ogr.GetDriverByName('ESRI Shapefile')
#out_fn = '/tmp/temp.shp'
#if os.path.exists(out_fn):
# driver.DeleteDataSource(out_fn)
#out_ds = driver.CreateDataSource(out_fn)
out_ds = drv.CreateDataSource('out')
outlyr = out_ds.CreateLayer('out', srs=t_srs, geom_type=lyr.GetGeomType())
if preserve_fields:
# add fields
inLayerDefn = lyr.GetLayerDefn()
for i in range(0, inLayerDefn.GetFieldCount()):
fieldDefn = inLayerDefn.GetFieldDefn(i)
outlyr.CreateField(fieldDefn)
# get the output layer's feature definition
outLayerDefn = outlyr.GetLayerDefn()
# loop through the input features
inFeature = lyr.GetNextFeature()
while inFeature:
# get the input geometry
geom = inFeature.GetGeometryRef()
# reproject the geometry
geom.Transform(cT)
# create a new feature
outFeature = ogr.Feature(outLayerDefn)
# set the geometry and attribute
outFeature.SetGeometry(geom)
if preserve_fields:
for i in range(0, outLayerDefn.GetFieldCount()):
outFeature.SetField(outLayerDefn.GetFieldDefn(i).GetNameRef(), inFeature.GetField(i))
# add the feature to the shapefile
outlyr.CreateFeature(outFeature)
# destroy the features and get the next input feature
inFeature = lyr.GetNextFeature()
#NOTE: have to operate on ds here rather than lyr, otherwise segfault
return out_ds | def lyr_proj(lyr, t_srs, preserve_fields=True) | Reproject an OGR layer | 2.430857 | 2.420385 | 1.004327 |
shp_ds = ogr.Open(shp_fn)
lyr = shp_ds.GetLayer()
#This returns xmin, ymin, xmax, ymax
shp_extent = lyr_extent(lyr)
shp_srs = lyr.GetSpatialRef()
# dst_dt = gdal.GDT_Byte
ndv = 0
if r_ds is not None:
r_extent = ds_extent(r_ds)
res = get_res(r_ds, square=True)[0]
if extent is None:
extent = r_extent
r_srs = get_ds_srs(r_ds)
r_geom = ds_geom(r_ds)
# dst_ns = r_ds.RasterXSize
# dst_nl = r_ds.RasterYSize
#Convert raster extent to shp_srs
cT = osr.CoordinateTransformation(r_srs, shp_srs)
r_geom_reproj = geom_dup(r_geom)
r_geom_reproj.Transform(cT)
r_geom_reproj.AssignSpatialReference(t_srs)
lyr.SetSpatialFilter(r_geom_reproj)
#lyr.SetSpatialFilter(ogr.CreateGeometryFromWkt(wkt))
else:
#TODO: clean this up
if res is None:
sys.exit("Must specify input res")
if extent is None:
print("Using input shp extent")
extent = shp_extent
if t_srs is None:
t_srs = r_srs
if not shp_srs.IsSame(t_srs):
print("Input shp srs: %s" % shp_srs.ExportToProj4())
print("Specified output srs: %s" % t_srs.ExportToProj4())
out_ds = lyr_proj(lyr, t_srs)
outlyr = out_ds.GetLayer()
else:
outlyr = lyr
#outlyr.SetSpatialFilter(r_geom)
m_ds = mem_ds(res, extent, srs=t_srs, dtype=gdal.GDT_Byte)
b = m_ds.GetRasterBand(1)
b.SetNoDataValue(ndv)
gdal.RasterizeLayer(m_ds, [1], outlyr, burn_values=[1])
a = b.ReadAsArray()
a = ~(a.astype('Bool'))
return a | def shp2array(shp_fn, r_ds=None, res=None, extent=None, t_srs=None) | Rasterize input shapefile to match existing raster Dataset (or specified res/extent/t_srs) | 2.807976 | 2.76982 | 1.013776 |
from pygeotools.lib import iolib
from pygeotools.lib import warplib
r_ds = iolib.fn_getds(r_fn)
r_srs = get_ds_srs(r_ds)
r_extent = ds_extent(r_ds)
r_extent_geom = bbox2geom(r_extent)
#NOTE: want to add spatial filter here to avoid reprojeting global RGI polygons, for example
shp_ds = ogr.Open(shp_fn)
lyr = shp_ds.GetLayer()
shp_srs = lyr.GetSpatialRef()
if not r_srs.IsSame(shp_srs):
shp_ds = lyr_proj(lyr, r_srs)
lyr = shp_ds.GetLayer()
#This returns xmin, ymin, xmax, ymax
shp_extent = lyr_extent(lyr)
shp_extent_geom = bbox2geom(shp_extent)
#Define the output - can set to either raster or shp
#Could accept as cl arg
out_srs = r_srs
if extent == 'raster':
out_extent = r_extent
elif extent == 'shp':
out_extent = shp_extent
elif extent == 'intersection':
out_extent = geom_intersection([r_extent_geom, shp_extent_geom])
elif extent == 'union':
out_extent = geom_union([r_extent_geom, shp_extent_geom])
else:
print("Unexpected extent specification, reverting to input raster extent")
out_extent = 'raster'
#Add padding around shp_extent
#Should implement buffer here
if pad is not None:
out_extent = pad_extent(out_extent, width=pad)
print("Raster to clip: %s\nShapefile used to clip: %s" % (r_fn, shp_fn))
if verbose:
print(shp_extent)
print(r_extent)
print(out_extent)
r_ds = warplib.memwarp(r_ds, extent=out_extent, t_srs=out_srs, r='cubic')
r = iolib.ds_getma(r_ds)
#If bbox, return without clipping, otherwise, clip to polygons
if not bbox:
#Create binary mask from shp
mask = shp2array(shp_fn, r_ds)
if invert:
mask = ~(mask)
#Now apply the mask
r = np.ma.array(r, mask=mask)
#Return both the array and the dataset, needed for writing out
#Should probably just write r to r_ds and return r_ds
return r, r_ds | def raster_shpclip(r_fn, shp_fn, extent='raster', bbox=False, pad=None, invert=False, verbose=False) | Clip an input raster by input polygon shapefile for given extent | 3.5508 | 3.554106 | 0.99907 |
ds = ogr.Open(shp_fn)
lyr = ds.GetLayer()
srs = lyr.GetSpatialRef()
lyr.ResetReading()
geom_list = []
for feat in lyr:
geom = feat.GetGeometryRef()
geom.AssignSpatialReference(srs)
#Duplicate the geometry, or segfault
#See: http://trac.osgeo.org/gdal/wiki/PythonGotchas
#g = ogr.CreateGeometryFromWkt(geom.ExportToWkt())
#g.AssignSpatialReference(srs)
g = geom_dup(geom)
geom_list.append(g)
#geom = ogr.ForceToPolygon(' '.join(geom_list))
#Dissolve should convert multipolygon to single polygon
#return geom_list[0]
ds = None
return geom_list | def shp2geom(shp_fn) | Extract geometries from input shapefile
Need to handle multi-part geom: http://osgeo-org.1560.x6.nabble.com/Multipart-to-singlepart-td3746767.html | 3.14789 | 3.079349 | 1.022258 |
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.