code
string | signature
string | docstring
string | loss_without_docstring
float64 | loss_with_docstring
float64 | factor
float64 |
---|---|---|---|---|---|
basic_deliver = self._inbound.pop(0)
if not isinstance(basic_deliver, specification.Basic.Deliver):
LOGGER.warning(
'Received an out-of-order frame: %s was '
'expecting a Basic.Deliver frame',
type(basic_deliver)
)
return None
content_header = self._inbound.pop(0)
if not isinstance(content_header, ContentHeader):
LOGGER.warning(
'Received an out-of-order frame: %s was '
'expecting a ContentHeader frame',
type(content_header)
)
return None
return basic_deliver, content_header | def _build_message_headers(self) | Fetch Message Headers (Deliver & Header Frames).
:rtype: tuple|None | 3.026313 | 2.746147 | 1.102022 |
body = bytes()
while len(body) < body_size:
if not self._inbound:
self.check_for_errors()
sleep(IDLE_WAIT)
continue
body_piece = self._inbound.pop(0)
if not body_piece.value:
break
body += body_piece.value
return body | def _build_message_body(self, body_size) | Build the Message body from the inbound queue.
:rtype: str | 4.557789 | 4.247504 | 1.073051 |
if frame_in.reply_code != 200:
reply_text = try_utf8_decode(frame_in.reply_text)
message = (
'Channel %d was closed by remote server: %s' %
(
self._channel_id,
reply_text
)
)
exception = AMQPChannelError(message,
reply_code=frame_in.reply_code)
self.exceptions.append(exception)
self.set_state(self.CLOSED)
if self._connection.is_open:
try:
self._connection.write_frame(
self.channel_id, specification.Channel.CloseOk()
)
except AMQPConnectionError:
pass
self.close() | def _close_channel(self, frame_in) | Close Channel.
:param specification.Channel.Close frame_in: Channel Close frame.
:return: | 3.772677 | 3.717832 | 1.014752 |
user_payload = json.dumps({
'password': password,
'tags': tags
})
return self.http_client.put(API_USER % username,
payload=user_payload) | def create(self, username, password, tags='') | Create User.
:param str username: Username
:param str password: Password
:param str tags: Comma-separate list of tags (e.g. monitoring)
:rtype: None | 4.674662 | 5.808265 | 0.804829 |
virtual_host = quote(virtual_host, '')
return self.http_client.get(API_USER_VIRTUAL_HOST_PERMISSIONS %
(
virtual_host,
username
)) | def get_permission(self, username, virtual_host) | Get User permissions for the configured virtual host.
:param str username: Username
:param str virtual_host: Virtual host name
:raises ApiError: Raises if the remote server encountered an error.
:raises ApiConnectionError: Raises if there was a connectivity issue.
:rtype: dict | 6.74689 | 9.035014 | 0.746749 |
virtual_host = quote(virtual_host, '')
permission_payload = json.dumps({
"configure": configure_regex,
"read": read_regex,
"write": write_regex
})
return self.http_client.put(API_USER_VIRTUAL_HOST_PERMISSIONS %
(
virtual_host,
username
),
payload=permission_payload) | def set_permission(self, username, virtual_host, configure_regex='.*',
write_regex='.*', read_regex='.*') | Set User permissions for the configured virtual host.
:param str username: Username
:param str virtual_host: Virtual host name
:param str configure_regex: Permission pattern for configuration
operations for this user.
:param str write_regex: Permission pattern for write operations
for this user.
:param str read_regex: Permission pattern for read operations
for this user.
:raises ApiError: Raises if the remote server encountered an error.
:raises ApiConnectionError: Raises if there was a connectivity issue.
:rtype: dict | 3.336037 | 4.334952 | 0.769567 |
virtual_host = quote(virtual_host, '')
return self.http_client.delete(
API_USER_VIRTUAL_HOST_PERMISSIONS %
(
virtual_host,
username
)) | def delete_permission(self, username, virtual_host) | Delete User permissions for the configured virtual host.
:param str username: Username
:param str virtual_host: Virtual host name
:raises ApiError: Raises if the remote server encountered an error.
:raises ApiConnectionError: Raises if there was a connectivity issue.
:rtype: dict | 5.694622 | 8.697758 | 0.654723 |
self._stopped.clear()
if not self._connection or self._connection.is_closed:
self._create_connection()
while not self._stopped.is_set():
try:
# Check our connection for errors.
self._connection.check_for_errors()
self._update_consumers()
except amqpstorm.AMQPError as why:
# If an error occurs, re-connect and let update_consumers
# re-open the channels.
LOGGER.warning(why)
self._stop_consumers()
self._create_connection()
time.sleep(1) | def start_server(self) | Start the RPC Server.
:return: | 4.221832 | 4.379928 | 0.963904 |
# Do we need to start more consumers.
consumer_to_start = \
min(max(self.number_of_consumers - len(self._consumers), 0), 2)
for _ in range(consumer_to_start):
consumer = Consumer(self.rpc_queue)
self._start_consumer(consumer)
self._consumers.append(consumer)
# Check that all our consumers are active.
for consumer in self._consumers:
if consumer.active:
continue
self._start_consumer(consumer)
break
# Do we have any overflow of consumers.
self._stop_consumers(self.number_of_consumers) | def _update_consumers(self) | Update Consumers.
- Add more if requested.
- Make sure the consumers are healthy.
- Remove excess consumers.
:return: | 3.704399 | 3.823919 | 0.968744 |
return self._request('get', path, payload, headers) | def get(self, path, payload=None, headers=None) | HTTP GET operation.
:param path: URI Path
:param payload: HTTP Body
:param headers: HTTP Headers
:raises ApiError: Raises if the remote server encountered an error.
:raises ApiConnectionError: Raises if there was a connectivity issue.
:return: Response | 5.201543 | 15.290383 | 0.340184 |
return self._request('post', path, payload, headers) | def post(self, path, payload=None, headers=None) | HTTP POST operation.
:param path: URI Path
:param payload: HTTP Body
:param headers: HTTP Headers
:raises ApiError: Raises if the remote server encountered an error.
:raises ApiConnectionError: Raises if there was a connectivity issue.
:return: Response | 5.316162 | 14.679738 | 0.362143 |
return self._request('delete', path, payload, headers) | def delete(self, path, payload=None, headers=None) | HTTP DELETE operation.
:param path: URI Path
:param payload: HTTP Body
:param headers: HTTP Headers
:raises ApiError: Raises if the remote server encountered an error.
:raises ApiConnectionError: Raises if there was a connectivity issue.
:return: Response | 5.610045 | 14.82427 | 0.378437 |
return self._request('put', path, payload, headers) | def put(self, path, payload=None, headers=None) | HTTP PUT operation.
:param path: URI Path
:param payload: HTTP Body
:param headers: HTTP Headers
:raises ApiError: Raises if the remote server encountered an error.
:raises ApiConnectionError: Raises if there was a connectivity issue.
:return: Response | 5.452461 | 14.765288 | 0.369276 |
url = urlparse.urljoin(self._base_url, 'api/%s' % path)
headers = headers or {}
headers['content-type'] = 'application/json'
try:
response = requests.request(
method, url,
auth=self._auth,
data=payload,
headers=headers,
cert=self._cert,
verify=self._verify,
timeout=self._timeout
)
except requests.RequestException as why:
raise ApiConnectionError(str(why))
json_response = self._get_json_output(response)
self._check_for_errors(response, json_response)
return json_response | def _request(self, method, path, payload=None, headers=None) | HTTP operation.
:param method: Operation type (e.g. post)
:param path: URI Path
:param payload: HTTP Body
:param headers: HTTP Headers
:raises ApiError: Raises if the remote server encountered an error.
:raises ApiConnectionError: Raises if there was a connectivity issue.
:return: Response | 2.436248 | 2.566953 | 0.949082 |
status_code = response.status_code
try:
response.raise_for_status()
except requests.HTTPError as why:
raise ApiError(str(why), reply_code=status_code)
if isinstance(json_response, dict) and 'error' in json_response:
raise ApiError(json_response['error'], reply_code=status_code) | def _check_for_errors(response, json_response) | Check payload for errors.
:param response: HTTP response
:param json_response: Json response
:raises ApiError: Raises if the remote server encountered an error.
:return: | 2.603336 | 2.826731 | 0.920971 |
if not node:
return self.http_client.get(HEALTHCHECKS)
return self.http_client.get(HEALTHCHECKS_NODE % node) | def get(self, node=None) | Run basic healthchecks against the current node, or against a given
node.
Example response:
> {"status":"ok"}
> {"status":"failed","reason":"string"}
:param node: Node name
:raises ApiError: Raises if the remote server encountered an error.
:raises ApiConnectionError: Raises if there was a connectivity issue.
:rtype: dict | 5.590331 | 5.62727 | 0.993436 |
# This function calculates the mean number of pairwise differences
# between haplotypes within a single population, generalising to any number
# of alleles.
# check inputs
ac = asarray_ndim(ac, 2)
# total number of haplotypes
if an is None:
an = np.sum(ac, axis=1)
else:
an = asarray_ndim(an, 1)
check_dim0_aligned(ac, an)
# total number of pairwise comparisons for each variant:
# (an choose 2)
n_pairs = an * (an - 1) / 2
# number of pairwise comparisons where there is no difference:
# sum of (ac choose 2) for each allele (i.e., number of ways to
# choose the same allele twice)
n_same = np.sum(ac * (ac - 1) / 2, axis=1)
# number of pairwise differences
n_diff = n_pairs - n_same
# mean number of pairwise differences, accounting for cases where
# there are no pairs
with ignore_invalid():
mpd = np.where(n_pairs > 0, n_diff / n_pairs, fill)
return mpd | def mean_pairwise_difference(ac, an=None, fill=np.nan) | Calculate for each variant the mean number of pairwise differences
between chromosomes sampled from within a single population.
Parameters
----------
ac : array_like, int, shape (n_variants, n_alleles)
Allele counts array.
an : array_like, int, shape (n_variants,), optional
Allele numbers. If not provided, will be calculated from `ac`.
fill : float
Use this value where there are no pairs to compare (e.g.,
all allele calls are missing).
Returns
-------
mpd : ndarray, float, shape (n_variants,)
Notes
-----
The values returned by this function can be summed over a genome
region and divided by the number of accessible bases to estimate
nucleotide diversity, a.k.a. *pi*.
Examples
--------
>>> import allel
>>> h = allel.HaplotypeArray([[0, 0, 0, 0],
... [0, 0, 0, 1],
... [0, 0, 1, 1],
... [0, 1, 1, 1],
... [1, 1, 1, 1],
... [0, 0, 1, 2],
... [0, 1, 1, 2],
... [0, 1, -1, -1]])
>>> ac = h.count_alleles()
>>> allel.mean_pairwise_difference(ac)
array([0. , 0.5 , 0.66666667, 0.5 , 0. ,
0.83333333, 0.83333333, 1. ])
See Also
--------
sequence_diversity, windowed_diversity | 3.595909 | 3.415091 | 1.052947 |
# This function calculates the mean number of pairwise differences
# between haplotypes from two different populations, generalising to any
# number of alleles.
# check inputs
ac1 = asarray_ndim(ac1, 2)
ac2 = asarray_ndim(ac2, 2)
check_dim0_aligned(ac1, ac2)
ac1, ac2 = ensure_dim1_aligned(ac1, ac2)
# total number of haplotypes sampled from each population
if an1 is None:
an1 = np.sum(ac1, axis=1)
else:
an1 = asarray_ndim(an1, 1)
check_dim0_aligned(ac1, an1)
if an2 is None:
an2 = np.sum(ac2, axis=1)
else:
an2 = asarray_ndim(an2, 1)
check_dim0_aligned(ac2, an2)
# total number of pairwise comparisons for each variant
n_pairs = an1 * an2
# number of pairwise comparisons where there is no difference:
# sum of (ac1 * ac2) for each allele (i.e., number of ways to
# choose the same allele twice)
n_same = np.sum(ac1 * ac2, axis=1)
# number of pairwise differences
n_diff = n_pairs - n_same
# mean number of pairwise differences, accounting for cases where
# there are no pairs
with ignore_invalid():
mpd = np.where(n_pairs > 0, n_diff / n_pairs, fill)
return mpd | def mean_pairwise_difference_between(ac1, ac2, an1=None, an2=None,
fill=np.nan) | Calculate for each variant the mean number of pairwise differences
between chromosomes sampled from two different populations.
Parameters
----------
ac1 : array_like, int, shape (n_variants, n_alleles)
Allele counts array from the first population.
ac2 : array_like, int, shape (n_variants, n_alleles)
Allele counts array from the second population.
an1 : array_like, int, shape (n_variants,), optional
Allele numbers for the first population. If not provided, will be
calculated from `ac1`.
an2 : array_like, int, shape (n_variants,), optional
Allele numbers for the second population. If not provided, will be
calculated from `ac2`.
fill : float
Use this value where there are no pairs to compare (e.g.,
all allele calls are missing).
Returns
-------
mpd : ndarray, float, shape (n_variants,)
Notes
-----
The values returned by this function can be summed over a genome
region and divided by the number of accessible bases to estimate
nucleotide divergence between two populations, a.k.a. *Dxy*.
Examples
--------
>>> import allel
>>> h = allel.HaplotypeArray([[0, 0, 0, 0],
... [0, 0, 0, 1],
... [0, 0, 1, 1],
... [0, 1, 1, 1],
... [1, 1, 1, 1],
... [0, 0, 1, 2],
... [0, 1, 1, 2],
... [0, 1, -1, -1]])
>>> ac1 = h.count_alleles(subpop=[0, 1])
>>> ac2 = h.count_alleles(subpop=[2, 3])
>>> allel.mean_pairwise_difference_between(ac1, ac2)
array([0. , 0.5 , 1. , 0.5 , 0. , 1. , 0.75, nan])
See Also
--------
sequence_divergence, windowed_divergence | 2.635864 | 2.57271 | 1.024548 |
# check inputs
if not isinstance(pos, SortedIndex):
pos = SortedIndex(pos, copy=False)
ac = asarray_ndim(ac, 2)
is_accessible = asarray_ndim(is_accessible, 1, allow_none=True)
# deal with subregion
if start is not None or stop is not None:
loc = pos.locate_range(start, stop)
pos = pos[loc]
ac = ac[loc]
if start is None:
start = pos[0]
if stop is None:
stop = pos[-1]
# calculate mean pairwise difference
mpd = mean_pairwise_difference(ac, fill=0)
# sum differences over variants
mpd_sum = np.sum(mpd)
# calculate value per base
if is_accessible is None:
n_bases = stop - start + 1
else:
n_bases = np.count_nonzero(is_accessible[start-1:stop])
pi = mpd_sum / n_bases
return pi | def sequence_diversity(pos, ac, start=None, stop=None,
is_accessible=None) | Estimate nucleotide diversity within a given region, which is the
average proportion of sites (including monomorphic sites not present in the
data) that differ between randomly chosen pairs of chromosomes.
Parameters
----------
pos : array_like, int, shape (n_items,)
Variant positions, using 1-based coordinates, in ascending order.
ac : array_like, int, shape (n_variants, n_alleles)
Allele counts array.
start : int, optional
The position at which to start (1-based). Defaults to the first position.
stop : int, optional
The position at which to stop (1-based). Defaults to the last position.
is_accessible : array_like, bool, shape (len(contig),), optional
Boolean array indicating accessibility status for all positions in the
chromosome/contig.
Returns
-------
pi : ndarray, float, shape (n_windows,)
Nucleotide diversity.
Notes
-----
If start and/or stop are not provided, uses the difference between the last
and the first position as a proxy for the total number of sites, which can
overestimate the sequence diversity.
Examples
--------
>>> import allel
>>> g = allel.GenotypeArray([[[0, 0], [0, 0]],
... [[0, 0], [0, 1]],
... [[0, 0], [1, 1]],
... [[0, 1], [1, 1]],
... [[1, 1], [1, 1]],
... [[0, 0], [1, 2]],
... [[0, 1], [1, 2]],
... [[0, 1], [-1, -1]],
... [[-1, -1], [-1, -1]]])
>>> ac = g.count_alleles()
>>> pos = [2, 4, 7, 14, 15, 18, 19, 25, 27]
>>> pi = allel.sequence_diversity(pos, ac, start=1, stop=31)
>>> pi
0.13978494623655915 | 3.084503 | 3.193876 | 0.965755 |
# check inputs
if not isinstance(pos, SortedIndex):
pos = SortedIndex(pos, copy=False)
is_accessible = asarray_ndim(is_accessible, 1, allow_none=True)
# calculate mean pairwise difference
mpd = mean_pairwise_difference(ac, fill=0)
# sum differences in windows
mpd_sum, windows, counts = windowed_statistic(
pos, values=mpd, statistic=np.sum, size=size, start=start, stop=stop,
step=step, windows=windows, fill=0
)
# calculate value per base
pi, n_bases = per_base(mpd_sum, windows, is_accessible=is_accessible,
fill=fill)
return pi, windows, n_bases, counts | def windowed_diversity(pos, ac, size=None, start=None, stop=None, step=None,
windows=None, is_accessible=None, fill=np.nan) | Estimate nucleotide diversity in windows over a single
chromosome/contig.
Parameters
----------
pos : array_like, int, shape (n_items,)
Variant positions, using 1-based coordinates, in ascending order.
ac : array_like, int, shape (n_variants, n_alleles)
Allele counts array.
size : int, optional
The window size (number of bases).
start : int, optional
The position at which to start (1-based).
stop : int, optional
The position at which to stop (1-based).
step : int, optional
The distance between start positions of windows. If not given,
defaults to the window size, i.e., non-overlapping windows.
windows : array_like, int, shape (n_windows, 2), optional
Manually specify the windows to use as a sequence of (window_start,
window_stop) positions, using 1-based coordinates. Overrides the
size/start/stop/step parameters.
is_accessible : array_like, bool, shape (len(contig),), optional
Boolean array indicating accessibility status for all positions in the
chromosome/contig.
fill : object, optional
The value to use where a window is completely inaccessible.
Returns
-------
pi : ndarray, float, shape (n_windows,)
Nucleotide diversity in each window.
windows : ndarray, int, shape (n_windows, 2)
The windows used, as an array of (window_start, window_stop) positions,
using 1-based coordinates.
n_bases : ndarray, int, shape (n_windows,)
Number of (accessible) bases in each window.
counts : ndarray, int, shape (n_windows,)
Number of variants in each window.
Examples
--------
>>> import allel
>>> g = allel.GenotypeArray([[[0, 0], [0, 0]],
... [[0, 0], [0, 1]],
... [[0, 0], [1, 1]],
... [[0, 1], [1, 1]],
... [[1, 1], [1, 1]],
... [[0, 0], [1, 2]],
... [[0, 1], [1, 2]],
... [[0, 1], [-1, -1]],
... [[-1, -1], [-1, -1]]])
>>> ac = g.count_alleles()
>>> pos = [2, 4, 7, 14, 15, 18, 19, 25, 27]
>>> pi, windows, n_bases, counts = allel.windowed_diversity(
... pos, ac, size=10, start=1, stop=31
... )
>>> pi
array([0.11666667, 0.21666667, 0.09090909])
>>> windows
array([[ 1, 10],
[11, 20],
[21, 31]])
>>> n_bases
array([10, 10, 11])
>>> counts
array([3, 4, 2]) | 3.968067 | 3.873604 | 1.024386 |
# check inputs
pos = SortedIndex(pos, copy=False)
is_accessible = asarray_ndim(is_accessible, 1, allow_none=True)
# locate fixed differences
loc_df = locate_fixed_differences(ac1, ac2)
# count number of fixed differences in windows
n_df, windows, counts = windowed_statistic(
pos, values=loc_df, statistic=np.count_nonzero, size=size, start=start,
stop=stop, step=step, windows=windows, fill=0
)
# calculate value per base
df, n_bases = per_base(n_df, windows, is_accessible=is_accessible,
fill=fill)
return df, windows, n_bases, counts | def windowed_df(pos, ac1, ac2, size=None, start=None, stop=None, step=None,
windows=None, is_accessible=None, fill=np.nan) | Calculate the density of fixed differences between two populations in
windows over a single chromosome/contig.
Parameters
----------
pos : array_like, int, shape (n_items,)
Variant positions, using 1-based coordinates, in ascending order.
ac1 : array_like, int, shape (n_variants, n_alleles)
Allele counts array for the first population.
ac2 : array_like, int, shape (n_variants, n_alleles)
Allele counts array for the second population.
size : int, optional
The window size (number of bases).
start : int, optional
The position at which to start (1-based).
stop : int, optional
The position at which to stop (1-based).
step : int, optional
The distance between start positions of windows. If not given,
defaults to the window size, i.e., non-overlapping windows.
windows : array_like, int, shape (n_windows, 2), optional
Manually specify the windows to use as a sequence of (window_start,
window_stop) positions, using 1-based coordinates. Overrides the
size/start/stop/step parameters.
is_accessible : array_like, bool, shape (len(contig),), optional
Boolean array indicating accessibility status for all positions in the
chromosome/contig.
fill : object, optional
The value to use where a window is completely inaccessible.
Returns
-------
df : ndarray, float, shape (n_windows,)
Per-base density of fixed differences in each window.
windows : ndarray, int, shape (n_windows, 2)
The windows used, as an array of (window_start, window_stop) positions,
using 1-based coordinates.
n_bases : ndarray, int, shape (n_windows,)
Number of (accessible) bases in each window.
counts : ndarray, int, shape (n_windows,)
Number of variants in each window.
See Also
--------
allel.model.locate_fixed_differences | 4.004254 | 3.437578 | 1.164848 |
# check inputs
if not isinstance(pos, SortedIndex):
pos = SortedIndex(pos, copy=False)
is_accessible = asarray_ndim(is_accessible, 1, allow_none=True)
if not hasattr(ac, 'count_segregating'):
ac = AlleleCountsArray(ac, copy=False)
# deal with subregion
if start is not None or stop is not None:
loc = pos.locate_range(start, stop)
pos = pos[loc]
ac = ac[loc]
if start is None:
start = pos[0]
if stop is None:
stop = pos[-1]
# count segregating variants
S = ac.count_segregating()
# assume number of chromosomes sampled is constant for all variants
n = ac.sum(axis=1).max()
# (n-1)th harmonic number
a1 = np.sum(1 / np.arange(1, n))
# calculate absolute value
theta_hat_w_abs = S / a1
# calculate value per base
if is_accessible is None:
n_bases = stop - start + 1
else:
n_bases = np.count_nonzero(is_accessible[start-1:stop])
theta_hat_w = theta_hat_w_abs / n_bases
return theta_hat_w | def watterson_theta(pos, ac, start=None, stop=None,
is_accessible=None) | Calculate the value of Watterson's estimator over a given region.
Parameters
----------
pos : array_like, int, shape (n_items,)
Variant positions, using 1-based coordinates, in ascending order.
ac : array_like, int, shape (n_variants, n_alleles)
Allele counts array.
start : int, optional
The position at which to start (1-based). Defaults to the first position.
stop : int, optional
The position at which to stop (1-based). Defaults to the last position.
is_accessible : array_like, bool, shape (len(contig),), optional
Boolean array indicating accessibility status for all positions in the
chromosome/contig.
Returns
-------
theta_hat_w : float
Watterson's estimator (theta hat per base).
Examples
--------
>>> import allel
>>> g = allel.GenotypeArray([[[0, 0], [0, 0]],
... [[0, 0], [0, 1]],
... [[0, 0], [1, 1]],
... [[0, 1], [1, 1]],
... [[1, 1], [1, 1]],
... [[0, 0], [1, 2]],
... [[0, 1], [1, 2]],
... [[0, 1], [-1, -1]],
... [[-1, -1], [-1, -1]]])
>>> ac = g.count_alleles()
>>> pos = [2, 4, 7, 14, 15, 18, 19, 25, 27]
>>> theta_hat_w = allel.watterson_theta(pos, ac, start=1, stop=31)
>>> theta_hat_w
0.10557184750733138 | 3.733095 | 3.395226 | 1.099513 |
# check inputs
if not hasattr(ac, 'count_segregating'):
ac = AlleleCountsArray(ac, copy=False)
# deal with subregion
if pos is not None and (start is not None or stop is not None):
if not isinstance(pos, SortedIndex):
pos = SortedIndex(pos, copy=False)
loc = pos.locate_range(start, stop)
ac = ac[loc]
# count segregating variants
S = ac.count_segregating()
if S < min_sites:
return np.nan
# assume number of chromosomes sampled is constant for all variants
n = ac.sum(axis=1).max()
# (n-1)th harmonic number
a1 = np.sum(1 / np.arange(1, n))
# calculate Watterson's theta (absolute value)
theta_hat_w_abs = S / a1
# calculate mean pairwise difference
mpd = mean_pairwise_difference(ac, fill=0)
# calculate theta_hat pi (sum differences over variants)
theta_hat_pi_abs = np.sum(mpd)
# N.B., both theta estimates are usually divided by the number of
# (accessible) bases but here we want the absolute difference
d = theta_hat_pi_abs - theta_hat_w_abs
# calculate the denominator (standard deviation)
a2 = np.sum(1 / (np.arange(1, n)**2))
b1 = (n + 1) / (3 * (n - 1))
b2 = 2 * (n**2 + n + 3) / (9 * n * (n - 1))
c1 = b1 - (1 / a1)
c2 = b2 - ((n + 2) / (a1 * n)) + (a2 / (a1**2))
e1 = c1 / a1
e2 = c2 / (a1**2 + a2)
d_stdev = np.sqrt((e1 * S) + (e2 * S * (S - 1)))
# finally calculate Tajima's D
D = d / d_stdev
return D | def tajima_d(ac, pos=None, start=None, stop=None, min_sites=3) | Calculate the value of Tajima's D over a given region.
Parameters
----------
ac : array_like, int, shape (n_variants, n_alleles)
Allele counts array.
pos : array_like, int, shape (n_items,), optional
Variant positions, using 1-based coordinates, in ascending order.
start : int, optional
The position at which to start (1-based). Defaults to the first position.
stop : int, optional
The position at which to stop (1-based). Defaults to the last position.
min_sites : int, optional
Minimum number of segregating sites for which to calculate a value. If
there are fewer, np.nan is returned. Defaults to 3.
Returns
-------
D : float
Examples
--------
>>> import allel
>>> g = allel.GenotypeArray([[[0, 0], [0, 0]],
... [[0, 0], [0, 1]],
... [[0, 0], [1, 1]],
... [[0, 1], [1, 1]],
... [[1, 1], [1, 1]],
... [[0, 0], [1, 2]],
... [[0, 1], [1, 2]],
... [[0, 1], [-1, -1]],
... [[-1, -1], [-1, -1]]])
>>> ac = g.count_alleles()
>>> allel.tajima_d(ac)
3.1445848780213814
>>> pos = [2, 4, 7, 14, 15, 18, 19, 25, 27]
>>> allel.tajima_d(ac, pos=pos, start=7, stop=25)
3.8779735196179366 | 4.212989 | 4.201726 | 1.002681 |
d = moving_statistic(values=ac, statistic=tajima_d, size=size, start=start, stop=stop,
step=step, min_sites=min_sites)
return d | def moving_tajima_d(ac, size, start=0, stop=None, step=None, min_sites=3) | Calculate the value of Tajima's D in moving windows of `size` variants.
Parameters
----------
ac : array_like, int, shape (n_variants, n_alleles)
Allele counts array.
size : int
The window size (number of variants).
start : int, optional
The index at which to start.
stop : int, optional
The index at which to stop.
step : int, optional
The number of variants between start positions of windows. If not
given, defaults to the window size, i.e., non-overlapping windows.
min_sites : int, optional
Minimum number of segregating sites for which to calculate a value. If
there are fewer, np.nan is returned. Defaults to 3.
Returns
-------
d : ndarray, float, shape (n_windows,)
Tajima's D.
Examples
--------
>>> import allel
>>> g = allel.GenotypeArray([[[0, 0], [0, 0]],
... [[0, 0], [0, 1]],
... [[0, 0], [1, 1]],
... [[0, 1], [1, 1]],
... [[1, 1], [1, 1]],
... [[0, 0], [1, 2]],
... [[0, 1], [1, 2]],
... [[0, 1], [-1, -1]],
... [[-1, -1], [-1, -1]]])
>>> ac = g.count_alleles()
>>> D = allel.moving_tajima_d(ac, size=4, step=2)
>>> D
array([0.1676558 , 2.01186954, 5.70029703]) | 3.304922 | 5.553347 | 0.595123 |
# check input
dac, n = _check_dac_n(dac, n)
# need platform integer for bincount
dac = dac.astype(int, copy=False)
# compute site frequency spectrum
x = n + 1
s = np.bincount(dac, minlength=x)
return s | def sfs(dac, n=None) | Compute the site frequency spectrum given derived allele counts at
a set of biallelic variants.
Parameters
----------
dac : array_like, int, shape (n_variants,)
Array of derived allele counts.
n : int, optional
The total number of chromosomes called.
Returns
-------
sfs : ndarray, int, shape (n_chromosomes,)
Array where the kth element is the number of variant sites with k
derived alleles. | 6.229896 | 5.133232 | 1.21364 |
# check input
ac, n = _check_ac_n(ac, n)
# compute minor allele counts
mac = np.amin(ac, axis=1)
# need platform integer for bincount
mac = mac.astype(int, copy=False)
# compute folded site frequency spectrum
x = n//2 + 1
s = np.bincount(mac, minlength=x)
return s | def sfs_folded(ac, n=None) | Compute the folded site frequency spectrum given reference and
alternate allele counts at a set of biallelic variants.
Parameters
----------
ac : array_like, int, shape (n_variants, 2)
Allele counts array.
n : int, optional
The total number of chromosomes called.
Returns
-------
sfs_folded : ndarray, int, shape (n_chromosomes//2,)
Array where the kth element is the number of variant sites with a
minor allele count of k. | 6.624519 | 4.877339 | 1.358224 |
# compute site frequency spectrum
s = sfs(dac, n=n)
# apply scaling
s = scale_sfs(s)
return s | def sfs_scaled(dac, n=None) | Compute the site frequency spectrum scaled such that a constant value is
expected across the spectrum for neutral variation and constant
population size.
Parameters
----------
dac : array_like, int, shape (n_variants,)
Array of derived allele counts.
n : int, optional
The total number of chromosomes called.
Returns
-------
sfs_scaled : ndarray, int, shape (n_chromosomes,)
An array where the value of the kth element is the number of variants
with k derived alleles, multiplied by k. | 7.391342 | 7.887751 | 0.937066 |
k = np.arange(s.size)
out = s * k
return out | def scale_sfs(s) | Scale a site frequency spectrum.
Parameters
----------
s : array_like, int, shape (n_chromosomes,)
Site frequency spectrum.
Returns
-------
sfs_scaled : ndarray, int, shape (n_chromosomes,)
Scaled site frequency spectrum. | 7.678865 | 13.736296 | 0.55902 |
# check input
ac, n = _check_ac_n(ac, n)
# compute the site frequency spectrum
s = sfs_folded(ac, n=n)
# apply scaling
s = scale_sfs_folded(s, n)
return s | def sfs_folded_scaled(ac, n=None) | Compute the folded site frequency spectrum scaled such that a constant
value is expected across the spectrum for neutral variation and constant
population size.
Parameters
----------
ac : array_like, int, shape (n_variants, 2)
Allele counts array.
n : int, optional
The total number of chromosomes called.
Returns
-------
sfs_folded_scaled : ndarray, int, shape (n_chromosomes//2,)
An array where the value of the kth element is the number of variants
with minor allele count k, multiplied by the scaling factor
(k * (n - k) / n). | 4.279909 | 3.805521 | 1.124658 |
k = np.arange(s.shape[0])
out = s * k * (n - k) / n
return out | def scale_sfs_folded(s, n) | Scale a folded site frequency spectrum.
Parameters
----------
s : array_like, int, shape (n_chromosomes//2,)
Folded site frequency spectrum.
n : int
Number of chromosomes called.
Returns
-------
sfs_folded_scaled : ndarray, int, shape (n_chromosomes//2,)
Scaled folded site frequency spectrum. | 5.161904 | 7.664744 | 0.673461 |
# check inputs
dac1, n1 = _check_dac_n(dac1, n1)
dac2, n2 = _check_dac_n(dac2, n2)
# compute site frequency spectrum
x = n1 + 1
y = n2 + 1
# need platform integer for bincount
tmp = (dac1 * y + dac2).astype(int, copy=False)
s = np.bincount(tmp)
s.resize(x, y)
return s | def joint_sfs(dac1, dac2, n1=None, n2=None) | Compute the joint site frequency spectrum between two populations.
Parameters
----------
dac1 : array_like, int, shape (n_variants,)
Derived allele counts for the first population.
dac2 : array_like, int, shape (n_variants,)
Derived allele counts for the second population.
n1, n2 : int, optional
The total number of chromosomes called in each population.
Returns
-------
joint_sfs : ndarray, int, shape (m_chromosomes, n_chromosomes)
Array where the (i, j)th element is the number of variant sites with i
derived alleles in the first population and j derived alleles in the
second population. | 4.065212 | 3.823812 | 1.063131 |
# check inputs
ac1, n1 = _check_ac_n(ac1, n1)
ac2, n2 = _check_ac_n(ac2, n2)
# compute minor allele counts
mac1 = np.amin(ac1, axis=1)
mac2 = np.amin(ac2, axis=1)
# compute site frequency spectrum
x = n1//2 + 1
y = n2//2 + 1
tmp = (mac1 * y + mac2).astype(int, copy=False)
s = np.bincount(tmp)
s.resize(x, y)
return s | def joint_sfs_folded(ac1, ac2, n1=None, n2=None) | Compute the joint folded site frequency spectrum between two
populations.
Parameters
----------
ac1 : array_like, int, shape (n_variants, 2)
Allele counts for the first population.
ac2 : array_like, int, shape (n_variants, 2)
Allele counts for the second population.
n1, n2 : int, optional
The total number of chromosomes called in each population.
Returns
-------
joint_sfs_folded : ndarray, int, shape (n1//2 + 1, n2//2 + 1)
Array where the (i, j)th element is the number of variant sites with a
minor allele count of i in the first population and j in the second
population. | 3.360686 | 2.670726 | 1.258342 |
# compute site frequency spectrum
s = joint_sfs(dac1, dac2, n1=n1, n2=n2)
# apply scaling
s = scale_joint_sfs(s)
return s | def joint_sfs_scaled(dac1, dac2, n1=None, n2=None) | Compute the joint site frequency spectrum between two populations,
scaled such that a constant value is expected across the spectrum for
neutral variation, constant population size and unrelated populations.
Parameters
----------
dac1 : array_like, int, shape (n_variants,)
Derived allele counts for the first population.
dac2 : array_like, int, shape (n_variants,)
Derived allele counts for the second population.
n1, n2 : int, optional
The total number of chromosomes called in each population.
Returns
-------
joint_sfs_scaled : ndarray, int, shape (n1 + 1, n2 + 1)
Array where the (i, j)th element is the scaled frequency of variant
sites with i derived alleles in the first population and j derived
alleles in the second population. | 3.940327 | 4.185941 | 0.941324 |
i = np.arange(s.shape[0])[:, None]
j = np.arange(s.shape[1])[None, :]
out = (s * i) * j
return out | def scale_joint_sfs(s) | Scale a joint site frequency spectrum.
Parameters
----------
s : array_like, int, shape (n1, n2)
Joint site frequency spectrum.
Returns
-------
joint_sfs_scaled : ndarray, int, shape (n1, n2)
Scaled joint site frequency spectrum. | 3.428765 | 3.762452 | 0.911311 |
# noqa
# check inputs
ac1, n1 = _check_ac_n(ac1, n1)
ac2, n2 = _check_ac_n(ac2, n2)
# compute site frequency spectrum
s = joint_sfs_folded(ac1, ac2, n1=n1, n2=n2)
# apply scaling
s = scale_joint_sfs_folded(s, n1, n2)
return s | def joint_sfs_folded_scaled(ac1, ac2, n1=None, n2=None) | Compute the joint folded site frequency spectrum between two
populations, scaled such that a constant value is expected across the
spectrum for neutral variation, constant population size and unrelated
populations.
Parameters
----------
ac1 : array_like, int, shape (n_variants, 2)
Allele counts for the first population.
ac2 : array_like, int, shape (n_variants, 2)
Allele counts for the second population.
n1, n2 : int, optional
The total number of chromosomes called in each population.
Returns
-------
joint_sfs_folded_scaled : ndarray, int, shape (n1//2 + 1, n2//2 + 1)
Array where the (i, j)th element is the scaled frequency of variant
sites with a minor allele count of i in the first population and j
in the second population. | 2.497306 | 2.4195 | 1.032158 |
# noqa
out = np.empty_like(s)
for i in range(s.shape[0]):
for j in range(s.shape[1]):
out[i, j] = s[i, j] * i * j * (n1 - i) * (n2 - j)
return out | def scale_joint_sfs_folded(s, n1, n2) | Scale a folded joint site frequency spectrum.
Parameters
----------
s : array_like, int, shape (m_chromosomes//2, n_chromosomes//2)
Folded joint site frequency spectrum.
n1, n2 : int, optional
The total number of chromosomes called in each population.
Returns
-------
joint_sfs_folded_scaled : ndarray, int, shape (m_chromosomes//2, n_chromosomes//2)
Scaled folded joint site frequency spectrum. | 2.251354 | 2.731575 | 0.824196 |
# check inputs
s = asarray_ndim(s, 1)
assert s.shape[0] <= n + 1, 'invalid number of chromosomes'
# need to check s has all entries up to n
if s.shape[0] < n + 1:
sn = np.zeros(n + 1, dtype=s.dtype)
sn[:s.shape[0]] = s
s = sn
# fold
nf = (n + 1) // 2
n = nf * 2
o = s[:nf] + s[nf:n][::-1]
return o | def fold_sfs(s, n) | Fold a site frequency spectrum.
Parameters
----------
s : array_like, int, shape (n_chromosomes,)
Site frequency spectrum
n : int
Total number of chromosomes called.
Returns
-------
sfs_folded : ndarray, int
Folded site frequency spectrum | 4.089837 | 3.847441 | 1.063002 |
# check inputs
s = asarray_ndim(s, 2)
assert s.shape[0] <= n1 + 1, 'invalid number of chromosomes'
assert s.shape[1] <= n2 + 1, 'invalid number of chromosomes'
# need to check s has all entries up to m
if s.shape[0] < n1 + 1:
sm = np.zeros((n1 + 1, s.shape[1]), dtype=s.dtype)
sm[:s.shape[0]] = s
s = sm
# need to check s has all entries up to n
if s.shape[1] < n2 + 1:
sn = np.zeros((s.shape[0], n2 + 1), dtype=s.dtype)
sn[:, :s.shape[1]] = s
s = sn
# fold
mf = (n1 + 1) // 2
nf = (n2 + 1) // 2
n1 = mf * 2
n2 = nf * 2
o = (s[:mf, :nf] + # top left
s[mf:n1, :nf][::-1] + # top right
s[:mf, nf:n2][:, ::-1] + # bottom left
s[mf:n1, nf:n2][::-1, ::-1]) # bottom right
return o | def fold_joint_sfs(s, n1, n2) | Fold a joint site frequency spectrum.
Parameters
----------
s : array_like, int, shape (m_chromosomes, n_chromosomes)
Joint site frequency spectrum.
n1, n2 : int, optional
The total number of chromosomes called in each population.
Returns
-------
joint_sfs_folded : ndarray, int
Folded joint site frequency spectrum. | 2.28234 | 2.14641 | 1.063329 |
import matplotlib.pyplot as plt
import scipy
# check inputs
s = asarray_ndim(s, 1)
# setup axes
if ax is None:
fig, ax = plt.subplots()
# setup data
if bins is None:
if clip_endpoints:
x = np.arange(1, s.shape[0]-1)
y = s[1:-1]
else:
x = np.arange(s.shape[0])
y = s
else:
if clip_endpoints:
y, b, _ = scipy.stats.binned_statistic(
np.arange(1, s.shape[0]-1),
values=s[1:-1],
bins=bins,
statistic='sum')
else:
y, b, _ = scipy.stats.binned_statistic(
np.arange(s.shape[0]),
values=s,
bins=bins,
statistic='sum')
# use bin midpoints for plotting
x = (b[:-1] + b[1:]) / 2
if n:
# convert allele counts to allele frequencies
x = x / n
ax.set_xlabel('derived allele frequency')
else:
ax.set_xlabel('derived allele count')
# do plotting
if plot_kwargs is None:
plot_kwargs = dict()
ax.plot(x, y, label=label, **plot_kwargs)
# tidy
ax.set_yscale(yscale)
ax.set_ylabel('site frequency')
ax.autoscale(axis='x', tight=True)
return ax | def plot_sfs(s, yscale='log', bins=None, n=None,
clip_endpoints=True, label=None, plot_kwargs=None,
ax=None) | Plot a site frequency spectrum.
Parameters
----------
s : array_like, int, shape (n_chromosomes,)
Site frequency spectrum.
yscale : string, optional
Y axis scale.
bins : int or array_like, int, optional
Allele count bins.
n : int, optional
Number of chromosomes sampled. If provided, X axis will be plotted
as allele frequency, otherwise as allele count.
clip_endpoints : bool, optional
If True, do not plot first and last values from frequency spectrum.
label : string, optional
Label for data series in plot.
plot_kwargs : dict-like
Additional keyword arguments, passed through to ax.plot().
ax : axes, optional
Axes on which to draw. If not provided, a new figure will be created.
Returns
-------
ax : axes
The axes on which the plot was drawn. | 2.296087 | 2.158731 | 1.063628 |
ax = plot_sfs(*args, **kwargs)
n = kwargs.get('n', None)
if n:
ax.set_xlabel('minor allele frequency')
else:
ax.set_xlabel('minor allele count')
return ax | def plot_sfs_folded(*args, **kwargs) | Plot a folded site frequency spectrum.
Parameters
----------
s : array_like, int, shape (n_chromosomes/2,)
Site frequency spectrum.
yscale : string, optional
Y axis scale.
bins : int or array_like, int, optional
Allele count bins.
n : int, optional
Number of chromosomes sampled. If provided, X axis will be plotted
as allele frequency, otherwise as allele count.
clip_endpoints : bool, optional
If True, do not plot first and last values from frequency spectrum.
label : string, optional
Label for data series in plot.
plot_kwargs : dict-like
Additional keyword arguments, passed through to ax.plot().
ax : axes, optional
Axes on which to draw. If not provided, a new figure will be created.
Returns
-------
ax : axes
The axes on which the plot was drawn. | 3.610062 | 3.690419 | 0.978225 |
kwargs.setdefault('yscale', 'linear')
ax = plot_sfs(*args, **kwargs)
ax.set_ylabel('scaled site frequency')
return ax | def plot_sfs_scaled(*args, **kwargs) | Plot a scaled site frequency spectrum.
Parameters
----------
s : array_like, int, shape (n_chromosomes,)
Site frequency spectrum.
yscale : string, optional
Y axis scale.
bins : int or array_like, int, optional
Allele count bins.
n : int, optional
Number of chromosomes sampled. If provided, X axis will be plotted
as allele frequency, otherwise as allele count.
clip_endpoints : bool, optional
If True, do not plot first and last values from frequency spectrum.
label : string, optional
Label for data series in plot.
plot_kwargs : dict-like
Additional keyword arguments, passed through to ax.plot().
ax : axes, optional
Axes on which to draw. If not provided, a new figure will be created.
Returns
-------
ax : axes
The axes on which the plot was drawn. | 4.065731 | 5.296726 | 0.767593 |
kwargs.setdefault('yscale', 'linear')
ax = plot_sfs_folded(*args, **kwargs)
ax.set_ylabel('scaled site frequency')
n = kwargs.get('n', None)
if n:
ax.set_xlabel('minor allele frequency')
else:
ax.set_xlabel('minor allele count')
return ax | def plot_sfs_folded_scaled(*args, **kwargs) | Plot a folded scaled site frequency spectrum.
Parameters
----------
s : array_like, int, shape (n_chromosomes/2,)
Site frequency spectrum.
yscale : string, optional
Y axis scale.
bins : int or array_like, int, optional
Allele count bins.
n : int, optional
Number of chromosomes sampled. If provided, X axis will be plotted
as allele frequency, otherwise as allele count.
clip_endpoints : bool, optional
If True, do not plot first and last values from frequency spectrum.
label : string, optional
Label for data series in plot.
plot_kwargs : dict-like
Additional keyword arguments, passed through to ax.plot().
ax : axes, optional
Axes on which to draw. If not provided, a new figure will be created.
Returns
-------
ax : axes
The axes on which the plot was drawn. | 3.138923 | 3.187671 | 0.984707 |
import matplotlib.pyplot as plt
from matplotlib.colors import LogNorm
# check inputs
s = asarray_ndim(s, 2)
# setup axes
if ax is None:
w = plt.rcParams['figure.figsize'][0]
fig, ax = plt.subplots(figsize=(w, w))
# set plotting defaults
if imshow_kwargs is None:
imshow_kwargs = dict()
imshow_kwargs.setdefault('cmap', 'jet')
imshow_kwargs.setdefault('interpolation', 'none')
imshow_kwargs.setdefault('aspect', 'auto')
imshow_kwargs.setdefault('norm', LogNorm())
# plot data
ax.imshow(s.T, **imshow_kwargs)
# tidy
ax.invert_yaxis()
ax.set_xlabel('derived allele count (population 1)')
ax.set_ylabel('derived allele count (population 2)')
return ax | def plot_joint_sfs(s, ax=None, imshow_kwargs=None) | Plot a joint site frequency spectrum.
Parameters
----------
s : array_like, int, shape (n_chromosomes_pop1, n_chromosomes_pop2)
Joint site frequency spectrum.
ax : axes, optional
Axes on which to draw. If not provided, a new figure will be created.
imshow_kwargs : dict-like
Additional keyword arguments, passed through to ax.imshow().
Returns
-------
ax : axes
The axes on which the plot was drawn. | 2.406808 | 2.303504 | 1.044847 |
ax = plot_joint_sfs(*args, **kwargs)
ax.set_xlabel('minor allele count (population 1)')
ax.set_ylabel('minor allele count (population 2)')
return ax | def plot_joint_sfs_folded(*args, **kwargs) | Plot a joint site frequency spectrum.
Parameters
----------
s : array_like, int, shape (n_chromosomes_pop1/2, n_chromosomes_pop2/2)
Joint site frequency spectrum.
ax : axes, optional
Axes on which to draw. If not provided, a new figure will be created.
imshow_kwargs : dict-like
Additional keyword arguments, passed through to ax.imshow().
Returns
-------
ax : axes
The axes on which the plot was drawn. | 3.396128 | 3.799074 | 0.893936 |
imshow_kwargs = kwargs.get('imshow_kwargs', dict())
imshow_kwargs.setdefault('norm', None)
kwargs['imshow_kwargs'] = imshow_kwargs
ax = plot_joint_sfs(*args, **kwargs)
return ax | def plot_joint_sfs_scaled(*args, **kwargs) | Plot a scaled joint site frequency spectrum.
Parameters
----------
s : array_like, int, shape (n_chromosomes_pop1, n_chromosomes_pop2)
Joint site frequency spectrum.
ax : axes, optional
Axes on which to draw. If not provided, a new figure will be created.
imshow_kwargs : dict-like
Additional keyword arguments, passed through to ax.imshow().
Returns
-------
ax : axes
The axes on which the plot was drawn. | 2.71855 | 3.167956 | 0.85814 |
imshow_kwargs = kwargs.get('imshow_kwargs', dict())
imshow_kwargs.setdefault('norm', None)
kwargs['imshow_kwargs'] = imshow_kwargs
ax = plot_joint_sfs_folded(*args, **kwargs)
ax.set_xlabel('minor allele count (population 1)')
ax.set_ylabel('minor allele count (population 2)')
return ax | def plot_joint_sfs_folded_scaled(*args, **kwargs) | Plot a scaled folded joint site frequency spectrum.
Parameters
----------
s : array_like, int, shape (n_chromosomes_pop1/2, n_chromosomes_pop2/2)
Joint site frequency spectrum.
ax : axes, optional
Axes on which to draw. If not provided, a new figure will be created.
imshow_kwargs : dict-like
Additional keyword arguments, passed through to ax.imshow().
Returns
-------
ax : axes
The axes on which the plot was drawn. | 2.873175 | 2.794944 | 1.02799 |
if not x.flags.writeable:
if not x.flags.owndata:
x = x.copy(order='A')
x.setflags(write=True)
return x | def memoryview_safe(x) | Make array safe to run in a Cython memoryview-based kernel. These
kernels typically break down with the error ``ValueError: buffer source
array is read-only`` when running in dask distributed.
See Also
--------
https://github.com/dask/distributed/issues/1978
https://github.com/cggh/scikit-allel/issues/206 | 3.219173 | 3.94538 | 0.815935 |
store_samples = False
if fields is None:
# add samples by default
return True, None
if isinstance(fields, str):
fields = [fields]
else:
fields = list(fields)
if 'samples' in fields:
fields.remove('samples')
store_samples = True
elif '*' in fields:
store_samples = True
return store_samples, fields | def _prep_fields_param(fields) | Prepare the `fields` parameter, and determine whether or not to store samples. | 3.639806 | 2.857218 | 1.273899 |
n_variants = 0
before_all = time.time()
before_chunk = before_all
for chunk, chunk_length, chrom, pos in it:
after_chunk = time.time()
elapsed_chunk = after_chunk - before_chunk
elapsed = after_chunk - before_all
n_variants += chunk_length
chrom = text_type(chrom, 'utf8')
message = (
'%s %s rows in %.2fs; chunk in %.2fs (%s rows/s)' %
(prefix, n_variants, elapsed, elapsed_chunk,
int(chunk_length // elapsed_chunk))
)
if chrom:
message += '; %s:%s' % (chrom, pos)
print(message, file=log)
log.flush()
yield chunk, chunk_length, chrom, pos
before_chunk = after_chunk
after_all = time.time()
elapsed = after_all - before_all
print('%s all done (%s rows/s)' %
(prefix, int(n_variants // elapsed)), file=log)
log.flush() | def _chunk_iter_progress(it, log, prefix) | Wrap a chunk iterator for progress logging. | 2.69929 | 2.620053 | 1.030242 |
# samples requested?
# noinspection PyTypeChecker
store_samples, fields = _prep_fields_param(fields)
# setup
fields, samples, headers, it = iter_vcf_chunks(
input=input, fields=fields, exclude_fields=exclude_fields, types=types,
numbers=numbers, alt_number=alt_number, buffer_size=buffer_size,
chunk_length=chunk_length, fills=fills, region=region, tabix=tabix,
samples=samples, transformers=transformers
)
# handle field renaming
if rename_fields:
rename_fields, it = _do_rename(it, fields=fields,
rename_fields=rename_fields,
headers=headers)
# setup progress logging
if log is not None:
it = _chunk_iter_progress(it, log, prefix='[read_vcf]')
# read all chunks into a list
chunks = [d[0] for d in it]
if chunks:
# setup output
output = dict()
if len(samples) > 0 and store_samples:
output['samples'] = samples
# find array keys
keys = sorted(chunks[0].keys())
# concatenate chunks
for k in keys:
output[k] = np.concatenate([chunk[k] for chunk in chunks], axis=0)
else:
output = None
return output | def read_vcf(input,
fields=None,
exclude_fields=None,
rename_fields=None,
types=None,
numbers=None,
alt_number=DEFAULT_ALT_NUMBER,
fills=None,
region=None,
tabix='tabix',
samples=None,
transformers=None,
buffer_size=DEFAULT_BUFFER_SIZE,
chunk_length=DEFAULT_CHUNK_LENGTH,
log=None) | Read data from a VCF file into NumPy arrays.
.. versionchanged:: 1.12.0
Now returns None if no variants are found in the VCF file or matching the
requested region.
Parameters
----------
input : string or file-like
{input}
fields : list of strings, optional
{fields}
exclude_fields : list of strings, optional
{exclude_fields}
rename_fields : dict[str -> str], optional
{rename_fields}
types : dict, optional
{types}
numbers : dict, optional
{numbers}
alt_number : int, optional
{alt_number}
fills : dict, optional
{fills}
region : string, optional
{region}
tabix : string, optional
{tabix}
samples : list of strings
{samples}
transformers : list of transformer objects, optional
{transformers}
buffer_size : int, optional
{buffer_size}
chunk_length : int, optional
{chunk_length}
log : file-like, optional
{log}
Returns
-------
data : dict[str, ndarray]
A dictionary holding arrays, or None if no variants were found. | 3.700475 | 3.749058 | 0.987041 |
# guard condition
if not overwrite and os.path.exists(output):
raise ValueError('file exists at path %r; use overwrite=True to replace' % output)
# read all data into memory
data = read_vcf(
input=input, fields=fields, exclude_fields=exclude_fields,
rename_fields=rename_fields, types=types, numbers=numbers,
alt_number=alt_number, buffer_size=buffer_size, chunk_length=chunk_length,
log=log, fills=fills, region=region, tabix=tabix, samples=samples,
transformers=transformers
)
if data is None:
# no data, bail out
return
# setup save function
if compressed:
savez = np.savez_compressed
else:
savez = np.savez
# save as npz
savez(output, **data) | def vcf_to_npz(input, output,
compressed=True,
overwrite=False,
fields=None,
exclude_fields=None,
rename_fields=None,
types=None,
numbers=None,
alt_number=DEFAULT_ALT_NUMBER,
fills=None,
region=None,
tabix=True,
samples=None,
transformers=None,
buffer_size=DEFAULT_BUFFER_SIZE,
chunk_length=DEFAULT_CHUNK_LENGTH,
log=None) | Read data from a VCF file into NumPy arrays and save as a .npz file.
.. versionchanged:: 1.12.0
Now will not create any output file if no variants are found in the VCF file or
matching the requested region.
Parameters
----------
input : string
{input}
output : string
{output}
compressed : bool, optional
If True (default), save with compression.
overwrite : bool, optional
{overwrite}
fields : list of strings, optional
{fields}
exclude_fields : list of strings, optional
{exclude_fields}
rename_fields : dict[str -> str], optional
{rename_fields}
types : dict, optional
{types}
numbers : dict, optional
{numbers}
alt_number : int, optional
{alt_number}
fills : dict, optional
{fills}
region : string, optional
{region}
tabix : string, optional
{tabix}
samples : list of strings
{samples}
transformers : list of transformer objects, optional
{transformers}
buffer_size : int, optional
{buffer_size}
chunk_length : int, optional
{chunk_length}
log : file-like, optional
{log} | 2.411504 | 2.457221 | 0.981395 |
# setup commmon keyword args
kwds = dict(fields=fields, exclude_fields=exclude_fields, types=types,
numbers=numbers, alt_number=alt_number, chunk_length=chunk_length,
fills=fills, samples=samples, region=region)
# setup input stream
stream = _setup_input_stream(input=input, region=region, tabix=tabix,
buffer_size=buffer_size)
# setup iterator
fields, samples, headers, it = _iter_vcf_stream(stream, **kwds)
# setup transformers
if transformers is not None:
# API flexibility
if not isinstance(transformers, (list, tuple)):
transformers = [transformers]
for trans in transformers:
fields = trans.transform_fields(fields)
it = _chunk_iter_transform(it, transformers)
return fields, samples, headers, it | def iter_vcf_chunks(input,
fields=None,
exclude_fields=None,
types=None,
numbers=None,
alt_number=DEFAULT_ALT_NUMBER,
fills=None,
region=None,
tabix='tabix',
samples=None,
transformers=None,
buffer_size=DEFAULT_BUFFER_SIZE,
chunk_length=DEFAULT_CHUNK_LENGTH) | Iterate over chunks of data from a VCF file as NumPy arrays.
Parameters
----------
input : string
{input}
fields : list of strings, optional
{fields}
exclude_fields : list of strings, optional
{exclude_fields}
types : dict, optional
{types}
numbers : dict, optional
{numbers}
alt_number : int, optional
{alt_number}
fills : dict, optional
{fills}
region : string, optional
{region}
tabix : string, optional
{tabix}
samples : list of strings
{samples}
transformers : list of transformer objects, optional
{transformers}
buffer_size : int, optional
{buffer_size}
chunk_length : int, optional
{chunk_length}
Returns
-------
fields : list of strings
Normalised names of fields that will be extracted.
samples : ndarray
Samples for which data will be extracted.
headers : VCFHeaders
Tuple of metadata extracted from VCF headers.
it : iterator
Chunk iterator. | 2.931031 | 2.788053 | 1.051282 |
import pandas
# samples requested?
# noinspection PyTypeChecker
_, fields = _prep_fields_param(fields)
# setup
fields, _, _, it = iter_vcf_chunks(
input=input, fields=fields, exclude_fields=exclude_fields, types=types,
numbers=numbers, alt_number=alt_number, buffer_size=buffer_size,
chunk_length=chunk_length, fills=fills, region=region, tabix=tabix, samples=[],
transformers=transformers
)
# setup progress logging
if log is not None:
it = _chunk_iter_progress(it, log, prefix='[vcf_to_dataframe]')
# read all chunks into a list
chunks = [d[0] for d in it]
# setup output
output = None
if chunks:
# concatenate chunks
output = pandas.concat([_chunk_to_dataframe(fields, chunk)
for chunk in chunks])
return output | def vcf_to_dataframe(input,
fields=None,
exclude_fields=None,
types=None,
numbers=None,
alt_number=DEFAULT_ALT_NUMBER,
fills=None,
region=None,
tabix='tabix',
transformers=None,
buffer_size=DEFAULT_BUFFER_SIZE,
chunk_length=DEFAULT_CHUNK_LENGTH,
log=None) | Read data from a VCF file into a pandas DataFrame.
Parameters
----------
input : string
{input}
fields : list of strings, optional
{fields}
exclude_fields : list of strings, optional
{exclude_fields}
types : dict, optional
{types}
numbers : dict, optional
{numbers}
alt_number : int, optional
{alt_number}
fills : dict, optional
{fills}
region : string, optional
{region}
tabix : string, optional
{tabix}
transformers : list of transformer objects, optional
{transformers}
buffer_size : int, optional
{buffer_size}
chunk_length : int, optional
{chunk_length}
log : file-like, optional
{log}
Returns
-------
df : pandas.DataFrame | 4.249186 | 4.578972 | 0.927978 |
r
# samples requested?
# noinspection PyTypeChecker
_, fields = _prep_fields_param(fields)
# setup
fields, _, _, it = iter_vcf_chunks(
input=input, fields=fields, exclude_fields=exclude_fields, types=types,
numbers=numbers, alt_number=alt_number, buffer_size=buffer_size,
chunk_length=chunk_length, fills=fills, region=region, tabix=tabix, samples=[],
transformers=transformers
)
# setup progress logging
if log is not None:
it = _chunk_iter_progress(it, log, prefix='[vcf_to_csv]')
kwargs['index'] = False
for i, (chunk, _, _, _) in enumerate(it):
df = _chunk_to_dataframe(fields, chunk)
if i == 0:
kwargs['header'] = True
kwargs['mode'] = 'w'
else:
kwargs['header'] = False
kwargs['mode'] = 'a'
df.to_csv(output, **kwargs) | def vcf_to_csv(input, output,
fields=None,
exclude_fields=None,
types=None,
numbers=None,
alt_number=DEFAULT_ALT_NUMBER,
fills=None,
region=None,
tabix='tabix',
transformers=None,
buffer_size=DEFAULT_BUFFER_SIZE,
chunk_length=DEFAULT_CHUNK_LENGTH,
log=None,
**kwargs) | r"""Read data from a VCF file and write out to a comma-separated values (CSV) file.
Parameters
----------
input : string
{input}
output : string
{output}
fields : list of strings, optional
{fields}
exclude_fields : list of strings, optional
{exclude_fields}
types : dict, optional
{types}
numbers : dict, optional
{numbers}
alt_number : int, optional
{alt_number}
fills : dict, optional
{fills}
region : string, optional
{region}
tabix : string, optional
{tabix}
transformers : list of transformer objects, optional
{transformers}
buffer_size : int, optional
{buffer_size}
chunk_length : int, optional
{chunk_length}
log : file-like, optional
{log}
kwargs : keyword arguments
All remaining keyword arguments are passed through to pandas.DataFrame.to_csv().
E.g., to write a tab-delimited file, provide `sep='\t'`. | 3.455195 | 3.475999 | 0.994015 |
# samples requested?
# noinspection PyTypeChecker
_, fields = _prep_fields_param(fields)
# setup chunk iterator
# N.B., set samples to empty list so we don't get any calldata fields
fields, _, _, it = iter_vcf_chunks(
input=input, fields=fields, exclude_fields=exclude_fields, types=types,
numbers=numbers, alt_number=alt_number, buffer_size=buffer_size,
chunk_length=chunk_length, fills=fills, region=region, tabix=tabix, samples=[],
transformers=transformers
)
# setup progress logging
if log is not None:
it = _chunk_iter_progress(it, log, prefix='[vcf_to_recarray]')
# read all chunks into a list
chunks = [d[0] for d in it]
# setup output
output = None
if chunks:
# concatenate chunks
output = np.concatenate([_chunk_to_recarray(fields, chunk) for chunk in chunks])
return output | def vcf_to_recarray(input,
fields=None,
exclude_fields=None,
types=None,
numbers=None,
alt_number=DEFAULT_ALT_NUMBER,
fills=None,
region=None,
tabix='tabix',
transformers=None,
buffer_size=DEFAULT_BUFFER_SIZE,
chunk_length=DEFAULT_CHUNK_LENGTH,
log=None) | Read data from a VCF file into a NumPy recarray.
Parameters
----------
input : string
{input}
fields : list of strings, optional
{fields}
exclude_fields : list of strings, optional
{exclude_fields}
types : dict, optional
{types}
numbers : dict, optional
{numbers}
alt_number : int, optional
{alt_number}
fills : dict, optional
{fills}
region : string, optional
{region}
tabix : string, optional
{tabix}
transformers : list of transformer objects, optional
{transformers}
buffer_size : int, optional
{buffer_size}
chunk_length : int, optional
{chunk_length}
log : file-like, optional
{log}
Returns
-------
ra : np.rec.array | 4.5022 | 4.734571 | 0.95092 |
# check inputs
if isinstance(sequences, np.ndarray):
# single sequence
sequences = [sequences]
names = [names]
if len(sequences) != len(names):
raise ValueError('must provide the same number of sequences and names')
for sequence in sequences:
if sequence.dtype != np.dtype('S1'):
raise ValueError('expected S1 dtype, found %r' % sequence.dtype)
# force binary mode
mode = 'ab' if 'a' in mode else 'wb'
# write to file
with open(path, mode=mode) as fasta:
for name, sequence in zip(names, sequences):
# force bytes
if isinstance(name, text_type):
name = name.encode('ascii')
header = b'>' + name + b'\n'
fasta.write(header)
for i in range(0, sequence.size, width):
line = sequence[i:i+width].tostring() + b'\n'
fasta.write(line) | def write_fasta(path, sequences, names, mode='w', width=80) | Write nucleotide sequences stored as numpy arrays to a FASTA file.
Parameters
----------
path : string
File path.
sequences : sequence of arrays
One or more ndarrays of dtype 'S1' containing the sequences.
names : sequence of strings
Names of the sequences.
mode : string, optional
Use 'a' to append to an existing file.
width : int, optional
Maximum line width. | 2.364797 | 2.287656 | 1.03372 |
# check inputs
if not hasattr(g, 'count_het') or not hasattr(g, 'count_called'):
g = GenotypeArray(g, copy=False)
# count hets
n_het = np.asarray(g.count_het(axis=1))
n_called = np.asarray(g.count_called(axis=1))
# calculate rate of observed heterozygosity, accounting for variants
# where all calls are missing
with ignore_invalid():
ho = np.where(n_called > 0, n_het / n_called, fill)
return ho | def heterozygosity_observed(g, fill=np.nan) | Calculate the rate of observed heterozygosity for each variant.
Parameters
----------
g : array_like, int, shape (n_variants, n_samples, ploidy)
Genotype array.
fill : float, optional
Use this value for variants where all calls are missing.
Returns
-------
ho : ndarray, float, shape (n_variants,)
Observed heterozygosity
Examples
--------
>>> import allel
>>> g = allel.GenotypeArray([[[0, 0], [0, 0], [0, 0]],
... [[0, 0], [0, 1], [1, 1]],
... [[0, 0], [1, 1], [2, 2]],
... [[1, 1], [1, 2], [-1, -1]]])
>>> allel.heterozygosity_observed(g)
array([0. , 0.33333333, 0. , 0.5 ]) | 3.741098 | 3.337521 | 1.120921 |
# check inputs
af = asarray_ndim(af, 2)
# calculate expected heterozygosity
out = 1 - np.sum(np.power(af, ploidy), axis=1)
# fill values where allele frequencies could not be calculated
af_sum = np.sum(af, axis=1)
with ignore_invalid():
out[(af_sum < 1) | np.isnan(af_sum)] = fill
return out | def heterozygosity_expected(af, ploidy, fill=np.nan) | Calculate the expected rate of heterozygosity for each variant
under Hardy-Weinberg equilibrium.
Parameters
----------
af : array_like, float, shape (n_variants, n_alleles)
Allele frequencies array.
ploidy : int
Sample ploidy.
fill : float, optional
Use this value for variants where allele frequencies do not sum to 1.
Returns
-------
he : ndarray, float, shape (n_variants,)
Expected heterozygosity
Examples
--------
>>> import allel
>>> g = allel.GenotypeArray([[[0, 0], [0, 0], [0, 0]],
... [[0, 0], [0, 1], [1, 1]],
... [[0, 0], [1, 1], [2, 2]],
... [[1, 1], [1, 2], [-1, -1]]])
>>> af = g.count_alleles().to_frequencies()
>>> allel.heterozygosity_expected(af, ploidy=2)
array([0. , 0.5 , 0.66666667, 0.375 ]) | 3.502588 | 4.179441 | 0.838052 |
# check inputs
if not hasattr(g, 'count_het') or not hasattr(g, 'count_called'):
g = GenotypeArray(g, copy=False)
# calculate observed and expected heterozygosity
ho = heterozygosity_observed(g)
af = g.count_alleles().to_frequencies()
he = heterozygosity_expected(af, ploidy=g.shape[-1], fill=0)
# calculate inbreeding coefficient, accounting for variants with no
# expected heterozygosity
with ignore_invalid():
f = np.where(he > 0, 1 - (ho / he), fill)
return f | def inbreeding_coefficient(g, fill=np.nan) | Calculate the inbreeding coefficient for each variant.
Parameters
----------
g : array_like, int, shape (n_variants, n_samples, ploidy)
Genotype array.
fill : float, optional
Use this value for variants where the expected heterozygosity is
zero.
Returns
-------
f : ndarray, float, shape (n_variants,)
Inbreeding coefficient.
Notes
-----
The inbreeding coefficient is calculated as *1 - (Ho/He)* where *Ho* is
the observed heterozygosity and *He* is the expected heterozygosity.
Examples
--------
>>> import allel
>>> g = allel.GenotypeArray([[[0, 0], [0, 0], [0, 0]],
... [[0, 0], [0, 1], [1, 1]],
... [[0, 0], [1, 1], [2, 2]],
... [[1, 1], [1, 2], [-1, -1]]])
>>> allel.inbreeding_coefficient(g)
array([ nan, 0.33333333, 1. , -0.33333333]) | 4.6792 | 4.462459 | 1.04857 |
# setup
g = GenotypeArray(g, dtype='i1', copy=True)
check_ploidy(g.ploidy, 2)
check_min_samples(g.n_samples, 3)
# run the phasing
# N.B., a copy has already been made, so no need to make memoryview safe
is_phased = _opt_phase_progeny_by_transmission(g.values)
g.is_phased = np.asarray(is_phased).view(bool)
# outputs
return g | def phase_progeny_by_transmission(g) | Phase progeny genotypes from a trio or cross using Mendelian
transmission.
Parameters
----------
g : array_like, int, shape (n_variants, n_samples, 2)
Genotype array, with parents as first two columns and progeny as
remaining columns.
Returns
-------
g : ndarray, int8, shape (n_variants, n_samples, 2)
Genotype array with progeny phased where possible.
Examples
--------
>>> import allel
>>> g = allel.GenotypeArray([
... [[0, 0], [0, 0], [0, 0]],
... [[1, 1], [1, 1], [1, 1]],
... [[0, 0], [1, 1], [0, 1]],
... [[1, 1], [0, 0], [0, 1]],
... [[0, 0], [0, 1], [0, 0]],
... [[0, 0], [0, 1], [0, 1]],
... [[0, 1], [0, 0], [0, 1]],
... [[0, 1], [0, 1], [0, 1]],
... [[0, 1], [1, 2], [0, 1]],
... [[1, 2], [0, 1], [1, 2]],
... [[0, 1], [2, 3], [0, 2]],
... [[2, 3], [0, 1], [1, 3]],
... [[0, 0], [0, 0], [-1, -1]],
... [[0, 0], [0, 0], [1, 1]],
... ], dtype='i1')
>>> g = allel.phase_progeny_by_transmission(g)
>>> print(g.to_str(row_threshold=None))
0/0 0/0 0|0
1/1 1/1 1|1
0/0 1/1 0|1
1/1 0/0 1|0
0/0 0/1 0|0
0/0 0/1 0|1
0/1 0/0 1|0
0/1 0/1 0/1
0/1 1/2 0|1
1/2 0/1 2|1
0/1 2/3 0|2
2/3 0/1 3|1
0/0 0/0 ./.
0/0 0/0 1/1
>>> g.is_phased
array([[False, False, True],
[False, False, True],
[False, False, True],
[False, False, True],
[False, False, True],
[False, False, True],
[False, False, True],
[False, False, False],
[False, False, True],
[False, False, True],
[False, False, True],
[False, False, True],
[False, False, False],
[False, False, False]]) | 6.725786 | 6.289349 | 1.069393 |
# setup
check_type(g, GenotypeArray)
check_dtype(g.values, 'i1')
check_ploidy(g.ploidy, 2)
if g.is_phased is None:
raise ValueError('genotype array must first have progeny phased by transmission')
check_min_samples(g.n_samples, 3)
# run the phasing
g._values = memoryview_safe(g.values)
g._is_phased = memoryview_safe(g.is_phased)
_opt_phase_parents_by_transmission(g.values, g.is_phased.view('u1'), window_size)
# outputs
return g | def phase_parents_by_transmission(g, window_size) | Phase parent genotypes from a trio or cross, given progeny genotypes
already phased by Mendelian transmission.
Parameters
----------
g : GenotypeArray
Genotype array, with parents as first two columns and progeny as
remaining columns, where progeny genotypes are already phased.
window_size : int
Number of previous heterozygous sites to include when phasing each
parent. A number somewhere between 10 and 100 may be appropriate,
depending on levels of heterozygosity and quality of data.
Returns
-------
g : GenotypeArray
Genotype array with parents phased where possible. | 5.058883 | 4.523187 | 1.118433 |
# setup
g = np.asarray(g, dtype='i1')
g = GenotypeArray(g, copy=copy)
g._values = memoryview_safe(g.values)
check_ploidy(g.ploidy, 2)
check_min_samples(g.n_samples, 3)
# phase the progeny
is_phased = _opt_phase_progeny_by_transmission(g.values)
g.is_phased = np.asarray(is_phased).view(bool)
# phase the parents
_opt_phase_parents_by_transmission(g.values, is_phased, window_size)
return g | def phase_by_transmission(g, window_size, copy=True) | Phase genotypes in a trio or cross where possible using Mendelian
transmission.
Parameters
----------
g : array_like, int, shape (n_variants, n_samples, 2)
Genotype array, with parents as first two columns and progeny as
remaining columns.
window_size : int
Number of previous heterozygous sites to include when phasing each
parent. A number somewhere between 10 and 100 may be appropriate,
depending on levels of heterozygosity and quality of data.
copy : bool, optional
If False, attempt to phase genotypes in-place. Note that this is
only possible if the input array has int8 dtype, otherwise a copy is
always made regardless of this parameter.
Returns
-------
g : GenotypeArray
Genotype array with progeny phased where possible. | 4.428724 | 3.92299 | 1.128916 |
if blen is None:
if hasattr(data, 'chunklen'):
# bcolz carray
return data.chunklen
elif hasattr(data, 'chunks') and \
hasattr(data, 'shape') and \
hasattr(data.chunks, '__len__') and \
hasattr(data.shape, '__len__') and \
len(data.chunks) == len(data.shape):
# something like h5py dataset
return data.chunks[0]
else:
# fall back to something simple, ~1Mb chunks
row = np.asarray(data[0])
return max(1, (2**20) // row.nbytes)
else:
return blen | def get_blen_array(data, blen=None) | Try to guess a reasonable block length to use for block-wise iteration
over `data`. | 3.518659 | 3.238396 | 1.086544 |
# need a file name even tho nothing is ever written
fn = tempfile.mktemp()
# file creation args
kwargs['mode'] = 'w'
kwargs['driver'] = 'core'
kwargs['backing_store'] = False
# open HDF5 file
h5f = h5py.File(fn, **kwargs)
return h5f | def h5fmem(**kwargs) | Create an in-memory HDF5 file. | 4.620164 | 4.296307 | 1.075381 |
# create temporary file name
suffix = kwargs.pop('suffix', '.h5')
prefix = kwargs.pop('prefix', 'scikit_allel_')
tempdir = kwargs.pop('dir', None)
fn = tempfile.mktemp(suffix=suffix, prefix=prefix, dir=tempdir)
atexit.register(os.remove, fn)
# file creation args
kwargs['mode'] = 'w'
# open HDF5 file
h5f = h5py.File(fn, **kwargs)
return h5f | def h5ftmp(**kwargs) | Create an HDF5 file backed by a temporary file. | 3.292353 | 3.023727 | 1.088839 |
# setup
blen = _util.get_blen_array(data, blen)
if stop is None:
stop = len(data)
else:
stop = min(stop, len(data))
length = stop - start
if length < 0:
raise ValueError('invalid stop/start')
# copy block-wise
for bi in range(start, stop, blen):
bj = min(bi+blen, stop)
bl = bj - bi
arr[offset:offset+bl] = data[bi:bj]
offset += bl | def store(data, arr, start=0, stop=None, offset=0, blen=None) | Copy `data` block-wise into `arr`. | 2.913813 | 2.688041 | 1.083991 |
# setup
storage = _util.get_storage(storage)
blen = _util.get_blen_array(data, blen)
if stop is None:
stop = len(data)
else:
stop = min(stop, len(data))
length = stop - start
if length < 0:
raise ValueError('invalid stop/start')
# copy block-wise
out = None
for i in range(start, stop, blen):
j = min(i+blen, stop)
block = data[i:j]
if out is None:
out = getattr(storage, create)(block, expectedlen=length, **kwargs)
else:
out.append(block)
return out | def copy(data, start=0, stop=None, blen=None, storage=None, create='array',
**kwargs) | Copy `data` block-wise into a new array. | 2.711944 | 2.716707 | 0.998247 |
# setup
names, columns = _util.check_table_like(tbl)
storage = _util.get_storage(storage)
blen = _util.get_blen_table(tbl, blen)
if stop is None:
stop = len(columns[0])
else:
stop = min(stop, len(columns[0]))
length = stop - start
if length < 0:
raise ValueError('invalid stop/start')
# copy block-wise
out = None
for i in range(start, stop, blen):
j = min(i+blen, stop)
res = [c[i:j] for c in columns]
if out is None:
out = getattr(storage, create)(res, names=names,
expectedlen=length, **kwargs)
else:
out.append(res)
return out | def copy_table(tbl, start=0, stop=None, blen=None, storage=None,
create='table', **kwargs) | Copy `tbl` block-wise into a new table. | 3.011893 | 2.905209 | 1.036721 |
# setup
storage = _util.get_storage(storage)
if isinstance(data, tuple):
blen = max(_util.get_blen_array(d, blen) for d in data)
else:
blen = _util.get_blen_array(data, blen)
if isinstance(data, tuple):
_util.check_equal_length(*data)
length = len(data[0])
else:
length = len(data)
# block-wise iteration
out = None
for i in range(0, length, blen):
j = min(i+blen, length)
# obtain blocks
if isinstance(data, tuple):
blocks = [d[i:j] for d in data]
else:
blocks = [data[i:j]]
# map
res = f(*blocks)
# store
if out is None:
out = getattr(storage, create)(res, expectedlen=length, **kwargs)
else:
out.append(res)
return out | def map_blocks(data, f, blen=None, storage=None, create='array', **kwargs) | Apply function `f` block-wise over `data`. | 2.595205 | 2.581947 | 1.005135 |
# setup
storage = _util.get_storage(storage)
blen = _util.get_blen_array(data, blen)
length = len(data)
# normalise axis arg
if isinstance(axis, int):
axis = (axis,)
# deal with 'out' kwarg if supplied, can arise if a chunked array is
# passed as an argument to numpy.sum(), see also
# https://github.com/cggh/scikit-allel/issues/66
kwarg_out = kwargs.pop('out', None)
if kwarg_out is not None:
raise ValueError('keyword argument "out" is not supported')
if axis is None or 0 in axis:
# two-step reduction
out = None
for i in range(0, length, blen):
j = min(i+blen, length)
block = data[i:j]
if mapper:
block = mapper(block)
res = reducer(block, axis=axis)
if out is None:
out = res
else:
out = block_reducer(out, res)
if np.isscalar(out):
return out
elif len(out.shape) == 0:
return out[()]
else:
return getattr(storage, create)(out, **kwargs)
else:
# first dimension is preserved, no need to reduce blocks
out = None
for i in range(0, length, blen):
j = min(i+blen, length)
block = data[i:j]
if mapper:
block = mapper(block)
r = reducer(block, axis=axis)
if out is None:
out = getattr(storage, create)(r, expectedlen=length, **kwargs)
else:
out.append(r)
return out | def reduce_axis(data, reducer, block_reducer, mapper=None, axis=None,
blen=None, storage=None, create='array', **kwargs) | Apply an operation to `data` that reduces over one or more axes. | 2.985666 | 3.046807 | 0.979933 |
return reduce_axis(data, axis=axis, reducer=np.amax,
block_reducer=np.maximum, mapper=mapper,
blen=blen, storage=storage, create=create, **kwargs) | def amax(data, axis=None, mapper=None, blen=None, storage=None,
create='array', **kwargs) | Compute the maximum value. | 2.778565 | 3.030637 | 0.916825 |
return reduce_axis(data, axis=axis, reducer=np.amin,
block_reducer=np.minimum, mapper=mapper,
blen=blen, storage=storage, create=create, **kwargs) | def amin(data, axis=None, mapper=None, blen=None, storage=None,
create='array', **kwargs) | Compute the minimum value. | 2.787075 | 3.065241 | 0.909251 |
return reduce_axis(data, axis=axis, reducer=np.sum,
block_reducer=np.add, mapper=mapper,
blen=blen, storage=storage, create=create, **kwargs) | def asum(data, axis=None, mapper=None, blen=None, storage=None,
create='array', **kwargs) | Compute the sum. | 2.815374 | 2.927104 | 0.961829 |
return reduce_axis(data, reducer=np.count_nonzero,
block_reducer=np.add, mapper=mapper,
blen=blen, storage=storage, create=create, **kwargs) | def count_nonzero(data, mapper=None, blen=None, storage=None,
create='array', **kwargs) | Count the number of non-zero elements. | 3.668085 | 3.769788 | 0.973021 |
# setup
if out is not None:
# argument is only there for numpy API compatibility
raise NotImplementedError('out argument is not supported')
storage = _util.get_storage(storage)
blen = _util.get_blen_array(data, blen)
length = len(data)
nnz = count_nonzero(condition)
if axis == 0:
_util.check_equal_length(data, condition)
# block iteration
out = None
for i in range(0, length, blen):
j = min(i+blen, length)
bcond = np.asarray(condition[i:j])
# don't access any data unless we have to
if np.any(bcond):
block = np.asarray(data[i:j])
res = np.compress(bcond, block, axis=0)
if out is None:
out = getattr(storage, create)(res, expectedlen=nnz, **kwargs)
else:
out.append(res)
return out
elif axis == 1:
# block iteration
out = None
condition = np.asanyarray(condition)
for i in range(0, length, blen):
j = min(i+blen, length)
block = np.asarray(data[i:j])
res = np.compress(condition, block, axis=1)
if out is None:
out = getattr(storage, create)(res, expectedlen=length,
**kwargs)
else:
out.append(res)
return out
else:
raise NotImplementedError('axis not supported: %s' % axis) | def compress(condition, data, axis=0, out=None, blen=None, storage=None, create='array',
**kwargs) | Return selected slices of an array along given axis. | 2.761816 | 2.769284 | 0.997303 |
# setup
if out is not None:
# argument is only there for numpy API compatibility
raise NotImplementedError('out argument is not supported')
length = len(data)
if axis == 0:
# check that indices are strictly increasing
indices = np.asanyarray(indices)
if np.any(indices[1:] <= indices[:-1]):
raise NotImplementedError(
'indices must be strictly increasing'
)
# implement via compress()
condition = np.zeros((length,), dtype=bool)
condition[indices] = True
return compress(condition, data, axis=0, blen=blen, storage=storage,
create=create, **kwargs)
elif axis == 1:
# setup
storage = _util.get_storage(storage)
blen = _util.get_blen_array(data, blen)
# block iteration
out = None
for i in range(0, length, blen):
j = min(i+blen, length)
block = data[i:j]
res = np.take(block, indices, axis=1, mode=mode)
if out is None:
out = getattr(storage, create)(res, expectedlen=length,
**kwargs)
else:
out.append(res)
return out
else:
raise NotImplementedError('axis not supported: %s' % axis) | def take(data, indices, axis=0, out=None, mode='raise', blen=None, storage=None,
create='array', **kwargs) | Take elements from an array along an axis. | 3.112096 | 3.131107 | 0.993928 |
# setup
if axis is not None and axis != 0:
raise NotImplementedError('only axis 0 is supported')
if out is not None:
# argument is only there for numpy API compatibility
raise NotImplementedError('out argument is not supported')
storage = _util.get_storage(storage)
names, columns = _util.check_table_like(tbl)
blen = _util.get_blen_table(tbl, blen)
_util.check_equal_length(columns[0], condition)
length = len(columns[0])
nnz = count_nonzero(condition)
# block iteration
out = None
for i in range(0, length, blen):
j = min(i+blen, length)
bcond = condition[i:j]
# don't access any data unless we have to
if np.any(bcond):
bcolumns = [c[i:j] for c in columns]
res = [np.compress(bcond, c, axis=0) for c in bcolumns]
if out is None:
out = getattr(storage, create)(res, names=names,
expectedlen=nnz, **kwargs)
else:
out.append(res)
return out | def compress_table(condition, tbl, axis=None, out=None, blen=None, storage=None,
create='table', **kwargs) | Return selected rows of a table. | 3.54845 | 3.540191 | 1.002333 |
# setup
if axis is not None and axis != 0:
raise NotImplementedError('only axis 0 is supported')
if out is not None:
# argument is only there for numpy API compatibility
raise NotImplementedError('out argument is not supported')
if mode is not None and mode != 'raise':
raise NotImplementedError('only mode=raise is supported')
names, columns = _util.check_table_like(tbl)
length = len(columns[0])
# check that indices are strictly increasing
indices = np.asanyarray(indices)
if np.any(indices[1:] <= indices[:-1]):
raise NotImplementedError(
'indices must be strictly increasing'
)
# implement via compress()
condition = np.zeros((length,), dtype=bool)
condition[indices] = True
return compress_table(condition, tbl, blen=blen, storage=storage,
create=create, **kwargs) | def take_table(tbl, indices, axis=None, out=None, mode='raise', blen=None, storage=None,
create='table', **kwargs) | Return selected rows of a table. | 3.601137 | 3.54166 | 1.016793 |
# TODO refactor sel0 and sel1 normalization with ndarray.subset
# setup
storage = _util.get_storage(storage)
blen = _util.get_blen_array(data, blen)
length = len(data)
if sel0 is not None:
sel0 = np.asanyarray(sel0)
if sel1 is not None:
sel1 = np.asanyarray(sel1)
# ensure boolean array for dim 0
if sel0 is not None and sel0.dtype.kind != 'b':
# assume indices, convert to boolean condition
tmp = np.zeros(length, dtype=bool)
tmp[sel0] = True
sel0 = tmp
# ensure indices for dim 1
if sel1 is not None and sel1.dtype.kind == 'b':
# assume boolean condition, convert to indices
sel1, = np.nonzero(sel1)
# shortcuts
if sel0 is None and sel1 is None:
return copy(data, blen=blen, storage=storage, create=create, **kwargs)
elif sel1 is None:
return compress(sel0, data, axis=0, blen=blen, storage=storage,
create=create, **kwargs)
elif sel0 is None:
return take(data, sel1, axis=1, blen=blen, storage=storage,
create=create, **kwargs)
# build output
sel0_nnz = count_nonzero(sel0)
out = None
for i in range(0, length, blen):
j = min(i+blen, length)
bsel0 = sel0[i:j]
# don't access data unless we have to
if np.any(bsel0):
block = data[i:j]
res = _numpy_subset(block, bsel0, sel1)
if out is None:
out = getattr(storage, create)(res, expectedlen=sel0_nnz,
**kwargs)
else:
out.append(res)
return out | def subset(data, sel0=None, sel1=None, blen=None, storage=None, create='array',
**kwargs) | Return selected rows and columns of an array. | 2.801528 | 2.830121 | 0.989897 |
# setup
storage = _util.get_storage(storage)
if not isinstance(tup, (tuple, list)):
raise ValueError('expected tuple or list, found %r' % tup)
if len(tup) < 2:
raise ValueError('expected two or more tables to stack')
# build output
expectedlen = sum(len(t) for t in tup)
out = None
tnames = None
for tdata in tup:
tblen = _util.get_blen_table(tdata, blen)
tnames, tcolumns = _util.check_table_like(tdata, names=tnames)
tlen = len(tcolumns[0])
for i in range(0, tlen, tblen):
j = min(i+tblen, tlen)
bcolumns = [c[i:j] for c in tcolumns]
if out is None:
out = getattr(storage, create)(bcolumns, names=tnames,
expectedlen=expectedlen,
**kwargs)
else:
out.append(bcolumns)
return out | def concatenate_table(tup, blen=None, storage=None, create='table', **kwargs) | Stack tables in sequence vertically (row-wise). | 3.427943 | 3.367682 | 1.017894 |
# setup
storage = _util.get_storage(storage)
if not isinstance(tup, (tuple, list)):
raise ValueError('expected tuple or list, found %r' % tup)
if len(tup) < 2:
raise ValueError('expected two or more arrays')
if axis == 0:
# build output
expectedlen = sum(len(a) for a in tup)
out = None
for a in tup:
ablen = _util.get_blen_array(a, blen)
for i in range(0, len(a), ablen):
j = min(i+ablen, len(a))
block = a[i:j]
if out is None:
out = getattr(storage, create)(block, expectedlen=expectedlen, **kwargs)
else:
out.append(block)
else:
def f(*blocks):
return np.concatenate(blocks, axis=axis)
out = map_blocks(tup, f, blen=blen, storage=storage, create=create, **kwargs)
return out | def concatenate(tup, axis=0, blen=None, storage=None, create='array', **kwargs) | Concatenate arrays. | 3.034012 | 3.029184 | 1.001594 |
# normalise scalars
if hasattr(other, 'shape') and len(other.shape) == 0:
other = other[()]
if np.isscalar(other):
def f(block):
return op(block, other)
return map_blocks(data, f, blen=blen, storage=storage, create=create, **kwargs)
elif len(data) == len(other):
def f(a, b):
return op(a, b)
return map_blocks((data, other), f, blen=blen, storage=storage, create=create,
**kwargs)
else:
raise NotImplementedError('argument type not supported') | def binary_op(data, op, other, blen=None, storage=None, create='array',
**kwargs) | Compute a binary operation block-wise over `data`. | 2.582013 | 2.5679 | 1.005496 |
# setup
storage = _util.get_storage(storage)
names, columns = _util.check_table_like(tbl)
length = len(columns[0])
if vm_kwargs is None:
vm_kwargs = dict()
# setup vm
if vm == 'numexpr':
import numexpr
evaluate = numexpr.evaluate
elif vm == 'python':
# noinspection PyUnusedLocal
def evaluate(expr, local_dict=None, **kw):
# takes no keyword arguments
return eval(expr, dict(), local_dict)
else:
raise ValueError('expected vm either "numexpr" or "python"')
# compile expression and get required columns
variables = _get_expression_variables(expression, vm)
required_columns = {v: columns[names.index(v)] for v in variables}
# determine block size for evaluation
blen = _util.get_blen_table(required_columns, blen=blen)
# build output
out = None
for i in range(0, length, blen):
j = min(i+blen, length)
blocals = {v: c[i:j] for v, c in required_columns.items()}
res = evaluate(expression, local_dict=blocals, **vm_kwargs)
if out is None:
out = getattr(storage, create)(res, expectedlen=length, **kwargs)
else:
out.append(res)
return out | def eval_table(tbl, expression, vm='python', blen=None, storage=None,
create='array', vm_kwargs=None, **kwargs) | Evaluate `expression` against columns of a table. | 3.12753 | 3.148541 | 0.993327 |
ref = asarray_ndim(ref, 1)
alt = asarray_ndim(alt, 1, 2)
alleles = asarray_ndim(alleles, 1, 2)
check_dim0_aligned(ref, alt, alleles)
# reshape for convenience
ref = ref[:, None]
if alt.ndim == 1:
alt = alt[:, None]
if alleles.ndim == 1:
alleles = alleles[:, None]
source_alleles = np.append(ref, alt, axis=1)
# setup output array
out = np.empty(source_alleles.shape, dtype=dtype)
out.fill(-1)
# find matches
for ai in range(source_alleles.shape[1]):
match = source_alleles[:, ai, None] == alleles
match_i, match_j = match.nonzero()
out[match_i, ai] = match_j
return out | def create_allele_mapping(ref, alt, alleles, dtype='i1') | Create an array mapping variant alleles into a different allele index
system.
Parameters
----------
ref : array_like, S1, shape (n_variants,)
Reference alleles.
alt : array_like, S1, shape (n_variants, n_alt_alleles)
Alternate alleles.
alleles : array_like, S1, shape (n_variants, n_alleles)
Alleles defining the new allele indexing.
dtype : dtype, optional
Output dtype.
Returns
-------
mapping : ndarray, int8, shape (n_variants, n_alt_alleles + 1)
Examples
--------
Example with biallelic variants::
>>> import allel
>>> ref = [b'A', b'C', b'T', b'G']
>>> alt = [b'T', b'G', b'C', b'A']
>>> alleles = [[b'A', b'T'], # no transformation
... [b'G', b'C'], # swap
... [b'T', b'A'], # 1 missing
... [b'A', b'C']] # 1 missing
>>> mapping = allel.create_allele_mapping(ref, alt, alleles)
>>> mapping
array([[ 0, 1],
[ 1, 0],
[ 0, -1],
[-1, 0]], dtype=int8)
Example with multiallelic variants::
>>> ref = [b'A', b'C', b'T']
>>> alt = [[b'T', b'G'],
... [b'A', b'T'],
... [b'G', b'.']]
>>> alleles = [[b'A', b'T'],
... [b'C', b'T'],
... [b'G', b'A']]
>>> mapping = create_allele_mapping(ref, alt, alleles)
>>> mapping
array([[ 0, 1, -1],
[ 0, -1, 1],
[-1, 0, -1]], dtype=int8)
See Also
--------
GenotypeArray.map_alleles, HaplotypeArray.map_alleles, AlleleCountsArray.map_alleles | 2.529257 | 2.780985 | 0.909482 |
# check inputs
ac1 = asarray_ndim(ac1, 2)
ac2 = asarray_ndim(ac2, 2)
check_dim0_aligned(ac1, ac2)
ac1, ac2 = ensure_dim1_aligned(ac1, ac2)
# stack allele counts for convenience
pac = np.dstack([ac1, ac2])
# count numbers of alleles called in each population
pan = np.sum(pac, axis=1)
# count the numbers of populations with each allele
npa = np.sum(pac > 0, axis=2)
# locate variants with allele calls in both populations
non_missing = np.all(pan > 0, axis=1)
# locate variants where all alleles are only found in a single population
no_shared_alleles = np.all(npa <= 1, axis=1)
return non_missing & no_shared_alleles | def locate_fixed_differences(ac1, ac2) | Locate variants with no shared alleles between two populations.
Parameters
----------
ac1 : array_like, int, shape (n_variants, n_alleles)
Allele counts array from the first population.
ac2 : array_like, int, shape (n_variants, n_alleles)
Allele counts array from the second population.
Returns
-------
loc : ndarray, bool, shape (n_variants,)
See Also
--------
allel.stats.diversity.windowed_df
Examples
--------
>>> import allel
>>> g = allel.GenotypeArray([[[0, 0], [0, 0], [1, 1], [1, 1]],
... [[0, 1], [0, 1], [0, 1], [0, 1]],
... [[0, 1], [0, 1], [1, 1], [1, 1]],
... [[0, 0], [0, 0], [1, 1], [2, 2]],
... [[0, 0], [-1, -1], [1, 1], [-1, -1]]])
>>> ac1 = g.count_alleles(subpop=[0, 1])
>>> ac2 = g.count_alleles(subpop=[2, 3])
>>> loc_df = allel.locate_fixed_differences(ac1, ac2)
>>> loc_df
array([ True, False, False, True, True]) | 3.947079 | 3.796102 | 1.039772 |
# check inputs
acs = [asarray_ndim(ac, 2) for ac in acs]
check_dim0_aligned(*acs)
acs = ensure_dim1_aligned(*acs)
# stack allele counts for convenience
pac = np.dstack(acs)
# count the numbers of populations with each allele
npa = np.sum(pac > 0, axis=2)
# locate alleles found only in a single population
loc_pa = npa == 1
return loc_pa | def locate_private_alleles(*acs) | Locate alleles that are found only in a single population.
Parameters
----------
*acs : array_like, int, shape (n_variants, n_alleles)
Allele counts arrays from each population.
Returns
-------
loc : ndarray, bool, shape (n_variants, n_alleles)
Boolean array where elements are True if allele is private to a
single population.
Examples
--------
>>> import allel
>>> g = allel.GenotypeArray([[[0, 0], [0, 0], [1, 1], [1, 1]],
... [[0, 1], [0, 1], [0, 1], [0, 1]],
... [[0, 1], [0, 1], [1, 1], [1, 1]],
... [[0, 0], [0, 0], [1, 1], [2, 2]],
... [[0, 0], [-1, -1], [1, 1], [-1, -1]]])
>>> ac1 = g.count_alleles(subpop=[0, 1])
>>> ac2 = g.count_alleles(subpop=[2])
>>> ac3 = g.count_alleles(subpop=[3])
>>> loc_private_alleles = allel.locate_private_alleles(ac1, ac2, ac3)
>>> loc_private_alleles
array([[ True, False, False],
[False, False, False],
[ True, False, False],
[ True, True, True],
[ True, True, False]])
>>> loc_private_variants = np.any(loc_private_alleles, axis=1)
>>> loc_private_variants
array([ True, False, True, True, True]) | 5.555701 | 5.637597 | 0.985473 |
# flake8: noqa
# check inputs
ac1 = asarray_ndim(ac1, 2)
ac2 = asarray_ndim(ac2, 2)
check_dim0_aligned(ac1, ac2)
ac1, ac2 = ensure_dim1_aligned(ac1, ac2)
# calculate these once only
an1 = np.sum(ac1, axis=1)
an2 = np.sum(ac2, axis=1)
# calculate average diversity (a.k.a. heterozygosity) within each
# population
within = (mean_pairwise_difference(ac1, an1, fill=fill) +
mean_pairwise_difference(ac2, an2, fill=fill)) / 2
# calculate divergence (a.k.a. heterozygosity) between each population
between = mean_pairwise_difference_between(ac1, ac2, an1, an2, fill=fill)
# define numerator and denominator for Fst calculations
num = between - within
den = between
return num, den | def hudson_fst(ac1, ac2, fill=np.nan) | Calculate the numerator and denominator for Fst estimation using the
method of Hudson (1992) elaborated by Bhatia et al. (2013).
Parameters
----------
ac1 : array_like, int, shape (n_variants, n_alleles)
Allele counts array from the first population.
ac2 : array_like, int, shape (n_variants, n_alleles)
Allele counts array from the second population.
fill : float
Use this value where there are no pairs to compare (e.g.,
all allele calls are missing).
Returns
-------
num : ndarray, float, shape (n_variants,)
Divergence between the two populations minus average
of diversity within each population.
den : ndarray, float, shape (n_variants,)
Divergence between the two populations.
Examples
--------
Calculate numerator and denominator for Fst estimation::
>>> import allel
>>> g = allel.GenotypeArray([[[0, 0], [0, 0], [1, 1], [1, 1]],
... [[0, 1], [0, 1], [0, 1], [0, 1]],
... [[0, 0], [0, 0], [0, 0], [0, 0]],
... [[0, 1], [1, 2], [1, 1], [2, 2]],
... [[0, 0], [1, 1], [0, 1], [-1, -1]]])
>>> subpops = [[0, 1], [2, 3]]
>>> ac1 = g.count_alleles(subpop=subpops[0])
>>> ac2 = g.count_alleles(subpop=subpops[1])
>>> num, den = allel.hudson_fst(ac1, ac2)
>>> num
array([ 1. , -0.16666667, 0. , -0.125 , -0.33333333])
>>> den
array([1. , 0.5 , 0. , 0.625, 0.5 ])
Estimate Fst for each variant individually::
>>> fst = num / den
>>> fst
array([ 1. , -0.33333333, nan, -0.2 , -0.66666667])
Estimate Fst averaging over variants::
>>> fst = np.sum(num) / np.sum(den)
>>> fst
0.1428571428571429 | 3.251853 | 3.03062 | 1.072999 |
from allel.stats.admixture import patterson_f2, h_hat
num = patterson_f2(aca, acb)
den = num + h_hat(aca) + h_hat(acb)
return num, den | def patterson_fst(aca, acb) | Estimator of differentiation between populations A and B based on the
F2 parameter.
Parameters
----------
aca : array_like, int, shape (n_variants, 2)
Allele counts for population A.
acb : array_like, int, shape (n_variants, 2)
Allele counts for population B.
Returns
-------
num : ndarray, shape (n_variants,), float
Numerator.
den : ndarray, shape (n_variants,), float
Denominator.
Notes
-----
See Patterson (2012), Appendix A.
TODO check if this is numerically equivalent to Hudson's estimator. | 5.599524 | 4.80169 | 1.166157 |
# compute values per-variant
a, b, c = weir_cockerham_fst(g, subpops, max_allele=max_allele)
# define the statistic to compute within each window
def average_fst(wa, wb, wc):
return np.nansum(wa) / (np.nansum(wa) + np.nansum(wb) + np.nansum(wc))
# calculate average Fst in windows
fst, windows, counts = windowed_statistic(pos, values=(a, b, c),
statistic=average_fst,
size=size, start=start,
stop=stop, step=step,
windows=windows, fill=fill)
return fst, windows, counts | def windowed_weir_cockerham_fst(pos, g, subpops, size=None, start=None,
stop=None, step=None, windows=None,
fill=np.nan, max_allele=None) | Estimate average Fst in windows over a single chromosome/contig,
following the method of Weir and Cockerham (1984).
Parameters
----------
pos : array_like, int, shape (n_items,)
Variant positions, using 1-based coordinates, in ascending order.
g : array_like, int, shape (n_variants, n_samples, ploidy)
Genotype array.
subpops : sequence of sequences of ints
Sample indices for each subpopulation.
size : int
The window size (number of bases).
start : int, optional
The position at which to start (1-based).
stop : int, optional
The position at which to stop (1-based).
step : int, optional
The distance between start positions of windows. If not given,
defaults to the window size, i.e., non-overlapping windows.
windows : array_like, int, shape (n_windows, 2), optional
Manually specify the windows to use as a sequence of (window_start,
window_stop) positions, using 1-based coordinates. Overrides the
size/start/stop/step parameters.
fill : object, optional
The value to use where there are no variants within a window.
max_allele : int, optional
The highest allele index to consider.
Returns
-------
fst : ndarray, float, shape (n_windows,)
Average Fst in each window.
windows : ndarray, int, shape (n_windows, 2)
The windows used, as an array of (window_start, window_stop) positions,
using 1-based coordinates.
counts : ndarray, int, shape (n_windows,)
Number of variants in each window. | 3.098462 | 2.88474 | 1.074087 |
# compute values per-variants
num, den = hudson_fst(ac1, ac2)
# define the statistic to compute within each window
def average_fst(wn, wd):
return np.nansum(wn) / np.nansum(wd)
# calculate average Fst in windows
fst, windows, counts = windowed_statistic(pos, values=(num, den),
statistic=average_fst,
size=size, start=start,
stop=stop, step=step,
windows=windows, fill=fill)
return fst, windows, counts | def windowed_hudson_fst(pos, ac1, ac2, size=None, start=None, stop=None,
step=None, windows=None, fill=np.nan) | Estimate average Fst in windows over a single chromosome/contig,
following the method of Hudson (1992) elaborated by Bhatia et al. (2013).
Parameters
----------
pos : array_like, int, shape (n_items,)
Variant positions, using 1-based coordinates, in ascending order.
ac1 : array_like, int, shape (n_variants, n_alleles)
Allele counts array from the first population.
ac2 : array_like, int, shape (n_variants, n_alleles)
Allele counts array from the second population.
size : int, optional
The window size (number of bases).
start : int, optional
The position at which to start (1-based).
stop : int, optional
The position at which to stop (1-based).
step : int, optional
The distance between start positions of windows. If not given,
defaults to the window size, i.e., non-overlapping windows.
windows : array_like, int, shape (n_windows, 2), optional
Manually specify the windows to use as a sequence of (window_start,
window_stop) positions, using 1-based coordinates. Overrides the
size/start/stop/step parameters.
fill : object, optional
The value to use where there are no variants within a window.
Returns
-------
fst : ndarray, float, shape (n_windows,)
Average Fst in each window.
windows : ndarray, int, shape (n_windows, 2)
The windows used, as an array of (window_start, window_stop) positions,
using 1-based coordinates.
counts : ndarray, int, shape (n_windows,)
Number of variants in each window. | 4.6987 | 3.975374 | 1.181952 |
# calculate per-variant values
a, b, c = weir_cockerham_fst(g, subpops, max_allele=max_allele)
# compute the numerator and denominator in moving windows
num = moving_statistic(a, statistic=np.nansum, size=size, start=start,
stop=stop, step=step)
den = moving_statistic(a + b + c, statistic=np.nansum, size=size,
start=start, stop=stop, step=step)
# calculate fst in each window
fst = num / den
return fst | def moving_weir_cockerham_fst(g, subpops, size, start=0, stop=None, step=None,
max_allele=None) | Estimate average Fst in moving windows over a single chromosome/contig,
following the method of Weir and Cockerham (1984).
Parameters
----------
g : array_like, int, shape (n_variants, n_samples, ploidy)
Genotype array.
subpops : sequence of sequences of ints
Sample indices for each subpopulation.
size : int
The window size (number of variants).
start : int, optional
The index at which to start.
stop : int, optional
The index at which to stop.
step : int, optional
The number of variants between start positions of windows. If not
given, defaults to the window size, i.e., non-overlapping windows.
max_allele : int, optional
The highest allele index to consider.
Returns
-------
fst : ndarray, float, shape (n_windows,)
Average Fst in each window. | 3.489551 | 3.22355 | 1.082518 |
# calculate per-variant values
num, den = hudson_fst(ac1, ac2, fill=np.nan)
# compute the numerator and denominator in moving windows
num_sum = moving_statistic(num, statistic=np.nansum, size=size,
start=start, stop=stop, step=step)
den_sum = moving_statistic(den, statistic=np.nansum, size=size,
start=start, stop=stop, step=step)
# calculate fst in each window
fst = num_sum / den_sum
return fst | def moving_hudson_fst(ac1, ac2, size, start=0, stop=None, step=None) | Estimate average Fst in moving windows over a single chromosome/contig,
following the method of Hudson (1992) elaborated by Bhatia et al. (2013).
Parameters
----------
ac1 : array_like, int, shape (n_variants, n_alleles)
Allele counts array from the first population.
ac2 : array_like, int, shape (n_variants, n_alleles)
Allele counts array from the second population.
size : int
The window size (number of variants).
start : int, optional
The index at which to start.
stop : int, optional
The index at which to stop.
step : int, optional
The number of variants between start positions of windows. If not
given, defaults to the window size, i.e., non-overlapping windows.
Returns
-------
fst : ndarray, float, shape (n_windows,)
Average Fst in each window. | 3.578233 | 3.259155 | 1.097902 |
# calculate per-variant values
num, den = patterson_fst(ac1, ac2)
# compute the numerator and denominator in moving windows
num_sum = moving_statistic(num, statistic=np.nansum, size=size,
start=start, stop=stop, step=step)
den_sum = moving_statistic(den, statistic=np.nansum, size=size,
start=start, stop=stop, step=step)
# calculate fst in each window
fst = num_sum / den_sum
return fst | def moving_patterson_fst(ac1, ac2, size, start=0, stop=None, step=None) | Estimate average Fst in moving windows over a single chromosome/contig,
following the method of Patterson (2012).
Parameters
----------
ac1 : array_like, int, shape (n_variants, n_alleles)
Allele counts array from the first population.
ac2 : array_like, int, shape (n_variants, n_alleles)
Allele counts array from the second population.
size : int
The window size (number of variants).
start : int, optional
The index at which to start.
stop : int, optional
The index at which to stop.
step : int, optional
The number of variants between start positions of windows. If not
given, defaults to the window size, i.e., non-overlapping windows.
Returns
-------
fst : ndarray, float, shape (n_windows,)
Average Fst in each window. | 3.463118 | 3.10234 | 1.116292 |
# calculate per-variant values
a, b, c = weir_cockerham_fst(g, subpops, max_allele=max_allele)
# calculate overall estimate
a_sum = np.nansum(a)
b_sum = np.nansum(b)
c_sum = np.nansum(c)
fst = a_sum / (a_sum + b_sum + c_sum)
# compute the numerator and denominator within each block
num_bsum = moving_statistic(a, statistic=np.nansum, size=blen)
den_bsum = moving_statistic(a + b + c, statistic=np.nansum, size=blen)
# calculate the statistic values in each block
vb = num_bsum / den_bsum
# estimate standard error
_, se, vj = jackknife((num_bsum, den_bsum),
statistic=lambda n, d: np.sum(n) / np.sum(d))
return fst, se, vb, vj | def average_weir_cockerham_fst(g, subpops, blen, max_allele=None) | Estimate average Fst and standard error using the block-jackknife.
Parameters
----------
g : array_like, int, shape (n_variants, n_samples, ploidy)
Genotype array.
subpops : sequence of sequences of ints
Sample indices for each subpopulation.
blen : int
Block size (number of variants).
max_allele : int, optional
The highest allele index to consider.
Returns
-------
fst : float
Estimated value of the statistic using all data.
se : float
Estimated standard error.
vb : ndarray, float, shape (n_blocks,)
Value of the statistic in each block.
vj : ndarray, float, shape (n_blocks,)
Values of the statistic from block-jackknife resampling. | 3.414571 | 2.815782 | 1.212655 |
# calculate per-variant values
num, den = hudson_fst(ac1, ac2, fill=np.nan)
# calculate overall estimate
fst = np.nansum(num) / np.nansum(den)
# compute the numerator and denominator within each block
num_bsum = moving_statistic(num, statistic=np.nansum, size=blen)
den_bsum = moving_statistic(den, statistic=np.nansum, size=blen)
# calculate the statistic values in each block
vb = num_bsum / den_bsum
# estimate standard error
_, se, vj = jackknife((num_bsum, den_bsum),
statistic=lambda n, d: np.sum(n) / np.sum(d))
return fst, se, vb, vj | def average_hudson_fst(ac1, ac2, blen) | Estimate average Fst between two populations and standard error using
the block-jackknife.
Parameters
----------
ac1 : array_like, int, shape (n_variants, n_alleles)
Allele counts array from the first population.
ac2 : array_like, int, shape (n_variants, n_alleles)
Allele counts array from the second population.
blen : int
Block size (number of variants).
Returns
-------
fst : float
Estimated value of the statistic using all data.
se : float
Estimated standard error.
vb : ndarray, float, shape (n_blocks,)
Value of the statistic in each block.
vj : ndarray, float, shape (n_blocks,)
Values of the statistic from block-jackknife resampling. | 4.479762 | 3.410528 | 1.31351 |
# calculate per-variant values
num, den = patterson_fst(ac1, ac2)
# calculate overall estimate
fst = np.nansum(num) / np.nansum(den)
# compute the numerator and denominator within each block
num_bsum = moving_statistic(num, statistic=np.nansum, size=blen)
den_bsum = moving_statistic(den, statistic=np.nansum, size=blen)
# calculate the statistic values in each block
vb = num_bsum / den_bsum
# estimate standard error
_, se, vj = jackknife((num_bsum, den_bsum),
statistic=lambda n, d: np.sum(n) / np.sum(d))
return fst, se, vb, vj | def average_patterson_fst(ac1, ac2, blen) | Estimate average Fst between two populations and standard error using
the block-jackknife.
Parameters
----------
ac1 : array_like, int, shape (n_variants, n_alleles)
Allele counts array from the first population.
ac2 : array_like, int, shape (n_variants, n_alleles)
Allele counts array from the second population.
blen : int
Block size (number of variants).
Returns
-------
fst : float
Estimated value of the statistic using all data.
se : float
Estimated standard error.
vb : ndarray, float, shape (n_blocks,)
Value of the statistic in each block.
vj : ndarray, float, shape (n_blocks,)
Values of the statistic from block-jackknife resampling. | 4.430239 | 3.310229 | 1.338348 |
# check inputs
gn = asarray_ndim(gn, 2, dtype='i1')
gn = memoryview_safe(gn)
# compute correlation coefficients
r = gn_pairwise_corrcoef_int8(gn)
# convenience for singletons
if r.size == 1:
r = r[0]
return r | def rogers_huff_r(gn) | Estimate the linkage disequilibrium parameter *r* for each pair of
variants using the method of Rogers and Huff (2008).
Parameters
----------
gn : array_like, int8, shape (n_variants, n_samples)
Diploid genotypes at biallelic variants, coded as the number of
alternate alleles per call (i.e., 0 = hom ref, 1 = het, 2 = hom alt).
Returns
-------
r : ndarray, float, shape (n_variants * (n_variants - 1) // 2,)
Matrix in condensed form.
Examples
--------
>>> import allel
>>> g = allel.GenotypeArray([[[0, 0], [1, 1], [0, 0]],
... [[0, 0], [1, 1], [0, 0]],
... [[1, 1], [0, 0], [1, 1]],
... [[0, 0], [0, 1], [-1, -1]]], dtype='i1')
>>> gn = g.to_n_alt(fill=-1)
>>> gn
array([[ 0, 2, 0],
[ 0, 2, 0],
[ 2, 0, 2],
[ 0, 1, -1]], dtype=int8)
>>> r = allel.rogers_huff_r(gn)
>>> r # doctest: +ELLIPSIS
array([ 1. , -1.0000001, 1. , -1.0000001, 1. ,
-1. ], dtype=float32)
>>> r ** 2 # doctest: +ELLIPSIS
array([1. , 1.0000002, 1. , 1.0000002, 1. , 1. ],
dtype=float32)
>>> from scipy.spatial.distance import squareform
>>> squareform(r ** 2)
array([[0. , 1. , 1.0000002, 1. ],
[1. , 0. , 1.0000002, 1. ],
[1.0000002, 1.0000002, 0. , 1. ],
[1. , 1. , 1. , 0. ]], dtype=float32) | 8.890898 | 9.089623 | 0.978137 |
# check inputs
gna = asarray_ndim(gna, 2, dtype='i1')
gnb = asarray_ndim(gnb, 2, dtype='i1')
gna = memoryview_safe(gna)
gnb = memoryview_safe(gnb)
# compute correlation coefficients
r = gn_pairwise2_corrcoef_int8(gna, gnb)
# convenience for singletons
if r.size == 1:
r = r[0, 0]
return r | def rogers_huff_r_between(gna, gnb) | Estimate the linkage disequilibrium parameter *r* for each pair of
variants between the two input arrays, using the method of Rogers and
Huff (2008).
Parameters
----------
gna, gnb : array_like, int8, shape (n_variants, n_samples)
Diploid genotypes at biallelic variants, coded as the number of
alternate alleles per call (i.e., 0 = hom ref, 1 = het, 2 = hom alt).
Returns
-------
r : ndarray, float, shape (m_variants, n_variants )
Matrix in rectangular form. | 4.228588 | 4.119401 | 1.026506 |
# check inputs
if not hasattr(gn, 'shape') or not hasattr(gn, 'dtype'):
gn = np.asarray(gn, dtype='i1')
if gn.ndim != 2:
raise ValueError('gn must have two dimensions')
# setup output
loc = np.ones(gn.shape[0], dtype='u1')
# compute in chunks to avoid loading big arrays into memory
blen = get_blen_array(gn, blen)
blen = max(blen, 10*size) # avoid too small chunks
n_variants = gn.shape[0]
for i in range(0, n_variants, blen):
# N.B., ensure overlap with next window
j = min(n_variants, i+blen+size)
gnb = np.asarray(gn[i:j], dtype='i1')
gnb = memoryview_safe(gnb)
locb = loc[i:j]
gn_locate_unlinked_int8(gnb, locb, size, step, threshold)
return loc.astype('b1') | def locate_unlinked(gn, size=100, step=20, threshold=.1, blen=None) | Locate variants in approximate linkage equilibrium, where r**2 is
below the given `threshold`.
Parameters
----------
gn : array_like, int8, shape (n_variants, n_samples)
Diploid genotypes at biallelic variants, coded as the number of
alternate alleles per call (i.e., 0 = hom ref, 1 = het, 2 = hom alt).
size : int
Window size (number of variants).
step : int
Number of variants to advance to the next window.
threshold : float
Maximum value of r**2 to include variants.
blen : int, optional
Block length to use for chunked computation.
Returns
-------
loc : ndarray, bool, shape (n_variants)
Boolean array where True items locate variants in approximate
linkage equilibrium.
Notes
-----
The value of r**2 between each pair of variants is calculated using the
method of Rogers and Huff (2008). | 4.437623 | 3.851341 | 1.152228 |
# define the statistic function
if isinstance(percentile, (list, tuple)):
fill = [fill for _ in percentile]
def statistic(gnw):
r_squared = rogers_huff_r(gnw) ** 2
return [np.percentile(r_squared, p) for p in percentile]
else:
def statistic(gnw):
r_squared = rogers_huff_r(gnw) ** 2
return np.percentile(r_squared, percentile)
return windowed_statistic(pos, gn, statistic, size, start=start,
stop=stop, step=step, windows=windows, fill=fill) | def windowed_r_squared(pos, gn, size=None, start=None, stop=None, step=None,
windows=None, fill=np.nan, percentile=50) | Summarise linkage disequilibrium in windows over a single
chromosome/contig.
Parameters
----------
pos : array_like, int, shape (n_items,)
The item positions in ascending order, using 1-based coordinates..
gn : array_like, int8, shape (n_variants, n_samples)
Diploid genotypes at biallelic variants, coded as the number of
alternate alleles per call (i.e., 0 = hom ref, 1 = het, 2 = hom alt).
size : int, optional
The window size (number of bases).
start : int, optional
The position at which to start (1-based).
stop : int, optional
The position at which to stop (1-based).
step : int, optional
The distance between start positions of windows. If not given,
defaults to the window size, i.e., non-overlapping windows.
windows : array_like, int, shape (n_windows, 2), optional
Manually specify the windows to use as a sequence of (window_start,
window_stop) positions, using 1-based coordinates. Overrides the
size/start/stop/step parameters.
fill : object, optional
The value to use where a window is empty, i.e., contains no items.
percentile : int or sequence of ints, optional
The percentile or percentiles to calculate within each window.
Returns
-------
out : ndarray, shape (n_windows,)
The value of the statistic for each window.
windows : ndarray, int, shape (n_windows, 2)
The windows used, as an array of (window_start, window_stop) positions,
using 1-based coordinates.
counts : ndarray, int, shape (n_windows,)
The number of items in each window.
Notes
-----
Linkage disequilibrium (r**2) is calculated using the method of Rogers
and Huff (2008).
See Also
--------
allel.stats.window.windowed_statistic | 2.915216 | 2.901306 | 1.004795 |
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.