path
stringlengths
13
17
screenshot_names
sequencelengths
1
873
code
stringlengths
0
40.4k
cell_type
stringclasses
1 value
128022704/cell_12
[ "text_plain_output_1.png" ]
data = deque_list.copy() for i in range(ELEMENTS_LIMIT - 1): _ = data.pop()
code
128022704/cell_5
[ "text_plain_output_1.png" ]
usual_list = [] for i in range(ELEMENTS_LIMIT): usual_list.append(i)
code
34144956/cell_9
[ "text_plain_output_1.png" ]
import matplotlib.pyplot as plt import pandas as pd import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) train = pd.read_csv('/kaggle/input/Kannada-MNIST/train.csv') test = pd.read_csv('/kaggle/input/Kannada-MNIST/test.csv') images = train.iloc[:, 1:].values.reshape(train.shape[0], 28, 28).astype('float32') / 255.0 images = images.reshape(train.shape[0], 28, 28, 1) images_test = test.iloc[:, 1:].values.reshape(test.shape[0], 28, 28).astype('float32') / 255.0 images_test = images_test.reshape(test.shape[0], 28, 28, 1) label = train.iloc[:, 0].astype('int').values ids_test = test.iloc[:, 0].values (images.shape, images_test.shape) plt.imshow(images_test[0].reshape(28, 28), cmap='gray')
code
34144956/cell_4
[ "text_plain_output_1.png" ]
import pandas as pd import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) train = pd.read_csv('/kaggle/input/Kannada-MNIST/train.csv') test = pd.read_csv('/kaggle/input/Kannada-MNIST/test.csv') test.head()
code
34144956/cell_20
[ "text_plain_output_1.png", "image_output_1.png" ]
from keras.callbacks import EarlyStopping, ReduceLROnPlateau,ModelCheckpoint from tensorflow.keras.layers import Dense,Conv2D, MaxPooling2D, Flatten,BatchNormalization,Dropout from tensorflow.keras.models import Sequential from tensorflow.keras.optimizers import Adam from tensorflow.keras.utils import to_categorical from tensorflow.keras.utils import to_categorical label_train = to_categorical(label_train) label_validation = to_categorical(label_validation) model = Sequential() model.add(Conv2D(32, (3, 3), input_shape=(28, 28, 1), padding='same', activation='relu')) model.add(BatchNormalization(momentum=0.9, epsilon=1e-05, gamma_initializer='uniform')) model.add(MaxPooling2D()) model.add(Dropout(0.25)) model.add(Conv2D(64, (3, 3), padding='same', activation='relu')) model.add(BatchNormalization(momentum=0.9, epsilon=1e-05, gamma_initializer='uniform')) model.add(MaxPooling2D()) model.add(Dropout(0.25)) model.add(Conv2D(64, (3, 3), padding='same', activation='relu')) model.add(BatchNormalization(momentum=0.9, epsilon=1e-05, gamma_initializer='uniform')) model.add(MaxPooling2D()) model.add(Dropout(0.25)) model.add(Flatten()) model.add(Dense(128, activation='relu')) model.add(Dense(256, activation='relu')) model.add(Dense(10, activation='sigmoid')) model.summary() from keras.callbacks import EarlyStopping, ReduceLROnPlateau, ModelCheckpoint earlystop = EarlyStopping(patience=10) learning_rate_reduction = ReduceLROnPlateau(monitor='val_acc', patience=2, verbose=1, factor=0.5, min_lr=1e-05) callbacks = [earlystop, learning_rate_reduction, ModelCheckpoint(filepath='best_model.h5', monitor='val_loss', save_best_only=True)] from tensorflow.keras.optimizers import Adam model.compile(loss='categorical_crossentropy', optimizer=Adam(lr=0.001), metrics=['accuracy']) model.fit(images_train, label_train, validation_data=(images_validation, label_validation), batch_size=64, epochs=50, callbacks=callbacks)
code
34144956/cell_6
[ "application_vnd.jupyter.stderr_output_1.png" ]
import matplotlib.pyplot as plt import pandas as pd import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) train = pd.read_csv('/kaggle/input/Kannada-MNIST/train.csv') test = pd.read_csv('/kaggle/input/Kannada-MNIST/test.csv') images = train.iloc[:, 1:].values.reshape(train.shape[0], 28, 28).astype('float32') / 255.0 images = images.reshape(train.shape[0], 28, 28, 1) images_test = test.iloc[:, 1:].values.reshape(test.shape[0], 28, 28).astype('float32') / 255.0 images_test = images_test.reshape(test.shape[0], 28, 28, 1) label = train.iloc[:, 0].astype('int').values ids_test = test.iloc[:, 0].values plt.imshow(images[0].reshape(28, 28), cmap='gray') plt.title(label[0])
code
34144956/cell_11
[ "text_html_output_1.png" ]
import matplotlib.pyplot as plt import pandas as pd import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) train = pd.read_csv('/kaggle/input/Kannada-MNIST/train.csv') test = pd.read_csv('/kaggle/input/Kannada-MNIST/test.csv') images = train.iloc[:, 1:].values.reshape(train.shape[0], 28, 28).astype('float32') / 255.0 images = images.reshape(train.shape[0], 28, 28, 1) images_test = test.iloc[:, 1:].values.reshape(test.shape[0], 28, 28).astype('float32') / 255.0 images_test = images_test.reshape(test.shape[0], 28, 28, 1) label = train.iloc[:, 0].astype('int').values ids_test = test.iloc[:, 0].values classes = train.iloc[:, 0].unique() classes
code
34144956/cell_1
[ "text_plain_output_1.png" ]
import os import numpy as np import pandas as pd import os for dirname, _, filenames in os.walk('/kaggle/input'): for filename in filenames: print(os.path.join(dirname, filename))
code
34144956/cell_18
[ "text_plain_output_1.png" ]
from keras.callbacks import EarlyStopping, ReduceLROnPlateau,ModelCheckpoint from keras.callbacks import EarlyStopping, ReduceLROnPlateau, ModelCheckpoint earlystop = EarlyStopping(patience=10) learning_rate_reduction = ReduceLROnPlateau(monitor='val_acc', patience=2, verbose=1, factor=0.5, min_lr=1e-05) callbacks = [earlystop, learning_rate_reduction, ModelCheckpoint(filepath='best_model.h5', monitor='val_loss', save_best_only=True)]
code
34144956/cell_8
[ "application_vnd.jupyter.stderr_output_2.png", "text_plain_output_4.png", "text_plain_output_3.png", "text_plain_output_1.png" ]
import matplotlib.pyplot as plt import pandas as pd import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) train = pd.read_csv('/kaggle/input/Kannada-MNIST/train.csv') test = pd.read_csv('/kaggle/input/Kannada-MNIST/test.csv') images = train.iloc[:, 1:].values.reshape(train.shape[0], 28, 28).astype('float32') / 255.0 images = images.reshape(train.shape[0], 28, 28, 1) images_test = test.iloc[:, 1:].values.reshape(test.shape[0], 28, 28).astype('float32') / 255.0 images_test = images_test.reshape(test.shape[0], 28, 28, 1) label = train.iloc[:, 0].astype('int').values ids_test = test.iloc[:, 0].values (images.shape, images_test.shape)
code
34144956/cell_15
[ "text_html_output_1.png" ]
from tensorflow.keras.utils import to_categorical from tensorflow.keras.utils import to_categorical label_train = to_categorical(label_train) label_validation = to_categorical(label_validation) (label_train, label_validation)
code
34144956/cell_3
[ "text_plain_output_1.png" ]
import pandas as pd import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) train = pd.read_csv('/kaggle/input/Kannada-MNIST/train.csv') train.head()
code
34144956/cell_17
[ "text_plain_output_1.png", "image_output_1.png" ]
from tensorflow.keras.layers import Dense,Conv2D, MaxPooling2D, Flatten,BatchNormalization,Dropout from tensorflow.keras.models import Sequential model = Sequential() model.add(Conv2D(32, (3, 3), input_shape=(28, 28, 1), padding='same', activation='relu')) model.add(BatchNormalization(momentum=0.9, epsilon=1e-05, gamma_initializer='uniform')) model.add(MaxPooling2D()) model.add(Dropout(0.25)) model.add(Conv2D(64, (3, 3), padding='same', activation='relu')) model.add(BatchNormalization(momentum=0.9, epsilon=1e-05, gamma_initializer='uniform')) model.add(MaxPooling2D()) model.add(Dropout(0.25)) model.add(Conv2D(64, (3, 3), padding='same', activation='relu')) model.add(BatchNormalization(momentum=0.9, epsilon=1e-05, gamma_initializer='uniform')) model.add(MaxPooling2D()) model.add(Dropout(0.25)) model.add(Flatten()) model.add(Dense(128, activation='relu')) model.add(Dense(256, activation='relu')) model.add(Dense(10, activation='sigmoid')) model.summary()
code
34144956/cell_24
[ "text_plain_output_1.png" ]
from keras.callbacks import EarlyStopping, ReduceLROnPlateau,ModelCheckpoint from tensorflow.keras.layers import Dense,Conv2D, MaxPooling2D, Flatten,BatchNormalization,Dropout from tensorflow.keras.models import Sequential from tensorflow.keras.optimizers import Adam from tensorflow.keras.utils import to_categorical import matplotlib.pyplot as plt import numpy as np import numpy as np # linear algebra import pandas as pd import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) train = pd.read_csv('/kaggle/input/Kannada-MNIST/train.csv') test = pd.read_csv('/kaggle/input/Kannada-MNIST/test.csv') images = train.iloc[:, 1:].values.reshape(train.shape[0], 28, 28).astype('float32') / 255.0 images = images.reshape(train.shape[0], 28, 28, 1) images_test = test.iloc[:, 1:].values.reshape(test.shape[0], 28, 28).astype('float32') / 255.0 images_test = images_test.reshape(test.shape[0], 28, 28, 1) label = train.iloc[:, 0].astype('int').values ids_test = test.iloc[:, 0].values (images.shape, images_test.shape) from tensorflow.keras.utils import to_categorical label_train = to_categorical(label_train) label_validation = to_categorical(label_validation) model = Sequential() model.add(Conv2D(32, (3, 3), input_shape=(28, 28, 1), padding='same', activation='relu')) model.add(BatchNormalization(momentum=0.9, epsilon=1e-05, gamma_initializer='uniform')) model.add(MaxPooling2D()) model.add(Dropout(0.25)) model.add(Conv2D(64, (3, 3), padding='same', activation='relu')) model.add(BatchNormalization(momentum=0.9, epsilon=1e-05, gamma_initializer='uniform')) model.add(MaxPooling2D()) model.add(Dropout(0.25)) model.add(Conv2D(64, (3, 3), padding='same', activation='relu')) model.add(BatchNormalization(momentum=0.9, epsilon=1e-05, gamma_initializer='uniform')) model.add(MaxPooling2D()) model.add(Dropout(0.25)) model.add(Flatten()) model.add(Dense(128, activation='relu')) model.add(Dense(256, activation='relu')) model.add(Dense(10, activation='sigmoid')) model.summary() from keras.callbacks import EarlyStopping, ReduceLROnPlateau, ModelCheckpoint earlystop = EarlyStopping(patience=10) learning_rate_reduction = ReduceLROnPlateau(monitor='val_acc', patience=2, verbose=1, factor=0.5, min_lr=1e-05) callbacks = [earlystop, learning_rate_reduction, ModelCheckpoint(filepath='best_model.h5', monitor='val_loss', save_best_only=True)] from tensorflow.keras.optimizers import Adam model.compile(loss='categorical_crossentropy', optimizer=Adam(lr=0.001), metrics=['accuracy']) model.fit(images_train, label_train, validation_data=(images_validation, label_validation), batch_size=64, epochs=50, callbacks=callbacks) test_prediction = model.predict(images_test) test_labels = [] for i in range(len(test_prediction)): test_labels.append(np.argmax(test_prediction[i])) np.argmax(model.predict(images_test[2].reshape(1, 28, 28, 1)))
code
34144956/cell_12
[ "text_html_output_1.png" ]
label_train
code
34144956/cell_5
[ "text_plain_output_1.png" ]
import pandas as pd import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) train = pd.read_csv('/kaggle/input/Kannada-MNIST/train.csv') test = pd.read_csv('/kaggle/input/Kannada-MNIST/test.csv') sample_submission = pd.read_csv('/kaggle/input/Kannada-MNIST/sample_submission.csv') sample_submission.head()
code
33111161/cell_9
[ "text_html_output_1.png" ]
import numpy as np import pandas as pd filepath = '../input/' pokemon = pd.read_csv(filepath + 'complete-pokemon-dataset-updated-090420/pokedex_(Update.04.20).csv').drop('Unnamed: 0', axis=1) columns_to_drop = ['japanese_name', 'german_name', 'against_normal', 'against_fire', 'against_water', 'against_electric', 'against_grass', 'against_ice', 'against_fight', 'against_poison', 'against_ground', 'against_flying', 'against_psychic', 'against_bug', 'against_rock', 'against_ghost', 'against_dragon', 'against_dark', 'against_steel', 'against_fairy'] pokemon = pokemon.drop(columns_to_drop, axis=1) pokemon.shape mega_pokemons = pokemon.index[pokemon['name'].apply(lambda x: 'Mega' in x)].tolist() dinamax_pokemons = pokemon.index[pokemon['name'].apply(lambda x: 'max' in x)].tolist() to_delete = np.concatenate((mega_pokemons, dinamax_pokemons)) pokemon = pokemon.drop(to_delete, axis=0) pokemon.columns pokemon.isnull().sum() print(pokemon[pd.isnull(pokemon['speed'])].index.tolist()[0]) print(pokemon[pd.isnull(pokemon['species'])].index.tolist()[0]) print(pokemon[pd.isnull(pokemon['type_1'])].index.tolist()[0]) print(pokemon[pd.isnull(pokemon['height_m'])].index.tolist()[0]) print(pokemon[pd.isnull(pokemon['weight_kg'])].index.tolist()[0]) pokemon.loc[240, :]
code
33111161/cell_4
[ "text_html_output_1.png" ]
import pandas as pd filepath = '../input/' pokemon = pd.read_csv(filepath + 'complete-pokemon-dataset-updated-090420/pokedex_(Update.04.20).csv').drop('Unnamed: 0', axis=1) columns_to_drop = ['japanese_name', 'german_name', 'against_normal', 'against_fire', 'against_water', 'against_electric', 'against_grass', 'against_ice', 'against_fight', 'against_poison', 'against_ground', 'against_flying', 'against_psychic', 'against_bug', 'against_rock', 'against_ghost', 'against_dragon', 'against_dark', 'against_steel', 'against_fairy'] pokemon = pokemon.drop(columns_to_drop, axis=1) pokemon.info()
code
33111161/cell_23
[ "text_plain_output_1.png" ]
import numpy as np import pandas as pd import plotly.graph_objects as go filepath = '../input/' pokemon = pd.read_csv(filepath + 'complete-pokemon-dataset-updated-090420/pokedex_(Update.04.20).csv').drop('Unnamed: 0', axis=1) columns_to_drop = ['japanese_name', 'german_name', 'against_normal', 'against_fire', 'against_water', 'against_electric', 'against_grass', 'against_ice', 'against_fight', 'against_poison', 'against_ground', 'against_flying', 'against_psychic', 'against_bug', 'against_rock', 'against_ghost', 'against_dragon', 'against_dark', 'against_steel', 'against_fairy'] pokemon = pokemon.drop(columns_to_drop, axis=1) pokemon.shape mega_pokemons = pokemon.index[pokemon['name'].apply(lambda x: 'Mega' in x)].tolist() dinamax_pokemons = pokemon.index[pokemon['name'].apply(lambda x: 'max' in x)].tolist() to_delete = np.concatenate((mega_pokemons, dinamax_pokemons)) pokemon = pokemon.drop(to_delete, axis=0) pokemon.columns pokemon.isnull().sum() pokemon.loc[240, :] def find_min_and_max(column_name): max_index = pokemon[column_name].idxmax() max_pokemon = pokemon.loc[max_index, 'name'] min_index = pokemon[column_name].idxmin() min_pokemon = pokemon.loc[min_index, 'name'] graph_1 = pokemon.groupby('type_1').count().sort_values(by='name') index_graph_1 = pokemon.groupby('type_1').count().index graph_2 = pokemon.groupby('type_2').count().sort_values(by='name') index_graph_2 = pokemon.groupby('type_2').count().index fig = go.Figure(data=[go.Bar(x=index_graph_1, y=graph_1['name'])], layout_title_text='First type distribution') fig.show() fig = go.Figure(data=[go.Bar(x=index_graph_2, y=graph_2['name'])], layout_title_text='Second type distribution') fig.show()
code
33111161/cell_2
[ "text_plain_output_1.png" ]
from plotly.offline import iplot, init_notebook_mode import os import seaborn as sns import matplotlib.pyplot as plt import numpy as np import pandas as pd from sklearn import preprocessing init_notebook_mode() from plotly.subplots import make_subplots import plotly.express as px import plotly.graph_objects as go from plotly import tools from plotly.offline import iplot, init_notebook_mode
code
33111161/cell_7
[ "text_plain_output_1.png" ]
import numpy as np import pandas as pd filepath = '../input/' pokemon = pd.read_csv(filepath + 'complete-pokemon-dataset-updated-090420/pokedex_(Update.04.20).csv').drop('Unnamed: 0', axis=1) columns_to_drop = ['japanese_name', 'german_name', 'against_normal', 'against_fire', 'against_water', 'against_electric', 'against_grass', 'against_ice', 'against_fight', 'against_poison', 'against_ground', 'against_flying', 'against_psychic', 'against_bug', 'against_rock', 'against_ghost', 'against_dragon', 'against_dark', 'against_steel', 'against_fairy'] pokemon = pokemon.drop(columns_to_drop, axis=1) pokemon.shape mega_pokemons = pokemon.index[pokemon['name'].apply(lambda x: 'Mega' in x)].tolist() dinamax_pokemons = pokemon.index[pokemon['name'].apply(lambda x: 'max' in x)].tolist() to_delete = np.concatenate((mega_pokemons, dinamax_pokemons)) pokemon = pokemon.drop(to_delete, axis=0) pokemon.columns
code
33111161/cell_18
[ "text_plain_output_1.png" ]
import numpy as np import pandas as pd filepath = '../input/' pokemon = pd.read_csv(filepath + 'complete-pokemon-dataset-updated-090420/pokedex_(Update.04.20).csv').drop('Unnamed: 0', axis=1) columns_to_drop = ['japanese_name', 'german_name', 'against_normal', 'against_fire', 'against_water', 'against_electric', 'against_grass', 'against_ice', 'against_fight', 'against_poison', 'against_ground', 'against_flying', 'against_psychic', 'against_bug', 'against_rock', 'against_ghost', 'against_dragon', 'against_dark', 'against_steel', 'against_fairy'] pokemon = pokemon.drop(columns_to_drop, axis=1) pokemon.shape mega_pokemons = pokemon.index[pokemon['name'].apply(lambda x: 'Mega' in x)].tolist() dinamax_pokemons = pokemon.index[pokemon['name'].apply(lambda x: 'max' in x)].tolist() to_delete = np.concatenate((mega_pokemons, dinamax_pokemons)) pokemon = pokemon.drop(to_delete, axis=0) pokemon.columns pokemon.isnull().sum() pokemon.loc[240, :] def find_min_and_max(column_name): max_index = pokemon[column_name].idxmax() max_pokemon = pokemon.loc[max_index, 'name'] min_index = pokemon[column_name].idxmin() min_pokemon = pokemon.loc[min_index, 'name'] column_to_display = ['attack', 'defense', 'sp_attack', 'sp_defense', 'hp', 'speed', 'catch_rate'] for colm in column_to_display: find_min_and_max(colm)
code
33111161/cell_8
[ "text_html_output_2.png", "text_html_output_1.png" ]
import numpy as np import pandas as pd filepath = '../input/' pokemon = pd.read_csv(filepath + 'complete-pokemon-dataset-updated-090420/pokedex_(Update.04.20).csv').drop('Unnamed: 0', axis=1) columns_to_drop = ['japanese_name', 'german_name', 'against_normal', 'against_fire', 'against_water', 'against_electric', 'against_grass', 'against_ice', 'against_fight', 'against_poison', 'against_ground', 'against_flying', 'against_psychic', 'against_bug', 'against_rock', 'against_ghost', 'against_dragon', 'against_dark', 'against_steel', 'against_fairy'] pokemon = pokemon.drop(columns_to_drop, axis=1) pokemon.shape mega_pokemons = pokemon.index[pokemon['name'].apply(lambda x: 'Mega' in x)].tolist() dinamax_pokemons = pokemon.index[pokemon['name'].apply(lambda x: 'max' in x)].tolist() to_delete = np.concatenate((mega_pokemons, dinamax_pokemons)) pokemon = pokemon.drop(to_delete, axis=0) pokemon.columns pokemon.isnull().sum()
code
33111161/cell_22
[ "text_plain_output_1.png" ]
import numpy as np import pandas as pd filepath = '../input/' pokemon = pd.read_csv(filepath + 'complete-pokemon-dataset-updated-090420/pokedex_(Update.04.20).csv').drop('Unnamed: 0', axis=1) columns_to_drop = ['japanese_name', 'german_name', 'against_normal', 'against_fire', 'against_water', 'against_electric', 'against_grass', 'against_ice', 'against_fight', 'against_poison', 'against_ground', 'against_flying', 'against_psychic', 'against_bug', 'against_rock', 'against_ghost', 'against_dragon', 'against_dark', 'against_steel', 'against_fairy'] pokemon = pokemon.drop(columns_to_drop, axis=1) pokemon.shape mega_pokemons = pokemon.index[pokemon['name'].apply(lambda x: 'Mega' in x)].tolist() dinamax_pokemons = pokemon.index[pokemon['name'].apply(lambda x: 'max' in x)].tolist() to_delete = np.concatenate((mega_pokemons, dinamax_pokemons)) pokemon = pokemon.drop(to_delete, axis=0) pokemon.columns pokemon.isnull().sum() pokemon.loc[240, :] def find_min_and_max(column_name): max_index = pokemon[column_name].idxmax() max_pokemon = pokemon.loc[max_index, 'name'] min_index = pokemon[column_name].idxmin() min_pokemon = pokemon.loc[min_index, 'name'] graph_1 = pokemon.groupby('type_1').count().sort_values(by='name') index_graph_1 = pokemon.groupby('type_1').count().index graph_2 = pokemon.groupby('type_2').count().sort_values(by='name') index_graph_2 = pokemon.groupby('type_2').count().index index_graph_1
code
33111161/cell_5
[ "text_plain_output_1.png" ]
import pandas as pd filepath = '../input/' pokemon = pd.read_csv(filepath + 'complete-pokemon-dataset-updated-090420/pokedex_(Update.04.20).csv').drop('Unnamed: 0', axis=1) columns_to_drop = ['japanese_name', 'german_name', 'against_normal', 'against_fire', 'against_water', 'against_electric', 'against_grass', 'against_ice', 'against_fight', 'against_poison', 'against_ground', 'against_flying', 'against_psychic', 'against_bug', 'against_rock', 'against_ghost', 'against_dragon', 'against_dark', 'against_steel', 'against_fairy'] pokemon = pokemon.drop(columns_to_drop, axis=1) pokemon.shape
code
33106099/cell_13
[ "text_plain_output_1.png" ]
import ast import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) import re input_data_path = '/kaggle/input/' input_data_file = 'filt_merged_text_vector_df_200430.csv' input_data = pd.read_csv(input_data_path + input_data_file) rep = {'text': '', 'cite_spans': '', 'ref_spans': '', 'section': '', 'Abstract': '', 'bioRxiv preprint': '', 'medRxiv preprint': '', 'doi:': ''} rep = dict(((re.escape(k), v) for k, v in rep.items())) pattern = re.compile('|'.join(rep.keys())) sentences_temp = [pattern.sub(lambda m: rep[re.escape(m.group(0))], s) for s in input_data.sentence] pattern = re.compile('.*[A-Za-z].*') sentences_to_keep = [bool(re.search(pattern, s)) & (len(s.split(' ')) > 2) for s in sentences_temp] input_processed = input_data.loc[sentences_to_keep, :] sentences_to_drop = [not i for i in sentences_to_keep] input_excluded = input_data.loc[sentences_to_drop, :] input_processed.w2vVector = [re.sub(',+', ',', ','.join(w.replace('\n', '').split(' '))) for w in input_processed.w2vVector] input_processed.w2vVector = [re.sub('\\[,', '', w) for w in input_processed.w2vVector] input_processed.w2vVector = [re.sub(',\\]', '', w) for w in input_processed.w2vVector] input_processed.w2vVector = [re.sub('\\[', '', w) for w in input_processed.w2vVector] input_processed.w2vVector = [re.sub('\\]', '', w) for w in input_processed.w2vVector] input_processed.w2vVector = input_processed.w2vVector.apply(lambda s: list(ast.literal_eval(s))) input_processed.to_csv('cord_titles_abstracts_conclusions.csv') input_excluded.to_csv('cord_titles_abstracts_conclusions_excluded.csv') title_data = input_processed.loc[input_processed.section == 'title', :] abstract_data = input_processed.loc[input_processed.section == 'abstract', :] conclusion_data = input_processed.loc[(input_processed.section != 'title') & (input_processed.section != 'abstract'), :] print('Number of unique sentences under titles:', title_data.sentence.nunique()) print('Number of unique sentence ids under titles:', title_data.sentence_id.nunique())
code
33106099/cell_8
[ "text_plain_output_1.png" ]
import ast import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) import re input_data_path = '/kaggle/input/' input_data_file = 'filt_merged_text_vector_df_200430.csv' input_data = pd.read_csv(input_data_path + input_data_file) rep = {'text': '', 'cite_spans': '', 'ref_spans': '', 'section': '', 'Abstract': '', 'bioRxiv preprint': '', 'medRxiv preprint': '', 'doi:': ''} rep = dict(((re.escape(k), v) for k, v in rep.items())) pattern = re.compile('|'.join(rep.keys())) sentences_temp = [pattern.sub(lambda m: rep[re.escape(m.group(0))], s) for s in input_data.sentence] pattern = re.compile('.*[A-Za-z].*') sentences_to_keep = [bool(re.search(pattern, s)) & (len(s.split(' ')) > 2) for s in sentences_temp] input_processed = input_data.loc[sentences_to_keep, :] sentences_to_drop = [not i for i in sentences_to_keep] input_excluded = input_data.loc[sentences_to_drop, :] input_processed.w2vVector = [re.sub(',+', ',', ','.join(w.replace('\n', '').split(' '))) for w in input_processed.w2vVector] input_processed.w2vVector = [re.sub('\\[,', '', w) for w in input_processed.w2vVector] input_processed.w2vVector = [re.sub(',\\]', '', w) for w in input_processed.w2vVector] input_processed.w2vVector = [re.sub('\\[', '', w) for w in input_processed.w2vVector] input_processed.w2vVector = [re.sub('\\]', '', w) for w in input_processed.w2vVector] input_processed.w2vVector = input_processed.w2vVector.apply(lambda s: list(ast.literal_eval(s)))
code
33106099/cell_16
[ "text_plain_output_1.png" ]
import ast import numpy as np # linear algebra import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) import re input_data_path = '/kaggle/input/' input_data_file = 'filt_merged_text_vector_df_200430.csv' input_data = pd.read_csv(input_data_path + input_data_file) rep = {'text': '', 'cite_spans': '', 'ref_spans': '', 'section': '', 'Abstract': '', 'bioRxiv preprint': '', 'medRxiv preprint': '', 'doi:': ''} rep = dict(((re.escape(k), v) for k, v in rep.items())) pattern = re.compile('|'.join(rep.keys())) sentences_temp = [pattern.sub(lambda m: rep[re.escape(m.group(0))], s) for s in input_data.sentence] pattern = re.compile('.*[A-Za-z].*') sentences_to_keep = [bool(re.search(pattern, s)) & (len(s.split(' ')) > 2) for s in sentences_temp] input_processed = input_data.loc[sentences_to_keep, :] sentences_to_drop = [not i for i in sentences_to_keep] input_excluded = input_data.loc[sentences_to_drop, :] input_processed.w2vVector = [re.sub(',+', ',', ','.join(w.replace('\n', '').split(' '))) for w in input_processed.w2vVector] input_processed.w2vVector = [re.sub('\\[,', '', w) for w in input_processed.w2vVector] input_processed.w2vVector = [re.sub(',\\]', '', w) for w in input_processed.w2vVector] input_processed.w2vVector = [re.sub('\\[', '', w) for w in input_processed.w2vVector] input_processed.w2vVector = [re.sub('\\]', '', w) for w in input_processed.w2vVector] input_processed.w2vVector = input_processed.w2vVector.apply(lambda s: list(ast.literal_eval(s))) input_processed.to_csv('cord_titles_abstracts_conclusions.csv') input_excluded.to_csv('cord_titles_abstracts_conclusions_excluded.csv') title_data = input_processed.loc[input_processed.section == 'title', :] abstract_data = input_processed.loc[input_processed.section == 'abstract', :] conclusion_data = input_processed.loc[(input_processed.section != 'title') & (input_processed.section != 'abstract'), :] title_data_final = pd.DataFrame(columns=['cord_uid', 'sentence', 'w2vVector']) for cord_uid in title_data.cord_uid.unique(): title = ' '.join(title_data.loc[title_data.cord_uid == cord_uid, 'sentence']) w2vVector = np.mean(list(title_data.loc[title_data.cord_uid == cord_uid, 'w2vVector']), axis=0) title_data_final = title_data_final.append({'cord_uid': cord_uid, 'sentence': title, 'w2vVector': w2vVector}, ignore_index=True) len(title_data_final)
code
33106099/cell_17
[ "text_plain_output_1.png" ]
from sklearn.metrics.pairwise import cosine_similarity import ast import numpy as np # linear algebra import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) import re input_data_path = '/kaggle/input/' input_data_file = 'filt_merged_text_vector_df_200430.csv' input_data = pd.read_csv(input_data_path + input_data_file) rep = {'text': '', 'cite_spans': '', 'ref_spans': '', 'section': '', 'Abstract': '', 'bioRxiv preprint': '', 'medRxiv preprint': '', 'doi:': ''} rep = dict(((re.escape(k), v) for k, v in rep.items())) pattern = re.compile('|'.join(rep.keys())) sentences_temp = [pattern.sub(lambda m: rep[re.escape(m.group(0))], s) for s in input_data.sentence] pattern = re.compile('.*[A-Za-z].*') sentences_to_keep = [bool(re.search(pattern, s)) & (len(s.split(' ')) > 2) for s in sentences_temp] input_processed = input_data.loc[sentences_to_keep, :] sentences_to_drop = [not i for i in sentences_to_keep] input_excluded = input_data.loc[sentences_to_drop, :] input_processed.w2vVector = [re.sub(',+', ',', ','.join(w.replace('\n', '').split(' '))) for w in input_processed.w2vVector] input_processed.w2vVector = [re.sub('\\[,', '', w) for w in input_processed.w2vVector] input_processed.w2vVector = [re.sub(',\\]', '', w) for w in input_processed.w2vVector] input_processed.w2vVector = [re.sub('\\[', '', w) for w in input_processed.w2vVector] input_processed.w2vVector = [re.sub('\\]', '', w) for w in input_processed.w2vVector] input_processed.w2vVector = input_processed.w2vVector.apply(lambda s: list(ast.literal_eval(s))) input_processed.to_csv('cord_titles_abstracts_conclusions.csv') input_excluded.to_csv('cord_titles_abstracts_conclusions_excluded.csv') title_data = input_processed.loc[input_processed.section == 'title', :] abstract_data = input_processed.loc[input_processed.section == 'abstract', :] conclusion_data = input_processed.loc[(input_processed.section != 'title') & (input_processed.section != 'abstract'), :] title_data_final = pd.DataFrame(columns=['cord_uid', 'sentence', 'w2vVector']) for cord_uid in title_data.cord_uid.unique(): title = ' '.join(title_data.loc[title_data.cord_uid == cord_uid, 'sentence']) w2vVector = np.mean(list(title_data.loc[title_data.cord_uid == cord_uid, 'w2vVector']), axis=0) title_data_final = title_data_final.append({'cord_uid': cord_uid, 'sentence': title, 'w2vVector': w2vVector}, ignore_index=True) cosine_similarity(title_data_final.w2vVector[0].reshape(1, -1), title_data_final.w2vVector[1].reshape(1, -1))[0][0]
code
33106099/cell_10
[ "application_vnd.jupyter.stderr_output_1.png" ]
import ast import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) import re input_data_path = '/kaggle/input/' input_data_file = 'filt_merged_text_vector_df_200430.csv' input_data = pd.read_csv(input_data_path + input_data_file) rep = {'text': '', 'cite_spans': '', 'ref_spans': '', 'section': '', 'Abstract': '', 'bioRxiv preprint': '', 'medRxiv preprint': '', 'doi:': ''} rep = dict(((re.escape(k), v) for k, v in rep.items())) pattern = re.compile('|'.join(rep.keys())) sentences_temp = [pattern.sub(lambda m: rep[re.escape(m.group(0))], s) for s in input_data.sentence] pattern = re.compile('.*[A-Za-z].*') sentences_to_keep = [bool(re.search(pattern, s)) & (len(s.split(' ')) > 2) for s in sentences_temp] input_processed = input_data.loc[sentences_to_keep, :] sentences_to_drop = [not i for i in sentences_to_keep] input_excluded = input_data.loc[sentences_to_drop, :] input_processed.w2vVector = [re.sub(',+', ',', ','.join(w.replace('\n', '').split(' '))) for w in input_processed.w2vVector] input_processed.w2vVector = [re.sub('\\[,', '', w) for w in input_processed.w2vVector] input_processed.w2vVector = [re.sub(',\\]', '', w) for w in input_processed.w2vVector] input_processed.w2vVector = [re.sub('\\[', '', w) for w in input_processed.w2vVector] input_processed.w2vVector = [re.sub('\\]', '', w) for w in input_processed.w2vVector] input_processed.w2vVector = input_processed.w2vVector.apply(lambda s: list(ast.literal_eval(s))) input_processed.to_csv('cord_titles_abstracts_conclusions.csv') input_excluded.to_csv('cord_titles_abstracts_conclusions_excluded.csv') input_processed
code
33106099/cell_12
[ "text_html_output_1.png" ]
import ast import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) import re input_data_path = '/kaggle/input/' input_data_file = 'filt_merged_text_vector_df_200430.csv' input_data = pd.read_csv(input_data_path + input_data_file) rep = {'text': '', 'cite_spans': '', 'ref_spans': '', 'section': '', 'Abstract': '', 'bioRxiv preprint': '', 'medRxiv preprint': '', 'doi:': ''} rep = dict(((re.escape(k), v) for k, v in rep.items())) pattern = re.compile('|'.join(rep.keys())) sentences_temp = [pattern.sub(lambda m: rep[re.escape(m.group(0))], s) for s in input_data.sentence] pattern = re.compile('.*[A-Za-z].*') sentences_to_keep = [bool(re.search(pattern, s)) & (len(s.split(' ')) > 2) for s in sentences_temp] input_processed = input_data.loc[sentences_to_keep, :] sentences_to_drop = [not i for i in sentences_to_keep] input_excluded = input_data.loc[sentences_to_drop, :] input_processed.w2vVector = [re.sub(',+', ',', ','.join(w.replace('\n', '').split(' '))) for w in input_processed.w2vVector] input_processed.w2vVector = [re.sub('\\[,', '', w) for w in input_processed.w2vVector] input_processed.w2vVector = [re.sub(',\\]', '', w) for w in input_processed.w2vVector] input_processed.w2vVector = [re.sub('\\[', '', w) for w in input_processed.w2vVector] input_processed.w2vVector = [re.sub('\\]', '', w) for w in input_processed.w2vVector] input_processed.w2vVector = input_processed.w2vVector.apply(lambda s: list(ast.literal_eval(s))) input_processed.to_csv('cord_titles_abstracts_conclusions.csv') input_excluded.to_csv('cord_titles_abstracts_conclusions_excluded.csv') title_data = input_processed.loc[input_processed.section == 'title', :] abstract_data = input_processed.loc[input_processed.section == 'abstract', :] conclusion_data = input_processed.loc[(input_processed.section != 'title') & (input_processed.section != 'abstract'), :] print('Number of papers:', input_data.cord_uid.nunique()) print('Number of papers with title:', title_data.cord_uid.nunique()) print('Number of papers with abstract:', abstract_data.cord_uid.nunique()) print('Number of papers with conclusion:', conclusion_data.cord_uid.nunique())
code
129023760/cell_21
[ "image_output_1.png" ]
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) import warnings import pandas as pd, numpy as np, seaborn as sns, matplotlib.pyplot as plt import warnings warnings.simplefilter('ignore') pd.set_option('display.max_columns', None) df = pd.read_csv('/kaggle/input/titanic/train.csv') df = df.drop('Cabin', axis=1) df = df.dropna(subset=['Age', 'Embarked']) bins = [0, 13, 18, 40, 50, 60, 70, 120] labels = ['0-12', '13-18', '18-39', '40-49', '50-59', '60-70', '70+'] df['agegroup'] = pd.cut(df.Age, bins, labels=labels, include_lowest=True) df = df.drop('Age', axis=1) colstodrop = ['PassengerId', 'Name', 'Ticket'] df = df.drop(colstodrop, axis=1) dummies = pd.get_dummies(df[['Sex', 'Embarked', 'agegroup']]) df = pd.concat([df, dummies], axis=1) df = df.drop(['Sex', 'Embarked', 'agegroup'], axis=1) low = df['Fare'].quantile(0.05) high = df['Fare'].quantile(0.95) df = df[(df['Fare'] >= low) & (df['Fare'] <= high)] print(df.Fare.describe([0.1, 0.25, 0.5, 0.75, 0.9, 0.95, 0.99]))
code
129023760/cell_25
[ "text_html_output_1.png", "text_plain_output_1.png" ]
from sklearn.ensemble import RandomForestClassifier from sklearn.ensemble import RandomForestClassifier rfc = RandomForestClassifier(n_estimators=100, random_state=42) rfc.fit(X_train, y_train)
code
129023760/cell_29
[ "text_plain_output_1.png" ]
from sklearn.linear_model import LogisticRegression from sklearn.metrics import accuracy_score from sklearn.linear_model import LogisticRegression logreg = LogisticRegression() logreg.fit(X_train, y_train) y_predlogit = logreg.predict(X_test) accuracylogit = accuracy_score(y_test, y_predlogit) print('Accuracy:', round(accuracylogit * 100, 2), '%')
code
129023760/cell_11
[ "application_vnd.jupyter.stderr_output_1.png" ]
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) import warnings import pandas as pd, numpy as np, seaborn as sns, matplotlib.pyplot as plt import warnings warnings.simplefilter('ignore') pd.set_option('display.max_columns', None) df = pd.read_csv('/kaggle/input/titanic/train.csv') df = df.drop('Cabin', axis=1) df = df.dropna(subset=['Age', 'Embarked']) bins = [0, 13, 18, 40, 50, 60, 70, 120] labels = ['0-12', '13-18', '18-39', '40-49', '50-59', '60-70', '70+'] df['agegroup'] = pd.cut(df.Age, bins, labels=labels, include_lowest=True) df = df.drop('Age', axis=1) colstodrop = ['PassengerId', 'Name', 'Ticket'] df = df.drop(colstodrop, axis=1) print('Shape of the data: ', 'Rows: ', df.shape[0], 'Columns: ', df.shape[1]) print('\nInfo:') print(df.info()) print('\nSummary Statistics:')
code
129023760/cell_1
[ "text_plain_output_1.png" ]
import os import numpy as np import pandas as pd import os for dirname, _, filenames in os.walk('/kaggle/input'): for filename in filenames: print(os.path.join(dirname, filename))
code
129023760/cell_7
[ "text_plain_output_1.png" ]
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) import warnings import pandas as pd, numpy as np, seaborn as sns, matplotlib.pyplot as plt import warnings warnings.simplefilter('ignore') pd.set_option('display.max_columns', None) df = pd.read_csv('/kaggle/input/titanic/train.csv') print('Shape of the data: ', 'Rows: ', df.shape[0], 'Columns: ', df.shape[1]) print('\nInfo:') print(df.info()) print('\nSummary Statistics:') df.describe()
code
129023760/cell_18
[ "text_plain_output_1.png" ]
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) import warnings import pandas as pd, numpy as np, seaborn as sns, matplotlib.pyplot as plt import warnings warnings.simplefilter('ignore') pd.set_option('display.max_columns', None) df = pd.read_csv('/kaggle/input/titanic/train.csv') df = df.drop('Cabin', axis=1) df = df.dropna(subset=['Age', 'Embarked']) bins = [0, 13, 18, 40, 50, 60, 70, 120] labels = ['0-12', '13-18', '18-39', '40-49', '50-59', '60-70', '70+'] df['agegroup'] = pd.cut(df.Age, bins, labels=labels, include_lowest=True) df = df.drop('Age', axis=1) colstodrop = ['PassengerId', 'Name', 'Ticket'] df = df.drop(colstodrop, axis=1) dummies = pd.get_dummies(df[['Sex', 'Embarked', 'agegroup']]) df = pd.concat([df, dummies], axis=1) df = df.drop(['Sex', 'Embarked', 'agegroup'], axis=1) sns.histplot(df['Fare']) print(df.Fare.describe([0.1, 0.25, 0.5, 0.75, 0.9, 0.95, 0.99]))
code
129023760/cell_16
[ "text_html_output_1.png", "text_plain_output_1.png" ]
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) import warnings import pandas as pd, numpy as np, seaborn as sns, matplotlib.pyplot as plt import warnings warnings.simplefilter('ignore') pd.set_option('display.max_columns', None) df = pd.read_csv('/kaggle/input/titanic/train.csv') df = df.drop('Cabin', axis=1) df = df.dropna(subset=['Age', 'Embarked']) bins = [0, 13, 18, 40, 50, 60, 70, 120] labels = ['0-12', '13-18', '18-39', '40-49', '50-59', '60-70', '70+'] df['agegroup'] = pd.cut(df.Age, bins, labels=labels, include_lowest=True) df = df.drop('Age', axis=1) colstodrop = ['PassengerId', 'Name', 'Ticket'] df = df.drop(colstodrop, axis=1) dummies = pd.get_dummies(df[['Sex', 'Embarked', 'agegroup']]) df = pd.concat([df, dummies], axis=1) df = df.drop(['Sex', 'Embarked', 'agegroup'], axis=1) print(df.shape) df.head()
code
129023760/cell_3
[ "text_html_output_1.png" ]
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) import warnings import pandas as pd, numpy as np, seaborn as sns, matplotlib.pyplot as plt import warnings warnings.simplefilter('ignore') pd.set_option('display.max_columns', None)
code
129023760/cell_14
[ "text_html_output_1.png" ]
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) import warnings import pandas as pd, numpy as np, seaborn as sns, matplotlib.pyplot as plt import warnings warnings.simplefilter('ignore') pd.set_option('display.max_columns', None) df = pd.read_csv('/kaggle/input/titanic/train.csv') df = df.drop('Cabin', axis=1) df = df.dropna(subset=['Age', 'Embarked']) bins = [0, 13, 18, 40, 50, 60, 70, 120] labels = ['0-12', '13-18', '18-39', '40-49', '50-59', '60-70', '70+'] df['agegroup'] = pd.cut(df.Age, bins, labels=labels, include_lowest=True) df = df.drop('Age', axis=1) colstodrop = ['PassengerId', 'Name', 'Ticket'] df = df.drop(colstodrop, axis=1) plt.figure(figsize=(14, 10)) plt.subplot(331) sns.countplot(data=df, x='Pclass', hue='Survived') plt.subplot(332) sns.countplot(data=df, x='Sex', hue='Survived') plt.subplot(333) sns.countplot(data=df, x='SibSp', hue='Survived') plt.subplot(334) sns.countplot(data=df, x='Parch', hue='Survived') plt.subplot(335) sns.countplot(data=df, x='Embarked', hue='Survived') plt.subplot(336) sns.countplot(data=df, x='agegroup', hue='Survived') plt.show()
code
129023760/cell_27
[ "text_plain_output_1.png", "image_output_1.png" ]
from sklearn.ensemble import RandomForestClassifier from sklearn.metrics import accuracy_score from sklearn.ensemble import RandomForestClassifier rfc = RandomForestClassifier(n_estimators=100, random_state=42) rfc.fit(X_train, y_train) y_pred = rfc.predict(X_test) from sklearn.metrics import accuracy_score accuracy = accuracy_score(y_test, y_pred) print('Accuracy:', round(accuracy * 100, 2), '%')
code
129023760/cell_5
[ "text_plain_output_1.png" ]
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) import warnings import pandas as pd, numpy as np, seaborn as sns, matplotlib.pyplot as plt import warnings warnings.simplefilter('ignore') pd.set_option('display.max_columns', None) df = pd.read_csv('/kaggle/input/titanic/train.csv') df.head()
code
104121998/cell_21
[ "text_plain_output_1.png" ]
import numpy as np import numpy as np # linear algebra np.array([1, 2, 3, 4]) a = np.array([1, 2, 3, 4]) b = np.array([0, 0.5, 1, 1.5, 2]) np.array([1, 2, 3, 4], dtype=float) np.array([1, 2, 3, 4], dtype=int)
code
104121998/cell_13
[ "text_plain_output_1.png" ]
import numpy as np import numpy as np # linear algebra np.array([1, 2, 3, 4]) a = np.array([1, 2, 3, 4]) b = np.array([0, 0.5, 1, 1.5, 2]) (b[0], b[2], b[-1])
code
104121998/cell_9
[ "text_plain_output_1.png" ]
import numpy as np import numpy as np # linear algebra np.array([1, 2, 3, 4]) a = np.array([1, 2, 3, 4]) b = np.array([0, 0.5, 1, 1.5, 2]) a[1:3]
code
104121998/cell_25
[ "text_plain_output_1.png" ]
import numpy as np import numpy as np # linear algebra np.array([1, 2, 3, 4]) a = np.array([1, 2, 3, 4]) b = np.array([0, 0.5, 1, 1.5, 2]) np.array([1, 2, 3, 4], dtype=float) np.array([1, 2, 3, 4], dtype=int) c = np.array(['a', 'b', 'c']) d = np.array([{'a': 1}]) d
code
104121998/cell_56
[ "text_plain_output_1.png" ]
import numpy as np import numpy as np # linear algebra np.array([1, 2, 3, 4]) a = np.array([1, 2, 3, 4]) b = np.array([0, 0.5, 1, 1.5, 2]) np.array([1, 2, 3, 4], dtype=float) np.array([1, 2, 3, 4], dtype=int) c = np.array(['a', 'b', 'c']) d = np.array([{'a': 1}]) A = np.array([[1, 2, 3], [4, 5, 6]]) A.shape A.ndim B = np.array([[[12, 11, 10], [9, 8, 7]], [[6, 5, 4], [3, 2, 1]]]) C = np.array([[[12, 11, 10], [9, 8, 7]], [[6, 5, 4]]]) A = np.array([[1, 2, 3], [4, 5, 6], [7, 8, 9]]) A
code
104121998/cell_34
[ "text_plain_output_1.png" ]
import numpy as np import numpy as np # linear algebra np.array([1, 2, 3, 4]) a = np.array([1, 2, 3, 4]) b = np.array([0, 0.5, 1, 1.5, 2]) np.array([1, 2, 3, 4], dtype=float) np.array([1, 2, 3, 4], dtype=int) c = np.array(['a', 'b', 'c']) d = np.array([{'a': 1}]) A = np.array([[1, 2, 3], [4, 5, 6]]) B = np.array([[[12, 11, 10], [9, 8, 7]], [[6, 5, 4], [3, 2, 1]]]) B.shape B.ndim
code
104121998/cell_23
[ "text_plain_output_1.png" ]
import numpy as np import numpy as np # linear algebra np.array([1, 2, 3, 4]) a = np.array([1, 2, 3, 4]) b = np.array([0, 0.5, 1, 1.5, 2]) np.array([1, 2, 3, 4], dtype=float) np.array([1, 2, 3, 4], dtype=int) c = np.array(['a', 'b', 'c']) c.dtype
code
104121998/cell_30
[ "text_plain_output_1.png" ]
import numpy as np import numpy as np # linear algebra np.array([1, 2, 3, 4]) a = np.array([1, 2, 3, 4]) b = np.array([0, 0.5, 1, 1.5, 2]) np.array([1, 2, 3, 4], dtype=float) np.array([1, 2, 3, 4], dtype=int) c = np.array(['a', 'b', 'c']) d = np.array([{'a': 1}]) A = np.array([[1, 2, 3], [4, 5, 6]]) A.shape A.ndim
code
104121998/cell_33
[ "text_plain_output_1.png" ]
import numpy as np import numpy as np # linear algebra np.array([1, 2, 3, 4]) a = np.array([1, 2, 3, 4]) b = np.array([0, 0.5, 1, 1.5, 2]) np.array([1, 2, 3, 4], dtype=float) np.array([1, 2, 3, 4], dtype=int) c = np.array(['a', 'b', 'c']) d = np.array([{'a': 1}]) A = np.array([[1, 2, 3], [4, 5, 6]]) B = np.array([[[12, 11, 10], [9, 8, 7]], [[6, 5, 4], [3, 2, 1]]]) B.shape
code
104121998/cell_44
[ "text_plain_output_1.png" ]
import numpy as np import numpy as np # linear algebra np.array([1, 2, 3, 4]) a = np.array([1, 2, 3, 4]) b = np.array([0, 0.5, 1, 1.5, 2]) np.array([1, 2, 3, 4], dtype=float) np.array([1, 2, 3, 4], dtype=int) c = np.array(['a', 'b', 'c']) d = np.array([{'a': 1}]) A = np.array([[1, 2, 3], [4, 5, 6]]) A.shape A.ndim B = np.array([[[12, 11, 10], [9, 8, 7]], [[6, 5, 4], [3, 2, 1]]]) C = np.array([[[12, 11, 10], [9, 8, 7]], [[6, 5, 4]]]) A = np.array([[1, 2, 3], [4, 5, 6], [7, 8, 9]]) A[1]
code
104121998/cell_20
[ "text_plain_output_1.png" ]
import numpy as np import numpy as np # linear algebra np.array([1, 2, 3, 4]) a = np.array([1, 2, 3, 4]) b = np.array([0, 0.5, 1, 1.5, 2]) np.array([1, 2, 3, 4], dtype=float)
code
104121998/cell_40
[ "text_plain_output_1.png" ]
import numpy as np import numpy as np # linear algebra np.array([1, 2, 3, 4]) a = np.array([1, 2, 3, 4]) b = np.array([0, 0.5, 1, 1.5, 2]) np.array([1, 2, 3, 4], dtype=float) np.array([1, 2, 3, 4], dtype=int) c = np.array(['a', 'b', 'c']) d = np.array([{'a': 1}]) A = np.array([[1, 2, 3], [4, 5, 6]]) B = np.array([[[12, 11, 10], [9, 8, 7]], [[6, 5, 4], [3, 2, 1]]]) C = np.array([[[12, 11, 10], [9, 8, 7]], [[6, 5, 4]]]) C.dtype C.shape C.size
code
104121998/cell_29
[ "text_plain_output_1.png" ]
import numpy as np import numpy as np # linear algebra np.array([1, 2, 3, 4]) a = np.array([1, 2, 3, 4]) b = np.array([0, 0.5, 1, 1.5, 2]) np.array([1, 2, 3, 4], dtype=float) np.array([1, 2, 3, 4], dtype=int) c = np.array(['a', 'b', 'c']) d = np.array([{'a': 1}]) A = np.array([[1, 2, 3], [4, 5, 6]]) A.shape
code
104121998/cell_39
[ "text_plain_output_1.png" ]
import numpy as np import numpy as np # linear algebra np.array([1, 2, 3, 4]) a = np.array([1, 2, 3, 4]) b = np.array([0, 0.5, 1, 1.5, 2]) np.array([1, 2, 3, 4], dtype=float) np.array([1, 2, 3, 4], dtype=int) c = np.array(['a', 'b', 'c']) d = np.array([{'a': 1}]) A = np.array([[1, 2, 3], [4, 5, 6]]) B = np.array([[[12, 11, 10], [9, 8, 7]], [[6, 5, 4], [3, 2, 1]]]) C = np.array([[[12, 11, 10], [9, 8, 7]], [[6, 5, 4]]]) C.dtype C.shape
code
104121998/cell_26
[ "text_plain_output_1.png" ]
import numpy as np import numpy as np # linear algebra np.array([1, 2, 3, 4]) a = np.array([1, 2, 3, 4]) b = np.array([0, 0.5, 1, 1.5, 2]) np.array([1, 2, 3, 4], dtype=float) np.array([1, 2, 3, 4], dtype=int) c = np.array(['a', 'b', 'c']) d = np.array([{'a': 1}]) d.dtype
code
104121998/cell_65
[ "text_plain_output_1.png" ]
import numpy as np import numpy as np # linear algebra np.array([1, 2, 3, 4]) a = np.array([1, 2, 3, 4]) b = np.array([0, 0.5, 1, 1.5, 2]) np.array([1, 2, 3, 4], dtype=float) np.array([1, 2, 3, 4], dtype=int) c = np.array(['a', 'b', 'c']) d = np.array([{'a': 1}]) A = np.array([[1, 2, 3], [4, 5, 6]]) A.shape A.ndim B = np.array([[[12, 11, 10], [9, 8, 7]], [[6, 5, 4], [3, 2, 1]]]) C = np.array([[[12, 11, 10], [9, 8, 7]], [[6, 5, 4]]]) A = np.array([[1, 2, 3], [4, 5, 6], [7, 8, 9]]) A[1] = np.array([10, 10, 10]) a = np.array([1, 2, 3, 4]) A = np.array([[1, 2, 3], [4, 5, 6], [7, 8, 9]]) A.sum() A.mean()
code
104121998/cell_48
[ "text_plain_output_1.png" ]
import numpy as np import numpy as np # linear algebra np.array([1, 2, 3, 4]) a = np.array([1, 2, 3, 4]) b = np.array([0, 0.5, 1, 1.5, 2]) np.array([1, 2, 3, 4], dtype=float) np.array([1, 2, 3, 4], dtype=int) c = np.array(['a', 'b', 'c']) d = np.array([{'a': 1}]) A = np.array([[1, 2, 3], [4, 5, 6]]) A.shape A.ndim B = np.array([[[12, 11, 10], [9, 8, 7]], [[6, 5, 4], [3, 2, 1]]]) C = np.array([[[12, 11, 10], [9, 8, 7]], [[6, 5, 4]]]) A = np.array([[1, 2, 3], [4, 5, 6], [7, 8, 9]]) A[0:2]
code
104121998/cell_41
[ "application_vnd.jupyter.stderr_output_1.png" ]
import numpy as np import numpy as np # linear algebra np.array([1, 2, 3, 4]) a = np.array([1, 2, 3, 4]) b = np.array([0, 0.5, 1, 1.5, 2]) np.array([1, 2, 3, 4], dtype=float) np.array([1, 2, 3, 4], dtype=int) c = np.array(['a', 'b', 'c']) d = np.array([{'a': 1}]) A = np.array([[1, 2, 3], [4, 5, 6]]) B = np.array([[[12, 11, 10], [9, 8, 7]], [[6, 5, 4], [3, 2, 1]]]) C = np.array([[[12, 11, 10], [9, 8, 7]], [[6, 5, 4]]]) C.dtype C.shape C.size type(C[0])
code
104121998/cell_61
[ "text_plain_output_1.png" ]
import numpy as np import numpy as np # linear algebra np.array([1, 2, 3, 4]) a = np.array([1, 2, 3, 4]) b = np.array([0, 0.5, 1, 1.5, 2]) a.dtype np.array([1, 2, 3, 4], dtype=float) np.array([1, 2, 3, 4], dtype=int) c = np.array(['a', 'b', 'c']) d = np.array([{'a': 1}]) A = np.array([[1, 2, 3], [4, 5, 6]]) A.shape A.ndim B = np.array([[[12, 11, 10], [9, 8, 7]], [[6, 5, 4], [3, 2, 1]]]) C = np.array([[[12, 11, 10], [9, 8, 7]], [[6, 5, 4]]]) A = np.array([[1, 2, 3], [4, 5, 6], [7, 8, 9]]) A[1] = np.array([10, 10, 10]) a = np.array([1, 2, 3, 4]) a.sum() a.mean() a.std()
code
104121998/cell_54
[ "text_plain_output_1.png" ]
import numpy as np import numpy as np # linear algebra np.array([1, 2, 3, 4]) a = np.array([1, 2, 3, 4]) b = np.array([0, 0.5, 1, 1.5, 2]) np.array([1, 2, 3, 4], dtype=float) np.array([1, 2, 3, 4], dtype=int) c = np.array(['a', 'b', 'c']) d = np.array([{'a': 1}]) A = np.array([[1, 2, 3], [4, 5, 6]]) A.shape A.ndim B = np.array([[[12, 11, 10], [9, 8, 7]], [[6, 5, 4], [3, 2, 1]]]) C = np.array([[[12, 11, 10], [9, 8, 7]], [[6, 5, 4]]]) A = np.array([[1, 2, 3], [4, 5, 6], [7, 8, 9]]) A
code
104121998/cell_67
[ "text_plain_output_1.png" ]
import numpy as np import numpy as np # linear algebra np.array([1, 2, 3, 4]) a = np.array([1, 2, 3, 4]) b = np.array([0, 0.5, 1, 1.5, 2]) np.array([1, 2, 3, 4], dtype=float) np.array([1, 2, 3, 4], dtype=int) c = np.array(['a', 'b', 'c']) d = np.array([{'a': 1}]) A = np.array([[1, 2, 3], [4, 5, 6]]) A.shape A.ndim B = np.array([[[12, 11, 10], [9, 8, 7]], [[6, 5, 4], [3, 2, 1]]]) C = np.array([[[12, 11, 10], [9, 8, 7]], [[6, 5, 4]]]) A = np.array([[1, 2, 3], [4, 5, 6], [7, 8, 9]]) A[1] = np.array([10, 10, 10]) a = np.array([1, 2, 3, 4]) A = np.array([[1, 2, 3], [4, 5, 6], [7, 8, 9]]) A.sum() A.mean() A.std() A.sum(axis=0)
code
104121998/cell_11
[ "text_plain_output_1.png" ]
import numpy as np import numpy as np # linear algebra np.array([1, 2, 3, 4]) a = np.array([1, 2, 3, 4]) b = np.array([0, 0.5, 1, 1.5, 2]) a[::2]
code
104121998/cell_60
[ "text_plain_output_1.png" ]
import numpy as np import numpy as np # linear algebra np.array([1, 2, 3, 4]) a = np.array([1, 2, 3, 4]) b = np.array([0, 0.5, 1, 1.5, 2]) a.dtype np.array([1, 2, 3, 4], dtype=float) np.array([1, 2, 3, 4], dtype=int) c = np.array(['a', 'b', 'c']) d = np.array([{'a': 1}]) A = np.array([[1, 2, 3], [4, 5, 6]]) A.shape A.ndim B = np.array([[[12, 11, 10], [9, 8, 7]], [[6, 5, 4], [3, 2, 1]]]) C = np.array([[[12, 11, 10], [9, 8, 7]], [[6, 5, 4]]]) A = np.array([[1, 2, 3], [4, 5, 6], [7, 8, 9]]) A[1] = np.array([10, 10, 10]) a = np.array([1, 2, 3, 4]) a.sum() a.mean()
code
104121998/cell_19
[ "text_plain_output_1.png" ]
import numpy as np import numpy as np # linear algebra np.array([1, 2, 3, 4]) a = np.array([1, 2, 3, 4]) b = np.array([0, 0.5, 1, 1.5, 2]) b.dtype
code
104121998/cell_69
[ "text_plain_output_1.png" ]
import numpy as np import numpy as np # linear algebra np.array([1, 2, 3, 4]) a = np.array([1, 2, 3, 4]) b = np.array([0, 0.5, 1, 1.5, 2]) np.array([1, 2, 3, 4], dtype=float) np.array([1, 2, 3, 4], dtype=int) c = np.array(['a', 'b', 'c']) d = np.array([{'a': 1}]) A = np.array([[1, 2, 3], [4, 5, 6]]) A.shape A.ndim B = np.array([[[12, 11, 10], [9, 8, 7]], [[6, 5, 4], [3, 2, 1]]]) C = np.array([[[12, 11, 10], [9, 8, 7]], [[6, 5, 4]]]) A = np.array([[1, 2, 3], [4, 5, 6], [7, 8, 9]]) A[1] = np.array([10, 10, 10]) a = np.array([1, 2, 3, 4]) A = np.array([[1, 2, 3], [4, 5, 6], [7, 8, 9]]) A.sum() A.mean() A.std() A.sum(axis=0) A.sum(axis=1) A.mean(axis=0)
code
104121998/cell_50
[ "text_plain_output_1.png" ]
import numpy as np import numpy as np # linear algebra np.array([1, 2, 3, 4]) a = np.array([1, 2, 3, 4]) b = np.array([0, 0.5, 1, 1.5, 2]) np.array([1, 2, 3, 4], dtype=float) np.array([1, 2, 3, 4], dtype=int) c = np.array(['a', 'b', 'c']) d = np.array([{'a': 1}]) A = np.array([[1, 2, 3], [4, 5, 6]]) A.shape A.ndim B = np.array([[[12, 11, 10], [9, 8, 7]], [[6, 5, 4], [3, 2, 1]]]) C = np.array([[[12, 11, 10], [9, 8, 7]], [[6, 5, 4]]]) A = np.array([[1, 2, 3], [4, 5, 6], [7, 8, 9]]) A[:2, :2]
code
104121998/cell_52
[ "text_plain_output_1.png" ]
import numpy as np import numpy as np # linear algebra np.array([1, 2, 3, 4]) a = np.array([1, 2, 3, 4]) b = np.array([0, 0.5, 1, 1.5, 2]) np.array([1, 2, 3, 4], dtype=float) np.array([1, 2, 3, 4], dtype=int) c = np.array(['a', 'b', 'c']) d = np.array([{'a': 1}]) A = np.array([[1, 2, 3], [4, 5, 6]]) A.shape A.ndim B = np.array([[[12, 11, 10], [9, 8, 7]], [[6, 5, 4], [3, 2, 1]]]) C = np.array([[[12, 11, 10], [9, 8, 7]], [[6, 5, 4]]]) A = np.array([[1, 2, 3], [4, 5, 6], [7, 8, 9]]) A
code
104121998/cell_64
[ "text_plain_output_1.png" ]
import numpy as np import numpy as np # linear algebra np.array([1, 2, 3, 4]) a = np.array([1, 2, 3, 4]) b = np.array([0, 0.5, 1, 1.5, 2]) np.array([1, 2, 3, 4], dtype=float) np.array([1, 2, 3, 4], dtype=int) c = np.array(['a', 'b', 'c']) d = np.array([{'a': 1}]) A = np.array([[1, 2, 3], [4, 5, 6]]) A.shape A.ndim B = np.array([[[12, 11, 10], [9, 8, 7]], [[6, 5, 4], [3, 2, 1]]]) C = np.array([[[12, 11, 10], [9, 8, 7]], [[6, 5, 4]]]) A = np.array([[1, 2, 3], [4, 5, 6], [7, 8, 9]]) A[1] = np.array([10, 10, 10]) a = np.array([1, 2, 3, 4]) A = np.array([[1, 2, 3], [4, 5, 6], [7, 8, 9]]) A.sum()
code
104121998/cell_7
[ "text_plain_output_1.png" ]
import numpy as np import numpy as np # linear algebra np.array([1, 2, 3, 4]) a = np.array([1, 2, 3, 4]) b = np.array([0, 0.5, 1, 1.5, 2]) (a[0], a[1])
code
104121998/cell_45
[ "text_plain_output_1.png" ]
import numpy as np import numpy as np # linear algebra np.array([1, 2, 3, 4]) a = np.array([1, 2, 3, 4]) b = np.array([0, 0.5, 1, 1.5, 2]) np.array([1, 2, 3, 4], dtype=float) np.array([1, 2, 3, 4], dtype=int) c = np.array(['a', 'b', 'c']) d = np.array([{'a': 1}]) A = np.array([[1, 2, 3], [4, 5, 6]]) A.shape A.ndim B = np.array([[[12, 11, 10], [9, 8, 7]], [[6, 5, 4], [3, 2, 1]]]) C = np.array([[[12, 11, 10], [9, 8, 7]], [[6, 5, 4]]]) A = np.array([[1, 2, 3], [4, 5, 6], [7, 8, 9]]) A[1][0]
code
104121998/cell_49
[ "text_plain_output_1.png" ]
import numpy as np import numpy as np # linear algebra np.array([1, 2, 3, 4]) a = np.array([1, 2, 3, 4]) b = np.array([0, 0.5, 1, 1.5, 2]) np.array([1, 2, 3, 4], dtype=float) np.array([1, 2, 3, 4], dtype=int) c = np.array(['a', 'b', 'c']) d = np.array([{'a': 1}]) A = np.array([[1, 2, 3], [4, 5, 6]]) A.shape A.ndim B = np.array([[[12, 11, 10], [9, 8, 7]], [[6, 5, 4], [3, 2, 1]]]) C = np.array([[[12, 11, 10], [9, 8, 7]], [[6, 5, 4]]]) A = np.array([[1, 2, 3], [4, 5, 6], [7, 8, 9]]) A[:, :2]
code
104121998/cell_18
[ "text_plain_output_1.png" ]
import numpy as np import numpy as np # linear algebra np.array([1, 2, 3, 4]) a = np.array([1, 2, 3, 4]) b = np.array([0, 0.5, 1, 1.5, 2]) b
code
104121998/cell_32
[ "text_plain_output_1.png" ]
import numpy as np import numpy as np # linear algebra np.array([1, 2, 3, 4]) a = np.array([1, 2, 3, 4]) b = np.array([0, 0.5, 1, 1.5, 2]) np.array([1, 2, 3, 4], dtype=float) np.array([1, 2, 3, 4], dtype=int) c = np.array(['a', 'b', 'c']) d = np.array([{'a': 1}]) A = np.array([[1, 2, 3], [4, 5, 6]]) B = np.array([[[12, 11, 10], [9, 8, 7]], [[6, 5, 4], [3, 2, 1]]]) B
code
104121998/cell_51
[ "text_plain_output_1.png" ]
import numpy as np import numpy as np # linear algebra np.array([1, 2, 3, 4]) a = np.array([1, 2, 3, 4]) b = np.array([0, 0.5, 1, 1.5, 2]) np.array([1, 2, 3, 4], dtype=float) np.array([1, 2, 3, 4], dtype=int) c = np.array(['a', 'b', 'c']) d = np.array([{'a': 1}]) A = np.array([[1, 2, 3], [4, 5, 6]]) A.shape A.ndim B = np.array([[[12, 11, 10], [9, 8, 7]], [[6, 5, 4], [3, 2, 1]]]) C = np.array([[[12, 11, 10], [9, 8, 7]], [[6, 5, 4]]]) A = np.array([[1, 2, 3], [4, 5, 6], [7, 8, 9]]) A[:2, 2:]
code
104121998/cell_68
[ "text_plain_output_1.png" ]
import numpy as np import numpy as np # linear algebra np.array([1, 2, 3, 4]) a = np.array([1, 2, 3, 4]) b = np.array([0, 0.5, 1, 1.5, 2]) np.array([1, 2, 3, 4], dtype=float) np.array([1, 2, 3, 4], dtype=int) c = np.array(['a', 'b', 'c']) d = np.array([{'a': 1}]) A = np.array([[1, 2, 3], [4, 5, 6]]) A.shape A.ndim B = np.array([[[12, 11, 10], [9, 8, 7]], [[6, 5, 4], [3, 2, 1]]]) C = np.array([[[12, 11, 10], [9, 8, 7]], [[6, 5, 4]]]) A = np.array([[1, 2, 3], [4, 5, 6], [7, 8, 9]]) A[1] = np.array([10, 10, 10]) a = np.array([1, 2, 3, 4]) A = np.array([[1, 2, 3], [4, 5, 6], [7, 8, 9]]) A.sum() A.mean() A.std() A.sum(axis=0) A.sum(axis=1)
code
104121998/cell_62
[ "text_plain_output_1.png" ]
import numpy as np import numpy as np # linear algebra np.array([1, 2, 3, 4]) a = np.array([1, 2, 3, 4]) b = np.array([0, 0.5, 1, 1.5, 2]) a.dtype np.array([1, 2, 3, 4], dtype=float) np.array([1, 2, 3, 4], dtype=int) c = np.array(['a', 'b', 'c']) d = np.array([{'a': 1}]) A = np.array([[1, 2, 3], [4, 5, 6]]) A.shape A.ndim B = np.array([[[12, 11, 10], [9, 8, 7]], [[6, 5, 4], [3, 2, 1]]]) C = np.array([[[12, 11, 10], [9, 8, 7]], [[6, 5, 4]]]) A = np.array([[1, 2, 3], [4, 5, 6], [7, 8, 9]]) A[1] = np.array([10, 10, 10]) a = np.array([1, 2, 3, 4]) a.sum() a.mean() a.std() a.var()
code
104121998/cell_59
[ "text_plain_output_1.png" ]
import numpy as np import numpy as np # linear algebra np.array([1, 2, 3, 4]) a = np.array([1, 2, 3, 4]) b = np.array([0, 0.5, 1, 1.5, 2]) a.dtype np.array([1, 2, 3, 4], dtype=float) np.array([1, 2, 3, 4], dtype=int) c = np.array(['a', 'b', 'c']) d = np.array([{'a': 1}]) A = np.array([[1, 2, 3], [4, 5, 6]]) A.shape A.ndim B = np.array([[[12, 11, 10], [9, 8, 7]], [[6, 5, 4], [3, 2, 1]]]) C = np.array([[[12, 11, 10], [9, 8, 7]], [[6, 5, 4]]]) A = np.array([[1, 2, 3], [4, 5, 6], [7, 8, 9]]) A[1] = np.array([10, 10, 10]) a = np.array([1, 2, 3, 4]) a.sum()
code
104121998/cell_8
[ "text_plain_output_1.png" ]
import numpy as np import numpy as np # linear algebra np.array([1, 2, 3, 4]) a = np.array([1, 2, 3, 4]) b = np.array([0, 0.5, 1, 1.5, 2]) a[0:]
code
104121998/cell_16
[ "text_plain_output_1.png" ]
import numpy as np import numpy as np # linear algebra np.array([1, 2, 3, 4]) a = np.array([1, 2, 3, 4]) b = np.array([0, 0.5, 1, 1.5, 2]) a
code
104121998/cell_38
[ "text_plain_output_1.png" ]
import numpy as np import numpy as np # linear algebra np.array([1, 2, 3, 4]) a = np.array([1, 2, 3, 4]) b = np.array([0, 0.5, 1, 1.5, 2]) np.array([1, 2, 3, 4], dtype=float) np.array([1, 2, 3, 4], dtype=int) c = np.array(['a', 'b', 'c']) d = np.array([{'a': 1}]) A = np.array([[1, 2, 3], [4, 5, 6]]) B = np.array([[[12, 11, 10], [9, 8, 7]], [[6, 5, 4], [3, 2, 1]]]) C = np.array([[[12, 11, 10], [9, 8, 7]], [[6, 5, 4]]]) C.dtype
code
104121998/cell_47
[ "text_plain_output_1.png" ]
import numpy as np import numpy as np # linear algebra np.array([1, 2, 3, 4]) a = np.array([1, 2, 3, 4]) b = np.array([0, 0.5, 1, 1.5, 2]) np.array([1, 2, 3, 4], dtype=float) np.array([1, 2, 3, 4], dtype=int) c = np.array(['a', 'b', 'c']) d = np.array([{'a': 1}]) A = np.array([[1, 2, 3], [4, 5, 6]]) A.shape A.ndim B = np.array([[[12, 11, 10], [9, 8, 7]], [[6, 5, 4], [3, 2, 1]]]) C = np.array([[[12, 11, 10], [9, 8, 7]], [[6, 5, 4]]]) A = np.array([[1, 2, 3], [4, 5, 6], [7, 8, 9]]) A[1, 0]
code
104121998/cell_66
[ "text_plain_output_1.png" ]
import numpy as np import numpy as np # linear algebra np.array([1, 2, 3, 4]) a = np.array([1, 2, 3, 4]) b = np.array([0, 0.5, 1, 1.5, 2]) np.array([1, 2, 3, 4], dtype=float) np.array([1, 2, 3, 4], dtype=int) c = np.array(['a', 'b', 'c']) d = np.array([{'a': 1}]) A = np.array([[1, 2, 3], [4, 5, 6]]) A.shape A.ndim B = np.array([[[12, 11, 10], [9, 8, 7]], [[6, 5, 4], [3, 2, 1]]]) C = np.array([[[12, 11, 10], [9, 8, 7]], [[6, 5, 4]]]) A = np.array([[1, 2, 3], [4, 5, 6], [7, 8, 9]]) A[1] = np.array([10, 10, 10]) a = np.array([1, 2, 3, 4]) A = np.array([[1, 2, 3], [4, 5, 6], [7, 8, 9]]) A.sum() A.mean() A.std()
code
104121998/cell_17
[ "text_plain_output_1.png" ]
import numpy as np import numpy as np # linear algebra np.array([1, 2, 3, 4]) a = np.array([1, 2, 3, 4]) b = np.array([0, 0.5, 1, 1.5, 2]) a.dtype
code
104121998/cell_35
[ "text_plain_output_1.png" ]
import numpy as np import numpy as np # linear algebra np.array([1, 2, 3, 4]) a = np.array([1, 2, 3, 4]) b = np.array([0, 0.5, 1, 1.5, 2]) np.array([1, 2, 3, 4], dtype=float) np.array([1, 2, 3, 4], dtype=int) c = np.array(['a', 'b', 'c']) d = np.array([{'a': 1}]) A = np.array([[1, 2, 3], [4, 5, 6]]) B = np.array([[[12, 11, 10], [9, 8, 7]], [[6, 5, 4], [3, 2, 1]]]) B.shape B.ndim B.size
code
104121998/cell_14
[ "text_plain_output_1.png" ]
import numpy as np import numpy as np # linear algebra np.array([1, 2, 3, 4]) a = np.array([1, 2, 3, 4]) b = np.array([0, 0.5, 1, 1.5, 2]) b[[0, 2, -1]]
code
104121998/cell_10
[ "text_plain_output_1.png" ]
import numpy as np import numpy as np # linear algebra np.array([1, 2, 3, 4]) a = np.array([1, 2, 3, 4]) b = np.array([0, 0.5, 1, 1.5, 2]) a[1:-1]
code
104121998/cell_37
[ "text_plain_output_1.png" ]
import numpy as np import numpy as np # linear algebra np.array([1, 2, 3, 4]) a = np.array([1, 2, 3, 4]) b = np.array([0, 0.5, 1, 1.5, 2]) np.array([1, 2, 3, 4], dtype=float) np.array([1, 2, 3, 4], dtype=int) c = np.array(['a', 'b', 'c']) d = np.array([{'a': 1}]) A = np.array([[1, 2, 3], [4, 5, 6]]) B = np.array([[[12, 11, 10], [9, 8, 7]], [[6, 5, 4], [3, 2, 1]]]) C = np.array([[[12, 11, 10], [9, 8, 7]], [[6, 5, 4]]])
code
104121998/cell_12
[ "text_plain_output_1.png" ]
import numpy as np import numpy as np # linear algebra np.array([1, 2, 3, 4]) a = np.array([1, 2, 3, 4]) b = np.array([0, 0.5, 1, 1.5, 2]) b
code
104121998/cell_5
[ "text_plain_output_1.png" ]
import numpy as np import numpy as np # linear algebra np.array([1, 2, 3, 4])
code
106202407/cell_13
[ "text_plain_output_1.png" ]
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) train = pd.read_csv('/kaggle/input/spaceship-titanic/train.csv') test = pd.read_csv('/kaggle/input/spaceship-titanic/test.csv') (train.shape, test.shape) train_X = train.copy() train_Y = train_X.pop('Transported') def displayAllCateFeatInfo(df): pass def splitCabinForNewFeatures(df): my_df = df.copy() split_cabin_df = my_df.Cabin.str.split('/', expand=True) my_df['CabinDeck'] = split_cabin_df[0] my_df['CabinSide'] = split_cabin_df[2] my_df.pop('Cabin') return my_df def splitNameToGenerateFamilyName(df): my_df = df.copy() split_name_df = my_df.Name.str.split(' ', expand=True) my_df['FamilyName'] = split_name_df[1] my_df.pop('Name') return my_df def calcUserConsumption(df): my_df = df.copy() consume_feats = ['RoomService', 'FoodCourt', 'ShoppingMall', 'Spa', 'VRDeck'] my_df['Consumption'] = my_df.loc[:, consume_feats].sum(axis=1) my_df = my_df.drop(columns=consume_feats) return my_df def transformFeatures(df): my_df = df.copy() my_df = splitCabinForNewFeatures(my_df) my_df = splitNameToGenerateFamilyName(my_df) my_df = calcUserConsumption(my_df) return my_df transformed_train_X = transformFeatures(train_X) transformed_train_X.info()
code
106202407/cell_9
[ "text_plain_output_1.png" ]
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) train = pd.read_csv('/kaggle/input/spaceship-titanic/train.csv') test = pd.read_csv('/kaggle/input/spaceship-titanic/test.csv') (train.shape, test.shape) train_X = train.copy() train_Y = train_X.pop('Transported') def displayAllCateFeatInfo(df): pass def splitCabinForNewFeatures(df): my_df = df.copy() split_cabin_df = my_df.Cabin.str.split('/', expand=True) my_df['CabinDeck'] = split_cabin_df[0] my_df['CabinSide'] = split_cabin_df[2] my_df.pop('Cabin') return my_df displayAllCateFeatInfo(splitCabinForNewFeatures(train_X))
code
106202407/cell_4
[ "text_html_output_1.png" ]
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) train = pd.read_csv('/kaggle/input/spaceship-titanic/train.csv') test = pd.read_csv('/kaggle/input/spaceship-titanic/test.csv') (train.shape, test.shape) train.head()
code
106202407/cell_11
[ "text_html_output_1.png" ]
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) train = pd.read_csv('/kaggle/input/spaceship-titanic/train.csv') test = pd.read_csv('/kaggle/input/spaceship-titanic/test.csv') (train.shape, test.shape) train_X = train.copy() train_Y = train_X.pop('Transported') def displayAllCateFeatInfo(df): pass def splitCabinForNewFeatures(df): my_df = df.copy() split_cabin_df = my_df.Cabin.str.split('/', expand=True) my_df['CabinDeck'] = split_cabin_df[0] my_df['CabinSide'] = split_cabin_df[2] my_df.pop('Cabin') return my_df def splitNameToGenerateFamilyName(df): my_df = df.copy() split_name_df = my_df.Name.str.split(' ', expand=True) my_df['FamilyName'] = split_name_df[1] my_df.pop('Name') return my_df def calcUserConsumption(df): my_df = df.copy() consume_feats = ['RoomService', 'FoodCourt', 'ShoppingMall', 'Spa', 'VRDeck'] my_df['Consumption'] = my_df.loc[:, consume_feats].sum(axis=1) my_df = my_df.drop(columns=consume_feats) return my_df calcUserConsumption(train_X).head()
code
106202407/cell_1
[ "text_plain_output_1.png" ]
import os import numpy as np import pandas as pd import os for dirname, _, filenames in os.walk('/kaggle/input'): for filename in filenames: print(os.path.join(dirname, filename))
code
106202407/cell_7
[ "text_plain_output_1.png" ]
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) train = pd.read_csv('/kaggle/input/spaceship-titanic/train.csv') test = pd.read_csv('/kaggle/input/spaceship-titanic/test.csv') (train.shape, test.shape) train_X = train.copy() train_Y = train_X.pop('Transported') train_X.info()
code
106202407/cell_8
[ "text_plain_output_1.png" ]
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) train = pd.read_csv('/kaggle/input/spaceship-titanic/train.csv') test = pd.read_csv('/kaggle/input/spaceship-titanic/test.csv') (train.shape, test.shape) train_X = train.copy() train_Y = train_X.pop('Transported') def displayAllCateFeatInfo(df): for column in df.columns: if df[column].dtype == 'object': print('column: {} -> {}, unique values: {}'.format(column, df[column].unique(), df[column].nunique())) displayAllCateFeatInfo(train_X)
code
106202407/cell_15
[ "text_plain_output_1.png" ]
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) train = pd.read_csv('/kaggle/input/spaceship-titanic/train.csv') test = pd.read_csv('/kaggle/input/spaceship-titanic/test.csv') (train.shape, test.shape) train_X = train.copy() train_Y = train_X.pop('Transported') def displayAllCateFeatInfo(df): pass def splitCabinForNewFeatures(df): my_df = df.copy() split_cabin_df = my_df.Cabin.str.split('/', expand=True) my_df['CabinDeck'] = split_cabin_df[0] my_df['CabinSide'] = split_cabin_df[2] my_df.pop('Cabin') return my_df def splitNameToGenerateFamilyName(df): my_df = df.copy() split_name_df = my_df.Name.str.split(' ', expand=True) my_df['FamilyName'] = split_name_df[1] my_df.pop('Name') return my_df def calcUserConsumption(df): my_df = df.copy() consume_feats = ['RoomService', 'FoodCourt', 'ShoppingMall', 'Spa', 'VRDeck'] my_df['Consumption'] = my_df.loc[:, consume_feats].sum(axis=1) my_df = my_df.drop(columns=consume_feats) return my_df def transformFeatures(df): my_df = df.copy() my_df = splitCabinForNewFeatures(my_df) my_df = splitNameToGenerateFamilyName(my_df) my_df = calcUserConsumption(my_df) return my_df transformed_train_X = transformFeatures(train_X) def getNullInfo(df): for column in df.columns: print('column: {} -> {}'.format(column, df[column].isnull().sum())) getNullInfo(transformed_train_X)
code