path
stringlengths 13
17
| screenshot_names
sequencelengths 1
873
| code
stringlengths 0
40.4k
| cell_type
stringclasses 1
value |
---|---|---|---|
128048094/cell_20 | [
"text_plain_output_1.png"
] | from sklearn.linear_model import LogisticRegression
model_logistic = LogisticRegression()
model_logistic.fit(X_train, y_train)
print('Training accuracy: ', model_logistic.score(X_train, y_train))
print('Testing accuracy: ', model_logistic.score(X_test, y_test)) | code |
128048094/cell_40 | [
"application_vnd.jupyter.stderr_output_2.png",
"text_plain_output_1.png"
] | from sklearn.linear_model import LogisticRegression
from sklearn.metrics import confusion_matrix, ConfusionMatrixDisplay, classification_report
from sklearn.neighbors import KNeighborsClassifier
from sklearn.svm import LinearSVC
from sklearn.tree import DecisionTreeClassifier
import matplotlib.pyplot as plt
import numpy as np
import pandas as pd
data = pd.read_csv('/kaggle/input/loan-data-set/loan_data_set.csv')
data = data.dropna()
data_encoded = pd.get_dummies(data, columns=['Property_Area'])
model_knn = KNeighborsClassifier()
model_knn.fit(X_train, y_train)
model_svm = LinearSVC()
model_svm.fit(X_train, y_train)
model_tree = DecisionTreeClassifier()
model_tree.fit(X_train, y_train)
model_logistic = LogisticRegression()
model_logistic.fit(X_train, y_train)
from sklearn.metrics import confusion_matrix, ConfusionMatrixDisplay, classification_report
cm_knn = confusion_matrix(y_test, model_knn.predict(X_test))
cm_tree = confusion_matrix(y_test, model_tree.predict(X_test))
cm_svm = confusion_matrix(y_test, model_svm.predict(X_test))
cm_logistic = confusion_matrix(y_test, model_logistic.predict(X_test))
y_pred = model_logistic.predict(X_test)
arr = np.array(y_pred)
compare_pre_act = pd.DataFrame(arr, columns=['Prediction'])
y_true = y_test.values
flatten_y_true = y_true.flatten()
df_pred = pd.DataFrame({'y_true': flatten_y_true, 'y_pred': y_pred})
df_pred
model_knn = KNeighborsClassifier()
model_knn.fit(X_train, y_train)
print(classification_report(y_test, model_knn.predict(X_test)))
cm_knn = confusion_matrix(y_test, model_knn.predict(X_test))
ConfusionMatrixDisplay(cm_knn).plot()
plt.show() | code |
128048094/cell_26 | [
"text_plain_output_1.png",
"image_output_1.png"
] | from sklearn.metrics import confusion_matrix, ConfusionMatrixDisplay, classification_report
from sklearn.neighbors import KNeighborsClassifier
from sklearn.tree import DecisionTreeClassifier
import matplotlib.pyplot as plt
model_knn = KNeighborsClassifier()
model_knn.fit(X_train, y_train)
model_tree = DecisionTreeClassifier()
model_tree.fit(X_train, y_train)
from sklearn.metrics import confusion_matrix, ConfusionMatrixDisplay, classification_report
cm_knn = confusion_matrix(y_test, model_knn.predict(X_test))
print(classification_report(y_test, model_tree.predict(X_test)))
cm_tree = confusion_matrix(y_test, model_tree.predict(X_test))
ConfusionMatrixDisplay(cm_tree).plot()
plt.show() | code |
128048094/cell_41 | [
"text_plain_output_1.png",
"image_output_1.png"
] | from sklearn.linear_model import LogisticRegression
from sklearn.metrics import confusion_matrix, ConfusionMatrixDisplay, classification_report
from sklearn.neighbors import KNeighborsClassifier
from sklearn.svm import LinearSVC
from sklearn.tree import DecisionTreeClassifier
import matplotlib.pyplot as plt
import numpy as np
import pandas as pd
data = pd.read_csv('/kaggle/input/loan-data-set/loan_data_set.csv')
data = data.dropna()
data_encoded = pd.get_dummies(data, columns=['Property_Area'])
model_knn = KNeighborsClassifier()
model_knn.fit(X_train, y_train)
model_svm = LinearSVC()
model_svm.fit(X_train, y_train)
model_tree = DecisionTreeClassifier()
model_tree.fit(X_train, y_train)
model_logistic = LogisticRegression()
model_logistic.fit(X_train, y_train)
from sklearn.metrics import confusion_matrix, ConfusionMatrixDisplay, classification_report
cm_knn = confusion_matrix(y_test, model_knn.predict(X_test))
cm_tree = confusion_matrix(y_test, model_tree.predict(X_test))
cm_svm = confusion_matrix(y_test, model_svm.predict(X_test))
cm_logistic = confusion_matrix(y_test, model_logistic.predict(X_test))
y_pred = model_logistic.predict(X_test)
arr = np.array(y_pred)
compare_pre_act = pd.DataFrame(arr, columns=['Prediction'])
y_true = y_test.values
flatten_y_true = y_true.flatten()
df_pred = pd.DataFrame({'y_true': flatten_y_true, 'y_pred': y_pred})
df_pred
model_knn = KNeighborsClassifier()
model_knn.fit(X_train, y_train)
model_tree = DecisionTreeClassifier()
model_tree.fit(X_train, y_train)
cm_knn = confusion_matrix(y_test, model_knn.predict(X_test))
print(classification_report(y_test, model_tree.predict(X_test)))
cm_tree = confusion_matrix(y_test, model_tree.predict(X_test))
ConfusionMatrixDisplay(cm_tree).plot()
plt.show() | code |
128048094/cell_11 | [
"text_html_output_1.png"
] | import pandas as pd
data = pd.read_csv('/kaggle/input/loan-data-set/loan_data_set.csv')
data = data.dropna()
data_encoded = pd.get_dummies(data, columns=['Property_Area'])
data_encoded.head(10) | code |
128048094/cell_18 | [
"application_vnd.jupyter.stderr_output_2.png",
"text_plain_output_1.png"
] | from sklearn.tree import DecisionTreeClassifier
model_tree = DecisionTreeClassifier()
model_tree.fit(X_train, y_train)
print('Training accuracy: ', model_tree.score(X_train, y_train))
print('Testing accuracy: ', model_tree.score(X_test, y_test)) | code |
128048094/cell_28 | [
"text_plain_output_1.png",
"image_output_1.png"
] | from sklearn.linear_model import LogisticRegression
from sklearn.metrics import confusion_matrix, ConfusionMatrixDisplay, classification_report
from sklearn.neighbors import KNeighborsClassifier
from sklearn.svm import LinearSVC
from sklearn.tree import DecisionTreeClassifier
import matplotlib.pyplot as plt
model_knn = KNeighborsClassifier()
model_knn.fit(X_train, y_train)
model_svm = LinearSVC()
model_svm.fit(X_train, y_train)
model_tree = DecisionTreeClassifier()
model_tree.fit(X_train, y_train)
model_logistic = LogisticRegression()
model_logistic.fit(X_train, y_train)
from sklearn.metrics import confusion_matrix, ConfusionMatrixDisplay, classification_report
cm_knn = confusion_matrix(y_test, model_knn.predict(X_test))
cm_tree = confusion_matrix(y_test, model_tree.predict(X_test))
cm_svm = confusion_matrix(y_test, model_svm.predict(X_test))
print(classification_report(y_test, model_logistic.predict(X_test)))
cm_logistic = confusion_matrix(y_test, model_logistic.predict(X_test))
ConfusionMatrixDisplay(cm_logistic).plot()
plt.show() | code |
128048094/cell_16 | [
"text_html_output_1.png"
] | from sklearn.neighbors import KNeighborsClassifier
model_knn = KNeighborsClassifier()
model_knn.fit(X_train, y_train)
print('Training accuracy: ', model_knn.score(X_train, y_train))
print('Testing accuracy: ', model_knn.score(X_test, y_test)) | code |
128048094/cell_38 | [
"text_plain_output_1.png"
] | from sklearn.linear_model import LogisticRegression
from sklearn.metrics import confusion_matrix, ConfusionMatrixDisplay, classification_report
from sklearn.neighbors import KNeighborsClassifier
from sklearn.svm import LinearSVC
from sklearn.tree import DecisionTreeClassifier
import matplotlib.pyplot as plt
import numpy as np
import pandas as pd
data = pd.read_csv('/kaggle/input/loan-data-set/loan_data_set.csv')
data = data.dropna()
data_encoded = pd.get_dummies(data, columns=['Property_Area'])
model_knn = KNeighborsClassifier()
model_knn.fit(X_train, y_train)
model_svm = LinearSVC()
model_svm.fit(X_train, y_train)
model_tree = DecisionTreeClassifier()
model_tree.fit(X_train, y_train)
model_logistic = LogisticRegression()
model_logistic.fit(X_train, y_train)
from sklearn.metrics import confusion_matrix, ConfusionMatrixDisplay, classification_report
cm_knn = confusion_matrix(y_test, model_knn.predict(X_test))
cm_tree = confusion_matrix(y_test, model_tree.predict(X_test))
cm_svm = confusion_matrix(y_test, model_svm.predict(X_test))
cm_logistic = confusion_matrix(y_test, model_logistic.predict(X_test))
y_pred = model_logistic.predict(X_test)
arr = np.array(y_pred)
compare_pre_act = pd.DataFrame(arr, columns=['Prediction'])
y_true = y_test.values
flatten_y_true = y_true.flatten()
df_pred = pd.DataFrame({'y_true': flatten_y_true, 'y_pred': y_pred})
df_pred
model_logistic = LogisticRegression()
model_logistic.fit(X_train, y_train)
print('Training accuracy: ', model_logistic.score(X_train, y_train))
print('Testing accuracy: ', model_logistic.score(X_test, y_test)) | code |
128048094/cell_17 | [
"application_vnd.jupyter.stderr_output_2.png",
"text_plain_output_1.png"
] | from sklearn.svm import LinearSVC
model_svm = LinearSVC()
model_svm.fit(X_train, y_train)
print('Training accuracy: ', model_svm.score(X_train, y_train))
print('Testing accuracy: ', model_svm.score(X_test, y_test)) | code |
128048094/cell_35 | [
"text_html_output_1.png"
] | from sklearn.linear_model import LogisticRegression
from sklearn.metrics import confusion_matrix, ConfusionMatrixDisplay, classification_report
from sklearn.neighbors import KNeighborsClassifier
from sklearn.svm import LinearSVC
from sklearn.tree import DecisionTreeClassifier
import matplotlib.pyplot as plt
import numpy as np
import pandas as pd
data = pd.read_csv('/kaggle/input/loan-data-set/loan_data_set.csv')
data = data.dropna()
data_encoded = pd.get_dummies(data, columns=['Property_Area'])
model_knn = KNeighborsClassifier()
model_knn.fit(X_train, y_train)
model_svm = LinearSVC()
model_svm.fit(X_train, y_train)
model_tree = DecisionTreeClassifier()
model_tree.fit(X_train, y_train)
model_logistic = LogisticRegression()
model_logistic.fit(X_train, y_train)
from sklearn.metrics import confusion_matrix, ConfusionMatrixDisplay, classification_report
cm_knn = confusion_matrix(y_test, model_knn.predict(X_test))
cm_tree = confusion_matrix(y_test, model_tree.predict(X_test))
cm_svm = confusion_matrix(y_test, model_svm.predict(X_test))
cm_logistic = confusion_matrix(y_test, model_logistic.predict(X_test))
y_pred = model_logistic.predict(X_test)
arr = np.array(y_pred)
compare_pre_act = pd.DataFrame(arr, columns=['Prediction'])
y_true = y_test.values
flatten_y_true = y_true.flatten()
df_pred = pd.DataFrame({'y_true': flatten_y_true, 'y_pred': y_pred})
df_pred
model_svm = LinearSVC()
model_svm.fit(X_train, y_train)
print('Training accuracy: ', model_svm.score(X_train, y_train))
print('Testing accuracy: ', model_svm.score(X_test, y_test)) | code |
128048094/cell_43 | [
"text_plain_output_1.png",
"image_output_1.png"
] | from sklearn.linear_model import LogisticRegression
from sklearn.metrics import confusion_matrix, ConfusionMatrixDisplay, classification_report
from sklearn.neighbors import KNeighborsClassifier
from sklearn.svm import LinearSVC
from sklearn.tree import DecisionTreeClassifier
import matplotlib.pyplot as plt
import numpy as np
import pandas as pd
data = pd.read_csv('/kaggle/input/loan-data-set/loan_data_set.csv')
data = data.dropna()
data_encoded = pd.get_dummies(data, columns=['Property_Area'])
model_knn = KNeighborsClassifier()
model_knn.fit(X_train, y_train)
model_svm = LinearSVC()
model_svm.fit(X_train, y_train)
model_tree = DecisionTreeClassifier()
model_tree.fit(X_train, y_train)
model_logistic = LogisticRegression()
model_logistic.fit(X_train, y_train)
from sklearn.metrics import confusion_matrix, ConfusionMatrixDisplay, classification_report
cm_knn = confusion_matrix(y_test, model_knn.predict(X_test))
cm_tree = confusion_matrix(y_test, model_tree.predict(X_test))
cm_svm = confusion_matrix(y_test, model_svm.predict(X_test))
cm_logistic = confusion_matrix(y_test, model_logistic.predict(X_test))
y_pred = model_logistic.predict(X_test)
arr = np.array(y_pred)
compare_pre_act = pd.DataFrame(arr, columns=['Prediction'])
y_true = y_test.values
flatten_y_true = y_true.flatten()
df_pred = pd.DataFrame({'y_true': flatten_y_true, 'y_pred': y_pred})
df_pred
model_svm = LinearSVC()
model_svm.fit(X_train, y_train)
model_knn = KNeighborsClassifier()
model_knn.fit(X_train, y_train)
model_tree = DecisionTreeClassifier()
model_tree.fit(X_train, y_train)
model_logistic = LogisticRegression()
model_logistic.fit(X_train, y_train)
cm_knn = confusion_matrix(y_test, model_knn.predict(X_test))
cm_tree = confusion_matrix(y_test, model_tree.predict(X_test))
cm_logistic = confusion_matrix(y_test, model_logistic.predict(X_test))
print(classification_report(y_test, model_svm.predict(X_test)))
cm_svm = confusion_matrix(y_test, model_svm.predict(X_test))
ConfusionMatrixDisplay(cm_svm).plot()
plt.show() | code |
128048094/cell_31 | [
"text_plain_output_1.png",
"image_output_1.png"
] | from sklearn.linear_model import LogisticRegression
from sklearn.metrics import confusion_matrix, ConfusionMatrixDisplay, classification_report
from sklearn.neighbors import KNeighborsClassifier
from sklearn.svm import LinearSVC
from sklearn.tree import DecisionTreeClassifier
import matplotlib.pyplot as plt
import numpy as np
import pandas as pd
data = pd.read_csv('/kaggle/input/loan-data-set/loan_data_set.csv')
data = data.dropna()
data_encoded = pd.get_dummies(data, columns=['Property_Area'])
model_knn = KNeighborsClassifier()
model_knn.fit(X_train, y_train)
model_svm = LinearSVC()
model_svm.fit(X_train, y_train)
model_tree = DecisionTreeClassifier()
model_tree.fit(X_train, y_train)
model_logistic = LogisticRegression()
model_logistic.fit(X_train, y_train)
from sklearn.metrics import confusion_matrix, ConfusionMatrixDisplay, classification_report
cm_knn = confusion_matrix(y_test, model_knn.predict(X_test))
cm_tree = confusion_matrix(y_test, model_tree.predict(X_test))
cm_svm = confusion_matrix(y_test, model_svm.predict(X_test))
cm_logistic = confusion_matrix(y_test, model_logistic.predict(X_test))
y_pred = model_logistic.predict(X_test)
print(y_pred)
arr = np.array(y_pred)
compare_pre_act = pd.DataFrame(arr, columns=['Prediction'])
y_true = y_test.values
flatten_y_true = y_true.flatten()
df_pred = pd.DataFrame({'y_true': flatten_y_true, 'y_pred': y_pred})
df_pred | code |
128048094/cell_24 | [
"application_vnd.jupyter.stderr_output_3.png",
"text_plain_output_2.png",
"application_vnd.jupyter.stderr_output_1.png"
] | from sklearn.metrics import confusion_matrix, ConfusionMatrixDisplay, classification_report
from sklearn.neighbors import KNeighborsClassifier
import matplotlib.pyplot as plt
model_knn = KNeighborsClassifier()
model_knn.fit(X_train, y_train)
from sklearn.metrics import confusion_matrix, ConfusionMatrixDisplay, classification_report
print(classification_report(y_test, model_knn.predict(X_test)))
cm_knn = confusion_matrix(y_test, model_knn.predict(X_test))
ConfusionMatrixDisplay(cm_knn).plot()
plt.show() | code |
128048094/cell_27 | [
"text_plain_output_1.png",
"image_output_1.png"
] | from sklearn.metrics import confusion_matrix, ConfusionMatrixDisplay, classification_report
from sklearn.neighbors import KNeighborsClassifier
from sklearn.svm import LinearSVC
from sklearn.tree import DecisionTreeClassifier
import matplotlib.pyplot as plt
model_knn = KNeighborsClassifier()
model_knn.fit(X_train, y_train)
model_svm = LinearSVC()
model_svm.fit(X_train, y_train)
model_tree = DecisionTreeClassifier()
model_tree.fit(X_train, y_train)
from sklearn.metrics import confusion_matrix, ConfusionMatrixDisplay, classification_report
cm_knn = confusion_matrix(y_test, model_knn.predict(X_test))
cm_tree = confusion_matrix(y_test, model_tree.predict(X_test))
print(classification_report(y_test, model_svm.predict(X_test)))
cm_svm = confusion_matrix(y_test, model_svm.predict(X_test))
ConfusionMatrixDisplay(cm_svm).plot()
plt.show() | code |
128048094/cell_37 | [
"application_vnd.jupyter.stderr_output_2.png",
"text_plain_output_1.png"
] | from sklearn.linear_model import LogisticRegression
from sklearn.metrics import confusion_matrix, ConfusionMatrixDisplay, classification_report
from sklearn.neighbors import KNeighborsClassifier
from sklearn.svm import LinearSVC
from sklearn.tree import DecisionTreeClassifier
import matplotlib.pyplot as plt
import numpy as np
import pandas as pd
data = pd.read_csv('/kaggle/input/loan-data-set/loan_data_set.csv')
data = data.dropna()
data_encoded = pd.get_dummies(data, columns=['Property_Area'])
model_knn = KNeighborsClassifier()
model_knn.fit(X_train, y_train)
model_svm = LinearSVC()
model_svm.fit(X_train, y_train)
model_tree = DecisionTreeClassifier()
model_tree.fit(X_train, y_train)
model_logistic = LogisticRegression()
model_logistic.fit(X_train, y_train)
from sklearn.metrics import confusion_matrix, ConfusionMatrixDisplay, classification_report
cm_knn = confusion_matrix(y_test, model_knn.predict(X_test))
cm_tree = confusion_matrix(y_test, model_tree.predict(X_test))
cm_svm = confusion_matrix(y_test, model_svm.predict(X_test))
cm_logistic = confusion_matrix(y_test, model_logistic.predict(X_test))
y_pred = model_logistic.predict(X_test)
arr = np.array(y_pred)
compare_pre_act = pd.DataFrame(arr, columns=['Prediction'])
y_true = y_test.values
flatten_y_true = y_true.flatten()
df_pred = pd.DataFrame({'y_true': flatten_y_true, 'y_pred': y_pred})
df_pred
model_tree = DecisionTreeClassifier()
model_tree.fit(X_train, y_train)
print('Training accuracy: ', model_tree.score(X_train, y_train))
print('Testing accuracy: ', model_tree.score(X_test, y_test)) | code |
128048094/cell_5 | [
"text_plain_output_1.png",
"image_output_1.png"
] | import pandas as pd
data = pd.read_csv('/kaggle/input/loan-data-set/loan_data_set.csv')
data.head(10) | code |
128048094/cell_36 | [
"application_vnd.jupyter.stderr_output_2.png",
"text_plain_output_1.png"
] | from sklearn.linear_model import LogisticRegression
from sklearn.metrics import confusion_matrix, ConfusionMatrixDisplay, classification_report
from sklearn.neighbors import KNeighborsClassifier
from sklearn.svm import LinearSVC
from sklearn.tree import DecisionTreeClassifier
import matplotlib.pyplot as plt
import numpy as np
import pandas as pd
data = pd.read_csv('/kaggle/input/loan-data-set/loan_data_set.csv')
data = data.dropna()
data_encoded = pd.get_dummies(data, columns=['Property_Area'])
model_knn = KNeighborsClassifier()
model_knn.fit(X_train, y_train)
model_svm = LinearSVC()
model_svm.fit(X_train, y_train)
model_tree = DecisionTreeClassifier()
model_tree.fit(X_train, y_train)
model_logistic = LogisticRegression()
model_logistic.fit(X_train, y_train)
from sklearn.metrics import confusion_matrix, ConfusionMatrixDisplay, classification_report
cm_knn = confusion_matrix(y_test, model_knn.predict(X_test))
cm_tree = confusion_matrix(y_test, model_tree.predict(X_test))
cm_svm = confusion_matrix(y_test, model_svm.predict(X_test))
cm_logistic = confusion_matrix(y_test, model_logistic.predict(X_test))
y_pred = model_logistic.predict(X_test)
arr = np.array(y_pred)
compare_pre_act = pd.DataFrame(arr, columns=['Prediction'])
y_true = y_test.values
flatten_y_true = y_true.flatten()
df_pred = pd.DataFrame({'y_true': flatten_y_true, 'y_pred': y_pred})
df_pred
model_knn = KNeighborsClassifier()
model_knn.fit(X_train, y_train)
print('Training accuracy: ', model_knn.score(X_train, y_train))
print('Testing accuracy: ', model_knn.score(X_test, y_test)) | code |
17098311/cell_13 | [
"text_html_output_1.png",
"text_plain_output_1.png"
] | from sklearn.metrics import mean_squared_error,mean_absolute_error
import numpy as np # linear algebra
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv)
def Model_Comparision_Train_Test(AllModels, x_train, y_train, x_test, y_test):
return_df = pd.DataFrame(columns=['Model', 'MSE', 'RMSE', 'MAE'])
for myModel in AllModels:
myModel.fit(x_train, y_train)
y_pred_train = myModel.predict(x_train)
mse_train, rmse_train, mae_train = extract_metrics_from_predicted(y_train, y_pred_train)
y_pred_test = myModel.predict(x_test)
mse_test, rmse_test, mae_test = extract_metrics_from_predicted(y_test, y_pred_test)
summary = pd.DataFrame([[type(myModel).__name__, ''.join([str(round(mse_test, 3)), '(', str(round(mse_train, 3)), ')']), ''.join([str(round(rmse_test, 3)), '(', str(round(rmse_train, 3)), ')']), ''.join([str(round(mae_test, 3)), '(', str(round(mae_test, 3)), ')'])]], columns=['Model', 'MSE', 'RMSE', 'MAE'])
return_df = pd.concat([return_df, summary], axis=0)
return_df.set_index('Model', inplace=True)
return return_df
def extract_metrics_from_predicted(y_true, y_pred):
from sklearn.metrics import mean_squared_error, mean_absolute_error
mse = mean_squared_error(y_true, y_pred)
rmse = np.sqrt(mse)
mae = mean_absolute_error(y_true, y_pred)
return (mse, rmse, mae)
train_data = pd.read_csv('../input/Train-1555063579947.csv')
test_data = pd.read_csv('../input/Test-1555063594850.csv')
train_data.dtypes
test_data.dtypes
train_data = train_data.drop(['HadGrievance', 'Promoted_InLast3Yrs', 'EmployeeID'], axis=1)
x = train_data['ProjectsWorkedOn'].str.split(',', expand=True)
x.columns = ('p1', 'p2', 'p3', 'p4', 'p5', 'p6', 'p7')
y = train_data['DOJ'].str.split('-', expand=True)
y.columns = ('YEAR', 'MONTH', 'DAY')
train_data = pd.concat([train_data, x, y], axis=1)
train_data = train_data.drop(['DOJ', 'ProjectsWorkedOn'], axis=1)
train_data.head() | code |
17098311/cell_4 | [
"text_html_output_1.png"
] | from sklearn.metrics import mean_squared_error,mean_absolute_error
import numpy as np # linear algebra
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv)
def Model_Comparision_Train_Test(AllModels, x_train, y_train, x_test, y_test):
return_df = pd.DataFrame(columns=['Model', 'MSE', 'RMSE', 'MAE'])
for myModel in AllModels:
myModel.fit(x_train, y_train)
y_pred_train = myModel.predict(x_train)
mse_train, rmse_train, mae_train = extract_metrics_from_predicted(y_train, y_pred_train)
y_pred_test = myModel.predict(x_test)
mse_test, rmse_test, mae_test = extract_metrics_from_predicted(y_test, y_pred_test)
summary = pd.DataFrame([[type(myModel).__name__, ''.join([str(round(mse_test, 3)), '(', str(round(mse_train, 3)), ')']), ''.join([str(round(rmse_test, 3)), '(', str(round(rmse_train, 3)), ')']), ''.join([str(round(mae_test, 3)), '(', str(round(mae_test, 3)), ')'])]], columns=['Model', 'MSE', 'RMSE', 'MAE'])
return_df = pd.concat([return_df, summary], axis=0)
return_df.set_index('Model', inplace=True)
return return_df
def extract_metrics_from_predicted(y_true, y_pred):
from sklearn.metrics import mean_squared_error, mean_absolute_error
mse = mean_squared_error(y_true, y_pred)
rmse = np.sqrt(mse)
mae = mean_absolute_error(y_true, y_pred)
return (mse, rmse, mae)
train_data = pd.read_csv('../input/Train-1555063579947.csv')
test_data = pd.read_csv('../input/Test-1555063594850.csv')
train_data.dtypes | code |
17098311/cell_6 | [
"text_html_output_1.png"
] | from sklearn.metrics import mean_squared_error,mean_absolute_error
import numpy as np # linear algebra
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv)
def Model_Comparision_Train_Test(AllModels, x_train, y_train, x_test, y_test):
return_df = pd.DataFrame(columns=['Model', 'MSE', 'RMSE', 'MAE'])
for myModel in AllModels:
myModel.fit(x_train, y_train)
y_pred_train = myModel.predict(x_train)
mse_train, rmse_train, mae_train = extract_metrics_from_predicted(y_train, y_pred_train)
y_pred_test = myModel.predict(x_test)
mse_test, rmse_test, mae_test = extract_metrics_from_predicted(y_test, y_pred_test)
summary = pd.DataFrame([[type(myModel).__name__, ''.join([str(round(mse_test, 3)), '(', str(round(mse_train, 3)), ')']), ''.join([str(round(rmse_test, 3)), '(', str(round(rmse_train, 3)), ')']), ''.join([str(round(mae_test, 3)), '(', str(round(mae_test, 3)), ')'])]], columns=['Model', 'MSE', 'RMSE', 'MAE'])
return_df = pd.concat([return_df, summary], axis=0)
return_df.set_index('Model', inplace=True)
return return_df
def extract_metrics_from_predicted(y_true, y_pred):
from sklearn.metrics import mean_squared_error, mean_absolute_error
mse = mean_squared_error(y_true, y_pred)
rmse = np.sqrt(mse)
mae = mean_absolute_error(y_true, y_pred)
return (mse, rmse, mae)
train_data = pd.read_csv('../input/Train-1555063579947.csv')
test_data = pd.read_csv('../input/Test-1555063594850.csv')
test_data.dtypes
test_data.info() | code |
17098311/cell_11 | [
"text_plain_output_1.png"
] | from sklearn.metrics import mean_squared_error,mean_absolute_error
import numpy as np # linear algebra
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv)
def Model_Comparision_Train_Test(AllModels, x_train, y_train, x_test, y_test):
return_df = pd.DataFrame(columns=['Model', 'MSE', 'RMSE', 'MAE'])
for myModel in AllModels:
myModel.fit(x_train, y_train)
y_pred_train = myModel.predict(x_train)
mse_train, rmse_train, mae_train = extract_metrics_from_predicted(y_train, y_pred_train)
y_pred_test = myModel.predict(x_test)
mse_test, rmse_test, mae_test = extract_metrics_from_predicted(y_test, y_pred_test)
summary = pd.DataFrame([[type(myModel).__name__, ''.join([str(round(mse_test, 3)), '(', str(round(mse_train, 3)), ')']), ''.join([str(round(rmse_test, 3)), '(', str(round(rmse_train, 3)), ')']), ''.join([str(round(mae_test, 3)), '(', str(round(mae_test, 3)), ')'])]], columns=['Model', 'MSE', 'RMSE', 'MAE'])
return_df = pd.concat([return_df, summary], axis=0)
return_df.set_index('Model', inplace=True)
return return_df
def extract_metrics_from_predicted(y_true, y_pred):
from sklearn.metrics import mean_squared_error, mean_absolute_error
mse = mean_squared_error(y_true, y_pred)
rmse = np.sqrt(mse)
mae = mean_absolute_error(y_true, y_pred)
return (mse, rmse, mae)
train_data = pd.read_csv('../input/Train-1555063579947.csv')
test_data = pd.read_csv('../input/Test-1555063594850.csv')
train_data.dtypes
test_data.dtypes
train_data = train_data.drop(['HadGrievance', 'Promoted_InLast3Yrs', 'EmployeeID'], axis=1)
x = train_data['ProjectsWorkedOn'].str.split(',', expand=True)
x.columns = ('p1', 'p2', 'p3', 'p4', 'p5', 'p6', 'p7')
y = train_data['DOJ'].str.split('-', expand=True)
y.columns = ('YEAR', 'MONTH', 'DAY')
train_data.head() | code |
17098311/cell_1 | [
"text_plain_output_1.png"
] | import os
import numpy as np
import pandas as pd
import os
print(os.listdir('../input')) | code |
17098311/cell_7 | [
"text_plain_output_1.png"
] | from sklearn.metrics import mean_squared_error,mean_absolute_error
import numpy as np # linear algebra
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv)
def Model_Comparision_Train_Test(AllModels, x_train, y_train, x_test, y_test):
return_df = pd.DataFrame(columns=['Model', 'MSE', 'RMSE', 'MAE'])
for myModel in AllModels:
myModel.fit(x_train, y_train)
y_pred_train = myModel.predict(x_train)
mse_train, rmse_train, mae_train = extract_metrics_from_predicted(y_train, y_pred_train)
y_pred_test = myModel.predict(x_test)
mse_test, rmse_test, mae_test = extract_metrics_from_predicted(y_test, y_pred_test)
summary = pd.DataFrame([[type(myModel).__name__, ''.join([str(round(mse_test, 3)), '(', str(round(mse_train, 3)), ')']), ''.join([str(round(rmse_test, 3)), '(', str(round(rmse_train, 3)), ')']), ''.join([str(round(mae_test, 3)), '(', str(round(mae_test, 3)), ')'])]], columns=['Model', 'MSE', 'RMSE', 'MAE'])
return_df = pd.concat([return_df, summary], axis=0)
return_df.set_index('Model', inplace=True)
return return_df
def extract_metrics_from_predicted(y_true, y_pred):
from sklearn.metrics import mean_squared_error, mean_absolute_error
mse = mean_squared_error(y_true, y_pred)
rmse = np.sqrt(mse)
mae = mean_absolute_error(y_true, y_pred)
return (mse, rmse, mae)
train_data = pd.read_csv('../input/Train-1555063579947.csv')
test_data = pd.read_csv('../input/Test-1555063594850.csv')
train_data.dtypes
test_data.dtypes
print(train_data.shape)
print(test_data.shape)
train_data.head() | code |
17098311/cell_8 | [
"text_plain_output_1.png"
] | from sklearn.metrics import mean_squared_error,mean_absolute_error
import numpy as np # linear algebra
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv)
import pandas_profiling as pp
def Model_Comparision_Train_Test(AllModels, x_train, y_train, x_test, y_test):
return_df = pd.DataFrame(columns=['Model', 'MSE', 'RMSE', 'MAE'])
for myModel in AllModels:
myModel.fit(x_train, y_train)
y_pred_train = myModel.predict(x_train)
mse_train, rmse_train, mae_train = extract_metrics_from_predicted(y_train, y_pred_train)
y_pred_test = myModel.predict(x_test)
mse_test, rmse_test, mae_test = extract_metrics_from_predicted(y_test, y_pred_test)
summary = pd.DataFrame([[type(myModel).__name__, ''.join([str(round(mse_test, 3)), '(', str(round(mse_train, 3)), ')']), ''.join([str(round(rmse_test, 3)), '(', str(round(rmse_train, 3)), ')']), ''.join([str(round(mae_test, 3)), '(', str(round(mae_test, 3)), ')'])]], columns=['Model', 'MSE', 'RMSE', 'MAE'])
return_df = pd.concat([return_df, summary], axis=0)
return_df.set_index('Model', inplace=True)
return return_df
def extract_metrics_from_predicted(y_true, y_pred):
from sklearn.metrics import mean_squared_error, mean_absolute_error
mse = mean_squared_error(y_true, y_pred)
rmse = np.sqrt(mse)
mae = mean_absolute_error(y_true, y_pred)
return (mse, rmse, mae)
train_data = pd.read_csv('../input/Train-1555063579947.csv')
test_data = pd.read_csv('../input/Test-1555063594850.csv')
train_data.dtypes
test_data.dtypes
import pandas_profiling as pp
pp.ProfileReport(train_data) | code |
17098311/cell_15 | [
"text_html_output_1.png"
] | from sklearn.metrics import mean_squared_error,mean_absolute_error
import numpy as np # linear algebra
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv)
def Model_Comparision_Train_Test(AllModels, x_train, y_train, x_test, y_test):
return_df = pd.DataFrame(columns=['Model', 'MSE', 'RMSE', 'MAE'])
for myModel in AllModels:
myModel.fit(x_train, y_train)
y_pred_train = myModel.predict(x_train)
mse_train, rmse_train, mae_train = extract_metrics_from_predicted(y_train, y_pred_train)
y_pred_test = myModel.predict(x_test)
mse_test, rmse_test, mae_test = extract_metrics_from_predicted(y_test, y_pred_test)
summary = pd.DataFrame([[type(myModel).__name__, ''.join([str(round(mse_test, 3)), '(', str(round(mse_train, 3)), ')']), ''.join([str(round(rmse_test, 3)), '(', str(round(rmse_train, 3)), ')']), ''.join([str(round(mae_test, 3)), '(', str(round(mae_test, 3)), ')'])]], columns=['Model', 'MSE', 'RMSE', 'MAE'])
return_df = pd.concat([return_df, summary], axis=0)
return_df.set_index('Model', inplace=True)
return return_df
def extract_metrics_from_predicted(y_true, y_pred):
from sklearn.metrics import mean_squared_error, mean_absolute_error
mse = mean_squared_error(y_true, y_pred)
rmse = np.sqrt(mse)
mae = mean_absolute_error(y_true, y_pred)
return (mse, rmse, mae)
train_data = pd.read_csv('../input/Train-1555063579947.csv')
test_data = pd.read_csv('../input/Test-1555063594850.csv')
train_data.dtypes
test_data.dtypes
train_data = train_data.drop(['HadGrievance', 'Promoted_InLast3Yrs', 'EmployeeID'], axis=1)
x = train_data['ProjectsWorkedOn'].str.split(',', expand=True)
x.columns = ('p1', 'p2', 'p3', 'p4', 'p5', 'p6', 'p7')
y = train_data['DOJ'].str.split('-', expand=True)
y.columns = ('YEAR', 'MONTH', 'DAY')
train_data = pd.concat([train_data, x, y], axis=1)
train_data = train_data.drop(['DOJ', 'ProjectsWorkedOn'], axis=1)
train_data = train_data.drop(['p4', 'p5', 'p6', 'p7', 'MONTH', 'DAY'], axis=1)
corr = train_data.corr()
corr.style.background_gradient(cmap='coolwarm').set_precision(2) | code |
17098311/cell_17 | [
"text_html_output_1.png"
] | from sklearn.metrics import mean_squared_error,mean_absolute_error
import numpy as np # linear algebra
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv)
def Model_Comparision_Train_Test(AllModels, x_train, y_train, x_test, y_test):
return_df = pd.DataFrame(columns=['Model', 'MSE', 'RMSE', 'MAE'])
for myModel in AllModels:
myModel.fit(x_train, y_train)
y_pred_train = myModel.predict(x_train)
mse_train, rmse_train, mae_train = extract_metrics_from_predicted(y_train, y_pred_train)
y_pred_test = myModel.predict(x_test)
mse_test, rmse_test, mae_test = extract_metrics_from_predicted(y_test, y_pred_test)
summary = pd.DataFrame([[type(myModel).__name__, ''.join([str(round(mse_test, 3)), '(', str(round(mse_train, 3)), ')']), ''.join([str(round(rmse_test, 3)), '(', str(round(rmse_train, 3)), ')']), ''.join([str(round(mae_test, 3)), '(', str(round(mae_test, 3)), ')'])]], columns=['Model', 'MSE', 'RMSE', 'MAE'])
return_df = pd.concat([return_df, summary], axis=0)
return_df.set_index('Model', inplace=True)
return return_df
def extract_metrics_from_predicted(y_true, y_pred):
from sklearn.metrics import mean_squared_error, mean_absolute_error
mse = mean_squared_error(y_true, y_pred)
rmse = np.sqrt(mse)
mae = mean_absolute_error(y_true, y_pred)
return (mse, rmse, mae)
train_data = pd.read_csv('../input/Train-1555063579947.csv')
test_data = pd.read_csv('../input/Test-1555063594850.csv')
train_data.dtypes
test_data.dtypes
train_data = train_data.drop(['HadGrievance', 'Promoted_InLast3Yrs', 'EmployeeID'], axis=1)
x = train_data['ProjectsWorkedOn'].str.split(',', expand=True)
x.columns = ('p1', 'p2', 'p3', 'p4', 'p5', 'p6', 'p7')
y = train_data['DOJ'].str.split('-', expand=True)
y.columns = ('YEAR', 'MONTH', 'DAY')
train_data = pd.concat([train_data, x, y], axis=1)
train_data = train_data.drop(['DOJ', 'ProjectsWorkedOn'], axis=1)
train_data = train_data.drop(['p4', 'p5', 'p6', 'p7', 'MONTH', 'DAY'], axis=1)
corr = train_data.corr()
corr.style.background_gradient(cmap='coolwarm').set_precision(2)
corr_matrix = train_data.corr().abs()
upper = corr_matrix.where(np.triu(np.ones(corr_matrix.shape), k=1).astype(np.bool))
to_drop = [column for column in upper.columns if any(upper[column] > 0.99)]
train_data.drop(axis=1, columns=to_drop, inplace=True)
train_data.dtypes | code |
17098311/cell_14 | [
"text_html_output_1.png",
"text_plain_output_1.png"
] | from sklearn.metrics import mean_squared_error,mean_absolute_error
import numpy as np # linear algebra
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv)
def Model_Comparision_Train_Test(AllModels, x_train, y_train, x_test, y_test):
return_df = pd.DataFrame(columns=['Model', 'MSE', 'RMSE', 'MAE'])
for myModel in AllModels:
myModel.fit(x_train, y_train)
y_pred_train = myModel.predict(x_train)
mse_train, rmse_train, mae_train = extract_metrics_from_predicted(y_train, y_pred_train)
y_pred_test = myModel.predict(x_test)
mse_test, rmse_test, mae_test = extract_metrics_from_predicted(y_test, y_pred_test)
summary = pd.DataFrame([[type(myModel).__name__, ''.join([str(round(mse_test, 3)), '(', str(round(mse_train, 3)), ')']), ''.join([str(round(rmse_test, 3)), '(', str(round(rmse_train, 3)), ')']), ''.join([str(round(mae_test, 3)), '(', str(round(mae_test, 3)), ')'])]], columns=['Model', 'MSE', 'RMSE', 'MAE'])
return_df = pd.concat([return_df, summary], axis=0)
return_df.set_index('Model', inplace=True)
return return_df
def extract_metrics_from_predicted(y_true, y_pred):
from sklearn.metrics import mean_squared_error, mean_absolute_error
mse = mean_squared_error(y_true, y_pred)
rmse = np.sqrt(mse)
mae = mean_absolute_error(y_true, y_pred)
return (mse, rmse, mae)
train_data = pd.read_csv('../input/Train-1555063579947.csv')
test_data = pd.read_csv('../input/Test-1555063594850.csv')
train_data.dtypes
test_data.dtypes
train_data = train_data.drop(['HadGrievance', 'Promoted_InLast3Yrs', 'EmployeeID'], axis=1)
x = train_data['ProjectsWorkedOn'].str.split(',', expand=True)
x.columns = ('p1', 'p2', 'p3', 'p4', 'p5', 'p6', 'p7')
y = train_data['DOJ'].str.split('-', expand=True)
y.columns = ('YEAR', 'MONTH', 'DAY')
train_data = pd.concat([train_data, x, y], axis=1)
train_data = train_data.drop(['DOJ', 'ProjectsWorkedOn'], axis=1)
train_data = train_data.drop(['p4', 'p5', 'p6', 'p7', 'MONTH', 'DAY'], axis=1)
train_data.head() | code |
17098311/cell_10 | [
"text_plain_output_1.png"
] | from sklearn.metrics import mean_squared_error,mean_absolute_error
import numpy as np # linear algebra
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv)
def Model_Comparision_Train_Test(AllModels, x_train, y_train, x_test, y_test):
return_df = pd.DataFrame(columns=['Model', 'MSE', 'RMSE', 'MAE'])
for myModel in AllModels:
myModel.fit(x_train, y_train)
y_pred_train = myModel.predict(x_train)
mse_train, rmse_train, mae_train = extract_metrics_from_predicted(y_train, y_pred_train)
y_pred_test = myModel.predict(x_test)
mse_test, rmse_test, mae_test = extract_metrics_from_predicted(y_test, y_pred_test)
summary = pd.DataFrame([[type(myModel).__name__, ''.join([str(round(mse_test, 3)), '(', str(round(mse_train, 3)), ')']), ''.join([str(round(rmse_test, 3)), '(', str(round(rmse_train, 3)), ')']), ''.join([str(round(mae_test, 3)), '(', str(round(mae_test, 3)), ')'])]], columns=['Model', 'MSE', 'RMSE', 'MAE'])
return_df = pd.concat([return_df, summary], axis=0)
return_df.set_index('Model', inplace=True)
return return_df
def extract_metrics_from_predicted(y_true, y_pred):
from sklearn.metrics import mean_squared_error, mean_absolute_error
mse = mean_squared_error(y_true, y_pred)
rmse = np.sqrt(mse)
mae = mean_absolute_error(y_true, y_pred)
return (mse, rmse, mae)
train_data = pd.read_csv('../input/Train-1555063579947.csv')
test_data = pd.read_csv('../input/Test-1555063594850.csv')
train_data.dtypes
test_data.dtypes
train_data = train_data.drop(['HadGrievance', 'Promoted_InLast3Yrs', 'EmployeeID'], axis=1)
train_data.head() | code |
17098311/cell_12 | [
"text_plain_output_1.png"
] | from sklearn.metrics import mean_squared_error,mean_absolute_error
import numpy as np # linear algebra
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv)
def Model_Comparision_Train_Test(AllModels, x_train, y_train, x_test, y_test):
return_df = pd.DataFrame(columns=['Model', 'MSE', 'RMSE', 'MAE'])
for myModel in AllModels:
myModel.fit(x_train, y_train)
y_pred_train = myModel.predict(x_train)
mse_train, rmse_train, mae_train = extract_metrics_from_predicted(y_train, y_pred_train)
y_pred_test = myModel.predict(x_test)
mse_test, rmse_test, mae_test = extract_metrics_from_predicted(y_test, y_pred_test)
summary = pd.DataFrame([[type(myModel).__name__, ''.join([str(round(mse_test, 3)), '(', str(round(mse_train, 3)), ')']), ''.join([str(round(rmse_test, 3)), '(', str(round(rmse_train, 3)), ')']), ''.join([str(round(mae_test, 3)), '(', str(round(mae_test, 3)), ')'])]], columns=['Model', 'MSE', 'RMSE', 'MAE'])
return_df = pd.concat([return_df, summary], axis=0)
return_df.set_index('Model', inplace=True)
return return_df
def extract_metrics_from_predicted(y_true, y_pred):
from sklearn.metrics import mean_squared_error, mean_absolute_error
mse = mean_squared_error(y_true, y_pred)
rmse = np.sqrt(mse)
mae = mean_absolute_error(y_true, y_pred)
return (mse, rmse, mae)
train_data = pd.read_csv('../input/Train-1555063579947.csv')
test_data = pd.read_csv('../input/Test-1555063594850.csv')
train_data.dtypes
test_data.dtypes
train_data = train_data.drop(['HadGrievance', 'Promoted_InLast3Yrs', 'EmployeeID'], axis=1)
x = train_data['ProjectsWorkedOn'].str.split(',', expand=True)
x.columns = ('p1', 'p2', 'p3', 'p4', 'p5', 'p6', 'p7')
y = train_data['DOJ'].str.split('-', expand=True)
y.columns = ('YEAR', 'MONTH', 'DAY')
train_data = pd.concat([train_data, x, y], axis=1)
train_data.head() | code |
17098311/cell_5 | [
"text_html_output_1.png"
] | from sklearn.metrics import mean_squared_error,mean_absolute_error
import numpy as np # linear algebra
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv)
def Model_Comparision_Train_Test(AllModels, x_train, y_train, x_test, y_test):
return_df = pd.DataFrame(columns=['Model', 'MSE', 'RMSE', 'MAE'])
for myModel in AllModels:
myModel.fit(x_train, y_train)
y_pred_train = myModel.predict(x_train)
mse_train, rmse_train, mae_train = extract_metrics_from_predicted(y_train, y_pred_train)
y_pred_test = myModel.predict(x_test)
mse_test, rmse_test, mae_test = extract_metrics_from_predicted(y_test, y_pred_test)
summary = pd.DataFrame([[type(myModel).__name__, ''.join([str(round(mse_test, 3)), '(', str(round(mse_train, 3)), ')']), ''.join([str(round(rmse_test, 3)), '(', str(round(rmse_train, 3)), ')']), ''.join([str(round(mae_test, 3)), '(', str(round(mae_test, 3)), ')'])]], columns=['Model', 'MSE', 'RMSE', 'MAE'])
return_df = pd.concat([return_df, summary], axis=0)
return_df.set_index('Model', inplace=True)
return return_df
def extract_metrics_from_predicted(y_true, y_pred):
from sklearn.metrics import mean_squared_error, mean_absolute_error
mse = mean_squared_error(y_true, y_pred)
rmse = np.sqrt(mse)
mae = mean_absolute_error(y_true, y_pred)
return (mse, rmse, mae)
train_data = pd.read_csv('../input/Train-1555063579947.csv')
test_data = pd.read_csv('../input/Test-1555063594850.csv')
test_data.dtypes | code |
50237900/cell_13 | [
"application_vnd.jupyter.stderr_output_1.png"
] | import pandas as pd
NUM_FOLDS = 5
import pandas as pd
from tqdm import tqdm
data_dir = '../input/ranzcr-clip-catheter-line-classification/'
target_col = ['ETT - Abnormal', 'ETT - Borderline', 'ETT - Normal', 'NGT - Abnormal', 'NGT - Borderline', 'NGT - Incompletely Imaged', 'NGT - Normal', 'CVC - Abnormal', 'CVC - Borderline', 'CVC - Normal', 'Swan Ganz Catheter Present']
def annotation_col_name(x):
x = x[1]
return 'annotation-' + ''.join([c for c in x if c.upper() == c and c != ' '])
annotations_df = pd.read_csv(data_dir + 'train_annotations.csv', usecols=['StudyInstanceUID', 'label'])
annotations_df['ones'] = 1
annotations_df = pd.pivot_table(annotations_df, values=['ones'], index=['StudyInstanceUID'], columns=['label'], aggfunc=np.sum).fillna(0)
annotations_df.columns = [annotation_col_name(col_name) for col_name in annotations_df.columns]
train_gt_df = pd.read_csv(data_dir + '/train.csv')
train_gt_df = train_gt_df.merge(annotations_df, on='StudyInstanceUID', how='left').fillna(0)
target_col += [x for x in annotations_df.columns]
num_target = len(target_col)
kfold_df = train_gt_df.copy().drop(['StudyInstanceUID'], axis=1)
patient_kfold_df = kfold_df.groupby('PatientID').sum()
priority_df = patient_kfold_df.sum().to_frame().reset_index().rename(columns={'index': 'label', 0: 'score'})
priority_df['score'] = [s * 4 if 'annotation' in l else s for l, s in zip(priority_df['label'], priority_df['score'])]
priority_df.sort_values(by='score', inplace=True)
label_priority = list(priority_df['label'])
label_importance = [(0.1 + patient_kfold_df.sum().max() - x) ** 2 for x in priority_df['score']]
label_importance[0] = 3 * label_importance[0]
patient_kfold_df = patient_kfold_df.sort_values(by=label_priority, ascending=False)
def kfold_quality(folds):
patient_kfold_df['fold'] = folds + [-1] * (len(patient_kfold_df) - len(folds))
scores = patient_kfold_df[:len(folds)][['fold'] + target_col].groupby('fold').sum()
if scores.shape[0] < NUM_FOLDS:
scores.reset_index(inplace=True)
for f in range(NUM_FOLDS):
if f not in scores.index:
scores.loc[len(scores)] = 0
scores.loc[len(scores) - 1, 'fold'] = f
scores.set_index('fold', drop=True, inplace=True)
score = scores.sum(axis=1).std()
for label, importance in zip(label_priority, label_importance):
scores[label] *= importance
score += scores[label].max() - scores[label].min()
return score
patient_kfold_df = patient_kfold_df.reset_index()
train_gt_df = train_gt_df.merge(patient_kfold_df[['PatientID', 'fold']], on='PatientID', how='left')
patient_kfold_df[['PatientID', 'fold']].to_csv(f'stratified_{NUM_FOLDS}_folds_by_patient_id.csv', index=False)
train_gt_df[['StudyInstanceUID', 'fold']].to_csv(f'stratified_{NUM_FOLDS}_folds.csv', index=False)
patients_per_fold = train_gt_df[['fold', 'PatientID']].groupby('fold').agg({'PatientID': 'nunique'}).rename(columns={'PatientID': 'Num. patients'})
patients_per_fold | code |
50237900/cell_9 | [
"application_vnd.jupyter.stderr_output_1.png"
] | import pandas as pd
NUM_FOLDS = 5
import pandas as pd
from tqdm import tqdm
data_dir = '../input/ranzcr-clip-catheter-line-classification/'
target_col = ['ETT - Abnormal', 'ETT - Borderline', 'ETT - Normal', 'NGT - Abnormal', 'NGT - Borderline', 'NGT - Incompletely Imaged', 'NGT - Normal', 'CVC - Abnormal', 'CVC - Borderline', 'CVC - Normal', 'Swan Ganz Catheter Present']
def annotation_col_name(x):
x = x[1]
return 'annotation-' + ''.join([c for c in x if c.upper() == c and c != ' '])
annotations_df = pd.read_csv(data_dir + 'train_annotations.csv', usecols=['StudyInstanceUID', 'label'])
annotations_df['ones'] = 1
annotations_df = pd.pivot_table(annotations_df, values=['ones'], index=['StudyInstanceUID'], columns=['label'], aggfunc=np.sum).fillna(0)
annotations_df.columns = [annotation_col_name(col_name) for col_name in annotations_df.columns]
train_gt_df = pd.read_csv(data_dir + '/train.csv')
train_gt_df = train_gt_df.merge(annotations_df, on='StudyInstanceUID', how='left').fillna(0)
target_col += [x for x in annotations_df.columns]
num_target = len(target_col)
kfold_df = train_gt_df.copy().drop(['StudyInstanceUID'], axis=1)
patient_kfold_df = kfold_df.groupby('PatientID').sum()
priority_df = patient_kfold_df.sum().to_frame().reset_index().rename(columns={'index': 'label', 0: 'score'})
priority_df['score'] = [s * 4 if 'annotation' in l else s for l, s in zip(priority_df['label'], priority_df['score'])]
priority_df.sort_values(by='score', inplace=True)
label_priority = list(priority_df['label'])
label_importance = [(0.1 + patient_kfold_df.sum().max() - x) ** 2 for x in priority_df['score']]
label_importance[0] = 3 * label_importance[0]
patient_kfold_df = patient_kfold_df.sort_values(by=label_priority, ascending=False)
def kfold_quality(folds):
patient_kfold_df['fold'] = folds + [-1] * (len(patient_kfold_df) - len(folds))
scores = patient_kfold_df[:len(folds)][['fold'] + target_col].groupby('fold').sum()
if scores.shape[0] < NUM_FOLDS:
scores.reset_index(inplace=True)
for f in range(NUM_FOLDS):
if f not in scores.index:
scores.loc[len(scores)] = 0
scores.loc[len(scores) - 1, 'fold'] = f
scores.set_index('fold', drop=True, inplace=True)
score = scores.sum(axis=1).std()
for label, importance in zip(label_priority, label_importance):
scores[label] *= importance
score += scores[label].max() - scores[label].min()
return score
patient_kfold_df = patient_kfold_df.reset_index()
train_gt_df = train_gt_df.merge(patient_kfold_df[['PatientID', 'fold']], on='PatientID', how='left')
patient_kfold_df[['PatientID', 'fold']].to_csv(f'stratified_{NUM_FOLDS}_folds_by_patient_id.csv', index=False)
train_gt_df[['StudyInstanceUID', 'fold']].to_csv(f'stratified_{NUM_FOLDS}_folds.csv', index=False)
train_gt_df[['fold'] + target_col].groupby('fold').sum().transpose() | code |
50237900/cell_4 | [
"application_vnd.jupyter.stderr_output_1.png"
] | import pandas as pd
NUM_FOLDS = 5
import pandas as pd
from tqdm import tqdm
data_dir = '../input/ranzcr-clip-catheter-line-classification/'
target_col = ['ETT - Abnormal', 'ETT - Borderline', 'ETT - Normal', 'NGT - Abnormal', 'NGT - Borderline', 'NGT - Incompletely Imaged', 'NGT - Normal', 'CVC - Abnormal', 'CVC - Borderline', 'CVC - Normal', 'Swan Ganz Catheter Present']
def annotation_col_name(x):
x = x[1]
return 'annotation-' + ''.join([c for c in x if c.upper() == c and c != ' '])
annotations_df = pd.read_csv(data_dir + 'train_annotations.csv', usecols=['StudyInstanceUID', 'label'])
annotations_df['ones'] = 1
annotations_df = pd.pivot_table(annotations_df, values=['ones'], index=['StudyInstanceUID'], columns=['label'], aggfunc=np.sum).fillna(0)
annotations_df.columns = [annotation_col_name(col_name) for col_name in annotations_df.columns]
train_gt_df = pd.read_csv(data_dir + '/train.csv')
train_gt_df = train_gt_df.merge(annotations_df, on='StudyInstanceUID', how='left').fillna(0)
target_col += [x for x in annotations_df.columns]
num_target = len(target_col)
kfold_df = train_gt_df.copy().drop(['StudyInstanceUID'], axis=1)
patient_kfold_df = kfold_df.groupby('PatientID').sum()
priority_df = patient_kfold_df.sum().to_frame().reset_index().rename(columns={'index': 'label', 0: 'score'})
priority_df['score'] = [s * 4 if 'annotation' in l else s for l, s in zip(priority_df['label'], priority_df['score'])]
priority_df.sort_values(by='score', inplace=True)
label_priority = list(priority_df['label'])
label_importance = [(0.1 + patient_kfold_df.sum().max() - x) ** 2 for x in priority_df['score']]
label_importance[0] = 3 * label_importance[0]
patient_kfold_df = patient_kfold_df.sort_values(by=label_priority, ascending=False)
def kfold_quality(folds):
patient_kfold_df['fold'] = folds + [-1] * (len(patient_kfold_df) - len(folds))
scores = patient_kfold_df[:len(folds)][['fold'] + target_col].groupby('fold').sum()
if scores.shape[0] < NUM_FOLDS:
scores.reset_index(inplace=True)
for f in range(NUM_FOLDS):
if f not in scores.index:
scores.loc[len(scores)] = 0
scores.loc[len(scores) - 1, 'fold'] = f
scores.set_index('fold', drop=True, inplace=True)
score = scores.sum(axis=1).std()
for label, importance in zip(label_priority, label_importance):
scores[label] *= importance
score += scores[label].max() - scores[label].min()
return score | code |
50237900/cell_6 | [
"application_vnd.jupyter.stderr_output_1.png"
] | from tqdm import tqdm
import pandas as pd
NUM_FOLDS = 5
import pandas as pd
from tqdm import tqdm
data_dir = '../input/ranzcr-clip-catheter-line-classification/'
target_col = ['ETT - Abnormal', 'ETT - Borderline', 'ETT - Normal', 'NGT - Abnormal', 'NGT - Borderline', 'NGT - Incompletely Imaged', 'NGT - Normal', 'CVC - Abnormal', 'CVC - Borderline', 'CVC - Normal', 'Swan Ganz Catheter Present']
def annotation_col_name(x):
x = x[1]
return 'annotation-' + ''.join([c for c in x if c.upper() == c and c != ' '])
annotations_df = pd.read_csv(data_dir + 'train_annotations.csv', usecols=['StudyInstanceUID', 'label'])
annotations_df['ones'] = 1
annotations_df = pd.pivot_table(annotations_df, values=['ones'], index=['StudyInstanceUID'], columns=['label'], aggfunc=np.sum).fillna(0)
annotations_df.columns = [annotation_col_name(col_name) for col_name in annotations_df.columns]
train_gt_df = pd.read_csv(data_dir + '/train.csv')
train_gt_df = train_gt_df.merge(annotations_df, on='StudyInstanceUID', how='left').fillna(0)
target_col += [x for x in annotations_df.columns]
num_target = len(target_col)
kfold_df = train_gt_df.copy().drop(['StudyInstanceUID'], axis=1)
patient_kfold_df = kfold_df.groupby('PatientID').sum()
priority_df = patient_kfold_df.sum().to_frame().reset_index().rename(columns={'index': 'label', 0: 'score'})
priority_df['score'] = [s * 4 if 'annotation' in l else s for l, s in zip(priority_df['label'], priority_df['score'])]
priority_df.sort_values(by='score', inplace=True)
label_priority = list(priority_df['label'])
label_importance = [(0.1 + patient_kfold_df.sum().max() - x) ** 2 for x in priority_df['score']]
label_importance[0] = 3 * label_importance[0]
patient_kfold_df = patient_kfold_df.sort_values(by=label_priority, ascending=False)
def kfold_quality(folds):
patient_kfold_df['fold'] = folds + [-1] * (len(patient_kfold_df) - len(folds))
scores = patient_kfold_df[:len(folds)][['fold'] + target_col].groupby('fold').sum()
if scores.shape[0] < NUM_FOLDS:
scores.reset_index(inplace=True)
for f in range(NUM_FOLDS):
if f not in scores.index:
scores.loc[len(scores)] = 0
scores.loc[len(scores) - 1, 'fold'] = f
scores.set_index('fold', drop=True, inplace=True)
score = scores.sum(axis=1).std()
for label, importance in zip(label_priority, label_importance):
scores[label] *= importance
score += scores[label].max() - scores[label].min()
return score
current_kfold = []
for _ in tqdm(range(len(patient_kfold_df))):
fold_scores = [(f, kfold_quality(current_kfold + [f])) for f in range(NUM_FOLDS)]
best_fold = sorted(fold_scores, key=lambda x: x[1])[0][0]
current_kfold.append(best_fold)
patient_kfold_df['fold'] = current_kfold | code |
50237900/cell_2 | [
"application_vnd.jupyter.stderr_output_1.png"
] | import pandas as pd
NUM_FOLDS = 5
import pandas as pd
from tqdm import tqdm
data_dir = '../input/ranzcr-clip-catheter-line-classification/'
target_col = ['ETT - Abnormal', 'ETT - Borderline', 'ETT - Normal', 'NGT - Abnormal', 'NGT - Borderline', 'NGT - Incompletely Imaged', 'NGT - Normal', 'CVC - Abnormal', 'CVC - Borderline', 'CVC - Normal', 'Swan Ganz Catheter Present']
def annotation_col_name(x):
x = x[1]
return 'annotation-' + ''.join([c for c in x if c.upper() == c and c != ' '])
annotations_df = pd.read_csv(data_dir + 'train_annotations.csv', usecols=['StudyInstanceUID', 'label'])
annotations_df['ones'] = 1
annotations_df = pd.pivot_table(annotations_df, values=['ones'], index=['StudyInstanceUID'], columns=['label'], aggfunc=np.sum).fillna(0)
annotations_df.columns = [annotation_col_name(col_name) for col_name in annotations_df.columns]
train_gt_df = pd.read_csv(data_dir + '/train.csv')
train_gt_df = train_gt_df.merge(annotations_df, on='StudyInstanceUID', how='left').fillna(0)
target_col += [x for x in annotations_df.columns]
num_target = len(target_col)
kfold_df = train_gt_df.copy().drop(['StudyInstanceUID'], axis=1)
print(len(train_gt_df.PatientID.unique()), 'patients') | code |
50237900/cell_11 | [
"application_vnd.jupyter.stderr_output_1.png"
] | import pandas as pd
NUM_FOLDS = 5
import pandas as pd
from tqdm import tqdm
data_dir = '../input/ranzcr-clip-catheter-line-classification/'
target_col = ['ETT - Abnormal', 'ETT - Borderline', 'ETT - Normal', 'NGT - Abnormal', 'NGT - Borderline', 'NGT - Incompletely Imaged', 'NGT - Normal', 'CVC - Abnormal', 'CVC - Borderline', 'CVC - Normal', 'Swan Ganz Catheter Present']
def annotation_col_name(x):
x = x[1]
return 'annotation-' + ''.join([c for c in x if c.upper() == c and c != ' '])
annotations_df = pd.read_csv(data_dir + 'train_annotations.csv', usecols=['StudyInstanceUID', 'label'])
annotations_df['ones'] = 1
annotations_df = pd.pivot_table(annotations_df, values=['ones'], index=['StudyInstanceUID'], columns=['label'], aggfunc=np.sum).fillna(0)
annotations_df.columns = [annotation_col_name(col_name) for col_name in annotations_df.columns]
train_gt_df = pd.read_csv(data_dir + '/train.csv')
train_gt_df = train_gt_df.merge(annotations_df, on='StudyInstanceUID', how='left').fillna(0)
target_col += [x for x in annotations_df.columns]
num_target = len(target_col)
kfold_df = train_gt_df.copy().drop(['StudyInstanceUID'], axis=1)
patient_kfold_df = kfold_df.groupby('PatientID').sum()
priority_df = patient_kfold_df.sum().to_frame().reset_index().rename(columns={'index': 'label', 0: 'score'})
priority_df['score'] = [s * 4 if 'annotation' in l else s for l, s in zip(priority_df['label'], priority_df['score'])]
priority_df.sort_values(by='score', inplace=True)
label_priority = list(priority_df['label'])
label_importance = [(0.1 + patient_kfold_df.sum().max() - x) ** 2 for x in priority_df['score']]
label_importance[0] = 3 * label_importance[0]
patient_kfold_df = patient_kfold_df.sort_values(by=label_priority, ascending=False)
def kfold_quality(folds):
patient_kfold_df['fold'] = folds + [-1] * (len(patient_kfold_df) - len(folds))
scores = patient_kfold_df[:len(folds)][['fold'] + target_col].groupby('fold').sum()
if scores.shape[0] < NUM_FOLDS:
scores.reset_index(inplace=True)
for f in range(NUM_FOLDS):
if f not in scores.index:
scores.loc[len(scores)] = 0
scores.loc[len(scores) - 1, 'fold'] = f
scores.set_index('fold', drop=True, inplace=True)
score = scores.sum(axis=1).std()
for label, importance in zip(label_priority, label_importance):
scores[label] *= importance
score += scores[label].max() - scores[label].min()
return score
patient_kfold_df = patient_kfold_df.reset_index()
train_gt_df = train_gt_df.merge(patient_kfold_df[['PatientID', 'fold']], on='PatientID', how='left')
patient_kfold_df[['PatientID', 'fold']].to_csv(f'stratified_{NUM_FOLDS}_folds_by_patient_id.csv', index=False)
train_gt_df[['StudyInstanceUID', 'fold']].to_csv(f'stratified_{NUM_FOLDS}_folds.csv', index=False)
images_per_fold = train_gt_df[['fold', 'StudyInstanceUID']].groupby('fold').count().rename(columns={'StudyInstanceUID': 'Num. images'})
images_per_fold | code |
50237900/cell_7 | [
"application_vnd.jupyter.stderr_output_1.png"
] | import pandas as pd
NUM_FOLDS = 5
import pandas as pd
from tqdm import tqdm
data_dir = '../input/ranzcr-clip-catheter-line-classification/'
target_col = ['ETT - Abnormal', 'ETT - Borderline', 'ETT - Normal', 'NGT - Abnormal', 'NGT - Borderline', 'NGT - Incompletely Imaged', 'NGT - Normal', 'CVC - Abnormal', 'CVC - Borderline', 'CVC - Normal', 'Swan Ganz Catheter Present']
def annotation_col_name(x):
x = x[1]
return 'annotation-' + ''.join([c for c in x if c.upper() == c and c != ' '])
annotations_df = pd.read_csv(data_dir + 'train_annotations.csv', usecols=['StudyInstanceUID', 'label'])
annotations_df['ones'] = 1
annotations_df = pd.pivot_table(annotations_df, values=['ones'], index=['StudyInstanceUID'], columns=['label'], aggfunc=np.sum).fillna(0)
annotations_df.columns = [annotation_col_name(col_name) for col_name in annotations_df.columns]
train_gt_df = pd.read_csv(data_dir + '/train.csv')
train_gt_df = train_gt_df.merge(annotations_df, on='StudyInstanceUID', how='left').fillna(0)
target_col += [x for x in annotations_df.columns]
num_target = len(target_col)
kfold_df = train_gt_df.copy().drop(['StudyInstanceUID'], axis=1)
patient_kfold_df = kfold_df.groupby('PatientID').sum()
priority_df = patient_kfold_df.sum().to_frame().reset_index().rename(columns={'index': 'label', 0: 'score'})
priority_df['score'] = [s * 4 if 'annotation' in l else s for l, s in zip(priority_df['label'], priority_df['score'])]
priority_df.sort_values(by='score', inplace=True)
label_priority = list(priority_df['label'])
label_importance = [(0.1 + patient_kfold_df.sum().max() - x) ** 2 for x in priority_df['score']]
label_importance[0] = 3 * label_importance[0]
patient_kfold_df = patient_kfold_df.sort_values(by=label_priority, ascending=False)
def kfold_quality(folds):
patient_kfold_df['fold'] = folds + [-1] * (len(patient_kfold_df) - len(folds))
scores = patient_kfold_df[:len(folds)][['fold'] + target_col].groupby('fold').sum()
if scores.shape[0] < NUM_FOLDS:
scores.reset_index(inplace=True)
for f in range(NUM_FOLDS):
if f not in scores.index:
scores.loc[len(scores)] = 0
scores.loc[len(scores) - 1, 'fold'] = f
scores.set_index('fold', drop=True, inplace=True)
score = scores.sum(axis=1).std()
for label, importance in zip(label_priority, label_importance):
scores[label] *= importance
score += scores[label].max() - scores[label].min()
return score
patient_kfold_df = patient_kfold_df.reset_index()
train_gt_df = train_gt_df.merge(patient_kfold_df[['PatientID', 'fold']], on='PatientID', how='left')
patient_kfold_df[['PatientID', 'fold']].to_csv(f'stratified_{NUM_FOLDS}_folds_by_patient_id.csv', index=False)
train_gt_df[['StudyInstanceUID', 'fold']].to_csv(f'stratified_{NUM_FOLDS}_folds.csv', index=False) | code |
17109703/cell_9 | [
"application_vnd.jupyter.stderr_output_2.png",
"text_plain_output_1.png"
] | from tqdm import tqdm
import cv2
import matplotlib.pyplot as plt
import numpy as np # linear algebra
import os
import os
import warnings
import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
import cv2
import os
from random import shuffle
from tqdm import tqdm
from PIL import Image
import warnings
warnings.filterwarnings('ignore')
import os
train_cat = '../input/training_set/training_set/cats'
train_dog = '../input/training_set/training_set/dogs'
test_cat = '../input/test_set/test_set/cats'
test_dog = '../input/test_set/test_set/dogs'
image_size = 128
for image in tqdm(os.listdir(train_cat)):
path = os.path.join(train_cat, image)
img = cv2.imread(path, cv2.IMREAD_GRAYSCALE)
try:
img = cv2.resize(img, (image_size, image_size)).flatten()
except:
pass
np_img = np.asarray(img)
for image2 in tqdm(os.listdir(train_dog)):
path = os.path.join(train_dog, image2)
img2 = cv2.imread(path, cv2.IMREAD_GRAYSCALE)
try:
img2 = cv2.resize(img2, (image_size, image_size)).flatten()
except:
pass
np_img2 = np.asarray(img2)
plt.axis('off')
plt.axis('off')
def train_data():
train_data_cat = []
train_data_dog = []
for image1 in tqdm(os.listdir(train_cat)):
path = os.path.join(train_cat, image)
img1 = cv2.imread(path, cv2.IMREAD_GRAYSCALE)
try:
img1 = cv2.resize(img1, (image_size, image_size))
except:
pass
train_data_cat.append(img1)
for image2 in tqdm(os.listdir(train_dog)):
path = os.path.join(train_dog, image)
img2 = cv2.imread(path, cv2.IMREAD_GRAYSCALE)
try:
img2 = cv2.resize(img2, (image_size, image_size))
except:
pass
train_data_dog.append(img2)
train_data = np.concatenate((np.asarray(train_data_cat).reshape(4001, -1), np.asarray(train_data_dog).reshape(4001, -1)), axis=1)
return train_data
def test_data():
test_data_cat = []
test_data_dog = []
for image1 in tqdm(os.listdir(test_cat)):
path = os.path.join(test_cat, image1)
img1 = cv2.imread(path, cv2.IMREAD_GRAYSCALE)
try:
img1 = cv2.resize(img1, (image_size, image_size))
except:
pass
test_data_cat.append(img1)
for image2 in tqdm(os.listdir(test_dog)):
path = os.path.join(test_dog, image2)
img2 = cv2.imread(path, cv2.IMREAD_GRAYSCALE)
try:
img2 = cv2.resize(img2, (image_size, image_size))
except:
pass
test_data_dog.append(img2)
test_data = np.concatenate((np.asarray(test_data_cat).reshape(1001, -1), np.asarray(test_data_dog).reshape(1001, -1)), axis=1)
return test_data
train_data = train_data()
test_data = test_data()
print(train_data.shape)
print(train_data.reshape(4001, 128, 128))
print(test_data.shape) | code |
17109703/cell_4 | [
"image_output_1.png"
] | from PIL import Image
Image.open('../input/training_set/training_set/cats/cat.1.jpg')
Image.open('../input/training_set/training_set/dogs/dog.1.jpg') | code |
17109703/cell_1 | [
"text_plain_output_1.png"
] | import os
import os
import warnings
import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
import cv2
import os
from random import shuffle
from tqdm import tqdm
from PIL import Image
import warnings
warnings.filterwarnings('ignore')
import os
print(os.listdir('../input')) | code |
17109703/cell_8 | [
"text_plain_output_4.png",
"application_vnd.jupyter.stderr_output_3.png",
"application_vnd.jupyter.stderr_output_5.png",
"text_plain_output_2.png",
"application_vnd.jupyter.stderr_output_1.png"
] | from tqdm import tqdm
import cv2
import matplotlib.pyplot as plt
import numpy as np # linear algebra
import os
import os
import warnings
import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
import cv2
import os
from random import shuffle
from tqdm import tqdm
from PIL import Image
import warnings
warnings.filterwarnings('ignore')
import os
train_cat = '../input/training_set/training_set/cats'
train_dog = '../input/training_set/training_set/dogs'
test_cat = '../input/test_set/test_set/cats'
test_dog = '../input/test_set/test_set/dogs'
image_size = 128
for image in tqdm(os.listdir(train_cat)):
path = os.path.join(train_cat, image)
img = cv2.imread(path, cv2.IMREAD_GRAYSCALE)
try:
img = cv2.resize(img, (image_size, image_size)).flatten()
except:
pass
np_img = np.asarray(img)
for image2 in tqdm(os.listdir(train_dog)):
path = os.path.join(train_dog, image2)
img2 = cv2.imread(path, cv2.IMREAD_GRAYSCALE)
try:
img2 = cv2.resize(img2, (image_size, image_size)).flatten()
except:
pass
np_img2 = np.asarray(img2)
plt.axis('off')
plt.axis('off')
def train_data():
train_data_cat = []
train_data_dog = []
for image1 in tqdm(os.listdir(train_cat)):
path = os.path.join(train_cat, image)
img1 = cv2.imread(path, cv2.IMREAD_GRAYSCALE)
try:
img1 = cv2.resize(img1, (image_size, image_size))
except:
pass
train_data_cat.append(img1)
for image2 in tqdm(os.listdir(train_dog)):
path = os.path.join(train_dog, image)
img2 = cv2.imread(path, cv2.IMREAD_GRAYSCALE)
try:
img2 = cv2.resize(img2, (image_size, image_size))
except:
pass
train_data_dog.append(img2)
train_data = np.concatenate((np.asarray(train_data_cat).reshape(4001, -1), np.asarray(train_data_dog).reshape(4001, -1)), axis=1)
return train_data
def test_data():
test_data_cat = []
test_data_dog = []
for image1 in tqdm(os.listdir(test_cat)):
path = os.path.join(test_cat, image1)
img1 = cv2.imread(path, cv2.IMREAD_GRAYSCALE)
try:
img1 = cv2.resize(img1, (image_size, image_size))
except:
pass
test_data_cat.append(img1)
for image2 in tqdm(os.listdir(test_dog)):
path = os.path.join(test_dog, image2)
img2 = cv2.imread(path, cv2.IMREAD_GRAYSCALE)
try:
img2 = cv2.resize(img2, (image_size, image_size))
except:
pass
test_data_dog.append(img2)
test_data = np.concatenate((np.asarray(test_data_cat).reshape(1001, -1), np.asarray(test_data_dog).reshape(1001, -1)), axis=1)
return test_data
train_data = train_data()
test_data = test_data() | code |
17109703/cell_3 | [
"image_output_1.png"
] | from PIL import Image
Image.open('../input/training_set/training_set/cats/cat.1.jpg') | code |
17109703/cell_5 | [
"text_plain_output_2.png",
"application_vnd.jupyter.stderr_output_1.png",
"image_output_1.png"
] | from tqdm import tqdm
import cv2
import matplotlib.pyplot as plt
import numpy as np # linear algebra
import os
import os
import warnings
import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
import cv2
import os
from random import shuffle
from tqdm import tqdm
from PIL import Image
import warnings
warnings.filterwarnings('ignore')
import os
train_cat = '../input/training_set/training_set/cats'
train_dog = '../input/training_set/training_set/dogs'
test_cat = '../input/test_set/test_set/cats'
test_dog = '../input/test_set/test_set/dogs'
image_size = 128
for image in tqdm(os.listdir(train_cat)):
path = os.path.join(train_cat, image)
img = cv2.imread(path, cv2.IMREAD_GRAYSCALE)
try:
img = cv2.resize(img, (image_size, image_size)).flatten()
except:
pass
np_img = np.asarray(img)
for image2 in tqdm(os.listdir(train_dog)):
path = os.path.join(train_dog, image2)
img2 = cv2.imread(path, cv2.IMREAD_GRAYSCALE)
try:
img2 = cv2.resize(img2, (image_size, image_size)).flatten()
except:
pass
np_img2 = np.asarray(img2)
plt.figure(figsize=(10, 10))
plt.subplot(1, 2, 1)
plt.imshow(np_img.reshape(image_size, image_size))
plt.axis('off')
plt.subplot(1, 2, 2)
plt.imshow(np_img2.reshape(image_size, image_size))
plt.axis('off')
plt.title('Cats and Dogs in GrayScale') | code |
32068734/cell_23 | [
"text_html_output_1.png",
"application_vnd.jupyter.stderr_output_1.png"
] | import csv
import numpy as np
import numpy as np # linear algebra
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv)
import scipy.optimize as optim
train_data = pd.read_csv('../input/covid19-global-forecasting-week-4/train.csv')
train_data = train_data.replace(np.nan, '', regex=True)
test_data = pd.read_csv('../input/covid19-global-forecasting-week-4/test.csv')
test_data = test_data.replace(np.nan, '', regex=True)
def filter_train_data(country, region):
selector = train_data['Country_Region'] == country
onlyonecountry = train_data[selector]
selector2 = onlyonecountry['Province_State'] == region
onlyoneregion = onlyonecountry[selector2]
onlyoneregion = onlyoneregion.reset_index(drop=False)
del onlyoneregion['index']
del onlyoneregion['Id']
onlyoneregion['Timestep'] = onlyoneregion.index
return onlyoneregion
def infection_start(country, region):
try:
infection_start_df = pd.read_csv('../input/covid19-global-forecasting-week-4/train.csv')
infection_start_df = infection_start_df.replace(np.nan, '', regex=True)
selector = infection_start_df['Country_Region'] == country
onlyonecountry = infection_start_df[selector]
selector2 = onlyonecountry['Province_State'] == region
onlyoneregion = onlyonecountry[selector2]
return onlyoneregion['ConfirmedCases'].iloc[0]
except:
return 2
population_reader = csv.reader(open('../input/population/population.csv', 'r'))
population_dict = {}
next(population_reader)
for row in population_reader:
k, v = row
population_dict[k] = int(v)
pop_by_region_reader = csv.reader(open('../input/populationbycity/populationbycity.csv', 'r'))
populationbyregion_dict = {}
next(pop_by_region_reader)
for row in pop_by_region_reader:
k, v = row
populationbyregion_dict[k] = int(v)
def get_population(country, region):
if region != '':
if region in populationbyregion_dict:
return populationbyregion_dict[region]
else:
return 1000000
elif country != '':
if country in population_dict:
return population_dict[country]
else:
return 1000000
else:
return 1000000
def filter_test_data(country, region, date):
selector = test_data['Country_Region'] == country
onlyonecountry = test_data[selector]
selector2 = onlyonecountry['Province_State'] == region
onlyoneregion = onlyonecountry[selector2]
onlyoneregion = onlyoneregion.reset_index(drop=False)
del onlyoneregion['index']
onlyoneregion['Timestep'] = onlyoneregion.index + 71
if date != '':
dateselect = test_data['Date'] == date
onlyoneregion = onlyoneregion[dateselect]
return onlyoneregion
def my_logistic(t, a, b, c):
return c / (1 + a * np.exp(-b * t))
def calculate_infection(country_entry, region_entry, date_entry):
train_set = filter_train_data(country_entry, region_entry)
local_x = np.array(train_set['Timestep']) + 1
local_y = np.array(train_set['ConfirmedCases'])
p0 = np.random.exponential(size=3)
bounds = (0, [100000.0, 3.0, 1000000000.0])
try:
(a, b, c), cov = optim.curve_fit(my_logistic, local_x, local_y, p0=p0, bounds=bounds)
except:
initial_infected = infection_start(country_entry, region_entry)
c = get_population(country_entry, region_entry)
b = 2
a = c - 1
test_set = filter_test_data(country_entry, region_entry, date_entry)
test_set['Infected'] = round(my_logistic(test_set['Timestep'], a, b, c))
return test_set.iloc[0]['Infected']
uruguay_forecast = calculate_infection('Uruguay', '', '2020-05-11')
print(uruguay_forecast) | code |
32068734/cell_1 | [
"text_plain_output_1.png"
] | import os
import numpy as np
import pandas as pd
import os
for dirname, _, filenames in os.walk('/kaggle/input'):
for filename in filenames:
print(os.path.join(dirname, filename)) | code |
32068734/cell_18 | [
"text_html_output_1.png"
] | import numpy as np
import numpy as np # linear algebra
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv)
train_data = pd.read_csv('../input/covid19-global-forecasting-week-4/train.csv')
train_data = train_data.replace(np.nan, '', regex=True)
test_data = pd.read_csv('../input/covid19-global-forecasting-week-4/test.csv')
test_data = test_data.replace(np.nan, '', regex=True)
def filter_train_data(country, region):
selector = train_data['Country_Region'] == country
onlyonecountry = train_data[selector]
selector2 = onlyonecountry['Province_State'] == region
onlyoneregion = onlyonecountry[selector2]
onlyoneregion = onlyoneregion.reset_index(drop=False)
del onlyoneregion['index']
del onlyoneregion['Id']
onlyoneregion['Timestep'] = onlyoneregion.index
return onlyoneregion
def infection_start(country, region):
try:
infection_start_df = pd.read_csv('../input/covid19-global-forecasting-week-4/train.csv')
infection_start_df = infection_start_df.replace(np.nan, '', regex=True)
selector = infection_start_df['Country_Region'] == country
onlyonecountry = infection_start_df[selector]
selector2 = onlyonecountry['Province_State'] == region
onlyoneregion = onlyonecountry[selector2]
return onlyoneregion['ConfirmedCases'].iloc[0]
except:
return 2
def filter_test_data(country, region, date):
selector = test_data['Country_Region'] == country
onlyonecountry = test_data[selector]
selector2 = onlyonecountry['Province_State'] == region
onlyoneregion = onlyonecountry[selector2]
onlyoneregion = onlyoneregion.reset_index(drop=False)
del onlyoneregion['index']
onlyoneregion['Timestep'] = onlyoneregion.index + 71
if date != '':
dateselect = test_data['Date'] == date
onlyoneregion = onlyoneregion[dateselect]
return onlyoneregion
panama_test = filter_test_data('Panama', '', '2020-05-11')
panama_test.head() | code |
32068734/cell_8 | [
"application_vnd.jupyter.stderr_output_2.png",
"text_plain_output_3.png",
"text_plain_output_1.png"
] | import numpy as np
import numpy as np # linear algebra
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv)
train_data = pd.read_csv('../input/covid19-global-forecasting-week-4/train.csv')
train_data = train_data.replace(np.nan, '', regex=True)
test_data = pd.read_csv('../input/covid19-global-forecasting-week-4/test.csv')
test_data = test_data.replace(np.nan, '', regex=True)
def filter_train_data(country, region):
selector = train_data['Country_Region'] == country
onlyonecountry = train_data[selector]
selector2 = onlyonecountry['Province_State'] == region
onlyoneregion = onlyonecountry[selector2]
onlyoneregion = onlyoneregion.reset_index(drop=False)
del onlyoneregion['index']
del onlyoneregion['Id']
onlyoneregion['Timestep'] = onlyoneregion.index
return onlyoneregion
def infection_start(country, region):
try:
infection_start_df = pd.read_csv('../input/covid19-global-forecasting-week-4/train.csv')
infection_start_df = infection_start_df.replace(np.nan, '', regex=True)
selector = infection_start_df['Country_Region'] == country
onlyonecountry = infection_start_df[selector]
selector2 = onlyonecountry['Province_State'] == region
onlyoneregion = onlyonecountry[selector2]
return onlyoneregion['ConfirmedCases'].iloc[0]
except:
return 2
infection_start('Brazil', '') | code |
32068734/cell_16 | [
"text_plain_output_1.png"
] | import numpy as np
import numpy as np # linear algebra
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv)
train_data = pd.read_csv('../input/covid19-global-forecasting-week-4/train.csv')
train_data = train_data.replace(np.nan, '', regex=True)
test_data = pd.read_csv('../input/covid19-global-forecasting-week-4/test.csv')
test_data = test_data.replace(np.nan, '', regex=True)
def filter_train_data(country, region):
selector = train_data['Country_Region'] == country
onlyonecountry = train_data[selector]
selector2 = onlyonecountry['Province_State'] == region
onlyoneregion = onlyonecountry[selector2]
onlyoneregion = onlyoneregion.reset_index(drop=False)
del onlyoneregion['index']
del onlyoneregion['Id']
onlyoneregion['Timestep'] = onlyoneregion.index
return onlyoneregion
panama = filter_train_data('Panama', '')
panama.head() | code |
32068734/cell_27 | [
"text_plain_output_2.png",
"application_vnd.jupyter.stderr_output_1.png"
] | from scipy import stats
import csv
import numpy as np
import numpy as np # linear algebra
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv)
import scipy.optimize as optim
train_data = pd.read_csv('../input/covid19-global-forecasting-week-4/train.csv')
train_data = train_data.replace(np.nan, '', regex=True)
test_data = pd.read_csv('../input/covid19-global-forecasting-week-4/test.csv')
test_data = test_data.replace(np.nan, '', regex=True)
def filter_train_data(country, region):
selector = train_data['Country_Region'] == country
onlyonecountry = train_data[selector]
selector2 = onlyonecountry['Province_State'] == region
onlyoneregion = onlyonecountry[selector2]
onlyoneregion = onlyoneregion.reset_index(drop=False)
del onlyoneregion['index']
del onlyoneregion['Id']
onlyoneregion['Timestep'] = onlyoneregion.index
return onlyoneregion
def infection_start(country, region):
try:
infection_start_df = pd.read_csv('../input/covid19-global-forecasting-week-4/train.csv')
infection_start_df = infection_start_df.replace(np.nan, '', regex=True)
selector = infection_start_df['Country_Region'] == country
onlyonecountry = infection_start_df[selector]
selector2 = onlyonecountry['Province_State'] == region
onlyoneregion = onlyonecountry[selector2]
return onlyoneregion['ConfirmedCases'].iloc[0]
except:
return 2
population_reader = csv.reader(open('../input/population/population.csv', 'r'))
population_dict = {}
next(population_reader)
for row in population_reader:
k, v = row
population_dict[k] = int(v)
pop_by_region_reader = csv.reader(open('../input/populationbycity/populationbycity.csv', 'r'))
populationbyregion_dict = {}
next(pop_by_region_reader)
for row in pop_by_region_reader:
k, v = row
populationbyregion_dict[k] = int(v)
def get_population(country, region):
if region != '':
if region in populationbyregion_dict:
return populationbyregion_dict[region]
else:
return 1000000
elif country != '':
if country in population_dict:
return population_dict[country]
else:
return 1000000
else:
return 1000000
def filter_test_data(country, region, date):
selector = test_data['Country_Region'] == country
onlyonecountry = test_data[selector]
selector2 = onlyonecountry['Province_State'] == region
onlyoneregion = onlyonecountry[selector2]
onlyoneregion = onlyoneregion.reset_index(drop=False)
del onlyoneregion['index']
onlyoneregion['Timestep'] = onlyoneregion.index + 71
if date != '':
dateselect = test_data['Date'] == date
onlyoneregion = onlyoneregion[dateselect]
return onlyoneregion
def my_logistic(t, a, b, c):
return c / (1 + a * np.exp(-b * t))
def calculate_infection(country_entry, region_entry, date_entry):
train_set = filter_train_data(country_entry, region_entry)
local_x = np.array(train_set['Timestep']) + 1
local_y = np.array(train_set['ConfirmedCases'])
p0 = np.random.exponential(size=3)
bounds = (0, [100000.0, 3.0, 1000000000.0])
try:
(a, b, c), cov = optim.curve_fit(my_logistic, local_x, local_y, p0=p0, bounds=bounds)
except:
initial_infected = infection_start(country_entry, region_entry)
c = get_population(country_entry, region_entry)
b = 2
a = c - 1
test_set = filter_test_data(country_entry, region_entry, date_entry)
test_set['Infected'] = round(my_logistic(test_set['Timestep'], a, b, c))
return test_set.iloc[0]['Infected']
def calculate_fatalities(country_entry, region_entry, date):
df = filter_train_data(country_entry, region_entry)
X = df['Timestep'].values
Y = df['Fatalities'].values
slope, intercept, r_value, p_value, std_err = stats.linregress(X, Y)
forecast_day = filter_test_data(country_entry, region_entry, date).iloc[0]['Timestep']
return round(slope * forecast_day + intercept)
submission_file = pd.read_csv('../input/covid19-global-forecasting-week-4/submission.csv')
test_data_to_forecast = pd.read_csv('../input/covid19-global-forecasting-week-4/test.csv')
test_data_to_forecast = test_data_to_forecast.replace(np.nan, '', regex=True)
merged_inner = pd.merge(submission_file, test_data_to_forecast, on='ForecastId')
beginning = 0
end = 13458
with open('submission.csv', 'w', newline='') as file:
writer = csv.writer(file)
writer.writerow(['ForecastId', 'ConfirmedCases', 'Fatalities'])
for j in range(beginning, end + 1):
try:
forecast_Id = merged_inner.iloc[j, 0]
infected = calculate_infection(merged_inner.iloc[j, 4], merged_inner.iloc[j, 3], merged_inner.iloc[j, 5])
casualties = calculate_fatalities(merged_inner.iloc[j, 4], merged_inner.iloc[j, 3], merged_inner.iloc[j, 5])
lst = [int(forecast_Id), int(infected), int(casualties)]
print(*lst, sep=', ')
writer.writerow(lst)
except:
print('error:' + str(forecast_Id) + ' ')
lst = [int(forecast_Id), 0, 0]
print(*lst, sep=', ')
writer.writerow(lst)
continue
print('End') | code |
32068734/cell_12 | [
"text_plain_output_1.png"
] | import csv
population_reader = csv.reader(open('../input/population/population.csv', 'r'))
population_dict = {}
next(population_reader)
for row in population_reader:
k, v = row
population_dict[k] = int(v)
pop_by_region_reader = csv.reader(open('../input/populationbycity/populationbycity.csv', 'r'))
populationbyregion_dict = {}
next(pop_by_region_reader)
for row in pop_by_region_reader:
k, v = row
populationbyregion_dict[k] = int(v)
def get_population(country, region):
if region != '':
if region in populationbyregion_dict:
return populationbyregion_dict[region]
else:
return 1000000
elif country != '':
if country in population_dict:
return population_dict[country]
else:
return 1000000
else:
return 1000000
print(get_population('Denmark', '')) | code |
106192404/cell_1 | [
"text_plain_output_1.png"
] | !pip install open_clip_torch | code |
106192404/cell_7 | [
"text_plain_output_1.png"
] | import torch
model = MyModel()
model.eval()
x = torch.rand(1, 3, 336, 336, device='cuda')
model(x).shape
saved_model = torch.jit.script(model)
saved_model.save('saved_model.pt')
saved_model(x).shape | code |
106192404/cell_5 | [
"text_plain_output_1.png"
] | import torch
model = MyModel()
model.eval()
x = torch.rand(1, 3, 336, 336, device='cuda')
model(x).shape | code |
18120849/cell_21 | [
"text_plain_output_1.png"
] | import numpy as np
a = np.array([0, 1, 2, 3, 4])
b = np.array([3.1, 11.02, 6.2, 231.2, 5.2])
c = np.array([20, 1, 2, 3, 4])
c
c[3:5] = (300, 400)
c | code |
18120849/cell_13 | [
"text_plain_output_1.png"
] | import numpy as np
a = np.array([0, 1, 2, 3, 4])
b = np.array([3.1, 11.02, 6.2, 231.2, 5.2])
print(f'Numpy Array b {b}')
print(f'Type of Numpy Array b {type(b)}')
print(f'Elements Type of Numpy Array b {b.dtype}')
print(f'Size of Numpy Array b {b.size}')
print(f'Dimensions of Numpy Array b {b.ndim}')
print(f'Shape of Numpy Array b {b.shape}') | code |
18120849/cell_25 | [
"text_plain_output_1.png"
] | import numpy as np
a = np.array([0, 1, 2, 3, 4])
b = np.array([3.1, 11.02, 6.2, 231.2, 5.2])
c = np.array([20, 1, 2, 3, 4])
c
u = np.array([1, 0])
u
v = np.array([0, 1])
v | code |
18120849/cell_34 | [
"text_plain_output_1.png"
] | import numpy as np
a = np.array([0, 1, 2, 3, 4])
b = np.array([3.1, 11.02, 6.2, 231.2, 5.2])
c = np.array([20, 1, 2, 3, 4])
c
u = np.array([1, 0])
u
v = np.array([0, 1])
v
y = np.array([1, 2])
y
u = np.array([1, 2])
u
v = np.array([3, 1])
v | code |
18120849/cell_30 | [
"text_plain_output_1.png"
] | import numpy as np
a = np.array([0, 1, 2, 3, 4])
b = np.array([3.1, 11.02, 6.2, 231.2, 5.2])
c = np.array([20, 1, 2, 3, 4])
c
u = np.array([1, 0])
u
v = np.array([0, 1])
v
y = np.array([1, 2])
y | code |
18120849/cell_33 | [
"text_plain_output_1.png"
] | import numpy as np
a = np.array([0, 1, 2, 3, 4])
b = np.array([3.1, 11.02, 6.2, 231.2, 5.2])
c = np.array([20, 1, 2, 3, 4])
c
u = np.array([1, 0])
u
v = np.array([0, 1])
v
y = np.array([1, 2])
y
u = np.array([1, 2])
u | code |
18120849/cell_44 | [
"text_plain_output_1.png"
] | import numpy as np
a = np.array([0, 1, 2, 3, 4])
b = np.array([3.1, 11.02, 6.2, 231.2, 5.2])
c = np.array([20, 1, 2, 3, 4])
c
u = np.array([1, 0])
u
v = np.array([0, 1])
v
z = u + v
z
z = u - v
z
y = np.array([1, 2])
y
z = 2 * y
z
u = np.array([1, 2])
u
v = np.array([3, 1])
v
z = u * v
z
u.T
z = np.dot(u, v)
z
z = u @ v
z
u = np.array([1, 2, 3, -1])
u
z = u + 1
z | code |
18120849/cell_20 | [
"text_plain_output_1.png"
] | import numpy as np
a = np.array([0, 1, 2, 3, 4])
b = np.array([3.1, 11.02, 6.2, 231.2, 5.2])
c = np.array([20, 1, 2, 3, 4])
c
d = c[1:4]
d
d.size | code |
18120849/cell_40 | [
"text_plain_output_1.png"
] | import numpy as np
a = np.array([0, 1, 2, 3, 4])
b = np.array([3.1, 11.02, 6.2, 231.2, 5.2])
c = np.array([20, 1, 2, 3, 4])
c
u = np.array([1, 0])
u
v = np.array([0, 1])
v
z = u + v
z
z = u - v
z
y = np.array([1, 2])
y
z = 2 * y
z
u = np.array([1, 2])
u
v = np.array([3, 1])
v
z = u * v
z
u.T
z = np.dot(u, v)
z
z = u @ v
z | code |
18120849/cell_39 | [
"text_plain_output_1.png"
] | import numpy as np
a = np.array([0, 1, 2, 3, 4])
b = np.array([3.1, 11.02, 6.2, 231.2, 5.2])
c = np.array([20, 1, 2, 3, 4])
c
u = np.array([1, 0])
u
v = np.array([0, 1])
v
z = u + v
z
z = u - v
z
y = np.array([1, 2])
y
z = 2 * y
z
u = np.array([1, 2])
u
v = np.array([3, 1])
v
z = u * v
z
u.T
z = np.dot(u, v)
z | code |
18120849/cell_26 | [
"text_plain_output_1.png"
] | import numpy as np
a = np.array([0, 1, 2, 3, 4])
b = np.array([3.1, 11.02, 6.2, 231.2, 5.2])
c = np.array([20, 1, 2, 3, 4])
c
u = np.array([1, 0])
u
v = np.array([0, 1])
v
z = u + v
z | code |
18120849/cell_48 | [
"text_plain_output_1.png"
] | import numpy as np
a = np.array([0, 1, 2, 3, 4])
b = np.array([3.1, 11.02, 6.2, 231.2, 5.2])
c = np.array([20, 1, 2, 3, 4])
c
u = np.array([1, 0])
u
v = np.array([0, 1])
v
z = u + v
z
z = u - v
z
y = np.array([1, 2])
y
z = 2 * y
z
u = np.array([1, 2])
u
v = np.array([3, 1])
v
z = u * v
z
u.T
z = np.dot(u, v)
z
u = np.array([1, 2, 3, -1])
u
a = np.array([1, -1, 1, -1])
a
b = np.array([1, -2, 3, 4, 5])
b | code |
18120849/cell_11 | [
"text_plain_output_1.png"
] | import numpy as np
a = np.array([0, 1, 2, 3, 4])
for index, element in enumerate(a):
print(f'index {index} element {element}') | code |
18120849/cell_19 | [
"text_plain_output_1.png"
] | import numpy as np
a = np.array([0, 1, 2, 3, 4])
b = np.array([3.1, 11.02, 6.2, 231.2, 5.2])
c = np.array([20, 1, 2, 3, 4])
c
d = c[1:4]
d | code |
18120849/cell_50 | [
"text_plain_output_1.png"
] | import numpy as np
a = np.array([0, 1, 2, 3, 4])
b = np.array([3.1, 11.02, 6.2, 231.2, 5.2])
c = np.array([20, 1, 2, 3, 4])
c
u = np.array([1, 0])
u
v = np.array([0, 1])
v
z = u + v
z
z = u - v
z
y = np.array([1, 2])
y
z = 2 * y
z
u = np.array([1, 2])
u
v = np.array([3, 1])
v
z = u * v
z
u.T
z = np.dot(u, v)
z
u = np.array([1, 2, 3, -1])
u
a = np.array([1, -1, 1, -1])
a
b = np.array([1, -2, 3, 4, 5])
b
np.pi | code |
18120849/cell_52 | [
"text_plain_output_1.png"
] | import numpy as np
a = np.array([0, 1, 2, 3, 4])
b = np.array([3.1, 11.02, 6.2, 231.2, 5.2])
c = np.array([20, 1, 2, 3, 4])
c
u = np.array([1, 0])
u
v = np.array([0, 1])
v
z = u + v
z
z = u - v
z
y = np.array([1, 2])
y
z = 2 * y
z
u = np.array([1, 2])
u
v = np.array([3, 1])
v
z = u * v
z
u.T
z = np.dot(u, v)
z
u = np.array([1, 2, 3, -1])
u
a = np.array([1, -1, 1, -1])
a
b = np.array([1, -2, 3, 4, 5])
b
np.pi
x = np.array([0, np.pi / 2, np.pi])
x
y = np.sin(x)
y | code |
18120849/cell_7 | [
"text_plain_output_1.png"
] | import numpy as np
a = np.array([0, 1, 2, 3, 4])
print(f'Numpy Array a \n{a}')
print(f'Type of Numpy Array a {type(a)}')
print(f'Elements Type of Numpy Array a {a.dtype}')
print(f'Size of Numpy Array a {a.size}')
print(f'Dimensions of Numpy Array a {a.ndim}')
print(f'Shape of Numpy Array a {a.shape}') | code |
18120849/cell_49 | [
"text_plain_output_1.png"
] | import numpy as np
a = np.array([0, 1, 2, 3, 4])
b = np.array([3.1, 11.02, 6.2, 231.2, 5.2])
c = np.array([20, 1, 2, 3, 4])
c
u = np.array([1, 0])
u
v = np.array([0, 1])
v
z = u + v
z
z = u - v
z
y = np.array([1, 2])
y
z = 2 * y
z
u = np.array([1, 2])
u
v = np.array([3, 1])
v
z = u * v
z
u.T
z = np.dot(u, v)
z
u = np.array([1, 2, 3, -1])
u
a = np.array([1, -1, 1, -1])
a
b = np.array([1, -2, 3, 4, 5])
b
max_b = b.max()
max_b | code |
18120849/cell_51 | [
"text_plain_output_1.png"
] | import numpy as np
a = np.array([0, 1, 2, 3, 4])
b = np.array([3.1, 11.02, 6.2, 231.2, 5.2])
c = np.array([20, 1, 2, 3, 4])
c
u = np.array([1, 0])
u
v = np.array([0, 1])
v
z = u + v
z
z = u - v
z
y = np.array([1, 2])
y
z = 2 * y
z
u = np.array([1, 2])
u
v = np.array([3, 1])
v
z = u * v
z
u.T
z = np.dot(u, v)
z
u = np.array([1, 2, 3, -1])
u
a = np.array([1, -1, 1, -1])
a
b = np.array([1, -2, 3, 4, 5])
b
np.pi
x = np.array([0, np.pi / 2, np.pi])
x | code |
18120849/cell_28 | [
"text_plain_output_1.png"
] | import numpy as np
a = np.array([0, 1, 2, 3, 4])
b = np.array([3.1, 11.02, 6.2, 231.2, 5.2])
c = np.array([20, 1, 2, 3, 4])
c
u = np.array([1, 0])
u
v = np.array([0, 1])
v
z = u + v
z
z = u - v
z | code |
18120849/cell_15 | [
"text_plain_output_1.png"
] | import numpy as np
a = np.array([0, 1, 2, 3, 4])
b = np.array([3.1, 11.02, 6.2, 231.2, 5.2])
c = np.array([20, 1, 2, 3, 4])
c | code |
18120849/cell_16 | [
"text_plain_output_1.png"
] | import numpy as np
a = np.array([0, 1, 2, 3, 4])
b = np.array([3.1, 11.02, 6.2, 231.2, 5.2])
c = np.array([20, 1, 2, 3, 4])
c
c[0] = 100
c | code |
18120849/cell_38 | [
"text_plain_output_1.png"
] | import numpy as np
a = np.array([0, 1, 2, 3, 4])
b = np.array([3.1, 11.02, 6.2, 231.2, 5.2])
c = np.array([20, 1, 2, 3, 4])
c
u = np.array([1, 0])
u
v = np.array([0, 1])
v
y = np.array([1, 2])
y
u = np.array([1, 2])
u
u.T | code |
18120849/cell_47 | [
"text_plain_output_1.png"
] | import numpy as np
a = np.array([0, 1, 2, 3, 4])
b = np.array([3.1, 11.02, 6.2, 231.2, 5.2])
c = np.array([20, 1, 2, 3, 4])
c
u = np.array([1, 0])
u
v = np.array([0, 1])
v
z = u + v
z
z = u - v
z
y = np.array([1, 2])
y
z = 2 * y
z
u = np.array([1, 2])
u
v = np.array([3, 1])
v
z = u * v
z
u.T
z = np.dot(u, v)
z
u = np.array([1, 2, 3, -1])
u
a = np.array([1, -1, 1, -1])
a
mean_a = a.mean()
mean_a | code |
18120849/cell_17 | [
"text_plain_output_1.png"
] | import numpy as np
a = np.array([0, 1, 2, 3, 4])
b = np.array([3.1, 11.02, 6.2, 231.2, 5.2])
c = np.array([20, 1, 2, 3, 4])
c
c[4] = 0
c | code |
18120849/cell_43 | [
"text_plain_output_1.png"
] | import numpy as np
a = np.array([0, 1, 2, 3, 4])
b = np.array([3.1, 11.02, 6.2, 231.2, 5.2])
c = np.array([20, 1, 2, 3, 4])
c
u = np.array([1, 0])
u
v = np.array([0, 1])
v
z = u + v
z
z = u - v
z
y = np.array([1, 2])
y
z = 2 * y
z
u = np.array([1, 2])
u
v = np.array([3, 1])
v
z = u * v
z
u.T
z = np.dot(u, v)
z
u = np.array([1, 2, 3, -1])
u | code |
18120849/cell_31 | [
"text_plain_output_1.png"
] | import numpy as np
a = np.array([0, 1, 2, 3, 4])
b = np.array([3.1, 11.02, 6.2, 231.2, 5.2])
c = np.array([20, 1, 2, 3, 4])
c
u = np.array([1, 0])
u
v = np.array([0, 1])
v
z = u + v
z
z = u - v
z
y = np.array([1, 2])
y
z = 2 * y
z | code |
18120849/cell_46 | [
"text_plain_output_1.png"
] | import numpy as np
a = np.array([0, 1, 2, 3, 4])
b = np.array([3.1, 11.02, 6.2, 231.2, 5.2])
c = np.array([20, 1, 2, 3, 4])
c
u = np.array([1, 0])
u
v = np.array([0, 1])
v
z = u + v
z
z = u - v
z
y = np.array([1, 2])
y
z = 2 * y
z
u = np.array([1, 2])
u
v = np.array([3, 1])
v
z = u * v
z
u.T
z = np.dot(u, v)
z
u = np.array([1, 2, 3, -1])
u
a = np.array([1, -1, 1, -1])
a | code |
18120849/cell_24 | [
"text_plain_output_1.png"
] | import numpy as np
a = np.array([0, 1, 2, 3, 4])
b = np.array([3.1, 11.02, 6.2, 231.2, 5.2])
c = np.array([20, 1, 2, 3, 4])
c
u = np.array([1, 0])
u | code |
18120849/cell_14 | [
"text_plain_output_1.png"
] | import numpy as np
a = np.array([0, 1, 2, 3, 4])
b = np.array([3.1, 11.02, 6.2, 231.2, 5.2])
for index, element in enumerate(b):
print(f'index {index} element {element}') | code |
18120849/cell_53 | [
"text_plain_output_1.png"
] | import numpy as np
a = np.array([0, 1, 2, 3, 4])
b = np.array([3.1, 11.02, 6.2, 231.2, 5.2])
c = np.array([20, 1, 2, 3, 4])
c
u = np.array([1, 0])
u
v = np.array([0, 1])
v
z = u + v
z
z = u - v
z
y = np.array([1, 2])
y
z = 2 * y
z
u = np.array([1, 2])
u
v = np.array([3, 1])
v
z = u * v
z
u.T
z = np.dot(u, v)
z
u = np.array([1, 2, 3, -1])
u
a = np.array([1, -1, 1, -1])
a
b = np.array([1, -2, 3, 4, 5])
b
np.pi
x = np.array([0, np.pi / 2, np.pi])
x
y = np.sin(x)
y
np.linspace(-2, 2, num=5) | code |
18120849/cell_10 | [
"text_plain_output_1.png"
] | import numpy as np
a = np.array([0, 1, 2, 3, 4])
a[0] | code |
18120849/cell_27 | [
"text_plain_output_1.png"
] | import numpy as np
a = np.array([0, 1, 2, 3, 4])
b = np.array([3.1, 11.02, 6.2, 231.2, 5.2])
c = np.array([20, 1, 2, 3, 4])
c
u = np.array([1, 0])
u
v = np.array([0, 1])
v
z = u + v
z
type(z) | code |
18120849/cell_36 | [
"text_plain_output_1.png"
] | import numpy as np
a = np.array([0, 1, 2, 3, 4])
b = np.array([3.1, 11.02, 6.2, 231.2, 5.2])
c = np.array([20, 1, 2, 3, 4])
c
u = np.array([1, 0])
u
v = np.array([0, 1])
v
z = u + v
z
z = u - v
z
y = np.array([1, 2])
y
z = 2 * y
z
u = np.array([1, 2])
u
v = np.array([3, 1])
v
z = u * v
z | code |
129023470/cell_4 | [
"image_output_1.png"
] | import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
import seaborn as sns | code |
129023470/cell_30 | [
"text_html_output_1.png"
] | from sklearn.utils import resample
import pandas as pd
df = pd.read_csv('/kaggle/input/credit-card-fraud-detection/creditcard.csv')
df_train = pd.concat([X_train, y_train], axis='columns')
df_not_fraud = df_train[df_train['Class'] == 0]
df_fraud = df_train[df_train['Class'] == 1]
df_not_fraud_downsample = resample(df_not_fraud, replace=False, n_samples=len(df_fraud), random_state=1234)
df_downsampled = pd.concat([df_not_fraud_downsample, df_fraud])
df_downsampled['Class'].value_counts() | code |
129023470/cell_6 | [
"text_plain_output_1.png"
] | import pandas as pd
df = pd.read_csv('/kaggle/input/credit-card-fraud-detection/creditcard.csv')
df.head() | code |
129023470/cell_8 | [
"text_plain_output_1.png"
] | import pandas as pd
df = pd.read_csv('/kaggle/input/credit-card-fraud-detection/creditcard.csv')
df.describe() | code |
129023470/cell_10 | [
"application_vnd.jupyter.stderr_output_1.png"
] | import matplotlib.pyplot as plt
import pandas as pd
import seaborn as sns
df = pd.read_csv('/kaggle/input/credit-card-fraud-detection/creditcard.csv')
plt.figure(figsize=(12, 8))
sns.countplot(x=df['Class'], data=df)
plt.show() | code |
129023470/cell_12 | [
"text_html_output_1.png"
] | import pandas as pd
df = pd.read_csv('/kaggle/input/credit-card-fraud-detection/creditcard.csv')
df['Class'].value_counts() | code |
34130031/cell_21 | [
"text_html_output_1.png"
] | import json
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv)
import json
with open('/kaggle/input/iwildcam-2020-fgvc7/iwildcam2020_train_annotations.json', 'r', errors='ignore') as f:
train_annotations = json.load(f)
samp_sub = pd.read_csv('/kaggle/input/iwildcam-2020-fgvc7/sample_submission.csv')
with open('/kaggle/input/iwildcam-2020-fgvc7/iwildcam2020_test_information.json', 'r', errors='ignore') as f:
test_information = json.load(f)
train_annotations.keys()
test_information.keys()
train_ann = pd.DataFrame(train_annotations['annotations'])
train_cat = pd.DataFrame(train_annotations['categories'])
train_imgs = pd.DataFrame(train_annotations['images'])
test_imgs = pd.DataFrame(test_information['images'])
test_cat = pd.DataFrame(test_information['categories'])
test_cat | code |
34130031/cell_13 | [
"text_plain_output_1.png"
] | import json
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv)
import json
with open('/kaggle/input/iwildcam-2020-fgvc7/iwildcam2020_train_annotations.json', 'r', errors='ignore') as f:
train_annotations = json.load(f)
samp_sub = pd.read_csv('/kaggle/input/iwildcam-2020-fgvc7/sample_submission.csv')
train_annotations.keys()
train_ann = pd.DataFrame(train_annotations['annotations'])
train_cat = pd.DataFrame(train_annotations['categories'])
train_cat | code |
34130031/cell_9 | [
"text_html_output_1.png"
] | import json
import json
with open('/kaggle/input/iwildcam-2020-fgvc7/iwildcam2020_train_annotations.json', 'r', errors='ignore') as f:
train_annotations = json.load(f)
with open('/kaggle/input/iwildcam-2020-fgvc7/iwildcam2020_test_information.json', 'r', errors='ignore') as f:
test_information = json.load(f)
with open('/kaggle/input/iwildcam-2020-fgvc7/iwildcam2020_megadetector_results.json', 'r', errors='ignore') as f:
megadetector_results = json.load(f)
megadetector_results.keys() | code |
34130031/cell_4 | [
"text_plain_output_1.png"
] | import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv)
samp_sub = pd.read_csv('/kaggle/input/iwildcam-2020-fgvc7/sample_submission.csv')
samp_sub | code |
34130031/cell_11 | [
"text_html_output_1.png"
] | import json
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv)
import json
with open('/kaggle/input/iwildcam-2020-fgvc7/iwildcam2020_train_annotations.json', 'r', errors='ignore') as f:
train_annotations = json.load(f)
samp_sub = pd.read_csv('/kaggle/input/iwildcam-2020-fgvc7/sample_submission.csv')
train_annotations.keys()
train_ann = pd.DataFrame(train_annotations['annotations'])
train_ann | code |
34130031/cell_19 | [
"text_html_output_1.png"
] | import json
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv)
import json
with open('/kaggle/input/iwildcam-2020-fgvc7/iwildcam2020_train_annotations.json', 'r', errors='ignore') as f:
train_annotations = json.load(f)
samp_sub = pd.read_csv('/kaggle/input/iwildcam-2020-fgvc7/sample_submission.csv')
with open('/kaggle/input/iwildcam-2020-fgvc7/iwildcam2020_test_information.json', 'r', errors='ignore') as f:
test_information = json.load(f)
train_annotations.keys()
test_information.keys()
train_ann = pd.DataFrame(train_annotations['annotations'])
train_cat = pd.DataFrame(train_annotations['categories'])
train_imgs = pd.DataFrame(train_annotations['images'])
test_imgs = pd.DataFrame(test_information['images'])
test_imgs | code |
Subsets and Splits
No saved queries yet
Save your SQL queries to embed, download, and access them later. Queries will appear here once saved.