path
stringlengths
13
17
screenshot_names
sequencelengths
1
873
code
stringlengths
0
40.4k
cell_type
stringclasses
1 value
106210927/cell_7
[ "text_plain_output_1.png" ]
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) INPUT_DIR = '/kaggle/input/sf-booking/' df_train = pd.read_csv(INPUT_DIR + '/hotels_train.csv') df_test = pd.read_csv(INPUT_DIR + 'hotels_test.csv') sample_submission = pd.read_csv(INPUT_DIR + '/submission.csv') df_train.info()
code
106210927/cell_8
[ "text_html_output_1.png" ]
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) INPUT_DIR = '/kaggle/input/sf-booking/' df_train = pd.read_csv(INPUT_DIR + '/hotels_train.csv') df_test = pd.read_csv(INPUT_DIR + 'hotels_test.csv') sample_submission = pd.read_csv(INPUT_DIR + '/submission.csv') df_train.head(3)
code
106210927/cell_15
[ "text_html_output_1.png" ]
import matplotlib.pyplot as plt import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) import seaborn as sns INPUT_DIR = '/kaggle/input/sf-booking/' df_train = pd.read_csv(INPUT_DIR + '/hotels_train.csv') df_test = pd.read_csv(INPUT_DIR + 'hotels_test.csv') sample_submission = pd.read_csv(INPUT_DIR + '/submission.csv') df_train['sample'] = 1 df_test['sample'] = 0 df_test['reviewer_score'] = 0 hotels = pd.concat([df_train, df_test], ignore_index=True) plt.rcParams['figure.figsize'] = (15, 10) sns.heatmap(hotels.drop(['sample'], axis=1).corr(), annot=True)
code
106210927/cell_3
[ "text_html_output_1.png" ]
import numpy as np import pandas as pd import collections import re import nltk from nltk.sentiment.vader import SentimentIntensityAnalyzer nltk.downloader.download('vader_lexicon') import matplotlib.pyplot as plt import seaborn as sns import plotly.express as px from sklearn.model_selection import train_test_split import os for dirname, _, filenames in os.walk('/kaggle/input'): for filename in filenames: print(os.path.join(dirname, filename))
code
106210927/cell_10
[ "text_plain_output_2.png", "application_vnd.jupyter.stderr_output_1.png" ]
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) INPUT_DIR = '/kaggle/input/sf-booking/' df_train = pd.read_csv(INPUT_DIR + '/hotels_train.csv') df_test = pd.read_csv(INPUT_DIR + 'hotels_test.csv') sample_submission = pd.read_csv(INPUT_DIR + '/submission.csv') df_test.head(3)
code
106210927/cell_12
[ "text_html_output_1.png" ]
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) INPUT_DIR = '/kaggle/input/sf-booking/' df_train = pd.read_csv(INPUT_DIR + '/hotels_train.csv') df_test = pd.read_csv(INPUT_DIR + 'hotels_test.csv') sample_submission = pd.read_csv(INPUT_DIR + '/submission.csv') sample_submission.info()
code
331819/cell_4
[ "image_output_2.png", "image_output_1.png" ]
qplot(SepalLengthCm, SepalWidthCm, data=df, col=Species) qplot(PetalLengthCm, PetalWidthCm, data=df, col=Species)
code
331819/cell_2
[ "text_html_output_1.png" ]
library(ggplot2) library(readr) df < -read_csv('../input/Iris.csv') head(df)
code
331819/cell_3
[ "image_output_2.png", "image_output_1.png" ]
qplot(SepalLengthCm, SepalWidthCm, data=df) qplot(PetalLengthCm, PetalWidthCm, data=df)
code
105202366/cell_13
[ "text_html_output_1.png" ]
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) ds_data = pd.read_csv('../input/data-science-job-salaries/ds_salaries.csv') ds_data = ds_data.drop('Unnamed: 0', axis=1) ds_data ds_data.isnull().sum() ds_data.head()
code
105202366/cell_9
[ "image_output_1.png" ]
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) ds_data = pd.read_csv('../input/data-science-job-salaries/ds_salaries.csv') ds_data = ds_data.drop('Unnamed: 0', axis=1) ds_data ds_data.isnull().sum()
code
105202366/cell_4
[ "text_plain_output_1.png" ]
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) ds_data = pd.read_csv('../input/data-science-job-salaries/ds_salaries.csv') ds_data = ds_data.drop('Unnamed: 0', axis=1) ds_data
code
105202366/cell_23
[ "text_plain_output_1.png" ]
len(x_test)
code
105202366/cell_33
[ "text_plain_output_1.png" ]
from sklearn.naive_bayes import MultinomialNB naive = MultinomialNB() naive.fit(x_train, y_train) naive_score = naive.score(x_test, y_test) naive_score
code
105202366/cell_6
[ "text_plain_output_1.png" ]
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) ds_data = pd.read_csv('../input/data-science-job-salaries/ds_salaries.csv') ds_data = ds_data.drop('Unnamed: 0', axis=1) ds_data ds_data.info()
code
105202366/cell_1
[ "text_plain_output_1.png" ]
import os import warnings import numpy as np import pandas as pd import seaborn as sns import matplotlib.pyplot as plt import warnings warnings.filterwarnings('ignore') import os for dirname, _, filenames in os.walk('/kaggle/input'): for filename in filenames: print(os.path.join(dirname, filename))
code
105202366/cell_7
[ "text_plain_output_1.png" ]
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) ds_data = pd.read_csv('../input/data-science-job-salaries/ds_salaries.csv') ds_data = ds_data.drop('Unnamed: 0', axis=1) ds_data len(ds_data)
code
105202366/cell_32
[ "text_plain_output_1.png", "image_output_1.png" ]
from sklearn.naive_bayes import MultinomialNB naive = MultinomialNB() naive.fit(x_train, y_train)
code
105202366/cell_28
[ "text_html_output_1.png" ]
from sklearn.linear_model import LogisticRegression log = LogisticRegression() log.fit(x_train, y_train) log_score = log.score(x_test, y_test) log_score
code
105202366/cell_16
[ "text_html_output_1.png" ]
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) import seaborn as sns ds_data = pd.read_csv('../input/data-science-job-salaries/ds_salaries.csv') ds_data = ds_data.drop('Unnamed: 0', axis=1) ds_data ds_data.isnull().sum() sns.heatmap(ds_data.corr())
code
105202366/cell_3
[ "text_plain_output_1.png" ]
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) ds_data = pd.read_csv('../input/data-science-job-salaries/ds_salaries.csv') ds_data.head()
code
105202366/cell_35
[ "text_plain_output_1.png" ]
from sklearn.linear_model import LogisticRegression from sklearn.naive_bayes import MultinomialNB import matplotlib.pyplot as plt log = LogisticRegression() log.fit(x_train, y_train) log_score = log.score(x_test, y_test) log_score naive = MultinomialNB() naive.fit(x_train, y_train) naive_score = naive.score(x_test, y_test) naive_score plt.hist(log_score, color='Red') plt.hist(naive_score, color='Green') plt.title('Logistic vs Naive Bayes Algorithm') plt.show()
code
105202366/cell_14
[ "text_html_output_1.png" ]
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) ds_data = pd.read_csv('../input/data-science-job-salaries/ds_salaries.csv') ds_data = ds_data.drop('Unnamed: 0', axis=1) ds_data ds_data.isnull().sum() ds_data.info()
code
105202366/cell_22
[ "text_plain_output_1.png" ]
len(x_train)
code
105202366/cell_27
[ "text_plain_output_1.png" ]
from sklearn.linear_model import LogisticRegression log = LogisticRegression() log.fit(x_train, y_train)
code
105202366/cell_5
[ "text_plain_output_1.png" ]
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) ds_data = pd.read_csv('../input/data-science-job-salaries/ds_salaries.csv') ds_data = ds_data.drop('Unnamed: 0', axis=1) ds_data ds_data.describe()
code
2015269/cell_9
[ "text_plain_output_1.png" ]
import pandas as pd import plotly.graph_objs as go import plotly.offline as pyo data_df = pd.read_csv('../input/mushrooms.csv') data_df['y'] = data_df['class'].map({'p': 1, 'e': 0}) x_columns = [c for c in data_df.columns if not c in ('class', 'y')] stats_df = [] single_val_c = {} for i, c in enumerate(x_columns): if data_df[c].nunique() == 1: single_val_c[c] = data_df[c].unique()[0] continue gb = data_df.groupby(c) m = gb['y'].mean() s = gb.size() df = pd.DataFrame(index=range(len(m))) df['col'] = c df['val'] = m.index.values df['positive_persent'] = m.values df['count_persent'] = s.values / s.sum() stats_df.append(df) trace_prate = go.Bar(x=df['val'], y=df['positive_persent'] * 100, name='positive persent') trace_cnt = go.Bar(x=df['val'], y=df['count_persent'] * 100, name='count persent') layout = go.Layout(xaxis=dict(title=c), yaxis=dict(title='positive and count persent')) fig = go.Figure(data=[trace_prate, trace_cnt], layout=layout) stats_df = pd.concat(stats_df, axis=0) for c in single_val_c.keys(): print('The column %s only has one unique value with %r.' % (c, single_val_c[c])) print('It does work for the classification, which will be removed.') x_columns.remove(c)
code
2015269/cell_4
[ "text_plain_output_1.png" ]
import pandas as pd data_df = pd.read_csv('../input/mushrooms.csv') data_df.info()
code
2015269/cell_6
[ "text_html_output_10.png", "text_html_output_16.png", "text_html_output_4.png", "text_html_output_6.png", "text_html_output_2.png", "text_html_output_15.png", "text_html_output_5.png", "text_html_output_14.png", "text_html_output_19.png", "text_html_output_9.png", "text_html_output_13.png", "text_html_output_20.png", "text_html_output_21.png", "text_html_output_1.png", "text_html_output_17.png", "text_html_output_18.png", "text_html_output_12.png", "text_html_output_11.png", "text_html_output_8.png", "text_html_output_3.png", "text_html_output_7.png" ]
import pandas as pd import plotly.graph_objs as go import plotly.offline as pyo data_df = pd.read_csv('../input/mushrooms.csv') data_df['y'] = data_df['class'].map({'p': 1, 'e': 0}) x_columns = [c for c in data_df.columns if not c in ('class', 'y')] stats_df = [] single_val_c = {} for i, c in enumerate(x_columns): if data_df[c].nunique() == 1: single_val_c[c] = data_df[c].unique()[0] continue gb = data_df.groupby(c) m = gb['y'].mean() s = gb.size() df = pd.DataFrame(index=range(len(m))) df['col'] = c df['val'] = m.index.values df['positive_persent'] = m.values df['count_persent'] = s.values / s.sum() stats_df.append(df) trace_prate = go.Bar(x=df['val'], y=df['positive_persent'] * 100, name='positive persent') trace_cnt = go.Bar(x=df['val'], y=df['count_persent'] * 100, name='count persent') layout = go.Layout(xaxis=dict(title=c), yaxis=dict(title='positive and count persent')) fig = go.Figure(data=[trace_prate, trace_cnt], layout=layout) pyo.iplot(fig) stats_df = pd.concat(stats_df, axis=0)
code
2015269/cell_7
[ "text_html_output_1.png" ]
import pandas as pd import plotly.graph_objs as go import plotly.offline as pyo data_df = pd.read_csv('../input/mushrooms.csv') data_df['y'] = data_df['class'].map({'p': 1, 'e': 0}) x_columns = [c for c in data_df.columns if not c in ('class', 'y')] stats_df = [] single_val_c = {} for i, c in enumerate(x_columns): if data_df[c].nunique() == 1: single_val_c[c] = data_df[c].unique()[0] continue gb = data_df.groupby(c) m = gb['y'].mean() s = gb.size() df = pd.DataFrame(index=range(len(m))) df['col'] = c df['val'] = m.index.values df['positive_persent'] = m.values df['count_persent'] = s.values / s.sum() stats_df.append(df) trace_prate = go.Bar(x=df['val'], y=df['positive_persent'] * 100, name='positive persent') trace_cnt = go.Bar(x=df['val'], y=df['count_persent'] * 100, name='count persent') layout = go.Layout(xaxis=dict(title=c), yaxis=dict(title='positive and count persent')) fig = go.Figure(data=[trace_prate, trace_cnt], layout=layout) stats_df = pd.concat(stats_df, axis=0) stats_df.describe()
code
2015269/cell_8
[ "text_html_output_1.png" ]
import pandas as pd import plotly.graph_objs as go import plotly.offline as pyo data_df = pd.read_csv('../input/mushrooms.csv') data_df['y'] = data_df['class'].map({'p': 1, 'e': 0}) x_columns = [c for c in data_df.columns if not c in ('class', 'y')] stats_df = [] single_val_c = {} for i, c in enumerate(x_columns): if data_df[c].nunique() == 1: single_val_c[c] = data_df[c].unique()[0] continue gb = data_df.groupby(c) m = gb['y'].mean() s = gb.size() df = pd.DataFrame(index=range(len(m))) df['col'] = c df['val'] = m.index.values df['positive_persent'] = m.values df['count_persent'] = s.values / s.sum() stats_df.append(df) trace_prate = go.Bar(x=df['val'], y=df['positive_persent'] * 100, name='positive persent') trace_cnt = go.Bar(x=df['val'], y=df['count_persent'] * 100, name='count persent') layout = go.Layout(xaxis=dict(title=c), yaxis=dict(title='positive and count persent')) fig = go.Figure(data=[trace_prate, trace_cnt], layout=layout) stats_df = pd.concat(stats_df, axis=0) stats_df.head(10)
code
2015269/cell_3
[ "text_plain_output_1.png" ]
from subprocess import check_output np.set_printoptions(suppress=True, linewidth=300) pd.options.display.float_format = lambda x: '%0.6f' % x pyo.init_notebook_mode(connected=True) print(check_output(['ls', '../input']).decode('utf-8'))
code
2015269/cell_5
[ "text_html_output_1.png" ]
import pandas as pd data_df = pd.read_csv('../input/mushrooms.csv') data_df.head()
code
104115759/cell_13
[ "text_html_output_1.png" ]
import pandas as pd df = pd.read_csv('../input/al-majlis-ai-hackathon-investment/InvestmentDatasetMasked.csv') df.columns len(df.columns) df.describe().T df.isnull().sum()
code
104115759/cell_34
[ "text_plain_output_1.png" ]
from sklearn.linear_model import LinearRegression from sklearn.model_selection import train_test_split import pandas as pd df = pd.read_csv('../input/al-majlis-ai-hackathon-investment/InvestmentDatasetMasked.csv') df.columns len(df.columns) df.describe().T df.isnull().sum() df.nunique() df.dtypes X = df[['Masked Date', 'col-A1', 'col-A2', 'col-A3', 'col-A4', 'col-B1', 'col-B2', 'col-B3', 'col-B4', 'col-C1', 'col-C2', 'col-C3', 'col-C4', 'col-D1', 'col-D2', 'col-D3', 'col-D4', 'col-E1', 'col-E2', 'col-E3', 'col-E4', 'col-F1', 'col-F2', 'col-F3', 'col-F4', 'col-G', 'col-H', 'col-I', 'col-J', 'col-L', 'col-M', 'col-N', 'col-N1', 'col-O', 'col-P', 'col-Q', 'col-R', 'col-S', 'col-T', 'col-U', 'col-V', 'col-W']] y = df['col-Predict'] X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=0) predict = pd.read_csv('../input/al-majlis-ai-hackathon-investment-submission/submissionFile.csv') predict predict_data = predict.iloc[:, :1] predict_data for i in range(1, 42): X = df['Masked Date'] y = df.iloc[:, i] X = X.values.reshape(-1, 1) lr_predict = LinearRegression() lr_predict.fit(X, y) predict_value = predict_data.iloc[:, :1] predictions = lr_predict.predict(predict_value) predict_data[i] = predictions predict_data
code
104115759/cell_23
[ "text_plain_output_1.png" ]
from sklearn.linear_model import LinearRegression lr = LinearRegression() lr.fit(X_train, y_train) y_predictions = lr.predict(X_test) lr.score(X_test, y_test)
code
104115759/cell_30
[ "text_plain_output_1.png" ]
import pandas as pd df = pd.read_csv('../input/al-majlis-ai-hackathon-investment/InvestmentDatasetMasked.csv') predict = pd.read_csv('../input/al-majlis-ai-hackathon-investment-submission/submissionFile.csv') predict predict_data = predict.iloc[:, :1] predict_data
code
104115759/cell_6
[ "text_plain_output_1.png" ]
import pandas as pd df = pd.read_csv('../input/al-majlis-ai-hackathon-investment/InvestmentDatasetMasked.csv') df
code
104115759/cell_39
[ "application_vnd.jupyter.stderr_output_1.png" ]
from sklearn.linear_model import LinearRegression from sklearn.model_selection import train_test_split import pandas as pd df = pd.read_csv('../input/al-majlis-ai-hackathon-investment/InvestmentDatasetMasked.csv') df.columns len(df.columns) df.describe().T df.isnull().sum() df.nunique() df.dtypes X = df[['Masked Date', 'col-A1', 'col-A2', 'col-A3', 'col-A4', 'col-B1', 'col-B2', 'col-B3', 'col-B4', 'col-C1', 'col-C2', 'col-C3', 'col-C4', 'col-D1', 'col-D2', 'col-D3', 'col-D4', 'col-E1', 'col-E2', 'col-E3', 'col-E4', 'col-F1', 'col-F2', 'col-F3', 'col-F4', 'col-G', 'col-H', 'col-I', 'col-J', 'col-L', 'col-M', 'col-N', 'col-N1', 'col-O', 'col-P', 'col-Q', 'col-R', 'col-S', 'col-T', 'col-U', 'col-V', 'col-W']] y = df['col-Predict'] X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=0) lr = LinearRegression() lr.fit(X_train, y_train) y_predictions = lr.predict(X_test) lr.score(X_test, y_test) predict = pd.read_csv('../input/al-majlis-ai-hackathon-investment-submission/submissionFile.csv') predict predict_data = predict.iloc[:, :1] predict_data for i in range(1, 42): X = df['Masked Date'] y = df.iloc[:, i] X = X.values.reshape(-1, 1) lr_predict = LinearRegression() lr_predict.fit(X, y) predict_value = predict_data.iloc[:, :1] predictions = lr_predict.predict(predict_value) predict_data[i] = predictions predict_data.columns = [['Masked Date', 'col-A1', 'col-A2', 'col-A3', 'col-A4', 'col-B1', 'col-B2', 'col-B3', 'col-B4', 'col-C1', 'col-C2', 'col-C3', 'col-C4', 'col-D1', 'col-D2', 'col-D3', 'col-D4', 'col-E1', 'col-E2', 'col-E3', 'col-E4', 'col-F1', 'col-F2', 'col-F3', 'col-F4', 'col-G', 'col-H', 'col-I', 'col-J', 'col-L', 'col-M', 'col-N', 'col-N1', 'col-O', 'col-P', 'col-Q', 'col-R', 'col-S', 'col-T', 'col-U', 'col-V', 'col-W']] predictions = lr.predict(predict_data) predictions
code
104115759/cell_41
[ "text_html_output_1.png" ]
import pandas as pd df = pd.read_csv('../input/al-majlis-ai-hackathon-investment/InvestmentDatasetMasked.csv') predict = pd.read_csv('../input/al-majlis-ai-hackathon-investment-submission/submissionFile.csv') predict predict_data = predict.iloc[:, :1] predict_data predict
code
104115759/cell_11
[ "text_plain_output_1.png" ]
import pandas as pd df = pd.read_csv('../input/al-majlis-ai-hackathon-investment/InvestmentDatasetMasked.csv') df.columns len(df.columns) df.head()
code
104115759/cell_7
[ "text_html_output_1.png" ]
import pandas as pd df = pd.read_csv('../input/al-majlis-ai-hackathon-investment/InvestmentDatasetMasked.csv') df.columns
code
104115759/cell_32
[ "text_html_output_1.png" ]
from sklearn.linear_model import LinearRegression from sklearn.model_selection import train_test_split import pandas as pd df = pd.read_csv('../input/al-majlis-ai-hackathon-investment/InvestmentDatasetMasked.csv') df.columns len(df.columns) df.describe().T df.isnull().sum() df.nunique() df.dtypes X = df[['Masked Date', 'col-A1', 'col-A2', 'col-A3', 'col-A4', 'col-B1', 'col-B2', 'col-B3', 'col-B4', 'col-C1', 'col-C2', 'col-C3', 'col-C4', 'col-D1', 'col-D2', 'col-D3', 'col-D4', 'col-E1', 'col-E2', 'col-E3', 'col-E4', 'col-F1', 'col-F2', 'col-F3', 'col-F4', 'col-G', 'col-H', 'col-I', 'col-J', 'col-L', 'col-M', 'col-N', 'col-N1', 'col-O', 'col-P', 'col-Q', 'col-R', 'col-S', 'col-T', 'col-U', 'col-V', 'col-W']] y = df['col-Predict'] X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=0) predict = pd.read_csv('../input/al-majlis-ai-hackathon-investment-submission/submissionFile.csv') predict predict_data = predict.iloc[:, :1] predict_data for i in range(1, 42): X = df['Masked Date'] y = df.iloc[:, i] X = X.values.reshape(-1, 1) lr_predict = LinearRegression() lr_predict.fit(X, y) predict_value = predict_data.iloc[:, :1] predictions = lr_predict.predict(predict_value) predict_data[i] = predictions
code
104115759/cell_28
[ "text_plain_output_1.png" ]
import pandas as pd df = pd.read_csv('../input/al-majlis-ai-hackathon-investment/InvestmentDatasetMasked.csv') predict = pd.read_csv('../input/al-majlis-ai-hackathon-investment-submission/submissionFile.csv') predict len(predict)
code
104115759/cell_8
[ "text_plain_output_1.png" ]
import pandas as pd df = pd.read_csv('../input/al-majlis-ai-hackathon-investment/InvestmentDatasetMasked.csv') df.columns len(df.columns)
code
104115759/cell_15
[ "text_html_output_1.png" ]
import pandas as pd df = pd.read_csv('../input/al-majlis-ai-hackathon-investment/InvestmentDatasetMasked.csv') df.columns len(df.columns) df.describe().T df.isnull().sum() df.nunique()
code
104115759/cell_16
[ "text_html_output_1.png" ]
import pandas as pd df = pd.read_csv('../input/al-majlis-ai-hackathon-investment/InvestmentDatasetMasked.csv') df.columns len(df.columns) df.describe().T df.isnull().sum() df.nunique() df.dtypes
code
104115759/cell_38
[ "text_html_output_1.png" ]
from sklearn.linear_model import LinearRegression from sklearn.model_selection import train_test_split import pandas as pd df = pd.read_csv('../input/al-majlis-ai-hackathon-investment/InvestmentDatasetMasked.csv') df.columns len(df.columns) df.describe().T df.isnull().sum() df.nunique() df.dtypes X = df[['Masked Date', 'col-A1', 'col-A2', 'col-A3', 'col-A4', 'col-B1', 'col-B2', 'col-B3', 'col-B4', 'col-C1', 'col-C2', 'col-C3', 'col-C4', 'col-D1', 'col-D2', 'col-D3', 'col-D4', 'col-E1', 'col-E2', 'col-E3', 'col-E4', 'col-F1', 'col-F2', 'col-F3', 'col-F4', 'col-G', 'col-H', 'col-I', 'col-J', 'col-L', 'col-M', 'col-N', 'col-N1', 'col-O', 'col-P', 'col-Q', 'col-R', 'col-S', 'col-T', 'col-U', 'col-V', 'col-W']] y = df['col-Predict'] X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=0) lr = LinearRegression() lr.fit(X_train, y_train) y_predictions = lr.predict(X_test) lr.score(X_test, y_test) predict = pd.read_csv('../input/al-majlis-ai-hackathon-investment-submission/submissionFile.csv') predict predict_data = predict.iloc[:, :1] predict_data for i in range(1, 42): X = df['Masked Date'] y = df.iloc[:, i] X = X.values.reshape(-1, 1) lr_predict = LinearRegression() lr_predict.fit(X, y) predict_value = predict_data.iloc[:, :1] predictions = lr_predict.predict(predict_value) predict_data[i] = predictions predict_data.columns = [['Masked Date', 'col-A1', 'col-A2', 'col-A3', 'col-A4', 'col-B1', 'col-B2', 'col-B3', 'col-B4', 'col-C1', 'col-C2', 'col-C3', 'col-C4', 'col-D1', 'col-D2', 'col-D3', 'col-D4', 'col-E1', 'col-E2', 'col-E3', 'col-E4', 'col-F1', 'col-F2', 'col-F3', 'col-F4', 'col-G', 'col-H', 'col-I', 'col-J', 'col-L', 'col-M', 'col-N', 'col-N1', 'col-O', 'col-P', 'col-Q', 'col-R', 'col-S', 'col-T', 'col-U', 'col-V', 'col-W']] predictions = lr.predict(predict_data)
code
104115759/cell_43
[ "application_vnd.jupyter.stderr_output_1.png" ]
from sklearn.linear_model import LinearRegression from sklearn.model_selection import train_test_split import pandas as pd df = pd.read_csv('../input/al-majlis-ai-hackathon-investment/InvestmentDatasetMasked.csv') df.columns len(df.columns) df.describe().T df.isnull().sum() df.nunique() df.dtypes X = df[['Masked Date', 'col-A1', 'col-A2', 'col-A3', 'col-A4', 'col-B1', 'col-B2', 'col-B3', 'col-B4', 'col-C1', 'col-C2', 'col-C3', 'col-C4', 'col-D1', 'col-D2', 'col-D3', 'col-D4', 'col-E1', 'col-E2', 'col-E3', 'col-E4', 'col-F1', 'col-F2', 'col-F3', 'col-F4', 'col-G', 'col-H', 'col-I', 'col-J', 'col-L', 'col-M', 'col-N', 'col-N1', 'col-O', 'col-P', 'col-Q', 'col-R', 'col-S', 'col-T', 'col-U', 'col-V', 'col-W']] y = df['col-Predict'] X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=0) predict = pd.read_csv('../input/al-majlis-ai-hackathon-investment-submission/submissionFile.csv') predict predict_data = predict.iloc[:, :1] predict_data for i in range(1, 42): X = df['Masked Date'] y = df.iloc[:, i] X = X.values.reshape(-1, 1) lr_predict = LinearRegression() lr_predict.fit(X, y) predict_value = predict_data.iloc[:, :1] predictions = lr_predict.predict(predict_value) predict_data[i] = predictions df['col-Predict']
code
104115759/cell_10
[ "text_html_output_1.png" ]
import pandas as pd df = pd.read_csv('../input/al-majlis-ai-hackathon-investment/InvestmentDatasetMasked.csv') df.columns len(df.columns) df.tail()
code
104115759/cell_27
[ "text_plain_output_1.png" ]
import pandas as pd df = pd.read_csv('../input/al-majlis-ai-hackathon-investment/InvestmentDatasetMasked.csv') predict = pd.read_csv('../input/al-majlis-ai-hackathon-investment-submission/submissionFile.csv') predict
code
104115759/cell_12
[ "text_plain_output_1.png" ]
import pandas as pd df = pd.read_csv('../input/al-majlis-ai-hackathon-investment/InvestmentDatasetMasked.csv') df.columns len(df.columns) df.describe().T
code
106198491/cell_13
[ "text_html_output_1.png" ]
import pandas as pd df = pd.read_csv('../input/pokemon-dataset/pokemon_data.csv') df.columns df.Name df[['Name', 'Type 1', 'HP']] df.iloc[0] df.loc[df['Name'] == 'Ivysaur'] df.iloc[0, 1] df.sort_values('HP', ascending=False) df.sort_values(['HP', 'Attack'], ascending=[1, 0]) df['Total'] = df.iloc[:, 4:10].sum(axis=1) df cols = list(df.columns) df = df[cols[:4] + [cols[-1]] + cols[4:12]] df df.to_csv('modified_pokemon_data.csv') df = pd.read_csv('./modified_pokemon_data.csv') df df.loc[df['Type 1'] == 'Flamer', 'Legendary'] = True df = pd.read_csv('./modified_pokemon_data.csv') df df.loc[df['Total'] > 500, ['Generation', 'Legendary']] = 'Highest' df.loc[df['Total'] > 500, ['Generation', 'Legendary']] = ['Highest Gen', 'Highest Legend'] df = pd.read_csv('./modified_pokemon_data.csv') df
code
106198491/cell_6
[ "text_plain_output_1.png" ]
import pandas as pd df = pd.read_csv('../input/pokemon-dataset/pokemon_data.csv') df.columns df.Name df[['Name', 'Type 1', 'HP']] df.iloc[0] df.loc[df['Name'] == 'Ivysaur'] df.iloc[0, 1]
code
106198491/cell_11
[ "text_plain_output_1.png" ]
import pandas as pd df = pd.read_csv('../input/pokemon-dataset/pokemon_data.csv') df.columns df.Name df[['Name', 'Type 1', 'HP']] df.iloc[0] df.loc[df['Name'] == 'Ivysaur'] df.iloc[0, 1] df.sort_values('HP', ascending=False) df.sort_values(['HP', 'Attack'], ascending=[1, 0]) df['Total'] = df.iloc[:, 4:10].sum(axis=1) df cols = list(df.columns) df = df[cols[:4] + [cols[-1]] + cols[4:12]] df df.to_csv('modified_pokemon_data.csv') df = pd.read_csv('./modified_pokemon_data.csv') df df.loc[df['Type 1'] == 'Flamer', 'Legendary'] = True df = pd.read_csv('./modified_pokemon_data.csv') df
code
106198491/cell_7
[ "text_plain_output_1.png" ]
import pandas as pd df = pd.read_csv('../input/pokemon-dataset/pokemon_data.csv') df.columns df.Name df[['Name', 'Type 1', 'HP']] df.iloc[0] df.loc[df['Name'] == 'Ivysaur'] df.iloc[0, 1] df.describe() df.sort_values('HP', ascending=False) df.sort_values(['HP', 'Attack'], ascending=[1, 0])
code
106198491/cell_8
[ "text_plain_output_1.png" ]
import pandas as pd df = pd.read_csv('../input/pokemon-dataset/pokemon_data.csv') df.columns df.Name df[['Name', 'Type 1', 'HP']] df.iloc[0] df.loc[df['Name'] == 'Ivysaur'] df.iloc[0, 1] df.sort_values('HP', ascending=False) df.sort_values(['HP', 'Attack'], ascending=[1, 0]) df['Total'] = df.iloc[:, 4:10].sum(axis=1) df cols = list(df.columns) df = df[cols[:4] + [cols[-1]] + cols[4:12]] df
code
106198491/cell_15
[ "text_html_output_1.png" ]
import pandas as pd df = pd.read_csv('../input/pokemon-dataset/pokemon_data.csv') df.columns df.Name df[['Name', 'Type 1', 'HP']] df.iloc[0] df.loc[df['Name'] == 'Ivysaur'] df.iloc[0, 1] df.sort_values('HP', ascending=False) df.sort_values(['HP', 'Attack'], ascending=[1, 0]) df['Total'] = df.iloc[:, 4:10].sum(axis=1) df cols = list(df.columns) df = df[cols[:4] + [cols[-1]] + cols[4:12]] df df.to_csv('modified_pokemon_data.csv') df = pd.read_csv('./modified_pokemon_data.csv') df df.loc[df['Type 1'] == 'Flamer', 'Legendary'] = True df = pd.read_csv('./modified_pokemon_data.csv') df df.loc[df['Total'] > 500, ['Generation', 'Legendary']] = 'Highest' df.loc[df['Total'] > 500, ['Generation', 'Legendary']] = ['Highest Gen', 'Highest Legend'] df = pd.read_csv('./modified_pokemon_data.csv') df df.groupby(['Type 1']).mean().sort_values('Defense', ascending=False)['Defense'] df.groupby(['Type 1']).mean().sort_values('Attack', ascending=False)['Attack'] df.groupby(['Type 1']).mean().sort_values('HP', ascending=False)['HP']
code
106198491/cell_16
[ "text_html_output_1.png" ]
import pandas as pd df = pd.read_csv('../input/pokemon-dataset/pokemon_data.csv') df.columns df.Name df[['Name', 'Type 1', 'HP']] df.iloc[0] df.loc[df['Name'] == 'Ivysaur'] df.iloc[0, 1] df.sort_values('HP', ascending=False) df.sort_values(['HP', 'Attack'], ascending=[1, 0]) df['Total'] = df.iloc[:, 4:10].sum(axis=1) df cols = list(df.columns) df = df[cols[:4] + [cols[-1]] + cols[4:12]] df df.to_csv('modified_pokemon_data.csv') df = pd.read_csv('./modified_pokemon_data.csv') df df.loc[df['Type 1'] == 'Flamer', 'Legendary'] = True df = pd.read_csv('./modified_pokemon_data.csv') df df.loc[df['Total'] > 500, ['Generation', 'Legendary']] = 'Highest' df.loc[df['Total'] > 500, ['Generation', 'Legendary']] = ['Highest Gen', 'Highest Legend'] df = pd.read_csv('./modified_pokemon_data.csv') df df.groupby(['Type 1']).mean().sort_values('Defense', ascending=False)['Defense'] df.groupby(['Type 1']).mean().sort_values('Attack', ascending=False)['Attack'] df.groupby(['Type 1']).mean().sort_values('HP', ascending=False)['HP'] df.groupby(['Type 1']).count()['Name']
code
106198491/cell_17
[ "text_html_output_1.png" ]
import pandas as pd df = pd.read_csv('../input/pokemon-dataset/pokemon_data.csv') df.columns df.Name df[['Name', 'Type 1', 'HP']] df.iloc[0] df.loc[df['Name'] == 'Ivysaur'] df.iloc[0, 1] df.sort_values('HP', ascending=False) df.sort_values(['HP', 'Attack'], ascending=[1, 0]) df['Total'] = df.iloc[:, 4:10].sum(axis=1) df cols = list(df.columns) df = df[cols[:4] + [cols[-1]] + cols[4:12]] df df.to_csv('modified_pokemon_data.csv') df = pd.read_csv('./modified_pokemon_data.csv') df df.loc[df['Type 1'] == 'Flamer', 'Legendary'] = True df = pd.read_csv('./modified_pokemon_data.csv') df df.loc[df['Total'] > 500, ['Generation', 'Legendary']] = 'Highest' df.loc[df['Total'] > 500, ['Generation', 'Legendary']] = ['Highest Gen', 'Highest Legend'] df = pd.read_csv('./modified_pokemon_data.csv') df df.groupby(['Type 1']).mean().sort_values('Defense', ascending=False)['Defense'] df.groupby(['Type 1']).mean().sort_values('Attack', ascending=False)['Attack'] df.groupby(['Type 1']).mean().sort_values('HP', ascending=False)['HP'] df.groupby(['Type 1']).count()['Name'] df.groupby(['Type 1', 'Type 2']).count()['Name']
code
106198491/cell_10
[ "text_html_output_1.png" ]
import pandas as pd df = pd.read_csv('../input/pokemon-dataset/pokemon_data.csv') df.columns df.Name df[['Name', 'Type 1', 'HP']] df.iloc[0] df.loc[df['Name'] == 'Ivysaur'] df.iloc[0, 1] df.sort_values('HP', ascending=False) df.sort_values(['HP', 'Attack'], ascending=[1, 0]) df['Total'] = df.iloc[:, 4:10].sum(axis=1) df cols = list(df.columns) df = df[cols[:4] + [cols[-1]] + cols[4:12]] df df.to_csv('modified_pokemon_data.csv') df = pd.read_csv('./modified_pokemon_data.csv') df
code
106198491/cell_5
[ "text_html_output_1.png" ]
import pandas as pd df = pd.read_csv('../input/pokemon-dataset/pokemon_data.csv') df.head()
code
105210749/cell_21
[ "text_html_output_1.png" ]
from sklearn.preprocessing import LabelEncoder from word2number import w2n import pandas as pd df = pd.read_csv('../input/car-price-prediction/CarPrice_Assignment.csv', sep=',', encoding='utf-8') pd.set_option('display.max_columns', None) df.isna().sum() from word2number import w2n df.doornumber = df.doornumber.apply(w2n.word_to_num) df.cylindernumber = df.cylindernumber.apply(w2n.word_to_num) (df.doornumber, df.cylindernumber) df = df.drop('car_ID', axis=1) df.columns df.rename(columns={'fueltype': 'fuelType', 'doornumber': 'num_Doors', 'carbody': 'carBody', 'drivewheel': 'driveWheel', 'enginelocation': 'engineLocation', 'wheelbase': 'wheelBase', 'carlength': 'carLength', 'carwidth': 'carWidth', 'carheight': 'carHeight', 'curbweight': 'curbWeight', 'enginetype': 'engineType', 'cylindernumber': 'num_Cyl', 'enginesize': 'engineSize', 'fuelsystem': 'fuelSystem', 'boreratio': 'boreRatio', 'compressionratio': 'compressionRatio', 'horsepower': 'horsePower', 'peakrpm': 'peakRPM', 'citympg': 'cityMPG', 'highwaympg': 'highwayMPG'}, inplace=True) df.select_dtypes('object') from sklearn.preprocessing import LabelEncoder le = LabelEncoder() df['fuelType'] = le.fit_transform(df['fuelType']) df['aspiration'] = le.fit_transform(df['aspiration']) df['carBody'] = le.fit_transform(df['carBody']) df['driveWheel'] = le.fit_transform(df['driveWheel']) df['engineLocation'] = le.fit_transform(df['engineLocation']) df['engineType'] = le.fit_transform(df['engineType']) df['fuelSystem'] = le.fit_transform(df['fuelSystem']) df
code
105210749/cell_25
[ "text_html_output_1.png" ]
from word2number import w2n import matplotlib.pyplot as plt import pandas as pd df = pd.read_csv('../input/car-price-prediction/CarPrice_Assignment.csv', sep=',', encoding='utf-8') pd.set_option('display.max_columns', None) df.isna().sum() from word2number import w2n df.doornumber = df.doornumber.apply(w2n.word_to_num) df.cylindernumber = df.cylindernumber.apply(w2n.word_to_num) (df.doornumber, df.cylindernumber) df = df.drop('car_ID', axis=1) df.columns df.rename(columns={'fueltype': 'fuelType', 'doornumber': 'num_Doors', 'carbody': 'carBody', 'drivewheel': 'driveWheel', 'enginelocation': 'engineLocation', 'wheelbase': 'wheelBase', 'carlength': 'carLength', 'carwidth': 'carWidth', 'carheight': 'carHeight', 'curbweight': 'curbWeight', 'enginetype': 'engineType', 'cylindernumber': 'num_Cyl', 'enginesize': 'engineSize', 'fuelsystem': 'fuelSystem', 'boreratio': 'boreRatio', 'compressionratio': 'compressionRatio', 'horsepower': 'horsePower', 'peakrpm': 'peakRPM', 'citympg': 'cityMPG', 'highwaympg': 'highwayMPG'}, inplace=True) df.select_dtypes('object') df.plot(kind='box', subplots=True, layout=(5, 5), figsize=(20, 20)) plt.show()
code
105210749/cell_4
[ "text_plain_output_1.png" ]
import pandas as pd df = pd.read_csv('../input/car-price-prediction/CarPrice_Assignment.csv', sep=',', encoding='utf-8') pd.set_option('display.max_columns', None) df.info()
code
105210749/cell_23
[ "text_plain_output_1.png" ]
from word2number import w2n import pandas as pd df = pd.read_csv('../input/car-price-prediction/CarPrice_Assignment.csv', sep=',', encoding='utf-8') pd.set_option('display.max_columns', None) df.isna().sum() from word2number import w2n df.doornumber = df.doornumber.apply(w2n.word_to_num) df.cylindernumber = df.cylindernumber.apply(w2n.word_to_num) (df.doornumber, df.cylindernumber) df = df.drop('car_ID', axis=1) df.columns df.rename(columns={'fueltype': 'fuelType', 'doornumber': 'num_Doors', 'carbody': 'carBody', 'drivewheel': 'driveWheel', 'enginelocation': 'engineLocation', 'wheelbase': 'wheelBase', 'carlength': 'carLength', 'carwidth': 'carWidth', 'carheight': 'carHeight', 'curbweight': 'curbWeight', 'enginetype': 'engineType', 'cylindernumber': 'num_Cyl', 'enginesize': 'engineSize', 'fuelsystem': 'fuelSystem', 'boreratio': 'boreRatio', 'compressionratio': 'compressionRatio', 'horsepower': 'horsePower', 'peakrpm': 'peakRPM', 'citympg': 'cityMPG', 'highwaympg': 'highwayMPG'}, inplace=True) df.select_dtypes('object') [df['fuelType'].value_counts(), df['aspiration'].value_counts(), df['carBody'].value_counts(), df['driveWheel'].value_counts(), df['engineLocation'].value_counts(), df['engineType'].value_counts(), df['fuelSystem'].value_counts()]
code
105210749/cell_30
[ "text_plain_output_1.png" ]
from word2number import w2n import matplotlib.pyplot as plt import pandas as pd import seaborn as sns df = pd.read_csv('../input/car-price-prediction/CarPrice_Assignment.csv', sep=',', encoding='utf-8') pd.set_option('display.max_columns', None) df.isna().sum() from word2number import w2n df.doornumber = df.doornumber.apply(w2n.word_to_num) df.cylindernumber = df.cylindernumber.apply(w2n.word_to_num) (df.doornumber, df.cylindernumber) df = df.drop('car_ID', axis=1) df.columns df.rename(columns={'fueltype': 'fuelType', 'doornumber': 'num_Doors', 'carbody': 'carBody', 'drivewheel': 'driveWheel', 'enginelocation': 'engineLocation', 'wheelbase': 'wheelBase', 'carlength': 'carLength', 'carwidth': 'carWidth', 'carheight': 'carHeight', 'curbweight': 'curbWeight', 'enginetype': 'engineType', 'cylindernumber': 'num_Cyl', 'enginesize': 'engineSize', 'fuelsystem': 'fuelSystem', 'boreratio': 'boreRatio', 'compressionratio': 'compressionRatio', 'horsepower': 'horsePower', 'peakrpm': 'peakRPM', 'citympg': 'cityMPG', 'highwaympg': 'highwayMPG'}, inplace=True) df.select_dtypes('object') df.columns
code
105210749/cell_20
[ "text_plain_output_1.png" ]
from word2number import w2n import pandas as pd df = pd.read_csv('../input/car-price-prediction/CarPrice_Assignment.csv', sep=',', encoding='utf-8') pd.set_option('display.max_columns', None) df.isna().sum() from word2number import w2n df.doornumber = df.doornumber.apply(w2n.word_to_num) df.cylindernumber = df.cylindernumber.apply(w2n.word_to_num) (df.doornumber, df.cylindernumber) df = df.drop('car_ID', axis=1) df.columns df.rename(columns={'fueltype': 'fuelType', 'doornumber': 'num_Doors', 'carbody': 'carBody', 'drivewheel': 'driveWheel', 'enginelocation': 'engineLocation', 'wheelbase': 'wheelBase', 'carlength': 'carLength', 'carwidth': 'carWidth', 'carheight': 'carHeight', 'curbweight': 'curbWeight', 'enginetype': 'engineType', 'cylindernumber': 'num_Cyl', 'enginesize': 'engineSize', 'fuelsystem': 'fuelSystem', 'boreratio': 'boreRatio', 'compressionratio': 'compressionRatio', 'horsepower': 'horsePower', 'peakrpm': 'peakRPM', 'citympg': 'cityMPG', 'highwaympg': 'highwayMPG'}, inplace=True) df.select_dtypes('object') [df['fuelType'].value_counts(), df['aspiration'].value_counts(), df['carBody'].value_counts(), df['driveWheel'].value_counts(), df['engineLocation'].value_counts(), df['engineType'].value_counts(), df['fuelSystem'].value_counts()]
code
105210749/cell_40
[ "text_plain_output_1.png" ]
from sklearn import linear_model from sklearn.preprocessing import RobustScaler from word2number import w2n import matplotlib.pyplot as plt import pandas as pd import seaborn as sns df = pd.read_csv('../input/car-price-prediction/CarPrice_Assignment.csv', sep=',', encoding='utf-8') pd.set_option('display.max_columns', None) df.isna().sum() from word2number import w2n df.doornumber = df.doornumber.apply(w2n.word_to_num) df.cylindernumber = df.cylindernumber.apply(w2n.word_to_num) (df.doornumber, df.cylindernumber) df = df.drop('car_ID', axis=1) df.columns df.rename(columns={'fueltype': 'fuelType', 'doornumber': 'num_Doors', 'carbody': 'carBody', 'drivewheel': 'driveWheel', 'enginelocation': 'engineLocation', 'wheelbase': 'wheelBase', 'carlength': 'carLength', 'carwidth': 'carWidth', 'carheight': 'carHeight', 'curbweight': 'curbWeight', 'enginetype': 'engineType', 'cylindernumber': 'num_Cyl', 'enginesize': 'engineSize', 'fuelsystem': 'fuelSystem', 'boreratio': 'boreRatio', 'compressionratio': 'compressionRatio', 'horsepower': 'horsePower', 'peakrpm': 'peakRPM', 'citympg': 'cityMPG', 'highwaympg': 'highwayMPG'}, inplace=True) df.select_dtypes('object') df.columns cars = df[['symboling', 'fuelType', 'aspiration', 'num_Doors', 'carBody', 'driveWheel', 'engineLocation', 'wheelBase', 'carLength', 'carWidth', 'carHeight', 'curbWeight', 'engineType', 'num_Cyl', 'engineSize', 'fuelSystem', 'boreRatio', 'stroke', 'compressionRatio', 'horsePower', 'peakRPM', 'cityMPG', 'highwayMPG', 'price']] x = cars.drop(['price'], axis=1).values y = cars['price'].values from sklearn.preprocessing import RobustScaler ro_scaler = RobustScaler() x_train = ro_scaler.fit_transform(x_train) x_test = ro_scaler.fit_transform(x_test) from sklearn import linear_model reg = linear_model.LinearRegression() reg.fit(x_train, y_train) (reg.score(x_train, y_train), reg.score(x_test, y_test)) pd.DataFrame(reg.coef_, cars.columns[:-1], columns=['Coeficient']) y_pred = reg.predict(x_test) df1 = pd.DataFrame({'Y_test': y_test, 'Y_pred': y_pred}) df1.head(10)
code
105210749/cell_39
[ "text_plain_output_1.png" ]
from sklearn import linear_model from sklearn.preprocessing import RobustScaler from word2number import w2n import matplotlib.pyplot as plt import pandas as pd import seaborn as sns df = pd.read_csv('../input/car-price-prediction/CarPrice_Assignment.csv', sep=',', encoding='utf-8') pd.set_option('display.max_columns', None) df.isna().sum() from word2number import w2n df.doornumber = df.doornumber.apply(w2n.word_to_num) df.cylindernumber = df.cylindernumber.apply(w2n.word_to_num) (df.doornumber, df.cylindernumber) df = df.drop('car_ID', axis=1) df.columns df.rename(columns={'fueltype': 'fuelType', 'doornumber': 'num_Doors', 'carbody': 'carBody', 'drivewheel': 'driveWheel', 'enginelocation': 'engineLocation', 'wheelbase': 'wheelBase', 'carlength': 'carLength', 'carwidth': 'carWidth', 'carheight': 'carHeight', 'curbweight': 'curbWeight', 'enginetype': 'engineType', 'cylindernumber': 'num_Cyl', 'enginesize': 'engineSize', 'fuelsystem': 'fuelSystem', 'boreratio': 'boreRatio', 'compressionratio': 'compressionRatio', 'horsepower': 'horsePower', 'peakrpm': 'peakRPM', 'citympg': 'cityMPG', 'highwaympg': 'highwayMPG'}, inplace=True) df.select_dtypes('object') df.columns cars = df[['symboling', 'fuelType', 'aspiration', 'num_Doors', 'carBody', 'driveWheel', 'engineLocation', 'wheelBase', 'carLength', 'carWidth', 'carHeight', 'curbWeight', 'engineType', 'num_Cyl', 'engineSize', 'fuelSystem', 'boreRatio', 'stroke', 'compressionRatio', 'horsePower', 'peakRPM', 'cityMPG', 'highwayMPG', 'price']] x = cars.drop(['price'], axis=1).values y = cars['price'].values from sklearn.preprocessing import RobustScaler ro_scaler = RobustScaler() x_train = ro_scaler.fit_transform(x_train) x_test = ro_scaler.fit_transform(x_test) from sklearn import linear_model reg = linear_model.LinearRegression() reg.fit(x_train, y_train) (reg.score(x_train, y_train), reg.score(x_test, y_test)) pd.DataFrame(reg.coef_, cars.columns[:-1], columns=['Coeficient'])
code
105210749/cell_7
[ "text_plain_output_1.png" ]
import pandas as pd df = pd.read_csv('../input/car-price-prediction/CarPrice_Assignment.csv', sep=',', encoding='utf-8') pd.set_option('display.max_columns', None) df.isna().sum()
code
105210749/cell_18
[ "text_plain_output_1.png" ]
from word2number import w2n import pandas as pd df = pd.read_csv('../input/car-price-prediction/CarPrice_Assignment.csv', sep=',', encoding='utf-8') pd.set_option('display.max_columns', None) df.isna().sum() from word2number import w2n df.doornumber = df.doornumber.apply(w2n.word_to_num) df.cylindernumber = df.cylindernumber.apply(w2n.word_to_num) (df.doornumber, df.cylindernumber) df = df.drop('car_ID', axis=1) df.columns df.rename(columns={'fueltype': 'fuelType', 'doornumber': 'num_Doors', 'carbody': 'carBody', 'drivewheel': 'driveWheel', 'enginelocation': 'engineLocation', 'wheelbase': 'wheelBase', 'carlength': 'carLength', 'carwidth': 'carWidth', 'carheight': 'carHeight', 'curbweight': 'curbWeight', 'enginetype': 'engineType', 'cylindernumber': 'num_Cyl', 'enginesize': 'engineSize', 'fuelsystem': 'fuelSystem', 'boreratio': 'boreRatio', 'compressionratio': 'compressionRatio', 'horsepower': 'horsePower', 'peakrpm': 'peakRPM', 'citympg': 'cityMPG', 'highwaympg': 'highwayMPG'}, inplace=True) df.select_dtypes('object')
code
105210749/cell_28
[ "text_plain_output_1.png" ]
from word2number import w2n import matplotlib.pyplot as plt import pandas as pd import seaborn as sns df = pd.read_csv('../input/car-price-prediction/CarPrice_Assignment.csv', sep=',', encoding='utf-8') pd.set_option('display.max_columns', None) df.isna().sum() from word2number import w2n df.doornumber = df.doornumber.apply(w2n.word_to_num) df.cylindernumber = df.cylindernumber.apply(w2n.word_to_num) (df.doornumber, df.cylindernumber) df = df.drop('car_ID', axis=1) df.columns df.rename(columns={'fueltype': 'fuelType', 'doornumber': 'num_Doors', 'carbody': 'carBody', 'drivewheel': 'driveWheel', 'enginelocation': 'engineLocation', 'wheelbase': 'wheelBase', 'carlength': 'carLength', 'carwidth': 'carWidth', 'carheight': 'carHeight', 'curbweight': 'curbWeight', 'enginetype': 'engineType', 'cylindernumber': 'num_Cyl', 'enginesize': 'engineSize', 'fuelsystem': 'fuelSystem', 'boreratio': 'boreRatio', 'compressionratio': 'compressionRatio', 'horsepower': 'horsePower', 'peakrpm': 'peakRPM', 'citympg': 'cityMPG', 'highwaympg': 'highwayMPG'}, inplace=True) df.select_dtypes('object') plt.figure(figsize=(20, 10)) sns.heatmap(df.corr(), annot=True, cmap='mako') plt.show()
code
105210749/cell_16
[ "text_plain_output_1.png" ]
from word2number import w2n import pandas as pd df = pd.read_csv('../input/car-price-prediction/CarPrice_Assignment.csv', sep=',', encoding='utf-8') pd.set_option('display.max_columns', None) df.isna().sum() from word2number import w2n df.doornumber = df.doornumber.apply(w2n.word_to_num) df.cylindernumber = df.cylindernumber.apply(w2n.word_to_num) (df.doornumber, df.cylindernumber) df = df.drop('car_ID', axis=1) df.columns df.rename(columns={'fueltype': 'fuelType', 'doornumber': 'num_Doors', 'carbody': 'carBody', 'drivewheel': 'driveWheel', 'enginelocation': 'engineLocation', 'wheelbase': 'wheelBase', 'carlength': 'carLength', 'carwidth': 'carWidth', 'carheight': 'carHeight', 'curbweight': 'curbWeight', 'enginetype': 'engineType', 'cylindernumber': 'num_Cyl', 'enginesize': 'engineSize', 'fuelsystem': 'fuelSystem', 'boreratio': 'boreRatio', 'compressionratio': 'compressionRatio', 'horsepower': 'horsePower', 'peakrpm': 'peakRPM', 'citympg': 'cityMPG', 'highwaympg': 'highwayMPG'}, inplace=True) df.head()
code
105210749/cell_38
[ "image_output_1.png" ]
from sklearn import linear_model from sklearn.preprocessing import RobustScaler from sklearn.preprocessing import RobustScaler ro_scaler = RobustScaler() x_train = ro_scaler.fit_transform(x_train) x_test = ro_scaler.fit_transform(x_test) from sklearn import linear_model reg = linear_model.LinearRegression() reg.fit(x_train, y_train) (reg.score(x_train, y_train), reg.score(x_test, y_test))
code
105210749/cell_3
[ "text_html_output_1.png" ]
import pandas as pd df = pd.read_csv('../input/car-price-prediction/CarPrice_Assignment.csv', sep=',', encoding='utf-8') pd.set_option('display.max_columns', None) df.head()
code
105210749/cell_17
[ "text_plain_output_1.png" ]
from word2number import w2n import pandas as pd df = pd.read_csv('../input/car-price-prediction/CarPrice_Assignment.csv', sep=',', encoding='utf-8') pd.set_option('display.max_columns', None) df.isna().sum() from word2number import w2n df.doornumber = df.doornumber.apply(w2n.word_to_num) df.cylindernumber = df.cylindernumber.apply(w2n.word_to_num) (df.doornumber, df.cylindernumber) df = df.drop('car_ID', axis=1) df.columns df.rename(columns={'fueltype': 'fuelType', 'doornumber': 'num_Doors', 'carbody': 'carBody', 'drivewheel': 'driveWheel', 'enginelocation': 'engineLocation', 'wheelbase': 'wheelBase', 'carlength': 'carLength', 'carwidth': 'carWidth', 'carheight': 'carHeight', 'curbweight': 'curbWeight', 'enginetype': 'engineType', 'cylindernumber': 'num_Cyl', 'enginesize': 'engineSize', 'fuelsystem': 'fuelSystem', 'boreratio': 'boreRatio', 'compressionratio': 'compressionRatio', 'horsepower': 'horsePower', 'peakrpm': 'peakRPM', 'citympg': 'cityMPG', 'highwaympg': 'highwayMPG'}, inplace=True) df.info()
code
105210749/cell_14
[ "text_html_output_1.png" ]
from word2number import w2n import pandas as pd df = pd.read_csv('../input/car-price-prediction/CarPrice_Assignment.csv', sep=',', encoding='utf-8') pd.set_option('display.max_columns', None) df.isna().sum() from word2number import w2n df.doornumber = df.doornumber.apply(w2n.word_to_num) df.cylindernumber = df.cylindernumber.apply(w2n.word_to_num) (df.doornumber, df.cylindernumber) df = df.drop('car_ID', axis=1) df.columns
code
105210749/cell_10
[ "text_html_output_1.png" ]
pip install word2number
code
105210749/cell_37
[ "image_output_1.png" ]
from sklearn import linear_model from sklearn.preprocessing import RobustScaler from sklearn.preprocessing import RobustScaler ro_scaler = RobustScaler() x_train = ro_scaler.fit_transform(x_train) x_test = ro_scaler.fit_transform(x_test) from sklearn import linear_model reg = linear_model.LinearRegression() reg.fit(x_train, y_train)
code
105210749/cell_12
[ "text_plain_output_1.png" ]
from word2number import w2n import pandas as pd df = pd.read_csv('../input/car-price-prediction/CarPrice_Assignment.csv', sep=',', encoding='utf-8') pd.set_option('display.max_columns', None) df.isna().sum() from word2number import w2n df.doornumber = df.doornumber.apply(w2n.word_to_num) df.cylindernumber = df.cylindernumber.apply(w2n.word_to_num) (df.doornumber, df.cylindernumber)
code
105210749/cell_5
[ "text_html_output_1.png" ]
import pandas as pd df = pd.read_csv('../input/car-price-prediction/CarPrice_Assignment.csv', sep=',', encoding='utf-8') pd.set_option('display.max_columns', None) df.describe()
code
2014525/cell_4
[ "text_plain_output_2.png", "text_plain_output_1.png" ]
import pandas as pd df = pd.read_csv('../input/epi_r.csv') df = df[df['calories'] < 10000] df.dropna(inplace=True) print('Is this variable numeric?') df['rating'].dtype == 'float'
code
2014525/cell_6
[ "text_plain_output_1.png", "image_output_1.png" ]
import pandas as pd import seaborn as sns df = pd.read_csv('../input/epi_r.csv') df = df[df['calories'] < 10000] df.dropna(inplace=True) sns.regplot(df['calories'], df['dessert'], fit_reg=False)
code
2014525/cell_2
[ "text_html_output_1.png" ]
import pandas as pd df = pd.read_csv('../input/epi_r.csv') df.head()
code
2014525/cell_7
[ "text_plain_output_1.png", "image_output_1.png" ]
import pandas as pd import seaborn as sns df = pd.read_csv('../input/epi_r.csv') df = df[df['calories'] < 10000] df.dropna(inplace=True) sns.regplot(df['calories'], df['dessert'])
code
2014525/cell_5
[ "text_plain_output_2.png", "text_plain_output_1.png" ]
import pandas as pd df = pd.read_csv('../input/epi_r.csv') df = df[df['calories'] < 10000] df.dropna(inplace=True) print('Is this variable only integers?') df['rating'].dtype == 'int'
code
129016727/cell_13
[ "text_plain_output_1.png" ]
import pandas as pd dataset = pd.read_csv('/kaggle/input/phishing-website-dataset/dataset.csv') dataset['having_At_Symbol'].value_counts()
code
129016727/cell_9
[ "text_plain_output_1.png" ]
import pandas as pd dataset = pd.read_csv('/kaggle/input/phishing-website-dataset/dataset.csv') dataset['Google_Index'].value_counts()
code
129016727/cell_4
[ "text_plain_output_1.png" ]
import pandas as pd dataset = pd.read_csv('/kaggle/input/phishing-website-dataset/dataset.csv') dataset.head()
code
129016727/cell_34
[ "text_plain_output_1.png" ]
from sklearn.ensemble import RandomForestClassifier from sklearn.linear_model import LogisticRegression from sklearn.metrics import accuracy_score from sklearn.naive_bayes import GaussianNB from sklearn.neighbors import KNeighborsClassifier from sklearn.svm import SVC from sklearn.tree import DecisionTreeClassifier from sklearn.linear_model import LogisticRegression from sklearn.metrics import accuracy_score LR = LogisticRegression() LR.fit(X_train, y_train) y_pred = LR.predict(X_test) accuracy = accuracy_score(y_test, y_pred) from sklearn.tree import DecisionTreeClassifier DT = DecisionTreeClassifier() DT.fit(X_train, y_train) y_pred = DT.predict(X_test) accuracy = accuracy_score(y_test, y_pred) from sklearn.svm import SVC SVM = SVC() SVM.fit(X_train, y_train) y_pred = SVM.predict(X_test) accuracy = accuracy_score(y_test, y_pred) from sklearn.ensemble import RandomForestClassifier RF = RandomForestClassifier() RF.fit(X_train, y_train) y_pred = RF.predict(X_test) accuracy = accuracy_score(y_test, y_pred) from sklearn.naive_bayes import GaussianNB NB = GaussianNB() NB.fit(X_train, y_train) y_pred = NB.predict(X_test) accuracy = accuracy_score(y_test, y_pred) from sklearn.neighbors import KNeighborsClassifier k = 5 KNN = KNeighborsClassifier(n_neighbors=k) KNN.fit(X_train, y_train) y_pred = KNN.predict(X_test) accuracy = accuracy_score(y_test, y_pred) print('Accuracy:', accuracy)
code
129016727/cell_23
[ "text_plain_output_1.png" ]
import pandas as pd dataset = pd.read_csv('/kaggle/input/phishing-website-dataset/dataset.csv') selected_features = ['URLURL_Length', 'having_At_Symbol', 'double_slash_redirecting', 'Prefix_Suffix', 'Page_Rank', 'Google_Index', 'Result'] df = dataset[selected_features] df = df.drop_duplicates() df.shape df['Result'].value_counts(normalize=True)
code
129016727/cell_30
[ "application_vnd.jupyter.stderr_output_1.png" ]
from sklearn.linear_model import LogisticRegression from sklearn.metrics import accuracy_score from sklearn.tree import DecisionTreeClassifier from sklearn.linear_model import LogisticRegression from sklearn.metrics import accuracy_score LR = LogisticRegression() LR.fit(X_train, y_train) y_pred = LR.predict(X_test) accuracy = accuracy_score(y_test, y_pred) from sklearn.tree import DecisionTreeClassifier DT = DecisionTreeClassifier() DT.fit(X_train, y_train) y_pred = DT.predict(X_test) accuracy = accuracy_score(y_test, y_pred) print('Accuracy:', accuracy)
code
129016727/cell_33
[ "image_output_1.png" ]
from sklearn.ensemble import RandomForestClassifier from sklearn.linear_model import LogisticRegression from sklearn.metrics import accuracy_score from sklearn.naive_bayes import GaussianNB from sklearn.svm import SVC from sklearn.tree import DecisionTreeClassifier from sklearn.linear_model import LogisticRegression from sklearn.metrics import accuracy_score LR = LogisticRegression() LR.fit(X_train, y_train) y_pred = LR.predict(X_test) accuracy = accuracy_score(y_test, y_pred) from sklearn.tree import DecisionTreeClassifier DT = DecisionTreeClassifier() DT.fit(X_train, y_train) y_pred = DT.predict(X_test) accuracy = accuracy_score(y_test, y_pred) from sklearn.svm import SVC SVM = SVC() SVM.fit(X_train, y_train) y_pred = SVM.predict(X_test) accuracy = accuracy_score(y_test, y_pred) from sklearn.ensemble import RandomForestClassifier RF = RandomForestClassifier() RF.fit(X_train, y_train) y_pred = RF.predict(X_test) accuracy = accuracy_score(y_test, y_pred) from sklearn.naive_bayes import GaussianNB NB = GaussianNB() NB.fit(X_train, y_train) y_pred = NB.predict(X_test) accuracy = accuracy_score(y_test, y_pred) print('Accuracy:', accuracy)
code
129016727/cell_20
[ "text_plain_output_1.png" ]
import pandas as pd dataset = pd.read_csv('/kaggle/input/phishing-website-dataset/dataset.csv') selected_features = ['URLURL_Length', 'having_At_Symbol', 'double_slash_redirecting', 'Prefix_Suffix', 'Page_Rank', 'Google_Index', 'Result'] df = dataset[selected_features] df = df.drop_duplicates() df.shape
code
129016727/cell_6
[ "text_plain_output_1.png" ]
import pandas as pd dataset = pd.read_csv('/kaggle/input/phishing-website-dataset/dataset.csv') dataset['Result'].value_counts()
code
129016727/cell_29
[ "text_plain_output_1.png" ]
from sklearn.linear_model import LogisticRegression from sklearn.metrics import accuracy_score from sklearn.metrics import roc_curve, auc import matplotlib.pyplot as plt from sklearn.linear_model import LogisticRegression from sklearn.metrics import accuracy_score LR = LogisticRegression() LR.fit(X_train, y_train) y_pred = LR.predict(X_test) accuracy = accuracy_score(y_test, y_pred) import matplotlib.pyplot as plt from sklearn.metrics import roc_curve, auc y_pred_prob = LR.predict_proba(X_test)[:, 1] fpr, tpr, thresholds = roc_curve(y_test, y_pred_prob) auc_score = auc(fpr, tpr) plt.plot(fpr, tpr, label='ROC curve (AUC = %0.2f)' % auc_score) plt.plot([0, 1], [0, 1], 'k--') plt.xlabel('False Positive Rate') plt.ylabel('True Positive Rate') plt.title('ROC Curve') plt.legend(loc='lower right') plt.show()
code
129016727/cell_26
[ "text_plain_output_1.png" ]
from sklearn.model_selection import train_test_split import pandas as pd dataset = pd.read_csv('/kaggle/input/phishing-website-dataset/dataset.csv') selected_features = ['URLURL_Length', 'having_At_Symbol', 'double_slash_redirecting', 'Prefix_Suffix', 'Page_Rank', 'Google_Index', 'Result'] df = dataset[selected_features] df = df.drop_duplicates() df.shape X = df.drop('Result', axis=1) y = df['Result'] from sklearn.model_selection import train_test_split X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=0, stratify=y)
code
129016727/cell_11
[ "text_html_output_1.png" ]
import pandas as pd dataset = pd.read_csv('/kaggle/input/phishing-website-dataset/dataset.csv') dataset['URLURL_Length'].value_counts()
code
129016727/cell_19
[ "text_plain_output_1.png" ]
import pandas as pd dataset = pd.read_csv('/kaggle/input/phishing-website-dataset/dataset.csv') selected_features = ['URLURL_Length', 'having_At_Symbol', 'double_slash_redirecting', 'Prefix_Suffix', 'Page_Rank', 'Google_Index', 'Result'] df = dataset[selected_features] df.head()
code