path
stringlengths
13
17
screenshot_names
sequencelengths
1
873
code
stringlengths
0
40.4k
cell_type
stringclasses
1 value
73072460/cell_56
[ "text_html_output_1.png" ]
import tensorflow as tf training_data_gen = tf.keras.preprocessing.image.ImageDataGenerator(rescale=1 / 255.0, rotation_range=40, zoom_range=0.2, width_shift_range=0.2, height_shift_range=0.2, shear_range=0.2, horizontal_flip=True, vertical_flip=True) training_generator = training_data_gen.flow_from_dataframe(dataframe=train, x_col='images', y_col='labels', target_size=(224, 224), color_mode='rgb', class_mode='categorical', batch_size=64) val_data_gen = tf.keras.preprocessing.image.ImageDataGenerator(rescale=1 / 255.0) validation_generator = val_data_gen.flow_from_dataframe(dataframe=val, x_col='images', y_col='labels', target_size=(224, 224), color_mode='rgb', class_mode='categorical', batch_size=64) test_data_gen = tf.keras.preprocessing.image.ImageDataGenerator(rescale=1 / 255.0) test_generator = test_data_gen.flow_from_dataframe(dataframe=test, x_col='images', y_col='labels', target_size=(224, 224), color_mode='rgb', class_mode='categorical', batch_size=64) mlp_model = tf.keras.models.Sequential() mlp_model.add(tf.keras.layers.Flatten(input_shape=(224, 224, 3))) mlp_model.add(tf.keras.layers.Dense(256, activation='relu')) mlp_model.add(tf.keras.layers.Dropout(0.4)) mlp_model.add(tf.keras.layers.Dense(256, activation='relu')) mlp_model.add(tf.keras.layers.Dense(128, activation='relu')) mlp_model.add(tf.keras.layers.Dense(9, activation='softmax')) cnn_model = tf.keras.models.Sequential() cnn_model.add(tf.keras.layers.Conv2D(32, kernel_size=(3, 3), strides=1, activation='relu', input_shape=(224, 224, 3))) cnn_model.add(tf.keras.layers.MaxPool2D(pool_size=(2, 2))) cnn_model.add(tf.keras.layers.Conv2D(64, kernel_size=(3, 3), strides=1, activation='relu')) cnn_model.add(tf.keras.layers.MaxPool2D(pool_size=(2, 2))) cnn_model.add(tf.keras.layers.Conv2D(64, kernel_size=(3, 3), strides=1, activation='relu')) cnn_model.add(tf.keras.layers.MaxPool2D(pool_size=(2, 2))) cnn_model.add(tf.keras.layers.Conv2D(128, kernel_size=(3, 3), strides=1, activation='relu')) cnn_model.add(tf.keras.layers.MaxPool2D(pool_size=(2, 2))) cnn_model.add(tf.keras.layers.Conv2D(256, kernel_size=(3, 3), strides=1, activation='relu')) cnn_model.add(tf.keras.layers.MaxPool2D(pool_size=(2, 2))) cnn_model.add(tf.keras.layers.Flatten()) cnn_model.add(tf.keras.layers.Dense(256, activation='relu')) cnn_model.add(tf.keras.layers.Dropout(0.4)) cnn_model.add(tf.keras.layers.Dense(9, activation='softmax')) cnn_model.summary() cnn_model.compile(loss='categorical_crossentropy', optimizer='rmsprop', metrics=['acc']) history = cnn_model.fit(training_generator, steps_per_epoch=99, validation_data=validation_generator, validation_steps=20, epochs=25)
code
73072460/cell_6
[ "text_plain_output_1.png", "image_output_1.png" ]
import os import pandas as pd import pathlib data_path = pathlib.Path('../input/a-large-scale-fish-dataset/Fish_Dataset/Fish_Dataset') all_images = list(data_path.glob('*/*/*.jpg')) + list(data_path.glob('*/*/*.png')) images = [] labels = [] for item in all_images: path = os.path.normpath(item) splits = path.split(os.sep) if 'GT' not in splits[-2]: images.append(item) label = splits[-2] labels.append(label) image_pathes = pd.Series(images).astype(str) labels = pd.Series(labels) dataframe = pd.concat([image_pathes, labels], axis=1) dataframe.columns = ['images', 'labels'] dataframe.head()
code
73072460/cell_40
[ "text_html_output_1.png" ]
from IPython.display import Image Image(url='https://miro.medium.com/max/658/0*jLoqqFsO-52KHTn9.gif', width=750, height=500)
code
73072460/cell_11
[ "text_html_output_1.png" ]
import tensorflow as tf training_data_gen = tf.keras.preprocessing.image.ImageDataGenerator(rescale=1 / 255.0, rotation_range=40, zoom_range=0.2, width_shift_range=0.2, height_shift_range=0.2, shear_range=0.2, horizontal_flip=True, vertical_flip=True) training_generator = training_data_gen.flow_from_dataframe(dataframe=train, x_col='images', y_col='labels', target_size=(224, 224), color_mode='rgb', class_mode='categorical', batch_size=64) val_data_gen = tf.keras.preprocessing.image.ImageDataGenerator(rescale=1 / 255.0) validation_generator = val_data_gen.flow_from_dataframe(dataframe=val, x_col='images', y_col='labels', target_size=(224, 224), color_mode='rgb', class_mode='categorical', batch_size=64) test_data_gen = tf.keras.preprocessing.image.ImageDataGenerator(rescale=1 / 255.0) test_generator = test_data_gen.flow_from_dataframe(dataframe=test, x_col='images', y_col='labels', target_size=(224, 224), color_mode='rgb', class_mode='categorical', batch_size=64)
code
73072460/cell_60
[ "text_plain_output_1.png", "image_output_1.png" ]
import tensorflow as tf training_data_gen = tf.keras.preprocessing.image.ImageDataGenerator(rescale=1 / 255.0, rotation_range=40, zoom_range=0.2, width_shift_range=0.2, height_shift_range=0.2, shear_range=0.2, horizontal_flip=True, vertical_flip=True) training_generator = training_data_gen.flow_from_dataframe(dataframe=train, x_col='images', y_col='labels', target_size=(224, 224), color_mode='rgb', class_mode='categorical', batch_size=64) val_data_gen = tf.keras.preprocessing.image.ImageDataGenerator(rescale=1 / 255.0) validation_generator = val_data_gen.flow_from_dataframe(dataframe=val, x_col='images', y_col='labels', target_size=(224, 224), color_mode='rgb', class_mode='categorical', batch_size=64) test_data_gen = tf.keras.preprocessing.image.ImageDataGenerator(rescale=1 / 255.0) test_generator = test_data_gen.flow_from_dataframe(dataframe=test, x_col='images', y_col='labels', target_size=(224, 224), color_mode='rgb', class_mode='categorical', batch_size=64) mlp_model = tf.keras.models.Sequential() mlp_model.add(tf.keras.layers.Flatten(input_shape=(224, 224, 3))) mlp_model.add(tf.keras.layers.Dense(256, activation='relu')) mlp_model.add(tf.keras.layers.Dropout(0.4)) mlp_model.add(tf.keras.layers.Dense(256, activation='relu')) mlp_model.add(tf.keras.layers.Dense(128, activation='relu')) mlp_model.add(tf.keras.layers.Dense(9, activation='softmax')) cnn_model = tf.keras.models.Sequential() cnn_model.add(tf.keras.layers.Conv2D(32, kernel_size=(3, 3), strides=1, activation='relu', input_shape=(224, 224, 3))) cnn_model.add(tf.keras.layers.MaxPool2D(pool_size=(2, 2))) cnn_model.add(tf.keras.layers.Conv2D(64, kernel_size=(3, 3), strides=1, activation='relu')) cnn_model.add(tf.keras.layers.MaxPool2D(pool_size=(2, 2))) cnn_model.add(tf.keras.layers.Conv2D(64, kernel_size=(3, 3), strides=1, activation='relu')) cnn_model.add(tf.keras.layers.MaxPool2D(pool_size=(2, 2))) cnn_model.add(tf.keras.layers.Conv2D(128, kernel_size=(3, 3), strides=1, activation='relu')) cnn_model.add(tf.keras.layers.MaxPool2D(pool_size=(2, 2))) cnn_model.add(tf.keras.layers.Conv2D(256, kernel_size=(3, 3), strides=1, activation='relu')) cnn_model.add(tf.keras.layers.MaxPool2D(pool_size=(2, 2))) cnn_model.add(tf.keras.layers.Flatten()) cnn_model.add(tf.keras.layers.Dense(256, activation='relu')) cnn_model.add(tf.keras.layers.Dropout(0.4)) cnn_model.add(tf.keras.layers.Dense(9, activation='softmax')) cnn_model.summary() cnn_model.compile(loss='categorical_crossentropy', optimizer='rmsprop', metrics=['acc']) history = cnn_model.fit(training_generator, steps_per_epoch=99, validation_data=validation_generator, validation_steps=20, epochs=25) cnn_model.evaluate(test_generator)
code
73072460/cell_7
[ "text_plain_output_2.png", "text_plain_output_1.png" ]
import matplotlib.pyplot as plt import os import pandas as pd import pathlib data_path = pathlib.Path('../input/a-large-scale-fish-dataset/Fish_Dataset/Fish_Dataset') all_images = list(data_path.glob('*/*/*.jpg')) + list(data_path.glob('*/*/*.png')) images = [] labels = [] for item in all_images: path = os.path.normpath(item) splits = path.split(os.sep) if 'GT' not in splits[-2]: images.append(item) label = splits[-2] labels.append(label) image_pathes = pd.Series(images).astype(str) labels = pd.Series(labels) dataframe = pd.concat([image_pathes, labels], axis=1) dataframe.columns = ['images', 'labels'] fig, axes = plt.subplots(nrows=3, ncols=5, figsize=(15, 10), subplot_kw={'xticks': [], 'yticks': []}) for i, ax in enumerate(axes.flat): ax.imshow(plt.imread(dataframe.images[i])) ax.set_title(dataframe.labels[i]) plt.show()
code
73072460/cell_59
[ "text_plain_output_1.png" ]
import matplotlib.pyplot as plt import os import pandas as pd import pathlib import tensorflow as tf data_path = pathlib.Path('../input/a-large-scale-fish-dataset/Fish_Dataset/Fish_Dataset') all_images = list(data_path.glob('*/*/*.jpg')) + list(data_path.glob('*/*/*.png')) images = [] labels = [] for item in all_images: path = os.path.normpath(item) splits = path.split(os.sep) if 'GT' not in splits[-2]: images.append(item) label = splits[-2] labels.append(label) image_pathes = pd.Series(images).astype(str) labels = pd.Series(labels) dataframe = pd.concat([image_pathes, labels], axis=1) dataframe.columns = ['images', 'labels'] fig, axes = plt.subplots(nrows=3, ncols=5, figsize=(15,10), subplot_kw={'xticks':[], 'yticks':[]}) for i, ax in enumerate(axes.flat): ax.imshow(plt.imread(dataframe.images[i])) ax.set_title(dataframe.labels[i]) plt.show() training_data_gen = tf.keras.preprocessing.image.ImageDataGenerator(rescale=1 / 255.0, rotation_range=40, zoom_range=0.2, width_shift_range=0.2, height_shift_range=0.2, shear_range=0.2, horizontal_flip=True, vertical_flip=True) training_generator = training_data_gen.flow_from_dataframe(dataframe=train, x_col='images', y_col='labels', target_size=(224, 224), color_mode='rgb', class_mode='categorical', batch_size=64) val_data_gen = tf.keras.preprocessing.image.ImageDataGenerator(rescale=1 / 255.0) validation_generator = val_data_gen.flow_from_dataframe(dataframe=val, x_col='images', y_col='labels', target_size=(224, 224), color_mode='rgb', class_mode='categorical', batch_size=64) test_data_gen = tf.keras.preprocessing.image.ImageDataGenerator(rescale=1 / 255.0) test_generator = test_data_gen.flow_from_dataframe(dataframe=test, x_col='images', y_col='labels', target_size=(224, 224), color_mode='rgb', class_mode='categorical', batch_size=64) mlp_model = tf.keras.models.Sequential() mlp_model.add(tf.keras.layers.Flatten(input_shape=(224, 224, 3))) mlp_model.add(tf.keras.layers.Dense(256, activation='relu')) mlp_model.add(tf.keras.layers.Dropout(0.4)) mlp_model.add(tf.keras.layers.Dense(256, activation='relu')) mlp_model.add(tf.keras.layers.Dense(128, activation='relu')) mlp_model.add(tf.keras.layers.Dense(9, activation='softmax')) cnn_model = tf.keras.models.Sequential() cnn_model.add(tf.keras.layers.Conv2D(32, kernel_size=(3, 3), strides=1, activation='relu', input_shape=(224, 224, 3))) cnn_model.add(tf.keras.layers.MaxPool2D(pool_size=(2, 2))) cnn_model.add(tf.keras.layers.Conv2D(64, kernel_size=(3, 3), strides=1, activation='relu')) cnn_model.add(tf.keras.layers.MaxPool2D(pool_size=(2, 2))) cnn_model.add(tf.keras.layers.Conv2D(64, kernel_size=(3, 3), strides=1, activation='relu')) cnn_model.add(tf.keras.layers.MaxPool2D(pool_size=(2, 2))) cnn_model.add(tf.keras.layers.Conv2D(128, kernel_size=(3, 3), strides=1, activation='relu')) cnn_model.add(tf.keras.layers.MaxPool2D(pool_size=(2, 2))) cnn_model.add(tf.keras.layers.Conv2D(256, kernel_size=(3, 3), strides=1, activation='relu')) cnn_model.add(tf.keras.layers.MaxPool2D(pool_size=(2, 2))) cnn_model.add(tf.keras.layers.Flatten()) cnn_model.add(tf.keras.layers.Dense(256, activation='relu')) cnn_model.add(tf.keras.layers.Dropout(0.4)) cnn_model.add(tf.keras.layers.Dense(9, activation='softmax')) cnn_model.summary() cnn_model.compile(loss='categorical_crossentropy', optimizer='rmsprop', metrics=['acc']) history = cnn_model.fit(training_generator, steps_per_epoch=99, validation_data=validation_generator, validation_steps=20, epochs=25) cnn_train_loss = history.history['loss'] cnn_val_loss = history.history['val_loss'] train_acc = history.history['acc'] val_acc = history.history['val_acc'] plt.plot(history.epoch, train_acc, label='Training Accuracy') plt.plot(history.epoch, val_acc, label='Validation Accuracy') plt.grid(True) plt.legend()
code
73072460/cell_58
[ "text_plain_output_1.png" ]
import matplotlib.pyplot as plt import os import pandas as pd import pathlib import tensorflow as tf data_path = pathlib.Path('../input/a-large-scale-fish-dataset/Fish_Dataset/Fish_Dataset') all_images = list(data_path.glob('*/*/*.jpg')) + list(data_path.glob('*/*/*.png')) images = [] labels = [] for item in all_images: path = os.path.normpath(item) splits = path.split(os.sep) if 'GT' not in splits[-2]: images.append(item) label = splits[-2] labels.append(label) image_pathes = pd.Series(images).astype(str) labels = pd.Series(labels) dataframe = pd.concat([image_pathes, labels], axis=1) dataframe.columns = ['images', 'labels'] fig, axes = plt.subplots(nrows=3, ncols=5, figsize=(15,10), subplot_kw={'xticks':[], 'yticks':[]}) for i, ax in enumerate(axes.flat): ax.imshow(plt.imread(dataframe.images[i])) ax.set_title(dataframe.labels[i]) plt.show() training_data_gen = tf.keras.preprocessing.image.ImageDataGenerator(rescale=1 / 255.0, rotation_range=40, zoom_range=0.2, width_shift_range=0.2, height_shift_range=0.2, shear_range=0.2, horizontal_flip=True, vertical_flip=True) training_generator = training_data_gen.flow_from_dataframe(dataframe=train, x_col='images', y_col='labels', target_size=(224, 224), color_mode='rgb', class_mode='categorical', batch_size=64) val_data_gen = tf.keras.preprocessing.image.ImageDataGenerator(rescale=1 / 255.0) validation_generator = val_data_gen.flow_from_dataframe(dataframe=val, x_col='images', y_col='labels', target_size=(224, 224), color_mode='rgb', class_mode='categorical', batch_size=64) test_data_gen = tf.keras.preprocessing.image.ImageDataGenerator(rescale=1 / 255.0) test_generator = test_data_gen.flow_from_dataframe(dataframe=test, x_col='images', y_col='labels', target_size=(224, 224), color_mode='rgb', class_mode='categorical', batch_size=64) mlp_model = tf.keras.models.Sequential() mlp_model.add(tf.keras.layers.Flatten(input_shape=(224, 224, 3))) mlp_model.add(tf.keras.layers.Dense(256, activation='relu')) mlp_model.add(tf.keras.layers.Dropout(0.4)) mlp_model.add(tf.keras.layers.Dense(256, activation='relu')) mlp_model.add(tf.keras.layers.Dense(128, activation='relu')) mlp_model.add(tf.keras.layers.Dense(9, activation='softmax')) cnn_model = tf.keras.models.Sequential() cnn_model.add(tf.keras.layers.Conv2D(32, kernel_size=(3, 3), strides=1, activation='relu', input_shape=(224, 224, 3))) cnn_model.add(tf.keras.layers.MaxPool2D(pool_size=(2, 2))) cnn_model.add(tf.keras.layers.Conv2D(64, kernel_size=(3, 3), strides=1, activation='relu')) cnn_model.add(tf.keras.layers.MaxPool2D(pool_size=(2, 2))) cnn_model.add(tf.keras.layers.Conv2D(64, kernel_size=(3, 3), strides=1, activation='relu')) cnn_model.add(tf.keras.layers.MaxPool2D(pool_size=(2, 2))) cnn_model.add(tf.keras.layers.Conv2D(128, kernel_size=(3, 3), strides=1, activation='relu')) cnn_model.add(tf.keras.layers.MaxPool2D(pool_size=(2, 2))) cnn_model.add(tf.keras.layers.Conv2D(256, kernel_size=(3, 3), strides=1, activation='relu')) cnn_model.add(tf.keras.layers.MaxPool2D(pool_size=(2, 2))) cnn_model.add(tf.keras.layers.Flatten()) cnn_model.add(tf.keras.layers.Dense(256, activation='relu')) cnn_model.add(tf.keras.layers.Dropout(0.4)) cnn_model.add(tf.keras.layers.Dense(9, activation='softmax')) cnn_model.summary() cnn_model.compile(loss='categorical_crossentropy', optimizer='rmsprop', metrics=['acc']) history = cnn_model.fit(training_generator, steps_per_epoch=99, validation_data=validation_generator, validation_steps=20, epochs=25) cnn_train_loss = history.history['loss'] cnn_val_loss = history.history['val_loss'] plt.plot(history.epoch, cnn_train_loss, label='Training Loss') plt.plot(history.epoch, cnn_val_loss, label='Validation Loss') plt.grid(True) plt.legend()
code
73072460/cell_16
[ "image_output_1.png" ]
import tensorflow as tf training_data_gen = tf.keras.preprocessing.image.ImageDataGenerator(rescale=1 / 255.0, rotation_range=40, zoom_range=0.2, width_shift_range=0.2, height_shift_range=0.2, shear_range=0.2, horizontal_flip=True, vertical_flip=True) training_generator = training_data_gen.flow_from_dataframe(dataframe=train, x_col='images', y_col='labels', target_size=(224, 224), color_mode='rgb', class_mode='categorical', batch_size=64) val_data_gen = tf.keras.preprocessing.image.ImageDataGenerator(rescale=1 / 255.0) validation_generator = val_data_gen.flow_from_dataframe(dataframe=val, x_col='images', y_col='labels', target_size=(224, 224), color_mode='rgb', class_mode='categorical', batch_size=64) test_data_gen = tf.keras.preprocessing.image.ImageDataGenerator(rescale=1 / 255.0) test_generator = test_data_gen.flow_from_dataframe(dataframe=test, x_col='images', y_col='labels', target_size=(224, 224), color_mode='rgb', class_mode='categorical', batch_size=64) mlp_model = tf.keras.models.Sequential() mlp_model.add(tf.keras.layers.Flatten(input_shape=(224, 224, 3))) mlp_model.add(tf.keras.layers.Dense(256, activation='relu')) mlp_model.add(tf.keras.layers.Dropout(0.4)) mlp_model.add(tf.keras.layers.Dense(256, activation='relu')) mlp_model.add(tf.keras.layers.Dense(128, activation='relu')) mlp_model.add(tf.keras.layers.Dense(9, activation='softmax')) tf.keras.utils.plot_model(mlp_model, show_shapes=True, show_dtype=True, show_layer_names=True)
code
73072460/cell_47
[ "text_html_output_1.png" ]
from IPython.display import Image Image(url='https://nico-curti.github.io/NumPyNet/NumPyNet/images/maxpool.gif', width=750, height=500)
code
73072460/cell_17
[ "text_plain_output_1.png" ]
import tensorflow as tf training_data_gen = tf.keras.preprocessing.image.ImageDataGenerator(rescale=1 / 255.0, rotation_range=40, zoom_range=0.2, width_shift_range=0.2, height_shift_range=0.2, shear_range=0.2, horizontal_flip=True, vertical_flip=True) training_generator = training_data_gen.flow_from_dataframe(dataframe=train, x_col='images', y_col='labels', target_size=(224, 224), color_mode='rgb', class_mode='categorical', batch_size=64) val_data_gen = tf.keras.preprocessing.image.ImageDataGenerator(rescale=1 / 255.0) validation_generator = val_data_gen.flow_from_dataframe(dataframe=val, x_col='images', y_col='labels', target_size=(224, 224), color_mode='rgb', class_mode='categorical', batch_size=64) test_data_gen = tf.keras.preprocessing.image.ImageDataGenerator(rescale=1 / 255.0) test_generator = test_data_gen.flow_from_dataframe(dataframe=test, x_col='images', y_col='labels', target_size=(224, 224), color_mode='rgb', class_mode='categorical', batch_size=64) mlp_model = tf.keras.models.Sequential() mlp_model.add(tf.keras.layers.Flatten(input_shape=(224, 224, 3))) mlp_model.add(tf.keras.layers.Dense(256, activation='relu')) mlp_model.add(tf.keras.layers.Dropout(0.4)) mlp_model.add(tf.keras.layers.Dense(256, activation='relu')) mlp_model.add(tf.keras.layers.Dense(128, activation='relu')) mlp_model.add(tf.keras.layers.Dense(9, activation='softmax')) mlp_model.summary()
code
73072460/cell_31
[ "text_plain_output_2.png", "text_plain_output_1.png" ]
from IPython.display import Image Image(url='https://www.researchgate.net/profile/Lavender-Jiang-2/publication/343441194/figure/fig2/AS:921001202311168@1596595206463/Basic-CNN-architecture-and-kernel-A-typical-CNN-consists-of-several-component-types.ppm', width=750, height=500)
code
73072460/cell_53
[ "text_html_output_1.png" ]
import tensorflow as tf training_data_gen = tf.keras.preprocessing.image.ImageDataGenerator(rescale=1 / 255.0, rotation_range=40, zoom_range=0.2, width_shift_range=0.2, height_shift_range=0.2, shear_range=0.2, horizontal_flip=True, vertical_flip=True) training_generator = training_data_gen.flow_from_dataframe(dataframe=train, x_col='images', y_col='labels', target_size=(224, 224), color_mode='rgb', class_mode='categorical', batch_size=64) val_data_gen = tf.keras.preprocessing.image.ImageDataGenerator(rescale=1 / 255.0) validation_generator = val_data_gen.flow_from_dataframe(dataframe=val, x_col='images', y_col='labels', target_size=(224, 224), color_mode='rgb', class_mode='categorical', batch_size=64) test_data_gen = tf.keras.preprocessing.image.ImageDataGenerator(rescale=1 / 255.0) test_generator = test_data_gen.flow_from_dataframe(dataframe=test, x_col='images', y_col='labels', target_size=(224, 224), color_mode='rgb', class_mode='categorical', batch_size=64) mlp_model = tf.keras.models.Sequential() mlp_model.add(tf.keras.layers.Flatten(input_shape=(224, 224, 3))) mlp_model.add(tf.keras.layers.Dense(256, activation='relu')) mlp_model.add(tf.keras.layers.Dropout(0.4)) mlp_model.add(tf.keras.layers.Dense(256, activation='relu')) mlp_model.add(tf.keras.layers.Dense(128, activation='relu')) mlp_model.add(tf.keras.layers.Dense(9, activation='softmax')) cnn_model = tf.keras.models.Sequential() cnn_model.add(tf.keras.layers.Conv2D(32, kernel_size=(3, 3), strides=1, activation='relu', input_shape=(224, 224, 3))) cnn_model.add(tf.keras.layers.MaxPool2D(pool_size=(2, 2))) cnn_model.add(tf.keras.layers.Conv2D(64, kernel_size=(3, 3), strides=1, activation='relu')) cnn_model.add(tf.keras.layers.MaxPool2D(pool_size=(2, 2))) cnn_model.add(tf.keras.layers.Conv2D(64, kernel_size=(3, 3), strides=1, activation='relu')) cnn_model.add(tf.keras.layers.MaxPool2D(pool_size=(2, 2))) cnn_model.add(tf.keras.layers.Conv2D(128, kernel_size=(3, 3), strides=1, activation='relu')) cnn_model.add(tf.keras.layers.MaxPool2D(pool_size=(2, 2))) cnn_model.add(tf.keras.layers.Conv2D(256, kernel_size=(3, 3), strides=1, activation='relu')) cnn_model.add(tf.keras.layers.MaxPool2D(pool_size=(2, 2))) cnn_model.add(tf.keras.layers.Flatten()) cnn_model.add(tf.keras.layers.Dense(256, activation='relu')) cnn_model.add(tf.keras.layers.Dropout(0.4)) cnn_model.add(tf.keras.layers.Dense(9, activation='softmax')) cnn_model.summary()
code
73072460/cell_27
[ "text_plain_output_1.png" ]
from IPython.display import Image from IPython.display import Image Image(url='https://encrypted-tbn0.gstatic.com/images?q=tbn:ANd9GcRwed5zvnSDt0zrFd_gf-kUIMoF7Nm6FXIwDw&usqp=CAU', width=750, height=500)
code
73072460/cell_37
[ "text_html_output_1.png" ]
from IPython.display import Image Image(url='https://i.stack.imgur.com/CQtHP.gif', width=750, height=500)
code
74042725/cell_13
[ "text_plain_output_1.png" ]
import pandas as pd sales = pd.read_csv('../input/sales-store-product-details/Salesstore.csv') sales.columns sales.shape sales_id = sales['Order_ID'] sales_pname = sales['Product_Name'] sales = sales.drop(columns='Order_ID') sales = sales.drop(columns='Product_Name') sales.columns num_cols = sales._get_numeric_data().columns cont_cols = [] for i in num_cols: if len(sales[i].unique()) > int(sales.shape[0] / 25): cont_cols.append(i) cat_cols = list(set(sales.columns) - set(cont_cols)) cat_cols
code
74042725/cell_9
[ "text_plain_output_2.png", "application_vnd.jupyter.stderr_output_1.png", "image_output_1.png" ]
import pandas as pd sales = pd.read_csv('../input/sales-store-product-details/Salesstore.csv') sales.columns sales.shape sales_id = sales['Order_ID'] sales_pname = sales['Product_Name'] sales = sales.drop(columns='Order_ID') sales = sales.drop(columns='Product_Name') sales.columns
code
74042725/cell_4
[ "text_plain_output_2.png", "application_vnd.jupyter.stderr_output_1.png", "image_output_1.png" ]
import pandas as pd sales = pd.read_csv('../input/sales-store-product-details/Salesstore.csv') sales.columns
code
74042725/cell_23
[ "text_plain_output_1.png" ]
import matplotlib.pyplot as plt import pandas as pd import seaborn as sns sales = pd.read_csv('../input/sales-store-product-details/Salesstore.csv') sales.columns sales.shape sales_id = sales['Order_ID'] sales_pname = sales['Product_Name'] sales = sales.drop(columns='Order_ID') sales = sales.drop(columns='Product_Name') sales.columns num_cols = sales._get_numeric_data().columns cont_cols = [] for i in num_cols: if len(sales[i].unique()) > int(sales.shape[0] / 25): cont_cols.append(i) cat_cols = list(set(sales.columns) - set(cont_cols)) cat_cols sales.Ship_Mode.value_counts() sales.Region.value_counts() plt.figure(figsize=(5, 5)) corp = sales.loc[sales['Customer_Segment'] == 'Corporate'].count()[0] cons = sales.loc[sales['Customer_Segment'] == 'Consumer'].count()[0] hoff = sales.loc[sales['Customer_Segment'] == 'Home Office'].count()[0] sbiz = sales.loc[sales['Customer_Segment'] == 'Small Business'].count()[0] explode = (0.1, 0.1, 0.1, 0.1) labels = ['Corporate', 'Consumer', 'Home Office', 'Small Business'] plt.pie([corp, cons, hoff, sbiz], labels=labels, autopct='%.2f %%', explode=explode) plt.title('Customer Segment') plt.show() sales.Customer_Segment.value_counts()
code
74042725/cell_20
[ "text_plain_output_1.png" ]
import pandas as pd import seaborn as sns sales = pd.read_csv('../input/sales-store-product-details/Salesstore.csv') sales.columns sales.shape sales_id = sales['Order_ID'] sales_pname = sales['Product_Name'] sales = sales.drop(columns='Order_ID') sales = sales.drop(columns='Product_Name') sales.columns num_cols = sales._get_numeric_data().columns cont_cols = [] for i in num_cols: if len(sales[i].unique()) > int(sales.shape[0] / 25): cont_cols.append(i) cat_cols = list(set(sales.columns) - set(cont_cols)) cat_cols sales.Ship_Mode.value_counts() sns.countplot(sales.Region) sales.Region.value_counts()
code
74042725/cell_6
[ "text_plain_output_2.png", "application_vnd.jupyter.stderr_output_1.png", "image_output_1.png" ]
import pandas as pd sales = pd.read_csv('../input/sales-store-product-details/Salesstore.csv') sales.columns sales.shape len(sales['Order_ID'].unique())
code
74042725/cell_29
[ "text_plain_output_1.png" ]
import matplotlib.pyplot as plt import pandas as pd import seaborn as sns sales = pd.read_csv('../input/sales-store-product-details/Salesstore.csv') sales.columns sales.shape sales_id = sales['Order_ID'] sales_pname = sales['Product_Name'] sales = sales.drop(columns='Order_ID') sales = sales.drop(columns='Product_Name') sales.columns num_cols = sales._get_numeric_data().columns cont_cols = [] for i in num_cols: if len(sales[i].unique()) > int(sales.shape[0] / 25): cont_cols.append(i) cat_cols = list(set(sales.columns) - set(cont_cols)) cat_cols sales.Ship_Mode.value_counts() sales.Region.value_counts() corp = sales.loc[sales['Customer_Segment'] == 'Corporate'].count()[0] cons = sales.loc[sales['Customer_Segment'] == 'Consumer'].count()[0] hoff = sales.loc[sales['Customer_Segment'] == 'Home Office'].count()[0] sbiz = sales.loc[sales['Customer_Segment'] == 'Small Business'].count()[0] explode = (0.1, 0.1, 0.1, 0.1) labels = ['Corporate', 'Consumer', 'Home Office', 'Small Business'] sales.Customer_Segment.value_counts() sales.Product_Category.value_counts() sns.countplot(sales.Product_Container) sales.Product_Container.value_counts()
code
74042725/cell_26
[ "text_plain_output_1.png" ]
import matplotlib.pyplot as plt import pandas as pd import seaborn as sns sales = pd.read_csv('../input/sales-store-product-details/Salesstore.csv') sales.columns sales.shape sales_id = sales['Order_ID'] sales_pname = sales['Product_Name'] sales = sales.drop(columns='Order_ID') sales = sales.drop(columns='Product_Name') sales.columns num_cols = sales._get_numeric_data().columns cont_cols = [] for i in num_cols: if len(sales[i].unique()) > int(sales.shape[0] / 25): cont_cols.append(i) cat_cols = list(set(sales.columns) - set(cont_cols)) cat_cols sales.Ship_Mode.value_counts() sales.Region.value_counts() corp = sales.loc[sales['Customer_Segment'] == 'Corporate'].count()[0] cons = sales.loc[sales['Customer_Segment'] == 'Consumer'].count()[0] hoff = sales.loc[sales['Customer_Segment'] == 'Home Office'].count()[0] sbiz = sales.loc[sales['Customer_Segment'] == 'Small Business'].count()[0] explode = (0.1, 0.1, 0.1, 0.1) labels = ['Corporate', 'Consumer', 'Home Office', 'Small Business'] sales.Customer_Segment.value_counts() sns.countplot(sales.Product_Category) sales.Product_Category.value_counts()
code
74042725/cell_11
[ "text_html_output_1.png" ]
import pandas as pd sales = pd.read_csv('../input/sales-store-product-details/Salesstore.csv') sales.columns sales.shape sales_id = sales['Order_ID'] sales_pname = sales['Product_Name'] sales = sales.drop(columns='Order_ID') sales = sales.drop(columns='Product_Name') sales.columns num_cols = sales._get_numeric_data().columns cont_cols = [] for i in num_cols: if len(sales[i].unique()) > int(sales.shape[0] / 25): cont_cols.append(i) print(cont_cols)
code
74042725/cell_7
[ "text_plain_output_2.png", "application_vnd.jupyter.stderr_output_1.png", "image_output_1.png" ]
import pandas as pd sales = pd.read_csv('../input/sales-store-product-details/Salesstore.csv') sales.columns sales.shape len(sales['Product_Name'].unique())
code
74042725/cell_3
[ "text_html_output_1.png" ]
import pandas as pd sales = pd.read_csv('../input/sales-store-product-details/Salesstore.csv') sales.head()
code
74042725/cell_17
[ "text_plain_output_1.png" ]
import pandas as pd import seaborn as sns sales = pd.read_csv('../input/sales-store-product-details/Salesstore.csv') sales.columns sales.shape sales_id = sales['Order_ID'] sales_pname = sales['Product_Name'] sales = sales.drop(columns='Order_ID') sales = sales.drop(columns='Product_Name') sales.columns num_cols = sales._get_numeric_data().columns cont_cols = [] for i in num_cols: if len(sales[i].unique()) > int(sales.shape[0] / 25): cont_cols.append(i) cat_cols = list(set(sales.columns) - set(cont_cols)) cat_cols sns.countplot(sales.Ship_Mode) sales.Ship_Mode.value_counts()
code
74042725/cell_14
[ "text_plain_output_1.png" ]
import pandas as pd sales = pd.read_csv('../input/sales-store-product-details/Salesstore.csv') sales.columns sales.shape sales_id = sales['Order_ID'] sales_pname = sales['Product_Name'] sales = sales.drop(columns='Order_ID') sales = sales.drop(columns='Product_Name') sales.columns num_cols = sales._get_numeric_data().columns cont_cols = [] for i in num_cols: if len(sales[i].unique()) > int(sales.shape[0] / 25): cont_cols.append(i) cat_cols = list(set(sales.columns) - set(cont_cols)) cat_cols sales.describe()
code
74042725/cell_5
[ "text_plain_output_1.png", "image_output_1.png" ]
import pandas as pd sales = pd.read_csv('../input/sales-store-product-details/Salesstore.csv') sales.columns sales.shape
code
104129189/cell_6
[ "image_output_1.png" ]
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) df = pd.read_csv('/kaggle/input/ford-car-price-prediction/ford.csv') df.query("model == ' Mustang' and year == 2020")
code
104129189/cell_39
[ "image_output_1.png" ]
import matplotlib.pyplot as plt import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) import seaborn as sns df = pd.read_csv('/kaggle/input/ford-car-price-prediction/ford.csv') df.query("model == ' Mustang' and year == 2020") sns.set_style('whitegrid') serie_mean_model = df.groupby('model')['price'].mean().sort_values(ascending=True) mean_mpg = df.groupby('fuelType')['mpg'].mean().sort_values(ascending=True) fig = plt.subplots(1,1,figsize = (20,8)) _ = sns.heatmap(df.corr(),annot=True) serieengineSize = serieengineSize[serieengineSize < 10] df.engineSize = df['engineSize'].apply(lambda x: 'Other' if x in serieengineSize else x) serie_model = df.model.value_counts() serie_model = serie_model[serie_model < 10] df.model = df['model'].apply(lambda x: 'Other' if x in serie_model else x) seriefuelType = seriefuelType[seriefuelType < 10] df.fuelType = df['fuelType'].apply(lambda x: 'Other' if x in seriefuelType else x) for column in ['fuelType', 'engineSize', 'model']: df = df.query("{} != 'Other'".format(column)) def Histogram(x): fig = plt.subplots(1,1,figsize = (20,8)) return sns.histplot(data = df, x = x,color = 'c') _ = Histogram(df.year) df.query('year == 2006')
code
104129189/cell_1
[ "text_plain_output_1.png" ]
import os import numpy as np import pandas as pd import os for dirname, _, filenames in os.walk('/kaggle/input'): for filename in filenames: print(os.path.join(dirname, filename))
code
104129189/cell_45
[ "text_html_output_1.png" ]
import matplotlib.pyplot as plt import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) import seaborn as sns df = pd.read_csv('/kaggle/input/ford-car-price-prediction/ford.csv') df.query("model == ' Mustang' and year == 2020") sns.set_style('whitegrid') serie_mean_model = df.groupby('model')['price'].mean().sort_values(ascending=True) mean_mpg = df.groupby('fuelType')['mpg'].mean().sort_values(ascending=True) fig = plt.subplots(1,1,figsize = (20,8)) _ = sns.heatmap(df.corr(),annot=True) serieengineSize = serieengineSize[serieengineSize < 10] df.engineSize = df['engineSize'].apply(lambda x: 'Other' if x in serieengineSize else x) serie_model = df.model.value_counts() serie_model = serie_model[serie_model < 10] df.model = df['model'].apply(lambda x: 'Other' if x in serie_model else x) seriefuelType = seriefuelType[seriefuelType < 10] df.fuelType = df['fuelType'].apply(lambda x: 'Other' if x in seriefuelType else x) for column in ['fuelType', 'engineSize', 'model']: df = df.query("{} != 'Other'".format(column)) def Histogram(x): fig = plt.subplots(1,1,figsize = (20,8)) return sns.histplot(data = df, x = x,color = 'c') _ = Histogram(df.year) df.query('year == 2006') df = df.query('year >= 2006') df = df.query('mileage > 1000') df.price.max() _ = Histogram(df.price)
code
104129189/cell_18
[ "image_output_1.png" ]
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) df = pd.read_csv('/kaggle/input/ford-car-price-prediction/ford.csv') df.query("model == ' Mustang' and year == 2020") def serie(data): return df[data].value_counts().sort_values(ascending=True) def Barplot(serie, title): colors = ['#77dd77', '#fdfd96', '#84b6f4', '#fdcae1', '#b2e2f2', '#ffda9e'] return serie_mean_model = df.groupby('model')['price'].mean().sort_values(ascending=True) _ = Barplot(serie=serie_mean_model, title='Mean By Model')
code
104129189/cell_8
[ "text_plain_output_1.png" ]
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) df = pd.read_csv('/kaggle/input/ford-car-price-prediction/ford.csv') df.query("model == ' Mustang' and year == 2020") df.info()
code
104129189/cell_15
[ "image_output_1.png" ]
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) df = pd.read_csv('/kaggle/input/ford-car-price-prediction/ford.csv') df.query("model == ' Mustang' and year == 2020") def serie(data): return df[data].value_counts().sort_values(ascending=True) def Barplot(serie, title): colors = ['#77dd77', '#fdfd96', '#84b6f4', '#fdcae1', '#b2e2f2', '#ffda9e'] return _ = Barplot(serie=serieTransmission, title='Transmission')
code
104129189/cell_38
[ "image_output_1.png" ]
import matplotlib.pyplot as plt import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) import seaborn as sns df = pd.read_csv('/kaggle/input/ford-car-price-prediction/ford.csv') df.query("model == ' Mustang' and year == 2020") sns.set_style('whitegrid') serie_mean_model = df.groupby('model')['price'].mean().sort_values(ascending=True) mean_mpg = df.groupby('fuelType')['mpg'].mean().sort_values(ascending=True) fig = plt.subplots(1,1,figsize = (20,8)) _ = sns.heatmap(df.corr(),annot=True) serieengineSize = serieengineSize[serieengineSize < 10] df.engineSize = df['engineSize'].apply(lambda x: 'Other' if x in serieengineSize else x) serie_model = df.model.value_counts() serie_model = serie_model[serie_model < 10] df.model = df['model'].apply(lambda x: 'Other' if x in serie_model else x) seriefuelType = seriefuelType[seriefuelType < 10] df.fuelType = df['fuelType'].apply(lambda x: 'Other' if x in seriefuelType else x) for column in ['fuelType', 'engineSize', 'model']: df = df.query("{} != 'Other'".format(column)) def Histogram(x): fig = plt.subplots(1,1,figsize = (20,8)) return sns.histplot(data = df, x = x,color = 'c') _ = Histogram(df.year)
code
104129189/cell_43
[ "image_output_1.png" ]
import matplotlib.pyplot as plt import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) import seaborn as sns df = pd.read_csv('/kaggle/input/ford-car-price-prediction/ford.csv') df.query("model == ' Mustang' and year == 2020") sns.set_style('whitegrid') serie_mean_model = df.groupby('model')['price'].mean().sort_values(ascending=True) mean_mpg = df.groupby('fuelType')['mpg'].mean().sort_values(ascending=True) fig = plt.subplots(1,1,figsize = (20,8)) _ = sns.heatmap(df.corr(),annot=True) serieengineSize = serieengineSize[serieengineSize < 10] df.engineSize = df['engineSize'].apply(lambda x: 'Other' if x in serieengineSize else x) serie_model = df.model.value_counts() serie_model = serie_model[serie_model < 10] df.model = df['model'].apply(lambda x: 'Other' if x in serie_model else x) seriefuelType = seriefuelType[seriefuelType < 10] df.fuelType = df['fuelType'].apply(lambda x: 'Other' if x in seriefuelType else x) for column in ['fuelType', 'engineSize', 'model']: df = df.query("{} != 'Other'".format(column)) def Histogram(x): fig = plt.subplots(1,1,figsize = (20,8)) return sns.histplot(data = df, x = x,color = 'c') _ = Histogram(df.year) df.query('year == 2006') df = df.query('year >= 2006') df = df.query('mileage > 1000') df.price.max()
code
104129189/cell_24
[ "image_output_1.png" ]
import matplotlib.pyplot as plt import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) import seaborn as sns df = pd.read_csv('/kaggle/input/ford-car-price-prediction/ford.csv') df.query("model == ' Mustang' and year == 2020") sns.set_style('whitegrid') serie_mean_model = df.groupby('model')['price'].mean().sort_values(ascending=True) mean_mpg = df.groupby('fuelType')['mpg'].mean().sort_values(ascending=True) fig = plt.subplots(1, 1, figsize=(20, 8)) _ = sns.heatmap(df.corr(), annot=True)
code
104129189/cell_14
[ "text_plain_output_1.png" ]
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) df = pd.read_csv('/kaggle/input/ford-car-price-prediction/ford.csv') df.query("model == ' Mustang' and year == 2020") def serie(data): return df[data].value_counts().sort_values(ascending=True) def Barplot(serie, title): colors = ['#77dd77', '#fdfd96', '#84b6f4', '#fdcae1', '#b2e2f2', '#ffda9e'] return _ = Barplot(serie=serieengineSize, title='Engine Size Counts')
code
104129189/cell_22
[ "image_output_1.png" ]
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) df = pd.read_csv('/kaggle/input/ford-car-price-prediction/ford.csv') df.query("model == ' Mustang' and year == 2020") def serie(data): return df[data].value_counts().sort_values(ascending=True) def Barplot(serie, title): colors = ['#77dd77', '#fdfd96', '#84b6f4', '#fdcae1', '#b2e2f2', '#ffda9e'] return serie_mean_model = df.groupby('model')['price'].mean().sort_values(ascending=True) mean_mpg = df.groupby('fuelType')['mpg'].mean().sort_values(ascending=True) _ = Barplot(serie=mean_mpg, title='Mean MPG')
code
104129189/cell_12
[ "text_html_output_1.png" ]
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) df = pd.read_csv('/kaggle/input/ford-car-price-prediction/ford.csv') df.query("model == ' Mustang' and year == 2020") def serie(data): return df[data].value_counts().sort_values(ascending=True) def Barplot(serie, title): colors = ['#77dd77', '#fdfd96', '#84b6f4', '#fdcae1', '#b2e2f2', '#ffda9e'] return _ = Barplot(serie=seriefuelType, title='FuelType Counts')
code
106209352/cell_13
[ "text_plain_output_1.png" ]
import matplotlib.pyplot as plt import numpy as np import pandas as pd dataset = pd.read_csv('../input/the-spotify-hit-predictor-dataset/dataset-of-90s.csv') features_with_na = [feature for feature in dataset.columns if dataset[feature].isnull().sum() > 1] features_with_na dataset.isnull().sum() numerical_feature = [feature for feature in dataset.columns if dataset[feature].dtypes != 'O'] numerical_feature discrete_feature = [feature for feature in numerical_feature if len(dataset[feature].unique()) < 15] discrete_feature for feature in discrete_feature: data = dataset.copy() continuous_feature = [feature for feature in numerical_feature if feature not in discrete_feature] continuous_feature for feature in continuous_feature: data = dataset.copy() for feature in continuous_feature: data[feature] = np.log(data[feature]) for feature in continuous_feature: data = dataset.copy() data[feature] = np.log(data[feature]) categorical_features = [feature for feature in dataset.columns if dataset[feature].dtypes == 'O'] categorical_features
code
106209352/cell_9
[ "image_output_5.png", "image_output_7.png", "image_output_4.png", "image_output_8.png", "image_output_6.png", "application_vnd.jupyter.stderr_output_1.png", "image_output_3.png", "image_output_2.png", "image_output_1.png" ]
import pandas as pd dataset = pd.read_csv('../input/the-spotify-hit-predictor-dataset/dataset-of-90s.csv') features_with_na = [feature for feature in dataset.columns if dataset[feature].isnull().sum() > 1] features_with_na dataset.isnull().sum() numerical_feature = [feature for feature in dataset.columns if dataset[feature].dtypes != 'O'] numerical_feature discrete_feature = [feature for feature in numerical_feature if len(dataset[feature].unique()) < 15] discrete_feature continuous_feature = [feature for feature in numerical_feature if feature not in discrete_feature] continuous_feature
code
106209352/cell_4
[ "text_plain_output_1.png" ]
import pandas as pd dataset = pd.read_csv('../input/the-spotify-hit-predictor-dataset/dataset-of-90s.csv') features_with_na = [feature for feature in dataset.columns if dataset[feature].isnull().sum() > 1] features_with_na
code
106209352/cell_6
[ "text_html_output_1.png" ]
import pandas as pd dataset = pd.read_csv('../input/the-spotify-hit-predictor-dataset/dataset-of-90s.csv') features_with_na = [feature for feature in dataset.columns if dataset[feature].isnull().sum() > 1] features_with_na dataset.isnull().sum() numerical_feature = [feature for feature in dataset.columns if dataset[feature].dtypes != 'O'] numerical_feature
code
106209352/cell_2
[ "image_output_5.png", "image_output_7.png", "image_output_4.png", "image_output_8.png", "image_output_6.png", "application_vnd.jupyter.stderr_output_1.png", "image_output_3.png", "image_output_2.png", "image_output_1.png" ]
import pandas as pd dataset = pd.read_csv('../input/the-spotify-hit-predictor-dataset/dataset-of-90s.csv') dataset.head()
code
106209352/cell_11
[ "text_plain_output_1.png" ]
import matplotlib.pyplot as plt import numpy as np import pandas as pd dataset = pd.read_csv('../input/the-spotify-hit-predictor-dataset/dataset-of-90s.csv') features_with_na = [feature for feature in dataset.columns if dataset[feature].isnull().sum() > 1] features_with_na dataset.isnull().sum() numerical_feature = [feature for feature in dataset.columns if dataset[feature].dtypes != 'O'] numerical_feature discrete_feature = [feature for feature in numerical_feature if len(dataset[feature].unique()) < 15] discrete_feature for feature in discrete_feature: data = dataset.copy() continuous_feature = [feature for feature in numerical_feature if feature not in discrete_feature] continuous_feature for feature in continuous_feature: data = dataset.copy() for feature in continuous_feature: data[feature] = np.log(data[feature]) data[feature].hist(bins=20) plt.xlabel(feature) plt.ylabel('counts') plt.show()
code
106209352/cell_19
[ "image_output_11.png", "image_output_5.png", "image_output_7.png", "image_output_4.png", "image_output_8.png", "image_output_6.png", "image_output_12.png", "image_output_3.png", "image_output_2.png", "image_output_1.png", "image_output_10.png", "image_output_9.png" ]
import matplotlib.pyplot as plt import numpy as np import pandas as pd import seaborn as sns dataset = pd.read_csv('../input/the-spotify-hit-predictor-dataset/dataset-of-90s.csv') features_with_na = [feature for feature in dataset.columns if dataset[feature].isnull().sum() > 1] features_with_na dataset.isnull().sum() numerical_feature = [feature for feature in dataset.columns if dataset[feature].dtypes != 'O'] numerical_feature discrete_feature = [feature for feature in numerical_feature if len(dataset[feature].unique()) < 15] discrete_feature for feature in discrete_feature: data = dataset.copy() continuous_feature = [feature for feature in numerical_feature if feature not in discrete_feature] continuous_feature for feature in continuous_feature: data = dataset.copy() for feature in continuous_feature: data[feature] = np.log(data[feature]) for feature in continuous_feature: data = dataset.copy() data[feature] = np.log(data[feature]) categorical_features = [feature for feature in dataset.columns if dataset[feature].dtypes == 'O'] categorical_features dataset.corr() def correlation(dataset, threshold): col_corr = set() corr_matrix = dataset.corr() for i in range(len(corr_matrix.columns)): for j in range(i): if corr_matrix.iloc[i, j] >= threshold: colname = corr_matrix.columns[i] col_corr.add(colname) return col_corr correlation_features = correlation(dataset, 0.7) correlation_features
code
106209352/cell_7
[ "text_plain_output_1.png", "image_output_1.png" ]
import pandas as pd dataset = pd.read_csv('../input/the-spotify-hit-predictor-dataset/dataset-of-90s.csv') features_with_na = [feature for feature in dataset.columns if dataset[feature].isnull().sum() > 1] features_with_na dataset.isnull().sum() numerical_feature = [feature for feature in dataset.columns if dataset[feature].dtypes != 'O'] numerical_feature discrete_feature = [feature for feature in numerical_feature if len(dataset[feature].unique()) < 15] discrete_feature
code
106209352/cell_8
[ "text_plain_output_1.png" ]
import matplotlib.pyplot as plt import pandas as pd dataset = pd.read_csv('../input/the-spotify-hit-predictor-dataset/dataset-of-90s.csv') features_with_na = [feature for feature in dataset.columns if dataset[feature].isnull().sum() > 1] features_with_na dataset.isnull().sum() numerical_feature = [feature for feature in dataset.columns if dataset[feature].dtypes != 'O'] numerical_feature discrete_feature = [feature for feature in numerical_feature if len(dataset[feature].unique()) < 15] discrete_feature for feature in discrete_feature: data = dataset.copy() data.groupby(feature)['target'].median().plot.bar() plt.xlabel(feature) plt.ylabel('target') plt.show()
code
106209352/cell_16
[ "image_output_4.png", "image_output_3.png", "image_output_2.png", "image_output_1.png" ]
import matplotlib.pyplot as plt import numpy as np import pandas as pd dataset = pd.read_csv('../input/the-spotify-hit-predictor-dataset/dataset-of-90s.csv') features_with_na = [feature for feature in dataset.columns if dataset[feature].isnull().sum() > 1] features_with_na dataset.isnull().sum() numerical_feature = [feature for feature in dataset.columns if dataset[feature].dtypes != 'O'] numerical_feature discrete_feature = [feature for feature in numerical_feature if len(dataset[feature].unique()) < 15] discrete_feature for feature in discrete_feature: data = dataset.copy() continuous_feature = [feature for feature in numerical_feature if feature not in discrete_feature] continuous_feature for feature in continuous_feature: data = dataset.copy() for feature in continuous_feature: data[feature] = np.log(data[feature]) for feature in continuous_feature: data = dataset.copy() data[feature] = np.log(data[feature]) categorical_features = [feature for feature in dataset.columns if dataset[feature].dtypes == 'O'] categorical_features dataset.corr()
code
106209352/cell_17
[ "text_plain_output_1.png" ]
import matplotlib.pyplot as plt import numpy as np import pandas as pd import seaborn as sns dataset = pd.read_csv('../input/the-spotify-hit-predictor-dataset/dataset-of-90s.csv') features_with_na = [feature for feature in dataset.columns if dataset[feature].isnull().sum() > 1] features_with_na dataset.isnull().sum() numerical_feature = [feature for feature in dataset.columns if dataset[feature].dtypes != 'O'] numerical_feature discrete_feature = [feature for feature in numerical_feature if len(dataset[feature].unique()) < 15] discrete_feature for feature in discrete_feature: data = dataset.copy() continuous_feature = [feature for feature in numerical_feature if feature not in discrete_feature] continuous_feature for feature in continuous_feature: data = dataset.copy() for feature in continuous_feature: data[feature] = np.log(data[feature]) for feature in continuous_feature: data = dataset.copy() data[feature] = np.log(data[feature]) categorical_features = [feature for feature in dataset.columns if dataset[feature].dtypes == 'O'] categorical_features dataset.corr() sns.heatmap(dataset.corr())
code
106209352/cell_14
[ "text_plain_output_1.png" ]
import matplotlib.pyplot as plt import numpy as np import pandas as pd dataset = pd.read_csv('../input/the-spotify-hit-predictor-dataset/dataset-of-90s.csv') features_with_na = [feature for feature in dataset.columns if dataset[feature].isnull().sum() > 1] features_with_na dataset.isnull().sum() numerical_feature = [feature for feature in dataset.columns if dataset[feature].dtypes != 'O'] numerical_feature discrete_feature = [feature for feature in numerical_feature if len(dataset[feature].unique()) < 15] discrete_feature for feature in discrete_feature: data = dataset.copy() continuous_feature = [feature for feature in numerical_feature if feature not in discrete_feature] continuous_feature for feature in continuous_feature: data = dataset.copy() for feature in continuous_feature: data[feature] = np.log(data[feature]) for feature in continuous_feature: data = dataset.copy() data[feature] = np.log(data[feature]) categorical_features = [feature for feature in dataset.columns if dataset[feature].dtypes == 'O'] categorical_features for feature in categorical_features: print('The Feature is {} and the no of categories are: {}'.format(feature, len(dataset[feature].unique())))
code
106209352/cell_10
[ "text_html_output_1.png" ]
import matplotlib.pyplot as plt import pandas as pd dataset = pd.read_csv('../input/the-spotify-hit-predictor-dataset/dataset-of-90s.csv') features_with_na = [feature for feature in dataset.columns if dataset[feature].isnull().sum() > 1] features_with_na dataset.isnull().sum() numerical_feature = [feature for feature in dataset.columns if dataset[feature].dtypes != 'O'] numerical_feature discrete_feature = [feature for feature in numerical_feature if len(dataset[feature].unique()) < 15] discrete_feature for feature in discrete_feature: data = dataset.copy() continuous_feature = [feature for feature in numerical_feature if feature not in discrete_feature] continuous_feature for feature in continuous_feature: data = dataset.copy() data[feature].hist(bins=20) plt.xlabel(feature) plt.ylabel('count') plt.show()
code
106209352/cell_12
[ "text_plain_output_1.png" ]
import matplotlib.pyplot as plt import numpy as np import pandas as pd dataset = pd.read_csv('../input/the-spotify-hit-predictor-dataset/dataset-of-90s.csv') features_with_na = [feature for feature in dataset.columns if dataset[feature].isnull().sum() > 1] features_with_na dataset.isnull().sum() numerical_feature = [feature for feature in dataset.columns if dataset[feature].dtypes != 'O'] numerical_feature discrete_feature = [feature for feature in numerical_feature if len(dataset[feature].unique()) < 15] discrete_feature for feature in discrete_feature: data = dataset.copy() continuous_feature = [feature for feature in numerical_feature if feature not in discrete_feature] continuous_feature for feature in continuous_feature: data = dataset.copy() for feature in continuous_feature: data[feature] = np.log(data[feature]) for feature in continuous_feature: data = dataset.copy() data[feature] = np.log(data[feature]) data.boxplot(column=feature) plt.ylabel(feature) plt.title(feature) plt.show()
code
106209352/cell_5
[ "text_plain_output_1.png" ]
import pandas as pd dataset = pd.read_csv('../input/the-spotify-hit-predictor-dataset/dataset-of-90s.csv') features_with_na = [feature for feature in dataset.columns if dataset[feature].isnull().sum() > 1] features_with_na dataset.isnull().sum()
code
122251856/cell_5
[ "image_output_11.png", "image_output_17.png", "image_output_14.png", "image_output_13.png", "image_output_5.png", "image_output_18.png", "image_output_7.png", "image_output_20.png", "image_output_4.png", "image_output_8.png", "image_output_16.png", "image_output_6.png", "image_output_12.png", "image_output_3.png", "image_output_2.png", "image_output_1.png", "image_output_10.png", "image_output_15.png", "image_output_9.png", "image_output_19.png" ]
from cv2 import resize import glob import matplotlib.pyplot as plt import numpy as np import os import tqdm.auto as tqdm olci_root = '/kaggle/input/medisar-olci' available_olci = os.listdir(olci_root) def plot_olci(key): with open(f'{olci_root}/{key}/metadata.txt', 'r') as file: lines = [line.replace('\n', '') for line in file.readlines()] min_value = eval(lines[1][4:]) max_value = eval(lines[2][4:]) delta = eval(lines[3][6:]) im = np.array(PIL.Image.open(f'{olci_root}/{key}/{key}_S3.png')).astype(float) im[im == 0] = np.nan im = min_value + delta * (im - 1) title = ' '.join(lines[0].split(' ')[:3]) plt.colorbar(orientation='horizontal', fraction=0.046) plt.axis(False) i = 0 max_slicks = 0 folders = glob.glob('/kaggle/input/medisar20??/*/*/*') pbar = tqdm.tqdm(folders, smoothing=0.001) for folder in pbar: content = os.listdir(folder) if 'era5_wind_speed_256.png' not in content: continue wind = np.array(PIL.Image.open(folder + '/era5_wind_speed_256.png')) / 10 if wind[wind > 0].mean() > 5: continue mask = np.array(PIL.Image.open(folder + '/mask.png')).astype('float') if mask.mean() > 0.5: continue slicks = np.array(PIL.Image.open(folder + '/biological_slicks.png')) / 255 slicks[slicks < 0.75] = 0 max_slicks = max(max_slicks, slicks.mean()) pbar.set_description(f'{max_slicks}') if slicks.mean() < 0.05: continue key = os.path.split(folder)[1].lower() if not key in available_olci: continue sar = np.array(PIL.Image.open(glob.glob(folder + '/*vv*')[0])) slicks[resize(mask, slicks.shape[::-1]) > 0.5] = np.nan plt.figure(figsize=(20, 6)) plt.suptitle(os.path.split(folder)[1], fontweight='bold') plt.subplot(131) plt.imshow(sar, cmap='gray', vmin=0, vmax=2 ** 12) plt.colorbar(orientation='horizontal', fraction=0.046) plt.axis(False) plt.subplot(132) plt.imshow(slicks, cmap='gray', vmin=0, vmax=1) plt.colorbar(orientation='horizontal', fraction=0.046) plt.axis(False) plt.subplot(133) plot_olci(key) plt.tight_layout() plt.show() plt.close() i += 1 if i == 20: break
code
89123667/cell_21
[ "text_plain_output_1.png" ]
from sklearn.model_selection import StratifiedKFold, KFold, TimeSeriesSplit import pandas as pd import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) nrows = None def train_eval_kfolds(X, y, n_splits=5, random_state=None): assert hasattr(X, 'iloc') assert hasattr(y, 'iloc') skf = TimeSeriesSplit(n_splits=n_splits) for train_index, eval_index in skf.split(X, y): X_train, X_eval = (X.iloc[train_index], X.iloc[eval_index]) y_train, y_eval = (y.iloc[train_index], y.iloc[eval_index]) yield (X_train, X_eval, y_train, y_eval) train_df = pd.read_csv('../input/tabular-playground-series-mar-2022/train.csv', index_col='row_id', nrows=nrows) features = [c for c in train_df.columns if c not in ['congestion']] X = train_df[features] y = train_df['congestion'] features class Pipeline: object_cols = None def transform(self, X): X2 = X.copy() date_series = pd.to_datetime(X['time']) date_accessor = date_series.dt for attr in ['date', 'day', 'day_of_week', 'day_of_year', 'days_in_month', 'freq', 'hour', 'is_leap_year', 'is_month_end', 'is_month_start', 'is_quarter_end', 'is_quarter_start', 'is_year_end', 'is_year_start', 'microsecond', 'minute', 'month', 'nanosecond', 'quarter', 'second', 'time', 'weekday', 'year']: X2[attr] = getattr(date_accessor, attr) X2['week'] = date_accessor.isocalendar().week.astype(int) X2['original_time'] = X['time'] X2['time'] = X2['time'].astype(str) self.object_cols = list(X2.dtypes[X2.dtypes == object].index) X2[self.object_cols] = X2[self.object_cols].astype(str) return X2 test_df = pd.read_csv('../input/tabular-playground-series-mar-2022/test.csv', index_col='row_id') submission_df = test_df[[]].copy() submission_df
code
89123667/cell_9
[ "text_html_output_1.png" ]
import pandas as pd import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) nrows = None train_df = pd.read_csv('../input/tabular-playground-series-mar-2022/train.csv', index_col='row_id', nrows=nrows) target_mean = train_df['congestion'].mean() target_mean (train_df['congestion'] - target_mean).abs().mean()
code
89123667/cell_6
[ "text_plain_output_1.png" ]
import pandas as pd import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) nrows = None train_df = pd.read_csv('../input/tabular-playground-series-mar-2022/train.csv', index_col='row_id', nrows=nrows) train_df['congestion']
code
89123667/cell_2
[ "text_plain_output_1.png" ]
import os import numpy as np import pandas as pd import os for dirname, _, filenames in os.walk('../input'): for filename in filenames: print(os.path.join(dirname, filename))
code
89123667/cell_7
[ "text_html_output_1.png" ]
import pandas as pd import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) nrows = None train_df = pd.read_csv('../input/tabular-playground-series-mar-2022/train.csv', index_col='row_id', nrows=nrows) train_df['congestion'].hist(bins=100)
code
89123667/cell_8
[ "text_html_output_1.png" ]
import pandas as pd import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) nrows = None train_df = pd.read_csv('../input/tabular-playground-series-mar-2022/train.csv', index_col='row_id', nrows=nrows) target_mean = train_df['congestion'].mean() target_mean
code
89123667/cell_15
[ "text_plain_output_1.png" ]
from sklearn.model_selection import StratifiedKFold, KFold, TimeSeriesSplit import pandas as pd import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) nrows = None def train_eval_kfolds(X, y, n_splits=5, random_state=None): assert hasattr(X, 'iloc') assert hasattr(y, 'iloc') skf = TimeSeriesSplit(n_splits=n_splits) for train_index, eval_index in skf.split(X, y): X_train, X_eval = (X.iloc[train_index], X.iloc[eval_index]) y_train, y_eval = (y.iloc[train_index], y.iloc[eval_index]) yield (X_train, X_eval, y_train, y_eval) train_df = pd.read_csv('../input/tabular-playground-series-mar-2022/train.csv', index_col='row_id', nrows=nrows) features = [c for c in train_df.columns if c not in ['congestion']] X = train_df[features] y = train_df['congestion'] features class Pipeline: object_cols = None def transform(self, X): X2 = X.copy() date_series = pd.to_datetime(X['time']) date_accessor = date_series.dt for attr in ['date', 'day', 'day_of_week', 'day_of_year', 'days_in_month', 'freq', 'hour', 'is_leap_year', 'is_month_end', 'is_month_start', 'is_quarter_end', 'is_quarter_start', 'is_year_end', 'is_year_start', 'microsecond', 'minute', 'month', 'nanosecond', 'quarter', 'second', 'time', 'weekday', 'year']: X2[attr] = getattr(date_accessor, attr) X2['week'] = date_accessor.isocalendar().week.astype(int) X2['original_time'] = X['time'] X2['time'] = X2['time'].astype(str) self.object_cols = list(X2.dtypes[X2.dtypes == object].index) X2[self.object_cols] = X2[self.object_cols].astype(str) return X2 test_df = pd.read_csv('../input/tabular-playground-series-mar-2022/test.csv', index_col='row_id') test_df.head()
code
89123667/cell_16
[ "text_plain_output_1.png", "image_output_1.png" ]
from sklearn.model_selection import StratifiedKFold, KFold, TimeSeriesSplit import pandas as pd import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) nrows = None def train_eval_kfolds(X, y, n_splits=5, random_state=None): assert hasattr(X, 'iloc') assert hasattr(y, 'iloc') skf = TimeSeriesSplit(n_splits=n_splits) for train_index, eval_index in skf.split(X, y): X_train, X_eval = (X.iloc[train_index], X.iloc[eval_index]) y_train, y_eval = (y.iloc[train_index], y.iloc[eval_index]) yield (X_train, X_eval, y_train, y_eval) train_df = pd.read_csv('../input/tabular-playground-series-mar-2022/train.csv', index_col='row_id', nrows=nrows) features = [c for c in train_df.columns if c not in ['congestion']] X = train_df[features] y = train_df['congestion'] features class Pipeline: object_cols = None def transform(self, X): X2 = X.copy() date_series = pd.to_datetime(X['time']) date_accessor = date_series.dt for attr in ['date', 'day', 'day_of_week', 'day_of_year', 'days_in_month', 'freq', 'hour', 'is_leap_year', 'is_month_end', 'is_month_start', 'is_quarter_end', 'is_quarter_start', 'is_year_end', 'is_year_start', 'microsecond', 'minute', 'month', 'nanosecond', 'quarter', 'second', 'time', 'weekday', 'year']: X2[attr] = getattr(date_accessor, attr) X2['week'] = date_accessor.isocalendar().week.astype(int) X2['original_time'] = X['time'] X2['time'] = X2['time'].astype(str) self.object_cols = list(X2.dtypes[X2.dtypes == object].index) X2[self.object_cols] = X2[self.object_cols].astype(str) return X2 myPipeline = Pipeline() X_transformed = myPipeline.transform(X) test_df = pd.read_csv('../input/tabular-playground-series-mar-2022/test.csv', index_col='row_id') test_df_transformed = myPipeline.transform(test_df) test_df_transformed
code
89123667/cell_3
[ "text_plain_output_1.png" ]
from sklearn.metrics import mean_absolute_error from sklearn.linear_model import LinearRegression import numpy as np import pandas as pd from sklearn.model_selection import StratifiedKFold, KFold, TimeSeriesSplit from sklearn.metrics import accuracy_score from scipy import stats from sklearn.linear_model import LogisticRegression from sklearn.model_selection import train_test_split as train_eval_split from lightgbm import LGBMClassifier import pdb from sklearn.preprocessing import StandardScaler from math import factorial import re from catboost import CatBoostRegressor
code
89123667/cell_14
[ "text_html_output_1.png" ]
import numpy as np import numpy as np # linear algebra print('overall scores', np.mean(scores))
code
89123667/cell_10
[ "text_plain_output_1.png" ]
import pandas as pd import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) nrows = None train_df = pd.read_csv('../input/tabular-playground-series-mar-2022/train.csv', index_col='row_id', nrows=nrows) features = [c for c in train_df.columns if c not in ['congestion']] X = train_df[features] y = train_df['congestion'] features
code
89123667/cell_5
[ "text_plain_output_1.png" ]
import pandas as pd import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) nrows = None train_df = pd.read_csv('../input/tabular-playground-series-mar-2022/train.csv', index_col='row_id', nrows=nrows) train_df.head()
code
33102709/cell_21
[ "application_vnd.jupyter.stderr_output_1.png" ]
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) case_c = pd.read_csv('/kaggle/input/group-c-data/analysis_data_test.csv') # reshape dataframe into pivot table d = case_c.pivot(index = 'x_value', columns = 'n_value', values = 'avg_peak_bed_usage') # set visualization features like title, axis names, and legend name d.columns.name = 'Initial Infections' plot1 = d.plot(title = 'Policy Strictness v. Hospital Bed Demand') plot1.set(xlabel = 'Maximum Allowed Group Size', ylabel = 'Hospital Bed Demand') # reshape dataframe into pivot table f = case_c.pivot(index = 'x_value', columns = 'n_value', values = 'success_rate') # set visualization features like title, axis names, and legend name f.columns.name = 'Initial Infections' plot2 = f.plot(title = 'Policy Strictness v. Simulation Success Rate') plot2.set(xlabel = 'Maximum Allowed Group Size', ylabel = 'Success Rate') s = case_c[(case_c.success_rate >= 0.9) & (case_c.n_value == 2)] s.tail(1)
code
33102709/cell_23
[ "application_vnd.jupyter.stderr_output_1.png" ]
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) case_c = pd.read_csv('/kaggle/input/group-c-data/analysis_data_test.csv') # reshape dataframe into pivot table d = case_c.pivot(index = 'x_value', columns = 'n_value', values = 'avg_peak_bed_usage') # set visualization features like title, axis names, and legend name d.columns.name = 'Initial Infections' plot1 = d.plot(title = 'Policy Strictness v. Hospital Bed Demand') plot1.set(xlabel = 'Maximum Allowed Group Size', ylabel = 'Hospital Bed Demand') # reshape dataframe into pivot table f = case_c.pivot(index = 'x_value', columns = 'n_value', values = 'success_rate') # set visualization features like title, axis names, and legend name f.columns.name = 'Initial Infections' plot2 = f.plot(title = 'Policy Strictness v. Simulation Success Rate') plot2.set(xlabel = 'Maximum Allowed Group Size', ylabel = 'Success Rate') s = case_c[(case_c.success_rate >= 0.9) & (case_c.n_value == 2)] s = case_c[(case_c.success_rate >= 0.9) & (case_c.n_value == 20)] s = case_c[(case_c.success_rate >= 0.9) & (case_c.n_value == 40)] s.tail(1)
code
33102709/cell_19
[ "application_vnd.jupyter.stderr_output_1.png" ]
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) case_c = pd.read_csv('/kaggle/input/group-c-data/analysis_data_test.csv') # reshape dataframe into pivot table d = case_c.pivot(index = 'x_value', columns = 'n_value', values = 'avg_peak_bed_usage') # set visualization features like title, axis names, and legend name d.columns.name = 'Initial Infections' plot1 = d.plot(title = 'Policy Strictness v. Hospital Bed Demand') plot1.set(xlabel = 'Maximum Allowed Group Size', ylabel = 'Hospital Bed Demand') f = case_c.pivot(index='x_value', columns='n_value', values='success_rate') f.columns.name = 'Initial Infections' plot2 = f.plot(title='Policy Strictness v. Simulation Success Rate') plot2.set(xlabel='Maximum Allowed Group Size', ylabel='Success Rate')
code
33102709/cell_14
[ "application_vnd.jupyter.stderr_output_1.png" ]
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) case_c = pd.read_csv('/kaggle/input/group-c-data/analysis_data_test.csv') d = case_c.pivot(index='x_value', columns='n_value', values='avg_peak_bed_usage') d.columns.name = 'Initial Infections' plot1 = d.plot(title='Policy Strictness v. Hospital Bed Demand') plot1.set(xlabel='Maximum Allowed Group Size', ylabel='Hospital Bed Demand')
code
33102709/cell_22
[ "application_vnd.jupyter.stderr_output_1.png" ]
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) case_c = pd.read_csv('/kaggle/input/group-c-data/analysis_data_test.csv') # reshape dataframe into pivot table d = case_c.pivot(index = 'x_value', columns = 'n_value', values = 'avg_peak_bed_usage') # set visualization features like title, axis names, and legend name d.columns.name = 'Initial Infections' plot1 = d.plot(title = 'Policy Strictness v. Hospital Bed Demand') plot1.set(xlabel = 'Maximum Allowed Group Size', ylabel = 'Hospital Bed Demand') # reshape dataframe into pivot table f = case_c.pivot(index = 'x_value', columns = 'n_value', values = 'success_rate') # set visualization features like title, axis names, and legend name f.columns.name = 'Initial Infections' plot2 = f.plot(title = 'Policy Strictness v. Simulation Success Rate') plot2.set(xlabel = 'Maximum Allowed Group Size', ylabel = 'Success Rate') s = case_c[(case_c.success_rate >= 0.9) & (case_c.n_value == 2)] s = case_c[(case_c.success_rate >= 0.9) & (case_c.n_value == 20)] s.tail(1)
code
33102709/cell_10
[ "application_vnd.jupyter.stderr_output_1.png" ]
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) case_c = pd.read_csv('/kaggle/input/group-c-data/analysis_data_test.csv') case_c.head(10)
code
2002244/cell_4
[ "text_plain_output_1.png" ]
import pandas as pd import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) workdir = '../input/' basins_data = pd.read_csv(workdir + 'BasinCharacteristics.csv') features_cols = basins_data.columns[1:4] target_col = basins_data.columns[0] print('Feature column(s):\n{}\n'.format(features_cols)) print('Target column:\n{}'.format(target_col)) print(basins_data.head()) print(basins_data.describe()) X = basins_data[features_cols] y = basins_data[target_col]
code
2002244/cell_6
[ "text_plain_output_1.png" ]
from sklearn.cluster import KMeans import pandas as pd import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) workdir = '../input/' basins_data = pd.read_csv(workdir + 'BasinCharacteristics.csv') features_cols = basins_data.columns[1:4] target_col = basins_data.columns[0] X = basins_data[features_cols] y = basins_data[target_col] y_pred = KMeans(n_clusters=4).fit_predict(X) y_pred
code
2002244/cell_2
[ "application_vnd.jupyter.stderr_output_1.png" ]
import numpy as np import plotly import pandas as pd import pylab import matplotlib.pyplot as plt import calendar import seaborn import math from sklearn.svm import SVR from sklearn.cross_validation import train_test_split from sklearn.grid_search import GridSearchCV, RandomizedSearchCV from sklearn import preprocessing from sklearn.metrics import r2_score, mean_squared_error from scipy.stats import randint as sp_randint from scipy.stats import uniform as sp_uniform from scipy import stats from sklearn.model_selection import cross_val_score from math import sqrt from mpl_toolkits.mplot3d import Axes3D from sklearn.cluster import KMeans from sklearn import datasets
code
2002244/cell_1
[ "text_plain_output_1.png" ]
from subprocess import check_output import numpy as np import pandas as pd from subprocess import check_output print(check_output(['ls', '../input']).decode('utf8'))
code
2002244/cell_8
[ "text_plain_output_1.png", "image_output_1.png" ]
from sklearn.cluster import KMeans import matplotlib.pyplot as plt import numpy as np import numpy as np # linear algebra import pandas as pd import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) workdir = '../input/' basins_data = pd.read_csv(workdir + 'BasinCharacteristics.csv') features_cols = basins_data.columns[1:4] target_col = basins_data.columns[0] X = basins_data[features_cols] y = basins_data[target_col] def elbow_plot(data, maxK=10, seed_centroids=None): """ parameters: - data: pandas DataFrame (data to be fitted) - maxK (default = 10): integer (maximum number of clusters with which to run k-means) - seed_centroids (default = None ): float (initial value of centroids for k-means) """ sse = {} for k in range(1, maxK): print('k: ', k) if seed_centroids is not None: seeds = seed_centroids.head(k) kmeans = KMeans(n_clusters=k, max_iter=500, n_init=100, random_state=0, init=np.reshape(seeds, (k, 1))).fit(data) data['clusters'] = kmeans.labels_ else: kmeans = KMeans(n_clusters=k, max_iter=300, n_init=100, random_state=0).fit(data) data['clusters'] = kmeans.labels_ sse[k] = kmeans.inertia_ plt.figure() plt.plot(list(sse.keys()), list(sse.values())) plt.show() return elbow_plot(X, maxK=10)
code
2002244/cell_3
[ "text_html_output_1.png" ]
import pandas as pd import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) workdir = '../input/' basins_data = pd.read_csv(workdir + 'BasinCharacteristics.csv') basins_data.head()
code
2002244/cell_5
[ "text_html_output_1.png" ]
import pandas as pd import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) workdir = '../input/' basins_data = pd.read_csv(workdir + 'BasinCharacteristics.csv') features_cols = basins_data.columns[1:4] target_col = basins_data.columns[0] X = basins_data[features_cols] y = basins_data[target_col] X
code
129015254/cell_1
[ "application_vnd.jupyter.stderr_output_1.png" ]
import seaborn as sns import numpy as np import pandas as pd import seaborn as sns import matplotlib.pyplot as plt sns.set()
code
129015254/cell_3
[ "text_plain_output_1.png" ]
import numpy as np college_categories = ['IIM A', 'IIM B', 'IIM C', 'IIM L', 'IIM I', 'IIM K'] time_periods = [2019, 2020, 2021, 2022] avg_sal_data = np.array([[12, 10, 12, 13], [11, 9, 10, 12], [11, 8, 9, 10], [10, 7, 8, 9], [9, 8, 7, 8], [8, 7, 8, 9]]) ranks = np.argsort(avg_sal_data, axis=0)[::-1] rank_data = np.zeros_like(avg_sal_data) for i in range(len(time_periods)): rank_data[:, i] = ranks[:, i] + 1 rank_data
code
129015254/cell_5
[ "application_vnd.jupyter.stderr_output_1.png", "image_output_1.png" ]
import matplotlib.pyplot as plt import numpy as np import pandas as pd college_categories = ['IIM A', 'IIM B', 'IIM C', 'IIM L', 'IIM I', 'IIM K'] time_periods = [2019, 2020, 2021, 2022] avg_sal_data = np.array([[12, 10, 12, 13], [11, 9, 10, 12], [11, 8, 9, 10], [10, 7, 8, 9], [9, 8, 7, 8], [8, 7, 8, 9]]) ranks = np.argsort(avg_sal_data, axis=0)[::-1] rank_data = np.zeros_like(avg_sal_data) for i in range(len(time_periods)): rank_data[:, i] = ranks[:, i] + 1 rank_data df = pd.DataFrame(6 - rank_data.T, columns=[str(i) for i in college_categories]) df['Time'] = time_periods fig, ax = plt.subplots() fig = df.plot(x='Time', kind='bar', stacked=False, ax=ax) ax.set_xlabel('Year', fontsize=15, fontweight='bold') ax.set_ylabel('Rank', fontsize=15, fontweight='bold') ax.set_title('Bar Chart', fontsize=20, fontweight='bold') ax.set_xticklabels(df.Time, rotation=0) ax.set_yticklabels(['', 6, 5, 4, 3, 2, 1]) plt.show()
code
73062593/cell_4
[ "text_plain_output_1.png" ]
import pandas as pd df_train = pd.read_csv('../input/30-days-of-ml/train.csv') df_train['kfold'] = -1 df_train.shape
code
73062593/cell_6
[ "text_plain_output_1.png" ]
from sklearn import model_selection import pandas as pd df_train = pd.read_csv('../input/30-days-of-ml/train.csv') df_train['kfold'] = -1 df_train.shape kf = model_selection.KFold(n_splits=5, shuffle=True, random_state=42) for fold, (train_indicies, valid_indicies) in enumerate(kf.split(X=df_train)): df_train.loc[valid_indicies, 'kfold'] = fold print(f'fold = {fold} <train_indicies = {train_indicies}> <valid_indicies = {valid_indicies}>') print(len(train_indicies), len(valid_indicies))
code
73062593/cell_7
[ "text_html_output_1.png" ]
from sklearn import model_selection import pandas as pd df_train = pd.read_csv('../input/30-days-of-ml/train.csv') df_train['kfold'] = -1 df_train.shape kf = model_selection.KFold(n_splits=5, shuffle=True, random_state=42) for fold, (train_indicies, valid_indicies) in enumerate(kf.split(X=df_train)): df_train.loc[valid_indicies, 'kfold'] = fold df_train
code
73062593/cell_8
[ "image_output_1.png" ]
from sklearn import model_selection import matplotlib.pyplot as plt import pandas as pd df_train = pd.read_csv('../input/30-days-of-ml/train.csv') df_train['kfold'] = -1 df_train.shape kf = model_selection.KFold(n_splits=5, shuffle=True, random_state=42) for fold, (train_indicies, valid_indicies) in enumerate(kf.split(X=df_train)): df_train.loc[valid_indicies, 'kfold'] = fold f, ax = plt.subplots(1, 5, figsize=(30, 5)) for i in range(5): df_train[df_train.kfold == i].target.hist(ax=ax[i])
code
73062593/cell_3
[ "text_html_output_1.png" ]
import pandas as pd df_train = pd.read_csv('../input/30-days-of-ml/train.csv') df_train['kfold'] = -1 df_train.head()
code
73062593/cell_5
[ "text_plain_output_1.png", "image_output_1.png" ]
import pandas as pd df_train = pd.read_csv('../input/30-days-of-ml/train.csv') df_train['kfold'] = -1 df_train.shape df_train.target.hist()
code
130007285/cell_21
[ "text_html_output_1.png" ]
import pandas as pd import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) df = pd.read_csv('/kaggle/input/flight-dataset/Flight_data.csv') sorted_df = df.sort_values('Customer ID', ascending=False) Avg_ticket_price = df.groupby('Ticket Price').mean() Avg_delay_min = df.groupby('Delay Minutes').mean() df.dropna() df['Ticket Price'].mean()
code
130007285/cell_4
[ "text_plain_output_1.png" ]
import pandas as pd import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) df = pd.read_csv('/kaggle/input/flight-dataset/Flight_data.csv') df.head()
code
130007285/cell_23
[ "text_html_output_1.png" ]
import numpy as np import numpy as np # linear algebra import pandas as pd import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) df = pd.read_csv('/kaggle/input/flight-dataset/Flight_data.csv') sorted_df = df.sort_values('Customer ID', ascending=False) Avg_ticket_price = df.groupby('Ticket Price').mean() Avg_delay_min = df.groupby('Delay Minutes').mean() df.dropna() max_value = np.max(df['Ticket Price']) max_value min_value = np.min(df['Ticket Price']) min_value
code
130007285/cell_20
[ "text_html_output_1.png" ]
import pandas as pd import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) df = pd.read_csv('/kaggle/input/flight-dataset/Flight_data.csv') sorted_df = df.sort_values('Customer ID', ascending=False) Avg_ticket_price = df.groupby('Ticket Price').mean() Avg_delay_min = df.groupby('Delay Minutes').mean() df.dropna() df['Ticket Price'].sum()
code
130007285/cell_19
[ "application_vnd.jupyter.stderr_output_1.png" ]
import pandas as pd import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) df = pd.read_csv('/kaggle/input/flight-dataset/Flight_data.csv') sorted_df = df.sort_values('Customer ID', ascending=False) Avg_ticket_price = df.groupby('Ticket Price').mean() Avg_delay_min = df.groupby('Delay Minutes').mean() df.dropna() df.describe()
code
130007285/cell_1
[ "text_plain_output_1.png" ]
import os import numpy as np import pandas as pd import os for dirname, _, filenames in os.walk('/kaggle/input'): for filename in filenames: print(os.path.join(dirname, filename))
code
130007285/cell_7
[ "text_plain_output_1.png" ]
import pandas as pd import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) df = pd.read_csv('/kaggle/input/flight-dataset/Flight_data.csv') filtered_df = df[df['Delay Minutes'] > 60] filtered_df.head()
code
130007285/cell_18
[ "text_html_output_1.png" ]
import pandas as pd import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) df = pd.read_csv('/kaggle/input/flight-dataset/Flight_data.csv') sorted_df = df.sort_values('Customer ID', ascending=False) Avg_ticket_price = df.groupby('Ticket Price').mean() Avg_delay_min = df.groupby('Delay Minutes').mean() df.dropna()
code