content
stringlengths
22
815k
id
int64
0
4.91M
def test_gets(): """test get_first and get_second""" two_elem_int_list = [1, 2] two_elem_int_tuple = (1, 2) with pytest.raises(ValueError): get_first(1) with pytest.raises(ValueError): get_first([]) assert get_first(two_elem_int_list) == 1 assert get_first(two_elem_int_tuple) == 1 with pytest.raises(ValueError): get_second([1]) assert get_second(two_elem_int_list) == 2 assert get_second(two_elem_int_tuple) == 2
3,500
def block(**arguments: Any) -> Optional[Blocks]: """Python application interface for creating an initial block file from command line or python code. This method creates an HDF5 file associated with the desired intial flow specification (for each needed computational field), suitable for input by the FLASH application at runtime. Keyword Arguments: ndim (int): Number of simulation dimensions (i.e., 2 or 3). nxb (int): Number of grid points per block in the i direction. nyb (int): Number of grid points per block in the j direction. nzb (int): Number of grid points per block in the k direction. iprocs (int): Number of blocks in the i direction. jprocs (int): Number of blocks in the j direction. kprocs (int): Number of blocks in the k direction. fields (dict): Key/value pairs for fields (e.g., {'temp': 'center', ...}) fmethod (dict): Key/value pairs for flow initialization (e.g., {'temp': 'constant', ...}). fparam (dict): Key/value pairs for paramaters (e.g., {'temp': {'const': 0.5, ...}, ...}) used for each field method. path (str): Path to source files used in some initialization methods (e.g., python). dest (str): Path to initial block hdf5 file. ignore (bool): Ignore configuration file provided arguments, options, and flags. result (bool): Return the calculated fields by block on root. nofile (bool): Do not write the calculated fields by block to file. Note: By default this function reads the grid data from the hdf5 file (i.e., must run create.grid() first); optionally you can provide the result from grid creation directly by using an optional keyword -- coords: (ndarray, ...). """ args = process_arguments(**arguments) path = args.pop('dest') ndim = args.pop('ndim') procs = args.pop('procs') sizes = args.pop('sizes') result = args.pop('result') nofile = args.pop('nofile') cmdline = args.pop('cmdline', False) coords = args.pop('coords', None) with args.pop('context')() as progress: if coords is None: coords = read_coords(path=path, ndim=ndim) shapes = get_shapes(ndim=ndim, procs=procs, sizes=sizes) grids = get_grids(coords=coords, ndim=ndim, procs=procs, sizes=sizes) blocks, index = calc_blocks(grids=grids, procs=procs, shapes=shapes, **args) if not nofile: write_blocks(blocks=blocks, index=index, path=path, shapes=shapes) if not result: return None if cmdline: screen_out(blocks=blocks) return blocks
3,501
def test__string(): """ test vmatrix.string """ vma = vmatrix.from_string(vmatrix.string(CH4O_VMA)) assert vma == CH4O_VMA
3,502
def enable_multivsys(fw_conn): """Enable Multi-vsys Args: fw_conn (PanDevice): A panos object for device """ command = '<set><system><setting><multi-vsys>on</multi-vsys></setting></system></set>' fw_conn.op(cmd=command, cmd_xml=False)
3,503
def _low_discrepancy(dim, n, seed=0.5): """Generate a 1d, 2d, or 3d low discrepancy sequence of coordinates. Parameters ---------- dim : one of {1, 2, 3} The dimensionality of the sequence. n : int How many points to generate. seed : float or array of float, shape (dim,) The seed from which to start the quasirandom sequence. Returns ------- pts : array of float, shape (n, dim) The sampled points. References ---------- ..[1]: http://extremelearning.com.au/unreasonable-effectiveness-of-quasirandom-sequences/ """ phi1 = 1.6180339887498948482 phi2 = 1.32471795724474602596 phi3 = 1.22074408460575947536 seed = np.broadcast_to(seed, (1, dim)) phi = np.array([phi1, phi2, phi3]) g = 1 / phi n = np.reshape(np.arange(n), (n, 1)) pts = (seed + (n * g[:dim])) % 1 return pts
3,504
def get( url: str ) -> Dict[str, object]: """ Returns the sdk GET response :param url: A string url endpoint. :type: str :return: Dict[str, object] """ try: res = requests.get(url, headers=get_headers()) except Exception as e: handle_request_error(e) return handle_response(res)
3,505
def register(request): """Create an account for a new user""" if request.method == 'POST': data = request.POST.copy() form = tcdUserCreationForm(data) next = request.POST['next'] if form.is_valid(): new_user = User.objects.create_user(username=data['username'], password=data['password1'], email=data['email']) new_user.is_staff=False new_user.is_superuser=False new_user.is_active=True new_user.save() new_user = auth.authenticate(username=new_user.username, password=data['password1']) auth.login(request, new_user) new_user_profile = Profile(user=new_user, score=0 ) new_user_profile.save() return HttpResponseRedirect(next) else: form = tcdUserCreationForm() if 'next' in request.GET: next = request.GET['next'] else: next = "/" return render_to_response("registration/register.html", {'form' : form, 'redirect' : next}, context_instance=RequestContext(request) )
3,506
def set_index_da_ct(da): """Stacks all coordinates into one multindex and automatically generates a long_name""" coordnames = list(da.coords) da_stacked = da.set_index(ct=coordnames) if len(coordnames) == 1: #only one coordinate just rename ct to the coordinate name da_unstacked = da_stacked.rename(ct=coordnames[0]) else: #generate multindex long_name_string = 'Test Case (' for coord in da.coords: if 'long_name' in da.coords[coord].attrs: long_name_string = long_name_string + da.coords[coord].attrs['long_name'] + ', ' else: long_name_string = long_name_string + coord + ', ' #remove last comma and close parentheses long_name_string = long_name_string[0:-2] + ')' da_stacked.coords['ct'].attrs = dict(long_name=long_name_string) da_unstacked = da_stacked.unstack() for coord in da.coords: da_unstacked.coords[coord].attrs = da.coords[coord].attrs return da_unstacked, da_stacked
3,507
def test_list_ncname_max_length_3_nistxml_sv_iv_list_ncname_max_length_4_1(mode, save_output, output_format): """ Type list/NCName is restricted by facet maxLength with value 8. """ assert_bindings( schema="nistData/list/NCName/Schema+Instance/NISTSchema-SV-IV-list-NCName-maxLength-4.xsd", instance="nistData/list/NCName/Schema+Instance/NISTXML-SV-IV-list-NCName-maxLength-4-1.xml", class_name="NistschemaSvIvListNcnameMaxLength4", version="1.1", mode=mode, save_output=save_output, output_format=output_format, structure_style="filenames", )
3,508
def showSelectionInTitle(*args, **kwargs): """ This command causes the title of the window specified as an argument to be linked to the current file and selection. Returns: None """ pass
3,509
def LikeView(request, pk): """Function view that manages the likes and dislikes of a post""" post = get_object_or_404(Post, id=request.POST.get('post_id')) liked = False if post.likes.filter(id=request.user.id).exists(): post.likes.remove(request.user) liked = False else: post.likes.add(request.user) liked = True return HttpResponseRedirect(reverse('post-detail', args=[str(pk)]))
3,510
def set_edge_color_mapping(table_column, table_column_values=None, colors=None, mapping_type='c', default_color=None, style_name=None, network=None, base_url=DEFAULT_BASE_URL): """Map table column values to colors to set the edge color. Args: table_column (str): Name of Cytoscape table column to map values from table_column_values (list): List of values from Cytoscape table to be used in mapping colors (list): list of hex colors to map to ``table_column_values`` mapping_type (str): continuous, discrete or passthrough (c,d,p); default is continuous default_color (str): Hex color to set as default style_name (str): name for style network (SUID or str or None): Name or SUID of a network or view. Default is the "current" network active in Cytoscape. base_url (str): Ignore unless you need to specify a custom domain, port or version to connect to the CyREST API. Default is http://127.0.0.1:1234 and the latest version of the CyREST API supported by this version of py4cytoscape. Returns: str: '' Raises: CyError: if invalid color, table column doesn't exist, table column values doesn't match values list, or invalid style name, network or mapping type requests.exceptions.RequestException: if can't connect to Cytoscape or Cytoscape returns an error Examples: >>> set_edge_color_mapping('EdgeBetweenness', [1.0, 16.36], ['#FBE723', '#440256'], style_name='galFiltered Style') '' >>> set_edge_color_mapping('EdgeBetweenness', ['1', '2'], ['#FFFF00', '#00FF00'], 'd', style_name='galFiltered Style') '' >>> set_edge_color_mapping(**gen_node_color_map('Degree', mapping_type='d')) '' >>> set_edge_color_mapping(**gen_edge_color_map('interaction', palette_color_brewer_q_Accent(), mapping_type='d')) '' >>> set_edge_color_mapping(**gen_edge_color_map('EdgeBetweenness')) '' >>> set_edge_color_mapping(**gen_edge_color_map('EdgeBetweenness', palette_color_brewer_s_Blues())) '' >>> set_edge_color_mapping(**gen_edge_color_map('EdgeBetweenness', (palette_color_brewer_s_Blues(), palette_color_brewer_d_BrBG())) '' >>> set_edge_color_mapping('EdgeBetweennessColor', mapping_type='p', default_color='#654321', style_name='galFiltered Style') '' See Also: :meth:`gen_edge_color_map` See Also: `Value Generators <https://py4cytoscape.readthedocs.io/en/0.0.9/concepts.html#value-generators>`_ in the Concepts section in the py4cytoscape User Manual. """ verify_hex_colors(colors) # set default if default_color is not None: style_defaults.set_edge_color_default(default_color, style_name, base_url=base_url) # TODO: An error here will be missed ... shouldn't this throw an exception? # perform mapping for COLOR (i.e., when arrowColorMatchesEdge=T) # TODO: This code checks table_column, but the R code does not res = _update_visual_property('EDGE_UNSELECTED_PAINT', table_column, table_column_values=table_column_values, range_map=colors, mapping_type=mapping_type, style_name=style_name, network=network, base_url=base_url, table='edge') if res is not None: # perform mapping for STROKE (i.e., when arrowColorMatchesEdge=F) res = _update_visual_property('EDGE_STROKE_UNSELECTED_PAINT', table_column, table_column_values=table_column_values, range_map=colors, mapping_type=mapping_type, style_name=style_name, network=network, base_url=base_url, table='edge') return res
3,511
def retrieve_tape_recovery_point(TapeARN=None, GatewayARN=None): """ Retrieves the recovery point for the specified virtual tape. This operation is only supported in the tape gateway architecture. A recovery point is a point in time view of a virtual tape at which all the data on the tape is consistent. If your gateway crashes, virtual tapes that have recovery points can be recovered to a new gateway. See also: AWS API Documentation Examples Retrieves the recovery point for the specified virtual tape. Expected Output: :example: response = client.retrieve_tape_recovery_point( TapeARN='string', GatewayARN='string' ) :type TapeARN: string :param TapeARN: [REQUIRED] The Amazon Resource Name (ARN) of the virtual tape for which you want to retrieve the recovery point. :type GatewayARN: string :param GatewayARN: [REQUIRED] The Amazon Resource Name (ARN) of the gateway. Use the ListGateways operation to return a list of gateways for your account and region. :rtype: dict :return: { 'TapeARN': 'string' } """ pass
3,512
def weld_describe(array, weld_type, aggregations): """ Aggregate during the same evaluation as opposed to separately as in Series.agg Parameters ---------- array : np.ndarray or WeldObject to aggregate on weld_type : WeldType of the array aggregations : list of str supported are = {'min', 'max', 'sum', 'prod', 'mean', 'std'} Returns ------- WeldObject """ assert isinstance(aggregations, list) assert len(aggregations) > 0 weld_obj = WeldObject(_encoder, _decoder) array_var = weld_obj.update(array) if isinstance(array, WeldObject): array_var = array.obj_id weld_obj.dependencies[array_var] = array merger_chunk = """ let agg_%(name)s = f64( result( for( %(array)s, merger[%(type)s, %(operation)s], |b, i, e| merge(b, e) ) ) );""" mean_chunk_solo = """ let agg_mean = f64( result( for( %(array)s, merger[%(type)s, +], |b, i, n| merge(b, n) ) ) ) / f64(len(%(array)s));""" mean_chunk_with_sum = """ let agg_mean = agg_sum / f64(len(%(array)s)); """ std_chunk_solo = """ %(mean)s let agg_std = sqrt( result( for( %(array)s, merger[f64, +], |b, i, n| merge(b, pow(f64(n) - agg_mean, 2.0)) ) ) / f64(len(%(array)s) - 1L) );""".replace('%(mean)s', mean_chunk_with_sum if 'sum' in aggregations else mean_chunk_solo) std_chunk_with_mean = """ let agg_std = sqrt( result( for( %(array)s, merger[f64, +], |b, i, n| merge(b, pow(f64(n) - agg_mean, 2.0)) ) ) / f64(len(%(array)s) - 1L) );""" aggregations_dict = {'min': merger_chunk.replace('%(operation)s', 'min').replace('%(name)s', 'min'), 'max': merger_chunk.replace('%(operation)s', 'max').replace('%(name)s', 'max'), 'sum': merger_chunk.replace('%(operation)s', '+').replace('%(name)s', 'sum'), 'prod': merger_chunk.replace('%(operation)s', '*').replace('%(name)s', 'prod'), 'mean': mean_chunk_with_sum if 'sum' in aggregations else mean_chunk_solo, 'std': std_chunk_with_mean if 'mean' in aggregations else std_chunk_solo} weld_template = """ %(chunks)s let agg_result = appender[f64]; %(merges)s result(agg_result) """ chunks = ''.join([aggregations_dict[agg] for agg in aggregations]) merges = ''.join(['let agg_result = merge(agg_result, %s);\n\t' % ('agg_' + agg) for agg in aggregations]) weld_obj.weld_code = weld_template % {'chunks': chunks, 'merges': merges} \ % {'array': array_var, 'type': weld_type} return weld_obj
3,513
def roles_required(*roles): """Decorator which specifies that a user must have all the specified roles. Example:: @app.route('/dashboard') @roles_required('admin', 'editor') def dashboard(): return 'Dashboard' The current user must have both the `admin` role and `editor` role in order to view the page. :param args: The required roles. """ def wrapper(fn): @wraps(fn) def decorated_view(*args, **kwargs): perms = [Permission(RoleNeed(role)) for role in roles] for perm in perms: if not perm.can(): if _security._unauthorized_callback: return _security._unauthorized_callback() else: return _get_unauthorized_view() return fn(*args, **kwargs) return decorated_view return wrapper
3,514
def get_all_forms(url): """Given a `url`, it returns all forms from the HTML content""" soup = bs(requests.get(url).content, "html.parser") return soup.find_all("form")
3,515
def cal_max_len(ids, curdepth, maxdepth): """calculate max sequence length""" assert curdepth <= maxdepth if isinstance(ids[0], list): res = max([cal_max_len(k, curdepth + 1, maxdepth) for k in ids]) else: res = len(ids) return res
3,516
def urlencode(query, doseq=True, quote_via=quote_plus): """ An alternate implementation of Python's stdlib :func:`urllib.parse.urlencode` function which accepts unicode keys and values within the ``query`` dict/sequence; all Unicode keys and values are first converted to UTF-8 before being used to compose the query string. The value of ``query`` must be a sequence of two-tuples representing key/value pairs *or* an object (often a dictionary) with an ``.items()`` method that returns a sequence of two-tuples representing key/value pairs. For minimal calling convention backwards compatibility, this version of urlencode accepts *but ignores* a second argument conventionally named ``doseq``. The Python stdlib version behaves differently when ``doseq`` is False and when a sequence is presented as one of the values. This version always behaves in the ``doseq=True`` mode, no matter what the value of the second argument. Both the key and value are encoded using the ``quote_via`` function which by default is using a similar algorithm to :func:`urllib.parse.quote_plus` which converts spaces into '+' characters and '/' into '%2F'. .. versionchanged:: 1.5 In a key/value pair, if the value is ``None`` then it will be dropped from the resulting output. .. versionchanged:: 1.9 Added the ``quote_via`` argument to allow alternate quoting algorithms to be used. """ try: # presumed to be a dictionary query = query.items() except AttributeError: pass result = '' prefix = '' for (k, v) in query: k = quote_via(k) if is_nonstr_iter(v): for x in v: x = quote_via(x) result += '%s%s=%s' % (prefix, k, x) prefix = '&' elif v is None: result += '%s%s=' % (prefix, k) else: v = quote_via(v) result += '%s%s=%s' % (prefix, k, v) prefix = '&' return result
3,517
def clip_action(action, action_min, action_max): """ Truncates the entries in action to the range defined between action_min and action_max. """ return np.clip(action, action_min, action_max)
3,518
def run_delphi(pdb_file, output_directory, output_filename, delphi_path, radius_file=None, charge_file=None, grid_size=101, surface=None, center=False): """ Run Delphi on protein surface created by MSMS program """ # TODO: Rewrite using template string if not os.path.isdir(output_directory): os.mkdir(output_directory) this_script_path = os.path.dirname(os.path.realpath(__file__)) if radius_file is None: radius_file = this_script_path + '/charmm.siz' if charge_file is None: charge_file = this_script_path + '/charmm.crg' parameters = [ f'in(pdb,file="{pdb_file}")', f'in(siz,file="{radius_file}")', f'in(crg,file="{charge_file}")', f'gsize={grid_size}', f'salt=0.15', f'exdi=80', f'linit=2000', f'maxc=0.0000000001', f'out(phi, file="{output_directory}/{output_filename}.cub", format="cube")', ] if center: parameters += ['acenter(0,0,0)'] if surface: parameters += [ f'in(frc,file="{surface}")', f'out(frc, file="{output_directory}/{output_filename}.pot")', f'site(Atom, Potential, Reaction, Coulomb, Field)', ] print('\n'.join(parameters) + '\n', file=open(f'{output_filename}_tmp.prm', 'w')) subprocess.run([delphi_path, f'{output_filename}_tmp.prm']) os.remove(f'{output_filename}_tmp.prm')
3,519
def isGray(image): """Return True if the image has one channel per pixel.""" return image.ndim < 3
3,520
def prophet_plot( df, fig, today_index, lookback_days=None, predict_days=21, outliers=list()): """ Plot the actual, predictions, and anomalous values Args ---- df : pandas DataFrame The daily time-series data set contains ds column for dates (datetime types such as datetime64[ns]) and y column for numerical values fig : matplotlib Figure A plot with actual data, predicted values and the interval which we previously obtained from Prophet's model.plot(forecast). today_index : int The index of the date list in the dataframe dividing the baseline and prediction time frames. lookback_days : int, optional (default=None) Day (today_index-lookback_days)th to Day (today_index-1)th is the baseline time frame for training. predict_days : int, optional (default=21) Make prediction for Day (today_index)th to Day (today_index+predict_days)th. outliers : a list of (datetime, int) tuple The outliers we want to highlight on the plot. """ # retrieve the subplot in the generated Prophets matplotlib figure ax = fig.get_axes()[0] fig.autofmt_xdate(bottom=0.2, rotation=30, ha='right') start = 0 # end = today_index + predict_days # Original code end = df.shape[0] x_pydatetime = df['ds'].dt.to_pydatetime() # highlight the actual values of the entire time frame ax.plot(x_pydatetime[start:end], df.y[start:end], color='orange', label='Actual') # plot each outlier in red dot and annotate the date for outlier in outliers: ax.scatter(outlier[0], outlier[1], s=16, color='red', label='Anomaly') # ax.text(outlier[0], outlier[1], str(outlier[0])[:10], color='red', fontsize=6) # highlight baseline time frame with gray background if lookback_days: start = today_index - lookback_days ax.axvspan(x_pydatetime[start], x_pydatetime[today_index], color=sns.xkcd_rgb['grey'], alpha=0.2) # annotate the areas, and position the text at the bottom 5% by using ymin # + (ymax - ymin) / 20 ymin, ymax = ax.get_ylim()[0], ax.get_ylim()[1] ax.text(x_pydatetime[int((start + today_index) / 2)], ymin + (ymax - ymin) / 20, 'Baseline area') ax.text(x_pydatetime[int((today_index * 2 + predict_days) / 2)], ymin + (ymax - ymin) / 20, 'Prediction area') # re-organize the legend patch1 = mpatches.Patch(color='red', label='Anomaly') patch2 = mpatches.Patch(color='orange', label='Actual') patch3 = mpatches.Patch(color='skyblue', label='Predict and interval') patch4 = mpatches.Patch(color='grey', label='Baseline area') plt.legend(handles=[patch1, patch2, patch3, patch4]) # If you want to save the file # folder = '/Users/guillaume/Documents/DS2020/XXXX/XXXX/figures/' # name = 'Prediction_' + df.iloc[today_index, 0].strftime('%Y-%m-%d') # filename = folder + name + '.png' # plt.savefig(filename, bbox_inches="tight") # plt.show()
3,521
def verbose_traceroute_icmp(dest, hops = DEFAULT_HOPS, q = DEFAULT_QUERIES, timeout = DEFAULT_TIMEOUT, ttl = DEFAULT_MINTTL, wait = DEFAULT_WAIT): """trace route to dest verbosely using ICMP""" verbose_traceroute(traceroute_icmp, dest, hops, q, timeout, ttl, wait)
3,522
def mat2img(input_matrix, index_matrix): """ Transforms a batch of features of matrix images in a batch of features of vector images. Args: input_matrix (torch.Tensor): The images with shape (batch, features, matrix.size). index_matrix (torch.Tensor): The index matrix for the images, shape(1, 1, matrix.size). """ logger = logging.getLogger(__name__ + '.mat2img') logger.debug('input matrix shape : {}'.format(input_matrix.size())) image_length = index_matrix[0, 0, torch.ge(index_matrix[0, 0], 0)].size(0) logger.debug('new image length : {}'.format(image_length)) images = input_matrix.new_zeros((input_matrix.size(0), input_matrix.size(1), image_length), dtype=torch.float) logger.debug('new images shape : {}'.format(images.size())) for i in range(index_matrix.size(-2)): # iterate over the rows of index matrix for j in range(index_matrix.size(-1)): # iterate over the cols of index matrix if index_matrix[0, 0, i, j] != -1: images[:, :, int(index_matrix[0, 0, i, j])] = input_matrix[:, :, i, j] return images
3,523
def _check_molecule_format(val): """If it seems to be zmatrix rather than xyz format we convert before returning""" atoms = [x.strip() for x in val.split(";")] if atoms is None or len(atoms) < 1: # pylint: disable=len-as-condition raise QiskitNatureError("Molecule format error: " + val) # An xyz format has 4 parts in each atom, if not then do zmatrix convert # Allows dummy atoms, using symbol 'X' in zmatrix format for coord computation to xyz parts = [x.strip() for x in atoms[0].split(" ")] if len(parts) != 4: try: zmat = [] for atom in atoms: parts = [x.strip() for x in atom.split(" ")] z = [parts[0]] for i in range(1, len(parts), 2): z.append(int(parts[i])) z.append(float(parts[i + 1])) zmat.append(z) xyz = z2xyz(zmat) new_val = "" for atm in xyz: if atm[0].upper() == "X": continue if new_val: new_val += "; " new_val += f"{atm[0]} {atm[1]} {atm[2]} {atm[3]}" return new_val except Exception as exc: raise QiskitNatureError("Failed to convert atom string: " + val) from exc return val
3,524
def measure_area_perimeter(mask): """A function that takes either a segmented image or perimeter image as input, and calculates the length of the perimeter of a lesion.""" # Measure area: the sum of all white pixels in the mask image area = np.sum(mask) # Measure perimeter: first find which pixels belong to the perimeter. perimeter = measure.perimeter(mask) return area, perimeter
3,525
def _click_up_params(user_email: str) -> dict: """ Load a Click Up parameters for this user. Args: user_email (str): Email of user making the request. Returns: (dict): A dict containing the elements: 'success': (Boolean) True if successful, otherwise False 'message': (str) Message to display to the user if not successful """ # Make sure the server's environment is set up properly. param_names = ['CLICK_UP_BASE_URL', 'CLICK_UP_REDIRECT_PATH', 'CLICK_UP_AUTH_URL', 'CLICK_UP_CLIENT_ID', 'CLICK_UP_CLIENT_SECRET'] missing_params = [] for param in param_names: if os.environ.get(param, None) is None: missing_params.append(param) if missing_params: LOGGER.error(f"Missing Click Up environment variables: {missing_params}") return {'success': False, 'message': 'Click Up environment is not configured. Check log file.'} # See if the user is logged in to Click Up. access_token = session.get('click_up_access_token') LOGGER.debug(f"Click Up Access Token: {access_token}") if access_token is None: LOGGER.debug('User is not logged in to Click Up') return _make_click_up_login() url = os.environ.get('CLICK_UP_BASE_URL', None) headers = {'Authorization': access_token} # Get Team ID result = requests.get(url + '/team', headers=headers) data = result.json() # See if we need to login in again. ecode = data.get('ECODE', '') if ecode in ['OAUTH_019', 'OAUTH_021', 'OAUTH_025', 'OAUTH_077']: LOGGER.debug(f"User needs to login to Click Up. Again. ECODE={ecode}") session['click_up_access_token'] = None return _make_click_up_login() target_team_name = _get_click_up_team_name(user_email) team_id = None for team in data.get('teams', []): if team.get('name', '') == target_team_name: team_id = team.get('id', None) break if team_id is None: message = f"Could not find target team '{target_team_name}'" LOGGER.debug(message) return {'success': False, 'message': message} else: LOGGER.debug(f"Found target team '{target_team_name}' having ID {team_id}") session['click_up_team_id'] = team_id # Get Workspace ID result = requests.get(url + '/team/' + team_id + '/space?archived=false', headers=headers) data = result.json() target_workspace_name = _get_click_up_workspace_name(user_email) workspace_id = None for workspace in data.get('spaces', []): if workspace.get('name', '') == target_workspace_name: workspace_id = workspace.get('id', None) break if workspace_id is None: message = f"Could not find workspace team '{target_workspace_name}'" LOGGER.debug(message) return {'success': False, 'message': message} else: LOGGER.debug(f"Found target workspace '{target_workspace_name}' having ID {workspace_id}") session['click_up_workspace_id'] = workspace_id # LOGGER.debug(json.dumps(data, indent=4)) return {'success': True, 'message': 'Team ID and Workspace ID have been located and bookmarked'}
3,526
def iset_servo_angle(angle_idx): """Set the servomotor angle to -90, -45, 0, 45 or 90 degrees. """ vals = [5, 9, 13, 17, 21] servo.start(vals[angle_idx]) time.sleep(1.5) servo.start(0)
3,527
def mock_object(**params: Any) -> "Mock": # type: ignore # noqa """creates an object using params to set attributes >>> option = mock_object(verbose=False, index=range(5)) >>> option.verbose False >>> option.index [0, 1, 2, 3, 4] """ return type("Mock", (), params)()
3,528
def get_words(message): """Get the normalized list of words from a message string. This function should split a message into words, normalize them, and return the resulting list. For splitting, you should split on spaces. For normalization, you should convert everything to lowercase. Args: message: A string containing an SMS message Returns: The list of normalized words from the message. """ words = message.strip().split() norm_words = [word.lower() for word in words] # apply stop words nonstop_words = [word for word in norm_words if not word in stop_words] # apply stemming stem_words = [ps.stem(word) for word in nonstop_words] return stem_words
3,529
def get_atomic_forces_card(name, **kwargs): """ Convert XML data to ATOMIC_FORCES card :param name: Card name :param kwargs: Dictionary with converted data from XML file :return: List of strings """ try: external_atomic_forces = kwargs['external_atomic_forces'] except KeyError: logger.debug("Missing required arguments when building ATOMIC_FORCES card!") return [] if len(external_atomic_forces ) == 0: return [] # Warning if number of atoms in atomic positions differ with forces try: atomic_positions = kwargs.get('atomic_positions', {}) except KeyError: atomic_positions = kwargs.get('crystal_positions',{}) atoms = atomic_positions.get('atom', []) if atoms and len(atoms) != len(external_atomic_forces): logger.error("incorrect number of atomic forces") # Build input card text lines lines = [name] for forces in external_atomic_forces: lines.append(' {0}'.format(' '.join([str(value) for value in forces]))) return lines
3,530
def hasPathSum(self, root, sum): """ :type root: TreeNode :type sum: int :rtype: bool """ if root is None: return False if sum - root.val == 0 and root.left is None and root.right is None: return True else: return self.hasPathSum(root.left, sum - root.val) or self.hasPathSum(root.right, sum - root.val)
3,531
def _(node: IntJoin, ctx: AnnotateContext) -> BoxType: """All references available on either side of the Join nodes are available.""" lt = box_type(node.over) rt = box_type(node.joinee) t = union(lt, rt) node.typ = t return t
3,532
def detect_global_table_updates(record): """This will detect DDB Global Table updates that are not relevant to application data updates. These need to be skipped over as they are pure noise. :param record: :return: """ # This only affects MODIFY events. if record['eventName'] == 'MODIFY': # Need to compare the old and new images to check for GT specific changes only (just pop off the GT fields) old_image = remove_global_dynamo_specific_fields(record['dynamodb']['OldImage']) new_image = remove_global_dynamo_specific_fields(record['dynamodb']['NewImage']) if json.dumps(old_image, sort_keys=True) == json.dumps(new_image, sort_keys=True): return True return False
3,533
def fix_telecined_fades(clip: vs.VideoNode, tff: bool | int | None = None, thr: float = 2.2) -> vs.VideoNode: """ A filter that gives a mathematically perfect solution to fades made *after* telecining (which made perfect IVTC impossible). This is an improved version of the Fix-Telecined-Fades plugin that deals with overshoot/undershoot by adding a check. Make sure to run this *after* IVTC/deinterlacing! If the value surpases thr * original value, it will not affect any pixels in that frame to avoid it damaging frames it shouldn't need to. This helps a lot with orphan fields as well, which would otherwise create massive swings in values, sometimes messing up the fade fixing. If you pass your own float clip, you'll want to make sure to properly dither it down after. If you don't do this, you'll run into some serious issues! Taken from this gist and modified by LightArrowsEXE. <https://gist.github.com/blackpilling/bf22846bfaa870a57ad77925c3524eb1> :param clip: Input clip :param tff: Top-field-first. `False` sets it to Bottom-Field-First. If None, get the field order from the _FieldBased prop. :param thr: Threshold for when a field should be adjusted. Default is 2.2, which appears to be a safe value that doesn't cause it to do weird stuff with orphan fields. :return: Clip with only fades fixed """ def _ftf(n: int, f: List[vs.VideoFrame]) -> vs.VideoNode: avg = (get_prop(f[0], 'PlaneStatsAverage', float), get_prop(f[1], 'PlaneStatsAverage', float)) if avg[0] != avg[1]: mean = sum(avg) / 2 fixed = (sep[0].std.Expr(f"x {mean} {avg[0]} / dup {thr} <= swap 1 ? *"), sep[1].std.Expr(f"x {mean} {avg[1]} / *")) else: fixed = sep # type: ignore return core.std.Interleave(fixed).std.DoubleWeave()[::2] # I want to catch this before it reaches SeperateFields and give newer users a more useful error if get_prop(clip.get_frame(0), '_FieldBased', int) == 0 and tff is None: raise vs.Error("fix_telecined_fades: 'You must set `tff` for this clip!'") elif isinstance(tff, (bool, int)): clip = clip.std.SetFieldBased(int(tff) + 1) clip32 = depth(clip, 32).std.Limiter() bits = get_depth(clip) sep = clip32.std.SeparateFields().std.PlaneStats() sep = sep[::2], sep[1::2] # type: ignore # I know this isn't good, but frameeval breaks otherwise ftf = core.std.FrameEval(clip32, _ftf, sep) # and I don't know how or why if bits == 32: warnings.warn("fix_telecined_fades: 'Make sure to dither down BEFORE setting the FieldBased prop to 0! " "Not doing this MAY return some of the combing!'") else: ftf = depth(ftf, bits, dither_type=Dither.ERROR_DIFFUSION) ftf = ftf.std.SetFieldBased(0) return ftf
3,534
def compute_statistics(provider_slug, tile_grid=get_default_tile_grid(), filename=None): """ :param export_task_records: ExporTaskRecords is a list of all export tasks :param get_group: Function to generate a group id given a DataExportProviderTask :param tile_grid: Calculate statistics for each tile in the tile grid :param filename: Serializes the intermediate data-sample data so it can be shared btw different deployments :return: A dict with statistics including area, duration, and package size per sq. kilometer """ max_estimate_export_task_records = os.getenv("MAX_ESTIMATE_EXPORT_TASK_RECORDS", 10000) # Order by time descending to ensure more recent samples are collected first export_task_records: QuerySet[ExportTaskRecord] = ( ExportTaskRecord.objects.filter( export_provider_task__provider__slug=provider_slug, status=TaskState.SUCCESS.value, export_provider_task__status=TaskState.COMPLETED.value, result__isnull=False, # Only use results larger than a MB, # anything less is likely a failure or a test. result__size__gt=1, ) .order_by("-finished_at") .select_related("result", "export_provider_task__run__job", "export_provider_task__provider") .all()[: int(max_estimate_export_task_records)] ) processed_runs: Dict[str, Any] = {} processed_dptr: Dict[str, Any] = {} export_task_count = 0 total_count = len(export_task_records) # This should be the first and only DB hit. all_stats: Dict[str, Any] = {} logger.debug("Prefetching geometry data from all Jobs") logger.info(f"Beginning collection of statistics for {total_count} {provider_slug} ExportTaskRecords") runs: List[ExportRun] = list( set([export_task_record.export_provider_task.run for export_task_record in export_task_records]) ) data_provider_task_records: List[DataProviderTaskRecord] = list( set([export_task_record.export_provider_task for export_task_record in export_task_records]) ) default_stat = get_default_stat() accessors = get_accessors() global_stats = get_child_entry(all_stats, global_key, default_stat) for run in runs: area = get_geometry_description(run.job.the_geom)["area"] collect_samples(run, [global_stats], ["duration", "area"], accessors, area) for data_provider_task_record in data_provider_task_records: area = get_geometry_description(data_provider_task_record.run.job.the_geom)["area"] provider_stats = get_child_entry(all_stats, data_provider_task_record.provider.slug, default_stat) collect_samples(data_provider_task_record, [provider_stats], ["duration", "area"], accessors, area) collected_stats = collect_samples_for_export_task_records(export_task_records, copy.deepcopy(all_stats), tile_grid) [all_stats.update(stat) for stat in collected_stats] logger.info( f"Computing statistics across {export_task_count} completed " f"{provider_slug} ExportTaskRecords (geom_cache_misses={_dbg_geom_cache_misses})" ) # TODO: Merge in any auxiliary sample data? if filename is not None: all_stats["timestamp"] = str(datetime.datetime.now()) with open(filename, "w") as file: json.dump(all_stats, file) totals: Dict[str, Union[int, dict]] = { "run_count": len(processed_runs), "data_provider_task_count": len(processed_dptr), "export_task_count": export_task_count, } returned_totals = process_totals_concurrently(list(all_stats.keys()), copy.deepcopy(all_stats)) [totals.update(total) for total in returned_totals] tile_count = sum([provider.get("tile_count", 0) for slug, provider in totals.items() if isinstance(provider, dict)]) logger.info("Generated statistics for %d tiles for group %s", tile_count, provider_slug) return totals
3,535
def compare_rdf(expected: Union[Graph, str], actual: Union[Graph, str], fmt: Optional[str] = "turtle") -> Optional[str]: """ Compare expected to actual, returning a string if there is a difference :param expected: expected RDF. Can be Graph, file name, uri or text :param actual: actual RDF. Can be Graph, file name, uri or text :param fmt: RDF format :return: None if they match else summary of difference """ def rem_metadata(g: Graph) -> IsomorphicGraph: # Remove list declarations from target for s in g.subjects(RDF.type, RDF.List): g.remove((s, RDF.type, RDF.List)) for t in g: if t[1] in (META.generation_date, META.source_file_date, META.source_file_size, TYPE.generation_date, TYPE.source_file_date, TYPE.source_file_size): g.remove(t) g_iso = to_isomorphic(g) return g_iso # Bypass compare if settings have turned it off if SKIP_RDF_COMPARE: print(f"tests/utils/compare_rdf.py: {SKIP_RDF_COMPARE_REASON}") return None expected_graph = to_graph(expected, fmt) expected_isomorphic = rem_metadata(expected_graph) actual_graph = to_graph(actual, fmt) actual_isomorphic = rem_metadata(actual_graph) # Graph compare takes a Looong time in_both, in_old, in_new = graph_diff(expected_isomorphic, actual_isomorphic) # if old_iso != new_iso: # in_both, in_old, in_new = graph_diff(old_iso, new_iso) old_len = len(list(in_old)) new_len = len(list(in_new)) if old_len or new_len: txt = StringIO() with redirect_stdout(txt): print("----- Missing Triples -----") if old_len: print_triples(in_old) print("----- Added Triples -----") if new_len: print_triples(in_new) return txt.getvalue() return None
3,536
def remove_empty_segments(args): """Removes empty segments from corpus component files. """ logging.info("Removing empty segments from corpus.") corpus_iterator = CorpusIterator(args.corpus_dir, args.root_file) for file_path in corpus_iterator.iter_annotated_files(): file_name = str(file_path) remove_empty_segments_from_file(file_name) file_name = corpus_iterator.get_component_file_name(file_path) remove_empty_segments_from_file(str(file_name))
3,537
def start_engine(engine_name, tk, context): """ Creates an engine and makes it the current engine. Returns the newly created engine object. Example:: >>> import sgtk >>> tk = sgtk.sgtk_from_path("/studio/project_root") >>> ctx = tk.context_empty() >>> engine = sgtk.platform.start_engine('tk-maya', tk, ctx) >>> engine <Sgtk Engine 0x10451b690: tk-maya, env: shotgun> :param engine_name: Name of the engine to launch, e.g. tk-maya :param tk: :class:`~sgtk.Sgtk` instance to associate the engine with :param context: :class:`~sgtk.Context` object of the context to launch the engine for. :returns: :class:`Engine` instance :raises: :class:`TankEngineInitError` if an engine could not be started for the passed context. """ return _start_engine(engine_name, tk, None, context)
3,538
def test_datasource(): """Tests that default dataset on datasource is teams'""" ds = GithubDataSource(name='mah_ds', domain='test_domain', organization='foorganization') assert ds.dataset == 'teams'
3,539
def parse_vaulttext(b_vaulttext): """Parse the vaulttext. Args: b_vaulttext: A byte str containing the vaulttext (ciphertext, salt, crypted_hmac). Returns: A tuple of byte str of the ciphertext suitable for passing to a Cipher class's decrypt() function, a byte str of the salt, and a byte str of the crypted_hmac. Raises: AnsibleVaultFormatError: If the vaulttext format is invalid. """ # SPLIT SALT, DIGEST, AND DATA try: return _parse_vaulttext(b_vaulttext) except AnsibleVaultFormatError: raise except Exception as exc: raise AnsibleVaultFormatError(f'Vault vaulttext format error: {exc}')
3,540
def does_column_exist_in_db(db, table_name, col_name): """Checks if a specific col exists""" col_name = col_name.lower() query = f"pragma table_info('{table_name}');" all_rows = [] try: db.row_factory = sqlite3.Row # For fetching columns by name cursor = db.cursor() cursor.execute(query) all_rows = cursor.fetchall() except sqlite3.Error as ex: print(f'Query error, query={query} Error={ex}') for row in all_rows: if row['name'].lower() == col_name: return True return False
3,541
def check_min_time(stats, timepiece): """检查是否产生了新的最少用时""" if stats.time < stats.min_time: stats.min_time = stats.time timepiece.prep_min_time()
3,542
def make_secure_val(val): """Takes hashed pw and adds salt; this will be the cookie""" return '%s|%s' % (val, hmac.new(secret, val).hexdigest())
3,543
def get_ad_contents(queryset): """ Contents의 queryset을 받아서 preview video가 존재하는 contents를 랜덤으로 1개 리턴 :param queryset: Contents queryset :return: contents object """ contents_list = queryset.filter(preview_video__isnull=False) max_int = contents_list.count() - 1 if max_int < 0: return while True: idx = random.randint(0, max_int) contents = contents_list[idx] if contents: return contents
3,544
def Image_CanRead(*args, **kwargs): """ Image_CanRead(String filename) -> bool Returns True if the image handlers can read this file. """ return _core_.Image_CanRead(*args, **kwargs)
3,545
def create_without_source_table_privilege(self, node=None): """Check that user is unable to create a table without select privilege on the source table. """ user_name = f"user_{getuid()}" table_name = f"table_{getuid()}" source_table_name = f"source_table_{getuid()}" exitcode, message = errors.not_enough_privileges(name=f"{user_name}") if node is None: node = self.context.node with table(node, f"{source_table_name}"): with user(node, f"{user_name}"): try: with When("I grant CREATE TABLE privilege to a user"): node.query(f"GRANT CREATE TABLE ON {table_name} TO {user_name}") with And("I grant INSERT privilege"): node.query(f"GRANT INSERT ON {table_name} TO {user_name}") with Then("I try to create a table without select privilege on the table"): node.query(f"CREATE TABLE {table_name} ENGINE = Memory AS SELECT * FROM {source_table_name}", settings = [("user", f"{user_name}")], exitcode=exitcode, message=message) finally: with Finally("I drop the table"): node.query(f"DROP TABLE IF EXISTS {table_name}")
3,546
def flatten(lst): """Flatten a list.""" return [y for l in lst for y in flatten(l)] if isinstance(lst, (list, np.ndarray)) else [lst]
3,547
def calc_mean_score(movies): """Helper method to calculate mean of list of Movie namedtuples, round the mean to 1 decimal place""" ratings = [m.score for m in movies] mean = sum(ratings) / max(1, len(ratings)) return round(mean, 1)
3,548
def srun(hosts, cmd, srun_params=None): """Run srun cmd on slurm partition. Args: hosts (str): hosts to allocate cmd (str): cmdline to execute srun_params(dict): additional params for srun Returns: CmdResult: object containing the result (exit status, stdout, etc.) of the srun command """ cmd = srun_str(hosts, cmd, srun_params) try: result = run_command(cmd, timeout=30) except DaosTestError as error: result = None raise SlurmFailed("srun failed : {}".format(error)) return result
3,549
def COSclustering(key, emb, oracle_num_speakers=None, max_num_speaker=8, MIN_SAMPLES=6): """ input: key (str): speaker uniq name emb (np array): speaker embedding oracle_num_speaker (int or None): oracle number of speakers if known else None max_num_speakers (int): maximum number of clusters to consider for each session MIN_SAMPLES (int): minimum number of samples required for NME clustering, this avoids zero p_neighbour_lists. Default of 6 is selected since (1/rp_threshold) >= 4. output: Y (List[int]): speaker labels """ est_num_spks_out_list = [] mat = get_eigen_matrix(emb) if oracle_num_speakers: max_num_speaker = oracle_num_speakers X_conn_spkcount, rp_thres_spkcount, est_num_of_spk, lambdas, p_neigh = NMEanalysis(mat, max_num_speaker) if emb.shape[0] > MIN_SAMPLES: X_conn_from_dist = get_X_conn_from_dist(mat, p_neigh) else: X_conn_from_dist = mat if oracle_num_speakers: est_num_of_spk = oracle_num_speakers est_num_spks_out_list.append([key, str(est_num_of_spk)]) # Perform spectral clustering spectral_model = sklearn_SpectralClustering( affinity='precomputed', eigen_solver='amg', random_state=0, n_jobs=-1, n_clusters=est_num_of_spk, eigen_tol=1e-10, ) Y = spectral_model.fit_predict(X_conn_from_dist) return Y
3,550
def fill_linear_layer(layer, weight, bias): """Load weight and bias to a given layer from onnx format.""" with torch.no_grad(): layer.weight.data = torch.from_numpy(onnx.numpy_helper.to_array(weight)) if bias is not None: layer.bias.data = torch.from_numpy(onnx.numpy_helper.to_array(bias))
3,551
def gauss_distance(sample_set, query_set, unlabeled_set=None): """ (experimental) function to try different approaches to model prototypes as gaussians Args: sample_set: features extracted from the sample set query_set: features extracted from the query set query_set: features extracted from the unlabeled set """ b, n, k, c = sample_set.size() sample_set_std = sample_set.std(2).view(b, 1, n, c) sample_set_mean = sample_set.mean(2).view(b, 1, n, c) query_set = query_set.view(b, n * k, 1, c) d = (query_set - sample_set_mean) / sample_set_std return -torch.sum(d ** 2, 3) / np.sqrt(c)
3,552
def make_mps_left(mps,truncate_mbd=1e100,split_s=False): """ Put an mps into left canonical form Args: mps : list of mps tensors The MPS stored as a list of mps tensors Kwargs: truncate_mbd : int The maximum bond dimension to which the mps should be truncated Returns: mps : list of mps tensors The resulting left-canonicalized MPS """ # Figure out size of mps N = len(mps) # Loop backwards for site in range(N-1): #tmpprint('\t\t\t\tSite: {}'.format(site)) mps = move_gauge_right(mps,site, truncate_mbd=truncate_mbd, return_ent=False, return_wgt=False, split_s=split_s) # Remove empty indices at the ends of the mps mps = remove_empty_ends(mps) # Return results return mps
3,553
def word_after(line, word): """'a black sheep', 'black' -> 'sheep'""" return line.split(word, 1)[-1].split(' ', 1)[0]
3,554
def domain_in_domain(subdomain, domain): """Returns try if subdomain is a sub-domain of domain. subdomain A *reversed* list of strings returned by :func:`split_domain` domain A *reversed* list of strings as returned by :func:`split_domain` For example:: >>> domain_in_domain(['com', 'example'], ... ['com', 'example', 'www']) True""" if len(subdomain) <= len(domain): i = 0 for d in subdomain: if d != domain[i]: return False i += 1 return True else: return False
3,555
def polygon_from_boundary(xs, ys, xmin=0.0, xmax=1.0, ymin=0.0, ymax=1.0, xtol=0.0): """Polygon within box left of boundary given by (xs, ys) xs, ys: coordinates of boundary (ys ordered increasingly) """ xs = np.asarray(xs) ys = np.asarray(ys) xs[xs > xmax-xtol] = xmax xs[xs < xmin+xtol] = xmin index = -1 while xs[index] == xmin: index -= 1 if index < -2: xs, ys = xs[:index+2], ys[:index+2] vertices = zip(xs, ys) if len(xs) == 1: vertices.append((xs[0], ymax)) vertices.append((xmin, ymax)) elif xs[-1] >= xmax-xtol: if xs[-1] < xmax: vertices.append((xmax, ys[-1])) if ys[-1] < ymax: vertices.append((xmax, ymax)) vertices.append((xmin, ymax)) elif xs[-1] > xmin: vertices.append((xmin, ys[-1])) if (xs[0] > xmin) or (ys[0] > ymin): vertices.append((xmin, ymin)) if ys[0] > ymin: vertices.append((xs[0], ymin)) vertices = np.asarray(vertices) return vertices
3,556
def print_head(df_in): """Print head of data set Parameters ---------- df_in : pd.DataFrame Dataframe Returns ------- head of dataset, shape of dataset """ df = df_in.head() display(df) print('Dataset shape: ', df_in.shape)
3,557
def type_conversion(self, node="clickhouse1"): """Check the type conversion operations with DateTime64. Cast can be set as Requirement thereby as the module tests exactly what CAST does. """ self.context.node = self.context.cluster.node(node) for scenario in loads(current_module(), Scenario): Scenario(run=scenario)
3,558
def is_degenerate(op, tol=1e-12): """Check if operator has any degenerate eigenvalues, determined relative to mean spacing of all eigenvalues. Parameters ---------- op : operator or 1d-array Operator or assumed eigenvalues to check degeneracy for. tol : float How much closer than evenly spaced the eigenvalue gap has to be to count as degenerate. Returns ------- n_dgen : int Number of degenerate eigenvalues. """ op = np.asarray(op) if op.ndim != 1: evals = eigvalsh(op) else: evals = op l_gaps = evals[1:] - evals[:-1] l_tol = tol * (evals[-1] - evals[0]) / op.shape[0] return np.count_nonzero(abs(l_gaps) < l_tol)
3,559
def _get_skip_props(mo, include_operational=False, version_filter=True): """ Internal function to skip mo property if not to be considered for sync. """ skip_props = [] for prop in mo.prop_meta: mo_property_meta = mo.prop_meta[prop] if mo_property_meta is None: continue # not include operational property if not include_operational: if mo_property_meta.access in (MoPropertyMeta.INTERNAL, MoPropertyMeta.READ_ONLY): skip_props.append(prop) # checks if property is part of current or earlier ucsm schema if version_filter: version = mo.get_handle().version if version is None or version < mo_property_meta.version or \ mo_property_meta.access == MoPropertyMeta.INTERNAL: skip_props.append(prop) return skip_props
3,560
def generate_split_problem(): """Generates a 'Split' problem configuration. Returns (environment, robot, start configuration, goal configuration).""" walls = [rectangle(0, 400, 0, 10), rectangle(0, 400, 290, 300), rectangle(0, 10, 0, 300), rectangle(390, 400, 0, 300), rectangle(180, 220, 100, 200)] split_environment = Environment(walls) robot_geometry = Polygon([(-15, -15), (-15, 15), (15, 15), (15, -15)]) robot = Robot(robot_geometry) start = np.array([50, 150, 0]) goal = np.array([350, 150, 0]) return split_environment, robot, start, goal
3,561
def problem_generator(difficulty=3): """ This function generates mathematical expressions as string. It is not very smart and will generate expressions that have answers the lex function cannot accept. """ operators = ["/", "*", "+", "-"] numeric_lim = difficulty * 7 output = "" for i in range(difficulty + 3): if i % 2 == 0: output += str(randint(1, numeric_lim)) + " " else: output += operators[randint(0, len(operators) - 1)] + " " if output[len(output) - 2] in operators: output += str(randint(1, numeric_lim)) return output
3,562
async def receive_message_and_update_deployment(app: FastAPI) -> None: """ Receives messages from the deployment status update queue and updates the status for the associated resource in the state store. Args: app ([FastAPI]): Handle to the currently running app """ receive_message_gen = receive_message() try: async for message in receive_message_gen: workspace_repo = WorkspaceRepository(get_db_client(app)) result = update_status_in_database(workspace_repo, message) await receive_message_gen.asend(result) except StopAsyncIteration: # the async generator when finished signals end with this exception. pass
3,563
def logical_factory_dimensions(params: Parameters ) -> Tuple[int, int, float]: """Determine the width, height, depth of the magic state factory.""" if params.use_t_t_distillation: return 12*2, 8*2, 6 # Four T2 factories l1_distance = params.l1_distance l2_distance = params.code_distance t1_height = 4 * l1_distance / l2_distance t1_width = 8 * l1_distance / l2_distance t1_depth = 5.75 * l1_distance / l2_distance ccz_depth = 5 ccz_height = 6 ccz_width = 3 storage_width = 2 * l1_distance / l2_distance ccz_rate = 1 / ccz_depth t1_rate = 1 / t1_depth t1_factories = int(math.ceil((ccz_rate * 8) / t1_rate)) t1_factory_column_height = t1_height * math.ceil(t1_factories / 2) width = int(math.ceil(t1_width * 2 + ccz_width + storage_width)) height = int(math.ceil(max(ccz_height, t1_factory_column_height))) depth = max(ccz_depth, t1_depth) return width, height, depth
3,564
def parse_list_or_range(arg): """ Parses a string that represents either an integer or a range in the notation ``<start>:<step>:<stop>``. Parameters ---------- arg : :obj:`str` Integer or range string. Returns ------- int or :obj:`list` of int Raises ------ ArgumentTypeError If input can neither be interpreted as an integer nor a valid range. """ if re.match(r'^\d+:\d+:\d+$', arg) or re.match(r'^\d+:\d+$', arg): rng_params = list(map(int, arg.split(':'))) step = 1 if len(rng_params) == 2: # start, stop start, stop = rng_params else: # start, step, stop start, step, stop = rng_params rng = list(range(start, stop + 1, step)) # include last stop-element in range if len(rng) == 0: raise argparse.ArgumentTypeError('{0} is an empty range'.format(arg)) return rng elif re.match(r'^\d+$', arg): return int(arg) raise argparse.ArgumentTypeError( '{0} is neither a integer list, nor valid range in the form <start>:[<step>:]<stop>'.format( arg ) )
3,565
def data(): """ Data providing function: This function is separated from create_model() so that hyperopt won't reload data for each evaluation run. """ d_file = 'data/zinc_100k.h5' data_train, data_test, props_train, props_test, tokens = utils.load_dataset(d_file, "TRANSFORMER", True) x_train = [data_train, data_train, props_train] y_train = None x_test = [data_test, data_test, props_test] y_test = None return x_train, y_train, x_test, y_test
3,566
def make_commands( script: str, base_args: Optional[Dict[str, Any]] = None, common_hyper_args: Optional[Dict[str, List[Any]]] = None, algorithm_hyper_args: Optional[Dict[str, List[Any]]] = None, ) -> List[str]: """Generate command to run. It will generate a list of commands to be use with the runners. Each command will look like: python script --base_arg_key --base_arg_val --common_hyper_key --common_hyper_key --algorithm_hyper_key --algorithm_hyper_key --mutually_exclusive_args where a separate command is generated for each common hyper_parameter and algorithm_hyper_parameter Parameters ---------- script: str. String with script to run. base_args: dict Base arguments to execute. common_hyper_args: dict Iterable hyper parameters to execute in different runs. algorithm_hyper_args Algorithm dependent hyper parameters to execute. Returns ------- commands: List[str] List with commands to execute. """ interpreter_script = sys.executable base_cmd = interpreter_script + " " + script commands = [] # List[str] if common_hyper_args is None: common_hyper_args = dict() # pragma: no cover common_hyper_args = common_hyper_args.copy() if algorithm_hyper_args is not None: common_hyper_args.update(algorithm_hyper_args) hyper_args_list = list( dict(zip(common_hyper_args, x)) for x in itertools.product(*common_hyper_args.values()) ) for hyper_args in hyper_args_list: cmd = base_cmd for dict_ in [base_args, hyper_args]: if dict_ is None: continue for key, value in dict_.items(): cmd += get_command(key, value) commands.append(cmd) return commands
3,567
def dummy_lockfile_path( dummy_lockfile_proto: lockfile_pb2.LockFile, ) -> pathlib.Path: """Yield a path to a lockfile proto.""" with tempfile.TemporaryDirectory() as d: pbutil.ToFile(dummy_lockfile_proto, pathlib.Path(d) / "LOCK.pbtxt") yield pathlib.Path(d) / "LOCK.pbtxt"
3,568
def mongos_program(logger, job_num, executable=None, process_kwargs=None, mongos_options=None): # pylint: disable=too-many-arguments """Return a Process instance that starts a mongos with arguments constructed from 'kwargs'.""" args = [executable] mongos_options = mongos_options.copy() if "port" not in mongos_options: mongos_options["port"] = network.PortAllocator.next_fixture_port(job_num) suite_set_parameters = mongos_options.get("set_parameters", {}) _apply_set_parameters(args, suite_set_parameters) mongos_options.pop("set_parameters") # Apply the rest of the command line arguments. _apply_kwargs(args, mongos_options) _set_keyfile_permissions(mongos_options) process_kwargs = make_historic(utils.default_if_none(process_kwargs, {})) return make_process(logger, args, **process_kwargs), mongos_options["port"]
3,569
def markerBeings(): """标记众生区块 Content-Type: application/json { "token":"", "block_id":"" } 返回 json { "is_success":bool, "data": """ try: info = request.get_json() # 验证token token = info["token"] if not auth.verifyToken(token): http_message = HttpMessage(is_success=False, data="Token无效") return http_message.getJson() # 获取列表 beings_block_id = info["block_id"] if blockOfGarbage.addGarbageBlockQueue(beings_block_id): http_message = HttpMessage(is_success=True, data="标记成功") return http_message.getJson() else: http_message = HttpMessage(is_success=False, data="该区块已经被标记") return http_message.getJson() except Exception as err: print(err) http_message = HttpMessage(is_success=False, data="参数错误") return http_message.getJson()
3,570
def get_charges_with_openff(mol): """Starting from a openff molecule returns atomic charges If the charges are already defined will return them without change I not will calculate am1bcc charges Parameters ------------ mol : openff.toolkit.topology.Molecule Examples --------- from openff.toolkit.topology import Molecule mol = Molecule.from_file(SOME_FILE) # mol = Molecule.from_smiles(SMILES) get_charges_with_openff(mol) Returns ------------ np.array(float) charges in atomic units (elementary charge) Notes ---------- Some extra conformers may be generated because of https://github.com/openforcefield/openff-toolkit/issues/492 """ if (mol.partial_charges is None) or (np.allclose( mol.partial_charges / unit.elementary_charge, np.zeros([mol.n_particles]))): # NOTE: generate_conformers seems to be required for some molecules # https://github.com/openforcefield/openff-toolkit/issues/492 mol.generate_conformers(n_conformers=10) mol.compute_partial_charges_am1bcc() return mol.partial_charges.value_in_unit(unit.elementary_charge)
3,571
def parse_mdout(file): """ Return energies from an AMBER ``mdout` file. Parameters ---------- file : os.PathLike Name of Amber output file Returns ------- energies : dict A dictionary containing VDW, electrostatic, bond, angle, dihedral, V14, E14, and total energy. """ vdw, ele, bnd, ang, dih, v14, e14 = [], [], [], [], [], [], [] restraint = [] with open(file, "r") as f: for line in f.readlines(): words = line.rstrip().split() if len(words) > 1: if "BOND" in words[0]: bnd.append(float(words[2])) ang.append(float(words[5])) dih.append(float(words[8])) if "VDWAALS" in words[0]: vdw.append(float(words[2])) ele.append(float(words[5])) if "1-4" in words[0]: v14.append(float(words[3])) e14.append(float(words[7])) restraint.append(float(words[10])) energies = { "Bond": bnd, "Angle": ang, "Dihedral": dih, "V14": v14, "E14": e14, "VDW": vdw, "Ele": ele, "Restraint": restraint, "Total": [sum(x) for x in zip(bnd, ang, dih, v14, e14, vdw, ele)], } return energies
3,572
def import_face_recognition(): """ Import the face_recognition module only when it is required """ global face_recognition if face_recognition is None: import face_recognition
3,573
def aa_spectrum( G: nx.Graph, aggregation_type: Optional[List[str]] = None ) -> nx.Graph: """ Calculate the spectrum descriptors of 3-mers for a given protein. Contains the composition values of 8000 3-mers :param G: Protein Graph to featurise :type G: nx.Graph :param aggregation_type: Aggregation types to use over chains :type aggregation_type: List[Optional[str]] :return: Protein Graph with aa_spectrum feature added. G.graph["aa_spectrum_{chain | aggregation_type}"] :rtype: nx.Graph """ from propy.AAComposition import GetSpectrumDict func = GetSpectrumDict feature_name = "aa_spectrum" return compute_propy_feature( G, func=func, feature_name=feature_name, aggregation_type=aggregation_type, )
3,574
def dumppickle(obj, fname, protocol=-1): """ Pickle object `obj` to file `fname`. """ with open(fname, 'wb') as fout: # 'b' for binary, needed on Windows pickle.dump(obj, fout, protocol=protocol)
3,575
def get_click_data(api, campaign_id): """Return a list of all clicks for a given campaign.""" rawEvents = api.campaigns.get(campaign_id).as_dict()["timeline"] clicks = list() # Holds list of all users that clicked. for rawEvent in rawEvents: if rawEvent["message"] == "Clicked Link": click = dict() # Builds out click document. click["user"] = hashlib.sha256( rawEvent["email"].encode("utf-8") ).hexdigest() click["source_ip"] = rawEvent["details"]["browser"]["address"] click["time"] = rawEvent["time"] click["application"] = get_application(rawEvent) clicks.append(click) return clicks
3,576
def test_line_2(style_checker): """style_checker on python file with No_Style_Check comment on line 2. The file has PEP8 errors, but those should be ignored thanks to the No_Style_Check comment. """ p = style_checker.run_style_checker('/trunk/module', 'src/line_2.py') style_checker.assertEqual(p.status, 0, p.image) style_checker.assertRunOutputEmpty(p)
3,577
def multi_label_column_to_binary_columns(data_frame: pd.DataFrame, column: str): """ assuming that the column contains array objects, returns a new dataframe with binary columns (True/False) indicating presence of each distinct array element. :data_frame: the pandas DataFrame :column: the column with array values :return: a new DataFrame with binary columns """ label_unique_values = data_frame[column].str.replace( "'", '').str.split(',').explode().to_frame() drop_identical_values = label_unique_values[column].drop_duplicates( keep="first").tolist() multi_label_data_frame = pd.concat([data_frame, pd.crosstab(label_unique_values.index, label_unique_values[column])[drop_identical_values]], axis=1) return multi_label_data_frame
3,578
def subrepositories_changed(all_if_master: bool = False) -> List[str]: # pragma: no cover """ Returns a list of the final name components of subrepositories that contain files that are different between the master branch and the current branch. Subrepositories are defined as the directories immediately under "projects" and "libraries". Example: if libraries/ABEX/foo/bar.py and projects/CellSignalling/bar/baz.py have changed, the result returned would be ["ABEX", "CellSignalling"]. If the current branch *is* master, then all subrepository names (if all_if_master) or an empty list, is returned. "master" is tried as the name of the master branch, followed by "main" if that branch does not exist. If neither is found, which may be the case during an ADO build, we look at .git/FETCH_HEAD, which may show evidence of the master branch having been fetched, and if so will tell us its commit ID. """ all_subrepos: Set[str] = set() for path in SUBREPOSITORY_PARENT_PATHS: for subrepo in path.glob("*"): if subrepo.is_dir(): all_subrepos.add(subrepo.name) repo = Repo(".") master_branch_name = None for branch in repo.branches: if branch.name in ["master", "main"]: master_branch_name = branch.name break if master_branch_name is None: fh_path = Path(".git") / "FETCH_HEAD" if fh_path.exists(): with fh_path.open() as fh: for line in fh.readlines(): if line.find("'master'") > 0 or line.find("'main'") > 0: # master_branch_name is actually a commit in this case master_branch_name = line.split(None, 1)[0] sys.stderr.write(f"Setting master 'branch' name to commit {master_branch_name}\n") break if master_branch_name is None: # Play safe: master branch not found, so assume all subrepos might have changed. sys.stderr.write("WARNING: could not find either a 'master' branch or a 'main' branch.\n") changed = all_subrepos else: changed = set() for diff in repo.index.diff(master_branch_name): for path in [Path(diff.a_path), Path(diff.b_path)]: parts = path.parts if ( len(parts) >= 2 and Path(parts[0]) in SUBREPOSITORY_PARENT_PATHS and parts[1] in all_subrepos and parts[-1] not in BASENAMES_TO_IGNORE ): changed.add(parts[1]) if changed: changed = add_subrepositories_depending_on(changed, all_subrepos, get_internal_requirements) elif all_if_master and current_commit_is_master(repo, master_branch_name): changed = all_subrepos # Remove subrepositories that appear to be submodules apparent_submodules = set(path.parent.name for path in Path(".").glob("*/*/.git")) result = [name for name in sorted(changed) if name not in apparent_submodules] return result
3,579
def show_landscape(adata, Xgrid, Ygrid, Zgrid, basis="umap", save_show_or_return='show', save_kwargs={}, ): """Plot the quasi-potential landscape. Parameters ---------- adata: :class:`~anndata.AnnData` AnnData object that contains Xgrid, Ygrid and Zgrid data for visualizing potential landscape. Xgrid: `numpy.ndarray` x-coordinates of the Grid produced from the meshgrid function. Ygrid: `numpy.ndarray` y-coordinates of the Grid produced from the meshgrid function. Zgrid: `numpy.ndarray` z-coordinates or potential at each of the x/y coordinate. basis: `str` (default: umap) The method of dimension reduction. By default it is trimap. Currently it is not checked with Xgrid and Ygrid. save_show_or_return: {'show', 'save', 'return'} (default: `show`) Whether to save, show or return the figure. save_kwargs: `dict` (default: `{}`) A dictionary that will passed to the save_fig function. By default it is an empty dictionary and the save_fig function will use the {"path": None, "prefix": 'show_landscape', "dpi": None, "ext": 'pdf', "transparent": True, "close": True, "verbose": True} as its parameters. Otherwise you can provide a dictionary that properly modify those keys according to your needs. Returns ------- A 3D plot showing the quasi-potential of each cell state. """ if "grid_Pot_" + basis in adata.uns.keys(): Xgrid_, Ygrid_, Zgrid_ = ( adata.uns["grid_Pot_" + basis]["Xgrid"], adata.uns["grid_Pot_" + basis]["Ygrid"], adata.uns["grid_Pot_" + basis]["Zgrid"], ) Xgrid = Xgrid_ if Xgrid is None else Xgrid Ygrid = Ygrid_ if Ygrid is None else Ygrid Zgrid = Zgrid_ if Zgrid is None else Zgrid from mpl_toolkits.mplot3d import Axes3D import matplotlib.pyplot as plt from matplotlib import cm from matplotlib.ticker import LinearLocator, FormatStrFormatter from matplotlib.colors import LightSource fig = plt.figure() ax = fig.gca(projection="3d") # Plot the surface. ls = LightSource(azdeg=0, altdeg=65) # Shade data, creating an rgb array. rgb = ls.shade(Zgrid, plt.cm.RdYlBu) surf = ax.plot_surface( Xgrid, Ygrid, Zgrid, cmap=cm.coolwarm, rstride=1, cstride=1, facecolors=rgb, linewidth=0, antialiased=False, ) # Customize the z axis. ax.zaxis.set_major_locator(LinearLocator(10)) ax.zaxis.set_major_formatter(FormatStrFormatter("%.02f")) # Add a color bar which maps values to colors. # fig.colorbar(surf, shrink=0.5, aspect=5) ax.set_xlabel(basis + "_1") ax.set_ylabel(basis + "_2") ax.set_zlabel("U") if save_show_or_return == "save": s_kwargs = {"path": None, "prefix": 'show_landscape', "dpi": None, "ext": 'pdf', "transparent": True, "close": True, "verbose": True} s_kwargs = update_dict(s_kwargs, save_kwargs) save_fig(**s_kwargs) elif save_show_or_return == "show": plt.tight_layout() plt.show() elif save_show_or_return == "return": return ax
3,580
def _GetBuilderPlatforms(builders, waterfall): """Get a list of PerfBuilder objects for the given builders or waterfall. Otherwise, just return all platforms. """ if builders: return {b for b in bot_platforms.ALL_PLATFORMS if b.name in builders} elif waterfall == 'perf': return bot_platforms.OFFICIAL_PLATFORMS elif waterfall == 'perf-fyi': return bot_platforms.FYI_PLATFORMS else: return bot_platforms.ALL_PLATFORMS
3,581
def meeting_guide(context): """ Display the ReactJS drive Meeting Guide list. """ settings = get_meeting_guide_settings() json_meeting_guide_settings = json_dumps(settings) return { "meeting_guide_settings": json_meeting_guide_settings, "mapbox_key": settings["map"]["key"], "timezone": settings["timezone"], }
3,582
def generate_input_fn(file_path, shuffle, batch_size, num_epochs): """Generates a data input function. Args: file_path: Path to the data. shuffle: Boolean flag specifying if data should be shuffled. batch_size: Number of records to be read at a time. num_epochs: Number of times to go through all of the records. Returns: A function useed by `Estimator` to read data. """ def _input_fn(): """Returns features and target from input data. Defines the input dataset, specifies how to read the data, and reads it. Returns: A tuple os a dictionary containing the features and the target. """ num_threads = multiprocessing.cpu_count() dataset = tf.data.TextLineDataset(filenames=[file_path]) dataset = dataset.skip(1) dataset = dataset.map(lambda x: parse_csv( tf.expand_dims(x, -1)), num_parallel_calls=num_threads) dataset = dataset.map(get_features_target_tuple, num_parallel_calls=num_threads) if shuffle: dataset = dataset.shuffle(SHUFFLE_BUFFER_SIZE) dataset = dataset.batch(batch_size) dataset = dataset.repeat(num_epochs) dataset = dataset.prefetch(1) iterator = dataset.make_one_shot_iterator() features, target = iterator.get_next() return features, target return _input_fn
3,583
def amp_phase_to_complex(lookup_table): """ This constructs the function to convert from AMP8I_PHS8I format data to complex64 data. Parameters ---------- lookup_table : numpy.ndarray Returns ------- callable """ _validate_lookup(lookup_table) def converter(data): if not isinstance(data, numpy.ndarray): raise ValueError('requires a numpy.ndarray, got {}'.format(type(data))) if data.dtype.name != 'uint8': raise ValueError('requires a numpy.ndarray of uint8 dtype, got {}'.format(data.dtype.name)) if len(data.shape) == 3: raise ValueError('Requires a three-dimensional numpy.ndarray (with band ' 'in the last dimension), got shape {}'.format(data.shape)) out = numpy.zeros((data.shape[0], data.shape[1], data.shape[2]/2), dtype=numpy.complex64) amp = lookup_table[data[:, :, 0::2]] theta = data[:, :, 1::2]*(2*numpy.pi/256) out.real = amp*numpy.cos(theta) out.imag = amp*numpy.sin(theta) return out return converter
3,584
def combine_aqs_cmaq(model, obs): """Short summary. Parameters ---------- model : type Description of parameter `model`. obs : type Description of parameter `obs`. Returns ------- type Description of returned object. """ g = obs.df.groupby('Species') comparelist = sort(obs.df.Species.unique()) dfs = [] for i in comparelist: if (i == 'OZONE'): # & ('O3' in model.keys): print('Interpolating Ozone:') df = g.get_group(i) fac = epa_util.check_cmaq_units(df, param='O3', aqs_param=i) print(fac) cmaq = model.get_var(lay=0, param='O3').compute() * fac df = interpo.interp_to_obs(cmaq, df, model.latitude.values, model.longitude.values, radius=model.dset.XCELL) # df.Obs, df.CMAQ = df.Obs, df.CMAQ df.Units = 'PPB' dfs.append(df) elif i == 'PM2.5': if ('PM25_TOT' in model.keys) | ('ASO4J' in model.keys): print('Interpolating PM2.5:') df = g.get_group(i) fac = epa_util.check_cmaq_units(df, param='PM25', aqs_param=i) cmaq = model.get_var(lay=0, param='PM25').compute() * fac df = interpo.interp_to_obs(cmaq, df, model.latitude.values, model.longitude.values, radius=model.dset.XCELL) dfs.append(df) elif i == 'CO': if 'CO' in model.keys: print('Interpolating CO:') df = g.get_group(i) fac = epa_util.check_cmaq_units(df, param='CO', aqs_param=i) cmaq = model.get_var(lay=0, param='CO').compute() * fac df = interpo.interp_to_obs(cmaq, df, model.latitude.values, model.longitude.values, radius=model.dset.XCELL) dfs.append(df) elif i == 'NOY': if 'NOY' in model.keys: print('Interpolating NOY:') df = g.get_group(i) fac = epa_util.check_cmaq_units(df, param='NOY', aqs_param=i) cmaq = model.get_var(lay=0, param='NOY').compute() * fac df = interpo.interp_to_obs(cmaq, df, model.latitude.values, model.longitude.values, radius=model.dset.XCELL) dfs.append(df) elif i == 'SO2': if 'SO2' in model.keys: print('Interpolating SO2') df = g.get_group(i) fac = epa_util.check_cmaq_units(df, param='SO2', aqs_param=i) cmaq = model.get_var(lay=0, param='SO2').compute() * fac df = interpo.interp_to_obs(cmaq, df, model.latitude.values, model.longitude.values, radius=model.dset.XCELL) dfs.append(df) elif i == 'NOX': if ('NO' in model.keys) | ('NO2' in model.keys): print('Interpolating NOX:') df = g.get_group(i) fac = epa_util.check_cmaq_units(df, param='NOX', aqs_param=i) cmaq = model.get_var(lay=0, param='NOX').compute() * fac df = interpo.interp_to_obs(cmaq, df, model.latitude.values, model.longitude.values, radius=model.dset.XCELL) dfs.append(df) elif i == 'NO': if ('NO' in model.keys): print('Interpolating NO:') df = g.get_group(i) fac = epa_util.check_cmaq_units(df, param='NO', aqs_param=i) cmaq = model.get_var(lay=0, param='NO').compute() * fac df = interpo.interp_to_obs(cmaq, df, model.latitude.values, model.longitude.values, radius=model.dset.XCELL) dfs.append(df) elif i == 'NO2': if ('NO2' in model.keys): print('Interpolating NO2:') df = g.get_group(i) fac = epa_util.check_cmaq_units(df, param='NO2', aqs_param=i) cmaq = model.get_var(lay=0, param='NO2').compute() * fac df = interpo.interp_to_obs(cmaq, df, model.latitude.values, model.longitude.values, radius=model.dset.XCELL) dfs.append(df) elif i == 'SO4f': if ('PM25_SO4' in model.keys) | ('ASO4J' in model.keys) | ('ASO4I' in model.keys): print('Interpolating PSO4:') df = g.get_group(i) fac = epa_util.check_cmaq_units(df, param='SO4f', aqs_param=i) cmaq = model.get_var(lay=0, param='SO4f').compute() * fac df = interpo.interp_to_obs(cmaq, df, model.latitude.values, model.longitude.values, radius=model.dset.XCELL) dfs.append(df) elif i == 'PM10': if ('PM_TOTAL' in model.keys) or ('ASO4K' in model.keys): print('Interpolating PM10:') df = g.get_group(i) fac = epa_util.check_cmaq_units(df, param='PM10', aqs_param=i) cmaq = model.get_var(lay=0, param='PM10').compute() * fac df = interpo.interp_to_obs(cmaq, df, model.latitude.values, model.longitude.values, radius=model.dset.XCELL) dfs.append(df) elif i == 'NO3f': if ('PM25_NO3' in model.keys) | ('ANO3J' in model.keys) | ('ANO3I' in model.keys): print('Interpolating PNO3:') df = g.get_group(i) fac = epa_util.check_cmaq_units(df, param='NO3f', aqs_param=i) cmaq = model.get_var(lay=0, param='NO3F').compute() * fac df = interpo.interp_to_obs(cmaq, df, model.latitude.values, model.longitude.values, radius=model.dset.XCELL) dfs.append(df) elif i == 'ECf': if ('PM25_EC' in model.keys) | ('AECI' in model.keys) | ('AECJ' in model.keys): print('Interpolating PEC:') df = g.get_group(i) fac = epa_util.check_cmaq_units(df, param='ECf', aqs_param=i) cmaq = model.get_var(lay=0, param='ECf').compute() * fac df = interpo.interp_to_obs(cmaq, df, model.latitude.values, model.longitude.values, radius=model.dset.XCELL) dfs.append(df) elif i == 'OCf': if ('APOCJ' in model.keys): print('Interpolating OCf:') df = g.get_group(i) fac = epa_util.check_cmaq_units(df, param='OCf', improve_param=i) cmaqvar = model.get_var(lay=0, param='OC').compute() * fac df = interpo.interp_to_obs(cmaqvar, df, model.latitude.values, model.longitude.values, radius=model.dset.XCELL) dfs.append(df) elif i == 'ETHANE': if ('ETHA' in model.keys): print('Interpolating Ethane:') df = g.get_group(i) fac = epa_util.check_cmaq_units(df, param='ETHA', aqs_param=i) cmaq = model.get_var(lay=0, param='ETHA').compute() * fac df = interpo.interp_to_obs(cmaq, df, model.latitude.values, model.longitude.values, radius=model.dset.XCELL) dfs.append(df) elif i == 'BENZENE': if ('BENZENE' in model.keys): print('Interpolating BENZENE:') df = g.get_group(i) fac = epa_util.check_cmaq_units(df, param='BENZENE', aqs_param=i) cmaq = model.get_var(lay=0, param='BENZENE').compute() * fac df = interpo.interp_to_obs(cmaq, df, model.latitude.values, model.longitude.values, radius=model.dset.XCELL) dfs.append(df) elif i == 'TOLUENE': if ('TOL' in model.keys): print('Interpolating Toluene:') df = g.get_group(i) fac = epa_util.check_cmaq_units(df, param='TOL', aqs_param=i) cmaq = model.get_var(lay=0, param='TOL').compute() * fac df = interpo.interp_to_obs(cmaq, df, model.latitude.values, model.longitude.values, radius=model.dset.XCELL) dfs.append(df) elif i == 'ISOPRENE': if ('ISOP' in model.keys): print('Interpolating Isoprene:') df = g.get_group(i) fac = epa_util.check_cmaq_units(df, param='ISOP', aqs_param=i) cmaq = model.get_var(lay=0, param='ISOP').compute() * fac df = interpo.interp_to_obs(cmaq, df, model.latitude.values, model.longitude.values, radius=model.dset.XCELL) dfs.append(df) elif i == 'O-XYLENE': if ('XYL' in model.keys): print('Interpolating Xylene') df = g.get_group(i) fac = epa_util.check_cmaq_units(df, param='XYL', aqs_param=i) cmaq = model.get_var(lay=0, param='XYL').compute() * fac df = interpo.interp_to_obs(cmaq, df, model.latitude.values, model.longitude.values, radius=model.dset.XCELL) dfs.append(df) elif i == 'WS': if ('WSPD10' in model.keys): print('Interpolating WS:') df = g.get_group(i) cmaq = model.get_var(lay=0, param='WSPD10') df = interpo.interp_to_obs(cmaq, df, model.latitude.values, model.longitude.values, radius=model.dset.XCELL) dfs.append(df) elif i == 'TEMP': if 'TEMP2' in model.keys: print('Interpolating TEMP:') df = g.get_group(i) cmaq = model.get_var(lay=0, param='TEMP2') df = interpo.interp_to_obs(cmaq, df, model.latitude.values, model.longitude.values, radius=model.dset.XCELL) dfs.append(df) elif i == 'WD': if ('WDIR10' in model.keys): print('Interpolating WD:') df = g.get_group(i) cmaq = model.get_var(lay=0, param='WDIR10') df = interpo.interp_to_obs(cmaq, df, model.latitude.values, model.longitude.values, radius=model.dset.XCELL) dfs.append(df) df = concat(dfs) df.dropna(subset=['Obs', 'model'], inplace=True) return df
3,585
def bbknn_pca_matrix( pca, batch_list, neighbors_within_batch=3, n_pcs=50, trim=None, approx=True, n_trees=10, use_faiss=True, metric="angular", set_op_mix_ratio=1, local_connectivity=1, ): """ Scanpy-independent BBKNN variant that runs on a PCA matrix and list of per-cell batch assignments instead of an AnnData object. Non-data-entry arguments behave the same way as ``bbknn.bbknn()``. Returns a ``(distances, connectivities, parameters)`` tuple, like what would have been stored in the AnnData object. The connectivities are the actual neighbourhood graph. Input ----- pca : ``numpy.array`` PCA (or other dimensionality reduction) coordinates for each cell, with cells as rows. batch_list : ``numpy.array`` or ``list`` A list of batch assignments for each cell. """ # more basic sanity checks/processing # do we have the same number of cells in pca and batch_list? if pca.shape[0] != len(batch_list): raise ValueError( "Different cell counts indicated by `pca.shape[0]` and `len(batch_list)`." ) # convert batch_list to np.array of strings for ease of mask making later batch_list = np.asarray([str(i) for i in batch_list]) # assert that all batches have at least neighbors_within_batch cells in there unique, counts = np.unique(batch_list, return_counts=True) if np.min(counts) < neighbors_within_batch: raise ValueError( "Not all batches have at least `neighbors_within_batch` cells in them." ) # metric sanity checks (duplicating the ones in bbknn(), but without scanpy logging) if approx and metric not in ["angular", "euclidean", "manhattan", "hamming"]: print( "unrecognised metric for type of neighbor calculation, switching to angular" ) metric = "angular" elif not approx and not ( metric == "euclidean" or isinstance(metric, DistanceMetric) or metric in KDTree.valid_metrics ): print( "unrecognised metric for type of neighbor calculation, switching to euclidean" ) metric = "euclidean" # obtain the batch balanced KNN graph knn_distances, knn_indices = get_graph( pca=pca, batch_list=batch_list, n_pcs=n_pcs, n_trees=n_trees, approx=approx, metric=metric, use_faiss=use_faiss, neighbors_within_batch=neighbors_within_batch, ) # sort the neighbours so that they're actually in order from closest to furthest newidx = np.argsort(knn_distances, axis=1) knn_indices = knn_indices[ np.arange(np.shape(knn_indices)[0])[:, np.newaxis], newidx ] knn_distances = knn_distances[ np.arange(np.shape(knn_distances)[0])[:, np.newaxis], newidx ] # this part of the processing is akin to scanpy.api.neighbors() dist, cnts = compute_connectivities_umap( knn_indices, knn_distances, knn_indices.shape[0], knn_indices.shape[1], set_op_mix_ratio=set_op_mix_ratio, local_connectivity=local_connectivity, ) # trimming. compute default range if absent if trim is None: trim = 10 * knn_distances.shape[1] # skip trimming if set to 0, otherwise trim if trim > 0: cnts = trimming(cnts=cnts, trim=trim) # create a collated parameters dictionary # determine which neighbour computation was used, mirroring create_tree() logic if approx: computation = "annoy" elif metric == "euclidean": if "faiss" in sys.modules and use_faiss: computation = "faiss" else: computation = "cKDTree" else: computation = "KDTree" # we'll have a zero distance for our cell of origin, and nonzero for every other neighbour computed params = { "n_neighbors": len(dist[0, :].data) + 1, "method": "umap", "metric": metric, "n_pcs": n_pcs, "bbknn": {"trim": trim, "computation": computation}, } return (dist, cnts, params)
3,586
def autoinstall(ctx, **kwargs): """ install a system using an autofile template """ bg_flag = kwargs.pop('bg') request = {'action_type': 'SUBMIT', 'job_type': 'autoinstall'} for key in ('profile', 'template', 'verbosity'): if kwargs[key] is None: kwargs.pop(key) if not kwargs['repos']: kwargs.pop('repos') request['parameters'] = json.dumps(kwargs) client = Client() job_id = wait_scheduler(client, request) # bg flag: do not wait for output, just return to prompt if bg_flag: return try: wait_job_exec(client, job_id) ctx.invoke(job_output, job_id=job_id) except KeyboardInterrupt: cancel_job = click.confirm('\nDo you want to cancel the job?') if not cancel_job: click.echo('warning: job is still running, remember to cancel it ' 'if you want to submit a new action for this system') raise ctx.invoke(job_cancel, job_id=job_id)
3,587
async def test_automatic_failover_after_leader_issue(ops_test: OpsTest) -> None: """Tests that an automatic failover is triggered after an issue happens in the leader.""" # Find the current primary unit. primary = await get_primary(ops_test) # Crash PostgreSQL by removing the data directory. await ops_test.model.units.get(primary).run(f"rm -rf {STORAGE_PATH}/pgdata") # Wait for charm to stabilise await ops_test.model.wait_for_idle( apps=[APP_NAME], status="active", timeout=1000, wait_for_exact_units=3 ) # Primary doesn't have to be different, but it does have to exist. assert await get_primary(ops_test) != "None"
3,588
def test_write_rows(tmpdir): """Test writing rows to a CSV files.""" filename = os.path.join(tmpdir, 'out.csv') consumer = Write(file=CSVFile(filename, header=['A', 'B', 'C']))\ .open(['A', 'B', 'C']) consumer.consume(3, [1, 2, 3]) consumer.consume(2, [4, 5, 6]) consumer.consume(1, [7, 8, 9]) consumer.close() data = list() with open(filename, 'r') as f: for line in f: data.append(line.strip()) assert data == [ 'A,B,C', '1,2,3', '4,5,6', '7,8,9' ]
3,589
def _sanitize_anndata(adata: AnnData) -> None: """Sanitization and sanity checks on IR-anndata object. Should be executed by every read_xxx function""" assert ( len(adata.X.shape) == 2 ), "X needs to have dimensions, otherwise concat doesn't work. " # Pending updates to anndata to properly handle boolean columns. # For now, let's turn them into a categorical with "True/False" BOOLEAN_COLS = ("has_ir", "is_cell", "multi_chain", "high_confidence", "productive") # explicitly convert those to categoricals. All IR_ columns that are strings # will be converted to categoricals, too CATEGORICAL_COLS = ("extra_chains",) # Sanitize has_ir column into categorical # This should always be a categorical with True / False for col in adata.obs.columns: if col.endswith(BOOLEAN_COLS): adata.obs[col] = pd.Categorical( [ "True" if _is_true2(x) else "False" if _is_false2(x) else "None" for x in adata.obs[col] ], categories=["True", "False", "None"], ) elif col.endswith(CATEGORICAL_COLS) or ( col.startswith("IR_") and is_object_dtype(adata.obs[col]) ): # Turn all IR_VJ columns that are of type string or object to categoricals # otherwise saving anndata doesn't work. adata.obs[col] = pd.Categorical(adata.obs[col]) adata.strings_to_categoricals()
3,590
def read_1d_spikes(filename): """Reads one dimensional binary spike file and returns a td_event event. The binary file is encoded as follows: * Each spike event is represented by a 40 bit number. * First 16 bits (bits 39-24) represent the neuronID. * Bit 23 represents the sign of spike event: 0=>OFF event, 1=>ON event. * the last 23 bits (bits 22-0) represent the spike event timestamp in microseconds. Parameters ---------- filename : str name of spike file. Returns ------- Event spike event. Examples -------- >>> td_event = read_1d_spikes(file_path) """ with open(filename, 'rb') as input_file: input_byte_array = input_file.read() input_as_int = np.asarray([x for x in input_byte_array]) x_event = (input_as_int[0::5] << 8) | input_as_int[1::5] c_event = input_as_int[2::5] >> 7 t_event = ( (input_as_int[2::5] << 16) | (input_as_int[3::5] << 8) | (input_as_int[4::5]) ) & 0x7FFFFF # convert spike times to ms return Event(x_event, None, c_event, t_event / 1000)
3,591
def _parse_step_log(lines): """Parse the syslog from the ``hadoop jar`` command. Returns a dictionary which potentially contains the following keys: application_id: a string like 'application_1449857544442_0002'. Only set on YARN counters: a map from counter group -> counter -> amount, or None if no counters found (only YARN prints counters) errors: a list of errors, with the following keys: hadoop_error: message: lines of error, as as string start_line: first line of log containing the error (0-indexed) num_lines: # of lines of log containing the error attempt_id: ID of task attempt with this error job_id: a string like 'job_201512112247_0003'. Should always be set output_dir: a URI like 'hdfs:///user/hadoop/tmp/my-output-dir'. Should always be set on success. """ return _parse_step_log_from_log4j_records( _parse_hadoop_log4j_records(lines))
3,592
def is_regex(regex, invert=False): """Test that value matches the given regex. The regular expression is searched against the value, so a match in the middle of the value will succeed. To specifically match the beginning or the whole regex, use anchor characters. If invert is true, then matching the regex will cause the test to fail. """ # pylint: disable=unused-argument # args defined by test definition rex = re.compile(regex) def is_regex_test(conf, path, value): match = rex.search(value) if invert and match: return u'"{0}" matches /{1}/'.format(value, regex) if not invert and not match: return u'"{0}" does not match /{1}/'.format(value, regex) return None return is_regex_test
3,593
def get_obj(obj): """Opens the url of `app_obj`, builds the object from the page and returns it. """ open_obj(obj) return internal_ui_operations.build_obj(obj)
3,594
def process(frame): """Process initial frame and tag recognized objects.""" # 1. Convert initial frame to grayscale grayframe = cv2.cvtColor(frame, cv2.COLOR_BGR2GRAY) # For every model: for model, color, parameters in ( (MODEL_FACE, (255, 255, 0), {'scaleFactor': 1.1, 'minNeighbors': 5, 'minSize': (30, 30)}), (MODEL_EYE, (0, 0, 255), {'scaleFactor': 1.1, 'minNeighbors': 5, 'minSize': (20, 20)}), *((model, (0, 255, 0), {'scaleFactor': 1.1, 'minNeighbors': 5, 'minSize': (20, 20)}) for model in MODELS_PLATE), ): # 2. Apply model, recognize objects objects = model.detectMultiScale(grayframe, **parameters) # 3. For every recognized object, draw a rectangle around it for (x, y, w, h) in objects: cv2.rectangle(frame, (x, y), (x + w, y + h), color, 2) # BGR # 4. Return initial color frame with rectangles return frame
3,595
def tzoffset(): """UTC to America/New_York offset.""" return datetime.timedelta(hours=5)
3,596
def ssh(instance, command, plain=None, extra=None, command_args=None): """Run ssh command. Parameters: instance(MechInstance): a mech instance command(str): command to execute (ex: 'chmod +x /tmp/file') plain(bool): use user/pass auth extra(str): arguments to pass to ssh command_args(str): arguments for command Returns: return_code(int): 0=success stdout(str): Output from the command stderr(str): Error from the command Note: May not really need the tempfile if self.use_psk==True. Using the tempfile, there are options to not add host to the known_hosts files which is useful, but could be MITM attacks. Not likely locally, but still could be an issue. """ LOGGER.debug('command:%s plain:%s extra:%s command_args:%s', command, plain, extra, command_args) if instance.created: state = instance.get_vm_state() if vm_ready_based_on_state(state): config_ssh = instance.config_ssh() temp_file = tempfile.NamedTemporaryFile(delete=False) try: temp_file.write(config_ssh_string(config_ssh).encode('utf-8')) temp_file.close() cmds = ['ssh'] if not plain: cmds.extend(('-F', temp_file.name)) if not plain: cmds.append(config_ssh['Host']) if extra: cmds.append(extra) if command: cmds.extend(('--', command)) if command_args: cmds.append(command_args) LOGGER.debug('cmds:%s', cmds) # if running a script if command: result = subprocess.run(cmds, capture_output=True) stdout = result.stdout.decode('utf-8').strip() stderr = result.stderr.decode('utf-8').strip() return result.returncode, stdout, stderr else: # interactive return subprocess.call(cmds), None, None finally: os.unlink(temp_file.name) else: return 1, '', 'VM not ready({})'.format(state)
3,597
def KICmag(koi,band): """ Returns the apparent magnitude of given KOI star in given band. returns KICmags(koi)[band] """ return KICmags(koi)[band]
3,598
def list_to_decimal(nums: List[int]) -> int: """Accept a list of positive integers in the range(0, 10) and return a integer where each int of the given list represents decimal place values from first element to last. E.g [1,7,5] => 175 [0,3,1,2] => 312 Place values are 10**n where n represents the digit position Eg to calculate 1345, we have 5 1's, 4 10's, 3 100's and 1 1000's 1, 3 , 4 , 5 1000's, 100's, 10's, 1's """ for num in nums: if isinstance(num, bool) or not isinstance(num, int): raise TypeError elif not num in range(0, 10): raise ValueError return int("".join(map(str, nums)))
3,599