content
stringlengths
22
815k
id
int64
0
4.91M
def _resolve_link(path): """Internal helper function. Takes a path and follows symlinks until we either arrive at something that isn't a symlink, or encounter a path we've seen before (meaning that there's a loop). """ paths_seen = [] while islink(path): if path in paths_seen: # Already seen this path, so we must have a symlink loop return None paths_seen.append(path) # Resolve where the link points to resolved = os.readlink(path) if not isabs(resolved): dir = dirname(path) path = normpath(join(dir, resolved)) else: path = normpath(resolved) return path
3,200
def test_handle_diagonalization_errors(generate_workchain_ph): """Test `PhBaseWorkChain.handle_diagonalization_errors`.""" process = generate_workchain_ph(exit_code=PhCalculation.exit_codes.ERROR_COMPUTING_CHOLESKY) process.setup() process.validate_parameters() process.prepare_process() process.ctx.inputs.parameters['INPUTPH']['diagonalization'] = 'david' result = process.handle_diagonalization_errors(process.ctx.children[-1]) assert isinstance(result, ProcessHandlerReport) assert process.ctx.inputs.parameters['INPUTPH']['diagonalization'] == 'cg' assert result.do_break result = process.handle_diagonalization_errors(process.ctx.children[-1]) assert result.do_break result = process.inspect_process() assert result == PhBaseWorkChain.exit_codes.ERROR_UNRECOVERABLE_FAILURE
3,201
def create(platformDetails): """ This function creates a new platform in the platform list based on the passed in platform data :param platform: platform to create in platform structure :return: 201 on success, 406 on platform exists """ # Remove id as it's created automatically if "id" in platformDetails: del platformDetails["id"] # Does the platform exist already? existing_platform = ( db.session.query(Platform) .filter(Platform.value == platformDetails["value"]) .one_or_none() ) if existing_platform is None: schema = PlatformSchema() new_platform = schema.load(platformDetails, session=db.session) db.session.add(new_platform) db.session.commit() # Serialize and return the newly created deployment # in the response data = schema.dump(new_platform) return data, 201 # Otherwise, it already exists, that's an error else: abort(406, "Platform already exists")
3,202
def add_command(name, func): """ For controls that execute commands, the command must be added to the _COMMAND list so that it can be added back to the widget during cloning """ logger.debug("Adding to commands: %s - %s", name, func) _RECREATE_OBJECTS["commands"][str(name)] = func
3,203
def _execute_cell(cell, shell, iopub, timeout=300): """ Execute an IPython Notebook Cell and return the cell output. Parameters ---------- cell : IPython.nbformat.current.NotebookNode The IPython Notebook cell to execute. shell : IPython.kernel.blocking.channels.BlockingShellChannel The shell channel which the cell is submitted to for execution. iopub : IPython.kernel.blocking.channels.BlockingIOPubChannel The iopub channel used to retrieve the result of the execution. timeout : int The number of seconds to wait for the execution to finish before giving up. Returns ------- cell_outputs : list The list of NotebookNodes holding the result of the execution. """ # Execute input shell.execute(cell.input) exe_result = shell.get_shell_msg(timeout=timeout) if exe_result['content']['status'] == 'error': raise RuntimeError('Failed to execute cell due to error: {!r}'.format( str(exe_result['content']['evalue']))) cell_outputs = list() # Poll for iopub messages until no more messages are available while True: try: msg = iopub.get_iopub_msg(timeout=0.5) except Empty: break msg_type = msg['msg_type'] if msg_type in ('status', 'pyin', 'execute_input', 'execute_result'): continue content = msg['content'] node = NotebookNode(output_type=msg_type) if msg_type == 'stream': node.stream = content['name'] if 'text' in content: # v4 notebook format node.text = content['text'] else: # v3 notebook format node.text = content['data'] bug_text = 'Using Anaconda Cloud api site https://api.anaconda.org' if bug_text in node.text: # Ignore conda (spam) messages/warnings continue elif msg_type in ('display_data', 'pyout'): node['metadata'] = content['metadata'] for mime, data in content['data'].items(): attr = mime.split('/')[-1].lower() attr = attr.replace('+xml', '').replace('plain', 'text') setattr(node, attr, data) if msg_type == 'pyout': node.prompt_number = content['execution_count'] elif msg_type == 'pyerr': node.ename = content['ename'] node.evalue = content['evalue'] node.traceback = content['traceback'] else: raise RuntimeError('Unhandled iopub message of type: {}'.format( msg_type)) cell_outputs.append(node) return cell_outputs
3,204
def VD_A_DF(data, val_col: str = None, group_col: str = None, sort=True): """ :param data: pandas DataFrame object An array, any object exposing the array interface or a pandas DataFrame. Array must be two-dimensional. Second dimension may vary, i.e. groups may have different lengths. :param val_col: str, optional Must be specified if `a` is a pandas DataFrame object. Name of the column that contains values. :param group_col: str, optional Must be specified if `a` is a pandas DataFrame object. Name of the column that contains group names. :param sort : bool, optional Specifies whether to sort DataFrame by group_col or not. Recommended unless you sort your data manually. :return: stats : pandas DataFrame of effect sizes Stats summary :: 'A' : Name of first measurement 'B' : Name of second measurement 'estimate' : effect sizes 'magnitude' : magnitude """ x = data.copy() if sort: x[group_col] = Categorical(x[group_col], categories=x[group_col].unique(), ordered=True) x.sort_values(by=[group_col, val_col], ascending=True, inplace=True) groups = x[group_col].unique() # Pairwise combinations g1, g2 = np.array(list(it.combinations(np.arange(groups.size), 2))).T # Compute effect size for each combination ef = np.array([VD_A(list(x[val_col][x[group_col] == groups[i]].values), list(x[val_col][x[group_col] == groups[j]].values)) for i, j in zip(g1, g2)]) return pd.DataFrame({ 'A': np.unique(data[group_col])[g1], 'B': np.unique(data[group_col])[g2], 'estimate': ef[:, 0], 'magnitude': ef[:, 1] })
3,205
def making_maintf(): """creating and writing main.tf-file in examples""" variables_list = get_namelist("variable \"", "\" {", "variables.tf") text_addition( "examples/main.tf", "\nmodule \"" + "{{ cookiecutter.example_module_name}}" + "\" {\n" ) bigest_len = 0 for __var__ in variables_list: if bigest_len < len(__var__): bigest_len = len(__var__) for __var__ in variables_list: spases_str = spaces_gen(bigest_len - len(__var__)) variable_string = (" " + __var__ + spases_str + " = \"${var." + __var__ + "}\"\n") text_addition("examples/main.tf", variable_string) text_addition( "examples/main.tf", " source" + spaces_gen(bigest_len - len("source")) + " = \"../../\"\n}\n" )
3,206
def getR2(y, y_fitted, chi=None): """ calculates the coefficient of determination R^2 for `y_fitted` as prediction for `y` over a region marked by chi>0 defined by R^2=1 - S_res/S_tot with S_res=int(chi*(y-y_fitted*1)**2, S_tot=int(chi*(y-m(y)*1)**2), m(y)=int(chi*y)/int(chi) If R^2=1 then `y_fitted` is predicts `y` exactly. If R^2 then `y_fitted` does not make a better prediction than the mean. :param y: target distribution :type y: `esys.escript.Scalar` :param y_fitted: fitted distribution :type y_fitted: `esys.escript.Scalar` :param chi: marker/weighting for region of interest :type chi: `esys.escript.Scalar` or None :rtype: `float` """ if chi is None: chi=Scalar(1., Function(y_fitted.getFunctionSpace().getDomain())) ybar=integrate(chi*y)/integrate(chi) S_res=integrate(chi*(y-y_fitted)**2) S_tot=integrate(chi*(y-ybar)**2) if S_tot > 0: R2=1-S_res/S_tot else: if S_res > 0: R2=0. else: R2=1. return R2
3,207
def handle_message(event_data): """ Here we'll build a 'message' event handler using the Slack Events Adapter. """ # Grab the message from the event payload message = event_data["event"] print('TESTING >>>> message = ', message) # if the user says hello if "hello" in message.get('text'): # have our bot respond to the message mybot.say_hello(message) else: # otherwise help us find out what went wrong print("This isn't the message we expected: \n%r\n" % message)
3,208
def basis(d, point_distribution='uniform', symbolic=True): """ Return all local basis function phi as functions of the local point X in a 1D element with d+1 nodes. If symbolic=True, return symbolic expressions, else return Python functions of X. point_distribution can be 'uniform' or 'Chebyshev'. """ X = sym.symbols('X') if d == 0: phi_sym = [1] else: if point_distribution == 'uniform': if symbolic: h = sym.Rational(1, d) # node spacing nodes = [2*i*h - 1 for i in range(d+1)] else: nodes = np.linspace(-1, 1, d+1) elif point_distribution == 'Chebyshev': # Just numeric nodes nodes = Chebyshev_nodes(-1, 1, d) phi_sym = [Lagrange_polynomial(X, r, nodes) for r in range(d+1)] # Transform to Python functions phi_num = [sym.lambdify([X], phi_sym[r], modules='numpy') for r in range(d+1)] return phi_sym if symbolic else phi_num
3,209
def provide_batch_fn(): """ The provide_batch function to use. """ return dataset_factory.provide_batch
3,210
def test_tenant_id_validation(): """The credential should raise ValueError when given an invalid tenant_id""" valid_ids = {"c878a2ab-8ef4-413b-83a0-199afb84d7fb", "contoso.onmicrosoft.com", "organizations", "common"} for tenant in valid_ids: UsernamePasswordCredential("client-id", "username", "password", tenant_id=tenant) invalid_ids = {"my tenant", "my_tenant", "/", "\\", '"my-tenant"', "'my-tenant'"} for tenant in invalid_ids: with pytest.raises(ValueError): UsernamePasswordCredential("client-id", "username", "password", tenant_id=tenant)
3,211
def mergeSort(li): """Sorts a list by splitting it to smaller and smaller pieces (until they only have one or less elements) and then merges it back using the function ``merge()``. >>> mergeSort([1, 2, 3, 4, 5]) [1, 2, 3, 4, 5] >>> mergeSort([5, 4, 3, 2, 1]) [1, 2, 3, 4, 5] >>> mergeSort([3, 2, 6, 1, 4, 2, 3, 1, 1, 5, 6, -2, 2.3]) [-2, 1, 1, 1, 2, 2, 2.3, 3, 3, 4, 5, 6, 6] """ n = len(li) if n < 2: return li return merge(mergeSort(li[:n//2]), mergeSort(li[n//2:]))
3,212
def mcplayout(pos, amaf_map, disp=False): """ Start a Monte Carlo playout from a given position, return score for to-play player at the starting position; amaf_map is board-sized scratchpad recording who played at a given position first """ if disp: print('** SIMULATION **', file=sys.stderr) start_n = pos.n passes = 0 while passes < 2 and pos.n < MAX_GAME_LEN: if disp: print_pos(pos) pos2 = None # We simply try the moves our heuristics generate, in a particular # order, but not with 100% probability; this is on the border between # "rule-based playouts" and "probability distribution playouts". for c, kind in gen_playout_moves(pos, pos.last_moves_neighbors(), conf['PROB_HEURISTIC']): if disp and kind != 'random': print('move suggestion', str_coord(c), kind, file=sys.stderr) pos2 = pos.move(c) if pos2 is None: continue # check if the suggested move did not turn out to be a self-atari if random.random() <= (conf['PROB_RSAREJECT'] if kind == 'random' else conf['PROB_SSAREJECT']): in_atari, ds = fix_atari(pos2, c, singlept_ok=True, twolib_edgeonly=True) if ds: if disp: print('rejecting self-atari move', str_coord(c), file=sys.stderr) pos2 = None continue if amaf_map[c] == 0: # Mark the coordinate with 1 for black amaf_map[c] = 1 if pos.n % 2 == 0 else -1 break if pos2 is None: # no valid moves, pass pos = pos.pass_move() passes += 1 continue passes = 0 pos = pos2 owner_map = W*W*[0] score = pos.score(owner_map) if disp: print('** SCORE B%+.1f **' % (score if pos.n % 2 == 0 else -score), file=sys.stderr) if start_n % 2 != pos.n % 2: score = -score return score, amaf_map, owner_map
3,213
def test_colour_ranges(fake_readme, monkeypatch): """ Whatever number we provide as coverage should produce the appropriate colour """ readme_file = "README" def fake_readme_location(*args, **kwargs): return os.path.join(TESTS_DIR, readme_file) monkeypatch.setattr(__main__, "readme_location", fake_readme_location) for total, colour in ( ("97", "brightgreen"), ("93", "green"), ("80", "yellowgreen"), ("65", "yellow"), ("45", "orange"), ("15", "red"), ("n/a", "lightgrey"), ): __main__.get_total = lambda: total __main__.main([]) assert __main__.get_colour(total) == colour
3,214
def roundedCorner(pc, p1, p2, r): """ Based on Stackoverflow C# rounded corner post https://stackoverflow.com/questions/24771828/algorithm-for-creating-rounded-corners-in-a-polygon """ d1 = pc - p1 d2 = pc - p2 # Angle between vector 1 and vector 2 divided by 2 #angle = (atan2(d1.y, d1.x) - atan2(d2.y, d2.x)) / 2. angle = PVector.angleBetween(d1, d2) / 2. # The length of segment between angular point and the # points of intersection with the circle of a given radius tng = abs(tan(angle)) segment = float(r) / tng if tng != 0 else float(r) # Check the segment length1 = d1.mag() length2 = d2.mag() min_len = min(length1, length2) r_max = r if segment > min_len: segment = min_len r_max = min_len * tng # Points of intersection are calculated by the proportion between # the coordinates of the vector, length of vector and the length of the # segment. p1Cross = GetProportionPoint(pc, segment, length1, d1.x, d1.y) p2Cross = GetProportionPoint(pc, segment, length2, d2.x, d2.y) # Calculation of the coordinates of the circle # center by the addition of angular vectors. dx = pc.x * 2 - p1Cross.x - p2Cross.x dy = pc.y * 2 - p1Cross.y - p2Cross.y L = sqrt(dx * dx + dy * dy) d = sqrt(segment * segment + r_max * r_max) circlePoint = GetProportionPoint(pc, d, L, dx, dy) # StartAngle and EndAngle of arc startAngle = atan2(p1Cross.y - circlePoint.y, p1Cross.x - circlePoint.x) endAngle = atan2(p2Cross.y - circlePoint.y, p2Cross.x - circlePoint.x) # Sweep angle sweepAngle = endAngle - startAngle # Some additional checks if sweepAngle < 0: startAngle, endAngle = endAngle, startAngle sweepAngle = -sweepAngle if sweepAngle > PI: startAngle, endAngle = endAngle, startAngle sweepAngle = TWO_PI - sweepAngle # Draw result using graphics noFill() line(p1.x, p1.y, p1Cross.x, p1Cross.y) line(p2.x, p2.y, p2Cross.x, p2Cross.y) arc(circlePoint.x, circlePoint.y, 2 * r_max, 2 * r_max, startAngle, startAngle + sweepAngle) fill(0, 0, 100) text(str(int(r)) + " " + str(int(r_max)), circlePoint.x, circlePoint.y)
3,215
async def test_connect_sync_success(v3_server): """Test triggering a synchronous handler upon connection to the websocket.""" async with v3_server: async with aiohttp.ClientSession() as session: simplisafe = await API.login_via_credentials( TEST_EMAIL, TEST_PASSWORD, client_id=TEST_CLIENT_ID, session=session ) simplisafe.websocket._sio.eio._trigger_event = async_mock() simplisafe.websocket._sio.eio.connect = async_mock() on_connect = AsyncMock() simplisafe.websocket.on_connect(on_connect) connect_params = { "ns": f"/v1/user/{TEST_USER_ID}", "accessToken": TEST_ACCESS_TOKEN, } await simplisafe.websocket.async_connect() simplisafe.websocket._sio.eio.connect.mock.assert_called_once_with( f"wss://api.simplisafe.com/socket.io?{urlencode(connect_params)}", engineio_path="socket.io", headers={}, transports=["websocket"], ) await simplisafe.websocket._sio._trigger_event("connect", "/") on_connect.assert_called_once()
3,216
def TestSlipDualReverse(port,N): """ Drive motor back and forth across marker source for N interations. Assumes marker is primed BEHIND the drive roller""" for its in range(N): print "backward iteration " + str(its) for i in range(10): IndexS(port,1,-133) IndexS(port,2,400) print "forward iteration " + str(its) for i in range(10): IndexS(port,1,133) IndexS(port,2,-400)
3,217
def remove_partitions( cube, store, conditions=None, ktk_cube_dataset_ids=None, metadata=None ): """ Remove given partition range from cube using a transaction. Remove the partitions selected by ``conditions``. If no ``conditions`` are given, remove all partitions. For each considered dataset, only the subset of ``conditions`` that refers to the partition columns of the respective dataset is used. In particular, a dataset that is not partitioned at all is always considered selected by ``conditions``. Parameters ---------- cube: kartothek.core.cube.cube.Cube Cube spec. store: Union[simplekv.KeyValueStore, Callable[[], simplekv.KeyValueStore]] Store. conditions: Union[None, Condition, Iterable[Condition], Conjunction] Select the partitions to be removed. Must be a condition only on partition columns. ktk_cube_dataset_ids: Optional[Union[Iterable[Union[Str, Bytes]], Union[Str, Bytes]]] Ktk_cube dataset IDs to apply the remove action to, optional. Default to "all". metadata: Optional[Dict[str, Dict[str, Any]]] Metadata for every the datasets, optional. Only given keys are updated/replaced. Deletion of metadata keys is not possible. Returns ------- datasets: Dict[str, kartothek.core.dataset.DatasetMetadata] Datasets, updated. """ if callable(store): store_instance = store() store_factory = store else: store_instance = store def store_factory(): return store existing_datasets = discover_datasets(cube, store) for ( ktk_cube_dataset_id, (ds, mp, delete_scope), ) in prepare_metapartitions_for_removal_action( cube=cube, store=store_instance, conditions=conditions, ktk_cube_dataset_ids=ktk_cube_dataset_ids, existing_datasets=existing_datasets, ).items(): mp = mp.store_dataframes( store=store_instance, dataset_uuid=ds.uuid, df_serializer=KTK_CUBE_DF_SERIALIZER, ) ds_factory = metadata_factory_from_dataset( ds, with_schema=True, store=store_factory ) existing_datasets[ktk_cube_dataset_id] = update_dataset_from_partitions( mp, store_factory=store_factory, dataset_uuid=ds.uuid, ds_factory=ds_factory, metadata=prepare_ktk_metadata(cube, ktk_cube_dataset_id, metadata), metadata_merger=None, delete_scope=delete_scope, ) return existing_datasets
3,218
def update_t_new_docker_image_names(main, file): """ Updates the names of the docker images from lasote to conanio """ docker_mappings = { "lasote/conangcc49": "conanio/gcc49", "lasote/conangcc5": "conanio/gcc5", "lasote/conangcc6": "conanio/gcc6", "lasote/conangcc7": "conanio/gcc7", "lasote/conangcc8": "conanio/gcc8", "lasote/conanclang39": "conanio/clang39", "lasote/conanclang40": "conanio/clang40", "lasote/conanclang50": "conanio/clang50", "lasote/conanclang60": "conanio/clang60", } found_old_name = False for old, new in docker_mappings.items(): if main.file_contains(file, old): main.replace_in_file(file, old, new) found_old_name = True if found_old_name: main.output_result_update(title="Travis: Update Docker image names from lasote/ to conanio/") return True return False
3,219
def fit(kern, audio, file_name, max_par, fs): """Fit kernel to data """ # time vector for kernel n = kern.size xkern = np.linspace(0., (n - 1.) / fs, n).reshape(-1, 1) # initialize parameters if0 = gpitch.find_ideal_f0([file_name])[0] init_f, init_v = gpitch.init_cparam(y=audio, fs=fs, maxh=max_par, ideal_f0=if0, scaled=False)[0:2] init_l = np.array([0., 1.]) # optimization p0 = np.hstack((init_l, init_v, init_f)) # initialize params pstar = optimize_kern(x=xkern, y=kern, p0=p0) # compute initial and learned kernel kern_init = approximate_kernel(p0, xkern) kern_approx = approximate_kernel(pstar, xkern) # get kernel hyperparameters npartials = (pstar.size - 2) / 2 lengthscale = pstar[1] variance = pstar[2: npartials + 2] frequency = pstar[npartials + 2:] params = [lengthscale, variance, frequency] return params, kern_init, kern_approx
3,220
def find_next_open_date(location_pid, date): """Finds the next day where this location is open.""" location = current_app_ils.location_record_cls.get_record_by_pid( location_pid ) _infinite_loop_guard = date + timedelta(days=365) while date < _infinite_loop_guard: if _is_open_on(location, date): return date date += _ONE_DAY_INCREMENT # Termination is normally guaranteed if there is at least one weekday open raise IlsException( description="Cannot find any date for which the location %s is open after the given date %s." "Please check opening/closures dates." % (location_pid, date.isoformat()) )
3,221
def check_dimension(units_in=None, units_out=None): """Check dimensions of inputs and ouputs of function. Will check that all inputs and outputs have the same dimension than the passed units/quantities. Dimensions for inputs and outputs expects a tuple. Parameters ---------- units_in : quantity_like or tuple of quantity_like quantity_like means an Quantity object or a numeric value (that will be treated as dimensionless Quantity). The inputs dimension will be checked with the units_in. Defaults to None to skip any check. units_out : quantity_like or tuple of quantity_like quantity_like means an Quantity object or a numeric value (that will be treated as dimensionless Quantity). The outputs dimension will be checked with the units_out. Default to None to skip any check. Returns ------- func: decorated function with dimension-checked inputs and outputs. See Also -------- Other decorators (TODO) Notes ----- Notes about the implementation algorithm (if needed). This can have multiple paragraphs. You may include some math: .. math:: X(e^{j\omega } ) = x(n)e^{ - j\omega n} And even use a Greek symbol like :math:`\omega` inline. Examples (written in doctest format) -------- >>> def add_meter(x): return x + 1*m >>> add_meter = check_dimension((m), (m))(add_meter) >>> add_meter(1*m) 2 m >>> add_meter(1*s) raise DimensionError """ # reading args and making them iterable if units_in: units_in = _iterify(units_in) if units_out: units_out = _iterify(units_out) # define the decorator def decorator(func): # create a decorated func @functools.wraps(func) def decorated_func(*args, **kwargs): # Checking dimension of inputs args = _iterify(args) if units_in: for arg, unit_in in zip(args, units_in): # make everything dimensions dim_check_in = dimensionify(unit_in) dim_arg = dimensionify(arg) # and checking dimensions if not dim_arg == dim_check_in: raise DimensionError(dim_arg, dim_check_in) # Compute outputs and iterify it ress = _iterify(func(*args, **kwargs)) # Checking dimension of outputs if units_out: for res, unit_out in zip(ress, units_out): # make everythin dimensions dim_check_out = dimensionify(unit_out) dim_res = dimensionify(res) # and checking dimensions if not dim_res == dim_check_out: raise DimensionError(dim_res, dim_check_out) # still return funcntion outputs return tuple(ress) if len(ress) > 1 else ress[0] return decorated_func return decorator
3,222
def _rowcorr(a, b): """Correlations between corresponding matrix rows""" cs = np.zeros((a.shape[0])) for idx in range(a.shape[0]): cs[idx] = np.corrcoef(a[idx], b[idx])[0, 1] return cs
3,223
def detected(): """ 唤醒成功 """ print('唤醒成功') play('./audio/open.wav') global interrupted interrupted = True detector.terminate()
3,224
def gff_to_dict(f_gff, feat_type, idattr, txattr, attributes, input_type): """ It reads only exonic features because not all GFF files contain gene and trascript features. From the exonic features it extracts gene names, biotypes, start and end positions. If any of these attributes do not exit then they are set to NA. """ annotation = defaultdict(lambda: defaultdict(lambda: 'NA')) exon_pos = defaultdict(lambda: defaultdict(lambda: defaultdict(int))) tx_info = defaultdict(lambda: defaultdict(str)) with open(f_gff) as gff_handle: for rec in GFF.parse(gff_handle, limit_info=dict(gff_type=[feat_type]), target_lines=1): for sub_feature in rec.features: start = sub_feature.location.start end = sub_feature.location.end strand = strandardize(sub_feature.location.strand) try: geneid = sub_feature.qualifiers[idattr][0] except KeyError: print("No '" + idattr + "' attribute found for the feature at position " + rec.id + ":" + str(start) + ":" + str(end) + ". Please check your GTF/GFF file.") continue annotation[geneid]['chr'] = rec.id annotation[geneid]['strand'] = strand if annotation[geneid]['start'] == 'NA' or start <= int(annotation[geneid]['start']): annotation[geneid]['start'] = start if annotation[geneid]['end'] == 'NA' or end >= int(annotation[geneid]['end']): annotation[geneid]['end'] = end for attr in attributes: if attr in annotation[geneid]: continue try: annotation[geneid][attr] = sub_feature.qualifiers[attr][0] except KeyError: annotation[geneid][attr] = 'NA' # extract exon information only in case of dexseq output if input_type != "dexseq": continue try: txid = sub_feature.qualifiers[txattr][0] tx_info[txid]['chr'] = rec.id tx_info[txid]['strand'] = strand exon_pos[txid][int(start)][int(end)] = 1 except KeyError: print("No '" + txattr + "' attribute found for the feature at position " + rec.id + ":" + str( start) + ":" + str(end) + ". Please check your GTF/GFF file.") pass bed_entries = [] # create BED lines only for deseq output if input_type == "dexseq": for txid in exon_pos.keys(): starts = sorted(exon_pos[txid]) strand = tx_info[txid]['strand'] if strand == '-': starts = reversed(starts) for c, start in enumerate(starts, 1): ends = sorted(exon_pos[txid][start]) if strand == '-': ends = reversed(ends) for end in ends: bed_entries.append('\t'.join([tx_info[txid]['chr'], str(start), str(end), txid + ':' + str(c), '0', strand])) return annotation, bed_entries
3,225
def _subtract_the_mean(point_cloud): """ Subtract the mean in point cloud and return its zero-mean version. Args: point_cloud (numpy.ndarray of size [N,3]): point cloud Returns: (numpy.ndarray of size [N,3]): point cloud with zero-mean """ point_cloud = point_cloud - np.mean(point_cloud, axis=0) return point_cloud
3,226
def check_filtering(grating_1d, filtered_grating_1d, normalized_contrast): """plot """ plt.figure(figsize=(25, 5)) plt.plot(grating_1d) plt.title('1d grating') plt.figure(figsize=(25, 5)) plt.plot(filtered_grating_1d) plt.title('Filtered fundamental') print("Square-wave contrast: %s" % normalized_contrast)
3,227
def ncnr_load(filelist=None, check_timestamps=True): """ Load a list of nexus files from the NCNR data server. **Inputs** filelist (fileinfo[]): List of files to open. check_timestamps (bool): verify that timestamps on file match request **Returns** output (refldata[]): All entries of all files in the list. 2016-06-29 Brian Maranville | 2017-08-21 Brian Maranville Change to refldata, force cache invalidate | 2018-06-18 Brian Maranville Change to nexusref to ignore areaDetector | 2018-12-10 Brian Maranville get_plottable routines moved to python data container from js | 2020-03-03 Paul Kienzle Just load. Don't even compute divergence """ # NB: used mainly to set metadata for processing, so keep it minimal # TODO: make a metadata loader that does not send all data to browser # NB: Fileinfo is a structure with # { path: "location/on/server", mtime: timestamp } from .load import url_load_list datasets = [] for data in url_load_list(filelist, check_timestamps=check_timestamps): datasets.append(data) return datasets
3,228
def load_source_dataframe(method, sourcename, source_dict, download_FBA_if_missing, fbsconfigpath=None): """ Load the source dataframe. Data can be a FlowbyActivity or FlowBySector parquet stored in flowsa, or a FlowBySector formatted dataframe from another package. :param method: dictionary, FBS method :param sourcename: str, The datasource name :param source_dict: dictionary, The datasource parameters :param download_FBA_if_missing: Bool, if True will download FBAs from Data Commons. Default is False. :param fbsconfigpath, str, optional path to an FBS method outside flowsa repo :return: df of identified parquet """ if source_dict['data_format'] == 'FBA': # if yaml specifies a geoscale to load, use parameter # to filter dataframe if 'source_fba_load_scale' in source_dict: geo_level = source_dict['source_fba_load_scale'] else: geo_level = None vLog.info("Retrieving Flow-By-Activity for datasource %s in year %s", sourcename, str(source_dict['year'])) flows_df = flowsa.getFlowByActivity( datasource=sourcename, year=source_dict['year'], flowclass=source_dict['class'], geographic_level=geo_level, download_FBA_if_missing=download_FBA_if_missing) elif source_dict['data_format'] == 'FBS': vLog.info("Retrieving flowbysector for datasource %s", sourcename) flows_df = flowsa.getFlowBySector(sourcename) elif source_dict['data_format'] == 'FBS_outside_flowsa': vLog.info("Retrieving flowbysector for datasource %s", sourcename) fxn = source_dict.get("FBS_datapull_fxn") if callable(fxn): flows_df = fxn(source_dict, method, fbsconfigpath) elif fxn: raise flowsa.exceptions.FBSMethodConstructionError( error_type='fxn_call') else: raise flowsa.exceptions.FBSMethodConstructionError( message="Data format not specified in method " f"file for {sourcename}") return flows_df
3,229
def unpack_nwchem_basis_block(data): """Unserialize a NWChem basis data block and extract components @param data: a JSON of basis set data, perhaps containing many types @type data : str @return: unpacked data @rtype : dict """ unpacked = json.loads(data) return unpacked
3,230
def starify(name): """ Replace any ints in a dotted key with stars. Used when applying defaults and widgets to fields """ newname = [] for key in name.split('.'): if is_int(key): newname.append('*') else: newname.append(key) name = '.'.join(newname) return name
3,231
def render(states, actions, instantaneous_reward_log, cumulative_reward_log, critic_distributions, target_critic_distributions, projected_target_distribution, bins, loss_log, episode_number, filename, save_directory, time_log, SPOTNet_sees_target_log): """ TOTAL_STATE = [relative_x, relative_y, relative_vx, relative_vy, relative_angle, relative_angular_velocity, chaser_x, chaser_y, chaser_theta, target_x, target_y, target_theta, chaser_vx, chaser_vy, chaser_omega, target_vx, target_vy, target_omega] *# Relative pose expressed in the chaser's body frame; everythign else in Inertial frame #* """ # Load in a temporary environment, used to grab the physical parameters temp_env = Environment() # Checking if we want the additional reward and value distribution information extra_information = temp_env.ADDITIONAL_VALUE_INFO # Unpacking state chaser_x, chaser_y, chaser_theta = states[:,6], states[:,7], states[:,8] target_x, target_y, target_theta = states[:,9], states[:,10], states[:,11] # Extracting physical properties LENGTH = temp_env.LENGTH DOCKING_PORT_MOUNT_POSITION = temp_env.DOCKING_PORT_MOUNT_POSITION DOCKING_PORT_CORNER1_POSITION = temp_env.DOCKING_PORT_CORNER1_POSITION DOCKING_PORT_CORNER2_POSITION = temp_env.DOCKING_PORT_CORNER2_POSITION ARM_MOUNT_POSITION = temp_env.ARM_MOUNT_POSITION SHOULDER_POSITION = temp_env.SHOULDER_POSITION ELBOW_POSITION = temp_env.ELBOW_POSITION WRIST_POSITION = temp_env.WRIST_POSITION END_EFFECTOR_POSITION = temp_env.END_EFFECTOR_POSITION ######################################################## # Calculating spacecraft corner locations through time # ######################################################## # All the points to draw of the chaser (except the front-face) chaser_points_body = np.array([[ LENGTH/2,-LENGTH/2], [-LENGTH/2,-LENGTH/2], [-LENGTH/2, LENGTH/2], [ LENGTH/2, LENGTH/2], [ARM_MOUNT_POSITION[0],ARM_MOUNT_POSITION[1]], [SHOULDER_POSITION[0],SHOULDER_POSITION[1]], [ELBOW_POSITION[0],ELBOW_POSITION[1]], [WRIST_POSITION[0],WRIST_POSITION[1]], [END_EFFECTOR_POSITION[0],END_EFFECTOR_POSITION[1]]]).T # The front-face points on the target chaser_front_face_body = np.array([[[ LENGTH/2],[ LENGTH/2]], [[ LENGTH/2],[-LENGTH/2]]]).squeeze().T # Rotation matrix (body -> inertial) C_Ib_chaser = np.moveaxis(np.array([[np.cos(chaser_theta), -np.sin(chaser_theta)], [np.sin(chaser_theta), np.cos(chaser_theta)]]), source = 2, destination = 0) # [NUM_TIMESTEPS, 2, 2] # Rotating body frame coordinates to inertial frame chaser_body_inertial = np.matmul(C_Ib_chaser, chaser_points_body) + np.array([chaser_x, chaser_y]).T.reshape([-1,2,1]) chaser_front_face_inertial = np.matmul(C_Ib_chaser, chaser_front_face_body) + np.array([chaser_x, chaser_y]).T.reshape([-1,2,1]) # All the points to draw of the target (except the front-face) target_points_body = np.array([[ LENGTH/2,-LENGTH/2], [-LENGTH/2,-LENGTH/2], [-LENGTH/2, LENGTH/2], [ LENGTH/2, LENGTH/2], [DOCKING_PORT_MOUNT_POSITION[0], LENGTH/2], # artificially adding this to make the docking cone look better [DOCKING_PORT_MOUNT_POSITION[0],DOCKING_PORT_MOUNT_POSITION[1]], [DOCKING_PORT_CORNER1_POSITION[0],DOCKING_PORT_CORNER1_POSITION[1]], [DOCKING_PORT_CORNER2_POSITION[0],DOCKING_PORT_CORNER2_POSITION[1]], [DOCKING_PORT_MOUNT_POSITION[0],DOCKING_PORT_MOUNT_POSITION[1]]]).T # The front-face points on the target target_front_face_body = np.array([[[ LENGTH/2],[ LENGTH/2]], [[ LENGTH/2],[-LENGTH/2]]]).squeeze().T # Rotation matrix (body -> inertial) C_Ib_target = np.moveaxis(np.array([[np.cos(target_theta), -np.sin(target_theta)], [np.sin(target_theta), np.cos(target_theta)]]), source = 2, destination = 0) # [NUM_TIMESTEPS, 2, 2] # Rotating body frame coordinates to inertial frame target_body_inertial = np.matmul(C_Ib_target, target_points_body) + np.array([target_x, target_y]).T.reshape([-1,2,1]) target_front_face_inertial = np.matmul(C_Ib_target, target_front_face_body) + np.array([target_x, target_y]).T.reshape([-1,2,1]) ####################### # Plotting the motion # ####################### # Generating figure window figure = plt.figure(constrained_layout = True) figure.set_size_inches(5, 4, True) if extra_information: grid_spec = gridspec.GridSpec(nrows = 2, ncols = 3, figure = figure) subfig1 = figure.add_subplot(grid_spec[0,0], aspect = 'equal', autoscale_on = False, xlim = (0, 3.5), ylim = (0, 2.4)) #subfig1 = figure.add_subplot(grid_spec[0,0], projection = '3d', aspect = 'equal', autoscale_on = False, xlim3d = (-5, 5), ylim3d = (-5, 5), zlim3d = (0, 10), xlabel = 'X (m)', ylabel = 'Y (m)', zlabel = 'Z (m)') subfig2 = figure.add_subplot(grid_spec[0,1], xlim = (np.min([np.min(instantaneous_reward_log), 0]) - (np.max(instantaneous_reward_log) - np.min(instantaneous_reward_log))*0.02, np.max([np.max(instantaneous_reward_log), 0]) + (np.max(instantaneous_reward_log) - np.min(instantaneous_reward_log))*0.02), ylim = (-0.5, 0.5)) subfig3 = figure.add_subplot(grid_spec[0,2], xlim = (np.min(loss_log)-0.01, np.max(loss_log)+0.01), ylim = (-0.5, 0.5)) subfig4 = figure.add_subplot(grid_spec[1,0], ylim = (0, 1.02)) subfig5 = figure.add_subplot(grid_spec[1,1], ylim = (0, 1.02)) subfig6 = figure.add_subplot(grid_spec[1,2], ylim = (0, 1.02)) # Setting titles subfig1.set_xlabel("X (m)", fontdict = {'fontsize': 8}) subfig1.set_ylabel("Y (m)", fontdict = {'fontsize': 8}) subfig2.set_title("Timestep Reward", fontdict = {'fontsize': 8}) subfig3.set_title("Current loss", fontdict = {'fontsize': 8}) subfig4.set_title("Q-dist", fontdict = {'fontsize': 8}) subfig5.set_title("Target Q-dist", fontdict = {'fontsize': 8}) subfig6.set_title("Bellman projection", fontdict = {'fontsize': 8}) # Changing around the axes subfig1.tick_params(labelsize = 8) subfig2.tick_params(which = 'both', left = False, labelleft = False, labelsize = 8) subfig3.tick_params(which = 'both', left = False, labelleft = False, labelsize = 8) subfig4.tick_params(which = 'both', left = False, labelleft = False, right = True, labelright = False, labelsize = 8) subfig5.tick_params(which = 'both', left = False, labelleft = False, right = True, labelright = False, labelsize = 8) subfig6.tick_params(which = 'both', left = False, labelleft = False, right = True, labelright = True, labelsize = 8) # Adding the grid subfig4.grid(True) subfig5.grid(True) subfig6.grid(True) # Setting appropriate axes ticks subfig2.set_xticks([np.min(instantaneous_reward_log), 0, np.max(instantaneous_reward_log)] if np.sign(np.min(instantaneous_reward_log)) != np.sign(np.max(instantaneous_reward_log)) else [np.min(instantaneous_reward_log), np.max(instantaneous_reward_log)]) subfig3.set_xticks([np.min(loss_log), np.max(loss_log)]) subfig4.set_xticks([bins[i*5] for i in range(round(len(bins)/5) + 1)]) subfig4.tick_params(axis = 'x', labelrotation = -90) subfig4.set_yticks([0, 0.2, 0.4, 0.6, 0.8, 1.]) subfig5.set_xticks([bins[i*5] for i in range(round(len(bins)/5) + 1)]) subfig5.tick_params(axis = 'x', labelrotation = -90) subfig5.set_yticks([0, 0.2, 0.4, 0.6, 0.8, 1.]) subfig6.set_xticks([bins[i*5] for i in range(round(len(bins)/5) + 1)]) subfig6.tick_params(axis = 'x', labelrotation = -90) subfig6.set_yticks([0, 0.2, 0.4, 0.6, 0.8, 1.]) else: subfig1 = figure.add_subplot(1, 1, 1, aspect = 'equal', autoscale_on = False, xlim = (0, 3.5), ylim = (0, 2.4), xlabel = 'X Position (m)', ylabel = 'Y Position (m)') # Defining plotting objects that change each frame chaser_body, = subfig1.plot([], [], color = 'r', linestyle = '-', linewidth = 2) # Note, the comma is needed chaser_front_face, = subfig1.plot([], [], color = 'k', linestyle = '-', linewidth = 2) # Note, the comma is needed target_body, = subfig1.plot([], [], color = 'g', linestyle = '-', linewidth = 2) target_front_face, = subfig1.plot([], [], color = 'k', linestyle = '-', linewidth = 2) chaser_body_dot = subfig1.scatter(0., 0., color = 'r', s = 0.1) if extra_information: reward_bar = subfig2.barh(y = 0, height = 0.2, width = 0) loss_bar = subfig3.barh(y = 0, height = 0.2, width = 0) q_dist_bar = subfig4.bar(x = bins, height = np.zeros(shape = len(bins)), width = bins[1]-bins[0]) target_q_dist_bar = subfig5.bar(x = bins, height = np.zeros(shape = len(bins)), width = bins[1]-bins[0]) projected_q_dist_bar = subfig6.bar(x = bins, height = np.zeros(shape = len(bins)), width = bins[1]-bins[0]) time_text = subfig1.text(x = 0.2, y = 0.91, s = '', fontsize = 8, transform=subfig1.transAxes) reward_text = subfig1.text(x = 0.0, y = 1.02, s = '', fontsize = 8, transform=subfig1.transAxes) else: time_text = subfig1.text(x = 0.1, y = 0.9, s = '', fontsize = 8, transform=subfig1.transAxes) reward_text = subfig1.text(x = 0.62, y = 0.9, s = '', fontsize = 8, transform=subfig1.transAxes) episode_text = subfig1.text(x = 0.4, y = 0.96, s = '', fontsize = 8, transform=subfig1.transAxes) episode_text.set_text('Episode ' + str(episode_number)) # Function called repeatedly to draw each frame def render_one_frame(frame, *fargs): temp_env = fargs[0] # Extract environment from passed args # Draw the chaser body chaser_body.set_data(chaser_body_inertial[frame,0,:], chaser_body_inertial[frame,1,:]) # Draw the front face of the chaser body in a different colour chaser_front_face.set_data(chaser_front_face_inertial[frame,0,:], chaser_front_face_inertial[frame,1,:]) # Draw the target body target_body.set_data(target_body_inertial[frame,0,:], target_body_inertial[frame,1,:]) if SPOTNet_sees_target_log[frame]: target_body.set_color('y') else: target_body.set_color('g') # Draw the front face of the target body in a different colour target_front_face.set_data(target_front_face_inertial[frame,0,:], target_front_face_inertial[frame,1,:]) # Drawing a dot in the centre of the chaser chaser_body_dot.set_offsets(np.hstack((chaser_x[frame],chaser_y[frame]))) # Update the time text time_text.set_text('Time = %.1f s' %(time_log[frame])) # Update the reward text reward_text.set_text('Total reward = %.1f' %cumulative_reward_log[frame]) try: if extra_information: # Updating the instantaneous reward bar graph reward_bar[0].set_width(instantaneous_reward_log[frame]) # And colouring it appropriately if instantaneous_reward_log[frame] < 0: reward_bar[0].set_color('r') else: reward_bar[0].set_color('g') # Updating the loss bar graph loss_bar[0].set_width(loss_log[frame]) # Updating the q-distribution plot for this_bar, new_value in zip(q_dist_bar, critic_distributions[frame,:]): this_bar.set_height(new_value) # Updating the target q-distribution plot for this_bar, new_value in zip(target_q_dist_bar, target_critic_distributions[frame, :]): this_bar.set_height(new_value) # Updating the projected target q-distribution plot for this_bar, new_value in zip(projected_q_dist_bar, projected_target_distribution[frame, :]): this_bar.set_height(new_value) except: pass # # Since blit = True, must return everything that has changed at this frame return chaser_body_dot, time_text, chaser_body, chaser_front_face, target_body, target_front_face # Generate the animation! fargs = [temp_env] # bundling additional arguments animator = animation.FuncAnimation(figure, render_one_frame, frames = np.linspace(0, len(states)-1, len(states)).astype(int), blit = False, fargs = fargs) """ frames = the int that is passed to render_one_frame. I use it to selectively plot certain data fargs = additional arguments for render_one_frame interval = delay between frames in ms """ # Save the animation! if temp_env.SKIP_FAILED_ANIMATIONS: try: # Save it to the working directory [have to], then move it to the proper folder animator.save(filename = filename + '_episode_' + str(episode_number) + '.mp4', fps = 30, dpi = 100) # Make directory if it doesn't already exist os.makedirs(os.path.dirname(save_directory + filename + '/videos/'), exist_ok=True) # Move animation to the proper directory os.rename(filename + '_episode_' + str(episode_number) + '.mp4', save_directory + filename + '/videos/episode_' + str(episode_number) + '.mp4') except: ("Skipping animation for episode %i due to an error" %episode_number) # Try to delete the partially completed video file try: os.remove(filename + '_episode_' + str(episode_number) + '.mp4') except: pass else: # Save it to the working directory [have to], then move it to the proper folder animator.save(filename = filename + '_episode_' + str(episode_number) + '.mp4', fps = 30, dpi = 100) # Make directory if it doesn't already exist os.makedirs(os.path.dirname(save_directory + filename + '/videos/'), exist_ok=True) # Move animation to the proper directory os.rename(filename + '_episode_' + str(episode_number) + '.mp4', save_directory + filename + '/videos/episode_' + str(episode_number) + '.mp4') del temp_env plt.close(figure)
3,232
def load_boundary_conditions(bound_cond, zone_usage, data_class): """load use conditions according to DIN 18599 and SIA2024 loads Use conditions specified in the XML, according to DIN 18599, SIA2024 in addition some AixLib specific use conditions for central AHU are defined. Parameters ---------- bound_cond : BoundaryConditions() Instance of TEASERs BuildingObjects.BoundaryConditions.BoundaryConditions zone_usage : str code list for zone_usage according to 18599 data_class : DataClass() DataClass containing the bindings for TypeBuildingElement and Material (typically this is the data class stored in prj.data, but the user can individually change that. """ conditions_bind = data_class.conditions_bind for usage in conditions_bind.BoundaryConditions: if usage.usage == zone_usage: bound_cond.typical_length = usage.typical_length bound_cond.typical_width = usage.typical_width bound_cond.usage = usage.usage bound_cond.usage_time = usage.UsageOperationTime.usage_time bound_cond.daily_usage_hours = \ usage.UsageOperationTime.daily_usage_hours bound_cond.yearly_usage_days = \ usage.UsageOperationTime.yearly_usage_days bound_cond.yearly_usage_hours_day = \ usage.UsageOperationTime.yearly_usage_hours_day bound_cond.yearly_usage_hours_night = \ usage.UsageOperationTime.yearly_usage_hours_night bound_cond.daily_operation_ahu_cooling = \ usage.UsageOperationTime.daily_operation_ahu_cooling bound_cond.yearly_heating_days = \ usage.UsageOperationTime.yearly_heating_days bound_cond.yearly_ahu_days = \ usage.UsageOperationTime.yearly_ahu_days bound_cond.yearly_cooling_days = \ usage.UsageOperationTime.yearly_cooling_days bound_cond.daily_operation_heating = \ usage.UsageOperationTime.daily_operation_heating if float(data_class.conditions_bind.version) >= 0.4: bound_cond.maintained_illuminance = \ usage.Lighting.maintained_illuminance else: bound_cond.maintained_illuminance = \ usage.Lighting.maintained_illuminace bound_cond.usage_level_height = usage.Lighting.usage_level_height bound_cond.red_factor_visual = usage.Lighting.red_factor_visual bound_cond.rel_absence = usage.Lighting.rel_absence bound_cond.room_index = usage.Lighting.room_index bound_cond.part_load_factor_lighting = \ usage.Lighting.part_load_factor_lighting bound_cond.ratio_conv_rad_lighting = \ usage.Lighting.ratio_conv_rad_lighting bound_cond.set_temp_heat = usage.RoomClimate.set_temp_heat bound_cond.set_temp_cool = usage.RoomClimate.set_temp_cool bound_cond.temp_set_back = usage.RoomClimate.temp_set_back bound_cond.min_temp_heat = usage.RoomClimate.min_temp_heat bound_cond.max_temp_cool = usage.RoomClimate.max_temp_cool bound_cond.rel_humidity = usage.RoomClimate.rel_humidity bound_cond.cooling_time = usage.RoomClimate.cooling_time bound_cond.heating_time = usage.RoomClimate.heating_time bound_cond.min_air_exchange = usage.RoomClimate.min_air_exchange bound_cond.rel_absence_ahu = usage.RoomClimate.rel_absence_ahu bound_cond.part_load_factor_ahu = \ usage.RoomClimate.part_load_factor_ahu bound_cond.persons = usage.InternalGains.persons bound_cond.profile_persons = usage.InternalGains.profile_persons bound_cond.machines = usage.InternalGains.machines bound_cond.profile_machines = usage.InternalGains.profile_machines bound_cond.lighting_power = usage.InternalGains.lighting_power bound_cond.profile_lighting = usage.InternalGains.profile_lighting bound_cond.min_ahu = usage.AHU.min_ahu bound_cond.max_ahu = usage.AHU.max_ahu bound_cond.with_ahu = usage.AHU.with_ahu bound_cond.use_constant_ach_rate = usage.AHU.use_constant_ach_rate bound_cond.base_ach = usage.AHU.base_ach bound_cond.max_user_ach = usage.AHU.max_user_ach bound_cond.max_overheating_ach = usage.AHU.max_overheating_ach bound_cond.max_summer_ach = usage.AHU.max_summer_ach bound_cond.winter_reduction = usage.AHU.winter_reduction
3,233
def hydrogens(atom: Atom) -> int: """Total number of hydrogen atoms (int). """ return atom.GetTotalNumHs()
3,234
def update_url_catalog(meraki): """Update the URL catalog available to the helper.""" query_urls = {"mr_radio": "/devices/{serial}/wireless/radio/settings"} update_urls = {"mr_radio": "/devices/{serial}/wireless/radio/settings"} query_all_urls = {"mr_rf_profile": "/networks/{net_id}/wireless/rfProfiles"} meraki.url_catalog["get_one"].update(query_urls) meraki.url_catalog["update"] = update_urls meraki.url_catalog["get_all"].update(query_all_urls)
3,235
def to_field(field_tuple): """Create a dataframe_field from a tuple""" return dataframe_field(*field_tuple)
3,236
def Execute(data): """Required Execute function""" global cooldown_list return_value = '' sender_user_id = "" sender_user_display = "" if data.IsFromTwitch(): sender_user_id = data.UserName.lower() sender_user_display = data.UserName elif data.IsFromYoutube() or data.IsFromDiscord(): sender_user_id = data.User sender_user_display = data.UserName # does nothing if the stream isn't live with the "OnlyLive" setting ticked if MySet.OnlyLive and (Parent.IsLive() is False): return # addvoteoption if Parent.HasPermission(sender_user_id, "Caster", "") and data.GetParam(0).lower() == "!addvoteoption": # getting game name! data_input = data.Message if '"' in data_input: pattern = '"(.+)"\s*(\d*)' # respond(data, data_input) match = re.search(pattern, data_input) game = match.group(1) vote_value = match.group(2) if not vote_value: vote_value = 0 else: data_input = data_input.split(" ") vote_value = data.GetParam(data.GetParamCount()-1) # decides how to handle the final parameter. try: vote_value = int(vote_value) data_input = data_input[1:-1] except ValueError as e: vote_value = 0 data_input = data_input[1:] data_input = ' '.join(data_input) game = data_input add_vote_option(game, vote_value) vote_data = get_vote_data() if game in vote_data["Profiles"][get_active_profile()].keys(): respond(data, 'Successfully created the option %s!' % game) else: respond(data, "Something went wrong. Let Newt know!") # deletevoteoption if Parent.HasPermission(sender_user_id, "Caster", "") and data.GetParam(0).lower() == "!deletevoteoption": # getting game name data_input = data.Message data_input = data_input.split(" ") data_input = data_input[1:] data_input = ' '.join(data_input) game = data_input vote_data = get_vote_data() del vote_data["Profiles"][get_active_profile()][game] update_vote_data(vote_data) if game in vote_data["Profiles"][get_active_profile()].keys(): respond(data, 'Successfully deleted the option %s!' % game) else: respond(data, 'Something went wrong. Let Newt know!') # setvoteprofile if Parent.HasPermission(sender_user_id, "Caster", "") and data.GetParam(0).lower() == "!setvoteprofile": set_active_vote_profile(data.GetParam(1)) return_value += "The campfires shift and blur. A new set of campfires fades into existence." respond(data, return_value) # deletevoteprofile if Parent.HasPermission(sender_user_id, "Caster", "") and data.GetParam(0).lower() == "!deletevoteprofile": delete_vote_location(data.GetParam(1).lower()) return_value += "The old campfire blurs and disappears in front of you. It is no more." respond(data, return_value) # showvoteprofile if data.GetParam(0).lower() == ("!showvoteprofile" or "!showvoteprofiles" or "!displayvoteprofile"): vote_data = get_vote_data() for profile in vote_data["Profiles"].keys(): return_value += profile + ', ' return_value = return_value[:-2] respond(data, return_value) # !checkoptions if data.IsChatMessage() and data.GetParam(0).lower() == MySet.CheckOptionsCommand: check_options(data) return # !whittle if data.IsChatMessage() and data.GetParam(0).lower() == "!whittle": return # vote if data.IsChatMessage() and data.GetParam(0).lower() == MySet.Command.lower(): if data.GetParamCount() < 2: return_value += 'Missing the correct number of parameters. Correct usage is !vote <game> <number of %ss>' \ % MySet.PointName respond(data, return_value) return if data.GetParamCount() == 2 and data.GetParam(1).lower() == 'stop': if sender_user_id not in active_continuous_adds.keys(): return_value = 'There is nothing to stop adding to.' Parent.SendStreamMessage(return_value) return else: del active_continuous_adds[sender_user_id] return_value = 'You have been removed from the continuous add list.' Parent.SendStreamMessage(return_value) return # getting game name data_input = data.Message data_input = data_input.split(" ") data_input = data_input[1:-1] data_input = ' '.join(data_input) game = data_input # gets the amounts data_input = data.Message data_input = data_input.split() amount = data_input[len(data_input)-1].lower() if sender_user_id not in cooldown_list.keys() or \ (amount.lower() == 'stop' or amount.lower() == 'all'): # security checking for data values target = security_check(game) # check if the file exists if not target: return_value += 'That %s does not exist yet. Try using woodchips to add it.'%MySet.ResultName respond(data, return_value) return # check if the sender_user_id is 5attempting to do a !vote <name> all if amount.lower() == 'all': Parent.Log("Vote all", "Adding all logs.") new_data = (sender_user_id, target, amount.lower()) # only add anything if the sender_user_id isn't on the cooldown list. if sender_user_id not in cooldown_list.keys(): add_amount = min(Parent.GetPoints(sender_user_id), MySet.voteMaximum) if sender_user_id not in active_continuous_adds: active_continuous_adds[sender_user_id] = new_data return_value += 'You have been added to the continuous add list and are now adding ' + \ MySet.PointName + 's until you run out. ' else: # if the sender_user_id isn't in the add list, add it and add the data if sender_user_id not in active_continuous_adds: active_continuous_adds[sender_user_id] = new_data response = 'You have been added to the continuous add list and are now adding ' + \ MySet.PointName + 's until you run out. ' Parent.SendStreamMessage(response) return else: active_continuous_adds[sender_user_id] = new_data response = 'You are already in the the active list. Type "!vote stop" at any time to stop adding. ' Parent.SendStreamMessage(response) return # check if the sender_user_id is attempting to stop adding logs automatically elif amount == 'stop' and MySet.continuousVoting: if sender_user_id in active_continuous_adds: return_value += 'You have been removed from the continuous add list for '+str(target)+' '+str(sender_user_display) Parent.SendStreamWhisper(sender_user_id, return_value) del active_continuous_adds[sender_user_id] return else: return_value += 'You aren\'t on the continuous add list.' respond(data, return_value) return # add amount else: # verify the amount to add is actually an integer try: add_amount = int(amount) except ValueError as ve: return_value += 'That isn\'t an integer. Please vote using an integer.' respond(data, return_value) return # check the amount is not higher than the sender_user_id can add. if add_amount > Parent.GetPoints(sender_user_id): return_value += 'Your %s pales in comparison to the amount you wish to add, %s. You only have %s. Wait to gather more.'\ %(MySet.ResultName, sender_user_display, str(Parent.GetPoints(sender_user_id))) respond(data, return_value) # if they're in the auto add list, remove them from that list if sender_user_id in active_continuous_adds: del active_continuous_adds[sender_user_id] return # if users can add all the time, then ignore cooldowns and just add it if not MySet.AntiSnipe and add_amount >= 0: # get the number of points afterwards result = add_to_campfire(sender_user_id, target, add_amount) return_value += "%s added %i to %s's %s. There are now %i %ss in the %s. " % ( sender_user_display, add_amount, target, MySet.ResultName, result, MySet.PointName, MySet.ResultName) respond(data, return_value) return # If the sender_user_id tries to add more than the set maximum, change the amount to add to be that maximum. if add_amount > int(MySet.voteMaximum): # get the number of seconds this will take to finish seconds_to_completion = int(((add_amount-float(MySet.voteMaximum))/float(MySet.voteMaximum))*int(MySet.cooldownTime)) minutes_to_completion = 0 hours_to_completion = 0 if seconds_to_completion > 60: minutes_to_completion = seconds_to_completion/60 seconds_to_completion = seconds_to_completion%60 if minutes_to_completion > 60: hours_to_completion = minutes_to_completion/60 minutes_to_completion = minutes_to_completion%60 return_value += 'Currently the maximum number of %ss is %s. Removing this amount from your pool. '\ %(MySet.PointName, MySet.voteMaximum) add_amount = int(MySet.voteMaximum) # add users to the continuous add list and create a separate dictionary that keeps track of their cap if sender_user_id not in active_continuous_adds: # store the new data as a tuple for another function to deal with. new_data = (sender_user_id, target, int(amount) - add_amount) active_continuous_adds[sender_user_id] = new_data # send users a message to inform them how long logs will add for. if hours_to_completion != 0: return_value += ("You have been added to the continuous add list. " + MySet.PointName.capitalize() + ' will continue to add for ' + str(hours_to_completion) + ' hours and ' + str(minutes_to_completion) + ' minutes and ' + str(seconds_to_completion) + ' seconds. Type "!vote stop" to stop voting on this choice. ') elif minutes_to_completion != 0: return_value += ("You have been added to the continuous add list. " + MySet.PointName.capitalize() + 's will continue to add for ' + str(minutes_to_completion) + ' minutes and ' + str(seconds_to_completion) + ' seconds. Type "!vote stop" to stop voting on this choice. ') else: return_value += ("You have been added to the continuous add list. " + MySet.PointName.capitalize() + 's will continue to add for ' + str(seconds_to_completion) + ' seconds. Type "!vote stop" to stop voting on this choice. ') # check the amount is above 0. if add_amount <= 0: # if they're in the auto add list, remove them from that list if sender_user_id in active_continuous_adds: del active_continuous_adds[sender_user_id] return_value += sender_user_display + ' if you got this message, you ran out of ' + MySet.PointName + \ 's and have been removed from auto add.' else: return_value = '%s, %i is less than or equal to 0. Please offer at least one %ss.' \ % (sender_user_id, add_amount, MySet.PointName) respond(data, return_value) return # add it to the campfire result = add_to_campfire(sender_user_id, target, add_amount) # output the result to the sender_user_id return_value += "%s added %i to %s's %s. There are now %i %ss in the %s. "\ %(sender_user_display, add_amount, target, MySet.ResultName, result, MySet.PointName, MySet.ResultName) cooldown = MySet.cooldownTime # set the cooldown and save it if MySet.dynamicCooldown: cooldown = add_amount * (float(MySet.cooldownTime)/float(MySet.voteMaximum)) # add a sender_user_id to a dictionary when they use the command. cooldown_list[sender_user_id] = time.time(), cooldown else: # Output the cooldown message if sender_user_id in cooldown_list.keys(): seconds_to_wait = get_cooldown(sender_user_id) return_value += "You have to wait " + str(int(seconds_to_wait)) + ' more seconds before you can add ' + \ MySet.PointName + 's again.' respond(data, return_value) return # sends the final message if not MySet.SilentAdds: respond(data, return_value) # debug section if data.IsChatMessage() and data.GetParam(0).lower() == '!debug': if data.GetParam(1) == 'get_cooldown' and MySet.get_cooldown == True: return_value = get_cooldown(data.GetParam(2)) Parent.SendStreamMessage(str(return_value)) if data.GetParam(1) == 'get_live': return_value = str(get_stream_is_live()) Parent.SendStreamMessage("Stream is live: " + return_value) Parent.SendStreamMessage("Stream isLive function: " + str(Parent.IsLive())) return
3,237
def send_fixtures( patch_client: HTTPClient, request: Any, ) -> Generator[Tuple[HTTPClient, str], None, None]: """Methods that send data to an API: POST, PATCH, PUT""" yield patch_client, request.param
3,238
def compute_subjobs_for_build(build_id, job_config, project_type): """ Calculate subjobs for a build. :type build_id: int :type job_config: JobConfig :param project_type: the project_type that the build is running in :type project_type: project_type.project_type.ProjectType :rtype: list[Subjob] """ # Users can override the list of atoms to be run in this build. If the atoms_override # was specified, we can skip the atomization step and use those overridden atoms instead. if project_type.atoms_override is not None: atoms_string_list = project_type.atoms_override atoms_list = [Atom(atom_string_value) for atom_string_value in atoms_string_list] else: atoms_list = job_config.atomizer.atomize_in_project(project_type) # Group the atoms together using some grouping strategy timing_file_path = project_type.timing_file_path(job_config.name) grouped_atoms = _grouped_atoms( atoms_list, job_config.max_executors, timing_file_path, project_type.project_directory ) # Generate subjobs for each group of atoms subjobs = [] for subjob_id, subjob_atoms in enumerate(grouped_atoms): # The atom id isn't calculated until the atom has been grouped into a subjob. for atom_id, atom in enumerate(subjob_atoms): atom.id = atom_id subjobs.append(Subjob(build_id, subjob_id, project_type, job_config, subjob_atoms)) return subjobs
3,239
def pymodbus_mocked(mocker): """Patch pymodbus to deliver results.""" class ResponseContent: """Fake a response.""" registers = [0] class WriteStatus: """Mock a successful response.""" @staticmethod def isError(): # pylint: disable=invalid-name,missing-function-docstring return False # Patch connection function mocker.patch("pymodbus.client.sync.ModbusTcpClient.connect") mocker.patch( "pymodbus.client.sync.ModbusTcpClient.read_holding_registers", return_value=ResponseContent, ) mocker.patch( "pymodbus.client.sync.ModbusTcpClient.write_registers", return_value=WriteStatus )
3,240
def user_can_view_assessments(user, **kwargs): """ Return True iff given user is allowed to view the assessments """ return not appConfig.settings.LOGIN_REQUIRED or user.is_authenticated
3,241
def get_hashes(root_hash: str) -> List[str]: """ Return a list with the commits since `root_hash` """ cmd = f"git rev-list --ancestry-path {root_hash}..HEAD" proc = run(cmd) return proc.stdout.splitlines()
3,242
def unzip_file(zip_src, dst_dir): """ 解压zip文件 :param zip_src: zip文件的全路径 :param dst_dir: 要解压到的目的文件夹 :return: """ r = zipfile.is_zipfile(zip_src) if r: fz = zipfile.ZipFile(zip_src, "r") for file in fz.namelist(): fz.extract(file, dst_dir) else: return "请上传zip类型压缩文件"
3,243
def abort_multipart_upload(resource, bucket_name, object_name, upload_id): """Abort in-progress multipart upload""" mpupload = resource.MultipartUpload(bucket_name, object_name, upload_id) return mpupload.abort()
3,244
def read_data(input_path): """Read pre-stored data """ train = pd.read_parquet(os.path.join(input_path, 'train.parquet')) tournament = pd.read_parquet(os.path.join(input_path, 'tournament.parquet')) return train, tournament
3,245
def double(n): """ Takes a number n and doubles it """ return n * 2
3,246
def group(iterable): """ Creates a min/max grouping for the inputted list of numbers. This will shrink a list into the group sets that are available. :param iterable | <iterable> | (list, tuple, set, etc.) :return <generator> [(<int> min, <int> max), ..] """ numbers = sorted(list(set(iterable))) for _, grouper in itertools.groupby(numbers, key=lambda i, c=itertools.count(): i - next(c)): subset = list(grouper) yield subset[0], subset[-1]
3,247
def Normalize(tensor, mean, std, inplace=False): """Normalize a float tensor image with mean and standard deviation. This transform does not support PIL Image. .. note:: This transform acts out of place by default, i.e., it does not mutates the input tensor. See :class:`~torchvision.transforms.Normalize` for more details. Args: tensor (Tensor): Float tensor image of size (C, H, W) or (B, C, H, W) to be normalized. mean (sequence): Sequence of means for each channel. std (sequence): Sequence of standard deviations for each channel. inplace(bool,optional): Bool to make this operation inplace. Returns: Tensor: Normalized Tensor image. """ if not isinstance(tensor, torch.Tensor): raise TypeError( 'Input tensor should be a torch tensor. Got {}.'.format(type(tensor))) if not tensor.is_floating_point(): raise TypeError( 'Input tensor should be a float tensor. Got {}.'.format(tensor.dtype)) if tensor.ndim < 3: raise ValueError('Expected tensor to be a tensor image of size (..., C, H, W). Got tensor.size() = ' '{}.'.format(tensor.size())) if not inplace: tensor = tensor.clone() dtype = tensor.dtype mean = torch.as_tensor(mean, dtype=dtype, device=tensor.device) std = torch.as_tensor(std, dtype=dtype, device=tensor.device) if (std == 0).any(): raise ValueError( 'std evaluated to zero after conversion to {}, leading to division by zero.'.format(dtype)) if mean.ndim == 1: mean = mean.view(-1, 1, 1) if std.ndim == 1: std = std.view(-1, 1, 1) tensor.sub_(mean).div_(std) return tensor
3,248
def main(): """parse args and perform the automation""" parser = common.cli_arg_parser() args = parser.parse_args() pause = getattr(args, common.PAUSE_ARG) with common.maybe_pause_at_the_end(pause): _update(args)
3,249
def test_get_aggregated_tensor_weights(tensor_db): """Test that get_aggregated_tensor calculates correctly.""" collaborator_weight_dict = {'col1': 0.1, 'col2': 0.9} tensor_key = TensorKey('tensor_name', 'agg', 0, False, ()) agg_nparray = tensor_db.get_aggregated_tensor( tensor_key, collaborator_weight_dict, WeightedAverage()) control_nparray = np.average( [np.array([0, 1, 2, 3, 4]), np.array([2, 3, 4, 5, 6])], weights=np.array(list(collaborator_weight_dict.values())), axis=0 ) assert np.array_equal(agg_nparray, control_nparray)
3,250
def transcribe(transcriber): """ """ directory = transcriber.transcribe_directory output_directory = transcriber.transcribe_directory log_directory = os.path.join(output_directory, 'log') config = transcriber.transcribe_config mdl_path = os.path.join(directory, 'final.mdl') corpus = transcriber.corpus num_jobs = corpus.num_jobs if config.use_mp and num_jobs > 1: jobs = [(directory, x, mdl_path, config, config.feature_config.construct_feature_proc_string(corpus.split_directory(), directory, x), output_directory) for x in range(num_jobs)] else: jobs = [(directory, x, mdl_path, config, config.feature_config.construct_feature_proc_string(corpus.split_directory(), directory, x), output_directory, corpus.original_num_jobs) for x in range(num_jobs)] if config.use_mp and num_jobs > 1: run_mp(decode_func, jobs, log_directory) else: run_non_mp(decode_func, jobs, log_directory) if transcriber.evaluation_mode: best_wer = 10000 best = None for lmwt in range(transcriber.min_language_model_weight, transcriber.max_language_model_weight): for wip in transcriber.word_insertion_penalties: out_dir = os.path.join(output_directory, 'eval_{}_{}'.format(lmwt, wip)) log_dir = os.path.join(out_dir, 'log') os.makedirs(log_dir, exist_ok=True) jobs = [(directory, x, config, out_dir, lmwt, wip) for x in range(num_jobs)] if config.use_mp: run_mp(score_func, jobs, log_dir) else: run_non_mp(score_func, jobs, log_dir) ser, wer = transcriber.evaluate(out_dir, out_dir) if wer < best_wer: best = (lmwt, wip) transcriber.transcribe_config.language_model_weight = best[0] transcriber.transcribe_config.word_insertion_penalty = best[1] else: jobs = [(directory, x, config, output_directory) for x in range(num_jobs)] if config.use_mp: run_mp(score_func, jobs, log_directory) else: run_non_mp(score_func, jobs, log_directory)
3,251
def reproduce_candcollection(cc, data=None, wisdom=None, spec_std=None, sig_ts=[], kalman_coeffs=[]): """ Uses candcollection to make new candcollection with required info. Will look for cluster label and filter only for peak snr, if available. Location (e.g., integration, dm, dt) of each is used to create canddata for each candidate, if required. Can calculates features not used directly for search (as defined in state.prefs.calcfeatures). """ from rfpipe import candidates, util # set up output cc st = cc.state cc1 = candidates.CandCollection(prefs=st.prefs, metadata=st.metadata) if len(cc): if 'cluster' in cc.array.dtype.fields: clusters = cc.array['cluster'].astype(int) cl_rank, cl_count = candidates.calc_cluster_rank(cc) calcinds = np.unique(np.where(cl_rank == 1)[0]).tolist() logger.debug("Reproducing cands at {0} cluster peaks" .format(len(calcinds))) else: logger.debug("No cluster field found. Reproducing all.") calcinds = list(range(len(cc))) # if candidates that need new feature calculations if not all([f in cc.array.dtype.fields for f in st.features]): logger.info("Generating canddata for {0} candidates" .format(len(calcinds))) candlocs = cc.locs snrs = cc.snrtot normprob = candidates.normprob(snrs, st.ntrials) snrmax = snrs.max() logger.info('Zscore/SNR for strongest candidate: {0}/{1}' .format(normprob[np.where(snrs == snrmax)[0]][0], snrmax)) if ('snrk' in st.features and 'snrk' not in cc.array.dtype.fields and (spec_std is None or not len(sig_ts) or not len(kalman_coeffs))): # TODO: use same kalman calc for search as reproduce? spec_std, sig_ts, kalman_coeffs = util.kalman_prep(data) # reproduce canddata for each for i in calcinds: # TODO: check on best way to find max SNR with kalman, etc snr = snrs[i] candloc = candlocs[i] # kwargs passed to canddata object for plotting/saving kwargs = {} if 'cluster' in cc.array.dtype.fields: logger.info("Cluster {0}/{1} has {2} candidates and max detected SNR {3:.1f} at {4}" .format(calcinds.index(i), len(calcinds)-1, cl_count[i], snr, candloc)) # add supplementary plotting and cc info kwargs['cluster'] = clusters[i] kwargs['clustersize'] = cl_count[i] else: logger.info("Candidate {0}/{1} has detected SNR {2:.1f} at {3}" .format(calcinds.index(i), len(calcinds)-1, snr, candloc)) # reproduce candidate and get/calc features data_corr = pipeline_datacorrect(st, candloc, data_prep=data) for feature in st.features: if feature in cc.array.dtype.fields: # if already calculated kwargs[feature] = cc.array[feature][i] else: # if desired, but not calculated here or from canddata if feature == 'snrk': if 'snrk' not in cc.array.dtype.fields: spec = data_corr.real.mean(axis=3).mean(axis=1)[candloc[1]] if np.count_nonzero(spec)/len(spec) > 1-st.prefs.max_zerofrac: significance_kalman = -kalman_significance(spec, spec_std, sig_ts=sig_ts, coeffs=kalman_coeffs) snrk = (2*significance_kalman)**0.5 else: logger.warning("snrk set to 0, since {0}/{1} are zeroed".format(len(spec)-np.count_nonzero(spec), len(spec))) snrk = 0. logger.info("Calculated snrk of {0} after detection. " "Adding it to CandData.".format(snrk)) kwargs[feature] = snrk cd = pipeline_canddata(st, candloc, data_corr, spec_std=spec_std, sig_ts=sig_ts, kalman_coeffs=kalman_coeffs, **kwargs) if st.prefs.saveplots: candidates.candplot(cd, snrs=snrs) # snrs before clustering # regenerate cc with extra features in cd cc1 += candidates.cd_to_cc(cd) # if candidates that do not need new featuers, just select peaks else: logger.info("Using clustering info to select {0} candidates" .format(len(calcinds))) cc1.array = cc.array.take(calcinds) return cc1
3,252
def hilbert(signal, padding='nextpow'): """ Apply a Hilbert transform to a `neo.AnalogSignal` object in order to obtain its (complex) analytic signal. The time series of the instantaneous angle and amplitude can be obtained as the angle (`np.angle` function) and absolute value (`np.abs` function) of the complex analytic signal, respectively. By default, the function will zero-pad the signal to a length corresponding to the next higher power of 2. This will provide higher computational efficiency at the expense of memory. In addition, this circumvents a situation where, for some specific choices of the length of the input, `scipy.signal.hilbert` function will not terminate. Parameters ---------- signal : neo.AnalogSignal Signal(s) to transform. padding : int, {'none', 'nextpow'}, or None, optional Defines whether the signal is zero-padded. The `padding` argument corresponds to `N` in `scipy.signal.hilbert(signal, N=padding)` function. If 'none' or None, no padding. If 'nextpow', zero-pad to the next length that is a power of 2. If it is an `int`, directly specify the length to zero-pad to (indicates the number of Fourier components). Default: 'nextpow' Returns ------- neo.AnalogSignal Contains the complex analytic signal(s) corresponding to the input `signal`. The unit of the returned `neo.AnalogSignal` is dimensionless. Raises ------ ValueError: If `padding` is not an integer or neither 'nextpow' nor 'none' (None). Examples -------- Create a sine signal at 5 Hz with increasing amplitude and calculate the instantaneous phases: >>> import neo >>> import numpy as np >>> import quantities as pq >>> import matplotlib.pyplot as plt >>> from elephant.signal_processing import hilbert >>> t = np.arange(0, 5000) * pq.ms >>> f = 5. * pq.Hz >>> a = neo.AnalogSignal( ... np.array( ... (1 + t.magnitude / t[-1].magnitude) * np.sin( ... 2. * np.pi * f * t.rescale(pq.s))).reshape( ... (-1,1)) * pq.mV, ... t_start=0*pq.s, ... sampling_rate=1000*pq.Hz) ... >>> analytic_signal = hilbert(a, padding='nextpow') >>> angles = np.angle(analytic_signal) >>> amplitudes = np.abs(analytic_signal) >>> print(angles) [[-1.57079633] [-1.51334228] [-1.46047675] ..., [-1.73112977] [-1.68211683] [-1.62879501]] >>> plt.plot(t, angles) """ # Length of input signals n_org = signal.shape[0] # Right-pad signal to desired length using the signal itself if isinstance(padding, int): # User defined padding n = padding elif padding == 'nextpow': # To speed up calculation of the Hilbert transform, make sure we change # the signal to be of a length that is a power of two. Failure to do so # results in computations of certain signal lengths to not finish (or # finish in absurd time). This might be a bug in scipy (0.16), e.g., # the following code will not terminate for this value of k: # # import numpy # import scipy.signal # k=679346 # t = np.arange(0, k) / 1000. # a = (1 + t / t[-1]) * np.sin(2 * np.pi * 5 * t) # analytic_signal = scipy.signal.hilbert(a) # # For this reason, nextpow is the default setting for now. n = 2 ** (int(np.log2(n_org - 1)) + 1) elif padding == 'none' or padding is None: # No padding n = n_org else: raise ValueError("Invalid padding '{}'.".format(padding)) output = signal.duplicate_with_new_data( scipy.signal.hilbert(signal.magnitude, N=n, axis=0)[:n_org]) # todo use flag once is fixed # https://github.com/NeuralEnsemble/python-neo/issues/752 output.array_annotate(**signal.array_annotations) return output / output.units
3,253
def _tagged_mosc_id(kubeconfig, version, arch, private) -> str: """determine what the most recently tagged machine-os-content is in given imagestream""" base_name = rgp.default_imagestream_base_name(version) base_namespace = rgp.default_imagestream_namespace_base_name() name, namespace = rgp.payload_imagestream_name_and_namespace(base_name, base_namespace, arch, private) stdout, _ = exectools.cmd_assert( f"oc --kubeconfig '{kubeconfig}' --namespace '{namespace}' get istag '{name}:machine-os-content'" " --template '{{.image.dockerImageMetadata.Config.Labels.version}}'", retries=3, pollrate=5, strip=True, ) return stdout if stdout else None
3,254
def test_namechooser__DontReuseNames__chooseName__9(NameChooserFactory): """`chooseName()` omits a name alredy used in the container.""" nc = NameChooserFactory(2) with mock.patch.object(nc, 'name_in_use', side_effect=[True, False]): assert u'foo-4' == nc.chooseName('foo', object())
3,255
def delete_network_config(data): """ Delete the network configuration. Parameters ---------- data : list The list of network interfaces. Returns ------- No return value. """ delete_virtual_interfaces(data) delete_directory_files(__netscripts, data, lambda x: __iface_prefix + x)
3,256
def test_workflow_migration(isolated_runner, old_workflow_project): """Check that *.cwl workflows can be migrated.""" result = isolated_runner.invoke(cli, ["migrate"]) assert 0 == result.exit_code assert "OK" in result.output result = isolated_runner.invoke(cli, ["log", old_workflow_project["log_path"]]) assert 0 == result.exit_code for expected in old_workflow_project["expected_strings"]: assert expected in result.output
3,257
def load_household_size_by_municipality(): """Return dataframe, index 'Gemeente', column 'HHsize'.""" dfhh = pd.read_csv('data/huishoudens_samenstelling_gemeentes.csv', comment='#') dfhh.sort_values('Gemeente', inplace=True) dfhh.set_index('Gemeente', inplace=True) # remove rows for nonexistent municipalites dfhh.drop(index=dfhh.index[dfhh['nHH'].isna()], inplace=True) # rename municipalities rename_muns = { 'Beek (L.)': 'Beek', 'Hengelo (O.)': 'Hengelo', 'Laren (NH.)': 'Laren', 'Middelburg (Z.)': 'Middelburg', 'Rijswijk (ZH.)': 'Rijswijk', 'Stein (L.)': 'Stein', 'Groningen (gemeente)': 'Groningen', 'Utrecht (gemeente)': 'Utrecht', "'s-Gravenhage (gemeente)": "'s-Gravenhage", } dfhh.rename(index=rename_muns, inplace=True) return dfhh
3,258
def gcp_iam_service_account_delete_command(client: Client, args: Dict[str, Any]) -> CommandResults: """ Delete service account key. Args: client (Client): GCP API client. args (dict): Command arguments from XSOAR. Returns: CommandResults: outputs, readable outputs and raw response for XSOAR. """ service_account_name = argToList(args.get('service_account_name')) command_results_list: List[CommandResults] = [] for account in service_account_name: try: client.gcp_iam_service_account_delete_request(account) command_results_list.append(CommandResults( readable_output=f'Service account {account} deleted successfully.' )) except Exception as exception: error = CommandResults( readable_output=f'An error occurred while trying to delete {account}.\n {exception}' ) command_results_list.append(error) return command_results_list
3,259
def couple_to_string(couple: Union[Span, Tuple[int, int]]) -> str: """Return a deduplicated string representation of the given couple or span. Examples: >>> couple_to_string((12, 15)) "12-15" >>> couple_to_string((12, 12)) "12" >>> couple_to_string(Span(12, 15)) "12-15" """ return f"{couple[0]}" + ("" if couple[0] == couple[1] else f"-{couple[1]}")
3,260
def create_study(X, y, storage=None, # type: Union[None, str, storages.BaseStorage] sample_method=None, metrics=None, study_name=None, # type: Optional[str] direction='maximize', # type: str load_cache=False, # type: bool is_autobin=False, bin_params=dict(), sample_params=dict(), trials_list=list(), export_model_path=None, precision=np.float64, ): # type: (...) -> Study """Create a new :class:`~diego.study.Study`. Args: storage: Database URL. If this argument is set to None, in-memory storage is used, and the :class:`~diego.study.Study` will not be persistent. sampler: A sampler object that implements background algorithm for value suggestion. See also :class:`~diego.samplers`. study_name: Study's name. If this argument is set to None, a unique name is generated automatically. is_auto_bin: do autobinning bin_params: binning method precision {[np.dtype]} -- precision: np.dtypes, float16, float32, float64 for data precision to reduce memory size. (default: {np.float64}) Returns: A :class:`~diego.study.Study` object. """ X, y = check_X_y(X, y, accept_sparse='csr') storage = get_storage(storage) try: study_id = storage.create_new_study_id(study_name) except basic.DuplicatedStudyError: # 内存中最好study不要重名,而且可以读取已有的Study。 数据存在storage中。 # if load_if_exists: # assert study_name is not None # logger = logging.get_logger(__name__) # logger.info("Using an existing study with name '{}' instead of " # "creating a new one.".format(study_name)) # study_id = storage.get_study_id_from_name(study_name) # else: raise study_name = storage.get_study_name_from_id(study_id) study = Study( study_name=study_name, storage=storage, sample_method=sample_method, is_autobin=is_autobin, bin_params=bin_params, export_model_path=export_model_path, precision=precision, metrics=metrics) if direction == 'minimize': _direction = basic.StudyDirection.MINIMIZE elif direction == 'maximize': _direction = basic.StudyDirection.MAXIMIZE else: raise ValueError( 'Please set either \'minimize\' or \'maximize\' to direction.') if metrics in ['logloss']: _direction = basic.StudyDirection.MINIMIZE X = X.astype(dtype=precision, copy=False) study.storage.direction = _direction study.storage.set_train_storage(X, y) return study
3,261
def setup_logging(path='log.config', key=None): """Setup logging configuration""" if os.path.exists(path): with open(path, 'rt') as f: config = json.load(f) logging.config.dictConfig(config) else: logging.basicConfig(level=logging.DEBUG) logger = logging.getLogger(key) return logger
3,262
def qparams_init(net, conv_name="conv", bn_name="batchnorm"): """ Initialize quantized parameters for convolution op :param net: mxnet.gluon.nn.Block The net to initialize. :param conv_name: str :param bn_name: str :return: mxnet.gluon.nn.Block The net that has been initialized. """ blocks = net.collect_quantized_blocks() params = net.collect_params() for m in blocks: # If fake bn, recalculate weight and initialize some related params if isinstance(m, nn.Conv2D) and hasattr(m, "gamma"): name = m.name weight = m.weight.data() # Get params of batchnorm gamma = params[name.replace(conv_name, bn_name) + "_gamma"].data() beta = params[name.replace(conv_name, bn_name) + "_beta"].data() mean = params[name.replace(conv_name, bn_name) + "_running_mean"].data() var = params[name.replace(conv_name, bn_name) + "_running_var"].data() # Store params of bn at conv m.gamma.initialize(Constant(gamma)) m.beta.initialize(Constant(beta)) m.running_mean.initialize(Constant(mean)) m.running_var.initialize(Constant(var)) # Enable bias if need, and recalculate weight and bias with fake bn version w_shape = weight.shape cout = w_shape[0] if m.bias is None: m._kwargs['no_bias'] = False m.bias = m.params.get('bias', shape=(cout,), init="zeros", allow_deferred_init=True) m.bias.initialize() if type(m) in (nn.Conv2D, nn.Dense) and m.quantize_args.quantize_input: m.input_max.initialize(Constant(0)) if type(m) == nn.Activation and m.quantize_args.quantize_act: m.act_max.initialize(Constant(0))
3,263
def test_no_access_to_class_property(db): """Ensure the implementation doesn't access class properties or declared attrs while inspecting the unmapped model. """ class class_property: def __init__(self, f): self.f = f def __get__(self, instance, owner): return self.f(owner) class Duck(db.Model): id = db.Column(db.Integer, primary_key=True) class ns: is_duck = False floats = False class Witch(Duck): @declared_attr def is_duck(self): # declared attrs will be accessed during mapper configuration, # but make sure they're not accessed before that info = inspect.getouterframes(inspect.currentframe())[2] assert info[3] != "_should_set_tablename" ns.is_duck = True @class_property def floats(self): ns.floats = True assert ns.is_duck assert not ns.floats
3,264
def get_gb_version(backbone_top_cmake_path): """ Find the game backbone version number by searching the top level CMake file """ with open(backbone_top_cmake_path, 'r') as file: cmake_text = file.read() regex_result = re.search(gb_version_regex, cmake_text) return regex_result.group(1)
3,265
async def get_processes(name: Optional[str] = None) -> List[Process]: """ Get all processes. Args: name (Optional[str], optional): Filter by process name. Defaults to None. Returns: List[Process]: A list of processes. """ if name: return get_processes_by_name(name) return get_all_processes()
3,266
def patch_typing_python351(): """ Python 3.5.1 doesn't have typing.Type, refs: https://github.com/crystax/android-vendor-python-3-5/issues/1 """ # TODO: check Python version and only patch if == 3.5.1 if not hasattr(typing, 'Type'): typing.Type = Type
3,267
def create_file(root_folder, app_name, file, use_template=False): """Create a file in the specified target. Args: root_folder (str): project root folder. app_name (str): project name. file (str): file to be created. use_template (bool, optional): whether or not to use the templates Returns: Nothing. >>> create_file('C:/temp', 'test_app', 'README.md') >>> os.path.exists('C:/temp/test_app/README.md') True """ full_file_path = os.path.join(root_folder, app_name, file) content = "" if use_template: if file in ["README.md", "setup.cfg", "setup.py"]: template_folder = os.path.realpath( os.path.join(os.getcwd(), os.path.dirname(__file__)) ) try: with open( os.path.join(template_folder, f"data/sample_{file}"), "r", encoding="utf-8", ) as sample: content = sample.read() except Exception as e: print(f"Error reading template sample_{file}") raise e try: with open(full_file_path, "w", encoding="utf-8") as new_file: new_file.writelines(content) except Exception as e: print(f"Could not create file {full_file_path}.") raise e
3,268
def plot_day_of_activation(df, plotname): """ Plots Aggregate of Day of Activation. """ # todo sort order in logical day order dotw = {0: 'Monday', 1: 'Tuesday', 2: 'Wednesday', 3: 'Thursday', 4: 'Friday', 5: 'Saturday', 6: 'Sunday'} df2 = df[df['adults_first_use'] == 1][['user_id', 'day_of_week']] df2 = df2.groupby('user_id', as_index=False).mean()['day_of_week'].map(dotw).to_frame() df2 = df2['day_of_week'].value_counts().to_frame() # todo fix the X axis labeling so it's not hardcoded! trace = go.Bar(x=['Tuesday', 'Wednesday', 'Friday', 'Thursday', 'Satuday', 'Sunday', 'Monday'], y=df2.day_of_week, marker=dict(color='#CC171D')) layout = go.Layout( title="Day of Firenze Card Activation", xaxis=dict( title='Day of the Week', nticks=7, ticks='outside', ), yaxis=dict( title='Number of Cards Activated', ticks='outside', ) ) fig = go.Figure(data=go.Data([trace]), layout=layout) plot_url = py.iplot(fig, plotname, sharing='private', auto_open=False) return df2, plot_url
3,269
def pytest_collection_finish(session): """Handle the pytest collection finish hook: configure pyannotate. Explicitly delay importing `collect_types` until all tests have been collected. This gives gevent a chance to monkey patch the world before importing pyannotate. """ from pyannotate_runtime import collect_types collect_types.init_types_collection()
3,270
def run_alf_extractors(session_path): """ Extract camera timestamps from the sync matrix :param session_path: path to ap.bin file from :return: no return command, alf files are created """ extractors.ephys_fpga._get_main_probe_sync(session_path)
3,271
def get_rucio_redirect_url(lfn, scope): """ get_rucio_redirect_url: assemble Rucio redirect URL @params: lfn ... one filename e.g. user.gangarbt.62544955._2108356106.log.tgz scope ... scope of the file with lfn e.g. user.gangarbt, or valid1 returns: the Rucio redirect URL """ redirectUrl = '' ### compose the redirecURL redirectUrl = '%(redirecthost)s/redirect/%(scope)s/%(filename)s%(suffix)s' % \ {\ 'redirecthost': get_rucio_redirect_host(), \ 'scope': scope, \ 'filename': lfn, \ 'suffix': '' \ } _logger.info('get_rucio_redirect_url: redirectUrl=(%s)' % redirectUrl) ### return the redirectURL return redirectUrl
3,272
def test_store_not_normalized(mini_sentry, relay): """ Tests that relay does not normalize when processing is disabled """ relay = relay(mini_sentry, {"processing": {"enabled": False}}) project_id = 42 mini_sentry.add_basic_project_config(project_id) relay.send_event(project_id, {"message": "some_message"}) event = mini_sentry.captured_events.get(timeout=1).get_event() assert event.get("key_id") is None assert event.get("project") is None assert event.get("version") is None
3,273
async def _getRequest(websession, url): """Send a GET request.""" async with websession.get(url, headers=HEADER) as response: if response.status == 200: data = await response.json(content_type=None) else: raise Exception('Bad response status code: {}'.format(response.status)) return data
3,274
def interval_seconds(): """returns the time interval in seconds Returns: int """ return int(interval_to_milliseconds(interval())/1000)
3,275
def get_current_git_branch(): """Get current git branch name. Returns: str: Branch name """ branch_name = "unknown" try: branch_name = subprocess.check_output(['git', 'rev-parse', '--abbrev-ref', 'HEAD']).decode('ascii').strip() except subprocess.CalledProcessError: pass return branch_name
3,276
def get_autonomous_db_versions(compartment_id: Optional[str] = None, db_workload: Optional[str] = None, filters: Optional[Sequence[pulumi.InputType['GetAutonomousDbVersionsFilterArgs']]] = None, opts: Optional[pulumi.InvokeOptions] = None) -> AwaitableGetAutonomousDbVersionsResult: """ This data source provides the list of Autonomous Db Versions in Oracle Cloud Infrastructure Database service. Gets a list of supported Autonomous Database versions. ## Example Usage ```python import pulumi import pulumi_oci as oci test_autonomous_db_versions = oci.database.get_autonomous_db_versions(compartment_id=var["compartment_id"], db_workload=var["autonomous_db_version_db_workload"]) ``` :param str compartment_id: The compartment [OCID](https://docs.cloud.oracle.com/iaas/Content/General/Concepts/identifiers.htm). :param str db_workload: A filter to return only autonomous database resources that match the specified workload type. """ __args__ = dict() __args__['compartmentId'] = compartment_id __args__['dbWorkload'] = db_workload __args__['filters'] = filters if opts is None: opts = pulumi.InvokeOptions() if opts.version is None: opts.version = _utilities.get_version() __ret__ = pulumi.runtime.invoke('oci:database/getAutonomousDbVersions:getAutonomousDbVersions', __args__, opts=opts, typ=GetAutonomousDbVersionsResult).value return AwaitableGetAutonomousDbVersionsResult( autonomous_db_versions=__ret__.autonomous_db_versions, compartment_id=__ret__.compartment_id, db_workload=__ret__.db_workload, filters=__ret__.filters, id=__ret__.id)
3,277
def azimuthal_average(image, center=None, stddev=True, binsize=0.5, interpnan=False): """ Calculate the azimuthally averaged radial profile. Modified based on https://github.com/keflavich/image_tools/blob/master/image_tools/radialprofile.py Parameters: imgae (numpy 2-D array): image array. center (list): [x, y] pixel coordinates. If None, use image center. Note that x is horizontal and y is vertical, y, x = image.shape. stdev (bool): if True, the stdev of profile will also be returned. binsize (float): size of the averaging bin. Can lead to strange results if non-binsize factors are used to specify the center and the binsize is too large. interpnan (bool): Interpolate over NAN values, i.e. bins where there is no data? Returns: : If `stdev == True`, it will return [radius, profile, stdev]; else, it will return [radius, profile]. """ # Calculate the indices from the image y, x = np.indices(image.shape) if center is None: center = np.array([(x.max() - x.min()) / 2.0, (y.max() - y.min()) / 2.0]) r = np.hypot(x - center[0], y - center[1]) # The 'bins' as initially defined are lower/upper bounds for each bin # so that values will be in [lower,upper) nbins = int(np.round(r.max() / binsize) + 1) maxbin = nbins * binsize bins = np.linspace(0, maxbin, nbins + 1) # We're probably more interested in the bin centers than their left or right sides... bin_centers = (bins[1:] + bins[:-1]) / 2.0 # There are never any in bin 0, because the lowest index returned by digitize is 1 nr = np.histogram(r, bins)[0] # nr is how many pixels are within each bin # Radial profile itself nan_flag = np.isnan(image) # get rid of nan #profile = np.histogram(r, bins, weights=image)[0] / nr profile = np.histogram(r[~nan_flag], bins, weights=image[~nan_flag])[0] / nr if interpnan: profile = np.interp(bin_centers, bin_centers[~np.isnan(profile)], profile[~np.isnan(profile)]) if stddev: # Find out which radial bin each point in the map belongs to # recall that bins are from 1 to nbins whichbin = np.digitize(r.ravel(), bins) profile_std = np.array([np.nanstd(image.ravel()[whichbin == b]) for b in range(1, nbins + 1)]) profile_std /= np.sqrt(nr) # Deviation of the mean! return [bin_centers, profile, profile_std] else: return [bin_centers, profile]
3,278
def get_setindices(header, setnames): """From header like ---ID, coverage, set1_q-value set2_q-value--- this returns indices for different sets {'q-value': {'set1': 2, 'set2: 3}} """ setindices = OrderedDict() for index, field in enumerate(header): for setname in setnames: if field.startswith('{}_'.format(setname)): fieldname = field[len(setname) + 1:] try: setindices[fieldname][setname] = index except KeyError: setindices[fieldname] = {setname: index} return setindices
3,279
def _base_and_stride(freqstr): """ Return base freq and stride info from string representation Example ------- _freq_and_stride('5Min') -> 'Min', 5 """ groups = opattern.match(freqstr) if groups.lastindex != 2: raise ValueError("Could not evaluate %s" % freqstr) stride = groups.group(1) if len(stride): stride = int(stride) else: stride = 1 base = groups.group(2) return (base, stride)
3,280
def generate_label(input_x,threshold): """ generate label with input :param input_x: shape of [batch_size, sequence_length] :return: y:[batch_size] """ batch_size,sequence_length=input_x.shape y=np.zeros((batch_size,2)) for i in range(batch_size): input_single=input_x[i] sum=np.sum(input_single) if i == 0:print("sum:",sum,";threshold:",threshold) y_single=1 if sum>threshold else 0 if y_single==1: y[i]=[0,1] else: # y_single=0 y[i]=[1,0] return y
3,281
def store_wmarked_pdata(parameters, train_loader, valid_loader, \ netG, watermark, store_paths): """ Train: store the w'marked train data """ # init. Generator mode netG.eval() # data is_cuda = parameters['system']['cuda'] blend_f = parameters['wmark']['blend-factor'] # init. data holders wmarked_data = [] wmarked_labels = [] # create the w'marked train data for bidx, (data, labels) in enumerate( \ tqdm(train_loader, desc='[store:train]')): # : prepare inputs [cuda] batches = data.size()[0] wbatches = watermark.repeat(batches, 1, 1, 1) if is_cuda: data, labels, wbatches = \ data.cuda(), labels.cuda(), wbatches.cuda() # : synthesize new fake data (fake-w'mark) data_input = torch.cat((data, wbatches), dim=1) fake_wmark = netG(data_input) fake_walpha = fake_wmark[:,3:4] * blend_f fwmark_data = fake_walpha * fake_wmark[:,0:3] + (1 - fake_walpha) * data # : move to the data-holders if is_cuda: cur_wdatas = fwmark_data.data.cpu().numpy() * 255.0 cur_wdatas = cur_wdatas.astype(np.uint8) cur_labels = labels.data.cpu().numpy().tolist() else: cur_wdatas = fwmark_data.data.numpy() * 255.0 cur_wdatas = cur_wdatas.astype(np.uint8) cur_labels = labels.data.numpy().tolist() # : store... wmarked_data += [each_data for each_data in cur_wdatas] wmarked_labels += cur_labels # end for... # sanity checks assert len(wmarked_data) == len(wmarked_labels), \ ('Error: train data/labels [{}/{}]'.format(len(wmarked_data), len(wmarked_labels))) # store the data, labels chunk_data = [] chunk_label = [] chunk_size = parameters['wmark']['store-batch'] for idx in range(len(wmarked_data)): # : add the data chunk_data.append(wmarked_data[idx]) chunk_label.append(wmarked_labels[idx]) # : save the data (in every i-th chunk) if (idx+1) % chunk_size == 0: store_chunk = { 'data' : np.asarray(chunk_data), 'labels': chunk_label, } # :: store to the correct location chunk_filename = 'train_{}.pkl'.format(int((idx+1)/chunk_size)) chunk_savepath = os.path.join(store_paths['data'], store_paths['prefix']) if not os.path.exists(chunk_savepath): os.makedirs(chunk_savepath) pickle.dump(store_chunk, open(os.path.join(chunk_savepath, chunk_filename), 'wb')) # :: clear the holders chunk_data = [] chunk_label = [] # for idx... # remainders if chunk_data and chunk_label: store_chunk = { 'data' : np.asarray(chunk_data), 'labels': chunk_label, } # : store to the correct location chunk_filename = 'train_{}.pkl'.format(int(len(wmarked_data)/chunk_size) + 1) chunk_savepath = os.path.join(store_paths['data'], store_paths['prefix']) if not os.path.exists(chunk_savepath): os.makedirs(chunk_savepath) pickle.dump(store_chunk, open(os.path.join(chunk_savepath, chunk_filename), 'wb')) # end if chunk_data... """ Test: store the w'marked test data """ # init. data holders wmarked_data = [] wmarked_labels = [] # create the w'marked valid data for bidx, (data, labels) in enumerate( \ tqdm(valid_loader, desc='[store:valid]')): # : prepare inputs [cuda] batches = data.size()[0] wbatches = watermark.repeat(batches, 1, 1, 1) if is_cuda: data, labels, wbatches = \ data.cuda(), labels.cuda(), wbatches.cuda() # : synthesize new fake data (fake-w'mark) data_input = torch.cat((data, wbatches), dim=1) fake_wmark = netG(data_input) fake_walpha = fake_wmark[:,3:4] * blend_f fwmark_data = fake_walpha * fake_wmark[:,0:3] + (1 - fake_walpha) * data # : move to the data-holders if is_cuda: cur_wdatas = fwmark_data.data.cpu().numpy() * 255.0 cur_wdatas = cur_wdatas.astype(np.uint8) cur_labels = labels.data.cpu().numpy().tolist() else: cur_wdatas = fwmark_data.data.numpy() * 255.0 cur_wdatas = cur_wdatas.astype(np.uint8) cur_labels = labels.data.numpy().tolist() # : store wmarked_data += [each_data for each_data in cur_wdatas] wmarked_labels += cur_labels # end for... # sanity checks assert len(wmarked_data) == len(wmarked_labels), \ ('Error: test data/labels [{}/{}]'.format(len(wmarked_data), len(wmarked_labels))) # store the data, labels chunk_data = [] chunk_label = [] for idx in range(len(wmarked_data)): # : add the data chunk_data.append(wmarked_data[idx]) chunk_label.append(wmarked_labels[idx]) # : save the data (in every i-th chunk) if (idx+1) % chunk_size == 0: store_chunk = { 'data' : np.asarray(chunk_data), 'labels': chunk_label, } # :: store to the correct location chunk_filename = 'valid_{}.pkl'.format(int((idx+1)/chunk_size)) chunk_savepath = os.path.join(store_paths['data'], store_paths['prefix']) if not os.path.exists(chunk_savepath): os.makedirs(chunk_savepath) pickle.dump(store_chunk, open(os.path.join(chunk_savepath, chunk_filename), 'wb')) # :: clear the holders chunk_data = [] chunk_label = [] # for idx... # remainders if chunk_data and chunk_label: store_chunk = { 'data' : np.asarray(chunk_data), 'labels': chunk_label, } # : store to the correct location chunk_filename = 'valid_{}.pkl'.format(int(len(wmarked_data)/chunk_size) + 1) chunk_savepath = os.path.join(store_paths['data'], store_paths['prefix']) if not os.path.exists(chunk_savepath): os.makedirs(chunk_savepath) pickle.dump(store_chunk, open(os.path.join(chunk_savepath, chunk_filename), 'wb')) # end if chunk_data... # done.
3,282
def remove(path): """Deletes a directory or file. Args: path: string, a path, filepath or dirpath. Raises: errors. NotFoundError if directory or file doesn't exist. """ if exists(path): if isfile(path): os.remove(path) else: shutil.rmtree(path)
3,283
def erase(input: Any, *args: Any, **kwargs: Any) -> Any: """TODO: add docstring""" ...
3,284
def test_delete_a_sharedpublished_volume_whilst_the_nexus_node_is_inaccessible(): """delete a shared/published volume whilst the nexus node is inaccessible."""
3,285
def test_sanitize(coresys): """Test event sanitation.""" event = { "tags": [["url", "https://mydomain.com"]], "request": { "url": "https://mydomain.com", "headers": [ ["Host", "mydomain.com"], ["Referer", "https://mydomain.com/api/oppio_ingress/xxx-xxx/"], ["X-Forwarded-Host", "mydomain.com"], ["X-Oppio-Key", "xxx"], ], }, } coresys.config.diagnostics = True coresys.core.state = CoreState.RUNNING with patch("shutil.disk_usage", return_value=(42, 42, 2 * (1024.0 ** 3))): filtered = filter_data(coresys, event, {}) assert ["url", "https://example.com"] in filtered["tags"] assert filtered["request"]["url"] == "https://example.com" assert ["Host", "example.com"] in filtered["request"]["headers"] assert ["Referer", "https://example.com/api/oppio_ingress/xxx-xxx/"] in filtered[ "request" ]["headers"] assert ["X-Forwarded-Host", "example.com"] in filtered["request"]["headers"] assert ["X-Oppio-Key", "XXXXXXXXXXXXXXXXXXX"] in filtered["request"]["headers"]
3,286
def sf_imread( img_path, plot=True, ): """ Thin wrapper around `skimage.io.imread` that rotates the image if it is to be used for plotting, but does not if it is to be used for measurements. Parameters ---------- img_path : str Path to image plot : bool Determines whether or not image will be rotated 90 degrees Returns ------- np.array """ img_in = io.imread(img_path) if plot: img_in = transform.rotate(img_in, -90) # show images going left-right return img_in
3,287
def init_config(): """Called at the end of package import to read initial configuration and setup cloud computing. """ from . import packages config.update(CONFIG_DEFAULTS) path = _get_config_path() if os.path.exists(path): try: with open(path, 'r') as infile: newconf = yaml.load(infile) if not isinstance(newconf, dict): raise TypeError('Cannot read configuration "%s" from %s.' % (newconf, path)) except (IOError, KeyError, TypeError) as e: print(('WARNING: exception while reading configuration: %s. ' 'using built-in default configuration') % e) else: config.update(newconf) _check_override('default_version_tag', DEFAULT_VERSION_TAG, path) if 'default_version_tag' not in config: config.default_version_tag = DEFAULT_VERSION_TAG if future.utils.PY2: expcted_docker_python_image = compute.get_image_path('moldesign_complete_py2') else: expcted_docker_python_image = compute.get_image_path('moldesign_complete') if config.get('default_python_image', None) is None: config.default_python_image = expcted_docker_python_image for pkg, do_remote in list(config.run_remote.items()): if do_remote: try: getattr(packages, pkg).force_remote = True except AttributeError: print('WARNING: unknown key "%s" in %s' % (pkg, path), file=sys.stderr) for pkg, do_local in list(config.run_local.items()): if do_local: try: getattr(packages, pkg).run_local = True except AttributeError: print('WARNING: unknown key "%s" in %s' % (pkg, path), file=sys.stderr)
3,288
def init(): """ Turns 'jpg' to reality array Initializes x,y,result_map to some values """ global reality, real_coordinates, bot_center im = Image.open('map.jpg') reality = array(im) # TODO Starting Point Issue real_coordinates.append([reality.shape[1] / 2, reality.shape[0] / 2]) bot_center = (0, 0)
3,289
def test_plugin_ws_url_attributes(spf, path, query, expected_url): """Note, this doesn't _really_ test websocket functionality very well.""" app = spf._app test_plugin = TestPlugin() async def handler(request): return text('OK') test_plugin.websocket(path)(handler) spf.register_plugin(test_plugin) test_client = app.test_client request, response = test_client.get(path + '?{}'.format(query)) try: # Sanic 20.3.0 and above p = test_client.port except AttributeError: p = testing.PORT or 0 assert request.url == expected_url.format(testing.HOST, str(p)) parsed = urlparse(request.url) assert parsed.scheme == request.scheme assert parsed.path == request.path assert parsed.query == request.query_string assert parsed.netloc == request.host
3,290
def less_than(x, y, force_cpu=None, cond=None, name=None): """ ${comment} Args: x(Tensor): ${x_comment}. y(Tensor): ${y_comment}. force_cpu(${force_cpu_type}): ${force_cpu_comment}. cond(Tensor, optional): Optional output which can be any created Tensor that meets the requirements to store the result of *less_than*. if cond is None, a new Tensor will be created to store the result. name(str, optional): The default value is None. Normally there is no need for user to set this property. For more information, please refer to :ref:`api_guide_Name`. Returns: ${out_comment}. Examples: .. code-block:: python import paddle x = paddle.to_tensor([1, 2, 3, 4], dtype='float32') y = paddle.to_tensor([2, 2, 1, 3], dtype='float32') result = paddle.less_than(x, y) print(result) # [True, False, False, False] """ check_variable_and_dtype(x, "x", ["float32", "float64", "int32", "int64"], "less_than") check_variable_and_dtype(y, "y", ["float32", "float64", "int32", "int64"], "less_than") if cond is not None: check_type(cond, "cond", Variable, "less_than") if force_cpu != None: check_type(force_cpu, "force_cpu", bool, "less_than") helper = LayerHelper("less_than", **locals()) if cond is None: cond = helper.create_variable_for_type_inference(dtype='bool') cond.stop_gradient = True attrs = dict() if force_cpu is not None: attrs['force_cpu'] = force_cpu helper.append_op( type='less_than', inputs={'X': [x], 'Y': [y]}, outputs={'Out': [cond]}, attrs=attrs) return cond
3,291
def get_page_namespace(url_response): """ :type element: Tag :rtype: int """ keyword = '"wgNamespaceNumber"' text = url_response if keyword in text: beginning = text[text.find(keyword) + len(keyword):] ending = beginning[:beginning.find(',')] ints = re.findall('\d+', ending) if len(ints) > 0: return int(ints[0])
3,292
def batch_to_seq(h, nbatch, nsteps, flat=False): """ Assumes Time major data!! x.shape = [nsteps, nbatch, *obs_shape] h = x.reshape([-1, *x.shape[2:]])) """ if flat: h = tf.reshape(h, [nsteps, nbatch]) else: h = tf.reshape(h, [nsteps, nbatch, -1]) return [tf.squeeze(v, [0]) for v in tf.split(axis=0, num_or_size_splits=nsteps, value=h)]
3,293
def debug(*args,**kwargs): """A super easy way to visualize Klamp't items. The argument list can be a list of Klamp't items, and can also include strings or dicts. If a string precedes an item, then it will be labeled by the string. If a dict follows an item, the dict will specify attributes for the item. It can also contain the 'animation' key, in which case it should contain a Trajectory animating the item. Keyword arguments may include: - title: the window title - animation: if only one item is given, sets a looping animation - centerCamera: the name of the item that the camera should look at, or True to center on the whole scene. - followCamera: the name of the item that the camera will follow if animated, or None (default). - dialog: True if a dialog should be shown (default), False if a standard show() should be used. - anything else: Treated as named klamp't item. """ global _backend _init() oldWindow = getWindow() if oldWindow is None: oldWindow = 0 myWindow = createWindow() nextName = None lastName = None itemcount = 0 if 'world' in kwargs: add('world',kwargs['world']) del kwargs['world'] animationDuration = 0 for i,arg in enumerate(args): if isinstance(arg,str): nextName = arg elif isinstance(arg,dict): if lastName is None: warnings.warn("vis.debug(): dict of attributes must follow an object") continue for (k,v) in arg.items(): if k == 'animation': animate(lastName,v) animationDuration = max(animationDuration,v.endTime()) else: try: setAttribute(lastName,k,v) except Exception: warnings.warn("vis.debug(): Couldn't set attribute {} of item {}".format(k,lastName)) else: label = None if nextName is None: name = None if hasattr(arg,'getName'): try: name = arg.getName() except Exception: pass if hasattr(arg,'name') and isinstance(arg.name,str): name = arg.name if name is None: try: type = types.objectToTypes(arg) if isinstance(type,list): type = type[0] name = type + '['+str(itemcount)+']' except ValueError: name = 'item['+str(itemcount)+']' else: name = nextName label = name add(name,arg) itemcount += 1 lastName = name nextName = None title = None doDialog = True centerCamera = None followCameraItem = None animation = None for k,v in kwargs.items(): if k=='title': title = v elif k=='world': pass elif k=='dialog': doDialog = v elif k=='animation': animation = v elif k=='followCamera': followCameraItem = v elif k=='centerCamera': centerCamera = v else: add(k,v) lastName = k itemcount += 1 if title is not None: setWindowTitle(title) else: setWindowTitle("Klampt debugging: "+','.join(scene().items.keys())) if animation is not None: animate(lastName,animation) if centerCamera is True: autoFitCamera(rotate=False) elif centerCamera: if isinstance(centerCamera,int): centerCamera = 'item['+str(centerCamera)+']' elif not isinstance(centerCamera,(str,tuple)): centerCamera = getItemName(centerCamera) if centerCamera is None: warnings.warn("vis.debug(): could not center camera, invalid object name") else: vp = getViewport() try: autoFitViewport(vp,[scene().getItem(centerCamera)],rotate=False) setViewport(vp) except Exception: warnings.warn("vis.debug(): Centering camera failed") import traceback traceback.print_exc() if followCameraItem is not None: if followCameraItem is True: followCamera(lastName,center=True) else: if not isinstance(followCameraItem,(str,tuple)): followCameraItem = getItemName(followCameraItem) if followCameraItem is None: warnings.warn("vis.debug(): could not follow camera, invalid object name") followCamera(followCameraItem,center=True) if _backend == 'HTML': #dump out the animation if animation is not None: animationDuration = max(animationDuration,animation.endTime()) if animationDuration > 0: dt = 1.0/30.0 t = 0 while t < animationDuration: stepAnimation(dt) t += dt show() setWindow(oldWindow) elif _backend == 'IPython': #setup a Playback widget from the animation if animation is not None: animationDuration = max(animationDuration,animation.endTime()) if animationDuration > 0: framerate = 30 my_scene = scene() def advance(): my_scene.stepAnimation(1.0/framerate) my_scene.update() def reset(): my_scene.animationTime(0) from .ipython.widgets import Playback playback = Playback(nativeWindow(),advance=advance,reset=reset,maxframes=int(animationDuration*framerate),framerate=framerate) from IPython.display import display display(playback) show() else: if doDialog: dialog() setWindow(oldWindow) else: show() #open ended...
3,294
def cross_validation_visualization_due(params, mse_tr, mse_te, param2, tr2, te2, params_name='', prname2='', title='', error_name=''): """visualization the curves of mse_tr and mse_te.""" plt.semilogx(params, mse_tr, marker=".", color='r', label='train error ' + params_name, linestyle='solid') plt.semilogx(params, mse_te, marker=".", color='r', label='test error ' + params_name, linestyle='dashed') plt.semilogx(param2, tr2, marker=".", color='b', label='train error ' + prname2, linestyle='solid') plt.semilogx(param2, te2, marker=".", color='b', label='test error ' + prname2, linestyle='dashed') plt.xlabel("Parameters: " + params_name + " " + prname2) plt.ylabel("Error: " + error_name) plt.title("cross validation " + title) plt.legend(loc=2) plt.grid(True) plt.savefig(get_plot_path("cross_validation_" + title)) plt.show()
3,295
def get_site_camera_data(site_no): """An orchestration method that fetches camera data and returns the site dictionary""" json_raw = get_json_camera_data() camera = json_raw_to_dictionary(json_raw) return find_site_in_cameras(site_no, camera)
3,296
def get_args(): """ Get arguments to the tool with argparse :return: The arguments """ parser = argparse.ArgumentParser() parser.add_argument("filename", action='store', help='.xyz file(s) with optimised geometries from which to make .top and .gro files', nargs="+") parser.add_argument('-id', type=str, default='AAA', help="Three letter name of the residue/molecule e.g LYS") parser.add_argument('-c', type=int, default=0, help="Charge of the molecule Default: %(default)s") parser.add_argument('-m', type=int, default=1, help="Multiplicity of the molecule. Default: %(default)s") parser.add_argument('-notrash', action='store_true', default=False, help="Don't trash all the output files. Only .gro and .top will be left by default") return parser.parse_args()
3,297
def test_del_invite_null_email(client): """Super admin deletes invite without specifying email.""" response = client.delete( tests.DDSEndpoint.USER_DELETE, headers=tests.UserAuth(tests.USER_CREDENTIALS["superadmin"]).token(client), json={"email": None, "is_invite": True}, ) assert response.status_code == http.HTTPStatus.BAD_REQUEST assert response.json.get("email").get("message") == "The email cannot be null."
3,298
def find_contam(df, contaminant_prevalence=0.5, use_mad_filter=False): """Flag taxa that occur in too many samples.""" taxa_counts = {} for taxa in df['taxa_name']: taxa_counts[taxa] = 1 + taxa_counts.get(taxa, 0) thresh = max(2, contaminant_prevalence * len(set(df['sample_name']))) contaminants = {taxa for taxa, count in taxa_counts.items() if count >= thresh} if not use_mad_filter or df.shape[0] <= 2: return df[~df['taxa_name'].isin(contaminants)] return median_filter(df, contaminants)
3,299