content
stringlengths
22
815k
id
int64
0
4.91M
def MaybeGetHexShaOfLastExportedCommit( repo: git.Repo, head_ref: str = "HEAD") -> typing.List[str]: """The the SHA1 of the most recently exported commit. Args: repo: The repo to iterate over. head_ref: The starting point for iteration, e.g. the commit closest to head. Returns: The hex SHA1 of the last exported commited, else None. """ export_re = re.compile(r'\n\[Exported from ([a-fA-F0-9]{40})\]') try: for commit in repo.iter_commits(head_ref): if '\n[Exported from ' in commit.message: match = export_re.search(commit.message) assert match return match.group(1) except git.GitCommandError: # Raise if no HEAD, i.e. no commits. pass return None
2,900
def Quit(): """ Closes the client """ pass
2,901
def get_inchi(ID): """This function accept UNIQUE-ID and return InChI string of a certain compound""" inchi = df_cpd['INCHI'][ID] return inchi
2,902
def run_samtools_faidx(job, ref_id): """ Use Samtools to create reference index file :param JobFunctionWrappingJob job: passed automatically by Toil :param str ref_id: FileStoreID for the reference genome :return: FileStoreID for reference index :rtype: str """ job.fileStore.logToMaster('Created reference index') work_dir = job.fileStore.getLocalTempDir() job.fileStore.readGlobalFile(ref_id, os.path.join(work_dir, 'ref.fasta')) command = ['faidx', '/data/ref.fasta'] dockerCall(job=job, workDir=work_dir, parameters=command, tool='quay.io/ucsc_cgl/samtools:0.1.19--dd5ac549b95eb3e5d166a5e310417ef13651994e') return job.fileStore.writeGlobalFile(os.path.join(work_dir, 'ref.fasta.fai'))
2,903
def test_gdalversion_class_runtime(): """Test the version of GDAL from this runtime""" GDALVersion.runtime().major >= 1
2,904
def pad_to_multiple(array: Array, factor: int, axis: int, mode: Optional[str] = 'constant', constant_values=0) -> Array: """Pads `array` on a given `axis` to be a multiple of `factor`. Padding will be concatenated to the end of the axis only, not the beginning. If the length along `axis` is already a multiple of `factor`, this is effectively a no-op. Args: array: Array with rank >= 1 to pad. factor: Positive integer factor to pad for. axis: A valid axis in `array` to pad. mode: The padding mode to use according to `jnp.pad`. Defaults to 'constant'. See `jax.numpy.pad` documentation for more. constant_values: For 'constant' mode, the pad value to use within `jnp.pad`. Defaults to 0. Returns: The padded Array result. """ array = jnp.asarray(array) if factor < 1: raise ValueError(f'`factor` must be positive but got {factor}.') rank = array.ndim if axis < -rank or axis >= rank: raise ValueError( f'`axis` ({axis}) out of bounds for `array` rank ({rank}).') axis_len = array.shape[axis] pad_len = -axis_len % factor pad_width = [(0, 0)] * rank pad_width[axis] = (0, pad_len) kwargs = {} if mode == 'constant': kwargs['constant_values'] = constant_values return jnp.pad(array=array, pad_width=pad_width, mode=mode, **kwargs)
2,905
def easy2dict(config: easydict.EasyDict): """ :param config: EasyDict参数 """ # fix a Bug: cfg = dict(config) 仅仅转换第一层easydict cfg = json.loads(json.dumps(config)) return cfg
2,906
def define_request( dataset, query=None, crs="epsg:4326", bounds=None, bounds_crs="EPSG:3005", sortby=None, pagesize=10000, ): """Define the getfeature request parameters required to download a dataset References: - http://www.opengeospatial.org/standards/wfs - http://docs.geoserver.org/stable/en/user/services/wfs/vendor.html - http://docs.geoserver.org/latest/en/user/tutorials/cql/cql_tutorial.html """ # validate the table name and find out how many features it holds table = validate_name(dataset) n = bcdata.get_count(table, query=query) wfs = WebFeatureService(url=bcdata.OWS_URL, version="2.0.0") geom_column = wfs.get_schema("pub:" + table)["geometry_column"] # DataBC WFS getcapabilities says that it supports paging, # and the spec says that responses should include 'next URI' # (section 7.7.4.4.1).... # But I do not see any next uri in the responses. Instead of following # the paged urls, for datasets with >10k records, just generate urls # based on number of features in the dataset. chunks = math.ceil(n / pagesize) # if making several requests, we need to sort by something if chunks > 1 and not sortby: sortby = get_sortkey(table) # build the request parameters for each chunk param_dicts = [] for i in range(chunks): request = { "service": "WFS", "version": "2.0.0", "request": "GetFeature", "typeName": table, "outputFormat": "json", "SRSNAME": crs, } if sortby: request["sortby"] = sortby # build the CQL based on query and bounds # (the bbox param shortcut is mutually exclusive with CQL_FILTER) if query and not bounds: request["CQL_FILTER"] = query if bounds: b0, b1, b2, b3 = [str(b) for b in bounds] bnd_query = f"bbox({geom_column}, {b0}, {b1}, {b2}, {b3}, '{bounds_crs}')" if not query: request["CQL_FILTER"] = bnd_query else: request["CQL_FILTER"] = query + " AND " + bnd_query if chunks > 1: request["startIndex"] = i * pagesize request["count"] = pagesize param_dicts.append(request) return param_dicts
2,907
def get_bert_input( examples: List[tuple], ) -> Tuple[torch.Tensor, torch.Tensor, torch.Tensor]: """Convert input list to torch tensor. Args: examples: (input_id_list, ) Returns: attention_mask, input_ids_tensor, token_type_ids_tensor """ input_ids = examples[0] token_type_ids = examples[1] max_seq_len = min(max(len(input_id) for input_id in input_ids), MAX_SEQ_LEN) input_ids_tensor = torch.zeros((len(input_ids), max_seq_len), dtype=torch.long) token_type_ids_tensor = torch.zeros_like(input_ids_tensor) attention_mask = torch.ones_like(input_ids_tensor) for i, input_id in enumerate(input_ids): cur_seq_len = len(input_id) if cur_seq_len <= max_seq_len: input_ids_tensor[i, :cur_seq_len] = torch.tensor(input_id, dtype=torch.long) token_type_ids_tensor[i, :cur_seq_len] = torch.tensor( token_type_ids[i], dtype=torch.long ) attention_mask[i, cur_seq_len:] = 0 else: input_ids_tensor[i] = torch.tensor( input_id[: max_seq_len - 1] + [102], dtype=torch.long ) token_type_ids_tensor[i] = torch.tensor( token_type_ids[i][:max_seq_len], dtype=torch.long ) return attention_mask, input_ids_tensor, token_type_ids_tensor
2,908
def _format_exception(e: BaseException): """ Shamelessly stolen from stdlib's logging module. """ with io.StringIO() as sio: traceback.print_exception(e.__class__, e, e.__traceback__, None, sio) return sio.getvalue().strip()
2,909
def batch_deploy(blueprint_id, parent_deployments, group_id=None, new_deployment_ids=None, inputs=None, labels=None, **_): """ Create deployments for a batch from a single blueprint. :param blueprint_id: The blueprint, which has already been uploaded. :type blueprint_id: str :param parent_deployments: A list of parent deployments. :type parent_deployments: list :param group_id: the new group ID. :type group_id: str :param new_deployment_ids: a list of new deployment names. :type new_deployment_ids: list :param inputs: A list of inputs to the new deployments. :type inputs: list :param labels: A list of labels to the new deployments. :type labels: list :return: group_id :rtype: str """ if not isinstance(parent_deployments, list): # If someone sends a list in the CLI, # it will not be properly formatted. try: parent_deployments = json.loads(parent_deployments) except json.JSONDecodeError: raise NonRecoverableError( 'The parent_deployments parameter is not properly formatted. ' 'Proper format is a list, a {t} was provided: {v}.'.format( t=type(parent_deployments), v=parent_deployments)) group_id = group_id or generate_group_id_from_blueprint( blueprint_id) new_deployment_ids = new_deployment_ids or \ generate_deployment_ids_from_group_id(group_id, parent_deployments) inputs = generate_inputs_from_deployments(inputs, parent_deployments) labels = labels or generate_labels_from_inputs(inputs) create_deployments( group_id, blueprint_id, new_deployment_ids, inputs, labels) return group_id
2,910
def compute_task_def(build, settings, fake_build): """Returns a swarming task definition for the |build|. Args: build (model.Build): the build to generate the task definition for. build.proto.infra and build.proto.input.properties must be initialized. settings (service_config_pb2.SettingsCfg): global settings. fake_build (bool): False if the build is not going to be actually created in buildbucket. This is used by led that only needs the definition of the task that *would be* used for a new build like this. Returns a task_def dict. Corresponds to JSON representation of https://cs.chromium.org/chromium/infra/luci/appengine/swarming/swarming_rpcs.py?q=NewTaskRequest&sq=package:chromium&g=0&l=438 """ assert isinstance(build, model.Build), type(build) assert isinstance(fake_build, bool), type(fake_build) assert build.proto.HasField('infra') assert build.proto.input.HasField('properties') assert isinstance(settings, service_config_pb2.SettingsCfg) sw = build.proto.infra.swarming task = { 'name': 'bb-%d-%s' % (build.proto.id, build.builder_id), 'tags': _compute_tags(build, settings), 'priority': str(sw.priority), 'task_slices': _compute_task_slices(build, settings), } if build.proto.number: # pragma: no branch task['name'] += '-%d' % build.proto.number if sw.task_service_account: # pragma: no branch # Don't pass it if not defined, for backward compatibility. task['service_account'] = sw.task_service_account if not fake_build: # pragma: no branch | covered by swarmbucketapi_test.py task['pubsub_topic'] = 'projects/%s/topics/swarming' % ( app_identity.get_application_id() ) task['pubsub_userdata'] = json.dumps( { 'build_id': build.proto.id, 'created_ts': utils.datetime_to_timestamp(utils.utcnow()), 'swarming_hostname': sw.hostname, }, sort_keys=True, ) return task
2,911
def parse_markdown(page, target=None, pages=None, categories=[], mode="html", current_time="", bypass_errors=False): """Takes a page object (must contain "md" attribute) and returns parsed and filtered HTML.""" target = get_target(target) logger.info("Preparing page %s" % page["name"]) # We'll apply these filters to the page page_filters = get_filters_for_page(page, target) logger.debug("Filters for page {pg}: {fl}".format( pg=page["name"], fl=page_filters)) # Get the markdown, preprocess, and apply md filters try: md = preprocess_markdown(page, target=target, categories=categories, mode=mode, current_time=current_time, page_filters=page_filters, bypass_errors=bypass_errors, ) except Exception as e: traceback.print_tb(e.__traceback__) recoverable_error("Couldn't preprocess markdown for page %s: %s(%s)" % (page["name"], repr(e), str(e)), bypass_errors) # Just fetch the md without running the preprocessor md = preprocess_markdown(page, target=target, categories=categories, mode=mode, current_time=current_time, page_filters=page_filters, bypass_errors=bypass_errors, skip_preprocessor=True ) # Actually parse the markdown logger.info("... parsing markdown...") html = markdown(md, extensions=["markdown.extensions.extra", "markdown.extensions.toc"], lazy_ol=False) # Apply raw-HTML-string-based filters here for filter_name in page_filters: if "filter_html" in dir(config.filters[filter_name]): logger.info("... applying HTML filter %s" % filter_name) html = config.filters[filter_name].filter_html( html, currentpage=page, categories=categories, pages=pages, target=target, current_time=current_time, mode=mode, config=config, logger=logger, ) # Some filters would rather operate on a soup than a string. # May as well parse once and re-serialize once. soup = BeautifulSoup(html, "html.parser") # Apply soup-based filters here for filter_name in page_filters: if "filter_soup" in dir(config.filters[filter_name]): logger.info("... applying soup filter %s" % filter_name) config.filters[filter_name].filter_soup( soup, currentpage=page, categories=categories, pages=pages, target=target, current_time=current_time, mode=mode, config=config, logger=logger, ) # ^ the soup filters apply to the same object, passed by reference logger.info("... re-rendering HTML from soup...") html2 = str(soup) return html2
2,912
def draw_bs_pairs(x, y, func, size=1): """Perform pairs bootstrap for replicates.""" # Set up array of indices to sample from: inds inds = np.arange(len(x)) # Initialize replicates bs_replicates = np.empty(size) # Generate replicates for i in range(size): bs_inds = np.random.choice(inds, len(inds)) bs_x, bs_y = x[bs_inds], y[bs_inds] bs_replicates[i] = func(bs_x, bs_y) return bs_replicates
2,913
def has_hole(feature): """ Detects the number of holes in a shapely polygon or multipolygon. Parameters ---------- feature : shapely Polygon or Multipolygon polygon to be analyzed for holes Returns ------- int number of holes """ if feature.geom_type == 'Polygon': num_holes = len(feature.interiors) elif feature.geom_type == 'MultiPolygon': num_holes = np.sum([len(x.interiors) for x in feature]) return num_holes
2,914
def linder_table(file=None, **kwargs): """Load Linder Model Table Function to read in isochrone models from Linder et al. 2019. Returns an astropy Table. Parameters ---------- age : float Age in Myr. If set to None, then an array of ages from the file is used to generate dictionary. If set, chooses the closest age supplied in table. file : string Location and name of COND file. See isochrones stored at https://phoenix.ens-lyon.fr/Grids/. Default is model.AMES-Cond-2000.M-0.0.JWST.Vega """ # Default file to read and load if file is None: base_dir = conf.PYNRC_PATH + 'linder/isochrones/' file = base_dir + 'BEX_evol_mags_-3_MH_0.00.dat' with open(file) as f: content = f.readlines() content = [x.strip('\n') for x in content] cnames = content[2].split(',') cnames = [name.split(':')[1] for name in cnames] ncol = len(cnames) content_arr = [] for line in content[4:]: arr = np.array(line.split()).astype(np.float) if len(arr)>0: content_arr.append(arr) content_arr = np.array(content_arr) # Convert to Astropy Table tbl = Table(rows=content_arr, names=cnames) return tbl
2,915
def json_redirect(request, url, **kwargs): """ Returns a JSON response for redirecting to a new URL. This is very specific to this project and depends on the JavaScript supporting the result that is returned from this method. """ if not request.is_ajax(): raise PermissionDenied("Must be an AJAX request.") return JsonResponse({'url': url}, **kwargs)
2,916
def unauthenticatedClient(): """Retorna um api client sem ninguém autenticado""" return APIClient()
2,917
def filters_to_kcorrect(curve_file, verbose=False): """ Convert a filter response curve to the Kcorrect format. This is used by Kcorrect and iSEDFit. """ if not os.path.isfile(curve_file): raise IOError("# Cannot find the response curve file {}".format(curve_file)) # Read in the .txt response curve wave, response = np.genfromtxt(curve_file, usecols=(0, 1), unpack=True) # Output file name prefix, _ = os.path.splitext(curve_file) output_par = prefix + '.par' if os.path.isfile(output_par): if verbose: print("# Curve {0} is already available".format(output_par)) else: assert len(wave) == len(response), ''' Wavelength and response curve should have the same size''' par = open(output_par, 'w') par.write( "# %s\n typedef struct {\n double lambda;\n double pass;\n } KFILTER;\n\n") for w, r in zip(wave, response): par.write("KFILTER %10.4f %11.7f\n" % (w, r)) par.close() return wave, response
2,918
def get_known_disk_attributes(model): """Get known NVMe/SMART attributes (model specific), returns str.""" known_attributes = KNOWN_DISK_ATTRIBUTES.copy() # Apply model-specific data for regex, data in KNOWN_DISK_MODELS.items(): if re.search(regex, model): for attr, thresholds in data.items(): if attr in known_attributes: known_attributes[attr].update(thresholds) else: known_attributes[attr] = thresholds # Done return known_attributes
2,919
def table_drop_nan_columns(table: Path, output_path: Path) -> None: """ Drop columns with only null values from the table. Arguments: table: Location of the input table. output_path: Location of the output table. """ with open_file_like(table, mode="r") as fd: reader = csv.reader(line_reader(fd, skip_empty=True)) column_names = {idx: name for idx, name in enumerate(next(reader))} # Perform a linear sweep to look for columns without a single non-null value not_nan_columns = set() for record in reader: for idx, value in enumerate(record): if value is not None and value != "": not_nan_columns.add(idx) # Rewind the input's buffer if possible, in case we were given a readable stream if hasattr(table, "seek"): table.seek(0) else: # We have to open and read the file twice: first to look for NaN columns and second to # remove them. This means that if a file handle is passed to this function and seek is # not supported, it will not work. assert isinstance( table, (Path, str) ), f"Input table must be a path-like object, found {type(table)}" # Remove all null columns and write output nan_columns = [idx for idx in column_names.keys() if idx not in not_nan_columns] table_rename(table, output_path, {column_names[idx]: None for idx in nan_columns})
2,920
def get_one_exemplar_per_class_proximity(proximity): """ unpack proximity object into X, y and random_state for picking exemplars. ---- Parameters ---- proximity : Proximity object Proximity like object containing the X, y and random_state variables required for picking exemplars. ---- Returns ---- result : function function choosing one exemplar per class """ return get_one_exemplar_per_class(proximity.X, proximity.y, proximity.random_state)
2,921
def annotation_layers(state): """Get all annotation layer names in the state Parameters ---------- state : dict Neuroglancer state as a JSON dict Returns ------- names : list List of layer names """ return [l["name"] for l in state["layers"] if l["type"] == "annotation"]
2,922
def describe_bvals(bval_file) -> str: """Generate description of dMRI b-values.""" # Parse bval file with open(bval_file, "r") as file_object: raw_bvals = file_object.read().splitlines() # Flatten list of space-separated values bvals = [ item for sublist in [line.split(" ") for line in raw_bvals] for item in sublist ] bvals = sorted([int(v) for v in set(bvals)]) bvals = [num_to_str(v) for v in bvals] bval_str = list_to_str(bvals) bval_str = "b-values of {} acquired".format(bval_str) return bval_str
2,923
def selectionToAbsoluteNames(selection, permissive='False'): """ Generator that converts selected nodes to long names. i.e. absolute paths for dag nodes or instances and names for dependency (non-dag) nodes. "selection" can either be a MSelectionList or an iterable of nodes. if permissive, invalid nodes names (strings) are kept. """ pass
2,924
def test_working_filter(test_microvm_with_api): """ Test --seccomp-filter, rejecting some dangerous syscalls. @type: security """ test_microvm = test_microvm_with_api _custom_filter_setup(test_microvm, """{ "Vmm": { "default_action": "allow", "filter_action": "kill_process", "filter": [ { "syscall": "clone" }, { "syscall": "execve" } ] }, "Api": { "default_action": "allow", "filter_action": "kill_process", "filter": [ { "syscall": "clone" }, { "syscall": "execve" } ] }, "Vcpu": { "default_action": "allow", "filter_action": "kill_process", "filter": [ { "syscall": "clone" }, { "syscall": "execve", "comment": "sample comment" } ] } }""".encode("utf-8")) test_microvm.spawn() test_microvm.basic_config() test_microvm.start() # level should be 2, with no additional errors utils.assert_seccomp_level(test_microvm.jailer_clone_pid, "2")
2,925
def weight_update4(weights, x_white, bias1, lrate1, b_exp): """ Update rule for infomax This function recieves parameters to update W1 * Input weights : unmixing matrix (must be a square matrix) x_white: whitened data bias1: current estimated bias lrate1: current learning rate b_exp : experiment * Output weights : updated mixing matrix bias: updated bias lrate1: updated learning rate """ NCOMP, NVOX = (x_white.shape) block1 = (int(np.floor(np.sqrt(NVOX / 3)))) last1 = (int(np.fix((NVOX/block1-1)*block1+1))) if not b_exp : permute1 = permutation(NVOX) else : permute1 = range(NVOX) for start in range(0, last1, block1): if start + block1 < NVOX: tt2 = (start + block1 ) else: tt2 = (NVOX) block1 = (NVOX - start) unmixed = (np.dot(weights, x_white[:, permute1[start:tt2]]) + bias1) logit = 1 / (1 + np.exp(-unmixed)) weights = (weights + lrate1 * np.dot( block1 * np.eye(NCOMP) + np.dot( (1-2*logit), unmixed.T), weights)) bias1 = (bias1 + lrate1 * (1-2*logit).sum(axis=1).reshape(bias1.shape)) # Checking if W blows up if (np.isnan(weights)).any() or np.max(np.abs(weights)) > MAX_WEIGHT: # ("Weight is outside the range. Restarting.") weights = (np.eye(NCOMP)) bias1 = (np.zeros((NCOMP, 1))) error = 1 if lrate1 > 1e-6 and \ matrix_rank(x_white) < NCOMP: a = 1 # ("Data 1 is rank defficient" # ". I cannot compute " + # str(NCOMP) + " components.") return (None, None, None, 1) if lrate1 < 1e-6: a = 1 # ("Weight matrix may" # " not be invertible...") return (None, None, None, 1) break else: error = 0 return (weights, bias1, lrate1, error)
2,926
def Dijkstra(graph, source): """ Dijkstra's algorithm for shortest path between two vertices on a graph. Arguments --------- graph -- directed graph; object of Graph class source -- start vertex >>> graph = Graph() >>> graph.addVertex("A") >>> conns = [ ("A", "B"), ("A", "C"), ("B", "C"), ("C", "D") ] >>> for va, vb in conns: ... graph.addConn(va, vb) >>> dists = Dijkstra(graph, 'A') >>> dists['D'] 2 """ dist = {} pq = pQ.BinaryHeap() for node in graph: if node != source: dist[node] = float('inf') else: dist[node] = 0 pq.insert((dist[node], node)) while not pq.isEmpty(): current = pq.delMin() for next_node in graph.getConns(current[1]): new_dist = current[0] + 1 if new_dist < dist[next_node]: dist[next_node] = new_dist pq.editHeap(next_node, (dist[next_node], next_node)) return dist
2,927
def update_local(base, new_path): """On some systems virtualenv seems to have something like a local directory with symlinks. It appears to happen on debian systems and it causes havok if not updated. So do that. """ local_dir = os.path.join(base, 'local') if not os.path.isdir(local_dir): return for folder in 'bin', 'lib', 'include': filename = os.path.join(local_dir, folder) target = '../%s' % folder if os.path.islink(filename) and os.readlink(filename) != target: os.remove(filename) os.symlink('../%s' % folder, filename) print('L %s' % filename)
2,928
def handle_post_actor_report(self, handle, connection, match, data, hdr): """ POST /actor/{actor-id}/report Some actors accept external input using this function. Not always present. Response status code: OK or NOT_FOUND Response: Depends on actor """ self._actor_report(handle, connection, match, data, hdr)
2,929
def check_data_dir(path): """ check cata_dir """ err = "Data path is not exist, please given a right path" \ "".format(path) try: assert os.isdir(path) except AssertionError: logger.error(err) sys.exit(1)
2,930
def test_find_number_max_repeating(): """ Find the number which is repeated the largest number of times """ t = MapReduceTask(verbose=True, lazy=False) # the order matters @t.map def m1(k, v): yield v, 1 @t.reduce def r1(k, v): yield k, sum(v) @t.map def m2(k, v): yield 'all', (k, v) @t.reduce def r2(k, v): km, vm = None, None for ki, vi in v: if vm is None or vi > vm: km, vm = ki, vi yield 'max', (km, vm) x = [1,2,3,1,2,1,4,5,6] # print newline, so the output will be on the new line when run by pytest print('') assert list(t(x)) == [('max', (1, 3))]
2,931
def annealing_epsilon(episode: int, min_e: float, max_e: float, target_episode: int) -> float: """Return an linearly annealed epsilon Epsilon will decrease over time until it reaches `target_episode` (epsilon) | max_e ---|\ | \ | \ | \ min_e ---|____\_______________(episode) | target_episode slope = (min_e - max_e) / (target_episode) intercept = max_e e = slope * episode + intercept Args: episode (int): Current episode min_e (float): Minimum epsilon max_e (float): Maximum epsilon target_episode (int): epsilon becomes the `min_e` at `target_episode` Returns: float: epsilon between `min_e` and `max_e` """ slope = (min_e - max_e) / (target_episode) intercept = max_e return max(min_e, slope * episode + intercept)
2,932
def ExtendWithDefault(validator_class): """Takes a validator and makes it set default values on properties. Args: validator_class: A class to add our overridden validators to Returns: A validator_class that will set default values and ignore required fields """ validate_properties = validator_class.VALIDATORS['properties'] def SetDefaultsInProperties(validator, user_schema, user_properties, parent_schema): SetDefaults(validator, user_schema or {}, user_properties, parent_schema, validate_properties) return jsonschema.validators.extend( validator_class, {PROPERTIES: SetDefaultsInProperties, REQUIRED: IgnoreKeyword})
2,933
def coach_input_line(call, school, f): """ Returns a properly formatted line about a coach. :param call: (String) The beginning of the line, includes the gender, sport, and school abbreviation. :param school:(String) The longform name of the school. :param f: (String) The input line from the user. :return: (String) A properly formatted line with all necessary information about a coach. """ f = f.split("\t") newCall = f[2].split(" ") for item in newCall: call += item[0].lower() print(call) print(f[2]) return f"{call}\t{school}'s {coachformat(f[2])}, {f[0]} {f[1]},\t{f[0]} {f[1]},\t{f[1]}\n"
2,934
def pad_seq(seq, max_length, PAD=0): """ :param seq: list of int, :param max_length: int, :return seq: list of int, """ seq += [PAD for i in range(max_length - len(seq))] return seq
2,935
def test_import_protobuf(): """ Ensure the generated protobuf file is successfully importable in a dev environment. """ from foxglove_websocket.examples.proto.ExampleMsg_pb2 import ExampleMsg _ = ExampleMsg
2,936
def complex_domain(spectrogram): """ Complex Domain. Parameters ---------- spectrogram : :class:`Spectrogram` instance :class:`Spectrogram` instance. Returns ------- complex_domain : numpy array Complex domain onset detection function. References ---------- .. [1] Juan Pablo Bello, Chris Duxbury, Matthew Davies and Mark Sandler, "On the use of phase and energy for musical onset detection in the complex domain", IEEE Signal Processing Letters, Volume 11, Number 6, 2004. """ # take the sum of the absolute changes return np.asarray(np.sum(np.abs(_complex_domain(spectrogram)), axis=1))
2,937
def toOneHot(action_space, actions): """ If action_space is "Discrete", return a one hot vector, otherwise just return the same `actions` vector. actions: [batch_size, 1] or [batch_size, n, 1] If action space is continuous, just return the same action vector. """ # One hot encoding buffer that you create out of the loop and just keep reusing if action_space.__class__.__name__ == "Discrete": nr_actions = action_space.n actions_onehot_dim = list(actions.size()) actions_onehot_dim[-1] = nr_actions actions = actions.view(-1, 1).long() action_onehot = torch.FloatTensor(actions.size(0), nr_actions) return_variable = False if isinstance(actions, Variable): actions = actions.data return_variable = True # In your for loop action_onehot.zero_() if actions.is_cuda: action_onehot = action_onehot.cuda() action_onehot.scatter_(1, actions, 1) if return_variable: action_onehot = Variable(action_onehot) action_onehot.view(*actions_onehot_dim) return action_onehot else: return actions.detach()
2,938
def find_triangle(n): """Find the first triangle number with N divisors.""" t, i = 1, 1 while True: i += 1 t += i if len(divisors(t)) > n: return t
2,939
def get_main_page_soup(home_url): """ parse main page soup""" user_agent= 'Mozilla / 5.0 (Windows NT 10.0; Win64; x64) AppleWebKit / 537.36(KHTML, ' \ 'like Gecko) Chrome / 64.0.3282.140 Safari / 537.36 Edge / 18.17763 ' headers = {'User-agent':user_agent} # request to javbus res = requests.get(home_url, headers=headers, timeout=20) res.raise_for_status() # init beautiful soup soup = bs4.BeautifulSoup(res.text, 'lxml') return soup
2,940
def gen_task4() -> np.ndarray: """Task 4: main corner of a triangle.""" canv = blank_canvas() r, c = np.random.randint(GRID-2, size=2, dtype=np.int8) syms = rand_syms(6) # 6 symbols for triangle # Which orientation? We'll create 4 rand = np.random.rand() if rand < 0.25: # top left rows, cols = [r, r, r, r+1, r+1, r+2], [c, c+1, c+2, c, c+1, c] elif rand < 0.50: # top right rows, cols = [r, r, r, r+1, r+1, r+2], [c+2, c, c+1, c+1, c+2, c+2] elif rand < 0.75: # bottom left rows, cols = [r+2, r, r+1, r+1, r+2, r+2], [c, c, c, c+1, c+1, c+2] else: # bottom right rows, cols = [r+2, r, r+1, r+1, r+2, r+2], [c+2, c+2, c+1, c+2, c, c+1] canv[rows, cols] = syms return [4, syms[0]], canv
2,941
def pytest_funcarg__testname(request): """ The testname as string, or ``None``, if no testname is known. This is the parameter added by the test generation hook, or ``None`` if no parameter was set, because test generation didn't add a call for this test. """ return getattr(request, 'param', None)
2,942
def try_log_conf_file(file_path: pathlib.Path) -> bool: """It tries to open a log configuration file. filePath: filePath return: boolean (True is succeed, False otherwise) """ global logger try: with file_path.open() as f: logger_conf = json.load(f) logging.config.dictConfig(logger_conf) logger = logging.getLogger(__name__) logger.debug("logger started from %s", str(pathlib.Path.cwd())) logger.info("%s found", str(file_path)) return True except FileNotFoundError as e: logger.info("%s not found: %s", str(file_path), str(e)) return False
2,943
def combine_specific_viz_ids_pics(srcs: List[str], out: str = None, setup: List[str] = ('base', 'hsc', 'ae'), skip_further=False, only_cls: List[int] = None): """ Combines heatmap images (visualization ids) for several old experiments for the same input images. Depending on the setup, it creates an image with input images at the top and heatmap images below, where each row corresponds to one experiment and each column to one input. A row can also contain ground-truth heatmaps. The combined heatmap images are stored on the disk according to the out parameter. :param srcs: paths to root directories of old experiments :param out: directory in which to put the combined images (class and seed-wise) :param setup: types of experiments/rows, need to be in the order of srcs, each element has to be in OPTIONS. "base": FCDD experiment, always needs to be the first element of setup! "hsc": HSC experiment with gradient heatmaps. "ae": Autoencoder experiment with reconstruction loss heatmaps. "gts": Ground-truth heatmaps. :param skip_further: if an experiment has more than one type of heatmap images, i.e. its logged images contain more than 2 rows (first row is always input), consider only the first type of heatmap. :param only_cls: list of classes, classes not part of the list are skipped, None means no classes are skipped :return: """ # TODO get rid of setup? assert all([s in OPTIONS for s in setup]) assert setup[0] == 'base' if 'gts' in setup: assert setup[-1] == 'gts' if out is None: out = srcs[0] + '_COMBINED_PAPER_PICS' if len(srcs) != len(setup): raise ValueError( 'fixed len of src required, {}, but found {}!' .format(' '.join(['({}) {}'.format(i + 1, s) for i, s in enumerate(setup)]), len(srcs)) ) pics = {} for n, src in enumerate(srcs): cls_labels = [pt.join(src, c) for c in os.listdir(src)] cls_labels.sort(key=pt.getmtime) cls_labels = [pt.basename(c) for c in cls_labels] if all([c.startswith('it_') for c in cls_labels if pt.isdir(pt.join(src, c))]): # one class experiment cls_labels = ['.'] for cls_dir in cls_labels: if not pt.isdir(pt.join(src, cls_dir)): continue assert cls_dir.startswith('normal_') if only_cls is not None and len(only_cls) > 0 and int(cls_dir[7:]) not in only_cls: continue print('collecting pictures of {} {}...'.format(src, cls_dir)) for it_dir in os.listdir(pt.join(src, cls_dir)): if pt.isfile(pt.join(src, cls_dir, it_dir)): continue cfg = read_cfg(pt.join(src, cls_dir, it_dir, 'config.txt')) tims_dir = pt.join(src, cls_dir, it_dir, 'tims') if n == 0: if pt.exists(pt.join(tims_dir, 'specific_viz_ids')): raise ValueError( 'First src should not contains specific viz ids, as first src should be the base!') for root, dirs, files in os.walk(tims_dir): for f in files: assert f[-4:] == '.pth' if cls_dir not in pics: pics[cls_dir] = {} if it_dir not in pics[cls_dir]: pics[cls_dir][it_dir] = {} pics[cls_dir][it_dir][f[:-4]] = [torch.load(pt.join(root, f))] else: if not pt.exists(pt.join(tims_dir, 'specific_viz_ids')): raise ValueError('Src {} should contain specific viz ids, but it doesnt!'.format(src)) for root, dirs, files in os.walk(pt.join(tims_dir, 'specific_viz_ids')): for f in files: assert f[-4:] == '.pth' if cls_dir == '.' and cls_dir not in pics: warnings.warn('Seems that src {} is a one class experiment...'.format(src)) cls = 'normal_{}'.format(cfg['normal_class']) else: cls = cls_dir if cls not in pics or it_dir not in pics[cls]: raise ValueError('{} {} is missing in base src!!'.format(cls_dir, it_dir)) if setup[n] in ('ae', ): if not f.startswith('ae_'): continue pics[cls][it_dir][f[3:-4]].append(torch.load(pt.join(root, f))) else: if f.startswith('ae_'): raise ValueError( 'ae has been found in position {}, but shouldnt be!'.format(n) ) pics[cls][it_dir][f[:-4]].append(torch.load(pt.join(root, f))) logger = Logger(out) for cls_dir in pics: print('creating pictures for {} {}...'.format(out, cls_dir)) for it_dir in pics[cls_dir]: for file in pics[cls_dir][it_dir]: combined_pic = [] inps = [] gts = None tensors = pics[cls_dir][it_dir][file] if len(tensors) != len(srcs): print( 'Some specific viz id tims are missing for {} {}!! Skipping them...'.format(cls_dir, it_dir), file=sys.stderr ) continue # 0 == base src t = tensors[0] rows, cols, c, h, w = t.shape inps.append(t[0]) if 'gts' in setup: combined_pic.extend([*t[:2 if skip_further else -1]]) gts = t[-1] else: combined_pic.extend([*t[:2 if skip_further else 10000000000]]) for t in tensors[1:]: rows, cols, c, h, w = t.shape if rows == 3: # assume gts in final row t = t[:-1] inps.append(t[0]) combined_pic.append(t[1]) # ADD GTMAP if gts is not None: combined_pic.append(gts) # check of all inputs have been the same for i, s in enumerate(srcs): for j, ss in enumerate(srcs): if j <= i: continue if (inps[i] != inps[j]).sum() > 0: raise ValueError('SRC {} and SRC {} have different inputs!!!'.format(srcs[i], srcs[j])) # combine new_cols = combined_pic[0].size(0) tim = torch.cat(combined_pic) logger.imsave(file, tim, nrow=new_cols, scale_mode='none', suffix=pt.join(cls_dir, it_dir)) print('Successfully combined pics in {}.'.format(out))
2,944
def notes_to_editor_view(notes): """Convert notes object content to more readble view Args: notes (list): list of note object Returns: list: list of note object """ for note in notes: note.content = to_editor(note.content) return notes
2,945
def cozmo_program(robot: cozmo.robot.Robot): """ Main entry point for running the scoring logic in the capture the flag game. :param robot: judge robot in the game """ # get number of teams playing in the game while True: try: teams: int = int(input("How many teams are playing?")) except ValueError: print("Invalid input type") continue if teams < 2: print("Must be between 2 and 3") continue elif teams > 3: print("Must be between 1 and 3") continue else: break # get the id of the team the judge is on while True: try: team_id: int = int(input("Which team is this judge on?")) except ValueError: print("Invalid input type") continue if team_id < 1: print("Must be between 1 and 3") continue elif team_id > 3: print("Must be between 1 and 3") continue else: break # get the corresponding team colors and opponent colors team_colors, opponent_colors = get_team_colors(teams) # set backpack color and head angle robot.set_all_backpack_lights(team_colors[team_id]) robot.set_head_angle(cozmo.util.Angle(degrees=20)) # establish connection to the network and message retrieval connection: socket.socket = start_connection("10.0.1.10", 5000) message: List[str] = [] # setup the game robot_cubes: List[LightCube] = setup(robot, opponent_colors[team_id]) # set default score robot_score: int = 0 # continuously check the cube object held up to the judge and increment the score accordingly while 'Exit' not in message: captured_cube = None # wait for one the cubes to be shown to the judge try: captured_cube = robot.world.wait_for_observed_light_cube(timeout=0.5) except concurrent.futures._base.TimeoutError: pass # increment score and change cube color if the cube was valid and in-play if captured_cube in robot_cubes: captured_cube.set_lights(team_colors[team_id]) robot_cubes.remove(captured_cube) robot_score += 1 # break out of the loop if the maximum score has been reached, cube wait doesn't let the loop terminate if robot_score == 3: break message = receive_message(connection) # print the win state and terminate based on scoring the maximum number of points or receiving the exit message if robot_score == 3: connection.send(b'Exit %d' % team_id) print('You won!') else: print('Robot %s won!' % message[1])
2,946
def normalization(arr, normalize_mode, norm_range = [0,1]): """ Helper function: Normalizes the image based on the specified mode and range Args: arr: numpy array normalize_mode: either "whiten", "normalize_clip", or "normalize" representing the type of normalization to use norm_range: (Optional) Specifies the range for the numpy array values Returns: A normalized array based on the specifications """ # reiniating the batch_size dimension if normalize_mode == "whiten": return whiten(arr) elif normalize_mode == "normalize_clip": return normalize_clip(arr, norm_range = norm_range) elif normalize_mode == "normalize": return minmax_normalize(arr, norm_range = norm_range) else: return NotImplementedError("Please use the supported modes.")
2,947
def draw_mask(img, mask, col, alpha=0.4, show_border=True, border_thick=0): """Visualizes a single binary mask.""" was_pil = isinstance(img, (Image.Image)) img = np.array(img) img = img.astype(np.float32) idx = np.nonzero(mask) img[idx[0], idx[1], :] *= 1.0 - alpha img[idx[0], idx[1], :] += alpha * col if border_thick: contours, hierarchy = cv2.findContours( mask.copy(), cv2.RETR_CCOMP, cv2.CHAIN_APPROX_NONE) cv2.drawContours(img, contours, -1, _WHITE, border_thick, cv2.LINE_AA) img = img.astype(np.uint8) return Image.fromarray(img) if was_pil else img
2,948
def build_md_page(page_info: parser.PageInfo) -> str: """Given a PageInfo object, return markdown for the page. Args: page_info: Must be a `parser.FunctionPageInfo`, `parser.ClassPageInfo`, or `parser.ModulePageInfo`. Returns: Markdown for the page Raises: ValueError: if `page_info` is an instance of an unrecognized class """ if isinstance(page_info, parser.ClassPageInfo): return ClassPageBuilder(page_info).build() if isinstance(page_info, parser.FunctionPageInfo): return FunctionPageBuilder(page_info).build() if isinstance(page_info, parser.ModulePageInfo): return ModulePageBuilder(page_info).build() if isinstance(page_info, parser.TypeAliasPageInfo): return TypeAliasPageBuilder(page_info).build() raise ValueError(f'Unknown Page Info Type: {type(page_info)}')
2,949
def print_all_errors(): """ prints all the errors in the db in a human friendly way""" pass
2,950
def transpose(data: NodeInput, input_order: NodeInput, name: Optional[str] = None) -> Node: """Return a node which transposes the data in the input tensor. @param data: The input tensor to be transposed @param input_order: Permutation of axes to be applied to the input tensor @return Transpose node """ return _get_node_factory_opset1().create("Transpose", as_nodes(data, input_order))
2,951
def find_opposite_reader(card_reader_list, find): """Returns the card reader on the opposite side of the door for the card reader in find""" for c in card_reader_list: if c.room_a == find.room_b and c.room_b == find.room_a: return c raise (Exception("No reader on opposite side found"))
2,952
def send_mail_to_admin(email_subject, email_body): """Send an email to the admin email address. The email is sent to the ADMIN_EMAIL_ADDRESS set in feconf.py. Args: email_subject: str. Subject of the email. email_body: str. Body (message) of the email. """ app_id = app_identity_services.get_application_id() body = '(Sent from %s)\n\n%s' % (app_id, email_body) system_name_email = '%s <%s>' % ( feconf.SYSTEM_EMAIL_NAME, feconf.SYSTEM_EMAIL_ADDRESS) email_services.send_mail( system_name_email, feconf.ADMIN_EMAIL_ADDRESS, email_subject, body, body.replace('\n', '<br/>'), bcc_admin=False)
2,953
def _download_file(remote_url, target): """ Accepts a URL, downloads the file to a given open file object. This is a modified version of astropy.utils.data.download_file that downloads to an open file object instead of a cache directory. """ from contextlib import closing from astropy.extern.six.moves.urllib.request import urlopen, Request from astropy.extern.six.moves.urllib.error import URLError, HTTPError from astropy.utils.console import ProgressBarOrSpinner from . import conf timeout = conf.remote_timeout download_block_size = 32768 try: # Pretend to be a web browser (IE 6.0). Some servers that we download # from forbid access from programs. headers = {'User-Agent': 'Mozilla/5.0', 'Accept': ('text/html,application/xhtml+xml,' 'application/xml;q=0.9,*/*;q=0.8')} req = Request(remote_url, headers=headers) with closing(urlopen(req, timeout=timeout)) as remote: # get size of remote if available (for use in progress bar) info = remote.info() size = None if 'Content-Length' in info: try: size = int(info['Content-Length']) except ValueError: pass dlmsg = "Downloading {0}".format(remote_url) with ProgressBarOrSpinner(size, dlmsg) as p: bytes_read = 0 block = remote.read(download_block_size) while block: target.write(block) bytes_read += len(block) p.update(bytes_read) block = remote.read(download_block_size) # Append a more informative error message to HTTPErrors, URLErrors. except HTTPError as e: e.msg = "{}. requested URL: {!r}".format(e.msg, remote_url) raise except URLError as e: append_msg = (hasattr(e, 'reason') and hasattr(e.reason, 'errno') and e.reason.errno == 8) if append_msg: msg = "{0}. requested URL: {1}".format(e.reason.strerror, remote_url) e.reason.strerror = msg e.reason.args = (e.reason.errno, msg) raise e # This isn't supposed to happen, but occasionally a socket.timeout gets # through. It's supposed to be caught in `urrlib2` and raised in this # way, but for some reason in mysterious circumstances it doesn't. So # we'll just re-raise it here instead. except socket.timeout as e: # add the requested URL to the message (normally just 'timed out') e.args = ('requested URL {!r} timed out'.format(remote_url),) raise URLError(e)
2,954
def project_envs() -> None: """Projects Environments."""
2,955
def trigger_QUIT(code, origin, line, args, text): """ ID: QUIT Decription: A client session is ended with a quit message. The server must close the connection to a client which sends a QUIT message. If a "Quit Message" is given, this will be sent instead of the default message, the nickname. When netsplits (disconnecting of two servers) occur, the quit message is composed of the names of two servers involved, separated by a space. The first name is that of the server which is still connected and the second name is that of the server that has become disconnected. Format: [<Quit message>] """ for channel in code.chan: if origin.nick in channel: del code.chan[channel][origin.nick] tmp = { 'message': '', 'nick': origin.nick, 'time': int(time.time()), 'channel': 'QUIT' } code.logs['bot'].append(tmp)
2,956
def tag_from_clark(name): """Get a human-readable variant of the XML Clark notation tag ``name``. For a given name using the XML Clark notation, return a human-readable variant of the tag name for known namespaces. Otherwise, return the name as is. """ match = CLARK_TAG_REGEX.match(name) if match and match.group("namespace") in NAMESPACES_REV: args = {"ns": NAMESPACES_REV[match.group("namespace")], "tag": match.group("tag")} return "%(ns)s:%(tag)s" % args return name
2,957
def build_k_indices(y, k_fold, seed): """ Randomly partitions the indices of the data set into k groups Args: y: labels, used for indexing k_fold: number of groups after the partitioning seed: the random seed value Returns: k_indices: an array of k sub-indices that are randomly partitioned """ num_rows = y.shape[0] interval = int(num_rows / k_fold) np.random.seed(seed) indices = np.random.permutation(num_rows) k_indices = [indices[k * interval: (k + 1) * interval] for k in range(k_fold)] return np.array(k_indices)
2,958
def update_fixtures( request, index, received_output, comment, testname=None, additional_information=None ): # pylint: disable=too-many-arguments """Used by action plugins to generate the fixtures""" dir_path, file_name = fixture_path_from_request(request, index, testname=testname) os.makedirs(dir_path, exist_ok=True) regex = "(/Users|/home).*?/tests/fixtures" name = re.sub(regex, "/tests/fixtures", request.node.name) name.replace("docker", "podman") fixture = { "name": name, "index": index, "comment": comment, } if additional_information is not None: fixture["additional_information"] = additional_information if additional_information["look_fors"]: received_output = sanitize_output(received_output) fixture["output"] = received_output with open(f"{dir_path}/{file_name}", "w", encoding="utf8") as outfile: json.dump(fixture, outfile, indent=4, ensure_ascii=False, sort_keys=False) outfile.write("\n")
2,959
def get_parent(obj, default=_marker): """Returns the container the object was traversed via. Returns None if the object is a containment root. Raises TypeError if the object doesn't have enough context to get the parent. """ if IRoot.providedBy(obj): return None parent = aq_parent(aq_inner(obj)) if parent is not None: return parent if default != _marker: return default raise TypeError("Not enough context information to get parent", obj)
2,960
def MRR(logits, target): """ Compute mean reciprocal rank. :param logits: 2d array [batch_size x rel_docs_per_query] :param target: 2d array [batch_size x rel_docs_per_query] :return: mean reciprocal rank [a float value] """ assert logits.shape == target.shape sorted, indices = numpy.sort(logits, 1)[::-1], numpy.argsort(-logits, 1) reciprocal_rank = 0 for i in range(indices.shape[0]): for j in range(indices.shape[1]): if target[i, indices[i, j]] == 1: reciprocal_rank += 1.0 / (j + 1) break return reciprocal_rank / indices.shape[0]
2,961
def resetSpotIndicator(): """ This function is run as a thread and unsets the spot indicator of GameSense after a given wait time (in seconds). """ resetSpotIndicator.terminate = False deltaSleep = 0.1 epsilon = 0.001 waitTime = 10.0 currentTimeSec = lambda: time.time() startTime = currentTimeSec() while (abs((currentTimeSec() - startTime) <= abs(waitTime - epsilon))) and not resetSpotIndicator.terminate: time.sleep(deltaSleep) steelseries_gamesense.sendSpotEvent(GameSense_Name, 0) logger.logTrace("thread finished: resetSpotIndicator.")
2,962
def stream_collector(api, args, storage): """Pull tweets from stream.""" total_tweets = 0 total_skipped = 0 last_skipped = 0 params = to_dict(args.parameters) while True: try: iterator = api.request(args.endpoint, params).get_iterator() for item in iterator: if 'text' in item: total_tweets += 1 process_tweet(item, args, storage) elif 'limit' in item: last_skipped = item['limit']['track'] logging.info('SKIPPED %s tweets' % last_skipped) elif 'warning' in item: logging.warning(item['warning']) elif 'disconnect' in item: event = item['disconnect'] if event['code'] in [2,5,6,7]: # streaming connection rejected raise Exception(event) logging.info('RE-CONNECTING: %s' % event) break except TwitterRequestError as e: if e.status_code < 500: raise except TwitterConnectionError: pass finally: total_skipped += last_skipped last_skipped = 0 logging.info('Tweet total count = %d, Tweets skipped = %d' % (total_tweets,total_skipped)) logging.info(geocoder_stats())
2,963
def range(starts, limits=None, deltas=1, dtype=None, name=None, row_splits_dtype=dtypes.int64): """Returns a `RaggedTensor` containing the specified sequences of numbers. Each row of the returned `RaggedTensor` contains a single sequence: ```python ragged.range(starts, limits, deltas)[i] == tf.range(starts[i], limits[i], deltas[i]) ``` If `start[i] < limits[i] and deltas[i] > 0`, then `output[i]` will be an empty list. Similarly, if `start[i] > limits[i] and deltas[i] < 0`, then `output[i]` will be an empty list. This behavior is consistent with the Python `range` function, but differs from the `tf.range` op, which returns an error for these cases. Examples: >>> tf.ragged.range([3, 5, 2]).to_list() [[0, 1, 2], [0, 1, 2, 3, 4], [0, 1]] >>> tf.ragged.range([0, 5, 8], [3, 3, 12]).to_list() [[0, 1, 2], [], [8, 9, 10, 11]] >>> tf.ragged.range([0, 5, 8], [3, 3, 12], 2).to_list() [[0, 2], [], [8, 10]] The input tensors `starts`, `limits`, and `deltas` may be scalars or vectors. The vector inputs must all have the same size. Scalar inputs are broadcast to match the size of the vector inputs. Args: starts: Vector or scalar `Tensor`. Specifies the first entry for each range if `limits` is not `None`; otherwise, specifies the range limits, and the first entries default to `0`. limits: Vector or scalar `Tensor`. Specifies the exclusive upper limits for each range. deltas: Vector or scalar `Tensor`. Specifies the increment for each range. Defaults to `1`. dtype: The type of the elements of the resulting tensor. If not specified, then a value is chosen based on the other args. name: A name for the operation. row_splits_dtype: `dtype` for the returned `RaggedTensor`'s `row_splits` tensor. One of `tf.int32` or `tf.int64`. Returns: A `RaggedTensor` of type `dtype` with `ragged_rank=1`. """ row_splits_dtype = dtypes.as_dtype(row_splits_dtype) if limits is None: starts, limits = 0, starts with ops.name_scope(name, 'RaggedRange', [starts, limits, deltas]) as name: starts = ops.convert_to_tensor(starts, dtype=dtype, name='starts') limits = ops.convert_to_tensor(limits, dtype=dtype, name='limits') deltas = ops.convert_to_tensor(deltas, dtype=dtype, name='deltas') # infer dtype if not explicitly provided if dtype is None: starts, limits, deltas = _infer_matching_dtype( [starts, limits, deltas], [dtypes.int32, dtypes.int64, dtypes.float32, dtypes.float64]) result = gen_ragged_math_ops.ragged_range( starts, limits, deltas, Tsplits=row_splits_dtype, name=name) return ragged_tensor.RaggedTensor.from_row_splits( result.rt_dense_values, result.rt_nested_splits, validate=False)
2,964
def ecef2enuv(u, v, w, lat0, lon0, deg=True): """ for VECTOR i.e. between two points input ----- x,y,z [meters] target ECEF location [0,Infinity) """ if deg: lat0 = radians(lat0) lon0 = radians(lon0) t = cos(lon0) * u + sin(lon0) * v uEast = -sin(lon0) * u + cos(lon0) * v wUp = cos(lat0) * t + sin(lat0) * w vNorth = -sin(lat0) * t + cos(lat0) * w return uEast, vNorth, wUp
2,965
def interpolate_ray_dist(ray_dists, order='spline'): """ interpolate ray distances :param [float] ray_dists: :param str order: degree of interpolation :return [float]: >>> vals = np.sin(np.linspace(0, 2 * np.pi, 20)) * 10 >>> np.round(vals).astype(int).tolist() [0, 3, 6, 8, 10, 10, 9, 7, 5, 2, -2, -5, -7, -9, -10, -10, -8, -6, -3, 0] >>> vals[3:7] = -1 >>> vals[16:] = -1 >>> vals_interp = interpolate_ray_dist(vals, order=3) >>> np.round(vals_interp).astype(int).tolist() [0, 3, 6, 9, 10, 10, 8, 7, 5, 2, -2, -5, -7, -9, -10, -10, -10, -8, -4, 1] >>> vals_interp = interpolate_ray_dist(vals, order='spline') >>> np.round(vals_interp).astype(int).tolist() [0, 3, 6, 8, 9, 10, 9, 7, 5, 2, -2, -5, -7, -9, -10, -10, -9, -7, -5, -3] >>> vals_interp = interpolate_ray_dist(vals, order='cos') >>> np.round(vals_interp).astype(int).tolist() [0, 3, 6, 8, 10, 10, 9, 7, 5, 2, -2, -5, -7, -9, -10, -10, -8, -6, -3, 0] """ x_space = np.arange(len(ray_dists)) ray_dists = np.array(ray_dists) missing = ray_dists == -1 x_train = x_space[ray_dists != -1] x_train_ext = np.hstack((x_train - len(x_space), x_train, x_train + len(x_space))) y_train = ray_dists[ray_dists != -1] y_train_ext = np.array(y_train.tolist() * 3) if isinstance(order, int): # model = pipeline.make_pipeline(preprocessing.PolynomialFeatures(order), # linear_model.Ridge()) # model.fit(x_space[ray_dists != -1], ray_dists[ray_dists != -1]) # ray_dists[ray_dists == -1] = model.predict(x_space[ray_dists == -1]) z = np.polyfit(x_train, y_train, order) fn_interp = np.poly1d(z) ray_dists[missing] = fn_interp(x_space[missing]) elif order == 'spline': uinterp_us = interpolate.InterpolatedUnivariateSpline(x_train_ext, y_train_ext) ray_dists[missing] = uinterp_us(x_space[missing]) elif order == 'cos': def _fn_cos(x, t): return x[0] + x[1] * np.sin(x[2] + x[3] * t) def _fn_cos_residual(x, t, y): return _fn_cos(x, t) - y x0 = np.array([np.mean(y_train), (y_train.max() - y_train.min()) / 2., 0, len(x_space) / np.pi]) lsm_res = optimize.least_squares(_fn_cos_residual, x0, gtol=1e-1, # loss='soft_l1', f_scale=0.1, args=(x_train, y_train)) ray_dists[missing] = _fn_cos(lsm_res.x, x_space[missing]) return ray_dists
2,966
def distance(left, right, pairwise=pairwise['prod'], distance_function=None): """ Calculate the distance between two *k*-mer profiles. :arg left, right: Profiles to calculate distance between. :return: The distance between `left` and `right`. :rtype: float """ if not distance_function: return multiset(left, right, pairwise) return distance_function(left, right)
2,967
def _rec_get_all_imports_exports(fips_dir, proj_dir, result) : """recursively get all imported projects, their exported and imported modules in a dictionary object: project-1: url: git-url (not valid for first, top-level project) exports: header-dirs: [ ] conditional-header-dirs: dir: cmake-if condition string lib-dirs: [ ] defines: def-key: def-val ... modules : mod: dir mod: dir ... imports: name: git: [git-url] branch: [optional: branch or tag] cond: [optional: cmake-if condition string conditionally including the dependency] name: ... ... ... :param fips_dir: absolute fips directory :param proj_dir: absolute project directory :param result: in/out current result :returns: bool success, and modified result dictionary """ success = True ws_dir = util.get_workspace_dir(fips_dir) proj_name = util.get_project_name_from_dir(proj_dir) if proj_name not in result : imports = get_imports(fips_dir, proj_dir) exports = get_exports(proj_dir) for dep_proj_name in imports : if dep_proj_name not in result : dep_proj_dir = util.get_project_dir(fips_dir, dep_proj_name) dep_url = imports[dep_proj_name]['git'] success, result = _rec_get_all_imports_exports(fips_dir, dep_proj_dir, result) # break recursion on error if not success : return success, result result[proj_name] = {} result[proj_name]['proj_dir'] = proj_dir result[proj_name]['imports'] = imports result[proj_name]['exports'] = exports # done return success, result
2,968
def main(): """Main entry point""" current_time = datetime.now() local_time = current_time.astimezone(get_localzone()) if is_day(local_time): time_string = datetime.strftime(local_time, "%Y%m%d-%H%M%S") date_string = datetime.strftime(local_time, "%Y%m%d") picture_directory = PICTURE_ROOT + date_string + "/" picture_name = time_string + ".jpg" take_picture(picture_directory, picture_name) append_pictures_json(picture_directory, picture_name) append_dates_json(date_string) else: #sleep exit()
2,969
def get_database_cluster(name: Optional[str] = None, tags: Optional[Sequence[str]] = None, opts: Optional[pulumi.InvokeOptions] = None) -> AwaitableGetDatabaseClusterResult: """ Provides information on a DigitalOcean database cluster resource. ## Example Usage ```python import pulumi import pulumi_digitalocean as digitalocean example = digitalocean.get_database_cluster(name="example-cluster") pulumi.export("databaseOutput", example.uri) ``` :param str name: The name of the database cluster. """ __args__ = dict() __args__['name'] = name __args__['tags'] = tags if opts is None: opts = pulumi.InvokeOptions() if opts.version is None: opts.version = _utilities.get_version() __ret__ = pulumi.runtime.invoke('digitalocean:index/getDatabaseCluster:getDatabaseCluster', __args__, opts=opts, typ=GetDatabaseClusterResult).value return AwaitableGetDatabaseClusterResult( database=__ret__.database, engine=__ret__.engine, host=__ret__.host, id=__ret__.id, maintenance_windows=__ret__.maintenance_windows, name=__ret__.name, node_count=__ret__.node_count, password=__ret__.password, port=__ret__.port, private_host=__ret__.private_host, private_network_uuid=__ret__.private_network_uuid, private_uri=__ret__.private_uri, region=__ret__.region, size=__ret__.size, tags=__ret__.tags, uri=__ret__.uri, urn=__ret__.urn, user=__ret__.user, version=__ret__.version)
2,970
def caller_name(skip=2): """Get a name of a caller module `skip` specifies how many levels of stack to skip while getting caller name. skip=1 means "who calls me", skip=2 "who calls my caller" etc. An empty string is returned if skipped levels exceed stack height References: -------- https://gist.github.com/techtonik/2151727 """ def stack_(frame): framelist = [] while frame: framelist.append(frame) frame = frame.f_back return framelist stack = stack_(sys._getframe(1)) start = 0 + skip if len(stack) < start + 1: return '' parentframe = stack[start] module = getmodule(parentframe) if module: ret_name = module.__name__ else: ret_name = __name__ return ret_name
2,971
def get_dataset(): """Summary Returns ------- TYPE Description """ stms = [] for dirpath, dirnames, filenames in os.walk('TEDLIUM_release2'): for f in filenames: if f.endswith('stm'): stms.append(os.path.join(dirpath, f)) data = [] for stm_i in stms: with open(stm_i, 'r') as fp: lines = fp.readlines() for line_i in lines: sp = line_i.split() data.append({ 'id': sp[0], 'num': sp[1], 'id2': sp[2], 'start_time': sp[3], 'end_time': sp[4], 'ch': 'wideband' if 'f0' in sp[5] else 'telephone', 'sex': 'male' if 'male' in sp[5] else 'female', 'text': " ".join( sp[6:]) if sp[6] != 'ignore_time_segment_in_scoring' else ''}) for max_duration in range(30): durations = [] for stm_i in stms: with open(stm_i, 'r') as fp: lines = fp.readlines() for line_i in lines: sp = line_i.split() dur = float(sp[4]) - float(sp[3]) if dur < max_duration: durations.append(dur) return data, durations
2,972
def tesla_loadhook(h, *args, **kwargs): """ Converts a load hook into an application processor. >>> app = auto_application() >>> def f(*args, **kwargs): "something done before handling request" ... >>> app.add_processor(loadhook(f, *args, **kwargs)) """ def processor(handler): h(*args, **kwargs) return handler() return processor
2,973
def force_unicode(s, encoding='utf-8', strings_only=False, errors='strict'): #pragma: no cover """ Force a string to be unicode. If strings_only is True, don't convert (some) non-string-like objects. Originally copied from the Django source code, further modifications have been made. Original copyright and license: Copyright (c) Django Software Foundation and individual contributors. All rights reserved. Redistribution and use in source and binary forms, with or without modification, are permitted provided that the following conditions are met: 1. Redistributions of source code must retain the above copyright notice, this list of conditions and the following disclaimer. 2. Redistributions in binary form must reproduce the above copyright notice, this list of conditions and the following disclaimer in the documentation and/or other materials provided with the distribution. 3. Neither the name of Django nor the names of its contributors may be used to endorse or promote products derived from this software without specific prior written permission. THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. """ if strings_only and is_protected_type(s): return s if not isinstance(s, str,): if hasattr(s, '__unicode__'): s = str(s) else: try: s = str(str(s), encoding, errors) except UnicodeEncodeError: if not isinstance(s, Exception): raise # If we get to here, the caller has passed in an Exception # subclass populated with non-ASCII data without special # handling to display as a string. We need to handle this # without raising a further exception. We do an # approximation to what the Exception's standard str() # output should be. s = ' '.join([force_unicode(arg, encoding, strings_only, errors) for arg in s]) elif not isinstance(s, str): # Note: We use .decode() here, instead of unicode(s, encoding, # errors), so that if s is a SafeString, it ends up being a # SafeUnicode at the end. s = s.decode(encoding, errors) return s
2,974
def extractYoloInfo(yolo_output_format_data): """ Extract box, objectness, class from yolo output format data """ box = yolo_output_format_data[..., :6] conf = yolo_output_format_data[..., 6:7] category = yolo_output_format_data[..., 7:] return box, conf, category
2,975
def bbox_diou(bboxes1, bboxes2): """ Complete IoU @param bboxes1: (a, b, ..., 4) @param bboxes2: (A, B, ..., 4) x:X is 1:n or n:n or n:1 @return (max(a,A), max(b,B), ...) ex) (4,):(3,4) -> (3,) (2,1,4):(2,3,4) -> (2,3) """ bboxes1_area = bboxes1[..., 2] * bboxes1[..., 3] bboxes2_area = bboxes2[..., 2] * bboxes2[..., 3] bboxes1_coor = tf.concat( [ bboxes1[..., :2] - bboxes1[..., 2:] * 0.5, bboxes1[..., :2] + bboxes1[..., 2:] * 0.5, ], axis=-1, ) bboxes2_coor = tf.concat( [ bboxes2[..., :2] - bboxes2[..., 2:] * 0.5, bboxes2[..., :2] + bboxes2[..., 2:] * 0.5, ], axis=-1, ) left_up = tf.maximum(bboxes1_coor[..., :2], bboxes2_coor[..., :2]) right_down = tf.minimum(bboxes1_coor[..., 2:], bboxes2_coor[..., 2:]) inter_section = tf.maximum(right_down - left_up, 0.0) inter_area = inter_section[..., 0] * inter_section[..., 1] union_area = bboxes1_area + bboxes2_area - inter_area iou = tf.math.divide_no_nan(inter_area, union_area) enclose_left_up = tf.minimum(bboxes1_coor[..., :2], bboxes2_coor[..., :2]) enclose_right_down = tf.maximum( bboxes1_coor[..., 2:], bboxes2_coor[..., 2:] ) enclose_section = enclose_right_down - enclose_left_up c_2 = enclose_section[..., 0] ** 2 + enclose_section[..., 1] ** 2 center_diagonal = bboxes2[..., :2] - bboxes1[..., :2] rho_2 = center_diagonal[..., 0] ** 2 + center_diagonal[..., 1] ** 2 diou = iou - tf.math.divide_no_nan(rho_2, c_2) return diou
2,976
def showp1rev(context, mapping): """Integer. The repository-local revision number of the changeset's first parent, or -1 if the changeset has no parents. (DEPRECATED)""" ctx = context.resource(mapping, b'ctx') return ctx.p1().rev()
2,977
def read_object(ctx, pin, object_id): """ Read arbitrary PIV object. Read PIV object by providing the object id. \b OBJECT-ID Id of PIV object in HEX. """ controller = ctx.obj['controller'] def do_read_object(retry=True): try: click.echo(controller.get_data(object_id)) except APDUError as e: if e.sw == SW.NOT_FOUND: ctx.fail('No data found.') elif e.sw == SW.SECURITY_CONDITION_NOT_SATISFIED: _verify_pin(ctx, controller, pin) do_read_object(retry=False) else: raise do_read_object()
2,978
def erp_pretax(t,ma,st,ra,par): """ early retirement pension (efterløn) pretax""" # initialize ERP = np.zeros(1) # pre two year period if par.T_erp <= t < par.T_two_year: if ra == 1: priv = priv_pension(ma,st,par) ERP[:] = np.maximum(0,par.ERP_high - 0.6*0.05*np.maximum(0, priv - par.ERP_low)) # two year period elif par.T_two_year <= t < par.T_oap: # two year rule is satisfied if ra == 0: ERP[:] = par.ERP_2 # two year rule not satisfied elif ra == 1: priv = priv_pension(ma,st,par) ERP[:] = np.maximum(0,par.ERP_high - 0.6*0.05*np.maximum(0, priv - par.ERP_low)) # return return ERP
2,979
def main(gen5tt_algo, fs_file, num_tracts, participant_label, session_label, t1_file, eddy_file, bvec_file, bval_file, template_file, atlas_file, output_dir): """Console script for tractify.""" work_dir = os.path.join(output_dir, "scratch") # Set parameters based on CLI, pass through object parameters = Parameters( t1_file=t1_file, fs_file=fs_file, eddy_file=eddy_file, bval_file=bval_file, bvec_file=bvec_file, work_dir=work_dir, output_dir=output_dir, template_file=template_file, atlas_file=atlas_file, gen5tt_algo=gen5tt_algo, num_tracts=num_tracts ) if (gen5tt_algo == 'freesurfer'): try: os.environ["SUBJECTS_DIR"] except: print("No SUBJECTS_DIR environment variable found for" " freesurfer, using '" + os.path.dirname(fs_file) + "' instead") os.environ["SUBJECTS_DIR"] = os.path.dirname(fs_file) wf = init_single_ses_wf(participant_label, session_label, parameters) wf.base_dir = parameters.work_dir wf.write_graph(graph2use="colored") wf.config["execution"]["remove_unnecessary_outputs"] = False wf.config["execution"]["keep_inputs"] = True wf.run() # Output the sse file to a text output # Get string of sse output value sse_node = next(node.replace('.', '/') for node in wf.list_node_names() if 'dtifit' in node) # Get the paths of the subject_session_base = 'single_subject_' + participant_label + '_wf' sse_file = os.path.join(work_dir, subject_session_base, sse_node, 'dtifit__sse.nii.gz') # If the sse was generated if (os.path.isfile(sse_file)): sse_txt_base = 'sub_' + participant_label + '_ses_' + session_label + '_sse.txt' sse_txt_scratch = os.path.join(work_dir, subject_session_base, sse_node, sse_txt_base) # Run the fslstats command on the sse and redirect it to a text output sse_dtifit_value_command = ['fslstats' , sse_file, '-M'] my_env = os.environ.copy() my_env["PATH"] = "/usr/sbin:/sbin:" + my_env["PATH"] sse_txt_file = open(sse_txt_scratch, "w") subprocess.call(sse_dtifit_value_command, stdout=sse_txt_file) sse_txt_file.close() print('Output sse text value is in ' + sse_txt_scratch) else: print("SSE wasn't generated, will not output merged text value") return 0
2,980
def add_missing_cmd(command_list): """Adds missing cmd tags to the given command list.""" # E.g.: given: # ['a', '0', '0', '0', '0', '0', '0', '0', # '0', '0', '0', '0', '0', '0', '0'] # Converts to: # [['a', '0', '0', '0', '0', '0', '0', '0'], # ['a', '0', '0', '0', '0', '0', '0', '0']] # And returns a string that joins these elements with spaces. cmd_tag = command_list[0] args = command_list[1:] final_cmds = [] for arg_batch in grouper(args, NUM_ARGS[cmd_tag]): final_cmds.append([cmd_tag] + list(arg_batch)) if not final_cmds: # command has no args (e.g.: 'z') final_cmds = [[cmd_tag]] return final_cmds
2,981
def replace_umlauts(s: str) -> str: """ Replace special symbols with the letters with umlauts (ä, ö and ü) :param s: string with the special symbols (::) :return: edited string """ out = s.replace('A::', 'Ä').replace('O::', 'Ö').replace('U::', 'Ü').replace('a::', 'ä').replace('o::', 'ö') \ .replace('u::', 'ü') return out
2,982
def bandstructure_flow(workdir, scf_input, nscf_input, dos_inputs=None, manager=None, flow_class=Flow, allocate=True): """ Build a :class:`Flow` for band structure calculations. Args: workdir: Working directory. scf_input: Input for the GS SCF run. nscf_input: Input for the NSCF run (band structure run). dos_inputs: Input(s) for the NSCF run (dos run). manager: :class:`TaskManager` object used to submit the jobs Initialized from manager.yml if manager is None. flow_class: Flow subclass allocate: True if the flow should be allocated before returning. Returns: :class:`Flow` object """ flow = flow_class(workdir, manager=manager) work = BandStructureWork(scf_input, nscf_input, dos_inputs=dos_inputs) flow.register_work(work) # Handy aliases flow.scf_task, flow.nscf_task, flow.dos_tasks = work.scf_task, work.nscf_task, work.dos_tasks if allocate: flow.allocate() return flow
2,983
def beautify_ax(ax, edge_color, face_color): """ Beautifies an ax object by adjusting axis and ticks and changing colors. :param ax: :return: """ # set ticks only on the left and the bottom ax.yaxis.set_ticks_position('left') ax.xaxis.set_ticks_position('bottom') # change ticks length and width ax.xaxis.set_tick_params(direction='in', length=3, width=0.5,) ax.yaxis.set_tick_params(direction='in', length=3, width=0.5) # change axis spines width and color ax.spines['left'].set_linewidth(0.5) ax.spines['bottom'].set_linewidth(0.5) ax.spines['left'].set_color(edge_color) ax.spines['bottom'].set_color(edge_color) # set patch face color ax.patch.set_facecolor(face_color) # change ticks and labels color ax.tick_params(axis='both', colors=edge_color, which='both')
2,984
def get_modules(): """Returns the list of module names """ def listdir(dir): def clean(name): name = os.path.basename(name) if name[-4:] == '.zip': name = name[:-4] return name def is_really_module(name): for mname in MANIFEST_NAMES: if os.path.isfile(opj(dir, name, mname)): return True return map(clean, filter(is_really_module, os.listdir(dir))) plist = [] initialize_sys_path() for ad in ad_paths: plist.extend(listdir(ad)) return list(set(plist))
2,985
def resnet_50(num_classes, data_format='channels_first', pruning_method=None): """Returns the ResNet model for a given size and number of output classes.""" return resnet_50_generator( block_fn=bottleneck_block_, lst_layers=[3, 4, 6, 3], num_classes=num_classes, pruning_method=pruning_method, data_format=data_format)
2,986
def read_amuselabs_data(s): """ Read in an amuselabs string, return a dictionary of data """ # Data might be base64'd or not try: data = json.loads(s) except json.JSONDecodeError: s1 = base64.b64decode(s) data = json.loads(s1) ret = {} # metadata # technically these can be codewords but i've never seen one kind = "crossword" width, height = data['w'], data['h'] ret['metadata'] = { 'width': width , 'height': height , 'kind': kind , 'author': data.get('author') , 'title': data.get('title') , 'copyright': data.get('copyright') , 'noClueCells': True # no notepad? } # grid grid = [] box = data['box'] cellInfos = data.get('cellInfos', []) # Reshape cellInfos to make lookup easier markup = {} for c in cellInfos: markup[(c['x'], c['y'])] = c for y in range(height): for x in range(width): cell = {'x': x, 'y': y, 'value': None} if box[x][y] == '\x00': cell['isBlock'] = True else: cell['solution'] = box[x][y] style = {} if markup.get((x, y)): thisMarkup = markup[(x, y)] if thisMarkup.get('isCircled'): style['shapebg'] = 'circle' if thisMarkup.get('isVoid'): cell['isBlock'] = False cell['isVoid'] = True bar_string = '' for letter, side in {'B': 'bottom', 'R': 'right'}.items(): if thisMarkup.get(f'{side}Wall'): bar_string += letter if bar_string: style['barred'] = bar_string cell['style'] = style grid.append(cell) ret['grid'] = grid # clues placed_words = data['placedWords'] across_words = [word for word in placed_words if word['acrossNotDown']] down_words = [word for word in placed_words if not word['acrossNotDown']] # sorting is probably unnecessary across_words = sorted(across_words, key=lambda x: (x['y'], x['x'])) down_words = sorted(down_words, key=lambda x: (x['y'], x['x'])) across_clues = [{'number': str(x['clueNum']), 'clue': x['clue']['clue']} for x in across_words] down_clues = [{'number': str(x['clueNum']), 'clue': x['clue']['clue']} for x in down_words] ret['clues'] = [{'title': 'Across', 'clues': across_clues}, {'title': 'Down', 'clues': down_clues}] return ret
2,987
def calinski_harabasz(dataset_values:DatasetValues): """Calinski, T.; Harabasz, J. (1974). A dendrite method for cluster analysis. Communications in Statistics - Theory and Methods, v.3, n.1, p.1�27. The objective is maximize value [0, +Inf]""" if dataset_values.K == 1: return 0 return calinski_harabasz_score(dataset_values.data, dataset_values.cluster_labels)
2,988
def parse_version(version): """ input version string of the form: 'Major.Minor.Patch+CommitHash' like: '0.1.5+95ffef4' ------ or ------ '0.1.0' returns version_info tuple of the form: (major,minor,patch,hash) like: (0, 1, 5, '95ffef4') -------- or -------- (0, 1, 0, '') """ matches = match( '(?P<major>[0-9]+)\.(?P<minor>[0-9]+)\.(?P<patch>[0-9]+)(g(?P<hash>[a-z0-9]*))?', version, IGNORECASE ) if matches: major = int(matches.group('major')) minor = int(matches.group('minor')) patch = int(matches.group('patch')) hash = matches.group('hash') or '' return (major,minor,patch,hash) else: raise ValueError("Version string, '%s' could not be parsed. It should be of the form: 'Major.Minor.Patch+CommitHash'." % version)
2,989
def _location_sensitive_score(W_query, W_fil, W_keys): """Impelements Bahdanau-style (cumulative) scoring function. This attention is described in: J. K. Chorowski, D. Bahdanau, D. Serdyuk, K. Cho, and Y. Ben- gio, “Attention-based models for speech recognition,” in Ad- vances in Neural Information Processing Systems, 2015, pp. 577–585. ############################################################################# hybrid attention (content-based + location-based) f = F * α_{i-1} energy = dot(v_a, tanh(W_keys(h_enc) + W_query(h_dec) + W_fil(f) + b_a)) ############################################################################# Args: W_query: Tensor, shape '[batch_size, 1, attention_dim]' to compare to location features. W_location: processed previous alignments into location features, shape '[batch_size, max_time, attention_dim]' W_keys: Tensor, shape '[batch_size, max_time, attention_dim]', typically the encoder outputs. Returns: A '[batch_size, max_time]' attention score (energy) """ # Get the number of hidden units from the trailing dimension of keys dtype = W_query.dtype num_units = W_keys.shape[-1].value or array_ops.shape(W_keys)[-1] v_a = tf.get_variable( "attention_variable_projection", shape=[num_units], dtype=dtype, initializer=tf.contrib.layers.xavier_initializer(), trainable=True, ) print(v_a) b_a = tf.get_variable( "attention_bias", shape=[num_units], dtype=dtype, initializer=tf.zeros_initializer(), ) return tf.reduce_sum(v_a * tf.tanh(W_keys + W_query + W_fil + b_a), [2])
2,990
def get_streamdecks(): """ Retrieves all connected streamdecks """ streamdecks = DeviceManager().enumerate() return streamdecks
2,991
def clean_string(text): """ Remove Lucene reserved characters from query string """ if isinstance(text, six.string_types): return text.translate(UNI_SPECIAL_CHARS).strip() return text.translate(None, STR_SPECIAL_CHARS).strip()
2,992
def convert_single_example(example_index, example, label_size, max_seq_length, tokenizer, max_qa_length): """Loads a data file into a list of `InputBatch`s.""" # RACE is a multiple choice task. To perform this task using AlBERT, # we will use the formatting proposed in "Improving Language # Understanding by Generative Pre-Training" and suggested by # @jacobdevlin-google in this issue # https://github.com/google-research/bert/issues/38. # # Each choice will correspond to a sample on which we run the # inference. For a given RACE example, we will create the 4 # following inputs: # - [CLS] context [SEP] choice_1 [SEP] # - [CLS] context [SEP] choice_2 [SEP] # - [CLS] context [SEP] choice_3 [SEP] # - [CLS] context [SEP] choice_4 [SEP] # The model will output a single value for each input. To get the # final decision of the model, we will run a softmax over these 4 # outputs. if isinstance(example, classifier_utils.PaddingInputExample): return classifier_utils.InputFeatures( example_id=0, input_ids=[[0] * max_seq_length] * label_size, input_mask=[[0] * max_seq_length] * label_size, segment_ids=[[0] * max_seq_length] * label_size, label_id=0, is_real_example=False) else: context_tokens = tokenizer.tokenize(example.context_sentence) if example.start_ending is not None: start_ending_tokens = tokenizer.tokenize(example.start_ending) all_input_tokens = [] all_input_ids = [] all_input_mask = [] all_segment_ids = [] for ending in example.endings: # We create a copy of the context tokens in order to be # able to shrink it according to ending_tokens context_tokens_choice = context_tokens[:] if example.start_ending is not None: ending_tokens = start_ending_tokens + tokenizer.tokenize(ending) else: ending_tokens = tokenizer.tokenize(ending) # Modifies `context_tokens_choice` and `ending_tokens` in # place so that the total length is less than the # specified length. Account for [CLS], [SEP], [SEP] with # "- 3" ending_tokens = ending_tokens[- max_qa_length:] if len(context_tokens_choice) + len(ending_tokens) > max_seq_length - 3: context_tokens_choice = context_tokens_choice[: ( max_seq_length - 3 - len(ending_tokens))] tokens = ["[CLS]"] + context_tokens_choice + ( ["[SEP]"] + ending_tokens + ["[SEP]"]) segment_ids = [0] * (len(context_tokens_choice) + 2) + [1] * ( len(ending_tokens) + 1) input_ids = tokenizer.convert_tokens_to_ids(tokens) input_mask = [1] * len(input_ids) # Zero-pad up to the sequence length. padding = [0] * (max_seq_length - len(input_ids)) input_ids += padding input_mask += padding segment_ids += padding assert len(input_ids) == max_seq_length assert len(input_mask) == max_seq_length assert len(segment_ids) == max_seq_length all_input_tokens.append(tokens) all_input_ids.append(input_ids) all_input_mask.append(input_mask) all_segment_ids.append(segment_ids) label = example.label if example_index < 5: tf.logging.info("*** Example ***") tf.logging.info("id: {}".format(example.example_id)) for choice_idx, (tokens, input_ids, input_mask, segment_ids) in \ enumerate(zip(all_input_tokens, all_input_ids, all_input_mask, all_segment_ids)): tf.logging.info("choice: {}".format(choice_idx)) tf.logging.info("tokens: {}".format(" ".join(tokens))) tf.logging.info( "input_ids: {}".format(" ".join(map(str, input_ids)))) tf.logging.info( "input_mask: {}".format(" ".join(map(str, input_mask)))) tf.logging.info( "segment_ids: {}".format(" ".join(map(str, segment_ids)))) tf.logging.info("label: {}".format(label)) return classifier_utils.InputFeatures( example_id=example.example_id, input_ids=all_input_ids, input_mask=all_input_mask, segment_ids=all_segment_ids, label_id=label )
2,993
def GetAllProperties(layers='core'): """Return all properties in the graph.""" global Utc KEY = "AllProperties:%s" % layers if DataCache.get(KEY,Utc): #logging.debug("DataCache HIT: %s" % KEY) return DataCache.get(KEY,Utc) else: #logging.debug("DataCache MISS: %s" % KEY) mynode = Unit.GetUnit("Thing") props = GetSources(Unit.GetUnit("rdf:type", True), Unit.GetUnit("rdf:Property", True), layers=EVERYLAYER) res = [] for prop in props: if inLayer(layers,prop): res.append(prop) sorted_all_properties = sorted(res, key=lambda u: u.id) DataCache.put(KEY,sorted_all_properties,Utc) return sorted_all_properties
2,994
def _single_optimal_block(x: NDArray) -> Tuple[float, float]: """ Compute the optimal window length for a single series Parameters ---------- x : ndarray The data to use in the optimal window estimation Returns ------- stationary : float Estimated optimal window length for stationary bootstrap circular : float Estimated optimal window length for circular bootstrap """ nobs = x.shape[0] eps = x - x.mean(0) b_max = np.ceil(min(3 * np.sqrt(nobs), nobs / 3)) kn = max(5, int(np.log10(nobs))) m_max = int(np.ceil(np.sqrt(nobs))) + kn # Find first collection of kn autocorrelations that are insignificant cv = 2 * np.sqrt(np.log10(nobs) / nobs) acv = np.zeros(m_max + 1) abs_acorr = np.zeros(m_max + 1) opt_m: Optional[int] = None for i in range(m_max + 1): v1 = eps[i + 1 :] @ eps[i + 1 :] v2 = eps[: -(i + 1)] @ eps[: -(i + 1)] cross_prod = eps[i:] @ eps[: nobs - i] acv[i] = cross_prod / nobs abs_acorr[i] = np.abs(cross_prod) / np.sqrt(v1 * v2) if i >= kn: if np.all(abs_acorr[i - kn : i] < cv) and opt_m is None: opt_m = i - kn m = 2 * max(opt_m, 1) if opt_m is not None else m_max m = min(m, m_max) g = 0.0 lr_acv = acv[0] for k in range(1, m + 1): lam = 1 if k / m <= 1 / 2 else 2 * (1 - k / m) g += 2 * lam * k * acv[k] lr_acv += 2 * lam * acv[k] d_sb = 2 * lr_acv ** 2 d_cb = 4 / 3 * lr_acv ** 2 b_sb = ((2 * g ** 2) / d_sb) ** (1 / 3) * nobs ** (1 / 3) b_cb = ((2 * g ** 2) / d_cb) ** (1 / 3) * nobs ** (1 / 3) b_sb = min(b_sb, b_max) b_cb = min(b_cb, b_max) return b_sb, b_cb
2,995
def predict(params, X): """ Using the learned parameters, predicts a class for each example in X Arguments: parameters -- python dictionary containing your parameters X -- input data of size (n_x, m) Returns predictions -- vector of predictions of our model (red: 0 / blue: 1) """ # Computes probabilities using forward propagation, and classifies to 0/1 using 0.5 as the threshold. A2, cache = forward_propagation(X, params) predictions = np.round(A2) return predictions
2,996
def RedirectFilterPageGenerator(generator): """ Wraps around another generator. Yields only those pages that are not redirects. """ for page in generator: if not page.isRedirectPage(): yield page
2,997
def response(request): """ 返回相应对象 :param request: :return: """ json_str = '{"name": "张三", "age": 18}' # 整体是个字符串 response = HttpResponse(json_str, content_type="application/json", status=200) response["dev"] = "aGrass0825" # 向响应头中添加内容 return response
2,998
def nest_to_flat_dict(nest): """Convert a nested structure into a flat dictionary. Args: nest: A nested structure. Returns: flat_dict: A dictionary with strings keys that can be converted back into the original structure via `flat_dict_to_nest`. """ flat_sequence = tf.nest.flatten(nest) return {str(k): v for k, v in enumerate(flat_sequence)}
2,999