content
stringlengths
22
815k
id
int64
0
4.91M
def getForegroundClassNameUnicode(hwnd=None): """ Returns a unicode string containing the class name of the specified application window. If hwnd parameter is None, frontmost window will be queried. """ if hwnd is None: hwnd = win32gui.GetForegroundWindow() # Maximum number of chars we'll accept for the class name; the # rest will be truncated if it's longer than this. MAX_LENGTH = 1024 classNameBuf = ctypes.create_unicode_buffer( MAX_LENGTH ) retval = ctypes.windll.User32.GetClassNameW( hwnd, classNameBuf, len( classNameBuf ) ) if retval == 0: raise ctypes.WinError() return classNameBuf.value
2,600
def test_simple_cordex_recipe(tmp_path, patched_datafinder, config_user): """Test simple CORDEX recipe.""" content = dedent(""" diagnostics: test: additional_datasets: - dataset: MOHC-HadGEM3-RA project: CORDEX product: output domain: AFR-44 institute: MOHC driver: ECMWF-ERAINT exp: evaluation ensemble: r1i1p1 rcm_version: v1 start_year: 1991 end_year: 1993 mip: mon variables: tas: scripts: null """) recipe = get_recipe(tmp_path, content, config_user) variable = recipe.diagnostics['test']['preprocessor_output']['tas'][0] filename = variable.pop('filename').split('/')[-1] assert (filename == 'CORDEX_MOHC-HadGEM3-RA_v1_ECMWF-ERAINT_AFR-44_mon_evaluation_' 'r1i1p1_tas_1991-1993.nc') reference = { 'alias': 'MOHC-HadGEM3-RA', 'dataset': 'MOHC-HadGEM3-RA', 'diagnostic': 'test', 'domain': 'AFR-44', 'driver': 'ECMWF-ERAINT', 'end_year': 1993, 'ensemble': 'r1i1p1', 'exp': 'evaluation', 'frequency': 'mon', 'institute': 'MOHC', 'long_name': 'Near-Surface Air Temperature', 'mip': 'mon', 'modeling_realm': ['atmos'], 'preprocessor': 'default', 'product': 'output', 'project': 'CORDEX', 'recipe_dataset_index': 0, 'rcm_version': 'v1', 'short_name': 'tas', 'original_short_name': 'tas', 'standard_name': 'air_temperature', 'start_year': 1991, 'timerange': '1991/1993', 'units': 'K', 'variable_group': 'tas', } assert set(variable) == set(reference) for key in reference: assert variable[key] == reference[key]
2,601
def read_mapping_from_csv(bind): """ Calls read_csv() and parses the loaded array into a dictionary. The dictionary is defined as follows: { "teams": { *team-name*: { "ldap": [] }, .... }, "folders: { *folder-id*: { "name": *folder-name*, "permissions": [ { "teamId": *team-name*, "permission0: *permission*" }, .... ] }, ... } :return: The csv's contents parsed into a dictionary as described above. """ result = {"teams": {}, "folders": {}} csv_content = read_csv(bind) is_header = True for line in csv_content: if not is_header: ldap = line[0] team = line[1] folder_name = line[3] folder_uuid = line[4] permission = line[5] if not team in result["teams"]: result["teams"][team] = {"ldap": []} if not ldap in result["teams"][team]["ldap"]: result["teams"][team]["ldap"].append(ldap) if not folder_uuid in result["folders"]: result["folders"][folder_uuid] = {"name": folder_name, "permissions": []} access = {"teamId": team, "permission": permission} if not access in result["folders"][folder_uuid]["permissions"]: result["folders"][folder_uuid]["permissions"].append(access) else: is_header = False return result
2,602
def primal_update( agent_id: int, A: np.ndarray, W: np.ndarray, x: np.ndarray, z: np.ndarray, lam: np.ndarray, prev_x: np.ndarray, prev_z: np.ndarray, objective_grad: np.ndarray, feasible_set: CCS, alpha: float, tau: float, nu: float, others_agent_id: Sequence[int], others_lam: Sequence[np.ndarray], ) -> Tuple[np.ndarray, np.ndarray]: """ """ x = feasible_set.projection( x + alpha * (x - prev_x) - tau * objective_grad - np.matmul(A.T, lam) ) z = ( z + alpha * (z - prev_z) + nu * sum( [ W[agent_id, oai] * (lam - ol) for oai, ol in zip(others_agent_id, others_lam) ] ) ) return x, z
2,603
def test_app_create_validation(admin_mc, admin_pc, custom_catalog, remove_resource, restore_rancher_version): """Test create validation for apps. This test will set the rancher version explicitly and attempt to create apps with rancher version requirements. """ # 1.6.0 uses 2.0.0-2.2.0 # 1.6.2 uses 2.1.0-2.3.0 client = admin_mc.client c_name = random_str() custom_catalog(name=c_name) ns = admin_pc.cluster.client.create_namespace(name=random_str(), projectId=admin_pc. project.id) remove_resource(ns) cat_base = "catalog://?catalog="+c_name+"&template=chartmuseum&version=" app_data = { 'name': random_str(), 'externalId': cat_base+"1.6.2", 'targetNamespace': ns.name, 'projectId': admin_pc.project.id, "answers": [{ "type": "answer", "clusterId": None, "projectId": None, "values": { "defaultImage": "true", "image.repository": "chartmuseum/chartmuseum", "image.tag": "v0.7.1", "env.open.STORAGE": "local", "gcp.secret.enabled": "false", "gcp.secret.key": "credentials.json", "persistence.enabled": "true", "persistence.size": "10Gi", "ingress.enabled": "true", "ingress.hosts[0]": "xip.io", "service.type": "NodePort", "env.open.SHOW_ADVANCED": "false", "env.open.DEPTH": "0", "env.open.ALLOW_OVERWRITE": "false", "env.open.AUTH_ANONYMOUS_GET": "false", "env.open.DISABLE_METRICS": "true" } }] } set_server_version(client, "2.1.0-beta2") # First try requires a min of 2.1 so an error should be returned with pytest.raises(ApiError) as e: app1 = admin_pc.client.create_app(app_data) remove_resource(app1) assert e.value.error.status == 422 assert e.value.error.message == 'rancher min version not met' set_server_version(client, "2.3.1") # Second try requires a max of 2.3 so an error should be returned with pytest.raises(ApiError) as e: app1 = admin_pc.client.create_app(app_data) remove_resource(app1) assert e.value.error.status == 422 assert e.value.error.message == 'rancher max version exceeded' set_server_version(client, "2.2.1-rc4") # Third try should work app1 = admin_pc.client.create_app(app_data) remove_resource(app1) wait_for_workload(admin_pc.client, ns.name, count=1)
2,604
def clean_instaces(image, min_area=20): """ Removes smal instances :param image: :return: """ ids, counts = np.unique(image, return_counts=True) removables = [ids for i, ids in enumerate(ids) if counts[i] < min_area] for r in range(0, len(removables)): image[image == removables[r]] = 0
2,605
def norm_cmap(values, cmap, normalize, cm, mn, mx): """ Normalize and set colormap Parameters ---------- values Series or array to be normalized cmap matplotlib Colormap normalize matplotlib.colors.Normalize cm matplotlib.cm Returns ------- n_cmap mapping of normalized values to colormap (cmap) """ if (mn is None) and (mx is None): mn, mx = min(values), max(values) norm = normalize(vmin=mn, vmax=mx) n_cmap = cm.ScalarMappable(norm=norm, cmap=cmap) return n_cmap, norm
2,606
def _cpx(odss_tuple, nterm, ncond): """ This function transforms the raw data for electric parameters (voltage, current...) in a suitable complex array :param odss_tuple: tuple of nphases*2 floats (returned by odsswr as couples of real, imag components, for each phase of each terminal) :type odss_tuple: tuple or list :param nterm: number of terminals of the underlying electric object :type nterm: int :param ncond: number of conductors per terminal of the underlying electric object :type ncond: int :returns: a [nterm x ncond] numpy array of complex floats :rtype: numpy.ndarray """ assert len(odss_tuple) == nterm * ncond * 2 cpxr = np.zeros([nterm, ncond], 'complex') def pairwise(iterable): # "s -> (s0, s1), (s2, s3), (s4, s5), ..." a = iter(iterable) return zip(a, a) for idx, couple in enumerate(pairwise(odss_tuple)): real = couple[0] imag = couple[1] cpxr[int(idx / ncond), (idx % ncond)] = np.sum([np.multiply(1j, imag), real], axis=0) cpxr[int(idx / ncond), (idx % ncond)] = np.sum([np.multiply(1j, imag), real], axis=0) return cpxr
2,607
def get_l2_distance_arad(X1, X2, Z1, Z2, \ width=0.2, cut_distance=6.0, r_width=1.0, c_width=0.5): """ Calculates the Gaussian distance matrix D for atomic ARAD for two sets of molecules K is calculated using an OpenMP parallel Fortran routine. Arguments: ============== X1 -- np.array of ARAD descriptors for molecules in set 1. X2 -- np.array of ARAD descriptors for molecules in set 2. Z1 -- List of lists of nuclear charges for molecules in set 1. Z2 -- List of lists of nuclear charges for molecules in set 2. Keyword arguments: width -- cut_distance -- r_width -- c_width -- Returns: ============== D -- The distance matrices for each sigma (4D-array, Nmol1 x Nmol2 x Natom1 x Natoms2) """ amax = X1.shape[1] assert X1.shape[3] == amax, "ERROR: Check ARAD decriptor sizes! code = 1" assert X2.shape[1] == amax, "ERROR: Check ARAD decriptor sizes! code = 2" assert X2.shape[3] == amax, "ERROR: Check ARAD decriptor sizes! code = 3" nm1 = len(Z1) nm2 = len(Z2) assert X1.shape[0] == nm1, "ERROR: Check ARAD decriptor sizes! code = 4" assert X2.shape[0] == nm2, "ERROR: Check ARAD decriptor sizes! code = 5" N1 = [] for Z in Z1: N1.append(len(Z)) N2 = [] for Z in Z2: N2.append(len(Z)) N1 = np.array(N1,dtype=np.int32) N2 = np.array(N2,dtype=np.int32) c1 = [] for charges in Z1: c1.append(np.array([PTP[int(q)] for q in charges], dtype=np.int32)) Z1_arad = np.zeros((nm1,amax,2)) for i in range(nm1): for j, z in enumerate(c1[i]): Z1_arad[i,j] = z c2 = [] for charges in Z2: c2.append(np.array([PTP[int(q)] for q in charges], dtype=np.int32)) Z2_arad = np.zeros((nm2,amax,2)) for i in range(nm2): for j, z in enumerate(c2[i]): Z2_arad[i,j] = z return atomic_arad_l2_distance_all(X1, X2, Z1_arad, Z2_arad, N1, N2, \ nm1, nm2, width, cut_distance, r_width, c_width, amax)
2,608
def test_list_server(provider): """ Checks whether any server is listed and has attributes""" servers = provider.inventory.list_server() for server in servers: assert server.id assert server.name assert server.path assert server.data assert len(servers) > 0, "No server is listed for any of feeds"
2,609
def _swap_endian(val, length): """ Swap the endianness of a number """ if length <= 8: return val if length <= 16: return (val & 0xFF00) >> 8 | (val & 0xFF) << 8 if length <= 32: return ((val & 0xFF000000) >> 24 | (val & 0x00FF0000) >> 8 | (val & 0x0000FF00) << 8 | (val & 0x000000FF) << 24) raise Exception('Cannot swap endianness for length ' + length)
2,610
def get_analysis(output, topology, traj): """ Calls analysis fixture with the right arguments depending on the trajectory type. Parameters ----------- output : str Path to simulation 'output' folder. topology : str Path to the topology file. traj : str Trajectory type: xtc or pdb. """ traj = traj if traj else "pdb" trajectory = f"trajectory.{traj}" analysis = Analysis( resname="LIG", chain="Z", simulation_output=output, skip_initial_structures=False, topology=topology, water_ids_to_track=[("A", 2109), ("A", 2124)], traj=trajectory, ) return analysis
2,611
def check_tag_match(extended_result: bool = False): """ Determine the discrepancy between the declared tags and those actually specified in the Definition :param extended_result: If True, returns an expanded dataset instead of a boolean :return: Boolean or tuple, depending on the extended_result variable """ definitions = Definition.query.filter(Definition.case_tags != "").all() for defin in definitions: pattern_case_tags = f"[{''.join(Definition.APPROVED_CASE_TAGS)}]" list_tags = re.findall(pattern_case_tags, defin.case_tags) list_body = [tag for tag in re.findall(r'\w+', defin.body) if tag in Definition.APPROVED_CASE_TAGS] result = list_tags == list_body if result: continue if extended_result: # print(df.source_word.name, result, list_tags, list_body) if len(defin.source_word.definitions.all()) > 1 and not list_body: second = f"\n\t{defin.source_word.definitions[1].grammar}" \ f" {defin.source_word.definitions[1].body}" else: second = "" print(f"{defin.source_word.name},\n\t{defin.grammar}" f" {defin.body}{second} >< [{defin.case_tags}]\n") else: print(defin.source_word.name, result)
2,612
def get_callback_class(module_name, subtype): """ Can return None. If no class implementation exists for the given subtype, the module is searched for a BASE_CALLBACKS_CLASS implemention which is used if found. """ module = _get_module_from_name(module_name) if subtype is None: return _get_callback_base_class(module) try: return getattr(module, subtype + CALLBACK_PREFIX) # If the callback implementation for this subtype doesn't exist, # attempt to load the BASE_CALLBACKS_CLASS class. except AttributeError: return _get_callback_base_class(module)
2,613
def merge_sort(data, left=None, right=None): """Merge sort in place. Like selection_sort, this is a generator.""" if left is None: left = 0 if right is None: right = len(data) if right <= left + 1: return mid = (left + right) // 2 yield 'subdivide', left, mid yield from merge_sort(data, left, mid) yield 'subdivide', mid + 1, right yield from merge_sort(data, mid, right) yield from merge(data, left, mid, right)
2,614
def index(): """Toon de metingen""" return render_template('index.html', metingen=Meting.query.all())
2,615
def ensure_lambda_uninstall_permissions(session): """ Ensures that the current AWS session has the necessary permissions to uninstall the New Relic AWS Lambda layer and log subscription. :param session: A boto3 session """ needed_permissions = check_permissions( session, actions=["lambda:GetFunction", "lambda:UpdateFunctionConfiguration"] ) if needed_permissions: message = [ "The following AWS permissions are needed to uninstall the New Relic AWS " "Lambda layer:\n" ] for needed_permission in needed_permissions: message.append(" * %s" % needed_permission) message.append("\nEnsure your AWS user has these permissions and try again.") raise click.UsageError("\n".join(message))
2,616
def about(template): """ Attach a template to a step which can be used to generate documentation about the step. """ def decorator(step_function): step_function._about_template = template return step_function return decorator
2,617
def _extend_batch_dim(t: torch.Tensor, new_batch_dim: int) -> torch.Tensor: """ Given a tensor `t` of shape [B x D1 x D2 x ...] we output the same tensor repeated along the batch dimension ([new_batch_dim x D1 x D2 x ...]). """ num_non_batch_dims = len(t.shape[1:]) repeat_shape = (new_batch_dim, *(1 for _ in range(num_non_batch_dims))) return t.repeat(repeat_shape)
2,618
def read_GTSRB_train(directory, shuffle = True): """ Read the training portion of GTSRB database. Each class has an own index file. """ print('Reading trainset index...') entries = [] for class_id in range(num_classes): # each class is in a separate folder print('\r%i%%'%(int((class_id/num_classes) * 100)), end='') class_str = str(class_id).zfill(5) class_directory = os.path.join(directory, class_str) # each class has an own indes file index_filename = os.path.join(class_directory, 'GT-%s.csv'%class_str) index = csv.DictReader(open(index_filename, 'r'), delimiter=';') for line in index: filename = os.path.join(class_directory, line['Filename']) x1 = int(line['Roi.X1']) y1 = int(line['Roi.Y1']) x2 = int(line['Roi.X2']) y2 = int(line['Roi.Y2']) # there is no need to use the class_id from the csv file # we can be sure that it corresponds to the folder entries.append(DatasetEntry(filename, x1, y1, x2, y2, class_id)) print('\rdone') if shuffle: random.shuffle(entries) return entries
2,619
def get_client(config): """ get_client returns a feature client configured using data found in the settings of the current application. """ storage = _features_from_settings(config.registry.settings) return Client(storage)
2,620
def upgrade(profile, validator, writeProfileToFileFunc): """ Upgrade a profile in memory and validate it If it is safe to do so, as defined by shouldWriteProfileToFile, the profile is written out. """ # when profile is none or empty we can still validate. It should at least have a version set. _ensureVersionProperty(profile) startSchemaVersion = int(profile[SCHEMA_VERSION_KEY]) log.debug("Current config schema version: {0}, latest: {1}".format(startSchemaVersion, latestSchemaVersion)) for fromVersion in range(startSchemaVersion, latestSchemaVersion): _doConfigUpgrade(profile, fromVersion) _doValidation(deepcopy(profile), validator) # copy the profile, since validating mutates the object try: # write out the configuration once the upgrade has been validated. This means that if NVDA crashes for some # other reason the file does not need to be upgraded again. if writeProfileToFileFunc: writeProfileToFileFunc(profile.filename, profile) except Exception as e: log.warning("Error saving configuration; probably read only file system") log.debugWarning("", exc_info=True) pass
2,621
def print_results(ibs, testres): """ Prints results from an experiment harness run. Rows store different qaids (query annotation ids) Cols store different configurations (algorithm parameters) Args: ibs (IBEISController): ibeis controller object testres (test_result.TestResult): CommandLine: python dev.py -e print --db PZ_MTEST -a default:dpername=1,qpername=[1,2] -t default:fg_on=False python dev.py -e print -t best --db seals2 --allgt --vz python dev.py -e print --db PZ_MTEST --allgt -t custom --print-confusion-stats python dev.py -e print --db PZ_MTEST --allgt --noqcache --index 0:10:2 -t custom:rrvsone_on=True --print-confusion-stats python dev.py -e print --db PZ_MTEST --allgt --noqcache --qaid4 -t custom:rrvsone_on=True --print-confusion-stats python -m ibeis --tf print_results -t default --db PZ_MTEST -a ctrl python -m ibeis --tf print_results -t default --db PZ_MTEST -a ctrl python -m ibeis --tf print_results --db PZ_MTEST -a default -t default:lnbnn_on=True default:lnbnn_on=False,bar_l2_on=True default:lnbnn_on=False,normonly_on=True CommandLine: python -m ibeis.expt.experiment_printres --test-print_results utprof.py -m ibeis.expt.experiment_printres --test-print_results Example: >>> # DISABLE_DOCTEST >>> from ibeis.expt.experiment_printres import * # NOQA >>> from ibeis.init import main_helpers >>> ibs, testres = main_helpers.testdata_expts( >>> 'PZ_MTEST', a='default:dpername=1,qpername=[1,2]', t='default:fg_on=False') >>> result = print_results(ibs, testres) >>> print(result) """ (cfg_list, cfgx2_cfgresinfo, testnameid, cfgx2_lbl, cfgx2_qreq_) = ut.dict_take( testres.__dict__, ['cfg_list', 'cfgx2_cfgresinfo', 'testnameid', 'cfgx2_lbl', 'cfgx2_qreq_']) # cfgx2_cfgresinfo is a list of dicts of lists # Parse result info out of the lists cfgx2_nextbestranks = ut.get_list_column(cfgx2_cfgresinfo, 'qx2_next_bestranks') cfgx2_gt_rawscores = ut.get_list_column(cfgx2_cfgresinfo, 'qx2_gt_raw_score') cfgx2_gf_rawscores = ut.get_list_column(cfgx2_cfgresinfo, 'qx2_gf_raw_score') #cfgx2_aveprecs = ut.get_list_column(cfgx2_cfgresinfo, 'qx2_avepercision') cfgx2_scorediffs = ut.get_list_column(cfgx2_cfgresinfo, 'qx2_scorediff') #cfgx2_gt_raw_score = ut.get_list_column(cfgx2_cfgresinfo, 'qx2_gt_raw_score') column_lbls = [ut.remove_chars(ut.remove_vowels(lbl), [' ', ',']) for lbl in cfgx2_lbl] scorediffs_mat = np.array(ut.replace_nones(cfgx2_scorediffs, np.nan)) print(' --- PRINT RESULTS ---') print(' use --rank-lt-list=1,5 to specify X_LIST') if True: # Num of ranks less than to score X_LIST = testres.get_X_LIST() #X_LIST = [1, 5] #nConfig = len(cfg_list) #nQuery = len(testres.qaids) cfgx2_nQuery = list(map(len, testres.cfgx2_qaids)) #cfgx2_qx2_ranks = testres.get_infoprop_list('qx2_bestranks') #-------------------- # A positive scorediff indicates the groundtruth was better than the # groundfalse scores istrue_list = [scorediff > 0 for scorediff in scorediffs_mat] isfalse_list = [~istrue for istrue in istrue_list] #------------ # Build Colscore nLessX_dict = testres.get_nLessX_dict() #------------ best_rankscore_summary = [] #to_intersect_list = [] # print each configs scores less than X=thresh for X, cfgx2_nLessX in six.iteritems(nLessX_dict): max_nLessX = cfgx2_nLessX.max() bestX_cfgx_list = np.where(cfgx2_nLessX == max_nLessX)[0] best_rankscore = '[cfg*] %d cfg(s) scored ' % len(bestX_cfgx_list) # FIXME best_rankscore += rankscore_str(X, max_nLessX, cfgx2_nQuery[bestX_cfgx_list[0]]) best_rankscore_summary += [best_rankscore] #to_intersect_list.append(ut.take(cfgx2_lbl, max_nLessX)) #intersected = to_intersect_list[0] if len(to_intersect_list) > 0 else [] #for ix in range(1, len(to_intersect_list)): # intersected = np.intersect1d(intersected, to_intersect_list[ix]) #if False: # #gt_raw_score_mat = np.vstack(cfgx2_gt_raw_score).T # #rank_mat = testres.get_rank_mat() # #------------ # # Build row lbls # if False: # qx2_lbl = np.array([ # 'qx=%d) q%s ' % (qx, ibsfuncs.aidstr(testres.qaids[qx], ibs=ibs, notes=True)) # for qx in range(nQuery)]) # #------------ # # Build Colscore and hard cases # if False: # qx2_min_rank = [] # qx2_argmin_rank = [] # new_hard_qaids = [] # new_hardtup_list = [] # for qx in range(nQuery): # ranks = rank_mat[qx] # valid_ranks = ranks[ranks >= 0] # min_rank = ranks.min() if len(valid_ranks) > 0 else -3 # bestCFG_X = np.where(ranks == min_rank)[0] # qx2_min_rank.append(min_rank) # # Find the best rank over all configurations # qx2_argmin_rank.append(bestCFG_X) #@ut.memoize #def get_new_hard_qx_list(testres): # """ Mark any query as hard if it didnt get everything correct """ # rank_mat = testres.get_rank_mat() # is_new_hard_list = rank_mat.max(axis=1) > 0 # new_hard_qx_list = np.where(is_new_hard_list)[0] # return new_hard_qx_list # new_hard_qx_list = testres.get_new_hard_qx_list() # for qx in new_hard_qx_list: # # New list is in aid format instead of cx format # # because you should be copying and pasting it # notes = ' ranks = ' + str(rank_mat[qx]) # qaid = testres.qaids[qx] # name = ibs.get_annot_names(qaid) # new_hardtup_list += [(qaid, name + " - " + notes)] # new_hard_qaids += [qaid] @ut.argv_flag_dec def intersect_hack(): failed = testres.rank_mat > 0 colx2_failed = [np.nonzero(failed_col)[0] for failed_col in failed.T] #failed_col2_only = np.setdiff1d(colx2_failed[1], colx2_failed[0]) #failed_col2_only_aids = ut.take(testres.qaids, failed_col2_only) failed_col1_only = np.setdiff1d(colx2_failed[0], colx2_failed[1]) failed_col1_only_aids = ut.take(testres.qaids, failed_col1_only) gt_aids1 = ibs.get_annot_groundtruth(failed_col1_only_aids, daid_list=testres.cfgx2_qreq_[0].daids) gt_aids2 = ibs.get_annot_groundtruth(failed_col1_only_aids, daid_list=testres.cfgx2_qreq_[1].daids) qaids_expt = failed_col1_only_aids gt_avl_aids1 = ut.flatten(gt_aids1) gt_avl_aids2 = list(set(ut.flatten(gt_aids2)).difference(gt_avl_aids1)) ibs.print_annotconfig_stats(qaids_expt, gt_avl_aids1) ibs.print_annotconfig_stats(qaids_expt, gt_avl_aids2) #jsontext = ut.to_json({ # 'qaids': list(qaids_expt), # 'dinclude_aids1': list(gt_aids_expt1), # 'dinclude_aids2': list(gt_aids_expt2), #}) #annotation_configs.varysize_pzm #from ibeis.expt import annotation_configs acfg = testres.acfg_list[0] import copy acfg1 = copy.deepcopy(acfg) acfg2 = copy.deepcopy(acfg) acfg1['qcfg']['min_pername'] = None acfg2['qcfg']['min_pername'] = None acfg1['dcfg']['min_pername'] = None acfg2['dcfg']['min_gt_per_name'] = None acfg1['qcfg']['default_aids'] = qaids_expt acfg1['dcfg']['gt_avl_aids'] = gt_avl_aids1 acfg2['qcfg']['default_aids'] = qaids_expt acfg2['dcfg']['gt_avl_aids'] = gt_avl_aids2 from ibeis.init import filter_annots from ibeis.expt import experiment_helpers annots1 = filter_annots.expand_acfgs(ibs, acfg1, verbose=True) annots2 = filter_annots.expand_acfgs(ibs, acfg2, verbose=True) acfg_name_list = dict( # NOQA acfg_list=[acfg1, acfg2], expanded_aids_list=[annots1, annots2], ) test_cfg_name_list = ['candidacy_k'] cfgdict_list, pipecfg_list = experiment_helpers.get_pipecfg_list(test_cfg_name_list, ibs=ibs) t1, t2 = testres_list # NOQA #ut.embed() #intersect_hack() #@ut.argv_flag_dec #def print_rowlbl(): # print('=====================') # print('[harn] Row/Query Labels: %s' % testnameid) # print('=====================') # print('[harn] queries:\n%s' % '\n'.join(qx2_lbl)) #print_rowlbl() #------------ @ut.argv_flag_dec def print_collbl(): print('=====================') print('[harn] Col/Config Labels: %s' % testnameid) print('=====================') enum_cfgx2_lbl = ['%2d) %s' % (count, cfglbl) for count, cfglbl in enumerate(cfgx2_lbl)] print('[harn] cfglbl:\n%s' % '\n'.join(enum_cfgx2_lbl)) print_collbl() #------------ @ut.argv_flag_dec def print_cfgstr(): print('=====================') print('[harn] Config Strings: %s' % testnameid) print('=====================') cfgstr_list = [query_cfg.get_cfgstr() for query_cfg in cfg_list] enum_cfgstr_list = ['%2d) %s' % (count, cfgstr) for count, cfgstr in enumerate(cfgstr_list)] print('\n[harn] cfgstr:\n%s' % '\n'.join(enum_cfgstr_list)) print_cfgstr() #------------ #@ut.argv_flag_dec #def print_rowscore(): # print('=======================') # print('[harn] Scores per Query: %s' % testnameid) # print('=======================') # for qx in range(nQuery): # bestCFG_X = qx2_argmin_rank[qx] # min_rank = qx2_min_rank[qx] # minimizing_cfg_str = ut.indentjoin(cfgx2_lbl[bestCFG_X], '\n * ') # #minimizing_cfg_str = str(bestCFG_X) # print('-------') # print(qx2_lbl[qx]) # print(' best_rank = %d ' % min_rank) # if len(cfgx2_lbl) != 1: # print(' minimizing_cfg_x\'s = %s ' % minimizing_cfg_str) #print_rowscore() #------------ #@ut.argv_flag_dec #def print_row_ave_precision(): # print('=======================') # print('[harn] Scores per Query: %s' % testnameid) # print('=======================') # for qx in range(nQuery): # aveprecs = ', '.join(['%.2f' % (aveprecs[qx],) for aveprecs in cfgx2_aveprecs]) # print('-------') # print(qx2_lbl[qx]) # print(' aveprecs = %s ' % aveprecs) #print_row_ave_precision() ##------------ #@ut.argv_flag_dec #def print_hardcase(): # print('--- hard new_hardtup_list (w.r.t these configs): %s' % testnameid) # print('\n'.join(map(repr, new_hardtup_list))) # print('There are %d hard cases ' % len(new_hardtup_list)) # aid_list = [aid_notes[0] for aid_notes in new_hardtup_list] # name_list = ibs.get_annot_names(aid_list) # name_set = set(name_list) # print(sorted(aid_list)) # print('Names: %r' % (name_set,)) #print_hardcase() #default=not ut.get_argflag('--allhard')) #------------ #@ut.argv_flag_dec #def echo_hardcase(): # print('--- hardcase commandline: %s' % testnameid) # # Show index for current query where hardids reside # #print('--index ' + (' '.join(map(str, new_hard_qx_list)))) # #print('--take new_hard_qx_list') # #hardaids_str = ' '.join(map(str, [' ', '--qaid'] + new_hard_qaids)) # hardaids_str = ' '.join(map(str, [' ', '--set-aids-as-hard'] + new_hard_qaids)) # print(hardaids_str) ##echo_hardcase(default=not ut.get_argflag('--allhard')) #echo_hardcase() #@ut.argv_flag_dec #def print_bestcfg(): # print('==========================') # print('[harn] Best Configurations: %s' % testnameid) # print('==========================') # # print each configs scores less than X=thresh # for X, cfgx2_nLessX in six.iteritems(nLessX_dict): # max_LessX = cfgx2_nLessX.max() # bestCFG_X = np.where(cfgx2_nLessX == max_LessX)[0] # best_rankscore = '[cfg*] %d cfg(s) scored ' % len(bestCFG_X) # best_rankscore += rankscore_str(X, max_LessX, nQuery) # cfglbl_list = cfgx2_lbl[bestCFG_X] # best_rankcfg = format_cfgstr_list(cfglbl_list) # #indent('\n'.join(cfgstr_list), ' ') # print(best_rankscore) # print(best_rankcfg) # print('[cfg*] %d cfg(s) are the best of %d total cfgs' % (len(intersected), nConfig)) # print(format_cfgstr_list(intersected)) #print_bestcfg() #------------ #@ut.argv_flag_dec #def print_gtscore(): # # Prints best ranks # print('gtscore_mat: %s' % testnameid) # print(' nRows=%r, nCols=%r' % (nQuery, nConfig)) # header = (' labled rank matrix: rows=queries, cols=cfgs:') # print('\n'.join(cfgx2_lbl)) # column_list = gt_raw_score_mat.T # print(ut.make_csv_table(column_list, row_lbls=testres.qaids, # column_lbls=column_lbls, header=header, # transpose=False, # use_lbl_width=len(cfgx2_lbl) < 5)) #print_gtscore() #------------ #@ut.argv_flag_dec #def print_best_rankmat(): # # Prints best ranks # print('-------------') # print('RankMat: %s' % testnameid) # print(' nRows=%r, nCols=%r' % (nQuery, nConfig)) # header = (' labled rank matrix: rows=queries, cols=cfgs:') # print('\n'.join(cfgx2_lbl)) # column_list = rank_mat.T # print(ut.make_csv_table(column_list, row_lbls=testres.qaids, # column_lbls=column_lbls, header=header, # transpose=False, # use_lbl_width=len(cfgx2_lbl) < 5)) #print_best_rankmat() #@ut.argv_flag_dec #def print_diffmat(): # # score differences over configs # print('-------------') # print('Diffmat: %s' % testnameid) # diff_matstr = get_diffmat_str(rank_mat, testres.qaids, nConfig) # print(diff_matstr) #print_diffmat() #@ut.argv_flag_dec #def print_rankhist_time(): # print('A rank histogram is a dictionary. ' # 'The keys denote the range of the ranks that the values fall in') # # TODO: rectify this code with other hist code # config_gt_aids = ut.get_list_column(testres.cfgx2_cfgresinfo, 'qx2_gt_aid') # config_rand_bin_qxs = testres.get_rank_histogram_qx_binxs() # _iter = enumerate(zip(rank_mat.T, agg_hist_dict, config_gt_aids, config_rand_bin_qxs)) # for cfgx, (ranks, agg_hist_dict, qx2_gt_aid, config_binxs) in _iter: # #full_cfgstr = testres.cfgx2_qreq_[cfgx].get_full_cfgstr() # #ut.print_dict(ut.dict_hist(ranks), 'rank histogram', sorted_=True) # # find the qxs that belong to each bin # aid_list1 = testres.qaids # aid_list2 = qx2_gt_aid # ibs.assert_valid_aids(aid_list1) # ibs.assert_valid_aids(aid_list2) # timedelta_list = ibs.get_annot_pair_timdelta(aid_list1, aid_list2) # #timedelta_str_list = [ut.get_posix_timedelta_str2(delta) # # for delta in timedelta_list] # bin_edges = testres.get_rank_histogram_bin_edges() # timedelta_groups = ut.dict_take(ut.group_items(timedelta_list, config_binxs), np.arange(len(bin_edges)), []) # timedelta_stats = [ut.get_stats(deltas, use_nan=True, datacast=ut.get_posix_timedelta_str2) for deltas in timedelta_groups] # print('Time statistics for each rank range:') # print(ut.dict_str(dict(zip(bin_edges, timedelta_stats)), sorted_=True)) #print_rankhist_time() #@ut.argv_flag_dec #def print_rankhist(): # print('A rank histogram is a dictionary. ' # 'The keys denote the range of the ranks that the values fall in') # # TODO: rectify this code with other hist code # config_gt_aids = ut.get_list_column(testres.cfgx2_cfgresinfo, 'qx2_gt_aid') # config_rand_bin_qxs = testres.get_rank_histogram_qx_binxs() # _iter = enumerate(zip(rank_mat.T, agg_hist_dict, config_gt_aids, config_rand_bin_qxs)) # for cfgx, (ranks, agg_hist_dict, qx2_gt_aid, config_binxs) in _iter: # print('Frequency of rank ranges:') # ut.print_dict(agg_hist_dict, 'agg rank histogram', sorted_=True) #print_rankhist() #------------ # Print summary #print(' --- SUMMARY ---') #------------ #@ut.argv_flag_dec #def print_colmap(): # print('==================') # print('[harn] mAP per Config: %s (sorted by mAP)' % testnameid) # print('==================') # cfgx2_mAP = np.array([aveprec_list.mean() for aveprec_list in cfgx2_aveprecs]) # sortx = cfgx2_mAP.argsort() # for cfgx in sortx: # print('[mAP] cfgx=%r) mAP=%.3f -- %s' % (cfgx, cfgx2_mAP[cfgx], cfgx2_lbl[cfgx])) # #print('L___ Scores per Config ___') #print_colmap() #------------ @ut.argv_flag_dec_true def print_colscore(): print('==================') print('[harn] Scores per Config: %s' % testnameid) print('==================') #for cfgx in range(nConfig): # print('[score] %s' % (cfgx2_lbl[cfgx])) # for X in X_LIST: # nLessX_ = nLessX_dict[int(X)][cfgx] # print(' ' + rankscore_str(X, nLessX_, nQuery)) print('\n[harn] ... sorted scores') for X in X_LIST: print('\n[harn] Sorted #ranks < %r scores' % (X)) sortx = np.array(nLessX_dict[int(X)]).argsort() #frac_list = (nLessX_dict[int(X)] / cfgx2_nQuery)[:, None] #print('cfgx2_nQuery = %r' % (cfgx2_nQuery,)) #print('frac_list = %r' % (frac_list,)) #print('Pairwise Difference: ' + str(ut.safe_pdist(frac_list, metric=ut.absdiff))) for cfgx in sortx: nLessX_ = nLessX_dict[int(X)][cfgx] rankstr = rankscore_str(X, nLessX_, cfgx2_nQuery[cfgx], withlbl=False) print('[score] %s --- %s' % (rankstr, cfgx2_lbl[cfgx])) print_colscore() #------------ ut.argv_flag_dec(print_latexsum)(ibs, testres) @ut.argv_flag_dec def print_next_rankmat(): # Prints nextbest ranks print('-------------') print('NextRankMat: %s' % testnameid) header = (' top false rank matrix: rows=queries, cols=cfgs:') print('\n'.join(cfgx2_lbl)) column_list = cfgx2_nextbestranks print(ut.make_csv_table(column_list, row_lbls=testres.qaids, column_lbls=column_lbls, header=header, transpose=False, use_lbl_width=len(cfgx2_lbl) < 5)) print_next_rankmat() #------------ @ut.argv_flag_dec def print_scorediff_mat(): # Prints nextbest ranks print('-------------') print('ScoreDiffMat: %s' % testnameid) header = (' score difference between top true and top false: rows=queries, cols=cfgs:') print('\n'.join(cfgx2_lbl)) column_list = cfgx2_scorediffs column_type = [float] * len(column_list) print(ut.make_csv_table(column_list, row_lbls=testres.qaids, column_lbls=column_lbls, column_type=column_type, header=header, transpose=False, use_lbl_width=len(cfgx2_lbl) < 5)) print_scorediff_mat(alias_flags=['--sdm']) #------------ def jagged_stats_info(arr_, lbl, col_lbls): arr = ut.recursive_replace(arr_, np.inf, np.nan) # Treat infinite as nan stat_dict = ut.get_jagged_stats(arr, use_nan=True, use_sum=True) sel_stat_dict, sel_indices = ut.find_interesting_stats(stat_dict, col_lbls) sel_col_lbls = ut.take(col_lbls, sel_indices) statstr_kw = dict(precision=3, newlines=True, lbl=lbl, align=True) stat_str = ut.get_stats_str(stat_dict=stat_dict, **statstr_kw) sel_stat_str = ut.get_stats_str(stat_dict=sel_stat_dict, **statstr_kw) sel_stat_str = 'sel_col_lbls = %s' % (ut.list_str(sel_col_lbls),) + '\n' + sel_stat_str return stat_str, sel_stat_str @ut.argv_flag_dec def print_confusion_stats(): """ CommandLine: python dev.py --allgt --print-scorediff-mat-stats --print-confusion-stats -t rrvsone_grid """ # Prints nextbest ranks print('-------------') print('ScoreDiffMatStats: %s' % testnameid) print('column_lbls = %r' % (column_lbls,)) #cfgx2_gt_rawscores = ut.get_list_column(cfgx2_cfgresinfo, 'qx2_gt_raw_score') #cfgx2_gf_rawscores = ut.get_list_column(cfgx2_cfgresinfo, 'qx2_gf_raw_score') gt_rawscores_mat = ut.replace_nones(cfgx2_gt_rawscores, np.nan) gf_rawscores_mat = ut.replace_nones(cfgx2_gf_rawscores, np.nan) tp_rawscores = vt.zipcompress(gt_rawscores_mat, istrue_list) fp_rawscores = vt.zipcompress(gt_rawscores_mat, isfalse_list) tn_rawscores = vt.zipcompress(gf_rawscores_mat, istrue_list) fn_rawscores = vt.zipcompress(gf_rawscores_mat, isfalse_list) tp_rawscores_str, tp_rawscore_statstr = jagged_stats_info(tp_rawscores, 'tp_rawscores', cfgx2_lbl) fp_rawscores_str, fp_rawscore_statstr = jagged_stats_info(fp_rawscores, 'fp_rawscores', cfgx2_lbl) tn_rawscores_str, tn_rawscore_statstr = jagged_stats_info(tn_rawscores, 'tn_rawscores', cfgx2_lbl) fn_rawscores_str, fn_rawscore_statstr = jagged_stats_info(fn_rawscores, 'fn_rawscores', cfgx2_lbl) #print(tp_rawscores_str) #print(fp_rawscores_str) #print(tn_rawscores_str) #print(fn_rawscores_str) print(tp_rawscore_statstr) print(fp_rawscore_statstr) print(tn_rawscore_statstr) print(fn_rawscore_statstr) print_confusion_stats(alias_flags=['--cs']) ut.argv_flag_dec_true(testres.print_percent_identification_success)() sumstrs = [] sumstrs.append('') sumstrs.append('||===========================') sumstrs.append('|| [cfg*] SUMMARY: %s' % testnameid) sumstrs.append('||---------------------------') sumstrs.append(ut.joins('\n|| ', best_rankscore_summary)) sumstrs.append('||===========================') summary_str = '\n' + '\n'.join(sumstrs) + '\n' #print(summary_str) ut.colorprint(summary_str, 'blue') print('To enable all printouts add --print-all to the commandline')
2,622
def fra_months(z): # Apologies, this function is verbose--function modeled after SSA regulations """A function that returns the number of months from date of birth to FRA based on SSA chart""" # Declare global variable global months_to_fra # If date of birth is 1/1/1938 or earlier, full retirement age (FRA) is 65 if z < datetime.date(1938, 1, 2): months_to_fra = 780 # If date of birth is between 1/2/1938 and 1/1/1939, then (FRA) is age 65 + 2 months elif z < datetime.date(1939, 1, 2): months_to_fra = 782 # If date of birth is between 1/2/1939 and 1/1/1940, then (FRA) is age 65 + 4 months elif z < datetime.date(1940, 1, 2): months_to_fra = 784 # If date of birth is between 1/2/1940 and 1/1/1941, then (FRA) is age 65 + 6 months elif z < datetime.date(1941, 1, 2): months_to_fra = 786 # If date of birth is between 1/2/1941 and 1/1/1942, then (FRA) is age 65 + 8 months elif z < datetime.date(1942, 1, 2): months_to_fra = 788 # If date of birth is between 1/2/1942 and 1/1/1943, then (FRA) is age 65 + 10 months elif z < datetime.date(1943, 1, 2): months_to_fra = 790 # If date of birth is between 1/2/1943 and 1/1/1955, then (FRA) is age 66 elif z < datetime.date(1955, 1, 2): months_to_fra = 792 # If date of birth is between 1/2/1955 and 1/1/1956, then (FRA) is age 66 + 2 months elif z < datetime.date(1956, 1, 2): months_to_fra = 794 # If date of birth is between 1/2/1956 and 1/1/1957, then (FRA) is age 66 + 4 months elif z < datetime.date(1957, 1, 2): months_to_fra = 796 # If date of birth is between 1/2/1957 and 1/1/1958, then (FRA) is age 66 + 6 months elif z < datetime.date(1958, 1, 2): months_to_fra = 798 # If date of birth is between 1/2/1958 and 1/1/1959, then (FRA) is age 66 + 8 months elif z < datetime.date(1959, 1, 2): months_to_fra = 800 # If date of birth is between 1/2/1959 and 1/1/1960, then (FRA) is age 66 + 10 months elif z < datetime.date(1960, 1, 2): months_to_fra = 802 # If date of birth is 1/2/1960 or later, then (FRA) is age 67 else: months_to_fra = 804 return months_to_fra
2,623
def repo_ls(node, relative_path, color): """List files in the node repository folder.""" from aiida.cmdline.utils.repository import list_repository_contents try: list_repository_contents(node, relative_path, color) except FileNotFoundError: echo.echo_critical('the path `{}` does not exist for the given node'.format(relative_path))
2,624
def parse_process(i, jobs_queue): """Pull tuples of raw page content, do CPU/regex-heavy fixup, push finished text :param i: process id. :param jobs_queue: where to get jobs. """ logging.info("enter %d-th parse_process pid:%d",i,os.getpid()); while True: logging.info("parse_process pid:%d 'while True' try to get a job from jobs_queue. current jobs_queue's size:%d", os.getpid(), jobs_queue.qsize()) job = jobs_queue.get() # job is (id, title, page, page_num) #lu : jobs_queue.get() would block current extract process, until it can return a job object. if job: infile, outfile = job logging.info("parse_process pid:%d get a job(infile:%s outfile:%s) from jobs_queue to parse... jobs_queue's size become:%d", os.getpid(), infile, outfile, jobs_queue.qsize()) try: Parse(infile, outfile) except: logging.exception('parse_process pid:%d Occur a expect, when Parsing File: %s', os.getpid(), infile) logging.info("parse_process pid:%d the job(infile:%s outfile:%s) has been parsed, whose size become:%d", os.getpid(), infile, outfile, jobs_queue.qsize()) else: logging.info("parse_process pid:%d the job gotten from job_queue is 'None', so to quit...",os.getpid()) logging.debug('Quit extractor') break
2,625
def set_global_format_spec(formats: SpecDict): """Set the global default format specifiers. Parameters ---------- formats: dict[type, str] Class-based format identifiers. Returns ------- old_spec : MultiFormatSpec The previous globally-set formatters. Example ------- >>> s = section.Elastic2D(1, 29000, 10, 144) >>> print(s) section Elastic 1 29000 10 144 >>> set_global_format_spec({float: '#.3g'}) MultiFormatSpec(int='d', float='g') >>> print(s) section Elastic 1 2.90e+04 10.0 144. """ old_spec = _GLOBAL_FORMAT_SPEC.copy() _GLOBAL_FORMAT_SPEC.update(formats) return old_spec
2,626
def gen_base_pass(length=15): """ Generate base password. - A new password will be generated on each call. :param length: <int> password length. :return: <str> base password. """ generator = PassGen() return generator.make_password(length=length)
2,627
def split_component_chars(address_parts): """ :param address_parts: list of the form [(<address_part_1>, <address_part_1_label>), .... ] returns [(<char_0>, <address_comp_for_char_0), (<char_1>, <address_comp_for_char_1),.., (<char_n-1>, <address_comp_for_char_n-1)] """ char_arr = [] for address_part, address_part_label in address_parts: # The address part of the tuple (address_part, address_part_label) for c in address_part: char_arr.append((c, address_part_label)) return char_arr
2,628
def report_metrics(topic, message): """ ๅฐ†metricๆ•ฐๆฎ้€š่ฟ‡datamanageไธŠๆŠฅๅˆฐๅญ˜ๅ‚จไธญ :param topic: ้œ€่ฆไธŠๆŠฅ็š„topic :param message: ้œ€่ฆไธŠๆŠฅ็š„ๆ‰“็‚นๆ•ฐๆฎ :return: ไธŠๆŠฅ็ป“ๆžœ """ try: res = DataManageApi.metrics.report({"kafka_topic": topic, MESSAGE: message, TAGS: [DEFAULT_GEOG_AREA_TAG]}) logger.info(f"report capacity metric {json.dumps(message)}") if res.is_success(): return True else: logger.warning(f"report metric failed. {json.dumps(message)} {res.message}") return False except Exception: logger.error("query metric failed, encounter some exception", exc_info=True) return False
2,629
def wg_completion_scripts_cb(data, completion_item, buffer, completion): """ Complete with known script names, for command '/weeget'. """ global wg_scripts wg_read_scripts(download_list=False) if len(wg_scripts) > 0: for id, script in wg_scripts.items(): weechat.hook_completion_list_add(completion, script["full_name"], 0, weechat.WEECHAT_LIST_POS_SORT) return weechat.WEECHAT_RC_OK
2,630
def getG(source): """ Read the Graph from a textfile """ G = {} Grev = {} for i in range(1,N+1): G[i] = [] Grev[i] = [] fin = open(source) for line in fin: v1 = int(line.split()[0]) v2 = int(line.split()[1]) G[v1].append(v2) Grev[v2].append(v1) fin.close() return G, Grev
2,631
def word_to_signed_int(x): """ returns a signed integer from the word (2-bytes) :param x: two-bytes to convert to a signed number """ pass
2,632
def remove_version(code): """ Remove any version directive """ pattern = '\#\s*version[^\r\n]*\n' regex = re.compile(pattern, re.MULTILINE|re.DOTALL) return regex.sub('\n', code)
2,633
def unlabeled_balls_in_labeled_boxes(balls, box_sizes): """ OVERVIEW This function returns a generator that produces all distinct distributions of indistinguishable balls among labeled boxes with specified box sizes (capacities). This is a generalization of the most common formulation of the problem, where each box is sufficiently large to accommodate all of the balls, and is an important example of a class of combinatorics problems called 'weak composition' problems. CONSTRUCTOR INPUTS n: the number of balls box_sizes: This argument is a list of length 1 or greater. The length of the list corresponds to the number of boxes. `box_sizes[i]` is a positive integer that specifies the maximum capacity of the ith box. If `box_sizes[i]` equals `n` (or greater), the ith box can accommodate all `n` balls and thus effectively has unlimited capacity. ACKNOWLEDGMENT I'd like to thank Chris Rebert for helping me to convert my prototype class-based code into a generator function. """ if not isinstance(balls, int): raise TypeError("balls must be a non-negative integer.") if balls < 0: raise ValueError("balls must be a non-negative integer.") if not isinstance(box_sizes,list): raise ValueError("box_sizes must be a non-empty list.") capacity= 0 for size in box_sizes: if not isinstance(size, int): raise TypeError("box_sizes must contain only positive integers.") if size < 1: raise ValueError("box_sizes must contain only positive integers.") capacity+= size if capacity < balls: raise ValueError("The total capacity of the boxes is less than the " "number of balls to be distributed.") return _unlabeled_balls_in_labeled_boxes(balls, box_sizes)
2,634
def NortekVectorConvert(dat, vhd, csv, sample_Hz=2): """ Take a NortekVector output file set (.dat and .vhd files only) and convert them into csv files with times and measurements @inputs dat - path to .dat file output by Nortek, containing PUV data vhd - path to .vhd file output by Nortek, containing start time csv - path to .csv file to save to """ dat_cols = ["Burst","Ensemble","u","v","w", "str1","str2","str3", "snr1","snr2","snr3", "corr1","corr2","corr3", "p","analog1","analog2","checksum(1=failed)"] df = pd.read_table(dat,sep='\s+',names=dat_cols) df = df[["u","v","w","p"]] gc.collect() mo, da, ye, ho, mi, se = open(vhd).readline().split(' ')[:6] start_time = pd.Timestamp(month = int(mo), day= int(da), year=int(ye), hour=int(ho), minute=int(mi), second=int(se)) t0 = start_time.to_datetime64() timestep = np.timedelta64(int(1000*(sample_Hz**-1)),'ms') t = np.arange(t0, t0+len(df)*timestep, timestep) df['t'] = t df.to_csv(csv, index=False)
2,635
def beginning_next_non_empty_line(bdata, i): """ doc """ while bdata[i] not in EOL: i += 1 while bdata[i] in EOL: i += 1 return i
2,636
def initate_process(args_array, isse, **kwargs): """Function: initate_process Description: Sets up the program log, opens a sftp connection, and determines which option will be ran. Arguments: (input) args_array -> Dict of command line options and values. (input) isse -> ISSE Guard class instance. (input) **kwargs: pattern -> pattern matching string for other filenames """ args_array = dict(args_array) log = gen_class.Logger(isse.prog_log, isse.prog_log, "INFO", "%(asctime)s %(levelname)s %(message)s", "%Y-%m-%dT%H:%M:%SZ") str_val = "=" * 80 log.log_info("%s Initialized" % isse.name) log.log_info("%s" % str_val) log.log_info("Transfer Dir: %s" % isse.transfer_dir) log.log_info("Review Dir: %s" % isse.review_dir) log.log_info("Complete Dir: %s" % isse.complete_dir) log.log_info("Job Log: %s" % isse.job_log) log.log_info("%s" % str_val) sftp = None if isse.action != "moveapproved": sftp, status = set_sftp_conn(isse, args_array["-s"], args_array["-d"], log) if isse.action == "moveapproved": move_to_reviewed(isse, log) elif sftp.is_connected and status and isse.action == "process": isse.set_other_files() log.log_info("set_other_files...") log.log_info("[ %s ]" % ", ".join(isse.other_files)) process(isse, sftp, log, **kwargs) elif sftp.is_connected and status and isse.action == "send": print("NOTE: Send option is for debugging purposes only.") if isse.files: _send(isse, sftp, log) else: print("ERROR: Expected file path or array of file paths.") elif not sftp.is_connected: log.log_err("SFTP Connection failed to open") elif not status: log.log_err("SFTP failure on changing directory") else: log.log_err("initate_process::Unknown error") if sftp and sftp.is_connected: sftp.close_conn() log.log_info("SFTP Connection closed") log.log_close()
2,637
def VisualizeBoxes(image, boxes, classes, scores, class_id_to_name, min_score_thresh=.25, line_thickness=4, groundtruth_box_visualization_color='black', skip_scores=False, skip_labels=False, text_loc='TOP'): """Visualize boxes on top down image.""" box_to_display_str_map = collections.defaultdict(str) box_to_color_map = collections.defaultdict(str) num_boxes = boxes.shape[0] for i in range(num_boxes): if scores is not None and scores[i] < min_score_thresh: continue box = tuple(boxes[i].tolist()) display_str = '' if not skip_labels: if classes[i] in class_id_to_name: class_name = class_id_to_name[classes[i]] display_str = str(class_name) else: display_str = 'N/A' if not skip_scores: if not display_str: display_str = '{}%'.format(int(100 * scores[i])) else: display_str = '{}: {}%'.format(display_str, int(100 * scores[i])) box_to_display_str_map[box] = display_str if scores is None: box_to_color_map[box] = groundtruth_box_visualization_color else: box_to_color_map[box] = PIL_COLOR_LIST[classes[i] % len(PIL_COLOR_LIST)] # Draw all boxes onto image. for box, color in box_to_color_map.items(): DrawBoundingBoxOnImage( image, box, color=color, thickness=line_thickness, display_str=box_to_display_str_map[box], text_loc=text_loc) return image
2,638
def tagDataskp(dList, start, end, name): """ Toma una posiciรณn para obtener de la lista dList. """ try: #if end is not None: if end: #tagdata = ",".join(dList[start:end + 1]) tagdata = dList[start:end + 1] else: tagdata = dList[start] except: from datetime import datetime sys.stderr.write("Error al obtener el Tag Data: %s, %s. Evento: %s [%s].\n" % (name, dList[2], dList[1], str(datetime.now()))) # dList[2] el 'id' return tagdata or None
2,639
def cal_softplus(x): """Calculate softplus.""" return np.log(np.exp(x) + 1)
2,640
def load_list_from_disk_with_pickle(path_to_list: str) -> list: """This function loads a list from disk Args: path_to_list (str): path to where the list is saved Returns: loaded_list (list): loaded list Raises: AssertionError: if list path does not exist """ assert os.path.exists(path_to_list), "Path {} does not exist".format(path_to_list) open_file = open(path_to_list, "rb") loaded_list = pickle.load(open_file) # load from disk open_file.close() return loaded_list
2,641
def test_app_config(): """ Test app_init call using the 'test-fence-config.yaml' This includes the check to verify underlying storage """ config_path = "test-fence-config.yaml" root_dir = os.path.dirname(os.path.realpath(__file__)) # delete the record operation from the data blueprint, because right now it calls a # whole bunch of stuff on the arborist client to do some setup for the uploader role fence.blueprints.data.blueprint.deferred_functions = [ f for f in fence.blueprints.data.blueprint.deferred_functions if f.__name__ != "record" ] fake_blob_service_client = FakeBlobServiceClient() patch_list = [ {"patch_name": "fence.app_sessions"}, {"patch_name": "fence.app_register_blueprints"}, {"patch_name": "fence.oidc.oidc_server.OIDCServer.init_app"}, {"patch_name": "fence._setup_prometheus"}, { "patch_name": "fence.resources.storage.StorageManager.__init__", "return_value": None, }, {"patch_name": "fence._check_aws_creds_and_region"}, { "patch_name": "fence.BlobServiceClient.from_connection_string", "return_value": fake_blob_service_client, }, ] patchers = [] for patch_values in patch_list: patcher = ( patch(patch_values["patch_name"], return_value=patch_values["return_value"]) if "return_value" in patch_values.keys() else patch(patch_values["patch_name"]) ) patcher.start() patchers.append(patcher) app_init( fence.app, test_settings, root_dir=root_dir, config_path=os.path.join(root_dir, config_path), ) assert fence.app.config # nosec for patcher in patchers: patcher.stop()
2,642
def prepare_spark_conversion(df: pd.DataFrame) -> pd.DataFrame: """Pandas does not distinguish NULL and NaN values. Everything null-like is converted to NaN. However, spark does distinguish NULL and NaN for example. To enable correct spark dataframe creation with NULL and NaN values, the `PANDAS_NULL` constant is used as a workaround to enforce NULL values in pyspark dataframes. Pyspark treats `None` values as NULL. Parameters ---------- df: pd.DataFrame Input dataframe to be prepared. Returns ------- df_prepared: pd.DataFrame Prepared dataframe for spark conversion. """ return df.where(df.ne(PANDAS_NULL), None)
2,643
def get_user_vk_id(id): """ :param id: ะงะธัะปะพะฒะพะน ID ะฟะพะปัŒะทะพะฒะฐั‚ะตะปั VK :return: ะกัั‹ะปะบะฐ ะฝะฐ ะฟะพะปัŒะทะพะฒะฐั‚ะตะปั """ response = requests.get('{}users.get?user_ids={}&fields=domain&access_token={}&v={}' .format(api_address, id, token, api_version)) dict = get_dictionary(response) return 'https://vk.com/{}'.format(dict['response'][0]['domain'])
2,644
def controllable_staircase( A, B, C, D, E, tol=1e-9, ): """ Implementation of COMPUTATION OF IRREDUCIBLE GENERALIZED STATE-SPACE REALIZATIONS ANDRAS VARGA using givens rotations. it is very slow, but numerically stable TODO, add pivoting, TODO, make it use the U-T property on E better for speed TODO, make it output Q and Z to apply to aux matrices, perhaps use them on C """ # from icecream import ic # import tabulate Ninputs = B.shape[1] Nstates = A.shape[0] Nconstr = A.shape[1] Noutput = C.shape[0] BA, E = scipy.linalg.qr_multiply(E, np.hstack([B, A]), pivoting=False, mode="left") Nmin = min(Nconstr, Nstates) for CidxBA in range(0, Nmin - 1): for RidxBA in range(Nconstr - 1, CidxBA, -1): # create a givens rotation for Q reduction on BA BAv0 = BA[RidxBA - 1, CidxBA] BAv1 = BA[RidxBA, CidxBA] BAvSq = BAv0 ** 2 + BAv1 ** 2 if BAvSq < tol: continue BAvAbs = BAvSq ** 0.5 c = BAv1 / BAvAbs s = BAv0 / BAvAbs M = np.array([[s, +c], [-c, s]]) BA[RidxBA - 1 : RidxBA + 1, :] = M @ BA[RidxBA - 1 : RidxBA + 1, :] # TODO, use the U-T to be more efficient E[RidxBA - 1 : RidxBA + 1, :] = M @ E[RidxBA - 1 : RidxBA + 1, :] Cidx = RidxBA Ridx = RidxBA # row and col swap Ev0 = E[Ridx, Cidx - 1] Ev1 = E[Ridx, Cidx] EvSq = Ev0 ** 2 + Ev1 ** 2 if EvSq < tol: continue EvAbs = EvSq ** 0.5 c = Ev0 / EvAbs s = Ev1 / EvAbs MT = np.array([[s, +c], [-c, s]]) BA[:, Ninputs:][:, Cidx - 1 : Cidx + 1] = ( BA[:, Ninputs:][:, Cidx - 1 : Cidx + 1] @ MT ) C[:, Cidx - 1 : Cidx + 1] = C[:, Cidx - 1 : Cidx + 1] @ MT # TODO, use the U-T to be more efficient E[:, Cidx - 1 : Cidx + 1] = E[:, Cidx - 1 : Cidx + 1] @ MT B = BA[:, :Ninputs] A = BA[:, Ninputs:] return A, B, C, D, E
2,645
def loyalty(): """ะŸะตั€ะตัั‡ะธั‚ะฐั‚ัŒ ะธะฝะดะตะบั ะปะพัะปัŒะฝะพัั‚ะธ""" articles = Article.objects.all() if articles.count() == 0: logger.info('ะŸะพะบะฐ ะฝะตั‚ ัั‚ะฐั‚ะตะน ะดะปั ะฟะตั€ะตัั‡ั‘ั‚ะฐ. ะ’ั‹ั…ะพะดะธะผ...') return False logger.info('ะะฐั‡ะฐะปะพ ะฟะตั€ะตัั‡ั‘ั‚ะฐ ะธะฝะดะตะบัะฐ ะปะพัะปัŒะฝะพัั‚ะธ') logger.info(f'ะšะพะปะธั‡ะตัั‚ะฒะพ ะผะฐั‚ะตั€ะธะฐะปะพะฒ: {articles.count()}') texts = [item.text for item in articles] dt = DefineText(texts) themes, _ = dt.article_theme() sentiments, _ = dt.article_sentiment() for article, theme, sentiment in zip(articles, themes, sentiments): article.theme = bool(theme) article.sentiment = sentiment article.save()
2,646
def user_info(request): """Returns a JSON object containing the logged-in student's information.""" student = request.user.student return HttpResponse(json.dumps({ 'academic_id': student.academic_id, 'current_semester': int(student.current_semester), 'name': student.name, 'username': request.user.username}), content_type="application/json")
2,647
def main(): """ A function to bootstrap the application. This function loads the config.json file anf runs the proxy server. :return: None """ args = parse_args() # Check if config file provided if args.config_file: # Get data from config file config = load_config(args.config_file) try: # Start the proxy server start_proxy_server(config) except: logging.error("Failed to start server %s", config['proxy_server']) else: error = "Config file not found" logging.error("Failed to load config file: %s", error)
2,648
def extract_brain_activation(brainimg, mask, roilabels, method='mean'): """ Extract brain activation from ROI. Parameters ---------- brainimg : array A 4D brain image array with the first dimension correspond to pictures and the rest 3D correspond to brain images mask : array A 3D brain image array with the same size as the rest 3D of brainimg. roilabels : list, array ROI labels method : str Method to integrate activation from each ROI, by default is 'mean'. Returns ------- roisignals : list Extracted brain activation. Each element in the list is the extracted activation of the roilabels. Due to different label may contain different number of activation voxels, the output activation could not stored as numpy array list. """ if method == 'mean': calc_way = partial(np.mean, axis=1) elif method == 'std': calc_way = partial(np.std, axis=1) elif method == 'max': calc_way = partial(np.max, axis=1) elif method == 'voxel': calc_way = np.array else: raise Exception('We haven''t support this method, please contact authors to implement.') assert brainimg.shape[1:] == mask.shape, "brainimg and mask are mismatched." roisignals = [] for i, lbl in enumerate(roilabels): roisignals.append(calc_way(brainimg[:, mask==lbl])) return roisignals
2,649
def list_goal(): """List relative path pants targets.""" path = lib.rel_cwd() pants_args = "list {0}:".format(path) lib.pants_list(pants_args)
2,650
def load_sensor_suite_from_json(manager: 'WASensorManager', filename: str): """Load a sensor suite from json Each loaded sensor will be added to the manager Args: manager (WASensorManager): The sensor manager to store all created objects in filename (str): The json specification file that describes the sensor suite """ j = _load_json(filename) # Validate the json file _check_field(j, 'Type', value='Sensor') _check_field(j, 'Template', value='Sensor Suite') _check_field(j, 'Sensors', field_type=list) # Load the sensors for sensor in j['Sensors']: new_sensor = load_sensor_from_json(sensor, manager._system) manager.add_sensor(new_sensor)
2,651
def logit(x): """ Elementwise logit (inverse logistic sigmoid). :param x: numpy array :return: numpy array """ return np.log(x / (1.0 - x))
2,652
def _base58_decode(address: str) -> bool: """ SEE https://en.bitcoin.it/wiki/Base58Check_encoding """ try: decoded_address = base58.b58decode(address).hex() result, checksum = decoded_address[:-8], decoded_address[-8:] except ValueError: return False else: for _ in range(1, 3): result = hashlib.sha256(binascii.unhexlify(result)).hexdigest() return checksum == result[:8]
2,653
def to_nbody(cluster, do_key_params=False, ro=8.0, vo=220.0): """Convert stellar positions/velocities, centre of mass, and orbital position and velocity to Nbody units - requires that cluster.zmbar, cluster.rbar, cluster.vstar are set (defaults are 1) Parameters ---------- cluster : class StarCluster do_key_params : bool call key_params to calculate key parameters after unit change (default: False) ro : float galpy radius scaling parameter vo : float galpy velocity scaling parameter Returns ------- None History: ------- 2018 - Written - Webb (UofT) """ if cluster.units != "pckms": cluster.to_pckms(do_key_params=False) if cluster.units == "pckms": cluster.m /= cluster.zmbar cluster.x /= cluster.rbar cluster.y /= cluster.rbar cluster.z /= cluster.rbar cluster.vx /= cluster.vstar cluster.vy /= cluster.vstar cluster.vz /= cluster.vstar cluster.xc /= cluster.rbar cluster.yc /= cluster.rbar cluster.zc /= cluster.rbar cluster.vxc /= cluster.vstar cluster.vyc /= cluster.vstar cluster.vzc /= cluster.vstar cluster.xgc /= cluster.rbar cluster.ygc /= cluster.rbar cluster.zgc /= cluster.rbar cluster.vxgc /= cluster.vstar cluster.vygc /= cluster.vstar cluster.vzgc /= cluster.vstar cluster.units = "nbody" cluster.rv3d() if do_key_params: cluster.key_params()
2,654
def get_average_matrix(shape, matrices): """ Take the average matrix by a list of matrices of same shape """ return _ImageConvolution().get_average_matrix(shape, matrices)
2,655
def pph_custom_pivot(n, t0): """ O algoritmo recebe uma lista n com pares de coordenadas (a, b) e retorna uma lista s, somente com as coordenadas que juntas tenham uma razรฃo mรกxima do tipo r = ((a0 + a1 + ... + an) / (b0 + b1 + ... + bn)). Esse algoritmo tem complexidade de pior caso O(n^2) quando a razรฃo de todos os elementos serรฃo sempre menores que a razรฃo do pivot. Para encontrar o elemento pivot, o algoritmo faz o seguinte cรกlculo: pivot = [a0 + (a1 + a2 + ... + an)] / [b0 + (b1 + b2 + ... + bn)] Args: n (list[Pair]): Lista com coordenadas do tipo Pair. t0 (Pair): a0 e b0 iniciais de referรชncia para o algoritmo. Returns: s (list[Pair]): Lista com coordenadas que maximizam a razรฃo r. """ # 0- Declaraรงรฃo do objeto HiberbolicSet s = HiperbolicSet(t0.a, t0.b) k = n # 1- Calcula um pivot usando a funรงรฃo r = ((a0 + a1 + ... + an) / (b0 + b1 + ... + bn)) em O(n) pivot = custom_pivot(k, None, t0.a, t0.b) # 2- Chama os steps da recursรฃo para o cรกlculo do pph customizado res = pph_steps(k, pivot, pivot.a, pivot.b) # 6- Adiciona a lista com os pares que maximizam a razรฃo - O(n) s.add_all(res) return s
2,656
def train( model, data_loader, optimizer, scheduler, checkpointer, device, checkpoint_arguments, params, tensorboard, getter, dataloader_val=None, evaluator=None ): """ Model training engine. :param model: model(data, targets) should return a loss dictionary :param checkpointer: Checkpointer object :param checkpoint_arguments: arguments that should be saved in checkpoint :param params: training parameters: max_epochs: maximium epochs checkpoint_period: how many checkpoints print_every: report every ? iterations :param dataloader_val: validation dataset :param evaluator: Evaluator object """ # get arguments start_epoch = checkpoint_arguments['epoch'] start_iter = checkpoint_arguments['iteration'] max_epochs = params['max_epochs'] checkpoint_period = params['checkpoint_period'] print_every = params['print_every'] val_every = params['val_every'] max_iter = max_epochs * len(data_loader) # metric logger meters = MetricLogger(", ") print("Start training") start_training_time = time.time() # end: the end time of last iteration end = time.time() first = True for epoch in range(start_epoch, max_epochs): model.train() # starting from where we drop enumerator = enumerate(data_loader, start_iter if first else 0) for iteration, (data, targets) in enumerator: # this is necessary to ensure the right number of epochs if iteration >= max_iter: break # time used for loading data data_time = time.time() - end iteration = iteration + 1 globel_step = epoch * len(data_loader) + iteration # step learning rate scheduler if scheduler: scheduler.step() # batch training # put data to device data = {k: v.to(device) for (k, v) in data.items()} targets = {k: v.to(device) for (k, v) in targets.items()} # get losses loss_dict = model(data, targets) # reduce loss dictionary loss_dict = {k: torch.mean(v) for k, v in loss_dict.items()} # sum all losses for bp meters.update(**loss_dict) # loss = sum(loss for loss in loss_dict.values()) loss = loss_dict['loss'] optimizer.zero_grad() loss.backward() optimizer.step() # time for one iteration batch_time = time.time() - end end = time.time() meters.update(time=batch_time, data=data_time) # estimated seconds is number of iterations left / time per iteration eta_seconds = meters.time.global_avg * (max_iter - epoch * len(data_loader) + iteration) eta_string = str(datetime.timedelta(seconds=int(eta_seconds))) if iteration % print_every == 0 or iteration == max_iter: print( meters.delimiter.join( [ "eta: {eta}", "epoch: {epoch}", "iter: {iter}", "{meters}", "lr: {lr:.6f}", "max mem: {memory:.0f}", ] ).format( eta=eta_string, epoch=epoch, iter=iteration, meters=str(meters), lr=optimizer.param_groups[0]["lr"], memory=torch.cuda.max_memory_allocated() / 1024.0 / 1024.0 ) ) tb_data = getter.get_tensorboard_data() if not tensorboard is None: metric_dict = meters.state_dict() tensorboard.update(**metric_dict) tensorboard.update(**tb_data) tensorboard.add('train', globel_step) # save model, optimizer, scheduler, and other arguments if iteration % checkpoint_period == 0: checkpoint_arguments['epoch'] = epoch # iteration should be kept in the checkpointer checkpoint_arguments['iteration'] = iteration checkpointer.save("model_{:05d}_{:07d}".format(epoch, iteration)) # evaluate result after each epoch if not evaluator is None and not dataloader_val is None and globel_step % val_every == 0: result = evaluate(model, device, dataloader_val, evaluator) print('Validation result: ', result) if tensorboard: tensorboard.update(val_result=result) # NOTE: back to train mode! model.train() total_training_time = time.time() - start_training_time total_time_str = str(datetime.timedelta(seconds=total_training_time)) print("Total training time: {} ({:.4f} s /it)".format( total_time_str, total_training_time / (max_iter) ))
2,657
def make_csv(secret, site_id, path_to_csv=None, result_limit=1000, query_params=None): """ Function which fetches a video library and writes each video_objects Metadata to CSV. Useful for CMS systems. :param secret: <string> Secret value for your JWPlatform API key :param site_id: <string> ID of a JWPlatform site :param path_to_csv: <string> Local system path to desired CSV. Default will be within current working directory. :param result_limit: <int> Number of video results returned in response. (Suggested to leave at default of 1000) :param query_params: Arguments conforming to standards found @ https://developer.jwplayer.com/jwplayer/reference#get_v2-sites-site-id-media :return: <dict> Dict which represents the JSON response. """ path_to_csv = path_to_csv or os.path.join(os.getcwd(), 'video_list.csv') timeout_in_seconds = 2 max_retries = 3 retries = 0 page = 1 videos = list() if query_params is None: query_params = {} query_params["page_length"] = result_limit jwplatform_client = jwplatform.client.JWPlatformClient(secret) logging.info("Querying for video list.") while True: try: query_params["page"] = page response = jwplatform_client.Media.list(site_id=site_id, query_params=query_params) except jwplatform.errors.TooManyRequestsError: logging.error("Encountered rate limiting error. Backing off on request time.") if retries == max_retries: raise timeout_in_seconds *= timeout_in_seconds # Exponential back off for timeout in seconds. 2->4->8->etc.etc. retries += 1 time.sleep(timeout_in_seconds) continue except jwplatform.errors.APIError as e: logging.error("Encountered an error querying for videos list.\n{}".format(e)) raise e # Reset retry flow-control variables upon a non successful query (AKA not rate limited) retries = 0 timeout_in_seconds = 2 # Add all fetched video objects to our videos list. next_videos = response.json_body["media"] for video in next_videos: csv_video = video["metadata"] csv_video["id"] = video["id"] videos.append(csv_video) page += 1 logging.info("Accumulated {} videos.".format(len(videos))) if len(next_videos) == 0: # Condition which defines you've reached the end of the library break # Section for writing video library to csv desired_fields = ['id', 'title', 'description', 'tags', 'publish_start_date', 'permalink'] should_write_header = not os.path.isfile(path_to_csv) with open(path_to_csv, 'a+') as path_to_csv: # Only write columns to the csv which are specified above. Columns not specified are ignored. writer = csv.DictWriter(path_to_csv, fieldnames=desired_fields, extrasaction='ignore') if should_write_header: writer.writeheader() writer.writerows(videos)
2,658
def music(hot_music_url, **kwargs): """ get hot music result :return: HotMusic object """ result = fetch(hot_music_url, **kwargs) # process json data datetime = parse_datetime(result.get('active_time')) # video_list = result.get('music_list', []) musics = [] music_list = result.get('music_list', []) for item in music_list: music = data_to_music(item.get('music_info', {})) music.hot_count = item.get('hot_value') musics.append(music) # construct HotMusic object and return return HotMusic(datetime=datetime, data=musics)
2,659
def parse_from_docstring(docstring, spec='operation'): """Returns path spec from docstring""" # preprocess lines lines = docstring.splitlines(True) parser = _ParseFSM(FSM_MAP, lines, spec) parser.run() return parser.spec
2,660
def collection_headings(commodities) -> CommodityCollection: """Returns a special collection of headings to test header and chapter parenting rules.""" keys = ["9900_80_0", "9905_10_0", "9905_80_0", "9910_10_0", "9910_80_0"] return create_collection(commodities, keys)
2,661
def get_ssh_user(): """Returns ssh username for connecting to cluster workers.""" return getpass.getuser()
2,662
def tryf(body, *handlers, elsef=None, finallyf=None): """``try``/``except``/``finally`` as a function. This allows lambdas to handle exceptions. ``body`` is a thunk (0-argument function) that represents the body of the ``try`` block. ``handlers`` is ``(excspec, handler), ...``, where ``excspec`` is either an exception type, or a tuple of exception types. ``handler`` is a 0-argument or 1-argument function. If it takes an argument, it gets the exception instance. Handlers are tried in the order specified. ``elsef`` is a thunk that represents the ``else`` block. ``finallyf`` is a thunk that represents the ``finally`` block. Upon normal completion, the return value of ``tryf`` is the return value of ``elsef`` if that was specified, otherwise the return value of ``body``. If an exception was caught by one of the handlers, the return value of ``tryf`` is the return value of the exception handler that ran. If you need to share variables between ``body`` and ``finallyf`` (which is likely, given what a ``finally`` block is intended to do), consider wrapping the ``tryf`` in a ``let`` and storing your variables there. If you want them to leak out of the ``tryf``, you can also just create an ``env`` at an appropriate point, and store them there. """ def accepts_arg(f): try: if arity_includes(f, 1): return True except UnknownArity: # pragma: no cover return True # just assume it return False def isexceptiontype(exc): try: if issubclass(exc, BaseException): return True except TypeError: # "issubclass() arg 1 must be a class" pass return False # validate handlers for excspec, handler in handlers: if isinstance(excspec, tuple): # tuple of exception types if not all(isexceptiontype(t) for t in excspec): raise TypeError(f"All elements of a tuple excspec must be exception types, got {excspec}") elif not isexceptiontype(excspec): # single exception type raise TypeError(f"excspec must be an exception type or tuple of exception types, got {excspec}") # run try: ret = body() except BaseException as exception: # Even if a class is raised, as in `raise StopIteration`, the `raise` statement # converts it into an instance by instantiating with no args. So we need no # special handling for the "class raised" case. # https://docs.python.org/3/reference/simple_stmts.html#the-raise-statement # https://stackoverflow.com/questions/19768515/is-there-a-difference-between-raising-exception-class-and-exception-instance/19768732 exctype = type(exception) for excspec, handler in handlers: if isinstance(excspec, tuple): # tuple of exception types # this is safe, exctype is always a class at this point. if any(issubclass(exctype, t) for t in excspec): if accepts_arg(handler): return handler(exception) else: return handler() else: # single exception type if issubclass(exctype, excspec): if accepts_arg(handler): return handler(exception) else: return handler() else: if elsef is not None: return elsef() return ret finally: if finallyf is not None: finallyf()
2,663
def obtain_sheet_music(score, most_frequent_dur): """ Returns unformated sheet music from score """ result = "" octaves = [3 for i in range(12)] accidentals = [False for i in range(7)] for event in score: for note_indx in range(len(event[0])): data = notenum2string(event[0][note_indx], accidentals, octaves) result += data[0] accidentals = data[1] octaves = data[2] if note_indx != len(event[0])-1: result += '-' if event[1] != most_frequent_dur: # Quarters are default result += '/' result += dur2mod(event[1], most_frequent_dur) result += ',' return result
2,664
def adjacency_matrix(edges): """ Convert a directed graph to an adjacency matrix. Note: The distance from a node to itself is 0 and distance from a node to an unconnected node is defined to be infinite. Parameters ---------- edges : list of tuples list of dependencies between nodes in the graph [(source node, destination node, weight), ...] Returns ------- out : tuple (names, adjacency matrix) names - list of unique nodes in the graph adjacency matrix represented as list of lists """ # determine the set of unique nodes names = set() for src, dest, _ in edges: # add source and destination nodes names.add(src) names.add(dest) # convert set of names to sorted list names = sorted(names) # determine initial adjacency matrix with infinity weights matrix = [[float('Inf')] * len(names) for _ in names] for src, dest, weight in edges: # update weight in adjacency matrix matrix[names.index(src)][names.index(dest)] = weight for src in names: matrix[names.index(src)][names.index(src)] = 0 # return list of names and adjacency matrix return names, matrix
2,665
def estimate_Cn(P=1013, T=273.15, Ct=1e-4): """Use Weng et al to estimate Cn from meteorological data. Parameters ---------- P : `float` atmospheric pressure in hPa T : `float` temperature in Kelvin Ct : `float` atmospheric struction constant of temperature, typically 10^-5 - 10^-2 near the surface Returns ------- `float` Cn """ return (79 * P / (T ** 2)) * Ct ** 2 * 1e-12
2,666
def sg_get_scsi_status_str(scsi_status): """ Fetch scsi status string. """ buff = _get_buffer(128) libsgutils2.sg_get_scsi_status_str(scsi_status, 128, ctypes.byref(buff)) return buff.value.decode('utf-8')
2,667
def numpy_grid(x, pad=0, nrow=None, uint8=True): """ thin wrap to make_grid to return frames ready to save to file args pad (int [0]) same as utils.make_grid(padding) nrow (int [None]) # defaults to horizonally biased rectangle closest to square uint8 (bool [True]) convert to img in range 0-255 uint8 """ x = x.clone().detach().cpu() nrow = nrow or int(math.sqrt(x.shape[0])) x = ((utils.make_grid(x, nrow=nrow, padding=pad).permute(1,2,0) - x.min())/(x.max()-x.min())).numpy() if uint8: x = (x*255).astype("uint8") return x
2,668
def test__dialect__ansi_specific_segment_not_parse(raw, err_locations, caplog): """Test queries do not parse, with parsing errors raised properly.""" lnt = Linter() parsed = lnt.parse_string(raw) assert len(parsed.violations) > 0 locs = [(v.line_no(), v.line_pos()) for v in parsed.violations] assert locs == err_locations
2,669
def if_active(f): """decorator for callback methods so that they are only called when active""" @functools.wraps(f) def inner(self, loop, *args, **kwargs): if self.active: return f(self, loop, *args, **kwargs) return inner
2,670
def _offset(requests: int = 3) -> None: """ Finds offset :param requests: :return none: """ loop = asyncio.get_event_loop() loop.run_until_complete(Offset( requests=requests ).find())
2,671
def main() -> None: """ Main function that runs when the Script is called from the Console """ parser = argparse.ArgumentParser(description='A Script to populate App ' 'Database with the test Data.') parser.add_argument('-d', '--drop', help='Drop Data from the Tables.', action='store_true') parser.add_argument('-ld', '--limit-departments', default=14, help='Limit Number of Departments', type=int) parser.add_argument('-le', '--limit-employees', default=10, help='Limit Number of Employees per Department', type=int) args = parser.parse_args() if args.drop: drop_data() populate_departments(args.limit_departments) populate_employees(args.limit_employees)
2,672
def test_helmholtz_single_layer_p0_p1( default_parameters, helpers, precision, device_interface ): """Test dense assembler for the slp with disc. p0/p1 basis.""" from bempp.api.operators.boundary.helmholtz import single_layer from bempp.api import function_space grid = helpers.load_grid("sphere") space0 = function_space(grid, "DP", 0) space1 = function_space(grid, "DP", 1) discrete_op = single_layer( space1, space1, space0, WAVENUMBER, assembler="dense", precision=precision, device_interface=device_interface, parameters=default_parameters, ).weak_form() expected = helpers.load_npy_data("helmholtz_single_layer_boundary_p0_dp1") _np.testing.assert_allclose( discrete_op.A, expected, rtol=helpers.default_tolerance(precision) )
2,673
def obs_all_node_target_pairs_one_hot(agent_id: int, factory: Factory) -> np.ndarray: """One-hot encoding (of length nodes) of the target location for each node. Size of nodes**2""" num_nodes = len(factory.nodes) node_pair_target = np.zeros(num_nodes ** 2) for n in range(num_nodes): core_target_index = [] if factory.nodes[n].table != None and factory.nodes[n].table.has_core(): core_target_index = [ factory.nodes.index(factory.nodes[n].table.core.current_target) ] node_pair_target[n * num_nodes : (n + 1) * num_nodes] = np.asarray( one_hot_encode(num_nodes, core_target_index) ) else: node_pair_target[n * num_nodes : (n + 1) * num_nodes] = np.zeros(num_nodes) return node_pair_target
2,674
def repeat_each_position(shape: GuitarShape, length: int = None, repeats: int = 2, order: Callable = asc) -> List[ List[FretPosition]]: """ Play each fret in the sequence two or more times """ if length is not None: div_length = math.ceil(length / repeats) else: div_length = length pattern = order(shape, length=div_length) new_positions = [] for positions in pattern: new_positions.extend([positions] * repeats) if length is not None and len(new_positions) != length: new_positions = adjust_length(new_positions, length) return new_positions
2,675
def verify_same_strand(tx_names, data): """Verify exons are on the same strand""" strands = data['strand'].unique() if len(strands) > 1: raise ValueError(f"Multiple strands found in {tx_names}, skipping.")
2,676
def gz_csv_read(file_path, use_pandas=False): """Read a gzipped csv file. """ import csv import gzip from StringIO import StringIO with gzip.open(file_path, 'r') as infile: if use_pandas: import pandas data = pandas.read_csv(StringIO(infile.read())) else: reader = csv.reader(StringIO(infile.read())) data = [row for row in reader] return data
2,677
def init_block(in_channels, out_channels, stride, activation=nn.PReLU): """Builds the first block of the MobileFaceNet""" return nn.Sequential( nn.BatchNorm2d(3), nn.Conv2d(in_channels, out_channels, 3, stride, 1, bias=False), nn.BatchNorm2d(out_channels), make_activation(activation) )
2,678
def yield_in_except_throw_exc_type(): """ >>> g = yield_in_except_throw_exc_type() >>> next(g) >>> g.throw(TypeError) Traceback (most recent call last): TypeError >>> next(g) Traceback (most recent call last): StopIteration """ try: raise ValueError except ValueError as exc: assert sys.exc_info()[1] is exc, sys.exc_info() yield assert sys.exc_info()[1] is exc, sys.exc_info()
2,679
def address_working(address, value=None): """ Find, insert or delete from database task address :param address: website address example: https://www.youtube.com/ :param value: True: add , False: remove, default: find :return: """ global db if value is True: db.tasks.insert_one({'Address': address}) return True if value is False: db.tasks.delete_many({'Address': address}) return False x = list(db.tasks.find({'Address': address})) if len(x) == 0: return False else: return True
2,680
def merge_default_values(resource_list, default_values): """ Generate a new list where each item of original resource_list will be merged with the default_values. Args: resource_list: list with items to be merged default_values: properties to be merged with each item list. If the item already contains some property the original value will be maintained. Returns: list: list containing each item merged with default_values """ def merge_item(resource): return merge_resources(default_values, resource) return lmap(merge_item, resource_list)
2,681
async def async_setup_entry_usb(hass, config_entry, async_add_entities): """Set up Plugwise sensor based on config_entry.""" api_stick = hass.data[DOMAIN][config_entry.entry_id][STICK] async def async_add_sensors(mac: str): """Add plugwise sensors for device.""" entities = [] entities.extend( [ USBSensor(api_stick.devices[mac], description) for description in PW_SENSOR_TYPES if description.plugwise_api == STICK and description.key in api_stick.devices[mac].features ] ) if entities: async_add_entities(entities) for mac in hass.data[DOMAIN][config_entry.entry_id][SENSOR_DOMAIN]: hass.async_create_task(async_add_sensors(mac)) def discoved_device(mac: str): """Add sensors for newly discovered device.""" hass.async_create_task(async_add_sensors(mac)) # Listen for discovered nodes api_stick.subscribe_stick_callback(discoved_device, CB_NEW_NODE)
2,682
def paint_smi_matrixs(matrixs, index=0): """paint similarity matrix (TSM/ KQ) """ plt.clf() b, c, w, h = matrixs.shape for i in range(c): matrix = matrixs[0, i, :, :].detach().cpu().numpy() plt.imshow(matrix) plt.colorbar() dir = 'graph/matrixs{0}'.format(index) if not os.path.exists(dir): os.mkdir('graph/matrixs{0}'.format(index)) plt.savefig(fname="graph/matrixs{0}/matrix{1}.png".format(index, str(i)), dpi=400) plt.close()
2,683
def test_ap_wpa2_eap_tls_domain_match_cn(dev, apdev): """WPA2-Enterprise using EAP-TLS and domainmatch (CN)""" check_domain_match(dev[0]) params = int_eap_server_params() params["server_cert"] = "auth_serv/server-no-dnsname.pem" params["private_key"] = "auth_serv/server-no-dnsname.key" hostapd.add_ap(apdev[0], params) dev[0].connect("test-wpa2-eap", key_mgmt="WPA-EAP", eap="TLS", identity="tls user", ca_cert="auth_serv/ca.pem", private_key="auth_serv/user.pkcs12", private_key_passwd="whatever", domain_match="server3.w1.fi", scan_freq="2412")
2,684
def finish_scheduling(request, schedule_item=None, payload=None): """ Finalize the creation of a scheduled action. All required data is passed through the payload. :param request: Request object received :param schedule_item: ScheduledAction item being processed. If None, it has to be extracted from the information in the payload. :param payload: Dictionary with all the required data coming from previous requests. :return: """ # Get the payload from the session if not given if payload is None: payload = request.session.get(session_dictionary_name) # If there is no payload, something went wrong. if payload is None: # Something is wrong with this execution. Return to action table. messages.error(request, _('Incorrect action scheduling invocation.')) return redirect('action:index') # Get the scheduled item if needed if not schedule_item: s_item_id = payload.get('schedule_id') if not s_item_id: messages.error(request, _('Incorrect parameters in action scheduling')) return redirect('action:index') # Get the item being processed schedule_item = ScheduledAction.objects.get(pk=s_item_id) # Check for exclude values and store them if needed exclude_values = payload.get('exclude_values') if exclude_values: schedule_item.exclude_values = exclude_values schedule_item.status = ScheduledAction.STATUS_PENDING schedule_item.save() # Create the payload to record the event in the log log_payload = { 'action': schedule_item.action.name, 'action_id': schedule_item.action.id, 'execute': schedule_item.execute.isoformat(), } if schedule_item.action.action_type == Action.PERSONALIZED_TEXT: log_payload.update({ 'email_column': schedule_item.item_column.name, 'subject': schedule_item.payload.get('subject'), 'cc_email': schedule_item.payload.get('cc_email', []), 'bcc_email': schedule_item.payload.get('bcc_email', []), 'send_confirmation': schedule_item.payload.get('send_confirmation', False), 'track_read': schedule_item.payload.get('track_read', False) }) log_type = Log.SCHEDULE_EMAIL_EDIT elif schedule_item.action.action_type == Action.PERSONALIZED_JSON: ivalue = None if schedule_item.item_column: ivalue = schedule_item.item_column.name log_payload.update({ 'item_column': ivalue, 'token': schedule_item.payload.get('subject') }) log_type = Log.SCHEDULE_JSON_EDIT else: log_type = None # Create the log Log.objects.register(request.user, log_type, schedule_item.action.workflow, log_payload) # Notify the user. Show the time left until execution and a link to # view the scheduled events with possibility of editing/deleting. # Successful processing. now = datetime.datetime.now(pytz.timezone(settings.TIME_ZONE)) tdelta = schedule_item.execute - now # Reset object to carry action info throughout dialogs request.session[session_dictionary_name] = {} request.session.save() # Create the timedelta string delta_string = '' if tdelta.days != 0: delta_string += ugettext('{0} days').format(tdelta.days) hours = tdelta.seconds / 3600 if hours != 0: delta_string += ugettext(', {0} hours').format(hours) minutes = (tdelta.seconds % 3600) / 60 if minutes != 0: delta_string += ugettext(', {0} minutes').format(minutes) # Successful processing. return render(request, 'scheduler/schedule_done.html', {'tdelta': delta_string, 's_item': schedule_item})
2,685
def handle_result(context, res): """Handle results (sink)""" _, date_key, df = res try: df = df.join(context['cep']) except TypeError: context['cep'].index = context['cep'].index.tz_localize(df.index.tz) df = df.join(context['cep']) df.to_csv(os.path.join(DST_DIR, f'{date_key}.csv')) logger.info(res)
2,686
def analyze(results_file, base_path): """ Parse and print the results from gosec audit. """ # Load gosec json Results File with open(results_file) as f: issues = json.load(f)['Issues'] if not issues: print("Security Check: No Issues Detected!") return ([], [], []) else: high_risk = list() medium_risk = list() low_risk = list() # Sort Issues for issue in issues: if issue['severity'] == 'HIGH': high_risk.append(issue) elif issue['severity'] == 'MEDIUM': medium_risk.append(issue) elif issue['severity'] == 'LOW': low_risk.append(issue) # Print Summary print() print('Security Issue Summary:') print(' Found ' + str(len(high_risk)) + ' High Risk Issues') print(' Found ' + str(len(medium_risk)) + ' Medium Risk Issues') print(' Found ' + str(len(low_risk)) + ' Low Risk Issues') # Print Issues In Order of Importance if high_risk: header = ('= High Security Risk Issues =') print_category(header, high_risk, base_path) if medium_risk: header = ('= Medium Security Risk Issues =') print_category(header, medium_risk, base_path) if low_risk: header = ('= Low Security Risk Issues =') print_category(header, low_risk, base_path) return (high_risk, medium_risk, low_risk)
2,687
def _peaks(image,nr,minvar=0): """Divide image into nr quadrants and return peak value positions.""" n = np.ceil(np.sqrt(nr)) quadrants = _rects(image.shape,n,n) peaks = [] for q in quadrants: q_image = image[q.as_slice()] q_argmax = q_image.argmax() q_maxpos = np.unravel_index(q_argmax,q.shape) if q_image.flat[q_argmax] > minvar: peaks.append(np.array(q_maxpos) + q.origin) return peaks
2,688
def send_init_analytics(opt_out: bool, config_path: str, executed_at: datetime) -> None: """ Create a new `AnalyticsClient` and send an `AnalyticsEvent` representing the execution of `fidesctl init` by a user. """ if opt_out is not False: return analytics_id = get_config_from_file(config_path, "cli", "analytics_id") app_name = fidesctl.__name__ try: client = AnalyticsClient( client_id=analytics_id or generate_client_id(FIDESCTL_CLI), developer_mode=bool(getenv("FIDESCTL_TEST_MODE") == "True"), os=system(), product_name=app_name + "-cli", production_version=version(app_name), ) event = AnalyticsEvent( "cli_command_executed", executed_at, command="fidesctl init", docker=bool(getenv("RUNNING_IN_DOCKER") == "TRUE"), resource_counts=None, # TODO: Figure out if it's possible to capture this ) client.send(event) except AnalyticsError: pass
2,689
def adf_test(df: pd.Series): """ ์ •์ƒ์„ฑ(Stationary) ๊ฒ€์ฆ ๋ฐฉ๋ฒ• - Dicky-Fuller test $HO$ (๊ท€๋ฌด๊ฐ€์„ค) : ๋น„์ •์ƒ์ด ์•„๋‹ˆ๋‹ค๋ผ๊ณ  ํ• ๋งŒํ•œ ๊ทผ๊ฑฐ๊ฐ€ ์—†๋‹ค. $H1$ ๋Œ€๋ฆฝ๊ฐ€์„ค : ๋น„์ •์ƒ์ด ์•„๋‹ˆ๋‹ค. * p-value๊ฐ€ 5% ์ด๋‚ด๋ฉด, ๊ท€๋ฌด๊ฐ€์„ค ๊ธฐ๊ฐ * Adjusted Close๋ฅผ ํ†ตํ•ด ์ •์ƒ์„ฌ ๊ฒ€์ฆ * p-value๊ฐ€ 0.05๋ณด๋‹ค ์ž‘์ง€ ์•Š์œผ๋ฏ€๋กœ, ๊ท€๋ฌด๊ฐ€์„ค์„ ๊ธฐ๊ฐํ•  ์ˆ˜ ์—†๋‹ค. ๊ทธ๋ž˜์„œ ๋น„์ •์ƒ์ด ์•„๋‹ˆ๋ผ๊ณ  ํ• ๋งŒํ•œ ๊ทผ๊ฑฐ๊ฐ€ ์—†๊ธฐ ๋•Œ๋ฌธ์— ๋น„์ •์ƒ์ด๋ผ๊ณ  ๋งํ•  ์ˆ˜๋„ ์žˆ๋‹ค. :param df: _description_ :type df: pd.Series """ result = adfuller(df) print("Test statistic: ", result[0]) print("p-value: ", result[1]) print("Critic values") for k, v in result[4].items(): print("\t%s : %.3f" % (k, v))
2,690
def pprint(value): """A wrapper around pprint.pprint -- for debugging, really.""" try: return pformat(value) except Exception as e: return "Error in formatting: %s: %s" % (e.__class__.__name__, e)
2,691
def dev_populate_db(): """Performs the initial database setup for the application """ current_app.logger.info("Initializing tables with dev data") roles = {x.name: x for x in model.UserRole.query.all()} db_session.add_all( [ model.User( "superuser", "SuperUser", "pass", user_roles=list(roles.values()) ), model.User( "observer", "ObserverUser", "pass", user_roles=[roles["observer"]] ), ] ) contestants = [] names = [ "Fred", "George", "Jenny", "Sam", "Jo", "Joe", "Sarah", "Ben", "Josiah", "Micah" ] for i in range(1, 5): test_contestant = model.User( "testuser{}".format(i), names[i - 1], "pass", user_roles=[roles["defendant"]], ) db_session.add(test_contestant) contestants.append(test_contestant) # create test contest now = datetime.datetime.utcnow() test_contest = model.Contest( name="test_contest", start_time=now, end_time=now + datetime.timedelta(hours=2), is_public=True, activate_time=now, freeze_time=None, deactivate_time=None, ) test_contest.users += contestants db_session.add(test_contest) io_problem_type = model.ProblemType.query.filter_by(name="input-output").one() problems = [] hello_world = model.Problem( io_problem_type, "hello-world", "Hello, World!", 'Print the string "Hello, World!"', "", "Hello, World!", "", "Hello, World!", ) problems.append(hello_world) test_contest.problems.append(hello_world) db_session.add(hello_world) n = 5000 hello_worlds = model.Problem( io_problem_type, "hello-worlds", "Hello, Worlds!", 'Print the string "Hello, World!" n times', "2", "Hello, World!\nHello, World!", str(n), "Hello, World!\n" * n, ) problems.append(hello_worlds) test_contest.problems.append(hello_worlds) db_session.add(hello_worlds) fizzbuzz = model.Problem( io_problem_type, "fizzbuzz", "FizzBuzz", "Perform fizzbuzz up to the given number\n\nMore info can be found [here](https://en.wikipedia.org/wiki/Fizz_buzz)", "3", "1\n2\nFizz", "15", "1\n2\nFizz\n4\nBuzz\nFizz\n7\n8\nFizz\nBuzz\n11\nFizz\n13\n14\nFizzBuzz\n", ) problems.append(fizzbuzz) test_contest.problems.append(fizzbuzz) db_session.add(fizzbuzz) fibonacci = model.Problem( io_problem_type, "fibonoacci", "Fibonacci", "Give the nth number in the Fibonacci sequence", "4", "3", "5", "5", ) problems.append(fibonacci) test_contest.problems.append(fibonacci) db_session.add(fibonacci) ext_fibonacci = model.Problem( io_problem_type, "ext-fib", "Extended Fibonacci", "Give the the numbers of the Fibonacci sequence between 0 and n, inclusive.\nIf n is positive, the range is [0,n].\nIf n is negative, the range is [n,0].", "-3", "2\n-1\n1\n0", "-5", "5\n-3\n2\n-1\n1\n0", ) problems.append(ext_fibonacci) test_contest.problems.append(ext_fibonacci) db_session.add(ext_fibonacci) # insert submissions python = model.Language.query.filter_by(name="python").one() solutions = { "Hello, World!": "print('Hello, World!')", "Hello, Worlds!": "for i in range(int(input())):\n\tprint('Hello, World!')", "FizzBuzz": 'print("\\n".join("Fizz"*(i%3==0)+"Buzz"*(i%5==0) or str(i) for i in range(1,int(input())+1)))', "Fibonacci": "fib = lambda n: n if n < 2 else fib(n-1) + fib(n-2)\nprint(fib(int(input())))", "Extended Fibonacci": "print('5\\n-3\\n2\\n-1\\n1\\n0')", } problem_subs = [] for problem in problems: for user in contestants: for _ in range(2): problem_subs.append((problem, user)) random.shuffle(problem_subs) for problem, user in problem_subs: src_code = solutions[problem.name] is_submission = random.randint(1, 7) != 5 is_priority = random.randint(1, 9) == 7 is_correct = random.randint(1, 2) == 2 if not is_correct: src_code = src_code + "\nprint('Wait this isn\\'t correct')" test_run = model.Run( user, test_contest, python, problem, datetime.datetime.utcnow(), src_code, problem.secret_input, problem.secret_output, is_submission, ) test_run.is_correct = is_correct test_run.is_priority = is_priority test_run.state = model.RunState.JUDGING db_session.add(test_run) util.set_configuration("extra_signup_fields", json.dumps(["email"])) db_session.commit()
2,692
def connection_type_validator(type): """ Property: ConnectionInput.ConnectionType """ valid_types = [ "CUSTOM", "JDBC", "KAFKA", "MARKETPLACE", "MONGODB", "NETWORK", "SFTP", ] if type not in valid_types: raise ValueError("% is not a valid value for ConnectionType" % type) return type
2,693
def plot_time_series(meter_data, temperature_data, **kwargs): """ Plot meter and temperature data in dual-axes time series. Parameters ---------- meter_data : :any:`pandas.DataFrame` A :any:`pandas.DatetimeIndex`-indexed DataFrame of meter data with the column ``value``. temperature_data : :any:`pandas.Series` A :any:`pandas.DatetimeIndex`-indexed Series of temperature data. **kwargs Arbitrary keyword arguments to pass to :any:`plt.subplots <matplotlib.pyplot.subplots>` Returns ------- axes : :any:`tuple` of :any:`matplotlib.axes.Axes` Tuple of ``(ax_meter_data, ax_temperature_data)``. """ # TODO(philngo): include image in docs. figure = kwargs.pop('figure') if not figure: try: import matplotlib.pyplot as plt except ImportError: # pragma: no cover raise ImportError("matplotlib is required for plotting.") default_kwargs = {"figsize": (16, 4)} default_kwargs.update(kwargs) fig, ax1 = plt.subplots(**default_kwargs) else: fig = figure ax1 = figure.subplots(**default_kwargs) ax1.plot( meter_data.index, meter_data.value, color="C0", label="Energy Use", drawstyle="steps-post", ) ax1.set_ylabel("Energy Use") ax2 = ax1.twinx() ax2.plot( temperature_data.index, temperature_data, color="C1", label="Temperature", alpha=0.8, ) ax2.set_ylabel("Temperature") fig.legend() return ax1, ax2
2,694
def render_pretty_time(jd): """Convert jd into a pretty string representation""" year, month, day, hour_frac = sweph.revjul(jd) _, hours, minutes, seconds = days_frac_to_dhms(hour_frac/24) time_ = calendar.timegm((year,month,day,hours,minutes,seconds,0,0,0)) return time.strftime('%e %b %Y %H:%M UTC', time.gmtime(time_))
2,695
def jsonify(obj): """Dump an object to JSON and create a Response object from the dump. Unlike Flask's native implementation, this works on lists. """ dump = json.dumps(obj) return Response(dump, mimetype='application/json')
2,696
def section(stree): """ Create sections in a :class:`ScheduleTree`. A section is a sub-tree with the following properties: :: * The root is a node of type :class:`NodeSection`; * The immediate children of the root are nodes of type :class:`NodeIteration` and have same parent. * The :class:`Dimension` of the immediate children are either: :: * identical, OR * different, but all of type :class:`SubDimension`; * The :class:`Dimension` of the immediate children cannot be a :class:`TimeDimension`. """ class Section(object): def __init__(self, node): self.parent = node.parent self.dim = node.dim self.nodes = [node] def is_compatible(self, node): return (self.parent == node.parent and (self.dim == node.dim or node.dim.is_Sub)) # Search candidate sections sections = [] for i in range(stree.height): # Find all sections at depth `i` section = None for n in findall(stree, filter_=lambda n: n.depth == i): if any(p in flatten(s.nodes for s in sections) for p in n.ancestors): # Already within a section continue elif not n.is_Iteration or n.dim.is_Time: section = None elif section is None or not section.is_compatible(n): section = Section(n) sections.append(section) else: section.nodes.append(n) # Transform the schedule tree by adding in sections for i in sections: node = NodeSection() processed = [] for n in list(i.parent.children): if n in i.nodes: n.parent = node if node not in processed: processed.append(node) else: processed.append(n) i.parent.children = processed return stree
2,697
def was_csv_updated() -> bool: """ This function compares the last modified time on the csv file to the actions folder to check which was last modified. 1. check if csv or files have more actions. 2. if same number of actions, assume the update was made in the csv """ csv_actions = get_cas_from_csv() file_actions = get_cas_from_files() return ( True if len(csv_actions) >= len(file_actions) else False )
2,698
def MakeBands(dR, numberOfBands, nearestInteger): """ Divide a range into bands :param dR: [min, max] the range that is to be covered by the bands. :param numberOfBands: the number of bands, a positive integer. :param nearestInteger: if True then [floor(min), ceil(max)] is used. :return: A List consisting of [min, midpoint, max] for each band. """ bands = list() if (dR[1] < dR[0]) or (numberOfBands <= 0): return bands x = list(dR) if nearestInteger: x[0] = math.floor(x[0]) x[1] = math.ceil(x[1]) dx = (x[1] - x[0]) / float(numberOfBands) b = [x[0], x[0] + dx / 2.0, x[0] + dx] i = 0 while i < numberOfBands: bands.append(b) b = [b[0] + dx, b[1] + dx, b[2] + dx] i += 1 return bands
2,699