content
stringlengths 22
815k
| id
int64 0
4.91M
|
---|---|
def _makeSSDF(row, minEvents):
"""
Function to change form of TRDF for subpace creation
"""
index = range(len(row.Clust))
columns = [x for x in row.index if x != 'Clust']
DF = pd.DataFrame(index=index, columns=columns)
DF['Name'] = ['SS%d' % x for x in range(len(DF))] # name subspaces
# Initialize columns for future use
DF['Events'] = object
DF['AlignedTD'] = object
DF['SVD'] = object
DF['UsedSVDKeys'] = object
DF['FracEnergy'] = object
DF['SVDdefined'] = False
DF['SampleTrims'] = [{} for x in range(len(DF))]
DF['Threshold'] = np.float
DF['SigDimRep'] = object
DF['FAS'] = object
DF['NumBasis'] = int
DF['Offsets'] = object
DF['Stats'] = object
DF['MPtd'] = object
DF['MPfd'] = object
DF['Channels'] = object
DF['Station'] = row.Station
DF = DF.astype(object)
for ind, row2 in DF.iterrows():
evelist = row.Clust[ind]
evelist.sort()
DF['Events'][ind] = evelist
DF['numEvents'][ind] = len(evelist)
DF['MPtd'][ind] = _trimDict(row, 'MPtd', evelist)
DF['MPfd'][ind] = _trimDict(row, 'MPfd', evelist)
DF['Stats'][ind] = _trimDict(row, 'Stats', evelist)
DF['Channels'][ind] = _trimDict(row, 'Channels', evelist)
# only keep subspaces that meet min req, dont renumber
DF = DF[[len(x) >= minEvents for x in DF.Events]]
# DF.reset_index(drop=True, inplace=True)
return DF | 1,800 |
def save_checkpoint(logdir, epoch, global_step, model, optimizer):
"""Saves the training state into the given log dir path."""
checkpoint_file_name = os.path.join(logdir, 'step-%03dK.pth' % (global_step // 1000))
print("saving the checkpoint file '%s'..." % checkpoint_file_name)
checkpoint = {
'epoch': epoch + 1,
'global_step': global_step,
'state_dict': model.state_dict(),
'optimizer': optimizer.state_dict(),
}
torch.save(checkpoint, checkpoint_file_name)
del checkpoint | 1,801 |
def concatenate_constraints(original_set, additional_set):
"""
Method for concatenating sets of linear constraints.
original_set and additional_set are both tuples of
for (C, b, n_eq). Output is a concatenated tuple of
same form.
All equality constraints are always kept on top.
"""
C_org, b_org, n_org = original_set
C_add, b_add, n_add = additional_set
if n_add > 0:
C_out = np.insert(C_org, n_org, C_add[:n_add, :], axis=0)
C_out = np.concatenate((C_out, C_add[n_add:, :]))
b_out = np.insert(b_org, n_org, b_add[:n_add])
b_out = np.concatenate((b_out, b_add[n_add:]))
else:
C_out = np.concatenate((C_org, C_add))
b_out = np.concatenate((b_org, b_add))
n_out = n_org + n_add
return C_out, b_out, n_out | 1,802 |
def _isDefaultHandler():
"""
Determine whether the I{SIGCHLD} handler is the default or not.
"""
return signal.getsignal(signal.SIGCHLD) == signal.SIG_DFL | 1,803 |
def downsampling(conversion_rate,data,fs):
"""
ダウンサンプリングを行う.
入力として,変換レートとデータとサンプリング周波数.
アップサンプリング後のデータとサンプリング周波数を返す.
"""
# 間引くサンプル数を決める
decimationSampleNum = conversion_rate-1
# FIRフィルタの用意をする
nyqF = (fs/conversion_rate)/2.0 # 変換後のナイキスト周波数
cF = (fs/conversion_rate/2.0-500.)/nyqF # カットオフ周波数を設定(変換前のナイキスト周波数より少し下を設定)
taps = 511 # フィルタ係数(奇数じゃないとだめ)
b = scipy.signal.firwin(taps, cF) # LPFを用意
#フィルタリング
data = scipy.signal.lfilter(b,1,data)
#間引き処理
downData = []
for i in range(0,len(data),decimationSampleNum+1):
downData.append(data[i])
return (downData,fs/conversion_rate) | 1,804 |
def get_client_cache_key(
request_or_attempt: Union[HttpRequest, AccessBase], credentials: dict = None
) -> str:
"""
Build cache key name from request or AccessAttempt object.
:param request_or_attempt: HttpRequest or AccessAttempt object
:param credentials: credentials containing user information
:return cache_key: Hash key that is usable for Django cache backends
"""
if isinstance(request_or_attempt, AccessBase):
username = request_or_attempt.username
ip_address = request_or_attempt.ip_address
user_agent = request_or_attempt.user_agent
else:
username = get_client_username(request_or_attempt, credentials)
ip_address = get_client_ip_address(request_or_attempt)
user_agent = get_client_user_agent(request_or_attempt)
filter_kwargs_list = get_client_parameters(username, ip_address, user_agent)
return make_cache_key_list(filter_kwargs_list) | 1,805 |
def test_empty_schema() -> None:
"""Test that SchemaModel supports empty schemas."""
empty_schema = pa.DataFrameSchema()
class EmptySchema(pa.SchemaModel):
pass
assert empty_schema == EmptySchema.to_schema()
class Schema(pa.SchemaModel):
a: Series[int]
class EmptySubSchema(Schema):
pass
schema = pa.DataFrameSchema({"a": pa.Column(int)})
assert schema == EmptySubSchema.to_schema()
class EmptyParentSchema(EmptySchema):
a: Series[int]
assert schema == EmptyParentSchema.to_schema() | 1,806 |
def loadMaterials(matFile):
"""
Loads materials into Tom's code from external file of all applicable materials.
These are returned as a dictionary.
"""
mats = {}
name, no, ne, lto, lte, mtype = np.loadtxt(matFile, dtype=np.str, unpack=True)
no = np.array(list(map(np.float, no)))
ne = np.array(list(map(np.float, ne)))
lto = 1.0e-4 * np.array(list(map(np.float, lto)))
lte = 1.0e-4 * np.array(list(map(np.float, lte)))
for (i,n) in enumerate(name):
mats[n] = tm.material(no[i], ne[i], lto[i], lte[i], n, mtype[i])
return mats | 1,807 |
def prepend_with_baseurl(files, base_url):
"""prepend url to beginning of each file
Parameters
------
files (list): list of files
base_url (str): base url
Returns
------
list: a list of files with base url pre-pended
"""
return [base_url + file for file in files] | 1,808 |
def streamplot(
x,
y,
u,
v,
p=None,
density=1,
color="#1f77b4",
line_width=None,
alpha=1,
arrow_size=7,
min_length=0.1,
start_points=None,
max_length=4.0,
integration_direction="both",
arrow_level="underlay",
**kwargs,
):
"""Draws streamlines of a vector field.
Parameters
----------
x, y : 1d arrays
an evenly spaced grid.
u, v : 2d arrays
x and y-velocities. Number of rows should match length of y, and
the number of columns should match x.
p : bokeh.plotting.Figure instance, default None
Figure to populate with glyphs. If None, create a new figure.
density : float or 2-tuple
Controls the closeness of streamlines. When `density = 1`, the domain
is divided into a 30x30 grid---density linearly scales this grid.
Each cell in the grid can have, at most, one traversing streamline.
For different densities in each direction, use [density_x, density_y].
color : str or 2d array, default '#1f77b4' (Bokeh default color)
Streamline color. When given an array with the same shape as
velocities, color values are converted to colors using cmap.
line_width : numeric or 2d array, default None
vary linewidth when given a 2d array with the same shape as velocities. If None, scale linewidth with speed.
arrow_size : float
Factor scale arrow size.
min_length : float
Minimum length of streamline in axes coordinates.
start_points: Nx2 array
Coordinates of starting points for the streamlines.
In data coordinates, the same as the ``x`` and ``y`` arrays.
max_length : float
Maximum length of streamline in axes coordinates.
integration_direction : ['forward', 'backward', 'both']
Integrate the streamline in forward, backward or both directions.
arrow_level : str
Either 'underlay' or 'overlay'.
kwargs :
All other kwargs are passed to bokeh.plotting.figure() when
generating the figure.
Returns
-------
bokeh.plotting.Figure instance populated with streamplot.
Notes
-----
.. Adapted from matplotlib.streamplot.streamplot.py.
"""
if p is None:
p = _baseplot(p, **kwargs)
# Ensure plot fits stream lines
p.x_range = bokeh.models.Range1d(x[0], x[-1])
p.y_range = bokeh.models.Range1d(y[0], y[-1])
if line_width is None:
# Compute speed
speed = np.sqrt(u ** 2 + v ** 2)
# Make linewidths proportional to speed, with min width 0.5 and max 3
line_width = 0.5 + 2.5 * speed / speed.max()
xs, ys, line_widths, arrowtails, arrowheads = _streamlines(
x,
y,
u,
v,
density=density,
line_width=line_width,
min_length=min_length,
start_points=start_points,
max_length=max_length,
integration_direction=integration_direction,
)
def _draw_arrows():
for tail, head in zip(arrowtails, arrowheads):
p.add_layout(
bokeh.models.Arrow(
line_alpha=0,
end=bokeh.models.NormalHead(fill_color=color, line_alpha=0, size=7),
x_start=tail[0],
y_start=tail[1],
x_end=head[0],
y_end=head[1],
)
)
if arrow_level == "underlay":
_draw_arrows()
p.multi_line(xs, ys, color=color, line_width=line_widths, line_alpha=alpha)
else:
p.multi_line(xs, ys, color=color, line_width=line_widths, line_alpha=alpha)
_draw_arrows()
return p | 1,809 |
def wait_for_workspace_to_start(self, *, workspace_pk):
"""Checks if the workspace is up for up to 10 minutes."""
workspace = Workspace.objects.get(pk=workspace_pk)
if workspace.status != WorkspaceStatus.PENDING:
# Nothing to do
return
with requests.Session() as s:
_authorise(client=s, auth=workspace.user.workbench_token)
instance = _get_workspace(
s, workspace_id=workspace.service_workbench_id
)
if instance["status"] == WorkspaceStatus.PENDING:
# Raises celery.exceptions.Retry
self.retry(countdown=30)
# TODO catch MaxRetriesExceeded?
else:
workspace.status = instance["status"]
workspace.full_clean()
workspace.save() | 1,810 |
def _loc(df, start, stop, include_right_boundary=True):
"""
>>> df = pd.DataFrame({'x': [10, 20, 30, 40, 50]}, index=[1, 2, 2, 3, 4])
>>> _loc(df, 2, None)
x
2 20
2 30
3 40
4 50
>>> _loc(df, 1, 3)
x
1 10
2 20
2 30
3 40
>>> _loc(df, 1, 3, include_right_boundary=False)
x
1 10
2 20
2 30
"""
result = df.loc[start:stop]
if not include_right_boundary:
right_index = result.index.get_slice_bound(stop, 'left', 'loc')
result = result.iloc[:right_index]
return result | 1,811 |
def test_legacy_yaml(tmpdir, install_mockery, mock_packages):
"""Tests a simple legacy YAML with a dependency and ensures spec survives
concretization."""
yaml = """
spec:
- a:
version: '2.0'
arch:
platform: linux
platform_os: rhel7
target: x86_64
compiler:
name: gcc
version: 8.3.0
namespace: builtin.mock
parameters:
bvv: true
foo:
- bar
foobar: bar
cflags: []
cppflags: []
cxxflags: []
fflags: []
ldflags: []
ldlibs: []
dependencies:
b:
hash: iaapywazxgetn6gfv2cfba353qzzqvhn
type:
- build
- link
hash: obokmcsn3hljztrmctbscmqjs3xclazz
full_hash: avrk2tqsnzxeabmxa6r776uq7qbpeufv
build_hash: obokmcsn3hljztrmctbscmqjs3xclazy
- b:
version: '1.0'
arch:
platform: linux
platform_os: rhel7
target: x86_64
compiler:
name: gcc
version: 8.3.0
namespace: builtin.mock
parameters:
cflags: []
cppflags: []
cxxflags: []
fflags: []
ldflags: []
ldlibs: []
hash: iaapywazxgetn6gfv2cfba353qzzqvhn
full_hash: qvsxvlmjaothtpjluqijv7qfnni3kyyg
build_hash: iaapywazxgetn6gfv2cfba353qzzqvhy
"""
spec = Spec.from_yaml(yaml)
concrete_spec = spec.concretized()
assert concrete_spec.eq_dag(spec) | 1,812 |
def compare_system_and_attributes_faulty_systems(self):
"""compare systems and associated attributes"""
# compare - systems / attributes
self.assertTrue(System.objects.filter(system_name='system_csv_31_001').exists())
self.assertTrue(System.objects.filter(system_name='system_csv_31_003').exists())
self.assertTrue(System.objects.filter(system_name='system_csv_31_006').exists())
# compare - systems / attributes
self.assertEqual(
System.objects.get(system_name='system_csv_31_001').analysisstatus,
Analysisstatus.objects.get(analysisstatus_name='analysisstatus_1'),
)
self.assertEqual(
System.objects.get(system_name='system_csv_31_003').analysisstatus,
Analysisstatus.objects.get(analysisstatus_name='analysisstatus_1'),
)
self.assertEqual(
System.objects.get(system_name='system_csv_31_006').analysisstatus,
Analysisstatus.objects.get(analysisstatus_name='analysisstatus_1'),
)
self.assertEqual(
System.objects.get(system_name='system_csv_31_001').systemstatus,
Systemstatus.objects.get(systemstatus_name='systemstatus_1'),
)
self.assertEqual(
System.objects.get(system_name='system_csv_31_003').systemstatus,
Systemstatus.objects.get(systemstatus_name='systemstatus_1'),
)
self.assertEqual(
System.objects.get(system_name='system_csv_31_006').systemstatus,
Systemstatus.objects.get(systemstatus_name='systemstatus_1'),
)
# return to test function
return self | 1,813 |
def editPostgresConf():
"""
edit /var/lib/pgsql/data/postgresql.conf and change max_connections to 150
"""
try:
tempFile = tempfile.mktemp(dir="/tmp")
logging.debug("copying %s over %s", basedefs.FILE_PSQL_CONF, tempFile)
shutil.copy2(basedefs.FILE_PSQL_CONF, tempFile)
handler = utils.TextConfigFileHandler(tempFile)
handler.open()
handler.editParam("max_connections", basedefs.CONST_MAX_PSQL_CONNS)
handler.close()
logging.debug("copying temp file over original file")
shutil.copy2(tempFile, basedefs.FILE_PSQL_CONF)
logging.debug("setting permissions & file ownership")
os.chown(basedefs.FILE_PSQL_CONF, utils.getUsernameId("postgres"), utils.getGroupId("postgres"))
os.chmod(basedefs.FILE_PSQL_CONF, 0600)
logging.debug("removing tempoarary file")
os.remove(tempFile)
except:
logging.error("Failed editing %s" % basedefs.FILE_PSQL_CONF)
logging.error(traceback.format_exc())
raise Exception(output_messages.ERR_EXP_EDIT_PSQL_CONF) | 1,814 |
def get_regions(contig,enzymes):
"""return loci with start and end locations"""
out_sites = []
enz_1 = [enz for enz in Restriction.AllEnzymes if "%s"%enz == enzymes[0]][0]
enz_2 = [enz for enz in Restriction.AllEnzymes if "%s"%enz == enzymes[1]][0]
enz_1_sites = enz_1.search(contig.seq)
enz_2_sites = enz_2.search(contig.seq)
combined_sites = sorted(enz_1_sites + enz_2_sites)
for i in range(len(combined_sites)):
site_A = combined_sites[i]
try:
site_B = combined_sites[i+1]
except IndexError:
break
if site_B - site_A < 30:
continue
if site_A in enz_1_sites and site_B in enz_2_sites:
out_sites.append((site_A + 1, site_B - len(enz_2.site)))
elif site_A in enz_2_sites and site_B in enz_1_sites:
out_sites.append((site_A + 1, site_B - len(enz_1.site)))
return out_sites | 1,815 |
def getHighContrast(j17, j18, d17, d18):
"""
contrast enhancement through stacking
"""
summer = j17 + j18
summer = summer / np.amax(summer)
winter = d17 + d18
winter = winter / np.amax(winter)
diff = winter * summer
return diff | 1,816 |
def get_bounding_box(dataframe, dataIdentifier):
"""Returns the rectangle in a format (min_lat, max_lat, min_lon, max_lon)
which bounds all the points of the ´dataframe´.
Parameters
----------
dataframe : pandas.DataFrame
the dataframe with the data
dataIdentifier : DataIdentifier
the identifier of the dataframe to be used
"""
b_box = (getattr(dataframe, dataIdentifier.latitude).min(),
getattr(dataframe, dataIdentifier.latitude).max(),
getattr(dataframe, dataIdentifier.longitude).min(),
getattr(dataframe, dataIdentifier.longitude).max())
return b_box | 1,817 |
def get_file_download_response(dbfile):
"""
Create the HttpResponse for serving a file.
The file is not read our output - instead, by setting `X-Accel-Redirect`-
header, the web server (nginx) directly serves the file.
"""
mimetype = dbfile.mimeType
response = HttpResponse(content_type=mimetype)
response["Content-Disposition"] = "inline; filename={0}".format(
to_safe_name(dbfile.name)
)
response['X-Accel-Redirect'] = "/{0}".format(dbfile.path)
return response | 1,818 |
def keyWait():
"""Waits until the user presses a key.
Then returns a L{KeyDown} event.
Key events will repeat if held down.
A click to close the window will be converted into an Alt+F4 KeyDown event.
@rtype: L{KeyDown}
"""
while 1:
for event in get():
if event.type == 'KEYDOWN':
return event
if event.type == 'QUIT':
# convert QUIT into alt+F4
return KeyDown('F4', '', True, False, True, False, False)
time.sleep(.001) | 1,819 |
def create_project(
org_id: str,
api_key: str,
url: str,
label_type: LabelType,
taxonomy: str = "DEFAULT::Berkeley Deep Drive (BDD)",
reviews: int = 1,
) -> Generator[Tuple[str, RBProject], None, None]:
"""Create project."""
profile = datetime.strftime(datetime.now(), "%Y%m%d%H%M%S%f") + str(
random.randint(0, 1000)
)
project_name = f"cli-{profile}"
home_dir = os.path.expanduser("~")
project_dir = os.path.join(home_dir, project_name)
project: Optional[RBProject] = None
try:
os.makedirs(project_dir)
subprocess.run(
[
"redbrick",
"config",
"add",
"-o",
org_id,
"-k",
api_key,
"-u",
url,
"-p",
profile,
],
check=True,
)
subprocess.run(["redbrick", "config", "set", profile], check=True)
subprocess.run(
[
"redbrick",
"init",
"-n",
project_name,
"-t",
taxonomy,
"-l",
label_type.value,
"-r",
str(reviews),
project_dir,
],
check=True,
)
cache_name = os.listdir(os.path.join(project_dir, ".redbrick", "cache"))
with open(
os.path.join(
project_dir, ".redbrick", "cache", cache_name[0], "project.pickle"
),
"rb",
) as file_:
project = pickle.load(file_)
assert project
yield project_dir, project
finally:
os.chdir(home_dir)
shutil.rmtree(project_dir, ignore_errors=True)
if project:
project.context.project.delete_project(project.org_id, project.project_id)
if os.environ.get("REDBRICK_SDK_SOURCE") == "GITHUB":
subprocess.run(["redbrick", "config", "clear"], check=True)
else:
subprocess.run(["redbrick", "config", "remove", profile], check=True) | 1,820 |
def create_comentarios_instancia(id_instancia):
"""
@retorna un ok en caso de que se halla ejecutado la operacion
@except status 500 en caso de presentar algun error
"""
from datetime import datetime
if request.method == 'POST':
try:
values = json.loads( request.data.decode('8859') )
mensaje = values['com_mensaje']
autor = values['com_usuario']
fecha = datetime.today()
comentario = comentarios_instancia_curso(instancias_curso_id = id_instancia , mensaje = mensaje , autor = autor, fecha = fecha)
session.add(comentario)
session.commit()
except Exception, e:
session.rollback()
return "Operacion No se pudo llevar a cabo", 500
return "ok"
else:
return "Operacion No se pudo llevar a cabo", 500 | 1,821 |
def callEvalGen(args: argparse.Namespace):
"""
Method for evaluation of the keywords generation task on the Inspec dataset.
:param args: User arguments.
:type args: argparse.Namespace
"""
return evalOn(args, "uncontr") | 1,822 |
async def osfrog(msg, mobj):
"""
Patch 7.02: help string was removed from Captain's Mode
"""
osfrogs = [
"Added Monkey King to the game",
"Reduced Lone Druid's respawn talent -50s to -40s",
]
return await client.send_message(mobj.channel, choice(osfrogs)) | 1,823 |
def _add_normalizing_vector_point(mesh, minpt, maxpt):
"""
This function allows you to visualize all meshes in their size relative to each other
It is a quick simple hack: by adding 2 vector points at the same x coordinates at the
extreme left and extreme right of the largest .stl mesh, all the meshes are displayed
with the same scale.
input: [mesh], minpoint coordinates, maxpoint coordinates
output: [mesh] with 2 added coordinate points
"""
newmesh = Mesh(np.zeros(mesh.vectors.shape[0]+2, dtype=Mesh.dtype))
# newmesh.vectors = np.vstack([mesh.vectors,
# np.array([ [[0,maxpt,0], [0,maxpt,0], [0,maxpt,0]],
# [[0,minpt,0], [0,minpt,0], [0,minpt,0]] ], float) ])
newmesh.vectors = np.vstack([mesh.vectors,
np.array([ [[0,0,maxpt], [0,0,maxpt], [0,0,maxpt]],
[[0,0,minpt], [0,0,minpt], [0,0,minpt]] ], float) ])
return newmesh | 1,824 |
def run():
""" function to start flask apps"""
host = os.getenv("HOST") or '127.0.0.1'
app.run(host=host) | 1,825 |
def radii_ratio(collection):
"""
The Flaherty & Crumplin (1992) index, OS_3 in Altman (1998).
The ratio of the radius of the equi-areal circle to the radius of the MBC
"""
ga = _cast(collection)
r_eac = numpy.sqrt(pygeos.area(ga) / numpy.pi)
r_mbc = pygeos.minimum_bounding_radius(ga)
return r_eac / r_mbc | 1,826 |
def create_jwt(project_id, private_key_file, algorithm):
"""Create a JWT (https://jwt.io) to establish an MQTT connection."""
token = {
'iat': datetime.datetime.utcnow(),
'exp': datetime.datetime.utcnow() + datetime.timedelta(minutes=60),
'aud': project_id
}
with open(private_key_file, 'r') as f:
private_key = f.read()
print('Creating JWT using {} from private key file {}'.format(algorithm, private_key_file))
return jwt.encode(token, private_key, algorithm=algorithm) | 1,827 |
def update_analytics(node, file, version_idx, action='download'):
"""
:param Node node: Root node to update
:param str file_id: The _id field of a filenode
:param int version_idx: Zero-based version index
:param str action: is this logged as download or a view
"""
# Pass in contributors and group members to check that their downloads
# do not count towards total download count
contributors = []
if getattr(node, 'contributors_and_group_members', None):
contributors = node.contributors_and_group_members
elif getattr(node, 'contributors', None):
contributors = node.contributors
node_info = {
'contributors': contributors
}
resource = node.guids.first()
update_counter(resource, file, version=None, action=action, node_info=node_info)
update_counter(resource, file, version_idx, action, node_info=node_info) | 1,828 |
def games(engine1, engine2, number_of_games):
"""Let engine1 and engine2 play several games against each other.
Each begin every second game."""
engine1_wins = 0
engine2_wins = 0
draws = 0
for n in range(number_of_games):
if n % 2:
result = game(engine1, engine2, True)
else:
result = game(engine1, engine2, False)
if result == "engine1":
engine1_wins += 1
elif result == "engine2":
engine2_wins += 1
else:
draws += 1
return ("engine1 wins: " + str(engine1_wins) +
" engine2 wins: " + str(engine2_wins) + " draws: " + str(draws)) | 1,829 |
def tissue2line(data, line=None):
"""tissue2line
Project tissue probability maps to the line by calculating the probability of each tissue type in each voxel of the 16x720 beam and then average these to get a 1x720 line. Discrete tissues are assigned by means of the highest probability of a particular tissue type.
Parameters
----------
data: list,numpy.ndarray,str
for tissue data: list of three numpy array/nifti images/strings describing the probability of white matter/gray matter and CSF
line: str,nibabel.Nifti1Image,numpy.ndarray
used for the direction of the line and should have the same dimensions as `data`. Generally this is the output from create_line_from_slice
Returns
----------
numpy.ndarray
(1,720) array of your `data` in the line
"""
# load in reference line data
if isinstance(line, str):
ref = nb.load(line).get_fdata()
elif isinstance(line, nb.Nifti1Image):
ref = line.get_fdata()
elif isinstance(line, np.ndarray):
ref = line
else:
raise ValueError("Unknown input type for line; should be a string, nifti-image, or numpy array")
if isinstance(data, list):
# we have receive a list, assuming tissue probability maps.
if len(data) > 3:
raise ValueError(f'Data contains {len(data)} items, this should be three: 1) WM prob, 2) GM prob, 3) CSF prob')
if isinstance(data[0], str):
input = [nb.load(i).get_fdata() for i in data]
elif isinstance(data[0], nb.Nifti1Image):
input = [i.get_fdata() for i in data]
elif isinstance(data[0], np.ndarray):
input = data
# remove existing 4th dimension
input = [np.squeeze(i, axis=3) for i in input if len(i.shape) == 4]
for i in input:
if i.shape != ref.shape:
raise ValueError(f"Dimensions of line [{ref.shape}] do not match dimension of input seg [{i.shape}]")
# put wm/gm/csf in three channels of a numpy array
prob_stack = np.dstack([input[0],input[1],input[2]])
prob_stack_avg = np.average(prob_stack, axis=1)
# normalize averages between 0-1
scaler = MinMaxScaler()
scaler.fit(prob_stack_avg)
avg_norm = scaler.transform(prob_stack_avg)
output = []
lut = {'wm':2,'gm':1,'csf':0}
# avg_norm has 3 columns; 1st = WM, 2nd = GM, 3rd = CSF
for i,r in enumerate(avg_norm):
max_val = np.amax(r)
# check tissue type only if non-zero value. If all probabilities are 0 is should be set to zero regardless
if max_val == 0:
output.append(lut['csf'])
else:
# make list of each row for nicer indexing
idx = list(r).index(max_val)
if idx == 0:
# type = 'wm' = '1' in nighres segmentation
output.append(lut['wm'])
elif idx == 1:
# type = 'gm' = '2' in nighres segmentation
output.append(lut['gm'])
elif idx == 2:
# type = 'csf' = '0' in nighres segmentation
output.append(lut['csf'])
output = np.array(output)[:,np.newaxis]
return output | 1,830 |
def get_version(pyngrok_config=None):
"""
Get a tuple with the ``ngrok`` and ``pyngrok`` versions.
:param pyngrok_config: A ``pyngrok`` configuration to use when interacting with the ``ngrok`` binary,
overriding :func:`~pyngrok.conf.get_default()`.
:type pyngrok_config: PyngrokConfig, optional
:return: A tuple of ``(ngrok_version, pyngrok_version)``.
:rtype: tuple
"""
if pyngrok_config is None:
pyngrok_config = conf.get_default()
ngrok_version = process.capture_run_process(pyngrok_config.ngrok_path, ["--version"]).split("version ")[1]
return ngrok_version, __version__ | 1,831 |
def stat_cleaner(stat: str) -> int:
"""Cleans and converts single stat.
Used for the tweets, followers, following, and likes count sections.
Args:
stat: Stat to be cleaned.
Returns:
A stat with commas removed and converted to int.
"""
return int(stat.replace(",", "")) | 1,832 |
def load_image_ids(img_root, split_dir):
"""images in the same directory are in the same split"""
pathXid = []
img_root = os.path.join(img_root, split_dir)
for name in os.listdir(img_root):
idx = name.split(".")[0]
pathXid.append(
(
os.path.join(img_root, name),
idx))
if split_dir == 'val2014':
print("Place the features of minival in the front of val2014 tsv.")
# Put the features of 5000 minival images in front.
minival_img_ids = set(json.load(open('data/mscoco_imgfeat/coco_minival_img_ids.json')))
a, b = [], []
for item in pathXid:
img_id = item[1]
if img_id in minival_img_ids:
a.append(item)
else:
b.append(item)
assert len(a) == 5000
assert len(a) + len(b) == len(pathXid)
pathXid = a + b
assert len(pathXid) == 40504
return pathXid | 1,833 |
def do(ARGV):
"""Allow to check whether the exception handlers are all in place.
"""
if len(ARGV) != 3: return False
elif ARGV[1] != "<<TEST:Exceptions/function>>" \
and ARGV[1] != "<<TEST:Exceptions/on-import>>": return False
if len(ARGV) < 3: return False
exception = ARGV[2]
if exception == "KeyboardInterrupt": raise KeyboardInterrupt()
elif exception == "AssertionError": raise AssertionError()
elif exception == "Exception": raise Exception()
# If we did not raise an exception here, we didn't do anything
print("No exception was triggered.")
return False | 1,834 |
def get_available_language_packs():
"""Get list of registered language packs.
:return list:
"""
ensure_autodiscover()
return [val for (key, val) in registry.registry.items()] | 1,835 |
def _plot_topo_onpick(event, show_func=None, colorbar=False):
"""Onpick callback that shows a single channel in a new figure"""
# make sure that the swipe gesture in OS-X doesn't open many figures
orig_ax = event.inaxes
if event.inaxes is None:
return
import matplotlib.pyplot as plt
try:
ch_idx = orig_ax._mne_ch_idx
fig, ax = plt.subplots(1)
plt.title(orig_ax._mne_ch_name)
ax.set_axis_bgcolor('k')
# allow custom function to override parameters
show_func(plt, ch_idx)
except Exception as err:
# matplotlib silently ignores exceptions in event handlers,
# so we print
# it here to know what went wrong
print(err)
raise err | 1,836 |
def topo_star(jd_tt, delta_t, star, position, accuracy=0):
"""
Computes the topocentric place of a star at 'date', given its
catalog mean place, proper motion, parallax, and radial velocity.
Parameters
----------
jd_tt : float
TT Julian date for topocentric place.
delta_t : float
Difference TT-UT1 at 'date', in seconds of time.
star : CatEntry
Instance of CatEntry type object containing catalog data for
the object in the ICRS.
position : OnSurface
Instance of OnSurface type object specifying the position of
the observer.
accuracy : {0, 1}, optional
Code specifying the relative accuracy of the output
position.
= 0 ... full accuracy (default)
= 1 ... reduced accuracy
Returns
-------
(ra, dec) : tuple of floats
Topocentric (right ascension in hours, declination in
degrees), referred to true equator and equinox of date
'jd_tt'.
References
----------
.. [R1] Bangert, J. et. al. (2011), 'User's Guide to NOVAS
Version C3.1', C62-C63.
.. [R2] Explanatory Supplement to the Astronomical Almanac
(1992), Chapter 3.
"""
if jd_tt < 0.0:
raise ValueError(_neg_err.format(name='jd_tt'))
if accuracy not in [0, 1]:
raise ValueError(_option_err.format(name='accuracy', allowed=[0, 1]))
_topo_star = novaslib.topo_star
_topo_star.argtypes = (ctypes.c_double, ctypes.c_double,
ctypes.POINTER(CatEntry), ctypes.POINTER(OnSurface),
ctypes.c_short, ctypes.POINTER(ctypes.c_double),
ctypes.POINTER(ctypes.c_double))
_topo_star.restype = ctypes.c_short
_topo_star.errcheck = _check_c_errors
_topo_star.c_errors = {
1: (ValueError, "from C function 'topo_star': Invalid value of 'where' in ctypes.Structure 'location'"),
11: (ValueError, "from C function 'make_object': invalid value of 'type'"),
12: (ValueError, "from C function 'make_object': 'number' out of range"),
13: (InitializationError, "from C function 'make_object': Initialization of 'cel_obj' failed (object name)."),
14: (InitializationError, "from C function 'make_object': Initialization of 'cel_obj' failed (catalog name)."),
15: (ValueError, "from C function 'make_object': 'name' is out of string bounds."),
21: (ValueError, "from C function 'place': invalid value of 'coord_sys'"),
22: (ValueError, "from C function 'place': invalid value of 'accuracy'"),
23: (ValueError, "from C function 'place': Earth is the observed object, and the observer is either at the geocenter or on the Earth's surface (not permitted)")
}
ra = ctypes.c_double()
dec = ctypes.c_double()
_topo_star(jd_tt, delta_t, ctypes.byref(star), ctypes.byref(position),
accuracy, ctypes.byref(ra), ctypes.byref(dec))
return (ra.value, dec.value) | 1,837 |
def py_multiplicative_inverse(a, n):
"""Multiplicative inverse of a modulo n (in Python).
Implements extended Euclidean algorithm.
Args:
a: int-like np.ndarray.
n: int.
Returns:
Multiplicative inverse as an int32 np.ndarray with same shape as a.
"""
batched_a = np.asarray(a, dtype=np.int32)
n = np.asarray(n, dtype=np.int32)
batched_inverse = []
for a in np.nditer(batched_a):
inverse = 0
new_inverse = 1
remainder = n
new_remainder = a
while new_remainder != 0:
quotient = remainder // new_remainder
(inverse, new_inverse) = (new_inverse, inverse - quotient * new_inverse)
(remainder, new_remainder) = (new_remainder,
remainder - quotient * new_remainder)
if remainder > 1:
raise ValueError(
'Inverse for {} modulo {} does not exist.'.format(a, n))
if inverse < 0:
inverse += n
batched_inverse.append(inverse)
return np.asarray(batched_inverse, dtype=np.int32).reshape(batched_a.shape) | 1,838 |
def _get_simconffile(args):
"""
Get experiment config file name from command line
"""
logger = logging.getLogger('fms')
try:
simconffile = args[1]
except IndexError:
logger.critical("Missing simulation config file name.")
sys.exit(2)
return simconffile | 1,839 |
def resample_nearest_neighbour(input_tif, extents, new_res, output_file):
"""
Nearest neighbor resampling and cropping of an image.
:param str input_tif: input geotiff file path
:param list extents: new extents for cropping
:param float new_res: new resolution for resampling
:param str output_file: output geotiff file path
:return: dst: resampled image
:rtype: ndarray
"""
dst, resampled_proj, src, _ = _crop_resample_setup(extents, input_tif,
new_res, output_file)
# Do the work
gdal.ReprojectImage(src, dst, '', resampled_proj,
gdalconst.GRA_NearestNeighbour)
return dst.ReadAsArray() | 1,840 |
def test_al_validation_third_digit_corresponds_to_type_of_company():
"""Test if invalid when the third digit is different to 0_3_5_7_8"""
invalid_number = '172030964'
assert al.start(invalid_number) == False | 1,841 |
def AptInstall(vm):
"""Installs the Mellanox OpenFabrics driver on the VM."""
_Install(vm) | 1,842 |
def harvester_api_info(request, name):
"""
This function returns the pretty rendered
api help text of an harvester.
"""
harvester = get_object_or_404(Harvester, name=name)
api = InitHarvester(harvester).get_harvester_api()
response = api.api_infotext()
content = response.data[harvester.name].replace('\n', '<br>')
return HttpResponse(content, content_type='text/plain') | 1,843 |
def init_db():
"""Open SQLite database, create facebook table, return connection."""
db = sqlite3.connect('facebook.sql')
cur = db.cursor()
cur.execute(SQL_CREATE)
db.commit()
cur.execute(SQL_CHECK)
parse = list(cur.fetchall())[0][0] == 0
return db, cur, parse | 1,844 |
def prime_gen():
"""Returns prime based on 172 bit range. Results is 44 char"""
x = subprocess.run(
['openssl', 'prime', '-generate', '-bits', '172', '-hex'],
stdout=subprocess.PIPE)
return x.stdout[:-1] | 1,845 |
def aggregate_gradients_using_copy_with_variable_colocation(
tower_grads, use_mean, check_inf_nan):
"""Aggregate gradients, colocating computation with the gradient's variable.
Args:
tower_grads: List of lists of (gradient, variable) tuples. The outer list
is over towers. The inner list is over individual gradients. All variables
of the same gradient across towers must be the same (that is,
tower_grads[x][a][1] == tower_grads[y][a][1] for all indices x, y, and a)
use_mean: if True, mean is taken, else sum of gradients is taken.
check_inf_nan: If true, check grads for nans and infs.
Returns:
The tuple ([(average_gradient, variable),], has_nan_or_inf) where the
gradient has been averaged across all towers. The variable is chosen from
the first tower. The has_nan_or_inf indicates the grads has nan or inf.
"""
agg_grads = []
has_nan_or_inf_list = []
for single_grads in zip(*tower_grads):
# Note that each single_grads looks like the following:
# ((grad0_gpu0, var0_gpu0), ... , (grad0_gpuN, var0_gpuN))
var = single_grads[0][1]
for _, v in single_grads:
assert v == var
with tf.device(var.device):
grad_and_var, has_nan_or_inf = aggregate_single_gradient_using_copy(
single_grads, use_mean, check_inf_nan)
agg_grads.append(grad_and_var)
has_nan_or_inf_list.append(has_nan_or_inf)
if check_inf_nan:
return agg_grads, tf.reduce_any(has_nan_or_inf_list)
else:
return agg_grads, None | 1,846 |
def module_for_category( category ):
"""Return the OpenGL.GL.x module for the given category name"""
if category.startswith( 'VERSION_' ):
name = 'OpenGL.GL'
else:
owner,name = category.split( '_',1)
if owner.startswith( '3' ):
owner = owner[1:]
name = 'OpenGL.GL.%s.%s'%( owner,name )
return __import__( name, {}, {}, name.split( '.' )) | 1,847 |
def check_file_location(file_path, function, file_ext='', exists=False):
"""Function to check whether a file exists and has the correct file extension"""
folder, file, ext = '', '', ''
if file_path == '':
exit_prompt('Error: Could not parse path to {} file'.format(function))
try:
file, ext = os.path.splitext(os.path.basename(file_path))
folder = os.path.dirname(file_path)
except:
exit_prompt('Error: Could not parse path to {} file'.format(function))
if file_ext != '' and ext != file_ext:
exit_prompt('Error: The {} file should have the extension {}'.format(function, file_ext))
if exists and not os.path.isfile(os.path.join(folder, file + ext)):
exit_prompt('Error: The specified {} file cannot be found'.format(function))
return folder, file, ext | 1,848 |
def timestamp() -> str:
"""generate formatted timestamp for the invocation moment"""
return dt.now().strftime("%d-%m-%Y %H:%M:%S") | 1,849 |
def test_serder():
"""
Test the support functionality for Serder key event serialization deserialization
"""
with pytest.raises(ValueError):
serder = Serder()
e1 = dict(vs=Vstrings.json, pre="ABCDEFG", sn="0001", ilk="rot")
serder = Serder(ked=e1)
assert serder.ked == e1
assert serder.kind == Serials.json
assert serder.version == Versionage(major=1, minor=0)
assert serder.dig == 'EaDVEkrFdx8W0ZZAsfwf9mjxhgBt6PvfCmFPdr7RIcfY'
assert serder.digb == b'EaDVEkrFdx8W0ZZAsfwf9mjxhgBt6PvfCmFPdr7RIcfY'
assert serder.size == 66
assert serder.verfers == []
assert serder.raw == b'{"vs":"KERI10JSON000042_","pre":"ABCDEFG","sn":"0001","ilk":"rot"}'
e1s = json.dumps(e1, separators=(",", ":"), ensure_ascii=False).encode("utf-8")
assert e1s == b'{"vs":"KERI10JSON000042_","pre":"ABCDEFG","sn":"0001","ilk":"rot"}'
vs = Versify(kind=Serials.json, size=len(e1s)) # use real length
assert vs == 'KERI10JSON000042_'
e1["vs"] = vs # has real length
e1s = json.dumps(e1, separators=(",", ":"), ensure_ascii=False).encode("utf-8")
with pytest.raises(ShortageError): # test too short
kind1, vers1, size1 = serder._sniff(e1s[:VERFULLSIZE])
kind1, vers1, size1 = serder._sniff(e1s[:MINSNIFFSIZE])
assert kind1 == Serials.json
assert size1 == 66
kind1, vers1, size1 = serder._sniff(e1s)
assert kind1 == Serials.json
assert size1 == 66
e1ss = e1s + b'extra attached at the end.'
ked1, knd1, vrs1, siz1 = serder._inhale(e1ss)
assert ked1 == e1
assert knd1 == kind1
assert vrs1 == vers1
assert siz1 == size1
with pytest.raises(ShortageError): # test too short
ked1, knd1, vrs1, siz1 = serder._inhale(e1ss[:size1-1])
raw1, knd1, ked1, ver1 = serder._exhale(ked=e1)
assert raw1 == e1s
assert knd1 == kind1
assert ked1 == e1
assert vrs1 == vers1
e2 = dict(e1)
e2["vs"] = Vstrings.mgpk
e2s = msgpack.dumps(e2)
assert e2s == b'\x84\xa2vs\xb1KERI10MGPK000000_\xa3pre\xa7ABCDEFG\xa2sn\xa40001\xa3ilk\xa3rot'
vs = Versify(kind=Serials.mgpk, size=len(e2s)) # use real length
assert vs == 'KERI10MGPK000032_'
e2["vs"] = vs # has real length
e2s = msgpack.dumps(e2)
with pytest.raises(ShortageError): # test too short
kind2, vers2, size2 = serder._sniff(e2s[:VERFULLSIZE])
kind2, vers2, size2 = serder._sniff(e2s[:MINSNIFFSIZE])
assert kind2 == Serials.mgpk
assert size2 == 50
kind2, vers2, size2 = serder._sniff(e2s)
assert kind2 == Serials.mgpk
assert size2 == 50
e2ss = e2s + b'extra attached at the end.'
ked2, knd2, vrs2, siz2 = serder._inhale(e2ss)
assert ked2 == e2
assert knd2 == kind2
assert vrs2 == vers2
assert siz2 == size2
with pytest.raises(ShortageError): # test too short
ked2, knd2, vrs2, siz2 = serder._inhale(e2ss[:size2-1])
raw2, knd2, ked2, ver2 = serder._exhale(ked=e2)
assert raw2 == e2s
assert knd2 == kind2
assert ked2 == e2
assert vrs2 == vers2
e3 = dict(e1)
e3["vs"] = Vstrings.cbor
e3s = cbor.dumps(e3)
assert e3s == b'\xa4bvsqKERI10CBOR000000_cpregABCDEFGbsnd0001cilkcrot'
vs = Versify(kind=Serials.cbor, size=len(e3s)) # use real length
assert vs == 'KERI10CBOR000032_'
e3["vs"] = vs # has real length
e3s = cbor.dumps(e3)
with pytest.raises(ShortageError): # test too short
kind3, vers3, size3 = serder._sniff(e3s[:VERFULLSIZE])
kind3, vers3, size3 = serder._sniff(e3s[:MINSNIFFSIZE])
assert kind3 == Serials.cbor
assert size3 == 50
kind3, vers3, size3 = serder._sniff(e3s)
assert kind3 == Serials.cbor
assert size3 == 50
e3ss = e3s + b'extra attached at the end.'
ked3, knd3, vrs3, siz3 = serder._inhale(e3ss)
assert ked3 == e3
assert knd3 == kind3
assert vrs3 == vers3
assert siz3 == size3
with pytest.raises(ShortageError): # test too short
ked3, knd3, vrs3, siz3 = serder._inhale(e3ss[:size3-1])
raw3, knd3, ked3, ver3 = serder._exhale(ked=e3)
assert raw3 == e3s
assert knd3 == kind3
assert ked3 == e3
assert vrs3 == vers3
evt1 = Serder(raw=e1ss)
assert evt1.kind == kind1
assert evt1.raw == e1s
assert evt1.ked == ked1
assert evt1.size == size1
assert evt1.raw == e1ss[:size1]
assert evt1.version == vers1
# test digest properties .diger and .dig
assert evt1.diger.qb64 == evt1.dig
assert evt1.diger.code == CryOneDex.Blake3_256
assert len(evt1.diger.raw) == 32
assert len(evt1.dig) == 44
assert len(evt1.dig) == CryOneSizes[CryOneDex.Blake3_256]
assert evt1.dig == 'EaDVEkrFdx8W0ZZAsfwf9mjxhgBt6PvfCmFPdr7RIcfY'
assert evt1.diger.verify(evt1.raw)
evt1 = Serder(ked=ked1)
assert evt1.kind == kind1
assert evt1.raw == e1s
assert evt1.ked == ked1
assert evt1.size == size1
assert evt1.raw == e1ss[:size1]
assert evt1.version == vers1
evt2 = Serder(raw=e2ss)
assert evt2.kind == kind2
assert evt2.raw == e2s
assert evt2.ked == ked2
assert evt2.version == vers2
evt2 = Serder(ked=ked2)
assert evt2.kind == kind2
assert evt2.raw == e2s
assert evt2.ked == ked2
assert evt2.size == size2
assert evt2.raw == e2ss[:size2]
assert evt2.version == vers2
evt3 = Serder(raw=e3ss)
assert evt3.kind == kind3
assert evt3.raw == e3s
assert evt3.ked == ked3
assert evt3.version == vers3
evt3 = Serder(ked=ked3)
assert evt3.kind == kind3
assert evt3.raw == e3s
assert evt3.ked == ked3
assert evt3.size == size3
assert evt3.raw == e3ss[:size3]
assert evt3.version == vers3
# round trip
evt2 = Serder(ked=evt1.ked)
assert evt2.kind == evt1.kind
assert evt2.raw == evt1.raw
assert evt2.ked == evt1.ked
assert evt2.size == evt1.size
assert evt2.version == vers2
# Test change in kind by Serder
evt1 = Serder(ked=ked1, kind=Serials.mgpk) # ked is json but kind mgpk
assert evt1.kind == kind2
assert evt1.raw == e2s
assert evt1.ked == ked2
assert evt1.size == size2
assert evt1.raw == e2ss[:size2]
assert evt1.version == vers1
# round trip
evt2 = Serder(raw=evt1.raw)
assert evt2.kind == evt1.kind
assert evt2.raw == evt1.raw
assert evt2.ked == evt1.ked
assert evt2.size == evt1.size
assert evt2.version == vers2
evt1 = Serder(ked=ked1, kind=Serials.cbor) # ked is json but kind mgpk
assert evt1.kind == kind3
assert evt1.raw == e3s
assert evt1.ked == ked3
assert evt1.size == size3
assert evt1.raw == e3ss[:size3]
assert evt1.version == vers1
# round trip
evt2 = Serder(raw=evt1.raw)
assert evt2.kind == evt1.kind
assert evt2.raw == evt1.raw
assert evt2.ked == evt1.ked
assert evt2.size == evt1.size
assert evt2.version == vers2
# use kind setter property
assert evt2.kind == Serials.cbor
evt2.kind = Serials.json
assert evt2.kind == Serials.json
knd, version, size = Deversify(evt2.ked['vs'])
assert knd == Serials.json
"""Done Test """ | 1,850 |
def sde(trains, events=None, start=0 * pq.ms, stop=None,
kernel_size=100 * pq.ms, optimize_steps=0,
minimum_kernel=10 * pq.ms, maximum_kernel=500 * pq.ms,
kernel=None, time_unit=pq.ms, progress=None):
""" Create a spike density estimation plot.
The spike density estimations give an estimate of the instantaneous
rate. Optionally finds optimal kernel size for given data.
:param dict trains: A dictionary of :class:`neo.core.SpikeTrain` lists.
:param dict events: A dictionary (with the same indices as ``trains``)
of Event objects or lists of Event objects. In case of lists,
the first event in the list will be used for alignment. The events
will be at time 0 on the plot. If None, spike trains are used
unmodified.
:param start: The desired time for the start of the first bin. It
will be recalculated if there are spike trains which start later
than this time. This parameter can be negative (which could be
useful when aligning on events).
:type start: Quantity scalar
:param stop: The desired time for the end of the last bin. It will
be recalculated if there are spike trains which end earlier
than this time.
:type stop: Quantity scalar
:param kernel_size: A uniform kernel size for all spike trains.
Only used if optimization of kernel sizes is not used (i.e.
``optimize_steps`` is 0).
:type kernel_size: Quantity scalar
:param int optimize_steps: The number of different kernel sizes tried
between ``minimum_kernel`` and ``maximum_kernel``.
If 0, ``kernel_size`` will be used.
:param minimum_kernel: The minimum kernel size to try in optimization.
:type minimum_kernel: Quantity scalar
:param maximum_kernel: The maximum kernel size to try in optimization.
:type maximum_kernel: Quantity scalar
:param kernel: The kernel function or instance to use, should accept
two parameters: A ndarray of distances and a kernel size.
The total area under the kernel function should be 1.
Automatic optimization assumes a Gaussian kernel and will
likely not produce optimal results for different kernels.
Default: Gaussian kernel
:type kernel: func or :class:`spykeutils.signal_processing.Kernel`
:param Quantity time_unit: Unit of X-Axis.
:param progress: Set this parameter to report progress.
:type progress: :class:`spykeutils.progress_indicator.ProgressIndicator`
"""
if not progress:
progress = ProgressIndicator()
start.units = time_unit
if stop:
stop.units = time_unit
kernel_size.units = time_unit
minimum_kernel.units = time_unit
maximum_kernel.units = time_unit
if kernel is None:
kernel = signal_processing.GaussianKernel(100 * pq.ms)
# Align spike trains
for u in trains:
if events:
trains[u] = rate_estimation.aligned_spike_trains(
trains[u], events)
# Calculate spike density estimation
if optimize_steps:
steps = sp.logspace(sp.log10(minimum_kernel),
sp.log10(maximum_kernel),
optimize_steps) * time_unit
sde, kernel_size, eval_points = \
rate_estimation.spike_density_estimation(
trains, start, stop,
optimize_steps=steps, kernel=kernel,
progress=progress)
else:
sde, kernel_size, eval_points = \
rate_estimation.spike_density_estimation(
trains, start, stop,
kernel_size=kernel_size, kernel=kernel,
progress=progress)
progress.done()
if not sde:
raise SpykeException('No spike trains for SDE!')
# Plot
win_title = 'Kernel Density Estimation'
win = PlotDialog(toolbar=True, wintitle=win_title)
pW = BaseCurveWidget(win)
plot = pW.plot
plot.set_antialiasing(True)
for u in trains:
if u and u.name:
name = u.name
else:
name = 'Unknown'
curve = make.curve(
eval_points, sde[u],
title='%s, Kernel width %.2f %s' %
(name, kernel_size[u], time_unit.dimensionality.string),
color=helper.get_object_color(u))
plot.add_item(curve)
plot.set_axis_title(BasePlot.X_BOTTOM, 'Time')
plot.set_axis_unit(BasePlot.X_BOTTOM, eval_points.dimensionality.string)
plot.set_axis_title(BasePlot.Y_LEFT, 'Rate')
plot.set_axis_unit(BasePlot.Y_LEFT, 'Hz')
l = make.legend()
plot.add_item(l)
win.add_plot_widget(pW, 0)
win.add_custom_curve_tools()
win.add_legend_option([l], True)
win.show()
return win | 1,851 |
def content(obj):
"""Strip HTML tags for list display."""
return strip_tags(obj.content.replace('</', ' </')) | 1,852 |
def main():
"""
main()
"""
action = get_cmd_param(1)
if action == 'soup':
keyword = get_cmd_param(
2, 'https://tw.news.appledaily.com/local/realtime/20181025/1453825')
soup(keyword)
elif action == 'search':
keyword = get_cmd_param(2, '酒駕')
channel = get_cmd_param(3, 'appledaily')
search_and_list(keyword, channel)
elif action == 'snsp':
keyword = get_cmd_param(2, '酒駕')
channel = get_cmd_param(3, 'appledaily')
search_and_soup(keyword, channel)
elif action == 'sncp':
keyword = get_cmd_param(2, '酒駕')
search_and_compare_performance(keyword)
elif action == 'cpkw':
keyword = get_cmd_param(2, '酒駕')
compare_keyword(keyword)
else:
if action != 'help':
print('動作名稱錯誤')
print()
usage() | 1,853 |
def flux(Q, N, ne, Ap, Am):
"""
calculates the flux between two boundary sides of
connected elements for element i
"""
# for every element we have 2 faces to other elements (left and right)
out = np.zeros((ne, N + 1, 2))
# Calculate Fluxes inside domain
for i in range(1, ne - 1):
out[i, 0, :] = Ap @ (-Q[i - 1, N, :]) + Am @ (-Q[i, 0, :])
out[i, N, :] = Ap @ (Q[i, N, :]) + Am @ (Q[i + 1, 0, :])
# Boundaries
# Left
out[0, 0, :] = Ap @ np.array([0, 0]) + Am @ (-Q[i, 0, :])
out[0, N, :] = Ap @ (Q[0, N, :]) + Am @ (Q[1, 0, :])
# Right
out[ne - 1, 0, :] = Ap @ (-Q[ne - 2, N, :]) + Am @ (-Q[ne - 1, 0, :])
out[ne - 1, N, :] = Ap @ (Q[ne - 1, N, :]) + Am @ np.array([0, 0])
return out | 1,854 |
def cp_dir(src_dir, dest_dir):
"""Function: cp_dir
Description: Copies a directory from source to destination.
Arguments:
(input) src_dir -> Source directory.
(input) dest_dir -> Destination directory.
(output) status -> True|False - True if copy was successful.
(output) err_msg -> Error message from copytree exception or None.
"""
status = True
err_msg = None
try:
shutil.copytree(src_dir, dest_dir)
# Directory permission error.
except shutil.Error as err:
err_msg = "Directory not copied. Perms Error Message: %s" % (err)
status = False
# Directory does not exist.
except OSError as err:
err_msg = "Directory not copied. Exist Error Message: %s" % (err)
status = False
return status, err_msg | 1,855 |
def listnet_loss(y_i, z_i):
"""
y_i: (n_i, 1)
z_i: (n_i, 1)
"""
P_y_i = F.softmax(y_i, dim=0)
P_z_i = F.softmax(z_i, dim=0)
return - torch.sum(y_i * torch.log(P_z_i)) | 1,856 |
def get_volume_parameters(volumes):
"""Create pipeline parameters for volumes to be mounted on pipeline steps.
Args:
volumes: a volume spec
Returns (dict): volume pipeline parameters
"""
volume_parameters = dict()
for v in volumes:
if v['type'] == 'pv':
# FIXME: How should we handle existing PVs?
continue
if v['type'] == 'pvc':
mount_point = v['mount_point'].replace('/', '_').strip('_')
par_name = "vol_{}".format(mount_point)
volume_parameters[par_name] = ('str', v['name'])
elif v['type'] == 'new_pvc':
rok_url = v['annotations'].get("rok/origin")
if rok_url is not None:
par_name = "rok_{}_url".format(v['name'].replace('-', '_'))
volume_parameters[par_name] = ('str', rok_url)
else:
raise ValueError("Unknown volume type: {}".format(v['type']))
return volume_parameters | 1,857 |
def _process_active_tools(toolbar, tool_map, active_drag, active_inspect, active_scroll, active_tap):
""" Adds tools to the plot object
Args:
toolbar (Toolbar): instance of a Toolbar object
tools_map (dict[str]|Tool): tool_map from _process_tools_arg
active_drag (str or Tool): the tool to set active for drag
active_inspect (str or Tool): the tool to set active for inspect
active_scroll (str or Tool): the tool to set active for scroll
active_tap (str or Tool): the tool to set active for tap
Returns:
None
Note:
This function sets properties on Toolbar
"""
if active_drag in ['auto', None] or isinstance(active_drag, Tool):
toolbar.active_drag = active_drag
elif active_drag in tool_map:
toolbar.active_drag = tool_map[active_drag]
else:
raise ValueError("Got unknown %r for 'active_drag', which was not a string supplied in 'tools' argument" % active_drag)
if active_inspect in ['auto', None] or isinstance(active_inspect, Tool) or all([isinstance(t, Tool) for t in active_inspect]):
toolbar.active_inspect = active_inspect
elif active_inspect in tool_map:
toolbar.active_inspect = tool_map[active_inspect]
else:
raise ValueError("Got unknown %r for 'active_inspect', which was not a string supplied in 'tools' argument" % active_scroll)
if active_scroll in ['auto', None] or isinstance(active_scroll, Tool):
toolbar.active_scroll = active_scroll
elif active_scroll in tool_map:
toolbar.active_scroll = tool_map[active_scroll]
else:
raise ValueError("Got unknown %r for 'active_scroll', which was not a string supplied in 'tools' argument" % active_scroll)
if active_tap in ['auto', None] or isinstance(active_tap, Tool):
toolbar.active_tap = active_tap
elif active_tap in tool_map:
toolbar.active_tap = tool_map[active_tap]
else:
raise ValueError("Got unknown %r for 'active_tap', which was not a string supplied in 'tools' argument" % active_tap) | 1,858 |
def normalize(data, **kw):
"""Calculates the normalization of the given array. The normalizated
array is returned as a different array.
Args:
data The data to be normalized
Kwargs:
upper_bound The upper bound of the normalization. It has the value
of 1 by default.
lower_bound The lower bound to be used for normalization. It has the
value of 0 by default
dtype The type of the returned ndarray. If the dtype given is an
integer type the returned array values will be truncated after
normalized.
Returns:
An instance of np.array with normalizated values
"""
upper_bound = 1
lower_bound = 0
dtype = np.float64
if 'upper_bound' in kw:
upper_bound = kw['upper_bound']
if 'lower_bound' in kw:
lower_bound = kw['lower_bound']
if 'dtype' in kw:
dtype = kw['dtype']
check_ndarray(data)
newdata = data - data.min()
newdata = newdata / newdata.max()
newdata = newdata * (upper_bound - lower_bound)
newdata += lower_bound
return newdata.astype(dtype) | 1,859 |
def relative_sse(cp_tensor, X, sum_squared_X=None):
"""Compute the relative sum of squared error for a given cp_tensor.
Parameters
----------
cp_tensor : CPTensor or tuple
TensorLy-style CPTensor object or tuple with weights as first
argument and a tuple of components as second argument
X : ndarray
Tensor approximated by ``cp_tensor``
sum_squared_X: float (optional)
If ``sum(X**2)`` is already computed, you can optionally provide it
using this argument to avoid unnecessary recalculation.
Returns
-------
float
The relative sum of squared error, ``sum((X_hat - X)**2)/sum(X**2)``,
where ``X_hat`` is the dense tensor represented by ``cp_tensor``
Examples
--------
Below, we create a random CP tensor and a random tensor and compute
the sum of squared error for these two tensors.
>>> import tensorly as tl
>>> from tensorly.random import random_cp
>>> from component_vis.model_evaluation import relative_sse
>>> rng = tl.check_random_state(0)
>>> cp = random_cp((4, 5, 6), 3, random_state=rng)
>>> X = rng.random_sample((4, 5, 6))
>>> relative_sse(cp, X)
0.4817407254961442
"""
# TODO: tests for relative_sse
if sum_squared_X is None:
sum_squared_x = np.sum(X ** 2)
return sse(cp_tensor, X) / sum_squared_x | 1,860 |
def setup_ceilometer_compute():
"""Provisions ceilometer compute services in all nodes defined in compute role."""
if env.roledefs['compute']:
execute("setup_ceilometer_compute_node", env.host_string) | 1,861 |
def set_elixier_item_status(item, status):
""" .. aendert den Status des Elixier-Beitrags """
#id = item.id_local
item.status = status
item.save() | 1,862 |
def test_enamble_stat_datatype(data):
"""
make sure, that the wron data type will rais an exception
"""
with pytest.raises(ValueError):
_ = ensemble_stat(data.values) | 1,863 |
def cc_across_time(tfx, tfy, cc_func, cc_args=()):
"""Cross correlations across time.
Args:
tfx : time-frequency domain signal 1
tfy : time-frequency domain signal 2
cc_func : cross correlation function.
cc_args : list of extra arguments of cc_func.
Returns:
cc_atime : cross correlation at different time.
Note:
If tfx and tfy are not of the same length, the result will be
truncated to the shorter one.
"""
return np.array([cc_func(x, y, *cc_args) for x, y in zip(tfx, tfy)]) | 1,864 |
def transcribe(args, client, site_id):
"""Transcribe one or more WAV files using hermes/asr"""
from .asr import AsrStartListening, AsrStopListening, AsrTextCaptured
from .audioserver import AudioFrame
client.subscribe(AsrTextCaptured.topic())
frame_topic = AudioFrame.topic(site_id=site_id)
if args.wav_file:
# Read WAV paths from command-line arguments
def get_wavs():
for wav_path in args.wav_file:
wav_path = Path(wav_path)
with open(wav_path, "rb") as wav_file:
yield str(wav_path), wav_file
elif args.stdin_files:
# Read WAV paths from stdin (one per line)
def get_wavs():
for wav_path in sys.stdin:
wav_path = Path(wav_path.strip())
with open(wav_path, "rb") as wav_file:
yield str(wav_path), wav_file
else:
# Read WAV data from stdin
def get_wavs():
if os.isatty(sys.stdin.fileno()):
print("Reading WAV data from stdin...", file=sys.stderr)
wav_bytes = sys.stdin.buffer.read()
with io.BytesIO(wav_bytes) as wav_file:
yield "<stdin>", wav_file
for wav_name, wav_file in get_wavs():
_LOGGER.debug("Transcribing %s", wav_name)
done_event = threading.Event()
result_topic = ""
text_captured = None
session_id = str(uuid4())
def on_message(client, userdata, msg):
nonlocal result_topic, text_captured
try:
if msg.topic == AsrTextCaptured.topic():
# Verify site_id/session_id
json_payload = json.loads(msg.payload)
if check_site_id(args, json_payload) and (
json_payload.get("session_id", "") == session_id
):
# Matched
result_topic = msg.topic
text_captured = AsrTextCaptured(**json_payload)
done_event.set()
except Exception:
_LOGGER.exception("transcribe.on_message")
client.on_message = on_message
with wav_file:
# startListening
publish(client, AsrStartListening(site_id=site_id, session_id=session_id))
# Send WAV chunks (audioFrame)
for wav_chunk in AudioFrame.iter_wav_chunked(
wav_file, frames_per_chunk=2048
):
client.publish(frame_topic, wav_chunk)
# stopListening
publish(client, AsrStopListening(site_id=site_id, session_id=session_id))
_LOGGER.debug(
"Waiting for textCaptured (%s, session_id=%s)", wav_name, session_id
)
# Wait for textCaptured
done_event.wait()
# Print result
assert text_captured is not None
print_json(args, result_topic, text_captured) | 1,865 |
def predict_encoding(file_path, n_lines=20):
"""Predict a file's encoding using chardet"""
import chardet
# Open the file as binary data
with open(file_path, "rb") as f:
# Join binary lines for specified number of lines
rawdata = b"".join([f.readline() for _ in range(n_lines)])
return chardet.detect(rawdata)["encoding"] | 1,866 |
def redirect_handler(url, client_id, client_secret, redirect_uri, scope):
"""
Convenience redirect handler.
Provide the redirect url (containing auth code)
along with client credentials.
Returns a spotify access token.
"""
auth = ExtendedOAuth(
client_id, client_secret, redirect_uri, scope=scope)
code = auth.parse_response_code(url)
token = auth.get_access_token(code)
return token | 1,867 |
def convert_coordinate(coordinate):
"""
:param coordinate: str - a string map coordinate
:return: tuple - the string coordinate seperated into its individual components.
"""
coord = (coordinate[0], coordinate[1])
return coord | 1,868 |
def tree_falls(geo_index, shps, CHMs,savedir="."):
"""Find predictions that don't match accross years, where there is significant height drop among years
geo_index: NEON geoindex to process
shps: List of shapefiles to search
CHMs: List of canopy height models to search
"""
#Find matching shapefiles
matched_shps = [x for x in shps if geo_index in x]
#Load shapefiles
shapefiles = {}
for shp in matched_shps:
#Load data and give it site and year and tile labels
df = geopandas.read_file(shp)
geo_index = re.search("(\d+_\d+)_image",shp).group(1)
df["shp_path"] = shp
df["geo_index"] = geo_index
df["Year"] = re.search("(\d+)_(\w+)_\d_\d+_\d+_image.shp",shp).group(1)
df["Site"] = re.search("(\d+)_(\w+)_\d_\d+_\d+_image.shp",shp).group(2)
shapefiles[df["Year"].unique()[0]] = df
#Difference in counts
mean_difference_among_years = difference_in_count(shapefiles)
#Join to find predictions that don't match
joined_boxes = sjoin(shapefiles["2018"],shapefiles["2019"])
no_matches = shapefiles["2018"][~(shapefiles["2018"].index.isin(joined_boxes.index))]
#For each tree that does not match, check the 2019 height
CHM = lookup_CHM_path(shapefiles["2018"]["shp_path"].unique()[0], CHMs)
if not os.path.exists(CHM):
raise IOError("{} does not exist".format(CHM))
draped_2019 = rasterstats.zonal_stats(no_matches, CHM, stats="mean")
no_matches["2019_height"] = [x["mean"] for x in draped_2019]
#Keep predictions whose mean height dropped by more than 50%
no_matches["height_frac"] = (no_matches["2019_height"] - no_matches["height"]) / no_matches["height"]
fall_df = no_matches[no_matches["height_frac"] < -0.5]
#Keep predictions whose original height was greater than 5m
#fall_df = fall_df[fall_df.height > 5]
#Write tree fall shapefile
fname = os.path.basename(shapefiles["2019"]["shp_path"].unique()[0])
fname = os.path.splitext(fname)[0]
fname = "{}/{}_treefall.shp".format(savedir,fname)
fall_df.to_file(fname)
#get predictions whose height did not drop by more than 50%, indiciating poor matching
non_fall_df = no_matches[~(no_matches["height_frac"] < -0.5)]
#Keep predictions whose original height was greater than 5m
#fall_df = fall_df[fall_df.height > 5]
#Write tree fall shapefile
fname = os.path.basename(shapefiles["2019"]["shp_path"].unique()[0])
fname = os.path.splitext(fname)[0]
fname = "{}/{}_incorrect_treefall.shp".format(savedir,fname)
non_fall_df.to_file(fname)
#Stablity metrics
#Proportion not matched compared to the earliest year
p_without_match = non_fall_df.shape[0]/shapefiles["2018"].shape[0]
metrics = pd.DataFrame({"Mean_Count_Difference":mean_difference_among_years,"p_without_match":p_without_match})
fname = os.path.basename(shapefiles["2019"]["shp_path"].unique()[0])
fname = os.path.splitext(fname)[0]
fname = "{}/{}_metrics.csv".format(savedir,fname)
metrics.to_csv(fname)
return fname | 1,869 |
def split_multi_fasta_into_fasta(fasta_file, output_directory):
"""
Splits a single multi-FASTA-format file into individual FASTA-format files, each containing only one FASTA record.
PARAMETERS
fasta_file (str): the file location of the FASTA file
output_directory (str): the output directory to place all of the individual FASTA files
RETURNS
file_list (list(str)): a list of the locations of the written FASTA files in descending order of sequence length
POST
The output directory will contain a number of FASTA files equal to the number of FASTA records in the
multi-FASTA-format file provided to this function.
"""
count = 0
file_list = []
if not os.path.exists(fasta_file):
raise FileNotFoundError("File not found: " + fasta_file)
if not os.path.isdir(output_directory):
os.mkdir(output_directory)
with open(fasta_file) as file:
for line in file:
# FASTA record header
if line.startswith(">"):
output_file = os.path.join(output_directory, str(count) + ".fasta")
output = open(output_file, "w")
count += 1
information = [output_file, 0] # [filename, number of sequence characters]
file_list.append(information)
output.write(line)
# FASTA record sequence
else:
output.write(line)
file_list[len(file_list) - 1][1] += len(line) # last item in list, increment sequence characters
file_list.sort(key=lambda filename: filename[1], reverse=True)
# Keep only filenames (not number of characters)
for i in range(len(file_list)):
file_list[i] = file_list[i][0]
return file_list | 1,870 |
def get_noun_phrases(doc: Doc) -> List[Span]:
"""Compile a list of noun phrases in sense2vec's format (without
determiners). Separated out to make it easier to customize, e.g. for
languages that don't implement a noun_chunks iterator out-of-the-box, or
use different label schemes.
doc (Doc): The Doc to get noun phrases from.
RETURNS (list): The noun phrases as a list of Span objects.
"""
trim_labels = ("advmod", "amod", "compound")
spans = []
if doc.is_parsed:
for np in doc.noun_chunks:
while len(np) > 1 and np[0].dep_ not in trim_labels:
np = np[1:]
spans.append(np)
return spans | 1,871 |
def load_file_from_url(url):
"""Load the data from url."""
url_path = get_absolute_url_path(url, PATH)
response = urlopen(url_path)
contents = json.loads(response.read())
return parse_file_contents(contents, url_path.endswith(".mrsys")) | 1,872 |
def speedPunisherMin(v, vmin):
"""
:param v:
:param vmin:
:return:
"""
x = fmin(v - vmin, 0)
return x ** 2 | 1,873 |
def initialize_ecr_client():
"""
Initializes the ECR CLient. If running in Lambda mode, only the AWS REGION environment variable is needed.
If not running in Lambda mode, the AWS credentials are also needed.
"""
if(os.environ.get('MODE') == 'lambda'):
ecrClient = boto3.client('ecr', region_name = os.environ.get('AWS_REGION'))
else:
ecrClient = boto3.client('ecr',
aws_access_key_id = os.environ.get('AWS_ACCESS_KEY_ID'),
aws_secret_access_key = os.environ.get('AWS_SECRET_ACCESS_KEY'),
region_name = os.environ.get('AWS_REGION')
)
return ecrClient | 1,874 |
def hexagonal_packing_cross_section(nseeds, Areq, insu, out_insu):
""" Make a hexagonal packing and scale the result to be Areq cross section
Parameter insu must be a percentage of the strand radius.
out_insu is the insulation thickness around the wire as meters
Returns:
(wire diameter, strand diameter, strand center points)
"""
seeds = np.linspace(-0.5, 0.5,nseeds)
dx = seeds[1]-seeds[0]
xs, ys = np.meshgrid(seeds, seeds)
if (nseeds-1) % 4 == 0:
ys[:,1::2] = ys[:,1::2] + 0.5*dx;
else:
ys[:,0::2] = ys[:,0::2] + 0.5*dx;
ys = ys*2/np.sqrt(3);
points = np.stack([xs.reshape(-1), ys.reshape(-1)], axis=1)
vor = Voronoi(points)
hexs = [v for v in vor.regions if len(v) == 6]
all_cells = vor.vertices[hexs, :]
max_dists = np.max(np.linalg.norm(all_cells, axis=2), axis=1)
cells = all_cells[max_dists < 0.5, :]
strand_cps = np.mean(cells, axis=1)
# if strand bundle is not symmetric, it will be off center so...
# move it back to center
strand_cps = strand_cps - np.mean(strand_cps, axis=0)
# quite a silly way to calculate the strand diameter.but it indeed is
# the minimum of the distances from the first cell center to all the rest
# minus the insulation thickness
strand_diam = np.min(np.linalg.norm(strand_cps[1:]-strand_cps[0], axis=1))*(1-insu)
nstrands = len(strand_cps)
Acu = nstrands*(strand_diam/2)**2*np.pi
scale = np.sqrt(Areq/Acu)
strand_cps_scaled = scale*strand_cps
strand_diam_scaled = scale*strand_diam
wire_diameter = (np.max(np.linalg.norm(strand_cps_scaled, axis=1), axis=0)*2
+ strand_diam_scaled*(1+insu)/(1-insu)
+ out_insu)
return wire_diameter, strand_diam_scaled, strand_cps_scaled | 1,875 |
def bk():
"""
Returns an RGB object representing a black pixel.
This function is created to make smile() more legible.
"""
return introcs.RGB(0,0,0) | 1,876 |
def autoEpochToTime(epoch):
"""
Converts a long offset from Epoch value to a DBDateTime. This method uses expected date ranges to
infer whether the passed value is in milliseconds, microseconds, or nanoseconds. Thresholds used are
TimeConstants.MICROTIME_THRESHOLD divided by 1000 for milliseconds, as-is for microseconds, and
multiplied by 1000 for nanoseconds. The value is tested to see if its ABS exceeds the threshold. E.g. a value
whose ABS is greater than 1000 * TimeConstants.MICROTIME_THRESHOLD will be treated as nanoseconds.
:param epoch: (long) - The long Epoch offset value to convert.
:return: (io.deephaven.db.tables.utils.DBDateTime) null, if the input is equal to QueryConstants.NULL_LONG, otherwise a DBDateTime based
on the inferred conversion.
"""
return _java_type_.autoEpochToTime(epoch) | 1,877 |
def _write(fname, reqs):
"""Dump requirements back to a file in sorted format."""
reqs = sorted(reqs, key=sort_key)
with open(fname, "w") as f:
for r in reqs:
f.write(f"{r}\n") | 1,878 |
def compile_recursive_descent(file_lines, *args, **kwargs):
"""Given a file and its lines, recursively compile until no ksx statements remain"""
visited_files = kwargs.get('visited_files', set())
# calculate a hash of the file_lines and check if we have already compiled
# this one
file_hash = hash_file_contents(file_lines)
if len(visited_files) > RECURSION_DESCENT_LIMIT:
msg = (
"Compiler appears to be in a circular reference loop, "
"this is currently non-recoverable and is a known issue.\n\n"
"See: https://github.com/LeonardMH/kos-scripts/issues/7 \n\n"
"In the meantime check your library for files which import a "
"file, where that file imports the original (A->B->A).\n\n"
"You might also attempt using the 'from x import y' syntax which "
"has slightly narrower scope."
)
raise CircularImportError(msg)
if file_hash in visited_files:
# we have already compiled this file, no need to do so again
return ""
else:
# we will now compile the file, mark that it has been visited
visited_files.add(file_hash)
# compile and split back out to individual lines
file_oneline = compile_single_file_lines(file_lines, *args, **kwargs)
file_lines = file_oneline.split('\n')
# if there are no more ksx directives in the lines compiled we are done,
# return the stringified compile result
if not file_has_ksx_directive(file_lines):
return file_oneline
# if there are still more ksx directives in the lines compiled so far, run
# again
kwargs['visited_files'] = visited_files
return compile_recursive_descent(file_lines, *args, **kwargs).rstrip() + '\n' | 1,879 |
def cl_user(client): # pylint: disable=redefined-outer-name
"""yield client authenticated to role user"""
yield client_in_roles(client, ['user']) | 1,880 |
def majority_voting(masks, voting='hard', weights=None, threshold=0.5):
"""Soft Voting/Majority Rule mask merging; Signature based upon the Scikit-learn VotingClassifier (https://github.com/scikit-learn/scikit-learn/blob/2beed55847ee70d363bdbfe14ee4401438fba057/sklearn/ensemble/_voting.py#L141)
Parameters
----------
masks : segmentations masks to merge, ndarray
Expected shape is num_of_masks * 1 * h * w
Accepts masks in range 0-1 (i.e apply sigmoid before passing to this function)
voting : {'hard', 'soft'}, default='hard'
If 'hard', uses predicted class labels for majority rule voting.
Else if 'soft', predicts the class label based on the argmax of
the sums of the predicted probabilities, which is recommended for
an ensemble of well-calibrated classifiers.
weights : array-like of shape (n_classifiers,), default=None
Sequence of weights (`float` or `int`) to weight the occurrences of
predicted class labels (`hard` voting) or class probabilities
before averaging (`soft` voting). Uses uniform weights if `None`.
threshold : for separating between the positive and negative class, default=0.5
Applied first in case of hard voting and applied last in case of soft voting
"""
assert len(masks.shape) == 4
if voting not in ('soft', 'hard'):
raise ValueError(f"Voting must be 'soft' or 'hard'; got (voting= {voting})")
for m in masks:
assert (m >= 0.).all() and (m <= 1.).all()
if voting == 'hard':
masks = (masks >= threshold).astype(np.float32)
if weights is None:
weights = np.array([1] * masks.shape[0])
else:
weights = np.array(weights)
# Broadcasting starts with the trailing (i.e. rightmost) dimensions and works its way left, therefore we move the "mask" dimension to the right
masks= np.transpose(masks, (1, 2, 3, 0))
masks = masks * weights
masks= np.transpose(masks, (3, 0, 1, 2))
masks = masks.sum(axis=0)
if voting == 'soft':
masks = (masks >= (threshold * weights.sum())).astype(np.float32)
elif voting == 'hard': # Same as doing a majority vote
masks = (masks > (0.5 * weights.sum())).astype(np.float32)
assert len(masks.shape) == 3
return masks.astype(np.float32) | 1,881 |
def send_msg(content):
"""
发送消息
:param content: 消息内容
:return:
"""
(url, data, field) = __read_data()
if not url or not data:
print "url={0}, data={1}".format(url, data)
return
headers = {'Content-Type': 'application/json'}
json_content = json.loads(data)
json_content[field] = content
print json_content
response = requests.post(
url=url,
headers=headers, data=json.dumps(json_content))
print(response.content) | 1,882 |
def animate(zdata,
xdata,
ydata,
conversionFactorArray,
timedata,
BoxSize,
timeSteps=100,
filename="particle"):
"""
Animates the particle's motion given the z, x and y signal (in Volts)
and the conversion factor (to convert between V and nm).
Parameters
----------
zdata : ndarray
Array containing the z signal in volts with time.
xdata : ndarray
Array containing the x signal in volts with time.
ydata : ndarray
Array containing the y signal in volts with time.
conversionFactorArray : ndarray
Array of 3 values of conversion factors for z, x and y (in units of Volts/Metre)
timedata : ndarray
Array containing the time data in seconds.
BoxSize : float
The size of the box in which to animate the particle - in nm
timeSteps : int, optional
Number of time steps to animate
filename : string, optional
filename to create the mp4 under (<filename>.mp4)
"""
timePerFrame = 0.203
print("This will take ~ {} minutes".format(timePerFrame * timeSteps / 60))
convZ = conversionFactorArray[0] * 1e-9
convX = conversionFactorArray[1] * 1e-9
convY = conversionFactorArray[2] * 1e-9
ZBoxStart = -BoxSize # 1/conv*(_np.mean(zdata)-0.06)
ZBoxEnd = BoxSize # 1/conv*(_np.mean(zdata)+0.06)
XBoxStart = -BoxSize # 1/conv*(_np.mean(xdata)-0.06)
XBoxEnd = BoxSize # 1/conv*(_np.mean(xdata)+0.06)
YBoxStart = -BoxSize # 1/conv*(_np.mean(ydata)-0.06)
YBoxEnd = BoxSize # 1/conv*(_np.mean(ydata)+0.06)
FrameInterval = 1 # how many timesteps = 1 frame in animation
a = 20
b = 0.6 * a
myFPS = 7
myBitrate = 1000000
fig = _plt.figure(figsize=(a, b))
ax = fig.add_subplot(111, projection='3d')
ax.set_title("{} us".format(timedata[0] * 1000000))
ax.set_xlabel('X (nm)')
ax.set_xlim([XBoxStart, XBoxEnd])
ax.set_ylabel('Y (nm)')
ax.set_ylim([YBoxStart, YBoxEnd])
ax.set_zlabel('Z (nm)')
ax.set_zlim([ZBoxStart, ZBoxEnd])
ax.view_init(20, -30)
# ax.view_init(0, 0)
def setup_plot():
XArray = 1 / convX * xdata[0]
YArray = 1 / convY * ydata[0]
ZArray = 1 / convZ * zdata[0]
scatter = ax.scatter(XArray, YArray, ZArray)
return scatter,
def animate(i):
# print "\r {}".format(i),
print("Frame: {}".format(i), end="\r")
ax.clear()
ax.view_init(20, -30)
ax.set_title("{} us".format(int(timedata[i] * 1000000)))
ax.set_xlabel('X (nm)')
ax.set_xlim([XBoxStart, XBoxEnd])
ax.set_ylabel('Y (nm)')
ax.set_ylim([YBoxStart, YBoxEnd])
ax.set_zlabel('Z (nm)')
ax.set_zlim([ZBoxStart, ZBoxEnd])
XArray = 1 / convX * xdata[i]
YArray = 1 / convY * ydata[i]
ZArray = 1 / convZ * zdata[i]
scatter = ax.scatter(XArray, YArray, ZArray)
ax.scatter([XArray], [0], [-ZBoxEnd], c='k', alpha=0.9)
ax.scatter([-XBoxEnd], [YArray], [0], c='k', alpha=0.9)
ax.scatter([0], [YBoxEnd], [ZArray], c='k', alpha=0.9)
Xx, Yx, Zx, Xy, Yy, Zy, Xz, Yz, Zz = [], [], [], [], [], [], [], [], []
for j in range(0, 30):
Xlast = 1 / convX * xdata[i - j]
Ylast = 1 / convY * ydata[i - j]
Zlast = 1 / convZ * zdata[i - j]
Alpha = 0.5 - 0.05 * j
if Alpha > 0:
ax.scatter([Xlast], [0 + j * 10], [-ZBoxEnd],
c='grey',
alpha=Alpha)
ax.scatter([-XBoxEnd], [Ylast], [0 - j * 10],
c='grey',
alpha=Alpha)
ax.scatter([0 - j * 2], [YBoxEnd], [Zlast],
c='grey',
alpha=Alpha)
Xx.append(Xlast)
Yx.append(0 + j * 10)
Zx.append(-ZBoxEnd)
Xy.append(-XBoxEnd)
Yy.append(Ylast)
Zy.append(0 - j * 10)
Xz.append(0 - j * 2)
Yz.append(YBoxEnd)
Zz.append(Zlast)
if j < 15:
XCur = 1 / convX * xdata[i - j + 1]
YCur = 1 / convY * ydata[i - j + 1]
ZCur = 1 / convZ * zdata[i - j + 1]
ax.plot([Xlast, XCur], [Ylast, YCur], [Zlast, ZCur], alpha=0.4)
ax.plot_wireframe(Xx, Yx, Zx, color='grey')
ax.plot_wireframe(Xy, Yy, Zy, color='grey')
ax.plot_wireframe(Xz, Yz, Zz, color='grey')
return scatter,
anim = _animation.FuncAnimation(fig,
animate,
int(timeSteps / FrameInterval),
init_func=setup_plot,
blit=True)
_plt.rcParams['animation.ffmpeg_path'] = '/usr/bin/ffmpeg'
mywriter = _animation.FFMpegWriter(fps=myFPS, bitrate=myBitrate)
# , fps = myFPS, bitrate = myBitrate)
anim.save('{}.mp4'.format(filename), writer=mywriter)
return None | 1,883 |
def name_of_decompressed(filename):
""" Given a filename check if it is in compressed type (any of
['.Z', '.gz', '.tar.gz', '.zip']; if indeed it is compressed return the
name of the uncompressed file, else return the input filename.
"""
dct = {
'.Z': re.compile('.Z$'),
'.tar.gz': re.compile('.tar.gz$'),
'.gz': re.compile('.gz$'),
'.zip': re.compile('.zip$')
}
ctype = find_os_compression_type(filename)
if ctype is None:
return filename
try:
return re.sub(dct[ctype], '', filename)
except:
raise RuntimeError('[ERROR] decompress:name_of_decompressed Failed!') | 1,884 |
def sample_distribution(distribution):
"""Sample one element from a distribution assumed to be an array of normalized
probabilities.
"""
r = random.uniform(0, 1)
s = 0
for i in range(len(distribution)):
s += distribution[i]
if s >= r:
return i
return len(distribution) - 1 | 1,885 |
def benchmark(func):
"""Decorator to mark a benchmark."""
BENCHMARKS[func.__name__] = func
return func | 1,886 |
def write_gvecs(fp, gvecs, kpath='/electrons/kpoint_0'):
""" fill the electrons/kpoint_0/gvectors group in wf h5 file
Args:
fp (h5py.File): hdf5 file object
gvecs (np.array): PW basis as integer vectors
kpath (str, optional): kpoint group to contain gvecs, default is
'/electrons/kpoint_0'
Example:
>>> fp = h5py.File('pwscf.pwscf.h5', 'w')
>>> write_gvecs(fp, gvecs)
>>> fp.close()
"""
fp.require_group(kpath)
kgrp = fp[kpath]
kgrp.create_dataset('gvectors', data=gvecs) | 1,887 |
def do_positive_DFT(data_in, tmax):
"""
Do Discrete Fourier transformation and take POSITIVE frequency component part.
Args:
data_in (array): input data.
tmax (float): sample frequency.
Returns:
data_s (array): output array with POSITIVE frequency component part.
data_w (array): the Discrete Fourier Transform sample frequencies POSITIVE frequency component part.
"""
data_s = np.fft.fft(data_in)
data_w = np.fft.fftfreq(tmax)
# only take the positive frequency components
return data_w[0:tmax//2], data_s[0:tmax//2] | 1,888 |
def test_load_extension_valid(import_path: str) -> None:
"""It loads the extension."""
extension = load_extension(import_path)
assert issubclass(extension, jinja2.ext.Extension) | 1,889 |
def scroll_down(driver):
"""Scrolling the page for pages with infinite scrolling"""
loading_thread = threading.Thread(target=loading)
loading_thread.start()
# Get scroll height.
last_height = driver.execute_script("return document.body.scrollHeight")
while True:
# Scroll down to the bottom.
driver.execute_script("window.scrollTo(0, document.body.scrollHeight);")
# Wait to load the page.
time.sleep(5)
# Calculate new scroll height and compare with last scroll height.
new_height = driver.execute_script("return document.body.scrollHeight")
if new_height == last_height:
break
last_height = new_height
loading_thread.loading_loop = False
loading_thread.join() | 1,890 |
def service(base_app, location):
"""Service fixture."""
return base_app.extensions["invenio-records-lom"].records_service | 1,891 |
def test_is_divisible_by_6(s, result):
"""Test function returns expected result."""
from divisible_by_6 import is_divisible_by_6
assert is_divisible_by_6(s) == result | 1,892 |
def check_file_content(path, expected_content):
"""Check file has expected content.
:param str path: Path to file.
:param str expected_content: Expected file content.
"""
with open(path) as input:
return expected_content == input.read() | 1,893 |
def get_arguments(deluge=False):
"""Retrieves CLI arguments from the 'addmedia' script and uses
get_parser() to validate them.
Returns the full file path to the config file in use and a dict of
validated arguments from the MHParser object.
"""
# Check for deluge
if deluge:
return get_deluge_arguments()
# Get parser
parser = get_parser()
# If no args, show help
if len(sys.argv) == 1:
parser.print_help()
sys.exit(1)
# Get validated args from parser
new_args = parser.parse_args().__dict__
# Remove config to return separately
config = new_args.pop('config')
return config, new_args | 1,894 |
def verify_apikey(payload,
raiseonfail=False,
override_authdb_path=None,
override_permissions_json=None,
config=None):
"""Checks if an API key is valid.
This version does not require a session.
Parameters
----------
payload : dict
This dict contains a single key:
- apikey_dict: the decrypted and verified API key info dict from the
frontend.
- user_id: the user ID of the person wanting to verify this key.
- user_role: the user role of the person wanting to verify this key.
raiseonfail : bool
If True, will raise an Exception if something goes wrong.
override_authdb_path : str or None
If given as a str, is the alternative path to the auth DB.
override_permissions_json : str or None
If given as a str, is the alternative path to the permissions JSON to
use. This is used to check if the user_id is allowed to actually verify
("read") an API key.
config : SimpleNamespace object or None
An object containing systemwide config variables as attributes. This is
useful when the wrapping function needs to pass in some settings
directly from environment variables.
Returns
-------
dict
The dict returned is of the form::
{'success': True if API key is OK and False otherwise,
'messages': list of str messages if any}
"""
for key in ('reqid', 'pii_salt'):
if key not in payload:
LOGGER.error(
"Missing %s in payload dict. Can't process this request." % key
)
return {
'success': False,
'failure_reason': (
"invalid request: missing '%s' in request" % key
),
'apikey': None,
'expires': None,
'messages': ["Invalid API key request."],
}
for key in ('apikey_dict', 'user_id', 'user_role'):
if key not in payload:
LOGGER.error(
'[%s] Invalid API key request, missing %s.' %
(payload['reqid'], key)
)
return {
'success': False,
'failure_reason': (
"invalid request: missing '%s' in request" % key
),
'messages': ["Some required keys are missing from payload."]
}
apikey_dict = payload['apikey_dict']
user_id = payload['user_id']
user_role = payload['user_role']
# check if the user is allowed to read the presented API key
apikey_verify_allowed = check_user_access(
{'user_id': user_id,
'user_role': user_role,
'action': 'view',
'target_name': 'apikey',
'target_owner': apikey_dict['uid'],
'target_visibility': 'private',
'target_sharedwith': None,
'reqid': payload['reqid'],
'pii_salt': payload['pii_salt']},
raiseonfail=raiseonfail,
override_permissions_json=override_permissions_json,
override_authdb_path=override_authdb_path
)
if not apikey_verify_allowed['success']:
LOGGER.error(
"[%s] Invalid API key verification request. "
"from user_id: %s, role: %s. The API key presented is "
"not readable by this user." %
(payload['reqid'],
pii_hash(user_id, payload['pii_salt']),
pii_hash(user_role, payload['pii_salt']))
)
return {
'success': False,
'failure_reason': (
"originating user is not allowed to operate on this API key"
),
'messages': ["API key verification failed. "
"You are not allowed to operate on this API key."]
}
# this checks if the database connection is live
currproc = mp.current_process()
engine = getattr(currproc, 'authdb_engine', None)
if override_authdb_path:
currproc.auth_db_path = override_authdb_path
if not engine:
currproc.authdb_engine, currproc.authdb_conn, currproc.authdb_meta = (
authdb.get_auth_db(
currproc.auth_db_path,
echo=raiseonfail
)
)
apikeys = currproc.authdb_meta.tables['apikeys_nosession']
# the apikey sent to us must match the stored apikey's properties:
# - token
# - userid
# - expired must be in the future
# - issued must be in the past
# - not_valid_before must be in the past
dt_utcnow = datetime.utcnow()
sel = select([
apikeys.c.apikey,
apikeys.c.expires,
]).select_from(apikeys).where(
apikeys.c.apikey == apikey_dict['tkn']
).where(
apikeys.c.user_id == apikey_dict['uid']
).where(
apikeys.c.user_role == apikey_dict['rol']
).where(
apikeys.c.expires > dt_utcnow
).where(
apikeys.c.issued < dt_utcnow
).where(
apikeys.c.not_valid_before < dt_utcnow
)
result = currproc.authdb_conn.execute(sel)
row = result.fetchone()
result.close()
if row is not None and len(row) != 0:
LOGGER.info(
"[%s] No-session API key verified successfully. "
"user_id: %s, role: '%s', audience: '%s', subject: '%s', "
"apiversion: %s, expires on: %s" %
(payload['reqid'],
pii_hash(apikey_dict['uid'],
payload['pii_salt']),
apikey_dict['rol'],
apikey_dict['aud'],
apikey_dict['sub'],
apikey_dict['ver'],
apikey_dict['exp'])
)
return {
'success': True,
'messages': [(
"No-session API key verified successfully. Expires: %s." %
row['expires'].isoformat()
)]
}
else:
LOGGER.error(
"[%s] No-session API key verification failed. Failed key "
"user_id: %s, role: '%s', audience: '%s', subject: '%s', "
"apiversion: %s, expires on: %s" %
(payload['reqid'],
pii_hash(apikey_dict['uid'],
payload['pii_salt']),
apikey_dict['rol'],
apikey_dict['aud'],
apikey_dict['sub'],
apikey_dict['ver'],
apikey_dict['exp'])
)
return {
'success': False,
'failure_reason': (
"key validation failed, "
"provided key does not match stored key or has expired"
),
'messages': [(
"API key could not be verified."
)]
} | 1,895 |
def merge_image_data(dir_dict, output_image_file, logg):
"""
Merge image data in dir_dict.
Parameters
----------
base_dir : str base directory of dir_dict
dir_dict : dictionary containing pairs of directories and associated files
output_image_file : str output image file string
Returns
-------
(err_code, file_list)
err_code : int
Non-zero value indicates error code, or zero on success.
file_list : list of files merged
"""
file_list = []
for direct in dir_dict:
file_name = dir_dict[direct]
if file_name != "":
file_list.append(os.path.join(direct, file_name))
if len(file_list) > 0:
command_list = ["montage"] + file_list + ["-mode"] + ["Concatenate"] + [output_image_file]
ret = run_cmd(command_list, logg)
return (ret, file_list)
else:
return (-1, file_list) | 1,896 |
def save_model(file_name_base, model):
"""Save and convert Keras model"""
keras_file = f'{file_name_base}.h5'
fdeep_file = f'{file_name_base}.json'
print(f'Saving {keras_file}')
model.save(keras_file, include_optimizer=False)
print(f'Converting {keras_file} to {fdeep_file}.')
convert_model.convert(keras_file, fdeep_file)
print(f'Done converting {keras_file} to {fdeep_file}.') | 1,897 |
def case_mc2us(x):
""" mixed case to underscore notation """
return case_cw2us(x) | 1,898 |
def _parse_arguments():
"""
Constructs and parses the command line arguments for eg. Returns an args
object as returned by parser.parse_args().
"""
parser = argparse.ArgumentParser(
description='eg provides examples of common command usage.'
)
parser.add_argument(
'-v',
'--version',
action='store_true',
help='Display version information about eg'
)
parser.add_argument(
'-f',
'--config-file',
help='Path to the .egrc file, if it is not in the default location.'
)
parser.add_argument(
'-e',
'--edit',
action='store_true',
help="""Edit the custom examples for the given command. If editor-cmd
is not set in your .egrc and $VISUAL and $EDITOR are not set, prints a
message and does nothing."""
)
parser.add_argument(
'--examples-dir',
help='The location to the examples/ dir that ships with eg'
)
parser.add_argument(
'-c',
'--custom-dir',
help='Path to a directory containing user-defined examples.'
)
parser.add_argument(
'-p',
'--pager-cmd',
help='String literal that will be invoked to page output.'
)
parser.add_argument(
'-l',
'--list',
action='store_true',
help='Show all the programs with eg entries.'
)
parser.add_argument(
'--color',
action='store_true',
dest='use_color',
default=None,
help='Colorize output.'
)
parser.add_argument(
'-s',
'--squeeze',
action='store_true',
default=None,
help='Show fewer blank lines in output.'
)
parser.add_argument(
'--no-color',
action='store_false',
dest='use_color',
help='Do not colorize output.'
)
parser.add_argument(
'program',
nargs='?',
help='The program for which to display examples.'
)
args = parser.parse_args()
if len(sys.argv) < 2:
# Too few arguments. We can't specify this using argparse alone, so we
# have to manually check.
parser.print_help()
parser.exit()
elif not args.version and not args.list and not args.program:
parser.error(_MSG_BAD_ARGS)
else:
return args | 1,899 |
Subsets and Splits
No saved queries yet
Save your SQL queries to embed, download, and access them later. Queries will appear here once saved.