content
stringlengths 35
416k
| sha1
stringlengths 40
40
| id
int64 0
710k
|
---|---|---|
import hashlib
import six
def make_hashkey(seed):
"""
Generate a string key by hashing
"""
h = hashlib.md5()
h.update(six.b(str(seed)))
return h.hexdigest() | 38d088005cb93fc0865933bbb706be171e72503a | 705,905 |
def fix(x):
"""
Replaces spaces with tabs, removes spurious newlines, and lstrip()s each
line. Makes it really easy to create BED files on the fly for testing and
checking.
"""
s = ""
for i in x.splitlines():
i = i.lstrip()
if i.endswith('\t'):
add_tab = '\t'
else:
add_tab = ''
if len(i) == 0:
continue
i = i.split()
i = '\t'.join(i) + add_tab + '\n'
s += i
return s | ecd3a4d7f470feae1b697025c8fbf264d5c6b149 | 705,906 |
def get_ngram_universe(sequence, n):
"""
Computes the universe of possible ngrams given a sequence. Where n is equal to the length of the sequence, the resulting number represents the sequence universe.
Example
--------
>>> sequence = [2,1,1,4,2,2,3,4,2,1,1]
>>> ps.get_ngram_universe(sequence, 3)
64
"""
# if recurrance is possible, the universe is given by k^t (SSA pg 68)
k = len(set(sequence))
if k > 10 and n > 10:
return 'really big'
return k**n | 3dbfe1822fdefb3e683b3f2b36926b4bb066468f | 705,907 |
def replace_header(input_df):
"""replace headers of the dataframe with first row of sheet"""
new_header = input_df.iloc[0]
input_df = input_df[1:]
input_df.columns=new_header
return input_df | c8946fc269dd313b80df421af8d0b3fc6c47aed7 | 705,908 |
def cartToRadiusSq(cartX, cartY):
"""Convert Cartesian coordinates into their corresponding radius squared."""
return cartX**2 + cartY**2 | 3fb79d2c056f06c2fbf3efc14e08a36421782dbd | 705,909 |
def unique_entity_id(entity):
"""
:param entity: django model
:return: unique token combining the model type and id for use in HTML
"""
return "%s-%s" % (type(entity).__name__, entity.id) | c58daf9a115c9840707ff5e807efadad36a86ce8 | 705,910 |
def get_job_metadata(ibs, jobid):
"""
Web call that returns the metadata of a job
CommandLine:
# Run Everything together
python -m wbia.web.job_engine --exec-get_job_metadata
# Start job queue in its own process
python -m wbia.web.job_engine job_engine_tester --bg
# Start web server in its own process
./main.py --web --fg
pass
# Run foreground process
python -m wbia.web.job_engine --exec-get_job_metadata:0 --fg
Example:
>>> # xdoctest: +REQUIRES(--web-tests)
>>> # xdoctest: +REQUIRES(--slow)
>>> # xdoctest: +REQUIRES(--job-engine-tests)
>>> # xdoctest: +REQUIRES(--web-tests)
>>> from wbia.web.job_engine import * # NOQA
>>> import wbia
>>> with wbia.opendb_bg_web('testdb1', managed=True) as web_ibs: # , domain='http://52.33.105.88')
... # Test get metadata of a job id that does not exist
... response = web_ibs.send_wbia_request('/api/engine/job/metadata/', jobid='badjob')
"""
status = ibs.job_manager.jobiface.get_job_metadata(jobid)
return status | 24ba96d6a71f105057a9fc9012de9edb187787d5 | 705,912 |
def variable_to_json(var):
"""Converts a Variable object to dict/json struct"""
o = {}
o['x'] = var.x
o['y'] = var.y
o['name'] = var.name
return o | 86497a7915e4825e6e2cbcfb110c9bc4c229efed | 705,913 |
import json
def get_result_handler(rc_value, sa_file=None):
"""Returns dict of result handler config. Backwards compatible for JSON input.
rc_value (str): Result config argument specified.
sa_file (str): SA path argument specified.
"""
try:
result_handler = json.loads(rc_value)
except json.decoder.JSONDecodeError:
config = rc_value.split(".", 1)
if len(config) == 2:
result_handler = {
"type": "BigQuery",
"project_id": config[0],
"table_id": config[1],
}
else:
raise ValueError(f"Unable to parse result handler config: `{rc_value}`")
if sa_file:
result_handler["google_service_account_key_path"] = sa_file
return result_handler | 83c6aa6e0cacdc64422553050072af5d8ea46bf6 | 705,914 |
def getOrElseUpdate(dictionary, key, opr):
"""If given key is already in the dictionary, returns associated value.
Otherwise compute the value with opr, update the dictionary and return it.
None dictionary are ignored.
>>> d = dict()
>>> getOrElseUpdate(d, 1, lambda _: _ + 1)
2
>>> print(d)
{1: 2}
@type dictionary: dictionary of A => B
@param dictionary: the dictionary
@type key: A
@param key: the key
@type opr: function of A => B
@param opr: the function to compute new value from keys
@rtype: B
@return: the value associated with the key
"""
if dictionary is None:
return opr(key)
else:
if key not in dictionary:
dictionary[key] = opr(key)
return dictionary[key] | 95454d7ca34d6ae243fda4e70338cf3d7584b827 | 705,915 |
from typing import OrderedDict
def set_standard_attrs(da):
""" Add standard attributed to xarray DataArray"""
da.coords["lat"].attrs = OrderedDict(
[
("standard_name", "latitude"),
("units", "degrees_north"),
("axis", "Y"),
("long_name", "latitude"),
("out_name", "lat"),
("stored_direction", "increasing"),
("type", "double"),
("valid_max", "90.0"),
("valid_min", "-90.0"),
]
)
da.coords["lon"].attrs = OrderedDict(
[
("standard_name", "longitude"),
("units", "degrees_east"),
("axis", "X"),
("long_name", "longitude"),
("out_name", "lon"),
("stored_direction", "increasing"),
("type", "double"),
("valid_max", "180.0"),
("valid_min", "-180.0"),
]
)
da.coords["depth_coord"].attrs = OrderedDict(
[
("standard_name", "depth"),
("units", "m"),
("axis", "Z"),
("long_name", "ocean depth coordinate"),
("out_name", "lev"),
("positive", "down"),
("stored_direction", "increasing"),
("valid_max", "12000.0"),
("valid_min", "0.0"),
]
)
da.coords["time"].attrs = OrderedDict(
[
("standard_name", "time"),
("axis", "T"),
("long_name", "time"),
("out_name", "time"),
("stored_direction", "increasing"),
]
)
da.coords["time"].encoding["units"] = "days since '1900-01-01'"
return da | 21f83552466127928c9a30e9354e91c3031225aa | 705,916 |
import os
def find_git_repos(folder):
"""
Returns a list of all git repos within the given ancestor folder.
"""
return [root for root, subfolders, files
in os.walk(folder)
if '.git' in subfolders] | 615fcc3e947ac3f198638acb23b8a8118c3ec9cd | 705,917 |
def const_bool(value):
"""Create an expression representing the given boolean value.
If value is not a boolean, it is converted to a boolean. So, for
instance, const_bool(1) is equivalent to const_bool(True).
"""
return ['constant', 'bool', ['{0}'.format(1 if value else 0)]] | d11d01f94b8ad20d393a39a28dbfd18cc8fa217e | 705,918 |
import struct
def long_to_bytes(n, blocksize=0):
"""Convert an integer to a byte string.
In Python 3.2+, use the native method instead::
>>> n.to_bytes(blocksize, 'big')
For instance::
>>> n = 80
>>> n.to_bytes(2, 'big')
b'\x00P'
If the optional :data:`blocksize` is provided and greater than zero,
the byte string is padded with binary zeros (on the front) so that
the total length of the output is a multiple of blocksize.
If :data:`blocksize` is zero or not provided, the byte string will
be of minimal length.
"""
# after much testing, this algorithm was deemed to be the fastest
s = b''
n = int(n)
pack = struct.pack
while n > 0:
s = pack('>I', n & 0xffffffff) + s
n = n >> 32
# strip off leading zeros
for i in range(len(s)):
if s[i] != b'\000'[0]:
break
else:
# only happens when n == 0
s = b'\000'
i = 0
s = s[i:]
# add back some pad bytes. this could be done more efficiently w.r.t. the
# de-padding being done above, but sigh...
if blocksize > 0 and len(s) % blocksize:
s = (blocksize - len(s) % blocksize) * b'\000' + s
return s | 1157a466ce9754c12e01f7512e879cc28a2a4b23 | 705,919 |
def filt_all(list_, func):
"""Like filter but reverse arguments and returns list"""
return [i for i in list_ if func(i)] | 72010b483cab3ae95d49b55ca6a70b0838b0a34d | 705,920 |
def _rav_setval_ ( self , value ) :
"""Assign the valeu for the variable
>>> var = ...
>>> var.value = 10
"""
value = float ( value )
self.setVal ( value )
return self.getVal() | 80ad7ddec68d5c97f72ed63dd6ba4a1101de99cb | 705,921 |
def bb_to_plt_plot(x, y, w, h):
""" Converts a bounding box to parameters
for a plt.plot([..], [..])
for actual plotting with pyplot
"""
X = [x, x, x+w, x+w, x]
Y = [y, y+h, y+h, y, y]
return X, Y | 10ea3d381969b7d30defdfdbbac0a8d58d06d4d4 | 705,924 |
from typing import Counter
def count_items(column_list:list):
"""
Contar os tipos (valores) e a quantidade de items de uma lista informada
args:
column_list (list): Lista de dados de diferentes tipos de valores
return: Retorna dois valores, uma lista de tipos (list) e o total de itens de cada tipo (list)
"""
counter = Counter(column_list)
item_types = list(counter.keys())
count_items = list(counter.values())
return item_types, count_items | 06cf25aed4d0de17fa8fb11303c9284355669cf5 | 705,925 |
def to_graph(grid):
"""
Build adjacency list representation of graph
Land cells in grid are connected if they are vertically or horizontally adjacent
"""
adj_list = {}
n_rows = len(grid)
n_cols = len(grid[0])
land_val = "1"
for i in range(n_rows):
for j in range(n_cols):
if grid[i][j] == land_val:
adj_list[(i,j)] = []
if i > 0 and grid[i-1][j] == land_val:
adj_list[(i,j)].append((i-1,j))
if i < n_rows-1 and grid[i+1][j] == land_val:
adj_list[(i,j)].append((i+1,j))
if j > 0 and grid[i][j-1] == land_val:
adj_list[(i,j)].append((i,j-1))
if j < n_cols-1 and grid[i][j+1] == land_val:
adj_list[(i,j)].append((i,j+1))
return adj_list | ebdd0406b123a636a9d380391ef4c13220e2dabd | 705,926 |
import os
def get_server_url():
"""
Return current server url, does not work in a task
"""
host = os.environ.get('HTTP_X_FORWARDED_HOST') or os.environ['HTTP_HOST']
return u'%s://%s' % (os.environ['wsgi.url_scheme'], host) | c71f2244b8dd023b11a6db0aee885d4d332f3a7c | 705,927 |
def qs_without_parameter(arg1, arg2):
"""
Removes an argument from the get URL.
Use:
{{ request|url_without_parameter:'page' }}
Args:
arg1: request
arg2: parameter to remove
"""
parameters = {}
for key, value in arg1.items():
if parameters.get(key, None) is None and arg2 != key:
try:
parameters[key] = value[0]
except IndexError:
parameters[key] = value
return "&".join(
[k + "=" + v
for k, v in parameters.items()]) | 649931de5490621c92513877b21cb8cfce8d66ff | 705,928 |
import re
def _remove_comments_inline(text):
"""Removes the comments from the string 'text'."""
if 'auto-ignore' in text:
return text
if text.lstrip(' ').lstrip('\t').startswith('%'):
return ''
match = re.search(r'(?<!\\)%', text)
if match:
return text[:match.end()] + '\n'
else:
return text | 463e29e1237a88e91c13a58ffea1b2ccdafd4a1d | 705,929 |
def is_pj_player_plus(value):
"""
:param value: The value to be checked
:type value: Any
:return: whether or not the value is a PJ Player+
:rtype: bool
"""
return isinstance(value, list) and len(value) == 4 or len(value) == 3 | 1c4e7a7513d746d25f6b3d7964455b0735c988fc | 705,930 |
def get_facts(F5, uri):
"""
Issue a GET of the URI specified to the F5 appliance and return the result as facts.
If the URI must have a slash as the first character, add it if missing
In Ansible 2.2 found name clashing
http://stackoverflow.com/questions/40281706/cant-read-custom-facts-with-list-array-of-items
"""
result = { 'ansible_facts': {} }
if uri[0] != "/":
uri = "/" + uri
status, result["ansible_facts"] = F5.genericGET(uri)
try:
result["ansible_facts"]["bigip_items"] = result["ansible_facts"].pop("items") # replace key name of 'items' with 'bigip_items'
except:
result["ansible_facts"]["bigip_items"] = dict()
return status, result | 554cc7b9bf35d631c8742614142f5aa2ecaba9b4 | 705,931 |
def gather_emails_GUIDs(mailbox, search, folder):
""" Download GUID of messages passing search requirements
"""
mailbox.folder.set(folder)
return (email for email in mailbox.uids(search)) | d75ecdeaa4f95f9108276f2be236e33934d7de01 | 705,932 |
def ndo_real(data, n):
"""mimic of gmx_fio_ndo_real in gromacs"""
return [data.unpack_real() for i in range(n)] | 875edd4c78e591fcee1b3de30f0ed62a4d0b074d | 705,933 |
import torch
def get_bernoulli_sample(probs):
"""Conduct Bernoulli sampling according to a specific probability distribution.
Args:
prob: (torch.Tensor) A tensor in which each element denotes a probability of 1 in a Bernoulli distribution.
Returns:
A Tensor of binary samples (0 or 1) with the same shape of probs.
"""
if torch.cuda.is_available():
bernoulli_sample = torch.ceil(probs - torch.rand(probs.shape, device=torch.device('cuda')))
else:
bernoulli_sample = torch.ceil(probs - torch.rand(probs.shape))
return bernoulli_sample | 14c45741d47f5eaff24893471425ddd4de7e2e4b | 705,934 |
import subprocess
import locale
def parse_env_file(filename, pattern):
"""Source a shell script and extract variables from it."""
# Use the shell to parse this so we can also read substitutions
# like $() for example.
env = {}
command = 'source {}; set | grep -E "{}"'.format(filename, pattern)
output = subprocess.check_output(['sh', '-c', command])
output = output.decode(locale.getpreferredencoding())
for line in output.splitlines():
p1 = line.find('=')
env[line[:p1]] = line[p1+1:]
return env | d7a3a14bc163066f0232bf7811c397fbb594b45c | 705,935 |
def CollectUniqueByOrderOfAppearance(dataset:list):
"""
This method collect all unique in order of appearance and return it as list.
:param dataset:list: dataset list
"""
try:
seen = set()
seen_add = seen.add
return [x for x in dataset if not (x in seen or seen_add(x))]
except Exception as ex:
template = "An exception of type {0} occurred in [ContentSupport.CollectUniqueByOrderOfAppearance]. Arguments:\n{1!r}"
message = template.format(type(ex).__name__, ex.args)
print(message) | e252d064bf0c525ec1c1781ca6dc915dbc9d46f0 | 705,936 |
import fcntl
def has_flock(fd):
"""
Checks if fd has flock over it
True if it is, False otherwise
:param fd:
:return:
:rtype: bool
"""
try:
fcntl.flock(fd, fcntl.LOCK_EX | fcntl.LOCK_NB)
except BlockingIOError:
return True
else:
return False | 9ae997d06a12d73a659958bc2f0467ebdf0142b7 | 705,937 |
def ExtractCodeBySystem(
codable_concept,
system):
"""Extract code in codable_concept."""
for coding in codable_concept.coding:
if (coding.HasField('system') and coding.HasField('code') and
coding.system.value == system):
return coding.code.value
return None | e672cb3d2c1d8d65e49d00539cdecf6ee03d1143 | 705,938 |
def record_or_not(record_mode, line, start_block, end_block):
""" """
if not record_mode:
if start_block in line:
record_mode = True
elif end_block in line:
record_mode = False
return record_mode | 2b3952ab7fa3aa23ccbd712dee0aa06083b7b5f5 | 705,939 |
def id_test_data(value):
"""generate id"""
return f"action={value.action_name} return={value.return_code}" | 47649b7302ef2f3ad046fc1c7b3fc18da2687921 | 705,940 |
import json
def assertDict(s):
""" Assert that the input is a dictionary. """
if isinstance(s,str):
try:
s = json.loads(s)
except:
raise AssertionError('String "{}" cannot be json-decoded.'.format(s))
if not isinstance(s,dict): raise AssertionError('Variable "{}" is not a dictionary.'.format(s))
return s | 302defb4e1eecc9a6171cda0401947e3251be585 | 705,942 |
import ast
from typing import Tuple
from typing import List
from typing import Any
def get_function_args(node: ast.FunctionDef) -> Tuple[List[Any], List[Any]]:
"""
This functon will process function definition and will extract all
arguments used by a given function and return all optional and non-optional
args used by the function.
Args:
node: Function node containing function that needs to be analyzed
Returns:
(non_optional_args, optional_args): named function args
"""
assert (
type(node) == ast.FunctionDef
), "Incorrect node type. Expected ast.FunctionDef, got {}".format(type(node))
total_args = len(node.args.args)
default_args = len(node.args.defaults)
optional_args = []
non_optional_args = []
# Handle positional args
for i in range(total_args):
if i + default_args < total_args:
non_optional_args.append(node.args.args[i].arg)
else:
optional_args.append(node.args.args[i].arg)
# Handle named args
for arg in node.args.kwonlyargs:
optional_args.append(arg.arg)
return non_optional_args, optional_args | a4fe9dccedd5684050a7d5e7949e384dd4021035 | 705,943 |
import collections
import csv
def ParseMemCsv(f):
"""Compute summary stats for memory.
vm5_peak_kib -> max(vm_peak_kib) # over 5 second intervals. Since it uses
the kernel, it's accurate except for takes that spike in their last 4
seconds.
vm5_mean_kib -> mean(vm_size_kib) # over 5 second intervals
"""
peak_by_pid = collections.defaultdict(list)
size_by_pid = collections.defaultdict(list)
# Parse columns we care about, by PID
c = csv.reader(f)
for i, row in enumerate(c):
if i == 0:
continue # skip header
# looks like timestamp, pid, then (rss, peak, size)
_, pid, _, peak, size = row
if peak != '':
peak_by_pid[pid].append(int(peak))
if size != '':
size_by_pid[pid].append(int(size))
mem_by_pid = {}
# Now compute summaries
pids = peak_by_pid.keys()
for pid in pids:
peaks = peak_by_pid[pid]
vm5_peak_kib = max(peaks)
sizes = size_by_pid[pid]
vm5_mean_kib = sum(sizes) / len(sizes)
mem_by_pid[pid] = (vm5_peak_kib, vm5_mean_kib)
return mem_by_pid | 5d10a0d0ac5ab3d3e99ff5fd4c9ca6cd0b74656b | 705,944 |
def index_containing_substring(list_str, substring):
"""For a given list of strings finds the index of the element that contains the
substring.
Parameters
----------
list_str: list of strings
substring: substring
Returns
-------
index: containing the substring or -1
"""
for i, s in enumerate(list_str):
if substring in s:
return i
return -1 | 2816899bc56f6b2c305192b23685d3e803b420df | 705,945 |
def iatan2(y,x):
"""One coordinate must be zero"""
if x == 0:
return 90 if y > 0 else -90
else:
return 0 if x > 0 else 180 | a0b18b61d7ffadf864a94299bc4a3a0aacd7c65a | 705,946 |
import torch
def fuse_bn_sequential(model):
"""
This function takes a sequential block and fuses the batch normalization with convolution
:param model: nn.Sequential. Source resnet model
:return: nn.Sequential. Converted block
"""
if not isinstance(model, torch.nn.Sequential):
return model
stack = []
for m in model.children():
if isinstance(m, torch.nn.BatchNorm2d):
if isinstance(stack[-1], torch.nn.Conv2d):
bn_st_dict = m.state_dict()
conv_st_dict = stack[-1].state_dict()
# BatchNorm params
eps = m.eps
mu = bn_st_dict['running_mean']
var = bn_st_dict['running_var']
gamma = bn_st_dict['weight']
if 'bias' in bn_st_dict:
beta = bn_st_dict['bias']
else:
beta = torch.zeros(gamma.size(0)).float().to(gamma.device)
# Conv params
W = conv_st_dict['weight']
if 'bias' in conv_st_dict:
bias = conv_st_dict['bias']
else:
bias = torch.zeros(W.size(0)).float().to(gamma.device)
denom = torch.sqrt(var + eps)
b = beta - gamma.mul(mu).div(denom)
A = gamma.div(denom)
bias *= A
A = A.expand_as(W.transpose(0, -1)).transpose(0, -1)
W.mul_(A)
bias.add_(b)
stack[-1].weight.data.copy_(W)
if stack[-1].bias is None:
stack[-1].bias = torch.nn.Parameter(bias)
else:
stack[-1].bias.data.copy_(bias)
else:
stack.append(m)
if len(stack) > 1:
return torch.nn.Sequential(*stack)
else:
return stack[0] | 6d31cd2cd73e8dc91098b7f9cc7f70ce3b81a3b9 | 705,947 |
def isMultipleTagsInput(item):
"""
Returns True if the argument datatype is not a column or a table, and if it allows lists and if it has no permitted value.
This function is used to check whether the argument values have to be delimited by the null character (returns True) or not.
:param item: Table argument.
"""
return item.get('datatype', 'STRING') in ['STRING','DOUBLE','INTEGER','DRIVER','SQLEXPR', 'LONG']\
and item.get('allowsLists', False)\
and not item.get('permittedValues', []) | f7710902e27962fc8df55bc75be2d5d404144aeb | 705,948 |
from typing import Tuple
from typing import Dict
from typing import List
import re
def clean_status_output(
input: str,
) -> Tuple[bool, Dict[str, str], List[Dict[str, str]]]:
# example input
"""
# Health check:
# - dns: rename /etc/resolv.conf /etc/resolv.pre-tailscale-backup.conf: device or resource busy
100.64.0.1 test_domain_1 omnet linux -
100.64.0.2 test_network_1 omnet linux active; relay "syd", tx 1188 rx 1040
"""
up = False
peers: List[Dict[str, str]] = []
host: Dict[str, str] = {}
if "Tailscale is stopped." in input:
return up, host, peers
elif "unexpected state: NoState" in input:
return up, host, peers
count = 0
for line in str(input).split("\n"):
matches = re.match(r"^\d.+", line)
if matches is not None:
try:
stat_parts = re.split(r"(\s+)", matches.string)
entry = {}
entry["ip"] = stat_parts[0]
entry["hostname"] = stat_parts[2]
entry["network"] = stat_parts[4]
entry["os"] = stat_parts[6]
connection_info_parts = matches.string.split(entry["os"])
entry["connection_info"] = "n/a"
connection_info = ""
if len(connection_info_parts) > 1:
connection_info = connection_info_parts[1].strip()
entry["connection_info"] = connection_info
entry["connection_status"] = "n/a"
if "active" in connection_info:
entry["connection_status"] = "active"
if "idle" in connection_info:
entry["connection_status"] = "idle"
entry["connection_type"] = "n/a"
if "relay" in connection_info:
entry["connection_type"] = "relay"
if "direct" in connection_info:
entry["connection_type"] = "direct"
if count == 0:
host = entry
count += 1
up = True
else:
peers.append(entry)
except Exception as e:
print("Error parsing tailscale status output", e)
pass
return up, host, peers | bbf100514373595948b0691dff857deb5772f019 | 705,949 |
def calculate_n_inputs(inputs, config_dict):
"""
Calculate the number of inputs for a particular model.
"""
input_size = 0
for input_name in inputs:
if input_name == 'action':
input_size += config_dict['prior_args']['n_variables']
elif input_name == 'state':
input_size += config_dict['misc_args']['state_size']
elif input_name == 'reward':
input_size += 1
elif input_name in ['params', 'grads']:
if config_dict['approx_post_args']['constant_scale']:
input_size += config_dict['prior_args']['n_variables']
else:
input_size += 2 * config_dict['prior_args']['n_variables']
return input_size | 78d750ff4744d872d696dcb454933c868b0ba41e | 705,950 |
def chromosome_to_smiles():
"""Wrapper function for simplicity."""
def sc2smi(chromosome):
"""Generate a SMILES string from a list of SMILES characters. To be customized."""
silyl = "([Si]([C])([C])([C]))"
core = chromosome[0]
phosphine_1 = (
"(P(" + chromosome[1] + ")(" + chromosome[2] + ")(" + chromosome[3] + "))"
)
phosphine_2 = (
"(P(" + chromosome[4] + ")(" + chromosome[5] + ")(" + chromosome[6] + "))"
)
smiles = "{0}{1}{2}{3}".format(core, phosphine_1, phosphine_2, silyl)
return smiles
return sc2smi | 793995484c46295977f1d312c4fa11f69bca6c84 | 705,951 |
def command_result_processor_parameter_required(command_line_parameter):
"""
Command result message processor if a parameter stays unsatisfied.
Parameters
----------
command_line_parameter : ``CommandLineParameter``
Respective command parameter.
Returns
-------
message : `str`
"""
message_parts = []
message_parts.append('Parameter: ')
message_parts.append(repr(command_line_parameter.name))
message_parts.append(' is required.\n')
return ''.join(message_parts) | fed1b7af60018cb5638e021365ae754477b7a241 | 705,952 |
def extract_file_from_zip(zipfile, filename):
"""
Returns the compressed file `filename` from `zipfile`.
"""
raise NotImplementedError()
return None | dc7b1e5a196a019d1fd2274155e0404b03b09702 | 705,953 |
def all_not_none(*args):
"""Shorthand function for ``all(x is not None for x in args)``. Returns
True if all `*args` are not None, otherwise False."""
return all(x is not None for x in args) | 2d063f39e253a78b28be6857df08d8f386d8eb4a | 705,954 |
def get_for_tag(app_name):
"""
Retorna a tag for customizada para listar registros no template list.html
:param app_name: Nome do app que está sendo criado
:type app_name: str
"""
return "{% for " + app_name + " in " + app_name + "s %}" | 12399a148262893047bf21c20e784bfb33373c29 | 705,955 |
def _reloadFn(*args):
"""Placeholder callback function for :func:`_handleSIGHUP`."""
return True | 261a54f52e4e448671b8625dae4fbc67116bd546 | 705,956 |
def whats_the_meaning_of_life(n_cores=23):
"""Answers the question about the meaning of life.
You don't even have to ask the question, it will figure it out for you.
Don't use more cores than available to mankind.
Parameters
----------
n_cores: int [default: 23]
The number of CPU cores to use.
Returns
-------
int
The type of the expected answer is of course an integer.
"""
return 42 | 9b42257161ad3063bd7d8faddb6e385aa5586bf0 | 705,957 |
def int_validator(inp, ifallowed):
"""
Test whether only (positive) integers are being keyed into a widget.
Call signature: %S %P
"""
if len(ifallowed) > 10:
return False
try:
return int(inp) >= 0
except ValueError:
return False
return True | ee433a6365a0aad58cab0cd59fa05e132b669053 | 705,958 |
import logging
import requests
def scrape_page(url):
"""
scrape page by url and return its html
:param url: page url
:return: html of page
"""
logging.info('scraping %s...', url)
try:
response = requests.get(url)
if response.status_code == 200:
return response.text
logging.error('get invalid status code %s while scraping %s', response.status_code, url)
except requests.RequestException:
logging.error('error occurred while scraping %s', url, exc_info=True) | a09eb79ce6abe25e4eb740dcfeb7a4debfca0b88 | 705,959 |
def is_one_line_function_declaration_line(line: str) -> bool: # pylint:disable=invalid-name
"""
Check if line contains function declaration.
"""
return 'def ' in line and '(' in line and '):' in line or ') ->' in line | e402cbbedc587ab0d572dfe6c074aadef6980658 | 705,960 |
def get_all_applications(user, timeslot):
"""
Get a users applications for this timeslot
:param user: user to get applications for
:param timeslot: timeslot to get the applications.
:return:
"""
return user.applications.filter(Proposal__TimeSlot=timeslot) | 40aec747174fa4a3ce81fe2a3a5eee599c81643a | 705,961 |
import importlib
def get_dataset(cfg, designation):
"""
Return a Dataset for the given designation ('train', 'valid', 'test').
"""
dataset = importlib.import_module('.' + cfg['dataset'], __package__)
return dataset.create(cfg, designation) | 3f872d6407110cf735968ad6d4939b40fec9167d | 705,962 |
def RestrictDictValues( aDict, restrictSet ):
"""Return a dict which has the mappings from the original dict only for values in the given set"""
return dict( item for item in aDict.items() if item[1] in restrictSet ) | 4333c40a38ad3bce326f94c27b4ffd7dc24ae19c | 705,963 |
def timeRangeContainsRange(event1Start, event2Start, event1End, event2End):
"""
Returns true if one set of times starts and ends
within another set of times
@param event1Start: datetime
@param event2Start: datetime
@param event1End: datetime
@param event2End: datetime
@return: boolean
"""
if event2Start <= event1Start and event2End >= event1End:
return True
elif event1Start <= event2Start and event1End >= event2End:
return True
else:
return False | 05d25969b1f97f2f7015c9ce9bafbffcb931cb9b | 705,964 |
def abs_length_diff(trg, pred):
"""Computes absolute length difference
between a target sequence and a predicted sequence
Args:
- trg (str): reference
- pred (str): generated output
Returns:
- absolute length difference (int)
"""
trg_length = len(trg.split(' '))
pred_length = len(pred.split(' '))
return abs(trg_length - pred_length) | b5baf53609b65aa1ef3b1f142e965fa0606b3136 | 705,966 |
import re
def parse_msig_storage(storage: str):
"""Parse the storage of a multisig contract to get its counter (as a
number), threshold (as a number), and the keys of the signers (as
Micheline sequence in a string)."""
# put everything on a single line
storage = ' '.join(storage.split('\n'))
storage_regexp = r'Pair\s+?([0-9]+)\s+?([0-9]+)\s+?(.*)\s*'
match = re.search(storage_regexp, storage)
assert match is not None
return {
'counter': int(match[1]),
'threshold': int(match[2]),
'keys': match[3],
} | 6e04091721177cdd3d40b86717eb86ebbb92a8ff | 705,967 |
from functools import reduce
from operator import add
def assemble_docstring(parsed, sig=None):
"""
Assemble a docstring from an OrderedDict as returned by
:meth:`nd.utils.parse_docstring()`
Parameters
----------
parsed : OrderedDict
A parsed docstring as obtained by ``nd.utils.parse_docstring()``.
sig : function signature, optional
If provided, the parameters in the docstring will be ordered according
to the parameter order in the function signature.
Returns
-------
str
The assembled docstring.
"""
parsed = parsed.copy()
indent = parsed.pop('indent')
pad = ' '*indent
# Sort 'Parameters' section according to signature
if sig is not None and 'Parameters' in parsed:
order = tuple(sig.parameters.keys())
def sort_index(p):
key = p[0].split(':')[0].strip(' *')
if key == '':
return 9999
return order.index(key)
parsed['Parameters'] = sorted(parsed['Parameters'], key=sort_index)
d = []
for k, v in parsed.items():
if isinstance(v[0], list):
flat_v = reduce(add, v)
else:
flat_v = v
if k is not None:
d.extend(['', pad + k, pad + '-'*len(k)])
d.extend([(pad + l).rstrip() for l in flat_v])
return '\n'.join(d) | 90553c468a2b113d3f26720128e384b0444d5c93 | 705,968 |
import numpy
def padArray(ori_array, pad_size):
"""
Pads out an array to a large size.
ori_array - A 2D numpy array.
pad_size - The number of elements to add to each of the "sides" of the array.
The padded 2D numpy array.
"""
if (pad_size > 0):
[x_size, y_size] = ori_array.shape
lg_array = numpy.ones((x_size+2*pad_size,y_size+2*pad_size))
lg_array[pad_size:(x_size+pad_size),pad_size:(y_size+pad_size)] = ori_array.astype(numpy.float64)
lg_array[0:pad_size,:] = numpy.flipud(lg_array[pad_size:2*pad_size,:])
lg_array[(x_size+pad_size):(x_size+2*pad_size),:] = numpy.flipud(lg_array[x_size:(x_size+pad_size),:])
lg_array[:,0:pad_size] = numpy.fliplr(lg_array[:,pad_size:2*pad_size])
lg_array[:,(y_size+pad_size):(y_size+2*pad_size)] = numpy.fliplr(lg_array[:,y_size:(y_size+pad_size)])
return lg_array
else:
return ori_array | 28fac7ccb8fc08c3ac7cf3104fed558128003750 | 705,969 |
import torch
def log_cumsum(probs, dim=1, eps=1e-8):
"""Calculate log of inclusive cumsum."""
return torch.log(torch.cumsum(probs, dim=dim) + eps) | 7f1ab77fd9909037c7b89600c531173dab80c11e | 705,970 |
def race_from_string(str):
"""Convert race to one of ['white', 'black', None]."""
race_dict = {
"White/Caucasian": 'white',
"Black/African American": 'black',
"Unknown": None,
"": None
}
return race_dict.get(str, 'other') | 1d38469537c3f5f6a4a42712f5ec1dbd26a471bd | 705,971 |
def suspend_supplier_services(client, logger, framework_slug, supplier_id, framework_info, dry_run):
"""
The supplier ID list should have been flagged by CCS as requiring action, but double check that the supplier:
- has some services on the framework
- has `agreementReturned: false`
- has not `agreementReturned: on-hold
:param client: API client instance
:param framework_info: JSON
:param dry_run: don't suspend if True
:return: suspended_service_count
:rtype: int
"""
suspended_service_count = 0
# Ignore any 'private' services that the suppliers have removed themselves
new_service_status, old_service_status = 'disabled', 'published'
if not framework_info['frameworkInterest']['onFramework']:
logger.error(f'Supplier {supplier_id} is not on the framework.')
return suspended_service_count
if framework_info['frameworkInterest']['agreementReturned']:
logger.error(f'Supplier {supplier_id} has returned their framework agreement.')
return suspended_service_count
if framework_info['frameworkInterest']['agreementStatus'] == 'on-hold':
logger.error(f"Supplier {supplier_id}'s framework agreement is on hold.")
return suspended_service_count
# Find the supplier's non-private services on this framework
services = client.find_services(
supplier_id=supplier_id, framework=framework_slug, status=old_service_status
)
if not services['services']:
logger.error(f'Supplier {supplier_id} has no {old_service_status} services on the framework.')
return suspended_service_count
# Suspend all services for each supplier (the API will de-index the services from search results)
logger.info(
f"Setting {services['meta']['total']} services to '{new_service_status}' for supplier {supplier_id}."
)
for service in services['services']:
if dry_run:
logger.info(f"[DRY RUN] Would suspend service {service['id']} for supplier {supplier_id}")
else:
client.update_service_status(service['id'], new_service_status, "Suspend services script")
suspended_service_count += 1
# Return suspended service count (i.e. if > 0, some emails need to be sent)
return suspended_service_count | 6442bf7f287126c6e1fe445fa9bca1ccde4d142f | 705,972 |
from typing import List
def normalize(value: str) -> str:
"""Normalize a string by removing '-' and capitalizing the following character"""
char_list: List[str] = list(value)
length: int = len(char_list)
for i in range(1, length):
if char_list[i - 1] in ['-']:
char_list[i] = char_list[i].upper()
return ''.join(char_list).replace('-', '') | 52c1c8b5e950347cf63ed15d1efde47046b07873 | 705,973 |
def fitness(member):
"""Computes the fitness of a species member.
http://bit.ly/ui-lab5-dobrota-graf"""
if member < 0 or member >= 1024:
return -1
elif member >= 0 and member < 30:
return 60.0
elif member >= 30 and member < 90:
return member + 30.0
elif member >= 90 and member < 120:
return 120.0
elif member >= 120 and member < 210:
return -0.83333 * member + 220
elif member >= 210 and member < 270:
return 1.75 * member - 322.5
elif member >= 270 and member < 300:
return 150.0
elif member >= 300 and member < 360:
return 2.0 * member - 450
elif member >= 360 and member < 510:
return -1.8 * member + 918
elif member >= 510 and member < 630:
return 1.5 * member - 765
elif member >= 630 and member < 720:
return -1.33333 * member + 1020
elif member >= 720 and member < 750:
return 60.0
elif member >= 750 and member < 870:
return 1.5 * member - 1065
elif member >= 870 and member < 960:
return -2.66667 * member + 2560
else:
return 0 | 81e8bd12da458f0c4f2629e3781c2512c436c577 | 705,974 |
def next_power_of_two(v: int):
""" returns x | x == 2**i and x >= v """
v -= 1
v |= v >> 1
v |= v >> 2
v |= v >> 4
v |= v >> 8
v |= v >> 16
v += 1
return v | 9c62840e2dc2cd44666328c32c48e5867523ba6c | 705,975 |
def add_token(token_sequence: str, tokens: str) -> str:
"""Adds the tokens from 'tokens' that are not already contained in
`token_sequence` to the end of `token_sequence`::
>>> add_token('', 'italic')
'italic'
>>> add_token('bold italic', 'large')
'bold italic large'
>>> add_token('bold italic', 'bold')
'bold italic'
>>> add_token('red thin', 'stroked red')
'red thin stroked'
"""
for tk in tokens.split(' '):
if tk and token_sequence.find(tk) < 0:
token_sequence += ' ' + tk
return token_sequence.lstrip() | 2506dd00b55e9d842dc90c40578e0c21d942e73e | 705,976 |
import argparse
def add_arguments():
"""
Function to parse the command line arguments
Options:
[-f]: Name of text file with corpus
"""
parser = argparse.ArgumentParser()
parser.add_argument('-f', '--file', type=str,
help="The file with the text.")
return parser.parse_args() | c5fe0be82cf0eb2941e08fc6744bb1b7517bba78 | 705,977 |
def process_h5_file(h5_file):
"""Do the processing of what fields you'll use here.
For example, to get the artist familiarity, refer to:
https://github.com/tbertinmahieux/MSongsDB/blob/master/PythonSrc/hdf5_getters.py
So we see that it does h5.root.metadata.songs.cols.artist_familiarity[songidx]
and it would translate to:
num_songs = len(file['metadata']['songs'])
file['metadata']['songs'][:num_songs]['artist_familiarity']
Since there is one song per file, it simplifies to:
file['metadata']['songs'][:1]['artist_familiarity']
I recommend downloading one file, opening it with h5py, and explore/practice
To see the datatype and shape:
http://millionsongdataset.com/pages/field-list/
http://millionsongdataset.com/pages/example-track-description/
"""
return h5_file['metadata']['songs'][:1]['artist_familiarity'][0] | de664a3e1ea88c8c8cd06b210e4c6b756a4d02a6 | 705,978 |
def binary_str(num):
""" Return a binary string representation from the posive interger 'num'
:type num: int
:return:
Examples:
>>> binary_str(2)
'10'
>>> binary_str(5)
'101'
"""
# Store mod 2 operations results as '0' and '1'
bnum = ''
while num > 0:
bnum = str(num & 0x1) + bnum
num = num >> 1
return bnum | dde400323fccb9370c67197f555d9c41c40084a6 | 705,979 |
def compute_phot_error(flux_variance, bg_phot, bg_method, ap_area, epadu=1.0):
"""Computes the flux errors using the DAOPHOT style computation
Parameters
----------
flux_variance : array
flux values
bg_phot : array
background brightness values.
bg_method : string
background method
ap_area : array
the area of the aperture in square pixels
epadu : float
(optional) Gain in electrons per adu (only use if image units aren't e-). Default value is 1.0
Returns
-------
flux_error : array
an array of flux errors
"""
bg_variance_terms = (ap_area * bg_phot['aperture_std'] ** 2.) * (1. + ap_area/bg_phot['aperture_area'])
variance = flux_variance / epadu + bg_variance_terms
flux_error = variance ** .5
return flux_error | 4470277ebc41cce0e2c8c41c2f03e3466473d749 | 705,980 |
def get_description(soup):
"""Извлечь текстовое описание вакансии"""
non_branded = soup.find('div', {'data-qa':'vacancy-description'})
branded = soup.find('div', {'class':'vacancy-section HH-VacancyBrandedDescription-DANGEROUS-HTML'})
description = non_branded or branded
return description.get_text() | 82a254774be3eb55762d9964928429d168572a2a | 705,981 |
def getStrVector(tarstr,cdict,clen=None):
"""
将字符串向量化,向量的每一项对应字符集中一种字符的频数,字符集、每种字符在向量中对应的下标由cdict提供
"""
if not clen:
clen=len(cdict.keys())
vec=[0]*clen
for c in tarstr:
vec[cdict[c]]+=1
#vec[cdict[c]]=1
return vec | d23b54288d6a9cff2f3999c54f53a7f8e2d5d35f | 705,982 |
def weighted_sequence_identity(a, b, weights, gaps='y'):
"""Compute the sequence identity between two sequences, different positions differently
The definition of sequence_identity is ambyguous as it depends on how gaps are treated,
here defined by the *gaps* argument. For details and examples, see
`this page <https://pyaln.readthedocs.io/en/latest/tutorial.html#sequence-identity>`_
Parameters
----------
a : str
first sequence, with gaps encoded as "-"
b : str
second sequence, with gaps encoded as "-"
weights : list of float
list of weights. Any iterable with the same length as the two input sequences
(including gaps) is accepted. The final score is divided by their sum
(except for positions not considered, as defined by the gaps argument).
gaps : str
defines how to take into account gaps when comparing sequences pairwise. Possible values:
- 'y' : gaps are considered and considered mismatches. Positions that are gaps in both sequences are ignored.
- 'n' : gaps are not considered. Positions that are gaps in either sequences compared are ignored.
- 't' : terminal gaps are trimmed. Terminal gap positions in either sequences are ignored, others are considered as in 'y'.
- 'a' : gaps are considered as any other character; even gap-to-gap matches are scored as identities.
Returns
-------
float
sequence identity between the two sequences
Examples
--------
>>> weighted_sequence_identity('ATGCA',
... 'ATGCC', weights=[1, 1, 1, 1, 6])
0.4
>>> weighted_sequence_identity('ATGCA',
... 'ATGCC', weights=[1, 1, 1, 1, 1])
0.8
Note
----
To compute sequence identity efficiently among many sequences, use :func:`~pyaln.Alignment.score_similarity` instead.
See also
--------
pyaln.Alignment.score_similarity, weighted_sequence_identity
"""
if len(a)!=len(b):
raise IndexError('sequence_identity ERROR sequences do not have the same length')
if len(weights)!=len(a):
raise IndexError('sequence_identity ERROR weights must be the same length as sequences')
if gaps=='y':
pos_to_remove=[i for i in range(len(a)) if a[i]=='-' and b[i]=='-' ]
elif gaps=='n':
pos_to_remove=[i for i in range(len(a)) if a[i]=='-' or b[i]=='-' ]
elif gaps=='t':
pos_to_remove=[i for i in range(len(a)) if a[i]=='-' and b[i]=='-' ]
for s in [a,b]:
for i,c in enumerate(s):
if c=='-':
pos_to_remove.append(i)
else:
break
for i, c in reversed(list(enumerate(s))):
if c=='-':
pos_to_remove.append(i)
else:
break
elif gaps=='a':
total_weight= sum( weights )
count_identical=sum([int(ca == b[i])*weights[i] for i,ca in enumerate(a)])
return count_identical/total_weight if total_weight else 0.0
else:
raise Exception('sequence_identity ERROR gaps argument must be one of {a, y, n, t}')
exclude_pos=set(pos_to_remove)
actual_weights=[w for i,w in enumerate(weights) if not i in exclude_pos]
total_weight= sum( actual_weights )
count_identical=sum([int(ca == b[i] and ca!='-' )*weights[i] for i,ca in enumerate(a) if not i in exclude_pos])
return count_identical/( total_weight ) if total_weight else 0.0 | 8face090454e984d0d4b9ea5fe78b6600a6e6b03 | 705,983 |
def parseText(text1, nlp):
"""Run the Spacy parser on the input text that is converted to unicode."""
doc = nlp(text1)
return doc | 99d6a585358a700f8fc48c5dc4fc761a03ab42a7 | 705,984 |
import os
def read_rc(rcpath):
"""Retrieve color values from the rc file.
Arguments:
rcpath (str): path to the rc file.
Returns:
3-tuple of integers representing R,G,B.
"""
if not os.path.exists(rcpath):
return None
with open(rcpath) as rc:
colors = [int(ln) for ln in rc.readlines() if ln.strip()[0] in '1234567890']
if len(colors) != 3:
return None
return colors | 43dae96c2115b0648774cf682209af14b9b42638 | 705,985 |
import socket
def is_port_open(host, port, timeout=5):
"""
verifies if a port is open in a remote host
:param host: IP of the remote host
:type host: str
:param port: port to check
:type port: int
:param timeout: timeout max to check
:type timeout: int
:return: True if the port is open
:rtype: bool
"""
sock = socket.socket(socket.AF_INET, socket.SOCK_STREAM)
sock.settimeout(timeout)
result = sock.connect_ex((host, port))
return result is 0 | 1805727a3bb007cd5686475de686cf7bceac83a1 | 705,986 |
from multiprocessing import cpu_count
def use_processors(n_processes):
"""
This routine finds the number of available processors in your machine
"""
available_processors = cpu_count()
n_processes = n_processes % (available_processors+1)
if n_processes == 0:
n_processes = 1
print('WARNING: Found n_processes = 0. Falling back to default single-threaded execution (n_processes = 1).')
return n_processes | 73877393aac6b4da68fb0216bf046601ce1fa99e | 705,987 |
def reversedict(dct):
""" Reverse the {key:val} in dct to
{val:key}
"""
# print labelmap
newmap = {}
for (key, val) in dct.iteritems():
newmap[val] = key
return newmap | f7a5a102546270a2e6aa7fb52d4fa6dd5e826753 | 705,988 |
import re
def commonIntegerPredicate(field):
""""return any integers"""
return tuple(re.findall("\d+", field)) | 955dc61fa4293f21c707b538ea218b15d5a95fb2 | 705,990 |
def encode(text):
"""
Encode to base64
"""
return [int(x) for x in text.encode('utf8')] | af51272d8edc25d46695ea3b35fd395ad26321b5 | 705,991 |
import socket
def _get_ip():
"""
:return: This computer's default AF_INET IP address as a string
"""
# find ip using answer with 75 votes
# https://stackoverflow.com/questions/166506/finding-local-ip-addresses-using-pythons-stdlib
ip = ''
sock = socket.socket(socket.AF_INET, socket.SOCK_DGRAM)
try:
# apparently any IP will work
sock.connect(('192.168.1.1', 1))
ip = sock.getsockname()[0]
except Exception as e:
print(e)
print('Error: Couldn\'t get IP! Make sure you are connected to a network.')
finally:
sock.close()
return str(ip) | f39c961877a1ec026596a7ced01679411962fca4 | 705,992 |
def _get_value(cav, _type):
"""Get value of custom attribute item"""
if _type == 'Map:Person':
return cav["attribute_object"]["id"] \
if cav.get("attribute_object") else None
if _type == 'Checkbox':
return cav["attribute_value"] == '1'
return cav["attribute_value"] | c8210579cf8b2a29dffc1f28a6e204fc9f89f274 | 705,993 |
def get_message_id(update: dict, status_update: str) -> int:
"""функция для получения номера сообщения.
Описание - функция получает номер сообщения от пользователя
Parameters
----------
update : dict
новое сообщение от бота
status_update : str
состояние сообщения, изменено или новое
Returns
-------
message_status : str
статус сообщения, если новое, то message, если отредактированое
edited_message
"""
return update[status_update]['message_id'] | 9b299c94e322ad9cea92fd73cb9e7a55f3364caa | 705,994 |
from bs4 import BeautifulSoup
def get_movie_names(url_data):
"""Get all the movies from the webpage"""
soup = BeautifulSoup(url_data, 'html.parser')
data = soup.findAll('ul', attrs={'class' : 'ctlg-holder'}) #Get all the lines from HTML that are a part of ul with class = 'ctlg-holder'
movie_list = []
for div in data:
links = div.findAll('a') #Choose all the lines with links
for a in links:
if a is not None and a is not "#":
movie_list.append(a.get('href', None))
print("Movie Names Obtained")
return movie_list | 1cae6b0093f0e0ca9e361bdc207be9ea654e7c2b | 705,995 |
def _gen_find(subseq, generator):
"""Returns the first position of `subseq` in the generator or -1 if there is no such position."""
if isinstance(subseq, bytes):
subseq = bytearray(subseq)
subseq = list(subseq)
pos = 0
saved = []
for c in generator:
saved.append(c)
if len(saved) > len(subseq):
saved.pop(0)
pos += 1
if saved == subseq:
return pos
return -1 | ec89e787a61d684e2a7d0c8c2d0fb9c89cf73ada | 705,996 |
def all_permits(target_dynamo_table):
"""
Simply return all data from DynamoDb Table
:param target_dynamo_table:
:return:
"""
response = target_dynamo_table.scan()
data = response['Items']
while response.get('LastEvaluatedKey', False):
response = target_dynamo_table.scan(ExclusiveStartKey=response['LastEvaluatedKey'])
data.extend(response['Items'])
return data | 8efdaf4ff407d0e2ce8dd592eeac766b0ec2264b | 705,997 |
def maximum_difference_sort_value(contributions):
"""
Auxiliary function to sort the contributions for the compare_plot.
Returns the value of the maximum difference between values in contributions[0].
Parameters
----------
contributions: list
list containing 2 elements:
a Numpy.ndarray of contributions of the indexes compared, and the features' names.
Returns
-------
value_max_difference : float
Value of the maximum difference contribution.
"""
if len(contributions[0]) <= 1:
max_difference = contributions[0][0]
else:
max_difference = max(
[
abs(contrib_i - contrib_j)
for i, contrib_i in enumerate(contributions[0])
for j, contrib_j in enumerate(contributions[0])
if i <= j
]
)
return max_difference | cd7f66ec252199fb01b9891440d0f7da370c7b8e | 705,998 |
def human_format(num):
"""
:param num: A number to print in a nice readable way.
:return: A string representing this number in a readable way (e.g. 1000 --> 1K).
"""
magnitude = 0
while abs(num) >= 1000:
magnitude += 1
num /= 1000.0
return '%.2f%s' % (num, ['', 'K', 'M', 'G', 'T', 'P'][magnitude]) | 41e4f3823f756588c18b0fb926949a5aca9c6942 | 705,999 |
def post_equals_form(post, json_response):
"""
Checks if the posts object is equal to the json object
"""
if post.title != json_response['title']:
return False
if post.deadline != json_response['deadline']:
return False
if post.details != json_response['details']:
return False
if post.category != json_response['category']:
return False
if post.preferred_contact != json_response['preferred_contact']:
return False
if post.zip_code != json_response['zip_code']:
return False
return True | 965a533c7ebbb70001bcdcb0e143b617708807e3 | 706,000 |
def add(number1, number2):
"""
This functions adds two numbers
Arguments:
number1 : first number to be passed
number2 : second number to be passed
Returns: number1*number2
the result of two numbers
Examples:
>>> add(0,0)
0
>>> add(1,1)
2
>>> add(1.1,2.2)
3.3000000000000003
"""
return number1 + number2 | 5db1a461f65672d5fc1201a82657fada30220743 | 706,001 |
def calculate_timeout(start_point, end_point, planner):
"""
Calucaltes the time limit between start_point and end_point considering a fixed speed of 5 km/hr.
Args:
start_point: initial position
end_point: target_position
planner: to get the shortest part between start_point and end_point
Returns:
time limit considering a fixed speed of 5 km/hr
"""
path_distance = planner.get_shortest_path_distance(
[start_point.location.x, start_point.location.y, 0.22], [
start_point.orientation.x, start_point.orientation.y, 0.22], [
end_point.location.x, end_point.location.y, end_point.location.z], [
end_point.orientation.x, end_point.orientation.y, end_point.orientation.z])
return ((path_distance / 1000.0) / 5.0) * 3600.0 + 10.0 | cb7ae44df9b6a89d2e171046fa0bdfe3f81445c5 | 706,002 |
import os
import posixpath
def NormalizePath(path):
"""Returns a path normalized to how we write DEPS rules and compare paths."""
return os.path.normcase(path).replace(os.path.sep, posixpath.sep) | e6a6c7a50176f6990841a48748e5951c4f40b8af | 706,003 |
import torch
def load_model(model, model_path):
"""
Load model from saved weights.
"""
if hasattr(model, "module"):
model.module.load_state_dict(torch.load(model_path, map_location="cpu"), strict=False)
else:
model.load_state_dict(torch.load(model_path, map_location="cpu"), strict=False)
return model | 0fbf34548474c4af89c25806f05d1e7d3170bbde | 706,004 |
def get_file_size(filepath: str):
"""
Not exactly sure how os.stat or os.path.getsize work, but they seem to get the total allocated size of the file and
return that while the file is still copying. What we want, is the actual file size written to disk during copying.
With standard Windows file copying, we can just try open/close the file, and if that succeeds, the file is finished.
With Kongsberg systems writing to disk, we can actually open and read the .all file as it copies, so the try/except is
not good enough. This function will find the length of the actual readable data on disk.
Parameters
----------
filepath
file path to a file being written
Returns
-------
int
file size in bytes
"""
with open(filepath, "r") as file:
# move pointer to the end of the file
file.seek(0, 2)
# retrieve the current position of the pointer
# this will be the file's size in bytes
size = file.tell()
return size | 6936a8227a96e3ebc4b1146f8363f092d232cafd | 706,005 |
import json
def get_aws_regions_from_file(region_file):
"""
Return the list of region names read from region_file.
The format of region_file is as follows:
{
"regions": [
"cn-north-1",
"cn-northwest-1"
]
}
"""
with open(region_file) as r_file:
region_data = json.load(r_file)
return sorted(r for r in region_data.get("regions")) | 639da8c6417295f97621f9fd5321d8499652b7b2 | 706,006 |
def from_string_to_bytes(a):
"""
Based on project: https://github.com/chaeplin/dashmnb.
"""
return a if isinstance(a, bytes) else bytes(a, 'utf-8') | e76509f1be8baf8df0bf3b7160615f9a9c04ff86 | 706,007 |
def split(x, divider):
"""Split a string.
Parameters
----------
x : any
A str object to be split. Anything else is returned as is.
divider : str
Divider string.
"""
if isinstance(x, str):
return x.split(divider)
return x | e77a162777d9bb13262e4686ba1cb9732ebab221 | 706,008 |
def _plat_idx_to_val(idx: int , edge: float = 0.5, FIO_IO_U_PLAT_BITS: int = 6, FIO_IO_U_PLAT_VAL: int = 64) -> float:
""" Taken from fio's stat.c for calculating the latency value of a bin
from that bin's index.
idx : the value of the index into the histogram bins
edge : fractional value in the range [0,1]** indicating how far into
the bin we wish to compute the latency value of.
** edge = 0.0 and 1.0 computes the lower and upper latency bounds
respectively of the given bin index. """
# MSB <= (FIO_IO_U_PLAT_BITS-1), cannot be rounded off. Use
# all bits of the sample as index
if (idx < (FIO_IO_U_PLAT_VAL << 1)):
return idx
# Find the group and compute the minimum value of that group
error_bits = (idx >> FIO_IO_U_PLAT_BITS) - 1
base = 1 << (error_bits + FIO_IO_U_PLAT_BITS)
# Find its bucket number of the group
k = idx % FIO_IO_U_PLAT_VAL
# Return the mean (if edge=0.5) of the range of the bucket
return base + ((k + edge) * (1 << error_bits)) | f992194492e031add3d14f0e145888303a5b4f06 | 706,009 |
def is_blank(value):
"""
Returns True if ``value`` is ``None`` or an empty string.
>>> is_blank("")
True
>>> is_blank(0)
False
>>> is_blank([])
False
"""
return value is None or value == "" | 6a30f9f6726701a4b7a9df8957503111a5222558 | 706,010 |
Subsets and Splits
No saved queries yet
Save your SQL queries to embed, download, and access them later. Queries will appear here once saved.