content
stringlengths 35
416k
| sha1
stringlengths 40
40
| id
int64 0
710k
|
---|---|---|
def _not_exhausted(last_fetched):
"""Check if the last fetched tasks were the last available."""
return len(last_fetched) == 100 | 570cf94ba9c723cced8ec3a746f2ce070d780fd5 | 704,891 |
import os
def files_by_extension(root, extensions):
"""
Returns a list of files that match the extensions given after crawling the root directory
"""
assert(os.path.isdir(root))
file_list = []
for roots, _, files in os.walk(root):
for f in files:
ext = os.path.splitext(f)[1][1:].strip().lower()
if ext in extensions:
file_list.append(os.path.join(roots, f))
return file_list | 637d8f2fc8d35f1f78e81c328541519b32b34d7b | 704,892 |
import os
import argparse
def extant_file(x):
"""
'Type' for argparse - checks that file exists but does not open.
"""
if not os.path.exists(x):
# Argparse uses the ArgumentTypeError to give a rejection message like:
# error: argument input: x does not exist
raise argparse.ArgumentTypeError("{0} does not exist".format(x))
return x | 2572516acbc1b6a661e4d85f36d8adb96f832d0f | 704,894 |
def has_oxidation_states(comp):
"""Check if a composition object has oxidation states for each element
Args:
comp (Composition): Composition to check
Returns:
(boolean) Whether this composition object contains oxidation states
"""
for el in comp.elements:
if not hasattr(el, "oxi_state") or el.oxi_state is None:
return False
return True | 702595070b588761142055bc1532ce26acd287fb | 704,895 |
def check_Latitude(observation):
"""
Validates that observation contains valid age value
Returns:
- assertion value: True if age is valid, False otherwise
- error message: empty if age is valid, False otherwise
"""
value = observation.get("Latitude")
if isinstance(value, str):
error = "Field `Latitude` is not an float or a null value. Current value: " + str(value)
return False, error
return True, "" | 65582eea8a5c40a08054eb5b4889aa3bc6d0af68 | 704,896 |
from typing import Optional
def parse_opt_int(s: Optional[str]) -> Optional[int]:
"""
parse_opt_int(s: Optional[str]) -> Optional[int]
If s is a string, parse it for an integer value (raising a ValueError if
it cannot be parsed correctly.)
If s is None, return None.
Otherwise, raise a TypeError.
"""
if s is None:
return None
if isinstance(s, str):
return int(s)
raise TypeError(f"value must be a string or None: {type(s).__name__}") | 91a102c8c8e6a6ee109e9c88c56d9a6959f1f838 | 704,897 |
def setup(hass, config):
"""Mock a successful setup."""
return True | fd2977534aa8a165b49c4fbddc513c8f77b0588d | 704,898 |
def getIdFromVpcArn(resources):
""" given a vpc arn, strip off all but the id """
vpcStr = 'vpc/'
ids = []
for resource in resources:
if vpcStr in resource:
index = resource.rfind(vpcStr)
id = resource[index+len(vpcStr):]
ids.append(id)
return ids | c1c5e5aef145ee8d3a2072604a1f531ad9198385 | 704,899 |
def input_output_mapping():
"""Build a mapping dictionary from pfb input to output numbers."""
# the polyphase filter bank maps inputs to outputs, which the MWA
# correlator then records as the antenna indices.
# the following is taken from mwa_build_lfiles/mwac_utils.c
# inputs are mapped to outputs via pfb_mapper as follows
# (from mwa_build_lfiles/antenna_mapping.h):
# floor(index/4) + index%4 * 16 = input
# for the first 64 outputs, pfb_mapper[output] = input
pfb_mapper = [0, 16, 32, 48, 1, 17, 33, 49, 2, 18, 34, 50, 3, 19, 35, 51,
4, 20, 36, 52, 5, 21, 37, 53, 6, 22, 38, 54, 7, 23, 39, 55,
8, 24, 40, 56, 9, 25, 41, 57, 10, 26, 42, 58, 11, 27, 43, 59,
12, 28, 44, 60, 13, 29, 45, 61, 14, 30, 46, 62, 15, 31, 47,
63]
# build a mapper for all 256 inputs
pfb_inputs_to_outputs = {}
for p in range(4):
for i in range(64):
pfb_inputs_to_outputs[pfb_mapper[i] + p * 64] = p * 64 + i
return pfb_inputs_to_outputs | 1c88c7aba95218a4ce4ae792b2001e4f912da178 | 704,900 |
import subprocess
def rexec(cmd):
""" executes shell command cmd with the output
returned as a string when the command has
finished.
"""
try:
output = subprocess.check_output(cmd.split(), stderr=subprocess.STDOUT)
except subprocess.CalledProcessError as exc:
return exc.output[:-1]
else:
return output[:-1] | 79a7441c9798c53c2a9f064cec15d38adbe1dd6b | 704,901 |
def get_attachment_file_upload_to(instance, filename):
""" Returns a valid upload path for the file of an attachment. """
return instance.get_file_upload_to(filename) | e38c51a2ca947bebe1ed274c4265081c6b9e7c41 | 704,902 |
def handle_negations(tweet_tokens, lexicon_scores):
"""
Handling of negations occuring in tweets -> shifts meaning of words
-> if a negation was found the polarity of the following words will change
Parameters
----------
tweet_tokens : List
list of tweet tokens that were already prepocessed (cleaning, etc.)
lexicon_scores : List
list of assigned sentiment scores per token (decoded as Integers)
Returns
-------
new_scores : List
list of sentiment scores (as Integers) after negiation handling
"""
# new score list
new_scores = lexicon_scores
# Words defining negations
# taken from https://github.com/gkotsis/negation-detection/blob/master/negation_detection.py
# and Kolchyna et al. (2015)
negations_adverbs = ["no", "without", "nil","not", "n't", "never", "none", "neith", "nor", "non",
"seldom", "rarely", "scarcely", "barely", "hardly", "lack", "lacking", "lacks",
"neither", "cannot", "can't", "daren't", "doesn't", "didn't", "hadn't",
"wasn't", "won't", "without", "hadnt", "haven't", "weren't"]
negations_verbs = ["deny", "reject", "refuse", "subside", "retract", "non"]
# find negations in the tweet_tokens list and change the scores of negative and positive tokens
# immediatly following the negation
index = 0
for ii in range(len(tweet_tokens)):
token = tweet_tokens[index]
if (token in negations_adverbs or token in negations_verbs):
# makle sure that the end of the tweet isn't reached yet
if (index < len(tweet_tokens)-1):
# if the sentiment of the next token is positive change it to negative
if (lexicon_scores[index + 1] == 1):
new_scores[index + 1] = -1
index += 2
# else change it to positive if it is negative
elif (lexicon_scores[index + 1] == -1):
new_scores[index + 1] = 1
index += 2
else:
index += 1
# endif
else:
break
# endif
# if neutral let it neutral -> go to the next token
else:
index +=1
# endif
# exit the loop when all tokens have been checked
if (index >= len(tweet_tokens)-1):
break
# endif
# endfor
# return the new scores
return new_scores | cca56e5fa1b611aa6adb2e74ab580fed49b923ee | 704,904 |
def log_level(non_prod_value: str, prod_value: str) -> str:
"""
Helper function for setting an appropriate log level in prod.
"""
return prod_value | 86f098cfe9137519da1d160c22dfc1f43303c546 | 704,905 |
import os
def partitioning_df(stats_df,plus_and_minus,tmp_dir,chunk_size = 1000):
""" the first state for large files is very large. We split the first state in a separate file.
Then all the other states are splitted into several files.
"""
# stats_df.to_csv('stats_df.csv', index=False, header=True, float_format='%.15f', compression='gzip',
# encoding='utf-8')
stats_df.sort_values(['prev_state','concept:name','state'], ascending=True, inplace=True)
plus_and_minus.sort_values(['prev_state','concept:name','state'], ascending=True, inplace=True)
# unique_states = stats_df.state.unique()
unique_states = stats_df.groupby(['prev_state','concept:name','state']).size().reset_index().rename(columns={0:'count'}).drop('count',axis=1)
large_states=stats_df.groupby(['prev_state','concept:name','state']).relative_time.count()
#separating large states from the others
large_states=large_states[large_states>1000].reset_index()
#['prev_state', 'concept:name', 'state']
curr_dir = os.getcwd()
idx=0
"""large state separately"""
for index,row in large_states.iterrows():
res = stats_df.loc[(stats_df.state==row['state']) & (stats_df.prev_state==row['prev_state']) & (stats_df['concept:name']==row['concept:name']), :]
res.to_pickle(os.path.join( tmp_dir, 'stats_df_%s' % (idx)))
plus_and_minus.loc[ (plus_and_minus.state==row['state']) & (plus_and_minus.prev_state==row['prev_state']) & (plus_and_minus['concept:name']==row['concept:name']), :] \
.to_pickle(os.path.join( tmp_dir, 'plus_and_minus_%s' % (idx)))
# unique_states=unique_states[unique_states!=current_state]
row_id=unique_states.index[ (unique_states.state==row['state'] )& (unique_states.prev_state==row['prev_state']) & (unique_states['concept:name']==row['concept:name'])].tolist()[0]
unique_states.drop(row_id, axis=0,inplace=True)
idx += 1
""" splitting other states regularly"""
max_index_of_large_states=idx
# print("partition of large states is %s"%(max_index_of_large_states-1))
for i in range(0, unique_states.shape[0], chunk_size):
# print("Current Chunck is: %s" % (i))
current_states = unique_states[i:i + chunk_size]
# res = stats_df.loc[stats_df.state.isin(current_states), :]
res = stats_df.iloc[current_states.index]
res.to_pickle(os.path.join( tmp_dir,'stats_df_%s'%(idx)))
# plus_and_minus.loc[plus_and_minus.state.isin(current_states), :]\
# .to_pickle(os.path.join( tmp_dir,'plus_and_minus_%s'%(idx)))
plus_and_minus.iloc[current_states.index] \
.to_pickle(os.path.join( tmp_dir, 'plus_and_minus_%s' % (idx)))
idx+=1
# return len(list(range(0, unique_states.shape[0], chunk_size))) #number of chunks
return idx , max_index_of_large_states | 3a62c7abe0ac67b095351ea69bad642b3479a36e | 704,906 |
def distinguishable_paths(path1, path2):
"""
Checks if two model paths are distinguishable in a deterministic way, without looking forward
or backtracking. The arguments are lists containing paths from the base group of the model to
a couple of leaf elements. Returns `True` if there is a deterministic separation between paths,
`False` if the paths are ambiguous.
"""
e1, e2 = path1[-1], path2[-1]
for k, e in enumerate(path1):
if e not in path2:
depth = k - 1
break
else:
depth = 0
if path1[depth].max_occurs == 0:
return True
univocal1 = univocal2 = True
if path1[depth].model == 'sequence':
idx1 = path1[depth].index(path1[depth + 1])
idx2 = path2[depth].index(path2[depth + 1])
before1 = any(not e.is_emptiable() for e in path1[depth][:idx1])
after1 = before2 = any(not e.is_emptiable() for e in path1[depth][idx1 + 1:idx2])
after2 = any(not e.is_emptiable() for e in path1[depth][idx2 + 1:])
else:
before1 = after1 = before2 = after2 = False
for k in range(depth + 1, len(path1) - 1):
univocal1 &= path1[k].is_univocal()
idx = path1[k].index(path1[k + 1])
if path1[k].model == 'sequence':
before1 |= any(not e.is_emptiable() for e in path1[k][:idx])
after1 |= any(not e.is_emptiable() for e in path1[k][idx + 1:])
elif path1[k].model in ('all', 'choice'):
if any(e.is_emptiable() for e in path1[k] if e is not path1[k][idx]):
univocal1 = before1 = after1 = False
else:
if len(path2[k]) > 1 and all(e.is_emptiable() for e in path1[k]
if e is not path1[k][idx]):
univocal1 = before1 = after1 = False
for k in range(depth + 1, len(path2) - 1):
univocal2 &= path2[k].is_univocal()
idx = path2[k].index(path2[k + 1])
if path2[k].model == 'sequence':
before2 |= any(not e.is_emptiable() for e in path2[k][:idx])
after2 |= any(not e.is_emptiable() for e in path2[k][idx + 1:])
elif path2[k].model in ('all', 'choice'):
if any(e.is_emptiable() for e in path2[k] if e is not path2[k][idx]):
univocal2 = before2 = after2 = False
else:
if len(path2[k]) > 1 and all(e.is_emptiable() for e in path2[k]
if e is not path2[k][idx]):
univocal2 = before2 = after2 = False
if path1[depth].model != 'sequence':
if before1 and before2:
return True
elif before1:
return univocal1 and e1.is_univocal() or after1 or path1[depth].max_occurs == 1
elif before2:
return univocal2 and e2.is_univocal() or after2 or path2[depth].max_occurs == 1
else:
return False
elif path1[depth].max_occurs == 1:
return before2 or (before1 or univocal1) and (e1.is_univocal() or after1)
else:
return (before2 or (before1 or univocal1) and (e1.is_univocal() or after1)) and \
(before1 or (before2 or univocal2) and (e2.is_univocal() or after2)) | 140f8f18f030df233490ef242504649f175f62c7 | 704,908 |
def read_to_ulens_in_intvls(read, intvls):
"""Extract units within `intvls` from `read.units`."""
return [unit.length for unit in read.units
if unit.length in intvls] | 11159bea8bbf0cb68f0e9a7355c82e93b430065d | 704,909 |
def fillNaToNone(data):
"""Iterates through NA values and changes them to None
Parameters:
dataset (pd.Dataset): Both datasets
Returns:
data (pd.Dataset): Dataset with any NA values in the columns listed changed to None
"""
columns = ["PoolQC", "MiscFeature", "Alley", "Fence", "FireplaceQu", "GarageType", "GarageFinish",
"GarageQual", "GarageCond", "BsmtQual", "BsmtCond", "BsmtExposure", "BsmtFinType1", "BsmtFinType2",
"MasVnrType"]
for column in columns:
data[column] = data[column].fillna("None")
return data | 2a6fc8008447abefd9f993b01606c1afc5aa5a8a | 704,910 |
import re
def is_ld_block_defn_line(mdfl):
"""
Parse GFM link definition lines of the form...
[10]: https://www.google.com
[11]: https://www.google.com "Title Info"
[1a]: https://www.google.com "Title Info {}"
[2b]: https://www.google.com "Title Info {biblio info}"
Returns footnote id, url, title, biblio-info as a list
"""
retval = re.findall("^\[([a-zA-Z0-9_-]*)\]:\s*(https?://\S*)\s*\"?([^{]*)([^\"]*)\"?$", mdfl)
if not retval:
return None
ref_hdl = retval[0][0]
ref_url = retval[0][1].strip()
ref_tit = retval[0][2].strip().strip('"')
ref_bib = retval[0][3].strip().strip('"{}')
return [ref_hdl, ref_url, ref_tit, ref_bib] | 0ebd01c0c05634ee33a320fa4c280ad575ee9b25 | 704,911 |
def shared_template(testconfig):
"""Shared template for hyperfoil test"""
shared_template = testconfig.get('hyperfoil', {}).get('shared_template', {})
return shared_template.to_dict() | 160daa08699ae973d5cbbfe28b75f08ff3eb2f52 | 704,912 |
def find_merge_commit_in_prs(needle, prs):
"""Find the merge commit `needle` in the list of `prs`
If found, returns the pr the merge commit comes from. If not found, return
None
"""
for pr in prs[::-1]:
if pr['merge_commit'] is not None:
if pr['merge_commit']['hash'] == needle[1][:12]:
return pr
return None | 42320473aff84985e35cdf9024a64a18fe6f14f1 | 704,913 |
def create_valid_url(url: str) -> str:
"""
Generate a video direct play url.
"""
return url | a04a22ec64b346be83b020745aeb33f74ca90b74 | 704,914 |
import numpy
def circular_weight(angle):
"""This function utilizes the precomputed circular bezier function
with a fit to a 10th order curve created by the following code block:
.. code-block:: python
x = numpy.arange(.5, 180, 0.5)
y = []
for i in x:
y.append(bezier.find_circular_weight(i, tol=1e-12, max_iters=500))
y = numpy.array(y)
z = numpy.polyfit(x, y, 10)
Parameters
----------
angle : float
enter the angle to be traversed in degrees
Returns
-------
weight : float
Weight value for calculating bezier control points that
approximate a circular curve.
"""
z = numpy.array([
-2.45143082907626980583458614241573e-24,
1.58856196152315352138612607918623e-21,
-5.03264989277462933391916020538014e-19,
8.57954915199159887348249578203777e-17,
-1.09982713519619074150585319501519e-14,
6.42175701661701683377126465867012e-13,
-1.95012445981222027957307425487916e-10,
6.98338125134285339870680633234242e-10,
-1.27018636324842636571531492850617e-05,
5.58069196465371404519196542326487e-08,
6.66666581437823202449521886592265e-01
])
p = numpy.poly1d(z)
return p(angle) | 4341173c3e3584fcddbe04c60f7dd43fe859ac89 | 704,915 |
import subprocess
def runprog(*args):
"""Runs specified program and args, returns (exitcode, stdout, stderr)."""
p = subprocess.Popen(args, stdout=subprocess.PIPE, stderr=subprocess.PIPE)
out, err = p.communicate()
return (p.returncode, out, err) | 2146d967c961f4c9ed1f62288436a82cc7a62189 | 704,916 |
def encode(s, c):
"""
s is the scret code
c is the clear text
"""
secret_code_list = list(s)
clear_text_list = list(c)
encoded_text_list= []
count = 0
for letter in clear_text_list:
if letter == ' ':
encoded_text_list.append(' ')
continue
encoded_letter = (ord(secret_code_list[count]) - ord('A') +
ord(letter) - ord('A')) % 26 + ord('A')
encoded_letter = chr(encoded_letter)
count = (count + 1 ) % (len(secret_code_list))
encoded_text_list.append(encoded_letter)
encoded = ''.join(encoded_text_list)
return encoded | 3af6297fb79b77c542b19789ccf9bc0668f6afd5 | 704,917 |
def update_board(position, board, player):
"""
Update the board with the user input position if position not taken
returns board, True=position taken or False=position not taken and board updated
args: position (int 1-9, user input)
board (np.array 2d)
player ("X" or "O")
"""
#make position 1-9 compatible with an 3x3 2d array indexed 0-8
position = position - 1
#logic to find row,col, uncomment 2 lines to print/test
#print(position, 'int(/3) ', int(position/3))
#print(position, '%3 ',position%3)
#find position in array, obtain row/col index
row = int(position/3)
if position>2: col = position%3
else: col = position
#If position not taken, update board
if board[row][col] == '-':
board[row][col] = player
return board, False
#else position is taken, do not update board
else:
return board, True | eb53d24c4976499e6611c97757d0c33b4cb3254f | 704,918 |
def tle_fmt_int(num, digits=5):
""" Return an integer right-aligned string with DIGITS of precision, all blank if num=0
Ignores sign.
"""
if num:
num = abs(num)
else:
return " "*digits
string_int = "{:>{DIGITS}d}".format(num,DIGITS=digits)
return string_int | 8db7938e7a88e68c4a22013b10debbc4f5a9ca72 | 704,919 |
def get_status():
"""Return classifier status."""
return 'ok' | 84aedac3659ac2321867b02d3f6e7acb523923a3 | 704,920 |
def marks(category, mark=None, category_marks=None, public=False):
"""Assign marks to a test or suite of tests, grouped by a category."""
def decorator(test_item):
if mark is None and category_marks is None:
raise ValueError("One of mark or category_marks must be defined")
test_item.__marks_category__ = category
test_item.__marks_mark__ = mark
test_item.__marks_category_marks__ = category_marks
test_item.__marks_public__ = public
return test_item
return decorator | 2d47a8df4f610dbc081dd57fce169e2f89b88ca4 | 704,922 |
import secrets
def get_random_ua():
"""return a random user-agent string from file"""
# stop condition, file does not exists, not readable...
# + file operation
with open('headers.txt') as hbuffer:
all = hbuffer.readlines()
return secrets.choice(all).strip() | 0d6a924c07bbad2398966bed590bf3307f5c475d | 704,923 |
def underscore_to_camelcase(value):
"""
Converts underscore notation (something_named_this) to camelcase notation (somethingNamedThis)
>>> underscore_to_camelcase('country_code')
'countryCode'
>>> underscore_to_camelcase('country')
'country'
>>> underscore_to_camelcase('price_GBP')
'priceGBP'
>>> underscore_to_camelcase('recommended_horizontal_resolution')
'recommendedHorizontalResolution'
>>> underscore_to_camelcase('postal_or_zip_code')
'postalOrZipCode'
>>> underscore_to_camelcase('test_ABC_test')
'testABCTest'
"""
words = value.split('_')
return '%s%s' % (words[0], ''.join(x if x.isupper() else x.capitalize() for x in words[1:])) | 94bb5c007d3b50112c62ca9b3e97c5bf4f155fff | 704,925 |
def findCenter(S):
"""Find the approximate center atom of a structure.
The center of the structure is the atom closest to (0.5, 0.5, 0.5)
Returns the index of the atom.
"""
best = -1
bestd = len(S)
center = [0.5, 0.5, 0.5] # the cannonical center
for i in range(len(S)):
d = S.lattice.dist(S[i].xyz, center)
if d < bestd:
bestd = d
best = i
return best | 634945a5560b3791f3835f3da090decd1b06b933 | 704,926 |
def html_color_to_rgba(html_colour, alpha):
"""
:param html_colour: Colour string like FF0088
:param alpha: Alpha value (opacity)
:return: RGBA semitransparent version of colour for use in css
"""
html_colour = html_colour.upper()
if html_colour[0] == '#':
html_colour = html_colour[1:]
r_str = html_colour[0:2]
g_str = html_colour[2:4]
b_str = html_colour[4:6]
r = int(r_str, 16)
g = int(g_str, 16)
b = int(b_str, 16)
return 'rgba(%s, %s, %s, %s)' % (r, g, b, alpha) | 4f28938aa89d62198cc3052a480e0e0744560a79 | 704,927 |
from typing import OrderedDict
def _assign_category_colors(uses, cmap, use_colors=None, assigned_colors=None):
"""Set a dictionary of nice colors for the use blocks.
Options allow specifing pre-defined elements for some categories."""
use_colors = OrderedDict() if use_colors is None else use_colors
assigned_colors = (
OrderedDict() if assigned_colors is None else assigned_colors
)
available_idxs = list(range(cmap.N))
used_colors = set(use_colors.values())
for cmap_idx in range(cmap.N):
# Skip gray because it is confusing against background
this_cmap = cmap(cmap_idx)
if this_cmap[0] == this_cmap[1] and this_cmap[0] == this_cmap[2]:
available_idxs.remove(cmap_idx)
# If a color has been used already, don't reuse it for something else
if cmap(cmap_idx) in used_colors:
available_idxs.remove(cmap_idx)
for use, cmap_idx in assigned_colors.items():
if cmap_idx in available_idxs:
available_idxs.remove(cmap_idx)
use_colors[use] = cmap(cmap_idx)
else:
assert use_colors[use] == cmap(cmap_idx)
for use in uses:
if use not in use_colors:
use_idx = available_idxs[0]
use_colors[use] = cmap(use_idx)
available_idxs.remove(use_idx)
return use_colors | 085d0ca707990c84cd51464ee8f65f90500b7060 | 704,928 |
import os
def create_list_of_file_lists(possible_storage_locations, dir_path_to_files, dir_name_appendix):
"""This function creates a list of the files within each of the file storage locations so the user can inspect them to look for comparison options."""
# Output list of files
files_to_compare = []
for location in possible_storage_locations:
location_filepath = dir_path_to_files + location + "_" + dir_name_appendix
print("Filepath: ", location_filepath)
os.chdir(location_filepath)
all_files = os.listdir()
for file in all_files:
files_to_compare.append(file)
return files_to_compare | 11886751557e6994e3994f820dee21848584e265 | 704,929 |
from datetime import datetime
def _make_todays_date() -> str:
""" build today's date as a standard format """
return datetime.now().strftime("%a %d-%b") | fdb9bc420689081586ac19fe91a17ea871576d59 | 704,930 |
import re
def add_review_suggestion_flags(df,
text_col,
result_col='result_binary'):
"""
attempt to add on some logical "manual review suggested" flags onto cases to reduce false positive/negative classifications. currently
flags cases with "flora" in text, >=1 species capture, and currently classifid as negative. inspired by some challenging to classify cases in our 2d validation set.
"""
### flora flag testing
flora_bool1=df[text_col].apply(lambda x: re.search(r'flora',str(x).lower())is not None)
flora_bool2=df['species_capt'].apply(lambda x: len(x))>0
flora_bool3= df['result_num']==0
flora_flag= (flora_bool1) & (flora_bool2) & (flora_bool3)
df['flora_flag']=0
df.loc[flora_flag,'flora_flag']=1
return(df) | e2083d65f54b82dd9eba19b6b2d32806e2cd086d | 704,931 |
def number_of_fishers():
""" Prompt the user for the number of fishermen entering the draw."""
try:
number = int(input("How many fishermen will enter the competition: "))
return number
except ValueError:
print("Please enter an integer for the number of competing fishermen") | bd3ff25865d67851c8a1742a8cfa808a317716f0 | 704,932 |
def summarize_samples(samples, run_parallel):
"""Back compatibility for existing pipelines. Should be replaced with summary when ready.
"""
return samples | 20c742e751f9ea1f783572f031fe144baf73293e | 704,933 |
def get_keywords(string):
"""Get keywords for a given string.
Args:
string (str): A string to get keywords for.
Returns:
(list): A list of keywords.
"""
keywords = string.lower().split(' ')
keywords = [x.strip() for x in keywords if x]
keywords = list(set(keywords))
return keywords | 8d4e0781701dc3574583baf417c573967638e86f | 704,934 |
def distancia(ponto1, ponto2):
"""
Calcula a distância entre dois pontos
"""
xdif = ponto2.getx() - ponto1.getx()
ydif = ponto2.gety() - ponto1.gety()
dif = (xdif**2 + ydif**2)**0.5
return dif | 36a980a1081133fb6496585c25cca5782ceef06d | 704,935 |
import time
def foo(x, sleep_time):
"""Dummy function for the tests"""
time.sleep(sleep_time)
return [{"type": "objective", "name": "objective", "value": x}] | 3d55a0b0776acec0badd10e38be724afc3015c2f | 704,936 |
def bt_search(btree, key):
"""基于二叉树查询操作"""
bt = btree
while bt is not None:
entry = bt.data
if key < entry.key:
bt = bt.left
elif key > entry.key:
bt = bt.right
else:
return entry.values
return None | 1b358087c10a4d0d6fe79b023340fafeafb81914 | 704,937 |
import os
def file_exists(filepath):
"""Check whether a file exists by given file path."""
return os.path.isfile(filepath) | 157caa4e5ce39243b46dda915808de79d7cf76c0 | 704,938 |
def prep_tweet_body(tweet_obj, args, processed_text):
""" Format the incoming tweet
Args:
tweet_obj (dict): Tweet to preprocess.
args (list): Various datafields to append to the object.
0: subj_sent_check (bool): Check for subjectivity and sentiment.
1: subjectivity (num): Subjectivity result.
2: sentiment (dict): Sentiment result.
processed_text (list): List of tokens and ngrams etc.
Returns:
dict: Tweet with formatted fields
"""
subj_sent_check = args[0]
result = tweet_obj
if subj_sent_check:
subjectivity = args[1]
sentiment = args[2]
result["subjectivity"] = subjectivity
result["compound_score"] = sentiment["compound"]
result["neg_score"] = sentiment["neg"]
result["neu_score"] = sentiment["neu"]
result["pos_score"] = sentiment["pos"]
result["hs_keyword_count"] = len(processed_text[4])
result["hs_keyword_matches"] = processed_text[4]
result["tokens"] = processed_text[0]
result["stopwords"] = processed_text[1]
result["hashtags"] = processed_text[2]
result["user_mentions"] = processed_text[3]
result["unigrams"] = processed_text[5][0]
result["bigrams"] = processed_text[5][1]
result["trigrams"] = processed_text[5][2]
result["quadgrams"] = processed_text[5][3]
result["pentagrams"] = processed_text[5][4]
result["stopword_ngrams"] = processed_text[6]
result["ordered_tokens"] = processed_text[7]
return result | 9163d7bb10e3bb31849090d8ebfe4d00c19db2df | 704,939 |
import time
def timedcall(fn, *args):
"""
Run a function and measure execution time.
Arguments:
fn : function to be executed
args : arguments to function fn
Return:
dt : execution time
result : result of function
Usage example:
You want to time the function call "C = foo(A,B)".
--> "T, C = timedcall(foo, A, B)"
"""
t0 = time.time()
result = fn(*args)
t1 = time.time()
dt = t1 - t0
return dt, result | 60779c4f4b63796995d722133c304edf519ecd8f | 704,940 |
def tokuda_gap(i):
"""Returns the i^th Tokuda gap for Shellsort (starting with i=0).
The first 20 terms of the sequence are:
[1, 4, 9, 20, 46, 103, 233, 525, 1182, 2660, 5985, 13467, 30301, 68178, 153401, 345152, 776591, 1747331, 3931496, 8845866, ...]
h_i = ceil( (9*(9/4)**i-4)/5 ) for i>=0.
If 9*(9/4)**i-4)/5 is not an integer, I believe this is the same as
h_i = ((9**(i+1)>>(i<<1))-4)//5 + 1,
and I believe the above should be non-integer valued for all i>0.
(We have to explicitly return 1 when i=0, as the above formula would return 2.)
"""
return 1 if i==0 else ((9**(i+1)>>(i<<1))-4)//5 + 1 | 710633e924cb6e31a866683b91da6489c781ba4a | 704,941 |
from typing import Dict
from typing import Pattern
import re
def get_xclock_hints() -> Dict[str, Pattern]:
"""Retrieves hints to match an xclock window."""
return {"name": re.compile(r"^xclock$")} | 99e1fe51b46cb5e101c2a1c86cf27b2b60c0a38e | 704,942 |
import math
def fnCalculate_ReceivedPower(P_Tx,G_Tx,G_Rx,rho_Rx,rho_Tx,wavelength,RCS):
"""
Calculate the received power at the bistatic radar receiver.
equation 5 in " PERFORMANCE ASSESSMENT OF THE MULTIBEAM RADAR
SENSOR BIRALES FOR SPACE SURVEILLANCE AND TRACKING"
Note: ensure that the distances rho_Rx,rho_Tx,wavelength are converted to
metres before passing into this function.
Created on: 26 May 2017
"""
denominator = (4*math.pi)**3 * (rho_Rx**2)*(rho_Tx**2);
numerator = P_Tx*G_Tx*G_Rx*RCS*(wavelength**2);
P_Rx = numerator/denominator;
return P_Rx | 944fb485e9d9a3d2da130e4ddc415e63ab814380 | 704,943 |
from datetime import datetime
def tzdt(fulldate: str):
"""
Converts an ISO 8601 full timestamp to a Python datetime.
Parameters
----------
fulldate: str
ISO 8601 UTC timestamp, e.g. `2017-06-02T16:23:14.815Z`
Returns
-------
:class:`datetime.datetime`
Python datetime representing ISO timestamp.
"""
if fulldate[-1] == "Z":
fulldate = fulldate[0:-1] + "+0000"
return datetime.strptime(fulldate, "%Y-%m-%dT%H:%M:%S.%f%z") | e327c23f9aecf587432fa0170c8bcd3a9a534bd1 | 704,945 |
import math
def lat2y(latitude):
"""
Translate a latitude coordinate to a projection on the y-axis, using
spherical Mercator projection.
:param latitude: float
:return: float
"""
return 180.0 / math.pi * (math.log(math.tan(math.pi / 4.0 + latitude * (math.pi / 180.0) / 2.0))) | 59a0a111c22c99dd23e80ed64d6355b67ecffd42 | 704,946 |
def filenameValidator(text):
"""
TextEdit validator for filenames.
"""
return not text or len(set(text) & set('\\/:*?"<>|')) == 0 | 435032f32080b52165756cf147830308537e292d | 704,947 |
def makepdb(title,parm,traj):
"""
Make pdb file from first frame of a trajectory
"""
cpptrajdic ={'title':title,'parm':parm,'traj':traj}
cpptrajscript="""parm {parm}
trajin {traj} 0 1 1
center
rms first @CA,C,N
strip :WAT
strip :Na+
strip :Cl-
trajout {title}.pdb pdb
run
exit"""
return cpptrajscript.format(**cpptrajdic) | 8ca8c95adef74525ac6018146418dd5e2314ff94 | 704,948 |
import random
def secure_randint(min_value, max_value, system_random=None):
""" Return a random integer N such that a <= N <= b.
Uses SystemRandom for generating random numbers.
(which uses os.urandom(), which pulls from /dev/urandom)
"""
if not system_random:
system_random = random.SystemRandom()
return system_random.randint(min_value, max_value) | f4b61457c6e384e6185a5d22d95539001903670d | 704,949 |
import time
def date():
"""
Return date string
"""
return time.strftime("%B %d, %Y") | b26cf8a5012984bbd76f612b19f79a3c387b9d27 | 704,950 |
import math
def convert_weight(prob):
"""Convert probility to weight in WFST"""
weight = -1.0 * math.log(10.0) * float(prob)
return weight | d9f6c38fd2efa49ddd515878a0943f9c82d42e1a | 704,951 |
import numpy
def retrieve_m_hf(eri):
"""Retrieves TDHF matrix directly."""
d = eri.tdhf_diag()
m = numpy.array([
[d + 2 * eri["knmj"] - eri["knjm"], 2 * eri["kjmn"] - eri["kjnm"]],
[- 2 * eri["mnkj"] + eri["mnjk"], - 2 * eri["mjkn"] + eri["mjnk"] - d],
])
return m.transpose(0, 2, 1, 3).reshape(
(m.shape[0] * m.shape[2], m.shape[1] * m.shape[3])
) | ad407f0294f906125ef6b5ecd7f8300114afb4a5 | 704,952 |
def GetDiv(number):
"""Разложить число на множители"""
#result = [1]
listnum = []
stepnum = 2
while stepnum*stepnum <= number:
if number % stepnum == 0:
number//= stepnum
listnum.append(stepnum)
else:
stepnum += 1
if number > 1:
listnum .append(number)
return listnum | fbbd4b9e73ebe9af6ef6dcc0151b8d241adbb45d | 704,953 |
def my_decorator(view_func):
"""定义装饰器"""
def wrapper(request, *args, **kwargs):
print('装饰器被调用了')
return view_func(request, *args, **kwargs)
return wrapper | 1e857263d6627f1a2216e0c2573af5935ba58637 | 704,954 |
def CalculateMediationPEEffect(PointEstimate2, PointEstimate3):
"""Calculate derived effects from simple mediation model.
Given parameter estimates from a simple mediation model,
calculate the indirect effect, the total effect and the indirect effects
Parameters
----------
PointEstimate2 : array
This is an array of parameter estimates for the regression equation
of A on B. With no covariates, this will be an array of length 1
PointEstimate3 : array
This is an array of parameter estimates for the regression equation
of A and B on C. With no covariates, this will be an array of length 2
Returns
-------
IE
The indirect effect, parameter a times b
TE
The total effect, which is IE plus DE
DE
The direct effect, the effect of A on C, when B is in the model
a
The effect of A on B
b
The effect of B on C, when A is in the model
"""
# Indirect Effect
a = PointEstimate2[0] # The model of B with A has one beta which is index 0
b = PointEstimate3[1] # The model of C with A and B has two betas, b has index = 1
IE = a*b
# Direct Effect
DE = PointEstimate3[0] # This is c'
# Total Effect
TE = DE + IE
return IE, TE, DE, a, b | d2247985e46a78bc3333983e09a1030fd59f139d | 704,957 |
def rgb_to_hex(red_component=None, green_component=None, blue_component=None):
"""Return color as #rrggbb for the given color tuple or component
values. Can be called as
TUPLE VERSION:
rgb_to_hex(COLORS['white']) or rgb_to_hex((128, 63, 96))
COMPONENT VERSION
rgb_to_hex(64, 183, 22)
"""
if isinstance(red_component, tuple):
red_component, green_component, blue_component = red_component
return '#{:02X}{:02X}{:02X}'.format(
red_component, green_component, blue_component) | 37f5216f7f22f82072db6980541a815d87d02ef3 | 704,958 |
def params(kernels, time, target, target_frame, observer, corr):
"""Input parameters from WGC API example."""
return {
'kernels': kernels,
'times': time,
'target': target,
'target_frame': target_frame,
'observer': observer,
'aberration_correction': corr,
} | d030ad459b294a268c8bc3a851a32495dcbf5c02 | 704,960 |
import json
def read_cities_db(fname="world-cities_json.json"):
"""Read a database file containing names of cities from different countries.
Source: https://pkgstore.datahub.io/core/world-cities/world-cities_json/data/5b3dd46ad10990bca47b04b4739a02ba/world-cities_json.json
"""
with open(fname) as f:
world_cities = json.load(f)
country_city_pairs = set()
processed_sub_countries = []
for city_record in world_cities:
country = city_record['country'].lower()
if country == "south korea":
# See my comment above regarding the special handling of South Korea
country = "korea"
city = city_record['name'].lower()
country_city_pairs.add((country, city))
subcountry = city_record['subcountry'].lower() if city_record['subcountry'] is not None else None
if subcountry is not None and subcountry not in processed_sub_countries:
# Add (subcountry, country)
processed_sub_countries.append(subcountry)
country_city_pairs.add((country, subcountry))
# People use these abbreviations, so we can't ignore them
country_city_pairs.add(('united states', 'usa'))
country_city_pairs.add(('united states', 'u.s.a.'))
country_city_pairs.add(('united kingdom', 'uk'))
country_city_pairs.add(('united kingdom', 'u.k.'))
country_city_pairs.add(('china', 'prc'))
country_city_pairs.add(('china', 'p.r.c.'))
# Sort by longest city name first, because later we want to do long-string-match
country_city_pairs = sorted(country_city_pairs, key=lambda pair: len(pair[1]), reverse=True)
return country_city_pairs | 1edb970e329e7781cebb61853a13a6f45d349250 | 704,961 |
def isRef(obj):
""" """
if isinstance(obj, dict) == True and '_REF' in obj:
return obj['_REF']
else:
return False | 0f1ad92cfafff5dcbc9e90e8544956b05c3452ec | 704,962 |
def int_to_binary(x, n):
"""Convert an integer into its binary representation
Args:
x (int): input integer
n (int): number of leading zeros to display
Returns:
(str) binary representation
"""
if type(x) != int:
raise ValueError('x must be an integer.')
return format(x, 'b').zfill(n) | c3d68a798f84988290bd4e845a5bcc015872b054 | 704,963 |
def convert_examples_to_features(examples,
tokenizer,
max_seq_length,
max_program_length,
is_training,
op_list,
op_list_size,
const_list,
const_list_size,
verbose=True):
"""Converts a list of DropExamples into InputFeatures."""
unique_id = 1000000000
res = []
for (example_index, example) in enumerate(examples):
features = example.convert_single_example(
is_training=is_training,
tokenizer=tokenizer,
max_seq_length=max_seq_length,
max_program_length=max_program_length,
op_list=op_list,
op_list_size=op_list_size,
const_list=const_list,
const_list_size=const_list_size,
cls_token=tokenizer.cls_token,
sep_token=tokenizer.sep_token)
for feature in features:
feature.unique_id = unique_id
feature.example_index = example_index
res.append(feature)
unique_id += 1
return res | d7024a0ff97d94a5c2aa32e63230e972584fb1d2 | 704,965 |
def determina_putere(n):
"""
Determina ce putere a lui 2 este prima cea mai mare
decat n
:param (int) n: numarul de IP-uri necesare
citit de la tastatura
:return (int) putere: puterea lui 2 potrivita
"""
putere = 1
while 2**putere < n+2:
putere += 1
return putere | 85e2c1dcd2ea5d86b5db3c6ced28dd65e244c467 | 704,966 |
def parse_commands(log_content):
"""
parse cwl commands from the line-by-line generator of log file content and
returns the commands as a list of command line lists, each corresponding to a step run.
"""
command_list = []
command = []
in_command = False
line = next(log_content)
while(line):
line = line.strip('\n')
if '[job' in line and line.endswith('docker \\'):
line = 'docker \\' # remove the other stuff
in_command = True
if in_command:
command.append(line.strip('\\').rstrip(' '))
if not line.endswith('\\'):
in_command = False
command_list.append(command)
command = []
line = next(log_content)
return(command_list) | dff555cd0ec84619425fc05e4c8892c603bcc994 | 704,968 |
import os
def sp_cpu(file):
"""Read single-point output for cpu time."""
spe, program, data, cpu = None, None, [], None
if os.path.exists(os.path.splitext(file)[0] + '.log'):
with open(os.path.splitext(file)[0] + '.log') as f:
data = f.readlines()
elif os.path.exists(os.path.splitext(file)[0] + '.out'):
with open(os.path.splitext(file)[0] + '.out') as f:
data = f.readlines()
else:
raise ValueError("File {} does not exist".format(file))
for line in data:
if line.find("Gaussian") > -1:
program = "Gaussian"
break
if line.find("* O R C A *") > -1:
program = "Orca"
break
if line.find("NWChem") > -1:
program = "NWChem"
break
for line in data:
if program == "Gaussian":
if line.strip().startswith('SCF Done:'):
spe = float(line.strip().split()[4])
if line.strip().find("Job cpu time") > -1:
days = int(line.split()[3])
hours = int(line.split()[5])
mins = int(line.split()[7])
secs = 0
msecs = int(float(line.split()[9]) * 1000.0)
cpu = [days, hours, mins, secs, msecs]
if program == "Orca":
if line.strip().startswith('FINAL SINGLE POINT ENERGY'):
spe = float(line.strip().split()[4])
if line.strip().find("TOTAL RUN TIME") > -1:
days = int(line.split()[3])
hours = int(line.split()[5])
mins = int(line.split()[7])
secs = int(line.split()[9])
msecs = float(line.split()[11])
cpu = [days, hours, mins, secs, msecs]
if program == "NWChem":
if line.strip().startswith('Total DFT energy ='):
spe = float(line.strip().split()[4])
if line.strip().find("Total times") > -1:
days = 0
hours = 0
mins = 0
secs = float(line.split()[3][0:-1])
msecs = 0
cpu = [days,hours,mins,secs,msecs]
return cpu | ca9cb22b0981b3a14eafdd2637eccbe448597432 | 704,970 |
def to_geojson(series):
"""Return a GeoJSON geometry collection from the series (must be in EPSG:4326).
Did not use the builtin for the series since it introduces a lot of bloat.
"""
return {
"type": "GeometryCollection",
"geometries": series.apply(lambda x: x.__geo_interface__).to_list(),
} | 2ebdc001ed7a6fb3ee6e6cac9fc7722e19518e20 | 704,971 |
def getConstraintWeightAttr(leader, constraint):
"""
Return the weight attribute from a constraint that
corresponds to a specific leader node.
Args:
leader (PyNode): A node that is one of the leaders of a constraint
constraint (PyNode): A constraint node
"""
for i, target in enumerate(constraint.getTargetList()):
if leader == target:
return constraint.getWeightAliasList()[i] | e53ef981f505f1c8fc21fff7b71605764d6da3e0 | 704,972 |
import os
def file_contains_exact_text(filename, text):
"""Returns True iff the file exists and it already contains the given text."""
if not os.path.isfile(filename):
return False
with open(filename, "r") as infile:
intext = infile.read()
return text == intext
return False | 49bbb86c30a5df5d41e78cd64ddb58d44eaaf899 | 704,973 |
def sort_characters(text, alphabet):
"""Counting Sort"""
dim = len(text)
order = [0] * dim
count = {k: 0 for v, k in enumerate(alphabet)}
for char in text:
count[char] += 1
for j in range(1, len(alphabet)):
count[alphabet[j]] += count[alphabet[j-1]]
for i, char in reversed(tuple(enumerate(text))):
count[char] -= 1
order[count[char]] = i
return order | 9beb0f28a7f1ffb892e1393522b94f12e873ba66 | 704,974 |
import requests
def get_api_result(url):
"""
Retrieve JSON data from API via a supplied URL
"""
s = requests.Session()
r = s.get(url)
return r.json() | 933bd000b2e352f950ec86f8b6f1470ff2b0ecbd | 704,975 |
def fn(r):
"""
Returns the number of fields based on their radial distance
:param r: radial distance
:return: number of fields at radial distance
"""
return 4 * r + 4 | 5fa4a5e8f2304f907b9dd806281dc77a2152f431 | 704,976 |
import argparse
def parse_arguments():
"""
Parse the command line arguments
"""
ap = argparse.ArgumentParser()
ap.add_argument("-ann", "--annotations_path", required=True,
help="Path to the directory containing the annotation files or path to the single annotation file.")
ap.add_argument("-ann_type", "--annotations_type", required=False, default="voc",
help="Annotations type ('voc', 'coco').")
ap.add_argument("-det", "--detections_dir_path", required=True,
help="Path to the '.pkl' file containing detections generated from class agnostic OD method. The "
"detections should be a dictionary with keys as 'image names' and values as the tuple of "
"predicted boxes & scores (i.e. ([boxes], [scores]))")
ap.add_argument("-N", "--top_N_dets", required=False, type=int, default=50,
help="Maximum number of top N detections sorted by confidence to be used for metrics calculations. "
"Note that the script also reports average number of ")
ap.add_argument("-iou", "--iou_thresh", required=False, type=float, default=0.5,
help="IOU threshold to be used for computing AP and Recall. Default is 0.5.")
ap.add_argument("--extra_metrics", action='store_true',
help="Flag to decide if to evaluate AP-small, AP-medium and AP-large.")
args = vars(ap.parse_args())
return args | e564699cbc74fba69b2bba90372a0513a81ae84c | 704,977 |
def transformToUTM(gdf, utm_crs, estimate=True, calculate_sindex=True):
"""Transform GeoDataFrame to UTM coordinate reference system.
Arguments
---------
gdf : :py:class:`geopandas.GeoDataFrame`
:py:class:`geopandas.GeoDataFrame` to transform.
utm_crs : str
:py:class:`rasterio.crs.CRS` string for destination UTM CRS.
estimate : bool, optional
.. deprecated:: 0.2.0
This argument is no longer used.
calculate_sindex : bool, optional
.. deprecated:: 0.2.0
This argument is no longer used.
Returns
-------
gdf : :py:class:`geopandas.GeoDataFrame`
The input :py:class:`geopandas.GeoDataFrame` converted to
`utm_crs` coordinate reference system.
"""
gdf = gdf.to_crs(utm_crs)
return gdf | 02405ca581054b5d804c6e4eb49be96d0915e3de | 704,978 |
import re
def remove_prohibited_characters(prompt_str: str) -> str:
"""
Remove prohibited characters.
"""
prohibited_chars = ["[", "]", "<", ">", "#", "%", "$", ":", ";", "~", "\r", " ", "\n"]
result_str = prompt_str
for ch in prohibited_chars:
result_str = result_str.replace(ch, "")
if "\x1b" in result_str:
# for powerline.
result_str = re.sub("\x1b.*h", "", result_str)
result_str = re.sub("\x1b.*m", "", result_str)
return result_str | 8eabb923b5ee59656fb41164d14be0ba6e4535f4 | 704,979 |
import subprocess
def bzr_find_files(dirname):
"""Find versioned files using bzr, for use in 'setuptools.file_finders'
entry point in setup.py."""
cmd = 'bzr ls --versioned ' + dirname
proc = subprocess.Popen(
cmd.split(), stdin=subprocess.PIPE,
stdout=subprocess.PIPE, stderr=subprocess.PIPE)
stdout, _stderr = proc.communicate()
return stdout.splitlines() | 8bfc6975b3aaaabc3a955dbef92d96dcea15f518 | 704,980 |
def pyramid_sum(lower, upper, margin = 0):
"""Returns the sum of the numbers from lower to upper,
and outputs a trace of the arguments and return values
on each call."""
blanks = " " * margin
print(blanks, lower, upper) # Print the arguments
if lower > upper:
print(blanks, 0) # Print the returned value
return 0
else:
result = lower + pyramid_sum(lower + 1, upper, margin + 4)
print(blanks, result) # Print the returned value
return result | 751facb309f362c35257aab2b239a37b39a98a04 | 704,982 |
import unicodedata
def normalize_caseless(text):
"""Normalize a string as lowercase unicode KD form.
The normal form KD (NFKD) will apply the compatibility decomposition,
i.e. replace all compatibility characters with their equivalents.
"""
return unicodedata.normalize("NFKD", text.casefold()) | c26f8470ea6312cce7a97930999d489ee30eb692 | 704,983 |
def calculate_maximum_potential_edge_counts(channel_composition, N, max_ble_span):
"""Computes the maximum number of possible occurrences per potential edge type.
Parameters
----------
channel_composition : Dict[str, int]
Channel composition description.
N : int
Number of BLEs in the cluster.
max_ble_span : int
Maximum BLE span in the pattern.
Returns
-------
Dict[str, int]
Maximum number of occurrences of each edge type.
"""
back_dir = {'L' : 'R', 'R' : 'L', 'U' : 'D', 'D' : 'U'}
counts = {}
for src_ble in range(0, N):
for sink_ble in range(max(0, src_ble - max_ble_span),\
min(N - 1, src_ble + max_ble_span) + 1):
for w_src in channel_composition:
src_dirs = ('L', 'R')
if w_src[0] == 'V':
src_dirs = ('U', 'D')
for src_dir in src_dirs:
for w_sink in channel_composition:
sink_dirs = ('L', 'R')
if w_sink[0] == 'V':
sink_dirs = ('U', 'D')
for sink_dir in sink_dirs:
if sink_dir == back_dir[src_dir]:
continue
inc = channel_composition[w_src] * channel_composition[w_sink]
try:
counts[(w_src, w_sink)] += inc
except:
counts.update({(w_src, w_sink) : inc})
e_str = lambda e : "potential_edge__%s%s__%s%s"\
% (e[0], "_tap_0" if e[0][0] == 'V' else '',\
e[1], "_tap_0" if e[1][0] == 'V' else '')
return {e_str(e) : counts[e] for e in counts} | 55f891631bd109066735e9997cbb3dc35de8d21a | 704,984 |
def g_logv(s):
"""read a logical variable
:param str s:
:return bool:
"""
return s == '1' or s.lower() == 'yes' or s.lower() == 'true' | e9984eced79cccc09a465b07bfac5185db72a604 | 704,986 |
import os
def record_mode(request):
"""Manage compatibility with DD client libraries."""
mode = os.getenv("RECORD", "false")
if mode is not None:
if mode == "none":
request.config.option.disable_vcr = True
else:
setattr(
request.config.option,
"vcr_record",
{"true": "all", "false": "none",}[mode],
)
request.config.option.disable_vcr = False
return mode | a68af5c9449bf300fec18c51168e2f9096038b1f | 704,987 |
import json
def try_to_replace_line_json(line, json_type, new_json, json_prefix=""):
"""Attempts to replace a JSON declaration if it's on the line.
Parameters
----------
line: str
A line from a JavaScript code file. It's assumed that, if it declares
a JSON, this declaration will only take up one line (i.e. it
will be of the form
"[whitespace?]var [JSON prefix?][JSON name] = {JSON contents};").
If a replacement is made, everything on and after the { in this line
will be replaced with the contents of the new JSON, followed by
";\n".
json_type: str
One of "rank", "sample", or "count". Other values will result in a
ValueError being thrown.
new_json: dict
A JSON to try replacing the current variable declaration (if present)
on the input line with.
json_prefix: str (default value: "")
An optional prefix that will be appended to any JSON names we try to
replace. If this is anything but "", this *won't replace normal JSON
lines* (e.g. "var rankPlotJSON = {") -- instead, this will only
replace lines with the given prefix (e.g. if the prefix is "SST",
then only JSON lines of the format "var SSTrankPlotJSON = {" will be
replaced.
Returns
-------
(line, replacement_made): str, bool
If no replacement was made, replacement_made will be False and line
will just equal to the input line.
If a replacement was made, replacement_made will be True and line
will be equal to the new line with the JSON replaced.
"""
prefixToReplace = ""
if json_type == "rank":
prefixToReplace = "var {}rankPlotJSON = {{"
elif json_type == "sample":
prefixToReplace = "var {}samplePlotJSON = {{"
elif json_type == "count":
prefixToReplace = "var {}countJSON = {{"
else:
raise ValueError(
"Invalid json_type argument. Must be 'rank', "
"'sample', or 'count'."
)
prefixToReplace = prefixToReplace.format(json_prefix)
if line.lstrip().startswith(prefixToReplace):
return (
(
line[: line.index("{")]
+ json.dumps(new_json, sort_keys=True)
+ ";\n"
),
True,
)
return line, False | 602897349b52be3f10a41cf90d211ad70a6d4cc2 | 704,988 |
def read(file_path, lines=False):
"""Returns contents of file either as a string or list of lines."""
with open(file_path, 'r') as fp:
if lines:
return fp.readlines()
return fp.read() | 86b36dbc2792ac70bd9a71c74486643b3cdef690 | 704,989 |
def UnescapeUnderscores(s: str):
"""Reverses EscapeWithUnderscores."""
i = 0
r = ''
while i < len(s):
if s[i] == '_':
j = s.find('_', i + 1)
if j == -1:
raise ValueError('Not a valid string escaped with `_`')
ss = s[i + 1:j]
if not ss:
r += '_'
else:
r += chr(int(ss, 16))
i = j + 1
else:
r += s[i]
i += 1
return r | c793666527b37ee66f832e650e6c6aac47bc8a82 | 704,990 |
def filter_(stream_spec, filter_name, *args, **kwargs):
"""Alternate name for ``filter``, so as to not collide with the
built-in python ``filter`` operator.
"""
return filter(stream_spec, filter_name, *args, **kwargs) | 0e55c8c6093fafed58ced08c757e6a489fcefa17 | 704,991 |
from typing import List
from typing import Dict
def parse_secrets(raw: List[str]) -> Dict[str, str]:
"""Parses secrets"""
result: Dict[str, str] = {}
for raw_secret in raw:
keyval = raw_secret.split('=', 1)
if len(keyval) != 2:
raise ValueError(f'Invalid secret "{raw_secret}"')
result[keyval[0]] = keyval[1]
return result | d209c954c75353c17f0bca561c3ad94fc26a9ad0 | 704,992 |
def get_state(initial, input_value=None):
"""Get new state, filling initial and optional input_value."""
return {
'last_position': None,
'initial': [initial],
'input': [input_value] if input_value is not None else [],
'output': [],
} | 7520341debf6b7287a445be1a44e51bd5675472f | 704,993 |
import operator
def predictkNNLabels(closest_neighbors, y_train):
"""This function predicts the label of a individual point
in X_test based on the labels of the nearest neighbour(s).
And sums up the total of appearences of the labels and
returns the label that occurs the most """
labelPrediction = {}
for i in range(len(closest_neighbors)):
if y_train[closest_neighbors[i]][0] in labelPrediction:
labelPrediction[y_train[closest_neighbors[i]][0]] += 1
else:
labelPrediction[y_train[closest_neighbors[i]][0]] = 1
sortedLabelPrediction = sorted(labelPrediction.items(), key=operator.itemgetter(1), reverse=True)
return sortedLabelPrediction[0][0] # gives the most in common label | aa7ce9383253230f2c0535e3e27e2f2442dec043 | 704,994 |
def cell_snippet(x, is_date=False):
"""create the proper cell snippet depending on the value type"""
if type(x) == int:
return {
'userEnteredValue': {'numberValue': x},
'userEnteredFormat': {
'numberFormat': {
'type': 'NUMBER',
'pattern': '#,##0'
}
}
}
elif type(x) == float:
return {
'userEnteredValue': {'numberValue': x},
'userEnteredFormat': {
'numberFormat': {
'type': 'DATE' if is_date else 'NUMBER',
'pattern': 'yyyy/mm/dd hh:mm:ss' if is_date else '#,##0.00'
}
}
}
else:
return {
'userEnteredValue': {'stringValue': x}
} | bc91279e5e9b4e9e6b853badf28081e0e4746549 | 704,995 |
def lowerUserList(inputList):
"""Lowercase user inputLists in case there are misspellings. (e.g. 3-6KB)"""
# clean list
loweredList = []
for item in inputList:
loweredItem = item.lower()
loweredList.append(loweredItem)
return loweredList | e5d55a39a98b741758c8b1e8306a4ee486c7a29d | 704,996 |
import torch
def get_disp_samples(max_dis, feature_map, stage_id=0, disprity_map=None, step=1, samp_num=9, sample_spa_size=None) :
"""function: get the sampled disparities
args:
max_dis: the maximum disparity;
feature map: left or right feature map, N*C*H*W;
disprity_map: if it is not the first stage, we need disparity map to be the sampling center in new cost volume, N*H*W;
step: the step size between each samples, where -1 represents the traditional sampling from 0 to max_disp;
samp_num: the total number of samples;
return:
the sampled disparities for each pixel, N*S*H*W;
"""
# print("disprity_map: {}".format(disprity_map.size()))
batch_size, channels, height, width = feature_map.size()
if disprity_map is None or step==-1 or stage_id==0 :
disp_samples = torch.arange(max_dis, dtype=feature_map.dtype, device=feature_map.device).expand(batch_size,height,width,-1).permute(0,3,1,2)
else :
# # get the range only from one pixel
# lower_bound = disprity_map-(samp_num/2)*step
# upper_bound = disprity_map+(samp_num/2)*step
# lower_bound = lower_bound.clamp_(min=0.0)
# upper_bound = upper_bound.clamp_(max=max_dis)
# get the range from the pixel and its neighbors
if sample_spa_size is None :
kernel_size = 3 if stage_id==1 else 5 if stage_id==2 else 7
else :
kernel_size = sample_spa_size
lower_bound = torch.abs( torch.max_pool2d(-disprity_map, kernel_size=kernel_size, stride=1, padding=int((kernel_size-1)//2)) )
upper_bound = torch.max_pool2d(disprity_map, kernel_size=kernel_size, stride=1, padding=int((kernel_size-1)//2) )
modified_disp_range = (samp_num*step - (upper_bound-lower_bound)).clamp(min=0) / 2
lower_bound = (lower_bound - modified_disp_range).clamp(min=0, max=max_dis)
upper_bound = (upper_bound + modified_disp_range).clamp(min=0, max=max_dis)
new_step = (upper_bound-lower_bound) / (samp_num-1)
disp_samples = lower_bound.unsqueeze(1) + (torch.arange(0, samp_num, device=disprity_map.device,
dtype=disprity_map.dtype, requires_grad=False).reshape(1, -1, 1, 1) * new_step.unsqueeze(1))
# disp_samples = []
# for i in np.arange(samp_num) :
# disp_samples.append(lower_bound+i*step)
# disp_samples = torch.stack(disp_samples,dim=1)
# disp_samples = []
# for i in np.arange(-(samp_num//2)*step, samp_num//2*step, step) :
# disp_samples.append(disprity_map+i)
# disp_samples = torch.stack(disp_samples,dim=1)
# disp_samples = disp_samples.clamp_(min=0,max=max_dis-1)
# print("disp_samples: {}".format(disp_samples.size()))
return disp_samples | d07bc06e69b0015f9604a91fe4455ef61bb3c505 | 704,998 |
def short_comment(x):
"""Ham comments are often short, such as 'cool video!'"""
return len(x.text.split()) < 5 | f8d91feb4549219275dd5bace104cd8d89b96748 | 704,999 |
import random
import string
def generate_random_name():
"""Generate a random name to use as a handle for a job."""
return "".join(random.choice(string.ascii_lowercase) for j in range(8)) | c793c77289e7813cfd679b23613a9b1cd38af941 | 705,000 |
def validate_index(n: int, ind: int, command: str):
"""
Simple function to validate existence of index within in the model repository.
Args:
n (int): length of indices
ind (int): selected index
command (str): name of command for "tailored" help message
"""
# ensure index exists in indices
if -n <= ind < n:
return ind
else:
raise IndexError(f"Index {ind} does not exist... Run `kaos {command} list` again") | 3aef711caef041d2f4aa1dfdf0b5135d9f626b3c | 705,002 |
def wrap_ddp(cls):
"""Return wrapper class for the torch.DDP and apex. Delegete getattr to the
inner module.
"""
class _Wrap(cls):
def __init__(self, *args, **kwargs):
super().__init__(*args, **kwargs)
def __getattr__(self, name):
wrapped_module = super().__getattr__('module')
if hasattr(wrapped_module, name):
return getattr(wrapped_module, name)
return super().__getattr__(name)
return _Wrap | d8d4148a4e26e28bca76bbac7ecd0e0cea64b3ba | 705,004 |
def mortgage_max(buyer_dsr):
"""
Calculates maximum loan available to offer based on buyer's proposed downpayment and downpayment percent
...
Returns
-------
loan : float
Returns maximum available loan to be offered
"""
downpayment_percent = 0
min_downpayment = 0
try:
if buyer_dsr.home_price <= 500000:
downpayment_percent = 0.05
elif buyer_dsr.home_price > 500000 and buyer_dsr.home_price <= 1000000:
downpayment_percent = 0.1
else:
downpayment_percent = 0.2
except Exception:
return None
#loan = self.max_dp() / downpayment_percent
loan = buyer_dsr.downpayment / downpayment_percent
return loan | c1fa429d61100dce20b5a4cbeaef365d39ad14af | 705,005 |
import uuid
import base64
import os
def save_files(images):
"""
Save encoded image to image file on local machine. Image is decoded and
saved as JPEG file with UUID name in "imstore" directory.
:param images: encoded image string (string)
:return: file name of stored image (string)
"""
filename = str(uuid.uuid1())
img = base64.b64decode(images)
filename = filename + '.jpg'
pathname = os.path.join('imstore/', filename)
with open(pathname, 'wb') as file:
file.write(img)
return filename | ba3e6f99570b540470fe687f69fc13ac803c9a39 | 705,006 |
def InterferenceDict(data_list):
"""Creates an interferenceReturns a double dict from a list of lat,lng, interferences."""
if not isinstance(data_list, list):
data_list = [data_list]
result = {}
for lat, lon, data in data_list:
if lat not in result: result[lat] = {}
result[lat][lon] = data
return result | fae34ea1182c6f709691ef1bab72f1796d073a2a | 705,007 |
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.