content
stringlengths 35
416k
| sha1
stringlengths 40
40
| id
int64 0
710k
|
---|---|---|
def clean_dict(dictionary: dict) -> dict:
"""Recursively removes `None` values from `dictionary`
Args:
dictionary (dict): subject dictionary
Returns:
dict: dictionary without None values
"""
for key, value in list(dictionary.items()):
if isinstance(value, dict):
clean_dict(value)
elif value is None:
dictionary.pop(key)
return dictionary | 3968b6d354116cca299a01bf2c61d7b2d9610da9 | 703,773 |
def tag_tranfsers(df):
"""Tag txns with description indicating tranfser payment."""
df = df.copy()
tfr_strings = [' ft', ' trf', 'xfer', 'transfer']
exclude = ['fee', 'interest']
mask = (df.transaction_description.str.contains('|'.join(tfr_strings))
& ~df.transaction_description.str.contains('|'.join(exclude)))
df.loc[mask, 'tag'] = 'transfers'
return df | 4fdfd775ec423418370776c34fac809a513f91b5 | 703,774 |
def remove_dead_exceptions(graph):
"""Exceptions can be removed if they are unreachable"""
def issubclassofmember(cls, seq):
for member in seq:
if member and issubclass(cls, member):
return True
return False
for block in list(graph.iterblocks()):
if not block.canraise:
continue
exits = []
seen = []
for link in block.exits:
case = link.exitcase
# check whether exceptions are shadowed
if issubclassofmember(case, seen):
continue
# see if the previous case can be merged
while len(exits) > 1:
prev = exits[-1]
if not (issubclass(prev.exitcase, link.exitcase) and
prev.target is link.target and prev.args == link.args):
break
exits.pop()
exits.append(link)
seen.append(case)
block.recloseblock(*exits) | fc0c810eef726f0979678e3003051c99775a981d | 703,775 |
import os
def get_wiki_img():
"""
Returns a path to local image.
"""
this = os.path.dirname(__file__)
img = os.path.join(this, "wiki.png")
if not os.path.exists(img):
raise FileNotFoundError("Unable to find '{}'.".format(img))
return img | ef522391665830019f7b48f545291d81b528bd45 | 703,777 |
import os
def establecer_destino_archivo_imagen(instance, filename):
"""
Establece la ruta de destino para el archivo de imagen cargado a la instancia.
"""
# Almacena el archivo en:
# 'app_reservas/contingencia/<id_imagen>'
ruta_archivos_ubicacion = 'app_reservas/contingencia/'
filename = '{0!s}_{1!s}'.format(instance.id, filename)
return os.path.join(ruta_archivos_ubicacion, filename) | 13e233d113ac3232a6e76725b13ef2befcd47feb | 703,778 |
def have_same_SNP_order(dict_A, dict_B):
"""
Checks if two dictionaries have the same SNP order.
"""
have_same_order = [k for k in dict_A.keys() if k != "ext"] == [k for k in dict_B.keys() if k != "ext"]
return have_same_order | b885dee561e9a61bb50e814401ee088593c2517b | 703,779 |
def define_plot_id(plot_name, plot_center):
"""Define plot id, keeping track of coordinates."""
plot_id = f"{plot_name}_X{int(plot_center[0])}_Y{int(plot_center[1])}"
return plot_id | 8f239a121598157c620ee8eef902e1d89218d01e | 703,780 |
def calculate_mean(i, peaklocationstart, peaklocationend):
"""
This function is for calculating the mean over the specified area and returns this mean.
"""
length = peaklocationend - peaklocationstart
mean = 0
if i:
for interval in i:
if interval[0] < peaklocationstart and interval[1] > peaklocationend:
interval_length = peaklocationend - peaklocationstart
else:
if interval[1] > peaklocationend:
interval_length = peaklocationend - interval[0]
elif interval[0] < peaklocationstart:
interval_length = interval[1] - peaklocationstart
else:
interval_length = interval[1] - interval[0]
mean += interval_length * interval[2]
mean = mean / length
return mean | fe57d6ab202c9c7da9894fd0d5aaab2a18ff113e | 703,781 |
def swag(print_swag=True):
"""Swag!"""
output = ("""
( ( (
)⧹ ))⧹ ) . ) ( )⧹ ) ( (
(()/(()/` ) /( )⧹ (()/(( )⧹))( .
/(_)/(_)( )(_)) (((_) /(_))⧹ ((_)()⧹ )
(_))(_))(_(_()) )⧹___(_))((_)_(())⧹_)()
| _ |_ _|_ _| (/ __| _ | __⧹ ⧹((_)/ /
| _/| | | | | (__| | _| ⧹ ⧹/⧹/ /
|_| |___| |_| ⧹___|_|_|___| ⧹_/⧹_/
~ take a REST, and top-up your Fuel ~
""")
if print_swag:
print(output)
return output | c75d804e331f61ca4b779a7a05bd0d42298b0dec | 703,782 |
def afwd(data):
"""
AFWD - Request 4WD status
"""
return data | 47823c8e8d306c8fc84eea20ad703bc997498049 | 703,785 |
def centroid_points_xy(points):
"""Compute the centroid of a set of points lying in the XY-plane.
Warning
-------
Duplicate points are **NOT** removed. If there are duplicates in the
sequence, they should be there intentionally.
Parameters
----------
points : list of list
A sequence of points represented by their XY(Z) coordinates.
Returns
-------
list
XYZ coordinates of the centroid (Z = 0.0).
Examples
--------
>>> centroid_points_xy()
"""
p = len(points)
x, y = list(zip(*points))[:2]
return [sum(x) / p, sum(y) / p, 0.0] | 8da6c4154ff0632942108f9b63240c86438f3eb4 | 703,786 |
def should_force_reinit(config):
"""Configs older than 2.0.0 should be replaced"""
ver = config.get("cli_version", "0.0.0")
return int(ver.split(".")[0]) < 2 | 12b704fe2f3d2ef7cedf497a4a2e3a92321f52b2 | 703,787 |
def check_tag_list(tag_list):
""" Makes a list of any tags entered on the command line. """
tags = []
if len(tag_list) != 0:
tags = tag_list[0].split(",")
return tags | 24fb7d5c1f408ef9825a8efb461dc88483dcba9e | 703,788 |
def remove_leading_character(string, character):
"""
If "string" starts with "character", strip that leading character away.
Only removes the first instance
:param string:
:param character:
:return: String without the specified, leading character
"""
if string.startswith(character):
return string[1:]
else:
return string | 4af4d6f86b9a6ed8975c4564904d2e1ca9e6d15a | 703,789 |
def _rfind(lst, item):
"""
Returns the index of the last occurance of <item> in <lst>. Returns -1 if
<item> is not in <l>.
ex: _rfind([1,2,1,2], 1) == 2
"""
try:
return (len(lst) - 1) - lst[::-1].index(item)
except ValueError:
return -1 | ab165a6795b0a495d24288d8e757c16ba9c968a4 | 703,790 |
def map_box(sbox, dbox, v):
"""
sbox is (lat1, lat2, long1, long2),
dbox is (x1, x2, y1, y2),
v is (lat, long).
result is (x, y)
"""
xscale = abs(dbox[1]-dbox[0])/abs(sbox[3]-sbox[2])
yscale = abs(dbox[3]-dbox[2])/abs(sbox[1]-sbox[0])
x = (v[1]-sbox[2]+dbox[0])*xscale
y = (v[0]-sbox[0]+dbox[2])*yscale
return x,y | de1cb095d03eacc4930f37a05c5b01ebd983baca | 703,791 |
def recognize_po_file(filename: str) -> bool:
""" Recognize .po file """
if filename.endswith(".po"):
return True
return False | 9993e1d0f1a45f1ce60709650a7381df00ebdce0 | 703,792 |
def multiply_nums(n1, n2):
"""Function to multiplies two numbers.
n1 : Must be a numeric type
n2 : Must be a numeric type
"""
result = n1 * n2
return result | 05549b4780fec2e2ba14719ebbb93e45491710e7 | 703,793 |
def up_to(s, i, c):
"""Il faudrait commenter, je ne sais plus ce que ça fait."""
t = []
k = i
while s[k] != c:
t.append(s[k])
k += 1
return "".join(t) | ec4ffc90949b3b66c74c52a0019981564ace8aef | 703,794 |
def main():
"""CollatzPy CLI"""
return 0 | 51f497ce25f4e90da4f0178510ba25d568edfc0b | 703,795 |
import zipfile
import json
def _GetVersionFromCrx(crx_path):
"""Retrieves extension version from CRX archive.
Args:
crx_path: path to CRX archive to extract version from.
"""
with zipfile.ZipFile(crx_path, 'r') as crx_zip:
manifest_contents = crx_zip.read('manifest.json')
version = json.loads(manifest_contents)['version']
return version | e6b612f94b0fa4e62f5ecb8df297a6255294ec5f | 703,796 |
import hashlib
def safe_md5(open_file, block_size=2**20):
"""Computes an md5 sum without loading the file into memory
This method is based on the answers given in:
http://stackoverflow.com/questions/1131220/get-md5-hash-of-a-files-without-open-it-in-python
"""
md5 = hashlib.md5()
data = True
while data:
data = open_file.read(block_size)
if data:
md5.update(data)
return md5 | 3711eba8479fabc69f30063cfc6fb585345bab66 | 703,797 |
import random
def generator_order_code(sex=None):
"""
生成顺序码
:param sex:
:return:
"""
order_code = random.randint(101, 1000)
if sex == 1:
order_code = order_code - 1 if order_code % 2 == 0 else order_code
if sex == 0:
order_code = order_code if order_code % 2 == 0 else order_code - 1
return str(order_code) | 52be4dd5d9a40d261511adbe57271824a09592bf | 703,798 |
def get_licence(html):
"""
Searches the HTML content for a mention of a CC licence.
"""
if "creative-commons" in html or "Creative Commons" in html:
licence = "CC"
else:
licence = "N/A"
return licence | 07dcd2439455fd23b034e11204d2a474c9502cdf | 703,799 |
def sum_temp(s, n):
"""
:param s: int, sum of total value of temperature
:param n: int, latest information to add up
:return: s + n
"""
s += n
return s | 4dc7da032fd91da86d73bf545fdf527497c12cd5 | 703,800 |
def mock_random_choice(seq):
"""Always returns first element from the sequence."""
# We could try to mock a particular |seq| to be a list with a single element,
# but it does not work well, as random_choice returns a 'mock.mock.MagicMock'
# object that behaves differently from the actual type of |seq[0]|.
return seq[0] | a889c7ca32b6d494493000134c1d9d26fe5e97c3 | 703,801 |
def V_6_3_3(b, h0, ft):
"""
不配置箍筋和弯起钢筋的一般板类受弯构件斜截面承载力
"""
if h0<800:
beta_h = 1
elif h0<2000:
beta_h = (800/h0)**0.25
else:
beta_h = (800/2000)**0.25
return 0.7*beta_h*ft*b*h0 | 79e9d97fcc755ed163cedb5f775d07abb6c26595 | 703,802 |
def get_lsf_grid_name(fibre_number):
"""
Return the appropriate LSF name (a, b, c, or d) to use, given a mean fiber number.
:param fiber_number:
The mean fiber number of observations.
:returns:
A one-length string describing which LSF grid to use ('a', 'b', 'c', or 'd').
"""
if 50 >= fibre_number >= 1:
return "d"
if 145 >= fibre_number > 50:
return "c"
if 245 >= fibre_number > 145:
return "b"
if 300 >= fibre_number > 245:
return "a" | 009b20027f895e19c5b6cabb4476cf41a222e465 | 703,803 |
def deprecated(func):
"""Print a deprecation warning once on first use of the function.
>>> @deprecated # doctest: +SKIP
... def f():
... pass
>>> f() # doctest: +SKIP
f is deprecated
"""
count = [0]
def wrapper(*args, **kwargs):
count[0] += 1
if count[0] == 1:
print(func.__name__, 'is deprecated')
return func(*args, **kwargs)
return wrapper | 882b26592fa620be65eb7e1306abdf1d138ca022 | 703,804 |
import logging
import json
def rest_error_message(error, jid):
"""Returns exception error message as valid JSON string to caller
:param error: Exception, error message
:param jid: string, job ID
:return: JSON string
"""
logging.exception(error)
e = str(error)
return json.dumps({'user_id': 'admin', 'result': {'error': e}, '_id': jid}) | 7422c77be37ed473ed15acc5fdfae9e85ff90812 | 703,805 |
def Dict(val):
"""
Build a dict for key/value pairs.
"""
return dict(val) | 47864a91183070a7f8ce285e330d1278828b8352 | 703,806 |
def _ww3_ounf_contents(run_date, run_type):
"""
:param run_date: :py:class:`arrow.Arrow`
:param str run_type:
:return: ww3_ounf.inp file contents
:rtype: str
"""
start_date = (
run_date.format("YYYYMMDD")
if run_type == "nowcast"
else run_date.shift(days=+1).format("YYYYMMDD")
)
run_hours = {"nowcast": 24, "forecast": 36, "forecast2": 30}
output_interval = 1800 # seconds
output_count = int(run_hours[run_type] * 60 * 60 / output_interval)
contents = f"""$ WAVEWATCH III NETCDF Grid output post-processing
$
$ First output time (YYYYMMDD HHmmss), output increment (s), number of output times
{start_date} 000000 {output_interval} {output_count}
$
$ Fields
N by name
HS LM WND CUR FP T02 DIR DP WCH WCC TWO FOC USS
$
$ netCDF4 output
$ real numbers
$ swell partitions
$ one file
4
4
0 1 2
T
$
$ File prefix
$ number of characters in date
$ IX, IY range
$
SoG_ww3_fields_
8
1 1000000 1 1000000
"""
return contents | 62618639265e419b5ad1ff9c7364e6d83aeca1c0 | 703,807 |
def ts_css(text):
"""applies nice css to the type string"""
return '<span class="ts">%s</span>' % text | a505f4ffc8359bc886f0011295fb5309529be5bf | 703,808 |
import typing
def noop(val: typing.Any, *_args, **_kwargs) -> typing.Any:
"""A function does nothing.
>>> noop(1)
1
"""
return val | 99841c0b291a654d83741500e83441482f59d45a | 703,809 |
import getpass
import base64
def get_headers(gargs):
"""Get the required headers. """
headers = {
'Content-type': 'application/json'
}
if gargs.no_passwd:
return headers
if gargs.passwdfile is not None:
passwd = open(gargs.passwdfile, "r").read().strip()
auth_str = "%s:%s" % (gargs.user, passwd)
elif gargs.auth is not None:
auth_str = gargs.auth
else:
passwd = getpass.getpass("Password: ")
auth_str = "%s:%s" % (gargs.user, passwd)
auth = base64.b64encode(auth_str.encode('utf-8'))
headers['Authorization'] = 'Basic %s' % auth.decode('utf-8')
return headers | 04d7a9da9e30fbfdf86b0a09d23dc178a0615d27 | 703,810 |
def dict_to_capabilities(caps_dict):
"""Convert a dictionary into a string with the capabilities syntax."""
return ','.join("%s:%s" % tpl for tpl in caps_dict.items()) | 12a321ba5f337f8da116ec7adec68d717fbc776f | 703,811 |
def mean(vector):
"""
Calculates the arithmetic mean of the given vector.
Args:
-----
vector : list
A non-empty list/array of numbers to be averaged.
Returns:
--------
mean : float
The arithmetic mean of the given vector.
"""
return sum(vector) / len(vector) | 71bd9a37cb0bfb166632866d0a29be9b14236364 | 703,812 |
def guess_cloudwatch_log_group(alarm_name):
"""
Guess the name of the CloudWatch log group most likely to contain
logs about the error.
"""
if alarm_name.startswith("loris-"):
return "platform/loris"
if alarm_name.startswith("catalogue-api-romulus"):
return "ecs/catalogue_api_gw-romulus"
if alarm_name.startswith("catalogue-api-remus"):
return "ecs/catalogue_api_gw-remus"
if alarm_name.startswith("lambda-") and alarm_name.endswith("-errors"):
# e.g. lambda-ecs_ec2_instance_tagger-errors
lambda_name = alarm_name[len("lambda-") : -len("-errors")]
return f"/aws/lambda/{lambda_name}"
raise ValueError(f"Unable to guess log group name for alarm name={alarm_name!r}") | 94822c16ce6c84b154be40581eb74e25e2cbe898 | 703,813 |
def update_attrs(orig, keys, override):
"""Utility function for altering and adding the specified attributes to a particular repository rule invocation.
This is used to make a rule reproducible.
Args:
orig: dict of actually set attributes (either explicitly or implicitly)
by a particular rule invocation
keys: complete set of attributes defined on this rule
override: dict of attributes to override or add to orig
Returns:
dict of attributes with the keys from override inserted/updated
"""
result = {}
for key in keys:
if getattr(orig, key) != None:
result[key] = getattr(orig, key)
result["name"] = orig.name
result.update(override)
return result | 82498f78604924c281da1fab372a871d5f224010 | 703,814 |
def get_mapped_to_elements(mapper):
"""
The mapper list contains all the element names that have been mapped to by
other elements
"""
mapper_list = []
for element in mapper:
for list_element in mapper[element]:
if list_element not in mapper_list:
mapper_list.append(list_element)
return mapper_list | 6f8d940997f4b871b6934db0592663448343e031 | 703,815 |
def normalization(data, dmin=0, dmax=1, save_centering=False):
"""
Normalization in [a, b] interval or with saving centering
x` = (b - a) * (xi - min(x)) / (max(x) - min(x)) + a
Args:
data (np.ndarray): data for normalization
dmin (float): left interval
dmax (float): right interval
save_centering (bool): if True -- will save data centering and just normalize by lowest data
Returns:
np.ndarray: normalized data
"""
# checking on errors
if dmin >= dmax:
raise Exception("Left interval 'dmin' must be fewer than right interval 'dmax'")
if save_centering:
return data / abs(min(data))
else:
min_x = min(data)
max_x = max(data)
return (data - min_x) * (dmax - dmin) / (max_x - min_x) + dmin | acfa7aaae1bb7eb5752751f5c929ddb7868ccf49 | 703,816 |
import os
def relpath(path: str, start: str = os.curdir) -> str:
"""Return a relative version of a path"""
try:
return os.path.relpath(path, start)
except ValueError:
return path | cd9daffa197a0443eb49ca515c805902eb404554 | 703,817 |
def named(name):
"""Change the name of something (via a decorator)."""
def decorator(obj):
obj.__name__ = name
return obj
return decorator | 5b4873e7e6475e23ab13cd1fc203d6c79622d96d | 703,818 |
def split_repo_and_dir(repo):
"""
Split the input string
org-name/repo-name/subdir-name/more/sub/dirs
(where '/subdir-name/more/sub/dirs' is optional) into
org-name/repo-name
and
subdir-name/more/sub/dirs
The second part might be the empty string if no subdir-name was given.
"""
parts = repo.split('/')
if len(parts) == 2:
return [repo, '']
return ['/'.join(parts[0:2]), '/'.join(parts[2:])] | c5cfb58fa0780af0391fc07fa78279af4f5c2790 | 703,819 |
def calculateOnlineVariance(data):
"""
Returns the variance of the given list.
:param data: A list of numbers to be measured (ie. the window)
:returns: The variance of the data.
"""
n, mean, M2 = 0, 0, 0
for x in data:
n = n + 1
delta = x - mean
mean = mean + delta/n
M2 = M2 + delta*(x-mean)
variance = M2/(n-1)
return variance | bf8d70cd736471e4723db07fb609aff6a7ccec50 | 703,820 |
def clamp(x, xmin, xmax):
"""Constrain a value to lie between two further values, element-wise.
The returned value is computed as `min(max(x, xmin), xmax)`.
The arguments can be scalars or :class:`~taichi.Matrix`,
as long as they can be broadcasted to a common shape.
Args:
x (:mod:`~taichi.types.primitive_types`, :class:`~taichi.Matrix`): Specify
the value to constrain.
y (:mod:`~taichi.types.primitive_types`, :class:`~taichi.Matrix`): Specify
the lower end of the range into which to constrain `x`.
a (:mod:`~taichi.types.primitive_types`, :class:`~taichi.Matrix`): Specify
the upper end of the range into which to constrain `x`.
Returns:
The value of `x` constrained to the range `xmin` to `xmax`.
Example::
>>> v = ti.Vector([0, 0.5, 1.0, 1.5])
>>> ti.clamp(v, 0.5, 1.0)
[0.5, 0.5, 1.0, 1.0]
>>> x = ti.Matrix([[0, 1], [-2, 2]], ti.f32)
>>> y = ti.Matrix([[1, 2], [1, 2]], ti.f32)
>>> ti.clamp(x, 0.5, y)
[[0.5, 1.0], [0.5, 2.0]]
"""
return min(xmax, max(xmin, x)) | 80b4ef6224031502cf444b86141398ba60c77bda | 703,821 |
def is_struct(struct):
""" Checks if the message is a data structure or an rpc
request/response"""
return (not struct.name.endswith("Request") and
not struct.name.endswith("Response")) | 0dbce36cad826988cc18d86a31b91f2090d5e338 | 703,822 |
import pandas as pd
from typing import Union
from pathlib import Path
import tarfile
def read_tarfile_csv(path: Union[str, Path], inner_path: str, sep: str = "\t", **kwargs):
"""Read an inner CSV file from a tar archive.
:param path: The path to the tar archive
:param inner_path: The path inside the tar archive to the dataframe
:param sep: The separator in the dataframe. Overrides Pandas default to use a tab.
:param kwargs: Additional kwargs to pass to :func:`pandas.read_csv`.
:return: A dataframe
:rtype: pandas.DataFrame
"""
with tarfile.open(path) as tar_file:
with tar_file.extractfile(inner_path) as file: # type: ignore
return pd.read_csv(file, sep=sep, **kwargs) | 24b3183da5787c095e78fc1bc7a1ed4e4012d6d2 | 703,823 |
def get_enum_map(mri, name):
""" Returns enum value to name and name to enum value map.
@param mri mri instance
@param name name of enum """
ret = {}
tdm = mri.engine.tdm
n = len(name) + 1
roles = tdm.getByHierarchicalName(name)
constants = roles.getConstants()
for c in constants:
_name = c.getName()
v = c.getConstantValue()
ret[_name[n:]] = v
ret[v] = _name[n:]
return ret | e781790c7e7f5a24e12fb986e2e45d735157a7b6 | 703,824 |
def zfill_to_collection_size(index: int, collection_size: int) -> str:
"""
Prepends amount of zeroes required for indexes to be string-sortable in terms of given collection size.
Examples:
for 10 items prepends up to 1 zero: 1 -> "01", 10 -> "10"
for 100 items prepends up to 2 zeroes: 7 -> "007", "13" -> "013"
"""
positions = len(str(collection_size))
return str(index).zfill(positions) | df086ba9c4485dd0073c9a9b4485cb0c0d423859 | 703,825 |
def partition(predicate, values):
"""
Splits the values into two sets, based on the return value of the function
(True/False). e.g.:
>>> partition(lambda x: x > 3, range(5))
[0, 1, 2, 3], [4]
"""
results = ([], [])
for item in values:
results[predicate(item)].append(item)
return results | 27184fd908ab2d214db86b612e2e5cbec9393a07 | 703,826 |
def _parse_exclude_images_commands(commands, experiments, reflections):
"""Parse a list of list of command line options.
e.g. commands = [['1:101:200'], ['0:201:300']]
or commands = [[101:200]] allowable for a single experiment.
builds and returns a list of tuples (exp_id, (start, stop))
"""
ranges_to_remove = []
for com in commands:
vals = com[0].split(":")
if len(vals) == 2:
if len(experiments) > 1:
raise ValueError(
"Exclude images must be in the form experimentnumber:start:stop for multiple experiments"
)
else:
ranges_to_remove.append(
(experiments[0].identifier, (int(vals[0]), int(vals[1])))
)
else:
if len(vals) != 3:
raise ValueError(
"Exclude images must be input in the form experimentnumber:start:stop, or start:stop for a single experiment"
)
dataset_id = int(vals[0])
for table in reflections:
if dataset_id in table.experiment_identifiers():
expid = table.experiment_identifiers()[dataset_id]
ranges_to_remove.append((expid, (int(vals[1]), int(vals[2]))))
break
return ranges_to_remove | e1decbcce826d1fe32a9b5c98b745f43e754a3b4 | 703,827 |
def cmd_issuer_hash(cert):
"""Returns hash of certificate issuer.
"""
return cert.get_issuer().hash() | d35d35c39ba9c33c5b0015bb9f4d4ddf433cd71d | 703,829 |
def strip_c(buf, dia):
"""This is the ugliest python function I've ever written and I'm ashamed
that it exists. Can you tell that it's an almost line for line translation
of a C program? The two embedded functions were macros.
"""
pos = bytes(buf, 'ascii', errors='replace')
single_q = double_q = slash = escape = skip = False
space = 0
buf = bytearray(len(pos) + 1)
buf[0] = ord(b' ')
i, x = 0, 1
def check_quote(tocheck, other):
nonlocal skip, escape
if not other:
if tocheck:
if not escape:
tocheck = False
skip = True
else:
tocheck = True
return tocheck, other
def QUOTE():
nonlocal double_q, single_q
return double_q or single_q
while i < len(pos):
ch = chr(pos[i])
if ch == '/':
if not QUOTE():
if slash:
x -= 1
end = i + pos[i:].find(b'\n')
if end < 0:
dia.error("Failed to find end of comment")
return
while pos[end - 1] == '\\':
end = pos[end+1:].find(b'\n')
i = end
if chr(buf[x-1]) == '\n':
skip = True
else:
slash = True
elif ch == '*':
if not QUOTE() and slash:
x -= 1
end = i + pos[i:].find(b'*/')
if end < 0:
dia.error("Failed to find end of comment")
return
i = end + 2
try:
ch = chr(pos[i])
except IndexError:
break
if ch == '\n' and chr(buf[x-1]) == '\n':
skip = True
slash = False
elif ch == '\n':
if not escape:
slash = double_q = False
if (chr(buf[x-1]) == '\n'):
skip = True
elif ch == '#':
slash = False
endln = i + pos[i+1:].find(b'\n')
if chr(buf[x-1]) == '\n' and endln > 0:
tmp = i + 1
if chr(pos[i+1]).isspace():
while chr(pos[tmp]).isspace() and tmp < endln:
tmp += 1
thing = bytes(pos[tmp:tmp + 7])
if thing == b'include':
i = endln + 2
continue
elif ch == '\\':
pass
elif ch == '"':
double_q, single_q = check_quote(double_q, single_q)
slash = False
elif ch == "'":
single_q, double_q = check_quote(single_q, double_q)
slash = False
else:
slash = False
escape = not escape if (ch == '\\') else False
skip = True if (skip) else (ch.isspace() and chr(buf[x-1]) == '\n')
space = space + 1 if (ch.isspace() and not skip) else 0
if skip:
skip = False
elif not QUOTE() and space < 2:
buf[x] = ord(ch)
x += 1
i += 1
return bytes(buf[:x]) | 0d23d9826fdbba09b06d3a866d54bcda13d43509 | 703,830 |
def map_bool(to_bool) -> bool:
"""Maps value to boolean from a string.
Parameters
----------
to_bool: str
Value to be converted to boolean.
Returns
-------
mapped_bool: bool
Boolean value converted from string.
Example
-------
>>> boolean_string = "True" # can also be lower case
>>> boolean_value = map_bool(boolean_string)
"""
try:
boolean_map = {"true": True, "false": False}
mapped_bool = boolean_map[to_bool.lower()]
except KeyError:
raise KeyError("Boolean Value Expected got '{}'".format(to_bool))
return mapped_bool | 4e3bb175f653174a56cb6ddc72ba7bcc56755826 | 703,831 |
def fmt_val(val, shorten=True):
"""Format a value for inclusion in an
informative text string.
"""
val = repr(val)
max = 50
if shorten:
if len(val) > max:
close = val[-1]
val = val[0:max-4] + "..."
if close in (">", "'", '"', ']', '}', ')'):
val = val + close
return val | c8a10f187d971f8b3f4222549375642b6c12a6a6 | 703,832 |
def generate_ranklist(data, rerank_lists):
"""
Create a reranked lists based on the data and rerank documents ids.
Args:
data: (Raw_data) the dataset that contains the raw data
rerank_lists: (list<list<int>>) a list of rerank list in which each
element represents the original rank of the documents
in the initial list.
Returns:
qid_list_map: (map<list<int>>) a map of qid with the reranked document id list.
"""
if len(rerank_lists) != len(data.initial_list):
raise ValueError("The number of queries in rerank ranklists number must be equal to the initial list,"
" %d != %d." % (len(rerank_lists)), len(data.initial_list))
qid_list_map = {}
for i in range(len(data.qids)):
if len(rerank_lists[i]) != len(data.initial_list[i]):
raise ValueError("The number of docs in each rerank ranklists must be equal to the initial list,"
" %d != %d." % (len(rerank_lists[i]), len(data.initial_list[i])))
# remove duplicated docs and organize rerank list
index_list = []
index_set = set()
for idx in rerank_lists[i]:
if idx not in index_set:
index_set.add(idx)
index_list.append(idx)
# doc idxs that haven't been observed in the rerank list will be put at
# the end of the list
for idx in range(len(rerank_lists[i])):
if idx not in index_set:
index_list.append(idx)
# get new ranking list
qid = data.qids[i]
did_list = []
new_list = [data.initial_list[i][idx] for idx in index_list]
# remove padding documents
for ni in new_list:
if ni >= 0:
did_list.append(data.dids[ni])
qid_list_map[qid] = did_list
return qid_list_map | 3ad3431efff6a7ad81b649a8654d5ec30184de74 | 703,833 |
def desktop_extra_assigner(self, user):
"""Assign the extra packages name of the selected desktop.
Arguments
---------
user: "Dictionary containing user's answers"
Returns
-------
"String containing question for the desktop extras"
"""
choice = ['Gnome extra',
'KDE applications',
'Deepin extra',
'Mate extra',
'XFCE goodies']
question = self.trad('Do you wish to install {extra}').format(
extra=choice[user['desktop']])
return question | 529910c70e7dfd83ab58a4937668d35607457271 | 703,834 |
def str_or_list_like(x):
"""Determine if x is list-list (list, tuple) using duck-typing.
Here is a set of Attributes for different classes
| x | type(x) | x.strip | x.__getitem__ | x.__iter__ |
| aa | <class 'str'> | True | True | True |
| ['a', 'b'] | <class 'list'> | False | True | True |
| ('a', 'b') | <class 'tuple'> | False | True | True |
| {'b', 'a'} | <class 'set'> | False | False | True |
| {'a': 1, 'b': 2} | <class 'dict'> | False | True | True |
"""
if hasattr(x, "strip"):
return "str"
elif hasattr(x, "__getitem__") or hasattr(x, "__iter__"):
return "list_like"
else:
return "others" | 5ea7a6ff90f702c766401d0a973ac02347c66ade | 703,835 |
def readlist(infile):
"""Read each row of file as an element of the list"""
with open(infile, 'r') as f:
list_of_rows = [r for r in f.readlines()]
return list_of_rows | 50ea79f3c64e5e90a0f8b3bfd4cd8108304d57b2 | 703,836 |
def read_popularity(path):
"""
:param path: a path of popularity file. A file contains '<id>,<rank>' rows.
:return: a set of popularity object ids
"""
ids = set()
for line in open(path):
try:
ident = int(line.split(",", maxsplit=1)[0])
except (AttributeError, IndexError):
continue
ids.add(ident)
return ids | a97f20b129bd7849a4bf9a91d40c23ad664b500b | 703,837 |
def classify(tree, input):
"""classify the input using the given decision tree"""
# if this is a leaf node, return its value
if tree in [True, False]:
return tree
# otherwise find the correct subtree
attribute, subtree_dict = tree
subtree_key = input.get(attribute) # None if input is missing attribute
if subtree_key not in subtree_dict: # if no subtree for key,
subtree_key = None # we'll use the None subtree
subtree = subtree_dict[subtree_key] # choose the appropriate subtree
return classify(subtree, input) | 66b7558ac8658aa83b1796c17a637daa5a2309bb | 703,838 |
import string
def names_to_usernames(names):
"""
Take the given list of names and convert it to usernames.
"John Doe" -> "john.doe"
Each name is stripped before conversion, then split by spaces.
If the name contains anything except letters and spaces,
raise an exception.
If duplicate names or invalid characters are found, raise an exception.
"""
allowed_chars = set(string.ascii_letters + " ")
usernames = set()
for name in names:
name = name.strip()
# Empty or comment.
if not name or name.startswith("#"):
continue
# Illegal characters.
if not set(name).issubset(allowed_chars):
raise Exception("Invalid characters found: %s" % name)
name_parts = name.lower().split()
# Invalid name format (expected full name).
if len(name_parts) <= 1:
raise Exception("Too few parts: %s" % name_parts)
# Convert to username.
username = ".".join(name_parts)
if username in usernames:
raise Exception("Duplicate: %s" % username)
usernames.add(username)
return list(usernames) | 0156f8402541e64dc1ed2b62d21bfcfbda55f167 | 703,839 |
def vessel_tip_coupling_data_to_str(data_list):
"""A list of vessel tip data elements is converted into a string."""
s = []
for v in data_list:
s.append('VesselTipData(')
s.append(' p = Point(x={}, y={}, z={}),'.format(v.p.x, v.p.y, v.p.z))
s.append(' vertex_id = {},'.format(v.vertex_id))
s.append(' pressure = {},'.format(v.pressure))
s.append(' concentration = {},'.format(v.concentration))
s.append(' R2 = {},'.format(v.R2))
s.append(' radius_first = {},'.format(v.radius_first))
s.append(' radius_last = {},'.format(v.radius_last))
s.append(' level = {}'.format(v.level))
s.append('),')
return '\n'.join(s) | 6768afa9497e5343bc20736a963d81c7ec298867 | 703,840 |
import re
def price_quantity_us_number(price):
"""Extract the numeric quantity of the price,
assuming the number uses dot for decimal and comma for thousands, etc."""
p = re.sub('[^0-9.]', '', price.strip())
return p | 9e35d8096bd3edfe80b6fae6ab0641107828a50b | 703,841 |
import typing
import re
def build_global_regexes() -> typing.Dict[str, typing.Pattern]:
"""
Returns a list where each element is a tuple of
``(label, possible_regexes)``.
"""
nums = r'-?\d+'
ip_atom = r'(({0})|({0}:)|(:{0})|({0}:{0})|({0}-{0})|(:))?'.format(nums)
ip = r'^{0}(,{0})*$'.format(ip_atom)
ip_qform = r'^\[{0}(,{0})*\]$'.format(ip_atom)
sp = r'^{0}(,{0})*$'.format(ip_qform[1:-1])
return {
'ip': re.compile(ip), # unquoted form only, quoted form is-a sp
'sp': re.compile(sp),
} | 43ce3ef0b0bdd6afee39e1cb710272eab859e123 | 703,842 |
def _ratio_sample_rate(ratio):
"""
:param ratio: geodesic distance ratio to Euclid distance
:return: value between 0.008 and 0.144 for ration 1 and 1.1
"""
return 20 * (ratio - 0.98) ** 2 | 1cd2989937a992e2f558b01be6fadebc66c50782 | 703,843 |
from typing import Counter
def trip_finder(hand):
"""
Takes a 5-card hand, concats, only takes ranks
If we get 3 of a kind only, returns list:
[6, trip rank, 0, 0, 0, 0]
"""
cards = ''.join(hand)[::2]
if Counter(cards).most_common(1)[0][1] == 3:
if Counter(cards).most_common(2)[1][1] == 1:
return [6, Counter(cards).most_common(1)[0][0], 0, 0, 0, 0]
else:
return [0, 0, 0, 0, 0, 0]
else:
return [0, 0, 0, 0, 0, 0] | 42281d141bdb41e0c745610257cc4376a6262d64 | 703,844 |
def beale(position):
"""
optimum at (3.0, 0.5) = 0
:param position:
:return:
"""
x, y = position
return (1.5 - x + x * y) ** 2 + (2.25 - x + x * y ** 2) ** 2 + (2.625 - x + x * y ** 3) ** 2 | bb5bc6d50b793155f81fdd75f8a1be8889ab7839 | 703,846 |
def naive_log_ctz(x: int) -> int:
"""Count trailing zeros, in a O(log(zeros)) steps.
Args:
x: An int.
Returns:
The number of trailing zeros in x, as an int.
This implementation is much faster than the naive linear implementation,
as it performs a logarithmic number of steps relative to the number of
trailing zeros in x. Unlike the linear implementation, this one avoids
looking at the high bits of x if it can, so it only returns the number
of zeros, not the remaining significant bits of x.
We still say this implementation is "naive" because it does not try
to use any specific optimization tricks besides the logarithmic algorithm.
>>> naive_log_ctz(0)
0
>>> naive_log_ctz(1)
0
>>> naive_log_ctz(-1)
0
>>> naive_log_ctz(2)
1
>>> naive_log_ctz(-2)
1
>>> naive_log_ctz(40) # 0b101000 = 2**3 * 5
3
>>> naive_log_ctz(-40) # 0b1..1011000
3
>>> naive_log_ctz(37 << 100)
100
# Of course the behavior should match for all integers...
>>> all(naive_ctz2(x)[0] == naive_log_ctz(x) for x in range(1024))
True
"""
if x == 0:
return 0
else:
zmask = 1
zscale = 1
low_bits = x & zmask
while low_bits == 0:
zmask = (zmask << zscale) | zmask
zscale <<= 1
low_bits = x & zmask
zscale >>= 1
zmask >>= zscale
zeros : int = 0
while zscale > 0:
if low_bits & zmask == 0:
low_bits >>= zscale
zeros += zscale
zscale >>= 1
zmask >>= zscale
return zeros | dfa4c0fb890bbb13803c653a3f7f65b25bb3158f | 703,847 |
def create_header(multiobj_bool, constr_func):
""" Creates header to save data.
Args:
multiobj_bool (:obj:`bool`): True if multiobjective function is used.
constr_func (:obj:`list`) : Constraint functions applied.
Returns:
Header.
"""
if multiobj_bool:
header = "iter,f0val,fvirg,f0val2,fvirg2"
else:
header = "iter,f0val,fvirg"
for func in constr_func:
header += ',' + func
return header | 519e66c8437f972cd3ad6d604bc01ab858c8abed | 703,848 |
def colour_by_year(year, train_thresh, update1_thresh, update2_thresh, colours=None):
"""
Assign/return a colour depending on the year the data point was published.
Parameters
----------
year :
publication year of data point
train_thresh :
Last year threshold to assign to training set
update1_thresh :
Last year threshold to assign to update1 set
update2_thresh :
Last year threshold to assign to update2 set
colours :
List of colours for training, update1, update2 and test set
Returns
-------
Colour based on the publication year
"""
if colours is None:
colours = ["navy", "plum", "mediumaquamarine", "green"]
if year <= train_thresh:
return colours[0]
elif year <= update1_thresh:
return colours[1]
elif year <= update2_thresh:
return colours[2]
elif year <= 2020:
return colours[3] | 179b4a5d7f8cccaaa398fdffe43c59d02478dff2 | 703,849 |
def as_int(val):
"""
Tries to convert a string to an int.
Returns None if string is empty
"""
try:
return(int(val))
except ValueError:
return(None) | 87586fbc47c37354e34d10116b86d013a98d20b9 | 703,850 |
def get_value(obj, key, default=None):
"""
Returns dictionary item value by name for dictionary objects or property value by name for other types.
Also list of lists obj is supported.
:param obj: dict or object
:param key: dict item or property name
:param default: default value
:return:
"""
if isinstance(obj, dict):
return obj.get(key, default)
elif hasattr(obj, '__iter__'):
for item in obj:
if hasattr(obj, '__iter__') and len(item) > 1 and item[0] == key:
return item[1]
return default
else:
return getattr(obj, key, default) | 5885fa5ae944fd6967c21b97cd7955a94ad0dce2 | 703,851 |
def validate_edges(g, max_kmph=200):
"""
Make sure all edges can possibly be traversed with reasonable speed
"""
good_edges, bad_edges = [], []
for u, v, data in g.edges(data=True):
dur, dist_km = data.get("duration"), data.get("distance")
# Distances < 1km are not precise enough
if None in [dur, dist_km] or dist_km < 1.0:
good_edges.append((u, v))
continue
# At least one minute
dur_hrs = max(abs(dur.total_seconds()), 60) / 60.0 / 60.0
# Consider bad edge if train speed would have to be faster than max_kmph to pass edge
# print("Required speed: %f (%f km in %f hrs)" % (dist_km/dur_hrs, dist_km, dur_hrs))
if dist_km / dur_hrs > max_kmph:
bad_edges.append((u, v))
else:
good_edges.append((u, v))
return good_edges, bad_edges | 3d0b176f1de7fd7e81a72c44b9d3775f6daaa17c | 703,852 |
import pathlib
from typing import List
def _write_dataset_files(
root_path: pathlib.Path, namespace: str, datasets: List[str]
) -> str:
"""Write the repo content containing the datasets."""
repo_path = root_path / namespace
# Create all datasets
for ds_name in datasets:
ds_path = repo_path / ds_name / f'{ds_name}.py'
ds_path.parent.mkdir(parents=True) # Create the containing dir
ds_path.touch() # Create the file
# Additional noisy files should be ignored
(repo_path / '__init__.py').touch()
(repo_path / 'empty_dir').mkdir()
return str(repo_path) | 49baafff58a08802830208382180ce32d8aaf8c0 | 703,853 |
import argparse
import sys
def _parse_arguments() -> argparse.Namespace:
"""Plot argument parser.
"""
parser = argparse.ArgumentParser(description="Plot")
parser.add_argument(
"--inputs",
type=str,
required=True,
help=
"comma-separated list of input data filenames (e.g., --input input1,input2)\n"
+ "The data for multiple files is concatenated into a single graph.")
parser.add_argument("--output",
type=str,
required=True,
help="output plot filename (e.g., --output output)")
parser.add_argument("--plot_name",
type=str,
required=True,
help="plot name (e.g., --plot_name name)")
parser.add_argument("--print_available_benchmarks",
type=bool,
required=False,
help="print the existing list of benchmarks in the data")
parser.add_argument("--benchmarks_to_plot",
type=str,
required=False,
help="comma-separated names of benchmarks to plot",
default='all')
parser.add_argument("--sizes_to_plot",
type=str,
required=False,
help="semicolon-separated lost of problem sizes to plot "
"(e.g., --sizes_to_plot=\"m=32,n=48;m=90,n=32\")",
default='all')
parser.add_argument("--num_sizes_to_plot",
type=int,
required=False,
help="sample the given number of problem sizes to plot",
default=-1)
parser.add_argument("--metric_to_plot",
type=str,
required=True,
choices=["gflop_per_s_per_iter", "gbyte_per_s_per_iter"])
parser.add_argument("--group_by_strides_and_dilations",
type=bool,
required=False,
help="plot separate bars for strides and dilations")
###############################################################################
# Not used atm
###############################################################################
parser.add_argument("--peak_compute",
type=int,
nargs="?",
help="peak compute (e.g., --peak_compute 192)",
default=192)
parser.add_argument("--peak_bandwidth_hi",\
type=int,
nargs="?",
help="high peak bandwidth (e.g., --peak_bandwidth_hi 281)",
default=281)
parser.add_argument("--peak_bandwidth_lo",
type=int,
nargs="?",
help="low peak bandwidth (e.g., -peak_bandwidth_lo 281)",
default=281)
return parser.parse_args(sys.argv[1:]) | f69c69040d9003e32b27e3195218cad06c807e69 | 703,854 |
import json
def transform_group_roles_data(data, okta_org_id):
"""
Transform user role data
:param data: data returned by Okta server
:param okta_org_id: okta organization id
:return: Array of dictionary containing role properties
"""
role_data = json.loads(data)
user_roles = []
for role in role_data:
role_props = {}
role_props["label"] = role["label"]
role_props["type"] = role["type"]
role_props["id"] = "{}-{}".format(okta_org_id, role["type"])
user_roles.append(role_props)
return user_roles | ea554dfb4e91e3647298a2ef0891452e423ff957 | 703,855 |
def IsProjectAddressOnToLine(project_addr, to_addrs):
"""Return True if an email was explicitly sent directly to us."""
return project_addr in to_addrs | 7907bbb313b3e6d8439af79539e469b04a62da63 | 703,856 |
def is_list(string):
"""
Checks to see if a string contains a list in the form [A, B]
:param string: string to evaluate
:return: Boolean
"""
if string:
if '[' == string[0] and ']' == string[-1] and ',' in string:
return True
return False | 77b86e7480a2a591e18ea21989cfefa06282c5f2 | 703,857 |
import string
import random
def get_random_mac_address():
"""Generate and return a MAC address in the format of WINDOWS"""
# get the hexdigits uppercased
uppercased_hexdigits = ''.join(set(string.hexdigits.upper()))
# 2nd character must be 2, 4, A, or E
return random.choice(uppercased_hexdigits) + random.choice("24AE") + "".join(random.sample(uppercased_hexdigits, k=10)) | 171eaca1df7b35def0d09a2ac1bc2e96163a3ceb | 703,858 |
def isChinese(word):
"""判断是否为中文"""
for uchar in word:
if not '\u4e00' <= uchar <= '\u9fa5': # 遇到非中文
return False
return True | 464f87a2211f6e3d2f00a9a2bf12d0669cd297ec | 703,859 |
def entries_to_labels_scores(entries):
"""
Convert entries to labels and scores for barplot.
NOTE The labels only exist to discern entries: the actual labels are
set in set_label_legends.
"""
nicknames = [entry['algo-nickname'] for entry in entries]
scores = []
colors = []
for entry in entries:
# Special color for 'Human' and 'Random'
if entry['algo-title'] == 'Human':
color = 'red'
elif entry['algo-title'] == 'Random':
color = 'black'
else:
color = 'darkblue'
scores.append(entry['score'])
colors.append(color)
return list(range(len(scores))), scores, colors | 31c42ffa820d09bfbfb437904884c354f6fec257 | 703,861 |
import re
def _natural_key(x):
""" Splits a string into characters and digits. This helps in sorting file
names in a 'natural' way.
"""
return [int(c) if c.isdigit() else c.lower() for c in re.split("(\d+)", x)] | 1fab7dffb9765b20f77ab759e43a23325b4441f4 | 703,863 |
import os
def find_file(directory: str, search_file: str) -> str:
"""Finds relative path of file in given directory and its subdirectories.
Args:
directory (str): Directory to search in.
search_file (str): File to search in directory.
Returns:
str: Path to file.
"""
paths = []
for root, _, files in os.walk(directory):
for file in files:
if file.lower().endswith(search_file.lower()):
paths.append(os.path.join(root, file))
if not paths:
return ""
paths = [ele for ele in paths if ".test" not in ele]
shortest_path = min(paths, key=len)
relative_path = shortest_path.replace(directory, "").strip("/")
return relative_path | 4f272ab643d8b271d01cd38041e1e003e3171224 | 703,864 |
from typing import Tuple
import math
def _projected_velocities_from_cog(beta: float, cog_speed: float) -> Tuple[float, float]:
"""
Computes the projected velocities at the rear axle using the Bicycle kinematic model using COG data
:param beta: [rad] the angle from rear axle to COG at instantaneous center of rotation
:param cog_speed: [m/s] Magnitude of velocity vector at COG
:return: Tuple with longitudinal and lateral velocities [m/s] at the rear axle
"""
# This gives COG longitudinal, which is the same as rear axle
rear_axle_forward_velocity = math.cos(beta) * cog_speed # [m/s]
# Lateral velocity is zero, by model assumption
rear_axle_lateral_velocity = 0
return rear_axle_forward_velocity, rear_axle_lateral_velocity | defbfa58d1e67b67ff4a118ebff03e62f4c1042c | 703,865 |
def quality_scrub(df, target_cols = ['quality_1', 'quality_2', 'quality_3']):
"""
Definition:
Filters a dataframe where each target_col does not contain 'no_cough'
Args:
df: Required. A dataframe containing the target columns
target_cols: default = ['quality_1', 'quality_2', 'quality_3'].
Returns:
Returns a filtered dataframe where each target_col does not contain 'no_cough'
"""
for col in target_cols:
df = df[df[col] != 'no_cough']
return df | 1187278e008f1e4ec4688d3cf9a3d7a0c1a82dc0 | 703,867 |
import subprocess
import os
def simple_shell(args, stdout=False):
""" Simple Subprocess Shell Helper Function """
if stdout:
rc = subprocess.call(args, shell=False)
else:
rc = subprocess.call(args, shell=False, stdout=open(os.devnull, "w"), stderr=subprocess.STDOUT)
return rc | b922e35565a5da58cec153415b9112e560de6c73 | 703,868 |
def print_decorator(fct):
"""dento dekorator pouzivam, na to aby som dokazal testovat aj vypisy na standardny vystup"""
original_fct = fct
output = []
def wrapper(*args):
output.append((args))
return original_fct(*args)
return wrapper | 4fa74cf9bf3653f89114cbdd6503ef13630a17e7 | 703,869 |
def remodel_matrix(matrix, new_fire_cells, moisture_matrix):
"""
matrix: Array of the fire spread area
new_fire_cells: list of tuples, each tuple representing the x,y coordinates
of a new cell that has been affected by the fire spread.
"""
for cell in new_fire_cells:
x = int(cell[0])
y = int(cell[1])
matrix[x][y] = 0.5*(moisture_matrix[x][y])
return matrix | c24c8fae19e0a8bb884103191906e76af625430f | 703,870 |
import csv
def get_author_book_publisher_data(filepath):
"""
This function gets the data from the csv file
"""
with open(filepath) as csvfile:
csv_reader = csv.DictReader(csvfile)
data = [row for row in csv_reader]
return data | 5d095b20e2e32aacbe4d85efd80461abfa175127 | 703,871 |
import pandas
def _normalize_similarity(df: pandas.DataFrame) -> None:
"""Normalizes similarity by combining cls and transformation."""
df["params.similarity"] = (df["params.similarity.cls"] + "_" + df["params.similarity.transformation"])
# transformation only active if similarity in {l1, 2}
unused_transformation_mask = ~(df["params.similarity"].str.startswith("l1_") | df["params.similarity"].str.startswith("l2_"))
df.loc[unused_transformation_mask, "params.similarity"] = df.loc[unused_transformation_mask, "params.similarity"].apply(lambda v: v.replace("_bound_inverse", "").replace("_negative", ""))
def _normalize(name):
name = name.split("_")
if len(name) == 1:
return name[0]
else:
return f"{name[0]} ({' '.join(name[1:])})"
df["params.similarity"] = df["params.similarity"].apply(_normalize) | 048c1a7107cf61c20ebc7d2e10214c434898466e | 703,872 |
from typing import List
def check_absence_of_skip_series(
movement: int,
past_movements: List[int],
max_n_skips: int = 2,
**kwargs
) -> bool:
"""
Check that there are no long series of skips.
:param movement:
melodic interval (in scale degrees) for line continuation
:param past_movements:
list of past movements
:param max_n_skips:
maximum allowed number of skips in a row
:return:
indicator whether a continuation is in accordance with the rule
"""
if abs(movement) <= 1:
return True
if len(past_movements) < max_n_skips:
return True
only_skips = all(abs(x) > 1 for x in past_movements[-max_n_skips:])
return not only_skips | 94ff2f3e03956d5bea1173182e389a3e6bb4b487 | 703,873 |
def yesno_choice(title, callback_yes=None, callback_no=None):
"""
Display a choice to the user. The corresponding callback will be called in case of
affermative or negative answers.
:param title: text to display (e.g.: 'Do you want to go to Copenaghen?' )
:param callback_yes: callback function to be called in case of 'y' answer
:param callback_no: callback function to be called in case of 'n' answer
Return the callback result
"""
print()
print(f'{title} (y/n)')
valid_inp = ['y', 'n']
while (True):
inp = input()
if inp in valid_inp:
if inp == 'y':
if callable(callback_yes):
return callback_yes()
else:
return 'y'
elif inp == 'n':
if callable(callback_no):
return callback_no()
else:
return 'n'
else:
print('Wrong choice buddy ;) Retry:') | 93b76a3c7740b90dd01bd46ed429411991f3f34d | 703,875 |
def wrap_col(string, str_length=11):
"""
String wrap
"""
if [x for x in string.split(' ') if len(x) > 25]:
parts = [string[i:i + str_length].strip() for i in range(0, len(string), str_length)]
return ('\n'.join(parts) + '\n')
else:
return (string) | 7b5cdf37cb84a2d2ebbc421ea917fc563026927e | 703,876 |
def combine_results_jsons(drtdp_json, psrtdp_json, vi_json):
"""
takes overall results jsons and combines them to one json
:param drtdp_json a json for drtdp overall results
:param psrtdp_json a json for ps-rtdp overall results
:param vi_json a json for value iteration overall results
:return combined json
"""
vi_cost = vi_json['best_cost'] if 'best_cost' in vi_json else None
vi_time = '{0:.3f}'.format(vi_json['planning_time']) if 'planning_time' in vi_json else None
return {
"domain": drtdp_json['domain'],
"actions": drtdp_json['actions'],
"facts": drtdp_json['facts'],
"num_agents": drtdp_json['num_agents'],
"best_cost": (drtdp_json['best_cost'], psrtdp_json['best_cost'], vi_cost),
"messages": ('{0:.3f}'.format(drtdp_json['messages']/10000),
'{0:.3f}'.format(psrtdp_json['messages']/10000)),
"expansions": ('{0:.3f}'.format(drtdp_json['expansions']/10000),
'{0:.3f}'.format(psrtdp_json['expansions']/10000)),
"trajectories": (drtdp_json['trajectories'], psrtdp_json['trajectories']),
"restarts": (drtdp_json['restarts'], psrtdp_json['restarts']),
"planning_time": ('{0:.3f}'.format(drtdp_json['planning_time']),
'{0:.3f}'.format(psrtdp_json['planning_time']),
vi_time)
} | a2bedf628e2af91af2c16111cd33600ade7e435e | 703,877 |
import os
def get_list_of_all_data_file_names(datadirectory):
"""
Return list of all data files (.txt) in specified directory
"""
print('get_list_of_all_data_file_names', datadirectory)
list_of_files = []
for file in os.listdir(datadirectory):
if file.endswith('txt'):
list_of_files.append(file)
return list_of_files | 35dd02acdc492d1d38e9cedbe154f2754706e25b | 703,878 |
from unittest.mock import Mock
def mock_data_manager(components):
"""Return a mock data manager of a general model."""
dm = Mock()
dm.components = components
dm.fixed_components = []
return dm | e796dbe73e2ec7df650ceab450a3a5449a6af9ed | 703,879 |
def moeda(n=0):
"""
-> Formata um número como moeda
:param n: número
:return: número formatado
"""
return f'R$ {n:.2f}' | 3727a2257afe8746d6ef2b3c8ee088842c46c5ce | 703,880 |
from functools import wraps
def flow(flow):
"""Decorator:
decorator = flow(flow)
The decorator then transforms a method:
method = decorator(method)
so that the "flow" kwarg is set the argument to the decorator.
A nonsense value of "flow" will raise and Exception in
Componenet.__select_flow
"""
## flow(flow) returns this (that's the python decorator protocal)
def decorator(method):
## The decorator returns the method with the flow keyword set;
## @wraps makes the docstring and __name__
@wraps(method)
def method_with_flow(self, *args, **kwargs):
kwargs["flow"] = flow
return method(self)(*args, **kwargs)
return method_with_flow
return decorator | 24292de3d0f63ca6eafc9785db4c5bfa5519852f | 703,881 |
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.