content
stringlengths 35
416k
| sha1
stringlengths 40
40
| id
int64 0
710k
|
---|---|---|
def get_table_13():
"""表 13 玄関ポーチに設置された照明設備の人感センサーによる補正係数
Args:
Returns:
list: 表 13 玄関ポーチに設置された照明設備の人感センサーによる補正係数
"""
table_13 = (0.9, 1.0)
return table_13 | 91a89343800ad5e3c587371c91e7d256d9ed85a1 | 703,429 |
def find_left_anchor_index(fragment_info, fragments):
"""
Description:
Use the fragment information to find which fragment is the left anchor
:param fragment_info: [list[dict]] the list of fragment information
:param fragments: [list] the list of fragments being searched
:return: left_anchor_index: [int] the index location in the fragment list for the left anchor fragment
"""
for info in fragment_info:
if len(info['left_matches']) == 0:
left_anchor_index = fragments.index(info['anchor'])
return left_anchor_index | 502473f7fee00a5ccd1ed3d6cf5c938e8c4d2041 | 703,430 |
def get_all_preconditions(action_set):
"""
Returns a set of all preconditions for the actions in the given set
"""
all_precons = set()
for a in action_set:
all_precons.update(a.precondition)
return all_precons | 1697c2d013b07bbfc24ca6273d16523eb1d83acf | 703,431 |
def f_line(x, m, b):
"""
Line fit with equation y = mx + b
Parameters
----------
x : array
x values
m : float
slope
b : float
y-intercept
Returns
-------
y : array
y values
"""
y = m*x + b
return y | daf437461c2e8723a824e4083794d1f6ea6b368b | 703,432 |
def getDistance(sensor):
"""
Return the distance of an obstacle for a sensor.
The value returned by the getValue() method of the distance sensors
corresponds to a physical value (here we have a sonar, so it is the
strength of the sonar ray). This function makes a conversion to a
distance value in meters.
"""
return ((1000 - sensor.getValue()) / 1000) * 5 | d00b1d201fb59939d2b8a2e57bfa35588780b6d5 | 703,433 |
def update_individual_metadata(ts):
"""Update individual metadata in ts object.
Returns new list of individuals with updated metadata
"""
individuals = []
oldname = None
i = 0
for ind in ts.individuals():
popindex = ts.nodes()[ind.nodes[0]].population
popname = ts.population(popindex).metadata["name"]
if oldname is not None and oldname != popname:
i = 0
oldname = popname
name = f"tsk_{ind.id}_{popname}_{i}"
md = {
"id": ind.id,
"tskit_id": f"tsk_{ind.id}",
"name": name,
"popname": popname,
"ind_index": i,
"population": ts.population(popindex),
"description": (
f"tskit_individual:tsk_{ind.id}, name:{name}, "
f"population:{ts.population(popindex)}"
),
"is_reference": False,
}
md["vcfheader"] = (
f"##<SAMPLE=<ID={md['tskit_id']},Name={md['name']},"
f"Index={md['id']},Population={md['popname']},"
f"Description=\"{md['population'].metadata['description']}\">"
)
newind = ind.replace(metadata=md)
individuals.append(newind)
i = i + 1
return individuals | 4cfaf24fc4e68203e8206163fcb0686ac9fd9692 | 703,434 |
import platform
def mysql_config_path():
"""
根据平台查询mysql配置文件
:return:
"""
_platform = platform.system()
print('当前平台为:{}'.format(_platform))
mysql_config = None
if _platform == 'Darwin':
mysql_config = "/Users/yuxiang/Documents/Developer/WeChat/baixiaotu-mini/sqlconfig.json"
elif _platform == 'Linux':
mysql_config = "/root/swift/baixiaotu.json"
else:
print('请设置mysql配置文件路径')
print(mysql_config)
return mysql_config | c24632e4262ea1cfb903492b5d261a8cd5cbcd8e | 703,435 |
import numpy
def index_to_position(index, nelx, nely):
"""
Convert the index of a element to the centroid of the element
"""
return numpy.array([(index % nelx)+.5, index/nelx+.5]) | 1402251581df9e346097dbd561ef5f782f18da1e | 703,436 |
import os
def get_api_key(api_file):
""" Return an API key from the user's home directory """
with open('{_home}/.{_api_file}'.format(_home = os.path.expanduser('~'),
_api_file = api_file)) as f:
return f.read().replace('\n', '') | 0819cfe693478b24a827d12b448ccd1ab274271e | 703,437 |
import requests
def get_function_fb_graph():
"""Get call - facebook."""
return requests.get('http://graph.facebook.com') | 38f790a006a3d8de981e66936e50b7be743e4d1b | 703,438 |
import random
def get_random_number_with_zero(min_num: int, max_num: int) -> str:
"""
Get a random number in range min_num - max_num of len max_num (padded with 0).
@param min_num: the lowest number of the range in which the number should be generated
@param max_num: the highest number of the range in which the number should be generated
@return: A string like "00183"
"""
return str(random.randint(min_num, max_num)).zfill(len(str(max_num))) | bdc9f192286262566d2b2a87e8124abdf745ecbd | 703,439 |
def raoult_liquido(fraccion_vapor, presion_vapor, presion):
"""Calcula la fraccion molar de liquido mediante la ec de Raoult"""
return fraccion_vapor * presion / presion_vapor | bd15f53ee74ef3dc1925ee3da7133a9c3f455333 | 703,442 |
def implemented_motifs():
"""
Returns
-------
List strings of all implemented motif definitions
"""
return ['Sheet', 'Gamma', 'Herringbone',
'Sandwich'] | 63564c7e1b3e7e5f8f6b93354a3e268a79e9c5de | 703,443 |
def left(direction):
"""rotates the direction counter-clockwise"""
return (direction + 3) % 4 | f8136385e5fec11bf26a97f77e336b04ce783571 | 703,444 |
def union(list1, list2):
"""Union of two lists, returns the elements that appear in one list OR the
other.
Args:
list1 (list): A list of elements.
list2 (list): A list of elements.
Returns:
result_list (list): A list with the union elements.
Examples:
>>> union([1,2,3], [2,3,4])
[1, 2, 3, 4]
"""
return list(set(list1) | set(list2)) | 983e96ceb4f4eeb2b4b2d96362a0977be0cb2222 | 703,445 |
import re
def list_all_links_in_page(source: str):
"""Return all the urls in 'src' and 'href' tags in the source.
Args:
source: a strings containing the source code of a webpage.
Returns:
A list of all the 'src' and 'href' links
in the source code of the webpage.
"""
return re.findall(
r'src\s*=\s*"([^"]+)"',
source,
) + re.findall(
r'href\s*=\s*"([^"]+)"',
source,
) | f17f2ac2724fcfdd041e2ad001557a0565b51e00 | 703,446 |
def get_direction(source, destination):
"""Find the direction drone needs to move to get from src to dest."""
lat_diff = abs(source[0] - destination[0])
long_diff = abs(source[1] - destination[1])
if lat_diff > long_diff:
if source[0] > destination[0]:
return "S"
else:
return "N"
else:
if source[1] > destination[1]:
return "W"
else:
return "E" | 224a8df79cbafbcf1eed8df522ab7f58cc93598d | 703,447 |
import sys
def verifyPicklingCompatibility(otherPythonVersion):
"""
Check a provided python version string versus the present instance string for pickling safety.
:param otherPythonVersion: other version string
:return: True is safe, False otherwise
"""
if otherPythonVersion is None:
return False
sPyVer = otherPythonVersion.split('.')
if len(sPyVer) < 3:
return False
try:
major, minor = int(sPyVer[0]), int(sPyVer[1])
# We need both major and minor agreement for pickling compatibility
return major == sys.version_info[0] and minor == sys.version_info[1]
except Exception:
return False | 1b5e2a9cb350f8a223b78cfed0a1ebaddb9d346e | 703,448 |
def are_close(col1, col2):
"""This function used to compare values of collections with numeric data
"""
if len(col1) != len(col2):
raise ValueError("Different size of input collections")
result = []
for x, y in zip(col1, col2):
result.append(abs(abs(x) - abs(y)) < 0.4)
r = True
for c in result:
r = r & c
return r | 72896f522a5fc7cb9f4f96e873c14797009877fe | 703,449 |
def identity(*args, **kwargs):
"""
An identity function used as a default task to test the timing of.
"""
return args, kwargs | 472808f6b5260569538f26513f24ffcb1bd88c4d | 703,450 |
def list_merger_list0(*lists):
"""Picks leading list, discards everything else"""
return lists[0] | c571adb593de991f633a28b086e61fa7888cbc7e | 703,451 |
def cmp(a,b):
"""3-way comparison like the cmp operator in perl"""
if a is None:
a = ''
if b is None:
b = ''
return (a > b) - (a < b) | 97c5a33e9161196119abbc323841be0b1cfdda14 | 703,452 |
import base64
import os
def generate_random_string(length):
"""Generates a random string of the specified length.
Args:
length: int. Length of the string to be generated.
Returns:
str. Random string of specified length.
"""
return base64.urlsafe_b64encode(os.urandom(length)) | 10f22582cbe17ac0a4a41b52a8691e12036593d2 | 703,453 |
def create_logdir(method, weight, label, rd):
""" Directory to save training logs, weights, biases, etc."""
return "bigan/train_logs/mnist/{}/{}/{}/{}".format(weight, method, label, rd) | 4b4edcc9c0c36720e76013a6fb0faf1b49472bc0 | 703,454 |
import re
def camel_case_to_title_case(camel_case_string):
"""
Turn Camel Case string into Title Case string in which first characters of
all the words are capitalized.
:param camel_case_string: Camel Case string
:return: Title Case string
"""
if not isinstance(camel_case_string, str):
return None
title_case = re.sub('([^-])([A-Z][a-z-]+)', r'\1 \2', camel_case_string)\
.title()
return title_case | bcc40753a8672355519741f5aec64c262431d582 | 703,456 |
def pmr_corr(vlos, r, d):
"""
Correction on radial proper motion due to apparent contraction/expansion
of the cluster.
Parameters
----------
vlos : float
Line of sight velocity, in km/s.
r : array_like, float
Projected radius, in degrees.
d : float
Cluster distance from the Sun, in kpc.
Returns
-------
pmr : array_like, float
Correction in the radial component of the proper motion, in mas/yr.
"""
r = r * 60
# Equation 4 from Bianchini et al. 2018.
pmr = -6.1363 * 1e-5 * vlos * r / d
return pmr | c9136c5ae33e89d6f57b936b92c23001fd30ccfa | 703,457 |
def get_min_corner(sparse_voxel):
"""
Voxel should either be a schematic, a list of ((x, y, z), (block_id, ?)) objects
or a list of coordinates.
Returns the minimum corner of the bounding box around the voxel.
"""
if len(sparse_voxel) == 0:
return [0, 0, 0]
# A schematic
if len(sparse_voxel[0]) == 2 and len(sparse_voxel[0][0]) == 3 and len(sparse_voxel[0][1]) == 2:
x, y, z = list(zip(*list(zip(*sparse_voxel))[0]))
# A list or coordinates
elif len(sparse_voxel[0]) == 3:
x, y, z = list(zip(*sparse_voxel))
else:
raise Exception("Unknown schematic format")
return min(x), min(y), min(z) | 371b25b795a1a2ffeb0fc3724f01f1a329f917ae | 703,458 |
def ExtractListsFromVertices(vertexProp, g):
"""
Method to extract the lists at each vertex of a vertex property,
vertexProp, belonging to a graph, g, and to return a list of lists,
where each sub-list is a list of values from each vertex
:param vertexProp:
:param g:
:return:
"""
# Make a list to hold lists from each vertex
varList = list()
# Iterate thru each vertex and extract list associated with vertexProp
for ii in range(g.num_vertices()):
varList.append(vertexProp[g.vertex(ii)])
return varList | fd10e9285f9382511a526468e41e8a516a6f50bd | 703,459 |
def is_palindrome_letters_only(str):
"""
Confirm Palindrome, even when string contains non-alphabet letters and ignore capitalization.
casefold() method, which was introduced in Python 3.3, could be used instead of this older method,
which converts to lower().
"""
i = 0
j = hi = len(str) - 1
while i < j:
# This type of logic appears in partition.
# Find alpha characters and compare
while not str[i].isalpha():
i += 1
if i == hi:
break
while not str[j].isalpha():
j -= 1
if j == 0:
break
if str[i].lower() != str[j].lower():
return False
i += 1
j -= 1
return True | 5f95add0ecf3fbe31af2b9cd0e27aac36b2c3985 | 703,460 |
from typing import Any
def validate_delta(delta: Any) -> float:
"""Make sure that delta is in a reasonable range
Args:
delta (Any): Delta hyperparameter
Raises:
ValueError: Delta must be in [0,1].
Returns:
float: delta
"""
if (delta > 1) | (delta < 0):
raise ValueError("The delta values must be in [0,1]")
return delta | 1fd3084c047724a14df753e792b8500a103a34c0 | 703,461 |
import numpy as np
def molpos_1Dbin(data,bins,diameter):
"""Creates a 1D histogram from X,Y location data of a single tracked molecule over time
Args:
data (pandas dataframe): time series 2D location data of a tracked molecule
bins (int): # of rectangular bins to discretize cell with (bins are equidistant on x-axis)
diameter (float): diameter of simulated cell
Returns:
TYPE: List
"""
pos=np.linspace(-diameter/2,diameter/2,bins+1)
speciesNum = int(data.shape[1]/2)
data_hist1D_total = np.zeros(bins)
print(speciesNum)
for i in range(speciesNum):
data_hist1D = np.histogram(data.loc[:,1],bins=pos)[0]
data_hist1D_total += data_hist1D
return data_hist1D_total
#for chunk in pd.read_csv(datapath,header=None,chunksize=10**6): #Chunk size 10^6 runtime: 72.68, chunk size 10^7 runtime: 72.29
#data_hist += np.histogram(chunk.loc[:,1],bins=pos)[0] | fbc05b9c14d82c19f62ae30ec1d05b7e314b57e8 | 703,463 |
def build_authenticate_header(realm=''):
"""Optional WWW-Authenticate header (401 error)"""
return {'WWW-Authenticate': 'OAuth realm="%s"' % realm} | 74c2e4e4188b608120f241aadb20d8480ac84008 | 703,464 |
def decorator_with_default_params(real_decorator, args, kwargs, default_args=None, default_kwargs=None):
"""
This function makes it easy to build a parametrized decorator, having a default value.
Construct your decorator like this:
>>> def decorator(*d_args, **d_kwargs): # d_args with d like decorator
... def function_processor(function, *args, **kwargs):
... print("additional_args", args, kwargs)
... # just do stuff here with the function, or with the args.
... return function
... return decorator_with_default_params(function_processor, d_args, d_kwargs, default_args=["I am a default argument, used if you don't provide args"])
so you can use that decorator:
>>> @decorator # will fall back to the default value.
... @decorator("hey") # with parameter(s).
... @decorator(key="value") # with parameter(s).
... def foobar()
... pass
... foobar = decorator(foobar) # use default value # same as @decorator
... foobar = decorator(foobar, "hey") # with parameter(s) # same as @decorator("hey")
... foobar = decorator(foobar, key="value") # with parameter(s) # same as @decorator(key="value")
:param real_decorator: The function whitch gets a function, and *args. Must return the function again.
:param default_args_list: arguments which will be provided to the real_decorator, if @decorator is used without params
:param args:
:param kwargs:
:return:
"""
if default_args is None:
default_args = []
if default_kwargs is None:
default_kwargs = {}
if args is not None and len(args) > 0 and callable(args[0]):
func = args[0]
if len(args) == 1: # @admin or func = admin(func)
if kwargs is None or len(kwargs) == 0: # no arguments/kwargs
return real_decorator(func, *default_args, **default_kwargs) # func = arg[0]
else: # has kwargs
return real_decorator(*args, **kwargs) # args contains func.
# end if
else: # test = admin(test, param)
return real_decorator(*args, **kwargs)
# end if
else: # @admin(param)
if args is None or len(args) == 0: # you don't provide a function at all.
if kwargs is None or len(kwargs) == 0:
args = default_args
kwargs = default_kwargs
# end if
# end if
elif args[0] == Ellipsis: # so you can insert callables, after Ellipsis as first argument.
args = args[1:]
# end if
def real_decorator_param_provider(func):
return real_decorator(func, *args, **kwargs)
# end def
return real_decorator_param_provider | 63e38bbdaea3483250db7281908a0053e072e866 | 703,465 |
import json
import copy
def get_args(request, required_args):
"""
Helper function to get arguments for an HTTP request
Currently takes args from the top level keys of a json object or
www-form-urlencoded for backwards compatability.
Returns a tuple (error, args) where if error is non-null,
the requesat is malformed. Otherwise, args contains the
parameters passed.
"""
args = None
if (
request.requestHeaders.hasHeader('Content-Type') and
request.requestHeaders.getRawHeaders('Content-Type')[0].startswith('application/json')
):
try:
args = json.load(request.content)
except ValueError:
request.setResponseCode(400)
return {'errcode': 'M_BAD_JSON', 'error': 'Malformed JSON'}, None
# If we didn't get anything from that, try the request args
# (riot-web's usage of the ed25519 sign servlet currently involves
# sending the params in the query string with a json body of 'null')
if args is None:
args = copy.copy(request.args)
# Twisted supplies everything as an array because it's valid to
# supply the same params multiple times with www-form-urlencoded
# params. This make it incompatible with the json object though,
# so we need to convert one of them. Since this is the
# backwards-compat option, we convert this one.
for k, v in args.items():
if isinstance(v, list) and len(v) == 1:
args[k] = v[0]
missing = []
for a in required_args:
if a not in args:
missing.append(a)
if len(missing) > 0:
request.setResponseCode(400)
msg = "Missing parameters: "+(",".join(missing))
return {'errcode': 'M_MISSING_PARAMS', 'error': msg}, None
return None, args | b44e058590945211ca410005a5be2405b4756ca4 | 703,466 |
def find_most_sim(mesh, doc_id, top_n=10):
"""Find documents most similar to the given document."""
doc = mesh.doc_cache[doc_id]
results = []
doc_conc = list(map(lambda x: x[1], mesh.graph.out_edges(doc_id)))
for other_doc in mesh.doc_cache.values():
if other_doc._.id != doc_id:
other_doc_conc = list(map(lambda x: x[1], mesh.graph.out_edges(other_doc._.id)))
inter = [conc for conc in doc_conc if conc in other_doc_conc]
results.append(
{
"id": other_doc._.id,
"sim": doc.similarity(other_doc),
"related": inter,
"title": other_doc._.title,
}
)
results.sort(key=lambda x: x["sim"], reverse=True)
return results[: min(len(results) - 1, top_n)] | 2eef0091bebb7dd8f4aa1a186020aafb6eefca7c | 703,467 |
def determine_header_length(trf_contents: bytes) -> int:
"""Returns the header length of a TRF file
Determined through brute force reverse engineering only. Not based
upon official documentation.
Parameters
----------
trf_contents : bytes
Returns
-------
header_length : int
The length of the TRF header, prior to the table portion of the
TRF file.
"""
column_end = b"\t\xdc\x00\xe8\t\xdc\x00\xe9\t\xdc\x00\xea\t\xdc\x00\xeb\t\xdc\x00"
header_length = trf_contents.index(column_end) + len(column_end)
# test = trf_contents.split(b"\t")
# row_skips = 6
# i = next(i for i, item in enumerate(test[row_skips::]) if len(item) > 3) + row_skips
# header_length_old_method = len(b"\t".join(test[0:i])) + 3
# if header_length_old_method != header_length:
# raise ValueError("Inconsistent header length determination")
return header_length | e8aa5110691e877c34f208af5bd508f0f5ec4760 | 703,469 |
import re
def _join_lines(source):
"""Remove Fortran line continuations"""
return re.sub(r'[\t ]*&[\t ]*[\r\n]+[\t ]*&[\t ]*', ' ', source) | 9caa3b6f470a96a7b473f3cce12f57d3787e91dd | 703,470 |
def format(t):
"""
function to format the stopwatch time to A:BC.D
Returns: the formatted six character string
"""
A = t/600
t = t - A * 600
# this round function isn't needed when t is an integer
CD = round(t/10.0, 1)
B = ""
if CD < 10.0:
B = "0"
return str(A) + ":" + str(B) + str(CD) | ad6dc72f0d6b090cf4d94d27e1f0560c58a9f42d | 703,471 |
import requests
def get_kalliope_bijlage(path, session):
"""
Perform the API-call to get a poststuk-uit bijlage.
:param path: url of the api endpoint that we want to fetch
:param session: a Kalliope session, as returned by open_kalliope_api_session()
:returns: buffer with bijlage
"""
r = session.get(path)
if r.status_code == requests.codes.ok:
return r.content
else:
raise requests.\
exceptions.HTTPError('Failed to get Kalliope poststuk bijlage (statuscode {})'.format(r.status_code)) | b2a126b8e33bab50b1e2aa122645d7a45d6dfea9 | 703,472 |
def filter_by_book_style(bibtexs, book_style):
"""Returns bibtex objects of the selected book type.
Args:
bibtexs (list of core.models.Bibtex): queryset of Bibtex.
book_style (str): book style key (e.g. JOUNRAL)
Returns:
list of Bibtex objectsxs
"""
return [bib for bib in bibtexs if bib.bib_type_key == book_style] | ca3b46772930a6f6e28b6fc0ee4d175ee8d69c3c | 703,474 |
import torch
def attributions(scores: torch.Tensor, targets: torch.Tensor) -> torch.Tensor:
"""Error analysis for antecedent scoring
## Inputs
- `scores`: `(batch_size, max_antecedent_number)`-shaped float tensor.
The first dimension might be padded with `-float("-inf")` or
approximations (such as `1e-32`) when a mention has less than
` max_antecedent_number` antecedent candidates.
- `targets`: `(batch_size, max_antecedent_number)`-shaped byte tensor
mask with `true` for the correct antecedents.
"""
targets = targets.to(torch.bool)
_, highest_scores_indices = torch.max(scores, dim=-1)
sys_new = highest_scores_indices.eq(0)
gold_new = targets.narrow(-1, 0, 1).squeeze()
true_new = gold_new.logical_and(sys_new)
false_new = gold_new.logical_not().logical_and(sys_new)
false_link = gold_new.logical_and(sys_new.logical_not())
argmax_mask = torch.nn.functional.one_hot(
highest_scores_indices, num_classes=scores.size(-1)
).to(torch.bool)
correct = targets.masked_select(argmax_mask)
correct_link = correct.logical_and(true_new.logical_not())
wrong_link = correct.logical_or(false_new).logical_or(false_link).logical_not()
outpt = torch.stack((true_new, false_new, correct_link, false_link, wrong_link))
outpt = outpt.sum(dim=-1)
return outpt | 6ce0c443d6e344bfc84565f8f901984904216194 | 703,476 |
def square_quad_f(x, a, matrix):
"""
Compute the square of the quadratic function.
Parameters
----------
x : 1-D array
Point in which the square of the quadratic is to be evaluated.
minimizer : 1-D array
Minimizer of the square of the quadratic function.
matrix : 2-D array
Positive definite matrix.
Returns
-------
func_val : float
Square of the quadratic function at x.
"""
func_val = ((x - a).T @ matrix @ (x - a)) ** 2
return func_val | 1ff7aafd5d4259bfccd110d4f2880071b8fad18a | 703,477 |
import random
def random_val(index, tune_params):
"""return a random value for a parameter"""
key = list(tune_params.keys())[index]
return random.choice(tune_params[key]) | 1cf7ba9d1a3ff651f946a8013e338d62f4fec3ab | 703,478 |
def git_version_specifier(refspec, branch, commit, tag):
"""
Return the minimal set of specifiers that the user
input reduces to, in a dict of variables for Ansible.
:param refspec: provided refspec like 'pull/1/head'
:param branch: provided branch like 'master'
:param commit: provided commit SHA like '2cbd73cbd5aacc965ecfa480fa90164a85191489'
:param tag: provided tag like 'v1.3.0-rc2'
:return: minimal set of specifiers in a dict using Ansible keys
"""
if commit:
return {'origin_ci_sync_version': commit}
if tag:
return {'origin_ci_sync_version': tag}
if branch and not refspec:
return {'origin_ci_sync_version': branch}
if branch and refspec:
return {
'origin_ci_sync_version': branch,
'origin_ci_sync_refspec': refspec + ':' + branch,
} | 9b723b44f3bad03a74b78a10153f4d6120202fc6 | 703,479 |
import socket
def receive_bytes(socket: socket.socket, buffer_size: int) -> str:
"""
Receives the specified number of bytes
from the specified socket
@param socket - the socket from which to receive
@param buffer_size - the number of bytes to receive
@return - string
"""
receiver_buffer: bytes = b''
while len(receiver_buffer) < buffer_size:
if not (t := socket.recv(buffer_size)):
break
receiver_buffer += t
return receiver_buffer.decode('utf-8') | bb28fa45641596a02f6e325e3a62ccc51c9f9905 | 703,480 |
def convert_archive_posts(archive_posts):
"""Convert a list of SQL post rows to the format used for display within the post archive."""
converted_archive = [];
current_year = ""
current_month = ""
for post in archive_posts:
# If the posts created year is not the current year being parsed, push that year.
if post["created_year"] != current_year:
current_year = post["created_year"]
converted_archive.append({"year": current_year, "months": []})
months = converted_archive[len(converted_archive) - 1]["months"]
# If the posts created month is not the current month being parsed, push that month.
if post["created_month"] != current_month:
current_month = post["created_month"]
months.append({"month": current_month, "posts": []})
posts = months[len(months) - 1]["posts"]
posts.append({"title": post["title"], "link": post["link"]})
return converted_archive | 1572d6105c4ed217f67021ebd7c9a3f1058a7617 | 703,482 |
def _get_search_text(keywords):
"""Get search text."""
search_text = ' '.join(['"{}"'.format(keyword) for keyword in keywords])
search_text = search_text.replace(':', ' ')
search_text = search_text.replace('=', ' ')
return search_text | cabb5d9ca5b5faf3d9287261aab0cd01df21a680 | 703,483 |
def readnext(x):
"""x is a list"""
if len(x) == 0:
return False
else:
return x.pop(0) | dd27ad3c8f750ef3e6df640fd710a0469b0839d0 | 703,484 |
def coding_problem_19(house_costs):
"""
A builder is looking to build a row of N houses that can be of K different colors. He has a goal of minimizing cost
while ensuring that no two neighboring houses are of the same color. Given an N by K matrix where the nth row and
kth column represents the cost to build the nth house with kth color, return the minimum cost.
Example:
>>> house_size = [1, 2, 4, 2] # size of the house
>>> color_cost = [1, 2, 4] # cost of paint for each color
>>> house_costs = [[cc * hs for cc in color_cost] for hs in house_size] # 4 houses, 3 colors
>>> coding_problem_19(house_costs) # [1,2,4,2] . [1,2,1,2] == 1*1 + 2*2 + 1*4 + 2*2 == 13
13
Notes: this is dynamic programming in disguise. We assign a color to each house in order, and keep
track of the minimum cost associated with each choice of color. These costs are the minimum over all
possible permutation in which the last added house is of a particular color.
"""
best_costs = [0] * len(house_costs[0])
for color_costs in house_costs: # color_costs are those paid to paint last added house with a certain color
best_costs = [color_costs[i] + min(best_costs[:i] + best_costs[i + 1:]) for i in range(len(best_costs))]
return min(best_costs) | f9d8b33f449d7a2f87118be3e4d894988b781476 | 703,486 |
import requests
def requests_get(url):
"""Make a get request using requests package.
Args:
url (str): url to do the request
Raises:
ConnectionError: If a RequestException occurred.
Returns:
response (str): the response from the get request
"""
try:
r = requests.get(url)
except requests.exceptions.RequestException:
raise ConnectionError
return r | a438d211e6b5bf78af56783b5d22c85961a2d563 | 703,487 |
def _join_dicts(*dicts):
"""
joins dictionaries together, while checking for key conflicts
"""
key_pool = set()
for _d in dicts:
new_keys = set(_d.keys())
a = key_pool.intersection(new_keys)
if key_pool.intersection(new_keys) != set():
assert False, "ERROR: dicts to be joined have overlapping keys. Common hint: Have you specified your scheme dicts properly?"
else:
key_pool.update(new_keys)
ret = {}
for _d in dicts:
ret.update(_d)
return ret | 2dee7a6f6a89d310d6a58e35d14c57e8ddb5b804 | 703,488 |
def cases_vs_deaths(df):
"""Checks that death count is no more than case count."""
return (df['deaths'] <= df['cases']).all() | 994ae93fb23090de50fc4069342487d0d8e621ed | 703,489 |
import os
def list_files_in_dir(dir_path):
"""
List out files only from a target directory path.
"""
if not os.path.isdir(dir_path):
raise ValueError('`dir_path` must be a directory.')
return iter(f for f in os.listdir(dir_path)
if os.path.isfile(os.path.join(dir_path, f))) | c502799d34ba5fd1a89a574cfb78d722e6ce4a8c | 703,490 |
import re
def add_pronom_link_for_puids(text):
"""If text is a PUID, add a link to the PRONOM website"""
PUID_REGEX = r"fmt\/[0-9]+|x\-fmt\/[0-9]+" # regex to match fmt/# or x-fmt/#
if re.match(PUID_REGEX, text) is not None:
return '<a href="https://nationalarchives.gov.uk/PRONOM/{}" target="_blank">{}</a>'.format(
text, text
)
return text | 5fdc9c15895dfd75be54ad0258e66625462204a2 | 703,491 |
def convert(df_column):
"""
Converts a DataFrame column to list
"""
data_list = []
for element in df_column:
data_list.append(element)
return data_list | 6cd0f9b445573892612e01e0e3e25eb32d658be4 | 703,492 |
from typing import Mapping
from typing import Any
import textwrap
def format_nested_dicts(value: Mapping[str, Mapping[str, Any]]) -> str:
"""
Format a mapping from string keys to sub-mappings.
"""
rows = []
if not value:
rows.append("(empty)")
else:
for outer_key, outer_value in value.items():
if isinstance(outer_value, dict):
if outer_value:
rows.append(f"+ {outer_key}")
inner_rows = format_nested_dicts(outer_value)
rows.append(textwrap.indent(inner_rows, prefix=" "))
else:
rows.append(f"+ {outer_key}: (empty)")
else:
if outer_value is None:
rows.append(f"- {outer_key}: (null)")
else:
rows.append(f"- {outer_key}: {outer_value}")
return "\n".join(rows) | 79d029a062f0e2545265ecdf5d8cdacb271c40c2 | 703,493 |
import random
def shuffle_string(s):
"""
Shuffle a string.
"""
if s is None:
return None
else:
return ''.join(random.sample(s, len(s))) | 25d109f11737b60cecf391fd955f2df4366de7e6 | 703,494 |
def get_rule_full_description(tool_name, rule_id, test_name, issue_dict):
"""
Constructs a full description for the rule
:param tool_name:
:param rule_id:
:param test_name:
:param issue_dict:
:return:
"""
issue_text = issue_dict.get("issue_text", "")
# Extract just the first line alone
if issue_text:
issue_text = issue_text.split("\n")[0]
if not issue_text.endswith("."):
issue_text = issue_text + "."
return issue_text | 546dcb5ce2cbc22db652b3df2bf95f07118611cf | 703,495 |
import itertools
def check_length(seed, random, query_words, key_max):
"""
Google limits searches to 32 words, so we need to make sure we won't be generating anything longer
Need to consider
- number of words in seed
- number of words in random phrase
- number of words in the lists from the query
Will raise exception if there are too many words
Args:
seed: the seed for segment 1
random: the random query string for segment 0
query_words: object with key=name of dimension, value=list of keywords to use in query
key_max: the maximum number of words (32 in Google's case)
Returns:
bool: True for correct number of words, False for too many
"""
all_query_words = " ".join(list(itertools.chain.from_iterable(query_words))).split(' ')
total_words = len(seed.split(" ")) + len(random.split(" ")) + len(all_query_words)
if total_words <= key_max:
return True
else:
message = "The maximum number of keywords is:", key_max, "\nYou have:", total_words
raise Exception(message) | 14871b468454f324223673a0c57941ea9e63341a | 703,496 |
def is_string(val):
"""
Is the supplied value a string or unicode string?
See: https://stackoverflow.com/a/33699705/324122
"""
return isinstance(val, (str, u"".__class__)) | 99b082ec080f261a7485a4e8e608b7350997cf18 | 703,497 |
from datetime import datetime
def time_string():
"""
Generate a string of numbers generated from now time (UTC).
"""
# UTC time up to microseconds
time_str = datetime.utcnow().strftime("%Y%m%d%H%M%S")
return time_str | c7258004db459563a1d229119b6148584cc72584 | 703,498 |
def colorvsn1(studydata, column, context):
"""Please convert numeric codes of 0 and 99 to the text strings they represent."""
return column.mask(column == 0, 'No').mask(column > 90, "Don't Know") | 3f05a3a78d1368e6116fa52366079c22dd183bc3 | 703,499 |
def score(hand):
"""
Compute the maximal score for a Yahtzee hand according to the
upper section of the Yahtzee score card.
hand: full yahtzee hand
Returns an integer score
"""
max_score = 0
sorted_hand_list = sorted(list(set(hand)))
for i_mem in sorted_hand_list:
temp_score = 0
for j_mem in list(hand):
if i_mem == j_mem:
temp_score += i_mem
if temp_score > max_score:
max_score = temp_score
return max_score | b1fae3c67793a96b040f8abae41514bef2c5b89c | 703,500 |
def context_get(stack, name):
"""
Find and return a name from a ContextStack instance.
"""
return stack.get(name) | a5a9a50c54e8f0f685e0cf21991e5c71aee0c3d6 | 703,501 |
import os
def test_vars(env_vars):
"""Method to identify the active and inactive environment variables for a specific conda environment
test_vars
=========
This method is used to get the active and inactive environment variables for a specific conda environment
created by ggd.
Parameters:
-----------
1) env_vars: (list) The list of environment variables to check for activity
Return:
+++++++
1) (list) A list of the active environment variables
2) (list) A list of the inactive environment variables
"""
active_vars = []
inactive_vars = []
for env_var in env_vars:
if env_var in os.environ and os.environ[env_var] == env_vars[env_var]:
active_vars.append(env_var)
else:
inactive_vars.append(env_var)
return active_vars, inactive_vars | f24f2b18c028984ab1dd4e11832a39fcba48d946 | 703,502 |
def tree_names (tree):
"""Get the top-level names in a tree (including files and directories)."""
return [x[0] for x in list(tree.keys()) + tree[None] if x is not None] | 12a5522974671f3ab81f3a1ee8e8c4db77785bd3 | 703,504 |
def fixed_width_repr_of_int(value, width, pad_left=True):
"""
Format the given integer and ensure the result string is of the given
width. The string will be padded space on the left if the number is
small or replaced as a string of asterisks if the number is too big.
:param int value: An integer number to format
:param int width: The result string must have the exact width
:return: A string representation of the given integer.
"""
ret = '{:{pad_dir}{width}d}'.format(value, pad_dir='>' if pad_left else '>', width=width)
return '*' * width if len(ret) > width else ret | adb212746dd081112ec1de2c4ea8745d2601c055 | 703,505 |
def _getCompiledName(fldName, clsName):
"""Return mangled fldName if necessary, else no change."""
# If fldName starts with 2 underscores and does *not* end with 2 underscores...
if fldName[:2] == '__' and fldName[-2:] != '__':
return "_%s%s" % (clsName, fldName)
else:
return fldName | 91285b7c54e001d807850c66ac74521e55d05ca4 | 703,506 |
def ConvertListToCSVString(csv_list):
"""Helper to convert a list to a csv string."""
return ','.join(str(s) for s in csv_list) | 547311ceac094211d47d0cc667d54b2a3e697f4e | 703,508 |
def min_distance_bottom_up(word1: str, word2: str) -> int:
"""
>>> min_distance_bottom_up("intention", "execution")
5
>>> min_distance_bottom_up("intention", "")
9
>>> min_distance_bottom_up("", "")
0
"""
m = len(word1)
n = len(word2)
dp = [[0 for _ in range(n + 1)] for _ in range(m + 1)]
for i in range(m + 1):
for j in range(n + 1):
if i == 0: # first string is empty
dp[i][j] = j
elif j == 0: # second string is empty
dp[i][j] = i
elif (
word1[i - 1] == word2[j - 1]
): # last character of both substing is equal
dp[i][j] = dp[i - 1][j - 1]
else:
insert = dp[i][j - 1]
delete = dp[i - 1][j]
replace = dp[i - 1][j - 1]
dp[i][j] = 1 + min(insert, delete, replace)
return dp[m][n] | 8cd87ffe877aa24d5b1fa36ce1d3b96efb7b4e1e | 703,510 |
def periodize_filter_fourier(h_f, nperiods=1, aggregation='sum'):
"""
Computes a periodization of a filter provided in the Fourier domain.
Parameters
----------
h_f : array_like
complex numpy array of shape (N*n_periods,)
n_periods: int, optional
Number of periods which should be used to periodize
aggregation: str['sum', 'mean'], optional
'sum' will multiply subsampled time-domain signal by subsampling
factor to conserve energy during scattering (rather not double-account
for it since we already subsample after convolving).
'mean' will only subsample the input.
Returns
-------
v_f : array_like
complex numpy array of size (N,), which is a periodization of
h_f as described in the formula:
v_f[k] = sum_{i=0}^{n_periods - 1} h_f[i * N + k]
References
----------
This is a modification of
https://github.com/kymatio/kymatio/blob/master/kymatio/scattering1d/
filter_bank.py
Kymatio, (C) 2018-present. The Kymatio developers.
"""
N = h_f.shape[0] // nperiods
h_f_re = h_f.reshape(nperiods, N)
v_f = (h_f_re.sum(axis=0) if aggregation == 'sum' else
h_f_re.mean(axis=0))
v_f = v_f if h_f.ndim == 1 else v_f[:, None] # preserve dim
return v_f | f9a2845dcf40eedce9d46faba506f1c1358ce6a5 | 703,511 |
def quick_sort(data):
"""To sort data as an increase order by divide and conquer method."""
def q_sort(left_index, right_index):
"""Do quicksort recursively."""
if right_index <= left_index:
return
# Sort sub partition.
part = partition(left_index, right_index)
# Handle left-side.
q_sort(left_index, part - 1)
# Handle right-side.
q_sort(part + 1, right_index)
def partition(low_index, high_index):
"""Do partition by quicksort method."""
# Set pivot.
pivot, pivot_index = data[high_index], high_index
high_index -= 1
while low_index <= high_index:
while data[low_index] < pivot:
low_index += 1
while data[high_index] > pivot:
high_index -= 1
if low_index < high_index:
data[low_index], data[high_index] = data[high_index], data[low_index]
low_index, high_index = low_index + 1, high_index - 1
data[low_index], data[pivot_index] = data[pivot_index], data[low_index]
return low_index
# Call quick sort main function.
return q_sort(0, len(data) - 1) | e8c530b6da3f705b08279eb213d03bd54820f4a4 | 703,512 |
def slope_id(csv_name):
"""
Extract an integer slope parameter from the filename.
:param csv_name: The name of a csv file of the form NWS-<SLP>-0.5.csv
:return: int(<SLP>)
"""
return int(csv_name.split("-")[1]) | 1ae34f1e5cc91fdc3aaff9a78e1ba26962475625 | 703,513 |
def minbox(points):
"""Returns the minimal bounding box necessary to contain points
Args:
points (tuple, list, set): ((0,0), (40, 55), (66, 22))
Returns:
dict: {ulx, uly, lrx, lry}
Example:
>>> minbox((0, 0), (40, 55), (66,22))
{'ulx': 0, 'uly': 55, 'lrx': 66, 'lry': 0}
"""
x, y = [point[0] for point in points], [point[1] for point in points]
return {'ulx': min(x), 'lrx': max(x), 'lry': min(y), 'uly': max(y)} | d8b11d40b52886f290d28f3434b17d2b9641c4fb | 703,514 |
import csv
def write_csv(history, filename):
""" Write Letterboxd format CSV """
if history:
with open(filename, 'w', encoding='utf8') as fil:
writer = csv.DictWriter(fil, list(history[0].keys()))
writer.writeheader()
writer.writerows(history)
return True
return False | 66ab2c9734c5d50b59d1aaff2dd62a4fffcfe0ec | 703,515 |
def apply_regression(df, w):
"""
Apply regression for different classifiers.
@param df pandas dataframe;
@param w dict[classifier: list of weights];
@return df with appended result.
"""
# get input
if 'state' in df.columns:
x = df.drop('state', axis=1).to_numpy(dtype='float64')
else:
x = df.to_numpy(dtype='float64')
# initialize result
new = df.copy()
for classifier, wi in w.items():
# evaluate output
y = x@wi
# append output
new[f'lms_{classifier}'] = y
return new | 1fb5fd9f4b297cd024e405dc5d9209213d28ff0d | 703,516 |
import sys
def parse_acc_table(infile):
"""Parsing tab-delim accession table (genome_name<tab>accession)
"""
if infile == '-':
inF = sys.stdin
else:
inF = open(infile)
tbl = []
for line in inF:
line = line.rstrip().split('\t')
tbl.append(line)
return tbl | 568aaeb0d6dd4158b1f6e6c59c709c9996948a69 | 703,517 |
def get_lambda_cloud_watch_func_name(stackname, asg_name, instanceId):
"""
Generate the name of the cloud watch metrics as a function
of the ASG name and the instance id.
:param stackname:
:param asg_name:
:param instanceId:
:return: str
"""
name = asg_name + '-cwm-' + str(instanceId)
return name[-63:len(name)] | 893abaf60684cbf9d72774d6f5bb2c4351744290 | 703,518 |
def secondary_training_status_changed(current_job_description, prev_job_description):
"""Returns true if training job's secondary status message has changed.
Args:
current_job_description: Current job description, returned from DescribeTrainingJob call.
prev_job_description: Previous job description, returned from DescribeTrainingJob call.
Returns:
boolean: Whether the secondary status message of a training job changed
or not.
"""
current_secondary_status_transitions = current_job_description.get("SecondaryStatusTransitions")
if (
current_secondary_status_transitions is None
or len(current_secondary_status_transitions) == 0
):
return False
prev_job_secondary_status_transitions = (
prev_job_description.get("SecondaryStatusTransitions")
if prev_job_description is not None
else None
)
last_message = (
prev_job_secondary_status_transitions[-1]["StatusMessage"]
if prev_job_secondary_status_transitions is not None
and len(prev_job_secondary_status_transitions) > 0
else ""
)
message = current_job_description["SecondaryStatusTransitions"][-1]["StatusMessage"]
return message != last_message | b1d1a83cccb8cf84fa678345bcf7b3f6531aa2c5 | 703,519 |
def string_concat(str1, str2):
"""Concatenates two strings."""
return str1 + str2 | 5b6d842fca2d3623d33341d9bba4e4a76ec29e15 | 703,520 |
def remove_spaces(input_text, main_rnd_generator=None, settings=None):
"""Removes spaces.
main_rnd_generator argument is listed only for compatibility purposes.
>>> remove_spaces("I love carrots")
'Ilovecarrots'
"""
return input_text.replace(" ", "") | a9ba3bcca4a4ff1610d52271562e053f25815618 | 703,521 |
from typing import List
from typing import Counter
import heapq
def top_k_frequent_pq(nums: List[int], k: int) -> List[int]:
"""Given a list of numbers, return the the top k most frequent numbers.
Solved using priority queue approach.
Example:
nums: [1, 1, 1, 2, 2, 3], k=2
output: [1, 2]
1. Get the counts of each items, and turn them into tuples.
2. Put the counts on a heap, popping the min off if the heap is > k
3. Now we have a heap of size k with the largest elements
(Note: We ensure k < n by checking at the start to get the
times below.)
Time: O(n log k): Where n is len(nums)
Space: O(n+k): Where n is len(nums)
n for the counts, and k for the heap
"""
if k == len(nums):
return nums
# Build a hashmap of frequencies O(n)
counts = Counter(nums)
# Build the heap of size k O(n log k)
heap = []
for num, frequency in counts.items(): # O(n)
heapq.heappush(heap, (frequency, num)) # O(k)
if len(heap) > k:
heapq.heappop(heap)
# Get the elements in the heap O(k)
return [element[1] for element in heap] | 4d30bd7e11a087be1a23f9db5c8af7f78c083a5f | 703,522 |
def monthFormat(month: int) -> str:
"""Formats a (zero-based) month number as a full month name, according to the current locale. For example: monthFormat(0) -> "January"."""
months = [
"January",
"February",
"March",
"April",
"May",
"June",
"July",
"August",
"September",
"October",
"November",
"December",
]
return months[month % 12] | cb675f547d9beec0751d8252e99b5c025b8fd291 | 703,524 |
def build_fnln_contact(individual_contact):
"""
Expected parameter format for individual_contact
('My Name', '[email protected]')
Sample output:
{'email': '[email protected]', 'name': 'My Name'}
"""
return {
"email": individual_contact[-1],
"name": individual_contact[0]
} | 54080191320cfeb425de0f765f10e29726405d0d | 703,525 |
import numpy as np
def shortcut( sn ) :
""" For a given snana.SuperNova object sn,
quickly convert the posterior probabilities computed
using the 'mid' class fractions prior into the
posterior probabilities you get when adopting the
'galsnid' prior.
NOTE: we do not account for redshift dependence here,
so this only works exactly if we have a known spec-z
!!! NOT FUNCTIONAL !!!
"""
return(0)
k = sn.bayesNormFactor
priorIa = np.mean( sn.ClassSim.Ia.priorModel )
priorIbc = np.mean( sn.ClassSim.Ibc.priorModel )
priorII = np.mean( sn.ClassSim.II.priorModel )
priorIaNew, priorIbcNew, priorIINew = pClassMorph( sn.HOST_TYPE, priorIa=priorIa, priorIbc=priorIbc, priorII=priorII )
kNew = ( (priorIaNew/priorIa) * sn.PIa + (priorIbcNew/priorIbc) * sn.PIbc + (priorIINew/priorII) * sn.PII )
PIaNew = priorIaNew * sn.likeIa.sum() / kNew
PIbcNew = priorIbcNew * sn.likeIbc.sum() / kNew
PIINew = priorIINew * sn.likeII.sum() / kNew
return( PIaNew, PIbcNew , PIINew ) | adca461ca14c941e8f6a69193f796b78f5dc25dd | 703,526 |
def extract_img(size, in_tensor):
"""
Args:
size (int): size of crop
in_tensor (tensor): tensor to be cropped
"""
dim1, dim2 = in_tensor.size()[2:]
in_tensor = in_tensor[:, :, int((dim1-size)/2):int((dim1+size)/2), int((dim2-size)/2):int((dim2+size)/2)]
return in_tensor | 5c167c88aa7c65ca06f46d2795dbcd2af38db71e | 703,527 |
import math
import copy
def plan_cartesian_path_lin(move_arm, wpose, length, alpha, z_start, cs):
"""
:type move_arm: class 'moveit_commander.move_group.MoveGroupCommander'
:type length: float
:type alpha: float
"""
move_arm.set_start_state(cs)
waypoints = []
wpose.position.x += length*math.cos(alpha)
wpose.position.y += length*math.sin(alpha)
waypoints.append(copy.deepcopy(wpose))
(plan, fraction) = move_arm.compute_cartesian_path(
waypoints, # waypoints to follow
0.01, # end effector follow step (meters)
0.0) # jump threshold
return plan, fraction | e064ff6239fd7bb6b29d4c210ef94956219b5165 | 703,528 |
from numpy import asarray, mean
def r_precision(r):
"""Score is precision after all relevant documents have been retrieved
Relevance is binary (nonzero is relevant).
>>> r = [0, 0, 1]
>>> r_precision(r)
0.33333333333333331
>>> r = [0, 1, 0]
>>> r_precision(r)
0.5
>>> r = [1, 0, 0]
>>> r_precision(r)
1.0
Args:
r: Relevance scores (list or numpy) in rank order
(first element is the first item)
Returns:
R Precision
"""
r = asarray(r) != 0
z = r.nonzero()[0]
if not z.size:
return 0.
return mean(r[:z[-1] + 1]) | 37467e1e02284e16a82a3dad6e0e5c14a0afcad3 | 703,530 |
import functools
def accepts(*types):
"""
Checks argument types.
"""
def decorator(f):
assert len(types) == f.__code__.co_argcount
@functools.wraps(f)
def wrapper(*args, **kwds):
for (a, t) in zip(args, types):
assert isinstance(a, t), "The input argument %r must be of type <%s>" % (a,t)
return f(*args, **kwds)
wrapper.__name__ = f.__name__
return wrapper
return decorator | 26dd256b466659400898972eea0a19391433be87 | 703,531 |
def pass_down(L,L1,map):
"""map maps L into L1.Populate L1 with values in L"""
## print len(L),len(L1),len(map),max(map)
## print sumsize(L)
## print sumsize(L1)
for j in range(len(map)):
if L[j] == -1:
continue
assert L1[map[j]] == -1 or L1[map[j]] == L[j], 'L1=%d, L = %d'%(L1[map[j]],L[j])
L1[map[j]] = max(L[j],L1[map[j]])
return L1 | 6896de91a37a29d1f0e360f410d83065b7434fc7 | 703,532 |
def parse_correctness_stats(filename):
"""
Parse the results returned from get_Correctness.sh
"""
results = []
stats_file = open(filename, 'r')
line = stats_file.readline()
while not line.startswith('Reference:'):
line = stats_file.readline()
# Add Reference bases.
results.append(line.strip().split()[1])
# Add the genome bases.
line = stats_file.readline()
results.append(line.strip().split()[1])
line = stats_file.readline()
while not line.startswith('N50:'):
line = stats_file.readline()
# Add N50.
results.append(line.split()[1])
line = stats_file.readline()
while not line.startswith('Missing Reference'):
line = stats_file.readline()
# Missing reference bases.
results.append(line.strip().split(' ')[3].split('(')[0])
line = stats_file.readline()
while not line.startswith('Avg Idy:'):
line = stats_file.readline()
# Add Avg Idy.
results.append(line.strip().split(' ')[2])
# Add SNPs.
line = stats_file.readline()
results.append(line.strip().split(' ')[1])
# Add Indels > 5bp.
line = stats_file.readline()
line = stats_file.readline()
results.append(line.strip().split(' ')[3])
# Add Inversions.
line = stats_file.readline()
results.append(line.strip().split(' ')[1])
# Add Relocations.
line = stats_file.readline()
results.append(line.strip().split(' ')[1])
# Add translocations.
line = stats_file.readline()
results.append(line.strip().split(' ')[1])
line = stats_file.readline()
while not line.startswith('N50:'):
line = stats_file.readline()
# Add Corrected N50.
results.append(line.strip().split()[1])
stats_file.close()
return results | 8ac0ff9307169726597bd6bce632560faaed6b3b | 703,533 |
import os
def _simple_execution(cmd):
"""
Shell simple execution
Return only exit status (0 : Good)
"""
return os.system(cmd) | 5024f01e82f5da218cc4c6ec4a3c2086b588939c | 703,534 |
def whereSubseq(conditionFunc, seq, length, overlap=False):
"""
>>> a = [1, 3, 2, 3, 2]
>>> b = [1, 2]
>>> whereSubseq(lambda seq: seq == b, a, 2)
[]
>>> c = [3, 2]
>>> whereSubseq(lambda seq: seq == c, a, 2)
[1, 3]
>>> whereSubseq(lambda seq: sum(seq) < 8, a, 3)
[0]
>>> whereSubseq(lambda seq: sum(seq) < 8, a, 3, overlap=True)
[0, 2]
"""
if (conditionFunc is None) or (seq is None):
return []
if (length < 1) or (len(seq) < length):
return []
end = len(seq) - length + 1
allIdxs = []
if overlap:
for i in range(end):
subSeq = seq[i:(i + length)]
if conditionFunc(subSeq):
allIdxs.append(i)
else:
i = 0
while i < end:
subSeq = seq[i:(i + length)]
if conditionFunc(subSeq):
allIdxs.append(i)
i += length # skip possible overlaps
else:
i += 1
return allIdxs | f25ded43f91b4ecc05fa28e81095996f4d036418 | 703,535 |
import math
def bearing(lat1: float, lon1: float, lat2: float, lon2: float) -> float:
"""Calculate bearing from lat1/lon2 to lat2/lon2
Arguments:
lat1 {float} -- Start latitude
lon1 {float} -- Start longitude
lat2 {float} -- End latitude
lon2 {float} -- End longitude
Returns:
float -- bearing in degrees
"""
rlat1 = math.radians(lat1)
rlat2 = math.radians(lat2)
rlon1 = math.radians(lon1)
rlon2 = math.radians(lon2)
dlon = math.radians(lon2-lon1)
b = math.atan2(math.sin(dlon)*math.cos(rlat2),math.cos(rlat1)*math.sin(rlat2)-math.sin(rlat1)*math.cos(rlat2)*math.cos(dlon)) # bearing calc
bd = math.degrees(b)
br,bn = divmod(bd+360,360) # the bearing remainder and final bearing
return bn | 9148bc2726247cedf8a7de7279dac47316f2864f | 703,536 |
def get_title(reg_doc):
""" Extract the title of the regulation. """
parent = reg_doc.xpath('//PART/HD')[0]
title = parent.text
return title | 744759addf0cea3ba6cc3dadad05d535b66b20d6 | 703,537 |
import random
import requests
def get_rising_submissions(subreddit):
"""Connects to the Reddit API and queries the top rising submission
from the specified subreddit.
Parameters
----------
subreddit : str
The name of the subreddit without forward slashes.
Returns
-------
tuple
A tuple containing a formatted message and an image url.
"""
endpoint = random.choice(['top','rising'])
url = f"https://www.reddit.com/r/{subreddit}/{endpoint}.json?limit=1"
headers = {"User-Agent": "Reddit Rising Checker v1.0"}
with requests.get(url, headers=headers) as response:
data = response.json()["data"]["children"]
# Iterate over all the children.
for item in data:
item_data = item["data"]
# We will collect only the fields we are interested in.
title = item_data["title"]
permalink = "https://reddit.com" + item_data["permalink"]
author = item_data["author"]
score = item_data["score"]
image_url = item_data["url"]
# Compose a Markdown message using string formatting.
message = f"[{title}]({permalink})\nby **{author}**\n**{score:,}** points"
return (message, image_url) | 115edc8986acdefbb232218d237bcba7320db9a0 | 703,538 |
def E_float2(y, _):
"""Numerically stable implementation of Muller's recurrence."""
return 8 - 15/y | 4e8801465994afcb554e048897ec1ff903385bbe | 703,539 |
def compute_packet_csum(pkt):
"""Computes the checksum for the given GDB packet"""
csum = 0
for x in pkt:
csum += x
csum = csum & 0xFF
return csum | 29eef2afd1b33ab80013ce7fcd46c3b11c9f639b | 703,540 |
def new_headers() -> list:
"""Return list of new headers with clean names."""
return [
"date",
"Rohs FB1",
"Rohs FB2",
"Rohs gesamt",
"TS Rohschlamm",
"Rohs TS Fracht",
"Rohs oTS Fracht",
"Faulschlamm Menge FB1",
"Faulschlamm Menge FB2",
"Faulschlamm Menge",
"Temperatur FB1",
"Temperatur FB2",
"Faulschlamm pH Wert FB1",
"Faulschlamm pH Wert FB2",
"Faulbehaelter Faulzeit",
"TS Faulschlamm",
"Faulschlamm TS Fracht",
"Faulbehaelter Feststoffbelastung",
"GV Faulschlamm",
"Faulschlamm oTS Fracht",
"Kofermentation Bioabfaelle",
# To be predicted.
"Faulgas Menge FB1",
"Faulgas Menge FB2",
] | c81c38e8521f159f0bbf29b3a32adeaa13d4c38f | 703,541 |
import hashlib
import io
def calc_file_md5(filepath, chunk_size=None):
"""
Calculate a file's md5 checksum. Use the specified chunk_size for IO or the
default 256KB
:param filepath:
:param chunk_size:
:return:
"""
if chunk_size is None:
chunk_size = 256 * 1024
md5sum = hashlib.md5()
with io.open(filepath, 'r+b') as f:
datachunk = f.read(chunk_size)
while datachunk is not None and len(datachunk) > 0:
md5sum.update(datachunk)
datachunk = f.read(chunk_size)
return md5sum.hexdigest() | 8f391ade85a5b69ca63d8adb3eff6ff6af7a08e3 | 703,542 |
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.