content
stringlengths 35
416k
| sha1
stringlengths 40
40
| id
int64 0
710k
|
---|---|---|
from typing import Type
from typing import Hashable
def _lookup(key: str, typ: Type, *args, **kwargs) -> Hashable:
"""
Gets the value of the given key in args, defaulting to the first positional.
:param key: key to find value of in args.
:param typ: type that dispatch is being perform on.
:param args: positional args.
:param kwargs: keyword args.
:return: value of the key in the given args.
"""
if key in kwargs:
value = kwargs[key]
else:
try:
if typ.__qualname__.endswith('.__new__'):
value = args[1]
else:
value = args[0]
except IndexError:
raise TypeError(f'missing dispatch parameter {key!r} on {typ.__name__}')
return value | 195e95cd1d77137890d0608195677c344e698ad7 | 701,750 |
def MakeStatefulPolicyPreservedStateDiskEntry(messages, stateful_disk_dict):
"""Create StatefulPolicyPreservedState from a list of device names."""
disk_device = messages.StatefulPolicyPreservedStateDiskDevice()
if stateful_disk_dict.get('auto-delete'):
disk_device.autoDelete = (
stateful_disk_dict.get('auto-delete').GetAutoDeleteEnumValue(
messages.StatefulPolicyPreservedStateDiskDevice
.AutoDeleteValueValuesEnum))
# Add all disk_devices to map
return messages.StatefulPolicyPreservedState.DisksValue.AdditionalProperty(
key=stateful_disk_dict.get('device-name'), value=disk_device) | 10b1fcb79b46455bef8bbfba90c84bcdb80773df | 701,751 |
def _doc(from_func):
"""copy doc from one function to another
use as a decorator eg::
@_doc(file.tell)
def tell(..):
...
"""
def decorator(to_func):
to_func.__doc__ = from_func.__doc__
return to_func
return decorator | 907a12da3700cee02e4f369d5230bd8be04e55ea | 701,752 |
import re
def validate_time_string(value, is_list):
"""
Checks that a "time string" quant is correctly formatted.
A time string can contain three kinds of expressions, separated by + or -:
Base values, which are just numeric (with an optional exponent on e form)
Delta values, which are the same as above with a '*i' or 'i' suffix
Variables, which are strings that are formatted according to the variable name rules
If the string is correctly formatted, a polished version is returned.
Otherwise, the original string is returned with an 'INVALID: ' prefix.
"""
# Strip the input down to the essential part
value = value.replace('INVALID:', '').strip()
input_str = value.replace(' ', '')
# Split the string if the quant accepts multiple values
if is_list:
strings = input_str.split(',')
else:
strings = [input_str]
result = ''
for idx, s in enumerate(strings):
accum_string = '' if idx == 0 else ', '
first = True
if len(s) == 0:
return f'INVALID: {value}'
while len(s) > 0:
prefix = '[+-]?' if first else '[+-]'
var_rex = re.compile(prefix + r'[A-Za-z_]+[0-9A-Za-z_]*(\*i)?')
var_match = var_rex.match(s)
if var_match:
# Remove the matched part from input
match_str = var_match.group()
match_len = len(match_str)
s = s[match_len:]
first = False
if match_str[0] in ('+', '-'):
match_str = f'{match_str[0]} {match_str[1:]}'
# Add a space after variable name
accum_string += f'{match_str} '
continue
# No variable match, check for numeric value
num_rex = re.compile(prefix + r'(([0-9]*\.[0-9]+)|([0-9]+))(e-?[0-9]+)?(\*?i)?', re.I)
num_match = num_rex.match(s)
if num_match:
# Remove the matched part from input
match_str = num_match.group()
match_len = len(match_str)
s = s[match_len:]
first = False
# Temporarily remove first char if it's a + or -
if match_str[0] in ('+', '-'):
# Put a space after the sign
prefix_char = f'{match_str[0]} '
match_str = match_str[1:]
else:
prefix_char = ''
# Perform some cleanup
while match_str.startswith('0') and len(match_str) > 1 and match_str[1].isnumeric():
match_str = match_str[1:]
# Insert a zero if the number starts with a period
if match_str.startswith('.'):
match_str = '0' + match_str
match_str = f'{prefix_char}{match_str} '
match_str = match_str.replace('I', 'i')
match_str = match_str.replace('e', 'E')
accum_string += match_str
continue
# No match, invalid input
return f'INVALID: {value}'
result += accum_string.strip()
return result | 802e7503f19ed1a5bb47ad887d1fe15219225fe1 | 701,753 |
def reducejson(j):
"""
Not sure if there's a better way to walk the ... interesting result
"""
authors = []
for key in j["data"]["repository"]["commitComments"]["edges"]:
authors.append(key["node"]["author"])
for key in j["data"]["repository"]["issues"]["nodes"]:
authors.append(key["author"])
for c in key["comments"]["nodes"]:
authors.append(c["author"])
for key in j["data"]["repository"]["pullRequests"]["edges"]:
authors.append(key["node"]["author"])
for c in key["node"]["comments"]["nodes"]:
authors.append(c["author"])
unique = list({v['login']:v for v in authors if v is not None}.values())
return unique | 90e50ff58e830fbe902a42c4256b19d9c6c46ff0 | 701,754 |
async def async_setup(hass, hass_config):
"""Set up the Plaato component."""
return True | b2c620c58aabcf788310e3aaf9cdf836f9be15ba | 701,755 |
def json_value(obj):
"""Format obj in the JSON style for a value"""
if type(obj) is bool:
if obj:
return '*true*'
return '*false*'
if type(obj) is str:
return '"' + obj + '"'
if obj is None:
return '*null*'
assert False | fc34c619d550af029536437c0eec7163e3ce673c | 701,756 |
import re
def get_hostmask_regex(mask):
"""Get a compiled regex pattern for an IRC hostmask
:param str mask: the hostmask that the pattern should match
:return: a compiled regex pattern matching the given ``mask``
:rtype: :ref:`re.Pattern <python:re-objects>`
"""
mask = re.escape(mask)
mask = mask.replace(r'\*', '.*')
return re.compile(mask + '$', re.I) | 6e46d907d51e32139168d6f6405ca45ca38bbb98 | 701,757 |
from typing import Any
import yaml
from typing import List
def read_yaml(file: Any) -> dict:
"""Read yaml file. Return dict."""
if isinstance(file, str) and any(file.endswith(x) for x in ('.yml', '.yaml')):
with open(file, "r", encoding='utf-8') as fp:
return yaml.load(fp, Loader=yaml.FullLoader)
data: List[dict] = yaml.load(file, Loader=yaml.FullLoader)
return {} if len(data) == 0 else data[0] | d696372cb5fb0b494d257b296dd6ac7946e296ff | 701,758 |
def read_ffindex(file):
"""Read a ffindex and return a list of all the lines in the file .
Args:
file (string): path to the ffindex
Returns:
list of string: The file read line by line
"""
fh = open(file, "r")
index = []
for line in fh:
index.append(line.rstrip().split())
fh.close()
return index | fae6494ddbda63abae1161f9fd22c8a94f506407 | 701,760 |
def get_field_from_args_or_session(config, args, field_name):
"""
We try to get field_name from diffent sources:
The order of priorioty is following:
read_default_contract_address - command line argument (--<field_name>)
- current session configuration (default_<filed_name>)
"""
rez = getattr(args, field_name, None)
# type(rez) can be int in case of wallet-index, so we cannot make simply if(rez)
if rez is not None:
return rez
rez = config.get_session_field("default_%s" % field_name, exception_if_not_found=False)
if rez:
return rez
raise Exception("Fail to get default_%s from config, should specify %s via --%s parameter" % (
field_name, field_name, field_name.replace("_", "-"))) | 8979a90814bcab9c72f54835a31d69971f8b1437 | 701,761 |
import importlib
def resolve(module_name, obj_name):
"""
Resolve a named object in a module.
"""
return getattr(importlib.import_module(module_name), obj_name) | 87ccef3456d28615b82a89a8e4ce405403eaade9 | 701,762 |
def get_num_shorts(string_list):
""" Returns the number of occurences of 'Short' in an input string list.
Args:
string_list(list of string objects)
Returns:
numShorts(int): Number of occurences of 'Short'
"""
numShorts = 0
for marker in string_list:
if (marker == 'Short'):
numShorts += 1
return numShorts | b8e9da454590a8b29965696be3265053cfc78729 | 701,763 |
import pandas
def _try_to_date(x):
"""Wrapper around :func:`pandas.to_datetime` that returns
the input unaltered if it's not a date.
Don't attempt converting numeric or boolean arrays.
"""
if x.dtype.kind != 'U': # unicode string
return x
try:
# In case of ambiguity, prefer European format DD/MM/YYYY to the
# American format MM/DD/YYYY
return pandas.to_datetime(x, dayfirst=True)
except ValueError:
return x | 01d296b0578933954a3b6593fd52fc15620cc1cd | 701,764 |
import jinja2
def create_j2env(template_dir) -> jinja2.Environment:
"""
Create a Jinja2 enviornment instance used when template building the containerlab
topology file.
Parameters
----------
template_dir: str
The file path where the Jinja2 template file is located.
Returns
-------
A Jinja2 enviornment instance that will be used to template build the
containerlabs topology file.
"""
env = jinja2.Environment(
trim_blocks=True,
lstrip_blocks=True,
keep_trailing_newline=True,
loader=jinja2.FileSystemLoader([template_dir]),
undefined=jinja2.StrictUndefined,
)
return env | 1d6559eae0346c0b9fd6171c18da5f2d94e1db86 | 701,765 |
import ast
def _unpack_lists(input_list):
"""Unpacks a list of strings containing sublists of strings
such as provided by the data table in the 2d U-net training pipeline card
Args:
input_list (list): list of strings which contain sublists
Returns:
list: list of hidden items from the table (first member in sublist)
"""
return [ast.literal_eval(item)[0] for item in input_list] | e80cd60e46b0ec5b5dd9b4a88ebe7193c0645f48 | 701,766 |
import torch
def ln2float(module):
"""Batchnorm to Float."""
if isinstance(module, torch.nn.LayerNorm):
print('Warning: Casting LayerNorm to fp32 ...')
module.float()
for child in module.children():
ln2float(child)
return module | 42bb1769a42a722f5332c0d4f1e635cdca2d6451 | 701,768 |
from datetime import datetime
def convert_time(timestring, date='1990-01-01'):
"""Convert time string to have leading zeros.
:param timestring: Byte array in '%H:%M:%S' without leading zeros.
:param date: Date of the timestamp (defaults to 1990-01-01)
:return: time object
"""
return datetime.strptime(' '.join((date, timestring.decode())),
'%Y-%m-%d %H:%M:%S') | 118e205396118e7e64c7b368dc4347d0a6daab63 | 701,769 |
import torch
def compute_accuracy(logits, labels, mask):
"""Compute the accuracy"""
logits = logits[mask]
labels = labels[mask]
_, indices = torch.max(logits, dim=1)
correct = torch.sum(indices == labels)
return correct.item() * 1.0 / len(labels) | a7ee234837024598fc95fa9c54c55802ea411577 | 701,770 |
def consistent(a, b):
""" It is possible for an argument list to satisfy both A and B """
return (len(a) == len(b) and
all(issubclass(aa, bb) or issubclass(bb, aa)
for aa, bb in zip(a, b))) | e79ec485c667d9d85692eb43de3f8442a28e94ec | 701,771 |
def remove_duplicate_edges(G, max_ratio = 1.5):
"""
function for deleting duplicated edges - where there is more than one edge connecting a node pair. USE WITH CAUTION - will change both topological relationships and node maps
:param G: a graph object
:param max_ratio: most of the time we see duplicate edges that are clones of each other. Sometimes, however, there are valid duplicates. These occur if multiple roads connect two junctions uniquely and without interruption - e.g. two roads running either side of a lake which meet at either end. The idea here is that valid 'duplicate edges' will have geometries of materially different length. Hence, we include a ratio - defaulting to 1.5 - beyond which we are sure the duplicates are valid edges, and will not be deleted.
"""
G2 = G.copy()
uniques = []
deletes = []
for u, v, data in G2.edges(data = True):
if (u,v) not in uniques:
uniques.append((v,u))
t = G2.number_of_edges(u, v)
lengths = []
for i in range(0,t):
lengths.append(G2.edges[u,v,i]['length'])
if max(lengths) / min(lengths) >= max_ratio:
pass
else:
deletes.append((u,v))
for d in deletes:
G2.remove_edge(d[0],d[1])
print(G2.number_of_edges())
return G2 | bc2a23081749e3dcb135ceea5aad004a7331e794 | 701,772 |
def just_nucs(seqs):
"""eliminate sequences containing gaps/Ns,
along the 1st axis, match each base in seqs to <= 3 element-wise,
give the indices of those just_nucs seq idx.
"""
(indices,) = (seqs <= 3).all(axis=1).nonzero()
just_bases = seqs.take(indices, axis=0)
return just_bases | 142bb7aa905e34d5e12fcfe3233bc3f80d440916 | 701,773 |
def get_domain_server_version(domain):
"""
Get the Server version based on the Server header for the web server.
"""
if domain.canonical.server_version is not None:
return domain.canonical.server_version
if domain.https.server_version is not None:
return domain.https.server_version
if domain.httpswww.server_version is not None:
return domain.httpswww.server_version
if domain.httpwww.server_version is not None:
return domain.httpwww.server_version
if domain.http.server_version is not None:
return domain.http.server_version
return None | 56966c986a5390c8a9aaa0fb71b19bfe2ca7361a | 701,774 |
def build_lst(a, b):
""" function to be folded over a list (with initial value `None`)
produces one of:
1. `None`
2. A single value
3. A list of all values
"""
if type(a) is list:
return a + [b]
elif a:
return [a, b]
else:
return b | 1e47b7bf2987a52b77266d6949af40f1c7df0109 | 701,775 |
def foo_1(x):
""" test
>>> foo_1(4)
2.0
"""
return x ** .5 | e8f7d3e9486e8c794a8c5761cea156b770851971 | 701,776 |
import re
import json
import time
import requests
import traceback
def track(headers, body):
"""
数据追踪,解决1金币问题
:param headers:
:param body:
:return:
"""
try:
url = 'https://mqqapi.reader.qq.com/log/v4/mqq/track'
timestamp = re.compile(r'"dis": (.*?),')
body = json.dumps(body)
body = re.sub(timestamp.findall(body)[0], str(
int(time.time() * 1000)), str(body))
response = requests.post(
url=url, headers=headers, data=body, timeout=30).json()
if response['code'] == 0:
return True
else:
return
except:
print(traceback.format_exc())
return | 71ce3ca86a49877abde9d598114c0b9899a1bea4 | 701,777 |
import pandas
import numpy
def try_to_datetime(x, frmt=''):
"""Try to convert a string to a date. In case of failure, return nan"""
try:
if frmt == '':
return pandas.to_datetime(x)
else:
return pandas.to_datetime(x, format=frmt)
except:
return numpy.nan | f639a5fdc4170531b3bf660ee0979041a8aab123 | 701,778 |
import os
def food_image_upload_path(filename):
"""美食图片上传路径"""
return os.path.join(
"food_image",
"%Y/%m",
filename
) | d7ee8ed6f0027edc0fecba6aa2c3e64919abb7ab | 701,779 |
def scraperMode():
"""
The operating mode of the scraper.
It can either send notification if text is found on the page, or waiting and keep refreshing
until the text goes away from the page.
:return: the mode
"""
print("In which mode should the scraper behave?\nInsert the corresponding number...")
print("1. Send a notification when the text inserted is found in the website")
print("2. Send a notification when the text inserted isn't on the website anymore")
mode = input()
print()
return mode | f60a2fdb73ed92c970c764d8327b11f40edfbd45 | 701,780 |
def func(arg1, arg2):
"""magic function
"""
return arg2, arg1 | eb5841ce5765d44ede5162aa8bf51ec370c35b00 | 701,781 |
def gt(value, other):
"""Greater than"""
return value > other | 943d50ded0dfcb248eefb060d28850154693956b | 701,782 |
def point_dist(a, b):
""" Distance between two points. """
return ((a[0]-b[0]) ** 2 + (a[1]-b[1]) ** 2) ** 0.5 | ad3490e25fb21a555ee2d12bead5fa476f682566 | 701,783 |
def quote(s: str) -> str:
"""
Quotes the identifier.
This ensures that the identifier is valid to use in SQL statements even if it
contains special characters or is a SQL keyword.
It DOES NOT protect against malicious input. DO NOT use this function with untrusted
input.
"""
if not (s.startswith('"') and s.endswith('"')):
return '"' + s.replace('"', '""') + '"'
else:
return s | b4530f7570384beedbb7aafd02e642862a484bb8 | 701,784 |
def _mangle_dimension_name(name):
"""Return a dimension name from a mixpanel property name."""
fixed_name = name.replace("$", "_")
fixed_name = fixed_name.replace(" ", "_")
return fixed_name | b18738f4c27fcebe7a93f724bfd45414e075f0a6 | 701,785 |
def update_dict(old_data, new_data):
"""
Overwrites old usa_ids, descriptions, and abbreviation with data from
the USA contacts API
"""
old_data['usa_id'] = new_data.get('usa_id')
if new_data.get('description') and not old_data.get('description'):
old_data['description'] = new_data.get('description')
if new_data.get('abbreviation') and not old_data.get('abbreviation'):
old_data['abbreviation'] = new_data['abbreviation']
return old_data | bec860144de28f5e3097e92216d94e6025223d2e | 701,786 |
def min_box(box1, box2):
"""
return the minimum of two bounding boxes
"""
ext = lambda values: max(values) if sum(values) <= 0 else min(values)
return tuple(tuple(ext(offs) for offs in zip(dim[0], dim[1])) for dim in zip(box1, box2)) | 58c8a0fa75c66f1327df13a4e7b5a0f7385c805e | 701,787 |
import math
def exempt_milliwatts_sar(cm: float, ghz: float) -> float:
"""Calculate power threshold for exemption from routine radio frequency exposure evaluation. Note: narrow range
of applicable frequencies. FCC formula is "based on localized specific absorption rate (SAR) limits." Source: FCC
19-126 p.23
:param cm: Distance from antenna to person (centimeters)
:param ghz: Frequency of RF source (gigahertz, NOTE different unit from other functions)
:return: time-averaged power threshold for exemption (milliwatts)
:raises ValueError: if frequency or distance out of range (0.3 - 6 GHz; 0 - 40 cm)
"""
if 0.3 <= ghz < 1.5:
erp20 = 2040 * ghz
elif 1.5 <= ghz <= 6:
erp20 = 3060
else:
raise ValueError("frequency out of range: %s GHz" % str(ghz))
x = -1 * math.log10(60 / (erp20 * math.sqrt(ghz)))
if 0 <= cm <= 20:
p_threshold = erp20 * (cm / 20) ** x
elif 20 < cm <= 40:
p_threshold = erp20
else:
raise ValueError("distance out of range: %s cm" % str(cm))
return p_threshold | d705c3fd2388204d188e95d9013fe0c574f9e82a | 701,789 |
import typing
import re
def replace_cif_reference(refs: typing.Iterable[str], new_sub_str: str) -> typing.List:
"""Replace the "cif-reference-0" to bec new names with increasing index."""
ans = []
source = r"@article{.*,"
for i, ref in enumerate(refs):
ref2 = re.sub(source, "@article{{{}{},".format(new_sub_str, i), ref)
ans.append(ref2)
return ans | 014f633c8eef43093944ec8f63690b59c446c2c1 | 701,790 |
import uuid
def random_string() -> str:
"""
Create a 36-character random string.
Returns
-------
str
"""
return str(uuid.uuid4()) | f01e291f6d36a8468a256af0fad83e2d468b471d | 701,791 |
def _extent(x, y):
"""Get data extent for pyplot imshow.
Parameters
----------
x: list
Data array on X-axis.
y: list
Data array on Y-axis.
Returns
-------
[float, float, float, float]
X and Y extent.
"""
dx, dy = .5 * (x[1] - x[0]), .5 * (y[1] - y[0])
return [x[0] - dx, x[-1] + dx, y[-1] + dy, y[0] - dy] | 1b8a062e2060dc99d3fcdc32fe6fd1952f468a6a | 701,792 |
import feedparser # type: ignore
def get_posts_details(rss=None):
"""
Take link of mrss feed as argument
"""
if rss is not None:
# import the library only when url for feed is passed
# parsing partner feed
partner_feed = partner_feed = feedparser.parse(rss)
# getting lists of partner entries via .entries
posts = partner_feed.entries
# print(posts)
# dictionary for holding posts details
# print(partner_feed.entries[0])
posts_details = {"Partner Title" : partner_feed.feed.title,
"Partner Feed" : partner_feed.feed.updated}
post_list = []
# iterating over individual posts
for post in posts:
temp = dict()
# if any post doesn't have information then throw error.
try:
temp["post_title"] = post.title
temp["post_URL"] = post.link
temp["post_cover_image"] = post.media_thumbnail
# temp["author"] = post.author
# temp["time_published"] = post.published
except:
pass
post_list.append(temp)
# storing lists of posts in the dictionary
posts_details["posts"] = post_list
return posts_details # returning the details which is dictionary
else:
return None | eee63b49ab4cf7c1746b752cb0a436b18fb7201e | 701,794 |
def _normalize_newlines(text: str) -> str:
"""Normalizes the newlines in a string to use \n (instead of \r or \r\n).
:param text: the text to normalize the newlines in
:return: the text with the newlines normalized
"""
return "\n".join(text.splitlines()) | 6b53b42e8cec72a8e63ec0065776f47de2fba835 | 701,796 |
def pick_from_greatests(dictionary, wobble):
"""
Picks the left- or rightmost positions of the greatests list in a window
determined by the wobble size. Whether the left or the rightmost positions
are desired can be set by the user, and the list is ordered accordingly.
"""
previous = -100
is_picked_list = []
for pos, is_greatest in dictionary.items():
is_picked = False
if is_greatest:
if previous not in range(pos - wobble, pos + wobble + 1):
is_picked = True
previous = pos
is_picked_list.append(is_picked)
return is_picked_list | 52685877620ab7f58a27eb6997ec25f3b499e3a4 | 701,797 |
def replace_layer(model, layer_name, replace_fn):
"""Replace single layer in a (possibly nested) torch.nn.Module using `replace_fn`.
Given a module `model` and a layer specified by `layer_name` replace the layer using
`new_layer = replace_fn(old_layer)`. Here `layer_name` is a list of strings, each string
indexing a level of the nested model."""
if layer_name:
nm = layer_name.pop()
model._modules[nm] = replace_layer(model._modules[nm], layer_name, replace_fn)
else:
model = replace_fn(model)
return model | 2e0ee082d6ab8b48979aa49e303a0e12583812b7 | 701,798 |
def genInvSBox( SBox ):
"""
genInvSBox - generates inverse of an SBox.
Args:
SBox: The SBox to generate the inverse.
Returns:
The inverse SBox.
"""
InvSBox = [0]*0x100
for i in range(0x100):
InvSBox[ SBox[i] ] = i
return InvSBox | 8ddf7e338e914f6cb6c309dc25705601326160c0 | 701,799 |
def get_unassigned(values:dict, unassigned:dict):
"""
Select Unassigned Variable
It uses minimum remaining values MRV and degree as heuristics
returns a tuple of:
unassigned key and a list of the possible values
e.g. ('a1', [1, 2, 3, 4, 5, 6, 7, 8, 9])
"""
values_sort = dict() # empty dictionary to store length of possible values array
for key in values.keys():
length = len(values[key]) # get the length of possible values array
values_sort[key] = (length) # add to dictionary for sorting in next step
# sort the dictionary including lengths of possible values from small to large
# this is to later on assign the items with the minimum number of remaining values first
values_sorted = dict(sorted(values_sort.items(), key=lambda item: item[1], reverse=False))
for key in values_sorted.keys():
if unassigned[key] == True:
length = values_sorted[key]
if length > 1:
vars = values[key]
return key, vars | 32ff78f7a6443bfbf4406c420ba87e254e88d5c3 | 701,800 |
def is_superset_of(value, superset):
"""Check if a variable is a superset."""
return set(value) <= set(superset) | 8b40089430dedef72566e93eb551b35001ec2e96 | 701,801 |
from datetime import datetime
def datetime_to_year(dt: datetime) -> float:
"""
Convert a DateTime instance to decimal year
For example, 1/7/2010 would be approximately 2010.5
:param dt: The datetime instance to convert
:return: Equivalent decimal year
"""
# By Luke Davis from https://stackoverflow.com/a/42424261
year_part = dt - datetime(year=dt.year, month=1, day=1)
year_length = datetime(year=dt.year + 1, month=1, day=1) - datetime(year=dt.year, month=1, day=1)
return dt.year + year_part / year_length | 5f4ae29d57d13a344e70016ab59dbc0a619db4d8 | 701,802 |
def ek_R56Q(cell):
"""
Returns the R56Q reversal potential (in mV) for the given integer index
``cell``.
"""
reversal_potentials = {
1: -96.0,
2: -95.0,
3: -90.5,
4: -94.5,
5: -94.5,
6: -101.0
}
return reversal_potentials[cell] | a61d33426e4c14147677c29b8e37381981f0d1db | 701,803 |
def gtk_menu_position(event, *args):
"""
Create a menu at the given location for an event. This function is meant to
be used as the *func* parameter for the :py:meth:`Gtk.Menu.popup` method.
The *event* object must be passed in as the first parameter, which can be
accomplished using :py:func:`functools.partial`.
:param event: The event to retrieve the coordinates for.
"""
if not hasattr(event, 'get_root_coords'):
raise TypeError('event object has no get_root_coords method')
coords = event.get_root_coords()
return (coords[0], coords[1], True) | 2670b4c2b3f5d7ad7fa74a836ec1b918a724c436 | 701,804 |
import torch
def ssim(x, y):
"""Calculate ssim value of x (3D) in respect to y (3D).
:param x: preprocessed predicted tensor (3D)
:type x: torch.Tensor
:param y: preprocessed groundtruth tensor (3D)
:type y: torch.Tensor
"""
# pre-computation
C1 = (0.01 * 255) ** 2
C2 = (0.03 * 255) ** 2
flatten_x = torch.flatten(x, start_dim=1)
flatten_y = torch.flatten(y, start_dim=1)
tot_pixel = x.size(1) * x.size(2)
# calculate miu
miux = torch.mean(x, dim=(1, 2))
miuy = torch.mean(y, dim=(1, 2))
mean_subtracted_x = flatten_x - miux.unsqueeze(1)
mean_subtracted_y = flatten_y - miuy.unsqueeze(1)
# calculate phi
supportx = torch.sum(mean_subtracted_x ** 2, dim=1)
phix = torch.sqrt(supportx / (tot_pixel - 1))
supporty = torch.sum(mean_subtracted_y ** 2, dim=1)
phiy = torch.sqrt(supporty / (tot_pixel - 1))
phixy = torch.sum(mean_subtracted_x * mean_subtracted_y, dim=1) / (tot_pixel - 1)
# calculate ssim
result = torch.mean(((2 * miux * miuy + C1) * (2 * phixy + C2)) /
((miux ** 2 + miuy ** 2 + C1) * (phix ** 2 + phiy ** 2 + C2))).item()
return result | e94d4565f694ecdc8f7e72f692861b9982e66b11 | 701,805 |
import re
def _sort_nd2_files(files):
"""
The script used on the Nikon scopes is not handling > 100 file names
correctly and is generating a pattern like:
ESN_2021_01_08_00_jsp116_00_P_009.nd2
ESN_2021_01_08_00_jsp116_00_P_010.nd2
ESN_2021_01_08_00_jsp116_00_P_0100.nd2
ESN_2021_01_08_00_jsp116_00_P_011.nd2
So this function parses the last number and treats it as an int for sorting
"""
pat = re.compile(r"(.*_)(\d+)(\.nd2)$")
file_splits = []
did_split = None
for file in files:
g = pat.match(file)
if g is not None:
file_splits += [(g.group(1), g.group(2), g.group(3))]
assert did_split is True or did_split is None
did_split = True
else:
assert did_split is False or did_split is None
did_split = False
if did_split:
numerically_sorted = sorted(file_splits, key=lambda x: int(x[1]))
return ["".join(i) for i in numerically_sorted]
else:
return sorted(files) | 17a034323412174beab3fd9cfb23e315a26d4d5a | 701,806 |
def _suppression_polynomial(halo_mass, z, log_half_mode_mass, c_scale, c_power):
"""
:param halo_mass: halo mass
:param z: halo redshift
:param log_half_mode_mass: log10 of half-mode mass
:param c_scale: the scale where the relation turns over
:param c_power: the steepness of the turnover
The functional form is:
c_wdm / c_cdm = (1 + c_scale * mhm / m)^c_power * redshift_factor
where
redshift_factor = (1+z)^(0.026 * z - 0.04)
(Bose et al. 2016)
:return: the ratio c_wdm over c_cdm
"""
if c_power > 0:
raise Exception('c_power parameters > 0 are unphysical')
if c_scale < 0:
raise Exception('c_scale parameters < 0 are unphysical')
mhm = 10 ** log_half_mode_mass
mass_ratio = mhm / halo_mass
concentration_factor = (1 + c_scale * mass_ratio) ** c_power
redshift_factor = (1 + z) ** (0.026 * z - 0.04)
rescale = redshift_factor * concentration_factor
return rescale | e0d72ae6c092ff01864cfb74d18143b070f075c9 | 701,807 |
import torch
def KLDiv_loss(x, y):
"""Wrapper for PyTorch's KLDivLoss function"""
x_log = x.log()
return torch.nn.functional.kl_div(x_log, y) | e288c3e60fab90a30693b6d5856bd2964f421599 | 701,808 |
def limit_vals(input_value, low_limit, high_limit):
"""
Apply limits to an input value.
Parameters
----------
input_value : float
Input value.
low_limit : float
Low limit. If value falls below this limit it will be set to this value.
high_limit : float
High limit. If value falls above this limit it will be set to this value.
Returns
-------
float
Returns input value unless it falls above or below the entered limits.
"""
if input_value < low_limit:
return low_limit
elif input_value > high_limit:
return high_limit
else:
return input_value | 4520da27c81338631ea0d35651c7e3170de0524c | 701,809 |
import torch
def get_mask(
ref,
sub,
pyg=False
):
"""
Get the mask for a reference list based on a subset list.
Args:
ref: reference list
sub: subset list
pyg: boolean; whether to return torch tensor for PyG
Return:
mask: list or torch.BoolTensor
"""
mask = [item in sub for item in ref]
if pyg:
mask = torch.BoolTensor(mask)
return mask | 07e4b092b5becaaec8bc070990259701bc3a00b7 | 701,810 |
def get_merged_overlapping_coords(start_end):
"""merges overlapping spans, assumes sorted by start"""
result = [start_end[0]]
prev_end = result[0][-1]
for i in range(1, len(start_end)):
curr_start, curr_end = start_end[i]
# if we're beyond previous, add and continue
if curr_start > prev_end:
prev_end = curr_end
result.append([curr_start, curr_end])
elif curr_end > prev_end:
prev_end = curr_end
result[-1][-1] = prev_end
else:
pass # we lie completely within previous span
return result | 22220778a66e069d98d1129b32f024e61fde1859 | 701,811 |
import logging
from pathlib import Path
def init_logger(log_file=None, log_file_level=logging.NOTSET):
"""
Example:
init_logger(log_file)
logger.info("abc'")
"""
if isinstance(log_file, Path):
log_file = str(log_file)
log_format = logging.Formatter(fmt='%(asctime)s - %(levelname)s - %(name)s - %(message)s',
datefmt='%m/%d/%Y %H:%M:%S')
logger_ = logging.getLogger()
logger_.setLevel(logging.INFO)
console_handler = logging.StreamHandler()
console_handler.setFormatter(log_format)
logger_.handlers = [console_handler]
if log_file and log_file != '':
file_handler = logging.FileHandler(log_file)
file_handler.setLevel(log_file_level)
# file_handler.setFormatter(log_format)
logger_.addHandler(file_handler)
return logger_ | 65df2b9377062aa562b88eadd334447b14c100d3 | 701,812 |
def HtmlRenderer(tooltip):
"""
A renderer that implements all tooltip features
in html.
"""
ret = []
USE_STYLE = True
lineTpl = '<div style="%s">%s</div>'
sideTpl = '<span style="%s">%s</span>'
for idx, line in enumerate(tooltip):
lineHtml = []
lineStyle = []
if idx == 0:
lineStyle.append("font-size: 110%;")
for side in line:
style = ["color: #%06x;" % (side.color())]
if side.side() == side.RIGHT:
style.append("float: right;")
lineHtml.append(sideTpl % (" ".join(style), side.text()))
text = lineTpl % (" ".join(lineStyle), " ".join(lineHtml))
ret.append(text)
return "\n".join(ret) | fc4cbd326138085f39ee339973279e73be5f2af8 | 701,813 |
def html_to_spreadsheet_cell(html_element):
""" Parse HTML elmement, like <a href=www.google.com>Google</a> to =HYPERLINK(www.google.com, Google) """
link = html_element.find("a")
if link:
return '=HYPERLINK("{}", "{}")'.format(link['href'], link.contents[0])
else:
return html_element.text | f0c797f59ed55d1ce6aab32ff8c40cf83577ee27 | 701,814 |
def _get_class(canonical_name: str):
"""
Gets a class by it's canonical name. Mind that this can only work with classes that does not require
any argument during instantiation.
:param canonical_name: the canonical name of the class to load dynamically, e.g. x.y.Module.Class
:returns: the instance of the class.
"""
parts = canonical_name.split('.')
module = ".".join(parts[:-1])
m = __import__( module )
for comp in parts[1:]:
m = getattr(m, comp)
return type(parts[-1], (m,), {})() | 289630cf65fcb915da4f4b49baa650d2e27e7a7c | 701,815 |
from typing import Tuple
def parseOptionWithArgs(plugin: str) -> Tuple[str, str]:
"""Parse the plugin name into name and parameter
@type plugin: str
@param plugin: The plugin argument
@returns tuple[str, str]: The plugin name and parameter
"""
if '=' in plugin:
plugin, param = plugin.split('=', 1)
else:
plugin = plugin
param = ''
return (plugin, param) | 0e1f85f2e31349bf7ddcdc2d35b9ba815a61ec06 | 701,816 |
def knapsack(p, v, cmax):
"""Knapsack problem: select maximum value set of items if total size not
more than capacity
:param p: table with size of items
:param v: table with value of items
:param cmax: capacity of bag
:requires: number of items non-zero
:returns: value optimal solution, list of item indexes in solution
:complexity: O(n * cmax), for n = number of items
"""
n = len(p)
opt = [[0] * (cmax + 1) for _ in range(n + 1)]
sel = [[False] * (cmax + 1) for _ in range(n + 1)]
# --- basic case
for cap in range(p[0], cmax + 1):
opt[0][cap] = v[0]
sel[0][cap] = True
# --- induction case
for i in range(1, n):
for cap in range(cmax + 1):
if cap >= p[i] and opt[i-1][cap - p[i]] + v[i] > opt[i-1][cap]:
opt[i][cap] = opt[i-1][cap - p[i]] + v[i]
sel[i][cap] = True
else:
opt[i][cap] = opt[i-1][cap]
sel[i][cap] = False
# --- reading solution
cap = cmax
solution = []
for i in range(n-1, -1, -1):
if sel[i][cap]:
solution.append(i)
cap -= p[i]
return (opt[n - 1][cmax], solution) | 484ae09e663c834e42a9e05d684138d4fb6ddf08 | 701,817 |
def adresa_inceput(netmask, ip):
"""
Ia un netmask si un IP si determina adresa de inceput
a retelei
:param (str) netmask:
:param (str) ip:
:return adresa_inceput (str):
"""
netmask_nums = netmask.split(".")
ip_nums = ip.split(".")
adresa_inceput = ""
for i in range(0, 4):
adresa_num = int(netmask_nums[i]) & int(ip_nums[i])
adresa_inceput += str(adresa_num)
adresa_inceput += "."
return adresa_inceput[:len(adresa_inceput)-1] | dcbe18f68b216d6772fcad01e43829bc33de43c9 | 701,818 |
def get_usage_data_labels(usage_data):
"""Return dict with human readable labels for each of the groups in each of the given usage data timeframes."""
labels = {}
timeframe_formats = {"day": "%H", "week": "%b %d", "month": "%b %d", "year": "%b %Y"}
for timeframe, timeframe_data in usage_data.items():
labels[timeframe] = [group["datetime"].strftime(timeframe_formats[timeframe]) for group in timeframe_data]
# Modify hourly labels to signify that it is covering a period of an hour.
labels["day"] = [f"{label}:00-{int(label) + 1:02}:00" for label in labels["day"]]
return labels | 7c8610a7feb8a3a4a6454f508bfb9c95ccba55ff | 701,819 |
def has_same_disk_several_positions(board):
"""
Check if the same disk appears multiple times on the same board
Returns True is there is one or are multiple appearances, False if not
"""
used_disks = list(board.values())
for pos in range(len(used_disks) - 1, -1, -1):
if used_disks[pos] is None:
del used_disks[pos]
for pos in range(len(used_disks)):
for subpos in range(pos + 1, len(used_disks)):
if used_disks[pos] is used_disks[subpos]:
return True
return False | b184e5c8bfb34c9819e4ffb146c4159c4d247a4c | 701,820 |
def filter(function, iterable) -> object:
"""filter."""
if function is None:
return (item for item in iterable if item)
return (item for item in iterable if function(item)) | 36bfce957476f934a18c2bb3a24e994ec2799973 | 701,821 |
def modify_primer_file( infile, outfile ):
"""! @brief add subfix number to all primers """
counter = 0
mapping_table = {}
with open( outfile, "w" ) as out:
with open( infile, "r" ) as f:
line = f.readline()
while line:
if line[0] == ">":
if counter % 2 == 0:
name = line.strip()
out.write( ">primer" + str( counter / 2 ) + '_%_' + str( counter / 2 )+ '_%_1\n' )
mapping_table.update( { "primer" + str( counter / 2 ) + '_%_' + str( counter / 2 ) + '_%_1': name[1:] } )
else:
name = line.strip()
out.write( ">primer" + str( counter / 2 ) + '_%_' + str( counter / 2 )+ '_%_2\n' )
mapping_table.update( { "primer" + str( counter / 2 ) + '_%_' + str( counter / 2 )+ '_%_2': name[1:] } )
counter += 1
else:
out.write( line )
line = f.readline()
return mapping_table | 20802c5578adceddafa6c7584a2da5c17b80ede6 | 701,822 |
def format_currency(amount):
"""Convert float to string currency with 2 decimal places."""
str_format = str(amount)
cents = str_format.split('.')[1]
if len(cents) == 1:
str_format += '0'
return '{0} USD'.format(str_format) | b90d064fe6b095227e5c590ad8d175f072e07957 | 701,823 |
def _get_delay_time(session):
"""
Helper function to extract the delay time from the session.
:param session: Pytest session object.
:return: Returns the delay time for each test loop.
"""
return session.config.option.delay | 466ce191962df90ee8cdc1a5f8a004094eb9e79f | 701,825 |
from typing import Sequence
def is_overlapping_lane_seq(lane_seq1: Sequence[int], lane_seq2: Sequence[int]) -> bool:
"""
Check if the 2 lane sequences are overlapping.
Overlapping is defined as::
s1------s2-----------------e1--------e2
Here lane2 starts somewhere on lane 1 and ends after it, OR::
s1------s2-----------------e2--------e1
Here lane2 starts somewhere on lane 1 and ends before it
Args:
lane_seq1: list of lane ids
lane_seq2: list of lane ids
Returns:
bool, True if the lane sequences overlap
"""
if lane_seq2[0] in lane_seq1[1:] and lane_seq1[-1] in lane_seq2[:-1]:
return True
elif set(lane_seq2) <= set(lane_seq1):
return True
return False | 155e3a962f3f457a868585798e1ab8d92c9f115f | 701,826 |
def output_handler(data, context):
"""Post-process TensorFlow Serving output before it is returned to the client.
Args:
data (obj): the TensorFlow serving response
context (Context): an object containing request and configuration details
Returns:
(bytes, string): data to return to client, response content type
"""
if data.status_code != 200:
raise ValueError(data.content.decode('utf-8'))
response_content_type = context.accept_header
prediction = data.content
return prediction,response_content_type | 7d1bbcb2310c4527c5ae9cfcd51be660532555df | 701,827 |
def largest_rectangle(h):
"""Hackerrank Problem: https://www.hackerrank.com/challenges/largest-rectangle/problem
Skyline Real Estate Developers is planning to demolish a number of old, unoccupied buildings and construct a
shopping mall in their place. Your task is to find the largest solid area in which the mall can be constructed.
Args:
h (list): List of building heights
Returns:
(int): The largest area formed from the buildings
"""
largest_area = 0
# Iterate through each building in list, and then determine the area if that building is the lowest height
for i in range(len(h)):
num_buildings = 0
# Compare against buildings to the left
for left in range(i, -1, -1):
if h[left] >= h[i]:
num_buildings += 1
else:
break
# Compare buildings to the right
for right in range(i + 1, len(h)):
if h[right] >= h[i]:
num_buildings += 1
else:
break
# Next, calculate the area formed by this building and it's neighbors
area = h[i] * num_buildings
# Set as largest new area if it's the current largest
if area > largest_area:
largest_area = area
return largest_area | 7d7b66929e8416fdf8fe64e080ec5ed288c72d88 | 701,828 |
def fahr2cel(t):
"""Converts an input temperature in fahrenheit to degrees celsius
Inputs:
t: temperature, in degrees Fahrenheit
Returns:
Temperature, in C
"""
return (t - 32) * 5 / 9 | b55f2405e06b124adf23b7833dedbe42ff9f75ba | 701,829 |
import os
def load_fonts():
"""
Load all fonts in the fonts directory
"""
return [os.path.join('fonts1', font) for font in os.listdir('fonts1')] | 96e339324e2a84a55bef1a307cb0d46343b7f1f6 | 701,830 |
from pathlib import Path
import os
import subprocess
def decompress(full_bzip_filename: Path, temp_pth: Path) -> str:
"""
Decompresses .bz2 file and returns the non-compressed filename
Args:
full_bzip_filename: Full compressed filename
temp_pth: Temporary path to save the native file
Returns:
The full native filename to the decompressed file
"""
base_bzip_filename = os.path.basename(full_bzip_filename)
base_nat_filename = os.path.splitext(base_bzip_filename)[0]
full_nat_filename = os.path.join(temp_pth, base_nat_filename)
if os.path.exists(full_nat_filename):
os.remove(full_nat_filename)
with open(full_nat_filename, "wb") as nat_file_handler:
process = subprocess.run(
["pbzip2", "--decompress", "--keep", "--stdout", full_bzip_filename],
stdout=nat_file_handler,
)
process.check_returncode()
return full_nat_filename | 4fdacd7340a75de056f08557c87509b0b899b1a8 | 701,831 |
def to_int(value):
"""Converts the given string value into an integer. Returns 0 if the
conversion fails."""
try:
return int(value)
except (TypeError, ValueError):
return 0 | f219844de96d1d2236e94c4427c0ad27cc4b587b | 701,832 |
def _default_function(l, default, i):
"""
EXAMPLES::
sage: from sage.combinat.integer_vector import _default_function
sage: import functools
sage: f = functools.partial(_default_function, [1,2,3], 99)
sage: f(-1)
99
sage: f(0)
1
sage: f(1)
2
sage: f(2)
3
sage: f(3)
99
"""
try:
if i < 0:
return default
return l[i]
except IndexError:
return default | 05da74d0c4ecee914928e8760d75730efc3434e5 | 701,833 |
def convert_headers_str(_str):
"""
convert headers str to dict
"""
_list = [i.strip() for i in _str.split('\n')]
headers_dict = dict()
for i in _list:
k, v = i.split(':', 1)
headers_dict[k.strip()] = v.strip()
return headers_dict | cc80c1c2f5fc128243e59529808685335f7cead4 | 701,834 |
def cross(a, b):
"""Cross Product function
Given vectors a and b, calculate the cross product.
Parameters
----------
a : list
First 3D vector.
b : list
Second 3D vector.
Returns
-------
c : list
The cross product of vector a and vector b.
Examples
--------
>>> import numpy as np
>>> from .pyCGM import cross
>>> a = [6.25286248, 7.91367254, 18.63620527]
>>> b = [3.49290439, 4.42038315, 19.23948238]
>>> np.around(cross(a, b),8)
array([ 6.98757956e+01, -5.52073543e+01, -1.65361000e-03])
"""
c = [a[1]*b[2] - a[2]*b[1],
a[2]*b[0] - a[0]*b[2],
a[0]*b[1] - a[1]*b[0]]
return c | d71244391e28af7b42eff45af62cc936b8651cd2 | 701,835 |
import random
def rand_sampling(ratio, stop, start=1) :
"""
random sampling from close interval [start, stop]
Args :
ratio (float): percentage of sampling
stop (int): upper bound of sampling interval
start (int): lower bound of sampling interval
Returns :
A random sampling list
"""
assert 0 <= ratio and ratio <= 100, 'The ratio must be between 0 and 100.'
assert stop >= start, 'Invalid interval'
sample_pool = [i for i in range(start, stop + 1)]
select_num = int(len(sample_pool) * ratio)
return sorted(random.sample(sample_pool, select_num)) | 9b54c6b364e71a97d7cd9fa392790c4afde2bae0 | 701,836 |
def contain_same_digit(a, b):
"""
This function tests whether or not numbers a and b contains the same digits.
"""
list_a = list(str(a))
list_b = list(str(b))
if len(list_a) == len(list_b):
for elt in list_a:
if elt not in list_b:
return False
return True
else:
return False | a09feb891e5413593531e56871a92c335e585d7b | 701,837 |
import yaml
def read_yaml(config_path):
"""Load config files."""
with open(config_path) as file:
data = yaml.load(file, Loader=yaml.FullLoader)
return data | b46882ad841228edb3398a5742fa4dea6c4e9495 | 701,838 |
def parse_range(string):
"""
Parses IP range for args parser
:param string: formatted string X.X.X.X-Y.Y.Y.Y
:return: tuple of range
"""
ip_rng = string.split("-")
return [(ip_rng[0], ip_rng[1])] | 6f38e105284d58af2cef94275c25e02ad76acb80 | 701,839 |
import os
def all_files_from(dir, ext=''):
"""Quick function to get all files from directory and all subdirectories
"""
files = []
for root, dirnames, filenames in os.walk(dir):
for filename in filenames:
if filename.endswith(ext) and not filename.startswith('.'):
files.append(os.path.join(root, filename))
return files | e6e2fc545ceda51a2b4560829b0e995c164c5d9c | 701,841 |
import requests
import re
def get_title(url: str):
""" Get the Title of the web page and generates markdown formated link"""
html_source = requests.get(url).text
title = re.findall('<title>(.*?)</title>', html_source)[0].strip()
return f"[{title}]({url})" | c6b0a559e7e3369d34e6266b7636d5c4a13ed2f0 | 701,842 |
def item_cost_entry() -> float:
"""Return the sum of all user entries."""
print('\nENTER ITEMS (ENTER 0 TO END)')
subtotal: float = 0.0
while True:
cost: float = float(input('Cost of item: '))
if cost == 0:
break
else:
subtotal += cost
return subtotal | d9d5bdc53f2d37f348d477086935cba3ba6a8e7e | 701,843 |
def square(vx=1.0, vy=0, wz=0.8, t=16):
"""
Generate square trajectory, starting and ending at origin.
"""
time_points = range(t)
speed_points = (
# Get set
(0, 0, 0, 0),
# Walk forward and then turn left
(vx, 0, 0, 0),
(vx, 0, 0, 0),
(0, 0, 0, wz),
(0, 0, 0, wz),
# Walk forward and then turn left
(vx, 0, 0, 0),
(vx, 0, 0, 0),
(0, 0, 0, wz),
(0, 0, 0, wz),
# Walk forward and then turn left
(vx, 0, 0, 0),
(vx, 0, 0, 0),
(0, 0, 0, wz),
(0, 0, 0, wz),
(vx, 0, 0, 0),
(vx, 0, 0, 0), # Walk to start point
(0, 0, 0, 0)) # and relax.
return time_points, speed_points | 7db4f1c13cb3055b45e96b0e85934df0c6aa0389 | 701,844 |
def make_message(name):
"""Constructs a welcoming message. Input: string, Output:string."""
message = "Good morning, %s! Nice to see you."%name
return message | ac5c9f845cd6779fa37758ec6b27b69dd325fb7d | 701,845 |
def image_update(client, image_id, values, purge_props=False):
"""
Set the given properties on an image and update it.
:raises NotFound if image does not exist.
"""
return client.image_update(values=values,
image_id=image_id,
purge_props=purge_props) | ddd89c57cefa2972833ce87e382572406fbb811f | 701,847 |
def _parse_vertex_tuple(s):
"""Parse vertex indices in '/' separated form (like 'i/j/k', 'i//k' ...)."""
vt = [0, 0, 0]
for i, c in enumerate(s.split('/')):
if c:
vt[i] = int(c)
return tuple(vt) | e83182401b6443726660caf3688008f6209aed13 | 701,848 |
import torch
def tfidf_transform(tfidf_vectorizer, corpus_data, cuda0):
"""
Apply TFIDF transformation to test data.
Args:
vectorizer_train (object): trained tfidf vectorizer
newsgroups_test (ndarray): corpus of all documents from all categories in test set
Returns:
X_test (ndarray): tfidf word-document matrix of test data
"""
corpus_list = corpus_data["text"].tolist()
tfidf_vector = tfidf_vectorizer.fit_transform(corpus_list)
X_test = torch.t(torch.tensor(tfidf_vector.todense(), dtype=torch.float64, device=cuda0))
return X_test | 6f18b7114579412e1442b1c6220f34b7f643a2ab | 701,849 |
def numStationsNotIgnored(observations):
""" Take a list of ObservedPoints and returns the number of stations that are actually to be used and
are not ignored in the solution.
Arguments:
observations: [list] A list of ObservedPoints objects.
Return:
[int] Number of stations that are used in the solution.
"""
return len([obs for obs in observations if obs.ignore_station == False]) | 279f4075bc1fe155e4fa8b39758997c9748f06b8 | 701,850 |
def get_status(req_sheet, row_num):
""" Accessor for JIRA Key
Args:
req_sheet: A variable holding an Excel Workbook sheet in memory.
row_num: A variable holding the row # of the data being accessed.
Returns:
A string value of the Notes
"""
return (req_sheet['G' + str(row_num)].value) | 3e1de0013bc0efc5824f5261ff4c0b278f486ea8 | 701,851 |
def summation(num) -> int:
"""This function makes numbers summation."""
return sum(range(1, num + 1)) | 78983a3e60be914987fd1dc91d5097e1edb326da | 701,852 |
def get_mapshape_from_searchmap(hashtable):
"""Suppose keys have the form (x, y). We want max(x), max(y)
such that not necessarily the key (max(x), max(y)) exists
Args:
hashtable(dict): key-value pairs
Returns:
int, int: max values for the keys
"""
ks = hashtable.keys()
h = max([y[0] for y in ks])
w = max([x[1] for x in ks])
return h+1, w+1 | cf5cb2051fc9254d70c60a71d2c7f9e378b0a39e | 701,853 |
def det(a, b):
"""
Calculate the determinent between two vectors
@param[a] One vector represented as [x,y]
@param[b] One vector represented as [x,y]
"""
return a[0] * b[1] - a[1] * b[0] | 61dfcbf421241ac9885643554bbf0c235f698098 | 701,854 |
def comments_search(posts,comments):
"""
:param posts1:Список со словарями, в которых данные публикаций
:param comments:Список со словарями, в которых данные комментариев
:return:Измененные список posts, с комментариями к постам с статусом sponsored
"""
for post in posts:
post['comms'] = []
for comment in comments:
if comment['post_id'] == post['id']:
post['comms'].append(comment['comment'])
return posts | e5d57854693de563b9a5beb7ca5f5e40b8d68d5a | 701,855 |
import torch
def update_weights(batch, batch_dic):
"""
Readjust weights so they sum to 1.
Args:
batch_dic (dict): Dictionary with extra conformer
information about the batch
batch (dict): Batch dictionary
Returns:
new_weights (torch.Tensor): renormalized weights
"""
old_weights = batch["weights"]
conf_idx = torch.LongTensor(batch_dic["conf_idx"])
new_weights = old_weights[conf_idx]
new_weights /= new_weights.sum()
if torch.isnan(new_weights).any():
new_weights = torch.ones_like(old_weights[conf_idx])
new_weights /= new_weights.sum()
return new_weights | 90131e119e9d2cb849b79346fd2f5f86411f652b | 701,856 |
import ast
def _get_all_names(tree):
"""
Return list of all words.
:param tree: _ast.Module object
:return: list with words
"""
return (node.id for node in ast.walk(tree) if isinstance(node, ast.Name)) | 2b7f39af8bbe0c253d0206bcc86a8a0d05c7686e | 701,857 |
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.